diff --git "a/101519/metadata.json" "b/101519/metadata.json" new file mode 100644--- /dev/null +++ "b/101519/metadata.json" @@ -0,0 +1,25162 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "101519", + "quality_score": 0.896, + "per_segment_quality_scores": [ + { + "start": 40.66, + "end": 41.5, + "probability": 0.1608 + }, + { + "start": 42.26, + "end": 49.04, + "probability": 0.9347 + }, + { + "start": 49.22, + "end": 51.24, + "probability": 0.9451 + }, + { + "start": 53.04, + "end": 53.7, + "probability": 0.8945 + }, + { + "start": 54.82, + "end": 55.88, + "probability": 0.9153 + }, + { + "start": 56.08, + "end": 57.52, + "probability": 0.8155 + }, + { + "start": 57.6, + "end": 59.64, + "probability": 0.876 + }, + { + "start": 59.74, + "end": 62.44, + "probability": 0.7441 + }, + { + "start": 63.04, + "end": 65.68, + "probability": 0.2741 + }, + { + "start": 66.64, + "end": 68.24, + "probability": 0.9904 + }, + { + "start": 68.24, + "end": 72.14, + "probability": 0.7552 + }, + { + "start": 72.3, + "end": 74.22, + "probability": 0.3616 + }, + { + "start": 74.88, + "end": 76.6, + "probability": 0.9927 + }, + { + "start": 77.66, + "end": 85.24, + "probability": 0.0602 + }, + { + "start": 87.16, + "end": 91.16, + "probability": 0.5122 + }, + { + "start": 91.9, + "end": 92.88, + "probability": 0.6664 + }, + { + "start": 107.24, + "end": 108.24, + "probability": 0.0259 + }, + { + "start": 109.31, + "end": 109.4, + "probability": 0.0582 + }, + { + "start": 109.88, + "end": 111.38, + "probability": 0.1791 + }, + { + "start": 111.38, + "end": 112.14, + "probability": 0.0816 + }, + { + "start": 112.38, + "end": 112.38, + "probability": 0.0286 + }, + { + "start": 112.38, + "end": 113.2, + "probability": 0.0585 + }, + { + "start": 113.2, + "end": 113.62, + "probability": 0.0296 + }, + { + "start": 115.88, + "end": 116.5, + "probability": 0.0216 + }, + { + "start": 116.5, + "end": 119.58, + "probability": 0.0334 + }, + { + "start": 119.58, + "end": 126.94, + "probability": 0.0143 + }, + { + "start": 127.08, + "end": 128.84, + "probability": 0.4439 + }, + { + "start": 128.84, + "end": 132.36, + "probability": 0.0793 + }, + { + "start": 133.26, + "end": 135.35, + "probability": 0.0568 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 136.0, + "end": 136.0, + "probability": 0.0 + }, + { + "start": 139.58, + "end": 141.0, + "probability": 0.3787 + }, + { + "start": 151.24, + "end": 154.38, + "probability": 0.559 + }, + { + "start": 154.98, + "end": 158.4, + "probability": 0.0352 + }, + { + "start": 160.6, + "end": 161.84, + "probability": 0.0346 + }, + { + "start": 161.84, + "end": 162.24, + "probability": 0.0094 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 259.0, + "end": 259.0, + "probability": 0.0 + }, + { + "start": 278.3, + "end": 285.18, + "probability": 0.1481 + }, + { + "start": 285.18, + "end": 285.18, + "probability": 0.0252 + }, + { + "start": 285.56, + "end": 286.38, + "probability": 0.1119 + }, + { + "start": 286.52, + "end": 289.18, + "probability": 0.0057 + }, + { + "start": 291.02, + "end": 294.02, + "probability": 0.1446 + }, + { + "start": 294.02, + "end": 297.02, + "probability": 0.0451 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.0, + "end": 383.0, + "probability": 0.0 + }, + { + "start": 383.16, + "end": 383.3, + "probability": 0.1915 + }, + { + "start": 383.3, + "end": 383.3, + "probability": 0.0513 + }, + { + "start": 383.3, + "end": 383.86, + "probability": 0.0181 + }, + { + "start": 384.32, + "end": 386.66, + "probability": 0.6853 + }, + { + "start": 386.88, + "end": 387.86, + "probability": 0.7158 + }, + { + "start": 388.06, + "end": 390.32, + "probability": 0.8823 + }, + { + "start": 390.92, + "end": 392.54, + "probability": 0.8772 + }, + { + "start": 393.16, + "end": 395.88, + "probability": 0.9972 + }, + { + "start": 395.94, + "end": 398.26, + "probability": 0.9634 + }, + { + "start": 399.44, + "end": 401.3, + "probability": 0.9319 + }, + { + "start": 402.26, + "end": 406.82, + "probability": 0.9366 + }, + { + "start": 407.56, + "end": 409.56, + "probability": 0.9587 + }, + { + "start": 410.1, + "end": 412.44, + "probability": 0.9979 + }, + { + "start": 413.18, + "end": 413.98, + "probability": 0.8232 + }, + { + "start": 414.52, + "end": 415.18, + "probability": 0.9752 + }, + { + "start": 415.92, + "end": 416.98, + "probability": 0.9264 + }, + { + "start": 418.08, + "end": 421.78, + "probability": 0.9907 + }, + { + "start": 421.86, + "end": 422.42, + "probability": 0.2621 + }, + { + "start": 422.42, + "end": 422.98, + "probability": 0.8451 + }, + { + "start": 423.76, + "end": 426.6, + "probability": 0.9688 + }, + { + "start": 427.48, + "end": 428.68, + "probability": 0.7849 + }, + { + "start": 429.58, + "end": 432.0, + "probability": 0.944 + }, + { + "start": 432.72, + "end": 434.0, + "probability": 0.911 + }, + { + "start": 435.46, + "end": 437.6, + "probability": 0.9983 + }, + { + "start": 438.22, + "end": 439.98, + "probability": 0.999 + }, + { + "start": 440.74, + "end": 441.3, + "probability": 0.9975 + }, + { + "start": 441.82, + "end": 443.6, + "probability": 0.9632 + }, + { + "start": 444.38, + "end": 445.38, + "probability": 0.6044 + }, + { + "start": 446.18, + "end": 447.27, + "probability": 0.9929 + }, + { + "start": 448.2, + "end": 449.46, + "probability": 0.9646 + }, + { + "start": 450.16, + "end": 452.94, + "probability": 0.8902 + }, + { + "start": 453.58, + "end": 456.94, + "probability": 0.9641 + }, + { + "start": 457.7, + "end": 460.5, + "probability": 0.7217 + }, + { + "start": 460.62, + "end": 462.5, + "probability": 0.9753 + }, + { + "start": 462.98, + "end": 464.86, + "probability": 0.9882 + }, + { + "start": 466.2, + "end": 468.72, + "probability": 0.9842 + }, + { + "start": 469.4, + "end": 471.74, + "probability": 0.9927 + }, + { + "start": 472.64, + "end": 473.16, + "probability": 0.7493 + }, + { + "start": 473.68, + "end": 474.66, + "probability": 0.9246 + }, + { + "start": 475.2, + "end": 478.42, + "probability": 0.9961 + }, + { + "start": 478.42, + "end": 481.88, + "probability": 0.9567 + }, + { + "start": 482.7, + "end": 486.22, + "probability": 0.9987 + }, + { + "start": 486.76, + "end": 489.84, + "probability": 0.853 + }, + { + "start": 490.4, + "end": 495.2, + "probability": 0.8152 + }, + { + "start": 496.04, + "end": 497.96, + "probability": 0.8424 + }, + { + "start": 498.92, + "end": 499.44, + "probability": 0.9285 + }, + { + "start": 500.2, + "end": 503.74, + "probability": 0.9975 + }, + { + "start": 503.74, + "end": 505.72, + "probability": 0.9912 + }, + { + "start": 506.94, + "end": 510.1, + "probability": 0.9965 + }, + { + "start": 510.7, + "end": 514.88, + "probability": 0.9169 + }, + { + "start": 515.76, + "end": 521.82, + "probability": 0.9834 + }, + { + "start": 522.82, + "end": 524.1, + "probability": 0.5726 + }, + { + "start": 524.64, + "end": 528.1, + "probability": 0.8764 + }, + { + "start": 528.66, + "end": 532.68, + "probability": 0.9406 + }, + { + "start": 533.26, + "end": 535.12, + "probability": 0.9955 + }, + { + "start": 535.72, + "end": 536.94, + "probability": 0.9041 + }, + { + "start": 537.26, + "end": 539.14, + "probability": 0.9735 + }, + { + "start": 539.82, + "end": 540.88, + "probability": 0.5308 + }, + { + "start": 541.5, + "end": 542.7, + "probability": 0.531 + }, + { + "start": 543.2, + "end": 545.84, + "probability": 0.9917 + }, + { + "start": 546.38, + "end": 546.4, + "probability": 0.277 + }, + { + "start": 546.4, + "end": 548.14, + "probability": 0.9642 + }, + { + "start": 548.64, + "end": 551.18, + "probability": 0.9435 + }, + { + "start": 551.18, + "end": 555.28, + "probability": 0.9895 + }, + { + "start": 555.3, + "end": 559.81, + "probability": 0.9745 + }, + { + "start": 560.49, + "end": 562.21, + "probability": 0.9971 + }, + { + "start": 562.86, + "end": 564.04, + "probability": 0.9374 + }, + { + "start": 564.8, + "end": 567.94, + "probability": 0.986 + }, + { + "start": 567.94, + "end": 571.22, + "probability": 0.8734 + }, + { + "start": 571.84, + "end": 574.7, + "probability": 0.9314 + }, + { + "start": 576.12, + "end": 576.74, + "probability": 0.7175 + }, + { + "start": 577.4, + "end": 578.26, + "probability": 0.978 + }, + { + "start": 579.1, + "end": 583.01, + "probability": 0.9806 + }, + { + "start": 583.66, + "end": 589.18, + "probability": 0.9738 + }, + { + "start": 589.76, + "end": 591.67, + "probability": 0.8366 + }, + { + "start": 592.0, + "end": 592.84, + "probability": 0.8955 + }, + { + "start": 593.0, + "end": 594.06, + "probability": 0.7842 + }, + { + "start": 594.9, + "end": 599.11, + "probability": 0.9689 + }, + { + "start": 599.54, + "end": 602.26, + "probability": 0.9459 + }, + { + "start": 602.76, + "end": 607.16, + "probability": 0.9932 + }, + { + "start": 608.06, + "end": 609.04, + "probability": 0.9893 + }, + { + "start": 609.76, + "end": 610.4, + "probability": 0.874 + }, + { + "start": 610.96, + "end": 612.62, + "probability": 0.9941 + }, + { + "start": 613.42, + "end": 615.72, + "probability": 0.8578 + }, + { + "start": 616.28, + "end": 619.14, + "probability": 0.9987 + }, + { + "start": 620.3, + "end": 622.29, + "probability": 0.8579 + }, + { + "start": 623.62, + "end": 624.84, + "probability": 0.9955 + }, + { + "start": 625.32, + "end": 630.84, + "probability": 0.9931 + }, + { + "start": 631.12, + "end": 631.56, + "probability": 0.7594 + }, + { + "start": 631.96, + "end": 632.9, + "probability": 0.7954 + }, + { + "start": 633.96, + "end": 634.5, + "probability": 0.5554 + }, + { + "start": 635.46, + "end": 636.78, + "probability": 0.9856 + }, + { + "start": 637.2, + "end": 639.68, + "probability": 0.9958 + }, + { + "start": 639.68, + "end": 641.86, + "probability": 0.9198 + }, + { + "start": 642.7, + "end": 644.9, + "probability": 0.9976 + }, + { + "start": 645.6, + "end": 647.84, + "probability": 0.9868 + }, + { + "start": 647.92, + "end": 650.74, + "probability": 0.9805 + }, + { + "start": 650.8, + "end": 653.7, + "probability": 0.9971 + }, + { + "start": 654.26, + "end": 656.9, + "probability": 0.7861 + }, + { + "start": 657.46, + "end": 660.32, + "probability": 0.8569 + }, + { + "start": 660.9, + "end": 661.5, + "probability": 0.5682 + }, + { + "start": 661.56, + "end": 662.62, + "probability": 0.969 + }, + { + "start": 662.68, + "end": 665.38, + "probability": 0.9961 + }, + { + "start": 665.72, + "end": 666.56, + "probability": 0.9416 + }, + { + "start": 666.68, + "end": 667.22, + "probability": 0.5802 + }, + { + "start": 667.58, + "end": 668.36, + "probability": 0.9902 + }, + { + "start": 668.52, + "end": 670.04, + "probability": 0.9818 + }, + { + "start": 671.3, + "end": 678.5, + "probability": 0.9266 + }, + { + "start": 678.7, + "end": 679.92, + "probability": 0.7308 + }, + { + "start": 680.46, + "end": 681.5, + "probability": 0.9744 + }, + { + "start": 682.32, + "end": 683.86, + "probability": 0.8685 + }, + { + "start": 684.52, + "end": 686.12, + "probability": 0.9957 + }, + { + "start": 686.76, + "end": 688.34, + "probability": 0.9883 + }, + { + "start": 688.86, + "end": 693.5, + "probability": 0.9963 + }, + { + "start": 694.5, + "end": 697.64, + "probability": 0.4498 + }, + { + "start": 698.6, + "end": 701.51, + "probability": 0.978 + }, + { + "start": 702.08, + "end": 705.88, + "probability": 0.6538 + }, + { + "start": 706.4, + "end": 707.62, + "probability": 0.8797 + }, + { + "start": 708.18, + "end": 713.64, + "probability": 0.9988 + }, + { + "start": 713.74, + "end": 714.28, + "probability": 0.9291 + }, + { + "start": 715.06, + "end": 716.82, + "probability": 0.9302 + }, + { + "start": 718.84, + "end": 722.74, + "probability": 0.9855 + }, + { + "start": 723.56, + "end": 725.02, + "probability": 0.9285 + }, + { + "start": 725.62, + "end": 728.26, + "probability": 0.9953 + }, + { + "start": 728.92, + "end": 729.6, + "probability": 0.8958 + }, + { + "start": 730.38, + "end": 734.9, + "probability": 0.9826 + }, + { + "start": 735.7, + "end": 738.68, + "probability": 0.7876 + }, + { + "start": 739.22, + "end": 743.42, + "probability": 0.9814 + }, + { + "start": 743.42, + "end": 747.18, + "probability": 0.8925 + }, + { + "start": 747.7, + "end": 748.6, + "probability": 0.9976 + }, + { + "start": 749.2, + "end": 754.42, + "probability": 0.8683 + }, + { + "start": 754.96, + "end": 755.62, + "probability": 0.7663 + }, + { + "start": 756.3, + "end": 759.98, + "probability": 0.9945 + }, + { + "start": 759.98, + "end": 764.44, + "probability": 0.9932 + }, + { + "start": 764.5, + "end": 765.28, + "probability": 0.8953 + }, + { + "start": 765.84, + "end": 768.24, + "probability": 0.7133 + }, + { + "start": 768.8, + "end": 770.78, + "probability": 0.9634 + }, + { + "start": 771.44, + "end": 772.46, + "probability": 0.8596 + }, + { + "start": 773.08, + "end": 778.2, + "probability": 0.9979 + }, + { + "start": 778.2, + "end": 779.92, + "probability": 0.9985 + }, + { + "start": 780.52, + "end": 784.26, + "probability": 0.9901 + }, + { + "start": 784.78, + "end": 789.4, + "probability": 0.9989 + }, + { + "start": 789.46, + "end": 791.6, + "probability": 0.9897 + }, + { + "start": 792.6, + "end": 793.26, + "probability": 0.9414 + }, + { + "start": 794.02, + "end": 794.46, + "probability": 0.9037 + }, + { + "start": 794.92, + "end": 797.78, + "probability": 0.9902 + }, + { + "start": 797.84, + "end": 799.2, + "probability": 0.8845 + }, + { + "start": 799.62, + "end": 805.0, + "probability": 0.9929 + }, + { + "start": 805.84, + "end": 806.32, + "probability": 0.6282 + }, + { + "start": 807.1, + "end": 809.42, + "probability": 0.9988 + }, + { + "start": 810.14, + "end": 811.64, + "probability": 0.9639 + }, + { + "start": 812.42, + "end": 817.04, + "probability": 0.9902 + }, + { + "start": 817.38, + "end": 817.62, + "probability": 0.982 + }, + { + "start": 817.66, + "end": 822.24, + "probability": 0.9954 + }, + { + "start": 822.38, + "end": 824.54, + "probability": 0.8906 + }, + { + "start": 824.56, + "end": 825.56, + "probability": 0.8228 + }, + { + "start": 826.34, + "end": 827.46, + "probability": 0.9868 + }, + { + "start": 828.26, + "end": 832.34, + "probability": 0.9127 + }, + { + "start": 833.24, + "end": 834.46, + "probability": 0.8647 + }, + { + "start": 835.18, + "end": 837.45, + "probability": 0.9624 + }, + { + "start": 838.2, + "end": 840.78, + "probability": 0.994 + }, + { + "start": 841.92, + "end": 844.02, + "probability": 0.9902 + }, + { + "start": 844.02, + "end": 846.34, + "probability": 0.9926 + }, + { + "start": 846.76, + "end": 847.8, + "probability": 0.7815 + }, + { + "start": 847.92, + "end": 848.9, + "probability": 0.8887 + }, + { + "start": 849.12, + "end": 849.82, + "probability": 0.1458 + }, + { + "start": 850.34, + "end": 851.94, + "probability": 0.9533 + }, + { + "start": 852.04, + "end": 855.58, + "probability": 0.9061 + }, + { + "start": 856.12, + "end": 857.48, + "probability": 0.8684 + }, + { + "start": 858.12, + "end": 858.75, + "probability": 0.9294 + }, + { + "start": 859.92, + "end": 861.92, + "probability": 0.5091 + }, + { + "start": 862.34, + "end": 862.68, + "probability": 0.5169 + }, + { + "start": 862.74, + "end": 863.37, + "probability": 0.9799 + }, + { + "start": 863.86, + "end": 864.32, + "probability": 0.7871 + }, + { + "start": 864.38, + "end": 865.22, + "probability": 0.9586 + }, + { + "start": 865.7, + "end": 866.42, + "probability": 0.9021 + }, + { + "start": 866.9, + "end": 869.02, + "probability": 0.8303 + }, + { + "start": 869.24, + "end": 870.32, + "probability": 0.9767 + }, + { + "start": 870.6, + "end": 870.78, + "probability": 0.5667 + }, + { + "start": 870.78, + "end": 871.5, + "probability": 0.9146 + }, + { + "start": 871.52, + "end": 873.38, + "probability": 0.9865 + }, + { + "start": 873.94, + "end": 874.58, + "probability": 0.1691 + }, + { + "start": 874.82, + "end": 874.9, + "probability": 0.0174 + }, + { + "start": 875.02, + "end": 876.66, + "probability": 0.7819 + }, + { + "start": 876.72, + "end": 879.94, + "probability": 0.7631 + }, + { + "start": 880.66, + "end": 884.64, + "probability": 0.9965 + }, + { + "start": 885.24, + "end": 886.78, + "probability": 0.8232 + }, + { + "start": 886.96, + "end": 886.98, + "probability": 0.4146 + }, + { + "start": 887.54, + "end": 887.92, + "probability": 0.5328 + }, + { + "start": 887.94, + "end": 888.7, + "probability": 0.8464 + }, + { + "start": 888.84, + "end": 891.02, + "probability": 0.5326 + }, + { + "start": 891.32, + "end": 892.34, + "probability": 0.9026 + }, + { + "start": 892.72, + "end": 894.78, + "probability": 0.7737 + }, + { + "start": 894.9, + "end": 895.56, + "probability": 0.8735 + }, + { + "start": 895.94, + "end": 897.4, + "probability": 0.901 + }, + { + "start": 897.84, + "end": 902.66, + "probability": 0.9841 + }, + { + "start": 903.1, + "end": 904.44, + "probability": 0.9894 + }, + { + "start": 904.92, + "end": 905.64, + "probability": 0.9775 + }, + { + "start": 905.7, + "end": 906.58, + "probability": 0.9746 + }, + { + "start": 907.12, + "end": 908.02, + "probability": 0.8924 + }, + { + "start": 908.62, + "end": 911.34, + "probability": 0.4555 + }, + { + "start": 911.52, + "end": 911.52, + "probability": 0.0932 + }, + { + "start": 911.52, + "end": 912.94, + "probability": 0.7623 + }, + { + "start": 913.5, + "end": 916.62, + "probability": 0.9738 + }, + { + "start": 916.64, + "end": 917.78, + "probability": 0.7004 + }, + { + "start": 918.1, + "end": 919.16, + "probability": 0.1965 + }, + { + "start": 919.5, + "end": 920.12, + "probability": 0.6647 + }, + { + "start": 920.12, + "end": 921.12, + "probability": 0.8148 + }, + { + "start": 921.18, + "end": 921.86, + "probability": 0.8739 + }, + { + "start": 922.38, + "end": 923.84, + "probability": 0.7942 + }, + { + "start": 923.86, + "end": 923.86, + "probability": 0.3026 + }, + { + "start": 924.0, + "end": 924.88, + "probability": 0.9851 + }, + { + "start": 924.9, + "end": 925.72, + "probability": 0.9715 + }, + { + "start": 925.96, + "end": 926.76, + "probability": 0.9743 + }, + { + "start": 926.8, + "end": 928.54, + "probability": 0.4489 + }, + { + "start": 928.54, + "end": 929.72, + "probability": 0.3426 + }, + { + "start": 929.72, + "end": 930.1, + "probability": 0.618 + }, + { + "start": 930.15, + "end": 931.85, + "probability": 0.7181 + }, + { + "start": 932.08, + "end": 933.96, + "probability": 0.9241 + }, + { + "start": 933.98, + "end": 934.58, + "probability": 0.0677 + }, + { + "start": 934.7, + "end": 936.06, + "probability": 0.7482 + }, + { + "start": 936.2, + "end": 937.45, + "probability": 0.7291 + }, + { + "start": 937.8, + "end": 939.98, + "probability": 0.9697 + }, + { + "start": 940.12, + "end": 940.78, + "probability": 0.3915 + }, + { + "start": 941.12, + "end": 941.22, + "probability": 0.0118 + }, + { + "start": 941.22, + "end": 941.8, + "probability": 0.5228 + }, + { + "start": 941.84, + "end": 942.73, + "probability": 0.4887 + }, + { + "start": 942.86, + "end": 943.04, + "probability": 0.7419 + }, + { + "start": 943.04, + "end": 943.28, + "probability": 0.5442 + }, + { + "start": 943.3, + "end": 944.74, + "probability": 0.2643 + }, + { + "start": 944.74, + "end": 945.0, + "probability": 0.8188 + }, + { + "start": 945.08, + "end": 945.2, + "probability": 0.5091 + }, + { + "start": 945.2, + "end": 945.2, + "probability": 0.1358 + }, + { + "start": 945.3, + "end": 946.18, + "probability": 0.8215 + }, + { + "start": 946.18, + "end": 946.46, + "probability": 0.6948 + }, + { + "start": 947.0, + "end": 949.04, + "probability": 0.9621 + }, + { + "start": 949.18, + "end": 949.8, + "probability": 0.6096 + }, + { + "start": 949.82, + "end": 950.36, + "probability": 0.4154 + }, + { + "start": 950.46, + "end": 951.12, + "probability": 0.6724 + }, + { + "start": 951.3, + "end": 952.2, + "probability": 0.9327 + }, + { + "start": 952.32, + "end": 952.5, + "probability": 0.8621 + }, + { + "start": 953.56, + "end": 958.06, + "probability": 0.9655 + }, + { + "start": 958.14, + "end": 958.92, + "probability": 0.9062 + }, + { + "start": 958.96, + "end": 959.28, + "probability": 0.4873 + }, + { + "start": 959.3, + "end": 959.64, + "probability": 0.7866 + }, + { + "start": 959.88, + "end": 960.76, + "probability": 0.3681 + }, + { + "start": 961.06, + "end": 961.28, + "probability": 0.6607 + }, + { + "start": 961.36, + "end": 962.26, + "probability": 0.1471 + }, + { + "start": 962.36, + "end": 962.96, + "probability": 0.5975 + }, + { + "start": 963.06, + "end": 964.28, + "probability": 0.5018 + }, + { + "start": 964.32, + "end": 965.46, + "probability": 0.5502 + }, + { + "start": 965.72, + "end": 967.0, + "probability": 0.2788 + }, + { + "start": 967.0, + "end": 973.34, + "probability": 0.809 + }, + { + "start": 973.44, + "end": 973.44, + "probability": 0.053 + }, + { + "start": 973.44, + "end": 973.76, + "probability": 0.4353 + }, + { + "start": 973.84, + "end": 973.84, + "probability": 0.2089 + }, + { + "start": 973.9, + "end": 975.44, + "probability": 0.9853 + }, + { + "start": 975.94, + "end": 977.86, + "probability": 0.9976 + }, + { + "start": 978.04, + "end": 978.48, + "probability": 0.9553 + }, + { + "start": 979.32, + "end": 979.57, + "probability": 0.3843 + }, + { + "start": 980.66, + "end": 981.66, + "probability": 0.8336 + }, + { + "start": 981.72, + "end": 983.4, + "probability": 0.9395 + }, + { + "start": 983.5, + "end": 984.62, + "probability": 0.4599 + }, + { + "start": 985.32, + "end": 985.32, + "probability": 0.0001 + }, + { + "start": 986.2, + "end": 986.32, + "probability": 0.0894 + }, + { + "start": 986.32, + "end": 986.42, + "probability": 0.0411 + }, + { + "start": 986.42, + "end": 986.42, + "probability": 0.274 + }, + { + "start": 986.42, + "end": 987.76, + "probability": 0.4404 + }, + { + "start": 987.78, + "end": 988.62, + "probability": 0.6516 + }, + { + "start": 988.74, + "end": 989.77, + "probability": 0.7392 + }, + { + "start": 989.96, + "end": 991.32, + "probability": 0.5215 + }, + { + "start": 991.72, + "end": 993.68, + "probability": 0.9604 + }, + { + "start": 994.06, + "end": 994.88, + "probability": 0.9963 + }, + { + "start": 994.94, + "end": 995.96, + "probability": 0.9688 + }, + { + "start": 996.62, + "end": 997.36, + "probability": 0.5195 + }, + { + "start": 997.36, + "end": 999.62, + "probability": 0.8118 + }, + { + "start": 999.88, + "end": 1002.64, + "probability": 0.8068 + }, + { + "start": 1002.64, + "end": 1003.98, + "probability": 0.9375 + }, + { + "start": 1004.46, + "end": 1005.4, + "probability": 0.9644 + }, + { + "start": 1005.75, + "end": 1007.08, + "probability": 0.1441 + }, + { + "start": 1007.1, + "end": 1008.58, + "probability": 0.3799 + }, + { + "start": 1008.62, + "end": 1009.5, + "probability": 0.8768 + }, + { + "start": 1009.56, + "end": 1010.64, + "probability": 0.4282 + }, + { + "start": 1010.64, + "end": 1010.96, + "probability": 0.1967 + }, + { + "start": 1010.96, + "end": 1011.14, + "probability": 0.1547 + }, + { + "start": 1011.14, + "end": 1012.62, + "probability": 0.0839 + }, + { + "start": 1012.86, + "end": 1013.62, + "probability": 0.1733 + }, + { + "start": 1013.66, + "end": 1018.4, + "probability": 0.751 + }, + { + "start": 1018.48, + "end": 1019.64, + "probability": 0.09 + }, + { + "start": 1019.64, + "end": 1020.62, + "probability": 0.4008 + }, + { + "start": 1020.62, + "end": 1021.48, + "probability": 0.3283 + }, + { + "start": 1021.56, + "end": 1024.36, + "probability": 0.8943 + }, + { + "start": 1024.54, + "end": 1026.34, + "probability": 0.8634 + }, + { + "start": 1026.42, + "end": 1027.52, + "probability": 0.5971 + }, + { + "start": 1027.64, + "end": 1028.5, + "probability": 0.1769 + }, + { + "start": 1028.94, + "end": 1029.08, + "probability": 0.2518 + }, + { + "start": 1029.08, + "end": 1029.08, + "probability": 0.0078 + }, + { + "start": 1029.08, + "end": 1029.08, + "probability": 0.02 + }, + { + "start": 1029.08, + "end": 1029.18, + "probability": 0.1876 + }, + { + "start": 1030.04, + "end": 1030.89, + "probability": 0.7983 + }, + { + "start": 1031.54, + "end": 1032.59, + "probability": 0.8478 + }, + { + "start": 1033.22, + "end": 1034.9, + "probability": 0.6161 + }, + { + "start": 1035.1, + "end": 1036.46, + "probability": 0.2013 + }, + { + "start": 1036.74, + "end": 1039.3, + "probability": 0.1049 + }, + { + "start": 1039.3, + "end": 1041.14, + "probability": 0.8545 + }, + { + "start": 1041.24, + "end": 1043.1, + "probability": 0.9041 + }, + { + "start": 1043.2, + "end": 1044.1, + "probability": 0.9333 + }, + { + "start": 1044.1, + "end": 1044.26, + "probability": 0.6069 + }, + { + "start": 1045.57, + "end": 1045.94, + "probability": 0.174 + }, + { + "start": 1046.06, + "end": 1047.36, + "probability": 0.5239 + }, + { + "start": 1047.62, + "end": 1047.76, + "probability": 0.4781 + }, + { + "start": 1048.0, + "end": 1051.64, + "probability": 0.7871 + }, + { + "start": 1052.28, + "end": 1053.4, + "probability": 0.9551 + }, + { + "start": 1053.56, + "end": 1056.18, + "probability": 0.669 + }, + { + "start": 1056.56, + "end": 1057.28, + "probability": 0.1646 + }, + { + "start": 1057.28, + "end": 1059.18, + "probability": 0.6853 + }, + { + "start": 1059.86, + "end": 1061.86, + "probability": 0.1338 + }, + { + "start": 1062.08, + "end": 1064.14, + "probability": 0.9907 + }, + { + "start": 1064.3, + "end": 1065.0, + "probability": 0.9631 + }, + { + "start": 1065.4, + "end": 1065.7, + "probability": 0.0804 + }, + { + "start": 1065.86, + "end": 1068.28, + "probability": 0.4929 + }, + { + "start": 1068.72, + "end": 1069.04, + "probability": 0.5974 + }, + { + "start": 1069.5, + "end": 1070.2, + "probability": 0.0452 + }, + { + "start": 1070.36, + "end": 1070.88, + "probability": 0.534 + }, + { + "start": 1070.88, + "end": 1072.58, + "probability": 0.1549 + }, + { + "start": 1072.74, + "end": 1073.26, + "probability": 0.0916 + }, + { + "start": 1074.24, + "end": 1075.46, + "probability": 0.3117 + }, + { + "start": 1075.5, + "end": 1075.79, + "probability": 0.6643 + }, + { + "start": 1076.2, + "end": 1076.34, + "probability": 0.7159 + }, + { + "start": 1076.46, + "end": 1077.16, + "probability": 0.8689 + }, + { + "start": 1077.56, + "end": 1080.3, + "probability": 0.9883 + }, + { + "start": 1080.76, + "end": 1080.76, + "probability": 0.5589 + }, + { + "start": 1080.76, + "end": 1081.28, + "probability": 0.5284 + }, + { + "start": 1081.3, + "end": 1081.78, + "probability": 0.2879 + }, + { + "start": 1081.86, + "end": 1083.9, + "probability": 0.7287 + }, + { + "start": 1083.92, + "end": 1084.24, + "probability": 0.6915 + }, + { + "start": 1084.34, + "end": 1084.7, + "probability": 0.351 + }, + { + "start": 1084.7, + "end": 1084.8, + "probability": 0.6848 + }, + { + "start": 1085.12, + "end": 1087.56, + "probability": 0.9948 + }, + { + "start": 1088.1, + "end": 1090.02, + "probability": 0.6579 + }, + { + "start": 1090.08, + "end": 1090.74, + "probability": 0.971 + }, + { + "start": 1091.86, + "end": 1092.16, + "probability": 0.3492 + }, + { + "start": 1092.88, + "end": 1093.49, + "probability": 0.804 + }, + { + "start": 1093.82, + "end": 1096.33, + "probability": 0.1257 + }, + { + "start": 1097.36, + "end": 1098.64, + "probability": 0.6349 + }, + { + "start": 1098.88, + "end": 1100.46, + "probability": 0.6578 + }, + { + "start": 1100.88, + "end": 1101.84, + "probability": 0.5891 + }, + { + "start": 1102.14, + "end": 1102.28, + "probability": 0.4065 + }, + { + "start": 1102.28, + "end": 1103.58, + "probability": 0.8226 + }, + { + "start": 1103.58, + "end": 1104.42, + "probability": 0.773 + }, + { + "start": 1104.52, + "end": 1105.06, + "probability": 0.8845 + }, + { + "start": 1105.12, + "end": 1110.28, + "probability": 0.9797 + }, + { + "start": 1110.8, + "end": 1112.52, + "probability": 0.9963 + }, + { + "start": 1112.58, + "end": 1112.97, + "probability": 0.6898 + }, + { + "start": 1113.38, + "end": 1114.14, + "probability": 0.0772 + }, + { + "start": 1114.14, + "end": 1114.14, + "probability": 0.0533 + }, + { + "start": 1114.14, + "end": 1115.14, + "probability": 0.8452 + }, + { + "start": 1115.4, + "end": 1115.58, + "probability": 0.3123 + }, + { + "start": 1115.82, + "end": 1115.82, + "probability": 0.029 + }, + { + "start": 1115.82, + "end": 1115.82, + "probability": 0.2357 + }, + { + "start": 1115.82, + "end": 1117.2, + "probability": 0.3673 + }, + { + "start": 1117.28, + "end": 1118.32, + "probability": 0.6585 + }, + { + "start": 1118.46, + "end": 1119.74, + "probability": 0.3901 + }, + { + "start": 1119.82, + "end": 1120.48, + "probability": 0.4608 + }, + { + "start": 1120.8, + "end": 1122.7, + "probability": 0.5913 + }, + { + "start": 1122.76, + "end": 1123.66, + "probability": 0.3749 + }, + { + "start": 1123.68, + "end": 1126.32, + "probability": 0.7175 + }, + { + "start": 1126.62, + "end": 1127.76, + "probability": 0.8563 + }, + { + "start": 1128.1, + "end": 1129.02, + "probability": 0.9537 + }, + { + "start": 1129.16, + "end": 1130.2, + "probability": 0.9962 + }, + { + "start": 1130.4, + "end": 1131.18, + "probability": 0.6153 + }, + { + "start": 1131.44, + "end": 1134.32, + "probability": 0.7332 + }, + { + "start": 1137.12, + "end": 1137.64, + "probability": 0.0634 + }, + { + "start": 1138.4, + "end": 1139.06, + "probability": 0.4558 + }, + { + "start": 1140.32, + "end": 1141.08, + "probability": 0.1001 + }, + { + "start": 1143.7, + "end": 1143.88, + "probability": 0.1378 + }, + { + "start": 1146.68, + "end": 1151.7, + "probability": 0.0376 + }, + { + "start": 1152.36, + "end": 1153.16, + "probability": 0.1529 + }, + { + "start": 1153.22, + "end": 1153.66, + "probability": 0.3125 + }, + { + "start": 1153.66, + "end": 1154.6, + "probability": 0.0997 + }, + { + "start": 1154.66, + "end": 1158.16, + "probability": 0.0816 + }, + { + "start": 1158.46, + "end": 1158.56, + "probability": 0.0025 + }, + { + "start": 1158.6, + "end": 1160.82, + "probability": 0.3359 + }, + { + "start": 1160.94, + "end": 1161.98, + "probability": 0.8148 + }, + { + "start": 1162.12, + "end": 1163.88, + "probability": 0.8631 + }, + { + "start": 1163.96, + "end": 1168.22, + "probability": 0.9153 + }, + { + "start": 1169.02, + "end": 1172.42, + "probability": 0.9899 + }, + { + "start": 1173.0, + "end": 1175.0, + "probability": 0.9985 + }, + { + "start": 1175.52, + "end": 1177.8, + "probability": 0.9171 + }, + { + "start": 1178.64, + "end": 1180.24, + "probability": 0.9967 + }, + { + "start": 1180.24, + "end": 1183.32, + "probability": 0.9941 + }, + { + "start": 1184.04, + "end": 1185.05, + "probability": 0.9932 + }, + { + "start": 1185.86, + "end": 1187.08, + "probability": 0.6867 + }, + { + "start": 1187.42, + "end": 1188.54, + "probability": 0.9534 + }, + { + "start": 1188.58, + "end": 1189.64, + "probability": 0.9105 + }, + { + "start": 1190.1, + "end": 1192.54, + "probability": 0.9823 + }, + { + "start": 1193.28, + "end": 1194.3, + "probability": 0.8804 + }, + { + "start": 1195.34, + "end": 1199.9, + "probability": 0.9821 + }, + { + "start": 1199.9, + "end": 1203.6, + "probability": 0.9973 + }, + { + "start": 1204.46, + "end": 1208.48, + "probability": 0.9917 + }, + { + "start": 1209.32, + "end": 1213.5, + "probability": 0.9849 + }, + { + "start": 1213.78, + "end": 1213.88, + "probability": 0.8236 + }, + { + "start": 1215.42, + "end": 1217.94, + "probability": 0.4732 + }, + { + "start": 1218.52, + "end": 1218.74, + "probability": 0.0227 + }, + { + "start": 1218.74, + "end": 1220.48, + "probability": 0.5018 + }, + { + "start": 1221.04, + "end": 1225.68, + "probability": 0.8757 + }, + { + "start": 1226.26, + "end": 1229.48, + "probability": 0.993 + }, + { + "start": 1229.94, + "end": 1234.9, + "probability": 0.8025 + }, + { + "start": 1235.1, + "end": 1237.22, + "probability": 0.7302 + }, + { + "start": 1238.14, + "end": 1238.22, + "probability": 0.3058 + }, + { + "start": 1238.22, + "end": 1238.22, + "probability": 0.2919 + }, + { + "start": 1238.22, + "end": 1242.94, + "probability": 0.9252 + }, + { + "start": 1243.74, + "end": 1247.12, + "probability": 0.794 + }, + { + "start": 1247.6, + "end": 1249.22, + "probability": 0.7783 + }, + { + "start": 1249.56, + "end": 1249.74, + "probability": 0.6557 + }, + { + "start": 1250.58, + "end": 1251.7, + "probability": 0.0684 + }, + { + "start": 1251.96, + "end": 1253.56, + "probability": 0.1552 + }, + { + "start": 1253.58, + "end": 1253.92, + "probability": 0.537 + }, + { + "start": 1253.92, + "end": 1254.42, + "probability": 0.3269 + }, + { + "start": 1254.42, + "end": 1255.76, + "probability": 0.1126 + }, + { + "start": 1257.0, + "end": 1259.76, + "probability": 0.7814 + }, + { + "start": 1259.9, + "end": 1260.86, + "probability": 0.0318 + }, + { + "start": 1260.9, + "end": 1264.6, + "probability": 0.7476 + }, + { + "start": 1265.62, + "end": 1266.5, + "probability": 0.633 + }, + { + "start": 1279.68, + "end": 1281.38, + "probability": 0.1574 + }, + { + "start": 1281.56, + "end": 1282.7, + "probability": 0.9258 + }, + { + "start": 1282.84, + "end": 1283.4, + "probability": 0.8784 + }, + { + "start": 1284.44, + "end": 1286.16, + "probability": 0.8982 + }, + { + "start": 1286.54, + "end": 1288.26, + "probability": 0.5972 + }, + { + "start": 1288.32, + "end": 1290.7, + "probability": 0.526 + }, + { + "start": 1291.6, + "end": 1296.08, + "probability": 0.9144 + }, + { + "start": 1296.14, + "end": 1298.5, + "probability": 0.1936 + }, + { + "start": 1298.68, + "end": 1299.66, + "probability": 0.3705 + }, + { + "start": 1299.7, + "end": 1300.18, + "probability": 0.0824 + }, + { + "start": 1300.36, + "end": 1301.0, + "probability": 0.7563 + }, + { + "start": 1301.2, + "end": 1301.83, + "probability": 0.8057 + }, + { + "start": 1302.74, + "end": 1305.84, + "probability": 0.3605 + }, + { + "start": 1306.62, + "end": 1308.84, + "probability": 0.7791 + }, + { + "start": 1308.9, + "end": 1311.36, + "probability": 0.9282 + }, + { + "start": 1312.34, + "end": 1312.7, + "probability": 0.5969 + }, + { + "start": 1312.76, + "end": 1317.38, + "probability": 0.8695 + }, + { + "start": 1317.42, + "end": 1318.12, + "probability": 0.9536 + }, + { + "start": 1318.18, + "end": 1322.08, + "probability": 0.9946 + }, + { + "start": 1323.08, + "end": 1323.76, + "probability": 0.9972 + }, + { + "start": 1325.46, + "end": 1326.48, + "probability": 0.7452 + }, + { + "start": 1328.22, + "end": 1329.46, + "probability": 0.6675 + }, + { + "start": 1331.36, + "end": 1334.86, + "probability": 0.9014 + }, + { + "start": 1336.5, + "end": 1338.46, + "probability": 0.9843 + }, + { + "start": 1339.86, + "end": 1341.5, + "probability": 0.8478 + }, + { + "start": 1342.94, + "end": 1343.58, + "probability": 0.8378 + }, + { + "start": 1344.4, + "end": 1346.96, + "probability": 0.9895 + }, + { + "start": 1347.0, + "end": 1348.08, + "probability": 0.98 + }, + { + "start": 1348.7, + "end": 1349.56, + "probability": 0.3261 + }, + { + "start": 1349.88, + "end": 1350.16, + "probability": 0.231 + }, + { + "start": 1350.64, + "end": 1351.5, + "probability": 0.2234 + }, + { + "start": 1351.72, + "end": 1354.06, + "probability": 0.9767 + }, + { + "start": 1354.84, + "end": 1355.64, + "probability": 0.3068 + }, + { + "start": 1355.98, + "end": 1356.38, + "probability": 0.3925 + }, + { + "start": 1356.46, + "end": 1357.98, + "probability": 0.3499 + }, + { + "start": 1357.98, + "end": 1358.91, + "probability": 0.6734 + }, + { + "start": 1359.58, + "end": 1361.78, + "probability": 0.7993 + }, + { + "start": 1362.78, + "end": 1366.3, + "probability": 0.9257 + }, + { + "start": 1366.36, + "end": 1368.42, + "probability": 0.6542 + }, + { + "start": 1368.44, + "end": 1369.1, + "probability": 0.1784 + }, + { + "start": 1369.54, + "end": 1370.52, + "probability": 0.7044 + }, + { + "start": 1370.7, + "end": 1374.98, + "probability": 0.8605 + }, + { + "start": 1375.14, + "end": 1377.25, + "probability": 0.4156 + }, + { + "start": 1377.44, + "end": 1378.34, + "probability": 0.9419 + }, + { + "start": 1378.4, + "end": 1379.5, + "probability": 0.7214 + }, + { + "start": 1380.48, + "end": 1384.92, + "probability": 0.7917 + }, + { + "start": 1386.12, + "end": 1387.72, + "probability": 0.9673 + }, + { + "start": 1389.88, + "end": 1392.2, + "probability": 0.8932 + }, + { + "start": 1392.72, + "end": 1395.94, + "probability": 0.9903 + }, + { + "start": 1397.36, + "end": 1401.24, + "probability": 0.9796 + }, + { + "start": 1401.32, + "end": 1403.54, + "probability": 0.9586 + }, + { + "start": 1404.32, + "end": 1406.96, + "probability": 0.9974 + }, + { + "start": 1408.1, + "end": 1409.38, + "probability": 0.9926 + }, + { + "start": 1409.98, + "end": 1411.44, + "probability": 0.849 + }, + { + "start": 1412.42, + "end": 1413.58, + "probability": 0.8657 + }, + { + "start": 1415.04, + "end": 1416.54, + "probability": 0.2785 + }, + { + "start": 1417.96, + "end": 1418.7, + "probability": 0.4706 + }, + { + "start": 1418.92, + "end": 1420.1, + "probability": 0.7691 + }, + { + "start": 1420.22, + "end": 1423.1, + "probability": 0.9217 + }, + { + "start": 1423.94, + "end": 1426.0, + "probability": 0.8179 + }, + { + "start": 1426.92, + "end": 1428.39, + "probability": 0.8652 + }, + { + "start": 1429.56, + "end": 1431.54, + "probability": 0.9875 + }, + { + "start": 1432.18, + "end": 1432.76, + "probability": 0.7733 + }, + { + "start": 1434.22, + "end": 1434.68, + "probability": 0.749 + }, + { + "start": 1435.3, + "end": 1435.86, + "probability": 0.6882 + }, + { + "start": 1435.92, + "end": 1436.82, + "probability": 0.8164 + }, + { + "start": 1436.88, + "end": 1439.82, + "probability": 0.8721 + }, + { + "start": 1440.04, + "end": 1441.86, + "probability": 0.9177 + }, + { + "start": 1442.42, + "end": 1445.0, + "probability": 0.9758 + }, + { + "start": 1446.38, + "end": 1448.16, + "probability": 0.8804 + }, + { + "start": 1448.34, + "end": 1448.72, + "probability": 0.8229 + }, + { + "start": 1448.88, + "end": 1449.7, + "probability": 0.7411 + }, + { + "start": 1450.54, + "end": 1452.36, + "probability": 0.8497 + }, + { + "start": 1452.56, + "end": 1454.68, + "probability": 0.9413 + }, + { + "start": 1454.76, + "end": 1455.74, + "probability": 0.7819 + }, + { + "start": 1456.14, + "end": 1456.54, + "probability": 0.6698 + }, + { + "start": 1456.56, + "end": 1457.78, + "probability": 0.9857 + }, + { + "start": 1457.84, + "end": 1458.54, + "probability": 0.9809 + }, + { + "start": 1459.18, + "end": 1461.64, + "probability": 0.5962 + }, + { + "start": 1462.44, + "end": 1464.38, + "probability": 0.9926 + }, + { + "start": 1464.46, + "end": 1465.28, + "probability": 0.8882 + }, + { + "start": 1465.32, + "end": 1466.6, + "probability": 0.9878 + }, + { + "start": 1468.6, + "end": 1468.66, + "probability": 0.4789 + }, + { + "start": 1468.66, + "end": 1473.14, + "probability": 0.9663 + }, + { + "start": 1474.2, + "end": 1479.26, + "probability": 0.9968 + }, + { + "start": 1479.84, + "end": 1481.92, + "probability": 0.8136 + }, + { + "start": 1482.6, + "end": 1484.6, + "probability": 0.6519 + }, + { + "start": 1485.2, + "end": 1486.36, + "probability": 0.9351 + }, + { + "start": 1487.26, + "end": 1490.0, + "probability": 0.9739 + }, + { + "start": 1490.14, + "end": 1490.5, + "probability": 0.7121 + }, + { + "start": 1490.6, + "end": 1491.64, + "probability": 0.5833 + }, + { + "start": 1492.72, + "end": 1494.0, + "probability": 0.764 + }, + { + "start": 1494.06, + "end": 1496.92, + "probability": 0.7944 + }, + { + "start": 1496.98, + "end": 1498.32, + "probability": 0.9212 + }, + { + "start": 1498.48, + "end": 1499.5, + "probability": 0.9233 + }, + { + "start": 1500.84, + "end": 1502.24, + "probability": 0.9985 + }, + { + "start": 1502.98, + "end": 1503.96, + "probability": 0.9263 + }, + { + "start": 1504.24, + "end": 1507.8, + "probability": 0.929 + }, + { + "start": 1508.42, + "end": 1510.48, + "probability": 0.9725 + }, + { + "start": 1511.16, + "end": 1511.76, + "probability": 0.4985 + }, + { + "start": 1513.14, + "end": 1513.48, + "probability": 0.6658 + }, + { + "start": 1514.18, + "end": 1515.8, + "probability": 0.7872 + }, + { + "start": 1516.82, + "end": 1518.12, + "probability": 0.675 + }, + { + "start": 1518.52, + "end": 1520.08, + "probability": 0.5435 + }, + { + "start": 1520.24, + "end": 1520.5, + "probability": 0.42 + }, + { + "start": 1521.14, + "end": 1523.44, + "probability": 0.9935 + }, + { + "start": 1524.12, + "end": 1525.74, + "probability": 0.957 + }, + { + "start": 1526.56, + "end": 1527.28, + "probability": 0.6305 + }, + { + "start": 1528.0, + "end": 1528.9, + "probability": 0.502 + }, + { + "start": 1529.84, + "end": 1530.8, + "probability": 0.9099 + }, + { + "start": 1532.26, + "end": 1536.08, + "probability": 0.9683 + }, + { + "start": 1537.1, + "end": 1543.42, + "probability": 0.9922 + }, + { + "start": 1544.88, + "end": 1547.26, + "probability": 0.8745 + }, + { + "start": 1548.16, + "end": 1551.3, + "probability": 0.9869 + }, + { + "start": 1552.0, + "end": 1554.68, + "probability": 0.8608 + }, + { + "start": 1555.78, + "end": 1556.46, + "probability": 0.7128 + }, + { + "start": 1557.36, + "end": 1559.9, + "probability": 0.7308 + }, + { + "start": 1561.0, + "end": 1562.86, + "probability": 0.8383 + }, + { + "start": 1564.24, + "end": 1570.32, + "probability": 0.9378 + }, + { + "start": 1570.9, + "end": 1571.68, + "probability": 0.6736 + }, + { + "start": 1572.42, + "end": 1574.66, + "probability": 0.9028 + }, + { + "start": 1576.22, + "end": 1579.96, + "probability": 0.9715 + }, + { + "start": 1580.84, + "end": 1581.96, + "probability": 0.611 + }, + { + "start": 1583.68, + "end": 1588.06, + "probability": 0.997 + }, + { + "start": 1590.78, + "end": 1594.68, + "probability": 0.9972 + }, + { + "start": 1595.66, + "end": 1597.9, + "probability": 0.9545 + }, + { + "start": 1598.66, + "end": 1602.08, + "probability": 0.999 + }, + { + "start": 1602.08, + "end": 1606.24, + "probability": 0.9951 + }, + { + "start": 1606.6, + "end": 1607.36, + "probability": 0.9087 + }, + { + "start": 1607.48, + "end": 1607.98, + "probability": 0.6289 + }, + { + "start": 1608.16, + "end": 1608.48, + "probability": 0.7258 + }, + { + "start": 1608.52, + "end": 1608.94, + "probability": 0.9845 + }, + { + "start": 1610.82, + "end": 1614.94, + "probability": 0.9939 + }, + { + "start": 1615.78, + "end": 1615.86, + "probability": 0.9399 + }, + { + "start": 1615.92, + "end": 1616.16, + "probability": 0.7729 + }, + { + "start": 1616.18, + "end": 1617.06, + "probability": 0.9725 + }, + { + "start": 1617.16, + "end": 1617.7, + "probability": 0.9312 + }, + { + "start": 1617.74, + "end": 1618.64, + "probability": 0.925 + }, + { + "start": 1619.22, + "end": 1620.8, + "probability": 0.9497 + }, + { + "start": 1621.48, + "end": 1622.28, + "probability": 0.5571 + }, + { + "start": 1623.02, + "end": 1624.76, + "probability": 0.8115 + }, + { + "start": 1625.1, + "end": 1626.22, + "probability": 0.8526 + }, + { + "start": 1626.66, + "end": 1628.12, + "probability": 0.978 + }, + { + "start": 1628.72, + "end": 1635.96, + "probability": 0.887 + }, + { + "start": 1637.26, + "end": 1639.5, + "probability": 0.9949 + }, + { + "start": 1639.54, + "end": 1640.76, + "probability": 0.9869 + }, + { + "start": 1641.94, + "end": 1643.46, + "probability": 0.9863 + }, + { + "start": 1644.06, + "end": 1645.22, + "probability": 0.9457 + }, + { + "start": 1645.78, + "end": 1648.14, + "probability": 0.9893 + }, + { + "start": 1648.24, + "end": 1652.06, + "probability": 0.951 + }, + { + "start": 1653.62, + "end": 1654.66, + "probability": 0.9503 + }, + { + "start": 1654.92, + "end": 1655.16, + "probability": 0.593 + }, + { + "start": 1655.4, + "end": 1656.16, + "probability": 0.5065 + }, + { + "start": 1656.62, + "end": 1657.19, + "probability": 0.6046 + }, + { + "start": 1657.62, + "end": 1658.34, + "probability": 0.769 + }, + { + "start": 1659.0, + "end": 1665.92, + "probability": 0.9673 + }, + { + "start": 1666.52, + "end": 1670.74, + "probability": 0.9563 + }, + { + "start": 1672.3, + "end": 1674.26, + "probability": 0.8266 + }, + { + "start": 1675.74, + "end": 1678.28, + "probability": 0.8186 + }, + { + "start": 1680.22, + "end": 1682.42, + "probability": 0.9009 + }, + { + "start": 1683.08, + "end": 1689.1, + "probability": 0.9692 + }, + { + "start": 1690.28, + "end": 1690.86, + "probability": 0.8855 + }, + { + "start": 1691.86, + "end": 1694.84, + "probability": 0.9865 + }, + { + "start": 1694.94, + "end": 1696.66, + "probability": 0.8449 + }, + { + "start": 1698.16, + "end": 1699.52, + "probability": 0.9482 + }, + { + "start": 1700.64, + "end": 1702.06, + "probability": 0.715 + }, + { + "start": 1702.6, + "end": 1705.64, + "probability": 0.7705 + }, + { + "start": 1709.62, + "end": 1711.02, + "probability": 0.6218 + }, + { + "start": 1712.84, + "end": 1715.44, + "probability": 0.971 + }, + { + "start": 1717.22, + "end": 1720.4, + "probability": 0.9598 + }, + { + "start": 1721.66, + "end": 1723.24, + "probability": 0.9846 + }, + { + "start": 1724.22, + "end": 1725.68, + "probability": 0.9956 + }, + { + "start": 1726.26, + "end": 1729.78, + "probability": 0.8026 + }, + { + "start": 1730.34, + "end": 1731.2, + "probability": 0.4917 + }, + { + "start": 1732.36, + "end": 1737.76, + "probability": 0.9586 + }, + { + "start": 1737.9, + "end": 1738.3, + "probability": 0.7827 + }, + { + "start": 1738.38, + "end": 1740.94, + "probability": 0.9763 + }, + { + "start": 1742.16, + "end": 1744.18, + "probability": 0.9919 + }, + { + "start": 1744.8, + "end": 1748.34, + "probability": 0.9779 + }, + { + "start": 1749.5, + "end": 1752.82, + "probability": 0.9911 + }, + { + "start": 1753.26, + "end": 1756.96, + "probability": 0.7758 + }, + { + "start": 1758.34, + "end": 1759.84, + "probability": 0.7039 + }, + { + "start": 1760.44, + "end": 1761.58, + "probability": 0.9658 + }, + { + "start": 1762.7, + "end": 1763.42, + "probability": 0.499 + }, + { + "start": 1763.58, + "end": 1764.38, + "probability": 0.7547 + }, + { + "start": 1764.6, + "end": 1765.4, + "probability": 0.6514 + }, + { + "start": 1765.86, + "end": 1767.04, + "probability": 0.9739 + }, + { + "start": 1767.58, + "end": 1768.62, + "probability": 0.7855 + }, + { + "start": 1769.82, + "end": 1775.74, + "probability": 0.9241 + }, + { + "start": 1778.2, + "end": 1780.6, + "probability": 0.8105 + }, + { + "start": 1781.78, + "end": 1782.86, + "probability": 0.9604 + }, + { + "start": 1783.72, + "end": 1786.24, + "probability": 0.999 + }, + { + "start": 1786.92, + "end": 1788.56, + "probability": 0.9176 + }, + { + "start": 1789.9, + "end": 1794.52, + "probability": 0.912 + }, + { + "start": 1795.36, + "end": 1799.4, + "probability": 0.9763 + }, + { + "start": 1800.32, + "end": 1801.6, + "probability": 0.757 + }, + { + "start": 1802.72, + "end": 1805.9, + "probability": 0.5876 + }, + { + "start": 1806.06, + "end": 1806.83, + "probability": 0.8124 + }, + { + "start": 1807.7, + "end": 1809.74, + "probability": 0.9754 + }, + { + "start": 1810.96, + "end": 1812.54, + "probability": 0.8779 + }, + { + "start": 1814.18, + "end": 1815.38, + "probability": 0.7601 + }, + { + "start": 1816.62, + "end": 1820.08, + "probability": 0.9806 + }, + { + "start": 1820.72, + "end": 1821.88, + "probability": 0.7477 + }, + { + "start": 1822.94, + "end": 1824.12, + "probability": 0.8672 + }, + { + "start": 1824.12, + "end": 1825.16, + "probability": 0.8495 + }, + { + "start": 1825.46, + "end": 1825.76, + "probability": 0.6533 + }, + { + "start": 1826.04, + "end": 1826.77, + "probability": 0.7524 + }, + { + "start": 1826.96, + "end": 1829.6, + "probability": 0.4845 + }, + { + "start": 1830.18, + "end": 1830.8, + "probability": 0.4933 + }, + { + "start": 1830.96, + "end": 1832.04, + "probability": 0.6728 + }, + { + "start": 1832.52, + "end": 1833.43, + "probability": 0.873 + }, + { + "start": 1834.7, + "end": 1838.2, + "probability": 0.9222 + }, + { + "start": 1838.28, + "end": 1839.62, + "probability": 0.9938 + }, + { + "start": 1840.44, + "end": 1842.18, + "probability": 0.9705 + }, + { + "start": 1842.94, + "end": 1844.0, + "probability": 0.8739 + }, + { + "start": 1844.56, + "end": 1847.56, + "probability": 0.9954 + }, + { + "start": 1847.98, + "end": 1852.78, + "probability": 0.9977 + }, + { + "start": 1855.1, + "end": 1855.88, + "probability": 0.98 + }, + { + "start": 1856.18, + "end": 1856.88, + "probability": 0.7241 + }, + { + "start": 1857.02, + "end": 1859.26, + "probability": 0.9956 + }, + { + "start": 1860.36, + "end": 1861.92, + "probability": 0.9858 + }, + { + "start": 1862.94, + "end": 1864.94, + "probability": 0.9964 + }, + { + "start": 1865.92, + "end": 1869.58, + "probability": 0.9963 + }, + { + "start": 1869.58, + "end": 1873.26, + "probability": 0.791 + }, + { + "start": 1873.46, + "end": 1874.02, + "probability": 0.7302 + }, + { + "start": 1875.06, + "end": 1876.62, + "probability": 0.8387 + }, + { + "start": 1876.76, + "end": 1880.94, + "probability": 0.9403 + }, + { + "start": 1882.7, + "end": 1883.1, + "probability": 0.6468 + }, + { + "start": 1883.66, + "end": 1885.32, + "probability": 0.9026 + }, + { + "start": 1886.86, + "end": 1889.32, + "probability": 0.9669 + }, + { + "start": 1890.04, + "end": 1891.76, + "probability": 0.9948 + }, + { + "start": 1891.86, + "end": 1892.5, + "probability": 0.9866 + }, + { + "start": 1896.38, + "end": 1898.56, + "probability": 0.9922 + }, + { + "start": 1899.12, + "end": 1900.7, + "probability": 0.9984 + }, + { + "start": 1901.54, + "end": 1904.2, + "probability": 0.9939 + }, + { + "start": 1904.92, + "end": 1907.14, + "probability": 0.9926 + }, + { + "start": 1908.2, + "end": 1911.66, + "probability": 0.998 + }, + { + "start": 1912.18, + "end": 1913.2, + "probability": 0.9971 + }, + { + "start": 1913.24, + "end": 1915.44, + "probability": 0.814 + }, + { + "start": 1916.02, + "end": 1918.4, + "probability": 0.8736 + }, + { + "start": 1918.92, + "end": 1924.1, + "probability": 0.8959 + }, + { + "start": 1924.52, + "end": 1927.1, + "probability": 0.8267 + }, + { + "start": 1927.92, + "end": 1933.76, + "probability": 0.9936 + }, + { + "start": 1933.88, + "end": 1935.06, + "probability": 0.8697 + }, + { + "start": 1935.74, + "end": 1936.8, + "probability": 0.924 + }, + { + "start": 1937.38, + "end": 1939.7, + "probability": 0.9756 + }, + { + "start": 1940.34, + "end": 1944.76, + "probability": 0.9727 + }, + { + "start": 1945.28, + "end": 1946.76, + "probability": 0.9445 + }, + { + "start": 1947.46, + "end": 1948.22, + "probability": 0.7687 + }, + { + "start": 1948.74, + "end": 1950.88, + "probability": 0.9967 + }, + { + "start": 1951.52, + "end": 1953.34, + "probability": 0.9879 + }, + { + "start": 1954.96, + "end": 1960.06, + "probability": 0.9763 + }, + { + "start": 1960.06, + "end": 1963.12, + "probability": 0.9961 + }, + { + "start": 1963.4, + "end": 1964.14, + "probability": 0.5762 + }, + { + "start": 1964.48, + "end": 1966.44, + "probability": 0.8198 + }, + { + "start": 1997.42, + "end": 1998.28, + "probability": 0.7389 + }, + { + "start": 2000.44, + "end": 2001.1, + "probability": 0.8028 + }, + { + "start": 2001.84, + "end": 2002.76, + "probability": 0.7802 + }, + { + "start": 2004.48, + "end": 2005.62, + "probability": 0.8474 + }, + { + "start": 2006.72, + "end": 2010.38, + "probability": 0.7141 + }, + { + "start": 2012.16, + "end": 2013.82, + "probability": 0.5787 + }, + { + "start": 2016.42, + "end": 2017.12, + "probability": 0.8461 + }, + { + "start": 2020.58, + "end": 2021.0, + "probability": 0.7842 + }, + { + "start": 2022.5, + "end": 2027.76, + "probability": 0.9934 + }, + { + "start": 2028.86, + "end": 2032.24, + "probability": 0.7599 + }, + { + "start": 2032.74, + "end": 2033.42, + "probability": 0.0677 + }, + { + "start": 2034.04, + "end": 2034.24, + "probability": 0.0185 + }, + { + "start": 2034.24, + "end": 2034.24, + "probability": 0.2877 + }, + { + "start": 2034.24, + "end": 2034.46, + "probability": 0.0602 + }, + { + "start": 2034.72, + "end": 2035.92, + "probability": 0.8643 + }, + { + "start": 2036.14, + "end": 2037.16, + "probability": 0.6188 + }, + { + "start": 2037.3, + "end": 2040.06, + "probability": 0.8904 + }, + { + "start": 2040.54, + "end": 2043.07, + "probability": 0.7725 + }, + { + "start": 2045.14, + "end": 2049.88, + "probability": 0.6589 + }, + { + "start": 2051.4, + "end": 2054.74, + "probability": 0.9707 + }, + { + "start": 2056.52, + "end": 2057.2, + "probability": 0.9877 + }, + { + "start": 2058.1, + "end": 2059.44, + "probability": 0.6666 + }, + { + "start": 2060.78, + "end": 2062.38, + "probability": 0.9597 + }, + { + "start": 2063.18, + "end": 2063.9, + "probability": 0.9937 + }, + { + "start": 2065.48, + "end": 2066.72, + "probability": 0.9785 + }, + { + "start": 2067.84, + "end": 2070.38, + "probability": 0.5999 + }, + { + "start": 2070.38, + "end": 2073.74, + "probability": 0.7679 + }, + { + "start": 2074.48, + "end": 2075.74, + "probability": 0.8363 + }, + { + "start": 2076.92, + "end": 2082.82, + "probability": 0.9918 + }, + { + "start": 2083.86, + "end": 2085.26, + "probability": 0.8962 + }, + { + "start": 2086.62, + "end": 2088.4, + "probability": 0.8208 + }, + { + "start": 2089.5, + "end": 2090.62, + "probability": 0.9686 + }, + { + "start": 2091.36, + "end": 2092.5, + "probability": 0.9486 + }, + { + "start": 2093.32, + "end": 2093.88, + "probability": 0.9672 + }, + { + "start": 2094.78, + "end": 2100.04, + "probability": 0.9728 + }, + { + "start": 2101.4, + "end": 2105.06, + "probability": 0.8146 + }, + { + "start": 2106.12, + "end": 2108.82, + "probability": 0.783 + }, + { + "start": 2109.58, + "end": 2111.28, + "probability": 0.9863 + }, + { + "start": 2113.36, + "end": 2115.84, + "probability": 0.8652 + }, + { + "start": 2117.42, + "end": 2118.58, + "probability": 0.7575 + }, + { + "start": 2119.76, + "end": 2124.42, + "probability": 0.8311 + }, + { + "start": 2124.72, + "end": 2125.3, + "probability": 0.7096 + }, + { + "start": 2125.36, + "end": 2129.04, + "probability": 0.7708 + }, + { + "start": 2129.08, + "end": 2129.08, + "probability": 0.0215 + }, + { + "start": 2129.08, + "end": 2129.08, + "probability": 0.3369 + }, + { + "start": 2129.08, + "end": 2129.78, + "probability": 0.3593 + }, + { + "start": 2129.78, + "end": 2132.56, + "probability": 0.6737 + }, + { + "start": 2133.3, + "end": 2134.66, + "probability": 0.4517 + }, + { + "start": 2134.94, + "end": 2135.24, + "probability": 0.3057 + }, + { + "start": 2135.86, + "end": 2136.64, + "probability": 0.4069 + }, + { + "start": 2137.06, + "end": 2137.12, + "probability": 0.9219 + }, + { + "start": 2137.84, + "end": 2140.1, + "probability": 0.9896 + }, + { + "start": 2140.4, + "end": 2141.75, + "probability": 0.8169 + }, + { + "start": 2142.04, + "end": 2146.56, + "probability": 0.9308 + }, + { + "start": 2147.04, + "end": 2148.02, + "probability": 0.9631 + }, + { + "start": 2149.38, + "end": 2152.24, + "probability": 0.9968 + }, + { + "start": 2152.24, + "end": 2155.32, + "probability": 0.9862 + }, + { + "start": 2155.74, + "end": 2157.98, + "probability": 0.6632 + }, + { + "start": 2158.8, + "end": 2163.12, + "probability": 0.8866 + }, + { + "start": 2164.75, + "end": 2168.3, + "probability": 0.6186 + }, + { + "start": 2168.62, + "end": 2172.16, + "probability": 0.9916 + }, + { + "start": 2172.6, + "end": 2176.98, + "probability": 0.9943 + }, + { + "start": 2176.98, + "end": 2180.68, + "probability": 0.9167 + }, + { + "start": 2180.74, + "end": 2182.56, + "probability": 0.0279 + }, + { + "start": 2183.64, + "end": 2184.88, + "probability": 0.8069 + }, + { + "start": 2185.46, + "end": 2187.28, + "probability": 0.9888 + }, + { + "start": 2187.7, + "end": 2191.18, + "probability": 0.9316 + }, + { + "start": 2191.58, + "end": 2191.86, + "probability": 0.4812 + }, + { + "start": 2192.15, + "end": 2195.48, + "probability": 0.8075 + }, + { + "start": 2196.2, + "end": 2197.28, + "probability": 0.8479 + }, + { + "start": 2198.4, + "end": 2200.94, + "probability": 0.9229 + }, + { + "start": 2201.32, + "end": 2204.04, + "probability": 0.9912 + }, + { + "start": 2205.08, + "end": 2206.22, + "probability": 0.7808 + }, + { + "start": 2206.78, + "end": 2210.56, + "probability": 0.9812 + }, + { + "start": 2210.74, + "end": 2211.56, + "probability": 0.4451 + }, + { + "start": 2212.3, + "end": 2213.8, + "probability": 0.6426 + }, + { + "start": 2214.16, + "end": 2216.42, + "probability": 0.9445 + }, + { + "start": 2217.78, + "end": 2218.86, + "probability": 0.6593 + }, + { + "start": 2219.02, + "end": 2220.12, + "probability": 0.8472 + }, + { + "start": 2221.14, + "end": 2224.4, + "probability": 0.9957 + }, + { + "start": 2225.4, + "end": 2229.05, + "probability": 0.9733 + }, + { + "start": 2229.44, + "end": 2231.7, + "probability": 0.8521 + }, + { + "start": 2232.02, + "end": 2233.16, + "probability": 0.9809 + }, + { + "start": 2234.08, + "end": 2236.04, + "probability": 0.9758 + }, + { + "start": 2236.94, + "end": 2238.06, + "probability": 0.7049 + }, + { + "start": 2239.8, + "end": 2241.16, + "probability": 0.9094 + }, + { + "start": 2243.46, + "end": 2246.36, + "probability": 0.7913 + }, + { + "start": 2246.46, + "end": 2248.28, + "probability": 0.8572 + }, + { + "start": 2249.32, + "end": 2251.6, + "probability": 0.8914 + }, + { + "start": 2253.3, + "end": 2254.86, + "probability": 0.949 + }, + { + "start": 2256.7, + "end": 2257.66, + "probability": 0.8511 + }, + { + "start": 2259.66, + "end": 2260.78, + "probability": 0.6691 + }, + { + "start": 2262.22, + "end": 2264.7, + "probability": 0.8895 + }, + { + "start": 2265.68, + "end": 2266.76, + "probability": 0.7406 + }, + { + "start": 2268.6, + "end": 2270.9, + "probability": 0.852 + }, + { + "start": 2271.64, + "end": 2274.56, + "probability": 0.9639 + }, + { + "start": 2275.7, + "end": 2276.64, + "probability": 0.9956 + }, + { + "start": 2276.76, + "end": 2277.84, + "probability": 0.9971 + }, + { + "start": 2278.28, + "end": 2280.09, + "probability": 0.9979 + }, + { + "start": 2280.62, + "end": 2281.06, + "probability": 0.831 + }, + { + "start": 2282.68, + "end": 2284.5, + "probability": 0.8401 + }, + { + "start": 2286.2, + "end": 2288.58, + "probability": 0.8506 + }, + { + "start": 2289.4, + "end": 2290.56, + "probability": 0.9709 + }, + { + "start": 2302.4, + "end": 2303.7, + "probability": 0.6504 + }, + { + "start": 2320.46, + "end": 2320.46, + "probability": 0.4353 + }, + { + "start": 2320.46, + "end": 2320.98, + "probability": 0.4883 + }, + { + "start": 2321.74, + "end": 2323.04, + "probability": 0.7037 + }, + { + "start": 2323.36, + "end": 2324.56, + "probability": 0.9493 + }, + { + "start": 2327.54, + "end": 2328.72, + "probability": 0.6743 + }, + { + "start": 2330.44, + "end": 2331.08, + "probability": 0.1677 + }, + { + "start": 2331.24, + "end": 2332.96, + "probability": 0.884 + }, + { + "start": 2332.96, + "end": 2333.37, + "probability": 0.7749 + }, + { + "start": 2333.9, + "end": 2334.18, + "probability": 0.9154 + }, + { + "start": 2335.3, + "end": 2336.2, + "probability": 0.8937 + }, + { + "start": 2339.4, + "end": 2344.5, + "probability": 0.9988 + }, + { + "start": 2345.16, + "end": 2346.78, + "probability": 0.7521 + }, + { + "start": 2348.02, + "end": 2349.28, + "probability": 0.9517 + }, + { + "start": 2349.88, + "end": 2352.06, + "probability": 0.8804 + }, + { + "start": 2353.22, + "end": 2356.1, + "probability": 0.9889 + }, + { + "start": 2356.8, + "end": 2357.3, + "probability": 0.4536 + }, + { + "start": 2358.26, + "end": 2359.08, + "probability": 0.7993 + }, + { + "start": 2359.82, + "end": 2361.82, + "probability": 0.9968 + }, + { + "start": 2362.74, + "end": 2364.52, + "probability": 0.8071 + }, + { + "start": 2365.58, + "end": 2370.1, + "probability": 0.9844 + }, + { + "start": 2370.44, + "end": 2371.22, + "probability": 0.9213 + }, + { + "start": 2373.38, + "end": 2375.68, + "probability": 0.9855 + }, + { + "start": 2376.06, + "end": 2376.62, + "probability": 0.8579 + }, + { + "start": 2376.96, + "end": 2377.84, + "probability": 0.8669 + }, + { + "start": 2378.5, + "end": 2381.76, + "probability": 0.9748 + }, + { + "start": 2382.86, + "end": 2387.18, + "probability": 0.9841 + }, + { + "start": 2388.08, + "end": 2390.6, + "probability": 0.7352 + }, + { + "start": 2390.7, + "end": 2392.69, + "probability": 0.9618 + }, + { + "start": 2393.5, + "end": 2397.7, + "probability": 0.8708 + }, + { + "start": 2400.88, + "end": 2401.98, + "probability": 0.9883 + }, + { + "start": 2403.54, + "end": 2405.9, + "probability": 0.836 + }, + { + "start": 2407.66, + "end": 2409.84, + "probability": 0.9566 + }, + { + "start": 2410.6, + "end": 2412.78, + "probability": 0.967 + }, + { + "start": 2412.86, + "end": 2413.45, + "probability": 0.6154 + }, + { + "start": 2414.12, + "end": 2414.76, + "probability": 0.9683 + }, + { + "start": 2415.02, + "end": 2415.54, + "probability": 0.5735 + }, + { + "start": 2416.44, + "end": 2417.24, + "probability": 0.8668 + }, + { + "start": 2417.72, + "end": 2418.58, + "probability": 0.8628 + }, + { + "start": 2418.6, + "end": 2419.28, + "probability": 0.9316 + }, + { + "start": 2419.4, + "end": 2420.24, + "probability": 0.8485 + }, + { + "start": 2420.64, + "end": 2421.72, + "probability": 0.9917 + }, + { + "start": 2422.8, + "end": 2423.8, + "probability": 0.9585 + }, + { + "start": 2423.92, + "end": 2424.52, + "probability": 0.9688 + }, + { + "start": 2424.98, + "end": 2425.74, + "probability": 0.9858 + }, + { + "start": 2426.38, + "end": 2426.86, + "probability": 0.7651 + }, + { + "start": 2426.96, + "end": 2427.74, + "probability": 0.4935 + }, + { + "start": 2428.56, + "end": 2430.84, + "probability": 0.9822 + }, + { + "start": 2438.76, + "end": 2439.39, + "probability": 0.9734 + }, + { + "start": 2441.3, + "end": 2441.96, + "probability": 0.9924 + }, + { + "start": 2442.56, + "end": 2445.12, + "probability": 0.9004 + }, + { + "start": 2447.1, + "end": 2447.7, + "probability": 0.7496 + }, + { + "start": 2447.98, + "end": 2448.55, + "probability": 0.9014 + }, + { + "start": 2449.04, + "end": 2450.82, + "probability": 0.9424 + }, + { + "start": 2451.56, + "end": 2452.18, + "probability": 0.9836 + }, + { + "start": 2454.18, + "end": 2455.32, + "probability": 0.6682 + }, + { + "start": 2456.9, + "end": 2459.84, + "probability": 0.9468 + }, + { + "start": 2460.94, + "end": 2461.8, + "probability": 0.8487 + }, + { + "start": 2463.3, + "end": 2463.7, + "probability": 0.28 + }, + { + "start": 2464.16, + "end": 2465.18, + "probability": 0.9147 + }, + { + "start": 2465.52, + "end": 2466.26, + "probability": 0.6161 + }, + { + "start": 2466.36, + "end": 2467.52, + "probability": 0.7216 + }, + { + "start": 2467.54, + "end": 2468.52, + "probability": 0.9966 + }, + { + "start": 2468.56, + "end": 2469.27, + "probability": 0.7368 + }, + { + "start": 2469.6, + "end": 2469.98, + "probability": 0.5791 + }, + { + "start": 2470.56, + "end": 2472.0, + "probability": 0.6655 + }, + { + "start": 2473.42, + "end": 2475.94, + "probability": 0.6198 + }, + { + "start": 2479.82, + "end": 2480.98, + "probability": 0.9888 + }, + { + "start": 2482.14, + "end": 2482.26, + "probability": 0.8831 + }, + { + "start": 2482.28, + "end": 2485.93, + "probability": 0.9354 + }, + { + "start": 2486.06, + "end": 2487.76, + "probability": 0.9782 + }, + { + "start": 2488.2, + "end": 2489.4, + "probability": 0.859 + }, + { + "start": 2489.42, + "end": 2490.22, + "probability": 0.9495 + }, + { + "start": 2490.26, + "end": 2490.94, + "probability": 0.7662 + }, + { + "start": 2491.42, + "end": 2493.68, + "probability": 0.5916 + }, + { + "start": 2494.74, + "end": 2496.08, + "probability": 0.6085 + }, + { + "start": 2496.62, + "end": 2498.56, + "probability": 0.7698 + }, + { + "start": 2499.28, + "end": 2503.38, + "probability": 0.9164 + }, + { + "start": 2503.9, + "end": 2505.32, + "probability": 0.9894 + }, + { + "start": 2505.66, + "end": 2506.22, + "probability": 0.9793 + }, + { + "start": 2506.68, + "end": 2507.06, + "probability": 0.9937 + }, + { + "start": 2507.94, + "end": 2513.74, + "probability": 0.9778 + }, + { + "start": 2517.48, + "end": 2520.12, + "probability": 0.8603 + }, + { + "start": 2520.22, + "end": 2521.34, + "probability": 0.7337 + }, + { + "start": 2521.44, + "end": 2522.54, + "probability": 0.5772 + }, + { + "start": 2522.62, + "end": 2523.04, + "probability": 0.7095 + }, + { + "start": 2523.12, + "end": 2523.12, + "probability": 0.4271 + }, + { + "start": 2523.46, + "end": 2525.5, + "probability": 0.9965 + }, + { + "start": 2526.42, + "end": 2527.06, + "probability": 0.7998 + }, + { + "start": 2527.14, + "end": 2527.84, + "probability": 0.9223 + }, + { + "start": 2527.9, + "end": 2530.06, + "probability": 0.9941 + }, + { + "start": 2530.4, + "end": 2530.75, + "probability": 0.8503 + }, + { + "start": 2531.98, + "end": 2533.44, + "probability": 0.8502 + }, + { + "start": 2534.78, + "end": 2535.38, + "probability": 0.7849 + }, + { + "start": 2536.12, + "end": 2538.7, + "probability": 0.9917 + }, + { + "start": 2538.88, + "end": 2541.14, + "probability": 0.9475 + }, + { + "start": 2542.5, + "end": 2543.14, + "probability": 0.8009 + }, + { + "start": 2543.66, + "end": 2544.38, + "probability": 0.8862 + }, + { + "start": 2544.4, + "end": 2547.64, + "probability": 0.9698 + }, + { + "start": 2548.1, + "end": 2548.98, + "probability": 0.8117 + }, + { + "start": 2549.06, + "end": 2549.8, + "probability": 0.8044 + }, + { + "start": 2550.16, + "end": 2550.96, + "probability": 0.9762 + }, + { + "start": 2551.04, + "end": 2551.7, + "probability": 0.5976 + }, + { + "start": 2551.9, + "end": 2553.86, + "probability": 0.9107 + }, + { + "start": 2561.36, + "end": 2561.54, + "probability": 0.44 + }, + { + "start": 2575.52, + "end": 2576.16, + "probability": 0.5538 + }, + { + "start": 2577.5, + "end": 2579.56, + "probability": 0.7821 + }, + { + "start": 2580.18, + "end": 2583.0, + "probability": 0.778 + }, + { + "start": 2583.64, + "end": 2584.7, + "probability": 0.679 + }, + { + "start": 2585.66, + "end": 2589.86, + "probability": 0.9569 + }, + { + "start": 2591.76, + "end": 2593.18, + "probability": 0.6446 + }, + { + "start": 2593.3, + "end": 2595.48, + "probability": 0.9148 + }, + { + "start": 2596.2, + "end": 2600.52, + "probability": 0.8521 + }, + { + "start": 2601.8, + "end": 2604.86, + "probability": 0.8682 + }, + { + "start": 2605.46, + "end": 2608.08, + "probability": 0.894 + }, + { + "start": 2608.26, + "end": 2609.68, + "probability": 0.981 + }, + { + "start": 2610.72, + "end": 2611.38, + "probability": 0.4967 + }, + { + "start": 2613.52, + "end": 2617.7, + "probability": 0.486 + }, + { + "start": 2618.1, + "end": 2619.2, + "probability": 0.8217 + }, + { + "start": 2620.62, + "end": 2622.2, + "probability": 0.9685 + }, + { + "start": 2622.36, + "end": 2623.86, + "probability": 0.8402 + }, + { + "start": 2624.58, + "end": 2626.6, + "probability": 0.5403 + }, + { + "start": 2627.38, + "end": 2630.86, + "probability": 0.8448 + }, + { + "start": 2631.34, + "end": 2632.34, + "probability": 0.7665 + }, + { + "start": 2633.16, + "end": 2636.0, + "probability": 0.8712 + }, + { + "start": 2636.6, + "end": 2638.64, + "probability": 0.757 + }, + { + "start": 2639.76, + "end": 2639.88, + "probability": 0.0618 + }, + { + "start": 2639.88, + "end": 2640.68, + "probability": 0.3482 + }, + { + "start": 2640.82, + "end": 2641.72, + "probability": 0.8177 + }, + { + "start": 2641.9, + "end": 2642.74, + "probability": 0.982 + }, + { + "start": 2643.06, + "end": 2646.52, + "probability": 0.6014 + }, + { + "start": 2647.02, + "end": 2648.11, + "probability": 0.9927 + }, + { + "start": 2648.24, + "end": 2650.0, + "probability": 0.8619 + }, + { + "start": 2650.14, + "end": 2651.46, + "probability": 0.9698 + }, + { + "start": 2652.14, + "end": 2654.84, + "probability": 0.9964 + }, + { + "start": 2655.12, + "end": 2657.06, + "probability": 0.7643 + }, + { + "start": 2657.06, + "end": 2658.11, + "probability": 0.8168 + }, + { + "start": 2658.66, + "end": 2661.74, + "probability": 0.956 + }, + { + "start": 2661.84, + "end": 2662.52, + "probability": 0.8452 + }, + { + "start": 2662.6, + "end": 2663.06, + "probability": 0.7137 + }, + { + "start": 2663.46, + "end": 2664.64, + "probability": 0.9867 + }, + { + "start": 2665.0, + "end": 2665.68, + "probability": 0.5295 + }, + { + "start": 2665.7, + "end": 2666.56, + "probability": 0.7972 + }, + { + "start": 2667.08, + "end": 2667.84, + "probability": 0.8677 + }, + { + "start": 2667.94, + "end": 2670.26, + "probability": 0.9921 + }, + { + "start": 2670.58, + "end": 2671.4, + "probability": 0.9009 + }, + { + "start": 2672.3, + "end": 2675.3, + "probability": 0.9643 + }, + { + "start": 2675.52, + "end": 2678.4, + "probability": 0.9705 + }, + { + "start": 2678.94, + "end": 2680.68, + "probability": 0.7898 + }, + { + "start": 2681.34, + "end": 2685.76, + "probability": 0.9975 + }, + { + "start": 2686.14, + "end": 2688.72, + "probability": 0.9788 + }, + { + "start": 2688.86, + "end": 2689.42, + "probability": 0.9628 + }, + { + "start": 2690.24, + "end": 2693.08, + "probability": 0.9733 + }, + { + "start": 2693.18, + "end": 2694.08, + "probability": 0.5597 + }, + { + "start": 2694.52, + "end": 2697.24, + "probability": 0.9843 + }, + { + "start": 2698.2, + "end": 2699.18, + "probability": 0.5688 + }, + { + "start": 2699.28, + "end": 2700.5, + "probability": 0.7688 + }, + { + "start": 2700.92, + "end": 2702.32, + "probability": 0.9354 + }, + { + "start": 2702.66, + "end": 2703.18, + "probability": 0.4513 + }, + { + "start": 2703.46, + "end": 2708.58, + "probability": 0.969 + }, + { + "start": 2709.68, + "end": 2709.68, + "probability": 0.2469 + }, + { + "start": 2709.68, + "end": 2710.26, + "probability": 0.6439 + }, + { + "start": 2710.42, + "end": 2712.4, + "probability": 0.8958 + }, + { + "start": 2713.22, + "end": 2716.26, + "probability": 0.9944 + }, + { + "start": 2717.0, + "end": 2717.98, + "probability": 0.9766 + }, + { + "start": 2718.12, + "end": 2719.39, + "probability": 0.9404 + }, + { + "start": 2719.92, + "end": 2720.22, + "probability": 0.4165 + }, + { + "start": 2720.28, + "end": 2721.0, + "probability": 0.6232 + }, + { + "start": 2721.72, + "end": 2723.12, + "probability": 0.9951 + }, + { + "start": 2723.28, + "end": 2727.36, + "probability": 0.9265 + }, + { + "start": 2728.02, + "end": 2729.56, + "probability": 0.7876 + }, + { + "start": 2730.2, + "end": 2733.88, + "probability": 0.7666 + }, + { + "start": 2734.3, + "end": 2735.84, + "probability": 0.9111 + }, + { + "start": 2738.3, + "end": 2738.68, + "probability": 0.143 + }, + { + "start": 2738.68, + "end": 2740.88, + "probability": 0.9126 + }, + { + "start": 2741.4, + "end": 2744.74, + "probability": 0.9941 + }, + { + "start": 2744.98, + "end": 2746.28, + "probability": 0.569 + }, + { + "start": 2748.14, + "end": 2750.26, + "probability": 0.4984 + }, + { + "start": 2751.16, + "end": 2753.32, + "probability": 0.2575 + }, + { + "start": 2753.58, + "end": 2756.36, + "probability": 0.9996 + }, + { + "start": 2756.72, + "end": 2757.32, + "probability": 0.7361 + }, + { + "start": 2758.12, + "end": 2764.08, + "probability": 0.8742 + }, + { + "start": 2765.78, + "end": 2767.22, + "probability": 0.9878 + }, + { + "start": 2767.36, + "end": 2768.58, + "probability": 0.7703 + }, + { + "start": 2768.98, + "end": 2771.38, + "probability": 0.9925 + }, + { + "start": 2771.94, + "end": 2775.56, + "probability": 0.9756 + }, + { + "start": 2776.08, + "end": 2779.96, + "probability": 0.9909 + }, + { + "start": 2780.06, + "end": 2780.43, + "probability": 0.8869 + }, + { + "start": 2780.6, + "end": 2780.92, + "probability": 0.4088 + }, + { + "start": 2781.65, + "end": 2783.34, + "probability": 0.9829 + }, + { + "start": 2783.8, + "end": 2787.62, + "probability": 0.9834 + }, + { + "start": 2787.96, + "end": 2788.64, + "probability": 0.8477 + }, + { + "start": 2788.66, + "end": 2789.48, + "probability": 0.9276 + }, + { + "start": 2789.8, + "end": 2794.86, + "probability": 0.989 + }, + { + "start": 2794.96, + "end": 2795.3, + "probability": 0.7189 + }, + { + "start": 2795.76, + "end": 2796.3, + "probability": 0.6162 + }, + { + "start": 2796.92, + "end": 2798.86, + "probability": 0.8791 + }, + { + "start": 2821.4, + "end": 2821.79, + "probability": 0.5892 + }, + { + "start": 2829.22, + "end": 2829.92, + "probability": 0.6517 + }, + { + "start": 2831.28, + "end": 2833.82, + "probability": 0.7337 + }, + { + "start": 2834.98, + "end": 2835.86, + "probability": 0.9863 + }, + { + "start": 2837.06, + "end": 2839.04, + "probability": 0.8792 + }, + { + "start": 2839.78, + "end": 2841.38, + "probability": 0.9912 + }, + { + "start": 2841.44, + "end": 2845.38, + "probability": 0.9676 + }, + { + "start": 2845.94, + "end": 2849.49, + "probability": 0.9843 + }, + { + "start": 2849.94, + "end": 2854.06, + "probability": 0.998 + }, + { + "start": 2854.6, + "end": 2857.44, + "probability": 0.9751 + }, + { + "start": 2858.56, + "end": 2860.98, + "probability": 0.9858 + }, + { + "start": 2861.04, + "end": 2862.72, + "probability": 0.9946 + }, + { + "start": 2863.3, + "end": 2865.16, + "probability": 0.95 + }, + { + "start": 2865.68, + "end": 2866.64, + "probability": 0.898 + }, + { + "start": 2866.9, + "end": 2869.92, + "probability": 0.9702 + }, + { + "start": 2870.06, + "end": 2871.58, + "probability": 0.9762 + }, + { + "start": 2872.44, + "end": 2875.03, + "probability": 0.99 + }, + { + "start": 2875.44, + "end": 2876.06, + "probability": 0.9723 + }, + { + "start": 2876.12, + "end": 2877.5, + "probability": 0.9823 + }, + { + "start": 2877.92, + "end": 2878.98, + "probability": 0.9661 + }, + { + "start": 2879.5, + "end": 2882.24, + "probability": 0.8513 + }, + { + "start": 2882.36, + "end": 2883.2, + "probability": 0.9229 + }, + { + "start": 2883.74, + "end": 2884.82, + "probability": 0.7472 + }, + { + "start": 2885.32, + "end": 2887.92, + "probability": 0.8668 + }, + { + "start": 2888.06, + "end": 2892.55, + "probability": 0.9722 + }, + { + "start": 2894.88, + "end": 2894.94, + "probability": 0.0153 + }, + { + "start": 2894.94, + "end": 2894.94, + "probability": 0.1341 + }, + { + "start": 2894.94, + "end": 2895.64, + "probability": 0.3556 + }, + { + "start": 2895.96, + "end": 2897.58, + "probability": 0.3125 + }, + { + "start": 2897.66, + "end": 2898.68, + "probability": 0.9047 + }, + { + "start": 2898.76, + "end": 2901.46, + "probability": 0.95 + }, + { + "start": 2901.98, + "end": 2906.76, + "probability": 0.9709 + }, + { + "start": 2906.84, + "end": 2908.34, + "probability": 0.9674 + }, + { + "start": 2909.16, + "end": 2910.8, + "probability": 0.7529 + }, + { + "start": 2910.92, + "end": 2915.12, + "probability": 0.985 + }, + { + "start": 2915.64, + "end": 2917.9, + "probability": 0.9531 + }, + { + "start": 2918.02, + "end": 2920.56, + "probability": 0.9487 + }, + { + "start": 2921.22, + "end": 2923.16, + "probability": 0.9716 + }, + { + "start": 2923.26, + "end": 2924.22, + "probability": 0.7352 + }, + { + "start": 2924.32, + "end": 2926.5, + "probability": 0.8204 + }, + { + "start": 2926.6, + "end": 2927.56, + "probability": 0.8809 + }, + { + "start": 2928.36, + "end": 2934.18, + "probability": 0.8426 + }, + { + "start": 2934.28, + "end": 2936.22, + "probability": 0.9935 + }, + { + "start": 2936.84, + "end": 2937.94, + "probability": 0.8135 + }, + { + "start": 2938.92, + "end": 2944.0, + "probability": 0.9956 + }, + { + "start": 2944.18, + "end": 2946.62, + "probability": 0.9725 + }, + { + "start": 2947.08, + "end": 2948.1, + "probability": 0.919 + }, + { + "start": 2948.16, + "end": 2948.7, + "probability": 0.4145 + }, + { + "start": 2948.74, + "end": 2949.62, + "probability": 0.7423 + }, + { + "start": 2950.18, + "end": 2953.58, + "probability": 0.9031 + }, + { + "start": 2953.82, + "end": 2956.38, + "probability": 0.9268 + }, + { + "start": 2957.06, + "end": 2958.5, + "probability": 0.7338 + }, + { + "start": 2959.14, + "end": 2963.3, + "probability": 0.9546 + }, + { + "start": 2963.84, + "end": 2965.74, + "probability": 0.9189 + }, + { + "start": 2966.0, + "end": 2966.6, + "probability": 0.7366 + }, + { + "start": 2967.56, + "end": 2971.28, + "probability": 0.9753 + }, + { + "start": 2971.46, + "end": 2972.72, + "probability": 0.7692 + }, + { + "start": 2973.26, + "end": 2978.62, + "probability": 0.9961 + }, + { + "start": 2978.66, + "end": 2980.22, + "probability": 0.6606 + }, + { + "start": 2980.56, + "end": 2982.18, + "probability": 0.9348 + }, + { + "start": 2982.64, + "end": 2986.16, + "probability": 0.9839 + }, + { + "start": 2987.22, + "end": 2988.78, + "probability": 0.8601 + }, + { + "start": 2989.7, + "end": 2990.58, + "probability": 0.7468 + }, + { + "start": 2990.76, + "end": 2995.96, + "probability": 0.9758 + }, + { + "start": 2996.0, + "end": 2998.48, + "probability": 0.5893 + }, + { + "start": 2998.6, + "end": 2998.94, + "probability": 0.6576 + }, + { + "start": 2999.0, + "end": 2999.68, + "probability": 0.5801 + }, + { + "start": 2999.8, + "end": 3000.44, + "probability": 0.9668 + }, + { + "start": 3000.58, + "end": 3002.46, + "probability": 0.9061 + }, + { + "start": 3002.8, + "end": 3004.38, + "probability": 0.9684 + }, + { + "start": 3004.96, + "end": 3006.42, + "probability": 0.9912 + }, + { + "start": 3006.88, + "end": 3007.42, + "probability": 0.3219 + }, + { + "start": 3008.3, + "end": 3013.04, + "probability": 0.9216 + }, + { + "start": 3013.7, + "end": 3015.22, + "probability": 0.8408 + }, + { + "start": 3015.28, + "end": 3016.94, + "probability": 0.8201 + }, + { + "start": 3017.32, + "end": 3018.44, + "probability": 0.8622 + }, + { + "start": 3018.94, + "end": 3019.36, + "probability": 0.9116 + }, + { + "start": 3020.1, + "end": 3021.64, + "probability": 0.9966 + }, + { + "start": 3022.3, + "end": 3023.78, + "probability": 0.9983 + }, + { + "start": 3023.9, + "end": 3025.24, + "probability": 0.9746 + }, + { + "start": 3025.78, + "end": 3026.8, + "probability": 0.7235 + }, + { + "start": 3026.94, + "end": 3029.16, + "probability": 0.9852 + }, + { + "start": 3029.92, + "end": 3032.14, + "probability": 0.9829 + }, + { + "start": 3032.88, + "end": 3034.63, + "probability": 0.998 + }, + { + "start": 3035.54, + "end": 3035.94, + "probability": 0.6729 + }, + { + "start": 3035.94, + "end": 3039.3, + "probability": 0.9906 + }, + { + "start": 3039.4, + "end": 3041.06, + "probability": 0.9443 + }, + { + "start": 3042.02, + "end": 3043.64, + "probability": 0.6964 + }, + { + "start": 3044.18, + "end": 3047.08, + "probability": 0.9973 + }, + { + "start": 3047.56, + "end": 3050.58, + "probability": 0.9673 + }, + { + "start": 3050.72, + "end": 3051.76, + "probability": 0.7855 + }, + { + "start": 3051.9, + "end": 3052.18, + "probability": 0.356 + }, + { + "start": 3052.36, + "end": 3054.08, + "probability": 0.9673 + }, + { + "start": 3054.36, + "end": 3054.88, + "probability": 0.9501 + }, + { + "start": 3055.68, + "end": 3057.74, + "probability": 0.5794 + }, + { + "start": 3057.82, + "end": 3059.1, + "probability": 0.9385 + }, + { + "start": 3060.28, + "end": 3060.54, + "probability": 0.4713 + }, + { + "start": 3077.1, + "end": 3080.2, + "probability": 0.0985 + }, + { + "start": 3092.0, + "end": 3093.23, + "probability": 0.9841 + }, + { + "start": 3094.1, + "end": 3097.74, + "probability": 0.9484 + }, + { + "start": 3098.52, + "end": 3100.52, + "probability": 0.9917 + }, + { + "start": 3101.04, + "end": 3102.2, + "probability": 0.981 + }, + { + "start": 3102.76, + "end": 3105.92, + "probability": 0.9678 + }, + { + "start": 3106.62, + "end": 3108.82, + "probability": 0.9872 + }, + { + "start": 3109.36, + "end": 3109.98, + "probability": 0.747 + }, + { + "start": 3110.44, + "end": 3110.8, + "probability": 0.8065 + }, + { + "start": 3110.9, + "end": 3112.14, + "probability": 0.9371 + }, + { + "start": 3112.18, + "end": 3113.1, + "probability": 0.6868 + }, + { + "start": 3114.02, + "end": 3118.12, + "probability": 0.9902 + }, + { + "start": 3118.22, + "end": 3119.28, + "probability": 0.7124 + }, + { + "start": 3119.66, + "end": 3120.26, + "probability": 0.8551 + }, + { + "start": 3120.8, + "end": 3123.26, + "probability": 0.8075 + }, + { + "start": 3123.92, + "end": 3126.8, + "probability": 0.9492 + }, + { + "start": 3127.2, + "end": 3129.9, + "probability": 0.8354 + }, + { + "start": 3129.9, + "end": 3131.08, + "probability": 0.8741 + }, + { + "start": 3131.66, + "end": 3131.98, + "probability": 0.5567 + }, + { + "start": 3133.24, + "end": 3136.0, + "probability": 0.6708 + }, + { + "start": 3136.38, + "end": 3138.06, + "probability": 0.7594 + }, + { + "start": 3138.64, + "end": 3139.5, + "probability": 0.7466 + }, + { + "start": 3139.66, + "end": 3142.3, + "probability": 0.9959 + }, + { + "start": 3142.58, + "end": 3146.08, + "probability": 0.6671 + }, + { + "start": 3146.88, + "end": 3149.36, + "probability": 0.9487 + }, + { + "start": 3151.46, + "end": 3151.46, + "probability": 0.0731 + }, + { + "start": 3151.46, + "end": 3151.46, + "probability": 0.0347 + }, + { + "start": 3151.46, + "end": 3154.08, + "probability": 0.9546 + }, + { + "start": 3154.16, + "end": 3154.76, + "probability": 0.589 + }, + { + "start": 3155.08, + "end": 3157.2, + "probability": 0.8369 + }, + { + "start": 3157.38, + "end": 3158.6, + "probability": 0.7754 + }, + { + "start": 3158.62, + "end": 3160.58, + "probability": 0.0123 + }, + { + "start": 3160.58, + "end": 3160.9, + "probability": 0.2458 + }, + { + "start": 3160.9, + "end": 3163.82, + "probability": 0.813 + }, + { + "start": 3163.92, + "end": 3165.44, + "probability": 0.7923 + }, + { + "start": 3166.08, + "end": 3167.56, + "probability": 0.4922 + }, + { + "start": 3168.08, + "end": 3169.22, + "probability": 0.9004 + }, + { + "start": 3169.28, + "end": 3170.32, + "probability": 0.0307 + }, + { + "start": 3170.32, + "end": 3172.46, + "probability": 0.9792 + }, + { + "start": 3172.78, + "end": 3172.78, + "probability": 0.243 + }, + { + "start": 3172.78, + "end": 3173.4, + "probability": 0.3925 + }, + { + "start": 3173.44, + "end": 3174.74, + "probability": 0.6984 + }, + { + "start": 3175.2, + "end": 3176.82, + "probability": 0.9599 + }, + { + "start": 3177.22, + "end": 3178.84, + "probability": 0.7816 + }, + { + "start": 3179.4, + "end": 3181.52, + "probability": 0.8966 + }, + { + "start": 3182.14, + "end": 3183.56, + "probability": 0.9359 + }, + { + "start": 3184.38, + "end": 3186.04, + "probability": 0.856 + }, + { + "start": 3186.34, + "end": 3187.5, + "probability": 0.9834 + }, + { + "start": 3187.82, + "end": 3188.5, + "probability": 0.64 + }, + { + "start": 3189.46, + "end": 3192.12, + "probability": 0.9343 + }, + { + "start": 3192.5, + "end": 3193.16, + "probability": 0.0489 + }, + { + "start": 3193.16, + "end": 3193.16, + "probability": 0.0886 + }, + { + "start": 3193.16, + "end": 3193.16, + "probability": 0.0066 + }, + { + "start": 3193.16, + "end": 3194.82, + "probability": 0.7439 + }, + { + "start": 3195.3, + "end": 3198.44, + "probability": 0.9535 + }, + { + "start": 3198.46, + "end": 3199.92, + "probability": 0.8517 + }, + { + "start": 3200.56, + "end": 3200.6, + "probability": 0.1002 + }, + { + "start": 3200.6, + "end": 3204.4, + "probability": 0.9381 + }, + { + "start": 3204.88, + "end": 3205.86, + "probability": 0.0098 + }, + { + "start": 3206.0, + "end": 3206.25, + "probability": 0.0577 + }, + { + "start": 3206.76, + "end": 3208.74, + "probability": 0.735 + }, + { + "start": 3209.5, + "end": 3210.62, + "probability": 0.0867 + }, + { + "start": 3211.32, + "end": 3213.8, + "probability": 0.5636 + }, + { + "start": 3213.8, + "end": 3214.7, + "probability": 0.784 + }, + { + "start": 3214.72, + "end": 3216.64, + "probability": 0.6953 + }, + { + "start": 3216.9, + "end": 3217.1, + "probability": 0.0956 + }, + { + "start": 3222.26, + "end": 3222.46, + "probability": 0.01 + }, + { + "start": 3222.46, + "end": 3222.62, + "probability": 0.0644 + }, + { + "start": 3222.62, + "end": 3224.94, + "probability": 0.3968 + }, + { + "start": 3225.16, + "end": 3226.68, + "probability": 0.6306 + }, + { + "start": 3227.24, + "end": 3229.36, + "probability": 0.6311 + }, + { + "start": 3230.02, + "end": 3232.82, + "probability": 0.9613 + }, + { + "start": 3232.82, + "end": 3235.7, + "probability": 0.9921 + }, + { + "start": 3235.7, + "end": 3236.22, + "probability": 0.8782 + }, + { + "start": 3236.98, + "end": 3239.26, + "probability": 0.9217 + }, + { + "start": 3239.82, + "end": 3246.9, + "probability": 0.9583 + }, + { + "start": 3247.46, + "end": 3250.04, + "probability": 0.8667 + }, + { + "start": 3250.4, + "end": 3252.66, + "probability": 0.8262 + }, + { + "start": 3254.16, + "end": 3256.1, + "probability": 0.8168 + }, + { + "start": 3256.68, + "end": 3259.32, + "probability": 0.981 + }, + { + "start": 3259.46, + "end": 3260.98, + "probability": 0.9474 + }, + { + "start": 3261.4, + "end": 3262.42, + "probability": 0.8862 + }, + { + "start": 3262.86, + "end": 3264.24, + "probability": 0.9757 + }, + { + "start": 3265.08, + "end": 3266.72, + "probability": 0.9478 + }, + { + "start": 3267.1, + "end": 3268.58, + "probability": 0.9934 + }, + { + "start": 3268.94, + "end": 3270.12, + "probability": 0.8888 + }, + { + "start": 3270.42, + "end": 3271.84, + "probability": 0.65 + }, + { + "start": 3272.0, + "end": 3273.04, + "probability": 0.7084 + }, + { + "start": 3273.26, + "end": 3274.2, + "probability": 0.9178 + }, + { + "start": 3274.82, + "end": 3281.29, + "probability": 0.9965 + }, + { + "start": 3281.86, + "end": 3287.16, + "probability": 0.9973 + }, + { + "start": 3287.42, + "end": 3287.58, + "probability": 0.1515 + }, + { + "start": 3287.58, + "end": 3288.56, + "probability": 0.5345 + }, + { + "start": 3288.66, + "end": 3289.48, + "probability": 0.822 + }, + { + "start": 3289.94, + "end": 3293.62, + "probability": 0.9252 + }, + { + "start": 3293.66, + "end": 3294.98, + "probability": 0.9379 + }, + { + "start": 3295.0, + "end": 3295.38, + "probability": 0.8189 + }, + { + "start": 3295.66, + "end": 3296.7, + "probability": 0.9607 + }, + { + "start": 3296.96, + "end": 3297.92, + "probability": 0.8428 + }, + { + "start": 3298.0, + "end": 3298.0, + "probability": 0.0066 + }, + { + "start": 3299.76, + "end": 3300.14, + "probability": 0.0629 + }, + { + "start": 3300.14, + "end": 3302.48, + "probability": 0.6489 + }, + { + "start": 3302.84, + "end": 3303.62, + "probability": 0.1874 + }, + { + "start": 3303.98, + "end": 3305.64, + "probability": 0.2721 + }, + { + "start": 3307.72, + "end": 3308.92, + "probability": 0.2988 + }, + { + "start": 3308.92, + "end": 3308.92, + "probability": 0.4399 + }, + { + "start": 3308.92, + "end": 3309.7, + "probability": 0.1044 + }, + { + "start": 3309.82, + "end": 3313.96, + "probability": 0.8356 + }, + { + "start": 3314.32, + "end": 3317.11, + "probability": 0.3078 + }, + { + "start": 3317.96, + "end": 3318.6, + "probability": 0.4854 + }, + { + "start": 3319.7, + "end": 3320.12, + "probability": 0.3181 + }, + { + "start": 3321.32, + "end": 3323.26, + "probability": 0.1243 + }, + { + "start": 3323.36, + "end": 3324.52, + "probability": 0.3235 + }, + { + "start": 3324.62, + "end": 3327.46, + "probability": 0.8196 + }, + { + "start": 3327.9, + "end": 3328.24, + "probability": 0.8849 + }, + { + "start": 3330.91, + "end": 3331.24, + "probability": 0.105 + }, + { + "start": 3331.9, + "end": 3335.76, + "probability": 0.4498 + }, + { + "start": 3336.54, + "end": 3336.54, + "probability": 0.0941 + }, + { + "start": 3336.54, + "end": 3336.54, + "probability": 0.323 + }, + { + "start": 3336.54, + "end": 3336.54, + "probability": 0.1647 + }, + { + "start": 3336.54, + "end": 3336.54, + "probability": 0.1456 + }, + { + "start": 3336.54, + "end": 3336.54, + "probability": 0.1635 + }, + { + "start": 3336.54, + "end": 3337.62, + "probability": 0.2683 + }, + { + "start": 3338.96, + "end": 3343.5, + "probability": 0.8374 + }, + { + "start": 3345.28, + "end": 3347.38, + "probability": 0.9969 + }, + { + "start": 3347.38, + "end": 3353.16, + "probability": 0.8108 + }, + { + "start": 3354.64, + "end": 3356.64, + "probability": 0.9972 + }, + { + "start": 3357.56, + "end": 3359.14, + "probability": 0.9794 + }, + { + "start": 3359.24, + "end": 3360.34, + "probability": 0.9155 + }, + { + "start": 3360.74, + "end": 3363.8, + "probability": 0.9368 + }, + { + "start": 3364.7, + "end": 3367.22, + "probability": 0.9962 + }, + { + "start": 3367.82, + "end": 3371.04, + "probability": 0.9438 + }, + { + "start": 3372.98, + "end": 3373.72, + "probability": 0.8547 + }, + { + "start": 3373.8, + "end": 3377.02, + "probability": 0.9941 + }, + { + "start": 3377.96, + "end": 3378.62, + "probability": 0.9002 + }, + { + "start": 3378.8, + "end": 3381.42, + "probability": 0.979 + }, + { + "start": 3382.34, + "end": 3383.92, + "probability": 0.8838 + }, + { + "start": 3384.34, + "end": 3385.91, + "probability": 0.9268 + }, + { + "start": 3386.24, + "end": 3387.33, + "probability": 0.9842 + }, + { + "start": 3387.82, + "end": 3389.14, + "probability": 0.9929 + }, + { + "start": 3389.28, + "end": 3390.66, + "probability": 0.9892 + }, + { + "start": 3391.32, + "end": 3392.7, + "probability": 0.9967 + }, + { + "start": 3393.14, + "end": 3394.46, + "probability": 0.5688 + }, + { + "start": 3395.06, + "end": 3396.36, + "probability": 0.8888 + }, + { + "start": 3396.62, + "end": 3398.7, + "probability": 0.6279 + }, + { + "start": 3398.98, + "end": 3399.52, + "probability": 0.9023 + }, + { + "start": 3400.6, + "end": 3402.72, + "probability": 0.8075 + }, + { + "start": 3402.92, + "end": 3406.18, + "probability": 0.9946 + }, + { + "start": 3407.48, + "end": 3409.2, + "probability": 0.9401 + }, + { + "start": 3409.56, + "end": 3411.16, + "probability": 0.9858 + }, + { + "start": 3411.58, + "end": 3413.0, + "probability": 0.9462 + }, + { + "start": 3413.36, + "end": 3415.48, + "probability": 0.9781 + }, + { + "start": 3416.08, + "end": 3417.38, + "probability": 0.938 + }, + { + "start": 3418.28, + "end": 3421.04, + "probability": 0.9724 + }, + { + "start": 3424.68, + "end": 3426.68, + "probability": 0.8761 + }, + { + "start": 3427.3, + "end": 3431.92, + "probability": 0.9915 + }, + { + "start": 3432.49, + "end": 3437.12, + "probability": 0.9976 + }, + { + "start": 3438.58, + "end": 3439.62, + "probability": 0.8228 + }, + { + "start": 3440.02, + "end": 3440.51, + "probability": 0.9783 + }, + { + "start": 3441.22, + "end": 3441.42, + "probability": 0.9125 + }, + { + "start": 3443.42, + "end": 3444.9, + "probability": 0.858 + }, + { + "start": 3445.74, + "end": 3447.58, + "probability": 0.9299 + }, + { + "start": 3448.46, + "end": 3451.02, + "probability": 0.897 + }, + { + "start": 3451.88, + "end": 3453.08, + "probability": 0.9282 + }, + { + "start": 3453.2, + "end": 3454.22, + "probability": 0.6671 + }, + { + "start": 3454.32, + "end": 3459.0, + "probability": 0.9905 + }, + { + "start": 3459.78, + "end": 3463.82, + "probability": 0.9984 + }, + { + "start": 3466.18, + "end": 3468.72, + "probability": 0.9919 + }, + { + "start": 3468.72, + "end": 3471.32, + "probability": 0.9893 + }, + { + "start": 3472.08, + "end": 3473.08, + "probability": 0.9505 + }, + { + "start": 3474.36, + "end": 3475.08, + "probability": 0.6526 + }, + { + "start": 3475.14, + "end": 3481.78, + "probability": 0.9409 + }, + { + "start": 3482.52, + "end": 3484.76, + "probability": 0.8811 + }, + { + "start": 3485.38, + "end": 3488.06, + "probability": 0.9132 + }, + { + "start": 3489.26, + "end": 3490.86, + "probability": 0.6294 + }, + { + "start": 3491.68, + "end": 3493.88, + "probability": 0.842 + }, + { + "start": 3494.18, + "end": 3495.04, + "probability": 0.6309 + }, + { + "start": 3495.34, + "end": 3496.78, + "probability": 0.9521 + }, + { + "start": 3496.98, + "end": 3499.17, + "probability": 0.9668 + }, + { + "start": 3502.3, + "end": 3503.0, + "probability": 0.9562 + }, + { + "start": 3504.04, + "end": 3506.36, + "probability": 0.9814 + }, + { + "start": 3508.02, + "end": 3511.28, + "probability": 0.9063 + }, + { + "start": 3511.38, + "end": 3513.48, + "probability": 0.5951 + }, + { + "start": 3513.76, + "end": 3515.12, + "probability": 0.9988 + }, + { + "start": 3517.3, + "end": 3518.1, + "probability": 0.7778 + }, + { + "start": 3518.14, + "end": 3521.35, + "probability": 0.9976 + }, + { + "start": 3522.82, + "end": 3523.56, + "probability": 0.6591 + }, + { + "start": 3524.1, + "end": 3524.26, + "probability": 0.5676 + }, + { + "start": 3524.26, + "end": 3526.7, + "probability": 0.8176 + }, + { + "start": 3527.3, + "end": 3528.46, + "probability": 0.8196 + }, + { + "start": 3529.92, + "end": 3532.12, + "probability": 0.9252 + }, + { + "start": 3535.32, + "end": 3537.22, + "probability": 0.0542 + }, + { + "start": 3539.04, + "end": 3540.04, + "probability": 0.374 + }, + { + "start": 3557.18, + "end": 3560.26, + "probability": 0.7341 + }, + { + "start": 3561.16, + "end": 3563.2, + "probability": 0.9958 + }, + { + "start": 3563.96, + "end": 3564.98, + "probability": 0.7738 + }, + { + "start": 3566.42, + "end": 3569.54, + "probability": 0.9409 + }, + { + "start": 3569.74, + "end": 3572.26, + "probability": 0.9509 + }, + { + "start": 3573.54, + "end": 3578.1, + "probability": 0.8014 + }, + { + "start": 3578.66, + "end": 3583.44, + "probability": 0.9583 + }, + { + "start": 3584.4, + "end": 3585.74, + "probability": 0.9218 + }, + { + "start": 3588.7, + "end": 3594.24, + "probability": 0.961 + }, + { + "start": 3595.4, + "end": 3597.58, + "probability": 0.9186 + }, + { + "start": 3599.14, + "end": 3602.76, + "probability": 0.6189 + }, + { + "start": 3604.0, + "end": 3605.32, + "probability": 0.8964 + }, + { + "start": 3605.9, + "end": 3608.12, + "probability": 0.5393 + }, + { + "start": 3609.26, + "end": 3613.5, + "probability": 0.9614 + }, + { + "start": 3615.72, + "end": 3618.4, + "probability": 0.9734 + }, + { + "start": 3620.12, + "end": 3621.78, + "probability": 0.9954 + }, + { + "start": 3622.46, + "end": 3625.82, + "probability": 0.8837 + }, + { + "start": 3627.0, + "end": 3628.72, + "probability": 0.9699 + }, + { + "start": 3629.24, + "end": 3636.12, + "probability": 0.9976 + }, + { + "start": 3636.96, + "end": 3638.9, + "probability": 0.9454 + }, + { + "start": 3639.44, + "end": 3640.64, + "probability": 0.8773 + }, + { + "start": 3641.4, + "end": 3645.4, + "probability": 0.8111 + }, + { + "start": 3646.12, + "end": 3650.5, + "probability": 0.8341 + }, + { + "start": 3651.1, + "end": 3652.42, + "probability": 0.791 + }, + { + "start": 3653.44, + "end": 3656.52, + "probability": 0.9636 + }, + { + "start": 3658.1, + "end": 3659.94, + "probability": 0.8913 + }, + { + "start": 3660.58, + "end": 3664.84, + "probability": 0.9075 + }, + { + "start": 3665.46, + "end": 3667.58, + "probability": 0.7087 + }, + { + "start": 3668.9, + "end": 3670.2, + "probability": 0.9396 + }, + { + "start": 3671.02, + "end": 3673.54, + "probability": 0.9961 + }, + { + "start": 3674.3, + "end": 3678.86, + "probability": 0.9158 + }, + { + "start": 3679.6, + "end": 3681.48, + "probability": 0.4085 + }, + { + "start": 3682.14, + "end": 3684.66, + "probability": 0.9688 + }, + { + "start": 3685.24, + "end": 3691.06, + "probability": 0.9938 + }, + { + "start": 3692.2, + "end": 3701.02, + "probability": 0.981 + }, + { + "start": 3701.78, + "end": 3705.2, + "probability": 0.8922 + }, + { + "start": 3705.72, + "end": 3708.96, + "probability": 0.9785 + }, + { + "start": 3710.28, + "end": 3711.68, + "probability": 0.9661 + }, + { + "start": 3712.32, + "end": 3716.36, + "probability": 0.8703 + }, + { + "start": 3716.76, + "end": 3718.7, + "probability": 0.9357 + }, + { + "start": 3719.5, + "end": 3722.74, + "probability": 0.9824 + }, + { + "start": 3722.8, + "end": 3727.6, + "probability": 0.9203 + }, + { + "start": 3728.2, + "end": 3735.0, + "probability": 0.9917 + }, + { + "start": 3735.58, + "end": 3736.36, + "probability": 0.9507 + }, + { + "start": 3736.92, + "end": 3740.46, + "probability": 0.7858 + }, + { + "start": 3740.86, + "end": 3741.38, + "probability": 0.8786 + }, + { + "start": 3741.72, + "end": 3743.54, + "probability": 0.497 + }, + { + "start": 3743.62, + "end": 3745.14, + "probability": 0.8516 + }, + { + "start": 3752.02, + "end": 3752.02, + "probability": 0.4361 + }, + { + "start": 3752.02, + "end": 3752.02, + "probability": 0.1614 + }, + { + "start": 3752.02, + "end": 3752.02, + "probability": 0.1136 + }, + { + "start": 3752.02, + "end": 3752.02, + "probability": 0.0238 + }, + { + "start": 3752.02, + "end": 3752.02, + "probability": 0.1738 + }, + { + "start": 3752.02, + "end": 3752.08, + "probability": 0.1579 + }, + { + "start": 3752.08, + "end": 3752.14, + "probability": 0.1469 + }, + { + "start": 3758.06, + "end": 3758.34, + "probability": 0.0773 + }, + { + "start": 3758.4, + "end": 3758.5, + "probability": 0.0114 + }, + { + "start": 3786.46, + "end": 3787.38, + "probability": 0.31 + }, + { + "start": 3804.12, + "end": 3807.42, + "probability": 0.8809 + }, + { + "start": 3808.8, + "end": 3810.18, + "probability": 0.9881 + }, + { + "start": 3810.74, + "end": 3815.26, + "probability": 0.9701 + }, + { + "start": 3815.26, + "end": 3820.28, + "probability": 0.9293 + }, + { + "start": 3821.04, + "end": 3823.56, + "probability": 0.8898 + }, + { + "start": 3824.1, + "end": 3826.12, + "probability": 0.9849 + }, + { + "start": 3827.12, + "end": 3832.62, + "probability": 0.7561 + }, + { + "start": 3833.26, + "end": 3837.42, + "probability": 0.9754 + }, + { + "start": 3837.82, + "end": 3841.06, + "probability": 0.9939 + }, + { + "start": 3841.06, + "end": 3845.3, + "probability": 0.9966 + }, + { + "start": 3845.86, + "end": 3847.66, + "probability": 0.6631 + }, + { + "start": 3848.68, + "end": 3851.62, + "probability": 0.8721 + }, + { + "start": 3851.62, + "end": 3855.02, + "probability": 0.9908 + }, + { + "start": 3856.24, + "end": 3858.16, + "probability": 0.8741 + }, + { + "start": 3858.84, + "end": 3864.44, + "probability": 0.9409 + }, + { + "start": 3864.84, + "end": 3866.42, + "probability": 0.7117 + }, + { + "start": 3866.8, + "end": 3870.24, + "probability": 0.6543 + }, + { + "start": 3871.0, + "end": 3877.2, + "probability": 0.9797 + }, + { + "start": 3877.3, + "end": 3880.32, + "probability": 0.9925 + }, + { + "start": 3880.32, + "end": 3884.4, + "probability": 0.9984 + }, + { + "start": 3885.12, + "end": 3888.14, + "probability": 0.9758 + }, + { + "start": 3888.14, + "end": 3891.04, + "probability": 0.9641 + }, + { + "start": 3891.5, + "end": 3895.3, + "probability": 0.9648 + }, + { + "start": 3895.72, + "end": 3901.06, + "probability": 0.9931 + }, + { + "start": 3901.96, + "end": 3902.0, + "probability": 0.0267 + }, + { + "start": 3902.0, + "end": 3905.62, + "probability": 0.6972 + }, + { + "start": 3905.62, + "end": 3909.98, + "probability": 0.9918 + }, + { + "start": 3910.7, + "end": 3912.74, + "probability": 0.4748 + }, + { + "start": 3912.74, + "end": 3915.52, + "probability": 0.8805 + }, + { + "start": 3915.94, + "end": 3917.97, + "probability": 0.9429 + }, + { + "start": 3918.84, + "end": 3920.46, + "probability": 0.7733 + }, + { + "start": 3920.7, + "end": 3922.18, + "probability": 0.8669 + }, + { + "start": 3922.48, + "end": 3923.74, + "probability": 0.8611 + }, + { + "start": 3924.16, + "end": 3929.96, + "probability": 0.9648 + }, + { + "start": 3931.14, + "end": 3933.96, + "probability": 0.9895 + }, + { + "start": 3933.96, + "end": 3937.76, + "probability": 0.9839 + }, + { + "start": 3938.89, + "end": 3942.78, + "probability": 0.9978 + }, + { + "start": 3943.1, + "end": 3946.9, + "probability": 0.9793 + }, + { + "start": 3947.32, + "end": 3949.24, + "probability": 0.966 + }, + { + "start": 3949.6, + "end": 3951.42, + "probability": 0.9609 + }, + { + "start": 3951.8, + "end": 3953.79, + "probability": 0.5566 + }, + { + "start": 3954.68, + "end": 3959.6, + "probability": 0.9666 + }, + { + "start": 3959.9, + "end": 3962.02, + "probability": 0.9736 + }, + { + "start": 3962.42, + "end": 3963.74, + "probability": 0.8369 + }, + { + "start": 3964.06, + "end": 3966.0, + "probability": 0.9579 + }, + { + "start": 3966.4, + "end": 3968.86, + "probability": 0.9006 + }, + { + "start": 3969.2, + "end": 3969.52, + "probability": 0.0104 + }, + { + "start": 3969.52, + "end": 3969.52, + "probability": 0.231 + }, + { + "start": 3969.52, + "end": 3972.14, + "probability": 0.3163 + }, + { + "start": 3972.26, + "end": 3974.06, + "probability": 0.2339 + }, + { + "start": 3974.08, + "end": 3974.58, + "probability": 0.2314 + }, + { + "start": 3975.66, + "end": 3975.66, + "probability": 0.2336 + }, + { + "start": 3975.72, + "end": 3977.46, + "probability": 0.5933 + }, + { + "start": 3977.48, + "end": 3979.28, + "probability": 0.1191 + }, + { + "start": 3979.3, + "end": 3980.1, + "probability": 0.0679 + }, + { + "start": 3980.1, + "end": 3980.1, + "probability": 0.6582 + }, + { + "start": 3980.1, + "end": 3983.06, + "probability": 0.9451 + }, + { + "start": 3983.06, + "end": 3989.04, + "probability": 0.9859 + }, + { + "start": 3989.08, + "end": 3989.56, + "probability": 0.731 + }, + { + "start": 3989.72, + "end": 3990.02, + "probability": 0.3254 + }, + { + "start": 3990.02, + "end": 3990.66, + "probability": 0.7043 + }, + { + "start": 3991.28, + "end": 3992.42, + "probability": 0.9609 + }, + { + "start": 3993.56, + "end": 3994.42, + "probability": 0.5455 + }, + { + "start": 3995.22, + "end": 3996.8, + "probability": 0.1114 + }, + { + "start": 3997.5, + "end": 3997.72, + "probability": 0.1238 + }, + { + "start": 3998.0, + "end": 3999.48, + "probability": 0.7884 + }, + { + "start": 4000.44, + "end": 4001.64, + "probability": 0.7102 + }, + { + "start": 4006.06, + "end": 4008.84, + "probability": 0.6208 + }, + { + "start": 4009.62, + "end": 4014.22, + "probability": 0.9895 + }, + { + "start": 4014.64, + "end": 4017.54, + "probability": 0.9819 + }, + { + "start": 4017.64, + "end": 4021.56, + "probability": 0.9917 + }, + { + "start": 4051.5, + "end": 4051.64, + "probability": 0.2917 + }, + { + "start": 4051.64, + "end": 4051.7, + "probability": 0.0365 + }, + { + "start": 4051.7, + "end": 4054.44, + "probability": 0.5274 + }, + { + "start": 4055.74, + "end": 4062.28, + "probability": 0.9214 + }, + { + "start": 4062.88, + "end": 4063.44, + "probability": 0.9716 + }, + { + "start": 4064.64, + "end": 4072.24, + "probability": 0.9473 + }, + { + "start": 4072.24, + "end": 4078.14, + "probability": 0.998 + }, + { + "start": 4078.74, + "end": 4081.3, + "probability": 0.9974 + }, + { + "start": 4082.78, + "end": 4088.12, + "probability": 0.803 + }, + { + "start": 4093.32, + "end": 4096.44, + "probability": 0.972 + }, + { + "start": 4097.84, + "end": 4101.46, + "probability": 0.9978 + }, + { + "start": 4102.04, + "end": 4103.02, + "probability": 0.9634 + }, + { + "start": 4103.58, + "end": 4106.04, + "probability": 0.782 + }, + { + "start": 4106.92, + "end": 4107.84, + "probability": 0.8218 + }, + { + "start": 4108.36, + "end": 4111.02, + "probability": 0.9431 + }, + { + "start": 4111.5, + "end": 4114.04, + "probability": 0.9935 + }, + { + "start": 4114.4, + "end": 4118.64, + "probability": 0.9928 + }, + { + "start": 4118.64, + "end": 4121.5, + "probability": 0.9831 + }, + { + "start": 4122.54, + "end": 4125.98, + "probability": 0.9695 + }, + { + "start": 4126.52, + "end": 4132.92, + "probability": 0.9935 + }, + { + "start": 4134.38, + "end": 4140.96, + "probability": 0.9896 + }, + { + "start": 4144.94, + "end": 4148.04, + "probability": 0.9967 + }, + { + "start": 4148.06, + "end": 4148.84, + "probability": 0.5419 + }, + { + "start": 4149.54, + "end": 4151.16, + "probability": 0.9642 + }, + { + "start": 4188.82, + "end": 4188.92, + "probability": 0.7351 + }, + { + "start": 4190.7, + "end": 4193.08, + "probability": 0.8306 + }, + { + "start": 4194.44, + "end": 4195.28, + "probability": 0.831 + }, + { + "start": 4196.34, + "end": 4200.68, + "probability": 0.9302 + }, + { + "start": 4202.54, + "end": 4207.4, + "probability": 0.9618 + }, + { + "start": 4208.08, + "end": 4210.82, + "probability": 0.9543 + }, + { + "start": 4211.68, + "end": 4215.24, + "probability": 0.7691 + }, + { + "start": 4215.76, + "end": 4218.1, + "probability": 0.8956 + }, + { + "start": 4219.02, + "end": 4221.46, + "probability": 0.9049 + }, + { + "start": 4221.46, + "end": 4224.0, + "probability": 0.9965 + }, + { + "start": 4224.68, + "end": 4226.78, + "probability": 0.9895 + }, + { + "start": 4227.64, + "end": 4231.58, + "probability": 0.9946 + }, + { + "start": 4232.04, + "end": 4235.2, + "probability": 0.9909 + }, + { + "start": 4236.16, + "end": 4238.7, + "probability": 0.9751 + }, + { + "start": 4239.34, + "end": 4240.8, + "probability": 0.9848 + }, + { + "start": 4241.34, + "end": 4245.4, + "probability": 0.9883 + }, + { + "start": 4246.2, + "end": 4247.22, + "probability": 0.7918 + }, + { + "start": 4247.58, + "end": 4249.02, + "probability": 0.995 + }, + { + "start": 4249.38, + "end": 4251.7, + "probability": 0.9937 + }, + { + "start": 4252.04, + "end": 4253.66, + "probability": 0.8924 + }, + { + "start": 4253.96, + "end": 4255.96, + "probability": 0.9902 + }, + { + "start": 4257.22, + "end": 4260.5, + "probability": 0.9454 + }, + { + "start": 4260.56, + "end": 4263.6, + "probability": 0.7945 + }, + { + "start": 4264.28, + "end": 4270.42, + "probability": 0.9785 + }, + { + "start": 4271.92, + "end": 4278.16, + "probability": 0.9803 + }, + { + "start": 4278.64, + "end": 4279.58, + "probability": 0.815 + }, + { + "start": 4279.72, + "end": 4285.1, + "probability": 0.9457 + }, + { + "start": 4285.64, + "end": 4291.6, + "probability": 0.7088 + }, + { + "start": 4294.36, + "end": 4297.96, + "probability": 0.9827 + }, + { + "start": 4297.96, + "end": 4301.8, + "probability": 0.9982 + }, + { + "start": 4301.94, + "end": 4303.14, + "probability": 0.6874 + }, + { + "start": 4303.14, + "end": 4307.64, + "probability": 0.9352 + }, + { + "start": 4307.7, + "end": 4311.24, + "probability": 0.9883 + }, + { + "start": 4311.74, + "end": 4316.2, + "probability": 0.9951 + }, + { + "start": 4316.66, + "end": 4319.85, + "probability": 0.9907 + }, + { + "start": 4320.16, + "end": 4325.32, + "probability": 0.9901 + }, + { + "start": 4325.76, + "end": 4330.42, + "probability": 0.9922 + }, + { + "start": 4330.8, + "end": 4336.92, + "probability": 0.9973 + }, + { + "start": 4338.2, + "end": 4342.06, + "probability": 0.857 + }, + { + "start": 4342.06, + "end": 4345.68, + "probability": 0.9887 + }, + { + "start": 4346.5, + "end": 4349.62, + "probability": 0.942 + }, + { + "start": 4350.16, + "end": 4351.62, + "probability": 0.9732 + }, + { + "start": 4352.32, + "end": 4353.02, + "probability": 0.967 + }, + { + "start": 4353.22, + "end": 4358.76, + "probability": 0.9966 + }, + { + "start": 4359.2, + "end": 4362.22, + "probability": 0.9922 + }, + { + "start": 4362.92, + "end": 4367.02, + "probability": 0.9983 + }, + { + "start": 4367.34, + "end": 4369.22, + "probability": 0.7483 + }, + { + "start": 4369.52, + "end": 4372.54, + "probability": 0.899 + }, + { + "start": 4373.1, + "end": 4376.62, + "probability": 0.9984 + }, + { + "start": 4376.9, + "end": 4380.06, + "probability": 0.9537 + }, + { + "start": 4381.06, + "end": 4384.88, + "probability": 0.9937 + }, + { + "start": 4384.88, + "end": 4390.42, + "probability": 0.9976 + }, + { + "start": 4390.92, + "end": 4393.02, + "probability": 0.9761 + }, + { + "start": 4394.0, + "end": 4399.36, + "probability": 0.6612 + }, + { + "start": 4399.68, + "end": 4404.92, + "probability": 0.9966 + }, + { + "start": 4405.88, + "end": 4406.58, + "probability": 0.9388 + }, + { + "start": 4407.14, + "end": 4409.4, + "probability": 0.9946 + }, + { + "start": 4409.4, + "end": 4412.66, + "probability": 0.9958 + }, + { + "start": 4412.84, + "end": 4414.34, + "probability": 0.7671 + }, + { + "start": 4414.46, + "end": 4418.14, + "probability": 0.9839 + }, + { + "start": 4418.96, + "end": 4421.32, + "probability": 0.9766 + }, + { + "start": 4423.0, + "end": 4423.34, + "probability": 0.8673 + }, + { + "start": 4425.24, + "end": 4429.58, + "probability": 0.9973 + }, + { + "start": 4430.12, + "end": 4432.04, + "probability": 0.9909 + }, + { + "start": 4432.56, + "end": 4436.44, + "probability": 0.9468 + }, + { + "start": 4437.86, + "end": 4438.76, + "probability": 0.9959 + }, + { + "start": 4439.4, + "end": 4443.58, + "probability": 0.8934 + }, + { + "start": 4444.36, + "end": 4445.48, + "probability": 0.9479 + }, + { + "start": 4446.24, + "end": 4450.7, + "probability": 0.9551 + }, + { + "start": 4451.46, + "end": 4452.1, + "probability": 0.7757 + }, + { + "start": 4452.16, + "end": 4453.1, + "probability": 0.9238 + }, + { + "start": 4453.66, + "end": 4455.62, + "probability": 0.8778 + }, + { + "start": 4456.08, + "end": 4458.02, + "probability": 0.98 + }, + { + "start": 4458.64, + "end": 4462.2, + "probability": 0.9911 + }, + { + "start": 4462.68, + "end": 4463.2, + "probability": 0.8065 + }, + { + "start": 4463.5, + "end": 4464.6, + "probability": 0.9896 + }, + { + "start": 4464.76, + "end": 4465.6, + "probability": 0.9451 + }, + { + "start": 4465.78, + "end": 4466.86, + "probability": 0.9098 + }, + { + "start": 4467.26, + "end": 4467.9, + "probability": 0.8242 + }, + { + "start": 4468.04, + "end": 4471.38, + "probability": 0.9938 + }, + { + "start": 4472.16, + "end": 4476.28, + "probability": 0.9902 + }, + { + "start": 4476.7, + "end": 4480.42, + "probability": 0.9386 + }, + { + "start": 4481.56, + "end": 4482.48, + "probability": 0.9604 + }, + { + "start": 4483.22, + "end": 4484.04, + "probability": 0.9706 + }, + { + "start": 4484.78, + "end": 4486.0, + "probability": 0.5556 + }, + { + "start": 4486.66, + "end": 4489.78, + "probability": 0.9853 + }, + { + "start": 4490.44, + "end": 4493.9, + "probability": 0.9711 + }, + { + "start": 4494.82, + "end": 4499.12, + "probability": 0.9981 + }, + { + "start": 4500.52, + "end": 4506.0, + "probability": 0.9925 + }, + { + "start": 4506.56, + "end": 4509.76, + "probability": 0.9937 + }, + { + "start": 4510.1, + "end": 4511.78, + "probability": 0.9651 + }, + { + "start": 4512.24, + "end": 4514.76, + "probability": 0.9801 + }, + { + "start": 4515.18, + "end": 4516.02, + "probability": 0.9698 + }, + { + "start": 4516.76, + "end": 4517.66, + "probability": 0.7179 + }, + { + "start": 4518.0, + "end": 4519.62, + "probability": 0.6942 + }, + { + "start": 4523.18, + "end": 4523.3, + "probability": 0.2591 + }, + { + "start": 4548.26, + "end": 4553.06, + "probability": 0.5715 + }, + { + "start": 4553.3, + "end": 4553.74, + "probability": 0.6199 + }, + { + "start": 4558.26, + "end": 4559.92, + "probability": 0.8604 + }, + { + "start": 4560.04, + "end": 4565.3, + "probability": 0.9634 + }, + { + "start": 4565.3, + "end": 4568.62, + "probability": 0.9978 + }, + { + "start": 4571.44, + "end": 4575.66, + "probability": 0.9875 + }, + { + "start": 4575.66, + "end": 4580.62, + "probability": 0.9674 + }, + { + "start": 4583.94, + "end": 4584.44, + "probability": 0.7758 + }, + { + "start": 4584.58, + "end": 4586.04, + "probability": 0.856 + }, + { + "start": 4586.2, + "end": 4587.82, + "probability": 0.989 + }, + { + "start": 4587.9, + "end": 4589.54, + "probability": 0.9541 + }, + { + "start": 4591.44, + "end": 4593.22, + "probability": 0.9608 + }, + { + "start": 4610.42, + "end": 4614.16, + "probability": 0.9512 + }, + { + "start": 4614.16, + "end": 4615.4, + "probability": 0.9506 + }, + { + "start": 4615.52, + "end": 4616.33, + "probability": 0.9661 + }, + { + "start": 4617.98, + "end": 4618.98, + "probability": 0.7632 + }, + { + "start": 4622.0, + "end": 4623.86, + "probability": 0.6328 + }, + { + "start": 4626.41, + "end": 4629.76, + "probability": 0.4994 + }, + { + "start": 4630.0, + "end": 4630.36, + "probability": 0.7326 + }, + { + "start": 4641.18, + "end": 4644.18, + "probability": 0.9708 + }, + { + "start": 4644.36, + "end": 4645.34, + "probability": 0.9069 + }, + { + "start": 4645.58, + "end": 4646.74, + "probability": 0.9554 + }, + { + "start": 4647.94, + "end": 4648.94, + "probability": 0.5312 + }, + { + "start": 4650.26, + "end": 4655.58, + "probability": 0.9706 + }, + { + "start": 4658.02, + "end": 4661.38, + "probability": 0.77 + }, + { + "start": 4662.4, + "end": 4665.24, + "probability": 0.9875 + }, + { + "start": 4666.74, + "end": 4668.35, + "probability": 0.9966 + }, + { + "start": 4669.74, + "end": 4671.04, + "probability": 0.9995 + }, + { + "start": 4671.76, + "end": 4675.46, + "probability": 0.9973 + }, + { + "start": 4677.0, + "end": 4680.35, + "probability": 0.7783 + }, + { + "start": 4681.54, + "end": 4682.62, + "probability": 0.8438 + }, + { + "start": 4684.52, + "end": 4687.79, + "probability": 0.9943 + }, + { + "start": 4688.22, + "end": 4691.36, + "probability": 0.9474 + }, + { + "start": 4692.78, + "end": 4693.98, + "probability": 0.9326 + }, + { + "start": 4694.86, + "end": 4701.38, + "probability": 0.9949 + }, + { + "start": 4702.04, + "end": 4704.52, + "probability": 0.5548 + }, + { + "start": 4705.04, + "end": 4705.32, + "probability": 0.5638 + }, + { + "start": 4705.32, + "end": 4708.18, + "probability": 0.9758 + }, + { + "start": 4708.54, + "end": 4711.98, + "probability": 0.9904 + }, + { + "start": 4713.6, + "end": 4715.52, + "probability": 0.9822 + }, + { + "start": 4716.62, + "end": 4719.24, + "probability": 0.9914 + }, + { + "start": 4719.82, + "end": 4725.68, + "probability": 0.9761 + }, + { + "start": 4726.4, + "end": 4730.24, + "probability": 0.9412 + }, + { + "start": 4731.7, + "end": 4732.94, + "probability": 0.961 + }, + { + "start": 4735.02, + "end": 4735.98, + "probability": 0.7411 + }, + { + "start": 4736.1, + "end": 4737.28, + "probability": 0.9763 + }, + { + "start": 4737.42, + "end": 4739.92, + "probability": 0.9659 + }, + { + "start": 4740.0, + "end": 4742.24, + "probability": 0.9671 + }, + { + "start": 4742.96, + "end": 4745.36, + "probability": 0.9783 + }, + { + "start": 4746.42, + "end": 4747.64, + "probability": 0.8163 + }, + { + "start": 4748.3, + "end": 4749.42, + "probability": 0.9048 + }, + { + "start": 4750.8, + "end": 4754.84, + "probability": 0.9858 + }, + { + "start": 4755.6, + "end": 4757.32, + "probability": 0.9935 + }, + { + "start": 4757.9, + "end": 4759.24, + "probability": 0.9883 + }, + { + "start": 4759.84, + "end": 4763.52, + "probability": 0.9858 + }, + { + "start": 4764.78, + "end": 4766.92, + "probability": 0.8354 + }, + { + "start": 4768.22, + "end": 4769.44, + "probability": 0.8935 + }, + { + "start": 4770.1, + "end": 4770.9, + "probability": 0.9454 + }, + { + "start": 4771.52, + "end": 4772.42, + "probability": 0.9125 + }, + { + "start": 4773.0, + "end": 4777.12, + "probability": 0.8656 + }, + { + "start": 4777.68, + "end": 4780.0, + "probability": 0.9681 + }, + { + "start": 4780.4, + "end": 4783.6, + "probability": 0.9882 + }, + { + "start": 4785.48, + "end": 4790.74, + "probability": 0.9823 + }, + { + "start": 4791.26, + "end": 4792.74, + "probability": 0.9955 + }, + { + "start": 4794.02, + "end": 4795.24, + "probability": 0.8752 + }, + { + "start": 4796.56, + "end": 4799.96, + "probability": 0.9965 + }, + { + "start": 4800.56, + "end": 4803.92, + "probability": 0.9965 + }, + { + "start": 4804.52, + "end": 4805.54, + "probability": 0.9349 + }, + { + "start": 4806.14, + "end": 4809.08, + "probability": 0.9653 + }, + { + "start": 4809.16, + "end": 4810.28, + "probability": 0.965 + }, + { + "start": 4810.6, + "end": 4812.38, + "probability": 0.979 + }, + { + "start": 4813.34, + "end": 4815.56, + "probability": 0.998 + }, + { + "start": 4816.68, + "end": 4820.96, + "probability": 0.9208 + }, + { + "start": 4821.78, + "end": 4823.86, + "probability": 0.8407 + }, + { + "start": 4824.68, + "end": 4828.52, + "probability": 0.9952 + }, + { + "start": 4829.24, + "end": 4832.1, + "probability": 0.9966 + }, + { + "start": 4835.04, + "end": 4838.88, + "probability": 0.978 + }, + { + "start": 4839.78, + "end": 4844.8, + "probability": 0.9857 + }, + { + "start": 4845.26, + "end": 4852.6, + "probability": 0.9974 + }, + { + "start": 4853.56, + "end": 4854.84, + "probability": 0.9984 + }, + { + "start": 4855.96, + "end": 4857.34, + "probability": 0.999 + }, + { + "start": 4858.66, + "end": 4862.08, + "probability": 0.9907 + }, + { + "start": 4862.26, + "end": 4862.36, + "probability": 0.111 + }, + { + "start": 4863.76, + "end": 4864.46, + "probability": 0.8153 + }, + { + "start": 4865.18, + "end": 4867.12, + "probability": 0.9909 + }, + { + "start": 4867.38, + "end": 4875.08, + "probability": 0.9707 + }, + { + "start": 4875.64, + "end": 4878.02, + "probability": 0.9543 + }, + { + "start": 4881.02, + "end": 4885.56, + "probability": 0.9393 + }, + { + "start": 4886.42, + "end": 4887.98, + "probability": 0.8743 + }, + { + "start": 4889.8, + "end": 4891.54, + "probability": 0.9879 + }, + { + "start": 4892.48, + "end": 4893.06, + "probability": 0.8381 + }, + { + "start": 4893.68, + "end": 4896.06, + "probability": 0.9933 + }, + { + "start": 4897.0, + "end": 4897.96, + "probability": 0.9179 + }, + { + "start": 4898.54, + "end": 4901.22, + "probability": 0.9827 + }, + { + "start": 4902.04, + "end": 4902.24, + "probability": 0.7046 + }, + { + "start": 4902.28, + "end": 4903.18, + "probability": 0.9564 + }, + { + "start": 4903.4, + "end": 4907.68, + "probability": 0.9957 + }, + { + "start": 4908.22, + "end": 4913.86, + "probability": 0.999 + }, + { + "start": 4914.52, + "end": 4915.12, + "probability": 0.8175 + }, + { + "start": 4915.72, + "end": 4917.94, + "probability": 0.9948 + }, + { + "start": 4919.14, + "end": 4922.38, + "probability": 0.9864 + }, + { + "start": 4923.18, + "end": 4925.94, + "probability": 0.9988 + }, + { + "start": 4926.54, + "end": 4930.1, + "probability": 0.9985 + }, + { + "start": 4930.28, + "end": 4931.58, + "probability": 0.9642 + }, + { + "start": 4932.1, + "end": 4933.96, + "probability": 0.985 + }, + { + "start": 4934.28, + "end": 4937.2, + "probability": 0.9675 + }, + { + "start": 4937.64, + "end": 4941.08, + "probability": 0.8695 + }, + { + "start": 4941.6, + "end": 4942.48, + "probability": 0.9352 + }, + { + "start": 4942.88, + "end": 4947.06, + "probability": 0.9797 + }, + { + "start": 4948.14, + "end": 4948.96, + "probability": 0.9734 + }, + { + "start": 4951.86, + "end": 4952.8, + "probability": 0.739 + }, + { + "start": 4953.52, + "end": 4955.62, + "probability": 0.7236 + }, + { + "start": 4956.76, + "end": 4962.52, + "probability": 0.8692 + }, + { + "start": 4963.08, + "end": 4964.74, + "probability": 0.7917 + }, + { + "start": 4965.68, + "end": 4967.02, + "probability": 0.9399 + }, + { + "start": 4967.06, + "end": 4970.22, + "probability": 0.7796 + }, + { + "start": 4973.98, + "end": 4977.26, + "probability": 0.4592 + }, + { + "start": 4978.5, + "end": 4981.42, + "probability": 0.0199 + }, + { + "start": 4981.42, + "end": 4982.24, + "probability": 0.0468 + }, + { + "start": 4995.68, + "end": 4998.56, + "probability": 0.4387 + }, + { + "start": 4999.32, + "end": 5001.64, + "probability": 0.9336 + }, + { + "start": 5002.54, + "end": 5006.24, + "probability": 0.7556 + }, + { + "start": 5006.72, + "end": 5008.92, + "probability": 0.8335 + }, + { + "start": 5010.28, + "end": 5012.44, + "probability": 0.7015 + }, + { + "start": 5012.52, + "end": 5014.74, + "probability": 0.0146 + }, + { + "start": 5015.88, + "end": 5017.3, + "probability": 0.0091 + }, + { + "start": 5030.38, + "end": 5030.6, + "probability": 0.029 + }, + { + "start": 5030.6, + "end": 5031.12, + "probability": 0.244 + }, + { + "start": 5031.12, + "end": 5031.7, + "probability": 0.324 + }, + { + "start": 5031.9, + "end": 5032.22, + "probability": 0.6567 + }, + { + "start": 5032.22, + "end": 5033.6, + "probability": 0.4996 + }, + { + "start": 5033.82, + "end": 5036.26, + "probability": 0.6998 + }, + { + "start": 5037.98, + "end": 5039.58, + "probability": 0.9936 + }, + { + "start": 5042.92, + "end": 5045.68, + "probability": 0.553 + }, + { + "start": 5046.24, + "end": 5051.24, + "probability": 0.9631 + }, + { + "start": 5051.82, + "end": 5053.94, + "probability": 0.9397 + }, + { + "start": 5054.48, + "end": 5055.46, + "probability": 0.6918 + }, + { + "start": 5056.18, + "end": 5056.96, + "probability": 0.4955 + }, + { + "start": 5060.22, + "end": 5060.32, + "probability": 0.2234 + }, + { + "start": 5061.22, + "end": 5061.86, + "probability": 0.5223 + }, + { + "start": 5064.17, + "end": 5069.06, + "probability": 0.0152 + }, + { + "start": 5069.44, + "end": 5074.04, + "probability": 0.0189 + }, + { + "start": 5074.88, + "end": 5075.68, + "probability": 0.3477 + }, + { + "start": 5082.24, + "end": 5086.12, + "probability": 0.4139 + }, + { + "start": 5086.82, + "end": 5088.56, + "probability": 0.6635 + }, + { + "start": 5088.8, + "end": 5091.02, + "probability": 0.9651 + }, + { + "start": 5091.8, + "end": 5092.68, + "probability": 0.8432 + }, + { + "start": 5093.68, + "end": 5093.68, + "probability": 0.2793 + }, + { + "start": 5093.68, + "end": 5095.54, + "probability": 0.76 + }, + { + "start": 5097.22, + "end": 5099.12, + "probability": 0.9654 + }, + { + "start": 5101.22, + "end": 5103.65, + "probability": 0.9395 + }, + { + "start": 5104.44, + "end": 5111.04, + "probability": 0.9856 + }, + { + "start": 5111.58, + "end": 5112.4, + "probability": 0.1767 + }, + { + "start": 5113.0, + "end": 5115.3, + "probability": 0.8032 + }, + { + "start": 5116.08, + "end": 5116.9, + "probability": 0.1166 + }, + { + "start": 5117.62, + "end": 5120.82, + "probability": 0.4949 + }, + { + "start": 5121.24, + "end": 5124.8, + "probability": 0.8424 + }, + { + "start": 5124.86, + "end": 5125.42, + "probability": 0.9146 + }, + { + "start": 5127.38, + "end": 5130.93, + "probability": 0.3026 + }, + { + "start": 5134.76, + "end": 5136.7, + "probability": 0.0538 + }, + { + "start": 5136.7, + "end": 5138.56, + "probability": 0.1157 + }, + { + "start": 5139.94, + "end": 5142.14, + "probability": 0.8073 + }, + { + "start": 5145.68, + "end": 5149.12, + "probability": 0.9964 + }, + { + "start": 5151.8, + "end": 5155.68, + "probability": 0.9911 + }, + { + "start": 5155.76, + "end": 5157.68, + "probability": 0.9983 + }, + { + "start": 5158.34, + "end": 5159.38, + "probability": 0.9283 + }, + { + "start": 5160.06, + "end": 5161.61, + "probability": 0.9971 + }, + { + "start": 5163.36, + "end": 5166.8, + "probability": 0.9763 + }, + { + "start": 5168.44, + "end": 5170.22, + "probability": 0.963 + }, + { + "start": 5171.98, + "end": 5173.42, + "probability": 0.9722 + }, + { + "start": 5174.38, + "end": 5182.36, + "probability": 0.9912 + }, + { + "start": 5184.5, + "end": 5189.36, + "probability": 0.9871 + }, + { + "start": 5190.86, + "end": 5193.9, + "probability": 0.9995 + }, + { + "start": 5195.5, + "end": 5196.68, + "probability": 0.7836 + }, + { + "start": 5198.68, + "end": 5202.44, + "probability": 0.9996 + }, + { + "start": 5204.1, + "end": 5208.98, + "probability": 0.9964 + }, + { + "start": 5210.84, + "end": 5215.4, + "probability": 0.9977 + }, + { + "start": 5216.34, + "end": 5224.26, + "probability": 0.9938 + }, + { + "start": 5224.72, + "end": 5226.58, + "probability": 0.9803 + }, + { + "start": 5227.28, + "end": 5228.18, + "probability": 0.8509 + }, + { + "start": 5229.4, + "end": 5230.18, + "probability": 0.8512 + }, + { + "start": 5231.26, + "end": 5233.5, + "probability": 0.3652 + }, + { + "start": 5234.46, + "end": 5235.72, + "probability": 0.9893 + }, + { + "start": 5238.44, + "end": 5240.64, + "probability": 0.9996 + }, + { + "start": 5241.56, + "end": 5245.48, + "probability": 0.9934 + }, + { + "start": 5246.62, + "end": 5256.6, + "probability": 0.9993 + }, + { + "start": 5257.38, + "end": 5259.72, + "probability": 0.9993 + }, + { + "start": 5260.62, + "end": 5264.72, + "probability": 0.9902 + }, + { + "start": 5266.14, + "end": 5267.22, + "probability": 0.5012 + }, + { + "start": 5268.12, + "end": 5271.34, + "probability": 0.9619 + }, + { + "start": 5273.48, + "end": 5281.04, + "probability": 0.9966 + }, + { + "start": 5282.68, + "end": 5287.02, + "probability": 0.9967 + }, + { + "start": 5288.12, + "end": 5288.46, + "probability": 0.2405 + }, + { + "start": 5288.66, + "end": 5295.64, + "probability": 0.9946 + }, + { + "start": 5298.34, + "end": 5300.44, + "probability": 0.9775 + }, + { + "start": 5300.6, + "end": 5301.32, + "probability": 0.9086 + }, + { + "start": 5301.78, + "end": 5306.56, + "probability": 0.9727 + }, + { + "start": 5308.4, + "end": 5309.7, + "probability": 0.9829 + }, + { + "start": 5310.9, + "end": 5313.08, + "probability": 0.9839 + }, + { + "start": 5314.08, + "end": 5317.02, + "probability": 0.8993 + }, + { + "start": 5318.74, + "end": 5318.78, + "probability": 0.086 + }, + { + "start": 5318.78, + "end": 5318.78, + "probability": 0.2157 + }, + { + "start": 5318.78, + "end": 5322.44, + "probability": 0.7956 + }, + { + "start": 5322.8, + "end": 5323.96, + "probability": 0.9296 + }, + { + "start": 5324.38, + "end": 5325.86, + "probability": 0.9551 + }, + { + "start": 5325.94, + "end": 5327.56, + "probability": 0.9243 + }, + { + "start": 5328.66, + "end": 5330.36, + "probability": 0.9466 + }, + { + "start": 5332.16, + "end": 5333.06, + "probability": 0.0312 + }, + { + "start": 5334.14, + "end": 5342.58, + "probability": 0.9896 + }, + { + "start": 5343.8, + "end": 5346.06, + "probability": 0.7884 + }, + { + "start": 5346.66, + "end": 5346.88, + "probability": 0.3436 + }, + { + "start": 5346.88, + "end": 5348.88, + "probability": 0.7479 + }, + { + "start": 5349.16, + "end": 5353.18, + "probability": 0.9859 + }, + { + "start": 5354.84, + "end": 5360.24, + "probability": 0.9679 + }, + { + "start": 5361.24, + "end": 5367.86, + "probability": 0.9561 + }, + { + "start": 5369.62, + "end": 5371.92, + "probability": 0.9717 + }, + { + "start": 5374.04, + "end": 5374.86, + "probability": 0.562 + }, + { + "start": 5375.6, + "end": 5380.6, + "probability": 0.9955 + }, + { + "start": 5381.9, + "end": 5385.86, + "probability": 0.9958 + }, + { + "start": 5387.02, + "end": 5392.06, + "probability": 0.9985 + }, + { + "start": 5392.54, + "end": 5395.1, + "probability": 0.9507 + }, + { + "start": 5396.78, + "end": 5401.06, + "probability": 0.9921 + }, + { + "start": 5402.42, + "end": 5406.16, + "probability": 0.9957 + }, + { + "start": 5407.98, + "end": 5409.5, + "probability": 0.9975 + }, + { + "start": 5410.32, + "end": 5415.42, + "probability": 0.9938 + }, + { + "start": 5416.48, + "end": 5420.72, + "probability": 0.98 + }, + { + "start": 5422.0, + "end": 5423.02, + "probability": 0.8971 + }, + { + "start": 5423.68, + "end": 5425.04, + "probability": 0.8945 + }, + { + "start": 5425.72, + "end": 5428.18, + "probability": 0.9631 + }, + { + "start": 5429.34, + "end": 5431.28, + "probability": 0.9724 + }, + { + "start": 5432.02, + "end": 5438.6, + "probability": 0.9932 + }, + { + "start": 5439.88, + "end": 5443.6, + "probability": 0.9905 + }, + { + "start": 5444.12, + "end": 5446.14, + "probability": 0.99 + }, + { + "start": 5447.52, + "end": 5449.26, + "probability": 0.9958 + }, + { + "start": 5450.42, + "end": 5455.78, + "probability": 0.999 + }, + { + "start": 5456.42, + "end": 5461.56, + "probability": 0.9576 + }, + { + "start": 5463.02, + "end": 5464.54, + "probability": 0.8125 + }, + { + "start": 5465.62, + "end": 5469.8, + "probability": 0.9719 + }, + { + "start": 5470.46, + "end": 5472.38, + "probability": 0.973 + }, + { + "start": 5473.62, + "end": 5477.36, + "probability": 0.9966 + }, + { + "start": 5478.16, + "end": 5480.3, + "probability": 0.9906 + }, + { + "start": 5480.92, + "end": 5483.06, + "probability": 0.9342 + }, + { + "start": 5484.06, + "end": 5484.82, + "probability": 0.8651 + }, + { + "start": 5485.52, + "end": 5488.36, + "probability": 0.9917 + }, + { + "start": 5489.24, + "end": 5493.14, + "probability": 0.9884 + }, + { + "start": 5493.96, + "end": 5495.5, + "probability": 0.9397 + }, + { + "start": 5496.5, + "end": 5497.14, + "probability": 0.6171 + }, + { + "start": 5498.06, + "end": 5499.4, + "probability": 0.9781 + }, + { + "start": 5499.88, + "end": 5503.44, + "probability": 0.9988 + }, + { + "start": 5503.92, + "end": 5504.8, + "probability": 0.7569 + }, + { + "start": 5505.26, + "end": 5506.42, + "probability": 0.639 + }, + { + "start": 5507.0, + "end": 5508.16, + "probability": 0.8553 + }, + { + "start": 5508.7, + "end": 5512.48, + "probability": 0.9739 + }, + { + "start": 5513.64, + "end": 5516.6, + "probability": 0.9829 + }, + { + "start": 5518.72, + "end": 5519.7, + "probability": 0.929 + }, + { + "start": 5520.38, + "end": 5522.42, + "probability": 0.9805 + }, + { + "start": 5523.06, + "end": 5524.56, + "probability": 0.9194 + }, + { + "start": 5525.34, + "end": 5527.56, + "probability": 0.9441 + }, + { + "start": 5528.2, + "end": 5534.92, + "probability": 0.9969 + }, + { + "start": 5536.74, + "end": 5540.81, + "probability": 0.999 + }, + { + "start": 5541.18, + "end": 5544.66, + "probability": 0.999 + }, + { + "start": 5545.66, + "end": 5547.34, + "probability": 0.9679 + }, + { + "start": 5547.96, + "end": 5550.36, + "probability": 0.9886 + }, + { + "start": 5551.02, + "end": 5555.48, + "probability": 0.9984 + }, + { + "start": 5556.7, + "end": 5560.1, + "probability": 0.9912 + }, + { + "start": 5560.1, + "end": 5564.0, + "probability": 0.9984 + }, + { + "start": 5564.12, + "end": 5565.6, + "probability": 0.9956 + }, + { + "start": 5566.72, + "end": 5568.04, + "probability": 0.9852 + }, + { + "start": 5568.56, + "end": 5572.36, + "probability": 0.998 + }, + { + "start": 5573.16, + "end": 5576.51, + "probability": 0.9374 + }, + { + "start": 5577.42, + "end": 5580.98, + "probability": 0.9942 + }, + { + "start": 5581.76, + "end": 5588.96, + "probability": 0.8834 + }, + { + "start": 5590.14, + "end": 5590.92, + "probability": 0.6931 + }, + { + "start": 5592.42, + "end": 5594.56, + "probability": 0.9813 + }, + { + "start": 5595.16, + "end": 5599.66, + "probability": 0.9241 + }, + { + "start": 5600.66, + "end": 5604.56, + "probability": 0.8271 + }, + { + "start": 5605.76, + "end": 5607.48, + "probability": 0.9951 + }, + { + "start": 5608.48, + "end": 5610.2, + "probability": 0.9452 + }, + { + "start": 5611.4, + "end": 5616.62, + "probability": 0.9972 + }, + { + "start": 5616.62, + "end": 5621.14, + "probability": 0.994 + }, + { + "start": 5621.5, + "end": 5625.68, + "probability": 0.9981 + }, + { + "start": 5625.98, + "end": 5629.16, + "probability": 0.9082 + }, + { + "start": 5629.82, + "end": 5634.18, + "probability": 0.9973 + }, + { + "start": 5636.46, + "end": 5638.14, + "probability": 0.7444 + }, + { + "start": 5639.06, + "end": 5641.62, + "probability": 0.9141 + }, + { + "start": 5642.26, + "end": 5645.32, + "probability": 0.7762 + }, + { + "start": 5646.02, + "end": 5647.98, + "probability": 0.7843 + }, + { + "start": 5648.22, + "end": 5651.18, + "probability": 0.987 + }, + { + "start": 5652.0, + "end": 5654.88, + "probability": 0.996 + }, + { + "start": 5654.88, + "end": 5658.86, + "probability": 0.9932 + }, + { + "start": 5661.14, + "end": 5662.28, + "probability": 0.797 + }, + { + "start": 5663.04, + "end": 5668.4, + "probability": 0.9918 + }, + { + "start": 5669.62, + "end": 5673.7, + "probability": 0.9602 + }, + { + "start": 5674.44, + "end": 5677.94, + "probability": 0.9988 + }, + { + "start": 5678.66, + "end": 5679.52, + "probability": 0.8887 + }, + { + "start": 5679.6, + "end": 5682.64, + "probability": 0.9702 + }, + { + "start": 5682.72, + "end": 5686.78, + "probability": 0.9735 + }, + { + "start": 5688.5, + "end": 5688.8, + "probability": 0.6869 + }, + { + "start": 5690.12, + "end": 5692.0, + "probability": 0.9467 + }, + { + "start": 5692.84, + "end": 5696.44, + "probability": 0.7943 + }, + { + "start": 5697.52, + "end": 5701.44, + "probability": 0.9897 + }, + { + "start": 5701.44, + "end": 5705.42, + "probability": 0.9797 + }, + { + "start": 5706.28, + "end": 5706.92, + "probability": 0.7433 + }, + { + "start": 5707.0, + "end": 5707.74, + "probability": 0.764 + }, + { + "start": 5707.84, + "end": 5712.14, + "probability": 0.9964 + }, + { + "start": 5713.02, + "end": 5715.78, + "probability": 0.9517 + }, + { + "start": 5715.78, + "end": 5720.3, + "probability": 0.9906 + }, + { + "start": 5721.78, + "end": 5721.88, + "probability": 0.8271 + }, + { + "start": 5722.4, + "end": 5722.96, + "probability": 0.8821 + }, + { + "start": 5723.2, + "end": 5728.86, + "probability": 0.9688 + }, + { + "start": 5729.22, + "end": 5730.86, + "probability": 0.9857 + }, + { + "start": 5731.8, + "end": 5734.8, + "probability": 0.9976 + }, + { + "start": 5734.8, + "end": 5739.22, + "probability": 0.9987 + }, + { + "start": 5740.32, + "end": 5741.4, + "probability": 0.9684 + }, + { + "start": 5742.14, + "end": 5745.74, + "probability": 0.9962 + }, + { + "start": 5745.74, + "end": 5749.14, + "probability": 0.9995 + }, + { + "start": 5749.72, + "end": 5751.8, + "probability": 0.9976 + }, + { + "start": 5752.46, + "end": 5756.84, + "probability": 0.9977 + }, + { + "start": 5756.84, + "end": 5760.26, + "probability": 0.9984 + }, + { + "start": 5760.7, + "end": 5764.74, + "probability": 0.992 + }, + { + "start": 5765.56, + "end": 5771.28, + "probability": 0.9929 + }, + { + "start": 5772.36, + "end": 5773.26, + "probability": 0.9441 + }, + { + "start": 5773.97, + "end": 5775.48, + "probability": 0.9007 + }, + { + "start": 5776.48, + "end": 5781.08, + "probability": 0.994 + }, + { + "start": 5781.7, + "end": 5786.66, + "probability": 0.998 + }, + { + "start": 5787.16, + "end": 5790.04, + "probability": 0.9612 + }, + { + "start": 5790.1, + "end": 5795.04, + "probability": 0.549 + }, + { + "start": 5795.06, + "end": 5797.3, + "probability": 0.0427 + }, + { + "start": 5797.36, + "end": 5797.36, + "probability": 0.0875 + }, + { + "start": 5797.36, + "end": 5797.36, + "probability": 0.1302 + }, + { + "start": 5797.36, + "end": 5802.6, + "probability": 0.741 + }, + { + "start": 5802.6, + "end": 5802.74, + "probability": 0.0672 + }, + { + "start": 5804.06, + "end": 5805.47, + "probability": 0.133 + }, + { + "start": 5805.66, + "end": 5806.36, + "probability": 0.3602 + }, + { + "start": 5806.68, + "end": 5807.64, + "probability": 0.3625 + }, + { + "start": 5807.64, + "end": 5807.72, + "probability": 0.4388 + }, + { + "start": 5807.72, + "end": 5807.9, + "probability": 0.3902 + }, + { + "start": 5807.9, + "end": 5808.72, + "probability": 0.2277 + }, + { + "start": 5808.84, + "end": 5809.46, + "probability": 0.6132 + }, + { + "start": 5810.0, + "end": 5812.2, + "probability": 0.9785 + }, + { + "start": 5813.02, + "end": 5813.66, + "probability": 0.4428 + }, + { + "start": 5814.9, + "end": 5816.96, + "probability": 0.4428 + }, + { + "start": 5817.8, + "end": 5817.8, + "probability": 0.0089 + }, + { + "start": 5820.02, + "end": 5820.52, + "probability": 0.1958 + }, + { + "start": 5821.02, + "end": 5823.02, + "probability": 0.0322 + }, + { + "start": 5823.06, + "end": 5824.1, + "probability": 0.4923 + }, + { + "start": 5824.1, + "end": 5824.1, + "probability": 0.6298 + }, + { + "start": 5824.16, + "end": 5825.02, + "probability": 0.6767 + }, + { + "start": 5825.5, + "end": 5826.0, + "probability": 0.9281 + }, + { + "start": 5826.48, + "end": 5826.74, + "probability": 0.4555 + }, + { + "start": 5826.74, + "end": 5828.84, + "probability": 0.5314 + }, + { + "start": 5829.14, + "end": 5831.9, + "probability": 0.034 + }, + { + "start": 5832.98, + "end": 5833.52, + "probability": 0.6003 + }, + { + "start": 5834.23, + "end": 5838.68, + "probability": 0.9814 + }, + { + "start": 5839.56, + "end": 5843.6, + "probability": 0.9971 + }, + { + "start": 5844.89, + "end": 5849.74, + "probability": 0.9972 + }, + { + "start": 5850.34, + "end": 5856.3, + "probability": 0.9973 + }, + { + "start": 5856.42, + "end": 5857.42, + "probability": 0.6785 + }, + { + "start": 5858.02, + "end": 5862.12, + "probability": 0.8959 + }, + { + "start": 5862.28, + "end": 5862.76, + "probability": 0.7645 + }, + { + "start": 5862.94, + "end": 5863.94, + "probability": 0.7028 + }, + { + "start": 5864.76, + "end": 5868.26, + "probability": 0.9964 + }, + { + "start": 5868.82, + "end": 5872.38, + "probability": 0.8286 + }, + { + "start": 5872.8, + "end": 5874.28, + "probability": 0.946 + }, + { + "start": 5874.88, + "end": 5877.8, + "probability": 0.978 + }, + { + "start": 5878.4, + "end": 5880.78, + "probability": 0.9994 + }, + { + "start": 5883.92, + "end": 5889.76, + "probability": 0.9987 + }, + { + "start": 5890.34, + "end": 5892.76, + "probability": 0.9531 + }, + { + "start": 5893.26, + "end": 5897.08, + "probability": 0.9992 + }, + { + "start": 5897.64, + "end": 5899.5, + "probability": 0.6103 + }, + { + "start": 5900.38, + "end": 5903.58, + "probability": 0.7734 + }, + { + "start": 5904.38, + "end": 5905.48, + "probability": 0.8168 + }, + { + "start": 5907.84, + "end": 5908.88, + "probability": 0.8847 + }, + { + "start": 5909.26, + "end": 5910.44, + "probability": 0.9902 + }, + { + "start": 5910.56, + "end": 5913.66, + "probability": 0.9916 + }, + { + "start": 5915.16, + "end": 5919.06, + "probability": 0.9877 + }, + { + "start": 5919.06, + "end": 5921.08, + "probability": 0.9808 + }, + { + "start": 5921.68, + "end": 5925.0, + "probability": 0.9971 + }, + { + "start": 5925.62, + "end": 5926.22, + "probability": 0.7871 + }, + { + "start": 5926.86, + "end": 5929.74, + "probability": 0.9958 + }, + { + "start": 5930.6, + "end": 5931.96, + "probability": 0.9172 + }, + { + "start": 5932.58, + "end": 5934.52, + "probability": 0.9947 + }, + { + "start": 5935.1, + "end": 5937.34, + "probability": 0.8162 + }, + { + "start": 5940.5, + "end": 5946.08, + "probability": 0.9229 + }, + { + "start": 5946.7, + "end": 5952.82, + "probability": 0.9801 + }, + { + "start": 5952.94, + "end": 5954.04, + "probability": 0.7934 + }, + { + "start": 5956.28, + "end": 5960.04, + "probability": 0.988 + }, + { + "start": 5961.22, + "end": 5967.08, + "probability": 0.9694 + }, + { + "start": 5967.08, + "end": 5972.58, + "probability": 0.9985 + }, + { + "start": 5973.72, + "end": 5976.06, + "probability": 0.9963 + }, + { + "start": 5976.9, + "end": 5981.32, + "probability": 0.998 + }, + { + "start": 5981.32, + "end": 5985.38, + "probability": 0.9965 + }, + { + "start": 5985.74, + "end": 5986.9, + "probability": 0.6162 + }, + { + "start": 5988.58, + "end": 5993.28, + "probability": 0.9961 + }, + { + "start": 5993.86, + "end": 5995.04, + "probability": 0.7939 + }, + { + "start": 5995.1, + "end": 6000.94, + "probability": 0.979 + }, + { + "start": 6002.1, + "end": 6002.94, + "probability": 0.6781 + }, + { + "start": 6004.24, + "end": 6007.26, + "probability": 0.9312 + }, + { + "start": 6008.16, + "end": 6009.5, + "probability": 0.9989 + }, + { + "start": 6010.24, + "end": 6015.58, + "probability": 0.9944 + }, + { + "start": 6015.58, + "end": 6018.96, + "probability": 0.9962 + }, + { + "start": 6020.12, + "end": 6023.44, + "probability": 0.9929 + }, + { + "start": 6024.54, + "end": 6027.86, + "probability": 0.9972 + }, + { + "start": 6028.34, + "end": 6029.74, + "probability": 0.9885 + }, + { + "start": 6030.12, + "end": 6034.3, + "probability": 0.9831 + }, + { + "start": 6035.64, + "end": 6036.42, + "probability": 0.739 + }, + { + "start": 6037.5, + "end": 6041.66, + "probability": 0.9977 + }, + { + "start": 6041.96, + "end": 6044.24, + "probability": 0.6019 + }, + { + "start": 6044.26, + "end": 6045.44, + "probability": 0.8171 + }, + { + "start": 6045.56, + "end": 6046.2, + "probability": 0.5983 + }, + { + "start": 6047.0, + "end": 6047.51, + "probability": 0.3351 + }, + { + "start": 6049.26, + "end": 6052.0, + "probability": 0.962 + }, + { + "start": 6053.0, + "end": 6055.4, + "probability": 0.9757 + }, + { + "start": 6056.34, + "end": 6058.7, + "probability": 0.7308 + }, + { + "start": 6059.92, + "end": 6063.72, + "probability": 0.9904 + }, + { + "start": 6064.4, + "end": 6065.16, + "probability": 0.7963 + }, + { + "start": 6065.88, + "end": 6069.14, + "probability": 0.9824 + }, + { + "start": 6069.8, + "end": 6072.08, + "probability": 0.8579 + }, + { + "start": 6072.94, + "end": 6074.38, + "probability": 0.8278 + }, + { + "start": 6074.46, + "end": 6080.62, + "probability": 0.9843 + }, + { + "start": 6080.76, + "end": 6087.46, + "probability": 0.9907 + }, + { + "start": 6088.06, + "end": 6088.74, + "probability": 0.7978 + }, + { + "start": 6089.28, + "end": 6092.7, + "probability": 0.9862 + }, + { + "start": 6092.96, + "end": 6094.66, + "probability": 0.4837 + }, + { + "start": 6094.68, + "end": 6094.68, + "probability": 0.4407 + }, + { + "start": 6094.68, + "end": 6096.18, + "probability": 0.8567 + }, + { + "start": 6116.2, + "end": 6118.06, + "probability": 0.8527 + }, + { + "start": 6119.82, + "end": 6121.78, + "probability": 0.9341 + }, + { + "start": 6121.9, + "end": 6128.46, + "probability": 0.9932 + }, + { + "start": 6128.8, + "end": 6129.72, + "probability": 0.9851 + }, + { + "start": 6130.78, + "end": 6132.4, + "probability": 0.9232 + }, + { + "start": 6132.64, + "end": 6133.32, + "probability": 0.6576 + }, + { + "start": 6133.48, + "end": 6137.48, + "probability": 0.9824 + }, + { + "start": 6138.34, + "end": 6139.46, + "probability": 0.8166 + }, + { + "start": 6140.08, + "end": 6141.5, + "probability": 0.9241 + }, + { + "start": 6142.1, + "end": 6144.62, + "probability": 0.9434 + }, + { + "start": 6144.68, + "end": 6148.22, + "probability": 0.9579 + }, + { + "start": 6148.94, + "end": 6152.18, + "probability": 0.9979 + }, + { + "start": 6152.76, + "end": 6156.06, + "probability": 0.9699 + }, + { + "start": 6157.16, + "end": 6158.82, + "probability": 0.954 + }, + { + "start": 6158.98, + "end": 6161.28, + "probability": 0.9622 + }, + { + "start": 6161.84, + "end": 6163.09, + "probability": 0.9635 + }, + { + "start": 6163.28, + "end": 6167.34, + "probability": 0.9604 + }, + { + "start": 6167.94, + "end": 6169.02, + "probability": 0.6292 + }, + { + "start": 6170.9, + "end": 6172.58, + "probability": 0.9576 + }, + { + "start": 6173.36, + "end": 6177.62, + "probability": 0.752 + }, + { + "start": 6178.48, + "end": 6179.98, + "probability": 0.989 + }, + { + "start": 6180.52, + "end": 6182.78, + "probability": 0.992 + }, + { + "start": 6182.92, + "end": 6184.84, + "probability": 0.9336 + }, + { + "start": 6186.24, + "end": 6188.06, + "probability": 0.9911 + }, + { + "start": 6188.68, + "end": 6190.7, + "probability": 0.9956 + }, + { + "start": 6190.8, + "end": 6193.2, + "probability": 0.9301 + }, + { + "start": 6194.06, + "end": 6196.48, + "probability": 0.8978 + }, + { + "start": 6197.42, + "end": 6199.68, + "probability": 0.9969 + }, + { + "start": 6200.38, + "end": 6201.66, + "probability": 0.9984 + }, + { + "start": 6202.94, + "end": 6203.54, + "probability": 0.2366 + }, + { + "start": 6204.12, + "end": 6204.9, + "probability": 0.5777 + }, + { + "start": 6205.42, + "end": 6206.2, + "probability": 0.6359 + }, + { + "start": 6206.84, + "end": 6207.92, + "probability": 0.9913 + }, + { + "start": 6209.0, + "end": 6212.06, + "probability": 0.9679 + }, + { + "start": 6212.38, + "end": 6213.12, + "probability": 0.9662 + }, + { + "start": 6214.68, + "end": 6218.13, + "probability": 0.812 + }, + { + "start": 6219.0, + "end": 6222.39, + "probability": 0.6885 + }, + { + "start": 6224.7, + "end": 6225.63, + "probability": 0.9854 + }, + { + "start": 6226.9, + "end": 6230.32, + "probability": 0.9364 + }, + { + "start": 6231.24, + "end": 6232.14, + "probability": 0.9878 + }, + { + "start": 6233.34, + "end": 6234.3, + "probability": 0.7745 + }, + { + "start": 6235.16, + "end": 6238.0, + "probability": 0.9487 + }, + { + "start": 6238.94, + "end": 6242.84, + "probability": 0.9495 + }, + { + "start": 6243.84, + "end": 6246.32, + "probability": 0.9685 + }, + { + "start": 6246.86, + "end": 6249.48, + "probability": 0.6307 + }, + { + "start": 6251.04, + "end": 6251.79, + "probability": 0.9313 + }, + { + "start": 6252.02, + "end": 6253.16, + "probability": 0.7681 + }, + { + "start": 6253.64, + "end": 6256.54, + "probability": 0.9868 + }, + { + "start": 6257.18, + "end": 6261.82, + "probability": 0.9861 + }, + { + "start": 6262.7, + "end": 6264.54, + "probability": 0.9502 + }, + { + "start": 6265.14, + "end": 6265.94, + "probability": 0.7611 + }, + { + "start": 6266.44, + "end": 6269.11, + "probability": 0.9647 + }, + { + "start": 6269.8, + "end": 6272.76, + "probability": 0.8933 + }, + { + "start": 6274.06, + "end": 6277.34, + "probability": 0.9796 + }, + { + "start": 6278.6, + "end": 6278.8, + "probability": 0.8407 + }, + { + "start": 6278.92, + "end": 6279.48, + "probability": 0.8429 + }, + { + "start": 6279.5, + "end": 6280.38, + "probability": 0.7447 + }, + { + "start": 6280.42, + "end": 6281.92, + "probability": 0.9734 + }, + { + "start": 6283.5, + "end": 6284.28, + "probability": 0.2483 + }, + { + "start": 6284.48, + "end": 6285.42, + "probability": 0.8752 + }, + { + "start": 6287.1, + "end": 6291.99, + "probability": 0.885 + }, + { + "start": 6292.86, + "end": 6294.5, + "probability": 0.9934 + }, + { + "start": 6295.82, + "end": 6298.86, + "probability": 0.9821 + }, + { + "start": 6300.8, + "end": 6301.64, + "probability": 0.6357 + }, + { + "start": 6302.28, + "end": 6302.83, + "probability": 0.4205 + }, + { + "start": 6302.86, + "end": 6303.48, + "probability": 0.8696 + }, + { + "start": 6303.62, + "end": 6304.88, + "probability": 0.7328 + }, + { + "start": 6305.48, + "end": 6306.94, + "probability": 0.9951 + }, + { + "start": 6307.74, + "end": 6309.2, + "probability": 0.9319 + }, + { + "start": 6310.2, + "end": 6313.36, + "probability": 0.8794 + }, + { + "start": 6313.94, + "end": 6317.16, + "probability": 0.7704 + }, + { + "start": 6317.58, + "end": 6320.58, + "probability": 0.945 + }, + { + "start": 6321.82, + "end": 6322.56, + "probability": 0.5972 + }, + { + "start": 6322.64, + "end": 6324.58, + "probability": 0.907 + }, + { + "start": 6345.56, + "end": 6346.4, + "probability": 0.5696 + }, + { + "start": 6346.48, + "end": 6347.5, + "probability": 0.732 + }, + { + "start": 6347.82, + "end": 6349.64, + "probability": 0.9949 + }, + { + "start": 6349.64, + "end": 6352.7, + "probability": 0.998 + }, + { + "start": 6353.2, + "end": 6353.83, + "probability": 0.8893 + }, + { + "start": 6354.48, + "end": 6356.34, + "probability": 0.9722 + }, + { + "start": 6357.0, + "end": 6358.58, + "probability": 0.7728 + }, + { + "start": 6359.6, + "end": 6360.44, + "probability": 0.7838 + }, + { + "start": 6361.06, + "end": 6364.36, + "probability": 0.9868 + }, + { + "start": 6364.9, + "end": 6366.02, + "probability": 0.8401 + }, + { + "start": 6366.56, + "end": 6368.92, + "probability": 0.9331 + }, + { + "start": 6370.14, + "end": 6374.4, + "probability": 0.9077 + }, + { + "start": 6375.3, + "end": 6378.06, + "probability": 0.9873 + }, + { + "start": 6378.86, + "end": 6380.3, + "probability": 0.8473 + }, + { + "start": 6381.66, + "end": 6383.46, + "probability": 0.8231 + }, + { + "start": 6383.98, + "end": 6387.66, + "probability": 0.9606 + }, + { + "start": 6388.58, + "end": 6393.12, + "probability": 0.9762 + }, + { + "start": 6394.16, + "end": 6396.2, + "probability": 0.7591 + }, + { + "start": 6396.88, + "end": 6399.34, + "probability": 0.9329 + }, + { + "start": 6400.64, + "end": 6404.6, + "probability": 0.954 + }, + { + "start": 6406.6, + "end": 6408.78, + "probability": 0.9939 + }, + { + "start": 6409.34, + "end": 6411.54, + "probability": 0.9536 + }, + { + "start": 6412.62, + "end": 6415.24, + "probability": 0.6301 + }, + { + "start": 6415.98, + "end": 6418.58, + "probability": 0.7228 + }, + { + "start": 6419.16, + "end": 6421.9, + "probability": 0.9806 + }, + { + "start": 6421.96, + "end": 6422.4, + "probability": 0.7966 + }, + { + "start": 6422.76, + "end": 6423.46, + "probability": 0.8811 + }, + { + "start": 6424.06, + "end": 6426.86, + "probability": 0.8549 + }, + { + "start": 6427.54, + "end": 6428.4, + "probability": 0.9578 + }, + { + "start": 6429.56, + "end": 6430.7, + "probability": 0.9927 + }, + { + "start": 6431.8, + "end": 6433.54, + "probability": 0.8032 + }, + { + "start": 6434.46, + "end": 6436.6, + "probability": 0.8411 + }, + { + "start": 6436.64, + "end": 6440.49, + "probability": 0.9901 + }, + { + "start": 6441.16, + "end": 6443.4, + "probability": 0.9862 + }, + { + "start": 6443.96, + "end": 6445.94, + "probability": 0.9953 + }, + { + "start": 6446.64, + "end": 6448.13, + "probability": 0.9971 + }, + { + "start": 6448.78, + "end": 6449.26, + "probability": 0.7981 + }, + { + "start": 6449.28, + "end": 6450.52, + "probability": 0.8881 + }, + { + "start": 6450.58, + "end": 6451.92, + "probability": 0.9801 + }, + { + "start": 6453.06, + "end": 6454.12, + "probability": 0.9615 + }, + { + "start": 6455.08, + "end": 6456.96, + "probability": 0.7705 + }, + { + "start": 6457.82, + "end": 6462.6, + "probability": 0.9978 + }, + { + "start": 6462.72, + "end": 6465.4, + "probability": 0.9751 + }, + { + "start": 6465.48, + "end": 6466.72, + "probability": 0.8268 + }, + { + "start": 6467.86, + "end": 6471.34, + "probability": 0.9814 + }, + { + "start": 6472.1, + "end": 6473.92, + "probability": 0.9639 + }, + { + "start": 6474.46, + "end": 6476.14, + "probability": 0.9366 + }, + { + "start": 6476.74, + "end": 6478.22, + "probability": 0.9197 + }, + { + "start": 6479.18, + "end": 6479.84, + "probability": 0.6591 + }, + { + "start": 6480.62, + "end": 6481.86, + "probability": 0.8448 + }, + { + "start": 6482.04, + "end": 6482.88, + "probability": 0.4914 + }, + { + "start": 6482.9, + "end": 6483.34, + "probability": 0.6891 + }, + { + "start": 6483.8, + "end": 6484.5, + "probability": 0.833 + }, + { + "start": 6485.36, + "end": 6487.74, + "probability": 0.837 + }, + { + "start": 6488.44, + "end": 6490.9, + "probability": 0.8837 + }, + { + "start": 6490.96, + "end": 6491.88, + "probability": 0.7239 + }, + { + "start": 6492.36, + "end": 6495.96, + "probability": 0.9909 + }, + { + "start": 6496.36, + "end": 6498.64, + "probability": 0.9797 + }, + { + "start": 6500.04, + "end": 6501.64, + "probability": 0.8613 + }, + { + "start": 6502.52, + "end": 6504.28, + "probability": 0.6451 + }, + { + "start": 6504.82, + "end": 6509.46, + "probability": 0.9635 + }, + { + "start": 6510.72, + "end": 6511.46, + "probability": 0.541 + }, + { + "start": 6512.18, + "end": 6515.4, + "probability": 0.9634 + }, + { + "start": 6516.02, + "end": 6518.38, + "probability": 0.9568 + }, + { + "start": 6521.36, + "end": 6522.38, + "probability": 0.9202 + }, + { + "start": 6522.42, + "end": 6527.89, + "probability": 0.4717 + }, + { + "start": 6529.18, + "end": 6534.42, + "probability": 0.5384 + }, + { + "start": 6534.5, + "end": 6537.48, + "probability": 0.878 + }, + { + "start": 6538.12, + "end": 6539.34, + "probability": 0.9844 + }, + { + "start": 6539.62, + "end": 6541.44, + "probability": 0.493 + }, + { + "start": 6541.52, + "end": 6547.48, + "probability": 0.6709 + }, + { + "start": 6548.06, + "end": 6549.56, + "probability": 0.8997 + }, + { + "start": 6549.72, + "end": 6550.06, + "probability": 0.7695 + }, + { + "start": 6550.54, + "end": 6551.92, + "probability": 0.9261 + }, + { + "start": 6552.48, + "end": 6553.44, + "probability": 0.8091 + }, + { + "start": 6554.16, + "end": 6555.66, + "probability": 0.9099 + }, + { + "start": 6565.34, + "end": 6565.5, + "probability": 0.5042 + }, + { + "start": 6566.32, + "end": 6566.38, + "probability": 0.4715 + }, + { + "start": 6566.38, + "end": 6566.64, + "probability": 0.1497 + }, + { + "start": 6581.68, + "end": 6584.86, + "probability": 0.8114 + }, + { + "start": 6585.26, + "end": 6586.38, + "probability": 0.7114 + }, + { + "start": 6586.7, + "end": 6588.8, + "probability": 0.8431 + }, + { + "start": 6588.86, + "end": 6590.3, + "probability": 0.9224 + }, + { + "start": 6590.32, + "end": 6591.1, + "probability": 0.8677 + }, + { + "start": 6591.84, + "end": 6592.96, + "probability": 0.7852 + }, + { + "start": 6593.68, + "end": 6597.52, + "probability": 0.9973 + }, + { + "start": 6597.98, + "end": 6599.98, + "probability": 0.9954 + }, + { + "start": 6601.16, + "end": 6604.46, + "probability": 0.9961 + }, + { + "start": 6605.08, + "end": 6607.72, + "probability": 0.8836 + }, + { + "start": 6608.18, + "end": 6611.4, + "probability": 0.7373 + }, + { + "start": 6612.08, + "end": 6614.52, + "probability": 0.6519 + }, + { + "start": 6615.14, + "end": 6618.34, + "probability": 0.7687 + }, + { + "start": 6619.2, + "end": 6621.16, + "probability": 0.5345 + }, + { + "start": 6621.78, + "end": 6623.72, + "probability": 0.94 + }, + { + "start": 6624.36, + "end": 6625.36, + "probability": 0.8189 + }, + { + "start": 6626.32, + "end": 6628.42, + "probability": 0.9983 + }, + { + "start": 6629.0, + "end": 6632.26, + "probability": 0.9905 + }, + { + "start": 6633.18, + "end": 6634.36, + "probability": 0.841 + }, + { + "start": 6634.82, + "end": 6636.26, + "probability": 0.5068 + }, + { + "start": 6636.56, + "end": 6638.5, + "probability": 0.679 + }, + { + "start": 6639.26, + "end": 6640.06, + "probability": 0.6517 + }, + { + "start": 6640.12, + "end": 6641.28, + "probability": 0.4989 + }, + { + "start": 6641.44, + "end": 6642.16, + "probability": 0.6334 + }, + { + "start": 6642.16, + "end": 6643.34, + "probability": 0.6232 + }, + { + "start": 6643.86, + "end": 6644.78, + "probability": 0.8126 + }, + { + "start": 6645.32, + "end": 6647.92, + "probability": 0.9407 + }, + { + "start": 6648.48, + "end": 6650.48, + "probability": 0.982 + }, + { + "start": 6651.14, + "end": 6653.0, + "probability": 0.796 + }, + { + "start": 6653.5, + "end": 6657.72, + "probability": 0.9607 + }, + { + "start": 6658.8, + "end": 6659.84, + "probability": 0.8346 + }, + { + "start": 6660.1, + "end": 6663.5, + "probability": 0.9753 + }, + { + "start": 6664.44, + "end": 6664.84, + "probability": 0.7256 + }, + { + "start": 6665.72, + "end": 6670.94, + "probability": 0.9854 + }, + { + "start": 6672.32, + "end": 6675.07, + "probability": 0.8721 + }, + { + "start": 6675.98, + "end": 6680.58, + "probability": 0.9948 + }, + { + "start": 6681.86, + "end": 6684.67, + "probability": 0.9964 + }, + { + "start": 6684.96, + "end": 6687.56, + "probability": 0.999 + }, + { + "start": 6688.16, + "end": 6693.86, + "probability": 0.984 + }, + { + "start": 6694.78, + "end": 6698.54, + "probability": 0.9961 + }, + { + "start": 6699.22, + "end": 6705.7, + "probability": 0.9913 + }, + { + "start": 6706.48, + "end": 6708.66, + "probability": 0.9948 + }, + { + "start": 6709.5, + "end": 6713.58, + "probability": 0.9895 + }, + { + "start": 6713.58, + "end": 6718.32, + "probability": 0.9981 + }, + { + "start": 6718.82, + "end": 6720.56, + "probability": 0.8604 + }, + { + "start": 6721.14, + "end": 6722.44, + "probability": 0.9852 + }, + { + "start": 6723.34, + "end": 6726.16, + "probability": 0.936 + }, + { + "start": 6727.1, + "end": 6727.48, + "probability": 0.5342 + }, + { + "start": 6727.94, + "end": 6731.94, + "probability": 0.9964 + }, + { + "start": 6732.36, + "end": 6732.82, + "probability": 0.7351 + }, + { + "start": 6733.34, + "end": 6733.7, + "probability": 0.9316 + }, + { + "start": 6734.9, + "end": 6735.32, + "probability": 0.5917 + }, + { + "start": 6736.02, + "end": 6741.0, + "probability": 0.9972 + }, + { + "start": 6741.52, + "end": 6745.82, + "probability": 0.9948 + }, + { + "start": 6745.82, + "end": 6749.84, + "probability": 0.9991 + }, + { + "start": 6750.84, + "end": 6751.78, + "probability": 0.9529 + }, + { + "start": 6751.9, + "end": 6756.64, + "probability": 0.877 + }, + { + "start": 6757.32, + "end": 6758.98, + "probability": 0.9373 + }, + { + "start": 6759.84, + "end": 6761.04, + "probability": 0.8097 + }, + { + "start": 6761.4, + "end": 6762.32, + "probability": 0.3993 + }, + { + "start": 6762.38, + "end": 6763.66, + "probability": 0.6664 + }, + { + "start": 6764.2, + "end": 6764.86, + "probability": 0.5058 + }, + { + "start": 6765.14, + "end": 6766.36, + "probability": 0.9805 + }, + { + "start": 6788.58, + "end": 6790.48, + "probability": 0.7375 + }, + { + "start": 6792.8, + "end": 6793.48, + "probability": 0.5698 + }, + { + "start": 6795.8, + "end": 6796.76, + "probability": 0.9092 + }, + { + "start": 6797.34, + "end": 6800.0, + "probability": 0.9021 + }, + { + "start": 6800.98, + "end": 6803.56, + "probability": 0.9919 + }, + { + "start": 6804.7, + "end": 6808.22, + "probability": 0.6714 + }, + { + "start": 6809.16, + "end": 6811.86, + "probability": 0.9858 + }, + { + "start": 6812.2, + "end": 6812.62, + "probability": 0.7866 + }, + { + "start": 6813.76, + "end": 6816.32, + "probability": 0.9654 + }, + { + "start": 6817.32, + "end": 6819.06, + "probability": 0.9897 + }, + { + "start": 6819.88, + "end": 6822.64, + "probability": 0.9594 + }, + { + "start": 6823.54, + "end": 6825.72, + "probability": 0.97 + }, + { + "start": 6826.58, + "end": 6829.34, + "probability": 0.981 + }, + { + "start": 6830.2, + "end": 6831.73, + "probability": 0.9883 + }, + { + "start": 6832.12, + "end": 6833.17, + "probability": 0.9841 + }, + { + "start": 6833.98, + "end": 6837.06, + "probability": 0.9873 + }, + { + "start": 6837.64, + "end": 6840.54, + "probability": 0.9805 + }, + { + "start": 6841.38, + "end": 6844.02, + "probability": 0.9954 + }, + { + "start": 6846.24, + "end": 6848.4, + "probability": 0.9985 + }, + { + "start": 6849.78, + "end": 6851.5, + "probability": 0.9995 + }, + { + "start": 6852.68, + "end": 6855.56, + "probability": 0.9704 + }, + { + "start": 6855.56, + "end": 6858.04, + "probability": 0.987 + }, + { + "start": 6859.38, + "end": 6861.64, + "probability": 0.978 + }, + { + "start": 6862.56, + "end": 6865.62, + "probability": 0.9922 + }, + { + "start": 6866.5, + "end": 6868.32, + "probability": 0.9957 + }, + { + "start": 6868.92, + "end": 6870.6, + "probability": 0.9271 + }, + { + "start": 6871.26, + "end": 6875.22, + "probability": 0.9409 + }, + { + "start": 6877.2, + "end": 6879.14, + "probability": 0.7574 + }, + { + "start": 6879.98, + "end": 6880.24, + "probability": 0.7673 + }, + { + "start": 6881.76, + "end": 6882.48, + "probability": 0.5303 + }, + { + "start": 6882.48, + "end": 6886.64, + "probability": 0.9376 + }, + { + "start": 6886.64, + "end": 6890.26, + "probability": 0.9968 + }, + { + "start": 6892.04, + "end": 6894.66, + "probability": 0.9956 + }, + { + "start": 6895.2, + "end": 6896.76, + "probability": 0.9768 + }, + { + "start": 6897.34, + "end": 6898.02, + "probability": 0.9582 + }, + { + "start": 6898.74, + "end": 6899.26, + "probability": 0.3376 + }, + { + "start": 6900.26, + "end": 6904.16, + "probability": 0.8658 + }, + { + "start": 6904.92, + "end": 6910.18, + "probability": 0.9428 + }, + { + "start": 6910.76, + "end": 6913.82, + "probability": 0.9186 + }, + { + "start": 6914.94, + "end": 6919.64, + "probability": 0.9961 + }, + { + "start": 6920.48, + "end": 6925.76, + "probability": 0.9932 + }, + { + "start": 6926.92, + "end": 6929.28, + "probability": 0.9968 + }, + { + "start": 6929.96, + "end": 6931.22, + "probability": 0.6734 + }, + { + "start": 6931.9, + "end": 6937.42, + "probability": 0.9967 + }, + { + "start": 6937.42, + "end": 6943.34, + "probability": 0.9976 + }, + { + "start": 6944.0, + "end": 6945.5, + "probability": 0.8466 + }, + { + "start": 6946.44, + "end": 6948.9, + "probability": 0.99 + }, + { + "start": 6949.48, + "end": 6954.68, + "probability": 0.9976 + }, + { + "start": 6955.72, + "end": 6957.0, + "probability": 0.7468 + }, + { + "start": 6957.56, + "end": 6959.8, + "probability": 0.9849 + }, + { + "start": 6960.4, + "end": 6963.7, + "probability": 0.9963 + }, + { + "start": 6964.42, + "end": 6966.88, + "probability": 0.9883 + }, + { + "start": 6967.76, + "end": 6969.28, + "probability": 0.8109 + }, + { + "start": 6970.76, + "end": 6971.98, + "probability": 0.9856 + }, + { + "start": 6973.04, + "end": 6976.1, + "probability": 0.9965 + }, + { + "start": 6977.0, + "end": 6978.15, + "probability": 0.9475 + }, + { + "start": 6978.96, + "end": 6980.14, + "probability": 0.9769 + }, + { + "start": 6981.06, + "end": 6981.24, + "probability": 0.3293 + }, + { + "start": 6982.24, + "end": 6982.8, + "probability": 0.6199 + }, + { + "start": 6982.94, + "end": 6984.5, + "probability": 0.5023 + }, + { + "start": 6984.72, + "end": 6985.94, + "probability": 0.9617 + }, + { + "start": 7007.8, + "end": 7008.86, + "probability": 0.7305 + }, + { + "start": 7010.0, + "end": 7011.5, + "probability": 0.817 + }, + { + "start": 7012.84, + "end": 7022.8, + "probability": 0.9631 + }, + { + "start": 7023.52, + "end": 7025.2, + "probability": 0.6518 + }, + { + "start": 7027.48, + "end": 7029.0, + "probability": 0.8868 + }, + { + "start": 7029.68, + "end": 7032.24, + "probability": 0.854 + }, + { + "start": 7035.25, + "end": 7035.76, + "probability": 0.8063 + }, + { + "start": 7037.41, + "end": 7039.7, + "probability": 0.5205 + }, + { + "start": 7041.83, + "end": 7043.37, + "probability": 0.7934 + }, + { + "start": 7045.52, + "end": 7046.45, + "probability": 0.8003 + }, + { + "start": 7048.37, + "end": 7049.22, + "probability": 0.9561 + }, + { + "start": 7049.75, + "end": 7050.71, + "probability": 0.8232 + }, + { + "start": 7052.51, + "end": 7056.39, + "probability": 0.8303 + }, + { + "start": 7057.55, + "end": 7058.55, + "probability": 0.9563 + }, + { + "start": 7059.09, + "end": 7064.33, + "probability": 0.8942 + }, + { + "start": 7064.81, + "end": 7067.65, + "probability": 0.9707 + }, + { + "start": 7067.97, + "end": 7070.19, + "probability": 0.68 + }, + { + "start": 7073.37, + "end": 7075.25, + "probability": 0.9165 + }, + { + "start": 7076.31, + "end": 7077.43, + "probability": 0.6372 + }, + { + "start": 7078.45, + "end": 7082.78, + "probability": 0.9468 + }, + { + "start": 7082.93, + "end": 7084.03, + "probability": 0.8296 + }, + { + "start": 7084.43, + "end": 7085.39, + "probability": 0.6588 + }, + { + "start": 7085.83, + "end": 7086.51, + "probability": 0.5147 + }, + { + "start": 7086.61, + "end": 7087.23, + "probability": 0.7054 + }, + { + "start": 7088.87, + "end": 7091.44, + "probability": 0.9321 + }, + { + "start": 7091.81, + "end": 7095.97, + "probability": 0.8148 + }, + { + "start": 7096.13, + "end": 7096.41, + "probability": 0.8443 + }, + { + "start": 7096.91, + "end": 7099.95, + "probability": 0.9492 + }, + { + "start": 7103.73, + "end": 7107.21, + "probability": 0.6946 + }, + { + "start": 7108.19, + "end": 7109.53, + "probability": 0.8562 + }, + { + "start": 7110.37, + "end": 7114.15, + "probability": 0.8722 + }, + { + "start": 7114.79, + "end": 7118.91, + "probability": 0.6907 + }, + { + "start": 7119.47, + "end": 7122.59, + "probability": 0.9845 + }, + { + "start": 7123.65, + "end": 7128.67, + "probability": 0.9875 + }, + { + "start": 7128.77, + "end": 7130.62, + "probability": 0.6235 + }, + { + "start": 7131.03, + "end": 7131.27, + "probability": 0.3627 + }, + { + "start": 7132.25, + "end": 7133.37, + "probability": 0.5831 + }, + { + "start": 7133.63, + "end": 7135.51, + "probability": 0.7452 + }, + { + "start": 7135.63, + "end": 7137.83, + "probability": 0.8892 + }, + { + "start": 7140.05, + "end": 7141.97, + "probability": 0.2764 + }, + { + "start": 7144.55, + "end": 7147.37, + "probability": 0.7317 + }, + { + "start": 7147.37, + "end": 7147.51, + "probability": 0.0013 + }, + { + "start": 7157.25, + "end": 7157.25, + "probability": 0.0032 + }, + { + "start": 7157.25, + "end": 7158.75, + "probability": 0.1563 + }, + { + "start": 7159.19, + "end": 7159.25, + "probability": 0.055 + }, + { + "start": 7168.91, + "end": 7169.05, + "probability": 0.3314 + }, + { + "start": 7171.23, + "end": 7175.47, + "probability": 0.9285 + }, + { + "start": 7176.13, + "end": 7177.31, + "probability": 0.8582 + }, + { + "start": 7178.61, + "end": 7180.17, + "probability": 0.692 + }, + { + "start": 7181.75, + "end": 7185.03, + "probability": 0.8607 + }, + { + "start": 7186.25, + "end": 7192.51, + "probability": 0.984 + }, + { + "start": 7193.47, + "end": 7197.45, + "probability": 0.9406 + }, + { + "start": 7198.59, + "end": 7201.61, + "probability": 0.9321 + }, + { + "start": 7202.41, + "end": 7205.33, + "probability": 0.9852 + }, + { + "start": 7206.01, + "end": 7211.95, + "probability": 0.9968 + }, + { + "start": 7211.95, + "end": 7220.41, + "probability": 0.9814 + }, + { + "start": 7221.01, + "end": 7225.89, + "probability": 0.9829 + }, + { + "start": 7226.91, + "end": 7232.13, + "probability": 0.9975 + }, + { + "start": 7233.51, + "end": 7235.55, + "probability": 0.9365 + }, + { + "start": 7236.45, + "end": 7236.97, + "probability": 0.7936 + }, + { + "start": 7237.39, + "end": 7238.33, + "probability": 0.9381 + }, + { + "start": 7238.81, + "end": 7242.37, + "probability": 0.938 + }, + { + "start": 7243.21, + "end": 7250.19, + "probability": 0.994 + }, + { + "start": 7250.91, + "end": 7255.07, + "probability": 0.9902 + }, + { + "start": 7256.11, + "end": 7258.33, + "probability": 0.8118 + }, + { + "start": 7259.09, + "end": 7264.25, + "probability": 0.936 + }, + { + "start": 7264.81, + "end": 7270.49, + "probability": 0.9915 + }, + { + "start": 7271.69, + "end": 7280.07, + "probability": 0.9829 + }, + { + "start": 7281.61, + "end": 7286.49, + "probability": 0.8793 + }, + { + "start": 7286.91, + "end": 7290.41, + "probability": 0.9982 + }, + { + "start": 7291.39, + "end": 7293.81, + "probability": 0.8125 + }, + { + "start": 7294.39, + "end": 7295.63, + "probability": 0.7263 + }, + { + "start": 7296.25, + "end": 7297.67, + "probability": 0.766 + }, + { + "start": 7298.31, + "end": 7300.21, + "probability": 0.9871 + }, + { + "start": 7300.77, + "end": 7304.63, + "probability": 0.9578 + }, + { + "start": 7305.41, + "end": 7309.55, + "probability": 0.9966 + }, + { + "start": 7310.71, + "end": 7312.53, + "probability": 0.9938 + }, + { + "start": 7312.95, + "end": 7314.33, + "probability": 0.8743 + }, + { + "start": 7314.43, + "end": 7315.97, + "probability": 0.6574 + }, + { + "start": 7316.43, + "end": 7319.99, + "probability": 0.9789 + }, + { + "start": 7320.67, + "end": 7321.75, + "probability": 0.7437 + }, + { + "start": 7322.57, + "end": 7327.55, + "probability": 0.9939 + }, + { + "start": 7327.55, + "end": 7333.01, + "probability": 0.9972 + }, + { + "start": 7333.87, + "end": 7340.83, + "probability": 0.988 + }, + { + "start": 7341.33, + "end": 7346.55, + "probability": 0.9969 + }, + { + "start": 7347.35, + "end": 7349.55, + "probability": 0.9559 + }, + { + "start": 7349.97, + "end": 7352.57, + "probability": 0.961 + }, + { + "start": 7353.37, + "end": 7354.51, + "probability": 0.9751 + }, + { + "start": 7355.21, + "end": 7355.91, + "probability": 0.7917 + }, + { + "start": 7356.87, + "end": 7362.41, + "probability": 0.9771 + }, + { + "start": 7363.55, + "end": 7368.21, + "probability": 0.9728 + }, + { + "start": 7368.81, + "end": 7371.27, + "probability": 0.8729 + }, + { + "start": 7371.67, + "end": 7376.33, + "probability": 0.9951 + }, + { + "start": 7376.77, + "end": 7377.03, + "probability": 0.554 + }, + { + "start": 7377.35, + "end": 7377.91, + "probability": 0.6774 + }, + { + "start": 7378.05, + "end": 7379.61, + "probability": 0.981 + }, + { + "start": 7379.83, + "end": 7381.87, + "probability": 0.9571 + }, + { + "start": 7388.99, + "end": 7389.17, + "probability": 0.1325 + }, + { + "start": 7389.17, + "end": 7389.17, + "probability": 0.1231 + }, + { + "start": 7389.17, + "end": 7389.17, + "probability": 0.124 + }, + { + "start": 7389.17, + "end": 7389.23, + "probability": 0.088 + }, + { + "start": 7409.79, + "end": 7413.31, + "probability": 0.5809 + }, + { + "start": 7414.01, + "end": 7415.89, + "probability": 0.7747 + }, + { + "start": 7417.49, + "end": 7420.29, + "probability": 0.9712 + }, + { + "start": 7421.51, + "end": 7423.71, + "probability": 0.7463 + }, + { + "start": 7424.71, + "end": 7429.15, + "probability": 0.9515 + }, + { + "start": 7430.63, + "end": 7434.75, + "probability": 0.7989 + }, + { + "start": 7435.39, + "end": 7436.17, + "probability": 0.9309 + }, + { + "start": 7436.93, + "end": 7438.73, + "probability": 0.9928 + }, + { + "start": 7439.45, + "end": 7441.87, + "probability": 0.8477 + }, + { + "start": 7442.09, + "end": 7443.16, + "probability": 0.9647 + }, + { + "start": 7443.55, + "end": 7444.12, + "probability": 0.6987 + }, + { + "start": 7444.89, + "end": 7446.85, + "probability": 0.9189 + }, + { + "start": 7447.51, + "end": 7449.05, + "probability": 0.9922 + }, + { + "start": 7450.09, + "end": 7451.87, + "probability": 0.8144 + }, + { + "start": 7452.01, + "end": 7454.27, + "probability": 0.9442 + }, + { + "start": 7454.81, + "end": 7456.17, + "probability": 0.9675 + }, + { + "start": 7456.81, + "end": 7459.89, + "probability": 0.9878 + }, + { + "start": 7460.57, + "end": 7461.23, + "probability": 0.5476 + }, + { + "start": 7462.01, + "end": 7464.23, + "probability": 0.9336 + }, + { + "start": 7465.03, + "end": 7465.57, + "probability": 0.7476 + }, + { + "start": 7465.57, + "end": 7468.01, + "probability": 0.9921 + }, + { + "start": 7468.59, + "end": 7472.05, + "probability": 0.8171 + }, + { + "start": 7472.63, + "end": 7474.53, + "probability": 0.9628 + }, + { + "start": 7475.19, + "end": 7476.23, + "probability": 0.9691 + }, + { + "start": 7477.55, + "end": 7478.03, + "probability": 0.9092 + }, + { + "start": 7479.45, + "end": 7480.91, + "probability": 0.8004 + }, + { + "start": 7481.43, + "end": 7483.73, + "probability": 0.9131 + }, + { + "start": 7484.21, + "end": 7487.21, + "probability": 0.9942 + }, + { + "start": 7487.81, + "end": 7488.83, + "probability": 0.896 + }, + { + "start": 7489.31, + "end": 7496.05, + "probability": 0.9906 + }, + { + "start": 7496.07, + "end": 7496.89, + "probability": 0.7365 + }, + { + "start": 7497.57, + "end": 7498.47, + "probability": 0.5425 + }, + { + "start": 7499.41, + "end": 7501.17, + "probability": 0.9997 + }, + { + "start": 7502.13, + "end": 7503.93, + "probability": 0.989 + }, + { + "start": 7505.19, + "end": 7510.03, + "probability": 0.9922 + }, + { + "start": 7510.61, + "end": 7512.05, + "probability": 0.6746 + }, + { + "start": 7515.19, + "end": 7521.33, + "probability": 0.9239 + }, + { + "start": 7521.55, + "end": 7523.81, + "probability": 0.9836 + }, + { + "start": 7524.71, + "end": 7529.37, + "probability": 0.9856 + }, + { + "start": 7529.37, + "end": 7532.45, + "probability": 0.9988 + }, + { + "start": 7533.73, + "end": 7535.99, + "probability": 0.9753 + }, + { + "start": 7537.13, + "end": 7540.19, + "probability": 0.8639 + }, + { + "start": 7540.77, + "end": 7544.61, + "probability": 0.979 + }, + { + "start": 7544.91, + "end": 7546.29, + "probability": 0.4973 + }, + { + "start": 7546.81, + "end": 7549.87, + "probability": 0.7846 + }, + { + "start": 7550.43, + "end": 7553.57, + "probability": 0.8473 + }, + { + "start": 7553.65, + "end": 7554.37, + "probability": 0.8729 + }, + { + "start": 7554.97, + "end": 7557.71, + "probability": 0.9791 + }, + { + "start": 7558.15, + "end": 7560.97, + "probability": 0.9974 + }, + { + "start": 7562.25, + "end": 7564.47, + "probability": 0.9772 + }, + { + "start": 7564.47, + "end": 7568.89, + "probability": 0.9985 + }, + { + "start": 7569.45, + "end": 7573.33, + "probability": 0.9707 + }, + { + "start": 7574.15, + "end": 7575.15, + "probability": 0.9202 + }, + { + "start": 7575.73, + "end": 7577.49, + "probability": 0.9331 + }, + { + "start": 7577.95, + "end": 7581.95, + "probability": 0.9126 + }, + { + "start": 7582.49, + "end": 7583.53, + "probability": 0.8499 + }, + { + "start": 7584.29, + "end": 7587.37, + "probability": 0.9985 + }, + { + "start": 7587.81, + "end": 7589.17, + "probability": 0.9978 + }, + { + "start": 7589.75, + "end": 7591.27, + "probability": 0.6908 + }, + { + "start": 7592.03, + "end": 7593.85, + "probability": 0.7363 + }, + { + "start": 7594.41, + "end": 7597.03, + "probability": 0.9977 + }, + { + "start": 7597.81, + "end": 7599.11, + "probability": 0.9729 + }, + { + "start": 7599.63, + "end": 7600.91, + "probability": 0.9708 + }, + { + "start": 7601.49, + "end": 7603.23, + "probability": 0.9644 + }, + { + "start": 7603.95, + "end": 7607.11, + "probability": 0.9872 + }, + { + "start": 7607.81, + "end": 7611.23, + "probability": 0.9841 + }, + { + "start": 7612.39, + "end": 7616.47, + "probability": 0.9854 + }, + { + "start": 7616.75, + "end": 7618.11, + "probability": 0.9395 + }, + { + "start": 7618.49, + "end": 7619.89, + "probability": 0.2977 + }, + { + "start": 7620.03, + "end": 7620.39, + "probability": 0.615 + }, + { + "start": 7620.47, + "end": 7623.37, + "probability": 0.9935 + }, + { + "start": 7623.43, + "end": 7626.71, + "probability": 0.9823 + }, + { + "start": 7627.13, + "end": 7628.03, + "probability": 0.7317 + }, + { + "start": 7628.71, + "end": 7631.15, + "probability": 0.9924 + }, + { + "start": 7631.69, + "end": 7636.87, + "probability": 0.9967 + }, + { + "start": 7636.95, + "end": 7638.79, + "probability": 0.9678 + }, + { + "start": 7639.73, + "end": 7641.23, + "probability": 0.604 + }, + { + "start": 7642.15, + "end": 7643.77, + "probability": 0.72 + }, + { + "start": 7644.81, + "end": 7645.73, + "probability": 0.8174 + }, + { + "start": 7646.99, + "end": 7647.55, + "probability": 0.0451 + }, + { + "start": 7649.23, + "end": 7651.63, + "probability": 0.7298 + }, + { + "start": 7654.39, + "end": 7655.89, + "probability": 0.9417 + }, + { + "start": 7656.47, + "end": 7657.67, + "probability": 0.858 + }, + { + "start": 7658.45, + "end": 7662.51, + "probability": 0.5219 + }, + { + "start": 7663.05, + "end": 7664.45, + "probability": 0.906 + }, + { + "start": 7666.47, + "end": 7667.21, + "probability": 0.4384 + }, + { + "start": 7668.67, + "end": 7671.67, + "probability": 0.9578 + }, + { + "start": 7675.35, + "end": 7677.07, + "probability": 0.8819 + }, + { + "start": 7677.97, + "end": 7677.97, + "probability": 0.3693 + }, + { + "start": 7677.97, + "end": 7679.97, + "probability": 0.3566 + }, + { + "start": 7679.97, + "end": 7680.07, + "probability": 0.2913 + }, + { + "start": 7681.99, + "end": 7683.61, + "probability": 0.8116 + }, + { + "start": 7684.63, + "end": 7685.31, + "probability": 0.8145 + }, + { + "start": 7686.81, + "end": 7688.35, + "probability": 0.9958 + }, + { + "start": 7690.99, + "end": 7691.69, + "probability": 0.8722 + }, + { + "start": 7691.81, + "end": 7694.53, + "probability": 0.988 + }, + { + "start": 7694.73, + "end": 7695.61, + "probability": 0.5085 + }, + { + "start": 7696.87, + "end": 7697.53, + "probability": 0.7187 + }, + { + "start": 7698.55, + "end": 7699.57, + "probability": 0.9712 + }, + { + "start": 7700.59, + "end": 7703.01, + "probability": 0.9756 + }, + { + "start": 7703.99, + "end": 7707.71, + "probability": 0.9966 + }, + { + "start": 7708.63, + "end": 7711.77, + "probability": 0.9581 + }, + { + "start": 7712.51, + "end": 7715.99, + "probability": 0.7924 + }, + { + "start": 7717.09, + "end": 7717.53, + "probability": 0.9548 + }, + { + "start": 7717.53, + "end": 7718.69, + "probability": 0.9808 + }, + { + "start": 7718.81, + "end": 7720.33, + "probability": 0.8427 + }, + { + "start": 7720.81, + "end": 7722.65, + "probability": 0.9152 + }, + { + "start": 7722.73, + "end": 7723.57, + "probability": 0.792 + }, + { + "start": 7725.35, + "end": 7726.65, + "probability": 0.9967 + }, + { + "start": 7726.71, + "end": 7728.39, + "probability": 0.6469 + }, + { + "start": 7729.69, + "end": 7730.69, + "probability": 0.8339 + }, + { + "start": 7731.35, + "end": 7733.19, + "probability": 0.9786 + }, + { + "start": 7734.15, + "end": 7735.58, + "probability": 0.9785 + }, + { + "start": 7735.77, + "end": 7736.77, + "probability": 0.8386 + }, + { + "start": 7737.49, + "end": 7741.13, + "probability": 0.8173 + }, + { + "start": 7741.75, + "end": 7743.99, + "probability": 0.9877 + }, + { + "start": 7744.21, + "end": 7745.27, + "probability": 0.7584 + }, + { + "start": 7745.87, + "end": 7746.37, + "probability": 0.9307 + }, + { + "start": 7747.69, + "end": 7751.41, + "probability": 0.9948 + }, + { + "start": 7754.07, + "end": 7755.61, + "probability": 0.7007 + }, + { + "start": 7756.63, + "end": 7758.05, + "probability": 0.7424 + }, + { + "start": 7759.29, + "end": 7761.17, + "probability": 0.9953 + }, + { + "start": 7761.45, + "end": 7763.69, + "probability": 0.7483 + }, + { + "start": 7764.21, + "end": 7768.11, + "probability": 0.9832 + }, + { + "start": 7769.37, + "end": 7770.19, + "probability": 0.6934 + }, + { + "start": 7770.23, + "end": 7772.67, + "probability": 0.8263 + }, + { + "start": 7773.27, + "end": 7775.79, + "probability": 0.2264 + }, + { + "start": 7777.03, + "end": 7780.35, + "probability": 0.6237 + }, + { + "start": 7781.91, + "end": 7786.21, + "probability": 0.9653 + }, + { + "start": 7788.07, + "end": 7790.01, + "probability": 0.9706 + }, + { + "start": 7791.51, + "end": 7792.77, + "probability": 0.9669 + }, + { + "start": 7793.77, + "end": 7794.29, + "probability": 0.8821 + }, + { + "start": 7794.47, + "end": 7798.55, + "probability": 0.97 + }, + { + "start": 7798.55, + "end": 7801.87, + "probability": 0.9758 + }, + { + "start": 7803.07, + "end": 7809.03, + "probability": 0.9053 + }, + { + "start": 7809.59, + "end": 7810.89, + "probability": 0.7439 + }, + { + "start": 7811.51, + "end": 7812.83, + "probability": 0.9851 + }, + { + "start": 7813.07, + "end": 7814.95, + "probability": 0.8547 + }, + { + "start": 7816.13, + "end": 7817.37, + "probability": 0.7273 + }, + { + "start": 7818.05, + "end": 7819.16, + "probability": 0.9917 + }, + { + "start": 7820.41, + "end": 7822.49, + "probability": 0.9956 + }, + { + "start": 7822.99, + "end": 7825.21, + "probability": 0.998 + }, + { + "start": 7825.85, + "end": 7828.21, + "probability": 0.9514 + }, + { + "start": 7828.63, + "end": 7833.33, + "probability": 0.9761 + }, + { + "start": 7833.81, + "end": 7835.53, + "probability": 0.9633 + }, + { + "start": 7835.69, + "end": 7837.13, + "probability": 0.9777 + }, + { + "start": 7837.21, + "end": 7838.23, + "probability": 0.8516 + }, + { + "start": 7838.73, + "end": 7841.91, + "probability": 0.9813 + }, + { + "start": 7842.19, + "end": 7842.73, + "probability": 0.7381 + }, + { + "start": 7843.23, + "end": 7844.11, + "probability": 0.8519 + }, + { + "start": 7844.29, + "end": 7844.85, + "probability": 0.7661 + }, + { + "start": 7845.11, + "end": 7846.45, + "probability": 0.9143 + }, + { + "start": 7846.53, + "end": 7847.15, + "probability": 0.8745 + }, + { + "start": 7847.53, + "end": 7849.41, + "probability": 0.7278 + }, + { + "start": 7849.87, + "end": 7850.55, + "probability": 0.7725 + }, + { + "start": 7850.81, + "end": 7856.71, + "probability": 0.9716 + }, + { + "start": 7857.43, + "end": 7858.38, + "probability": 0.9249 + }, + { + "start": 7859.27, + "end": 7860.59, + "probability": 0.952 + }, + { + "start": 7860.67, + "end": 7861.59, + "probability": 0.9727 + }, + { + "start": 7861.63, + "end": 7861.99, + "probability": 0.7382 + }, + { + "start": 7862.07, + "end": 7863.67, + "probability": 0.896 + }, + { + "start": 7864.11, + "end": 7864.65, + "probability": 0.9148 + }, + { + "start": 7865.17, + "end": 7866.31, + "probability": 0.8911 + }, + { + "start": 7867.11, + "end": 7871.85, + "probability": 0.4995 + }, + { + "start": 7871.99, + "end": 7874.11, + "probability": 0.7352 + }, + { + "start": 7875.45, + "end": 7877.29, + "probability": 0.8457 + }, + { + "start": 7877.73, + "end": 7882.99, + "probability": 0.9614 + }, + { + "start": 7882.99, + "end": 7887.15, + "probability": 0.8721 + }, + { + "start": 7887.69, + "end": 7889.07, + "probability": 0.8984 + }, + { + "start": 7889.33, + "end": 7890.37, + "probability": 0.9395 + }, + { + "start": 7890.99, + "end": 7894.51, + "probability": 0.4534 + }, + { + "start": 7895.41, + "end": 7896.17, + "probability": 0.9363 + }, + { + "start": 7897.61, + "end": 7897.93, + "probability": 0.8047 + }, + { + "start": 7899.57, + "end": 7901.23, + "probability": 0.9795 + }, + { + "start": 7901.33, + "end": 7902.63, + "probability": 0.9819 + }, + { + "start": 7902.67, + "end": 7907.13, + "probability": 0.9858 + }, + { + "start": 7907.41, + "end": 7910.61, + "probability": 0.9865 + }, + { + "start": 7911.28, + "end": 7913.35, + "probability": 0.9292 + }, + { + "start": 7913.57, + "end": 7916.53, + "probability": 0.8624 + }, + { + "start": 7916.61, + "end": 7917.25, + "probability": 0.6223 + }, + { + "start": 7917.71, + "end": 7920.15, + "probability": 0.9232 + }, + { + "start": 7921.87, + "end": 7922.49, + "probability": 0.9356 + }, + { + "start": 7924.14, + "end": 7927.33, + "probability": 0.7788 + }, + { + "start": 7931.73, + "end": 7932.89, + "probability": 0.6027 + }, + { + "start": 7933.93, + "end": 7937.27, + "probability": 0.6167 + }, + { + "start": 7938.61, + "end": 7943.61, + "probability": 0.9939 + }, + { + "start": 7943.69, + "end": 7944.93, + "probability": 0.8293 + }, + { + "start": 7945.53, + "end": 7948.67, + "probability": 0.9893 + }, + { + "start": 7948.81, + "end": 7953.91, + "probability": 0.9977 + }, + { + "start": 7953.95, + "end": 7954.65, + "probability": 0.715 + }, + { + "start": 7954.75, + "end": 7956.31, + "probability": 0.7094 + }, + { + "start": 7957.31, + "end": 7958.51, + "probability": 0.6688 + }, + { + "start": 7958.83, + "end": 7959.61, + "probability": 0.918 + }, + { + "start": 7959.83, + "end": 7960.19, + "probability": 0.9556 + }, + { + "start": 7960.25, + "end": 7960.97, + "probability": 0.9829 + }, + { + "start": 7961.37, + "end": 7967.59, + "probability": 0.0899 + }, + { + "start": 7969.42, + "end": 7969.63, + "probability": 0.195 + }, + { + "start": 7969.63, + "end": 7969.63, + "probability": 0.3724 + }, + { + "start": 7969.63, + "end": 7969.63, + "probability": 0.0192 + }, + { + "start": 7969.63, + "end": 7970.69, + "probability": 0.2585 + }, + { + "start": 7970.83, + "end": 7974.47, + "probability": 0.8162 + }, + { + "start": 7974.81, + "end": 7974.81, + "probability": 0.0257 + }, + { + "start": 7974.83, + "end": 7976.53, + "probability": 0.1548 + }, + { + "start": 7977.97, + "end": 7978.67, + "probability": 0.2637 + }, + { + "start": 7979.23, + "end": 7979.37, + "probability": 0.4392 + }, + { + "start": 7981.53, + "end": 7983.89, + "probability": 0.3343 + }, + { + "start": 7984.27, + "end": 7984.99, + "probability": 0.2233 + }, + { + "start": 7985.95, + "end": 7987.45, + "probability": 0.4967 + }, + { + "start": 7987.65, + "end": 7989.03, + "probability": 0.4677 + }, + { + "start": 7989.03, + "end": 7989.87, + "probability": 0.2525 + }, + { + "start": 7990.03, + "end": 7992.09, + "probability": 0.9247 + }, + { + "start": 7992.53, + "end": 7993.09, + "probability": 0.8137 + }, + { + "start": 7993.11, + "end": 7995.07, + "probability": 0.7827 + }, + { + "start": 7995.17, + "end": 7995.23, + "probability": 0.3868 + }, + { + "start": 7995.23, + "end": 7995.67, + "probability": 0.6638 + }, + { + "start": 7995.69, + "end": 7996.45, + "probability": 0.6112 + }, + { + "start": 7996.95, + "end": 7997.09, + "probability": 0.2779 + }, + { + "start": 7997.09, + "end": 7997.13, + "probability": 0.0789 + }, + { + "start": 7997.13, + "end": 7997.91, + "probability": 0.857 + }, + { + "start": 7997.97, + "end": 8002.89, + "probability": 0.7994 + }, + { + "start": 8003.03, + "end": 8003.45, + "probability": 0.9059 + }, + { + "start": 8004.01, + "end": 8005.91, + "probability": 0.946 + }, + { + "start": 8006.19, + "end": 8009.47, + "probability": 0.9375 + }, + { + "start": 8009.57, + "end": 8010.29, + "probability": 0.188 + }, + { + "start": 8010.29, + "end": 8010.85, + "probability": 0.4257 + }, + { + "start": 8010.93, + "end": 8012.91, + "probability": 0.4165 + }, + { + "start": 8013.23, + "end": 8014.47, + "probability": 0.4106 + }, + { + "start": 8014.53, + "end": 8014.63, + "probability": 0.2982 + }, + { + "start": 8014.71, + "end": 8015.57, + "probability": 0.528 + }, + { + "start": 8015.59, + "end": 8015.67, + "probability": 0.7241 + }, + { + "start": 8015.85, + "end": 8017.78, + "probability": 0.7451 + }, + { + "start": 8017.83, + "end": 8017.87, + "probability": 0.3626 + }, + { + "start": 8017.91, + "end": 8019.61, + "probability": 0.8416 + }, + { + "start": 8019.73, + "end": 8020.18, + "probability": 0.5051 + }, + { + "start": 8020.21, + "end": 8020.69, + "probability": 0.8314 + }, + { + "start": 8020.79, + "end": 8021.41, + "probability": 0.5104 + }, + { + "start": 8024.26, + "end": 8024.77, + "probability": 0.0512 + }, + { + "start": 8024.77, + "end": 8024.77, + "probability": 0.1287 + }, + { + "start": 8024.77, + "end": 8025.09, + "probability": 0.0428 + }, + { + "start": 8025.21, + "end": 8027.29, + "probability": 0.8669 + }, + { + "start": 8027.47, + "end": 8030.15, + "probability": 0.7896 + }, + { + "start": 8030.21, + "end": 8030.95, + "probability": 0.9846 + }, + { + "start": 8031.37, + "end": 8034.37, + "probability": 0.9055 + }, + { + "start": 8034.57, + "end": 8038.69, + "probability": 0.8975 + }, + { + "start": 8038.77, + "end": 8040.07, + "probability": 0.9459 + }, + { + "start": 8040.15, + "end": 8042.67, + "probability": 0.4027 + }, + { + "start": 8042.67, + "end": 8044.28, + "probability": 0.635 + }, + { + "start": 8044.91, + "end": 8045.55, + "probability": 0.7418 + }, + { + "start": 8046.07, + "end": 8047.13, + "probability": 0.7465 + }, + { + "start": 8047.71, + "end": 8050.21, + "probability": 0.9741 + }, + { + "start": 8050.59, + "end": 8051.31, + "probability": 0.9377 + }, + { + "start": 8051.79, + "end": 8055.37, + "probability": 0.9809 + }, + { + "start": 8055.37, + "end": 8058.45, + "probability": 0.9374 + }, + { + "start": 8058.75, + "end": 8059.51, + "probability": 0.8025 + }, + { + "start": 8060.31, + "end": 8062.11, + "probability": 0.8347 + }, + { + "start": 8062.33, + "end": 8063.83, + "probability": 0.8295 + }, + { + "start": 8063.97, + "end": 8066.37, + "probability": 0.7453 + }, + { + "start": 8066.45, + "end": 8066.79, + "probability": 0.5152 + }, + { + "start": 8066.85, + "end": 8069.87, + "probability": 0.9462 + }, + { + "start": 8069.95, + "end": 8070.81, + "probability": 0.4356 + }, + { + "start": 8071.31, + "end": 8072.49, + "probability": 0.9107 + }, + { + "start": 8072.55, + "end": 8072.98, + "probability": 0.9659 + }, + { + "start": 8073.13, + "end": 8074.41, + "probability": 0.8838 + }, + { + "start": 8074.41, + "end": 8075.09, + "probability": 0.7254 + }, + { + "start": 8075.47, + "end": 8077.83, + "probability": 0.8545 + }, + { + "start": 8078.17, + "end": 8079.95, + "probability": 0.8843 + }, + { + "start": 8080.53, + "end": 8086.15, + "probability": 0.9339 + }, + { + "start": 8086.39, + "end": 8088.23, + "probability": 0.7921 + }, + { + "start": 8088.27, + "end": 8088.97, + "probability": 0.7683 + }, + { + "start": 8089.33, + "end": 8090.27, + "probability": 0.8726 + }, + { + "start": 8090.51, + "end": 8091.76, + "probability": 0.9146 + }, + { + "start": 8091.87, + "end": 8092.91, + "probability": 0.2346 + }, + { + "start": 8093.43, + "end": 8095.19, + "probability": 0.3221 + }, + { + "start": 8095.71, + "end": 8097.39, + "probability": 0.9663 + }, + { + "start": 8097.63, + "end": 8098.61, + "probability": 0.9828 + }, + { + "start": 8099.39, + "end": 8101.31, + "probability": 0.8644 + }, + { + "start": 8101.99, + "end": 8103.03, + "probability": 0.9157 + }, + { + "start": 8103.19, + "end": 8106.67, + "probability": 0.7219 + }, + { + "start": 8106.97, + "end": 8108.01, + "probability": 0.8308 + }, + { + "start": 8108.61, + "end": 8110.89, + "probability": 0.6751 + }, + { + "start": 8111.21, + "end": 8112.57, + "probability": 0.6753 + }, + { + "start": 8112.69, + "end": 8113.17, + "probability": 0.8271 + }, + { + "start": 8113.25, + "end": 8114.73, + "probability": 0.8174 + }, + { + "start": 8115.01, + "end": 8115.81, + "probability": 0.447 + }, + { + "start": 8116.01, + "end": 8119.61, + "probability": 0.995 + }, + { + "start": 8119.67, + "end": 8119.95, + "probability": 0.2619 + }, + { + "start": 8119.99, + "end": 8122.27, + "probability": 0.9122 + }, + { + "start": 8122.63, + "end": 8124.05, + "probability": 0.8652 + }, + { + "start": 8124.21, + "end": 8125.17, + "probability": 0.978 + }, + { + "start": 8125.41, + "end": 8128.39, + "probability": 0.8057 + }, + { + "start": 8128.47, + "end": 8129.71, + "probability": 0.5445 + }, + { + "start": 8129.71, + "end": 8131.85, + "probability": 0.9158 + }, + { + "start": 8131.99, + "end": 8132.55, + "probability": 0.7085 + }, + { + "start": 8132.63, + "end": 8133.37, + "probability": 0.5278 + }, + { + "start": 8133.59, + "end": 8134.79, + "probability": 0.7809 + }, + { + "start": 8135.81, + "end": 8138.87, + "probability": 0.5016 + }, + { + "start": 8139.89, + "end": 8140.49, + "probability": 0.4232 + }, + { + "start": 8140.65, + "end": 8142.33, + "probability": 0.8966 + }, + { + "start": 8142.71, + "end": 8144.64, + "probability": 0.8882 + }, + { + "start": 8144.98, + "end": 8146.36, + "probability": 0.7567 + }, + { + "start": 8146.54, + "end": 8148.16, + "probability": 0.9531 + }, + { + "start": 8148.64, + "end": 8152.28, + "probability": 0.5013 + }, + { + "start": 8152.28, + "end": 8154.82, + "probability": 0.9863 + }, + { + "start": 8154.9, + "end": 8156.06, + "probability": 0.9691 + }, + { + "start": 8156.5, + "end": 8157.06, + "probability": 0.5993 + }, + { + "start": 8157.76, + "end": 8158.9, + "probability": 0.7972 + }, + { + "start": 8159.0, + "end": 8160.5, + "probability": 0.9904 + }, + { + "start": 8160.52, + "end": 8163.68, + "probability": 0.988 + }, + { + "start": 8164.74, + "end": 8169.64, + "probability": 0.9919 + }, + { + "start": 8170.24, + "end": 8171.14, + "probability": 0.7448 + }, + { + "start": 8171.74, + "end": 8174.66, + "probability": 0.8015 + }, + { + "start": 8175.02, + "end": 8176.72, + "probability": 0.8899 + }, + { + "start": 8176.92, + "end": 8179.96, + "probability": 0.7595 + }, + { + "start": 8180.34, + "end": 8180.68, + "probability": 0.0686 + }, + { + "start": 8181.08, + "end": 8184.76, + "probability": 0.8284 + }, + { + "start": 8184.92, + "end": 8186.26, + "probability": 0.6002 + }, + { + "start": 8186.78, + "end": 8187.4, + "probability": 0.722 + }, + { + "start": 8187.7, + "end": 8188.79, + "probability": 0.9772 + }, + { + "start": 8189.18, + "end": 8189.82, + "probability": 0.8719 + }, + { + "start": 8189.88, + "end": 8190.7, + "probability": 0.8682 + }, + { + "start": 8191.08, + "end": 8191.99, + "probability": 0.7555 + }, + { + "start": 8192.64, + "end": 8196.46, + "probability": 0.9801 + }, + { + "start": 8196.96, + "end": 8198.3, + "probability": 0.7874 + }, + { + "start": 8198.3, + "end": 8199.66, + "probability": 0.5611 + }, + { + "start": 8199.78, + "end": 8199.96, + "probability": 0.0139 + }, + { + "start": 8199.96, + "end": 8199.96, + "probability": 0.0835 + }, + { + "start": 8199.96, + "end": 8200.82, + "probability": 0.482 + }, + { + "start": 8200.82, + "end": 8203.58, + "probability": 0.831 + }, + { + "start": 8204.14, + "end": 8205.24, + "probability": 0.6646 + }, + { + "start": 8205.36, + "end": 8207.24, + "probability": 0.8213 + }, + { + "start": 8207.56, + "end": 8208.72, + "probability": 0.9474 + }, + { + "start": 8208.9, + "end": 8211.5, + "probability": 0.6867 + }, + { + "start": 8211.62, + "end": 8211.64, + "probability": 0.0913 + }, + { + "start": 8211.64, + "end": 8216.14, + "probability": 0.8683 + }, + { + "start": 8216.46, + "end": 8217.04, + "probability": 0.498 + }, + { + "start": 8217.04, + "end": 8217.32, + "probability": 0.8942 + }, + { + "start": 8217.58, + "end": 8217.86, + "probability": 0.7179 + }, + { + "start": 8218.22, + "end": 8220.58, + "probability": 0.9504 + }, + { + "start": 8221.1, + "end": 8222.0, + "probability": 0.9113 + }, + { + "start": 8241.88, + "end": 8243.02, + "probability": 0.7526 + }, + { + "start": 8243.12, + "end": 8243.62, + "probability": 0.742 + }, + { + "start": 8244.7, + "end": 8245.72, + "probability": 0.5776 + }, + { + "start": 8246.06, + "end": 8249.14, + "probability": 0.6498 + }, + { + "start": 8250.4, + "end": 8254.64, + "probability": 0.9789 + }, + { + "start": 8255.94, + "end": 8256.54, + "probability": 0.9639 + }, + { + "start": 8257.8, + "end": 8265.64, + "probability": 0.9946 + }, + { + "start": 8266.4, + "end": 8269.32, + "probability": 0.9995 + }, + { + "start": 8270.82, + "end": 8278.92, + "probability": 0.9963 + }, + { + "start": 8280.08, + "end": 8283.26, + "probability": 0.8081 + }, + { + "start": 8284.84, + "end": 8287.12, + "probability": 0.9711 + }, + { + "start": 8287.26, + "end": 8288.22, + "probability": 0.9956 + }, + { + "start": 8288.94, + "end": 8290.22, + "probability": 0.9581 + }, + { + "start": 8291.26, + "end": 8294.3, + "probability": 0.9908 + }, + { + "start": 8295.18, + "end": 8298.36, + "probability": 0.9938 + }, + { + "start": 8299.26, + "end": 8299.98, + "probability": 0.8408 + }, + { + "start": 8300.76, + "end": 8303.24, + "probability": 0.9863 + }, + { + "start": 8303.24, + "end": 8308.6, + "probability": 0.9971 + }, + { + "start": 8309.32, + "end": 8310.68, + "probability": 0.9479 + }, + { + "start": 8311.5, + "end": 8313.2, + "probability": 0.9826 + }, + { + "start": 8314.12, + "end": 8314.28, + "probability": 0.3563 + }, + { + "start": 8315.04, + "end": 8318.1, + "probability": 0.9969 + }, + { + "start": 8319.06, + "end": 8321.06, + "probability": 0.9901 + }, + { + "start": 8321.86, + "end": 8323.0, + "probability": 0.9954 + }, + { + "start": 8323.58, + "end": 8324.64, + "probability": 0.8763 + }, + { + "start": 8325.78, + "end": 8330.82, + "probability": 0.9982 + }, + { + "start": 8332.24, + "end": 8333.74, + "probability": 0.9913 + }, + { + "start": 8335.66, + "end": 8338.1, + "probability": 0.9961 + }, + { + "start": 8338.1, + "end": 8341.86, + "probability": 0.9961 + }, + { + "start": 8342.76, + "end": 8347.96, + "probability": 0.9932 + }, + { + "start": 8349.5, + "end": 8351.62, + "probability": 0.9928 + }, + { + "start": 8351.62, + "end": 8354.14, + "probability": 0.9993 + }, + { + "start": 8354.58, + "end": 8359.54, + "probability": 0.995 + }, + { + "start": 8360.58, + "end": 8365.08, + "probability": 0.9982 + }, + { + "start": 8366.1, + "end": 8369.46, + "probability": 0.9927 + }, + { + "start": 8369.94, + "end": 8370.48, + "probability": 0.8808 + }, + { + "start": 8370.94, + "end": 8371.94, + "probability": 0.8444 + }, + { + "start": 8372.56, + "end": 8375.04, + "probability": 0.9332 + }, + { + "start": 8376.14, + "end": 8378.44, + "probability": 0.9966 + }, + { + "start": 8379.16, + "end": 8380.02, + "probability": 0.8606 + }, + { + "start": 8380.42, + "end": 8381.52, + "probability": 0.9948 + }, + { + "start": 8382.0, + "end": 8387.04, + "probability": 0.9946 + }, + { + "start": 8387.8, + "end": 8391.62, + "probability": 0.9137 + }, + { + "start": 8391.62, + "end": 8395.56, + "probability": 0.9977 + }, + { + "start": 8396.76, + "end": 8397.8, + "probability": 0.7288 + }, + { + "start": 8399.02, + "end": 8399.64, + "probability": 0.9896 + }, + { + "start": 8401.26, + "end": 8404.58, + "probability": 0.8167 + }, + { + "start": 8405.34, + "end": 8407.52, + "probability": 0.9758 + }, + { + "start": 8408.14, + "end": 8412.46, + "probability": 0.8981 + }, + { + "start": 8412.98, + "end": 8415.94, + "probability": 0.9777 + }, + { + "start": 8417.36, + "end": 8419.42, + "probability": 0.9915 + }, + { + "start": 8419.46, + "end": 8424.02, + "probability": 0.9814 + }, + { + "start": 8424.5, + "end": 8426.6, + "probability": 0.951 + }, + { + "start": 8426.74, + "end": 8428.88, + "probability": 0.9572 + }, + { + "start": 8430.22, + "end": 8432.38, + "probability": 0.9888 + }, + { + "start": 8432.46, + "end": 8435.9, + "probability": 0.8106 + }, + { + "start": 8435.96, + "end": 8436.22, + "probability": 0.6838 + }, + { + "start": 8436.78, + "end": 8438.64, + "probability": 0.6065 + }, + { + "start": 8439.08, + "end": 8439.36, + "probability": 0.8091 + }, + { + "start": 8439.92, + "end": 8443.38, + "probability": 0.9955 + }, + { + "start": 8443.38, + "end": 8446.36, + "probability": 0.9852 + }, + { + "start": 8447.64, + "end": 8450.4, + "probability": 0.9814 + }, + { + "start": 8450.46, + "end": 8452.6, + "probability": 0.8859 + }, + { + "start": 8453.94, + "end": 8456.64, + "probability": 0.949 + }, + { + "start": 8456.72, + "end": 8457.76, + "probability": 0.8317 + }, + { + "start": 8458.24, + "end": 8459.98, + "probability": 0.953 + }, + { + "start": 8460.02, + "end": 8460.8, + "probability": 0.7142 + }, + { + "start": 8462.08, + "end": 8466.74, + "probability": 0.9328 + }, + { + "start": 8467.56, + "end": 8468.84, + "probability": 0.9088 + }, + { + "start": 8469.64, + "end": 8471.82, + "probability": 0.991 + }, + { + "start": 8473.04, + "end": 8475.73, + "probability": 0.7919 + }, + { + "start": 8475.92, + "end": 8476.48, + "probability": 0.8218 + }, + { + "start": 8476.56, + "end": 8479.8, + "probability": 0.9584 + }, + { + "start": 8480.9, + "end": 8483.33, + "probability": 0.8914 + }, + { + "start": 8484.24, + "end": 8484.84, + "probability": 0.2246 + }, + { + "start": 8485.72, + "end": 8487.08, + "probability": 0.7261 + }, + { + "start": 8487.44, + "end": 8488.42, + "probability": 0.9734 + }, + { + "start": 8489.12, + "end": 8491.0, + "probability": 0.8765 + }, + { + "start": 8492.34, + "end": 8493.24, + "probability": 0.7817 + }, + { + "start": 8493.46, + "end": 8495.44, + "probability": 0.8164 + }, + { + "start": 8495.92, + "end": 8496.54, + "probability": 0.6602 + }, + { + "start": 8497.7, + "end": 8500.96, + "probability": 0.872 + }, + { + "start": 8501.46, + "end": 8505.3, + "probability": 0.7192 + }, + { + "start": 8505.62, + "end": 8505.8, + "probability": 0.5941 + }, + { + "start": 8505.82, + "end": 8511.24, + "probability": 0.9888 + }, + { + "start": 8511.78, + "end": 8515.4, + "probability": 0.9897 + }, + { + "start": 8515.76, + "end": 8516.02, + "probability": 0.6356 + }, + { + "start": 8516.6, + "end": 8517.24, + "probability": 0.7124 + }, + { + "start": 8517.38, + "end": 8518.44, + "probability": 0.9359 + }, + { + "start": 8519.06, + "end": 8519.62, + "probability": 0.5525 + }, + { + "start": 8520.16, + "end": 8521.14, + "probability": 0.8206 + }, + { + "start": 8521.72, + "end": 8522.17, + "probability": 0.7485 + }, + { + "start": 8523.02, + "end": 8524.36, + "probability": 0.9396 + }, + { + "start": 8525.55, + "end": 8530.12, + "probability": 0.9427 + }, + { + "start": 8533.58, + "end": 8534.7, + "probability": 0.998 + }, + { + "start": 8535.36, + "end": 8536.84, + "probability": 0.4081 + }, + { + "start": 8541.42, + "end": 8542.1, + "probability": 0.6783 + }, + { + "start": 8543.72, + "end": 8546.14, + "probability": 0.6578 + }, + { + "start": 8546.56, + "end": 8547.68, + "probability": 0.9812 + }, + { + "start": 8547.8, + "end": 8548.24, + "probability": 0.9534 + }, + { + "start": 8549.62, + "end": 8552.54, + "probability": 0.6218 + }, + { + "start": 8553.5, + "end": 8561.0, + "probability": 0.9653 + }, + { + "start": 8561.88, + "end": 8565.32, + "probability": 0.9144 + }, + { + "start": 8565.4, + "end": 8566.08, + "probability": 0.7996 + }, + { + "start": 8566.26, + "end": 8567.36, + "probability": 0.7396 + }, + { + "start": 8568.12, + "end": 8569.96, + "probability": 0.9031 + }, + { + "start": 8570.48, + "end": 8572.37, + "probability": 0.9724 + }, + { + "start": 8574.78, + "end": 8576.38, + "probability": 0.8899 + }, + { + "start": 8576.46, + "end": 8580.84, + "probability": 0.8453 + }, + { + "start": 8581.72, + "end": 8584.38, + "probability": 0.7192 + }, + { + "start": 8584.94, + "end": 8587.74, + "probability": 0.8653 + }, + { + "start": 8588.82, + "end": 8589.54, + "probability": 0.5835 + }, + { + "start": 8589.62, + "end": 8589.76, + "probability": 0.1055 + }, + { + "start": 8589.76, + "end": 8590.84, + "probability": 0.9814 + }, + { + "start": 8590.9, + "end": 8591.14, + "probability": 0.2201 + }, + { + "start": 8591.24, + "end": 8593.16, + "probability": 0.7617 + }, + { + "start": 8594.28, + "end": 8598.98, + "probability": 0.8456 + }, + { + "start": 8599.06, + "end": 8599.5, + "probability": 0.629 + }, + { + "start": 8599.56, + "end": 8603.14, + "probability": 0.9581 + }, + { + "start": 8603.44, + "end": 8604.32, + "probability": 0.9778 + }, + { + "start": 8604.86, + "end": 8607.94, + "probability": 0.8575 + }, + { + "start": 8608.28, + "end": 8609.24, + "probability": 0.7988 + }, + { + "start": 8609.86, + "end": 8613.43, + "probability": 0.5905 + }, + { + "start": 8613.96, + "end": 8614.26, + "probability": 0.7782 + }, + { + "start": 8614.34, + "end": 8617.92, + "probability": 0.8652 + }, + { + "start": 8617.92, + "end": 8619.3, + "probability": 0.6057 + }, + { + "start": 8619.76, + "end": 8623.14, + "probability": 0.986 + }, + { + "start": 8623.6, + "end": 8624.97, + "probability": 0.546 + }, + { + "start": 8625.34, + "end": 8627.18, + "probability": 0.6191 + }, + { + "start": 8627.68, + "end": 8631.52, + "probability": 0.9818 + }, + { + "start": 8631.8, + "end": 8633.22, + "probability": 0.9866 + }, + { + "start": 8633.62, + "end": 8634.62, + "probability": 0.8886 + }, + { + "start": 8635.12, + "end": 8637.28, + "probability": 0.7495 + }, + { + "start": 8637.52, + "end": 8641.76, + "probability": 0.6343 + }, + { + "start": 8641.86, + "end": 8642.96, + "probability": 0.8096 + }, + { + "start": 8643.6, + "end": 8646.68, + "probability": 0.8405 + }, + { + "start": 8647.34, + "end": 8649.53, + "probability": 0.874 + }, + { + "start": 8650.42, + "end": 8650.88, + "probability": 0.4232 + }, + { + "start": 8651.04, + "end": 8654.44, + "probability": 0.9645 + }, + { + "start": 8654.72, + "end": 8656.58, + "probability": 0.7496 + }, + { + "start": 8657.24, + "end": 8658.22, + "probability": 0.6426 + }, + { + "start": 8658.6, + "end": 8661.34, + "probability": 0.9167 + }, + { + "start": 8661.36, + "end": 8662.46, + "probability": 0.5197 + }, + { + "start": 8662.52, + "end": 8665.16, + "probability": 0.7673 + }, + { + "start": 8665.58, + "end": 8667.24, + "probability": 0.9038 + }, + { + "start": 8667.66, + "end": 8668.94, + "probability": 0.8353 + }, + { + "start": 8669.5, + "end": 8672.9, + "probability": 0.9648 + }, + { + "start": 8673.16, + "end": 8674.56, + "probability": 0.9957 + }, + { + "start": 8675.22, + "end": 8678.9, + "probability": 0.9678 + }, + { + "start": 8679.24, + "end": 8680.21, + "probability": 0.8516 + }, + { + "start": 8680.62, + "end": 8681.92, + "probability": 0.9128 + }, + { + "start": 8681.98, + "end": 8685.42, + "probability": 0.9229 + }, + { + "start": 8685.48, + "end": 8686.5, + "probability": 0.5938 + }, + { + "start": 8687.02, + "end": 8688.13, + "probability": 0.6914 + }, + { + "start": 8688.34, + "end": 8688.6, + "probability": 0.9435 + }, + { + "start": 8688.62, + "end": 8691.41, + "probability": 0.9675 + }, + { + "start": 8692.18, + "end": 8693.64, + "probability": 0.8608 + }, + { + "start": 8693.7, + "end": 8696.34, + "probability": 0.978 + }, + { + "start": 8696.94, + "end": 8698.68, + "probability": 0.7164 + }, + { + "start": 8698.82, + "end": 8702.58, + "probability": 0.9496 + }, + { + "start": 8703.04, + "end": 8705.54, + "probability": 0.8263 + }, + { + "start": 8705.56, + "end": 8706.76, + "probability": 0.5545 + }, + { + "start": 8706.8, + "end": 8707.46, + "probability": 0.3583 + }, + { + "start": 8707.52, + "end": 8708.0, + "probability": 0.7503 + }, + { + "start": 8708.32, + "end": 8711.26, + "probability": 0.8947 + }, + { + "start": 8711.3, + "end": 8711.72, + "probability": 0.4487 + }, + { + "start": 8711.98, + "end": 8712.75, + "probability": 0.8028 + }, + { + "start": 8713.02, + "end": 8714.96, + "probability": 0.953 + }, + { + "start": 8715.16, + "end": 8717.9, + "probability": 0.396 + }, + { + "start": 8717.9, + "end": 8718.34, + "probability": 0.4773 + }, + { + "start": 8718.38, + "end": 8720.4, + "probability": 0.7976 + }, + { + "start": 8720.9, + "end": 8723.14, + "probability": 0.9861 + }, + { + "start": 8723.28, + "end": 8725.74, + "probability": 0.8663 + }, + { + "start": 8725.92, + "end": 8726.79, + "probability": 0.6392 + }, + { + "start": 8727.18, + "end": 8727.95, + "probability": 0.9627 + }, + { + "start": 8728.36, + "end": 8729.7, + "probability": 0.6954 + }, + { + "start": 8729.7, + "end": 8730.6, + "probability": 0.8362 + }, + { + "start": 8730.78, + "end": 8732.72, + "probability": 0.8803 + }, + { + "start": 8733.0, + "end": 8734.64, + "probability": 0.6247 + }, + { + "start": 8734.76, + "end": 8735.62, + "probability": 0.686 + }, + { + "start": 8735.7, + "end": 8737.42, + "probability": 0.5076 + }, + { + "start": 8737.44, + "end": 8737.56, + "probability": 0.6773 + }, + { + "start": 8737.56, + "end": 8738.19, + "probability": 0.9526 + }, + { + "start": 8738.9, + "end": 8742.36, + "probability": 0.9817 + }, + { + "start": 8743.02, + "end": 8743.58, + "probability": 0.6463 + }, + { + "start": 8744.3, + "end": 8746.44, + "probability": 0.7208 + }, + { + "start": 8749.26, + "end": 8752.9, + "probability": 0.8154 + }, + { + "start": 8753.58, + "end": 8755.76, + "probability": 0.9291 + }, + { + "start": 8756.48, + "end": 8758.7, + "probability": 0.8456 + }, + { + "start": 8760.82, + "end": 8762.52, + "probability": 0.2594 + }, + { + "start": 8763.84, + "end": 8764.56, + "probability": 0.9011 + }, + { + "start": 8765.7, + "end": 8766.42, + "probability": 0.9697 + }, + { + "start": 8767.9, + "end": 8768.94, + "probability": 0.9832 + }, + { + "start": 8770.14, + "end": 8771.14, + "probability": 0.991 + }, + { + "start": 8772.74, + "end": 8773.58, + "probability": 0.8174 + }, + { + "start": 8774.3, + "end": 8778.28, + "probability": 0.9906 + }, + { + "start": 8779.66, + "end": 8780.08, + "probability": 0.805 + }, + { + "start": 8789.28, + "end": 8790.86, + "probability": 0.8495 + }, + { + "start": 8793.92, + "end": 8795.18, + "probability": 0.6693 + }, + { + "start": 8795.64, + "end": 8796.68, + "probability": 0.7467 + }, + { + "start": 8799.41, + "end": 8803.24, + "probability": 0.6362 + }, + { + "start": 8805.16, + "end": 8810.34, + "probability": 0.9736 + }, + { + "start": 8810.82, + "end": 8811.64, + "probability": 0.9655 + }, + { + "start": 8811.78, + "end": 8812.76, + "probability": 0.9891 + }, + { + "start": 8813.58, + "end": 8814.68, + "probability": 0.7597 + }, + { + "start": 8815.4, + "end": 8816.58, + "probability": 0.9876 + }, + { + "start": 8818.94, + "end": 8821.0, + "probability": 0.7364 + }, + { + "start": 8822.26, + "end": 8824.04, + "probability": 0.722 + }, + { + "start": 8824.6, + "end": 8825.46, + "probability": 0.45 + }, + { + "start": 8825.56, + "end": 8828.46, + "probability": 0.9022 + }, + { + "start": 8829.56, + "end": 8831.38, + "probability": 0.9104 + }, + { + "start": 8832.26, + "end": 8836.02, + "probability": 0.7147 + }, + { + "start": 8837.86, + "end": 8838.5, + "probability": 0.4822 + }, + { + "start": 8839.1, + "end": 8845.14, + "probability": 0.9888 + }, + { + "start": 8846.8, + "end": 8847.62, + "probability": 0.7802 + }, + { + "start": 8850.2, + "end": 8853.6, + "probability": 0.9812 + }, + { + "start": 8854.82, + "end": 8857.88, + "probability": 0.9851 + }, + { + "start": 8858.66, + "end": 8860.81, + "probability": 0.7935 + }, + { + "start": 8860.98, + "end": 8862.08, + "probability": 0.7739 + }, + { + "start": 8863.16, + "end": 8865.82, + "probability": 0.9055 + }, + { + "start": 8865.9, + "end": 8868.7, + "probability": 0.9568 + }, + { + "start": 8869.66, + "end": 8870.88, + "probability": 0.9007 + }, + { + "start": 8871.9, + "end": 8874.62, + "probability": 0.7044 + }, + { + "start": 8876.96, + "end": 8879.98, + "probability": 0.0407 + }, + { + "start": 8879.98, + "end": 8883.26, + "probability": 0.928 + }, + { + "start": 8883.74, + "end": 8885.88, + "probability": 0.9863 + }, + { + "start": 8886.0, + "end": 8888.32, + "probability": 0.9816 + }, + { + "start": 8888.32, + "end": 8890.34, + "probability": 0.8483 + }, + { + "start": 8890.8, + "end": 8893.4, + "probability": 0.9681 + }, + { + "start": 8894.84, + "end": 8901.32, + "probability": 0.9848 + }, + { + "start": 8903.66, + "end": 8906.48, + "probability": 0.9898 + }, + { + "start": 8906.62, + "end": 8907.52, + "probability": 0.7992 + }, + { + "start": 8908.18, + "end": 8910.0, + "probability": 0.6018 + }, + { + "start": 8913.18, + "end": 8915.42, + "probability": 0.8698 + }, + { + "start": 8915.96, + "end": 8920.67, + "probability": 0.6087 + }, + { + "start": 8921.98, + "end": 8923.62, + "probability": 0.7942 + }, + { + "start": 8924.14, + "end": 8925.26, + "probability": 0.9326 + }, + { + "start": 8926.72, + "end": 8927.48, + "probability": 0.641 + }, + { + "start": 8928.12, + "end": 8929.26, + "probability": 0.9871 + }, + { + "start": 8930.1, + "end": 8931.72, + "probability": 0.9714 + }, + { + "start": 8932.74, + "end": 8936.12, + "probability": 0.9754 + }, + { + "start": 8936.8, + "end": 8937.66, + "probability": 0.8477 + }, + { + "start": 8938.86, + "end": 8942.04, + "probability": 0.776 + }, + { + "start": 8942.38, + "end": 8943.03, + "probability": 0.9946 + }, + { + "start": 8946.04, + "end": 8948.3, + "probability": 0.8305 + }, + { + "start": 8948.64, + "end": 8950.4, + "probability": 0.9756 + }, + { + "start": 8950.76, + "end": 8953.7, + "probability": 0.9108 + }, + { + "start": 8954.24, + "end": 8954.7, + "probability": 0.2147 + }, + { + "start": 8955.46, + "end": 8958.84, + "probability": 0.9724 + }, + { + "start": 8960.7, + "end": 8961.62, + "probability": 0.8037 + }, + { + "start": 8962.3, + "end": 8965.42, + "probability": 0.8203 + }, + { + "start": 8966.04, + "end": 8968.75, + "probability": 0.971 + }, + { + "start": 8969.86, + "end": 8971.74, + "probability": 0.9686 + }, + { + "start": 8971.8, + "end": 8972.24, + "probability": 0.8655 + }, + { + "start": 8972.54, + "end": 8974.36, + "probability": 0.7279 + }, + { + "start": 8975.12, + "end": 8975.74, + "probability": 0.5474 + }, + { + "start": 8976.58, + "end": 8977.68, + "probability": 0.491 + }, + { + "start": 8978.84, + "end": 8980.16, + "probability": 0.743 + }, + { + "start": 8981.0, + "end": 8981.52, + "probability": 0.5096 + }, + { + "start": 8982.42, + "end": 8984.5, + "probability": 0.9096 + }, + { + "start": 8999.52, + "end": 9000.84, + "probability": 0.6395 + }, + { + "start": 9000.86, + "end": 9001.32, + "probability": 0.756 + }, + { + "start": 9002.16, + "end": 9002.16, + "probability": 0.3384 + }, + { + "start": 9002.16, + "end": 9003.94, + "probability": 0.6833 + }, + { + "start": 9005.78, + "end": 9008.36, + "probability": 0.9647 + }, + { + "start": 9009.8, + "end": 9012.76, + "probability": 0.9631 + }, + { + "start": 9012.88, + "end": 9016.9, + "probability": 0.9017 + }, + { + "start": 9018.8, + "end": 9019.82, + "probability": 0.9954 + }, + { + "start": 9020.22, + "end": 9021.06, + "probability": 0.9939 + }, + { + "start": 9021.62, + "end": 9022.56, + "probability": 0.9778 + }, + { + "start": 9022.88, + "end": 9026.1, + "probability": 0.9518 + }, + { + "start": 9026.18, + "end": 9028.1, + "probability": 0.9885 + }, + { + "start": 9028.28, + "end": 9031.76, + "probability": 0.7541 + }, + { + "start": 9031.76, + "end": 9034.48, + "probability": 0.8596 + }, + { + "start": 9034.52, + "end": 9035.86, + "probability": 0.9272 + }, + { + "start": 9036.26, + "end": 9037.62, + "probability": 0.6753 + }, + { + "start": 9037.7, + "end": 9038.49, + "probability": 0.6348 + }, + { + "start": 9039.52, + "end": 9042.6, + "probability": 0.9795 + }, + { + "start": 9042.64, + "end": 9046.08, + "probability": 0.9925 + }, + { + "start": 9048.6, + "end": 9050.75, + "probability": 0.9958 + }, + { + "start": 9051.28, + "end": 9052.28, + "probability": 0.925 + }, + { + "start": 9052.4, + "end": 9056.26, + "probability": 0.9893 + }, + { + "start": 9056.38, + "end": 9057.52, + "probability": 0.8432 + }, + { + "start": 9058.32, + "end": 9061.18, + "probability": 0.8987 + }, + { + "start": 9061.18, + "end": 9063.2, + "probability": 0.9816 + }, + { + "start": 9063.36, + "end": 9064.4, + "probability": 0.8162 + }, + { + "start": 9064.42, + "end": 9065.48, + "probability": 0.8359 + }, + { + "start": 9065.52, + "end": 9066.52, + "probability": 0.7305 + }, + { + "start": 9066.64, + "end": 9068.6, + "probability": 0.5181 + }, + { + "start": 9068.62, + "end": 9068.64, + "probability": 0.4787 + }, + { + "start": 9068.64, + "end": 9068.82, + "probability": 0.7849 + }, + { + "start": 9069.1, + "end": 9074.36, + "probability": 0.9366 + }, + { + "start": 9075.84, + "end": 9076.86, + "probability": 0.9909 + }, + { + "start": 9076.96, + "end": 9078.32, + "probability": 0.9819 + }, + { + "start": 9079.16, + "end": 9079.36, + "probability": 0.0572 + }, + { + "start": 9079.36, + "end": 9082.1, + "probability": 0.8613 + }, + { + "start": 9082.66, + "end": 9083.6, + "probability": 0.8948 + }, + { + "start": 9085.2, + "end": 9087.88, + "probability": 0.9795 + }, + { + "start": 9087.88, + "end": 9091.5, + "probability": 0.9573 + }, + { + "start": 9091.86, + "end": 9092.92, + "probability": 0.7659 + }, + { + "start": 9094.4, + "end": 9096.8, + "probability": 0.9925 + }, + { + "start": 9097.12, + "end": 9101.5, + "probability": 0.96 + }, + { + "start": 9103.2, + "end": 9104.1, + "probability": 0.8106 + }, + { + "start": 9106.06, + "end": 9106.2, + "probability": 0.365 + }, + { + "start": 9106.28, + "end": 9106.88, + "probability": 0.634 + }, + { + "start": 9106.98, + "end": 9107.72, + "probability": 0.6451 + }, + { + "start": 9107.8, + "end": 9110.4, + "probability": 0.9962 + }, + { + "start": 9111.96, + "end": 9112.94, + "probability": 0.6911 + }, + { + "start": 9113.38, + "end": 9118.22, + "probability": 0.9925 + }, + { + "start": 9118.22, + "end": 9121.38, + "probability": 0.9512 + }, + { + "start": 9121.44, + "end": 9122.33, + "probability": 0.9071 + }, + { + "start": 9123.94, + "end": 9125.03, + "probability": 0.9387 + }, + { + "start": 9125.68, + "end": 9127.46, + "probability": 0.8864 + }, + { + "start": 9128.64, + "end": 9129.84, + "probability": 0.8836 + }, + { + "start": 9129.92, + "end": 9132.5, + "probability": 0.8974 + }, + { + "start": 9132.62, + "end": 9133.52, + "probability": 0.6656 + }, + { + "start": 9135.14, + "end": 9141.42, + "probability": 0.9919 + }, + { + "start": 9143.24, + "end": 9143.7, + "probability": 0.7357 + }, + { + "start": 9143.84, + "end": 9146.12, + "probability": 0.9646 + }, + { + "start": 9146.16, + "end": 9149.44, + "probability": 0.9946 + }, + { + "start": 9150.28, + "end": 9150.36, + "probability": 0.699 + }, + { + "start": 9150.42, + "end": 9153.78, + "probability": 0.8945 + }, + { + "start": 9155.56, + "end": 9158.14, + "probability": 0.9098 + }, + { + "start": 9158.3, + "end": 9159.2, + "probability": 0.7637 + }, + { + "start": 9160.1, + "end": 9162.32, + "probability": 0.9978 + }, + { + "start": 9163.06, + "end": 9166.6, + "probability": 0.7603 + }, + { + "start": 9166.66, + "end": 9170.68, + "probability": 0.9925 + }, + { + "start": 9171.18, + "end": 9171.2, + "probability": 0.0 + }, + { + "start": 9173.22, + "end": 9175.58, + "probability": 0.9934 + }, + { + "start": 9175.58, + "end": 9178.26, + "probability": 0.8258 + }, + { + "start": 9179.28, + "end": 9182.62, + "probability": 0.9988 + }, + { + "start": 9182.96, + "end": 9183.42, + "probability": 0.4837 + }, + { + "start": 9183.5, + "end": 9184.74, + "probability": 0.7143 + }, + { + "start": 9186.12, + "end": 9189.08, + "probability": 0.9984 + }, + { + "start": 9190.02, + "end": 9192.74, + "probability": 0.9978 + }, + { + "start": 9192.74, + "end": 9195.86, + "probability": 0.9742 + }, + { + "start": 9197.24, + "end": 9200.62, + "probability": 0.8446 + }, + { + "start": 9200.62, + "end": 9203.14, + "probability": 0.7478 + }, + { + "start": 9205.36, + "end": 9206.68, + "probability": 0.0901 + }, + { + "start": 9206.8, + "end": 9207.84, + "probability": 0.9172 + }, + { + "start": 9207.96, + "end": 9210.94, + "probability": 0.9941 + }, + { + "start": 9212.26, + "end": 9213.44, + "probability": 0.9704 + }, + { + "start": 9214.04, + "end": 9216.2, + "probability": 0.9784 + }, + { + "start": 9217.6, + "end": 9218.6, + "probability": 0.7885 + }, + { + "start": 9220.12, + "end": 9220.85, + "probability": 0.539 + }, + { + "start": 9221.58, + "end": 9223.18, + "probability": 0.9705 + }, + { + "start": 9223.32, + "end": 9224.52, + "probability": 0.9943 + }, + { + "start": 9224.56, + "end": 9225.48, + "probability": 0.7766 + }, + { + "start": 9225.54, + "end": 9226.18, + "probability": 0.8726 + }, + { + "start": 9226.24, + "end": 9226.92, + "probability": 0.9185 + }, + { + "start": 9227.0, + "end": 9227.62, + "probability": 0.9141 + }, + { + "start": 9227.7, + "end": 9228.48, + "probability": 0.746 + }, + { + "start": 9228.52, + "end": 9229.44, + "probability": 0.9709 + }, + { + "start": 9231.12, + "end": 9232.16, + "probability": 0.7988 + }, + { + "start": 9233.34, + "end": 9233.56, + "probability": 0.7291 + }, + { + "start": 9233.62, + "end": 9236.53, + "probability": 0.8808 + }, + { + "start": 9236.84, + "end": 9238.8, + "probability": 0.4598 + }, + { + "start": 9238.98, + "end": 9239.08, + "probability": 0.3136 + }, + { + "start": 9239.08, + "end": 9239.82, + "probability": 0.7352 + }, + { + "start": 9241.48, + "end": 9244.46, + "probability": 0.9343 + }, + { + "start": 9244.54, + "end": 9247.16, + "probability": 0.9987 + }, + { + "start": 9247.56, + "end": 9249.46, + "probability": 0.9362 + }, + { + "start": 9249.46, + "end": 9253.0, + "probability": 0.9988 + }, + { + "start": 9253.26, + "end": 9256.5, + "probability": 0.9041 + }, + { + "start": 9256.62, + "end": 9258.6, + "probability": 0.9888 + }, + { + "start": 9259.48, + "end": 9260.64, + "probability": 0.3725 + }, + { + "start": 9261.36, + "end": 9262.74, + "probability": 0.9954 + }, + { + "start": 9263.4, + "end": 9265.94, + "probability": 0.9917 + }, + { + "start": 9266.22, + "end": 9268.18, + "probability": 0.7399 + }, + { + "start": 9268.18, + "end": 9271.34, + "probability": 0.9941 + }, + { + "start": 9271.42, + "end": 9273.0, + "probability": 0.915 + }, + { + "start": 9273.08, + "end": 9274.64, + "probability": 0.9761 + }, + { + "start": 9275.4, + "end": 9275.74, + "probability": 0.7177 + }, + { + "start": 9275.84, + "end": 9276.4, + "probability": 0.7187 + }, + { + "start": 9276.48, + "end": 9277.68, + "probability": 0.7603 + }, + { + "start": 9277.74, + "end": 9278.44, + "probability": 0.7445 + }, + { + "start": 9278.46, + "end": 9279.28, + "probability": 0.7668 + }, + { + "start": 9279.38, + "end": 9280.1, + "probability": 0.9921 + }, + { + "start": 9280.24, + "end": 9280.52, + "probability": 0.9407 + }, + { + "start": 9281.34, + "end": 9281.92, + "probability": 0.8134 + }, + { + "start": 9281.96, + "end": 9282.24, + "probability": 0.58 + }, + { + "start": 9282.4, + "end": 9282.92, + "probability": 0.7314 + }, + { + "start": 9284.14, + "end": 9284.56, + "probability": 0.6972 + }, + { + "start": 9284.66, + "end": 9285.56, + "probability": 0.6779 + }, + { + "start": 9285.62, + "end": 9287.14, + "probability": 0.9426 + }, + { + "start": 9287.22, + "end": 9290.31, + "probability": 0.9383 + }, + { + "start": 9290.36, + "end": 9290.36, + "probability": 0.3513 + }, + { + "start": 9290.36, + "end": 9290.36, + "probability": 0.1192 + }, + { + "start": 9290.36, + "end": 9292.42, + "probability": 0.482 + }, + { + "start": 9292.88, + "end": 9294.44, + "probability": 0.6011 + }, + { + "start": 9295.04, + "end": 9296.9, + "probability": 0.9577 + }, + { + "start": 9297.14, + "end": 9298.52, + "probability": 0.991 + }, + { + "start": 9298.66, + "end": 9301.62, + "probability": 0.9123 + }, + { + "start": 9301.7, + "end": 9303.0, + "probability": 0.9701 + }, + { + "start": 9303.1, + "end": 9303.96, + "probability": 0.8202 + }, + { + "start": 9304.2, + "end": 9308.04, + "probability": 0.9639 + }, + { + "start": 9308.88, + "end": 9309.4, + "probability": 0.5845 + }, + { + "start": 9309.64, + "end": 9311.24, + "probability": 0.9863 + }, + { + "start": 9311.78, + "end": 9312.94, + "probability": 0.898 + }, + { + "start": 9313.38, + "end": 9314.24, + "probability": 0.7939 + }, + { + "start": 9314.96, + "end": 9317.1, + "probability": 0.932 + }, + { + "start": 9319.46, + "end": 9321.6, + "probability": 0.6159 + }, + { + "start": 9322.04, + "end": 9323.02, + "probability": 0.0853 + }, + { + "start": 9323.22, + "end": 9324.2, + "probability": 0.6865 + }, + { + "start": 9325.46, + "end": 9326.2, + "probability": 0.8111 + }, + { + "start": 9327.54, + "end": 9327.78, + "probability": 0.4418 + }, + { + "start": 9328.44, + "end": 9329.9, + "probability": 0.5913 + }, + { + "start": 9330.06, + "end": 9331.96, + "probability": 0.5536 + }, + { + "start": 9332.72, + "end": 9333.5, + "probability": 0.8459 + }, + { + "start": 9334.64, + "end": 9335.0, + "probability": 0.9359 + }, + { + "start": 9335.54, + "end": 9336.5, + "probability": 0.9548 + }, + { + "start": 9337.12, + "end": 9339.14, + "probability": 0.5097 + }, + { + "start": 9339.26, + "end": 9339.78, + "probability": 0.4973 + }, + { + "start": 9341.74, + "end": 9342.3, + "probability": 0.7018 + }, + { + "start": 9343.92, + "end": 9345.38, + "probability": 0.6611 + }, + { + "start": 9346.42, + "end": 9348.5, + "probability": 0.7955 + }, + { + "start": 9349.34, + "end": 9352.48, + "probability": 0.933 + }, + { + "start": 9352.82, + "end": 9355.46, + "probability": 0.9468 + }, + { + "start": 9355.58, + "end": 9357.9, + "probability": 0.9945 + }, + { + "start": 9357.98, + "end": 9358.92, + "probability": 0.9426 + }, + { + "start": 9359.66, + "end": 9361.86, + "probability": 0.929 + }, + { + "start": 9362.28, + "end": 9362.96, + "probability": 0.7534 + }, + { + "start": 9363.4, + "end": 9364.04, + "probability": 0.8212 + }, + { + "start": 9364.1, + "end": 9364.72, + "probability": 0.9517 + }, + { + "start": 9364.82, + "end": 9365.44, + "probability": 0.9268 + }, + { + "start": 9365.5, + "end": 9366.14, + "probability": 0.8433 + }, + { + "start": 9366.18, + "end": 9366.6, + "probability": 0.5531 + }, + { + "start": 9367.28, + "end": 9369.72, + "probability": 0.9155 + }, + { + "start": 9370.18, + "end": 9370.42, + "probability": 0.5196 + }, + { + "start": 9370.54, + "end": 9373.72, + "probability": 0.9979 + }, + { + "start": 9373.88, + "end": 9376.28, + "probability": 0.8203 + }, + { + "start": 9376.34, + "end": 9376.6, + "probability": 0.4935 + }, + { + "start": 9377.06, + "end": 9377.88, + "probability": 0.7646 + }, + { + "start": 9379.28, + "end": 9380.06, + "probability": 0.161 + }, + { + "start": 9380.56, + "end": 9382.66, + "probability": 0.9832 + }, + { + "start": 9383.56, + "end": 9386.22, + "probability": 0.9066 + }, + { + "start": 9386.94, + "end": 9392.96, + "probability": 0.978 + }, + { + "start": 9393.54, + "end": 9396.06, + "probability": 0.9728 + }, + { + "start": 9396.74, + "end": 9396.86, + "probability": 0.3858 + }, + { + "start": 9396.9, + "end": 9397.86, + "probability": 0.6967 + }, + { + "start": 9398.24, + "end": 9398.82, + "probability": 0.9171 + }, + { + "start": 9399.32, + "end": 9400.52, + "probability": 0.8809 + }, + { + "start": 9400.72, + "end": 9401.02, + "probability": 0.7629 + }, + { + "start": 9401.44, + "end": 9401.74, + "probability": 0.3672 + }, + { + "start": 9401.94, + "end": 9402.04, + "probability": 0.2442 + }, + { + "start": 9402.24, + "end": 9403.76, + "probability": 0.7244 + }, + { + "start": 9403.8, + "end": 9404.18, + "probability": 0.8187 + }, + { + "start": 9404.7, + "end": 9407.12, + "probability": 0.9131 + }, + { + "start": 9407.98, + "end": 9409.48, + "probability": 0.9893 + }, + { + "start": 9410.14, + "end": 9417.54, + "probability": 0.9886 + }, + { + "start": 9417.86, + "end": 9418.2, + "probability": 0.5113 + }, + { + "start": 9418.28, + "end": 9418.86, + "probability": 0.6892 + }, + { + "start": 9418.92, + "end": 9421.64, + "probability": 0.9464 + }, + { + "start": 9421.76, + "end": 9422.24, + "probability": 0.1838 + }, + { + "start": 9422.36, + "end": 9423.84, + "probability": 0.714 + }, + { + "start": 9424.02, + "end": 9425.68, + "probability": 0.7669 + }, + { + "start": 9425.8, + "end": 9426.1, + "probability": 0.7708 + }, + { + "start": 9426.86, + "end": 9428.82, + "probability": 0.9971 + }, + { + "start": 9429.18, + "end": 9431.8, + "probability": 0.8892 + }, + { + "start": 9432.4, + "end": 9434.46, + "probability": 0.9888 + }, + { + "start": 9434.94, + "end": 9436.26, + "probability": 0.9925 + }, + { + "start": 9436.66, + "end": 9438.03, + "probability": 0.6682 + }, + { + "start": 9438.6, + "end": 9438.76, + "probability": 0.391 + }, + { + "start": 9438.76, + "end": 9440.52, + "probability": 0.5766 + }, + { + "start": 9440.6, + "end": 9441.14, + "probability": 0.3323 + }, + { + "start": 9441.74, + "end": 9443.12, + "probability": 0.9012 + }, + { + "start": 9443.32, + "end": 9444.87, + "probability": 0.9917 + }, + { + "start": 9445.28, + "end": 9446.2, + "probability": 0.736 + }, + { + "start": 9446.24, + "end": 9446.8, + "probability": 0.911 + }, + { + "start": 9446.8, + "end": 9447.62, + "probability": 0.96 + }, + { + "start": 9448.24, + "end": 9450.16, + "probability": 0.9734 + }, + { + "start": 9450.64, + "end": 9451.34, + "probability": 0.819 + }, + { + "start": 9451.44, + "end": 9453.12, + "probability": 0.9747 + }, + { + "start": 9453.2, + "end": 9453.92, + "probability": 0.7963 + }, + { + "start": 9453.92, + "end": 9454.38, + "probability": 0.8403 + }, + { + "start": 9454.54, + "end": 9456.86, + "probability": 0.905 + }, + { + "start": 9456.9, + "end": 9458.54, + "probability": 0.9677 + }, + { + "start": 9458.9, + "end": 9460.4, + "probability": 0.8015 + }, + { + "start": 9461.14, + "end": 9464.6, + "probability": 0.9006 + }, + { + "start": 9465.48, + "end": 9467.72, + "probability": 0.8523 + }, + { + "start": 9467.82, + "end": 9471.92, + "probability": 0.9575 + }, + { + "start": 9472.24, + "end": 9473.3, + "probability": 0.6719 + }, + { + "start": 9474.1, + "end": 9475.14, + "probability": 0.5834 + }, + { + "start": 9475.26, + "end": 9477.2, + "probability": 0.8945 + }, + { + "start": 9477.36, + "end": 9481.46, + "probability": 0.9989 + }, + { + "start": 9481.46, + "end": 9485.4, + "probability": 0.996 + }, + { + "start": 9485.56, + "end": 9486.44, + "probability": 0.8447 + }, + { + "start": 9486.6, + "end": 9487.48, + "probability": 0.9161 + }, + { + "start": 9487.58, + "end": 9487.9, + "probability": 0.4368 + }, + { + "start": 9488.04, + "end": 9490.9, + "probability": 0.6918 + }, + { + "start": 9491.38, + "end": 9493.86, + "probability": 0.9979 + }, + { + "start": 9494.06, + "end": 9494.24, + "probability": 0.8053 + }, + { + "start": 9494.3, + "end": 9496.72, + "probability": 0.991 + }, + { + "start": 9497.18, + "end": 9498.24, + "probability": 0.9136 + }, + { + "start": 9498.42, + "end": 9498.86, + "probability": 0.7033 + }, + { + "start": 9499.79, + "end": 9503.76, + "probability": 0.996 + }, + { + "start": 9503.92, + "end": 9507.92, + "probability": 0.8054 + }, + { + "start": 9507.92, + "end": 9509.5, + "probability": 0.8662 + }, + { + "start": 9510.0, + "end": 9514.44, + "probability": 0.9785 + }, + { + "start": 9514.44, + "end": 9519.4, + "probability": 0.9856 + }, + { + "start": 9519.5, + "end": 9520.18, + "probability": 0.9642 + }, + { + "start": 9520.84, + "end": 9521.8, + "probability": 0.3198 + }, + { + "start": 9522.22, + "end": 9523.18, + "probability": 0.7806 + }, + { + "start": 9523.38, + "end": 9525.8, + "probability": 0.9966 + }, + { + "start": 9525.8, + "end": 9528.02, + "probability": 0.9861 + }, + { + "start": 9528.46, + "end": 9530.54, + "probability": 0.9321 + }, + { + "start": 9530.54, + "end": 9531.1, + "probability": 0.8137 + }, + { + "start": 9531.14, + "end": 9532.78, + "probability": 0.6344 + }, + { + "start": 9532.94, + "end": 9533.7, + "probability": 0.9206 + }, + { + "start": 9534.56, + "end": 9535.32, + "probability": 0.6944 + }, + { + "start": 9535.32, + "end": 9535.32, + "probability": 0.3058 + }, + { + "start": 9535.32, + "end": 9535.36, + "probability": 0.015 + }, + { + "start": 9535.36, + "end": 9536.6, + "probability": 0.5904 + }, + { + "start": 9536.66, + "end": 9537.57, + "probability": 0.9172 + }, + { + "start": 9537.88, + "end": 9538.28, + "probability": 0.7917 + }, + { + "start": 9538.28, + "end": 9539.18, + "probability": 0.8473 + }, + { + "start": 9539.18, + "end": 9542.56, + "probability": 0.9887 + }, + { + "start": 9542.56, + "end": 9546.94, + "probability": 0.95 + }, + { + "start": 9546.94, + "end": 9550.56, + "probability": 0.9963 + }, + { + "start": 9551.34, + "end": 9553.76, + "probability": 0.6534 + }, + { + "start": 9553.76, + "end": 9555.0, + "probability": 0.2012 + }, + { + "start": 9555.0, + "end": 9555.0, + "probability": 0.4763 + }, + { + "start": 9555.04, + "end": 9555.94, + "probability": 0.5944 + }, + { + "start": 9556.74, + "end": 9558.36, + "probability": 0.8494 + }, + { + "start": 9558.5, + "end": 9560.18, + "probability": 0.8629 + }, + { + "start": 9560.34, + "end": 9561.08, + "probability": 0.596 + }, + { + "start": 9561.14, + "end": 9563.62, + "probability": 0.9839 + }, + { + "start": 9564.0, + "end": 9566.52, + "probability": 0.8106 + }, + { + "start": 9567.04, + "end": 9568.7, + "probability": 0.9316 + }, + { + "start": 9569.64, + "end": 9570.02, + "probability": 0.7366 + }, + { + "start": 9570.9, + "end": 9574.32, + "probability": 0.9425 + }, + { + "start": 9574.52, + "end": 9576.46, + "probability": 0.9609 + }, + { + "start": 9576.84, + "end": 9577.52, + "probability": 0.9318 + }, + { + "start": 9577.62, + "end": 9580.93, + "probability": 0.9487 + }, + { + "start": 9581.28, + "end": 9582.79, + "probability": 0.9955 + }, + { + "start": 9583.2, + "end": 9583.92, + "probability": 0.6157 + }, + { + "start": 9584.0, + "end": 9584.94, + "probability": 0.8579 + }, + { + "start": 9585.0, + "end": 9586.2, + "probability": 0.9249 + }, + { + "start": 9586.68, + "end": 9586.8, + "probability": 0.6194 + }, + { + "start": 9587.08, + "end": 9588.54, + "probability": 0.8492 + }, + { + "start": 9589.02, + "end": 9594.1, + "probability": 0.94 + }, + { + "start": 9594.56, + "end": 9594.86, + "probability": 0.8936 + }, + { + "start": 9595.22, + "end": 9595.34, + "probability": 0.7274 + }, + { + "start": 9595.46, + "end": 9596.12, + "probability": 0.8181 + }, + { + "start": 9596.2, + "end": 9597.8, + "probability": 0.9342 + }, + { + "start": 9597.8, + "end": 9598.02, + "probability": 0.3831 + }, + { + "start": 9598.32, + "end": 9600.54, + "probability": 0.9964 + }, + { + "start": 9600.94, + "end": 9603.98, + "probability": 0.9961 + }, + { + "start": 9604.1, + "end": 9604.6, + "probability": 0.7359 + }, + { + "start": 9604.6, + "end": 9605.96, + "probability": 0.802 + }, + { + "start": 9606.0, + "end": 9607.68, + "probability": 0.5695 + }, + { + "start": 9608.6, + "end": 9610.82, + "probability": 0.6542 + }, + { + "start": 9612.02, + "end": 9612.02, + "probability": 0.5168 + }, + { + "start": 9612.02, + "end": 9613.14, + "probability": 0.9595 + }, + { + "start": 9613.48, + "end": 9614.26, + "probability": 0.5394 + }, + { + "start": 9614.4, + "end": 9615.84, + "probability": 0.9914 + }, + { + "start": 9617.12, + "end": 9618.28, + "probability": 0.1186 + }, + { + "start": 9618.28, + "end": 9621.1, + "probability": 0.9133 + }, + { + "start": 9625.36, + "end": 9626.5, + "probability": 0.9845 + }, + { + "start": 9628.4, + "end": 9629.96, + "probability": 0.9369 + }, + { + "start": 9631.32, + "end": 9632.12, + "probability": 0.2178 + }, + { + "start": 9632.26, + "end": 9633.96, + "probability": 0.4974 + }, + { + "start": 9634.16, + "end": 9634.3, + "probability": 0.2523 + }, + { + "start": 9634.38, + "end": 9635.22, + "probability": 0.9712 + }, + { + "start": 9635.46, + "end": 9638.48, + "probability": 0.0661 + }, + { + "start": 9639.66, + "end": 9641.64, + "probability": 0.7735 + }, + { + "start": 9641.76, + "end": 9642.66, + "probability": 0.9905 + }, + { + "start": 9643.1, + "end": 9645.22, + "probability": 0.5648 + }, + { + "start": 9647.14, + "end": 9648.18, + "probability": 0.8912 + }, + { + "start": 9649.9, + "end": 9652.46, + "probability": 0.5268 + }, + { + "start": 9653.64, + "end": 9656.54, + "probability": 0.9075 + }, + { + "start": 9657.4, + "end": 9658.96, + "probability": 0.995 + }, + { + "start": 9659.54, + "end": 9662.42, + "probability": 0.6924 + }, + { + "start": 9662.52, + "end": 9666.04, + "probability": 0.9146 + }, + { + "start": 9666.04, + "end": 9668.54, + "probability": 0.856 + }, + { + "start": 9668.56, + "end": 9669.36, + "probability": 0.7245 + }, + { + "start": 9669.44, + "end": 9672.56, + "probability": 0.6538 + }, + { + "start": 9673.74, + "end": 9678.06, + "probability": 0.8397 + }, + { + "start": 9678.9, + "end": 9680.92, + "probability": 0.983 + }, + { + "start": 9682.02, + "end": 9682.7, + "probability": 0.4435 + }, + { + "start": 9683.66, + "end": 9684.52, + "probability": 0.9451 + }, + { + "start": 9684.66, + "end": 9685.72, + "probability": 0.9138 + }, + { + "start": 9686.64, + "end": 9692.18, + "probability": 0.9937 + }, + { + "start": 9692.74, + "end": 9695.76, + "probability": 0.9954 + }, + { + "start": 9696.96, + "end": 9697.68, + "probability": 0.7745 + }, + { + "start": 9697.84, + "end": 9702.78, + "probability": 0.9924 + }, + { + "start": 9703.66, + "end": 9704.65, + "probability": 0.9714 + }, + { + "start": 9705.16, + "end": 9705.92, + "probability": 0.8417 + }, + { + "start": 9705.98, + "end": 9707.8, + "probability": 0.9895 + }, + { + "start": 9708.64, + "end": 9711.12, + "probability": 0.9972 + }, + { + "start": 9712.32, + "end": 9715.56, + "probability": 0.931 + }, + { + "start": 9716.48, + "end": 9717.9, + "probability": 0.8957 + }, + { + "start": 9717.94, + "end": 9722.76, + "probability": 0.9839 + }, + { + "start": 9723.22, + "end": 9724.25, + "probability": 0.9758 + }, + { + "start": 9725.34, + "end": 9726.12, + "probability": 0.8141 + }, + { + "start": 9726.66, + "end": 9730.44, + "probability": 0.8591 + }, + { + "start": 9730.74, + "end": 9732.42, + "probability": 0.8383 + }, + { + "start": 9733.12, + "end": 9735.14, + "probability": 0.931 + }, + { + "start": 9736.24, + "end": 9739.54, + "probability": 0.9382 + }, + { + "start": 9740.12, + "end": 9742.6, + "probability": 0.9462 + }, + { + "start": 9743.22, + "end": 9747.32, + "probability": 0.9302 + }, + { + "start": 9748.32, + "end": 9749.7, + "probability": 0.803 + }, + { + "start": 9750.26, + "end": 9752.12, + "probability": 0.9942 + }, + { + "start": 9752.2, + "end": 9752.46, + "probability": 0.6917 + }, + { + "start": 9752.5, + "end": 9754.08, + "probability": 0.9165 + }, + { + "start": 9754.34, + "end": 9755.02, + "probability": 0.9671 + }, + { + "start": 9755.7, + "end": 9756.14, + "probability": 0.482 + }, + { + "start": 9756.7, + "end": 9757.66, + "probability": 0.4847 + }, + { + "start": 9758.62, + "end": 9759.82, + "probability": 0.6697 + }, + { + "start": 9760.04, + "end": 9761.6, + "probability": 0.5447 + }, + { + "start": 9761.78, + "end": 9762.02, + "probability": 0.8636 + }, + { + "start": 9762.46, + "end": 9764.34, + "probability": 0.9119 + }, + { + "start": 9764.76, + "end": 9765.28, + "probability": 0.6247 + }, + { + "start": 9765.4, + "end": 9769.2, + "probability": 0.9531 + }, + { + "start": 9769.8, + "end": 9772.35, + "probability": 0.95 + }, + { + "start": 9772.88, + "end": 9773.7, + "probability": 0.8118 + }, + { + "start": 9773.78, + "end": 9776.78, + "probability": 0.8846 + }, + { + "start": 9776.78, + "end": 9779.82, + "probability": 0.8575 + }, + { + "start": 9780.38, + "end": 9781.52, + "probability": 0.5681 + }, + { + "start": 9781.6, + "end": 9782.54, + "probability": 0.7506 + }, + { + "start": 9782.68, + "end": 9783.74, + "probability": 0.6805 + }, + { + "start": 9784.26, + "end": 9784.68, + "probability": 0.7641 + }, + { + "start": 9785.4, + "end": 9788.14, + "probability": 0.9498 + }, + { + "start": 9788.36, + "end": 9791.08, + "probability": 0.9207 + }, + { + "start": 9791.56, + "end": 9792.28, + "probability": 0.9645 + }, + { + "start": 9792.78, + "end": 9793.92, + "probability": 0.7052 + }, + { + "start": 9794.84, + "end": 9796.28, + "probability": 0.9487 + }, + { + "start": 9797.0, + "end": 9797.84, + "probability": 0.9517 + }, + { + "start": 9798.72, + "end": 9798.98, + "probability": 0.4961 + }, + { + "start": 9799.02, + "end": 9800.91, + "probability": 0.7069 + }, + { + "start": 9801.28, + "end": 9802.16, + "probability": 0.5725 + }, + { + "start": 9802.64, + "end": 9804.7, + "probability": 0.9945 + }, + { + "start": 9805.72, + "end": 9808.42, + "probability": 0.9968 + }, + { + "start": 9809.1, + "end": 9810.86, + "probability": 0.4496 + }, + { + "start": 9810.9, + "end": 9811.68, + "probability": 0.6618 + }, + { + "start": 9812.0, + "end": 9813.06, + "probability": 0.9897 + }, + { + "start": 9813.32, + "end": 9814.16, + "probability": 0.9715 + }, + { + "start": 9814.54, + "end": 9816.34, + "probability": 0.9517 + }, + { + "start": 9816.9, + "end": 9818.94, + "probability": 0.9438 + }, + { + "start": 9819.28, + "end": 9819.66, + "probability": 0.6795 + }, + { + "start": 9821.04, + "end": 9823.34, + "probability": 0.9988 + }, + { + "start": 9823.34, + "end": 9827.42, + "probability": 0.9572 + }, + { + "start": 9827.82, + "end": 9828.58, + "probability": 0.9063 + }, + { + "start": 9829.46, + "end": 9830.38, + "probability": 0.9953 + }, + { + "start": 9830.72, + "end": 9831.88, + "probability": 0.9968 + }, + { + "start": 9831.88, + "end": 9832.8, + "probability": 0.8428 + }, + { + "start": 9833.2, + "end": 9833.94, + "probability": 0.6677 + }, + { + "start": 9834.02, + "end": 9836.5, + "probability": 0.9202 + }, + { + "start": 9836.98, + "end": 9838.78, + "probability": 0.9714 + }, + { + "start": 9838.78, + "end": 9841.58, + "probability": 0.9767 + }, + { + "start": 9841.88, + "end": 9843.9, + "probability": 0.9957 + }, + { + "start": 9844.76, + "end": 9846.26, + "probability": 0.3134 + }, + { + "start": 9846.26, + "end": 9848.3, + "probability": 0.9824 + }, + { + "start": 9848.64, + "end": 9849.7, + "probability": 0.7533 + }, + { + "start": 9849.94, + "end": 9850.38, + "probability": 0.6926 + }, + { + "start": 9851.14, + "end": 9851.38, + "probability": 0.8163 + }, + { + "start": 9851.76, + "end": 9852.1, + "probability": 0.7214 + }, + { + "start": 9852.48, + "end": 9852.8, + "probability": 0.9468 + }, + { + "start": 9853.52, + "end": 9856.08, + "probability": 0.2988 + }, + { + "start": 9856.08, + "end": 9857.71, + "probability": 0.5414 + }, + { + "start": 9858.34, + "end": 9860.38, + "probability": 0.9968 + }, + { + "start": 9860.72, + "end": 9862.64, + "probability": 0.8218 + }, + { + "start": 9862.96, + "end": 9865.3, + "probability": 0.9905 + }, + { + "start": 9865.3, + "end": 9868.58, + "probability": 0.9937 + }, + { + "start": 9869.7, + "end": 9872.26, + "probability": 0.7368 + }, + { + "start": 9873.02, + "end": 9873.66, + "probability": 0.7141 + }, + { + "start": 9873.74, + "end": 9874.12, + "probability": 0.9536 + }, + { + "start": 9874.78, + "end": 9876.46, + "probability": 0.9099 + }, + { + "start": 9877.72, + "end": 9882.18, + "probability": 0.9436 + }, + { + "start": 9882.44, + "end": 9884.26, + "probability": 0.9697 + }, + { + "start": 9884.72, + "end": 9887.46, + "probability": 0.9968 + }, + { + "start": 9887.88, + "end": 9888.97, + "probability": 0.9738 + }, + { + "start": 9889.3, + "end": 9891.7, + "probability": 0.9976 + }, + { + "start": 9891.7, + "end": 9894.78, + "probability": 0.9983 + }, + { + "start": 9895.28, + "end": 9896.45, + "probability": 0.9914 + }, + { + "start": 9896.92, + "end": 9898.5, + "probability": 0.9006 + }, + { + "start": 9898.94, + "end": 9899.68, + "probability": 0.8142 + }, + { + "start": 9900.08, + "end": 9904.02, + "probability": 0.9719 + }, + { + "start": 9904.38, + "end": 9905.62, + "probability": 0.9281 + }, + { + "start": 9906.0, + "end": 9907.12, + "probability": 0.9562 + }, + { + "start": 9907.24, + "end": 9907.98, + "probability": 0.8148 + }, + { + "start": 9908.18, + "end": 9909.08, + "probability": 0.8633 + }, + { + "start": 9909.08, + "end": 9910.1, + "probability": 0.7336 + }, + { + "start": 9910.4, + "end": 9913.12, + "probability": 0.9767 + }, + { + "start": 9913.38, + "end": 9914.2, + "probability": 0.9187 + }, + { + "start": 9914.96, + "end": 9915.44, + "probability": 0.8887 + }, + { + "start": 9915.56, + "end": 9916.26, + "probability": 0.6812 + }, + { + "start": 9916.66, + "end": 9919.31, + "probability": 0.8765 + }, + { + "start": 9920.36, + "end": 9926.08, + "probability": 0.9804 + }, + { + "start": 9926.44, + "end": 9928.0, + "probability": 0.9106 + }, + { + "start": 9928.56, + "end": 9929.88, + "probability": 0.9655 + }, + { + "start": 9930.02, + "end": 9930.02, + "probability": 0.6993 + }, + { + "start": 9930.02, + "end": 9932.32, + "probability": 0.9973 + }, + { + "start": 9932.32, + "end": 9935.88, + "probability": 0.9989 + }, + { + "start": 9935.96, + "end": 9938.7, + "probability": 0.8503 + }, + { + "start": 9939.3, + "end": 9939.54, + "probability": 0.615 + }, + { + "start": 9940.0, + "end": 9943.78, + "probability": 0.8151 + }, + { + "start": 9944.48, + "end": 9944.93, + "probability": 0.5393 + }, + { + "start": 9945.8, + "end": 9946.62, + "probability": 0.7068 + }, + { + "start": 9947.36, + "end": 9947.81, + "probability": 0.4694 + }, + { + "start": 9948.36, + "end": 9949.78, + "probability": 0.8826 + }, + { + "start": 9967.76, + "end": 9968.26, + "probability": 0.6874 + }, + { + "start": 9972.16, + "end": 9973.9, + "probability": 0.7525 + }, + { + "start": 9976.48, + "end": 9978.07, + "probability": 0.9961 + }, + { + "start": 9979.04, + "end": 9981.1, + "probability": 0.9448 + }, + { + "start": 9981.9, + "end": 9984.3, + "probability": 0.6657 + }, + { + "start": 9984.3, + "end": 9986.24, + "probability": 0.5205 + }, + { + "start": 9987.8, + "end": 9991.6, + "probability": 0.8677 + }, + { + "start": 9995.04, + "end": 9997.36, + "probability": 0.8569 + }, + { + "start": 9999.17, + "end": 10002.18, + "probability": 0.8311 + }, + { + "start": 10002.28, + "end": 10003.88, + "probability": 0.9917 + }, + { + "start": 10004.64, + "end": 10009.58, + "probability": 0.7564 + }, + { + "start": 10010.5, + "end": 10014.08, + "probability": 0.9748 + }, + { + "start": 10014.72, + "end": 10019.18, + "probability": 0.9562 + }, + { + "start": 10019.3, + "end": 10021.94, + "probability": 0.9653 + }, + { + "start": 10021.94, + "end": 10029.43, + "probability": 0.9381 + }, + { + "start": 10029.68, + "end": 10034.66, + "probability": 0.9834 + }, + { + "start": 10035.2, + "end": 10037.02, + "probability": 0.9713 + }, + { + "start": 10037.12, + "end": 10042.38, + "probability": 0.993 + }, + { + "start": 10043.14, + "end": 10043.86, + "probability": 0.8889 + }, + { + "start": 10043.98, + "end": 10048.58, + "probability": 0.9847 + }, + { + "start": 10048.76, + "end": 10053.62, + "probability": 0.9902 + }, + { + "start": 10053.74, + "end": 10054.38, + "probability": 0.9746 + }, + { + "start": 10055.42, + "end": 10056.16, + "probability": 0.8777 + }, + { + "start": 10056.96, + "end": 10059.56, + "probability": 0.7943 + }, + { + "start": 10059.7, + "end": 10060.48, + "probability": 0.9797 + }, + { + "start": 10061.1, + "end": 10064.38, + "probability": 0.8345 + }, + { + "start": 10064.92, + "end": 10067.36, + "probability": 0.9453 + }, + { + "start": 10067.48, + "end": 10067.82, + "probability": 0.4901 + }, + { + "start": 10067.92, + "end": 10067.92, + "probability": 0.3906 + }, + { + "start": 10067.92, + "end": 10070.74, + "probability": 0.6655 + }, + { + "start": 10071.56, + "end": 10074.48, + "probability": 0.8528 + }, + { + "start": 10075.08, + "end": 10076.66, + "probability": 0.98 + }, + { + "start": 10076.76, + "end": 10082.48, + "probability": 0.9841 + }, + { + "start": 10082.62, + "end": 10084.34, + "probability": 0.9889 + }, + { + "start": 10084.8, + "end": 10086.15, + "probability": 0.9957 + }, + { + "start": 10087.18, + "end": 10089.24, + "probability": 0.8702 + }, + { + "start": 10089.38, + "end": 10090.14, + "probability": 0.9912 + }, + { + "start": 10090.74, + "end": 10093.24, + "probability": 0.9935 + }, + { + "start": 10094.44, + "end": 10095.0, + "probability": 0.5877 + }, + { + "start": 10095.3, + "end": 10096.66, + "probability": 0.7407 + }, + { + "start": 10097.91, + "end": 10098.62, + "probability": 0.9016 + }, + { + "start": 10099.32, + "end": 10100.2, + "probability": 0.9739 + }, + { + "start": 10100.92, + "end": 10103.46, + "probability": 0.9901 + }, + { + "start": 10103.56, + "end": 10106.5, + "probability": 0.6798 + }, + { + "start": 10106.56, + "end": 10108.38, + "probability": 0.9955 + }, + { + "start": 10108.96, + "end": 10110.4, + "probability": 0.9976 + }, + { + "start": 10110.92, + "end": 10116.56, + "probability": 0.9815 + }, + { + "start": 10117.24, + "end": 10118.4, + "probability": 0.9294 + }, + { + "start": 10118.94, + "end": 10121.36, + "probability": 0.996 + }, + { + "start": 10121.98, + "end": 10127.84, + "probability": 0.9974 + }, + { + "start": 10128.5, + "end": 10132.42, + "probability": 0.9995 + }, + { + "start": 10132.56, + "end": 10135.22, + "probability": 0.7769 + }, + { + "start": 10135.54, + "end": 10135.54, + "probability": 0.3577 + }, + { + "start": 10135.54, + "end": 10136.24, + "probability": 0.7219 + }, + { + "start": 10137.12, + "end": 10139.05, + "probability": 0.9858 + }, + { + "start": 10139.52, + "end": 10140.15, + "probability": 0.8813 + }, + { + "start": 10140.8, + "end": 10142.82, + "probability": 0.9966 + }, + { + "start": 10143.18, + "end": 10144.04, + "probability": 0.8906 + }, + { + "start": 10144.1, + "end": 10146.52, + "probability": 0.8654 + }, + { + "start": 10146.52, + "end": 10148.88, + "probability": 0.4746 + }, + { + "start": 10148.96, + "end": 10149.68, + "probability": 0.6987 + }, + { + "start": 10149.8, + "end": 10151.1, + "probability": 0.9052 + }, + { + "start": 10151.3, + "end": 10151.86, + "probability": 0.4522 + }, + { + "start": 10151.86, + "end": 10152.76, + "probability": 0.9084 + }, + { + "start": 10152.82, + "end": 10157.22, + "probability": 0.9695 + }, + { + "start": 10157.86, + "end": 10159.96, + "probability": 0.9857 + }, + { + "start": 10160.44, + "end": 10160.68, + "probability": 0.7125 + }, + { + "start": 10160.68, + "end": 10162.92, + "probability": 0.9973 + }, + { + "start": 10163.36, + "end": 10165.9, + "probability": 0.9962 + }, + { + "start": 10166.42, + "end": 10166.88, + "probability": 0.9643 + }, + { + "start": 10166.92, + "end": 10168.22, + "probability": 0.9645 + }, + { + "start": 10168.36, + "end": 10170.58, + "probability": 0.8501 + }, + { + "start": 10171.7, + "end": 10172.52, + "probability": 0.7931 + }, + { + "start": 10172.94, + "end": 10174.72, + "probability": 0.7407 + }, + { + "start": 10174.84, + "end": 10177.4, + "probability": 0.9963 + }, + { + "start": 10177.82, + "end": 10178.82, + "probability": 0.8948 + }, + { + "start": 10179.54, + "end": 10183.08, + "probability": 0.8737 + }, + { + "start": 10183.36, + "end": 10185.84, + "probability": 0.9953 + }, + { + "start": 10186.68, + "end": 10187.28, + "probability": 0.7581 + }, + { + "start": 10187.6, + "end": 10188.94, + "probability": 0.9136 + }, + { + "start": 10189.06, + "end": 10189.52, + "probability": 0.6426 + }, + { + "start": 10189.52, + "end": 10193.12, + "probability": 0.6314 + }, + { + "start": 10194.48, + "end": 10199.62, + "probability": 0.9671 + }, + { + "start": 10199.74, + "end": 10202.26, + "probability": 0.9989 + }, + { + "start": 10202.96, + "end": 10205.5, + "probability": 0.9679 + }, + { + "start": 10205.7, + "end": 10206.96, + "probability": 0.8559 + }, + { + "start": 10207.18, + "end": 10209.24, + "probability": 0.9696 + }, + { + "start": 10209.3, + "end": 10210.16, + "probability": 0.5607 + }, + { + "start": 10210.24, + "end": 10211.28, + "probability": 0.9277 + }, + { + "start": 10211.8, + "end": 10212.56, + "probability": 0.7627 + }, + { + "start": 10212.6, + "end": 10214.44, + "probability": 0.9867 + }, + { + "start": 10214.88, + "end": 10215.6, + "probability": 0.784 + }, + { + "start": 10215.78, + "end": 10216.14, + "probability": 0.9701 + }, + { + "start": 10216.32, + "end": 10217.7, + "probability": 0.9873 + }, + { + "start": 10217.76, + "end": 10218.3, + "probability": 0.9145 + }, + { + "start": 10218.36, + "end": 10218.72, + "probability": 0.9277 + }, + { + "start": 10219.66, + "end": 10220.02, + "probability": 0.8839 + }, + { + "start": 10220.7, + "end": 10222.52, + "probability": 0.8948 + }, + { + "start": 10223.78, + "end": 10223.96, + "probability": 0.4767 + }, + { + "start": 10225.92, + "end": 10230.5, + "probability": 0.9531 + }, + { + "start": 10231.28, + "end": 10232.58, + "probability": 0.7955 + }, + { + "start": 10232.9, + "end": 10233.48, + "probability": 0.2951 + }, + { + "start": 10233.48, + "end": 10234.6, + "probability": 0.6782 + }, + { + "start": 10235.98, + "end": 10238.36, + "probability": 0.54 + }, + { + "start": 10238.36, + "end": 10238.62, + "probability": 0.361 + }, + { + "start": 10253.1, + "end": 10254.16, + "probability": 0.1962 + }, + { + "start": 10254.86, + "end": 10256.66, + "probability": 0.696 + }, + { + "start": 10257.54, + "end": 10258.86, + "probability": 0.5785 + }, + { + "start": 10262.1, + "end": 10264.78, + "probability": 0.6707 + }, + { + "start": 10265.46, + "end": 10266.14, + "probability": 0.6545 + }, + { + "start": 10267.14, + "end": 10269.2, + "probability": 0.806 + }, + { + "start": 10269.82, + "end": 10273.9, + "probability": 0.9912 + }, + { + "start": 10274.34, + "end": 10277.82, + "probability": 0.9556 + }, + { + "start": 10278.08, + "end": 10278.52, + "probability": 0.5061 + }, + { + "start": 10278.94, + "end": 10279.66, + "probability": 0.7192 + }, + { + "start": 10280.12, + "end": 10280.28, + "probability": 0.0221 + }, + { + "start": 10280.65, + "end": 10284.3, + "probability": 0.7037 + }, + { + "start": 10284.5, + "end": 10286.2, + "probability": 0.7598 + }, + { + "start": 10286.46, + "end": 10289.06, + "probability": 0.7719 + }, + { + "start": 10289.2, + "end": 10294.24, + "probability": 0.9951 + }, + { + "start": 10294.38, + "end": 10294.76, + "probability": 0.9138 + }, + { + "start": 10295.2, + "end": 10295.94, + "probability": 0.9684 + }, + { + "start": 10296.82, + "end": 10299.2, + "probability": 0.7006 + }, + { + "start": 10300.18, + "end": 10302.26, + "probability": 0.9648 + }, + { + "start": 10303.78, + "end": 10307.22, + "probability": 0.9639 + }, + { + "start": 10309.4, + "end": 10311.96, + "probability": 0.8096 + }, + { + "start": 10312.04, + "end": 10314.82, + "probability": 0.7864 + }, + { + "start": 10315.34, + "end": 10317.5, + "probability": 0.8926 + }, + { + "start": 10317.7, + "end": 10320.74, + "probability": 0.5708 + }, + { + "start": 10321.44, + "end": 10322.28, + "probability": 0.2671 + }, + { + "start": 10322.28, + "end": 10322.28, + "probability": 0.0935 + }, + { + "start": 10322.28, + "end": 10322.28, + "probability": 0.0612 + }, + { + "start": 10322.28, + "end": 10322.63, + "probability": 0.4052 + }, + { + "start": 10323.06, + "end": 10324.62, + "probability": 0.8376 + }, + { + "start": 10324.74, + "end": 10325.14, + "probability": 0.1177 + }, + { + "start": 10326.82, + "end": 10327.66, + "probability": 0.1808 + }, + { + "start": 10328.2, + "end": 10328.64, + "probability": 0.319 + }, + { + "start": 10328.64, + "end": 10329.16, + "probability": 0.3836 + }, + { + "start": 10329.16, + "end": 10331.22, + "probability": 0.9277 + }, + { + "start": 10332.68, + "end": 10333.18, + "probability": 0.0337 + }, + { + "start": 10333.18, + "end": 10333.2, + "probability": 0.0506 + }, + { + "start": 10333.2, + "end": 10333.28, + "probability": 0.0203 + }, + { + "start": 10333.28, + "end": 10333.77, + "probability": 0.2267 + }, + { + "start": 10333.92, + "end": 10335.42, + "probability": 0.8998 + }, + { + "start": 10335.5, + "end": 10335.86, + "probability": 0.6575 + }, + { + "start": 10337.44, + "end": 10341.3, + "probability": 0.9648 + }, + { + "start": 10341.34, + "end": 10343.4, + "probability": 0.4771 + }, + { + "start": 10344.46, + "end": 10345.16, + "probability": 0.0027 + }, + { + "start": 10347.22, + "end": 10350.52, + "probability": 0.1189 + }, + { + "start": 10350.88, + "end": 10351.38, + "probability": 0.6233 + }, + { + "start": 10354.76, + "end": 10355.22, + "probability": 0.3139 + }, + { + "start": 10359.78, + "end": 10360.95, + "probability": 0.5378 + }, + { + "start": 10362.78, + "end": 10362.78, + "probability": 0.1233 + }, + { + "start": 10362.78, + "end": 10363.26, + "probability": 0.8058 + }, + { + "start": 10364.86, + "end": 10368.38, + "probability": 0.7739 + }, + { + "start": 10369.74, + "end": 10373.52, + "probability": 0.9787 + }, + { + "start": 10374.1, + "end": 10388.94, + "probability": 0.1544 + }, + { + "start": 10388.94, + "end": 10388.98, + "probability": 0.0373 + }, + { + "start": 10388.98, + "end": 10390.04, + "probability": 0.0394 + }, + { + "start": 10392.24, + "end": 10395.86, + "probability": 0.0348 + }, + { + "start": 10396.72, + "end": 10397.02, + "probability": 0.4412 + }, + { + "start": 10398.32, + "end": 10402.46, + "probability": 0.8966 + }, + { + "start": 10402.9, + "end": 10404.36, + "probability": 0.7497 + }, + { + "start": 10404.48, + "end": 10405.14, + "probability": 0.5898 + }, + { + "start": 10405.72, + "end": 10407.1, + "probability": 0.9199 + }, + { + "start": 10417.04, + "end": 10422.34, + "probability": 0.9785 + }, + { + "start": 10422.5, + "end": 10423.28, + "probability": 0.8474 + }, + { + "start": 10424.48, + "end": 10425.94, + "probability": 0.9961 + }, + { + "start": 10426.3, + "end": 10427.64, + "probability": 0.7783 + }, + { + "start": 10428.64, + "end": 10431.2, + "probability": 0.4516 + }, + { + "start": 10431.22, + "end": 10433.7, + "probability": 0.1863 + }, + { + "start": 10433.9, + "end": 10434.94, + "probability": 0.6439 + }, + { + "start": 10435.06, + "end": 10436.32, + "probability": 0.9809 + }, + { + "start": 10437.12, + "end": 10439.48, + "probability": 0.713 + }, + { + "start": 10439.58, + "end": 10439.88, + "probability": 0.8927 + }, + { + "start": 10451.92, + "end": 10452.16, + "probability": 0.3417 + }, + { + "start": 10452.24, + "end": 10454.52, + "probability": 0.6719 + }, + { + "start": 10456.68, + "end": 10458.26, + "probability": 0.8116 + }, + { + "start": 10458.82, + "end": 10460.87, + "probability": 0.8518 + }, + { + "start": 10463.84, + "end": 10470.22, + "probability": 0.9265 + }, + { + "start": 10471.14, + "end": 10472.72, + "probability": 0.9989 + }, + { + "start": 10473.54, + "end": 10474.56, + "probability": 0.9832 + }, + { + "start": 10475.84, + "end": 10478.66, + "probability": 0.9943 + }, + { + "start": 10479.68, + "end": 10480.66, + "probability": 0.7295 + }, + { + "start": 10480.86, + "end": 10483.34, + "probability": 0.9203 + }, + { + "start": 10485.26, + "end": 10487.86, + "probability": 0.9242 + }, + { + "start": 10488.3, + "end": 10492.5, + "probability": 0.9802 + }, + { + "start": 10493.56, + "end": 10494.48, + "probability": 0.5483 + }, + { + "start": 10495.58, + "end": 10498.6, + "probability": 0.9469 + }, + { + "start": 10500.0, + "end": 10505.86, + "probability": 0.8484 + }, + { + "start": 10506.02, + "end": 10510.7, + "probability": 0.9918 + }, + { + "start": 10512.38, + "end": 10513.18, + "probability": 0.5089 + }, + { + "start": 10513.52, + "end": 10518.58, + "probability": 0.9598 + }, + { + "start": 10519.86, + "end": 10524.96, + "probability": 0.9879 + }, + { + "start": 10525.82, + "end": 10526.76, + "probability": 0.8199 + }, + { + "start": 10527.42, + "end": 10529.02, + "probability": 0.8266 + }, + { + "start": 10529.62, + "end": 10530.86, + "probability": 0.9728 + }, + { + "start": 10531.32, + "end": 10533.38, + "probability": 0.7484 + }, + { + "start": 10534.46, + "end": 10539.78, + "probability": 0.9888 + }, + { + "start": 10542.42, + "end": 10543.93, + "probability": 0.9583 + }, + { + "start": 10544.46, + "end": 10548.84, + "probability": 0.9565 + }, + { + "start": 10548.96, + "end": 10552.52, + "probability": 0.9963 + }, + { + "start": 10553.26, + "end": 10555.1, + "probability": 0.8409 + }, + { + "start": 10557.2, + "end": 10560.46, + "probability": 0.627 + }, + { + "start": 10562.26, + "end": 10568.54, + "probability": 0.9388 + }, + { + "start": 10569.24, + "end": 10572.34, + "probability": 0.9476 + }, + { + "start": 10572.42, + "end": 10577.64, + "probability": 0.9941 + }, + { + "start": 10580.24, + "end": 10583.36, + "probability": 0.9348 + }, + { + "start": 10583.36, + "end": 10586.04, + "probability": 0.9525 + }, + { + "start": 10586.96, + "end": 10588.64, + "probability": 0.9319 + }, + { + "start": 10589.56, + "end": 10590.24, + "probability": 0.5115 + }, + { + "start": 10592.09, + "end": 10596.52, + "probability": 0.9692 + }, + { + "start": 10598.06, + "end": 10604.68, + "probability": 0.9915 + }, + { + "start": 10606.82, + "end": 10607.04, + "probability": 0.8301 + }, + { + "start": 10607.78, + "end": 10611.86, + "probability": 0.9836 + }, + { + "start": 10612.44, + "end": 10613.96, + "probability": 0.9983 + }, + { + "start": 10615.82, + "end": 10620.24, + "probability": 0.7925 + }, + { + "start": 10621.16, + "end": 10623.92, + "probability": 0.9897 + }, + { + "start": 10624.12, + "end": 10628.88, + "probability": 0.835 + }, + { + "start": 10629.64, + "end": 10630.84, + "probability": 0.7867 + }, + { + "start": 10632.3, + "end": 10634.76, + "probability": 0.7007 + }, + { + "start": 10634.88, + "end": 10635.46, + "probability": 0.4691 + }, + { + "start": 10641.14, + "end": 10644.22, + "probability": 0.0475 + }, + { + "start": 10646.38, + "end": 10646.48, + "probability": 0.1287 + }, + { + "start": 10664.84, + "end": 10666.8, + "probability": 0.7314 + }, + { + "start": 10670.62, + "end": 10672.02, + "probability": 0.2642 + }, + { + "start": 10673.06, + "end": 10674.76, + "probability": 0.0558 + }, + { + "start": 10675.02, + "end": 10675.24, + "probability": 0.1706 + }, + { + "start": 10675.32, + "end": 10676.56, + "probability": 0.0766 + }, + { + "start": 10692.54, + "end": 10692.98, + "probability": 0.1436 + }, + { + "start": 10694.36, + "end": 10697.26, + "probability": 0.991 + }, + { + "start": 10698.34, + "end": 10703.3, + "probability": 0.9814 + }, + { + "start": 10704.9, + "end": 10705.46, + "probability": 0.5409 + }, + { + "start": 10706.6, + "end": 10707.4, + "probability": 0.6739 + }, + { + "start": 10707.54, + "end": 10708.02, + "probability": 0.8596 + }, + { + "start": 10708.16, + "end": 10710.06, + "probability": 0.9897 + }, + { + "start": 10711.48, + "end": 10715.64, + "probability": 0.9568 + }, + { + "start": 10715.68, + "end": 10717.08, + "probability": 0.7849 + }, + { + "start": 10719.6, + "end": 10722.58, + "probability": 0.79 + }, + { + "start": 10724.02, + "end": 10725.58, + "probability": 0.9932 + }, + { + "start": 10726.5, + "end": 10729.24, + "probability": 0.5816 + }, + { + "start": 10730.54, + "end": 10732.14, + "probability": 0.8189 + }, + { + "start": 10732.3, + "end": 10734.53, + "probability": 0.6752 + }, + { + "start": 10735.58, + "end": 10736.22, + "probability": 0.6816 + }, + { + "start": 10736.28, + "end": 10737.66, + "probability": 0.7803 + }, + { + "start": 10738.72, + "end": 10742.82, + "probability": 0.992 + }, + { + "start": 10744.34, + "end": 10745.68, + "probability": 0.9945 + }, + { + "start": 10746.36, + "end": 10749.24, + "probability": 0.9902 + }, + { + "start": 10750.24, + "end": 10751.72, + "probability": 0.6774 + }, + { + "start": 10752.76, + "end": 10753.52, + "probability": 0.881 + }, + { + "start": 10754.24, + "end": 10756.0, + "probability": 0.7343 + }, + { + "start": 10756.98, + "end": 10759.04, + "probability": 0.9668 + }, + { + "start": 10760.86, + "end": 10765.1, + "probability": 0.9946 + }, + { + "start": 10765.82, + "end": 10767.36, + "probability": 0.9427 + }, + { + "start": 10767.68, + "end": 10768.0, + "probability": 0.8688 + }, + { + "start": 10768.76, + "end": 10770.7, + "probability": 0.8787 + }, + { + "start": 10771.94, + "end": 10773.56, + "probability": 0.6593 + }, + { + "start": 10774.06, + "end": 10776.2, + "probability": 0.9951 + }, + { + "start": 10776.36, + "end": 10777.82, + "probability": 0.9638 + }, + { + "start": 10778.74, + "end": 10778.86, + "probability": 0.5146 + }, + { + "start": 10778.98, + "end": 10779.86, + "probability": 0.9512 + }, + { + "start": 10779.98, + "end": 10782.84, + "probability": 0.7793 + }, + { + "start": 10783.72, + "end": 10785.16, + "probability": 0.4642 + }, + { + "start": 10785.26, + "end": 10786.42, + "probability": 0.9829 + }, + { + "start": 10786.56, + "end": 10788.84, + "probability": 0.9277 + }, + { + "start": 10790.3, + "end": 10791.8, + "probability": 0.9486 + }, + { + "start": 10792.74, + "end": 10794.28, + "probability": 0.9209 + }, + { + "start": 10795.6, + "end": 10796.82, + "probability": 0.9624 + }, + { + "start": 10797.72, + "end": 10798.78, + "probability": 0.9434 + }, + { + "start": 10799.24, + "end": 10802.5, + "probability": 0.5603 + }, + { + "start": 10802.5, + "end": 10802.5, + "probability": 0.1897 + }, + { + "start": 10802.5, + "end": 10804.6, + "probability": 0.9716 + }, + { + "start": 10804.64, + "end": 10807.94, + "probability": 0.9293 + }, + { + "start": 10808.54, + "end": 10810.92, + "probability": 0.9902 + }, + { + "start": 10812.46, + "end": 10815.34, + "probability": 0.9878 + }, + { + "start": 10816.5, + "end": 10822.08, + "probability": 0.9899 + }, + { + "start": 10822.16, + "end": 10823.68, + "probability": 0.9662 + }, + { + "start": 10825.96, + "end": 10827.92, + "probability": 0.7702 + }, + { + "start": 10829.16, + "end": 10830.62, + "probability": 0.7394 + }, + { + "start": 10831.56, + "end": 10834.06, + "probability": 0.9912 + }, + { + "start": 10835.42, + "end": 10837.32, + "probability": 0.9956 + }, + { + "start": 10837.4, + "end": 10838.6, + "probability": 0.8249 + }, + { + "start": 10839.2, + "end": 10840.12, + "probability": 0.9203 + }, + { + "start": 10841.42, + "end": 10845.2, + "probability": 0.9953 + }, + { + "start": 10846.22, + "end": 10847.64, + "probability": 0.7665 + }, + { + "start": 10849.18, + "end": 10850.5, + "probability": 0.873 + }, + { + "start": 10851.62, + "end": 10853.3, + "probability": 0.7851 + }, + { + "start": 10854.36, + "end": 10856.62, + "probability": 0.9958 + }, + { + "start": 10857.82, + "end": 10858.6, + "probability": 0.94 + }, + { + "start": 10859.18, + "end": 10860.54, + "probability": 0.7659 + }, + { + "start": 10861.76, + "end": 10862.76, + "probability": 0.823 + }, + { + "start": 10864.02, + "end": 10865.6, + "probability": 0.5938 + }, + { + "start": 10868.12, + "end": 10871.68, + "probability": 0.7664 + }, + { + "start": 10874.3, + "end": 10877.3, + "probability": 0.7709 + }, + { + "start": 10877.4, + "end": 10879.8, + "probability": 0.9883 + }, + { + "start": 10882.0, + "end": 10882.88, + "probability": 0.6954 + }, + { + "start": 10883.74, + "end": 10884.7, + "probability": 0.9626 + }, + { + "start": 10885.98, + "end": 10891.28, + "probability": 0.9929 + }, + { + "start": 10893.7, + "end": 10898.66, + "probability": 0.9978 + }, + { + "start": 10899.24, + "end": 10902.86, + "probability": 0.9844 + }, + { + "start": 10902.98, + "end": 10903.94, + "probability": 0.7037 + }, + { + "start": 10907.31, + "end": 10909.64, + "probability": 0.8111 + }, + { + "start": 10910.18, + "end": 10911.2, + "probability": 0.1813 + }, + { + "start": 10911.44, + "end": 10913.1, + "probability": 0.9746 + }, + { + "start": 10914.64, + "end": 10916.52, + "probability": 0.9979 + }, + { + "start": 10916.62, + "end": 10917.8, + "probability": 0.8064 + }, + { + "start": 10918.24, + "end": 10919.36, + "probability": 0.8153 + }, + { + "start": 10919.56, + "end": 10921.0, + "probability": 0.9657 + }, + { + "start": 10921.16, + "end": 10924.32, + "probability": 0.8394 + }, + { + "start": 10924.76, + "end": 10926.64, + "probability": 0.9868 + }, + { + "start": 10928.12, + "end": 10929.38, + "probability": 0.7911 + }, + { + "start": 10930.4, + "end": 10932.3, + "probability": 0.9869 + }, + { + "start": 10933.22, + "end": 10936.16, + "probability": 0.9839 + }, + { + "start": 10936.22, + "end": 10937.06, + "probability": 0.8439 + }, + { + "start": 10938.4, + "end": 10940.14, + "probability": 0.9831 + }, + { + "start": 10941.44, + "end": 10942.86, + "probability": 0.9873 + }, + { + "start": 10943.6, + "end": 10947.96, + "probability": 0.996 + }, + { + "start": 10948.46, + "end": 10949.12, + "probability": 0.7504 + }, + { + "start": 10949.26, + "end": 10949.56, + "probability": 0.7778 + }, + { + "start": 10950.1, + "end": 10952.73, + "probability": 0.9741 + }, + { + "start": 10953.22, + "end": 10955.04, + "probability": 0.8401 + }, + { + "start": 10957.75, + "end": 10959.81, + "probability": 0.823 + }, + { + "start": 10960.62, + "end": 10961.24, + "probability": 0.949 + }, + { + "start": 10961.84, + "end": 10962.82, + "probability": 0.7693 + }, + { + "start": 10968.58, + "end": 10970.38, + "probability": 0.8277 + }, + { + "start": 10972.14, + "end": 10974.12, + "probability": 0.7738 + }, + { + "start": 10976.84, + "end": 10978.9, + "probability": 0.9864 + }, + { + "start": 10981.14, + "end": 10986.02, + "probability": 0.9974 + }, + { + "start": 10987.12, + "end": 10988.46, + "probability": 0.9573 + }, + { + "start": 10989.1, + "end": 10990.0, + "probability": 0.8872 + }, + { + "start": 10992.06, + "end": 10997.82, + "probability": 0.9969 + }, + { + "start": 10998.26, + "end": 10999.34, + "probability": 0.6963 + }, + { + "start": 11001.22, + "end": 11003.22, + "probability": 0.9972 + }, + { + "start": 11005.08, + "end": 11005.78, + "probability": 0.9949 + }, + { + "start": 11007.18, + "end": 11008.5, + "probability": 0.8192 + }, + { + "start": 11009.08, + "end": 11012.14, + "probability": 0.9761 + }, + { + "start": 11012.66, + "end": 11015.02, + "probability": 0.9701 + }, + { + "start": 11015.8, + "end": 11017.14, + "probability": 0.9753 + }, + { + "start": 11018.6, + "end": 11024.0, + "probability": 0.9971 + }, + { + "start": 11024.16, + "end": 11024.52, + "probability": 0.7955 + }, + { + "start": 11024.9, + "end": 11025.24, + "probability": 0.7393 + }, + { + "start": 11025.92, + "end": 11027.6, + "probability": 0.9712 + }, + { + "start": 11028.16, + "end": 11029.8, + "probability": 0.9572 + }, + { + "start": 11030.86, + "end": 11033.8, + "probability": 0.9934 + }, + { + "start": 11034.58, + "end": 11036.16, + "probability": 0.9148 + }, + { + "start": 11037.5, + "end": 11038.43, + "probability": 0.4462 + }, + { + "start": 11039.04, + "end": 11041.08, + "probability": 0.6483 + }, + { + "start": 11041.18, + "end": 11045.28, + "probability": 0.7319 + }, + { + "start": 11045.38, + "end": 11046.74, + "probability": 0.8312 + }, + { + "start": 11046.84, + "end": 11048.04, + "probability": 0.8907 + }, + { + "start": 11048.92, + "end": 11051.48, + "probability": 0.9658 + }, + { + "start": 11054.12, + "end": 11055.0, + "probability": 0.929 + }, + { + "start": 11055.16, + "end": 11058.38, + "probability": 0.9879 + }, + { + "start": 11058.94, + "end": 11061.38, + "probability": 0.9922 + }, + { + "start": 11062.44, + "end": 11063.48, + "probability": 0.7048 + }, + { + "start": 11063.58, + "end": 11063.94, + "probability": 0.7146 + }, + { + "start": 11064.0, + "end": 11067.12, + "probability": 0.979 + }, + { + "start": 11067.68, + "end": 11070.68, + "probability": 0.9982 + }, + { + "start": 11071.22, + "end": 11074.12, + "probability": 0.9312 + }, + { + "start": 11074.82, + "end": 11077.28, + "probability": 0.9971 + }, + { + "start": 11077.94, + "end": 11079.22, + "probability": 0.782 + }, + { + "start": 11080.64, + "end": 11085.3, + "probability": 0.9872 + }, + { + "start": 11085.88, + "end": 11087.6, + "probability": 0.9512 + }, + { + "start": 11088.08, + "end": 11088.52, + "probability": 0.2807 + }, + { + "start": 11088.52, + "end": 11089.32, + "probability": 0.8879 + }, + { + "start": 11089.5, + "end": 11089.78, + "probability": 0.493 + }, + { + "start": 11090.36, + "end": 11091.16, + "probability": 0.9797 + }, + { + "start": 11093.28, + "end": 11095.26, + "probability": 0.991 + }, + { + "start": 11096.06, + "end": 11097.08, + "probability": 0.9771 + }, + { + "start": 11097.22, + "end": 11097.82, + "probability": 0.7107 + }, + { + "start": 11097.86, + "end": 11098.36, + "probability": 0.8508 + }, + { + "start": 11098.4, + "end": 11099.62, + "probability": 0.724 + }, + { + "start": 11100.24, + "end": 11104.5, + "probability": 0.6662 + }, + { + "start": 11105.42, + "end": 11108.44, + "probability": 0.7392 + }, + { + "start": 11108.44, + "end": 11112.72, + "probability": 0.6622 + }, + { + "start": 11112.9, + "end": 11114.3, + "probability": 0.8118 + }, + { + "start": 11115.96, + "end": 11116.78, + "probability": 0.9373 + }, + { + "start": 11116.86, + "end": 11121.94, + "probability": 0.9871 + }, + { + "start": 11121.94, + "end": 11127.8, + "probability": 0.9981 + }, + { + "start": 11127.9, + "end": 11128.76, + "probability": 0.8554 + }, + { + "start": 11129.0, + "end": 11129.8, + "probability": 0.7693 + }, + { + "start": 11130.64, + "end": 11133.46, + "probability": 0.6257 + }, + { + "start": 11134.65, + "end": 11140.16, + "probability": 0.9945 + }, + { + "start": 11140.6, + "end": 11147.44, + "probability": 0.9852 + }, + { + "start": 11148.02, + "end": 11151.56, + "probability": 0.9349 + }, + { + "start": 11151.6, + "end": 11152.84, + "probability": 0.881 + }, + { + "start": 11152.96, + "end": 11154.84, + "probability": 0.8712 + }, + { + "start": 11155.46, + "end": 11158.08, + "probability": 0.9348 + }, + { + "start": 11158.7, + "end": 11162.06, + "probability": 0.9155 + }, + { + "start": 11162.48, + "end": 11164.12, + "probability": 0.9956 + }, + { + "start": 11164.64, + "end": 11166.34, + "probability": 0.503 + }, + { + "start": 11166.84, + "end": 11170.04, + "probability": 0.7455 + }, + { + "start": 11170.42, + "end": 11172.92, + "probability": 0.809 + }, + { + "start": 11173.22, + "end": 11175.04, + "probability": 0.7708 + }, + { + "start": 11175.52, + "end": 11177.7, + "probability": 0.9172 + }, + { + "start": 11177.86, + "end": 11179.52, + "probability": 0.9904 + }, + { + "start": 11179.62, + "end": 11180.04, + "probability": 0.8656 + }, + { + "start": 11181.12, + "end": 11182.76, + "probability": 0.8332 + }, + { + "start": 11182.8, + "end": 11184.44, + "probability": 0.9331 + }, + { + "start": 11184.9, + "end": 11188.22, + "probability": 0.9791 + }, + { + "start": 11189.46, + "end": 11191.74, + "probability": 0.8678 + }, + { + "start": 11207.94, + "end": 11208.8, + "probability": 0.814 + }, + { + "start": 11208.8, + "end": 11210.92, + "probability": 0.6785 + }, + { + "start": 11212.54, + "end": 11215.86, + "probability": 0.9534 + }, + { + "start": 11216.0, + "end": 11216.8, + "probability": 0.884 + }, + { + "start": 11218.08, + "end": 11221.04, + "probability": 0.9349 + }, + { + "start": 11221.86, + "end": 11223.6, + "probability": 0.9761 + }, + { + "start": 11223.74, + "end": 11225.16, + "probability": 0.7052 + }, + { + "start": 11225.4, + "end": 11226.6, + "probability": 0.9843 + }, + { + "start": 11227.52, + "end": 11230.24, + "probability": 0.9795 + }, + { + "start": 11230.34, + "end": 11231.5, + "probability": 0.9165 + }, + { + "start": 11232.56, + "end": 11234.42, + "probability": 0.9774 + }, + { + "start": 11235.24, + "end": 11237.14, + "probability": 0.7529 + }, + { + "start": 11237.84, + "end": 11239.56, + "probability": 0.9818 + }, + { + "start": 11241.22, + "end": 11242.38, + "probability": 0.8972 + }, + { + "start": 11242.66, + "end": 11243.74, + "probability": 0.7258 + }, + { + "start": 11244.68, + "end": 11247.86, + "probability": 0.5829 + }, + { + "start": 11248.5, + "end": 11250.76, + "probability": 0.9878 + }, + { + "start": 11251.4, + "end": 11252.94, + "probability": 0.9585 + }, + { + "start": 11253.3, + "end": 11256.0, + "probability": 0.8398 + }, + { + "start": 11256.58, + "end": 11259.9, + "probability": 0.9934 + }, + { + "start": 11259.9, + "end": 11263.0, + "probability": 0.9912 + }, + { + "start": 11263.64, + "end": 11264.3, + "probability": 0.6383 + }, + { + "start": 11264.84, + "end": 11265.98, + "probability": 0.897 + }, + { + "start": 11266.52, + "end": 11269.46, + "probability": 0.9961 + }, + { + "start": 11269.9, + "end": 11270.38, + "probability": 0.632 + }, + { + "start": 11270.54, + "end": 11271.18, + "probability": 0.3923 + }, + { + "start": 11271.78, + "end": 11274.06, + "probability": 0.9994 + }, + { + "start": 11275.14, + "end": 11277.42, + "probability": 0.9971 + }, + { + "start": 11278.7, + "end": 11280.01, + "probability": 0.9694 + }, + { + "start": 11280.98, + "end": 11283.12, + "probability": 0.9911 + }, + { + "start": 11283.74, + "end": 11284.42, + "probability": 0.936 + }, + { + "start": 11285.08, + "end": 11285.64, + "probability": 0.5126 + }, + { + "start": 11285.7, + "end": 11287.08, + "probability": 0.9976 + }, + { + "start": 11287.12, + "end": 11288.84, + "probability": 0.995 + }, + { + "start": 11289.9, + "end": 11292.64, + "probability": 0.988 + }, + { + "start": 11293.14, + "end": 11296.78, + "probability": 0.9927 + }, + { + "start": 11297.46, + "end": 11302.28, + "probability": 0.9958 + }, + { + "start": 11302.28, + "end": 11308.24, + "probability": 0.9962 + }, + { + "start": 11309.14, + "end": 11311.66, + "probability": 0.9976 + }, + { + "start": 11312.3, + "end": 11316.14, + "probability": 0.9732 + }, + { + "start": 11316.84, + "end": 11319.96, + "probability": 0.9959 + }, + { + "start": 11320.6, + "end": 11323.62, + "probability": 0.8183 + }, + { + "start": 11324.38, + "end": 11326.12, + "probability": 0.9681 + }, + { + "start": 11326.84, + "end": 11329.08, + "probability": 0.9951 + }, + { + "start": 11329.86, + "end": 11335.64, + "probability": 0.9932 + }, + { + "start": 11336.34, + "end": 11337.06, + "probability": 0.9614 + }, + { + "start": 11338.38, + "end": 11341.14, + "probability": 0.8675 + }, + { + "start": 11342.0, + "end": 11345.12, + "probability": 0.9167 + }, + { + "start": 11345.68, + "end": 11347.96, + "probability": 0.9822 + }, + { + "start": 11348.58, + "end": 11348.94, + "probability": 0.6078 + }, + { + "start": 11349.8, + "end": 11353.18, + "probability": 0.9681 + }, + { + "start": 11353.78, + "end": 11357.64, + "probability": 0.9749 + }, + { + "start": 11357.64, + "end": 11361.78, + "probability": 0.9963 + }, + { + "start": 11362.48, + "end": 11365.84, + "probability": 0.772 + }, + { + "start": 11366.52, + "end": 11368.8, + "probability": 0.995 + }, + { + "start": 11369.32, + "end": 11371.04, + "probability": 0.9776 + }, + { + "start": 11371.54, + "end": 11377.44, + "probability": 0.966 + }, + { + "start": 11377.94, + "end": 11384.5, + "probability": 0.9985 + }, + { + "start": 11385.1, + "end": 11386.18, + "probability": 0.8008 + }, + { + "start": 11387.0, + "end": 11389.42, + "probability": 0.8351 + }, + { + "start": 11390.1, + "end": 11393.56, + "probability": 0.995 + }, + { + "start": 11394.08, + "end": 11394.52, + "probability": 0.7627 + }, + { + "start": 11394.76, + "end": 11396.5, + "probability": 0.9387 + }, + { + "start": 11396.52, + "end": 11400.96, + "probability": 0.9833 + }, + { + "start": 11401.5, + "end": 11402.48, + "probability": 0.9673 + }, + { + "start": 11403.08, + "end": 11404.5, + "probability": 0.4853 + }, + { + "start": 11404.52, + "end": 11405.94, + "probability": 0.856 + }, + { + "start": 11412.9, + "end": 11413.1, + "probability": 0.3657 + }, + { + "start": 11413.1, + "end": 11413.4, + "probability": 0.3742 + }, + { + "start": 11413.46, + "end": 11414.7, + "probability": 0.8765 + }, + { + "start": 11414.8, + "end": 11415.43, + "probability": 0.7837 + }, + { + "start": 11418.02, + "end": 11419.28, + "probability": 0.6611 + }, + { + "start": 11419.52, + "end": 11421.44, + "probability": 0.9792 + }, + { + "start": 11422.38, + "end": 11423.7, + "probability": 0.7366 + }, + { + "start": 11424.06, + "end": 11424.06, + "probability": 0.5173 + }, + { + "start": 11424.06, + "end": 11425.56, + "probability": 0.4636 + }, + { + "start": 11426.3, + "end": 11426.94, + "probability": 0.711 + }, + { + "start": 11427.12, + "end": 11427.58, + "probability": 0.6229 + }, + { + "start": 11428.0, + "end": 11428.79, + "probability": 0.8062 + }, + { + "start": 11429.14, + "end": 11431.96, + "probability": 0.6337 + }, + { + "start": 11432.35, + "end": 11433.94, + "probability": 0.5517 + }, + { + "start": 11433.96, + "end": 11434.5, + "probability": 0.5799 + }, + { + "start": 11434.54, + "end": 11435.14, + "probability": 0.9391 + }, + { + "start": 11436.94, + "end": 11437.94, + "probability": 0.9658 + }, + { + "start": 11439.28, + "end": 11439.6, + "probability": 0.0796 + }, + { + "start": 11439.6, + "end": 11440.94, + "probability": 0.686 + }, + { + "start": 11440.98, + "end": 11442.86, + "probability": 0.523 + }, + { + "start": 11443.26, + "end": 11443.86, + "probability": 0.5894 + }, + { + "start": 11443.92, + "end": 11444.1, + "probability": 0.4019 + }, + { + "start": 11444.1, + "end": 11445.16, + "probability": 0.6679 + }, + { + "start": 11445.34, + "end": 11447.06, + "probability": 0.8086 + }, + { + "start": 11447.18, + "end": 11448.44, + "probability": 0.7195 + }, + { + "start": 11448.62, + "end": 11449.26, + "probability": 0.855 + }, + { + "start": 11449.74, + "end": 11452.12, + "probability": 0.853 + }, + { + "start": 11452.64, + "end": 11455.36, + "probability": 0.5771 + }, + { + "start": 11455.48, + "end": 11456.88, + "probability": 0.959 + }, + { + "start": 11456.96, + "end": 11461.92, + "probability": 0.8178 + }, + { + "start": 11462.48, + "end": 11464.0, + "probability": 0.9949 + }, + { + "start": 11464.78, + "end": 11469.5, + "probability": 0.9868 + }, + { + "start": 11469.84, + "end": 11472.7, + "probability": 0.9926 + }, + { + "start": 11472.84, + "end": 11473.9, + "probability": 0.9927 + }, + { + "start": 11474.0, + "end": 11474.96, + "probability": 0.9771 + }, + { + "start": 11475.06, + "end": 11475.82, + "probability": 0.6913 + }, + { + "start": 11476.72, + "end": 11478.97, + "probability": 0.9571 + }, + { + "start": 11479.16, + "end": 11479.48, + "probability": 0.4845 + }, + { + "start": 11479.48, + "end": 11480.14, + "probability": 0.6448 + }, + { + "start": 11480.58, + "end": 11481.7, + "probability": 0.9022 + }, + { + "start": 11481.86, + "end": 11486.5, + "probability": 0.9828 + }, + { + "start": 11486.82, + "end": 11487.96, + "probability": 0.7503 + }, + { + "start": 11488.5, + "end": 11489.18, + "probability": 0.8252 + }, + { + "start": 11489.34, + "end": 11490.7, + "probability": 0.9946 + }, + { + "start": 11490.82, + "end": 11491.9, + "probability": 0.9709 + }, + { + "start": 11492.24, + "end": 11495.5, + "probability": 0.9835 + }, + { + "start": 11495.6, + "end": 11496.7, + "probability": 0.97 + }, + { + "start": 11497.48, + "end": 11499.94, + "probability": 0.7162 + }, + { + "start": 11499.96, + "end": 11499.96, + "probability": 0.6294 + }, + { + "start": 11500.86, + "end": 11500.96, + "probability": 0.8496 + }, + { + "start": 11504.04, + "end": 11508.58, + "probability": 0.9037 + }, + { + "start": 11508.76, + "end": 11510.0, + "probability": 0.9097 + }, + { + "start": 11510.1, + "end": 11511.1, + "probability": 0.7835 + }, + { + "start": 11511.54, + "end": 11512.84, + "probability": 0.8148 + }, + { + "start": 11512.98, + "end": 11514.2, + "probability": 0.8665 + }, + { + "start": 11514.32, + "end": 11515.16, + "probability": 0.8038 + }, + { + "start": 11515.32, + "end": 11517.1, + "probability": 0.706 + }, + { + "start": 11517.52, + "end": 11519.42, + "probability": 0.8095 + }, + { + "start": 11519.74, + "end": 11522.32, + "probability": 0.5027 + }, + { + "start": 11522.5, + "end": 11524.94, + "probability": 0.9823 + }, + { + "start": 11525.1, + "end": 11525.52, + "probability": 0.8546 + }, + { + "start": 11525.54, + "end": 11526.16, + "probability": 0.6561 + }, + { + "start": 11526.2, + "end": 11529.12, + "probability": 0.9768 + }, + { + "start": 11529.54, + "end": 11531.32, + "probability": 0.9504 + }, + { + "start": 11531.54, + "end": 11531.98, + "probability": 0.3499 + }, + { + "start": 11532.08, + "end": 11532.32, + "probability": 0.0631 + }, + { + "start": 11532.32, + "end": 11534.1, + "probability": 0.7691 + }, + { + "start": 11534.5, + "end": 11539.2, + "probability": 0.9946 + }, + { + "start": 11539.9, + "end": 11540.88, + "probability": 0.6618 + }, + { + "start": 11541.46, + "end": 11545.54, + "probability": 0.7383 + }, + { + "start": 11546.04, + "end": 11550.8, + "probability": 0.9545 + }, + { + "start": 11551.22, + "end": 11551.84, + "probability": 0.5381 + }, + { + "start": 11552.44, + "end": 11554.92, + "probability": 0.5803 + }, + { + "start": 11555.66, + "end": 11559.12, + "probability": 0.886 + }, + { + "start": 11559.22, + "end": 11565.46, + "probability": 0.6226 + }, + { + "start": 11566.35, + "end": 11570.12, + "probability": 0.6085 + }, + { + "start": 11570.52, + "end": 11574.9, + "probability": 0.7804 + }, + { + "start": 11574.9, + "end": 11577.94, + "probability": 0.7192 + }, + { + "start": 11578.74, + "end": 11579.52, + "probability": 0.8861 + }, + { + "start": 11579.62, + "end": 11581.42, + "probability": 0.7641 + }, + { + "start": 11581.5, + "end": 11582.12, + "probability": 0.1456 + }, + { + "start": 11582.3, + "end": 11582.92, + "probability": 0.4095 + }, + { + "start": 11583.28, + "end": 11585.5, + "probability": 0.9441 + }, + { + "start": 11585.62, + "end": 11586.62, + "probability": 0.8734 + }, + { + "start": 11586.7, + "end": 11587.82, + "probability": 0.7591 + }, + { + "start": 11589.08, + "end": 11590.52, + "probability": 0.882 + }, + { + "start": 11591.1, + "end": 11591.62, + "probability": 0.4939 + }, + { + "start": 11592.12, + "end": 11592.36, + "probability": 0.7039 + }, + { + "start": 11592.36, + "end": 11592.87, + "probability": 0.6914 + }, + { + "start": 11593.96, + "end": 11596.18, + "probability": 0.6088 + }, + { + "start": 11596.36, + "end": 11597.06, + "probability": 0.8698 + }, + { + "start": 11597.96, + "end": 11599.76, + "probability": 0.6358 + }, + { + "start": 11599.84, + "end": 11603.26, + "probability": 0.6593 + }, + { + "start": 11603.76, + "end": 11604.94, + "probability": 0.5282 + }, + { + "start": 11605.02, + "end": 11605.78, + "probability": 0.998 + }, + { + "start": 11606.7, + "end": 11611.0, + "probability": 0.9017 + }, + { + "start": 11611.04, + "end": 11613.26, + "probability": 0.6802 + }, + { + "start": 11613.4, + "end": 11615.94, + "probability": 0.5749 + }, + { + "start": 11616.42, + "end": 11617.62, + "probability": 0.6161 + }, + { + "start": 11617.86, + "end": 11619.1, + "probability": 0.9925 + }, + { + "start": 11619.5, + "end": 11620.28, + "probability": 0.6135 + }, + { + "start": 11620.4, + "end": 11621.28, + "probability": 0.7052 + }, + { + "start": 11621.68, + "end": 11622.8, + "probability": 0.8801 + }, + { + "start": 11622.86, + "end": 11624.42, + "probability": 0.7651 + }, + { + "start": 11625.02, + "end": 11625.62, + "probability": 0.9059 + }, + { + "start": 11625.9, + "end": 11627.06, + "probability": 0.978 + }, + { + "start": 11627.16, + "end": 11628.44, + "probability": 0.9905 + }, + { + "start": 11628.52, + "end": 11632.46, + "probability": 0.9876 + }, + { + "start": 11632.76, + "end": 11633.74, + "probability": 0.9209 + }, + { + "start": 11634.26, + "end": 11638.16, + "probability": 0.9518 + }, + { + "start": 11638.32, + "end": 11638.74, + "probability": 0.7782 + }, + { + "start": 11638.78, + "end": 11639.76, + "probability": 0.834 + }, + { + "start": 11639.9, + "end": 11640.42, + "probability": 0.8155 + }, + { + "start": 11640.68, + "end": 11641.28, + "probability": 0.3395 + }, + { + "start": 11641.74, + "end": 11644.86, + "probability": 0.6932 + }, + { + "start": 11644.96, + "end": 11646.36, + "probability": 0.9255 + }, + { + "start": 11646.92, + "end": 11649.22, + "probability": 0.9948 + }, + { + "start": 11649.62, + "end": 11650.84, + "probability": 0.9059 + }, + { + "start": 11650.94, + "end": 11652.8, + "probability": 0.614 + }, + { + "start": 11653.3, + "end": 11656.12, + "probability": 0.6749 + }, + { + "start": 11656.28, + "end": 11657.94, + "probability": 0.7054 + }, + { + "start": 11657.98, + "end": 11658.58, + "probability": 0.1461 + }, + { + "start": 11659.3, + "end": 11659.32, + "probability": 0.3972 + }, + { + "start": 11659.32, + "end": 11659.67, + "probability": 0.4995 + }, + { + "start": 11659.86, + "end": 11660.4, + "probability": 0.7281 + }, + { + "start": 11661.1, + "end": 11663.44, + "probability": 0.9578 + }, + { + "start": 11663.72, + "end": 11664.66, + "probability": 0.8621 + }, + { + "start": 11665.16, + "end": 11665.92, + "probability": 0.6786 + }, + { + "start": 11666.1, + "end": 11667.2, + "probability": 0.8989 + }, + { + "start": 11667.28, + "end": 11670.62, + "probability": 0.8462 + }, + { + "start": 11670.62, + "end": 11673.56, + "probability": 0.6591 + }, + { + "start": 11673.58, + "end": 11674.12, + "probability": 0.3117 + }, + { + "start": 11674.12, + "end": 11674.84, + "probability": 0.8848 + }, + { + "start": 11675.24, + "end": 11676.62, + "probability": 0.7457 + }, + { + "start": 11676.92, + "end": 11678.18, + "probability": 0.4543 + }, + { + "start": 11678.38, + "end": 11678.9, + "probability": 0.3135 + }, + { + "start": 11678.92, + "end": 11679.52, + "probability": 0.3738 + }, + { + "start": 11679.8, + "end": 11680.38, + "probability": 0.9728 + }, + { + "start": 11681.02, + "end": 11681.7, + "probability": 0.8701 + }, + { + "start": 11682.06, + "end": 11683.91, + "probability": 0.6642 + }, + { + "start": 11685.63, + "end": 11687.1, + "probability": 0.5646 + }, + { + "start": 11687.32, + "end": 11687.46, + "probability": 0.3667 + }, + { + "start": 11687.46, + "end": 11689.4, + "probability": 0.2638 + }, + { + "start": 11690.44, + "end": 11691.94, + "probability": 0.2745 + }, + { + "start": 11691.96, + "end": 11693.86, + "probability": 0.282 + }, + { + "start": 11694.14, + "end": 11694.42, + "probability": 0.7122 + }, + { + "start": 11694.92, + "end": 11696.48, + "probability": 0.7835 + }, + { + "start": 11697.12, + "end": 11699.5, + "probability": 0.667 + }, + { + "start": 11700.92, + "end": 11703.02, + "probability": 0.9841 + }, + { + "start": 11705.94, + "end": 11708.26, + "probability": 0.7687 + }, + { + "start": 11708.5, + "end": 11708.99, + "probability": 0.8418 + }, + { + "start": 11710.4, + "end": 11712.54, + "probability": 0.9052 + }, + { + "start": 11713.06, + "end": 11713.72, + "probability": 0.9395 + }, + { + "start": 11714.42, + "end": 11716.6, + "probability": 0.0113 + }, + { + "start": 11717.36, + "end": 11717.6, + "probability": 0.6204 + }, + { + "start": 11723.23, + "end": 11724.56, + "probability": 0.6617 + }, + { + "start": 11725.36, + "end": 11725.36, + "probability": 0.3959 + }, + { + "start": 11725.36, + "end": 11727.16, + "probability": 0.7285 + }, + { + "start": 11727.78, + "end": 11728.62, + "probability": 0.7424 + }, + { + "start": 11728.64, + "end": 11729.24, + "probability": 0.8972 + }, + { + "start": 11729.66, + "end": 11730.2, + "probability": 0.8324 + }, + { + "start": 11730.36, + "end": 11733.62, + "probability": 0.7045 + }, + { + "start": 11733.96, + "end": 11735.9, + "probability": 0.9801 + }, + { + "start": 11736.8, + "end": 11741.02, + "probability": 0.7411 + }, + { + "start": 11741.84, + "end": 11743.66, + "probability": 0.8687 + }, + { + "start": 11744.3, + "end": 11747.0, + "probability": 0.9972 + }, + { + "start": 11747.52, + "end": 11750.45, + "probability": 0.7218 + }, + { + "start": 11750.88, + "end": 11752.62, + "probability": 0.6757 + }, + { + "start": 11752.74, + "end": 11753.7, + "probability": 0.6741 + }, + { + "start": 11754.22, + "end": 11756.42, + "probability": 0.9949 + }, + { + "start": 11756.42, + "end": 11759.78, + "probability": 0.9706 + }, + { + "start": 11760.52, + "end": 11764.54, + "probability": 0.9953 + }, + { + "start": 11765.28, + "end": 11767.2, + "probability": 0.6126 + }, + { + "start": 11768.04, + "end": 11774.2, + "probability": 0.9833 + }, + { + "start": 11774.2, + "end": 11779.88, + "probability": 0.9938 + }, + { + "start": 11779.92, + "end": 11784.24, + "probability": 0.9419 + }, + { + "start": 11785.86, + "end": 11787.26, + "probability": 0.3144 + }, + { + "start": 11788.12, + "end": 11795.66, + "probability": 0.9959 + }, + { + "start": 11795.76, + "end": 11800.56, + "probability": 0.9979 + }, + { + "start": 11801.28, + "end": 11806.96, + "probability": 0.9227 + }, + { + "start": 11807.04, + "end": 11808.73, + "probability": 0.9704 + }, + { + "start": 11809.0, + "end": 11815.18, + "probability": 0.9527 + }, + { + "start": 11815.58, + "end": 11818.06, + "probability": 0.819 + }, + { + "start": 11818.74, + "end": 11822.92, + "probability": 0.9287 + }, + { + "start": 11823.5, + "end": 11825.26, + "probability": 0.852 + }, + { + "start": 11825.58, + "end": 11827.82, + "probability": 0.6616 + }, + { + "start": 11827.9, + "end": 11831.58, + "probability": 0.9895 + }, + { + "start": 11831.8, + "end": 11836.12, + "probability": 0.8342 + }, + { + "start": 11836.48, + "end": 11837.54, + "probability": 0.8475 + }, + { + "start": 11837.96, + "end": 11841.24, + "probability": 0.9568 + }, + { + "start": 11842.06, + "end": 11847.74, + "probability": 0.9729 + }, + { + "start": 11848.5, + "end": 11853.72, + "probability": 0.9974 + }, + { + "start": 11853.88, + "end": 11856.56, + "probability": 0.998 + }, + { + "start": 11856.9, + "end": 11861.7, + "probability": 0.9878 + }, + { + "start": 11861.82, + "end": 11865.12, + "probability": 0.9908 + }, + { + "start": 11865.44, + "end": 11867.88, + "probability": 0.9731 + }, + { + "start": 11868.46, + "end": 11871.9, + "probability": 0.9475 + }, + { + "start": 11872.46, + "end": 11877.16, + "probability": 0.9858 + }, + { + "start": 11877.88, + "end": 11881.38, + "probability": 0.7137 + }, + { + "start": 11882.14, + "end": 11886.02, + "probability": 0.9792 + }, + { + "start": 11886.02, + "end": 11889.88, + "probability": 0.7984 + }, + { + "start": 11890.32, + "end": 11892.7, + "probability": 0.8581 + }, + { + "start": 11893.06, + "end": 11896.7, + "probability": 0.8324 + }, + { + "start": 11897.64, + "end": 11900.08, + "probability": 0.9381 + }, + { + "start": 11900.74, + "end": 11903.08, + "probability": 0.811 + }, + { + "start": 11903.94, + "end": 11904.96, + "probability": 0.8356 + }, + { + "start": 11905.06, + "end": 11906.5, + "probability": 0.79 + }, + { + "start": 11906.76, + "end": 11910.3, + "probability": 0.983 + }, + { + "start": 11910.4, + "end": 11911.36, + "probability": 0.6755 + }, + { + "start": 11911.8, + "end": 11913.26, + "probability": 0.8145 + }, + { + "start": 11913.68, + "end": 11917.0, + "probability": 0.9679 + }, + { + "start": 11918.16, + "end": 11922.28, + "probability": 0.9385 + }, + { + "start": 11922.28, + "end": 11925.74, + "probability": 0.9894 + }, + { + "start": 11926.18, + "end": 11929.36, + "probability": 0.87 + }, + { + "start": 11929.92, + "end": 11932.22, + "probability": 0.9923 + }, + { + "start": 11932.22, + "end": 11934.28, + "probability": 0.4755 + }, + { + "start": 11935.82, + "end": 11939.46, + "probability": 0.9912 + }, + { + "start": 11939.86, + "end": 11940.14, + "probability": 0.6962 + }, + { + "start": 11940.42, + "end": 11943.66, + "probability": 0.8887 + }, + { + "start": 11943.98, + "end": 11946.62, + "probability": 0.5318 + }, + { + "start": 11946.78, + "end": 11947.47, + "probability": 0.7179 + }, + { + "start": 11947.88, + "end": 11953.3, + "probability": 0.9011 + }, + { + "start": 11953.8, + "end": 11954.6, + "probability": 0.7957 + }, + { + "start": 11954.66, + "end": 11957.24, + "probability": 0.993 + }, + { + "start": 11957.7, + "end": 11958.42, + "probability": 0.7271 + }, + { + "start": 11958.74, + "end": 11962.28, + "probability": 0.8773 + }, + { + "start": 11962.82, + "end": 11962.82, + "probability": 0.5784 + }, + { + "start": 11962.98, + "end": 11965.28, + "probability": 0.9091 + }, + { + "start": 11965.58, + "end": 11967.2, + "probability": 0.9858 + }, + { + "start": 11967.48, + "end": 11969.22, + "probability": 0.9736 + }, + { + "start": 11969.56, + "end": 11970.0, + "probability": 0.8818 + }, + { + "start": 11970.34, + "end": 11972.34, + "probability": 0.5878 + }, + { + "start": 11972.64, + "end": 11973.68, + "probability": 0.9283 + }, + { + "start": 11974.72, + "end": 11976.48, + "probability": 0.6835 + }, + { + "start": 11992.74, + "end": 11993.3, + "probability": 0.709 + }, + { + "start": 11994.0, + "end": 11994.92, + "probability": 0.7205 + }, + { + "start": 11995.36, + "end": 11996.71, + "probability": 0.9597 + }, + { + "start": 12001.2, + "end": 12006.34, + "probability": 0.8157 + }, + { + "start": 12007.78, + "end": 12009.06, + "probability": 0.6802 + }, + { + "start": 12010.16, + "end": 12015.02, + "probability": 0.9816 + }, + { + "start": 12015.1, + "end": 12017.58, + "probability": 0.9861 + }, + { + "start": 12017.7, + "end": 12019.82, + "probability": 0.818 + }, + { + "start": 12020.84, + "end": 12025.52, + "probability": 0.9752 + }, + { + "start": 12026.82, + "end": 12027.7, + "probability": 0.9689 + }, + { + "start": 12028.86, + "end": 12030.7, + "probability": 0.9682 + }, + { + "start": 12031.04, + "end": 12032.58, + "probability": 0.8042 + }, + { + "start": 12032.66, + "end": 12035.82, + "probability": 0.887 + }, + { + "start": 12036.54, + "end": 12038.22, + "probability": 0.939 + }, + { + "start": 12041.3, + "end": 12045.44, + "probability": 0.8803 + }, + { + "start": 12046.5, + "end": 12047.86, + "probability": 0.979 + }, + { + "start": 12049.0, + "end": 12054.7, + "probability": 0.9844 + }, + { + "start": 12054.72, + "end": 12055.3, + "probability": 0.168 + }, + { + "start": 12056.16, + "end": 12056.86, + "probability": 0.8456 + }, + { + "start": 12057.76, + "end": 12061.16, + "probability": 0.9478 + }, + { + "start": 12061.62, + "end": 12063.12, + "probability": 0.8473 + }, + { + "start": 12063.66, + "end": 12064.66, + "probability": 0.7817 + }, + { + "start": 12065.84, + "end": 12074.8, + "probability": 0.9622 + }, + { + "start": 12076.14, + "end": 12078.72, + "probability": 0.9296 + }, + { + "start": 12079.28, + "end": 12081.24, + "probability": 0.9932 + }, + { + "start": 12082.34, + "end": 12082.88, + "probability": 0.6916 + }, + { + "start": 12083.02, + "end": 12083.36, + "probability": 0.8639 + }, + { + "start": 12083.44, + "end": 12083.98, + "probability": 0.7742 + }, + { + "start": 12084.18, + "end": 12084.48, + "probability": 0.8183 + }, + { + "start": 12084.58, + "end": 12086.32, + "probability": 0.8548 + }, + { + "start": 12087.08, + "end": 12090.88, + "probability": 0.9928 + }, + { + "start": 12091.98, + "end": 12093.5, + "probability": 0.7523 + }, + { + "start": 12094.14, + "end": 12095.08, + "probability": 0.8678 + }, + { + "start": 12095.6, + "end": 12096.4, + "probability": 0.7523 + }, + { + "start": 12097.52, + "end": 12099.28, + "probability": 0.9255 + }, + { + "start": 12100.84, + "end": 12103.84, + "probability": 0.8705 + }, + { + "start": 12105.14, + "end": 12109.82, + "probability": 0.9907 + }, + { + "start": 12110.38, + "end": 12112.78, + "probability": 0.3023 + }, + { + "start": 12113.88, + "end": 12114.7, + "probability": 0.7225 + }, + { + "start": 12114.82, + "end": 12115.72, + "probability": 0.6236 + }, + { + "start": 12116.1, + "end": 12116.52, + "probability": 0.7855 + }, + { + "start": 12116.56, + "end": 12117.0, + "probability": 0.9594 + }, + { + "start": 12117.12, + "end": 12118.48, + "probability": 0.9558 + }, + { + "start": 12118.78, + "end": 12119.72, + "probability": 0.3944 + }, + { + "start": 12121.18, + "end": 12123.4, + "probability": 0.9702 + }, + { + "start": 12124.1, + "end": 12128.46, + "probability": 0.9817 + }, + { + "start": 12129.16, + "end": 12129.5, + "probability": 0.8232 + }, + { + "start": 12130.24, + "end": 12133.68, + "probability": 0.8931 + }, + { + "start": 12135.7, + "end": 12138.46, + "probability": 0.9627 + }, + { + "start": 12139.02, + "end": 12141.94, + "probability": 0.9986 + }, + { + "start": 12142.02, + "end": 12142.88, + "probability": 0.8323 + }, + { + "start": 12144.64, + "end": 12146.54, + "probability": 0.9434 + }, + { + "start": 12147.8, + "end": 12148.74, + "probability": 0.8782 + }, + { + "start": 12149.51, + "end": 12152.5, + "probability": 0.9992 + }, + { + "start": 12153.02, + "end": 12155.14, + "probability": 0.9256 + }, + { + "start": 12157.02, + "end": 12158.96, + "probability": 0.8919 + }, + { + "start": 12159.9, + "end": 12161.67, + "probability": 0.999 + }, + { + "start": 12162.48, + "end": 12166.86, + "probability": 0.7841 + }, + { + "start": 12168.1, + "end": 12172.82, + "probability": 0.9795 + }, + { + "start": 12173.7, + "end": 12181.24, + "probability": 0.8278 + }, + { + "start": 12182.62, + "end": 12189.18, + "probability": 0.9953 + }, + { + "start": 12189.3, + "end": 12192.08, + "probability": 0.997 + }, + { + "start": 12192.64, + "end": 12193.26, + "probability": 0.7708 + }, + { + "start": 12194.18, + "end": 12195.36, + "probability": 0.9793 + }, + { + "start": 12195.42, + "end": 12197.88, + "probability": 0.9941 + }, + { + "start": 12198.38, + "end": 12201.38, + "probability": 0.981 + }, + { + "start": 12202.96, + "end": 12204.78, + "probability": 0.842 + }, + { + "start": 12205.6, + "end": 12208.08, + "probability": 0.9865 + }, + { + "start": 12208.14, + "end": 12213.4, + "probability": 0.9895 + }, + { + "start": 12213.4, + "end": 12218.04, + "probability": 0.9955 + }, + { + "start": 12218.14, + "end": 12222.14, + "probability": 0.9949 + }, + { + "start": 12222.4, + "end": 12222.84, + "probability": 0.664 + }, + { + "start": 12225.36, + "end": 12226.0, + "probability": 0.8849 + }, + { + "start": 12226.64, + "end": 12227.84, + "probability": 0.9672 + }, + { + "start": 12228.08, + "end": 12228.58, + "probability": 0.5492 + }, + { + "start": 12228.68, + "end": 12231.12, + "probability": 0.5398 + }, + { + "start": 12235.76, + "end": 12236.85, + "probability": 0.8411 + }, + { + "start": 12241.68, + "end": 12242.96, + "probability": 0.4536 + }, + { + "start": 12243.92, + "end": 12244.84, + "probability": 0.7059 + }, + { + "start": 12244.98, + "end": 12246.9, + "probability": 0.8254 + }, + { + "start": 12251.26, + "end": 12254.12, + "probability": 0.8901 + }, + { + "start": 12256.18, + "end": 12258.36, + "probability": 0.9397 + }, + { + "start": 12259.06, + "end": 12263.02, + "probability": 0.9967 + }, + { + "start": 12263.74, + "end": 12268.26, + "probability": 0.75 + }, + { + "start": 12268.26, + "end": 12269.46, + "probability": 0.5629 + }, + { + "start": 12270.24, + "end": 12270.62, + "probability": 0.3204 + }, + { + "start": 12271.04, + "end": 12273.26, + "probability": 0.9739 + }, + { + "start": 12274.0, + "end": 12274.72, + "probability": 0.5243 + }, + { + "start": 12274.88, + "end": 12275.98, + "probability": 0.3431 + }, + { + "start": 12276.04, + "end": 12276.4, + "probability": 0.7347 + }, + { + "start": 12276.6, + "end": 12277.68, + "probability": 0.8623 + }, + { + "start": 12278.34, + "end": 12282.16, + "probability": 0.9966 + }, + { + "start": 12282.9, + "end": 12284.12, + "probability": 0.9811 + }, + { + "start": 12285.4, + "end": 12288.22, + "probability": 0.9919 + }, + { + "start": 12289.04, + "end": 12289.82, + "probability": 0.9855 + }, + { + "start": 12290.48, + "end": 12291.48, + "probability": 0.979 + }, + { + "start": 12292.48, + "end": 12294.86, + "probability": 0.9793 + }, + { + "start": 12295.8, + "end": 12298.44, + "probability": 0.8833 + }, + { + "start": 12299.08, + "end": 12299.92, + "probability": 0.9601 + }, + { + "start": 12301.66, + "end": 12303.66, + "probability": 0.954 + }, + { + "start": 12303.76, + "end": 12305.24, + "probability": 0.9536 + }, + { + "start": 12305.74, + "end": 12309.5, + "probability": 0.9927 + }, + { + "start": 12310.52, + "end": 12314.14, + "probability": 0.9862 + }, + { + "start": 12314.14, + "end": 12318.1, + "probability": 0.9958 + }, + { + "start": 12318.98, + "end": 12321.32, + "probability": 0.9714 + }, + { + "start": 12321.54, + "end": 12322.34, + "probability": 0.9549 + }, + { + "start": 12322.92, + "end": 12324.4, + "probability": 0.9364 + }, + { + "start": 12325.66, + "end": 12328.54, + "probability": 0.9896 + }, + { + "start": 12328.54, + "end": 12330.88, + "probability": 0.9941 + }, + { + "start": 12331.56, + "end": 12331.66, + "probability": 0.8298 + }, + { + "start": 12331.8, + "end": 12332.34, + "probability": 0.66 + }, + { + "start": 12332.46, + "end": 12335.28, + "probability": 0.9891 + }, + { + "start": 12335.72, + "end": 12338.02, + "probability": 0.9894 + }, + { + "start": 12338.56, + "end": 12342.2, + "probability": 0.9946 + }, + { + "start": 12343.18, + "end": 12345.82, + "probability": 0.8839 + }, + { + "start": 12345.9, + "end": 12349.06, + "probability": 0.993 + }, + { + "start": 12349.54, + "end": 12353.68, + "probability": 0.9678 + }, + { + "start": 12354.42, + "end": 12356.96, + "probability": 0.9925 + }, + { + "start": 12357.08, + "end": 12360.04, + "probability": 0.9976 + }, + { + "start": 12360.14, + "end": 12364.1, + "probability": 0.8555 + }, + { + "start": 12365.14, + "end": 12366.18, + "probability": 0.9765 + }, + { + "start": 12367.4, + "end": 12368.9, + "probability": 0.9321 + }, + { + "start": 12370.34, + "end": 12371.38, + "probability": 0.6535 + }, + { + "start": 12372.58, + "end": 12374.94, + "probability": 0.5939 + }, + { + "start": 12374.94, + "end": 12375.54, + "probability": 0.629 + }, + { + "start": 12376.3, + "end": 12380.78, + "probability": 0.9595 + }, + { + "start": 12381.62, + "end": 12382.68, + "probability": 0.9503 + }, + { + "start": 12382.72, + "end": 12383.52, + "probability": 0.9445 + }, + { + "start": 12384.3, + "end": 12387.98, + "probability": 0.9932 + }, + { + "start": 12388.26, + "end": 12389.34, + "probability": 0.7832 + }, + { + "start": 12390.06, + "end": 12392.26, + "probability": 0.5967 + }, + { + "start": 12392.26, + "end": 12393.74, + "probability": 0.9824 + }, + { + "start": 12394.34, + "end": 12395.14, + "probability": 0.9436 + }, + { + "start": 12395.7, + "end": 12398.82, + "probability": 0.989 + }, + { + "start": 12400.04, + "end": 12400.92, + "probability": 0.9094 + }, + { + "start": 12401.84, + "end": 12405.56, + "probability": 0.9958 + }, + { + "start": 12406.32, + "end": 12409.74, + "probability": 0.717 + }, + { + "start": 12409.96, + "end": 12410.76, + "probability": 0.7248 + }, + { + "start": 12411.3, + "end": 12412.81, + "probability": 0.9537 + }, + { + "start": 12413.92, + "end": 12418.6, + "probability": 0.9966 + }, + { + "start": 12419.62, + "end": 12420.86, + "probability": 0.8694 + }, + { + "start": 12422.08, + "end": 12423.52, + "probability": 0.7507 + }, + { + "start": 12423.58, + "end": 12424.22, + "probability": 0.9327 + }, + { + "start": 12424.26, + "end": 12424.64, + "probability": 0.9554 + }, + { + "start": 12424.66, + "end": 12425.16, + "probability": 0.7826 + }, + { + "start": 12425.36, + "end": 12426.34, + "probability": 0.9332 + }, + { + "start": 12426.68, + "end": 12427.98, + "probability": 0.9922 + }, + { + "start": 12428.1, + "end": 12429.1, + "probability": 0.9678 + }, + { + "start": 12429.82, + "end": 12431.78, + "probability": 0.9944 + }, + { + "start": 12432.36, + "end": 12433.41, + "probability": 0.6314 + }, + { + "start": 12433.92, + "end": 12434.22, + "probability": 0.2484 + }, + { + "start": 12434.34, + "end": 12436.92, + "probability": 0.8928 + }, + { + "start": 12437.62, + "end": 12441.26, + "probability": 0.7775 + }, + { + "start": 12441.46, + "end": 12442.44, + "probability": 0.8797 + }, + { + "start": 12442.9, + "end": 12443.3, + "probability": 0.9526 + }, + { + "start": 12443.92, + "end": 12447.68, + "probability": 0.9897 + }, + { + "start": 12448.18, + "end": 12449.7, + "probability": 0.8562 + }, + { + "start": 12450.02, + "end": 12450.42, + "probability": 0.7894 + }, + { + "start": 12450.86, + "end": 12452.58, + "probability": 0.9564 + }, + { + "start": 12452.72, + "end": 12453.12, + "probability": 0.4809 + }, + { + "start": 12454.44, + "end": 12457.44, + "probability": 0.7603 + }, + { + "start": 12460.54, + "end": 12460.64, + "probability": 0.6659 + }, + { + "start": 12461.22, + "end": 12461.64, + "probability": 0.7417 + }, + { + "start": 12462.04, + "end": 12463.66, + "probability": 0.6809 + }, + { + "start": 12468.08, + "end": 12468.18, + "probability": 0.6129 + }, + { + "start": 12468.8, + "end": 12469.56, + "probability": 0.9408 + }, + { + "start": 12478.92, + "end": 12480.18, + "probability": 0.7153 + }, + { + "start": 12482.36, + "end": 12482.6, + "probability": 0.6743 + }, + { + "start": 12482.6, + "end": 12484.38, + "probability": 0.5375 + }, + { + "start": 12485.1, + "end": 12486.9, + "probability": 0.9835 + }, + { + "start": 12486.98, + "end": 12487.7, + "probability": 0.9868 + }, + { + "start": 12487.92, + "end": 12488.66, + "probability": 0.8979 + }, + { + "start": 12488.68, + "end": 12489.42, + "probability": 0.7587 + }, + { + "start": 12489.62, + "end": 12490.14, + "probability": 0.6587 + }, + { + "start": 12491.02, + "end": 12492.6, + "probability": 0.9681 + }, + { + "start": 12494.3, + "end": 12496.08, + "probability": 0.3858 + }, + { + "start": 12497.54, + "end": 12499.26, + "probability": 0.7869 + }, + { + "start": 12500.14, + "end": 12503.58, + "probability": 0.9878 + }, + { + "start": 12504.22, + "end": 12507.78, + "probability": 0.9267 + }, + { + "start": 12507.92, + "end": 12510.22, + "probability": 0.9914 + }, + { + "start": 12510.86, + "end": 12511.36, + "probability": 0.447 + }, + { + "start": 12511.48, + "end": 12512.62, + "probability": 0.9694 + }, + { + "start": 12512.82, + "end": 12514.66, + "probability": 0.9126 + }, + { + "start": 12514.78, + "end": 12515.22, + "probability": 0.9055 + }, + { + "start": 12515.92, + "end": 12518.02, + "probability": 0.9414 + }, + { + "start": 12518.14, + "end": 12518.75, + "probability": 0.9587 + }, + { + "start": 12519.54, + "end": 12521.26, + "probability": 0.8853 + }, + { + "start": 12522.04, + "end": 12522.96, + "probability": 0.8903 + }, + { + "start": 12523.76, + "end": 12526.08, + "probability": 0.9789 + }, + { + "start": 12526.84, + "end": 12528.4, + "probability": 0.7134 + }, + { + "start": 12529.26, + "end": 12530.78, + "probability": 0.9078 + }, + { + "start": 12530.86, + "end": 12534.12, + "probability": 0.9734 + }, + { + "start": 12534.46, + "end": 12539.3, + "probability": 0.7159 + }, + { + "start": 12539.82, + "end": 12545.3, + "probability": 0.9912 + }, + { + "start": 12545.4, + "end": 12547.62, + "probability": 0.9988 + }, + { + "start": 12548.08, + "end": 12552.8, + "probability": 0.9932 + }, + { + "start": 12553.3, + "end": 12553.72, + "probability": 0.7061 + }, + { + "start": 12553.98, + "end": 12554.26, + "probability": 0.8094 + }, + { + "start": 12554.3, + "end": 12554.3, + "probability": 0.4078 + }, + { + "start": 12554.38, + "end": 12556.24, + "probability": 0.9979 + }, + { + "start": 12556.6, + "end": 12557.66, + "probability": 0.9778 + }, + { + "start": 12557.72, + "end": 12558.64, + "probability": 0.969 + }, + { + "start": 12558.98, + "end": 12560.12, + "probability": 0.9067 + }, + { + "start": 12560.68, + "end": 12561.86, + "probability": 0.9612 + }, + { + "start": 12563.6, + "end": 12564.6, + "probability": 0.7295 + }, + { + "start": 12565.0, + "end": 12569.66, + "probability": 0.9719 + }, + { + "start": 12569.66, + "end": 12573.46, + "probability": 0.6913 + }, + { + "start": 12573.46, + "end": 12574.5, + "probability": 0.8122 + }, + { + "start": 12575.26, + "end": 12577.2, + "probability": 0.9911 + }, + { + "start": 12577.3, + "end": 12578.4, + "probability": 0.8274 + }, + { + "start": 12578.86, + "end": 12583.28, + "probability": 0.9956 + }, + { + "start": 12583.92, + "end": 12584.96, + "probability": 0.9089 + }, + { + "start": 12585.44, + "end": 12587.58, + "probability": 0.9816 + }, + { + "start": 12587.96, + "end": 12592.72, + "probability": 0.8969 + }, + { + "start": 12593.22, + "end": 12594.58, + "probability": 0.8795 + }, + { + "start": 12595.06, + "end": 12597.56, + "probability": 0.9991 + }, + { + "start": 12597.56, + "end": 12600.48, + "probability": 0.9998 + }, + { + "start": 12601.04, + "end": 12604.9, + "probability": 0.9987 + }, + { + "start": 12605.26, + "end": 12606.58, + "probability": 0.9956 + }, + { + "start": 12606.84, + "end": 12608.14, + "probability": 0.9788 + }, + { + "start": 12608.56, + "end": 12609.46, + "probability": 0.7665 + }, + { + "start": 12610.18, + "end": 12614.04, + "probability": 0.9925 + }, + { + "start": 12614.7, + "end": 12616.78, + "probability": 0.9708 + }, + { + "start": 12617.3, + "end": 12619.02, + "probability": 0.9795 + }, + { + "start": 12619.1, + "end": 12622.96, + "probability": 0.8301 + }, + { + "start": 12622.96, + "end": 12627.32, + "probability": 0.8967 + }, + { + "start": 12627.36, + "end": 12628.4, + "probability": 0.7915 + }, + { + "start": 12628.78, + "end": 12629.77, + "probability": 0.9589 + }, + { + "start": 12630.16, + "end": 12631.18, + "probability": 0.2792 + }, + { + "start": 12631.22, + "end": 12631.78, + "probability": 0.7254 + }, + { + "start": 12632.2, + "end": 12635.76, + "probability": 0.9842 + }, + { + "start": 12636.6, + "end": 12639.58, + "probability": 0.9897 + }, + { + "start": 12639.66, + "end": 12640.12, + "probability": 0.8627 + }, + { + "start": 12640.54, + "end": 12641.9, + "probability": 0.7188 + }, + { + "start": 12642.92, + "end": 12644.3, + "probability": 0.7511 + }, + { + "start": 12645.76, + "end": 12645.88, + "probability": 0.6928 + }, + { + "start": 12646.62, + "end": 12647.44, + "probability": 0.5169 + }, + { + "start": 12648.46, + "end": 12650.22, + "probability": 0.9602 + }, + { + "start": 12651.04, + "end": 12652.3, + "probability": 0.9113 + }, + { + "start": 12652.9, + "end": 12656.09, + "probability": 0.7908 + }, + { + "start": 12660.26, + "end": 12660.38, + "probability": 0.0371 + }, + { + "start": 12660.38, + "end": 12660.38, + "probability": 0.5047 + }, + { + "start": 12660.38, + "end": 12660.82, + "probability": 0.1922 + }, + { + "start": 12660.94, + "end": 12661.9, + "probability": 0.7059 + }, + { + "start": 12662.24, + "end": 12663.42, + "probability": 0.5849 + }, + { + "start": 12663.48, + "end": 12664.0, + "probability": 0.9089 + }, + { + "start": 12664.24, + "end": 12665.12, + "probability": 0.7133 + }, + { + "start": 12665.18, + "end": 12665.62, + "probability": 0.8525 + }, + { + "start": 12666.06, + "end": 12667.06, + "probability": 0.5511 + }, + { + "start": 12667.22, + "end": 12667.67, + "probability": 0.5084 + }, + { + "start": 12668.42, + "end": 12669.12, + "probability": 0.9784 + }, + { + "start": 12669.24, + "end": 12669.98, + "probability": 0.8741 + }, + { + "start": 12670.6, + "end": 12671.44, + "probability": 0.8812 + }, + { + "start": 12671.56, + "end": 12672.24, + "probability": 0.976 + }, + { + "start": 12672.6, + "end": 12673.5, + "probability": 0.9801 + }, + { + "start": 12673.96, + "end": 12675.02, + "probability": 0.9668 + }, + { + "start": 12676.88, + "end": 12677.7, + "probability": 0.8909 + }, + { + "start": 12679.75, + "end": 12682.18, + "probability": 0.5156 + }, + { + "start": 12682.68, + "end": 12683.28, + "probability": 0.8039 + }, + { + "start": 12684.24, + "end": 12685.1, + "probability": 0.5322 + }, + { + "start": 12685.26, + "end": 12685.94, + "probability": 0.7165 + }, + { + "start": 12686.0, + "end": 12686.56, + "probability": 0.9314 + }, + { + "start": 12687.1, + "end": 12688.34, + "probability": 0.7306 + }, + { + "start": 12690.62, + "end": 12691.62, + "probability": 0.9932 + }, + { + "start": 12701.18, + "end": 12702.6, + "probability": 0.4529 + }, + { + "start": 12702.6, + "end": 12703.6, + "probability": 0.4112 + }, + { + "start": 12704.48, + "end": 12706.9, + "probability": 0.9717 + }, + { + "start": 12708.48, + "end": 12710.06, + "probability": 0.6294 + }, + { + "start": 12710.72, + "end": 12711.68, + "probability": 0.3841 + }, + { + "start": 12712.67, + "end": 12714.62, + "probability": 0.7614 + }, + { + "start": 12715.02, + "end": 12715.42, + "probability": 0.7112 + }, + { + "start": 12715.6, + "end": 12717.64, + "probability": 0.6661 + }, + { + "start": 12718.7, + "end": 12720.24, + "probability": 0.0836 + }, + { + "start": 12720.42, + "end": 12721.04, + "probability": 0.5513 + }, + { + "start": 12721.12, + "end": 12722.84, + "probability": 0.6867 + }, + { + "start": 12722.9, + "end": 12723.22, + "probability": 0.9709 + }, + { + "start": 12723.38, + "end": 12723.44, + "probability": 0.8706 + }, + { + "start": 12723.54, + "end": 12724.38, + "probability": 0.8101 + }, + { + "start": 12724.46, + "end": 12725.4, + "probability": 0.8675 + }, + { + "start": 12725.84, + "end": 12726.94, + "probability": 0.7769 + }, + { + "start": 12728.42, + "end": 12732.8, + "probability": 0.9697 + }, + { + "start": 12733.94, + "end": 12734.82, + "probability": 0.5385 + }, + { + "start": 12735.5, + "end": 12738.4, + "probability": 0.9626 + }, + { + "start": 12739.5, + "end": 12744.84, + "probability": 0.9969 + }, + { + "start": 12746.68, + "end": 12750.22, + "probability": 0.9761 + }, + { + "start": 12751.52, + "end": 12754.36, + "probability": 0.9983 + }, + { + "start": 12754.86, + "end": 12755.18, + "probability": 0.4911 + }, + { + "start": 12756.42, + "end": 12757.14, + "probability": 0.8588 + }, + { + "start": 12757.98, + "end": 12758.5, + "probability": 0.8795 + }, + { + "start": 12759.42, + "end": 12761.26, + "probability": 0.9347 + }, + { + "start": 12761.96, + "end": 12764.36, + "probability": 0.9497 + }, + { + "start": 12764.44, + "end": 12767.72, + "probability": 0.8289 + }, + { + "start": 12768.74, + "end": 12769.88, + "probability": 0.9509 + }, + { + "start": 12770.9, + "end": 12773.4, + "probability": 0.9849 + }, + { + "start": 12773.62, + "end": 12776.57, + "probability": 0.8912 + }, + { + "start": 12776.84, + "end": 12778.2, + "probability": 0.8933 + }, + { + "start": 12781.46, + "end": 12782.78, + "probability": 0.6775 + }, + { + "start": 12783.58, + "end": 12784.72, + "probability": 0.8784 + }, + { + "start": 12786.02, + "end": 12789.48, + "probability": 0.9118 + }, + { + "start": 12789.6, + "end": 12792.18, + "probability": 0.7393 + }, + { + "start": 12793.56, + "end": 12794.8, + "probability": 0.9783 + }, + { + "start": 12794.9, + "end": 12796.5, + "probability": 0.9939 + }, + { + "start": 12796.66, + "end": 12797.48, + "probability": 0.8866 + }, + { + "start": 12798.06, + "end": 12799.04, + "probability": 0.9525 + }, + { + "start": 12799.14, + "end": 12800.46, + "probability": 0.9897 + }, + { + "start": 12800.5, + "end": 12801.58, + "probability": 0.9213 + }, + { + "start": 12801.58, + "end": 12803.14, + "probability": 0.9894 + }, + { + "start": 12803.32, + "end": 12803.98, + "probability": 0.3806 + }, + { + "start": 12805.68, + "end": 12809.38, + "probability": 0.7026 + }, + { + "start": 12809.62, + "end": 12813.56, + "probability": 0.9731 + }, + { + "start": 12813.62, + "end": 12815.1, + "probability": 0.4425 + }, + { + "start": 12815.12, + "end": 12816.32, + "probability": 0.5087 + }, + { + "start": 12817.6, + "end": 12818.1, + "probability": 0.0295 + }, + { + "start": 12818.18, + "end": 12818.44, + "probability": 0.0135 + }, + { + "start": 12818.44, + "end": 12819.14, + "probability": 0.7433 + }, + { + "start": 12820.12, + "end": 12821.3, + "probability": 0.6184 + }, + { + "start": 12822.27, + "end": 12822.86, + "probability": 0.938 + }, + { + "start": 12823.96, + "end": 12827.26, + "probability": 0.7 + }, + { + "start": 12827.36, + "end": 12830.16, + "probability": 0.8594 + }, + { + "start": 12830.48, + "end": 12831.34, + "probability": 0.7576 + }, + { + "start": 12831.94, + "end": 12832.92, + "probability": 0.851 + }, + { + "start": 12834.02, + "end": 12837.34, + "probability": 0.8644 + }, + { + "start": 12837.34, + "end": 12840.5, + "probability": 0.9786 + }, + { + "start": 12840.6, + "end": 12840.76, + "probability": 0.8271 + }, + { + "start": 12841.04, + "end": 12841.66, + "probability": 0.8356 + }, + { + "start": 12842.16, + "end": 12843.26, + "probability": 0.662 + }, + { + "start": 12847.4, + "end": 12849.74, + "probability": 0.9963 + }, + { + "start": 12849.88, + "end": 12851.14, + "probability": 0.8972 + }, + { + "start": 12851.36, + "end": 12854.28, + "probability": 0.7613 + }, + { + "start": 12854.42, + "end": 12855.84, + "probability": 0.8279 + }, + { + "start": 12856.0, + "end": 12859.54, + "probability": 0.9929 + }, + { + "start": 12859.82, + "end": 12863.29, + "probability": 0.7298 + }, + { + "start": 12864.02, + "end": 12866.08, + "probability": 0.8967 + }, + { + "start": 12866.26, + "end": 12868.0, + "probability": 0.9803 + }, + { + "start": 12868.32, + "end": 12869.64, + "probability": 0.6966 + }, + { + "start": 12870.2, + "end": 12871.73, + "probability": 0.9844 + }, + { + "start": 12872.04, + "end": 12875.76, + "probability": 0.9864 + }, + { + "start": 12876.18, + "end": 12876.74, + "probability": 0.7751 + }, + { + "start": 12877.08, + "end": 12878.5, + "probability": 0.6697 + }, + { + "start": 12879.3, + "end": 12880.76, + "probability": 0.9174 + }, + { + "start": 12880.84, + "end": 12881.36, + "probability": 0.7475 + }, + { + "start": 12881.48, + "end": 12883.94, + "probability": 0.9717 + }, + { + "start": 12884.06, + "end": 12884.82, + "probability": 0.9783 + }, + { + "start": 12885.06, + "end": 12885.74, + "probability": 0.5948 + }, + { + "start": 12885.86, + "end": 12886.26, + "probability": 0.6999 + }, + { + "start": 12886.9, + "end": 12890.08, + "probability": 0.9206 + }, + { + "start": 12890.12, + "end": 12890.98, + "probability": 0.9374 + }, + { + "start": 12891.06, + "end": 12891.44, + "probability": 0.9171 + }, + { + "start": 12891.52, + "end": 12892.46, + "probability": 0.69 + }, + { + "start": 12892.52, + "end": 12893.28, + "probability": 0.8446 + }, + { + "start": 12893.36, + "end": 12893.56, + "probability": 0.9308 + }, + { + "start": 12893.68, + "end": 12894.54, + "probability": 0.45 + }, + { + "start": 12894.56, + "end": 12894.92, + "probability": 0.8103 + }, + { + "start": 12895.34, + "end": 12897.82, + "probability": 0.8442 + }, + { + "start": 12897.86, + "end": 12898.9, + "probability": 0.8011 + }, + { + "start": 12900.4, + "end": 12901.74, + "probability": 0.9931 + }, + { + "start": 12901.84, + "end": 12902.14, + "probability": 0.2673 + }, + { + "start": 12902.3, + "end": 12902.42, + "probability": 0.7753 + }, + { + "start": 12902.56, + "end": 12904.69, + "probability": 0.9668 + }, + { + "start": 12905.66, + "end": 12907.52, + "probability": 0.7555 + }, + { + "start": 12907.68, + "end": 12908.66, + "probability": 0.8605 + }, + { + "start": 12908.84, + "end": 12909.42, + "probability": 0.7553 + }, + { + "start": 12909.48, + "end": 12911.04, + "probability": 0.9883 + }, + { + "start": 12911.12, + "end": 12913.16, + "probability": 0.9648 + }, + { + "start": 12913.32, + "end": 12915.62, + "probability": 0.9927 + }, + { + "start": 12915.62, + "end": 12918.51, + "probability": 0.9663 + }, + { + "start": 12918.98, + "end": 12919.78, + "probability": 0.7747 + }, + { + "start": 12919.84, + "end": 12920.96, + "probability": 0.7489 + }, + { + "start": 12921.88, + "end": 12922.98, + "probability": 0.8706 + }, + { + "start": 12923.08, + "end": 12925.54, + "probability": 0.9985 + }, + { + "start": 12926.38, + "end": 12926.54, + "probability": 0.4533 + }, + { + "start": 12926.62, + "end": 12927.45, + "probability": 0.9514 + }, + { + "start": 12927.72, + "end": 12929.0, + "probability": 0.8896 + }, + { + "start": 12929.24, + "end": 12929.86, + "probability": 0.7655 + }, + { + "start": 12929.9, + "end": 12932.52, + "probability": 0.9337 + }, + { + "start": 12934.54, + "end": 12935.96, + "probability": 0.929 + }, + { + "start": 12937.2, + "end": 12937.52, + "probability": 0.9788 + }, + { + "start": 12938.02, + "end": 12938.48, + "probability": 0.9786 + }, + { + "start": 12938.54, + "end": 12939.16, + "probability": 0.9638 + }, + { + "start": 12939.36, + "end": 12939.84, + "probability": 0.6906 + }, + { + "start": 12939.9, + "end": 12941.2, + "probability": 0.968 + }, + { + "start": 12942.0, + "end": 12943.52, + "probability": 0.9752 + }, + { + "start": 12943.62, + "end": 12944.68, + "probability": 0.9668 + }, + { + "start": 12944.76, + "end": 12945.78, + "probability": 0.915 + }, + { + "start": 12945.78, + "end": 12947.02, + "probability": 0.9916 + }, + { + "start": 12947.06, + "end": 12947.8, + "probability": 0.9916 + }, + { + "start": 12947.96, + "end": 12948.62, + "probability": 0.9735 + }, + { + "start": 12948.62, + "end": 12949.46, + "probability": 0.9929 + }, + { + "start": 12949.54, + "end": 12950.29, + "probability": 0.6853 + }, + { + "start": 12950.94, + "end": 12951.96, + "probability": 0.828 + }, + { + "start": 12953.4, + "end": 12956.24, + "probability": 0.9668 + }, + { + "start": 12956.42, + "end": 12957.9, + "probability": 0.9615 + }, + { + "start": 12958.0, + "end": 12961.86, + "probability": 0.8925 + }, + { + "start": 12963.22, + "end": 12964.76, + "probability": 0.9685 + }, + { + "start": 12966.1, + "end": 12968.78, + "probability": 0.8906 + }, + { + "start": 12968.9, + "end": 12971.6, + "probability": 0.9651 + }, + { + "start": 12972.1, + "end": 12972.48, + "probability": 0.7441 + }, + { + "start": 12972.6, + "end": 12973.16, + "probability": 0.9661 + }, + { + "start": 12973.24, + "end": 12974.46, + "probability": 0.7017 + }, + { + "start": 12974.54, + "end": 12979.9, + "probability": 0.9736 + }, + { + "start": 12980.14, + "end": 12981.54, + "probability": 0.809 + }, + { + "start": 12981.54, + "end": 12981.82, + "probability": 0.0628 + }, + { + "start": 12981.82, + "end": 12983.58, + "probability": 0.8922 + }, + { + "start": 12984.02, + "end": 12984.14, + "probability": 0.2982 + }, + { + "start": 12984.26, + "end": 12987.43, + "probability": 0.9786 + }, + { + "start": 12987.64, + "end": 12988.5, + "probability": 0.2748 + }, + { + "start": 12988.5, + "end": 12988.5, + "probability": 0.0958 + }, + { + "start": 12988.5, + "end": 12989.18, + "probability": 0.0208 + }, + { + "start": 12989.94, + "end": 12993.24, + "probability": 0.8308 + }, + { + "start": 12993.44, + "end": 12993.58, + "probability": 0.7638 + }, + { + "start": 12993.68, + "end": 12994.7, + "probability": 0.886 + }, + { + "start": 12994.82, + "end": 12995.38, + "probability": 0.9147 + }, + { + "start": 12995.66, + "end": 12997.26, + "probability": 0.5312 + }, + { + "start": 12997.92, + "end": 12999.7, + "probability": 0.9922 + }, + { + "start": 12999.84, + "end": 13000.3, + "probability": 0.415 + }, + { + "start": 13000.3, + "end": 13000.5, + "probability": 0.4913 + }, + { + "start": 13000.5, + "end": 13000.8, + "probability": 0.277 + }, + { + "start": 13000.88, + "end": 13001.58, + "probability": 0.9293 + }, + { + "start": 13002.28, + "end": 13002.92, + "probability": 0.8556 + }, + { + "start": 13003.2, + "end": 13004.83, + "probability": 0.4031 + }, + { + "start": 13005.12, + "end": 13008.06, + "probability": 0.9983 + }, + { + "start": 13008.12, + "end": 13009.5, + "probability": 0.9922 + }, + { + "start": 13009.58, + "end": 13010.52, + "probability": 0.9305 + }, + { + "start": 13010.86, + "end": 13012.12, + "probability": 0.8843 + }, + { + "start": 13012.48, + "end": 13012.74, + "probability": 0.6707 + }, + { + "start": 13012.98, + "end": 13012.98, + "probability": 0.4115 + }, + { + "start": 13013.74, + "end": 13016.22, + "probability": 0.8595 + }, + { + "start": 13016.96, + "end": 13018.36, + "probability": 0.7768 + }, + { + "start": 13018.9, + "end": 13019.4, + "probability": 0.9259 + }, + { + "start": 13020.36, + "end": 13021.76, + "probability": 0.7763 + }, + { + "start": 13022.32, + "end": 13023.12, + "probability": 0.9806 + }, + { + "start": 13023.64, + "end": 13025.36, + "probability": 0.9434 + }, + { + "start": 13026.14, + "end": 13027.76, + "probability": 0.665 + }, + { + "start": 13028.48, + "end": 13028.98, + "probability": 0.894 + }, + { + "start": 13029.64, + "end": 13031.16, + "probability": 0.9071 + }, + { + "start": 13031.62, + "end": 13034.36, + "probability": 0.8586 + }, + { + "start": 13034.52, + "end": 13034.94, + "probability": 0.7118 + }, + { + "start": 13035.26, + "end": 13035.58, + "probability": 0.45 + }, + { + "start": 13035.68, + "end": 13036.62, + "probability": 0.9288 + }, + { + "start": 13038.68, + "end": 13040.08, + "probability": 0.8862 + }, + { + "start": 13041.48, + "end": 13042.59, + "probability": 0.7408 + }, + { + "start": 13043.3, + "end": 13047.04, + "probability": 0.4842 + }, + { + "start": 13047.68, + "end": 13051.6, + "probability": 0.1565 + }, + { + "start": 13051.88, + "end": 13053.14, + "probability": 0.7296 + }, + { + "start": 13053.8, + "end": 13060.3, + "probability": 0.1012 + }, + { + "start": 13063.87, + "end": 13066.89, + "probability": 0.0846 + }, + { + "start": 13068.96, + "end": 13070.12, + "probability": 0.8665 + }, + { + "start": 13070.24, + "end": 13070.54, + "probability": 0.4466 + }, + { + "start": 13071.18, + "end": 13073.68, + "probability": 0.9107 + }, + { + "start": 13077.4, + "end": 13079.06, + "probability": 0.6189 + }, + { + "start": 13079.68, + "end": 13081.74, + "probability": 0.6876 + }, + { + "start": 13082.84, + "end": 13084.4, + "probability": 0.7534 + }, + { + "start": 13085.08, + "end": 13085.42, + "probability": 0.0806 + }, + { + "start": 13085.42, + "end": 13087.74, + "probability": 0.6947 + }, + { + "start": 13088.74, + "end": 13091.76, + "probability": 0.5798 + }, + { + "start": 13092.22, + "end": 13093.78, + "probability": 0.1508 + }, + { + "start": 13094.04, + "end": 13094.62, + "probability": 0.339 + }, + { + "start": 13095.56, + "end": 13098.0, + "probability": 0.5962 + }, + { + "start": 13098.9, + "end": 13103.44, + "probability": 0.6432 + }, + { + "start": 13103.58, + "end": 13103.97, + "probability": 0.6523 + }, + { + "start": 13104.28, + "end": 13105.02, + "probability": 0.4758 + }, + { + "start": 13105.28, + "end": 13105.68, + "probability": 0.6918 + }, + { + "start": 13106.78, + "end": 13107.54, + "probability": 0.0082 + }, + { + "start": 13108.4, + "end": 13108.4, + "probability": 0.322 + }, + { + "start": 13108.4, + "end": 13110.62, + "probability": 0.7693 + }, + { + "start": 13112.64, + "end": 13114.44, + "probability": 0.8263 + }, + { + "start": 13115.42, + "end": 13116.42, + "probability": 0.3849 + }, + { + "start": 13116.48, + "end": 13118.34, + "probability": 0.9486 + }, + { + "start": 13118.46, + "end": 13119.18, + "probability": 0.8352 + }, + { + "start": 13119.5, + "end": 13120.94, + "probability": 0.4743 + }, + { + "start": 13121.36, + "end": 13123.64, + "probability": 0.6255 + }, + { + "start": 13124.2, + "end": 13125.68, + "probability": 0.4775 + } + ], + "segments_count": 5029, + "words_count": 24232, + "avg_words_per_segment": 4.8185, + "avg_segment_duration": 1.8329, + "avg_words_per_minute": 107.0996, + "plenum_id": "101519", + "duration": 13575.4, + "title": null, + "plenum_date": "2021-11-15" +} \ No newline at end of file