diff --git "a/120306/metadata.json" "b/120306/metadata.json" new file mode 100644--- /dev/null +++ "b/120306/metadata.json" @@ -0,0 +1,22587 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "120306", + "quality_score": 0.8253, + "per_segment_quality_scores": [ + { + "start": 219.0, + "end": 219.0, + "probability": 0.0 + }, + { + "start": 219.18, + "end": 219.32, + "probability": 0.0882 + }, + { + "start": 219.32, + "end": 222.12, + "probability": 0.5463 + }, + { + "start": 222.22, + "end": 227.62, + "probability": 0.9773 + }, + { + "start": 228.18, + "end": 230.18, + "probability": 0.8035 + }, + { + "start": 230.86, + "end": 232.16, + "probability": 0.7537 + }, + { + "start": 232.26, + "end": 233.08, + "probability": 0.9316 + }, + { + "start": 233.16, + "end": 234.35, + "probability": 0.6427 + }, + { + "start": 234.52, + "end": 240.28, + "probability": 0.8172 + }, + { + "start": 240.4, + "end": 242.58, + "probability": 0.4244 + }, + { + "start": 242.82, + "end": 245.6, + "probability": 0.9659 + }, + { + "start": 245.6, + "end": 248.6, + "probability": 0.778 + }, + { + "start": 248.66, + "end": 254.02, + "probability": 0.7981 + }, + { + "start": 254.02, + "end": 256.7, + "probability": 0.9988 + }, + { + "start": 257.24, + "end": 258.38, + "probability": 0.7438 + }, + { + "start": 259.34, + "end": 263.28, + "probability": 0.9976 + }, + { + "start": 263.28, + "end": 266.5, + "probability": 0.999 + }, + { + "start": 266.88, + "end": 267.74, + "probability": 0.9745 + }, + { + "start": 268.38, + "end": 272.36, + "probability": 0.8763 + }, + { + "start": 272.36, + "end": 273.66, + "probability": 0.4342 + }, + { + "start": 273.66, + "end": 275.1, + "probability": 0.7907 + }, + { + "start": 275.1, + "end": 277.4, + "probability": 0.995 + }, + { + "start": 281.14, + "end": 281.7, + "probability": 0.4304 + }, + { + "start": 282.22, + "end": 285.52, + "probability": 0.9952 + }, + { + "start": 285.52, + "end": 289.2, + "probability": 0.996 + }, + { + "start": 289.46, + "end": 292.6, + "probability": 0.9301 + }, + { + "start": 292.76, + "end": 293.0, + "probability": 0.6299 + }, + { + "start": 294.3, + "end": 295.66, + "probability": 0.8831 + }, + { + "start": 295.98, + "end": 298.34, + "probability": 0.8094 + }, + { + "start": 298.44, + "end": 298.7, + "probability": 0.8073 + }, + { + "start": 298.72, + "end": 303.12, + "probability": 0.8663 + }, + { + "start": 304.06, + "end": 305.42, + "probability": 0.9761 + }, + { + "start": 305.64, + "end": 307.32, + "probability": 0.7292 + }, + { + "start": 307.92, + "end": 308.64, + "probability": 0.5987 + }, + { + "start": 308.64, + "end": 311.34, + "probability": 0.9533 + }, + { + "start": 311.44, + "end": 312.14, + "probability": 0.9983 + }, + { + "start": 313.01, + "end": 317.76, + "probability": 0.9794 + }, + { + "start": 318.34, + "end": 320.5, + "probability": 0.5933 + }, + { + "start": 321.4, + "end": 323.68, + "probability": 0.9941 + }, + { + "start": 324.06, + "end": 325.26, + "probability": 0.9731 + }, + { + "start": 325.9, + "end": 329.5, + "probability": 0.9279 + }, + { + "start": 329.6, + "end": 332.14, + "probability": 0.9792 + }, + { + "start": 332.7, + "end": 333.94, + "probability": 0.7174 + }, + { + "start": 334.06, + "end": 334.66, + "probability": 0.9124 + }, + { + "start": 335.42, + "end": 336.54, + "probability": 0.7687 + }, + { + "start": 337.38, + "end": 337.9, + "probability": 0.696 + }, + { + "start": 337.9, + "end": 341.16, + "probability": 0.848 + }, + { + "start": 341.26, + "end": 344.18, + "probability": 0.9676 + }, + { + "start": 344.24, + "end": 347.5, + "probability": 0.9605 + }, + { + "start": 348.06, + "end": 349.52, + "probability": 0.6458 + }, + { + "start": 349.76, + "end": 352.22, + "probability": 0.9935 + }, + { + "start": 353.14, + "end": 354.22, + "probability": 0.9331 + }, + { + "start": 354.34, + "end": 356.34, + "probability": 0.811 + }, + { + "start": 357.0, + "end": 358.26, + "probability": 0.9137 + }, + { + "start": 358.42, + "end": 360.32, + "probability": 0.4662 + }, + { + "start": 360.52, + "end": 363.56, + "probability": 0.9594 + }, + { + "start": 364.44, + "end": 365.12, + "probability": 0.8408 + }, + { + "start": 365.28, + "end": 367.04, + "probability": 0.6401 + }, + { + "start": 367.66, + "end": 373.28, + "probability": 0.9954 + }, + { + "start": 373.48, + "end": 375.82, + "probability": 0.7444 + }, + { + "start": 376.66, + "end": 377.32, + "probability": 0.8825 + }, + { + "start": 377.58, + "end": 378.18, + "probability": 0.0317 + }, + { + "start": 379.32, + "end": 380.36, + "probability": 0.4764 + }, + { + "start": 383.12, + "end": 384.4, + "probability": 0.7356 + }, + { + "start": 384.56, + "end": 387.04, + "probability": 0.9017 + }, + { + "start": 388.96, + "end": 390.02, + "probability": 0.9978 + }, + { + "start": 390.26, + "end": 391.34, + "probability": 0.7103 + }, + { + "start": 391.52, + "end": 392.08, + "probability": 0.8526 + }, + { + "start": 392.28, + "end": 392.68, + "probability": 0.965 + }, + { + "start": 392.82, + "end": 394.2, + "probability": 0.8814 + }, + { + "start": 394.3, + "end": 395.12, + "probability": 0.5077 + }, + { + "start": 395.26, + "end": 396.84, + "probability": 0.9558 + }, + { + "start": 397.44, + "end": 398.68, + "probability": 0.9103 + }, + { + "start": 399.24, + "end": 401.68, + "probability": 0.9318 + }, + { + "start": 417.06, + "end": 417.56, + "probability": 0.6461 + }, + { + "start": 417.56, + "end": 418.74, + "probability": 0.8607 + }, + { + "start": 418.88, + "end": 421.63, + "probability": 0.5966 + }, + { + "start": 422.12, + "end": 423.72, + "probability": 0.4187 + }, + { + "start": 423.88, + "end": 424.46, + "probability": 0.6319 + }, + { + "start": 424.64, + "end": 431.56, + "probability": 0.7769 + }, + { + "start": 431.56, + "end": 432.04, + "probability": 0.6629 + }, + { + "start": 437.08, + "end": 441.38, + "probability": 0.67 + }, + { + "start": 442.13, + "end": 445.96, + "probability": 0.9391 + }, + { + "start": 446.98, + "end": 452.72, + "probability": 0.9822 + }, + { + "start": 453.74, + "end": 459.64, + "probability": 0.9037 + }, + { + "start": 460.48, + "end": 461.9, + "probability": 0.9438 + }, + { + "start": 461.94, + "end": 462.24, + "probability": 0.808 + }, + { + "start": 462.28, + "end": 462.86, + "probability": 0.9343 + }, + { + "start": 463.2, + "end": 464.14, + "probability": 0.9486 + }, + { + "start": 464.26, + "end": 464.96, + "probability": 0.8778 + }, + { + "start": 465.14, + "end": 466.58, + "probability": 0.6354 + }, + { + "start": 467.08, + "end": 471.04, + "probability": 0.994 + }, + { + "start": 471.04, + "end": 475.82, + "probability": 0.9868 + }, + { + "start": 475.94, + "end": 476.88, + "probability": 0.9245 + }, + { + "start": 478.08, + "end": 483.96, + "probability": 0.959 + }, + { + "start": 484.04, + "end": 484.6, + "probability": 0.7132 + }, + { + "start": 485.42, + "end": 487.6, + "probability": 0.9051 + }, + { + "start": 488.02, + "end": 490.34, + "probability": 0.9795 + }, + { + "start": 491.71, + "end": 497.64, + "probability": 0.9972 + }, + { + "start": 497.64, + "end": 503.38, + "probability": 0.7117 + }, + { + "start": 503.96, + "end": 505.6, + "probability": 0.4792 + }, + { + "start": 506.46, + "end": 510.92, + "probability": 0.9626 + }, + { + "start": 511.41, + "end": 517.64, + "probability": 0.9279 + }, + { + "start": 517.74, + "end": 522.06, + "probability": 0.9705 + }, + { + "start": 522.16, + "end": 522.36, + "probability": 0.7335 + }, + { + "start": 522.44, + "end": 523.32, + "probability": 0.8398 + }, + { + "start": 523.82, + "end": 524.92, + "probability": 0.9844 + }, + { + "start": 525.6, + "end": 526.86, + "probability": 0.9635 + }, + { + "start": 527.52, + "end": 531.94, + "probability": 0.9785 + }, + { + "start": 531.94, + "end": 536.88, + "probability": 0.7483 + }, + { + "start": 536.88, + "end": 540.98, + "probability": 0.868 + }, + { + "start": 541.08, + "end": 543.68, + "probability": 0.7681 + }, + { + "start": 544.34, + "end": 551.28, + "probability": 0.9556 + }, + { + "start": 552.56, + "end": 554.38, + "probability": 0.6713 + }, + { + "start": 554.76, + "end": 560.59, + "probability": 0.8307 + }, + { + "start": 560.76, + "end": 565.9, + "probability": 0.9854 + }, + { + "start": 566.46, + "end": 567.0, + "probability": 0.8829 + }, + { + "start": 567.08, + "end": 568.02, + "probability": 0.795 + }, + { + "start": 568.16, + "end": 571.02, + "probability": 0.8934 + }, + { + "start": 571.72, + "end": 573.46, + "probability": 0.9639 + }, + { + "start": 574.04, + "end": 577.86, + "probability": 0.9897 + }, + { + "start": 577.86, + "end": 582.36, + "probability": 0.9968 + }, + { + "start": 582.44, + "end": 582.94, + "probability": 0.97 + }, + { + "start": 583.68, + "end": 584.28, + "probability": 0.8005 + }, + { + "start": 584.38, + "end": 588.16, + "probability": 0.9681 + }, + { + "start": 588.16, + "end": 591.32, + "probability": 0.8903 + }, + { + "start": 591.42, + "end": 593.06, + "probability": 0.9618 + }, + { + "start": 594.84, + "end": 601.3, + "probability": 0.9245 + }, + { + "start": 602.36, + "end": 605.02, + "probability": 0.9736 + }, + { + "start": 605.28, + "end": 607.58, + "probability": 0.9716 + }, + { + "start": 607.88, + "end": 610.26, + "probability": 0.9187 + }, + { + "start": 610.7, + "end": 615.2, + "probability": 0.9077 + }, + { + "start": 615.38, + "end": 619.56, + "probability": 0.978 + }, + { + "start": 619.76, + "end": 622.22, + "probability": 0.9927 + }, + { + "start": 623.06, + "end": 624.3, + "probability": 0.648 + }, + { + "start": 625.08, + "end": 629.08, + "probability": 0.9552 + }, + { + "start": 629.38, + "end": 634.94, + "probability": 0.9655 + }, + { + "start": 635.14, + "end": 639.2, + "probability": 0.9666 + }, + { + "start": 639.36, + "end": 643.7, + "probability": 0.9965 + }, + { + "start": 644.54, + "end": 648.58, + "probability": 0.8443 + }, + { + "start": 649.14, + "end": 651.92, + "probability": 0.9684 + }, + { + "start": 651.92, + "end": 656.4, + "probability": 0.9867 + }, + { + "start": 657.36, + "end": 660.04, + "probability": 0.9357 + }, + { + "start": 660.82, + "end": 665.54, + "probability": 0.9951 + }, + { + "start": 665.68, + "end": 668.87, + "probability": 0.9899 + }, + { + "start": 669.74, + "end": 672.4, + "probability": 0.8344 + }, + { + "start": 672.68, + "end": 674.84, + "probability": 0.9957 + }, + { + "start": 676.16, + "end": 677.32, + "probability": 0.9647 + }, + { + "start": 677.92, + "end": 682.44, + "probability": 0.9989 + }, + { + "start": 682.44, + "end": 687.72, + "probability": 0.9966 + }, + { + "start": 688.18, + "end": 692.86, + "probability": 0.9885 + }, + { + "start": 693.16, + "end": 693.88, + "probability": 0.5613 + }, + { + "start": 694.58, + "end": 697.56, + "probability": 0.9071 + }, + { + "start": 697.78, + "end": 703.34, + "probability": 0.9555 + }, + { + "start": 703.34, + "end": 708.44, + "probability": 0.9705 + }, + { + "start": 709.7, + "end": 713.62, + "probability": 0.9751 + }, + { + "start": 713.62, + "end": 716.54, + "probability": 0.9874 + }, + { + "start": 717.24, + "end": 720.94, + "probability": 0.9973 + }, + { + "start": 720.94, + "end": 725.0, + "probability": 0.9289 + }, + { + "start": 725.76, + "end": 730.74, + "probability": 0.97 + }, + { + "start": 731.02, + "end": 732.48, + "probability": 0.8611 + }, + { + "start": 733.2, + "end": 735.24, + "probability": 0.8233 + }, + { + "start": 735.34, + "end": 742.18, + "probability": 0.9831 + }, + { + "start": 742.74, + "end": 746.62, + "probability": 0.9001 + }, + { + "start": 747.12, + "end": 747.75, + "probability": 0.4338 + }, + { + "start": 748.06, + "end": 750.9, + "probability": 0.9352 + }, + { + "start": 751.34, + "end": 754.04, + "probability": 0.9917 + }, + { + "start": 754.24, + "end": 758.68, + "probability": 0.8525 + }, + { + "start": 759.36, + "end": 761.92, + "probability": 0.8881 + }, + { + "start": 762.02, + "end": 765.1, + "probability": 0.9916 + }, + { + "start": 765.1, + "end": 768.58, + "probability": 0.8899 + }, + { + "start": 769.02, + "end": 771.98, + "probability": 0.9544 + }, + { + "start": 772.84, + "end": 775.4, + "probability": 0.9577 + }, + { + "start": 775.4, + "end": 779.0, + "probability": 0.8864 + }, + { + "start": 779.44, + "end": 782.92, + "probability": 0.9911 + }, + { + "start": 783.04, + "end": 787.82, + "probability": 0.9619 + }, + { + "start": 788.26, + "end": 789.76, + "probability": 0.9313 + }, + { + "start": 789.94, + "end": 791.42, + "probability": 0.8167 + }, + { + "start": 792.04, + "end": 797.26, + "probability": 0.9916 + }, + { + "start": 797.38, + "end": 801.4, + "probability": 0.8754 + }, + { + "start": 801.54, + "end": 804.74, + "probability": 0.849 + }, + { + "start": 804.82, + "end": 806.12, + "probability": 0.9007 + }, + { + "start": 806.52, + "end": 807.64, + "probability": 0.6203 + }, + { + "start": 807.92, + "end": 809.34, + "probability": 0.9131 + }, + { + "start": 809.5, + "end": 810.38, + "probability": 0.7677 + }, + { + "start": 810.6, + "end": 812.72, + "probability": 0.49 + }, + { + "start": 812.9, + "end": 819.12, + "probability": 0.4204 + }, + { + "start": 819.12, + "end": 824.08, + "probability": 0.9917 + }, + { + "start": 824.62, + "end": 827.38, + "probability": 0.9679 + }, + { + "start": 827.38, + "end": 832.75, + "probability": 0.9478 + }, + { + "start": 833.52, + "end": 835.72, + "probability": 0.8001 + }, + { + "start": 835.9, + "end": 839.4, + "probability": 0.9932 + }, + { + "start": 839.88, + "end": 843.28, + "probability": 0.9895 + }, + { + "start": 844.4, + "end": 849.62, + "probability": 0.9941 + }, + { + "start": 850.52, + "end": 851.26, + "probability": 0.5608 + }, + { + "start": 851.74, + "end": 854.52, + "probability": 0.9591 + }, + { + "start": 854.52, + "end": 858.7, + "probability": 0.7264 + }, + { + "start": 859.04, + "end": 861.92, + "probability": 0.9864 + }, + { + "start": 862.0, + "end": 864.8, + "probability": 0.9611 + }, + { + "start": 865.1, + "end": 866.94, + "probability": 0.9863 + }, + { + "start": 867.06, + "end": 870.78, + "probability": 0.9252 + }, + { + "start": 871.68, + "end": 878.34, + "probability": 0.9606 + }, + { + "start": 878.9, + "end": 882.48, + "probability": 0.9724 + }, + { + "start": 882.58, + "end": 884.52, + "probability": 0.9784 + }, + { + "start": 885.22, + "end": 887.72, + "probability": 0.9548 + }, + { + "start": 887.92, + "end": 891.36, + "probability": 0.8712 + }, + { + "start": 891.94, + "end": 893.7, + "probability": 0.6079 + }, + { + "start": 894.32, + "end": 896.22, + "probability": 0.9249 + }, + { + "start": 896.78, + "end": 900.64, + "probability": 0.937 + }, + { + "start": 901.32, + "end": 909.22, + "probability": 0.9896 + }, + { + "start": 909.88, + "end": 915.54, + "probability": 0.999 + }, + { + "start": 916.86, + "end": 917.52, + "probability": 0.7194 + }, + { + "start": 917.74, + "end": 918.12, + "probability": 0.9463 + }, + { + "start": 918.24, + "end": 921.66, + "probability": 0.9927 + }, + { + "start": 921.84, + "end": 927.64, + "probability": 0.9971 + }, + { + "start": 928.12, + "end": 932.58, + "probability": 0.9917 + }, + { + "start": 933.22, + "end": 934.64, + "probability": 0.9994 + }, + { + "start": 935.64, + "end": 942.58, + "probability": 0.9936 + }, + { + "start": 942.94, + "end": 945.56, + "probability": 0.9677 + }, + { + "start": 945.94, + "end": 949.26, + "probability": 0.9971 + }, + { + "start": 949.98, + "end": 951.8, + "probability": 0.8901 + }, + { + "start": 952.2, + "end": 956.44, + "probability": 0.9964 + }, + { + "start": 956.44, + "end": 961.52, + "probability": 0.9915 + }, + { + "start": 961.9, + "end": 964.96, + "probability": 0.973 + }, + { + "start": 965.18, + "end": 965.46, + "probability": 0.5059 + }, + { + "start": 967.66, + "end": 969.78, + "probability": 0.7092 + }, + { + "start": 970.02, + "end": 971.4, + "probability": 0.5136 + }, + { + "start": 971.48, + "end": 973.68, + "probability": 0.8331 + }, + { + "start": 973.88, + "end": 975.34, + "probability": 0.9418 + }, + { + "start": 987.76, + "end": 989.0, + "probability": 0.734 + }, + { + "start": 990.1, + "end": 991.58, + "probability": 0.8163 + }, + { + "start": 994.6, + "end": 997.12, + "probability": 0.9946 + }, + { + "start": 998.9, + "end": 1001.14, + "probability": 0.9913 + }, + { + "start": 1001.68, + "end": 1003.18, + "probability": 0.9769 + }, + { + "start": 1004.1, + "end": 1005.1, + "probability": 0.7631 + }, + { + "start": 1005.78, + "end": 1007.18, + "probability": 0.9784 + }, + { + "start": 1008.46, + "end": 1012.4, + "probability": 0.8335 + }, + { + "start": 1013.18, + "end": 1015.08, + "probability": 0.9928 + }, + { + "start": 1016.1, + "end": 1017.5, + "probability": 0.8334 + }, + { + "start": 1019.22, + "end": 1020.68, + "probability": 0.9694 + }, + { + "start": 1021.58, + "end": 1023.72, + "probability": 0.9941 + }, + { + "start": 1025.2, + "end": 1027.32, + "probability": 0.9963 + }, + { + "start": 1028.18, + "end": 1029.1, + "probability": 0.9702 + }, + { + "start": 1029.94, + "end": 1030.64, + "probability": 0.6444 + }, + { + "start": 1031.74, + "end": 1033.1, + "probability": 0.8552 + }, + { + "start": 1033.68, + "end": 1034.4, + "probability": 0.6246 + }, + { + "start": 1035.16, + "end": 1037.04, + "probability": 0.9438 + }, + { + "start": 1038.2, + "end": 1039.46, + "probability": 0.9857 + }, + { + "start": 1040.1, + "end": 1040.49, + "probability": 0.6545 + }, + { + "start": 1040.88, + "end": 1042.42, + "probability": 0.8543 + }, + { + "start": 1042.54, + "end": 1045.66, + "probability": 0.9656 + }, + { + "start": 1046.1, + "end": 1048.08, + "probability": 0.984 + }, + { + "start": 1048.66, + "end": 1049.72, + "probability": 0.9956 + }, + { + "start": 1050.14, + "end": 1050.96, + "probability": 0.6035 + }, + { + "start": 1051.84, + "end": 1055.42, + "probability": 0.928 + }, + { + "start": 1057.24, + "end": 1058.96, + "probability": 0.3792 + }, + { + "start": 1058.96, + "end": 1059.6, + "probability": 0.0971 + }, + { + "start": 1059.6, + "end": 1062.5, + "probability": 0.6923 + }, + { + "start": 1062.98, + "end": 1064.1, + "probability": 0.9224 + }, + { + "start": 1065.66, + "end": 1067.44, + "probability": 0.5642 + }, + { + "start": 1070.2, + "end": 1070.2, + "probability": 0.066 + }, + { + "start": 1070.2, + "end": 1070.2, + "probability": 0.2467 + }, + { + "start": 1070.2, + "end": 1070.2, + "probability": 0.1467 + }, + { + "start": 1070.2, + "end": 1070.63, + "probability": 0.2687 + }, + { + "start": 1071.64, + "end": 1072.1, + "probability": 0.5253 + }, + { + "start": 1072.1, + "end": 1073.68, + "probability": 0.8457 + }, + { + "start": 1074.22, + "end": 1074.66, + "probability": 0.623 + }, + { + "start": 1074.8, + "end": 1075.66, + "probability": 0.8673 + }, + { + "start": 1076.36, + "end": 1078.06, + "probability": 0.7511 + }, + { + "start": 1078.9, + "end": 1081.41, + "probability": 0.6395 + }, + { + "start": 1081.66, + "end": 1081.88, + "probability": 0.3628 + }, + { + "start": 1082.92, + "end": 1085.06, + "probability": 0.9784 + }, + { + "start": 1086.02, + "end": 1088.9, + "probability": 0.7528 + }, + { + "start": 1089.82, + "end": 1089.82, + "probability": 0.0866 + }, + { + "start": 1089.82, + "end": 1095.84, + "probability": 0.8696 + }, + { + "start": 1096.54, + "end": 1097.74, + "probability": 0.7454 + }, + { + "start": 1098.96, + "end": 1101.34, + "probability": 0.7488 + }, + { + "start": 1102.06, + "end": 1103.44, + "probability": 0.8924 + }, + { + "start": 1104.22, + "end": 1105.06, + "probability": 0.3877 + }, + { + "start": 1105.96, + "end": 1109.64, + "probability": 0.9687 + }, + { + "start": 1109.68, + "end": 1111.02, + "probability": 0.9514 + }, + { + "start": 1111.9, + "end": 1113.76, + "probability": 0.8242 + }, + { + "start": 1115.04, + "end": 1117.09, + "probability": 0.9686 + }, + { + "start": 1118.04, + "end": 1119.58, + "probability": 0.9587 + }, + { + "start": 1120.12, + "end": 1122.18, + "probability": 0.9983 + }, + { + "start": 1123.84, + "end": 1125.93, + "probability": 0.9894 + }, + { + "start": 1126.66, + "end": 1129.05, + "probability": 0.9911 + }, + { + "start": 1130.04, + "end": 1131.79, + "probability": 0.9922 + }, + { + "start": 1133.02, + "end": 1134.18, + "probability": 0.897 + }, + { + "start": 1134.84, + "end": 1136.28, + "probability": 0.8567 + }, + { + "start": 1137.2, + "end": 1138.66, + "probability": 0.979 + }, + { + "start": 1139.2, + "end": 1140.86, + "probability": 0.8976 + }, + { + "start": 1141.24, + "end": 1142.26, + "probability": 0.9075 + }, + { + "start": 1143.32, + "end": 1146.12, + "probability": 0.9137 + }, + { + "start": 1147.76, + "end": 1149.36, + "probability": 0.9047 + }, + { + "start": 1150.36, + "end": 1151.34, + "probability": 0.8248 + }, + { + "start": 1152.92, + "end": 1154.44, + "probability": 0.6136 + }, + { + "start": 1156.14, + "end": 1157.74, + "probability": 0.9734 + }, + { + "start": 1158.54, + "end": 1160.76, + "probability": 0.8306 + }, + { + "start": 1161.68, + "end": 1162.54, + "probability": 0.8361 + }, + { + "start": 1162.98, + "end": 1166.32, + "probability": 0.8167 + }, + { + "start": 1166.82, + "end": 1170.18, + "probability": 0.9904 + }, + { + "start": 1170.98, + "end": 1171.54, + "probability": 0.2967 + }, + { + "start": 1172.56, + "end": 1173.58, + "probability": 0.8073 + }, + { + "start": 1174.06, + "end": 1174.9, + "probability": 0.967 + }, + { + "start": 1176.6, + "end": 1179.28, + "probability": 0.9629 + }, + { + "start": 1179.94, + "end": 1180.88, + "probability": 0.8373 + }, + { + "start": 1181.46, + "end": 1182.1, + "probability": 0.9232 + }, + { + "start": 1182.66, + "end": 1184.54, + "probability": 0.8632 + }, + { + "start": 1185.34, + "end": 1185.9, + "probability": 0.9531 + }, + { + "start": 1186.98, + "end": 1187.78, + "probability": 0.9909 + }, + { + "start": 1189.4, + "end": 1190.16, + "probability": 0.728 + }, + { + "start": 1190.86, + "end": 1191.68, + "probability": 0.8836 + }, + { + "start": 1192.24, + "end": 1194.0, + "probability": 0.8963 + }, + { + "start": 1194.54, + "end": 1197.06, + "probability": 0.8201 + }, + { + "start": 1199.3, + "end": 1200.06, + "probability": 0.7506 + }, + { + "start": 1200.68, + "end": 1202.84, + "probability": 0.9497 + }, + { + "start": 1204.36, + "end": 1204.98, + "probability": 0.5175 + }, + { + "start": 1205.56, + "end": 1206.64, + "probability": 0.7986 + }, + { + "start": 1206.7, + "end": 1207.38, + "probability": 0.479 + }, + { + "start": 1207.64, + "end": 1208.72, + "probability": 0.5208 + }, + { + "start": 1208.94, + "end": 1208.94, + "probability": 0.0485 + }, + { + "start": 1209.12, + "end": 1209.82, + "probability": 0.0751 + }, + { + "start": 1210.0, + "end": 1210.82, + "probability": 0.2914 + }, + { + "start": 1211.12, + "end": 1213.16, + "probability": 0.9784 + }, + { + "start": 1221.94, + "end": 1222.53, + "probability": 0.653 + }, + { + "start": 1222.62, + "end": 1223.34, + "probability": 0.5878 + }, + { + "start": 1223.5, + "end": 1224.08, + "probability": 0.4958 + }, + { + "start": 1224.9, + "end": 1227.9, + "probability": 0.74 + }, + { + "start": 1229.22, + "end": 1229.72, + "probability": 0.6613 + }, + { + "start": 1232.82, + "end": 1237.92, + "probability": 0.9941 + }, + { + "start": 1239.6, + "end": 1243.28, + "probability": 0.9956 + }, + { + "start": 1245.01, + "end": 1248.4, + "probability": 0.9577 + }, + { + "start": 1248.74, + "end": 1249.65, + "probability": 0.8296 + }, + { + "start": 1250.64, + "end": 1253.56, + "probability": 0.8453 + }, + { + "start": 1254.52, + "end": 1257.4, + "probability": 0.5827 + }, + { + "start": 1257.68, + "end": 1258.4, + "probability": 0.7745 + }, + { + "start": 1259.78, + "end": 1262.36, + "probability": 0.9863 + }, + { + "start": 1263.98, + "end": 1264.46, + "probability": 0.8887 + }, + { + "start": 1266.03, + "end": 1272.2, + "probability": 0.8242 + }, + { + "start": 1272.76, + "end": 1274.06, + "probability": 0.7377 + }, + { + "start": 1274.68, + "end": 1276.58, + "probability": 0.9865 + }, + { + "start": 1277.34, + "end": 1278.58, + "probability": 0.4099 + }, + { + "start": 1279.09, + "end": 1282.4, + "probability": 0.8899 + }, + { + "start": 1282.62, + "end": 1282.94, + "probability": 0.6164 + }, + { + "start": 1285.22, + "end": 1287.08, + "probability": 0.8853 + }, + { + "start": 1287.84, + "end": 1289.2, + "probability": 0.81 + }, + { + "start": 1290.12, + "end": 1291.24, + "probability": 0.9207 + }, + { + "start": 1291.26, + "end": 1295.62, + "probability": 0.7932 + }, + { + "start": 1295.96, + "end": 1300.24, + "probability": 0.7764 + }, + { + "start": 1302.6, + "end": 1303.12, + "probability": 0.7982 + }, + { + "start": 1304.34, + "end": 1305.32, + "probability": 0.7314 + }, + { + "start": 1306.36, + "end": 1309.44, + "probability": 0.9872 + }, + { + "start": 1309.98, + "end": 1311.22, + "probability": 0.9884 + }, + { + "start": 1312.3, + "end": 1314.24, + "probability": 0.9073 + }, + { + "start": 1314.44, + "end": 1316.34, + "probability": 0.9655 + }, + { + "start": 1316.4, + "end": 1317.28, + "probability": 0.9491 + }, + { + "start": 1319.54, + "end": 1322.44, + "probability": 0.9139 + }, + { + "start": 1323.58, + "end": 1326.06, + "probability": 0.5287 + }, + { + "start": 1326.18, + "end": 1329.5, + "probability": 0.9951 + }, + { + "start": 1331.1, + "end": 1332.48, + "probability": 0.9653 + }, + { + "start": 1332.99, + "end": 1340.74, + "probability": 0.9718 + }, + { + "start": 1340.84, + "end": 1343.56, + "probability": 0.9843 + }, + { + "start": 1343.56, + "end": 1347.32, + "probability": 0.9578 + }, + { + "start": 1347.9, + "end": 1355.12, + "probability": 0.9513 + }, + { + "start": 1355.88, + "end": 1356.72, + "probability": 0.7792 + }, + { + "start": 1356.78, + "end": 1361.88, + "probability": 0.9929 + }, + { + "start": 1362.04, + "end": 1363.38, + "probability": 0.6787 + }, + { + "start": 1363.9, + "end": 1364.82, + "probability": 0.6801 + }, + { + "start": 1364.94, + "end": 1366.86, + "probability": 0.9565 + }, + { + "start": 1366.94, + "end": 1368.5, + "probability": 0.946 + }, + { + "start": 1369.06, + "end": 1372.68, + "probability": 0.954 + }, + { + "start": 1373.42, + "end": 1376.12, + "probability": 0.9243 + }, + { + "start": 1378.86, + "end": 1379.54, + "probability": 0.8458 + }, + { + "start": 1383.72, + "end": 1385.86, + "probability": 0.9993 + }, + { + "start": 1386.7, + "end": 1388.94, + "probability": 0.9395 + }, + { + "start": 1389.72, + "end": 1391.32, + "probability": 0.9142 + }, + { + "start": 1391.92, + "end": 1392.98, + "probability": 0.8788 + }, + { + "start": 1393.64, + "end": 1398.72, + "probability": 0.9482 + }, + { + "start": 1399.3, + "end": 1404.19, + "probability": 0.8934 + }, + { + "start": 1404.96, + "end": 1407.32, + "probability": 0.978 + }, + { + "start": 1408.1, + "end": 1409.44, + "probability": 0.6423 + }, + { + "start": 1411.29, + "end": 1414.6, + "probability": 0.9109 + }, + { + "start": 1417.74, + "end": 1419.66, + "probability": 0.5251 + }, + { + "start": 1420.48, + "end": 1422.32, + "probability": 0.9951 + }, + { + "start": 1422.4, + "end": 1424.84, + "probability": 0.7895 + }, + { + "start": 1424.98, + "end": 1425.76, + "probability": 0.9077 + }, + { + "start": 1427.4, + "end": 1431.32, + "probability": 0.967 + }, + { + "start": 1431.36, + "end": 1431.92, + "probability": 0.5285 + }, + { + "start": 1432.32, + "end": 1433.66, + "probability": 0.9127 + }, + { + "start": 1434.94, + "end": 1436.2, + "probability": 0.9598 + }, + { + "start": 1436.3, + "end": 1437.96, + "probability": 0.9796 + }, + { + "start": 1439.02, + "end": 1441.3, + "probability": 0.5713 + }, + { + "start": 1441.3, + "end": 1442.32, + "probability": 0.9489 + }, + { + "start": 1442.5, + "end": 1443.5, + "probability": 0.3938 + }, + { + "start": 1443.62, + "end": 1447.5, + "probability": 0.964 + }, + { + "start": 1447.88, + "end": 1451.8, + "probability": 0.743 + }, + { + "start": 1452.18, + "end": 1452.58, + "probability": 0.3268 + }, + { + "start": 1452.64, + "end": 1453.82, + "probability": 0.9751 + }, + { + "start": 1453.86, + "end": 1454.68, + "probability": 0.2277 + }, + { + "start": 1455.44, + "end": 1456.22, + "probability": 0.3297 + }, + { + "start": 1456.56, + "end": 1456.66, + "probability": 0.9268 + }, + { + "start": 1456.66, + "end": 1457.24, + "probability": 0.0454 + }, + { + "start": 1457.26, + "end": 1458.36, + "probability": 0.9669 + }, + { + "start": 1459.38, + "end": 1462.1, + "probability": 0.5119 + }, + { + "start": 1462.18, + "end": 1462.28, + "probability": 0.2874 + }, + { + "start": 1462.58, + "end": 1463.92, + "probability": 0.9929 + }, + { + "start": 1464.38, + "end": 1465.81, + "probability": 0.9191 + }, + { + "start": 1466.1, + "end": 1469.84, + "probability": 0.9121 + }, + { + "start": 1470.54, + "end": 1470.6, + "probability": 0.4395 + }, + { + "start": 1470.6, + "end": 1471.08, + "probability": 0.8907 + }, + { + "start": 1471.32, + "end": 1472.08, + "probability": 0.9195 + }, + { + "start": 1472.26, + "end": 1473.46, + "probability": 0.8589 + }, + { + "start": 1474.62, + "end": 1477.46, + "probability": 0.9569 + }, + { + "start": 1479.32, + "end": 1480.36, + "probability": 0.9245 + }, + { + "start": 1481.94, + "end": 1482.82, + "probability": 0.0523 + }, + { + "start": 1483.44, + "end": 1485.48, + "probability": 0.5744 + }, + { + "start": 1486.02, + "end": 1486.72, + "probability": 0.5063 + }, + { + "start": 1486.72, + "end": 1489.82, + "probability": 0.9407 + }, + { + "start": 1490.26, + "end": 1491.74, + "probability": 0.9961 + }, + { + "start": 1492.52, + "end": 1493.28, + "probability": 0.769 + }, + { + "start": 1493.5, + "end": 1495.2, + "probability": 0.7579 + }, + { + "start": 1510.12, + "end": 1511.24, + "probability": 0.808 + }, + { + "start": 1511.96, + "end": 1513.24, + "probability": 0.7951 + }, + { + "start": 1513.78, + "end": 1515.44, + "probability": 0.9591 + }, + { + "start": 1516.76, + "end": 1522.74, + "probability": 0.9618 + }, + { + "start": 1523.46, + "end": 1523.6, + "probability": 0.6221 + }, + { + "start": 1524.54, + "end": 1524.74, + "probability": 0.5102 + }, + { + "start": 1524.86, + "end": 1525.93, + "probability": 0.9365 + }, + { + "start": 1526.64, + "end": 1533.24, + "probability": 0.8941 + }, + { + "start": 1533.44, + "end": 1535.16, + "probability": 0.7453 + }, + { + "start": 1535.3, + "end": 1536.0, + "probability": 0.2602 + }, + { + "start": 1536.76, + "end": 1538.11, + "probability": 0.9315 + }, + { + "start": 1538.6, + "end": 1544.6, + "probability": 0.9785 + }, + { + "start": 1545.1, + "end": 1546.58, + "probability": 0.7418 + }, + { + "start": 1546.62, + "end": 1547.94, + "probability": 0.8496 + }, + { + "start": 1548.46, + "end": 1553.02, + "probability": 0.7127 + }, + { + "start": 1553.82, + "end": 1554.36, + "probability": 0.5929 + }, + { + "start": 1555.02, + "end": 1555.02, + "probability": 0.1849 + }, + { + "start": 1555.02, + "end": 1555.7, + "probability": 0.7108 + }, + { + "start": 1555.78, + "end": 1559.72, + "probability": 0.6466 + }, + { + "start": 1560.46, + "end": 1567.46, + "probability": 0.9316 + }, + { + "start": 1568.66, + "end": 1570.34, + "probability": 0.9458 + }, + { + "start": 1571.74, + "end": 1574.56, + "probability": 0.9508 + }, + { + "start": 1575.9, + "end": 1577.52, + "probability": 0.998 + }, + { + "start": 1578.74, + "end": 1580.0, + "probability": 0.8856 + }, + { + "start": 1580.8, + "end": 1585.66, + "probability": 0.9949 + }, + { + "start": 1585.66, + "end": 1591.48, + "probability": 0.659 + }, + { + "start": 1592.36, + "end": 1592.86, + "probability": 0.9802 + }, + { + "start": 1593.62, + "end": 1600.28, + "probability": 0.9505 + }, + { + "start": 1600.88, + "end": 1601.39, + "probability": 0.5448 + }, + { + "start": 1602.12, + "end": 1606.15, + "probability": 0.9723 + }, + { + "start": 1607.16, + "end": 1613.94, + "probability": 0.917 + }, + { + "start": 1614.66, + "end": 1618.48, + "probability": 0.8266 + }, + { + "start": 1619.28, + "end": 1620.7, + "probability": 0.7578 + }, + { + "start": 1621.5, + "end": 1624.32, + "probability": 0.7173 + }, + { + "start": 1625.32, + "end": 1627.78, + "probability": 0.8413 + }, + { + "start": 1628.84, + "end": 1629.44, + "probability": 0.6244 + }, + { + "start": 1630.1, + "end": 1633.98, + "probability": 0.9855 + }, + { + "start": 1634.1, + "end": 1634.74, + "probability": 0.8671 + }, + { + "start": 1635.68, + "end": 1636.4, + "probability": 0.9823 + }, + { + "start": 1637.04, + "end": 1639.9, + "probability": 0.9564 + }, + { + "start": 1640.98, + "end": 1642.12, + "probability": 0.8427 + }, + { + "start": 1642.72, + "end": 1645.58, + "probability": 0.9849 + }, + { + "start": 1646.52, + "end": 1650.46, + "probability": 0.6445 + }, + { + "start": 1651.72, + "end": 1654.6, + "probability": 0.769 + }, + { + "start": 1655.34, + "end": 1659.22, + "probability": 0.9973 + }, + { + "start": 1659.6, + "end": 1665.88, + "probability": 0.9954 + }, + { + "start": 1666.16, + "end": 1671.12, + "probability": 0.9941 + }, + { + "start": 1671.5, + "end": 1673.6, + "probability": 0.9949 + }, + { + "start": 1674.18, + "end": 1675.48, + "probability": 0.9976 + }, + { + "start": 1675.66, + "end": 1675.86, + "probability": 0.3869 + }, + { + "start": 1676.34, + "end": 1676.86, + "probability": 0.7809 + }, + { + "start": 1677.8, + "end": 1680.86, + "probability": 0.9816 + }, + { + "start": 1681.26, + "end": 1682.1, + "probability": 0.8135 + }, + { + "start": 1683.18, + "end": 1683.78, + "probability": 0.5182 + }, + { + "start": 1684.36, + "end": 1685.28, + "probability": 0.6504 + }, + { + "start": 1685.4, + "end": 1685.86, + "probability": 0.3742 + }, + { + "start": 1686.0, + "end": 1687.2, + "probability": 0.9373 + }, + { + "start": 1687.6, + "end": 1688.2, + "probability": 0.4686 + }, + { + "start": 1688.26, + "end": 1690.96, + "probability": 0.6936 + }, + { + "start": 1691.7, + "end": 1692.06, + "probability": 0.4576 + }, + { + "start": 1692.06, + "end": 1692.06, + "probability": 0.9214 + }, + { + "start": 1692.06, + "end": 1693.42, + "probability": 0.5098 + }, + { + "start": 1694.2, + "end": 1696.26, + "probability": 0.9185 + }, + { + "start": 1696.44, + "end": 1697.06, + "probability": 0.5876 + }, + { + "start": 1697.08, + "end": 1698.14, + "probability": 0.6558 + }, + { + "start": 1698.78, + "end": 1699.96, + "probability": 0.6245 + }, + { + "start": 1700.02, + "end": 1702.4, + "probability": 0.762 + }, + { + "start": 1705.62, + "end": 1706.58, + "probability": 0.811 + }, + { + "start": 1707.14, + "end": 1708.62, + "probability": 0.5655 + }, + { + "start": 1708.72, + "end": 1709.12, + "probability": 0.9589 + }, + { + "start": 1716.76, + "end": 1718.88, + "probability": 0.4796 + }, + { + "start": 1720.86, + "end": 1722.42, + "probability": 0.2703 + }, + { + "start": 1724.1, + "end": 1726.52, + "probability": 0.662 + }, + { + "start": 1726.56, + "end": 1727.66, + "probability": 0.8518 + }, + { + "start": 1727.84, + "end": 1733.02, + "probability": 0.9223 + }, + { + "start": 1733.66, + "end": 1735.4, + "probability": 0.9134 + }, + { + "start": 1735.66, + "end": 1737.56, + "probability": 0.9458 + }, + { + "start": 1739.8, + "end": 1741.94, + "probability": 0.8109 + }, + { + "start": 1742.42, + "end": 1743.48, + "probability": 0.992 + }, + { + "start": 1743.5, + "end": 1746.28, + "probability": 0.8529 + }, + { + "start": 1747.36, + "end": 1748.76, + "probability": 0.8579 + }, + { + "start": 1748.86, + "end": 1753.3, + "probability": 0.9612 + }, + { + "start": 1754.1, + "end": 1758.84, + "probability": 0.9976 + }, + { + "start": 1759.7, + "end": 1762.04, + "probability": 0.9471 + }, + { + "start": 1762.26, + "end": 1762.48, + "probability": 0.4404 + }, + { + "start": 1762.56, + "end": 1764.84, + "probability": 0.9824 + }, + { + "start": 1765.04, + "end": 1767.54, + "probability": 0.993 + }, + { + "start": 1767.9, + "end": 1768.82, + "probability": 0.7283 + }, + { + "start": 1769.52, + "end": 1771.28, + "probability": 0.9959 + }, + { + "start": 1771.74, + "end": 1772.24, + "probability": 0.9413 + }, + { + "start": 1773.26, + "end": 1775.82, + "probability": 0.9895 + }, + { + "start": 1775.92, + "end": 1779.02, + "probability": 0.6115 + }, + { + "start": 1779.08, + "end": 1779.72, + "probability": 0.7009 + }, + { + "start": 1779.8, + "end": 1779.82, + "probability": 0.6837 + }, + { + "start": 1779.82, + "end": 1783.98, + "probability": 0.9689 + }, + { + "start": 1783.98, + "end": 1786.38, + "probability": 0.9994 + }, + { + "start": 1787.88, + "end": 1790.86, + "probability": 0.8878 + }, + { + "start": 1791.58, + "end": 1792.78, + "probability": 0.6183 + }, + { + "start": 1792.9, + "end": 1795.62, + "probability": 0.9978 + }, + { + "start": 1795.94, + "end": 1798.18, + "probability": 0.9982 + }, + { + "start": 1799.18, + "end": 1801.06, + "probability": 0.9893 + }, + { + "start": 1801.92, + "end": 1805.82, + "probability": 0.9899 + }, + { + "start": 1806.42, + "end": 1808.42, + "probability": 0.9984 + }, + { + "start": 1808.62, + "end": 1810.5, + "probability": 0.9989 + }, + { + "start": 1810.5, + "end": 1813.31, + "probability": 0.9996 + }, + { + "start": 1813.96, + "end": 1820.28, + "probability": 0.9922 + }, + { + "start": 1820.62, + "end": 1822.58, + "probability": 0.9974 + }, + { + "start": 1823.0, + "end": 1826.74, + "probability": 0.995 + }, + { + "start": 1826.9, + "end": 1827.62, + "probability": 0.8967 + }, + { + "start": 1827.72, + "end": 1828.94, + "probability": 0.7433 + }, + { + "start": 1830.1, + "end": 1831.0, + "probability": 0.959 + }, + { + "start": 1831.16, + "end": 1832.08, + "probability": 0.9657 + }, + { + "start": 1832.2, + "end": 1833.36, + "probability": 0.8247 + }, + { + "start": 1833.66, + "end": 1834.78, + "probability": 0.908 + }, + { + "start": 1835.28, + "end": 1838.52, + "probability": 0.8438 + }, + { + "start": 1838.72, + "end": 1839.24, + "probability": 0.515 + }, + { + "start": 1839.3, + "end": 1839.56, + "probability": 0.3763 + }, + { + "start": 1839.58, + "end": 1841.52, + "probability": 0.981 + }, + { + "start": 1841.96, + "end": 1843.0, + "probability": 0.6105 + }, + { + "start": 1843.7, + "end": 1843.7, + "probability": 0.0661 + }, + { + "start": 1843.7, + "end": 1843.7, + "probability": 0.361 + }, + { + "start": 1843.7, + "end": 1844.54, + "probability": 0.7673 + }, + { + "start": 1845.06, + "end": 1850.02, + "probability": 0.9678 + }, + { + "start": 1850.06, + "end": 1852.72, + "probability": 0.991 + }, + { + "start": 1853.08, + "end": 1855.12, + "probability": 0.9863 + }, + { + "start": 1856.08, + "end": 1858.42, + "probability": 0.7355 + }, + { + "start": 1858.96, + "end": 1860.0, + "probability": 0.8208 + }, + { + "start": 1861.22, + "end": 1862.37, + "probability": 0.9788 + }, + { + "start": 1865.0, + "end": 1865.0, + "probability": 0.2842 + }, + { + "start": 1865.0, + "end": 1866.46, + "probability": 0.9653 + }, + { + "start": 1866.74, + "end": 1869.04, + "probability": 0.9896 + }, + { + "start": 1869.62, + "end": 1871.79, + "probability": 0.9961 + }, + { + "start": 1872.7, + "end": 1875.58, + "probability": 0.9914 + }, + { + "start": 1875.66, + "end": 1877.06, + "probability": 0.8404 + }, + { + "start": 1877.14, + "end": 1881.74, + "probability": 0.9313 + }, + { + "start": 1882.94, + "end": 1885.98, + "probability": 0.9871 + }, + { + "start": 1886.86, + "end": 1888.71, + "probability": 0.9762 + }, + { + "start": 1888.82, + "end": 1890.06, + "probability": 0.9907 + }, + { + "start": 1890.36, + "end": 1893.2, + "probability": 0.9954 + }, + { + "start": 1894.04, + "end": 1895.62, + "probability": 0.9839 + }, + { + "start": 1895.66, + "end": 1896.48, + "probability": 0.9094 + }, + { + "start": 1896.5, + "end": 1896.86, + "probability": 0.8043 + }, + { + "start": 1897.14, + "end": 1897.38, + "probability": 0.776 + }, + { + "start": 1897.98, + "end": 1899.4, + "probability": 0.8977 + }, + { + "start": 1899.74, + "end": 1900.34, + "probability": 0.5094 + }, + { + "start": 1900.48, + "end": 1901.64, + "probability": 0.9493 + }, + { + "start": 1901.82, + "end": 1902.76, + "probability": 0.9 + }, + { + "start": 1903.94, + "end": 1906.04, + "probability": 0.9924 + }, + { + "start": 1906.66, + "end": 1907.02, + "probability": 0.1703 + }, + { + "start": 1907.24, + "end": 1908.48, + "probability": 0.9038 + }, + { + "start": 1908.7, + "end": 1912.1, + "probability": 0.8703 + }, + { + "start": 1912.52, + "end": 1915.88, + "probability": 0.9966 + }, + { + "start": 1916.36, + "end": 1917.08, + "probability": 0.9345 + }, + { + "start": 1917.14, + "end": 1919.26, + "probability": 0.871 + }, + { + "start": 1919.46, + "end": 1919.5, + "probability": 0.2661 + }, + { + "start": 1919.5, + "end": 1923.98, + "probability": 0.9679 + }, + { + "start": 1924.3, + "end": 1925.72, + "probability": 0.9688 + }, + { + "start": 1926.0, + "end": 1929.47, + "probability": 0.9993 + }, + { + "start": 1929.72, + "end": 1932.78, + "probability": 0.8783 + }, + { + "start": 1933.02, + "end": 1935.02, + "probability": 0.7443 + }, + { + "start": 1935.14, + "end": 1935.84, + "probability": 0.529 + }, + { + "start": 1936.24, + "end": 1939.44, + "probability": 0.9114 + }, + { + "start": 1939.52, + "end": 1943.52, + "probability": 0.9786 + }, + { + "start": 1943.76, + "end": 1944.36, + "probability": 0.2315 + }, + { + "start": 1944.8, + "end": 1945.98, + "probability": 0.5231 + }, + { + "start": 1946.02, + "end": 1946.44, + "probability": 0.0421 + }, + { + "start": 1947.1, + "end": 1947.68, + "probability": 0.967 + }, + { + "start": 1949.62, + "end": 1952.3, + "probability": 0.8245 + }, + { + "start": 1952.42, + "end": 1953.98, + "probability": 0.8831 + }, + { + "start": 1957.36, + "end": 1959.6, + "probability": 0.7586 + }, + { + "start": 1959.64, + "end": 1960.7, + "probability": 0.6919 + }, + { + "start": 1961.36, + "end": 1963.16, + "probability": 0.076 + }, + { + "start": 1964.5, + "end": 1970.62, + "probability": 0.5016 + }, + { + "start": 1970.86, + "end": 1973.32, + "probability": 0.5945 + }, + { + "start": 1973.76, + "end": 1975.01, + "probability": 0.028 + }, + { + "start": 1975.1, + "end": 1976.06, + "probability": 0.0665 + }, + { + "start": 1976.06, + "end": 1976.9, + "probability": 0.2681 + }, + { + "start": 1977.68, + "end": 1978.54, + "probability": 0.4057 + }, + { + "start": 1978.54, + "end": 1979.64, + "probability": 0.5205 + }, + { + "start": 1979.94, + "end": 1980.36, + "probability": 0.8232 + }, + { + "start": 1980.64, + "end": 1981.66, + "probability": 0.6877 + }, + { + "start": 1982.52, + "end": 1985.2, + "probability": 0.6761 + }, + { + "start": 1985.3, + "end": 1989.66, + "probability": 0.6243 + }, + { + "start": 1989.78, + "end": 1993.54, + "probability": 0.8269 + }, + { + "start": 1993.72, + "end": 1996.14, + "probability": 0.8584 + }, + { + "start": 1996.22, + "end": 2000.9, + "probability": 0.8378 + }, + { + "start": 2001.87, + "end": 2007.03, + "probability": 0.8957 + }, + { + "start": 2008.34, + "end": 2010.62, + "probability": 0.97 + }, + { + "start": 2010.66, + "end": 2016.88, + "probability": 0.9656 + }, + { + "start": 2017.0, + "end": 2018.7, + "probability": 0.7757 + }, + { + "start": 2021.18, + "end": 2021.5, + "probability": 0.0589 + }, + { + "start": 2021.5, + "end": 2021.5, + "probability": 0.0177 + }, + { + "start": 2021.5, + "end": 2022.3, + "probability": 0.3894 + }, + { + "start": 2023.16, + "end": 2026.08, + "probability": 0.3502 + }, + { + "start": 2026.2, + "end": 2029.1, + "probability": 0.6987 + }, + { + "start": 2044.56, + "end": 2046.24, + "probability": 0.5668 + }, + { + "start": 2049.68, + "end": 2050.2, + "probability": 0.7721 + }, + { + "start": 2058.71, + "end": 2060.08, + "probability": 0.3156 + }, + { + "start": 2061.34, + "end": 2064.84, + "probability": 0.057 + }, + { + "start": 2075.22, + "end": 2076.12, + "probability": 0.3208 + }, + { + "start": 2076.26, + "end": 2078.72, + "probability": 0.3919 + }, + { + "start": 2079.85, + "end": 2082.69, + "probability": 0.7422 + }, + { + "start": 2085.02, + "end": 2085.7, + "probability": 0.1333 + }, + { + "start": 2085.72, + "end": 2087.62, + "probability": 0.3145 + }, + { + "start": 2087.62, + "end": 2088.7, + "probability": 0.0701 + }, + { + "start": 2088.7, + "end": 2088.8, + "probability": 0.2528 + }, + { + "start": 2088.9, + "end": 2091.36, + "probability": 0.0252 + }, + { + "start": 2092.1, + "end": 2092.4, + "probability": 0.0895 + }, + { + "start": 2092.48, + "end": 2093.72, + "probability": 0.1858 + }, + { + "start": 2094.04, + "end": 2097.48, + "probability": 0.0755 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.0, + "end": 2122.0, + "probability": 0.0 + }, + { + "start": 2122.72, + "end": 2122.9, + "probability": 0.0339 + }, + { + "start": 2122.9, + "end": 2126.06, + "probability": 0.9672 + }, + { + "start": 2126.06, + "end": 2130.48, + "probability": 0.995 + }, + { + "start": 2130.7, + "end": 2130.86, + "probability": 0.0966 + }, + { + "start": 2130.96, + "end": 2133.78, + "probability": 0.6967 + }, + { + "start": 2133.88, + "end": 2135.52, + "probability": 0.8055 + }, + { + "start": 2136.2, + "end": 2138.24, + "probability": 0.9875 + }, + { + "start": 2138.46, + "end": 2141.56, + "probability": 0.9977 + }, + { + "start": 2141.56, + "end": 2145.04, + "probability": 0.9916 + }, + { + "start": 2145.6, + "end": 2146.84, + "probability": 0.981 + }, + { + "start": 2147.18, + "end": 2151.62, + "probability": 0.9921 + }, + { + "start": 2151.62, + "end": 2156.08, + "probability": 0.9188 + }, + { + "start": 2156.66, + "end": 2158.28, + "probability": 0.7248 + }, + { + "start": 2158.68, + "end": 2162.82, + "probability": 0.9731 + }, + { + "start": 2162.96, + "end": 2163.38, + "probability": 0.7466 + }, + { + "start": 2164.0, + "end": 2166.56, + "probability": 0.9883 + }, + { + "start": 2166.96, + "end": 2167.4, + "probability": 0.9701 + }, + { + "start": 2167.54, + "end": 2168.48, + "probability": 0.9858 + }, + { + "start": 2169.18, + "end": 2173.04, + "probability": 0.9666 + }, + { + "start": 2173.66, + "end": 2178.86, + "probability": 0.9809 + }, + { + "start": 2178.86, + "end": 2184.06, + "probability": 0.9149 + }, + { + "start": 2184.64, + "end": 2187.34, + "probability": 0.8658 + }, + { + "start": 2187.62, + "end": 2188.9, + "probability": 0.5921 + }, + { + "start": 2189.68, + "end": 2192.58, + "probability": 0.9963 + }, + { + "start": 2193.34, + "end": 2194.7, + "probability": 0.53 + }, + { + "start": 2194.76, + "end": 2198.66, + "probability": 0.9138 + }, + { + "start": 2199.06, + "end": 2203.1, + "probability": 0.9976 + }, + { + "start": 2204.14, + "end": 2209.34, + "probability": 0.9954 + }, + { + "start": 2209.46, + "end": 2211.74, + "probability": 0.9891 + }, + { + "start": 2212.72, + "end": 2216.64, + "probability": 0.976 + }, + { + "start": 2217.22, + "end": 2220.42, + "probability": 0.9849 + }, + { + "start": 2220.76, + "end": 2224.22, + "probability": 0.9966 + }, + { + "start": 2225.16, + "end": 2228.64, + "probability": 0.9452 + }, + { + "start": 2229.16, + "end": 2233.28, + "probability": 0.9819 + }, + { + "start": 2233.52, + "end": 2235.88, + "probability": 0.9807 + }, + { + "start": 2236.06, + "end": 2238.2, + "probability": 0.9934 + }, + { + "start": 2238.7, + "end": 2241.56, + "probability": 0.858 + }, + { + "start": 2241.86, + "end": 2245.42, + "probability": 0.978 + }, + { + "start": 2245.76, + "end": 2248.82, + "probability": 0.9952 + }, + { + "start": 2249.22, + "end": 2250.02, + "probability": 0.668 + }, + { + "start": 2250.16, + "end": 2252.4, + "probability": 0.998 + }, + { + "start": 2252.42, + "end": 2254.94, + "probability": 0.9912 + }, + { + "start": 2255.12, + "end": 2257.08, + "probability": 0.9592 + }, + { + "start": 2257.66, + "end": 2260.8, + "probability": 0.9868 + }, + { + "start": 2261.18, + "end": 2265.54, + "probability": 0.9995 + }, + { + "start": 2265.94, + "end": 2268.98, + "probability": 0.9966 + }, + { + "start": 2269.22, + "end": 2271.08, + "probability": 0.9839 + }, + { + "start": 2271.38, + "end": 2272.6, + "probability": 0.9774 + }, + { + "start": 2273.88, + "end": 2275.08, + "probability": 0.8885 + }, + { + "start": 2275.78, + "end": 2277.1, + "probability": 0.9293 + }, + { + "start": 2277.9, + "end": 2279.32, + "probability": 0.788 + }, + { + "start": 2280.0, + "end": 2280.1, + "probability": 0.2025 + }, + { + "start": 2280.28, + "end": 2280.28, + "probability": 0.0843 + }, + { + "start": 2280.28, + "end": 2280.28, + "probability": 0.0273 + }, + { + "start": 2280.28, + "end": 2284.34, + "probability": 0.9824 + }, + { + "start": 2284.84, + "end": 2285.94, + "probability": 0.8517 + }, + { + "start": 2286.42, + "end": 2291.22, + "probability": 0.9339 + }, + { + "start": 2291.8, + "end": 2297.66, + "probability": 0.9502 + }, + { + "start": 2298.08, + "end": 2303.38, + "probability": 0.9973 + }, + { + "start": 2303.8, + "end": 2305.5, + "probability": 0.9783 + }, + { + "start": 2306.22, + "end": 2307.72, + "probability": 0.5904 + }, + { + "start": 2308.26, + "end": 2309.06, + "probability": 0.3291 + }, + { + "start": 2309.08, + "end": 2309.08, + "probability": 0.6396 + }, + { + "start": 2309.12, + "end": 2311.08, + "probability": 0.7732 + }, + { + "start": 2311.18, + "end": 2312.02, + "probability": 0.8566 + }, + { + "start": 2312.46, + "end": 2314.33, + "probability": 0.9268 + }, + { + "start": 2314.82, + "end": 2315.6, + "probability": 0.9751 + }, + { + "start": 2316.8, + "end": 2320.66, + "probability": 0.9005 + }, + { + "start": 2321.28, + "end": 2323.34, + "probability": 0.9432 + }, + { + "start": 2323.82, + "end": 2328.64, + "probability": 0.9929 + }, + { + "start": 2329.4, + "end": 2331.68, + "probability": 0.945 + }, + { + "start": 2332.36, + "end": 2334.2, + "probability": 0.9202 + }, + { + "start": 2335.1, + "end": 2336.08, + "probability": 0.4082 + }, + { + "start": 2336.84, + "end": 2342.7, + "probability": 0.9895 + }, + { + "start": 2343.4, + "end": 2347.62, + "probability": 0.9934 + }, + { + "start": 2348.08, + "end": 2350.7, + "probability": 0.9965 + }, + { + "start": 2351.24, + "end": 2355.16, + "probability": 0.9818 + }, + { + "start": 2355.6, + "end": 2362.18, + "probability": 0.9585 + }, + { + "start": 2362.66, + "end": 2363.36, + "probability": 0.4572 + }, + { + "start": 2363.7, + "end": 2364.62, + "probability": 0.7976 + }, + { + "start": 2364.68, + "end": 2365.38, + "probability": 0.8749 + }, + { + "start": 2365.74, + "end": 2368.78, + "probability": 0.9836 + }, + { + "start": 2369.1, + "end": 2374.66, + "probability": 0.9976 + }, + { + "start": 2376.1, + "end": 2381.9, + "probability": 0.9878 + }, + { + "start": 2382.46, + "end": 2384.34, + "probability": 0.9836 + }, + { + "start": 2384.68, + "end": 2387.7, + "probability": 0.9346 + }, + { + "start": 2388.34, + "end": 2391.32, + "probability": 0.9941 + }, + { + "start": 2392.56, + "end": 2397.32, + "probability": 0.9982 + }, + { + "start": 2397.32, + "end": 2401.8, + "probability": 0.9996 + }, + { + "start": 2402.46, + "end": 2403.66, + "probability": 0.9766 + }, + { + "start": 2404.08, + "end": 2405.26, + "probability": 0.6641 + }, + { + "start": 2405.34, + "end": 2406.82, + "probability": 0.6651 + }, + { + "start": 2407.24, + "end": 2408.32, + "probability": 0.8517 + }, + { + "start": 2408.66, + "end": 2410.38, + "probability": 0.9907 + }, + { + "start": 2411.2, + "end": 2414.3, + "probability": 0.8083 + }, + { + "start": 2414.3, + "end": 2417.4, + "probability": 0.992 + }, + { + "start": 2417.72, + "end": 2424.98, + "probability": 0.6862 + }, + { + "start": 2425.64, + "end": 2428.24, + "probability": 0.5657 + }, + { + "start": 2429.36, + "end": 2431.76, + "probability": 0.9089 + }, + { + "start": 2432.32, + "end": 2433.78, + "probability": 0.9788 + }, + { + "start": 2434.46, + "end": 2436.9, + "probability": 0.99 + }, + { + "start": 2437.62, + "end": 2440.42, + "probability": 0.5567 + }, + { + "start": 2440.52, + "end": 2443.82, + "probability": 0.9845 + }, + { + "start": 2444.14, + "end": 2448.28, + "probability": 0.9977 + }, + { + "start": 2448.94, + "end": 2451.06, + "probability": 0.9923 + }, + { + "start": 2451.1, + "end": 2452.04, + "probability": 0.9228 + }, + { + "start": 2452.44, + "end": 2455.82, + "probability": 0.9972 + }, + { + "start": 2456.16, + "end": 2459.44, + "probability": 0.9919 + }, + { + "start": 2459.54, + "end": 2463.72, + "probability": 0.998 + }, + { + "start": 2463.98, + "end": 2468.92, + "probability": 0.9884 + }, + { + "start": 2469.46, + "end": 2473.26, + "probability": 0.853 + }, + { + "start": 2474.02, + "end": 2475.76, + "probability": 0.9854 + }, + { + "start": 2479.04, + "end": 2479.52, + "probability": 0.0246 + }, + { + "start": 2479.52, + "end": 2479.6, + "probability": 0.0509 + }, + { + "start": 2479.88, + "end": 2480.06, + "probability": 0.3792 + }, + { + "start": 2480.12, + "end": 2481.14, + "probability": 0.8875 + }, + { + "start": 2481.28, + "end": 2484.82, + "probability": 0.9672 + }, + { + "start": 2485.08, + "end": 2487.98, + "probability": 0.858 + }, + { + "start": 2488.72, + "end": 2493.6, + "probability": 0.9939 + }, + { + "start": 2494.02, + "end": 2494.16, + "probability": 0.0396 + }, + { + "start": 2494.16, + "end": 2494.16, + "probability": 0.0659 + }, + { + "start": 2494.16, + "end": 2495.35, + "probability": 0.1968 + }, + { + "start": 2496.18, + "end": 2499.6, + "probability": 0.7107 + }, + { + "start": 2500.28, + "end": 2501.86, + "probability": 0.9318 + }, + { + "start": 2501.98, + "end": 2504.7, + "probability": 0.9844 + }, + { + "start": 2505.22, + "end": 2506.12, + "probability": 0.6213 + }, + { + "start": 2506.64, + "end": 2508.02, + "probability": 0.845 + }, + { + "start": 2508.44, + "end": 2513.84, + "probability": 0.9841 + }, + { + "start": 2514.46, + "end": 2517.84, + "probability": 0.6434 + }, + { + "start": 2518.32, + "end": 2520.82, + "probability": 0.8976 + }, + { + "start": 2520.88, + "end": 2521.22, + "probability": 0.8841 + }, + { + "start": 2521.72, + "end": 2523.0, + "probability": 0.587 + }, + { + "start": 2524.22, + "end": 2527.2, + "probability": 0.9912 + }, + { + "start": 2527.66, + "end": 2530.32, + "probability": 0.9623 + }, + { + "start": 2530.38, + "end": 2533.24, + "probability": 0.9788 + }, + { + "start": 2533.72, + "end": 2535.76, + "probability": 0.9922 + }, + { + "start": 2536.14, + "end": 2538.86, + "probability": 0.9941 + }, + { + "start": 2539.38, + "end": 2542.1, + "probability": 0.901 + }, + { + "start": 2542.72, + "end": 2546.12, + "probability": 0.9985 + }, + { + "start": 2546.4, + "end": 2549.22, + "probability": 0.9838 + }, + { + "start": 2549.84, + "end": 2552.58, + "probability": 0.9849 + }, + { + "start": 2552.7, + "end": 2554.08, + "probability": 0.9397 + }, + { + "start": 2554.56, + "end": 2556.82, + "probability": 0.5301 + }, + { + "start": 2557.04, + "end": 2558.94, + "probability": 0.9628 + }, + { + "start": 2559.2, + "end": 2560.4, + "probability": 0.9314 + }, + { + "start": 2561.34, + "end": 2562.24, + "probability": 0.9751 + }, + { + "start": 2562.3, + "end": 2563.34, + "probability": 0.8025 + }, + { + "start": 2563.48, + "end": 2565.84, + "probability": 0.9878 + }, + { + "start": 2566.2, + "end": 2567.0, + "probability": 0.8101 + }, + { + "start": 2567.46, + "end": 2571.94, + "probability": 0.9965 + }, + { + "start": 2572.32, + "end": 2577.94, + "probability": 0.9657 + }, + { + "start": 2578.34, + "end": 2580.56, + "probability": 0.9871 + }, + { + "start": 2581.2, + "end": 2582.84, + "probability": 0.9811 + }, + { + "start": 2583.34, + "end": 2586.48, + "probability": 0.9863 + }, + { + "start": 2586.84, + "end": 2589.6, + "probability": 0.9613 + }, + { + "start": 2590.06, + "end": 2592.36, + "probability": 0.999 + }, + { + "start": 2592.86, + "end": 2597.34, + "probability": 0.999 + }, + { + "start": 2597.48, + "end": 2598.16, + "probability": 0.7487 + }, + { + "start": 2598.56, + "end": 2598.56, + "probability": 0.029 + }, + { + "start": 2598.56, + "end": 2599.32, + "probability": 0.9579 + }, + { + "start": 2599.64, + "end": 2602.2, + "probability": 0.99 + }, + { + "start": 2602.26, + "end": 2602.51, + "probability": 0.0628 + }, + { + "start": 2602.76, + "end": 2602.96, + "probability": 0.2097 + }, + { + "start": 2603.16, + "end": 2603.16, + "probability": 0.1061 + }, + { + "start": 2603.16, + "end": 2603.16, + "probability": 0.0421 + }, + { + "start": 2603.16, + "end": 2603.16, + "probability": 0.0452 + }, + { + "start": 2603.16, + "end": 2604.22, + "probability": 0.3713 + }, + { + "start": 2604.26, + "end": 2606.1, + "probability": 0.731 + }, + { + "start": 2606.28, + "end": 2607.3, + "probability": 0.4902 + }, + { + "start": 2607.68, + "end": 2608.76, + "probability": 0.5981 + }, + { + "start": 2609.12, + "end": 2612.44, + "probability": 0.9923 + }, + { + "start": 2612.64, + "end": 2613.73, + "probability": 0.9489 + }, + { + "start": 2614.12, + "end": 2616.08, + "probability": 0.8278 + }, + { + "start": 2616.36, + "end": 2616.94, + "probability": 0.8745 + }, + { + "start": 2617.38, + "end": 2619.3, + "probability": 0.991 + }, + { + "start": 2619.72, + "end": 2622.76, + "probability": 0.911 + }, + { + "start": 2623.2, + "end": 2626.24, + "probability": 0.9685 + }, + { + "start": 2626.64, + "end": 2628.34, + "probability": 0.9937 + }, + { + "start": 2628.74, + "end": 2631.52, + "probability": 0.9795 + }, + { + "start": 2631.68, + "end": 2635.06, + "probability": 0.953 + }, + { + "start": 2635.38, + "end": 2638.98, + "probability": 0.9967 + }, + { + "start": 2638.98, + "end": 2644.02, + "probability": 0.9341 + }, + { + "start": 2644.38, + "end": 2646.38, + "probability": 0.9958 + }, + { + "start": 2646.38, + "end": 2648.98, + "probability": 0.9642 + }, + { + "start": 2649.4, + "end": 2651.86, + "probability": 0.8499 + }, + { + "start": 2652.3, + "end": 2652.3, + "probability": 0.0264 + }, + { + "start": 2652.3, + "end": 2657.14, + "probability": 0.9812 + }, + { + "start": 2657.44, + "end": 2662.12, + "probability": 0.9955 + }, + { + "start": 2662.44, + "end": 2664.74, + "probability": 0.9324 + }, + { + "start": 2665.1, + "end": 2666.4, + "probability": 0.9741 + }, + { + "start": 2666.62, + "end": 2667.64, + "probability": 0.9508 + }, + { + "start": 2667.98, + "end": 2671.64, + "probability": 0.9907 + }, + { + "start": 2672.0, + "end": 2672.7, + "probability": 0.6527 + }, + { + "start": 2672.74, + "end": 2675.86, + "probability": 0.9335 + }, + { + "start": 2676.32, + "end": 2677.16, + "probability": 0.9326 + }, + { + "start": 2677.28, + "end": 2677.94, + "probability": 0.945 + }, + { + "start": 2678.28, + "end": 2680.32, + "probability": 0.9176 + }, + { + "start": 2680.68, + "end": 2680.7, + "probability": 0.1911 + }, + { + "start": 2680.7, + "end": 2687.46, + "probability": 0.9968 + }, + { + "start": 2687.74, + "end": 2689.08, + "probability": 0.947 + }, + { + "start": 2689.6, + "end": 2690.36, + "probability": 0.5564 + }, + { + "start": 2712.48, + "end": 2714.86, + "probability": 0.0878 + }, + { + "start": 2714.86, + "end": 2717.74, + "probability": 0.2465 + }, + { + "start": 2717.88, + "end": 2719.76, + "probability": 0.1248 + }, + { + "start": 2720.86, + "end": 2721.28, + "probability": 0.0549 + }, + { + "start": 2721.28, + "end": 2723.8, + "probability": 0.0454 + }, + { + "start": 2733.76, + "end": 2736.16, + "probability": 0.0552 + }, + { + "start": 2738.34, + "end": 2738.7, + "probability": 0.056 + }, + { + "start": 2738.7, + "end": 2740.18, + "probability": 0.1084 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2803.0, + "end": 2803.0, + "probability": 0.0 + }, + { + "start": 2804.18, + "end": 2807.1, + "probability": 0.765 + }, + { + "start": 2808.84, + "end": 2809.68, + "probability": 0.654 + }, + { + "start": 2811.6, + "end": 2812.52, + "probability": 0.832 + }, + { + "start": 2814.4, + "end": 2814.64, + "probability": 0.7034 + }, + { + "start": 2815.5, + "end": 2818.1, + "probability": 0.959 + }, + { + "start": 2819.14, + "end": 2824.08, + "probability": 0.9868 + }, + { + "start": 2825.02, + "end": 2830.62, + "probability": 0.9849 + }, + { + "start": 2831.84, + "end": 2833.3, + "probability": 0.931 + }, + { + "start": 2834.8, + "end": 2842.1, + "probability": 0.8303 + }, + { + "start": 2843.0, + "end": 2845.62, + "probability": 0.9043 + }, + { + "start": 2847.1, + "end": 2849.84, + "probability": 0.8952 + }, + { + "start": 2850.46, + "end": 2851.18, + "probability": 0.8091 + }, + { + "start": 2851.92, + "end": 2855.12, + "probability": 0.9746 + }, + { + "start": 2856.74, + "end": 2858.52, + "probability": 0.9985 + }, + { + "start": 2859.08, + "end": 2862.12, + "probability": 0.8312 + }, + { + "start": 2863.38, + "end": 2864.22, + "probability": 0.8641 + }, + { + "start": 2864.34, + "end": 2866.24, + "probability": 0.9931 + }, + { + "start": 2867.0, + "end": 2872.48, + "probability": 0.8068 + }, + { + "start": 2873.78, + "end": 2875.1, + "probability": 0.8307 + }, + { + "start": 2875.6, + "end": 2878.06, + "probability": 0.9942 + }, + { + "start": 2878.56, + "end": 2879.68, + "probability": 0.9642 + }, + { + "start": 2881.56, + "end": 2882.98, + "probability": 0.9888 + }, + { + "start": 2884.0, + "end": 2886.2, + "probability": 0.9889 + }, + { + "start": 2887.1, + "end": 2888.58, + "probability": 0.9174 + }, + { + "start": 2889.2, + "end": 2890.32, + "probability": 0.8886 + }, + { + "start": 2891.06, + "end": 2894.06, + "probability": 0.9421 + }, + { + "start": 2895.4, + "end": 2896.38, + "probability": 0.6383 + }, + { + "start": 2899.12, + "end": 2901.72, + "probability": 0.988 + }, + { + "start": 2903.22, + "end": 2907.56, + "probability": 0.9941 + }, + { + "start": 2908.66, + "end": 2909.94, + "probability": 0.8344 + }, + { + "start": 2910.94, + "end": 2911.94, + "probability": 0.9805 + }, + { + "start": 2913.24, + "end": 2914.02, + "probability": 0.7676 + }, + { + "start": 2915.02, + "end": 2915.94, + "probability": 0.9147 + }, + { + "start": 2917.46, + "end": 2923.0, + "probability": 0.9937 + }, + { + "start": 2924.3, + "end": 2925.1, + "probability": 0.9934 + }, + { + "start": 2926.06, + "end": 2928.01, + "probability": 0.9727 + }, + { + "start": 2928.7, + "end": 2930.78, + "probability": 0.9229 + }, + { + "start": 2930.86, + "end": 2931.84, + "probability": 0.5655 + }, + { + "start": 2931.84, + "end": 2934.0, + "probability": 0.7833 + }, + { + "start": 2941.0, + "end": 2945.06, + "probability": 0.9438 + }, + { + "start": 2945.56, + "end": 2947.34, + "probability": 0.7641 + }, + { + "start": 2947.74, + "end": 2948.12, + "probability": 0.2795 + }, + { + "start": 2948.42, + "end": 2953.12, + "probability": 0.8323 + }, + { + "start": 2953.8, + "end": 2956.0, + "probability": 0.7591 + }, + { + "start": 2959.84, + "end": 2962.02, + "probability": 0.9453 + }, + { + "start": 2962.24, + "end": 2966.08, + "probability": 0.5178 + }, + { + "start": 2966.53, + "end": 2967.48, + "probability": 0.6875 + }, + { + "start": 2968.14, + "end": 2968.64, + "probability": 0.9225 + }, + { + "start": 2971.16, + "end": 2971.4, + "probability": 0.6633 + }, + { + "start": 2971.4, + "end": 2972.42, + "probability": 0.9382 + }, + { + "start": 2972.64, + "end": 2973.83, + "probability": 0.9917 + }, + { + "start": 2974.16, + "end": 2975.24, + "probability": 0.692 + }, + { + "start": 2975.48, + "end": 2976.97, + "probability": 0.991 + }, + { + "start": 2977.74, + "end": 2978.62, + "probability": 0.6669 + }, + { + "start": 2978.62, + "end": 2979.38, + "probability": 0.9908 + }, + { + "start": 2980.4, + "end": 2986.2, + "probability": 0.9945 + }, + { + "start": 2986.28, + "end": 2988.3, + "probability": 0.9975 + }, + { + "start": 2988.3, + "end": 2991.44, + "probability": 0.9937 + }, + { + "start": 2991.48, + "end": 2993.2, + "probability": 0.9944 + }, + { + "start": 2994.04, + "end": 2995.76, + "probability": 0.9879 + }, + { + "start": 2996.38, + "end": 3000.24, + "probability": 0.97 + }, + { + "start": 3000.38, + "end": 3005.68, + "probability": 0.9668 + }, + { + "start": 3006.02, + "end": 3008.48, + "probability": 0.8729 + }, + { + "start": 3008.66, + "end": 3009.66, + "probability": 0.0534 + }, + { + "start": 3010.26, + "end": 3011.96, + "probability": 0.9771 + }, + { + "start": 3012.72, + "end": 3013.4, + "probability": 0.7554 + }, + { + "start": 3013.52, + "end": 3015.44, + "probability": 0.8892 + }, + { + "start": 3015.6, + "end": 3017.06, + "probability": 0.9824 + }, + { + "start": 3018.38, + "end": 3022.08, + "probability": 0.9875 + }, + { + "start": 3022.2, + "end": 3025.84, + "probability": 0.8907 + }, + { + "start": 3026.1, + "end": 3027.42, + "probability": 0.784 + }, + { + "start": 3027.6, + "end": 3028.8, + "probability": 0.6944 + }, + { + "start": 3029.44, + "end": 3032.26, + "probability": 0.9717 + }, + { + "start": 3032.84, + "end": 3037.12, + "probability": 0.9731 + }, + { + "start": 3037.24, + "end": 3039.0, + "probability": 0.8406 + }, + { + "start": 3039.06, + "end": 3040.46, + "probability": 0.807 + }, + { + "start": 3040.82, + "end": 3043.42, + "probability": 0.964 + }, + { + "start": 3043.42, + "end": 3046.54, + "probability": 0.9092 + }, + { + "start": 3046.54, + "end": 3047.54, + "probability": 0.9937 + }, + { + "start": 3047.62, + "end": 3048.5, + "probability": 0.9314 + }, + { + "start": 3049.92, + "end": 3052.7, + "probability": 0.7898 + }, + { + "start": 3053.36, + "end": 3056.6, + "probability": 0.9794 + }, + { + "start": 3057.12, + "end": 3058.6, + "probability": 0.9813 + }, + { + "start": 3058.68, + "end": 3061.0, + "probability": 0.9912 + }, + { + "start": 3061.78, + "end": 3062.5, + "probability": 0.9619 + }, + { + "start": 3062.86, + "end": 3065.54, + "probability": 0.1038 + }, + { + "start": 3065.54, + "end": 3066.1, + "probability": 0.4613 + }, + { + "start": 3066.16, + "end": 3067.9, + "probability": 0.9912 + }, + { + "start": 3069.46, + "end": 3073.98, + "probability": 0.9041 + }, + { + "start": 3074.16, + "end": 3075.52, + "probability": 0.8026 + }, + { + "start": 3075.78, + "end": 3076.5, + "probability": 0.8677 + }, + { + "start": 3077.0, + "end": 3079.02, + "probability": 0.9624 + }, + { + "start": 3079.64, + "end": 3082.02, + "probability": 0.9506 + }, + { + "start": 3082.7, + "end": 3088.08, + "probability": 0.9351 + }, + { + "start": 3088.08, + "end": 3092.86, + "probability": 0.9717 + }, + { + "start": 3093.3, + "end": 3095.28, + "probability": 0.9339 + }, + { + "start": 3095.74, + "end": 3096.14, + "probability": 0.5272 + }, + { + "start": 3096.72, + "end": 3100.0, + "probability": 0.9914 + }, + { + "start": 3100.66, + "end": 3103.66, + "probability": 0.9367 + }, + { + "start": 3103.66, + "end": 3106.52, + "probability": 0.9989 + }, + { + "start": 3107.26, + "end": 3111.26, + "probability": 0.9873 + }, + { + "start": 3111.88, + "end": 3112.68, + "probability": 0.624 + }, + { + "start": 3112.78, + "end": 3113.2, + "probability": 0.4058 + }, + { + "start": 3113.3, + "end": 3115.52, + "probability": 0.9779 + }, + { + "start": 3115.72, + "end": 3116.58, + "probability": 0.8325 + }, + { + "start": 3117.12, + "end": 3118.08, + "probability": 0.9828 + }, + { + "start": 3118.18, + "end": 3119.38, + "probability": 0.9748 + }, + { + "start": 3119.64, + "end": 3121.28, + "probability": 0.9814 + }, + { + "start": 3121.44, + "end": 3122.92, + "probability": 0.7629 + }, + { + "start": 3123.4, + "end": 3126.08, + "probability": 0.9609 + }, + { + "start": 3126.42, + "end": 3127.92, + "probability": 0.9598 + }, + { + "start": 3128.34, + "end": 3131.42, + "probability": 0.998 + }, + { + "start": 3131.76, + "end": 3135.66, + "probability": 0.9661 + }, + { + "start": 3136.88, + "end": 3138.36, + "probability": 0.7881 + }, + { + "start": 3138.8, + "end": 3139.8, + "probability": 0.9829 + }, + { + "start": 3139.98, + "end": 3141.82, + "probability": 0.998 + }, + { + "start": 3142.2, + "end": 3143.64, + "probability": 0.9781 + }, + { + "start": 3144.3, + "end": 3145.5, + "probability": 0.8093 + }, + { + "start": 3146.04, + "end": 3146.46, + "probability": 0.7661 + }, + { + "start": 3146.86, + "end": 3151.52, + "probability": 0.9117 + }, + { + "start": 3151.76, + "end": 3152.86, + "probability": 0.7703 + }, + { + "start": 3155.11, + "end": 3157.92, + "probability": 0.7721 + }, + { + "start": 3178.06, + "end": 3179.52, + "probability": 0.5309 + }, + { + "start": 3180.7, + "end": 3183.56, + "probability": 0.9489 + }, + { + "start": 3184.24, + "end": 3185.8, + "probability": 0.7746 + }, + { + "start": 3186.8, + "end": 3190.02, + "probability": 0.9836 + }, + { + "start": 3193.4, + "end": 3195.06, + "probability": 0.9308 + }, + { + "start": 3196.24, + "end": 3199.24, + "probability": 0.8576 + }, + { + "start": 3200.44, + "end": 3201.04, + "probability": 0.5002 + }, + { + "start": 3202.1, + "end": 3204.8, + "probability": 0.8912 + }, + { + "start": 3206.18, + "end": 3209.28, + "probability": 0.9089 + }, + { + "start": 3210.04, + "end": 3215.24, + "probability": 0.9639 + }, + { + "start": 3216.4, + "end": 3217.5, + "probability": 0.9985 + }, + { + "start": 3218.82, + "end": 3220.54, + "probability": 0.9954 + }, + { + "start": 3221.08, + "end": 3222.88, + "probability": 0.928 + }, + { + "start": 3224.5, + "end": 3227.1, + "probability": 0.9313 + }, + { + "start": 3227.84, + "end": 3232.84, + "probability": 0.7881 + }, + { + "start": 3233.42, + "end": 3237.48, + "probability": 0.88 + }, + { + "start": 3237.48, + "end": 3241.68, + "probability": 0.8438 + }, + { + "start": 3243.52, + "end": 3248.44, + "probability": 0.9746 + }, + { + "start": 3249.18, + "end": 3252.3, + "probability": 0.9282 + }, + { + "start": 3253.38, + "end": 3257.92, + "probability": 0.9921 + }, + { + "start": 3259.2, + "end": 3260.6, + "probability": 0.9943 + }, + { + "start": 3261.44, + "end": 3261.94, + "probability": 0.7769 + }, + { + "start": 3262.84, + "end": 3263.36, + "probability": 0.6526 + }, + { + "start": 3264.4, + "end": 3270.46, + "probability": 0.9902 + }, + { + "start": 3270.6, + "end": 3277.46, + "probability": 0.821 + }, + { + "start": 3277.88, + "end": 3284.24, + "probability": 0.9478 + }, + { + "start": 3285.2, + "end": 3289.02, + "probability": 0.9946 + }, + { + "start": 3289.64, + "end": 3293.7, + "probability": 0.8262 + }, + { + "start": 3294.64, + "end": 3296.48, + "probability": 0.9723 + }, + { + "start": 3297.0, + "end": 3301.06, + "probability": 0.9608 + }, + { + "start": 3301.72, + "end": 3303.6, + "probability": 0.7635 + }, + { + "start": 3304.3, + "end": 3306.06, + "probability": 0.7892 + }, + { + "start": 3306.86, + "end": 3307.94, + "probability": 0.9922 + }, + { + "start": 3308.52, + "end": 3309.42, + "probability": 0.7055 + }, + { + "start": 3310.28, + "end": 3312.1, + "probability": 0.741 + }, + { + "start": 3313.72, + "end": 3315.1, + "probability": 0.7427 + }, + { + "start": 3315.72, + "end": 3318.64, + "probability": 0.6171 + }, + { + "start": 3319.58, + "end": 3322.7, + "probability": 0.7996 + }, + { + "start": 3323.44, + "end": 3329.12, + "probability": 0.8704 + }, + { + "start": 3330.68, + "end": 3331.76, + "probability": 0.944 + }, + { + "start": 3332.8, + "end": 3336.42, + "probability": 0.8195 + }, + { + "start": 3336.8, + "end": 3337.9, + "probability": 0.673 + }, + { + "start": 3338.7, + "end": 3339.46, + "probability": 0.5866 + }, + { + "start": 3340.24, + "end": 3345.56, + "probability": 0.9023 + }, + { + "start": 3346.4, + "end": 3347.94, + "probability": 0.9344 + }, + { + "start": 3348.32, + "end": 3349.46, + "probability": 0.8399 + }, + { + "start": 3349.8, + "end": 3350.26, + "probability": 0.6426 + }, + { + "start": 3350.34, + "end": 3351.76, + "probability": 0.6083 + }, + { + "start": 3352.18, + "end": 3354.54, + "probability": 0.9378 + }, + { + "start": 3355.44, + "end": 3356.92, + "probability": 0.9468 + }, + { + "start": 3357.26, + "end": 3359.52, + "probability": 0.9192 + }, + { + "start": 3360.12, + "end": 3362.04, + "probability": 0.5891 + }, + { + "start": 3362.7, + "end": 3363.04, + "probability": 0.4784 + }, + { + "start": 3364.26, + "end": 3364.74, + "probability": 0.7316 + }, + { + "start": 3366.12, + "end": 3368.56, + "probability": 0.9884 + }, + { + "start": 3369.22, + "end": 3372.0, + "probability": 0.6099 + }, + { + "start": 3372.56, + "end": 3372.98, + "probability": 0.6051 + }, + { + "start": 3374.46, + "end": 3380.28, + "probability": 0.9723 + }, + { + "start": 3381.44, + "end": 3381.72, + "probability": 0.1865 + }, + { + "start": 3381.72, + "end": 3385.28, + "probability": 0.8907 + }, + { + "start": 3385.94, + "end": 3390.88, + "probability": 0.9902 + }, + { + "start": 3390.88, + "end": 3397.06, + "probability": 0.9608 + }, + { + "start": 3397.1, + "end": 3401.22, + "probability": 0.8982 + }, + { + "start": 3401.74, + "end": 3402.56, + "probability": 0.6719 + }, + { + "start": 3403.38, + "end": 3407.02, + "probability": 0.9799 + }, + { + "start": 3407.66, + "end": 3410.22, + "probability": 0.4959 + }, + { + "start": 3410.64, + "end": 3411.46, + "probability": 0.9462 + }, + { + "start": 3411.54, + "end": 3413.48, + "probability": 0.8772 + }, + { + "start": 3415.27, + "end": 3416.48, + "probability": 0.0333 + }, + { + "start": 3416.48, + "end": 3416.78, + "probability": 0.1792 + }, + { + "start": 3418.36, + "end": 3418.7, + "probability": 0.7762 + }, + { + "start": 3430.8, + "end": 3432.28, + "probability": 0.96 + }, + { + "start": 3432.7, + "end": 3434.1, + "probability": 0.9917 + }, + { + "start": 3434.58, + "end": 3435.5, + "probability": 0.9967 + }, + { + "start": 3435.56, + "end": 3436.68, + "probability": 0.9979 + }, + { + "start": 3437.44, + "end": 3438.71, + "probability": 0.9507 + }, + { + "start": 3439.4, + "end": 3444.88, + "probability": 0.8699 + }, + { + "start": 3444.94, + "end": 3445.52, + "probability": 0.5934 + }, + { + "start": 3446.58, + "end": 3449.68, + "probability": 0.9729 + }, + { + "start": 3449.78, + "end": 3451.18, + "probability": 0.8398 + }, + { + "start": 3451.58, + "end": 3452.64, + "probability": 0.9062 + }, + { + "start": 3452.94, + "end": 3457.28, + "probability": 0.9539 + }, + { + "start": 3457.7, + "end": 3458.88, + "probability": 0.9824 + }, + { + "start": 3459.62, + "end": 3461.14, + "probability": 0.9566 + }, + { + "start": 3461.24, + "end": 3462.3, + "probability": 0.8058 + }, + { + "start": 3462.64, + "end": 3465.12, + "probability": 0.9864 + }, + { + "start": 3465.6, + "end": 3471.18, + "probability": 0.9835 + }, + { + "start": 3471.54, + "end": 3472.24, + "probability": 0.8444 + }, + { + "start": 3472.46, + "end": 3475.19, + "probability": 0.9785 + }, + { + "start": 3475.6, + "end": 3478.28, + "probability": 0.9935 + }, + { + "start": 3478.4, + "end": 3479.73, + "probability": 0.9963 + }, + { + "start": 3480.44, + "end": 3483.88, + "probability": 0.9629 + }, + { + "start": 3484.3, + "end": 3485.94, + "probability": 0.9943 + }, + { + "start": 3486.96, + "end": 3491.09, + "probability": 0.8687 + }, + { + "start": 3492.48, + "end": 3496.65, + "probability": 0.9687 + }, + { + "start": 3497.7, + "end": 3500.7, + "probability": 0.9022 + }, + { + "start": 3501.54, + "end": 3505.68, + "probability": 0.9834 + }, + { + "start": 3506.28, + "end": 3509.06, + "probability": 0.8876 + }, + { + "start": 3509.22, + "end": 3512.3, + "probability": 0.9837 + }, + { + "start": 3512.3, + "end": 3515.5, + "probability": 0.9922 + }, + { + "start": 3516.24, + "end": 3518.02, + "probability": 0.9961 + }, + { + "start": 3518.4, + "end": 3522.02, + "probability": 0.9681 + }, + { + "start": 3522.22, + "end": 3525.58, + "probability": 0.9958 + }, + { + "start": 3526.0, + "end": 3527.44, + "probability": 0.9033 + }, + { + "start": 3528.06, + "end": 3530.66, + "probability": 0.9899 + }, + { + "start": 3530.76, + "end": 3531.3, + "probability": 0.766 + }, + { + "start": 3531.78, + "end": 3536.74, + "probability": 0.9868 + }, + { + "start": 3537.52, + "end": 3538.42, + "probability": 0.7024 + }, + { + "start": 3539.04, + "end": 3541.28, + "probability": 0.9798 + }, + { + "start": 3541.74, + "end": 3544.06, + "probability": 0.9598 + }, + { + "start": 3544.16, + "end": 3546.98, + "probability": 0.8694 + }, + { + "start": 3547.18, + "end": 3549.26, + "probability": 0.9885 + }, + { + "start": 3549.36, + "end": 3550.0, + "probability": 0.9713 + }, + { + "start": 3550.22, + "end": 3552.22, + "probability": 0.7437 + }, + { + "start": 3552.44, + "end": 3555.16, + "probability": 0.9636 + }, + { + "start": 3555.5, + "end": 3556.42, + "probability": 0.6265 + }, + { + "start": 3556.68, + "end": 3560.36, + "probability": 0.9895 + }, + { + "start": 3560.82, + "end": 3561.4, + "probability": 0.8542 + }, + { + "start": 3561.84, + "end": 3563.24, + "probability": 0.9742 + }, + { + "start": 3563.76, + "end": 3564.32, + "probability": 0.5174 + }, + { + "start": 3565.72, + "end": 3569.28, + "probability": 0.9847 + }, + { + "start": 3570.04, + "end": 3572.11, + "probability": 0.8539 + }, + { + "start": 3573.22, + "end": 3577.58, + "probability": 0.9976 + }, + { + "start": 3577.96, + "end": 3579.34, + "probability": 0.8842 + }, + { + "start": 3579.76, + "end": 3580.25, + "probability": 0.8628 + }, + { + "start": 3580.88, + "end": 3587.22, + "probability": 0.9927 + }, + { + "start": 3587.48, + "end": 3588.38, + "probability": 0.8597 + }, + { + "start": 3588.6, + "end": 3590.3, + "probability": 0.9791 + }, + { + "start": 3590.68, + "end": 3592.26, + "probability": 0.9963 + }, + { + "start": 3592.84, + "end": 3594.64, + "probability": 0.5293 + }, + { + "start": 3595.3, + "end": 3597.08, + "probability": 0.7376 + }, + { + "start": 3597.72, + "end": 3601.84, + "probability": 0.9849 + }, + { + "start": 3602.76, + "end": 3604.04, + "probability": 0.9453 + }, + { + "start": 3604.18, + "end": 3604.52, + "probability": 0.7829 + }, + { + "start": 3604.54, + "end": 3605.32, + "probability": 0.9473 + }, + { + "start": 3605.42, + "end": 3606.14, + "probability": 0.7747 + }, + { + "start": 3606.92, + "end": 3609.48, + "probability": 0.9524 + }, + { + "start": 3610.34, + "end": 3611.46, + "probability": 0.7099 + }, + { + "start": 3612.14, + "end": 3613.52, + "probability": 0.5594 + }, + { + "start": 3614.44, + "end": 3615.18, + "probability": 0.9985 + }, + { + "start": 3615.72, + "end": 3616.42, + "probability": 0.7228 + }, + { + "start": 3617.04, + "end": 3619.76, + "probability": 0.9351 + }, + { + "start": 3620.8, + "end": 3621.26, + "probability": 0.5912 + }, + { + "start": 3621.42, + "end": 3622.36, + "probability": 0.9729 + }, + { + "start": 3622.48, + "end": 3622.7, + "probability": 0.4741 + }, + { + "start": 3622.96, + "end": 3624.36, + "probability": 0.9626 + }, + { + "start": 3624.44, + "end": 3625.96, + "probability": 0.8213 + }, + { + "start": 3626.2, + "end": 3626.56, + "probability": 0.1992 + }, + { + "start": 3626.8, + "end": 3628.36, + "probability": 0.8325 + }, + { + "start": 3628.68, + "end": 3628.9, + "probability": 0.1225 + }, + { + "start": 3629.32, + "end": 3631.82, + "probability": 0.9266 + }, + { + "start": 3631.98, + "end": 3632.26, + "probability": 0.6167 + }, + { + "start": 3632.52, + "end": 3632.56, + "probability": 0.2885 + }, + { + "start": 3632.56, + "end": 3635.92, + "probability": 0.927 + }, + { + "start": 3636.96, + "end": 3638.02, + "probability": 0.9155 + }, + { + "start": 3638.42, + "end": 3639.36, + "probability": 0.9887 + }, + { + "start": 3639.42, + "end": 3642.38, + "probability": 0.9648 + }, + { + "start": 3642.6, + "end": 3644.3, + "probability": 0.8014 + }, + { + "start": 3644.7, + "end": 3650.12, + "probability": 0.887 + }, + { + "start": 3650.8, + "end": 3652.3, + "probability": 0.6293 + }, + { + "start": 3652.4, + "end": 3655.44, + "probability": 0.8897 + }, + { + "start": 3655.5, + "end": 3656.34, + "probability": 0.9991 + }, + { + "start": 3656.44, + "end": 3659.14, + "probability": 0.9941 + }, + { + "start": 3659.24, + "end": 3659.64, + "probability": 0.7043 + }, + { + "start": 3659.74, + "end": 3663.42, + "probability": 0.8741 + }, + { + "start": 3663.88, + "end": 3664.44, + "probability": 0.8358 + }, + { + "start": 3664.88, + "end": 3668.66, + "probability": 0.9814 + }, + { + "start": 3669.08, + "end": 3671.76, + "probability": 0.9907 + }, + { + "start": 3672.32, + "end": 3677.14, + "probability": 0.9994 + }, + { + "start": 3677.56, + "end": 3679.12, + "probability": 0.5141 + }, + { + "start": 3679.86, + "end": 3681.74, + "probability": 0.5837 + }, + { + "start": 3690.64, + "end": 3694.28, + "probability": 0.0217 + }, + { + "start": 3711.54, + "end": 3712.96, + "probability": 0.4612 + }, + { + "start": 3714.28, + "end": 3715.82, + "probability": 0.9985 + }, + { + "start": 3716.94, + "end": 3722.16, + "probability": 0.9775 + }, + { + "start": 3730.0, + "end": 3730.5, + "probability": 0.383 + }, + { + "start": 3731.42, + "end": 3733.9, + "probability": 0.9684 + }, + { + "start": 3733.9, + "end": 3737.68, + "probability": 0.978 + }, + { + "start": 3737.84, + "end": 3741.18, + "probability": 0.8514 + }, + { + "start": 3742.98, + "end": 3743.5, + "probability": 0.7243 + }, + { + "start": 3744.68, + "end": 3744.98, + "probability": 0.5511 + }, + { + "start": 3745.8, + "end": 3746.88, + "probability": 0.7043 + }, + { + "start": 3749.1, + "end": 3750.24, + "probability": 0.538 + }, + { + "start": 3750.56, + "end": 3750.86, + "probability": 0.2775 + }, + { + "start": 3751.8, + "end": 3751.98, + "probability": 0.8798 + }, + { + "start": 3752.8, + "end": 3754.02, + "probability": 0.9875 + }, + { + "start": 3754.82, + "end": 3755.68, + "probability": 0.2938 + }, + { + "start": 3755.72, + "end": 3758.18, + "probability": 0.991 + }, + { + "start": 3758.18, + "end": 3759.2, + "probability": 0.8608 + }, + { + "start": 3760.4, + "end": 3763.44, + "probability": 0.9382 + }, + { + "start": 3764.38, + "end": 3765.46, + "probability": 0.8583 + }, + { + "start": 3766.04, + "end": 3768.6, + "probability": 0.9382 + }, + { + "start": 3770.0, + "end": 3771.52, + "probability": 0.8303 + }, + { + "start": 3771.92, + "end": 3773.04, + "probability": 0.4247 + }, + { + "start": 3773.18, + "end": 3774.46, + "probability": 0.5755 + }, + { + "start": 3775.06, + "end": 3777.82, + "probability": 0.8345 + }, + { + "start": 3778.48, + "end": 3780.12, + "probability": 0.0262 + }, + { + "start": 3780.28, + "end": 3784.48, + "probability": 0.7493 + }, + { + "start": 3784.84, + "end": 3785.48, + "probability": 0.5381 + }, + { + "start": 3785.56, + "end": 3785.68, + "probability": 0.1414 + }, + { + "start": 3787.06, + "end": 3789.02, + "probability": 0.5657 + }, + { + "start": 3789.48, + "end": 3790.02, + "probability": 0.3416 + }, + { + "start": 3790.36, + "end": 3797.26, + "probability": 0.9946 + }, + { + "start": 3798.48, + "end": 3798.98, + "probability": 0.7311 + }, + { + "start": 3799.1, + "end": 3801.32, + "probability": 0.9 + }, + { + "start": 3801.38, + "end": 3803.08, + "probability": 0.9244 + }, + { + "start": 3804.78, + "end": 3807.42, + "probability": 0.7051 + }, + { + "start": 3809.0, + "end": 3811.88, + "probability": 0.9365 + }, + { + "start": 3812.9, + "end": 3813.9, + "probability": 0.9406 + }, + { + "start": 3814.46, + "end": 3816.14, + "probability": 0.9811 + }, + { + "start": 3816.22, + "end": 3816.72, + "probability": 0.7946 + }, + { + "start": 3816.84, + "end": 3817.4, + "probability": 0.7144 + }, + { + "start": 3817.88, + "end": 3819.02, + "probability": 0.9714 + }, + { + "start": 3819.18, + "end": 3821.06, + "probability": 0.6519 + }, + { + "start": 3821.64, + "end": 3825.06, + "probability": 0.9782 + }, + { + "start": 3825.2, + "end": 3826.26, + "probability": 0.7635 + }, + { + "start": 3826.88, + "end": 3829.98, + "probability": 0.9635 + }, + { + "start": 3830.76, + "end": 3832.84, + "probability": 0.8579 + }, + { + "start": 3832.96, + "end": 3833.74, + "probability": 0.5499 + }, + { + "start": 3833.86, + "end": 3835.04, + "probability": 0.9521 + }, + { + "start": 3836.24, + "end": 3838.0, + "probability": 0.9766 + }, + { + "start": 3840.08, + "end": 3840.84, + "probability": 0.947 + }, + { + "start": 3841.34, + "end": 3841.86, + "probability": 0.921 + }, + { + "start": 3841.88, + "end": 3842.08, + "probability": 0.9322 + }, + { + "start": 3842.38, + "end": 3844.64, + "probability": 0.9492 + }, + { + "start": 3845.1, + "end": 3847.1, + "probability": 0.9958 + }, + { + "start": 3847.1, + "end": 3847.82, + "probability": 0.5291 + }, + { + "start": 3849.74, + "end": 3853.36, + "probability": 0.8747 + }, + { + "start": 3854.52, + "end": 3855.18, + "probability": 0.9411 + }, + { + "start": 3855.7, + "end": 3858.28, + "probability": 0.7982 + }, + { + "start": 3858.44, + "end": 3859.62, + "probability": 0.8171 + }, + { + "start": 3860.1, + "end": 3862.64, + "probability": 0.9658 + }, + { + "start": 3862.76, + "end": 3863.62, + "probability": 0.5439 + }, + { + "start": 3864.76, + "end": 3864.88, + "probability": 0.0996 + }, + { + "start": 3865.54, + "end": 3869.28, + "probability": 0.6943 + }, + { + "start": 3869.9, + "end": 3872.76, + "probability": 0.4792 + }, + { + "start": 3872.82, + "end": 3873.7, + "probability": 0.8849 + }, + { + "start": 3874.04, + "end": 3876.98, + "probability": 0.9175 + }, + { + "start": 3877.6, + "end": 3880.26, + "probability": 0.9946 + }, + { + "start": 3880.74, + "end": 3883.42, + "probability": 0.9226 + }, + { + "start": 3884.38, + "end": 3887.1, + "probability": 0.7461 + }, + { + "start": 3887.76, + "end": 3890.78, + "probability": 0.9849 + }, + { + "start": 3891.72, + "end": 3892.06, + "probability": 0.22 + }, + { + "start": 3894.74, + "end": 3895.9, + "probability": 0.8417 + }, + { + "start": 3896.4, + "end": 3899.04, + "probability": 0.9731 + }, + { + "start": 3899.42, + "end": 3901.1, + "probability": 0.6301 + }, + { + "start": 3901.1, + "end": 3902.12, + "probability": 0.1505 + }, + { + "start": 3902.28, + "end": 3903.26, + "probability": 0.6897 + }, + { + "start": 3903.26, + "end": 3905.08, + "probability": 0.2021 + }, + { + "start": 3905.14, + "end": 3907.58, + "probability": 0.5435 + }, + { + "start": 3908.3, + "end": 3908.68, + "probability": 0.6648 + }, + { + "start": 3909.36, + "end": 3911.32, + "probability": 0.6215 + }, + { + "start": 3922.9, + "end": 3922.9, + "probability": 0.0898 + }, + { + "start": 3922.9, + "end": 3922.9, + "probability": 0.1449 + }, + { + "start": 3922.9, + "end": 3922.9, + "probability": 0.1432 + }, + { + "start": 3922.94, + "end": 3922.94, + "probability": 0.0012 + }, + { + "start": 3948.0, + "end": 3950.58, + "probability": 0.6676 + }, + { + "start": 3952.28, + "end": 3953.81, + "probability": 0.7935 + }, + { + "start": 3954.54, + "end": 3955.86, + "probability": 0.8281 + }, + { + "start": 3955.9, + "end": 3957.48, + "probability": 0.8064 + }, + { + "start": 3957.48, + "end": 3957.7, + "probability": 0.1374 + }, + { + "start": 3957.7, + "end": 3961.26, + "probability": 0.7932 + }, + { + "start": 3961.26, + "end": 3964.98, + "probability": 0.3334 + }, + { + "start": 3964.98, + "end": 3964.98, + "probability": 0.1861 + }, + { + "start": 3964.98, + "end": 3965.84, + "probability": 0.7021 + }, + { + "start": 3966.48, + "end": 3967.92, + "probability": 0.7241 + }, + { + "start": 3968.64, + "end": 3971.28, + "probability": 0.8672 + }, + { + "start": 3973.36, + "end": 3978.78, + "probability": 0.905 + }, + { + "start": 3978.84, + "end": 3982.12, + "probability": 0.906 + }, + { + "start": 3983.76, + "end": 3984.6, + "probability": 0.9514 + }, + { + "start": 3986.02, + "end": 3988.96, + "probability": 0.9031 + }, + { + "start": 3989.98, + "end": 3991.78, + "probability": 0.9995 + }, + { + "start": 3992.68, + "end": 3996.88, + "probability": 0.7098 + }, + { + "start": 3997.94, + "end": 3999.48, + "probability": 0.8735 + }, + { + "start": 4000.92, + "end": 4002.12, + "probability": 0.8486 + }, + { + "start": 4003.58, + "end": 4012.15, + "probability": 0.7748 + }, + { + "start": 4014.14, + "end": 4016.2, + "probability": 0.7882 + }, + { + "start": 4017.64, + "end": 4018.54, + "probability": 0.0271 + }, + { + "start": 4021.0, + "end": 4024.82, + "probability": 0.78 + }, + { + "start": 4026.06, + "end": 4029.86, + "probability": 0.9902 + }, + { + "start": 4033.16, + "end": 4035.82, + "probability": 0.9531 + }, + { + "start": 4035.98, + "end": 4036.4, + "probability": 0.8037 + }, + { + "start": 4037.54, + "end": 4039.44, + "probability": 0.9946 + }, + { + "start": 4040.26, + "end": 4041.48, + "probability": 0.7627 + }, + { + "start": 4042.7, + "end": 4043.22, + "probability": 0.8065 + }, + { + "start": 4044.24, + "end": 4047.16, + "probability": 0.991 + }, + { + "start": 4049.06, + "end": 4050.84, + "probability": 0.9865 + }, + { + "start": 4051.72, + "end": 4052.66, + "probability": 0.9947 + }, + { + "start": 4053.18, + "end": 4056.8, + "probability": 0.6528 + }, + { + "start": 4059.3, + "end": 4059.94, + "probability": 0.6652 + }, + { + "start": 4060.5, + "end": 4067.78, + "probability": 0.9553 + }, + { + "start": 4067.84, + "end": 4068.36, + "probability": 0.9082 + }, + { + "start": 4068.94, + "end": 4070.24, + "probability": 0.9023 + }, + { + "start": 4070.76, + "end": 4071.84, + "probability": 0.6728 + }, + { + "start": 4072.74, + "end": 4073.86, + "probability": 0.7496 + }, + { + "start": 4074.84, + "end": 4076.0, + "probability": 0.9121 + }, + { + "start": 4076.9, + "end": 4078.58, + "probability": 0.7381 + }, + { + "start": 4079.54, + "end": 4080.28, + "probability": 0.9607 + }, + { + "start": 4082.06, + "end": 4086.04, + "probability": 0.9681 + }, + { + "start": 4087.22, + "end": 4088.0, + "probability": 0.9033 + }, + { + "start": 4088.66, + "end": 4092.85, + "probability": 0.8098 + }, + { + "start": 4093.96, + "end": 4096.78, + "probability": 0.9917 + }, + { + "start": 4097.72, + "end": 4098.74, + "probability": 0.4059 + }, + { + "start": 4099.78, + "end": 4109.44, + "probability": 0.6577 + }, + { + "start": 4111.28, + "end": 4112.7, + "probability": 0.7772 + }, + { + "start": 4114.1, + "end": 4115.1, + "probability": 0.8167 + }, + { + "start": 4116.24, + "end": 4119.46, + "probability": 0.6941 + }, + { + "start": 4119.52, + "end": 4120.92, + "probability": 0.9771 + }, + { + "start": 4122.5, + "end": 4123.36, + "probability": 0.9882 + }, + { + "start": 4125.0, + "end": 4126.5, + "probability": 0.6518 + }, + { + "start": 4127.92, + "end": 4130.18, + "probability": 0.9507 + }, + { + "start": 4130.76, + "end": 4131.88, + "probability": 0.96 + }, + { + "start": 4132.86, + "end": 4135.12, + "probability": 0.9109 + }, + { + "start": 4135.9, + "end": 4138.06, + "probability": 0.9768 + }, + { + "start": 4138.82, + "end": 4138.82, + "probability": 0.4204 + }, + { + "start": 4138.86, + "end": 4142.12, + "probability": 0.9797 + }, + { + "start": 4142.74, + "end": 4143.62, + "probability": 0.6714 + }, + { + "start": 4143.62, + "end": 4146.58, + "probability": 0.891 + }, + { + "start": 4148.0, + "end": 4151.9, + "probability": 0.8041 + }, + { + "start": 4153.34, + "end": 4155.33, + "probability": 0.8961 + }, + { + "start": 4156.8, + "end": 4158.66, + "probability": 0.8892 + }, + { + "start": 4159.62, + "end": 4159.7, + "probability": 0.3401 + }, + { + "start": 4159.7, + "end": 4165.06, + "probability": 0.6061 + }, + { + "start": 4166.94, + "end": 4168.22, + "probability": 0.6651 + }, + { + "start": 4168.44, + "end": 4168.54, + "probability": 0.5245 + }, + { + "start": 4168.93, + "end": 4169.74, + "probability": 0.2351 + }, + { + "start": 4169.74, + "end": 4172.74, + "probability": 0.6098 + }, + { + "start": 4172.76, + "end": 4172.76, + "probability": 0.6584 + }, + { + "start": 4172.76, + "end": 4173.68, + "probability": 0.4025 + }, + { + "start": 4173.98, + "end": 4174.94, + "probability": 0.8641 + }, + { + "start": 4175.02, + "end": 4175.9, + "probability": 0.7175 + }, + { + "start": 4176.14, + "end": 4179.08, + "probability": 0.8469 + }, + { + "start": 4179.82, + "end": 4183.06, + "probability": 0.4982 + }, + { + "start": 4183.4, + "end": 4184.56, + "probability": 0.517 + }, + { + "start": 4184.84, + "end": 4185.91, + "probability": 0.9139 + }, + { + "start": 4186.04, + "end": 4186.04, + "probability": 0.2015 + }, + { + "start": 4186.04, + "end": 4186.04, + "probability": 0.4483 + }, + { + "start": 4186.04, + "end": 4186.04, + "probability": 0.4605 + }, + { + "start": 4186.08, + "end": 4186.92, + "probability": 0.9233 + }, + { + "start": 4187.54, + "end": 4191.18, + "probability": 0.7134 + }, + { + "start": 4191.42, + "end": 4195.22, + "probability": 0.809 + }, + { + "start": 4195.22, + "end": 4196.14, + "probability": 0.3932 + }, + { + "start": 4197.26, + "end": 4200.09, + "probability": 0.4697 + }, + { + "start": 4207.52, + "end": 4209.02, + "probability": 0.6725 + }, + { + "start": 4210.02, + "end": 4211.02, + "probability": 0.6828 + }, + { + "start": 4212.18, + "end": 4216.14, + "probability": 0.9852 + }, + { + "start": 4216.52, + "end": 4217.0, + "probability": 0.7235 + }, + { + "start": 4217.08, + "end": 4217.78, + "probability": 0.722 + }, + { + "start": 4218.98, + "end": 4222.08, + "probability": 0.9491 + }, + { + "start": 4222.94, + "end": 4226.5, + "probability": 0.9949 + }, + { + "start": 4226.5, + "end": 4231.38, + "probability": 0.9562 + }, + { + "start": 4232.14, + "end": 4234.6, + "probability": 0.9963 + }, + { + "start": 4234.74, + "end": 4236.64, + "probability": 0.9667 + }, + { + "start": 4237.48, + "end": 4242.68, + "probability": 0.9975 + }, + { + "start": 4243.32, + "end": 4244.76, + "probability": 0.9304 + }, + { + "start": 4245.36, + "end": 4246.08, + "probability": 0.7936 + }, + { + "start": 4246.52, + "end": 4247.76, + "probability": 0.9589 + }, + { + "start": 4248.24, + "end": 4251.56, + "probability": 0.9538 + }, + { + "start": 4251.62, + "end": 4251.84, + "probability": 0.3303 + }, + { + "start": 4251.96, + "end": 4252.52, + "probability": 0.8362 + }, + { + "start": 4253.1, + "end": 4257.04, + "probability": 0.9921 + }, + { + "start": 4257.28, + "end": 4259.66, + "probability": 0.6777 + }, + { + "start": 4260.32, + "end": 4264.74, + "probability": 0.9836 + }, + { + "start": 4265.4, + "end": 4265.9, + "probability": 0.9548 + }, + { + "start": 4266.04, + "end": 4272.0, + "probability": 0.9572 + }, + { + "start": 4272.56, + "end": 4277.58, + "probability": 0.9261 + }, + { + "start": 4278.36, + "end": 4281.5, + "probability": 0.9902 + }, + { + "start": 4281.94, + "end": 4285.78, + "probability": 0.9976 + }, + { + "start": 4286.28, + "end": 4288.42, + "probability": 0.8768 + }, + { + "start": 4288.62, + "end": 4290.96, + "probability": 0.9666 + }, + { + "start": 4291.36, + "end": 4293.5, + "probability": 0.9726 + }, + { + "start": 4293.56, + "end": 4295.06, + "probability": 0.8586 + }, + { + "start": 4296.68, + "end": 4297.88, + "probability": 0.882 + }, + { + "start": 4298.88, + "end": 4302.58, + "probability": 0.995 + }, + { + "start": 4303.52, + "end": 4305.5, + "probability": 0.9684 + }, + { + "start": 4306.48, + "end": 4307.52, + "probability": 0.6977 + }, + { + "start": 4308.5, + "end": 4309.96, + "probability": 0.7154 + }, + { + "start": 4310.06, + "end": 4311.4, + "probability": 0.6443 + }, + { + "start": 4312.18, + "end": 4313.12, + "probability": 0.8894 + }, + { + "start": 4314.02, + "end": 4317.06, + "probability": 0.9727 + }, + { + "start": 4317.08, + "end": 4317.4, + "probability": 0.4152 + }, + { + "start": 4317.64, + "end": 4321.0, + "probability": 0.9707 + }, + { + "start": 4321.48, + "end": 4324.1, + "probability": 0.1442 + }, + { + "start": 4324.32, + "end": 4324.32, + "probability": 0.0501 + }, + { + "start": 4324.32, + "end": 4324.42, + "probability": 0.0885 + }, + { + "start": 4324.82, + "end": 4326.32, + "probability": 0.594 + }, + { + "start": 4327.22, + "end": 4330.02, + "probability": 0.9041 + }, + { + "start": 4330.74, + "end": 4331.42, + "probability": 0.4559 + }, + { + "start": 4331.42, + "end": 4336.16, + "probability": 0.1533 + }, + { + "start": 4336.16, + "end": 4336.16, + "probability": 0.0118 + }, + { + "start": 4336.16, + "end": 4338.44, + "probability": 0.6848 + }, + { + "start": 4338.86, + "end": 4341.22, + "probability": 0.8897 + }, + { + "start": 4342.2, + "end": 4343.06, + "probability": 0.6884 + }, + { + "start": 4343.38, + "end": 4344.72, + "probability": 0.7899 + }, + { + "start": 4344.8, + "end": 4346.1, + "probability": 0.9628 + }, + { + "start": 4347.18, + "end": 4350.9, + "probability": 0.9868 + }, + { + "start": 4351.66, + "end": 4354.5, + "probability": 0.9728 + }, + { + "start": 4355.04, + "end": 4359.42, + "probability": 0.8534 + }, + { + "start": 4361.18, + "end": 4363.44, + "probability": 0.817 + }, + { + "start": 4364.25, + "end": 4365.34, + "probability": 0.3271 + }, + { + "start": 4366.88, + "end": 4366.96, + "probability": 0.3555 + }, + { + "start": 4366.96, + "end": 4366.96, + "probability": 0.6457 + }, + { + "start": 4366.96, + "end": 4368.36, + "probability": 0.547 + }, + { + "start": 4368.9, + "end": 4369.56, + "probability": 0.5668 + }, + { + "start": 4371.14, + "end": 4372.36, + "probability": 0.8618 + }, + { + "start": 4373.16, + "end": 4375.32, + "probability": 0.9333 + }, + { + "start": 4375.7, + "end": 4377.36, + "probability": 0.5361 + }, + { + "start": 4377.92, + "end": 4380.5, + "probability": 0.8763 + }, + { + "start": 4380.5, + "end": 4383.28, + "probability": 0.9958 + }, + { + "start": 4384.62, + "end": 4386.38, + "probability": 0.7263 + }, + { + "start": 4387.06, + "end": 4387.81, + "probability": 0.9834 + }, + { + "start": 4388.96, + "end": 4391.68, + "probability": 0.8344 + }, + { + "start": 4392.16, + "end": 4394.32, + "probability": 0.9863 + }, + { + "start": 4395.12, + "end": 4396.3, + "probability": 0.8282 + }, + { + "start": 4397.04, + "end": 4397.72, + "probability": 0.6823 + }, + { + "start": 4398.48, + "end": 4400.36, + "probability": 0.5634 + }, + { + "start": 4400.58, + "end": 4402.99, + "probability": 0.9868 + }, + { + "start": 4403.2, + "end": 4403.26, + "probability": 0.0006 + }, + { + "start": 4403.26, + "end": 4404.52, + "probability": 0.8866 + }, + { + "start": 4404.62, + "end": 4407.7, + "probability": 0.5991 + }, + { + "start": 4408.2, + "end": 4408.84, + "probability": 0.0089 + }, + { + "start": 4408.84, + "end": 4409.1, + "probability": 0.6293 + }, + { + "start": 4409.64, + "end": 4413.78, + "probability": 0.5388 + }, + { + "start": 4415.18, + "end": 4415.42, + "probability": 0.0164 + }, + { + "start": 4415.42, + "end": 4415.46, + "probability": 0.3096 + }, + { + "start": 4415.46, + "end": 4417.04, + "probability": 0.1467 + }, + { + "start": 4417.32, + "end": 4422.52, + "probability": 0.5283 + }, + { + "start": 4423.48, + "end": 4427.38, + "probability": 0.8915 + }, + { + "start": 4427.38, + "end": 4428.18, + "probability": 0.3944 + }, + { + "start": 4428.18, + "end": 4428.18, + "probability": 0.3449 + }, + { + "start": 4428.2, + "end": 4430.4, + "probability": 0.9087 + }, + { + "start": 4430.4, + "end": 4431.1, + "probability": 0.8258 + }, + { + "start": 4431.42, + "end": 4436.16, + "probability": 0.9679 + }, + { + "start": 4437.48, + "end": 4437.48, + "probability": 0.0176 + }, + { + "start": 4437.48, + "end": 4438.1, + "probability": 0.5319 + }, + { + "start": 4438.16, + "end": 4438.48, + "probability": 0.1006 + }, + { + "start": 4439.52, + "end": 4440.82, + "probability": 0.9589 + }, + { + "start": 4441.54, + "end": 4442.36, + "probability": 0.0165 + }, + { + "start": 4443.24, + "end": 4444.07, + "probability": 0.4706 + }, + { + "start": 4445.46, + "end": 4445.46, + "probability": 0.2487 + }, + { + "start": 4445.46, + "end": 4445.46, + "probability": 0.0215 + }, + { + "start": 4445.46, + "end": 4446.74, + "probability": 0.1686 + }, + { + "start": 4446.76, + "end": 4449.56, + "probability": 0.1754 + }, + { + "start": 4449.62, + "end": 4450.58, + "probability": 0.1229 + }, + { + "start": 4450.76, + "end": 4451.72, + "probability": 0.1959 + }, + { + "start": 4452.92, + "end": 4454.36, + "probability": 0.5126 + }, + { + "start": 4454.66, + "end": 4456.99, + "probability": 0.2297 + }, + { + "start": 4457.38, + "end": 4458.09, + "probability": 0.035 + }, + { + "start": 4458.4, + "end": 4459.32, + "probability": 0.0097 + }, + { + "start": 4459.94, + "end": 4460.3, + "probability": 0.0667 + }, + { + "start": 4461.1, + "end": 4461.7, + "probability": 0.1909 + }, + { + "start": 4461.72, + "end": 4461.94, + "probability": 0.2254 + }, + { + "start": 4462.42, + "end": 4466.1, + "probability": 0.6032 + }, + { + "start": 4466.32, + "end": 4467.06, + "probability": 0.483 + }, + { + "start": 4468.24, + "end": 4469.74, + "probability": 0.5767 + }, + { + "start": 4469.82, + "end": 4472.06, + "probability": 0.6968 + }, + { + "start": 4472.64, + "end": 4473.7, + "probability": 0.243 + }, + { + "start": 4473.7, + "end": 4474.14, + "probability": 0.6519 + }, + { + "start": 4474.14, + "end": 4474.96, + "probability": 0.9774 + }, + { + "start": 4475.12, + "end": 4477.16, + "probability": 0.9094 + }, + { + "start": 4477.22, + "end": 4479.21, + "probability": 0.4484 + }, + { + "start": 4479.56, + "end": 4481.32, + "probability": 0.4832 + }, + { + "start": 4481.74, + "end": 4486.2, + "probability": 0.7217 + }, + { + "start": 4487.2, + "end": 4487.38, + "probability": 0.0325 + }, + { + "start": 4487.38, + "end": 4488.4, + "probability": 0.2182 + }, + { + "start": 4488.4, + "end": 4489.38, + "probability": 0.4809 + }, + { + "start": 4489.46, + "end": 4491.76, + "probability": 0.392 + }, + { + "start": 4491.76, + "end": 4492.28, + "probability": 0.6444 + }, + { + "start": 4492.44, + "end": 4492.86, + "probability": 0.5758 + }, + { + "start": 4493.34, + "end": 4494.72, + "probability": 0.0616 + }, + { + "start": 4494.76, + "end": 4494.94, + "probability": 0.1472 + }, + { + "start": 4495.74, + "end": 4495.84, + "probability": 0.0135 + }, + { + "start": 4495.84, + "end": 4497.92, + "probability": 0.1259 + }, + { + "start": 4498.06, + "end": 4498.06, + "probability": 0.046 + }, + { + "start": 4498.06, + "end": 4498.06, + "probability": 0.0311 + }, + { + "start": 4498.06, + "end": 4502.76, + "probability": 0.6134 + }, + { + "start": 4503.26, + "end": 4505.06, + "probability": 0.8734 + }, + { + "start": 4505.22, + "end": 4506.0, + "probability": 0.858 + }, + { + "start": 4506.08, + "end": 4509.38, + "probability": 0.9915 + }, + { + "start": 4509.44, + "end": 4511.18, + "probability": 0.9951 + }, + { + "start": 4511.68, + "end": 4516.88, + "probability": 0.811 + }, + { + "start": 4517.46, + "end": 4517.46, + "probability": 0.0886 + }, + { + "start": 4517.46, + "end": 4517.46, + "probability": 0.0513 + }, + { + "start": 4517.46, + "end": 4520.82, + "probability": 0.9458 + }, + { + "start": 4521.24, + "end": 4524.42, + "probability": 0.8103 + }, + { + "start": 4524.42, + "end": 4527.78, + "probability": 0.9885 + }, + { + "start": 4528.36, + "end": 4531.82, + "probability": 0.0107 + }, + { + "start": 4532.14, + "end": 4534.08, + "probability": 0.0207 + }, + { + "start": 4534.3, + "end": 4536.18, + "probability": 0.0162 + }, + { + "start": 4536.2, + "end": 4536.48, + "probability": 0.1042 + }, + { + "start": 4536.7, + "end": 4536.7, + "probability": 0.0454 + }, + { + "start": 4536.7, + "end": 4536.74, + "probability": 0.0498 + }, + { + "start": 4536.74, + "end": 4536.74, + "probability": 0.0485 + }, + { + "start": 4536.74, + "end": 4537.78, + "probability": 0.141 + }, + { + "start": 4538.72, + "end": 4539.56, + "probability": 0.0913 + }, + { + "start": 4540.28, + "end": 4541.0, + "probability": 0.6517 + }, + { + "start": 4541.0, + "end": 4541.0, + "probability": 0.3009 + }, + { + "start": 4541.0, + "end": 4541.0, + "probability": 0.0837 + }, + { + "start": 4541.0, + "end": 4545.86, + "probability": 0.6849 + }, + { + "start": 4546.2, + "end": 4550.34, + "probability": 0.7664 + }, + { + "start": 4551.04, + "end": 4551.64, + "probability": 0.1834 + }, + { + "start": 4551.64, + "end": 4551.64, + "probability": 0.3392 + }, + { + "start": 4551.64, + "end": 4551.64, + "probability": 0.0358 + }, + { + "start": 4551.64, + "end": 4551.64, + "probability": 0.3 + }, + { + "start": 4551.64, + "end": 4552.36, + "probability": 0.1365 + }, + { + "start": 4552.5, + "end": 4553.56, + "probability": 0.67 + }, + { + "start": 4553.66, + "end": 4555.1, + "probability": 0.9227 + }, + { + "start": 4555.22, + "end": 4555.22, + "probability": 0.1155 + }, + { + "start": 4555.22, + "end": 4555.52, + "probability": 0.2055 + }, + { + "start": 4555.68, + "end": 4556.72, + "probability": 0.7226 + }, + { + "start": 4557.72, + "end": 4557.86, + "probability": 0.7676 + }, + { + "start": 4558.6, + "end": 4559.3, + "probability": 0.4227 + }, + { + "start": 4559.3, + "end": 4559.98, + "probability": 0.103 + }, + { + "start": 4559.98, + "end": 4561.1, + "probability": 0.6519 + }, + { + "start": 4561.34, + "end": 4562.9, + "probability": 0.7065 + }, + { + "start": 4562.9, + "end": 4563.52, + "probability": 0.4846 + }, + { + "start": 4563.6, + "end": 4564.6, + "probability": 0.6328 + }, + { + "start": 4564.6, + "end": 4565.44, + "probability": 0.8847 + }, + { + "start": 4566.0, + "end": 4566.08, + "probability": 0.0001 + }, + { + "start": 4569.54, + "end": 4570.64, + "probability": 0.0322 + }, + { + "start": 4570.64, + "end": 4570.64, + "probability": 0.0759 + }, + { + "start": 4570.64, + "end": 4570.64, + "probability": 0.1612 + }, + { + "start": 4570.64, + "end": 4572.98, + "probability": 0.4463 + }, + { + "start": 4573.12, + "end": 4574.72, + "probability": 0.9875 + }, + { + "start": 4575.3, + "end": 4578.94, + "probability": 0.9395 + }, + { + "start": 4579.18, + "end": 4579.88, + "probability": 0.7002 + }, + { + "start": 4579.94, + "end": 4581.92, + "probability": 0.948 + }, + { + "start": 4582.42, + "end": 4585.42, + "probability": 0.8917 + }, + { + "start": 4585.54, + "end": 4586.12, + "probability": 0.8249 + }, + { + "start": 4586.56, + "end": 4590.36, + "probability": 0.9927 + }, + { + "start": 4590.92, + "end": 4592.08, + "probability": 0.9621 + }, + { + "start": 4592.36, + "end": 4593.56, + "probability": 0.332 + }, + { + "start": 4594.2, + "end": 4596.74, + "probability": 0.8252 + }, + { + "start": 4597.16, + "end": 4600.7, + "probability": 0.9775 + }, + { + "start": 4600.7, + "end": 4603.26, + "probability": 0.99 + }, + { + "start": 4603.82, + "end": 4605.8, + "probability": 0.3861 + }, + { + "start": 4606.4, + "end": 4610.1, + "probability": 0.9723 + }, + { + "start": 4610.68, + "end": 4610.92, + "probability": 0.0147 + }, + { + "start": 4610.92, + "end": 4610.92, + "probability": 0.0482 + }, + { + "start": 4610.92, + "end": 4614.58, + "probability": 0.9783 + }, + { + "start": 4614.68, + "end": 4620.54, + "probability": 0.9835 + }, + { + "start": 4621.42, + "end": 4622.62, + "probability": 0.6957 + }, + { + "start": 4623.2, + "end": 4625.4, + "probability": 0.9963 + }, + { + "start": 4625.98, + "end": 4627.36, + "probability": 0.8027 + }, + { + "start": 4627.56, + "end": 4628.38, + "probability": 0.8606 + }, + { + "start": 4628.54, + "end": 4629.56, + "probability": 0.8223 + }, + { + "start": 4629.96, + "end": 4635.44, + "probability": 0.978 + }, + { + "start": 4635.82, + "end": 4637.1, + "probability": 0.87 + }, + { + "start": 4637.14, + "end": 4639.46, + "probability": 0.9757 + }, + { + "start": 4639.76, + "end": 4642.48, + "probability": 0.9595 + }, + { + "start": 4643.02, + "end": 4643.58, + "probability": 0.8323 + }, + { + "start": 4643.82, + "end": 4645.32, + "probability": 0.8168 + }, + { + "start": 4645.58, + "end": 4647.12, + "probability": 0.9585 + }, + { + "start": 4647.24, + "end": 4648.56, + "probability": 0.9418 + }, + { + "start": 4648.84, + "end": 4649.98, + "probability": 0.8931 + }, + { + "start": 4650.44, + "end": 4654.58, + "probability": 0.9979 + }, + { + "start": 4655.18, + "end": 4656.96, + "probability": 0.9888 + }, + { + "start": 4657.62, + "end": 4662.38, + "probability": 0.9888 + }, + { + "start": 4662.38, + "end": 4668.0, + "probability": 0.8042 + }, + { + "start": 4668.58, + "end": 4673.54, + "probability": 0.9297 + }, + { + "start": 4673.84, + "end": 4676.96, + "probability": 0.9541 + }, + { + "start": 4677.3, + "end": 4678.68, + "probability": 0.9757 + }, + { + "start": 4679.08, + "end": 4679.62, + "probability": 0.8381 + }, + { + "start": 4679.96, + "end": 4684.16, + "probability": 0.7489 + }, + { + "start": 4684.68, + "end": 4685.92, + "probability": 0.6469 + }, + { + "start": 4686.26, + "end": 4689.42, + "probability": 0.7446 + }, + { + "start": 4689.8, + "end": 4690.48, + "probability": 0.7254 + }, + { + "start": 4690.54, + "end": 4691.62, + "probability": 0.8315 + }, + { + "start": 4691.66, + "end": 4693.67, + "probability": 0.9741 + }, + { + "start": 4694.36, + "end": 4696.14, + "probability": 0.9958 + }, + { + "start": 4696.98, + "end": 4699.7, + "probability": 0.9648 + }, + { + "start": 4699.7, + "end": 4702.46, + "probability": 0.7484 + }, + { + "start": 4702.88, + "end": 4705.64, + "probability": 0.7634 + }, + { + "start": 4705.78, + "end": 4707.44, + "probability": 0.6406 + }, + { + "start": 4707.78, + "end": 4709.82, + "probability": 0.8292 + }, + { + "start": 4710.26, + "end": 4710.76, + "probability": 0.7705 + }, + { + "start": 4711.1, + "end": 4713.7, + "probability": 0.999 + }, + { + "start": 4714.02, + "end": 4714.6, + "probability": 0.8007 + }, + { + "start": 4714.68, + "end": 4715.38, + "probability": 0.3592 + }, + { + "start": 4715.56, + "end": 4716.8, + "probability": 0.9518 + }, + { + "start": 4717.14, + "end": 4719.1, + "probability": 0.9913 + }, + { + "start": 4719.48, + "end": 4721.16, + "probability": 0.9141 + }, + { + "start": 4721.5, + "end": 4725.34, + "probability": 0.9858 + }, + { + "start": 4725.5, + "end": 4726.32, + "probability": 0.7915 + }, + { + "start": 4727.02, + "end": 4729.56, + "probability": 0.9928 + }, + { + "start": 4730.1, + "end": 4732.68, + "probability": 0.7944 + }, + { + "start": 4733.0, + "end": 4734.56, + "probability": 0.988 + }, + { + "start": 4735.18, + "end": 4736.72, + "probability": 0.9402 + }, + { + "start": 4737.28, + "end": 4739.72, + "probability": 0.8806 + }, + { + "start": 4739.72, + "end": 4742.28, + "probability": 0.7682 + }, + { + "start": 4742.7, + "end": 4742.7, + "probability": 0.0048 + }, + { + "start": 4742.7, + "end": 4745.76, + "probability": 0.729 + }, + { + "start": 4746.12, + "end": 4751.2, + "probability": 0.9694 + }, + { + "start": 4751.56, + "end": 4752.94, + "probability": 0.9289 + }, + { + "start": 4753.48, + "end": 4754.26, + "probability": 0.6987 + }, + { + "start": 4754.56, + "end": 4759.86, + "probability": 0.9619 + }, + { + "start": 4760.64, + "end": 4760.76, + "probability": 0.4444 + }, + { + "start": 4760.8, + "end": 4762.76, + "probability": 0.9385 + }, + { + "start": 4762.76, + "end": 4766.28, + "probability": 0.9967 + }, + { + "start": 4766.28, + "end": 4770.24, + "probability": 0.9877 + }, + { + "start": 4770.78, + "end": 4771.72, + "probability": 0.8258 + }, + { + "start": 4772.14, + "end": 4773.42, + "probability": 0.8261 + }, + { + "start": 4773.78, + "end": 4776.8, + "probability": 0.9903 + }, + { + "start": 4777.24, + "end": 4777.76, + "probability": 0.8031 + }, + { + "start": 4778.12, + "end": 4782.34, + "probability": 0.9873 + }, + { + "start": 4782.76, + "end": 4785.38, + "probability": 0.8873 + }, + { + "start": 4785.8, + "end": 4786.6, + "probability": 0.669 + }, + { + "start": 4786.72, + "end": 4787.56, + "probability": 0.8191 + }, + { + "start": 4787.88, + "end": 4791.54, + "probability": 0.9038 + }, + { + "start": 4791.78, + "end": 4795.92, + "probability": 0.9792 + }, + { + "start": 4795.92, + "end": 4800.26, + "probability": 0.9993 + }, + { + "start": 4800.82, + "end": 4804.02, + "probability": 0.9984 + }, + { + "start": 4804.32, + "end": 4807.56, + "probability": 0.9909 + }, + { + "start": 4808.76, + "end": 4811.25, + "probability": 0.9934 + }, + { + "start": 4811.62, + "end": 4813.06, + "probability": 0.9065 + }, + { + "start": 4813.6, + "end": 4818.28, + "probability": 0.9961 + }, + { + "start": 4818.28, + "end": 4822.14, + "probability": 0.9941 + }, + { + "start": 4822.36, + "end": 4825.18, + "probability": 0.9966 + }, + { + "start": 4825.18, + "end": 4828.44, + "probability": 0.9956 + }, + { + "start": 4829.36, + "end": 4831.46, + "probability": 0.995 + }, + { + "start": 4831.86, + "end": 4833.28, + "probability": 0.9839 + }, + { + "start": 4833.32, + "end": 4834.74, + "probability": 0.9728 + }, + { + "start": 4835.1, + "end": 4837.98, + "probability": 0.9751 + }, + { + "start": 4838.36, + "end": 4841.56, + "probability": 0.9628 + }, + { + "start": 4841.56, + "end": 4844.54, + "probability": 0.8759 + }, + { + "start": 4844.98, + "end": 4847.16, + "probability": 0.939 + }, + { + "start": 4847.54, + "end": 4851.78, + "probability": 0.9707 + }, + { + "start": 4851.78, + "end": 4855.98, + "probability": 0.9978 + }, + { + "start": 4856.56, + "end": 4858.8, + "probability": 0.9989 + }, + { + "start": 4858.8, + "end": 4861.56, + "probability": 0.998 + }, + { + "start": 4862.02, + "end": 4863.08, + "probability": 0.7334 + }, + { + "start": 4863.4, + "end": 4865.3, + "probability": 0.924 + }, + { + "start": 4865.8, + "end": 4868.58, + "probability": 0.9781 + }, + { + "start": 4869.68, + "end": 4873.15, + "probability": 0.9688 + }, + { + "start": 4873.84, + "end": 4880.0, + "probability": 0.9719 + }, + { + "start": 4880.86, + "end": 4882.66, + "probability": 0.9893 + }, + { + "start": 4883.02, + "end": 4884.3, + "probability": 0.6992 + }, + { + "start": 4884.44, + "end": 4884.98, + "probability": 0.7904 + }, + { + "start": 4885.4, + "end": 4888.38, + "probability": 0.7298 + }, + { + "start": 4888.78, + "end": 4892.32, + "probability": 0.9722 + }, + { + "start": 4892.8, + "end": 4894.63, + "probability": 0.9935 + }, + { + "start": 4894.98, + "end": 4898.86, + "probability": 0.7783 + }, + { + "start": 4899.32, + "end": 4901.68, + "probability": 0.9943 + }, + { + "start": 4901.68, + "end": 4905.56, + "probability": 0.9944 + }, + { + "start": 4905.98, + "end": 4908.96, + "probability": 0.9985 + }, + { + "start": 4908.96, + "end": 4914.1, + "probability": 0.9948 + }, + { + "start": 4914.26, + "end": 4915.28, + "probability": 0.726 + }, + { + "start": 4916.18, + "end": 4920.56, + "probability": 0.9851 + }, + { + "start": 4920.92, + "end": 4923.9, + "probability": 0.9877 + }, + { + "start": 4924.88, + "end": 4928.38, + "probability": 0.9972 + }, + { + "start": 4929.12, + "end": 4933.18, + "probability": 0.981 + }, + { + "start": 4933.88, + "end": 4939.66, + "probability": 0.9435 + }, + { + "start": 4939.84, + "end": 4940.0, + "probability": 0.5319 + }, + { + "start": 4940.08, + "end": 4945.16, + "probability": 0.96 + }, + { + "start": 4945.16, + "end": 4948.32, + "probability": 0.917 + }, + { + "start": 4948.76, + "end": 4951.68, + "probability": 0.9825 + }, + { + "start": 4952.24, + "end": 4955.82, + "probability": 0.9784 + }, + { + "start": 4956.14, + "end": 4957.84, + "probability": 0.9101 + }, + { + "start": 4958.1, + "end": 4958.78, + "probability": 0.7046 + }, + { + "start": 4958.98, + "end": 4959.98, + "probability": 0.7113 + }, + { + "start": 4960.5, + "end": 4963.18, + "probability": 0.9537 + }, + { + "start": 4963.38, + "end": 4967.22, + "probability": 0.9966 + }, + { + "start": 4967.64, + "end": 4971.0, + "probability": 0.7596 + }, + { + "start": 4971.88, + "end": 4974.36, + "probability": 0.9745 + }, + { + "start": 4974.82, + "end": 4974.86, + "probability": 0.1162 + }, + { + "start": 4974.86, + "end": 4974.86, + "probability": 0.4009 + }, + { + "start": 4974.86, + "end": 4977.34, + "probability": 0.9337 + }, + { + "start": 4977.52, + "end": 4977.86, + "probability": 0.9142 + }, + { + "start": 4978.52, + "end": 4978.78, + "probability": 0.3494 + }, + { + "start": 4978.78, + "end": 4979.8, + "probability": 0.7444 + }, + { + "start": 4992.6, + "end": 4992.8, + "probability": 0.9785 + }, + { + "start": 4993.64, + "end": 4995.08, + "probability": 0.2431 + }, + { + "start": 4996.8, + "end": 4999.65, + "probability": 0.1177 + }, + { + "start": 5002.58, + "end": 5004.52, + "probability": 0.0712 + }, + { + "start": 5007.2, + "end": 5011.76, + "probability": 0.1014 + }, + { + "start": 5015.22, + "end": 5015.64, + "probability": 0.1907 + }, + { + "start": 5017.93, + "end": 5021.64, + "probability": 0.0468 + }, + { + "start": 5022.24, + "end": 5022.38, + "probability": 0.1654 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.0, + "probability": 0.0 + }, + { + "start": 5093.0, + "end": 5093.35, + "probability": 0.0105 + }, + { + "start": 5094.12, + "end": 5095.04, + "probability": 0.0339 + }, + { + "start": 5095.04, + "end": 5097.76, + "probability": 0.0495 + }, + { + "start": 5098.06, + "end": 5101.26, + "probability": 0.0745 + }, + { + "start": 5102.51, + "end": 5105.53, + "probability": 0.0758 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.0, + "end": 5221.0, + "probability": 0.0 + }, + { + "start": 5221.2, + "end": 5221.46, + "probability": 0.1116 + }, + { + "start": 5221.46, + "end": 5221.48, + "probability": 0.0547 + }, + { + "start": 5222.2, + "end": 5225.56, + "probability": 0.9264 + }, + { + "start": 5225.58, + "end": 5228.08, + "probability": 0.9359 + }, + { + "start": 5228.08, + "end": 5229.98, + "probability": 0.9971 + }, + { + "start": 5230.54, + "end": 5231.96, + "probability": 0.8309 + }, + { + "start": 5232.48, + "end": 5233.82, + "probability": 0.9912 + }, + { + "start": 5233.92, + "end": 5234.7, + "probability": 0.8756 + }, + { + "start": 5234.76, + "end": 5236.7, + "probability": 0.9651 + }, + { + "start": 5237.2, + "end": 5241.06, + "probability": 0.998 + }, + { + "start": 5241.06, + "end": 5245.22, + "probability": 0.9598 + }, + { + "start": 5245.82, + "end": 5249.86, + "probability": 0.9949 + }, + { + "start": 5250.24, + "end": 5254.46, + "probability": 0.9951 + }, + { + "start": 5254.48, + "end": 5255.32, + "probability": 0.818 + }, + { + "start": 5255.42, + "end": 5256.1, + "probability": 0.7841 + }, + { + "start": 5256.5, + "end": 5257.94, + "probability": 0.9495 + }, + { + "start": 5258.28, + "end": 5260.16, + "probability": 0.9714 + }, + { + "start": 5260.74, + "end": 5262.28, + "probability": 0.8701 + }, + { + "start": 5262.44, + "end": 5265.64, + "probability": 0.9987 + }, + { + "start": 5265.64, + "end": 5269.48, + "probability": 0.9988 + }, + { + "start": 5270.06, + "end": 5270.24, + "probability": 0.4692 + }, + { + "start": 5270.58, + "end": 5271.5, + "probability": 0.8693 + }, + { + "start": 5271.92, + "end": 5273.52, + "probability": 0.8435 + }, + { + "start": 5273.84, + "end": 5275.08, + "probability": 0.9854 + }, + { + "start": 5275.44, + "end": 5276.7, + "probability": 0.9878 + }, + { + "start": 5277.0, + "end": 5278.14, + "probability": 0.9942 + }, + { + "start": 5278.58, + "end": 5283.32, + "probability": 0.9528 + }, + { + "start": 5283.68, + "end": 5284.44, + "probability": 0.9559 + }, + { + "start": 5284.6, + "end": 5286.28, + "probability": 0.9958 + }, + { + "start": 5286.58, + "end": 5290.18, + "probability": 0.947 + }, + { + "start": 5290.52, + "end": 5292.78, + "probability": 0.9975 + }, + { + "start": 5293.12, + "end": 5296.06, + "probability": 0.9974 + }, + { + "start": 5296.52, + "end": 5298.1, + "probability": 0.2836 + }, + { + "start": 5298.5, + "end": 5298.5, + "probability": 0.1617 + }, + { + "start": 5298.5, + "end": 5301.38, + "probability": 0.9245 + }, + { + "start": 5301.48, + "end": 5302.54, + "probability": 0.8895 + }, + { + "start": 5302.98, + "end": 5303.82, + "probability": 0.7693 + }, + { + "start": 5304.34, + "end": 5306.13, + "probability": 0.6615 + }, + { + "start": 5306.74, + "end": 5308.32, + "probability": 0.9377 + }, + { + "start": 5308.46, + "end": 5309.1, + "probability": 0.8313 + }, + { + "start": 5309.4, + "end": 5312.8, + "probability": 0.9968 + }, + { + "start": 5312.96, + "end": 5318.74, + "probability": 0.9987 + }, + { + "start": 5319.38, + "end": 5319.38, + "probability": 0.0528 + }, + { + "start": 5319.38, + "end": 5319.38, + "probability": 0.0513 + }, + { + "start": 5319.38, + "end": 5321.48, + "probability": 0.9917 + }, + { + "start": 5321.94, + "end": 5325.1, + "probability": 0.9976 + }, + { + "start": 5325.62, + "end": 5329.1, + "probability": 0.9993 + }, + { + "start": 5329.87, + "end": 5335.12, + "probability": 0.9976 + }, + { + "start": 5335.42, + "end": 5340.54, + "probability": 0.9983 + }, + { + "start": 5340.84, + "end": 5343.18, + "probability": 0.9972 + }, + { + "start": 5343.6, + "end": 5347.08, + "probability": 0.9937 + }, + { + "start": 5347.5, + "end": 5350.14, + "probability": 0.983 + }, + { + "start": 5350.58, + "end": 5354.74, + "probability": 0.9832 + }, + { + "start": 5354.82, + "end": 5357.6, + "probability": 0.0667 + }, + { + "start": 5357.6, + "end": 5361.3, + "probability": 0.9912 + }, + { + "start": 5361.68, + "end": 5362.17, + "probability": 0.8062 + }, + { + "start": 5362.48, + "end": 5363.48, + "probability": 0.962 + }, + { + "start": 5363.76, + "end": 5364.5, + "probability": 0.7243 + }, + { + "start": 5364.86, + "end": 5365.8, + "probability": 0.9363 + }, + { + "start": 5366.12, + "end": 5370.32, + "probability": 0.9947 + }, + { + "start": 5370.9, + "end": 5371.44, + "probability": 0.5593 + }, + { + "start": 5371.8, + "end": 5372.84, + "probability": 0.8952 + }, + { + "start": 5373.22, + "end": 5375.18, + "probability": 0.9609 + }, + { + "start": 5375.48, + "end": 5378.4, + "probability": 0.9905 + }, + { + "start": 5381.44, + "end": 5383.7, + "probability": 0.9053 + }, + { + "start": 5383.78, + "end": 5384.76, + "probability": 0.2926 + }, + { + "start": 5384.86, + "end": 5386.46, + "probability": 0.791 + }, + { + "start": 5386.54, + "end": 5387.68, + "probability": 0.9347 + }, + { + "start": 5396.32, + "end": 5397.32, + "probability": 0.666 + }, + { + "start": 5398.12, + "end": 5399.06, + "probability": 0.9221 + }, + { + "start": 5399.7, + "end": 5400.68, + "probability": 0.8299 + }, + { + "start": 5401.34, + "end": 5403.26, + "probability": 0.9829 + }, + { + "start": 5404.38, + "end": 5404.38, + "probability": 0.0569 + }, + { + "start": 5404.38, + "end": 5406.52, + "probability": 0.9922 + }, + { + "start": 5407.04, + "end": 5409.12, + "probability": 0.9724 + }, + { + "start": 5410.02, + "end": 5413.66, + "probability": 0.8364 + }, + { + "start": 5414.2, + "end": 5414.22, + "probability": 0.0163 + }, + { + "start": 5414.22, + "end": 5415.26, + "probability": 0.9166 + }, + { + "start": 5415.94, + "end": 5420.1, + "probability": 0.9581 + }, + { + "start": 5420.98, + "end": 5422.52, + "probability": 0.9244 + }, + { + "start": 5423.16, + "end": 5426.56, + "probability": 0.6867 + }, + { + "start": 5427.38, + "end": 5429.5, + "probability": 0.9861 + }, + { + "start": 5430.2, + "end": 5431.84, + "probability": 0.7506 + }, + { + "start": 5432.44, + "end": 5433.8, + "probability": 0.9705 + }, + { + "start": 5433.86, + "end": 5435.1, + "probability": 0.9951 + }, + { + "start": 5435.12, + "end": 5435.83, + "probability": 0.8411 + }, + { + "start": 5436.66, + "end": 5437.94, + "probability": 0.9886 + }, + { + "start": 5438.72, + "end": 5440.9, + "probability": 0.9885 + }, + { + "start": 5441.54, + "end": 5444.94, + "probability": 0.9971 + }, + { + "start": 5444.94, + "end": 5450.28, + "probability": 0.9062 + }, + { + "start": 5452.16, + "end": 5455.6, + "probability": 0.9893 + }, + { + "start": 5455.62, + "end": 5458.84, + "probability": 0.9892 + }, + { + "start": 5459.82, + "end": 5460.36, + "probability": 0.6931 + }, + { + "start": 5461.5, + "end": 5462.82, + "probability": 0.3114 + }, + { + "start": 5462.82, + "end": 5465.8, + "probability": 0.8798 + }, + { + "start": 5466.14, + "end": 5468.4, + "probability": 0.9011 + }, + { + "start": 5469.24, + "end": 5469.82, + "probability": 0.5004 + }, + { + "start": 5471.71, + "end": 5475.6, + "probability": 0.9312 + }, + { + "start": 5475.6, + "end": 5479.46, + "probability": 0.9623 + }, + { + "start": 5480.18, + "end": 5484.3, + "probability": 0.9908 + }, + { + "start": 5484.92, + "end": 5485.74, + "probability": 0.9895 + }, + { + "start": 5486.44, + "end": 5489.66, + "probability": 0.9946 + }, + { + "start": 5490.4, + "end": 5492.02, + "probability": 0.9937 + }, + { + "start": 5492.46, + "end": 5493.76, + "probability": 0.8479 + }, + { + "start": 5494.1, + "end": 5496.26, + "probability": 0.9365 + }, + { + "start": 5497.2, + "end": 5500.08, + "probability": 0.7868 + }, + { + "start": 5500.52, + "end": 5504.4, + "probability": 0.9905 + }, + { + "start": 5505.04, + "end": 5510.3, + "probability": 0.8967 + }, + { + "start": 5510.9, + "end": 5513.12, + "probability": 0.9016 + }, + { + "start": 5513.9, + "end": 5514.82, + "probability": 0.9426 + }, + { + "start": 5514.94, + "end": 5516.56, + "probability": 0.9104 + }, + { + "start": 5517.4, + "end": 5519.72, + "probability": 0.9907 + }, + { + "start": 5520.08, + "end": 5520.56, + "probability": 0.9115 + }, + { + "start": 5522.62, + "end": 5523.93, + "probability": 0.1795 + }, + { + "start": 5524.18, + "end": 5524.92, + "probability": 0.133 + }, + { + "start": 5525.28, + "end": 5527.28, + "probability": 0.119 + }, + { + "start": 5527.8, + "end": 5530.0, + "probability": 0.8918 + }, + { + "start": 5530.18, + "end": 5531.0, + "probability": 0.3448 + }, + { + "start": 5531.14, + "end": 5531.6, + "probability": 0.7957 + }, + { + "start": 5531.8, + "end": 5532.51, + "probability": 0.9473 + }, + { + "start": 5533.22, + "end": 5533.64, + "probability": 0.5365 + }, + { + "start": 5534.58, + "end": 5536.22, + "probability": 0.9946 + }, + { + "start": 5536.72, + "end": 5537.9, + "probability": 0.5812 + }, + { + "start": 5538.04, + "end": 5540.04, + "probability": 0.8277 + }, + { + "start": 5540.62, + "end": 5542.16, + "probability": 0.8109 + }, + { + "start": 5542.54, + "end": 5543.76, + "probability": 0.9988 + }, + { + "start": 5544.1, + "end": 5546.48, + "probability": 0.9651 + }, + { + "start": 5547.18, + "end": 5548.44, + "probability": 0.9741 + }, + { + "start": 5548.78, + "end": 5549.64, + "probability": 0.6201 + }, + { + "start": 5550.12, + "end": 5552.44, + "probability": 0.979 + }, + { + "start": 5553.2, + "end": 5555.94, + "probability": 0.1983 + }, + { + "start": 5556.52, + "end": 5556.78, + "probability": 0.0242 + }, + { + "start": 5556.78, + "end": 5557.76, + "probability": 0.5929 + }, + { + "start": 5558.22, + "end": 5559.3, + "probability": 0.5104 + }, + { + "start": 5559.7, + "end": 5559.92, + "probability": 0.0656 + }, + { + "start": 5560.04, + "end": 5561.38, + "probability": 0.0899 + }, + { + "start": 5564.75, + "end": 5566.74, + "probability": 0.3488 + }, + { + "start": 5566.84, + "end": 5568.96, + "probability": 0.057 + }, + { + "start": 5568.96, + "end": 5570.62, + "probability": 0.0252 + }, + { + "start": 5570.62, + "end": 5572.16, + "probability": 0.4976 + }, + { + "start": 5572.6, + "end": 5572.66, + "probability": 0.0233 + }, + { + "start": 5572.66, + "end": 5572.66, + "probability": 0.3654 + }, + { + "start": 5572.66, + "end": 5572.66, + "probability": 0.0632 + }, + { + "start": 5572.66, + "end": 5573.38, + "probability": 0.8254 + }, + { + "start": 5574.12, + "end": 5574.68, + "probability": 0.608 + }, + { + "start": 5574.68, + "end": 5575.92, + "probability": 0.7197 + }, + { + "start": 5576.3, + "end": 5579.24, + "probability": 0.7867 + }, + { + "start": 5579.3, + "end": 5580.08, + "probability": 0.9743 + }, + { + "start": 5580.08, + "end": 5580.89, + "probability": 0.5525 + }, + { + "start": 5582.36, + "end": 5584.14, + "probability": 0.455 + }, + { + "start": 5584.16, + "end": 5586.38, + "probability": 0.6542 + }, + { + "start": 5586.58, + "end": 5587.32, + "probability": 0.9224 + }, + { + "start": 5587.8, + "end": 5589.52, + "probability": 0.3266 + }, + { + "start": 5590.24, + "end": 5591.82, + "probability": 0.3014 + }, + { + "start": 5592.04, + "end": 5593.34, + "probability": 0.4839 + }, + { + "start": 5593.56, + "end": 5593.58, + "probability": 0.4317 + }, + { + "start": 5593.58, + "end": 5594.44, + "probability": 0.6357 + }, + { + "start": 5595.58, + "end": 5597.12, + "probability": 0.5503 + }, + { + "start": 5597.12, + "end": 5597.3, + "probability": 0.9719 + }, + { + "start": 5598.82, + "end": 5601.0, + "probability": 0.9701 + }, + { + "start": 5602.8, + "end": 5604.22, + "probability": 0.2061 + }, + { + "start": 5604.52, + "end": 5605.71, + "probability": 0.3695 + }, + { + "start": 5606.18, + "end": 5608.6, + "probability": 0.2589 + }, + { + "start": 5609.12, + "end": 5609.66, + "probability": 0.3553 + }, + { + "start": 5609.68, + "end": 5610.2, + "probability": 0.4935 + }, + { + "start": 5610.3, + "end": 5610.56, + "probability": 0.592 + }, + { + "start": 5613.24, + "end": 5613.68, + "probability": 0.2379 + }, + { + "start": 5614.1, + "end": 5614.1, + "probability": 0.0441 + }, + { + "start": 5614.1, + "end": 5614.1, + "probability": 0.039 + }, + { + "start": 5614.1, + "end": 5614.1, + "probability": 0.1035 + }, + { + "start": 5614.1, + "end": 5615.1, + "probability": 0.332 + }, + { + "start": 5615.18, + "end": 5615.56, + "probability": 0.0581 + }, + { + "start": 5615.66, + "end": 5616.96, + "probability": 0.0729 + }, + { + "start": 5616.98, + "end": 5617.58, + "probability": 0.262 + }, + { + "start": 5618.04, + "end": 5618.6, + "probability": 0.1856 + }, + { + "start": 5620.22, + "end": 5621.7, + "probability": 0.1842 + }, + { + "start": 5632.76, + "end": 5633.68, + "probability": 0.0304 + }, + { + "start": 5640.74, + "end": 5641.5, + "probability": 0.1629 + }, + { + "start": 5643.12, + "end": 5644.02, + "probability": 0.1686 + }, + { + "start": 5645.22, + "end": 5645.92, + "probability": 0.0107 + }, + { + "start": 5657.72, + "end": 5658.18, + "probability": 0.0251 + }, + { + "start": 5658.18, + "end": 5658.48, + "probability": 0.0086 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.0, + "end": 5672.0, + "probability": 0.0 + }, + { + "start": 5672.84, + "end": 5674.02, + "probability": 0.4612 + }, + { + "start": 5674.62, + "end": 5675.78, + "probability": 0.9849 + }, + { + "start": 5677.18, + "end": 5682.86, + "probability": 0.945 + }, + { + "start": 5683.38, + "end": 5685.14, + "probability": 0.6603 + }, + { + "start": 5686.12, + "end": 5687.38, + "probability": 0.9893 + }, + { + "start": 5688.12, + "end": 5688.96, + "probability": 0.972 + }, + { + "start": 5689.58, + "end": 5692.0, + "probability": 0.9066 + }, + { + "start": 5692.52, + "end": 5694.7, + "probability": 0.9893 + }, + { + "start": 5695.28, + "end": 5697.76, + "probability": 0.9937 + }, + { + "start": 5698.76, + "end": 5701.06, + "probability": 0.9948 + }, + { + "start": 5701.62, + "end": 5705.8, + "probability": 0.9863 + }, + { + "start": 5707.16, + "end": 5707.86, + "probability": 0.7181 + }, + { + "start": 5708.62, + "end": 5714.92, + "probability": 0.9843 + }, + { + "start": 5715.98, + "end": 5720.24, + "probability": 0.9449 + }, + { + "start": 5721.02, + "end": 5722.68, + "probability": 0.8577 + }, + { + "start": 5723.64, + "end": 5725.1, + "probability": 0.9932 + }, + { + "start": 5726.14, + "end": 5727.78, + "probability": 0.7654 + }, + { + "start": 5728.76, + "end": 5729.2, + "probability": 0.6256 + }, + { + "start": 5730.48, + "end": 5733.94, + "probability": 0.8643 + }, + { + "start": 5734.04, + "end": 5735.12, + "probability": 0.6819 + }, + { + "start": 5736.18, + "end": 5739.04, + "probability": 0.7651 + }, + { + "start": 5740.48, + "end": 5745.7, + "probability": 0.906 + }, + { + "start": 5745.7, + "end": 5750.76, + "probability": 0.9838 + }, + { + "start": 5751.68, + "end": 5753.04, + "probability": 0.8579 + }, + { + "start": 5753.68, + "end": 5754.28, + "probability": 0.7754 + }, + { + "start": 5755.86, + "end": 5757.18, + "probability": 0.7161 + }, + { + "start": 5758.02, + "end": 5759.92, + "probability": 0.9791 + }, + { + "start": 5760.62, + "end": 5766.64, + "probability": 0.9514 + }, + { + "start": 5768.14, + "end": 5770.56, + "probability": 0.7562 + }, + { + "start": 5771.18, + "end": 5775.98, + "probability": 0.8914 + }, + { + "start": 5776.34, + "end": 5777.48, + "probability": 0.8705 + }, + { + "start": 5777.84, + "end": 5780.62, + "probability": 0.9827 + }, + { + "start": 5781.08, + "end": 5784.92, + "probability": 0.8989 + }, + { + "start": 5785.7, + "end": 5787.5, + "probability": 0.9973 + }, + { + "start": 5788.02, + "end": 5791.8, + "probability": 0.9901 + }, + { + "start": 5792.68, + "end": 5793.18, + "probability": 0.6949 + }, + { + "start": 5793.74, + "end": 5795.88, + "probability": 0.1206 + }, + { + "start": 5795.98, + "end": 5798.06, + "probability": 0.8832 + }, + { + "start": 5798.6, + "end": 5800.68, + "probability": 0.8458 + }, + { + "start": 5801.04, + "end": 5802.18, + "probability": 0.7204 + }, + { + "start": 5802.48, + "end": 5803.89, + "probability": 0.6622 + }, + { + "start": 5804.22, + "end": 5807.8, + "probability": 0.6814 + }, + { + "start": 5808.52, + "end": 5808.68, + "probability": 0.2196 + }, + { + "start": 5809.04, + "end": 5810.22, + "probability": 0.3614 + }, + { + "start": 5810.7, + "end": 5814.18, + "probability": 0.9211 + }, + { + "start": 5814.4, + "end": 5816.68, + "probability": 0.812 + }, + { + "start": 5817.14, + "end": 5818.12, + "probability": 0.885 + }, + { + "start": 5818.24, + "end": 5818.46, + "probability": 0.8918 + }, + { + "start": 5819.66, + "end": 5820.5, + "probability": 0.8834 + }, + { + "start": 5821.46, + "end": 5823.0, + "probability": 0.6562 + }, + { + "start": 5823.08, + "end": 5824.36, + "probability": 0.5898 + }, + { + "start": 5824.7, + "end": 5825.74, + "probability": 0.949 + }, + { + "start": 5826.56, + "end": 5826.94, + "probability": 0.8289 + }, + { + "start": 5828.64, + "end": 5830.14, + "probability": 0.5303 + }, + { + "start": 5830.26, + "end": 5831.56, + "probability": 0.8023 + }, + { + "start": 5832.14, + "end": 5832.42, + "probability": 0.9478 + }, + { + "start": 5848.32, + "end": 5849.36, + "probability": 0.5675 + }, + { + "start": 5851.32, + "end": 5855.98, + "probability": 0.8809 + }, + { + "start": 5857.06, + "end": 5860.16, + "probability": 0.9985 + }, + { + "start": 5862.04, + "end": 5863.22, + "probability": 0.7378 + }, + { + "start": 5864.3, + "end": 5865.88, + "probability": 0.9665 + }, + { + "start": 5866.6, + "end": 5868.52, + "probability": 0.9249 + }, + { + "start": 5869.24, + "end": 5871.86, + "probability": 0.992 + }, + { + "start": 5872.46, + "end": 5876.04, + "probability": 0.9973 + }, + { + "start": 5876.74, + "end": 5878.28, + "probability": 0.8449 + }, + { + "start": 5879.84, + "end": 5886.24, + "probability": 0.9982 + }, + { + "start": 5888.6, + "end": 5890.84, + "probability": 0.9835 + }, + { + "start": 5892.94, + "end": 5899.28, + "probability": 0.9688 + }, + { + "start": 5900.28, + "end": 5901.98, + "probability": 0.9877 + }, + { + "start": 5902.68, + "end": 5904.08, + "probability": 0.8132 + }, + { + "start": 5905.06, + "end": 5908.7, + "probability": 0.8265 + }, + { + "start": 5910.44, + "end": 5911.98, + "probability": 0.937 + }, + { + "start": 5913.34, + "end": 5914.24, + "probability": 0.9334 + }, + { + "start": 5914.78, + "end": 5916.46, + "probability": 0.9729 + }, + { + "start": 5917.34, + "end": 5921.62, + "probability": 0.9844 + }, + { + "start": 5923.14, + "end": 5933.52, + "probability": 0.9877 + }, + { + "start": 5934.38, + "end": 5936.14, + "probability": 0.8369 + }, + { + "start": 5937.62, + "end": 5938.9, + "probability": 0.7198 + }, + { + "start": 5939.9, + "end": 5940.66, + "probability": 0.9893 + }, + { + "start": 5941.42, + "end": 5946.34, + "probability": 0.9578 + }, + { + "start": 5947.3, + "end": 5947.88, + "probability": 0.9634 + }, + { + "start": 5949.04, + "end": 5950.8, + "probability": 0.7238 + }, + { + "start": 5951.8, + "end": 5952.49, + "probability": 0.9601 + }, + { + "start": 5953.64, + "end": 5954.84, + "probability": 0.9826 + }, + { + "start": 5955.58, + "end": 5956.67, + "probability": 0.98 + }, + { + "start": 5958.1, + "end": 5960.24, + "probability": 0.9901 + }, + { + "start": 5962.4, + "end": 5964.08, + "probability": 0.9348 + }, + { + "start": 5965.0, + "end": 5968.28, + "probability": 0.9927 + }, + { + "start": 5969.08, + "end": 5971.48, + "probability": 0.9966 + }, + { + "start": 5973.04, + "end": 5978.02, + "probability": 0.9453 + }, + { + "start": 5978.7, + "end": 5980.94, + "probability": 0.9124 + }, + { + "start": 5981.6, + "end": 5984.7, + "probability": 0.8871 + }, + { + "start": 5985.52, + "end": 5988.04, + "probability": 0.7324 + }, + { + "start": 5988.86, + "end": 5989.74, + "probability": 0.7697 + }, + { + "start": 5991.26, + "end": 5993.66, + "probability": 0.9735 + }, + { + "start": 5994.78, + "end": 5996.54, + "probability": 0.872 + }, + { + "start": 5998.5, + "end": 6001.5, + "probability": 0.9957 + }, + { + "start": 6003.42, + "end": 6004.36, + "probability": 0.6919 + }, + { + "start": 6005.34, + "end": 6006.6, + "probability": 0.8066 + }, + { + "start": 6006.62, + "end": 6007.34, + "probability": 0.5381 + }, + { + "start": 6007.54, + "end": 6008.46, + "probability": 0.8715 + }, + { + "start": 6008.48, + "end": 6008.9, + "probability": 0.3943 + }, + { + "start": 6009.9, + "end": 6011.38, + "probability": 0.9771 + }, + { + "start": 6013.0, + "end": 6014.42, + "probability": 0.5723 + }, + { + "start": 6014.5, + "end": 6015.6, + "probability": 0.5954 + }, + { + "start": 6018.4, + "end": 6021.32, + "probability": 0.6369 + }, + { + "start": 6023.8, + "end": 6025.88, + "probability": 0.198 + }, + { + "start": 6026.5, + "end": 6027.9, + "probability": 0.2166 + }, + { + "start": 6028.54, + "end": 6028.7, + "probability": 0.4998 + }, + { + "start": 6032.42, + "end": 6034.8, + "probability": 0.5161 + }, + { + "start": 6038.78, + "end": 6040.74, + "probability": 0.7862 + }, + { + "start": 6053.5, + "end": 6056.68, + "probability": 0.8098 + }, + { + "start": 6056.8, + "end": 6059.28, + "probability": 0.7162 + }, + { + "start": 6059.57, + "end": 6062.08, + "probability": 0.7443 + }, + { + "start": 6062.9, + "end": 6065.44, + "probability": 0.9988 + }, + { + "start": 6065.58, + "end": 6066.92, + "probability": 0.9751 + }, + { + "start": 6067.76, + "end": 6069.72, + "probability": 0.9855 + }, + { + "start": 6072.86, + "end": 6073.68, + "probability": 0.2649 + }, + { + "start": 6074.24, + "end": 6074.62, + "probability": 0.046 + }, + { + "start": 6074.62, + "end": 6076.68, + "probability": 0.7585 + }, + { + "start": 6077.34, + "end": 6079.34, + "probability": 0.9668 + }, + { + "start": 6080.5, + "end": 6083.46, + "probability": 0.7856 + }, + { + "start": 6084.84, + "end": 6088.02, + "probability": 0.9969 + }, + { + "start": 6088.6, + "end": 6091.76, + "probability": 0.9461 + }, + { + "start": 6092.4, + "end": 6094.9, + "probability": 0.9961 + }, + { + "start": 6096.16, + "end": 6098.92, + "probability": 0.9946 + }, + { + "start": 6098.96, + "end": 6099.54, + "probability": 0.855 + }, + { + "start": 6100.76, + "end": 6103.86, + "probability": 0.9634 + }, + { + "start": 6103.96, + "end": 6105.24, + "probability": 0.5148 + }, + { + "start": 6105.86, + "end": 6106.62, + "probability": 0.6877 + }, + { + "start": 6106.8, + "end": 6108.28, + "probability": 0.9863 + }, + { + "start": 6108.34, + "end": 6109.8, + "probability": 0.9641 + }, + { + "start": 6110.42, + "end": 6112.4, + "probability": 0.9146 + }, + { + "start": 6112.68, + "end": 6113.82, + "probability": 0.9772 + }, + { + "start": 6115.18, + "end": 6116.86, + "probability": 0.7127 + }, + { + "start": 6117.38, + "end": 6119.92, + "probability": 0.8395 + }, + { + "start": 6120.76, + "end": 6123.44, + "probability": 0.9349 + }, + { + "start": 6124.18, + "end": 6127.06, + "probability": 0.9007 + }, + { + "start": 6127.12, + "end": 6128.8, + "probability": 0.9833 + }, + { + "start": 6129.16, + "end": 6133.48, + "probability": 0.9043 + }, + { + "start": 6133.66, + "end": 6134.12, + "probability": 0.5159 + }, + { + "start": 6134.16, + "end": 6137.28, + "probability": 0.873 + }, + { + "start": 6137.28, + "end": 6141.88, + "probability": 0.9238 + }, + { + "start": 6143.78, + "end": 6146.06, + "probability": 0.8634 + }, + { + "start": 6146.44, + "end": 6149.06, + "probability": 0.6168 + }, + { + "start": 6149.3, + "end": 6149.42, + "probability": 0.2423 + }, + { + "start": 6150.24, + "end": 6155.6, + "probability": 0.9951 + }, + { + "start": 6156.16, + "end": 6160.72, + "probability": 0.9934 + }, + { + "start": 6161.2, + "end": 6163.6, + "probability": 0.9675 + }, + { + "start": 6164.4, + "end": 6165.38, + "probability": 0.6398 + }, + { + "start": 6165.48, + "end": 6167.28, + "probability": 0.9717 + }, + { + "start": 6167.28, + "end": 6170.64, + "probability": 0.9993 + }, + { + "start": 6171.06, + "end": 6173.22, + "probability": 0.856 + }, + { + "start": 6173.28, + "end": 6177.1, + "probability": 0.9676 + }, + { + "start": 6177.14, + "end": 6178.5, + "probability": 0.9932 + }, + { + "start": 6178.62, + "end": 6179.32, + "probability": 0.7468 + }, + { + "start": 6179.38, + "end": 6182.28, + "probability": 0.9187 + }, + { + "start": 6182.92, + "end": 6185.67, + "probability": 0.9894 + }, + { + "start": 6186.24, + "end": 6187.96, + "probability": 0.9967 + }, + { + "start": 6188.62, + "end": 6189.96, + "probability": 0.9545 + }, + { + "start": 6191.69, + "end": 6195.06, + "probability": 0.8621 + }, + { + "start": 6196.16, + "end": 6199.66, + "probability": 0.7778 + }, + { + "start": 6199.66, + "end": 6202.08, + "probability": 0.9927 + }, + { + "start": 6202.16, + "end": 6204.52, + "probability": 0.973 + }, + { + "start": 6204.7, + "end": 6205.34, + "probability": 0.5918 + }, + { + "start": 6205.4, + "end": 6207.22, + "probability": 0.9889 + }, + { + "start": 6207.92, + "end": 6210.08, + "probability": 0.9941 + }, + { + "start": 6210.14, + "end": 6211.16, + "probability": 0.9963 + }, + { + "start": 6211.24, + "end": 6213.91, + "probability": 0.9932 + }, + { + "start": 6214.06, + "end": 6214.56, + "probability": 0.9746 + }, + { + "start": 6214.7, + "end": 6218.84, + "probability": 0.9917 + }, + { + "start": 6219.12, + "end": 6220.58, + "probability": 0.9668 + }, + { + "start": 6221.3, + "end": 6224.9, + "probability": 0.9951 + }, + { + "start": 6225.0, + "end": 6228.26, + "probability": 0.9917 + }, + { + "start": 6228.36, + "end": 6229.52, + "probability": 0.9932 + }, + { + "start": 6230.02, + "end": 6230.96, + "probability": 0.8751 + }, + { + "start": 6231.52, + "end": 6231.52, + "probability": 0.1009 + }, + { + "start": 6231.52, + "end": 6233.53, + "probability": 0.8772 + }, + { + "start": 6235.58, + "end": 6237.78, + "probability": 0.9805 + }, + { + "start": 6238.46, + "end": 6239.05, + "probability": 0.8621 + }, + { + "start": 6239.18, + "end": 6241.14, + "probability": 0.9642 + }, + { + "start": 6241.38, + "end": 6245.45, + "probability": 0.96 + }, + { + "start": 6246.6, + "end": 6248.82, + "probability": 0.2623 + }, + { + "start": 6248.82, + "end": 6249.26, + "probability": 0.3971 + }, + { + "start": 6249.26, + "end": 6249.26, + "probability": 0.0494 + }, + { + "start": 6249.26, + "end": 6249.78, + "probability": 0.2837 + }, + { + "start": 6249.88, + "end": 6250.7, + "probability": 0.9181 + }, + { + "start": 6251.14, + "end": 6254.08, + "probability": 0.9258 + }, + { + "start": 6254.2, + "end": 6255.96, + "probability": 0.9952 + }, + { + "start": 6255.96, + "end": 6258.26, + "probability": 0.9951 + }, + { + "start": 6258.72, + "end": 6259.98, + "probability": 0.4681 + }, + { + "start": 6260.1, + "end": 6262.66, + "probability": 0.9882 + }, + { + "start": 6262.84, + "end": 6263.72, + "probability": 0.9783 + }, + { + "start": 6263.86, + "end": 6265.14, + "probability": 0.9818 + }, + { + "start": 6265.22, + "end": 6266.52, + "probability": 0.9431 + }, + { + "start": 6267.23, + "end": 6269.34, + "probability": 0.8231 + }, + { + "start": 6269.46, + "end": 6270.22, + "probability": 0.7673 + }, + { + "start": 6270.6, + "end": 6272.24, + "probability": 0.6287 + }, + { + "start": 6272.46, + "end": 6272.48, + "probability": 0.5691 + }, + { + "start": 6272.58, + "end": 6273.92, + "probability": 0.7644 + }, + { + "start": 6274.26, + "end": 6275.68, + "probability": 0.9866 + }, + { + "start": 6275.96, + "end": 6277.38, + "probability": 0.9866 + }, + { + "start": 6277.8, + "end": 6278.44, + "probability": 0.9414 + }, + { + "start": 6279.22, + "end": 6280.98, + "probability": 0.9446 + }, + { + "start": 6281.54, + "end": 6284.6, + "probability": 0.9912 + }, + { + "start": 6284.8, + "end": 6285.06, + "probability": 0.8132 + }, + { + "start": 6285.26, + "end": 6285.86, + "probability": 0.7687 + }, + { + "start": 6286.2, + "end": 6288.3, + "probability": 0.7676 + }, + { + "start": 6288.88, + "end": 6291.48, + "probability": 0.8215 + }, + { + "start": 6291.62, + "end": 6292.76, + "probability": 0.531 + }, + { + "start": 6292.76, + "end": 6293.06, + "probability": 0.8328 + }, + { + "start": 6297.58, + "end": 6298.96, + "probability": 0.7963 + }, + { + "start": 6300.2, + "end": 6302.42, + "probability": 0.8226 + }, + { + "start": 6305.5, + "end": 6307.04, + "probability": 0.9352 + }, + { + "start": 6307.66, + "end": 6308.74, + "probability": 0.9795 + }, + { + "start": 6309.68, + "end": 6315.16, + "probability": 0.9178 + }, + { + "start": 6317.42, + "end": 6318.26, + "probability": 0.9956 + }, + { + "start": 6318.78, + "end": 6320.14, + "probability": 0.8411 + }, + { + "start": 6320.72, + "end": 6321.62, + "probability": 0.7502 + }, + { + "start": 6323.5, + "end": 6325.3, + "probability": 0.9937 + }, + { + "start": 6326.48, + "end": 6328.64, + "probability": 0.9986 + }, + { + "start": 6328.64, + "end": 6333.14, + "probability": 0.9526 + }, + { + "start": 6333.2, + "end": 6337.78, + "probability": 0.9906 + }, + { + "start": 6338.66, + "end": 6341.3, + "probability": 0.8793 + }, + { + "start": 6341.5, + "end": 6342.48, + "probability": 0.9985 + }, + { + "start": 6343.88, + "end": 6347.22, + "probability": 0.994 + }, + { + "start": 6347.74, + "end": 6350.54, + "probability": 0.9635 + }, + { + "start": 6350.62, + "end": 6352.36, + "probability": 0.9834 + }, + { + "start": 6353.56, + "end": 6356.8, + "probability": 0.9778 + }, + { + "start": 6356.92, + "end": 6358.94, + "probability": 0.9859 + }, + { + "start": 6359.0, + "end": 6361.52, + "probability": 0.9966 + }, + { + "start": 6362.4, + "end": 6364.42, + "probability": 0.9988 + }, + { + "start": 6365.98, + "end": 6367.68, + "probability": 0.971 + }, + { + "start": 6368.54, + "end": 6370.24, + "probability": 0.7567 + }, + { + "start": 6371.16, + "end": 6372.98, + "probability": 0.9973 + }, + { + "start": 6373.98, + "end": 6376.04, + "probability": 0.985 + }, + { + "start": 6376.74, + "end": 6377.7, + "probability": 0.6966 + }, + { + "start": 6377.74, + "end": 6379.1, + "probability": 0.9895 + }, + { + "start": 6379.46, + "end": 6380.48, + "probability": 0.9626 + }, + { + "start": 6380.92, + "end": 6381.66, + "probability": 0.4915 + }, + { + "start": 6381.98, + "end": 6382.58, + "probability": 0.8748 + }, + { + "start": 6382.96, + "end": 6383.6, + "probability": 0.913 + }, + { + "start": 6383.86, + "end": 6384.46, + "probability": 0.9516 + }, + { + "start": 6386.96, + "end": 6390.48, + "probability": 0.9943 + }, + { + "start": 6390.56, + "end": 6390.74, + "probability": 0.8157 + }, + { + "start": 6390.82, + "end": 6392.22, + "probability": 0.989 + }, + { + "start": 6392.34, + "end": 6393.7, + "probability": 0.9604 + }, + { + "start": 6395.64, + "end": 6397.8, + "probability": 0.9841 + }, + { + "start": 6399.0, + "end": 6402.38, + "probability": 0.9932 + }, + { + "start": 6402.58, + "end": 6406.0, + "probability": 0.93 + }, + { + "start": 6407.32, + "end": 6409.64, + "probability": 0.9263 + }, + { + "start": 6411.48, + "end": 6412.34, + "probability": 0.9992 + }, + { + "start": 6413.1, + "end": 6415.02, + "probability": 0.8955 + }, + { + "start": 6415.08, + "end": 6416.3, + "probability": 0.8303 + }, + { + "start": 6416.72, + "end": 6417.08, + "probability": 0.5883 + }, + { + "start": 6417.92, + "end": 6418.5, + "probability": 0.936 + }, + { + "start": 6419.26, + "end": 6419.98, + "probability": 0.6868 + }, + { + "start": 6421.43, + "end": 6423.32, + "probability": 0.5752 + }, + { + "start": 6423.52, + "end": 6424.4, + "probability": 0.9493 + }, + { + "start": 6424.76, + "end": 6425.98, + "probability": 0.9919 + }, + { + "start": 6426.36, + "end": 6427.28, + "probability": 0.1892 + }, + { + "start": 6427.52, + "end": 6431.98, + "probability": 0.995 + }, + { + "start": 6433.58, + "end": 6436.2, + "probability": 0.8006 + }, + { + "start": 6436.32, + "end": 6438.3, + "probability": 0.9907 + }, + { + "start": 6438.42, + "end": 6440.2, + "probability": 0.9839 + }, + { + "start": 6440.2, + "end": 6442.94, + "probability": 0.9741 + }, + { + "start": 6442.94, + "end": 6445.54, + "probability": 0.9568 + }, + { + "start": 6447.44, + "end": 6448.36, + "probability": 0.9132 + }, + { + "start": 6449.12, + "end": 6450.24, + "probability": 0.9773 + }, + { + "start": 6450.68, + "end": 6451.68, + "probability": 0.9659 + }, + { + "start": 6452.16, + "end": 6453.04, + "probability": 0.6378 + }, + { + "start": 6453.08, + "end": 6453.32, + "probability": 0.7976 + }, + { + "start": 6453.54, + "end": 6455.52, + "probability": 0.8339 + }, + { + "start": 6455.6, + "end": 6456.18, + "probability": 0.5542 + }, + { + "start": 6457.98, + "end": 6458.68, + "probability": 0.9766 + }, + { + "start": 6459.94, + "end": 6460.54, + "probability": 0.7403 + }, + { + "start": 6461.24, + "end": 6463.96, + "probability": 0.9648 + }, + { + "start": 6464.02, + "end": 6464.98, + "probability": 0.9338 + }, + { + "start": 6467.04, + "end": 6468.42, + "probability": 0.9812 + }, + { + "start": 6469.62, + "end": 6472.98, + "probability": 0.9975 + }, + { + "start": 6473.06, + "end": 6474.48, + "probability": 0.751 + }, + { + "start": 6474.52, + "end": 6475.3, + "probability": 0.8616 + }, + { + "start": 6475.44, + "end": 6476.04, + "probability": 0.9348 + }, + { + "start": 6476.06, + "end": 6477.18, + "probability": 0.9506 + }, + { + "start": 6477.32, + "end": 6481.76, + "probability": 0.9912 + }, + { + "start": 6483.37, + "end": 6486.46, + "probability": 0.0448 + }, + { + "start": 6486.46, + "end": 6487.06, + "probability": 0.2433 + }, + { + "start": 6487.28, + "end": 6488.48, + "probability": 0.37 + }, + { + "start": 6489.38, + "end": 6491.16, + "probability": 0.1985 + }, + { + "start": 6491.16, + "end": 6491.68, + "probability": 0.06 + }, + { + "start": 6491.68, + "end": 6491.68, + "probability": 0.1366 + }, + { + "start": 6491.68, + "end": 6492.84, + "probability": 0.3876 + }, + { + "start": 6493.14, + "end": 6493.14, + "probability": 0.3194 + }, + { + "start": 6493.14, + "end": 6494.32, + "probability": 0.6533 + }, + { + "start": 6494.82, + "end": 6497.04, + "probability": 0.68 + }, + { + "start": 6498.86, + "end": 6501.44, + "probability": 0.978 + }, + { + "start": 6502.06, + "end": 6504.96, + "probability": 0.793 + }, + { + "start": 6505.08, + "end": 6505.26, + "probability": 0.7855 + }, + { + "start": 6505.32, + "end": 6507.21, + "probability": 0.9934 + }, + { + "start": 6507.38, + "end": 6508.22, + "probability": 0.9509 + }, + { + "start": 6508.36, + "end": 6511.26, + "probability": 0.9777 + }, + { + "start": 6512.26, + "end": 6515.18, + "probability": 0.5733 + }, + { + "start": 6515.46, + "end": 6517.14, + "probability": 0.98 + }, + { + "start": 6517.6, + "end": 6521.04, + "probability": 0.9929 + }, + { + "start": 6521.88, + "end": 6525.0, + "probability": 0.9565 + }, + { + "start": 6526.86, + "end": 6530.64, + "probability": 0.9982 + }, + { + "start": 6530.64, + "end": 6535.44, + "probability": 0.9799 + }, + { + "start": 6536.04, + "end": 6537.18, + "probability": 0.9811 + }, + { + "start": 6537.4, + "end": 6539.92, + "probability": 0.9782 + }, + { + "start": 6540.0, + "end": 6542.72, + "probability": 0.9651 + }, + { + "start": 6544.1, + "end": 6545.98, + "probability": 0.9915 + }, + { + "start": 6546.64, + "end": 6547.64, + "probability": 0.721 + }, + { + "start": 6548.7, + "end": 6551.56, + "probability": 0.8777 + }, + { + "start": 6552.48, + "end": 6553.72, + "probability": 0.4815 + }, + { + "start": 6554.0, + "end": 6555.62, + "probability": 0.8594 + }, + { + "start": 6555.7, + "end": 6556.26, + "probability": 0.9847 + }, + { + "start": 6556.36, + "end": 6558.34, + "probability": 0.9798 + }, + { + "start": 6558.4, + "end": 6558.56, + "probability": 0.8877 + }, + { + "start": 6558.62, + "end": 6561.24, + "probability": 0.9461 + }, + { + "start": 6561.36, + "end": 6562.26, + "probability": 0.9412 + }, + { + "start": 6562.58, + "end": 6565.12, + "probability": 0.979 + }, + { + "start": 6565.34, + "end": 6566.22, + "probability": 0.2187 + }, + { + "start": 6566.22, + "end": 6566.22, + "probability": 0.156 + }, + { + "start": 6566.38, + "end": 6567.06, + "probability": 0.7283 + }, + { + "start": 6567.68, + "end": 6569.16, + "probability": 0.8267 + }, + { + "start": 6569.66, + "end": 6569.78, + "probability": 0.0272 + }, + { + "start": 6569.86, + "end": 6572.52, + "probability": 0.9972 + }, + { + "start": 6572.62, + "end": 6573.58, + "probability": 0.1078 + }, + { + "start": 6574.0, + "end": 6574.5, + "probability": 0.175 + }, + { + "start": 6574.5, + "end": 6575.66, + "probability": 0.8125 + }, + { + "start": 6576.58, + "end": 6577.38, + "probability": 0.9419 + }, + { + "start": 6577.56, + "end": 6579.72, + "probability": 0.9332 + }, + { + "start": 6579.78, + "end": 6581.4, + "probability": 0.9961 + }, + { + "start": 6581.74, + "end": 6582.36, + "probability": 0.0985 + }, + { + "start": 6582.36, + "end": 6584.3, + "probability": 0.9814 + }, + { + "start": 6584.36, + "end": 6585.7, + "probability": 0.9915 + }, + { + "start": 6585.76, + "end": 6587.04, + "probability": 0.9692 + }, + { + "start": 6587.16, + "end": 6588.56, + "probability": 0.9939 + }, + { + "start": 6588.66, + "end": 6590.58, + "probability": 0.9664 + }, + { + "start": 6591.72, + "end": 6595.92, + "probability": 0.9132 + }, + { + "start": 6596.6, + "end": 6598.22, + "probability": 0.9927 + }, + { + "start": 6598.74, + "end": 6599.52, + "probability": 0.8809 + }, + { + "start": 6599.64, + "end": 6602.8, + "probability": 0.9738 + }, + { + "start": 6602.8, + "end": 6605.52, + "probability": 0.7892 + }, + { + "start": 6606.22, + "end": 6606.28, + "probability": 0.3569 + }, + { + "start": 6606.28, + "end": 6607.94, + "probability": 0.9478 + }, + { + "start": 6608.68, + "end": 6610.02, + "probability": 0.6454 + }, + { + "start": 6610.08, + "end": 6611.0, + "probability": 0.9983 + }, + { + "start": 6611.4, + "end": 6612.68, + "probability": 0.4513 + }, + { + "start": 6612.72, + "end": 6614.7, + "probability": 0.9761 + }, + { + "start": 6614.9, + "end": 6616.98, + "probability": 0.9937 + }, + { + "start": 6618.76, + "end": 6620.18, + "probability": 0.5522 + }, + { + "start": 6620.5, + "end": 6621.75, + "probability": 0.5059 + }, + { + "start": 6621.92, + "end": 6621.98, + "probability": 0.1769 + }, + { + "start": 6621.98, + "end": 6623.88, + "probability": 0.9976 + }, + { + "start": 6624.8, + "end": 6627.08, + "probability": 0.9795 + }, + { + "start": 6627.22, + "end": 6627.94, + "probability": 0.27 + }, + { + "start": 6628.7, + "end": 6628.7, + "probability": 0.0352 + }, + { + "start": 6628.7, + "end": 6634.04, + "probability": 0.9833 + }, + { + "start": 6634.14, + "end": 6634.26, + "probability": 0.87 + }, + { + "start": 6634.36, + "end": 6636.44, + "probability": 0.8345 + }, + { + "start": 6636.5, + "end": 6637.74, + "probability": 0.8494 + }, + { + "start": 6637.74, + "end": 6639.16, + "probability": 0.9695 + }, + { + "start": 6640.08, + "end": 6641.2, + "probability": 0.9787 + }, + { + "start": 6642.68, + "end": 6644.58, + "probability": 0.7583 + }, + { + "start": 6644.74, + "end": 6646.18, + "probability": 0.8908 + }, + { + "start": 6646.24, + "end": 6647.76, + "probability": 0.8887 + }, + { + "start": 6648.14, + "end": 6650.76, + "probability": 0.9851 + }, + { + "start": 6650.84, + "end": 6651.42, + "probability": 0.3821 + }, + { + "start": 6651.52, + "end": 6652.24, + "probability": 0.7111 + }, + { + "start": 6653.06, + "end": 6655.58, + "probability": 0.766 + }, + { + "start": 6656.16, + "end": 6658.7, + "probability": 0.9868 + }, + { + "start": 6659.2, + "end": 6660.4, + "probability": 0.8594 + }, + { + "start": 6661.12, + "end": 6663.5, + "probability": 0.9758 + }, + { + "start": 6664.0, + "end": 6666.68, + "probability": 0.9415 + }, + { + "start": 6666.78, + "end": 6668.14, + "probability": 0.7011 + }, + { + "start": 6668.8, + "end": 6669.0, + "probability": 0.381 + }, + { + "start": 6669.1, + "end": 6669.62, + "probability": 0.874 + }, + { + "start": 6669.74, + "end": 6672.0, + "probability": 0.9886 + }, + { + "start": 6672.08, + "end": 6675.42, + "probability": 0.9768 + }, + { + "start": 6676.08, + "end": 6677.4, + "probability": 0.9897 + }, + { + "start": 6677.6, + "end": 6677.96, + "probability": 0.7322 + }, + { + "start": 6678.06, + "end": 6678.73, + "probability": 0.958 + }, + { + "start": 6679.02, + "end": 6679.32, + "probability": 0.813 + }, + { + "start": 6679.4, + "end": 6679.8, + "probability": 0.889 + }, + { + "start": 6679.86, + "end": 6680.28, + "probability": 0.6808 + }, + { + "start": 6680.38, + "end": 6681.06, + "probability": 0.9219 + }, + { + "start": 6681.48, + "end": 6683.08, + "probability": 0.8951 + }, + { + "start": 6684.1, + "end": 6686.42, + "probability": 0.9839 + }, + { + "start": 6686.5, + "end": 6688.62, + "probability": 0.936 + }, + { + "start": 6689.22, + "end": 6690.0, + "probability": 0.5759 + }, + { + "start": 6690.12, + "end": 6690.32, + "probability": 0.8166 + }, + { + "start": 6690.38, + "end": 6690.86, + "probability": 0.8374 + }, + { + "start": 6690.92, + "end": 6691.98, + "probability": 0.9128 + }, + { + "start": 6692.04, + "end": 6692.76, + "probability": 0.5372 + }, + { + "start": 6693.04, + "end": 6693.52, + "probability": 0.3344 + }, + { + "start": 6694.6, + "end": 6699.8, + "probability": 0.9493 + }, + { + "start": 6701.76, + "end": 6701.76, + "probability": 0.0604 + }, + { + "start": 6701.76, + "end": 6704.38, + "probability": 0.9956 + }, + { + "start": 6705.78, + "end": 6709.18, + "probability": 0.9967 + }, + { + "start": 6709.6, + "end": 6710.22, + "probability": 0.1555 + }, + { + "start": 6710.4, + "end": 6712.9, + "probability": 0.979 + }, + { + "start": 6712.9, + "end": 6717.2, + "probability": 0.9994 + }, + { + "start": 6717.8, + "end": 6719.12, + "probability": 0.9617 + }, + { + "start": 6720.29, + "end": 6721.82, + "probability": 0.9961 + }, + { + "start": 6722.22, + "end": 6724.06, + "probability": 0.8287 + }, + { + "start": 6724.08, + "end": 6727.16, + "probability": 0.8684 + }, + { + "start": 6727.66, + "end": 6728.43, + "probability": 0.9888 + }, + { + "start": 6729.34, + "end": 6730.96, + "probability": 0.7969 + }, + { + "start": 6732.48, + "end": 6734.98, + "probability": 0.7415 + }, + { + "start": 6735.02, + "end": 6735.14, + "probability": 0.3939 + }, + { + "start": 6735.14, + "end": 6738.96, + "probability": 0.907 + }, + { + "start": 6739.1, + "end": 6740.02, + "probability": 0.7462 + }, + { + "start": 6740.46, + "end": 6741.04, + "probability": 0.4975 + }, + { + "start": 6743.3, + "end": 6745.38, + "probability": 0.9941 + }, + { + "start": 6745.46, + "end": 6747.36, + "probability": 0.9971 + }, + { + "start": 6747.36, + "end": 6749.5, + "probability": 0.823 + }, + { + "start": 6749.58, + "end": 6749.84, + "probability": 0.6214 + }, + { + "start": 6750.06, + "end": 6750.82, + "probability": 0.942 + }, + { + "start": 6750.98, + "end": 6752.64, + "probability": 0.5709 + }, + { + "start": 6752.72, + "end": 6754.36, + "probability": 0.9724 + }, + { + "start": 6754.4, + "end": 6758.06, + "probability": 0.9282 + }, + { + "start": 6758.14, + "end": 6758.32, + "probability": 0.8466 + }, + { + "start": 6758.36, + "end": 6759.18, + "probability": 0.852 + }, + { + "start": 6759.5, + "end": 6760.52, + "probability": 0.7215 + }, + { + "start": 6761.48, + "end": 6762.86, + "probability": 0.9971 + }, + { + "start": 6763.06, + "end": 6765.6, + "probability": 0.9977 + }, + { + "start": 6766.38, + "end": 6769.42, + "probability": 0.9891 + }, + { + "start": 6769.42, + "end": 6773.06, + "probability": 0.998 + }, + { + "start": 6773.74, + "end": 6774.34, + "probability": 0.3703 + }, + { + "start": 6776.28, + "end": 6777.18, + "probability": 0.9897 + }, + { + "start": 6777.76, + "end": 6778.54, + "probability": 0.1318 + }, + { + "start": 6778.74, + "end": 6779.0, + "probability": 0.1654 + }, + { + "start": 6779.56, + "end": 6780.98, + "probability": 0.8436 + }, + { + "start": 6781.1, + "end": 6782.64, + "probability": 0.6403 + }, + { + "start": 6782.7, + "end": 6784.6, + "probability": 0.999 + }, + { + "start": 6785.36, + "end": 6787.93, + "probability": 0.8346 + }, + { + "start": 6788.78, + "end": 6791.8, + "probability": 0.923 + }, + { + "start": 6791.86, + "end": 6793.04, + "probability": 0.9882 + }, + { + "start": 6794.28, + "end": 6797.94, + "probability": 0.9403 + }, + { + "start": 6798.0, + "end": 6798.62, + "probability": 0.754 + }, + { + "start": 6798.7, + "end": 6799.42, + "probability": 0.9788 + }, + { + "start": 6799.46, + "end": 6800.24, + "probability": 0.7738 + }, + { + "start": 6800.3, + "end": 6800.42, + "probability": 0.1899 + }, + { + "start": 6800.42, + "end": 6800.52, + "probability": 0.6811 + }, + { + "start": 6800.56, + "end": 6801.42, + "probability": 0.8991 + }, + { + "start": 6802.34, + "end": 6802.85, + "probability": 0.9173 + }, + { + "start": 6803.0, + "end": 6804.0, + "probability": 0.9188 + }, + { + "start": 6804.4, + "end": 6806.02, + "probability": 0.8257 + }, + { + "start": 6806.1, + "end": 6808.42, + "probability": 0.9262 + }, + { + "start": 6808.48, + "end": 6809.82, + "probability": 0.8603 + }, + { + "start": 6811.68, + "end": 6813.24, + "probability": 0.7734 + }, + { + "start": 6814.1, + "end": 6815.46, + "probability": 0.9846 + }, + { + "start": 6815.66, + "end": 6817.56, + "probability": 0.9985 + }, + { + "start": 6817.56, + "end": 6818.96, + "probability": 0.9976 + }, + { + "start": 6820.1, + "end": 6823.3, + "probability": 0.9986 + }, + { + "start": 6823.3, + "end": 6826.36, + "probability": 0.9973 + }, + { + "start": 6826.7, + "end": 6829.7, + "probability": 0.7654 + }, + { + "start": 6830.18, + "end": 6830.48, + "probability": 0.6849 + }, + { + "start": 6830.54, + "end": 6831.34, + "probability": 0.9861 + }, + { + "start": 6831.42, + "end": 6832.06, + "probability": 0.8753 + }, + { + "start": 6832.48, + "end": 6833.38, + "probability": 0.9894 + }, + { + "start": 6834.2, + "end": 6836.12, + "probability": 0.977 + }, + { + "start": 6836.22, + "end": 6837.34, + "probability": 0.8842 + }, + { + "start": 6837.4, + "end": 6839.58, + "probability": 0.9917 + }, + { + "start": 6840.14, + "end": 6842.24, + "probability": 0.9912 + }, + { + "start": 6842.36, + "end": 6843.14, + "probability": 0.6628 + }, + { + "start": 6843.16, + "end": 6843.98, + "probability": 0.9256 + }, + { + "start": 6844.98, + "end": 6845.76, + "probability": 0.5872 + }, + { + "start": 6847.08, + "end": 6849.6, + "probability": 0.9895 + }, + { + "start": 6851.16, + "end": 6852.62, + "probability": 0.9882 + }, + { + "start": 6852.8, + "end": 6854.04, + "probability": 0.8861 + }, + { + "start": 6854.1, + "end": 6855.04, + "probability": 0.9328 + }, + { + "start": 6855.36, + "end": 6856.16, + "probability": 0.9977 + }, + { + "start": 6856.72, + "end": 6857.48, + "probability": 0.8148 + }, + { + "start": 6858.54, + "end": 6861.36, + "probability": 0.9961 + }, + { + "start": 6862.14, + "end": 6863.1, + "probability": 0.9915 + }, + { + "start": 6863.92, + "end": 6864.84, + "probability": 0.6796 + }, + { + "start": 6864.9, + "end": 6866.84, + "probability": 0.9772 + }, + { + "start": 6866.84, + "end": 6870.0, + "probability": 0.9964 + }, + { + "start": 6870.28, + "end": 6871.04, + "probability": 0.6745 + }, + { + "start": 6871.1, + "end": 6872.26, + "probability": 0.7654 + }, + { + "start": 6873.02, + "end": 6874.04, + "probability": 0.8557 + }, + { + "start": 6875.38, + "end": 6881.14, + "probability": 0.9919 + }, + { + "start": 6881.24, + "end": 6882.42, + "probability": 0.9666 + }, + { + "start": 6882.56, + "end": 6883.32, + "probability": 0.7984 + }, + { + "start": 6883.4, + "end": 6883.84, + "probability": 0.7193 + }, + { + "start": 6884.02, + "end": 6884.84, + "probability": 0.7866 + }, + { + "start": 6887.42, + "end": 6889.12, + "probability": 0.9517 + }, + { + "start": 6889.22, + "end": 6891.6, + "probability": 0.968 + }, + { + "start": 6892.72, + "end": 6892.72, + "probability": 0.4821 + }, + { + "start": 6892.72, + "end": 6895.48, + "probability": 0.9945 + }, + { + "start": 6895.74, + "end": 6896.78, + "probability": 0.9398 + }, + { + "start": 6897.34, + "end": 6899.56, + "probability": 0.9547 + }, + { + "start": 6900.02, + "end": 6900.06, + "probability": 0.1346 + }, + { + "start": 6900.06, + "end": 6902.58, + "probability": 0.9855 + }, + { + "start": 6902.62, + "end": 6904.74, + "probability": 0.9775 + }, + { + "start": 6905.34, + "end": 6906.24, + "probability": 0.6306 + }, + { + "start": 6906.42, + "end": 6908.4, + "probability": 0.979 + }, + { + "start": 6908.5, + "end": 6909.46, + "probability": 0.9785 + }, + { + "start": 6909.62, + "end": 6910.54, + "probability": 0.8144 + }, + { + "start": 6910.6, + "end": 6911.94, + "probability": 0.9217 + }, + { + "start": 6912.74, + "end": 6914.5, + "probability": 0.7383 + }, + { + "start": 6914.74, + "end": 6915.38, + "probability": 0.8242 + }, + { + "start": 6916.08, + "end": 6917.88, + "probability": 0.6254 + }, + { + "start": 6917.98, + "end": 6918.8, + "probability": 0.6336 + }, + { + "start": 6918.92, + "end": 6924.88, + "probability": 0.6976 + }, + { + "start": 6924.9, + "end": 6927.06, + "probability": 0.9966 + }, + { + "start": 6927.08, + "end": 6928.58, + "probability": 0.9982 + }, + { + "start": 6928.62, + "end": 6928.74, + "probability": 0.7504 + }, + { + "start": 6928.84, + "end": 6929.7, + "probability": 0.9939 + }, + { + "start": 6929.86, + "end": 6931.5, + "probability": 0.9902 + }, + { + "start": 6931.5, + "end": 6934.48, + "probability": 0.9901 + }, + { + "start": 6934.64, + "end": 6935.92, + "probability": 0.6375 + }, + { + "start": 6936.66, + "end": 6938.8, + "probability": 0.8619 + }, + { + "start": 6939.04, + "end": 6941.54, + "probability": 0.9818 + }, + { + "start": 6942.14, + "end": 6943.48, + "probability": 0.7562 + }, + { + "start": 6943.54, + "end": 6944.96, + "probability": 0.282 + }, + { + "start": 6947.44, + "end": 6948.14, + "probability": 0.2906 + }, + { + "start": 6948.2, + "end": 6951.18, + "probability": 0.9801 + }, + { + "start": 6952.69, + "end": 6953.32, + "probability": 0.0274 + }, + { + "start": 6953.32, + "end": 6953.32, + "probability": 0.2391 + }, + { + "start": 6953.36, + "end": 6954.16, + "probability": 0.8522 + }, + { + "start": 6954.18, + "end": 6954.78, + "probability": 0.435 + }, + { + "start": 6954.86, + "end": 6955.5, + "probability": 0.8966 + }, + { + "start": 6955.56, + "end": 6956.92, + "probability": 0.9402 + }, + { + "start": 6957.5, + "end": 6959.44, + "probability": 0.5253 + }, + { + "start": 6959.56, + "end": 6959.92, + "probability": 0.6136 + }, + { + "start": 6959.98, + "end": 6960.44, + "probability": 0.9826 + }, + { + "start": 6960.56, + "end": 6964.2, + "probability": 0.8744 + }, + { + "start": 6964.2, + "end": 6967.88, + "probability": 0.99 + }, + { + "start": 6968.0, + "end": 6968.28, + "probability": 0.0671 + }, + { + "start": 6968.46, + "end": 6970.68, + "probability": 0.9243 + }, + { + "start": 6970.68, + "end": 6970.72, + "probability": 0.3511 + }, + { + "start": 6970.72, + "end": 6976.06, + "probability": 0.6748 + }, + { + "start": 6977.04, + "end": 6979.3, + "probability": 0.2484 + }, + { + "start": 6980.04, + "end": 6983.28, + "probability": 0.9436 + }, + { + "start": 6983.98, + "end": 6986.32, + "probability": 0.7625 + }, + { + "start": 6986.46, + "end": 6986.46, + "probability": 0.04 + }, + { + "start": 6986.46, + "end": 6987.68, + "probability": 0.3435 + }, + { + "start": 6987.92, + "end": 6989.59, + "probability": 0.9443 + }, + { + "start": 6990.08, + "end": 6992.3, + "probability": 0.7456 + }, + { + "start": 6993.04, + "end": 6993.04, + "probability": 0.1182 + }, + { + "start": 6993.04, + "end": 6993.1, + "probability": 0.0519 + }, + { + "start": 6993.1, + "end": 6993.1, + "probability": 0.0598 + }, + { + "start": 6993.1, + "end": 6995.08, + "probability": 0.9517 + }, + { + "start": 6995.22, + "end": 6997.4, + "probability": 0.9568 + }, + { + "start": 6997.4, + "end": 7000.04, + "probability": 0.9812 + }, + { + "start": 7001.42, + "end": 7001.68, + "probability": 0.0365 + }, + { + "start": 7001.86, + "end": 7002.8, + "probability": 0.741 + }, + { + "start": 7003.0, + "end": 7004.12, + "probability": 0.5727 + }, + { + "start": 7004.22, + "end": 7004.64, + "probability": 0.8679 + }, + { + "start": 7004.66, + "end": 7005.54, + "probability": 0.7667 + }, + { + "start": 7005.56, + "end": 7008.28, + "probability": 0.9886 + }, + { + "start": 7008.4, + "end": 7012.16, + "probability": 0.9876 + }, + { + "start": 7012.3, + "end": 7012.98, + "probability": 0.7802 + }, + { + "start": 7013.08, + "end": 7013.52, + "probability": 0.7949 + }, + { + "start": 7013.58, + "end": 7018.3, + "probability": 0.9945 + }, + { + "start": 7019.02, + "end": 7019.78, + "probability": 0.83 + }, + { + "start": 7020.26, + "end": 7020.92, + "probability": 0.8733 + }, + { + "start": 7021.6, + "end": 7022.06, + "probability": 0.9492 + }, + { + "start": 7022.76, + "end": 7023.51, + "probability": 0.9747 + }, + { + "start": 7023.88, + "end": 7024.52, + "probability": 0.9741 + }, + { + "start": 7025.38, + "end": 7028.78, + "probability": 0.8451 + }, + { + "start": 7029.28, + "end": 7030.75, + "probability": 0.9868 + }, + { + "start": 7030.92, + "end": 7033.2, + "probability": 0.9546 + }, + { + "start": 7033.38, + "end": 7033.84, + "probability": 0.5017 + }, + { + "start": 7033.9, + "end": 7034.64, + "probability": 0.6937 + }, + { + "start": 7034.68, + "end": 7036.42, + "probability": 0.9866 + }, + { + "start": 7037.5, + "end": 7038.22, + "probability": 0.9473 + }, + { + "start": 7038.94, + "end": 7040.78, + "probability": 0.8303 + }, + { + "start": 7041.02, + "end": 7043.72, + "probability": 0.9956 + }, + { + "start": 7043.74, + "end": 7044.26, + "probability": 0.9558 + }, + { + "start": 7044.36, + "end": 7044.56, + "probability": 0.8419 + }, + { + "start": 7045.84, + "end": 7047.24, + "probability": 0.8356 + }, + { + "start": 7047.4, + "end": 7048.2, + "probability": 0.7788 + }, + { + "start": 7048.34, + "end": 7048.72, + "probability": 0.7199 + }, + { + "start": 7048.8, + "end": 7049.8, + "probability": 0.8642 + }, + { + "start": 7049.92, + "end": 7053.59, + "probability": 0.9531 + }, + { + "start": 7054.71, + "end": 7061.44, + "probability": 0.9955 + }, + { + "start": 7062.38, + "end": 7067.04, + "probability": 0.9932 + }, + { + "start": 7067.42, + "end": 7071.64, + "probability": 0.9974 + }, + { + "start": 7072.24, + "end": 7072.8, + "probability": 0.6534 + }, + { + "start": 7073.08, + "end": 7074.92, + "probability": 0.9806 + }, + { + "start": 7075.36, + "end": 7077.04, + "probability": 0.9662 + }, + { + "start": 7077.52, + "end": 7085.12, + "probability": 0.8903 + }, + { + "start": 7085.52, + "end": 7092.1, + "probability": 0.9924 + }, + { + "start": 7092.7, + "end": 7095.26, + "probability": 0.9956 + }, + { + "start": 7095.94, + "end": 7102.24, + "probability": 0.9952 + }, + { + "start": 7102.24, + "end": 7110.4, + "probability": 0.9795 + }, + { + "start": 7110.92, + "end": 7111.8, + "probability": 0.9343 + }, + { + "start": 7112.5, + "end": 7113.5, + "probability": 0.4458 + }, + { + "start": 7113.56, + "end": 7116.12, + "probability": 0.9874 + }, + { + "start": 7116.48, + "end": 7120.22, + "probability": 0.9944 + }, + { + "start": 7120.26, + "end": 7120.92, + "probability": 0.7426 + }, + { + "start": 7121.68, + "end": 7122.68, + "probability": 0.8694 + }, + { + "start": 7123.16, + "end": 7132.18, + "probability": 0.8177 + }, + { + "start": 7132.6, + "end": 7135.56, + "probability": 0.9933 + }, + { + "start": 7135.96, + "end": 7137.54, + "probability": 0.9496 + }, + { + "start": 7138.0, + "end": 7142.82, + "probability": 0.9958 + }, + { + "start": 7142.82, + "end": 7150.42, + "probability": 0.8226 + }, + { + "start": 7150.8, + "end": 7153.58, + "probability": 0.9712 + }, + { + "start": 7154.06, + "end": 7154.4, + "probability": 0.9395 + }, + { + "start": 7154.52, + "end": 7155.98, + "probability": 0.9893 + }, + { + "start": 7156.28, + "end": 7162.12, + "probability": 0.9644 + }, + { + "start": 7162.5, + "end": 7164.9, + "probability": 0.9946 + }, + { + "start": 7164.9, + "end": 7168.1, + "probability": 0.9995 + }, + { + "start": 7168.68, + "end": 7171.18, + "probability": 0.9911 + }, + { + "start": 7171.7, + "end": 7173.54, + "probability": 0.8627 + }, + { + "start": 7174.3, + "end": 7176.12, + "probability": 0.9796 + }, + { + "start": 7176.18, + "end": 7176.64, + "probability": 0.6502 + }, + { + "start": 7177.1, + "end": 7177.32, + "probability": 0.7123 + }, + { + "start": 7177.46, + "end": 7178.9, + "probability": 0.8147 + }, + { + "start": 7179.2, + "end": 7181.46, + "probability": 0.99 + }, + { + "start": 7181.46, + "end": 7185.34, + "probability": 0.9805 + }, + { + "start": 7185.46, + "end": 7186.18, + "probability": 0.4992 + }, + { + "start": 7186.38, + "end": 7186.48, + "probability": 0.4415 + }, + { + "start": 7186.94, + "end": 7188.12, + "probability": 0.8838 + }, + { + "start": 7188.22, + "end": 7189.72, + "probability": 0.9537 + }, + { + "start": 7190.04, + "end": 7192.62, + "probability": 0.9674 + }, + { + "start": 7193.08, + "end": 7193.78, + "probability": 0.7752 + }, + { + "start": 7193.9, + "end": 7199.56, + "probability": 0.9753 + }, + { + "start": 7200.18, + "end": 7201.54, + "probability": 0.8518 + }, + { + "start": 7202.1, + "end": 7206.52, + "probability": 0.9872 + }, + { + "start": 7207.24, + "end": 7209.3, + "probability": 0.8736 + }, + { + "start": 7209.46, + "end": 7212.42, + "probability": 0.2704 + }, + { + "start": 7212.5, + "end": 7214.48, + "probability": 0.9355 + }, + { + "start": 7215.04, + "end": 7217.1, + "probability": 0.7548 + }, + { + "start": 7218.02, + "end": 7219.42, + "probability": 0.5681 + }, + { + "start": 7220.75, + "end": 7224.34, + "probability": 0.93 + }, + { + "start": 7225.01, + "end": 7229.07, + "probability": 0.0243 + }, + { + "start": 7232.76, + "end": 7233.62, + "probability": 0.0584 + }, + { + "start": 7234.66, + "end": 7234.94, + "probability": 0.0314 + }, + { + "start": 7235.52, + "end": 7235.52, + "probability": 0.0133 + }, + { + "start": 7238.12, + "end": 7239.3, + "probability": 0.1092 + }, + { + "start": 7245.46, + "end": 7245.72, + "probability": 0.1132 + }, + { + "start": 7246.1, + "end": 7246.18, + "probability": 0.0011 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.0, + "end": 7332.0, + "probability": 0.0 + }, + { + "start": 7332.59, + "end": 7335.06, + "probability": 0.0397 + }, + { + "start": 7335.06, + "end": 7335.44, + "probability": 0.0329 + }, + { + "start": 7337.64, + "end": 7338.22, + "probability": 0.0295 + }, + { + "start": 7339.5, + "end": 7340.76, + "probability": 0.2693 + }, + { + "start": 7344.78, + "end": 7350.14, + "probability": 0.0857 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.0, + "end": 7461.0, + "probability": 0.0 + }, + { + "start": 7461.24, + "end": 7461.24, + "probability": 0.0541 + }, + { + "start": 7461.24, + "end": 7461.62, + "probability": 0.0302 + }, + { + "start": 7461.62, + "end": 7463.92, + "probability": 0.8293 + }, + { + "start": 7464.14, + "end": 7467.34, + "probability": 0.8257 + }, + { + "start": 7467.46, + "end": 7468.94, + "probability": 0.2831 + }, + { + "start": 7469.06, + "end": 7471.06, + "probability": 0.9944 + }, + { + "start": 7471.72, + "end": 7474.62, + "probability": 0.8975 + }, + { + "start": 7475.69, + "end": 7480.5, + "probability": 0.6411 + }, + { + "start": 7480.5, + "end": 7483.14, + "probability": 0.9922 + }, + { + "start": 7485.15, + "end": 7489.54, + "probability": 0.8647 + }, + { + "start": 7489.68, + "end": 7490.06, + "probability": 0.7326 + }, + { + "start": 7490.14, + "end": 7491.7, + "probability": 0.9458 + }, + { + "start": 7491.78, + "end": 7494.38, + "probability": 0.9077 + }, + { + "start": 7494.88, + "end": 7494.98, + "probability": 0.2227 + }, + { + "start": 7495.04, + "end": 7498.56, + "probability": 0.9731 + }, + { + "start": 7498.56, + "end": 7501.6, + "probability": 0.9491 + }, + { + "start": 7501.92, + "end": 7503.1, + "probability": 0.8799 + }, + { + "start": 7505.7, + "end": 7506.86, + "probability": 0.1007 + }, + { + "start": 7506.86, + "end": 7510.09, + "probability": 0.7625 + }, + { + "start": 7510.18, + "end": 7512.88, + "probability": 0.9292 + }, + { + "start": 7513.58, + "end": 7518.1, + "probability": 0.8161 + }, + { + "start": 7518.28, + "end": 7521.88, + "probability": 0.7098 + }, + { + "start": 7521.88, + "end": 7525.22, + "probability": 0.6523 + }, + { + "start": 7525.76, + "end": 7529.7, + "probability": 0.9552 + }, + { + "start": 7530.14, + "end": 7532.04, + "probability": 0.9613 + }, + { + "start": 7532.04, + "end": 7534.72, + "probability": 0.9556 + }, + { + "start": 7534.78, + "end": 7536.98, + "probability": 0.7472 + }, + { + "start": 7536.98, + "end": 7540.24, + "probability": 0.8453 + }, + { + "start": 7540.48, + "end": 7543.14, + "probability": 0.7626 + }, + { + "start": 7543.84, + "end": 7545.3, + "probability": 0.8458 + }, + { + "start": 7545.3, + "end": 7546.9, + "probability": 0.9902 + }, + { + "start": 7547.0, + "end": 7547.9, + "probability": 0.6428 + }, + { + "start": 7547.96, + "end": 7549.74, + "probability": 0.9202 + }, + { + "start": 7549.74, + "end": 7552.68, + "probability": 0.8033 + }, + { + "start": 7553.34, + "end": 7555.34, + "probability": 0.9927 + }, + { + "start": 7555.34, + "end": 7557.6, + "probability": 0.7768 + }, + { + "start": 7558.04, + "end": 7560.54, + "probability": 0.9014 + }, + { + "start": 7560.64, + "end": 7564.12, + "probability": 0.9888 + }, + { + "start": 7564.74, + "end": 7566.52, + "probability": 0.8128 + }, + { + "start": 7566.52, + "end": 7569.2, + "probability": 0.9678 + }, + { + "start": 7569.66, + "end": 7570.94, + "probability": 0.6151 + }, + { + "start": 7571.02, + "end": 7572.74, + "probability": 0.9779 + }, + { + "start": 7572.86, + "end": 7574.0, + "probability": 0.9868 + }, + { + "start": 7574.18, + "end": 7574.56, + "probability": 0.8666 + }, + { + "start": 7578.28, + "end": 7580.14, + "probability": 0.8859 + }, + { + "start": 7580.3, + "end": 7581.34, + "probability": 0.1122 + }, + { + "start": 7581.44, + "end": 7582.3, + "probability": 0.5222 + }, + { + "start": 7582.32, + "end": 7582.62, + "probability": 0.2729 + }, + { + "start": 7582.7, + "end": 7584.28, + "probability": 0.8907 + }, + { + "start": 7584.36, + "end": 7584.76, + "probability": 0.7191 + }, + { + "start": 7586.44, + "end": 7587.64, + "probability": 0.5678 + }, + { + "start": 7587.68, + "end": 7588.08, + "probability": 0.5441 + }, + { + "start": 7588.08, + "end": 7589.12, + "probability": 0.6821 + }, + { + "start": 7589.24, + "end": 7589.66, + "probability": 0.4436 + }, + { + "start": 7590.42, + "end": 7592.22, + "probability": 0.9417 + }, + { + "start": 7592.22, + "end": 7593.26, + "probability": 0.9431 + }, + { + "start": 7593.42, + "end": 7594.54, + "probability": 0.9567 + }, + { + "start": 7594.92, + "end": 7596.24, + "probability": 0.8687 + }, + { + "start": 7599.23, + "end": 7601.22, + "probability": 0.3832 + }, + { + "start": 7601.34, + "end": 7601.56, + "probability": 0.0738 + }, + { + "start": 7601.78, + "end": 7602.28, + "probability": 0.2614 + }, + { + "start": 7602.28, + "end": 7602.28, + "probability": 0.0426 + }, + { + "start": 7602.28, + "end": 7603.16, + "probability": 0.8788 + }, + { + "start": 7603.84, + "end": 7604.66, + "probability": 0.8751 + }, + { + "start": 7613.18, + "end": 7615.58, + "probability": 0.3031 + }, + { + "start": 7615.66, + "end": 7616.72, + "probability": 0.5058 + }, + { + "start": 7617.78, + "end": 7619.46, + "probability": 0.7267 + }, + { + "start": 7619.52, + "end": 7622.0, + "probability": 0.8766 + }, + { + "start": 7622.68, + "end": 7624.04, + "probability": 0.8981 + }, + { + "start": 7625.04, + "end": 7626.54, + "probability": 0.8626 + }, + { + "start": 7627.12, + "end": 7628.54, + "probability": 0.0876 + }, + { + "start": 7629.68, + "end": 7631.32, + "probability": 0.3132 + }, + { + "start": 7631.56, + "end": 7632.52, + "probability": 0.7288 + }, + { + "start": 7633.32, + "end": 7636.26, + "probability": 0.8565 + }, + { + "start": 7636.28, + "end": 7636.9, + "probability": 0.6577 + }, + { + "start": 7636.92, + "end": 7637.14, + "probability": 0.0331 + }, + { + "start": 7640.3, + "end": 7640.3, + "probability": 0.0026 + }, + { + "start": 7641.36, + "end": 7642.14, + "probability": 0.1621 + }, + { + "start": 7642.14, + "end": 7642.14, + "probability": 0.0471 + }, + { + "start": 7642.14, + "end": 7642.14, + "probability": 0.0959 + }, + { + "start": 7642.14, + "end": 7642.14, + "probability": 0.1056 + }, + { + "start": 7642.14, + "end": 7642.14, + "probability": 0.0539 + }, + { + "start": 7642.14, + "end": 7643.34, + "probability": 0.4077 + }, + { + "start": 7644.54, + "end": 7646.61, + "probability": 0.3818 + }, + { + "start": 7646.94, + "end": 7647.18, + "probability": 0.7108 + }, + { + "start": 7647.54, + "end": 7648.16, + "probability": 0.8392 + }, + { + "start": 7648.5, + "end": 7648.74, + "probability": 0.4506 + }, + { + "start": 7649.02, + "end": 7653.5, + "probability": 0.9946 + }, + { + "start": 7653.98, + "end": 7655.24, + "probability": 0.8942 + }, + { + "start": 7655.78, + "end": 7658.42, + "probability": 0.8481 + }, + { + "start": 7658.78, + "end": 7661.04, + "probability": 0.9826 + }, + { + "start": 7661.7, + "end": 7662.04, + "probability": 0.0312 + }, + { + "start": 7662.04, + "end": 7662.16, + "probability": 0.8796 + }, + { + "start": 7662.5, + "end": 7663.46, + "probability": 0.8892 + }, + { + "start": 7663.7, + "end": 7664.62, + "probability": 0.9714 + }, + { + "start": 7665.02, + "end": 7665.66, + "probability": 0.5481 + }, + { + "start": 7665.98, + "end": 7666.28, + "probability": 0.6919 + }, + { + "start": 7666.76, + "end": 7666.76, + "probability": 0.6147 + }, + { + "start": 7666.92, + "end": 7667.76, + "probability": 0.9314 + }, + { + "start": 7667.9, + "end": 7668.56, + "probability": 0.6994 + }, + { + "start": 7668.62, + "end": 7668.82, + "probability": 0.8683 + }, + { + "start": 7668.92, + "end": 7670.48, + "probability": 0.8692 + }, + { + "start": 7670.66, + "end": 7671.68, + "probability": 0.853 + }, + { + "start": 7672.6, + "end": 7675.64, + "probability": 0.9253 + }, + { + "start": 7677.24, + "end": 7678.96, + "probability": 0.7848 + }, + { + "start": 7679.32, + "end": 7680.9, + "probability": 0.99 + }, + { + "start": 7681.5, + "end": 7685.12, + "probability": 0.9893 + }, + { + "start": 7685.72, + "end": 7687.44, + "probability": 0.9389 + }, + { + "start": 7688.84, + "end": 7690.1, + "probability": 0.7418 + }, + { + "start": 7690.66, + "end": 7692.2, + "probability": 0.706 + }, + { + "start": 7693.44, + "end": 7695.02, + "probability": 0.98 + }, + { + "start": 7695.4, + "end": 7696.18, + "probability": 0.5834 + }, + { + "start": 7696.3, + "end": 7697.06, + "probability": 0.9878 + }, + { + "start": 7697.82, + "end": 7700.1, + "probability": 0.9771 + }, + { + "start": 7700.24, + "end": 7701.36, + "probability": 0.6347 + }, + { + "start": 7703.62, + "end": 7707.98, + "probability": 0.9526 + }, + { + "start": 7709.38, + "end": 7710.44, + "probability": 0.9946 + }, + { + "start": 7711.4, + "end": 7712.0, + "probability": 0.8041 + }, + { + "start": 7712.4, + "end": 7713.72, + "probability": 0.3213 + }, + { + "start": 7713.82, + "end": 7714.52, + "probability": 0.8542 + }, + { + "start": 7714.54, + "end": 7715.52, + "probability": 0.9614 + }, + { + "start": 7716.84, + "end": 7721.2, + "probability": 0.9293 + }, + { + "start": 7721.74, + "end": 7722.84, + "probability": 0.9329 + }, + { + "start": 7723.42, + "end": 7726.32, + "probability": 0.8734 + }, + { + "start": 7727.22, + "end": 7730.04, + "probability": 0.98 + }, + { + "start": 7730.04, + "end": 7732.46, + "probability": 0.9155 + }, + { + "start": 7733.22, + "end": 7735.75, + "probability": 0.9097 + }, + { + "start": 7736.64, + "end": 7738.88, + "probability": 0.7447 + }, + { + "start": 7739.52, + "end": 7740.14, + "probability": 0.6643 + }, + { + "start": 7740.26, + "end": 7741.74, + "probability": 0.9821 + }, + { + "start": 7741.82, + "end": 7744.94, + "probability": 0.9238 + }, + { + "start": 7745.08, + "end": 7747.46, + "probability": 0.9913 + }, + { + "start": 7747.86, + "end": 7749.78, + "probability": 0.8994 + }, + { + "start": 7750.12, + "end": 7753.06, + "probability": 0.959 + }, + { + "start": 7753.6, + "end": 7753.92, + "probability": 0.8428 + }, + { + "start": 7754.1, + "end": 7754.96, + "probability": 0.8586 + }, + { + "start": 7755.08, + "end": 7757.56, + "probability": 0.7907 + }, + { + "start": 7758.1, + "end": 7759.18, + "probability": 0.911 + }, + { + "start": 7759.82, + "end": 7760.9, + "probability": 0.9287 + }, + { + "start": 7761.18, + "end": 7761.88, + "probability": 0.958 + }, + { + "start": 7762.08, + "end": 7762.22, + "probability": 0.9596 + }, + { + "start": 7762.28, + "end": 7763.02, + "probability": 0.8716 + }, + { + "start": 7763.2, + "end": 7763.58, + "probability": 0.7783 + }, + { + "start": 7763.7, + "end": 7764.96, + "probability": 0.8224 + }, + { + "start": 7765.56, + "end": 7767.68, + "probability": 0.8038 + }, + { + "start": 7768.46, + "end": 7770.06, + "probability": 0.892 + }, + { + "start": 7770.44, + "end": 7770.44, + "probability": 0.0991 + }, + { + "start": 7770.44, + "end": 7777.04, + "probability": 0.6473 + }, + { + "start": 7777.5, + "end": 7780.2, + "probability": 0.18 + }, + { + "start": 7780.2, + "end": 7780.68, + "probability": 0.0717 + }, + { + "start": 7780.74, + "end": 7781.48, + "probability": 0.663 + }, + { + "start": 7781.58, + "end": 7782.62, + "probability": 0.8529 + }, + { + "start": 7783.26, + "end": 7785.36, + "probability": 0.9653 + }, + { + "start": 7785.98, + "end": 7786.56, + "probability": 0.1229 + }, + { + "start": 7786.6, + "end": 7787.08, + "probability": 0.7174 + }, + { + "start": 7787.18, + "end": 7787.38, + "probability": 0.6355 + }, + { + "start": 7787.38, + "end": 7787.38, + "probability": 0.5722 + }, + { + "start": 7787.38, + "end": 7790.9, + "probability": 0.9906 + }, + { + "start": 7791.5, + "end": 7792.08, + "probability": 0.5254 + }, + { + "start": 7792.26, + "end": 7793.4, + "probability": 0.9329 + }, + { + "start": 7794.48, + "end": 7796.52, + "probability": 0.8173 + }, + { + "start": 7797.58, + "end": 7799.36, + "probability": 0.9034 + }, + { + "start": 7800.4, + "end": 7801.82, + "probability": 0.894 + }, + { + "start": 7802.64, + "end": 7806.24, + "probability": 0.9536 + }, + { + "start": 7806.58, + "end": 7807.6, + "probability": 0.6979 + }, + { + "start": 7808.2, + "end": 7811.88, + "probability": 0.7449 + }, + { + "start": 7812.48, + "end": 7813.7, + "probability": 0.9924 + }, + { + "start": 7813.82, + "end": 7814.87, + "probability": 0.7811 + }, + { + "start": 7815.88, + "end": 7817.3, + "probability": 0.747 + }, + { + "start": 7817.4, + "end": 7819.12, + "probability": 0.9567 + }, + { + "start": 7819.94, + "end": 7821.76, + "probability": 0.8264 + }, + { + "start": 7821.8, + "end": 7824.16, + "probability": 0.9823 + }, + { + "start": 7825.28, + "end": 7829.33, + "probability": 0.0888 + }, + { + "start": 7830.16, + "end": 7833.16, + "probability": 0.8381 + }, + { + "start": 7833.2, + "end": 7833.2, + "probability": 0.0498 + }, + { + "start": 7833.2, + "end": 7835.2, + "probability": 0.8218 + }, + { + "start": 7835.2, + "end": 7835.96, + "probability": 0.976 + }, + { + "start": 7836.4, + "end": 7839.56, + "probability": 0.7723 + }, + { + "start": 7839.56, + "end": 7840.24, + "probability": 0.248 + }, + { + "start": 7840.64, + "end": 7843.0, + "probability": 0.8564 + }, + { + "start": 7843.0, + "end": 7843.21, + "probability": 0.4822 + }, + { + "start": 7843.96, + "end": 7845.72, + "probability": 0.242 + }, + { + "start": 7845.72, + "end": 7845.72, + "probability": 0.0879 + }, + { + "start": 7845.72, + "end": 7847.36, + "probability": 0.7374 + }, + { + "start": 7847.7, + "end": 7847.88, + "probability": 0.7014 + }, + { + "start": 7847.94, + "end": 7848.12, + "probability": 0.5082 + }, + { + "start": 7848.2, + "end": 7849.26, + "probability": 0.9207 + }, + { + "start": 7849.84, + "end": 7851.34, + "probability": 0.9652 + }, + { + "start": 7851.48, + "end": 7851.8, + "probability": 0.8614 + }, + { + "start": 7852.26, + "end": 7859.28, + "probability": 0.9927 + }, + { + "start": 7859.72, + "end": 7860.68, + "probability": 0.4886 + }, + { + "start": 7861.2, + "end": 7862.06, + "probability": 0.5444 + }, + { + "start": 7862.42, + "end": 7865.2, + "probability": 0.654 + }, + { + "start": 7865.2, + "end": 7868.34, + "probability": 0.4003 + }, + { + "start": 7868.46, + "end": 7871.76, + "probability": 0.6793 + }, + { + "start": 7872.42, + "end": 7874.2, + "probability": 0.9185 + }, + { + "start": 7874.92, + "end": 7875.6, + "probability": 0.2325 + }, + { + "start": 7876.18, + "end": 7876.96, + "probability": 0.6854 + }, + { + "start": 7877.08, + "end": 7878.84, + "probability": 0.7958 + }, + { + "start": 7878.94, + "end": 7879.18, + "probability": 0.7549 + }, + { + "start": 7879.18, + "end": 7880.62, + "probability": 0.1011 + }, + { + "start": 7881.36, + "end": 7885.32, + "probability": 0.1583 + }, + { + "start": 7885.34, + "end": 7885.34, + "probability": 0.4138 + }, + { + "start": 7885.34, + "end": 7885.34, + "probability": 0.937 + }, + { + "start": 7885.34, + "end": 7886.61, + "probability": 0.3845 + }, + { + "start": 7887.26, + "end": 7891.24, + "probability": 0.9905 + }, + { + "start": 7891.44, + "end": 7892.46, + "probability": 0.1597 + }, + { + "start": 7892.46, + "end": 7892.48, + "probability": 0.0153 + }, + { + "start": 7892.48, + "end": 7895.08, + "probability": 0.8442 + }, + { + "start": 7895.1, + "end": 7896.0, + "probability": 0.7413 + }, + { + "start": 7896.3, + "end": 7896.6, + "probability": 0.7948 + }, + { + "start": 7896.74, + "end": 7896.8, + "probability": 0.5381 + }, + { + "start": 7896.84, + "end": 7897.2, + "probability": 0.1801 + }, + { + "start": 7897.2, + "end": 7897.55, + "probability": 0.5639 + }, + { + "start": 7898.52, + "end": 7898.9, + "probability": 0.0816 + }, + { + "start": 7899.02, + "end": 7899.94, + "probability": 0.7351 + }, + { + "start": 7900.32, + "end": 7900.78, + "probability": 0.6214 + }, + { + "start": 7901.28, + "end": 7901.48, + "probability": 0.3955 + }, + { + "start": 7901.86, + "end": 7902.56, + "probability": 0.6106 + }, + { + "start": 7902.68, + "end": 7903.96, + "probability": 0.3079 + }, + { + "start": 7904.12, + "end": 7906.57, + "probability": 0.984 + }, + { + "start": 7906.74, + "end": 7906.84, + "probability": 0.0778 + }, + { + "start": 7907.84, + "end": 7908.9, + "probability": 0.8821 + }, + { + "start": 7908.96, + "end": 7910.18, + "probability": 0.804 + }, + { + "start": 7910.34, + "end": 7914.18, + "probability": 0.6828 + }, + { + "start": 7914.26, + "end": 7914.84, + "probability": 0.5892 + }, + { + "start": 7916.86, + "end": 7918.28, + "probability": 0.7705 + }, + { + "start": 7918.32, + "end": 7918.94, + "probability": 0.7386 + }, + { + "start": 7925.54, + "end": 7925.88, + "probability": 0.1472 + }, + { + "start": 7926.66, + "end": 7927.1, + "probability": 0.4752 + }, + { + "start": 7928.14, + "end": 7931.3, + "probability": 0.2651 + }, + { + "start": 7931.3, + "end": 7933.12, + "probability": 0.0786 + }, + { + "start": 7933.34, + "end": 7934.36, + "probability": 0.7112 + }, + { + "start": 7935.88, + "end": 7936.78, + "probability": 0.5704 + }, + { + "start": 7936.82, + "end": 7937.54, + "probability": 0.6222 + }, + { + "start": 7938.76, + "end": 7940.48, + "probability": 0.8431 + }, + { + "start": 7940.56, + "end": 7942.3, + "probability": 0.8973 + }, + { + "start": 7942.82, + "end": 7944.72, + "probability": 0.4529 + }, + { + "start": 7944.8, + "end": 7945.6, + "probability": 0.2547 + }, + { + "start": 7945.86, + "end": 7950.1, + "probability": 0.963 + }, + { + "start": 7950.1, + "end": 7952.36, + "probability": 0.9596 + }, + { + "start": 7953.42, + "end": 7954.16, + "probability": 0.7701 + }, + { + "start": 7954.72, + "end": 7955.16, + "probability": 0.6721 + }, + { + "start": 7955.2, + "end": 7956.56, + "probability": 0.362 + }, + { + "start": 7958.32, + "end": 7958.32, + "probability": 0.2138 + }, + { + "start": 7958.32, + "end": 7959.1, + "probability": 0.3244 + }, + { + "start": 7959.3, + "end": 7959.72, + "probability": 0.2546 + }, + { + "start": 7959.72, + "end": 7963.08, + "probability": 0.7038 + }, + { + "start": 7963.94, + "end": 7966.17, + "probability": 0.9343 + }, + { + "start": 7970.32, + "end": 7970.92, + "probability": 0.0647 + }, + { + "start": 7976.24, + "end": 7976.46, + "probability": 0.048 + }, + { + "start": 7979.58, + "end": 7980.76, + "probability": 0.2666 + }, + { + "start": 7985.06, + "end": 7987.08, + "probability": 0.0808 + }, + { + "start": 7987.54, + "end": 7989.34, + "probability": 0.1408 + }, + { + "start": 7990.68, + "end": 7990.88, + "probability": 0.0625 + }, + { + "start": 8018.7, + "end": 8024.68, + "probability": 0.9476 + }, + { + "start": 8024.8, + "end": 8029.42, + "probability": 0.8918 + }, + { + "start": 8029.42, + "end": 8032.42, + "probability": 0.9759 + }, + { + "start": 8033.0, + "end": 8036.96, + "probability": 0.751 + }, + { + "start": 8037.98, + "end": 8041.14, + "probability": 0.9701 + }, + { + "start": 8041.58, + "end": 8044.72, + "probability": 0.9817 + }, + { + "start": 8044.9, + "end": 8045.58, + "probability": 0.465 + }, + { + "start": 8045.66, + "end": 8049.24, + "probability": 0.9933 + }, + { + "start": 8049.24, + "end": 8051.88, + "probability": 0.9932 + }, + { + "start": 8052.88, + "end": 8056.84, + "probability": 0.9971 + }, + { + "start": 8056.84, + "end": 8060.52, + "probability": 0.9989 + }, + { + "start": 8060.52, + "end": 8064.58, + "probability": 0.977 + }, + { + "start": 8065.2, + "end": 8069.32, + "probability": 0.9159 + }, + { + "start": 8069.38, + "end": 8072.1, + "probability": 0.9961 + }, + { + "start": 8073.12, + "end": 8075.2, + "probability": 0.998 + }, + { + "start": 8075.2, + "end": 8077.6, + "probability": 0.9963 + }, + { + "start": 8078.4, + "end": 8081.58, + "probability": 0.9865 + }, + { + "start": 8082.34, + "end": 8086.84, + "probability": 0.9946 + }, + { + "start": 8086.94, + "end": 8087.86, + "probability": 0.8736 + }, + { + "start": 8088.14, + "end": 8092.48, + "probability": 0.8066 + }, + { + "start": 8093.38, + "end": 8097.32, + "probability": 0.9818 + }, + { + "start": 8097.92, + "end": 8099.9, + "probability": 0.9897 + }, + { + "start": 8099.9, + "end": 8101.98, + "probability": 0.9172 + }, + { + "start": 8102.7, + "end": 8104.96, + "probability": 0.9847 + }, + { + "start": 8104.96, + "end": 8107.98, + "probability": 0.9946 + }, + { + "start": 8108.1, + "end": 8113.0, + "probability": 0.999 + }, + { + "start": 8114.64, + "end": 8118.26, + "probability": 0.9934 + }, + { + "start": 8118.26, + "end": 8122.64, + "probability": 0.9963 + }, + { + "start": 8122.64, + "end": 8128.86, + "probability": 0.9704 + }, + { + "start": 8129.04, + "end": 8131.8, + "probability": 0.7689 + }, + { + "start": 8131.8, + "end": 8136.04, + "probability": 0.9536 + }, + { + "start": 8136.94, + "end": 8140.42, + "probability": 0.9924 + }, + { + "start": 8141.16, + "end": 8142.14, + "probability": 0.7458 + }, + { + "start": 8142.21, + "end": 8146.92, + "probability": 0.4828 + }, + { + "start": 8146.92, + "end": 8147.44, + "probability": 0.1405 + }, + { + "start": 8148.36, + "end": 8157.2, + "probability": 0.9556 + }, + { + "start": 8157.48, + "end": 8157.5, + "probability": 0.0592 + }, + { + "start": 8157.5, + "end": 8159.28, + "probability": 0.5785 + }, + { + "start": 8160.12, + "end": 8160.14, + "probability": 0.0136 + }, + { + "start": 8160.14, + "end": 8160.4, + "probability": 0.4612 + }, + { + "start": 8160.48, + "end": 8162.04, + "probability": 0.9266 + }, + { + "start": 8162.1, + "end": 8167.98, + "probability": 0.9783 + }, + { + "start": 8168.36, + "end": 8168.96, + "probability": 0.9276 + }, + { + "start": 8170.71, + "end": 8172.62, + "probability": 0.9268 + }, + { + "start": 8173.42, + "end": 8177.56, + "probability": 0.9969 + }, + { + "start": 8178.61, + "end": 8180.16, + "probability": 0.4 + }, + { + "start": 8180.24, + "end": 8181.82, + "probability": 0.8478 + }, + { + "start": 8181.96, + "end": 8184.36, + "probability": 0.9669 + }, + { + "start": 8186.28, + "end": 8187.14, + "probability": 0.5356 + }, + { + "start": 8187.68, + "end": 8191.1, + "probability": 0.9741 + }, + { + "start": 8191.1, + "end": 8191.1, + "probability": 0.1055 + }, + { + "start": 8191.1, + "end": 8191.48, + "probability": 0.0794 + }, + { + "start": 8191.6, + "end": 8191.96, + "probability": 0.2584 + }, + { + "start": 8191.96, + "end": 8192.96, + "probability": 0.1498 + }, + { + "start": 8192.96, + "end": 8194.74, + "probability": 0.2226 + }, + { + "start": 8195.26, + "end": 8195.66, + "probability": 0.7647 + }, + { + "start": 8196.5, + "end": 8196.84, + "probability": 0.0865 + }, + { + "start": 8196.84, + "end": 8197.84, + "probability": 0.2324 + }, + { + "start": 8197.84, + "end": 8198.96, + "probability": 0.6127 + }, + { + "start": 8199.76, + "end": 8200.76, + "probability": 0.8066 + }, + { + "start": 8201.11, + "end": 8202.7, + "probability": 0.0989 + }, + { + "start": 8202.8, + "end": 8203.52, + "probability": 0.7236 + }, + { + "start": 8203.66, + "end": 8205.84, + "probability": 0.9937 + }, + { + "start": 8207.0, + "end": 8209.36, + "probability": 0.235 + }, + { + "start": 8211.6, + "end": 8212.02, + "probability": 0.8706 + }, + { + "start": 8212.6, + "end": 8212.6, + "probability": 0.1085 + }, + { + "start": 8212.6, + "end": 8212.6, + "probability": 0.0871 + }, + { + "start": 8212.6, + "end": 8214.2, + "probability": 0.3345 + }, + { + "start": 8215.46, + "end": 8218.84, + "probability": 0.9452 + }, + { + "start": 8219.4, + "end": 8221.94, + "probability": 0.8315 + }, + { + "start": 8222.66, + "end": 8225.42, + "probability": 0.7839 + }, + { + "start": 8225.74, + "end": 8226.56, + "probability": 0.7227 + }, + { + "start": 8227.14, + "end": 8227.68, + "probability": 0.7614 + }, + { + "start": 8228.24, + "end": 8229.02, + "probability": 0.1913 + }, + { + "start": 8229.3, + "end": 8231.14, + "probability": 0.7572 + }, + { + "start": 8231.54, + "end": 8233.64, + "probability": 0.8945 + }, + { + "start": 8234.32, + "end": 8235.94, + "probability": 0.6163 + }, + { + "start": 8236.26, + "end": 8239.46, + "probability": 0.9949 + }, + { + "start": 8240.16, + "end": 8242.12, + "probability": 0.8033 + }, + { + "start": 8242.48, + "end": 8244.48, + "probability": 0.9891 + }, + { + "start": 8244.56, + "end": 8245.88, + "probability": 0.9023 + }, + { + "start": 8246.34, + "end": 8248.86, + "probability": 0.9966 + }, + { + "start": 8248.98, + "end": 8251.28, + "probability": 0.9796 + }, + { + "start": 8251.5, + "end": 8252.22, + "probability": 0.8539 + }, + { + "start": 8252.66, + "end": 8253.62, + "probability": 0.6494 + }, + { + "start": 8254.92, + "end": 8255.44, + "probability": 0.0818 + }, + { + "start": 8255.44, + "end": 8255.44, + "probability": 0.0157 + }, + { + "start": 8255.44, + "end": 8256.62, + "probability": 0.2851 + }, + { + "start": 8257.02, + "end": 8258.52, + "probability": 0.9141 + }, + { + "start": 8258.96, + "end": 8260.24, + "probability": 0.8821 + }, + { + "start": 8261.04, + "end": 8261.88, + "probability": 0.9851 + }, + { + "start": 8262.3, + "end": 8269.32, + "probability": 0.9872 + }, + { + "start": 8269.36, + "end": 8272.4, + "probability": 0.9907 + }, + { + "start": 8273.0, + "end": 8273.24, + "probability": 0.3126 + }, + { + "start": 8273.64, + "end": 8276.8, + "probability": 0.9888 + }, + { + "start": 8277.26, + "end": 8281.96, + "probability": 0.9558 + }, + { + "start": 8282.26, + "end": 8284.98, + "probability": 0.9976 + }, + { + "start": 8285.28, + "end": 8285.82, + "probability": 0.8469 + }, + { + "start": 8286.1, + "end": 8286.8, + "probability": 0.9622 + }, + { + "start": 8287.08, + "end": 8287.68, + "probability": 0.9819 + }, + { + "start": 8287.94, + "end": 8289.04, + "probability": 0.9891 + }, + { + "start": 8289.32, + "end": 8290.14, + "probability": 0.9933 + }, + { + "start": 8290.56, + "end": 8291.54, + "probability": 0.9943 + }, + { + "start": 8291.92, + "end": 8293.18, + "probability": 0.6261 + }, + { + "start": 8293.54, + "end": 8293.56, + "probability": 0.0036 + }, + { + "start": 8293.56, + "end": 8295.84, + "probability": 0.9013 + }, + { + "start": 8296.14, + "end": 8296.8, + "probability": 0.0002 + }, + { + "start": 8312.18, + "end": 8314.96, + "probability": 0.0061 + }, + { + "start": 8317.42, + "end": 8318.82, + "probability": 0.0859 + }, + { + "start": 8318.96, + "end": 8325.4, + "probability": 0.0385 + }, + { + "start": 8327.85, + "end": 8329.15, + "probability": 0.0461 + }, + { + "start": 8329.4, + "end": 8329.78, + "probability": 0.3098 + }, + { + "start": 8329.88, + "end": 8330.62, + "probability": 0.1146 + }, + { + "start": 8331.02, + "end": 8331.56, + "probability": 0.1131 + }, + { + "start": 8334.82, + "end": 8335.46, + "probability": 0.0295 + }, + { + "start": 8337.73, + "end": 8341.48, + "probability": 0.1105 + }, + { + "start": 8343.08, + "end": 8345.44, + "probability": 0.1515 + }, + { + "start": 8345.44, + "end": 8347.9, + "probability": 0.0264 + }, + { + "start": 8348.28, + "end": 8351.12, + "probability": 0.1289 + }, + { + "start": 8352.1, + "end": 8352.58, + "probability": 0.1267 + }, + { + "start": 8352.58, + "end": 8353.4, + "probability": 0.0493 + }, + { + "start": 8353.43, + "end": 8354.0, + "probability": 0.0809 + }, + { + "start": 8354.0, + "end": 8354.24, + "probability": 0.0187 + }, + { + "start": 8354.24, + "end": 8355.28, + "probability": 0.1569 + }, + { + "start": 8355.72, + "end": 8356.44, + "probability": 0.0833 + }, + { + "start": 8362.49, + "end": 8364.72, + "probability": 0.1688 + }, + { + "start": 8364.72, + "end": 8364.72, + "probability": 0.0847 + }, + { + "start": 8364.72, + "end": 8364.72, + "probability": 0.4193 + }, + { + "start": 8364.72, + "end": 8364.88, + "probability": 0.2644 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.0, + "end": 8365.0, + "probability": 0.0 + }, + { + "start": 8365.12, + "end": 8365.12, + "probability": 0.7786 + }, + { + "start": 8365.12, + "end": 8366.46, + "probability": 0.8923 + }, + { + "start": 8366.5, + "end": 8367.02, + "probability": 0.9381 + }, + { + "start": 8367.02, + "end": 8368.16, + "probability": 0.4989 + }, + { + "start": 8368.78, + "end": 8369.14, + "probability": 0.922 + }, + { + "start": 8370.46, + "end": 8372.54, + "probability": 0.9987 + }, + { + "start": 8373.6, + "end": 8376.6, + "probability": 0.5831 + }, + { + "start": 8376.98, + "end": 8378.6, + "probability": 0.9591 + }, + { + "start": 8380.12, + "end": 8381.42, + "probability": 0.9598 + }, + { + "start": 8382.2, + "end": 8384.32, + "probability": 0.9773 + }, + { + "start": 8385.0, + "end": 8387.08, + "probability": 0.8729 + }, + { + "start": 8387.84, + "end": 8388.64, + "probability": 0.867 + }, + { + "start": 8389.46, + "end": 8390.08, + "probability": 0.9145 + }, + { + "start": 8390.86, + "end": 8391.9, + "probability": 0.9729 + }, + { + "start": 8392.02, + "end": 8393.62, + "probability": 0.967 + }, + { + "start": 8394.36, + "end": 8394.9, + "probability": 0.7003 + }, + { + "start": 8395.56, + "end": 8397.0, + "probability": 0.7734 + }, + { + "start": 8397.44, + "end": 8399.68, + "probability": 0.9995 + }, + { + "start": 8399.74, + "end": 8400.62, + "probability": 0.9504 + }, + { + "start": 8401.28, + "end": 8404.68, + "probability": 0.8679 + }, + { + "start": 8405.16, + "end": 8406.38, + "probability": 0.9557 + }, + { + "start": 8406.58, + "end": 8409.64, + "probability": 0.9473 + }, + { + "start": 8409.88, + "end": 8410.1, + "probability": 0.3609 + }, + { + "start": 8410.16, + "end": 8410.4, + "probability": 0.7055 + }, + { + "start": 8410.46, + "end": 8411.56, + "probability": 0.9101 + }, + { + "start": 8411.98, + "end": 8416.92, + "probability": 0.9967 + }, + { + "start": 8417.62, + "end": 8420.78, + "probability": 0.9713 + }, + { + "start": 8421.62, + "end": 8423.28, + "probability": 0.962 + }, + { + "start": 8424.12, + "end": 8427.11, + "probability": 0.7662 + }, + { + "start": 8427.86, + "end": 8429.08, + "probability": 0.9325 + }, + { + "start": 8429.22, + "end": 8429.58, + "probability": 0.9067 + }, + { + "start": 8430.24, + "end": 8431.72, + "probability": 0.9525 + }, + { + "start": 8432.1, + "end": 8433.1, + "probability": 0.9719 + }, + { + "start": 8433.18, + "end": 8434.04, + "probability": 0.9946 + }, + { + "start": 8434.86, + "end": 8438.98, + "probability": 0.9233 + }, + { + "start": 8439.3, + "end": 8443.54, + "probability": 0.9928 + }, + { + "start": 8444.24, + "end": 8444.86, + "probability": 0.6281 + }, + { + "start": 8445.34, + "end": 8445.9, + "probability": 0.8586 + }, + { + "start": 8445.98, + "end": 8447.88, + "probability": 0.8918 + }, + { + "start": 8448.26, + "end": 8450.16, + "probability": 0.9814 + }, + { + "start": 8450.36, + "end": 8450.9, + "probability": 0.985 + }, + { + "start": 8451.24, + "end": 8451.92, + "probability": 0.9952 + }, + { + "start": 8452.44, + "end": 8453.22, + "probability": 0.9797 + }, + { + "start": 8454.7, + "end": 8455.56, + "probability": 0.6304 + }, + { + "start": 8456.1, + "end": 8460.1, + "probability": 0.938 + }, + { + "start": 8460.68, + "end": 8460.88, + "probability": 0.9224 + }, + { + "start": 8460.88, + "end": 8464.36, + "probability": 0.9431 + }, + { + "start": 8464.66, + "end": 8465.46, + "probability": 0.9368 + }, + { + "start": 8465.82, + "end": 8467.64, + "probability": 0.7479 + }, + { + "start": 8468.62, + "end": 8469.32, + "probability": 0.7435 + }, + { + "start": 8470.2, + "end": 8472.08, + "probability": 0.7487 + }, + { + "start": 8472.62, + "end": 8476.44, + "probability": 0.9756 + }, + { + "start": 8476.44, + "end": 8478.74, + "probability": 0.9916 + }, + { + "start": 8479.2, + "end": 8480.9, + "probability": 0.9854 + }, + { + "start": 8481.62, + "end": 8482.66, + "probability": 0.7201 + }, + { + "start": 8483.5, + "end": 8485.28, + "probability": 0.9964 + }, + { + "start": 8486.36, + "end": 8489.08, + "probability": 0.9985 + }, + { + "start": 8490.14, + "end": 8491.62, + "probability": 0.9409 + }, + { + "start": 8491.7, + "end": 8495.14, + "probability": 0.994 + }, + { + "start": 8495.24, + "end": 8495.68, + "probability": 0.4282 + }, + { + "start": 8495.76, + "end": 8496.0, + "probability": 0.844 + }, + { + "start": 8496.56, + "end": 8497.42, + "probability": 0.8641 + }, + { + "start": 8498.04, + "end": 8502.12, + "probability": 0.9761 + }, + { + "start": 8502.46, + "end": 8503.26, + "probability": 0.6216 + }, + { + "start": 8504.24, + "end": 8507.42, + "probability": 0.9969 + }, + { + "start": 8507.42, + "end": 8510.08, + "probability": 0.9839 + }, + { + "start": 8510.16, + "end": 8511.48, + "probability": 0.8695 + }, + { + "start": 8511.7, + "end": 8511.94, + "probability": 0.5882 + }, + { + "start": 8512.02, + "end": 8514.22, + "probability": 0.9916 + }, + { + "start": 8514.58, + "end": 8515.24, + "probability": 0.9018 + }, + { + "start": 8516.74, + "end": 8520.04, + "probability": 0.9991 + }, + { + "start": 8520.3, + "end": 8520.72, + "probability": 0.8457 + }, + { + "start": 8521.1, + "end": 8521.28, + "probability": 0.8605 + }, + { + "start": 8521.44, + "end": 8522.1, + "probability": 0.9434 + }, + { + "start": 8522.54, + "end": 8524.24, + "probability": 0.9889 + }, + { + "start": 8524.72, + "end": 8525.62, + "probability": 0.8108 + }, + { + "start": 8525.74, + "end": 8526.78, + "probability": 0.979 + }, + { + "start": 8527.04, + "end": 8528.26, + "probability": 0.9771 + }, + { + "start": 8528.78, + "end": 8531.24, + "probability": 0.9819 + }, + { + "start": 8531.74, + "end": 8537.26, + "probability": 0.5167 + }, + { + "start": 8538.08, + "end": 8541.02, + "probability": 0.9849 + }, + { + "start": 8541.9, + "end": 8543.22, + "probability": 0.7399 + }, + { + "start": 8543.94, + "end": 8546.72, + "probability": 0.9848 + }, + { + "start": 8546.84, + "end": 8547.22, + "probability": 0.8912 + }, + { + "start": 8548.22, + "end": 8550.32, + "probability": 0.4791 + }, + { + "start": 8550.46, + "end": 8551.6, + "probability": 0.9436 + }, + { + "start": 8552.26, + "end": 8553.6, + "probability": 0.1525 + }, + { + "start": 8554.4, + "end": 8556.5, + "probability": 0.9702 + }, + { + "start": 8556.78, + "end": 8557.88, + "probability": 0.9143 + }, + { + "start": 8558.38, + "end": 8559.64, + "probability": 0.8906 + }, + { + "start": 8560.02, + "end": 8560.58, + "probability": 0.8559 + }, + { + "start": 8561.4, + "end": 8561.44, + "probability": 0.225 + }, + { + "start": 8561.44, + "end": 8562.56, + "probability": 0.7508 + }, + { + "start": 8562.96, + "end": 8564.38, + "probability": 0.9833 + }, + { + "start": 8564.86, + "end": 8566.0, + "probability": 0.8641 + }, + { + "start": 8566.1, + "end": 8568.12, + "probability": 0.4736 + }, + { + "start": 8568.56, + "end": 8569.88, + "probability": 0.9993 + }, + { + "start": 8570.14, + "end": 8571.43, + "probability": 0.9941 + }, + { + "start": 8572.18, + "end": 8572.92, + "probability": 0.8384 + }, + { + "start": 8573.08, + "end": 8576.22, + "probability": 0.8885 + }, + { + "start": 8576.98, + "end": 8584.28, + "probability": 0.98 + }, + { + "start": 8584.76, + "end": 8586.45, + "probability": 0.9822 + }, + { + "start": 8586.78, + "end": 8588.16, + "probability": 0.7902 + }, + { + "start": 8588.8, + "end": 8591.2, + "probability": 0.9897 + }, + { + "start": 8592.1, + "end": 8593.0, + "probability": 0.7572 + }, + { + "start": 8594.06, + "end": 8595.98, + "probability": 0.9377 + }, + { + "start": 8596.4, + "end": 8597.84, + "probability": 0.0076 + }, + { + "start": 8600.34, + "end": 8601.66, + "probability": 0.0474 + }, + { + "start": 8602.58, + "end": 8603.62, + "probability": 0.092 + }, + { + "start": 8603.7, + "end": 8603.7, + "probability": 0.0096 + }, + { + "start": 8604.04, + "end": 8604.14, + "probability": 0.0356 + }, + { + "start": 8604.14, + "end": 8604.14, + "probability": 0.2523 + }, + { + "start": 8604.14, + "end": 8604.14, + "probability": 0.133 + }, + { + "start": 8604.14, + "end": 8604.14, + "probability": 0.035 + }, + { + "start": 8604.14, + "end": 8611.88, + "probability": 0.8644 + }, + { + "start": 8612.22, + "end": 8615.62, + "probability": 0.9567 + }, + { + "start": 8615.82, + "end": 8616.22, + "probability": 0.3581 + }, + { + "start": 8616.76, + "end": 8617.04, + "probability": 0.3765 + }, + { + "start": 8617.84, + "end": 8618.32, + "probability": 0.0454 + }, + { + "start": 8618.32, + "end": 8618.32, + "probability": 0.1351 + }, + { + "start": 8618.32, + "end": 8619.18, + "probability": 0.5705 + }, + { + "start": 8619.68, + "end": 8621.36, + "probability": 0.9533 + }, + { + "start": 8621.42, + "end": 8623.58, + "probability": 0.9534 + }, + { + "start": 8623.88, + "end": 8624.68, + "probability": 0.7212 + }, + { + "start": 8624.92, + "end": 8625.1, + "probability": 0.6313 + }, + { + "start": 8625.42, + "end": 8627.82, + "probability": 0.9012 + }, + { + "start": 8628.2, + "end": 8628.55, + "probability": 0.854 + }, + { + "start": 8629.34, + "end": 8631.46, + "probability": 0.9572 + }, + { + "start": 8631.54, + "end": 8631.62, + "probability": 0.6621 + }, + { + "start": 8631.76, + "end": 8631.96, + "probability": 0.4694 + }, + { + "start": 8632.28, + "end": 8635.42, + "probability": 0.972 + }, + { + "start": 8635.78, + "end": 8637.46, + "probability": 0.7472 + }, + { + "start": 8637.82, + "end": 8640.46, + "probability": 0.9963 + }, + { + "start": 8640.66, + "end": 8643.78, + "probability": 0.7718 + }, + { + "start": 8644.94, + "end": 8645.5, + "probability": 0.0017 + }, + { + "start": 8645.5, + "end": 8645.5, + "probability": 0.1313 + }, + { + "start": 8645.5, + "end": 8646.12, + "probability": 0.534 + }, + { + "start": 8646.28, + "end": 8648.42, + "probability": 0.975 + }, + { + "start": 8649.2, + "end": 8651.38, + "probability": 0.9895 + }, + { + "start": 8652.04, + "end": 8653.46, + "probability": 0.8247 + }, + { + "start": 8653.58, + "end": 8654.18, + "probability": 0.7585 + }, + { + "start": 8655.11, + "end": 8656.2, + "probability": 0.0421 + }, + { + "start": 8656.52, + "end": 8660.2, + "probability": 0.988 + }, + { + "start": 8660.54, + "end": 8662.24, + "probability": 0.9656 + }, + { + "start": 8662.44, + "end": 8663.24, + "probability": 0.4036 + }, + { + "start": 8663.5, + "end": 8663.5, + "probability": 0.1216 + }, + { + "start": 8663.5, + "end": 8663.5, + "probability": 0.2394 + }, + { + "start": 8663.5, + "end": 8665.92, + "probability": 0.8297 + }, + { + "start": 8665.98, + "end": 8670.35, + "probability": 0.9183 + }, + { + "start": 8670.78, + "end": 8671.39, + "probability": 0.6542 + }, + { + "start": 8672.42, + "end": 8675.12, + "probability": 0.6648 + }, + { + "start": 8675.64, + "end": 8678.78, + "probability": 0.9868 + }, + { + "start": 8679.0, + "end": 8682.5, + "probability": 0.9878 + }, + { + "start": 8682.92, + "end": 8683.88, + "probability": 0.7809 + }, + { + "start": 8684.24, + "end": 8685.24, + "probability": 0.7929 + }, + { + "start": 8685.84, + "end": 8687.8, + "probability": 0.1476 + }, + { + "start": 8687.94, + "end": 8688.5, + "probability": 0.1225 + }, + { + "start": 8689.16, + "end": 8690.42, + "probability": 0.6637 + }, + { + "start": 8691.12, + "end": 8691.96, + "probability": 0.0718 + }, + { + "start": 8692.42, + "end": 8693.68, + "probability": 0.6657 + }, + { + "start": 8694.0, + "end": 8695.76, + "probability": 0.7162 + }, + { + "start": 8696.12, + "end": 8697.58, + "probability": 0.3729 + }, + { + "start": 8697.66, + "end": 8699.52, + "probability": 0.3476 + }, + { + "start": 8699.94, + "end": 8702.52, + "probability": 0.0897 + }, + { + "start": 8704.04, + "end": 8705.3, + "probability": 0.2059 + }, + { + "start": 8705.5, + "end": 8707.16, + "probability": 0.6786 + }, + { + "start": 8707.92, + "end": 8708.1, + "probability": 0.0501 + }, + { + "start": 8708.1, + "end": 8708.1, + "probability": 0.0883 + }, + { + "start": 8708.1, + "end": 8708.1, + "probability": 0.2042 + }, + { + "start": 8708.1, + "end": 8710.65, + "probability": 0.68 + }, + { + "start": 8711.56, + "end": 8714.66, + "probability": 0.9358 + }, + { + "start": 8716.42, + "end": 8719.04, + "probability": 0.2944 + }, + { + "start": 8719.04, + "end": 8719.28, + "probability": 0.5823 + }, + { + "start": 8719.74, + "end": 8720.68, + "probability": 0.6652 + }, + { + "start": 8720.78, + "end": 8721.56, + "probability": 0.7529 + }, + { + "start": 8721.86, + "end": 8726.7, + "probability": 0.9807 + }, + { + "start": 8727.22, + "end": 8727.54, + "probability": 0.6695 + }, + { + "start": 8727.82, + "end": 8729.42, + "probability": 0.9665 + }, + { + "start": 8729.5, + "end": 8730.56, + "probability": 0.9653 + }, + { + "start": 8730.64, + "end": 8731.86, + "probability": 0.8905 + }, + { + "start": 8732.12, + "end": 8732.42, + "probability": 0.1166 + }, + { + "start": 8732.44, + "end": 8732.68, + "probability": 0.0096 + }, + { + "start": 8732.68, + "end": 8733.98, + "probability": 0.7032 + }, + { + "start": 8734.28, + "end": 8735.96, + "probability": 0.9286 + }, + { + "start": 8736.08, + "end": 8736.88, + "probability": 0.9567 + }, + { + "start": 8737.88, + "end": 8738.36, + "probability": 0.0693 + }, + { + "start": 8738.9, + "end": 8739.25, + "probability": 0.1577 + }, + { + "start": 8740.42, + "end": 8741.86, + "probability": 0.9387 + }, + { + "start": 8742.3, + "end": 8744.18, + "probability": 0.9985 + }, + { + "start": 8744.26, + "end": 8744.74, + "probability": 0.8352 + }, + { + "start": 8746.32, + "end": 8750.7, + "probability": 0.943 + }, + { + "start": 8751.78, + "end": 8756.2, + "probability": 0.9985 + }, + { + "start": 8757.44, + "end": 8760.88, + "probability": 0.9819 + }, + { + "start": 8761.92, + "end": 8763.68, + "probability": 0.9933 + }, + { + "start": 8764.42, + "end": 8769.98, + "probability": 0.9988 + }, + { + "start": 8770.46, + "end": 8770.95, + "probability": 0.8924 + }, + { + "start": 8772.2, + "end": 8773.18, + "probability": 0.8402 + }, + { + "start": 8774.0, + "end": 8774.72, + "probability": 0.852 + }, + { + "start": 8774.94, + "end": 8778.5, + "probability": 0.9497 + }, + { + "start": 8779.16, + "end": 8781.08, + "probability": 0.9811 + }, + { + "start": 8781.56, + "end": 8783.22, + "probability": 0.8777 + }, + { + "start": 8783.8, + "end": 8785.2, + "probability": 0.8051 + }, + { + "start": 8786.02, + "end": 8788.04, + "probability": 0.9457 + }, + { + "start": 8788.72, + "end": 8791.4, + "probability": 0.9897 + }, + { + "start": 8791.74, + "end": 8793.68, + "probability": 0.9784 + }, + { + "start": 8794.34, + "end": 8795.88, + "probability": 0.9445 + }, + { + "start": 8796.02, + "end": 8798.14, + "probability": 0.4258 + }, + { + "start": 8798.2, + "end": 8799.26, + "probability": 0.1212 + }, + { + "start": 8799.54, + "end": 8801.98, + "probability": 0.9447 + }, + { + "start": 8802.38, + "end": 8804.2, + "probability": 0.8975 + }, + { + "start": 8804.68, + "end": 8809.02, + "probability": 0.9462 + }, + { + "start": 8809.46, + "end": 8811.31, + "probability": 0.7676 + }, + { + "start": 8812.2, + "end": 8815.38, + "probability": 0.7998 + }, + { + "start": 8815.92, + "end": 8818.95, + "probability": 0.9524 + }, + { + "start": 8819.44, + "end": 8821.22, + "probability": 0.7717 + }, + { + "start": 8822.01, + "end": 8823.52, + "probability": 0.0677 + }, + { + "start": 8823.52, + "end": 8823.52, + "probability": 0.14 + }, + { + "start": 8823.52, + "end": 8823.52, + "probability": 0.0081 + }, + { + "start": 8823.62, + "end": 8824.88, + "probability": 0.4061 + }, + { + "start": 8826.6, + "end": 8826.96, + "probability": 0.6533 + }, + { + "start": 8827.6, + "end": 8828.18, + "probability": 0.1671 + }, + { + "start": 8829.08, + "end": 8829.08, + "probability": 0.0826 + }, + { + "start": 8829.08, + "end": 8829.18, + "probability": 0.097 + }, + { + "start": 8829.82, + "end": 8829.92, + "probability": 0.1787 + }, + { + "start": 8830.52, + "end": 8832.16, + "probability": 0.6702 + }, + { + "start": 8832.44, + "end": 8832.5, + "probability": 0.4598 + }, + { + "start": 8832.5, + "end": 8839.24, + "probability": 0.9717 + }, + { + "start": 8839.34, + "end": 8840.88, + "probability": 0.9408 + }, + { + "start": 8841.66, + "end": 8843.14, + "probability": 0.9871 + }, + { + "start": 8843.8, + "end": 8846.52, + "probability": 0.9976 + }, + { + "start": 8847.06, + "end": 8848.84, + "probability": 0.9972 + }, + { + "start": 8849.6, + "end": 8849.78, + "probability": 0.8772 + }, + { + "start": 8850.36, + "end": 8851.02, + "probability": 0.661 + }, + { + "start": 8851.74, + "end": 8852.88, + "probability": 0.9786 + }, + { + "start": 8853.24, + "end": 8857.22, + "probability": 0.9986 + }, + { + "start": 8857.22, + "end": 8861.64, + "probability": 0.981 + }, + { + "start": 8862.02, + "end": 8863.16, + "probability": 0.998 + }, + { + "start": 8863.6, + "end": 8864.62, + "probability": 0.8403 + }, + { + "start": 8864.7, + "end": 8865.84, + "probability": 0.8721 + }, + { + "start": 8867.32, + "end": 8871.28, + "probability": 0.7595 + }, + { + "start": 8871.98, + "end": 8873.12, + "probability": 0.5753 + }, + { + "start": 8873.12, + "end": 8878.06, + "probability": 0.9272 + }, + { + "start": 8878.12, + "end": 8879.9, + "probability": 0.999 + }, + { + "start": 8881.42, + "end": 8882.74, + "probability": 0.8568 + }, + { + "start": 8883.34, + "end": 8884.92, + "probability": 0.9263 + }, + { + "start": 8885.48, + "end": 8887.88, + "probability": 0.0753 + }, + { + "start": 8889.25, + "end": 8890.52, + "probability": 0.0717 + }, + { + "start": 8890.58, + "end": 8891.54, + "probability": 0.7131 + }, + { + "start": 8891.66, + "end": 8892.5, + "probability": 0.6979 + }, + { + "start": 8892.82, + "end": 8895.68, + "probability": 0.9523 + }, + { + "start": 8896.78, + "end": 8905.52, + "probability": 0.9771 + }, + { + "start": 8905.94, + "end": 8911.5, + "probability": 0.999 + }, + { + "start": 8912.26, + "end": 8914.69, + "probability": 0.9985 + }, + { + "start": 8915.6, + "end": 8919.96, + "probability": 0.9633 + }, + { + "start": 8920.12, + "end": 8920.64, + "probability": 0.3227 + }, + { + "start": 8920.84, + "end": 8921.32, + "probability": 0.4849 + }, + { + "start": 8921.5, + "end": 8924.18, + "probability": 0.6594 + }, + { + "start": 8924.48, + "end": 8925.56, + "probability": 0.8469 + }, + { + "start": 8925.56, + "end": 8925.72, + "probability": 0.4867 + }, + { + "start": 8925.82, + "end": 8926.82, + "probability": 0.5859 + }, + { + "start": 8926.86, + "end": 8929.98, + "probability": 0.4214 + }, + { + "start": 8930.46, + "end": 8931.36, + "probability": 0.374 + }, + { + "start": 8931.36, + "end": 8931.36, + "probability": 0.0403 + }, + { + "start": 8931.36, + "end": 8931.64, + "probability": 0.5556 + }, + { + "start": 8932.0, + "end": 8932.42, + "probability": 0.1638 + }, + { + "start": 8932.42, + "end": 8934.43, + "probability": 0.5134 + }, + { + "start": 8937.84, + "end": 8939.54, + "probability": 0.6389 + }, + { + "start": 8947.07, + "end": 8948.82, + "probability": 0.6726 + }, + { + "start": 8949.14, + "end": 8949.7, + "probability": 0.8714 + }, + { + "start": 8950.16, + "end": 8952.08, + "probability": 0.8502 + }, + { + "start": 8952.08, + "end": 8952.08, + "probability": 0.0017 + }, + { + "start": 8954.9, + "end": 8958.58, + "probability": 0.8203 + }, + { + "start": 8958.98, + "end": 8961.24, + "probability": 0.5923 + }, + { + "start": 8961.32, + "end": 8962.32, + "probability": 0.7764 + }, + { + "start": 8962.54, + "end": 8963.08, + "probability": 0.6001 + }, + { + "start": 8963.2, + "end": 8965.82, + "probability": 0.925 + }, + { + "start": 8967.02, + "end": 8970.54, + "probability": 0.8613 + }, + { + "start": 8970.58, + "end": 8972.18, + "probability": 0.8845 + }, + { + "start": 8972.56, + "end": 8975.74, + "probability": 0.9902 + }, + { + "start": 8975.74, + "end": 8979.02, + "probability": 0.9987 + }, + { + "start": 8979.28, + "end": 8982.98, + "probability": 0.9895 + }, + { + "start": 8983.36, + "end": 8985.92, + "probability": 0.9284 + }, + { + "start": 8985.92, + "end": 8990.88, + "probability": 0.9803 + }, + { + "start": 8991.24, + "end": 8995.78, + "probability": 0.9859 + }, + { + "start": 8996.46, + "end": 8997.04, + "probability": 0.71 + }, + { + "start": 8997.84, + "end": 8998.6, + "probability": 0.7476 + }, + { + "start": 8998.7, + "end": 9000.76, + "probability": 0.9927 + }, + { + "start": 9000.98, + "end": 9002.44, + "probability": 0.9341 + }, + { + "start": 9002.88, + "end": 9005.68, + "probability": 0.9951 + }, + { + "start": 9006.7, + "end": 9007.9, + "probability": 0.3856 + }, + { + "start": 9008.72, + "end": 9009.76, + "probability": 0.9102 + }, + { + "start": 9010.32, + "end": 9011.04, + "probability": 0.8984 + }, + { + "start": 9011.86, + "end": 9014.76, + "probability": 0.9261 + }, + { + "start": 9015.16, + "end": 9016.3, + "probability": 0.7437 + }, + { + "start": 9016.42, + "end": 9016.88, + "probability": 0.6452 + }, + { + "start": 9017.3, + "end": 9018.08, + "probability": 0.9521 + }, + { + "start": 9018.6, + "end": 9019.92, + "probability": 0.7126 + }, + { + "start": 9021.0, + "end": 9022.58, + "probability": 0.8608 + }, + { + "start": 9022.68, + "end": 9022.9, + "probability": 0.6981 + }, + { + "start": 9022.98, + "end": 9023.77, + "probability": 0.9134 + }, + { + "start": 9024.54, + "end": 9025.36, + "probability": 0.9548 + }, + { + "start": 9025.94, + "end": 9026.92, + "probability": 0.9703 + }, + { + "start": 9027.66, + "end": 9031.43, + "probability": 0.9743 + }, + { + "start": 9033.78, + "end": 9033.78, + "probability": 0.0844 + }, + { + "start": 9033.78, + "end": 9037.9, + "probability": 0.965 + }, + { + "start": 9038.64, + "end": 9041.96, + "probability": 0.9958 + }, + { + "start": 9042.12, + "end": 9044.24, + "probability": 0.9854 + }, + { + "start": 9044.94, + "end": 9049.06, + "probability": 0.9647 + }, + { + "start": 9049.3, + "end": 9050.3, + "probability": 0.9971 + }, + { + "start": 9050.86, + "end": 9055.18, + "probability": 0.8328 + }, + { + "start": 9055.62, + "end": 9057.06, + "probability": 0.9717 + }, + { + "start": 9057.6, + "end": 9058.41, + "probability": 0.7259 + }, + { + "start": 9059.22, + "end": 9060.9, + "probability": 0.9956 + }, + { + "start": 9061.02, + "end": 9062.38, + "probability": 0.984 + }, + { + "start": 9062.84, + "end": 9063.8, + "probability": 0.9661 + }, + { + "start": 9063.86, + "end": 9064.58, + "probability": 0.9874 + }, + { + "start": 9064.94, + "end": 9066.2, + "probability": 0.9374 + }, + { + "start": 9067.2, + "end": 9070.56, + "probability": 0.994 + }, + { + "start": 9071.66, + "end": 9073.44, + "probability": 0.9964 + }, + { + "start": 9074.02, + "end": 9077.2, + "probability": 0.999 + }, + { + "start": 9077.94, + "end": 9080.12, + "probability": 0.9687 + }, + { + "start": 9080.62, + "end": 9081.72, + "probability": 0.9094 + }, + { + "start": 9081.78, + "end": 9085.16, + "probability": 0.8695 + }, + { + "start": 9085.34, + "end": 9085.82, + "probability": 0.627 + }, + { + "start": 9086.24, + "end": 9087.14, + "probability": 0.5117 + }, + { + "start": 9087.46, + "end": 9088.26, + "probability": 0.8506 + }, + { + "start": 9089.0, + "end": 9092.44, + "probability": 0.9851 + }, + { + "start": 9093.08, + "end": 9093.68, + "probability": 0.9009 + }, + { + "start": 9094.0, + "end": 9096.1, + "probability": 0.9803 + }, + { + "start": 9096.24, + "end": 9098.4, + "probability": 0.9903 + }, + { + "start": 9098.86, + "end": 9099.52, + "probability": 0.96 + }, + { + "start": 9100.46, + "end": 9102.64, + "probability": 0.5756 + }, + { + "start": 9102.78, + "end": 9103.8, + "probability": 0.708 + }, + { + "start": 9104.52, + "end": 9106.96, + "probability": 0.8625 + }, + { + "start": 9107.08, + "end": 9108.8, + "probability": 0.7916 + }, + { + "start": 9109.12, + "end": 9109.68, + "probability": 0.7553 + }, + { + "start": 9109.7, + "end": 9110.32, + "probability": 0.9378 + }, + { + "start": 9110.64, + "end": 9111.74, + "probability": 0.9066 + }, + { + "start": 9112.12, + "end": 9113.6, + "probability": 0.9915 + }, + { + "start": 9114.14, + "end": 9116.78, + "probability": 0.9917 + }, + { + "start": 9117.02, + "end": 9119.6, + "probability": 0.9868 + }, + { + "start": 9120.32, + "end": 9121.56, + "probability": 0.98 + }, + { + "start": 9121.72, + "end": 9123.05, + "probability": 0.9926 + }, + { + "start": 9123.68, + "end": 9125.0, + "probability": 0.9653 + }, + { + "start": 9125.14, + "end": 9127.22, + "probability": 0.9093 + }, + { + "start": 9127.98, + "end": 9130.1, + "probability": 0.8294 + }, + { + "start": 9130.86, + "end": 9132.86, + "probability": 0.9765 + }, + { + "start": 9133.1, + "end": 9134.28, + "probability": 0.9892 + }, + { + "start": 9134.32, + "end": 9136.24, + "probability": 0.9946 + }, + { + "start": 9137.08, + "end": 9140.02, + "probability": 0.8201 + }, + { + "start": 9140.62, + "end": 9144.12, + "probability": 0.9844 + }, + { + "start": 9144.24, + "end": 9148.1, + "probability": 0.9565 + }, + { + "start": 9148.62, + "end": 9150.44, + "probability": 0.6902 + }, + { + "start": 9150.56, + "end": 9150.76, + "probability": 0.3559 + }, + { + "start": 9150.78, + "end": 9151.3, + "probability": 0.6855 + }, + { + "start": 9151.74, + "end": 9155.2, + "probability": 0.9953 + }, + { + "start": 9155.72, + "end": 9160.72, + "probability": 0.9917 + }, + { + "start": 9161.3, + "end": 9162.6, + "probability": 0.9625 + }, + { + "start": 9162.7, + "end": 9166.56, + "probability": 0.9373 + }, + { + "start": 9166.7, + "end": 9169.74, + "probability": 0.9734 + }, + { + "start": 9170.14, + "end": 9171.88, + "probability": 0.9954 + }, + { + "start": 9172.58, + "end": 9176.78, + "probability": 0.9985 + }, + { + "start": 9177.14, + "end": 9178.32, + "probability": 0.609 + }, + { + "start": 9178.8, + "end": 9180.62, + "probability": 0.7202 + }, + { + "start": 9181.02, + "end": 9182.7, + "probability": 0.8743 + }, + { + "start": 9183.12, + "end": 9184.38, + "probability": 0.9893 + }, + { + "start": 9184.84, + "end": 9188.56, + "probability": 0.9929 + }, + { + "start": 9188.96, + "end": 9190.36, + "probability": 0.9523 + }, + { + "start": 9190.36, + "end": 9192.2, + "probability": 0.922 + }, + { + "start": 9192.62, + "end": 9193.62, + "probability": 0.7776 + }, + { + "start": 9193.8, + "end": 9193.9, + "probability": 0.2054 + }, + { + "start": 9194.02, + "end": 9194.72, + "probability": 0.6792 + }, + { + "start": 9195.08, + "end": 9195.92, + "probability": 0.8043 + }, + { + "start": 9196.04, + "end": 9197.23, + "probability": 0.8926 + }, + { + "start": 9197.88, + "end": 9198.5, + "probability": 0.9602 + }, + { + "start": 9198.86, + "end": 9199.5, + "probability": 0.657 + }, + { + "start": 9199.6, + "end": 9200.68, + "probability": 0.7045 + }, + { + "start": 9201.02, + "end": 9201.56, + "probability": 0.3372 + }, + { + "start": 9201.6, + "end": 9204.88, + "probability": 0.9783 + }, + { + "start": 9205.4, + "end": 9206.5, + "probability": 0.9644 + }, + { + "start": 9206.56, + "end": 9208.7, + "probability": 0.9897 + }, + { + "start": 9208.9, + "end": 9209.68, + "probability": 0.9045 + }, + { + "start": 9209.96, + "end": 9210.4, + "probability": 0.5578 + }, + { + "start": 9210.8, + "end": 9211.54, + "probability": 0.5228 + }, + { + "start": 9211.58, + "end": 9212.1, + "probability": 0.5627 + }, + { + "start": 9212.56, + "end": 9215.66, + "probability": 0.9354 + }, + { + "start": 9215.7, + "end": 9217.84, + "probability": 0.8454 + }, + { + "start": 9217.84, + "end": 9218.28, + "probability": 0.6913 + }, + { + "start": 9218.54, + "end": 9219.9, + "probability": 0.6603 + }, + { + "start": 9220.06, + "end": 9223.06, + "probability": 0.3292 + }, + { + "start": 9225.44, + "end": 9226.22, + "probability": 0.2072 + }, + { + "start": 9226.22, + "end": 9226.22, + "probability": 0.026 + }, + { + "start": 9226.22, + "end": 9226.83, + "probability": 0.5724 + }, + { + "start": 9236.2, + "end": 9237.58, + "probability": 0.8142 + }, + { + "start": 9238.22, + "end": 9239.82, + "probability": 0.9951 + }, + { + "start": 9239.94, + "end": 9240.59, + "probability": 0.9707 + }, + { + "start": 9240.82, + "end": 9242.92, + "probability": 0.8242 + }, + { + "start": 9244.02, + "end": 9244.22, + "probability": 0.6151 + }, + { + "start": 9244.36, + "end": 9246.12, + "probability": 0.9956 + }, + { + "start": 9246.16, + "end": 9246.86, + "probability": 0.9053 + }, + { + "start": 9247.18, + "end": 9248.14, + "probability": 0.9639 + }, + { + "start": 9248.18, + "end": 9251.64, + "probability": 0.9655 + }, + { + "start": 9251.72, + "end": 9252.28, + "probability": 0.4788 + }, + { + "start": 9252.3, + "end": 9254.51, + "probability": 0.8965 + }, + { + "start": 9254.82, + "end": 9255.5, + "probability": 0.7747 + }, + { + "start": 9255.66, + "end": 9257.76, + "probability": 0.6978 + }, + { + "start": 9257.98, + "end": 9258.1, + "probability": 0.0316 + }, + { + "start": 9259.78, + "end": 9259.84, + "probability": 0.0896 + }, + { + "start": 9259.84, + "end": 9259.96, + "probability": 0.1787 + }, + { + "start": 9260.22, + "end": 9260.54, + "probability": 0.5617 + }, + { + "start": 9260.7, + "end": 9260.96, + "probability": 0.4113 + }, + { + "start": 9261.02, + "end": 9261.26, + "probability": 0.2883 + }, + { + "start": 9261.28, + "end": 9263.44, + "probability": 0.6445 + }, + { + "start": 9264.74, + "end": 9265.8, + "probability": 0.9968 + }, + { + "start": 9265.88, + "end": 9267.16, + "probability": 0.974 + }, + { + "start": 9268.42, + "end": 9269.32, + "probability": 0.7927 + }, + { + "start": 9269.44, + "end": 9271.38, + "probability": 0.9937 + }, + { + "start": 9272.2, + "end": 9272.47, + "probability": 0.9655 + }, + { + "start": 9273.18, + "end": 9274.76, + "probability": 0.9972 + }, + { + "start": 9275.44, + "end": 9275.84, + "probability": 0.9388 + }, + { + "start": 9276.58, + "end": 9277.32, + "probability": 0.9595 + }, + { + "start": 9277.32, + "end": 9277.96, + "probability": 0.9827 + }, + { + "start": 9278.32, + "end": 9278.98, + "probability": 0.9591 + }, + { + "start": 9279.28, + "end": 9282.0, + "probability": 0.9961 + }, + { + "start": 9282.0, + "end": 9287.28, + "probability": 0.9712 + }, + { + "start": 9287.94, + "end": 9289.08, + "probability": 0.9557 + }, + { + "start": 9289.9, + "end": 9292.28, + "probability": 0.9912 + }, + { + "start": 9292.96, + "end": 9294.36, + "probability": 0.8477 + }, + { + "start": 9295.8, + "end": 9296.72, + "probability": 0.6574 + }, + { + "start": 9297.78, + "end": 9298.42, + "probability": 0.6908 + }, + { + "start": 9298.7, + "end": 9301.36, + "probability": 0.8389 + }, + { + "start": 9302.26, + "end": 9303.1, + "probability": 0.9453 + }, + { + "start": 9303.86, + "end": 9307.0, + "probability": 0.9701 + }, + { + "start": 9308.9, + "end": 9311.12, + "probability": 0.5015 + }, + { + "start": 9311.12, + "end": 9313.16, + "probability": 0.9453 + }, + { + "start": 9314.3, + "end": 9314.74, + "probability": 0.5045 + }, + { + "start": 9314.78, + "end": 9315.49, + "probability": 0.774 + }, + { + "start": 9315.9, + "end": 9317.9, + "probability": 0.9327 + }, + { + "start": 9318.8, + "end": 9319.34, + "probability": 0.3554 + }, + { + "start": 9319.34, + "end": 9320.53, + "probability": 0.6892 + }, + { + "start": 9320.62, + "end": 9321.12, + "probability": 0.5137 + }, + { + "start": 9321.2, + "end": 9326.96, + "probability": 0.9528 + }, + { + "start": 9327.5, + "end": 9329.16, + "probability": 0.9792 + }, + { + "start": 9329.74, + "end": 9331.14, + "probability": 0.6744 + }, + { + "start": 9331.66, + "end": 9331.96, + "probability": 0.0063 + }, + { + "start": 9331.96, + "end": 9331.98, + "probability": 0.0845 + }, + { + "start": 9331.98, + "end": 9331.98, + "probability": 0.033 + }, + { + "start": 9331.98, + "end": 9332.44, + "probability": 0.521 + }, + { + "start": 9332.88, + "end": 9333.5, + "probability": 0.8507 + }, + { + "start": 9334.88, + "end": 9335.92, + "probability": 0.4966 + }, + { + "start": 9336.14, + "end": 9337.47, + "probability": 0.4279 + }, + { + "start": 9338.21, + "end": 9338.94, + "probability": 0.6778 + }, + { + "start": 9339.99, + "end": 9340.7, + "probability": 0.0278 + }, + { + "start": 9340.94, + "end": 9340.96, + "probability": 0.2093 + }, + { + "start": 9340.96, + "end": 9341.26, + "probability": 0.2902 + }, + { + "start": 9341.44, + "end": 9341.9, + "probability": 0.42 + }, + { + "start": 9342.06, + "end": 9343.98, + "probability": 0.713 + }, + { + "start": 9344.68, + "end": 9345.04, + "probability": 0.6005 + }, + { + "start": 9345.68, + "end": 9346.3, + "probability": 0.9373 + }, + { + "start": 9346.72, + "end": 9347.68, + "probability": 0.5305 + }, + { + "start": 9348.04, + "end": 9349.1, + "probability": 0.7248 + }, + { + "start": 9349.16, + "end": 9349.68, + "probability": 0.4215 + }, + { + "start": 9349.72, + "end": 9350.58, + "probability": 0.4858 + }, + { + "start": 9351.5, + "end": 9351.96, + "probability": 0.3744 + }, + { + "start": 9351.96, + "end": 9351.96, + "probability": 0.081 + }, + { + "start": 9351.96, + "end": 9352.76, + "probability": 0.0065 + }, + { + "start": 9353.34, + "end": 9354.7, + "probability": 0.7206 + }, + { + "start": 9355.22, + "end": 9356.4, + "probability": 0.9404 + }, + { + "start": 9357.5, + "end": 9359.78, + "probability": 0.9813 + }, + { + "start": 9360.58, + "end": 9362.65, + "probability": 0.9558 + }, + { + "start": 9363.58, + "end": 9364.24, + "probability": 0.0859 + }, + { + "start": 9364.7, + "end": 9366.64, + "probability": 0.2985 + }, + { + "start": 9366.82, + "end": 9368.06, + "probability": 0.1351 + }, + { + "start": 9368.06, + "end": 9369.62, + "probability": 0.366 + }, + { + "start": 9370.42, + "end": 9370.42, + "probability": 0.0731 + }, + { + "start": 9370.42, + "end": 9370.42, + "probability": 0.6246 + }, + { + "start": 9370.42, + "end": 9373.16, + "probability": 0.6346 + }, + { + "start": 9373.48, + "end": 9376.58, + "probability": 0.6595 + }, + { + "start": 9376.94, + "end": 9379.48, + "probability": 0.614 + }, + { + "start": 9380.06, + "end": 9380.54, + "probability": 0.7771 + }, + { + "start": 9381.26, + "end": 9382.74, + "probability": 0.7501 + }, + { + "start": 9383.66, + "end": 9387.12, + "probability": 0.9907 + }, + { + "start": 9387.9, + "end": 9391.32, + "probability": 0.5997 + }, + { + "start": 9391.84, + "end": 9392.62, + "probability": 0.8341 + }, + { + "start": 9392.7, + "end": 9393.36, + "probability": 0.9769 + }, + { + "start": 9393.48, + "end": 9394.38, + "probability": 0.601 + }, + { + "start": 9394.78, + "end": 9397.08, + "probability": 0.7468 + }, + { + "start": 9398.16, + "end": 9398.94, + "probability": 0.0044 + }, + { + "start": 9399.12, + "end": 9399.22, + "probability": 0.0321 + }, + { + "start": 9399.22, + "end": 9399.28, + "probability": 0.2275 + }, + { + "start": 9399.28, + "end": 9399.28, + "probability": 0.3845 + }, + { + "start": 9399.28, + "end": 9401.14, + "probability": 0.6799 + }, + { + "start": 9401.94, + "end": 9407.6, + "probability": 0.8083 + }, + { + "start": 9408.19, + "end": 9409.94, + "probability": 0.7273 + }, + { + "start": 9410.0, + "end": 9411.42, + "probability": 0.7382 + }, + { + "start": 9412.08, + "end": 9413.78, + "probability": 0.7457 + }, + { + "start": 9414.4, + "end": 9414.42, + "probability": 0.0759 + }, + { + "start": 9414.42, + "end": 9414.42, + "probability": 0.0363 + }, + { + "start": 9414.42, + "end": 9414.42, + "probability": 0.0813 + }, + { + "start": 9414.42, + "end": 9415.92, + "probability": 0.802 + }, + { + "start": 9416.0, + "end": 9418.1, + "probability": 0.9648 + }, + { + "start": 9418.76, + "end": 9420.36, + "probability": 0.97 + }, + { + "start": 9420.94, + "end": 9423.44, + "probability": 0.8956 + }, + { + "start": 9423.98, + "end": 9425.72, + "probability": 0.9937 + }, + { + "start": 9426.52, + "end": 9427.5, + "probability": 0.1523 + }, + { + "start": 9427.5, + "end": 9430.76, + "probability": 0.9177 + }, + { + "start": 9431.44, + "end": 9432.38, + "probability": 0.754 + }, + { + "start": 9433.04, + "end": 9436.66, + "probability": 0.9201 + }, + { + "start": 9437.22, + "end": 9438.12, + "probability": 0.0967 + }, + { + "start": 9438.12, + "end": 9438.16, + "probability": 0.0595 + }, + { + "start": 9438.18, + "end": 9438.32, + "probability": 0.1269 + }, + { + "start": 9438.52, + "end": 9439.29, + "probability": 0.4767 + }, + { + "start": 9439.46, + "end": 9440.58, + "probability": 0.9073 + }, + { + "start": 9441.24, + "end": 9441.4, + "probability": 0.6582 + }, + { + "start": 9441.58, + "end": 9442.76, + "probability": 0.7378 + }, + { + "start": 9442.82, + "end": 9443.92, + "probability": 0.6644 + }, + { + "start": 9444.12, + "end": 9447.12, + "probability": 0.0432 + }, + { + "start": 9448.16, + "end": 9448.8, + "probability": 0.0367 + }, + { + "start": 9448.82, + "end": 9449.14, + "probability": 0.0239 + }, + { + "start": 9449.14, + "end": 9449.16, + "probability": 0.1237 + }, + { + "start": 9449.16, + "end": 9449.4, + "probability": 0.1442 + }, + { + "start": 9449.94, + "end": 9450.14, + "probability": 0.1849 + }, + { + "start": 9450.7, + "end": 9451.54, + "probability": 0.4319 + }, + { + "start": 9452.4, + "end": 9452.92, + "probability": 0.2797 + }, + { + "start": 9455.14, + "end": 9455.26, + "probability": 0.0178 + }, + { + "start": 9455.26, + "end": 9455.26, + "probability": 0.1008 + }, + { + "start": 9455.26, + "end": 9455.36, + "probability": 0.0304 + }, + { + "start": 9455.36, + "end": 9457.3, + "probability": 0.4004 + }, + { + "start": 9457.3, + "end": 9457.3, + "probability": 0.4589 + }, + { + "start": 9457.3, + "end": 9457.84, + "probability": 0.3812 + }, + { + "start": 9458.08, + "end": 9460.34, + "probability": 0.7334 + }, + { + "start": 9460.44, + "end": 9461.42, + "probability": 0.5769 + }, + { + "start": 9461.68, + "end": 9462.62, + "probability": 0.6759 + }, + { + "start": 9462.64, + "end": 9463.04, + "probability": 0.7641 + }, + { + "start": 9463.04, + "end": 9465.08, + "probability": 0.6498 + }, + { + "start": 9465.14, + "end": 9465.42, + "probability": 0.6787 + }, + { + "start": 9465.52, + "end": 9466.1, + "probability": 0.2463 + }, + { + "start": 9466.2, + "end": 9466.2, + "probability": 0.0763 + }, + { + "start": 9466.28, + "end": 9466.6, + "probability": 0.976 + }, + { + "start": 9466.84, + "end": 9469.94, + "probability": 0.7251 + }, + { + "start": 9484.96, + "end": 9485.66, + "probability": 0.3416 + }, + { + "start": 9485.66, + "end": 9485.73, + "probability": 0.0612 + }, + { + "start": 9485.82, + "end": 9485.82, + "probability": 0.2442 + }, + { + "start": 9485.82, + "end": 9485.86, + "probability": 0.025 + }, + { + "start": 9485.86, + "end": 9486.62, + "probability": 0.0671 + }, + { + "start": 9486.85, + "end": 9488.7, + "probability": 0.1848 + }, + { + "start": 9489.02, + "end": 9489.02, + "probability": 0.0156 + }, + { + "start": 9489.82, + "end": 9491.0, + "probability": 0.0232 + }, + { + "start": 9491.0, + "end": 9491.66, + "probability": 0.0736 + }, + { + "start": 9492.48, + "end": 9492.93, + "probability": 0.0265 + }, + { + "start": 9495.1, + "end": 9496.57, + "probability": 0.1282 + }, + { + "start": 9497.58, + "end": 9498.02, + "probability": 0.0277 + }, + { + "start": 9501.66, + "end": 9502.76, + "probability": 0.5719 + }, + { + "start": 9504.26, + "end": 9508.46, + "probability": 0.0543 + }, + { + "start": 9508.7, + "end": 9512.28, + "probability": 0.2514 + }, + { + "start": 9512.84, + "end": 9513.16, + "probability": 0.1383 + }, + { + "start": 9513.16, + "end": 9515.49, + "probability": 0.0264 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.0, + "end": 9529.0, + "probability": 0.0 + }, + { + "start": 9529.2, + "end": 9529.3, + "probability": 0.0644 + }, + { + "start": 9529.3, + "end": 9529.4, + "probability": 0.0541 + }, + { + "start": 9529.7, + "end": 9531.62, + "probability": 0.9618 + }, + { + "start": 9531.92, + "end": 9534.18, + "probability": 0.7723 + }, + { + "start": 9534.46, + "end": 9536.22, + "probability": 0.8397 + }, + { + "start": 9536.42, + "end": 9538.16, + "probability": 0.9858 + }, + { + "start": 9538.38, + "end": 9542.2, + "probability": 0.9636 + }, + { + "start": 9542.4, + "end": 9543.98, + "probability": 0.8486 + }, + { + "start": 9544.38, + "end": 9545.32, + "probability": 0.7183 + }, + { + "start": 9545.46, + "end": 9547.96, + "probability": 0.9702 + }, + { + "start": 9548.64, + "end": 9551.08, + "probability": 0.7551 + }, + { + "start": 9551.52, + "end": 9552.3, + "probability": 0.666 + }, + { + "start": 9553.04, + "end": 9553.72, + "probability": 0.0706 + }, + { + "start": 9553.76, + "end": 9554.36, + "probability": 0.6968 + }, + { + "start": 9554.5, + "end": 9555.16, + "probability": 0.6395 + }, + { + "start": 9555.26, + "end": 9555.78, + "probability": 0.6112 + }, + { + "start": 9555.86, + "end": 9556.32, + "probability": 0.5463 + }, + { + "start": 9556.38, + "end": 9556.56, + "probability": 0.2969 + }, + { + "start": 9556.72, + "end": 9557.56, + "probability": 0.9771 + }, + { + "start": 9558.96, + "end": 9560.28, + "probability": 0.6497 + }, + { + "start": 9560.28, + "end": 9560.42, + "probability": 0.5392 + }, + { + "start": 9560.58, + "end": 9560.98, + "probability": 0.5912 + }, + { + "start": 9561.08, + "end": 9563.7, + "probability": 0.5784 + }, + { + "start": 9563.78, + "end": 9563.92, + "probability": 0.0104 + }, + { + "start": 9563.92, + "end": 9564.86, + "probability": 0.0525 + }, + { + "start": 9565.18, + "end": 9565.32, + "probability": 0.2083 + }, + { + "start": 9565.32, + "end": 9565.32, + "probability": 0.4916 + }, + { + "start": 9565.32, + "end": 9565.32, + "probability": 0.0845 + }, + { + "start": 9565.32, + "end": 9566.48, + "probability": 0.9101 + }, + { + "start": 9567.48, + "end": 9569.26, + "probability": 0.8754 + }, + { + "start": 9569.5, + "end": 9570.6, + "probability": 0.6314 + }, + { + "start": 9570.64, + "end": 9570.64, + "probability": 0.0655 + }, + { + "start": 9570.64, + "end": 9570.66, + "probability": 0.3835 + }, + { + "start": 9570.66, + "end": 9571.68, + "probability": 0.5001 + }, + { + "start": 9571.8, + "end": 9572.92, + "probability": 0.8625 + }, + { + "start": 9573.4, + "end": 9573.58, + "probability": 0.9185 + }, + { + "start": 9574.2, + "end": 9578.9, + "probability": 0.3041 + }, + { + "start": 9580.12, + "end": 9580.36, + "probability": 0.0991 + }, + { + "start": 9580.36, + "end": 9580.36, + "probability": 0.1244 + }, + { + "start": 9580.36, + "end": 9580.88, + "probability": 0.0173 + }, + { + "start": 9581.18, + "end": 9583.22, + "probability": 0.6604 + }, + { + "start": 9583.44, + "end": 9583.98, + "probability": 0.8192 + }, + { + "start": 9584.26, + "end": 9584.92, + "probability": 0.8446 + }, + { + "start": 9586.0, + "end": 9587.72, + "probability": 0.9727 + }, + { + "start": 9588.66, + "end": 9589.67, + "probability": 0.995 + }, + { + "start": 9589.98, + "end": 9591.76, + "probability": 0.8675 + }, + { + "start": 9592.3, + "end": 9592.52, + "probability": 0.6989 + }, + { + "start": 9592.6, + "end": 9593.26, + "probability": 0.4007 + }, + { + "start": 9593.48, + "end": 9593.96, + "probability": 0.3098 + }, + { + "start": 9594.4, + "end": 9595.74, + "probability": 0.7038 + }, + { + "start": 9596.34, + "end": 9597.9, + "probability": 0.9217 + }, + { + "start": 9598.5, + "end": 9599.64, + "probability": 0.5858 + }, + { + "start": 9599.74, + "end": 9601.42, + "probability": 0.9863 + }, + { + "start": 9601.66, + "end": 9602.02, + "probability": 0.2805 + }, + { + "start": 9602.06, + "end": 9604.78, + "probability": 0.5095 + }, + { + "start": 9604.9, + "end": 9606.06, + "probability": 0.4033 + }, + { + "start": 9607.44, + "end": 9608.2, + "probability": 0.5046 + }, + { + "start": 9608.28, + "end": 9608.84, + "probability": 0.7274 + }, + { + "start": 9610.12, + "end": 9611.56, + "probability": 0.4459 + }, + { + "start": 9619.84, + "end": 9622.1, + "probability": 0.7444 + }, + { + "start": 9623.88, + "end": 9628.74, + "probability": 0.9948 + }, + { + "start": 9629.9, + "end": 9630.92, + "probability": 0.813 + }, + { + "start": 9632.14, + "end": 9633.54, + "probability": 0.9067 + }, + { + "start": 9635.32, + "end": 9637.66, + "probability": 0.8814 + }, + { + "start": 9640.3, + "end": 9640.7, + "probability": 0.806 + }, + { + "start": 9642.16, + "end": 9646.88, + "probability": 0.6685 + }, + { + "start": 9647.92, + "end": 9649.12, + "probability": 0.7556 + }, + { + "start": 9649.9, + "end": 9653.38, + "probability": 0.9867 + }, + { + "start": 9653.52, + "end": 9656.76, + "probability": 0.9387 + }, + { + "start": 9657.52, + "end": 9658.94, + "probability": 0.6584 + }, + { + "start": 9659.88, + "end": 9663.52, + "probability": 0.7708 + }, + { + "start": 9663.66, + "end": 9664.5, + "probability": 0.6082 + }, + { + "start": 9665.3, + "end": 9665.39, + "probability": 0.1587 + }, + { + "start": 9666.58, + "end": 9667.86, + "probability": 0.731 + }, + { + "start": 9668.0, + "end": 9670.54, + "probability": 0.815 + }, + { + "start": 9670.72, + "end": 9671.06, + "probability": 0.1141 + }, + { + "start": 9671.12, + "end": 9672.06, + "probability": 0.5568 + }, + { + "start": 9672.38, + "end": 9672.68, + "probability": 0.8079 + }, + { + "start": 9672.78, + "end": 9674.46, + "probability": 0.9879 + }, + { + "start": 9674.92, + "end": 9676.98, + "probability": 0.9478 + }, + { + "start": 9678.24, + "end": 9681.62, + "probability": 0.9325 + }, + { + "start": 9682.28, + "end": 9683.22, + "probability": 0.6546 + }, + { + "start": 9683.76, + "end": 9684.28, + "probability": 0.9314 + }, + { + "start": 9685.56, + "end": 9688.06, + "probability": 0.8706 + }, + { + "start": 9689.16, + "end": 9690.42, + "probability": 0.9478 + }, + { + "start": 9692.0, + "end": 9692.86, + "probability": 0.9829 + }, + { + "start": 9694.2, + "end": 9698.26, + "probability": 0.9886 + }, + { + "start": 9700.5, + "end": 9702.04, + "probability": 0.8171 + }, + { + "start": 9702.62, + "end": 9703.26, + "probability": 0.7523 + }, + { + "start": 9704.96, + "end": 9708.32, + "probability": 0.9664 + }, + { + "start": 9708.8, + "end": 9709.26, + "probability": 0.485 + }, + { + "start": 9710.36, + "end": 9711.0, + "probability": 0.8494 + }, + { + "start": 9711.62, + "end": 9712.78, + "probability": 0.7152 + }, + { + "start": 9712.9, + "end": 9716.36, + "probability": 0.8277 + }, + { + "start": 9717.16, + "end": 9718.14, + "probability": 0.6473 + }, + { + "start": 9719.12, + "end": 9719.7, + "probability": 0.923 + }, + { + "start": 9721.52, + "end": 9722.58, + "probability": 0.8155 + }, + { + "start": 9723.36, + "end": 9724.76, + "probability": 0.6631 + }, + { + "start": 9724.94, + "end": 9725.88, + "probability": 0.8564 + }, + { + "start": 9726.86, + "end": 9728.54, + "probability": 0.9835 + }, + { + "start": 9729.28, + "end": 9730.16, + "probability": 0.7419 + }, + { + "start": 9731.26, + "end": 9732.42, + "probability": 0.6872 + }, + { + "start": 9733.08, + "end": 9734.36, + "probability": 0.7894 + }, + { + "start": 9734.66, + "end": 9736.14, + "probability": 0.8635 + }, + { + "start": 9736.2, + "end": 9736.88, + "probability": 0.8015 + }, + { + "start": 9736.94, + "end": 9738.02, + "probability": 0.8699 + }, + { + "start": 9739.0, + "end": 9742.06, + "probability": 0.7136 + }, + { + "start": 9742.9, + "end": 9744.46, + "probability": 0.5027 + }, + { + "start": 9745.58, + "end": 9746.14, + "probability": 0.3907 + }, + { + "start": 9746.38, + "end": 9746.92, + "probability": 0.6728 + }, + { + "start": 9746.94, + "end": 9748.48, + "probability": 0.7439 + }, + { + "start": 9748.7, + "end": 9752.5, + "probability": 0.7037 + }, + { + "start": 9753.37, + "end": 9755.4, + "probability": 0.8423 + }, + { + "start": 9755.4, + "end": 9757.28, + "probability": 0.727 + }, + { + "start": 9758.02, + "end": 9760.36, + "probability": 0.9637 + }, + { + "start": 9761.1, + "end": 9763.76, + "probability": 0.7376 + }, + { + "start": 9764.38, + "end": 9764.86, + "probability": 0.8715 + }, + { + "start": 9766.22, + "end": 9767.3, + "probability": 0.9053 + }, + { + "start": 9768.14, + "end": 9769.94, + "probability": 0.3346 + }, + { + "start": 9769.94, + "end": 9771.1, + "probability": 0.8583 + }, + { + "start": 9772.82, + "end": 9775.1, + "probability": 0.9292 + }, + { + "start": 9777.0, + "end": 9779.1, + "probability": 0.625 + }, + { + "start": 9780.02, + "end": 9781.26, + "probability": 0.9473 + }, + { + "start": 9782.74, + "end": 9784.98, + "probability": 0.9333 + }, + { + "start": 9786.12, + "end": 9786.72, + "probability": 0.634 + }, + { + "start": 9787.54, + "end": 9789.98, + "probability": 0.7268 + }, + { + "start": 9790.58, + "end": 9794.38, + "probability": 0.9685 + }, + { + "start": 9795.64, + "end": 9795.64, + "probability": 0.2408 + }, + { + "start": 9795.64, + "end": 9797.82, + "probability": 0.9958 + }, + { + "start": 9798.46, + "end": 9800.55, + "probability": 0.892 + }, + { + "start": 9801.58, + "end": 9802.86, + "probability": 0.926 + }, + { + "start": 9803.72, + "end": 9804.38, + "probability": 0.4389 + }, + { + "start": 9805.52, + "end": 9807.94, + "probability": 0.9556 + }, + { + "start": 9808.12, + "end": 9809.68, + "probability": 0.8527 + }, + { + "start": 9810.64, + "end": 9812.14, + "probability": 0.9712 + }, + { + "start": 9812.5, + "end": 9814.38, + "probability": 0.9978 + }, + { + "start": 9815.32, + "end": 9817.09, + "probability": 0.712 + }, + { + "start": 9817.84, + "end": 9818.38, + "probability": 0.8836 + }, + { + "start": 9818.62, + "end": 9820.44, + "probability": 0.978 + }, + { + "start": 9820.88, + "end": 9823.2, + "probability": 0.9531 + }, + { + "start": 9824.26, + "end": 9825.58, + "probability": 0.8014 + }, + { + "start": 9826.66, + "end": 9827.46, + "probability": 0.5913 + }, + { + "start": 9828.26, + "end": 9831.8, + "probability": 0.9794 + }, + { + "start": 9832.54, + "end": 9833.46, + "probability": 0.973 + }, + { + "start": 9833.74, + "end": 9834.44, + "probability": 0.4392 + }, + { + "start": 9834.62, + "end": 9835.18, + "probability": 0.6405 + }, + { + "start": 9835.48, + "end": 9838.02, + "probability": 0.5819 + }, + { + "start": 9838.02, + "end": 9840.32, + "probability": 0.97 + }, + { + "start": 9840.6, + "end": 9842.02, + "probability": 0.8577 + }, + { + "start": 9842.02, + "end": 9844.28, + "probability": 0.4143 + }, + { + "start": 9845.02, + "end": 9845.86, + "probability": 0.5034 + }, + { + "start": 9845.86, + "end": 9846.76, + "probability": 0.6091 + }, + { + "start": 9846.82, + "end": 9848.74, + "probability": 0.9462 + }, + { + "start": 9849.04, + "end": 9854.08, + "probability": 0.7515 + }, + { + "start": 9854.08, + "end": 9855.98, + "probability": 0.7737 + }, + { + "start": 9855.98, + "end": 9856.62, + "probability": 0.4668 + }, + { + "start": 9856.62, + "end": 9859.24, + "probability": 0.7987 + }, + { + "start": 9859.3, + "end": 9866.1, + "probability": 0.6313 + }, + { + "start": 9866.48, + "end": 9867.82, + "probability": 0.8581 + }, + { + "start": 9867.9, + "end": 9869.38, + "probability": 0.6135 + }, + { + "start": 9869.72, + "end": 9874.14, + "probability": 0.7748 + }, + { + "start": 9874.64, + "end": 9875.4, + "probability": 0.0906 + }, + { + "start": 9875.4, + "end": 9876.36, + "probability": 0.5267 + }, + { + "start": 9876.88, + "end": 9877.94, + "probability": 0.558 + }, + { + "start": 9878.02, + "end": 9879.34, + "probability": 0.7513 + }, + { + "start": 9879.62, + "end": 9881.04, + "probability": 0.9604 + }, + { + "start": 9881.68, + "end": 9882.62, + "probability": 0.1409 + }, + { + "start": 9883.4, + "end": 9883.4, + "probability": 0.1182 + }, + { + "start": 9883.4, + "end": 9885.72, + "probability": 0.6337 + }, + { + "start": 9885.96, + "end": 9888.14, + "probability": 0.8115 + }, + { + "start": 9888.98, + "end": 9890.96, + "probability": 0.8711 + }, + { + "start": 9891.44, + "end": 9892.82, + "probability": 0.3293 + }, + { + "start": 9893.02, + "end": 9894.28, + "probability": 0.131 + }, + { + "start": 9898.66, + "end": 9898.66, + "probability": 0.008 + }, + { + "start": 9900.6, + "end": 9900.74, + "probability": 0.009 + }, + { + "start": 9900.87, + "end": 9902.88, + "probability": 0.1778 + }, + { + "start": 9904.31, + "end": 9905.38, + "probability": 0.3044 + }, + { + "start": 9911.58, + "end": 9913.6, + "probability": 0.0152 + }, + { + "start": 9917.02, + "end": 9920.48, + "probability": 0.1978 + }, + { + "start": 9921.54, + "end": 9923.28, + "probability": 0.0396 + }, + { + "start": 9923.38, + "end": 9926.7, + "probability": 0.1369 + }, + { + "start": 9927.1, + "end": 9927.58, + "probability": 0.0669 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.0, + "end": 9980.0, + "probability": 0.0 + }, + { + "start": 9980.28, + "end": 9980.72, + "probability": 0.0461 + }, + { + "start": 9981.6, + "end": 9983.82, + "probability": 0.4234 + }, + { + "start": 9984.42, + "end": 9985.88, + "probability": 0.8937 + }, + { + "start": 9985.94, + "end": 9987.16, + "probability": 0.3633 + }, + { + "start": 9987.8, + "end": 9990.96, + "probability": 0.7406 + }, + { + "start": 9992.84, + "end": 9993.34, + "probability": 0.6113 + }, + { + "start": 9993.36, + "end": 9995.78, + "probability": 0.8062 + }, + { + "start": 9996.9, + "end": 10001.34, + "probability": 0.8792 + }, + { + "start": 10002.32, + "end": 10003.44, + "probability": 0.7743 + }, + { + "start": 10003.6, + "end": 10005.08, + "probability": 0.2364 + }, + { + "start": 10005.08, + "end": 10008.6, + "probability": 0.2018 + }, + { + "start": 10008.66, + "end": 10009.1, + "probability": 0.6306 + }, + { + "start": 10009.2, + "end": 10012.5, + "probability": 0.7608 + }, + { + "start": 10013.72, + "end": 10014.84, + "probability": 0.1352 + }, + { + "start": 10016.08, + "end": 10017.52, + "probability": 0.8994 + }, + { + "start": 10017.58, + "end": 10018.82, + "probability": 0.5371 + }, + { + "start": 10019.22, + "end": 10020.06, + "probability": 0.7877 + }, + { + "start": 10020.24, + "end": 10020.74, + "probability": 0.2815 + }, + { + "start": 10021.46, + "end": 10021.7, + "probability": 0.1373 + }, + { + "start": 10036.58, + "end": 10041.32, + "probability": 0.5173 + }, + { + "start": 10042.24, + "end": 10043.22, + "probability": 0.7233 + }, + { + "start": 10043.5, + "end": 10044.44, + "probability": 0.1664 + }, + { + "start": 10044.6, + "end": 10045.96, + "probability": 0.7028 + }, + { + "start": 10046.08, + "end": 10047.72, + "probability": 0.4825 + }, + { + "start": 10049.2, + "end": 10050.22, + "probability": 0.172 + }, + { + "start": 10050.36, + "end": 10050.58, + "probability": 0.0947 + }, + { + "start": 10050.58, + "end": 10050.58, + "probability": 0.1325 + }, + { + "start": 10050.58, + "end": 10051.9, + "probability": 0.1165 + }, + { + "start": 10054.64, + "end": 10056.68, + "probability": 0.2452 + }, + { + "start": 10057.78, + "end": 10058.98, + "probability": 0.188 + }, + { + "start": 10058.98, + "end": 10059.71, + "probability": 0.0756 + }, + { + "start": 10060.46, + "end": 10062.62, + "probability": 0.0887 + }, + { + "start": 10063.34, + "end": 10065.86, + "probability": 0.0986 + }, + { + "start": 10067.49, + "end": 10068.12, + "probability": 0.0787 + }, + { + "start": 10068.8, + "end": 10069.96, + "probability": 0.3073 + }, + { + "start": 10071.3, + "end": 10073.06, + "probability": 0.0305 + }, + { + "start": 10152.0, + "end": 10152.0, + "probability": 0.0 + }, + { + "start": 10152.0, + "end": 10152.0, + "probability": 0.0 + }, + { + "start": 10152.0, + "end": 10152.0, + "probability": 0.0 + }, + { + "start": 10152.0, + "end": 10152.0, + "probability": 0.0 + }, + { + "start": 10152.0, + "end": 10152.0, + "probability": 0.0 + }, + { + "start": 10152.0, + "end": 10152.0, + "probability": 0.0 + }, + { + "start": 10152.0, + "end": 10152.0, + "probability": 0.0 + }, + { + "start": 10152.0, + "end": 10152.0, + "probability": 0.0 + }, + { + "start": 10161.49, + "end": 10165.44, + "probability": 0.0167 + }, + { + "start": 10171.11, + "end": 10171.6, + "probability": 0.111 + }, + { + "start": 10171.84, + "end": 10174.66, + "probability": 0.0674 + }, + { + "start": 10174.66, + "end": 10176.84, + "probability": 0.0853 + }, + { + "start": 10176.84, + "end": 10180.16, + "probability": 0.4417 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.0, + "end": 10287.0, + "probability": 0.0 + }, + { + "start": 10287.16, + "end": 10292.04, + "probability": 0.0636 + }, + { + "start": 10296.8, + "end": 10298.08, + "probability": 0.0277 + }, + { + "start": 10298.08, + "end": 10298.38, + "probability": 0.0924 + }, + { + "start": 10298.38, + "end": 10298.38, + "probability": 0.0493 + }, + { + "start": 10298.38, + "end": 10298.38, + "probability": 0.1249 + }, + { + "start": 10298.38, + "end": 10298.38, + "probability": 0.0119 + }, + { + "start": 10299.26, + "end": 10300.38, + "probability": 0.3464 + }, + { + "start": 10300.54, + "end": 10301.3, + "probability": 0.239 + }, + { + "start": 10301.3, + "end": 10301.3, + "probability": 0.0277 + }, + { + "start": 10301.32, + "end": 10302.64, + "probability": 0.1861 + }, + { + "start": 10302.82, + "end": 10303.7, + "probability": 0.0343 + }, + { + "start": 10304.34, + "end": 10308.74, + "probability": 0.0782 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10416.0, + "end": 10416.0, + "probability": 0.0 + }, + { + "start": 10424.68, + "end": 10425.44, + "probability": 0.0137 + }, + { + "start": 10425.9, + "end": 10429.84, + "probability": 0.0853 + }, + { + "start": 10430.04, + "end": 10434.84, + "probability": 0.0692 + }, + { + "start": 10434.84, + "end": 10436.78, + "probability": 0.1179 + }, + { + "start": 10437.3, + "end": 10437.7, + "probability": 0.1165 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.0, + "end": 10536.0, + "probability": 0.0 + }, + { + "start": 10536.26, + "end": 10536.42, + "probability": 0.1164 + }, + { + "start": 10536.54, + "end": 10538.28, + "probability": 0.8826 + }, + { + "start": 10538.5, + "end": 10538.64, + "probability": 0.7638 + }, + { + "start": 10539.16, + "end": 10539.7, + "probability": 0.2516 + }, + { + "start": 10539.8, + "end": 10541.22, + "probability": 0.9679 + }, + { + "start": 10541.5, + "end": 10545.91, + "probability": 0.0454 + }, + { + "start": 10546.66, + "end": 10547.51, + "probability": 0.0351 + }, + { + "start": 10550.68, + "end": 10552.12, + "probability": 0.1955 + }, + { + "start": 10552.2, + "end": 10552.56, + "probability": 0.5661 + }, + { + "start": 10553.8, + "end": 10553.8, + "probability": 0.2732 + }, + { + "start": 10553.8, + "end": 10554.74, + "probability": 0.6723 + }, + { + "start": 10554.92, + "end": 10556.06, + "probability": 0.7552 + }, + { + "start": 10556.5, + "end": 10561.78, + "probability": 0.9878 + }, + { + "start": 10561.78, + "end": 10565.62, + "probability": 0.9771 + }, + { + "start": 10565.66, + "end": 10566.82, + "probability": 0.9368 + }, + { + "start": 10567.76, + "end": 10569.8, + "probability": 0.7988 + }, + { + "start": 10570.52, + "end": 10572.58, + "probability": 0.9769 + }, + { + "start": 10573.42, + "end": 10576.42, + "probability": 0.5229 + }, + { + "start": 10576.66, + "end": 10577.56, + "probability": 0.6001 + }, + { + "start": 10580.8, + "end": 10582.04, + "probability": 0.3792 + }, + { + "start": 10582.22, + "end": 10582.84, + "probability": 0.259 + }, + { + "start": 10585.31, + "end": 10585.94, + "probability": 0.0568 + }, + { + "start": 10588.04, + "end": 10591.86, + "probability": 0.1271 + }, + { + "start": 10592.4, + "end": 10593.1, + "probability": 0.0954 + }, + { + "start": 10593.24, + "end": 10594.49, + "probability": 0.0349 + }, + { + "start": 10596.86, + "end": 10598.04, + "probability": 0.174 + }, + { + "start": 10598.06, + "end": 10598.64, + "probability": 0.2119 + }, + { + "start": 10598.9, + "end": 10600.46, + "probability": 0.4339 + }, + { + "start": 10601.97, + "end": 10602.33, + "probability": 0.0323 + }, + { + "start": 10604.0, + "end": 10604.52, + "probability": 0.4892 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.0, + "probability": 0.0 + }, + { + "start": 10691.0, + "end": 10691.1, + "probability": 0.0108 + }, + { + "start": 10692.22, + "end": 10692.22, + "probability": 0.0156 + }, + { + "start": 10692.22, + "end": 10692.22, + "probability": 0.0426 + }, + { + "start": 10692.22, + "end": 10693.82, + "probability": 0.4473 + }, + { + "start": 10693.86, + "end": 10695.68, + "probability": 0.6871 + }, + { + "start": 10696.56, + "end": 10697.6, + "probability": 0.9836 + }, + { + "start": 10698.12, + "end": 10700.44, + "probability": 0.9855 + }, + { + "start": 10701.26, + "end": 10704.96, + "probability": 0.9861 + }, + { + "start": 10705.2, + "end": 10709.0, + "probability": 0.9967 + }, + { + "start": 10709.1, + "end": 10709.92, + "probability": 0.8522 + }, + { + "start": 10709.96, + "end": 10712.62, + "probability": 0.9939 + }, + { + "start": 10713.06, + "end": 10716.58, + "probability": 0.9961 + }, + { + "start": 10717.78, + "end": 10718.82, + "probability": 0.7637 + }, + { + "start": 10720.42, + "end": 10724.64, + "probability": 0.9993 + }, + { + "start": 10724.7, + "end": 10726.86, + "probability": 0.9472 + }, + { + "start": 10727.26, + "end": 10728.44, + "probability": 0.8759 + }, + { + "start": 10729.18, + "end": 10729.54, + "probability": 0.6157 + }, + { + "start": 10729.68, + "end": 10732.1, + "probability": 0.8901 + }, + { + "start": 10733.1, + "end": 10734.76, + "probability": 0.9955 + }, + { + "start": 10735.42, + "end": 10736.28, + "probability": 0.9932 + }, + { + "start": 10737.84, + "end": 10738.42, + "probability": 0.2315 + }, + { + "start": 10738.92, + "end": 10740.96, + "probability": 0.9961 + }, + { + "start": 10741.12, + "end": 10742.74, + "probability": 0.9841 + }, + { + "start": 10743.22, + "end": 10744.56, + "probability": 0.8013 + }, + { + "start": 10744.56, + "end": 10744.78, + "probability": 0.614 + }, + { + "start": 10744.86, + "end": 10747.0, + "probability": 0.9832 + }, + { + "start": 10747.22, + "end": 10747.34, + "probability": 0.0994 + }, + { + "start": 10747.58, + "end": 10748.64, + "probability": 0.906 + }, + { + "start": 10749.5, + "end": 10750.82, + "probability": 0.9922 + }, + { + "start": 10752.28, + "end": 10753.64, + "probability": 0.5378 + }, + { + "start": 10753.74, + "end": 10756.48, + "probability": 0.8047 + }, + { + "start": 10757.0, + "end": 10758.24, + "probability": 0.0028 + }, + { + "start": 10758.26, + "end": 10758.26, + "probability": 0.3082 + }, + { + "start": 10758.26, + "end": 10758.32, + "probability": 0.4915 + }, + { + "start": 10758.32, + "end": 10758.34, + "probability": 0.0608 + }, + { + "start": 10758.34, + "end": 10759.49, + "probability": 0.9239 + }, + { + "start": 10760.14, + "end": 10761.71, + "probability": 0.9866 + }, + { + "start": 10762.14, + "end": 10763.96, + "probability": 0.9899 + }, + { + "start": 10764.12, + "end": 10764.48, + "probability": 0.7924 + }, + { + "start": 10765.04, + "end": 10766.56, + "probability": 0.7965 + }, + { + "start": 10766.62, + "end": 10768.22, + "probability": 0.6158 + }, + { + "start": 10768.22, + "end": 10768.98, + "probability": 0.7867 + }, + { + "start": 10773.28, + "end": 10775.64, + "probability": 0.3692 + }, + { + "start": 10775.86, + "end": 10778.34, + "probability": 0.9759 + }, + { + "start": 10778.46, + "end": 10779.84, + "probability": 0.7589 + }, + { + "start": 10779.86, + "end": 10782.34, + "probability": 0.4923 + }, + { + "start": 10782.46, + "end": 10783.0, + "probability": 0.5846 + }, + { + "start": 10783.56, + "end": 10784.34, + "probability": 0.5531 + }, + { + "start": 10784.34, + "end": 10784.92, + "probability": 0.6217 + }, + { + "start": 10785.28, + "end": 10786.82, + "probability": 0.5527 + }, + { + "start": 10787.2, + "end": 10789.0, + "probability": 0.9111 + }, + { + "start": 10789.16, + "end": 10789.51, + "probability": 0.9307 + }, + { + "start": 10790.0, + "end": 10794.1, + "probability": 0.9793 + }, + { + "start": 10794.1, + "end": 10799.1, + "probability": 0.9971 + }, + { + "start": 10799.5, + "end": 10804.52, + "probability": 0.9629 + }, + { + "start": 10804.58, + "end": 10805.34, + "probability": 0.7987 + }, + { + "start": 10805.74, + "end": 10807.58, + "probability": 0.9523 + }, + { + "start": 10808.1, + "end": 10811.88, + "probability": 0.0068 + }, + { + "start": 10811.88, + "end": 10811.88, + "probability": 0.1176 + }, + { + "start": 10811.88, + "end": 10811.9, + "probability": 0.3108 + }, + { + "start": 10811.9, + "end": 10813.94, + "probability": 0.5188 + }, + { + "start": 10814.02, + "end": 10814.84, + "probability": 0.8001 + }, + { + "start": 10815.26, + "end": 10818.34, + "probability": 0.3751 + }, + { + "start": 10819.34, + "end": 10819.68, + "probability": 0.2154 + }, + { + "start": 10819.94, + "end": 10820.58, + "probability": 0.6478 + }, + { + "start": 10821.58, + "end": 10824.84, + "probability": 0.3106 + }, + { + "start": 10825.5, + "end": 10830.68, + "probability": 0.6924 + }, + { + "start": 10830.68, + "end": 10830.88, + "probability": 0.3412 + }, + { + "start": 10830.88, + "end": 10832.86, + "probability": 0.4697 + }, + { + "start": 10833.6, + "end": 10834.8, + "probability": 0.9272 + }, + { + "start": 10835.18, + "end": 10835.48, + "probability": 0.1926 + }, + { + "start": 10835.62, + "end": 10837.84, + "probability": 0.9935 + }, + { + "start": 10838.32, + "end": 10839.58, + "probability": 0.8024 + }, + { + "start": 10839.8, + "end": 10841.7, + "probability": 0.8192 + }, + { + "start": 10841.76, + "end": 10842.77, + "probability": 0.8718 + }, + { + "start": 10843.28, + "end": 10844.14, + "probability": 0.6007 + }, + { + "start": 10844.28, + "end": 10846.36, + "probability": 0.6377 + }, + { + "start": 10846.64, + "end": 10848.48, + "probability": 0.5494 + }, + { + "start": 10848.64, + "end": 10849.18, + "probability": 0.7371 + }, + { + "start": 10849.3, + "end": 10850.22, + "probability": 0.6522 + }, + { + "start": 10850.22, + "end": 10851.5, + "probability": 0.1252 + }, + { + "start": 10851.5, + "end": 10851.86, + "probability": 0.5453 + }, + { + "start": 10851.94, + "end": 10852.56, + "probability": 0.6334 + }, + { + "start": 10852.7, + "end": 10855.86, + "probability": 0.683 + }, + { + "start": 10856.7, + "end": 10859.68, + "probability": 0.6042 + }, + { + "start": 10860.18, + "end": 10867.16, + "probability": 0.0358 + }, + { + "start": 10868.94, + "end": 10870.82, + "probability": 0.0057 + }, + { + "start": 10872.34, + "end": 10872.64, + "probability": 0.0227 + }, + { + "start": 10875.6, + "end": 10876.22, + "probability": 0.059 + }, + { + "start": 10878.0, + "end": 10878.32, + "probability": 0.0593 + }, + { + "start": 10895.14, + "end": 10898.02, + "probability": 0.5579 + }, + { + "start": 10898.14, + "end": 10900.14, + "probability": 0.9148 + }, + { + "start": 10900.14, + "end": 10902.72, + "probability": 0.2206 + }, + { + "start": 10903.04, + "end": 10904.0, + "probability": 0.3213 + }, + { + "start": 10904.3, + "end": 10905.82, + "probability": 0.8146 + }, + { + "start": 10905.82, + "end": 10907.7, + "probability": 0.9713 + }, + { + "start": 10908.48, + "end": 10912.38, + "probability": 0.8853 + }, + { + "start": 10913.34, + "end": 10917.36, + "probability": 0.6924 + }, + { + "start": 10917.4, + "end": 10918.12, + "probability": 0.2965 + }, + { + "start": 10918.32, + "end": 10919.2, + "probability": 0.6956 + }, + { + "start": 10919.36, + "end": 10921.02, + "probability": 0.6572 + }, + { + "start": 10921.14, + "end": 10922.6, + "probability": 0.8606 + }, + { + "start": 10922.94, + "end": 10923.88, + "probability": 0.9881 + }, + { + "start": 10936.38, + "end": 10937.47, + "probability": 0.1784 + }, + { + "start": 10939.48, + "end": 10941.12, + "probability": 0.7281 + }, + { + "start": 10941.68, + "end": 10942.22, + "probability": 0.665 + }, + { + "start": 10942.94, + "end": 10944.04, + "probability": 0.1857 + }, + { + "start": 10945.47, + "end": 10945.92, + "probability": 0.3207 + }, + { + "start": 10946.06, + "end": 10947.88, + "probability": 0.6052 + }, + { + "start": 10949.8, + "end": 10954.1, + "probability": 0.926 + }, + { + "start": 10954.1, + "end": 10956.9, + "probability": 0.7107 + }, + { + "start": 10957.68, + "end": 10960.9, + "probability": 0.9517 + }, + { + "start": 10961.74, + "end": 10966.12, + "probability": 0.9932 + }, + { + "start": 10966.12, + "end": 10969.96, + "probability": 0.9878 + }, + { + "start": 10970.2, + "end": 10971.34, + "probability": 0.6729 + }, + { + "start": 10971.78, + "end": 10973.26, + "probability": 0.9858 + }, + { + "start": 10974.16, + "end": 10976.68, + "probability": 0.9474 + }, + { + "start": 10976.68, + "end": 10978.92, + "probability": 0.9592 + }, + { + "start": 10979.4, + "end": 10983.32, + "probability": 0.9919 + }, + { + "start": 10984.12, + "end": 10988.82, + "probability": 0.9246 + }, + { + "start": 10988.96, + "end": 10994.0, + "probability": 0.9751 + }, + { + "start": 10994.36, + "end": 10999.54, + "probability": 0.9852 + }, + { + "start": 11000.4, + "end": 11004.24, + "probability": 0.9833 + }, + { + "start": 11004.92, + "end": 11006.6, + "probability": 0.4892 + }, + { + "start": 11008.14, + "end": 11012.66, + "probability": 0.9749 + }, + { + "start": 11013.16, + "end": 11016.52, + "probability": 0.9963 + }, + { + "start": 11016.52, + "end": 11019.56, + "probability": 0.9871 + }, + { + "start": 11020.36, + "end": 11020.88, + "probability": 0.6601 + }, + { + "start": 11021.44, + "end": 11023.76, + "probability": 0.9771 + }, + { + "start": 11023.76, + "end": 11027.12, + "probability": 0.9882 + }, + { + "start": 11027.66, + "end": 11030.26, + "probability": 0.9802 + }, + { + "start": 11030.26, + "end": 11032.32, + "probability": 0.8237 + }, + { + "start": 11032.94, + "end": 11035.18, + "probability": 0.9595 + }, + { + "start": 11035.62, + "end": 11039.26, + "probability": 0.9912 + }, + { + "start": 11040.02, + "end": 11041.06, + "probability": 0.8455 + }, + { + "start": 11041.3, + "end": 11041.76, + "probability": 0.8117 + }, + { + "start": 11041.86, + "end": 11045.64, + "probability": 0.9756 + }, + { + "start": 11045.72, + "end": 11048.94, + "probability": 0.8178 + }, + { + "start": 11049.1, + "end": 11049.68, + "probability": 0.7286 + }, + { + "start": 11050.08, + "end": 11053.2, + "probability": 0.9815 + }, + { + "start": 11057.54, + "end": 11059.78, + "probability": 0.8559 + }, + { + "start": 11060.12, + "end": 11062.28, + "probability": 0.8422 + }, + { + "start": 11063.3, + "end": 11063.92, + "probability": 0.6172 + }, + { + "start": 11064.04, + "end": 11065.48, + "probability": 0.6327 + }, + { + "start": 11065.72, + "end": 11068.36, + "probability": 0.8893 + }, + { + "start": 11068.58, + "end": 11069.5, + "probability": 0.7056 + }, + { + "start": 11070.02, + "end": 11073.16, + "probability": 0.9421 + }, + { + "start": 11073.26, + "end": 11076.4, + "probability": 0.9619 + }, + { + "start": 11077.18, + "end": 11078.6, + "probability": 0.8223 + }, + { + "start": 11078.7, + "end": 11080.34, + "probability": 0.9678 + }, + { + "start": 11080.34, + "end": 11083.94, + "probability": 0.973 + }, + { + "start": 11084.4, + "end": 11087.56, + "probability": 0.9875 + }, + { + "start": 11087.56, + "end": 11089.92, + "probability": 0.9667 + }, + { + "start": 11090.54, + "end": 11092.72, + "probability": 0.997 + }, + { + "start": 11092.82, + "end": 11095.48, + "probability": 0.975 + }, + { + "start": 11095.48, + "end": 11098.06, + "probability": 0.9846 + }, + { + "start": 11098.66, + "end": 11101.36, + "probability": 0.96 + }, + { + "start": 11101.96, + "end": 11102.28, + "probability": 0.3947 + }, + { + "start": 11102.38, + "end": 11103.78, + "probability": 0.9251 + }, + { + "start": 11103.9, + "end": 11107.4, + "probability": 0.8799 + }, + { + "start": 11109.22, + "end": 11109.24, + "probability": 0.0203 + }, + { + "start": 11109.24, + "end": 11109.56, + "probability": 0.2982 + }, + { + "start": 11109.86, + "end": 11112.84, + "probability": 0.9849 + }, + { + "start": 11112.92, + "end": 11115.1, + "probability": 0.784 + }, + { + "start": 11115.5, + "end": 11116.44, + "probability": 0.9165 + }, + { + "start": 11116.44, + "end": 11119.12, + "probability": 0.9081 + }, + { + "start": 11119.12, + "end": 11122.36, + "probability": 0.9829 + }, + { + "start": 11123.0, + "end": 11126.24, + "probability": 0.9899 + }, + { + "start": 11126.66, + "end": 11128.68, + "probability": 0.9854 + }, + { + "start": 11128.76, + "end": 11134.48, + "probability": 0.9893 + }, + { + "start": 11135.08, + "end": 11135.74, + "probability": 0.5512 + }, + { + "start": 11135.94, + "end": 11138.3, + "probability": 0.9971 + }, + { + "start": 11139.06, + "end": 11142.5, + "probability": 0.9979 + }, + { + "start": 11143.12, + "end": 11145.9, + "probability": 0.7582 + }, + { + "start": 11146.48, + "end": 11148.62, + "probability": 0.9243 + }, + { + "start": 11149.22, + "end": 11153.94, + "probability": 0.9917 + }, + { + "start": 11154.8, + "end": 11158.0, + "probability": 0.9233 + }, + { + "start": 11158.76, + "end": 11160.24, + "probability": 0.9893 + }, + { + "start": 11160.7, + "end": 11162.4, + "probability": 0.9885 + }, + { + "start": 11163.24, + "end": 11166.52, + "probability": 0.8779 + }, + { + "start": 11168.39, + "end": 11171.13, + "probability": 0.949 + }, + { + "start": 11171.86, + "end": 11174.62, + "probability": 0.6172 + }, + { + "start": 11175.06, + "end": 11176.11, + "probability": 0.8231 + }, + { + "start": 11176.68, + "end": 11177.32, + "probability": 0.6995 + }, + { + "start": 11177.42, + "end": 11178.08, + "probability": 0.7813 + }, + { + "start": 11178.34, + "end": 11178.94, + "probability": 0.5611 + }, + { + "start": 11179.6, + "end": 11181.64, + "probability": 0.6486 + }, + { + "start": 11183.04, + "end": 11187.82, + "probability": 0.9768 + }, + { + "start": 11187.9, + "end": 11188.42, + "probability": 0.5551 + }, + { + "start": 11189.7, + "end": 11191.66, + "probability": 0.9743 + }, + { + "start": 11192.5, + "end": 11193.2, + "probability": 0.6611 + }, + { + "start": 11193.9, + "end": 11195.8, + "probability": 0.8341 + }, + { + "start": 11196.34, + "end": 11201.56, + "probability": 0.9939 + }, + { + "start": 11202.22, + "end": 11207.92, + "probability": 0.9924 + }, + { + "start": 11208.02, + "end": 11208.48, + "probability": 0.0183 + }, + { + "start": 11208.48, + "end": 11208.92, + "probability": 0.0666 + }, + { + "start": 11208.94, + "end": 11209.68, + "probability": 0.2582 + }, + { + "start": 11210.12, + "end": 11211.16, + "probability": 0.979 + }, + { + "start": 11211.6, + "end": 11213.02, + "probability": 0.4665 + }, + { + "start": 11213.4, + "end": 11216.1, + "probability": 0.6538 + }, + { + "start": 11216.68, + "end": 11222.34, + "probability": 0.9785 + }, + { + "start": 11222.44, + "end": 11223.1, + "probability": 0.1745 + }, + { + "start": 11223.6, + "end": 11224.12, + "probability": 0.4653 + }, + { + "start": 11224.22, + "end": 11225.06, + "probability": 0.9468 + }, + { + "start": 11225.34, + "end": 11227.32, + "probability": 0.0465 + }, + { + "start": 11228.02, + "end": 11231.62, + "probability": 0.3043 + }, + { + "start": 11233.84, + "end": 11235.74, + "probability": 0.0309 + }, + { + "start": 11236.86, + "end": 11237.22, + "probability": 0.4575 + }, + { + "start": 11237.34, + "end": 11238.14, + "probability": 0.4068 + }, + { + "start": 11238.14, + "end": 11238.49, + "probability": 0.1414 + }, + { + "start": 11238.88, + "end": 11238.98, + "probability": 0.0722 + }, + { + "start": 11239.4, + "end": 11247.68, + "probability": 0.5609 + }, + { + "start": 11247.96, + "end": 11248.32, + "probability": 0.2433 + }, + { + "start": 11248.42, + "end": 11249.04, + "probability": 0.7425 + }, + { + "start": 11249.14, + "end": 11251.46, + "probability": 0.9551 + }, + { + "start": 11251.46, + "end": 11251.8, + "probability": 0.034 + }, + { + "start": 11252.1, + "end": 11252.28, + "probability": 0.0067 + }, + { + "start": 11253.18, + "end": 11253.28, + "probability": 0.337 + }, + { + "start": 11253.32, + "end": 11253.96, + "probability": 0.7469 + }, + { + "start": 11256.7, + "end": 11257.74, + "probability": 0.9704 + }, + { + "start": 11258.1, + "end": 11260.44, + "probability": 0.9067 + }, + { + "start": 11260.44, + "end": 11262.64, + "probability": 0.9813 + }, + { + "start": 11262.68, + "end": 11263.27, + "probability": 0.2067 + }, + { + "start": 11263.58, + "end": 11265.9, + "probability": 0.3858 + }, + { + "start": 11266.02, + "end": 11266.78, + "probability": 0.4601 + }, + { + "start": 11266.78, + "end": 11266.78, + "probability": 0.0485 + }, + { + "start": 11266.78, + "end": 11272.34, + "probability": 0.7758 + }, + { + "start": 11272.62, + "end": 11274.42, + "probability": 0.9504 + }, + { + "start": 11274.46, + "end": 11274.53, + "probability": 0.2014 + }, + { + "start": 11275.66, + "end": 11276.15, + "probability": 0.5743 + }, + { + "start": 11276.22, + "end": 11278.12, + "probability": 0.969 + }, + { + "start": 11278.38, + "end": 11278.48, + "probability": 0.1493 + }, + { + "start": 11278.48, + "end": 11278.82, + "probability": 0.4285 + }, + { + "start": 11279.42, + "end": 11281.1, + "probability": 0.5699 + }, + { + "start": 11281.1, + "end": 11282.32, + "probability": 0.5979 + }, + { + "start": 11282.36, + "end": 11283.14, + "probability": 0.2873 + }, + { + "start": 11283.5, + "end": 11284.52, + "probability": 0.9 + }, + { + "start": 11284.64, + "end": 11284.96, + "probability": 0.8903 + }, + { + "start": 11285.04, + "end": 11287.92, + "probability": 0.9954 + }, + { + "start": 11289.22, + "end": 11292.56, + "probability": 0.0682 + }, + { + "start": 11292.96, + "end": 11293.46, + "probability": 0.2373 + }, + { + "start": 11293.48, + "end": 11295.6, + "probability": 0.2703 + }, + { + "start": 11295.6, + "end": 11297.0, + "probability": 0.411 + }, + { + "start": 11297.0, + "end": 11299.28, + "probability": 0.9614 + }, + { + "start": 11300.44, + "end": 11303.08, + "probability": 0.487 + }, + { + "start": 11305.08, + "end": 11306.48, + "probability": 0.1882 + }, + { + "start": 11306.48, + "end": 11309.8, + "probability": 0.7116 + }, + { + "start": 11309.9, + "end": 11311.56, + "probability": 0.527 + }, + { + "start": 11311.6, + "end": 11313.08, + "probability": 0.3505 + }, + { + "start": 11314.32, + "end": 11316.56, + "probability": 0.8283 + }, + { + "start": 11316.82, + "end": 11317.06, + "probability": 0.0372 + }, + { + "start": 11317.06, + "end": 11317.7, + "probability": 0.0121 + }, + { + "start": 11317.7, + "end": 11318.18, + "probability": 0.2929 + }, + { + "start": 11319.36, + "end": 11319.66, + "probability": 0.2869 + }, + { + "start": 11319.88, + "end": 11322.66, + "probability": 0.972 + }, + { + "start": 11322.68, + "end": 11323.36, + "probability": 0.4405 + }, + { + "start": 11325.5, + "end": 11330.76, + "probability": 0.7442 + }, + { + "start": 11330.8, + "end": 11332.02, + "probability": 0.4425 + }, + { + "start": 11332.14, + "end": 11333.08, + "probability": 0.895 + }, + { + "start": 11333.18, + "end": 11333.78, + "probability": 0.8014 + }, + { + "start": 11335.16, + "end": 11336.96, + "probability": 0.7226 + }, + { + "start": 11337.58, + "end": 11338.26, + "probability": 0.8314 + }, + { + "start": 11347.0, + "end": 11347.62, + "probability": 0.1252 + }, + { + "start": 11354.62, + "end": 11354.62, + "probability": 0.111 + }, + { + "start": 11354.62, + "end": 11354.64, + "probability": 0.0426 + }, + { + "start": 11354.64, + "end": 11354.88, + "probability": 0.0342 + }, + { + "start": 11364.78, + "end": 11364.82, + "probability": 0.0122 + }, + { + "start": 11371.52, + "end": 11372.3, + "probability": 0.0004 + }, + { + "start": 11378.24, + "end": 11380.8, + "probability": 0.3778 + }, + { + "start": 11381.38, + "end": 11386.08, + "probability": 0.925 + }, + { + "start": 11386.08, + "end": 11387.88, + "probability": 0.1716 + }, + { + "start": 11387.88, + "end": 11388.94, + "probability": 0.6356 + }, + { + "start": 11389.54, + "end": 11390.86, + "probability": 0.7901 + }, + { + "start": 11391.1, + "end": 11391.88, + "probability": 0.9369 + }, + { + "start": 11395.54, + "end": 11398.12, + "probability": 0.534 + }, + { + "start": 11402.76, + "end": 11403.82, + "probability": 0.0114 + }, + { + "start": 11404.88, + "end": 11404.96, + "probability": 0.1396 + }, + { + "start": 11404.96, + "end": 11407.64, + "probability": 0.6138 + }, + { + "start": 11407.64, + "end": 11411.86, + "probability": 0.747 + }, + { + "start": 11411.86, + "end": 11414.21, + "probability": 0.3511 + }, + { + "start": 11415.06, + "end": 11415.64, + "probability": 0.3538 + }, + { + "start": 11415.82, + "end": 11417.42, + "probability": 0.7393 + }, + { + "start": 11417.88, + "end": 11420.18, + "probability": 0.8369 + }, + { + "start": 11420.62, + "end": 11421.3, + "probability": 0.7116 + }, + { + "start": 11421.84, + "end": 11422.12, + "probability": 0.0154 + } + ], + "segments_count": 4514, + "words_count": 21833, + "avg_words_per_segment": 4.8367, + "avg_segment_duration": 1.669, + "avg_words_per_minute": 104.1846, + "plenum_id": "120306", + "duration": 12573.64, + "title": null, + "plenum_date": "2023-08-16" +} \ No newline at end of file