diff --git "a/101580/metadata.json" "b/101580/metadata.json" new file mode 100644--- /dev/null +++ "b/101580/metadata.json" @@ -0,0 +1,20567 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "101580", + "quality_score": 0.9579, + "per_segment_quality_scores": [ + { + "start": 55.18, + "end": 56.94, + "probability": 0.9705 + }, + { + "start": 57.48, + "end": 58.92, + "probability": 0.9182 + }, + { + "start": 59.68, + "end": 64.26, + "probability": 0.9272 + }, + { + "start": 64.44, + "end": 66.3, + "probability": 0.9458 + }, + { + "start": 67.1, + "end": 71.38, + "probability": 0.9885 + }, + { + "start": 71.98, + "end": 75.68, + "probability": 0.9862 + }, + { + "start": 76.32, + "end": 80.42, + "probability": 0.9917 + }, + { + "start": 80.42, + "end": 82.88, + "probability": 0.7184 + }, + { + "start": 83.74, + "end": 88.64, + "probability": 0.947 + }, + { + "start": 101.6, + "end": 105.44, + "probability": 0.8971 + }, + { + "start": 106.02, + "end": 106.48, + "probability": 0.7333 + }, + { + "start": 114.42, + "end": 115.56, + "probability": 0.616 + }, + { + "start": 116.3, + "end": 117.12, + "probability": 0.664 + }, + { + "start": 117.46, + "end": 119.96, + "probability": 0.5323 + }, + { + "start": 122.27, + "end": 124.11, + "probability": 0.2849 + }, + { + "start": 124.36, + "end": 128.04, + "probability": 0.6725 + }, + { + "start": 128.12, + "end": 129.34, + "probability": 0.2585 + }, + { + "start": 129.74, + "end": 130.64, + "probability": 0.5121 + }, + { + "start": 131.24, + "end": 131.7, + "probability": 0.8138 + }, + { + "start": 132.8, + "end": 133.42, + "probability": 0.5978 + }, + { + "start": 133.64, + "end": 134.96, + "probability": 0.8159 + }, + { + "start": 135.54, + "end": 136.68, + "probability": 0.7073 + }, + { + "start": 136.92, + "end": 138.62, + "probability": 0.9126 + }, + { + "start": 160.02, + "end": 162.38, + "probability": 0.7942 + }, + { + "start": 162.56, + "end": 163.44, + "probability": 0.7857 + }, + { + "start": 163.62, + "end": 166.48, + "probability": 0.7481 + }, + { + "start": 166.6, + "end": 167.2, + "probability": 0.7847 + }, + { + "start": 167.28, + "end": 167.9, + "probability": 0.9235 + }, + { + "start": 173.54, + "end": 174.8, + "probability": 0.682 + }, + { + "start": 175.84, + "end": 177.08, + "probability": 0.7183 + }, + { + "start": 177.7, + "end": 181.82, + "probability": 0.9446 + }, + { + "start": 182.9, + "end": 188.15, + "probability": 0.9819 + }, + { + "start": 188.24, + "end": 194.24, + "probability": 0.9992 + }, + { + "start": 195.08, + "end": 198.1, + "probability": 0.8588 + }, + { + "start": 198.84, + "end": 200.33, + "probability": 0.8118 + }, + { + "start": 201.32, + "end": 205.8, + "probability": 0.9909 + }, + { + "start": 206.82, + "end": 207.24, + "probability": 0.4966 + }, + { + "start": 207.34, + "end": 212.16, + "probability": 0.9789 + }, + { + "start": 212.94, + "end": 218.0, + "probability": 0.9951 + }, + { + "start": 218.88, + "end": 222.24, + "probability": 0.9887 + }, + { + "start": 223.08, + "end": 227.7, + "probability": 0.9946 + }, + { + "start": 228.38, + "end": 230.56, + "probability": 0.999 + }, + { + "start": 231.22, + "end": 234.56, + "probability": 0.963 + }, + { + "start": 234.98, + "end": 235.26, + "probability": 0.7046 + }, + { + "start": 236.78, + "end": 238.08, + "probability": 0.6929 + }, + { + "start": 238.26, + "end": 240.59, + "probability": 0.9807 + }, + { + "start": 246.16, + "end": 249.48, + "probability": 0.7526 + }, + { + "start": 250.68, + "end": 260.2, + "probability": 0.9642 + }, + { + "start": 260.38, + "end": 260.38, + "probability": 0.5472 + }, + { + "start": 260.38, + "end": 262.2, + "probability": 0.6451 + }, + { + "start": 263.14, + "end": 265.64, + "probability": 0.7227 + }, + { + "start": 266.44, + "end": 268.28, + "probability": 0.9755 + }, + { + "start": 268.44, + "end": 269.04, + "probability": 0.8924 + }, + { + "start": 269.2, + "end": 273.26, + "probability": 0.9637 + }, + { + "start": 273.32, + "end": 274.96, + "probability": 0.9362 + }, + { + "start": 275.16, + "end": 279.94, + "probability": 0.9338 + }, + { + "start": 280.02, + "end": 281.23, + "probability": 0.1624 + }, + { + "start": 282.4, + "end": 288.4, + "probability": 0.9933 + }, + { + "start": 289.14, + "end": 292.42, + "probability": 0.9725 + }, + { + "start": 292.78, + "end": 294.04, + "probability": 0.916 + }, + { + "start": 294.88, + "end": 296.86, + "probability": 0.9478 + }, + { + "start": 297.4, + "end": 302.98, + "probability": 0.9912 + }, + { + "start": 303.78, + "end": 307.3, + "probability": 0.7343 + }, + { + "start": 307.56, + "end": 311.5, + "probability": 0.9771 + }, + { + "start": 312.08, + "end": 316.09, + "probability": 0.9909 + }, + { + "start": 316.34, + "end": 319.06, + "probability": 0.1417 + }, + { + "start": 319.2, + "end": 319.86, + "probability": 0.7016 + }, + { + "start": 320.36, + "end": 321.12, + "probability": 0.737 + }, + { + "start": 322.02, + "end": 323.2, + "probability": 0.9599 + }, + { + "start": 323.84, + "end": 326.36, + "probability": 0.9884 + }, + { + "start": 326.62, + "end": 328.9, + "probability": 0.9803 + }, + { + "start": 329.38, + "end": 330.42, + "probability": 0.8306 + }, + { + "start": 330.74, + "end": 331.32, + "probability": 0.8395 + }, + { + "start": 331.88, + "end": 337.74, + "probability": 0.9781 + }, + { + "start": 338.26, + "end": 340.71, + "probability": 0.6762 + }, + { + "start": 341.66, + "end": 343.3, + "probability": 0.9796 + }, + { + "start": 344.16, + "end": 345.9, + "probability": 0.895 + }, + { + "start": 346.44, + "end": 346.94, + "probability": 0.9718 + }, + { + "start": 347.5, + "end": 347.88, + "probability": 0.7703 + }, + { + "start": 350.26, + "end": 351.06, + "probability": 0.67 + }, + { + "start": 351.24, + "end": 352.18, + "probability": 0.7234 + }, + { + "start": 362.24, + "end": 364.28, + "probability": 0.5467 + }, + { + "start": 364.64, + "end": 366.62, + "probability": 0.8606 + }, + { + "start": 367.22, + "end": 370.02, + "probability": 0.907 + }, + { + "start": 370.66, + "end": 371.46, + "probability": 0.9699 + }, + { + "start": 372.76, + "end": 373.3, + "probability": 0.8014 + }, + { + "start": 373.6, + "end": 374.2, + "probability": 0.3309 + }, + { + "start": 374.3, + "end": 378.32, + "probability": 0.8691 + }, + { + "start": 379.28, + "end": 379.82, + "probability": 0.7472 + }, + { + "start": 379.88, + "end": 381.0, + "probability": 0.9669 + }, + { + "start": 381.06, + "end": 382.14, + "probability": 0.8852 + }, + { + "start": 382.56, + "end": 383.38, + "probability": 0.8298 + }, + { + "start": 383.52, + "end": 384.6, + "probability": 0.8355 + }, + { + "start": 385.9, + "end": 389.18, + "probability": 0.9788 + }, + { + "start": 389.18, + "end": 393.52, + "probability": 0.9502 + }, + { + "start": 394.7, + "end": 399.02, + "probability": 0.8442 + }, + { + "start": 399.86, + "end": 402.74, + "probability": 0.9135 + }, + { + "start": 403.54, + "end": 405.28, + "probability": 0.6205 + }, + { + "start": 405.7, + "end": 409.68, + "probability": 0.901 + }, + { + "start": 410.52, + "end": 413.14, + "probability": 0.9979 + }, + { + "start": 413.76, + "end": 417.7, + "probability": 0.852 + }, + { + "start": 417.86, + "end": 423.28, + "probability": 0.6082 + }, + { + "start": 424.22, + "end": 428.3, + "probability": 0.9947 + }, + { + "start": 429.54, + "end": 432.44, + "probability": 0.6957 + }, + { + "start": 433.08, + "end": 434.04, + "probability": 0.9227 + }, + { + "start": 434.64, + "end": 434.96, + "probability": 0.8442 + }, + { + "start": 436.74, + "end": 437.3, + "probability": 0.4877 + }, + { + "start": 437.62, + "end": 439.28, + "probability": 0.7903 + }, + { + "start": 447.86, + "end": 448.72, + "probability": 0.4604 + }, + { + "start": 450.0, + "end": 454.76, + "probability": 0.8442 + }, + { + "start": 455.4, + "end": 455.96, + "probability": 0.7056 + }, + { + "start": 457.44, + "end": 460.0, + "probability": 0.9495 + }, + { + "start": 460.88, + "end": 462.46, + "probability": 0.8644 + }, + { + "start": 463.58, + "end": 467.08, + "probability": 0.8369 + }, + { + "start": 468.62, + "end": 470.98, + "probability": 0.9623 + }, + { + "start": 471.86, + "end": 474.22, + "probability": 0.8745 + }, + { + "start": 475.8, + "end": 477.96, + "probability": 0.8933 + }, + { + "start": 478.64, + "end": 480.48, + "probability": 0.6094 + }, + { + "start": 481.88, + "end": 483.14, + "probability": 0.9526 + }, + { + "start": 484.46, + "end": 487.42, + "probability": 0.9215 + }, + { + "start": 488.72, + "end": 490.64, + "probability": 0.9716 + }, + { + "start": 491.5, + "end": 492.6, + "probability": 0.9946 + }, + { + "start": 495.44, + "end": 500.0, + "probability": 0.9004 + }, + { + "start": 500.62, + "end": 503.98, + "probability": 0.7748 + }, + { + "start": 505.84, + "end": 508.74, + "probability": 0.817 + }, + { + "start": 509.76, + "end": 510.36, + "probability": 0.7595 + }, + { + "start": 510.58, + "end": 514.64, + "probability": 0.8636 + }, + { + "start": 516.1, + "end": 516.96, + "probability": 0.9585 + }, + { + "start": 517.34, + "end": 518.02, + "probability": 0.8406 + }, + { + "start": 518.68, + "end": 519.18, + "probability": 0.9731 + }, + { + "start": 519.78, + "end": 520.26, + "probability": 0.2281 + }, + { + "start": 521.24, + "end": 522.4, + "probability": 0.9161 + }, + { + "start": 523.32, + "end": 528.04, + "probability": 0.917 + }, + { + "start": 528.6, + "end": 530.18, + "probability": 0.957 + }, + { + "start": 530.28, + "end": 531.86, + "probability": 0.9249 + }, + { + "start": 531.96, + "end": 533.64, + "probability": 0.9709 + }, + { + "start": 534.66, + "end": 535.42, + "probability": 0.7405 + }, + { + "start": 535.82, + "end": 537.68, + "probability": 0.9111 + }, + { + "start": 539.22, + "end": 541.62, + "probability": 0.9294 + }, + { + "start": 543.56, + "end": 544.16, + "probability": 0.8042 + }, + { + "start": 545.22, + "end": 546.72, + "probability": 0.8672 + }, + { + "start": 547.38, + "end": 553.16, + "probability": 0.8887 + }, + { + "start": 553.8, + "end": 557.78, + "probability": 0.9881 + }, + { + "start": 557.9, + "end": 558.62, + "probability": 0.8124 + }, + { + "start": 561.08, + "end": 562.7, + "probability": 0.7529 + }, + { + "start": 562.76, + "end": 563.26, + "probability": 0.1965 + }, + { + "start": 563.26, + "end": 566.96, + "probability": 0.3494 + }, + { + "start": 567.06, + "end": 567.81, + "probability": 0.1228 + }, + { + "start": 571.66, + "end": 572.84, + "probability": 0.8136 + }, + { + "start": 573.54, + "end": 575.52, + "probability": 0.9214 + }, + { + "start": 593.52, + "end": 595.6, + "probability": 0.75 + }, + { + "start": 597.24, + "end": 601.16, + "probability": 0.9954 + }, + { + "start": 602.38, + "end": 611.22, + "probability": 0.9234 + }, + { + "start": 612.46, + "end": 616.54, + "probability": 0.9453 + }, + { + "start": 618.58, + "end": 620.5, + "probability": 0.7204 + }, + { + "start": 620.66, + "end": 625.24, + "probability": 0.9919 + }, + { + "start": 626.52, + "end": 628.72, + "probability": 0.81 + }, + { + "start": 629.86, + "end": 632.2, + "probability": 0.9771 + }, + { + "start": 633.16, + "end": 634.8, + "probability": 0.9873 + }, + { + "start": 634.88, + "end": 639.02, + "probability": 0.9825 + }, + { + "start": 640.68, + "end": 645.02, + "probability": 0.818 + }, + { + "start": 646.46, + "end": 649.58, + "probability": 0.9742 + }, + { + "start": 651.1, + "end": 652.22, + "probability": 0.655 + }, + { + "start": 652.82, + "end": 656.76, + "probability": 0.8481 + }, + { + "start": 657.8, + "end": 660.24, + "probability": 0.9932 + }, + { + "start": 661.22, + "end": 662.78, + "probability": 0.9943 + }, + { + "start": 663.56, + "end": 667.14, + "probability": 0.9861 + }, + { + "start": 668.3, + "end": 670.6, + "probability": 0.9922 + }, + { + "start": 670.6, + "end": 671.04, + "probability": 0.9281 + }, + { + "start": 671.74, + "end": 674.14, + "probability": 0.9929 + }, + { + "start": 675.48, + "end": 676.85, + "probability": 0.9858 + }, + { + "start": 677.74, + "end": 679.32, + "probability": 0.7716 + }, + { + "start": 680.7, + "end": 682.18, + "probability": 0.9956 + }, + { + "start": 683.26, + "end": 684.28, + "probability": 0.9414 + }, + { + "start": 684.98, + "end": 689.24, + "probability": 0.9932 + }, + { + "start": 689.98, + "end": 692.46, + "probability": 0.9976 + }, + { + "start": 693.42, + "end": 695.64, + "probability": 0.9946 + }, + { + "start": 695.76, + "end": 696.9, + "probability": 0.9479 + }, + { + "start": 697.68, + "end": 699.86, + "probability": 0.9935 + }, + { + "start": 700.84, + "end": 705.8, + "probability": 0.9829 + }, + { + "start": 706.3, + "end": 708.48, + "probability": 0.6368 + }, + { + "start": 709.7, + "end": 713.94, + "probability": 0.9919 + }, + { + "start": 714.86, + "end": 718.36, + "probability": 0.9978 + }, + { + "start": 719.28, + "end": 721.82, + "probability": 0.9958 + }, + { + "start": 723.06, + "end": 724.12, + "probability": 0.8332 + }, + { + "start": 724.88, + "end": 725.14, + "probability": 0.8444 + }, + { + "start": 727.22, + "end": 729.36, + "probability": 0.4056 + }, + { + "start": 729.4, + "end": 731.06, + "probability": 0.8884 + }, + { + "start": 735.68, + "end": 739.56, + "probability": 0.7854 + }, + { + "start": 741.42, + "end": 744.42, + "probability": 0.9708 + }, + { + "start": 744.94, + "end": 747.46, + "probability": 0.9952 + }, + { + "start": 747.5, + "end": 749.38, + "probability": 0.9817 + }, + { + "start": 750.9, + "end": 751.44, + "probability": 0.8348 + }, + { + "start": 752.82, + "end": 753.84, + "probability": 0.8556 + }, + { + "start": 754.3, + "end": 757.14, + "probability": 0.9827 + }, + { + "start": 757.14, + "end": 759.26, + "probability": 0.9793 + }, + { + "start": 759.82, + "end": 763.78, + "probability": 0.9972 + }, + { + "start": 765.14, + "end": 767.78, + "probability": 0.9767 + }, + { + "start": 768.9, + "end": 771.12, + "probability": 0.9871 + }, + { + "start": 772.02, + "end": 775.5, + "probability": 0.9965 + }, + { + "start": 776.3, + "end": 777.78, + "probability": 0.7101 + }, + { + "start": 778.06, + "end": 780.36, + "probability": 0.9976 + }, + { + "start": 780.36, + "end": 783.54, + "probability": 0.9949 + }, + { + "start": 784.22, + "end": 787.46, + "probability": 0.956 + }, + { + "start": 788.62, + "end": 790.92, + "probability": 0.9956 + }, + { + "start": 791.02, + "end": 791.6, + "probability": 0.6094 + }, + { + "start": 792.56, + "end": 792.8, + "probability": 0.5101 + }, + { + "start": 793.4, + "end": 796.86, + "probability": 0.9803 + }, + { + "start": 797.86, + "end": 799.06, + "probability": 0.8486 + }, + { + "start": 799.46, + "end": 800.09, + "probability": 0.9424 + }, + { + "start": 801.58, + "end": 802.42, + "probability": 0.6713 + }, + { + "start": 803.16, + "end": 809.0, + "probability": 0.9933 + }, + { + "start": 809.64, + "end": 812.54, + "probability": 0.906 + }, + { + "start": 813.46, + "end": 815.14, + "probability": 0.9854 + }, + { + "start": 815.68, + "end": 818.04, + "probability": 0.6014 + }, + { + "start": 818.66, + "end": 821.18, + "probability": 0.8705 + }, + { + "start": 821.6, + "end": 822.98, + "probability": 0.9771 + }, + { + "start": 824.0, + "end": 825.68, + "probability": 0.9904 + }, + { + "start": 825.94, + "end": 829.66, + "probability": 0.7956 + }, + { + "start": 829.74, + "end": 832.2, + "probability": 0.9978 + }, + { + "start": 832.46, + "end": 832.96, + "probability": 0.6314 + }, + { + "start": 835.72, + "end": 836.26, + "probability": 0.6641 + }, + { + "start": 836.3, + "end": 837.8, + "probability": 0.9542 + }, + { + "start": 843.84, + "end": 844.72, + "probability": 0.2113 + }, + { + "start": 861.12, + "end": 863.22, + "probability": 0.1193 + }, + { + "start": 865.4, + "end": 867.74, + "probability": 0.1629 + }, + { + "start": 868.04, + "end": 869.16, + "probability": 0.1367 + }, + { + "start": 869.16, + "end": 869.24, + "probability": 0.4498 + }, + { + "start": 870.0, + "end": 870.2, + "probability": 0.2395 + }, + { + "start": 870.2, + "end": 870.24, + "probability": 0.1891 + }, + { + "start": 870.24, + "end": 870.32, + "probability": 0.0487 + }, + { + "start": 870.32, + "end": 870.32, + "probability": 0.0353 + }, + { + "start": 870.32, + "end": 872.48, + "probability": 0.0677 + }, + { + "start": 873.28, + "end": 873.32, + "probability": 0.1089 + }, + { + "start": 873.32, + "end": 874.86, + "probability": 0.7745 + }, + { + "start": 875.72, + "end": 879.58, + "probability": 0.9544 + }, + { + "start": 880.2, + "end": 884.02, + "probability": 0.8405 + }, + { + "start": 884.64, + "end": 890.14, + "probability": 0.8848 + }, + { + "start": 890.84, + "end": 893.84, + "probability": 0.8696 + }, + { + "start": 895.5, + "end": 899.3, + "probability": 0.942 + }, + { + "start": 900.02, + "end": 901.66, + "probability": 0.9663 + }, + { + "start": 902.28, + "end": 903.26, + "probability": 0.9109 + }, + { + "start": 904.02, + "end": 907.0, + "probability": 0.7947 + }, + { + "start": 907.0, + "end": 910.24, + "probability": 0.9708 + }, + { + "start": 911.04, + "end": 917.58, + "probability": 0.9878 + }, + { + "start": 918.24, + "end": 923.34, + "probability": 0.9541 + }, + { + "start": 924.04, + "end": 928.46, + "probability": 0.9922 + }, + { + "start": 928.86, + "end": 930.36, + "probability": 0.9702 + }, + { + "start": 930.5, + "end": 931.52, + "probability": 0.5688 + }, + { + "start": 932.36, + "end": 936.62, + "probability": 0.9902 + }, + { + "start": 937.26, + "end": 940.52, + "probability": 0.9802 + }, + { + "start": 941.0, + "end": 942.84, + "probability": 0.9855 + }, + { + "start": 943.32, + "end": 947.44, + "probability": 0.9448 + }, + { + "start": 947.44, + "end": 951.3, + "probability": 0.9502 + }, + { + "start": 951.74, + "end": 952.72, + "probability": 0.9078 + }, + { + "start": 953.36, + "end": 955.46, + "probability": 0.8936 + }, + { + "start": 955.92, + "end": 961.18, + "probability": 0.9767 + }, + { + "start": 961.18, + "end": 966.32, + "probability": 0.9944 + }, + { + "start": 966.8, + "end": 968.26, + "probability": 0.9349 + }, + { + "start": 968.6, + "end": 969.3, + "probability": 0.8658 + }, + { + "start": 969.32, + "end": 972.18, + "probability": 0.8847 + }, + { + "start": 972.32, + "end": 972.82, + "probability": 0.7029 + }, + { + "start": 972.88, + "end": 973.54, + "probability": 0.8392 + }, + { + "start": 974.08, + "end": 976.5, + "probability": 0.8298 + }, + { + "start": 976.94, + "end": 981.56, + "probability": 0.9739 + }, + { + "start": 981.9, + "end": 983.4, + "probability": 0.9164 + }, + { + "start": 983.48, + "end": 984.54, + "probability": 0.9798 + }, + { + "start": 984.9, + "end": 986.72, + "probability": 0.9875 + }, + { + "start": 986.88, + "end": 987.74, + "probability": 0.955 + }, + { + "start": 988.32, + "end": 991.84, + "probability": 0.9809 + }, + { + "start": 991.92, + "end": 994.32, + "probability": 0.9802 + }, + { + "start": 995.78, + "end": 999.9, + "probability": 0.9864 + }, + { + "start": 1000.04, + "end": 1001.28, + "probability": 0.9769 + }, + { + "start": 1001.48, + "end": 1001.98, + "probability": 0.7693 + }, + { + "start": 1003.32, + "end": 1004.42, + "probability": 0.859 + }, + { + "start": 1004.56, + "end": 1007.26, + "probability": 0.9723 + }, + { + "start": 1007.94, + "end": 1009.1, + "probability": 0.9839 + }, + { + "start": 1010.94, + "end": 1012.02, + "probability": 0.02 + }, + { + "start": 1012.58, + "end": 1013.0, + "probability": 0.1111 + }, + { + "start": 1013.32, + "end": 1014.48, + "probability": 0.0004 + }, + { + "start": 1015.35, + "end": 1016.81, + "probability": 0.0788 + }, + { + "start": 1018.5, + "end": 1018.76, + "probability": 0.2218 + }, + { + "start": 1018.76, + "end": 1020.86, + "probability": 0.04 + }, + { + "start": 1025.84, + "end": 1026.64, + "probability": 0.5792 + }, + { + "start": 1026.64, + "end": 1027.7, + "probability": 0.6109 + }, + { + "start": 1028.72, + "end": 1028.72, + "probability": 0.112 + }, + { + "start": 1028.72, + "end": 1028.72, + "probability": 0.1548 + }, + { + "start": 1028.72, + "end": 1028.72, + "probability": 0.2112 + }, + { + "start": 1028.72, + "end": 1029.88, + "probability": 0.773 + }, + { + "start": 1029.88, + "end": 1031.7, + "probability": 0.6628 + }, + { + "start": 1033.32, + "end": 1039.52, + "probability": 0.9824 + }, + { + "start": 1040.98, + "end": 1041.82, + "probability": 0.8351 + }, + { + "start": 1042.82, + "end": 1044.86, + "probability": 0.9678 + }, + { + "start": 1045.58, + "end": 1048.76, + "probability": 0.801 + }, + { + "start": 1049.48, + "end": 1051.92, + "probability": 0.8735 + }, + { + "start": 1052.52, + "end": 1053.04, + "probability": 0.6179 + }, + { + "start": 1053.04, + "end": 1053.7, + "probability": 0.9609 + }, + { + "start": 1054.02, + "end": 1054.4, + "probability": 0.453 + }, + { + "start": 1054.42, + "end": 1056.7, + "probability": 0.9133 + }, + { + "start": 1056.7, + "end": 1056.9, + "probability": 0.9839 + }, + { + "start": 1057.96, + "end": 1060.6, + "probability": 0.9936 + }, + { + "start": 1060.74, + "end": 1061.18, + "probability": 0.5397 + }, + { + "start": 1061.28, + "end": 1068.36, + "probability": 0.9756 + }, + { + "start": 1068.5, + "end": 1072.16, + "probability": 0.7583 + }, + { + "start": 1073.28, + "end": 1079.42, + "probability": 0.9189 + }, + { + "start": 1080.34, + "end": 1083.42, + "probability": 0.8912 + }, + { + "start": 1083.66, + "end": 1086.08, + "probability": 0.9967 + }, + { + "start": 1087.1, + "end": 1090.62, + "probability": 0.9754 + }, + { + "start": 1091.08, + "end": 1093.38, + "probability": 0.6846 + }, + { + "start": 1093.58, + "end": 1094.54, + "probability": 0.9548 + }, + { + "start": 1094.72, + "end": 1095.29, + "probability": 0.994 + }, + { + "start": 1097.3, + "end": 1098.34, + "probability": 0.504 + }, + { + "start": 1098.34, + "end": 1100.56, + "probability": 0.5071 + }, + { + "start": 1101.1, + "end": 1107.4, + "probability": 0.9832 + }, + { + "start": 1107.78, + "end": 1109.24, + "probability": 0.861 + }, + { + "start": 1109.56, + "end": 1111.06, + "probability": 0.9917 + }, + { + "start": 1111.16, + "end": 1116.06, + "probability": 0.965 + }, + { + "start": 1116.78, + "end": 1127.86, + "probability": 0.9329 + }, + { + "start": 1128.58, + "end": 1130.4, + "probability": 0.9826 + }, + { + "start": 1130.9, + "end": 1133.68, + "probability": 0.8053 + }, + { + "start": 1133.72, + "end": 1134.34, + "probability": 0.8638 + }, + { + "start": 1134.68, + "end": 1137.54, + "probability": 0.9946 + }, + { + "start": 1138.26, + "end": 1142.06, + "probability": 0.9878 + }, + { + "start": 1142.28, + "end": 1142.52, + "probability": 0.6192 + }, + { + "start": 1145.04, + "end": 1145.72, + "probability": 0.6354 + }, + { + "start": 1145.84, + "end": 1147.34, + "probability": 0.8684 + }, + { + "start": 1148.06, + "end": 1151.59, + "probability": 0.6714 + }, + { + "start": 1153.04, + "end": 1153.3, + "probability": 0.0001 + }, + { + "start": 1156.06, + "end": 1157.38, + "probability": 0.0094 + }, + { + "start": 1160.16, + "end": 1161.0, + "probability": 0.2339 + }, + { + "start": 1162.14, + "end": 1162.14, + "probability": 0.2789 + }, + { + "start": 1162.14, + "end": 1162.14, + "probability": 0.0404 + }, + { + "start": 1162.14, + "end": 1162.74, + "probability": 0.0793 + }, + { + "start": 1163.3, + "end": 1164.12, + "probability": 0.4093 + }, + { + "start": 1170.74, + "end": 1172.22, + "probability": 0.4026 + }, + { + "start": 1172.24, + "end": 1173.4, + "probability": 0.8147 + }, + { + "start": 1173.72, + "end": 1174.62, + "probability": 0.5592 + }, + { + "start": 1176.26, + "end": 1176.96, + "probability": 0.2199 + }, + { + "start": 1183.06, + "end": 1184.44, + "probability": 0.959 + }, + { + "start": 1185.02, + "end": 1187.68, + "probability": 0.9189 + }, + { + "start": 1188.6, + "end": 1192.28, + "probability": 0.9966 + }, + { + "start": 1192.94, + "end": 1194.52, + "probability": 0.9401 + }, + { + "start": 1195.26, + "end": 1198.34, + "probability": 0.973 + }, + { + "start": 1199.04, + "end": 1202.26, + "probability": 0.9989 + }, + { + "start": 1202.26, + "end": 1206.08, + "probability": 0.9997 + }, + { + "start": 1206.8, + "end": 1211.24, + "probability": 0.9826 + }, + { + "start": 1212.14, + "end": 1213.5, + "probability": 0.7486 + }, + { + "start": 1214.1, + "end": 1218.76, + "probability": 0.9957 + }, + { + "start": 1218.76, + "end": 1223.9, + "probability": 0.9989 + }, + { + "start": 1224.88, + "end": 1230.66, + "probability": 0.9825 + }, + { + "start": 1231.34, + "end": 1236.24, + "probability": 0.9927 + }, + { + "start": 1236.92, + "end": 1238.34, + "probability": 0.9866 + }, + { + "start": 1239.12, + "end": 1243.24, + "probability": 0.983 + }, + { + "start": 1244.22, + "end": 1247.24, + "probability": 0.8936 + }, + { + "start": 1247.8, + "end": 1251.96, + "probability": 0.8231 + }, + { + "start": 1251.96, + "end": 1257.06, + "probability": 0.9862 + }, + { + "start": 1257.84, + "end": 1262.48, + "probability": 0.722 + }, + { + "start": 1263.38, + "end": 1266.96, + "probability": 0.9446 + }, + { + "start": 1267.48, + "end": 1269.9, + "probability": 0.8756 + }, + { + "start": 1270.92, + "end": 1276.26, + "probability": 0.9932 + }, + { + "start": 1276.26, + "end": 1282.2, + "probability": 0.996 + }, + { + "start": 1282.84, + "end": 1286.2, + "probability": 0.9937 + }, + { + "start": 1286.2, + "end": 1289.5, + "probability": 0.9854 + }, + { + "start": 1289.56, + "end": 1290.44, + "probability": 0.954 + }, + { + "start": 1291.24, + "end": 1292.98, + "probability": 0.9041 + }, + { + "start": 1293.4, + "end": 1298.62, + "probability": 0.9942 + }, + { + "start": 1298.62, + "end": 1304.56, + "probability": 0.998 + }, + { + "start": 1305.92, + "end": 1306.1, + "probability": 0.8448 + }, + { + "start": 1307.34, + "end": 1308.8, + "probability": 0.8052 + }, + { + "start": 1310.22, + "end": 1311.1, + "probability": 0.9546 + }, + { + "start": 1311.22, + "end": 1314.44, + "probability": 0.7567 + }, + { + "start": 1314.7, + "end": 1318.12, + "probability": 0.9575 + }, + { + "start": 1318.12, + "end": 1321.22, + "probability": 0.9988 + }, + { + "start": 1322.04, + "end": 1323.12, + "probability": 0.6853 + }, + { + "start": 1324.26, + "end": 1327.28, + "probability": 0.998 + }, + { + "start": 1327.46, + "end": 1333.38, + "probability": 0.979 + }, + { + "start": 1334.04, + "end": 1334.48, + "probability": 0.7921 + }, + { + "start": 1334.76, + "end": 1336.16, + "probability": 0.9879 + }, + { + "start": 1336.64, + "end": 1343.02, + "probability": 0.9878 + }, + { + "start": 1343.04, + "end": 1343.98, + "probability": 0.9866 + }, + { + "start": 1345.08, + "end": 1345.36, + "probability": 0.8093 + }, + { + "start": 1345.71, + "end": 1347.74, + "probability": 0.9912 + }, + { + "start": 1347.82, + "end": 1350.92, + "probability": 0.986 + }, + { + "start": 1351.16, + "end": 1352.26, + "probability": 0.9846 + }, + { + "start": 1352.26, + "end": 1355.2, + "probability": 0.841 + }, + { + "start": 1355.72, + "end": 1356.88, + "probability": 0.9783 + }, + { + "start": 1357.82, + "end": 1358.42, + "probability": 0.7099 + }, + { + "start": 1358.56, + "end": 1359.28, + "probability": 0.5992 + }, + { + "start": 1359.44, + "end": 1362.52, + "probability": 0.9629 + }, + { + "start": 1362.52, + "end": 1365.78, + "probability": 0.9877 + }, + { + "start": 1366.48, + "end": 1369.84, + "probability": 0.9938 + }, + { + "start": 1370.48, + "end": 1374.2, + "probability": 0.9791 + }, + { + "start": 1374.34, + "end": 1375.34, + "probability": 0.7035 + }, + { + "start": 1375.76, + "end": 1376.4, + "probability": 0.9877 + }, + { + "start": 1377.42, + "end": 1379.16, + "probability": 0.9488 + }, + { + "start": 1379.66, + "end": 1382.0, + "probability": 0.9942 + }, + { + "start": 1382.52, + "end": 1384.76, + "probability": 0.9978 + }, + { + "start": 1385.32, + "end": 1388.68, + "probability": 0.9779 + }, + { + "start": 1389.38, + "end": 1391.54, + "probability": 0.9884 + }, + { + "start": 1392.74, + "end": 1396.76, + "probability": 0.994 + }, + { + "start": 1397.44, + "end": 1402.02, + "probability": 0.9781 + }, + { + "start": 1402.72, + "end": 1404.76, + "probability": 0.8186 + }, + { + "start": 1405.34, + "end": 1407.16, + "probability": 0.967 + }, + { + "start": 1407.98, + "end": 1410.16, + "probability": 0.9912 + }, + { + "start": 1410.78, + "end": 1412.42, + "probability": 0.9905 + }, + { + "start": 1412.98, + "end": 1414.34, + "probability": 0.962 + }, + { + "start": 1414.94, + "end": 1418.92, + "probability": 0.9874 + }, + { + "start": 1418.92, + "end": 1424.48, + "probability": 0.9862 + }, + { + "start": 1425.38, + "end": 1429.14, + "probability": 0.9652 + }, + { + "start": 1429.58, + "end": 1430.6, + "probability": 0.6263 + }, + { + "start": 1431.22, + "end": 1432.52, + "probability": 0.7933 + }, + { + "start": 1432.76, + "end": 1438.4, + "probability": 0.9955 + }, + { + "start": 1439.48, + "end": 1443.46, + "probability": 0.9805 + }, + { + "start": 1443.46, + "end": 1446.92, + "probability": 0.9847 + }, + { + "start": 1447.76, + "end": 1450.94, + "probability": 0.9966 + }, + { + "start": 1450.94, + "end": 1454.62, + "probability": 0.9963 + }, + { + "start": 1454.66, + "end": 1455.94, + "probability": 0.9021 + }, + { + "start": 1456.24, + "end": 1457.96, + "probability": 0.9118 + }, + { + "start": 1459.04, + "end": 1465.94, + "probability": 0.9972 + }, + { + "start": 1466.68, + "end": 1467.22, + "probability": 0.8601 + }, + { + "start": 1467.74, + "end": 1469.57, + "probability": 0.9117 + }, + { + "start": 1470.36, + "end": 1471.06, + "probability": 0.7841 + }, + { + "start": 1471.88, + "end": 1473.3, + "probability": 0.7704 + }, + { + "start": 1473.92, + "end": 1474.9, + "probability": 0.8542 + }, + { + "start": 1475.16, + "end": 1476.74, + "probability": 0.9309 + }, + { + "start": 1476.78, + "end": 1478.84, + "probability": 0.9219 + }, + { + "start": 1479.2, + "end": 1480.14, + "probability": 0.8701 + }, + { + "start": 1481.16, + "end": 1482.5, + "probability": 0.8979 + }, + { + "start": 1486.22, + "end": 1486.24, + "probability": 0.1038 + }, + { + "start": 1486.24, + "end": 1486.24, + "probability": 0.1245 + }, + { + "start": 1486.24, + "end": 1488.48, + "probability": 0.5166 + }, + { + "start": 1489.18, + "end": 1492.42, + "probability": 0.9874 + }, + { + "start": 1493.02, + "end": 1493.92, + "probability": 0.8504 + }, + { + "start": 1494.26, + "end": 1495.06, + "probability": 0.7435 + }, + { + "start": 1495.06, + "end": 1498.42, + "probability": 0.9955 + }, + { + "start": 1498.42, + "end": 1502.66, + "probability": 0.9988 + }, + { + "start": 1503.16, + "end": 1504.18, + "probability": 0.7617 + }, + { + "start": 1504.78, + "end": 1509.2, + "probability": 0.9958 + }, + { + "start": 1509.66, + "end": 1514.04, + "probability": 0.897 + }, + { + "start": 1514.66, + "end": 1518.2, + "probability": 0.9982 + }, + { + "start": 1518.5, + "end": 1522.24, + "probability": 0.9922 + }, + { + "start": 1522.7, + "end": 1525.18, + "probability": 0.9921 + }, + { + "start": 1525.38, + "end": 1526.52, + "probability": 0.895 + }, + { + "start": 1527.1, + "end": 1530.04, + "probability": 0.9939 + }, + { + "start": 1530.66, + "end": 1531.44, + "probability": 0.8293 + }, + { + "start": 1532.0, + "end": 1535.22, + "probability": 0.9573 + }, + { + "start": 1535.22, + "end": 1539.16, + "probability": 0.9801 + }, + { + "start": 1540.0, + "end": 1543.46, + "probability": 0.9535 + }, + { + "start": 1543.46, + "end": 1546.52, + "probability": 0.9858 + }, + { + "start": 1547.1, + "end": 1548.48, + "probability": 0.9949 + }, + { + "start": 1548.52, + "end": 1549.12, + "probability": 0.5107 + }, + { + "start": 1549.38, + "end": 1550.46, + "probability": 0.7702 + }, + { + "start": 1550.52, + "end": 1552.84, + "probability": 0.6157 + }, + { + "start": 1553.26, + "end": 1553.3, + "probability": 0.5013 + }, + { + "start": 1553.3, + "end": 1555.54, + "probability": 0.9805 + }, + { + "start": 1555.62, + "end": 1557.54, + "probability": 0.9829 + }, + { + "start": 1558.78, + "end": 1562.24, + "probability": 0.97 + }, + { + "start": 1563.3, + "end": 1566.1, + "probability": 0.9954 + }, + { + "start": 1566.76, + "end": 1568.36, + "probability": 0.8979 + }, + { + "start": 1569.02, + "end": 1571.7, + "probability": 0.9775 + }, + { + "start": 1572.28, + "end": 1576.1, + "probability": 0.9863 + }, + { + "start": 1576.72, + "end": 1578.28, + "probability": 0.9138 + }, + { + "start": 1578.38, + "end": 1579.14, + "probability": 0.8347 + }, + { + "start": 1579.26, + "end": 1580.12, + "probability": 0.6623 + }, + { + "start": 1580.38, + "end": 1580.96, + "probability": 0.8708 + }, + { + "start": 1581.52, + "end": 1584.54, + "probability": 0.9956 + }, + { + "start": 1584.98, + "end": 1586.92, + "probability": 0.9176 + }, + { + "start": 1588.02, + "end": 1591.36, + "probability": 0.9688 + }, + { + "start": 1591.4, + "end": 1595.62, + "probability": 0.9967 + }, + { + "start": 1596.18, + "end": 1599.22, + "probability": 0.945 + }, + { + "start": 1600.1, + "end": 1602.22, + "probability": 0.9846 + }, + { + "start": 1602.78, + "end": 1605.26, + "probability": 0.981 + }, + { + "start": 1605.26, + "end": 1609.26, + "probability": 0.983 + }, + { + "start": 1609.96, + "end": 1612.3, + "probability": 0.8833 + }, + { + "start": 1612.88, + "end": 1615.92, + "probability": 0.9645 + }, + { + "start": 1616.16, + "end": 1621.52, + "probability": 0.9919 + }, + { + "start": 1622.1, + "end": 1624.72, + "probability": 0.9861 + }, + { + "start": 1625.24, + "end": 1625.74, + "probability": 0.7538 + }, + { + "start": 1626.06, + "end": 1628.92, + "probability": 0.8398 + }, + { + "start": 1629.74, + "end": 1631.06, + "probability": 0.9797 + }, + { + "start": 1653.16, + "end": 1654.24, + "probability": 0.4009 + }, + { + "start": 1654.58, + "end": 1655.3, + "probability": 0.5725 + }, + { + "start": 1656.64, + "end": 1659.16, + "probability": 0.6795 + }, + { + "start": 1659.24, + "end": 1659.52, + "probability": 0.2346 + }, + { + "start": 1659.64, + "end": 1660.3, + "probability": 0.7849 + }, + { + "start": 1661.18, + "end": 1662.92, + "probability": 0.7646 + }, + { + "start": 1664.04, + "end": 1667.04, + "probability": 0.9952 + }, + { + "start": 1668.22, + "end": 1670.98, + "probability": 0.7422 + }, + { + "start": 1670.98, + "end": 1674.26, + "probability": 0.9933 + }, + { + "start": 1674.86, + "end": 1677.63, + "probability": 0.9761 + }, + { + "start": 1679.14, + "end": 1684.78, + "probability": 0.9974 + }, + { + "start": 1686.7, + "end": 1688.54, + "probability": 0.7724 + }, + { + "start": 1689.06, + "end": 1693.7, + "probability": 0.9819 + }, + { + "start": 1694.74, + "end": 1697.68, + "probability": 0.8988 + }, + { + "start": 1699.02, + "end": 1702.18, + "probability": 0.999 + }, + { + "start": 1703.34, + "end": 1707.84, + "probability": 0.8387 + }, + { + "start": 1708.54, + "end": 1710.16, + "probability": 0.9558 + }, + { + "start": 1711.34, + "end": 1713.4, + "probability": 0.9597 + }, + { + "start": 1714.18, + "end": 1716.16, + "probability": 0.9829 + }, + { + "start": 1716.84, + "end": 1718.98, + "probability": 0.6778 + }, + { + "start": 1719.7, + "end": 1721.56, + "probability": 0.8149 + }, + { + "start": 1723.18, + "end": 1726.06, + "probability": 0.9877 + }, + { + "start": 1726.06, + "end": 1731.12, + "probability": 0.9978 + }, + { + "start": 1732.02, + "end": 1735.5, + "probability": 0.9878 + }, + { + "start": 1736.24, + "end": 1738.64, + "probability": 0.9916 + }, + { + "start": 1739.92, + "end": 1744.56, + "probability": 0.9929 + }, + { + "start": 1745.82, + "end": 1749.52, + "probability": 0.9924 + }, + { + "start": 1750.24, + "end": 1753.04, + "probability": 0.9975 + }, + { + "start": 1753.5, + "end": 1754.5, + "probability": 0.7707 + }, + { + "start": 1755.08, + "end": 1757.55, + "probability": 0.7147 + }, + { + "start": 1758.86, + "end": 1760.36, + "probability": 0.7325 + }, + { + "start": 1761.48, + "end": 1764.44, + "probability": 0.7169 + }, + { + "start": 1765.48, + "end": 1766.28, + "probability": 0.9766 + }, + { + "start": 1767.42, + "end": 1772.92, + "probability": 0.7681 + }, + { + "start": 1772.92, + "end": 1778.5, + "probability": 0.8269 + }, + { + "start": 1778.98, + "end": 1781.2, + "probability": 0.9553 + }, + { + "start": 1782.32, + "end": 1784.68, + "probability": 0.9697 + }, + { + "start": 1785.2, + "end": 1792.76, + "probability": 0.9724 + }, + { + "start": 1793.6, + "end": 1795.32, + "probability": 0.9677 + }, + { + "start": 1797.06, + "end": 1800.3, + "probability": 0.7894 + }, + { + "start": 1801.28, + "end": 1802.5, + "probability": 0.7408 + }, + { + "start": 1804.14, + "end": 1807.34, + "probability": 0.9877 + }, + { + "start": 1808.12, + "end": 1812.42, + "probability": 0.9967 + }, + { + "start": 1812.42, + "end": 1816.3, + "probability": 0.9969 + }, + { + "start": 1816.68, + "end": 1818.14, + "probability": 0.8974 + }, + { + "start": 1818.94, + "end": 1822.18, + "probability": 0.9836 + }, + { + "start": 1822.18, + "end": 1826.82, + "probability": 0.9947 + }, + { + "start": 1827.6, + "end": 1830.16, + "probability": 0.9744 + }, + { + "start": 1830.58, + "end": 1831.44, + "probability": 0.6718 + }, + { + "start": 1833.22, + "end": 1837.6, + "probability": 0.7689 + }, + { + "start": 1838.2, + "end": 1838.42, + "probability": 0.6593 + }, + { + "start": 1839.96, + "end": 1844.46, + "probability": 0.9971 + }, + { + "start": 1845.14, + "end": 1848.5, + "probability": 0.9897 + }, + { + "start": 1849.9, + "end": 1850.51, + "probability": 0.9076 + }, + { + "start": 1852.14, + "end": 1858.28, + "probability": 0.9063 + }, + { + "start": 1858.8, + "end": 1861.16, + "probability": 0.9886 + }, + { + "start": 1861.82, + "end": 1865.64, + "probability": 0.8914 + }, + { + "start": 1866.86, + "end": 1868.62, + "probability": 0.8444 + }, + { + "start": 1869.18, + "end": 1871.14, + "probability": 0.98 + }, + { + "start": 1872.52, + "end": 1877.64, + "probability": 0.9846 + }, + { + "start": 1878.9, + "end": 1882.68, + "probability": 0.9977 + }, + { + "start": 1884.1, + "end": 1886.18, + "probability": 0.9774 + }, + { + "start": 1886.4, + "end": 1886.98, + "probability": 0.4035 + }, + { + "start": 1887.4, + "end": 1888.05, + "probability": 0.7966 + }, + { + "start": 1889.18, + "end": 1893.14, + "probability": 0.996 + }, + { + "start": 1893.72, + "end": 1895.4, + "probability": 0.5868 + }, + { + "start": 1896.28, + "end": 1899.7, + "probability": 0.992 + }, + { + "start": 1900.82, + "end": 1903.82, + "probability": 0.9224 + }, + { + "start": 1904.8, + "end": 1909.56, + "probability": 0.9574 + }, + { + "start": 1910.5, + "end": 1912.56, + "probability": 0.8602 + }, + { + "start": 1914.46, + "end": 1919.06, + "probability": 0.6031 + }, + { + "start": 1919.92, + "end": 1921.82, + "probability": 0.9695 + }, + { + "start": 1922.48, + "end": 1923.62, + "probability": 0.867 + }, + { + "start": 1924.2, + "end": 1926.44, + "probability": 0.9968 + }, + { + "start": 1926.92, + "end": 1928.66, + "probability": 0.633 + }, + { + "start": 1929.52, + "end": 1933.1, + "probability": 0.9702 + }, + { + "start": 1933.2, + "end": 1933.8, + "probability": 0.8084 + }, + { + "start": 1934.28, + "end": 1936.88, + "probability": 0.9922 + }, + { + "start": 1937.34, + "end": 1939.4, + "probability": 0.8708 + }, + { + "start": 1939.82, + "end": 1942.06, + "probability": 0.9829 + }, + { + "start": 1942.62, + "end": 1945.42, + "probability": 0.8499 + }, + { + "start": 1946.64, + "end": 1949.78, + "probability": 0.9404 + }, + { + "start": 1949.92, + "end": 1950.46, + "probability": 0.6487 + }, + { + "start": 1951.16, + "end": 1953.5, + "probability": 0.9664 + }, + { + "start": 1953.66, + "end": 1954.44, + "probability": 0.6241 + }, + { + "start": 1955.32, + "end": 1960.4, + "probability": 0.9803 + }, + { + "start": 1960.94, + "end": 1964.5, + "probability": 0.9906 + }, + { + "start": 1964.5, + "end": 1967.3, + "probability": 0.9941 + }, + { + "start": 1968.36, + "end": 1971.12, + "probability": 0.9732 + }, + { + "start": 1971.78, + "end": 1976.96, + "probability": 0.9884 + }, + { + "start": 1978.3, + "end": 1979.06, + "probability": 0.8814 + }, + { + "start": 1980.32, + "end": 1983.04, + "probability": 0.942 + }, + { + "start": 1983.96, + "end": 1986.58, + "probability": 0.9651 + }, + { + "start": 1986.98, + "end": 1990.28, + "probability": 0.9854 + }, + { + "start": 1990.88, + "end": 1995.68, + "probability": 0.9948 + }, + { + "start": 1995.68, + "end": 1999.78, + "probability": 0.9935 + }, + { + "start": 2001.1, + "end": 2002.94, + "probability": 0.9651 + }, + { + "start": 2003.54, + "end": 2008.34, + "probability": 0.9822 + }, + { + "start": 2009.02, + "end": 2010.58, + "probability": 0.8614 + }, + { + "start": 2011.48, + "end": 2013.14, + "probability": 0.8242 + }, + { + "start": 2014.3, + "end": 2015.46, + "probability": 0.9412 + }, + { + "start": 2016.02, + "end": 2016.56, + "probability": 0.9398 + }, + { + "start": 2017.36, + "end": 2018.1, + "probability": 0.5032 + }, + { + "start": 2018.28, + "end": 2019.4, + "probability": 0.6627 + }, + { + "start": 2022.24, + "end": 2027.08, + "probability": 0.5586 + }, + { + "start": 2028.02, + "end": 2030.3, + "probability": 0.9479 + }, + { + "start": 2042.22, + "end": 2044.88, + "probability": 0.7796 + }, + { + "start": 2058.02, + "end": 2060.02, + "probability": 0.6453 + }, + { + "start": 2061.96, + "end": 2062.5, + "probability": 0.666 + }, + { + "start": 2062.74, + "end": 2065.7, + "probability": 0.8962 + }, + { + "start": 2066.58, + "end": 2070.18, + "probability": 0.9731 + }, + { + "start": 2070.78, + "end": 2077.2, + "probability": 0.9697 + }, + { + "start": 2078.02, + "end": 2079.28, + "probability": 0.9528 + }, + { + "start": 2080.71, + "end": 2084.9, + "probability": 0.7386 + }, + { + "start": 2085.4, + "end": 2089.04, + "probability": 0.998 + }, + { + "start": 2089.04, + "end": 2093.64, + "probability": 0.8494 + }, + { + "start": 2093.98, + "end": 2096.4, + "probability": 0.6595 + }, + { + "start": 2097.76, + "end": 2097.8, + "probability": 0.007 + }, + { + "start": 2098.4, + "end": 2101.56, + "probability": 0.9249 + }, + { + "start": 2102.9, + "end": 2103.9, + "probability": 0.767 + }, + { + "start": 2104.72, + "end": 2113.24, + "probability": 0.8557 + }, + { + "start": 2113.76, + "end": 2114.56, + "probability": 0.9633 + }, + { + "start": 2115.27, + "end": 2119.44, + "probability": 0.953 + }, + { + "start": 2120.48, + "end": 2124.72, + "probability": 0.9501 + }, + { + "start": 2125.64, + "end": 2128.32, + "probability": 0.8585 + }, + { + "start": 2129.48, + "end": 2133.44, + "probability": 0.9393 + }, + { + "start": 2134.16, + "end": 2138.1, + "probability": 0.9791 + }, + { + "start": 2138.1, + "end": 2141.6, + "probability": 0.993 + }, + { + "start": 2142.04, + "end": 2145.74, + "probability": 0.9964 + }, + { + "start": 2146.38, + "end": 2147.64, + "probability": 0.437 + }, + { + "start": 2148.0, + "end": 2149.26, + "probability": 0.9513 + }, + { + "start": 2150.16, + "end": 2153.6, + "probability": 0.9988 + }, + { + "start": 2153.7, + "end": 2154.26, + "probability": 0.6988 + }, + { + "start": 2155.02, + "end": 2157.64, + "probability": 0.8361 + }, + { + "start": 2157.88, + "end": 2160.0, + "probability": 0.6953 + }, + { + "start": 2161.42, + "end": 2165.5, + "probability": 0.734 + }, + { + "start": 2165.68, + "end": 2169.4, + "probability": 0.8633 + }, + { + "start": 2170.2, + "end": 2174.54, + "probability": 0.8625 + }, + { + "start": 2175.83, + "end": 2180.22, + "probability": 0.9724 + }, + { + "start": 2180.76, + "end": 2185.38, + "probability": 0.9726 + }, + { + "start": 2185.72, + "end": 2190.86, + "probability": 0.9717 + }, + { + "start": 2191.28, + "end": 2191.74, + "probability": 0.1513 + }, + { + "start": 2192.24, + "end": 2200.0, + "probability": 0.8937 + }, + { + "start": 2201.31, + "end": 2204.6, + "probability": 0.8 + }, + { + "start": 2205.06, + "end": 2207.48, + "probability": 0.9611 + }, + { + "start": 2207.98, + "end": 2208.48, + "probability": 0.4337 + }, + { + "start": 2209.58, + "end": 2212.6, + "probability": 0.9189 + }, + { + "start": 2213.1, + "end": 2216.92, + "probability": 0.8058 + }, + { + "start": 2217.5, + "end": 2218.74, + "probability": 0.964 + }, + { + "start": 2219.1, + "end": 2219.45, + "probability": 0.73 + }, + { + "start": 2219.98, + "end": 2224.14, + "probability": 0.9019 + }, + { + "start": 2224.56, + "end": 2225.36, + "probability": 0.5855 + }, + { + "start": 2225.44, + "end": 2231.25, + "probability": 0.973 + }, + { + "start": 2231.72, + "end": 2237.56, + "probability": 0.9977 + }, + { + "start": 2238.24, + "end": 2242.62, + "probability": 0.6611 + }, + { + "start": 2243.26, + "end": 2246.62, + "probability": 0.924 + }, + { + "start": 2247.22, + "end": 2250.94, + "probability": 0.9863 + }, + { + "start": 2251.44, + "end": 2254.5, + "probability": 0.8757 + }, + { + "start": 2255.22, + "end": 2258.64, + "probability": 0.8473 + }, + { + "start": 2259.48, + "end": 2263.78, + "probability": 0.9858 + }, + { + "start": 2263.88, + "end": 2266.62, + "probability": 0.7031 + }, + { + "start": 2267.06, + "end": 2270.16, + "probability": 0.6531 + }, + { + "start": 2270.16, + "end": 2273.36, + "probability": 0.9958 + }, + { + "start": 2274.28, + "end": 2281.78, + "probability": 0.9844 + }, + { + "start": 2281.78, + "end": 2284.52, + "probability": 0.984 + }, + { + "start": 2285.48, + "end": 2290.56, + "probability": 0.8282 + }, + { + "start": 2291.0, + "end": 2293.42, + "probability": 0.8579 + }, + { + "start": 2293.6, + "end": 2294.4, + "probability": 0.9338 + }, + { + "start": 2294.5, + "end": 2295.55, + "probability": 0.9844 + }, + { + "start": 2296.32, + "end": 2300.72, + "probability": 0.968 + }, + { + "start": 2301.08, + "end": 2304.14, + "probability": 0.5024 + }, + { + "start": 2304.68, + "end": 2306.74, + "probability": 0.8454 + }, + { + "start": 2307.38, + "end": 2312.1, + "probability": 0.7752 + }, + { + "start": 2312.66, + "end": 2319.04, + "probability": 0.9813 + }, + { + "start": 2319.5, + "end": 2321.26, + "probability": 0.9846 + }, + { + "start": 2322.82, + "end": 2327.14, + "probability": 0.9813 + }, + { + "start": 2327.72, + "end": 2332.26, + "probability": 0.7214 + }, + { + "start": 2332.84, + "end": 2336.86, + "probability": 0.9371 + }, + { + "start": 2337.3, + "end": 2341.64, + "probability": 0.9883 + }, + { + "start": 2342.12, + "end": 2345.04, + "probability": 0.9873 + }, + { + "start": 2345.04, + "end": 2348.48, + "probability": 0.9998 + }, + { + "start": 2348.9, + "end": 2352.16, + "probability": 0.8785 + }, + { + "start": 2352.78, + "end": 2354.64, + "probability": 0.7815 + }, + { + "start": 2354.94, + "end": 2355.54, + "probability": 0.453 + }, + { + "start": 2356.04, + "end": 2358.38, + "probability": 0.9756 + }, + { + "start": 2358.5, + "end": 2363.34, + "probability": 0.8066 + }, + { + "start": 2363.56, + "end": 2364.66, + "probability": 0.9028 + }, + { + "start": 2365.2, + "end": 2365.8, + "probability": 0.5087 + }, + { + "start": 2365.86, + "end": 2366.36, + "probability": 0.5573 + }, + { + "start": 2366.6, + "end": 2367.37, + "probability": 0.3695 + }, + { + "start": 2367.76, + "end": 2369.06, + "probability": 0.7775 + }, + { + "start": 2370.88, + "end": 2374.1, + "probability": 0.989 + }, + { + "start": 2374.76, + "end": 2376.46, + "probability": 0.998 + }, + { + "start": 2376.52, + "end": 2377.32, + "probability": 0.4567 + }, + { + "start": 2378.24, + "end": 2379.26, + "probability": 0.5335 + }, + { + "start": 2379.8, + "end": 2383.82, + "probability": 0.9483 + }, + { + "start": 2384.44, + "end": 2388.4, + "probability": 0.6451 + }, + { + "start": 2389.46, + "end": 2392.18, + "probability": 0.9842 + }, + { + "start": 2392.82, + "end": 2393.32, + "probability": 0.5382 + }, + { + "start": 2393.36, + "end": 2395.12, + "probability": 0.8304 + }, + { + "start": 2395.44, + "end": 2396.8, + "probability": 0.8895 + }, + { + "start": 2396.9, + "end": 2399.62, + "probability": 0.9938 + }, + { + "start": 2400.08, + "end": 2400.48, + "probability": 0.7919 + }, + { + "start": 2401.16, + "end": 2401.8, + "probability": 0.7437 + }, + { + "start": 2402.44, + "end": 2404.62, + "probability": 0.6369 + }, + { + "start": 2404.62, + "end": 2405.58, + "probability": 0.925 + }, + { + "start": 2409.8, + "end": 2411.26, + "probability": 0.5845 + }, + { + "start": 2411.84, + "end": 2413.28, + "probability": 0.9009 + }, + { + "start": 2415.5, + "end": 2416.71, + "probability": 0.8714 + }, + { + "start": 2417.54, + "end": 2418.26, + "probability": 0.5091 + }, + { + "start": 2421.96, + "end": 2424.98, + "probability": 0.9268 + }, + { + "start": 2427.82, + "end": 2428.8, + "probability": 0.6272 + }, + { + "start": 2429.34, + "end": 2432.7, + "probability": 0.3513 + }, + { + "start": 2434.04, + "end": 2434.64, + "probability": 0.7866 + }, + { + "start": 2435.16, + "end": 2437.8, + "probability": 0.9795 + }, + { + "start": 2438.52, + "end": 2440.3, + "probability": 0.9956 + }, + { + "start": 2440.36, + "end": 2440.74, + "probability": 0.8741 + }, + { + "start": 2441.5, + "end": 2442.16, + "probability": 0.7687 + }, + { + "start": 2443.4, + "end": 2444.16, + "probability": 0.5911 + }, + { + "start": 2444.28, + "end": 2445.1, + "probability": 0.7077 + }, + { + "start": 2445.5, + "end": 2448.06, + "probability": 0.9823 + }, + { + "start": 2448.06, + "end": 2451.66, + "probability": 0.814 + }, + { + "start": 2452.64, + "end": 2453.72, + "probability": 0.9325 + }, + { + "start": 2454.34, + "end": 2457.88, + "probability": 0.9978 + }, + { + "start": 2458.8, + "end": 2459.94, + "probability": 0.6782 + }, + { + "start": 2461.0, + "end": 2463.44, + "probability": 0.9715 + }, + { + "start": 2463.44, + "end": 2467.64, + "probability": 0.9478 + }, + { + "start": 2468.96, + "end": 2471.74, + "probability": 0.6514 + }, + { + "start": 2472.62, + "end": 2473.72, + "probability": 0.9194 + }, + { + "start": 2474.76, + "end": 2475.08, + "probability": 0.387 + }, + { + "start": 2475.66, + "end": 2475.66, + "probability": 0.0526 + }, + { + "start": 2475.66, + "end": 2475.66, + "probability": 0.1787 + }, + { + "start": 2475.66, + "end": 2475.66, + "probability": 0.1273 + }, + { + "start": 2475.68, + "end": 2476.32, + "probability": 0.8456 + }, + { + "start": 2477.36, + "end": 2477.74, + "probability": 0.9052 + }, + { + "start": 2478.58, + "end": 2478.9, + "probability": 0.771 + }, + { + "start": 2479.0, + "end": 2479.62, + "probability": 0.9049 + }, + { + "start": 2479.7, + "end": 2481.82, + "probability": 0.9922 + }, + { + "start": 2482.44, + "end": 2485.18, + "probability": 0.9915 + }, + { + "start": 2485.82, + "end": 2489.68, + "probability": 0.9793 + }, + { + "start": 2490.72, + "end": 2493.64, + "probability": 0.9806 + }, + { + "start": 2494.96, + "end": 2499.46, + "probability": 0.9945 + }, + { + "start": 2500.04, + "end": 2501.62, + "probability": 0.9215 + }, + { + "start": 2502.24, + "end": 2504.62, + "probability": 0.9701 + }, + { + "start": 2505.26, + "end": 2505.64, + "probability": 0.8033 + }, + { + "start": 2507.16, + "end": 2508.88, + "probability": 0.9854 + }, + { + "start": 2509.96, + "end": 2511.84, + "probability": 0.9786 + }, + { + "start": 2511.92, + "end": 2516.82, + "probability": 0.9565 + }, + { + "start": 2516.86, + "end": 2517.6, + "probability": 0.9089 + }, + { + "start": 2517.72, + "end": 2519.04, + "probability": 0.9692 + }, + { + "start": 2519.62, + "end": 2523.8, + "probability": 0.9879 + }, + { + "start": 2524.94, + "end": 2526.98, + "probability": 0.9958 + }, + { + "start": 2527.58, + "end": 2533.28, + "probability": 0.9928 + }, + { + "start": 2534.18, + "end": 2534.64, + "probability": 0.7649 + }, + { + "start": 2535.34, + "end": 2537.74, + "probability": 0.9546 + }, + { + "start": 2538.18, + "end": 2539.46, + "probability": 0.9937 + }, + { + "start": 2540.04, + "end": 2542.94, + "probability": 0.9924 + }, + { + "start": 2543.58, + "end": 2547.96, + "probability": 0.999 + }, + { + "start": 2548.5, + "end": 2551.12, + "probability": 0.9942 + }, + { + "start": 2552.62, + "end": 2560.66, + "probability": 0.9951 + }, + { + "start": 2561.06, + "end": 2564.04, + "probability": 0.995 + }, + { + "start": 2564.04, + "end": 2567.36, + "probability": 0.8192 + }, + { + "start": 2572.16, + "end": 2574.2, + "probability": 0.7579 + }, + { + "start": 2574.88, + "end": 2576.0, + "probability": 0.9736 + }, + { + "start": 2576.98, + "end": 2576.98, + "probability": 0.1664 + }, + { + "start": 2576.98, + "end": 2578.06, + "probability": 0.863 + }, + { + "start": 2578.16, + "end": 2579.05, + "probability": 0.9487 + }, + { + "start": 2579.2, + "end": 2580.4, + "probability": 0.9297 + }, + { + "start": 2581.06, + "end": 2582.6, + "probability": 0.8952 + }, + { + "start": 2583.66, + "end": 2586.4, + "probability": 0.9439 + }, + { + "start": 2587.2, + "end": 2590.22, + "probability": 0.9939 + }, + { + "start": 2590.88, + "end": 2592.12, + "probability": 0.8789 + }, + { + "start": 2593.16, + "end": 2594.66, + "probability": 0.8171 + }, + { + "start": 2595.0, + "end": 2598.58, + "probability": 0.8365 + }, + { + "start": 2599.08, + "end": 2599.86, + "probability": 0.748 + }, + { + "start": 2601.12, + "end": 2604.4, + "probability": 0.9242 + }, + { + "start": 2605.04, + "end": 2607.52, + "probability": 0.9993 + }, + { + "start": 2607.52, + "end": 2611.24, + "probability": 0.998 + }, + { + "start": 2612.12, + "end": 2614.3, + "probability": 0.9978 + }, + { + "start": 2614.3, + "end": 2616.58, + "probability": 0.991 + }, + { + "start": 2617.08, + "end": 2617.44, + "probability": 0.9136 + }, + { + "start": 2617.64, + "end": 2619.5, + "probability": 0.8074 + }, + { + "start": 2620.16, + "end": 2621.48, + "probability": 0.9331 + }, + { + "start": 2622.82, + "end": 2625.76, + "probability": 0.9802 + }, + { + "start": 2626.22, + "end": 2626.38, + "probability": 0.0906 + }, + { + "start": 2626.38, + "end": 2630.16, + "probability": 0.9822 + }, + { + "start": 2631.16, + "end": 2633.18, + "probability": 0.9567 + }, + { + "start": 2633.18, + "end": 2635.48, + "probability": 0.9877 + }, + { + "start": 2636.26, + "end": 2641.58, + "probability": 0.955 + }, + { + "start": 2641.62, + "end": 2645.52, + "probability": 0.9984 + }, + { + "start": 2645.52, + "end": 2649.68, + "probability": 0.9874 + }, + { + "start": 2650.9, + "end": 2653.18, + "probability": 0.9995 + }, + { + "start": 2654.54, + "end": 2656.1, + "probability": 0.9646 + }, + { + "start": 2656.34, + "end": 2661.52, + "probability": 0.9984 + }, + { + "start": 2662.68, + "end": 2665.14, + "probability": 0.9991 + }, + { + "start": 2665.14, + "end": 2670.02, + "probability": 0.9901 + }, + { + "start": 2671.34, + "end": 2673.22, + "probability": 0.9974 + }, + { + "start": 2673.62, + "end": 2674.7, + "probability": 0.9659 + }, + { + "start": 2675.42, + "end": 2679.56, + "probability": 0.9958 + }, + { + "start": 2680.22, + "end": 2680.58, + "probability": 0.75 + }, + { + "start": 2681.14, + "end": 2682.76, + "probability": 0.695 + }, + { + "start": 2685.38, + "end": 2687.75, + "probability": 0.7448 + }, + { + "start": 2713.96, + "end": 2714.22, + "probability": 0.6718 + }, + { + "start": 2715.7, + "end": 2717.1, + "probability": 0.7493 + }, + { + "start": 2717.92, + "end": 2721.78, + "probability": 0.9884 + }, + { + "start": 2721.78, + "end": 2724.96, + "probability": 0.9899 + }, + { + "start": 2725.92, + "end": 2727.6, + "probability": 0.7401 + }, + { + "start": 2727.92, + "end": 2731.72, + "probability": 0.9912 + }, + { + "start": 2732.66, + "end": 2738.36, + "probability": 0.9888 + }, + { + "start": 2739.48, + "end": 2743.86, + "probability": 0.9985 + }, + { + "start": 2744.82, + "end": 2750.78, + "probability": 0.991 + }, + { + "start": 2751.78, + "end": 2754.84, + "probability": 0.9047 + }, + { + "start": 2755.38, + "end": 2761.36, + "probability": 0.8867 + }, + { + "start": 2762.02, + "end": 2766.0, + "probability": 0.989 + }, + { + "start": 2766.72, + "end": 2770.98, + "probability": 0.9489 + }, + { + "start": 2771.94, + "end": 2774.5, + "probability": 0.9932 + }, + { + "start": 2774.98, + "end": 2778.0, + "probability": 0.9895 + }, + { + "start": 2778.62, + "end": 2782.12, + "probability": 0.9915 + }, + { + "start": 2782.72, + "end": 2783.8, + "probability": 0.8708 + }, + { + "start": 2784.22, + "end": 2785.36, + "probability": 0.9761 + }, + { + "start": 2785.76, + "end": 2787.86, + "probability": 0.9154 + }, + { + "start": 2789.16, + "end": 2792.42, + "probability": 0.8719 + }, + { + "start": 2792.42, + "end": 2797.5, + "probability": 0.9749 + }, + { + "start": 2798.58, + "end": 2799.18, + "probability": 0.6868 + }, + { + "start": 2799.62, + "end": 2802.68, + "probability": 0.9382 + }, + { + "start": 2802.68, + "end": 2806.14, + "probability": 0.999 + }, + { + "start": 2806.96, + "end": 2808.28, + "probability": 0.9528 + }, + { + "start": 2808.94, + "end": 2809.62, + "probability": 0.4749 + }, + { + "start": 2810.32, + "end": 2812.72, + "probability": 0.8767 + }, + { + "start": 2813.48, + "end": 2816.3, + "probability": 0.9355 + }, + { + "start": 2816.82, + "end": 2817.71, + "probability": 0.8399 + }, + { + "start": 2818.4, + "end": 2822.56, + "probability": 0.9256 + }, + { + "start": 2824.2, + "end": 2825.6, + "probability": 0.9056 + }, + { + "start": 2826.34, + "end": 2828.98, + "probability": 0.9799 + }, + { + "start": 2829.32, + "end": 2830.42, + "probability": 0.9878 + }, + { + "start": 2830.8, + "end": 2831.66, + "probability": 0.995 + }, + { + "start": 2831.82, + "end": 2832.46, + "probability": 0.9825 + }, + { + "start": 2833.1, + "end": 2837.64, + "probability": 0.9972 + }, + { + "start": 2837.7, + "end": 2841.78, + "probability": 0.9993 + }, + { + "start": 2842.78, + "end": 2845.22, + "probability": 0.9978 + }, + { + "start": 2845.72, + "end": 2849.98, + "probability": 0.992 + }, + { + "start": 2851.46, + "end": 2855.66, + "probability": 0.9585 + }, + { + "start": 2855.66, + "end": 2860.22, + "probability": 0.9945 + }, + { + "start": 2861.12, + "end": 2866.14, + "probability": 0.9765 + }, + { + "start": 2866.96, + "end": 2869.78, + "probability": 0.9992 + }, + { + "start": 2869.78, + "end": 2874.38, + "probability": 0.9181 + }, + { + "start": 2875.24, + "end": 2878.62, + "probability": 0.9719 + }, + { + "start": 2879.4, + "end": 2882.48, + "probability": 0.9192 + }, + { + "start": 2882.48, + "end": 2885.26, + "probability": 0.983 + }, + { + "start": 2885.88, + "end": 2891.0, + "probability": 0.99 + }, + { + "start": 2892.02, + "end": 2895.04, + "probability": 0.9977 + }, + { + "start": 2895.38, + "end": 2897.08, + "probability": 0.9834 + }, + { + "start": 2897.76, + "end": 2899.58, + "probability": 0.7346 + }, + { + "start": 2899.64, + "end": 2901.3, + "probability": 0.9951 + }, + { + "start": 2901.78, + "end": 2902.54, + "probability": 0.4942 + }, + { + "start": 2902.88, + "end": 2905.1, + "probability": 0.9819 + }, + { + "start": 2905.1, + "end": 2909.6, + "probability": 0.9973 + }, + { + "start": 2910.2, + "end": 2913.26, + "probability": 0.8478 + }, + { + "start": 2914.04, + "end": 2916.84, + "probability": 0.9917 + }, + { + "start": 2917.24, + "end": 2922.46, + "probability": 0.9984 + }, + { + "start": 2923.0, + "end": 2925.52, + "probability": 0.9728 + }, + { + "start": 2926.22, + "end": 2930.48, + "probability": 0.9915 + }, + { + "start": 2930.9, + "end": 2934.14, + "probability": 0.9964 + }, + { + "start": 2934.68, + "end": 2934.94, + "probability": 0.5107 + }, + { + "start": 2935.58, + "end": 2938.34, + "probability": 0.642 + }, + { + "start": 2938.56, + "end": 2940.1, + "probability": 0.938 + }, + { + "start": 2948.5, + "end": 2951.64, + "probability": 0.9971 + }, + { + "start": 2951.64, + "end": 2957.14, + "probability": 0.9067 + }, + { + "start": 2957.14, + "end": 2957.9, + "probability": 0.8123 + }, + { + "start": 2970.04, + "end": 2970.52, + "probability": 0.6987 + }, + { + "start": 2979.2, + "end": 2982.44, + "probability": 0.4651 + }, + { + "start": 2982.56, + "end": 2983.58, + "probability": 0.7599 + }, + { + "start": 2983.68, + "end": 2985.48, + "probability": 0.6977 + }, + { + "start": 2986.16, + "end": 2989.54, + "probability": 0.9888 + }, + { + "start": 2990.04, + "end": 2994.34, + "probability": 0.9821 + }, + { + "start": 2994.34, + "end": 2998.76, + "probability": 0.676 + }, + { + "start": 2999.5, + "end": 3005.48, + "probability": 0.8585 + }, + { + "start": 3006.52, + "end": 3009.26, + "probability": 0.6141 + }, + { + "start": 3009.38, + "end": 3012.1, + "probability": 0.9937 + }, + { + "start": 3012.46, + "end": 3014.74, + "probability": 0.7309 + }, + { + "start": 3015.44, + "end": 3020.04, + "probability": 0.9236 + }, + { + "start": 3020.94, + "end": 3021.5, + "probability": 0.8419 + }, + { + "start": 3022.08, + "end": 3024.92, + "probability": 0.9836 + }, + { + "start": 3025.44, + "end": 3026.82, + "probability": 0.6657 + }, + { + "start": 3026.9, + "end": 3029.84, + "probability": 0.9411 + }, + { + "start": 3031.08, + "end": 3032.0, + "probability": 0.6666 + }, + { + "start": 3032.56, + "end": 3033.3, + "probability": 0.7506 + }, + { + "start": 3033.88, + "end": 3039.16, + "probability": 0.936 + }, + { + "start": 3039.3, + "end": 3040.38, + "probability": 0.8725 + }, + { + "start": 3040.96, + "end": 3043.02, + "probability": 0.9884 + }, + { + "start": 3043.88, + "end": 3047.94, + "probability": 0.9865 + }, + { + "start": 3048.52, + "end": 3051.84, + "probability": 0.931 + }, + { + "start": 3052.4, + "end": 3053.94, + "probability": 0.9795 + }, + { + "start": 3054.4, + "end": 3061.28, + "probability": 0.9948 + }, + { + "start": 3062.08, + "end": 3071.96, + "probability": 0.9707 + }, + { + "start": 3072.68, + "end": 3075.15, + "probability": 0.9944 + }, + { + "start": 3076.14, + "end": 3076.84, + "probability": 0.8694 + }, + { + "start": 3077.72, + "end": 3079.16, + "probability": 0.8117 + }, + { + "start": 3079.34, + "end": 3080.3, + "probability": 0.7052 + }, + { + "start": 3080.5, + "end": 3082.14, + "probability": 0.9888 + }, + { + "start": 3082.82, + "end": 3087.68, + "probability": 0.9855 + }, + { + "start": 3088.72, + "end": 3091.82, + "probability": 0.9382 + }, + { + "start": 3092.54, + "end": 3096.26, + "probability": 0.9158 + }, + { + "start": 3096.82, + "end": 3099.9, + "probability": 0.9933 + }, + { + "start": 3099.9, + "end": 3103.92, + "probability": 0.93 + }, + { + "start": 3104.02, + "end": 3104.8, + "probability": 0.7992 + }, + { + "start": 3105.38, + "end": 3108.4, + "probability": 0.9902 + }, + { + "start": 3109.36, + "end": 3110.74, + "probability": 0.9421 + }, + { + "start": 3111.48, + "end": 3114.76, + "probability": 0.998 + }, + { + "start": 3115.16, + "end": 3120.5, + "probability": 0.9892 + }, + { + "start": 3121.1, + "end": 3124.58, + "probability": 0.9729 + }, + { + "start": 3124.96, + "end": 3127.26, + "probability": 0.9239 + }, + { + "start": 3128.48, + "end": 3129.88, + "probability": 0.7903 + }, + { + "start": 3130.48, + "end": 3132.56, + "probability": 0.9544 + }, + { + "start": 3133.36, + "end": 3137.74, + "probability": 0.9482 + }, + { + "start": 3138.22, + "end": 3139.88, + "probability": 0.9723 + }, + { + "start": 3140.46, + "end": 3141.04, + "probability": 0.5041 + }, + { + "start": 3141.46, + "end": 3145.48, + "probability": 0.9995 + }, + { + "start": 3146.22, + "end": 3147.6, + "probability": 0.7684 + }, + { + "start": 3148.28, + "end": 3151.36, + "probability": 0.8845 + }, + { + "start": 3151.88, + "end": 3154.78, + "probability": 0.7172 + }, + { + "start": 3155.44, + "end": 3158.46, + "probability": 0.9932 + }, + { + "start": 3158.46, + "end": 3162.06, + "probability": 0.9834 + }, + { + "start": 3162.6, + "end": 3165.06, + "probability": 0.9839 + }, + { + "start": 3165.7, + "end": 3170.42, + "probability": 0.9863 + }, + { + "start": 3171.0, + "end": 3171.88, + "probability": 0.8745 + }, + { + "start": 3171.94, + "end": 3175.34, + "probability": 0.9927 + }, + { + "start": 3175.9, + "end": 3178.88, + "probability": 0.9951 + }, + { + "start": 3179.5, + "end": 3184.92, + "probability": 0.994 + }, + { + "start": 3185.7, + "end": 3187.86, + "probability": 0.9601 + }, + { + "start": 3188.32, + "end": 3193.04, + "probability": 0.988 + }, + { + "start": 3194.14, + "end": 3195.05, + "probability": 0.6007 + }, + { + "start": 3195.46, + "end": 3196.06, + "probability": 0.9739 + }, + { + "start": 3196.36, + "end": 3199.56, + "probability": 0.9932 + }, + { + "start": 3199.56, + "end": 3203.1, + "probability": 0.9829 + }, + { + "start": 3203.72, + "end": 3207.14, + "probability": 0.9172 + }, + { + "start": 3207.74, + "end": 3210.08, + "probability": 0.9264 + }, + { + "start": 3210.74, + "end": 3213.62, + "probability": 0.9222 + }, + { + "start": 3213.62, + "end": 3217.0, + "probability": 0.9968 + }, + { + "start": 3217.36, + "end": 3219.44, + "probability": 0.9868 + }, + { + "start": 3220.42, + "end": 3221.58, + "probability": 0.7724 + }, + { + "start": 3222.32, + "end": 3226.08, + "probability": 0.6338 + }, + { + "start": 3226.7, + "end": 3230.4, + "probability": 0.9409 + }, + { + "start": 3231.04, + "end": 3233.44, + "probability": 0.9983 + }, + { + "start": 3233.84, + "end": 3234.8, + "probability": 0.8961 + }, + { + "start": 3235.18, + "end": 3241.22, + "probability": 0.9597 + }, + { + "start": 3241.58, + "end": 3245.4, + "probability": 0.9908 + }, + { + "start": 3246.0, + "end": 3250.64, + "probability": 0.9599 + }, + { + "start": 3250.98, + "end": 3255.56, + "probability": 0.6177 + }, + { + "start": 3256.34, + "end": 3256.84, + "probability": 0.4795 + }, + { + "start": 3257.38, + "end": 3258.36, + "probability": 0.9364 + }, + { + "start": 3258.42, + "end": 3262.18, + "probability": 0.9754 + }, + { + "start": 3262.66, + "end": 3263.2, + "probability": 0.7456 + }, + { + "start": 3263.76, + "end": 3265.62, + "probability": 0.9299 + }, + { + "start": 3266.48, + "end": 3269.08, + "probability": 0.9417 + }, + { + "start": 3269.2, + "end": 3271.88, + "probability": 0.9584 + }, + { + "start": 3272.38, + "end": 3276.1, + "probability": 0.9951 + }, + { + "start": 3276.74, + "end": 3277.37, + "probability": 0.4248 + }, + { + "start": 3278.36, + "end": 3283.46, + "probability": 0.9486 + }, + { + "start": 3283.56, + "end": 3284.34, + "probability": 0.9573 + }, + { + "start": 3284.38, + "end": 3284.88, + "probability": 0.7589 + }, + { + "start": 3286.02, + "end": 3286.66, + "probability": 0.7526 + }, + { + "start": 3287.18, + "end": 3291.72, + "probability": 0.959 + }, + { + "start": 3291.72, + "end": 3297.86, + "probability": 0.7753 + }, + { + "start": 3298.18, + "end": 3299.34, + "probability": 0.9263 + }, + { + "start": 3299.64, + "end": 3300.68, + "probability": 0.8889 + }, + { + "start": 3301.38, + "end": 3302.34, + "probability": 0.4942 + }, + { + "start": 3302.78, + "end": 3302.92, + "probability": 0.5524 + }, + { + "start": 3302.92, + "end": 3305.92, + "probability": 0.9932 + }, + { + "start": 3306.28, + "end": 3307.28, + "probability": 0.6891 + }, + { + "start": 3307.32, + "end": 3308.98, + "probability": 0.8986 + }, + { + "start": 3309.06, + "end": 3309.46, + "probability": 0.6039 + }, + { + "start": 3309.62, + "end": 3311.9, + "probability": 0.9438 + }, + { + "start": 3312.06, + "end": 3312.5, + "probability": 0.6007 + }, + { + "start": 3312.5, + "end": 3312.78, + "probability": 0.6251 + }, + { + "start": 3313.74, + "end": 3315.46, + "probability": 0.78 + }, + { + "start": 3338.14, + "end": 3338.26, + "probability": 0.3599 + }, + { + "start": 3338.9, + "end": 3339.9, + "probability": 0.7187 + }, + { + "start": 3340.28, + "end": 3341.48, + "probability": 0.8505 + }, + { + "start": 3341.74, + "end": 3342.72, + "probability": 0.9613 + }, + { + "start": 3343.0, + "end": 3343.48, + "probability": 0.8759 + }, + { + "start": 3343.8, + "end": 3345.36, + "probability": 0.8988 + }, + { + "start": 3346.71, + "end": 3352.28, + "probability": 0.9962 + }, + { + "start": 3353.38, + "end": 3359.28, + "probability": 0.9967 + }, + { + "start": 3360.2, + "end": 3361.98, + "probability": 0.9819 + }, + { + "start": 3362.54, + "end": 3363.42, + "probability": 0.6329 + }, + { + "start": 3364.42, + "end": 3366.94, + "probability": 0.4991 + }, + { + "start": 3367.26, + "end": 3368.84, + "probability": 0.9768 + }, + { + "start": 3368.94, + "end": 3369.4, + "probability": 0.9332 + }, + { + "start": 3369.52, + "end": 3371.16, + "probability": 0.719 + }, + { + "start": 3371.28, + "end": 3372.26, + "probability": 0.7494 + }, + { + "start": 3372.3, + "end": 3372.78, + "probability": 0.864 + }, + { + "start": 3372.9, + "end": 3373.34, + "probability": 0.942 + }, + { + "start": 3374.6, + "end": 3376.58, + "probability": 0.9988 + }, + { + "start": 3376.7, + "end": 3378.66, + "probability": 0.972 + }, + { + "start": 3378.94, + "end": 3380.1, + "probability": 0.9454 + }, + { + "start": 3380.2, + "end": 3381.26, + "probability": 0.9901 + }, + { + "start": 3381.32, + "end": 3382.18, + "probability": 0.784 + }, + { + "start": 3382.62, + "end": 3385.5, + "probability": 0.9663 + }, + { + "start": 3385.96, + "end": 3390.62, + "probability": 0.9897 + }, + { + "start": 3390.62, + "end": 3394.64, + "probability": 0.9889 + }, + { + "start": 3395.92, + "end": 3398.62, + "probability": 0.999 + }, + { + "start": 3398.8, + "end": 3401.12, + "probability": 0.9938 + }, + { + "start": 3401.5, + "end": 3402.94, + "probability": 0.8198 + }, + { + "start": 3403.54, + "end": 3405.18, + "probability": 0.9941 + }, + { + "start": 3405.3, + "end": 3407.26, + "probability": 0.9926 + }, + { + "start": 3407.92, + "end": 3409.08, + "probability": 0.9624 + }, + { + "start": 3409.16, + "end": 3410.46, + "probability": 0.959 + }, + { + "start": 3410.54, + "end": 3413.42, + "probability": 0.9492 + }, + { + "start": 3414.04, + "end": 3418.02, + "probability": 0.9946 + }, + { + "start": 3418.24, + "end": 3419.92, + "probability": 0.9767 + }, + { + "start": 3420.1, + "end": 3421.78, + "probability": 0.9962 + }, + { + "start": 3422.22, + "end": 3423.28, + "probability": 0.8493 + }, + { + "start": 3424.04, + "end": 3426.76, + "probability": 0.948 + }, + { + "start": 3427.36, + "end": 3429.5, + "probability": 0.9973 + }, + { + "start": 3429.6, + "end": 3431.92, + "probability": 0.9946 + }, + { + "start": 3432.3, + "end": 3433.52, + "probability": 0.9966 + }, + { + "start": 3434.1, + "end": 3435.18, + "probability": 0.8752 + }, + { + "start": 3435.3, + "end": 3436.52, + "probability": 0.9396 + }, + { + "start": 3436.88, + "end": 3438.27, + "probability": 0.9685 + }, + { + "start": 3438.88, + "end": 3440.08, + "probability": 0.9824 + }, + { + "start": 3441.04, + "end": 3442.4, + "probability": 0.9904 + }, + { + "start": 3442.6, + "end": 3445.08, + "probability": 0.9352 + }, + { + "start": 3445.26, + "end": 3448.62, + "probability": 0.8195 + }, + { + "start": 3449.38, + "end": 3451.42, + "probability": 0.9979 + }, + { + "start": 3451.42, + "end": 3454.36, + "probability": 0.8941 + }, + { + "start": 3454.82, + "end": 3457.88, + "probability": 0.989 + }, + { + "start": 3458.02, + "end": 3459.28, + "probability": 0.9802 + }, + { + "start": 3459.46, + "end": 3461.02, + "probability": 0.8032 + }, + { + "start": 3461.08, + "end": 3461.92, + "probability": 0.9616 + }, + { + "start": 3462.9, + "end": 3466.82, + "probability": 0.9953 + }, + { + "start": 3467.46, + "end": 3468.98, + "probability": 0.8778 + }, + { + "start": 3469.14, + "end": 3471.38, + "probability": 0.9958 + }, + { + "start": 3471.56, + "end": 3472.24, + "probability": 0.9934 + }, + { + "start": 3472.4, + "end": 3473.42, + "probability": 0.9073 + }, + { + "start": 3473.9, + "end": 3475.38, + "probability": 0.9897 + }, + { + "start": 3475.52, + "end": 3477.68, + "probability": 0.9532 + }, + { + "start": 3478.36, + "end": 3480.42, + "probability": 0.9418 + }, + { + "start": 3480.88, + "end": 3482.31, + "probability": 0.9889 + }, + { + "start": 3482.62, + "end": 3483.04, + "probability": 0.8934 + }, + { + "start": 3483.18, + "end": 3483.98, + "probability": 0.977 + }, + { + "start": 3483.98, + "end": 3486.12, + "probability": 0.4893 + }, + { + "start": 3486.18, + "end": 3486.84, + "probability": 0.6974 + }, + { + "start": 3487.04, + "end": 3488.18, + "probability": 0.9514 + }, + { + "start": 3488.66, + "end": 3491.34, + "probability": 0.992 + }, + { + "start": 3491.88, + "end": 3493.12, + "probability": 0.989 + }, + { + "start": 3493.86, + "end": 3496.44, + "probability": 0.9616 + }, + { + "start": 3497.04, + "end": 3498.69, + "probability": 0.9083 + }, + { + "start": 3499.38, + "end": 3502.08, + "probability": 0.9502 + }, + { + "start": 3503.14, + "end": 3506.34, + "probability": 0.9724 + }, + { + "start": 3506.5, + "end": 3507.24, + "probability": 0.333 + }, + { + "start": 3507.56, + "end": 3511.56, + "probability": 0.9905 + }, + { + "start": 3512.44, + "end": 3515.12, + "probability": 0.8652 + }, + { + "start": 3515.16, + "end": 3516.44, + "probability": 0.6582 + }, + { + "start": 3516.6, + "end": 3518.12, + "probability": 0.999 + }, + { + "start": 3519.48, + "end": 3524.69, + "probability": 0.8455 + }, + { + "start": 3525.66, + "end": 3526.82, + "probability": 0.8411 + }, + { + "start": 3527.84, + "end": 3530.22, + "probability": 0.9727 + }, + { + "start": 3530.3, + "end": 3531.97, + "probability": 0.9102 + }, + { + "start": 3532.82, + "end": 3533.82, + "probability": 0.9908 + }, + { + "start": 3534.04, + "end": 3534.88, + "probability": 0.6162 + }, + { + "start": 3536.12, + "end": 3538.5, + "probability": 0.9701 + }, + { + "start": 3539.56, + "end": 3542.16, + "probability": 0.8933 + }, + { + "start": 3542.18, + "end": 3545.52, + "probability": 0.9966 + }, + { + "start": 3546.48, + "end": 3550.02, + "probability": 0.918 + }, + { + "start": 3550.82, + "end": 3553.06, + "probability": 0.9718 + }, + { + "start": 3553.46, + "end": 3554.88, + "probability": 0.956 + }, + { + "start": 3555.08, + "end": 3556.41, + "probability": 0.9846 + }, + { + "start": 3557.6, + "end": 3561.6, + "probability": 0.9927 + }, + { + "start": 3562.44, + "end": 3564.4, + "probability": 0.9841 + }, + { + "start": 3564.46, + "end": 3566.28, + "probability": 0.9708 + }, + { + "start": 3566.7, + "end": 3568.52, + "probability": 0.9939 + }, + { + "start": 3568.64, + "end": 3569.68, + "probability": 0.8916 + }, + { + "start": 3570.88, + "end": 3572.22, + "probability": 0.7234 + }, + { + "start": 3572.92, + "end": 3575.68, + "probability": 0.9808 + }, + { + "start": 3576.28, + "end": 3576.58, + "probability": 0.9487 + }, + { + "start": 3577.48, + "end": 3580.0, + "probability": 0.9888 + }, + { + "start": 3580.76, + "end": 3583.46, + "probability": 0.9951 + }, + { + "start": 3583.84, + "end": 3588.62, + "probability": 0.9968 + }, + { + "start": 3589.44, + "end": 3592.82, + "probability": 0.9222 + }, + { + "start": 3592.86, + "end": 3593.88, + "probability": 0.9271 + }, + { + "start": 3594.08, + "end": 3595.02, + "probability": 0.9757 + }, + { + "start": 3595.78, + "end": 3600.03, + "probability": 0.8825 + }, + { + "start": 3601.44, + "end": 3605.14, + "probability": 0.9911 + }, + { + "start": 3605.26, + "end": 3608.28, + "probability": 0.9581 + }, + { + "start": 3609.06, + "end": 3609.96, + "probability": 0.9614 + }, + { + "start": 3611.7, + "end": 3614.42, + "probability": 0.981 + }, + { + "start": 3614.9, + "end": 3617.74, + "probability": 0.9475 + }, + { + "start": 3617.9, + "end": 3620.3, + "probability": 0.6544 + }, + { + "start": 3620.92, + "end": 3622.2, + "probability": 0.7153 + }, + { + "start": 3623.06, + "end": 3625.98, + "probability": 0.9452 + }, + { + "start": 3626.4, + "end": 3628.1, + "probability": 0.9668 + }, + { + "start": 3628.98, + "end": 3630.66, + "probability": 0.984 + }, + { + "start": 3631.04, + "end": 3632.86, + "probability": 0.8922 + }, + { + "start": 3633.52, + "end": 3637.42, + "probability": 0.8686 + }, + { + "start": 3637.86, + "end": 3639.44, + "probability": 0.9687 + }, + { + "start": 3639.86, + "end": 3641.12, + "probability": 0.578 + }, + { + "start": 3641.2, + "end": 3646.48, + "probability": 0.9443 + }, + { + "start": 3646.64, + "end": 3648.56, + "probability": 0.9976 + }, + { + "start": 3649.24, + "end": 3650.36, + "probability": 0.5186 + }, + { + "start": 3650.5, + "end": 3654.42, + "probability": 0.9397 + }, + { + "start": 3654.92, + "end": 3658.02, + "probability": 0.9749 + }, + { + "start": 3658.78, + "end": 3663.22, + "probability": 0.9971 + }, + { + "start": 3663.46, + "end": 3664.82, + "probability": 0.9604 + }, + { + "start": 3665.26, + "end": 3665.8, + "probability": 0.9531 + }, + { + "start": 3666.28, + "end": 3666.69, + "probability": 0.029 + }, + { + "start": 3667.74, + "end": 3668.36, + "probability": 0.6852 + }, + { + "start": 3668.5, + "end": 3670.0, + "probability": 0.8828 + }, + { + "start": 3670.36, + "end": 3671.26, + "probability": 0.8264 + }, + { + "start": 3671.54, + "end": 3673.94, + "probability": 0.6966 + }, + { + "start": 3674.14, + "end": 3674.34, + "probability": 0.5308 + }, + { + "start": 3674.56, + "end": 3675.86, + "probability": 0.725 + }, + { + "start": 3675.94, + "end": 3678.04, + "probability": 0.5935 + }, + { + "start": 3678.38, + "end": 3681.9, + "probability": 0.6593 + }, + { + "start": 3684.76, + "end": 3686.04, + "probability": 0.6585 + }, + { + "start": 3691.9, + "end": 3691.9, + "probability": 0.0858 + }, + { + "start": 3691.9, + "end": 3691.96, + "probability": 0.1731 + }, + { + "start": 3691.96, + "end": 3691.96, + "probability": 0.1257 + }, + { + "start": 3691.96, + "end": 3692.18, + "probability": 0.058 + }, + { + "start": 3692.18, + "end": 3692.22, + "probability": 0.0633 + }, + { + "start": 3692.22, + "end": 3692.55, + "probability": 0.0237 + }, + { + "start": 3715.64, + "end": 3716.34, + "probability": 0.4516 + }, + { + "start": 3717.18, + "end": 3721.48, + "probability": 0.8411 + }, + { + "start": 3722.3, + "end": 3725.96, + "probability": 0.7855 + }, + { + "start": 3726.5, + "end": 3727.6, + "probability": 0.6878 + }, + { + "start": 3728.44, + "end": 3732.24, + "probability": 0.983 + }, + { + "start": 3732.9, + "end": 3733.76, + "probability": 0.8211 + }, + { + "start": 3734.82, + "end": 3735.96, + "probability": 0.7937 + }, + { + "start": 3736.7, + "end": 3741.1, + "probability": 0.9849 + }, + { + "start": 3742.78, + "end": 3745.76, + "probability": 0.9787 + }, + { + "start": 3746.42, + "end": 3752.12, + "probability": 0.9923 + }, + { + "start": 3752.68, + "end": 3754.22, + "probability": 0.7416 + }, + { + "start": 3754.86, + "end": 3756.44, + "probability": 0.9873 + }, + { + "start": 3757.62, + "end": 3758.25, + "probability": 0.962 + }, + { + "start": 3759.1, + "end": 3764.12, + "probability": 0.9915 + }, + { + "start": 3764.72, + "end": 3767.36, + "probability": 0.9614 + }, + { + "start": 3767.36, + "end": 3771.92, + "probability": 0.9349 + }, + { + "start": 3772.6, + "end": 3776.46, + "probability": 0.9973 + }, + { + "start": 3777.04, + "end": 3782.22, + "probability": 0.995 + }, + { + "start": 3782.22, + "end": 3786.78, + "probability": 0.9957 + }, + { + "start": 3787.52, + "end": 3791.9, + "probability": 0.8931 + }, + { + "start": 3792.94, + "end": 3796.58, + "probability": 0.892 + }, + { + "start": 3797.12, + "end": 3799.54, + "probability": 0.758 + }, + { + "start": 3800.04, + "end": 3804.62, + "probability": 0.9751 + }, + { + "start": 3805.36, + "end": 3810.04, + "probability": 0.995 + }, + { + "start": 3810.64, + "end": 3814.48, + "probability": 0.8863 + }, + { + "start": 3815.2, + "end": 3819.58, + "probability": 0.9895 + }, + { + "start": 3819.58, + "end": 3825.02, + "probability": 0.9778 + }, + { + "start": 3825.86, + "end": 3828.36, + "probability": 0.9985 + }, + { + "start": 3829.36, + "end": 3832.36, + "probability": 0.9855 + }, + { + "start": 3832.36, + "end": 3837.92, + "probability": 0.996 + }, + { + "start": 3838.42, + "end": 3842.94, + "probability": 0.9976 + }, + { + "start": 3842.94, + "end": 3851.04, + "probability": 0.9784 + }, + { + "start": 3852.5, + "end": 3857.94, + "probability": 0.9928 + }, + { + "start": 3857.94, + "end": 3863.54, + "probability": 0.9993 + }, + { + "start": 3863.54, + "end": 3870.0, + "probability": 0.9983 + }, + { + "start": 3870.64, + "end": 3877.06, + "probability": 0.9935 + }, + { + "start": 3877.92, + "end": 3879.16, + "probability": 0.6191 + }, + { + "start": 3879.88, + "end": 3882.84, + "probability": 0.9865 + }, + { + "start": 3883.4, + "end": 3884.2, + "probability": 0.8247 + }, + { + "start": 3884.72, + "end": 3885.56, + "probability": 0.8267 + }, + { + "start": 3885.66, + "end": 3889.42, + "probability": 0.9838 + }, + { + "start": 3890.1, + "end": 3894.12, + "probability": 0.9797 + }, + { + "start": 3895.3, + "end": 3897.1, + "probability": 0.9014 + }, + { + "start": 3897.66, + "end": 3901.04, + "probability": 0.9972 + }, + { + "start": 3902.1, + "end": 3907.52, + "probability": 0.9993 + }, + { + "start": 3907.52, + "end": 3912.88, + "probability": 0.9959 + }, + { + "start": 3913.76, + "end": 3917.26, + "probability": 0.9976 + }, + { + "start": 3917.26, + "end": 3920.48, + "probability": 0.9763 + }, + { + "start": 3920.9, + "end": 3926.42, + "probability": 0.957 + }, + { + "start": 3926.42, + "end": 3933.62, + "probability": 0.9986 + }, + { + "start": 3934.22, + "end": 3936.58, + "probability": 0.7498 + }, + { + "start": 3936.58, + "end": 3939.7, + "probability": 0.9985 + }, + { + "start": 3940.58, + "end": 3941.68, + "probability": 0.9577 + }, + { + "start": 3943.02, + "end": 3943.9, + "probability": 0.8011 + }, + { + "start": 3944.38, + "end": 3945.32, + "probability": 0.8394 + }, + { + "start": 3945.7, + "end": 3949.1, + "probability": 0.9421 + }, + { + "start": 3949.44, + "end": 3956.24, + "probability": 0.9906 + }, + { + "start": 3956.62, + "end": 3958.54, + "probability": 0.9938 + }, + { + "start": 3958.96, + "end": 3963.76, + "probability": 0.9953 + }, + { + "start": 3964.38, + "end": 3968.58, + "probability": 0.9888 + }, + { + "start": 3970.26, + "end": 3972.14, + "probability": 0.9824 + }, + { + "start": 3972.28, + "end": 3973.02, + "probability": 0.7425 + }, + { + "start": 3973.02, + "end": 3973.63, + "probability": 0.979 + }, + { + "start": 3974.68, + "end": 3979.08, + "probability": 0.9957 + }, + { + "start": 3979.08, + "end": 3984.76, + "probability": 0.9995 + }, + { + "start": 3985.36, + "end": 3988.6, + "probability": 0.9932 + }, + { + "start": 3989.68, + "end": 3993.02, + "probability": 0.6578 + }, + { + "start": 3993.62, + "end": 3997.6, + "probability": 0.9956 + }, + { + "start": 3998.2, + "end": 4004.22, + "probability": 0.9883 + }, + { + "start": 4005.06, + "end": 4009.96, + "probability": 0.973 + }, + { + "start": 4010.82, + "end": 4013.96, + "probability": 0.9849 + }, + { + "start": 4014.12, + "end": 4018.7, + "probability": 0.9191 + }, + { + "start": 4018.8, + "end": 4019.8, + "probability": 0.9199 + }, + { + "start": 4020.26, + "end": 4023.76, + "probability": 0.9323 + }, + { + "start": 4023.82, + "end": 4026.75, + "probability": 0.7952 + }, + { + "start": 4027.7, + "end": 4030.8, + "probability": 0.9976 + }, + { + "start": 4030.8, + "end": 4034.38, + "probability": 0.968 + }, + { + "start": 4034.84, + "end": 4035.2, + "probability": 0.7428 + }, + { + "start": 4035.76, + "end": 4037.76, + "probability": 0.6305 + }, + { + "start": 4039.04, + "end": 4039.78, + "probability": 0.7571 + }, + { + "start": 4040.3, + "end": 4042.08, + "probability": 0.5634 + }, + { + "start": 4042.14, + "end": 4047.18, + "probability": 0.9369 + }, + { + "start": 4047.68, + "end": 4052.0, + "probability": 0.8997 + }, + { + "start": 4052.0, + "end": 4056.68, + "probability": 0.9985 + }, + { + "start": 4057.16, + "end": 4058.8, + "probability": 0.9697 + }, + { + "start": 4059.52, + "end": 4066.44, + "probability": 0.9978 + }, + { + "start": 4067.08, + "end": 4068.12, + "probability": 0.979 + }, + { + "start": 4068.82, + "end": 4070.32, + "probability": 0.7748 + }, + { + "start": 4070.94, + "end": 4073.1, + "probability": 0.8022 + }, + { + "start": 4073.36, + "end": 4074.02, + "probability": 0.7935 + }, + { + "start": 4074.68, + "end": 4079.56, + "probability": 0.9028 + }, + { + "start": 4079.98, + "end": 4083.52, + "probability": 0.9939 + }, + { + "start": 4083.52, + "end": 4086.44, + "probability": 0.9994 + }, + { + "start": 4087.06, + "end": 4087.34, + "probability": 0.2111 + }, + { + "start": 4087.58, + "end": 4088.12, + "probability": 0.9366 + }, + { + "start": 4088.44, + "end": 4090.66, + "probability": 0.9966 + }, + { + "start": 4091.04, + "end": 4094.86, + "probability": 0.9856 + }, + { + "start": 4095.26, + "end": 4096.86, + "probability": 0.9909 + }, + { + "start": 4097.34, + "end": 4098.0, + "probability": 0.9136 + }, + { + "start": 4098.4, + "end": 4101.52, + "probability": 0.92 + }, + { + "start": 4102.48, + "end": 4103.34, + "probability": 0.9574 + }, + { + "start": 4103.38, + "end": 4104.5, + "probability": 0.8608 + }, + { + "start": 4105.08, + "end": 4109.14, + "probability": 0.9894 + }, + { + "start": 4109.14, + "end": 4113.32, + "probability": 0.9905 + }, + { + "start": 4113.46, + "end": 4117.18, + "probability": 0.9822 + }, + { + "start": 4117.64, + "end": 4122.04, + "probability": 0.7532 + }, + { + "start": 4122.58, + "end": 4123.16, + "probability": 0.9546 + }, + { + "start": 4123.28, + "end": 4124.08, + "probability": 0.8818 + }, + { + "start": 4124.14, + "end": 4124.74, + "probability": 0.5894 + }, + { + "start": 4124.98, + "end": 4126.12, + "probability": 0.5181 + }, + { + "start": 4126.2, + "end": 4126.52, + "probability": 0.3827 + }, + { + "start": 4126.52, + "end": 4126.52, + "probability": 0.67 + }, + { + "start": 4126.52, + "end": 4127.58, + "probability": 0.9713 + }, + { + "start": 4127.6, + "end": 4128.56, + "probability": 0.9668 + }, + { + "start": 4128.58, + "end": 4129.38, + "probability": 0.6085 + }, + { + "start": 4130.2, + "end": 4132.22, + "probability": 0.6631 + }, + { + "start": 4132.68, + "end": 4136.0, + "probability": 0.9095 + }, + { + "start": 4136.0, + "end": 4139.2, + "probability": 0.9837 + }, + { + "start": 4139.72, + "end": 4142.4, + "probability": 0.8308 + }, + { + "start": 4142.86, + "end": 4146.54, + "probability": 0.9316 + }, + { + "start": 4146.54, + "end": 4150.72, + "probability": 0.9821 + }, + { + "start": 4150.72, + "end": 4154.22, + "probability": 0.8662 + }, + { + "start": 4154.74, + "end": 4155.78, + "probability": 0.8516 + }, + { + "start": 4155.86, + "end": 4157.11, + "probability": 0.941 + }, + { + "start": 4157.54, + "end": 4162.64, + "probability": 0.9673 + }, + { + "start": 4162.88, + "end": 4169.2, + "probability": 0.9824 + }, + { + "start": 4169.62, + "end": 4173.86, + "probability": 0.9852 + }, + { + "start": 4174.3, + "end": 4174.8, + "probability": 0.7972 + }, + { + "start": 4174.86, + "end": 4175.38, + "probability": 0.826 + }, + { + "start": 4175.46, + "end": 4176.84, + "probability": 0.9874 + }, + { + "start": 4177.2, + "end": 4180.28, + "probability": 0.9963 + }, + { + "start": 4180.72, + "end": 4181.38, + "probability": 0.7764 + }, + { + "start": 4182.14, + "end": 4185.14, + "probability": 0.9146 + }, + { + "start": 4194.32, + "end": 4196.04, + "probability": 0.6451 + }, + { + "start": 4196.66, + "end": 4198.02, + "probability": 0.7974 + }, + { + "start": 4199.02, + "end": 4201.7, + "probability": 0.7486 + }, + { + "start": 4203.08, + "end": 4203.9, + "probability": 0.8907 + }, + { + "start": 4204.48, + "end": 4206.58, + "probability": 0.9355 + }, + { + "start": 4208.18, + "end": 4208.7, + "probability": 0.9781 + }, + { + "start": 4210.2, + "end": 4211.04, + "probability": 0.9701 + }, + { + "start": 4211.62, + "end": 4213.24, + "probability": 0.771 + }, + { + "start": 4214.14, + "end": 4215.32, + "probability": 0.9802 + }, + { + "start": 4216.6, + "end": 4217.98, + "probability": 0.9827 + }, + { + "start": 4218.62, + "end": 4219.38, + "probability": 0.9349 + }, + { + "start": 4220.26, + "end": 4221.52, + "probability": 0.9177 + }, + { + "start": 4222.18, + "end": 4223.11, + "probability": 0.8074 + }, + { + "start": 4223.38, + "end": 4224.32, + "probability": 0.9517 + }, + { + "start": 4224.38, + "end": 4226.92, + "probability": 0.9893 + }, + { + "start": 4227.4, + "end": 4229.0, + "probability": 0.5535 + }, + { + "start": 4229.02, + "end": 4229.68, + "probability": 0.9234 + }, + { + "start": 4229.8, + "end": 4232.02, + "probability": 0.9637 + }, + { + "start": 4232.42, + "end": 4234.3, + "probability": 0.9878 + }, + { + "start": 4234.76, + "end": 4236.78, + "probability": 0.9867 + }, + { + "start": 4237.14, + "end": 4239.68, + "probability": 0.6431 + }, + { + "start": 4241.98, + "end": 4243.86, + "probability": 0.0135 + }, + { + "start": 4243.86, + "end": 4245.44, + "probability": 0.4549 + }, + { + "start": 4245.9, + "end": 4245.9, + "probability": 0.3306 + }, + { + "start": 4245.93, + "end": 4246.44, + "probability": 0.5292 + }, + { + "start": 4246.44, + "end": 4248.04, + "probability": 0.905 + }, + { + "start": 4248.74, + "end": 4251.22, + "probability": 0.8465 + }, + { + "start": 4251.78, + "end": 4253.28, + "probability": 0.7202 + }, + { + "start": 4253.4, + "end": 4254.32, + "probability": 0.9718 + }, + { + "start": 4254.66, + "end": 4255.8, + "probability": 0.9646 + }, + { + "start": 4256.04, + "end": 4257.38, + "probability": 0.9063 + }, + { + "start": 4258.04, + "end": 4259.5, + "probability": 0.8236 + }, + { + "start": 4259.72, + "end": 4260.46, + "probability": 0.6732 + }, + { + "start": 4260.54, + "end": 4261.36, + "probability": 0.887 + }, + { + "start": 4261.82, + "end": 4263.35, + "probability": 0.9784 + }, + { + "start": 4263.94, + "end": 4264.72, + "probability": 0.8225 + }, + { + "start": 4265.26, + "end": 4265.8, + "probability": 0.9737 + }, + { + "start": 4266.34, + "end": 4269.84, + "probability": 0.9857 + }, + { + "start": 4270.52, + "end": 4273.54, + "probability": 0.8757 + }, + { + "start": 4273.76, + "end": 4274.34, + "probability": 0.629 + }, + { + "start": 4274.48, + "end": 4275.76, + "probability": 0.8989 + }, + { + "start": 4275.86, + "end": 4279.08, + "probability": 0.9656 + }, + { + "start": 4279.62, + "end": 4279.88, + "probability": 0.7224 + }, + { + "start": 4280.56, + "end": 4283.6, + "probability": 0.9885 + }, + { + "start": 4283.6, + "end": 4286.74, + "probability": 0.9917 + }, + { + "start": 4286.94, + "end": 4287.78, + "probability": 0.1045 + }, + { + "start": 4287.84, + "end": 4287.94, + "probability": 0.7076 + }, + { + "start": 4288.22, + "end": 4290.58, + "probability": 0.7686 + }, + { + "start": 4290.64, + "end": 4290.64, + "probability": 0.669 + }, + { + "start": 4290.74, + "end": 4291.36, + "probability": 0.6263 + }, + { + "start": 4292.14, + "end": 4296.32, + "probability": 0.9071 + }, + { + "start": 4297.36, + "end": 4298.66, + "probability": 0.6008 + }, + { + "start": 4299.62, + "end": 4300.3, + "probability": 0.3349 + }, + { + "start": 4301.74, + "end": 4306.02, + "probability": 0.7569 + }, + { + "start": 4309.5, + "end": 4313.36, + "probability": 0.8352 + }, + { + "start": 4314.82, + "end": 4321.26, + "probability": 0.8964 + }, + { + "start": 4322.44, + "end": 4325.12, + "probability": 0.9894 + }, + { + "start": 4325.2, + "end": 4325.74, + "probability": 0.8669 + }, + { + "start": 4326.1, + "end": 4327.52, + "probability": 0.8424 + }, + { + "start": 4328.1, + "end": 4329.68, + "probability": 0.9618 + }, + { + "start": 4329.82, + "end": 4331.66, + "probability": 0.9451 + }, + { + "start": 4332.32, + "end": 4337.6, + "probability": 0.9967 + }, + { + "start": 4337.7, + "end": 4339.08, + "probability": 0.8559 + }, + { + "start": 4339.68, + "end": 4340.72, + "probability": 0.8244 + }, + { + "start": 4341.28, + "end": 4347.14, + "probability": 0.9948 + }, + { + "start": 4349.02, + "end": 4350.12, + "probability": 0.5254 + }, + { + "start": 4351.48, + "end": 4353.4, + "probability": 0.0597 + }, + { + "start": 4354.56, + "end": 4362.54, + "probability": 0.8413 + }, + { + "start": 4363.02, + "end": 4364.2, + "probability": 0.9854 + }, + { + "start": 4364.88, + "end": 4369.52, + "probability": 0.8521 + }, + { + "start": 4369.52, + "end": 4371.22, + "probability": 0.4589 + }, + { + "start": 4374.82, + "end": 4377.18, + "probability": 0.1792 + }, + { + "start": 4378.02, + "end": 4378.52, + "probability": 0.241 + }, + { + "start": 4379.34, + "end": 4380.0, + "probability": 0.3806 + }, + { + "start": 4380.68, + "end": 4383.28, + "probability": 0.5508 + }, + { + "start": 4386.78, + "end": 4388.22, + "probability": 0.9823 + }, + { + "start": 4388.38, + "end": 4388.5, + "probability": 0.8594 + }, + { + "start": 4388.58, + "end": 4389.89, + "probability": 0.769 + }, + { + "start": 4389.95, + "end": 4393.45, + "probability": 0.729 + }, + { + "start": 4394.04, + "end": 4396.06, + "probability": 0.5655 + }, + { + "start": 4397.34, + "end": 4399.94, + "probability": 0.9591 + }, + { + "start": 4400.8, + "end": 4403.36, + "probability": 0.0646 + }, + { + "start": 4404.78, + "end": 4408.76, + "probability": 0.8123 + }, + { + "start": 4409.8, + "end": 4417.22, + "probability": 0.9901 + }, + { + "start": 4417.4, + "end": 4420.66, + "probability": 0.9985 + }, + { + "start": 4422.54, + "end": 4423.22, + "probability": 0.3661 + }, + { + "start": 4423.78, + "end": 4425.82, + "probability": 0.8816 + }, + { + "start": 4426.34, + "end": 4429.5, + "probability": 0.9641 + }, + { + "start": 4429.68, + "end": 4430.7, + "probability": 0.8319 + }, + { + "start": 4430.96, + "end": 4432.3, + "probability": 0.9606 + }, + { + "start": 4432.6, + "end": 4433.66, + "probability": 0.7208 + }, + { + "start": 4435.44, + "end": 4438.16, + "probability": 0.913 + }, + { + "start": 4438.76, + "end": 4440.68, + "probability": 0.9228 + }, + { + "start": 4441.96, + "end": 4445.36, + "probability": 0.994 + }, + { + "start": 4445.46, + "end": 4447.07, + "probability": 0.9518 + }, + { + "start": 4448.32, + "end": 4450.78, + "probability": 0.9357 + }, + { + "start": 4451.36, + "end": 4452.76, + "probability": 0.8885 + }, + { + "start": 4452.86, + "end": 4454.62, + "probability": 0.9869 + }, + { + "start": 4454.68, + "end": 4457.46, + "probability": 0.8436 + }, + { + "start": 4457.58, + "end": 4458.58, + "probability": 0.9416 + }, + { + "start": 4458.96, + "end": 4461.4, + "probability": 0.9269 + }, + { + "start": 4461.8, + "end": 4464.24, + "probability": 0.9624 + }, + { + "start": 4464.7, + "end": 4467.22, + "probability": 0.9032 + }, + { + "start": 4467.52, + "end": 4470.68, + "probability": 0.9775 + }, + { + "start": 4470.68, + "end": 4472.94, + "probability": 0.9986 + }, + { + "start": 4473.44, + "end": 4474.06, + "probability": 0.6878 + }, + { + "start": 4474.62, + "end": 4475.78, + "probability": 0.9536 + }, + { + "start": 4475.88, + "end": 4476.86, + "probability": 0.9249 + }, + { + "start": 4477.34, + "end": 4479.52, + "probability": 0.9926 + }, + { + "start": 4480.0, + "end": 4480.58, + "probability": 0.9742 + }, + { + "start": 4480.6, + "end": 4481.18, + "probability": 0.9294 + }, + { + "start": 4481.22, + "end": 4482.72, + "probability": 0.992 + }, + { + "start": 4482.76, + "end": 4488.04, + "probability": 0.9927 + }, + { + "start": 4488.3, + "end": 4490.3, + "probability": 0.6957 + }, + { + "start": 4491.9, + "end": 4495.1, + "probability": 0.9305 + }, + { + "start": 4495.82, + "end": 4499.02, + "probability": 0.9119 + }, + { + "start": 4499.58, + "end": 4500.66, + "probability": 0.9279 + }, + { + "start": 4500.86, + "end": 4501.82, + "probability": 0.9827 + }, + { + "start": 4502.16, + "end": 4502.96, + "probability": 0.7549 + }, + { + "start": 4503.0, + "end": 4505.88, + "probability": 0.9875 + }, + { + "start": 4506.9, + "end": 4511.9, + "probability": 0.988 + }, + { + "start": 4512.44, + "end": 4514.48, + "probability": 0.9844 + }, + { + "start": 4514.48, + "end": 4517.32, + "probability": 0.9974 + }, + { + "start": 4518.26, + "end": 4518.72, + "probability": 0.4694 + }, + { + "start": 4518.96, + "end": 4519.38, + "probability": 0.426 + }, + { + "start": 4519.54, + "end": 4521.4, + "probability": 0.8086 + }, + { + "start": 4521.48, + "end": 4522.08, + "probability": 0.879 + }, + { + "start": 4522.16, + "end": 4523.43, + "probability": 0.9897 + }, + { + "start": 4524.16, + "end": 4528.8, + "probability": 0.9865 + }, + { + "start": 4529.0, + "end": 4533.64, + "probability": 0.9958 + }, + { + "start": 4533.68, + "end": 4535.56, + "probability": 0.8932 + }, + { + "start": 4536.04, + "end": 4538.98, + "probability": 0.9346 + }, + { + "start": 4539.46, + "end": 4540.06, + "probability": 0.9758 + }, + { + "start": 4540.82, + "end": 4544.02, + "probability": 0.9646 + }, + { + "start": 4544.7, + "end": 4547.44, + "probability": 0.8864 + }, + { + "start": 4548.06, + "end": 4550.12, + "probability": 0.8786 + }, + { + "start": 4550.92, + "end": 4553.22, + "probability": 0.9654 + }, + { + "start": 4553.28, + "end": 4554.14, + "probability": 0.767 + }, + { + "start": 4554.28, + "end": 4554.46, + "probability": 0.4745 + }, + { + "start": 4554.48, + "end": 4554.96, + "probability": 0.8458 + }, + { + "start": 4555.82, + "end": 4558.52, + "probability": 0.9754 + }, + { + "start": 4558.98, + "end": 4560.22, + "probability": 0.8655 + }, + { + "start": 4560.3, + "end": 4561.56, + "probability": 0.9532 + }, + { + "start": 4561.66, + "end": 4564.34, + "probability": 0.967 + }, + { + "start": 4564.34, + "end": 4567.38, + "probability": 0.9777 + }, + { + "start": 4567.86, + "end": 4570.24, + "probability": 0.8853 + }, + { + "start": 4570.6, + "end": 4572.14, + "probability": 0.8331 + }, + { + "start": 4572.22, + "end": 4573.14, + "probability": 0.8885 + }, + { + "start": 4573.74, + "end": 4575.66, + "probability": 0.9516 + }, + { + "start": 4575.98, + "end": 4577.36, + "probability": 0.9795 + }, + { + "start": 4577.74, + "end": 4578.96, + "probability": 0.9235 + }, + { + "start": 4579.52, + "end": 4580.62, + "probability": 0.9892 + }, + { + "start": 4581.4, + "end": 4582.34, + "probability": 0.9026 + }, + { + "start": 4582.68, + "end": 4584.98, + "probability": 0.9183 + }, + { + "start": 4585.4, + "end": 4588.98, + "probability": 0.9862 + }, + { + "start": 4589.12, + "end": 4590.38, + "probability": 0.9765 + }, + { + "start": 4590.48, + "end": 4590.9, + "probability": 0.8211 + }, + { + "start": 4590.98, + "end": 4592.82, + "probability": 0.988 + }, + { + "start": 4594.3, + "end": 4598.4, + "probability": 0.9786 + }, + { + "start": 4598.4, + "end": 4608.1, + "probability": 0.9912 + }, + { + "start": 4608.48, + "end": 4611.2, + "probability": 0.9725 + }, + { + "start": 4611.76, + "end": 4616.04, + "probability": 0.996 + }, + { + "start": 4617.08, + "end": 4621.42, + "probability": 0.9955 + }, + { + "start": 4621.42, + "end": 4626.54, + "probability": 0.9839 + }, + { + "start": 4627.12, + "end": 4630.76, + "probability": 0.9785 + }, + { + "start": 4631.28, + "end": 4634.22, + "probability": 0.8229 + }, + { + "start": 4634.62, + "end": 4638.12, + "probability": 0.995 + }, + { + "start": 4638.12, + "end": 4641.34, + "probability": 0.9924 + }, + { + "start": 4641.72, + "end": 4642.86, + "probability": 0.9837 + }, + { + "start": 4643.66, + "end": 4647.86, + "probability": 0.9712 + }, + { + "start": 4648.98, + "end": 4651.5, + "probability": 0.999 + }, + { + "start": 4651.5, + "end": 4654.2, + "probability": 0.9973 + }, + { + "start": 4654.52, + "end": 4658.92, + "probability": 0.9956 + }, + { + "start": 4659.42, + "end": 4661.86, + "probability": 0.9695 + }, + { + "start": 4661.86, + "end": 4664.64, + "probability": 0.9987 + }, + { + "start": 4665.13, + "end": 4669.28, + "probability": 0.991 + }, + { + "start": 4670.22, + "end": 4674.44, + "probability": 0.9945 + }, + { + "start": 4674.7, + "end": 4675.78, + "probability": 0.9987 + }, + { + "start": 4676.8, + "end": 4678.78, + "probability": 0.9974 + }, + { + "start": 4678.9, + "end": 4681.72, + "probability": 0.5265 + }, + { + "start": 4681.8, + "end": 4682.38, + "probability": 0.9323 + }, + { + "start": 4682.42, + "end": 4685.44, + "probability": 0.9694 + }, + { + "start": 4685.88, + "end": 4686.92, + "probability": 0.9836 + }, + { + "start": 4687.12, + "end": 4690.92, + "probability": 0.9399 + }, + { + "start": 4692.18, + "end": 4692.76, + "probability": 0.6688 + }, + { + "start": 4692.98, + "end": 4694.13, + "probability": 0.9774 + }, + { + "start": 4694.42, + "end": 4695.54, + "probability": 0.8584 + }, + { + "start": 4695.7, + "end": 4697.1, + "probability": 0.759 + }, + { + "start": 4698.06, + "end": 4701.06, + "probability": 0.9978 + }, + { + "start": 4701.44, + "end": 4708.28, + "probability": 0.929 + }, + { + "start": 4708.28, + "end": 4714.06, + "probability": 0.9971 + }, + { + "start": 4714.78, + "end": 4719.24, + "probability": 0.9971 + }, + { + "start": 4719.46, + "end": 4724.36, + "probability": 0.9687 + }, + { + "start": 4724.68, + "end": 4727.98, + "probability": 0.9945 + }, + { + "start": 4728.48, + "end": 4732.78, + "probability": 0.9968 + }, + { + "start": 4733.6, + "end": 4736.46, + "probability": 0.9923 + }, + { + "start": 4736.46, + "end": 4740.1, + "probability": 0.9852 + }, + { + "start": 4741.3, + "end": 4742.7, + "probability": 0.96 + }, + { + "start": 4743.78, + "end": 4744.6, + "probability": 0.8058 + }, + { + "start": 4744.72, + "end": 4748.68, + "probability": 0.989 + }, + { + "start": 4749.22, + "end": 4753.74, + "probability": 0.9905 + }, + { + "start": 4754.32, + "end": 4758.92, + "probability": 0.8461 + }, + { + "start": 4759.48, + "end": 4764.52, + "probability": 0.9802 + }, + { + "start": 4764.58, + "end": 4765.44, + "probability": 0.8877 + }, + { + "start": 4765.5, + "end": 4766.7, + "probability": 0.971 + }, + { + "start": 4767.14, + "end": 4770.62, + "probability": 0.9951 + }, + { + "start": 4771.1, + "end": 4775.8, + "probability": 0.9913 + }, + { + "start": 4775.94, + "end": 4778.52, + "probability": 0.6697 + }, + { + "start": 4779.66, + "end": 4782.4, + "probability": 0.979 + }, + { + "start": 4782.4, + "end": 4785.8, + "probability": 0.9971 + }, + { + "start": 4786.16, + "end": 4791.72, + "probability": 0.9972 + }, + { + "start": 4791.72, + "end": 4795.97, + "probability": 0.9976 + }, + { + "start": 4797.97, + "end": 4802.12, + "probability": 0.9995 + }, + { + "start": 4803.66, + "end": 4806.08, + "probability": 0.9987 + }, + { + "start": 4806.08, + "end": 4809.08, + "probability": 0.999 + }, + { + "start": 4809.22, + "end": 4810.46, + "probability": 0.9849 + }, + { + "start": 4811.52, + "end": 4814.54, + "probability": 0.9496 + }, + { + "start": 4814.98, + "end": 4816.9, + "probability": 0.999 + }, + { + "start": 4816.92, + "end": 4819.44, + "probability": 0.9696 + }, + { + "start": 4819.66, + "end": 4824.06, + "probability": 0.9948 + }, + { + "start": 4824.06, + "end": 4828.46, + "probability": 0.998 + }, + { + "start": 4828.58, + "end": 4829.6, + "probability": 0.7731 + }, + { + "start": 4830.12, + "end": 4835.82, + "probability": 0.9622 + }, + { + "start": 4836.22, + "end": 4838.22, + "probability": 0.9924 + }, + { + "start": 4840.22, + "end": 4843.38, + "probability": 0.9755 + }, + { + "start": 4844.14, + "end": 4847.7, + "probability": 0.9885 + }, + { + "start": 4848.38, + "end": 4849.24, + "probability": 0.9877 + }, + { + "start": 4849.66, + "end": 4851.3, + "probability": 0.9057 + }, + { + "start": 4851.44, + "end": 4852.6, + "probability": 0.7247 + }, + { + "start": 4853.28, + "end": 4856.38, + "probability": 0.9764 + }, + { + "start": 4857.02, + "end": 4858.32, + "probability": 0.9346 + }, + { + "start": 4858.46, + "end": 4859.28, + "probability": 0.8232 + }, + { + "start": 4859.6, + "end": 4860.9, + "probability": 0.7423 + }, + { + "start": 4860.98, + "end": 4862.3, + "probability": 0.4934 + }, + { + "start": 4865.14, + "end": 4869.46, + "probability": 0.9986 + }, + { + "start": 4869.96, + "end": 4871.08, + "probability": 0.9691 + }, + { + "start": 4871.16, + "end": 4872.66, + "probability": 0.906 + }, + { + "start": 4873.1, + "end": 4880.32, + "probability": 0.9903 + }, + { + "start": 4880.82, + "end": 4883.04, + "probability": 0.9734 + }, + { + "start": 4883.66, + "end": 4888.32, + "probability": 0.9551 + }, + { + "start": 4888.84, + "end": 4893.38, + "probability": 0.9965 + }, + { + "start": 4893.86, + "end": 4894.9, + "probability": 0.7481 + }, + { + "start": 4895.54, + "end": 4898.88, + "probability": 0.9937 + }, + { + "start": 4899.48, + "end": 4901.78, + "probability": 0.9511 + }, + { + "start": 4902.48, + "end": 4905.0, + "probability": 0.9912 + }, + { + "start": 4905.0, + "end": 4908.86, + "probability": 0.9228 + }, + { + "start": 4910.06, + "end": 4913.7, + "probability": 0.95 + }, + { + "start": 4914.28, + "end": 4914.66, + "probability": 0.478 + }, + { + "start": 4914.76, + "end": 4915.76, + "probability": 0.8808 + }, + { + "start": 4915.88, + "end": 4917.32, + "probability": 0.7779 + }, + { + "start": 4917.6, + "end": 4919.1, + "probability": 0.9644 + }, + { + "start": 4919.72, + "end": 4921.26, + "probability": 0.9952 + }, + { + "start": 4921.78, + "end": 4923.62, + "probability": 0.9098 + }, + { + "start": 4924.58, + "end": 4926.06, + "probability": 0.8992 + }, + { + "start": 4926.2, + "end": 4929.8, + "probability": 0.9939 + }, + { + "start": 4929.8, + "end": 4933.52, + "probability": 0.9992 + }, + { + "start": 4933.6, + "end": 4934.56, + "probability": 0.8325 + }, + { + "start": 4934.66, + "end": 4935.78, + "probability": 0.9595 + }, + { + "start": 4936.28, + "end": 4937.44, + "probability": 0.9883 + }, + { + "start": 4937.76, + "end": 4939.86, + "probability": 0.7771 + }, + { + "start": 4940.42, + "end": 4943.98, + "probability": 0.9531 + }, + { + "start": 4944.68, + "end": 4947.34, + "probability": 0.9762 + }, + { + "start": 4947.68, + "end": 4949.2, + "probability": 0.9434 + }, + { + "start": 4949.92, + "end": 4952.46, + "probability": 0.8963 + }, + { + "start": 4952.46, + "end": 4956.22, + "probability": 0.9976 + }, + { + "start": 4956.64, + "end": 4962.5, + "probability": 0.6968 + }, + { + "start": 4962.92, + "end": 4965.38, + "probability": 0.8362 + }, + { + "start": 4965.44, + "end": 4965.72, + "probability": 0.5669 + }, + { + "start": 4965.8, + "end": 4966.52, + "probability": 0.6589 + }, + { + "start": 4966.98, + "end": 4968.24, + "probability": 0.925 + }, + { + "start": 4971.58, + "end": 4974.08, + "probability": 0.751 + }, + { + "start": 4974.16, + "end": 4976.98, + "probability": 0.9609 + }, + { + "start": 4976.98, + "end": 4979.7, + "probability": 0.991 + }, + { + "start": 4980.12, + "end": 4982.22, + "probability": 0.8956 + }, + { + "start": 4983.98, + "end": 4987.0, + "probability": 0.5757 + }, + { + "start": 4987.3, + "end": 4990.52, + "probability": 0.9847 + }, + { + "start": 4990.52, + "end": 4993.78, + "probability": 0.9919 + }, + { + "start": 4994.14, + "end": 4994.52, + "probability": 0.7867 + }, + { + "start": 4994.64, + "end": 4995.56, + "probability": 0.7256 + }, + { + "start": 4996.62, + "end": 5003.34, + "probability": 0.7797 + }, + { + "start": 5004.22, + "end": 5006.24, + "probability": 0.9924 + }, + { + "start": 5006.78, + "end": 5010.48, + "probability": 0.9934 + }, + { + "start": 5011.22, + "end": 5014.46, + "probability": 0.9348 + }, + { + "start": 5014.54, + "end": 5015.52, + "probability": 0.8512 + }, + { + "start": 5016.0, + "end": 5019.92, + "probability": 0.9526 + }, + { + "start": 5019.92, + "end": 5024.88, + "probability": 0.9913 + }, + { + "start": 5025.38, + "end": 5027.0, + "probability": 0.9963 + }, + { + "start": 5027.67, + "end": 5031.38, + "probability": 0.9974 + }, + { + "start": 5031.38, + "end": 5034.22, + "probability": 0.9608 + }, + { + "start": 5034.26, + "end": 5039.18, + "probability": 0.9956 + }, + { + "start": 5040.4, + "end": 5042.16, + "probability": 0.8858 + }, + { + "start": 5042.4, + "end": 5046.66, + "probability": 0.9827 + }, + { + "start": 5047.12, + "end": 5047.72, + "probability": 0.5516 + }, + { + "start": 5047.82, + "end": 5048.82, + "probability": 0.868 + }, + { + "start": 5048.9, + "end": 5049.6, + "probability": 0.6763 + }, + { + "start": 5050.28, + "end": 5052.78, + "probability": 0.9852 + }, + { + "start": 5052.78, + "end": 5055.06, + "probability": 0.9985 + }, + { + "start": 5055.58, + "end": 5057.1, + "probability": 0.9942 + }, + { + "start": 5057.62, + "end": 5059.7, + "probability": 0.9985 + }, + { + "start": 5060.36, + "end": 5062.34, + "probability": 0.9804 + }, + { + "start": 5062.34, + "end": 5068.56, + "probability": 0.9854 + }, + { + "start": 5069.24, + "end": 5073.84, + "probability": 0.8159 + }, + { + "start": 5074.48, + "end": 5075.92, + "probability": 0.8785 + }, + { + "start": 5076.7, + "end": 5078.66, + "probability": 0.8719 + }, + { + "start": 5078.74, + "end": 5080.38, + "probability": 0.852 + }, + { + "start": 5081.24, + "end": 5085.9, + "probability": 0.9978 + }, + { + "start": 5086.42, + "end": 5091.22, + "probability": 0.9985 + }, + { + "start": 5092.14, + "end": 5095.88, + "probability": 0.9854 + }, + { + "start": 5097.4, + "end": 5097.76, + "probability": 0.5457 + }, + { + "start": 5097.86, + "end": 5098.72, + "probability": 0.9722 + }, + { + "start": 5098.86, + "end": 5100.16, + "probability": 0.9904 + }, + { + "start": 5100.34, + "end": 5101.14, + "probability": 0.8992 + }, + { + "start": 5101.26, + "end": 5102.02, + "probability": 0.9786 + }, + { + "start": 5102.12, + "end": 5103.1, + "probability": 0.6654 + }, + { + "start": 5103.42, + "end": 5104.36, + "probability": 0.6567 + }, + { + "start": 5104.88, + "end": 5109.92, + "probability": 0.9899 + }, + { + "start": 5112.92, + "end": 5115.6, + "probability": 0.999 + }, + { + "start": 5116.74, + "end": 5117.9, + "probability": 0.438 + }, + { + "start": 5117.9, + "end": 5118.7, + "probability": 0.8635 + }, + { + "start": 5118.9, + "end": 5121.84, + "probability": 0.893 + }, + { + "start": 5121.84, + "end": 5125.98, + "probability": 0.9991 + }, + { + "start": 5126.56, + "end": 5127.8, + "probability": 0.8219 + }, + { + "start": 5128.1, + "end": 5128.7, + "probability": 0.7406 + }, + { + "start": 5128.82, + "end": 5129.06, + "probability": 0.712 + }, + { + "start": 5130.24, + "end": 5131.27, + "probability": 0.9409 + }, + { + "start": 5131.68, + "end": 5133.67, + "probability": 0.8935 + }, + { + "start": 5134.16, + "end": 5136.26, + "probability": 0.9424 + }, + { + "start": 5136.7, + "end": 5138.76, + "probability": 0.9787 + }, + { + "start": 5139.92, + "end": 5140.18, + "probability": 0.8684 + }, + { + "start": 5140.46, + "end": 5142.0, + "probability": 0.4376 + }, + { + "start": 5142.1, + "end": 5145.04, + "probability": 0.8188 + }, + { + "start": 5146.32, + "end": 5146.9, + "probability": 0.8946 + }, + { + "start": 5147.56, + "end": 5148.48, + "probability": 0.7708 + }, + { + "start": 5149.56, + "end": 5152.96, + "probability": 0.8518 + }, + { + "start": 5154.14, + "end": 5154.16, + "probability": 0.0434 + }, + { + "start": 5154.16, + "end": 5154.16, + "probability": 0.2546 + }, + { + "start": 5154.16, + "end": 5154.16, + "probability": 0.3534 + }, + { + "start": 5154.16, + "end": 5154.16, + "probability": 0.4564 + }, + { + "start": 5154.16, + "end": 5154.16, + "probability": 0.4141 + }, + { + "start": 5154.16, + "end": 5154.16, + "probability": 0.0355 + }, + { + "start": 5154.16, + "end": 5155.14, + "probability": 0.3028 + }, + { + "start": 5156.38, + "end": 5157.38, + "probability": 0.4303 + }, + { + "start": 5161.42, + "end": 5161.72, + "probability": 0.6762 + }, + { + "start": 5181.78, + "end": 5181.88, + "probability": 0.5396 + }, + { + "start": 5182.18, + "end": 5182.54, + "probability": 0.698 + }, + { + "start": 5183.28, + "end": 5186.26, + "probability": 0.5881 + }, + { + "start": 5186.58, + "end": 5189.22, + "probability": 0.531 + }, + { + "start": 5189.7, + "end": 5192.58, + "probability": 0.5892 + }, + { + "start": 5193.99, + "end": 5194.74, + "probability": 0.3816 + }, + { + "start": 5196.14, + "end": 5196.74, + "probability": 0.979 + }, + { + "start": 5196.94, + "end": 5197.4, + "probability": 0.8267 + }, + { + "start": 5199.5, + "end": 5200.23, + "probability": 0.9717 + }, + { + "start": 5216.88, + "end": 5218.94, + "probability": 0.7461 + }, + { + "start": 5220.16, + "end": 5221.6, + "probability": 0.5669 + }, + { + "start": 5223.86, + "end": 5229.64, + "probability": 0.5592 + }, + { + "start": 5230.52, + "end": 5233.16, + "probability": 0.9545 + }, + { + "start": 5234.66, + "end": 5235.4, + "probability": 0.9453 + }, + { + "start": 5235.5, + "end": 5236.5, + "probability": 0.776 + }, + { + "start": 5236.6, + "end": 5237.94, + "probability": 0.7498 + }, + { + "start": 5238.14, + "end": 5238.64, + "probability": 0.832 + }, + { + "start": 5239.34, + "end": 5247.14, + "probability": 0.6502 + }, + { + "start": 5247.74, + "end": 5250.64, + "probability": 0.965 + }, + { + "start": 5251.54, + "end": 5254.26, + "probability": 0.971 + }, + { + "start": 5254.94, + "end": 5257.7, + "probability": 0.783 + }, + { + "start": 5258.22, + "end": 5261.54, + "probability": 0.981 + }, + { + "start": 5262.52, + "end": 5265.72, + "probability": 0.9966 + }, + { + "start": 5265.86, + "end": 5266.36, + "probability": 0.5877 + }, + { + "start": 5266.54, + "end": 5267.22, + "probability": 0.7976 + }, + { + "start": 5267.78, + "end": 5268.33, + "probability": 0.9749 + }, + { + "start": 5269.08, + "end": 5274.14, + "probability": 0.9409 + }, + { + "start": 5274.96, + "end": 5276.94, + "probability": 0.8918 + }, + { + "start": 5277.62, + "end": 5283.82, + "probability": 0.9888 + }, + { + "start": 5284.66, + "end": 5290.96, + "probability": 0.9939 + }, + { + "start": 5291.7, + "end": 5294.06, + "probability": 0.9097 + }, + { + "start": 5294.7, + "end": 5298.7, + "probability": 0.9747 + }, + { + "start": 5299.32, + "end": 5300.36, + "probability": 0.986 + }, + { + "start": 5300.44, + "end": 5301.28, + "probability": 0.9479 + }, + { + "start": 5301.34, + "end": 5302.12, + "probability": 0.9791 + }, + { + "start": 5302.58, + "end": 5305.28, + "probability": 0.9893 + }, + { + "start": 5305.72, + "end": 5311.06, + "probability": 0.8646 + }, + { + "start": 5311.88, + "end": 5316.14, + "probability": 0.9315 + }, + { + "start": 5316.72, + "end": 5319.54, + "probability": 0.9706 + }, + { + "start": 5319.94, + "end": 5322.74, + "probability": 0.9377 + }, + { + "start": 5323.24, + "end": 5326.8, + "probability": 0.9946 + }, + { + "start": 5327.48, + "end": 5330.4, + "probability": 0.958 + }, + { + "start": 5331.08, + "end": 5333.28, + "probability": 0.9062 + }, + { + "start": 5333.74, + "end": 5336.64, + "probability": 0.9863 + }, + { + "start": 5337.64, + "end": 5338.52, + "probability": 0.9917 + }, + { + "start": 5339.48, + "end": 5342.68, + "probability": 0.9378 + }, + { + "start": 5343.18, + "end": 5348.56, + "probability": 0.9932 + }, + { + "start": 5349.32, + "end": 5349.92, + "probability": 0.7177 + }, + { + "start": 5350.08, + "end": 5351.36, + "probability": 0.8634 + }, + { + "start": 5351.84, + "end": 5352.9, + "probability": 0.745 + }, + { + "start": 5353.08, + "end": 5354.68, + "probability": 0.961 + }, + { + "start": 5355.1, + "end": 5356.46, + "probability": 0.9659 + }, + { + "start": 5356.6, + "end": 5357.56, + "probability": 0.7819 + }, + { + "start": 5358.08, + "end": 5359.98, + "probability": 0.903 + }, + { + "start": 5360.14, + "end": 5362.74, + "probability": 0.9627 + }, + { + "start": 5363.4, + "end": 5367.74, + "probability": 0.9355 + }, + { + "start": 5368.18, + "end": 5369.98, + "probability": 0.9418 + }, + { + "start": 5370.64, + "end": 5376.16, + "probability": 0.9382 + }, + { + "start": 5376.84, + "end": 5377.9, + "probability": 0.7527 + }, + { + "start": 5378.78, + "end": 5381.52, + "probability": 0.979 + }, + { + "start": 5381.86, + "end": 5386.94, + "probability": 0.8676 + }, + { + "start": 5387.82, + "end": 5392.9, + "probability": 0.9468 + }, + { + "start": 5393.6, + "end": 5401.6, + "probability": 0.992 + }, + { + "start": 5401.7, + "end": 5403.1, + "probability": 0.997 + }, + { + "start": 5403.62, + "end": 5409.0, + "probability": 0.9921 + }, + { + "start": 5409.82, + "end": 5412.1, + "probability": 0.9978 + }, + { + "start": 5412.62, + "end": 5415.58, + "probability": 0.9221 + }, + { + "start": 5416.02, + "end": 5419.34, + "probability": 0.7619 + }, + { + "start": 5420.3, + "end": 5422.86, + "probability": 0.9846 + }, + { + "start": 5423.24, + "end": 5425.9, + "probability": 0.9771 + }, + { + "start": 5426.52, + "end": 5430.76, + "probability": 0.9843 + }, + { + "start": 5431.44, + "end": 5434.12, + "probability": 0.9963 + }, + { + "start": 5434.54, + "end": 5435.87, + "probability": 0.9951 + }, + { + "start": 5436.28, + "end": 5438.62, + "probability": 0.9629 + }, + { + "start": 5439.14, + "end": 5441.06, + "probability": 0.9485 + }, + { + "start": 5441.58, + "end": 5445.52, + "probability": 0.9628 + }, + { + "start": 5446.04, + "end": 5446.66, + "probability": 0.7309 + }, + { + "start": 5447.24, + "end": 5451.86, + "probability": 0.9846 + }, + { + "start": 5452.36, + "end": 5454.04, + "probability": 0.9883 + }, + { + "start": 5454.64, + "end": 5455.66, + "probability": 0.7864 + }, + { + "start": 5456.7, + "end": 5462.1, + "probability": 0.9806 + }, + { + "start": 5462.74, + "end": 5464.28, + "probability": 0.8516 + }, + { + "start": 5464.38, + "end": 5465.14, + "probability": 0.8625 + }, + { + "start": 5465.56, + "end": 5471.8, + "probability": 0.7421 + }, + { + "start": 5472.38, + "end": 5473.18, + "probability": 0.2356 + }, + { + "start": 5473.34, + "end": 5473.9, + "probability": 0.6898 + }, + { + "start": 5474.1, + "end": 5478.14, + "probability": 0.9097 + }, + { + "start": 5478.66, + "end": 5478.88, + "probability": 0.4059 + }, + { + "start": 5478.92, + "end": 5482.78, + "probability": 0.9775 + }, + { + "start": 5483.24, + "end": 5483.77, + "probability": 0.6756 + }, + { + "start": 5484.98, + "end": 5485.14, + "probability": 0.5835 + }, + { + "start": 5485.72, + "end": 5486.64, + "probability": 0.8929 + }, + { + "start": 5487.22, + "end": 5492.28, + "probability": 0.9561 + }, + { + "start": 5492.74, + "end": 5495.46, + "probability": 0.9571 + }, + { + "start": 5496.3, + "end": 5501.08, + "probability": 0.9598 + }, + { + "start": 5502.04, + "end": 5504.18, + "probability": 0.9288 + }, + { + "start": 5505.2, + "end": 5506.5, + "probability": 0.9856 + }, + { + "start": 5507.44, + "end": 5510.9, + "probability": 0.7269 + }, + { + "start": 5511.56, + "end": 5513.58, + "probability": 0.8874 + }, + { + "start": 5513.76, + "end": 5515.34, + "probability": 0.9844 + }, + { + "start": 5516.06, + "end": 5521.68, + "probability": 0.9617 + }, + { + "start": 5522.1, + "end": 5523.58, + "probability": 0.9978 + }, + { + "start": 5524.02, + "end": 5525.74, + "probability": 0.9888 + }, + { + "start": 5525.9, + "end": 5526.98, + "probability": 0.7754 + }, + { + "start": 5527.36, + "end": 5530.4, + "probability": 0.9655 + }, + { + "start": 5531.2, + "end": 5532.66, + "probability": 0.9961 + }, + { + "start": 5532.78, + "end": 5533.26, + "probability": 0.7469 + }, + { + "start": 5533.34, + "end": 5535.34, + "probability": 0.6704 + }, + { + "start": 5536.2, + "end": 5538.5, + "probability": 0.9883 + }, + { + "start": 5538.64, + "end": 5540.02, + "probability": 0.0256 + }, + { + "start": 5540.34, + "end": 5542.12, + "probability": 0.9502 + }, + { + "start": 5542.2, + "end": 5542.68, + "probability": 0.9029 + }, + { + "start": 5543.84, + "end": 5547.21, + "probability": 0.5492 + }, + { + "start": 5547.24, + "end": 5547.78, + "probability": 0.7747 + }, + { + "start": 5547.78, + "end": 5548.8, + "probability": 0.2031 + }, + { + "start": 5549.12, + "end": 5551.06, + "probability": 0.244 + }, + { + "start": 5551.52, + "end": 5552.62, + "probability": 0.2864 + }, + { + "start": 5555.1, + "end": 5557.4, + "probability": 0.4944 + }, + { + "start": 5557.78, + "end": 5558.5, + "probability": 0.1222 + }, + { + "start": 5569.46, + "end": 5570.58, + "probability": 0.2114 + }, + { + "start": 5574.98, + "end": 5577.0, + "probability": 0.844 + }, + { + "start": 5577.64, + "end": 5578.46, + "probability": 0.5791 + }, + { + "start": 5583.52, + "end": 5589.74, + "probability": 0.9284 + }, + { + "start": 5591.06, + "end": 5592.26, + "probability": 0.9659 + }, + { + "start": 5592.42, + "end": 5593.14, + "probability": 0.3794 + }, + { + "start": 5593.5, + "end": 5594.04, + "probability": 0.6289 + }, + { + "start": 5594.64, + "end": 5596.84, + "probability": 0.9656 + }, + { + "start": 5597.32, + "end": 5601.7, + "probability": 0.9983 + }, + { + "start": 5601.78, + "end": 5602.7, + "probability": 0.9966 + }, + { + "start": 5603.82, + "end": 5609.06, + "probability": 0.9469 + }, + { + "start": 5609.84, + "end": 5612.5, + "probability": 0.8591 + }, + { + "start": 5614.02, + "end": 5615.26, + "probability": 0.9148 + }, + { + "start": 5615.48, + "end": 5616.34, + "probability": 0.9033 + }, + { + "start": 5616.4, + "end": 5617.86, + "probability": 0.8623 + }, + { + "start": 5618.94, + "end": 5620.75, + "probability": 0.975 + }, + { + "start": 5621.34, + "end": 5623.84, + "probability": 0.843 + }, + { + "start": 5624.44, + "end": 5625.7, + "probability": 0.7193 + }, + { + "start": 5626.22, + "end": 5627.68, + "probability": 0.8466 + }, + { + "start": 5628.66, + "end": 5630.32, + "probability": 0.7567 + }, + { + "start": 5631.4, + "end": 5633.54, + "probability": 0.8804 + }, + { + "start": 5633.82, + "end": 5635.42, + "probability": 0.8883 + }, + { + "start": 5637.12, + "end": 5638.74, + "probability": 0.5001 + }, + { + "start": 5639.72, + "end": 5644.02, + "probability": 0.7541 + }, + { + "start": 5644.96, + "end": 5646.02, + "probability": 0.5581 + }, + { + "start": 5646.8, + "end": 5652.14, + "probability": 0.9948 + }, + { + "start": 5652.96, + "end": 5653.66, + "probability": 0.812 + }, + { + "start": 5653.82, + "end": 5656.48, + "probability": 0.9811 + }, + { + "start": 5657.2, + "end": 5660.24, + "probability": 0.9149 + }, + { + "start": 5661.06, + "end": 5665.82, + "probability": 0.989 + }, + { + "start": 5666.48, + "end": 5667.86, + "probability": 0.4372 + }, + { + "start": 5668.38, + "end": 5670.66, + "probability": 0.9894 + }, + { + "start": 5670.98, + "end": 5671.39, + "probability": 0.9694 + }, + { + "start": 5672.14, + "end": 5673.32, + "probability": 0.9755 + }, + { + "start": 5674.0, + "end": 5675.04, + "probability": 0.5038 + }, + { + "start": 5677.4, + "end": 5680.96, + "probability": 0.8895 + }, + { + "start": 5682.74, + "end": 5683.34, + "probability": 0.7298 + }, + { + "start": 5684.02, + "end": 5688.68, + "probability": 0.9897 + }, + { + "start": 5690.12, + "end": 5691.88, + "probability": 0.7659 + }, + { + "start": 5692.48, + "end": 5693.7, + "probability": 0.8487 + }, + { + "start": 5694.72, + "end": 5698.72, + "probability": 0.9575 + }, + { + "start": 5699.24, + "end": 5700.22, + "probability": 0.6204 + }, + { + "start": 5700.68, + "end": 5704.72, + "probability": 0.9912 + }, + { + "start": 5706.02, + "end": 5706.4, + "probability": 0.7631 + }, + { + "start": 5707.02, + "end": 5708.2, + "probability": 0.9235 + }, + { + "start": 5708.24, + "end": 5711.06, + "probability": 0.9912 + }, + { + "start": 5711.24, + "end": 5712.1, + "probability": 0.8554 + }, + { + "start": 5712.92, + "end": 5713.58, + "probability": 0.63 + }, + { + "start": 5713.6, + "end": 5714.62, + "probability": 0.9177 + }, + { + "start": 5714.8, + "end": 5716.32, + "probability": 0.9972 + }, + { + "start": 5717.38, + "end": 5721.2, + "probability": 0.998 + }, + { + "start": 5722.0, + "end": 5723.16, + "probability": 0.7369 + }, + { + "start": 5724.1, + "end": 5724.86, + "probability": 0.8847 + }, + { + "start": 5725.38, + "end": 5731.06, + "probability": 0.9973 + }, + { + "start": 5733.13, + "end": 5734.19, + "probability": 0.9811 + }, + { + "start": 5735.22, + "end": 5736.5, + "probability": 0.9768 + }, + { + "start": 5737.16, + "end": 5737.72, + "probability": 0.9829 + }, + { + "start": 5738.64, + "end": 5740.0, + "probability": 0.9535 + }, + { + "start": 5740.16, + "end": 5741.24, + "probability": 0.8451 + }, + { + "start": 5741.58, + "end": 5744.24, + "probability": 0.9821 + }, + { + "start": 5745.64, + "end": 5745.74, + "probability": 0.3084 + }, + { + "start": 5745.9, + "end": 5747.48, + "probability": 0.8274 + }, + { + "start": 5747.62, + "end": 5750.08, + "probability": 0.8636 + }, + { + "start": 5750.8, + "end": 5752.61, + "probability": 0.9868 + }, + { + "start": 5753.1, + "end": 5754.41, + "probability": 0.9966 + }, + { + "start": 5755.76, + "end": 5763.72, + "probability": 0.9839 + }, + { + "start": 5763.96, + "end": 5765.96, + "probability": 0.9459 + }, + { + "start": 5766.3, + "end": 5768.02, + "probability": 0.8993 + }, + { + "start": 5768.88, + "end": 5770.96, + "probability": 0.998 + }, + { + "start": 5772.1, + "end": 5776.14, + "probability": 0.9884 + }, + { + "start": 5776.7, + "end": 5778.4, + "probability": 0.996 + }, + { + "start": 5779.3, + "end": 5780.36, + "probability": 0.3437 + }, + { + "start": 5781.68, + "end": 5784.12, + "probability": 0.9315 + }, + { + "start": 5784.16, + "end": 5785.12, + "probability": 0.7371 + }, + { + "start": 5785.72, + "end": 5786.55, + "probability": 0.8188 + }, + { + "start": 5786.66, + "end": 5787.39, + "probability": 0.959 + }, + { + "start": 5789.0, + "end": 5793.72, + "probability": 0.9722 + }, + { + "start": 5794.32, + "end": 5795.48, + "probability": 0.826 + }, + { + "start": 5796.5, + "end": 5798.7, + "probability": 0.7175 + }, + { + "start": 5798.78, + "end": 5801.7, + "probability": 0.8857 + }, + { + "start": 5801.8, + "end": 5803.02, + "probability": 0.971 + }, + { + "start": 5803.28, + "end": 5804.34, + "probability": 0.974 + }, + { + "start": 5805.56, + "end": 5808.96, + "probability": 0.9849 + }, + { + "start": 5809.68, + "end": 5811.96, + "probability": 0.9974 + }, + { + "start": 5813.68, + "end": 5814.94, + "probability": 0.9518 + }, + { + "start": 5815.04, + "end": 5819.12, + "probability": 0.9208 + }, + { + "start": 5819.42, + "end": 5820.78, + "probability": 0.7566 + }, + { + "start": 5821.74, + "end": 5824.14, + "probability": 0.9251 + }, + { + "start": 5825.16, + "end": 5826.16, + "probability": 0.8922 + }, + { + "start": 5827.58, + "end": 5830.58, + "probability": 0.9976 + }, + { + "start": 5832.22, + "end": 5835.16, + "probability": 0.9974 + }, + { + "start": 5835.22, + "end": 5837.28, + "probability": 0.9978 + }, + { + "start": 5838.44, + "end": 5840.66, + "probability": 0.9202 + }, + { + "start": 5840.82, + "end": 5842.81, + "probability": 0.8928 + }, + { + "start": 5844.94, + "end": 5848.74, + "probability": 0.9734 + }, + { + "start": 5849.68, + "end": 5850.78, + "probability": 0.6765 + }, + { + "start": 5850.9, + "end": 5853.78, + "probability": 0.9566 + }, + { + "start": 5853.84, + "end": 5854.5, + "probability": 0.911 + }, + { + "start": 5854.7, + "end": 5857.04, + "probability": 0.5594 + }, + { + "start": 5857.44, + "end": 5858.64, + "probability": 0.7309 + }, + { + "start": 5858.96, + "end": 5859.4, + "probability": 0.5244 + }, + { + "start": 5860.12, + "end": 5862.22, + "probability": 0.9821 + }, + { + "start": 5863.06, + "end": 5865.81, + "probability": 0.8499 + }, + { + "start": 5866.64, + "end": 5867.08, + "probability": 0.8037 + }, + { + "start": 5867.18, + "end": 5868.0, + "probability": 0.9155 + }, + { + "start": 5869.02, + "end": 5871.98, + "probability": 0.9984 + }, + { + "start": 5873.04, + "end": 5873.56, + "probability": 0.5383 + }, + { + "start": 5873.64, + "end": 5874.76, + "probability": 0.994 + }, + { + "start": 5875.26, + "end": 5878.22, + "probability": 0.8389 + }, + { + "start": 5879.24, + "end": 5879.44, + "probability": 0.5768 + }, + { + "start": 5879.48, + "end": 5879.82, + "probability": 0.938 + }, + { + "start": 5879.92, + "end": 5881.0, + "probability": 0.9639 + }, + { + "start": 5881.12, + "end": 5881.74, + "probability": 0.908 + }, + { + "start": 5881.78, + "end": 5883.28, + "probability": 0.9806 + }, + { + "start": 5884.0, + "end": 5884.5, + "probability": 0.9103 + }, + { + "start": 5884.56, + "end": 5885.4, + "probability": 0.9564 + }, + { + "start": 5885.86, + "end": 5887.82, + "probability": 0.9634 + }, + { + "start": 5887.94, + "end": 5889.42, + "probability": 0.9109 + }, + { + "start": 5891.42, + "end": 5891.64, + "probability": 0.8564 + }, + { + "start": 5891.78, + "end": 5893.94, + "probability": 0.998 + }, + { + "start": 5893.94, + "end": 5896.52, + "probability": 0.9873 + }, + { + "start": 5897.62, + "end": 5899.7, + "probability": 0.9844 + }, + { + "start": 5900.58, + "end": 5902.5, + "probability": 0.9853 + }, + { + "start": 5903.72, + "end": 5906.94, + "probability": 0.9893 + }, + { + "start": 5907.36, + "end": 5907.82, + "probability": 0.7123 + }, + { + "start": 5907.92, + "end": 5908.2, + "probability": 0.8363 + }, + { + "start": 5909.82, + "end": 5913.32, + "probability": 0.9995 + }, + { + "start": 5916.36, + "end": 5918.94, + "probability": 0.8273 + }, + { + "start": 5919.6, + "end": 5920.74, + "probability": 0.7823 + }, + { + "start": 5921.56, + "end": 5924.86, + "probability": 0.7963 + }, + { + "start": 5926.72, + "end": 5930.1, + "probability": 0.7565 + }, + { + "start": 5930.74, + "end": 5930.74, + "probability": 0.4773 + }, + { + "start": 5932.3, + "end": 5934.78, + "probability": 0.9741 + }, + { + "start": 5935.72, + "end": 5939.42, + "probability": 0.7463 + }, + { + "start": 5940.48, + "end": 5941.18, + "probability": 0.8901 + }, + { + "start": 5942.56, + "end": 5943.22, + "probability": 0.8578 + }, + { + "start": 5943.34, + "end": 5946.56, + "probability": 0.9894 + }, + { + "start": 5948.06, + "end": 5952.64, + "probability": 0.9005 + }, + { + "start": 5953.86, + "end": 5955.88, + "probability": 0.6683 + }, + { + "start": 5957.22, + "end": 5957.78, + "probability": 0.9703 + }, + { + "start": 5959.88, + "end": 5960.34, + "probability": 0.9109 + }, + { + "start": 5960.42, + "end": 5961.0, + "probability": 0.9173 + }, + { + "start": 5961.12, + "end": 5961.32, + "probability": 0.7359 + }, + { + "start": 5961.48, + "end": 5962.09, + "probability": 0.9058 + }, + { + "start": 5964.88, + "end": 5970.28, + "probability": 0.9768 + }, + { + "start": 5970.9, + "end": 5972.16, + "probability": 0.7964 + }, + { + "start": 5972.94, + "end": 5976.68, + "probability": 0.9546 + }, + { + "start": 5977.38, + "end": 5979.0, + "probability": 0.7777 + }, + { + "start": 5979.6, + "end": 5984.56, + "probability": 0.9858 + }, + { + "start": 5985.16, + "end": 5986.54, + "probability": 0.9659 + }, + { + "start": 5987.12, + "end": 5988.98, + "probability": 0.993 + }, + { + "start": 5990.58, + "end": 5993.38, + "probability": 0.9686 + }, + { + "start": 5993.78, + "end": 5995.96, + "probability": 0.8093 + }, + { + "start": 5997.04, + "end": 5999.34, + "probability": 0.963 + }, + { + "start": 6000.54, + "end": 6002.44, + "probability": 0.9198 + }, + { + "start": 6003.26, + "end": 6003.9, + "probability": 0.7972 + }, + { + "start": 6004.46, + "end": 6006.12, + "probability": 0.8053 + }, + { + "start": 6007.82, + "end": 6012.39, + "probability": 0.8303 + }, + { + "start": 6014.18, + "end": 6016.96, + "probability": 0.7367 + }, + { + "start": 6018.24, + "end": 6021.36, + "probability": 0.9541 + }, + { + "start": 6021.5, + "end": 6024.1, + "probability": 0.9921 + }, + { + "start": 6024.6, + "end": 6025.68, + "probability": 0.9919 + }, + { + "start": 6025.78, + "end": 6027.62, + "probability": 0.9585 + }, + { + "start": 6027.64, + "end": 6028.2, + "probability": 0.7702 + }, + { + "start": 6028.68, + "end": 6030.02, + "probability": 0.9254 + }, + { + "start": 6030.32, + "end": 6031.41, + "probability": 0.9538 + }, + { + "start": 6031.83, + "end": 6033.1, + "probability": 0.9735 + }, + { + "start": 6033.64, + "end": 6033.92, + "probability": 0.7775 + }, + { + "start": 6034.36, + "end": 6039.6, + "probability": 0.189 + }, + { + "start": 6039.6, + "end": 6040.2, + "probability": 0.3351 + }, + { + "start": 6041.66, + "end": 6043.58, + "probability": 0.0047 + }, + { + "start": 6060.36, + "end": 6060.8, + "probability": 0.1488 + }, + { + "start": 6064.1, + "end": 6064.52, + "probability": 0.5763 + }, + { + "start": 6072.54, + "end": 6072.64, + "probability": 0.4582 + }, + { + "start": 6073.36, + "end": 6074.16, + "probability": 0.4354 + }, + { + "start": 6074.18, + "end": 6074.76, + "probability": 0.6915 + }, + { + "start": 6076.04, + "end": 6082.0, + "probability": 0.9935 + }, + { + "start": 6082.0, + "end": 6087.36, + "probability": 0.9844 + }, + { + "start": 6088.62, + "end": 6091.9, + "probability": 0.1214 + }, + { + "start": 6097.38, + "end": 6099.54, + "probability": 0.9858 + }, + { + "start": 6100.28, + "end": 6101.8, + "probability": 0.821 + }, + { + "start": 6102.58, + "end": 6105.32, + "probability": 0.9805 + }, + { + "start": 6105.82, + "end": 6107.02, + "probability": 0.9822 + }, + { + "start": 6107.56, + "end": 6112.06, + "probability": 0.9793 + }, + { + "start": 6112.26, + "end": 6113.1, + "probability": 0.3775 + }, + { + "start": 6114.48, + "end": 6117.62, + "probability": 0.9876 + }, + { + "start": 6117.7, + "end": 6118.8, + "probability": 0.9834 + }, + { + "start": 6119.42, + "end": 6119.44, + "probability": 0.7959 + }, + { + "start": 6120.06, + "end": 6122.44, + "probability": 0.9435 + }, + { + "start": 6123.24, + "end": 6125.58, + "probability": 0.9427 + }, + { + "start": 6126.4, + "end": 6132.2, + "probability": 0.9976 + }, + { + "start": 6132.78, + "end": 6133.68, + "probability": 0.8763 + }, + { + "start": 6134.34, + "end": 6135.28, + "probability": 0.8076 + }, + { + "start": 6135.46, + "end": 6136.04, + "probability": 0.8798 + }, + { + "start": 6136.46, + "end": 6138.76, + "probability": 0.9861 + }, + { + "start": 6139.26, + "end": 6140.22, + "probability": 0.8389 + }, + { + "start": 6140.34, + "end": 6141.04, + "probability": 0.9076 + }, + { + "start": 6141.46, + "end": 6142.32, + "probability": 0.992 + }, + { + "start": 6142.4, + "end": 6143.22, + "probability": 0.9932 + }, + { + "start": 6143.24, + "end": 6143.92, + "probability": 0.8208 + }, + { + "start": 6144.36, + "end": 6146.98, + "probability": 0.915 + }, + { + "start": 6148.32, + "end": 6152.0, + "probability": 0.9401 + }, + { + "start": 6152.7, + "end": 6153.1, + "probability": 0.7098 + }, + { + "start": 6154.4, + "end": 6155.58, + "probability": 0.9358 + }, + { + "start": 6156.14, + "end": 6157.38, + "probability": 0.9133 + }, + { + "start": 6158.04, + "end": 6160.09, + "probability": 0.7241 + }, + { + "start": 6160.64, + "end": 6162.82, + "probability": 0.8426 + }, + { + "start": 6163.62, + "end": 6164.2, + "probability": 0.6594 + }, + { + "start": 6165.26, + "end": 6166.56, + "probability": 0.7565 + }, + { + "start": 6167.3, + "end": 6169.1, + "probability": 0.9983 + }, + { + "start": 6169.74, + "end": 6172.74, + "probability": 0.9686 + }, + { + "start": 6173.02, + "end": 6174.88, + "probability": 0.6335 + }, + { + "start": 6175.68, + "end": 6178.34, + "probability": 0.9595 + }, + { + "start": 6178.38, + "end": 6181.26, + "probability": 0.9351 + }, + { + "start": 6181.72, + "end": 6182.34, + "probability": 0.3402 + }, + { + "start": 6182.76, + "end": 6183.9, + "probability": 0.998 + }, + { + "start": 6184.3, + "end": 6190.34, + "probability": 0.8611 + }, + { + "start": 6190.8, + "end": 6195.0, + "probability": 0.9939 + }, + { + "start": 6195.62, + "end": 6197.04, + "probability": 0.7364 + }, + { + "start": 6197.72, + "end": 6198.68, + "probability": 0.624 + }, + { + "start": 6199.34, + "end": 6201.22, + "probability": 0.8568 + }, + { + "start": 6202.18, + "end": 6205.32, + "probability": 0.973 + }, + { + "start": 6205.92, + "end": 6208.96, + "probability": 0.9775 + }, + { + "start": 6209.38, + "end": 6210.93, + "probability": 0.9705 + }, + { + "start": 6211.68, + "end": 6213.18, + "probability": 0.6753 + }, + { + "start": 6214.1, + "end": 6216.88, + "probability": 0.9943 + }, + { + "start": 6217.52, + "end": 6221.78, + "probability": 0.9902 + }, + { + "start": 6221.78, + "end": 6224.8, + "probability": 0.9901 + }, + { + "start": 6225.64, + "end": 6229.16, + "probability": 0.9282 + }, + { + "start": 6230.76, + "end": 6231.06, + "probability": 0.4509 + }, + { + "start": 6231.08, + "end": 6234.22, + "probability": 0.9946 + }, + { + "start": 6234.36, + "end": 6235.16, + "probability": 0.4874 + }, + { + "start": 6235.64, + "end": 6236.66, + "probability": 0.9531 + }, + { + "start": 6236.86, + "end": 6239.54, + "probability": 0.9557 + }, + { + "start": 6239.64, + "end": 6240.38, + "probability": 0.9678 + }, + { + "start": 6241.4, + "end": 6243.62, + "probability": 0.8698 + }, + { + "start": 6244.38, + "end": 6248.14, + "probability": 0.9919 + }, + { + "start": 6248.58, + "end": 6249.32, + "probability": 0.5674 + }, + { + "start": 6249.68, + "end": 6250.3, + "probability": 0.9276 + }, + { + "start": 6250.6, + "end": 6251.78, + "probability": 0.9849 + }, + { + "start": 6252.32, + "end": 6254.64, + "probability": 0.9774 + }, + { + "start": 6255.46, + "end": 6257.26, + "probability": 0.9956 + }, + { + "start": 6257.62, + "end": 6260.26, + "probability": 0.9736 + }, + { + "start": 6261.84, + "end": 6264.52, + "probability": 0.9634 + }, + { + "start": 6264.96, + "end": 6265.86, + "probability": 0.9995 + }, + { + "start": 6265.94, + "end": 6267.24, + "probability": 0.8592 + }, + { + "start": 6267.58, + "end": 6268.46, + "probability": 0.7057 + }, + { + "start": 6268.52, + "end": 6269.86, + "probability": 0.7833 + }, + { + "start": 6269.92, + "end": 6273.5, + "probability": 0.9526 + }, + { + "start": 6273.64, + "end": 6274.34, + "probability": 0.7402 + }, + { + "start": 6274.46, + "end": 6276.51, + "probability": 0.6797 + }, + { + "start": 6276.96, + "end": 6278.04, + "probability": 0.6739 + }, + { + "start": 6278.42, + "end": 6278.91, + "probability": 0.9565 + }, + { + "start": 6279.08, + "end": 6280.94, + "probability": 0.9666 + }, + { + "start": 6281.77, + "end": 6283.2, + "probability": 0.9709 + }, + { + "start": 6284.36, + "end": 6287.59, + "probability": 0.974 + }, + { + "start": 6289.38, + "end": 6291.18, + "probability": 0.9885 + }, + { + "start": 6292.18, + "end": 6293.2, + "probability": 0.8459 + }, + { + "start": 6293.9, + "end": 6294.65, + "probability": 0.9629 + }, + { + "start": 6296.84, + "end": 6297.84, + "probability": 0.8664 + }, + { + "start": 6299.28, + "end": 6301.16, + "probability": 0.9855 + }, + { + "start": 6303.22, + "end": 6306.3, + "probability": 0.6341 + }, + { + "start": 6306.84, + "end": 6310.24, + "probability": 0.9979 + }, + { + "start": 6310.7, + "end": 6312.42, + "probability": 0.9978 + }, + { + "start": 6313.24, + "end": 6313.76, + "probability": 0.8783 + }, + { + "start": 6315.38, + "end": 6318.44, + "probability": 0.9158 + }, + { + "start": 6318.96, + "end": 6321.56, + "probability": 0.9673 + }, + { + "start": 6322.58, + "end": 6324.62, + "probability": 0.9828 + }, + { + "start": 6325.22, + "end": 6326.36, + "probability": 0.973 + }, + { + "start": 6327.32, + "end": 6328.91, + "probability": 0.8779 + }, + { + "start": 6329.84, + "end": 6331.98, + "probability": 0.9912 + }, + { + "start": 6332.98, + "end": 6335.78, + "probability": 0.9977 + }, + { + "start": 6336.64, + "end": 6338.02, + "probability": 0.9956 + }, + { + "start": 6339.02, + "end": 6342.1, + "probability": 0.9883 + }, + { + "start": 6342.9, + "end": 6343.64, + "probability": 0.8065 + }, + { + "start": 6345.24, + "end": 6346.04, + "probability": 0.9048 + }, + { + "start": 6346.96, + "end": 6347.8, + "probability": 0.6402 + }, + { + "start": 6348.86, + "end": 6349.5, + "probability": 0.7075 + }, + { + "start": 6350.42, + "end": 6351.1, + "probability": 0.96 + }, + { + "start": 6352.62, + "end": 6357.2, + "probability": 0.947 + }, + { + "start": 6358.08, + "end": 6359.46, + "probability": 0.993 + }, + { + "start": 6363.98, + "end": 6366.3, + "probability": 0.9792 + }, + { + "start": 6367.72, + "end": 6370.98, + "probability": 0.9974 + }, + { + "start": 6370.98, + "end": 6374.86, + "probability": 0.9919 + }, + { + "start": 6374.96, + "end": 6375.62, + "probability": 0.8173 + }, + { + "start": 6376.16, + "end": 6377.92, + "probability": 0.9824 + }, + { + "start": 6379.14, + "end": 6382.6, + "probability": 0.7928 + }, + { + "start": 6384.24, + "end": 6385.66, + "probability": 0.8772 + }, + { + "start": 6386.62, + "end": 6388.12, + "probability": 0.7983 + }, + { + "start": 6388.32, + "end": 6389.78, + "probability": 0.7134 + }, + { + "start": 6389.98, + "end": 6390.84, + "probability": 0.8659 + }, + { + "start": 6391.3, + "end": 6392.56, + "probability": 0.9785 + }, + { + "start": 6392.58, + "end": 6393.48, + "probability": 0.8589 + }, + { + "start": 6393.98, + "end": 6395.14, + "probability": 0.9412 + }, + { + "start": 6396.36, + "end": 6397.24, + "probability": 0.9585 + }, + { + "start": 6399.24, + "end": 6400.0, + "probability": 0.6365 + }, + { + "start": 6401.5, + "end": 6405.02, + "probability": 0.7018 + }, + { + "start": 6405.16, + "end": 6406.86, + "probability": 0.986 + }, + { + "start": 6408.22, + "end": 6410.78, + "probability": 0.8237 + }, + { + "start": 6411.32, + "end": 6413.15, + "probability": 0.993 + }, + { + "start": 6413.76, + "end": 6415.18, + "probability": 0.9487 + }, + { + "start": 6415.24, + "end": 6416.22, + "probability": 0.8435 + }, + { + "start": 6416.26, + "end": 6416.84, + "probability": 0.7983 + }, + { + "start": 6417.18, + "end": 6418.48, + "probability": 0.9267 + }, + { + "start": 6418.64, + "end": 6421.82, + "probability": 0.9784 + }, + { + "start": 6422.38, + "end": 6424.26, + "probability": 0.9813 + }, + { + "start": 6424.3, + "end": 6426.68, + "probability": 0.9172 + }, + { + "start": 6427.96, + "end": 6430.08, + "probability": 0.7712 + }, + { + "start": 6431.02, + "end": 6431.88, + "probability": 0.9846 + }, + { + "start": 6432.04, + "end": 6432.64, + "probability": 0.8677 + }, + { + "start": 6432.7, + "end": 6434.78, + "probability": 0.9897 + }, + { + "start": 6435.66, + "end": 6436.68, + "probability": 0.3215 + }, + { + "start": 6437.3, + "end": 6439.76, + "probability": 0.9701 + }, + { + "start": 6439.98, + "end": 6440.46, + "probability": 0.8692 + }, + { + "start": 6441.16, + "end": 6442.02, + "probability": 0.9356 + }, + { + "start": 6443.04, + "end": 6443.78, + "probability": 0.5608 + }, + { + "start": 6444.7, + "end": 6445.52, + "probability": 0.5694 + }, + { + "start": 6446.08, + "end": 6446.96, + "probability": 0.9503 + }, + { + "start": 6447.28, + "end": 6449.38, + "probability": 0.9976 + }, + { + "start": 6451.36, + "end": 6454.88, + "probability": 0.987 + }, + { + "start": 6455.46, + "end": 6458.38, + "probability": 0.9092 + }, + { + "start": 6459.32, + "end": 6459.7, + "probability": 0.9234 + }, + { + "start": 6460.48, + "end": 6461.62, + "probability": 0.63 + }, + { + "start": 6462.06, + "end": 6462.5, + "probability": 0.8568 + }, + { + "start": 6463.1, + "end": 6465.16, + "probability": 0.9658 + }, + { + "start": 6465.42, + "end": 6468.68, + "probability": 0.9093 + }, + { + "start": 6477.5, + "end": 6477.66, + "probability": 0.0836 + }, + { + "start": 6482.74, + "end": 6482.92, + "probability": 0.1566 + }, + { + "start": 6482.92, + "end": 6483.34, + "probability": 0.098 + }, + { + "start": 6504.88, + "end": 6506.99, + "probability": 0.9856 + }, + { + "start": 6508.3, + "end": 6509.4, + "probability": 0.9805 + }, + { + "start": 6510.3, + "end": 6510.5, + "probability": 0.7603 + }, + { + "start": 6511.28, + "end": 6512.66, + "probability": 0.8082 + }, + { + "start": 6514.08, + "end": 6515.28, + "probability": 0.5351 + }, + { + "start": 6516.46, + "end": 6517.48, + "probability": 0.9581 + }, + { + "start": 6518.04, + "end": 6522.76, + "probability": 0.9348 + }, + { + "start": 6524.26, + "end": 6526.48, + "probability": 0.9907 + }, + { + "start": 6527.78, + "end": 6528.42, + "probability": 0.4296 + }, + { + "start": 6528.7, + "end": 6529.3, + "probability": 0.7365 + }, + { + "start": 6529.46, + "end": 6530.14, + "probability": 0.7886 + }, + { + "start": 6530.38, + "end": 6533.29, + "probability": 0.8719 + }, + { + "start": 6535.22, + "end": 6537.0, + "probability": 0.8702 + }, + { + "start": 6537.64, + "end": 6538.72, + "probability": 0.9946 + }, + { + "start": 6539.84, + "end": 6541.06, + "probability": 0.8101 + }, + { + "start": 6542.38, + "end": 6543.02, + "probability": 0.9892 + }, + { + "start": 6543.3, + "end": 6544.52, + "probability": 0.9954 + }, + { + "start": 6545.33, + "end": 6548.42, + "probability": 0.9191 + }, + { + "start": 6550.92, + "end": 6552.8, + "probability": 0.8928 + }, + { + "start": 6553.3, + "end": 6553.62, + "probability": 0.4607 + }, + { + "start": 6553.92, + "end": 6554.88, + "probability": 0.9341 + }, + { + "start": 6555.84, + "end": 6556.94, + "probability": 0.9315 + }, + { + "start": 6558.78, + "end": 6564.5, + "probability": 0.665 + }, + { + "start": 6564.56, + "end": 6567.3, + "probability": 0.9519 + }, + { + "start": 6567.72, + "end": 6568.62, + "probability": 0.9636 + }, + { + "start": 6570.12, + "end": 6571.0, + "probability": 0.9918 + }, + { + "start": 6571.14, + "end": 6572.1, + "probability": 0.7416 + }, + { + "start": 6572.2, + "end": 6576.66, + "probability": 0.9949 + }, + { + "start": 6576.88, + "end": 6578.14, + "probability": 0.8469 + }, + { + "start": 6579.18, + "end": 6582.8, + "probability": 0.9504 + }, + { + "start": 6583.8, + "end": 6586.42, + "probability": 0.9616 + }, + { + "start": 6586.96, + "end": 6589.36, + "probability": 0.9955 + }, + { + "start": 6590.14, + "end": 6593.38, + "probability": 0.9294 + }, + { + "start": 6593.56, + "end": 6594.46, + "probability": 0.8879 + }, + { + "start": 6596.12, + "end": 6598.94, + "probability": 0.5719 + }, + { + "start": 6600.06, + "end": 6601.74, + "probability": 0.9715 + }, + { + "start": 6602.44, + "end": 6604.88, + "probability": 0.8702 + }, + { + "start": 6605.5, + "end": 6606.16, + "probability": 0.8443 + }, + { + "start": 6607.08, + "end": 6609.4, + "probability": 0.8474 + }, + { + "start": 6610.62, + "end": 6613.36, + "probability": 0.993 + }, + { + "start": 6614.3, + "end": 6616.58, + "probability": 0.9807 + }, + { + "start": 6616.76, + "end": 6618.24, + "probability": 0.8445 + }, + { + "start": 6618.28, + "end": 6619.42, + "probability": 0.5203 + }, + { + "start": 6619.58, + "end": 6620.88, + "probability": 0.9561 + }, + { + "start": 6620.92, + "end": 6621.85, + "probability": 0.4654 + }, + { + "start": 6622.3, + "end": 6626.14, + "probability": 0.9697 + }, + { + "start": 6626.5, + "end": 6627.5, + "probability": 0.8962 + }, + { + "start": 6628.14, + "end": 6628.96, + "probability": 0.6015 + }, + { + "start": 6632.18, + "end": 6634.66, + "probability": 0.9761 + }, + { + "start": 6635.38, + "end": 6639.1, + "probability": 0.9486 + }, + { + "start": 6640.54, + "end": 6642.58, + "probability": 0.9918 + }, + { + "start": 6643.42, + "end": 6646.6, + "probability": 0.9962 + }, + { + "start": 6647.16, + "end": 6649.08, + "probability": 0.9214 + }, + { + "start": 6649.6, + "end": 6653.34, + "probability": 0.9653 + }, + { + "start": 6654.4, + "end": 6655.22, + "probability": 0.8337 + }, + { + "start": 6655.28, + "end": 6658.1, + "probability": 0.9956 + }, + { + "start": 6658.1, + "end": 6661.44, + "probability": 0.9953 + }, + { + "start": 6662.88, + "end": 6664.32, + "probability": 0.8982 + }, + { + "start": 6665.2, + "end": 6665.62, + "probability": 0.8662 + }, + { + "start": 6666.72, + "end": 6668.1, + "probability": 0.9943 + }, + { + "start": 6668.6, + "end": 6671.08, + "probability": 0.7153 + }, + { + "start": 6671.3, + "end": 6671.73, + "probability": 0.8093 + }, + { + "start": 6672.38, + "end": 6676.1, + "probability": 0.9893 + }, + { + "start": 6676.18, + "end": 6676.6, + "probability": 0.5648 + }, + { + "start": 6676.92, + "end": 6677.62, + "probability": 0.9788 + }, + { + "start": 6677.68, + "end": 6677.98, + "probability": 0.873 + }, + { + "start": 6678.64, + "end": 6679.48, + "probability": 0.6444 + }, + { + "start": 6679.92, + "end": 6681.3, + "probability": 0.9639 + }, + { + "start": 6681.7, + "end": 6684.76, + "probability": 0.9705 + }, + { + "start": 6685.4, + "end": 6686.34, + "probability": 0.8715 + }, + { + "start": 6686.82, + "end": 6689.32, + "probability": 0.9885 + }, + { + "start": 6689.68, + "end": 6691.24, + "probability": 0.9964 + }, + { + "start": 6692.56, + "end": 6694.42, + "probability": 0.9966 + }, + { + "start": 6697.04, + "end": 6702.92, + "probability": 0.9756 + }, + { + "start": 6704.28, + "end": 6705.76, + "probability": 0.8686 + }, + { + "start": 6705.86, + "end": 6707.64, + "probability": 0.9706 + }, + { + "start": 6708.6, + "end": 6711.06, + "probability": 0.8643 + }, + { + "start": 6711.54, + "end": 6713.82, + "probability": 0.4673 + }, + { + "start": 6714.08, + "end": 6715.74, + "probability": 0.2 + }, + { + "start": 6715.92, + "end": 6717.06, + "probability": 0.9907 + }, + { + "start": 6717.18, + "end": 6718.1, + "probability": 0.9673 + }, + { + "start": 6719.48, + "end": 6722.34, + "probability": 0.9901 + }, + { + "start": 6722.64, + "end": 6725.7, + "probability": 0.9814 + }, + { + "start": 6726.22, + "end": 6728.18, + "probability": 0.8331 + }, + { + "start": 6729.0, + "end": 6731.1, + "probability": 0.9941 + }, + { + "start": 6731.66, + "end": 6732.22, + "probability": 0.6509 + }, + { + "start": 6733.48, + "end": 6737.56, + "probability": 0.9722 + }, + { + "start": 6738.28, + "end": 6738.62, + "probability": 0.7532 + }, + { + "start": 6739.54, + "end": 6740.94, + "probability": 0.9006 + }, + { + "start": 6741.04, + "end": 6743.92, + "probability": 0.9941 + }, + { + "start": 6744.18, + "end": 6745.14, + "probability": 0.4998 + }, + { + "start": 6745.86, + "end": 6748.42, + "probability": 0.9724 + }, + { + "start": 6748.42, + "end": 6750.4, + "probability": 0.8143 + }, + { + "start": 6750.5, + "end": 6752.02, + "probability": 0.8105 + }, + { + "start": 6752.9, + "end": 6754.2, + "probability": 0.9722 + }, + { + "start": 6755.44, + "end": 6760.88, + "probability": 0.984 + }, + { + "start": 6760.88, + "end": 6765.64, + "probability": 0.9964 + }, + { + "start": 6765.88, + "end": 6768.98, + "probability": 0.962 + }, + { + "start": 6772.05, + "end": 6773.66, + "probability": 0.0679 + }, + { + "start": 6773.66, + "end": 6774.78, + "probability": 0.7294 + }, + { + "start": 6775.1, + "end": 6777.24, + "probability": 0.958 + }, + { + "start": 6777.3, + "end": 6778.17, + "probability": 0.9932 + }, + { + "start": 6779.64, + "end": 6782.36, + "probability": 0.9972 + }, + { + "start": 6782.36, + "end": 6786.36, + "probability": 0.996 + }, + { + "start": 6787.0, + "end": 6788.12, + "probability": 0.6206 + }, + { + "start": 6788.24, + "end": 6788.92, + "probability": 0.7336 + }, + { + "start": 6788.98, + "end": 6791.62, + "probability": 0.9256 + }, + { + "start": 6791.78, + "end": 6792.12, + "probability": 0.7955 + }, + { + "start": 6792.88, + "end": 6794.04, + "probability": 0.7412 + }, + { + "start": 6794.3, + "end": 6794.58, + "probability": 0.5829 + }, + { + "start": 6794.6, + "end": 6798.5, + "probability": 0.9736 + }, + { + "start": 6799.32, + "end": 6801.8, + "probability": 0.644 + }, + { + "start": 6802.46, + "end": 6802.8, + "probability": 0.0082 + }, + { + "start": 6803.2, + "end": 6807.28, + "probability": 0.9697 + }, + { + "start": 6807.34, + "end": 6807.9, + "probability": 0.8039 + }, + { + "start": 6809.26, + "end": 6813.14, + "probability": 0.9148 + }, + { + "start": 6822.92, + "end": 6824.58, + "probability": 0.551 + }, + { + "start": 6824.94, + "end": 6827.7, + "probability": 0.5563 + }, + { + "start": 6831.12, + "end": 6833.68, + "probability": 0.9448 + }, + { + "start": 6838.62, + "end": 6841.8, + "probability": 0.7927 + }, + { + "start": 6842.82, + "end": 6844.83, + "probability": 0.8136 + }, + { + "start": 6845.48, + "end": 6847.6, + "probability": 0.5522 + }, + { + "start": 6847.74, + "end": 6852.92, + "probability": 0.9856 + }, + { + "start": 6853.62, + "end": 6855.02, + "probability": 0.7582 + }, + { + "start": 6855.98, + "end": 6857.78, + "probability": 0.8836 + }, + { + "start": 6859.8, + "end": 6860.48, + "probability": 0.3727 + }, + { + "start": 6860.74, + "end": 6861.38, + "probability": 0.8963 + }, + { + "start": 6864.98, + "end": 6867.9, + "probability": 0.8142 + }, + { + "start": 6869.18, + "end": 6871.18, + "probability": 0.7899 + }, + { + "start": 6872.02, + "end": 6878.0, + "probability": 0.9647 + }, + { + "start": 6878.92, + "end": 6882.4, + "probability": 0.9644 + }, + { + "start": 6883.44, + "end": 6884.44, + "probability": 0.5058 + }, + { + "start": 6885.46, + "end": 6887.82, + "probability": 0.645 + }, + { + "start": 6888.74, + "end": 6890.16, + "probability": 0.6606 + }, + { + "start": 6895.18, + "end": 6898.68, + "probability": 0.9746 + }, + { + "start": 6898.68, + "end": 6902.96, + "probability": 0.9622 + }, + { + "start": 6903.18, + "end": 6904.94, + "probability": 0.9939 + }, + { + "start": 6905.92, + "end": 6912.26, + "probability": 0.9904 + }, + { + "start": 6912.7, + "end": 6917.26, + "probability": 0.9961 + }, + { + "start": 6917.3, + "end": 6918.52, + "probability": 0.4328 + }, + { + "start": 6918.72, + "end": 6920.64, + "probability": 0.8015 + }, + { + "start": 6921.44, + "end": 6924.34, + "probability": 0.9866 + }, + { + "start": 6925.38, + "end": 6930.5, + "probability": 0.9796 + }, + { + "start": 6933.52, + "end": 6935.52, + "probability": 0.7698 + }, + { + "start": 6938.4, + "end": 6943.04, + "probability": 0.8418 + }, + { + "start": 6944.06, + "end": 6949.16, + "probability": 0.9883 + }, + { + "start": 6949.86, + "end": 6953.5, + "probability": 0.9529 + }, + { + "start": 6953.82, + "end": 6960.38, + "probability": 0.9949 + }, + { + "start": 6961.66, + "end": 6967.88, + "probability": 0.9966 + }, + { + "start": 6967.88, + "end": 6971.26, + "probability": 0.9962 + }, + { + "start": 6972.34, + "end": 6974.16, + "probability": 0.9907 + }, + { + "start": 6974.72, + "end": 6978.18, + "probability": 0.998 + }, + { + "start": 6978.7, + "end": 6979.82, + "probability": 0.9196 + }, + { + "start": 6981.82, + "end": 6985.04, + "probability": 0.9934 + }, + { + "start": 6986.08, + "end": 6987.68, + "probability": 0.8823 + }, + { + "start": 6989.36, + "end": 6992.86, + "probability": 0.9463 + }, + { + "start": 6993.5, + "end": 6996.06, + "probability": 0.9869 + }, + { + "start": 6997.4, + "end": 6998.66, + "probability": 0.9817 + }, + { + "start": 6999.1, + "end": 7000.38, + "probability": 0.9891 + }, + { + "start": 7000.52, + "end": 7003.74, + "probability": 0.7878 + }, + { + "start": 7006.48, + "end": 7007.76, + "probability": 0.6128 + }, + { + "start": 7007.84, + "end": 7009.6, + "probability": 0.976 + }, + { + "start": 7009.72, + "end": 7011.42, + "probability": 0.9022 + }, + { + "start": 7011.56, + "end": 7013.76, + "probability": 0.9634 + }, + { + "start": 7014.5, + "end": 7015.5, + "probability": 0.9285 + }, + { + "start": 7017.36, + "end": 7018.36, + "probability": 0.753 + }, + { + "start": 7019.1, + "end": 7023.8, + "probability": 0.9922 + }, + { + "start": 7025.12, + "end": 7029.82, + "probability": 0.853 + }, + { + "start": 7031.04, + "end": 7035.44, + "probability": 0.9771 + }, + { + "start": 7035.44, + "end": 7039.62, + "probability": 0.9888 + }, + { + "start": 7040.44, + "end": 7046.5, + "probability": 0.7339 + }, + { + "start": 7047.36, + "end": 7049.02, + "probability": 0.828 + }, + { + "start": 7049.24, + "end": 7050.88, + "probability": 0.9685 + }, + { + "start": 7052.04, + "end": 7053.98, + "probability": 0.9452 + }, + { + "start": 7055.12, + "end": 7058.12, + "probability": 0.6855 + }, + { + "start": 7059.66, + "end": 7061.84, + "probability": 0.9006 + }, + { + "start": 7061.94, + "end": 7062.6, + "probability": 0.8742 + }, + { + "start": 7063.08, + "end": 7066.8, + "probability": 0.9789 + }, + { + "start": 7068.14, + "end": 7069.06, + "probability": 0.8011 + }, + { + "start": 7069.64, + "end": 7072.18, + "probability": 0.9356 + }, + { + "start": 7072.4, + "end": 7078.42, + "probability": 0.9952 + }, + { + "start": 7079.06, + "end": 7086.08, + "probability": 0.999 + }, + { + "start": 7088.9, + "end": 7092.06, + "probability": 0.6458 + }, + { + "start": 7092.84, + "end": 7093.9, + "probability": 0.9967 + }, + { + "start": 7094.62, + "end": 7096.52, + "probability": 0.9875 + }, + { + "start": 7097.4, + "end": 7099.26, + "probability": 0.9942 + }, + { + "start": 7100.2, + "end": 7102.96, + "probability": 0.9919 + }, + { + "start": 7103.62, + "end": 7105.12, + "probability": 0.6055 + }, + { + "start": 7105.88, + "end": 7109.44, + "probability": 0.969 + }, + { + "start": 7109.46, + "end": 7110.1, + "probability": 0.4329 + }, + { + "start": 7110.12, + "end": 7110.92, + "probability": 0.7136 + }, + { + "start": 7111.1, + "end": 7113.52, + "probability": 0.8296 + }, + { + "start": 7113.6, + "end": 7118.62, + "probability": 0.9848 + }, + { + "start": 7119.44, + "end": 7126.58, + "probability": 0.7839 + }, + { + "start": 7126.58, + "end": 7133.4, + "probability": 0.7948 + }, + { + "start": 7133.56, + "end": 7142.3, + "probability": 0.6351 + }, + { + "start": 7143.26, + "end": 7145.3, + "probability": 0.9595 + }, + { + "start": 7146.22, + "end": 7150.48, + "probability": 0.9813 + }, + { + "start": 7152.26, + "end": 7154.24, + "probability": 0.7413 + }, + { + "start": 7155.1, + "end": 7156.54, + "probability": 0.6644 + }, + { + "start": 7156.86, + "end": 7160.26, + "probability": 0.7646 + }, + { + "start": 7160.38, + "end": 7162.5, + "probability": 0.6536 + }, + { + "start": 7163.34, + "end": 7163.76, + "probability": 0.101 + }, + { + "start": 7166.37, + "end": 7169.78, + "probability": 0.8687 + }, + { + "start": 7170.3, + "end": 7172.68, + "probability": 0.8708 + }, + { + "start": 7173.6, + "end": 7178.96, + "probability": 0.9491 + }, + { + "start": 7179.78, + "end": 7180.92, + "probability": 0.864 + }, + { + "start": 7181.58, + "end": 7183.1, + "probability": 0.8486 + }, + { + "start": 7183.84, + "end": 7185.24, + "probability": 0.8771 + }, + { + "start": 7185.48, + "end": 7187.82, + "probability": 0.8707 + }, + { + "start": 7190.24, + "end": 7193.84, + "probability": 0.9285 + }, + { + "start": 7194.96, + "end": 7197.66, + "probability": 0.807 + }, + { + "start": 7199.22, + "end": 7201.18, + "probability": 0.9905 + }, + { + "start": 7201.24, + "end": 7203.28, + "probability": 0.9105 + }, + { + "start": 7204.1, + "end": 7207.88, + "probability": 0.9915 + }, + { + "start": 7208.38, + "end": 7213.37, + "probability": 0.9917 + }, + { + "start": 7213.66, + "end": 7218.2, + "probability": 0.883 + }, + { + "start": 7218.4, + "end": 7219.06, + "probability": 0.6847 + }, + { + "start": 7220.12, + "end": 7223.48, + "probability": 0.972 + }, + { + "start": 7223.54, + "end": 7224.38, + "probability": 0.9899 + }, + { + "start": 7224.44, + "end": 7225.2, + "probability": 0.9885 + }, + { + "start": 7225.62, + "end": 7226.66, + "probability": 0.9823 + }, + { + "start": 7227.46, + "end": 7229.06, + "probability": 0.7581 + }, + { + "start": 7229.62, + "end": 7234.0, + "probability": 0.9688 + }, + { + "start": 7234.22, + "end": 7235.04, + "probability": 0.6192 + }, + { + "start": 7235.78, + "end": 7238.32, + "probability": 0.7911 + }, + { + "start": 7239.2, + "end": 7241.06, + "probability": 0.8633 + }, + { + "start": 7244.62, + "end": 7247.8, + "probability": 0.9161 + }, + { + "start": 7248.76, + "end": 7250.28, + "probability": 0.0445 + }, + { + "start": 7250.28, + "end": 7251.4, + "probability": 0.1042 + }, + { + "start": 7252.06, + "end": 7256.88, + "probability": 0.7043 + }, + { + "start": 7258.06, + "end": 7258.06, + "probability": 0.1598 + }, + { + "start": 7258.06, + "end": 7258.85, + "probability": 0.8945 + }, + { + "start": 7259.88, + "end": 7263.78, + "probability": 0.9653 + }, + { + "start": 7264.02, + "end": 7264.82, + "probability": 0.9789 + }, + { + "start": 7265.02, + "end": 7265.8, + "probability": 0.9835 + }, + { + "start": 7265.96, + "end": 7267.1, + "probability": 0.7063 + }, + { + "start": 7267.84, + "end": 7269.08, + "probability": 0.7165 + }, + { + "start": 7270.22, + "end": 7272.18, + "probability": 0.9141 + }, + { + "start": 7273.58, + "end": 7276.52, + "probability": 0.8278 + }, + { + "start": 7279.06, + "end": 7280.32, + "probability": 0.2642 + }, + { + "start": 7280.58, + "end": 7282.6, + "probability": 0.8239 + }, + { + "start": 7282.94, + "end": 7286.72, + "probability": 0.9922 + }, + { + "start": 7286.72, + "end": 7291.36, + "probability": 0.9745 + }, + { + "start": 7293.64, + "end": 7299.24, + "probability": 0.9958 + }, + { + "start": 7301.84, + "end": 7309.2, + "probability": 0.981 + }, + { + "start": 7310.02, + "end": 7315.22, + "probability": 0.6737 + }, + { + "start": 7317.02, + "end": 7319.6, + "probability": 0.0397 + }, + { + "start": 7319.82, + "end": 7323.02, + "probability": 0.657 + }, + { + "start": 7323.68, + "end": 7326.88, + "probability": 0.9491 + }, + { + "start": 7326.88, + "end": 7329.91, + "probability": 0.0445 + }, + { + "start": 7331.24, + "end": 7332.42, + "probability": 0.5391 + }, + { + "start": 7333.26, + "end": 7336.6, + "probability": 0.9611 + }, + { + "start": 7336.7, + "end": 7338.78, + "probability": 0.7158 + }, + { + "start": 7339.02, + "end": 7341.64, + "probability": 0.6211 + }, + { + "start": 7341.72, + "end": 7342.48, + "probability": 0.731 + }, + { + "start": 7343.06, + "end": 7344.16, + "probability": 0.8862 + }, + { + "start": 7344.3, + "end": 7346.38, + "probability": 0.1262 + }, + { + "start": 7346.58, + "end": 7348.14, + "probability": 0.7834 + }, + { + "start": 7349.06, + "end": 7352.76, + "probability": 0.8777 + }, + { + "start": 7352.98, + "end": 7356.94, + "probability": 0.3292 + }, + { + "start": 7357.28, + "end": 7357.48, + "probability": 0.875 + }, + { + "start": 7358.08, + "end": 7362.76, + "probability": 0.9899 + }, + { + "start": 7363.98, + "end": 7365.2, + "probability": 0.837 + }, + { + "start": 7365.88, + "end": 7367.21, + "probability": 0.847 + }, + { + "start": 7368.26, + "end": 7369.78, + "probability": 0.907 + }, + { + "start": 7370.04, + "end": 7372.84, + "probability": 0.9868 + }, + { + "start": 7373.4, + "end": 7377.22, + "probability": 0.9106 + }, + { + "start": 7377.78, + "end": 7383.08, + "probability": 0.997 + }, + { + "start": 7384.01, + "end": 7387.86, + "probability": 0.8088 + }, + { + "start": 7388.3, + "end": 7390.46, + "probability": 0.8807 + }, + { + "start": 7390.56, + "end": 7391.54, + "probability": 0.9376 + }, + { + "start": 7392.08, + "end": 7393.64, + "probability": 0.9697 + }, + { + "start": 7394.32, + "end": 7395.45, + "probability": 0.6254 + }, + { + "start": 7396.18, + "end": 7396.92, + "probability": 0.6394 + }, + { + "start": 7397.04, + "end": 7398.84, + "probability": 0.7407 + }, + { + "start": 7399.48, + "end": 7400.35, + "probability": 0.001 + }, + { + "start": 7402.7, + "end": 7404.78, + "probability": 0.8057 + }, + { + "start": 7405.56, + "end": 7405.86, + "probability": 0.5924 + }, + { + "start": 7428.66, + "end": 7429.2, + "probability": 0.3968 + }, + { + "start": 7429.2, + "end": 7430.54, + "probability": 0.6613 + }, + { + "start": 7430.78, + "end": 7433.8, + "probability": 0.7834 + }, + { + "start": 7434.8, + "end": 7437.2, + "probability": 0.8813 + }, + { + "start": 7437.52, + "end": 7438.32, + "probability": 0.7918 + }, + { + "start": 7438.72, + "end": 7439.76, + "probability": 0.8925 + }, + { + "start": 7440.56, + "end": 7444.54, + "probability": 0.8415 + }, + { + "start": 7446.44, + "end": 7449.4, + "probability": 0.9692 + }, + { + "start": 7449.62, + "end": 7449.9, + "probability": 0.3028 + }, + { + "start": 7451.46, + "end": 7456.02, + "probability": 0.9731 + }, + { + "start": 7456.9, + "end": 7460.04, + "probability": 0.9591 + }, + { + "start": 7460.4, + "end": 7460.96, + "probability": 0.9161 + }, + { + "start": 7461.04, + "end": 7461.64, + "probability": 0.9038 + }, + { + "start": 7461.68, + "end": 7462.56, + "probability": 0.9799 + }, + { + "start": 7463.24, + "end": 7466.92, + "probability": 0.9459 + }, + { + "start": 7468.5, + "end": 7473.88, + "probability": 0.9965 + }, + { + "start": 7474.48, + "end": 7474.96, + "probability": 0.2124 + }, + { + "start": 7476.02, + "end": 7481.58, + "probability": 0.9156 + }, + { + "start": 7482.14, + "end": 7483.6, + "probability": 0.8836 + }, + { + "start": 7484.82, + "end": 7487.48, + "probability": 0.9724 + }, + { + "start": 7488.02, + "end": 7488.48, + "probability": 0.8399 + }, + { + "start": 7488.94, + "end": 7493.34, + "probability": 0.9741 + }, + { + "start": 7494.36, + "end": 7498.6, + "probability": 0.9983 + }, + { + "start": 7499.1, + "end": 7500.15, + "probability": 0.6711 + }, + { + "start": 7501.38, + "end": 7504.82, + "probability": 0.9261 + }, + { + "start": 7505.98, + "end": 7507.0, + "probability": 0.9896 + }, + { + "start": 7507.56, + "end": 7508.3, + "probability": 0.9958 + }, + { + "start": 7508.38, + "end": 7508.96, + "probability": 0.9719 + }, + { + "start": 7509.22, + "end": 7509.78, + "probability": 0.7384 + }, + { + "start": 7509.88, + "end": 7511.86, + "probability": 0.9792 + }, + { + "start": 7512.86, + "end": 7517.56, + "probability": 0.9742 + }, + { + "start": 7518.38, + "end": 7519.68, + "probability": 0.9567 + }, + { + "start": 7520.06, + "end": 7521.32, + "probability": 0.9814 + }, + { + "start": 7521.62, + "end": 7524.48, + "probability": 0.9745 + }, + { + "start": 7526.24, + "end": 7529.4, + "probability": 0.8271 + }, + { + "start": 7529.64, + "end": 7530.26, + "probability": 0.7477 + }, + { + "start": 7530.4, + "end": 7531.08, + "probability": 0.9862 + }, + { + "start": 7531.18, + "end": 7531.78, + "probability": 0.9764 + }, + { + "start": 7531.88, + "end": 7532.36, + "probability": 0.9825 + }, + { + "start": 7532.48, + "end": 7533.0, + "probability": 0.8021 + }, + { + "start": 7533.6, + "end": 7535.54, + "probability": 0.9945 + }, + { + "start": 7536.4, + "end": 7539.2, + "probability": 0.9969 + }, + { + "start": 7540.62, + "end": 7545.0, + "probability": 0.9977 + }, + { + "start": 7545.18, + "end": 7545.96, + "probability": 0.733 + }, + { + "start": 7546.74, + "end": 7551.06, + "probability": 0.8591 + }, + { + "start": 7551.06, + "end": 7555.42, + "probability": 0.9956 + }, + { + "start": 7556.78, + "end": 7564.18, + "probability": 0.9733 + }, + { + "start": 7564.84, + "end": 7568.38, + "probability": 0.8079 + }, + { + "start": 7568.76, + "end": 7574.5, + "probability": 0.9896 + }, + { + "start": 7575.4, + "end": 7575.84, + "probability": 0.7737 + }, + { + "start": 7576.46, + "end": 7582.88, + "probability": 0.9966 + }, + { + "start": 7582.88, + "end": 7589.28, + "probability": 0.9276 + }, + { + "start": 7590.82, + "end": 7595.3, + "probability": 0.9963 + }, + { + "start": 7595.72, + "end": 7599.9, + "probability": 0.9883 + }, + { + "start": 7600.6, + "end": 7604.74, + "probability": 0.9794 + }, + { + "start": 7606.2, + "end": 7609.72, + "probability": 0.8642 + }, + { + "start": 7609.72, + "end": 7611.5, + "probability": 0.9981 + }, + { + "start": 7612.7, + "end": 7617.22, + "probability": 0.9902 + }, + { + "start": 7617.74, + "end": 7619.62, + "probability": 0.9969 + }, + { + "start": 7620.16, + "end": 7622.22, + "probability": 0.9953 + }, + { + "start": 7622.76, + "end": 7623.6, + "probability": 0.9932 + }, + { + "start": 7625.7, + "end": 7629.52, + "probability": 0.9927 + }, + { + "start": 7629.76, + "end": 7631.48, + "probability": 0.954 + }, + { + "start": 7631.66, + "end": 7635.22, + "probability": 0.9766 + }, + { + "start": 7635.56, + "end": 7638.88, + "probability": 0.9915 + }, + { + "start": 7639.04, + "end": 7643.3, + "probability": 0.997 + }, + { + "start": 7644.12, + "end": 7644.48, + "probability": 0.5555 + }, + { + "start": 7644.62, + "end": 7646.74, + "probability": 0.9415 + }, + { + "start": 7647.18, + "end": 7648.54, + "probability": 0.7469 + }, + { + "start": 7648.96, + "end": 7649.96, + "probability": 0.9501 + }, + { + "start": 7650.7, + "end": 7656.0, + "probability": 0.9634 + }, + { + "start": 7656.0, + "end": 7660.34, + "probability": 0.9991 + }, + { + "start": 7660.88, + "end": 7665.98, + "probability": 0.9462 + }, + { + "start": 7666.64, + "end": 7667.14, + "probability": 0.7927 + }, + { + "start": 7668.18, + "end": 7670.38, + "probability": 0.3828 + }, + { + "start": 7670.48, + "end": 7672.18, + "probability": 0.8967 + }, + { + "start": 7680.76, + "end": 7681.26, + "probability": 0.0899 + }, + { + "start": 7694.12, + "end": 7694.16, + "probability": 0.1761 + }, + { + "start": 7702.41, + "end": 7702.9, + "probability": 0.0704 + }, + { + "start": 7724.14, + "end": 7728.0, + "probability": 0.853 + }, + { + "start": 7728.64, + "end": 7730.48, + "probability": 0.9697 + }, + { + "start": 7732.24, + "end": 7736.04, + "probability": 0.9711 + }, + { + "start": 7736.92, + "end": 7741.0, + "probability": 0.983 + }, + { + "start": 7741.62, + "end": 7744.52, + "probability": 0.9955 + }, + { + "start": 7745.12, + "end": 7745.97, + "probability": 0.9668 + }, + { + "start": 7747.53, + "end": 7754.18, + "probability": 0.9922 + }, + { + "start": 7755.28, + "end": 7761.69, + "probability": 0.9897 + }, + { + "start": 7762.36, + "end": 7766.32, + "probability": 0.7631 + }, + { + "start": 7766.86, + "end": 7771.26, + "probability": 0.9707 + }, + { + "start": 7772.22, + "end": 7776.02, + "probability": 0.7892 + }, + { + "start": 7776.22, + "end": 7778.56, + "probability": 0.9884 + }, + { + "start": 7778.7, + "end": 7779.36, + "probability": 0.8201 + }, + { + "start": 7779.38, + "end": 7781.54, + "probability": 0.9966 + }, + { + "start": 7782.2, + "end": 7787.6, + "probability": 0.9776 + }, + { + "start": 7787.66, + "end": 7788.98, + "probability": 0.8089 + }, + { + "start": 7790.12, + "end": 7791.16, + "probability": 0.6539 + }, + { + "start": 7791.76, + "end": 7794.18, + "probability": 0.2469 + }, + { + "start": 7794.52, + "end": 7794.84, + "probability": 0.3068 + }, + { + "start": 7794.98, + "end": 7801.64, + "probability": 0.5358 + }, + { + "start": 7802.98, + "end": 7803.12, + "probability": 0.2398 + }, + { + "start": 7803.12, + "end": 7804.2, + "probability": 0.751 + }, + { + "start": 7804.68, + "end": 7807.68, + "probability": 0.6299 + }, + { + "start": 7807.96, + "end": 7813.38, + "probability": 0.9607 + }, + { + "start": 7813.38, + "end": 7821.62, + "probability": 0.9987 + }, + { + "start": 7821.76, + "end": 7823.74, + "probability": 0.8662 + }, + { + "start": 7824.14, + "end": 7826.72, + "probability": 0.9785 + }, + { + "start": 7826.72, + "end": 7831.42, + "probability": 0.9453 + }, + { + "start": 7831.5, + "end": 7832.62, + "probability": 0.4942 + }, + { + "start": 7832.62, + "end": 7833.66, + "probability": 0.7743 + }, + { + "start": 7833.92, + "end": 7834.58, + "probability": 0.8401 + }, + { + "start": 7834.88, + "end": 7838.32, + "probability": 0.9974 + }, + { + "start": 7838.7, + "end": 7841.92, + "probability": 0.984 + }, + { + "start": 7842.0, + "end": 7845.3, + "probability": 0.4761 + }, + { + "start": 7845.44, + "end": 7845.66, + "probability": 0.3757 + }, + { + "start": 7845.66, + "end": 7847.1, + "probability": 0.6817 + }, + { + "start": 7847.16, + "end": 7848.24, + "probability": 0.7806 + }, + { + "start": 7848.76, + "end": 7849.74, + "probability": 0.1839 + }, + { + "start": 7851.0, + "end": 7852.14, + "probability": 0.8165 + }, + { + "start": 7852.66, + "end": 7858.7, + "probability": 0.9899 + }, + { + "start": 7858.92, + "end": 7860.02, + "probability": 0.8931 + }, + { + "start": 7861.06, + "end": 7862.72, + "probability": 0.8494 + }, + { + "start": 7863.32, + "end": 7867.48, + "probability": 0.9834 + }, + { + "start": 7868.52, + "end": 7870.04, + "probability": 0.9937 + }, + { + "start": 7870.56, + "end": 7871.72, + "probability": 0.9653 + }, + { + "start": 7872.24, + "end": 7873.34, + "probability": 0.9858 + }, + { + "start": 7873.9, + "end": 7876.18, + "probability": 0.9962 + }, + { + "start": 7876.92, + "end": 7882.7, + "probability": 0.9709 + }, + { + "start": 7883.7, + "end": 7884.06, + "probability": 0.2829 + }, + { + "start": 7884.24, + "end": 7887.82, + "probability": 0.9895 + }, + { + "start": 7888.84, + "end": 7889.98, + "probability": 0.8079 + }, + { + "start": 7890.04, + "end": 7890.96, + "probability": 0.877 + }, + { + "start": 7891.38, + "end": 7894.18, + "probability": 0.9595 + }, + { + "start": 7895.36, + "end": 7898.04, + "probability": 0.9886 + }, + { + "start": 7898.14, + "end": 7899.42, + "probability": 0.7069 + }, + { + "start": 7899.86, + "end": 7901.18, + "probability": 0.8916 + }, + { + "start": 7901.74, + "end": 7902.98, + "probability": 0.9885 + }, + { + "start": 7903.42, + "end": 7905.6, + "probability": 0.9951 + }, + { + "start": 7906.78, + "end": 7907.46, + "probability": 0.5121 + }, + { + "start": 7907.68, + "end": 7913.36, + "probability": 0.8851 + }, + { + "start": 7913.56, + "end": 7914.3, + "probability": 0.7164 + }, + { + "start": 7914.32, + "end": 7915.0, + "probability": 0.9529 + }, + { + "start": 7915.68, + "end": 7919.46, + "probability": 0.96 + }, + { + "start": 7919.98, + "end": 7923.38, + "probability": 0.9961 + }, + { + "start": 7924.4, + "end": 7932.56, + "probability": 0.9757 + }, + { + "start": 7933.22, + "end": 7938.22, + "probability": 0.9967 + }, + { + "start": 7938.22, + "end": 7943.46, + "probability": 0.9995 + }, + { + "start": 7944.28, + "end": 7946.48, + "probability": 0.7553 + }, + { + "start": 7946.82, + "end": 7949.8, + "probability": 0.9946 + }, + { + "start": 7949.86, + "end": 7950.48, + "probability": 0.9897 + }, + { + "start": 7950.78, + "end": 7952.32, + "probability": 0.928 + }, + { + "start": 7952.78, + "end": 7953.2, + "probability": 0.9238 + }, + { + "start": 7954.02, + "end": 7955.18, + "probability": 0.8216 + }, + { + "start": 7955.24, + "end": 7956.33, + "probability": 0.9315 + }, + { + "start": 7957.2, + "end": 7959.66, + "probability": 0.9888 + }, + { + "start": 7959.72, + "end": 7961.38, + "probability": 0.9824 + }, + { + "start": 7961.94, + "end": 7963.56, + "probability": 0.8521 + }, + { + "start": 7964.26, + "end": 7965.48, + "probability": 0.8497 + }, + { + "start": 7966.36, + "end": 7967.9, + "probability": 0.9385 + }, + { + "start": 7968.06, + "end": 7968.32, + "probability": 0.8714 + }, + { + "start": 7968.4, + "end": 7969.64, + "probability": 0.7994 + }, + { + "start": 7969.74, + "end": 7972.36, + "probability": 0.8933 + }, + { + "start": 7973.14, + "end": 7974.18, + "probability": 0.9829 + }, + { + "start": 7974.34, + "end": 7976.74, + "probability": 0.9919 + }, + { + "start": 7977.44, + "end": 7980.68, + "probability": 0.9913 + }, + { + "start": 7980.92, + "end": 7982.8, + "probability": 0.999 + }, + { + "start": 7983.56, + "end": 7987.2, + "probability": 0.9592 + }, + { + "start": 7988.18, + "end": 7991.02, + "probability": 0.9956 + }, + { + "start": 7991.4, + "end": 7994.92, + "probability": 0.9296 + }, + { + "start": 7995.12, + "end": 7996.08, + "probability": 0.3853 + }, + { + "start": 7996.54, + "end": 7997.28, + "probability": 0.8375 + }, + { + "start": 7997.88, + "end": 7998.98, + "probability": 0.8302 + }, + { + "start": 7999.02, + "end": 8001.3, + "probability": 0.9893 + }, + { + "start": 8001.56, + "end": 8005.74, + "probability": 0.9495 + }, + { + "start": 8005.96, + "end": 8006.54, + "probability": 0.9156 + }, + { + "start": 8006.66, + "end": 8007.08, + "probability": 0.8088 + }, + { + "start": 8007.74, + "end": 8008.28, + "probability": 0.9805 + }, + { + "start": 8008.88, + "end": 8011.79, + "probability": 0.9189 + }, + { + "start": 8012.32, + "end": 8016.24, + "probability": 0.8274 + }, + { + "start": 8016.24, + "end": 8019.68, + "probability": 0.9956 + }, + { + "start": 8020.28, + "end": 8021.16, + "probability": 0.9874 + }, + { + "start": 8022.02, + "end": 8026.48, + "probability": 0.9982 + }, + { + "start": 8027.14, + "end": 8029.54, + "probability": 0.9814 + }, + { + "start": 8030.02, + "end": 8032.84, + "probability": 0.9732 + }, + { + "start": 8033.12, + "end": 8037.46, + "probability": 0.9465 + }, + { + "start": 8038.12, + "end": 8040.9, + "probability": 0.9672 + }, + { + "start": 8042.12, + "end": 8044.08, + "probability": 0.9793 + }, + { + "start": 8044.88, + "end": 8047.04, + "probability": 0.9865 + }, + { + "start": 8047.68, + "end": 8048.76, + "probability": 0.7423 + }, + { + "start": 8049.28, + "end": 8050.84, + "probability": 0.9524 + }, + { + "start": 8051.22, + "end": 8052.36, + "probability": 0.9697 + }, + { + "start": 8052.74, + "end": 8054.32, + "probability": 0.9214 + }, + { + "start": 8055.14, + "end": 8063.74, + "probability": 0.9931 + }, + { + "start": 8064.44, + "end": 8068.42, + "probability": 0.9992 + }, + { + "start": 8068.42, + "end": 8073.3, + "probability": 0.9185 + }, + { + "start": 8073.9, + "end": 8078.1, + "probability": 0.9969 + }, + { + "start": 8078.82, + "end": 8079.0, + "probability": 0.6339 + }, + { + "start": 8079.14, + "end": 8079.82, + "probability": 0.8177 + }, + { + "start": 8080.04, + "end": 8083.58, + "probability": 0.9755 + }, + { + "start": 8083.76, + "end": 8085.52, + "probability": 0.962 + }, + { + "start": 8085.94, + "end": 8087.26, + "probability": 0.9858 + }, + { + "start": 8087.32, + "end": 8088.2, + "probability": 0.9644 + }, + { + "start": 8088.26, + "end": 8088.79, + "probability": 0.9802 + }, + { + "start": 8089.86, + "end": 8096.28, + "probability": 0.9794 + }, + { + "start": 8096.74, + "end": 8097.9, + "probability": 0.9926 + }, + { + "start": 8098.48, + "end": 8099.3, + "probability": 0.6889 + }, + { + "start": 8099.66, + "end": 8104.46, + "probability": 0.9981 + }, + { + "start": 8104.46, + "end": 8109.48, + "probability": 0.9965 + }, + { + "start": 8110.77, + "end": 8112.18, + "probability": 0.9219 + }, + { + "start": 8112.18, + "end": 8112.48, + "probability": 0.0182 + }, + { + "start": 8112.86, + "end": 8117.52, + "probability": 0.9293 + }, + { + "start": 8117.52, + "end": 8121.38, + "probability": 0.993 + }, + { + "start": 8121.74, + "end": 8122.2, + "probability": 0.7003 + }, + { + "start": 8123.0, + "end": 8125.82, + "probability": 0.8269 + }, + { + "start": 8127.2, + "end": 8132.02, + "probability": 0.7649 + }, + { + "start": 8134.66, + "end": 8135.02, + "probability": 0.4159 + }, + { + "start": 8137.88, + "end": 8138.92, + "probability": 0.77 + }, + { + "start": 8151.62, + "end": 8154.8, + "probability": 0.9027 + }, + { + "start": 8155.98, + "end": 8156.98, + "probability": 0.5068 + }, + { + "start": 8157.04, + "end": 8158.45, + "probability": 0.9697 + }, + { + "start": 8164.0, + "end": 8166.85, + "probability": 0.9429 + }, + { + "start": 8168.3, + "end": 8171.74, + "probability": 0.0457 + }, + { + "start": 8172.42, + "end": 8174.26, + "probability": 0.8945 + }, + { + "start": 8174.34, + "end": 8174.36, + "probability": 0.6204 + }, + { + "start": 8174.36, + "end": 8175.48, + "probability": 0.984 + }, + { + "start": 8177.66, + "end": 8179.8, + "probability": 0.7567 + }, + { + "start": 8180.06, + "end": 8183.6, + "probability": 0.699 + }, + { + "start": 8184.22, + "end": 8185.87, + "probability": 0.9673 + }, + { + "start": 8186.36, + "end": 8193.28, + "probability": 0.9726 + }, + { + "start": 8194.18, + "end": 8196.36, + "probability": 0.7472 + }, + { + "start": 8197.38, + "end": 8199.26, + "probability": 0.7678 + }, + { + "start": 8199.4, + "end": 8200.3, + "probability": 0.9623 + }, + { + "start": 8200.36, + "end": 8201.52, + "probability": 0.9371 + }, + { + "start": 8201.6, + "end": 8209.52, + "probability": 0.993 + }, + { + "start": 8209.6, + "end": 8213.28, + "probability": 0.9159 + }, + { + "start": 8213.62, + "end": 8215.72, + "probability": 0.9928 + }, + { + "start": 8216.5, + "end": 8223.48, + "probability": 0.9705 + }, + { + "start": 8224.22, + "end": 8228.48, + "probability": 0.9539 + }, + { + "start": 8230.07, + "end": 8232.44, + "probability": 0.7996 + }, + { + "start": 8232.7, + "end": 8237.77, + "probability": 0.9971 + }, + { + "start": 8237.8, + "end": 8243.5, + "probability": 0.999 + }, + { + "start": 8244.18, + "end": 8246.12, + "probability": 0.9925 + }, + { + "start": 8247.58, + "end": 8251.6, + "probability": 0.7643 + }, + { + "start": 8251.7, + "end": 8252.62, + "probability": 0.7919 + }, + { + "start": 8252.72, + "end": 8255.1, + "probability": 0.948 + }, + { + "start": 8255.66, + "end": 8259.44, + "probability": 0.9902 + }, + { + "start": 8260.26, + "end": 8261.66, + "probability": 0.78 + }, + { + "start": 8261.98, + "end": 8263.34, + "probability": 0.8133 + }, + { + "start": 8263.48, + "end": 8264.04, + "probability": 0.8711 + }, + { + "start": 8264.54, + "end": 8266.34, + "probability": 0.9441 + }, + { + "start": 8266.8, + "end": 8268.3, + "probability": 0.998 + }, + { + "start": 8268.76, + "end": 8271.48, + "probability": 0.9448 + }, + { + "start": 8271.72, + "end": 8273.61, + "probability": 0.9946 + }, + { + "start": 8273.8, + "end": 8277.42, + "probability": 0.9849 + }, + { + "start": 8278.66, + "end": 8279.38, + "probability": 0.8662 + }, + { + "start": 8279.48, + "end": 8281.62, + "probability": 0.9032 + }, + { + "start": 8281.68, + "end": 8281.9, + "probability": 0.2914 + }, + { + "start": 8281.96, + "end": 8283.72, + "probability": 0.9827 + }, + { + "start": 8284.8, + "end": 8285.98, + "probability": 0.8986 + }, + { + "start": 8286.58, + "end": 8289.98, + "probability": 0.7053 + }, + { + "start": 8291.08, + "end": 8295.9, + "probability": 0.798 + }, + { + "start": 8296.0, + "end": 8298.8, + "probability": 0.9601 + }, + { + "start": 8299.0, + "end": 8299.56, + "probability": 0.9736 + }, + { + "start": 8300.48, + "end": 8301.56, + "probability": 0.9958 + }, + { + "start": 8301.7, + "end": 8302.02, + "probability": 0.7459 + }, + { + "start": 8302.08, + "end": 8304.94, + "probability": 0.9629 + }, + { + "start": 8305.46, + "end": 8310.18, + "probability": 0.9705 + }, + { + "start": 8310.18, + "end": 8312.56, + "probability": 0.9797 + }, + { + "start": 8312.64, + "end": 8314.4, + "probability": 0.9939 + }, + { + "start": 8315.48, + "end": 8316.72, + "probability": 0.7253 + }, + { + "start": 8316.94, + "end": 8319.56, + "probability": 0.9054 + }, + { + "start": 8319.66, + "end": 8321.79, + "probability": 0.808 + }, + { + "start": 8322.42, + "end": 8323.88, + "probability": 0.9492 + }, + { + "start": 8324.82, + "end": 8328.3, + "probability": 0.9893 + }, + { + "start": 8329.5, + "end": 8335.52, + "probability": 0.9697 + }, + { + "start": 8336.62, + "end": 8339.0, + "probability": 0.9865 + }, + { + "start": 8339.24, + "end": 8340.9, + "probability": 0.789 + }, + { + "start": 8341.42, + "end": 8343.86, + "probability": 0.9105 + }, + { + "start": 8345.08, + "end": 8350.84, + "probability": 0.9866 + }, + { + "start": 8352.1, + "end": 8358.06, + "probability": 0.9271 + }, + { + "start": 8358.18, + "end": 8358.94, + "probability": 0.5385 + }, + { + "start": 8360.82, + "end": 8363.0, + "probability": 0.7572 + }, + { + "start": 8363.58, + "end": 8363.74, + "probability": 0.8306 + }, + { + "start": 8364.3, + "end": 8366.6, + "probability": 0.9973 + }, + { + "start": 8367.84, + "end": 8373.7, + "probability": 0.9974 + }, + { + "start": 8373.82, + "end": 8375.18, + "probability": 0.7354 + }, + { + "start": 8375.24, + "end": 8376.86, + "probability": 0.901 + }, + { + "start": 8377.28, + "end": 8378.46, + "probability": 0.7239 + }, + { + "start": 8379.3, + "end": 8380.8, + "probability": 0.967 + }, + { + "start": 8381.06, + "end": 8385.38, + "probability": 0.9379 + }, + { + "start": 8386.46, + "end": 8389.2, + "probability": 0.9982 + }, + { + "start": 8390.12, + "end": 8393.62, + "probability": 0.9827 + }, + { + "start": 8394.4, + "end": 8395.78, + "probability": 0.9952 + }, + { + "start": 8398.72, + "end": 8401.7, + "probability": 0.6079 + }, + { + "start": 8401.86, + "end": 8406.21, + "probability": 0.9774 + }, + { + "start": 8407.96, + "end": 8408.96, + "probability": 0.8566 + }, + { + "start": 8409.84, + "end": 8410.94, + "probability": 0.3668 + }, + { + "start": 8411.04, + "end": 8411.72, + "probability": 0.9267 + }, + { + "start": 8411.78, + "end": 8413.66, + "probability": 0.9699 + }, + { + "start": 8413.74, + "end": 8414.84, + "probability": 0.7304 + }, + { + "start": 8415.6, + "end": 8417.7, + "probability": 0.9234 + }, + { + "start": 8418.48, + "end": 8420.22, + "probability": 0.994 + }, + { + "start": 8422.0, + "end": 8425.14, + "probability": 0.9822 + }, + { + "start": 8425.62, + "end": 8427.68, + "probability": 0.7902 + }, + { + "start": 8427.68, + "end": 8430.36, + "probability": 0.958 + }, + { + "start": 8430.4, + "end": 8431.98, + "probability": 0.9808 + }, + { + "start": 8433.58, + "end": 8439.68, + "probability": 0.9769 + }, + { + "start": 8440.4, + "end": 8443.1, + "probability": 0.9978 + }, + { + "start": 8443.8, + "end": 8444.62, + "probability": 0.7399 + }, + { + "start": 8444.64, + "end": 8446.94, + "probability": 0.99 + }, + { + "start": 8447.68, + "end": 8449.78, + "probability": 0.9952 + }, + { + "start": 8452.42, + "end": 8454.7, + "probability": 0.9946 + }, + { + "start": 8454.84, + "end": 8456.24, + "probability": 0.8393 + }, + { + "start": 8456.44, + "end": 8457.18, + "probability": 0.9787 + }, + { + "start": 8458.36, + "end": 8460.1, + "probability": 0.8593 + }, + { + "start": 8460.64, + "end": 8461.92, + "probability": 0.9028 + }, + { + "start": 8462.1, + "end": 8463.46, + "probability": 0.7802 + }, + { + "start": 8463.52, + "end": 8464.26, + "probability": 0.8801 + }, + { + "start": 8464.5, + "end": 8465.12, + "probability": 0.8523 + }, + { + "start": 8465.18, + "end": 8465.78, + "probability": 0.9057 + }, + { + "start": 8466.6, + "end": 8467.44, + "probability": 0.9152 + }, + { + "start": 8467.5, + "end": 8469.93, + "probability": 0.9751 + }, + { + "start": 8470.14, + "end": 8470.66, + "probability": 0.9471 + }, + { + "start": 8470.72, + "end": 8478.14, + "probability": 0.9839 + }, + { + "start": 8478.22, + "end": 8481.86, + "probability": 0.7397 + }, + { + "start": 8481.96, + "end": 8487.46, + "probability": 0.749 + }, + { + "start": 8487.5, + "end": 8490.16, + "probability": 0.8993 + }, + { + "start": 8490.64, + "end": 8491.52, + "probability": 0.9208 + }, + { + "start": 8491.56, + "end": 8492.46, + "probability": 0.9566 + }, + { + "start": 8493.4, + "end": 8494.7, + "probability": 0.8421 + }, + { + "start": 8494.86, + "end": 8496.24, + "probability": 0.9328 + }, + { + "start": 8496.36, + "end": 8500.18, + "probability": 0.8558 + }, + { + "start": 8500.18, + "end": 8502.93, + "probability": 0.9115 + }, + { + "start": 8504.26, + "end": 8505.52, + "probability": 0.9023 + }, + { + "start": 8505.74, + "end": 8506.94, + "probability": 0.5841 + }, + { + "start": 8509.58, + "end": 8513.78, + "probability": 0.9758 + }, + { + "start": 8515.42, + "end": 8516.54, + "probability": 0.954 + }, + { + "start": 8516.64, + "end": 8519.62, + "probability": 0.9761 + }, + { + "start": 8519.76, + "end": 8522.2, + "probability": 0.8716 + }, + { + "start": 8522.72, + "end": 8525.32, + "probability": 0.7893 + }, + { + "start": 8525.64, + "end": 8527.3, + "probability": 0.9053 + }, + { + "start": 8527.62, + "end": 8530.92, + "probability": 0.9963 + }, + { + "start": 8531.14, + "end": 8531.34, + "probability": 0.7114 + }, + { + "start": 8531.98, + "end": 8533.78, + "probability": 0.8176 + }, + { + "start": 8534.94, + "end": 8538.82, + "probability": 0.9926 + }, + { + "start": 8539.02, + "end": 8542.46, + "probability": 0.9185 + }, + { + "start": 8543.26, + "end": 8546.36, + "probability": 0.7968 + }, + { + "start": 8546.78, + "end": 8548.68, + "probability": 0.9246 + }, + { + "start": 8549.38, + "end": 8554.7, + "probability": 0.9928 + }, + { + "start": 8555.8, + "end": 8563.6, + "probability": 0.9568 + }, + { + "start": 8564.78, + "end": 8566.24, + "probability": 0.5624 + }, + { + "start": 8566.28, + "end": 8567.08, + "probability": 0.6203 + }, + { + "start": 8567.16, + "end": 8570.08, + "probability": 0.7937 + }, + { + "start": 8570.7, + "end": 8575.26, + "probability": 0.9245 + }, + { + "start": 8576.04, + "end": 8582.34, + "probability": 0.9798 + }, + { + "start": 8583.0, + "end": 8584.68, + "probability": 0.9273 + }, + { + "start": 8585.14, + "end": 8586.4, + "probability": 0.6008 + }, + { + "start": 8586.44, + "end": 8586.74, + "probability": 0.765 + }, + { + "start": 8586.82, + "end": 8592.4, + "probability": 0.9246 + }, + { + "start": 8592.83, + "end": 8599.54, + "probability": 0.9805 + }, + { + "start": 8600.14, + "end": 8604.5, + "probability": 0.918 + }, + { + "start": 8604.56, + "end": 8604.94, + "probability": 0.6921 + }, + { + "start": 8605.0, + "end": 8605.96, + "probability": 0.9525 + }, + { + "start": 8606.14, + "end": 8606.74, + "probability": 0.9425 + }, + { + "start": 8606.97, + "end": 8610.08, + "probability": 0.8375 + }, + { + "start": 8610.12, + "end": 8610.9, + "probability": 0.8958 + }, + { + "start": 8611.04, + "end": 8612.18, + "probability": 0.8794 + }, + { + "start": 8613.98, + "end": 8614.78, + "probability": 0.303 + }, + { + "start": 8616.84, + "end": 8618.54, + "probability": 0.9365 + }, + { + "start": 8618.54, + "end": 8619.26, + "probability": 0.2077 + }, + { + "start": 8619.46, + "end": 8620.22, + "probability": 0.4365 + }, + { + "start": 8620.62, + "end": 8623.08, + "probability": 0.9604 + }, + { + "start": 8623.08, + "end": 8628.04, + "probability": 0.9535 + }, + { + "start": 8629.36, + "end": 8635.36, + "probability": 0.7495 + }, + { + "start": 8635.68, + "end": 8636.54, + "probability": 0.8917 + }, + { + "start": 8636.96, + "end": 8637.72, + "probability": 0.6676 + }, + { + "start": 8638.28, + "end": 8640.96, + "probability": 0.9794 + }, + { + "start": 8641.2, + "end": 8645.74, + "probability": 0.9344 + }, + { + "start": 8645.88, + "end": 8651.56, + "probability": 0.9865 + }, + { + "start": 8651.72, + "end": 8651.94, + "probability": 0.0988 + }, + { + "start": 8655.56, + "end": 8660.54, + "probability": 0.9965 + }, + { + "start": 8660.7, + "end": 8661.48, + "probability": 0.9932 + }, + { + "start": 8661.64, + "end": 8662.62, + "probability": 0.9818 + }, + { + "start": 8663.18, + "end": 8664.26, + "probability": 0.9846 + }, + { + "start": 8664.42, + "end": 8668.06, + "probability": 0.9662 + }, + { + "start": 8669.44, + "end": 8670.98, + "probability": 0.9608 + }, + { + "start": 8671.5, + "end": 8674.5, + "probability": 0.7883 + }, + { + "start": 8675.4, + "end": 8676.88, + "probability": 0.7729 + }, + { + "start": 8677.67, + "end": 8681.44, + "probability": 0.832 + }, + { + "start": 8681.44, + "end": 8682.64, + "probability": 0.8121 + }, + { + "start": 8682.68, + "end": 8689.52, + "probability": 0.9258 + }, + { + "start": 8689.79, + "end": 8694.08, + "probability": 0.9791 + }, + { + "start": 8695.75, + "end": 8699.22, + "probability": 0.9998 + }, + { + "start": 8699.78, + "end": 8702.12, + "probability": 0.9988 + }, + { + "start": 8702.2, + "end": 8703.08, + "probability": 0.6724 + }, + { + "start": 8703.3, + "end": 8709.48, + "probability": 0.9628 + }, + { + "start": 8709.64, + "end": 8712.78, + "probability": 0.845 + }, + { + "start": 8713.54, + "end": 8715.6, + "probability": 0.9216 + }, + { + "start": 8716.0, + "end": 8717.78, + "probability": 0.9966 + }, + { + "start": 8717.9, + "end": 8720.34, + "probability": 0.937 + }, + { + "start": 8721.3, + "end": 8722.88, + "probability": 0.8302 + }, + { + "start": 8723.44, + "end": 8725.58, + "probability": 0.9619 + }, + { + "start": 8725.76, + "end": 8726.5, + "probability": 0.9867 + }, + { + "start": 8741.4, + "end": 8742.48, + "probability": 0.0995 + }, + { + "start": 8742.5, + "end": 8743.2, + "probability": 0.1525 + }, + { + "start": 8744.33, + "end": 8746.44, + "probability": 0.0597 + }, + { + "start": 8747.8, + "end": 8748.52, + "probability": 0.1138 + }, + { + "start": 8748.52, + "end": 8748.52, + "probability": 0.0916 + }, + { + "start": 8748.52, + "end": 8748.52, + "probability": 0.041 + }, + { + "start": 8748.52, + "end": 8749.4, + "probability": 0.0656 + }, + { + "start": 8750.26, + "end": 8751.96, + "probability": 0.7092 + }, + { + "start": 8752.12, + "end": 8754.58, + "probability": 0.9246 + }, + { + "start": 8755.5, + "end": 8757.79, + "probability": 0.9043 + }, + { + "start": 8758.54, + "end": 8763.26, + "probability": 0.8664 + }, + { + "start": 8763.78, + "end": 8764.88, + "probability": 0.9121 + }, + { + "start": 8765.32, + "end": 8766.18, + "probability": 0.9713 + }, + { + "start": 8766.32, + "end": 8766.82, + "probability": 0.9358 + }, + { + "start": 8766.84, + "end": 8767.5, + "probability": 0.9417 + }, + { + "start": 8767.66, + "end": 8769.02, + "probability": 0.8664 + }, + { + "start": 8769.2, + "end": 8769.6, + "probability": 0.7598 + }, + { + "start": 8769.68, + "end": 8770.42, + "probability": 0.8547 + }, + { + "start": 8771.12, + "end": 8775.24, + "probability": 0.967 + }, + { + "start": 8775.24, + "end": 8780.42, + "probability": 0.9162 + }, + { + "start": 8780.86, + "end": 8781.9, + "probability": 0.9951 + }, + { + "start": 8782.38, + "end": 8784.36, + "probability": 0.9983 + }, + { + "start": 8784.98, + "end": 8788.44, + "probability": 0.9938 + }, + { + "start": 8788.88, + "end": 8789.42, + "probability": 0.8349 + }, + { + "start": 8789.6, + "end": 8790.42, + "probability": 0.7497 + }, + { + "start": 8790.54, + "end": 8793.98, + "probability": 0.9331 + }, + { + "start": 8794.48, + "end": 8796.26, + "probability": 0.9932 + }, + { + "start": 8797.06, + "end": 8798.94, + "probability": 0.9928 + }, + { + "start": 8799.06, + "end": 8799.36, + "probability": 0.881 + }, + { + "start": 8800.16, + "end": 8801.94, + "probability": 0.53 + }, + { + "start": 8802.22, + "end": 8808.68, + "probability": 0.5419 + }, + { + "start": 8809.76, + "end": 8810.96, + "probability": 0.0393 + }, + { + "start": 8811.7, + "end": 8812.02, + "probability": 0.2828 + }, + { + "start": 8812.02, + "end": 8816.82, + "probability": 0.8005 + }, + { + "start": 8841.96, + "end": 8843.14, + "probability": 0.6272 + }, + { + "start": 8844.5, + "end": 8845.56, + "probability": 0.7434 + }, + { + "start": 8847.22, + "end": 8851.32, + "probability": 0.9897 + }, + { + "start": 8852.56, + "end": 8855.44, + "probability": 0.9924 + }, + { + "start": 8856.16, + "end": 8861.28, + "probability": 0.7341 + }, + { + "start": 8862.94, + "end": 8866.1, + "probability": 0.9985 + }, + { + "start": 8866.4, + "end": 8866.76, + "probability": 0.4581 + }, + { + "start": 8866.86, + "end": 8867.52, + "probability": 0.7914 + }, + { + "start": 8867.54, + "end": 8868.48, + "probability": 0.8259 + }, + { + "start": 8868.94, + "end": 8871.8, + "probability": 0.8434 + }, + { + "start": 8871.96, + "end": 8872.8, + "probability": 0.7253 + }, + { + "start": 8873.84, + "end": 8877.16, + "probability": 0.9847 + }, + { + "start": 8878.32, + "end": 8880.3, + "probability": 0.9443 + }, + { + "start": 8880.46, + "end": 8884.36, + "probability": 0.8808 + }, + { + "start": 8884.92, + "end": 8890.04, + "probability": 0.6779 + }, + { + "start": 8890.38, + "end": 8892.14, + "probability": 0.7335 + }, + { + "start": 8893.32, + "end": 8894.3, + "probability": 0.4311 + }, + { + "start": 8895.54, + "end": 8898.04, + "probability": 0.9148 + }, + { + "start": 8898.6, + "end": 8902.68, + "probability": 0.8446 + }, + { + "start": 8903.74, + "end": 8910.34, + "probability": 0.9884 + }, + { + "start": 8911.38, + "end": 8913.22, + "probability": 0.8786 + }, + { + "start": 8913.52, + "end": 8916.26, + "probability": 0.9195 + }, + { + "start": 8916.3, + "end": 8916.76, + "probability": 0.423 + }, + { + "start": 8916.86, + "end": 8917.46, + "probability": 0.9865 + }, + { + "start": 8918.06, + "end": 8918.76, + "probability": 0.9692 + }, + { + "start": 8920.02, + "end": 8920.72, + "probability": 0.8462 + }, + { + "start": 8921.9, + "end": 8922.88, + "probability": 0.9961 + }, + { + "start": 8923.0, + "end": 8926.38, + "probability": 0.9746 + }, + { + "start": 8926.86, + "end": 8929.54, + "probability": 0.9429 + }, + { + "start": 8931.0, + "end": 8932.62, + "probability": 0.998 + }, + { + "start": 8933.52, + "end": 8935.16, + "probability": 0.9918 + }, + { + "start": 8935.68, + "end": 8938.64, + "probability": 0.9881 + }, + { + "start": 8940.18, + "end": 8940.5, + "probability": 0.9142 + }, + { + "start": 8941.08, + "end": 8943.12, + "probability": 0.9957 + }, + { + "start": 8943.3, + "end": 8945.72, + "probability": 0.9963 + }, + { + "start": 8946.26, + "end": 8946.58, + "probability": 0.9978 + }, + { + "start": 8947.52, + "end": 8948.46, + "probability": 0.8252 + }, + { + "start": 8949.5, + "end": 8951.86, + "probability": 0.9814 + }, + { + "start": 8952.74, + "end": 8953.38, + "probability": 0.978 + }, + { + "start": 8953.88, + "end": 8957.66, + "probability": 0.9384 + }, + { + "start": 8957.94, + "end": 8961.06, + "probability": 0.7608 + }, + { + "start": 8961.54, + "end": 8962.42, + "probability": 0.9307 + }, + { + "start": 8963.44, + "end": 8964.08, + "probability": 0.855 + }, + { + "start": 8964.52, + "end": 8965.78, + "probability": 0.9798 + }, + { + "start": 8966.06, + "end": 8966.68, + "probability": 0.9882 + }, + { + "start": 8967.1, + "end": 8967.96, + "probability": 0.9738 + }, + { + "start": 8968.06, + "end": 8968.8, + "probability": 0.8894 + }, + { + "start": 8969.36, + "end": 8969.68, + "probability": 0.9281 + }, + { + "start": 8970.56, + "end": 8972.76, + "probability": 0.9158 + }, + { + "start": 8974.92, + "end": 8976.78, + "probability": 0.8697 + }, + { + "start": 8977.62, + "end": 8979.0, + "probability": 0.9862 + }, + { + "start": 8979.54, + "end": 8984.16, + "probability": 0.8625 + }, + { + "start": 8984.8, + "end": 8985.66, + "probability": 0.4583 + }, + { + "start": 8985.8, + "end": 8987.2, + "probability": 0.9858 + }, + { + "start": 8987.7, + "end": 8990.34, + "probability": 0.9961 + }, + { + "start": 8991.08, + "end": 8994.92, + "probability": 0.8979 + }, + { + "start": 8995.84, + "end": 9000.78, + "probability": 0.9902 + }, + { + "start": 9001.52, + "end": 9005.54, + "probability": 0.9827 + }, + { + "start": 9006.44, + "end": 9007.04, + "probability": 0.905 + }, + { + "start": 9009.92, + "end": 9013.52, + "probability": 0.9815 + }, + { + "start": 9014.16, + "end": 9014.9, + "probability": 0.8777 + }, + { + "start": 9015.64, + "end": 9018.82, + "probability": 0.888 + }, + { + "start": 9019.42, + "end": 9021.14, + "probability": 0.9871 + }, + { + "start": 9021.68, + "end": 9022.6, + "probability": 0.9896 + }, + { + "start": 9023.14, + "end": 9024.2, + "probability": 0.9412 + }, + { + "start": 9025.32, + "end": 9026.04, + "probability": 0.8788 + }, + { + "start": 9026.62, + "end": 9029.14, + "probability": 0.9966 + }, + { + "start": 9030.28, + "end": 9034.6, + "probability": 0.9991 + }, + { + "start": 9034.6, + "end": 9038.64, + "probability": 0.9995 + }, + { + "start": 9039.48, + "end": 9044.18, + "probability": 0.9972 + }, + { + "start": 9045.14, + "end": 9046.8, + "probability": 0.9988 + }, + { + "start": 9047.54, + "end": 9052.04, + "probability": 0.9993 + }, + { + "start": 9052.62, + "end": 9055.26, + "probability": 0.9984 + }, + { + "start": 9055.36, + "end": 9055.88, + "probability": 0.8401 + }, + { + "start": 9056.16, + "end": 9056.82, + "probability": 0.969 + }, + { + "start": 9057.3, + "end": 9057.86, + "probability": 0.9969 + }, + { + "start": 9058.0, + "end": 9058.32, + "probability": 0.9705 + }, + { + "start": 9058.5, + "end": 9059.44, + "probability": 0.986 + }, + { + "start": 9060.14, + "end": 9063.14, + "probability": 0.9868 + }, + { + "start": 9063.78, + "end": 9066.26, + "probability": 0.9775 + }, + { + "start": 9067.32, + "end": 9067.78, + "probability": 0.7144 + }, + { + "start": 9067.86, + "end": 9069.2, + "probability": 0.7993 + }, + { + "start": 9069.6, + "end": 9070.72, + "probability": 0.9612 + }, + { + "start": 9071.26, + "end": 9074.82, + "probability": 0.9819 + }, + { + "start": 9075.46, + "end": 9077.92, + "probability": 0.9906 + }, + { + "start": 9081.48, + "end": 9082.18, + "probability": 0.8359 + }, + { + "start": 9082.8, + "end": 9084.3, + "probability": 0.9517 + }, + { + "start": 9084.94, + "end": 9088.64, + "probability": 0.9292 + }, + { + "start": 9089.7, + "end": 9093.16, + "probability": 0.942 + }, + { + "start": 9093.44, + "end": 9095.56, + "probability": 0.9979 + }, + { + "start": 9095.98, + "end": 9098.74, + "probability": 0.9619 + }, + { + "start": 9099.42, + "end": 9101.5, + "probability": 0.9872 + }, + { + "start": 9101.98, + "end": 9104.32, + "probability": 0.9967 + }, + { + "start": 9104.94, + "end": 9105.54, + "probability": 0.8142 + }, + { + "start": 9106.76, + "end": 9110.0, + "probability": 0.9978 + }, + { + "start": 9110.92, + "end": 9113.04, + "probability": 0.9782 + }, + { + "start": 9113.62, + "end": 9115.24, + "probability": 0.9525 + }, + { + "start": 9115.36, + "end": 9116.02, + "probability": 0.7485 + }, + { + "start": 9116.1, + "end": 9117.01, + "probability": 0.9849 + }, + { + "start": 9117.64, + "end": 9121.76, + "probability": 0.9876 + }, + { + "start": 9122.32, + "end": 9125.6, + "probability": 0.983 + }, + { + "start": 9126.86, + "end": 9130.18, + "probability": 0.8289 + }, + { + "start": 9130.8, + "end": 9135.48, + "probability": 0.9954 + }, + { + "start": 9135.66, + "end": 9136.18, + "probability": 0.7641 + }, + { + "start": 9137.4, + "end": 9141.44, + "probability": 0.9989 + }, + { + "start": 9142.68, + "end": 9144.34, + "probability": 0.9814 + }, + { + "start": 9145.1, + "end": 9145.54, + "probability": 0.766 + }, + { + "start": 9146.08, + "end": 9146.4, + "probability": 0.9198 + }, + { + "start": 9147.06, + "end": 9149.52, + "probability": 0.9775 + }, + { + "start": 9150.12, + "end": 9153.6, + "probability": 0.9986 + }, + { + "start": 9154.06, + "end": 9154.8, + "probability": 0.8564 + }, + { + "start": 9155.2, + "end": 9156.86, + "probability": 0.7679 + }, + { + "start": 9157.24, + "end": 9160.96, + "probability": 0.9972 + }, + { + "start": 9161.04, + "end": 9163.0, + "probability": 0.6248 + }, + { + "start": 9164.06, + "end": 9165.52, + "probability": 0.9713 + }, + { + "start": 9166.14, + "end": 9167.06, + "probability": 0.9895 + }, + { + "start": 9167.28, + "end": 9167.9, + "probability": 0.9917 + }, + { + "start": 9168.02, + "end": 9169.68, + "probability": 0.9971 + }, + { + "start": 9170.04, + "end": 9175.12, + "probability": 0.994 + }, + { + "start": 9178.28, + "end": 9183.24, + "probability": 0.9912 + }, + { + "start": 9184.14, + "end": 9186.72, + "probability": 0.778 + }, + { + "start": 9188.72, + "end": 9190.02, + "probability": 0.9562 + }, + { + "start": 9191.72, + "end": 9195.58, + "probability": 0.9713 + }, + { + "start": 9197.14, + "end": 9200.94, + "probability": 0.9831 + }, + { + "start": 9201.34, + "end": 9203.32, + "probability": 0.6471 + }, + { + "start": 9204.04, + "end": 9205.04, + "probability": 0.8542 + }, + { + "start": 9206.02, + "end": 9206.42, + "probability": 0.9456 + }, + { + "start": 9207.02, + "end": 9207.82, + "probability": 0.9868 + }, + { + "start": 9208.52, + "end": 9209.54, + "probability": 0.9925 + }, + { + "start": 9209.84, + "end": 9214.44, + "probability": 0.9929 + }, + { + "start": 9215.34, + "end": 9215.76, + "probability": 0.8014 + }, + { + "start": 9216.38, + "end": 9217.48, + "probability": 0.5292 + }, + { + "start": 9218.26, + "end": 9220.72, + "probability": 0.7563 + }, + { + "start": 9221.58, + "end": 9223.62, + "probability": 0.8706 + }, + { + "start": 9225.44, + "end": 9226.82, + "probability": 0.9153 + }, + { + "start": 9245.48, + "end": 9245.58, + "probability": 0.448 + }, + { + "start": 9255.0, + "end": 9256.32, + "probability": 0.6073 + }, + { + "start": 9257.64, + "end": 9258.52, + "probability": 0.6546 + }, + { + "start": 9259.72, + "end": 9260.46, + "probability": 0.8522 + }, + { + "start": 9262.64, + "end": 9264.12, + "probability": 0.7691 + }, + { + "start": 9265.02, + "end": 9269.7, + "probability": 0.9881 + }, + { + "start": 9269.76, + "end": 9271.44, + "probability": 0.9368 + }, + { + "start": 9272.3, + "end": 9275.14, + "probability": 0.6078 + }, + { + "start": 9275.94, + "end": 9277.83, + "probability": 0.9355 + }, + { + "start": 9278.96, + "end": 9284.76, + "probability": 0.5754 + }, + { + "start": 9285.2, + "end": 9286.38, + "probability": 0.825 + }, + { + "start": 9287.0, + "end": 9287.76, + "probability": 0.9469 + }, + { + "start": 9288.28, + "end": 9289.69, + "probability": 0.8677 + }, + { + "start": 9289.82, + "end": 9292.74, + "probability": 0.9529 + }, + { + "start": 9293.76, + "end": 9295.58, + "probability": 0.9271 + }, + { + "start": 9296.4, + "end": 9298.38, + "probability": 0.77 + }, + { + "start": 9299.26, + "end": 9301.42, + "probability": 0.9714 + }, + { + "start": 9302.24, + "end": 9304.56, + "probability": 0.8841 + }, + { + "start": 9304.7, + "end": 9307.52, + "probability": 0.9723 + }, + { + "start": 9308.08, + "end": 9309.28, + "probability": 0.8291 + }, + { + "start": 9309.94, + "end": 9312.49, + "probability": 0.9382 + }, + { + "start": 9313.88, + "end": 9314.6, + "probability": 0.8475 + }, + { + "start": 9315.14, + "end": 9319.14, + "probability": 0.8043 + }, + { + "start": 9319.66, + "end": 9320.78, + "probability": 0.7704 + }, + { + "start": 9321.72, + "end": 9324.36, + "probability": 0.7952 + }, + { + "start": 9324.66, + "end": 9325.62, + "probability": 0.8477 + }, + { + "start": 9325.92, + "end": 9329.46, + "probability": 0.7808 + }, + { + "start": 9329.98, + "end": 9330.96, + "probability": 0.9989 + }, + { + "start": 9332.34, + "end": 9334.0, + "probability": 0.7917 + }, + { + "start": 9334.4, + "end": 9336.08, + "probability": 0.8527 + }, + { + "start": 9336.6, + "end": 9338.46, + "probability": 0.9291 + }, + { + "start": 9339.04, + "end": 9340.65, + "probability": 0.6726 + }, + { + "start": 9341.96, + "end": 9345.98, + "probability": 0.8075 + }, + { + "start": 9346.08, + "end": 9348.37, + "probability": 0.8229 + }, + { + "start": 9348.72, + "end": 9350.42, + "probability": 0.3687 + }, + { + "start": 9350.42, + "end": 9351.84, + "probability": 0.1691 + }, + { + "start": 9352.6, + "end": 9358.34, + "probability": 0.6339 + }, + { + "start": 9358.56, + "end": 9361.76, + "probability": 0.946 + }, + { + "start": 9362.7, + "end": 9363.54, + "probability": 0.5186 + }, + { + "start": 9364.54, + "end": 9369.1, + "probability": 0.9058 + }, + { + "start": 9369.2, + "end": 9369.66, + "probability": 0.8666 + }, + { + "start": 9370.02, + "end": 9370.84, + "probability": 0.8948 + }, + { + "start": 9371.24, + "end": 9371.96, + "probability": 0.9863 + }, + { + "start": 9372.68, + "end": 9374.26, + "probability": 0.8941 + }, + { + "start": 9374.94, + "end": 9376.68, + "probability": 0.935 + }, + { + "start": 9377.24, + "end": 9378.84, + "probability": 0.4669 + }, + { + "start": 9379.0, + "end": 9381.62, + "probability": 0.5466 + }, + { + "start": 9381.92, + "end": 9382.68, + "probability": 0.4973 + }, + { + "start": 9383.0, + "end": 9387.08, + "probability": 0.9033 + }, + { + "start": 9388.08, + "end": 9389.76, + "probability": 0.827 + }, + { + "start": 9390.28, + "end": 9393.5, + "probability": 0.6665 + }, + { + "start": 9393.84, + "end": 9394.64, + "probability": 0.6671 + }, + { + "start": 9395.64, + "end": 9396.58, + "probability": 0.93 + }, + { + "start": 9396.74, + "end": 9401.76, + "probability": 0.6378 + }, + { + "start": 9401.84, + "end": 9406.06, + "probability": 0.8337 + }, + { + "start": 9406.14, + "end": 9407.28, + "probability": 0.8864 + }, + { + "start": 9408.22, + "end": 9409.56, + "probability": 0.4927 + }, + { + "start": 9410.22, + "end": 9413.14, + "probability": 0.7723 + }, + { + "start": 9413.16, + "end": 9413.26, + "probability": 0.4045 + }, + { + "start": 9413.58, + "end": 9416.82, + "probability": 0.7458 + }, + { + "start": 9417.12, + "end": 9419.7, + "probability": 0.8194 + }, + { + "start": 9419.8, + "end": 9422.68, + "probability": 0.74 + }, + { + "start": 9422.78, + "end": 9424.64, + "probability": 0.9749 + }, + { + "start": 9425.08, + "end": 9425.76, + "probability": 0.9738 + }, + { + "start": 9425.96, + "end": 9429.36, + "probability": 0.9583 + }, + { + "start": 9429.7, + "end": 9432.55, + "probability": 0.9934 + }, + { + "start": 9433.18, + "end": 9433.8, + "probability": 0.7054 + }, + { + "start": 9434.1, + "end": 9436.1, + "probability": 0.7866 + }, + { + "start": 9436.18, + "end": 9443.1, + "probability": 0.9775 + }, + { + "start": 9443.1, + "end": 9444.12, + "probability": 0.973 + }, + { + "start": 9444.22, + "end": 9445.92, + "probability": 0.8588 + }, + { + "start": 9446.32, + "end": 9446.84, + "probability": 0.8798 + }, + { + "start": 9447.46, + "end": 9449.06, + "probability": 0.8672 + }, + { + "start": 9449.18, + "end": 9451.34, + "probability": 0.9413 + }, + { + "start": 9451.76, + "end": 9452.74, + "probability": 0.9155 + }, + { + "start": 9452.86, + "end": 9453.92, + "probability": 0.7686 + }, + { + "start": 9454.54, + "end": 9457.46, + "probability": 0.6896 + }, + { + "start": 9458.68, + "end": 9460.16, + "probability": 0.9526 + }, + { + "start": 9460.7, + "end": 9463.14, + "probability": 0.658 + }, + { + "start": 9463.32, + "end": 9464.82, + "probability": 0.6589 + }, + { + "start": 9465.46, + "end": 9467.4, + "probability": 0.7471 + }, + { + "start": 9467.56, + "end": 9471.26, + "probability": 0.9323 + }, + { + "start": 9472.94, + "end": 9473.34, + "probability": 0.4536 + }, + { + "start": 9473.52, + "end": 9474.92, + "probability": 0.3702 + }, + { + "start": 9475.38, + "end": 9476.56, + "probability": 0.9619 + }, + { + "start": 9477.64, + "end": 9481.56, + "probability": 0.7076 + }, + { + "start": 9481.94, + "end": 9487.56, + "probability": 0.4013 + }, + { + "start": 9487.68, + "end": 9488.56, + "probability": 0.3959 + }, + { + "start": 9489.35, + "end": 9491.64, + "probability": 0.8255 + }, + { + "start": 9491.64, + "end": 9493.36, + "probability": 0.482 + }, + { + "start": 9494.7, + "end": 9496.78, + "probability": 0.9466 + }, + { + "start": 9496.86, + "end": 9497.52, + "probability": 0.8862 + }, + { + "start": 9497.6, + "end": 9497.86, + "probability": 0.4415 + }, + { + "start": 9498.5, + "end": 9501.08, + "probability": 0.9438 + }, + { + "start": 9501.62, + "end": 9503.78, + "probability": 0.7979 + }, + { + "start": 9504.34, + "end": 9506.44, + "probability": 0.8687 + }, + { + "start": 9507.3, + "end": 9508.94, + "probability": 0.9332 + }, + { + "start": 9508.98, + "end": 9509.73, + "probability": 0.8491 + }, + { + "start": 9509.94, + "end": 9512.82, + "probability": 0.9746 + }, + { + "start": 9513.04, + "end": 9515.04, + "probability": 0.6631 + }, + { + "start": 9515.56, + "end": 9517.66, + "probability": 0.6006 + }, + { + "start": 9517.82, + "end": 9520.82, + "probability": 0.9388 + }, + { + "start": 9521.48, + "end": 9522.24, + "probability": 0.8357 + }, + { + "start": 9522.38, + "end": 9523.18, + "probability": 0.9258 + }, + { + "start": 9523.28, + "end": 9525.34, + "probability": 0.7657 + }, + { + "start": 9525.98, + "end": 9529.84, + "probability": 0.9897 + }, + { + "start": 9530.16, + "end": 9535.2, + "probability": 0.7304 + }, + { + "start": 9535.22, + "end": 9536.08, + "probability": 0.8228 + }, + { + "start": 9536.76, + "end": 9539.26, + "probability": 0.6235 + }, + { + "start": 9539.46, + "end": 9542.64, + "probability": 0.8037 + }, + { + "start": 9543.38, + "end": 9544.98, + "probability": 0.9827 + }, + { + "start": 9545.08, + "end": 9547.7, + "probability": 0.8383 + }, + { + "start": 9548.28, + "end": 9550.22, + "probability": 0.2539 + }, + { + "start": 9550.24, + "end": 9552.82, + "probability": 0.793 + }, + { + "start": 9553.46, + "end": 9555.44, + "probability": 0.9778 + }, + { + "start": 9556.2, + "end": 9558.58, + "probability": 0.8169 + }, + { + "start": 9558.62, + "end": 9560.98, + "probability": 0.7207 + }, + { + "start": 9562.24, + "end": 9563.26, + "probability": 0.5428 + }, + { + "start": 9563.98, + "end": 9565.86, + "probability": 0.8037 + }, + { + "start": 9566.4, + "end": 9567.32, + "probability": 0.5539 + }, + { + "start": 9567.88, + "end": 9569.8, + "probability": 0.8126 + }, + { + "start": 9570.0, + "end": 9573.2, + "probability": 0.8762 + }, + { + "start": 9573.75, + "end": 9576.78, + "probability": 0.6928 + }, + { + "start": 9576.9, + "end": 9577.46, + "probability": 0.3279 + }, + { + "start": 9578.08, + "end": 9579.26, + "probability": 0.9661 + }, + { + "start": 9579.58, + "end": 9580.22, + "probability": 0.748 + }, + { + "start": 9580.32, + "end": 9583.32, + "probability": 0.96 + }, + { + "start": 9583.32, + "end": 9585.2, + "probability": 0.8309 + }, + { + "start": 9585.86, + "end": 9587.42, + "probability": 0.6447 + }, + { + "start": 9588.34, + "end": 9591.38, + "probability": 0.8689 + }, + { + "start": 9591.38, + "end": 9594.6, + "probability": 0.7264 + }, + { + "start": 9595.42, + "end": 9597.5, + "probability": 0.4494 + }, + { + "start": 9599.3, + "end": 9601.66, + "probability": 0.0239 + }, + { + "start": 9601.78, + "end": 9602.74, + "probability": 0.5386 + }, + { + "start": 9603.26, + "end": 9603.76, + "probability": 0.6386 + }, + { + "start": 9604.2, + "end": 9606.86, + "probability": 0.8462 + }, + { + "start": 9606.94, + "end": 9607.32, + "probability": 0.6881 + }, + { + "start": 9607.38, + "end": 9609.72, + "probability": 0.8253 + }, + { + "start": 9610.34, + "end": 9611.34, + "probability": 0.86 + }, + { + "start": 9611.74, + "end": 9613.48, + "probability": 0.991 + }, + { + "start": 9614.0, + "end": 9615.62, + "probability": 0.7326 + }, + { + "start": 9616.24, + "end": 9617.66, + "probability": 0.9646 + }, + { + "start": 9618.16, + "end": 9620.14, + "probability": 0.8028 + }, + { + "start": 9620.6, + "end": 9621.54, + "probability": 0.7777 + }, + { + "start": 9622.74, + "end": 9624.22, + "probability": 0.88 + }, + { + "start": 9624.24, + "end": 9624.64, + "probability": 0.895 + }, + { + "start": 9624.92, + "end": 9628.94, + "probability": 0.8449 + }, + { + "start": 9629.78, + "end": 9631.96, + "probability": 0.7049 + }, + { + "start": 9632.86, + "end": 9635.0, + "probability": 0.6396 + }, + { + "start": 9635.24, + "end": 9637.12, + "probability": 0.9335 + }, + { + "start": 9638.0, + "end": 9638.55, + "probability": 0.4039 + }, + { + "start": 9639.36, + "end": 9641.68, + "probability": 0.4914 + }, + { + "start": 9642.26, + "end": 9647.26, + "probability": 0.8141 + }, + { + "start": 9648.19, + "end": 9652.66, + "probability": 0.8719 + }, + { + "start": 9653.22, + "end": 9654.06, + "probability": 0.8865 + }, + { + "start": 9654.6, + "end": 9656.88, + "probability": 0.9514 + }, + { + "start": 9657.6, + "end": 9659.1, + "probability": 0.5224 + }, + { + "start": 9659.32, + "end": 9659.58, + "probability": 0.2011 + }, + { + "start": 9659.62, + "end": 9660.34, + "probability": 0.6542 + }, + { + "start": 9660.44, + "end": 9661.08, + "probability": 0.9497 + }, + { + "start": 9662.11, + "end": 9663.58, + "probability": 0.8799 + }, + { + "start": 9663.78, + "end": 9664.56, + "probability": 0.8395 + }, + { + "start": 9664.9, + "end": 9671.9, + "probability": 0.8674 + }, + { + "start": 9672.1, + "end": 9674.92, + "probability": 0.9514 + }, + { + "start": 9674.92, + "end": 9678.78, + "probability": 0.976 + }, + { + "start": 9678.78, + "end": 9681.94, + "probability": 0.7207 + }, + { + "start": 9682.0, + "end": 9683.11, + "probability": 0.9763 + }, + { + "start": 9683.2, + "end": 9684.54, + "probability": 0.8709 + }, + { + "start": 9684.6, + "end": 9685.3, + "probability": 0.6692 + }, + { + "start": 9685.54, + "end": 9686.04, + "probability": 0.7019 + }, + { + "start": 9686.58, + "end": 9689.34, + "probability": 0.4556 + }, + { + "start": 9689.74, + "end": 9691.66, + "probability": 0.5399 + }, + { + "start": 9691.74, + "end": 9694.14, + "probability": 0.8981 + }, + { + "start": 9694.8, + "end": 9697.8, + "probability": 0.5105 + }, + { + "start": 9697.9, + "end": 9698.86, + "probability": 0.6239 + }, + { + "start": 9699.06, + "end": 9699.46, + "probability": 0.6766 + }, + { + "start": 9700.1, + "end": 9704.36, + "probability": 0.8164 + }, + { + "start": 9704.8, + "end": 9706.66, + "probability": 0.9785 + }, + { + "start": 9706.9, + "end": 9707.94, + "probability": 0.9729 + }, + { + "start": 9708.22, + "end": 9712.14, + "probability": 0.9316 + }, + { + "start": 9712.48, + "end": 9719.16, + "probability": 0.7944 + }, + { + "start": 9720.28, + "end": 9722.68, + "probability": 0.5548 + }, + { + "start": 9722.78, + "end": 9722.86, + "probability": 0.4574 + }, + { + "start": 9722.86, + "end": 9725.76, + "probability": 0.8357 + }, + { + "start": 9726.28, + "end": 9730.44, + "probability": 0.8361 + }, + { + "start": 9730.58, + "end": 9731.74, + "probability": 0.8826 + }, + { + "start": 9732.02, + "end": 9734.84, + "probability": 0.37 + }, + { + "start": 9735.26, + "end": 9737.1, + "probability": 0.8981 + }, + { + "start": 9737.3, + "end": 9737.8, + "probability": 0.6226 + }, + { + "start": 9738.24, + "end": 9739.02, + "probability": 0.9279 + }, + { + "start": 9739.26, + "end": 9739.44, + "probability": 0.7139 + }, + { + "start": 9740.0, + "end": 9741.34, + "probability": 0.9402 + }, + { + "start": 9741.74, + "end": 9743.04, + "probability": 0.7927 + }, + { + "start": 9749.42, + "end": 9751.2, + "probability": 0.2953 + }, + { + "start": 9770.24, + "end": 9771.44, + "probability": 0.6308 + }, + { + "start": 9772.54, + "end": 9774.12, + "probability": 0.9166 + }, + { + "start": 9775.5, + "end": 9777.66, + "probability": 0.9851 + }, + { + "start": 9778.48, + "end": 9779.58, + "probability": 0.9517 + }, + { + "start": 9779.68, + "end": 9781.86, + "probability": 0.8085 + }, + { + "start": 9781.92, + "end": 9783.52, + "probability": 0.9976 + }, + { + "start": 9785.6, + "end": 9789.42, + "probability": 0.9932 + }, + { + "start": 9790.8, + "end": 9796.3, + "probability": 0.9834 + }, + { + "start": 9798.24, + "end": 9802.88, + "probability": 0.9921 + }, + { + "start": 9803.06, + "end": 9805.14, + "probability": 0.9097 + }, + { + "start": 9806.1, + "end": 9808.38, + "probability": 0.9875 + }, + { + "start": 9809.58, + "end": 9813.42, + "probability": 0.9946 + }, + { + "start": 9814.0, + "end": 9821.3, + "probability": 0.9625 + }, + { + "start": 9822.4, + "end": 9824.52, + "probability": 0.8029 + }, + { + "start": 9825.18, + "end": 9827.98, + "probability": 0.9913 + }, + { + "start": 9828.5, + "end": 9833.62, + "probability": 0.9904 + }, + { + "start": 9834.98, + "end": 9837.06, + "probability": 0.9973 + }, + { + "start": 9838.08, + "end": 9840.06, + "probability": 0.9965 + }, + { + "start": 9841.08, + "end": 9844.22, + "probability": 0.9966 + }, + { + "start": 9845.9, + "end": 9849.58, + "probability": 0.9752 + }, + { + "start": 9849.88, + "end": 9855.86, + "probability": 0.9508 + }, + { + "start": 9856.12, + "end": 9861.82, + "probability": 0.9961 + }, + { + "start": 9862.16, + "end": 9868.74, + "probability": 0.9889 + }, + { + "start": 9869.02, + "end": 9873.54, + "probability": 0.9835 + }, + { + "start": 9874.94, + "end": 9880.26, + "probability": 0.9943 + }, + { + "start": 9881.26, + "end": 9882.36, + "probability": 0.7725 + }, + { + "start": 9883.8, + "end": 9886.18, + "probability": 0.9982 + }, + { + "start": 9887.04, + "end": 9889.36, + "probability": 0.9946 + }, + { + "start": 9889.48, + "end": 9892.3, + "probability": 0.9737 + }, + { + "start": 9893.48, + "end": 9895.18, + "probability": 0.937 + }, + { + "start": 9896.08, + "end": 9898.92, + "probability": 0.9632 + }, + { + "start": 9900.1, + "end": 9905.4, + "probability": 0.9443 + }, + { + "start": 9906.76, + "end": 9908.82, + "probability": 0.7926 + }, + { + "start": 9909.6, + "end": 9910.2, + "probability": 0.9173 + }, + { + "start": 9910.34, + "end": 9915.42, + "probability": 0.8234 + }, + { + "start": 9916.67, + "end": 9919.9, + "probability": 0.9895 + }, + { + "start": 9920.74, + "end": 9922.32, + "probability": 0.8013 + }, + { + "start": 9923.28, + "end": 9928.78, + "probability": 0.7168 + }, + { + "start": 9930.48, + "end": 9933.26, + "probability": 0.9976 + }, + { + "start": 9935.7, + "end": 9939.78, + "probability": 0.9944 + }, + { + "start": 9940.7, + "end": 9942.44, + "probability": 0.9048 + }, + { + "start": 9943.76, + "end": 9944.38, + "probability": 0.2561 + }, + { + "start": 9945.36, + "end": 9948.14, + "probability": 0.996 + }, + { + "start": 9948.16, + "end": 9951.3, + "probability": 0.248 + }, + { + "start": 9953.14, + "end": 9958.02, + "probability": 0.9422 + }, + { + "start": 9958.9, + "end": 9960.88, + "probability": 0.7239 + }, + { + "start": 9963.22, + "end": 9966.28, + "probability": 0.9895 + }, + { + "start": 9966.8, + "end": 9967.32, + "probability": 0.9987 + }, + { + "start": 9967.88, + "end": 9970.16, + "probability": 0.9965 + }, + { + "start": 9971.42, + "end": 9972.88, + "probability": 0.7136 + }, + { + "start": 9974.24, + "end": 9975.6, + "probability": 0.7683 + }, + { + "start": 9975.9, + "end": 9978.62, + "probability": 0.9971 + }, + { + "start": 9978.62, + "end": 9981.14, + "probability": 0.9469 + }, + { + "start": 9982.08, + "end": 9986.06, + "probability": 0.9979 + }, + { + "start": 9986.92, + "end": 9991.04, + "probability": 0.9934 + }, + { + "start": 9992.44, + "end": 9995.86, + "probability": 0.9893 + }, + { + "start": 9996.7, + "end": 9997.5, + "probability": 0.3608 + }, + { + "start": 9998.82, + "end": 10001.18, + "probability": 0.9 + }, + { + "start": 10002.3, + "end": 10003.24, + "probability": 0.5001 + }, + { + "start": 10004.0, + "end": 10004.84, + "probability": 0.7974 + }, + { + "start": 10005.58, + "end": 10006.48, + "probability": 0.9561 + }, + { + "start": 10007.46, + "end": 10010.8, + "probability": 0.9811 + }, + { + "start": 10012.5, + "end": 10015.02, + "probability": 0.9609 + }, + { + "start": 10016.1, + "end": 10018.88, + "probability": 0.9626 + }, + { + "start": 10020.1, + "end": 10020.22, + "probability": 0.5405 + }, + { + "start": 10021.26, + "end": 10022.74, + "probability": 0.9987 + }, + { + "start": 10023.9, + "end": 10026.08, + "probability": 0.9888 + }, + { + "start": 10026.88, + "end": 10028.64, + "probability": 0.9902 + }, + { + "start": 10029.18, + "end": 10029.86, + "probability": 0.9712 + }, + { + "start": 10030.54, + "end": 10031.62, + "probability": 0.9745 + }, + { + "start": 10032.6, + "end": 10033.84, + "probability": 0.8289 + }, + { + "start": 10034.76, + "end": 10038.96, + "probability": 0.99 + }, + { + "start": 10040.48, + "end": 10041.3, + "probability": 0.7735 + }, + { + "start": 10042.12, + "end": 10043.28, + "probability": 0.7934 + }, + { + "start": 10044.52, + "end": 10050.09, + "probability": 0.8342 + }, + { + "start": 10051.78, + "end": 10052.76, + "probability": 0.9365 + }, + { + "start": 10053.5, + "end": 10055.96, + "probability": 0.9941 + }, + { + "start": 10056.66, + "end": 10057.96, + "probability": 0.8105 + }, + { + "start": 10059.9, + "end": 10063.04, + "probability": 0.9412 + }, + { + "start": 10063.18, + "end": 10065.24, + "probability": 0.8802 + }, + { + "start": 10065.32, + "end": 10067.64, + "probability": 0.9692 + }, + { + "start": 10067.68, + "end": 10071.96, + "probability": 0.9872 + }, + { + "start": 10073.6, + "end": 10074.78, + "probability": 0.5462 + }, + { + "start": 10074.8, + "end": 10076.24, + "probability": 0.927 + }, + { + "start": 10076.26, + "end": 10078.18, + "probability": 0.9779 + }, + { + "start": 10078.22, + "end": 10080.18, + "probability": 0.9143 + }, + { + "start": 10080.8, + "end": 10084.72, + "probability": 0.9995 + }, + { + "start": 10085.32, + "end": 10086.48, + "probability": 0.9708 + }, + { + "start": 10087.86, + "end": 10090.02, + "probability": 0.8887 + }, + { + "start": 10091.26, + "end": 10094.82, + "probability": 0.9947 + }, + { + "start": 10095.58, + "end": 10096.52, + "probability": 0.9657 + }, + { + "start": 10096.6, + "end": 10097.38, + "probability": 0.468 + }, + { + "start": 10097.62, + "end": 10102.04, + "probability": 0.9972 + }, + { + "start": 10102.7, + "end": 10108.32, + "probability": 0.9963 + }, + { + "start": 10109.82, + "end": 10110.6, + "probability": 0.7145 + }, + { + "start": 10111.68, + "end": 10113.7, + "probability": 0.9954 + }, + { + "start": 10114.78, + "end": 10116.74, + "probability": 0.8315 + }, + { + "start": 10117.54, + "end": 10120.58, + "probability": 0.6703 + }, + { + "start": 10121.24, + "end": 10123.38, + "probability": 0.9762 + }, + { + "start": 10124.4, + "end": 10127.72, + "probability": 0.9793 + }, + { + "start": 10127.72, + "end": 10131.3, + "probability": 0.9928 + }, + { + "start": 10132.16, + "end": 10133.02, + "probability": 0.9983 + }, + { + "start": 10134.36, + "end": 10135.44, + "probability": 0.9966 + }, + { + "start": 10136.44, + "end": 10140.64, + "probability": 0.9997 + }, + { + "start": 10140.79, + "end": 10144.48, + "probability": 0.7373 + }, + { + "start": 10145.26, + "end": 10146.98, + "probability": 0.9966 + }, + { + "start": 10147.9, + "end": 10151.66, + "probability": 0.9523 + }, + { + "start": 10152.52, + "end": 10154.95, + "probability": 0.9609 + }, + { + "start": 10155.3, + "end": 10157.62, + "probability": 0.9739 + }, + { + "start": 10158.76, + "end": 10162.82, + "probability": 0.9195 + }, + { + "start": 10163.38, + "end": 10165.45, + "probability": 0.9941 + }, + { + "start": 10166.48, + "end": 10167.24, + "probability": 0.9451 + }, + { + "start": 10169.34, + "end": 10170.64, + "probability": 0.4526 + }, + { + "start": 10171.4, + "end": 10172.44, + "probability": 0.9806 + }, + { + "start": 10173.0, + "end": 10176.86, + "probability": 0.9992 + }, + { + "start": 10176.86, + "end": 10182.3, + "probability": 0.9834 + }, + { + "start": 10182.78, + "end": 10187.32, + "probability": 0.9989 + }, + { + "start": 10187.96, + "end": 10191.18, + "probability": 0.9785 + }, + { + "start": 10191.18, + "end": 10194.46, + "probability": 0.9976 + }, + { + "start": 10194.82, + "end": 10195.96, + "probability": 0.5494 + }, + { + "start": 10196.14, + "end": 10197.88, + "probability": 0.693 + }, + { + "start": 10199.49, + "end": 10202.06, + "probability": 0.7839 + }, + { + "start": 10205.8, + "end": 10208.34, + "probability": 0.857 + }, + { + "start": 10209.66, + "end": 10210.96, + "probability": 0.8748 + }, + { + "start": 10225.46, + "end": 10227.98, + "probability": 0.8626 + }, + { + "start": 10229.08, + "end": 10234.32, + "probability": 0.9608 + }, + { + "start": 10234.94, + "end": 10235.8, + "probability": 0.958 + }, + { + "start": 10235.92, + "end": 10237.94, + "probability": 0.9225 + }, + { + "start": 10238.34, + "end": 10238.68, + "probability": 0.7383 + }, + { + "start": 10240.4, + "end": 10241.82, + "probability": 0.6949 + }, + { + "start": 10241.88, + "end": 10244.9, + "probability": 0.6785 + }, + { + "start": 10246.1, + "end": 10247.24, + "probability": 0.9844 + }, + { + "start": 10247.4, + "end": 10250.04, + "probability": 0.9888 + }, + { + "start": 10251.7, + "end": 10254.74, + "probability": 0.9808 + }, + { + "start": 10255.6, + "end": 10258.18, + "probability": 0.9883 + }, + { + "start": 10259.0, + "end": 10259.32, + "probability": 0.6473 + }, + { + "start": 10259.84, + "end": 10260.84, + "probability": 0.6178 + }, + { + "start": 10261.64, + "end": 10262.92, + "probability": 0.9199 + }, + { + "start": 10263.5, + "end": 10264.4, + "probability": 0.9678 + }, + { + "start": 10265.78, + "end": 10268.44, + "probability": 0.7422 + }, + { + "start": 10269.8, + "end": 10273.52, + "probability": 0.9924 + }, + { + "start": 10273.52, + "end": 10278.18, + "probability": 0.9928 + }, + { + "start": 10279.04, + "end": 10283.42, + "probability": 0.9889 + }, + { + "start": 10283.6, + "end": 10283.9, + "probability": 0.8485 + }, + { + "start": 10284.22, + "end": 10284.86, + "probability": 0.8417 + }, + { + "start": 10284.98, + "end": 10287.04, + "probability": 0.9509 + }, + { + "start": 10287.24, + "end": 10288.48, + "probability": 0.9667 + }, + { + "start": 10288.66, + "end": 10292.84, + "probability": 0.996 + }, + { + "start": 10293.68, + "end": 10296.3, + "probability": 0.9915 + }, + { + "start": 10297.12, + "end": 10301.72, + "probability": 0.954 + }, + { + "start": 10302.08, + "end": 10303.96, + "probability": 0.8194 + }, + { + "start": 10304.08, + "end": 10307.56, + "probability": 0.9524 + }, + { + "start": 10308.18, + "end": 10314.84, + "probability": 0.9936 + }, + { + "start": 10316.5, + "end": 10319.48, + "probability": 0.9989 + }, + { + "start": 10319.76, + "end": 10326.34, + "probability": 0.9938 + }, + { + "start": 10326.74, + "end": 10327.17, + "probability": 0.8145 + }, + { + "start": 10328.28, + "end": 10328.58, + "probability": 0.3807 + }, + { + "start": 10328.74, + "end": 10332.46, + "probability": 0.7569 + }, + { + "start": 10333.18, + "end": 10336.5, + "probability": 0.9784 + }, + { + "start": 10336.5, + "end": 10340.04, + "probability": 0.9861 + }, + { + "start": 10340.22, + "end": 10340.78, + "probability": 0.817 + }, + { + "start": 10341.08, + "end": 10342.6, + "probability": 0.973 + }, + { + "start": 10344.02, + "end": 10347.66, + "probability": 0.9933 + }, + { + "start": 10348.12, + "end": 10349.94, + "probability": 0.7701 + }, + { + "start": 10350.04, + "end": 10350.9, + "probability": 0.9985 + }, + { + "start": 10351.48, + "end": 10353.44, + "probability": 0.8949 + }, + { + "start": 10353.54, + "end": 10355.7, + "probability": 0.9529 + }, + { + "start": 10356.24, + "end": 10357.52, + "probability": 0.792 + }, + { + "start": 10357.72, + "end": 10358.24, + "probability": 0.9048 + }, + { + "start": 10358.5, + "end": 10358.78, + "probability": 0.9603 + }, + { + "start": 10359.66, + "end": 10360.75, + "probability": 0.998 + }, + { + "start": 10361.6, + "end": 10362.28, + "probability": 0.436 + }, + { + "start": 10362.94, + "end": 10365.8, + "probability": 0.8039 + }, + { + "start": 10366.76, + "end": 10368.24, + "probability": 0.9722 + }, + { + "start": 10368.36, + "end": 10369.02, + "probability": 0.821 + }, + { + "start": 10369.08, + "end": 10370.72, + "probability": 0.9875 + }, + { + "start": 10371.98, + "end": 10374.04, + "probability": 0.994 + }, + { + "start": 10374.66, + "end": 10375.58, + "probability": 0.9512 + }, + { + "start": 10377.12, + "end": 10379.5, + "probability": 0.9684 + }, + { + "start": 10380.26, + "end": 10380.5, + "probability": 0.2827 + }, + { + "start": 10380.7, + "end": 10385.7, + "probability": 0.9456 + }, + { + "start": 10387.42, + "end": 10388.54, + "probability": 0.8742 + }, + { + "start": 10390.0, + "end": 10395.24, + "probability": 0.9754 + }, + { + "start": 10395.24, + "end": 10399.16, + "probability": 0.9972 + }, + { + "start": 10400.1, + "end": 10404.02, + "probability": 0.9995 + }, + { + "start": 10404.68, + "end": 10405.96, + "probability": 0.6897 + }, + { + "start": 10407.64, + "end": 10409.74, + "probability": 0.9924 + }, + { + "start": 10409.84, + "end": 10412.12, + "probability": 0.9607 + }, + { + "start": 10412.96, + "end": 10414.0, + "probability": 0.7457 + }, + { + "start": 10414.06, + "end": 10414.8, + "probability": 0.7473 + }, + { + "start": 10416.96, + "end": 10421.62, + "probability": 0.9753 + }, + { + "start": 10423.1, + "end": 10426.32, + "probability": 0.9933 + }, + { + "start": 10426.32, + "end": 10426.48, + "probability": 0.2227 + }, + { + "start": 10426.58, + "end": 10426.8, + "probability": 0.7335 + }, + { + "start": 10426.92, + "end": 10429.42, + "probability": 0.9814 + }, + { + "start": 10430.1, + "end": 10431.46, + "probability": 0.9177 + }, + { + "start": 10432.62, + "end": 10438.26, + "probability": 0.9806 + }, + { + "start": 10438.56, + "end": 10441.16, + "probability": 0.9401 + }, + { + "start": 10441.94, + "end": 10446.26, + "probability": 0.9932 + }, + { + "start": 10446.76, + "end": 10448.18, + "probability": 0.6741 + }, + { + "start": 10452.04, + "end": 10453.4, + "probability": 0.8945 + }, + { + "start": 10455.3, + "end": 10461.96, + "probability": 0.0533 + }, + { + "start": 10481.58, + "end": 10482.74, + "probability": 0.6484 + }, + { + "start": 10486.68, + "end": 10488.04, + "probability": 0.7861 + }, + { + "start": 10488.56, + "end": 10491.5, + "probability": 0.9291 + }, + { + "start": 10493.6, + "end": 10498.12, + "probability": 0.9934 + }, + { + "start": 10499.84, + "end": 10500.64, + "probability": 0.9918 + }, + { + "start": 10501.76, + "end": 10503.42, + "probability": 0.9909 + }, + { + "start": 10504.82, + "end": 10506.24, + "probability": 0.999 + }, + { + "start": 10507.44, + "end": 10508.88, + "probability": 0.9814 + }, + { + "start": 10510.8, + "end": 10512.01, + "probability": 0.4534 + }, + { + "start": 10513.62, + "end": 10515.98, + "probability": 0.9972 + }, + { + "start": 10517.02, + "end": 10522.92, + "probability": 0.8 + }, + { + "start": 10523.96, + "end": 10529.02, + "probability": 0.9626 + }, + { + "start": 10530.96, + "end": 10532.46, + "probability": 0.8153 + }, + { + "start": 10533.58, + "end": 10534.5, + "probability": 0.9297 + }, + { + "start": 10535.8, + "end": 10537.34, + "probability": 0.8322 + }, + { + "start": 10538.42, + "end": 10539.24, + "probability": 0.9336 + }, + { + "start": 10540.72, + "end": 10542.6, + "probability": 0.998 + }, + { + "start": 10543.48, + "end": 10544.38, + "probability": 0.9909 + }, + { + "start": 10545.16, + "end": 10548.34, + "probability": 0.962 + }, + { + "start": 10551.06, + "end": 10551.5, + "probability": 0.8025 + }, + { + "start": 10552.36, + "end": 10552.72, + "probability": 0.9161 + }, + { + "start": 10553.24, + "end": 10553.76, + "probability": 0.9841 + }, + { + "start": 10554.48, + "end": 10556.62, + "probability": 0.9801 + }, + { + "start": 10557.2, + "end": 10559.02, + "probability": 0.9926 + }, + { + "start": 10560.68, + "end": 10562.58, + "probability": 0.9301 + }, + { + "start": 10563.74, + "end": 10564.92, + "probability": 0.6506 + }, + { + "start": 10566.3, + "end": 10568.1, + "probability": 0.7598 + }, + { + "start": 10570.88, + "end": 10571.82, + "probability": 0.7323 + }, + { + "start": 10572.82, + "end": 10573.7, + "probability": 0.989 + }, + { + "start": 10574.42, + "end": 10578.24, + "probability": 0.9978 + }, + { + "start": 10579.04, + "end": 10579.36, + "probability": 0.9857 + }, + { + "start": 10580.48, + "end": 10581.32, + "probability": 0.7175 + }, + { + "start": 10582.72, + "end": 10586.7, + "probability": 0.9304 + }, + { + "start": 10587.76, + "end": 10590.52, + "probability": 0.9699 + }, + { + "start": 10594.54, + "end": 10598.24, + "probability": 0.9838 + }, + { + "start": 10599.94, + "end": 10603.84, + "probability": 0.9856 + }, + { + "start": 10605.4, + "end": 10607.24, + "probability": 0.998 + }, + { + "start": 10607.98, + "end": 10608.5, + "probability": 0.9624 + }, + { + "start": 10609.9, + "end": 10611.66, + "probability": 0.9902 + }, + { + "start": 10612.76, + "end": 10615.9, + "probability": 0.9951 + }, + { + "start": 10616.94, + "end": 10620.2, + "probability": 0.965 + }, + { + "start": 10620.74, + "end": 10621.24, + "probability": 0.4252 + }, + { + "start": 10622.62, + "end": 10623.62, + "probability": 0.998 + }, + { + "start": 10625.0, + "end": 10626.54, + "probability": 0.9995 + }, + { + "start": 10627.64, + "end": 10633.4, + "probability": 0.9943 + }, + { + "start": 10635.1, + "end": 10641.16, + "probability": 0.9858 + }, + { + "start": 10642.14, + "end": 10646.6, + "probability": 0.9985 + }, + { + "start": 10647.78, + "end": 10648.58, + "probability": 0.8079 + }, + { + "start": 10649.66, + "end": 10652.42, + "probability": 0.9124 + }, + { + "start": 10652.94, + "end": 10655.02, + "probability": 0.9686 + }, + { + "start": 10656.14, + "end": 10660.96, + "probability": 0.9627 + }, + { + "start": 10662.6, + "end": 10664.22, + "probability": 0.98 + }, + { + "start": 10665.44, + "end": 10666.18, + "probability": 0.7711 + }, + { + "start": 10667.04, + "end": 10667.66, + "probability": 0.9854 + }, + { + "start": 10668.4, + "end": 10671.68, + "probability": 0.9949 + }, + { + "start": 10672.76, + "end": 10675.46, + "probability": 0.9927 + }, + { + "start": 10676.58, + "end": 10679.14, + "probability": 0.8998 + }, + { + "start": 10680.3, + "end": 10682.98, + "probability": 0.8568 + }, + { + "start": 10683.82, + "end": 10684.26, + "probability": 0.6714 + }, + { + "start": 10685.14, + "end": 10686.04, + "probability": 0.8016 + }, + { + "start": 10687.76, + "end": 10688.82, + "probability": 0.9872 + }, + { + "start": 10690.48, + "end": 10691.86, + "probability": 0.7703 + }, + { + "start": 10692.74, + "end": 10693.62, + "probability": 0.3965 + }, + { + "start": 10694.6, + "end": 10695.36, + "probability": 0.9501 + }, + { + "start": 10696.04, + "end": 10696.96, + "probability": 0.9336 + }, + { + "start": 10698.36, + "end": 10702.46, + "probability": 0.9779 + }, + { + "start": 10703.28, + "end": 10705.14, + "probability": 0.9026 + }, + { + "start": 10705.72, + "end": 10707.26, + "probability": 0.9888 + }, + { + "start": 10708.58, + "end": 10709.36, + "probability": 0.7853 + }, + { + "start": 10710.36, + "end": 10715.84, + "probability": 0.9938 + }, + { + "start": 10716.64, + "end": 10719.62, + "probability": 0.8793 + }, + { + "start": 10721.88, + "end": 10722.3, + "probability": 0.4645 + }, + { + "start": 10722.82, + "end": 10724.16, + "probability": 0.7218 + }, + { + "start": 10725.16, + "end": 10727.2, + "probability": 0.9386 + }, + { + "start": 10727.94, + "end": 10729.88, + "probability": 0.9281 + }, + { + "start": 10731.34, + "end": 10734.3, + "probability": 0.9967 + }, + { + "start": 10735.0, + "end": 10736.18, + "probability": 0.9915 + }, + { + "start": 10737.54, + "end": 10738.36, + "probability": 0.9254 + }, + { + "start": 10739.88, + "end": 10741.8, + "probability": 0.9141 + }, + { + "start": 10742.62, + "end": 10743.52, + "probability": 0.9615 + }, + { + "start": 10746.32, + "end": 10747.54, + "probability": 0.9317 + }, + { + "start": 10748.0, + "end": 10748.76, + "probability": 0.815 + }, + { + "start": 10749.08, + "end": 10754.52, + "probability": 0.941 + }, + { + "start": 10755.86, + "end": 10756.52, + "probability": 0.809 + }, + { + "start": 10757.72, + "end": 10762.98, + "probability": 0.974 + }, + { + "start": 10764.12, + "end": 10764.94, + "probability": 0.6931 + }, + { + "start": 10765.86, + "end": 10768.46, + "probability": 0.9617 + }, + { + "start": 10768.86, + "end": 10769.48, + "probability": 0.8872 + }, + { + "start": 10772.0, + "end": 10775.08, + "probability": 0.9113 + }, + { + "start": 10777.06, + "end": 10781.16, + "probability": 0.9933 + }, + { + "start": 10781.8, + "end": 10784.1, + "probability": 0.9595 + }, + { + "start": 10784.66, + "end": 10785.52, + "probability": 0.7977 + }, + { + "start": 10787.52, + "end": 10791.04, + "probability": 0.6745 + }, + { + "start": 10791.94, + "end": 10795.32, + "probability": 0.9942 + }, + { + "start": 10797.0, + "end": 10797.72, + "probability": 0.9456 + }, + { + "start": 10798.7, + "end": 10800.58, + "probability": 0.9965 + }, + { + "start": 10801.62, + "end": 10802.34, + "probability": 0.8555 + }, + { + "start": 10802.9, + "end": 10808.56, + "probability": 0.9758 + }, + { + "start": 10811.3, + "end": 10811.9, + "probability": 0.7606 + }, + { + "start": 10812.56, + "end": 10815.46, + "probability": 0.998 + }, + { + "start": 10816.32, + "end": 10817.14, + "probability": 0.8673 + }, + { + "start": 10818.36, + "end": 10820.4, + "probability": 0.9868 + }, + { + "start": 10821.52, + "end": 10821.92, + "probability": 0.9847 + }, + { + "start": 10823.46, + "end": 10824.0, + "probability": 0.925 + }, + { + "start": 10824.78, + "end": 10828.66, + "probability": 0.916 + }, + { + "start": 10829.84, + "end": 10831.56, + "probability": 0.7388 + }, + { + "start": 10831.9, + "end": 10834.06, + "probability": 0.9663 + }, + { + "start": 10835.72, + "end": 10840.74, + "probability": 0.9944 + }, + { + "start": 10840.74, + "end": 10846.54, + "probability": 0.9634 + }, + { + "start": 10847.5, + "end": 10848.76, + "probability": 0.9004 + }, + { + "start": 10849.86, + "end": 10853.92, + "probability": 0.8478 + }, + { + "start": 10855.2, + "end": 10855.7, + "probability": 0.5595 + }, + { + "start": 10856.54, + "end": 10863.82, + "probability": 0.9844 + }, + { + "start": 10865.1, + "end": 10867.1, + "probability": 0.8681 + }, + { + "start": 10868.74, + "end": 10872.62, + "probability": 0.9536 + }, + { + "start": 10873.82, + "end": 10874.86, + "probability": 0.4611 + }, + { + "start": 10875.42, + "end": 10876.86, + "probability": 0.8575 + }, + { + "start": 10878.66, + "end": 10883.08, + "probability": 0.8341 + }, + { + "start": 10885.52, + "end": 10891.96, + "probability": 0.9333 + }, + { + "start": 10891.96, + "end": 10899.64, + "probability": 0.9897 + }, + { + "start": 10901.12, + "end": 10903.76, + "probability": 0.9824 + }, + { + "start": 10904.42, + "end": 10906.04, + "probability": 0.6604 + }, + { + "start": 10907.66, + "end": 10908.14, + "probability": 0.5563 + }, + { + "start": 10908.9, + "end": 10911.48, + "probability": 0.9968 + }, + { + "start": 10912.38, + "end": 10913.12, + "probability": 0.6617 + }, + { + "start": 10914.02, + "end": 10917.48, + "probability": 0.6742 + }, + { + "start": 10919.8, + "end": 10920.48, + "probability": 0.8129 + }, + { + "start": 10921.64, + "end": 10924.02, + "probability": 0.8665 + }, + { + "start": 10924.68, + "end": 10926.7, + "probability": 0.9748 + }, + { + "start": 10927.4, + "end": 10928.22, + "probability": 0.7712 + }, + { + "start": 10928.9, + "end": 10934.18, + "probability": 0.9946 + }, + { + "start": 10934.92, + "end": 10936.2, + "probability": 0.9944 + }, + { + "start": 10936.74, + "end": 10937.26, + "probability": 0.7104 + }, + { + "start": 10938.22, + "end": 10938.94, + "probability": 0.6464 + }, + { + "start": 10939.7, + "end": 10945.6, + "probability": 0.8104 + }, + { + "start": 10946.6, + "end": 10950.54, + "probability": 0.9703 + }, + { + "start": 10951.5, + "end": 10952.22, + "probability": 0.9122 + }, + { + "start": 10952.78, + "end": 10957.84, + "probability": 0.9793 + }, + { + "start": 10963.2, + "end": 10968.36, + "probability": 0.7819 + }, + { + "start": 10968.98, + "end": 10971.24, + "probability": 0.7464 + }, + { + "start": 10972.56, + "end": 10973.92, + "probability": 0.9161 + }, + { + "start": 10975.02, + "end": 10976.5, + "probability": 0.9741 + }, + { + "start": 10976.84, + "end": 10980.64, + "probability": 0.9922 + }, + { + "start": 10980.64, + "end": 10985.32, + "probability": 0.9946 + }, + { + "start": 10987.0, + "end": 10991.66, + "probability": 0.99 + }, + { + "start": 10993.1, + "end": 10999.07, + "probability": 0.9883 + }, + { + "start": 11000.04, + "end": 11002.9, + "probability": 0.9988 + }, + { + "start": 11003.86, + "end": 11008.76, + "probability": 0.9256 + }, + { + "start": 11010.32, + "end": 11015.14, + "probability": 0.9287 + }, + { + "start": 11015.14, + "end": 11022.24, + "probability": 0.9923 + }, + { + "start": 11023.8, + "end": 11026.22, + "probability": 0.9949 + }, + { + "start": 11027.3, + "end": 11034.56, + "probability": 0.9944 + }, + { + "start": 11035.86, + "end": 11038.2, + "probability": 0.9203 + }, + { + "start": 11039.16, + "end": 11043.84, + "probability": 0.9737 + }, + { + "start": 11043.84, + "end": 11050.6, + "probability": 0.9915 + }, + { + "start": 11051.66, + "end": 11055.36, + "probability": 0.9971 + }, + { + "start": 11057.06, + "end": 11065.8, + "probability": 0.9211 + }, + { + "start": 11066.28, + "end": 11070.12, + "probability": 0.8465 + }, + { + "start": 11071.24, + "end": 11071.9, + "probability": 0.8594 + }, + { + "start": 11072.5, + "end": 11073.74, + "probability": 0.9018 + }, + { + "start": 11075.18, + "end": 11076.78, + "probability": 0.9316 + }, + { + "start": 11077.34, + "end": 11079.12, + "probability": 0.7254 + }, + { + "start": 11079.98, + "end": 11082.34, + "probability": 0.9976 + }, + { + "start": 11083.82, + "end": 11084.48, + "probability": 0.5609 + }, + { + "start": 11085.9, + "end": 11086.56, + "probability": 0.8701 + }, + { + "start": 11086.56, + "end": 11086.96, + "probability": 0.5291 + }, + { + "start": 11087.72, + "end": 11088.22, + "probability": 0.917 + }, + { + "start": 11089.08, + "end": 11091.26, + "probability": 0.6416 + }, + { + "start": 11093.36, + "end": 11094.92, + "probability": 0.9807 + }, + { + "start": 11104.14, + "end": 11104.24, + "probability": 0.1522 + }, + { + "start": 11118.72, + "end": 11120.04, + "probability": 0.4941 + }, + { + "start": 11121.04, + "end": 11121.72, + "probability": 0.8523 + }, + { + "start": 11122.44, + "end": 11123.3, + "probability": 0.8057 + }, + { + "start": 11124.12, + "end": 11124.82, + "probability": 0.7279 + }, + { + "start": 11126.54, + "end": 11130.54, + "probability": 0.994 + }, + { + "start": 11130.54, + "end": 11134.02, + "probability": 0.9841 + }, + { + "start": 11134.68, + "end": 11135.54, + "probability": 0.9838 + }, + { + "start": 11136.64, + "end": 11143.6, + "probability": 0.9929 + }, + { + "start": 11145.4, + "end": 11147.98, + "probability": 0.9489 + }, + { + "start": 11148.68, + "end": 11154.24, + "probability": 0.9914 + }, + { + "start": 11154.24, + "end": 11159.1, + "probability": 0.9623 + }, + { + "start": 11159.84, + "end": 11162.62, + "probability": 0.8917 + }, + { + "start": 11163.82, + "end": 11168.28, + "probability": 0.749 + }, + { + "start": 11169.0, + "end": 11170.36, + "probability": 0.9707 + }, + { + "start": 11170.98, + "end": 11176.16, + "probability": 0.9627 + }, + { + "start": 11177.44, + "end": 11179.16, + "probability": 0.9446 + }, + { + "start": 11180.08, + "end": 11182.08, + "probability": 0.9986 + }, + { + "start": 11183.26, + "end": 11185.94, + "probability": 0.8899 + }, + { + "start": 11186.86, + "end": 11191.52, + "probability": 0.7373 + }, + { + "start": 11192.28, + "end": 11197.84, + "probability": 0.9826 + }, + { + "start": 11198.7, + "end": 11199.32, + "probability": 0.9462 + }, + { + "start": 11200.62, + "end": 11207.78, + "probability": 0.9904 + }, + { + "start": 11208.48, + "end": 11211.68, + "probability": 0.8914 + }, + { + "start": 11214.34, + "end": 11219.22, + "probability": 0.848 + }, + { + "start": 11219.54, + "end": 11221.14, + "probability": 0.9658 + }, + { + "start": 11221.5, + "end": 11223.52, + "probability": 0.817 + }, + { + "start": 11224.48, + "end": 11225.36, + "probability": 0.9872 + }, + { + "start": 11227.14, + "end": 11230.04, + "probability": 0.7305 + }, + { + "start": 11230.62, + "end": 11234.94, + "probability": 0.9616 + }, + { + "start": 11236.98, + "end": 11238.64, + "probability": 0.9333 + }, + { + "start": 11240.14, + "end": 11242.46, + "probability": 0.9616 + }, + { + "start": 11243.83, + "end": 11246.56, + "probability": 0.9852 + }, + { + "start": 11247.54, + "end": 11249.34, + "probability": 0.9753 + }, + { + "start": 11250.36, + "end": 11254.04, + "probability": 0.9993 + }, + { + "start": 11254.04, + "end": 11257.68, + "probability": 0.9963 + }, + { + "start": 11258.22, + "end": 11261.36, + "probability": 0.9976 + }, + { + "start": 11263.2, + "end": 11268.2, + "probability": 0.9253 + }, + { + "start": 11268.8, + "end": 11269.76, + "probability": 0.7291 + }, + { + "start": 11270.68, + "end": 11274.56, + "probability": 0.7421 + }, + { + "start": 11274.92, + "end": 11277.3, + "probability": 0.9967 + }, + { + "start": 11278.04, + "end": 11278.8, + "probability": 0.8109 + }, + { + "start": 11279.54, + "end": 11283.66, + "probability": 0.9626 + }, + { + "start": 11288.24, + "end": 11291.02, + "probability": 0.7452 + }, + { + "start": 11292.3, + "end": 11298.98, + "probability": 0.9961 + }, + { + "start": 11299.46, + "end": 11300.62, + "probability": 0.9383 + }, + { + "start": 11301.6, + "end": 11305.02, + "probability": 0.9979 + }, + { + "start": 11306.08, + "end": 11307.82, + "probability": 0.7606 + }, + { + "start": 11308.36, + "end": 11309.08, + "probability": 0.7775 + }, + { + "start": 11310.58, + "end": 11311.84, + "probability": 0.7817 + }, + { + "start": 11312.2, + "end": 11314.7, + "probability": 0.8849 + }, + { + "start": 11314.84, + "end": 11315.48, + "probability": 0.7109 + }, + { + "start": 11316.78, + "end": 11321.7, + "probability": 0.988 + }, + { + "start": 11321.7, + "end": 11326.32, + "probability": 0.9692 + }, + { + "start": 11327.3, + "end": 11330.42, + "probability": 0.9942 + }, + { + "start": 11330.7, + "end": 11332.76, + "probability": 0.9413 + }, + { + "start": 11333.18, + "end": 11337.38, + "probability": 0.9964 + }, + { + "start": 11338.96, + "end": 11339.9, + "probability": 0.7856 + }, + { + "start": 11340.06, + "end": 11341.06, + "probability": 0.7935 + }, + { + "start": 11341.54, + "end": 11345.74, + "probability": 0.8641 + }, + { + "start": 11346.16, + "end": 11346.88, + "probability": 0.7912 + }, + { + "start": 11347.06, + "end": 11349.02, + "probability": 0.9674 + }, + { + "start": 11349.82, + "end": 11354.18, + "probability": 0.9978 + }, + { + "start": 11355.16, + "end": 11356.82, + "probability": 0.8578 + }, + { + "start": 11358.04, + "end": 11364.66, + "probability": 0.9956 + }, + { + "start": 11367.24, + "end": 11371.5, + "probability": 0.9564 + }, + { + "start": 11371.5, + "end": 11374.34, + "probability": 0.9972 + }, + { + "start": 11375.62, + "end": 11377.46, + "probability": 0.8812 + }, + { + "start": 11378.2, + "end": 11380.48, + "probability": 0.9386 + }, + { + "start": 11381.26, + "end": 11383.98, + "probability": 0.8812 + }, + { + "start": 11384.06, + "end": 11385.26, + "probability": 0.952 + }, + { + "start": 11387.24, + "end": 11389.52, + "probability": 0.9851 + }, + { + "start": 11390.58, + "end": 11392.02, + "probability": 0.9978 + }, + { + "start": 11392.92, + "end": 11394.44, + "probability": 0.2565 + }, + { + "start": 11395.28, + "end": 11398.46, + "probability": 0.986 + }, + { + "start": 11399.38, + "end": 11401.34, + "probability": 0.8467 + }, + { + "start": 11401.92, + "end": 11402.9, + "probability": 0.9206 + }, + { + "start": 11403.7, + "end": 11404.64, + "probability": 0.9607 + }, + { + "start": 11405.16, + "end": 11411.14, + "probability": 0.9958 + }, + { + "start": 11411.68, + "end": 11414.44, + "probability": 0.9043 + }, + { + "start": 11414.76, + "end": 11421.34, + "probability": 0.951 + }, + { + "start": 11421.34, + "end": 11427.56, + "probability": 0.8885 + }, + { + "start": 11428.18, + "end": 11429.8, + "probability": 0.6524 + }, + { + "start": 11430.04, + "end": 11430.58, + "probability": 0.5876 + }, + { + "start": 11431.82, + "end": 11433.12, + "probability": 0.9581 + }, + { + "start": 11433.64, + "end": 11434.06, + "probability": 0.9116 + }, + { + "start": 11435.26, + "end": 11438.6, + "probability": 0.8843 + }, + { + "start": 11439.24, + "end": 11441.12, + "probability": 0.9824 + }, + { + "start": 11463.44, + "end": 11464.44, + "probability": 0.6925 + }, + { + "start": 11465.32, + "end": 11466.76, + "probability": 0.8155 + }, + { + "start": 11468.3, + "end": 11469.62, + "probability": 0.864 + }, + { + "start": 11470.24, + "end": 11474.26, + "probability": 0.9077 + }, + { + "start": 11476.22, + "end": 11482.38, + "probability": 0.6592 + }, + { + "start": 11485.38, + "end": 11489.42, + "probability": 0.6672 + }, + { + "start": 11490.04, + "end": 11491.1, + "probability": 0.9389 + }, + { + "start": 11493.4, + "end": 11497.44, + "probability": 0.8826 + }, + { + "start": 11501.3, + "end": 11504.04, + "probability": 0.981 + }, + { + "start": 11504.76, + "end": 11505.32, + "probability": 0.9329 + }, + { + "start": 11506.44, + "end": 11508.16, + "probability": 0.8907 + }, + { + "start": 11511.7, + "end": 11512.06, + "probability": 0.6469 + }, + { + "start": 11512.64, + "end": 11513.5, + "probability": 0.4814 + }, + { + "start": 11513.7, + "end": 11514.46, + "probability": 0.5731 + }, + { + "start": 11514.5, + "end": 11515.36, + "probability": 0.8245 + }, + { + "start": 11515.48, + "end": 11517.3, + "probability": 0.9629 + }, + { + "start": 11520.08, + "end": 11522.48, + "probability": 0.9471 + }, + { + "start": 11523.96, + "end": 11525.92, + "probability": 0.8291 + }, + { + "start": 11527.46, + "end": 11528.3, + "probability": 0.7438 + }, + { + "start": 11530.8, + "end": 11537.3, + "probability": 0.718 + }, + { + "start": 11538.88, + "end": 11540.31, + "probability": 0.9814 + }, + { + "start": 11542.5, + "end": 11542.74, + "probability": 0.8105 + }, + { + "start": 11544.94, + "end": 11547.58, + "probability": 0.8433 + }, + { + "start": 11549.62, + "end": 11553.28, + "probability": 0.9084 + }, + { + "start": 11555.52, + "end": 11557.6, + "probability": 0.9186 + }, + { + "start": 11560.12, + "end": 11566.62, + "probability": 0.9967 + }, + { + "start": 11567.96, + "end": 11569.04, + "probability": 0.9985 + }, + { + "start": 11570.52, + "end": 11571.66, + "probability": 0.9031 + }, + { + "start": 11572.94, + "end": 11574.98, + "probability": 0.9576 + }, + { + "start": 11575.62, + "end": 11579.12, + "probability": 0.8197 + }, + { + "start": 11580.84, + "end": 11586.54, + "probability": 0.9702 + }, + { + "start": 11586.54, + "end": 11592.2, + "probability": 0.9954 + }, + { + "start": 11592.8, + "end": 11593.98, + "probability": 0.9974 + }, + { + "start": 11595.88, + "end": 11604.84, + "probability": 0.9982 + }, + { + "start": 11606.3, + "end": 11607.54, + "probability": 0.5084 + }, + { + "start": 11610.24, + "end": 11615.58, + "probability": 0.9982 + }, + { + "start": 11618.52, + "end": 11622.56, + "probability": 0.9853 + }, + { + "start": 11623.34, + "end": 11628.22, + "probability": 0.9924 + }, + { + "start": 11629.11, + "end": 11631.38, + "probability": 0.9998 + }, + { + "start": 11632.52, + "end": 11635.18, + "probability": 0.5893 + }, + { + "start": 11636.78, + "end": 11637.34, + "probability": 0.8171 + }, + { + "start": 11640.0, + "end": 11642.88, + "probability": 0.6307 + }, + { + "start": 11644.3, + "end": 11645.32, + "probability": 0.9977 + }, + { + "start": 11646.44, + "end": 11648.3, + "probability": 0.7555 + }, + { + "start": 11649.62, + "end": 11653.0, + "probability": 0.9592 + }, + { + "start": 11653.86, + "end": 11656.26, + "probability": 0.9838 + }, + { + "start": 11657.6, + "end": 11658.84, + "probability": 0.9995 + }, + { + "start": 11659.42, + "end": 11666.9, + "probability": 0.9983 + }, + { + "start": 11667.72, + "end": 11668.28, + "probability": 0.3352 + }, + { + "start": 11669.6, + "end": 11670.14, + "probability": 0.7015 + }, + { + "start": 11670.16, + "end": 11671.08, + "probability": 0.8842 + }, + { + "start": 11671.56, + "end": 11673.56, + "probability": 0.9759 + }, + { + "start": 11675.58, + "end": 11676.46, + "probability": 0.9045 + }, + { + "start": 11677.32, + "end": 11679.88, + "probability": 0.9965 + }, + { + "start": 11681.38, + "end": 11685.84, + "probability": 0.9981 + }, + { + "start": 11688.28, + "end": 11695.3, + "probability": 0.9216 + }, + { + "start": 11696.3, + "end": 11700.42, + "probability": 0.912 + }, + { + "start": 11701.18, + "end": 11702.1, + "probability": 0.5046 + }, + { + "start": 11702.88, + "end": 11706.9, + "probability": 0.8526 + }, + { + "start": 11708.7, + "end": 11709.6, + "probability": 0.9996 + }, + { + "start": 11714.7, + "end": 11716.48, + "probability": 0.9839 + }, + { + "start": 11716.54, + "end": 11718.4, + "probability": 0.9951 + }, + { + "start": 11718.98, + "end": 11722.78, + "probability": 0.8809 + }, + { + "start": 11722.78, + "end": 11723.86, + "probability": 0.9993 + }, + { + "start": 11724.48, + "end": 11725.5, + "probability": 0.8961 + }, + { + "start": 11726.4, + "end": 11728.66, + "probability": 0.9683 + }, + { + "start": 11729.26, + "end": 11731.0, + "probability": 0.9971 + }, + { + "start": 11731.66, + "end": 11732.68, + "probability": 0.7454 + }, + { + "start": 11734.96, + "end": 11737.3, + "probability": 0.3336 + }, + { + "start": 11737.56, + "end": 11739.56, + "probability": 0.5558 + }, + { + "start": 11739.6, + "end": 11740.89, + "probability": 0.8804 + }, + { + "start": 11741.8, + "end": 11745.48, + "probability": 0.9675 + }, + { + "start": 11746.08, + "end": 11752.72, + "probability": 0.9727 + }, + { + "start": 11753.54, + "end": 11756.18, + "probability": 0.8283 + }, + { + "start": 11756.74, + "end": 11759.68, + "probability": 0.6266 + }, + { + "start": 11760.74, + "end": 11762.0, + "probability": 0.915 + }, + { + "start": 11762.52, + "end": 11764.76, + "probability": 0.9445 + }, + { + "start": 11765.38, + "end": 11766.66, + "probability": 0.8947 + }, + { + "start": 11767.38, + "end": 11769.4, + "probability": 0.9045 + }, + { + "start": 11769.7, + "end": 11771.58, + "probability": 0.8726 + }, + { + "start": 11774.56, + "end": 11776.2, + "probability": 0.6245 + }, + { + "start": 11776.36, + "end": 11777.4, + "probability": 0.8227 + }, + { + "start": 11777.72, + "end": 11778.72, + "probability": 0.756 + }, + { + "start": 11779.89, + "end": 11782.24, + "probability": 0.7815 + }, + { + "start": 11782.88, + "end": 11786.12, + "probability": 0.8687 + }, + { + "start": 11787.72, + "end": 11788.98, + "probability": 0.8066 + }, + { + "start": 11789.78, + "end": 11791.5, + "probability": 0.9417 + }, + { + "start": 11792.04, + "end": 11793.62, + "probability": 0.9726 + }, + { + "start": 11794.26, + "end": 11796.94, + "probability": 0.9911 + }, + { + "start": 11797.56, + "end": 11801.22, + "probability": 0.9868 + }, + { + "start": 11803.24, + "end": 11803.66, + "probability": 0.753 + }, + { + "start": 11804.86, + "end": 11808.02, + "probability": 0.9566 + }, + { + "start": 11809.1, + "end": 11813.44, + "probability": 0.9924 + }, + { + "start": 11814.98, + "end": 11817.66, + "probability": 0.946 + }, + { + "start": 11818.24, + "end": 11819.5, + "probability": 0.7523 + }, + { + "start": 11820.78, + "end": 11822.44, + "probability": 0.8177 + }, + { + "start": 11823.06, + "end": 11824.24, + "probability": 0.9886 + }, + { + "start": 11824.58, + "end": 11830.36, + "probability": 0.8979 + }, + { + "start": 11830.7, + "end": 11831.31, + "probability": 0.853 + }, + { + "start": 11833.22, + "end": 11835.0, + "probability": 0.9893 + }, + { + "start": 11837.72, + "end": 11840.66, + "probability": 0.9548 + }, + { + "start": 11841.7, + "end": 11842.8, + "probability": 0.9985 + }, + { + "start": 11843.6, + "end": 11848.0, + "probability": 0.9468 + }, + { + "start": 11848.66, + "end": 11848.92, + "probability": 0.5168 + }, + { + "start": 11850.06, + "end": 11850.8, + "probability": 0.6399 + }, + { + "start": 11851.9, + "end": 11853.9, + "probability": 0.9968 + }, + { + "start": 11854.24, + "end": 11858.68, + "probability": 0.9933 + }, + { + "start": 11859.66, + "end": 11861.62, + "probability": 0.9917 + }, + { + "start": 11861.66, + "end": 11862.76, + "probability": 0.9966 + }, + { + "start": 11863.52, + "end": 11866.98, + "probability": 0.9478 + }, + { + "start": 11866.98, + "end": 11869.16, + "probability": 0.998 + }, + { + "start": 11869.58, + "end": 11873.28, + "probability": 0.9879 + }, + { + "start": 11873.28, + "end": 11875.62, + "probability": 0.9929 + }, + { + "start": 11876.12, + "end": 11877.82, + "probability": 0.8317 + }, + { + "start": 11878.94, + "end": 11879.34, + "probability": 0.8121 + }, + { + "start": 11879.62, + "end": 11881.74, + "probability": 0.8335 + }, + { + "start": 11883.04, + "end": 11885.38, + "probability": 0.8743 + }, + { + "start": 11885.92, + "end": 11887.12, + "probability": 0.7632 + }, + { + "start": 11902.0, + "end": 11903.68, + "probability": 0.5828 + }, + { + "start": 11905.82, + "end": 11908.82, + "probability": 0.9752 + }, + { + "start": 11909.92, + "end": 11911.16, + "probability": 0.7487 + }, + { + "start": 11912.0, + "end": 11913.08, + "probability": 0.9886 + }, + { + "start": 11914.02, + "end": 11915.12, + "probability": 0.8473 + }, + { + "start": 11916.28, + "end": 11917.74, + "probability": 0.9269 + }, + { + "start": 11918.96, + "end": 11922.34, + "probability": 0.9897 + }, + { + "start": 11923.02, + "end": 11924.74, + "probability": 0.8022 + }, + { + "start": 11925.36, + "end": 11930.32, + "probability": 0.9971 + }, + { + "start": 11931.14, + "end": 11932.88, + "probability": 0.9951 + }, + { + "start": 11933.36, + "end": 11935.8, + "probability": 0.9971 + }, + { + "start": 11935.92, + "end": 11937.04, + "probability": 0.8926 + }, + { + "start": 11938.08, + "end": 11939.26, + "probability": 0.9272 + }, + { + "start": 11939.96, + "end": 11942.18, + "probability": 0.9759 + }, + { + "start": 11942.98, + "end": 11944.1, + "probability": 0.9545 + }, + { + "start": 11945.0, + "end": 11945.64, + "probability": 0.7026 + }, + { + "start": 11946.44, + "end": 11947.2, + "probability": 0.5718 + }, + { + "start": 11947.74, + "end": 11950.32, + "probability": 0.9126 + }, + { + "start": 11950.44, + "end": 11951.64, + "probability": 0.9578 + }, + { + "start": 11952.34, + "end": 11953.5, + "probability": 0.6566 + }, + { + "start": 11954.04, + "end": 11958.04, + "probability": 0.9471 + }, + { + "start": 11958.5, + "end": 11959.94, + "probability": 0.9199 + }, + { + "start": 11960.3, + "end": 11961.62, + "probability": 0.9818 + }, + { + "start": 11962.1, + "end": 11962.9, + "probability": 0.9828 + }, + { + "start": 11963.02, + "end": 11963.98, + "probability": 0.9512 + }, + { + "start": 11964.34, + "end": 11968.68, + "probability": 0.9817 + }, + { + "start": 11969.72, + "end": 11970.76, + "probability": 0.9941 + }, + { + "start": 11971.56, + "end": 11975.52, + "probability": 0.9625 + }, + { + "start": 11976.32, + "end": 11979.54, + "probability": 0.9935 + }, + { + "start": 11980.64, + "end": 11983.04, + "probability": 0.9109 + }, + { + "start": 11983.16, + "end": 11984.42, + "probability": 0.7027 + }, + { + "start": 11984.82, + "end": 11987.42, + "probability": 0.9793 + }, + { + "start": 11987.8, + "end": 11991.6, + "probability": 0.9651 + }, + { + "start": 11991.94, + "end": 11992.68, + "probability": 0.9562 + }, + { + "start": 11993.42, + "end": 11994.52, + "probability": 0.9873 + }, + { + "start": 11995.66, + "end": 11998.26, + "probability": 0.997 + }, + { + "start": 11999.64, + "end": 12001.16, + "probability": 0.978 + }, + { + "start": 12002.88, + "end": 12003.44, + "probability": 0.7031 + }, + { + "start": 12004.36, + "end": 12005.14, + "probability": 0.9656 + }, + { + "start": 12006.24, + "end": 12008.52, + "probability": 0.9985 + }, + { + "start": 12009.46, + "end": 12009.88, + "probability": 0.9017 + }, + { + "start": 12010.62, + "end": 12012.5, + "probability": 0.9281 + }, + { + "start": 12013.08, + "end": 12014.36, + "probability": 0.986 + }, + { + "start": 12015.02, + "end": 12019.9, + "probability": 0.9967 + }, + { + "start": 12020.52, + "end": 12022.62, + "probability": 0.9755 + }, + { + "start": 12023.4, + "end": 12024.86, + "probability": 0.7311 + }, + { + "start": 12025.34, + "end": 12028.16, + "probability": 0.9889 + }, + { + "start": 12028.78, + "end": 12030.22, + "probability": 0.8647 + }, + { + "start": 12030.92, + "end": 12033.84, + "probability": 0.9613 + }, + { + "start": 12034.6, + "end": 12035.4, + "probability": 0.6696 + }, + { + "start": 12036.0, + "end": 12038.92, + "probability": 0.9831 + }, + { + "start": 12038.92, + "end": 12043.6, + "probability": 0.9908 + }, + { + "start": 12043.96, + "end": 12045.72, + "probability": 0.9941 + }, + { + "start": 12046.88, + "end": 12047.22, + "probability": 0.5307 + }, + { + "start": 12047.4, + "end": 12047.98, + "probability": 0.8213 + }, + { + "start": 12048.08, + "end": 12052.48, + "probability": 0.9531 + }, + { + "start": 12053.26, + "end": 12054.52, + "probability": 0.4032 + }, + { + "start": 12055.22, + "end": 12056.34, + "probability": 0.3005 + }, + { + "start": 12056.68, + "end": 12058.58, + "probability": 0.996 + }, + { + "start": 12059.32, + "end": 12063.0, + "probability": 0.9965 + }, + { + "start": 12063.48, + "end": 12065.41, + "probability": 0.9922 + }, + { + "start": 12065.92, + "end": 12067.13, + "probability": 0.9922 + }, + { + "start": 12067.64, + "end": 12069.24, + "probability": 0.876 + }, + { + "start": 12069.26, + "end": 12070.84, + "probability": 0.7472 + }, + { + "start": 12071.94, + "end": 12074.02, + "probability": 0.9951 + }, + { + "start": 12074.96, + "end": 12078.62, + "probability": 0.9937 + }, + { + "start": 12079.24, + "end": 12080.34, + "probability": 0.7301 + }, + { + "start": 12080.92, + "end": 12083.58, + "probability": 0.9885 + }, + { + "start": 12084.14, + "end": 12084.66, + "probability": 0.8201 + }, + { + "start": 12085.14, + "end": 12086.56, + "probability": 0.8445 + }, + { + "start": 12089.18, + "end": 12092.68, + "probability": 0.9135 + }, + { + "start": 12094.26, + "end": 12095.06, + "probability": 0.3659 + }, + { + "start": 12095.68, + "end": 12096.82, + "probability": 0.8232 + }, + { + "start": 12124.22, + "end": 12125.42, + "probability": 0.6191 + }, + { + "start": 12126.28, + "end": 12127.52, + "probability": 0.7375 + }, + { + "start": 12129.46, + "end": 12131.68, + "probability": 0.7871 + }, + { + "start": 12133.14, + "end": 12136.34, + "probability": 0.9004 + }, + { + "start": 12137.68, + "end": 12139.98, + "probability": 0.9952 + }, + { + "start": 12141.52, + "end": 12142.64, + "probability": 0.9985 + }, + { + "start": 12143.96, + "end": 12146.54, + "probability": 0.8759 + }, + { + "start": 12147.94, + "end": 12151.65, + "probability": 0.6999 + }, + { + "start": 12153.1, + "end": 12156.26, + "probability": 0.916 + }, + { + "start": 12159.14, + "end": 12162.78, + "probability": 0.8885 + }, + { + "start": 12162.84, + "end": 12164.94, + "probability": 0.7772 + }, + { + "start": 12165.06, + "end": 12167.54, + "probability": 0.7946 + }, + { + "start": 12169.06, + "end": 12173.64, + "probability": 0.9988 + }, + { + "start": 12174.48, + "end": 12176.98, + "probability": 0.763 + }, + { + "start": 12178.36, + "end": 12179.44, + "probability": 0.8949 + }, + { + "start": 12181.5, + "end": 12183.22, + "probability": 0.9995 + }, + { + "start": 12184.48, + "end": 12185.4, + "probability": 0.9767 + }, + { + "start": 12187.76, + "end": 12194.96, + "probability": 0.544 + }, + { + "start": 12196.64, + "end": 12202.44, + "probability": 0.9927 + }, + { + "start": 12203.98, + "end": 12209.64, + "probability": 0.9984 + }, + { + "start": 12211.0, + "end": 12212.54, + "probability": 0.7684 + }, + { + "start": 12214.94, + "end": 12216.26, + "probability": 0.8857 + }, + { + "start": 12218.4, + "end": 12220.98, + "probability": 0.9687 + }, + { + "start": 12222.74, + "end": 12225.38, + "probability": 0.9753 + }, + { + "start": 12227.32, + "end": 12230.98, + "probability": 0.9862 + }, + { + "start": 12233.18, + "end": 12235.5, + "probability": 0.9867 + }, + { + "start": 12237.52, + "end": 12238.68, + "probability": 0.9107 + }, + { + "start": 12239.38, + "end": 12242.12, + "probability": 0.9953 + }, + { + "start": 12243.04, + "end": 12243.92, + "probability": 0.843 + }, + { + "start": 12245.06, + "end": 12247.06, + "probability": 0.9774 + }, + { + "start": 12251.08, + "end": 12252.94, + "probability": 0.741 + }, + { + "start": 12252.98, + "end": 12255.66, + "probability": 0.9927 + }, + { + "start": 12256.98, + "end": 12259.98, + "probability": 0.905 + }, + { + "start": 12260.5, + "end": 12269.6, + "probability": 0.9749 + }, + { + "start": 12272.16, + "end": 12272.58, + "probability": 0.7803 + }, + { + "start": 12275.12, + "end": 12277.64, + "probability": 0.9751 + }, + { + "start": 12279.16, + "end": 12283.5, + "probability": 0.9666 + }, + { + "start": 12285.42, + "end": 12285.82, + "probability": 0.9401 + }, + { + "start": 12288.1, + "end": 12291.28, + "probability": 0.9599 + }, + { + "start": 12293.58, + "end": 12295.42, + "probability": 0.9532 + }, + { + "start": 12296.94, + "end": 12300.1, + "probability": 0.8725 + }, + { + "start": 12301.32, + "end": 12304.4, + "probability": 0.995 + }, + { + "start": 12307.04, + "end": 12314.3, + "probability": 0.9814 + }, + { + "start": 12315.1, + "end": 12316.18, + "probability": 0.5871 + }, + { + "start": 12318.1, + "end": 12327.56, + "probability": 0.9805 + }, + { + "start": 12329.5, + "end": 12333.84, + "probability": 0.8637 + }, + { + "start": 12334.4, + "end": 12338.62, + "probability": 0.6863 + }, + { + "start": 12338.64, + "end": 12339.92, + "probability": 0.9697 + }, + { + "start": 12343.0, + "end": 12344.51, + "probability": 0.9758 + }, + { + "start": 12345.56, + "end": 12346.84, + "probability": 0.977 + }, + { + "start": 12347.8, + "end": 12348.96, + "probability": 0.9065 + }, + { + "start": 12350.16, + "end": 12355.24, + "probability": 0.9605 + }, + { + "start": 12357.8, + "end": 12363.44, + "probability": 0.9941 + }, + { + "start": 12364.02, + "end": 12369.92, + "probability": 0.9965 + }, + { + "start": 12371.2, + "end": 12377.94, + "probability": 0.9639 + }, + { + "start": 12378.06, + "end": 12378.6, + "probability": 0.9471 + }, + { + "start": 12378.7, + "end": 12379.48, + "probability": 0.9598 + }, + { + "start": 12379.58, + "end": 12384.24, + "probability": 0.8947 + }, + { + "start": 12384.26, + "end": 12385.91, + "probability": 0.7975 + }, + { + "start": 12387.24, + "end": 12389.8, + "probability": 0.9959 + }, + { + "start": 12390.54, + "end": 12397.26, + "probability": 0.9601 + }, + { + "start": 12400.52, + "end": 12407.72, + "probability": 0.9837 + }, + { + "start": 12409.41, + "end": 12410.18, + "probability": 0.0202 + }, + { + "start": 12410.18, + "end": 12414.2, + "probability": 0.9327 + }, + { + "start": 12415.4, + "end": 12418.52, + "probability": 0.9873 + }, + { + "start": 12419.92, + "end": 12426.74, + "probability": 0.9302 + }, + { + "start": 12428.36, + "end": 12433.82, + "probability": 0.994 + }, + { + "start": 12434.34, + "end": 12443.1, + "probability": 0.9556 + }, + { + "start": 12443.2, + "end": 12445.26, + "probability": 0.9139 + }, + { + "start": 12447.66, + "end": 12455.28, + "probability": 0.9946 + }, + { + "start": 12457.2, + "end": 12459.22, + "probability": 0.8989 + }, + { + "start": 12461.72, + "end": 12468.4, + "probability": 0.8964 + }, + { + "start": 12468.46, + "end": 12469.92, + "probability": 0.7747 + }, + { + "start": 12471.3, + "end": 12473.58, + "probability": 0.9693 + }, + { + "start": 12475.06, + "end": 12479.14, + "probability": 0.9667 + }, + { + "start": 12480.3, + "end": 12483.62, + "probability": 0.7425 + }, + { + "start": 12484.1, + "end": 12485.2, + "probability": 0.935 + }, + { + "start": 12486.54, + "end": 12494.39, + "probability": 0.9839 + }, + { + "start": 12495.4, + "end": 12496.76, + "probability": 0.7948 + }, + { + "start": 12498.42, + "end": 12498.68, + "probability": 0.9216 + }, + { + "start": 12499.54, + "end": 12501.36, + "probability": 0.9912 + }, + { + "start": 12503.6, + "end": 12504.72, + "probability": 0.956 + }, + { + "start": 12506.02, + "end": 12507.02, + "probability": 0.9523 + }, + { + "start": 12508.06, + "end": 12514.54, + "probability": 0.9138 + }, + { + "start": 12515.3, + "end": 12516.64, + "probability": 0.9982 + }, + { + "start": 12517.4, + "end": 12518.12, + "probability": 0.9928 + }, + { + "start": 12519.16, + "end": 12520.36, + "probability": 0.9964 + }, + { + "start": 12521.46, + "end": 12523.0, + "probability": 0.981 + }, + { + "start": 12524.06, + "end": 12524.32, + "probability": 0.6483 + }, + { + "start": 12526.18, + "end": 12528.46, + "probability": 0.7155 + }, + { + "start": 12529.56, + "end": 12532.9, + "probability": 0.7847 + }, + { + "start": 12534.68, + "end": 12536.36, + "probability": 0.9163 + }, + { + "start": 12558.48, + "end": 12560.4, + "probability": 0.759 + }, + { + "start": 12562.25, + "end": 12564.8, + "probability": 0.9949 + }, + { + "start": 12566.02, + "end": 12568.62, + "probability": 0.9989 + }, + { + "start": 12569.7, + "end": 12570.78, + "probability": 0.9741 + }, + { + "start": 12571.7, + "end": 12572.28, + "probability": 0.7389 + }, + { + "start": 12573.0, + "end": 12575.36, + "probability": 0.9277 + }, + { + "start": 12575.9, + "end": 12577.16, + "probability": 0.9953 + }, + { + "start": 12577.3, + "end": 12580.3, + "probability": 0.9313 + }, + { + "start": 12581.08, + "end": 12583.04, + "probability": 0.9866 + }, + { + "start": 12585.0, + "end": 12592.12, + "probability": 0.9671 + }, + { + "start": 12592.92, + "end": 12594.9, + "probability": 0.9757 + }, + { + "start": 12595.24, + "end": 12600.8, + "probability": 0.9902 + }, + { + "start": 12603.3, + "end": 12608.26, + "probability": 0.8054 + }, + { + "start": 12608.44, + "end": 12612.66, + "probability": 0.9963 + }, + { + "start": 12614.35, + "end": 12617.48, + "probability": 0.9704 + }, + { + "start": 12618.44, + "end": 12619.94, + "probability": 0.8022 + }, + { + "start": 12622.26, + "end": 12624.24, + "probability": 0.9953 + }, + { + "start": 12625.56, + "end": 12626.26, + "probability": 0.8107 + }, + { + "start": 12627.6, + "end": 12630.28, + "probability": 0.9839 + }, + { + "start": 12631.88, + "end": 12633.79, + "probability": 0.9267 + }, + { + "start": 12634.88, + "end": 12636.38, + "probability": 0.9423 + }, + { + "start": 12637.3, + "end": 12638.96, + "probability": 0.9951 + }, + { + "start": 12639.86, + "end": 12641.28, + "probability": 0.9971 + }, + { + "start": 12641.96, + "end": 12643.46, + "probability": 0.7491 + }, + { + "start": 12644.88, + "end": 12649.3, + "probability": 0.9897 + }, + { + "start": 12649.3, + "end": 12653.16, + "probability": 0.9951 + }, + { + "start": 12653.64, + "end": 12655.06, + "probability": 0.9637 + }, + { + "start": 12655.64, + "end": 12662.58, + "probability": 0.9993 + }, + { + "start": 12663.56, + "end": 12664.42, + "probability": 0.8461 + }, + { + "start": 12665.24, + "end": 12665.5, + "probability": 0.9042 + }, + { + "start": 12667.22, + "end": 12669.44, + "probability": 0.9783 + }, + { + "start": 12670.24, + "end": 12672.32, + "probability": 0.9497 + }, + { + "start": 12673.08, + "end": 12675.32, + "probability": 0.9899 + }, + { + "start": 12676.96, + "end": 12678.0, + "probability": 0.8769 + }, + { + "start": 12678.42, + "end": 12682.94, + "probability": 0.9048 + }, + { + "start": 12684.28, + "end": 12686.78, + "probability": 0.9913 + }, + { + "start": 12687.46, + "end": 12690.14, + "probability": 0.9935 + }, + { + "start": 12691.46, + "end": 12695.18, + "probability": 0.9697 + }, + { + "start": 12696.86, + "end": 12700.38, + "probability": 0.9028 + }, + { + "start": 12701.1, + "end": 12702.38, + "probability": 0.9935 + }, + { + "start": 12703.68, + "end": 12706.33, + "probability": 0.998 + }, + { + "start": 12706.68, + "end": 12707.36, + "probability": 0.9767 + }, + { + "start": 12707.68, + "end": 12708.5, + "probability": 0.7869 + }, + { + "start": 12708.68, + "end": 12715.58, + "probability": 0.9972 + }, + { + "start": 12716.78, + "end": 12718.16, + "probability": 0.6283 + }, + { + "start": 12719.26, + "end": 12722.12, + "probability": 0.8634 + }, + { + "start": 12723.06, + "end": 12724.78, + "probability": 0.9839 + }, + { + "start": 12725.94, + "end": 12729.1, + "probability": 0.8912 + }, + { + "start": 12730.04, + "end": 12731.62, + "probability": 0.9912 + }, + { + "start": 12732.68, + "end": 12737.32, + "probability": 0.9833 + }, + { + "start": 12738.7, + "end": 12739.44, + "probability": 0.8142 + }, + { + "start": 12741.32, + "end": 12742.3, + "probability": 0.955 + }, + { + "start": 12742.64, + "end": 12743.4, + "probability": 0.7502 + }, + { + "start": 12743.6, + "end": 12746.68, + "probability": 0.973 + }, + { + "start": 12746.78, + "end": 12751.76, + "probability": 0.9883 + }, + { + "start": 12752.78, + "end": 12756.34, + "probability": 0.9934 + }, + { + "start": 12757.68, + "end": 12762.56, + "probability": 0.9971 + }, + { + "start": 12762.56, + "end": 12769.18, + "probability": 0.9973 + }, + { + "start": 12769.18, + "end": 12769.58, + "probability": 0.295 + }, + { + "start": 12770.8, + "end": 12773.16, + "probability": 0.9435 + }, + { + "start": 12773.46, + "end": 12776.44, + "probability": 0.991 + }, + { + "start": 12776.44, + "end": 12777.62, + "probability": 0.8521 + }, + { + "start": 12777.68, + "end": 12780.92, + "probability": 0.8753 + }, + { + "start": 12781.7, + "end": 12787.62, + "probability": 0.9956 + }, + { + "start": 12788.48, + "end": 12790.4, + "probability": 0.997 + }, + { + "start": 12793.34, + "end": 12800.42, + "probability": 0.9894 + }, + { + "start": 12801.32, + "end": 12804.08, + "probability": 0.9573 + }, + { + "start": 12805.76, + "end": 12808.26, + "probability": 0.9858 + }, + { + "start": 12808.68, + "end": 12813.18, + "probability": 0.9836 + }, + { + "start": 12813.28, + "end": 12814.62, + "probability": 0.8611 + }, + { + "start": 12814.74, + "end": 12816.24, + "probability": 0.9879 + }, + { + "start": 12816.4, + "end": 12820.98, + "probability": 0.9937 + }, + { + "start": 12821.16, + "end": 12824.26, + "probability": 0.9391 + }, + { + "start": 12825.04, + "end": 12826.42, + "probability": 0.9897 + }, + { + "start": 12827.42, + "end": 12830.88, + "probability": 0.9902 + }, + { + "start": 12832.04, + "end": 12833.14, + "probability": 0.9634 + }, + { + "start": 12833.76, + "end": 12836.48, + "probability": 0.9958 + }, + { + "start": 12837.6, + "end": 12840.28, + "probability": 0.9925 + }, + { + "start": 12840.86, + "end": 12842.54, + "probability": 0.9984 + }, + { + "start": 12843.1, + "end": 12843.94, + "probability": 0.9962 + }, + { + "start": 12844.6, + "end": 12849.6, + "probability": 0.9848 + }, + { + "start": 12850.02, + "end": 12851.1, + "probability": 0.9942 + }, + { + "start": 12851.6, + "end": 12852.94, + "probability": 0.9727 + }, + { + "start": 12853.1, + "end": 12855.04, + "probability": 0.999 + }, + { + "start": 12855.6, + "end": 12856.76, + "probability": 0.7037 + }, + { + "start": 12857.4, + "end": 12858.64, + "probability": 0.8453 + }, + { + "start": 12859.62, + "end": 12860.22, + "probability": 0.6617 + }, + { + "start": 12860.92, + "end": 12863.2, + "probability": 0.887 + }, + { + "start": 12864.68, + "end": 12867.68, + "probability": 0.9635 + }, + { + "start": 12868.54, + "end": 12871.98, + "probability": 0.7114 + }, + { + "start": 12872.68, + "end": 12877.08, + "probability": 0.6643 + }, + { + "start": 12877.34, + "end": 12878.54, + "probability": 0.9922 + }, + { + "start": 12879.92, + "end": 12881.8, + "probability": 0.6378 + }, + { + "start": 12891.72, + "end": 12893.11, + "probability": 0.5828 + }, + { + "start": 12893.12, + "end": 12894.44, + "probability": 0.832 + }, + { + "start": 12895.92, + "end": 12897.12, + "probability": 0.8433 + }, + { + "start": 12898.04, + "end": 12898.64, + "probability": 0.7415 + }, + { + "start": 12899.44, + "end": 12901.6, + "probability": 0.8732 + }, + { + "start": 12902.26, + "end": 12903.12, + "probability": 0.7152 + }, + { + "start": 12903.26, + "end": 12905.12, + "probability": 0.5211 + }, + { + "start": 12906.13, + "end": 12909.1, + "probability": 0.9883 + }, + { + "start": 12909.84, + "end": 12912.12, + "probability": 0.7782 + }, + { + "start": 12914.1, + "end": 12915.96, + "probability": 0.716 + }, + { + "start": 12916.5, + "end": 12919.62, + "probability": 0.9297 + }, + { + "start": 12920.48, + "end": 12923.72, + "probability": 0.989 + }, + { + "start": 12924.14, + "end": 12927.02, + "probability": 0.9456 + }, + { + "start": 12927.2, + "end": 12928.26, + "probability": 0.9939 + }, + { + "start": 12928.84, + "end": 12932.44, + "probability": 0.9661 + }, + { + "start": 12933.22, + "end": 12937.74, + "probability": 0.9805 + }, + { + "start": 12937.74, + "end": 12942.22, + "probability": 0.9928 + }, + { + "start": 12943.16, + "end": 12946.76, + "probability": 0.992 + }, + { + "start": 12947.28, + "end": 12948.32, + "probability": 0.7292 + }, + { + "start": 12948.72, + "end": 12949.58, + "probability": 0.7823 + }, + { + "start": 12949.74, + "end": 12954.08, + "probability": 0.9826 + }, + { + "start": 12954.64, + "end": 12956.98, + "probability": 0.9724 + }, + { + "start": 12957.16, + "end": 12958.2, + "probability": 0.9779 + }, + { + "start": 12959.34, + "end": 12961.38, + "probability": 0.9954 + }, + { + "start": 12961.38, + "end": 12965.16, + "probability": 0.9985 + }, + { + "start": 12965.84, + "end": 12969.62, + "probability": 0.895 + }, + { + "start": 12969.76, + "end": 12975.5, + "probability": 0.9842 + }, + { + "start": 12975.54, + "end": 12978.61, + "probability": 0.8917 + }, + { + "start": 12979.66, + "end": 12984.82, + "probability": 0.9889 + }, + { + "start": 12985.82, + "end": 12988.26, + "probability": 0.9667 + }, + { + "start": 12988.78, + "end": 12992.52, + "probability": 0.7576 + }, + { + "start": 12993.1, + "end": 12995.08, + "probability": 0.8867 + }, + { + "start": 12995.98, + "end": 13000.5, + "probability": 0.7302 + }, + { + "start": 13000.5, + "end": 13004.66, + "probability": 0.9871 + }, + { + "start": 13004.66, + "end": 13009.42, + "probability": 0.9843 + }, + { + "start": 13010.24, + "end": 13010.64, + "probability": 0.6611 + }, + { + "start": 13011.32, + "end": 13011.78, + "probability": 0.6187 + }, + { + "start": 13012.36, + "end": 13013.46, + "probability": 0.5673 + }, + { + "start": 13013.58, + "end": 13016.3, + "probability": 0.9622 + }, + { + "start": 13017.66, + "end": 13019.14, + "probability": 0.9496 + }, + { + "start": 13019.18, + "end": 13019.82, + "probability": 0.6056 + }, + { + "start": 13019.94, + "end": 13021.28, + "probability": 0.9728 + }, + { + "start": 13021.3, + "end": 13021.76, + "probability": 0.2565 + }, + { + "start": 13021.92, + "end": 13023.2, + "probability": 0.9875 + }, + { + "start": 13024.36, + "end": 13024.82, + "probability": 0.936 + }, + { + "start": 13024.94, + "end": 13026.24, + "probability": 0.9948 + }, + { + "start": 13026.3, + "end": 13026.78, + "probability": 0.4917 + }, + { + "start": 13026.96, + "end": 13027.84, + "probability": 0.9405 + }, + { + "start": 13029.02, + "end": 13031.32, + "probability": 0.9678 + }, + { + "start": 13032.44, + "end": 13034.9, + "probability": 0.9351 + }, + { + "start": 13045.3, + "end": 13046.48, + "probability": 0.7775 + }, + { + "start": 13049.36, + "end": 13051.52, + "probability": 0.9095 + }, + { + "start": 13052.06, + "end": 13056.74, + "probability": 0.811 + }, + { + "start": 13057.28, + "end": 13057.9, + "probability": 0.7236 + }, + { + "start": 13059.36, + "end": 13059.62, + "probability": 0.7739 + }, + { + "start": 13059.98, + "end": 13062.2, + "probability": 0.9937 + }, + { + "start": 13063.94, + "end": 13064.7, + "probability": 0.9302 + }, + { + "start": 13067.3, + "end": 13069.0, + "probability": 0.6588 + }, + { + "start": 13069.32, + "end": 13069.48, + "probability": 0.0902 + }, + { + "start": 13069.7, + "end": 13072.72, + "probability": 0.7077 + }, + { + "start": 13072.76, + "end": 13073.78, + "probability": 0.8325 + }, + { + "start": 13074.88, + "end": 13075.64, + "probability": 0.7588 + }, + { + "start": 13076.76, + "end": 13080.32, + "probability": 0.8994 + }, + { + "start": 13081.42, + "end": 13084.14, + "probability": 0.9446 + }, + { + "start": 13084.14, + "end": 13087.0, + "probability": 0.999 + }, + { + "start": 13087.7, + "end": 13088.92, + "probability": 0.8299 + }, + { + "start": 13089.9, + "end": 13092.3, + "probability": 0.9651 + }, + { + "start": 13092.88, + "end": 13093.46, + "probability": 0.7986 + }, + { + "start": 13094.32, + "end": 13096.14, + "probability": 0.9409 + }, + { + "start": 13097.92, + "end": 13103.3, + "probability": 0.9961 + }, + { + "start": 13104.06, + "end": 13106.38, + "probability": 0.999 + }, + { + "start": 13107.32, + "end": 13109.66, + "probability": 0.7977 + }, + { + "start": 13110.78, + "end": 13113.12, + "probability": 0.8032 + }, + { + "start": 13114.04, + "end": 13114.14, + "probability": 0.0517 + }, + { + "start": 13114.14, + "end": 13117.3, + "probability": 0.9919 + }, + { + "start": 13119.78, + "end": 13121.12, + "probability": 0.7695 + }, + { + "start": 13121.26, + "end": 13122.22, + "probability": 0.7098 + }, + { + "start": 13122.44, + "end": 13123.12, + "probability": 0.7437 + }, + { + "start": 13123.4, + "end": 13126.38, + "probability": 0.7815 + }, + { + "start": 13127.12, + "end": 13129.29, + "probability": 0.9111 + }, + { + "start": 13130.12, + "end": 13133.94, + "probability": 0.9648 + }, + { + "start": 13134.5, + "end": 13137.1, + "probability": 0.9707 + }, + { + "start": 13137.84, + "end": 13139.4, + "probability": 0.9927 + }, + { + "start": 13139.52, + "end": 13144.3, + "probability": 0.9965 + }, + { + "start": 13144.38, + "end": 13146.38, + "probability": 0.8416 + }, + { + "start": 13147.38, + "end": 13152.14, + "probability": 0.9797 + }, + { + "start": 13152.86, + "end": 13155.04, + "probability": 0.9341 + }, + { + "start": 13155.9, + "end": 13160.22, + "probability": 0.8551 + }, + { + "start": 13161.3, + "end": 13163.72, + "probability": 0.9766 + }, + { + "start": 13164.42, + "end": 13168.12, + "probability": 0.988 + }, + { + "start": 13169.92, + "end": 13172.6, + "probability": 0.9922 + }, + { + "start": 13172.6, + "end": 13175.26, + "probability": 0.9994 + }, + { + "start": 13175.98, + "end": 13180.04, + "probability": 0.9978 + }, + { + "start": 13180.86, + "end": 13184.08, + "probability": 0.9966 + }, + { + "start": 13184.66, + "end": 13187.04, + "probability": 0.9987 + }, + { + "start": 13187.04, + "end": 13191.36, + "probability": 0.9987 + }, + { + "start": 13191.96, + "end": 13197.94, + "probability": 0.9985 + }, + { + "start": 13197.94, + "end": 13205.24, + "probability": 0.994 + }, + { + "start": 13205.94, + "end": 13206.04, + "probability": 0.0995 + }, + { + "start": 13206.16, + "end": 13206.46, + "probability": 0.7972 + }, + { + "start": 13206.62, + "end": 13210.44, + "probability": 0.9894 + }, + { + "start": 13210.59, + "end": 13216.4, + "probability": 0.9782 + }, + { + "start": 13216.4, + "end": 13221.66, + "probability": 0.9672 + }, + { + "start": 13222.3, + "end": 13225.86, + "probability": 0.9878 + }, + { + "start": 13226.42, + "end": 13227.66, + "probability": 0.9912 + }, + { + "start": 13229.1, + "end": 13235.66, + "probability": 0.9961 + }, + { + "start": 13235.88, + "end": 13236.3, + "probability": 0.4228 + }, + { + "start": 13236.88, + "end": 13240.46, + "probability": 0.8514 + }, + { + "start": 13241.32, + "end": 13241.92, + "probability": 0.9722 + }, + { + "start": 13242.48, + "end": 13244.14, + "probability": 0.9766 + }, + { + "start": 13244.84, + "end": 13246.98, + "probability": 0.8611 + }, + { + "start": 13247.52, + "end": 13250.58, + "probability": 0.9894 + }, + { + "start": 13251.1, + "end": 13253.58, + "probability": 0.95 + }, + { + "start": 13254.02, + "end": 13254.3, + "probability": 0.821 + }, + { + "start": 13255.32, + "end": 13257.26, + "probability": 0.9192 + }, + { + "start": 13258.58, + "end": 13260.08, + "probability": 0.991 + }, + { + "start": 13260.68, + "end": 13264.44, + "probability": 0.5351 + }, + { + "start": 13265.28, + "end": 13265.86, + "probability": 0.3509 + }, + { + "start": 13265.94, + "end": 13266.56, + "probability": 0.6894 + }, + { + "start": 13266.56, + "end": 13266.56, + "probability": 0.6939 + }, + { + "start": 13266.56, + "end": 13266.84, + "probability": 0.9577 + }, + { + "start": 13268.06, + "end": 13268.56, + "probability": 0.8282 + }, + { + "start": 13269.5, + "end": 13271.24, + "probability": 0.6618 + }, + { + "start": 13271.38, + "end": 13272.0, + "probability": 0.4039 + }, + { + "start": 13272.1, + "end": 13273.6, + "probability": 0.9364 + }, + { + "start": 13273.7, + "end": 13274.26, + "probability": 0.3562 + }, + { + "start": 13274.94, + "end": 13276.22, + "probability": 0.883 + }, + { + "start": 13276.3, + "end": 13276.7, + "probability": 0.9456 + }, + { + "start": 13276.86, + "end": 13278.16, + "probability": 0.9823 + }, + { + "start": 13278.82, + "end": 13279.3, + "probability": 0.9757 + }, + { + "start": 13279.4, + "end": 13280.82, + "probability": 0.9965 + }, + { + "start": 13280.92, + "end": 13281.26, + "probability": 0.9617 + }, + { + "start": 13281.38, + "end": 13284.56, + "probability": 0.8283 + }, + { + "start": 13284.62, + "end": 13286.1, + "probability": 0.895 + }, + { + "start": 13286.18, + "end": 13286.4, + "probability": 0.3394 + }, + { + "start": 13290.4, + "end": 13290.7, + "probability": 0.2199 + }, + { + "start": 13290.7, + "end": 13291.8, + "probability": 0.5087 + }, + { + "start": 13291.86, + "end": 13292.24, + "probability": 0.5139 + }, + { + "start": 13292.42, + "end": 13294.3, + "probability": 0.9635 + }, + { + "start": 13294.52, + "end": 13294.92, + "probability": 0.911 + }, + { + "start": 13295.06, + "end": 13296.48, + "probability": 0.9603 + }, + { + "start": 13296.52, + "end": 13297.02, + "probability": 0.9768 + }, + { + "start": 13297.14, + "end": 13298.48, + "probability": 0.9523 + }, + { + "start": 13298.88, + "end": 13299.46, + "probability": 0.9534 + }, + { + "start": 13299.52, + "end": 13301.5, + "probability": 0.969 + }, + { + "start": 13302.34, + "end": 13302.44, + "probability": 0.9769 + }, + { + "start": 13303.04, + "end": 13303.14, + "probability": 0.0313 + }, + { + "start": 13303.14, + "end": 13303.14, + "probability": 0.4153 + }, + { + "start": 13303.14, + "end": 13304.84, + "probability": 0.8198 + }, + { + "start": 13305.02, + "end": 13305.96, + "probability": 0.9805 + }, + { + "start": 13306.58, + "end": 13310.06, + "probability": 0.8612 + }, + { + "start": 13310.82, + "end": 13311.34, + "probability": 0.5654 + }, + { + "start": 13311.54, + "end": 13313.82, + "probability": 0.907 + }, + { + "start": 13313.82, + "end": 13314.28, + "probability": 0.842 + }, + { + "start": 13314.34, + "end": 13315.4, + "probability": 0.9601 + }, + { + "start": 13315.48, + "end": 13316.08, + "probability": 0.9013 + }, + { + "start": 13319.52, + "end": 13320.84, + "probability": 0.5109 + }, + { + "start": 13320.84, + "end": 13320.84, + "probability": 0.4252 + }, + { + "start": 13320.84, + "end": 13321.98, + "probability": 0.6404 + }, + { + "start": 13322.86, + "end": 13325.96, + "probability": 0.8209 + }, + { + "start": 13326.48, + "end": 13330.1, + "probability": 0.8196 + }, + { + "start": 13332.12, + "end": 13334.84, + "probability": 0.8352 + }, + { + "start": 13336.24, + "end": 13337.6, + "probability": 0.9878 + }, + { + "start": 13337.66, + "end": 13338.34, + "probability": 0.8959 + }, + { + "start": 13338.48, + "end": 13340.6, + "probability": 0.9847 + }, + { + "start": 13340.6, + "end": 13341.22, + "probability": 0.68 + }, + { + "start": 13342.36, + "end": 13343.58, + "probability": 0.9665 + }, + { + "start": 13343.58, + "end": 13344.02, + "probability": 0.5864 + }, + { + "start": 13344.12, + "end": 13345.26, + "probability": 0.8159 + }, + { + "start": 13345.26, + "end": 13345.82, + "probability": 0.4567 + }, + { + "start": 13345.94, + "end": 13347.02, + "probability": 0.8687 + }, + { + "start": 13347.7, + "end": 13350.76, + "probability": 0.92 + }, + { + "start": 13351.62, + "end": 13354.14, + "probability": 0.9818 + }, + { + "start": 13355.58, + "end": 13358.1, + "probability": 0.8553 + }, + { + "start": 13359.12, + "end": 13361.92, + "probability": 0.7939 + }, + { + "start": 13362.12, + "end": 13365.06, + "probability": 0.3307 + }, + { + "start": 13366.84, + "end": 13370.14, + "probability": 0.7094 + }, + { + "start": 13370.32, + "end": 13371.72, + "probability": 0.5893 + }, + { + "start": 13372.37, + "end": 13375.98, + "probability": 0.0637 + }, + { + "start": 13376.62, + "end": 13378.6, + "probability": 0.1949 + }, + { + "start": 13390.6, + "end": 13390.7, + "probability": 0.0001 + }, + { + "start": 13390.88, + "end": 13391.66, + "probability": 0.0152 + }, + { + "start": 13391.7, + "end": 13391.7, + "probability": 0.6715 + }, + { + "start": 13391.7, + "end": 13393.57, + "probability": 0.1532 + }, + { + "start": 13394.46, + "end": 13398.16, + "probability": 0.4442 + }, + { + "start": 13412.22, + "end": 13413.36, + "probability": 0.1656 + }, + { + "start": 13414.88, + "end": 13419.6, + "probability": 0.0372 + }, + { + "start": 13420.9, + "end": 13422.36, + "probability": 0.0879 + }, + { + "start": 13422.36, + "end": 13422.98, + "probability": 0.2432 + }, + { + "start": 13423.78, + "end": 13426.22, + "probability": 0.0989 + }, + { + "start": 13426.92, + "end": 13427.14, + "probability": 0.3608 + }, + { + "start": 13427.34, + "end": 13428.98, + "probability": 0.0799 + }, + { + "start": 13429.0, + "end": 13429.0, + "probability": 0.0 + }, + { + "start": 13429.0, + "end": 13429.0, + "probability": 0.0 + }, + { + "start": 13429.0, + "end": 13429.0, + "probability": 0.0 + }, + { + "start": 13429.0, + "end": 13429.0, + "probability": 0.0 + }, + { + "start": 13429.0, + "end": 13429.0, + "probability": 0.0 + }, + { + "start": 13429.26, + "end": 13431.26, + "probability": 0.9182 + }, + { + "start": 13432.1, + "end": 13432.34, + "probability": 0.04 + }, + { + "start": 13432.34, + "end": 13432.4, + "probability": 0.2415 + }, + { + "start": 13432.4, + "end": 13432.94, + "probability": 0.284 + }, + { + "start": 13433.04, + "end": 13434.18, + "probability": 0.4334 + }, + { + "start": 13434.66, + "end": 13436.5, + "probability": 0.8491 + }, + { + "start": 13436.6, + "end": 13437.38, + "probability": 0.633 + }, + { + "start": 13437.6, + "end": 13439.4, + "probability": 0.4252 + }, + { + "start": 13440.18, + "end": 13446.54, + "probability": 0.7696 + } + ], + "segments_count": 4110, + "words_count": 21000, + "avg_words_per_segment": 5.1095, + "avg_segment_duration": 2.3689, + "avg_words_per_minute": 93.4225, + "plenum_id": "101580", + "duration": 13487.12, + "title": null, + "plenum_date": "2021-11-16" +} \ No newline at end of file