diff --git "a/126693/metadata.json" "b/126693/metadata.json" new file mode 100644--- /dev/null +++ "b/126693/metadata.json" @@ -0,0 +1,38462 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "126693", + "quality_score": 0.8669, + "per_segment_quality_scores": [ + { + "start": 83.03, + "end": 83.38, + "probability": 0.0849 + }, + { + "start": 83.38, + "end": 83.38, + "probability": 0.1528 + }, + { + "start": 83.38, + "end": 83.38, + "probability": 0.0498 + }, + { + "start": 83.38, + "end": 87.54, + "probability": 0.6506 + }, + { + "start": 87.92, + "end": 89.24, + "probability": 0.8213 + }, + { + "start": 90.1, + "end": 93.52, + "probability": 0.9941 + }, + { + "start": 94.16, + "end": 95.08, + "probability": 0.7137 + }, + { + "start": 95.18, + "end": 99.16, + "probability": 0.9293 + }, + { + "start": 99.16, + "end": 101.4, + "probability": 0.999 + }, + { + "start": 101.5, + "end": 103.9, + "probability": 0.9971 + }, + { + "start": 104.5, + "end": 104.96, + "probability": 0.6837 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 121.46, + "end": 122.04, + "probability": 0.1473 + }, + { + "start": 122.04, + "end": 122.04, + "probability": 0.0839 + }, + { + "start": 122.04, + "end": 122.04, + "probability": 0.0549 + }, + { + "start": 122.04, + "end": 125.04, + "probability": 0.7963 + }, + { + "start": 125.44, + "end": 127.54, + "probability": 0.9027 + }, + { + "start": 127.96, + "end": 131.66, + "probability": 0.9932 + }, + { + "start": 131.66, + "end": 134.26, + "probability": 0.9603 + }, + { + "start": 134.82, + "end": 138.82, + "probability": 0.9701 + }, + { + "start": 139.54, + "end": 141.6, + "probability": 0.7857 + }, + { + "start": 142.36, + "end": 143.32, + "probability": 0.8471 + }, + { + "start": 144.02, + "end": 146.84, + "probability": 0.8323 + }, + { + "start": 147.48, + "end": 152.46, + "probability": 0.9221 + }, + { + "start": 153.06, + "end": 155.76, + "probability": 0.9965 + }, + { + "start": 156.7, + "end": 160.56, + "probability": 0.7481 + }, + { + "start": 160.62, + "end": 162.12, + "probability": 0.9741 + }, + { + "start": 162.26, + "end": 162.84, + "probability": 0.4418 + }, + { + "start": 162.88, + "end": 163.14, + "probability": 0.4897 + }, + { + "start": 163.78, + "end": 166.6, + "probability": 0.6238 + }, + { + "start": 166.6, + "end": 166.92, + "probability": 0.6723 + }, + { + "start": 167.22, + "end": 167.94, + "probability": 0.6756 + }, + { + "start": 168.08, + "end": 169.28, + "probability": 0.8216 + }, + { + "start": 169.42, + "end": 170.5, + "probability": 0.9566 + }, + { + "start": 170.56, + "end": 171.82, + "probability": 0.9755 + }, + { + "start": 171.98, + "end": 173.52, + "probability": 0.7312 + }, + { + "start": 174.1, + "end": 175.54, + "probability": 0.9459 + }, + { + "start": 176.48, + "end": 181.36, + "probability": 0.9427 + }, + { + "start": 181.36, + "end": 185.8, + "probability": 0.9963 + }, + { + "start": 186.22, + "end": 186.9, + "probability": 0.8472 + }, + { + "start": 187.06, + "end": 188.7, + "probability": 0.9104 + }, + { + "start": 189.06, + "end": 190.46, + "probability": 0.9829 + }, + { + "start": 191.3, + "end": 193.82, + "probability": 0.9466 + }, + { + "start": 193.98, + "end": 196.52, + "probability": 0.9814 + }, + { + "start": 196.96, + "end": 197.42, + "probability": 0.4483 + }, + { + "start": 197.52, + "end": 198.24, + "probability": 0.9897 + }, + { + "start": 198.3, + "end": 199.62, + "probability": 0.9888 + }, + { + "start": 200.02, + "end": 203.2, + "probability": 0.9978 + }, + { + "start": 203.6, + "end": 205.64, + "probability": 0.9621 + }, + { + "start": 206.4, + "end": 210.2, + "probability": 0.9976 + }, + { + "start": 210.2, + "end": 215.1, + "probability": 0.9754 + }, + { + "start": 215.48, + "end": 220.76, + "probability": 0.9957 + }, + { + "start": 221.16, + "end": 225.76, + "probability": 0.9971 + }, + { + "start": 226.68, + "end": 228.7, + "probability": 0.2516 + }, + { + "start": 228.7, + "end": 231.7, + "probability": 0.9373 + }, + { + "start": 232.84, + "end": 233.34, + "probability": 0.4298 + }, + { + "start": 234.16, + "end": 236.34, + "probability": 0.9027 + }, + { + "start": 236.88, + "end": 239.22, + "probability": 0.8359 + }, + { + "start": 239.56, + "end": 241.78, + "probability": 0.8418 + }, + { + "start": 242.52, + "end": 244.42, + "probability": 0.9648 + }, + { + "start": 244.82, + "end": 249.2, + "probability": 0.9427 + }, + { + "start": 249.2, + "end": 253.62, + "probability": 0.9829 + }, + { + "start": 254.46, + "end": 255.08, + "probability": 0.3765 + }, + { + "start": 255.3, + "end": 258.24, + "probability": 0.8968 + }, + { + "start": 258.84, + "end": 262.22, + "probability": 0.7275 + }, + { + "start": 262.96, + "end": 262.96, + "probability": 0.5711 + }, + { + "start": 263.12, + "end": 265.82, + "probability": 0.946 + }, + { + "start": 265.94, + "end": 266.74, + "probability": 0.9512 + }, + { + "start": 266.8, + "end": 268.18, + "probability": 0.8899 + }, + { + "start": 268.76, + "end": 270.46, + "probability": 0.7881 + }, + { + "start": 270.9, + "end": 272.41, + "probability": 0.9897 + }, + { + "start": 272.66, + "end": 274.62, + "probability": 0.9761 + }, + { + "start": 274.74, + "end": 276.66, + "probability": 0.9982 + }, + { + "start": 277.24, + "end": 281.0, + "probability": 0.9766 + }, + { + "start": 281.0, + "end": 283.62, + "probability": 0.9748 + }, + { + "start": 284.44, + "end": 286.88, + "probability": 0.9666 + }, + { + "start": 287.1, + "end": 287.72, + "probability": 0.5996 + }, + { + "start": 288.06, + "end": 290.5, + "probability": 0.9296 + }, + { + "start": 292.0, + "end": 296.86, + "probability": 0.9917 + }, + { + "start": 297.26, + "end": 299.56, + "probability": 0.6622 + }, + { + "start": 299.82, + "end": 304.64, + "probability": 0.9824 + }, + { + "start": 305.06, + "end": 306.94, + "probability": 0.6477 + }, + { + "start": 307.14, + "end": 307.66, + "probability": 0.7485 + }, + { + "start": 308.12, + "end": 309.96, + "probability": 0.9653 + }, + { + "start": 310.1, + "end": 310.5, + "probability": 0.4498 + }, + { + "start": 310.68, + "end": 311.2, + "probability": 0.8633 + }, + { + "start": 311.32, + "end": 314.94, + "probability": 0.9818 + }, + { + "start": 315.62, + "end": 317.32, + "probability": 0.9762 + }, + { + "start": 317.74, + "end": 321.46, + "probability": 0.9908 + }, + { + "start": 322.4, + "end": 326.18, + "probability": 0.9868 + }, + { + "start": 327.08, + "end": 327.68, + "probability": 0.9358 + }, + { + "start": 327.8, + "end": 332.12, + "probability": 0.9976 + }, + { + "start": 332.2, + "end": 333.8, + "probability": 0.9814 + }, + { + "start": 334.42, + "end": 335.6, + "probability": 0.6873 + }, + { + "start": 335.72, + "end": 336.48, + "probability": 0.9725 + }, + { + "start": 336.9, + "end": 339.0, + "probability": 0.9739 + }, + { + "start": 339.12, + "end": 340.5, + "probability": 0.8665 + }, + { + "start": 340.82, + "end": 342.72, + "probability": 0.8916 + }, + { + "start": 343.08, + "end": 344.3, + "probability": 0.984 + }, + { + "start": 344.62, + "end": 345.82, + "probability": 0.991 + }, + { + "start": 346.56, + "end": 346.9, + "probability": 0.6636 + }, + { + "start": 346.98, + "end": 349.92, + "probability": 0.9985 + }, + { + "start": 349.92, + "end": 353.16, + "probability": 0.9951 + }, + { + "start": 353.7, + "end": 354.68, + "probability": 0.905 + }, + { + "start": 355.1, + "end": 357.22, + "probability": 0.9757 + }, + { + "start": 357.54, + "end": 359.42, + "probability": 0.9661 + }, + { + "start": 360.6, + "end": 361.26, + "probability": 0.4969 + }, + { + "start": 361.7, + "end": 364.1, + "probability": 0.9782 + }, + { + "start": 364.2, + "end": 364.68, + "probability": 0.6015 + }, + { + "start": 365.18, + "end": 368.54, + "probability": 0.9914 + }, + { + "start": 369.02, + "end": 371.56, + "probability": 0.9954 + }, + { + "start": 371.66, + "end": 372.44, + "probability": 0.9894 + }, + { + "start": 372.76, + "end": 374.6, + "probability": 0.9915 + }, + { + "start": 375.0, + "end": 377.6, + "probability": 0.9939 + }, + { + "start": 378.12, + "end": 380.64, + "probability": 0.9381 + }, + { + "start": 381.24, + "end": 382.0, + "probability": 0.7109 + }, + { + "start": 382.44, + "end": 384.4, + "probability": 0.9434 + }, + { + "start": 384.78, + "end": 388.36, + "probability": 0.9937 + }, + { + "start": 389.22, + "end": 389.64, + "probability": 0.5167 + }, + { + "start": 390.1, + "end": 392.84, + "probability": 0.9823 + }, + { + "start": 392.84, + "end": 397.48, + "probability": 0.9529 + }, + { + "start": 397.62, + "end": 398.2, + "probability": 0.8852 + }, + { + "start": 398.34, + "end": 399.34, + "probability": 0.9417 + }, + { + "start": 399.72, + "end": 401.38, + "probability": 0.9954 + }, + { + "start": 401.48, + "end": 402.48, + "probability": 0.8859 + }, + { + "start": 403.18, + "end": 405.06, + "probability": 0.9796 + }, + { + "start": 405.36, + "end": 407.02, + "probability": 0.991 + }, + { + "start": 407.32, + "end": 411.42, + "probability": 0.9932 + }, + { + "start": 411.72, + "end": 412.72, + "probability": 0.9789 + }, + { + "start": 413.38, + "end": 418.46, + "probability": 0.9933 + }, + { + "start": 418.92, + "end": 419.18, + "probability": 0.3182 + }, + { + "start": 419.26, + "end": 419.5, + "probability": 0.8277 + }, + { + "start": 419.58, + "end": 420.38, + "probability": 0.7591 + }, + { + "start": 420.56, + "end": 420.9, + "probability": 0.9757 + }, + { + "start": 421.1, + "end": 425.68, + "probability": 0.8725 + }, + { + "start": 425.86, + "end": 427.9, + "probability": 0.9905 + }, + { + "start": 428.18, + "end": 430.62, + "probability": 0.9897 + }, + { + "start": 431.36, + "end": 431.9, + "probability": 0.8093 + }, + { + "start": 432.02, + "end": 434.5, + "probability": 0.9868 + }, + { + "start": 434.5, + "end": 437.2, + "probability": 0.9343 + }, + { + "start": 437.7, + "end": 441.3, + "probability": 0.9901 + }, + { + "start": 441.68, + "end": 443.4, + "probability": 0.7115 + }, + { + "start": 443.78, + "end": 445.0, + "probability": 0.9846 + }, + { + "start": 446.06, + "end": 446.38, + "probability": 0.6209 + }, + { + "start": 446.5, + "end": 446.5, + "probability": 0.4366 + }, + { + "start": 446.54, + "end": 447.54, + "probability": 0.9317 + }, + { + "start": 447.98, + "end": 449.46, + "probability": 0.8105 + }, + { + "start": 449.58, + "end": 450.22, + "probability": 0.7536 + }, + { + "start": 450.32, + "end": 454.28, + "probability": 0.9169 + }, + { + "start": 454.42, + "end": 455.18, + "probability": 0.0657 + }, + { + "start": 456.22, + "end": 458.22, + "probability": 0.6233 + }, + { + "start": 458.8, + "end": 460.94, + "probability": 0.9626 + }, + { + "start": 461.2, + "end": 462.18, + "probability": 0.962 + }, + { + "start": 463.34, + "end": 464.0, + "probability": 0.9575 + }, + { + "start": 465.02, + "end": 467.36, + "probability": 0.9774 + }, + { + "start": 467.66, + "end": 468.16, + "probability": 0.6076 + }, + { + "start": 468.26, + "end": 470.72, + "probability": 0.8367 + }, + { + "start": 471.1, + "end": 473.56, + "probability": 0.98 + }, + { + "start": 474.04, + "end": 475.16, + "probability": 0.7532 + }, + { + "start": 475.94, + "end": 478.06, + "probability": 0.9329 + }, + { + "start": 478.76, + "end": 482.2, + "probability": 0.8157 + }, + { + "start": 482.66, + "end": 486.04, + "probability": 0.8748 + }, + { + "start": 486.62, + "end": 489.7, + "probability": 0.9689 + }, + { + "start": 491.18, + "end": 495.32, + "probability": 0.9935 + }, + { + "start": 495.7, + "end": 498.44, + "probability": 0.9676 + }, + { + "start": 499.3, + "end": 503.74, + "probability": 0.9772 + }, + { + "start": 503.74, + "end": 506.96, + "probability": 0.9978 + }, + { + "start": 507.16, + "end": 510.2, + "probability": 0.9474 + }, + { + "start": 510.6, + "end": 512.99, + "probability": 0.8403 + }, + { + "start": 513.1, + "end": 515.74, + "probability": 0.9265 + }, + { + "start": 516.12, + "end": 519.06, + "probability": 0.9901 + }, + { + "start": 519.16, + "end": 522.44, + "probability": 0.979 + }, + { + "start": 522.8, + "end": 524.3, + "probability": 0.9977 + }, + { + "start": 525.6, + "end": 527.96, + "probability": 0.9046 + }, + { + "start": 528.56, + "end": 532.3, + "probability": 0.9567 + }, + { + "start": 532.7, + "end": 533.42, + "probability": 0.8998 + }, + { + "start": 533.54, + "end": 535.18, + "probability": 0.9859 + }, + { + "start": 535.64, + "end": 537.52, + "probability": 0.9623 + }, + { + "start": 537.64, + "end": 540.02, + "probability": 0.9697 + }, + { + "start": 540.58, + "end": 543.7, + "probability": 0.9699 + }, + { + "start": 543.98, + "end": 545.78, + "probability": 0.9461 + }, + { + "start": 546.24, + "end": 548.35, + "probability": 0.953 + }, + { + "start": 548.86, + "end": 551.32, + "probability": 0.9831 + }, + { + "start": 552.2, + "end": 552.94, + "probability": 0.8332 + }, + { + "start": 553.56, + "end": 554.26, + "probability": 0.0664 + }, + { + "start": 554.86, + "end": 556.4, + "probability": 0.7738 + }, + { + "start": 556.44, + "end": 557.78, + "probability": 0.9854 + }, + { + "start": 558.14, + "end": 561.08, + "probability": 0.9977 + }, + { + "start": 561.64, + "end": 563.36, + "probability": 0.8842 + }, + { + "start": 563.96, + "end": 565.36, + "probability": 0.752 + }, + { + "start": 565.5, + "end": 566.62, + "probability": 0.9711 + }, + { + "start": 566.74, + "end": 568.98, + "probability": 0.935 + }, + { + "start": 569.36, + "end": 569.8, + "probability": 0.7152 + }, + { + "start": 569.86, + "end": 570.94, + "probability": 0.7874 + }, + { + "start": 571.5, + "end": 572.76, + "probability": 0.9546 + }, + { + "start": 573.28, + "end": 578.08, + "probability": 0.9424 + }, + { + "start": 578.34, + "end": 581.16, + "probability": 0.9811 + }, + { + "start": 582.0, + "end": 582.52, + "probability": 0.8992 + }, + { + "start": 582.62, + "end": 583.46, + "probability": 0.4022 + }, + { + "start": 583.76, + "end": 585.48, + "probability": 0.992 + }, + { + "start": 585.98, + "end": 586.67, + "probability": 0.9885 + }, + { + "start": 587.28, + "end": 587.74, + "probability": 0.9512 + }, + { + "start": 587.9, + "end": 589.42, + "probability": 0.8657 + }, + { + "start": 589.84, + "end": 592.24, + "probability": 0.986 + }, + { + "start": 592.62, + "end": 593.79, + "probability": 0.8079 + }, + { + "start": 594.2, + "end": 596.04, + "probability": 0.9762 + }, + { + "start": 596.12, + "end": 596.38, + "probability": 0.7527 + }, + { + "start": 596.7, + "end": 597.1, + "probability": 0.5259 + }, + { + "start": 597.12, + "end": 597.78, + "probability": 0.7089 + }, + { + "start": 597.92, + "end": 599.14, + "probability": 0.6841 + }, + { + "start": 599.18, + "end": 600.44, + "probability": 0.508 + }, + { + "start": 600.5, + "end": 601.02, + "probability": 0.9133 + }, + { + "start": 602.52, + "end": 605.06, + "probability": 0.5062 + }, + { + "start": 605.72, + "end": 610.84, + "probability": 0.8253 + }, + { + "start": 611.24, + "end": 613.46, + "probability": 0.9845 + }, + { + "start": 613.6, + "end": 615.96, + "probability": 0.9899 + }, + { + "start": 616.32, + "end": 620.6, + "probability": 0.9248 + }, + { + "start": 620.96, + "end": 624.06, + "probability": 0.778 + }, + { + "start": 625.0, + "end": 627.47, + "probability": 0.9033 + }, + { + "start": 627.8, + "end": 630.74, + "probability": 0.8806 + }, + { + "start": 630.98, + "end": 631.6, + "probability": 0.9077 + }, + { + "start": 632.34, + "end": 634.65, + "probability": 0.7776 + }, + { + "start": 635.34, + "end": 636.98, + "probability": 0.5909 + }, + { + "start": 637.24, + "end": 637.46, + "probability": 0.4794 + }, + { + "start": 637.52, + "end": 638.28, + "probability": 0.6867 + }, + { + "start": 638.36, + "end": 638.62, + "probability": 0.5707 + }, + { + "start": 638.78, + "end": 641.32, + "probability": 0.9898 + }, + { + "start": 641.38, + "end": 642.86, + "probability": 0.8967 + }, + { + "start": 642.94, + "end": 643.9, + "probability": 0.6931 + }, + { + "start": 644.22, + "end": 645.28, + "probability": 0.8247 + }, + { + "start": 645.7, + "end": 647.58, + "probability": 0.646 + }, + { + "start": 647.78, + "end": 647.78, + "probability": 0.2493 + }, + { + "start": 647.78, + "end": 649.56, + "probability": 0.9761 + }, + { + "start": 650.18, + "end": 651.34, + "probability": 0.9631 + }, + { + "start": 652.3, + "end": 656.0, + "probability": 0.9001 + }, + { + "start": 656.48, + "end": 658.78, + "probability": 0.9656 + }, + { + "start": 659.02, + "end": 663.04, + "probability": 0.7275 + }, + { + "start": 663.14, + "end": 663.88, + "probability": 0.8413 + }, + { + "start": 663.94, + "end": 666.66, + "probability": 0.9917 + }, + { + "start": 667.1, + "end": 669.41, + "probability": 0.9971 + }, + { + "start": 670.42, + "end": 671.84, + "probability": 0.8698 + }, + { + "start": 672.02, + "end": 674.5, + "probability": 0.9749 + }, + { + "start": 674.62, + "end": 675.5, + "probability": 0.9505 + }, + { + "start": 676.12, + "end": 677.14, + "probability": 0.912 + }, + { + "start": 677.38, + "end": 679.54, + "probability": 0.9842 + }, + { + "start": 679.62, + "end": 680.12, + "probability": 0.7737 + }, + { + "start": 680.44, + "end": 681.72, + "probability": 0.9914 + }, + { + "start": 681.82, + "end": 683.56, + "probability": 0.9839 + }, + { + "start": 684.22, + "end": 685.34, + "probability": 0.6681 + }, + { + "start": 685.5, + "end": 689.5, + "probability": 0.9803 + }, + { + "start": 689.5, + "end": 692.54, + "probability": 0.9966 + }, + { + "start": 692.9, + "end": 693.68, + "probability": 0.8967 + }, + { + "start": 694.06, + "end": 695.72, + "probability": 0.9885 + }, + { + "start": 695.92, + "end": 699.26, + "probability": 0.9878 + }, + { + "start": 699.78, + "end": 703.02, + "probability": 0.9802 + }, + { + "start": 703.3, + "end": 705.2, + "probability": 0.9728 + }, + { + "start": 705.62, + "end": 706.58, + "probability": 0.9573 + }, + { + "start": 707.24, + "end": 708.8, + "probability": 0.9946 + }, + { + "start": 708.9, + "end": 710.06, + "probability": 0.9882 + }, + { + "start": 710.4, + "end": 711.98, + "probability": 0.9944 + }, + { + "start": 712.12, + "end": 714.28, + "probability": 0.9943 + }, + { + "start": 714.74, + "end": 718.06, + "probability": 0.9485 + }, + { + "start": 718.42, + "end": 720.62, + "probability": 0.9976 + }, + { + "start": 720.64, + "end": 722.28, + "probability": 0.8633 + }, + { + "start": 722.7, + "end": 724.16, + "probability": 0.9087 + }, + { + "start": 724.28, + "end": 725.42, + "probability": 0.9941 + }, + { + "start": 726.8, + "end": 728.04, + "probability": 0.7986 + }, + { + "start": 730.28, + "end": 737.68, + "probability": 0.9962 + }, + { + "start": 738.62, + "end": 738.92, + "probability": 0.798 + }, + { + "start": 739.36, + "end": 743.82, + "probability": 0.9313 + }, + { + "start": 743.96, + "end": 745.0, + "probability": 0.9757 + }, + { + "start": 746.02, + "end": 750.5, + "probability": 0.9219 + }, + { + "start": 751.18, + "end": 756.18, + "probability": 0.9928 + }, + { + "start": 756.58, + "end": 757.4, + "probability": 0.7123 + }, + { + "start": 757.7, + "end": 761.38, + "probability": 0.8702 + }, + { + "start": 761.88, + "end": 762.6, + "probability": 0.883 + }, + { + "start": 762.66, + "end": 768.3, + "probability": 0.9909 + }, + { + "start": 768.4, + "end": 771.24, + "probability": 0.9977 + }, + { + "start": 771.24, + "end": 774.0, + "probability": 0.9862 + }, + { + "start": 774.8, + "end": 776.5, + "probability": 0.9307 + }, + { + "start": 776.74, + "end": 779.2, + "probability": 0.995 + }, + { + "start": 779.24, + "end": 780.22, + "probability": 0.9693 + }, + { + "start": 780.38, + "end": 783.14, + "probability": 0.9978 + }, + { + "start": 783.68, + "end": 788.32, + "probability": 0.9862 + }, + { + "start": 788.38, + "end": 790.6, + "probability": 0.9837 + }, + { + "start": 790.98, + "end": 792.58, + "probability": 0.864 + }, + { + "start": 792.76, + "end": 793.34, + "probability": 0.9004 + }, + { + "start": 793.52, + "end": 793.94, + "probability": 0.2488 + }, + { + "start": 794.1, + "end": 794.26, + "probability": 0.7327 + }, + { + "start": 794.26, + "end": 794.84, + "probability": 0.8513 + }, + { + "start": 794.92, + "end": 796.58, + "probability": 0.7164 + }, + { + "start": 796.7, + "end": 799.6, + "probability": 0.8667 + }, + { + "start": 799.9, + "end": 801.16, + "probability": 0.6246 + }, + { + "start": 801.34, + "end": 801.52, + "probability": 0.2317 + }, + { + "start": 804.16, + "end": 804.88, + "probability": 0.5116 + }, + { + "start": 805.58, + "end": 806.94, + "probability": 0.8535 + }, + { + "start": 808.78, + "end": 809.44, + "probability": 0.7587 + }, + { + "start": 809.52, + "end": 810.38, + "probability": 0.8347 + }, + { + "start": 810.56, + "end": 811.02, + "probability": 0.7715 + }, + { + "start": 811.42, + "end": 814.6, + "probability": 0.7612 + }, + { + "start": 814.94, + "end": 816.46, + "probability": 0.869 + }, + { + "start": 816.62, + "end": 817.4, + "probability": 0.7941 + }, + { + "start": 817.54, + "end": 820.06, + "probability": 0.9812 + }, + { + "start": 820.2, + "end": 821.08, + "probability": 0.0845 + }, + { + "start": 821.43, + "end": 827.62, + "probability": 0.1816 + }, + { + "start": 827.92, + "end": 829.36, + "probability": 0.7254 + }, + { + "start": 829.5, + "end": 832.74, + "probability": 0.3666 + }, + { + "start": 832.8, + "end": 837.9, + "probability": 0.8345 + }, + { + "start": 838.08, + "end": 838.16, + "probability": 0.5251 + }, + { + "start": 838.22, + "end": 838.7, + "probability": 0.4719 + }, + { + "start": 838.8, + "end": 840.64, + "probability": 0.3482 + }, + { + "start": 840.78, + "end": 840.78, + "probability": 0.106 + }, + { + "start": 840.78, + "end": 842.32, + "probability": 0.9951 + }, + { + "start": 842.4, + "end": 843.36, + "probability": 0.9955 + }, + { + "start": 843.6, + "end": 847.0, + "probability": 0.258 + }, + { + "start": 847.8, + "end": 850.22, + "probability": 0.9951 + }, + { + "start": 850.28, + "end": 851.45, + "probability": 0.998 + }, + { + "start": 852.08, + "end": 854.76, + "probability": 0.963 + }, + { + "start": 854.84, + "end": 855.74, + "probability": 0.7641 + }, + { + "start": 855.84, + "end": 858.16, + "probability": 0.9377 + }, + { + "start": 858.46, + "end": 859.52, + "probability": 0.9442 + }, + { + "start": 859.68, + "end": 861.68, + "probability": 0.9734 + }, + { + "start": 861.74, + "end": 862.96, + "probability": 0.9912 + }, + { + "start": 864.2, + "end": 865.1, + "probability": 0.3014 + }, + { + "start": 865.84, + "end": 867.18, + "probability": 0.5249 + }, + { + "start": 867.68, + "end": 868.8, + "probability": 0.8173 + }, + { + "start": 868.82, + "end": 869.46, + "probability": 0.5115 + }, + { + "start": 869.58, + "end": 872.02, + "probability": 0.9129 + }, + { + "start": 872.1, + "end": 873.6, + "probability": 0.7291 + }, + { + "start": 873.86, + "end": 876.24, + "probability": 0.9653 + }, + { + "start": 877.06, + "end": 880.44, + "probability": 0.7372 + }, + { + "start": 880.76, + "end": 883.12, + "probability": 0.8502 + }, + { + "start": 883.62, + "end": 884.96, + "probability": 0.7958 + }, + { + "start": 886.6, + "end": 889.4, + "probability": 0.6161 + }, + { + "start": 890.82, + "end": 897.14, + "probability": 0.9784 + }, + { + "start": 897.26, + "end": 899.94, + "probability": 0.386 + }, + { + "start": 900.76, + "end": 903.68, + "probability": 0.9974 + }, + { + "start": 904.2, + "end": 906.18, + "probability": 0.9477 + }, + { + "start": 906.36, + "end": 907.96, + "probability": 0.9626 + }, + { + "start": 908.72, + "end": 911.62, + "probability": 0.915 + }, + { + "start": 911.62, + "end": 914.12, + "probability": 0.9851 + }, + { + "start": 915.04, + "end": 919.86, + "probability": 0.968 + }, + { + "start": 920.38, + "end": 921.96, + "probability": 0.9699 + }, + { + "start": 922.8, + "end": 925.06, + "probability": 0.7423 + }, + { + "start": 926.12, + "end": 931.3, + "probability": 0.9429 + }, + { + "start": 931.46, + "end": 934.96, + "probability": 0.9905 + }, + { + "start": 935.66, + "end": 937.26, + "probability": 0.9942 + }, + { + "start": 937.38, + "end": 940.06, + "probability": 0.9965 + }, + { + "start": 940.06, + "end": 942.28, + "probability": 0.9395 + }, + { + "start": 942.74, + "end": 943.46, + "probability": 0.6222 + }, + { + "start": 944.06, + "end": 950.16, + "probability": 0.5592 + }, + { + "start": 950.68, + "end": 953.6, + "probability": 0.7196 + }, + { + "start": 954.14, + "end": 957.4, + "probability": 0.7214 + }, + { + "start": 957.52, + "end": 961.9, + "probability": 0.9233 + }, + { + "start": 961.9, + "end": 965.98, + "probability": 0.7525 + }, + { + "start": 966.1, + "end": 967.54, + "probability": 0.9878 + }, + { + "start": 968.02, + "end": 968.58, + "probability": 0.9379 + }, + { + "start": 969.08, + "end": 969.84, + "probability": 0.9186 + }, + { + "start": 969.98, + "end": 970.49, + "probability": 0.904 + }, + { + "start": 971.12, + "end": 971.72, + "probability": 0.6844 + }, + { + "start": 971.72, + "end": 974.04, + "probability": 0.8472 + }, + { + "start": 974.6, + "end": 975.88, + "probability": 0.6761 + }, + { + "start": 975.88, + "end": 979.89, + "probability": 0.9894 + }, + { + "start": 980.36, + "end": 982.58, + "probability": 0.9932 + }, + { + "start": 983.12, + "end": 986.34, + "probability": 0.9865 + }, + { + "start": 986.34, + "end": 989.42, + "probability": 0.9951 + }, + { + "start": 989.9, + "end": 991.22, + "probability": 0.893 + }, + { + "start": 991.56, + "end": 993.18, + "probability": 0.8879 + }, + { + "start": 993.2, + "end": 993.68, + "probability": 0.6975 + }, + { + "start": 993.84, + "end": 994.19, + "probability": 0.8162 + }, + { + "start": 994.88, + "end": 1000.68, + "probability": 0.9927 + }, + { + "start": 1000.78, + "end": 1001.32, + "probability": 0.98 + }, + { + "start": 1002.32, + "end": 1004.48, + "probability": 0.7367 + }, + { + "start": 1004.94, + "end": 1008.07, + "probability": 0.793 + }, + { + "start": 1008.48, + "end": 1008.74, + "probability": 0.2912 + }, + { + "start": 1009.2, + "end": 1014.54, + "probability": 0.9226 + }, + { + "start": 1015.08, + "end": 1018.58, + "probability": 0.9974 + }, + { + "start": 1019.26, + "end": 1022.38, + "probability": 0.9922 + }, + { + "start": 1022.96, + "end": 1025.88, + "probability": 0.9968 + }, + { + "start": 1025.88, + "end": 1028.24, + "probability": 0.9951 + }, + { + "start": 1028.74, + "end": 1029.76, + "probability": 0.2969 + }, + { + "start": 1030.16, + "end": 1032.32, + "probability": 0.8264 + }, + { + "start": 1032.84, + "end": 1036.2, + "probability": 0.9824 + }, + { + "start": 1036.2, + "end": 1040.68, + "probability": 0.9709 + }, + { + "start": 1040.68, + "end": 1044.4, + "probability": 0.994 + }, + { + "start": 1045.36, + "end": 1047.3, + "probability": 0.9935 + }, + { + "start": 1047.7, + "end": 1049.58, + "probability": 0.7898 + }, + { + "start": 1049.88, + "end": 1052.12, + "probability": 0.8761 + }, + { + "start": 1052.44, + "end": 1054.34, + "probability": 0.9756 + }, + { + "start": 1054.64, + "end": 1056.12, + "probability": 0.9147 + }, + { + "start": 1056.62, + "end": 1060.6, + "probability": 0.903 + }, + { + "start": 1060.66, + "end": 1062.36, + "probability": 0.9887 + }, + { + "start": 1062.9, + "end": 1064.72, + "probability": 0.908 + }, + { + "start": 1065.3, + "end": 1067.96, + "probability": 0.9871 + }, + { + "start": 1068.98, + "end": 1072.2, + "probability": 0.9978 + }, + { + "start": 1072.26, + "end": 1077.02, + "probability": 0.9919 + }, + { + "start": 1077.54, + "end": 1080.76, + "probability": 0.986 + }, + { + "start": 1081.18, + "end": 1083.36, + "probability": 0.9949 + }, + { + "start": 1083.36, + "end": 1086.18, + "probability": 0.6658 + }, + { + "start": 1086.82, + "end": 1090.96, + "probability": 0.9873 + }, + { + "start": 1091.08, + "end": 1092.48, + "probability": 0.8197 + }, + { + "start": 1092.54, + "end": 1093.18, + "probability": 0.9761 + }, + { + "start": 1093.24, + "end": 1093.92, + "probability": 0.9792 + }, + { + "start": 1093.96, + "end": 1094.3, + "probability": 0.9702 + }, + { + "start": 1094.7, + "end": 1097.66, + "probability": 0.788 + }, + { + "start": 1098.56, + "end": 1101.6, + "probability": 0.9731 + }, + { + "start": 1101.6, + "end": 1104.76, + "probability": 0.9642 + }, + { + "start": 1105.08, + "end": 1108.56, + "probability": 0.9472 + }, + { + "start": 1108.56, + "end": 1112.46, + "probability": 0.9927 + }, + { + "start": 1112.8, + "end": 1116.62, + "probability": 0.8852 + }, + { + "start": 1117.2, + "end": 1119.16, + "probability": 0.9702 + }, + { + "start": 1119.54, + "end": 1122.09, + "probability": 0.9636 + }, + { + "start": 1122.4, + "end": 1123.76, + "probability": 0.8972 + }, + { + "start": 1124.22, + "end": 1126.8, + "probability": 0.9721 + }, + { + "start": 1126.8, + "end": 1129.8, + "probability": 0.9966 + }, + { + "start": 1130.26, + "end": 1130.52, + "probability": 0.6318 + }, + { + "start": 1130.66, + "end": 1132.82, + "probability": 0.8387 + }, + { + "start": 1133.2, + "end": 1135.4, + "probability": 0.9389 + }, + { + "start": 1135.8, + "end": 1138.34, + "probability": 0.947 + }, + { + "start": 1138.34, + "end": 1141.32, + "probability": 0.995 + }, + { + "start": 1141.58, + "end": 1142.52, + "probability": 0.9643 + }, + { + "start": 1142.88, + "end": 1145.74, + "probability": 0.858 + }, + { + "start": 1145.84, + "end": 1150.22, + "probability": 0.9959 + }, + { + "start": 1151.24, + "end": 1151.72, + "probability": 0.6183 + }, + { + "start": 1151.8, + "end": 1153.26, + "probability": 0.6247 + }, + { + "start": 1157.37, + "end": 1164.2, + "probability": 0.9939 + }, + { + "start": 1165.04, + "end": 1167.42, + "probability": 0.5682 + }, + { + "start": 1167.42, + "end": 1168.8, + "probability": 0.9955 + }, + { + "start": 1168.82, + "end": 1169.03, + "probability": 0.4812 + }, + { + "start": 1170.11, + "end": 1176.28, + "probability": 0.8994 + }, + { + "start": 1176.5, + "end": 1184.74, + "probability": 0.8821 + }, + { + "start": 1185.12, + "end": 1186.72, + "probability": 0.9138 + }, + { + "start": 1187.1, + "end": 1191.32, + "probability": 0.9814 + }, + { + "start": 1191.88, + "end": 1197.98, + "probability": 0.8021 + }, + { + "start": 1198.66, + "end": 1200.04, + "probability": 0.5665 + }, + { + "start": 1200.12, + "end": 1204.36, + "probability": 0.9701 + }, + { + "start": 1205.28, + "end": 1206.18, + "probability": 0.8887 + }, + { + "start": 1209.06, + "end": 1213.14, + "probability": 0.9093 + }, + { + "start": 1213.66, + "end": 1217.02, + "probability": 0.9948 + }, + { + "start": 1217.16, + "end": 1220.39, + "probability": 0.7545 + }, + { + "start": 1220.94, + "end": 1222.64, + "probability": 0.8071 + }, + { + "start": 1223.06, + "end": 1223.66, + "probability": 0.4712 + }, + { + "start": 1225.58, + "end": 1226.72, + "probability": 0.9357 + }, + { + "start": 1227.36, + "end": 1227.62, + "probability": 0.6822 + }, + { + "start": 1231.43, + "end": 1233.54, + "probability": 0.9295 + }, + { + "start": 1233.68, + "end": 1237.72, + "probability": 0.9948 + }, + { + "start": 1237.76, + "end": 1241.5, + "probability": 0.9072 + }, + { + "start": 1242.44, + "end": 1246.68, + "probability": 0.0291 + }, + { + "start": 1246.68, + "end": 1246.68, + "probability": 0.1155 + }, + { + "start": 1246.68, + "end": 1248.02, + "probability": 0.77 + }, + { + "start": 1249.86, + "end": 1252.02, + "probability": 0.3579 + }, + { + "start": 1252.14, + "end": 1252.84, + "probability": 0.8176 + }, + { + "start": 1252.84, + "end": 1258.36, + "probability": 0.7068 + }, + { + "start": 1258.4, + "end": 1260.26, + "probability": 0.6873 + }, + { + "start": 1260.74, + "end": 1261.76, + "probability": 0.4451 + }, + { + "start": 1261.96, + "end": 1264.34, + "probability": 0.7446 + }, + { + "start": 1264.52, + "end": 1266.82, + "probability": 0.7725 + }, + { + "start": 1266.86, + "end": 1268.2, + "probability": 0.3316 + }, + { + "start": 1268.42, + "end": 1272.38, + "probability": 0.8363 + }, + { + "start": 1272.54, + "end": 1273.9, + "probability": 0.9006 + }, + { + "start": 1274.06, + "end": 1276.98, + "probability": 0.9679 + }, + { + "start": 1276.98, + "end": 1279.56, + "probability": 0.308 + }, + { + "start": 1280.2, + "end": 1282.88, + "probability": 0.9491 + }, + { + "start": 1282.9, + "end": 1283.5, + "probability": 0.9404 + }, + { + "start": 1283.78, + "end": 1288.18, + "probability": 0.7703 + }, + { + "start": 1288.32, + "end": 1289.5, + "probability": 0.9246 + }, + { + "start": 1289.66, + "end": 1291.6, + "probability": 0.8192 + }, + { + "start": 1291.66, + "end": 1293.06, + "probability": 0.2143 + }, + { + "start": 1293.06, + "end": 1294.96, + "probability": 0.6001 + }, + { + "start": 1295.02, + "end": 1295.24, + "probability": 0.1809 + }, + { + "start": 1295.24, + "end": 1296.98, + "probability": 0.8164 + }, + { + "start": 1297.1, + "end": 1298.4, + "probability": 0.8874 + }, + { + "start": 1298.62, + "end": 1300.42, + "probability": 0.8511 + }, + { + "start": 1300.42, + "end": 1302.84, + "probability": 0.8268 + }, + { + "start": 1302.84, + "end": 1303.22, + "probability": 0.1817 + }, + { + "start": 1303.4, + "end": 1304.06, + "probability": 0.3959 + }, + { + "start": 1304.06, + "end": 1307.76, + "probability": 0.417 + }, + { + "start": 1307.82, + "end": 1309.68, + "probability": 0.8929 + }, + { + "start": 1309.72, + "end": 1310.1, + "probability": 0.5576 + }, + { + "start": 1310.24, + "end": 1310.58, + "probability": 0.7725 + }, + { + "start": 1310.64, + "end": 1311.86, + "probability": 0.7842 + }, + { + "start": 1311.86, + "end": 1317.46, + "probability": 0.9969 + }, + { + "start": 1317.46, + "end": 1322.76, + "probability": 0.9966 + }, + { + "start": 1323.14, + "end": 1326.34, + "probability": 0.8726 + }, + { + "start": 1326.74, + "end": 1327.72, + "probability": 0.6934 + }, + { + "start": 1328.0, + "end": 1330.58, + "probability": 0.9945 + }, + { + "start": 1330.98, + "end": 1336.9, + "probability": 0.9801 + }, + { + "start": 1336.9, + "end": 1340.36, + "probability": 0.9882 + }, + { + "start": 1340.84, + "end": 1343.1, + "probability": 0.8647 + }, + { + "start": 1343.26, + "end": 1348.54, + "probability": 0.9951 + }, + { + "start": 1348.82, + "end": 1349.76, + "probability": 0.8334 + }, + { + "start": 1349.9, + "end": 1350.24, + "probability": 0.8942 + }, + { + "start": 1350.32, + "end": 1353.14, + "probability": 0.9937 + }, + { + "start": 1353.14, + "end": 1355.72, + "probability": 0.9809 + }, + { + "start": 1356.12, + "end": 1361.48, + "probability": 0.9417 + }, + { + "start": 1361.62, + "end": 1362.04, + "probability": 0.938 + }, + { + "start": 1362.34, + "end": 1365.16, + "probability": 0.826 + }, + { + "start": 1365.16, + "end": 1367.84, + "probability": 0.9686 + }, + { + "start": 1369.64, + "end": 1371.26, + "probability": 0.8664 + }, + { + "start": 1371.34, + "end": 1373.22, + "probability": 0.9972 + }, + { + "start": 1373.56, + "end": 1379.86, + "probability": 0.9851 + }, + { + "start": 1380.22, + "end": 1381.52, + "probability": 0.9586 + }, + { + "start": 1381.92, + "end": 1386.66, + "probability": 0.9917 + }, + { + "start": 1386.82, + "end": 1387.62, + "probability": 0.2057 + }, + { + "start": 1388.9, + "end": 1395.52, + "probability": 0.9961 + }, + { + "start": 1395.88, + "end": 1397.48, + "probability": 0.7343 + }, + { + "start": 1397.8, + "end": 1402.8, + "probability": 0.9916 + }, + { + "start": 1403.18, + "end": 1403.7, + "probability": 0.4791 + }, + { + "start": 1403.76, + "end": 1409.7, + "probability": 0.9919 + }, + { + "start": 1409.7, + "end": 1414.6, + "probability": 0.9805 + }, + { + "start": 1415.02, + "end": 1419.14, + "probability": 0.9846 + }, + { + "start": 1419.14, + "end": 1423.56, + "probability": 0.9608 + }, + { + "start": 1423.56, + "end": 1427.02, + "probability": 0.9966 + }, + { + "start": 1427.36, + "end": 1429.66, + "probability": 0.9889 + }, + { + "start": 1430.24, + "end": 1432.24, + "probability": 0.9308 + }, + { + "start": 1432.44, + "end": 1434.56, + "probability": 0.9847 + }, + { + "start": 1435.0, + "end": 1436.88, + "probability": 0.9985 + }, + { + "start": 1437.2, + "end": 1439.7, + "probability": 0.9954 + }, + { + "start": 1440.08, + "end": 1443.7, + "probability": 0.9803 + }, + { + "start": 1444.38, + "end": 1448.08, + "probability": 0.9964 + }, + { + "start": 1448.68, + "end": 1449.86, + "probability": 0.8111 + }, + { + "start": 1450.26, + "end": 1456.0, + "probability": 0.9871 + }, + { + "start": 1456.32, + "end": 1458.36, + "probability": 0.9897 + }, + { + "start": 1458.7, + "end": 1460.02, + "probability": 0.9913 + }, + { + "start": 1460.12, + "end": 1461.26, + "probability": 0.9888 + }, + { + "start": 1461.64, + "end": 1462.8, + "probability": 0.9959 + }, + { + "start": 1462.9, + "end": 1463.84, + "probability": 0.7098 + }, + { + "start": 1464.06, + "end": 1466.3, + "probability": 0.9743 + }, + { + "start": 1466.72, + "end": 1467.66, + "probability": 0.9932 + }, + { + "start": 1468.16, + "end": 1472.86, + "probability": 0.8965 + }, + { + "start": 1472.94, + "end": 1475.24, + "probability": 0.8686 + }, + { + "start": 1475.8, + "end": 1478.22, + "probability": 0.9692 + }, + { + "start": 1479.26, + "end": 1482.94, + "probability": 0.9746 + }, + { + "start": 1483.58, + "end": 1487.04, + "probability": 0.9858 + }, + { + "start": 1487.32, + "end": 1489.89, + "probability": 0.987 + }, + { + "start": 1491.44, + "end": 1496.16, + "probability": 0.9974 + }, + { + "start": 1496.82, + "end": 1498.54, + "probability": 0.9635 + }, + { + "start": 1499.4, + "end": 1501.48, + "probability": 0.9588 + }, + { + "start": 1502.5, + "end": 1503.38, + "probability": 0.7943 + }, + { + "start": 1504.26, + "end": 1507.02, + "probability": 0.8518 + }, + { + "start": 1507.78, + "end": 1509.3, + "probability": 0.9181 + }, + { + "start": 1510.22, + "end": 1513.24, + "probability": 0.8873 + }, + { + "start": 1513.98, + "end": 1515.6, + "probability": 0.947 + }, + { + "start": 1516.26, + "end": 1519.12, + "probability": 0.9961 + }, + { + "start": 1519.12, + "end": 1523.34, + "probability": 0.995 + }, + { + "start": 1524.06, + "end": 1526.9, + "probability": 0.9829 + }, + { + "start": 1527.8, + "end": 1530.64, + "probability": 0.9844 + }, + { + "start": 1531.3, + "end": 1533.56, + "probability": 0.9518 + }, + { + "start": 1534.2, + "end": 1535.46, + "probability": 0.6525 + }, + { + "start": 1536.34, + "end": 1538.26, + "probability": 0.9889 + }, + { + "start": 1538.86, + "end": 1539.98, + "probability": 0.9849 + }, + { + "start": 1540.7, + "end": 1543.9, + "probability": 0.9743 + }, + { + "start": 1544.64, + "end": 1547.98, + "probability": 0.9946 + }, + { + "start": 1548.64, + "end": 1552.26, + "probability": 0.9106 + }, + { + "start": 1552.68, + "end": 1556.0, + "probability": 0.8039 + }, + { + "start": 1556.7, + "end": 1557.26, + "probability": 0.917 + }, + { + "start": 1558.24, + "end": 1560.56, + "probability": 0.9954 + }, + { + "start": 1560.56, + "end": 1564.6, + "probability": 0.9967 + }, + { + "start": 1565.54, + "end": 1567.64, + "probability": 0.8947 + }, + { + "start": 1568.04, + "end": 1568.7, + "probability": 0.7414 + }, + { + "start": 1568.74, + "end": 1569.56, + "probability": 0.7339 + }, + { + "start": 1569.68, + "end": 1571.86, + "probability": 0.855 + }, + { + "start": 1572.6, + "end": 1574.46, + "probability": 0.995 + }, + { + "start": 1575.3, + "end": 1579.6, + "probability": 0.9489 + }, + { + "start": 1580.62, + "end": 1583.08, + "probability": 0.9731 + }, + { + "start": 1584.2, + "end": 1585.18, + "probability": 0.9993 + }, + { + "start": 1586.2, + "end": 1589.07, + "probability": 0.9594 + }, + { + "start": 1589.84, + "end": 1592.62, + "probability": 0.9927 + }, + { + "start": 1593.14, + "end": 1594.5, + "probability": 0.7799 + }, + { + "start": 1595.22, + "end": 1597.64, + "probability": 0.9924 + }, + { + "start": 1598.26, + "end": 1601.14, + "probability": 0.9874 + }, + { + "start": 1601.86, + "end": 1603.14, + "probability": 0.7208 + }, + { + "start": 1604.08, + "end": 1608.44, + "probability": 0.9195 + }, + { + "start": 1609.12, + "end": 1612.24, + "probability": 0.9826 + }, + { + "start": 1612.84, + "end": 1616.7, + "probability": 0.9971 + }, + { + "start": 1617.32, + "end": 1618.56, + "probability": 0.9204 + }, + { + "start": 1619.72, + "end": 1620.84, + "probability": 0.91 + }, + { + "start": 1621.26, + "end": 1621.38, + "probability": 0.3694 + }, + { + "start": 1621.58, + "end": 1626.76, + "probability": 0.9946 + }, + { + "start": 1626.76, + "end": 1631.22, + "probability": 0.9302 + }, + { + "start": 1631.68, + "end": 1632.48, + "probability": 0.9598 + }, + { + "start": 1632.9, + "end": 1633.74, + "probability": 0.7842 + }, + { + "start": 1633.78, + "end": 1634.32, + "probability": 0.9795 + }, + { + "start": 1635.02, + "end": 1636.26, + "probability": 0.9624 + }, + { + "start": 1636.94, + "end": 1638.04, + "probability": 0.8693 + }, + { + "start": 1638.92, + "end": 1640.3, + "probability": 0.7941 + }, + { + "start": 1641.02, + "end": 1643.78, + "probability": 0.9874 + }, + { + "start": 1645.02, + "end": 1648.62, + "probability": 0.9766 + }, + { + "start": 1650.48, + "end": 1652.88, + "probability": 0.9704 + }, + { + "start": 1653.38, + "end": 1655.98, + "probability": 0.8674 + }, + { + "start": 1656.72, + "end": 1658.1, + "probability": 0.8362 + }, + { + "start": 1658.56, + "end": 1659.64, + "probability": 0.3329 + }, + { + "start": 1659.92, + "end": 1664.28, + "probability": 0.9617 + }, + { + "start": 1665.12, + "end": 1671.14, + "probability": 0.9267 + }, + { + "start": 1672.16, + "end": 1672.82, + "probability": 0.9008 + }, + { + "start": 1674.02, + "end": 1678.82, + "probability": 0.9922 + }, + { + "start": 1679.76, + "end": 1680.42, + "probability": 0.9292 + }, + { + "start": 1681.08, + "end": 1687.84, + "probability": 0.9803 + }, + { + "start": 1688.42, + "end": 1689.54, + "probability": 0.9181 + }, + { + "start": 1690.3, + "end": 1693.48, + "probability": 0.8709 + }, + { + "start": 1694.34, + "end": 1698.58, + "probability": 0.9826 + }, + { + "start": 1698.58, + "end": 1703.9, + "probability": 0.9963 + }, + { + "start": 1704.46, + "end": 1706.2, + "probability": 0.8487 + }, + { + "start": 1706.88, + "end": 1713.36, + "probability": 0.9893 + }, + { + "start": 1714.34, + "end": 1718.42, + "probability": 0.9674 + }, + { + "start": 1719.42, + "end": 1723.76, + "probability": 0.9743 + }, + { + "start": 1724.52, + "end": 1725.08, + "probability": 0.9384 + }, + { + "start": 1725.64, + "end": 1726.76, + "probability": 0.9316 + }, + { + "start": 1727.5, + "end": 1731.48, + "probability": 0.9911 + }, + { + "start": 1732.22, + "end": 1736.62, + "probability": 0.9932 + }, + { + "start": 1737.72, + "end": 1738.58, + "probability": 0.9914 + }, + { + "start": 1760.02, + "end": 1763.06, + "probability": 0.7511 + }, + { + "start": 1763.76, + "end": 1767.18, + "probability": 0.9563 + }, + { + "start": 1768.28, + "end": 1772.18, + "probability": 0.9967 + }, + { + "start": 1772.74, + "end": 1780.48, + "probability": 0.9612 + }, + { + "start": 1781.7, + "end": 1783.32, + "probability": 0.7337 + }, + { + "start": 1784.04, + "end": 1786.62, + "probability": 0.9822 + }, + { + "start": 1787.26, + "end": 1788.08, + "probability": 0.8104 + }, + { + "start": 1788.78, + "end": 1792.16, + "probability": 0.9369 + }, + { + "start": 1793.42, + "end": 1796.54, + "probability": 0.9384 + }, + { + "start": 1797.22, + "end": 1800.18, + "probability": 0.9882 + }, + { + "start": 1800.86, + "end": 1801.72, + "probability": 0.6159 + }, + { + "start": 1802.34, + "end": 1807.88, + "probability": 0.9883 + }, + { + "start": 1808.62, + "end": 1811.06, + "probability": 0.9609 + }, + { + "start": 1811.74, + "end": 1814.02, + "probability": 0.9683 + }, + { + "start": 1815.6, + "end": 1815.6, + "probability": 0.3226 + }, + { + "start": 1815.6, + "end": 1819.9, + "probability": 0.818 + }, + { + "start": 1820.8, + "end": 1822.7, + "probability": 0.7987 + }, + { + "start": 1823.5, + "end": 1826.12, + "probability": 0.9785 + }, + { + "start": 1827.0, + "end": 1830.16, + "probability": 0.9944 + }, + { + "start": 1830.92, + "end": 1832.6, + "probability": 0.9981 + }, + { + "start": 1833.3, + "end": 1837.74, + "probability": 0.9883 + }, + { + "start": 1838.6, + "end": 1843.5, + "probability": 0.9885 + }, + { + "start": 1844.08, + "end": 1847.58, + "probability": 0.9909 + }, + { + "start": 1848.7, + "end": 1851.08, + "probability": 0.9995 + }, + { + "start": 1851.68, + "end": 1854.2, + "probability": 0.9554 + }, + { + "start": 1854.88, + "end": 1859.24, + "probability": 0.9996 + }, + { + "start": 1859.24, + "end": 1864.48, + "probability": 0.9993 + }, + { + "start": 1865.44, + "end": 1866.8, + "probability": 0.8307 + }, + { + "start": 1867.5, + "end": 1870.4, + "probability": 0.7385 + }, + { + "start": 1871.16, + "end": 1874.52, + "probability": 0.9858 + }, + { + "start": 1876.16, + "end": 1877.88, + "probability": 0.9805 + }, + { + "start": 1878.2, + "end": 1882.32, + "probability": 0.9853 + }, + { + "start": 1884.0, + "end": 1885.8, + "probability": 0.9962 + }, + { + "start": 1886.3, + "end": 1890.24, + "probability": 0.999 + }, + { + "start": 1890.36, + "end": 1891.76, + "probability": 0.9128 + }, + { + "start": 1892.46, + "end": 1895.54, + "probability": 0.9766 + }, + { + "start": 1896.12, + "end": 1899.32, + "probability": 0.981 + }, + { + "start": 1899.9, + "end": 1905.2, + "probability": 0.9304 + }, + { + "start": 1905.86, + "end": 1909.52, + "probability": 0.9985 + }, + { + "start": 1910.06, + "end": 1914.56, + "probability": 0.9964 + }, + { + "start": 1915.44, + "end": 1917.16, + "probability": 0.9844 + }, + { + "start": 1917.82, + "end": 1923.66, + "probability": 0.9977 + }, + { + "start": 1924.48, + "end": 1930.7, + "probability": 0.9977 + }, + { + "start": 1936.25, + "end": 1942.4, + "probability": 0.9963 + }, + { + "start": 1943.36, + "end": 1945.21, + "probability": 0.2755 + }, + { + "start": 1945.4, + "end": 1950.36, + "probability": 0.9897 + }, + { + "start": 1951.14, + "end": 1954.82, + "probability": 0.9928 + }, + { + "start": 1954.82, + "end": 1959.6, + "probability": 0.998 + }, + { + "start": 1960.8, + "end": 1966.66, + "probability": 0.955 + }, + { + "start": 1966.66, + "end": 1973.02, + "probability": 0.9977 + }, + { + "start": 1974.64, + "end": 1976.76, + "probability": 0.8018 + }, + { + "start": 1977.74, + "end": 1981.7, + "probability": 0.9644 + }, + { + "start": 1981.7, + "end": 1984.7, + "probability": 0.9963 + }, + { + "start": 1985.58, + "end": 1988.74, + "probability": 0.9913 + }, + { + "start": 1989.42, + "end": 1993.04, + "probability": 0.6765 + }, + { + "start": 1993.72, + "end": 1994.58, + "probability": 0.7665 + }, + { + "start": 1995.14, + "end": 1996.8, + "probability": 0.9527 + }, + { + "start": 1997.44, + "end": 2000.36, + "probability": 0.9916 + }, + { + "start": 2002.0, + "end": 2003.34, + "probability": 0.9659 + }, + { + "start": 2004.22, + "end": 2010.7, + "probability": 0.9978 + }, + { + "start": 2011.46, + "end": 2013.56, + "probability": 0.994 + }, + { + "start": 2014.08, + "end": 2020.16, + "probability": 0.9904 + }, + { + "start": 2021.32, + "end": 2023.92, + "probability": 0.945 + }, + { + "start": 2024.44, + "end": 2027.92, + "probability": 0.9991 + }, + { + "start": 2027.92, + "end": 2033.34, + "probability": 0.9816 + }, + { + "start": 2034.3, + "end": 2036.84, + "probability": 0.9954 + }, + { + "start": 2037.54, + "end": 2040.4, + "probability": 0.9963 + }, + { + "start": 2040.4, + "end": 2043.92, + "probability": 0.9604 + }, + { + "start": 2044.54, + "end": 2048.64, + "probability": 0.9963 + }, + { + "start": 2050.4, + "end": 2056.18, + "probability": 0.9945 + }, + { + "start": 2056.98, + "end": 2057.98, + "probability": 0.8333 + }, + { + "start": 2058.5, + "end": 2063.06, + "probability": 0.9973 + }, + { + "start": 2063.06, + "end": 2069.58, + "probability": 0.9905 + }, + { + "start": 2070.88, + "end": 2073.76, + "probability": 0.9855 + }, + { + "start": 2074.34, + "end": 2078.16, + "probability": 0.9733 + }, + { + "start": 2078.16, + "end": 2082.08, + "probability": 0.9591 + }, + { + "start": 2082.94, + "end": 2086.06, + "probability": 0.9064 + }, + { + "start": 2086.37, + "end": 2091.04, + "probability": 0.2135 + }, + { + "start": 2091.06, + "end": 2095.2, + "probability": 0.573 + }, + { + "start": 2096.4, + "end": 2099.7, + "probability": 0.9903 + }, + { + "start": 2100.42, + "end": 2107.6, + "probability": 0.9307 + }, + { + "start": 2108.36, + "end": 2112.0, + "probability": 0.9854 + }, + { + "start": 2112.9, + "end": 2114.78, + "probability": 0.8138 + }, + { + "start": 2115.34, + "end": 2119.72, + "probability": 0.9982 + }, + { + "start": 2120.32, + "end": 2125.76, + "probability": 0.9966 + }, + { + "start": 2126.6, + "end": 2132.56, + "probability": 0.9956 + }, + { + "start": 2133.7, + "end": 2135.08, + "probability": 0.9928 + }, + { + "start": 2135.72, + "end": 2136.96, + "probability": 0.8135 + }, + { + "start": 2137.94, + "end": 2141.82, + "probability": 0.9985 + }, + { + "start": 2142.78, + "end": 2146.22, + "probability": 0.999 + }, + { + "start": 2146.8, + "end": 2149.12, + "probability": 0.8972 + }, + { + "start": 2149.26, + "end": 2150.46, + "probability": 0.6681 + }, + { + "start": 2150.5, + "end": 2151.44, + "probability": 0.7518 + }, + { + "start": 2152.24, + "end": 2155.68, + "probability": 0.9011 + }, + { + "start": 2156.22, + "end": 2163.46, + "probability": 0.9844 + }, + { + "start": 2164.42, + "end": 2165.84, + "probability": 0.8012 + }, + { + "start": 2166.48, + "end": 2175.9, + "probability": 0.9384 + }, + { + "start": 2176.98, + "end": 2177.96, + "probability": 0.8649 + }, + { + "start": 2178.04, + "end": 2183.18, + "probability": 0.992 + }, + { + "start": 2195.98, + "end": 2197.82, + "probability": 0.6881 + }, + { + "start": 2199.22, + "end": 2202.42, + "probability": 0.9771 + }, + { + "start": 2204.02, + "end": 2205.1, + "probability": 0.9505 + }, + { + "start": 2205.22, + "end": 2206.42, + "probability": 0.9785 + }, + { + "start": 2206.78, + "end": 2209.38, + "probability": 0.991 + }, + { + "start": 2210.34, + "end": 2212.32, + "probability": 0.9796 + }, + { + "start": 2212.78, + "end": 2213.48, + "probability": 0.7906 + }, + { + "start": 2213.6, + "end": 2215.82, + "probability": 0.9595 + }, + { + "start": 2216.9, + "end": 2222.46, + "probability": 0.9963 + }, + { + "start": 2224.34, + "end": 2225.5, + "probability": 0.999 + }, + { + "start": 2226.8, + "end": 2230.58, + "probability": 0.9948 + }, + { + "start": 2232.0, + "end": 2235.24, + "probability": 0.9467 + }, + { + "start": 2235.38, + "end": 2238.98, + "probability": 0.9637 + }, + { + "start": 2239.08, + "end": 2243.1, + "probability": 0.9721 + }, + { + "start": 2244.42, + "end": 2245.28, + "probability": 0.035 + }, + { + "start": 2245.56, + "end": 2247.31, + "probability": 0.9819 + }, + { + "start": 2247.64, + "end": 2248.7, + "probability": 0.5816 + }, + { + "start": 2249.38, + "end": 2249.38, + "probability": 0.0195 + }, + { + "start": 2249.38, + "end": 2251.0, + "probability": 0.5311 + }, + { + "start": 2251.86, + "end": 2253.68, + "probability": 0.9536 + }, + { + "start": 2255.06, + "end": 2258.2, + "probability": 0.9909 + }, + { + "start": 2258.28, + "end": 2259.94, + "probability": 0.9965 + }, + { + "start": 2260.0, + "end": 2261.94, + "probability": 0.989 + }, + { + "start": 2263.68, + "end": 2267.44, + "probability": 0.9976 + }, + { + "start": 2268.24, + "end": 2269.18, + "probability": 0.9946 + }, + { + "start": 2270.58, + "end": 2272.0, + "probability": 0.9344 + }, + { + "start": 2272.56, + "end": 2278.2, + "probability": 0.9255 + }, + { + "start": 2278.2, + "end": 2282.2, + "probability": 0.9983 + }, + { + "start": 2282.36, + "end": 2284.08, + "probability": 0.9474 + }, + { + "start": 2285.12, + "end": 2287.7, + "probability": 0.9919 + }, + { + "start": 2289.5, + "end": 2292.58, + "probability": 0.9985 + }, + { + "start": 2292.62, + "end": 2294.28, + "probability": 0.993 + }, + { + "start": 2295.1, + "end": 2296.74, + "probability": 0.9418 + }, + { + "start": 2298.14, + "end": 2300.64, + "probability": 0.9973 + }, + { + "start": 2301.3, + "end": 2302.9, + "probability": 0.7364 + }, + { + "start": 2303.92, + "end": 2305.14, + "probability": 0.8274 + }, + { + "start": 2305.56, + "end": 2308.8, + "probability": 0.9797 + }, + { + "start": 2309.62, + "end": 2313.38, + "probability": 0.6353 + }, + { + "start": 2314.8, + "end": 2315.24, + "probability": 0.9208 + }, + { + "start": 2317.06, + "end": 2319.03, + "probability": 0.9644 + }, + { + "start": 2319.16, + "end": 2321.48, + "probability": 0.9946 + }, + { + "start": 2322.06, + "end": 2326.0, + "probability": 0.9893 + }, + { + "start": 2326.32, + "end": 2329.7, + "probability": 0.9978 + }, + { + "start": 2329.7, + "end": 2333.5, + "probability": 0.992 + }, + { + "start": 2334.38, + "end": 2336.94, + "probability": 0.9979 + }, + { + "start": 2337.04, + "end": 2344.04, + "probability": 0.9924 + }, + { + "start": 2344.04, + "end": 2351.74, + "probability": 0.9932 + }, + { + "start": 2351.94, + "end": 2353.62, + "probability": 0.658 + }, + { + "start": 2355.04, + "end": 2355.04, + "probability": 0.0008 + }, + { + "start": 2355.04, + "end": 2357.94, + "probability": 0.5086 + }, + { + "start": 2358.84, + "end": 2360.06, + "probability": 0.8748 + }, + { + "start": 2360.26, + "end": 2360.26, + "probability": 0.2458 + }, + { + "start": 2360.26, + "end": 2360.33, + "probability": 0.8795 + }, + { + "start": 2360.72, + "end": 2361.38, + "probability": 0.7766 + }, + { + "start": 2362.78, + "end": 2363.22, + "probability": 0.1037 + }, + { + "start": 2363.22, + "end": 2364.27, + "probability": 0.593 + }, + { + "start": 2365.61, + "end": 2365.68, + "probability": 0.7207 + }, + { + "start": 2365.68, + "end": 2366.36, + "probability": 0.2527 + }, + { + "start": 2366.36, + "end": 2369.78, + "probability": 0.7804 + }, + { + "start": 2370.84, + "end": 2371.6, + "probability": 0.5437 + }, + { + "start": 2372.48, + "end": 2374.58, + "probability": 0.9854 + }, + { + "start": 2374.58, + "end": 2375.22, + "probability": 0.5357 + }, + { + "start": 2375.38, + "end": 2376.18, + "probability": 0.4577 + }, + { + "start": 2376.22, + "end": 2376.44, + "probability": 0.6542 + }, + { + "start": 2377.72, + "end": 2378.22, + "probability": 0.4082 + }, + { + "start": 2378.32, + "end": 2380.54, + "probability": 0.9902 + }, + { + "start": 2380.84, + "end": 2384.14, + "probability": 0.9956 + }, + { + "start": 2384.14, + "end": 2389.74, + "probability": 0.9291 + }, + { + "start": 2390.94, + "end": 2392.14, + "probability": 0.6208 + }, + { + "start": 2392.66, + "end": 2396.16, + "probability": 0.9209 + }, + { + "start": 2399.22, + "end": 2400.06, + "probability": 0.9492 + }, + { + "start": 2400.14, + "end": 2400.8, + "probability": 0.7471 + }, + { + "start": 2400.88, + "end": 2402.44, + "probability": 0.9934 + }, + { + "start": 2404.02, + "end": 2405.16, + "probability": 0.9628 + }, + { + "start": 2406.22, + "end": 2408.9, + "probability": 0.9881 + }, + { + "start": 2410.02, + "end": 2413.24, + "probability": 0.9915 + }, + { + "start": 2413.48, + "end": 2418.22, + "probability": 0.9966 + }, + { + "start": 2420.44, + "end": 2421.62, + "probability": 0.9929 + }, + { + "start": 2423.04, + "end": 2424.92, + "probability": 0.937 + }, + { + "start": 2426.3, + "end": 2428.3, + "probability": 0.9215 + }, + { + "start": 2428.74, + "end": 2430.04, + "probability": 0.8437 + }, + { + "start": 2430.16, + "end": 2431.94, + "probability": 0.9869 + }, + { + "start": 2432.36, + "end": 2435.72, + "probability": 0.9982 + }, + { + "start": 2436.08, + "end": 2436.76, + "probability": 0.7393 + }, + { + "start": 2437.42, + "end": 2439.5, + "probability": 0.9912 + }, + { + "start": 2440.42, + "end": 2442.66, + "probability": 0.9968 + }, + { + "start": 2443.12, + "end": 2443.46, + "probability": 0.5397 + }, + { + "start": 2443.88, + "end": 2444.68, + "probability": 0.9828 + }, + { + "start": 2444.74, + "end": 2446.52, + "probability": 0.9894 + }, + { + "start": 2447.9, + "end": 2449.58, + "probability": 0.9985 + }, + { + "start": 2450.66, + "end": 2454.96, + "probability": 0.9966 + }, + { + "start": 2456.04, + "end": 2458.86, + "probability": 0.9735 + }, + { + "start": 2460.2, + "end": 2464.26, + "probability": 0.9863 + }, + { + "start": 2464.74, + "end": 2470.48, + "probability": 0.9953 + }, + { + "start": 2470.92, + "end": 2474.58, + "probability": 0.9898 + }, + { + "start": 2476.44, + "end": 2478.48, + "probability": 0.9956 + }, + { + "start": 2479.72, + "end": 2484.78, + "probability": 0.9703 + }, + { + "start": 2485.84, + "end": 2486.33, + "probability": 0.531 + }, + { + "start": 2487.64, + "end": 2490.62, + "probability": 0.9958 + }, + { + "start": 2491.28, + "end": 2491.72, + "probability": 0.8088 + }, + { + "start": 2493.02, + "end": 2493.32, + "probability": 0.6425 + }, + { + "start": 2494.02, + "end": 2496.0, + "probability": 0.9883 + }, + { + "start": 2496.4, + "end": 2500.32, + "probability": 0.989 + }, + { + "start": 2501.34, + "end": 2507.96, + "probability": 0.9914 + }, + { + "start": 2509.04, + "end": 2510.24, + "probability": 0.7911 + }, + { + "start": 2510.95, + "end": 2514.96, + "probability": 0.9633 + }, + { + "start": 2515.72, + "end": 2518.44, + "probability": 0.979 + }, + { + "start": 2519.98, + "end": 2521.9, + "probability": 0.9829 + }, + { + "start": 2522.02, + "end": 2525.32, + "probability": 0.9961 + }, + { + "start": 2526.54, + "end": 2527.74, + "probability": 0.9987 + }, + { + "start": 2528.44, + "end": 2529.69, + "probability": 0.8668 + }, + { + "start": 2531.26, + "end": 2534.1, + "probability": 0.9988 + }, + { + "start": 2534.2, + "end": 2538.94, + "probability": 0.9924 + }, + { + "start": 2539.26, + "end": 2540.46, + "probability": 0.9713 + }, + { + "start": 2541.38, + "end": 2542.01, + "probability": 0.9468 + }, + { + "start": 2542.68, + "end": 2543.38, + "probability": 0.8878 + }, + { + "start": 2544.28, + "end": 2548.52, + "probability": 0.982 + }, + { + "start": 2549.44, + "end": 2550.34, + "probability": 0.8512 + }, + { + "start": 2550.5, + "end": 2551.38, + "probability": 0.7312 + }, + { + "start": 2551.56, + "end": 2555.36, + "probability": 0.9882 + }, + { + "start": 2557.56, + "end": 2561.2, + "probability": 0.9119 + }, + { + "start": 2563.04, + "end": 2563.26, + "probability": 0.3086 + }, + { + "start": 2564.48, + "end": 2565.48, + "probability": 0.643 + }, + { + "start": 2566.84, + "end": 2568.84, + "probability": 0.9153 + }, + { + "start": 2569.68, + "end": 2570.2, + "probability": 0.7818 + }, + { + "start": 2570.28, + "end": 2574.02, + "probability": 0.9924 + }, + { + "start": 2575.34, + "end": 2580.94, + "probability": 0.9637 + }, + { + "start": 2581.26, + "end": 2583.62, + "probability": 0.9219 + }, + { + "start": 2584.4, + "end": 2588.52, + "probability": 0.8317 + }, + { + "start": 2589.28, + "end": 2589.64, + "probability": 0.3427 + }, + { + "start": 2590.06, + "end": 2594.0, + "probability": 0.8947 + }, + { + "start": 2594.62, + "end": 2596.02, + "probability": 0.9466 + }, + { + "start": 2597.34, + "end": 2602.58, + "probability": 0.9028 + }, + { + "start": 2603.36, + "end": 2605.66, + "probability": 0.7827 + }, + { + "start": 2606.64, + "end": 2608.94, + "probability": 0.9906 + }, + { + "start": 2609.68, + "end": 2613.4, + "probability": 0.9229 + }, + { + "start": 2614.44, + "end": 2615.74, + "probability": 0.6742 + }, + { + "start": 2616.34, + "end": 2619.1, + "probability": 0.9614 + }, + { + "start": 2620.96, + "end": 2623.32, + "probability": 0.8731 + }, + { + "start": 2623.4, + "end": 2626.54, + "probability": 0.8918 + }, + { + "start": 2627.62, + "end": 2631.16, + "probability": 0.9877 + }, + { + "start": 2631.74, + "end": 2633.18, + "probability": 0.987 + }, + { + "start": 2634.0, + "end": 2637.22, + "probability": 0.977 + }, + { + "start": 2637.9, + "end": 2642.46, + "probability": 0.9929 + }, + { + "start": 2642.98, + "end": 2646.46, + "probability": 0.9597 + }, + { + "start": 2647.46, + "end": 2649.48, + "probability": 0.6877 + }, + { + "start": 2650.1, + "end": 2650.94, + "probability": 0.9068 + }, + { + "start": 2651.04, + "end": 2656.6, + "probability": 0.9958 + }, + { + "start": 2657.4, + "end": 2662.5, + "probability": 0.9978 + }, + { + "start": 2663.48, + "end": 2667.78, + "probability": 0.9957 + }, + { + "start": 2668.34, + "end": 2669.72, + "probability": 0.9258 + }, + { + "start": 2670.52, + "end": 2672.92, + "probability": 0.9892 + }, + { + "start": 2673.96, + "end": 2675.29, + "probability": 0.7893 + }, + { + "start": 2676.14, + "end": 2677.72, + "probability": 0.9652 + }, + { + "start": 2679.06, + "end": 2685.04, + "probability": 0.9937 + }, + { + "start": 2685.74, + "end": 2686.2, + "probability": 0.7409 + }, + { + "start": 2686.72, + "end": 2688.42, + "probability": 0.8504 + }, + { + "start": 2689.18, + "end": 2693.96, + "probability": 0.9966 + }, + { + "start": 2694.52, + "end": 2696.74, + "probability": 0.9871 + }, + { + "start": 2697.74, + "end": 2702.24, + "probability": 0.9878 + }, + { + "start": 2704.14, + "end": 2706.72, + "probability": 0.9933 + }, + { + "start": 2707.22, + "end": 2709.61, + "probability": 0.9475 + }, + { + "start": 2710.3, + "end": 2717.8, + "probability": 0.9697 + }, + { + "start": 2718.36, + "end": 2721.86, + "probability": 0.8562 + }, + { + "start": 2722.4, + "end": 2726.7, + "probability": 0.9927 + }, + { + "start": 2726.7, + "end": 2733.6, + "probability": 0.8164 + }, + { + "start": 2734.4, + "end": 2736.36, + "probability": 0.9297 + }, + { + "start": 2739.0, + "end": 2743.28, + "probability": 0.122 + }, + { + "start": 2755.48, + "end": 2755.88, + "probability": 0.7279 + }, + { + "start": 2759.36, + "end": 2764.22, + "probability": 0.9905 + }, + { + "start": 2771.52, + "end": 2773.78, + "probability": 0.9017 + }, + { + "start": 2774.12, + "end": 2774.22, + "probability": 0.8781 + }, + { + "start": 2779.18, + "end": 2781.94, + "probability": 0.9879 + }, + { + "start": 2781.94, + "end": 2784.26, + "probability": 0.8128 + }, + { + "start": 2784.96, + "end": 2785.84, + "probability": 0.8869 + }, + { + "start": 2788.64, + "end": 2794.36, + "probability": 0.9921 + }, + { + "start": 2794.36, + "end": 2798.28, + "probability": 0.9992 + }, + { + "start": 2798.62, + "end": 2800.12, + "probability": 0.9677 + }, + { + "start": 2800.82, + "end": 2806.24, + "probability": 0.8934 + }, + { + "start": 2807.74, + "end": 2813.04, + "probability": 0.9791 + }, + { + "start": 2814.94, + "end": 2820.88, + "probability": 0.8423 + }, + { + "start": 2820.88, + "end": 2826.62, + "probability": 0.8396 + }, + { + "start": 2827.7, + "end": 2833.8, + "probability": 0.9866 + }, + { + "start": 2835.74, + "end": 2837.65, + "probability": 0.9971 + }, + { + "start": 2837.82, + "end": 2842.86, + "probability": 0.9714 + }, + { + "start": 2843.2, + "end": 2845.88, + "probability": 0.8538 + }, + { + "start": 2846.52, + "end": 2848.22, + "probability": 0.8148 + }, + { + "start": 2849.0, + "end": 2849.88, + "probability": 0.9193 + }, + { + "start": 2850.82, + "end": 2852.48, + "probability": 0.9666 + }, + { + "start": 2853.22, + "end": 2854.24, + "probability": 0.7151 + }, + { + "start": 2854.36, + "end": 2855.82, + "probability": 0.9762 + }, + { + "start": 2855.84, + "end": 2857.5, + "probability": 0.7325 + }, + { + "start": 2857.6, + "end": 2859.1, + "probability": 0.8827 + }, + { + "start": 2859.8, + "end": 2864.04, + "probability": 0.9471 + }, + { + "start": 2866.42, + "end": 2867.05, + "probability": 0.2678 + }, + { + "start": 2867.3, + "end": 2871.38, + "probability": 0.981 + }, + { + "start": 2872.5, + "end": 2873.46, + "probability": 0.9797 + }, + { + "start": 2875.44, + "end": 2877.54, + "probability": 0.7131 + }, + { + "start": 2878.42, + "end": 2880.26, + "probability": 0.9784 + }, + { + "start": 2882.62, + "end": 2888.68, + "probability": 0.7539 + }, + { + "start": 2889.64, + "end": 2890.56, + "probability": 0.5956 + }, + { + "start": 2890.64, + "end": 2891.04, + "probability": 0.3801 + }, + { + "start": 2891.08, + "end": 2892.47, + "probability": 0.9426 + }, + { + "start": 2893.04, + "end": 2894.1, + "probability": 0.7953 + }, + { + "start": 2895.7, + "end": 2898.88, + "probability": 0.9969 + }, + { + "start": 2898.88, + "end": 2903.3, + "probability": 0.9998 + }, + { + "start": 2903.96, + "end": 2905.83, + "probability": 0.9775 + }, + { + "start": 2906.3, + "end": 2907.52, + "probability": 0.989 + }, + { + "start": 2907.6, + "end": 2913.22, + "probability": 0.9259 + }, + { + "start": 2913.94, + "end": 2915.4, + "probability": 0.99 + }, + { + "start": 2916.54, + "end": 2921.54, + "probability": 0.9991 + }, + { + "start": 2923.28, + "end": 2925.26, + "probability": 0.9983 + }, + { + "start": 2926.54, + "end": 2928.18, + "probability": 0.7558 + }, + { + "start": 2928.36, + "end": 2929.34, + "probability": 0.8748 + }, + { + "start": 2929.68, + "end": 2933.52, + "probability": 0.9953 + }, + { + "start": 2933.52, + "end": 2937.86, + "probability": 0.9868 + }, + { + "start": 2938.74, + "end": 2942.2, + "probability": 0.9985 + }, + { + "start": 2942.76, + "end": 2947.88, + "probability": 0.997 + }, + { + "start": 2949.72, + "end": 2953.62, + "probability": 0.998 + }, + { + "start": 2954.06, + "end": 2954.62, + "probability": 0.9496 + }, + { + "start": 2954.74, + "end": 2959.24, + "probability": 0.8619 + }, + { + "start": 2959.64, + "end": 2962.4, + "probability": 0.9603 + }, + { + "start": 2963.56, + "end": 2967.82, + "probability": 0.8802 + }, + { + "start": 2967.82, + "end": 2974.02, + "probability": 0.9971 + }, + { + "start": 2974.38, + "end": 2975.26, + "probability": 0.7704 + }, + { + "start": 2975.68, + "end": 2976.8, + "probability": 0.7024 + }, + { + "start": 2978.02, + "end": 2981.22, + "probability": 0.9957 + }, + { + "start": 2981.22, + "end": 2983.92, + "probability": 0.9951 + }, + { + "start": 2984.56, + "end": 2987.86, + "probability": 0.9979 + }, + { + "start": 2988.54, + "end": 2990.8, + "probability": 0.9399 + }, + { + "start": 2992.76, + "end": 2997.1, + "probability": 0.5465 + }, + { + "start": 2997.72, + "end": 3004.28, + "probability": 0.9967 + }, + { + "start": 3005.16, + "end": 3006.18, + "probability": 0.6358 + }, + { + "start": 3006.24, + "end": 3007.22, + "probability": 0.7536 + }, + { + "start": 3007.52, + "end": 3009.98, + "probability": 0.5755 + }, + { + "start": 3012.96, + "end": 3016.42, + "probability": 0.9771 + }, + { + "start": 3016.62, + "end": 3020.42, + "probability": 0.9922 + }, + { + "start": 3021.08, + "end": 3027.16, + "probability": 0.9972 + }, + { + "start": 3027.96, + "end": 3032.88, + "probability": 0.9914 + }, + { + "start": 3032.9, + "end": 3037.88, + "probability": 0.999 + }, + { + "start": 3038.36, + "end": 3041.34, + "probability": 0.9415 + }, + { + "start": 3042.68, + "end": 3043.36, + "probability": 0.5953 + }, + { + "start": 3043.64, + "end": 3046.94, + "probability": 0.9881 + }, + { + "start": 3047.24, + "end": 3053.68, + "probability": 0.959 + }, + { + "start": 3053.78, + "end": 3054.28, + "probability": 0.6707 + }, + { + "start": 3064.12, + "end": 3065.04, + "probability": 0.6388 + }, + { + "start": 3065.1, + "end": 3067.02, + "probability": 0.8961 + }, + { + "start": 3067.18, + "end": 3068.36, + "probability": 0.9061 + }, + { + "start": 3068.72, + "end": 3069.5, + "probability": 0.9108 + }, + { + "start": 3070.04, + "end": 3070.42, + "probability": 0.6186 + }, + { + "start": 3071.86, + "end": 3072.92, + "probability": 0.9789 + }, + { + "start": 3074.08, + "end": 3077.92, + "probability": 0.9502 + }, + { + "start": 3078.2, + "end": 3079.06, + "probability": 0.7 + }, + { + "start": 3079.14, + "end": 3081.2, + "probability": 0.9976 + }, + { + "start": 3081.8, + "end": 3085.4, + "probability": 0.9958 + }, + { + "start": 3086.9, + "end": 3089.06, + "probability": 0.9644 + }, + { + "start": 3089.14, + "end": 3091.74, + "probability": 0.9878 + }, + { + "start": 3091.94, + "end": 3097.18, + "probability": 0.9643 + }, + { + "start": 3098.54, + "end": 3100.74, + "probability": 0.9912 + }, + { + "start": 3101.32, + "end": 3103.06, + "probability": 0.9984 + }, + { + "start": 3104.69, + "end": 3106.56, + "probability": 0.9512 + }, + { + "start": 3107.7, + "end": 3108.9, + "probability": 0.6566 + }, + { + "start": 3109.48, + "end": 3110.16, + "probability": 0.9246 + }, + { + "start": 3111.1, + "end": 3117.06, + "probability": 0.9913 + }, + { + "start": 3117.68, + "end": 3118.48, + "probability": 0.8356 + }, + { + "start": 3119.76, + "end": 3121.94, + "probability": 0.9844 + }, + { + "start": 3123.4, + "end": 3126.76, + "probability": 0.9382 + }, + { + "start": 3126.76, + "end": 3128.46, + "probability": 0.9929 + }, + { + "start": 3130.64, + "end": 3136.36, + "probability": 0.9929 + }, + { + "start": 3136.86, + "end": 3137.4, + "probability": 0.6719 + }, + { + "start": 3138.18, + "end": 3140.52, + "probability": 0.9965 + }, + { + "start": 3142.74, + "end": 3143.6, + "probability": 0.7104 + }, + { + "start": 3144.98, + "end": 3149.54, + "probability": 0.9959 + }, + { + "start": 3150.38, + "end": 3151.28, + "probability": 0.6288 + }, + { + "start": 3152.34, + "end": 3154.5, + "probability": 0.9922 + }, + { + "start": 3155.18, + "end": 3156.78, + "probability": 0.9502 + }, + { + "start": 3157.88, + "end": 3159.74, + "probability": 0.9923 + }, + { + "start": 3160.26, + "end": 3162.64, + "probability": 0.7829 + }, + { + "start": 3163.26, + "end": 3164.22, + "probability": 0.9314 + }, + { + "start": 3166.42, + "end": 3168.34, + "probability": 0.7374 + }, + { + "start": 3168.66, + "end": 3174.28, + "probability": 0.9804 + }, + { + "start": 3174.76, + "end": 3179.2, + "probability": 0.9674 + }, + { + "start": 3180.84, + "end": 3183.54, + "probability": 0.9948 + }, + { + "start": 3183.68, + "end": 3186.02, + "probability": 0.7495 + }, + { + "start": 3186.76, + "end": 3192.84, + "probability": 0.9922 + }, + { + "start": 3194.12, + "end": 3196.04, + "probability": 0.9535 + }, + { + "start": 3196.9, + "end": 3204.16, + "probability": 0.9035 + }, + { + "start": 3204.5, + "end": 3205.14, + "probability": 0.5411 + }, + { + "start": 3206.52, + "end": 3207.78, + "probability": 0.7164 + }, + { + "start": 3208.54, + "end": 3209.02, + "probability": 0.7635 + }, + { + "start": 3209.72, + "end": 3211.58, + "probability": 0.9984 + }, + { + "start": 3212.48, + "end": 3213.14, + "probability": 0.4552 + }, + { + "start": 3213.3, + "end": 3217.46, + "probability": 0.9482 + }, + { + "start": 3219.32, + "end": 3222.74, + "probability": 0.8747 + }, + { + "start": 3224.3, + "end": 3227.94, + "probability": 0.7496 + }, + { + "start": 3228.42, + "end": 3230.68, + "probability": 0.5186 + }, + { + "start": 3231.34, + "end": 3232.86, + "probability": 0.8958 + }, + { + "start": 3233.38, + "end": 3234.38, + "probability": 0.9813 + }, + { + "start": 3234.6, + "end": 3238.28, + "probability": 0.9414 + }, + { + "start": 3238.62, + "end": 3244.44, + "probability": 0.9971 + }, + { + "start": 3244.92, + "end": 3246.4, + "probability": 0.8945 + }, + { + "start": 3248.72, + "end": 3251.1, + "probability": 0.9359 + }, + { + "start": 3251.7, + "end": 3255.72, + "probability": 0.7949 + }, + { + "start": 3255.9, + "end": 3260.06, + "probability": 0.9959 + }, + { + "start": 3260.14, + "end": 3261.18, + "probability": 0.825 + }, + { + "start": 3261.54, + "end": 3265.24, + "probability": 0.9854 + }, + { + "start": 3265.94, + "end": 3268.9, + "probability": 0.7732 + }, + { + "start": 3269.04, + "end": 3271.44, + "probability": 0.985 + }, + { + "start": 3273.06, + "end": 3274.38, + "probability": 0.5483 + }, + { + "start": 3276.06, + "end": 3277.26, + "probability": 0.5325 + }, + { + "start": 3279.12, + "end": 3281.18, + "probability": 0.8171 + }, + { + "start": 3281.4, + "end": 3282.58, + "probability": 0.7567 + }, + { + "start": 3282.62, + "end": 3284.74, + "probability": 0.9874 + }, + { + "start": 3284.9, + "end": 3286.16, + "probability": 0.9788 + }, + { + "start": 3287.24, + "end": 3290.7, + "probability": 0.9825 + }, + { + "start": 3293.0, + "end": 3294.01, + "probability": 0.8345 + }, + { + "start": 3297.34, + "end": 3302.08, + "probability": 0.9692 + }, + { + "start": 3302.32, + "end": 3304.84, + "probability": 0.6922 + }, + { + "start": 3304.98, + "end": 3307.3, + "probability": 0.8301 + }, + { + "start": 3307.42, + "end": 3309.36, + "probability": 0.8494 + }, + { + "start": 3310.48, + "end": 3312.76, + "probability": 0.8682 + }, + { + "start": 3312.78, + "end": 3313.58, + "probability": 0.905 + }, + { + "start": 3313.72, + "end": 3315.38, + "probability": 0.9258 + }, + { + "start": 3316.64, + "end": 3323.34, + "probability": 0.9756 + }, + { + "start": 3325.12, + "end": 3327.84, + "probability": 0.9945 + }, + { + "start": 3327.92, + "end": 3330.38, + "probability": 0.6864 + }, + { + "start": 3330.44, + "end": 3332.06, + "probability": 0.8478 + }, + { + "start": 3332.86, + "end": 3337.0, + "probability": 0.7776 + }, + { + "start": 3337.52, + "end": 3340.96, + "probability": 0.7024 + }, + { + "start": 3340.96, + "end": 3343.68, + "probability": 0.8018 + }, + { + "start": 3343.72, + "end": 3345.3, + "probability": 0.9402 + }, + { + "start": 3345.48, + "end": 3347.62, + "probability": 0.9971 + }, + { + "start": 3348.48, + "end": 3353.16, + "probability": 0.9725 + }, + { + "start": 3354.66, + "end": 3358.52, + "probability": 0.8139 + }, + { + "start": 3358.9, + "end": 3359.77, + "probability": 0.9272 + }, + { + "start": 3360.08, + "end": 3361.14, + "probability": 0.5517 + }, + { + "start": 3361.76, + "end": 3362.78, + "probability": 0.6556 + }, + { + "start": 3363.16, + "end": 3368.52, + "probability": 0.646 + }, + { + "start": 3368.62, + "end": 3371.24, + "probability": 0.9788 + }, + { + "start": 3372.4, + "end": 3379.72, + "probability": 0.8772 + }, + { + "start": 3380.46, + "end": 3382.16, + "probability": 0.9917 + }, + { + "start": 3383.64, + "end": 3385.82, + "probability": 0.4396 + }, + { + "start": 3386.02, + "end": 3390.9, + "probability": 0.9028 + }, + { + "start": 3391.26, + "end": 3395.72, + "probability": 0.9904 + }, + { + "start": 3396.84, + "end": 3397.92, + "probability": 0.4438 + }, + { + "start": 3398.28, + "end": 3398.9, + "probability": 0.8309 + }, + { + "start": 3399.02, + "end": 3402.18, + "probability": 0.8633 + }, + { + "start": 3402.76, + "end": 3407.44, + "probability": 0.8809 + }, + { + "start": 3408.2, + "end": 3411.46, + "probability": 0.8809 + }, + { + "start": 3412.16, + "end": 3416.8, + "probability": 0.73 + }, + { + "start": 3417.58, + "end": 3421.26, + "probability": 0.9817 + }, + { + "start": 3422.66, + "end": 3424.82, + "probability": 0.9219 + }, + { + "start": 3425.18, + "end": 3429.76, + "probability": 0.7397 + }, + { + "start": 3430.6, + "end": 3430.6, + "probability": 0.0342 + }, + { + "start": 3430.6, + "end": 3430.6, + "probability": 0.0769 + }, + { + "start": 3430.6, + "end": 3434.46, + "probability": 0.9757 + }, + { + "start": 3435.38, + "end": 3440.6, + "probability": 0.9633 + }, + { + "start": 3440.62, + "end": 3441.98, + "probability": 0.9653 + }, + { + "start": 3442.24, + "end": 3444.44, + "probability": 0.8045 + }, + { + "start": 3445.04, + "end": 3446.16, + "probability": 0.9568 + }, + { + "start": 3446.88, + "end": 3450.72, + "probability": 0.8582 + }, + { + "start": 3451.72, + "end": 3454.76, + "probability": 0.8179 + }, + { + "start": 3454.78, + "end": 3456.34, + "probability": 0.7478 + }, + { + "start": 3456.5, + "end": 3461.22, + "probability": 0.5053 + }, + { + "start": 3462.1, + "end": 3464.96, + "probability": 0.9829 + }, + { + "start": 3465.12, + "end": 3467.82, + "probability": 0.7731 + }, + { + "start": 3467.82, + "end": 3471.56, + "probability": 0.8483 + }, + { + "start": 3472.18, + "end": 3474.2, + "probability": 0.9574 + }, + { + "start": 3476.02, + "end": 3477.44, + "probability": 0.9716 + }, + { + "start": 3479.58, + "end": 3480.9, + "probability": 0.9293 + }, + { + "start": 3483.32, + "end": 3484.16, + "probability": 0.2487 + }, + { + "start": 3485.28, + "end": 3488.18, + "probability": 0.8384 + }, + { + "start": 3489.04, + "end": 3489.46, + "probability": 0.894 + }, + { + "start": 3492.16, + "end": 3494.48, + "probability": 0.8281 + }, + { + "start": 3495.8, + "end": 3496.74, + "probability": 0.9444 + }, + { + "start": 3497.44, + "end": 3500.04, + "probability": 0.9739 + }, + { + "start": 3500.68, + "end": 3502.06, + "probability": 0.8574 + }, + { + "start": 3503.1, + "end": 3506.96, + "probability": 0.9783 + }, + { + "start": 3507.98, + "end": 3508.9, + "probability": 0.9315 + }, + { + "start": 3510.04, + "end": 3514.32, + "probability": 0.9395 + }, + { + "start": 3515.1, + "end": 3515.92, + "probability": 0.9222 + }, + { + "start": 3516.88, + "end": 3519.12, + "probability": 0.9911 + }, + { + "start": 3519.18, + "end": 3520.48, + "probability": 0.854 + }, + { + "start": 3520.52, + "end": 3521.92, + "probability": 0.9553 + }, + { + "start": 3523.7, + "end": 3526.54, + "probability": 0.9882 + }, + { + "start": 3527.5, + "end": 3530.24, + "probability": 0.8142 + }, + { + "start": 3531.68, + "end": 3533.5, + "probability": 0.9577 + }, + { + "start": 3534.16, + "end": 3537.0, + "probability": 0.857 + }, + { + "start": 3538.24, + "end": 3539.52, + "probability": 0.984 + }, + { + "start": 3540.5, + "end": 3544.64, + "probability": 0.9646 + }, + { + "start": 3545.76, + "end": 3546.94, + "probability": 0.8964 + }, + { + "start": 3547.86, + "end": 3549.32, + "probability": 0.9187 + }, + { + "start": 3550.24, + "end": 3552.6, + "probability": 0.9709 + }, + { + "start": 3553.18, + "end": 3554.34, + "probability": 0.8402 + }, + { + "start": 3554.54, + "end": 3555.18, + "probability": 0.8271 + }, + { + "start": 3555.3, + "end": 3559.02, + "probability": 0.9943 + }, + { + "start": 3559.14, + "end": 3561.64, + "probability": 0.9924 + }, + { + "start": 3562.34, + "end": 3564.02, + "probability": 0.6924 + }, + { + "start": 3565.42, + "end": 3567.54, + "probability": 0.8082 + }, + { + "start": 3568.86, + "end": 3572.76, + "probability": 0.9559 + }, + { + "start": 3573.56, + "end": 3575.23, + "probability": 0.9453 + }, + { + "start": 3576.34, + "end": 3577.76, + "probability": 0.9916 + }, + { + "start": 3578.54, + "end": 3579.54, + "probability": 0.7815 + }, + { + "start": 3579.6, + "end": 3580.3, + "probability": 0.9199 + }, + { + "start": 3581.5, + "end": 3582.14, + "probability": 0.94 + }, + { + "start": 3582.2, + "end": 3585.06, + "probability": 0.9886 + }, + { + "start": 3585.06, + "end": 3589.06, + "probability": 0.8315 + }, + { + "start": 3589.12, + "end": 3589.78, + "probability": 0.7163 + }, + { + "start": 3590.04, + "end": 3591.48, + "probability": 0.9171 + }, + { + "start": 3591.98, + "end": 3593.82, + "probability": 0.8261 + }, + { + "start": 3594.9, + "end": 3598.1, + "probability": 0.9604 + }, + { + "start": 3599.78, + "end": 3599.78, + "probability": 0.0888 + }, + { + "start": 3599.78, + "end": 3602.33, + "probability": 0.899 + }, + { + "start": 3603.04, + "end": 3605.22, + "probability": 0.894 + }, + { + "start": 3605.54, + "end": 3610.6, + "probability": 0.9762 + }, + { + "start": 3611.04, + "end": 3612.02, + "probability": 0.8255 + }, + { + "start": 3612.24, + "end": 3615.08, + "probability": 0.495 + }, + { + "start": 3615.56, + "end": 3618.42, + "probability": 0.9468 + }, + { + "start": 3619.08, + "end": 3621.6, + "probability": 0.9977 + }, + { + "start": 3621.6, + "end": 3626.84, + "probability": 0.9954 + }, + { + "start": 3627.6, + "end": 3628.04, + "probability": 0.9754 + }, + { + "start": 3628.56, + "end": 3629.64, + "probability": 0.6086 + }, + { + "start": 3631.32, + "end": 3633.58, + "probability": 0.9275 + }, + { + "start": 3635.6, + "end": 3640.68, + "probability": 0.9962 + }, + { + "start": 3640.86, + "end": 3642.78, + "probability": 0.9326 + }, + { + "start": 3643.56, + "end": 3649.22, + "probability": 0.9972 + }, + { + "start": 3649.22, + "end": 3651.8, + "probability": 0.9104 + }, + { + "start": 3652.18, + "end": 3657.58, + "probability": 0.9902 + }, + { + "start": 3658.02, + "end": 3658.82, + "probability": 0.895 + }, + { + "start": 3659.02, + "end": 3659.7, + "probability": 0.7561 + }, + { + "start": 3660.54, + "end": 3666.2, + "probability": 0.9888 + }, + { + "start": 3667.02, + "end": 3669.58, + "probability": 0.9941 + }, + { + "start": 3669.66, + "end": 3670.7, + "probability": 0.6344 + }, + { + "start": 3671.06, + "end": 3673.92, + "probability": 0.9851 + }, + { + "start": 3674.04, + "end": 3676.36, + "probability": 0.875 + }, + { + "start": 3676.9, + "end": 3678.48, + "probability": 0.9755 + }, + { + "start": 3678.52, + "end": 3681.06, + "probability": 0.8797 + }, + { + "start": 3681.06, + "end": 3682.8, + "probability": 0.9872 + }, + { + "start": 3683.1, + "end": 3685.4, + "probability": 0.888 + }, + { + "start": 3685.96, + "end": 3687.98, + "probability": 0.9654 + }, + { + "start": 3688.46, + "end": 3691.9, + "probability": 0.7799 + }, + { + "start": 3691.9, + "end": 3696.0, + "probability": 0.7352 + }, + { + "start": 3698.24, + "end": 3700.52, + "probability": 0.8607 + }, + { + "start": 3701.44, + "end": 3709.57, + "probability": 0.9895 + }, + { + "start": 3709.76, + "end": 3719.08, + "probability": 0.9991 + }, + { + "start": 3719.56, + "end": 3722.88, + "probability": 0.9789 + }, + { + "start": 3724.36, + "end": 3726.62, + "probability": 0.8386 + }, + { + "start": 3727.28, + "end": 3732.04, + "probability": 0.9991 + }, + { + "start": 3732.04, + "end": 3736.64, + "probability": 0.9229 + }, + { + "start": 3737.12, + "end": 3739.72, + "probability": 0.9977 + }, + { + "start": 3741.26, + "end": 3743.06, + "probability": 0.9465 + }, + { + "start": 3744.18, + "end": 3748.02, + "probability": 0.8838 + }, + { + "start": 3748.74, + "end": 3755.66, + "probability": 0.9922 + }, + { + "start": 3756.1, + "end": 3761.52, + "probability": 0.9951 + }, + { + "start": 3762.46, + "end": 3764.3, + "probability": 0.9902 + }, + { + "start": 3764.52, + "end": 3771.14, + "probability": 0.9692 + }, + { + "start": 3771.14, + "end": 3776.68, + "probability": 0.9951 + }, + { + "start": 3777.36, + "end": 3784.94, + "probability": 0.9956 + }, + { + "start": 3784.94, + "end": 3789.86, + "probability": 0.9863 + }, + { + "start": 3790.86, + "end": 3792.39, + "probability": 0.9786 + }, + { + "start": 3793.18, + "end": 3797.22, + "probability": 0.9689 + }, + { + "start": 3797.24, + "end": 3799.82, + "probability": 0.8964 + }, + { + "start": 3800.44, + "end": 3806.8, + "probability": 0.9946 + }, + { + "start": 3807.94, + "end": 3810.84, + "probability": 0.9819 + }, + { + "start": 3812.34, + "end": 3814.34, + "probability": 0.7803 + }, + { + "start": 3815.32, + "end": 3816.76, + "probability": 0.7639 + }, + { + "start": 3817.34, + "end": 3818.64, + "probability": 0.9923 + }, + { + "start": 3819.2, + "end": 3825.48, + "probability": 0.9966 + }, + { + "start": 3826.36, + "end": 3831.56, + "probability": 0.9966 + }, + { + "start": 3831.56, + "end": 3835.98, + "probability": 0.9995 + }, + { + "start": 3837.44, + "end": 3841.8, + "probability": 0.9961 + }, + { + "start": 3841.8, + "end": 3846.54, + "probability": 0.9933 + }, + { + "start": 3848.08, + "end": 3851.9, + "probability": 0.9956 + }, + { + "start": 3851.92, + "end": 3856.24, + "probability": 0.998 + }, + { + "start": 3856.98, + "end": 3859.8, + "probability": 0.9723 + }, + { + "start": 3860.86, + "end": 3866.8, + "probability": 0.9913 + }, + { + "start": 3868.38, + "end": 3871.1, + "probability": 0.797 + }, + { + "start": 3871.18, + "end": 3872.18, + "probability": 0.9648 + }, + { + "start": 3872.28, + "end": 3874.76, + "probability": 0.9967 + }, + { + "start": 3875.96, + "end": 3882.6, + "probability": 0.9913 + }, + { + "start": 3882.72, + "end": 3885.6, + "probability": 0.9628 + }, + { + "start": 3885.92, + "end": 3889.26, + "probability": 0.9945 + }, + { + "start": 3890.78, + "end": 3892.82, + "probability": 0.992 + }, + { + "start": 3892.9, + "end": 3894.8, + "probability": 0.9814 + }, + { + "start": 3895.52, + "end": 3898.5, + "probability": 0.9928 + }, + { + "start": 3898.5, + "end": 3904.01, + "probability": 0.9928 + }, + { + "start": 3904.42, + "end": 3905.76, + "probability": 0.9839 + }, + { + "start": 3906.16, + "end": 3910.08, + "probability": 0.9997 + }, + { + "start": 3910.88, + "end": 3912.44, + "probability": 0.9878 + }, + { + "start": 3912.46, + "end": 3914.8, + "probability": 0.9941 + }, + { + "start": 3915.62, + "end": 3917.16, + "probability": 0.9974 + }, + { + "start": 3917.68, + "end": 3921.8, + "probability": 0.9821 + }, + { + "start": 3922.56, + "end": 3926.04, + "probability": 0.9982 + }, + { + "start": 3926.98, + "end": 3933.08, + "probability": 0.9959 + }, + { + "start": 3934.06, + "end": 3936.32, + "probability": 0.5689 + }, + { + "start": 3936.44, + "end": 3937.76, + "probability": 0.9418 + }, + { + "start": 3937.86, + "end": 3944.52, + "probability": 0.9705 + }, + { + "start": 3944.6, + "end": 3947.04, + "probability": 0.7092 + }, + { + "start": 3947.34, + "end": 3948.72, + "probability": 0.9828 + }, + { + "start": 3949.1, + "end": 3953.1, + "probability": 0.8781 + }, + { + "start": 3953.72, + "end": 3955.98, + "probability": 0.9748 + }, + { + "start": 3956.88, + "end": 3961.04, + "probability": 0.9967 + }, + { + "start": 3961.82, + "end": 3964.08, + "probability": 0.775 + }, + { + "start": 3964.94, + "end": 3965.88, + "probability": 0.592 + }, + { + "start": 3966.66, + "end": 3968.92, + "probability": 0.9903 + }, + { + "start": 3969.56, + "end": 3970.58, + "probability": 0.7329 + }, + { + "start": 3971.52, + "end": 3973.08, + "probability": 0.9921 + }, + { + "start": 3973.3, + "end": 3975.54, + "probability": 0.9686 + }, + { + "start": 3976.08, + "end": 3979.18, + "probability": 0.975 + }, + { + "start": 3979.6, + "end": 3980.38, + "probability": 0.9559 + }, + { + "start": 3980.68, + "end": 3982.12, + "probability": 0.9319 + }, + { + "start": 3982.58, + "end": 3983.28, + "probability": 0.8914 + }, + { + "start": 3984.02, + "end": 3985.52, + "probability": 0.9981 + }, + { + "start": 3985.72, + "end": 3986.54, + "probability": 0.8011 + }, + { + "start": 3987.0, + "end": 3988.06, + "probability": 0.9922 + }, + { + "start": 3988.78, + "end": 3989.64, + "probability": 0.9757 + }, + { + "start": 3990.42, + "end": 3992.6, + "probability": 0.9284 + }, + { + "start": 3993.42, + "end": 3996.7, + "probability": 0.9891 + }, + { + "start": 3996.76, + "end": 3998.86, + "probability": 0.9573 + }, + { + "start": 3999.32, + "end": 4003.04, + "probability": 0.7967 + }, + { + "start": 4003.18, + "end": 4005.84, + "probability": 0.9904 + }, + { + "start": 4006.2, + "end": 4006.4, + "probability": 0.394 + }, + { + "start": 4007.6, + "end": 4009.44, + "probability": 0.8625 + }, + { + "start": 4009.64, + "end": 4012.78, + "probability": 0.9741 + }, + { + "start": 4012.78, + "end": 4016.24, + "probability": 0.998 + }, + { + "start": 4016.94, + "end": 4020.64, + "probability": 0.9589 + }, + { + "start": 4021.26, + "end": 4025.68, + "probability": 0.9958 + }, + { + "start": 4025.68, + "end": 4030.4, + "probability": 0.9255 + }, + { + "start": 4030.8, + "end": 4033.7, + "probability": 0.9304 + }, + { + "start": 4034.02, + "end": 4035.66, + "probability": 0.9604 + }, + { + "start": 4036.96, + "end": 4038.8, + "probability": 0.9836 + }, + { + "start": 4039.2, + "end": 4040.9, + "probability": 0.7964 + }, + { + "start": 4041.98, + "end": 4042.24, + "probability": 0.4952 + }, + { + "start": 4043.18, + "end": 4044.36, + "probability": 0.8858 + }, + { + "start": 4045.7, + "end": 4048.38, + "probability": 0.9492 + }, + { + "start": 4048.82, + "end": 4051.84, + "probability": 0.9574 + }, + { + "start": 4053.28, + "end": 4055.62, + "probability": 0.9819 + }, + { + "start": 4057.3, + "end": 4059.62, + "probability": 0.9047 + }, + { + "start": 4059.7, + "end": 4066.56, + "probability": 0.9951 + }, + { + "start": 4067.0, + "end": 4073.58, + "probability": 0.9836 + }, + { + "start": 4073.86, + "end": 4074.92, + "probability": 0.822 + }, + { + "start": 4075.08, + "end": 4078.82, + "probability": 0.9945 + }, + { + "start": 4080.4, + "end": 4082.7, + "probability": 0.9038 + }, + { + "start": 4083.38, + "end": 4087.6, + "probability": 0.9779 + }, + { + "start": 4088.5, + "end": 4094.06, + "probability": 0.9925 + }, + { + "start": 4095.2, + "end": 4099.7, + "probability": 0.9684 + }, + { + "start": 4100.16, + "end": 4101.0, + "probability": 0.573 + }, + { + "start": 4101.1, + "end": 4101.62, + "probability": 0.8104 + }, + { + "start": 4102.08, + "end": 4105.42, + "probability": 0.9971 + }, + { + "start": 4105.48, + "end": 4106.08, + "probability": 0.6247 + }, + { + "start": 4106.64, + "end": 4108.92, + "probability": 0.855 + }, + { + "start": 4109.32, + "end": 4110.64, + "probability": 0.9469 + }, + { + "start": 4110.7, + "end": 4110.86, + "probability": 0.0125 + }, + { + "start": 4110.86, + "end": 4114.32, + "probability": 0.961 + }, + { + "start": 4114.42, + "end": 4114.92, + "probability": 0.9844 + }, + { + "start": 4115.48, + "end": 4118.6, + "probability": 0.9214 + }, + { + "start": 4119.26, + "end": 4119.94, + "probability": 0.8075 + }, + { + "start": 4120.14, + "end": 4121.0, + "probability": 0.9382 + }, + { + "start": 4121.4, + "end": 4123.3, + "probability": 0.9766 + }, + { + "start": 4123.96, + "end": 4126.44, + "probability": 0.9194 + }, + { + "start": 4126.74, + "end": 4126.98, + "probability": 0.0146 + }, + { + "start": 4127.2, + "end": 4128.74, + "probability": 0.9675 + }, + { + "start": 4128.74, + "end": 4129.18, + "probability": 0.7856 + }, + { + "start": 4129.54, + "end": 4132.32, + "probability": 0.6461 + }, + { + "start": 4132.58, + "end": 4133.92, + "probability": 0.5185 + }, + { + "start": 4134.38, + "end": 4135.6, + "probability": 0.7751 + }, + { + "start": 4136.38, + "end": 4138.18, + "probability": 0.9399 + }, + { + "start": 4138.56, + "end": 4140.4, + "probability": 0.7808 + }, + { + "start": 4140.44, + "end": 4142.32, + "probability": 0.8328 + }, + { + "start": 4142.34, + "end": 4142.69, + "probability": 0.9028 + }, + { + "start": 4144.18, + "end": 4147.5, + "probability": 0.5847 + }, + { + "start": 4147.5, + "end": 4148.5, + "probability": 0.9031 + }, + { + "start": 4148.5, + "end": 4148.58, + "probability": 0.703 + }, + { + "start": 4148.58, + "end": 4149.36, + "probability": 0.1051 + }, + { + "start": 4149.72, + "end": 4149.72, + "probability": 0.3063 + }, + { + "start": 4149.72, + "end": 4150.56, + "probability": 0.7907 + }, + { + "start": 4150.58, + "end": 4151.07, + "probability": 0.8894 + }, + { + "start": 4152.16, + "end": 4155.14, + "probability": 0.8005 + }, + { + "start": 4155.48, + "end": 4155.76, + "probability": 0.738 + }, + { + "start": 4155.82, + "end": 4157.56, + "probability": 0.7463 + }, + { + "start": 4158.86, + "end": 4164.76, + "probability": 0.7798 + }, + { + "start": 4164.86, + "end": 4166.58, + "probability": 0.984 + }, + { + "start": 4166.66, + "end": 4167.48, + "probability": 0.9259 + }, + { + "start": 4168.0, + "end": 4169.08, + "probability": 0.9611 + }, + { + "start": 4169.5, + "end": 4174.36, + "probability": 0.9834 + }, + { + "start": 4175.14, + "end": 4176.7, + "probability": 0.772 + }, + { + "start": 4177.48, + "end": 4180.44, + "probability": 0.9912 + }, + { + "start": 4180.54, + "end": 4182.76, + "probability": 0.9039 + }, + { + "start": 4184.0, + "end": 4188.42, + "probability": 0.9978 + }, + { + "start": 4188.42, + "end": 4189.36, + "probability": 0.7548 + }, + { + "start": 4189.72, + "end": 4194.18, + "probability": 0.9769 + }, + { + "start": 4194.18, + "end": 4197.14, + "probability": 0.9836 + }, + { + "start": 4197.58, + "end": 4198.36, + "probability": 0.1578 + }, + { + "start": 4199.02, + "end": 4202.74, + "probability": 0.9563 + }, + { + "start": 4203.16, + "end": 4203.2, + "probability": 0.0238 + }, + { + "start": 4203.2, + "end": 4203.2, + "probability": 0.0968 + }, + { + "start": 4203.2, + "end": 4204.03, + "probability": 0.7368 + }, + { + "start": 4204.74, + "end": 4207.88, + "probability": 0.7219 + }, + { + "start": 4208.16, + "end": 4209.7, + "probability": 0.9634 + }, + { + "start": 4209.8, + "end": 4210.92, + "probability": 0.6707 + }, + { + "start": 4211.24, + "end": 4214.2, + "probability": 0.9902 + }, + { + "start": 4214.62, + "end": 4216.16, + "probability": 0.9973 + }, + { + "start": 4216.98, + "end": 4218.52, + "probability": 0.9724 + }, + { + "start": 4218.94, + "end": 4220.22, + "probability": 0.4615 + }, + { + "start": 4220.36, + "end": 4224.28, + "probability": 0.9784 + }, + { + "start": 4224.8, + "end": 4226.42, + "probability": 0.9131 + }, + { + "start": 4226.84, + "end": 4228.94, + "probability": 0.9939 + }, + { + "start": 4229.26, + "end": 4232.36, + "probability": 0.85 + }, + { + "start": 4232.68, + "end": 4233.86, + "probability": 0.9038 + }, + { + "start": 4235.77, + "end": 4237.62, + "probability": 0.1748 + }, + { + "start": 4237.62, + "end": 4241.82, + "probability": 0.9641 + }, + { + "start": 4242.64, + "end": 4246.71, + "probability": 0.9744 + }, + { + "start": 4247.32, + "end": 4248.18, + "probability": 0.5378 + }, + { + "start": 4248.7, + "end": 4248.86, + "probability": 0.007 + }, + { + "start": 4249.94, + "end": 4249.94, + "probability": 0.0291 + }, + { + "start": 4249.94, + "end": 4249.94, + "probability": 0.0697 + }, + { + "start": 4249.94, + "end": 4249.96, + "probability": 0.0729 + }, + { + "start": 4250.58, + "end": 4251.88, + "probability": 0.3815 + }, + { + "start": 4252.56, + "end": 4254.3, + "probability": 0.4997 + }, + { + "start": 4254.84, + "end": 4254.84, + "probability": 0.0926 + }, + { + "start": 4254.84, + "end": 4256.94, + "probability": 0.1351 + }, + { + "start": 4257.5, + "end": 4260.26, + "probability": 0.6821 + }, + { + "start": 4263.06, + "end": 4263.06, + "probability": 0.0134 + }, + { + "start": 4263.06, + "end": 4263.06, + "probability": 0.1004 + }, + { + "start": 4263.06, + "end": 4263.06, + "probability": 0.1301 + }, + { + "start": 4263.06, + "end": 4263.06, + "probability": 0.252 + }, + { + "start": 4263.06, + "end": 4264.54, + "probability": 0.4039 + }, + { + "start": 4264.76, + "end": 4264.76, + "probability": 0.3186 + }, + { + "start": 4264.76, + "end": 4266.52, + "probability": 0.7967 + }, + { + "start": 4267.14, + "end": 4268.46, + "probability": 0.0162 + }, + { + "start": 4269.08, + "end": 4270.54, + "probability": 0.1807 + }, + { + "start": 4271.12, + "end": 4272.22, + "probability": 0.9648 + }, + { + "start": 4273.14, + "end": 4274.04, + "probability": 0.0743 + }, + { + "start": 4274.62, + "end": 4276.28, + "probability": 0.7411 + }, + { + "start": 4276.3, + "end": 4277.84, + "probability": 0.0712 + }, + { + "start": 4278.12, + "end": 4279.08, + "probability": 0.2933 + }, + { + "start": 4279.18, + "end": 4280.1, + "probability": 0.9179 + }, + { + "start": 4280.4, + "end": 4282.94, + "probability": 0.2394 + }, + { + "start": 4283.36, + "end": 4283.48, + "probability": 0.1148 + }, + { + "start": 4286.3, + "end": 4286.68, + "probability": 0.0203 + }, + { + "start": 4286.8, + "end": 4287.3, + "probability": 0.0129 + }, + { + "start": 4287.52, + "end": 4288.22, + "probability": 0.0195 + }, + { + "start": 4288.36, + "end": 4291.98, + "probability": 0.0226 + }, + { + "start": 4292.34, + "end": 4292.82, + "probability": 0.3571 + }, + { + "start": 4298.42, + "end": 4299.12, + "probability": 0.1286 + }, + { + "start": 4302.38, + "end": 4303.24, + "probability": 0.0401 + }, + { + "start": 4304.44, + "end": 4306.62, + "probability": 0.0269 + }, + { + "start": 4306.62, + "end": 4306.64, + "probability": 0.4646 + }, + { + "start": 4330.22, + "end": 4330.7, + "probability": 0.2214 + }, + { + "start": 4330.89, + "end": 4332.21, + "probability": 0.0198 + }, + { + "start": 4332.54, + "end": 4333.6, + "probability": 0.1379 + }, + { + "start": 4334.42, + "end": 4337.8, + "probability": 0.1026 + }, + { + "start": 4338.1, + "end": 4338.96, + "probability": 0.0616 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.0, + "end": 4339.0, + "probability": 0.0 + }, + { + "start": 4339.24, + "end": 4340.56, + "probability": 0.165 + }, + { + "start": 4340.62, + "end": 4343.66, + "probability": 0.8997 + }, + { + "start": 4343.66, + "end": 4346.82, + "probability": 0.9012 + }, + { + "start": 4347.18, + "end": 4348.42, + "probability": 0.89 + }, + { + "start": 4348.8, + "end": 4350.1, + "probability": 0.8535 + }, + { + "start": 4350.46, + "end": 4351.52, + "probability": 0.9741 + }, + { + "start": 4351.84, + "end": 4352.04, + "probability": 0.6799 + }, + { + "start": 4352.04, + "end": 4352.92, + "probability": 0.7415 + }, + { + "start": 4353.26, + "end": 4354.76, + "probability": 0.9927 + }, + { + "start": 4355.18, + "end": 4356.0, + "probability": 0.9944 + }, + { + "start": 4356.42, + "end": 4358.56, + "probability": 0.9623 + }, + { + "start": 4359.04, + "end": 4359.64, + "probability": 0.0011 + }, + { + "start": 4359.64, + "end": 4359.7, + "probability": 0.0733 + }, + { + "start": 4361.72, + "end": 4361.88, + "probability": 0.0541 + }, + { + "start": 4361.88, + "end": 4362.04, + "probability": 0.3411 + }, + { + "start": 4362.04, + "end": 4362.04, + "probability": 0.118 + }, + { + "start": 4363.88, + "end": 4364.82, + "probability": 0.0151 + }, + { + "start": 4364.82, + "end": 4364.82, + "probability": 0.0399 + }, + { + "start": 4364.82, + "end": 4364.82, + "probability": 0.0214 + }, + { + "start": 4364.82, + "end": 4364.82, + "probability": 0.3643 + }, + { + "start": 4364.82, + "end": 4366.54, + "probability": 0.9785 + }, + { + "start": 4367.08, + "end": 4368.8, + "probability": 0.734 + }, + { + "start": 4374.56, + "end": 4375.7, + "probability": 0.7433 + }, + { + "start": 4383.8, + "end": 4384.74, + "probability": 0.6249 + }, + { + "start": 4384.84, + "end": 4385.32, + "probability": 0.8349 + }, + { + "start": 4385.42, + "end": 4386.28, + "probability": 0.7209 + }, + { + "start": 4386.4, + "end": 4387.4, + "probability": 0.869 + }, + { + "start": 4387.52, + "end": 4388.96, + "probability": 0.8939 + }, + { + "start": 4389.38, + "end": 4392.6, + "probability": 0.98 + }, + { + "start": 4393.78, + "end": 4397.38, + "probability": 0.9829 + }, + { + "start": 4398.2, + "end": 4402.32, + "probability": 0.9922 + }, + { + "start": 4402.32, + "end": 4406.32, + "probability": 0.9336 + }, + { + "start": 4407.4, + "end": 4410.46, + "probability": 0.9736 + }, + { + "start": 4410.46, + "end": 4414.88, + "probability": 0.9964 + }, + { + "start": 4415.6, + "end": 4420.4, + "probability": 0.9857 + }, + { + "start": 4421.54, + "end": 4425.48, + "probability": 0.9909 + }, + { + "start": 4425.48, + "end": 4430.42, + "probability": 0.9923 + }, + { + "start": 4431.02, + "end": 4433.16, + "probability": 0.9961 + }, + { + "start": 4433.38, + "end": 4434.54, + "probability": 0.999 + }, + { + "start": 4435.06, + "end": 4436.2, + "probability": 0.995 + }, + { + "start": 4437.12, + "end": 4440.14, + "probability": 0.9744 + }, + { + "start": 4440.72, + "end": 4445.14, + "probability": 0.9949 + }, + { + "start": 4445.54, + "end": 4450.44, + "probability": 0.9971 + }, + { + "start": 4451.02, + "end": 4453.2, + "probability": 0.995 + }, + { + "start": 4453.74, + "end": 4455.26, + "probability": 0.9941 + }, + { + "start": 4456.36, + "end": 4456.64, + "probability": 0.335 + }, + { + "start": 4456.72, + "end": 4460.66, + "probability": 0.9902 + }, + { + "start": 4461.62, + "end": 4462.14, + "probability": 0.7668 + }, + { + "start": 4462.3, + "end": 4466.16, + "probability": 0.9728 + }, + { + "start": 4466.9, + "end": 4470.44, + "probability": 0.9887 + }, + { + "start": 4470.88, + "end": 4474.46, + "probability": 0.9943 + }, + { + "start": 4474.46, + "end": 4477.5, + "probability": 0.9988 + }, + { + "start": 4478.4, + "end": 4478.82, + "probability": 0.8188 + }, + { + "start": 4478.94, + "end": 4479.3, + "probability": 0.9503 + }, + { + "start": 4479.44, + "end": 4481.52, + "probability": 0.8537 + }, + { + "start": 4481.68, + "end": 4482.58, + "probability": 0.6326 + }, + { + "start": 4483.16, + "end": 4484.52, + "probability": 0.8854 + }, + { + "start": 4484.56, + "end": 4487.32, + "probability": 0.9906 + }, + { + "start": 4487.32, + "end": 4489.58, + "probability": 0.9802 + }, + { + "start": 4490.34, + "end": 4491.56, + "probability": 0.6575 + }, + { + "start": 4492.08, + "end": 4494.84, + "probability": 0.9868 + }, + { + "start": 4494.84, + "end": 4497.58, + "probability": 0.9751 + }, + { + "start": 4498.14, + "end": 4501.54, + "probability": 0.98 + }, + { + "start": 4502.12, + "end": 4504.64, + "probability": 0.9813 + }, + { + "start": 4504.74, + "end": 4505.14, + "probability": 0.7759 + }, + { + "start": 4505.52, + "end": 4507.0, + "probability": 0.939 + }, + { + "start": 4507.16, + "end": 4512.06, + "probability": 0.8182 + }, + { + "start": 4512.96, + "end": 4513.62, + "probability": 0.4662 + }, + { + "start": 4520.58, + "end": 4520.64, + "probability": 0.2804 + }, + { + "start": 4520.64, + "end": 4521.58, + "probability": 0.8702 + }, + { + "start": 4526.0, + "end": 4527.36, + "probability": 0.7561 + }, + { + "start": 4527.46, + "end": 4528.36, + "probability": 0.7533 + }, + { + "start": 4528.44, + "end": 4534.74, + "probability": 0.9949 + }, + { + "start": 4534.74, + "end": 4539.9, + "probability": 0.9941 + }, + { + "start": 4541.0, + "end": 4547.64, + "probability": 0.9773 + }, + { + "start": 4547.92, + "end": 4548.66, + "probability": 0.5167 + }, + { + "start": 4548.66, + "end": 4550.38, + "probability": 0.5887 + }, + { + "start": 4550.54, + "end": 4551.44, + "probability": 0.2864 + }, + { + "start": 4552.54, + "end": 4554.94, + "probability": 0.8354 + }, + { + "start": 4556.48, + "end": 4557.19, + "probability": 0.6045 + }, + { + "start": 4557.97, + "end": 4563.02, + "probability": 0.9985 + }, + { + "start": 4563.02, + "end": 4569.06, + "probability": 0.9952 + }, + { + "start": 4569.78, + "end": 4573.56, + "probability": 0.9515 + }, + { + "start": 4573.56, + "end": 4578.56, + "probability": 0.9832 + }, + { + "start": 4579.28, + "end": 4584.48, + "probability": 0.9223 + }, + { + "start": 4584.52, + "end": 4586.8, + "probability": 0.7471 + }, + { + "start": 4587.8, + "end": 4593.3, + "probability": 0.8559 + }, + { + "start": 4593.98, + "end": 4594.6, + "probability": 0.6883 + }, + { + "start": 4594.76, + "end": 4597.74, + "probability": 0.8271 + }, + { + "start": 4597.82, + "end": 4601.61, + "probability": 0.8742 + }, + { + "start": 4602.26, + "end": 4607.32, + "probability": 0.7516 + }, + { + "start": 4607.32, + "end": 4612.7, + "probability": 0.9974 + }, + { + "start": 4612.96, + "end": 4616.54, + "probability": 0.72 + }, + { + "start": 4616.94, + "end": 4618.78, + "probability": 0.9458 + }, + { + "start": 4618.9, + "end": 4624.68, + "probability": 0.9954 + }, + { + "start": 4624.68, + "end": 4631.7, + "probability": 0.9941 + }, + { + "start": 4632.82, + "end": 4638.9, + "probability": 0.5979 + }, + { + "start": 4638.96, + "end": 4639.44, + "probability": 0.4276 + }, + { + "start": 4639.44, + "end": 4639.44, + "probability": 0.4481 + }, + { + "start": 4639.44, + "end": 4640.73, + "probability": 0.7875 + }, + { + "start": 4642.56, + "end": 4644.06, + "probability": 0.9275 + }, + { + "start": 4644.64, + "end": 4645.16, + "probability": 0.8263 + }, + { + "start": 4647.24, + "end": 4650.84, + "probability": 0.9164 + }, + { + "start": 4652.18, + "end": 4655.9, + "probability": 0.6958 + }, + { + "start": 4659.9, + "end": 4659.9, + "probability": 0.4606 + }, + { + "start": 4659.9, + "end": 4663.16, + "probability": 0.4447 + }, + { + "start": 4663.3, + "end": 4667.46, + "probability": 0.9951 + }, + { + "start": 4667.96, + "end": 4676.18, + "probability": 0.9787 + }, + { + "start": 4676.72, + "end": 4680.12, + "probability": 0.9305 + }, + { + "start": 4681.6, + "end": 4685.32, + "probability": 0.7349 + }, + { + "start": 4685.82, + "end": 4692.2, + "probability": 0.9634 + }, + { + "start": 4692.7, + "end": 4697.08, + "probability": 0.9935 + }, + { + "start": 4697.34, + "end": 4701.82, + "probability": 0.6032 + }, + { + "start": 4702.12, + "end": 4704.26, + "probability": 0.6763 + }, + { + "start": 4704.84, + "end": 4709.22, + "probability": 0.9606 + }, + { + "start": 4709.62, + "end": 4711.91, + "probability": 0.895 + }, + { + "start": 4712.9, + "end": 4719.68, + "probability": 0.9703 + }, + { + "start": 4719.94, + "end": 4721.66, + "probability": 0.8655 + }, + { + "start": 4721.72, + "end": 4724.16, + "probability": 0.864 + }, + { + "start": 4724.22, + "end": 4726.66, + "probability": 0.9867 + }, + { + "start": 4727.26, + "end": 4729.84, + "probability": 0.7358 + }, + { + "start": 4730.62, + "end": 4731.32, + "probability": 0.6975 + }, + { + "start": 4731.42, + "end": 4734.56, + "probability": 0.8961 + }, + { + "start": 4734.78, + "end": 4734.9, + "probability": 0.5919 + }, + { + "start": 4734.94, + "end": 4736.56, + "probability": 0.9995 + }, + { + "start": 4737.44, + "end": 4740.8, + "probability": 0.8135 + }, + { + "start": 4740.94, + "end": 4745.06, + "probability": 0.9955 + }, + { + "start": 4745.06, + "end": 4750.44, + "probability": 0.9947 + }, + { + "start": 4750.68, + "end": 4751.6, + "probability": 0.752 + }, + { + "start": 4751.66, + "end": 4752.34, + "probability": 0.8502 + }, + { + "start": 4752.66, + "end": 4753.4, + "probability": 0.9817 + }, + { + "start": 4753.58, + "end": 4754.88, + "probability": 0.6756 + }, + { + "start": 4755.04, + "end": 4757.14, + "probability": 0.9236 + }, + { + "start": 4759.3, + "end": 4761.68, + "probability": 0.8394 + }, + { + "start": 4762.3, + "end": 4763.12, + "probability": 0.801 + }, + { + "start": 4764.98, + "end": 4766.36, + "probability": 0.3906 + }, + { + "start": 4766.66, + "end": 4767.3, + "probability": 0.8113 + }, + { + "start": 4767.42, + "end": 4772.48, + "probability": 0.9953 + }, + { + "start": 4772.62, + "end": 4773.32, + "probability": 0.639 + }, + { + "start": 4773.48, + "end": 4776.7, + "probability": 0.717 + }, + { + "start": 4776.82, + "end": 4777.14, + "probability": 0.7994 + }, + { + "start": 4778.82, + "end": 4779.15, + "probability": 0.2401 + }, + { + "start": 4780.22, + "end": 4782.56, + "probability": 0.7039 + }, + { + "start": 4782.94, + "end": 4785.62, + "probability": 0.8677 + }, + { + "start": 4786.44, + "end": 4787.1, + "probability": 0.9683 + }, + { + "start": 4787.82, + "end": 4788.52, + "probability": 0.626 + }, + { + "start": 4789.26, + "end": 4793.92, + "probability": 0.8137 + }, + { + "start": 4794.94, + "end": 4797.2, + "probability": 0.9137 + }, + { + "start": 4798.06, + "end": 4800.18, + "probability": 0.8818 + }, + { + "start": 4801.12, + "end": 4801.52, + "probability": 0.9866 + }, + { + "start": 4803.02, + "end": 4803.92, + "probability": 0.7353 + }, + { + "start": 4804.94, + "end": 4807.06, + "probability": 0.9837 + }, + { + "start": 4807.88, + "end": 4808.56, + "probability": 0.9896 + }, + { + "start": 4809.48, + "end": 4810.02, + "probability": 0.5362 + }, + { + "start": 4812.52, + "end": 4813.22, + "probability": 0.8839 + }, + { + "start": 4813.94, + "end": 4814.78, + "probability": 0.8922 + }, + { + "start": 4816.12, + "end": 4818.3, + "probability": 0.9714 + }, + { + "start": 4819.58, + "end": 4820.02, + "probability": 0.8872 + }, + { + "start": 4821.92, + "end": 4822.62, + "probability": 0.8799 + }, + { + "start": 4823.64, + "end": 4826.28, + "probability": 0.976 + }, + { + "start": 4827.1, + "end": 4829.76, + "probability": 0.9722 + }, + { + "start": 4830.82, + "end": 4835.5, + "probability": 0.9505 + }, + { + "start": 4836.9, + "end": 4837.56, + "probability": 0.7888 + }, + { + "start": 4838.58, + "end": 4842.18, + "probability": 0.9332 + }, + { + "start": 4842.9, + "end": 4844.88, + "probability": 0.9964 + }, + { + "start": 4845.4, + "end": 4847.34, + "probability": 0.9854 + }, + { + "start": 4848.5, + "end": 4850.14, + "probability": 0.9521 + }, + { + "start": 4850.76, + "end": 4852.2, + "probability": 0.9721 + }, + { + "start": 4852.82, + "end": 4854.62, + "probability": 0.4183 + }, + { + "start": 4855.56, + "end": 4857.24, + "probability": 0.6649 + }, + { + "start": 4858.52, + "end": 4861.72, + "probability": 0.9775 + }, + { + "start": 4862.98, + "end": 4866.84, + "probability": 0.9813 + }, + { + "start": 4867.7, + "end": 4871.76, + "probability": 0.9944 + }, + { + "start": 4872.4, + "end": 4874.48, + "probability": 0.972 + }, + { + "start": 4875.48, + "end": 4877.74, + "probability": 0.8252 + }, + { + "start": 4878.36, + "end": 4883.98, + "probability": 0.7703 + }, + { + "start": 4884.98, + "end": 4888.6, + "probability": 0.9779 + }, + { + "start": 4889.3, + "end": 4893.2, + "probability": 0.8997 + }, + { + "start": 4893.84, + "end": 4895.88, + "probability": 0.5479 + }, + { + "start": 4896.56, + "end": 4898.04, + "probability": 0.8952 + }, + { + "start": 4904.22, + "end": 4910.88, + "probability": 0.4979 + }, + { + "start": 4911.64, + "end": 4912.74, + "probability": 0.8753 + }, + { + "start": 4914.38, + "end": 4915.98, + "probability": 0.7538 + }, + { + "start": 4917.06, + "end": 4917.78, + "probability": 0.8242 + }, + { + "start": 4919.16, + "end": 4920.18, + "probability": 0.701 + }, + { + "start": 4921.22, + "end": 4923.86, + "probability": 0.4301 + }, + { + "start": 4925.28, + "end": 4927.64, + "probability": 0.8819 + }, + { + "start": 4928.64, + "end": 4929.38, + "probability": 0.9802 + }, + { + "start": 4930.22, + "end": 4931.1, + "probability": 0.4879 + }, + { + "start": 4931.84, + "end": 4932.82, + "probability": 0.7624 + }, + { + "start": 4933.36, + "end": 4934.08, + "probability": 0.8217 + }, + { + "start": 4934.84, + "end": 4937.56, + "probability": 0.8828 + }, + { + "start": 4939.66, + "end": 4942.0, + "probability": 0.9822 + }, + { + "start": 4943.26, + "end": 4945.18, + "probability": 0.9515 + }, + { + "start": 4946.0, + "end": 4947.76, + "probability": 0.988 + }, + { + "start": 4948.6, + "end": 4952.44, + "probability": 0.9843 + }, + { + "start": 4953.0, + "end": 4955.86, + "probability": 0.9532 + }, + { + "start": 4956.72, + "end": 4957.2, + "probability": 0.9702 + }, + { + "start": 4958.04, + "end": 4959.04, + "probability": 0.8422 + }, + { + "start": 4960.82, + "end": 4962.88, + "probability": 0.8284 + }, + { + "start": 4964.06, + "end": 4966.06, + "probability": 0.958 + }, + { + "start": 4967.22, + "end": 4969.62, + "probability": 0.9554 + }, + { + "start": 4970.02, + "end": 4971.94, + "probability": 0.9597 + }, + { + "start": 4972.38, + "end": 4974.24, + "probability": 0.9676 + }, + { + "start": 4976.8, + "end": 4979.48, + "probability": 0.6666 + }, + { + "start": 4981.1, + "end": 4983.12, + "probability": 0.9845 + }, + { + "start": 4984.98, + "end": 4985.98, + "probability": 0.99 + }, + { + "start": 4986.5, + "end": 4990.24, + "probability": 0.654 + }, + { + "start": 4991.98, + "end": 4993.16, + "probability": 0.9368 + }, + { + "start": 4994.34, + "end": 4998.74, + "probability": 0.9527 + }, + { + "start": 5000.2, + "end": 5002.46, + "probability": 0.9169 + }, + { + "start": 5004.08, + "end": 5010.16, + "probability": 0.7864 + }, + { + "start": 5011.14, + "end": 5012.96, + "probability": 0.6578 + }, + { + "start": 5013.68, + "end": 5016.04, + "probability": 0.7708 + }, + { + "start": 5017.7, + "end": 5019.98, + "probability": 0.865 + }, + { + "start": 5021.16, + "end": 5025.78, + "probability": 0.9558 + }, + { + "start": 5027.61, + "end": 5031.92, + "probability": 0.7783 + }, + { + "start": 5032.84, + "end": 5034.34, + "probability": 0.8316 + }, + { + "start": 5035.64, + "end": 5037.7, + "probability": 0.9742 + }, + { + "start": 5038.74, + "end": 5040.32, + "probability": 0.9775 + }, + { + "start": 5041.28, + "end": 5044.78, + "probability": 0.9464 + }, + { + "start": 5045.42, + "end": 5046.8, + "probability": 0.909 + }, + { + "start": 5047.8, + "end": 5055.8, + "probability": 0.5626 + }, + { + "start": 5057.3, + "end": 5059.24, + "probability": 0.7835 + }, + { + "start": 5059.88, + "end": 5061.66, + "probability": 0.8861 + }, + { + "start": 5066.2, + "end": 5069.32, + "probability": 0.7904 + }, + { + "start": 5069.78, + "end": 5071.8, + "probability": 0.9358 + }, + { + "start": 5073.5, + "end": 5076.46, + "probability": 0.9875 + }, + { + "start": 5077.6, + "end": 5080.08, + "probability": 0.6233 + }, + { + "start": 5081.06, + "end": 5084.86, + "probability": 0.9525 + }, + { + "start": 5087.7, + "end": 5089.48, + "probability": 0.5833 + }, + { + "start": 5090.84, + "end": 5094.86, + "probability": 0.9002 + }, + { + "start": 5096.0, + "end": 5098.04, + "probability": 0.5292 + }, + { + "start": 5099.62, + "end": 5101.22, + "probability": 0.815 + }, + { + "start": 5102.42, + "end": 5104.14, + "probability": 0.8951 + }, + { + "start": 5104.8, + "end": 5106.98, + "probability": 0.9556 + }, + { + "start": 5107.78, + "end": 5110.62, + "probability": 0.9769 + }, + { + "start": 5111.52, + "end": 5112.68, + "probability": 0.8175 + }, + { + "start": 5113.88, + "end": 5115.52, + "probability": 0.855 + }, + { + "start": 5116.18, + "end": 5116.88, + "probability": 0.6786 + }, + { + "start": 5118.32, + "end": 5123.64, + "probability": 0.8715 + }, + { + "start": 5126.04, + "end": 5128.62, + "probability": 0.9921 + }, + { + "start": 5129.74, + "end": 5131.96, + "probability": 0.9834 + }, + { + "start": 5132.48, + "end": 5135.72, + "probability": 0.9866 + }, + { + "start": 5137.84, + "end": 5140.22, + "probability": 0.9822 + }, + { + "start": 5141.76, + "end": 5143.86, + "probability": 0.8326 + }, + { + "start": 5145.1, + "end": 5146.8, + "probability": 0.9266 + }, + { + "start": 5148.18, + "end": 5149.82, + "probability": 0.9707 + }, + { + "start": 5150.36, + "end": 5153.82, + "probability": 0.9862 + }, + { + "start": 5155.76, + "end": 5157.52, + "probability": 0.9264 + }, + { + "start": 5158.94, + "end": 5162.94, + "probability": 0.4774 + }, + { + "start": 5170.54, + "end": 5171.72, + "probability": 0.2954 + }, + { + "start": 5174.01, + "end": 5177.94, + "probability": 0.6399 + }, + { + "start": 5182.38, + "end": 5185.62, + "probability": 0.9348 + }, + { + "start": 5187.62, + "end": 5190.46, + "probability": 0.9636 + }, + { + "start": 5191.9, + "end": 5192.18, + "probability": 0.0819 + }, + { + "start": 5195.74, + "end": 5196.7, + "probability": 0.2681 + }, + { + "start": 5197.28, + "end": 5199.6, + "probability": 0.6696 + }, + { + "start": 5202.36, + "end": 5205.42, + "probability": 0.896 + }, + { + "start": 5206.26, + "end": 5207.94, + "probability": 0.8203 + }, + { + "start": 5209.24, + "end": 5211.24, + "probability": 0.9844 + }, + { + "start": 5216.76, + "end": 5222.2, + "probability": 0.9468 + }, + { + "start": 5222.74, + "end": 5224.16, + "probability": 0.994 + }, + { + "start": 5225.18, + "end": 5226.08, + "probability": 0.7346 + }, + { + "start": 5226.24, + "end": 5226.98, + "probability": 0.2376 + }, + { + "start": 5226.98, + "end": 5229.66, + "probability": 0.6946 + }, + { + "start": 5230.54, + "end": 5233.38, + "probability": 0.9708 + }, + { + "start": 5234.38, + "end": 5234.38, + "probability": 0.0404 + }, + { + "start": 5234.38, + "end": 5234.8, + "probability": 0.4289 + }, + { + "start": 5235.68, + "end": 5237.62, + "probability": 0.7878 + }, + { + "start": 5239.14, + "end": 5240.64, + "probability": 0.8314 + }, + { + "start": 5242.24, + "end": 5244.4, + "probability": 0.8425 + }, + { + "start": 5245.78, + "end": 5248.3, + "probability": 0.9214 + }, + { + "start": 5249.28, + "end": 5251.16, + "probability": 0.9782 + }, + { + "start": 5252.66, + "end": 5255.06, + "probability": 0.9861 + }, + { + "start": 5256.54, + "end": 5259.24, + "probability": 0.863 + }, + { + "start": 5259.92, + "end": 5262.74, + "probability": 0.9437 + }, + { + "start": 5263.62, + "end": 5264.62, + "probability": 0.9648 + }, + { + "start": 5265.98, + "end": 5268.64, + "probability": 0.991 + }, + { + "start": 5269.3, + "end": 5275.72, + "probability": 0.9958 + }, + { + "start": 5276.86, + "end": 5279.3, + "probability": 0.7127 + }, + { + "start": 5279.82, + "end": 5283.94, + "probability": 0.834 + }, + { + "start": 5285.18, + "end": 5287.24, + "probability": 0.9377 + }, + { + "start": 5288.88, + "end": 5293.34, + "probability": 0.8381 + }, + { + "start": 5294.38, + "end": 5297.68, + "probability": 0.9236 + }, + { + "start": 5298.54, + "end": 5301.84, + "probability": 0.9356 + }, + { + "start": 5302.4, + "end": 5304.46, + "probability": 0.9625 + }, + { + "start": 5306.16, + "end": 5310.0, + "probability": 0.9848 + }, + { + "start": 5311.04, + "end": 5315.22, + "probability": 0.9545 + }, + { + "start": 5316.22, + "end": 5318.26, + "probability": 0.9391 + }, + { + "start": 5319.18, + "end": 5321.4, + "probability": 0.9737 + }, + { + "start": 5322.52, + "end": 5325.46, + "probability": 0.9007 + }, + { + "start": 5328.62, + "end": 5334.64, + "probability": 0.97 + }, + { + "start": 5335.32, + "end": 5338.46, + "probability": 0.1006 + }, + { + "start": 5338.46, + "end": 5339.02, + "probability": 0.3277 + }, + { + "start": 5340.06, + "end": 5341.54, + "probability": 0.9187 + }, + { + "start": 5342.86, + "end": 5346.56, + "probability": 0.9295 + }, + { + "start": 5347.66, + "end": 5350.66, + "probability": 0.9672 + }, + { + "start": 5351.2, + "end": 5352.92, + "probability": 0.9283 + }, + { + "start": 5353.88, + "end": 5355.88, + "probability": 0.9837 + }, + { + "start": 5356.52, + "end": 5359.36, + "probability": 0.7006 + }, + { + "start": 5361.44, + "end": 5363.28, + "probability": 0.8686 + }, + { + "start": 5364.2, + "end": 5365.98, + "probability": 0.9576 + }, + { + "start": 5366.82, + "end": 5369.1, + "probability": 0.9521 + }, + { + "start": 5370.3, + "end": 5374.06, + "probability": 0.8359 + }, + { + "start": 5375.04, + "end": 5377.38, + "probability": 0.9833 + }, + { + "start": 5378.3, + "end": 5381.16, + "probability": 0.9218 + }, + { + "start": 5381.86, + "end": 5385.88, + "probability": 0.9184 + }, + { + "start": 5386.32, + "end": 5387.88, + "probability": 0.9655 + }, + { + "start": 5388.38, + "end": 5390.2, + "probability": 0.9149 + }, + { + "start": 5391.04, + "end": 5393.36, + "probability": 0.8128 + }, + { + "start": 5394.18, + "end": 5397.14, + "probability": 0.9778 + }, + { + "start": 5397.86, + "end": 5398.22, + "probability": 0.9304 + }, + { + "start": 5400.18, + "end": 5401.42, + "probability": 0.8188 + }, + { + "start": 5402.28, + "end": 5404.48, + "probability": 0.5211 + }, + { + "start": 5405.5, + "end": 5406.34, + "probability": 0.9549 + }, + { + "start": 5407.26, + "end": 5409.34, + "probability": 0.8816 + }, + { + "start": 5410.64, + "end": 5412.2, + "probability": 0.8747 + }, + { + "start": 5413.9, + "end": 5415.56, + "probability": 0.9708 + }, + { + "start": 5416.18, + "end": 5422.2, + "probability": 0.9886 + }, + { + "start": 5423.18, + "end": 5425.18, + "probability": 0.9515 + }, + { + "start": 5426.18, + "end": 5429.56, + "probability": 0.7278 + }, + { + "start": 5430.92, + "end": 5436.0, + "probability": 0.8423 + }, + { + "start": 5437.02, + "end": 5441.84, + "probability": 0.9826 + }, + { + "start": 5442.76, + "end": 5444.5, + "probability": 0.8874 + }, + { + "start": 5445.12, + "end": 5447.76, + "probability": 0.5156 + }, + { + "start": 5449.0, + "end": 5449.76, + "probability": 0.8777 + }, + { + "start": 5450.3, + "end": 5450.96, + "probability": 0.749 + }, + { + "start": 5452.54, + "end": 5453.18, + "probability": 0.8736 + }, + { + "start": 5453.88, + "end": 5454.66, + "probability": 0.8851 + }, + { + "start": 5455.98, + "end": 5456.68, + "probability": 0.9853 + }, + { + "start": 5457.84, + "end": 5458.96, + "probability": 0.9602 + }, + { + "start": 5459.56, + "end": 5461.7, + "probability": 0.9679 + }, + { + "start": 5463.18, + "end": 5465.78, + "probability": 0.9502 + }, + { + "start": 5466.72, + "end": 5470.38, + "probability": 0.9925 + }, + { + "start": 5471.5, + "end": 5473.36, + "probability": 0.8652 + }, + { + "start": 5474.98, + "end": 5476.98, + "probability": 0.8776 + }, + { + "start": 5477.94, + "end": 5479.68, + "probability": 0.9776 + }, + { + "start": 5480.4, + "end": 5481.82, + "probability": 0.9432 + }, + { + "start": 5482.34, + "end": 5484.14, + "probability": 0.9249 + }, + { + "start": 5484.8, + "end": 5486.3, + "probability": 0.9876 + }, + { + "start": 5488.06, + "end": 5490.06, + "probability": 0.9563 + }, + { + "start": 5491.24, + "end": 5493.8, + "probability": 0.4976 + }, + { + "start": 5495.22, + "end": 5496.92, + "probability": 0.4639 + }, + { + "start": 5498.7, + "end": 5499.58, + "probability": 0.9356 + }, + { + "start": 5500.46, + "end": 5501.29, + "probability": 0.4821 + }, + { + "start": 5502.74, + "end": 5503.56, + "probability": 0.9903 + }, + { + "start": 5504.56, + "end": 5505.54, + "probability": 0.9435 + }, + { + "start": 5507.06, + "end": 5509.12, + "probability": 0.8721 + }, + { + "start": 5510.78, + "end": 5513.78, + "probability": 0.982 + }, + { + "start": 5515.42, + "end": 5520.52, + "probability": 0.9935 + }, + { + "start": 5521.16, + "end": 5523.68, + "probability": 0.971 + }, + { + "start": 5524.38, + "end": 5525.7, + "probability": 0.5195 + }, + { + "start": 5526.08, + "end": 5527.88, + "probability": 0.8113 + }, + { + "start": 5528.6, + "end": 5529.78, + "probability": 0.3658 + }, + { + "start": 5530.98, + "end": 5532.88, + "probability": 0.025 + }, + { + "start": 5534.1, + "end": 5534.76, + "probability": 0.0957 + }, + { + "start": 5540.38, + "end": 5541.82, + "probability": 0.2 + }, + { + "start": 5589.32, + "end": 5594.46, + "probability": 0.9111 + }, + { + "start": 5594.66, + "end": 5595.7, + "probability": 0.5714 + }, + { + "start": 5595.86, + "end": 5597.06, + "probability": 0.3775 + }, + { + "start": 5597.7, + "end": 5600.6, + "probability": 0.9623 + }, + { + "start": 5602.42, + "end": 5603.84, + "probability": 0.4067 + }, + { + "start": 5603.84, + "end": 5605.4, + "probability": 0.7507 + }, + { + "start": 5605.84, + "end": 5606.42, + "probability": 0.1021 + }, + { + "start": 5607.48, + "end": 5609.86, + "probability": 0.8011 + }, + { + "start": 5609.86, + "end": 5612.48, + "probability": 0.2837 + }, + { + "start": 5615.76, + "end": 5618.78, + "probability": 0.9214 + }, + { + "start": 5619.04, + "end": 5621.06, + "probability": 0.2374 + }, + { + "start": 5621.52, + "end": 5624.14, + "probability": 0.145 + }, + { + "start": 5624.34, + "end": 5625.28, + "probability": 0.7986 + }, + { + "start": 5625.92, + "end": 5626.12, + "probability": 0.4989 + }, + { + "start": 5626.12, + "end": 5626.12, + "probability": 0.5026 + }, + { + "start": 5626.12, + "end": 5629.72, + "probability": 0.7122 + }, + { + "start": 5630.46, + "end": 5631.8, + "probability": 0.5744 + }, + { + "start": 5632.38, + "end": 5634.28, + "probability": 0.6377 + }, + { + "start": 5634.44, + "end": 5638.5, + "probability": 0.1494 + }, + { + "start": 5638.9, + "end": 5642.5, + "probability": 0.3136 + }, + { + "start": 5643.44, + "end": 5644.14, + "probability": 0.1765 + }, + { + "start": 5645.46, + "end": 5645.82, + "probability": 0.0998 + }, + { + "start": 5646.18, + "end": 5646.68, + "probability": 0.0802 + }, + { + "start": 5647.78, + "end": 5648.72, + "probability": 0.49 + }, + { + "start": 5649.18, + "end": 5650.1, + "probability": 0.2216 + }, + { + "start": 5650.96, + "end": 5654.2, + "probability": 0.4399 + }, + { + "start": 5655.34, + "end": 5658.38, + "probability": 0.8184 + }, + { + "start": 5658.38, + "end": 5658.38, + "probability": 0.4856 + }, + { + "start": 5658.38, + "end": 5658.98, + "probability": 0.2756 + }, + { + "start": 5661.34, + "end": 5662.74, + "probability": 0.02 + }, + { + "start": 5664.13, + "end": 5667.09, + "probability": 0.3894 + }, + { + "start": 5668.34, + "end": 5672.6, + "probability": 0.8128 + }, + { + "start": 5672.72, + "end": 5675.06, + "probability": 0.9434 + }, + { + "start": 5675.08, + "end": 5676.62, + "probability": 0.7618 + }, + { + "start": 5676.86, + "end": 5677.5, + "probability": 0.93 + }, + { + "start": 5678.06, + "end": 5680.98, + "probability": 0.937 + }, + { + "start": 5681.3, + "end": 5684.98, + "probability": 0.9246 + }, + { + "start": 5684.98, + "end": 5686.35, + "probability": 0.9708 + }, + { + "start": 5686.6, + "end": 5687.92, + "probability": 0.5831 + }, + { + "start": 5688.48, + "end": 5690.48, + "probability": 0.8699 + }, + { + "start": 5690.54, + "end": 5694.32, + "probability": 0.387 + }, + { + "start": 5694.32, + "end": 5699.88, + "probability": 0.9733 + }, + { + "start": 5699.98, + "end": 5703.12, + "probability": 0.9911 + }, + { + "start": 5703.12, + "end": 5703.8, + "probability": 0.5811 + }, + { + "start": 5704.24, + "end": 5705.64, + "probability": 0.8712 + }, + { + "start": 5705.7, + "end": 5708.62, + "probability": 0.6832 + }, + { + "start": 5708.88, + "end": 5709.06, + "probability": 0.0477 + }, + { + "start": 5709.1, + "end": 5709.36, + "probability": 0.0254 + }, + { + "start": 5709.36, + "end": 5710.88, + "probability": 0.8134 + }, + { + "start": 5711.2, + "end": 5712.3, + "probability": 0.9807 + }, + { + "start": 5712.4, + "end": 5715.36, + "probability": 0.3259 + }, + { + "start": 5715.36, + "end": 5715.36, + "probability": 0.1268 + }, + { + "start": 5715.36, + "end": 5715.36, + "probability": 0.0665 + }, + { + "start": 5715.36, + "end": 5719.36, + "probability": 0.3611 + }, + { + "start": 5719.96, + "end": 5722.34, + "probability": 0.7916 + }, + { + "start": 5723.0, + "end": 5724.66, + "probability": 0.0044 + }, + { + "start": 5727.52, + "end": 5727.62, + "probability": 0.0148 + }, + { + "start": 5727.62, + "end": 5727.62, + "probability": 0.2874 + }, + { + "start": 5727.62, + "end": 5727.62, + "probability": 0.0178 + }, + { + "start": 5727.62, + "end": 5727.62, + "probability": 0.0208 + }, + { + "start": 5727.62, + "end": 5727.62, + "probability": 0.0456 + }, + { + "start": 5727.62, + "end": 5727.62, + "probability": 0.1316 + }, + { + "start": 5727.62, + "end": 5727.62, + "probability": 0.0662 + }, + { + "start": 5727.62, + "end": 5728.08, + "probability": 0.3178 + }, + { + "start": 5728.42, + "end": 5728.8, + "probability": 0.7443 + }, + { + "start": 5729.04, + "end": 5730.6, + "probability": 0.8442 + }, + { + "start": 5731.12, + "end": 5731.12, + "probability": 0.0113 + }, + { + "start": 5732.3, + "end": 5733.46, + "probability": 0.03 + }, + { + "start": 5733.78, + "end": 5737.32, + "probability": 0.995 + }, + { + "start": 5737.9, + "end": 5740.52, + "probability": 0.7073 + }, + { + "start": 5740.94, + "end": 5743.28, + "probability": 0.9462 + }, + { + "start": 5743.68, + "end": 5744.06, + "probability": 0.9159 + }, + { + "start": 5744.86, + "end": 5747.48, + "probability": 0.54 + }, + { + "start": 5748.02, + "end": 5750.44, + "probability": 0.9961 + }, + { + "start": 5752.0, + "end": 5754.14, + "probability": 0.9978 + }, + { + "start": 5754.18, + "end": 5758.38, + "probability": 0.8253 + }, + { + "start": 5758.66, + "end": 5760.48, + "probability": 0.8213 + }, + { + "start": 5760.58, + "end": 5762.84, + "probability": 0.8997 + }, + { + "start": 5763.02, + "end": 5763.42, + "probability": 0.8062 + }, + { + "start": 5763.6, + "end": 5765.52, + "probability": 0.9974 + }, + { + "start": 5765.84, + "end": 5770.84, + "probability": 0.9988 + }, + { + "start": 5771.36, + "end": 5773.98, + "probability": 0.8975 + }, + { + "start": 5774.66, + "end": 5776.76, + "probability": 0.5193 + }, + { + "start": 5777.34, + "end": 5781.46, + "probability": 0.5487 + }, + { + "start": 5782.16, + "end": 5785.64, + "probability": 0.9985 + }, + { + "start": 5786.14, + "end": 5788.14, + "probability": 0.9977 + }, + { + "start": 5788.52, + "end": 5790.88, + "probability": 0.9814 + }, + { + "start": 5791.16, + "end": 5794.18, + "probability": 0.9985 + }, + { + "start": 5795.06, + "end": 5795.98, + "probability": 0.7136 + }, + { + "start": 5796.36, + "end": 5797.24, + "probability": 0.6406 + }, + { + "start": 5797.42, + "end": 5800.86, + "probability": 0.9989 + }, + { + "start": 5801.26, + "end": 5803.9, + "probability": 0.8911 + }, + { + "start": 5804.54, + "end": 5805.36, + "probability": 0.7131 + }, + { + "start": 5805.98, + "end": 5807.36, + "probability": 0.8647 + }, + { + "start": 5807.82, + "end": 5811.38, + "probability": 0.9836 + }, + { + "start": 5811.74, + "end": 5812.76, + "probability": 0.2899 + }, + { + "start": 5813.22, + "end": 5817.48, + "probability": 0.9823 + }, + { + "start": 5818.14, + "end": 5821.84, + "probability": 0.9809 + }, + { + "start": 5821.84, + "end": 5826.64, + "probability": 0.8856 + }, + { + "start": 5826.86, + "end": 5830.82, + "probability": 0.8359 + }, + { + "start": 5831.16, + "end": 5832.38, + "probability": 0.7541 + }, + { + "start": 5833.38, + "end": 5835.64, + "probability": 0.9799 + }, + { + "start": 5835.82, + "end": 5837.46, + "probability": 0.5695 + }, + { + "start": 5837.56, + "end": 5838.4, + "probability": 0.7856 + }, + { + "start": 5838.84, + "end": 5841.28, + "probability": 0.7539 + }, + { + "start": 5841.92, + "end": 5845.38, + "probability": 0.5021 + }, + { + "start": 5845.46, + "end": 5845.88, + "probability": 0.029 + }, + { + "start": 5846.66, + "end": 5852.52, + "probability": 0.9609 + }, + { + "start": 5852.6, + "end": 5857.1, + "probability": 0.9048 + }, + { + "start": 5857.3, + "end": 5859.91, + "probability": 0.8247 + }, + { + "start": 5860.56, + "end": 5860.98, + "probability": 0.566 + }, + { + "start": 5861.04, + "end": 5865.52, + "probability": 0.9829 + }, + { + "start": 5865.76, + "end": 5866.08, + "probability": 0.0924 + }, + { + "start": 5866.96, + "end": 5869.68, + "probability": 0.9971 + }, + { + "start": 5869.68, + "end": 5873.4, + "probability": 0.7586 + }, + { + "start": 5874.94, + "end": 5876.24, + "probability": 0.9176 + }, + { + "start": 5876.34, + "end": 5877.24, + "probability": 0.8925 + }, + { + "start": 5877.72, + "end": 5879.84, + "probability": 0.9265 + }, + { + "start": 5880.88, + "end": 5880.88, + "probability": 0.1217 + }, + { + "start": 5880.88, + "end": 5883.52, + "probability": 0.9912 + }, + { + "start": 5883.78, + "end": 5886.34, + "probability": 0.943 + }, + { + "start": 5886.94, + "end": 5893.68, + "probability": 0.998 + }, + { + "start": 5894.22, + "end": 5895.66, + "probability": 0.9852 + }, + { + "start": 5896.3, + "end": 5897.84, + "probability": 0.9796 + }, + { + "start": 5898.16, + "end": 5901.12, + "probability": 0.9961 + }, + { + "start": 5901.94, + "end": 5904.12, + "probability": 0.973 + }, + { + "start": 5904.64, + "end": 5906.42, + "probability": 0.9993 + }, + { + "start": 5907.12, + "end": 5909.06, + "probability": 0.7792 + }, + { + "start": 5909.56, + "end": 5911.86, + "probability": 0.9756 + }, + { + "start": 5912.36, + "end": 5913.58, + "probability": 0.8371 + }, + { + "start": 5913.82, + "end": 5915.0, + "probability": 0.7646 + }, + { + "start": 5915.32, + "end": 5916.36, + "probability": 0.9426 + }, + { + "start": 5916.72, + "end": 5918.66, + "probability": 0.9808 + }, + { + "start": 5919.12, + "end": 5920.92, + "probability": 0.8468 + }, + { + "start": 5921.72, + "end": 5927.08, + "probability": 0.8537 + }, + { + "start": 5927.7, + "end": 5929.46, + "probability": 0.7642 + }, + { + "start": 5929.98, + "end": 5932.52, + "probability": 0.7904 + }, + { + "start": 5933.3, + "end": 5937.34, + "probability": 0.9841 + }, + { + "start": 5938.02, + "end": 5940.28, + "probability": 0.9221 + }, + { + "start": 5940.82, + "end": 5943.42, + "probability": 0.9955 + }, + { + "start": 5943.78, + "end": 5946.12, + "probability": 0.9886 + }, + { + "start": 5946.86, + "end": 5948.84, + "probability": 0.7723 + }, + { + "start": 5949.62, + "end": 5952.68, + "probability": 0.8834 + }, + { + "start": 5953.26, + "end": 5953.26, + "probability": 0.5454 + }, + { + "start": 5953.26, + "end": 5955.6, + "probability": 0.8556 + }, + { + "start": 5955.94, + "end": 5962.28, + "probability": 0.8621 + }, + { + "start": 5962.84, + "end": 5966.16, + "probability": 0.9876 + }, + { + "start": 5966.54, + "end": 5971.32, + "probability": 0.9451 + }, + { + "start": 5971.32, + "end": 5976.96, + "probability": 0.8738 + }, + { + "start": 5977.5, + "end": 5979.14, + "probability": 0.3254 + }, + { + "start": 5979.28, + "end": 5979.98, + "probability": 0.4976 + }, + { + "start": 5980.28, + "end": 5981.44, + "probability": 0.6133 + }, + { + "start": 5984.62, + "end": 5984.74, + "probability": 0.1978 + }, + { + "start": 5984.74, + "end": 5984.74, + "probability": 0.187 + }, + { + "start": 5984.74, + "end": 5984.74, + "probability": 0.3594 + }, + { + "start": 5984.81, + "end": 5985.14, + "probability": 0.334 + }, + { + "start": 5985.14, + "end": 5986.6, + "probability": 0.7721 + }, + { + "start": 5987.5, + "end": 5988.84, + "probability": 0.0336 + }, + { + "start": 5990.1, + "end": 5990.45, + "probability": 0.0081 + }, + { + "start": 5991.42, + "end": 5991.42, + "probability": 0.0132 + }, + { + "start": 5991.42, + "end": 5991.42, + "probability": 0.0121 + }, + { + "start": 5991.42, + "end": 5991.42, + "probability": 0.0675 + }, + { + "start": 5991.42, + "end": 5995.1, + "probability": 0.9922 + }, + { + "start": 5995.24, + "end": 5996.22, + "probability": 0.8822 + }, + { + "start": 5996.28, + "end": 5997.52, + "probability": 0.7539 + }, + { + "start": 5997.86, + "end": 5998.54, + "probability": 0.7225 + }, + { + "start": 5999.24, + "end": 6003.12, + "probability": 0.6947 + }, + { + "start": 6003.84, + "end": 6004.7, + "probability": 0.7477 + }, + { + "start": 6005.36, + "end": 6007.12, + "probability": 0.0148 + }, + { + "start": 6007.88, + "end": 6008.7, + "probability": 0.2507 + }, + { + "start": 6009.12, + "end": 6010.72, + "probability": 0.0559 + }, + { + "start": 6011.08, + "end": 6011.52, + "probability": 0.1401 + }, + { + "start": 6011.98, + "end": 6014.28, + "probability": 0.3557 + }, + { + "start": 6014.98, + "end": 6016.52, + "probability": 0.3794 + }, + { + "start": 6017.52, + "end": 6018.92, + "probability": 0.1085 + }, + { + "start": 6018.92, + "end": 6018.92, + "probability": 0.0062 + }, + { + "start": 6018.92, + "end": 6018.92, + "probability": 0.1555 + }, + { + "start": 6018.92, + "end": 6018.92, + "probability": 0.0708 + }, + { + "start": 6018.92, + "end": 6018.92, + "probability": 0.3613 + }, + { + "start": 6018.92, + "end": 6019.37, + "probability": 0.32 + }, + { + "start": 6019.96, + "end": 6020.17, + "probability": 0.0624 + }, + { + "start": 6021.0, + "end": 6022.67, + "probability": 0.682 + }, + { + "start": 6022.76, + "end": 6023.44, + "probability": 0.4484 + }, + { + "start": 6024.74, + "end": 6026.14, + "probability": 0.023 + }, + { + "start": 6026.48, + "end": 6027.26, + "probability": 0.0704 + }, + { + "start": 6027.44, + "end": 6028.1, + "probability": 0.382 + }, + { + "start": 6028.4, + "end": 6029.68, + "probability": 0.369 + }, + { + "start": 6029.68, + "end": 6033.38, + "probability": 0.8239 + }, + { + "start": 6033.5, + "end": 6034.84, + "probability": 0.6431 + }, + { + "start": 6035.14, + "end": 6036.18, + "probability": 0.7014 + }, + { + "start": 6036.44, + "end": 6037.5, + "probability": 0.9718 + }, + { + "start": 6040.84, + "end": 6044.3, + "probability": 0.7556 + }, + { + "start": 6044.44, + "end": 6046.68, + "probability": 0.0372 + }, + { + "start": 6046.94, + "end": 6048.92, + "probability": 0.677 + }, + { + "start": 6049.75, + "end": 6053.22, + "probability": 0.5936 + }, + { + "start": 6053.44, + "end": 6057.9, + "probability": 0.6439 + }, + { + "start": 6058.04, + "end": 6058.08, + "probability": 0.0046 + }, + { + "start": 6058.08, + "end": 6058.08, + "probability": 0.0645 + }, + { + "start": 6058.08, + "end": 6058.98, + "probability": 0.3451 + }, + { + "start": 6061.52, + "end": 6063.46, + "probability": 0.7937 + }, + { + "start": 6063.6, + "end": 6066.36, + "probability": 0.8028 + }, + { + "start": 6066.36, + "end": 6069.86, + "probability": 0.9744 + }, + { + "start": 6070.22, + "end": 6071.16, + "probability": 0.5568 + }, + { + "start": 6072.08, + "end": 6073.66, + "probability": 0.957 + }, + { + "start": 6074.3, + "end": 6078.6, + "probability": 0.9902 + }, + { + "start": 6078.78, + "end": 6080.6, + "probability": 0.9586 + }, + { + "start": 6083.56, + "end": 6085.4, + "probability": 0.9192 + }, + { + "start": 6086.3, + "end": 6087.26, + "probability": 0.718 + }, + { + "start": 6088.12, + "end": 6089.25, + "probability": 0.5747 + }, + { + "start": 6089.42, + "end": 6089.91, + "probability": 0.1798 + }, + { + "start": 6090.86, + "end": 6091.1, + "probability": 0.5019 + }, + { + "start": 6094.7, + "end": 6097.38, + "probability": 0.7586 + }, + { + "start": 6099.48, + "end": 6100.24, + "probability": 0.933 + }, + { + "start": 6100.9, + "end": 6102.6, + "probability": 0.6581 + }, + { + "start": 6104.78, + "end": 6106.66, + "probability": 0.9155 + }, + { + "start": 6107.6, + "end": 6109.9, + "probability": 0.9871 + }, + { + "start": 6111.38, + "end": 6113.3, + "probability": 0.7417 + }, + { + "start": 6114.08, + "end": 6117.12, + "probability": 0.8868 + }, + { + "start": 6117.76, + "end": 6120.23, + "probability": 0.9846 + }, + { + "start": 6121.02, + "end": 6122.96, + "probability": 0.721 + }, + { + "start": 6123.82, + "end": 6125.47, + "probability": 0.9561 + }, + { + "start": 6126.34, + "end": 6128.86, + "probability": 0.9758 + }, + { + "start": 6129.52, + "end": 6132.0, + "probability": 0.9302 + }, + { + "start": 6133.0, + "end": 6134.56, + "probability": 0.9757 + }, + { + "start": 6135.16, + "end": 6136.44, + "probability": 0.7751 + }, + { + "start": 6137.02, + "end": 6137.96, + "probability": 0.9855 + }, + { + "start": 6139.0, + "end": 6144.66, + "probability": 0.9943 + }, + { + "start": 6145.24, + "end": 6146.16, + "probability": 0.958 + }, + { + "start": 6146.7, + "end": 6147.12, + "probability": 0.5773 + }, + { + "start": 6148.78, + "end": 6150.84, + "probability": 0.8928 + }, + { + "start": 6151.86, + "end": 6152.84, + "probability": 0.943 + }, + { + "start": 6154.1, + "end": 6157.1, + "probability": 0.9513 + }, + { + "start": 6157.92, + "end": 6160.92, + "probability": 0.9739 + }, + { + "start": 6161.64, + "end": 6163.94, + "probability": 0.9823 + }, + { + "start": 6165.56, + "end": 6166.12, + "probability": 0.7124 + }, + { + "start": 6166.24, + "end": 6169.9, + "probability": 0.9798 + }, + { + "start": 6170.88, + "end": 6175.38, + "probability": 0.9722 + }, + { + "start": 6175.38, + "end": 6178.96, + "probability": 0.9904 + }, + { + "start": 6180.02, + "end": 6180.44, + "probability": 0.5057 + }, + { + "start": 6180.98, + "end": 6183.54, + "probability": 0.7205 + }, + { + "start": 6184.28, + "end": 6187.98, + "probability": 0.9557 + }, + { + "start": 6189.62, + "end": 6191.48, + "probability": 0.9312 + }, + { + "start": 6192.18, + "end": 6194.22, + "probability": 0.864 + }, + { + "start": 6194.8, + "end": 6198.12, + "probability": 0.799 + }, + { + "start": 6199.14, + "end": 6203.02, + "probability": 0.8828 + }, + { + "start": 6204.08, + "end": 6206.88, + "probability": 0.98 + }, + { + "start": 6207.76, + "end": 6209.56, + "probability": 0.8945 + }, + { + "start": 6210.1, + "end": 6211.64, + "probability": 0.5608 + }, + { + "start": 6212.52, + "end": 6212.98, + "probability": 0.5517 + }, + { + "start": 6213.76, + "end": 6214.76, + "probability": 0.7905 + }, + { + "start": 6215.5, + "end": 6217.22, + "probability": 0.9257 + }, + { + "start": 6218.64, + "end": 6222.78, + "probability": 0.9861 + }, + { + "start": 6223.88, + "end": 6226.86, + "probability": 0.614 + }, + { + "start": 6228.02, + "end": 6228.74, + "probability": 0.7215 + }, + { + "start": 6229.3, + "end": 6230.06, + "probability": 0.9472 + }, + { + "start": 6230.62, + "end": 6232.88, + "probability": 0.9819 + }, + { + "start": 6234.96, + "end": 6236.62, + "probability": 0.9303 + }, + { + "start": 6237.48, + "end": 6239.82, + "probability": 0.9814 + }, + { + "start": 6240.46, + "end": 6242.92, + "probability": 0.9766 + }, + { + "start": 6243.58, + "end": 6248.22, + "probability": 0.9973 + }, + { + "start": 6249.28, + "end": 6250.86, + "probability": 0.6104 + }, + { + "start": 6250.94, + "end": 6252.38, + "probability": 0.8239 + }, + { + "start": 6252.84, + "end": 6257.52, + "probability": 0.7371 + }, + { + "start": 6257.58, + "end": 6258.16, + "probability": 0.7282 + }, + { + "start": 6258.5, + "end": 6260.2, + "probability": 0.8829 + }, + { + "start": 6260.26, + "end": 6260.44, + "probability": 0.0112 + }, + { + "start": 6260.52, + "end": 6261.22, + "probability": 0.7375 + }, + { + "start": 6261.3, + "end": 6262.14, + "probability": 0.6797 + }, + { + "start": 6262.22, + "end": 6263.28, + "probability": 0.5316 + }, + { + "start": 6264.14, + "end": 6264.2, + "probability": 0.0004 + }, + { + "start": 6264.76, + "end": 6266.36, + "probability": 0.5722 + }, + { + "start": 6266.46, + "end": 6270.2, + "probability": 0.6434 + }, + { + "start": 6270.2, + "end": 6271.6, + "probability": 0.6754 + }, + { + "start": 6271.84, + "end": 6275.12, + "probability": 0.268 + }, + { + "start": 6275.12, + "end": 6276.44, + "probability": 0.0267 + }, + { + "start": 6276.68, + "end": 6276.78, + "probability": 0.2224 + }, + { + "start": 6277.42, + "end": 6278.02, + "probability": 0.8264 + }, + { + "start": 6279.54, + "end": 6281.52, + "probability": 0.283 + }, + { + "start": 6282.06, + "end": 6284.78, + "probability": 0.9481 + }, + { + "start": 6285.2, + "end": 6286.76, + "probability": 0.9694 + }, + { + "start": 6287.0, + "end": 6287.26, + "probability": 0.0526 + }, + { + "start": 6287.26, + "end": 6287.26, + "probability": 0.1023 + }, + { + "start": 6287.26, + "end": 6287.26, + "probability": 0.0077 + }, + { + "start": 6287.26, + "end": 6290.14, + "probability": 0.3293 + }, + { + "start": 6291.7, + "end": 6294.74, + "probability": 0.8061 + }, + { + "start": 6295.4, + "end": 6296.38, + "probability": 0.9881 + }, + { + "start": 6296.48, + "end": 6300.88, + "probability": 0.7479 + }, + { + "start": 6301.08, + "end": 6301.08, + "probability": 0.0012 + }, + { + "start": 6301.7, + "end": 6304.93, + "probability": 0.0711 + }, + { + "start": 6305.94, + "end": 6308.7, + "probability": 0.8547 + }, + { + "start": 6310.24, + "end": 6310.58, + "probability": 0.0135 + }, + { + "start": 6310.58, + "end": 6314.0, + "probability": 0.7507 + }, + { + "start": 6314.12, + "end": 6314.76, + "probability": 0.5698 + }, + { + "start": 6314.82, + "end": 6316.1, + "probability": 0.4597 + }, + { + "start": 6316.1, + "end": 6319.38, + "probability": 0.8674 + }, + { + "start": 6319.82, + "end": 6321.24, + "probability": 0.773 + }, + { + "start": 6321.46, + "end": 6322.52, + "probability": 0.9327 + }, + { + "start": 6322.98, + "end": 6325.12, + "probability": 0.9832 + }, + { + "start": 6325.12, + "end": 6329.9, + "probability": 0.9561 + }, + { + "start": 6330.72, + "end": 6332.54, + "probability": 0.9888 + }, + { + "start": 6333.12, + "end": 6337.92, + "probability": 0.9158 + }, + { + "start": 6338.66, + "end": 6339.76, + "probability": 0.9262 + }, + { + "start": 6340.28, + "end": 6342.2, + "probability": 0.8551 + }, + { + "start": 6343.0, + "end": 6346.68, + "probability": 0.9216 + }, + { + "start": 6347.3, + "end": 6350.58, + "probability": 0.9322 + }, + { + "start": 6351.1, + "end": 6354.58, + "probability": 0.9044 + }, + { + "start": 6355.56, + "end": 6356.08, + "probability": 0.9858 + }, + { + "start": 6356.6, + "end": 6360.32, + "probability": 0.8351 + }, + { + "start": 6360.9, + "end": 6364.42, + "probability": 0.9387 + }, + { + "start": 6365.12, + "end": 6369.08, + "probability": 0.8423 + }, + { + "start": 6369.6, + "end": 6371.3, + "probability": 0.7242 + }, + { + "start": 6371.78, + "end": 6375.74, + "probability": 0.9481 + }, + { + "start": 6375.8, + "end": 6378.6, + "probability": 0.9792 + }, + { + "start": 6379.02, + "end": 6381.16, + "probability": 0.8491 + }, + { + "start": 6381.42, + "end": 6385.88, + "probability": 0.938 + }, + { + "start": 6385.88, + "end": 6388.86, + "probability": 0.8163 + }, + { + "start": 6389.18, + "end": 6389.66, + "probability": 0.5779 + }, + { + "start": 6391.16, + "end": 6393.36, + "probability": 0.6715 + }, + { + "start": 6393.5, + "end": 6398.14, + "probability": 0.9385 + }, + { + "start": 6398.31, + "end": 6402.2, + "probability": 0.9883 + }, + { + "start": 6402.66, + "end": 6403.34, + "probability": 0.9587 + }, + { + "start": 6404.26, + "end": 6405.64, + "probability": 0.8955 + }, + { + "start": 6405.76, + "end": 6411.4, + "probability": 0.9849 + }, + { + "start": 6411.66, + "end": 6415.02, + "probability": 0.6802 + }, + { + "start": 6415.08, + "end": 6417.12, + "probability": 0.6999 + }, + { + "start": 6417.24, + "end": 6418.43, + "probability": 0.3509 + }, + { + "start": 6420.08, + "end": 6420.1, + "probability": 0.5029 + }, + { + "start": 6420.1, + "end": 6420.48, + "probability": 0.2553 + }, + { + "start": 6420.48, + "end": 6421.69, + "probability": 0.2157 + }, + { + "start": 6422.4, + "end": 6423.76, + "probability": 0.4869 + }, + { + "start": 6425.34, + "end": 6426.84, + "probability": 0.2271 + }, + { + "start": 6427.38, + "end": 6427.5, + "probability": 0.3381 + }, + { + "start": 6435.64, + "end": 6435.92, + "probability": 0.0112 + }, + { + "start": 6440.2, + "end": 6442.04, + "probability": 0.6297 + }, + { + "start": 6442.12, + "end": 6443.72, + "probability": 0.6313 + }, + { + "start": 6444.35, + "end": 6448.48, + "probability": 0.9863 + }, + { + "start": 6448.48, + "end": 6452.74, + "probability": 0.9921 + }, + { + "start": 6452.78, + "end": 6454.64, + "probability": 0.7362 + }, + { + "start": 6454.64, + "end": 6455.96, + "probability": 0.7626 + }, + { + "start": 6456.0, + "end": 6460.54, + "probability": 0.9933 + }, + { + "start": 6461.66, + "end": 6463.22, + "probability": 0.6816 + }, + { + "start": 6463.4, + "end": 6467.46, + "probability": 0.9972 + }, + { + "start": 6467.46, + "end": 6473.78, + "probability": 0.9924 + }, + { + "start": 6475.18, + "end": 6477.88, + "probability": 0.5068 + }, + { + "start": 6479.82, + "end": 6480.42, + "probability": 0.1404 + }, + { + "start": 6481.32, + "end": 6487.02, + "probability": 0.7377 + }, + { + "start": 6487.38, + "end": 6487.38, + "probability": 0.4809 + }, + { + "start": 6487.38, + "end": 6490.86, + "probability": 0.8092 + }, + { + "start": 6490.92, + "end": 6492.36, + "probability": 0.967 + }, + { + "start": 6492.46, + "end": 6497.28, + "probability": 0.9967 + }, + { + "start": 6497.82, + "end": 6500.14, + "probability": 0.8601 + }, + { + "start": 6500.24, + "end": 6503.9, + "probability": 0.9858 + }, + { + "start": 6505.41, + "end": 6508.58, + "probability": 0.481 + }, + { + "start": 6509.28, + "end": 6517.98, + "probability": 0.9909 + }, + { + "start": 6518.68, + "end": 6521.7, + "probability": 0.9989 + }, + { + "start": 6521.96, + "end": 6524.14, + "probability": 0.656 + }, + { + "start": 6524.28, + "end": 6526.34, + "probability": 0.8937 + }, + { + "start": 6528.78, + "end": 6531.06, + "probability": 0.0158 + }, + { + "start": 6533.84, + "end": 6535.26, + "probability": 0.0363 + }, + { + "start": 6535.26, + "end": 6535.26, + "probability": 0.0279 + }, + { + "start": 6535.26, + "end": 6536.8, + "probability": 0.176 + }, + { + "start": 6537.2, + "end": 6538.78, + "probability": 0.8134 + }, + { + "start": 6538.88, + "end": 6541.98, + "probability": 0.9663 + }, + { + "start": 6542.1, + "end": 6543.26, + "probability": 0.7755 + }, + { + "start": 6543.36, + "end": 6545.12, + "probability": 0.6624 + }, + { + "start": 6545.64, + "end": 6547.76, + "probability": 0.734 + }, + { + "start": 6547.84, + "end": 6550.2, + "probability": 0.9885 + }, + { + "start": 6550.2, + "end": 6552.74, + "probability": 0.9568 + }, + { + "start": 6552.76, + "end": 6552.9, + "probability": 0.7797 + }, + { + "start": 6552.96, + "end": 6554.0, + "probability": 0.6736 + }, + { + "start": 6554.14, + "end": 6556.98, + "probability": 0.5464 + }, + { + "start": 6557.32, + "end": 6558.46, + "probability": 0.763 + }, + { + "start": 6560.1, + "end": 6560.76, + "probability": 0.7586 + }, + { + "start": 6562.76, + "end": 6566.16, + "probability": 0.585 + }, + { + "start": 6567.02, + "end": 6569.9, + "probability": 0.9878 + }, + { + "start": 6569.98, + "end": 6571.24, + "probability": 0.8806 + }, + { + "start": 6571.58, + "end": 6574.86, + "probability": 0.9379 + }, + { + "start": 6575.12, + "end": 6576.18, + "probability": 0.6563 + }, + { + "start": 6576.22, + "end": 6579.68, + "probability": 0.887 + }, + { + "start": 6579.92, + "end": 6580.5, + "probability": 0.4725 + }, + { + "start": 6580.56, + "end": 6583.8, + "probability": 0.9661 + }, + { + "start": 6583.88, + "end": 6584.66, + "probability": 0.9729 + }, + { + "start": 6584.78, + "end": 6585.72, + "probability": 0.7237 + }, + { + "start": 6585.86, + "end": 6587.22, + "probability": 0.7462 + }, + { + "start": 6587.54, + "end": 6590.9, + "probability": 0.9932 + }, + { + "start": 6591.34, + "end": 6595.1, + "probability": 0.9698 + }, + { + "start": 6595.1, + "end": 6597.98, + "probability": 0.9174 + }, + { + "start": 6598.1, + "end": 6599.58, + "probability": 0.8682 + }, + { + "start": 6599.64, + "end": 6602.54, + "probability": 0.9777 + }, + { + "start": 6603.04, + "end": 6606.12, + "probability": 0.2319 + }, + { + "start": 6606.12, + "end": 6608.22, + "probability": 0.7211 + }, + { + "start": 6608.38, + "end": 6609.06, + "probability": 0.9218 + }, + { + "start": 6609.12, + "end": 6611.36, + "probability": 0.9166 + }, + { + "start": 6611.84, + "end": 6613.38, + "probability": 0.9793 + }, + { + "start": 6613.86, + "end": 6615.6, + "probability": 0.9954 + }, + { + "start": 6615.68, + "end": 6617.62, + "probability": 0.9982 + }, + { + "start": 6617.74, + "end": 6623.34, + "probability": 0.9808 + }, + { + "start": 6624.42, + "end": 6625.96, + "probability": 0.8913 + }, + { + "start": 6626.0, + "end": 6626.14, + "probability": 0.6516 + }, + { + "start": 6626.14, + "end": 6628.06, + "probability": 0.7515 + }, + { + "start": 6628.6, + "end": 6630.0, + "probability": 0.9912 + }, + { + "start": 6630.46, + "end": 6630.78, + "probability": 0.6559 + }, + { + "start": 6630.94, + "end": 6631.96, + "probability": 0.8071 + }, + { + "start": 6632.5, + "end": 6632.58, + "probability": 0.2342 + }, + { + "start": 6632.58, + "end": 6633.7, + "probability": 0.637 + }, + { + "start": 6633.78, + "end": 6638.98, + "probability": 0.9349 + }, + { + "start": 6639.12, + "end": 6640.46, + "probability": 0.9936 + }, + { + "start": 6640.62, + "end": 6642.92, + "probability": 0.7496 + }, + { + "start": 6643.36, + "end": 6646.24, + "probability": 0.95 + }, + { + "start": 6646.34, + "end": 6649.76, + "probability": 0.9962 + }, + { + "start": 6649.92, + "end": 6653.46, + "probability": 0.997 + }, + { + "start": 6653.78, + "end": 6656.14, + "probability": 0.8742 + }, + { + "start": 6656.56, + "end": 6658.2, + "probability": 0.9976 + }, + { + "start": 6658.3, + "end": 6660.36, + "probability": 0.9882 + }, + { + "start": 6663.72, + "end": 6666.1, + "probability": 0.9536 + }, + { + "start": 6666.84, + "end": 6671.22, + "probability": 0.9549 + }, + { + "start": 6672.28, + "end": 6675.16, + "probability": 0.9767 + }, + { + "start": 6675.38, + "end": 6678.6, + "probability": 0.9971 + }, + { + "start": 6679.22, + "end": 6684.32, + "probability": 0.9989 + }, + { + "start": 6684.84, + "end": 6685.34, + "probability": 0.6781 + }, + { + "start": 6685.74, + "end": 6686.35, + "probability": 0.5019 + }, + { + "start": 6686.48, + "end": 6687.68, + "probability": 0.381 + }, + { + "start": 6688.0, + "end": 6691.5, + "probability": 0.9688 + }, + { + "start": 6691.6, + "end": 6693.8, + "probability": 0.8342 + }, + { + "start": 6694.24, + "end": 6694.82, + "probability": 0.3188 + }, + { + "start": 6694.82, + "end": 6696.48, + "probability": 0.7831 + }, + { + "start": 6696.64, + "end": 6699.38, + "probability": 0.9236 + }, + { + "start": 6700.3, + "end": 6701.88, + "probability": 0.7322 + }, + { + "start": 6703.08, + "end": 6703.12, + "probability": 0.4975 + }, + { + "start": 6703.18, + "end": 6703.28, + "probability": 0.5406 + }, + { + "start": 6703.32, + "end": 6704.68, + "probability": 0.881 + }, + { + "start": 6704.72, + "end": 6705.0, + "probability": 0.7334 + }, + { + "start": 6705.12, + "end": 6705.24, + "probability": 0.5019 + }, + { + "start": 6705.26, + "end": 6705.8, + "probability": 0.7598 + }, + { + "start": 6705.82, + "end": 6706.96, + "probability": 0.5133 + }, + { + "start": 6706.96, + "end": 6709.38, + "probability": 0.7974 + }, + { + "start": 6709.5, + "end": 6713.66, + "probability": 0.8221 + }, + { + "start": 6713.66, + "end": 6717.06, + "probability": 0.9955 + }, + { + "start": 6717.64, + "end": 6717.92, + "probability": 0.7593 + }, + { + "start": 6717.96, + "end": 6718.58, + "probability": 0.676 + }, + { + "start": 6718.66, + "end": 6719.38, + "probability": 0.6774 + }, + { + "start": 6719.78, + "end": 6723.78, + "probability": 0.9271 + }, + { + "start": 6723.9, + "end": 6726.76, + "probability": 0.9794 + }, + { + "start": 6726.84, + "end": 6728.62, + "probability": 0.9965 + }, + { + "start": 6729.34, + "end": 6731.78, + "probability": 0.9663 + }, + { + "start": 6732.36, + "end": 6733.14, + "probability": 0.9642 + }, + { + "start": 6733.24, + "end": 6734.54, + "probability": 0.9853 + }, + { + "start": 6734.64, + "end": 6735.3, + "probability": 0.8803 + }, + { + "start": 6735.4, + "end": 6735.96, + "probability": 0.7973 + }, + { + "start": 6736.1, + "end": 6737.54, + "probability": 0.8348 + }, + { + "start": 6738.12, + "end": 6741.02, + "probability": 0.9933 + }, + { + "start": 6741.58, + "end": 6743.88, + "probability": 0.9873 + }, + { + "start": 6744.9, + "end": 6747.72, + "probability": 0.9823 + }, + { + "start": 6748.69, + "end": 6754.38, + "probability": 0.9829 + }, + { + "start": 6754.38, + "end": 6758.2, + "probability": 0.9902 + }, + { + "start": 6758.36, + "end": 6759.42, + "probability": 0.7392 + }, + { + "start": 6759.64, + "end": 6761.1, + "probability": 0.9727 + }, + { + "start": 6761.6, + "end": 6762.8, + "probability": 0.8011 + }, + { + "start": 6763.7, + "end": 6764.6, + "probability": 0.888 + }, + { + "start": 6764.7, + "end": 6766.06, + "probability": 0.7528 + }, + { + "start": 6766.18, + "end": 6769.94, + "probability": 0.9714 + }, + { + "start": 6769.94, + "end": 6773.16, + "probability": 0.8981 + }, + { + "start": 6773.74, + "end": 6776.74, + "probability": 0.9783 + }, + { + "start": 6776.9, + "end": 6778.46, + "probability": 0.9985 + }, + { + "start": 6779.34, + "end": 6781.92, + "probability": 0.6235 + }, + { + "start": 6782.1, + "end": 6786.02, + "probability": 0.8991 + }, + { + "start": 6786.06, + "end": 6786.62, + "probability": 0.0855 + }, + { + "start": 6786.86, + "end": 6788.52, + "probability": 0.226 + }, + { + "start": 6788.54, + "end": 6789.8, + "probability": 0.1398 + }, + { + "start": 6790.14, + "end": 6790.24, + "probability": 0.1911 + }, + { + "start": 6792.72, + "end": 6794.44, + "probability": 0.1142 + }, + { + "start": 6795.2, + "end": 6796.58, + "probability": 0.4492 + }, + { + "start": 6796.65, + "end": 6797.82, + "probability": 0.5749 + }, + { + "start": 6798.12, + "end": 6802.52, + "probability": 0.9835 + }, + { + "start": 6802.86, + "end": 6803.38, + "probability": 0.2282 + }, + { + "start": 6803.44, + "end": 6804.08, + "probability": 0.4572 + }, + { + "start": 6804.1, + "end": 6804.34, + "probability": 0.0565 + }, + { + "start": 6804.34, + "end": 6805.56, + "probability": 0.5791 + }, + { + "start": 6805.83, + "end": 6807.26, + "probability": 0.5282 + }, + { + "start": 6807.9, + "end": 6808.4, + "probability": 0.2511 + }, + { + "start": 6808.52, + "end": 6809.01, + "probability": 0.1468 + }, + { + "start": 6809.34, + "end": 6813.62, + "probability": 0.9294 + }, + { + "start": 6813.8, + "end": 6815.82, + "probability": 0.9893 + }, + { + "start": 6815.9, + "end": 6817.14, + "probability": 0.4802 + }, + { + "start": 6817.16, + "end": 6820.14, + "probability": 0.9648 + }, + { + "start": 6820.86, + "end": 6820.88, + "probability": 0.0867 + }, + { + "start": 6820.88, + "end": 6822.22, + "probability": 0.6717 + }, + { + "start": 6822.24, + "end": 6823.56, + "probability": 0.0562 + }, + { + "start": 6823.56, + "end": 6827.34, + "probability": 0.6359 + }, + { + "start": 6827.42, + "end": 6828.24, + "probability": 0.6218 + }, + { + "start": 6829.58, + "end": 6830.26, + "probability": 0.4599 + }, + { + "start": 6830.46, + "end": 6831.0, + "probability": 0.763 + }, + { + "start": 6831.14, + "end": 6831.68, + "probability": 0.7258 + }, + { + "start": 6831.82, + "end": 6832.5, + "probability": 0.4436 + }, + { + "start": 6832.78, + "end": 6833.92, + "probability": 0.984 + }, + { + "start": 6833.98, + "end": 6836.1, + "probability": 0.8422 + }, + { + "start": 6836.44, + "end": 6837.3, + "probability": 0.5224 + }, + { + "start": 6837.78, + "end": 6839.14, + "probability": 0.7988 + }, + { + "start": 6839.14, + "end": 6839.52, + "probability": 0.9724 + }, + { + "start": 6839.58, + "end": 6841.48, + "probability": 0.9961 + }, + { + "start": 6841.54, + "end": 6845.78, + "probability": 0.9191 + }, + { + "start": 6845.92, + "end": 6847.1, + "probability": 0.9708 + }, + { + "start": 6847.24, + "end": 6847.7, + "probability": 0.751 + }, + { + "start": 6848.12, + "end": 6849.64, + "probability": 0.8379 + }, + { + "start": 6850.02, + "end": 6851.4, + "probability": 0.9536 + }, + { + "start": 6852.38, + "end": 6853.34, + "probability": 0.7887 + }, + { + "start": 6855.36, + "end": 6856.42, + "probability": 0.9622 + }, + { + "start": 6859.36, + "end": 6862.0, + "probability": 0.8955 + }, + { + "start": 6862.54, + "end": 6864.26, + "probability": 0.9409 + }, + { + "start": 6865.5, + "end": 6866.28, + "probability": 0.5407 + }, + { + "start": 6866.32, + "end": 6867.04, + "probability": 0.745 + }, + { + "start": 6867.16, + "end": 6871.26, + "probability": 0.9685 + }, + { + "start": 6871.26, + "end": 6875.68, + "probability": 0.9579 + }, + { + "start": 6875.78, + "end": 6877.24, + "probability": 0.9219 + }, + { + "start": 6877.86, + "end": 6878.78, + "probability": 0.9751 + }, + { + "start": 6879.32, + "end": 6881.94, + "probability": 0.9438 + }, + { + "start": 6882.42, + "end": 6888.82, + "probability": 0.9095 + }, + { + "start": 6889.14, + "end": 6891.84, + "probability": 0.9984 + }, + { + "start": 6892.62, + "end": 6894.18, + "probability": 0.8434 + }, + { + "start": 6894.36, + "end": 6896.2, + "probability": 0.996 + }, + { + "start": 6896.66, + "end": 6896.94, + "probability": 0.1344 + }, + { + "start": 6897.06, + "end": 6899.12, + "probability": 0.2401 + }, + { + "start": 6899.12, + "end": 6899.4, + "probability": 0.6708 + }, + { + "start": 6900.6, + "end": 6900.74, + "probability": 0.3816 + }, + { + "start": 6900.84, + "end": 6901.65, + "probability": 0.9899 + }, + { + "start": 6902.0, + "end": 6903.36, + "probability": 0.0096 + }, + { + "start": 6904.1, + "end": 6904.24, + "probability": 0.0048 + }, + { + "start": 6904.24, + "end": 6904.54, + "probability": 0.06 + }, + { + "start": 6904.58, + "end": 6907.42, + "probability": 0.9915 + }, + { + "start": 6907.58, + "end": 6907.6, + "probability": 0.0779 + }, + { + "start": 6907.6, + "end": 6909.16, + "probability": 0.806 + }, + { + "start": 6909.72, + "end": 6910.14, + "probability": 0.0643 + }, + { + "start": 6913.92, + "end": 6919.8, + "probability": 0.0946 + }, + { + "start": 6920.26, + "end": 6921.32, + "probability": 0.1204 + }, + { + "start": 6921.32, + "end": 6922.34, + "probability": 0.0839 + }, + { + "start": 6922.34, + "end": 6922.96, + "probability": 0.438 + }, + { + "start": 6922.96, + "end": 6923.58, + "probability": 0.1471 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.0, + "end": 7016.0, + "probability": 0.0 + }, + { + "start": 7016.54, + "end": 7016.74, + "probability": 0.0184 + }, + { + "start": 7016.74, + "end": 7016.78, + "probability": 0.0352 + }, + { + "start": 7016.78, + "end": 7018.9, + "probability": 0.8682 + }, + { + "start": 7019.68, + "end": 7022.94, + "probability": 0.9151 + }, + { + "start": 7023.94, + "end": 7024.18, + "probability": 0.8087 + }, + { + "start": 7024.88, + "end": 7026.49, + "probability": 0.5652 + }, + { + "start": 7026.84, + "end": 7027.36, + "probability": 0.8337 + }, + { + "start": 7027.52, + "end": 7029.08, + "probability": 0.7998 + }, + { + "start": 7029.12, + "end": 7029.51, + "probability": 0.644 + }, + { + "start": 7030.33, + "end": 7033.12, + "probability": 0.747 + }, + { + "start": 7033.2, + "end": 7033.52, + "probability": 0.918 + }, + { + "start": 7033.6, + "end": 7035.08, + "probability": 0.8936 + }, + { + "start": 7035.26, + "end": 7037.42, + "probability": 0.8664 + }, + { + "start": 7037.82, + "end": 7039.38, + "probability": 0.713 + }, + { + "start": 7039.56, + "end": 7039.82, + "probability": 0.7118 + }, + { + "start": 7041.56, + "end": 7042.2, + "probability": 0.2445 + }, + { + "start": 7042.76, + "end": 7044.98, + "probability": 0.823 + }, + { + "start": 7045.4, + "end": 7046.98, + "probability": 0.8865 + }, + { + "start": 7047.44, + "end": 7049.58, + "probability": 0.879 + }, + { + "start": 7049.9, + "end": 7053.06, + "probability": 0.9311 + }, + { + "start": 7053.52, + "end": 7055.38, + "probability": 0.7485 + }, + { + "start": 7056.24, + "end": 7058.52, + "probability": 0.597 + }, + { + "start": 7059.14, + "end": 7063.3, + "probability": 0.8233 + }, + { + "start": 7064.82, + "end": 7066.88, + "probability": 0.7464 + }, + { + "start": 7067.78, + "end": 7069.64, + "probability": 0.9766 + }, + { + "start": 7071.16, + "end": 7072.86, + "probability": 0.9803 + }, + { + "start": 7074.16, + "end": 7080.3, + "probability": 0.9866 + }, + { + "start": 7082.84, + "end": 7085.32, + "probability": 0.8652 + }, + { + "start": 7086.62, + "end": 7089.12, + "probability": 0.988 + }, + { + "start": 7090.26, + "end": 7091.84, + "probability": 0.9688 + }, + { + "start": 7093.28, + "end": 7094.98, + "probability": 0.9499 + }, + { + "start": 7096.22, + "end": 7098.06, + "probability": 0.9512 + }, + { + "start": 7099.3, + "end": 7100.92, + "probability": 0.9404 + }, + { + "start": 7101.46, + "end": 7101.86, + "probability": 0.5396 + }, + { + "start": 7102.84, + "end": 7103.65, + "probability": 0.5591 + }, + { + "start": 7104.4, + "end": 7107.88, + "probability": 0.975 + }, + { + "start": 7108.84, + "end": 7110.88, + "probability": 0.9655 + }, + { + "start": 7111.3, + "end": 7112.78, + "probability": 0.9442 + }, + { + "start": 7112.98, + "end": 7114.86, + "probability": 0.8517 + }, + { + "start": 7115.68, + "end": 7117.26, + "probability": 0.956 + }, + { + "start": 7117.62, + "end": 7120.9, + "probability": 0.603 + }, + { + "start": 7121.32, + "end": 7123.06, + "probability": 0.8306 + }, + { + "start": 7123.2, + "end": 7124.68, + "probability": 0.7806 + }, + { + "start": 7125.22, + "end": 7126.78, + "probability": 0.8714 + }, + { + "start": 7127.0, + "end": 7128.36, + "probability": 0.8609 + }, + { + "start": 7128.68, + "end": 7130.22, + "probability": 0.9718 + }, + { + "start": 7131.14, + "end": 7132.9, + "probability": 0.9925 + }, + { + "start": 7133.1, + "end": 7134.96, + "probability": 0.7184 + }, + { + "start": 7135.58, + "end": 7138.1, + "probability": 0.6451 + }, + { + "start": 7138.82, + "end": 7140.26, + "probability": 0.7853 + }, + { + "start": 7140.78, + "end": 7142.16, + "probability": 0.9713 + }, + { + "start": 7142.9, + "end": 7145.42, + "probability": 0.9805 + }, + { + "start": 7145.94, + "end": 7150.28, + "probability": 0.9611 + }, + { + "start": 7152.04, + "end": 7153.8, + "probability": 0.9454 + }, + { + "start": 7155.08, + "end": 7157.78, + "probability": 0.706 + }, + { + "start": 7158.3, + "end": 7160.34, + "probability": 0.86 + }, + { + "start": 7161.16, + "end": 7162.78, + "probability": 0.8491 + }, + { + "start": 7163.58, + "end": 7166.98, + "probability": 0.8092 + }, + { + "start": 7167.86, + "end": 7169.32, + "probability": 0.7706 + }, + { + "start": 7171.15, + "end": 7172.72, + "probability": 0.4358 + }, + { + "start": 7172.72, + "end": 7173.28, + "probability": 0.218 + }, + { + "start": 7173.42, + "end": 7175.02, + "probability": 0.8998 + }, + { + "start": 7175.58, + "end": 7177.16, + "probability": 0.928 + }, + { + "start": 7178.3, + "end": 7181.56, + "probability": 0.9575 + }, + { + "start": 7182.22, + "end": 7186.76, + "probability": 0.9502 + }, + { + "start": 7187.3, + "end": 7188.64, + "probability": 0.8035 + }, + { + "start": 7189.14, + "end": 7190.48, + "probability": 0.9434 + }, + { + "start": 7190.6, + "end": 7192.12, + "probability": 0.9508 + }, + { + "start": 7192.38, + "end": 7193.94, + "probability": 0.9651 + }, + { + "start": 7194.54, + "end": 7196.52, + "probability": 0.9067 + }, + { + "start": 7197.48, + "end": 7201.02, + "probability": 0.9753 + }, + { + "start": 7201.58, + "end": 7205.6, + "probability": 0.7943 + }, + { + "start": 7206.32, + "end": 7210.8, + "probability": 0.9791 + }, + { + "start": 7211.76, + "end": 7213.2, + "probability": 0.8901 + }, + { + "start": 7214.74, + "end": 7216.78, + "probability": 0.9904 + }, + { + "start": 7217.6, + "end": 7219.02, + "probability": 0.9945 + }, + { + "start": 7219.74, + "end": 7221.5, + "probability": 0.9768 + }, + { + "start": 7222.5, + "end": 7224.32, + "probability": 0.7102 + }, + { + "start": 7224.92, + "end": 7226.42, + "probability": 0.9493 + }, + { + "start": 7226.68, + "end": 7228.14, + "probability": 0.7767 + }, + { + "start": 7228.44, + "end": 7230.0, + "probability": 0.9706 + }, + { + "start": 7232.88, + "end": 7236.82, + "probability": 0.5432 + }, + { + "start": 7237.46, + "end": 7240.82, + "probability": 0.6799 + }, + { + "start": 7241.56, + "end": 7244.84, + "probability": 0.9196 + }, + { + "start": 7246.16, + "end": 7247.98, + "probability": 0.974 + }, + { + "start": 7248.66, + "end": 7249.9, + "probability": 0.9913 + }, + { + "start": 7250.68, + "end": 7255.34, + "probability": 0.6863 + }, + { + "start": 7256.12, + "end": 7257.88, + "probability": 0.8929 + }, + { + "start": 7258.68, + "end": 7260.1, + "probability": 0.9525 + }, + { + "start": 7260.6, + "end": 7262.04, + "probability": 0.9667 + }, + { + "start": 7262.94, + "end": 7263.16, + "probability": 0.854 + }, + { + "start": 7264.2, + "end": 7265.26, + "probability": 0.6793 + }, + { + "start": 7267.22, + "end": 7269.06, + "probability": 0.9801 + }, + { + "start": 7270.44, + "end": 7273.2, + "probability": 0.7903 + }, + { + "start": 7274.0, + "end": 7275.86, + "probability": 0.7439 + }, + { + "start": 7277.2, + "end": 7280.26, + "probability": 0.9596 + }, + { + "start": 7281.88, + "end": 7283.94, + "probability": 0.93 + }, + { + "start": 7284.92, + "end": 7286.78, + "probability": 0.9025 + }, + { + "start": 7287.4, + "end": 7289.48, + "probability": 0.5812 + }, + { + "start": 7290.58, + "end": 7291.74, + "probability": 0.8139 + }, + { + "start": 7292.08, + "end": 7293.32, + "probability": 0.8704 + }, + { + "start": 7293.44, + "end": 7294.74, + "probability": 0.9535 + }, + { + "start": 7294.78, + "end": 7296.24, + "probability": 0.9327 + }, + { + "start": 7296.5, + "end": 7299.94, + "probability": 0.8972 + }, + { + "start": 7300.54, + "end": 7302.08, + "probability": 0.9694 + }, + { + "start": 7302.32, + "end": 7303.62, + "probability": 0.9692 + }, + { + "start": 7304.8, + "end": 7306.56, + "probability": 0.8287 + }, + { + "start": 7306.64, + "end": 7308.04, + "probability": 0.9848 + }, + { + "start": 7308.7, + "end": 7310.16, + "probability": 0.881 + }, + { + "start": 7310.8, + "end": 7314.48, + "probability": 0.8324 + }, + { + "start": 7315.48, + "end": 7316.82, + "probability": 0.9557 + }, + { + "start": 7318.54, + "end": 7318.94, + "probability": 0.9734 + }, + { + "start": 7319.64, + "end": 7319.96, + "probability": 0.57 + }, + { + "start": 7321.2, + "end": 7322.76, + "probability": 0.7022 + }, + { + "start": 7322.86, + "end": 7324.94, + "probability": 0.9606 + }, + { + "start": 7325.18, + "end": 7326.94, + "probability": 0.9375 + }, + { + "start": 7327.8, + "end": 7329.3, + "probability": 0.9355 + }, + { + "start": 7329.32, + "end": 7330.72, + "probability": 0.9899 + }, + { + "start": 7332.64, + "end": 7333.02, + "probability": 0.9487 + }, + { + "start": 7334.46, + "end": 7337.7, + "probability": 0.8328 + }, + { + "start": 7338.5, + "end": 7339.44, + "probability": 0.6721 + }, + { + "start": 7340.5, + "end": 7341.66, + "probability": 0.5345 + }, + { + "start": 7343.1, + "end": 7344.2, + "probability": 0.3041 + }, + { + "start": 7344.2, + "end": 7346.48, + "probability": 0.6899 + }, + { + "start": 7348.72, + "end": 7350.3, + "probability": 0.8784 + }, + { + "start": 7351.44, + "end": 7352.16, + "probability": 0.9897 + }, + { + "start": 7353.46, + "end": 7354.26, + "probability": 0.8499 + }, + { + "start": 7355.26, + "end": 7357.98, + "probability": 0.6334 + }, + { + "start": 7361.9, + "end": 7362.44, + "probability": 0.9627 + }, + { + "start": 7365.88, + "end": 7366.28, + "probability": 0.3532 + }, + { + "start": 7368.58, + "end": 7369.36, + "probability": 0.9483 + }, + { + "start": 7370.72, + "end": 7372.58, + "probability": 0.7559 + }, + { + "start": 7373.16, + "end": 7374.1, + "probability": 0.6941 + }, + { + "start": 7375.06, + "end": 7375.74, + "probability": 0.1503 + }, + { + "start": 7375.92, + "end": 7377.32, + "probability": 0.8801 + }, + { + "start": 7377.4, + "end": 7378.72, + "probability": 0.9787 + }, + { + "start": 7379.06, + "end": 7380.48, + "probability": 0.4385 + }, + { + "start": 7380.52, + "end": 7381.98, + "probability": 0.9697 + }, + { + "start": 7382.48, + "end": 7384.22, + "probability": 0.8729 + }, + { + "start": 7384.9, + "end": 7386.38, + "probability": 0.8736 + }, + { + "start": 7387.86, + "end": 7389.46, + "probability": 0.8684 + }, + { + "start": 7390.24, + "end": 7391.72, + "probability": 0.9736 + }, + { + "start": 7392.36, + "end": 7393.84, + "probability": 0.9692 + }, + { + "start": 7394.62, + "end": 7394.96, + "probability": 0.9565 + }, + { + "start": 7396.62, + "end": 7397.72, + "probability": 0.8971 + }, + { + "start": 7398.24, + "end": 7399.64, + "probability": 0.8797 + }, + { + "start": 7401.18, + "end": 7402.48, + "probability": 0.9823 + }, + { + "start": 7403.3, + "end": 7405.42, + "probability": 0.9878 + }, + { + "start": 7406.1, + "end": 7407.6, + "probability": 0.9652 + }, + { + "start": 7407.76, + "end": 7409.3, + "probability": 0.9674 + }, + { + "start": 7409.68, + "end": 7411.24, + "probability": 0.968 + }, + { + "start": 7411.8, + "end": 7413.84, + "probability": 0.5624 + }, + { + "start": 7414.62, + "end": 7418.52, + "probability": 0.9714 + }, + { + "start": 7419.06, + "end": 7420.9, + "probability": 0.953 + }, + { + "start": 7421.34, + "end": 7422.62, + "probability": 0.9506 + }, + { + "start": 7422.8, + "end": 7424.42, + "probability": 0.7095 + }, + { + "start": 7424.86, + "end": 7426.34, + "probability": 0.942 + }, + { + "start": 7426.88, + "end": 7428.42, + "probability": 0.7249 + }, + { + "start": 7428.88, + "end": 7431.36, + "probability": 0.8199 + }, + { + "start": 7431.5, + "end": 7433.06, + "probability": 0.9661 + }, + { + "start": 7433.1, + "end": 7434.5, + "probability": 0.9024 + }, + { + "start": 7434.64, + "end": 7436.26, + "probability": 0.9129 + }, + { + "start": 7436.72, + "end": 7438.34, + "probability": 0.9833 + }, + { + "start": 7439.12, + "end": 7441.1, + "probability": 0.6348 + }, + { + "start": 7442.16, + "end": 7445.24, + "probability": 0.5776 + }, + { + "start": 7446.08, + "end": 7449.18, + "probability": 0.9229 + }, + { + "start": 7449.7, + "end": 7451.28, + "probability": 0.9194 + }, + { + "start": 7451.5, + "end": 7452.92, + "probability": 0.968 + }, + { + "start": 7453.26, + "end": 7454.88, + "probability": 0.8757 + }, + { + "start": 7455.7, + "end": 7455.86, + "probability": 0.8784 + }, + { + "start": 7456.48, + "end": 7458.26, + "probability": 0.926 + }, + { + "start": 7458.76, + "end": 7461.24, + "probability": 0.9037 + }, + { + "start": 7461.34, + "end": 7463.78, + "probability": 0.7359 + }, + { + "start": 7464.38, + "end": 7465.74, + "probability": 0.735 + }, + { + "start": 7466.54, + "end": 7470.6, + "probability": 0.4492 + }, + { + "start": 7471.62, + "end": 7474.66, + "probability": 0.9082 + }, + { + "start": 7475.66, + "end": 7478.48, + "probability": 0.7485 + }, + { + "start": 7479.84, + "end": 7481.18, + "probability": 0.9767 + }, + { + "start": 7481.36, + "end": 7482.8, + "probability": 0.978 + }, + { + "start": 7483.22, + "end": 7484.54, + "probability": 0.9896 + }, + { + "start": 7485.06, + "end": 7486.44, + "probability": 0.9857 + }, + { + "start": 7488.27, + "end": 7490.72, + "probability": 0.979 + }, + { + "start": 7490.8, + "end": 7491.8, + "probability": 0.4 + }, + { + "start": 7491.8, + "end": 7492.15, + "probability": 0.6455 + }, + { + "start": 7492.62, + "end": 7495.1, + "probability": 0.7947 + }, + { + "start": 7495.26, + "end": 7496.62, + "probability": 0.9089 + }, + { + "start": 7497.76, + "end": 7499.54, + "probability": 0.7442 + }, + { + "start": 7500.12, + "end": 7501.66, + "probability": 0.9418 + }, + { + "start": 7502.78, + "end": 7507.34, + "probability": 0.9251 + }, + { + "start": 7508.06, + "end": 7509.64, + "probability": 0.9248 + }, + { + "start": 7509.7, + "end": 7511.08, + "probability": 0.8276 + }, + { + "start": 7511.46, + "end": 7513.3, + "probability": 0.8617 + }, + { + "start": 7514.06, + "end": 7515.74, + "probability": 0.9523 + }, + { + "start": 7516.32, + "end": 7517.86, + "probability": 0.9691 + }, + { + "start": 7519.88, + "end": 7521.66, + "probability": 0.0475 + }, + { + "start": 7521.66, + "end": 7522.73, + "probability": 0.6908 + }, + { + "start": 7523.4, + "end": 7525.12, + "probability": 0.7814 + }, + { + "start": 7525.16, + "end": 7526.7, + "probability": 0.9338 + }, + { + "start": 7526.8, + "end": 7528.1, + "probability": 0.7943 + }, + { + "start": 7528.64, + "end": 7530.28, + "probability": 0.9375 + }, + { + "start": 7530.4, + "end": 7534.1, + "probability": 0.7029 + }, + { + "start": 7534.34, + "end": 7535.76, + "probability": 0.8713 + }, + { + "start": 7535.86, + "end": 7537.44, + "probability": 0.7734 + }, + { + "start": 7538.5, + "end": 7541.22, + "probability": 0.8898 + }, + { + "start": 7541.96, + "end": 7544.24, + "probability": 0.9612 + }, + { + "start": 7544.54, + "end": 7546.86, + "probability": 0.9456 + }, + { + "start": 7546.94, + "end": 7548.4, + "probability": 0.8081 + }, + { + "start": 7549.1, + "end": 7551.12, + "probability": 0.9003 + }, + { + "start": 7552.12, + "end": 7554.24, + "probability": 0.74 + }, + { + "start": 7554.36, + "end": 7555.78, + "probability": 0.855 + }, + { + "start": 7555.86, + "end": 7557.04, + "probability": 0.91 + }, + { + "start": 7557.12, + "end": 7558.28, + "probability": 0.7939 + }, + { + "start": 7558.42, + "end": 7560.1, + "probability": 0.8227 + }, + { + "start": 7560.46, + "end": 7562.06, + "probability": 0.9536 + }, + { + "start": 7562.82, + "end": 7565.06, + "probability": 0.6934 + }, + { + "start": 7565.2, + "end": 7567.14, + "probability": 0.9734 + }, + { + "start": 7567.52, + "end": 7570.58, + "probability": 0.8813 + }, + { + "start": 7571.52, + "end": 7573.52, + "probability": 0.8855 + }, + { + "start": 7574.2, + "end": 7575.78, + "probability": 0.9442 + }, + { + "start": 7575.94, + "end": 7577.64, + "probability": 0.9733 + }, + { + "start": 7578.0, + "end": 7579.34, + "probability": 0.9921 + }, + { + "start": 7580.0, + "end": 7582.28, + "probability": 0.929 + }, + { + "start": 7582.98, + "end": 7584.42, + "probability": 0.7189 + }, + { + "start": 7584.46, + "end": 7586.22, + "probability": 0.9293 + }, + { + "start": 7586.84, + "end": 7589.64, + "probability": 0.9467 + }, + { + "start": 7590.68, + "end": 7592.8, + "probability": 0.9817 + }, + { + "start": 7594.02, + "end": 7594.8, + "probability": 0.9798 + }, + { + "start": 7596.1, + "end": 7596.9, + "probability": 0.4121 + }, + { + "start": 7597.63, + "end": 7604.64, + "probability": 0.8352 + }, + { + "start": 7605.62, + "end": 7606.66, + "probability": 0.3963 + }, + { + "start": 7607.22, + "end": 7612.78, + "probability": 0.0829 + }, + { + "start": 7612.78, + "end": 7613.48, + "probability": 0.1624 + }, + { + "start": 7613.84, + "end": 7616.04, + "probability": 0.9072 + }, + { + "start": 7616.48, + "end": 7618.32, + "probability": 0.6022 + }, + { + "start": 7618.78, + "end": 7619.72, + "probability": 0.9409 + }, + { + "start": 7621.4, + "end": 7623.64, + "probability": 0.0585 + }, + { + "start": 7623.94, + "end": 7625.16, + "probability": 0.1994 + }, + { + "start": 7625.8, + "end": 7627.1, + "probability": 0.3614 + }, + { + "start": 7627.1, + "end": 7627.1, + "probability": 0.0665 + }, + { + "start": 7627.8, + "end": 7630.18, + "probability": 0.1582 + }, + { + "start": 7630.74, + "end": 7632.98, + "probability": 0.0508 + }, + { + "start": 7635.82, + "end": 7636.64, + "probability": 0.6515 + }, + { + "start": 7636.66, + "end": 7638.16, + "probability": 0.9019 + }, + { + "start": 7641.32, + "end": 7644.86, + "probability": 0.0122 + }, + { + "start": 7702.8, + "end": 7702.84, + "probability": 0.0438 + }, + { + "start": 7702.84, + "end": 7706.28, + "probability": 0.6663 + }, + { + "start": 7706.8, + "end": 7707.86, + "probability": 0.7672 + }, + { + "start": 7708.5, + "end": 7712.7, + "probability": 0.9792 + }, + { + "start": 7712.7, + "end": 7716.5, + "probability": 0.9979 + }, + { + "start": 7716.86, + "end": 7718.6, + "probability": 0.3274 + }, + { + "start": 7719.16, + "end": 7722.66, + "probability": 0.8864 + }, + { + "start": 7722.78, + "end": 7726.28, + "probability": 0.9818 + }, + { + "start": 7726.92, + "end": 7730.12, + "probability": 0.939 + }, + { + "start": 7730.66, + "end": 7734.41, + "probability": 0.9952 + }, + { + "start": 7734.64, + "end": 7736.26, + "probability": 0.8626 + }, + { + "start": 7736.44, + "end": 7737.74, + "probability": 0.5246 + }, + { + "start": 7738.48, + "end": 7740.72, + "probability": 0.9159 + }, + { + "start": 7741.2, + "end": 7744.2, + "probability": 0.9971 + }, + { + "start": 7744.68, + "end": 7745.72, + "probability": 0.961 + }, + { + "start": 7753.9, + "end": 7753.9, + "probability": 0.0538 + }, + { + "start": 7753.9, + "end": 7755.31, + "probability": 0.826 + }, + { + "start": 7755.78, + "end": 7759.4, + "probability": 0.7814 + }, + { + "start": 7759.7, + "end": 7760.22, + "probability": 0.1957 + }, + { + "start": 7784.16, + "end": 7785.84, + "probability": 0.7179 + }, + { + "start": 7787.42, + "end": 7789.28, + "probability": 0.7423 + }, + { + "start": 7793.82, + "end": 7799.14, + "probability": 0.9221 + }, + { + "start": 7800.18, + "end": 7805.4, + "probability": 0.9992 + }, + { + "start": 7806.68, + "end": 7807.54, + "probability": 0.3052 + }, + { + "start": 7808.06, + "end": 7814.2, + "probability": 0.9261 + }, + { + "start": 7814.2, + "end": 7816.24, + "probability": 0.8727 + }, + { + "start": 7817.28, + "end": 7822.54, + "probability": 0.9963 + }, + { + "start": 7823.12, + "end": 7824.4, + "probability": 0.9862 + }, + { + "start": 7825.38, + "end": 7832.82, + "probability": 0.9985 + }, + { + "start": 7834.82, + "end": 7842.68, + "probability": 0.979 + }, + { + "start": 7843.7, + "end": 7845.84, + "probability": 0.9939 + }, + { + "start": 7847.4, + "end": 7848.26, + "probability": 0.4201 + }, + { + "start": 7852.22, + "end": 7853.18, + "probability": 0.9961 + }, + { + "start": 7856.0, + "end": 7860.18, + "probability": 0.8531 + }, + { + "start": 7861.38, + "end": 7862.58, + "probability": 0.8058 + }, + { + "start": 7864.12, + "end": 7866.0, + "probability": 0.6481 + }, + { + "start": 7866.62, + "end": 7869.2, + "probability": 0.9078 + }, + { + "start": 7870.22, + "end": 7872.9, + "probability": 0.9863 + }, + { + "start": 7872.96, + "end": 7878.74, + "probability": 0.9647 + }, + { + "start": 7879.26, + "end": 7881.4, + "probability": 0.949 + }, + { + "start": 7883.56, + "end": 7888.3, + "probability": 0.9962 + }, + { + "start": 7890.12, + "end": 7897.64, + "probability": 0.986 + }, + { + "start": 7897.78, + "end": 7898.48, + "probability": 0.6635 + }, + { + "start": 7900.4, + "end": 7904.84, + "probability": 0.7678 + }, + { + "start": 7906.22, + "end": 7909.22, + "probability": 0.8028 + }, + { + "start": 7909.98, + "end": 7910.76, + "probability": 0.9389 + }, + { + "start": 7911.54, + "end": 7913.2, + "probability": 0.8569 + }, + { + "start": 7913.94, + "end": 7914.56, + "probability": 0.9036 + }, + { + "start": 7915.44, + "end": 7918.58, + "probability": 0.9655 + }, + { + "start": 7919.26, + "end": 7923.56, + "probability": 0.9703 + }, + { + "start": 7924.22, + "end": 7929.06, + "probability": 0.9895 + }, + { + "start": 7929.74, + "end": 7930.4, + "probability": 0.8429 + }, + { + "start": 7931.22, + "end": 7932.94, + "probability": 0.9442 + }, + { + "start": 7934.04, + "end": 7936.06, + "probability": 0.9758 + }, + { + "start": 7937.78, + "end": 7943.1, + "probability": 0.7487 + }, + { + "start": 7943.78, + "end": 7949.0, + "probability": 0.9886 + }, + { + "start": 7949.52, + "end": 7953.46, + "probability": 0.5155 + }, + { + "start": 7953.88, + "end": 7955.42, + "probability": 0.9979 + }, + { + "start": 7956.34, + "end": 7957.86, + "probability": 0.768 + }, + { + "start": 7958.72, + "end": 7961.6, + "probability": 0.9683 + }, + { + "start": 7961.6, + "end": 7965.62, + "probability": 0.9985 + }, + { + "start": 7965.72, + "end": 7971.88, + "probability": 0.952 + }, + { + "start": 7971.88, + "end": 7975.86, + "probability": 0.9319 + }, + { + "start": 7976.5, + "end": 7977.52, + "probability": 0.4048 + }, + { + "start": 7978.22, + "end": 7980.76, + "probability": 0.5298 + }, + { + "start": 7980.9, + "end": 7981.71, + "probability": 0.0936 + }, + { + "start": 7982.26, + "end": 7985.18, + "probability": 0.596 + }, + { + "start": 7986.28, + "end": 7987.04, + "probability": 0.7652 + }, + { + "start": 7988.0, + "end": 7990.34, + "probability": 0.99 + }, + { + "start": 7990.98, + "end": 7993.08, + "probability": 0.9935 + }, + { + "start": 7993.6, + "end": 7996.88, + "probability": 0.9639 + }, + { + "start": 7997.62, + "end": 8003.9, + "probability": 0.9883 + }, + { + "start": 8003.9, + "end": 8010.82, + "probability": 0.9814 + }, + { + "start": 8012.3, + "end": 8013.28, + "probability": 0.7464 + }, + { + "start": 8013.66, + "end": 8017.42, + "probability": 0.9995 + }, + { + "start": 8017.42, + "end": 8020.32, + "probability": 0.9936 + }, + { + "start": 8021.22, + "end": 8021.84, + "probability": 0.6398 + }, + { + "start": 8022.94, + "end": 8027.86, + "probability": 0.917 + }, + { + "start": 8029.14, + "end": 8029.64, + "probability": 0.4791 + }, + { + "start": 8030.4, + "end": 8033.96, + "probability": 0.9803 + }, + { + "start": 8035.02, + "end": 8035.02, + "probability": 0.5327 + }, + { + "start": 8035.02, + "end": 8040.78, + "probability": 0.9963 + }, + { + "start": 8041.5, + "end": 8047.04, + "probability": 0.9929 + }, + { + "start": 8047.04, + "end": 8049.96, + "probability": 0.9855 + }, + { + "start": 8051.2, + "end": 8052.88, + "probability": 0.846 + }, + { + "start": 8054.76, + "end": 8057.62, + "probability": 0.9955 + }, + { + "start": 8058.5, + "end": 8065.48, + "probability": 0.895 + }, + { + "start": 8066.76, + "end": 8067.7, + "probability": 0.7974 + }, + { + "start": 8068.78, + "end": 8070.62, + "probability": 0.7996 + }, + { + "start": 8071.26, + "end": 8075.0, + "probability": 0.9711 + }, + { + "start": 8075.56, + "end": 8075.78, + "probability": 0.6263 + }, + { + "start": 8076.38, + "end": 8082.78, + "probability": 0.9955 + }, + { + "start": 8083.74, + "end": 8087.86, + "probability": 0.9201 + }, + { + "start": 8088.66, + "end": 8089.02, + "probability": 0.0018 + }, + { + "start": 8089.78, + "end": 8091.96, + "probability": 0.9985 + }, + { + "start": 8092.7, + "end": 8093.18, + "probability": 0.1346 + }, + { + "start": 8094.02, + "end": 8097.95, + "probability": 0.9958 + }, + { + "start": 8098.24, + "end": 8102.14, + "probability": 0.9764 + }, + { + "start": 8102.68, + "end": 8107.64, + "probability": 0.9786 + }, + { + "start": 8109.06, + "end": 8111.38, + "probability": 0.9941 + }, + { + "start": 8111.62, + "end": 8112.7, + "probability": 0.886 + }, + { + "start": 8113.44, + "end": 8116.98, + "probability": 0.9699 + }, + { + "start": 8117.58, + "end": 8118.2, + "probability": 0.161 + }, + { + "start": 8119.06, + "end": 8123.9, + "probability": 0.9943 + }, + { + "start": 8125.36, + "end": 8126.56, + "probability": 0.7196 + }, + { + "start": 8126.62, + "end": 8130.54, + "probability": 0.9814 + }, + { + "start": 8130.66, + "end": 8131.68, + "probability": 0.918 + }, + { + "start": 8132.18, + "end": 8134.44, + "probability": 0.597 + }, + { + "start": 8135.4, + "end": 8139.26, + "probability": 0.894 + }, + { + "start": 8139.26, + "end": 8142.3, + "probability": 0.9071 + }, + { + "start": 8143.26, + "end": 8147.54, + "probability": 0.9242 + }, + { + "start": 8148.12, + "end": 8149.96, + "probability": 0.4844 + }, + { + "start": 8151.14, + "end": 8157.5, + "probability": 0.9948 + }, + { + "start": 8157.54, + "end": 8163.0, + "probability": 0.9985 + }, + { + "start": 8164.0, + "end": 8170.32, + "probability": 0.942 + }, + { + "start": 8170.94, + "end": 8174.28, + "probability": 0.8233 + }, + { + "start": 8174.28, + "end": 8179.26, + "probability": 0.9975 + }, + { + "start": 8179.98, + "end": 8181.1, + "probability": 0.8926 + }, + { + "start": 8181.86, + "end": 8183.4, + "probability": 0.7499 + }, + { + "start": 8183.56, + "end": 8187.22, + "probability": 0.9932 + }, + { + "start": 8187.22, + "end": 8189.82, + "probability": 0.9992 + }, + { + "start": 8190.98, + "end": 8191.68, + "probability": 0.3318 + }, + { + "start": 8192.16, + "end": 8197.14, + "probability": 0.9545 + }, + { + "start": 8197.56, + "end": 8203.68, + "probability": 0.9917 + }, + { + "start": 8205.06, + "end": 8205.8, + "probability": 0.8002 + }, + { + "start": 8206.02, + "end": 8206.52, + "probability": 0.7596 + }, + { + "start": 8207.18, + "end": 8207.8, + "probability": 0.6829 + }, + { + "start": 8208.0, + "end": 8209.86, + "probability": 0.6774 + }, + { + "start": 8210.42, + "end": 8213.4, + "probability": 0.9653 + }, + { + "start": 8214.0, + "end": 8217.08, + "probability": 0.9941 + }, + { + "start": 8217.08, + "end": 8221.8, + "probability": 0.8735 + }, + { + "start": 8221.8, + "end": 8222.44, + "probability": 0.726 + }, + { + "start": 8222.5, + "end": 8227.12, + "probability": 0.9399 + }, + { + "start": 8227.64, + "end": 8228.78, + "probability": 0.7883 + }, + { + "start": 8229.12, + "end": 8229.86, + "probability": 0.7205 + }, + { + "start": 8230.88, + "end": 8234.56, + "probability": 0.9973 + }, + { + "start": 8234.56, + "end": 8238.9, + "probability": 0.9644 + }, + { + "start": 8239.02, + "end": 8240.2, + "probability": 0.7634 + }, + { + "start": 8240.68, + "end": 8240.98, + "probability": 0.5885 + }, + { + "start": 8241.42, + "end": 8248.66, + "probability": 0.7866 + }, + { + "start": 8248.7, + "end": 8250.7, + "probability": 0.6867 + }, + { + "start": 8252.4, + "end": 8257.11, + "probability": 0.7968 + }, + { + "start": 8257.62, + "end": 8261.56, + "probability": 0.9839 + }, + { + "start": 8261.76, + "end": 8262.54, + "probability": 0.7508 + }, + { + "start": 8264.48, + "end": 8265.12, + "probability": 0.8007 + }, + { + "start": 8265.8, + "end": 8266.48, + "probability": 0.1617 + }, + { + "start": 8267.84, + "end": 8267.96, + "probability": 0.0343 + }, + { + "start": 8275.78, + "end": 8277.94, + "probability": 0.1711 + }, + { + "start": 8283.7, + "end": 8285.46, + "probability": 0.0234 + }, + { + "start": 8285.46, + "end": 8285.94, + "probability": 0.0575 + }, + { + "start": 8310.58, + "end": 8312.42, + "probability": 0.6645 + }, + { + "start": 8313.08, + "end": 8314.08, + "probability": 0.9517 + }, + { + "start": 8314.52, + "end": 8316.26, + "probability": 0.5154 + }, + { + "start": 8320.96, + "end": 8324.64, + "probability": 0.9615 + }, + { + "start": 8327.1, + "end": 8330.82, + "probability": 0.1516 + }, + { + "start": 8331.46, + "end": 8332.59, + "probability": 0.5648 + }, + { + "start": 8333.16, + "end": 8335.8, + "probability": 0.9603 + }, + { + "start": 8335.84, + "end": 8336.66, + "probability": 0.8552 + }, + { + "start": 8336.74, + "end": 8340.26, + "probability": 0.8374 + }, + { + "start": 8340.36, + "end": 8340.62, + "probability": 0.8321 + }, + { + "start": 8340.62, + "end": 8341.6, + "probability": 0.8598 + }, + { + "start": 8342.22, + "end": 8343.82, + "probability": 0.9264 + }, + { + "start": 8344.3, + "end": 8346.64, + "probability": 0.944 + }, + { + "start": 8346.78, + "end": 8348.66, + "probability": 0.9696 + }, + { + "start": 8348.66, + "end": 8351.34, + "probability": 0.9922 + }, + { + "start": 8352.06, + "end": 8354.48, + "probability": 0.7795 + }, + { + "start": 8354.58, + "end": 8356.4, + "probability": 0.9085 + }, + { + "start": 8356.58, + "end": 8358.6, + "probability": 0.8566 + }, + { + "start": 8359.56, + "end": 8360.24, + "probability": 0.6327 + }, + { + "start": 8360.34, + "end": 8361.62, + "probability": 0.9163 + }, + { + "start": 8361.72, + "end": 8363.42, + "probability": 0.9718 + }, + { + "start": 8363.5, + "end": 8365.5, + "probability": 0.7933 + }, + { + "start": 8365.58, + "end": 8367.43, + "probability": 0.9648 + }, + { + "start": 8367.56, + "end": 8370.36, + "probability": 0.9851 + }, + { + "start": 8370.92, + "end": 8373.54, + "probability": 0.7749 + }, + { + "start": 8373.58, + "end": 8377.02, + "probability": 0.996 + }, + { + "start": 8377.72, + "end": 8381.64, + "probability": 0.9897 + }, + { + "start": 8381.72, + "end": 8385.12, + "probability": 0.9529 + }, + { + "start": 8385.64, + "end": 8388.24, + "probability": 0.9932 + }, + { + "start": 8388.24, + "end": 8390.74, + "probability": 0.9987 + }, + { + "start": 8390.74, + "end": 8395.34, + "probability": 0.9005 + }, + { + "start": 8396.1, + "end": 8398.04, + "probability": 0.8361 + }, + { + "start": 8398.58, + "end": 8400.64, + "probability": 0.9052 + }, + { + "start": 8401.12, + "end": 8402.9, + "probability": 0.9013 + }, + { + "start": 8403.06, + "end": 8405.86, + "probability": 0.95 + }, + { + "start": 8405.86, + "end": 8409.6, + "probability": 0.9495 + }, + { + "start": 8410.12, + "end": 8410.4, + "probability": 0.2468 + }, + { + "start": 8410.44, + "end": 8412.38, + "probability": 0.5978 + }, + { + "start": 8412.48, + "end": 8415.1, + "probability": 0.9034 + }, + { + "start": 8415.1, + "end": 8417.12, + "probability": 0.9961 + }, + { + "start": 8417.9, + "end": 8421.72, + "probability": 0.9979 + }, + { + "start": 8421.72, + "end": 8424.82, + "probability": 0.9674 + }, + { + "start": 8424.88, + "end": 8429.67, + "probability": 0.9684 + }, + { + "start": 8430.21, + "end": 8432.2, + "probability": 0.998 + }, + { + "start": 8432.26, + "end": 8436.12, + "probability": 0.8547 + }, + { + "start": 8436.12, + "end": 8438.72, + "probability": 0.9729 + }, + { + "start": 8439.26, + "end": 8440.54, + "probability": 0.3893 + }, + { + "start": 8440.62, + "end": 8444.3, + "probability": 0.8679 + }, + { + "start": 8444.38, + "end": 8446.49, + "probability": 0.9868 + }, + { + "start": 8447.1, + "end": 8448.78, + "probability": 0.9444 + }, + { + "start": 8448.92, + "end": 8450.82, + "probability": 0.8717 + }, + { + "start": 8451.0, + "end": 8454.04, + "probability": 0.998 + }, + { + "start": 8454.04, + "end": 8457.42, + "probability": 0.9953 + }, + { + "start": 8457.46, + "end": 8459.97, + "probability": 0.7676 + }, + { + "start": 8460.64, + "end": 8462.24, + "probability": 0.8855 + }, + { + "start": 8462.36, + "end": 8462.68, + "probability": 0.7393 + }, + { + "start": 8462.78, + "end": 8465.64, + "probability": 0.9918 + }, + { + "start": 8465.64, + "end": 8467.59, + "probability": 0.9967 + }, + { + "start": 8468.08, + "end": 8473.14, + "probability": 0.987 + }, + { + "start": 8474.42, + "end": 8474.9, + "probability": 0.7638 + }, + { + "start": 8475.08, + "end": 8477.52, + "probability": 0.9966 + }, + { + "start": 8477.52, + "end": 8480.48, + "probability": 0.9811 + }, + { + "start": 8480.48, + "end": 8483.46, + "probability": 0.7377 + }, + { + "start": 8484.06, + "end": 8484.65, + "probability": 0.6624 + }, + { + "start": 8485.24, + "end": 8486.84, + "probability": 0.9347 + }, + { + "start": 8487.02, + "end": 8490.51, + "probability": 0.9953 + }, + { + "start": 8491.18, + "end": 8494.72, + "probability": 0.9473 + }, + { + "start": 8495.66, + "end": 8497.28, + "probability": 0.9253 + }, + { + "start": 8497.4, + "end": 8499.9, + "probability": 0.8577 + }, + { + "start": 8499.9, + "end": 8500.26, + "probability": 0.7364 + }, + { + "start": 8501.52, + "end": 8502.16, + "probability": 0.5836 + }, + { + "start": 8502.88, + "end": 8505.98, + "probability": 0.538 + }, + { + "start": 8506.06, + "end": 8509.42, + "probability": 0.6638 + }, + { + "start": 8533.31, + "end": 8537.34, + "probability": 0.683 + }, + { + "start": 8538.08, + "end": 8541.54, + "probability": 0.9929 + }, + { + "start": 8541.54, + "end": 8544.58, + "probability": 0.999 + }, + { + "start": 8544.8, + "end": 8548.4, + "probability": 0.6264 + }, + { + "start": 8548.68, + "end": 8552.32, + "probability": 0.733 + }, + { + "start": 8552.44, + "end": 8556.54, + "probability": 0.9604 + }, + { + "start": 8556.76, + "end": 8558.88, + "probability": 0.8359 + }, + { + "start": 8560.94, + "end": 8562.88, + "probability": 0.7561 + }, + { + "start": 8565.28, + "end": 8570.04, + "probability": 0.8339 + }, + { + "start": 8571.96, + "end": 8573.26, + "probability": 0.4815 + }, + { + "start": 8573.8, + "end": 8579.56, + "probability": 0.9858 + }, + { + "start": 8579.68, + "end": 8581.58, + "probability": 0.8577 + }, + { + "start": 8584.92, + "end": 8593.58, + "probability": 0.995 + }, + { + "start": 8593.88, + "end": 8594.64, + "probability": 0.7096 + }, + { + "start": 8594.8, + "end": 8601.1, + "probability": 0.9936 + }, + { + "start": 8601.1, + "end": 8604.9, + "probability": 0.6673 + }, + { + "start": 8605.42, + "end": 8610.84, + "probability": 0.7085 + }, + { + "start": 8610.94, + "end": 8613.24, + "probability": 0.8907 + }, + { + "start": 8613.28, + "end": 8614.74, + "probability": 0.7473 + }, + { + "start": 8615.76, + "end": 8619.2, + "probability": 0.9949 + }, + { + "start": 8620.34, + "end": 8620.68, + "probability": 0.5002 + }, + { + "start": 8621.58, + "end": 8630.28, + "probability": 0.9761 + }, + { + "start": 8630.42, + "end": 8637.08, + "probability": 0.9923 + }, + { + "start": 8637.24, + "end": 8640.86, + "probability": 0.9808 + }, + { + "start": 8641.14, + "end": 8644.32, + "probability": 0.9857 + }, + { + "start": 8644.6, + "end": 8651.84, + "probability": 0.9916 + }, + { + "start": 8652.0, + "end": 8659.7, + "probability": 0.9882 + }, + { + "start": 8659.9, + "end": 8663.16, + "probability": 0.949 + }, + { + "start": 8663.38, + "end": 8669.52, + "probability": 0.9546 + }, + { + "start": 8669.52, + "end": 8677.84, + "probability": 0.9592 + }, + { + "start": 8678.42, + "end": 8680.74, + "probability": 0.704 + }, + { + "start": 8681.02, + "end": 8681.74, + "probability": 0.8041 + }, + { + "start": 8683.23, + "end": 8685.54, + "probability": 0.5766 + }, + { + "start": 8685.66, + "end": 8692.56, + "probability": 0.8853 + }, + { + "start": 8692.94, + "end": 8694.02, + "probability": 0.8256 + }, + { + "start": 8694.32, + "end": 8700.2, + "probability": 0.9529 + }, + { + "start": 8700.6, + "end": 8704.16, + "probability": 0.8672 + }, + { + "start": 8704.44, + "end": 8712.86, + "probability": 0.9979 + }, + { + "start": 8712.86, + "end": 8720.32, + "probability": 0.9858 + }, + { + "start": 8720.68, + "end": 8725.04, + "probability": 0.9941 + }, + { + "start": 8727.16, + "end": 8727.18, + "probability": 0.3387 + }, + { + "start": 8727.18, + "end": 8728.74, + "probability": 0.6777 + }, + { + "start": 8729.1, + "end": 8730.92, + "probability": 0.8159 + }, + { + "start": 8730.98, + "end": 8732.9, + "probability": 0.8037 + }, + { + "start": 8732.9, + "end": 8739.02, + "probability": 0.9142 + }, + { + "start": 8739.14, + "end": 8739.64, + "probability": 0.7049 + }, + { + "start": 8739.8, + "end": 8741.16, + "probability": 0.4954 + }, + { + "start": 8741.28, + "end": 8744.02, + "probability": 0.0611 + }, + { + "start": 8744.02, + "end": 8744.02, + "probability": 0.1859 + }, + { + "start": 8744.02, + "end": 8744.36, + "probability": 0.1216 + }, + { + "start": 8744.9, + "end": 8748.38, + "probability": 0.192 + }, + { + "start": 8749.76, + "end": 8751.08, + "probability": 0.5557 + }, + { + "start": 8751.08, + "end": 8753.7, + "probability": 0.0826 + }, + { + "start": 8755.4, + "end": 8756.86, + "probability": 0.1912 + }, + { + "start": 8758.66, + "end": 8764.28, + "probability": 0.3803 + }, + { + "start": 8764.7, + "end": 8764.98, + "probability": 0.2549 + }, + { + "start": 8764.98, + "end": 8766.5, + "probability": 0.085 + }, + { + "start": 8766.5, + "end": 8768.18, + "probability": 0.0243 + }, + { + "start": 8768.61, + "end": 8769.32, + "probability": 0.2532 + }, + { + "start": 8769.32, + "end": 8772.04, + "probability": 0.1557 + }, + { + "start": 8772.04, + "end": 8773.0, + "probability": 0.1891 + }, + { + "start": 8773.22, + "end": 8774.78, + "probability": 0.1436 + }, + { + "start": 8775.86, + "end": 8776.68, + "probability": 0.0319 + }, + { + "start": 8777.66, + "end": 8779.08, + "probability": 0.1102 + }, + { + "start": 8779.75, + "end": 8781.32, + "probability": 0.0183 + }, + { + "start": 8781.56, + "end": 8782.04, + "probability": 0.2093 + }, + { + "start": 8782.66, + "end": 8783.0, + "probability": 0.2349 + }, + { + "start": 8783.2, + "end": 8783.2, + "probability": 0.2606 + }, + { + "start": 8783.2, + "end": 8783.78, + "probability": 0.286 + }, + { + "start": 8783.84, + "end": 8783.84, + "probability": 0.0363 + }, + { + "start": 8783.84, + "end": 8783.84, + "probability": 0.1251 + }, + { + "start": 8783.84, + "end": 8784.41, + "probability": 0.2969 + }, + { + "start": 8785.2, + "end": 8786.14, + "probability": 0.0894 + }, + { + "start": 8787.12, + "end": 8787.94, + "probability": 0.0304 + }, + { + "start": 8787.94, + "end": 8788.76, + "probability": 0.21 + }, + { + "start": 8788.76, + "end": 8790.26, + "probability": 0.0434 + }, + { + "start": 8791.82, + "end": 8799.14, + "probability": 0.0743 + }, + { + "start": 8799.14, + "end": 8799.3, + "probability": 0.1258 + }, + { + "start": 8799.3, + "end": 8799.32, + "probability": 0.3409 + }, + { + "start": 8799.32, + "end": 8801.36, + "probability": 0.0876 + }, + { + "start": 8801.56, + "end": 8805.68, + "probability": 0.3075 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.0, + "end": 8806.0, + "probability": 0.0 + }, + { + "start": 8806.36, + "end": 8809.86, + "probability": 0.4117 + }, + { + "start": 8810.56, + "end": 8814.98, + "probability": 0.2676 + }, + { + "start": 8814.98, + "end": 8816.56, + "probability": 0.1832 + }, + { + "start": 8817.14, + "end": 8818.86, + "probability": 0.3118 + }, + { + "start": 8818.86, + "end": 8819.06, + "probability": 0.2883 + }, + { + "start": 8820.4, + "end": 8823.28, + "probability": 0.333 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8928.0, + "end": 8928.0, + "probability": 0.0 + }, + { + "start": 8930.13, + "end": 8931.96, + "probability": 0.6949 + }, + { + "start": 8931.96, + "end": 8933.68, + "probability": 0.2006 + }, + { + "start": 8933.98, + "end": 8936.18, + "probability": 0.0581 + }, + { + "start": 8940.1, + "end": 8946.62, + "probability": 0.814 + }, + { + "start": 8950.42, + "end": 8953.8, + "probability": 0.4313 + }, + { + "start": 8953.8, + "end": 8954.06, + "probability": 0.2131 + }, + { + "start": 8954.26, + "end": 8954.42, + "probability": 0.0976 + }, + { + "start": 8954.42, + "end": 8955.27, + "probability": 0.9062 + }, + { + "start": 8955.48, + "end": 8956.62, + "probability": 0.6233 + }, + { + "start": 8956.62, + "end": 8959.88, + "probability": 0.9194 + }, + { + "start": 8960.18, + "end": 8960.9, + "probability": 0.7422 + }, + { + "start": 8961.08, + "end": 8962.05, + "probability": 0.6176 + }, + { + "start": 8962.78, + "end": 8972.32, + "probability": 0.9775 + }, + { + "start": 8973.52, + "end": 8974.92, + "probability": 0.6858 + }, + { + "start": 8974.98, + "end": 8981.56, + "probability": 0.9796 + }, + { + "start": 8982.22, + "end": 8986.94, + "probability": 0.9871 + }, + { + "start": 8987.02, + "end": 8987.62, + "probability": 0.9168 + }, + { + "start": 8987.98, + "end": 8990.74, + "probability": 0.9684 + }, + { + "start": 8991.3, + "end": 8992.81, + "probability": 0.7461 + }, + { + "start": 8994.14, + "end": 9000.22, + "probability": 0.939 + }, + { + "start": 9000.68, + "end": 9001.3, + "probability": 0.6481 + }, + { + "start": 9001.84, + "end": 9003.98, + "probability": 0.8431 + }, + { + "start": 9004.24, + "end": 9005.3, + "probability": 0.9922 + }, + { + "start": 9005.88, + "end": 9009.58, + "probability": 0.8283 + }, + { + "start": 9010.58, + "end": 9014.64, + "probability": 0.9979 + }, + { + "start": 9015.12, + "end": 9015.64, + "probability": 0.3685 + }, + { + "start": 9016.2, + "end": 9022.06, + "probability": 0.9906 + }, + { + "start": 9022.36, + "end": 9023.76, + "probability": 0.6154 + }, + { + "start": 9024.2, + "end": 9025.26, + "probability": 0.9638 + }, + { + "start": 9025.42, + "end": 9025.94, + "probability": 0.9211 + }, + { + "start": 9026.0, + "end": 9026.64, + "probability": 0.9265 + }, + { + "start": 9028.7, + "end": 9035.86, + "probability": 0.9687 + }, + { + "start": 9036.28, + "end": 9036.76, + "probability": 0.7484 + }, + { + "start": 9038.82, + "end": 9040.2, + "probability": 0.803 + }, + { + "start": 9042.78, + "end": 9045.42, + "probability": 0.9935 + }, + { + "start": 9045.42, + "end": 9047.32, + "probability": 0.998 + }, + { + "start": 9047.46, + "end": 9049.46, + "probability": 0.8514 + }, + { + "start": 9049.56, + "end": 9053.54, + "probability": 0.8312 + }, + { + "start": 9054.26, + "end": 9054.82, + "probability": 0.9318 + }, + { + "start": 9056.41, + "end": 9057.07, + "probability": 0.134 + }, + { + "start": 9057.86, + "end": 9060.32, + "probability": 0.6689 + }, + { + "start": 9060.44, + "end": 9062.12, + "probability": 0.897 + }, + { + "start": 9065.46, + "end": 9066.2, + "probability": 0.9944 + }, + { + "start": 9066.84, + "end": 9067.5, + "probability": 0.1295 + }, + { + "start": 9068.54, + "end": 9070.14, + "probability": 0.7927 + }, + { + "start": 9072.2, + "end": 9074.74, + "probability": 0.8486 + }, + { + "start": 9075.82, + "end": 9077.46, + "probability": 0.8258 + }, + { + "start": 9079.02, + "end": 9080.48, + "probability": 0.7654 + }, + { + "start": 9080.68, + "end": 9082.24, + "probability": 0.8569 + }, + { + "start": 9082.54, + "end": 9083.46, + "probability": 0.8977 + }, + { + "start": 9091.6, + "end": 9092.5, + "probability": 0.3684 + }, + { + "start": 9093.08, + "end": 9096.06, + "probability": 0.5692 + }, + { + "start": 9097.76, + "end": 9100.3, + "probability": 0.8271 + }, + { + "start": 9101.32, + "end": 9102.8, + "probability": 0.883 + }, + { + "start": 9104.5, + "end": 9106.08, + "probability": 0.9598 + }, + { + "start": 9106.9, + "end": 9108.14, + "probability": 0.9655 + }, + { + "start": 9108.98, + "end": 9111.66, + "probability": 0.9528 + }, + { + "start": 9112.32, + "end": 9113.88, + "probability": 0.8881 + }, + { + "start": 9115.2, + "end": 9118.4, + "probability": 0.4117 + }, + { + "start": 9119.48, + "end": 9120.96, + "probability": 0.6519 + }, + { + "start": 9122.82, + "end": 9123.58, + "probability": 0.9413 + }, + { + "start": 9124.2, + "end": 9125.26, + "probability": 0.9396 + }, + { + "start": 9126.26, + "end": 9128.48, + "probability": 0.9881 + }, + { + "start": 9130.3, + "end": 9131.96, + "probability": 0.9368 + }, + { + "start": 9133.04, + "end": 9133.38, + "probability": 0.8601 + }, + { + "start": 9134.58, + "end": 9135.8, + "probability": 0.8594 + }, + { + "start": 9136.6, + "end": 9138.04, + "probability": 0.847 + }, + { + "start": 9138.06, + "end": 9139.74, + "probability": 0.5453 + }, + { + "start": 9139.76, + "end": 9141.6, + "probability": 0.7176 + }, + { + "start": 9142.12, + "end": 9142.86, + "probability": 0.9481 + }, + { + "start": 9143.66, + "end": 9144.68, + "probability": 0.7303 + }, + { + "start": 9145.7, + "end": 9147.04, + "probability": 0.9743 + }, + { + "start": 9147.08, + "end": 9148.26, + "probability": 0.8691 + }, + { + "start": 9148.28, + "end": 9149.68, + "probability": 0.9948 + }, + { + "start": 9149.8, + "end": 9151.08, + "probability": 0.979 + }, + { + "start": 9152.87, + "end": 9154.38, + "probability": 0.3871 + }, + { + "start": 9154.38, + "end": 9154.94, + "probability": 0.8122 + }, + { + "start": 9155.02, + "end": 9156.72, + "probability": 0.6104 + }, + { + "start": 9157.46, + "end": 9158.7, + "probability": 0.8424 + }, + { + "start": 9158.82, + "end": 9159.96, + "probability": 0.944 + }, + { + "start": 9160.02, + "end": 9161.54, + "probability": 0.9781 + }, + { + "start": 9161.56, + "end": 9162.92, + "probability": 0.9272 + }, + { + "start": 9162.92, + "end": 9164.1, + "probability": 0.691 + }, + { + "start": 9164.72, + "end": 9166.3, + "probability": 0.9624 + }, + { + "start": 9167.46, + "end": 9169.0, + "probability": 0.868 + }, + { + "start": 9170.86, + "end": 9173.34, + "probability": 0.9197 + }, + { + "start": 9173.38, + "end": 9175.62, + "probability": 0.9355 + }, + { + "start": 9175.98, + "end": 9177.46, + "probability": 0.8957 + }, + { + "start": 9179.86, + "end": 9180.58, + "probability": 0.3983 + }, + { + "start": 9182.2, + "end": 9182.76, + "probability": 0.4288 + }, + { + "start": 9185.06, + "end": 9186.0, + "probability": 0.1301 + }, + { + "start": 9188.94, + "end": 9189.36, + "probability": 0.6132 + }, + { + "start": 9194.0, + "end": 9194.76, + "probability": 0.2251 + }, + { + "start": 9195.88, + "end": 9197.62, + "probability": 0.7155 + }, + { + "start": 9198.6, + "end": 9200.04, + "probability": 0.8484 + }, + { + "start": 9202.1, + "end": 9203.82, + "probability": 0.9765 + }, + { + "start": 9205.4, + "end": 9207.26, + "probability": 0.9785 + }, + { + "start": 9209.12, + "end": 9210.22, + "probability": 0.9816 + }, + { + "start": 9210.32, + "end": 9211.78, + "probability": 0.9775 + }, + { + "start": 9212.22, + "end": 9213.38, + "probability": 0.9278 + }, + { + "start": 9213.5, + "end": 9216.34, + "probability": 0.889 + }, + { + "start": 9216.8, + "end": 9218.12, + "probability": 0.9724 + }, + { + "start": 9219.06, + "end": 9220.62, + "probability": 0.9762 + }, + { + "start": 9221.28, + "end": 9222.9, + "probability": 0.9758 + }, + { + "start": 9223.48, + "end": 9225.08, + "probability": 0.9879 + }, + { + "start": 9225.68, + "end": 9228.18, + "probability": 0.9292 + }, + { + "start": 9229.02, + "end": 9229.92, + "probability": 0.7491 + }, + { + "start": 9230.44, + "end": 9231.68, + "probability": 0.592 + }, + { + "start": 9233.46, + "end": 9236.2, + "probability": 0.9713 + }, + { + "start": 9237.68, + "end": 9238.96, + "probability": 0.9829 + }, + { + "start": 9245.6, + "end": 9246.4, + "probability": 0.378 + }, + { + "start": 9247.68, + "end": 9248.46, + "probability": 0.5276 + }, + { + "start": 9250.46, + "end": 9252.0, + "probability": 0.6903 + }, + { + "start": 9252.7, + "end": 9254.14, + "probability": 0.8927 + }, + { + "start": 9254.18, + "end": 9255.32, + "probability": 0.9128 + }, + { + "start": 9255.64, + "end": 9257.16, + "probability": 0.943 + }, + { + "start": 9258.36, + "end": 9258.5, + "probability": 0.9036 + }, + { + "start": 9259.02, + "end": 9260.18, + "probability": 0.7438 + }, + { + "start": 9260.86, + "end": 9262.54, + "probability": 0.7308 + }, + { + "start": 9262.62, + "end": 9263.86, + "probability": 0.6783 + }, + { + "start": 9263.9, + "end": 9266.06, + "probability": 0.8865 + }, + { + "start": 9267.7, + "end": 9268.08, + "probability": 0.9634 + }, + { + "start": 9269.14, + "end": 9270.92, + "probability": 0.7318 + }, + { + "start": 9271.52, + "end": 9274.12, + "probability": 0.9747 + }, + { + "start": 9275.02, + "end": 9277.3, + "probability": 0.8004 + }, + { + "start": 9277.52, + "end": 9278.98, + "probability": 0.8347 + }, + { + "start": 9279.06, + "end": 9280.34, + "probability": 0.6507 + }, + { + "start": 9282.02, + "end": 9285.02, + "probability": 0.9666 + }, + { + "start": 9287.32, + "end": 9288.3, + "probability": 0.9615 + }, + { + "start": 9291.2, + "end": 9293.98, + "probability": 0.6849 + }, + { + "start": 9294.54, + "end": 9297.74, + "probability": 0.8379 + }, + { + "start": 9298.5, + "end": 9300.24, + "probability": 0.9008 + }, + { + "start": 9300.32, + "end": 9301.9, + "probability": 0.9479 + }, + { + "start": 9303.46, + "end": 9305.42, + "probability": 0.8328 + }, + { + "start": 9306.78, + "end": 9310.5, + "probability": 0.6795 + }, + { + "start": 9311.76, + "end": 9313.94, + "probability": 0.9501 + }, + { + "start": 9314.72, + "end": 9316.18, + "probability": 0.9504 + }, + { + "start": 9317.24, + "end": 9319.68, + "probability": 0.975 + }, + { + "start": 9321.18, + "end": 9322.42, + "probability": 0.9518 + }, + { + "start": 9323.26, + "end": 9324.76, + "probability": 0.8765 + }, + { + "start": 9326.14, + "end": 9327.9, + "probability": 0.5617 + }, + { + "start": 9328.38, + "end": 9329.8, + "probability": 0.8619 + }, + { + "start": 9330.08, + "end": 9331.2, + "probability": 0.9426 + }, + { + "start": 9331.3, + "end": 9332.46, + "probability": 0.8543 + }, + { + "start": 9332.56, + "end": 9334.52, + "probability": 0.9189 + }, + { + "start": 9336.8, + "end": 9341.44, + "probability": 0.9835 + }, + { + "start": 9342.6, + "end": 9344.42, + "probability": 0.6729 + }, + { + "start": 9345.32, + "end": 9345.72, + "probability": 0.8042 + }, + { + "start": 9347.0, + "end": 9348.36, + "probability": 0.7549 + }, + { + "start": 9349.6, + "end": 9349.76, + "probability": 0.9856 + }, + { + "start": 9350.36, + "end": 9353.92, + "probability": 0.9684 + }, + { + "start": 9354.86, + "end": 9356.5, + "probability": 0.9527 + }, + { + "start": 9361.06, + "end": 9362.68, + "probability": 0.3868 + }, + { + "start": 9364.42, + "end": 9365.58, + "probability": 0.1833 + }, + { + "start": 9366.5, + "end": 9368.18, + "probability": 0.8187 + }, + { + "start": 9369.72, + "end": 9369.82, + "probability": 0.8215 + }, + { + "start": 9371.6, + "end": 9372.66, + "probability": 0.6578 + }, + { + "start": 9373.0, + "end": 9374.32, + "probability": 0.8975 + }, + { + "start": 9374.42, + "end": 9376.9, + "probability": 0.7175 + }, + { + "start": 9376.92, + "end": 9377.86, + "probability": 0.0244 + }, + { + "start": 9391.38, + "end": 9392.54, + "probability": 0.0394 + }, + { + "start": 9393.26, + "end": 9396.38, + "probability": 0.7251 + }, + { + "start": 9397.64, + "end": 9399.3, + "probability": 0.9716 + }, + { + "start": 9399.96, + "end": 9402.68, + "probability": 0.7476 + }, + { + "start": 9404.42, + "end": 9406.5, + "probability": 0.979 + }, + { + "start": 9408.6, + "end": 9410.7, + "probability": 0.6417 + }, + { + "start": 9411.34, + "end": 9413.24, + "probability": 0.8245 + }, + { + "start": 9414.36, + "end": 9416.14, + "probability": 0.9196 + }, + { + "start": 9417.48, + "end": 9420.64, + "probability": 0.8282 + }, + { + "start": 9425.42, + "end": 9428.86, + "probability": 0.5974 + }, + { + "start": 9430.64, + "end": 9431.42, + "probability": 0.9048 + }, + { + "start": 9436.58, + "end": 9441.4, + "probability": 0.9061 + }, + { + "start": 9442.18, + "end": 9443.12, + "probability": 0.2872 + }, + { + "start": 9444.52, + "end": 9445.46, + "probability": 0.2506 + }, + { + "start": 9446.22, + "end": 9447.44, + "probability": 0.6065 + }, + { + "start": 9447.6, + "end": 9449.16, + "probability": 0.7244 + }, + { + "start": 9449.26, + "end": 9450.4, + "probability": 0.9241 + }, + { + "start": 9450.46, + "end": 9451.76, + "probability": 0.6974 + }, + { + "start": 9453.8, + "end": 9457.2, + "probability": 0.6535 + }, + { + "start": 9457.88, + "end": 9458.18, + "probability": 0.8142 + }, + { + "start": 9459.66, + "end": 9460.72, + "probability": 0.529 + }, + { + "start": 9462.26, + "end": 9465.26, + "probability": 0.8531 + }, + { + "start": 9466.38, + "end": 9468.0, + "probability": 0.9755 + }, + { + "start": 9469.22, + "end": 9470.72, + "probability": 0.8605 + }, + { + "start": 9472.16, + "end": 9474.14, + "probability": 0.9222 + }, + { + "start": 9474.48, + "end": 9476.32, + "probability": 0.974 + }, + { + "start": 9477.28, + "end": 9478.46, + "probability": 0.9232 + }, + { + "start": 9478.52, + "end": 9480.04, + "probability": 0.9143 + }, + { + "start": 9480.46, + "end": 9482.64, + "probability": 0.9701 + }, + { + "start": 9483.38, + "end": 9486.38, + "probability": 0.8095 + }, + { + "start": 9486.94, + "end": 9489.36, + "probability": 0.9496 + }, + { + "start": 9490.04, + "end": 9493.2, + "probability": 0.8279 + }, + { + "start": 9493.76, + "end": 9495.12, + "probability": 0.8379 + }, + { + "start": 9499.9, + "end": 9502.86, + "probability": 0.6861 + }, + { + "start": 9503.14, + "end": 9503.7, + "probability": 0.0271 + }, + { + "start": 9507.01, + "end": 9507.85, + "probability": 0.5006 + }, + { + "start": 9509.42, + "end": 9510.8, + "probability": 0.7957 + }, + { + "start": 9510.8, + "end": 9512.64, + "probability": 0.152 + }, + { + "start": 9512.72, + "end": 9513.52, + "probability": 0.6662 + }, + { + "start": 9514.46, + "end": 9515.88, + "probability": 0.4375 + }, + { + "start": 9515.94, + "end": 9516.56, + "probability": 0.3695 + }, + { + "start": 9516.64, + "end": 9517.16, + "probability": 0.9502 + }, + { + "start": 9517.28, + "end": 9517.62, + "probability": 0.7482 + }, + { + "start": 9518.06, + "end": 9518.48, + "probability": 0.9229 + }, + { + "start": 9520.94, + "end": 9521.6, + "probability": 0.2784 + }, + { + "start": 9521.76, + "end": 9522.31, + "probability": 0.4948 + }, + { + "start": 9523.72, + "end": 9523.72, + "probability": 0.0364 + }, + { + "start": 9523.72, + "end": 9524.06, + "probability": 0.1257 + }, + { + "start": 9524.14, + "end": 9526.32, + "probability": 0.4833 + }, + { + "start": 9526.84, + "end": 9527.05, + "probability": 0.5989 + }, + { + "start": 9528.22, + "end": 9530.5, + "probability": 0.933 + }, + { + "start": 9530.62, + "end": 9532.0, + "probability": 0.9031 + }, + { + "start": 9532.1, + "end": 9533.52, + "probability": 0.9658 + }, + { + "start": 9534.58, + "end": 9535.88, + "probability": 0.9866 + }, + { + "start": 9536.0, + "end": 9537.88, + "probability": 0.835 + }, + { + "start": 9538.96, + "end": 9540.16, + "probability": 0.2257 + }, + { + "start": 9541.04, + "end": 9543.7, + "probability": 0.9641 + }, + { + "start": 9545.12, + "end": 9546.84, + "probability": 0.9681 + }, + { + "start": 9546.92, + "end": 9548.18, + "probability": 0.9425 + }, + { + "start": 9548.48, + "end": 9551.06, + "probability": 0.9639 + }, + { + "start": 9551.96, + "end": 9554.7, + "probability": 0.9329 + }, + { + "start": 9554.7, + "end": 9556.88, + "probability": 0.8661 + }, + { + "start": 9557.06, + "end": 9559.28, + "probability": 0.4857 + }, + { + "start": 9560.18, + "end": 9561.98, + "probability": 0.8883 + }, + { + "start": 9562.56, + "end": 9565.48, + "probability": 0.9243 + }, + { + "start": 9566.46, + "end": 9567.86, + "probability": 0.9783 + }, + { + "start": 9568.64, + "end": 9572.42, + "probability": 0.9068 + }, + { + "start": 9573.1, + "end": 9574.58, + "probability": 0.9488 + }, + { + "start": 9574.8, + "end": 9576.62, + "probability": 0.9681 + }, + { + "start": 9577.06, + "end": 9579.76, + "probability": 0.9691 + }, + { + "start": 9580.08, + "end": 9581.72, + "probability": 0.8118 + }, + { + "start": 9581.88, + "end": 9583.88, + "probability": 0.9562 + }, + { + "start": 9584.58, + "end": 9585.84, + "probability": 0.6522 + }, + { + "start": 9587.14, + "end": 9590.54, + "probability": 0.7586 + }, + { + "start": 9591.5, + "end": 9594.18, + "probability": 0.8867 + }, + { + "start": 9595.2, + "end": 9598.34, + "probability": 0.9233 + }, + { + "start": 9599.32, + "end": 9601.28, + "probability": 0.9653 + }, + { + "start": 9602.6, + "end": 9604.44, + "probability": 0.9838 + }, + { + "start": 9605.02, + "end": 9605.26, + "probability": 0.9536 + }, + { + "start": 9605.84, + "end": 9607.52, + "probability": 0.9814 + }, + { + "start": 9607.76, + "end": 9609.02, + "probability": 0.9966 + }, + { + "start": 9609.44, + "end": 9611.0, + "probability": 0.6283 + }, + { + "start": 9612.38, + "end": 9615.8, + "probability": 0.8652 + }, + { + "start": 9616.44, + "end": 9618.0, + "probability": 0.8096 + }, + { + "start": 9618.48, + "end": 9620.3, + "probability": 0.9714 + }, + { + "start": 9621.14, + "end": 9623.24, + "probability": 0.8645 + }, + { + "start": 9623.82, + "end": 9625.1, + "probability": 0.6698 + }, + { + "start": 9626.46, + "end": 9629.36, + "probability": 0.944 + }, + { + "start": 9630.32, + "end": 9632.3, + "probability": 0.9954 + }, + { + "start": 9632.64, + "end": 9636.68, + "probability": 0.9602 + }, + { + "start": 9636.92, + "end": 9638.86, + "probability": 0.8367 + }, + { + "start": 9639.0, + "end": 9640.64, + "probability": 0.7849 + }, + { + "start": 9641.94, + "end": 9644.2, + "probability": 0.9544 + }, + { + "start": 9645.78, + "end": 9649.46, + "probability": 0.9877 + }, + { + "start": 9650.68, + "end": 9652.1, + "probability": 0.965 + }, + { + "start": 9652.74, + "end": 9654.54, + "probability": 0.9914 + }, + { + "start": 9655.16, + "end": 9658.52, + "probability": 0.861 + }, + { + "start": 9659.1, + "end": 9661.04, + "probability": 0.9517 + }, + { + "start": 9661.64, + "end": 9662.18, + "probability": 0.9922 + }, + { + "start": 9664.56, + "end": 9665.84, + "probability": 0.7257 + }, + { + "start": 9666.66, + "end": 9669.12, + "probability": 0.9471 + }, + { + "start": 9671.68, + "end": 9675.3, + "probability": 0.9845 + }, + { + "start": 9676.56, + "end": 9678.7, + "probability": 0.8794 + }, + { + "start": 9679.42, + "end": 9681.08, + "probability": 0.9768 + }, + { + "start": 9682.22, + "end": 9684.0, + "probability": 0.6541 + }, + { + "start": 9684.66, + "end": 9686.14, + "probability": 0.8695 + }, + { + "start": 9687.06, + "end": 9688.74, + "probability": 0.9297 + }, + { + "start": 9689.32, + "end": 9692.32, + "probability": 0.9766 + }, + { + "start": 9693.94, + "end": 9696.32, + "probability": 0.9417 + }, + { + "start": 9697.18, + "end": 9698.84, + "probability": 0.7957 + }, + { + "start": 9700.1, + "end": 9702.5, + "probability": 0.9741 + }, + { + "start": 9704.06, + "end": 9708.82, + "probability": 0.9436 + }, + { + "start": 9709.94, + "end": 9710.74, + "probability": 0.9664 + }, + { + "start": 9711.28, + "end": 9713.94, + "probability": 0.9627 + }, + { + "start": 9715.66, + "end": 9717.12, + "probability": 0.8752 + }, + { + "start": 9718.64, + "end": 9719.44, + "probability": 0.9939 + }, + { + "start": 9720.84, + "end": 9722.02, + "probability": 0.5396 + }, + { + "start": 9722.12, + "end": 9726.18, + "probability": 0.8447 + }, + { + "start": 9728.4, + "end": 9728.42, + "probability": 0.0018 + }, + { + "start": 9728.52, + "end": 9729.4, + "probability": 0.1915 + }, + { + "start": 9729.78, + "end": 9731.74, + "probability": 0.616 + }, + { + "start": 9731.76, + "end": 9733.04, + "probability": 0.9409 + }, + { + "start": 9737.94, + "end": 9738.52, + "probability": 0.0156 + }, + { + "start": 9741.7, + "end": 9744.58, + "probability": 0.0606 + }, + { + "start": 9757.88, + "end": 9757.98, + "probability": 0.2289 + }, + { + "start": 9770.02, + "end": 9770.46, + "probability": 0.025 + }, + { + "start": 9770.46, + "end": 9770.46, + "probability": 0.1151 + }, + { + "start": 9770.48, + "end": 9770.76, + "probability": 0.0589 + }, + { + "start": 9770.76, + "end": 9770.84, + "probability": 0.051 + }, + { + "start": 9804.52, + "end": 9807.06, + "probability": 0.6985 + }, + { + "start": 9807.48, + "end": 9809.42, + "probability": 0.3687 + }, + { + "start": 9811.2, + "end": 9813.62, + "probability": 0.9162 + }, + { + "start": 9813.82, + "end": 9814.28, + "probability": 0.5312 + }, + { + "start": 9815.28, + "end": 9818.72, + "probability": 0.8765 + }, + { + "start": 9818.88, + "end": 9821.26, + "probability": 0.9836 + }, + { + "start": 9821.36, + "end": 9822.58, + "probability": 0.6972 + }, + { + "start": 9822.78, + "end": 9823.72, + "probability": 0.582 + }, + { + "start": 9823.9, + "end": 9825.84, + "probability": 0.7895 + }, + { + "start": 9826.58, + "end": 9830.72, + "probability": 0.8996 + }, + { + "start": 9830.84, + "end": 9831.7, + "probability": 0.1177 + }, + { + "start": 9832.9, + "end": 9835.2, + "probability": 0.8152 + }, + { + "start": 9836.32, + "end": 9838.22, + "probability": 0.1994 + }, + { + "start": 9839.44, + "end": 9840.86, + "probability": 0.0309 + }, + { + "start": 9842.94, + "end": 9845.44, + "probability": 0.2482 + }, + { + "start": 9863.7, + "end": 9866.04, + "probability": 0.7648 + }, + { + "start": 9867.96, + "end": 9869.9, + "probability": 0.9631 + }, + { + "start": 9870.76, + "end": 9875.14, + "probability": 0.9614 + }, + { + "start": 9875.14, + "end": 9878.2, + "probability": 0.967 + }, + { + "start": 9879.18, + "end": 9882.18, + "probability": 0.9961 + }, + { + "start": 9892.72, + "end": 9895.06, + "probability": 0.7098 + }, + { + "start": 9895.22, + "end": 9896.62, + "probability": 0.1661 + }, + { + "start": 9896.88, + "end": 9900.98, + "probability": 0.7524 + }, + { + "start": 9904.18, + "end": 9906.02, + "probability": 0.8362 + }, + { + "start": 9906.26, + "end": 9908.94, + "probability": 0.9418 + }, + { + "start": 9909.08, + "end": 9910.34, + "probability": 0.6998 + }, + { + "start": 9910.34, + "end": 9910.44, + "probability": 0.3653 + }, + { + "start": 9910.48, + "end": 9911.24, + "probability": 0.8853 + }, + { + "start": 9911.86, + "end": 9912.62, + "probability": 0.8637 + }, + { + "start": 9912.72, + "end": 9913.56, + "probability": 0.715 + }, + { + "start": 9913.62, + "end": 9916.15, + "probability": 0.9939 + }, + { + "start": 9916.68, + "end": 9920.26, + "probability": 0.8015 + }, + { + "start": 9920.98, + "end": 9921.24, + "probability": 0.145 + }, + { + "start": 9921.24, + "end": 9924.26, + "probability": 0.9375 + }, + { + "start": 9924.26, + "end": 9927.22, + "probability": 0.9922 + }, + { + "start": 9927.84, + "end": 9929.7, + "probability": 0.9971 + }, + { + "start": 9930.56, + "end": 9934.92, + "probability": 0.9121 + }, + { + "start": 9936.18, + "end": 9940.44, + "probability": 0.9653 + }, + { + "start": 9940.9, + "end": 9944.1, + "probability": 0.9729 + }, + { + "start": 9944.62, + "end": 9949.34, + "probability": 0.9878 + }, + { + "start": 9950.08, + "end": 9952.06, + "probability": 0.5854 + }, + { + "start": 9953.63, + "end": 9954.16, + "probability": 0.0693 + }, + { + "start": 9954.88, + "end": 9958.7, + "probability": 0.5597 + }, + { + "start": 9958.7, + "end": 9960.18, + "probability": 0.2912 + }, + { + "start": 9960.34, + "end": 9961.02, + "probability": 0.467 + }, + { + "start": 9961.12, + "end": 9961.44, + "probability": 0.0887 + }, + { + "start": 9961.74, + "end": 9962.96, + "probability": 0.5199 + }, + { + "start": 9963.34, + "end": 9964.52, + "probability": 0.2452 + }, + { + "start": 9964.52, + "end": 9965.28, + "probability": 0.1468 + }, + { + "start": 9965.5, + "end": 9966.88, + "probability": 0.3741 + }, + { + "start": 9968.66, + "end": 9968.76, + "probability": 0.2713 + }, + { + "start": 9968.76, + "end": 9968.8, + "probability": 0.1149 + }, + { + "start": 9968.8, + "end": 9968.8, + "probability": 0.3952 + }, + { + "start": 9968.8, + "end": 9969.74, + "probability": 0.6686 + }, + { + "start": 9970.16, + "end": 9970.66, + "probability": 0.4927 + }, + { + "start": 9971.6, + "end": 9972.93, + "probability": 0.6636 + }, + { + "start": 9973.52, + "end": 9974.64, + "probability": 0.0203 + }, + { + "start": 9974.84, + "end": 9977.26, + "probability": 0.2079 + }, + { + "start": 9977.32, + "end": 9979.62, + "probability": 0.6462 + }, + { + "start": 9980.12, + "end": 9981.32, + "probability": 0.6675 + }, + { + "start": 9981.84, + "end": 9985.72, + "probability": 0.9807 + }, + { + "start": 9985.72, + "end": 9989.88, + "probability": 0.9351 + }, + { + "start": 9990.48, + "end": 9992.66, + "probability": 0.9954 + }, + { + "start": 9993.08, + "end": 9994.75, + "probability": 0.0991 + }, + { + "start": 9995.3, + "end": 9996.62, + "probability": 0.517 + }, + { + "start": 9999.34, + "end": 10001.0, + "probability": 0.0355 + }, + { + "start": 10001.0, + "end": 10002.54, + "probability": 0.0746 + }, + { + "start": 10002.56, + "end": 10004.72, + "probability": 0.1319 + }, + { + "start": 10004.72, + "end": 10004.8, + "probability": 0.204 + }, + { + "start": 10005.6, + "end": 10008.68, + "probability": 0.4318 + }, + { + "start": 10009.5, + "end": 10010.18, + "probability": 0.0427 + }, + { + "start": 10010.18, + "end": 10011.9, + "probability": 0.3209 + }, + { + "start": 10011.9, + "end": 10013.2, + "probability": 0.6198 + }, + { + "start": 10013.2, + "end": 10014.8, + "probability": 0.069 + }, + { + "start": 10018.48, + "end": 10018.95, + "probability": 0.0438 + }, + { + "start": 10019.26, + "end": 10019.76, + "probability": 0.0331 + }, + { + "start": 10019.76, + "end": 10020.46, + "probability": 0.0658 + }, + { + "start": 10020.46, + "end": 10020.52, + "probability": 0.0368 + }, + { + "start": 10021.34, + "end": 10021.34, + "probability": 0.3821 + }, + { + "start": 10021.34, + "end": 10023.2, + "probability": 0.6109 + }, + { + "start": 10023.78, + "end": 10024.04, + "probability": 0.3931 + }, + { + "start": 10024.1, + "end": 10024.85, + "probability": 0.4048 + }, + { + "start": 10025.28, + "end": 10027.07, + "probability": 0.7594 + }, + { + "start": 10027.92, + "end": 10029.14, + "probability": 0.4866 + }, + { + "start": 10029.66, + "end": 10031.02, + "probability": 0.8455 + }, + { + "start": 10031.24, + "end": 10033.46, + "probability": 0.9466 + }, + { + "start": 10033.84, + "end": 10033.84, + "probability": 0.2565 + }, + { + "start": 10033.84, + "end": 10035.18, + "probability": 0.9778 + }, + { + "start": 10038.1, + "end": 10038.74, + "probability": 0.0901 + }, + { + "start": 10039.58, + "end": 10041.56, + "probability": 0.5416 + }, + { + "start": 10041.88, + "end": 10041.88, + "probability": 0.2012 + }, + { + "start": 10041.88, + "end": 10043.11, + "probability": 0.9369 + }, + { + "start": 10043.74, + "end": 10046.64, + "probability": 0.1799 + }, + { + "start": 10046.82, + "end": 10049.19, + "probability": 0.5726 + }, + { + "start": 10049.7, + "end": 10052.48, + "probability": 0.2799 + }, + { + "start": 10052.58, + "end": 10056.6, + "probability": 0.7828 + }, + { + "start": 10056.62, + "end": 10056.8, + "probability": 0.3775 + }, + { + "start": 10056.8, + "end": 10059.32, + "probability": 0.5177 + }, + { + "start": 10059.34, + "end": 10062.88, + "probability": 0.2197 + }, + { + "start": 10063.0, + "end": 10064.72, + "probability": 0.4051 + }, + { + "start": 10065.06, + "end": 10066.42, + "probability": 0.903 + }, + { + "start": 10066.68, + "end": 10071.08, + "probability": 0.545 + }, + { + "start": 10071.08, + "end": 10073.12, + "probability": 0.8237 + }, + { + "start": 10073.2, + "end": 10075.12, + "probability": 0.3708 + }, + { + "start": 10075.36, + "end": 10081.78, + "probability": 0.8648 + }, + { + "start": 10081.78, + "end": 10085.26, + "probability": 0.8157 + }, + { + "start": 10086.08, + "end": 10090.5, + "probability": 0.7539 + }, + { + "start": 10090.58, + "end": 10092.1, + "probability": 0.1396 + }, + { + "start": 10092.94, + "end": 10100.46, + "probability": 0.8726 + }, + { + "start": 10101.06, + "end": 10102.2, + "probability": 0.9402 + }, + { + "start": 10102.38, + "end": 10106.38, + "probability": 0.9551 + }, + { + "start": 10106.56, + "end": 10110.1, + "probability": 0.9578 + }, + { + "start": 10110.68, + "end": 10112.78, + "probability": 0.9905 + }, + { + "start": 10112.9, + "end": 10117.44, + "probability": 0.9576 + }, + { + "start": 10118.05, + "end": 10119.98, + "probability": 0.2532 + }, + { + "start": 10119.98, + "end": 10119.98, + "probability": 0.347 + }, + { + "start": 10119.98, + "end": 10121.0, + "probability": 0.4273 + }, + { + "start": 10122.64, + "end": 10123.06, + "probability": 0.2569 + }, + { + "start": 10123.34, + "end": 10124.89, + "probability": 0.7777 + }, + { + "start": 10125.2, + "end": 10127.38, + "probability": 0.9731 + }, + { + "start": 10127.48, + "end": 10129.04, + "probability": 0.7749 + }, + { + "start": 10129.7, + "end": 10130.64, + "probability": 0.3277 + }, + { + "start": 10135.76, + "end": 10137.52, + "probability": 0.7824 + }, + { + "start": 10138.16, + "end": 10139.26, + "probability": 0.1927 + }, + { + "start": 10139.68, + "end": 10139.86, + "probability": 0.216 + }, + { + "start": 10140.37, + "end": 10147.16, + "probability": 0.7588 + }, + { + "start": 10148.36, + "end": 10151.7, + "probability": 0.677 + }, + { + "start": 10152.2, + "end": 10153.0, + "probability": 0.4942 + }, + { + "start": 10154.3, + "end": 10155.89, + "probability": 0.6298 + }, + { + "start": 10156.2, + "end": 10157.72, + "probability": 0.5332 + }, + { + "start": 10158.6, + "end": 10160.54, + "probability": 0.3825 + }, + { + "start": 10160.54, + "end": 10160.54, + "probability": 0.0952 + }, + { + "start": 10160.54, + "end": 10160.56, + "probability": 0.0916 + }, + { + "start": 10160.88, + "end": 10165.98, + "probability": 0.9142 + }, + { + "start": 10166.6, + "end": 10172.1, + "probability": 0.8166 + }, + { + "start": 10172.22, + "end": 10173.18, + "probability": 0.8138 + }, + { + "start": 10174.42, + "end": 10174.7, + "probability": 0.1029 + }, + { + "start": 10174.7, + "end": 10175.22, + "probability": 0.3971 + }, + { + "start": 10175.9, + "end": 10177.32, + "probability": 0.0664 + }, + { + "start": 10177.32, + "end": 10177.32, + "probability": 0.0131 + }, + { + "start": 10177.32, + "end": 10177.42, + "probability": 0.0672 + }, + { + "start": 10177.9, + "end": 10178.28, + "probability": 0.2327 + }, + { + "start": 10178.32, + "end": 10179.46, + "probability": 0.2226 + }, + { + "start": 10179.8, + "end": 10180.6, + "probability": 0.3806 + }, + { + "start": 10180.62, + "end": 10181.94, + "probability": 0.0902 + }, + { + "start": 10183.62, + "end": 10186.28, + "probability": 0.0754 + }, + { + "start": 10188.66, + "end": 10189.74, + "probability": 0.149 + }, + { + "start": 10190.0, + "end": 10190.0, + "probability": 0.0204 + }, + { + "start": 10190.0, + "end": 10190.46, + "probability": 0.0407 + }, + { + "start": 10190.48, + "end": 10191.22, + "probability": 0.1133 + }, + { + "start": 10191.32, + "end": 10192.4, + "probability": 0.0261 + }, + { + "start": 10192.4, + "end": 10192.76, + "probability": 0.2354 + }, + { + "start": 10193.8, + "end": 10200.28, + "probability": 0.0324 + }, + { + "start": 10200.28, + "end": 10200.44, + "probability": 0.0865 + }, + { + "start": 10201.08, + "end": 10201.38, + "probability": 0.206 + }, + { + "start": 10201.38, + "end": 10201.46, + "probability": 0.1385 + }, + { + "start": 10201.46, + "end": 10205.18, + "probability": 0.0641 + }, + { + "start": 10205.94, + "end": 10206.44, + "probability": 0.1956 + }, + { + "start": 10206.46, + "end": 10206.76, + "probability": 0.0691 + }, + { + "start": 10207.08, + "end": 10209.06, + "probability": 0.1077 + }, + { + "start": 10210.2, + "end": 10211.44, + "probability": 0.0105 + }, + { + "start": 10211.7, + "end": 10215.3, + "probability": 0.1895 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.0, + "end": 10231.0, + "probability": 0.0 + }, + { + "start": 10231.32, + "end": 10234.7, + "probability": 0.0627 + }, + { + "start": 10235.08, + "end": 10236.03, + "probability": 0.4165 + }, + { + "start": 10236.9, + "end": 10237.78, + "probability": 0.4887 + }, + { + "start": 10237.78, + "end": 10238.87, + "probability": 0.3545 + }, + { + "start": 10239.92, + "end": 10242.2, + "probability": 0.1326 + }, + { + "start": 10242.62, + "end": 10244.24, + "probability": 0.5173 + }, + { + "start": 10244.36, + "end": 10244.94, + "probability": 0.4763 + }, + { + "start": 10245.22, + "end": 10246.52, + "probability": 0.6069 + }, + { + "start": 10246.52, + "end": 10248.94, + "probability": 0.3294 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.0, + "end": 10353.0, + "probability": 0.0 + }, + { + "start": 10353.74, + "end": 10354.48, + "probability": 0.2247 + }, + { + "start": 10354.82, + "end": 10356.86, + "probability": 0.7747 + }, + { + "start": 10357.46, + "end": 10359.68, + "probability": 0.7217 + }, + { + "start": 10359.9, + "end": 10363.48, + "probability": 0.8627 + }, + { + "start": 10364.48, + "end": 10365.16, + "probability": 0.0922 + }, + { + "start": 10365.18, + "end": 10366.12, + "probability": 0.8574 + }, + { + "start": 10369.94, + "end": 10371.38, + "probability": 0.5189 + }, + { + "start": 10371.9, + "end": 10374.26, + "probability": 0.8086 + }, + { + "start": 10374.86, + "end": 10376.36, + "probability": 0.4902 + }, + { + "start": 10376.36, + "end": 10376.7, + "probability": 0.6343 + }, + { + "start": 10377.36, + "end": 10380.02, + "probability": 0.9182 + }, + { + "start": 10380.5, + "end": 10381.86, + "probability": 0.7483 + }, + { + "start": 10382.18, + "end": 10387.38, + "probability": 0.8314 + }, + { + "start": 10388.04, + "end": 10390.48, + "probability": 0.0714 + }, + { + "start": 10390.48, + "end": 10390.5, + "probability": 0.2188 + }, + { + "start": 10390.5, + "end": 10392.12, + "probability": 0.5509 + }, + { + "start": 10392.16, + "end": 10394.08, + "probability": 0.9084 + }, + { + "start": 10395.34, + "end": 10403.44, + "probability": 0.2164 + }, + { + "start": 10406.84, + "end": 10408.94, + "probability": 0.3275 + }, + { + "start": 10409.34, + "end": 10411.46, + "probability": 0.9093 + }, + { + "start": 10422.38, + "end": 10425.0, + "probability": 0.1757 + }, + { + "start": 10425.0, + "end": 10425.84, + "probability": 0.2243 + }, + { + "start": 10426.32, + "end": 10426.32, + "probability": 0.0655 + }, + { + "start": 10426.32, + "end": 10427.44, + "probability": 0.2994 + }, + { + "start": 10427.46, + "end": 10428.88, + "probability": 0.04 + }, + { + "start": 10431.29, + "end": 10433.84, + "probability": 0.0429 + }, + { + "start": 10434.68, + "end": 10434.7, + "probability": 0.3066 + }, + { + "start": 10434.86, + "end": 10435.2, + "probability": 0.2673 + }, + { + "start": 10435.22, + "end": 10440.44, + "probability": 0.487 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.0, + "end": 10485.0, + "probability": 0.0 + }, + { + "start": 10485.4, + "end": 10485.64, + "probability": 0.0244 + }, + { + "start": 10485.64, + "end": 10486.66, + "probability": 0.3973 + }, + { + "start": 10486.96, + "end": 10489.08, + "probability": 0.259 + }, + { + "start": 10489.84, + "end": 10494.64, + "probability": 0.0677 + }, + { + "start": 10495.14, + "end": 10499.54, + "probability": 0.0968 + }, + { + "start": 10501.82, + "end": 10502.0, + "probability": 0.4691 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.0, + "end": 10605.0, + "probability": 0.0 + }, + { + "start": 10605.18, + "end": 10606.18, + "probability": 0.1108 + }, + { + "start": 10606.18, + "end": 10608.14, + "probability": 0.0617 + }, + { + "start": 10608.24, + "end": 10608.34, + "probability": 0.0981 + }, + { + "start": 10608.34, + "end": 10608.34, + "probability": 0.1787 + }, + { + "start": 10608.34, + "end": 10609.58, + "probability": 0.069 + }, + { + "start": 10610.58, + "end": 10612.79, + "probability": 0.1563 + }, + { + "start": 10613.8, + "end": 10615.72, + "probability": 0.0239 + }, + { + "start": 10615.72, + "end": 10615.72, + "probability": 0.179 + }, + { + "start": 10616.4, + "end": 10618.8, + "probability": 0.0335 + }, + { + "start": 10621.92, + "end": 10622.0, + "probability": 0.5398 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.0, + "end": 10734.0, + "probability": 0.0 + }, + { + "start": 10734.2, + "end": 10738.36, + "probability": 0.0228 + }, + { + "start": 10738.36, + "end": 10739.38, + "probability": 0.01 + }, + { + "start": 10739.54, + "end": 10739.8, + "probability": 0.0048 + }, + { + "start": 10747.28, + "end": 10748.48, + "probability": 0.0295 + }, + { + "start": 10759.16, + "end": 10766.7, + "probability": 0.5571 + }, + { + "start": 10766.88, + "end": 10768.06, + "probability": 0.2159 + }, + { + "start": 10768.06, + "end": 10768.92, + "probability": 0.3601 + }, + { + "start": 10770.04, + "end": 10770.96, + "probability": 0.1502 + }, + { + "start": 10771.08, + "end": 10771.16, + "probability": 0.0504 + }, + { + "start": 10771.42, + "end": 10773.02, + "probability": 0.0467 + }, + { + "start": 10773.02, + "end": 10774.8, + "probability": 0.162 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.0, + "end": 10854.0, + "probability": 0.0 + }, + { + "start": 10854.89, + "end": 10857.74, + "probability": 0.376 + }, + { + "start": 10857.8, + "end": 10858.98, + "probability": 0.603 + }, + { + "start": 10859.72, + "end": 10860.2, + "probability": 0.3723 + }, + { + "start": 10860.32, + "end": 10861.54, + "probability": 0.4137 + }, + { + "start": 10864.46, + "end": 10869.0, + "probability": 0.9948 + }, + { + "start": 10869.36, + "end": 10873.68, + "probability": 0.9965 + }, + { + "start": 10874.44, + "end": 10878.08, + "probability": 0.9817 + }, + { + "start": 10878.5, + "end": 10882.28, + "probability": 0.9927 + }, + { + "start": 10882.64, + "end": 10885.46, + "probability": 0.9207 + }, + { + "start": 10885.76, + "end": 10888.6, + "probability": 0.9716 + }, + { + "start": 10888.72, + "end": 10891.72, + "probability": 0.9364 + }, + { + "start": 10892.28, + "end": 10895.1, + "probability": 0.8708 + }, + { + "start": 10897.78, + "end": 10906.08, + "probability": 0.9395 + }, + { + "start": 10907.04, + "end": 10910.72, + "probability": 0.9852 + }, + { + "start": 10911.66, + "end": 10915.88, + "probability": 0.9875 + }, + { + "start": 10916.24, + "end": 10920.02, + "probability": 0.8887 + }, + { + "start": 10920.66, + "end": 10927.5, + "probability": 0.9954 + }, + { + "start": 10927.5, + "end": 10927.8, + "probability": 0.1261 + }, + { + "start": 10927.8, + "end": 10930.04, + "probability": 0.6348 + }, + { + "start": 10930.46, + "end": 10931.5, + "probability": 0.6965 + }, + { + "start": 10932.16, + "end": 10934.24, + "probability": 0.8298 + }, + { + "start": 10934.34, + "end": 10935.82, + "probability": 0.8133 + }, + { + "start": 10936.28, + "end": 10937.74, + "probability": 0.9177 + }, + { + "start": 10937.8, + "end": 10938.58, + "probability": 0.761 + }, + { + "start": 10940.68, + "end": 10943.22, + "probability": 0.3415 + }, + { + "start": 10944.86, + "end": 10946.5, + "probability": 0.597 + }, + { + "start": 10947.04, + "end": 10948.72, + "probability": 0.7397 + }, + { + "start": 10949.26, + "end": 10951.32, + "probability": 0.2719 + }, + { + "start": 10953.08, + "end": 10955.0, + "probability": 0.9901 + }, + { + "start": 10955.64, + "end": 10959.7, + "probability": 0.9299 + }, + { + "start": 10960.34, + "end": 10963.84, + "probability": 0.9573 + }, + { + "start": 10964.84, + "end": 10969.92, + "probability": 0.9202 + }, + { + "start": 10970.6, + "end": 10975.62, + "probability": 0.9875 + }, + { + "start": 10976.02, + "end": 10979.98, + "probability": 0.9916 + }, + { + "start": 10980.66, + "end": 10987.02, + "probability": 0.9944 + }, + { + "start": 10987.12, + "end": 10988.68, + "probability": 0.6476 + }, + { + "start": 10988.9, + "end": 10990.98, + "probability": 0.0776 + }, + { + "start": 10992.36, + "end": 10993.22, + "probability": 0.1428 + }, + { + "start": 10993.22, + "end": 10993.76, + "probability": 0.4486 + }, + { + "start": 10993.76, + "end": 10994.82, + "probability": 0.7767 + }, + { + "start": 10995.14, + "end": 10998.94, + "probability": 0.9663 + }, + { + "start": 10999.02, + "end": 11002.94, + "probability": 0.9668 + }, + { + "start": 11002.98, + "end": 11004.08, + "probability": 0.7604 + }, + { + "start": 11004.46, + "end": 11007.8, + "probability": 0.998 + }, + { + "start": 11008.46, + "end": 11011.58, + "probability": 0.9668 + }, + { + "start": 11011.66, + "end": 11014.46, + "probability": 0.7499 + }, + { + "start": 11015.26, + "end": 11017.3, + "probability": 0.8793 + }, + { + "start": 11017.44, + "end": 11017.78, + "probability": 0.0116 + }, + { + "start": 11017.96, + "end": 11022.4, + "probability": 0.9939 + }, + { + "start": 11022.86, + "end": 11028.96, + "probability": 0.9321 + }, + { + "start": 11029.06, + "end": 11029.72, + "probability": 0.7721 + }, + { + "start": 11030.2, + "end": 11030.94, + "probability": 0.7228 + }, + { + "start": 11031.55, + "end": 11035.34, + "probability": 0.6593 + }, + { + "start": 11043.95, + "end": 11047.96, + "probability": 0.9692 + }, + { + "start": 11049.48, + "end": 11053.76, + "probability": 0.8946 + }, + { + "start": 11054.1, + "end": 11055.01, + "probability": 0.9864 + }, + { + "start": 11056.24, + "end": 11057.86, + "probability": 0.7073 + }, + { + "start": 11058.5, + "end": 11059.28, + "probability": 0.8106 + }, + { + "start": 11059.38, + "end": 11060.47, + "probability": 0.7769 + }, + { + "start": 11061.0, + "end": 11062.27, + "probability": 0.5974 + }, + { + "start": 11063.02, + "end": 11067.46, + "probability": 0.9809 + }, + { + "start": 11067.52, + "end": 11068.1, + "probability": 0.9007 + }, + { + "start": 11068.32, + "end": 11068.53, + "probability": 0.7173 + }, + { + "start": 11069.5, + "end": 11071.18, + "probability": 0.98 + }, + { + "start": 11071.22, + "end": 11075.02, + "probability": 0.8847 + }, + { + "start": 11075.24, + "end": 11076.16, + "probability": 0.9446 + }, + { + "start": 11076.72, + "end": 11078.12, + "probability": 0.7563 + }, + { + "start": 11078.62, + "end": 11079.86, + "probability": 0.8249 + }, + { + "start": 11079.98, + "end": 11080.78, + "probability": 0.1095 + }, + { + "start": 11081.12, + "end": 11084.36, + "probability": 0.6847 + }, + { + "start": 11084.6, + "end": 11084.64, + "probability": 0.3343 + }, + { + "start": 11084.64, + "end": 11086.16, + "probability": 0.6738 + }, + { + "start": 11088.16, + "end": 11092.5, + "probability": 0.9498 + }, + { + "start": 11092.8, + "end": 11094.41, + "probability": 0.8428 + }, + { + "start": 11094.86, + "end": 11096.12, + "probability": 0.7171 + }, + { + "start": 11096.14, + "end": 11096.34, + "probability": 0.8752 + }, + { + "start": 11096.46, + "end": 11099.22, + "probability": 0.9283 + }, + { + "start": 11099.76, + "end": 11103.66, + "probability": 0.98 + }, + { + "start": 11103.82, + "end": 11105.8, + "probability": 0.6004 + }, + { + "start": 11106.34, + "end": 11110.36, + "probability": 0.9531 + }, + { + "start": 11110.44, + "end": 11112.12, + "probability": 0.958 + }, + { + "start": 11112.46, + "end": 11113.96, + "probability": 0.8277 + }, + { + "start": 11114.52, + "end": 11116.14, + "probability": 0.7856 + }, + { + "start": 11116.54, + "end": 11116.54, + "probability": 0.066 + }, + { + "start": 11116.54, + "end": 11116.54, + "probability": 0.0309 + }, + { + "start": 11116.54, + "end": 11122.1, + "probability": 0.9253 + }, + { + "start": 11122.4, + "end": 11122.88, + "probability": 0.9736 + }, + { + "start": 11123.2, + "end": 11124.8, + "probability": 0.6155 + }, + { + "start": 11125.98, + "end": 11126.92, + "probability": 0.8604 + }, + { + "start": 11127.4, + "end": 11129.56, + "probability": 0.776 + }, + { + "start": 11129.84, + "end": 11130.76, + "probability": 0.9795 + }, + { + "start": 11130.9, + "end": 11131.66, + "probability": 0.8184 + }, + { + "start": 11131.74, + "end": 11133.78, + "probability": 0.9648 + }, + { + "start": 11133.78, + "end": 11137.2, + "probability": 0.8149 + }, + { + "start": 11137.4, + "end": 11138.42, + "probability": 0.7691 + }, + { + "start": 11140.06, + "end": 11144.2, + "probability": 0.8579 + }, + { + "start": 11144.88, + "end": 11145.86, + "probability": 0.4852 + }, + { + "start": 11146.28, + "end": 11148.84, + "probability": 0.969 + }, + { + "start": 11149.18, + "end": 11151.42, + "probability": 0.9971 + }, + { + "start": 11152.54, + "end": 11158.36, + "probability": 0.9633 + }, + { + "start": 11158.86, + "end": 11160.77, + "probability": 0.8584 + }, + { + "start": 11162.28, + "end": 11163.04, + "probability": 0.7588 + }, + { + "start": 11163.4, + "end": 11164.92, + "probability": 0.994 + }, + { + "start": 11168.56, + "end": 11170.64, + "probability": 0.9337 + }, + { + "start": 11171.32, + "end": 11172.44, + "probability": 0.9625 + }, + { + "start": 11172.56, + "end": 11173.82, + "probability": 0.9277 + }, + { + "start": 11174.96, + "end": 11177.24, + "probability": 0.6449 + }, + { + "start": 11177.46, + "end": 11178.68, + "probability": 0.7691 + }, + { + "start": 11178.68, + "end": 11183.12, + "probability": 0.8651 + }, + { + "start": 11183.96, + "end": 11185.02, + "probability": 0.3169 + }, + { + "start": 11185.56, + "end": 11188.78, + "probability": 0.7574 + }, + { + "start": 11189.12, + "end": 11189.76, + "probability": 0.7764 + }, + { + "start": 11190.28, + "end": 11190.48, + "probability": 0.7389 + }, + { + "start": 11190.58, + "end": 11191.3, + "probability": 0.5554 + }, + { + "start": 11191.3, + "end": 11193.2, + "probability": 0.7296 + }, + { + "start": 11193.48, + "end": 11196.64, + "probability": 0.8944 + }, + { + "start": 11196.86, + "end": 11197.7, + "probability": 0.1939 + }, + { + "start": 11198.18, + "end": 11198.39, + "probability": 0.853 + }, + { + "start": 11198.58, + "end": 11199.56, + "probability": 0.0749 + }, + { + "start": 11199.56, + "end": 11199.92, + "probability": 0.1005 + }, + { + "start": 11199.92, + "end": 11199.92, + "probability": 0.0323 + }, + { + "start": 11199.92, + "end": 11201.34, + "probability": 0.7898 + }, + { + "start": 11201.38, + "end": 11202.9, + "probability": 0.9368 + }, + { + "start": 11206.28, + "end": 11209.26, + "probability": 0.8561 + }, + { + "start": 11209.84, + "end": 11212.68, + "probability": 0.9673 + }, + { + "start": 11214.68, + "end": 11215.24, + "probability": 0.505 + }, + { + "start": 11215.56, + "end": 11216.48, + "probability": 0.6244 + }, + { + "start": 11217.34, + "end": 11224.36, + "probability": 0.959 + }, + { + "start": 11224.56, + "end": 11225.26, + "probability": 0.4995 + }, + { + "start": 11225.32, + "end": 11225.78, + "probability": 0.2272 + }, + { + "start": 11226.12, + "end": 11227.02, + "probability": 0.5676 + }, + { + "start": 11227.8, + "end": 11227.88, + "probability": 0.1051 + }, + { + "start": 11227.88, + "end": 11231.15, + "probability": 0.9499 + }, + { + "start": 11232.22, + "end": 11234.42, + "probability": 0.5798 + }, + { + "start": 11235.16, + "end": 11237.92, + "probability": 0.7942 + }, + { + "start": 11238.12, + "end": 11238.98, + "probability": 0.9111 + }, + { + "start": 11239.16, + "end": 11239.75, + "probability": 0.812 + }, + { + "start": 11240.06, + "end": 11242.6, + "probability": 0.9925 + }, + { + "start": 11242.64, + "end": 11243.42, + "probability": 0.9231 + }, + { + "start": 11244.66, + "end": 11246.17, + "probability": 0.5707 + }, + { + "start": 11247.06, + "end": 11248.26, + "probability": 0.8596 + }, + { + "start": 11248.4, + "end": 11250.2, + "probability": 0.9684 + }, + { + "start": 11251.06, + "end": 11251.9, + "probability": 0.9822 + }, + { + "start": 11251.96, + "end": 11252.84, + "probability": 0.9321 + }, + { + "start": 11252.86, + "end": 11253.44, + "probability": 0.4616 + }, + { + "start": 11253.58, + "end": 11256.46, + "probability": 0.945 + }, + { + "start": 11256.52, + "end": 11260.82, + "probability": 0.9444 + }, + { + "start": 11261.34, + "end": 11264.86, + "probability": 0.9496 + }, + { + "start": 11264.94, + "end": 11267.28, + "probability": 0.6826 + }, + { + "start": 11267.4, + "end": 11268.31, + "probability": 0.8091 + }, + { + "start": 11268.9, + "end": 11269.92, + "probability": 0.986 + }, + { + "start": 11269.96, + "end": 11270.74, + "probability": 0.8804 + }, + { + "start": 11270.84, + "end": 11272.08, + "probability": 0.7986 + }, + { + "start": 11272.42, + "end": 11276.02, + "probability": 0.9978 + }, + { + "start": 11276.14, + "end": 11276.6, + "probability": 0.6851 + }, + { + "start": 11277.04, + "end": 11278.16, + "probability": 0.8007 + }, + { + "start": 11279.12, + "end": 11279.88, + "probability": 0.5237 + }, + { + "start": 11280.94, + "end": 11282.32, + "probability": 0.6513 + }, + { + "start": 11282.46, + "end": 11282.98, + "probability": 0.7458 + }, + { + "start": 11282.98, + "end": 11283.32, + "probability": 0.2142 + }, + { + "start": 11283.48, + "end": 11283.72, + "probability": 0.7871 + }, + { + "start": 11283.72, + "end": 11288.82, + "probability": 0.9556 + }, + { + "start": 11289.04, + "end": 11292.3, + "probability": 0.9928 + }, + { + "start": 11292.3, + "end": 11298.4, + "probability": 0.9582 + }, + { + "start": 11298.74, + "end": 11299.4, + "probability": 0.2582 + }, + { + "start": 11299.76, + "end": 11301.58, + "probability": 0.758 + }, + { + "start": 11301.58, + "end": 11302.18, + "probability": 0.9875 + }, + { + "start": 11302.24, + "end": 11305.62, + "probability": 0.9798 + }, + { + "start": 11305.96, + "end": 11309.88, + "probability": 0.9848 + }, + { + "start": 11310.26, + "end": 11313.16, + "probability": 0.9385 + }, + { + "start": 11313.98, + "end": 11315.22, + "probability": 0.9601 + }, + { + "start": 11315.22, + "end": 11317.59, + "probability": 0.998 + }, + { + "start": 11317.94, + "end": 11318.85, + "probability": 0.9946 + }, + { + "start": 11319.66, + "end": 11321.92, + "probability": 0.989 + }, + { + "start": 11322.0, + "end": 11322.77, + "probability": 0.9194 + }, + { + "start": 11323.04, + "end": 11323.83, + "probability": 0.9016 + }, + { + "start": 11324.12, + "end": 11325.06, + "probability": 0.4982 + }, + { + "start": 11325.08, + "end": 11325.96, + "probability": 0.9604 + }, + { + "start": 11325.98, + "end": 11329.58, + "probability": 0.9681 + }, + { + "start": 11329.58, + "end": 11334.26, + "probability": 0.9683 + }, + { + "start": 11334.34, + "end": 11335.26, + "probability": 0.5541 + }, + { + "start": 11335.34, + "end": 11337.08, + "probability": 0.7523 + }, + { + "start": 11337.3, + "end": 11338.36, + "probability": 0.6959 + }, + { + "start": 11338.6, + "end": 11339.4, + "probability": 0.6491 + }, + { + "start": 11339.96, + "end": 11340.62, + "probability": 0.8749 + }, + { + "start": 11340.92, + "end": 11342.06, + "probability": 0.0497 + }, + { + "start": 11342.46, + "end": 11344.38, + "probability": 0.8477 + }, + { + "start": 11344.5, + "end": 11344.84, + "probability": 0.5547 + }, + { + "start": 11344.9, + "end": 11345.04, + "probability": 0.515 + }, + { + "start": 11345.1, + "end": 11347.3, + "probability": 0.6508 + }, + { + "start": 11347.68, + "end": 11348.28, + "probability": 0.6921 + }, + { + "start": 11348.36, + "end": 11350.3, + "probability": 0.5472 + }, + { + "start": 11351.18, + "end": 11351.79, + "probability": 0.604 + }, + { + "start": 11352.58, + "end": 11352.7, + "probability": 0.1118 + }, + { + "start": 11354.54, + "end": 11357.84, + "probability": 0.0543 + }, + { + "start": 11357.84, + "end": 11360.9, + "probability": 0.4249 + }, + { + "start": 11361.16, + "end": 11362.8, + "probability": 0.9387 + }, + { + "start": 11362.9, + "end": 11363.72, + "probability": 0.6376 + }, + { + "start": 11364.0, + "end": 11365.16, + "probability": 0.4652 + }, + { + "start": 11365.28, + "end": 11366.34, + "probability": 0.4642 + }, + { + "start": 11366.34, + "end": 11366.42, + "probability": 0.4211 + }, + { + "start": 11366.5, + "end": 11367.12, + "probability": 0.2892 + }, + { + "start": 11367.26, + "end": 11368.16, + "probability": 0.6553 + }, + { + "start": 11368.48, + "end": 11369.8, + "probability": 0.7461 + }, + { + "start": 11370.66, + "end": 11373.06, + "probability": 0.4451 + }, + { + "start": 11373.98, + "end": 11375.06, + "probability": 0.0453 + }, + { + "start": 11375.16, + "end": 11377.76, + "probability": 0.7127 + }, + { + "start": 11378.14, + "end": 11378.48, + "probability": 0.4786 + }, + { + "start": 11378.64, + "end": 11379.9, + "probability": 0.4326 + }, + { + "start": 11380.0, + "end": 11381.32, + "probability": 0.7505 + }, + { + "start": 11381.4, + "end": 11382.3, + "probability": 0.4266 + }, + { + "start": 11382.5, + "end": 11389.98, + "probability": 0.8846 + }, + { + "start": 11390.14, + "end": 11391.66, + "probability": 0.9746 + }, + { + "start": 11391.88, + "end": 11392.62, + "probability": 0.886 + }, + { + "start": 11392.78, + "end": 11395.3, + "probability": 0.8931 + }, + { + "start": 11395.46, + "end": 11396.04, + "probability": 0.2182 + }, + { + "start": 11396.06, + "end": 11398.0, + "probability": 0.9788 + }, + { + "start": 11398.06, + "end": 11398.4, + "probability": 0.1924 + }, + { + "start": 11398.4, + "end": 11398.42, + "probability": 0.204 + }, + { + "start": 11398.42, + "end": 11399.12, + "probability": 0.7808 + }, + { + "start": 11399.18, + "end": 11400.12, + "probability": 0.7455 + }, + { + "start": 11400.24, + "end": 11401.32, + "probability": 0.7951 + }, + { + "start": 11401.32, + "end": 11403.32, + "probability": 0.7672 + }, + { + "start": 11403.8, + "end": 11407.12, + "probability": 0.8586 + }, + { + "start": 11407.18, + "end": 11410.04, + "probability": 0.467 + }, + { + "start": 11410.16, + "end": 11410.6, + "probability": 0.0184 + }, + { + "start": 11410.6, + "end": 11411.98, + "probability": 0.7814 + }, + { + "start": 11412.4, + "end": 11414.82, + "probability": 0.8521 + }, + { + "start": 11414.98, + "end": 11416.56, + "probability": 0.2163 + }, + { + "start": 11418.4, + "end": 11418.94, + "probability": 0.0876 + }, + { + "start": 11418.94, + "end": 11419.88, + "probability": 0.0596 + }, + { + "start": 11420.08, + "end": 11424.56, + "probability": 0.3443 + }, + { + "start": 11424.72, + "end": 11425.78, + "probability": 0.4639 + }, + { + "start": 11425.9, + "end": 11428.98, + "probability": 0.589 + }, + { + "start": 11428.98, + "end": 11429.6, + "probability": 0.5347 + }, + { + "start": 11429.6, + "end": 11433.04, + "probability": 0.0861 + }, + { + "start": 11433.04, + "end": 11433.04, + "probability": 0.0975 + }, + { + "start": 11433.04, + "end": 11433.04, + "probability": 0.0054 + }, + { + "start": 11433.04, + "end": 11435.1, + "probability": 0.5053 + }, + { + "start": 11435.18, + "end": 11437.88, + "probability": 0.295 + }, + { + "start": 11438.06, + "end": 11438.28, + "probability": 0.2397 + }, + { + "start": 11440.46, + "end": 11442.0, + "probability": 0.0183 + }, + { + "start": 11443.18, + "end": 11443.98, + "probability": 0.0092 + }, + { + "start": 11443.98, + "end": 11443.98, + "probability": 0.0172 + }, + { + "start": 11443.98, + "end": 11444.94, + "probability": 0.0453 + }, + { + "start": 11446.82, + "end": 11447.04, + "probability": 0.0187 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.0, + "end": 11521.0, + "probability": 0.0 + }, + { + "start": 11521.62, + "end": 11526.06, + "probability": 0.0843 + }, + { + "start": 11526.06, + "end": 11526.26, + "probability": 0.1538 + }, + { + "start": 11526.26, + "end": 11526.5, + "probability": 0.3089 + }, + { + "start": 11526.58, + "end": 11527.38, + "probability": 0.0455 + }, + { + "start": 11532.54, + "end": 11533.26, + "probability": 0.0009 + }, + { + "start": 11534.76, + "end": 11536.9, + "probability": 0.2296 + }, + { + "start": 11538.9, + "end": 11543.0, + "probability": 0.0106 + }, + { + "start": 11543.0, + "end": 11546.22, + "probability": 0.0489 + }, + { + "start": 11546.78, + "end": 11548.84, + "probability": 0.0732 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.0, + "end": 11642.0, + "probability": 0.0 + }, + { + "start": 11642.54, + "end": 11645.22, + "probability": 0.1818 + }, + { + "start": 11645.34, + "end": 11646.2, + "probability": 0.6118 + }, + { + "start": 11648.0, + "end": 11651.0, + "probability": 0.9948 + }, + { + "start": 11651.42, + "end": 11655.22, + "probability": 0.8685 + }, + { + "start": 11655.58, + "end": 11656.32, + "probability": 0.9065 + }, + { + "start": 11656.52, + "end": 11658.16, + "probability": 0.989 + }, + { + "start": 11658.6, + "end": 11661.17, + "probability": 0.9907 + }, + { + "start": 11662.4, + "end": 11664.34, + "probability": 0.9989 + }, + { + "start": 11665.16, + "end": 11666.04, + "probability": 0.8486 + }, + { + "start": 11666.62, + "end": 11667.06, + "probability": 0.9885 + }, + { + "start": 11669.44, + "end": 11672.26, + "probability": 0.4717 + }, + { + "start": 11672.52, + "end": 11673.4, + "probability": 0.9721 + }, + { + "start": 11673.52, + "end": 11680.32, + "probability": 0.9927 + }, + { + "start": 11680.42, + "end": 11681.24, + "probability": 0.9607 + }, + { + "start": 11681.54, + "end": 11684.92, + "probability": 0.9951 + }, + { + "start": 11685.24, + "end": 11692.46, + "probability": 0.8486 + }, + { + "start": 11692.56, + "end": 11694.16, + "probability": 0.6817 + }, + { + "start": 11694.16, + "end": 11697.36, + "probability": 0.8776 + }, + { + "start": 11697.42, + "end": 11697.96, + "probability": 0.8428 + }, + { + "start": 11699.06, + "end": 11700.16, + "probability": 0.0982 + }, + { + "start": 11703.84, + "end": 11703.94, + "probability": 0.1912 + }, + { + "start": 11703.94, + "end": 11704.64, + "probability": 0.1445 + }, + { + "start": 11706.48, + "end": 11707.64, + "probability": 0.0256 + }, + { + "start": 11710.4, + "end": 11711.52, + "probability": 0.3013 + }, + { + "start": 11711.52, + "end": 11712.28, + "probability": 0.0937 + }, + { + "start": 11712.84, + "end": 11714.66, + "probability": 0.4427 + }, + { + "start": 11715.24, + "end": 11719.52, + "probability": 0.9639 + }, + { + "start": 11719.58, + "end": 11720.48, + "probability": 0.8051 + }, + { + "start": 11721.32, + "end": 11722.44, + "probability": 0.9766 + }, + { + "start": 11723.4, + "end": 11725.84, + "probability": 0.8121 + }, + { + "start": 11725.98, + "end": 11728.06, + "probability": 0.6407 + }, + { + "start": 11728.48, + "end": 11729.32, + "probability": 0.9819 + }, + { + "start": 11729.42, + "end": 11730.4, + "probability": 0.7619 + }, + { + "start": 11730.68, + "end": 11734.08, + "probability": 0.9141 + }, + { + "start": 11734.52, + "end": 11735.1, + "probability": 0.7042 + }, + { + "start": 11735.18, + "end": 11735.8, + "probability": 0.5586 + }, + { + "start": 11735.88, + "end": 11741.72, + "probability": 0.9643 + }, + { + "start": 11742.68, + "end": 11745.24, + "probability": 0.9565 + }, + { + "start": 11745.48, + "end": 11746.9, + "probability": 0.9919 + }, + { + "start": 11747.38, + "end": 11748.28, + "probability": 0.5654 + }, + { + "start": 11748.52, + "end": 11751.7, + "probability": 0.6832 + }, + { + "start": 11751.82, + "end": 11752.82, + "probability": 0.652 + }, + { + "start": 11753.0, + "end": 11754.08, + "probability": 0.8798 + }, + { + "start": 11754.12, + "end": 11757.0, + "probability": 0.8225 + }, + { + "start": 11757.18, + "end": 11759.88, + "probability": 0.7702 + }, + { + "start": 11760.52, + "end": 11762.8, + "probability": 0.9537 + }, + { + "start": 11762.86, + "end": 11768.24, + "probability": 0.7832 + }, + { + "start": 11768.42, + "end": 11771.1, + "probability": 0.5048 + }, + { + "start": 11771.32, + "end": 11773.0, + "probability": 0.763 + }, + { + "start": 11773.12, + "end": 11777.7, + "probability": 0.9798 + }, + { + "start": 11778.12, + "end": 11778.75, + "probability": 0.9831 + }, + { + "start": 11779.64, + "end": 11781.84, + "probability": 0.689 + }, + { + "start": 11783.14, + "end": 11783.34, + "probability": 0.5589 + }, + { + "start": 11783.34, + "end": 11783.34, + "probability": 0.3073 + }, + { + "start": 11783.34, + "end": 11786.02, + "probability": 0.5048 + }, + { + "start": 11786.52, + "end": 11789.08, + "probability": 0.9637 + }, + { + "start": 11789.54, + "end": 11792.56, + "probability": 0.9364 + }, + { + "start": 11793.12, + "end": 11796.1, + "probability": 0.6594 + }, + { + "start": 11796.54, + "end": 11798.36, + "probability": 0.8538 + }, + { + "start": 11798.42, + "end": 11800.24, + "probability": 0.8743 + }, + { + "start": 11800.28, + "end": 11802.46, + "probability": 0.8458 + }, + { + "start": 11802.56, + "end": 11804.58, + "probability": 0.9639 + }, + { + "start": 11805.3, + "end": 11809.92, + "probability": 0.9971 + }, + { + "start": 11810.28, + "end": 11811.48, + "probability": 0.9012 + }, + { + "start": 11811.72, + "end": 11815.22, + "probability": 0.9424 + }, + { + "start": 11815.74, + "end": 11817.26, + "probability": 0.8433 + }, + { + "start": 11817.26, + "end": 11820.78, + "probability": 0.7243 + }, + { + "start": 11821.1, + "end": 11821.8, + "probability": 0.791 + }, + { + "start": 11821.96, + "end": 11823.56, + "probability": 0.9882 + }, + { + "start": 11823.68, + "end": 11825.64, + "probability": 0.9589 + }, + { + "start": 11827.0, + "end": 11827.0, + "probability": 0.0415 + }, + { + "start": 11827.0, + "end": 11828.4, + "probability": 0.0562 + }, + { + "start": 11828.68, + "end": 11831.66, + "probability": 0.8342 + }, + { + "start": 11831.86, + "end": 11833.8, + "probability": 0.7334 + }, + { + "start": 11835.2, + "end": 11840.92, + "probability": 0.5625 + }, + { + "start": 11841.44, + "end": 11843.92, + "probability": 0.9564 + }, + { + "start": 11858.08, + "end": 11858.76, + "probability": 0.8513 + }, + { + "start": 11858.86, + "end": 11863.58, + "probability": 0.9891 + }, + { + "start": 11863.6, + "end": 11867.4, + "probability": 0.9937 + }, + { + "start": 11868.38, + "end": 11869.41, + "probability": 0.9277 + }, + { + "start": 11869.74, + "end": 11873.56, + "probability": 0.9887 + }, + { + "start": 11873.58, + "end": 11875.22, + "probability": 0.7808 + }, + { + "start": 11875.56, + "end": 11876.78, + "probability": 0.6 + }, + { + "start": 11877.4, + "end": 11877.74, + "probability": 0.6921 + }, + { + "start": 11877.74, + "end": 11878.56, + "probability": 0.3006 + }, + { + "start": 11878.6, + "end": 11879.98, + "probability": 0.1231 + }, + { + "start": 11880.18, + "end": 11882.64, + "probability": 0.302 + }, + { + "start": 11882.74, + "end": 11887.1, + "probability": 0.498 + }, + { + "start": 11887.92, + "end": 11888.04, + "probability": 0.0145 + }, + { + "start": 11888.04, + "end": 11888.04, + "probability": 0.0338 + }, + { + "start": 11888.04, + "end": 11890.92, + "probability": 0.9369 + }, + { + "start": 11890.92, + "end": 11895.22, + "probability": 0.9895 + }, + { + "start": 11895.4, + "end": 11896.86, + "probability": 0.9816 + }, + { + "start": 11896.9, + "end": 11899.56, + "probability": 0.9957 + }, + { + "start": 11899.94, + "end": 11901.74, + "probability": 0.7738 + }, + { + "start": 11902.04, + "end": 11905.62, + "probability": 0.6629 + }, + { + "start": 11905.7, + "end": 11910.66, + "probability": 0.9946 + }, + { + "start": 11911.24, + "end": 11912.42, + "probability": 0.8865 + }, + { + "start": 11912.52, + "end": 11913.78, + "probability": 0.5857 + }, + { + "start": 11913.92, + "end": 11917.7, + "probability": 0.9566 + }, + { + "start": 11917.96, + "end": 11922.5, + "probability": 0.8936 + }, + { + "start": 11922.76, + "end": 11924.14, + "probability": 0.7119 + }, + { + "start": 11924.56, + "end": 11927.52, + "probability": 0.7569 + }, + { + "start": 11927.52, + "end": 11930.26, + "probability": 0.6882 + }, + { + "start": 11930.74, + "end": 11932.34, + "probability": 0.9808 + }, + { + "start": 11932.56, + "end": 11933.38, + "probability": 0.6036 + }, + { + "start": 11933.52, + "end": 11933.66, + "probability": 0.0591 + }, + { + "start": 11933.66, + "end": 11933.66, + "probability": 0.137 + }, + { + "start": 11933.66, + "end": 11935.38, + "probability": 0.8142 + }, + { + "start": 11935.76, + "end": 11939.48, + "probability": 0.9791 + }, + { + "start": 11939.74, + "end": 11942.68, + "probability": 0.7842 + }, + { + "start": 11942.94, + "end": 11945.64, + "probability": 0.7165 + }, + { + "start": 11945.64, + "end": 11949.54, + "probability": 0.3092 + }, + { + "start": 11949.88, + "end": 11953.32, + "probability": 0.487 + }, + { + "start": 11957.6, + "end": 11959.6, + "probability": 0.5655 + }, + { + "start": 11959.6, + "end": 11961.5, + "probability": 0.5745 + }, + { + "start": 11962.1, + "end": 11962.1, + "probability": 0.284 + }, + { + "start": 11962.1, + "end": 11962.1, + "probability": 0.236 + }, + { + "start": 11962.1, + "end": 11963.32, + "probability": 0.7875 + }, + { + "start": 11963.46, + "end": 11963.92, + "probability": 0.659 + }, + { + "start": 11964.44, + "end": 11965.95, + "probability": 0.9036 + }, + { + "start": 11966.24, + "end": 11967.38, + "probability": 0.9562 + }, + { + "start": 11967.46, + "end": 11969.9, + "probability": 0.9107 + }, + { + "start": 11970.52, + "end": 11971.28, + "probability": 0.1271 + }, + { + "start": 11971.32, + "end": 11973.35, + "probability": 0.9787 + }, + { + "start": 11974.1, + "end": 11975.62, + "probability": 0.2419 + }, + { + "start": 11975.8, + "end": 11976.2, + "probability": 0.1689 + }, + { + "start": 11976.2, + "end": 11976.4, + "probability": 0.047 + }, + { + "start": 11976.52, + "end": 11977.36, + "probability": 0.3993 + }, + { + "start": 11977.36, + "end": 11981.6, + "probability": 0.5948 + }, + { + "start": 11981.94, + "end": 11983.6, + "probability": 0.2363 + }, + { + "start": 11985.2, + "end": 11988.14, + "probability": 0.1701 + }, + { + "start": 11988.26, + "end": 11989.58, + "probability": 0.0307 + }, + { + "start": 11989.86, + "end": 11991.04, + "probability": 0.0276 + }, + { + "start": 11991.26, + "end": 11991.26, + "probability": 0.0808 + }, + { + "start": 11991.82, + "end": 11992.2, + "probability": 0.4767 + }, + { + "start": 11992.4, + "end": 11993.0, + "probability": 0.3564 + }, + { + "start": 11993.62, + "end": 11995.18, + "probability": 0.2368 + }, + { + "start": 11995.3, + "end": 11996.49, + "probability": 0.6249 + }, + { + "start": 11997.14, + "end": 12000.64, + "probability": 0.0281 + }, + { + "start": 12000.64, + "end": 12001.94, + "probability": 0.0832 + }, + { + "start": 12001.94, + "end": 12001.94, + "probability": 0.0805 + }, + { + "start": 12001.94, + "end": 12002.64, + "probability": 0.7023 + }, + { + "start": 12003.1, + "end": 12004.06, + "probability": 0.0828 + }, + { + "start": 12005.96, + "end": 12006.22, + "probability": 0.0567 + }, + { + "start": 12006.22, + "end": 12008.92, + "probability": 0.4048 + }, + { + "start": 12017.08, + "end": 12022.38, + "probability": 0.729 + }, + { + "start": 12022.74, + "end": 12025.06, + "probability": 0.0558 + }, + { + "start": 12034.28, + "end": 12040.12, + "probability": 0.9968 + }, + { + "start": 12040.12, + "end": 12043.94, + "probability": 0.928 + }, + { + "start": 12044.68, + "end": 12046.14, + "probability": 0.5918 + }, + { + "start": 12046.96, + "end": 12050.24, + "probability": 0.9399 + }, + { + "start": 12050.56, + "end": 12055.98, + "probability": 0.9877 + }, + { + "start": 12056.12, + "end": 12057.66, + "probability": 0.684 + }, + { + "start": 12058.2, + "end": 12058.92, + "probability": 0.6693 + }, + { + "start": 12059.02, + "end": 12059.78, + "probability": 0.8739 + }, + { + "start": 12059.86, + "end": 12063.36, + "probability": 0.981 + }, + { + "start": 12063.44, + "end": 12070.76, + "probability": 0.8859 + }, + { + "start": 12071.18, + "end": 12073.01, + "probability": 0.291 + }, + { + "start": 12073.56, + "end": 12075.54, + "probability": 0.451 + }, + { + "start": 12076.06, + "end": 12079.66, + "probability": 0.8911 + }, + { + "start": 12079.8, + "end": 12083.64, + "probability": 0.9986 + }, + { + "start": 12083.66, + "end": 12084.84, + "probability": 0.7952 + }, + { + "start": 12084.84, + "end": 12086.7, + "probability": 0.8891 + }, + { + "start": 12086.8, + "end": 12087.26, + "probability": 0.0522 + }, + { + "start": 12087.26, + "end": 12087.77, + "probability": 0.4806 + }, + { + "start": 12088.8, + "end": 12090.24, + "probability": 0.3644 + }, + { + "start": 12092.74, + "end": 12093.93, + "probability": 0.5072 + }, + { + "start": 12096.6, + "end": 12097.48, + "probability": 0.5256 + }, + { + "start": 12098.5, + "end": 12099.7, + "probability": 0.0595 + }, + { + "start": 12099.9, + "end": 12100.52, + "probability": 0.1359 + }, + { + "start": 12100.56, + "end": 12102.22, + "probability": 0.055 + }, + { + "start": 12102.22, + "end": 12102.22, + "probability": 0.0817 + }, + { + "start": 12102.22, + "end": 12102.22, + "probability": 0.0287 + }, + { + "start": 12102.22, + "end": 12102.22, + "probability": 0.1945 + }, + { + "start": 12102.22, + "end": 12102.22, + "probability": 0.0419 + }, + { + "start": 12102.22, + "end": 12105.04, + "probability": 0.1089 + }, + { + "start": 12105.21, + "end": 12110.24, + "probability": 0.4806 + }, + { + "start": 12110.32, + "end": 12111.56, + "probability": 0.8235 + }, + { + "start": 12111.96, + "end": 12115.16, + "probability": 0.8661 + }, + { + "start": 12115.22, + "end": 12118.24, + "probability": 0.9708 + }, + { + "start": 12118.54, + "end": 12119.89, + "probability": 0.9653 + }, + { + "start": 12121.18, + "end": 12121.36, + "probability": 0.3051 + }, + { + "start": 12121.44, + "end": 12122.24, + "probability": 0.8979 + }, + { + "start": 12123.08, + "end": 12123.08, + "probability": 0.0017 + }, + { + "start": 12123.08, + "end": 12123.43, + "probability": 0.3524 + }, + { + "start": 12124.2, + "end": 12127.2, + "probability": 0.9857 + }, + { + "start": 12127.2, + "end": 12129.68, + "probability": 0.989 + }, + { + "start": 12129.96, + "end": 12131.14, + "probability": 0.9282 + }, + { + "start": 12131.18, + "end": 12135.62, + "probability": 0.9661 + }, + { + "start": 12135.96, + "end": 12137.18, + "probability": 0.9879 + }, + { + "start": 12137.8, + "end": 12138.84, + "probability": 0.9374 + }, + { + "start": 12139.38, + "end": 12140.64, + "probability": 0.832 + }, + { + "start": 12141.14, + "end": 12142.6, + "probability": 0.9629 + }, + { + "start": 12142.84, + "end": 12146.56, + "probability": 0.9816 + }, + { + "start": 12146.86, + "end": 12153.46, + "probability": 0.9326 + }, + { + "start": 12153.74, + "end": 12155.94, + "probability": 0.999 + }, + { + "start": 12155.94, + "end": 12160.88, + "probability": 0.9389 + }, + { + "start": 12161.04, + "end": 12163.06, + "probability": 0.6637 + }, + { + "start": 12163.74, + "end": 12167.06, + "probability": 0.9934 + }, + { + "start": 12167.16, + "end": 12169.44, + "probability": 0.9966 + }, + { + "start": 12170.26, + "end": 12171.48, + "probability": 0.7206 + }, + { + "start": 12171.72, + "end": 12174.0, + "probability": 0.6647 + }, + { + "start": 12174.38, + "end": 12178.34, + "probability": 0.9943 + }, + { + "start": 12178.34, + "end": 12181.14, + "probability": 0.9958 + }, + { + "start": 12181.54, + "end": 12181.96, + "probability": 0.3171 + }, + { + "start": 12182.42, + "end": 12185.8, + "probability": 0.9913 + }, + { + "start": 12185.88, + "end": 12188.74, + "probability": 0.9451 + }, + { + "start": 12188.8, + "end": 12189.26, + "probability": 0.7651 + }, + { + "start": 12189.44, + "end": 12190.26, + "probability": 0.2614 + }, + { + "start": 12190.88, + "end": 12191.76, + "probability": 0.8429 + }, + { + "start": 12193.36, + "end": 12195.38, + "probability": 0.8794 + }, + { + "start": 12195.76, + "end": 12196.44, + "probability": 0.7859 + }, + { + "start": 12196.58, + "end": 12198.38, + "probability": 0.9527 + }, + { + "start": 12198.48, + "end": 12199.14, + "probability": 0.8011 + }, + { + "start": 12203.36, + "end": 12204.3, + "probability": 0.5449 + }, + { + "start": 12206.58, + "end": 12208.64, + "probability": 0.6545 + }, + { + "start": 12208.9, + "end": 12209.54, + "probability": 0.9214 + }, + { + "start": 12209.74, + "end": 12211.0, + "probability": 0.8604 + }, + { + "start": 12211.04, + "end": 12212.14, + "probability": 0.9066 + }, + { + "start": 12212.38, + "end": 12213.6, + "probability": 0.9805 + }, + { + "start": 12216.82, + "end": 12217.64, + "probability": 0.9127 + }, + { + "start": 12220.06, + "end": 12220.38, + "probability": 0.019 + }, + { + "start": 12221.08, + "end": 12221.32, + "probability": 0.5614 + }, + { + "start": 12222.54, + "end": 12224.3, + "probability": 0.7082 + }, + { + "start": 12225.64, + "end": 12226.54, + "probability": 0.7624 + }, + { + "start": 12229.86, + "end": 12232.38, + "probability": 0.5636 + }, + { + "start": 12233.66, + "end": 12235.88, + "probability": 0.9267 + }, + { + "start": 12237.3, + "end": 12240.44, + "probability": 0.7678 + }, + { + "start": 12240.98, + "end": 12243.08, + "probability": 0.896 + }, + { + "start": 12243.96, + "end": 12244.18, + "probability": 0.5762 + }, + { + "start": 12245.62, + "end": 12246.74, + "probability": 0.393 + }, + { + "start": 12248.22, + "end": 12257.32, + "probability": 0.8058 + }, + { + "start": 12262.98, + "end": 12264.36, + "probability": 0.4679 + }, + { + "start": 12267.06, + "end": 12271.76, + "probability": 0.7544 + }, + { + "start": 12272.48, + "end": 12272.74, + "probability": 0.7277 + }, + { + "start": 12274.08, + "end": 12274.94, + "probability": 0.9579 + }, + { + "start": 12276.76, + "end": 12279.1, + "probability": 0.915 + }, + { + "start": 12280.54, + "end": 12280.9, + "probability": 0.9679 + }, + { + "start": 12282.7, + "end": 12284.94, + "probability": 0.866 + }, + { + "start": 12287.91, + "end": 12291.22, + "probability": 0.8965 + }, + { + "start": 12297.48, + "end": 12300.72, + "probability": 0.3872 + }, + { + "start": 12302.4, + "end": 12305.42, + "probability": 0.2291 + }, + { + "start": 12306.24, + "end": 12306.5, + "probability": 0.6466 + }, + { + "start": 12307.68, + "end": 12308.98, + "probability": 0.8571 + }, + { + "start": 12309.76, + "end": 12310.06, + "probability": 0.9121 + }, + { + "start": 12311.04, + "end": 12311.88, + "probability": 0.974 + }, + { + "start": 12312.58, + "end": 12314.64, + "probability": 0.8754 + }, + { + "start": 12317.46, + "end": 12317.94, + "probability": 0.8203 + }, + { + "start": 12319.18, + "end": 12320.82, + "probability": 0.994 + }, + { + "start": 12322.54, + "end": 12329.46, + "probability": 0.9837 + }, + { + "start": 12330.06, + "end": 12330.52, + "probability": 0.9534 + }, + { + "start": 12331.56, + "end": 12332.4, + "probability": 0.6541 + }, + { + "start": 12333.06, + "end": 12333.42, + "probability": 0.9514 + }, + { + "start": 12334.36, + "end": 12335.78, + "probability": 0.4972 + }, + { + "start": 12336.62, + "end": 12339.14, + "probability": 0.9839 + }, + { + "start": 12339.86, + "end": 12342.72, + "probability": 0.9528 + }, + { + "start": 12344.34, + "end": 12346.78, + "probability": 0.9551 + }, + { + "start": 12347.6, + "end": 12349.78, + "probability": 0.9513 + }, + { + "start": 12351.0, + "end": 12354.08, + "probability": 0.9917 + }, + { + "start": 12355.2, + "end": 12357.38, + "probability": 0.9915 + }, + { + "start": 12358.64, + "end": 12363.08, + "probability": 0.5948 + }, + { + "start": 12363.86, + "end": 12369.28, + "probability": 0.9412 + }, + { + "start": 12369.8, + "end": 12371.72, + "probability": 0.8702 + }, + { + "start": 12372.52, + "end": 12374.26, + "probability": 0.918 + }, + { + "start": 12377.24, + "end": 12381.7, + "probability": 0.9163 + }, + { + "start": 12383.84, + "end": 12386.32, + "probability": 0.9738 + }, + { + "start": 12387.32, + "end": 12389.36, + "probability": 0.9109 + }, + { + "start": 12390.08, + "end": 12390.38, + "probability": 0.6487 + }, + { + "start": 12391.32, + "end": 12394.77, + "probability": 0.9585 + }, + { + "start": 12396.24, + "end": 12397.9, + "probability": 0.8863 + }, + { + "start": 12399.32, + "end": 12402.56, + "probability": 0.9797 + }, + { + "start": 12403.76, + "end": 12406.8, + "probability": 0.9609 + }, + { + "start": 12407.22, + "end": 12409.62, + "probability": 0.9692 + }, + { + "start": 12410.38, + "end": 12413.22, + "probability": 0.7105 + }, + { + "start": 12414.32, + "end": 12416.26, + "probability": 0.573 + }, + { + "start": 12418.32, + "end": 12418.88, + "probability": 0.9761 + }, + { + "start": 12419.94, + "end": 12421.04, + "probability": 0.8427 + }, + { + "start": 12421.6, + "end": 12423.42, + "probability": 0.8546 + }, + { + "start": 12424.3, + "end": 12426.26, + "probability": 0.9941 + }, + { + "start": 12427.1, + "end": 12429.6, + "probability": 0.9569 + }, + { + "start": 12430.14, + "end": 12432.04, + "probability": 0.854 + }, + { + "start": 12434.0, + "end": 12438.52, + "probability": 0.9771 + }, + { + "start": 12439.18, + "end": 12442.08, + "probability": 0.7351 + }, + { + "start": 12443.92, + "end": 12447.78, + "probability": 0.8167 + }, + { + "start": 12453.2, + "end": 12456.9, + "probability": 0.7407 + }, + { + "start": 12457.62, + "end": 12459.6, + "probability": 0.9391 + }, + { + "start": 12461.54, + "end": 12462.78, + "probability": 0.9357 + }, + { + "start": 12465.0, + "end": 12467.0, + "probability": 0.9436 + }, + { + "start": 12467.96, + "end": 12469.92, + "probability": 0.9759 + }, + { + "start": 12470.38, + "end": 12472.66, + "probability": 0.9614 + }, + { + "start": 12473.16, + "end": 12475.1, + "probability": 0.9467 + }, + { + "start": 12475.52, + "end": 12477.02, + "probability": 0.3105 + }, + { + "start": 12480.58, + "end": 12481.94, + "probability": 0.1259 + }, + { + "start": 12482.62, + "end": 12485.02, + "probability": 0.6987 + }, + { + "start": 12486.78, + "end": 12489.78, + "probability": 0.8745 + }, + { + "start": 12490.56, + "end": 12491.32, + "probability": 0.9271 + }, + { + "start": 12496.04, + "end": 12498.84, + "probability": 0.949 + }, + { + "start": 12499.94, + "end": 12500.38, + "probability": 0.8818 + }, + { + "start": 12501.1, + "end": 12502.04, + "probability": 0.9073 + }, + { + "start": 12504.86, + "end": 12511.78, + "probability": 0.7528 + }, + { + "start": 12515.7, + "end": 12518.82, + "probability": 0.8947 + }, + { + "start": 12519.6, + "end": 12526.14, + "probability": 0.76 + }, + { + "start": 12529.03, + "end": 12533.3, + "probability": 0.9138 + }, + { + "start": 12533.9, + "end": 12536.96, + "probability": 0.937 + }, + { + "start": 12539.34, + "end": 12542.18, + "probability": 0.7396 + }, + { + "start": 12542.8, + "end": 12543.12, + "probability": 0.9832 + }, + { + "start": 12543.8, + "end": 12544.72, + "probability": 0.9595 + }, + { + "start": 12546.0, + "end": 12548.82, + "probability": 0.9145 + }, + { + "start": 12551.56, + "end": 12554.5, + "probability": 0.9379 + }, + { + "start": 12556.0, + "end": 12557.14, + "probability": 0.9927 + }, + { + "start": 12558.68, + "end": 12559.54, + "probability": 0.864 + }, + { + "start": 12560.4, + "end": 12562.6, + "probability": 0.9878 + }, + { + "start": 12563.32, + "end": 12565.22, + "probability": 0.9902 + }, + { + "start": 12567.18, + "end": 12570.64, + "probability": 0.677 + }, + { + "start": 12571.82, + "end": 12574.14, + "probability": 0.8438 + }, + { + "start": 12575.46, + "end": 12577.7, + "probability": 0.8805 + }, + { + "start": 12578.5, + "end": 12582.9, + "probability": 0.9495 + }, + { + "start": 12583.82, + "end": 12584.28, + "probability": 0.9622 + }, + { + "start": 12586.12, + "end": 12588.12, + "probability": 0.8904 + }, + { + "start": 12589.14, + "end": 12594.26, + "probability": 0.8864 + }, + { + "start": 12595.4, + "end": 12598.18, + "probability": 0.959 + }, + { + "start": 12599.68, + "end": 12600.66, + "probability": 0.9905 + }, + { + "start": 12603.28, + "end": 12606.14, + "probability": 0.991 + }, + { + "start": 12606.84, + "end": 12608.72, + "probability": 0.9618 + }, + { + "start": 12611.22, + "end": 12613.7, + "probability": 0.9409 + }, + { + "start": 12615.62, + "end": 12619.76, + "probability": 0.6834 + }, + { + "start": 12621.08, + "end": 12623.18, + "probability": 0.9106 + }, + { + "start": 12625.16, + "end": 12625.98, + "probability": 0.9937 + }, + { + "start": 12627.28, + "end": 12628.42, + "probability": 0.5349 + }, + { + "start": 12629.0, + "end": 12631.26, + "probability": 0.9194 + }, + { + "start": 12633.16, + "end": 12635.38, + "probability": 0.9768 + }, + { + "start": 12636.12, + "end": 12638.36, + "probability": 0.9881 + }, + { + "start": 12638.9, + "end": 12642.64, + "probability": 0.9771 + }, + { + "start": 12645.52, + "end": 12647.2, + "probability": 0.7528 + }, + { + "start": 12648.34, + "end": 12650.72, + "probability": 0.8407 + }, + { + "start": 12651.58, + "end": 12654.1, + "probability": 0.9087 + }, + { + "start": 12656.46, + "end": 12663.88, + "probability": 0.9735 + }, + { + "start": 12664.56, + "end": 12666.74, + "probability": 0.9163 + }, + { + "start": 12667.62, + "end": 12669.84, + "probability": 0.9758 + }, + { + "start": 12670.76, + "end": 12674.16, + "probability": 0.9167 + }, + { + "start": 12674.88, + "end": 12677.6, + "probability": 0.7402 + }, + { + "start": 12680.24, + "end": 12681.48, + "probability": 0.4535 + }, + { + "start": 12682.38, + "end": 12685.9, + "probability": 0.7921 + }, + { + "start": 12686.54, + "end": 12688.72, + "probability": 0.9246 + }, + { + "start": 12690.04, + "end": 12693.38, + "probability": 0.9512 + }, + { + "start": 12696.52, + "end": 12700.32, + "probability": 0.9092 + }, + { + "start": 12701.0, + "end": 12703.98, + "probability": 0.8571 + }, + { + "start": 12707.64, + "end": 12710.06, + "probability": 0.7183 + }, + { + "start": 12710.72, + "end": 12713.94, + "probability": 0.9153 + }, + { + "start": 12714.56, + "end": 12718.16, + "probability": 0.9678 + }, + { + "start": 12719.46, + "end": 12723.2, + "probability": 0.9602 + }, + { + "start": 12724.06, + "end": 12731.7, + "probability": 0.9854 + }, + { + "start": 12732.62, + "end": 12734.4, + "probability": 0.908 + }, + { + "start": 12734.92, + "end": 12736.44, + "probability": 0.9943 + }, + { + "start": 12737.98, + "end": 12738.92, + "probability": 0.4677 + }, + { + "start": 12742.9, + "end": 12745.4, + "probability": 0.8261 + }, + { + "start": 12755.72, + "end": 12760.06, + "probability": 0.9777 + }, + { + "start": 12762.05, + "end": 12763.45, + "probability": 0.3971 + }, + { + "start": 12765.72, + "end": 12769.64, + "probability": 0.8886 + }, + { + "start": 12770.48, + "end": 12772.5, + "probability": 0.9508 + }, + { + "start": 12774.32, + "end": 12774.54, + "probability": 0.9944 + }, + { + "start": 12775.06, + "end": 12777.38, + "probability": 0.6485 + }, + { + "start": 12778.72, + "end": 12780.92, + "probability": 0.9827 + }, + { + "start": 12781.74, + "end": 12786.38, + "probability": 0.9301 + }, + { + "start": 12787.68, + "end": 12789.62, + "probability": 0.9803 + }, + { + "start": 12790.16, + "end": 12794.86, + "probability": 0.9918 + }, + { + "start": 12795.6, + "end": 12800.94, + "probability": 0.8827 + }, + { + "start": 12801.54, + "end": 12804.54, + "probability": 0.8628 + }, + { + "start": 12806.72, + "end": 12809.0, + "probability": 0.9576 + }, + { + "start": 12810.2, + "end": 12813.86, + "probability": 0.9574 + }, + { + "start": 12815.14, + "end": 12817.02, + "probability": 0.9743 + }, + { + "start": 12818.76, + "end": 12821.02, + "probability": 0.9893 + }, + { + "start": 12821.9, + "end": 12824.32, + "probability": 0.8773 + }, + { + "start": 12824.98, + "end": 12828.9, + "probability": 0.6575 + }, + { + "start": 12830.7, + "end": 12832.96, + "probability": 0.8676 + }, + { + "start": 12834.94, + "end": 12837.66, + "probability": 0.9534 + }, + { + "start": 12838.92, + "end": 12840.76, + "probability": 0.968 + }, + { + "start": 12841.9, + "end": 12845.78, + "probability": 0.9269 + }, + { + "start": 12847.48, + "end": 12849.48, + "probability": 0.9814 + }, + { + "start": 12850.4, + "end": 12852.96, + "probability": 0.8149 + }, + { + "start": 12854.48, + "end": 12858.16, + "probability": 0.7041 + }, + { + "start": 12859.12, + "end": 12861.6, + "probability": 0.9662 + }, + { + "start": 12862.68, + "end": 12865.82, + "probability": 0.9859 + }, + { + "start": 12866.48, + "end": 12870.08, + "probability": 0.8875 + }, + { + "start": 12871.78, + "end": 12874.42, + "probability": 0.9325 + }, + { + "start": 12875.82, + "end": 12878.16, + "probability": 0.6546 + }, + { + "start": 12878.72, + "end": 12879.86, + "probability": 0.9659 + }, + { + "start": 12880.76, + "end": 12882.98, + "probability": 0.6555 + }, + { + "start": 12884.72, + "end": 12885.98, + "probability": 0.4205 + }, + { + "start": 12888.14, + "end": 12891.98, + "probability": 0.8603 + }, + { + "start": 12893.38, + "end": 12897.62, + "probability": 0.9227 + }, + { + "start": 12899.26, + "end": 12901.86, + "probability": 0.9099 + }, + { + "start": 12903.58, + "end": 12906.02, + "probability": 0.9782 + }, + { + "start": 12909.17, + "end": 12914.02, + "probability": 0.9966 + }, + { + "start": 12914.42, + "end": 12915.11, + "probability": 0.2706 + }, + { + "start": 12916.28, + "end": 12917.08, + "probability": 0.5905 + }, + { + "start": 12925.96, + "end": 12926.72, + "probability": 0.302 + }, + { + "start": 12929.4, + "end": 12929.66, + "probability": 0.1249 + }, + { + "start": 12931.34, + "end": 12931.87, + "probability": 0.075 + }, + { + "start": 12933.68, + "end": 12936.3, + "probability": 0.01 + }, + { + "start": 12936.86, + "end": 12941.84, + "probability": 0.0048 + }, + { + "start": 12955.46, + "end": 12956.0, + "probability": 0.0558 + }, + { + "start": 12956.0, + "end": 12959.54, + "probability": 0.0568 + }, + { + "start": 12959.54, + "end": 12965.82, + "probability": 0.1415 + }, + { + "start": 13103.24, + "end": 13103.58, + "probability": 0.4522 + }, + { + "start": 13103.68, + "end": 13105.22, + "probability": 0.8149 + }, + { + "start": 13105.42, + "end": 13108.68, + "probability": 0.9609 + }, + { + "start": 13109.8, + "end": 13112.66, + "probability": 0.8901 + }, + { + "start": 13113.52, + "end": 13115.18, + "probability": 0.9386 + }, + { + "start": 13115.56, + "end": 13116.96, + "probability": 0.9868 + }, + { + "start": 13118.94, + "end": 13119.5, + "probability": 0.0023 + }, + { + "start": 13119.76, + "end": 13119.94, + "probability": 0.3094 + }, + { + "start": 13132.42, + "end": 13133.7, + "probability": 0.7548 + }, + { + "start": 13134.04, + "end": 13135.02, + "probability": 0.8456 + }, + { + "start": 13135.08, + "end": 13141.0, + "probability": 0.828 + }, + { + "start": 13141.0, + "end": 13148.5, + "probability": 0.9927 + }, + { + "start": 13148.98, + "end": 13154.34, + "probability": 0.9958 + }, + { + "start": 13154.8, + "end": 13158.06, + "probability": 0.9969 + }, + { + "start": 13158.38, + "end": 13162.66, + "probability": 0.9288 + }, + { + "start": 13163.2, + "end": 13165.22, + "probability": 0.9829 + }, + { + "start": 13165.8, + "end": 13168.64, + "probability": 0.9655 + }, + { + "start": 13168.76, + "end": 13169.6, + "probability": 0.8149 + }, + { + "start": 13169.86, + "end": 13172.48, + "probability": 0.9 + }, + { + "start": 13181.2, + "end": 13185.04, + "probability": 0.9206 + }, + { + "start": 13185.62, + "end": 13190.76, + "probability": 0.9824 + }, + { + "start": 13190.76, + "end": 13196.48, + "probability": 0.9982 + }, + { + "start": 13196.96, + "end": 13201.48, + "probability": 0.9932 + }, + { + "start": 13201.64, + "end": 13204.88, + "probability": 0.9711 + }, + { + "start": 13205.6, + "end": 13205.6, + "probability": 0.3922 + }, + { + "start": 13205.6, + "end": 13209.08, + "probability": 0.9991 + }, + { + "start": 13209.48, + "end": 13211.08, + "probability": 0.9601 + }, + { + "start": 13211.32, + "end": 13212.42, + "probability": 0.7807 + }, + { + "start": 13212.68, + "end": 13214.36, + "probability": 0.9782 + }, + { + "start": 13214.56, + "end": 13216.66, + "probability": 0.6627 + }, + { + "start": 13217.1, + "end": 13217.18, + "probability": 0.0175 + }, + { + "start": 13217.18, + "end": 13220.92, + "probability": 0.6136 + }, + { + "start": 13220.92, + "end": 13225.0, + "probability": 0.9962 + }, + { + "start": 13225.6, + "end": 13228.74, + "probability": 0.9617 + }, + { + "start": 13228.74, + "end": 13233.98, + "probability": 0.9562 + }, + { + "start": 13235.04, + "end": 13238.4, + "probability": 0.998 + }, + { + "start": 13238.84, + "end": 13240.0, + "probability": 0.8774 + }, + { + "start": 13240.28, + "end": 13242.06, + "probability": 0.1496 + }, + { + "start": 13242.06, + "end": 13242.06, + "probability": 0.2017 + }, + { + "start": 13242.06, + "end": 13242.54, + "probability": 0.0578 + }, + { + "start": 13242.54, + "end": 13243.82, + "probability": 0.5013 + }, + { + "start": 13244.32, + "end": 13247.68, + "probability": 0.9899 + }, + { + "start": 13247.74, + "end": 13248.02, + "probability": 0.6166 + }, + { + "start": 13248.16, + "end": 13248.94, + "probability": 0.5425 + }, + { + "start": 13249.16, + "end": 13252.94, + "probability": 0.7473 + }, + { + "start": 13253.52, + "end": 13254.24, + "probability": 0.5921 + }, + { + "start": 13254.3, + "end": 13255.4, + "probability": 0.9359 + }, + { + "start": 13255.65, + "end": 13259.58, + "probability": 0.8354 + }, + { + "start": 13260.64, + "end": 13266.0, + "probability": 0.96 + }, + { + "start": 13266.22, + "end": 13269.38, + "probability": 0.9974 + }, + { + "start": 13269.48, + "end": 13271.9, + "probability": 0.9969 + }, + { + "start": 13272.54, + "end": 13275.48, + "probability": 0.9615 + }, + { + "start": 13275.82, + "end": 13278.12, + "probability": 0.9766 + }, + { + "start": 13278.12, + "end": 13280.14, + "probability": 0.9859 + }, + { + "start": 13280.92, + "end": 13286.64, + "probability": 0.9887 + }, + { + "start": 13286.92, + "end": 13289.22, + "probability": 0.9699 + }, + { + "start": 13289.52, + "end": 13292.42, + "probability": 0.9983 + }, + { + "start": 13292.7, + "end": 13295.52, + "probability": 0.9976 + }, + { + "start": 13295.94, + "end": 13297.54, + "probability": 0.8017 + }, + { + "start": 13297.62, + "end": 13299.34, + "probability": 0.991 + }, + { + "start": 13299.8, + "end": 13300.4, + "probability": 0.6653 + }, + { + "start": 13300.52, + "end": 13301.74, + "probability": 0.669 + }, + { + "start": 13302.12, + "end": 13303.26, + "probability": 0.9913 + }, + { + "start": 13303.38, + "end": 13304.46, + "probability": 0.9684 + }, + { + "start": 13304.74, + "end": 13309.14, + "probability": 0.978 + }, + { + "start": 13309.14, + "end": 13313.46, + "probability": 0.9997 + }, + { + "start": 13313.7, + "end": 13314.3, + "probability": 0.7493 + }, + { + "start": 13314.8, + "end": 13315.64, + "probability": 0.6968 + }, + { + "start": 13320.67, + "end": 13323.2, + "probability": 0.6792 + }, + { + "start": 13325.3, + "end": 13327.26, + "probability": 0.9258 + }, + { + "start": 13344.56, + "end": 13345.92, + "probability": 0.7457 + }, + { + "start": 13346.12, + "end": 13347.36, + "probability": 0.6891 + }, + { + "start": 13347.6, + "end": 13350.2, + "probability": 0.692 + }, + { + "start": 13350.38, + "end": 13354.3, + "probability": 0.9634 + }, + { + "start": 13355.71, + "end": 13358.5, + "probability": 0.9013 + }, + { + "start": 13358.6, + "end": 13364.32, + "probability": 0.7501 + }, + { + "start": 13364.32, + "end": 13370.24, + "probability": 0.9407 + }, + { + "start": 13371.3, + "end": 13373.92, + "probability": 0.991 + }, + { + "start": 13374.7, + "end": 13377.12, + "probability": 0.8898 + }, + { + "start": 13377.12, + "end": 13380.18, + "probability": 0.9164 + }, + { + "start": 13380.28, + "end": 13380.82, + "probability": 0.8514 + }, + { + "start": 13380.98, + "end": 13382.28, + "probability": 0.9542 + }, + { + "start": 13382.96, + "end": 13383.34, + "probability": 0.7355 + }, + { + "start": 13383.86, + "end": 13385.92, + "probability": 0.9778 + }, + { + "start": 13386.1, + "end": 13388.5, + "probability": 0.9775 + }, + { + "start": 13390.3, + "end": 13393.16, + "probability": 0.9753 + }, + { + "start": 13393.28, + "end": 13393.82, + "probability": 0.8644 + }, + { + "start": 13394.3, + "end": 13395.72, + "probability": 0.8321 + }, + { + "start": 13395.72, + "end": 13398.18, + "probability": 0.9991 + }, + { + "start": 13398.74, + "end": 13405.34, + "probability": 0.8826 + }, + { + "start": 13405.34, + "end": 13410.66, + "probability": 0.9973 + }, + { + "start": 13411.3, + "end": 13415.74, + "probability": 0.9572 + }, + { + "start": 13415.74, + "end": 13421.44, + "probability": 0.8383 + }, + { + "start": 13422.24, + "end": 13423.6, + "probability": 0.5902 + }, + { + "start": 13423.66, + "end": 13425.66, + "probability": 0.6459 + }, + { + "start": 13426.04, + "end": 13431.36, + "probability": 0.9827 + }, + { + "start": 13431.58, + "end": 13434.34, + "probability": 0.7809 + }, + { + "start": 13434.8, + "end": 13437.86, + "probability": 0.6915 + }, + { + "start": 13438.24, + "end": 13441.06, + "probability": 0.9915 + }, + { + "start": 13441.16, + "end": 13441.34, + "probability": 0.7041 + }, + { + "start": 13441.64, + "end": 13444.48, + "probability": 0.9768 + }, + { + "start": 13444.84, + "end": 13446.14, + "probability": 0.7546 + }, + { + "start": 13446.56, + "end": 13447.94, + "probability": 0.9732 + }, + { + "start": 13448.36, + "end": 13455.94, + "probability": 0.9865 + }, + { + "start": 13457.5, + "end": 13459.62, + "probability": 0.8094 + }, + { + "start": 13459.85, + "end": 13462.68, + "probability": 0.9128 + }, + { + "start": 13463.28, + "end": 13466.56, + "probability": 0.9894 + }, + { + "start": 13466.68, + "end": 13468.92, + "probability": 0.9944 + }, + { + "start": 13468.92, + "end": 13471.98, + "probability": 0.969 + }, + { + "start": 13472.62, + "end": 13475.78, + "probability": 0.5228 + }, + { + "start": 13476.0, + "end": 13477.71, + "probability": 0.7984 + }, + { + "start": 13477.76, + "end": 13479.54, + "probability": 0.5721 + }, + { + "start": 13479.8, + "end": 13482.29, + "probability": 0.9324 + }, + { + "start": 13482.32, + "end": 13486.32, + "probability": 0.7337 + }, + { + "start": 13486.32, + "end": 13489.28, + "probability": 0.978 + }, + { + "start": 13489.88, + "end": 13493.36, + "probability": 0.9987 + }, + { + "start": 13493.72, + "end": 13496.56, + "probability": 0.9982 + }, + { + "start": 13496.56, + "end": 13500.92, + "probability": 0.9933 + }, + { + "start": 13501.58, + "end": 13504.66, + "probability": 0.739 + }, + { + "start": 13504.66, + "end": 13507.06, + "probability": 0.9463 + }, + { + "start": 13507.44, + "end": 13513.4, + "probability": 0.8515 + }, + { + "start": 13513.76, + "end": 13514.34, + "probability": 0.7199 + }, + { + "start": 13514.98, + "end": 13515.98, + "probability": 0.4988 + }, + { + "start": 13515.98, + "end": 13518.46, + "probability": 0.6431 + }, + { + "start": 13518.96, + "end": 13520.64, + "probability": 0.8704 + }, + { + "start": 13526.42, + "end": 13527.22, + "probability": 0.8811 + }, + { + "start": 13532.22, + "end": 13533.6, + "probability": 0.9227 + }, + { + "start": 13533.78, + "end": 13534.78, + "probability": 0.9244 + }, + { + "start": 13534.84, + "end": 13537.52, + "probability": 0.9944 + }, + { + "start": 13537.9, + "end": 13541.88, + "probability": 0.9748 + }, + { + "start": 13541.98, + "end": 13544.08, + "probability": 0.9988 + }, + { + "start": 13544.46, + "end": 13545.78, + "probability": 0.9915 + }, + { + "start": 13546.32, + "end": 13548.14, + "probability": 0.98 + }, + { + "start": 13548.54, + "end": 13549.88, + "probability": 0.944 + }, + { + "start": 13550.02, + "end": 13550.82, + "probability": 0.9854 + }, + { + "start": 13551.56, + "end": 13554.36, + "probability": 0.9751 + }, + { + "start": 13554.42, + "end": 13558.19, + "probability": 0.6634 + }, + { + "start": 13559.7, + "end": 13561.48, + "probability": 0.9951 + }, + { + "start": 13561.84, + "end": 13564.68, + "probability": 0.8434 + }, + { + "start": 13565.16, + "end": 13567.7, + "probability": 0.8 + }, + { + "start": 13567.98, + "end": 13573.3, + "probability": 0.9257 + }, + { + "start": 13573.3, + "end": 13578.12, + "probability": 0.9844 + }, + { + "start": 13578.5, + "end": 13582.78, + "probability": 0.873 + }, + { + "start": 13583.26, + "end": 13583.7, + "probability": 0.6072 + }, + { + "start": 13584.02, + "end": 13584.54, + "probability": 0.8728 + }, + { + "start": 13584.64, + "end": 13586.0, + "probability": 0.9337 + }, + { + "start": 13586.42, + "end": 13587.7, + "probability": 0.9497 + }, + { + "start": 13588.12, + "end": 13592.58, + "probability": 0.9764 + }, + { + "start": 13593.02, + "end": 13600.62, + "probability": 0.8892 + }, + { + "start": 13600.96, + "end": 13604.52, + "probability": 0.9967 + }, + { + "start": 13605.16, + "end": 13605.86, + "probability": 0.6442 + }, + { + "start": 13606.36, + "end": 13610.38, + "probability": 0.9905 + }, + { + "start": 13610.38, + "end": 13613.18, + "probability": 0.9727 + }, + { + "start": 13613.44, + "end": 13615.17, + "probability": 0.9808 + }, + { + "start": 13615.76, + "end": 13616.72, + "probability": 0.6667 + }, + { + "start": 13617.22, + "end": 13618.52, + "probability": 0.9867 + }, + { + "start": 13618.88, + "end": 13622.36, + "probability": 0.9886 + }, + { + "start": 13622.36, + "end": 13626.76, + "probability": 0.9746 + }, + { + "start": 13627.34, + "end": 13628.86, + "probability": 0.9689 + }, + { + "start": 13629.44, + "end": 13630.58, + "probability": 0.9634 + }, + { + "start": 13631.1, + "end": 13632.3, + "probability": 0.9702 + }, + { + "start": 13632.76, + "end": 13635.8, + "probability": 0.9893 + }, + { + "start": 13636.2, + "end": 13640.22, + "probability": 0.9979 + }, + { + "start": 13640.34, + "end": 13640.88, + "probability": 0.7724 + }, + { + "start": 13641.02, + "end": 13642.72, + "probability": 0.7288 + }, + { + "start": 13642.96, + "end": 13645.08, + "probability": 0.894 + }, + { + "start": 13645.28, + "end": 13647.06, + "probability": 0.8703 + }, + { + "start": 13655.58, + "end": 13656.9, + "probability": 0.6455 + }, + { + "start": 13657.76, + "end": 13660.38, + "probability": 0.674 + }, + { + "start": 13661.34, + "end": 13662.86, + "probability": 0.934 + }, + { + "start": 13662.94, + "end": 13664.78, + "probability": 0.9536 + }, + { + "start": 13666.0, + "end": 13667.48, + "probability": 0.7495 + }, + { + "start": 13668.58, + "end": 13669.62, + "probability": 0.9792 + }, + { + "start": 13671.86, + "end": 13674.54, + "probability": 0.04 + }, + { + "start": 13681.98, + "end": 13684.04, + "probability": 0.2826 + }, + { + "start": 13687.14, + "end": 13687.58, + "probability": 0.4801 + }, + { + "start": 13687.76, + "end": 13689.03, + "probability": 0.5278 + }, + { + "start": 13690.5, + "end": 13691.48, + "probability": 0.8983 + }, + { + "start": 13699.96, + "end": 13702.46, + "probability": 0.6471 + }, + { + "start": 13704.4, + "end": 13710.16, + "probability": 0.9623 + }, + { + "start": 13711.28, + "end": 13712.38, + "probability": 0.8312 + }, + { + "start": 13713.06, + "end": 13721.3, + "probability": 0.8621 + }, + { + "start": 13722.88, + "end": 13728.76, + "probability": 0.8838 + }, + { + "start": 13728.76, + "end": 13732.26, + "probability": 0.9982 + }, + { + "start": 13733.02, + "end": 13736.86, + "probability": 0.9351 + }, + { + "start": 13737.94, + "end": 13738.18, + "probability": 0.5264 + }, + { + "start": 13738.28, + "end": 13741.86, + "probability": 0.9531 + }, + { + "start": 13742.58, + "end": 13744.64, + "probability": 0.9119 + }, + { + "start": 13745.28, + "end": 13746.84, + "probability": 0.9697 + }, + { + "start": 13747.38, + "end": 13748.86, + "probability": 0.8132 + }, + { + "start": 13749.7, + "end": 13752.54, + "probability": 0.958 + }, + { + "start": 13752.98, + "end": 13755.6, + "probability": 0.9897 + }, + { + "start": 13756.44, + "end": 13759.45, + "probability": 0.9803 + }, + { + "start": 13760.14, + "end": 13760.56, + "probability": 0.9829 + }, + { + "start": 13761.1, + "end": 13762.68, + "probability": 0.8091 + }, + { + "start": 13763.48, + "end": 13765.07, + "probability": 0.8299 + }, + { + "start": 13766.16, + "end": 13768.9, + "probability": 0.8787 + }, + { + "start": 13769.64, + "end": 13770.96, + "probability": 0.9398 + }, + { + "start": 13771.92, + "end": 13775.18, + "probability": 0.986 + }, + { + "start": 13775.52, + "end": 13779.14, + "probability": 0.9715 + }, + { + "start": 13780.08, + "end": 13785.24, + "probability": 0.7134 + }, + { + "start": 13785.26, + "end": 13786.8, + "probability": 0.8564 + }, + { + "start": 13787.24, + "end": 13790.16, + "probability": 0.7031 + }, + { + "start": 13790.96, + "end": 13792.2, + "probability": 0.897 + }, + { + "start": 13792.78, + "end": 13799.18, + "probability": 0.9062 + }, + { + "start": 13799.66, + "end": 13802.82, + "probability": 0.9167 + }, + { + "start": 13803.06, + "end": 13804.32, + "probability": 0.9951 + }, + { + "start": 13805.0, + "end": 13806.8, + "probability": 0.9522 + }, + { + "start": 13807.42, + "end": 13809.62, + "probability": 0.9633 + }, + { + "start": 13810.66, + "end": 13811.76, + "probability": 0.6334 + }, + { + "start": 13812.0, + "end": 13812.32, + "probability": 0.4809 + }, + { + "start": 13812.42, + "end": 13814.9, + "probability": 0.6465 + }, + { + "start": 13816.35, + "end": 13819.6, + "probability": 0.023 + }, + { + "start": 13820.69, + "end": 13822.25, + "probability": 0.197 + }, + { + "start": 13823.32, + "end": 13828.0, + "probability": 0.2674 + }, + { + "start": 13828.58, + "end": 13832.54, + "probability": 0.1433 + }, + { + "start": 13833.1, + "end": 13835.9, + "probability": 0.2602 + }, + { + "start": 13837.45, + "end": 13839.78, + "probability": 0.1659 + }, + { + "start": 13839.78, + "end": 13842.82, + "probability": 0.2412 + }, + { + "start": 13842.82, + "end": 13844.92, + "probability": 0.0698 + }, + { + "start": 13844.92, + "end": 13844.92, + "probability": 0.3296 + }, + { + "start": 13844.92, + "end": 13846.6, + "probability": 0.0557 + }, + { + "start": 13847.8, + "end": 13850.44, + "probability": 0.1498 + }, + { + "start": 13851.72, + "end": 13853.92, + "probability": 0.1234 + }, + { + "start": 13854.28, + "end": 13857.5, + "probability": 0.039 + }, + { + "start": 13858.76, + "end": 13862.67, + "probability": 0.1303 + }, + { + "start": 13864.57, + "end": 13865.39, + "probability": 0.0476 + }, + { + "start": 13865.94, + "end": 13872.88, + "probability": 0.1899 + }, + { + "start": 13873.78, + "end": 13875.39, + "probability": 0.1185 + }, + { + "start": 13876.55, + "end": 13877.56, + "probability": 0.0506 + }, + { + "start": 13877.56, + "end": 13877.56, + "probability": 0.0741 + }, + { + "start": 13877.56, + "end": 13877.7, + "probability": 0.05 + }, + { + "start": 13878.0, + "end": 13878.0, + "probability": 0.0 + }, + { + "start": 13878.0, + "end": 13878.0, + "probability": 0.0 + }, + { + "start": 13878.0, + "end": 13878.0, + "probability": 0.0 + }, + { + "start": 13878.0, + "end": 13878.0, + "probability": 0.0 + }, + { + "start": 13878.39, + "end": 13883.68, + "probability": 0.6521 + }, + { + "start": 13883.94, + "end": 13884.74, + "probability": 0.1228 + }, + { + "start": 13885.06, + "end": 13887.18, + "probability": 0.8609 + }, + { + "start": 13887.36, + "end": 13888.16, + "probability": 0.8868 + }, + { + "start": 13889.6, + "end": 13891.56, + "probability": 0.0847 + }, + { + "start": 13891.66, + "end": 13893.3, + "probability": 0.8519 + }, + { + "start": 13893.88, + "end": 13896.86, + "probability": 0.8192 + }, + { + "start": 13896.94, + "end": 13899.6, + "probability": 0.9969 + }, + { + "start": 13899.7, + "end": 13900.12, + "probability": 0.9377 + }, + { + "start": 13900.36, + "end": 13904.78, + "probability": 0.509 + }, + { + "start": 13906.68, + "end": 13912.44, + "probability": 0.6623 + }, + { + "start": 13912.48, + "end": 13913.5, + "probability": 0.7565 + }, + { + "start": 13913.76, + "end": 13917.62, + "probability": 0.9218 + }, + { + "start": 13918.6, + "end": 13919.86, + "probability": 0.7848 + }, + { + "start": 13919.88, + "end": 13921.02, + "probability": 0.6318 + }, + { + "start": 13921.62, + "end": 13922.52, + "probability": 0.9238 + }, + { + "start": 13923.58, + "end": 13925.48, + "probability": 0.1874 + }, + { + "start": 13926.7, + "end": 13927.08, + "probability": 0.9473 + }, + { + "start": 13928.18, + "end": 13929.22, + "probability": 0.6694 + }, + { + "start": 13929.94, + "end": 13933.86, + "probability": 0.8613 + }, + { + "start": 13934.56, + "end": 13935.54, + "probability": 0.8007 + }, + { + "start": 13936.44, + "end": 13941.76, + "probability": 0.9508 + }, + { + "start": 13942.38, + "end": 13944.11, + "probability": 0.7598 + }, + { + "start": 13949.64, + "end": 13949.78, + "probability": 0.0364 + }, + { + "start": 13950.48, + "end": 13953.24, + "probability": 0.4692 + }, + { + "start": 13953.8, + "end": 13954.76, + "probability": 0.2633 + }, + { + "start": 13956.04, + "end": 13957.6, + "probability": 0.69 + }, + { + "start": 13958.9, + "end": 13960.86, + "probability": 0.6821 + }, + { + "start": 13962.76, + "end": 13964.64, + "probability": 0.8883 + }, + { + "start": 13965.34, + "end": 13966.78, + "probability": 0.9849 + }, + { + "start": 13967.68, + "end": 13969.34, + "probability": 0.9553 + }, + { + "start": 13971.2, + "end": 13972.76, + "probability": 0.9106 + }, + { + "start": 13972.84, + "end": 13974.9, + "probability": 0.543 + }, + { + "start": 13978.32, + "end": 13982.32, + "probability": 0.2708 + }, + { + "start": 13984.54, + "end": 13986.56, + "probability": 0.8372 + }, + { + "start": 13988.22, + "end": 13989.72, + "probability": 0.975 + }, + { + "start": 13990.4, + "end": 13991.66, + "probability": 0.9783 + }, + { + "start": 13992.8, + "end": 13995.62, + "probability": 0.9795 + }, + { + "start": 13998.06, + "end": 13999.96, + "probability": 0.908 + }, + { + "start": 14001.32, + "end": 14002.58, + "probability": 0.9126 + }, + { + "start": 14003.44, + "end": 14006.36, + "probability": 0.908 + }, + { + "start": 14007.56, + "end": 14010.48, + "probability": 0.8196 + }, + { + "start": 14010.54, + "end": 14011.7, + "probability": 0.5983 + }, + { + "start": 14011.76, + "end": 14012.9, + "probability": 0.7116 + }, + { + "start": 14013.26, + "end": 14014.58, + "probability": 0.952 + }, + { + "start": 14014.66, + "end": 14015.68, + "probability": 0.8479 + }, + { + "start": 14015.72, + "end": 14017.6, + "probability": 0.8111 + }, + { + "start": 14018.68, + "end": 14020.94, + "probability": 0.9522 + }, + { + "start": 14021.46, + "end": 14023.86, + "probability": 0.5179 + }, + { + "start": 14025.18, + "end": 14026.68, + "probability": 0.7917 + }, + { + "start": 14027.32, + "end": 14029.74, + "probability": 0.9031 + }, + { + "start": 14031.12, + "end": 14035.18, + "probability": 0.9362 + }, + { + "start": 14040.7, + "end": 14044.76, + "probability": 0.37 + }, + { + "start": 14046.32, + "end": 14048.64, + "probability": 0.6138 + }, + { + "start": 14050.12, + "end": 14051.84, + "probability": 0.6272 + }, + { + "start": 14051.88, + "end": 14053.98, + "probability": 0.7506 + }, + { + "start": 14053.98, + "end": 14055.24, + "probability": 0.7449 + }, + { + "start": 14056.86, + "end": 14057.52, + "probability": 0.5583 + }, + { + "start": 14060.44, + "end": 14062.9, + "probability": 0.4113 + }, + { + "start": 14063.3, + "end": 14065.9, + "probability": 0.3042 + }, + { + "start": 14066.0, + "end": 14067.86, + "probability": 0.5829 + }, + { + "start": 14068.6, + "end": 14069.22, + "probability": 0.3727 + }, + { + "start": 14072.26, + "end": 14076.94, + "probability": 0.5659 + }, + { + "start": 14078.06, + "end": 14079.5, + "probability": 0.833 + }, + { + "start": 14081.3, + "end": 14084.3, + "probability": 0.9424 + }, + { + "start": 14085.06, + "end": 14089.0, + "probability": 0.9324 + }, + { + "start": 14089.64, + "end": 14090.82, + "probability": 0.784 + }, + { + "start": 14090.96, + "end": 14092.78, + "probability": 0.8186 + }, + { + "start": 14093.16, + "end": 14094.56, + "probability": 0.7783 + }, + { + "start": 14094.64, + "end": 14095.86, + "probability": 0.842 + }, + { + "start": 14096.72, + "end": 14097.9, + "probability": 0.959 + }, + { + "start": 14099.48, + "end": 14103.4, + "probability": 0.9066 + }, + { + "start": 14104.54, + "end": 14106.48, + "probability": 0.5111 + }, + { + "start": 14107.24, + "end": 14109.96, + "probability": 0.905 + }, + { + "start": 14111.06, + "end": 14114.28, + "probability": 0.6703 + }, + { + "start": 14115.24, + "end": 14117.02, + "probability": 0.7937 + }, + { + "start": 14117.4, + "end": 14119.76, + "probability": 0.9251 + }, + { + "start": 14120.06, + "end": 14124.76, + "probability": 0.7401 + }, + { + "start": 14125.02, + "end": 14127.28, + "probability": 0.6637 + }, + { + "start": 14127.6, + "end": 14131.24, + "probability": 0.8132 + }, + { + "start": 14131.96, + "end": 14133.35, + "probability": 0.841 + }, + { + "start": 14134.1, + "end": 14135.72, + "probability": 0.8572 + }, + { + "start": 14135.76, + "end": 14138.16, + "probability": 0.894 + }, + { + "start": 14138.76, + "end": 14141.0, + "probability": 0.7813 + }, + { + "start": 14151.64, + "end": 14151.96, + "probability": 0.0854 + }, + { + "start": 14151.96, + "end": 14152.04, + "probability": 0.1506 + }, + { + "start": 14152.04, + "end": 14154.12, + "probability": 0.5503 + }, + { + "start": 14155.78, + "end": 14157.32, + "probability": 0.6576 + }, + { + "start": 14158.66, + "end": 14160.22, + "probability": 0.9692 + }, + { + "start": 14162.76, + "end": 14168.06, + "probability": 0.8699 + }, + { + "start": 14172.54, + "end": 14175.18, + "probability": 0.8398 + }, + { + "start": 14175.6, + "end": 14178.3, + "probability": 0.7505 + }, + { + "start": 14179.24, + "end": 14181.22, + "probability": 0.9144 + }, + { + "start": 14181.24, + "end": 14182.74, + "probability": 0.7872 + }, + { + "start": 14182.9, + "end": 14183.66, + "probability": 0.9231 + }, + { + "start": 14185.2, + "end": 14187.26, + "probability": 0.9714 + }, + { + "start": 14188.36, + "end": 14190.76, + "probability": 0.5435 + }, + { + "start": 14191.12, + "end": 14193.54, + "probability": 0.8569 + }, + { + "start": 14193.66, + "end": 14195.46, + "probability": 0.9271 + }, + { + "start": 14195.56, + "end": 14196.66, + "probability": 0.8897 + }, + { + "start": 14196.72, + "end": 14198.46, + "probability": 0.8799 + }, + { + "start": 14199.4, + "end": 14201.52, + "probability": 0.5954 + }, + { + "start": 14201.52, + "end": 14204.24, + "probability": 0.9499 + }, + { + "start": 14204.7, + "end": 14205.9, + "probability": 0.7403 + }, + { + "start": 14206.02, + "end": 14207.76, + "probability": 0.9095 + }, + { + "start": 14208.38, + "end": 14208.76, + "probability": 0.7169 + }, + { + "start": 14209.72, + "end": 14210.52, + "probability": 0.9581 + }, + { + "start": 14211.66, + "end": 14214.86, + "probability": 0.9444 + }, + { + "start": 14216.02, + "end": 14217.62, + "probability": 0.8926 + }, + { + "start": 14217.68, + "end": 14219.18, + "probability": 0.634 + }, + { + "start": 14219.24, + "end": 14220.94, + "probability": 0.8632 + }, + { + "start": 14221.02, + "end": 14222.78, + "probability": 0.7589 + }, + { + "start": 14222.9, + "end": 14224.34, + "probability": 0.8914 + }, + { + "start": 14225.02, + "end": 14226.48, + "probability": 0.9373 + }, + { + "start": 14227.86, + "end": 14232.46, + "probability": 0.8564 + }, + { + "start": 14234.02, + "end": 14240.42, + "probability": 0.9051 + }, + { + "start": 14241.6, + "end": 14245.16, + "probability": 0.5841 + }, + { + "start": 14247.4, + "end": 14248.96, + "probability": 0.7854 + }, + { + "start": 14249.06, + "end": 14250.96, + "probability": 0.9302 + }, + { + "start": 14250.98, + "end": 14252.48, + "probability": 0.7638 + }, + { + "start": 14252.54, + "end": 14253.6, + "probability": 0.9622 + }, + { + "start": 14254.42, + "end": 14258.5, + "probability": 0.807 + }, + { + "start": 14259.18, + "end": 14260.46, + "probability": 0.896 + }, + { + "start": 14260.66, + "end": 14262.72, + "probability": 0.7863 + }, + { + "start": 14262.76, + "end": 14264.22, + "probability": 0.8402 + }, + { + "start": 14264.26, + "end": 14264.88, + "probability": 0.8607 + }, + { + "start": 14266.02, + "end": 14266.36, + "probability": 0.1769 + }, + { + "start": 14270.3, + "end": 14274.06, + "probability": 0.9454 + }, + { + "start": 14275.05, + "end": 14276.32, + "probability": 0.4192 + }, + { + "start": 14276.42, + "end": 14277.54, + "probability": 0.7066 + }, + { + "start": 14277.58, + "end": 14278.92, + "probability": 0.6813 + }, + { + "start": 14278.92, + "end": 14280.14, + "probability": 0.9176 + }, + { + "start": 14280.14, + "end": 14281.58, + "probability": 0.2406 + }, + { + "start": 14281.76, + "end": 14283.64, + "probability": 0.7481 + }, + { + "start": 14284.5, + "end": 14285.88, + "probability": 0.9419 + }, + { + "start": 14286.44, + "end": 14287.8, + "probability": 0.8979 + }, + { + "start": 14287.9, + "end": 14288.92, + "probability": 0.9422 + }, + { + "start": 14288.94, + "end": 14290.58, + "probability": 0.9487 + }, + { + "start": 14292.7, + "end": 14294.26, + "probability": 0.3308 + }, + { + "start": 14295.36, + "end": 14299.9, + "probability": 0.6495 + }, + { + "start": 14300.1, + "end": 14301.52, + "probability": 0.9015 + }, + { + "start": 14302.0, + "end": 14303.28, + "probability": 0.9384 + }, + { + "start": 14303.36, + "end": 14304.74, + "probability": 0.9346 + }, + { + "start": 14307.02, + "end": 14307.98, + "probability": 0.4914 + }, + { + "start": 14309.7, + "end": 14310.72, + "probability": 0.589 + }, + { + "start": 14311.6, + "end": 14312.7, + "probability": 0.5855 + }, + { + "start": 14312.82, + "end": 14314.2, + "probability": 0.7845 + }, + { + "start": 14314.26, + "end": 14315.66, + "probability": 0.7389 + }, + { + "start": 14315.78, + "end": 14317.56, + "probability": 0.7181 + }, + { + "start": 14317.64, + "end": 14318.88, + "probability": 0.7164 + }, + { + "start": 14318.9, + "end": 14319.88, + "probability": 0.5477 + }, + { + "start": 14320.04, + "end": 14320.94, + "probability": 0.7197 + }, + { + "start": 14321.04, + "end": 14321.96, + "probability": 0.664 + }, + { + "start": 14321.98, + "end": 14322.54, + "probability": 0.9558 + }, + { + "start": 14323.12, + "end": 14324.2, + "probability": 0.8531 + }, + { + "start": 14325.36, + "end": 14327.76, + "probability": 0.9209 + }, + { + "start": 14327.78, + "end": 14329.14, + "probability": 0.7733 + }, + { + "start": 14329.26, + "end": 14330.5, + "probability": 0.8111 + }, + { + "start": 14333.45, + "end": 14333.94, + "probability": 0.2367 + }, + { + "start": 14333.94, + "end": 14334.3, + "probability": 0.1208 + }, + { + "start": 14334.3, + "end": 14335.68, + "probability": 0.502 + }, + { + "start": 14335.76, + "end": 14337.08, + "probability": 0.5531 + }, + { + "start": 14337.16, + "end": 14339.64, + "probability": 0.7623 + }, + { + "start": 14339.72, + "end": 14341.12, + "probability": 0.6799 + }, + { + "start": 14341.34, + "end": 14343.22, + "probability": 0.5579 + }, + { + "start": 14343.84, + "end": 14345.16, + "probability": 0.3655 + }, + { + "start": 14345.84, + "end": 14346.46, + "probability": 0.8994 + }, + { + "start": 14347.32, + "end": 14348.06, + "probability": 0.8186 + }, + { + "start": 14348.22, + "end": 14349.22, + "probability": 0.747 + }, + { + "start": 14349.28, + "end": 14350.16, + "probability": 0.9232 + }, + { + "start": 14351.38, + "end": 14355.04, + "probability": 0.8917 + }, + { + "start": 14355.98, + "end": 14358.64, + "probability": 0.9391 + }, + { + "start": 14360.34, + "end": 14360.72, + "probability": 0.6227 + }, + { + "start": 14360.98, + "end": 14361.86, + "probability": 0.8912 + }, + { + "start": 14361.98, + "end": 14362.96, + "probability": 0.8658 + }, + { + "start": 14363.24, + "end": 14364.2, + "probability": 0.8661 + }, + { + "start": 14364.28, + "end": 14364.78, + "probability": 0.7501 + }, + { + "start": 14365.64, + "end": 14368.32, + "probability": 0.9113 + }, + { + "start": 14370.02, + "end": 14372.98, + "probability": 0.7241 + }, + { + "start": 14373.68, + "end": 14375.62, + "probability": 0.6257 + }, + { + "start": 14375.64, + "end": 14376.86, + "probability": 0.9426 + }, + { + "start": 14377.2, + "end": 14378.48, + "probability": 0.8604 + }, + { + "start": 14378.52, + "end": 14380.1, + "probability": 0.7096 + }, + { + "start": 14380.1, + "end": 14381.08, + "probability": 0.9396 + }, + { + "start": 14381.18, + "end": 14382.56, + "probability": 0.5313 + }, + { + "start": 14382.92, + "end": 14384.5, + "probability": 0.8925 + }, + { + "start": 14385.38, + "end": 14386.96, + "probability": 0.7413 + }, + { + "start": 14387.02, + "end": 14389.4, + "probability": 0.9661 + }, + { + "start": 14390.14, + "end": 14391.68, + "probability": 0.9796 + }, + { + "start": 14392.44, + "end": 14394.8, + "probability": 0.95 + }, + { + "start": 14397.22, + "end": 14398.2, + "probability": 0.7242 + }, + { + "start": 14398.98, + "end": 14400.28, + "probability": 0.483 + }, + { + "start": 14400.36, + "end": 14402.08, + "probability": 0.8862 + }, + { + "start": 14402.52, + "end": 14403.84, + "probability": 0.9333 + }, + { + "start": 14403.94, + "end": 14404.5, + "probability": 0.915 + }, + { + "start": 14405.8, + "end": 14408.76, + "probability": 0.8124 + }, + { + "start": 14408.88, + "end": 14410.08, + "probability": 0.8589 + }, + { + "start": 14410.22, + "end": 14411.64, + "probability": 0.4023 + }, + { + "start": 14411.7, + "end": 14412.34, + "probability": 0.5345 + }, + { + "start": 14413.18, + "end": 14413.98, + "probability": 0.7678 + }, + { + "start": 14414.4, + "end": 14415.68, + "probability": 0.8284 + }, + { + "start": 14415.72, + "end": 14417.16, + "probability": 0.8043 + }, + { + "start": 14417.18, + "end": 14418.18, + "probability": 0.7368 + }, + { + "start": 14418.24, + "end": 14419.44, + "probability": 0.6632 + }, + { + "start": 14419.54, + "end": 14421.68, + "probability": 0.9236 + }, + { + "start": 14422.46, + "end": 14422.48, + "probability": 0.0622 + }, + { + "start": 14422.48, + "end": 14422.96, + "probability": 0.3309 + }, + { + "start": 14423.38, + "end": 14424.6, + "probability": 0.6831 + }, + { + "start": 14424.72, + "end": 14425.42, + "probability": 0.9761 + }, + { + "start": 14426.7, + "end": 14427.54, + "probability": 0.872 + }, + { + "start": 14427.88, + "end": 14429.16, + "probability": 0.9222 + }, + { + "start": 14429.24, + "end": 14430.56, + "probability": 0.9218 + }, + { + "start": 14431.14, + "end": 14432.74, + "probability": 0.7958 + }, + { + "start": 14432.84, + "end": 14434.2, + "probability": 0.6065 + }, + { + "start": 14434.26, + "end": 14436.16, + "probability": 0.9625 + }, + { + "start": 14436.28, + "end": 14437.72, + "probability": 0.7047 + }, + { + "start": 14439.84, + "end": 14440.74, + "probability": 0.98 + }, + { + "start": 14441.34, + "end": 14442.1, + "probability": 0.7326 + }, + { + "start": 14443.34, + "end": 14445.84, + "probability": 0.9208 + }, + { + "start": 14446.54, + "end": 14447.38, + "probability": 0.9113 + }, + { + "start": 14448.62, + "end": 14449.68, + "probability": 0.4905 + }, + { + "start": 14450.22, + "end": 14451.62, + "probability": 0.6605 + }, + { + "start": 14451.78, + "end": 14452.84, + "probability": 0.7928 + }, + { + "start": 14452.98, + "end": 14454.0, + "probability": 0.3166 + }, + { + "start": 14454.1, + "end": 14455.82, + "probability": 0.7988 + }, + { + "start": 14455.84, + "end": 14457.24, + "probability": 0.716 + }, + { + "start": 14457.32, + "end": 14458.36, + "probability": 0.762 + }, + { + "start": 14458.42, + "end": 14459.8, + "probability": 0.8866 + }, + { + "start": 14459.82, + "end": 14461.24, + "probability": 0.5504 + }, + { + "start": 14461.34, + "end": 14462.78, + "probability": 0.304 + }, + { + "start": 14462.88, + "end": 14464.18, + "probability": 0.4687 + }, + { + "start": 14464.94, + "end": 14468.24, + "probability": 0.9955 + }, + { + "start": 14468.7, + "end": 14470.7, + "probability": 0.4706 + }, + { + "start": 14512.34, + "end": 14513.22, + "probability": 0.1204 + }, + { + "start": 14513.22, + "end": 14513.64, + "probability": 0.2222 + }, + { + "start": 14513.72, + "end": 14514.2, + "probability": 0.7596 + }, + { + "start": 14514.28, + "end": 14514.8, + "probability": 0.7045 + }, + { + "start": 14514.92, + "end": 14517.88, + "probability": 0.9438 + }, + { + "start": 14517.88, + "end": 14518.76, + "probability": 0.3954 + }, + { + "start": 14518.96, + "end": 14520.18, + "probability": 0.9825 + }, + { + "start": 14520.26, + "end": 14521.84, + "probability": 0.8003 + }, + { + "start": 14521.84, + "end": 14524.12, + "probability": 0.7955 + }, + { + "start": 14524.54, + "end": 14527.68, + "probability": 0.8364 + }, + { + "start": 14527.76, + "end": 14528.56, + "probability": 0.3039 + }, + { + "start": 14528.76, + "end": 14530.5, + "probability": 0.7078 + }, + { + "start": 14530.9, + "end": 14532.2, + "probability": 0.9617 + }, + { + "start": 14533.28, + "end": 14534.64, + "probability": 0.7138 + }, + { + "start": 14535.38, + "end": 14536.1, + "probability": 0.5146 + }, + { + "start": 14541.9, + "end": 14542.22, + "probability": 0.361 + }, + { + "start": 14561.04, + "end": 14561.72, + "probability": 0.1585 + }, + { + "start": 14567.18, + "end": 14569.78, + "probability": 0.8654 + }, + { + "start": 14569.9, + "end": 14570.2, + "probability": 0.7266 + }, + { + "start": 14571.02, + "end": 14572.68, + "probability": 0.0504 + }, + { + "start": 14574.48, + "end": 14577.54, + "probability": 0.7853 + }, + { + "start": 14580.84, + "end": 14584.64, + "probability": 0.0184 + }, + { + "start": 14584.94, + "end": 14585.62, + "probability": 0.0248 + }, + { + "start": 14585.98, + "end": 14586.76, + "probability": 0.0466 + }, + { + "start": 14612.18, + "end": 14616.66, + "probability": 0.0105 + }, + { + "start": 14618.48, + "end": 14620.66, + "probability": 0.0723 + }, + { + "start": 14620.66, + "end": 14620.74, + "probability": 0.1193 + }, + { + "start": 14621.16, + "end": 14622.16, + "probability": 0.1216 + }, + { + "start": 14623.54, + "end": 14625.5, + "probability": 0.0212 + }, + { + "start": 14625.54, + "end": 14629.24, + "probability": 0.0758 + }, + { + "start": 14629.24, + "end": 14629.7, + "probability": 0.0263 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.0, + "end": 14642.0, + "probability": 0.0 + }, + { + "start": 14642.44, + "end": 14642.56, + "probability": 0.0989 + }, + { + "start": 14642.56, + "end": 14645.86, + "probability": 0.8393 + }, + { + "start": 14646.34, + "end": 14648.44, + "probability": 0.9919 + }, + { + "start": 14648.48, + "end": 14652.8, + "probability": 0.9626 + }, + { + "start": 14653.04, + "end": 14654.52, + "probability": 0.9821 + }, + { + "start": 14655.95, + "end": 14658.48, + "probability": 0.9883 + }, + { + "start": 14659.3, + "end": 14662.8, + "probability": 0.9339 + }, + { + "start": 14663.36, + "end": 14666.86, + "probability": 0.9921 + }, + { + "start": 14667.36, + "end": 14670.82, + "probability": 0.9914 + }, + { + "start": 14671.66, + "end": 14672.86, + "probability": 0.9924 + }, + { + "start": 14673.22, + "end": 14676.96, + "probability": 0.9795 + }, + { + "start": 14677.98, + "end": 14679.2, + "probability": 0.9382 + }, + { + "start": 14679.36, + "end": 14683.58, + "probability": 0.973 + }, + { + "start": 14683.58, + "end": 14687.66, + "probability": 0.9801 + }, + { + "start": 14687.74, + "end": 14693.68, + "probability": 0.8657 + }, + { + "start": 14695.02, + "end": 14695.65, + "probability": 0.9432 + }, + { + "start": 14696.78, + "end": 14700.08, + "probability": 0.8736 + }, + { + "start": 14700.08, + "end": 14705.48, + "probability": 0.9839 + }, + { + "start": 14706.42, + "end": 14711.92, + "probability": 0.999 + }, + { + "start": 14712.56, + "end": 14717.02, + "probability": 0.9683 + }, + { + "start": 14718.52, + "end": 14720.26, + "probability": 0.2596 + }, + { + "start": 14720.78, + "end": 14724.7, + "probability": 0.9919 + }, + { + "start": 14724.7, + "end": 14729.54, + "probability": 0.9991 + }, + { + "start": 14729.54, + "end": 14735.84, + "probability": 0.9966 + }, + { + "start": 14736.92, + "end": 14739.14, + "probability": 0.9917 + }, + { + "start": 14740.12, + "end": 14745.94, + "probability": 0.9975 + }, + { + "start": 14746.16, + "end": 14748.91, + "probability": 0.9365 + }, + { + "start": 14750.34, + "end": 14752.18, + "probability": 0.8629 + }, + { + "start": 14752.64, + "end": 14755.58, + "probability": 0.9953 + }, + { + "start": 14755.58, + "end": 14759.42, + "probability": 0.9988 + }, + { + "start": 14760.34, + "end": 14766.84, + "probability": 0.9801 + }, + { + "start": 14768.22, + "end": 14771.56, + "probability": 0.9983 + }, + { + "start": 14772.68, + "end": 14773.7, + "probability": 0.8579 + }, + { + "start": 14773.92, + "end": 14774.46, + "probability": 0.9082 + }, + { + "start": 14774.72, + "end": 14778.08, + "probability": 0.9529 + }, + { + "start": 14778.74, + "end": 14781.8, + "probability": 0.9426 + }, + { + "start": 14782.58, + "end": 14787.34, + "probability": 0.9934 + }, + { + "start": 14787.34, + "end": 14793.28, + "probability": 0.9383 + }, + { + "start": 14793.96, + "end": 14796.88, + "probability": 0.9971 + }, + { + "start": 14796.88, + "end": 14801.96, + "probability": 0.9982 + }, + { + "start": 14803.04, + "end": 14808.06, + "probability": 0.8414 + }, + { + "start": 14808.7, + "end": 14813.76, + "probability": 0.9971 + }, + { + "start": 14813.96, + "end": 14814.52, + "probability": 0.4314 + }, + { + "start": 14814.58, + "end": 14816.78, + "probability": 0.9855 + }, + { + "start": 14817.9, + "end": 14821.34, + "probability": 0.9907 + }, + { + "start": 14822.0, + "end": 14826.38, + "probability": 0.9825 + }, + { + "start": 14826.56, + "end": 14829.0, + "probability": 0.9789 + }, + { + "start": 14830.6, + "end": 14831.52, + "probability": 0.669 + }, + { + "start": 14831.6, + "end": 14835.78, + "probability": 0.9401 + }, + { + "start": 14836.56, + "end": 14841.98, + "probability": 0.9971 + }, + { + "start": 14843.16, + "end": 14847.1, + "probability": 0.9878 + }, + { + "start": 14847.66, + "end": 14851.72, + "probability": 0.9985 + }, + { + "start": 14852.84, + "end": 14856.06, + "probability": 0.9883 + }, + { + "start": 14856.78, + "end": 14857.39, + "probability": 0.9645 + }, + { + "start": 14858.32, + "end": 14858.36, + "probability": 0.4784 + }, + { + "start": 14858.74, + "end": 14860.42, + "probability": 0.9928 + }, + { + "start": 14860.62, + "end": 14863.74, + "probability": 0.994 + }, + { + "start": 14864.44, + "end": 14865.44, + "probability": 0.9039 + }, + { + "start": 14866.38, + "end": 14866.77, + "probability": 0.9824 + }, + { + "start": 14868.06, + "end": 14868.6, + "probability": 0.9822 + }, + { + "start": 14870.02, + "end": 14870.47, + "probability": 0.9941 + }, + { + "start": 14871.54, + "end": 14874.56, + "probability": 0.9929 + }, + { + "start": 14875.06, + "end": 14878.92, + "probability": 0.9922 + }, + { + "start": 14879.5, + "end": 14880.69, + "probability": 0.9752 + }, + { + "start": 14881.84, + "end": 14884.98, + "probability": 0.984 + }, + { + "start": 14885.6, + "end": 14889.4, + "probability": 0.9335 + }, + { + "start": 14889.98, + "end": 14891.44, + "probability": 0.9752 + }, + { + "start": 14892.78, + "end": 14895.3, + "probability": 0.9574 + }, + { + "start": 14896.28, + "end": 14897.84, + "probability": 0.9847 + }, + { + "start": 14898.04, + "end": 14900.54, + "probability": 0.9993 + }, + { + "start": 14900.98, + "end": 14904.58, + "probability": 0.9968 + }, + { + "start": 14904.58, + "end": 14908.6, + "probability": 0.999 + }, + { + "start": 14909.14, + "end": 14909.8, + "probability": 0.7778 + }, + { + "start": 14910.56, + "end": 14912.48, + "probability": 0.7031 + }, + { + "start": 14912.6, + "end": 14914.52, + "probability": 0.7764 + }, + { + "start": 14915.56, + "end": 14917.6, + "probability": 0.8877 + }, + { + "start": 14917.68, + "end": 14918.18, + "probability": 0.808 + }, + { + "start": 14918.6, + "end": 14920.12, + "probability": 0.1814 + }, + { + "start": 14920.52, + "end": 14921.02, + "probability": 0.1036 + }, + { + "start": 14921.02, + "end": 14923.47, + "probability": 0.1825 + }, + { + "start": 14928.32, + "end": 14930.12, + "probability": 0.1762 + }, + { + "start": 14930.54, + "end": 14930.54, + "probability": 0.2329 + }, + { + "start": 14930.54, + "end": 14933.16, + "probability": 0.0095 + }, + { + "start": 14933.78, + "end": 14934.74, + "probability": 0.1437 + }, + { + "start": 14934.74, + "end": 14940.02, + "probability": 0.095 + }, + { + "start": 14941.0, + "end": 14942.18, + "probability": 0.0142 + }, + { + "start": 14942.52, + "end": 14944.54, + "probability": 0.0896 + }, + { + "start": 14946.22, + "end": 14948.62, + "probability": 0.0336 + }, + { + "start": 14948.62, + "end": 14951.58, + "probability": 0.0615 + }, + { + "start": 14953.48, + "end": 14955.98, + "probability": 0.4014 + }, + { + "start": 14983.64, + "end": 14984.36, + "probability": 0.0122 + }, + { + "start": 14984.44, + "end": 14988.46, + "probability": 0.9795 + }, + { + "start": 14988.62, + "end": 14992.74, + "probability": 0.8986 + }, + { + "start": 14992.86, + "end": 14994.14, + "probability": 0.9143 + }, + { + "start": 14995.58, + "end": 14996.68, + "probability": 0.6099 + }, + { + "start": 14996.82, + "end": 14998.38, + "probability": 0.7921 + }, + { + "start": 14998.44, + "end": 14998.8, + "probability": 0.4116 + }, + { + "start": 14998.86, + "end": 15001.8, + "probability": 0.9823 + }, + { + "start": 15002.22, + "end": 15007.06, + "probability": 0.8983 + }, + { + "start": 15008.0, + "end": 15009.48, + "probability": 0.8953 + }, + { + "start": 15010.32, + "end": 15010.82, + "probability": 0.6496 + }, + { + "start": 15010.92, + "end": 15011.27, + "probability": 0.7843 + }, + { + "start": 15011.56, + "end": 15013.78, + "probability": 0.9917 + }, + { + "start": 15013.94, + "end": 15015.69, + "probability": 0.7593 + }, + { + "start": 15016.06, + "end": 15018.16, + "probability": 0.6933 + }, + { + "start": 15018.3, + "end": 15021.74, + "probability": 0.866 + }, + { + "start": 15022.28, + "end": 15025.4, + "probability": 0.9541 + }, + { + "start": 15027.48, + "end": 15032.64, + "probability": 0.9747 + }, + { + "start": 15033.2, + "end": 15034.16, + "probability": 0.5048 + }, + { + "start": 15034.3, + "end": 15034.52, + "probability": 0.5472 + }, + { + "start": 15034.56, + "end": 15038.32, + "probability": 0.9755 + }, + { + "start": 15038.5, + "end": 15040.92, + "probability": 0.9919 + }, + { + "start": 15040.92, + "end": 15045.16, + "probability": 0.962 + }, + { + "start": 15045.34, + "end": 15046.78, + "probability": 0.8034 + }, + { + "start": 15046.94, + "end": 15050.56, + "probability": 0.7882 + }, + { + "start": 15050.56, + "end": 15053.62, + "probability": 0.998 + }, + { + "start": 15054.16, + "end": 15057.86, + "probability": 0.9524 + }, + { + "start": 15058.06, + "end": 15059.26, + "probability": 0.7216 + }, + { + "start": 15059.78, + "end": 15063.36, + "probability": 0.9874 + }, + { + "start": 15063.46, + "end": 15065.36, + "probability": 0.8499 + }, + { + "start": 15065.46, + "end": 15066.3, + "probability": 0.3663 + }, + { + "start": 15066.86, + "end": 15071.56, + "probability": 0.8257 + }, + { + "start": 15072.08, + "end": 15075.0, + "probability": 0.9849 + }, + { + "start": 15075.36, + "end": 15078.32, + "probability": 0.9488 + }, + { + "start": 15078.32, + "end": 15081.02, + "probability": 0.9954 + }, + { + "start": 15081.06, + "end": 15085.38, + "probability": 0.9973 + }, + { + "start": 15085.5, + "end": 15087.28, + "probability": 0.935 + }, + { + "start": 15087.78, + "end": 15091.24, + "probability": 0.9729 + }, + { + "start": 15091.3, + "end": 15094.3, + "probability": 0.9956 + }, + { + "start": 15095.7, + "end": 15097.34, + "probability": 0.7302 + }, + { + "start": 15097.34, + "end": 15099.32, + "probability": 0.7482 + }, + { + "start": 15099.38, + "end": 15103.84, + "probability": 0.9314 + }, + { + "start": 15103.98, + "end": 15104.38, + "probability": 0.7042 + }, + { + "start": 15104.8, + "end": 15108.0, + "probability": 0.8437 + }, + { + "start": 15108.02, + "end": 15114.12, + "probability": 0.9085 + }, + { + "start": 15114.58, + "end": 15115.8, + "probability": 0.7325 + }, + { + "start": 15116.3, + "end": 15117.48, + "probability": 0.8921 + }, + { + "start": 15117.86, + "end": 15122.64, + "probability": 0.9935 + }, + { + "start": 15123.12, + "end": 15125.84, + "probability": 0.8048 + }, + { + "start": 15126.34, + "end": 15128.86, + "probability": 0.9702 + }, + { + "start": 15129.04, + "end": 15129.32, + "probability": 0.7128 + }, + { + "start": 15129.42, + "end": 15130.34, + "probability": 0.734 + }, + { + "start": 15130.34, + "end": 15134.44, + "probability": 0.7989 + }, + { + "start": 15134.82, + "end": 15138.38, + "probability": 0.8396 + }, + { + "start": 15138.52, + "end": 15140.3, + "probability": 0.8508 + }, + { + "start": 15140.9, + "end": 15143.86, + "probability": 0.9519 + }, + { + "start": 15144.46, + "end": 15147.46, + "probability": 0.9069 + }, + { + "start": 15147.46, + "end": 15152.35, + "probability": 0.7497 + }, + { + "start": 15152.86, + "end": 15154.86, + "probability": 0.9658 + }, + { + "start": 15154.94, + "end": 15157.42, + "probability": 0.9564 + }, + { + "start": 15157.92, + "end": 15160.52, + "probability": 0.7305 + }, + { + "start": 15160.52, + "end": 15163.0, + "probability": 0.965 + }, + { + "start": 15163.66, + "end": 15165.68, + "probability": 0.8364 + }, + { + "start": 15166.26, + "end": 15171.34, + "probability": 0.9742 + }, + { + "start": 15171.78, + "end": 15174.74, + "probability": 0.9484 + }, + { + "start": 15174.82, + "end": 15176.7, + "probability": 0.8901 + }, + { + "start": 15177.08, + "end": 15180.66, + "probability": 0.9694 + }, + { + "start": 15180.96, + "end": 15184.54, + "probability": 0.9384 + }, + { + "start": 15184.9, + "end": 15187.39, + "probability": 0.9396 + }, + { + "start": 15187.66, + "end": 15190.6, + "probability": 0.6587 + }, + { + "start": 15191.14, + "end": 15194.5, + "probability": 0.9944 + }, + { + "start": 15195.86, + "end": 15196.94, + "probability": 0.6859 + }, + { + "start": 15197.46, + "end": 15197.76, + "probability": 0.6895 + }, + { + "start": 15197.96, + "end": 15201.18, + "probability": 0.932 + }, + { + "start": 15201.18, + "end": 15204.5, + "probability": 0.9554 + }, + { + "start": 15204.82, + "end": 15209.08, + "probability": 0.8548 + }, + { + "start": 15209.44, + "end": 15209.68, + "probability": 0.2925 + }, + { + "start": 15209.72, + "end": 15210.04, + "probability": 0.9122 + }, + { + "start": 15210.08, + "end": 15214.08, + "probability": 0.9299 + }, + { + "start": 15214.6, + "end": 15214.94, + "probability": 0.5914 + }, + { + "start": 15215.08, + "end": 15216.1, + "probability": 0.8867 + }, + { + "start": 15216.22, + "end": 15218.7, + "probability": 0.9621 + }, + { + "start": 15218.88, + "end": 15220.08, + "probability": 0.7314 + }, + { + "start": 15220.6, + "end": 15224.1, + "probability": 0.9219 + }, + { + "start": 15224.1, + "end": 15228.24, + "probability": 0.4951 + }, + { + "start": 15228.76, + "end": 15232.0, + "probability": 0.8916 + }, + { + "start": 15232.08, + "end": 15235.7, + "probability": 0.9807 + }, + { + "start": 15235.82, + "end": 15235.96, + "probability": 0.9425 + }, + { + "start": 15236.0, + "end": 15238.86, + "probability": 0.8659 + }, + { + "start": 15239.26, + "end": 15242.36, + "probability": 0.9917 + }, + { + "start": 15242.52, + "end": 15243.25, + "probability": 0.4966 + }, + { + "start": 15244.02, + "end": 15244.46, + "probability": 0.6391 + }, + { + "start": 15244.96, + "end": 15245.32, + "probability": 0.7478 + }, + { + "start": 15245.42, + "end": 15246.56, + "probability": 0.9495 + }, + { + "start": 15246.76, + "end": 15248.44, + "probability": 0.9292 + }, + { + "start": 15248.82, + "end": 15251.4, + "probability": 0.9674 + }, + { + "start": 15251.58, + "end": 15254.52, + "probability": 0.6019 + }, + { + "start": 15254.58, + "end": 15257.24, + "probability": 0.9277 + }, + { + "start": 15257.36, + "end": 15257.52, + "probability": 0.856 + }, + { + "start": 15257.66, + "end": 15259.28, + "probability": 0.92 + }, + { + "start": 15259.28, + "end": 15260.42, + "probability": 0.9663 + }, + { + "start": 15260.78, + "end": 15261.86, + "probability": 0.9793 + }, + { + "start": 15261.98, + "end": 15265.14, + "probability": 0.8194 + }, + { + "start": 15265.9, + "end": 15266.84, + "probability": 0.8158 + }, + { + "start": 15267.48, + "end": 15268.44, + "probability": 0.3616 + }, + { + "start": 15268.46, + "end": 15270.12, + "probability": 0.8158 + }, + { + "start": 15270.82, + "end": 15273.2, + "probability": 0.6674 + }, + { + "start": 15273.34, + "end": 15275.2, + "probability": 0.9032 + }, + { + "start": 15275.76, + "end": 15279.78, + "probability": 0.8351 + }, + { + "start": 15280.42, + "end": 15283.88, + "probability": 0.9847 + }, + { + "start": 15284.28, + "end": 15288.28, + "probability": 0.9871 + }, + { + "start": 15288.44, + "end": 15290.72, + "probability": 0.163 + }, + { + "start": 15291.4, + "end": 15292.21, + "probability": 0.704 + }, + { + "start": 15292.26, + "end": 15295.62, + "probability": 0.7641 + }, + { + "start": 15296.12, + "end": 15296.58, + "probability": 0.6714 + }, + { + "start": 15296.96, + "end": 15297.96, + "probability": 0.7046 + }, + { + "start": 15298.26, + "end": 15301.44, + "probability": 0.8823 + }, + { + "start": 15301.52, + "end": 15302.48, + "probability": 0.5952 + }, + { + "start": 15302.6, + "end": 15303.04, + "probability": 0.5538 + }, + { + "start": 15303.22, + "end": 15305.36, + "probability": 0.2459 + }, + { + "start": 15307.46, + "end": 15307.96, + "probability": 0.5345 + }, + { + "start": 15308.0, + "end": 15308.7, + "probability": 0.7496 + }, + { + "start": 15320.46, + "end": 15321.32, + "probability": 0.8344 + }, + { + "start": 15321.38, + "end": 15323.16, + "probability": 0.861 + }, + { + "start": 15323.34, + "end": 15326.85, + "probability": 0.9885 + }, + { + "start": 15329.6, + "end": 15331.74, + "probability": 0.9751 + }, + { + "start": 15331.74, + "end": 15335.48, + "probability": 0.9252 + }, + { + "start": 15335.98, + "end": 15339.24, + "probability": 0.9877 + }, + { + "start": 15339.24, + "end": 15341.8, + "probability": 0.9979 + }, + { + "start": 15341.88, + "end": 15344.46, + "probability": 0.9587 + }, + { + "start": 15344.98, + "end": 15345.96, + "probability": 0.8765 + }, + { + "start": 15346.52, + "end": 15347.26, + "probability": 0.608 + }, + { + "start": 15347.3, + "end": 15349.42, + "probability": 0.8427 + }, + { + "start": 15349.54, + "end": 15351.12, + "probability": 0.9588 + }, + { + "start": 15351.24, + "end": 15353.7, + "probability": 0.9912 + }, + { + "start": 15354.58, + "end": 15357.34, + "probability": 0.8501 + }, + { + "start": 15357.96, + "end": 15360.7, + "probability": 0.9282 + }, + { + "start": 15361.3, + "end": 15361.78, + "probability": 0.7185 + }, + { + "start": 15361.9, + "end": 15362.77, + "probability": 0.963 + }, + { + "start": 15363.5, + "end": 15367.16, + "probability": 0.9923 + }, + { + "start": 15368.1, + "end": 15370.34, + "probability": 0.966 + }, + { + "start": 15370.88, + "end": 15373.47, + "probability": 0.864 + }, + { + "start": 15374.24, + "end": 15374.54, + "probability": 0.8823 + }, + { + "start": 15374.84, + "end": 15377.44, + "probability": 0.9812 + }, + { + "start": 15377.86, + "end": 15380.86, + "probability": 0.9846 + }, + { + "start": 15381.9, + "end": 15382.14, + "probability": 0.949 + }, + { + "start": 15383.94, + "end": 15387.48, + "probability": 0.8604 + }, + { + "start": 15388.0, + "end": 15389.84, + "probability": 0.9825 + }, + { + "start": 15390.02, + "end": 15391.28, + "probability": 0.9742 + }, + { + "start": 15391.38, + "end": 15392.64, + "probability": 0.9756 + }, + { + "start": 15393.2, + "end": 15395.4, + "probability": 0.9965 + }, + { + "start": 15396.02, + "end": 15399.22, + "probability": 0.7486 + }, + { + "start": 15400.0, + "end": 15404.3, + "probability": 0.985 + }, + { + "start": 15404.66, + "end": 15406.4, + "probability": 0.9445 + }, + { + "start": 15407.02, + "end": 15408.5, + "probability": 0.8815 + }, + { + "start": 15408.84, + "end": 15410.32, + "probability": 0.8941 + }, + { + "start": 15410.4, + "end": 15413.24, + "probability": 0.9972 + }, + { + "start": 15413.36, + "end": 15414.54, + "probability": 0.9388 + }, + { + "start": 15414.66, + "end": 15416.6, + "probability": 0.9323 + }, + { + "start": 15417.1, + "end": 15418.1, + "probability": 0.9279 + }, + { + "start": 15418.24, + "end": 15419.14, + "probability": 0.6187 + }, + { + "start": 15419.24, + "end": 15424.78, + "probability": 0.9749 + }, + { + "start": 15425.22, + "end": 15426.14, + "probability": 0.9347 + }, + { + "start": 15426.24, + "end": 15427.48, + "probability": 0.9938 + }, + { + "start": 15427.54, + "end": 15428.7, + "probability": 0.9619 + }, + { + "start": 15429.14, + "end": 15430.22, + "probability": 0.8958 + }, + { + "start": 15430.36, + "end": 15433.7, + "probability": 0.9742 + }, + { + "start": 15434.38, + "end": 15437.7, + "probability": 0.9447 + }, + { + "start": 15437.7, + "end": 15443.12, + "probability": 0.9945 + }, + { + "start": 15443.8, + "end": 15446.2, + "probability": 0.895 + }, + { + "start": 15447.38, + "end": 15450.54, + "probability": 0.9047 + }, + { + "start": 15450.68, + "end": 15453.14, + "probability": 0.9465 + }, + { + "start": 15453.52, + "end": 15456.68, + "probability": 0.9797 + }, + { + "start": 15456.68, + "end": 15459.92, + "probability": 0.9985 + }, + { + "start": 15460.02, + "end": 15464.26, + "probability": 0.9829 + }, + { + "start": 15464.62, + "end": 15465.2, + "probability": 0.7579 + }, + { + "start": 15465.88, + "end": 15466.58, + "probability": 0.7288 + }, + { + "start": 15466.7, + "end": 15468.48, + "probability": 0.9404 + }, + { + "start": 15469.66, + "end": 15471.48, + "probability": 0.7541 + }, + { + "start": 15471.58, + "end": 15471.9, + "probability": 0.3328 + }, + { + "start": 15472.62, + "end": 15473.54, + "probability": 0.6439 + }, + { + "start": 15473.6, + "end": 15474.46, + "probability": 0.5618 + }, + { + "start": 15474.5, + "end": 15478.88, + "probability": 0.8229 + }, + { + "start": 15478.96, + "end": 15480.9, + "probability": 0.803 + }, + { + "start": 15481.9, + "end": 15482.04, + "probability": 0.6036 + }, + { + "start": 15482.04, + "end": 15482.58, + "probability": 0.5568 + }, + { + "start": 15482.58, + "end": 15485.58, + "probability": 0.9801 + }, + { + "start": 15486.26, + "end": 15487.94, + "probability": 0.263 + }, + { + "start": 15490.08, + "end": 15490.44, + "probability": 0.4281 + }, + { + "start": 15492.58, + "end": 15495.7, + "probability": 0.7338 + }, + { + "start": 15506.78, + "end": 15507.52, + "probability": 0.607 + }, + { + "start": 15507.56, + "end": 15510.86, + "probability": 0.9785 + }, + { + "start": 15510.92, + "end": 15511.48, + "probability": 0.7329 + }, + { + "start": 15511.52, + "end": 15514.6, + "probability": 0.9611 + }, + { + "start": 15514.6, + "end": 15518.12, + "probability": 0.7763 + }, + { + "start": 15518.42, + "end": 15519.2, + "probability": 0.3684 + }, + { + "start": 15519.5, + "end": 15523.34, + "probability": 0.9745 + }, + { + "start": 15523.34, + "end": 15526.74, + "probability": 0.7029 + }, + { + "start": 15526.74, + "end": 15527.86, + "probability": 0.5186 + }, + { + "start": 15528.18, + "end": 15529.9, + "probability": 0.5728 + }, + { + "start": 15530.0, + "end": 15530.66, + "probability": 0.9509 + }, + { + "start": 15530.74, + "end": 15532.12, + "probability": 0.7439 + }, + { + "start": 15533.04, + "end": 15534.74, + "probability": 0.8918 + }, + { + "start": 15534.8, + "end": 15535.78, + "probability": 0.9506 + }, + { + "start": 15536.32, + "end": 15537.22, + "probability": 0.2768 + }, + { + "start": 15537.58, + "end": 15540.78, + "probability": 0.7912 + }, + { + "start": 15541.32, + "end": 15544.7, + "probability": 0.8049 + }, + { + "start": 15569.34, + "end": 15572.4, + "probability": 0.6404 + }, + { + "start": 15574.3, + "end": 15578.96, + "probability": 0.801 + }, + { + "start": 15580.02, + "end": 15580.72, + "probability": 0.5239 + }, + { + "start": 15581.94, + "end": 15586.84, + "probability": 0.9553 + }, + { + "start": 15587.82, + "end": 15592.72, + "probability": 0.8644 + }, + { + "start": 15594.8, + "end": 15598.62, + "probability": 0.9772 + }, + { + "start": 15598.88, + "end": 15602.6, + "probability": 0.9637 + }, + { + "start": 15602.6, + "end": 15608.04, + "probability": 0.7628 + }, + { + "start": 15609.66, + "end": 15610.98, + "probability": 0.6965 + }, + { + "start": 15612.0, + "end": 15617.16, + "probability": 0.9774 + }, + { + "start": 15617.96, + "end": 15619.7, + "probability": 0.091 + }, + { + "start": 15619.7, + "end": 15622.88, + "probability": 0.7315 + }, + { + "start": 15624.36, + "end": 15624.4, + "probability": 0.0497 + }, + { + "start": 15624.4, + "end": 15625.44, + "probability": 0.5881 + }, + { + "start": 15625.76, + "end": 15628.2, + "probability": 0.9082 + }, + { + "start": 15630.62, + "end": 15634.12, + "probability": 0.7411 + }, + { + "start": 15634.82, + "end": 15636.82, + "probability": 0.9164 + }, + { + "start": 15637.7, + "end": 15638.14, + "probability": 0.2944 + }, + { + "start": 15638.32, + "end": 15643.18, + "probability": 0.9005 + }, + { + "start": 15644.3, + "end": 15647.08, + "probability": 0.9876 + }, + { + "start": 15647.6, + "end": 15657.38, + "probability": 0.9647 + }, + { + "start": 15657.44, + "end": 15660.54, + "probability": 0.8013 + }, + { + "start": 15661.64, + "end": 15664.31, + "probability": 0.5849 + }, + { + "start": 15665.44, + "end": 15674.24, + "probability": 0.9625 + }, + { + "start": 15674.66, + "end": 15682.14, + "probability": 0.9074 + }, + { + "start": 15682.22, + "end": 15687.38, + "probability": 0.9968 + }, + { + "start": 15688.28, + "end": 15692.0, + "probability": 0.7902 + }, + { + "start": 15692.68, + "end": 15694.82, + "probability": 0.9924 + }, + { + "start": 15695.56, + "end": 15698.78, + "probability": 0.8528 + }, + { + "start": 15699.32, + "end": 15702.2, + "probability": 0.8085 + }, + { + "start": 15703.26, + "end": 15706.12, + "probability": 0.8732 + }, + { + "start": 15706.76, + "end": 15707.82, + "probability": 0.881 + }, + { + "start": 15708.98, + "end": 15711.88, + "probability": 0.6804 + }, + { + "start": 15712.38, + "end": 15715.1, + "probability": 0.9932 + }, + { + "start": 15715.96, + "end": 15718.58, + "probability": 0.8313 + }, + { + "start": 15719.12, + "end": 15720.24, + "probability": 0.719 + }, + { + "start": 15721.46, + "end": 15724.22, + "probability": 0.9017 + }, + { + "start": 15725.72, + "end": 15730.08, + "probability": 0.9351 + }, + { + "start": 15730.86, + "end": 15734.18, + "probability": 0.9724 + }, + { + "start": 15735.08, + "end": 15738.12, + "probability": 0.998 + }, + { + "start": 15738.92, + "end": 15742.94, + "probability": 0.9649 + }, + { + "start": 15745.44, + "end": 15749.56, + "probability": 0.9626 + }, + { + "start": 15750.26, + "end": 15754.5, + "probability": 0.9932 + }, + { + "start": 15754.5, + "end": 15759.36, + "probability": 0.9874 + }, + { + "start": 15760.02, + "end": 15763.84, + "probability": 0.5979 + }, + { + "start": 15764.96, + "end": 15767.57, + "probability": 0.918 + }, + { + "start": 15768.7, + "end": 15773.05, + "probability": 0.9275 + }, + { + "start": 15773.64, + "end": 15777.7, + "probability": 0.9716 + }, + { + "start": 15777.88, + "end": 15778.06, + "probability": 0.1222 + }, + { + "start": 15778.06, + "end": 15781.24, + "probability": 0.9353 + }, + { + "start": 15781.52, + "end": 15783.36, + "probability": 0.4515 + }, + { + "start": 15783.56, + "end": 15783.9, + "probability": 0.4447 + }, + { + "start": 15783.96, + "end": 15785.66, + "probability": 0.7328 + }, + { + "start": 15785.78, + "end": 15787.88, + "probability": 0.9968 + }, + { + "start": 15787.96, + "end": 15788.38, + "probability": 0.114 + }, + { + "start": 15788.5, + "end": 15789.44, + "probability": 0.7012 + }, + { + "start": 15789.54, + "end": 15789.96, + "probability": 0.7054 + }, + { + "start": 15790.4, + "end": 15792.87, + "probability": 0.9789 + }, + { + "start": 15794.68, + "end": 15798.26, + "probability": 0.4863 + }, + { + "start": 15798.36, + "end": 15801.62, + "probability": 0.9567 + }, + { + "start": 15802.56, + "end": 15805.08, + "probability": 0.7361 + }, + { + "start": 15805.22, + "end": 15805.84, + "probability": 0.5923 + }, + { + "start": 15806.88, + "end": 15811.52, + "probability": 0.9791 + }, + { + "start": 15812.5, + "end": 15817.38, + "probability": 0.9966 + }, + { + "start": 15818.24, + "end": 15823.0, + "probability": 0.9989 + }, + { + "start": 15823.72, + "end": 15825.6, + "probability": 0.7473 + }, + { + "start": 15826.06, + "end": 15826.9, + "probability": 0.835 + }, + { + "start": 15827.52, + "end": 15832.96, + "probability": 0.9848 + }, + { + "start": 15833.72, + "end": 15835.55, + "probability": 0.8375 + }, + { + "start": 15836.66, + "end": 15840.2, + "probability": 0.9886 + }, + { + "start": 15840.8, + "end": 15844.22, + "probability": 0.9676 + }, + { + "start": 15844.84, + "end": 15846.1, + "probability": 0.6948 + }, + { + "start": 15846.78, + "end": 15852.88, + "probability": 0.9416 + }, + { + "start": 15853.58, + "end": 15853.9, + "probability": 0.1141 + }, + { + "start": 15854.48, + "end": 15855.76, + "probability": 0.4206 + }, + { + "start": 15855.78, + "end": 15857.46, + "probability": 0.6261 + }, + { + "start": 15857.7, + "end": 15862.14, + "probability": 0.9644 + }, + { + "start": 15862.24, + "end": 15863.88, + "probability": 0.9988 + }, + { + "start": 15864.52, + "end": 15867.02, + "probability": 0.99 + }, + { + "start": 15867.54, + "end": 15869.74, + "probability": 0.9198 + }, + { + "start": 15870.28, + "end": 15875.94, + "probability": 0.9991 + }, + { + "start": 15876.12, + "end": 15881.36, + "probability": 0.9927 + }, + { + "start": 15881.94, + "end": 15888.26, + "probability": 0.9801 + }, + { + "start": 15888.46, + "end": 15893.12, + "probability": 0.7673 + }, + { + "start": 15894.0, + "end": 15895.96, + "probability": 0.6995 + }, + { + "start": 15896.36, + "end": 15902.22, + "probability": 0.8545 + }, + { + "start": 15902.86, + "end": 15905.34, + "probability": 0.9366 + }, + { + "start": 15906.32, + "end": 15910.04, + "probability": 0.8899 + }, + { + "start": 15910.7, + "end": 15918.28, + "probability": 0.9608 + }, + { + "start": 15919.1, + "end": 15922.68, + "probability": 0.9932 + }, + { + "start": 15922.68, + "end": 15928.68, + "probability": 0.9978 + }, + { + "start": 15929.32, + "end": 15930.42, + "probability": 0.8474 + }, + { + "start": 15931.06, + "end": 15934.34, + "probability": 0.8434 + }, + { + "start": 15935.14, + "end": 15938.78, + "probability": 0.8752 + }, + { + "start": 15938.88, + "end": 15939.5, + "probability": 0.7136 + }, + { + "start": 15939.78, + "end": 15943.58, + "probability": 0.9561 + }, + { + "start": 15944.32, + "end": 15946.34, + "probability": 0.9399 + }, + { + "start": 15947.98, + "end": 15951.56, + "probability": 0.807 + }, + { + "start": 15954.34, + "end": 15954.34, + "probability": 0.0927 + }, + { + "start": 15954.34, + "end": 15955.64, + "probability": 0.0341 + }, + { + "start": 15959.6, + "end": 15961.5, + "probability": 0.9654 + }, + { + "start": 15962.84, + "end": 15966.54, + "probability": 0.8792 + }, + { + "start": 15967.94, + "end": 15974.06, + "probability": 0.9896 + }, + { + "start": 15975.74, + "end": 15975.94, + "probability": 0.7036 + }, + { + "start": 15976.46, + "end": 15977.46, + "probability": 0.8664 + }, + { + "start": 15978.22, + "end": 15980.36, + "probability": 0.8616 + }, + { + "start": 15981.12, + "end": 15982.8, + "probability": 0.9878 + }, + { + "start": 15983.56, + "end": 15989.72, + "probability": 0.9863 + }, + { + "start": 15991.52, + "end": 15993.49, + "probability": 0.578 + }, + { + "start": 15994.42, + "end": 15999.74, + "probability": 0.7959 + }, + { + "start": 16000.32, + "end": 16002.06, + "probability": 0.9434 + }, + { + "start": 16002.88, + "end": 16005.71, + "probability": 0.9341 + }, + { + "start": 16005.82, + "end": 16007.42, + "probability": 0.6674 + }, + { + "start": 16009.36, + "end": 16012.64, + "probability": 0.9884 + }, + { + "start": 16013.38, + "end": 16016.52, + "probability": 0.9049 + }, + { + "start": 16017.18, + "end": 16018.46, + "probability": 0.7191 + }, + { + "start": 16018.7, + "end": 16023.36, + "probability": 0.838 + }, + { + "start": 16024.22, + "end": 16030.1, + "probability": 0.9611 + }, + { + "start": 16030.76, + "end": 16032.64, + "probability": 0.9962 + }, + { + "start": 16035.1, + "end": 16038.94, + "probability": 0.964 + }, + { + "start": 16039.28, + "end": 16041.9, + "probability": 0.8704 + }, + { + "start": 16042.26, + "end": 16043.49, + "probability": 0.64 + }, + { + "start": 16044.26, + "end": 16048.92, + "probability": 0.9803 + }, + { + "start": 16049.66, + "end": 16057.76, + "probability": 0.9243 + }, + { + "start": 16058.48, + "end": 16061.56, + "probability": 0.981 + }, + { + "start": 16062.16, + "end": 16062.68, + "probability": 0.5878 + }, + { + "start": 16062.84, + "end": 16064.36, + "probability": 0.5383 + }, + { + "start": 16064.68, + "end": 16070.24, + "probability": 0.874 + }, + { + "start": 16070.8, + "end": 16072.98, + "probability": 0.993 + }, + { + "start": 16073.88, + "end": 16079.86, + "probability": 0.9968 + }, + { + "start": 16080.18, + "end": 16082.24, + "probability": 0.6764 + }, + { + "start": 16083.1, + "end": 16086.58, + "probability": 0.9941 + }, + { + "start": 16087.52, + "end": 16089.52, + "probability": 0.8428 + }, + { + "start": 16090.24, + "end": 16092.04, + "probability": 0.9409 + }, + { + "start": 16092.48, + "end": 16099.02, + "probability": 0.9759 + }, + { + "start": 16100.26, + "end": 16101.86, + "probability": 0.9912 + }, + { + "start": 16102.52, + "end": 16106.26, + "probability": 0.9813 + }, + { + "start": 16106.9, + "end": 16112.22, + "probability": 0.9575 + }, + { + "start": 16112.7, + "end": 16116.48, + "probability": 0.867 + }, + { + "start": 16117.64, + "end": 16120.32, + "probability": 0.9592 + }, + { + "start": 16121.12, + "end": 16124.7, + "probability": 0.9426 + }, + { + "start": 16125.36, + "end": 16128.38, + "probability": 0.8165 + }, + { + "start": 16128.92, + "end": 16132.12, + "probability": 0.9336 + }, + { + "start": 16132.64, + "end": 16133.96, + "probability": 0.9785 + }, + { + "start": 16134.7, + "end": 16137.07, + "probability": 0.998 + }, + { + "start": 16137.72, + "end": 16141.42, + "probability": 0.9448 + }, + { + "start": 16141.42, + "end": 16142.24, + "probability": 0.0411 + }, + { + "start": 16142.82, + "end": 16143.72, + "probability": 0.4482 + }, + { + "start": 16144.36, + "end": 16145.94, + "probability": 0.9728 + }, + { + "start": 16146.02, + "end": 16147.12, + "probability": 0.9547 + }, + { + "start": 16147.58, + "end": 16148.84, + "probability": 0.7642 + }, + { + "start": 16149.28, + "end": 16152.14, + "probability": 0.8629 + }, + { + "start": 16152.3, + "end": 16157.9, + "probability": 0.9949 + }, + { + "start": 16157.9, + "end": 16164.5, + "probability": 0.9889 + }, + { + "start": 16164.6, + "end": 16165.06, + "probability": 0.7542 + }, + { + "start": 16166.52, + "end": 16166.76, + "probability": 0.7386 + }, + { + "start": 16167.06, + "end": 16170.6, + "probability": 0.9976 + }, + { + "start": 16170.92, + "end": 16171.24, + "probability": 0.8039 + }, + { + "start": 16171.84, + "end": 16172.6, + "probability": 0.8737 + }, + { + "start": 16173.0, + "end": 16177.06, + "probability": 0.8474 + }, + { + "start": 16177.18, + "end": 16179.68, + "probability": 0.9302 + }, + { + "start": 16180.12, + "end": 16180.24, + "probability": 0.7028 + }, + { + "start": 16182.42, + "end": 16184.12, + "probability": 0.1264 + }, + { + "start": 16184.68, + "end": 16184.68, + "probability": 0.0151 + }, + { + "start": 16187.06, + "end": 16187.46, + "probability": 0.1687 + }, + { + "start": 16201.68, + "end": 16201.78, + "probability": 0.1307 + }, + { + "start": 16205.92, + "end": 16209.5, + "probability": 0.9385 + }, + { + "start": 16210.16, + "end": 16213.76, + "probability": 0.962 + }, + { + "start": 16214.46, + "end": 16216.78, + "probability": 0.8843 + }, + { + "start": 16218.0, + "end": 16221.78, + "probability": 0.9973 + }, + { + "start": 16222.6, + "end": 16227.18, + "probability": 0.997 + }, + { + "start": 16227.66, + "end": 16231.4, + "probability": 0.9952 + }, + { + "start": 16231.54, + "end": 16235.77, + "probability": 0.998 + }, + { + "start": 16236.24, + "end": 16239.67, + "probability": 0.9973 + }, + { + "start": 16240.62, + "end": 16242.21, + "probability": 0.9961 + }, + { + "start": 16242.84, + "end": 16246.18, + "probability": 0.9971 + }, + { + "start": 16247.06, + "end": 16250.32, + "probability": 0.9749 + }, + { + "start": 16250.54, + "end": 16254.66, + "probability": 0.9976 + }, + { + "start": 16254.96, + "end": 16258.2, + "probability": 0.9786 + }, + { + "start": 16258.88, + "end": 16262.28, + "probability": 0.9733 + }, + { + "start": 16263.06, + "end": 16264.68, + "probability": 0.8409 + }, + { + "start": 16265.86, + "end": 16268.1, + "probability": 0.9987 + }, + { + "start": 16268.66, + "end": 16272.0, + "probability": 0.998 + }, + { + "start": 16272.0, + "end": 16276.74, + "probability": 0.9414 + }, + { + "start": 16277.48, + "end": 16286.52, + "probability": 0.979 + }, + { + "start": 16287.58, + "end": 16290.34, + "probability": 0.9973 + }, + { + "start": 16290.8, + "end": 16293.74, + "probability": 0.998 + }, + { + "start": 16294.32, + "end": 16294.46, + "probability": 0.2611 + }, + { + "start": 16294.46, + "end": 16296.76, + "probability": 0.4623 + }, + { + "start": 16296.76, + "end": 16296.76, + "probability": 0.0845 + }, + { + "start": 16296.76, + "end": 16296.76, + "probability": 0.0498 + }, + { + "start": 16296.76, + "end": 16298.37, + "probability": 0.8615 + }, + { + "start": 16299.64, + "end": 16305.26, + "probability": 0.9397 + }, + { + "start": 16306.4, + "end": 16310.78, + "probability": 0.9969 + }, + { + "start": 16311.68, + "end": 16320.02, + "probability": 0.9932 + }, + { + "start": 16320.02, + "end": 16329.68, + "probability": 0.9967 + }, + { + "start": 16330.76, + "end": 16336.16, + "probability": 0.9283 + }, + { + "start": 16336.16, + "end": 16341.82, + "probability": 0.999 + }, + { + "start": 16342.92, + "end": 16342.92, + "probability": 0.0551 + }, + { + "start": 16342.92, + "end": 16347.38, + "probability": 0.9909 + }, + { + "start": 16347.38, + "end": 16353.38, + "probability": 0.9512 + }, + { + "start": 16353.52, + "end": 16354.68, + "probability": 0.1522 + }, + { + "start": 16354.68, + "end": 16355.72, + "probability": 0.0631 + }, + { + "start": 16355.72, + "end": 16356.38, + "probability": 0.014 + }, + { + "start": 16358.0, + "end": 16363.68, + "probability": 0.958 + }, + { + "start": 16363.68, + "end": 16368.08, + "probability": 0.9961 + }, + { + "start": 16368.18, + "end": 16376.04, + "probability": 0.979 + }, + { + "start": 16377.06, + "end": 16379.17, + "probability": 0.9552 + }, + { + "start": 16379.98, + "end": 16386.88, + "probability": 0.9607 + }, + { + "start": 16388.06, + "end": 16389.84, + "probability": 0.7956 + }, + { + "start": 16390.1, + "end": 16391.06, + "probability": 0.7457 + }, + { + "start": 16391.16, + "end": 16393.56, + "probability": 0.7502 + }, + { + "start": 16393.74, + "end": 16396.3, + "probability": 0.9839 + }, + { + "start": 16396.5, + "end": 16398.34, + "probability": 0.9922 + }, + { + "start": 16398.84, + "end": 16403.48, + "probability": 0.9961 + }, + { + "start": 16404.24, + "end": 16406.18, + "probability": 0.9972 + }, + { + "start": 16406.8, + "end": 16409.1, + "probability": 0.7877 + }, + { + "start": 16409.3, + "end": 16416.92, + "probability": 0.9985 + }, + { + "start": 16417.36, + "end": 16424.48, + "probability": 0.9888 + }, + { + "start": 16424.78, + "end": 16427.56, + "probability": 0.8585 + }, + { + "start": 16427.66, + "end": 16435.92, + "probability": 0.9787 + }, + { + "start": 16436.22, + "end": 16440.48, + "probability": 0.0141 + }, + { + "start": 16446.56, + "end": 16447.4, + "probability": 0.5602 + }, + { + "start": 16449.62, + "end": 16452.38, + "probability": 0.4395 + }, + { + "start": 16452.74, + "end": 16452.8, + "probability": 0.1465 + }, + { + "start": 16452.8, + "end": 16453.08, + "probability": 0.5667 + }, + { + "start": 16453.56, + "end": 16455.09, + "probability": 0.0258 + }, + { + "start": 16456.44, + "end": 16456.44, + "probability": 0.1863 + }, + { + "start": 16456.44, + "end": 16459.92, + "probability": 0.6207 + }, + { + "start": 16460.8, + "end": 16464.0, + "probability": 0.531 + }, + { + "start": 16469.7, + "end": 16471.82, + "probability": 0.0188 + }, + { + "start": 16471.82, + "end": 16471.82, + "probability": 0.055 + }, + { + "start": 16471.82, + "end": 16473.02, + "probability": 0.17 + }, + { + "start": 16475.72, + "end": 16477.26, + "probability": 0.234 + }, + { + "start": 16480.8, + "end": 16482.0, + "probability": 0.1674 + }, + { + "start": 16482.64, + "end": 16483.28, + "probability": 0.0514 + }, + { + "start": 16483.28, + "end": 16484.4, + "probability": 0.0566 + }, + { + "start": 16488.84, + "end": 16490.2, + "probability": 0.0125 + }, + { + "start": 16491.27, + "end": 16495.7, + "probability": 0.0319 + }, + { + "start": 16496.5, + "end": 16498.4, + "probability": 0.1685 + }, + { + "start": 16505.08, + "end": 16506.48, + "probability": 0.2323 + }, + { + "start": 16506.48, + "end": 16506.72, + "probability": 0.0208 + }, + { + "start": 16507.21, + "end": 16513.24, + "probability": 0.0902 + }, + { + "start": 16513.52, + "end": 16516.58, + "probability": 0.2051 + }, + { + "start": 16516.58, + "end": 16519.92, + "probability": 0.0614 + }, + { + "start": 16519.92, + "end": 16521.02, + "probability": 0.1988 + }, + { + "start": 16521.02, + "end": 16521.69, + "probability": 0.1195 + }, + { + "start": 16523.0, + "end": 16523.0, + "probability": 0.0 + }, + { + "start": 16523.0, + "end": 16523.0, + "probability": 0.0 + }, + { + "start": 16523.0, + "end": 16523.0, + "probability": 0.0 + }, + { + "start": 16523.0, + "end": 16523.0, + "probability": 0.0 + }, + { + "start": 16523.0, + "end": 16523.0, + "probability": 0.0 + }, + { + "start": 16523.0, + "end": 16523.0, + "probability": 0.0 + }, + { + "start": 16523.0, + "end": 16523.0, + "probability": 0.0 + }, + { + "start": 16523.0, + "end": 16523.0, + "probability": 0.0 + }, + { + "start": 16523.8, + "end": 16524.12, + "probability": 0.1147 + }, + { + "start": 16526.26, + "end": 16526.81, + "probability": 0.1573 + }, + { + "start": 16529.21, + "end": 16532.72, + "probability": 0.8893 + }, + { + "start": 16543.9, + "end": 16546.24, + "probability": 0.9956 + }, + { + "start": 16549.24, + "end": 16550.94, + "probability": 0.6285 + }, + { + "start": 16558.88, + "end": 16560.1, + "probability": 0.3536 + }, + { + "start": 16560.38, + "end": 16563.18, + "probability": 0.0696 + }, + { + "start": 16570.94, + "end": 16574.28, + "probability": 0.0008 + }, + { + "start": 16576.44, + "end": 16577.62, + "probability": 0.0639 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.0, + "end": 16679.0, + "probability": 0.0 + }, + { + "start": 16679.1, + "end": 16679.26, + "probability": 0.229 + }, + { + "start": 16679.26, + "end": 16679.26, + "probability": 0.1262 + }, + { + "start": 16679.26, + "end": 16680.29, + "probability": 0.4132 + }, + { + "start": 16683.02, + "end": 16685.6, + "probability": 0.738 + }, + { + "start": 16685.6, + "end": 16688.5, + "probability": 0.027 + }, + { + "start": 16688.5, + "end": 16689.62, + "probability": 0.2455 + }, + { + "start": 16689.62, + "end": 16689.62, + "probability": 0.1083 + }, + { + "start": 16689.62, + "end": 16693.26, + "probability": 0.1579 + }, + { + "start": 16693.42, + "end": 16693.54, + "probability": 0.2027 + }, + { + "start": 16693.54, + "end": 16693.7, + "probability": 0.4316 + }, + { + "start": 16693.7, + "end": 16694.72, + "probability": 0.1627 + }, + { + "start": 16696.26, + "end": 16696.98, + "probability": 0.236 + }, + { + "start": 16697.24, + "end": 16697.98, + "probability": 0.2701 + }, + { + "start": 16699.24, + "end": 16702.48, + "probability": 0.4249 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16806.0, + "end": 16806.0, + "probability": 0.0 + }, + { + "start": 16808.14, + "end": 16810.52, + "probability": 0.2037 + }, + { + "start": 16810.52, + "end": 16813.0, + "probability": 0.0214 + }, + { + "start": 16813.91, + "end": 16813.98, + "probability": 0.1246 + }, + { + "start": 16813.98, + "end": 16814.76, + "probability": 0.3676 + }, + { + "start": 16818.74, + "end": 16819.44, + "probability": 0.1807 + }, + { + "start": 16821.36, + "end": 16822.42, + "probability": 0.2444 + }, + { + "start": 16823.92, + "end": 16824.62, + "probability": 0.4167 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.0, + "end": 16932.0, + "probability": 0.0 + }, + { + "start": 16932.26, + "end": 16932.42, + "probability": 0.0139 + }, + { + "start": 16932.42, + "end": 16932.42, + "probability": 0.0309 + }, + { + "start": 16932.42, + "end": 16932.54, + "probability": 0.0297 + }, + { + "start": 16933.68, + "end": 16934.58, + "probability": 0.7081 + }, + { + "start": 16935.32, + "end": 16938.62, + "probability": 0.7596 + }, + { + "start": 16939.56, + "end": 16943.2, + "probability": 0.7348 + }, + { + "start": 16943.94, + "end": 16945.96, + "probability": 0.8331 + }, + { + "start": 16947.04, + "end": 16948.14, + "probability": 0.7849 + }, + { + "start": 16949.42, + "end": 16950.14, + "probability": 0.6653 + }, + { + "start": 16951.16, + "end": 16951.84, + "probability": 0.8462 + }, + { + "start": 16953.32, + "end": 16955.14, + "probability": 0.9292 + }, + { + "start": 16956.76, + "end": 16957.38, + "probability": 0.4437 + }, + { + "start": 16958.04, + "end": 16958.72, + "probability": 0.6958 + }, + { + "start": 16959.42, + "end": 16959.98, + "probability": 0.6141 + }, + { + "start": 16960.1, + "end": 16960.4, + "probability": 0.9415 + }, + { + "start": 16961.76, + "end": 16963.22, + "probability": 0.9481 + }, + { + "start": 16963.26, + "end": 16964.96, + "probability": 0.9832 + }, + { + "start": 16966.78, + "end": 16969.02, + "probability": 0.9975 + }, + { + "start": 16970.42, + "end": 16975.02, + "probability": 0.8366 + }, + { + "start": 16975.1, + "end": 16975.7, + "probability": 0.5238 + }, + { + "start": 16976.16, + "end": 16977.66, + "probability": 0.9947 + }, + { + "start": 16977.78, + "end": 16978.53, + "probability": 0.9897 + }, + { + "start": 16979.88, + "end": 16981.08, + "probability": 0.9399 + }, + { + "start": 16982.6, + "end": 16988.08, + "probability": 0.9918 + }, + { + "start": 16988.08, + "end": 16991.68, + "probability": 0.8843 + }, + { + "start": 16992.3, + "end": 16993.66, + "probability": 0.9854 + }, + { + "start": 16995.6, + "end": 16996.3, + "probability": 0.8862 + }, + { + "start": 16997.64, + "end": 16998.78, + "probability": 0.7114 + }, + { + "start": 16999.76, + "end": 17004.4, + "probability": 0.8219 + }, + { + "start": 17005.56, + "end": 17006.5, + "probability": 0.9708 + }, + { + "start": 17007.96, + "end": 17009.08, + "probability": 0.9743 + }, + { + "start": 17009.14, + "end": 17013.24, + "probability": 0.9182 + }, + { + "start": 17013.44, + "end": 17014.74, + "probability": 0.6677 + }, + { + "start": 17014.8, + "end": 17015.82, + "probability": 0.9606 + }, + { + "start": 17018.12, + "end": 17019.84, + "probability": 0.7665 + }, + { + "start": 17020.76, + "end": 17022.06, + "probability": 0.9496 + }, + { + "start": 17024.06, + "end": 17026.62, + "probability": 0.8216 + }, + { + "start": 17027.56, + "end": 17028.08, + "probability": 0.73 + }, + { + "start": 17028.22, + "end": 17028.9, + "probability": 0.9795 + }, + { + "start": 17029.82, + "end": 17031.3, + "probability": 0.9989 + }, + { + "start": 17032.42, + "end": 17033.86, + "probability": 0.8247 + }, + { + "start": 17037.54, + "end": 17038.46, + "probability": 0.6969 + }, + { + "start": 17039.36, + "end": 17039.92, + "probability": 0.8135 + }, + { + "start": 17041.52, + "end": 17042.44, + "probability": 0.9496 + }, + { + "start": 17044.04, + "end": 17045.0, + "probability": 0.9396 + }, + { + "start": 17045.2, + "end": 17045.64, + "probability": 0.8357 + }, + { + "start": 17045.72, + "end": 17047.84, + "probability": 0.9711 + }, + { + "start": 17049.3, + "end": 17051.54, + "probability": 0.9987 + }, + { + "start": 17052.6, + "end": 17056.8, + "probability": 0.9862 + }, + { + "start": 17056.8, + "end": 17060.64, + "probability": 0.9975 + }, + { + "start": 17061.84, + "end": 17063.78, + "probability": 0.5944 + }, + { + "start": 17064.92, + "end": 17066.56, + "probability": 0.9858 + }, + { + "start": 17068.56, + "end": 17071.38, + "probability": 0.7588 + }, + { + "start": 17074.18, + "end": 17076.7, + "probability": 0.9384 + }, + { + "start": 17078.44, + "end": 17079.58, + "probability": 0.6915 + }, + { + "start": 17081.2, + "end": 17082.72, + "probability": 0.9784 + }, + { + "start": 17083.14, + "end": 17086.2, + "probability": 0.9682 + }, + { + "start": 17087.64, + "end": 17090.7, + "probability": 0.9483 + }, + { + "start": 17091.64, + "end": 17092.36, + "probability": 0.519 + }, + { + "start": 17093.5, + "end": 17095.5, + "probability": 0.5659 + }, + { + "start": 17095.56, + "end": 17096.17, + "probability": 0.9294 + }, + { + "start": 17096.34, + "end": 17097.36, + "probability": 0.9948 + }, + { + "start": 17098.32, + "end": 17100.18, + "probability": 0.9825 + }, + { + "start": 17103.14, + "end": 17106.28, + "probability": 0.9858 + }, + { + "start": 17107.54, + "end": 17111.08, + "probability": 0.9907 + }, + { + "start": 17111.44, + "end": 17112.78, + "probability": 0.9909 + }, + { + "start": 17113.14, + "end": 17114.88, + "probability": 0.8004 + }, + { + "start": 17114.94, + "end": 17117.08, + "probability": 0.9824 + }, + { + "start": 17117.4, + "end": 17119.6, + "probability": 0.9919 + }, + { + "start": 17121.0, + "end": 17121.82, + "probability": 0.989 + }, + { + "start": 17123.94, + "end": 17125.42, + "probability": 0.9068 + }, + { + "start": 17126.7, + "end": 17128.14, + "probability": 0.7164 + }, + { + "start": 17128.92, + "end": 17129.5, + "probability": 0.9586 + }, + { + "start": 17130.92, + "end": 17134.72, + "probability": 0.9938 + }, + { + "start": 17135.58, + "end": 17136.72, + "probability": 0.8651 + }, + { + "start": 17137.24, + "end": 17137.88, + "probability": 0.9554 + }, + { + "start": 17141.32, + "end": 17144.3, + "probability": 0.9647 + }, + { + "start": 17145.18, + "end": 17145.86, + "probability": 0.606 + }, + { + "start": 17146.08, + "end": 17146.68, + "probability": 0.798 + }, + { + "start": 17146.78, + "end": 17147.14, + "probability": 0.8951 + }, + { + "start": 17147.2, + "end": 17148.32, + "probability": 0.9714 + }, + { + "start": 17149.32, + "end": 17151.72, + "probability": 0.8225 + }, + { + "start": 17151.72, + "end": 17154.46, + "probability": 0.9444 + }, + { + "start": 17155.1, + "end": 17157.28, + "probability": 0.926 + }, + { + "start": 17160.2, + "end": 17162.4, + "probability": 0.9925 + }, + { + "start": 17163.0, + "end": 17164.88, + "probability": 0.8625 + }, + { + "start": 17166.26, + "end": 17167.78, + "probability": 0.9741 + }, + { + "start": 17169.36, + "end": 17172.88, + "probability": 0.9941 + }, + { + "start": 17175.0, + "end": 17175.7, + "probability": 0.8229 + }, + { + "start": 17175.86, + "end": 17177.82, + "probability": 0.9408 + }, + { + "start": 17178.12, + "end": 17178.68, + "probability": 0.465 + }, + { + "start": 17179.44, + "end": 17180.5, + "probability": 0.989 + }, + { + "start": 17182.92, + "end": 17186.6, + "probability": 0.9812 + }, + { + "start": 17187.9, + "end": 17191.18, + "probability": 0.9955 + }, + { + "start": 17191.22, + "end": 17191.88, + "probability": 0.8526 + }, + { + "start": 17191.96, + "end": 17192.94, + "probability": 0.934 + }, + { + "start": 17193.34, + "end": 17194.36, + "probability": 0.7972 + }, + { + "start": 17194.76, + "end": 17195.28, + "probability": 0.9465 + }, + { + "start": 17196.82, + "end": 17200.22, + "probability": 0.9583 + }, + { + "start": 17201.02, + "end": 17204.32, + "probability": 0.9499 + }, + { + "start": 17204.82, + "end": 17207.26, + "probability": 0.9801 + }, + { + "start": 17207.92, + "end": 17211.32, + "probability": 0.7908 + }, + { + "start": 17213.22, + "end": 17216.32, + "probability": 0.9565 + }, + { + "start": 17217.06, + "end": 17219.88, + "probability": 0.8815 + }, + { + "start": 17220.62, + "end": 17222.5, + "probability": 0.7837 + }, + { + "start": 17223.6, + "end": 17223.96, + "probability": 0.796 + }, + { + "start": 17224.3, + "end": 17227.24, + "probability": 0.9951 + }, + { + "start": 17229.66, + "end": 17232.96, + "probability": 0.7801 + }, + { + "start": 17234.12, + "end": 17234.96, + "probability": 0.9893 + }, + { + "start": 17236.52, + "end": 17237.67, + "probability": 0.9685 + }, + { + "start": 17238.34, + "end": 17241.14, + "probability": 0.9647 + }, + { + "start": 17241.6, + "end": 17243.94, + "probability": 0.896 + }, + { + "start": 17244.86, + "end": 17251.86, + "probability": 0.9866 + }, + { + "start": 17253.18, + "end": 17253.92, + "probability": 0.9287 + }, + { + "start": 17256.7, + "end": 17256.86, + "probability": 0.0361 + }, + { + "start": 17256.86, + "end": 17257.2, + "probability": 0.4223 + }, + { + "start": 17257.34, + "end": 17258.1, + "probability": 0.5956 + }, + { + "start": 17258.72, + "end": 17262.0, + "probability": 0.6567 + }, + { + "start": 17262.0, + "end": 17266.14, + "probability": 0.8517 + }, + { + "start": 17267.42, + "end": 17270.74, + "probability": 0.9463 + }, + { + "start": 17271.24, + "end": 17273.08, + "probability": 0.9382 + }, + { + "start": 17273.82, + "end": 17275.48, + "probability": 0.9948 + }, + { + "start": 17276.04, + "end": 17276.64, + "probability": 0.8767 + }, + { + "start": 17277.76, + "end": 17281.6, + "probability": 0.9889 + }, + { + "start": 17282.42, + "end": 17283.1, + "probability": 0.8392 + }, + { + "start": 17283.66, + "end": 17284.86, + "probability": 0.9867 + }, + { + "start": 17285.48, + "end": 17288.12, + "probability": 0.9369 + }, + { + "start": 17288.22, + "end": 17290.43, + "probability": 0.9846 + }, + { + "start": 17292.98, + "end": 17293.98, + "probability": 0.8257 + }, + { + "start": 17295.32, + "end": 17295.81, + "probability": 0.7378 + }, + { + "start": 17296.74, + "end": 17298.84, + "probability": 0.8255 + }, + { + "start": 17299.64, + "end": 17300.73, + "probability": 0.7437 + }, + { + "start": 17302.92, + "end": 17307.3, + "probability": 0.9795 + }, + { + "start": 17309.58, + "end": 17310.66, + "probability": 0.7413 + }, + { + "start": 17311.26, + "end": 17313.82, + "probability": 0.8006 + }, + { + "start": 17314.64, + "end": 17316.74, + "probability": 0.8887 + }, + { + "start": 17317.9, + "end": 17319.86, + "probability": 0.9445 + }, + { + "start": 17320.04, + "end": 17321.22, + "probability": 0.8887 + }, + { + "start": 17322.14, + "end": 17323.34, + "probability": 0.9929 + }, + { + "start": 17327.26, + "end": 17329.46, + "probability": 0.7943 + }, + { + "start": 17330.6, + "end": 17331.22, + "probability": 0.6611 + }, + { + "start": 17331.74, + "end": 17333.26, + "probability": 0.791 + }, + { + "start": 17333.8, + "end": 17335.26, + "probability": 0.9622 + }, + { + "start": 17335.68, + "end": 17338.26, + "probability": 0.9899 + }, + { + "start": 17339.78, + "end": 17342.12, + "probability": 0.8803 + }, + { + "start": 17344.34, + "end": 17345.36, + "probability": 0.9823 + }, + { + "start": 17346.66, + "end": 17348.64, + "probability": 0.9937 + }, + { + "start": 17349.16, + "end": 17350.04, + "probability": 0.8446 + }, + { + "start": 17350.44, + "end": 17355.16, + "probability": 0.9836 + }, + { + "start": 17356.14, + "end": 17356.54, + "probability": 0.9586 + }, + { + "start": 17357.08, + "end": 17357.66, + "probability": 0.9832 + }, + { + "start": 17358.4, + "end": 17360.64, + "probability": 0.9753 + }, + { + "start": 17362.6, + "end": 17363.7, + "probability": 0.9961 + }, + { + "start": 17365.02, + "end": 17367.54, + "probability": 0.8383 + }, + { + "start": 17369.64, + "end": 17369.76, + "probability": 0.8125 + }, + { + "start": 17370.82, + "end": 17372.46, + "probability": 0.9753 + }, + { + "start": 17373.42, + "end": 17374.62, + "probability": 0.9923 + }, + { + "start": 17375.48, + "end": 17377.38, + "probability": 0.474 + }, + { + "start": 17378.06, + "end": 17379.06, + "probability": 0.7655 + }, + { + "start": 17379.16, + "end": 17380.4, + "probability": 0.6975 + }, + { + "start": 17380.72, + "end": 17381.14, + "probability": 0.8192 + }, + { + "start": 17381.26, + "end": 17381.98, + "probability": 0.9418 + }, + { + "start": 17382.94, + "end": 17384.61, + "probability": 0.947 + }, + { + "start": 17385.06, + "end": 17387.96, + "probability": 0.7589 + }, + { + "start": 17388.24, + "end": 17389.54, + "probability": 0.9142 + }, + { + "start": 17389.68, + "end": 17390.18, + "probability": 0.5022 + }, + { + "start": 17390.22, + "end": 17391.4, + "probability": 0.8999 + }, + { + "start": 17391.78, + "end": 17394.9, + "probability": 0.8127 + }, + { + "start": 17395.96, + "end": 17396.48, + "probability": 0.9331 + }, + { + "start": 17397.12, + "end": 17399.04, + "probability": 0.7407 + }, + { + "start": 17399.22, + "end": 17400.0, + "probability": 0.9529 + }, + { + "start": 17400.46, + "end": 17404.12, + "probability": 0.979 + }, + { + "start": 17404.72, + "end": 17407.18, + "probability": 0.6359 + }, + { + "start": 17407.68, + "end": 17408.24, + "probability": 0.5395 + }, + { + "start": 17408.48, + "end": 17409.52, + "probability": 0.5054 + }, + { + "start": 17413.82, + "end": 17414.78, + "probability": 0.5523 + }, + { + "start": 17414.92, + "end": 17418.24, + "probability": 0.9402 + }, + { + "start": 17418.3, + "end": 17419.34, + "probability": 0.8438 + }, + { + "start": 17420.3, + "end": 17421.94, + "probability": 0.9461 + }, + { + "start": 17422.94, + "end": 17424.1, + "probability": 0.9457 + }, + { + "start": 17424.2, + "end": 17424.84, + "probability": 0.9413 + }, + { + "start": 17425.0, + "end": 17426.02, + "probability": 0.9161 + }, + { + "start": 17426.36, + "end": 17427.26, + "probability": 0.955 + }, + { + "start": 17427.32, + "end": 17428.36, + "probability": 0.7645 + }, + { + "start": 17429.52, + "end": 17432.46, + "probability": 0.905 + }, + { + "start": 17433.36, + "end": 17435.13, + "probability": 0.9258 + }, + { + "start": 17435.92, + "end": 17437.32, + "probability": 0.4237 + }, + { + "start": 17437.32, + "end": 17437.8, + "probability": 0.8033 + }, + { + "start": 17437.99, + "end": 17440.84, + "probability": 0.5243 + }, + { + "start": 17440.84, + "end": 17442.2, + "probability": 0.6851 + }, + { + "start": 17443.06, + "end": 17443.74, + "probability": 0.7723 + }, + { + "start": 17444.52, + "end": 17445.24, + "probability": 0.9484 + }, + { + "start": 17446.34, + "end": 17446.94, + "probability": 0.7029 + }, + { + "start": 17447.4, + "end": 17448.6, + "probability": 0.9637 + }, + { + "start": 17450.7, + "end": 17452.84, + "probability": 0.9443 + }, + { + "start": 17453.3, + "end": 17455.12, + "probability": 0.9977 + }, + { + "start": 17455.92, + "end": 17457.08, + "probability": 0.5105 + }, + { + "start": 17457.84, + "end": 17459.82, + "probability": 0.987 + }, + { + "start": 17461.54, + "end": 17462.84, + "probability": 0.7207 + }, + { + "start": 17462.98, + "end": 17463.69, + "probability": 0.9727 + }, + { + "start": 17464.7, + "end": 17468.02, + "probability": 0.7597 + }, + { + "start": 17469.3, + "end": 17471.26, + "probability": 0.9209 + }, + { + "start": 17471.76, + "end": 17472.64, + "probability": 0.9496 + }, + { + "start": 17472.7, + "end": 17475.74, + "probability": 0.9915 + }, + { + "start": 17476.08, + "end": 17477.76, + "probability": 0.9857 + }, + { + "start": 17478.4, + "end": 17480.16, + "probability": 0.9561 + }, + { + "start": 17480.22, + "end": 17480.58, + "probability": 0.8041 + }, + { + "start": 17482.06, + "end": 17483.68, + "probability": 0.7653 + }, + { + "start": 17484.86, + "end": 17488.9, + "probability": 0.9062 + }, + { + "start": 17488.9, + "end": 17489.72, + "probability": 0.8761 + }, + { + "start": 17502.66, + "end": 17503.68, + "probability": 0.9589 + }, + { + "start": 17508.3, + "end": 17509.24, + "probability": 0.5045 + }, + { + "start": 17509.32, + "end": 17510.56, + "probability": 0.717 + }, + { + "start": 17511.7, + "end": 17512.82, + "probability": 0.8647 + }, + { + "start": 17514.08, + "end": 17515.58, + "probability": 0.9253 + }, + { + "start": 17518.56, + "end": 17520.14, + "probability": 0.9814 + }, + { + "start": 17521.06, + "end": 17523.02, + "probability": 0.9615 + }, + { + "start": 17524.06, + "end": 17533.34, + "probability": 0.969 + }, + { + "start": 17536.56, + "end": 17538.58, + "probability": 0.8674 + }, + { + "start": 17540.38, + "end": 17545.68, + "probability": 0.9974 + }, + { + "start": 17545.9, + "end": 17545.9, + "probability": 0.0944 + }, + { + "start": 17545.9, + "end": 17545.9, + "probability": 0.2873 + }, + { + "start": 17545.9, + "end": 17548.45, + "probability": 0.7361 + }, + { + "start": 17549.48, + "end": 17560.38, + "probability": 0.9525 + }, + { + "start": 17561.46, + "end": 17564.18, + "probability": 0.8236 + }, + { + "start": 17565.6, + "end": 17567.88, + "probability": 0.7922 + }, + { + "start": 17568.4, + "end": 17572.2, + "probability": 0.5285 + }, + { + "start": 17572.2, + "end": 17572.42, + "probability": 0.2344 + }, + { + "start": 17573.18, + "end": 17573.94, + "probability": 0.3093 + }, + { + "start": 17574.84, + "end": 17575.8, + "probability": 0.0682 + }, + { + "start": 17576.2, + "end": 17576.44, + "probability": 0.125 + }, + { + "start": 17576.74, + "end": 17576.74, + "probability": 0.4939 + }, + { + "start": 17576.74, + "end": 17580.38, + "probability": 0.6849 + }, + { + "start": 17581.26, + "end": 17585.48, + "probability": 0.9769 + }, + { + "start": 17586.62, + "end": 17590.84, + "probability": 0.9678 + }, + { + "start": 17591.78, + "end": 17595.05, + "probability": 0.9629 + }, + { + "start": 17595.29, + "end": 17597.39, + "probability": 0.8361 + }, + { + "start": 17597.97, + "end": 17599.23, + "probability": 0.6833 + }, + { + "start": 17600.05, + "end": 17603.15, + "probability": 0.7467 + }, + { + "start": 17603.93, + "end": 17609.41, + "probability": 0.7413 + }, + { + "start": 17609.91, + "end": 17610.79, + "probability": 0.8822 + }, + { + "start": 17610.87, + "end": 17612.31, + "probability": 0.7092 + }, + { + "start": 17612.95, + "end": 17613.77, + "probability": 0.1921 + }, + { + "start": 17614.33, + "end": 17614.63, + "probability": 0.0257 + }, + { + "start": 17614.63, + "end": 17615.27, + "probability": 0.3842 + }, + { + "start": 17615.99, + "end": 17619.61, + "probability": 0.8238 + }, + { + "start": 17619.73, + "end": 17620.36, + "probability": 0.1388 + }, + { + "start": 17621.27, + "end": 17629.31, + "probability": 0.9531 + }, + { + "start": 17630.57, + "end": 17634.91, + "probability": 0.1982 + }, + { + "start": 17634.91, + "end": 17635.83, + "probability": 0.3491 + }, + { + "start": 17635.97, + "end": 17637.51, + "probability": 0.6024 + }, + { + "start": 17637.51, + "end": 17638.25, + "probability": 0.017 + }, + { + "start": 17640.05, + "end": 17640.61, + "probability": 0.0305 + }, + { + "start": 17640.87, + "end": 17642.11, + "probability": 0.1186 + }, + { + "start": 17642.39, + "end": 17645.93, + "probability": 0.0703 + }, + { + "start": 17646.49, + "end": 17646.85, + "probability": 0.0571 + }, + { + "start": 17646.85, + "end": 17646.85, + "probability": 0.4592 + }, + { + "start": 17646.85, + "end": 17646.85, + "probability": 0.0043 + }, + { + "start": 17646.85, + "end": 17646.85, + "probability": 0.1902 + }, + { + "start": 17646.85, + "end": 17646.85, + "probability": 0.0141 + }, + { + "start": 17646.85, + "end": 17646.85, + "probability": 0.2611 + }, + { + "start": 17646.85, + "end": 17648.67, + "probability": 0.8709 + }, + { + "start": 17649.09, + "end": 17650.13, + "probability": 0.3363 + }, + { + "start": 17650.57, + "end": 17653.95, + "probability": 0.0887 + }, + { + "start": 17654.9, + "end": 17656.57, + "probability": 0.1291 + }, + { + "start": 17656.57, + "end": 17657.49, + "probability": 0.4723 + }, + { + "start": 17657.49, + "end": 17658.13, + "probability": 0.54 + }, + { + "start": 17658.45, + "end": 17659.73, + "probability": 0.5386 + }, + { + "start": 17660.13, + "end": 17660.59, + "probability": 0.5672 + }, + { + "start": 17660.77, + "end": 17663.59, + "probability": 0.8377 + }, + { + "start": 17664.47, + "end": 17665.39, + "probability": 0.5367 + }, + { + "start": 17674.28, + "end": 17678.29, + "probability": 0.2236 + }, + { + "start": 17678.29, + "end": 17679.81, + "probability": 0.0026 + }, + { + "start": 17680.31, + "end": 17681.49, + "probability": 0.0923 + }, + { + "start": 17681.91, + "end": 17684.21, + "probability": 0.1186 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.0, + "end": 17727.0, + "probability": 0.0 + }, + { + "start": 17727.12, + "end": 17727.12, + "probability": 0.0028 + }, + { + "start": 17729.98, + "end": 17732.0, + "probability": 0.4576 + }, + { + "start": 17733.08, + "end": 17734.5, + "probability": 0.7673 + }, + { + "start": 17735.08, + "end": 17736.26, + "probability": 0.8063 + }, + { + "start": 17736.3, + "end": 17741.04, + "probability": 0.9922 + }, + { + "start": 17741.62, + "end": 17742.9, + "probability": 0.8694 + }, + { + "start": 17745.6, + "end": 17745.81, + "probability": 0.0061 + }, + { + "start": 17746.02, + "end": 17746.98, + "probability": 0.1999 + }, + { + "start": 17747.7, + "end": 17749.54, + "probability": 0.3722 + }, + { + "start": 17751.56, + "end": 17754.53, + "probability": 0.0543 + }, + { + "start": 17756.6, + "end": 17762.02, + "probability": 0.1458 + }, + { + "start": 17762.6, + "end": 17767.86, + "probability": 0.3985 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17856.0, + "end": 17856.0, + "probability": 0.0 + }, + { + "start": 17857.34, + "end": 17857.34, + "probability": 0.0406 + }, + { + "start": 17857.34, + "end": 17857.34, + "probability": 0.1319 + }, + { + "start": 17857.34, + "end": 17857.34, + "probability": 0.0047 + }, + { + "start": 17857.34, + "end": 17857.34, + "probability": 0.1229 + }, + { + "start": 17857.34, + "end": 17857.34, + "probability": 0.0397 + }, + { + "start": 17857.34, + "end": 17857.34, + "probability": 0.0268 + }, + { + "start": 17857.34, + "end": 17863.46, + "probability": 0.447 + }, + { + "start": 17864.04, + "end": 17864.16, + "probability": 0.5137 + }, + { + "start": 17864.7, + "end": 17865.64, + "probability": 0.7637 + }, + { + "start": 17866.3, + "end": 17871.74, + "probability": 0.9805 + }, + { + "start": 17872.62, + "end": 17873.38, + "probability": 0.5344 + }, + { + "start": 17873.46, + "end": 17877.06, + "probability": 0.6569 + }, + { + "start": 17877.06, + "end": 17880.4, + "probability": 0.0471 + }, + { + "start": 17881.08, + "end": 17882.44, + "probability": 0.5191 + }, + { + "start": 17883.04, + "end": 17883.04, + "probability": 0.2307 + }, + { + "start": 17883.04, + "end": 17884.8, + "probability": 0.1924 + }, + { + "start": 17884.92, + "end": 17885.2, + "probability": 0.0658 + }, + { + "start": 17885.2, + "end": 17887.02, + "probability": 0.4135 + }, + { + "start": 17887.76, + "end": 17887.84, + "probability": 0.0918 + }, + { + "start": 17887.84, + "end": 17888.84, + "probability": 0.1609 + }, + { + "start": 17889.26, + "end": 17890.72, + "probability": 0.1805 + }, + { + "start": 17891.73, + "end": 17893.04, + "probability": 0.1033 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.0, + "end": 17985.0, + "probability": 0.0 + }, + { + "start": 17985.14, + "end": 17985.76, + "probability": 0.2416 + }, + { + "start": 17985.76, + "end": 17986.08, + "probability": 0.0708 + }, + { + "start": 17986.08, + "end": 17986.08, + "probability": 0.2392 + }, + { + "start": 17986.08, + "end": 17986.08, + "probability": 0.0106 + }, + { + "start": 17986.08, + "end": 17986.08, + "probability": 0.0111 + }, + { + "start": 17986.08, + "end": 17986.08, + "probability": 0.313 + }, + { + "start": 17986.08, + "end": 17986.08, + "probability": 0.157 + }, + { + "start": 17986.08, + "end": 17986.08, + "probability": 0.0259 + }, + { + "start": 17986.08, + "end": 17989.8, + "probability": 0.3333 + }, + { + "start": 17989.8, + "end": 17991.26, + "probability": 0.4648 + }, + { + "start": 17991.98, + "end": 17995.62, + "probability": 0.5762 + }, + { + "start": 17996.22, + "end": 17998.78, + "probability": 0.6044 + }, + { + "start": 17999.7, + "end": 18000.36, + "probability": 0.4583 + }, + { + "start": 18000.46, + "end": 18000.94, + "probability": 0.5936 + }, + { + "start": 18001.0, + "end": 18003.8, + "probability": 0.1777 + }, + { + "start": 18004.04, + "end": 18011.98, + "probability": 0.6169 + }, + { + "start": 18012.06, + "end": 18013.62, + "probability": 0.5954 + }, + { + "start": 18014.46, + "end": 18016.82, + "probability": 0.4458 + }, + { + "start": 18017.68, + "end": 18018.77, + "probability": 0.6916 + }, + { + "start": 18018.92, + "end": 18020.14, + "probability": 0.265 + }, + { + "start": 18020.18, + "end": 18023.54, + "probability": 0.2477 + }, + { + "start": 18024.02, + "end": 18028.51, + "probability": 0.0463 + }, + { + "start": 18030.68, + "end": 18033.1, + "probability": 0.3339 + }, + { + "start": 18033.24, + "end": 18033.76, + "probability": 0.0096 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.0, + "end": 18116.0, + "probability": 0.0 + }, + { + "start": 18116.2, + "end": 18118.3, + "probability": 0.2026 + }, + { + "start": 18118.74, + "end": 18121.44, + "probability": 0.0364 + }, + { + "start": 18122.34, + "end": 18124.49, + "probability": 0.1364 + }, + { + "start": 18125.66, + "end": 18125.7, + "probability": 0.013 + }, + { + "start": 18125.7, + "end": 18127.38, + "probability": 0.0624 + }, + { + "start": 18128.16, + "end": 18129.5, + "probability": 0.3385 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.0, + "end": 18241.0, + "probability": 0.0 + }, + { + "start": 18241.4, + "end": 18241.74, + "probability": 0.0665 + }, + { + "start": 18241.74, + "end": 18241.74, + "probability": 0.0799 + }, + { + "start": 18241.74, + "end": 18241.74, + "probability": 0.2958 + }, + { + "start": 18241.74, + "end": 18243.64, + "probability": 0.1514 + }, + { + "start": 18245.08, + "end": 18249.45, + "probability": 0.2209 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.0, + "end": 18385.0, + "probability": 0.0 + }, + { + "start": 18385.16, + "end": 18385.32, + "probability": 0.0256 + }, + { + "start": 18385.32, + "end": 18385.84, + "probability": 0.0679 + }, + { + "start": 18386.04, + "end": 18389.14, + "probability": 0.3471 + }, + { + "start": 18389.76, + "end": 18389.92, + "probability": 0.1004 + }, + { + "start": 18389.92, + "end": 18389.92, + "probability": 0.3857 + }, + { + "start": 18389.92, + "end": 18393.2, + "probability": 0.2271 + }, + { + "start": 18393.8, + "end": 18394.4, + "probability": 0.2745 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.0, + "end": 18523.0, + "probability": 0.0 + }, + { + "start": 18523.24, + "end": 18523.3, + "probability": 0.1676 + }, + { + "start": 18523.3, + "end": 18523.3, + "probability": 0.2991 + }, + { + "start": 18523.3, + "end": 18523.3, + "probability": 0.0126 + }, + { + "start": 18523.3, + "end": 18523.3, + "probability": 0.0522 + }, + { + "start": 18523.3, + "end": 18524.32, + "probability": 0.6382 + }, + { + "start": 18524.72, + "end": 18525.16, + "probability": 0.3916 + }, + { + "start": 18526.18, + "end": 18527.3, + "probability": 0.691 + }, + { + "start": 18528.62, + "end": 18529.32, + "probability": 0.8036 + }, + { + "start": 18529.44, + "end": 18532.1, + "probability": 0.9906 + }, + { + "start": 18532.1, + "end": 18535.2, + "probability": 0.998 + }, + { + "start": 18536.28, + "end": 18538.36, + "probability": 0.9931 + }, + { + "start": 18539.44, + "end": 18542.21, + "probability": 0.9987 + }, + { + "start": 18543.88, + "end": 18547.28, + "probability": 0.9469 + }, + { + "start": 18547.8, + "end": 18549.76, + "probability": 0.7811 + }, + { + "start": 18550.5, + "end": 18553.18, + "probability": 0.9209 + }, + { + "start": 18555.6, + "end": 18558.72, + "probability": 0.9956 + }, + { + "start": 18560.06, + "end": 18563.52, + "probability": 0.7629 + }, + { + "start": 18563.66, + "end": 18565.08, + "probability": 0.5692 + }, + { + "start": 18565.26, + "end": 18570.46, + "probability": 0.9909 + }, + { + "start": 18570.46, + "end": 18576.04, + "probability": 0.9958 + }, + { + "start": 18576.08, + "end": 18579.42, + "probability": 0.9253 + }, + { + "start": 18581.26, + "end": 18582.32, + "probability": 0.3112 + }, + { + "start": 18582.48, + "end": 18583.32, + "probability": 0.2999 + }, + { + "start": 18583.92, + "end": 18590.0, + "probability": 0.9086 + }, + { + "start": 18590.55, + "end": 18593.68, + "probability": 0.9823 + }, + { + "start": 18594.8, + "end": 18596.7, + "probability": 0.6676 + }, + { + "start": 18596.72, + "end": 18597.74, + "probability": 0.9718 + }, + { + "start": 18597.9, + "end": 18599.4, + "probability": 0.9985 + }, + { + "start": 18599.82, + "end": 18600.86, + "probability": 0.9978 + }, + { + "start": 18601.64, + "end": 18603.58, + "probability": 0.9644 + }, + { + "start": 18604.36, + "end": 18605.52, + "probability": 0.9992 + }, + { + "start": 18606.42, + "end": 18607.9, + "probability": 0.7969 + }, + { + "start": 18609.94, + "end": 18611.5, + "probability": 0.9365 + }, + { + "start": 18612.44, + "end": 18616.02, + "probability": 0.963 + }, + { + "start": 18617.16, + "end": 18617.97, + "probability": 0.6176 + }, + { + "start": 18618.98, + "end": 18626.08, + "probability": 0.9926 + }, + { + "start": 18627.22, + "end": 18630.08, + "probability": 0.9907 + }, + { + "start": 18631.84, + "end": 18634.12, + "probability": 0.9834 + }, + { + "start": 18634.12, + "end": 18637.88, + "probability": 0.8779 + }, + { + "start": 18637.92, + "end": 18641.2, + "probability": 0.9213 + }, + { + "start": 18642.1, + "end": 18644.6, + "probability": 0.8702 + }, + { + "start": 18645.12, + "end": 18646.04, + "probability": 0.9001 + }, + { + "start": 18646.6, + "end": 18650.64, + "probability": 0.9709 + }, + { + "start": 18651.36, + "end": 18653.88, + "probability": 0.9963 + }, + { + "start": 18655.32, + "end": 18656.78, + "probability": 0.8899 + }, + { + "start": 18657.08, + "end": 18662.68, + "probability": 0.9718 + }, + { + "start": 18663.38, + "end": 18663.98, + "probability": 0.3259 + }, + { + "start": 18664.94, + "end": 18667.32, + "probability": 0.9873 + }, + { + "start": 18668.64, + "end": 18669.86, + "probability": 0.5399 + }, + { + "start": 18671.24, + "end": 18672.1, + "probability": 0.8877 + }, + { + "start": 18673.15, + "end": 18679.46, + "probability": 0.9883 + }, + { + "start": 18680.7, + "end": 18686.58, + "probability": 0.9904 + }, + { + "start": 18686.64, + "end": 18688.4, + "probability": 0.9454 + }, + { + "start": 18689.9, + "end": 18692.1, + "probability": 0.9538 + }, + { + "start": 18693.26, + "end": 18696.2, + "probability": 0.7637 + }, + { + "start": 18697.14, + "end": 18700.26, + "probability": 0.8581 + }, + { + "start": 18701.42, + "end": 18703.66, + "probability": 0.5029 + }, + { + "start": 18704.28, + "end": 18705.76, + "probability": 0.9292 + }, + { + "start": 18707.62, + "end": 18712.48, + "probability": 0.9933 + }, + { + "start": 18713.8, + "end": 18716.22, + "probability": 0.8711 + }, + { + "start": 18716.48, + "end": 18718.14, + "probability": 0.9707 + }, + { + "start": 18718.94, + "end": 18724.32, + "probability": 0.9982 + }, + { + "start": 18724.78, + "end": 18726.18, + "probability": 0.91 + }, + { + "start": 18727.08, + "end": 18731.94, + "probability": 0.9873 + }, + { + "start": 18732.68, + "end": 18734.38, + "probability": 0.9054 + }, + { + "start": 18737.74, + "end": 18740.64, + "probability": 0.9476 + }, + { + "start": 18741.32, + "end": 18744.78, + "probability": 0.9972 + }, + { + "start": 18745.0, + "end": 18746.96, + "probability": 0.9258 + }, + { + "start": 18748.58, + "end": 18750.52, + "probability": 0.9834 + }, + { + "start": 18752.46, + "end": 18759.46, + "probability": 0.8306 + }, + { + "start": 18760.86, + "end": 18767.68, + "probability": 0.9613 + }, + { + "start": 18770.1, + "end": 18774.24, + "probability": 0.9934 + }, + { + "start": 18775.12, + "end": 18777.6, + "probability": 0.9951 + }, + { + "start": 18779.36, + "end": 18780.8, + "probability": 0.8665 + }, + { + "start": 18781.72, + "end": 18784.7, + "probability": 0.9929 + }, + { + "start": 18785.36, + "end": 18786.44, + "probability": 0.7065 + }, + { + "start": 18786.6, + "end": 18787.28, + "probability": 0.96 + }, + { + "start": 18787.44, + "end": 18789.56, + "probability": 0.9973 + }, + { + "start": 18791.56, + "end": 18793.2, + "probability": 0.5564 + }, + { + "start": 18794.72, + "end": 18800.5, + "probability": 0.9347 + }, + { + "start": 18800.54, + "end": 18801.1, + "probability": 0.986 + }, + { + "start": 18802.22, + "end": 18805.26, + "probability": 0.811 + }, + { + "start": 18806.12, + "end": 18807.52, + "probability": 0.9988 + }, + { + "start": 18808.18, + "end": 18809.76, + "probability": 0.5891 + }, + { + "start": 18809.9, + "end": 18814.04, + "probability": 0.9977 + }, + { + "start": 18815.08, + "end": 18817.68, + "probability": 0.9745 + }, + { + "start": 18817.76, + "end": 18818.3, + "probability": 0.8482 + }, + { + "start": 18818.38, + "end": 18820.94, + "probability": 0.7029 + }, + { + "start": 18821.58, + "end": 18822.92, + "probability": 0.9551 + }, + { + "start": 18823.1, + "end": 18826.6, + "probability": 0.9417 + }, + { + "start": 18829.38, + "end": 18830.16, + "probability": 0.4994 + }, + { + "start": 18830.38, + "end": 18831.14, + "probability": 0.5392 + }, + { + "start": 18833.42, + "end": 18834.96, + "probability": 0.7649 + }, + { + "start": 18835.82, + "end": 18837.3, + "probability": 0.9047 + }, + { + "start": 18837.58, + "end": 18841.3, + "probability": 0.8599 + }, + { + "start": 18843.62, + "end": 18844.9, + "probability": 0.9435 + }, + { + "start": 18845.58, + "end": 18850.82, + "probability": 0.9275 + }, + { + "start": 18851.58, + "end": 18854.04, + "probability": 0.9907 + }, + { + "start": 18854.92, + "end": 18858.12, + "probability": 0.8524 + }, + { + "start": 18858.24, + "end": 18860.16, + "probability": 0.8647 + }, + { + "start": 18861.54, + "end": 18864.18, + "probability": 0.9627 + }, + { + "start": 18866.04, + "end": 18867.5, + "probability": 0.979 + }, + { + "start": 18869.22, + "end": 18869.9, + "probability": 0.8859 + }, + { + "start": 18870.9, + "end": 18872.54, + "probability": 0.9978 + }, + { + "start": 18874.56, + "end": 18875.24, + "probability": 0.0044 + }, + { + "start": 18875.24, + "end": 18875.78, + "probability": 0.2539 + }, + { + "start": 18876.24, + "end": 18878.02, + "probability": 0.992 + }, + { + "start": 18878.68, + "end": 18880.32, + "probability": 0.9854 + }, + { + "start": 18880.32, + "end": 18882.56, + "probability": 0.8777 + }, + { + "start": 18883.74, + "end": 18885.36, + "probability": 0.4134 + }, + { + "start": 18885.38, + "end": 18889.24, + "probability": 0.8389 + }, + { + "start": 18889.3, + "end": 18890.58, + "probability": 0.9494 + }, + { + "start": 18891.78, + "end": 18894.78, + "probability": 0.5597 + }, + { + "start": 18896.4, + "end": 18897.52, + "probability": 0.749 + }, + { + "start": 18898.1, + "end": 18899.58, + "probability": 0.9362 + }, + { + "start": 18900.44, + "end": 18903.06, + "probability": 0.907 + }, + { + "start": 18903.1, + "end": 18906.72, + "probability": 0.9973 + }, + { + "start": 18906.78, + "end": 18907.54, + "probability": 0.5116 + }, + { + "start": 18908.86, + "end": 18911.12, + "probability": 0.7183 + }, + { + "start": 18911.4, + "end": 18914.52, + "probability": 0.9058 + }, + { + "start": 18914.68, + "end": 18915.66, + "probability": 0.9754 + }, + { + "start": 18915.78, + "end": 18917.14, + "probability": 0.9995 + }, + { + "start": 18919.02, + "end": 18920.58, + "probability": 0.7879 + }, + { + "start": 18922.84, + "end": 18924.44, + "probability": 0.9143 + }, + { + "start": 18924.66, + "end": 18927.28, + "probability": 0.7657 + }, + { + "start": 18929.74, + "end": 18931.0, + "probability": 0.9689 + }, + { + "start": 18932.38, + "end": 18934.5, + "probability": 0.8592 + }, + { + "start": 18937.0, + "end": 18938.3, + "probability": 0.939 + }, + { + "start": 18938.88, + "end": 18940.62, + "probability": 0.7127 + }, + { + "start": 18941.08, + "end": 18942.78, + "probability": 0.9702 + }, + { + "start": 18942.8, + "end": 18946.42, + "probability": 0.9882 + }, + { + "start": 18947.16, + "end": 18949.18, + "probability": 0.668 + }, + { + "start": 18949.32, + "end": 18950.18, + "probability": 0.7593 + }, + { + "start": 18952.5, + "end": 18960.01, + "probability": 0.9727 + }, + { + "start": 18960.36, + "end": 18961.1, + "probability": 0.6464 + }, + { + "start": 18961.2, + "end": 18964.14, + "probability": 0.8118 + }, + { + "start": 18965.24, + "end": 18966.92, + "probability": 0.6216 + }, + { + "start": 18967.44, + "end": 18969.44, + "probability": 0.9864 + }, + { + "start": 18969.78, + "end": 18971.22, + "probability": 0.8116 + }, + { + "start": 18972.58, + "end": 18975.86, + "probability": 0.9951 + }, + { + "start": 18976.06, + "end": 18976.6, + "probability": 0.7467 + }, + { + "start": 18977.98, + "end": 18982.22, + "probability": 0.8924 + }, + { + "start": 18982.84, + "end": 18985.12, + "probability": 0.7794 + }, + { + "start": 18986.38, + "end": 18987.18, + "probability": 0.9266 + }, + { + "start": 18988.02, + "end": 18991.98, + "probability": 0.9853 + }, + { + "start": 18992.04, + "end": 18992.8, + "probability": 0.8596 + }, + { + "start": 18993.08, + "end": 18993.94, + "probability": 0.8038 + }, + { + "start": 18998.02, + "end": 19001.44, + "probability": 0.8308 + }, + { + "start": 19002.54, + "end": 19007.42, + "probability": 0.9892 + }, + { + "start": 19008.58, + "end": 19010.68, + "probability": 0.7114 + }, + { + "start": 19011.4, + "end": 19013.04, + "probability": 0.996 + }, + { + "start": 19014.26, + "end": 19015.41, + "probability": 0.9016 + }, + { + "start": 19016.68, + "end": 19021.26, + "probability": 0.9233 + }, + { + "start": 19022.4, + "end": 19025.96, + "probability": 0.7334 + }, + { + "start": 19027.39, + "end": 19031.2, + "probability": 0.6395 + }, + { + "start": 19032.68, + "end": 19033.36, + "probability": 0.9141 + }, + { + "start": 19035.08, + "end": 19036.26, + "probability": 0.8514 + }, + { + "start": 19036.4, + "end": 19038.3, + "probability": 0.6834 + }, + { + "start": 19039.38, + "end": 19045.38, + "probability": 0.8929 + }, + { + "start": 19046.34, + "end": 19046.82, + "probability": 0.3119 + }, + { + "start": 19047.02, + "end": 19048.44, + "probability": 0.9723 + }, + { + "start": 19048.52, + "end": 19049.64, + "probability": 0.8057 + }, + { + "start": 19050.42, + "end": 19054.62, + "probability": 0.9793 + }, + { + "start": 19054.7, + "end": 19055.4, + "probability": 0.9055 + }, + { + "start": 19055.74, + "end": 19059.08, + "probability": 0.9833 + }, + { + "start": 19060.36, + "end": 19064.68, + "probability": 0.988 + }, + { + "start": 19065.34, + "end": 19068.72, + "probability": 0.8318 + }, + { + "start": 19070.16, + "end": 19074.62, + "probability": 0.9363 + }, + { + "start": 19075.24, + "end": 19075.98, + "probability": 0.6019 + }, + { + "start": 19076.04, + "end": 19076.98, + "probability": 0.9661 + }, + { + "start": 19077.4, + "end": 19078.76, + "probability": 0.8779 + }, + { + "start": 19078.88, + "end": 19079.54, + "probability": 0.4241 + }, + { + "start": 19080.7, + "end": 19084.94, + "probability": 0.9995 + }, + { + "start": 19085.1, + "end": 19085.8, + "probability": 0.7609 + }, + { + "start": 19086.98, + "end": 19088.42, + "probability": 0.9934 + }, + { + "start": 19088.56, + "end": 19089.66, + "probability": 0.9723 + }, + { + "start": 19089.78, + "end": 19091.2, + "probability": 0.998 + }, + { + "start": 19094.5, + "end": 19096.76, + "probability": 0.9985 + }, + { + "start": 19098.58, + "end": 19101.22, + "probability": 0.9768 + }, + { + "start": 19101.88, + "end": 19103.88, + "probability": 0.9994 + }, + { + "start": 19104.54, + "end": 19105.58, + "probability": 0.7106 + }, + { + "start": 19105.64, + "end": 19106.64, + "probability": 0.789 + }, + { + "start": 19106.8, + "end": 19108.02, + "probability": 0.9658 + }, + { + "start": 19110.08, + "end": 19110.92, + "probability": 0.6637 + }, + { + "start": 19111.14, + "end": 19111.64, + "probability": 0.9378 + }, + { + "start": 19113.36, + "end": 19115.64, + "probability": 0.9966 + }, + { + "start": 19116.24, + "end": 19118.24, + "probability": 0.9928 + }, + { + "start": 19118.36, + "end": 19120.02, + "probability": 0.9945 + }, + { + "start": 19120.54, + "end": 19121.36, + "probability": 0.6812 + }, + { + "start": 19122.34, + "end": 19124.7, + "probability": 0.9949 + }, + { + "start": 19125.86, + "end": 19128.68, + "probability": 0.8276 + }, + { + "start": 19128.92, + "end": 19131.44, + "probability": 0.9919 + }, + { + "start": 19131.68, + "end": 19132.54, + "probability": 0.6198 + }, + { + "start": 19132.72, + "end": 19133.68, + "probability": 0.5519 + }, + { + "start": 19133.84, + "end": 19136.44, + "probability": 0.9022 + }, + { + "start": 19139.44, + "end": 19142.92, + "probability": 0.8358 + }, + { + "start": 19143.46, + "end": 19144.8, + "probability": 0.9773 + }, + { + "start": 19145.78, + "end": 19147.04, + "probability": 0.8847 + }, + { + "start": 19148.48, + "end": 19150.6, + "probability": 0.9461 + }, + { + "start": 19151.58, + "end": 19153.24, + "probability": 0.9962 + }, + { + "start": 19153.7, + "end": 19153.94, + "probability": 0.8948 + }, + { + "start": 19154.78, + "end": 19156.26, + "probability": 0.6595 + }, + { + "start": 19156.48, + "end": 19160.18, + "probability": 0.9919 + }, + { + "start": 19161.06, + "end": 19162.64, + "probability": 0.9932 + }, + { + "start": 19163.58, + "end": 19164.52, + "probability": 0.6346 + }, + { + "start": 19164.52, + "end": 19166.74, + "probability": 0.4673 + }, + { + "start": 19166.74, + "end": 19169.6, + "probability": 0.6786 + }, + { + "start": 19171.51, + "end": 19173.26, + "probability": 0.5325 + }, + { + "start": 19174.52, + "end": 19179.62, + "probability": 0.7409 + }, + { + "start": 19187.46, + "end": 19188.54, + "probability": 0.5077 + }, + { + "start": 19188.72, + "end": 19189.48, + "probability": 0.9565 + }, + { + "start": 19190.16, + "end": 19192.74, + "probability": 0.6065 + }, + { + "start": 19193.5, + "end": 19195.0, + "probability": 0.7297 + }, + { + "start": 19195.94, + "end": 19196.72, + "probability": 0.7419 + }, + { + "start": 19197.56, + "end": 19200.88, + "probability": 0.953 + }, + { + "start": 19201.95, + "end": 19203.92, + "probability": 0.8735 + }, + { + "start": 19204.84, + "end": 19205.92, + "probability": 0.9495 + }, + { + "start": 19206.24, + "end": 19208.78, + "probability": 0.2304 + }, + { + "start": 19208.78, + "end": 19210.32, + "probability": 0.5553 + }, + { + "start": 19211.88, + "end": 19212.82, + "probability": 0.7238 + }, + { + "start": 19213.48, + "end": 19213.9, + "probability": 0.7913 + }, + { + "start": 19214.48, + "end": 19215.44, + "probability": 0.6742 + }, + { + "start": 19215.86, + "end": 19219.2, + "probability": 0.8873 + }, + { + "start": 19220.46, + "end": 19223.56, + "probability": 0.9948 + }, + { + "start": 19224.78, + "end": 19230.7, + "probability": 0.9985 + }, + { + "start": 19232.16, + "end": 19237.66, + "probability": 0.9959 + }, + { + "start": 19237.9, + "end": 19239.5, + "probability": 0.7911 + }, + { + "start": 19240.32, + "end": 19241.36, + "probability": 0.9168 + }, + { + "start": 19241.48, + "end": 19247.08, + "probability": 0.9624 + }, + { + "start": 19247.42, + "end": 19249.06, + "probability": 0.9858 + }, + { + "start": 19249.46, + "end": 19250.9, + "probability": 0.8682 + }, + { + "start": 19251.38, + "end": 19252.94, + "probability": 0.9962 + }, + { + "start": 19253.3, + "end": 19253.76, + "probability": 0.8408 + }, + { + "start": 19254.92, + "end": 19259.12, + "probability": 0.9885 + }, + { + "start": 19260.06, + "end": 19262.98, + "probability": 0.8223 + }, + { + "start": 19263.88, + "end": 19266.5, + "probability": 0.1452 + }, + { + "start": 19266.68, + "end": 19266.78, + "probability": 0.3084 + }, + { + "start": 19267.32, + "end": 19267.62, + "probability": 0.6343 + }, + { + "start": 19267.78, + "end": 19268.06, + "probability": 0.2559 + }, + { + "start": 19268.16, + "end": 19268.58, + "probability": 0.4614 + }, + { + "start": 19268.82, + "end": 19268.84, + "probability": 0.6378 + }, + { + "start": 19268.92, + "end": 19269.48, + "probability": 0.9391 + }, + { + "start": 19269.78, + "end": 19272.28, + "probability": 0.8466 + }, + { + "start": 19272.5, + "end": 19273.8, + "probability": 0.7875 + }, + { + "start": 19274.0, + "end": 19274.76, + "probability": 0.5069 + }, + { + "start": 19274.82, + "end": 19275.32, + "probability": 0.5742 + }, + { + "start": 19276.22, + "end": 19277.04, + "probability": 0.0413 + }, + { + "start": 19277.04, + "end": 19277.14, + "probability": 0.0682 + }, + { + "start": 19277.22, + "end": 19277.95, + "probability": 0.7719 + }, + { + "start": 19278.2, + "end": 19278.8, + "probability": 0.8712 + }, + { + "start": 19279.16, + "end": 19280.88, + "probability": 0.6779 + }, + { + "start": 19280.92, + "end": 19281.2, + "probability": 0.9316 + }, + { + "start": 19281.5, + "end": 19285.06, + "probability": 0.991 + }, + { + "start": 19285.24, + "end": 19285.66, + "probability": 0.5289 + }, + { + "start": 19285.7, + "end": 19285.92, + "probability": 0.6863 + }, + { + "start": 19286.0, + "end": 19286.3, + "probability": 0.8608 + }, + { + "start": 19287.08, + "end": 19289.66, + "probability": 0.9007 + }, + { + "start": 19290.58, + "end": 19292.38, + "probability": 0.9543 + }, + { + "start": 19292.58, + "end": 19293.54, + "probability": 0.9921 + }, + { + "start": 19293.9, + "end": 19295.66, + "probability": 0.6718 + }, + { + "start": 19295.86, + "end": 19296.76, + "probability": 0.8317 + }, + { + "start": 19296.8, + "end": 19298.06, + "probability": 0.4143 + }, + { + "start": 19298.12, + "end": 19298.42, + "probability": 0.1002 + }, + { + "start": 19298.42, + "end": 19299.62, + "probability": 0.6796 + }, + { + "start": 19299.82, + "end": 19299.82, + "probability": 0.5448 + }, + { + "start": 19299.82, + "end": 19300.52, + "probability": 0.0864 + }, + { + "start": 19300.68, + "end": 19301.08, + "probability": 0.0754 + }, + { + "start": 19301.78, + "end": 19304.12, + "probability": 0.5878 + }, + { + "start": 19304.32, + "end": 19306.24, + "probability": 0.5312 + }, + { + "start": 19306.3, + "end": 19306.32, + "probability": 0.06 + }, + { + "start": 19306.32, + "end": 19306.34, + "probability": 0.0509 + }, + { + "start": 19306.46, + "end": 19310.46, + "probability": 0.585 + }, + { + "start": 19310.78, + "end": 19315.9, + "probability": 0.981 + }, + { + "start": 19316.48, + "end": 19317.86, + "probability": 0.9644 + }, + { + "start": 19318.3, + "end": 19320.24, + "probability": 0.8622 + }, + { + "start": 19320.32, + "end": 19322.54, + "probability": 0.8386 + }, + { + "start": 19322.84, + "end": 19323.52, + "probability": 0.7941 + }, + { + "start": 19323.68, + "end": 19325.94, + "probability": 0.949 + }, + { + "start": 19326.02, + "end": 19328.24, + "probability": 0.9883 + }, + { + "start": 19328.28, + "end": 19329.39, + "probability": 0.9583 + }, + { + "start": 19329.84, + "end": 19330.94, + "probability": 0.9899 + }, + { + "start": 19331.62, + "end": 19332.7, + "probability": 0.5501 + }, + { + "start": 19332.88, + "end": 19335.62, + "probability": 0.9351 + }, + { + "start": 19335.96, + "end": 19338.92, + "probability": 0.864 + }, + { + "start": 19346.17, + "end": 19350.7, + "probability": 0.6465 + }, + { + "start": 19352.56, + "end": 19353.06, + "probability": 0.8757 + }, + { + "start": 19353.64, + "end": 19354.44, + "probability": 0.9092 + }, + { + "start": 19354.6, + "end": 19355.72, + "probability": 0.5041 + }, + { + "start": 19355.78, + "end": 19356.2, + "probability": 0.7239 + }, + { + "start": 19357.75, + "end": 19361.76, + "probability": 0.5301 + }, + { + "start": 19363.88, + "end": 19368.28, + "probability": 0.966 + }, + { + "start": 19369.22, + "end": 19371.94, + "probability": 0.9833 + }, + { + "start": 19372.08, + "end": 19372.24, + "probability": 0.7192 + }, + { + "start": 19372.24, + "end": 19372.84, + "probability": 0.2671 + }, + { + "start": 19372.84, + "end": 19373.12, + "probability": 0.4331 + }, + { + "start": 19373.76, + "end": 19377.36, + "probability": 0.7973 + }, + { + "start": 19377.48, + "end": 19378.82, + "probability": 0.8392 + }, + { + "start": 19379.02, + "end": 19382.4, + "probability": 0.9962 + }, + { + "start": 19383.2, + "end": 19387.0, + "probability": 0.9964 + }, + { + "start": 19387.06, + "end": 19387.93, + "probability": 0.7997 + }, + { + "start": 19388.64, + "end": 19392.18, + "probability": 0.6164 + }, + { + "start": 19393.22, + "end": 19393.34, + "probability": 0.258 + }, + { + "start": 19395.14, + "end": 19399.11, + "probability": 0.1591 + }, + { + "start": 19399.66, + "end": 19405.8, + "probability": 0.157 + }, + { + "start": 19405.8, + "end": 19405.8, + "probability": 0.1012 + }, + { + "start": 19405.8, + "end": 19405.8, + "probability": 0.4965 + }, + { + "start": 19405.8, + "end": 19405.8, + "probability": 0.1661 + }, + { + "start": 19405.8, + "end": 19407.08, + "probability": 0.3927 + }, + { + "start": 19407.64, + "end": 19410.06, + "probability": 0.8728 + }, + { + "start": 19410.62, + "end": 19412.98, + "probability": 0.9482 + }, + { + "start": 19413.36, + "end": 19414.8, + "probability": 0.8023 + }, + { + "start": 19414.84, + "end": 19415.5, + "probability": 0.7349 + }, + { + "start": 19415.94, + "end": 19417.6, + "probability": 0.9156 + }, + { + "start": 19418.34, + "end": 19420.46, + "probability": 0.9991 + }, + { + "start": 19420.62, + "end": 19423.42, + "probability": 0.9922 + }, + { + "start": 19423.98, + "end": 19424.88, + "probability": 0.6497 + }, + { + "start": 19426.18, + "end": 19428.7, + "probability": 0.9849 + }, + { + "start": 19429.44, + "end": 19432.22, + "probability": 0.9922 + }, + { + "start": 19452.6, + "end": 19454.82, + "probability": 0.7171 + }, + { + "start": 19455.82, + "end": 19461.2, + "probability": 0.9952 + }, + { + "start": 19461.2, + "end": 19466.24, + "probability": 0.9937 + }, + { + "start": 19467.0, + "end": 19469.16, + "probability": 0.6705 + }, + { + "start": 19470.42, + "end": 19475.04, + "probability": 0.8646 + }, + { + "start": 19476.1, + "end": 19479.2, + "probability": 0.9574 + }, + { + "start": 19479.58, + "end": 19481.02, + "probability": 0.8487 + }, + { + "start": 19481.08, + "end": 19482.14, + "probability": 0.8611 + }, + { + "start": 19483.04, + "end": 19488.12, + "probability": 0.9766 + }, + { + "start": 19488.88, + "end": 19490.1, + "probability": 0.942 + }, + { + "start": 19491.54, + "end": 19495.32, + "probability": 0.999 + }, + { + "start": 19495.32, + "end": 19498.24, + "probability": 0.9991 + }, + { + "start": 19506.18, + "end": 19509.78, + "probability": 0.7861 + }, + { + "start": 19509.92, + "end": 19512.06, + "probability": 0.9173 + }, + { + "start": 19512.3, + "end": 19515.56, + "probability": 0.7406 + }, + { + "start": 19515.7, + "end": 19516.9, + "probability": 0.929 + }, + { + "start": 19516.98, + "end": 19518.66, + "probability": 0.6194 + }, + { + "start": 19518.8, + "end": 19519.64, + "probability": 0.9667 + }, + { + "start": 19520.4, + "end": 19522.24, + "probability": 0.9935 + }, + { + "start": 19522.9, + "end": 19524.6, + "probability": 0.9396 + }, + { + "start": 19525.78, + "end": 19528.2, + "probability": 0.6711 + }, + { + "start": 19528.92, + "end": 19531.8, + "probability": 0.9827 + }, + { + "start": 19532.34, + "end": 19533.42, + "probability": 0.9976 + }, + { + "start": 19534.5, + "end": 19538.64, + "probability": 0.9974 + }, + { + "start": 19539.22, + "end": 19542.58, + "probability": 0.9878 + }, + { + "start": 19542.76, + "end": 19543.52, + "probability": 0.8016 + }, + { + "start": 19545.24, + "end": 19547.1, + "probability": 0.9585 + }, + { + "start": 19547.92, + "end": 19552.2, + "probability": 0.8962 + }, + { + "start": 19553.4, + "end": 19557.8, + "probability": 0.9736 + }, + { + "start": 19558.82, + "end": 19562.9, + "probability": 0.994 + }, + { + "start": 19563.14, + "end": 19570.42, + "probability": 0.997 + }, + { + "start": 19570.58, + "end": 19578.94, + "probability": 0.9641 + }, + { + "start": 19579.72, + "end": 19582.88, + "probability": 0.9783 + }, + { + "start": 19583.86, + "end": 19589.04, + "probability": 0.9794 + }, + { + "start": 19590.4, + "end": 19594.68, + "probability": 0.9979 + }, + { + "start": 19594.76, + "end": 19597.82, + "probability": 0.9977 + }, + { + "start": 19597.82, + "end": 19601.24, + "probability": 0.9963 + }, + { + "start": 19602.48, + "end": 19608.4, + "probability": 0.999 + }, + { + "start": 19608.4, + "end": 19614.36, + "probability": 0.9995 + }, + { + "start": 19615.04, + "end": 19621.44, + "probability": 0.897 + }, + { + "start": 19621.66, + "end": 19622.6, + "probability": 0.6637 + }, + { + "start": 19623.02, + "end": 19624.58, + "probability": 0.9752 + }, + { + "start": 19624.86, + "end": 19628.3, + "probability": 0.9915 + }, + { + "start": 19629.26, + "end": 19634.8, + "probability": 0.8594 + }, + { + "start": 19635.34, + "end": 19638.08, + "probability": 0.9979 + }, + { + "start": 19638.66, + "end": 19644.84, + "probability": 0.9925 + }, + { + "start": 19645.96, + "end": 19648.94, + "probability": 0.9977 + }, + { + "start": 19649.18, + "end": 19653.26, + "probability": 0.9761 + }, + { + "start": 19654.12, + "end": 19656.4, + "probability": 0.9815 + }, + { + "start": 19657.0, + "end": 19660.08, + "probability": 0.9947 + }, + { + "start": 19660.08, + "end": 19664.54, + "probability": 0.9922 + }, + { + "start": 19665.26, + "end": 19668.68, + "probability": 0.993 + }, + { + "start": 19669.52, + "end": 19672.41, + "probability": 0.9939 + }, + { + "start": 19673.46, + "end": 19677.38, + "probability": 0.989 + }, + { + "start": 19677.42, + "end": 19680.98, + "probability": 0.9976 + }, + { + "start": 19681.82, + "end": 19682.22, + "probability": 0.5644 + }, + { + "start": 19682.32, + "end": 19684.3, + "probability": 0.9013 + }, + { + "start": 19684.3, + "end": 19687.86, + "probability": 0.8971 + }, + { + "start": 19688.34, + "end": 19691.16, + "probability": 0.897 + }, + { + "start": 19691.92, + "end": 19694.5, + "probability": 0.9973 + }, + { + "start": 19694.5, + "end": 19699.24, + "probability": 0.9928 + }, + { + "start": 19699.94, + "end": 19702.26, + "probability": 0.7732 + }, + { + "start": 19702.5, + "end": 19705.06, + "probability": 0.8527 + }, + { + "start": 19705.66, + "end": 19708.68, + "probability": 0.998 + }, + { + "start": 19709.26, + "end": 19710.56, + "probability": 0.9491 + }, + { + "start": 19711.12, + "end": 19716.36, + "probability": 0.951 + }, + { + "start": 19717.26, + "end": 19719.6, + "probability": 0.9974 + }, + { + "start": 19719.6, + "end": 19724.48, + "probability": 0.9955 + }, + { + "start": 19725.66, + "end": 19729.2, + "probability": 0.991 + }, + { + "start": 19729.38, + "end": 19732.66, + "probability": 0.9775 + }, + { + "start": 19733.24, + "end": 19737.7, + "probability": 0.9995 + }, + { + "start": 19739.18, + "end": 19739.94, + "probability": 0.7592 + }, + { + "start": 19740.04, + "end": 19743.4, + "probability": 0.9907 + }, + { + "start": 19743.52, + "end": 19750.24, + "probability": 0.89 + }, + { + "start": 19750.98, + "end": 19756.32, + "probability": 0.9992 + }, + { + "start": 19756.32, + "end": 19761.98, + "probability": 0.9997 + }, + { + "start": 19763.06, + "end": 19769.18, + "probability": 0.9936 + }, + { + "start": 19769.86, + "end": 19773.98, + "probability": 0.8753 + }, + { + "start": 19774.06, + "end": 19775.0, + "probability": 0.6874 + }, + { + "start": 19776.18, + "end": 19778.84, + "probability": 0.9432 + }, + { + "start": 19779.44, + "end": 19782.0, + "probability": 0.9728 + }, + { + "start": 19782.7, + "end": 19784.96, + "probability": 0.9722 + }, + { + "start": 19785.02, + "end": 19789.28, + "probability": 0.974 + }, + { + "start": 19789.28, + "end": 19793.02, + "probability": 0.9928 + }, + { + "start": 19793.56, + "end": 19796.36, + "probability": 0.982 + }, + { + "start": 19796.72, + "end": 19798.1, + "probability": 0.9907 + }, + { + "start": 19798.2, + "end": 19800.56, + "probability": 0.9636 + }, + { + "start": 19800.68, + "end": 19801.66, + "probability": 0.8051 + }, + { + "start": 19802.18, + "end": 19806.22, + "probability": 0.9946 + }, + { + "start": 19806.32, + "end": 19806.78, + "probability": 0.6185 + }, + { + "start": 19806.94, + "end": 19811.12, + "probability": 0.9418 + }, + { + "start": 19811.66, + "end": 19817.12, + "probability": 0.9928 + }, + { + "start": 19817.2, + "end": 19823.74, + "probability": 0.9958 + }, + { + "start": 19823.74, + "end": 19830.58, + "probability": 0.9976 + }, + { + "start": 19832.0, + "end": 19837.26, + "probability": 0.9821 + }, + { + "start": 19837.54, + "end": 19839.48, + "probability": 0.9929 + }, + { + "start": 19839.48, + "end": 19844.8, + "probability": 0.9971 + }, + { + "start": 19845.46, + "end": 19847.62, + "probability": 0.9462 + }, + { + "start": 19848.46, + "end": 19849.56, + "probability": 0.5245 + }, + { + "start": 19850.5, + "end": 19853.48, + "probability": 0.9795 + }, + { + "start": 19854.02, + "end": 19858.8, + "probability": 0.8396 + }, + { + "start": 19859.32, + "end": 19862.34, + "probability": 0.97 + }, + { + "start": 19862.34, + "end": 19866.24, + "probability": 0.9894 + }, + { + "start": 19866.9, + "end": 19868.06, + "probability": 0.9368 + }, + { + "start": 19868.3, + "end": 19871.34, + "probability": 0.9946 + }, + { + "start": 19872.02, + "end": 19875.82, + "probability": 0.9355 + }, + { + "start": 19876.52, + "end": 19878.58, + "probability": 0.9729 + }, + { + "start": 19879.34, + "end": 19881.68, + "probability": 0.9446 + }, + { + "start": 19882.38, + "end": 19882.8, + "probability": 0.9698 + }, + { + "start": 19882.92, + "end": 19885.2, + "probability": 0.9044 + }, + { + "start": 19885.66, + "end": 19888.5, + "probability": 0.9914 + }, + { + "start": 19890.08, + "end": 19892.0, + "probability": 0.7968 + }, + { + "start": 19892.72, + "end": 19897.16, + "probability": 0.8479 + }, + { + "start": 19898.12, + "end": 19899.12, + "probability": 0.8735 + }, + { + "start": 19899.3, + "end": 19900.26, + "probability": 0.6536 + }, + { + "start": 19900.42, + "end": 19904.26, + "probability": 0.6674 + }, + { + "start": 19904.4, + "end": 19905.9, + "probability": 0.7446 + }, + { + "start": 19906.56, + "end": 19908.16, + "probability": 0.7494 + }, + { + "start": 19908.7, + "end": 19911.7, + "probability": 0.9317 + }, + { + "start": 19911.84, + "end": 19913.12, + "probability": 0.9287 + }, + { + "start": 19913.18, + "end": 19913.72, + "probability": 0.9655 + }, + { + "start": 19917.0, + "end": 19920.06, + "probability": 0.1612 + }, + { + "start": 19930.08, + "end": 19935.72, + "probability": 0.1894 + }, + { + "start": 19936.28, + "end": 19937.48, + "probability": 0.1114 + }, + { + "start": 19938.5, + "end": 19939.34, + "probability": 0.2546 + }, + { + "start": 19941.72, + "end": 19943.5, + "probability": 0.0583 + }, + { + "start": 19957.18, + "end": 19959.04, + "probability": 0.2434 + }, + { + "start": 19959.04, + "end": 19961.68, + "probability": 0.9553 + }, + { + "start": 19962.5, + "end": 19966.54, + "probability": 0.9847 + }, + { + "start": 19966.54, + "end": 19971.96, + "probability": 0.9788 + }, + { + "start": 19973.12, + "end": 19977.26, + "probability": 0.9736 + }, + { + "start": 19977.66, + "end": 19979.92, + "probability": 0.9644 + }, + { + "start": 19980.08, + "end": 19983.08, + "probability": 0.9322 + }, + { + "start": 19983.08, + "end": 19986.98, + "probability": 0.9539 + }, + { + "start": 19987.18, + "end": 19987.74, + "probability": 0.7558 + }, + { + "start": 19987.82, + "end": 19990.58, + "probability": 0.9818 + }, + { + "start": 19990.84, + "end": 19993.28, + "probability": 0.8701 + }, + { + "start": 19993.66, + "end": 19994.64, + "probability": 0.7551 + }, + { + "start": 19994.72, + "end": 19997.46, + "probability": 0.987 + }, + { + "start": 19997.46, + "end": 20000.44, + "probability": 0.9944 + }, + { + "start": 20000.86, + "end": 20003.38, + "probability": 0.99 + }, + { + "start": 20003.38, + "end": 20007.5, + "probability": 0.9683 + }, + { + "start": 20007.9, + "end": 20009.84, + "probability": 0.7431 + }, + { + "start": 20009.84, + "end": 20013.02, + "probability": 0.8317 + }, + { + "start": 20013.44, + "end": 20016.18, + "probability": 0.9951 + }, + { + "start": 20017.66, + "end": 20020.86, + "probability": 0.7762 + }, + { + "start": 20020.92, + "end": 20022.54, + "probability": 0.7727 + }, + { + "start": 20022.9, + "end": 20024.94, + "probability": 0.9949 + }, + { + "start": 20024.96, + "end": 20027.66, + "probability": 0.9627 + }, + { + "start": 20027.66, + "end": 20030.74, + "probability": 0.9138 + }, + { + "start": 20031.44, + "end": 20031.64, + "probability": 0.7803 + }, + { + "start": 20031.76, + "end": 20034.62, + "probability": 0.9465 + }, + { + "start": 20034.72, + "end": 20036.36, + "probability": 0.9551 + }, + { + "start": 20036.36, + "end": 20039.78, + "probability": 0.9747 + }, + { + "start": 20040.56, + "end": 20041.4, + "probability": 0.7543 + }, + { + "start": 20041.62, + "end": 20043.68, + "probability": 0.8761 + }, + { + "start": 20043.78, + "end": 20044.22, + "probability": 0.8525 + }, + { + "start": 20044.38, + "end": 20048.82, + "probability": 0.8893 + }, + { + "start": 20049.02, + "end": 20051.72, + "probability": 0.978 + }, + { + "start": 20051.8, + "end": 20053.48, + "probability": 0.9956 + }, + { + "start": 20053.48, + "end": 20056.18, + "probability": 0.7722 + }, + { + "start": 20056.66, + "end": 20059.89, + "probability": 0.9868 + }, + { + "start": 20060.64, + "end": 20064.42, + "probability": 0.993 + }, + { + "start": 20064.68, + "end": 20066.92, + "probability": 0.9986 + }, + { + "start": 20066.92, + "end": 20069.08, + "probability": 0.8102 + }, + { + "start": 20069.46, + "end": 20069.78, + "probability": 0.4532 + }, + { + "start": 20071.06, + "end": 20074.4, + "probability": 0.9953 + }, + { + "start": 20074.4, + "end": 20078.08, + "probability": 0.9557 + }, + { + "start": 20078.5, + "end": 20078.74, + "probability": 0.548 + }, + { + "start": 20078.74, + "end": 20079.58, + "probability": 0.8899 + }, + { + "start": 20079.62, + "end": 20082.46, + "probability": 0.9688 + }, + { + "start": 20083.16, + "end": 20086.74, + "probability": 0.9748 + }, + { + "start": 20086.82, + "end": 20089.24, + "probability": 0.8918 + }, + { + "start": 20089.36, + "end": 20092.1, + "probability": 0.9522 + }, + { + "start": 20092.1, + "end": 20093.86, + "probability": 0.9262 + }, + { + "start": 20094.32, + "end": 20097.54, + "probability": 0.942 + }, + { + "start": 20097.58, + "end": 20098.08, + "probability": 0.4102 + }, + { + "start": 20098.1, + "end": 20099.3, + "probability": 0.9052 + }, + { + "start": 20099.66, + "end": 20102.94, + "probability": 0.9922 + }, + { + "start": 20103.32, + "end": 20106.02, + "probability": 0.9388 + }, + { + "start": 20106.02, + "end": 20111.14, + "probability": 0.9888 + }, + { + "start": 20111.18, + "end": 20113.14, + "probability": 0.9894 + }, + { + "start": 20113.22, + "end": 20113.74, + "probability": 0.9763 + }, + { + "start": 20114.28, + "end": 20115.24, + "probability": 0.9802 + }, + { + "start": 20115.56, + "end": 20115.98, + "probability": 0.8684 + }, + { + "start": 20116.64, + "end": 20118.76, + "probability": 0.9968 + }, + { + "start": 20119.28, + "end": 20121.2, + "probability": 0.9935 + }, + { + "start": 20121.2, + "end": 20123.34, + "probability": 0.9858 + }, + { + "start": 20123.78, + "end": 20123.98, + "probability": 0.4673 + }, + { + "start": 20124.0, + "end": 20124.42, + "probability": 0.879 + }, + { + "start": 20124.42, + "end": 20126.42, + "probability": 0.9961 + }, + { + "start": 20126.42, + "end": 20128.76, + "probability": 0.9934 + }, + { + "start": 20130.52, + "end": 20132.22, + "probability": 0.9183 + }, + { + "start": 20132.22, + "end": 20134.56, + "probability": 0.9128 + }, + { + "start": 20134.86, + "end": 20137.12, + "probability": 0.7851 + }, + { + "start": 20137.12, + "end": 20140.5, + "probability": 0.9829 + }, + { + "start": 20140.64, + "end": 20143.88, + "probability": 0.7217 + }, + { + "start": 20144.14, + "end": 20147.08, + "probability": 0.9287 + }, + { + "start": 20147.3, + "end": 20150.82, + "probability": 0.9816 + }, + { + "start": 20151.5, + "end": 20152.1, + "probability": 0.7371 + }, + { + "start": 20152.7, + "end": 20155.64, + "probability": 0.9892 + }, + { + "start": 20156.24, + "end": 20158.18, + "probability": 0.9993 + }, + { + "start": 20158.18, + "end": 20160.64, + "probability": 0.9932 + }, + { + "start": 20161.26, + "end": 20162.9, + "probability": 0.8449 + }, + { + "start": 20162.9, + "end": 20167.34, + "probability": 0.8902 + }, + { + "start": 20167.54, + "end": 20168.98, + "probability": 0.8345 + }, + { + "start": 20169.8, + "end": 20172.12, + "probability": 0.988 + }, + { + "start": 20172.12, + "end": 20174.48, + "probability": 0.7988 + }, + { + "start": 20175.82, + "end": 20177.34, + "probability": 0.9688 + }, + { + "start": 20177.64, + "end": 20178.48, + "probability": 0.8266 + }, + { + "start": 20178.56, + "end": 20181.84, + "probability": 0.7374 + }, + { + "start": 20182.34, + "end": 20184.76, + "probability": 0.7789 + }, + { + "start": 20185.68, + "end": 20186.48, + "probability": 0.559 + }, + { + "start": 20186.56, + "end": 20190.1, + "probability": 0.9452 + }, + { + "start": 20190.4, + "end": 20191.74, + "probability": 0.9801 + }, + { + "start": 20191.86, + "end": 20193.58, + "probability": 0.9688 + }, + { + "start": 20193.74, + "end": 20195.66, + "probability": 0.996 + }, + { + "start": 20195.76, + "end": 20196.77, + "probability": 0.9118 + }, + { + "start": 20197.18, + "end": 20199.62, + "probability": 0.9973 + }, + { + "start": 20200.18, + "end": 20202.42, + "probability": 0.9827 + }, + { + "start": 20202.58, + "end": 20202.98, + "probability": 0.8777 + }, + { + "start": 20203.76, + "end": 20205.4, + "probability": 0.8837 + }, + { + "start": 20205.48, + "end": 20207.34, + "probability": 0.8946 + }, + { + "start": 20207.78, + "end": 20208.98, + "probability": 0.7489 + }, + { + "start": 20209.32, + "end": 20209.32, + "probability": 0.0002 + }, + { + "start": 20210.52, + "end": 20212.3, + "probability": 0.8552 + }, + { + "start": 20212.3, + "end": 20212.3, + "probability": 0.7807 + }, + { + "start": 20212.3, + "end": 20212.84, + "probability": 0.5256 + }, + { + "start": 20213.38, + "end": 20215.54, + "probability": 0.9409 + }, + { + "start": 20215.66, + "end": 20216.68, + "probability": 0.8132 + }, + { + "start": 20216.7, + "end": 20218.62, + "probability": 0.9572 + }, + { + "start": 20218.68, + "end": 20220.6, + "probability": 0.9716 + }, + { + "start": 20220.62, + "end": 20221.0, + "probability": 0.8481 + }, + { + "start": 20223.82, + "end": 20226.54, + "probability": 0.0975 + }, + { + "start": 20229.2, + "end": 20230.86, + "probability": 0.8998 + }, + { + "start": 20233.0, + "end": 20234.9, + "probability": 0.826 + }, + { + "start": 20235.06, + "end": 20235.74, + "probability": 0.86 + }, + { + "start": 20235.82, + "end": 20236.88, + "probability": 0.8319 + }, + { + "start": 20237.24, + "end": 20241.64, + "probability": 0.9953 + }, + { + "start": 20241.64, + "end": 20245.16, + "probability": 0.9563 + }, + { + "start": 20245.98, + "end": 20248.78, + "probability": 0.9616 + }, + { + "start": 20248.78, + "end": 20251.96, + "probability": 0.9922 + }, + { + "start": 20253.34, + "end": 20257.02, + "probability": 0.9995 + }, + { + "start": 20257.94, + "end": 20260.56, + "probability": 0.9961 + }, + { + "start": 20261.34, + "end": 20264.0, + "probability": 0.9357 + }, + { + "start": 20265.12, + "end": 20268.48, + "probability": 0.9972 + }, + { + "start": 20269.36, + "end": 20270.66, + "probability": 0.9292 + }, + { + "start": 20271.22, + "end": 20273.42, + "probability": 0.9911 + }, + { + "start": 20274.8, + "end": 20275.7, + "probability": 0.5769 + }, + { + "start": 20275.76, + "end": 20278.66, + "probability": 0.9102 + }, + { + "start": 20279.32, + "end": 20280.04, + "probability": 0.5936 + }, + { + "start": 20280.08, + "end": 20280.82, + "probability": 0.7917 + }, + { + "start": 20280.88, + "end": 20281.66, + "probability": 0.8699 + }, + { + "start": 20282.19, + "end": 20282.54, + "probability": 0.8384 + }, + { + "start": 20283.94, + "end": 20285.64, + "probability": 0.878 + }, + { + "start": 20285.74, + "end": 20288.54, + "probability": 0.9271 + }, + { + "start": 20288.54, + "end": 20291.5, + "probability": 0.9913 + }, + { + "start": 20292.34, + "end": 20296.32, + "probability": 0.9593 + }, + { + "start": 20296.32, + "end": 20300.42, + "probability": 0.9673 + }, + { + "start": 20301.32, + "end": 20302.38, + "probability": 0.8792 + }, + { + "start": 20303.76, + "end": 20304.34, + "probability": 0.6306 + }, + { + "start": 20305.34, + "end": 20310.56, + "probability": 0.9885 + }, + { + "start": 20311.62, + "end": 20313.32, + "probability": 0.998 + }, + { + "start": 20313.84, + "end": 20316.06, + "probability": 0.9812 + }, + { + "start": 20317.16, + "end": 20319.98, + "probability": 0.998 + }, + { + "start": 20320.56, + "end": 20322.52, + "probability": 0.8713 + }, + { + "start": 20324.2, + "end": 20328.8, + "probability": 0.9949 + }, + { + "start": 20329.04, + "end": 20330.66, + "probability": 0.9386 + }, + { + "start": 20331.52, + "end": 20335.12, + "probability": 0.9979 + }, + { + "start": 20335.12, + "end": 20338.72, + "probability": 0.9777 + }, + { + "start": 20339.24, + "end": 20341.4, + "probability": 0.9526 + }, + { + "start": 20342.42, + "end": 20345.7, + "probability": 0.9924 + }, + { + "start": 20346.36, + "end": 20347.46, + "probability": 0.8615 + }, + { + "start": 20347.56, + "end": 20349.88, + "probability": 0.8396 + }, + { + "start": 20350.36, + "end": 20353.86, + "probability": 0.8154 + }, + { + "start": 20354.0, + "end": 20355.18, + "probability": 0.9842 + }, + { + "start": 20355.52, + "end": 20356.0, + "probability": 0.9249 + }, + { + "start": 20356.06, + "end": 20357.04, + "probability": 0.9938 + }, + { + "start": 20357.18, + "end": 20357.96, + "probability": 0.889 + }, + { + "start": 20358.98, + "end": 20361.62, + "probability": 0.9925 + }, + { + "start": 20361.88, + "end": 20365.48, + "probability": 0.9076 + }, + { + "start": 20365.92, + "end": 20370.38, + "probability": 0.9979 + }, + { + "start": 20371.28, + "end": 20375.18, + "probability": 0.9268 + }, + { + "start": 20376.64, + "end": 20380.4, + "probability": 0.9714 + }, + { + "start": 20380.72, + "end": 20382.54, + "probability": 0.773 + }, + { + "start": 20382.9, + "end": 20385.88, + "probability": 0.854 + }, + { + "start": 20386.0, + "end": 20386.5, + "probability": 0.8078 + }, + { + "start": 20386.54, + "end": 20388.52, + "probability": 0.868 + }, + { + "start": 20389.08, + "end": 20390.64, + "probability": 0.97 + }, + { + "start": 20391.02, + "end": 20392.68, + "probability": 0.9669 + }, + { + "start": 20392.78, + "end": 20395.68, + "probability": 0.9949 + }, + { + "start": 20396.4, + "end": 20399.84, + "probability": 0.7338 + }, + { + "start": 20399.84, + "end": 20403.3, + "probability": 0.9645 + }, + { + "start": 20404.1, + "end": 20405.96, + "probability": 0.8821 + }, + { + "start": 20406.24, + "end": 20408.68, + "probability": 0.6883 + }, + { + "start": 20409.16, + "end": 20412.6, + "probability": 0.9872 + }, + { + "start": 20412.82, + "end": 20416.08, + "probability": 0.9927 + }, + { + "start": 20416.72, + "end": 20419.06, + "probability": 0.5752 + }, + { + "start": 20419.66, + "end": 20423.1, + "probability": 0.9869 + }, + { + "start": 20423.52, + "end": 20425.36, + "probability": 0.8144 + }, + { + "start": 20425.73, + "end": 20427.56, + "probability": 0.4705 + }, + { + "start": 20427.66, + "end": 20427.9, + "probability": 0.7062 + }, + { + "start": 20428.28, + "end": 20429.04, + "probability": 0.9409 + }, + { + "start": 20429.5, + "end": 20431.36, + "probability": 0.9396 + }, + { + "start": 20431.46, + "end": 20434.22, + "probability": 0.9201 + }, + { + "start": 20435.36, + "end": 20437.12, + "probability": 0.9997 + }, + { + "start": 20437.38, + "end": 20439.26, + "probability": 0.9751 + }, + { + "start": 20440.04, + "end": 20441.72, + "probability": 0.5642 + }, + { + "start": 20442.22, + "end": 20442.98, + "probability": 0.7643 + }, + { + "start": 20442.98, + "end": 20445.16, + "probability": 0.9399 + }, + { + "start": 20446.28, + "end": 20448.34, + "probability": 0.9622 + }, + { + "start": 20471.98, + "end": 20473.73, + "probability": 0.6885 + }, + { + "start": 20475.54, + "end": 20481.14, + "probability": 0.9406 + }, + { + "start": 20482.24, + "end": 20486.99, + "probability": 0.9858 + }, + { + "start": 20489.0, + "end": 20490.52, + "probability": 0.9351 + }, + { + "start": 20491.24, + "end": 20495.92, + "probability": 0.9761 + }, + { + "start": 20497.78, + "end": 20501.3, + "probability": 0.9944 + }, + { + "start": 20502.56, + "end": 20505.8, + "probability": 0.947 + }, + { + "start": 20506.84, + "end": 20508.94, + "probability": 0.9982 + }, + { + "start": 20509.62, + "end": 20510.92, + "probability": 0.9512 + }, + { + "start": 20511.8, + "end": 20514.26, + "probability": 0.9971 + }, + { + "start": 20514.94, + "end": 20516.9, + "probability": 0.9858 + }, + { + "start": 20518.6, + "end": 20519.09, + "probability": 0.6191 + }, + { + "start": 20519.88, + "end": 20522.19, + "probability": 0.973 + }, + { + "start": 20523.32, + "end": 20524.62, + "probability": 0.9709 + }, + { + "start": 20525.32, + "end": 20526.38, + "probability": 0.9712 + }, + { + "start": 20527.72, + "end": 20530.3, + "probability": 0.9945 + }, + { + "start": 20531.26, + "end": 20535.74, + "probability": 0.9625 + }, + { + "start": 20536.86, + "end": 20539.74, + "probability": 0.9922 + }, + { + "start": 20540.7, + "end": 20543.86, + "probability": 0.8455 + }, + { + "start": 20544.86, + "end": 20552.14, + "probability": 0.9528 + }, + { + "start": 20553.4, + "end": 20553.96, + "probability": 0.8451 + }, + { + "start": 20556.16, + "end": 20556.64, + "probability": 0.3798 + }, + { + "start": 20557.78, + "end": 20564.3, + "probability": 0.9954 + }, + { + "start": 20565.8, + "end": 20569.28, + "probability": 0.9841 + }, + { + "start": 20569.94, + "end": 20572.78, + "probability": 0.7029 + }, + { + "start": 20573.36, + "end": 20574.84, + "probability": 0.9815 + }, + { + "start": 20576.32, + "end": 20579.74, + "probability": 0.8803 + }, + { + "start": 20580.3, + "end": 20581.5, + "probability": 0.8574 + }, + { + "start": 20582.08, + "end": 20584.58, + "probability": 0.7248 + }, + { + "start": 20585.24, + "end": 20587.7, + "probability": 0.6843 + }, + { + "start": 20588.58, + "end": 20590.4, + "probability": 0.9274 + }, + { + "start": 20592.34, + "end": 20593.33, + "probability": 0.9813 + }, + { + "start": 20594.74, + "end": 20594.84, + "probability": 0.987 + }, + { + "start": 20596.76, + "end": 20597.62, + "probability": 0.6797 + }, + { + "start": 20598.44, + "end": 20599.04, + "probability": 0.8176 + }, + { + "start": 20599.7, + "end": 20601.34, + "probability": 0.6448 + }, + { + "start": 20602.56, + "end": 20603.78, + "probability": 0.7363 + }, + { + "start": 20604.12, + "end": 20605.3, + "probability": 0.7961 + }, + { + "start": 20605.5, + "end": 20606.8, + "probability": 0.9426 + }, + { + "start": 20607.32, + "end": 20608.8, + "probability": 0.8174 + }, + { + "start": 20609.36, + "end": 20611.28, + "probability": 0.9075 + }, + { + "start": 20611.72, + "end": 20616.16, + "probability": 0.8518 + }, + { + "start": 20616.5, + "end": 20619.42, + "probability": 0.8423 + }, + { + "start": 20620.06, + "end": 20620.78, + "probability": 0.5172 + }, + { + "start": 20621.74, + "end": 20625.86, + "probability": 0.9384 + }, + { + "start": 20626.56, + "end": 20627.86, + "probability": 0.8658 + }, + { + "start": 20627.92, + "end": 20628.6, + "probability": 0.8643 + }, + { + "start": 20628.9, + "end": 20630.88, + "probability": 0.9962 + }, + { + "start": 20631.6, + "end": 20632.9, + "probability": 0.8257 + }, + { + "start": 20633.72, + "end": 20634.66, + "probability": 0.663 + }, + { + "start": 20634.8, + "end": 20639.84, + "probability": 0.9893 + }, + { + "start": 20639.94, + "end": 20640.3, + "probability": 0.8198 + }, + { + "start": 20640.42, + "end": 20642.2, + "probability": 0.4072 + }, + { + "start": 20642.38, + "end": 20643.54, + "probability": 0.9421 + }, + { + "start": 20643.76, + "end": 20644.0, + "probability": 0.8445 + }, + { + "start": 20644.76, + "end": 20647.44, + "probability": 0.9714 + }, + { + "start": 20648.18, + "end": 20652.68, + "probability": 0.9858 + }, + { + "start": 20652.76, + "end": 20654.76, + "probability": 0.9442 + }, + { + "start": 20655.3, + "end": 20659.44, + "probability": 0.9834 + }, + { + "start": 20659.58, + "end": 20661.68, + "probability": 0.9481 + }, + { + "start": 20661.98, + "end": 20667.82, + "probability": 0.8588 + }, + { + "start": 20670.06, + "end": 20671.94, + "probability": 0.958 + }, + { + "start": 20673.56, + "end": 20676.68, + "probability": 0.99 + }, + { + "start": 20678.18, + "end": 20679.74, + "probability": 0.9634 + }, + { + "start": 20679.96, + "end": 20681.44, + "probability": 0.9728 + }, + { + "start": 20681.82, + "end": 20682.42, + "probability": 0.8343 + }, + { + "start": 20683.3, + "end": 20684.24, + "probability": 0.8123 + }, + { + "start": 20684.38, + "end": 20689.38, + "probability": 0.9946 + }, + { + "start": 20690.38, + "end": 20695.24, + "probability": 0.9464 + }, + { + "start": 20696.02, + "end": 20698.16, + "probability": 0.9242 + }, + { + "start": 20698.88, + "end": 20702.06, + "probability": 0.9358 + }, + { + "start": 20702.72, + "end": 20705.74, + "probability": 0.9031 + }, + { + "start": 20706.36, + "end": 20709.2, + "probability": 0.9448 + }, + { + "start": 20710.58, + "end": 20714.0, + "probability": 0.9387 + }, + { + "start": 20714.68, + "end": 20717.38, + "probability": 0.8454 + }, + { + "start": 20717.96, + "end": 20720.92, + "probability": 0.9557 + }, + { + "start": 20721.22, + "end": 20721.92, + "probability": 0.9667 + }, + { + "start": 20722.78, + "end": 20726.92, + "probability": 0.9866 + }, + { + "start": 20728.42, + "end": 20731.93, + "probability": 0.9702 + }, + { + "start": 20733.0, + "end": 20737.58, + "probability": 0.9473 + }, + { + "start": 20738.38, + "end": 20739.82, + "probability": 0.7626 + }, + { + "start": 20742.11, + "end": 20744.82, + "probability": 0.8728 + }, + { + "start": 20747.0, + "end": 20748.02, + "probability": 0.9099 + }, + { + "start": 20748.78, + "end": 20749.8, + "probability": 0.8538 + }, + { + "start": 20750.68, + "end": 20752.88, + "probability": 0.9758 + }, + { + "start": 20753.06, + "end": 20754.68, + "probability": 0.9993 + }, + { + "start": 20755.18, + "end": 20757.9, + "probability": 0.9976 + }, + { + "start": 20759.24, + "end": 20762.3, + "probability": 0.981 + }, + { + "start": 20763.32, + "end": 20764.44, + "probability": 0.8729 + }, + { + "start": 20765.98, + "end": 20769.12, + "probability": 0.9054 + }, + { + "start": 20769.92, + "end": 20771.92, + "probability": 0.7549 + }, + { + "start": 20772.7, + "end": 20774.8, + "probability": 0.9174 + }, + { + "start": 20775.42, + "end": 20776.3, + "probability": 0.554 + }, + { + "start": 20776.86, + "end": 20781.48, + "probability": 0.9463 + }, + { + "start": 20782.02, + "end": 20786.94, + "probability": 0.9495 + }, + { + "start": 20787.62, + "end": 20791.1, + "probability": 0.9761 + }, + { + "start": 20791.9, + "end": 20792.78, + "probability": 0.8151 + }, + { + "start": 20793.88, + "end": 20794.52, + "probability": 0.7673 + }, + { + "start": 20794.66, + "end": 20795.68, + "probability": 0.9678 + }, + { + "start": 20796.06, + "end": 20797.44, + "probability": 0.7701 + }, + { + "start": 20798.94, + "end": 20800.92, + "probability": 0.9531 + }, + { + "start": 20800.96, + "end": 20801.66, + "probability": 0.9067 + }, + { + "start": 20801.74, + "end": 20802.86, + "probability": 0.957 + }, + { + "start": 20802.92, + "end": 20804.48, + "probability": 0.9666 + }, + { + "start": 20804.78, + "end": 20805.4, + "probability": 0.8456 + }, + { + "start": 20805.96, + "end": 20807.54, + "probability": 0.9981 + }, + { + "start": 20808.38, + "end": 20810.76, + "probability": 0.8162 + }, + { + "start": 20810.76, + "end": 20814.88, + "probability": 0.7373 + }, + { + "start": 20814.96, + "end": 20816.78, + "probability": 0.993 + }, + { + "start": 20817.44, + "end": 20819.14, + "probability": 0.8896 + }, + { + "start": 20819.64, + "end": 20819.64, + "probability": 0.2224 + }, + { + "start": 20819.64, + "end": 20821.66, + "probability": 0.7849 + }, + { + "start": 20822.56, + "end": 20826.2, + "probability": 0.8787 + }, + { + "start": 20826.76, + "end": 20828.74, + "probability": 0.9005 + }, + { + "start": 20829.34, + "end": 20832.62, + "probability": 0.9956 + }, + { + "start": 20832.62, + "end": 20833.94, + "probability": 0.837 + }, + { + "start": 20834.48, + "end": 20835.4, + "probability": 0.9288 + }, + { + "start": 20836.26, + "end": 20841.14, + "probability": 0.9963 + }, + { + "start": 20841.64, + "end": 20846.16, + "probability": 0.9971 + }, + { + "start": 20846.38, + "end": 20847.54, + "probability": 0.7931 + }, + { + "start": 20848.26, + "end": 20848.3, + "probability": 0.3404 + }, + { + "start": 20848.3, + "end": 20850.26, + "probability": 0.9105 + }, + { + "start": 20850.88, + "end": 20855.65, + "probability": 0.8214 + }, + { + "start": 20856.84, + "end": 20862.4, + "probability": 0.5989 + }, + { + "start": 20863.02, + "end": 20864.96, + "probability": 0.7489 + }, + { + "start": 20865.5, + "end": 20869.54, + "probability": 0.8718 + }, + { + "start": 20869.9, + "end": 20871.66, + "probability": 0.8987 + }, + { + "start": 20872.18, + "end": 20873.26, + "probability": 0.8691 + }, + { + "start": 20873.28, + "end": 20874.2, + "probability": 0.5351 + }, + { + "start": 20874.5, + "end": 20875.19, + "probability": 0.8267 + }, + { + "start": 20875.52, + "end": 20876.22, + "probability": 0.6719 + }, + { + "start": 20876.7, + "end": 20879.2, + "probability": 0.7913 + }, + { + "start": 20879.42, + "end": 20880.33, + "probability": 0.7988 + }, + { + "start": 20880.54, + "end": 20881.74, + "probability": 0.9893 + }, + { + "start": 20881.74, + "end": 20882.72, + "probability": 0.9848 + }, + { + "start": 20882.82, + "end": 20883.32, + "probability": 0.6452 + }, + { + "start": 20883.78, + "end": 20884.3, + "probability": 0.5272 + }, + { + "start": 20884.52, + "end": 20885.73, + "probability": 0.9099 + }, + { + "start": 20885.96, + "end": 20890.04, + "probability": 0.8931 + }, + { + "start": 20892.1, + "end": 20893.7, + "probability": 0.6315 + }, + { + "start": 20893.84, + "end": 20897.9, + "probability": 0.9878 + }, + { + "start": 20898.44, + "end": 20901.33, + "probability": 0.2921 + }, + { + "start": 20902.44, + "end": 20903.78, + "probability": 0.7289 + }, + { + "start": 20905.16, + "end": 20905.78, + "probability": 0.7242 + }, + { + "start": 20906.36, + "end": 20908.7, + "probability": 0.0043 + }, + { + "start": 20919.64, + "end": 20923.24, + "probability": 0.4308 + }, + { + "start": 20923.32, + "end": 20925.84, + "probability": 0.8243 + }, + { + "start": 20926.28, + "end": 20927.28, + "probability": 0.7228 + }, + { + "start": 20927.3, + "end": 20929.53, + "probability": 0.692 + }, + { + "start": 20930.16, + "end": 20931.06, + "probability": 0.7048 + }, + { + "start": 20931.2, + "end": 20933.03, + "probability": 0.7955 + }, + { + "start": 20933.38, + "end": 20934.58, + "probability": 0.864 + }, + { + "start": 20934.66, + "end": 20937.44, + "probability": 0.8363 + }, + { + "start": 20938.38, + "end": 20939.78, + "probability": 0.0899 + }, + { + "start": 20939.78, + "end": 20939.78, + "probability": 0.5271 + }, + { + "start": 20939.78, + "end": 20943.2, + "probability": 0.8833 + }, + { + "start": 20944.86, + "end": 20946.02, + "probability": 0.3335 + }, + { + "start": 20946.12, + "end": 20948.93, + "probability": 0.2237 + }, + { + "start": 20949.72, + "end": 20952.28, + "probability": 0.2303 + }, + { + "start": 20952.5, + "end": 20954.36, + "probability": 0.123 + }, + { + "start": 20955.0, + "end": 20955.84, + "probability": 0.4183 + }, + { + "start": 20962.4, + "end": 20963.66, + "probability": 0.1085 + }, + { + "start": 20968.04, + "end": 20970.2, + "probability": 0.6019 + }, + { + "start": 20970.3, + "end": 20971.18, + "probability": 0.5078 + }, + { + "start": 20975.84, + "end": 20976.96, + "probability": 0.0065 + }, + { + "start": 20978.76, + "end": 20980.54, + "probability": 0.593 + }, + { + "start": 20980.72, + "end": 20982.74, + "probability": 0.4495 + }, + { + "start": 20982.88, + "end": 20985.4, + "probability": 0.894 + }, + { + "start": 20985.86, + "end": 20989.02, + "probability": 0.7764 + }, + { + "start": 20989.04, + "end": 20991.8, + "probability": 0.7069 + }, + { + "start": 20992.38, + "end": 20994.48, + "probability": 0.7964 + }, + { + "start": 20994.84, + "end": 20996.9, + "probability": 0.521 + }, + { + "start": 20997.12, + "end": 21000.3, + "probability": 0.9385 + }, + { + "start": 21000.44, + "end": 21002.5, + "probability": 0.4634 + }, + { + "start": 21002.5, + "end": 21003.24, + "probability": 0.7156 + }, + { + "start": 21003.5, + "end": 21004.74, + "probability": 0.7733 + }, + { + "start": 21005.72, + "end": 21007.69, + "probability": 0.9596 + }, + { + "start": 21007.98, + "end": 21008.08, + "probability": 0.3055 + }, + { + "start": 21008.98, + "end": 21011.4, + "probability": 0.2832 + }, + { + "start": 21011.56, + "end": 21011.7, + "probability": 0.424 + }, + { + "start": 21011.7, + "end": 21015.26, + "probability": 0.8991 + }, + { + "start": 21016.01, + "end": 21019.41, + "probability": 0.8043 + }, + { + "start": 21019.72, + "end": 21022.78, + "probability": 0.6381 + }, + { + "start": 21022.9, + "end": 21024.4, + "probability": 0.8348 + }, + { + "start": 21024.6, + "end": 21026.94, + "probability": 0.9911 + }, + { + "start": 21026.94, + "end": 21031.02, + "probability": 0.2988 + }, + { + "start": 21031.1, + "end": 21031.1, + "probability": 0.3792 + }, + { + "start": 21031.1, + "end": 21034.32, + "probability": 0.2206 + }, + { + "start": 21034.52, + "end": 21038.98, + "probability": 0.542 + }, + { + "start": 21039.04, + "end": 21042.12, + "probability": 0.9951 + }, + { + "start": 21043.02, + "end": 21044.26, + "probability": 0.5838 + }, + { + "start": 21044.72, + "end": 21048.92, + "probability": 0.8611 + }, + { + "start": 21049.38, + "end": 21051.76, + "probability": 0.5864 + }, + { + "start": 21054.6, + "end": 21061.26, + "probability": 0.3329 + }, + { + "start": 21061.78, + "end": 21063.62, + "probability": 0.3906 + }, + { + "start": 21065.32, + "end": 21068.14, + "probability": 0.6008 + }, + { + "start": 21068.34, + "end": 21071.46, + "probability": 0.5479 + }, + { + "start": 21071.88, + "end": 21074.38, + "probability": 0.961 + }, + { + "start": 21074.7, + "end": 21075.36, + "probability": 0.1917 + }, + { + "start": 21075.9, + "end": 21077.9, + "probability": 0.5036 + }, + { + "start": 21078.72, + "end": 21083.02, + "probability": 0.9851 + }, + { + "start": 21083.8, + "end": 21084.86, + "probability": 0.8099 + }, + { + "start": 21084.94, + "end": 21086.57, + "probability": 0.8237 + }, + { + "start": 21087.02, + "end": 21090.16, + "probability": 0.7643 + }, + { + "start": 21093.4, + "end": 21098.06, + "probability": 0.9949 + }, + { + "start": 21098.9, + "end": 21100.18, + "probability": 0.5092 + }, + { + "start": 21100.6, + "end": 21102.9, + "probability": 0.7683 + }, + { + "start": 21103.16, + "end": 21105.8, + "probability": 0.9967 + }, + { + "start": 21106.18, + "end": 21107.42, + "probability": 0.9328 + }, + { + "start": 21107.88, + "end": 21109.8, + "probability": 0.7523 + }, + { + "start": 21110.46, + "end": 21113.04, + "probability": 0.8947 + }, + { + "start": 21113.56, + "end": 21114.22, + "probability": 0.9666 + }, + { + "start": 21128.08, + "end": 21128.64, + "probability": 0.3265 + }, + { + "start": 21129.36, + "end": 21130.18, + "probability": 0.6833 + }, + { + "start": 21131.5, + "end": 21135.1, + "probability": 0.8704 + }, + { + "start": 21136.96, + "end": 21139.78, + "probability": 0.9474 + }, + { + "start": 21140.64, + "end": 21143.46, + "probability": 0.9917 + }, + { + "start": 21143.58, + "end": 21146.82, + "probability": 0.69 + }, + { + "start": 21148.76, + "end": 21150.8, + "probability": 0.9207 + }, + { + "start": 21150.8, + "end": 21154.44, + "probability": 0.985 + }, + { + "start": 21155.5, + "end": 21157.28, + "probability": 0.9341 + }, + { + "start": 21157.36, + "end": 21161.29, + "probability": 0.9896 + }, + { + "start": 21161.6, + "end": 21165.16, + "probability": 0.8803 + }, + { + "start": 21167.0, + "end": 21169.0, + "probability": 0.9949 + }, + { + "start": 21171.82, + "end": 21176.18, + "probability": 0.9926 + }, + { + "start": 21177.18, + "end": 21181.06, + "probability": 0.9774 + }, + { + "start": 21183.32, + "end": 21188.18, + "probability": 0.9002 + }, + { + "start": 21190.56, + "end": 21193.6, + "probability": 0.9251 + }, + { + "start": 21194.92, + "end": 21197.94, + "probability": 0.9978 + }, + { + "start": 21198.62, + "end": 21201.92, + "probability": 0.9713 + }, + { + "start": 21202.96, + "end": 21204.64, + "probability": 0.9888 + }, + { + "start": 21206.5, + "end": 21208.82, + "probability": 0.9893 + }, + { + "start": 21208.96, + "end": 21210.84, + "probability": 0.6596 + }, + { + "start": 21211.54, + "end": 21214.28, + "probability": 0.9925 + }, + { + "start": 21215.54, + "end": 21216.76, + "probability": 0.8187 + }, + { + "start": 21218.12, + "end": 21220.06, + "probability": 0.9504 + }, + { + "start": 21222.84, + "end": 21226.06, + "probability": 0.8737 + }, + { + "start": 21227.66, + "end": 21228.18, + "probability": 0.5462 + }, + { + "start": 21228.24, + "end": 21234.48, + "probability": 0.9705 + }, + { + "start": 21235.76, + "end": 21236.52, + "probability": 0.6586 + }, + { + "start": 21236.62, + "end": 21238.18, + "probability": 0.9439 + }, + { + "start": 21238.58, + "end": 21240.34, + "probability": 0.9565 + }, + { + "start": 21240.68, + "end": 21241.16, + "probability": 0.8313 + }, + { + "start": 21241.34, + "end": 21242.84, + "probability": 0.9342 + }, + { + "start": 21244.2, + "end": 21249.28, + "probability": 0.9833 + }, + { + "start": 21250.5, + "end": 21251.92, + "probability": 0.8381 + }, + { + "start": 21252.06, + "end": 21254.72, + "probability": 0.9839 + }, + { + "start": 21256.36, + "end": 21262.04, + "probability": 0.9185 + }, + { + "start": 21264.54, + "end": 21266.6, + "probability": 0.7936 + }, + { + "start": 21267.44, + "end": 21268.1, + "probability": 0.6045 + }, + { + "start": 21269.6, + "end": 21272.48, + "probability": 0.9585 + }, + { + "start": 21273.08, + "end": 21274.22, + "probability": 0.974 + }, + { + "start": 21275.7, + "end": 21276.98, + "probability": 0.7656 + }, + { + "start": 21277.7, + "end": 21278.96, + "probability": 0.9961 + }, + { + "start": 21279.92, + "end": 21285.58, + "probability": 0.9943 + }, + { + "start": 21286.44, + "end": 21290.32, + "probability": 0.983 + }, + { + "start": 21290.32, + "end": 21293.88, + "probability": 0.9757 + }, + { + "start": 21295.16, + "end": 21295.76, + "probability": 0.8831 + }, + { + "start": 21297.34, + "end": 21298.48, + "probability": 0.6864 + }, + { + "start": 21299.4, + "end": 21302.96, + "probability": 0.9873 + }, + { + "start": 21303.64, + "end": 21304.96, + "probability": 0.9095 + }, + { + "start": 21306.18, + "end": 21308.48, + "probability": 0.9851 + }, + { + "start": 21309.48, + "end": 21311.3, + "probability": 0.6209 + }, + { + "start": 21314.42, + "end": 21316.24, + "probability": 0.9863 + }, + { + "start": 21317.58, + "end": 21322.54, + "probability": 0.911 + }, + { + "start": 21322.64, + "end": 21323.1, + "probability": 0.2181 + }, + { + "start": 21324.16, + "end": 21324.62, + "probability": 0.9343 + }, + { + "start": 21326.28, + "end": 21326.68, + "probability": 0.893 + }, + { + "start": 21327.08, + "end": 21327.32, + "probability": 0.471 + }, + { + "start": 21327.44, + "end": 21329.08, + "probability": 0.9692 + }, + { + "start": 21329.3, + "end": 21329.76, + "probability": 0.6849 + }, + { + "start": 21329.96, + "end": 21334.44, + "probability": 0.9683 + }, + { + "start": 21335.02, + "end": 21337.04, + "probability": 0.9931 + }, + { + "start": 21338.32, + "end": 21338.98, + "probability": 0.7853 + }, + { + "start": 21339.96, + "end": 21341.03, + "probability": 0.9282 + }, + { + "start": 21341.92, + "end": 21344.56, + "probability": 0.8748 + }, + { + "start": 21345.7, + "end": 21348.02, + "probability": 0.948 + }, + { + "start": 21349.1, + "end": 21352.02, + "probability": 0.99 + }, + { + "start": 21353.38, + "end": 21354.04, + "probability": 0.8639 + }, + { + "start": 21355.56, + "end": 21357.36, + "probability": 0.9783 + }, + { + "start": 21358.42, + "end": 21360.8, + "probability": 0.9937 + }, + { + "start": 21361.5, + "end": 21364.76, + "probability": 0.9732 + }, + { + "start": 21365.74, + "end": 21368.1, + "probability": 0.9956 + }, + { + "start": 21368.96, + "end": 21370.88, + "probability": 0.983 + }, + { + "start": 21371.48, + "end": 21375.63, + "probability": 0.9263 + }, + { + "start": 21376.58, + "end": 21379.44, + "probability": 0.9902 + }, + { + "start": 21380.0, + "end": 21381.98, + "probability": 0.9089 + }, + { + "start": 21382.96, + "end": 21384.54, + "probability": 0.9337 + }, + { + "start": 21385.34, + "end": 21386.54, + "probability": 0.9924 + }, + { + "start": 21387.5, + "end": 21388.26, + "probability": 0.7726 + }, + { + "start": 21389.24, + "end": 21392.1, + "probability": 0.9171 + }, + { + "start": 21394.36, + "end": 21399.12, + "probability": 0.5736 + }, + { + "start": 21400.74, + "end": 21403.2, + "probability": 0.8636 + }, + { + "start": 21403.92, + "end": 21405.94, + "probability": 0.9421 + }, + { + "start": 21406.66, + "end": 21407.96, + "probability": 0.9886 + }, + { + "start": 21409.32, + "end": 21410.74, + "probability": 0.9204 + }, + { + "start": 21410.9, + "end": 21411.42, + "probability": 0.9132 + }, + { + "start": 21412.06, + "end": 21416.38, + "probability": 0.9969 + }, + { + "start": 21416.38, + "end": 21419.06, + "probability": 0.8636 + }, + { + "start": 21419.7, + "end": 21422.76, + "probability": 0.9565 + }, + { + "start": 21423.64, + "end": 21424.64, + "probability": 0.9908 + }, + { + "start": 21425.82, + "end": 21429.62, + "probability": 0.9723 + }, + { + "start": 21430.38, + "end": 21431.36, + "probability": 0.7517 + }, + { + "start": 21432.44, + "end": 21434.78, + "probability": 0.71 + }, + { + "start": 21435.74, + "end": 21437.12, + "probability": 0.8331 + }, + { + "start": 21437.6, + "end": 21441.22, + "probability": 0.9272 + }, + { + "start": 21441.7, + "end": 21442.8, + "probability": 0.8765 + }, + { + "start": 21443.62, + "end": 21444.14, + "probability": 0.8643 + }, + { + "start": 21444.3, + "end": 21445.2, + "probability": 0.5595 + }, + { + "start": 21445.92, + "end": 21448.02, + "probability": 0.8044 + }, + { + "start": 21449.66, + "end": 21451.76, + "probability": 0.8908 + }, + { + "start": 21473.18, + "end": 21473.76, + "probability": 0.5285 + }, + { + "start": 21474.24, + "end": 21476.62, + "probability": 0.8345 + }, + { + "start": 21477.34, + "end": 21478.66, + "probability": 0.7518 + }, + { + "start": 21479.28, + "end": 21480.98, + "probability": 0.7559 + }, + { + "start": 21481.54, + "end": 21483.28, + "probability": 0.8845 + }, + { + "start": 21484.32, + "end": 21485.84, + "probability": 0.8366 + }, + { + "start": 21486.64, + "end": 21487.62, + "probability": 0.9836 + }, + { + "start": 21487.76, + "end": 21491.86, + "probability": 0.873 + }, + { + "start": 21492.46, + "end": 21493.68, + "probability": 0.7808 + }, + { + "start": 21493.8, + "end": 21494.34, + "probability": 0.9387 + }, + { + "start": 21494.48, + "end": 21495.82, + "probability": 0.9565 + }, + { + "start": 21496.4, + "end": 21499.92, + "probability": 0.9893 + }, + { + "start": 21499.94, + "end": 21503.66, + "probability": 0.9976 + }, + { + "start": 21504.28, + "end": 21507.38, + "probability": 0.8877 + }, + { + "start": 21508.14, + "end": 21513.64, + "probability": 0.9154 + }, + { + "start": 21514.52, + "end": 21515.16, + "probability": 0.7839 + }, + { + "start": 21515.28, + "end": 21519.54, + "probability": 0.9976 + }, + { + "start": 21520.26, + "end": 21521.88, + "probability": 0.9974 + }, + { + "start": 21521.88, + "end": 21524.1, + "probability": 0.9972 + }, + { + "start": 21524.74, + "end": 21526.04, + "probability": 0.7452 + }, + { + "start": 21526.14, + "end": 21527.04, + "probability": 0.9701 + }, + { + "start": 21527.18, + "end": 21530.44, + "probability": 0.6672 + }, + { + "start": 21530.92, + "end": 21533.9, + "probability": 0.9684 + }, + { + "start": 21533.9, + "end": 21536.32, + "probability": 0.8878 + }, + { + "start": 21537.2, + "end": 21539.51, + "probability": 0.7046 + }, + { + "start": 21540.24, + "end": 21540.46, + "probability": 0.4913 + }, + { + "start": 21540.56, + "end": 21543.18, + "probability": 0.7009 + }, + { + "start": 21543.44, + "end": 21545.04, + "probability": 0.6919 + }, + { + "start": 21545.8, + "end": 21550.24, + "probability": 0.9566 + }, + { + "start": 21550.32, + "end": 21553.61, + "probability": 0.9541 + }, + { + "start": 21553.96, + "end": 21554.32, + "probability": 0.9227 + }, + { + "start": 21555.3, + "end": 21557.78, + "probability": 0.6809 + }, + { + "start": 21558.66, + "end": 21561.62, + "probability": 0.9272 + }, + { + "start": 21562.24, + "end": 21564.92, + "probability": 0.9747 + }, + { + "start": 21565.72, + "end": 21571.86, + "probability": 0.9925 + }, + { + "start": 21572.28, + "end": 21574.72, + "probability": 0.995 + }, + { + "start": 21574.86, + "end": 21576.42, + "probability": 0.9926 + }, + { + "start": 21577.46, + "end": 21578.8, + "probability": 0.9905 + }, + { + "start": 21579.14, + "end": 21580.22, + "probability": 0.8591 + }, + { + "start": 21580.84, + "end": 21582.78, + "probability": 0.9301 + }, + { + "start": 21583.54, + "end": 21584.04, + "probability": 0.5969 + }, + { + "start": 21584.12, + "end": 21586.1, + "probability": 0.9658 + }, + { + "start": 21586.1, + "end": 21588.4, + "probability": 0.9953 + }, + { + "start": 21589.14, + "end": 21591.32, + "probability": 0.9943 + }, + { + "start": 21591.88, + "end": 21593.16, + "probability": 0.9657 + }, + { + "start": 21593.22, + "end": 21594.7, + "probability": 0.9773 + }, + { + "start": 21595.16, + "end": 21598.02, + "probability": 0.9326 + }, + { + "start": 21598.62, + "end": 21599.64, + "probability": 0.5315 + }, + { + "start": 21600.32, + "end": 21604.48, + "probability": 0.9951 + }, + { + "start": 21605.2, + "end": 21606.98, + "probability": 0.8412 + }, + { + "start": 21607.16, + "end": 21607.9, + "probability": 0.8345 + }, + { + "start": 21608.02, + "end": 21610.52, + "probability": 0.906 + }, + { + "start": 21610.94, + "end": 21615.92, + "probability": 0.9867 + }, + { + "start": 21616.6, + "end": 21620.22, + "probability": 0.9955 + }, + { + "start": 21620.76, + "end": 21624.04, + "probability": 0.9979 + }, + { + "start": 21624.92, + "end": 21627.82, + "probability": 0.9633 + }, + { + "start": 21628.08, + "end": 21629.54, + "probability": 0.9972 + }, + { + "start": 21629.62, + "end": 21630.3, + "probability": 0.6396 + }, + { + "start": 21630.8, + "end": 21631.76, + "probability": 0.9466 + }, + { + "start": 21632.24, + "end": 21636.1, + "probability": 0.9961 + }, + { + "start": 21636.88, + "end": 21637.54, + "probability": 0.7501 + }, + { + "start": 21638.56, + "end": 21642.46, + "probability": 0.9481 + }, + { + "start": 21642.62, + "end": 21644.94, + "probability": 0.9912 + }, + { + "start": 21645.6, + "end": 21649.18, + "probability": 0.9954 + }, + { + "start": 21649.7, + "end": 21650.42, + "probability": 0.8998 + }, + { + "start": 21650.52, + "end": 21655.7, + "probability": 0.9975 + }, + { + "start": 21655.7, + "end": 21661.56, + "probability": 0.9985 + }, + { + "start": 21661.76, + "end": 21663.32, + "probability": 0.8133 + }, + { + "start": 21663.68, + "end": 21663.82, + "probability": 0.2428 + }, + { + "start": 21663.86, + "end": 21666.48, + "probability": 0.8472 + }, + { + "start": 21666.52, + "end": 21667.96, + "probability": 0.8932 + }, + { + "start": 21668.5, + "end": 21671.34, + "probability": 0.9924 + }, + { + "start": 21671.96, + "end": 21673.68, + "probability": 0.8966 + }, + { + "start": 21673.8, + "end": 21674.62, + "probability": 0.7384 + }, + { + "start": 21674.76, + "end": 21675.28, + "probability": 0.96 + }, + { + "start": 21675.72, + "end": 21676.7, + "probability": 0.9072 + }, + { + "start": 21676.8, + "end": 21680.6, + "probability": 0.9806 + }, + { + "start": 21680.94, + "end": 21682.42, + "probability": 0.7987 + }, + { + "start": 21682.96, + "end": 21683.78, + "probability": 0.8397 + }, + { + "start": 21683.88, + "end": 21684.96, + "probability": 0.8192 + }, + { + "start": 21685.44, + "end": 21687.88, + "probability": 0.9437 + }, + { + "start": 21687.88, + "end": 21690.98, + "probability": 0.9255 + }, + { + "start": 21691.56, + "end": 21693.84, + "probability": 0.7323 + }, + { + "start": 21694.3, + "end": 21698.58, + "probability": 0.994 + }, + { + "start": 21698.86, + "end": 21701.64, + "probability": 0.8794 + }, + { + "start": 21701.88, + "end": 21705.7, + "probability": 0.9519 + }, + { + "start": 21706.0, + "end": 21708.76, + "probability": 0.9448 + }, + { + "start": 21708.94, + "end": 21712.34, + "probability": 0.9855 + }, + { + "start": 21712.44, + "end": 21713.64, + "probability": 0.8867 + }, + { + "start": 21713.7, + "end": 21716.28, + "probability": 0.9919 + }, + { + "start": 21716.6, + "end": 21717.96, + "probability": 0.9885 + }, + { + "start": 21718.44, + "end": 21718.96, + "probability": 0.3969 + }, + { + "start": 21719.0, + "end": 21720.96, + "probability": 0.8168 + }, + { + "start": 21721.16, + "end": 21721.58, + "probability": 0.7618 + }, + { + "start": 21721.8, + "end": 21722.62, + "probability": 0.6254 + }, + { + "start": 21722.92, + "end": 21724.32, + "probability": 0.8534 + }, + { + "start": 21743.24, + "end": 21744.62, + "probability": 0.6635 + }, + { + "start": 21745.62, + "end": 21748.18, + "probability": 0.9608 + }, + { + "start": 21749.58, + "end": 21752.76, + "probability": 0.6884 + }, + { + "start": 21753.38, + "end": 21754.5, + "probability": 0.9026 + }, + { + "start": 21755.4, + "end": 21759.14, + "probability": 0.8323 + }, + { + "start": 21759.94, + "end": 21760.94, + "probability": 0.9312 + }, + { + "start": 21761.6, + "end": 21763.4, + "probability": 0.968 + }, + { + "start": 21765.28, + "end": 21767.56, + "probability": 0.9991 + }, + { + "start": 21769.48, + "end": 21771.6, + "probability": 0.9907 + }, + { + "start": 21772.22, + "end": 21772.88, + "probability": 0.7371 + }, + { + "start": 21773.66, + "end": 21779.48, + "probability": 0.9495 + }, + { + "start": 21779.66, + "end": 21782.9, + "probability": 0.9574 + }, + { + "start": 21783.36, + "end": 21787.22, + "probability": 0.9978 + }, + { + "start": 21787.84, + "end": 21788.74, + "probability": 0.5306 + }, + { + "start": 21790.4, + "end": 21791.02, + "probability": 0.731 + }, + { + "start": 21791.94, + "end": 21793.42, + "probability": 0.9351 + }, + { + "start": 21794.24, + "end": 21795.86, + "probability": 0.9604 + }, + { + "start": 21795.94, + "end": 21803.44, + "probability": 0.9711 + }, + { + "start": 21803.54, + "end": 21804.74, + "probability": 0.8519 + }, + { + "start": 21804.88, + "end": 21806.32, + "probability": 0.9641 + }, + { + "start": 21807.12, + "end": 21810.03, + "probability": 0.821 + }, + { + "start": 21810.7, + "end": 21813.69, + "probability": 0.9967 + }, + { + "start": 21816.5, + "end": 21817.34, + "probability": 0.9653 + }, + { + "start": 21817.46, + "end": 21820.94, + "probability": 0.9872 + }, + { + "start": 21821.88, + "end": 21825.98, + "probability": 0.6876 + }, + { + "start": 21826.82, + "end": 21831.66, + "probability": 0.9195 + }, + { + "start": 21833.48, + "end": 21834.08, + "probability": 0.8432 + }, + { + "start": 21835.08, + "end": 21838.66, + "probability": 0.9646 + }, + { + "start": 21839.26, + "end": 21840.0, + "probability": 0.9528 + }, + { + "start": 21840.12, + "end": 21841.32, + "probability": 0.853 + }, + { + "start": 21841.5, + "end": 21844.18, + "probability": 0.9977 + }, + { + "start": 21844.18, + "end": 21847.8, + "probability": 0.9976 + }, + { + "start": 21848.84, + "end": 21850.72, + "probability": 0.9541 + }, + { + "start": 21851.7, + "end": 21854.54, + "probability": 0.9867 + }, + { + "start": 21854.54, + "end": 21858.12, + "probability": 0.9304 + }, + { + "start": 21859.76, + "end": 21862.66, + "probability": 0.9699 + }, + { + "start": 21862.72, + "end": 21866.48, + "probability": 0.9976 + }, + { + "start": 21867.02, + "end": 21868.12, + "probability": 0.9792 + }, + { + "start": 21869.46, + "end": 21873.56, + "probability": 0.8646 + }, + { + "start": 21873.72, + "end": 21873.72, + "probability": 0.1524 + }, + { + "start": 21873.72, + "end": 21874.06, + "probability": 0.4741 + }, + { + "start": 21874.64, + "end": 21878.6, + "probability": 0.9738 + }, + { + "start": 21879.74, + "end": 21883.98, + "probability": 0.9952 + }, + { + "start": 21884.62, + "end": 21890.26, + "probability": 0.9919 + }, + { + "start": 21890.8, + "end": 21898.3, + "probability": 0.9909 + }, + { + "start": 21900.4, + "end": 21903.46, + "probability": 0.9989 + }, + { + "start": 21903.92, + "end": 21905.6, + "probability": 0.8748 + }, + { + "start": 21906.34, + "end": 21907.52, + "probability": 0.9814 + }, + { + "start": 21908.52, + "end": 21909.54, + "probability": 0.96 + }, + { + "start": 21910.6, + "end": 21914.7, + "probability": 0.9967 + }, + { + "start": 21914.7, + "end": 21918.44, + "probability": 0.6936 + }, + { + "start": 21919.26, + "end": 21922.08, + "probability": 0.9929 + }, + { + "start": 21922.64, + "end": 21927.6, + "probability": 0.9932 + }, + { + "start": 21928.44, + "end": 21930.86, + "probability": 0.9037 + }, + { + "start": 21932.08, + "end": 21937.98, + "probability": 0.7834 + }, + { + "start": 21938.9, + "end": 21941.52, + "probability": 0.9984 + }, + { + "start": 21942.22, + "end": 21944.18, + "probability": 0.9305 + }, + { + "start": 21945.06, + "end": 21948.06, + "probability": 0.8739 + }, + { + "start": 21948.86, + "end": 21951.4, + "probability": 0.9546 + }, + { + "start": 21953.3, + "end": 21958.04, + "probability": 0.9949 + }, + { + "start": 21958.38, + "end": 21958.86, + "probability": 0.8041 + }, + { + "start": 21959.04, + "end": 21959.78, + "probability": 0.5657 + }, + { + "start": 21959.88, + "end": 21961.5, + "probability": 0.7327 + }, + { + "start": 21963.48, + "end": 21964.82, + "probability": 0.6011 + }, + { + "start": 21970.66, + "end": 21970.66, + "probability": 0.0097 + }, + { + "start": 21970.66, + "end": 21970.66, + "probability": 0.246 + }, + { + "start": 21970.66, + "end": 21970.66, + "probability": 0.0938 + }, + { + "start": 21970.66, + "end": 21970.66, + "probability": 0.065 + }, + { + "start": 21970.66, + "end": 21970.66, + "probability": 0.1869 + }, + { + "start": 21970.66, + "end": 21970.68, + "probability": 0.1109 + }, + { + "start": 21970.68, + "end": 21970.7, + "probability": 0.1418 + }, + { + "start": 21992.26, + "end": 21996.8, + "probability": 0.4889 + }, + { + "start": 21998.52, + "end": 21998.88, + "probability": 0.6573 + }, + { + "start": 21998.96, + "end": 21999.7, + "probability": 0.7442 + }, + { + "start": 21999.9, + "end": 22001.68, + "probability": 0.9578 + }, + { + "start": 22004.06, + "end": 22006.18, + "probability": 0.8016 + }, + { + "start": 22007.08, + "end": 22007.72, + "probability": 0.4618 + }, + { + "start": 22008.74, + "end": 22010.96, + "probability": 0.9574 + }, + { + "start": 22011.58, + "end": 22014.92, + "probability": 0.6366 + }, + { + "start": 22015.12, + "end": 22016.78, + "probability": 0.4386 + }, + { + "start": 22017.68, + "end": 22019.32, + "probability": 0.9961 + }, + { + "start": 22020.82, + "end": 22023.87, + "probability": 0.8507 + }, + { + "start": 22023.92, + "end": 22024.72, + "probability": 0.9476 + }, + { + "start": 22024.84, + "end": 22026.64, + "probability": 0.8226 + }, + { + "start": 22027.52, + "end": 22029.2, + "probability": 0.9956 + }, + { + "start": 22030.44, + "end": 22031.64, + "probability": 0.9694 + }, + { + "start": 22032.58, + "end": 22033.74, + "probability": 0.8516 + }, + { + "start": 22033.88, + "end": 22035.9, + "probability": 0.749 + }, + { + "start": 22035.96, + "end": 22037.42, + "probability": 0.7187 + }, + { + "start": 22037.42, + "end": 22042.86, + "probability": 0.8514 + }, + { + "start": 22042.96, + "end": 22043.72, + "probability": 0.1863 + }, + { + "start": 22045.0, + "end": 22046.72, + "probability": 0.7204 + }, + { + "start": 22046.92, + "end": 22048.68, + "probability": 0.988 + }, + { + "start": 22048.78, + "end": 22049.8, + "probability": 0.4828 + }, + { + "start": 22051.0, + "end": 22053.89, + "probability": 0.9365 + }, + { + "start": 22055.38, + "end": 22056.16, + "probability": 0.8307 + }, + { + "start": 22056.24, + "end": 22059.46, + "probability": 0.7118 + }, + { + "start": 22059.52, + "end": 22061.76, + "probability": 0.9491 + }, + { + "start": 22063.46, + "end": 22066.18, + "probability": 0.987 + }, + { + "start": 22066.38, + "end": 22071.32, + "probability": 0.9826 + }, + { + "start": 22071.4, + "end": 22072.36, + "probability": 0.9271 + }, + { + "start": 22072.82, + "end": 22073.9, + "probability": 0.9604 + }, + { + "start": 22074.4, + "end": 22077.88, + "probability": 0.9861 + }, + { + "start": 22078.72, + "end": 22079.72, + "probability": 0.6499 + }, + { + "start": 22079.78, + "end": 22082.04, + "probability": 0.8721 + }, + { + "start": 22082.08, + "end": 22085.0, + "probability": 0.9785 + }, + { + "start": 22085.22, + "end": 22087.04, + "probability": 0.6543 + }, + { + "start": 22088.0, + "end": 22089.58, + "probability": 0.8639 + }, + { + "start": 22089.64, + "end": 22090.34, + "probability": 0.8252 + }, + { + "start": 22090.58, + "end": 22091.19, + "probability": 0.9458 + }, + { + "start": 22092.62, + "end": 22094.46, + "probability": 0.9519 + }, + { + "start": 22096.22, + "end": 22099.96, + "probability": 0.9948 + }, + { + "start": 22099.96, + "end": 22105.0, + "probability": 0.984 + }, + { + "start": 22105.25, + "end": 22107.06, + "probability": 0.9733 + }, + { + "start": 22108.46, + "end": 22111.26, + "probability": 0.9243 + }, + { + "start": 22111.28, + "end": 22115.22, + "probability": 0.8121 + }, + { + "start": 22115.34, + "end": 22119.22, + "probability": 0.9773 + }, + { + "start": 22120.78, + "end": 22121.66, + "probability": 0.8726 + }, + { + "start": 22121.76, + "end": 22126.22, + "probability": 0.9176 + }, + { + "start": 22126.34, + "end": 22129.6, + "probability": 0.9579 + }, + { + "start": 22130.9, + "end": 22132.96, + "probability": 0.9738 + }, + { + "start": 22133.12, + "end": 22134.28, + "probability": 0.972 + }, + { + "start": 22134.78, + "end": 22138.12, + "probability": 0.9816 + }, + { + "start": 22138.16, + "end": 22139.3, + "probability": 0.9604 + }, + { + "start": 22139.36, + "end": 22140.7, + "probability": 0.2223 + }, + { + "start": 22141.5, + "end": 22143.98, + "probability": 0.8318 + }, + { + "start": 22145.16, + "end": 22147.66, + "probability": 0.9971 + }, + { + "start": 22149.56, + "end": 22150.18, + "probability": 0.9495 + }, + { + "start": 22150.96, + "end": 22151.64, + "probability": 0.9425 + }, + { + "start": 22152.28, + "end": 22154.72, + "probability": 0.9792 + }, + { + "start": 22155.44, + "end": 22158.4, + "probability": 0.945 + }, + { + "start": 22159.2, + "end": 22161.2, + "probability": 0.8574 + }, + { + "start": 22162.44, + "end": 22164.32, + "probability": 0.9851 + }, + { + "start": 22165.42, + "end": 22167.86, + "probability": 0.9795 + }, + { + "start": 22168.84, + "end": 22169.9, + "probability": 0.9116 + }, + { + "start": 22170.66, + "end": 22173.06, + "probability": 0.9471 + }, + { + "start": 22173.12, + "end": 22175.04, + "probability": 0.5683 + }, + { + "start": 22175.98, + "end": 22177.9, + "probability": 0.8918 + }, + { + "start": 22178.62, + "end": 22182.58, + "probability": 0.6393 + }, + { + "start": 22182.8, + "end": 22183.6, + "probability": 0.7231 + }, + { + "start": 22183.7, + "end": 22187.52, + "probability": 0.7389 + }, + { + "start": 22188.1, + "end": 22189.9, + "probability": 0.9966 + }, + { + "start": 22190.38, + "end": 22193.36, + "probability": 0.8882 + }, + { + "start": 22193.48, + "end": 22194.28, + "probability": 0.8895 + }, + { + "start": 22194.62, + "end": 22199.74, + "probability": 0.9359 + }, + { + "start": 22199.76, + "end": 22200.12, + "probability": 0.8949 + }, + { + "start": 22200.7, + "end": 22202.38, + "probability": 0.6976 + }, + { + "start": 22202.56, + "end": 22204.28, + "probability": 0.7465 + }, + { + "start": 22214.06, + "end": 22214.06, + "probability": 0.1116 + }, + { + "start": 22214.06, + "end": 22214.06, + "probability": 0.0745 + }, + { + "start": 22214.06, + "end": 22214.06, + "probability": 0.0922 + }, + { + "start": 22214.06, + "end": 22214.08, + "probability": 0.1982 + }, + { + "start": 22238.52, + "end": 22239.46, + "probability": 0.087 + }, + { + "start": 22249.5, + "end": 22250.38, + "probability": 0.0064 + }, + { + "start": 22254.46, + "end": 22256.1, + "probability": 0.9227 + }, + { + "start": 22257.3, + "end": 22260.44, + "probability": 0.9729 + }, + { + "start": 22260.44, + "end": 22263.7, + "probability": 0.986 + }, + { + "start": 22264.38, + "end": 22266.84, + "probability": 0.899 + }, + { + "start": 22267.98, + "end": 22269.08, + "probability": 0.7293 + }, + { + "start": 22269.8, + "end": 22271.62, + "probability": 0.8882 + }, + { + "start": 22272.74, + "end": 22274.72, + "probability": 0.9193 + }, + { + "start": 22275.46, + "end": 22276.94, + "probability": 0.9526 + }, + { + "start": 22277.72, + "end": 22278.44, + "probability": 0.6926 + }, + { + "start": 22279.04, + "end": 22281.2, + "probability": 0.973 + }, + { + "start": 22282.16, + "end": 22284.36, + "probability": 0.6735 + }, + { + "start": 22284.9, + "end": 22287.68, + "probability": 0.929 + }, + { + "start": 22288.38, + "end": 22288.91, + "probability": 0.9473 + }, + { + "start": 22290.16, + "end": 22292.26, + "probability": 0.9791 + }, + { + "start": 22293.04, + "end": 22297.8, + "probability": 0.9758 + }, + { + "start": 22299.86, + "end": 22300.62, + "probability": 0.8047 + }, + { + "start": 22301.64, + "end": 22307.46, + "probability": 0.7142 + }, + { + "start": 22307.98, + "end": 22310.79, + "probability": 0.9873 + }, + { + "start": 22311.4, + "end": 22312.32, + "probability": 0.7852 + }, + { + "start": 22312.32, + "end": 22313.02, + "probability": 0.6777 + }, + { + "start": 22313.14, + "end": 22317.08, + "probability": 0.9658 + }, + { + "start": 22318.14, + "end": 22324.18, + "probability": 0.9818 + }, + { + "start": 22324.28, + "end": 22325.05, + "probability": 0.718 + }, + { + "start": 22326.04, + "end": 22329.06, + "probability": 0.9952 + }, + { + "start": 22329.52, + "end": 22330.14, + "probability": 0.7029 + }, + { + "start": 22330.5, + "end": 22331.26, + "probability": 0.8109 + }, + { + "start": 22331.44, + "end": 22333.0, + "probability": 0.8383 + }, + { + "start": 22333.74, + "end": 22335.88, + "probability": 0.9261 + }, + { + "start": 22336.32, + "end": 22339.14, + "probability": 0.9663 + }, + { + "start": 22339.6, + "end": 22340.64, + "probability": 0.6145 + }, + { + "start": 22340.7, + "end": 22342.32, + "probability": 0.9235 + }, + { + "start": 22342.76, + "end": 22346.68, + "probability": 0.9852 + }, + { + "start": 22347.28, + "end": 22349.94, + "probability": 0.9951 + }, + { + "start": 22350.44, + "end": 22353.42, + "probability": 0.6753 + }, + { + "start": 22354.1, + "end": 22357.34, + "probability": 0.9421 + }, + { + "start": 22357.8, + "end": 22360.06, + "probability": 0.7069 + }, + { + "start": 22360.1, + "end": 22360.4, + "probability": 0.8419 + }, + { + "start": 22361.74, + "end": 22363.4, + "probability": 0.9958 + }, + { + "start": 22363.56, + "end": 22366.16, + "probability": 0.7488 + }, + { + "start": 22366.34, + "end": 22366.82, + "probability": 0.8688 + }, + { + "start": 22382.82, + "end": 22383.66, + "probability": 0.6109 + }, + { + "start": 22384.9, + "end": 22386.64, + "probability": 0.8511 + }, + { + "start": 22388.56, + "end": 22390.66, + "probability": 0.9665 + }, + { + "start": 22392.44, + "end": 22399.04, + "probability": 0.9951 + }, + { + "start": 22400.42, + "end": 22404.44, + "probability": 0.9961 + }, + { + "start": 22405.44, + "end": 22409.86, + "probability": 0.9688 + }, + { + "start": 22409.96, + "end": 22414.1, + "probability": 0.9765 + }, + { + "start": 22415.94, + "end": 22419.34, + "probability": 0.9985 + }, + { + "start": 22420.62, + "end": 22425.6, + "probability": 0.9878 + }, + { + "start": 22428.58, + "end": 22429.1, + "probability": 0.8409 + }, + { + "start": 22430.16, + "end": 22433.18, + "probability": 0.9854 + }, + { + "start": 22433.72, + "end": 22438.5, + "probability": 0.9979 + }, + { + "start": 22438.88, + "end": 22440.6, + "probability": 0.9985 + }, + { + "start": 22441.6, + "end": 22443.66, + "probability": 0.9327 + }, + { + "start": 22444.54, + "end": 22448.5, + "probability": 0.9889 + }, + { + "start": 22449.34, + "end": 22450.2, + "probability": 0.9992 + }, + { + "start": 22451.58, + "end": 22452.76, + "probability": 0.9837 + }, + { + "start": 22453.62, + "end": 22455.56, + "probability": 0.8621 + }, + { + "start": 22456.44, + "end": 22459.92, + "probability": 0.9997 + }, + { + "start": 22461.26, + "end": 22461.66, + "probability": 0.6386 + }, + { + "start": 22462.58, + "end": 22464.62, + "probability": 0.9933 + }, + { + "start": 22464.68, + "end": 22466.14, + "probability": 0.946 + }, + { + "start": 22466.8, + "end": 22469.36, + "probability": 0.9772 + }, + { + "start": 22470.26, + "end": 22472.4, + "probability": 0.9946 + }, + { + "start": 22474.0, + "end": 22476.34, + "probability": 0.9634 + }, + { + "start": 22477.94, + "end": 22480.54, + "probability": 0.9843 + }, + { + "start": 22481.76, + "end": 22484.72, + "probability": 0.9632 + }, + { + "start": 22486.64, + "end": 22488.0, + "probability": 0.9665 + }, + { + "start": 22489.08, + "end": 22489.56, + "probability": 0.913 + }, + { + "start": 22490.64, + "end": 22492.04, + "probability": 0.7192 + }, + { + "start": 22493.22, + "end": 22497.76, + "probability": 0.8481 + }, + { + "start": 22498.66, + "end": 22501.42, + "probability": 0.7387 + }, + { + "start": 22501.6, + "end": 22506.68, + "probability": 0.9541 + }, + { + "start": 22509.64, + "end": 22511.38, + "probability": 0.9169 + }, + { + "start": 22511.5, + "end": 22512.27, + "probability": 0.7388 + }, + { + "start": 22513.04, + "end": 22516.48, + "probability": 0.8634 + }, + { + "start": 22517.46, + "end": 22518.43, + "probability": 0.744 + }, + { + "start": 22519.24, + "end": 22519.82, + "probability": 0.6532 + }, + { + "start": 22521.82, + "end": 22525.62, + "probability": 0.7031 + }, + { + "start": 22526.16, + "end": 22527.46, + "probability": 0.9231 + }, + { + "start": 22528.58, + "end": 22532.52, + "probability": 0.8849 + }, + { + "start": 22532.52, + "end": 22537.24, + "probability": 0.9919 + }, + { + "start": 22538.76, + "end": 22541.8, + "probability": 0.9345 + }, + { + "start": 22542.82, + "end": 22547.48, + "probability": 0.9947 + }, + { + "start": 22547.48, + "end": 22552.76, + "probability": 0.9979 + }, + { + "start": 22554.42, + "end": 22556.64, + "probability": 0.9987 + }, + { + "start": 22557.24, + "end": 22559.56, + "probability": 0.9985 + }, + { + "start": 22561.32, + "end": 22564.28, + "probability": 0.9941 + }, + { + "start": 22565.24, + "end": 22565.96, + "probability": 0.849 + }, + { + "start": 22568.12, + "end": 22570.98, + "probability": 0.975 + }, + { + "start": 22571.56, + "end": 22575.88, + "probability": 0.9686 + }, + { + "start": 22576.76, + "end": 22580.36, + "probability": 0.9961 + }, + { + "start": 22580.96, + "end": 22584.04, + "probability": 0.9994 + }, + { + "start": 22585.44, + "end": 22589.18, + "probability": 0.9941 + }, + { + "start": 22590.2, + "end": 22592.9, + "probability": 0.9871 + }, + { + "start": 22594.3, + "end": 22598.0, + "probability": 0.9765 + }, + { + "start": 22599.88, + "end": 22602.48, + "probability": 0.9953 + }, + { + "start": 22602.48, + "end": 22605.72, + "probability": 0.9717 + }, + { + "start": 22606.42, + "end": 22610.22, + "probability": 0.9872 + }, + { + "start": 22611.36, + "end": 22615.02, + "probability": 0.9651 + }, + { + "start": 22615.02, + "end": 22622.04, + "probability": 0.9877 + }, + { + "start": 22622.62, + "end": 22623.84, + "probability": 0.9919 + }, + { + "start": 22625.12, + "end": 22627.8, + "probability": 0.9918 + }, + { + "start": 22628.6, + "end": 22632.68, + "probability": 0.9906 + }, + { + "start": 22634.12, + "end": 22638.23, + "probability": 0.9833 + }, + { + "start": 22639.74, + "end": 22640.3, + "probability": 0.838 + }, + { + "start": 22640.78, + "end": 22644.02, + "probability": 0.9547 + }, + { + "start": 22645.12, + "end": 22646.78, + "probability": 0.8558 + }, + { + "start": 22647.68, + "end": 22649.32, + "probability": 0.9843 + }, + { + "start": 22650.22, + "end": 22652.36, + "probability": 0.9907 + }, + { + "start": 22653.4, + "end": 22654.14, + "probability": 0.9797 + }, + { + "start": 22654.84, + "end": 22659.9, + "probability": 0.9976 + }, + { + "start": 22661.1, + "end": 22666.16, + "probability": 0.9979 + }, + { + "start": 22666.7, + "end": 22668.8, + "probability": 0.994 + }, + { + "start": 22669.38, + "end": 22670.9, + "probability": 0.9831 + }, + { + "start": 22671.98, + "end": 22674.74, + "probability": 0.9729 + }, + { + "start": 22674.74, + "end": 22678.18, + "probability": 0.9941 + }, + { + "start": 22678.36, + "end": 22680.06, + "probability": 0.9915 + }, + { + "start": 22680.86, + "end": 22682.78, + "probability": 0.9247 + }, + { + "start": 22684.28, + "end": 22688.8, + "probability": 0.9747 + }, + { + "start": 22689.58, + "end": 22691.84, + "probability": 0.9995 + }, + { + "start": 22691.84, + "end": 22695.38, + "probability": 0.9985 + }, + { + "start": 22696.46, + "end": 22702.46, + "probability": 0.9893 + }, + { + "start": 22703.2, + "end": 22703.82, + "probability": 0.9696 + }, + { + "start": 22704.5, + "end": 22707.26, + "probability": 0.7889 + }, + { + "start": 22708.26, + "end": 22712.06, + "probability": 0.9976 + }, + { + "start": 22713.18, + "end": 22716.76, + "probability": 0.9212 + }, + { + "start": 22717.06, + "end": 22723.94, + "probability": 0.9289 + }, + { + "start": 22724.38, + "end": 22725.98, + "probability": 0.8997 + }, + { + "start": 22726.16, + "end": 22727.64, + "probability": 0.7331 + }, + { + "start": 22728.42, + "end": 22729.08, + "probability": 0.8705 + }, + { + "start": 22729.18, + "end": 22731.56, + "probability": 0.9509 + }, + { + "start": 22732.04, + "end": 22734.8, + "probability": 0.9948 + }, + { + "start": 22735.34, + "end": 22737.7, + "probability": 0.9801 + }, + { + "start": 22738.38, + "end": 22740.78, + "probability": 0.8945 + }, + { + "start": 22740.88, + "end": 22745.4, + "probability": 0.9951 + }, + { + "start": 22745.8, + "end": 22747.51, + "probability": 0.9941 + }, + { + "start": 22748.24, + "end": 22749.22, + "probability": 0.9428 + }, + { + "start": 22749.44, + "end": 22750.2, + "probability": 0.7933 + }, + { + "start": 22751.0, + "end": 22756.3, + "probability": 0.9888 + }, + { + "start": 22758.46, + "end": 22762.04, + "probability": 0.9765 + }, + { + "start": 22762.88, + "end": 22764.86, + "probability": 0.9909 + }, + { + "start": 22766.0, + "end": 22770.84, + "probability": 0.9974 + }, + { + "start": 22771.6, + "end": 22773.82, + "probability": 0.9777 + }, + { + "start": 22775.0, + "end": 22778.94, + "probability": 0.9798 + }, + { + "start": 22779.7, + "end": 22781.9, + "probability": 0.9454 + }, + { + "start": 22782.86, + "end": 22783.12, + "probability": 0.851 + }, + { + "start": 22783.74, + "end": 22785.2, + "probability": 0.9912 + }, + { + "start": 22786.06, + "end": 22787.44, + "probability": 0.8577 + }, + { + "start": 22788.38, + "end": 22790.96, + "probability": 0.8798 + }, + { + "start": 22791.64, + "end": 22794.28, + "probability": 0.9697 + }, + { + "start": 22795.08, + "end": 22798.04, + "probability": 0.9593 + }, + { + "start": 22799.02, + "end": 22799.42, + "probability": 0.7634 + }, + { + "start": 22800.6, + "end": 22802.2, + "probability": 0.8829 + }, + { + "start": 22802.58, + "end": 22806.8, + "probability": 0.9331 + }, + { + "start": 22808.86, + "end": 22808.96, + "probability": 0.5241 + }, + { + "start": 22808.96, + "end": 22810.82, + "probability": 0.9254 + }, + { + "start": 22811.4, + "end": 22811.66, + "probability": 0.692 + }, + { + "start": 22811.84, + "end": 22817.18, + "probability": 0.7056 + }, + { + "start": 22818.5, + "end": 22819.02, + "probability": 0.5751 + }, + { + "start": 22821.08, + "end": 22821.46, + "probability": 0.3249 + }, + { + "start": 22833.2, + "end": 22833.4, + "probability": 0.3224 + }, + { + "start": 22833.4, + "end": 22834.84, + "probability": 0.4434 + }, + { + "start": 22834.92, + "end": 22838.14, + "probability": 0.9572 + }, + { + "start": 22839.44, + "end": 22841.44, + "probability": 0.7315 + }, + { + "start": 22841.74, + "end": 22845.54, + "probability": 0.9352 + }, + { + "start": 22845.58, + "end": 22847.74, + "probability": 0.7073 + }, + { + "start": 22848.38, + "end": 22851.62, + "probability": 0.9456 + }, + { + "start": 22853.2, + "end": 22853.3, + "probability": 0.032 + } + ], + "segments_count": 7689, + "words_count": 38015, + "avg_words_per_segment": 4.9441, + "avg_segment_duration": 1.9787, + "avg_words_per_minute": 95.0644, + "plenum_id": "126693", + "duration": 23993.22, + "title": null, + "plenum_date": "2024-05-22" +} \ No newline at end of file