diff --git "a/11401/metadata.json" "b/11401/metadata.json" new file mode 100644--- /dev/null +++ "b/11401/metadata.json" @@ -0,0 +1,22427 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "11401", + "quality_score": 0.8999, + "per_segment_quality_scores": [ + { + "start": 106.18, + "end": 109.96, + "probability": 0.9387 + }, + { + "start": 110.14, + "end": 111.48, + "probability": 0.459 + }, + { + "start": 111.8, + "end": 113.96, + "probability": 0.9945 + }, + { + "start": 114.04, + "end": 114.32, + "probability": 0.0032 + }, + { + "start": 120.2, + "end": 120.2, + "probability": 0.019 + }, + { + "start": 120.2, + "end": 120.2, + "probability": 0.138 + }, + { + "start": 120.2, + "end": 120.2, + "probability": 0.0639 + }, + { + "start": 120.2, + "end": 121.01, + "probability": 0.1067 + }, + { + "start": 121.14, + "end": 122.48, + "probability": 0.5265 + }, + { + "start": 123.16, + "end": 124.85, + "probability": 0.5574 + }, + { + "start": 125.26, + "end": 128.88, + "probability": 0.6991 + }, + { + "start": 133.42, + "end": 134.72, + "probability": 0.6968 + }, + { + "start": 134.8, + "end": 136.14, + "probability": 0.5014 + }, + { + "start": 136.18, + "end": 137.1, + "probability": 0.7715 + }, + { + "start": 137.52, + "end": 137.98, + "probability": 0.4316 + }, + { + "start": 138.0, + "end": 139.36, + "probability": 0.8612 + }, + { + "start": 139.5, + "end": 139.85, + "probability": 0.687 + }, + { + "start": 141.2, + "end": 145.08, + "probability": 0.4606 + }, + { + "start": 145.3, + "end": 148.34, + "probability": 0.8257 + }, + { + "start": 148.88, + "end": 150.32, + "probability": 0.762 + }, + { + "start": 150.5, + "end": 152.26, + "probability": 0.7218 + }, + { + "start": 152.36, + "end": 153.76, + "probability": 0.8314 + }, + { + "start": 154.36, + "end": 155.86, + "probability": 0.943 + }, + { + "start": 156.0, + "end": 158.34, + "probability": 0.9399 + }, + { + "start": 158.9, + "end": 163.26, + "probability": 0.9964 + }, + { + "start": 163.26, + "end": 166.48, + "probability": 0.7078 + }, + { + "start": 167.32, + "end": 173.0, + "probability": 0.8049 + }, + { + "start": 173.56, + "end": 176.74, + "probability": 0.874 + }, + { + "start": 176.78, + "end": 177.72, + "probability": 0.7935 + }, + { + "start": 177.9, + "end": 178.58, + "probability": 0.9666 + }, + { + "start": 179.72, + "end": 183.08, + "probability": 0.7827 + }, + { + "start": 183.54, + "end": 186.22, + "probability": 0.5942 + }, + { + "start": 186.74, + "end": 189.64, + "probability": 0.8838 + }, + { + "start": 189.78, + "end": 190.4, + "probability": 0.9203 + }, + { + "start": 190.46, + "end": 190.88, + "probability": 0.8855 + }, + { + "start": 191.36, + "end": 194.14, + "probability": 0.8008 + }, + { + "start": 194.56, + "end": 196.72, + "probability": 0.7749 + }, + { + "start": 197.26, + "end": 199.02, + "probability": 0.6393 + }, + { + "start": 199.46, + "end": 201.2, + "probability": 0.9311 + }, + { + "start": 202.8, + "end": 205.8, + "probability": 0.9816 + }, + { + "start": 208.52, + "end": 209.74, + "probability": 0.4867 + }, + { + "start": 210.52, + "end": 215.1, + "probability": 0.9966 + }, + { + "start": 215.54, + "end": 222.14, + "probability": 0.9714 + }, + { + "start": 223.34, + "end": 228.2, + "probability": 0.991 + }, + { + "start": 228.2, + "end": 234.92, + "probability": 0.9025 + }, + { + "start": 234.96, + "end": 235.84, + "probability": 0.8531 + }, + { + "start": 236.9, + "end": 239.8, + "probability": 0.9642 + }, + { + "start": 239.8, + "end": 242.51, + "probability": 0.946 + }, + { + "start": 243.86, + "end": 251.2, + "probability": 0.9945 + }, + { + "start": 251.2, + "end": 256.26, + "probability": 0.8962 + }, + { + "start": 256.38, + "end": 258.92, + "probability": 0.8524 + }, + { + "start": 258.98, + "end": 260.82, + "probability": 0.5563 + }, + { + "start": 260.9, + "end": 262.22, + "probability": 0.1256 + }, + { + "start": 264.44, + "end": 264.74, + "probability": 0.2017 + }, + { + "start": 264.78, + "end": 266.22, + "probability": 0.2366 + }, + { + "start": 266.22, + "end": 266.72, + "probability": 0.3475 + }, + { + "start": 267.98, + "end": 268.34, + "probability": 0.305 + }, + { + "start": 268.36, + "end": 269.4, + "probability": 0.7175 + }, + { + "start": 269.56, + "end": 270.58, + "probability": 0.7961 + }, + { + "start": 270.86, + "end": 276.66, + "probability": 0.9792 + }, + { + "start": 277.18, + "end": 280.0, + "probability": 0.9972 + }, + { + "start": 280.8, + "end": 284.54, + "probability": 0.8962 + }, + { + "start": 285.56, + "end": 291.59, + "probability": 0.9712 + }, + { + "start": 293.44, + "end": 298.36, + "probability": 0.9215 + }, + { + "start": 298.44, + "end": 299.96, + "probability": 0.8419 + }, + { + "start": 300.86, + "end": 304.32, + "probability": 0.9126 + }, + { + "start": 304.7, + "end": 306.67, + "probability": 0.8847 + }, + { + "start": 306.78, + "end": 309.1, + "probability": 0.9977 + }, + { + "start": 309.74, + "end": 310.68, + "probability": 0.9399 + }, + { + "start": 310.82, + "end": 317.62, + "probability": 0.9214 + }, + { + "start": 318.12, + "end": 319.22, + "probability": 0.4123 + }, + { + "start": 320.0, + "end": 321.8, + "probability": 0.998 + }, + { + "start": 322.6, + "end": 327.62, + "probability": 0.9957 + }, + { + "start": 328.06, + "end": 330.86, + "probability": 0.9587 + }, + { + "start": 331.22, + "end": 334.32, + "probability": 0.9905 + }, + { + "start": 334.98, + "end": 340.18, + "probability": 0.9917 + }, + { + "start": 340.6, + "end": 343.12, + "probability": 0.9441 + }, + { + "start": 343.24, + "end": 343.66, + "probability": 0.7396 + }, + { + "start": 343.94, + "end": 344.72, + "probability": 0.6195 + }, + { + "start": 345.12, + "end": 346.98, + "probability": 0.994 + }, + { + "start": 347.32, + "end": 348.28, + "probability": 0.404 + }, + { + "start": 348.36, + "end": 350.74, + "probability": 0.9548 + }, + { + "start": 355.88, + "end": 358.1, + "probability": 0.4738 + }, + { + "start": 358.7, + "end": 362.08, + "probability": 0.9892 + }, + { + "start": 362.4, + "end": 363.34, + "probability": 0.871 + }, + { + "start": 363.5, + "end": 364.28, + "probability": 0.8247 + }, + { + "start": 364.38, + "end": 369.02, + "probability": 0.9476 + }, + { + "start": 369.12, + "end": 373.52, + "probability": 0.814 + }, + { + "start": 374.02, + "end": 378.44, + "probability": 0.9966 + }, + { + "start": 378.58, + "end": 380.8, + "probability": 0.9972 + }, + { + "start": 380.8, + "end": 384.3, + "probability": 0.9953 + }, + { + "start": 385.18, + "end": 385.2, + "probability": 0.4958 + }, + { + "start": 385.2, + "end": 390.98, + "probability": 0.9648 + }, + { + "start": 391.04, + "end": 398.66, + "probability": 0.9264 + }, + { + "start": 398.74, + "end": 398.88, + "probability": 0.8909 + }, + { + "start": 398.98, + "end": 402.36, + "probability": 0.9802 + }, + { + "start": 402.36, + "end": 405.44, + "probability": 0.9958 + }, + { + "start": 405.82, + "end": 408.94, + "probability": 0.9226 + }, + { + "start": 408.94, + "end": 412.24, + "probability": 0.9219 + }, + { + "start": 412.66, + "end": 415.94, + "probability": 0.9309 + }, + { + "start": 416.24, + "end": 416.46, + "probability": 0.6522 + }, + { + "start": 416.56, + "end": 419.49, + "probability": 0.9937 + }, + { + "start": 419.66, + "end": 423.24, + "probability": 0.9749 + }, + { + "start": 423.24, + "end": 426.4, + "probability": 0.9633 + }, + { + "start": 426.86, + "end": 427.36, + "probability": 0.7596 + }, + { + "start": 427.42, + "end": 428.02, + "probability": 0.8457 + }, + { + "start": 428.1, + "end": 428.93, + "probability": 0.98 + }, + { + "start": 429.8, + "end": 432.84, + "probability": 0.6715 + }, + { + "start": 432.9, + "end": 433.68, + "probability": 0.5323 + }, + { + "start": 433.8, + "end": 435.56, + "probability": 0.3732 + }, + { + "start": 435.62, + "end": 436.6, + "probability": 0.7475 + }, + { + "start": 436.92, + "end": 438.14, + "probability": 0.8259 + }, + { + "start": 438.18, + "end": 440.06, + "probability": 0.8384 + }, + { + "start": 440.16, + "end": 441.94, + "probability": 0.7642 + }, + { + "start": 442.2, + "end": 444.36, + "probability": 0.98 + }, + { + "start": 444.4, + "end": 444.52, + "probability": 0.7466 + }, + { + "start": 444.64, + "end": 447.64, + "probability": 0.9951 + }, + { + "start": 447.64, + "end": 448.18, + "probability": 0.8143 + }, + { + "start": 448.22, + "end": 450.02, + "probability": 0.7231 + }, + { + "start": 450.04, + "end": 451.52, + "probability": 0.8394 + }, + { + "start": 451.58, + "end": 452.42, + "probability": 0.9775 + }, + { + "start": 452.46, + "end": 453.0, + "probability": 0.3332 + }, + { + "start": 453.22, + "end": 455.18, + "probability": 0.9938 + }, + { + "start": 455.36, + "end": 456.22, + "probability": 0.5306 + }, + { + "start": 456.28, + "end": 458.59, + "probability": 0.9858 + }, + { + "start": 458.66, + "end": 460.92, + "probability": 0.5986 + }, + { + "start": 460.98, + "end": 464.36, + "probability": 0.5656 + }, + { + "start": 464.38, + "end": 464.92, + "probability": 0.8276 + }, + { + "start": 465.04, + "end": 467.52, + "probability": 0.705 + }, + { + "start": 467.58, + "end": 468.38, + "probability": 0.8176 + }, + { + "start": 470.1, + "end": 474.18, + "probability": 0.9118 + }, + { + "start": 474.8, + "end": 477.75, + "probability": 0.9899 + }, + { + "start": 478.6, + "end": 480.46, + "probability": 0.9804 + }, + { + "start": 482.42, + "end": 485.72, + "probability": 0.9949 + }, + { + "start": 485.72, + "end": 489.96, + "probability": 0.9989 + }, + { + "start": 490.72, + "end": 495.78, + "probability": 0.9445 + }, + { + "start": 496.22, + "end": 498.02, + "probability": 0.98 + }, + { + "start": 498.24, + "end": 499.28, + "probability": 0.7343 + }, + { + "start": 499.88, + "end": 500.64, + "probability": 0.7744 + }, + { + "start": 500.98, + "end": 501.88, + "probability": 0.955 + }, + { + "start": 501.92, + "end": 502.52, + "probability": 0.8675 + }, + { + "start": 502.62, + "end": 506.26, + "probability": 0.9932 + }, + { + "start": 506.26, + "end": 508.4, + "probability": 0.9866 + }, + { + "start": 508.78, + "end": 509.86, + "probability": 0.7766 + }, + { + "start": 510.04, + "end": 511.47, + "probability": 0.749 + }, + { + "start": 511.96, + "end": 512.42, + "probability": 0.3907 + }, + { + "start": 512.46, + "end": 512.68, + "probability": 0.841 + }, + { + "start": 512.76, + "end": 514.3, + "probability": 0.9795 + }, + { + "start": 514.72, + "end": 517.96, + "probability": 0.9337 + }, + { + "start": 517.96, + "end": 520.78, + "probability": 0.9329 + }, + { + "start": 521.2, + "end": 522.4, + "probability": 0.6969 + }, + { + "start": 522.72, + "end": 523.02, + "probability": 0.6845 + }, + { + "start": 523.08, + "end": 523.7, + "probability": 0.5656 + }, + { + "start": 524.18, + "end": 527.92, + "probability": 0.9856 + }, + { + "start": 527.92, + "end": 531.56, + "probability": 0.9937 + }, + { + "start": 531.66, + "end": 536.64, + "probability": 0.9976 + }, + { + "start": 536.64, + "end": 541.46, + "probability": 0.999 + }, + { + "start": 542.34, + "end": 543.3, + "probability": 0.568 + }, + { + "start": 543.82, + "end": 544.78, + "probability": 0.2597 + }, + { + "start": 544.78, + "end": 547.48, + "probability": 0.7897 + }, + { + "start": 547.76, + "end": 548.85, + "probability": 0.8872 + }, + { + "start": 549.26, + "end": 552.9, + "probability": 0.8989 + }, + { + "start": 552.9, + "end": 556.68, + "probability": 0.9921 + }, + { + "start": 556.82, + "end": 557.52, + "probability": 0.6623 + }, + { + "start": 558.2, + "end": 560.92, + "probability": 0.9763 + }, + { + "start": 560.92, + "end": 563.66, + "probability": 0.9624 + }, + { + "start": 564.04, + "end": 564.04, + "probability": 0.0526 + }, + { + "start": 564.04, + "end": 566.86, + "probability": 0.9349 + }, + { + "start": 566.86, + "end": 569.34, + "probability": 0.9921 + }, + { + "start": 569.46, + "end": 569.46, + "probability": 0.597 + }, + { + "start": 569.46, + "end": 569.62, + "probability": 0.4513 + }, + { + "start": 569.72, + "end": 569.98, + "probability": 0.8592 + }, + { + "start": 570.29, + "end": 573.66, + "probability": 0.1835 + }, + { + "start": 573.66, + "end": 574.86, + "probability": 0.4219 + }, + { + "start": 574.94, + "end": 576.3, + "probability": 0.6496 + }, + { + "start": 576.3, + "end": 577.18, + "probability": 0.833 + }, + { + "start": 577.32, + "end": 577.86, + "probability": 0.7432 + }, + { + "start": 577.96, + "end": 579.06, + "probability": 0.9973 + }, + { + "start": 579.2, + "end": 579.54, + "probability": 0.9072 + }, + { + "start": 579.8, + "end": 580.8, + "probability": 0.6451 + }, + { + "start": 580.98, + "end": 582.04, + "probability": 0.8975 + }, + { + "start": 582.26, + "end": 583.85, + "probability": 0.7207 + }, + { + "start": 584.26, + "end": 587.44, + "probability": 0.9739 + }, + { + "start": 587.58, + "end": 590.24, + "probability": 0.9006 + }, + { + "start": 590.26, + "end": 591.08, + "probability": 0.321 + }, + { + "start": 591.44, + "end": 597.5, + "probability": 0.9946 + }, + { + "start": 597.58, + "end": 597.58, + "probability": 0.4222 + }, + { + "start": 597.58, + "end": 599.06, + "probability": 0.5381 + }, + { + "start": 599.06, + "end": 600.88, + "probability": 0.5021 + }, + { + "start": 600.98, + "end": 601.8, + "probability": 0.9519 + }, + { + "start": 602.04, + "end": 604.5, + "probability": 0.7886 + }, + { + "start": 604.68, + "end": 612.66, + "probability": 0.916 + }, + { + "start": 613.2, + "end": 617.1, + "probability": 0.9243 + }, + { + "start": 617.9, + "end": 620.72, + "probability": 0.9396 + }, + { + "start": 620.82, + "end": 623.39, + "probability": 0.9865 + }, + { + "start": 624.28, + "end": 628.86, + "probability": 0.9956 + }, + { + "start": 629.34, + "end": 630.5, + "probability": 0.4167 + }, + { + "start": 630.7, + "end": 630.8, + "probability": 0.6837 + }, + { + "start": 631.76, + "end": 631.76, + "probability": 0.1784 + }, + { + "start": 631.78, + "end": 632.16, + "probability": 0.4425 + }, + { + "start": 632.26, + "end": 633.98, + "probability": 0.5295 + }, + { + "start": 634.28, + "end": 636.54, + "probability": 0.9638 + }, + { + "start": 636.82, + "end": 638.42, + "probability": 0.815 + }, + { + "start": 638.56, + "end": 640.6, + "probability": 0.5865 + }, + { + "start": 641.28, + "end": 642.26, + "probability": 0.756 + }, + { + "start": 642.32, + "end": 643.0, + "probability": 0.7746 + }, + { + "start": 643.18, + "end": 643.46, + "probability": 0.5547 + }, + { + "start": 643.46, + "end": 643.92, + "probability": 0.7709 + }, + { + "start": 644.04, + "end": 644.48, + "probability": 0.7091 + }, + { + "start": 644.52, + "end": 645.7, + "probability": 0.9192 + }, + { + "start": 646.1, + "end": 647.4, + "probability": 0.9831 + }, + { + "start": 647.62, + "end": 648.32, + "probability": 0.7094 + }, + { + "start": 649.47, + "end": 651.13, + "probability": 0.9897 + }, + { + "start": 651.54, + "end": 656.94, + "probability": 0.8414 + }, + { + "start": 669.04, + "end": 669.7, + "probability": 0.5012 + }, + { + "start": 669.78, + "end": 670.7, + "probability": 0.7838 + }, + { + "start": 670.94, + "end": 671.84, + "probability": 0.9552 + }, + { + "start": 671.94, + "end": 672.66, + "probability": 0.4145 + }, + { + "start": 672.96, + "end": 674.04, + "probability": 0.924 + }, + { + "start": 674.76, + "end": 681.02, + "probability": 0.9775 + }, + { + "start": 681.56, + "end": 684.52, + "probability": 0.9847 + }, + { + "start": 684.52, + "end": 687.6, + "probability": 0.8733 + }, + { + "start": 688.38, + "end": 691.22, + "probability": 0.9283 + }, + { + "start": 691.36, + "end": 692.88, + "probability": 0.8895 + }, + { + "start": 693.3, + "end": 696.48, + "probability": 0.8084 + }, + { + "start": 696.62, + "end": 700.22, + "probability": 0.6322 + }, + { + "start": 700.88, + "end": 701.9, + "probability": 0.9227 + }, + { + "start": 702.38, + "end": 703.42, + "probability": 0.7969 + }, + { + "start": 703.48, + "end": 704.74, + "probability": 0.9401 + }, + { + "start": 705.08, + "end": 708.34, + "probability": 0.9275 + }, + { + "start": 708.9, + "end": 710.12, + "probability": 0.7135 + }, + { + "start": 710.9, + "end": 714.16, + "probability": 0.7727 + }, + { + "start": 714.16, + "end": 716.04, + "probability": 0.3986 + }, + { + "start": 716.24, + "end": 718.36, + "probability": 0.4146 + }, + { + "start": 718.44, + "end": 723.1, + "probability": 0.7071 + }, + { + "start": 723.48, + "end": 724.84, + "probability": 0.8775 + }, + { + "start": 725.3, + "end": 728.1, + "probability": 0.9227 + }, + { + "start": 728.24, + "end": 731.24, + "probability": 0.9762 + }, + { + "start": 731.58, + "end": 733.37, + "probability": 0.9634 + }, + { + "start": 733.72, + "end": 734.52, + "probability": 0.9502 + }, + { + "start": 734.64, + "end": 735.34, + "probability": 0.9154 + }, + { + "start": 735.38, + "end": 736.14, + "probability": 0.5808 + }, + { + "start": 736.36, + "end": 738.08, + "probability": 0.5764 + }, + { + "start": 738.24, + "end": 740.08, + "probability": 0.9367 + }, + { + "start": 740.48, + "end": 744.6, + "probability": 0.9909 + }, + { + "start": 744.96, + "end": 746.62, + "probability": 0.9962 + }, + { + "start": 746.9, + "end": 749.64, + "probability": 0.9912 + }, + { + "start": 749.92, + "end": 752.08, + "probability": 0.9868 + }, + { + "start": 752.18, + "end": 753.4, + "probability": 0.9839 + }, + { + "start": 753.5, + "end": 758.92, + "probability": 0.9514 + }, + { + "start": 758.98, + "end": 759.9, + "probability": 0.8625 + }, + { + "start": 760.54, + "end": 762.82, + "probability": 0.9135 + }, + { + "start": 762.82, + "end": 765.3, + "probability": 0.964 + }, + { + "start": 765.44, + "end": 767.72, + "probability": 0.9853 + }, + { + "start": 767.8, + "end": 768.57, + "probability": 0.7659 + }, + { + "start": 768.92, + "end": 772.5, + "probability": 0.9871 + }, + { + "start": 772.52, + "end": 772.78, + "probability": 0.4705 + }, + { + "start": 772.78, + "end": 775.5, + "probability": 0.8179 + }, + { + "start": 776.02, + "end": 777.42, + "probability": 0.8008 + }, + { + "start": 777.8, + "end": 778.72, + "probability": 0.8796 + }, + { + "start": 778.9, + "end": 781.32, + "probability": 0.991 + }, + { + "start": 782.44, + "end": 783.84, + "probability": 0.28 + }, + { + "start": 785.36, + "end": 790.2, + "probability": 0.9827 + }, + { + "start": 790.28, + "end": 792.92, + "probability": 0.8629 + }, + { + "start": 793.3, + "end": 794.34, + "probability": 0.7025 + }, + { + "start": 794.78, + "end": 796.48, + "probability": 0.9845 + }, + { + "start": 796.6, + "end": 798.4, + "probability": 0.9663 + }, + { + "start": 798.7, + "end": 800.4, + "probability": 0.8525 + }, + { + "start": 800.4, + "end": 801.7, + "probability": 0.9353 + }, + { + "start": 802.0, + "end": 802.66, + "probability": 0.7033 + }, + { + "start": 804.12, + "end": 804.6, + "probability": 0.5654 + }, + { + "start": 813.6, + "end": 814.92, + "probability": 0.6206 + }, + { + "start": 815.06, + "end": 816.04, + "probability": 0.7672 + }, + { + "start": 816.42, + "end": 816.72, + "probability": 0.3922 + }, + { + "start": 816.76, + "end": 819.4, + "probability": 0.9459 + }, + { + "start": 819.64, + "end": 821.1, + "probability": 0.7792 + }, + { + "start": 821.16, + "end": 823.04, + "probability": 0.6886 + }, + { + "start": 823.08, + "end": 823.14, + "probability": 0.7057 + }, + { + "start": 823.14, + "end": 823.56, + "probability": 0.6504 + }, + { + "start": 823.8, + "end": 826.46, + "probability": 0.4516 + }, + { + "start": 827.18, + "end": 828.2, + "probability": 0.606 + }, + { + "start": 828.43, + "end": 835.38, + "probability": 0.7816 + }, + { + "start": 836.38, + "end": 838.96, + "probability": 0.6935 + }, + { + "start": 839.34, + "end": 841.26, + "probability": 0.8522 + }, + { + "start": 841.44, + "end": 846.92, + "probability": 0.8883 + }, + { + "start": 847.42, + "end": 848.3, + "probability": 0.7752 + }, + { + "start": 848.8, + "end": 849.74, + "probability": 0.5152 + }, + { + "start": 849.89, + "end": 854.42, + "probability": 0.9116 + }, + { + "start": 854.98, + "end": 855.72, + "probability": 0.7786 + }, + { + "start": 856.58, + "end": 857.77, + "probability": 0.8573 + }, + { + "start": 857.92, + "end": 858.48, + "probability": 0.9222 + }, + { + "start": 858.56, + "end": 861.84, + "probability": 0.778 + }, + { + "start": 862.1, + "end": 864.24, + "probability": 0.6758 + }, + { + "start": 865.36, + "end": 868.34, + "probability": 0.9897 + }, + { + "start": 868.42, + "end": 870.14, + "probability": 0.9514 + }, + { + "start": 870.24, + "end": 871.06, + "probability": 0.6695 + }, + { + "start": 871.4, + "end": 872.78, + "probability": 0.9019 + }, + { + "start": 873.1, + "end": 873.78, + "probability": 0.929 + }, + { + "start": 874.18, + "end": 880.16, + "probability": 0.9769 + }, + { + "start": 880.46, + "end": 882.16, + "probability": 0.8107 + }, + { + "start": 882.56, + "end": 889.68, + "probability": 0.9775 + }, + { + "start": 890.04, + "end": 890.76, + "probability": 0.855 + }, + { + "start": 891.12, + "end": 896.34, + "probability": 0.9883 + }, + { + "start": 896.7, + "end": 900.73, + "probability": 0.7418 + }, + { + "start": 902.5, + "end": 903.38, + "probability": 0.9543 + }, + { + "start": 903.62, + "end": 904.36, + "probability": 0.637 + }, + { + "start": 904.74, + "end": 906.0, + "probability": 0.8656 + }, + { + "start": 906.12, + "end": 906.64, + "probability": 0.8395 + }, + { + "start": 906.7, + "end": 907.34, + "probability": 0.7222 + }, + { + "start": 907.54, + "end": 909.72, + "probability": 0.907 + }, + { + "start": 910.28, + "end": 912.62, + "probability": 0.8201 + }, + { + "start": 912.68, + "end": 913.2, + "probability": 0.5565 + }, + { + "start": 913.2, + "end": 913.86, + "probability": 0.5419 + }, + { + "start": 914.18, + "end": 916.48, + "probability": 0.7954 + }, + { + "start": 916.74, + "end": 920.14, + "probability": 0.9958 + }, + { + "start": 920.3, + "end": 925.04, + "probability": 0.9521 + }, + { + "start": 925.18, + "end": 929.88, + "probability": 0.9892 + }, + { + "start": 930.36, + "end": 933.62, + "probability": 0.9944 + }, + { + "start": 933.62, + "end": 934.08, + "probability": 0.687 + }, + { + "start": 934.08, + "end": 938.28, + "probability": 0.8055 + }, + { + "start": 939.26, + "end": 939.92, + "probability": 0.1696 + }, + { + "start": 940.36, + "end": 942.82, + "probability": 0.3238 + }, + { + "start": 943.48, + "end": 944.8, + "probability": 0.948 + }, + { + "start": 944.92, + "end": 946.42, + "probability": 0.9346 + }, + { + "start": 946.48, + "end": 951.06, + "probability": 0.9211 + }, + { + "start": 951.44, + "end": 953.22, + "probability": 0.6531 + }, + { + "start": 953.86, + "end": 954.64, + "probability": 0.34 + }, + { + "start": 959.06, + "end": 960.42, + "probability": 0.583 + }, + { + "start": 960.52, + "end": 964.98, + "probability": 0.9586 + }, + { + "start": 966.06, + "end": 969.87, + "probability": 0.9214 + }, + { + "start": 970.64, + "end": 973.3, + "probability": 0.7705 + }, + { + "start": 974.3, + "end": 975.88, + "probability": 0.887 + }, + { + "start": 976.0, + "end": 976.76, + "probability": 0.7293 + }, + { + "start": 976.84, + "end": 978.27, + "probability": 0.8409 + }, + { + "start": 978.78, + "end": 979.98, + "probability": 0.7845 + }, + { + "start": 980.08, + "end": 981.96, + "probability": 0.7882 + }, + { + "start": 982.12, + "end": 983.58, + "probability": 0.6308 + }, + { + "start": 983.68, + "end": 983.9, + "probability": 0.7149 + }, + { + "start": 984.14, + "end": 986.7, + "probability": 0.9901 + }, + { + "start": 987.72, + "end": 989.7, + "probability": 0.8154 + }, + { + "start": 990.28, + "end": 992.16, + "probability": 0.9896 + }, + { + "start": 992.3, + "end": 993.66, + "probability": 0.9579 + }, + { + "start": 993.72, + "end": 994.58, + "probability": 0.4969 + }, + { + "start": 994.9, + "end": 995.36, + "probability": 0.8284 + }, + { + "start": 995.7, + "end": 998.1, + "probability": 0.9884 + }, + { + "start": 998.1, + "end": 1000.1, + "probability": 0.9522 + }, + { + "start": 1000.36, + "end": 1000.8, + "probability": 0.3298 + }, + { + "start": 1001.42, + "end": 1007.98, + "probability": 0.9854 + }, + { + "start": 1008.84, + "end": 1009.74, + "probability": 0.6423 + }, + { + "start": 1009.82, + "end": 1016.04, + "probability": 0.9618 + }, + { + "start": 1016.56, + "end": 1017.33, + "probability": 0.8305 + }, + { + "start": 1018.24, + "end": 1020.18, + "probability": 0.9937 + }, + { + "start": 1020.78, + "end": 1021.72, + "probability": 0.4742 + }, + { + "start": 1022.38, + "end": 1024.04, + "probability": 0.8637 + }, + { + "start": 1025.18, + "end": 1030.54, + "probability": 0.8952 + }, + { + "start": 1031.52, + "end": 1032.98, + "probability": 0.8298 + }, + { + "start": 1033.16, + "end": 1033.92, + "probability": 0.7817 + }, + { + "start": 1034.04, + "end": 1034.88, + "probability": 0.8253 + }, + { + "start": 1035.0, + "end": 1037.64, + "probability": 0.875 + }, + { + "start": 1038.38, + "end": 1043.82, + "probability": 0.9544 + }, + { + "start": 1044.42, + "end": 1045.72, + "probability": 0.9096 + }, + { + "start": 1046.98, + "end": 1047.82, + "probability": 0.4014 + }, + { + "start": 1047.98, + "end": 1049.6, + "probability": 0.8752 + }, + { + "start": 1049.7, + "end": 1051.04, + "probability": 0.9327 + }, + { + "start": 1051.14, + "end": 1052.14, + "probability": 0.703 + }, + { + "start": 1052.24, + "end": 1055.84, + "probability": 0.9837 + }, + { + "start": 1056.18, + "end": 1057.4, + "probability": 0.5453 + }, + { + "start": 1057.64, + "end": 1058.94, + "probability": 0.9521 + }, + { + "start": 1059.14, + "end": 1059.98, + "probability": 0.9524 + }, + { + "start": 1060.06, + "end": 1061.83, + "probability": 0.8427 + }, + { + "start": 1062.02, + "end": 1064.06, + "probability": 0.9897 + }, + { + "start": 1064.78, + "end": 1069.28, + "probability": 0.9808 + }, + { + "start": 1069.66, + "end": 1069.88, + "probability": 0.4116 + }, + { + "start": 1070.26, + "end": 1072.04, + "probability": 0.9729 + }, + { + "start": 1072.22, + "end": 1076.6, + "probability": 0.572 + }, + { + "start": 1077.16, + "end": 1080.62, + "probability": 0.8213 + }, + { + "start": 1083.24, + "end": 1086.58, + "probability": 0.874 + }, + { + "start": 1087.28, + "end": 1088.76, + "probability": 0.9758 + }, + { + "start": 1089.02, + "end": 1091.39, + "probability": 0.6738 + }, + { + "start": 1091.5, + "end": 1095.44, + "probability": 0.9899 + }, + { + "start": 1095.88, + "end": 1100.18, + "probability": 0.9705 + }, + { + "start": 1101.14, + "end": 1104.16, + "probability": 0.821 + }, + { + "start": 1105.16, + "end": 1106.12, + "probability": 0.505 + }, + { + "start": 1106.62, + "end": 1113.52, + "probability": 0.7793 + }, + { + "start": 1114.4, + "end": 1117.22, + "probability": 0.8077 + }, + { + "start": 1117.28, + "end": 1121.92, + "probability": 0.7803 + }, + { + "start": 1122.42, + "end": 1125.27, + "probability": 0.9105 + }, + { + "start": 1126.02, + "end": 1127.04, + "probability": 0.5692 + }, + { + "start": 1127.14, + "end": 1128.9, + "probability": 0.9802 + }, + { + "start": 1129.5, + "end": 1131.66, + "probability": 0.8989 + }, + { + "start": 1131.84, + "end": 1132.48, + "probability": 0.4072 + }, + { + "start": 1132.72, + "end": 1133.84, + "probability": 0.9912 + }, + { + "start": 1134.34, + "end": 1136.3, + "probability": 0.7939 + }, + { + "start": 1136.88, + "end": 1138.66, + "probability": 0.7109 + }, + { + "start": 1138.72, + "end": 1140.64, + "probability": 0.8029 + }, + { + "start": 1140.88, + "end": 1141.56, + "probability": 0.5937 + }, + { + "start": 1141.8, + "end": 1147.82, + "probability": 0.8259 + }, + { + "start": 1148.38, + "end": 1149.74, + "probability": 0.7678 + }, + { + "start": 1150.67, + "end": 1154.3, + "probability": 0.7247 + }, + { + "start": 1155.18, + "end": 1156.18, + "probability": 0.5097 + }, + { + "start": 1157.26, + "end": 1157.56, + "probability": 0.2634 + }, + { + "start": 1157.56, + "end": 1163.3, + "probability": 0.777 + }, + { + "start": 1163.38, + "end": 1165.26, + "probability": 0.7948 + }, + { + "start": 1165.78, + "end": 1172.58, + "probability": 0.7554 + }, + { + "start": 1174.22, + "end": 1175.92, + "probability": 0.6193 + }, + { + "start": 1176.1, + "end": 1179.74, + "probability": 0.9796 + }, + { + "start": 1179.74, + "end": 1183.5, + "probability": 0.9344 + }, + { + "start": 1183.54, + "end": 1186.46, + "probability": 0.9228 + }, + { + "start": 1186.86, + "end": 1190.26, + "probability": 0.7079 + }, + { + "start": 1190.5, + "end": 1192.22, + "probability": 0.7478 + }, + { + "start": 1193.4, + "end": 1193.56, + "probability": 0.2974 + }, + { + "start": 1193.6, + "end": 1197.92, + "probability": 0.7805 + }, + { + "start": 1197.92, + "end": 1202.16, + "probability": 0.9832 + }, + { + "start": 1202.28, + "end": 1202.64, + "probability": 0.779 + }, + { + "start": 1202.64, + "end": 1203.14, + "probability": 0.8341 + }, + { + "start": 1203.56, + "end": 1206.2, + "probability": 0.6235 + }, + { + "start": 1206.2, + "end": 1210.06, + "probability": 0.937 + }, + { + "start": 1210.2, + "end": 1210.64, + "probability": 0.7237 + }, + { + "start": 1210.86, + "end": 1211.5, + "probability": 0.5316 + }, + { + "start": 1211.52, + "end": 1212.86, + "probability": 0.6346 + }, + { + "start": 1212.86, + "end": 1213.36, + "probability": 0.6293 + }, + { + "start": 1213.76, + "end": 1214.4, + "probability": 0.5021 + }, + { + "start": 1214.42, + "end": 1215.94, + "probability": 0.9482 + }, + { + "start": 1216.5, + "end": 1218.79, + "probability": 0.9927 + }, + { + "start": 1218.88, + "end": 1221.12, + "probability": 0.729 + }, + { + "start": 1221.12, + "end": 1221.16, + "probability": 0.0409 + }, + { + "start": 1221.16, + "end": 1221.96, + "probability": 0.421 + }, + { + "start": 1222.9, + "end": 1224.06, + "probability": 0.4995 + }, + { + "start": 1224.64, + "end": 1227.9, + "probability": 0.9712 + }, + { + "start": 1228.86, + "end": 1230.0, + "probability": 0.5459 + }, + { + "start": 1230.58, + "end": 1230.88, + "probability": 0.8989 + }, + { + "start": 1230.94, + "end": 1232.54, + "probability": 0.7373 + }, + { + "start": 1232.86, + "end": 1233.58, + "probability": 0.7999 + }, + { + "start": 1233.7, + "end": 1234.48, + "probability": 0.749 + }, + { + "start": 1234.94, + "end": 1239.54, + "probability": 0.728 + }, + { + "start": 1239.78, + "end": 1240.86, + "probability": 0.6636 + }, + { + "start": 1241.58, + "end": 1243.1, + "probability": 0.9121 + }, + { + "start": 1243.76, + "end": 1250.7, + "probability": 0.9924 + }, + { + "start": 1250.78, + "end": 1252.72, + "probability": 0.8187 + }, + { + "start": 1253.38, + "end": 1255.24, + "probability": 0.8621 + }, + { + "start": 1255.76, + "end": 1261.56, + "probability": 0.9217 + }, + { + "start": 1262.68, + "end": 1263.36, + "probability": 0.8092 + }, + { + "start": 1264.5, + "end": 1267.62, + "probability": 0.8432 + }, + { + "start": 1268.76, + "end": 1272.02, + "probability": 0.9347 + }, + { + "start": 1272.6, + "end": 1277.58, + "probability": 0.8761 + }, + { + "start": 1278.04, + "end": 1278.86, + "probability": 0.8153 + }, + { + "start": 1279.18, + "end": 1282.8, + "probability": 0.8145 + }, + { + "start": 1283.22, + "end": 1286.26, + "probability": 0.9312 + }, + { + "start": 1286.26, + "end": 1289.64, + "probability": 0.9424 + }, + { + "start": 1289.96, + "end": 1291.6, + "probability": 0.9571 + }, + { + "start": 1291.86, + "end": 1292.28, + "probability": 0.7878 + }, + { + "start": 1292.82, + "end": 1293.2, + "probability": 0.6171 + }, + { + "start": 1293.32, + "end": 1293.84, + "probability": 0.6434 + }, + { + "start": 1294.66, + "end": 1295.88, + "probability": 0.5923 + }, + { + "start": 1296.38, + "end": 1297.2, + "probability": 0.6626 + }, + { + "start": 1297.34, + "end": 1297.72, + "probability": 0.5429 + }, + { + "start": 1297.9, + "end": 1300.38, + "probability": 0.6058 + }, + { + "start": 1300.46, + "end": 1301.7, + "probability": 0.9467 + }, + { + "start": 1302.22, + "end": 1306.7, + "probability": 0.9529 + }, + { + "start": 1307.87, + "end": 1313.18, + "probability": 0.9851 + }, + { + "start": 1313.46, + "end": 1314.4, + "probability": 0.9076 + }, + { + "start": 1314.76, + "end": 1316.68, + "probability": 0.7292 + }, + { + "start": 1317.1, + "end": 1318.28, + "probability": 0.8407 + }, + { + "start": 1318.78, + "end": 1323.12, + "probability": 0.9402 + }, + { + "start": 1323.5, + "end": 1324.7, + "probability": 0.7128 + }, + { + "start": 1325.16, + "end": 1326.68, + "probability": 0.9114 + }, + { + "start": 1327.14, + "end": 1331.84, + "probability": 0.9873 + }, + { + "start": 1331.96, + "end": 1337.96, + "probability": 0.3265 + }, + { + "start": 1338.74, + "end": 1339.46, + "probability": 0.517 + }, + { + "start": 1339.54, + "end": 1341.16, + "probability": 0.7846 + }, + { + "start": 1341.54, + "end": 1342.82, + "probability": 0.6123 + }, + { + "start": 1342.94, + "end": 1344.28, + "probability": 0.9203 + }, + { + "start": 1344.28, + "end": 1346.94, + "probability": 0.9309 + }, + { + "start": 1347.0, + "end": 1348.98, + "probability": 0.9845 + }, + { + "start": 1349.0, + "end": 1349.7, + "probability": 0.633 + }, + { + "start": 1351.38, + "end": 1353.98, + "probability": 0.4371 + }, + { + "start": 1354.12, + "end": 1356.1, + "probability": 0.566 + }, + { + "start": 1356.26, + "end": 1356.92, + "probability": 0.6237 + }, + { + "start": 1357.02, + "end": 1357.92, + "probability": 0.8594 + }, + { + "start": 1358.08, + "end": 1360.18, + "probability": 0.8363 + }, + { + "start": 1360.24, + "end": 1362.06, + "probability": 0.7616 + }, + { + "start": 1362.2, + "end": 1362.2, + "probability": 0.0648 + }, + { + "start": 1362.36, + "end": 1362.5, + "probability": 0.153 + }, + { + "start": 1362.5, + "end": 1363.88, + "probability": 0.5875 + }, + { + "start": 1364.64, + "end": 1366.19, + "probability": 0.8825 + }, + { + "start": 1367.04, + "end": 1368.78, + "probability": 0.1792 + }, + { + "start": 1368.92, + "end": 1369.52, + "probability": 0.8988 + }, + { + "start": 1369.52, + "end": 1374.5, + "probability": 0.9305 + }, + { + "start": 1375.58, + "end": 1376.64, + "probability": 0.0815 + }, + { + "start": 1377.34, + "end": 1378.24, + "probability": 0.6278 + }, + { + "start": 1378.32, + "end": 1379.34, + "probability": 0.6795 + }, + { + "start": 1379.56, + "end": 1380.52, + "probability": 0.9167 + }, + { + "start": 1380.68, + "end": 1384.44, + "probability": 0.984 + }, + { + "start": 1384.82, + "end": 1387.3, + "probability": 0.7403 + }, + { + "start": 1387.5, + "end": 1389.12, + "probability": 0.9425 + }, + { + "start": 1389.38, + "end": 1389.9, + "probability": 0.9013 + }, + { + "start": 1389.98, + "end": 1391.52, + "probability": 0.9706 + }, + { + "start": 1391.82, + "end": 1392.34, + "probability": 0.4894 + }, + { + "start": 1392.58, + "end": 1392.58, + "probability": 0.1052 + }, + { + "start": 1392.58, + "end": 1394.62, + "probability": 0.6815 + }, + { + "start": 1395.18, + "end": 1395.7, + "probability": 0.6922 + }, + { + "start": 1395.8, + "end": 1396.96, + "probability": 0.5141 + }, + { + "start": 1397.14, + "end": 1397.84, + "probability": 0.7286 + }, + { + "start": 1397.9, + "end": 1398.86, + "probability": 0.7492 + }, + { + "start": 1398.96, + "end": 1399.64, + "probability": 0.7858 + }, + { + "start": 1399.78, + "end": 1403.4, + "probability": 0.6807 + }, + { + "start": 1403.48, + "end": 1403.48, + "probability": 0.0926 + }, + { + "start": 1403.48, + "end": 1403.82, + "probability": 0.4664 + }, + { + "start": 1404.02, + "end": 1405.52, + "probability": 0.5866 + }, + { + "start": 1405.54, + "end": 1407.66, + "probability": 0.6344 + }, + { + "start": 1408.58, + "end": 1410.48, + "probability": 0.7242 + }, + { + "start": 1411.62, + "end": 1415.7, + "probability": 0.9426 + }, + { + "start": 1416.96, + "end": 1417.88, + "probability": 0.7528 + }, + { + "start": 1417.94, + "end": 1418.34, + "probability": 0.7396 + }, + { + "start": 1418.38, + "end": 1419.76, + "probability": 0.9326 + }, + { + "start": 1420.52, + "end": 1422.18, + "probability": 0.9087 + }, + { + "start": 1422.86, + "end": 1426.74, + "probability": 0.9463 + }, + { + "start": 1427.8, + "end": 1430.32, + "probability": 0.9779 + }, + { + "start": 1430.4, + "end": 1430.98, + "probability": 0.525 + }, + { + "start": 1430.98, + "end": 1431.84, + "probability": 0.5356 + }, + { + "start": 1431.94, + "end": 1432.66, + "probability": 0.9922 + }, + { + "start": 1432.72, + "end": 1433.1, + "probability": 0.5851 + }, + { + "start": 1433.24, + "end": 1435.86, + "probability": 0.729 + }, + { + "start": 1435.96, + "end": 1436.2, + "probability": 0.5731 + }, + { + "start": 1436.26, + "end": 1439.74, + "probability": 0.4505 + }, + { + "start": 1439.94, + "end": 1441.44, + "probability": 0.9834 + }, + { + "start": 1441.48, + "end": 1442.08, + "probability": 0.7297 + }, + { + "start": 1442.08, + "end": 1443.48, + "probability": 0.981 + }, + { + "start": 1443.76, + "end": 1444.86, + "probability": 0.7047 + }, + { + "start": 1444.94, + "end": 1445.48, + "probability": 0.7978 + }, + { + "start": 1446.54, + "end": 1446.74, + "probability": 0.3787 + }, + { + "start": 1446.74, + "end": 1447.22, + "probability": 0.047 + }, + { + "start": 1447.4, + "end": 1447.4, + "probability": 0.1122 + }, + { + "start": 1447.68, + "end": 1448.76, + "probability": 0.2167 + }, + { + "start": 1448.76, + "end": 1449.4, + "probability": 0.235 + }, + { + "start": 1449.62, + "end": 1452.14, + "probability": 0.8753 + }, + { + "start": 1452.4, + "end": 1453.2, + "probability": 0.6465 + }, + { + "start": 1453.36, + "end": 1453.36, + "probability": 0.0856 + }, + { + "start": 1453.36, + "end": 1455.86, + "probability": 0.9229 + }, + { + "start": 1456.34, + "end": 1457.86, + "probability": 0.828 + }, + { + "start": 1458.02, + "end": 1459.44, + "probability": 0.9978 + }, + { + "start": 1459.74, + "end": 1462.56, + "probability": 0.6049 + }, + { + "start": 1463.18, + "end": 1463.76, + "probability": 0.8955 + }, + { + "start": 1464.14, + "end": 1466.21, + "probability": 0.9749 + }, + { + "start": 1467.12, + "end": 1468.88, + "probability": 0.8921 + }, + { + "start": 1469.18, + "end": 1470.1, + "probability": 0.5099 + }, + { + "start": 1471.08, + "end": 1471.9, + "probability": 0.6861 + }, + { + "start": 1471.92, + "end": 1472.98, + "probability": 0.7841 + }, + { + "start": 1473.06, + "end": 1474.08, + "probability": 0.8987 + }, + { + "start": 1474.12, + "end": 1474.76, + "probability": 0.7384 + }, + { + "start": 1474.84, + "end": 1477.6, + "probability": 0.9786 + }, + { + "start": 1477.72, + "end": 1480.52, + "probability": 0.9989 + }, + { + "start": 1480.92, + "end": 1483.94, + "probability": 0.8752 + }, + { + "start": 1484.02, + "end": 1485.15, + "probability": 0.9939 + }, + { + "start": 1485.92, + "end": 1489.38, + "probability": 0.9959 + }, + { + "start": 1489.76, + "end": 1491.34, + "probability": 0.9725 + }, + { + "start": 1491.7, + "end": 1495.1, + "probability": 0.995 + }, + { + "start": 1495.3, + "end": 1498.64, + "probability": 0.964 + }, + { + "start": 1498.84, + "end": 1499.56, + "probability": 0.7585 + }, + { + "start": 1499.86, + "end": 1501.04, + "probability": 0.9659 + }, + { + "start": 1501.22, + "end": 1504.1, + "probability": 0.962 + }, + { + "start": 1504.54, + "end": 1505.36, + "probability": 0.3157 + }, + { + "start": 1505.76, + "end": 1508.12, + "probability": 0.9313 + }, + { + "start": 1508.38, + "end": 1508.56, + "probability": 0.6736 + }, + { + "start": 1509.46, + "end": 1511.0, + "probability": 0.603 + }, + { + "start": 1511.08, + "end": 1512.56, + "probability": 0.9144 + }, + { + "start": 1513.28, + "end": 1515.7, + "probability": 0.9562 + }, + { + "start": 1516.12, + "end": 1519.18, + "probability": 0.9283 + }, + { + "start": 1519.4, + "end": 1522.38, + "probability": 0.9761 + }, + { + "start": 1522.7, + "end": 1524.82, + "probability": 0.7893 + }, + { + "start": 1524.98, + "end": 1525.64, + "probability": 0.5476 + }, + { + "start": 1525.78, + "end": 1526.54, + "probability": 0.8333 + }, + { + "start": 1526.62, + "end": 1529.28, + "probability": 0.9375 + }, + { + "start": 1529.56, + "end": 1531.28, + "probability": 0.8274 + }, + { + "start": 1531.4, + "end": 1534.38, + "probability": 0.7225 + }, + { + "start": 1535.64, + "end": 1536.2, + "probability": 0.7122 + }, + { + "start": 1536.52, + "end": 1539.44, + "probability": 0.9339 + }, + { + "start": 1539.92, + "end": 1544.99, + "probability": 0.9595 + }, + { + "start": 1546.38, + "end": 1549.32, + "probability": 0.9433 + }, + { + "start": 1550.12, + "end": 1551.34, + "probability": 0.5154 + }, + { + "start": 1551.7, + "end": 1553.32, + "probability": 0.3476 + }, + { + "start": 1553.34, + "end": 1554.28, + "probability": 0.717 + }, + { + "start": 1554.4, + "end": 1556.84, + "probability": 0.9968 + }, + { + "start": 1557.92, + "end": 1559.6, + "probability": 0.6556 + }, + { + "start": 1560.54, + "end": 1564.36, + "probability": 0.9341 + }, + { + "start": 1565.24, + "end": 1567.08, + "probability": 0.9935 + }, + { + "start": 1567.88, + "end": 1571.62, + "probability": 0.98 + }, + { + "start": 1572.6, + "end": 1573.52, + "probability": 0.8732 + }, + { + "start": 1573.56, + "end": 1574.32, + "probability": 0.7492 + }, + { + "start": 1574.42, + "end": 1581.5, + "probability": 0.9772 + }, + { + "start": 1581.6, + "end": 1582.28, + "probability": 0.6899 + }, + { + "start": 1582.32, + "end": 1583.28, + "probability": 0.924 + }, + { + "start": 1583.28, + "end": 1584.6, + "probability": 0.8715 + }, + { + "start": 1584.64, + "end": 1585.32, + "probability": 0.7597 + }, + { + "start": 1585.36, + "end": 1585.68, + "probability": 0.5717 + }, + { + "start": 1585.76, + "end": 1586.28, + "probability": 0.788 + }, + { + "start": 1586.66, + "end": 1587.36, + "probability": 0.6226 + }, + { + "start": 1587.42, + "end": 1588.9, + "probability": 0.9837 + }, + { + "start": 1588.9, + "end": 1589.94, + "probability": 0.9699 + }, + { + "start": 1589.98, + "end": 1591.3, + "probability": 0.7536 + }, + { + "start": 1591.36, + "end": 1592.44, + "probability": 0.9862 + }, + { + "start": 1592.54, + "end": 1594.9, + "probability": 0.9243 + }, + { + "start": 1594.98, + "end": 1595.38, + "probability": 0.771 + }, + { + "start": 1595.42, + "end": 1596.48, + "probability": 0.8356 + }, + { + "start": 1596.56, + "end": 1597.04, + "probability": 0.5156 + }, + { + "start": 1597.06, + "end": 1597.32, + "probability": 0.8501 + }, + { + "start": 1597.4, + "end": 1598.88, + "probability": 0.9625 + }, + { + "start": 1598.98, + "end": 1599.1, + "probability": 0.2778 + }, + { + "start": 1599.38, + "end": 1600.5, + "probability": 0.6447 + }, + { + "start": 1600.5, + "end": 1602.9, + "probability": 0.849 + }, + { + "start": 1603.1, + "end": 1603.64, + "probability": 0.8129 + }, + { + "start": 1603.7, + "end": 1604.16, + "probability": 0.8955 + }, + { + "start": 1604.32, + "end": 1606.44, + "probability": 0.9443 + }, + { + "start": 1606.58, + "end": 1607.71, + "probability": 0.1753 + }, + { + "start": 1607.9, + "end": 1609.62, + "probability": 0.9896 + }, + { + "start": 1610.48, + "end": 1611.78, + "probability": 0.9551 + }, + { + "start": 1612.0, + "end": 1612.66, + "probability": 0.6506 + }, + { + "start": 1612.78, + "end": 1612.98, + "probability": 0.7497 + }, + { + "start": 1613.18, + "end": 1616.04, + "probability": 0.9887 + }, + { + "start": 1616.3, + "end": 1617.54, + "probability": 0.9024 + }, + { + "start": 1618.02, + "end": 1620.32, + "probability": 0.978 + }, + { + "start": 1621.94, + "end": 1623.42, + "probability": 0.7055 + }, + { + "start": 1623.76, + "end": 1625.18, + "probability": 0.591 + }, + { + "start": 1625.36, + "end": 1625.68, + "probability": 0.2426 + }, + { + "start": 1630.78, + "end": 1630.94, + "probability": 0.099 + }, + { + "start": 1631.02, + "end": 1632.46, + "probability": 0.6288 + }, + { + "start": 1632.5, + "end": 1632.96, + "probability": 0.0322 + }, + { + "start": 1632.96, + "end": 1632.96, + "probability": 0.185 + }, + { + "start": 1632.96, + "end": 1632.96, + "probability": 0.1994 + }, + { + "start": 1632.96, + "end": 1632.96, + "probability": 0.5192 + }, + { + "start": 1632.96, + "end": 1635.08, + "probability": 0.986 + }, + { + "start": 1635.28, + "end": 1637.0, + "probability": 0.6561 + }, + { + "start": 1637.22, + "end": 1641.7, + "probability": 0.9712 + }, + { + "start": 1642.16, + "end": 1643.8, + "probability": 0.9589 + }, + { + "start": 1644.06, + "end": 1644.92, + "probability": 0.8645 + }, + { + "start": 1645.14, + "end": 1647.6, + "probability": 0.9915 + }, + { + "start": 1647.7, + "end": 1653.24, + "probability": 0.5942 + }, + { + "start": 1653.36, + "end": 1655.78, + "probability": 0.8647 + }, + { + "start": 1656.36, + "end": 1656.42, + "probability": 0.052 + }, + { + "start": 1656.42, + "end": 1660.04, + "probability": 0.8138 + }, + { + "start": 1660.12, + "end": 1661.98, + "probability": 0.7958 + }, + { + "start": 1662.48, + "end": 1666.38, + "probability": 0.9829 + }, + { + "start": 1667.14, + "end": 1668.83, + "probability": 0.8868 + }, + { + "start": 1669.08, + "end": 1670.52, + "probability": 0.7138 + }, + { + "start": 1670.64, + "end": 1672.18, + "probability": 0.8651 + }, + { + "start": 1672.46, + "end": 1675.02, + "probability": 0.8681 + }, + { + "start": 1675.02, + "end": 1676.54, + "probability": 0.9137 + }, + { + "start": 1676.96, + "end": 1679.16, + "probability": 0.8676 + }, + { + "start": 1679.58, + "end": 1681.48, + "probability": 0.9541 + }, + { + "start": 1682.22, + "end": 1682.54, + "probability": 0.6514 + }, + { + "start": 1682.68, + "end": 1683.96, + "probability": 0.7394 + }, + { + "start": 1684.02, + "end": 1690.7, + "probability": 0.9749 + }, + { + "start": 1691.32, + "end": 1696.14, + "probability": 0.9933 + }, + { + "start": 1696.14, + "end": 1699.28, + "probability": 0.9985 + }, + { + "start": 1700.44, + "end": 1701.14, + "probability": 0.4675 + }, + { + "start": 1701.24, + "end": 1701.98, + "probability": 0.6764 + }, + { + "start": 1702.04, + "end": 1703.3, + "probability": 0.876 + }, + { + "start": 1703.52, + "end": 1706.4, + "probability": 0.7332 + }, + { + "start": 1706.96, + "end": 1709.5, + "probability": 0.8226 + }, + { + "start": 1709.84, + "end": 1712.36, + "probability": 0.4109 + }, + { + "start": 1712.96, + "end": 1715.66, + "probability": 0.6709 + }, + { + "start": 1715.66, + "end": 1717.98, + "probability": 0.9824 + }, + { + "start": 1718.14, + "end": 1720.46, + "probability": 0.9806 + }, + { + "start": 1720.7, + "end": 1721.24, + "probability": 0.7113 + }, + { + "start": 1721.3, + "end": 1725.3, + "probability": 0.9355 + }, + { + "start": 1725.3, + "end": 1730.35, + "probability": 0.7728 + }, + { + "start": 1730.78, + "end": 1733.56, + "probability": 0.9445 + }, + { + "start": 1733.66, + "end": 1734.96, + "probability": 0.8243 + }, + { + "start": 1734.96, + "end": 1735.52, + "probability": 0.5522 + }, + { + "start": 1736.24, + "end": 1739.56, + "probability": 0.9563 + }, + { + "start": 1739.56, + "end": 1743.46, + "probability": 0.973 + }, + { + "start": 1743.8, + "end": 1748.34, + "probability": 0.9976 + }, + { + "start": 1749.48, + "end": 1751.66, + "probability": 0.8775 + }, + { + "start": 1751.7, + "end": 1753.02, + "probability": 0.6638 + }, + { + "start": 1754.56, + "end": 1757.0, + "probability": 0.7634 + }, + { + "start": 1757.36, + "end": 1759.08, + "probability": 0.9739 + }, + { + "start": 1759.66, + "end": 1761.16, + "probability": 0.7961 + }, + { + "start": 1761.68, + "end": 1764.28, + "probability": 0.4897 + }, + { + "start": 1764.92, + "end": 1767.7, + "probability": 0.7552 + }, + { + "start": 1768.3, + "end": 1769.6, + "probability": 0.8598 + }, + { + "start": 1770.02, + "end": 1771.56, + "probability": 0.5672 + }, + { + "start": 1772.14, + "end": 1772.16, + "probability": 0.6344 + }, + { + "start": 1772.16, + "end": 1774.9, + "probability": 0.8727 + }, + { + "start": 1775.02, + "end": 1776.1, + "probability": 0.7651 + }, + { + "start": 1776.22, + "end": 1776.6, + "probability": 0.4048 + }, + { + "start": 1776.64, + "end": 1780.52, + "probability": 0.9925 + }, + { + "start": 1781.22, + "end": 1784.82, + "probability": 0.9821 + }, + { + "start": 1785.24, + "end": 1787.76, + "probability": 0.9065 + }, + { + "start": 1788.16, + "end": 1789.28, + "probability": 0.8024 + }, + { + "start": 1789.46, + "end": 1791.3, + "probability": 0.4969 + }, + { + "start": 1791.36, + "end": 1794.4, + "probability": 0.8109 + }, + { + "start": 1794.54, + "end": 1795.98, + "probability": 0.919 + }, + { + "start": 1800.05, + "end": 1805.36, + "probability": 0.9219 + }, + { + "start": 1805.68, + "end": 1807.08, + "probability": 0.9452 + }, + { + "start": 1807.8, + "end": 1808.88, + "probability": 0.5603 + }, + { + "start": 1808.98, + "end": 1809.5, + "probability": 0.6412 + }, + { + "start": 1809.58, + "end": 1811.78, + "probability": 0.9546 + }, + { + "start": 1812.24, + "end": 1812.78, + "probability": 0.536 + }, + { + "start": 1813.38, + "end": 1814.25, + "probability": 0.8975 + }, + { + "start": 1814.5, + "end": 1817.1, + "probability": 0.9833 + }, + { + "start": 1817.76, + "end": 1819.24, + "probability": 0.9393 + }, + { + "start": 1819.42, + "end": 1821.68, + "probability": 0.9812 + }, + { + "start": 1822.16, + "end": 1825.6, + "probability": 0.7902 + }, + { + "start": 1826.12, + "end": 1829.12, + "probability": 0.9492 + }, + { + "start": 1829.78, + "end": 1834.68, + "probability": 0.9893 + }, + { + "start": 1834.68, + "end": 1838.56, + "probability": 0.7514 + }, + { + "start": 1838.56, + "end": 1839.2, + "probability": 0.4946 + }, + { + "start": 1839.26, + "end": 1840.24, + "probability": 0.8406 + }, + { + "start": 1840.54, + "end": 1843.72, + "probability": 0.9953 + }, + { + "start": 1843.92, + "end": 1846.96, + "probability": 0.9631 + }, + { + "start": 1847.32, + "end": 1849.04, + "probability": 0.9596 + }, + { + "start": 1849.04, + "end": 1849.1, + "probability": 0.303 + }, + { + "start": 1849.24, + "end": 1849.68, + "probability": 0.5343 + }, + { + "start": 1849.7, + "end": 1850.66, + "probability": 0.9134 + }, + { + "start": 1850.74, + "end": 1851.22, + "probability": 0.6332 + }, + { + "start": 1851.68, + "end": 1853.4, + "probability": 0.9722 + }, + { + "start": 1853.44, + "end": 1854.48, + "probability": 0.6597 + }, + { + "start": 1858.04, + "end": 1861.82, + "probability": 0.664 + }, + { + "start": 1863.06, + "end": 1867.58, + "probability": 0.9567 + }, + { + "start": 1868.28, + "end": 1869.46, + "probability": 0.8342 + }, + { + "start": 1870.52, + "end": 1874.72, + "probability": 0.9524 + }, + { + "start": 1875.92, + "end": 1877.8, + "probability": 0.9369 + }, + { + "start": 1879.22, + "end": 1885.2, + "probability": 0.8567 + }, + { + "start": 1886.08, + "end": 1888.08, + "probability": 0.9349 + }, + { + "start": 1888.48, + "end": 1891.28, + "probability": 0.6295 + }, + { + "start": 1891.4, + "end": 1894.6, + "probability": 0.7758 + }, + { + "start": 1896.02, + "end": 1898.52, + "probability": 0.8193 + }, + { + "start": 1898.92, + "end": 1900.26, + "probability": 0.7162 + }, + { + "start": 1900.68, + "end": 1904.96, + "probability": 0.9512 + }, + { + "start": 1905.1, + "end": 1909.68, + "probability": 0.9548 + }, + { + "start": 1910.2, + "end": 1913.12, + "probability": 0.9519 + }, + { + "start": 1913.96, + "end": 1915.9, + "probability": 0.5835 + }, + { + "start": 1916.78, + "end": 1918.36, + "probability": 0.8334 + }, + { + "start": 1919.38, + "end": 1922.46, + "probability": 0.8377 + }, + { + "start": 1923.14, + "end": 1924.94, + "probability": 0.783 + }, + { + "start": 1925.62, + "end": 1927.84, + "probability": 0.931 + }, + { + "start": 1927.96, + "end": 1929.5, + "probability": 0.9844 + }, + { + "start": 1930.3, + "end": 1933.88, + "probability": 0.9738 + }, + { + "start": 1934.24, + "end": 1935.02, + "probability": 0.8628 + }, + { + "start": 1935.12, + "end": 1936.24, + "probability": 0.6305 + }, + { + "start": 1936.68, + "end": 1936.68, + "probability": 0.3778 + }, + { + "start": 1936.68, + "end": 1937.92, + "probability": 0.6326 + }, + { + "start": 1943.7, + "end": 1945.8, + "probability": 0.644 + }, + { + "start": 1946.46, + "end": 1948.17, + "probability": 0.9882 + }, + { + "start": 1948.8, + "end": 1951.24, + "probability": 0.9976 + }, + { + "start": 1952.04, + "end": 1953.62, + "probability": 0.8434 + }, + { + "start": 1954.14, + "end": 1955.5, + "probability": 0.899 + }, + { + "start": 1956.36, + "end": 1958.68, + "probability": 0.6724 + }, + { + "start": 1959.36, + "end": 1961.44, + "probability": 0.9902 + }, + { + "start": 1962.3, + "end": 1965.24, + "probability": 0.6254 + }, + { + "start": 1966.26, + "end": 1969.6, + "probability": 0.9868 + }, + { + "start": 1970.18, + "end": 1973.42, + "probability": 0.8257 + }, + { + "start": 1973.74, + "end": 1977.0, + "probability": 0.8696 + }, + { + "start": 1977.48, + "end": 1978.54, + "probability": 0.7402 + }, + { + "start": 1978.54, + "end": 1979.84, + "probability": 0.7654 + }, + { + "start": 1979.84, + "end": 1981.48, + "probability": 0.6225 + }, + { + "start": 1982.24, + "end": 1985.24, + "probability": 0.986 + }, + { + "start": 1985.46, + "end": 1988.8, + "probability": 0.5537 + }, + { + "start": 1989.84, + "end": 1992.8, + "probability": 0.9908 + }, + { + "start": 1993.12, + "end": 1994.18, + "probability": 0.6615 + }, + { + "start": 1994.84, + "end": 1995.54, + "probability": 0.9863 + }, + { + "start": 1996.12, + "end": 1997.66, + "probability": 0.99 + }, + { + "start": 1998.48, + "end": 2000.96, + "probability": 0.772 + }, + { + "start": 2001.72, + "end": 2004.14, + "probability": 0.9098 + }, + { + "start": 2004.58, + "end": 2005.24, + "probability": 0.7483 + }, + { + "start": 2005.5, + "end": 2007.46, + "probability": 0.955 + }, + { + "start": 2007.9, + "end": 2011.26, + "probability": 0.9702 + }, + { + "start": 2011.26, + "end": 2017.68, + "probability": 0.8535 + }, + { + "start": 2017.72, + "end": 2022.44, + "probability": 0.9802 + }, + { + "start": 2022.56, + "end": 2023.92, + "probability": 0.4961 + }, + { + "start": 2024.64, + "end": 2024.64, + "probability": 0.001 + }, + { + "start": 2024.64, + "end": 2025.42, + "probability": 0.4994 + }, + { + "start": 2025.54, + "end": 2026.56, + "probability": 0.9658 + }, + { + "start": 2027.02, + "end": 2029.52, + "probability": 0.7845 + }, + { + "start": 2029.72, + "end": 2030.94, + "probability": 0.9958 + }, + { + "start": 2031.3, + "end": 2033.44, + "probability": 0.9982 + }, + { + "start": 2033.86, + "end": 2034.66, + "probability": 0.8763 + }, + { + "start": 2035.86, + "end": 2037.86, + "probability": 0.8154 + }, + { + "start": 2039.55, + "end": 2041.54, + "probability": 0.6448 + }, + { + "start": 2041.84, + "end": 2042.88, + "probability": 0.2339 + }, + { + "start": 2043.94, + "end": 2046.18, + "probability": 0.8545 + }, + { + "start": 2048.73, + "end": 2054.04, + "probability": 0.7551 + }, + { + "start": 2054.16, + "end": 2056.66, + "probability": 0.9749 + }, + { + "start": 2056.8, + "end": 2060.54, + "probability": 0.7353 + }, + { + "start": 2061.28, + "end": 2065.4, + "probability": 0.9663 + }, + { + "start": 2066.04, + "end": 2068.26, + "probability": 0.9702 + }, + { + "start": 2068.62, + "end": 2069.76, + "probability": 0.699 + }, + { + "start": 2069.92, + "end": 2073.58, + "probability": 0.6902 + }, + { + "start": 2075.68, + "end": 2078.25, + "probability": 0.8591 + }, + { + "start": 2078.74, + "end": 2084.0, + "probability": 0.9871 + }, + { + "start": 2084.82, + "end": 2085.56, + "probability": 0.7497 + }, + { + "start": 2086.72, + "end": 2088.58, + "probability": 0.8186 + }, + { + "start": 2090.04, + "end": 2093.4, + "probability": 0.9729 + }, + { + "start": 2093.4, + "end": 2097.1, + "probability": 0.9984 + }, + { + "start": 2097.16, + "end": 2099.5, + "probability": 0.9646 + }, + { + "start": 2100.64, + "end": 2105.3, + "probability": 0.9882 + }, + { + "start": 2105.7, + "end": 2107.36, + "probability": 0.965 + }, + { + "start": 2108.68, + "end": 2111.74, + "probability": 0.9434 + }, + { + "start": 2112.2, + "end": 2116.92, + "probability": 0.9609 + }, + { + "start": 2117.82, + "end": 2122.72, + "probability": 0.9788 + }, + { + "start": 2123.12, + "end": 2126.0, + "probability": 0.981 + }, + { + "start": 2126.1, + "end": 2128.48, + "probability": 0.9966 + }, + { + "start": 2128.78, + "end": 2130.08, + "probability": 0.9428 + }, + { + "start": 2130.16, + "end": 2131.34, + "probability": 0.9386 + }, + { + "start": 2131.44, + "end": 2132.53, + "probability": 0.8962 + }, + { + "start": 2132.78, + "end": 2133.76, + "probability": 0.8894 + }, + { + "start": 2134.38, + "end": 2137.58, + "probability": 0.9575 + }, + { + "start": 2137.74, + "end": 2141.31, + "probability": 0.9626 + }, + { + "start": 2143.16, + "end": 2143.16, + "probability": 0.0284 + }, + { + "start": 2143.16, + "end": 2143.58, + "probability": 0.4246 + }, + { + "start": 2143.64, + "end": 2145.74, + "probability": 0.9421 + }, + { + "start": 2145.88, + "end": 2150.18, + "probability": 0.951 + }, + { + "start": 2150.24, + "end": 2152.58, + "probability": 0.9554 + }, + { + "start": 2152.74, + "end": 2153.34, + "probability": 0.939 + }, + { + "start": 2153.6, + "end": 2154.48, + "probability": 0.5734 + }, + { + "start": 2155.06, + "end": 2156.74, + "probability": 0.6628 + }, + { + "start": 2156.76, + "end": 2158.72, + "probability": 0.9927 + }, + { + "start": 2158.82, + "end": 2162.52, + "probability": 0.8677 + }, + { + "start": 2163.12, + "end": 2164.72, + "probability": 0.935 + }, + { + "start": 2165.42, + "end": 2165.74, + "probability": 0.5529 + }, + { + "start": 2165.84, + "end": 2167.82, + "probability": 0.9824 + }, + { + "start": 2168.74, + "end": 2172.36, + "probability": 0.9506 + }, + { + "start": 2173.02, + "end": 2174.56, + "probability": 0.7801 + }, + { + "start": 2177.29, + "end": 2178.68, + "probability": 0.9196 + }, + { + "start": 2179.9, + "end": 2180.98, + "probability": 0.8601 + }, + { + "start": 2181.12, + "end": 2185.7, + "probability": 0.9216 + }, + { + "start": 2186.02, + "end": 2189.26, + "probability": 0.5487 + }, + { + "start": 2190.0, + "end": 2191.34, + "probability": 0.7197 + }, + { + "start": 2191.54, + "end": 2196.88, + "probability": 0.9702 + }, + { + "start": 2198.16, + "end": 2199.58, + "probability": 0.5282 + }, + { + "start": 2199.64, + "end": 2201.28, + "probability": 0.6992 + }, + { + "start": 2201.82, + "end": 2204.98, + "probability": 0.9078 + }, + { + "start": 2205.56, + "end": 2205.56, + "probability": 0.1134 + }, + { + "start": 2205.56, + "end": 2205.9, + "probability": 0.3545 + }, + { + "start": 2207.9, + "end": 2208.64, + "probability": 0.7579 + }, + { + "start": 2209.74, + "end": 2211.76, + "probability": 0.716 + }, + { + "start": 2211.96, + "end": 2212.96, + "probability": 0.955 + }, + { + "start": 2213.2, + "end": 2215.06, + "probability": 0.9234 + }, + { + "start": 2216.08, + "end": 2223.94, + "probability": 0.9864 + }, + { + "start": 2225.16, + "end": 2227.14, + "probability": 0.5658 + }, + { + "start": 2228.54, + "end": 2232.26, + "probability": 0.8815 + }, + { + "start": 2233.24, + "end": 2234.02, + "probability": 0.7335 + }, + { + "start": 2234.88, + "end": 2245.1, + "probability": 0.9537 + }, + { + "start": 2245.2, + "end": 2246.32, + "probability": 0.8704 + }, + { + "start": 2248.57, + "end": 2249.2, + "probability": 0.0934 + }, + { + "start": 2249.2, + "end": 2254.38, + "probability": 0.9879 + }, + { + "start": 2254.44, + "end": 2255.64, + "probability": 0.8195 + }, + { + "start": 2256.14, + "end": 2257.87, + "probability": 0.7649 + }, + { + "start": 2259.0, + "end": 2263.18, + "probability": 0.8958 + }, + { + "start": 2263.88, + "end": 2269.68, + "probability": 0.9844 + }, + { + "start": 2269.98, + "end": 2276.18, + "probability": 0.995 + }, + { + "start": 2276.48, + "end": 2282.08, + "probability": 0.9825 + }, + { + "start": 2282.28, + "end": 2284.96, + "probability": 0.9938 + }, + { + "start": 2285.06, + "end": 2287.68, + "probability": 0.9883 + }, + { + "start": 2287.68, + "end": 2293.04, + "probability": 0.9902 + }, + { + "start": 2293.22, + "end": 2295.8, + "probability": 0.7894 + }, + { + "start": 2296.28, + "end": 2298.2, + "probability": 0.937 + }, + { + "start": 2298.28, + "end": 2298.76, + "probability": 0.8024 + }, + { + "start": 2298.94, + "end": 2299.54, + "probability": 0.595 + }, + { + "start": 2299.62, + "end": 2301.18, + "probability": 0.6851 + }, + { + "start": 2306.84, + "end": 2308.62, + "probability": 0.734 + }, + { + "start": 2309.46, + "end": 2310.72, + "probability": 0.773 + }, + { + "start": 2311.36, + "end": 2315.24, + "probability": 0.882 + }, + { + "start": 2317.16, + "end": 2319.38, + "probability": 0.9509 + }, + { + "start": 2320.06, + "end": 2321.78, + "probability": 0.6882 + }, + { + "start": 2323.02, + "end": 2325.68, + "probability": 0.8656 + }, + { + "start": 2325.68, + "end": 2329.98, + "probability": 0.9924 + }, + { + "start": 2330.94, + "end": 2333.9, + "probability": 0.8677 + }, + { + "start": 2333.98, + "end": 2335.38, + "probability": 0.9762 + }, + { + "start": 2335.54, + "end": 2336.76, + "probability": 0.6781 + }, + { + "start": 2336.78, + "end": 2337.66, + "probability": 0.3323 + }, + { + "start": 2337.66, + "end": 2338.48, + "probability": 0.8534 + }, + { + "start": 2339.44, + "end": 2342.3, + "probability": 0.9672 + }, + { + "start": 2342.34, + "end": 2344.2, + "probability": 0.8676 + }, + { + "start": 2344.56, + "end": 2346.84, + "probability": 0.9422 + }, + { + "start": 2347.2, + "end": 2349.24, + "probability": 0.466 + }, + { + "start": 2349.24, + "end": 2350.66, + "probability": 0.7863 + }, + { + "start": 2350.76, + "end": 2354.64, + "probability": 0.9514 + }, + { + "start": 2355.02, + "end": 2357.52, + "probability": 0.8204 + }, + { + "start": 2357.66, + "end": 2358.26, + "probability": 0.6705 + }, + { + "start": 2359.04, + "end": 2361.98, + "probability": 0.9678 + }, + { + "start": 2362.11, + "end": 2364.6, + "probability": 0.9401 + }, + { + "start": 2365.14, + "end": 2367.44, + "probability": 0.7466 + }, + { + "start": 2367.94, + "end": 2368.42, + "probability": 0.7045 + }, + { + "start": 2368.48, + "end": 2368.92, + "probability": 0.077 + }, + { + "start": 2369.1, + "end": 2370.0, + "probability": 0.8842 + }, + { + "start": 2370.12, + "end": 2371.48, + "probability": 0.8031 + }, + { + "start": 2371.6, + "end": 2373.12, + "probability": 0.8398 + }, + { + "start": 2373.88, + "end": 2374.64, + "probability": 0.4662 + }, + { + "start": 2374.76, + "end": 2378.98, + "probability": 0.9398 + }, + { + "start": 2379.56, + "end": 2380.73, + "probability": 0.9414 + }, + { + "start": 2380.98, + "end": 2388.0, + "probability": 0.9868 + }, + { + "start": 2388.0, + "end": 2391.68, + "probability": 0.8577 + }, + { + "start": 2391.72, + "end": 2393.72, + "probability": 0.9971 + }, + { + "start": 2394.22, + "end": 2394.4, + "probability": 0.0046 + }, + { + "start": 2394.4, + "end": 2395.02, + "probability": 0.6256 + }, + { + "start": 2395.64, + "end": 2396.28, + "probability": 0.4118 + }, + { + "start": 2397.16, + "end": 2400.55, + "probability": 0.9762 + }, + { + "start": 2401.58, + "end": 2402.8, + "probability": 0.7457 + }, + { + "start": 2402.86, + "end": 2406.6, + "probability": 0.9966 + }, + { + "start": 2406.6, + "end": 2409.54, + "probability": 0.9926 + }, + { + "start": 2410.34, + "end": 2411.62, + "probability": 0.7642 + }, + { + "start": 2411.94, + "end": 2414.86, + "probability": 0.9645 + }, + { + "start": 2415.58, + "end": 2421.66, + "probability": 0.9775 + }, + { + "start": 2422.0, + "end": 2424.86, + "probability": 0.9391 + }, + { + "start": 2425.16, + "end": 2425.92, + "probability": 0.5168 + }, + { + "start": 2426.06, + "end": 2427.9, + "probability": 0.8596 + }, + { + "start": 2428.18, + "end": 2429.86, + "probability": 0.8059 + }, + { + "start": 2430.16, + "end": 2432.72, + "probability": 0.8378 + }, + { + "start": 2455.32, + "end": 2458.22, + "probability": 0.6492 + }, + { + "start": 2463.66, + "end": 2465.54, + "probability": 0.8085 + }, + { + "start": 2465.72, + "end": 2467.32, + "probability": 0.8768 + }, + { + "start": 2467.88, + "end": 2468.8, + "probability": 0.8199 + }, + { + "start": 2470.18, + "end": 2470.78, + "probability": 0.198 + }, + { + "start": 2471.42, + "end": 2473.38, + "probability": 0.9979 + }, + { + "start": 2473.54, + "end": 2474.3, + "probability": 0.837 + }, + { + "start": 2474.36, + "end": 2475.68, + "probability": 0.9989 + }, + { + "start": 2475.72, + "end": 2475.86, + "probability": 0.2572 + }, + { + "start": 2476.02, + "end": 2476.73, + "probability": 0.8586 + }, + { + "start": 2477.56, + "end": 2478.64, + "probability": 0.8019 + }, + { + "start": 2478.72, + "end": 2480.68, + "probability": 0.6881 + }, + { + "start": 2480.82, + "end": 2482.18, + "probability": 0.7387 + }, + { + "start": 2486.8, + "end": 2493.62, + "probability": 0.7924 + }, + { + "start": 2494.14, + "end": 2503.04, + "probability": 0.9495 + }, + { + "start": 2503.54, + "end": 2505.46, + "probability": 0.5874 + }, + { + "start": 2507.48, + "end": 2508.52, + "probability": 0.8008 + }, + { + "start": 2509.46, + "end": 2510.94, + "probability": 0.9766 + }, + { + "start": 2512.84, + "end": 2515.08, + "probability": 0.9654 + }, + { + "start": 2516.5, + "end": 2519.48, + "probability": 0.9712 + }, + { + "start": 2519.48, + "end": 2523.88, + "probability": 0.9946 + }, + { + "start": 2523.9, + "end": 2526.2, + "probability": 0.6132 + }, + { + "start": 2526.36, + "end": 2530.3, + "probability": 0.7397 + }, + { + "start": 2530.54, + "end": 2535.16, + "probability": 0.9271 + }, + { + "start": 2535.72, + "end": 2538.54, + "probability": 0.9962 + }, + { + "start": 2538.54, + "end": 2542.0, + "probability": 0.9246 + }, + { + "start": 2542.0, + "end": 2543.72, + "probability": 0.8057 + }, + { + "start": 2549.92, + "end": 2556.88, + "probability": 0.9836 + }, + { + "start": 2558.12, + "end": 2565.08, + "probability": 0.8976 + }, + { + "start": 2566.46, + "end": 2567.8, + "probability": 0.9651 + }, + { + "start": 2571.94, + "end": 2573.52, + "probability": 0.7965 + }, + { + "start": 2577.2, + "end": 2582.02, + "probability": 0.6828 + }, + { + "start": 2584.62, + "end": 2590.92, + "probability": 0.9613 + }, + { + "start": 2593.0, + "end": 2596.18, + "probability": 0.9006 + }, + { + "start": 2597.88, + "end": 2603.04, + "probability": 0.9916 + }, + { + "start": 2603.04, + "end": 2606.54, + "probability": 0.998 + }, + { + "start": 2609.32, + "end": 2610.28, + "probability": 0.7732 + }, + { + "start": 2613.72, + "end": 2617.54, + "probability": 0.8571 + }, + { + "start": 2620.3, + "end": 2622.58, + "probability": 0.6046 + }, + { + "start": 2622.64, + "end": 2625.8, + "probability": 0.9609 + }, + { + "start": 2626.82, + "end": 2628.45, + "probability": 0.5003 + }, + { + "start": 2629.66, + "end": 2630.62, + "probability": 0.6484 + }, + { + "start": 2630.82, + "end": 2632.09, + "probability": 0.6923 + }, + { + "start": 2633.04, + "end": 2634.85, + "probability": 0.6153 + }, + { + "start": 2635.02, + "end": 2635.68, + "probability": 0.3727 + }, + { + "start": 2635.86, + "end": 2636.3, + "probability": 0.4739 + }, + { + "start": 2636.7, + "end": 2640.52, + "probability": 0.9675 + }, + { + "start": 2642.28, + "end": 2642.5, + "probability": 0.7285 + }, + { + "start": 2642.76, + "end": 2645.98, + "probability": 0.9651 + }, + { + "start": 2647.48, + "end": 2654.92, + "probability": 0.9751 + }, + { + "start": 2655.58, + "end": 2665.12, + "probability": 0.9795 + }, + { + "start": 2667.78, + "end": 2668.1, + "probability": 0.7045 + }, + { + "start": 2672.42, + "end": 2679.0, + "probability": 0.9956 + }, + { + "start": 2679.46, + "end": 2685.48, + "probability": 0.9801 + }, + { + "start": 2686.56, + "end": 2690.6, + "probability": 0.9962 + }, + { + "start": 2690.6, + "end": 2693.46, + "probability": 0.9321 + }, + { + "start": 2695.32, + "end": 2700.1, + "probability": 0.9971 + }, + { + "start": 2703.0, + "end": 2706.38, + "probability": 0.7437 + }, + { + "start": 2707.15, + "end": 2714.66, + "probability": 0.9586 + }, + { + "start": 2716.02, + "end": 2717.62, + "probability": 0.9144 + }, + { + "start": 2719.04, + "end": 2726.3, + "probability": 0.9983 + }, + { + "start": 2729.4, + "end": 2732.7, + "probability": 0.8726 + }, + { + "start": 2733.32, + "end": 2740.06, + "probability": 0.9573 + }, + { + "start": 2740.76, + "end": 2741.09, + "probability": 0.2505 + }, + { + "start": 2742.9, + "end": 2744.18, + "probability": 0.8335 + }, + { + "start": 2744.62, + "end": 2747.72, + "probability": 0.9652 + }, + { + "start": 2750.44, + "end": 2753.32, + "probability": 0.8 + }, + { + "start": 2754.92, + "end": 2760.1, + "probability": 0.8135 + }, + { + "start": 2760.1, + "end": 2763.8, + "probability": 0.9907 + }, + { + "start": 2766.18, + "end": 2769.14, + "probability": 0.9781 + }, + { + "start": 2770.06, + "end": 2773.62, + "probability": 0.955 + }, + { + "start": 2776.42, + "end": 2778.62, + "probability": 0.9167 + }, + { + "start": 2778.8, + "end": 2780.22, + "probability": 0.513 + }, + { + "start": 2781.1, + "end": 2783.06, + "probability": 0.6885 + }, + { + "start": 2783.84, + "end": 2785.88, + "probability": 0.9878 + }, + { + "start": 2787.24, + "end": 2789.9, + "probability": 0.87 + }, + { + "start": 2793.78, + "end": 2800.26, + "probability": 0.6557 + }, + { + "start": 2801.8, + "end": 2806.26, + "probability": 0.7595 + }, + { + "start": 2807.46, + "end": 2809.52, + "probability": 0.9094 + }, + { + "start": 2810.76, + "end": 2816.3, + "probability": 0.873 + }, + { + "start": 2817.04, + "end": 2817.24, + "probability": 0.7969 + }, + { + "start": 2817.4, + "end": 2824.42, + "probability": 0.959 + }, + { + "start": 2824.5, + "end": 2826.82, + "probability": 0.7778 + }, + { + "start": 2827.02, + "end": 2829.18, + "probability": 0.9543 + }, + { + "start": 2830.35, + "end": 2834.82, + "probability": 0.9576 + }, + { + "start": 2836.58, + "end": 2839.63, + "probability": 0.9934 + }, + { + "start": 2841.16, + "end": 2844.14, + "probability": 0.7951 + }, + { + "start": 2846.6, + "end": 2847.92, + "probability": 0.9037 + }, + { + "start": 2851.46, + "end": 2852.24, + "probability": 0.277 + }, + { + "start": 2853.64, + "end": 2857.98, + "probability": 0.828 + }, + { + "start": 2859.24, + "end": 2860.32, + "probability": 0.3821 + }, + { + "start": 2861.3, + "end": 2863.2, + "probability": 0.9654 + }, + { + "start": 2864.28, + "end": 2866.42, + "probability": 0.9511 + }, + { + "start": 2869.82, + "end": 2872.04, + "probability": 0.8857 + }, + { + "start": 2872.5, + "end": 2873.6, + "probability": 0.8894 + }, + { + "start": 2873.68, + "end": 2874.42, + "probability": 0.9583 + }, + { + "start": 2874.48, + "end": 2875.62, + "probability": 0.9036 + }, + { + "start": 2876.34, + "end": 2877.74, + "probability": 0.9339 + }, + { + "start": 2881.16, + "end": 2884.98, + "probability": 0.9604 + }, + { + "start": 2886.48, + "end": 2892.7, + "probability": 0.9415 + }, + { + "start": 2893.24, + "end": 2898.08, + "probability": 0.6441 + }, + { + "start": 2898.84, + "end": 2907.46, + "probability": 0.9591 + }, + { + "start": 2908.48, + "end": 2909.74, + "probability": 0.9922 + }, + { + "start": 2910.42, + "end": 2911.74, + "probability": 0.8867 + }, + { + "start": 2918.94, + "end": 2923.88, + "probability": 0.6359 + }, + { + "start": 2924.1, + "end": 2924.78, + "probability": 0.9005 + }, + { + "start": 2924.9, + "end": 2925.58, + "probability": 0.5436 + }, + { + "start": 2927.42, + "end": 2931.54, + "probability": 0.9951 + }, + { + "start": 2932.22, + "end": 2934.14, + "probability": 0.9288 + }, + { + "start": 2935.26, + "end": 2936.4, + "probability": 0.9922 + }, + { + "start": 2937.32, + "end": 2938.72, + "probability": 0.6898 + }, + { + "start": 2939.36, + "end": 2944.85, + "probability": 0.9476 + }, + { + "start": 2945.4, + "end": 2945.92, + "probability": 0.4176 + }, + { + "start": 2946.02, + "end": 2948.48, + "probability": 0.9492 + }, + { + "start": 2950.4, + "end": 2954.2, + "probability": 0.9731 + }, + { + "start": 2956.08, + "end": 2956.8, + "probability": 0.9095 + }, + { + "start": 2957.84, + "end": 2959.27, + "probability": 0.7642 + }, + { + "start": 2962.24, + "end": 2965.26, + "probability": 0.9409 + }, + { + "start": 2967.24, + "end": 2969.56, + "probability": 0.8339 + }, + { + "start": 2972.1, + "end": 2977.62, + "probability": 0.8525 + }, + { + "start": 2980.7, + "end": 2985.74, + "probability": 0.7914 + }, + { + "start": 2989.2, + "end": 2991.84, + "probability": 0.9308 + }, + { + "start": 2993.22, + "end": 2993.72, + "probability": 0.9803 + }, + { + "start": 2994.84, + "end": 2995.18, + "probability": 0.6587 + }, + { + "start": 2996.16, + "end": 2997.2, + "probability": 0.4284 + }, + { + "start": 2997.58, + "end": 2998.36, + "probability": 0.7961 + }, + { + "start": 2998.8, + "end": 3000.62, + "probability": 0.8945 + }, + { + "start": 3002.32, + "end": 3005.18, + "probability": 0.9339 + }, + { + "start": 3005.76, + "end": 3010.12, + "probability": 0.9753 + }, + { + "start": 3013.18, + "end": 3016.18, + "probability": 0.9246 + }, + { + "start": 3017.62, + "end": 3018.58, + "probability": 0.9945 + }, + { + "start": 3019.44, + "end": 3024.34, + "probability": 0.9868 + }, + { + "start": 3024.98, + "end": 3026.0, + "probability": 0.682 + }, + { + "start": 3026.92, + "end": 3028.26, + "probability": 0.7751 + }, + { + "start": 3031.66, + "end": 3035.32, + "probability": 0.9656 + }, + { + "start": 3036.6, + "end": 3038.0, + "probability": 0.7423 + }, + { + "start": 3038.12, + "end": 3042.52, + "probability": 0.9384 + }, + { + "start": 3043.44, + "end": 3044.64, + "probability": 0.9714 + }, + { + "start": 3047.48, + "end": 3049.74, + "probability": 0.8726 + }, + { + "start": 3050.68, + "end": 3051.44, + "probability": 0.7214 + }, + { + "start": 3052.54, + "end": 3055.34, + "probability": 0.9908 + }, + { + "start": 3056.22, + "end": 3056.8, + "probability": 0.9442 + }, + { + "start": 3057.48, + "end": 3062.96, + "probability": 0.8071 + }, + { + "start": 3063.1, + "end": 3063.92, + "probability": 0.9443 + }, + { + "start": 3064.62, + "end": 3066.78, + "probability": 0.9562 + }, + { + "start": 3069.79, + "end": 3072.28, + "probability": 0.9702 + }, + { + "start": 3072.44, + "end": 3073.68, + "probability": 0.8178 + }, + { + "start": 3074.76, + "end": 3074.76, + "probability": 0.6691 + }, + { + "start": 3074.76, + "end": 3076.52, + "probability": 0.6593 + }, + { + "start": 3078.54, + "end": 3079.16, + "probability": 0.996 + }, + { + "start": 3079.84, + "end": 3083.2, + "probability": 0.9451 + }, + { + "start": 3086.18, + "end": 3087.98, + "probability": 0.9609 + }, + { + "start": 3089.9, + "end": 3093.21, + "probability": 0.9705 + }, + { + "start": 3093.78, + "end": 3100.18, + "probability": 0.9902 + }, + { + "start": 3100.28, + "end": 3101.4, + "probability": 0.582 + }, + { + "start": 3101.44, + "end": 3102.58, + "probability": 0.4381 + }, + { + "start": 3102.94, + "end": 3103.82, + "probability": 0.6683 + }, + { + "start": 3103.88, + "end": 3104.15, + "probability": 0.9488 + }, + { + "start": 3104.48, + "end": 3105.87, + "probability": 0.9613 + }, + { + "start": 3106.52, + "end": 3106.52, + "probability": 0.4802 + }, + { + "start": 3107.1, + "end": 3107.96, + "probability": 0.3336 + }, + { + "start": 3108.0, + "end": 3110.0, + "probability": 0.8746 + }, + { + "start": 3110.22, + "end": 3111.98, + "probability": 0.7236 + }, + { + "start": 3112.54, + "end": 3115.68, + "probability": 0.8614 + }, + { + "start": 3116.34, + "end": 3116.98, + "probability": 0.786 + }, + { + "start": 3117.16, + "end": 3117.7, + "probability": 0.988 + }, + { + "start": 3117.76, + "end": 3119.86, + "probability": 0.6899 + }, + { + "start": 3121.02, + "end": 3122.76, + "probability": 0.9923 + }, + { + "start": 3122.86, + "end": 3123.83, + "probability": 0.5109 + }, + { + "start": 3124.86, + "end": 3126.6, + "probability": 0.9771 + }, + { + "start": 3127.7, + "end": 3128.46, + "probability": 0.7241 + }, + { + "start": 3128.6, + "end": 3129.82, + "probability": 0.9418 + }, + { + "start": 3129.98, + "end": 3131.18, + "probability": 0.9551 + }, + { + "start": 3131.32, + "end": 3131.82, + "probability": 0.737 + }, + { + "start": 3132.2, + "end": 3133.98, + "probability": 0.8282 + }, + { + "start": 3134.82, + "end": 3136.64, + "probability": 0.9319 + }, + { + "start": 3137.3, + "end": 3138.27, + "probability": 0.9629 + }, + { + "start": 3139.04, + "end": 3139.52, + "probability": 0.6071 + }, + { + "start": 3139.58, + "end": 3144.4, + "probability": 0.9684 + }, + { + "start": 3144.82, + "end": 3148.46, + "probability": 0.9868 + }, + { + "start": 3148.76, + "end": 3152.04, + "probability": 0.8741 + }, + { + "start": 3152.2, + "end": 3152.42, + "probability": 0.7244 + }, + { + "start": 3152.5, + "end": 3157.4, + "probability": 0.877 + }, + { + "start": 3157.74, + "end": 3161.98, + "probability": 0.9914 + }, + { + "start": 3162.1, + "end": 3162.34, + "probability": 0.2638 + }, + { + "start": 3162.34, + "end": 3163.9, + "probability": 0.905 + }, + { + "start": 3163.96, + "end": 3165.72, + "probability": 0.9873 + }, + { + "start": 3166.2, + "end": 3168.12, + "probability": 0.9672 + }, + { + "start": 3184.38, + "end": 3185.08, + "probability": 0.4947 + }, + { + "start": 3186.4, + "end": 3189.22, + "probability": 0.5631 + }, + { + "start": 3189.26, + "end": 3189.82, + "probability": 0.5475 + }, + { + "start": 3189.92, + "end": 3190.72, + "probability": 0.6302 + }, + { + "start": 3190.88, + "end": 3192.62, + "probability": 0.9756 + }, + { + "start": 3193.32, + "end": 3193.6, + "probability": 0.4541 + }, + { + "start": 3196.02, + "end": 3197.02, + "probability": 0.6815 + }, + { + "start": 3197.08, + "end": 3200.0, + "probability": 0.8666 + }, + { + "start": 3203.86, + "end": 3204.7, + "probability": 0.7571 + }, + { + "start": 3207.06, + "end": 3208.28, + "probability": 0.8877 + }, + { + "start": 3209.82, + "end": 3211.3, + "probability": 0.8055 + }, + { + "start": 3211.86, + "end": 3212.98, + "probability": 0.9362 + }, + { + "start": 3213.22, + "end": 3214.12, + "probability": 0.9023 + }, + { + "start": 3214.82, + "end": 3216.84, + "probability": 0.0698 + }, + { + "start": 3216.92, + "end": 3217.62, + "probability": 0.0693 + }, + { + "start": 3217.66, + "end": 3218.32, + "probability": 0.5185 + }, + { + "start": 3218.32, + "end": 3218.52, + "probability": 0.7223 + }, + { + "start": 3218.54, + "end": 3220.0, + "probability": 0.9226 + }, + { + "start": 3220.52, + "end": 3220.76, + "probability": 0.1005 + }, + { + "start": 3221.46, + "end": 3223.08, + "probability": 0.859 + }, + { + "start": 3223.84, + "end": 3225.52, + "probability": 0.9907 + }, + { + "start": 3225.62, + "end": 3227.02, + "probability": 0.6761 + }, + { + "start": 3227.48, + "end": 3229.28, + "probability": 0.3898 + }, + { + "start": 3229.6, + "end": 3229.76, + "probability": 0.8429 + }, + { + "start": 3229.8, + "end": 3232.02, + "probability": 0.9155 + }, + { + "start": 3233.3, + "end": 3238.38, + "probability": 0.9395 + }, + { + "start": 3238.5, + "end": 3239.26, + "probability": 0.6749 + }, + { + "start": 3239.42, + "end": 3239.98, + "probability": 0.6043 + }, + { + "start": 3241.48, + "end": 3243.9, + "probability": 0.98 + }, + { + "start": 3245.24, + "end": 3247.26, + "probability": 0.9946 + }, + { + "start": 3247.6, + "end": 3249.08, + "probability": 0.8848 + }, + { + "start": 3249.34, + "end": 3250.08, + "probability": 0.8318 + }, + { + "start": 3251.36, + "end": 3253.68, + "probability": 0.995 + }, + { + "start": 3254.32, + "end": 3255.62, + "probability": 0.7869 + }, + { + "start": 3257.04, + "end": 3261.02, + "probability": 0.9943 + }, + { + "start": 3262.64, + "end": 3264.92, + "probability": 0.9937 + }, + { + "start": 3265.42, + "end": 3266.7, + "probability": 0.9689 + }, + { + "start": 3268.48, + "end": 3269.38, + "probability": 0.8449 + }, + { + "start": 3269.96, + "end": 3273.12, + "probability": 0.9494 + }, + { + "start": 3273.86, + "end": 3276.76, + "probability": 0.9544 + }, + { + "start": 3277.38, + "end": 3278.38, + "probability": 0.9515 + }, + { + "start": 3279.22, + "end": 3280.28, + "probability": 0.8505 + }, + { + "start": 3281.2, + "end": 3282.68, + "probability": 0.9326 + }, + { + "start": 3282.88, + "end": 3284.34, + "probability": 0.6268 + }, + { + "start": 3284.48, + "end": 3285.34, + "probability": 0.9941 + }, + { + "start": 3285.78, + "end": 3286.78, + "probability": 0.9931 + }, + { + "start": 3288.0, + "end": 3290.6, + "probability": 0.8157 + }, + { + "start": 3291.3, + "end": 3292.95, + "probability": 0.8661 + }, + { + "start": 3293.86, + "end": 3295.26, + "probability": 0.9211 + }, + { + "start": 3295.6, + "end": 3297.08, + "probability": 0.9888 + }, + { + "start": 3298.9, + "end": 3302.12, + "probability": 0.8285 + }, + { + "start": 3303.6, + "end": 3303.84, + "probability": 0.5124 + }, + { + "start": 3303.92, + "end": 3304.8, + "probability": 0.9907 + }, + { + "start": 3304.86, + "end": 3306.54, + "probability": 0.8174 + }, + { + "start": 3308.7, + "end": 3309.28, + "probability": 0.0256 + }, + { + "start": 3309.28, + "end": 3310.8, + "probability": 0.6833 + }, + { + "start": 3310.94, + "end": 3312.98, + "probability": 0.6455 + }, + { + "start": 3313.32, + "end": 3313.44, + "probability": 0.2808 + }, + { + "start": 3317.62, + "end": 3318.52, + "probability": 0.187 + }, + { + "start": 3318.64, + "end": 3320.32, + "probability": 0.2741 + }, + { + "start": 3320.56, + "end": 3322.32, + "probability": 0.8716 + }, + { + "start": 3323.14, + "end": 3324.28, + "probability": 0.7722 + }, + { + "start": 3324.28, + "end": 3325.54, + "probability": 0.8594 + }, + { + "start": 3325.78, + "end": 3327.64, + "probability": 0.7758 + }, + { + "start": 3327.84, + "end": 3328.38, + "probability": 0.9094 + }, + { + "start": 3329.12, + "end": 3329.44, + "probability": 0.8538 + }, + { + "start": 3329.8, + "end": 3330.16, + "probability": 0.0661 + }, + { + "start": 3330.68, + "end": 3331.42, + "probability": 0.3557 + }, + { + "start": 3331.7, + "end": 3333.46, + "probability": 0.9111 + }, + { + "start": 3333.9, + "end": 3335.5, + "probability": 0.9665 + }, + { + "start": 3336.52, + "end": 3338.12, + "probability": 0.7877 + }, + { + "start": 3338.18, + "end": 3341.96, + "probability": 0.8705 + }, + { + "start": 3342.9, + "end": 3343.38, + "probability": 0.8605 + }, + { + "start": 3344.08, + "end": 3346.28, + "probability": 0.6594 + }, + { + "start": 3347.6, + "end": 3350.03, + "probability": 0.9808 + }, + { + "start": 3350.56, + "end": 3351.48, + "probability": 0.9956 + }, + { + "start": 3352.84, + "end": 3354.8, + "probability": 0.7757 + }, + { + "start": 3355.98, + "end": 3357.56, + "probability": 0.7068 + }, + { + "start": 3358.14, + "end": 3362.4, + "probability": 0.8271 + }, + { + "start": 3362.84, + "end": 3364.34, + "probability": 0.623 + }, + { + "start": 3364.36, + "end": 3367.62, + "probability": 0.8825 + }, + { + "start": 3367.94, + "end": 3369.92, + "probability": 0.9391 + }, + { + "start": 3370.62, + "end": 3373.74, + "probability": 0.9811 + }, + { + "start": 3373.74, + "end": 3376.94, + "probability": 0.9886 + }, + { + "start": 3377.54, + "end": 3380.62, + "probability": 0.9644 + }, + { + "start": 3381.48, + "end": 3385.66, + "probability": 0.9944 + }, + { + "start": 3386.68, + "end": 3389.22, + "probability": 0.9806 + }, + { + "start": 3390.42, + "end": 3392.3, + "probability": 0.9919 + }, + { + "start": 3392.53, + "end": 3395.12, + "probability": 0.9739 + }, + { + "start": 3396.42, + "end": 3398.9, + "probability": 0.993 + }, + { + "start": 3399.76, + "end": 3400.74, + "probability": 0.9878 + }, + { + "start": 3401.6, + "end": 3402.58, + "probability": 0.6975 + }, + { + "start": 3403.54, + "end": 3404.8, + "probability": 0.9236 + }, + { + "start": 3404.92, + "end": 3406.56, + "probability": 0.9312 + }, + { + "start": 3407.28, + "end": 3408.62, + "probability": 0.9219 + }, + { + "start": 3409.16, + "end": 3411.02, + "probability": 0.9858 + }, + { + "start": 3411.76, + "end": 3414.16, + "probability": 0.8465 + }, + { + "start": 3415.34, + "end": 3416.08, + "probability": 0.7122 + }, + { + "start": 3416.72, + "end": 3417.64, + "probability": 0.8527 + }, + { + "start": 3418.1, + "end": 3419.08, + "probability": 0.8416 + }, + { + "start": 3419.18, + "end": 3420.8, + "probability": 0.8559 + }, + { + "start": 3421.08, + "end": 3422.47, + "probability": 0.9365 + }, + { + "start": 3422.82, + "end": 3424.5, + "probability": 0.9305 + }, + { + "start": 3425.16, + "end": 3426.3, + "probability": 0.5821 + }, + { + "start": 3426.36, + "end": 3427.08, + "probability": 0.6986 + }, + { + "start": 3427.7, + "end": 3430.24, + "probability": 0.6052 + }, + { + "start": 3430.26, + "end": 3433.0, + "probability": 0.322 + }, + { + "start": 3433.1, + "end": 3434.8, + "probability": 0.7981 + }, + { + "start": 3434.88, + "end": 3436.5, + "probability": 0.9857 + }, + { + "start": 3439.02, + "end": 3439.1, + "probability": 0.0084 + }, + { + "start": 3439.1, + "end": 3441.02, + "probability": 0.8999 + }, + { + "start": 3442.24, + "end": 3443.98, + "probability": 0.7773 + }, + { + "start": 3444.36, + "end": 3446.38, + "probability": 0.9041 + }, + { + "start": 3447.38, + "end": 3447.48, + "probability": 0.8582 + }, + { + "start": 3447.56, + "end": 3450.12, + "probability": 0.981 + }, + { + "start": 3451.18, + "end": 3452.3, + "probability": 0.7498 + }, + { + "start": 3453.08, + "end": 3454.06, + "probability": 0.8466 + }, + { + "start": 3454.22, + "end": 3455.66, + "probability": 0.9907 + }, + { + "start": 3456.28, + "end": 3457.48, + "probability": 0.8258 + }, + { + "start": 3457.96, + "end": 3458.32, + "probability": 0.9377 + }, + { + "start": 3458.92, + "end": 3460.32, + "probability": 0.9433 + }, + { + "start": 3460.4, + "end": 3464.92, + "probability": 0.9873 + }, + { + "start": 3466.64, + "end": 3468.92, + "probability": 0.9918 + }, + { + "start": 3469.56, + "end": 3470.28, + "probability": 0.8242 + }, + { + "start": 3471.44, + "end": 3473.84, + "probability": 0.9614 + }, + { + "start": 3475.34, + "end": 3476.72, + "probability": 0.9938 + }, + { + "start": 3477.52, + "end": 3479.03, + "probability": 0.9847 + }, + { + "start": 3480.12, + "end": 3482.6, + "probability": 0.9797 + }, + { + "start": 3483.46, + "end": 3486.78, + "probability": 0.7703 + }, + { + "start": 3487.86, + "end": 3491.78, + "probability": 0.7178 + }, + { + "start": 3492.1, + "end": 3495.58, + "probability": 0.9634 + }, + { + "start": 3496.18, + "end": 3498.62, + "probability": 0.9995 + }, + { + "start": 3499.02, + "end": 3500.98, + "probability": 0.9716 + }, + { + "start": 3502.06, + "end": 3504.89, + "probability": 0.9629 + }, + { + "start": 3505.72, + "end": 3507.02, + "probability": 0.9731 + }, + { + "start": 3508.2, + "end": 3510.98, + "probability": 0.9906 + }, + { + "start": 3510.98, + "end": 3513.56, + "probability": 0.8314 + }, + { + "start": 3514.18, + "end": 3517.14, + "probability": 0.9748 + }, + { + "start": 3517.7, + "end": 3518.18, + "probability": 0.7837 + }, + { + "start": 3519.22, + "end": 3520.92, + "probability": 0.9885 + }, + { + "start": 3521.6, + "end": 3522.38, + "probability": 0.8905 + }, + { + "start": 3523.16, + "end": 3524.24, + "probability": 0.6772 + }, + { + "start": 3524.76, + "end": 3529.66, + "probability": 0.9937 + }, + { + "start": 3530.94, + "end": 3531.7, + "probability": 0.1909 + }, + { + "start": 3531.7, + "end": 3532.32, + "probability": 0.1255 + }, + { + "start": 3532.6, + "end": 3535.12, + "probability": 0.9873 + }, + { + "start": 3535.3, + "end": 3539.74, + "probability": 0.9209 + }, + { + "start": 3540.52, + "end": 3542.44, + "probability": 0.969 + }, + { + "start": 3542.48, + "end": 3544.57, + "probability": 0.8574 + }, + { + "start": 3545.24, + "end": 3546.6, + "probability": 0.6148 + }, + { + "start": 3547.18, + "end": 3547.96, + "probability": 0.8771 + }, + { + "start": 3548.6, + "end": 3549.74, + "probability": 0.9644 + }, + { + "start": 3550.26, + "end": 3551.5, + "probability": 0.9604 + }, + { + "start": 3552.14, + "end": 3554.36, + "probability": 0.9824 + }, + { + "start": 3554.72, + "end": 3555.7, + "probability": 0.5652 + }, + { + "start": 3555.84, + "end": 3557.74, + "probability": 0.7029 + }, + { + "start": 3557.8, + "end": 3558.5, + "probability": 0.6263 + }, + { + "start": 3558.84, + "end": 3559.68, + "probability": 0.9478 + }, + { + "start": 3561.1, + "end": 3561.52, + "probability": 0.8968 + }, + { + "start": 3561.68, + "end": 3562.42, + "probability": 0.86 + }, + { + "start": 3562.82, + "end": 3563.45, + "probability": 0.9135 + }, + { + "start": 3563.8, + "end": 3567.8, + "probability": 0.9335 + }, + { + "start": 3568.7, + "end": 3571.5, + "probability": 0.9917 + }, + { + "start": 3572.94, + "end": 3575.68, + "probability": 0.6663 + }, + { + "start": 3576.24, + "end": 3577.56, + "probability": 0.9851 + }, + { + "start": 3578.22, + "end": 3579.18, + "probability": 0.6636 + }, + { + "start": 3580.32, + "end": 3582.64, + "probability": 0.9973 + }, + { + "start": 3582.64, + "end": 3586.1, + "probability": 0.9746 + }, + { + "start": 3587.26, + "end": 3588.5, + "probability": 0.7347 + }, + { + "start": 3588.5, + "end": 3590.22, + "probability": 0.7307 + }, + { + "start": 3590.48, + "end": 3593.46, + "probability": 0.967 + }, + { + "start": 3593.48, + "end": 3593.86, + "probability": 0.678 + }, + { + "start": 3595.02, + "end": 3599.84, + "probability": 0.9441 + }, + { + "start": 3600.78, + "end": 3602.32, + "probability": 0.6413 + }, + { + "start": 3602.52, + "end": 3602.54, + "probability": 0.0931 + }, + { + "start": 3602.54, + "end": 3604.02, + "probability": 0.8995 + }, + { + "start": 3605.0, + "end": 3605.68, + "probability": 0.9742 + }, + { + "start": 3606.4, + "end": 3607.69, + "probability": 0.7909 + }, + { + "start": 3608.92, + "end": 3609.82, + "probability": 0.333 + }, + { + "start": 3610.74, + "end": 3613.36, + "probability": 0.9482 + }, + { + "start": 3614.52, + "end": 3615.3, + "probability": 0.9077 + }, + { + "start": 3615.42, + "end": 3616.64, + "probability": 0.7144 + }, + { + "start": 3616.82, + "end": 3618.44, + "probability": 0.8021 + }, + { + "start": 3619.12, + "end": 3621.28, + "probability": 0.8451 + }, + { + "start": 3622.06, + "end": 3623.8, + "probability": 0.9282 + }, + { + "start": 3624.42, + "end": 3627.34, + "probability": 0.9626 + }, + { + "start": 3627.86, + "end": 3630.2, + "probability": 0.7336 + }, + { + "start": 3631.06, + "end": 3632.26, + "probability": 0.5099 + }, + { + "start": 3632.4, + "end": 3637.08, + "probability": 0.8756 + }, + { + "start": 3637.94, + "end": 3641.4, + "probability": 0.9857 + }, + { + "start": 3642.3, + "end": 3643.25, + "probability": 0.887 + }, + { + "start": 3643.7, + "end": 3645.54, + "probability": 0.9849 + }, + { + "start": 3646.38, + "end": 3648.58, + "probability": 0.9828 + }, + { + "start": 3649.42, + "end": 3650.92, + "probability": 0.7491 + }, + { + "start": 3651.96, + "end": 3655.68, + "probability": 0.8326 + }, + { + "start": 3656.36, + "end": 3660.1, + "probability": 0.968 + }, + { + "start": 3660.64, + "end": 3662.58, + "probability": 0.7971 + }, + { + "start": 3662.72, + "end": 3666.02, + "probability": 0.8186 + }, + { + "start": 3667.2, + "end": 3670.44, + "probability": 0.9963 + }, + { + "start": 3670.44, + "end": 3672.16, + "probability": 0.8737 + }, + { + "start": 3673.34, + "end": 3676.28, + "probability": 0.9522 + }, + { + "start": 3676.64, + "end": 3677.49, + "probability": 0.6638 + }, + { + "start": 3677.7, + "end": 3678.02, + "probability": 0.7161 + }, + { + "start": 3678.02, + "end": 3681.54, + "probability": 0.8995 + }, + { + "start": 3681.68, + "end": 3683.08, + "probability": 0.4129 + }, + { + "start": 3683.6, + "end": 3684.52, + "probability": 0.979 + }, + { + "start": 3685.52, + "end": 3687.76, + "probability": 0.8419 + }, + { + "start": 3688.3, + "end": 3689.6, + "probability": 0.6529 + }, + { + "start": 3690.64, + "end": 3693.82, + "probability": 0.8423 + }, + { + "start": 3693.94, + "end": 3695.36, + "probability": 0.9764 + }, + { + "start": 3696.52, + "end": 3698.88, + "probability": 0.6473 + }, + { + "start": 3699.06, + "end": 3699.64, + "probability": 0.6736 + }, + { + "start": 3700.28, + "end": 3702.46, + "probability": 0.6804 + }, + { + "start": 3703.2, + "end": 3704.96, + "probability": 0.9061 + }, + { + "start": 3705.62, + "end": 3706.66, + "probability": 0.6951 + }, + { + "start": 3707.64, + "end": 3712.38, + "probability": 0.974 + }, + { + "start": 3712.38, + "end": 3716.48, + "probability": 0.9609 + }, + { + "start": 3717.52, + "end": 3718.76, + "probability": 0.8583 + }, + { + "start": 3719.24, + "end": 3719.84, + "probability": 0.813 + }, + { + "start": 3720.2, + "end": 3720.5, + "probability": 0.7709 + }, + { + "start": 3720.62, + "end": 3721.95, + "probability": 0.9895 + }, + { + "start": 3722.72, + "end": 3725.28, + "probability": 0.9953 + }, + { + "start": 3726.2, + "end": 3727.16, + "probability": 0.6819 + }, + { + "start": 3727.9, + "end": 3730.02, + "probability": 0.7047 + }, + { + "start": 3730.72, + "end": 3731.54, + "probability": 0.791 + }, + { + "start": 3731.64, + "end": 3733.32, + "probability": 0.8636 + }, + { + "start": 3733.62, + "end": 3736.02, + "probability": 0.8126 + }, + { + "start": 3736.64, + "end": 3739.32, + "probability": 0.9816 + }, + { + "start": 3739.38, + "end": 3743.12, + "probability": 0.9877 + }, + { + "start": 3743.12, + "end": 3745.16, + "probability": 0.9548 + }, + { + "start": 3746.78, + "end": 3746.78, + "probability": 0.0026 + }, + { + "start": 3747.38, + "end": 3751.2, + "probability": 0.734 + }, + { + "start": 3752.14, + "end": 3754.38, + "probability": 0.8795 + }, + { + "start": 3755.74, + "end": 3757.68, + "probability": 0.9542 + }, + { + "start": 3757.68, + "end": 3759.6, + "probability": 0.7354 + }, + { + "start": 3759.66, + "end": 3760.58, + "probability": 0.6858 + }, + { + "start": 3761.66, + "end": 3762.34, + "probability": 0.6777 + }, + { + "start": 3762.64, + "end": 3763.26, + "probability": 0.9941 + }, + { + "start": 3763.38, + "end": 3765.1, + "probability": 0.959 + }, + { + "start": 3765.6, + "end": 3766.28, + "probability": 0.6724 + }, + { + "start": 3767.26, + "end": 3768.08, + "probability": 0.9971 + }, + { + "start": 3768.84, + "end": 3769.54, + "probability": 0.9482 + }, + { + "start": 3769.8, + "end": 3771.14, + "probability": 0.5881 + }, + { + "start": 3771.48, + "end": 3772.66, + "probability": 0.7885 + }, + { + "start": 3773.12, + "end": 3774.22, + "probability": 0.949 + }, + { + "start": 3774.78, + "end": 3775.98, + "probability": 0.9061 + }, + { + "start": 3776.06, + "end": 3777.45, + "probability": 0.8989 + }, + { + "start": 3778.46, + "end": 3779.5, + "probability": 0.7787 + }, + { + "start": 3780.14, + "end": 3783.18, + "probability": 0.4999 + }, + { + "start": 3784.36, + "end": 3788.1, + "probability": 0.8537 + }, + { + "start": 3788.88, + "end": 3790.76, + "probability": 0.8192 + }, + { + "start": 3791.68, + "end": 3792.44, + "probability": 0.8659 + }, + { + "start": 3792.92, + "end": 3794.96, + "probability": 0.9966 + }, + { + "start": 3795.54, + "end": 3798.5, + "probability": 0.2663 + }, + { + "start": 3798.5, + "end": 3798.71, + "probability": 0.4922 + }, + { + "start": 3799.64, + "end": 3801.96, + "probability": 0.7539 + }, + { + "start": 3802.34, + "end": 3803.22, + "probability": 0.8547 + }, + { + "start": 3803.42, + "end": 3803.46, + "probability": 0.1987 + }, + { + "start": 3803.46, + "end": 3805.2, + "probability": 0.7856 + }, + { + "start": 3807.94, + "end": 3810.54, + "probability": 0.6084 + }, + { + "start": 3811.62, + "end": 3812.08, + "probability": 0.1158 + }, + { + "start": 3814.24, + "end": 3819.64, + "probability": 0.4728 + }, + { + "start": 3827.05, + "end": 3829.56, + "probability": 0.9233 + }, + { + "start": 3829.66, + "end": 3830.34, + "probability": 0.6856 + }, + { + "start": 3830.54, + "end": 3831.9, + "probability": 0.5792 + }, + { + "start": 3832.38, + "end": 3833.52, + "probability": 0.6366 + }, + { + "start": 3834.4, + "end": 3838.82, + "probability": 0.9506 + }, + { + "start": 3839.3, + "end": 3841.16, + "probability": 0.9932 + }, + { + "start": 3841.7, + "end": 3845.46, + "probability": 0.9514 + }, + { + "start": 3845.46, + "end": 3848.66, + "probability": 0.9946 + }, + { + "start": 3849.18, + "end": 3851.78, + "probability": 0.5787 + }, + { + "start": 3852.0, + "end": 3852.5, + "probability": 0.3876 + }, + { + "start": 3852.58, + "end": 3855.56, + "probability": 0.8219 + }, + { + "start": 3855.92, + "end": 3859.8, + "probability": 0.9658 + }, + { + "start": 3860.46, + "end": 3861.64, + "probability": 0.8784 + }, + { + "start": 3862.16, + "end": 3865.83, + "probability": 0.862 + }, + { + "start": 3866.66, + "end": 3868.78, + "probability": 0.9954 + }, + { + "start": 3869.3, + "end": 3871.16, + "probability": 0.7521 + }, + { + "start": 3871.74, + "end": 3873.6, + "probability": 0.9977 + }, + { + "start": 3875.14, + "end": 3878.12, + "probability": 0.9004 + }, + { + "start": 3878.88, + "end": 3883.7, + "probability": 0.9153 + }, + { + "start": 3884.22, + "end": 3885.32, + "probability": 0.9134 + }, + { + "start": 3886.16, + "end": 3886.98, + "probability": 0.6698 + }, + { + "start": 3887.54, + "end": 3889.76, + "probability": 0.9868 + }, + { + "start": 3890.46, + "end": 3893.16, + "probability": 0.8338 + }, + { + "start": 3893.88, + "end": 3897.88, + "probability": 0.9675 + }, + { + "start": 3898.55, + "end": 3899.38, + "probability": 0.6406 + }, + { + "start": 3899.4, + "end": 3899.4, + "probability": 0.7167 + }, + { + "start": 3899.46, + "end": 3900.36, + "probability": 0.7412 + }, + { + "start": 3900.38, + "end": 3901.08, + "probability": 0.5264 + }, + { + "start": 3902.6, + "end": 3903.36, + "probability": 0.1332 + }, + { + "start": 3904.6, + "end": 3904.94, + "probability": 0.076 + }, + { + "start": 3905.08, + "end": 3905.08, + "probability": 0.0819 + }, + { + "start": 3905.08, + "end": 3905.08, + "probability": 0.0178 + }, + { + "start": 3905.08, + "end": 3908.4, + "probability": 0.8775 + }, + { + "start": 3910.38, + "end": 3910.38, + "probability": 0.0133 + }, + { + "start": 3910.38, + "end": 3919.02, + "probability": 0.8332 + }, + { + "start": 3919.2, + "end": 3921.64, + "probability": 0.8865 + }, + { + "start": 3922.36, + "end": 3924.28, + "probability": 0.4977 + }, + { + "start": 3924.58, + "end": 3925.54, + "probability": 0.155 + }, + { + "start": 3925.92, + "end": 3927.16, + "probability": 0.5441 + }, + { + "start": 3927.6, + "end": 3929.2, + "probability": 0.7275 + }, + { + "start": 3930.36, + "end": 3930.5, + "probability": 0.6354 + }, + { + "start": 3930.5, + "end": 3931.34, + "probability": 0.8781 + }, + { + "start": 3931.56, + "end": 3934.14, + "probability": 0.8831 + }, + { + "start": 3934.22, + "end": 3934.38, + "probability": 0.4694 + }, + { + "start": 3934.38, + "end": 3935.48, + "probability": 0.9246 + }, + { + "start": 3935.66, + "end": 3936.8, + "probability": 0.9395 + }, + { + "start": 3937.42, + "end": 3937.42, + "probability": 0.0188 + }, + { + "start": 3937.42, + "end": 3938.82, + "probability": 0.6751 + }, + { + "start": 3939.2, + "end": 3942.22, + "probability": 0.9147 + }, + { + "start": 3942.56, + "end": 3943.34, + "probability": 0.9465 + }, + { + "start": 3943.6, + "end": 3944.66, + "probability": 0.491 + }, + { + "start": 3944.76, + "end": 3945.7, + "probability": 0.7417 + }, + { + "start": 3946.16, + "end": 3947.52, + "probability": 0.644 + }, + { + "start": 3947.58, + "end": 3949.84, + "probability": 0.8019 + }, + { + "start": 3950.22, + "end": 3951.3, + "probability": 0.9763 + }, + { + "start": 3951.78, + "end": 3953.42, + "probability": 0.9851 + }, + { + "start": 3953.92, + "end": 3955.34, + "probability": 0.8023 + }, + { + "start": 3955.86, + "end": 3958.08, + "probability": 0.9836 + }, + { + "start": 3958.88, + "end": 3964.02, + "probability": 0.9944 + }, + { + "start": 3964.46, + "end": 3964.9, + "probability": 0.0019 + }, + { + "start": 3965.0, + "end": 3965.04, + "probability": 0.007 + }, + { + "start": 3965.04, + "end": 3966.64, + "probability": 0.6296 + }, + { + "start": 3967.14, + "end": 3967.24, + "probability": 0.0975 + }, + { + "start": 3968.92, + "end": 3969.2, + "probability": 0.5801 + }, + { + "start": 3969.8, + "end": 3970.7, + "probability": 0.8035 + }, + { + "start": 3971.1, + "end": 3971.54, + "probability": 0.0445 + }, + { + "start": 3971.98, + "end": 3975.58, + "probability": 0.1606 + }, + { + "start": 3975.84, + "end": 3977.72, + "probability": 0.2476 + }, + { + "start": 3977.82, + "end": 3977.84, + "probability": 0.0395 + }, + { + "start": 3977.84, + "end": 3980.26, + "probability": 0.856 + }, + { + "start": 3980.72, + "end": 3983.2, + "probability": 0.9944 + }, + { + "start": 3983.88, + "end": 3987.12, + "probability": 0.9624 + }, + { + "start": 3987.6, + "end": 3988.8, + "probability": 0.5972 + }, + { + "start": 3989.08, + "end": 3989.3, + "probability": 0.0292 + }, + { + "start": 3989.3, + "end": 3991.98, + "probability": 0.652 + }, + { + "start": 3992.44, + "end": 3994.96, + "probability": 0.9591 + }, + { + "start": 3995.18, + "end": 3996.6, + "probability": 0.9971 + }, + { + "start": 3998.26, + "end": 3998.78, + "probability": 0.1408 + }, + { + "start": 3999.81, + "end": 4001.42, + "probability": 0.9004 + }, + { + "start": 4001.52, + "end": 4001.52, + "probability": 0.4983 + }, + { + "start": 4001.54, + "end": 4003.02, + "probability": 0.7266 + }, + { + "start": 4003.12, + "end": 4003.94, + "probability": 0.674 + }, + { + "start": 4003.94, + "end": 4004.76, + "probability": 0.8213 + }, + { + "start": 4004.92, + "end": 4009.1, + "probability": 0.915 + }, + { + "start": 4010.1, + "end": 4013.08, + "probability": 0.9816 + }, + { + "start": 4013.9, + "end": 4014.22, + "probability": 0.0464 + }, + { + "start": 4014.22, + "end": 4015.4, + "probability": 0.8276 + }, + { + "start": 4015.68, + "end": 4016.9, + "probability": 0.8236 + }, + { + "start": 4016.9, + "end": 4019.28, + "probability": 0.905 + }, + { + "start": 4019.38, + "end": 4020.7, + "probability": 0.929 + }, + { + "start": 4021.22, + "end": 4022.74, + "probability": 0.2532 + }, + { + "start": 4022.74, + "end": 4024.67, + "probability": 0.8638 + }, + { + "start": 4026.2, + "end": 4027.0, + "probability": 0.0763 + }, + { + "start": 4027.0, + "end": 4027.0, + "probability": 0.0508 + }, + { + "start": 4027.0, + "end": 4027.0, + "probability": 0.0223 + }, + { + "start": 4027.0, + "end": 4027.9, + "probability": 0.6515 + }, + { + "start": 4028.6, + "end": 4032.3, + "probability": 0.9883 + }, + { + "start": 4032.68, + "end": 4034.42, + "probability": 0.9814 + }, + { + "start": 4034.6, + "end": 4037.9, + "probability": 0.9186 + }, + { + "start": 4037.98, + "end": 4039.76, + "probability": 0.9771 + }, + { + "start": 4040.38, + "end": 4042.38, + "probability": 0.865 + }, + { + "start": 4043.3, + "end": 4044.42, + "probability": 0.9228 + }, + { + "start": 4044.62, + "end": 4047.88, + "probability": 0.967 + }, + { + "start": 4047.98, + "end": 4049.13, + "probability": 0.9956 + }, + { + "start": 4049.68, + "end": 4050.66, + "probability": 0.8393 + }, + { + "start": 4050.76, + "end": 4051.18, + "probability": 0.4374 + }, + { + "start": 4051.76, + "end": 4052.8, + "probability": 0.9268 + }, + { + "start": 4053.5, + "end": 4054.48, + "probability": 0.9543 + }, + { + "start": 4054.58, + "end": 4057.16, + "probability": 0.9565 + }, + { + "start": 4057.18, + "end": 4059.4, + "probability": 0.9448 + }, + { + "start": 4059.94, + "end": 4061.6, + "probability": 0.9584 + }, + { + "start": 4062.06, + "end": 4065.35, + "probability": 0.9929 + }, + { + "start": 4065.42, + "end": 4069.64, + "probability": 0.6359 + }, + { + "start": 4069.96, + "end": 4072.91, + "probability": 0.2372 + }, + { + "start": 4076.06, + "end": 4076.54, + "probability": 0.2035 + }, + { + "start": 4076.54, + "end": 4077.08, + "probability": 0.0792 + }, + { + "start": 4077.08, + "end": 4077.1, + "probability": 0.3671 + }, + { + "start": 4077.1, + "end": 4077.68, + "probability": 0.1875 + }, + { + "start": 4077.88, + "end": 4079.38, + "probability": 0.889 + }, + { + "start": 4080.44, + "end": 4084.02, + "probability": 0.9447 + }, + { + "start": 4084.46, + "end": 4087.54, + "probability": 0.6941 + }, + { + "start": 4087.94, + "end": 4089.9, + "probability": 0.7032 + }, + { + "start": 4090.1, + "end": 4090.56, + "probability": 0.6831 + }, + { + "start": 4090.92, + "end": 4095.76, + "probability": 0.9895 + }, + { + "start": 4096.58, + "end": 4098.98, + "probability": 0.4034 + }, + { + "start": 4099.5, + "end": 4100.38, + "probability": 0.7408 + }, + { + "start": 4100.7, + "end": 4101.88, + "probability": 0.8109 + }, + { + "start": 4102.42, + "end": 4104.26, + "probability": 0.9013 + }, + { + "start": 4104.88, + "end": 4107.24, + "probability": 0.979 + }, + { + "start": 4107.82, + "end": 4110.86, + "probability": 0.835 + }, + { + "start": 4111.54, + "end": 4116.5, + "probability": 0.8608 + }, + { + "start": 4116.84, + "end": 4118.18, + "probability": 0.9761 + }, + { + "start": 4118.56, + "end": 4120.04, + "probability": 0.9037 + }, + { + "start": 4120.52, + "end": 4124.94, + "probability": 0.9654 + }, + { + "start": 4125.72, + "end": 4128.19, + "probability": 0.9961 + }, + { + "start": 4128.84, + "end": 4130.78, + "probability": 0.8508 + }, + { + "start": 4131.46, + "end": 4135.66, + "probability": 0.9815 + }, + { + "start": 4136.42, + "end": 4136.52, + "probability": 0.4448 + }, + { + "start": 4136.84, + "end": 4138.36, + "probability": 0.9525 + }, + { + "start": 4138.9, + "end": 4141.84, + "probability": 0.993 + }, + { + "start": 4142.38, + "end": 4143.88, + "probability": 0.8569 + }, + { + "start": 4144.48, + "end": 4146.5, + "probability": 0.5061 + }, + { + "start": 4146.8, + "end": 4147.62, + "probability": 0.7472 + }, + { + "start": 4147.74, + "end": 4148.94, + "probability": 0.1277 + }, + { + "start": 4148.98, + "end": 4150.14, + "probability": 0.6917 + }, + { + "start": 4150.24, + "end": 4152.8, + "probability": 0.9963 + }, + { + "start": 4153.06, + "end": 4155.9, + "probability": 0.9473 + }, + { + "start": 4156.94, + "end": 4158.8, + "probability": 0.5803 + }, + { + "start": 4158.82, + "end": 4161.74, + "probability": 0.9873 + }, + { + "start": 4161.78, + "end": 4161.9, + "probability": 0.3437 + }, + { + "start": 4161.9, + "end": 4161.9, + "probability": 0.1002 + }, + { + "start": 4161.9, + "end": 4164.28, + "probability": 0.9932 + }, + { + "start": 4164.82, + "end": 4168.62, + "probability": 0.9499 + }, + { + "start": 4169.3, + "end": 4169.93, + "probability": 0.8205 + }, + { + "start": 4171.36, + "end": 4173.54, + "probability": 0.9441 + }, + { + "start": 4174.5, + "end": 4176.5, + "probability": 0.9568 + }, + { + "start": 4177.04, + "end": 4180.3, + "probability": 0.999 + }, + { + "start": 4180.82, + "end": 4184.04, + "probability": 0.9985 + }, + { + "start": 4184.6, + "end": 4184.86, + "probability": 0.0017 + }, + { + "start": 4184.86, + "end": 4184.86, + "probability": 0.1434 + }, + { + "start": 4184.86, + "end": 4185.14, + "probability": 0.519 + }, + { + "start": 4186.88, + "end": 4190.96, + "probability": 0.9456 + }, + { + "start": 4191.38, + "end": 4191.64, + "probability": 0.8776 + }, + { + "start": 4191.78, + "end": 4194.68, + "probability": 0.9772 + }, + { + "start": 4195.22, + "end": 4195.32, + "probability": 0.1069 + }, + { + "start": 4195.32, + "end": 4199.98, + "probability": 0.9861 + }, + { + "start": 4200.82, + "end": 4202.04, + "probability": 0.9878 + }, + { + "start": 4202.94, + "end": 4208.56, + "probability": 0.9851 + }, + { + "start": 4208.9, + "end": 4211.1, + "probability": 0.7192 + }, + { + "start": 4211.24, + "end": 4212.64, + "probability": 0.8512 + }, + { + "start": 4212.98, + "end": 4214.0, + "probability": 0.9575 + }, + { + "start": 4214.1, + "end": 4215.02, + "probability": 0.7456 + }, + { + "start": 4215.44, + "end": 4217.24, + "probability": 0.9976 + }, + { + "start": 4217.9, + "end": 4218.62, + "probability": 0.9792 + }, + { + "start": 4219.3, + "end": 4222.52, + "probability": 0.9973 + }, + { + "start": 4223.0, + "end": 4224.34, + "probability": 0.8269 + }, + { + "start": 4224.78, + "end": 4226.0, + "probability": 0.8629 + }, + { + "start": 4226.62, + "end": 4230.12, + "probability": 0.9933 + }, + { + "start": 4230.56, + "end": 4232.18, + "probability": 0.9711 + }, + { + "start": 4232.22, + "end": 4233.16, + "probability": 0.8111 + }, + { + "start": 4233.56, + "end": 4237.7, + "probability": 0.9979 + }, + { + "start": 4237.7, + "end": 4241.42, + "probability": 0.9995 + }, + { + "start": 4242.16, + "end": 4244.44, + "probability": 0.9762 + }, + { + "start": 4245.06, + "end": 4245.94, + "probability": 0.8793 + }, + { + "start": 4246.52, + "end": 4250.28, + "probability": 0.9906 + }, + { + "start": 4250.58, + "end": 4251.4, + "probability": 0.6575 + }, + { + "start": 4251.58, + "end": 4252.55, + "probability": 0.474 + }, + { + "start": 4253.24, + "end": 4255.9, + "probability": 0.994 + }, + { + "start": 4256.04, + "end": 4257.63, + "probability": 0.9404 + }, + { + "start": 4257.64, + "end": 4258.53, + "probability": 0.8341 + }, + { + "start": 4259.44, + "end": 4260.37, + "probability": 0.9897 + }, + { + "start": 4261.14, + "end": 4261.9, + "probability": 0.9993 + }, + { + "start": 4262.7, + "end": 4264.44, + "probability": 0.8215 + }, + { + "start": 4264.68, + "end": 4265.12, + "probability": 0.7834 + }, + { + "start": 4265.12, + "end": 4265.66, + "probability": 0.429 + }, + { + "start": 4265.7, + "end": 4267.66, + "probability": 0.8108 + }, + { + "start": 4268.3, + "end": 4268.89, + "probability": 0.9434 + }, + { + "start": 4269.96, + "end": 4273.22, + "probability": 0.9904 + }, + { + "start": 4273.8, + "end": 4278.36, + "probability": 0.9907 + }, + { + "start": 4278.92, + "end": 4282.66, + "probability": 0.9837 + }, + { + "start": 4283.2, + "end": 4285.94, + "probability": 0.7061 + }, + { + "start": 4286.46, + "end": 4287.68, + "probability": 0.9854 + }, + { + "start": 4288.42, + "end": 4291.66, + "probability": 0.9974 + }, + { + "start": 4291.88, + "end": 4292.34, + "probability": 0.7149 + }, + { + "start": 4292.58, + "end": 4293.28, + "probability": 0.6371 + }, + { + "start": 4293.72, + "end": 4295.38, + "probability": 0.7629 + }, + { + "start": 4295.42, + "end": 4297.78, + "probability": 0.9438 + }, + { + "start": 4297.94, + "end": 4298.8, + "probability": 0.9432 + }, + { + "start": 4298.88, + "end": 4304.16, + "probability": 0.9748 + }, + { + "start": 4304.76, + "end": 4311.12, + "probability": 0.9481 + }, + { + "start": 4311.5, + "end": 4312.2, + "probability": 0.7235 + }, + { + "start": 4312.36, + "end": 4314.74, + "probability": 0.8864 + }, + { + "start": 4315.04, + "end": 4317.1, + "probability": 0.6655 + }, + { + "start": 4326.86, + "end": 4328.7, + "probability": 0.5631 + }, + { + "start": 4329.1, + "end": 4330.28, + "probability": 0.5769 + }, + { + "start": 4330.46, + "end": 4331.84, + "probability": 0.9219 + }, + { + "start": 4332.14, + "end": 4334.14, + "probability": 0.6022 + }, + { + "start": 4335.62, + "end": 4336.68, + "probability": 0.9645 + }, + { + "start": 4336.94, + "end": 4342.58, + "probability": 0.9921 + }, + { + "start": 4343.98, + "end": 4347.7, + "probability": 0.9979 + }, + { + "start": 4348.9, + "end": 4352.64, + "probability": 0.98 + }, + { + "start": 4353.86, + "end": 4355.26, + "probability": 0.9883 + }, + { + "start": 4357.0, + "end": 4360.67, + "probability": 0.9951 + }, + { + "start": 4362.22, + "end": 4363.28, + "probability": 0.7767 + }, + { + "start": 4365.38, + "end": 4365.96, + "probability": 0.527 + }, + { + "start": 4367.16, + "end": 4368.94, + "probability": 0.9844 + }, + { + "start": 4370.88, + "end": 4373.72, + "probability": 0.9937 + }, + { + "start": 4374.88, + "end": 4379.42, + "probability": 0.9972 + }, + { + "start": 4382.54, + "end": 4383.52, + "probability": 0.9448 + }, + { + "start": 4383.64, + "end": 4388.32, + "probability": 0.9961 + }, + { + "start": 4390.02, + "end": 4392.42, + "probability": 0.9883 + }, + { + "start": 4394.14, + "end": 4398.66, + "probability": 0.9445 + }, + { + "start": 4399.44, + "end": 4402.03, + "probability": 0.8884 + }, + { + "start": 4403.16, + "end": 4407.16, + "probability": 0.9963 + }, + { + "start": 4407.84, + "end": 4409.04, + "probability": 0.8296 + }, + { + "start": 4410.48, + "end": 4414.12, + "probability": 0.995 + }, + { + "start": 4415.24, + "end": 4418.16, + "probability": 0.9949 + }, + { + "start": 4418.8, + "end": 4420.14, + "probability": 0.9927 + }, + { + "start": 4420.28, + "end": 4421.56, + "probability": 0.9147 + }, + { + "start": 4422.7, + "end": 4424.32, + "probability": 0.9741 + }, + { + "start": 4424.84, + "end": 4426.32, + "probability": 0.9928 + }, + { + "start": 4427.08, + "end": 4428.54, + "probability": 0.945 + }, + { + "start": 4430.08, + "end": 4430.9, + "probability": 0.6345 + }, + { + "start": 4431.32, + "end": 4431.88, + "probability": 0.7464 + }, + { + "start": 4431.92, + "end": 4432.82, + "probability": 0.885 + }, + { + "start": 4432.9, + "end": 4433.92, + "probability": 0.844 + }, + { + "start": 4435.38, + "end": 4437.78, + "probability": 0.9575 + }, + { + "start": 4439.78, + "end": 4441.17, + "probability": 0.8291 + }, + { + "start": 4442.08, + "end": 4444.0, + "probability": 0.9921 + }, + { + "start": 4445.92, + "end": 4447.44, + "probability": 0.6564 + }, + { + "start": 4448.58, + "end": 4449.56, + "probability": 0.9979 + }, + { + "start": 4453.18, + "end": 4459.98, + "probability": 0.9991 + }, + { + "start": 4461.54, + "end": 4464.46, + "probability": 0.9458 + }, + { + "start": 4465.66, + "end": 4467.06, + "probability": 0.8989 + }, + { + "start": 4467.7, + "end": 4470.42, + "probability": 0.9076 + }, + { + "start": 4472.36, + "end": 4474.32, + "probability": 0.9714 + }, + { + "start": 4474.44, + "end": 4474.44, + "probability": 0.4094 + }, + { + "start": 4474.44, + "end": 4476.56, + "probability": 0.9364 + }, + { + "start": 4477.44, + "end": 4478.98, + "probability": 0.8784 + }, + { + "start": 4480.0, + "end": 4483.0, + "probability": 0.9127 + }, + { + "start": 4483.12, + "end": 4484.26, + "probability": 0.0236 + }, + { + "start": 4484.4, + "end": 4485.66, + "probability": 0.6836 + }, + { + "start": 4486.62, + "end": 4489.44, + "probability": 0.9971 + }, + { + "start": 4491.68, + "end": 4493.98, + "probability": 0.9969 + }, + { + "start": 4494.08, + "end": 4495.18, + "probability": 0.938 + }, + { + "start": 4496.38, + "end": 4501.76, + "probability": 0.9893 + }, + { + "start": 4502.7, + "end": 4503.8, + "probability": 0.5014 + }, + { + "start": 4504.68, + "end": 4505.0, + "probability": 0.9712 + }, + { + "start": 4505.86, + "end": 4508.54, + "probability": 0.9946 + }, + { + "start": 4508.7, + "end": 4510.28, + "probability": 0.8292 + }, + { + "start": 4510.7, + "end": 4512.88, + "probability": 0.9861 + }, + { + "start": 4513.54, + "end": 4515.0, + "probability": 0.7042 + }, + { + "start": 4515.58, + "end": 4518.26, + "probability": 0.0395 + }, + { + "start": 4520.68, + "end": 4521.16, + "probability": 0.1742 + }, + { + "start": 4521.16, + "end": 4522.72, + "probability": 0.4896 + }, + { + "start": 4522.72, + "end": 4522.72, + "probability": 0.558 + }, + { + "start": 4522.72, + "end": 4523.72, + "probability": 0.6921 + }, + { + "start": 4525.65, + "end": 4529.8, + "probability": 0.6595 + }, + { + "start": 4529.96, + "end": 4531.09, + "probability": 0.5043 + }, + { + "start": 4531.34, + "end": 4531.34, + "probability": 0.2823 + }, + { + "start": 4531.34, + "end": 4531.84, + "probability": 0.0888 + }, + { + "start": 4531.96, + "end": 4533.98, + "probability": 0.9331 + }, + { + "start": 4535.58, + "end": 4536.62, + "probability": 0.819 + }, + { + "start": 4537.0, + "end": 4538.39, + "probability": 0.9634 + }, + { + "start": 4540.38, + "end": 4541.36, + "probability": 0.8798 + }, + { + "start": 4541.5, + "end": 4546.42, + "probability": 0.9979 + }, + { + "start": 4547.94, + "end": 4548.94, + "probability": 0.9634 + }, + { + "start": 4553.18, + "end": 4556.62, + "probability": 0.9969 + }, + { + "start": 4557.88, + "end": 4561.38, + "probability": 0.9986 + }, + { + "start": 4562.44, + "end": 4567.16, + "probability": 0.842 + }, + { + "start": 4568.3, + "end": 4571.7, + "probability": 0.9901 + }, + { + "start": 4572.46, + "end": 4575.14, + "probability": 0.923 + }, + { + "start": 4576.21, + "end": 4579.0, + "probability": 0.9648 + }, + { + "start": 4579.54, + "end": 4580.46, + "probability": 0.6928 + }, + { + "start": 4580.52, + "end": 4582.34, + "probability": 0.9702 + }, + { + "start": 4582.5, + "end": 4583.58, + "probability": 0.9705 + }, + { + "start": 4585.58, + "end": 4589.62, + "probability": 0.8713 + }, + { + "start": 4590.54, + "end": 4591.52, + "probability": 0.8098 + }, + { + "start": 4591.64, + "end": 4592.92, + "probability": 0.8912 + }, + { + "start": 4593.62, + "end": 4597.34, + "probability": 0.8396 + }, + { + "start": 4597.78, + "end": 4599.82, + "probability": 0.7845 + }, + { + "start": 4600.26, + "end": 4602.08, + "probability": 0.9927 + }, + { + "start": 4602.64, + "end": 4604.7, + "probability": 0.9967 + }, + { + "start": 4606.36, + "end": 4607.48, + "probability": 0.107 + }, + { + "start": 4607.48, + "end": 4607.8, + "probability": 0.3186 + }, + { + "start": 4607.8, + "end": 4609.16, + "probability": 0.247 + }, + { + "start": 4609.92, + "end": 4610.6, + "probability": 0.6755 + }, + { + "start": 4612.66, + "end": 4613.1, + "probability": 0.2634 + }, + { + "start": 4613.1, + "end": 4613.73, + "probability": 0.1587 + }, + { + "start": 4616.12, + "end": 4619.88, + "probability": 0.774 + }, + { + "start": 4619.88, + "end": 4620.09, + "probability": 0.3698 + }, + { + "start": 4620.52, + "end": 4623.66, + "probability": 0.7602 + }, + { + "start": 4623.96, + "end": 4623.96, + "probability": 0.5313 + }, + { + "start": 4623.96, + "end": 4624.78, + "probability": 0.8035 + }, + { + "start": 4625.04, + "end": 4627.01, + "probability": 0.5446 + }, + { + "start": 4627.96, + "end": 4629.2, + "probability": 0.0997 + }, + { + "start": 4629.2, + "end": 4629.22, + "probability": 0.1021 + }, + { + "start": 4629.84, + "end": 4632.08, + "probability": 0.7778 + }, + { + "start": 4632.46, + "end": 4633.58, + "probability": 0.0908 + }, + { + "start": 4633.62, + "end": 4636.28, + "probability": 0.8884 + }, + { + "start": 4636.8, + "end": 4637.82, + "probability": 0.701 + }, + { + "start": 4637.92, + "end": 4639.48, + "probability": 0.8384 + }, + { + "start": 4639.64, + "end": 4643.42, + "probability": 0.9415 + }, + { + "start": 4644.74, + "end": 4646.38, + "probability": 0.9116 + }, + { + "start": 4646.62, + "end": 4649.48, + "probability": 0.9971 + }, + { + "start": 4650.12, + "end": 4651.34, + "probability": 0.9704 + }, + { + "start": 4651.42, + "end": 4655.1, + "probability": 0.9141 + }, + { + "start": 4655.71, + "end": 4659.4, + "probability": 0.392 + }, + { + "start": 4659.4, + "end": 4660.28, + "probability": 0.3404 + }, + { + "start": 4660.34, + "end": 4661.52, + "probability": 0.7196 + }, + { + "start": 4661.66, + "end": 4662.14, + "probability": 0.4322 + }, + { + "start": 4662.22, + "end": 4662.4, + "probability": 0.3672 + }, + { + "start": 4663.24, + "end": 4663.38, + "probability": 0.0041 + }, + { + "start": 4663.38, + "end": 4664.11, + "probability": 0.7307 + }, + { + "start": 4665.14, + "end": 4666.06, + "probability": 0.5408 + }, + { + "start": 4666.58, + "end": 4667.72, + "probability": 0.7996 + }, + { + "start": 4667.72, + "end": 4668.46, + "probability": 0.652 + }, + { + "start": 4668.52, + "end": 4669.06, + "probability": 0.5315 + }, + { + "start": 4669.14, + "end": 4670.1, + "probability": 0.8922 + }, + { + "start": 4670.22, + "end": 4670.98, + "probability": 0.7318 + }, + { + "start": 4671.08, + "end": 4671.88, + "probability": 0.9762 + }, + { + "start": 4671.94, + "end": 4673.06, + "probability": 0.9611 + }, + { + "start": 4673.28, + "end": 4675.39, + "probability": 0.9592 + }, + { + "start": 4675.66, + "end": 4679.02, + "probability": 0.9766 + }, + { + "start": 4680.04, + "end": 4681.12, + "probability": 0.7747 + }, + { + "start": 4681.28, + "end": 4682.04, + "probability": 0.5518 + }, + { + "start": 4682.44, + "end": 4683.82, + "probability": 0.9594 + }, + { + "start": 4683.9, + "end": 4684.1, + "probability": 0.6706 + }, + { + "start": 4684.14, + "end": 4689.7, + "probability": 0.9788 + }, + { + "start": 4689.82, + "end": 4690.9, + "probability": 0.9296 + }, + { + "start": 4691.0, + "end": 4691.7, + "probability": 0.7933 + }, + { + "start": 4691.76, + "end": 4692.56, + "probability": 0.7201 + }, + { + "start": 4693.0, + "end": 4693.18, + "probability": 0.0044 + }, + { + "start": 4693.18, + "end": 4693.18, + "probability": 0.2719 + }, + { + "start": 4693.18, + "end": 4693.18, + "probability": 0.399 + }, + { + "start": 4693.18, + "end": 4695.48, + "probability": 0.1131 + }, + { + "start": 4695.78, + "end": 4697.68, + "probability": 0.4202 + }, + { + "start": 4700.26, + "end": 4701.46, + "probability": 0.5673 + }, + { + "start": 4701.72, + "end": 4702.36, + "probability": 0.0652 + }, + { + "start": 4702.38, + "end": 4702.72, + "probability": 0.5621 + }, + { + "start": 4702.88, + "end": 4703.85, + "probability": 0.9732 + }, + { + "start": 4703.98, + "end": 4708.02, + "probability": 0.9007 + }, + { + "start": 4708.36, + "end": 4710.08, + "probability": 0.716 + }, + { + "start": 4710.56, + "end": 4711.68, + "probability": 0.8068 + }, + { + "start": 4712.0, + "end": 4712.84, + "probability": 0.9325 + }, + { + "start": 4712.92, + "end": 4713.84, + "probability": 0.8209 + }, + { + "start": 4714.08, + "end": 4715.6, + "probability": 0.6084 + }, + { + "start": 4715.6, + "end": 4720.75, + "probability": 0.8389 + }, + { + "start": 4728.44, + "end": 4732.18, + "probability": 0.702 + }, + { + "start": 4732.42, + "end": 4735.1, + "probability": 0.1584 + }, + { + "start": 4735.1, + "end": 4738.72, + "probability": 0.9561 + }, + { + "start": 4741.32, + "end": 4742.5, + "probability": 0.1104 + }, + { + "start": 4742.5, + "end": 4744.22, + "probability": 0.6826 + }, + { + "start": 4744.4, + "end": 4745.05, + "probability": 0.87 + }, + { + "start": 4745.7, + "end": 4748.26, + "probability": 0.4038 + }, + { + "start": 4748.28, + "end": 4749.94, + "probability": 0.4931 + }, + { + "start": 4750.24, + "end": 4752.92, + "probability": 0.7642 + }, + { + "start": 4752.92, + "end": 4756.16, + "probability": 0.9475 + }, + { + "start": 4756.76, + "end": 4758.54, + "probability": 0.8128 + }, + { + "start": 4759.98, + "end": 4760.24, + "probability": 0.3378 + }, + { + "start": 4760.24, + "end": 4761.0, + "probability": 0.5167 + }, + { + "start": 4761.16, + "end": 4762.38, + "probability": 0.9365 + }, + { + "start": 4762.54, + "end": 4763.8, + "probability": 0.8354 + }, + { + "start": 4765.0, + "end": 4767.86, + "probability": 0.9858 + }, + { + "start": 4769.26, + "end": 4772.28, + "probability": 0.9055 + }, + { + "start": 4773.12, + "end": 4774.88, + "probability": 0.9851 + }, + { + "start": 4775.64, + "end": 4779.16, + "probability": 0.8837 + }, + { + "start": 4780.46, + "end": 4782.38, + "probability": 0.9167 + }, + { + "start": 4784.42, + "end": 4786.42, + "probability": 0.875 + }, + { + "start": 4787.36, + "end": 4789.26, + "probability": 0.9983 + }, + { + "start": 4790.32, + "end": 4792.26, + "probability": 0.9972 + }, + { + "start": 4793.18, + "end": 4796.2, + "probability": 0.8642 + }, + { + "start": 4796.3, + "end": 4797.1, + "probability": 0.8195 + }, + { + "start": 4797.22, + "end": 4797.94, + "probability": 0.5737 + }, + { + "start": 4799.48, + "end": 4802.76, + "probability": 0.9849 + }, + { + "start": 4802.76, + "end": 4807.7, + "probability": 0.9945 + }, + { + "start": 4808.78, + "end": 4809.02, + "probability": 0.2883 + }, + { + "start": 4809.5, + "end": 4809.86, + "probability": 0.0004 + }, + { + "start": 4810.82, + "end": 4811.92, + "probability": 0.3229 + }, + { + "start": 4811.92, + "end": 4816.52, + "probability": 0.9758 + }, + { + "start": 4817.1, + "end": 4821.16, + "probability": 0.9851 + }, + { + "start": 4822.12, + "end": 4824.96, + "probability": 0.9792 + }, + { + "start": 4825.74, + "end": 4826.5, + "probability": 0.8429 + }, + { + "start": 4827.26, + "end": 4831.39, + "probability": 0.9831 + }, + { + "start": 4831.98, + "end": 4833.03, + "probability": 0.9937 + }, + { + "start": 4834.04, + "end": 4834.7, + "probability": 0.5706 + }, + { + "start": 4835.82, + "end": 4838.06, + "probability": 0.9673 + }, + { + "start": 4839.0, + "end": 4839.0, + "probability": 0.0407 + }, + { + "start": 4839.0, + "end": 4843.64, + "probability": 0.7688 + }, + { + "start": 4845.24, + "end": 4846.58, + "probability": 0.1834 + }, + { + "start": 4848.18, + "end": 4851.36, + "probability": 0.1077 + }, + { + "start": 4852.44, + "end": 4854.42, + "probability": 0.0319 + }, + { + "start": 4855.42, + "end": 4856.56, + "probability": 0.0614 + }, + { + "start": 4860.3, + "end": 4864.38, + "probability": 0.5312 + }, + { + "start": 4864.42, + "end": 4864.42, + "probability": 0.0097 + }, + { + "start": 4864.42, + "end": 4864.76, + "probability": 0.055 + }, + { + "start": 4866.2, + "end": 4869.02, + "probability": 0.0203 + }, + { + "start": 4869.14, + "end": 4871.02, + "probability": 0.1104 + }, + { + "start": 4871.08, + "end": 4872.18, + "probability": 0.424 + }, + { + "start": 4872.68, + "end": 4873.86, + "probability": 0.1321 + }, + { + "start": 4874.02, + "end": 4874.72, + "probability": 0.5633 + }, + { + "start": 4875.74, + "end": 4875.92, + "probability": 0.0046 + }, + { + "start": 4875.92, + "end": 4876.5, + "probability": 0.1367 + }, + { + "start": 4876.5, + "end": 4876.5, + "probability": 0.1378 + }, + { + "start": 4876.72, + "end": 4878.86, + "probability": 0.7606 + }, + { + "start": 4879.06, + "end": 4879.66, + "probability": 0.6372 + }, + { + "start": 4879.94, + "end": 4881.08, + "probability": 0.9408 + }, + { + "start": 4881.26, + "end": 4882.17, + "probability": 0.8829 + }, + { + "start": 4882.46, + "end": 4883.32, + "probability": 0.7487 + }, + { + "start": 4883.4, + "end": 4886.34, + "probability": 0.994 + }, + { + "start": 4886.58, + "end": 4886.78, + "probability": 0.1655 + }, + { + "start": 4886.96, + "end": 4887.6, + "probability": 0.1924 + }, + { + "start": 4888.16, + "end": 4888.78, + "probability": 0.4345 + }, + { + "start": 4888.82, + "end": 4890.04, + "probability": 0.7308 + }, + { + "start": 4890.04, + "end": 4890.44, + "probability": 0.6149 + }, + { + "start": 4891.12, + "end": 4893.44, + "probability": 0.1052 + }, + { + "start": 4894.14, + "end": 4894.58, + "probability": 0.4088 + }, + { + "start": 4894.66, + "end": 4895.44, + "probability": 0.003 + }, + { + "start": 4895.62, + "end": 4896.6, + "probability": 0.9284 + }, + { + "start": 4896.88, + "end": 4897.7, + "probability": 0.2447 + }, + { + "start": 4897.98, + "end": 4899.9, + "probability": 0.8391 + }, + { + "start": 4900.5, + "end": 4902.37, + "probability": 0.6695 + }, + { + "start": 4904.32, + "end": 4906.22, + "probability": 0.3788 + }, + { + "start": 4906.22, + "end": 4908.28, + "probability": 0.8916 + }, + { + "start": 4908.5, + "end": 4909.89, + "probability": 0.5945 + }, + { + "start": 4910.08, + "end": 4913.08, + "probability": 0.6589 + }, + { + "start": 4913.08, + "end": 4915.96, + "probability": 0.2014 + }, + { + "start": 4916.1, + "end": 4916.1, + "probability": 0.1799 + }, + { + "start": 4916.12, + "end": 4916.92, + "probability": 0.6548 + }, + { + "start": 4917.06, + "end": 4918.27, + "probability": 0.8208 + }, + { + "start": 4918.52, + "end": 4919.72, + "probability": 0.6077 + }, + { + "start": 4919.84, + "end": 4921.92, + "probability": 0.5751 + }, + { + "start": 4922.56, + "end": 4925.92, + "probability": 0.3674 + }, + { + "start": 4926.38, + "end": 4928.12, + "probability": 0.2344 + }, + { + "start": 4928.28, + "end": 4929.86, + "probability": 0.9697 + }, + { + "start": 4930.18, + "end": 4933.7, + "probability": 0.7717 + }, + { + "start": 4933.7, + "end": 4936.7, + "probability": 0.8467 + }, + { + "start": 4938.5, + "end": 4938.5, + "probability": 0.19 + }, + { + "start": 4938.5, + "end": 4938.72, + "probability": 0.2416 + }, + { + "start": 4938.72, + "end": 4940.2, + "probability": 0.3548 + }, + { + "start": 4941.2, + "end": 4942.04, + "probability": 0.2278 + }, + { + "start": 4942.68, + "end": 4942.7, + "probability": 0.0143 + }, + { + "start": 4942.7, + "end": 4943.82, + "probability": 0.4187 + }, + { + "start": 4944.06, + "end": 4946.82, + "probability": 0.6692 + }, + { + "start": 4946.82, + "end": 4947.94, + "probability": 0.8381 + }, + { + "start": 4948.1, + "end": 4949.4, + "probability": 0.4198 + }, + { + "start": 4949.7, + "end": 4950.44, + "probability": 0.4337 + }, + { + "start": 4950.62, + "end": 4953.28, + "probability": 0.5464 + }, + { + "start": 4953.28, + "end": 4955.76, + "probability": 0.5768 + }, + { + "start": 4955.9, + "end": 4959.04, + "probability": 0.7029 + }, + { + "start": 4959.1, + "end": 4960.18, + "probability": 0.615 + }, + { + "start": 4960.24, + "end": 4960.24, + "probability": 0.3373 + }, + { + "start": 4960.48, + "end": 4962.52, + "probability": 0.9595 + }, + { + "start": 4962.64, + "end": 4965.06, + "probability": 0.9756 + }, + { + "start": 4965.28, + "end": 4969.28, + "probability": 0.9361 + }, + { + "start": 4969.46, + "end": 4974.58, + "probability": 0.9781 + }, + { + "start": 4974.92, + "end": 4975.98, + "probability": 0.9391 + }, + { + "start": 4977.1, + "end": 4977.2, + "probability": 0.0994 + }, + { + "start": 4977.2, + "end": 4978.8, + "probability": 0.7806 + }, + { + "start": 4978.94, + "end": 4980.92, + "probability": 0.9595 + }, + { + "start": 4980.98, + "end": 4982.78, + "probability": 0.3128 + }, + { + "start": 4982.84, + "end": 4983.68, + "probability": 0.5315 + }, + { + "start": 4983.88, + "end": 4988.62, + "probability": 0.8491 + }, + { + "start": 4988.94, + "end": 4989.86, + "probability": 0.9019 + }, + { + "start": 4990.1, + "end": 4992.64, + "probability": 0.8726 + }, + { + "start": 4992.7, + "end": 4994.52, + "probability": 0.4904 + }, + { + "start": 4994.54, + "end": 4995.1, + "probability": 0.0997 + }, + { + "start": 4995.1, + "end": 4995.1, + "probability": 0.0921 + }, + { + "start": 4995.1, + "end": 4998.28, + "probability": 0.9033 + }, + { + "start": 4998.68, + "end": 5000.3, + "probability": 0.9248 + }, + { + "start": 5001.6, + "end": 5003.32, + "probability": 0.8681 + }, + { + "start": 5003.4, + "end": 5004.92, + "probability": 0.8137 + }, + { + "start": 5005.08, + "end": 5005.94, + "probability": 0.958 + }, + { + "start": 5007.46, + "end": 5008.46, + "probability": 0.9441 + }, + { + "start": 5008.68, + "end": 5011.42, + "probability": 0.916 + }, + { + "start": 5011.56, + "end": 5015.84, + "probability": 0.983 + }, + { + "start": 5017.28, + "end": 5018.7, + "probability": 0.7883 + }, + { + "start": 5019.08, + "end": 5019.88, + "probability": 0.7792 + }, + { + "start": 5020.1, + "end": 5022.5, + "probability": 0.9748 + }, + { + "start": 5022.7, + "end": 5025.76, + "probability": 0.9499 + }, + { + "start": 5027.3, + "end": 5028.08, + "probability": 0.9372 + }, + { + "start": 5028.22, + "end": 5031.18, + "probability": 0.989 + }, + { + "start": 5031.56, + "end": 5032.36, + "probability": 0.7194 + }, + { + "start": 5033.06, + "end": 5033.48, + "probability": 0.665 + }, + { + "start": 5034.18, + "end": 5038.04, + "probability": 0.905 + }, + { + "start": 5039.68, + "end": 5046.32, + "probability": 0.9419 + }, + { + "start": 5046.98, + "end": 5050.38, + "probability": 0.9969 + }, + { + "start": 5050.65, + "end": 5055.48, + "probability": 0.9877 + }, + { + "start": 5056.78, + "end": 5059.6, + "probability": 0.8008 + }, + { + "start": 5060.72, + "end": 5061.94, + "probability": 0.9399 + }, + { + "start": 5062.22, + "end": 5064.26, + "probability": 0.9816 + }, + { + "start": 5064.54, + "end": 5067.9, + "probability": 0.8544 + }, + { + "start": 5068.44, + "end": 5071.56, + "probability": 0.9826 + }, + { + "start": 5072.18, + "end": 5073.6, + "probability": 0.8448 + }, + { + "start": 5074.18, + "end": 5076.02, + "probability": 0.786 + }, + { + "start": 5076.56, + "end": 5078.26, + "probability": 0.7603 + }, + { + "start": 5079.38, + "end": 5081.32, + "probability": 0.9758 + }, + { + "start": 5081.96, + "end": 5085.32, + "probability": 0.9514 + }, + { + "start": 5085.6, + "end": 5086.6, + "probability": 0.8608 + }, + { + "start": 5086.98, + "end": 5087.83, + "probability": 0.873 + }, + { + "start": 5088.2, + "end": 5088.98, + "probability": 0.7345 + }, + { + "start": 5089.94, + "end": 5091.88, + "probability": 0.8818 + }, + { + "start": 5092.68, + "end": 5093.64, + "probability": 0.6104 + }, + { + "start": 5094.36, + "end": 5095.34, + "probability": 0.645 + }, + { + "start": 5095.42, + "end": 5096.08, + "probability": 0.9856 + }, + { + "start": 5096.72, + "end": 5097.32, + "probability": 0.5918 + }, + { + "start": 5097.44, + "end": 5097.88, + "probability": 0.9613 + }, + { + "start": 5098.72, + "end": 5103.36, + "probability": 0.9752 + }, + { + "start": 5104.54, + "end": 5106.43, + "probability": 0.6962 + }, + { + "start": 5107.2, + "end": 5109.22, + "probability": 0.9387 + }, + { + "start": 5109.62, + "end": 5112.8, + "probability": 0.9941 + }, + { + "start": 5113.36, + "end": 5120.86, + "probability": 0.9893 + }, + { + "start": 5122.4, + "end": 5124.5, + "probability": 0.8689 + }, + { + "start": 5124.6, + "end": 5126.74, + "probability": 0.9551 + }, + { + "start": 5127.48, + "end": 5128.92, + "probability": 0.9931 + }, + { + "start": 5130.5, + "end": 5131.16, + "probability": 0.6982 + }, + { + "start": 5131.5, + "end": 5133.44, + "probability": 0.9177 + }, + { + "start": 5133.86, + "end": 5134.68, + "probability": 0.9298 + }, + { + "start": 5134.92, + "end": 5138.12, + "probability": 0.9285 + }, + { + "start": 5138.8, + "end": 5144.02, + "probability": 0.9974 + }, + { + "start": 5144.88, + "end": 5147.4, + "probability": 0.9952 + }, + { + "start": 5148.18, + "end": 5149.78, + "probability": 0.9803 + }, + { + "start": 5150.38, + "end": 5152.72, + "probability": 0.9974 + }, + { + "start": 5153.12, + "end": 5154.52, + "probability": 0.618 + }, + { + "start": 5154.78, + "end": 5155.44, + "probability": 0.4912 + }, + { + "start": 5155.46, + "end": 5160.8, + "probability": 0.9716 + }, + { + "start": 5160.82, + "end": 5162.0, + "probability": 0.0494 + }, + { + "start": 5162.12, + "end": 5163.46, + "probability": 0.7563 + }, + { + "start": 5165.32, + "end": 5166.4, + "probability": 0.3729 + }, + { + "start": 5166.72, + "end": 5167.3, + "probability": 0.4068 + }, + { + "start": 5167.4, + "end": 5171.94, + "probability": 0.9063 + }, + { + "start": 5172.36, + "end": 5173.26, + "probability": 0.0376 + }, + { + "start": 5173.68, + "end": 5176.06, + "probability": 0.4994 + }, + { + "start": 5176.08, + "end": 5176.36, + "probability": 0.2008 + }, + { + "start": 5176.64, + "end": 5179.98, + "probability": 0.7939 + }, + { + "start": 5180.14, + "end": 5185.06, + "probability": 0.93 + }, + { + "start": 5185.4, + "end": 5186.64, + "probability": 0.3359 + }, + { + "start": 5186.88, + "end": 5187.2, + "probability": 0.171 + }, + { + "start": 5187.2, + "end": 5187.83, + "probability": 0.3424 + }, + { + "start": 5188.26, + "end": 5189.1, + "probability": 0.8071 + }, + { + "start": 5189.74, + "end": 5191.0, + "probability": 0.4402 + }, + { + "start": 5191.14, + "end": 5191.86, + "probability": 0.7586 + }, + { + "start": 5192.4, + "end": 5192.72, + "probability": 0.4242 + }, + { + "start": 5195.34, + "end": 5196.18, + "probability": 0.1724 + }, + { + "start": 5196.76, + "end": 5197.28, + "probability": 0.5004 + }, + { + "start": 5197.42, + "end": 5200.36, + "probability": 0.6605 + }, + { + "start": 5200.46, + "end": 5201.82, + "probability": 0.0792 + }, + { + "start": 5202.06, + "end": 5202.46, + "probability": 0.6097 + }, + { + "start": 5202.58, + "end": 5203.05, + "probability": 0.6172 + }, + { + "start": 5203.34, + "end": 5205.3, + "probability": 0.8658 + }, + { + "start": 5205.46, + "end": 5208.31, + "probability": 0.6138 + }, + { + "start": 5208.78, + "end": 5210.16, + "probability": 0.7393 + }, + { + "start": 5210.64, + "end": 5212.66, + "probability": 0.2129 + }, + { + "start": 5212.86, + "end": 5215.54, + "probability": 0.3335 + }, + { + "start": 5215.58, + "end": 5215.62, + "probability": 0.241 + }, + { + "start": 5215.64, + "end": 5218.62, + "probability": 0.8617 + }, + { + "start": 5219.62, + "end": 5222.84, + "probability": 0.9763 + }, + { + "start": 5223.74, + "end": 5226.52, + "probability": 0.9373 + }, + { + "start": 5227.8, + "end": 5232.04, + "probability": 0.9849 + }, + { + "start": 5232.38, + "end": 5238.04, + "probability": 0.9848 + }, + { + "start": 5238.36, + "end": 5239.4, + "probability": 0.9037 + }, + { + "start": 5239.74, + "end": 5240.74, + "probability": 0.615 + }, + { + "start": 5241.52, + "end": 5241.68, + "probability": 0.135 + }, + { + "start": 5241.68, + "end": 5241.68, + "probability": 0.0312 + }, + { + "start": 5241.68, + "end": 5246.02, + "probability": 0.8106 + }, + { + "start": 5246.42, + "end": 5248.12, + "probability": 0.7959 + }, + { + "start": 5248.82, + "end": 5248.82, + "probability": 0.3436 + }, + { + "start": 5248.82, + "end": 5248.82, + "probability": 0.0655 + }, + { + "start": 5248.82, + "end": 5255.58, + "probability": 0.9816 + }, + { + "start": 5255.8, + "end": 5256.4, + "probability": 0.4541 + }, + { + "start": 5256.48, + "end": 5258.34, + "probability": 0.6171 + }, + { + "start": 5258.36, + "end": 5268.1, + "probability": 0.9567 + }, + { + "start": 5268.42, + "end": 5269.46, + "probability": 0.9251 + }, + { + "start": 5270.3, + "end": 5273.73, + "probability": 0.9973 + }, + { + "start": 5274.26, + "end": 5275.8, + "probability": 0.8193 + }, + { + "start": 5276.44, + "end": 5277.64, + "probability": 0.8146 + }, + { + "start": 5278.12, + "end": 5279.5, + "probability": 0.9954 + }, + { + "start": 5279.92, + "end": 5281.04, + "probability": 0.9346 + }, + { + "start": 5281.3, + "end": 5284.0, + "probability": 0.9814 + }, + { + "start": 5285.0, + "end": 5286.54, + "probability": 0.9487 + }, + { + "start": 5286.94, + "end": 5288.23, + "probability": 0.9668 + }, + { + "start": 5289.0, + "end": 5291.4, + "probability": 0.9955 + }, + { + "start": 5293.1, + "end": 5296.8, + "probability": 0.9951 + }, + { + "start": 5296.92, + "end": 5297.2, + "probability": 0.4182 + }, + { + "start": 5297.4, + "end": 5299.64, + "probability": 0.9802 + }, + { + "start": 5300.92, + "end": 5302.98, + "probability": 0.8208 + }, + { + "start": 5303.16, + "end": 5304.24, + "probability": 0.8148 + }, + { + "start": 5304.38, + "end": 5305.13, + "probability": 0.9106 + }, + { + "start": 5305.66, + "end": 5306.44, + "probability": 0.9784 + }, + { + "start": 5306.58, + "end": 5307.6, + "probability": 0.7528 + }, + { + "start": 5307.9, + "end": 5309.02, + "probability": 0.6421 + }, + { + "start": 5309.78, + "end": 5311.02, + "probability": 0.6702 + }, + { + "start": 5311.66, + "end": 5314.88, + "probability": 0.9725 + }, + { + "start": 5315.66, + "end": 5318.42, + "probability": 0.9736 + }, + { + "start": 5318.8, + "end": 5319.48, + "probability": 0.82 + }, + { + "start": 5319.86, + "end": 5321.6, + "probability": 0.9943 + }, + { + "start": 5322.4, + "end": 5324.22, + "probability": 0.9639 + }, + { + "start": 5324.6, + "end": 5325.57, + "probability": 0.9385 + }, + { + "start": 5326.22, + "end": 5331.04, + "probability": 0.7666 + }, + { + "start": 5331.16, + "end": 5333.46, + "probability": 0.628 + }, + { + "start": 5333.94, + "end": 5334.96, + "probability": 0.7372 + }, + { + "start": 5335.3, + "end": 5336.76, + "probability": 0.8408 + }, + { + "start": 5337.14, + "end": 5342.08, + "probability": 0.988 + }, + { + "start": 5342.14, + "end": 5344.48, + "probability": 0.7826 + }, + { + "start": 5344.64, + "end": 5344.82, + "probability": 0.6288 + }, + { + "start": 5344.88, + "end": 5346.92, + "probability": 0.8428 + }, + { + "start": 5347.38, + "end": 5350.59, + "probability": 0.674 + }, + { + "start": 5350.92, + "end": 5354.26, + "probability": 0.7651 + }, + { + "start": 5354.44, + "end": 5355.6, + "probability": 0.9399 + }, + { + "start": 5358.14, + "end": 5360.08, + "probability": 0.4305 + }, + { + "start": 5361.93, + "end": 5364.16, + "probability": 0.7399 + }, + { + "start": 5368.42, + "end": 5369.16, + "probability": 0.6525 + }, + { + "start": 5369.24, + "end": 5371.22, + "probability": 0.7694 + }, + { + "start": 5371.26, + "end": 5371.98, + "probability": 0.9025 + }, + { + "start": 5372.08, + "end": 5373.24, + "probability": 0.8896 + }, + { + "start": 5373.88, + "end": 5375.4, + "probability": 0.8214 + }, + { + "start": 5376.9, + "end": 5380.86, + "probability": 0.9795 + }, + { + "start": 5383.9, + "end": 5386.44, + "probability": 0.7297 + }, + { + "start": 5386.44, + "end": 5392.9, + "probability": 0.6704 + }, + { + "start": 5393.66, + "end": 5398.04, + "probability": 0.9669 + }, + { + "start": 5398.44, + "end": 5403.38, + "probability": 0.9746 + }, + { + "start": 5404.1, + "end": 5406.64, + "probability": 0.9906 + }, + { + "start": 5407.92, + "end": 5408.86, + "probability": 0.8914 + }, + { + "start": 5408.94, + "end": 5416.68, + "probability": 0.8777 + }, + { + "start": 5416.7, + "end": 5417.68, + "probability": 0.496 + }, + { + "start": 5417.76, + "end": 5418.74, + "probability": 0.907 + }, + { + "start": 5421.02, + "end": 5421.37, + "probability": 0.2052 + }, + { + "start": 5422.44, + "end": 5423.43, + "probability": 0.9004 + }, + { + "start": 5425.0, + "end": 5426.24, + "probability": 0.9927 + }, + { + "start": 5427.7, + "end": 5430.26, + "probability": 0.3636 + }, + { + "start": 5430.42, + "end": 5431.4, + "probability": 0.9012 + }, + { + "start": 5431.52, + "end": 5433.9, + "probability": 0.899 + }, + { + "start": 5434.28, + "end": 5434.62, + "probability": 0.2582 + }, + { + "start": 5434.74, + "end": 5435.64, + "probability": 0.9429 + }, + { + "start": 5435.8, + "end": 5436.44, + "probability": 0.7514 + }, + { + "start": 5436.56, + "end": 5437.56, + "probability": 0.8184 + }, + { + "start": 5437.76, + "end": 5438.58, + "probability": 0.8091 + }, + { + "start": 5438.78, + "end": 5440.82, + "probability": 0.8858 + }, + { + "start": 5441.02, + "end": 5442.52, + "probability": 0.8705 + }, + { + "start": 5442.52, + "end": 5444.44, + "probability": 0.9236 + }, + { + "start": 5444.68, + "end": 5445.28, + "probability": 0.6551 + }, + { + "start": 5445.4, + "end": 5447.66, + "probability": 0.4172 + }, + { + "start": 5447.94, + "end": 5449.6, + "probability": 0.2812 + }, + { + "start": 5449.78, + "end": 5452.58, + "probability": 0.5249 + }, + { + "start": 5452.58, + "end": 5452.58, + "probability": 0.521 + }, + { + "start": 5452.58, + "end": 5453.98, + "probability": 0.6582 + }, + { + "start": 5454.48, + "end": 5454.88, + "probability": 0.5008 + }, + { + "start": 5455.02, + "end": 5455.02, + "probability": 0.127 + }, + { + "start": 5455.88, + "end": 5456.12, + "probability": 0.1821 + }, + { + "start": 5456.12, + "end": 5458.3, + "probability": 0.5048 + }, + { + "start": 5458.4, + "end": 5459.86, + "probability": 0.662 + }, + { + "start": 5460.6, + "end": 5468.28, + "probability": 0.9622 + }, + { + "start": 5468.28, + "end": 5474.24, + "probability": 0.9844 + }, + { + "start": 5475.9, + "end": 5478.2, + "probability": 0.3359 + }, + { + "start": 5478.2, + "end": 5479.54, + "probability": 0.1082 + }, + { + "start": 5479.82, + "end": 5480.14, + "probability": 0.5455 + }, + { + "start": 5480.26, + "end": 5484.72, + "probability": 0.2777 + }, + { + "start": 5485.28, + "end": 5487.08, + "probability": 0.5196 + }, + { + "start": 5487.9, + "end": 5488.9, + "probability": 0.9655 + }, + { + "start": 5488.94, + "end": 5490.26, + "probability": 0.5837 + }, + { + "start": 5490.4, + "end": 5491.68, + "probability": 0.2869 + }, + { + "start": 5491.7, + "end": 5494.02, + "probability": 0.6348 + }, + { + "start": 5494.12, + "end": 5494.72, + "probability": 0.6608 + }, + { + "start": 5494.8, + "end": 5497.54, + "probability": 0.629 + }, + { + "start": 5497.7, + "end": 5498.92, + "probability": 0.5848 + }, + { + "start": 5498.92, + "end": 5500.1, + "probability": 0.8232 + }, + { + "start": 5500.14, + "end": 5501.39, + "probability": 0.9563 + }, + { + "start": 5501.82, + "end": 5505.66, + "probability": 0.8132 + }, + { + "start": 5505.76, + "end": 5506.7, + "probability": 0.3795 + }, + { + "start": 5506.74, + "end": 5509.34, + "probability": 0.3705 + }, + { + "start": 5509.52, + "end": 5511.29, + "probability": 0.5531 + }, + { + "start": 5511.64, + "end": 5513.12, + "probability": 0.6519 + }, + { + "start": 5514.22, + "end": 5515.32, + "probability": 0.0423 + }, + { + "start": 5515.66, + "end": 5516.06, + "probability": 0.0383 + }, + { + "start": 5516.14, + "end": 5517.36, + "probability": 0.149 + }, + { + "start": 5517.78, + "end": 5518.58, + "probability": 0.2952 + }, + { + "start": 5518.76, + "end": 5518.92, + "probability": 0.4949 + }, + { + "start": 5518.92, + "end": 5519.24, + "probability": 0.2865 + }, + { + "start": 5519.24, + "end": 5519.32, + "probability": 0.1968 + }, + { + "start": 5519.32, + "end": 5520.02, + "probability": 0.0686 + }, + { + "start": 5520.18, + "end": 5520.46, + "probability": 0.1912 + }, + { + "start": 5520.46, + "end": 5522.4, + "probability": 0.7583 + }, + { + "start": 5522.6, + "end": 5522.94, + "probability": 0.771 + }, + { + "start": 5524.12, + "end": 5525.04, + "probability": 0.0279 + }, + { + "start": 5525.42, + "end": 5527.5, + "probability": 0.616 + }, + { + "start": 5528.56, + "end": 5529.85, + "probability": 0.9058 + }, + { + "start": 5530.0, + "end": 5531.38, + "probability": 0.33 + }, + { + "start": 5531.66, + "end": 5532.52, + "probability": 0.7762 + }, + { + "start": 5533.18, + "end": 5536.2, + "probability": 0.5921 + }, + { + "start": 5536.5, + "end": 5536.94, + "probability": 0.0714 + }, + { + "start": 5536.94, + "end": 5540.44, + "probability": 0.7507 + }, + { + "start": 5540.86, + "end": 5542.28, + "probability": 0.666 + }, + { + "start": 5542.42, + "end": 5543.16, + "probability": 0.8042 + }, + { + "start": 5543.24, + "end": 5544.46, + "probability": 0.9041 + }, + { + "start": 5544.62, + "end": 5546.24, + "probability": 0.3645 + }, + { + "start": 5546.66, + "end": 5548.08, + "probability": 0.4467 + }, + { + "start": 5548.08, + "end": 5548.08, + "probability": 0.0411 + }, + { + "start": 5548.08, + "end": 5549.46, + "probability": 0.5433 + }, + { + "start": 5549.88, + "end": 5551.78, + "probability": 0.4514 + }, + { + "start": 5556.02, + "end": 5556.4, + "probability": 0.3083 + }, + { + "start": 5556.4, + "end": 5556.44, + "probability": 0.0901 + }, + { + "start": 5556.44, + "end": 5556.44, + "probability": 0.0248 + }, + { + "start": 5556.44, + "end": 5557.22, + "probability": 0.4363 + }, + { + "start": 5557.3, + "end": 5559.2, + "probability": 0.574 + }, + { + "start": 5559.74, + "end": 5562.12, + "probability": 0.8818 + }, + { + "start": 5563.04, + "end": 5563.62, + "probability": 0.5284 + }, + { + "start": 5563.62, + "end": 5566.12, + "probability": 0.7657 + }, + { + "start": 5566.64, + "end": 5571.26, + "probability": 0.9958 + }, + { + "start": 5573.7, + "end": 5577.62, + "probability": 0.9189 + }, + { + "start": 5577.94, + "end": 5578.86, + "probability": 0.9144 + }, + { + "start": 5579.78, + "end": 5581.4, + "probability": 0.8081 + }, + { + "start": 5581.98, + "end": 5583.78, + "probability": 0.9969 + }, + { + "start": 5584.48, + "end": 5586.3, + "probability": 0.744 + }, + { + "start": 5587.16, + "end": 5592.42, + "probability": 0.9618 + }, + { + "start": 5592.98, + "end": 5595.5, + "probability": 0.9561 + }, + { + "start": 5595.82, + "end": 5598.09, + "probability": 0.9878 + }, + { + "start": 5598.42, + "end": 5599.42, + "probability": 0.9548 + }, + { + "start": 5601.7, + "end": 5607.44, + "probability": 0.8619 + }, + { + "start": 5608.3, + "end": 5609.76, + "probability": 0.9446 + }, + { + "start": 5610.24, + "end": 5612.24, + "probability": 0.6943 + }, + { + "start": 5613.06, + "end": 5621.76, + "probability": 0.8907 + }, + { + "start": 5622.52, + "end": 5623.8, + "probability": 0.9653 + }, + { + "start": 5624.5, + "end": 5628.56, + "probability": 0.9894 + }, + { + "start": 5629.28, + "end": 5635.24, + "probability": 0.9833 + }, + { + "start": 5635.24, + "end": 5639.26, + "probability": 0.9909 + }, + { + "start": 5639.41, + "end": 5640.76, + "probability": 0.9932 + }, + { + "start": 5640.8, + "end": 5641.62, + "probability": 0.7452 + }, + { + "start": 5642.04, + "end": 5643.72, + "probability": 0.8262 + }, + { + "start": 5644.04, + "end": 5644.72, + "probability": 0.6366 + }, + { + "start": 5645.02, + "end": 5647.04, + "probability": 0.9609 + }, + { + "start": 5647.1, + "end": 5647.44, + "probability": 0.849 + }, + { + "start": 5647.9, + "end": 5651.62, + "probability": 0.9856 + }, + { + "start": 5651.78, + "end": 5653.42, + "probability": 0.9515 + }, + { + "start": 5654.08, + "end": 5655.29, + "probability": 0.8883 + }, + { + "start": 5655.98, + "end": 5660.46, + "probability": 0.6843 + }, + { + "start": 5661.24, + "end": 5663.82, + "probability": 0.8481 + }, + { + "start": 5665.88, + "end": 5669.16, + "probability": 0.9826 + }, + { + "start": 5670.02, + "end": 5672.93, + "probability": 0.9821 + }, + { + "start": 5674.18, + "end": 5677.54, + "probability": 0.9637 + }, + { + "start": 5677.66, + "end": 5678.08, + "probability": 0.7577 + }, + { + "start": 5678.56, + "end": 5681.08, + "probability": 0.9937 + }, + { + "start": 5681.44, + "end": 5684.62, + "probability": 0.9911 + }, + { + "start": 5686.0, + "end": 5693.06, + "probability": 0.9756 + }, + { + "start": 5693.38, + "end": 5694.4, + "probability": 0.4969 + }, + { + "start": 5694.46, + "end": 5694.9, + "probability": 0.9421 + }, + { + "start": 5695.84, + "end": 5700.06, + "probability": 0.9837 + }, + { + "start": 5700.84, + "end": 5702.64, + "probability": 0.8494 + }, + { + "start": 5703.06, + "end": 5703.9, + "probability": 0.6922 + }, + { + "start": 5704.02, + "end": 5706.92, + "probability": 0.9807 + }, + { + "start": 5707.18, + "end": 5708.42, + "probability": 0.7002 + }, + { + "start": 5710.68, + "end": 5712.48, + "probability": 0.9979 + }, + { + "start": 5712.58, + "end": 5714.32, + "probability": 0.9589 + }, + { + "start": 5714.88, + "end": 5717.06, + "probability": 0.9159 + }, + { + "start": 5717.62, + "end": 5723.14, + "probability": 0.9849 + }, + { + "start": 5723.72, + "end": 5728.22, + "probability": 0.973 + }, + { + "start": 5728.22, + "end": 5731.6, + "probability": 0.9954 + }, + { + "start": 5732.46, + "end": 5733.44, + "probability": 0.6148 + }, + { + "start": 5733.44, + "end": 5734.08, + "probability": 0.3834 + }, + { + "start": 5734.2, + "end": 5736.52, + "probability": 0.9719 + }, + { + "start": 5737.08, + "end": 5740.06, + "probability": 0.7708 + }, + { + "start": 5741.28, + "end": 5744.46, + "probability": 0.9697 + }, + { + "start": 5745.1, + "end": 5750.54, + "probability": 0.9775 + }, + { + "start": 5751.42, + "end": 5753.3, + "probability": 0.8465 + }, + { + "start": 5753.92, + "end": 5759.14, + "probability": 0.9473 + }, + { + "start": 5759.56, + "end": 5759.92, + "probability": 0.3922 + }, + { + "start": 5759.98, + "end": 5759.98, + "probability": 0.3712 + }, + { + "start": 5760.08, + "end": 5760.9, + "probability": 0.8545 + }, + { + "start": 5760.96, + "end": 5761.92, + "probability": 0.6984 + }, + { + "start": 5762.22, + "end": 5763.64, + "probability": 0.693 + }, + { + "start": 5764.12, + "end": 5765.82, + "probability": 0.5221 + }, + { + "start": 5766.06, + "end": 5767.68, + "probability": 0.6636 + }, + { + "start": 5768.1, + "end": 5771.46, + "probability": 0.7956 + }, + { + "start": 5771.68, + "end": 5778.42, + "probability": 0.9858 + }, + { + "start": 5778.74, + "end": 5779.88, + "probability": 0.9583 + }, + { + "start": 5780.2, + "end": 5782.5, + "probability": 0.9982 + }, + { + "start": 5783.12, + "end": 5785.56, + "probability": 0.9807 + }, + { + "start": 5786.12, + "end": 5789.36, + "probability": 0.7858 + }, + { + "start": 5790.46, + "end": 5792.94, + "probability": 0.6505 + }, + { + "start": 5792.96, + "end": 5796.37, + "probability": 0.8844 + }, + { + "start": 5796.6, + "end": 5798.98, + "probability": 0.9959 + }, + { + "start": 5799.92, + "end": 5801.94, + "probability": 0.632 + }, + { + "start": 5801.98, + "end": 5808.22, + "probability": 0.8345 + }, + { + "start": 5808.4, + "end": 5809.65, + "probability": 0.9707 + }, + { + "start": 5810.2, + "end": 5811.66, + "probability": 0.9776 + }, + { + "start": 5825.86, + "end": 5826.42, + "probability": 0.0472 + }, + { + "start": 5826.42, + "end": 5831.72, + "probability": 0.2271 + }, + { + "start": 5831.72, + "end": 5833.48, + "probability": 0.8864 + }, + { + "start": 5833.5, + "end": 5834.5, + "probability": 0.743 + }, + { + "start": 5834.9, + "end": 5836.14, + "probability": 0.8486 + }, + { + "start": 5836.24, + "end": 5837.18, + "probability": 0.9615 + }, + { + "start": 5837.26, + "end": 5838.4, + "probability": 0.981 + }, + { + "start": 5838.46, + "end": 5840.68, + "probability": 0.7343 + }, + { + "start": 5841.54, + "end": 5843.98, + "probability": 0.8947 + }, + { + "start": 5844.14, + "end": 5848.69, + "probability": 0.8994 + }, + { + "start": 5849.62, + "end": 5852.7, + "probability": 0.7487 + }, + { + "start": 5853.48, + "end": 5857.54, + "probability": 0.9863 + }, + { + "start": 5858.18, + "end": 5860.94, + "probability": 0.9155 + }, + { + "start": 5861.08, + "end": 5863.83, + "probability": 0.754 + }, + { + "start": 5864.52, + "end": 5866.1, + "probability": 0.7394 + }, + { + "start": 5866.16, + "end": 5866.86, + "probability": 0.7536 + }, + { + "start": 5866.9, + "end": 5869.06, + "probability": 0.7471 + }, + { + "start": 5869.2, + "end": 5869.87, + "probability": 0.816 + }, + { + "start": 5870.32, + "end": 5873.48, + "probability": 0.9735 + }, + { + "start": 5874.44, + "end": 5875.5, + "probability": 0.5379 + }, + { + "start": 5876.76, + "end": 5880.82, + "probability": 0.9058 + }, + { + "start": 5881.98, + "end": 5882.82, + "probability": 0.7411 + }, + { + "start": 5883.92, + "end": 5886.78, + "probability": 0.9978 + }, + { + "start": 5887.16, + "end": 5889.0, + "probability": 0.855 + }, + { + "start": 5889.64, + "end": 5892.26, + "probability": 0.9426 + }, + { + "start": 5892.94, + "end": 5894.18, + "probability": 0.7358 + }, + { + "start": 5895.0, + "end": 5896.34, + "probability": 0.7443 + }, + { + "start": 5897.22, + "end": 5902.86, + "probability": 0.8337 + }, + { + "start": 5902.96, + "end": 5905.12, + "probability": 0.079 + }, + { + "start": 5905.58, + "end": 5907.77, + "probability": 0.462 + }, + { + "start": 5908.3, + "end": 5908.38, + "probability": 0.3103 + }, + { + "start": 5908.38, + "end": 5909.72, + "probability": 0.6024 + }, + { + "start": 5909.9, + "end": 5913.32, + "probability": 0.6813 + }, + { + "start": 5914.08, + "end": 5916.14, + "probability": 0.6514 + }, + { + "start": 5916.8, + "end": 5922.9, + "probability": 0.939 + }, + { + "start": 5923.26, + "end": 5926.72, + "probability": 0.8303 + }, + { + "start": 5926.9, + "end": 5929.28, + "probability": 0.9092 + }, + { + "start": 5929.66, + "end": 5932.26, + "probability": 0.6795 + }, + { + "start": 5932.38, + "end": 5933.15, + "probability": 0.9448 + }, + { + "start": 5933.62, + "end": 5934.52, + "probability": 0.9406 + }, + { + "start": 5935.08, + "end": 5935.22, + "probability": 0.4849 + }, + { + "start": 5935.24, + "end": 5936.62, + "probability": 0.9577 + }, + { + "start": 5936.92, + "end": 5940.22, + "probability": 0.5083 + }, + { + "start": 5940.98, + "end": 5943.12, + "probability": 0.8721 + }, + { + "start": 5943.38, + "end": 5945.82, + "probability": 0.9858 + }, + { + "start": 5945.98, + "end": 5948.02, + "probability": 0.7806 + }, + { + "start": 5948.22, + "end": 5950.84, + "probability": 0.9015 + }, + { + "start": 5951.3, + "end": 5954.02, + "probability": 0.9904 + }, + { + "start": 5954.42, + "end": 5956.74, + "probability": 0.9899 + }, + { + "start": 5957.38, + "end": 5961.5, + "probability": 0.9634 + }, + { + "start": 5961.96, + "end": 5965.22, + "probability": 0.9581 + }, + { + "start": 5965.46, + "end": 5970.42, + "probability": 0.6408 + }, + { + "start": 5970.74, + "end": 5972.62, + "probability": 0.8569 + }, + { + "start": 5973.0, + "end": 5975.1, + "probability": 0.9608 + }, + { + "start": 5975.34, + "end": 5976.97, + "probability": 0.9855 + }, + { + "start": 5977.32, + "end": 5979.54, + "probability": 0.8803 + }, + { + "start": 5979.9, + "end": 5984.88, + "probability": 0.9368 + }, + { + "start": 5985.08, + "end": 5990.96, + "probability": 0.9642 + }, + { + "start": 5991.38, + "end": 5996.97, + "probability": 0.9107 + }, + { + "start": 5997.5, + "end": 6000.5, + "probability": 0.8752 + }, + { + "start": 6000.68, + "end": 6002.92, + "probability": 0.9437 + }, + { + "start": 6003.36, + "end": 6005.38, + "probability": 0.9563 + }, + { + "start": 6005.76, + "end": 6008.16, + "probability": 0.9187 + }, + { + "start": 6008.98, + "end": 6012.0, + "probability": 0.779 + }, + { + "start": 6012.3, + "end": 6017.06, + "probability": 0.9171 + }, + { + "start": 6017.37, + "end": 6021.76, + "probability": 0.996 + }, + { + "start": 6022.52, + "end": 6023.78, + "probability": 0.6732 + }, + { + "start": 6023.88, + "end": 6025.72, + "probability": 0.5687 + }, + { + "start": 6025.72, + "end": 6029.9, + "probability": 0.8901 + }, + { + "start": 6030.02, + "end": 6031.1, + "probability": 0.9498 + }, + { + "start": 6032.16, + "end": 6033.92, + "probability": 0.8981 + }, + { + "start": 6034.32, + "end": 6037.46, + "probability": 0.9805 + }, + { + "start": 6037.76, + "end": 6042.86, + "probability": 0.9775 + }, + { + "start": 6043.16, + "end": 6043.86, + "probability": 0.514 + }, + { + "start": 6043.94, + "end": 6046.24, + "probability": 0.6423 + }, + { + "start": 6046.46, + "end": 6051.96, + "probability": 0.9749 + }, + { + "start": 6053.22, + "end": 6056.78, + "probability": 0.8031 + }, + { + "start": 6057.38, + "end": 6058.92, + "probability": 0.712 + }, + { + "start": 6059.14, + "end": 6060.38, + "probability": 0.4934 + }, + { + "start": 6060.44, + "end": 6062.84, + "probability": 0.9023 + }, + { + "start": 6062.96, + "end": 6065.02, + "probability": 0.9685 + }, + { + "start": 6065.52, + "end": 6066.98, + "probability": 0.8745 + }, + { + "start": 6069.06, + "end": 6070.48, + "probability": 0.0582 + }, + { + "start": 6070.98, + "end": 6071.98, + "probability": 0.0861 + }, + { + "start": 6072.86, + "end": 6073.68, + "probability": 0.0173 + }, + { + "start": 6073.68, + "end": 6075.85, + "probability": 0.3752 + }, + { + "start": 6076.14, + "end": 6077.06, + "probability": 0.3191 + }, + { + "start": 6077.56, + "end": 6079.02, + "probability": 0.2736 + }, + { + "start": 6079.62, + "end": 6080.84, + "probability": 0.0517 + }, + { + "start": 6081.16, + "end": 6081.86, + "probability": 0.6788 + }, + { + "start": 6082.28, + "end": 6083.04, + "probability": 0.6615 + }, + { + "start": 6083.2, + "end": 6085.0, + "probability": 0.7351 + }, + { + "start": 6085.36, + "end": 6085.36, + "probability": 0.2741 + }, + { + "start": 6085.36, + "end": 6086.2, + "probability": 0.0651 + }, + { + "start": 6086.42, + "end": 6090.67, + "probability": 0.0476 + }, + { + "start": 6091.04, + "end": 6093.18, + "probability": 0.241 + }, + { + "start": 6093.36, + "end": 6095.14, + "probability": 0.3572 + }, + { + "start": 6095.9, + "end": 6096.76, + "probability": 0.7371 + }, + { + "start": 6097.04, + "end": 6097.82, + "probability": 0.726 + }, + { + "start": 6098.02, + "end": 6100.8, + "probability": 0.9636 + }, + { + "start": 6101.72, + "end": 6103.5, + "probability": 0.8179 + }, + { + "start": 6104.04, + "end": 6105.66, + "probability": 0.9039 + }, + { + "start": 6105.8, + "end": 6107.66, + "probability": 0.8278 + }, + { + "start": 6107.98, + "end": 6112.58, + "probability": 0.894 + }, + { + "start": 6112.78, + "end": 6113.82, + "probability": 0.9622 + }, + { + "start": 6114.0, + "end": 6115.92, + "probability": 0.9693 + }, + { + "start": 6116.34, + "end": 6116.54, + "probability": 0.301 + }, + { + "start": 6116.54, + "end": 6118.14, + "probability": 0.6307 + }, + { + "start": 6118.94, + "end": 6121.06, + "probability": 0.9392 + }, + { + "start": 6121.12, + "end": 6121.84, + "probability": 0.3961 + }, + { + "start": 6121.9, + "end": 6123.14, + "probability": 0.9526 + }, + { + "start": 6137.48, + "end": 6140.36, + "probability": 0.7708 + }, + { + "start": 6140.88, + "end": 6142.22, + "probability": 0.4669 + }, + { + "start": 6142.44, + "end": 6142.68, + "probability": 0.1003 + }, + { + "start": 6143.62, + "end": 6146.42, + "probability": 0.3668 + }, + { + "start": 6146.42, + "end": 6149.76, + "probability": 0.1851 + }, + { + "start": 6150.2, + "end": 6154.76, + "probability": 0.6602 + }, + { + "start": 6156.0, + "end": 6158.44, + "probability": 0.998 + }, + { + "start": 6158.44, + "end": 6162.64, + "probability": 0.9352 + }, + { + "start": 6163.52, + "end": 6164.8, + "probability": 0.8795 + }, + { + "start": 6165.68, + "end": 6167.56, + "probability": 0.9841 + }, + { + "start": 6168.8, + "end": 6169.86, + "probability": 0.7922 + }, + { + "start": 6170.54, + "end": 6172.88, + "probability": 0.8219 + }, + { + "start": 6174.46, + "end": 6176.32, + "probability": 0.9134 + }, + { + "start": 6177.34, + "end": 6180.58, + "probability": 0.998 + }, + { + "start": 6181.2, + "end": 6182.14, + "probability": 0.6852 + }, + { + "start": 6183.46, + "end": 6185.2, + "probability": 0.9281 + }, + { + "start": 6187.14, + "end": 6191.48, + "probability": 0.9014 + }, + { + "start": 6191.6, + "end": 6193.1, + "probability": 0.9963 + }, + { + "start": 6194.42, + "end": 6196.25, + "probability": 0.9775 + }, + { + "start": 6197.42, + "end": 6198.74, + "probability": 0.7077 + }, + { + "start": 6199.7, + "end": 6201.94, + "probability": 0.9628 + }, + { + "start": 6202.94, + "end": 6205.48, + "probability": 0.9715 + }, + { + "start": 6205.56, + "end": 6206.82, + "probability": 0.9619 + }, + { + "start": 6206.94, + "end": 6207.78, + "probability": 0.822 + }, + { + "start": 6207.88, + "end": 6208.02, + "probability": 0.9026 + }, + { + "start": 6208.62, + "end": 6208.8, + "probability": 0.2614 + }, + { + "start": 6208.8, + "end": 6210.14, + "probability": 0.5974 + }, + { + "start": 6210.22, + "end": 6213.76, + "probability": 0.8188 + }, + { + "start": 6215.6, + "end": 6215.84, + "probability": 0.644 + }, + { + "start": 6216.64, + "end": 6218.04, + "probability": 0.9583 + }, + { + "start": 6218.2, + "end": 6222.28, + "probability": 0.9625 + }, + { + "start": 6223.02, + "end": 6225.03, + "probability": 0.9637 + }, + { + "start": 6225.86, + "end": 6228.28, + "probability": 0.9995 + }, + { + "start": 6229.16, + "end": 6231.02, + "probability": 0.8793 + }, + { + "start": 6231.04, + "end": 6232.52, + "probability": 0.735 + }, + { + "start": 6233.86, + "end": 6235.15, + "probability": 0.9793 + }, + { + "start": 6235.36, + "end": 6236.11, + "probability": 0.8571 + }, + { + "start": 6237.58, + "end": 6237.88, + "probability": 0.5638 + }, + { + "start": 6237.9, + "end": 6238.56, + "probability": 0.9797 + }, + { + "start": 6238.6, + "end": 6241.18, + "probability": 0.9926 + }, + { + "start": 6242.52, + "end": 6247.67, + "probability": 0.7687 + }, + { + "start": 6248.08, + "end": 6253.82, + "probability": 0.9135 + }, + { + "start": 6255.3, + "end": 6259.16, + "probability": 0.9951 + }, + { + "start": 6259.52, + "end": 6263.44, + "probability": 0.9448 + }, + { + "start": 6263.84, + "end": 6265.26, + "probability": 0.8801 + }, + { + "start": 6265.96, + "end": 6269.98, + "probability": 0.972 + }, + { + "start": 6270.1, + "end": 6272.7, + "probability": 0.913 + }, + { + "start": 6274.38, + "end": 6276.94, + "probability": 0.8657 + }, + { + "start": 6277.1, + "end": 6278.41, + "probability": 0.9973 + }, + { + "start": 6279.36, + "end": 6283.36, + "probability": 0.9905 + }, + { + "start": 6284.02, + "end": 6285.12, + "probability": 0.9883 + }, + { + "start": 6285.78, + "end": 6289.76, + "probability": 0.9881 + }, + { + "start": 6290.02, + "end": 6291.23, + "probability": 0.874 + }, + { + "start": 6292.04, + "end": 6292.5, + "probability": 0.8748 + }, + { + "start": 6292.58, + "end": 6293.36, + "probability": 0.9825 + }, + { + "start": 6293.6, + "end": 6294.55, + "probability": 0.9867 + }, + { + "start": 6295.46, + "end": 6296.58, + "probability": 0.7365 + }, + { + "start": 6297.18, + "end": 6299.3, + "probability": 0.9945 + }, + { + "start": 6299.46, + "end": 6300.99, + "probability": 0.8574 + }, + { + "start": 6301.82, + "end": 6305.03, + "probability": 0.9836 + }, + { + "start": 6305.42, + "end": 6306.14, + "probability": 0.7142 + }, + { + "start": 6306.2, + "end": 6306.95, + "probability": 0.8516 + }, + { + "start": 6307.2, + "end": 6309.34, + "probability": 0.9246 + }, + { + "start": 6309.74, + "end": 6310.88, + "probability": 0.9609 + }, + { + "start": 6310.94, + "end": 6312.94, + "probability": 0.9332 + }, + { + "start": 6313.66, + "end": 6320.72, + "probability": 0.9956 + }, + { + "start": 6321.36, + "end": 6325.52, + "probability": 0.9728 + }, + { + "start": 6326.16, + "end": 6330.27, + "probability": 0.9871 + }, + { + "start": 6331.52, + "end": 6333.1, + "probability": 0.9784 + }, + { + "start": 6333.12, + "end": 6336.72, + "probability": 0.6525 + }, + { + "start": 6338.12, + "end": 6340.28, + "probability": 0.6666 + }, + { + "start": 6340.62, + "end": 6342.42, + "probability": 0.929 + }, + { + "start": 6343.6, + "end": 6346.62, + "probability": 0.9952 + }, + { + "start": 6349.04, + "end": 6349.56, + "probability": 0.9758 + }, + { + "start": 6350.88, + "end": 6356.44, + "probability": 0.9735 + }, + { + "start": 6357.6, + "end": 6357.66, + "probability": 0.5645 + }, + { + "start": 6357.72, + "end": 6359.96, + "probability": 0.9884 + }, + { + "start": 6360.22, + "end": 6361.52, + "probability": 0.9801 + }, + { + "start": 6361.68, + "end": 6362.06, + "probability": 0.8605 + }, + { + "start": 6362.48, + "end": 6367.26, + "probability": 0.8364 + }, + { + "start": 6367.78, + "end": 6368.92, + "probability": 0.9454 + }, + { + "start": 6369.48, + "end": 6369.58, + "probability": 0.1909 + }, + { + "start": 6369.58, + "end": 6371.84, + "probability": 0.9281 + }, + { + "start": 6372.0, + "end": 6372.8, + "probability": 0.4462 + }, + { + "start": 6372.88, + "end": 6373.76, + "probability": 0.7276 + }, + { + "start": 6373.9, + "end": 6375.46, + "probability": 0.9847 + }, + { + "start": 6376.06, + "end": 6376.92, + "probability": 0.9854 + }, + { + "start": 6377.58, + "end": 6380.56, + "probability": 0.9692 + }, + { + "start": 6381.36, + "end": 6381.6, + "probability": 0.3674 + }, + { + "start": 6381.66, + "end": 6383.66, + "probability": 0.8323 + }, + { + "start": 6384.32, + "end": 6385.66, + "probability": 0.9904 + }, + { + "start": 6385.74, + "end": 6387.02, + "probability": 0.855 + }, + { + "start": 6387.14, + "end": 6389.48, + "probability": 0.9897 + }, + { + "start": 6390.26, + "end": 6391.28, + "probability": 0.8009 + }, + { + "start": 6392.1, + "end": 6392.79, + "probability": 0.9958 + }, + { + "start": 6393.36, + "end": 6396.62, + "probability": 0.9938 + }, + { + "start": 6396.9, + "end": 6399.92, + "probability": 0.9761 + }, + { + "start": 6400.52, + "end": 6401.9, + "probability": 0.7704 + }, + { + "start": 6402.0, + "end": 6402.98, + "probability": 0.6654 + }, + { + "start": 6403.08, + "end": 6403.82, + "probability": 0.9417 + }, + { + "start": 6404.32, + "end": 6408.4, + "probability": 0.9959 + }, + { + "start": 6408.58, + "end": 6409.72, + "probability": 0.9995 + }, + { + "start": 6410.14, + "end": 6412.36, + "probability": 0.8785 + }, + { + "start": 6412.54, + "end": 6412.84, + "probability": 0.8525 + }, + { + "start": 6413.36, + "end": 6414.88, + "probability": 0.8417 + }, + { + "start": 6414.9, + "end": 6416.88, + "probability": 0.4397 + }, + { + "start": 6418.18, + "end": 6419.54, + "probability": 0.274 + }, + { + "start": 6420.2, + "end": 6420.82, + "probability": 0.1571 + }, + { + "start": 6422.3, + "end": 6424.74, + "probability": 0.2907 + }, + { + "start": 6424.74, + "end": 6425.22, + "probability": 0.3283 + }, + { + "start": 6425.46, + "end": 6427.96, + "probability": 0.5889 + }, + { + "start": 6428.12, + "end": 6433.48, + "probability": 0.5831 + }, + { + "start": 6433.88, + "end": 6434.58, + "probability": 0.5878 + }, + { + "start": 6435.22, + "end": 6435.56, + "probability": 0.0074 + }, + { + "start": 6435.56, + "end": 6437.36, + "probability": 0.6007 + }, + { + "start": 6437.98, + "end": 6441.24, + "probability": 0.6121 + }, + { + "start": 6442.0, + "end": 6447.04, + "probability": 0.5873 + }, + { + "start": 6461.1, + "end": 6464.46, + "probability": 0.433 + }, + { + "start": 6464.84, + "end": 6467.42, + "probability": 0.896 + }, + { + "start": 6468.34, + "end": 6468.66, + "probability": 0.6121 + }, + { + "start": 6468.96, + "end": 6470.2, + "probability": 0.4933 + }, + { + "start": 6470.64, + "end": 6471.92, + "probability": 0.675 + }, + { + "start": 6471.98, + "end": 6472.02, + "probability": 0.5233 + }, + { + "start": 6472.02, + "end": 6476.68, + "probability": 0.9917 + }, + { + "start": 6476.74, + "end": 6478.02, + "probability": 0.7012 + }, + { + "start": 6478.18, + "end": 6479.34, + "probability": 0.9594 + }, + { + "start": 6480.16, + "end": 6485.9, + "probability": 0.9924 + }, + { + "start": 6486.76, + "end": 6492.94, + "probability": 0.9943 + }, + { + "start": 6493.92, + "end": 6495.6, + "probability": 0.8073 + }, + { + "start": 6495.86, + "end": 6499.6, + "probability": 0.9722 + }, + { + "start": 6500.7, + "end": 6503.3, + "probability": 0.9817 + }, + { + "start": 6503.46, + "end": 6506.02, + "probability": 0.9834 + }, + { + "start": 6506.24, + "end": 6509.52, + "probability": 0.963 + }, + { + "start": 6512.28, + "end": 6512.28, + "probability": 0.427 + }, + { + "start": 6512.9, + "end": 6514.54, + "probability": 0.9189 + }, + { + "start": 6514.68, + "end": 6521.68, + "probability": 0.9722 + }, + { + "start": 6522.62, + "end": 6526.12, + "probability": 0.9951 + }, + { + "start": 6526.79, + "end": 6532.0, + "probability": 0.9408 + }, + { + "start": 6532.56, + "end": 6534.2, + "probability": 0.8831 + }, + { + "start": 6534.94, + "end": 6538.42, + "probability": 0.9894 + }, + { + "start": 6538.42, + "end": 6542.64, + "probability": 0.998 + }, + { + "start": 6543.44, + "end": 6544.48, + "probability": 0.953 + }, + { + "start": 6544.7, + "end": 6545.47, + "probability": 0.7515 + }, + { + "start": 6546.0, + "end": 6547.62, + "probability": 0.7835 + }, + { + "start": 6547.92, + "end": 6549.3, + "probability": 0.9584 + }, + { + "start": 6550.28, + "end": 6552.76, + "probability": 0.9746 + }, + { + "start": 6553.52, + "end": 6560.06, + "probability": 0.9888 + }, + { + "start": 6560.54, + "end": 6562.78, + "probability": 0.9951 + }, + { + "start": 6562.78, + "end": 6566.96, + "probability": 0.9731 + }, + { + "start": 6567.14, + "end": 6569.32, + "probability": 0.8864 + }, + { + "start": 6570.06, + "end": 6572.02, + "probability": 0.9568 + }, + { + "start": 6572.66, + "end": 6573.52, + "probability": 0.6564 + }, + { + "start": 6573.84, + "end": 6574.92, + "probability": 0.6809 + }, + { + "start": 6574.98, + "end": 6576.73, + "probability": 0.9979 + }, + { + "start": 6576.82, + "end": 6579.04, + "probability": 0.9858 + }, + { + "start": 6580.56, + "end": 6586.34, + "probability": 0.9991 + }, + { + "start": 6586.96, + "end": 6588.96, + "probability": 0.6736 + }, + { + "start": 6589.12, + "end": 6593.92, + "probability": 0.9873 + }, + { + "start": 6594.02, + "end": 6594.86, + "probability": 0.8049 + }, + { + "start": 6595.48, + "end": 6598.26, + "probability": 0.9918 + }, + { + "start": 6598.34, + "end": 6603.56, + "probability": 0.9866 + }, + { + "start": 6603.7, + "end": 6604.74, + "probability": 0.6858 + }, + { + "start": 6605.42, + "end": 6606.48, + "probability": 0.93 + }, + { + "start": 6606.98, + "end": 6608.22, + "probability": 0.7935 + }, + { + "start": 6608.34, + "end": 6611.5, + "probability": 0.835 + }, + { + "start": 6612.58, + "end": 6612.98, + "probability": 0.0042 + }, + { + "start": 6612.98, + "end": 6614.59, + "probability": 0.3968 + }, + { + "start": 6614.96, + "end": 6618.5, + "probability": 0.7449 + }, + { + "start": 6618.6, + "end": 6622.66, + "probability": 0.9042 + }, + { + "start": 6623.56, + "end": 6627.16, + "probability": 0.8772 + }, + { + "start": 6628.32, + "end": 6629.98, + "probability": 0.855 + }, + { + "start": 6630.5, + "end": 6631.84, + "probability": 0.9427 + }, + { + "start": 6632.84, + "end": 6633.74, + "probability": 0.9461 + }, + { + "start": 6634.24, + "end": 6637.26, + "probability": 0.9558 + }, + { + "start": 6638.32, + "end": 6641.02, + "probability": 0.9868 + }, + { + "start": 6642.0, + "end": 6645.46, + "probability": 0.9301 + }, + { + "start": 6646.38, + "end": 6647.04, + "probability": 0.9545 + }, + { + "start": 6647.08, + "end": 6647.96, + "probability": 0.9743 + }, + { + "start": 6648.08, + "end": 6654.2, + "probability": 0.9803 + }, + { + "start": 6654.38, + "end": 6658.16, + "probability": 0.9591 + }, + { + "start": 6659.2, + "end": 6660.08, + "probability": 0.9415 + }, + { + "start": 6660.24, + "end": 6661.06, + "probability": 0.988 + }, + { + "start": 6661.48, + "end": 6663.58, + "probability": 0.9985 + }, + { + "start": 6664.04, + "end": 6665.46, + "probability": 0.9709 + }, + { + "start": 6666.46, + "end": 6667.66, + "probability": 0.9569 + }, + { + "start": 6668.32, + "end": 6669.98, + "probability": 0.95 + }, + { + "start": 6670.44, + "end": 6673.2, + "probability": 0.9922 + }, + { + "start": 6674.16, + "end": 6675.06, + "probability": 0.843 + }, + { + "start": 6675.16, + "end": 6679.86, + "probability": 0.979 + }, + { + "start": 6680.5, + "end": 6683.16, + "probability": 0.9953 + }, + { + "start": 6683.16, + "end": 6685.76, + "probability": 0.9432 + }, + { + "start": 6686.48, + "end": 6691.1, + "probability": 0.8355 + }, + { + "start": 6691.74, + "end": 6692.6, + "probability": 0.7107 + }, + { + "start": 6692.84, + "end": 6693.86, + "probability": 0.7413 + }, + { + "start": 6693.98, + "end": 6697.18, + "probability": 0.9863 + }, + { + "start": 6698.2, + "end": 6700.64, + "probability": 0.9406 + }, + { + "start": 6702.28, + "end": 6705.18, + "probability": 0.9765 + }, + { + "start": 6705.36, + "end": 6707.16, + "probability": 0.9026 + }, + { + "start": 6707.2, + "end": 6710.16, + "probability": 0.9886 + }, + { + "start": 6710.36, + "end": 6714.34, + "probability": 0.9838 + }, + { + "start": 6715.44, + "end": 6717.46, + "probability": 0.976 + }, + { + "start": 6717.92, + "end": 6718.94, + "probability": 0.9722 + }, + { + "start": 6719.82, + "end": 6723.55, + "probability": 0.9744 + }, + { + "start": 6724.94, + "end": 6727.58, + "probability": 0.9839 + }, + { + "start": 6728.56, + "end": 6729.08, + "probability": 0.9218 + }, + { + "start": 6729.2, + "end": 6729.99, + "probability": 0.9632 + }, + { + "start": 6730.16, + "end": 6733.18, + "probability": 0.9914 + }, + { + "start": 6733.96, + "end": 6736.94, + "probability": 0.9934 + }, + { + "start": 6737.04, + "end": 6739.56, + "probability": 0.9675 + }, + { + "start": 6740.16, + "end": 6747.06, + "probability": 0.9932 + }, + { + "start": 6747.14, + "end": 6752.76, + "probability": 0.9113 + }, + { + "start": 6753.88, + "end": 6757.86, + "probability": 0.972 + }, + { + "start": 6758.58, + "end": 6763.52, + "probability": 0.9604 + }, + { + "start": 6763.52, + "end": 6766.64, + "probability": 0.9947 + }, + { + "start": 6767.5, + "end": 6774.38, + "probability": 0.9897 + }, + { + "start": 6774.46, + "end": 6776.09, + "probability": 0.9917 + }, + { + "start": 6776.42, + "end": 6777.08, + "probability": 0.8993 + }, + { + "start": 6777.14, + "end": 6777.98, + "probability": 0.9547 + }, + { + "start": 6778.32, + "end": 6781.48, + "probability": 0.9741 + }, + { + "start": 6782.0, + "end": 6783.2, + "probability": 0.8963 + }, + { + "start": 6783.3, + "end": 6784.0, + "probability": 0.8542 + }, + { + "start": 6784.1, + "end": 6784.96, + "probability": 0.6225 + }, + { + "start": 6785.02, + "end": 6785.63, + "probability": 0.9735 + }, + { + "start": 6785.82, + "end": 6787.12, + "probability": 0.9709 + }, + { + "start": 6787.5, + "end": 6790.6, + "probability": 0.9968 + }, + { + "start": 6790.68, + "end": 6793.38, + "probability": 0.9736 + }, + { + "start": 6793.68, + "end": 6794.36, + "probability": 0.6106 + }, + { + "start": 6794.36, + "end": 6796.7, + "probability": 0.654 + }, + { + "start": 6797.04, + "end": 6801.44, + "probability": 0.9856 + }, + { + "start": 6802.56, + "end": 6805.9, + "probability": 0.999 + }, + { + "start": 6806.18, + "end": 6808.68, + "probability": 0.9668 + }, + { + "start": 6809.06, + "end": 6810.18, + "probability": 0.9915 + }, + { + "start": 6810.52, + "end": 6811.66, + "probability": 0.9775 + }, + { + "start": 6811.76, + "end": 6815.66, + "probability": 0.9856 + }, + { + "start": 6816.26, + "end": 6818.1, + "probability": 0.9126 + }, + { + "start": 6818.38, + "end": 6820.34, + "probability": 0.6229 + }, + { + "start": 6820.84, + "end": 6823.68, + "probability": 0.8215 + }, + { + "start": 6825.95, + "end": 6828.88, + "probability": 0.9447 + }, + { + "start": 6846.66, + "end": 6847.32, + "probability": 0.7465 + }, + { + "start": 6847.42, + "end": 6848.22, + "probability": 0.9846 + }, + { + "start": 6848.32, + "end": 6849.24, + "probability": 0.9364 + }, + { + "start": 6849.3, + "end": 6851.18, + "probability": 0.9947 + }, + { + "start": 6851.34, + "end": 6854.22, + "probability": 0.8762 + }, + { + "start": 6856.78, + "end": 6862.32, + "probability": 0.9851 + }, + { + "start": 6862.94, + "end": 6864.52, + "probability": 0.6285 + }, + { + "start": 6864.56, + "end": 6867.4, + "probability": 0.9511 + }, + { + "start": 6869.24, + "end": 6871.28, + "probability": 0.9966 + }, + { + "start": 6871.28, + "end": 6874.68, + "probability": 0.9968 + }, + { + "start": 6875.46, + "end": 6878.48, + "probability": 0.9955 + }, + { + "start": 6878.48, + "end": 6882.42, + "probability": 0.9984 + }, + { + "start": 6884.02, + "end": 6886.7, + "probability": 0.9933 + }, + { + "start": 6886.82, + "end": 6888.26, + "probability": 0.9932 + }, + { + "start": 6889.5, + "end": 6892.34, + "probability": 0.9462 + }, + { + "start": 6892.6, + "end": 6896.4, + "probability": 0.8518 + }, + { + "start": 6896.7, + "end": 6899.9, + "probability": 0.9174 + }, + { + "start": 6900.06, + "end": 6902.6, + "probability": 0.9512 + }, + { + "start": 6902.92, + "end": 6904.71, + "probability": 0.9189 + }, + { + "start": 6905.16, + "end": 6905.68, + "probability": 0.9174 + }, + { + "start": 6905.88, + "end": 6907.36, + "probability": 0.8427 + }, + { + "start": 6908.78, + "end": 6909.84, + "probability": 0.7956 + }, + { + "start": 6910.52, + "end": 6912.2, + "probability": 0.8929 + }, + { + "start": 6912.74, + "end": 6913.84, + "probability": 0.8456 + }, + { + "start": 6914.72, + "end": 6915.13, + "probability": 0.8848 + }, + { + "start": 6916.14, + "end": 6919.04, + "probability": 0.8918 + }, + { + "start": 6919.36, + "end": 6920.9, + "probability": 0.813 + }, + { + "start": 6921.34, + "end": 6923.26, + "probability": 0.9653 + }, + { + "start": 6923.72, + "end": 6925.14, + "probability": 0.9888 + }, + { + "start": 6925.26, + "end": 6928.9, + "probability": 0.9323 + }, + { + "start": 6929.98, + "end": 6933.9, + "probability": 0.9658 + }, + { + "start": 6934.88, + "end": 6936.08, + "probability": 0.9715 + }, + { + "start": 6936.52, + "end": 6937.9, + "probability": 0.9822 + }, + { + "start": 6938.26, + "end": 6939.92, + "probability": 0.8359 + }, + { + "start": 6940.06, + "end": 6940.94, + "probability": 0.8522 + }, + { + "start": 6941.34, + "end": 6943.18, + "probability": 0.9163 + }, + { + "start": 6944.08, + "end": 6946.18, + "probability": 0.9907 + }, + { + "start": 6947.1, + "end": 6952.08, + "probability": 0.9866 + }, + { + "start": 6952.2, + "end": 6954.38, + "probability": 0.9393 + }, + { + "start": 6954.6, + "end": 6956.18, + "probability": 0.9954 + }, + { + "start": 6957.24, + "end": 6960.58, + "probability": 0.9849 + }, + { + "start": 6960.76, + "end": 6965.84, + "probability": 0.9977 + }, + { + "start": 6966.32, + "end": 6967.56, + "probability": 0.9003 + }, + { + "start": 6968.16, + "end": 6969.08, + "probability": 0.9421 + }, + { + "start": 6969.22, + "end": 6971.32, + "probability": 0.9609 + }, + { + "start": 6971.5, + "end": 6972.82, + "probability": 0.9131 + }, + { + "start": 6973.26, + "end": 6977.02, + "probability": 0.9019 + }, + { + "start": 6978.3, + "end": 6980.82, + "probability": 0.9962 + }, + { + "start": 6981.7, + "end": 6985.4, + "probability": 0.9611 + }, + { + "start": 6985.54, + "end": 6986.96, + "probability": 0.8934 + }, + { + "start": 6987.02, + "end": 6992.78, + "probability": 0.9841 + }, + { + "start": 6993.76, + "end": 6994.66, + "probability": 0.7966 + }, + { + "start": 6994.94, + "end": 7000.28, + "probability": 0.9924 + }, + { + "start": 7000.86, + "end": 7005.0, + "probability": 0.9853 + }, + { + "start": 7005.8, + "end": 7005.96, + "probability": 0.7208 + }, + { + "start": 7006.12, + "end": 7007.56, + "probability": 0.63 + }, + { + "start": 7007.62, + "end": 7011.46, + "probability": 0.8718 + }, + { + "start": 7011.66, + "end": 7014.2, + "probability": 0.9708 + }, + { + "start": 7014.92, + "end": 7020.72, + "probability": 0.9838 + }, + { + "start": 7021.7, + "end": 7027.32, + "probability": 0.9938 + }, + { + "start": 7027.52, + "end": 7029.32, + "probability": 0.9807 + }, + { + "start": 7029.54, + "end": 7031.58, + "probability": 0.7269 + }, + { + "start": 7031.84, + "end": 7032.8, + "probability": 0.8447 + }, + { + "start": 7033.06, + "end": 7034.17, + "probability": 0.973 + }, + { + "start": 7034.5, + "end": 7038.42, + "probability": 0.9735 + }, + { + "start": 7038.72, + "end": 7040.14, + "probability": 0.9766 + }, + { + "start": 7040.24, + "end": 7045.46, + "probability": 0.9954 + }, + { + "start": 7045.84, + "end": 7046.72, + "probability": 0.9117 + }, + { + "start": 7046.78, + "end": 7047.48, + "probability": 0.9598 + }, + { + "start": 7047.86, + "end": 7048.38, + "probability": 0.516 + }, + { + "start": 7048.58, + "end": 7049.44, + "probability": 0.5667 + }, + { + "start": 7049.66, + "end": 7050.36, + "probability": 0.7575 + }, + { + "start": 7050.38, + "end": 7051.2, + "probability": 0.1552 + }, + { + "start": 7051.4, + "end": 7051.4, + "probability": 0.3477 + }, + { + "start": 7052.28, + "end": 7053.78, + "probability": 0.6468 + }, + { + "start": 7054.31, + "end": 7058.36, + "probability": 0.0125 + }, + { + "start": 7058.36, + "end": 7058.36, + "probability": 0.0866 + }, + { + "start": 7058.36, + "end": 7058.36, + "probability": 0.2229 + }, + { + "start": 7058.36, + "end": 7058.36, + "probability": 0.1514 + }, + { + "start": 7058.36, + "end": 7059.28, + "probability": 0.4642 + }, + { + "start": 7059.66, + "end": 7060.74, + "probability": 0.6575 + }, + { + "start": 7061.08, + "end": 7063.12, + "probability": 0.7981 + }, + { + "start": 7063.38, + "end": 7064.74, + "probability": 0.9554 + }, + { + "start": 7064.8, + "end": 7065.22, + "probability": 0.954 + }, + { + "start": 7065.46, + "end": 7067.29, + "probability": 0.9292 + }, + { + "start": 7067.96, + "end": 7069.14, + "probability": 0.8874 + }, + { + "start": 7069.24, + "end": 7069.92, + "probability": 0.8777 + }, + { + "start": 7069.98, + "end": 7073.96, + "probability": 0.9784 + }, + { + "start": 7074.08, + "end": 7080.92, + "probability": 0.9858 + }, + { + "start": 7081.14, + "end": 7081.3, + "probability": 0.7714 + }, + { + "start": 7081.64, + "end": 7084.84, + "probability": 0.9622 + }, + { + "start": 7085.34, + "end": 7088.18, + "probability": 0.8289 + }, + { + "start": 7088.98, + "end": 7092.93, + "probability": 0.9119 + }, + { + "start": 7094.9, + "end": 7096.38, + "probability": 0.2994 + }, + { + "start": 7100.32, + "end": 7100.32, + "probability": 0.0001 + }, + { + "start": 7101.18, + "end": 7101.88, + "probability": 0.1224 + }, + { + "start": 7102.12, + "end": 7103.1, + "probability": 0.4166 + }, + { + "start": 7103.5, + "end": 7105.07, + "probability": 0.4815 + }, + { + "start": 7109.9, + "end": 7110.72, + "probability": 0.595 + }, + { + "start": 7110.78, + "end": 7112.42, + "probability": 0.984 + }, + { + "start": 7112.46, + "end": 7113.68, + "probability": 0.7476 + }, + { + "start": 7114.8, + "end": 7118.7, + "probability": 0.9898 + }, + { + "start": 7118.84, + "end": 7124.34, + "probability": 0.9611 + }, + { + "start": 7125.32, + "end": 7128.2, + "probability": 0.8813 + }, + { + "start": 7129.16, + "end": 7134.82, + "probability": 0.9634 + }, + { + "start": 7135.76, + "end": 7139.1, + "probability": 0.9933 + }, + { + "start": 7139.86, + "end": 7141.22, + "probability": 0.856 + }, + { + "start": 7142.12, + "end": 7143.1, + "probability": 0.5729 + }, + { + "start": 7144.16, + "end": 7145.72, + "probability": 0.9328 + }, + { + "start": 7146.36, + "end": 7148.58, + "probability": 0.9826 + }, + { + "start": 7149.46, + "end": 7153.24, + "probability": 0.9893 + }, + { + "start": 7154.18, + "end": 7161.04, + "probability": 0.8839 + }, + { + "start": 7161.6, + "end": 7163.54, + "probability": 0.96 + }, + { + "start": 7164.12, + "end": 7169.68, + "probability": 0.9148 + }, + { + "start": 7170.6, + "end": 7173.02, + "probability": 0.996 + }, + { + "start": 7174.48, + "end": 7178.98, + "probability": 0.9317 + }, + { + "start": 7178.98, + "end": 7184.32, + "probability": 0.816 + }, + { + "start": 7185.66, + "end": 7188.38, + "probability": 0.9683 + }, + { + "start": 7188.72, + "end": 7190.26, + "probability": 0.7285 + }, + { + "start": 7190.48, + "end": 7191.98, + "probability": 0.9722 + }, + { + "start": 7192.12, + "end": 7193.46, + "probability": 0.7553 + }, + { + "start": 7193.84, + "end": 7195.48, + "probability": 0.9867 + }, + { + "start": 7195.96, + "end": 7201.92, + "probability": 0.9922 + }, + { + "start": 7202.86, + "end": 7204.72, + "probability": 0.8813 + }, + { + "start": 7205.64, + "end": 7209.8, + "probability": 0.9456 + }, + { + "start": 7211.36, + "end": 7215.34, + "probability": 0.9957 + }, + { + "start": 7215.86, + "end": 7218.7, + "probability": 0.9941 + }, + { + "start": 7219.9, + "end": 7222.38, + "probability": 0.9902 + }, + { + "start": 7223.56, + "end": 7225.32, + "probability": 0.9888 + }, + { + "start": 7226.76, + "end": 7228.1, + "probability": 0.981 + }, + { + "start": 7228.28, + "end": 7230.04, + "probability": 0.9775 + }, + { + "start": 7232.06, + "end": 7232.54, + "probability": 0.037 + }, + { + "start": 7232.54, + "end": 7238.74, + "probability": 0.8449 + }, + { + "start": 7238.86, + "end": 7240.24, + "probability": 0.8915 + }, + { + "start": 7241.04, + "end": 7242.72, + "probability": 0.9727 + }, + { + "start": 7242.8, + "end": 7246.08, + "probability": 0.9889 + }, + { + "start": 7246.5, + "end": 7247.46, + "probability": 0.5296 + }, + { + "start": 7248.18, + "end": 7253.3, + "probability": 0.9948 + }, + { + "start": 7253.3, + "end": 7258.78, + "probability": 0.9357 + }, + { + "start": 7259.52, + "end": 7262.66, + "probability": 0.9945 + }, + { + "start": 7262.72, + "end": 7263.26, + "probability": 0.93 + }, + { + "start": 7263.34, + "end": 7265.1, + "probability": 0.7441 + }, + { + "start": 7265.34, + "end": 7266.47, + "probability": 0.5374 + }, + { + "start": 7267.02, + "end": 7269.08, + "probability": 0.8506 + }, + { + "start": 7270.04, + "end": 7270.42, + "probability": 0.0067 + }, + { + "start": 7270.42, + "end": 7270.42, + "probability": 0.0268 + }, + { + "start": 7270.62, + "end": 7271.56, + "probability": 0.1822 + }, + { + "start": 7272.19, + "end": 7274.16, + "probability": 0.4419 + }, + { + "start": 7278.9, + "end": 7285.56, + "probability": 0.5158 + }, + { + "start": 7286.1, + "end": 7286.24, + "probability": 0.0495 + }, + { + "start": 7286.24, + "end": 7286.24, + "probability": 0.0229 + }, + { + "start": 7286.24, + "end": 7286.24, + "probability": 0.1072 + }, + { + "start": 7286.24, + "end": 7288.04, + "probability": 0.6876 + }, + { + "start": 7288.74, + "end": 7290.86, + "probability": 0.8934 + }, + { + "start": 7292.0, + "end": 7294.16, + "probability": 0.9857 + }, + { + "start": 7296.4, + "end": 7300.86, + "probability": 0.9155 + }, + { + "start": 7301.38, + "end": 7303.36, + "probability": 0.8922 + }, + { + "start": 7303.86, + "end": 7307.4, + "probability": 0.9397 + }, + { + "start": 7308.56, + "end": 7312.68, + "probability": 0.979 + }, + { + "start": 7313.66, + "end": 7318.44, + "probability": 0.9725 + }, + { + "start": 7319.24, + "end": 7320.3, + "probability": 0.8918 + }, + { + "start": 7322.92, + "end": 7325.44, + "probability": 0.9686 + }, + { + "start": 7325.88, + "end": 7328.6, + "probability": 0.9385 + }, + { + "start": 7328.6, + "end": 7332.68, + "probability": 0.9874 + }, + { + "start": 7333.32, + "end": 7338.8, + "probability": 0.9955 + }, + { + "start": 7339.46, + "end": 7343.24, + "probability": 0.9939 + }, + { + "start": 7343.24, + "end": 7346.62, + "probability": 0.9862 + }, + { + "start": 7347.64, + "end": 7351.68, + "probability": 0.9966 + }, + { + "start": 7353.88, + "end": 7354.66, + "probability": 0.0467 + }, + { + "start": 7354.7, + "end": 7354.7, + "probability": 0.4212 + }, + { + "start": 7354.7, + "end": 7354.86, + "probability": 0.0893 + }, + { + "start": 7354.88, + "end": 7356.1, + "probability": 0.6974 + }, + { + "start": 7356.32, + "end": 7357.22, + "probability": 0.6103 + }, + { + "start": 7357.5, + "end": 7358.0, + "probability": 0.3325 + }, + { + "start": 7358.0, + "end": 7361.05, + "probability": 0.7654 + }, + { + "start": 7361.2, + "end": 7361.88, + "probability": 0.3347 + }, + { + "start": 7361.96, + "end": 7366.42, + "probability": 0.9774 + }, + { + "start": 7366.46, + "end": 7367.96, + "probability": 0.9083 + }, + { + "start": 7368.2, + "end": 7369.6, + "probability": 0.9704 + }, + { + "start": 7370.02, + "end": 7373.16, + "probability": 0.9736 + }, + { + "start": 7373.16, + "end": 7373.84, + "probability": 0.8369 + }, + { + "start": 7374.08, + "end": 7375.49, + "probability": 0.9492 + }, + { + "start": 7375.88, + "end": 7377.3, + "probability": 0.8549 + }, + { + "start": 7377.44, + "end": 7380.22, + "probability": 0.9393 + }, + { + "start": 7380.58, + "end": 7382.0, + "probability": 0.8848 + }, + { + "start": 7382.52, + "end": 7384.2, + "probability": 0.9547 + }, + { + "start": 7384.72, + "end": 7390.9, + "probability": 0.951 + }, + { + "start": 7391.0, + "end": 7393.06, + "probability": 0.6877 + }, + { + "start": 7393.06, + "end": 7393.42, + "probability": 0.3446 + }, + { + "start": 7393.54, + "end": 7395.04, + "probability": 0.9515 + }, + { + "start": 7396.7, + "end": 7398.66, + "probability": 0.7773 + }, + { + "start": 7398.72, + "end": 7399.18, + "probability": 0.5884 + }, + { + "start": 7399.18, + "end": 7399.92, + "probability": 0.6972 + }, + { + "start": 7400.06, + "end": 7402.6, + "probability": 0.4692 + }, + { + "start": 7402.8, + "end": 7403.86, + "probability": 0.6868 + }, + { + "start": 7404.38, + "end": 7406.76, + "probability": 0.6882 + }, + { + "start": 7407.06, + "end": 7409.88, + "probability": 0.9943 + }, + { + "start": 7410.26, + "end": 7413.38, + "probability": 0.673 + }, + { + "start": 7413.64, + "end": 7417.62, + "probability": 0.791 + }, + { + "start": 7418.24, + "end": 7419.34, + "probability": 0.9718 + }, + { + "start": 7419.46, + "end": 7421.65, + "probability": 0.8896 + }, + { + "start": 7422.22, + "end": 7423.52, + "probability": 0.9359 + }, + { + "start": 7423.64, + "end": 7425.56, + "probability": 0.8516 + }, + { + "start": 7425.64, + "end": 7428.78, + "probability": 0.8065 + }, + { + "start": 7430.16, + "end": 7432.56, + "probability": 0.9812 + }, + { + "start": 7443.18, + "end": 7444.16, + "probability": 0.5311 + }, + { + "start": 7450.38, + "end": 7453.56, + "probability": 0.8519 + }, + { + "start": 7455.48, + "end": 7456.72, + "probability": 0.8126 + }, + { + "start": 7458.0, + "end": 7461.43, + "probability": 0.999 + }, + { + "start": 7462.68, + "end": 7463.74, + "probability": 0.9478 + }, + { + "start": 7464.2, + "end": 7466.4, + "probability": 0.8887 + }, + { + "start": 7467.46, + "end": 7468.88, + "probability": 0.6586 + }, + { + "start": 7469.34, + "end": 7471.04, + "probability": 0.4317 + }, + { + "start": 7471.7, + "end": 7476.26, + "probability": 0.7056 + }, + { + "start": 7477.46, + "end": 7478.65, + "probability": 0.5556 + }, + { + "start": 7478.92, + "end": 7479.62, + "probability": 0.775 + }, + { + "start": 7480.22, + "end": 7480.5, + "probability": 0.9605 + }, + { + "start": 7481.56, + "end": 7483.98, + "probability": 0.9207 + }, + { + "start": 7487.48, + "end": 7488.62, + "probability": 0.5807 + }, + { + "start": 7490.24, + "end": 7492.38, + "probability": 0.9792 + }, + { + "start": 7492.88, + "end": 7493.16, + "probability": 0.0252 + }, + { + "start": 7494.32, + "end": 7495.54, + "probability": 0.7915 + }, + { + "start": 7497.34, + "end": 7498.06, + "probability": 0.6407 + }, + { + "start": 7498.06, + "end": 7499.94, + "probability": 0.7992 + }, + { + "start": 7500.2, + "end": 7500.34, + "probability": 0.3019 + }, + { + "start": 7505.2, + "end": 7506.94, + "probability": 0.5705 + }, + { + "start": 7507.3, + "end": 7510.06, + "probability": 0.8438 + }, + { + "start": 7511.14, + "end": 7512.74, + "probability": 0.851 + }, + { + "start": 7512.82, + "end": 7515.94, + "probability": 0.9927 + }, + { + "start": 7517.2, + "end": 7518.84, + "probability": 0.7596 + }, + { + "start": 7519.68, + "end": 7523.1, + "probability": 0.9602 + }, + { + "start": 7524.24, + "end": 7525.48, + "probability": 0.584 + }, + { + "start": 7525.74, + "end": 7530.64, + "probability": 0.7974 + }, + { + "start": 7531.7, + "end": 7532.86, + "probability": 0.6238 + }, + { + "start": 7534.62, + "end": 7536.52, + "probability": 0.5354 + }, + { + "start": 7537.92, + "end": 7538.72, + "probability": 0.7938 + }, + { + "start": 7539.9, + "end": 7544.46, + "probability": 0.7423 + }, + { + "start": 7545.16, + "end": 7545.72, + "probability": 0.3408 + }, + { + "start": 7545.96, + "end": 7547.26, + "probability": 0.184 + }, + { + "start": 7547.26, + "end": 7549.22, + "probability": 0.3818 + }, + { + "start": 7549.5, + "end": 7550.1, + "probability": 0.37 + }, + { + "start": 7550.7, + "end": 7552.08, + "probability": 0.5347 + }, + { + "start": 7552.22, + "end": 7552.94, + "probability": 0.8738 + }, + { + "start": 7554.04, + "end": 7556.62, + "probability": 0.6956 + }, + { + "start": 7557.76, + "end": 7558.22, + "probability": 0.7138 + }, + { + "start": 7558.44, + "end": 7559.02, + "probability": 0.6763 + }, + { + "start": 7559.7, + "end": 7560.46, + "probability": 0.3664 + }, + { + "start": 7560.54, + "end": 7563.16, + "probability": 0.9961 + }, + { + "start": 7563.24, + "end": 7563.88, + "probability": 0.7396 + }, + { + "start": 7563.88, + "end": 7563.98, + "probability": 0.3485 + }, + { + "start": 7564.84, + "end": 7566.06, + "probability": 0.7162 + }, + { + "start": 7567.0, + "end": 7568.62, + "probability": 0.5416 + }, + { + "start": 7570.48, + "end": 7573.07, + "probability": 0.8144 + }, + { + "start": 7575.54, + "end": 7578.12, + "probability": 0.6128 + }, + { + "start": 7579.78, + "end": 7580.94, + "probability": 0.7179 + }, + { + "start": 7581.8, + "end": 7584.46, + "probability": 0.7355 + }, + { + "start": 7585.98, + "end": 7587.08, + "probability": 0.7915 + }, + { + "start": 7588.3, + "end": 7591.9, + "probability": 0.9027 + }, + { + "start": 7592.28, + "end": 7593.96, + "probability": 0.112 + }, + { + "start": 7594.4, + "end": 7595.5, + "probability": 0.8381 + }, + { + "start": 7596.08, + "end": 7598.07, + "probability": 0.9456 + }, + { + "start": 7599.1, + "end": 7599.56, + "probability": 0.6137 + }, + { + "start": 7600.12, + "end": 7601.72, + "probability": 0.6836 + }, + { + "start": 7602.86, + "end": 7604.22, + "probability": 0.0333 + }, + { + "start": 7605.24, + "end": 7612.72, + "probability": 0.9868 + }, + { + "start": 7613.39, + "end": 7614.62, + "probability": 0.6436 + }, + { + "start": 7614.94, + "end": 7615.52, + "probability": 0.9207 + }, + { + "start": 7616.08, + "end": 7616.28, + "probability": 0.2726 + }, + { + "start": 7616.28, + "end": 7620.55, + "probability": 0.6903 + }, + { + "start": 7621.88, + "end": 7621.88, + "probability": 0.0601 + }, + { + "start": 7621.88, + "end": 7621.88, + "probability": 0.1113 + }, + { + "start": 7621.88, + "end": 7621.88, + "probability": 0.0107 + }, + { + "start": 7621.88, + "end": 7627.52, + "probability": 0.9403 + }, + { + "start": 7628.02, + "end": 7629.54, + "probability": 0.9412 + }, + { + "start": 7629.88, + "end": 7631.34, + "probability": 0.8986 + }, + { + "start": 7633.72, + "end": 7633.88, + "probability": 0.0239 + }, + { + "start": 7633.88, + "end": 7634.22, + "probability": 0.4603 + }, + { + "start": 7634.24, + "end": 7634.66, + "probability": 0.5893 + }, + { + "start": 7634.9, + "end": 7638.09, + "probability": 0.9964 + }, + { + "start": 7638.78, + "end": 7638.78, + "probability": 0.0556 + }, + { + "start": 7638.78, + "end": 7639.32, + "probability": 0.8933 + }, + { + "start": 7639.4, + "end": 7639.98, + "probability": 0.4301 + }, + { + "start": 7640.36, + "end": 7641.0, + "probability": 0.4866 + }, + { + "start": 7641.68, + "end": 7642.02, + "probability": 0.7111 + }, + { + "start": 7642.86, + "end": 7643.38, + "probability": 0.511 + }, + { + "start": 7643.82, + "end": 7644.82, + "probability": 0.6978 + }, + { + "start": 7645.14, + "end": 7646.68, + "probability": 0.023 + }, + { + "start": 7646.68, + "end": 7647.6, + "probability": 0.5364 + }, + { + "start": 7648.54, + "end": 7651.18, + "probability": 0.2105 + }, + { + "start": 7651.2, + "end": 7654.06, + "probability": 0.6926 + }, + { + "start": 7654.14, + "end": 7655.78, + "probability": 0.8892 + }, + { + "start": 7656.5, + "end": 7661.8, + "probability": 0.9487 + }, + { + "start": 7662.66, + "end": 7664.04, + "probability": 0.9016 + }, + { + "start": 7664.3, + "end": 7665.62, + "probability": 0.5441 + }, + { + "start": 7665.84, + "end": 7666.78, + "probability": 0.6835 + }, + { + "start": 7667.4, + "end": 7670.98, + "probability": 0.9686 + }, + { + "start": 7671.38, + "end": 7673.8, + "probability": 0.7935 + }, + { + "start": 7674.04, + "end": 7676.2, + "probability": 0.5815 + }, + { + "start": 7676.68, + "end": 7677.48, + "probability": 0.6964 + }, + { + "start": 7677.48, + "end": 7678.4, + "probability": 0.4745 + }, + { + "start": 7678.64, + "end": 7679.46, + "probability": 0.9644 + }, + { + "start": 7679.56, + "end": 7680.6, + "probability": 0.1786 + }, + { + "start": 7680.96, + "end": 7680.96, + "probability": 0.5332 + }, + { + "start": 7680.96, + "end": 7681.52, + "probability": 0.1061 + }, + { + "start": 7681.78, + "end": 7686.42, + "probability": 0.8703 + }, + { + "start": 7687.14, + "end": 7690.2, + "probability": 0.0399 + }, + { + "start": 7691.38, + "end": 7691.44, + "probability": 0.014 + }, + { + "start": 7691.44, + "end": 7691.44, + "probability": 0.0487 + }, + { + "start": 7691.44, + "end": 7694.24, + "probability": 0.2115 + }, + { + "start": 7694.64, + "end": 7694.64, + "probability": 0.1764 + }, + { + "start": 7694.68, + "end": 7695.77, + "probability": 0.4594 + }, + { + "start": 7696.54, + "end": 7697.14, + "probability": 0.6471 + }, + { + "start": 7697.32, + "end": 7697.54, + "probability": 0.7289 + }, + { + "start": 7698.28, + "end": 7699.22, + "probability": 0.3308 + }, + { + "start": 7699.22, + "end": 7702.86, + "probability": 0.9121 + }, + { + "start": 7702.94, + "end": 7703.12, + "probability": 0.2304 + }, + { + "start": 7703.12, + "end": 7704.4, + "probability": 0.3204 + }, + { + "start": 7704.4, + "end": 7705.64, + "probability": 0.7715 + }, + { + "start": 7706.1, + "end": 7708.18, + "probability": 0.3906 + }, + { + "start": 7708.28, + "end": 7710.92, + "probability": 0.7168 + }, + { + "start": 7710.92, + "end": 7712.86, + "probability": 0.8707 + }, + { + "start": 7713.38, + "end": 7714.58, + "probability": 0.7321 + }, + { + "start": 7714.58, + "end": 7715.16, + "probability": 0.0417 + }, + { + "start": 7715.3, + "end": 7715.98, + "probability": 0.562 + }, + { + "start": 7715.98, + "end": 7717.7, + "probability": 0.1881 + }, + { + "start": 7717.8, + "end": 7717.8, + "probability": 0.0131 + }, + { + "start": 7717.8, + "end": 7717.8, + "probability": 0.6228 + }, + { + "start": 7717.8, + "end": 7720.18, + "probability": 0.5244 + }, + { + "start": 7720.28, + "end": 7721.86, + "probability": 0.9309 + }, + { + "start": 7721.98, + "end": 7723.24, + "probability": 0.5137 + }, + { + "start": 7723.38, + "end": 7726.1, + "probability": 0.6136 + }, + { + "start": 7726.18, + "end": 7726.74, + "probability": 0.1066 + }, + { + "start": 7726.86, + "end": 7727.66, + "probability": 0.4676 + }, + { + "start": 7727.8, + "end": 7727.8, + "probability": 0.0588 + }, + { + "start": 7728.88, + "end": 7733.44, + "probability": 0.6873 + }, + { + "start": 7734.05, + "end": 7735.7, + "probability": 0.802 + }, + { + "start": 7736.37, + "end": 7740.28, + "probability": 0.9756 + }, + { + "start": 7740.48, + "end": 7741.46, + "probability": 0.4986 + }, + { + "start": 7742.04, + "end": 7742.88, + "probability": 0.6187 + }, + { + "start": 7742.96, + "end": 7743.82, + "probability": 0.9634 + }, + { + "start": 7743.86, + "end": 7745.82, + "probability": 0.9355 + }, + { + "start": 7746.52, + "end": 7748.4, + "probability": 0.7168 + }, + { + "start": 7748.44, + "end": 7751.36, + "probability": 0.8275 + }, + { + "start": 7751.74, + "end": 7753.86, + "probability": 0.8298 + }, + { + "start": 7754.34, + "end": 7755.64, + "probability": 0.2758 + }, + { + "start": 7755.66, + "end": 7757.66, + "probability": 0.8161 + }, + { + "start": 7757.88, + "end": 7759.04, + "probability": 0.5948 + }, + { + "start": 7759.04, + "end": 7760.64, + "probability": 0.0148 + }, + { + "start": 7760.64, + "end": 7762.4, + "probability": 0.9746 + }, + { + "start": 7762.76, + "end": 7762.76, + "probability": 0.1785 + }, + { + "start": 7762.76, + "end": 7764.92, + "probability": 0.9491 + }, + { + "start": 7766.06, + "end": 7769.34, + "probability": 0.7316 + }, + { + "start": 7769.46, + "end": 7770.16, + "probability": 0.1599 + }, + { + "start": 7770.52, + "end": 7770.52, + "probability": 0.233 + }, + { + "start": 7770.52, + "end": 7773.32, + "probability": 0.8007 + }, + { + "start": 7773.34, + "end": 7775.26, + "probability": 0.9928 + }, + { + "start": 7775.46, + "end": 7776.86, + "probability": 0.2678 + }, + { + "start": 7778.54, + "end": 7778.62, + "probability": 0.077 + }, + { + "start": 7778.62, + "end": 7781.52, + "probability": 0.8036 + }, + { + "start": 7781.52, + "end": 7783.83, + "probability": 0.7495 + }, + { + "start": 7784.12, + "end": 7784.84, + "probability": 0.9139 + }, + { + "start": 7786.26, + "end": 7789.0, + "probability": 0.6282 + }, + { + "start": 7789.0, + "end": 7790.04, + "probability": 0.4446 + }, + { + "start": 7790.18, + "end": 7790.75, + "probability": 0.6987 + }, + { + "start": 7791.04, + "end": 7792.82, + "probability": 0.8941 + }, + { + "start": 7793.4, + "end": 7795.48, + "probability": 0.7545 + }, + { + "start": 7795.56, + "end": 7796.42, + "probability": 0.3823 + }, + { + "start": 7797.84, + "end": 7798.9, + "probability": 0.6677 + }, + { + "start": 7799.98, + "end": 7807.64, + "probability": 0.7398 + }, + { + "start": 7808.0, + "end": 7808.56, + "probability": 0.4845 + }, + { + "start": 7808.74, + "end": 7813.56, + "probability": 0.869 + }, + { + "start": 7814.48, + "end": 7815.1, + "probability": 0.7248 + }, + { + "start": 7815.64, + "end": 7816.68, + "probability": 0.7311 + }, + { + "start": 7817.2, + "end": 7819.18, + "probability": 0.7575 + }, + { + "start": 7820.02, + "end": 7820.02, + "probability": 0.1425 + }, + { + "start": 7820.02, + "end": 7821.72, + "probability": 0.6173 + }, + { + "start": 7823.68, + "end": 7824.44, + "probability": 0.2261 + }, + { + "start": 7824.44, + "end": 7825.33, + "probability": 0.6751 + }, + { + "start": 7827.08, + "end": 7831.18, + "probability": 0.7837 + }, + { + "start": 7832.2, + "end": 7832.84, + "probability": 0.0762 + }, + { + "start": 7832.86, + "end": 7833.84, + "probability": 0.697 + }, + { + "start": 7834.3, + "end": 7836.4, + "probability": 0.6443 + }, + { + "start": 7836.4, + "end": 7838.48, + "probability": 0.7359 + }, + { + "start": 7838.76, + "end": 7840.44, + "probability": 0.494 + }, + { + "start": 7841.66, + "end": 7841.86, + "probability": 0.0156 + }, + { + "start": 7842.22, + "end": 7842.22, + "probability": 0.1045 + }, + { + "start": 7842.22, + "end": 7844.2, + "probability": 0.5625 + }, + { + "start": 7845.1, + "end": 7847.96, + "probability": 0.6574 + }, + { + "start": 7849.24, + "end": 7850.98, + "probability": 0.5193 + }, + { + "start": 7851.84, + "end": 7853.16, + "probability": 0.8587 + }, + { + "start": 7854.04, + "end": 7858.0, + "probability": 0.5816 + }, + { + "start": 7858.42, + "end": 7862.82, + "probability": 0.6681 + }, + { + "start": 7864.04, + "end": 7871.3, + "probability": 0.9286 + }, + { + "start": 7871.3, + "end": 7871.7, + "probability": 0.3259 + }, + { + "start": 7871.92, + "end": 7874.4, + "probability": 0.5569 + }, + { + "start": 7875.16, + "end": 7876.46, + "probability": 0.7749 + }, + { + "start": 7876.48, + "end": 7878.16, + "probability": 0.9159 + }, + { + "start": 7878.68, + "end": 7879.28, + "probability": 0.4964 + }, + { + "start": 7879.44, + "end": 7882.04, + "probability": 0.7256 + }, + { + "start": 7882.34, + "end": 7883.72, + "probability": 0.8325 + }, + { + "start": 7888.57, + "end": 7893.06, + "probability": 0.6331 + }, + { + "start": 7896.38, + "end": 7897.26, + "probability": 0.8633 + }, + { + "start": 7899.46, + "end": 7902.22, + "probability": 0.8477 + }, + { + "start": 7904.1, + "end": 7908.38, + "probability": 0.9954 + }, + { + "start": 7908.38, + "end": 7912.26, + "probability": 0.9954 + }, + { + "start": 7913.42, + "end": 7916.64, + "probability": 0.9847 + }, + { + "start": 7917.96, + "end": 7925.0, + "probability": 0.9967 + }, + { + "start": 7926.22, + "end": 7927.2, + "probability": 0.4479 + }, + { + "start": 7927.9, + "end": 7929.06, + "probability": 0.9341 + }, + { + "start": 7930.6, + "end": 7933.76, + "probability": 0.9484 + }, + { + "start": 7934.98, + "end": 7935.98, + "probability": 0.9744 + }, + { + "start": 7936.06, + "end": 7937.6, + "probability": 0.9957 + }, + { + "start": 7938.02, + "end": 7941.12, + "probability": 0.8404 + }, + { + "start": 7943.38, + "end": 7944.18, + "probability": 0.8926 + }, + { + "start": 7944.2, + "end": 7949.7, + "probability": 0.9038 + }, + { + "start": 7951.44, + "end": 7955.24, + "probability": 0.9707 + }, + { + "start": 7957.08, + "end": 7959.28, + "probability": 0.7924 + }, + { + "start": 7960.18, + "end": 7968.31, + "probability": 0.9861 + }, + { + "start": 7972.36, + "end": 7974.74, + "probability": 0.9541 + }, + { + "start": 7976.2, + "end": 7976.58, + "probability": 0.8502 + }, + { + "start": 7977.4, + "end": 7978.34, + "probability": 0.9399 + }, + { + "start": 7978.7, + "end": 7979.28, + "probability": 0.9485 + }, + { + "start": 7983.14, + "end": 7983.56, + "probability": 0.2185 + }, + { + "start": 7983.58, + "end": 7984.08, + "probability": 0.7075 + }, + { + "start": 7984.18, + "end": 7986.64, + "probability": 0.9771 + }, + { + "start": 7987.68, + "end": 7990.42, + "probability": 0.7259 + }, + { + "start": 7991.5, + "end": 7995.36, + "probability": 0.9151 + }, + { + "start": 7996.72, + "end": 7998.78, + "probability": 0.9746 + }, + { + "start": 7999.16, + "end": 8000.07, + "probability": 0.926 + }, + { + "start": 8002.0, + "end": 8006.24, + "probability": 0.9976 + }, + { + "start": 8006.76, + "end": 8008.24, + "probability": 0.5839 + }, + { + "start": 8009.88, + "end": 8012.82, + "probability": 0.9751 + }, + { + "start": 8017.5, + "end": 8017.5, + "probability": 0.0281 + }, + { + "start": 8017.5, + "end": 8017.5, + "probability": 0.4441 + }, + { + "start": 8017.5, + "end": 8017.5, + "probability": 0.1598 + }, + { + "start": 8017.5, + "end": 8017.5, + "probability": 0.0503 + }, + { + "start": 8017.5, + "end": 8020.22, + "probability": 0.6437 + }, + { + "start": 8020.22, + "end": 8027.34, + "probability": 0.8649 + }, + { + "start": 8028.1, + "end": 8034.38, + "probability": 0.9724 + }, + { + "start": 8034.38, + "end": 8040.62, + "probability": 0.9953 + }, + { + "start": 8042.44, + "end": 8042.68, + "probability": 0.5645 + }, + { + "start": 8042.7, + "end": 8046.09, + "probability": 0.9377 + }, + { + "start": 8046.3, + "end": 8050.16, + "probability": 0.998 + }, + { + "start": 8051.04, + "end": 8055.62, + "probability": 0.9969 + }, + { + "start": 8057.86, + "end": 8062.18, + "probability": 0.9988 + }, + { + "start": 8063.22, + "end": 8066.06, + "probability": 0.9812 + }, + { + "start": 8066.74, + "end": 8067.68, + "probability": 0.9893 + }, + { + "start": 8068.68, + "end": 8071.04, + "probability": 0.9935 + }, + { + "start": 8071.04, + "end": 8075.9, + "probability": 0.9988 + }, + { + "start": 8076.5, + "end": 8078.8, + "probability": 0.9398 + }, + { + "start": 8081.58, + "end": 8081.8, + "probability": 0.9591 + }, + { + "start": 8081.86, + "end": 8082.5, + "probability": 0.7328 + }, + { + "start": 8082.68, + "end": 8085.78, + "probability": 0.9966 + }, + { + "start": 8085.78, + "end": 8090.42, + "probability": 0.9912 + }, + { + "start": 8091.46, + "end": 8094.12, + "probability": 0.8372 + }, + { + "start": 8094.92, + "end": 8097.0, + "probability": 0.9515 + }, + { + "start": 8097.94, + "end": 8102.02, + "probability": 0.9856 + }, + { + "start": 8104.08, + "end": 8108.24, + "probability": 0.9971 + }, + { + "start": 8108.24, + "end": 8113.0, + "probability": 0.98 + }, + { + "start": 8114.28, + "end": 8114.28, + "probability": 0.7784 + }, + { + "start": 8114.28, + "end": 8116.02, + "probability": 0.6612 + }, + { + "start": 8117.09, + "end": 8119.26, + "probability": 0.8757 + }, + { + "start": 8121.6, + "end": 8122.04, + "probability": 0.4956 + }, + { + "start": 8122.08, + "end": 8123.84, + "probability": 0.8828 + }, + { + "start": 8123.98, + "end": 8124.58, + "probability": 0.4572 + }, + { + "start": 8124.66, + "end": 8125.4, + "probability": 0.8051 + }, + { + "start": 8125.52, + "end": 8127.88, + "probability": 0.8064 + }, + { + "start": 8129.4, + "end": 8131.22, + "probability": 0.7348 + }, + { + "start": 8131.4, + "end": 8132.1, + "probability": 0.9866 + }, + { + "start": 8132.26, + "end": 8139.38, + "probability": 0.8331 + }, + { + "start": 8139.38, + "end": 8145.2, + "probability": 0.9976 + }, + { + "start": 8147.56, + "end": 8148.26, + "probability": 0.9116 + }, + { + "start": 8148.46, + "end": 8154.34, + "probability": 0.9862 + }, + { + "start": 8155.0, + "end": 8157.34, + "probability": 0.6946 + }, + { + "start": 8158.54, + "end": 8159.44, + "probability": 0.9008 + }, + { + "start": 8159.58, + "end": 8161.87, + "probability": 0.9954 + }, + { + "start": 8162.46, + "end": 8169.64, + "probability": 0.9748 + }, + { + "start": 8169.74, + "end": 8170.53, + "probability": 0.7128 + }, + { + "start": 8171.56, + "end": 8175.1, + "probability": 0.992 + }, + { + "start": 8177.14, + "end": 8181.3, + "probability": 0.9779 + }, + { + "start": 8181.7, + "end": 8182.56, + "probability": 0.6319 + }, + { + "start": 8182.62, + "end": 8185.36, + "probability": 0.8941 + }, + { + "start": 8186.08, + "end": 8190.8, + "probability": 0.9836 + }, + { + "start": 8191.64, + "end": 8194.46, + "probability": 0.0154 + }, + { + "start": 8194.46, + "end": 8198.98, + "probability": 0.995 + }, + { + "start": 8200.22, + "end": 8200.6, + "probability": 0.5278 + }, + { + "start": 8200.62, + "end": 8201.3, + "probability": 0.7214 + }, + { + "start": 8201.4, + "end": 8204.8, + "probability": 0.9972 + }, + { + "start": 8204.8, + "end": 8208.14, + "probability": 0.9266 + }, + { + "start": 8209.36, + "end": 8211.6, + "probability": 0.9077 + }, + { + "start": 8213.36, + "end": 8217.4, + "probability": 0.9902 + }, + { + "start": 8217.98, + "end": 8219.53, + "probability": 0.964 + }, + { + "start": 8220.28, + "end": 8222.58, + "probability": 0.8995 + }, + { + "start": 8223.36, + "end": 8227.04, + "probability": 0.9666 + }, + { + "start": 8228.26, + "end": 8229.98, + "probability": 0.9957 + }, + { + "start": 8230.74, + "end": 8231.92, + "probability": 0.9349 + }, + { + "start": 8232.06, + "end": 8232.7, + "probability": 0.9814 + }, + { + "start": 8232.76, + "end": 8237.32, + "probability": 0.9697 + }, + { + "start": 8238.52, + "end": 8242.26, + "probability": 0.9885 + }, + { + "start": 8243.1, + "end": 8247.34, + "probability": 0.9976 + }, + { + "start": 8248.78, + "end": 8249.66, + "probability": 0.7883 + }, + { + "start": 8250.56, + "end": 8252.38, + "probability": 0.9517 + }, + { + "start": 8252.9, + "end": 8254.1, + "probability": 0.9697 + }, + { + "start": 8254.62, + "end": 8257.72, + "probability": 0.9388 + }, + { + "start": 8261.12, + "end": 8261.72, + "probability": 0.9619 + }, + { + "start": 8261.84, + "end": 8266.84, + "probability": 0.9971 + }, + { + "start": 8267.72, + "end": 8271.9, + "probability": 0.9 + }, + { + "start": 8273.72, + "end": 8274.5, + "probability": 0.9648 + }, + { + "start": 8275.22, + "end": 8279.04, + "probability": 0.9521 + }, + { + "start": 8281.44, + "end": 8285.68, + "probability": 0.9676 + }, + { + "start": 8288.16, + "end": 8289.0, + "probability": 0.5998 + }, + { + "start": 8289.16, + "end": 8290.12, + "probability": 0.9081 + }, + { + "start": 8290.34, + "end": 8295.22, + "probability": 0.9974 + }, + { + "start": 8296.06, + "end": 8297.06, + "probability": 0.9652 + }, + { + "start": 8298.68, + "end": 8302.5, + "probability": 0.9931 + }, + { + "start": 8302.5, + "end": 8308.14, + "probability": 0.9731 + }, + { + "start": 8309.0, + "end": 8309.62, + "probability": 0.8026 + }, + { + "start": 8311.0, + "end": 8314.4, + "probability": 0.9679 + }, + { + "start": 8315.2, + "end": 8318.58, + "probability": 0.9937 + }, + { + "start": 8319.36, + "end": 8320.34, + "probability": 0.8141 + }, + { + "start": 8320.44, + "end": 8324.88, + "probability": 0.7303 + }, + { + "start": 8325.58, + "end": 8328.32, + "probability": 0.9864 + }, + { + "start": 8328.9, + "end": 8333.12, + "probability": 0.9924 + }, + { + "start": 8334.16, + "end": 8336.66, + "probability": 0.8977 + }, + { + "start": 8337.42, + "end": 8339.96, + "probability": 0.9028 + }, + { + "start": 8340.83, + "end": 8342.88, + "probability": 0.8211 + }, + { + "start": 8343.02, + "end": 8344.22, + "probability": 0.6689 + }, + { + "start": 8345.1, + "end": 8348.44, + "probability": 0.9691 + }, + { + "start": 8348.7, + "end": 8349.82, + "probability": 0.9465 + }, + { + "start": 8349.88, + "end": 8350.8, + "probability": 0.9554 + }, + { + "start": 8351.54, + "end": 8352.92, + "probability": 0.8331 + }, + { + "start": 8353.04, + "end": 8353.99, + "probability": 0.8832 + }, + { + "start": 8354.72, + "end": 8355.76, + "probability": 0.7927 + }, + { + "start": 8356.3, + "end": 8360.02, + "probability": 0.8977 + }, + { + "start": 8360.56, + "end": 8365.62, + "probability": 0.9833 + }, + { + "start": 8365.62, + "end": 8369.02, + "probability": 0.9961 + }, + { + "start": 8369.94, + "end": 8373.8, + "probability": 0.9895 + }, + { + "start": 8374.68, + "end": 8377.18, + "probability": 0.9878 + }, + { + "start": 8377.76, + "end": 8380.86, + "probability": 0.9814 + }, + { + "start": 8382.02, + "end": 8382.78, + "probability": 0.7322 + }, + { + "start": 8382.9, + "end": 8386.44, + "probability": 0.8518 + }, + { + "start": 8386.62, + "end": 8387.86, + "probability": 0.7109 + }, + { + "start": 8388.9, + "end": 8389.2, + "probability": 0.6969 + }, + { + "start": 8389.58, + "end": 8390.18, + "probability": 0.1745 + }, + { + "start": 8390.18, + "end": 8390.22, + "probability": 0.6021 + }, + { + "start": 8390.42, + "end": 8390.68, + "probability": 0.3949 + }, + { + "start": 8390.7, + "end": 8391.36, + "probability": 0.106 + }, + { + "start": 8392.96, + "end": 8393.42, + "probability": 0.7369 + }, + { + "start": 8393.5, + "end": 8396.66, + "probability": 0.9428 + }, + { + "start": 8397.42, + "end": 8402.52, + "probability": 0.9766 + }, + { + "start": 8403.9, + "end": 8408.1, + "probability": 0.9944 + }, + { + "start": 8408.94, + "end": 8409.36, + "probability": 0.9368 + }, + { + "start": 8410.26, + "end": 8415.42, + "probability": 0.9911 + }, + { + "start": 8415.92, + "end": 8419.3, + "probability": 0.9802 + }, + { + "start": 8419.3, + "end": 8423.76, + "probability": 0.9997 + }, + { + "start": 8424.84, + "end": 8424.98, + "probability": 0.4523 + }, + { + "start": 8424.98, + "end": 8425.62, + "probability": 0.9749 + }, + { + "start": 8425.62, + "end": 8429.6, + "probability": 0.9738 + }, + { + "start": 8430.12, + "end": 8432.8, + "probability": 0.8811 + }, + { + "start": 8433.4, + "end": 8435.1, + "probability": 0.9842 + }, + { + "start": 8435.56, + "end": 8436.56, + "probability": 0.966 + }, + { + "start": 8436.66, + "end": 8437.74, + "probability": 0.8716 + }, + { + "start": 8437.8, + "end": 8438.42, + "probability": 0.9788 + }, + { + "start": 8438.46, + "end": 8440.02, + "probability": 0.9492 + }, + { + "start": 8440.58, + "end": 8442.49, + "probability": 0.9888 + }, + { + "start": 8443.2, + "end": 8447.94, + "probability": 0.9838 + }, + { + "start": 8448.8, + "end": 8450.48, + "probability": 0.6145 + }, + { + "start": 8450.58, + "end": 8452.98, + "probability": 0.8405 + }, + { + "start": 8453.0, + "end": 8454.08, + "probability": 0.6593 + }, + { + "start": 8454.08, + "end": 8454.15, + "probability": 0.2216 + }, + { + "start": 8454.42, + "end": 8456.62, + "probability": 0.9093 + }, + { + "start": 8456.82, + "end": 8458.92, + "probability": 0.9641 + }, + { + "start": 8458.92, + "end": 8462.38, + "probability": 0.9761 + }, + { + "start": 8463.82, + "end": 8464.6, + "probability": 0.928 + }, + { + "start": 8464.68, + "end": 8465.5, + "probability": 0.9418 + }, + { + "start": 8465.74, + "end": 8466.68, + "probability": 0.9709 + }, + { + "start": 8468.04, + "end": 8469.47, + "probability": 0.9712 + }, + { + "start": 8470.2, + "end": 8471.4, + "probability": 0.9396 + }, + { + "start": 8472.04, + "end": 8476.38, + "probability": 0.7768 + }, + { + "start": 8476.92, + "end": 8479.24, + "probability": 0.9956 + }, + { + "start": 8480.06, + "end": 8483.72, + "probability": 0.9707 + }, + { + "start": 8484.32, + "end": 8487.26, + "probability": 0.9585 + }, + { + "start": 8488.86, + "end": 8490.08, + "probability": 0.8459 + }, + { + "start": 8491.72, + "end": 8493.64, + "probability": 0.5826 + }, + { + "start": 8494.1, + "end": 8494.61, + "probability": 0.6147 + }, + { + "start": 8495.5, + "end": 8496.5, + "probability": 0.8993 + }, + { + "start": 8497.66, + "end": 8499.72, + "probability": 0.9502 + }, + { + "start": 8500.68, + "end": 8502.5, + "probability": 0.9896 + }, + { + "start": 8502.66, + "end": 8505.42, + "probability": 0.9236 + }, + { + "start": 8505.68, + "end": 8507.34, + "probability": 0.744 + }, + { + "start": 8507.94, + "end": 8513.48, + "probability": 0.9149 + }, + { + "start": 8516.12, + "end": 8518.28, + "probability": 0.8074 + }, + { + "start": 8529.14, + "end": 8530.22, + "probability": 0.7998 + }, + { + "start": 8531.04, + "end": 8533.24, + "probability": 0.9047 + }, + { + "start": 8534.98, + "end": 8535.36, + "probability": 0.8605 + }, + { + "start": 8535.48, + "end": 8537.94, + "probability": 0.9896 + }, + { + "start": 8538.06, + "end": 8541.44, + "probability": 0.9658 + }, + { + "start": 8542.22, + "end": 8542.98, + "probability": 0.9517 + }, + { + "start": 8543.06, + "end": 8544.94, + "probability": 0.8928 + }, + { + "start": 8545.12, + "end": 8549.04, + "probability": 0.9912 + }, + { + "start": 8549.1, + "end": 8550.94, + "probability": 0.9327 + }, + { + "start": 8551.48, + "end": 8554.4, + "probability": 0.9958 + }, + { + "start": 8554.46, + "end": 8558.58, + "probability": 0.9993 + }, + { + "start": 8559.34, + "end": 8559.36, + "probability": 0.0246 + }, + { + "start": 8559.36, + "end": 8561.59, + "probability": 0.9177 + }, + { + "start": 8561.96, + "end": 8564.0, + "probability": 0.978 + }, + { + "start": 8564.68, + "end": 8564.86, + "probability": 0.0416 + }, + { + "start": 8564.86, + "end": 8567.28, + "probability": 0.8966 + }, + { + "start": 8567.92, + "end": 8571.9, + "probability": 0.9909 + }, + { + "start": 8572.68, + "end": 8573.1, + "probability": 0.1278 + }, + { + "start": 8573.1, + "end": 8573.38, + "probability": 0.3171 + }, + { + "start": 8573.48, + "end": 8573.48, + "probability": 0.5697 + }, + { + "start": 8573.62, + "end": 8574.66, + "probability": 0.4465 + }, + { + "start": 8574.72, + "end": 8577.62, + "probability": 0.8257 + }, + { + "start": 8577.74, + "end": 8579.5, + "probability": 0.9833 + }, + { + "start": 8580.26, + "end": 8582.38, + "probability": 0.7348 + }, + { + "start": 8582.96, + "end": 8584.93, + "probability": 0.5738 + }, + { + "start": 8585.52, + "end": 8586.14, + "probability": 0.0243 + }, + { + "start": 8586.14, + "end": 8586.14, + "probability": 0.2026 + }, + { + "start": 8586.14, + "end": 8588.16, + "probability": 0.6509 + }, + { + "start": 8588.26, + "end": 8591.08, + "probability": 0.7931 + }, + { + "start": 8591.08, + "end": 8592.8, + "probability": 0.9342 + }, + { + "start": 8594.16, + "end": 8595.82, + "probability": 0.7272 + }, + { + "start": 8595.94, + "end": 8598.28, + "probability": 0.887 + }, + { + "start": 8598.46, + "end": 8599.96, + "probability": 0.6832 + }, + { + "start": 8600.12, + "end": 8602.37, + "probability": 0.9839 + }, + { + "start": 8603.06, + "end": 8607.92, + "probability": 0.9804 + }, + { + "start": 8608.24, + "end": 8610.18, + "probability": 0.7947 + }, + { + "start": 8610.4, + "end": 8611.94, + "probability": 0.9177 + }, + { + "start": 8612.04, + "end": 8615.02, + "probability": 0.8815 + }, + { + "start": 8615.1, + "end": 8616.7, + "probability": 0.9175 + }, + { + "start": 8616.94, + "end": 8618.64, + "probability": 0.687 + }, + { + "start": 8618.76, + "end": 8619.04, + "probability": 0.467 + }, + { + "start": 8619.08, + "end": 8622.3, + "probability": 0.9609 + }, + { + "start": 8622.42, + "end": 8623.61, + "probability": 0.9897 + }, + { + "start": 8623.96, + "end": 8625.86, + "probability": 0.7771 + }, + { + "start": 8626.42, + "end": 8628.62, + "probability": 0.0276 + }, + { + "start": 8629.08, + "end": 8629.6, + "probability": 0.0034 + }, + { + "start": 8629.6, + "end": 8629.6, + "probability": 0.0424 + }, + { + "start": 8629.6, + "end": 8629.6, + "probability": 0.1153 + }, + { + "start": 8629.62, + "end": 8630.14, + "probability": 0.0902 + }, + { + "start": 8630.24, + "end": 8631.43, + "probability": 0.535 + }, + { + "start": 8631.98, + "end": 8633.09, + "probability": 0.5004 + }, + { + "start": 8633.66, + "end": 8634.65, + "probability": 0.9773 + }, + { + "start": 8634.84, + "end": 8636.27, + "probability": 0.9287 + }, + { + "start": 8637.38, + "end": 8638.68, + "probability": 0.286 + }, + { + "start": 8638.68, + "end": 8639.4, + "probability": 0.0597 + }, + { + "start": 8639.44, + "end": 8640.66, + "probability": 0.9314 + }, + { + "start": 8640.74, + "end": 8642.12, + "probability": 0.6471 + }, + { + "start": 8642.26, + "end": 8642.7, + "probability": 0.7583 + }, + { + "start": 8642.96, + "end": 8643.62, + "probability": 0.8916 + }, + { + "start": 8643.72, + "end": 8646.62, + "probability": 0.9596 + }, + { + "start": 8646.78, + "end": 8647.94, + "probability": 0.9481 + }, + { + "start": 8648.1, + "end": 8649.04, + "probability": 0.7467 + }, + { + "start": 8649.84, + "end": 8649.88, + "probability": 0.0966 + }, + { + "start": 8649.88, + "end": 8653.34, + "probability": 0.9878 + }, + { + "start": 8653.34, + "end": 8657.16, + "probability": 0.9867 + }, + { + "start": 8657.42, + "end": 8657.42, + "probability": 0.3644 + }, + { + "start": 8657.44, + "end": 8657.7, + "probability": 0.7855 + }, + { + "start": 8657.82, + "end": 8661.86, + "probability": 0.9971 + }, + { + "start": 8662.34, + "end": 8667.2, + "probability": 0.9932 + }, + { + "start": 8667.64, + "end": 8668.66, + "probability": 0.9603 + }, + { + "start": 8668.76, + "end": 8673.12, + "probability": 0.9991 + }, + { + "start": 8673.52, + "end": 8676.14, + "probability": 0.9995 + }, + { + "start": 8676.24, + "end": 8682.04, + "probability": 0.9621 + }, + { + "start": 8682.26, + "end": 8684.96, + "probability": 0.961 + }, + { + "start": 8685.52, + "end": 8686.08, + "probability": 0.792 + }, + { + "start": 8686.6, + "end": 8686.7, + "probability": 0.0227 + }, + { + "start": 8686.7, + "end": 8688.36, + "probability": 0.9492 + }, + { + "start": 8688.88, + "end": 8692.98, + "probability": 0.4285 + }, + { + "start": 8693.02, + "end": 8693.12, + "probability": 0.1945 + }, + { + "start": 8693.12, + "end": 8693.64, + "probability": 0.0761 + }, + { + "start": 8693.68, + "end": 8694.78, + "probability": 0.5919 + }, + { + "start": 8694.84, + "end": 8696.96, + "probability": 0.9248 + }, + { + "start": 8697.54, + "end": 8702.28, + "probability": 0.5627 + }, + { + "start": 8702.56, + "end": 8703.6, + "probability": 0.0197 + }, + { + "start": 8703.64, + "end": 8705.42, + "probability": 0.5233 + }, + { + "start": 8705.76, + "end": 8706.9, + "probability": 0.8509 + }, + { + "start": 8706.94, + "end": 8708.1, + "probability": 0.7456 + }, + { + "start": 8708.12, + "end": 8709.82, + "probability": 0.9955 + }, + { + "start": 8710.5, + "end": 8711.34, + "probability": 0.9648 + }, + { + "start": 8711.46, + "end": 8715.3, + "probability": 0.9368 + }, + { + "start": 8716.0, + "end": 8716.86, + "probability": 0.6462 + }, + { + "start": 8717.04, + "end": 8719.72, + "probability": 0.6472 + }, + { + "start": 8719.78, + "end": 8720.5, + "probability": 0.7917 + }, + { + "start": 8720.92, + "end": 8724.78, + "probability": 0.8984 + }, + { + "start": 8725.22, + "end": 8727.74, + "probability": 0.8403 + }, + { + "start": 8727.74, + "end": 8730.42, + "probability": 0.973 + }, + { + "start": 8730.94, + "end": 8731.78, + "probability": 0.9383 + }, + { + "start": 8732.54, + "end": 8735.0, + "probability": 0.9951 + }, + { + "start": 8735.08, + "end": 8736.02, + "probability": 0.3577 + }, + { + "start": 8736.2, + "end": 8740.68, + "probability": 0.9676 + }, + { + "start": 8741.18, + "end": 8741.4, + "probability": 0.7855 + }, + { + "start": 8741.48, + "end": 8742.46, + "probability": 0.9541 + }, + { + "start": 8742.52, + "end": 8745.1, + "probability": 0.9849 + }, + { + "start": 8745.1, + "end": 8748.38, + "probability": 0.9987 + }, + { + "start": 8748.74, + "end": 8749.16, + "probability": 0.8762 + }, + { + "start": 8749.26, + "end": 8750.3, + "probability": 0.8266 + }, + { + "start": 8750.62, + "end": 8754.02, + "probability": 0.9663 + }, + { + "start": 8754.12, + "end": 8754.86, + "probability": 0.926 + }, + { + "start": 8754.94, + "end": 8758.26, + "probability": 0.9925 + }, + { + "start": 8758.72, + "end": 8758.94, + "probability": 0.1048 + }, + { + "start": 8759.02, + "end": 8761.3, + "probability": 0.986 + }, + { + "start": 8761.38, + "end": 8763.33, + "probability": 0.9424 + }, + { + "start": 8765.84, + "end": 8766.14, + "probability": 0.2324 + }, + { + "start": 8766.14, + "end": 8766.14, + "probability": 0.1299 + }, + { + "start": 8766.14, + "end": 8768.43, + "probability": 0.9191 + }, + { + "start": 8769.76, + "end": 8770.7, + "probability": 0.0283 + }, + { + "start": 8770.7, + "end": 8772.44, + "probability": 0.3547 + }, + { + "start": 8773.28, + "end": 8773.28, + "probability": 0.0557 + }, + { + "start": 8773.28, + "end": 8775.48, + "probability": 0.8407 + }, + { + "start": 8775.66, + "end": 8778.0, + "probability": 0.9906 + }, + { + "start": 8778.16, + "end": 8781.48, + "probability": 0.4919 + }, + { + "start": 8781.94, + "end": 8781.94, + "probability": 0.0412 + }, + { + "start": 8781.94, + "end": 8784.62, + "probability": 0.9906 + }, + { + "start": 8784.62, + "end": 8787.44, + "probability": 0.9956 + }, + { + "start": 8787.64, + "end": 8789.08, + "probability": 0.8019 + }, + { + "start": 8789.24, + "end": 8790.24, + "probability": 0.7043 + }, + { + "start": 8790.9, + "end": 8792.84, + "probability": 0.9768 + }, + { + "start": 8792.9, + "end": 8794.12, + "probability": 0.9971 + }, + { + "start": 8794.68, + "end": 8795.16, + "probability": 0.7073 + }, + { + "start": 8795.24, + "end": 8796.84, + "probability": 0.9409 + }, + { + "start": 8796.96, + "end": 8801.76, + "probability": 0.9908 + }, + { + "start": 8802.12, + "end": 8805.58, + "probability": 0.9948 + }, + { + "start": 8805.58, + "end": 8809.96, + "probability": 0.9967 + }, + { + "start": 8810.44, + "end": 8814.34, + "probability": 0.9961 + }, + { + "start": 8814.34, + "end": 8817.6, + "probability": 0.9971 + }, + { + "start": 8818.0, + "end": 8819.42, + "probability": 0.8737 + }, + { + "start": 8819.7, + "end": 8822.5, + "probability": 0.9225 + }, + { + "start": 8822.94, + "end": 8826.28, + "probability": 0.8381 + }, + { + "start": 8826.76, + "end": 8827.44, + "probability": 0.858 + }, + { + "start": 8827.58, + "end": 8827.76, + "probability": 0.2403 + }, + { + "start": 8827.92, + "end": 8831.2, + "probability": 0.4861 + }, + { + "start": 8831.4, + "end": 8834.82, + "probability": 0.9806 + }, + { + "start": 8834.82, + "end": 8837.9, + "probability": 0.9005 + }, + { + "start": 8838.16, + "end": 8842.74, + "probability": 0.551 + }, + { + "start": 8843.12, + "end": 8847.88, + "probability": 0.9915 + }, + { + "start": 8848.5, + "end": 8850.34, + "probability": 0.8489 + }, + { + "start": 8850.8, + "end": 8852.44, + "probability": 0.9688 + }, + { + "start": 8853.22, + "end": 8853.56, + "probability": 0.8465 + }, + { + "start": 8853.64, + "end": 8856.98, + "probability": 0.9929 + }, + { + "start": 8857.3, + "end": 8859.46, + "probability": 0.9969 + }, + { + "start": 8859.92, + "end": 8861.48, + "probability": 0.9883 + }, + { + "start": 8862.18, + "end": 8865.62, + "probability": 0.9952 + }, + { + "start": 8866.04, + "end": 8871.66, + "probability": 0.9912 + }, + { + "start": 8871.66, + "end": 8875.26, + "probability": 0.9861 + }, + { + "start": 8875.36, + "end": 8876.3, + "probability": 0.6614 + }, + { + "start": 8876.84, + "end": 8879.68, + "probability": 0.9933 + }, + { + "start": 8880.1, + "end": 8883.34, + "probability": 0.9897 + }, + { + "start": 8883.34, + "end": 8885.92, + "probability": 0.8198 + }, + { + "start": 8886.34, + "end": 8888.18, + "probability": 0.9821 + }, + { + "start": 8890.28, + "end": 8892.16, + "probability": 0.9891 + }, + { + "start": 8892.62, + "end": 8894.02, + "probability": 0.7324 + }, + { + "start": 8894.1, + "end": 8894.91, + "probability": 0.9658 + }, + { + "start": 8895.06, + "end": 8898.95, + "probability": 0.9897 + }, + { + "start": 8898.98, + "end": 8902.37, + "probability": 0.9968 + }, + { + "start": 8902.62, + "end": 8903.28, + "probability": 0.8785 + }, + { + "start": 8903.62, + "end": 8903.86, + "probability": 0.6738 + }, + { + "start": 8903.92, + "end": 8904.44, + "probability": 0.8087 + }, + { + "start": 8904.72, + "end": 8908.24, + "probability": 0.9726 + }, + { + "start": 8908.82, + "end": 8909.74, + "probability": 0.547 + }, + { + "start": 8909.86, + "end": 8912.2, + "probability": 0.8245 + }, + { + "start": 8912.32, + "end": 8914.9, + "probability": 0.9966 + }, + { + "start": 8915.24, + "end": 8918.96, + "probability": 0.9677 + }, + { + "start": 8918.96, + "end": 8921.96, + "probability": 0.9991 + }, + { + "start": 8922.84, + "end": 8923.1, + "probability": 0.73 + }, + { + "start": 8925.06, + "end": 8927.46, + "probability": 0.953 + }, + { + "start": 8927.9, + "end": 8928.66, + "probability": 0.5781 + }, + { + "start": 8928.72, + "end": 8933.96, + "probability": 0.9985 + }, + { + "start": 8934.74, + "end": 8937.2, + "probability": 0.9832 + }, + { + "start": 8937.46, + "end": 8938.48, + "probability": 0.4692 + }, + { + "start": 8938.76, + "end": 8940.94, + "probability": 0.885 + }, + { + "start": 8942.6, + "end": 8943.84, + "probability": 0.9952 + }, + { + "start": 8944.3, + "end": 8947.7, + "probability": 0.931 + }, + { + "start": 8948.2, + "end": 8953.42, + "probability": 0.9128 + }, + { + "start": 8953.56, + "end": 8956.66, + "probability": 0.9868 + }, + { + "start": 8960.56, + "end": 8961.42, + "probability": 0.643 + }, + { + "start": 8962.16, + "end": 8964.06, + "probability": 0.8908 + }, + { + "start": 8964.6, + "end": 8965.9, + "probability": 0.9819 + }, + { + "start": 8965.98, + "end": 8966.59, + "probability": 0.9737 + }, + { + "start": 8966.76, + "end": 8967.62, + "probability": 0.9172 + }, + { + "start": 8967.78, + "end": 8968.12, + "probability": 0.8972 + }, + { + "start": 8969.24, + "end": 8969.62, + "probability": 0.4442 + }, + { + "start": 8971.62, + "end": 8971.62, + "probability": 0.0183 + }, + { + "start": 8971.62, + "end": 8972.41, + "probability": 0.9371 + }, + { + "start": 8976.24, + "end": 8977.58, + "probability": 0.6283 + }, + { + "start": 8981.02, + "end": 8982.58, + "probability": 0.8163 + }, + { + "start": 8985.22, + "end": 8986.64, + "probability": 0.5017 + }, + { + "start": 8989.66, + "end": 8992.06, + "probability": 0.9841 + }, + { + "start": 8992.62, + "end": 8993.44, + "probability": 0.805 + }, + { + "start": 8993.5, + "end": 8994.36, + "probability": 0.9796 + }, + { + "start": 8995.72, + "end": 8996.5, + "probability": 0.9963 + }, + { + "start": 8998.32, + "end": 8999.96, + "probability": 0.8048 + }, + { + "start": 9001.0, + "end": 9004.06, + "probability": 0.9981 + }, + { + "start": 9006.22, + "end": 9007.94, + "probability": 0.9971 + }, + { + "start": 9011.0, + "end": 9012.38, + "probability": 0.9042 + }, + { + "start": 9014.18, + "end": 9016.28, + "probability": 0.9611 + }, + { + "start": 9018.74, + "end": 9019.4, + "probability": 0.9774 + }, + { + "start": 9021.32, + "end": 9022.86, + "probability": 0.9965 + }, + { + "start": 9025.46, + "end": 9027.4, + "probability": 0.9291 + }, + { + "start": 9029.28, + "end": 9030.78, + "probability": 0.981 + }, + { + "start": 9032.94, + "end": 9034.42, + "probability": 0.6817 + }, + { + "start": 9035.9, + "end": 9036.68, + "probability": 0.7506 + }, + { + "start": 9038.62, + "end": 9041.12, + "probability": 0.9154 + }, + { + "start": 9044.66, + "end": 9045.96, + "probability": 0.8693 + }, + { + "start": 9049.92, + "end": 9054.2, + "probability": 0.763 + }, + { + "start": 9059.3, + "end": 9060.78, + "probability": 0.7299 + }, + { + "start": 9064.82, + "end": 9065.68, + "probability": 0.9048 + }, + { + "start": 9068.72, + "end": 9070.02, + "probability": 0.9221 + }, + { + "start": 9072.36, + "end": 9073.2, + "probability": 0.7493 + }, + { + "start": 9076.12, + "end": 9077.5, + "probability": 0.8126 + }, + { + "start": 9080.3, + "end": 9083.86, + "probability": 0.9626 + }, + { + "start": 9085.44, + "end": 9086.04, + "probability": 0.8694 + }, + { + "start": 9087.76, + "end": 9093.86, + "probability": 0.9976 + }, + { + "start": 9095.8, + "end": 9097.34, + "probability": 0.8402 + }, + { + "start": 9101.76, + "end": 9103.48, + "probability": 0.9989 + }, + { + "start": 9106.58, + "end": 9107.62, + "probability": 0.8947 + }, + { + "start": 9111.12, + "end": 9112.5, + "probability": 0.864 + }, + { + "start": 9114.5, + "end": 9115.3, + "probability": 0.8442 + }, + { + "start": 9118.96, + "end": 9119.86, + "probability": 0.8997 + }, + { + "start": 9122.42, + "end": 9123.44, + "probability": 0.9469 + }, + { + "start": 9126.02, + "end": 9127.76, + "probability": 0.972 + }, + { + "start": 9129.62, + "end": 9130.52, + "probability": 0.9801 + }, + { + "start": 9132.66, + "end": 9133.2, + "probability": 0.8118 + }, + { + "start": 9138.28, + "end": 9140.32, + "probability": 0.983 + }, + { + "start": 9143.1, + "end": 9143.92, + "probability": 0.9207 + }, + { + "start": 9147.1, + "end": 9148.54, + "probability": 0.994 + }, + { + "start": 9149.92, + "end": 9151.26, + "probability": 0.9321 + }, + { + "start": 9155.86, + "end": 9157.68, + "probability": 0.9961 + }, + { + "start": 9158.44, + "end": 9160.72, + "probability": 0.9538 + }, + { + "start": 9161.74, + "end": 9162.46, + "probability": 0.9506 + }, + { + "start": 9164.58, + "end": 9165.38, + "probability": 0.989 + }, + { + "start": 9168.64, + "end": 9169.74, + "probability": 0.9683 + }, + { + "start": 9172.76, + "end": 9173.82, + "probability": 0.9549 + }, + { + "start": 9177.44, + "end": 9178.56, + "probability": 0.9187 + }, + { + "start": 9180.18, + "end": 9181.97, + "probability": 0.8171 + }, + { + "start": 9184.42, + "end": 9185.62, + "probability": 0.4722 + }, + { + "start": 9188.18, + "end": 9189.34, + "probability": 0.9619 + }, + { + "start": 9192.48, + "end": 9195.38, + "probability": 0.9989 + }, + { + "start": 9195.52, + "end": 9196.76, + "probability": 0.9202 + }, + { + "start": 9199.54, + "end": 9203.88, + "probability": 0.9839 + }, + { + "start": 9203.98, + "end": 9205.21, + "probability": 0.5778 + }, + { + "start": 9207.66, + "end": 9208.41, + "probability": 0.1945 + }, + { + "start": 9211.48, + "end": 9213.54, + "probability": 0.8558 + }, + { + "start": 9215.2, + "end": 9215.92, + "probability": 0.939 + }, + { + "start": 9219.05, + "end": 9219.84, + "probability": 0.8106 + }, + { + "start": 9224.47, + "end": 9227.76, + "probability": 0.9916 + }, + { + "start": 9230.42, + "end": 9231.62, + "probability": 0.7158 + }, + { + "start": 9235.57, + "end": 9237.31, + "probability": 0.9922 + }, + { + "start": 9241.59, + "end": 9242.47, + "probability": 0.9138 + }, + { + "start": 9245.25, + "end": 9246.31, + "probability": 0.7453 + }, + { + "start": 9248.75, + "end": 9251.67, + "probability": 0.6583 + }, + { + "start": 9252.33, + "end": 9252.95, + "probability": 0.9734 + }, + { + "start": 9255.35, + "end": 9256.37, + "probability": 0.9395 + }, + { + "start": 9260.73, + "end": 9261.93, + "probability": 0.9897 + }, + { + "start": 9265.17, + "end": 9266.75, + "probability": 0.7452 + }, + { + "start": 9267.69, + "end": 9270.01, + "probability": 0.8738 + }, + { + "start": 9272.61, + "end": 9273.17, + "probability": 0.7312 + }, + { + "start": 9274.95, + "end": 9275.67, + "probability": 0.9979 + }, + { + "start": 9279.67, + "end": 9281.31, + "probability": 0.9734 + }, + { + "start": 9282.09, + "end": 9283.15, + "probability": 0.9803 + }, + { + "start": 9285.09, + "end": 9286.57, + "probability": 0.9404 + }, + { + "start": 9290.69, + "end": 9291.23, + "probability": 0.0215 + }, + { + "start": 9292.75, + "end": 9294.99, + "probability": 0.9826 + }, + { + "start": 9295.11, + "end": 9295.87, + "probability": 0.8805 + }, + { + "start": 9296.15, + "end": 9297.31, + "probability": 0.9506 + }, + { + "start": 9300.63, + "end": 9302.31, + "probability": 0.9934 + }, + { + "start": 9305.77, + "end": 9308.87, + "probability": 0.9752 + }, + { + "start": 9311.59, + "end": 9315.35, + "probability": 0.9824 + }, + { + "start": 9317.83, + "end": 9325.01, + "probability": 0.9683 + }, + { + "start": 9327.55, + "end": 9328.73, + "probability": 0.9767 + }, + { + "start": 9331.75, + "end": 9333.85, + "probability": 0.827 + }, + { + "start": 9334.89, + "end": 9336.63, + "probability": 0.8835 + }, + { + "start": 9337.57, + "end": 9339.51, + "probability": 0.7172 + }, + { + "start": 9339.77, + "end": 9340.93, + "probability": 0.8399 + }, + { + "start": 9340.97, + "end": 9347.03, + "probability": 0.9786 + }, + { + "start": 9347.39, + "end": 9351.37, + "probability": 0.8501 + }, + { + "start": 9353.53, + "end": 9357.63, + "probability": 0.8143 + }, + { + "start": 9359.33, + "end": 9363.19, + "probability": 0.9038 + }, + { + "start": 9367.39, + "end": 9369.31, + "probability": 0.9817 + }, + { + "start": 9372.07, + "end": 9373.83, + "probability": 0.9742 + }, + { + "start": 9374.15, + "end": 9375.93, + "probability": 0.7511 + }, + { + "start": 9376.05, + "end": 9376.67, + "probability": 0.8961 + }, + { + "start": 9377.29, + "end": 9378.61, + "probability": 0.8232 + }, + { + "start": 9379.43, + "end": 9380.35, + "probability": 0.9787 + }, + { + "start": 9381.09, + "end": 9381.95, + "probability": 0.9219 + }, + { + "start": 9382.59, + "end": 9384.07, + "probability": 0.9542 + }, + { + "start": 9386.15, + "end": 9391.29, + "probability": 0.9819 + }, + { + "start": 9391.37, + "end": 9393.91, + "probability": 0.8909 + }, + { + "start": 9394.01, + "end": 9395.49, + "probability": 0.696 + }, + { + "start": 9395.95, + "end": 9397.23, + "probability": 0.712 + }, + { + "start": 9397.27, + "end": 9398.19, + "probability": 0.9174 + }, + { + "start": 9402.03, + "end": 9408.15, + "probability": 0.7144 + }, + { + "start": 9408.41, + "end": 9409.65, + "probability": 0.825 + }, + { + "start": 9410.79, + "end": 9415.99, + "probability": 0.952 + }, + { + "start": 9415.99, + "end": 9420.33, + "probability": 0.9926 + }, + { + "start": 9421.09, + "end": 9422.69, + "probability": 0.8282 + }, + { + "start": 9423.91, + "end": 9428.59, + "probability": 0.9886 + }, + { + "start": 9428.59, + "end": 9432.89, + "probability": 0.9964 + }, + { + "start": 9437.89, + "end": 9441.25, + "probability": 0.7705 + }, + { + "start": 9444.79, + "end": 9446.15, + "probability": 0.9966 + }, + { + "start": 9449.59, + "end": 9454.69, + "probability": 0.9989 + }, + { + "start": 9458.11, + "end": 9460.31, + "probability": 0.988 + }, + { + "start": 9460.97, + "end": 9462.07, + "probability": 0.9861 + }, + { + "start": 9463.97, + "end": 9466.45, + "probability": 0.96 + }, + { + "start": 9471.31, + "end": 9472.05, + "probability": 0.8614 + }, + { + "start": 9474.67, + "end": 9475.45, + "probability": 0.8023 + }, + { + "start": 9477.69, + "end": 9479.35, + "probability": 0.5361 + }, + { + "start": 9481.77, + "end": 9482.97, + "probability": 0.9674 + }, + { + "start": 9484.31, + "end": 9485.93, + "probability": 0.8194 + }, + { + "start": 9487.39, + "end": 9487.85, + "probability": 0.9388 + }, + { + "start": 9488.43, + "end": 9490.13, + "probability": 0.9546 + }, + { + "start": 9491.07, + "end": 9493.23, + "probability": 0.9561 + }, + { + "start": 9493.57, + "end": 9494.51, + "probability": 0.9922 + }, + { + "start": 9494.59, + "end": 9495.61, + "probability": 0.9429 + }, + { + "start": 9496.29, + "end": 9497.47, + "probability": 0.8278 + }, + { + "start": 9498.29, + "end": 9499.79, + "probability": 0.8984 + }, + { + "start": 9503.11, + "end": 9505.25, + "probability": 0.9759 + }, + { + "start": 9505.37, + "end": 9508.19, + "probability": 0.9954 + }, + { + "start": 9508.87, + "end": 9510.79, + "probability": 0.9655 + }, + { + "start": 9512.11, + "end": 9516.73, + "probability": 0.9865 + }, + { + "start": 9516.85, + "end": 9517.31, + "probability": 0.5979 + }, + { + "start": 9522.07, + "end": 9525.15, + "probability": 0.9983 + }, + { + "start": 9526.31, + "end": 9528.88, + "probability": 0.9995 + }, + { + "start": 9529.35, + "end": 9530.51, + "probability": 0.9741 + }, + { + "start": 9532.71, + "end": 9537.71, + "probability": 0.9985 + }, + { + "start": 9539.73, + "end": 9541.05, + "probability": 0.9183 + }, + { + "start": 9543.85, + "end": 9544.55, + "probability": 0.9712 + }, + { + "start": 9544.55, + "end": 9545.61, + "probability": 0.9923 + }, + { + "start": 9545.73, + "end": 9550.69, + "probability": 0.9948 + }, + { + "start": 9552.25, + "end": 9554.81, + "probability": 0.9912 + }, + { + "start": 9555.75, + "end": 9559.97, + "probability": 0.9908 + }, + { + "start": 9560.01, + "end": 9561.15, + "probability": 0.9539 + }, + { + "start": 9565.37, + "end": 9569.4, + "probability": 0.9956 + }, + { + "start": 9570.99, + "end": 9572.09, + "probability": 0.8573 + }, + { + "start": 9573.85, + "end": 9575.37, + "probability": 0.7841 + }, + { + "start": 9577.45, + "end": 9579.81, + "probability": 0.8541 + }, + { + "start": 9581.93, + "end": 9582.09, + "probability": 0.1905 + }, + { + "start": 9584.79, + "end": 9585.51, + "probability": 0.8101 + }, + { + "start": 9588.03, + "end": 9589.47, + "probability": 0.992 + }, + { + "start": 9592.63, + "end": 9593.63, + "probability": 0.7649 + }, + { + "start": 9597.15, + "end": 9600.93, + "probability": 0.877 + }, + { + "start": 9602.99, + "end": 9604.41, + "probability": 0.9647 + }, + { + "start": 9606.37, + "end": 9610.61, + "probability": 0.9171 + }, + { + "start": 9613.81, + "end": 9614.39, + "probability": 0.6743 + }, + { + "start": 9616.35, + "end": 9617.71, + "probability": 0.7667 + }, + { + "start": 9619.63, + "end": 9622.67, + "probability": 0.998 + }, + { + "start": 9629.45, + "end": 9630.15, + "probability": 0.9995 + }, + { + "start": 9633.73, + "end": 9636.41, + "probability": 0.9949 + }, + { + "start": 9638.35, + "end": 9643.95, + "probability": 0.9701 + }, + { + "start": 9645.23, + "end": 9651.69, + "probability": 0.9945 + }, + { + "start": 9654.37, + "end": 9657.21, + "probability": 0.7494 + }, + { + "start": 9659.17, + "end": 9660.43, + "probability": 0.9517 + }, + { + "start": 9663.39, + "end": 9663.77, + "probability": 0.7481 + }, + { + "start": 9664.75, + "end": 9666.77, + "probability": 0.9132 + }, + { + "start": 9667.99, + "end": 9672.79, + "probability": 0.9951 + }, + { + "start": 9675.95, + "end": 9681.43, + "probability": 0.9845 + }, + { + "start": 9683.45, + "end": 9683.59, + "probability": 0.0715 + }, + { + "start": 9684.75, + "end": 9685.03, + "probability": 0.2165 + }, + { + "start": 9686.99, + "end": 9687.33, + "probability": 0.514 + }, + { + "start": 9694.01, + "end": 9694.55, + "probability": 0.6268 + }, + { + "start": 9694.77, + "end": 9698.95, + "probability": 0.9617 + }, + { + "start": 9700.05, + "end": 9703.51, + "probability": 0.9933 + }, + { + "start": 9704.79, + "end": 9707.27, + "probability": 0.978 + }, + { + "start": 9707.27, + "end": 9709.71, + "probability": 0.992 + }, + { + "start": 9710.69, + "end": 9714.39, + "probability": 0.9896 + }, + { + "start": 9715.83, + "end": 9721.19, + "probability": 0.9512 + }, + { + "start": 9722.39, + "end": 9727.57, + "probability": 0.9598 + }, + { + "start": 9728.81, + "end": 9730.47, + "probability": 0.7463 + }, + { + "start": 9731.55, + "end": 9735.17, + "probability": 0.9944 + }, + { + "start": 9735.17, + "end": 9738.53, + "probability": 0.9917 + }, + { + "start": 9740.01, + "end": 9744.67, + "probability": 0.9758 + }, + { + "start": 9744.67, + "end": 9748.77, + "probability": 0.9637 + }, + { + "start": 9750.23, + "end": 9753.6, + "probability": 0.9869 + }, + { + "start": 9754.57, + "end": 9759.03, + "probability": 0.9969 + }, + { + "start": 9760.21, + "end": 9764.73, + "probability": 0.9898 + }, + { + "start": 9765.59, + "end": 9766.99, + "probability": 0.7526 + }, + { + "start": 9767.71, + "end": 9769.75, + "probability": 0.9917 + }, + { + "start": 9771.01, + "end": 9772.27, + "probability": 0.7704 + }, + { + "start": 9772.99, + "end": 9778.11, + "probability": 0.9936 + }, + { + "start": 9779.11, + "end": 9783.83, + "probability": 0.9819 + }, + { + "start": 9785.41, + "end": 9787.73, + "probability": 0.9922 + }, + { + "start": 9789.33, + "end": 9791.79, + "probability": 0.99 + }, + { + "start": 9793.57, + "end": 9796.81, + "probability": 0.8822 + }, + { + "start": 9797.67, + "end": 9799.39, + "probability": 0.6041 + }, + { + "start": 9800.51, + "end": 9804.81, + "probability": 0.8492 + }, + { + "start": 9805.39, + "end": 9808.51, + "probability": 0.9587 + }, + { + "start": 9809.93, + "end": 9811.99, + "probability": 0.9863 + }, + { + "start": 9813.65, + "end": 9817.19, + "probability": 0.5169 + }, + { + "start": 9819.33, + "end": 9819.33, + "probability": 0.1422 + }, + { + "start": 9819.33, + "end": 9820.27, + "probability": 0.5584 + }, + { + "start": 9827.27, + "end": 9828.99, + "probability": 0.8607 + }, + { + "start": 9831.57, + "end": 9832.31, + "probability": 0.8516 + }, + { + "start": 9834.77, + "end": 9839.17, + "probability": 0.9983 + }, + { + "start": 9842.91, + "end": 9843.61, + "probability": 0.8074 + }, + { + "start": 9845.39, + "end": 9846.33, + "probability": 0.9982 + }, + { + "start": 9848.99, + "end": 9850.77, + "probability": 0.8386 + }, + { + "start": 9851.41, + "end": 9852.93, + "probability": 0.983 + }, + { + "start": 9855.11, + "end": 9856.49, + "probability": 0.9675 + }, + { + "start": 9859.37, + "end": 9863.03, + "probability": 0.8781 + }, + { + "start": 9864.47, + "end": 9865.75, + "probability": 0.9574 + }, + { + "start": 9867.61, + "end": 9868.57, + "probability": 0.8967 + }, + { + "start": 9870.85, + "end": 9871.71, + "probability": 0.891 + }, + { + "start": 9874.03, + "end": 9874.83, + "probability": 0.9781 + }, + { + "start": 9876.87, + "end": 9878.85, + "probability": 0.8007 + }, + { + "start": 9881.83, + "end": 9882.97, + "probability": 0.7259 + }, + { + "start": 9883.09, + "end": 9889.53, + "probability": 0.9181 + }, + { + "start": 9890.99, + "end": 9893.85, + "probability": 0.939 + }, + { + "start": 9894.53, + "end": 9895.39, + "probability": 0.9212 + }, + { + "start": 9896.99, + "end": 9899.2, + "probability": 0.9419 + }, + { + "start": 9899.73, + "end": 9900.97, + "probability": 0.0162 + }, + { + "start": 9901.65, + "end": 9903.09, + "probability": 0.5502 + }, + { + "start": 9903.09, + "end": 9904.33, + "probability": 0.8718 + }, + { + "start": 9904.43, + "end": 9905.63, + "probability": 0.9824 + }, + { + "start": 9905.71, + "end": 9906.19, + "probability": 0.6752 + }, + { + "start": 9906.59, + "end": 9909.19, + "probability": 0.9129 + }, + { + "start": 9909.67, + "end": 9911.07, + "probability": 0.7078 + }, + { + "start": 9911.07, + "end": 9911.33, + "probability": 0.2257 + }, + { + "start": 9912.29, + "end": 9912.65, + "probability": 0.5493 + }, + { + "start": 9913.15, + "end": 9913.53, + "probability": 0.912 + }, + { + "start": 9913.59, + "end": 9913.77, + "probability": 0.7221 + }, + { + "start": 9913.89, + "end": 9915.6, + "probability": 0.8209 + }, + { + "start": 9916.55, + "end": 9918.35, + "probability": 0.5961 + }, + { + "start": 9918.37, + "end": 9919.17, + "probability": 0.5339 + }, + { + "start": 9919.27, + "end": 9920.93, + "probability": 0.8674 + }, + { + "start": 9921.8, + "end": 9923.03, + "probability": 0.3144 + }, + { + "start": 9923.37, + "end": 9924.63, + "probability": 0.0213 + }, + { + "start": 9924.79, + "end": 9929.08, + "probability": 0.1369 + }, + { + "start": 9929.67, + "end": 9931.25, + "probability": 0.5738 + }, + { + "start": 9931.47, + "end": 9932.47, + "probability": 0.6143 + }, + { + "start": 9933.35, + "end": 9937.09, + "probability": 0.287 + }, + { + "start": 9937.59, + "end": 9939.01, + "probability": 0.0044 + }, + { + "start": 9939.67, + "end": 9940.21, + "probability": 0.0019 + }, + { + "start": 9941.27, + "end": 9946.45, + "probability": 0.8106 + }, + { + "start": 9947.03, + "end": 9950.57, + "probability": 0.9642 + }, + { + "start": 9950.79, + "end": 9953.09, + "probability": 0.9241 + }, + { + "start": 9953.87, + "end": 9956.27, + "probability": 0.9539 + }, + { + "start": 9956.59, + "end": 9956.87, + "probability": 0.6841 + }, + { + "start": 9956.95, + "end": 9957.51, + "probability": 0.8975 + }, + { + "start": 9960.9, + "end": 9965.39, + "probability": 0.77 + }, + { + "start": 9967.97, + "end": 9968.31, + "probability": 0.3962 + }, + { + "start": 9973.25, + "end": 9976.45, + "probability": 0.9607 + }, + { + "start": 9976.45, + "end": 9979.33, + "probability": 0.9939 + }, + { + "start": 9979.45, + "end": 9980.43, + "probability": 0.6033 + }, + { + "start": 9981.13, + "end": 9983.59, + "probability": 0.9979 + }, + { + "start": 9983.99, + "end": 9987.71, + "probability": 0.9663 + }, + { + "start": 9988.17, + "end": 9992.35, + "probability": 0.5171 + }, + { + "start": 9992.45, + "end": 9992.77, + "probability": 0.6108 + }, + { + "start": 9992.77, + "end": 9993.41, + "probability": 0.7396 + }, + { + "start": 9993.43, + "end": 9999.05, + "probability": 0.9883 + }, + { + "start": 9999.17, + "end": 10002.05, + "probability": 0.9556 + }, + { + "start": 10002.17, + "end": 10002.49, + "probability": 0.5203 + }, + { + "start": 10002.53, + "end": 10003.73, + "probability": 0.9351 + }, + { + "start": 10003.89, + "end": 10005.05, + "probability": 0.9465 + }, + { + "start": 10005.27, + "end": 10007.37, + "probability": 0.967 + }, + { + "start": 10007.55, + "end": 10011.22, + "probability": 0.957 + }, + { + "start": 10011.73, + "end": 10012.29, + "probability": 0.4556 + }, + { + "start": 10012.29, + "end": 10012.87, + "probability": 0.8032 + }, + { + "start": 10013.07, + "end": 10013.52, + "probability": 0.7442 + }, + { + "start": 10013.67, + "end": 10016.11, + "probability": 0.7903 + }, + { + "start": 10016.23, + "end": 10016.71, + "probability": 0.8712 + }, + { + "start": 10017.01, + "end": 10022.19, + "probability": 0.6504 + }, + { + "start": 10022.27, + "end": 10023.11, + "probability": 0.8454 + }, + { + "start": 10023.23, + "end": 10023.83, + "probability": 0.9388 + }, + { + "start": 10023.93, + "end": 10024.45, + "probability": 0.9539 + }, + { + "start": 10024.47, + "end": 10025.39, + "probability": 0.9717 + }, + { + "start": 10025.65, + "end": 10026.81, + "probability": 0.9907 + }, + { + "start": 10027.55, + "end": 10030.19, + "probability": 0.6855 + }, + { + "start": 10030.35, + "end": 10032.81, + "probability": 0.5201 + }, + { + "start": 10033.05, + "end": 10036.77, + "probability": 0.9456 + }, + { + "start": 10037.39, + "end": 10039.89, + "probability": 0.9201 + }, + { + "start": 10040.07, + "end": 10046.95, + "probability": 0.7405 + }, + { + "start": 10048.37, + "end": 10052.31, + "probability": 0.6156 + }, + { + "start": 10053.41, + "end": 10056.93, + "probability": 0.9861 + }, + { + "start": 10057.13, + "end": 10058.49, + "probability": 0.989 + }, + { + "start": 10059.05, + "end": 10060.13, + "probability": 0.8284 + }, + { + "start": 10061.01, + "end": 10066.55, + "probability": 0.9959 + }, + { + "start": 10066.79, + "end": 10068.93, + "probability": 0.9749 + }, + { + "start": 10071.13, + "end": 10073.51, + "probability": 0.998 + }, + { + "start": 10076.25, + "end": 10080.45, + "probability": 0.8738 + }, + { + "start": 10081.07, + "end": 10083.76, + "probability": 0.623 + }, + { + "start": 10084.99, + "end": 10088.3, + "probability": 0.998 + }, + { + "start": 10090.09, + "end": 10093.45, + "probability": 0.9724 + }, + { + "start": 10094.41, + "end": 10097.21, + "probability": 0.9792 + }, + { + "start": 10097.35, + "end": 10099.39, + "probability": 0.9334 + }, + { + "start": 10099.45, + "end": 10101.29, + "probability": 0.8294 + }, + { + "start": 10102.17, + "end": 10105.27, + "probability": 0.896 + }, + { + "start": 10105.39, + "end": 10106.15, + "probability": 0.9761 + }, + { + "start": 10107.27, + "end": 10108.89, + "probability": 0.7548 + }, + { + "start": 10109.89, + "end": 10113.21, + "probability": 0.9333 + }, + { + "start": 10114.45, + "end": 10115.23, + "probability": 0.6063 + }, + { + "start": 10116.33, + "end": 10119.59, + "probability": 0.9651 + }, + { + "start": 10119.67, + "end": 10120.23, + "probability": 0.7783 + }, + { + "start": 10120.33, + "end": 10121.97, + "probability": 0.9785 + }, + { + "start": 10123.09, + "end": 10125.81, + "probability": 0.832 + }, + { + "start": 10126.51, + "end": 10126.65, + "probability": 0.0323 + }, + { + "start": 10128.45, + "end": 10131.43, + "probability": 0.5975 + }, + { + "start": 10131.43, + "end": 10132.71, + "probability": 0.9448 + }, + { + "start": 10132.93, + "end": 10134.69, + "probability": 0.5352 + }, + { + "start": 10134.69, + "end": 10137.25, + "probability": 0.6459 + }, + { + "start": 10138.89, + "end": 10139.81, + "probability": 0.0825 + }, + { + "start": 10139.81, + "end": 10142.67, + "probability": 0.4954 + }, + { + "start": 10143.79, + "end": 10144.39, + "probability": 0.6429 + }, + { + "start": 10144.43, + "end": 10144.95, + "probability": 0.5357 + }, + { + "start": 10145.01, + "end": 10146.07, + "probability": 0.1849 + }, + { + "start": 10146.09, + "end": 10147.23, + "probability": 0.6917 + }, + { + "start": 10147.31, + "end": 10149.15, + "probability": 0.8727 + }, + { + "start": 10149.73, + "end": 10152.75, + "probability": 0.9716 + }, + { + "start": 10153.11, + "end": 10153.69, + "probability": 0.5269 + }, + { + "start": 10154.57, + "end": 10157.43, + "probability": 0.981 + }, + { + "start": 10157.69, + "end": 10160.85, + "probability": 0.9147 + }, + { + "start": 10161.63, + "end": 10163.99, + "probability": 0.9767 + }, + { + "start": 10164.87, + "end": 10166.73, + "probability": 0.9677 + }, + { + "start": 10167.81, + "end": 10171.21, + "probability": 0.9872 + }, + { + "start": 10172.29, + "end": 10173.85, + "probability": 0.5041 + }, + { + "start": 10173.99, + "end": 10173.99, + "probability": 0.135 + }, + { + "start": 10173.99, + "end": 10174.79, + "probability": 0.6019 + }, + { + "start": 10174.93, + "end": 10176.77, + "probability": 0.7537 + }, + { + "start": 10177.19, + "end": 10177.69, + "probability": 0.0383 + }, + { + "start": 10178.59, + "end": 10183.31, + "probability": 0.7632 + }, + { + "start": 10184.15, + "end": 10185.77, + "probability": 0.6392 + }, + { + "start": 10186.19, + "end": 10188.53, + "probability": 0.4081 + }, + { + "start": 10188.81, + "end": 10191.19, + "probability": 0.8047 + }, + { + "start": 10191.25, + "end": 10194.85, + "probability": 0.9056 + }, + { + "start": 10194.91, + "end": 10195.75, + "probability": 0.9248 + }, + { + "start": 10196.39, + "end": 10201.09, + "probability": 0.9428 + }, + { + "start": 10202.19, + "end": 10207.03, + "probability": 0.9453 + }, + { + "start": 10207.19, + "end": 10207.95, + "probability": 0.7295 + }, + { + "start": 10208.07, + "end": 10213.05, + "probability": 0.9896 + }, + { + "start": 10213.97, + "end": 10213.97, + "probability": 0.0475 + }, + { + "start": 10213.97, + "end": 10218.39, + "probability": 0.7494 + }, + { + "start": 10219.51, + "end": 10222.83, + "probability": 0.7928 + }, + { + "start": 10224.03, + "end": 10226.13, + "probability": 0.9731 + }, + { + "start": 10226.25, + "end": 10231.11, + "probability": 0.9953 + }, + { + "start": 10231.97, + "end": 10233.45, + "probability": 0.8594 + }, + { + "start": 10234.23, + "end": 10239.05, + "probability": 0.7808 + }, + { + "start": 10239.99, + "end": 10240.77, + "probability": 0.8772 + }, + { + "start": 10240.87, + "end": 10243.29, + "probability": 0.9455 + }, + { + "start": 10243.41, + "end": 10245.09, + "probability": 0.7493 + }, + { + "start": 10245.65, + "end": 10250.55, + "probability": 0.9844 + }, + { + "start": 10251.47, + "end": 10252.99, + "probability": 0.8808 + }, + { + "start": 10253.53, + "end": 10255.07, + "probability": 0.9087 + }, + { + "start": 10255.71, + "end": 10258.96, + "probability": 0.984 + }, + { + "start": 10259.81, + "end": 10264.27, + "probability": 0.9939 + }, + { + "start": 10264.81, + "end": 10270.67, + "probability": 0.9351 + }, + { + "start": 10271.99, + "end": 10272.79, + "probability": 0.842 + }, + { + "start": 10273.09, + "end": 10273.87, + "probability": 0.7929 + }, + { + "start": 10274.37, + "end": 10279.25, + "probability": 0.9534 + }, + { + "start": 10280.05, + "end": 10283.51, + "probability": 0.1247 + }, + { + "start": 10284.27, + "end": 10284.85, + "probability": 0.1339 + }, + { + "start": 10284.85, + "end": 10284.85, + "probability": 0.1055 + }, + { + "start": 10284.85, + "end": 10287.07, + "probability": 0.4976 + }, + { + "start": 10288.03, + "end": 10289.69, + "probability": 0.7848 + }, + { + "start": 10289.77, + "end": 10293.13, + "probability": 0.8925 + }, + { + "start": 10294.41, + "end": 10296.8, + "probability": 0.9909 + }, + { + "start": 10297.33, + "end": 10299.27, + "probability": 0.938 + }, + { + "start": 10300.89, + "end": 10305.19, + "probability": 0.7743 + }, + { + "start": 10305.23, + "end": 10309.09, + "probability": 0.895 + }, + { + "start": 10309.15, + "end": 10311.15, + "probability": 0.8995 + }, + { + "start": 10311.47, + "end": 10312.35, + "probability": 0.9463 + }, + { + "start": 10312.49, + "end": 10312.99, + "probability": 0.7018 + }, + { + "start": 10313.07, + "end": 10313.69, + "probability": 0.868 + }, + { + "start": 10313.81, + "end": 10314.23, + "probability": 0.8736 + }, + { + "start": 10314.47, + "end": 10315.89, + "probability": 0.7206 + }, + { + "start": 10316.49, + "end": 10316.69, + "probability": 0.1367 + }, + { + "start": 10316.69, + "end": 10318.45, + "probability": 0.7939 + }, + { + "start": 10319.23, + "end": 10319.47, + "probability": 0.2717 + }, + { + "start": 10319.47, + "end": 10319.47, + "probability": 0.0565 + }, + { + "start": 10319.47, + "end": 10321.87, + "probability": 0.8021 + }, + { + "start": 10323.29, + "end": 10327.05, + "probability": 0.8329 + }, + { + "start": 10327.05, + "end": 10330.09, + "probability": 0.9984 + }, + { + "start": 10331.07, + "end": 10334.83, + "probability": 0.9861 + }, + { + "start": 10337.55, + "end": 10337.55, + "probability": 0.0089 + }, + { + "start": 10337.55, + "end": 10342.35, + "probability": 0.9372 + }, + { + "start": 10342.45, + "end": 10345.35, + "probability": 0.8249 + }, + { + "start": 10346.51, + "end": 10346.75, + "probability": 0.0069 + }, + { + "start": 10346.75, + "end": 10348.59, + "probability": 0.5237 + }, + { + "start": 10352.05, + "end": 10355.75, + "probability": 0.8915 + }, + { + "start": 10357.99, + "end": 10360.47, + "probability": 0.9943 + }, + { + "start": 10363.83, + "end": 10364.71, + "probability": 0.6974 + }, + { + "start": 10364.79, + "end": 10365.63, + "probability": 0.667 + }, + { + "start": 10365.65, + "end": 10367.43, + "probability": 0.4108 + }, + { + "start": 10367.51, + "end": 10367.97, + "probability": 0.4908 + }, + { + "start": 10368.21, + "end": 10369.29, + "probability": 0.7354 + }, + { + "start": 10369.31, + "end": 10370.5, + "probability": 0.7903 + }, + { + "start": 10370.89, + "end": 10374.45, + "probability": 0.479 + }, + { + "start": 10383.41, + "end": 10383.63, + "probability": 0.0266 + }, + { + "start": 10383.63, + "end": 10383.63, + "probability": 0.064 + }, + { + "start": 10383.63, + "end": 10383.63, + "probability": 0.1102 + }, + { + "start": 10383.63, + "end": 10383.63, + "probability": 0.3476 + }, + { + "start": 10383.63, + "end": 10383.63, + "probability": 0.0429 + }, + { + "start": 10383.63, + "end": 10383.63, + "probability": 0.0408 + }, + { + "start": 10386.27, + "end": 10387.35, + "probability": 0.0355 + }, + { + "start": 10387.35, + "end": 10389.25, + "probability": 0.5742 + }, + { + "start": 10392.19, + "end": 10395.61, + "probability": 0.9443 + }, + { + "start": 10395.73, + "end": 10399.93, + "probability": 0.8695 + }, + { + "start": 10401.05, + "end": 10402.21, + "probability": 0.7649 + }, + { + "start": 10403.61, + "end": 10403.61, + "probability": 0.102 + }, + { + "start": 10403.61, + "end": 10404.31, + "probability": 0.6883 + }, + { + "start": 10404.79, + "end": 10408.57, + "probability": 0.8343 + }, + { + "start": 10411.61, + "end": 10412.15, + "probability": 0.0301 + }, + { + "start": 10412.15, + "end": 10412.29, + "probability": 0.5061 + }, + { + "start": 10412.85, + "end": 10415.13, + "probability": 0.983 + }, + { + "start": 10416.65, + "end": 10418.97, + "probability": 0.9917 + }, + { + "start": 10419.11, + "end": 10425.37, + "probability": 0.9941 + }, + { + "start": 10426.41, + "end": 10428.97, + "probability": 0.7997 + }, + { + "start": 10430.87, + "end": 10431.92, + "probability": 0.52 + }, + { + "start": 10432.53, + "end": 10439.43, + "probability": 0.9873 + }, + { + "start": 10439.43, + "end": 10441.55, + "probability": 0.9247 + }, + { + "start": 10442.19, + "end": 10443.09, + "probability": 0.9143 + }, + { + "start": 10443.51, + "end": 10445.09, + "probability": 0.8438 + }, + { + "start": 10445.09, + "end": 10445.55, + "probability": 0.0723 + }, + { + "start": 10445.61, + "end": 10445.61, + "probability": 0.2317 + }, + { + "start": 10445.61, + "end": 10447.22, + "probability": 0.5638 + }, + { + "start": 10447.53, + "end": 10449.61, + "probability": 0.5572 + }, + { + "start": 10449.75, + "end": 10451.07, + "probability": 0.785 + }, + { + "start": 10451.29, + "end": 10451.61, + "probability": 0.6281 + }, + { + "start": 10451.71, + "end": 10452.43, + "probability": 0.1018 + }, + { + "start": 10452.47, + "end": 10453.67, + "probability": 0.7627 + }, + { + "start": 10453.67, + "end": 10455.73, + "probability": 0.5893 + }, + { + "start": 10456.83, + "end": 10456.85, + "probability": 0.0216 + }, + { + "start": 10456.85, + "end": 10456.85, + "probability": 0.3652 + }, + { + "start": 10456.85, + "end": 10458.25, + "probability": 0.6376 + }, + { + "start": 10458.75, + "end": 10461.05, + "probability": 0.9799 + }, + { + "start": 10461.73, + "end": 10462.92, + "probability": 0.551 + }, + { + "start": 10463.57, + "end": 10464.21, + "probability": 0.1945 + }, + { + "start": 10464.29, + "end": 10467.35, + "probability": 0.0988 + }, + { + "start": 10467.35, + "end": 10468.27, + "probability": 0.3701 + }, + { + "start": 10468.45, + "end": 10469.11, + "probability": 0.7347 + }, + { + "start": 10469.27, + "end": 10472.53, + "probability": 0.9907 + }, + { + "start": 10472.95, + "end": 10474.23, + "probability": 0.8326 + }, + { + "start": 10474.39, + "end": 10474.81, + "probability": 0.9058 + }, + { + "start": 10474.87, + "end": 10475.45, + "probability": 0.9541 + }, + { + "start": 10475.53, + "end": 10477.25, + "probability": 0.9022 + }, + { + "start": 10477.61, + "end": 10478.25, + "probability": 0.4804 + }, + { + "start": 10478.27, + "end": 10478.81, + "probability": 0.4488 + }, + { + "start": 10479.39, + "end": 10480.57, + "probability": 0.6748 + }, + { + "start": 10482.25, + "end": 10483.53, + "probability": 0.3141 + }, + { + "start": 10483.87, + "end": 10486.25, + "probability": 0.9201 + }, + { + "start": 10487.95, + "end": 10490.89, + "probability": 0.9984 + }, + { + "start": 10491.43, + "end": 10495.01, + "probability": 0.7451 + }, + { + "start": 10495.73, + "end": 10498.97, + "probability": 0.7666 + }, + { + "start": 10499.55, + "end": 10500.73, + "probability": 0.4604 + }, + { + "start": 10502.43, + "end": 10504.87, + "probability": 0.9473 + }, + { + "start": 10504.99, + "end": 10505.63, + "probability": 0.849 + }, + { + "start": 10505.65, + "end": 10506.41, + "probability": 0.9582 + }, + { + "start": 10506.51, + "end": 10510.25, + "probability": 0.928 + }, + { + "start": 10510.61, + "end": 10516.47, + "probability": 0.6736 + }, + { + "start": 10516.87, + "end": 10517.59, + "probability": 0.8279 + }, + { + "start": 10518.83, + "end": 10523.41, + "probability": 0.9805 + }, + { + "start": 10524.19, + "end": 10531.45, + "probability": 0.9909 + }, + { + "start": 10531.55, + "end": 10532.61, + "probability": 0.6212 + }, + { + "start": 10534.59, + "end": 10539.53, + "probability": 0.9434 + }, + { + "start": 10542.41, + "end": 10543.41, + "probability": 0.8877 + }, + { + "start": 10544.79, + "end": 10545.77, + "probability": 0.9966 + }, + { + "start": 10550.43, + "end": 10556.23, + "probability": 0.797 + }, + { + "start": 10557.55, + "end": 10559.31, + "probability": 0.7173 + }, + { + "start": 10561.25, + "end": 10561.61, + "probability": 0.1175 + }, + { + "start": 10561.61, + "end": 10568.39, + "probability": 0.9807 + }, + { + "start": 10569.35, + "end": 10570.03, + "probability": 0.4798 + }, + { + "start": 10570.17, + "end": 10570.17, + "probability": 0.2031 + }, + { + "start": 10570.27, + "end": 10570.35, + "probability": 0.0505 + }, + { + "start": 10570.35, + "end": 10571.4, + "probability": 0.3765 + }, + { + "start": 10572.25, + "end": 10575.73, + "probability": 0.974 + }, + { + "start": 10575.73, + "end": 10575.94, + "probability": 0.3026 + }, + { + "start": 10576.39, + "end": 10577.49, + "probability": 0.524 + }, + { + "start": 10577.63, + "end": 10580.37, + "probability": 0.9201 + }, + { + "start": 10581.49, + "end": 10582.57, + "probability": 0.9814 + }, + { + "start": 10582.63, + "end": 10583.13, + "probability": 0.0305 + }, + { + "start": 10584.23, + "end": 10588.05, + "probability": 0.9922 + }, + { + "start": 10590.23, + "end": 10593.33, + "probability": 0.7814 + }, + { + "start": 10594.11, + "end": 10594.67, + "probability": 0.8408 + }, + { + "start": 10596.17, + "end": 10597.53, + "probability": 0.8908 + }, + { + "start": 10600.57, + "end": 10601.45, + "probability": 0.8227 + }, + { + "start": 10603.61, + "end": 10604.21, + "probability": 0.9834 + }, + { + "start": 10606.21, + "end": 10608.89, + "probability": 0.9839 + }, + { + "start": 10609.83, + "end": 10609.91, + "probability": 0.2015 + }, + { + "start": 10609.91, + "end": 10610.34, + "probability": 0.6714 + }, + { + "start": 10611.75, + "end": 10613.41, + "probability": 0.8486 + }, + { + "start": 10613.41, + "end": 10615.05, + "probability": 0.9309 + }, + { + "start": 10615.75, + "end": 10617.59, + "probability": 0.1683 + }, + { + "start": 10618.03, + "end": 10618.85, + "probability": 0.7591 + }, + { + "start": 10619.95, + "end": 10623.13, + "probability": 0.7544 + }, + { + "start": 10624.15, + "end": 10628.85, + "probability": 0.6524 + }, + { + "start": 10628.99, + "end": 10631.07, + "probability": 0.4058 + }, + { + "start": 10631.61, + "end": 10632.93, + "probability": 0.9868 + }, + { + "start": 10632.93, + "end": 10634.93, + "probability": 0.844 + }, + { + "start": 10635.09, + "end": 10636.85, + "probability": 0.9836 + }, + { + "start": 10636.95, + "end": 10637.46, + "probability": 0.9282 + }, + { + "start": 10637.79, + "end": 10641.15, + "probability": 0.9502 + }, + { + "start": 10642.83, + "end": 10643.45, + "probability": 0.496 + }, + { + "start": 10644.51, + "end": 10646.41, + "probability": 0.4474 + }, + { + "start": 10646.47, + "end": 10649.21, + "probability": 0.8053 + }, + { + "start": 10649.83, + "end": 10651.93, + "probability": 0.9932 + }, + { + "start": 10652.23, + "end": 10656.83, + "probability": 0.4862 + }, + { + "start": 10657.25, + "end": 10658.55, + "probability": 0.8381 + }, + { + "start": 10658.79, + "end": 10661.05, + "probability": 0.6717 + }, + { + "start": 10662.71, + "end": 10663.63, + "probability": 0.0186 + }, + { + "start": 10664.03, + "end": 10665.25, + "probability": 0.1339 + }, + { + "start": 10665.25, + "end": 10665.25, + "probability": 0.5787 + }, + { + "start": 10665.25, + "end": 10666.49, + "probability": 0.394 + }, + { + "start": 10666.51, + "end": 10667.89, + "probability": 0.3996 + }, + { + "start": 10667.95, + "end": 10668.33, + "probability": 0.6306 + }, + { + "start": 10668.41, + "end": 10669.93, + "probability": 0.7865 + }, + { + "start": 10669.99, + "end": 10670.81, + "probability": 0.8721 + }, + { + "start": 10671.11, + "end": 10671.71, + "probability": 0.2397 + }, + { + "start": 10672.49, + "end": 10673.05, + "probability": 0.4709 + }, + { + "start": 10674.88, + "end": 10677.33, + "probability": 0.0009 + }, + { + "start": 10677.87, + "end": 10679.51, + "probability": 0.0277 + }, + { + "start": 10679.97, + "end": 10679.97, + "probability": 0.5135 + }, + { + "start": 10679.97, + "end": 10681.29, + "probability": 0.0227 + }, + { + "start": 10681.39, + "end": 10682.95, + "probability": 0.7646 + }, + { + "start": 10683.09, + "end": 10683.77, + "probability": 0.885 + }, + { + "start": 10684.05, + "end": 10686.16, + "probability": 0.9701 + }, + { + "start": 10686.83, + "end": 10688.77, + "probability": 0.9722 + }, + { + "start": 10689.57, + "end": 10691.37, + "probability": 0.9762 + }, + { + "start": 10692.69, + "end": 10694.07, + "probability": 0.3521 + }, + { + "start": 10694.35, + "end": 10694.35, + "probability": 0.3424 + }, + { + "start": 10694.35, + "end": 10694.93, + "probability": 0.4646 + }, + { + "start": 10695.25, + "end": 10696.61, + "probability": 0.1391 + }, + { + "start": 10696.61, + "end": 10697.69, + "probability": 0.8789 + }, + { + "start": 10698.63, + "end": 10699.61, + "probability": 0.7903 + }, + { + "start": 10699.79, + "end": 10700.59, + "probability": 0.6787 + }, + { + "start": 10700.63, + "end": 10701.81, + "probability": 0.6244 + }, + { + "start": 10701.99, + "end": 10702.97, + "probability": 0.9429 + }, + { + "start": 10703.21, + "end": 10703.21, + "probability": 0.0535 + }, + { + "start": 10703.23, + "end": 10706.31, + "probability": 0.8465 + }, + { + "start": 10706.81, + "end": 10707.89, + "probability": 0.9858 + }, + { + "start": 10707.99, + "end": 10709.49, + "probability": 0.959 + }, + { + "start": 10710.67, + "end": 10711.44, + "probability": 0.8205 + }, + { + "start": 10711.97, + "end": 10713.91, + "probability": 0.8008 + }, + { + "start": 10714.07, + "end": 10714.17, + "probability": 0.2023 + }, + { + "start": 10714.21, + "end": 10714.95, + "probability": 0.676 + }, + { + "start": 10715.03, + "end": 10716.57, + "probability": 0.667 + }, + { + "start": 10716.57, + "end": 10717.09, + "probability": 0.1172 + }, + { + "start": 10717.11, + "end": 10717.75, + "probability": 0.3342 + }, + { + "start": 10718.01, + "end": 10719.27, + "probability": 0.5057 + }, + { + "start": 10719.55, + "end": 10723.91, + "probability": 0.9487 + }, + { + "start": 10724.75, + "end": 10727.53, + "probability": 0.7499 + }, + { + "start": 10728.09, + "end": 10728.53, + "probability": 0.2241 + }, + { + "start": 10728.53, + "end": 10729.21, + "probability": 0.182 + }, + { + "start": 10729.23, + "end": 10731.17, + "probability": 0.6622 + }, + { + "start": 10731.33, + "end": 10732.79, + "probability": 0.9593 + }, + { + "start": 10733.47, + "end": 10735.71, + "probability": 0.9385 + }, + { + "start": 10736.53, + "end": 10737.11, + "probability": 0.9022 + }, + { + "start": 10737.19, + "end": 10738.39, + "probability": 0.6942 + }, + { + "start": 10738.39, + "end": 10739.33, + "probability": 0.6808 + }, + { + "start": 10739.33, + "end": 10740.71, + "probability": 0.7084 + }, + { + "start": 10740.81, + "end": 10743.19, + "probability": 0.9961 + }, + { + "start": 10743.19, + "end": 10744.09, + "probability": 0.8874 + }, + { + "start": 10744.49, + "end": 10747.07, + "probability": 0.5306 + }, + { + "start": 10747.13, + "end": 10749.01, + "probability": 0.878 + }, + { + "start": 10750.21, + "end": 10750.29, + "probability": 0.0254 + }, + { + "start": 10750.29, + "end": 10750.99, + "probability": 0.3403 + }, + { + "start": 10751.25, + "end": 10753.85, + "probability": 0.8329 + }, + { + "start": 10754.11, + "end": 10755.57, + "probability": 0.7394 + }, + { + "start": 10756.71, + "end": 10759.19, + "probability": 0.922 + }, + { + "start": 10759.85, + "end": 10760.73, + "probability": 0.9154 + }, + { + "start": 10760.81, + "end": 10763.93, + "probability": 0.8097 + }, + { + "start": 10763.95, + "end": 10766.43, + "probability": 0.6118 + }, + { + "start": 10767.69, + "end": 10767.99, + "probability": 0.0072 + }, + { + "start": 10767.99, + "end": 10770.27, + "probability": 0.8461 + }, + { + "start": 10770.49, + "end": 10776.75, + "probability": 0.9875 + }, + { + "start": 10777.41, + "end": 10778.21, + "probability": 0.6515 + }, + { + "start": 10778.63, + "end": 10779.41, + "probability": 0.1604 + }, + { + "start": 10779.41, + "end": 10780.45, + "probability": 0.868 + }, + { + "start": 10780.53, + "end": 10787.37, + "probability": 0.9794 + }, + { + "start": 10789.17, + "end": 10793.07, + "probability": 0.4219 + }, + { + "start": 10793.39, + "end": 10794.67, + "probability": 0.927 + }, + { + "start": 10794.95, + "end": 10796.73, + "probability": 0.9596 + }, + { + "start": 10796.93, + "end": 10800.41, + "probability": 0.959 + }, + { + "start": 10800.77, + "end": 10801.75, + "probability": 0.9856 + }, + { + "start": 10801.95, + "end": 10804.67, + "probability": 0.8425 + }, + { + "start": 10805.07, + "end": 10805.75, + "probability": 0.0338 + }, + { + "start": 10806.41, + "end": 10807.81, + "probability": 0.681 + }, + { + "start": 10807.81, + "end": 10808.89, + "probability": 0.9897 + }, + { + "start": 10811.33, + "end": 10814.49, + "probability": 0.0531 + }, + { + "start": 10814.73, + "end": 10815.91, + "probability": 0.3892 + }, + { + "start": 10816.41, + "end": 10816.89, + "probability": 0.4399 + }, + { + "start": 10817.71, + "end": 10817.97, + "probability": 0.4034 + }, + { + "start": 10817.99, + "end": 10821.02, + "probability": 0.0363 + }, + { + "start": 10821.43, + "end": 10825.19, + "probability": 0.7402 + }, + { + "start": 10826.17, + "end": 10827.47, + "probability": 0.9847 + }, + { + "start": 10827.95, + "end": 10829.51, + "probability": 0.9647 + }, + { + "start": 10830.33, + "end": 10832.43, + "probability": 0.0019 + }, + { + "start": 10836.55, + "end": 10841.31, + "probability": 0.0136 + }, + { + "start": 10841.31, + "end": 10842.25, + "probability": 0.0515 + }, + { + "start": 10842.29, + "end": 10842.95, + "probability": 0.6142 + }, + { + "start": 10843.21, + "end": 10843.21, + "probability": 0.1555 + }, + { + "start": 10843.21, + "end": 10844.57, + "probability": 0.7487 + }, + { + "start": 10845.35, + "end": 10846.05, + "probability": 0.2769 + }, + { + "start": 10848.19, + "end": 10850.07, + "probability": 0.221 + }, + { + "start": 10850.75, + "end": 10853.07, + "probability": 0.1291 + }, + { + "start": 10853.35, + "end": 10857.23, + "probability": 0.9954 + }, + { + "start": 10857.23, + "end": 10861.33, + "probability": 0.9961 + }, + { + "start": 10862.25, + "end": 10864.24, + "probability": 0.8665 + }, + { + "start": 10864.87, + "end": 10866.81, + "probability": 0.8129 + }, + { + "start": 10867.41, + "end": 10870.53, + "probability": 0.9997 + }, + { + "start": 10870.53, + "end": 10874.19, + "probability": 0.9122 + }, + { + "start": 10874.87, + "end": 10874.87, + "probability": 0.0133 + }, + { + "start": 10874.87, + "end": 10878.77, + "probability": 0.997 + }, + { + "start": 10879.07, + "end": 10880.75, + "probability": 0.7946 + }, + { + "start": 10882.23, + "end": 10886.67, + "probability": 0.9783 + }, + { + "start": 10887.19, + "end": 10887.37, + "probability": 0.1117 + }, + { + "start": 10887.37, + "end": 10887.37, + "probability": 0.4956 + }, + { + "start": 10887.37, + "end": 10887.37, + "probability": 0.5116 + }, + { + "start": 10887.37, + "end": 10887.37, + "probability": 0.5505 + }, + { + "start": 10887.37, + "end": 10889.13, + "probability": 0.6878 + }, + { + "start": 10889.13, + "end": 10890.43, + "probability": 0.6302 + }, + { + "start": 10890.45, + "end": 10892.13, + "probability": 0.709 + }, + { + "start": 10892.45, + "end": 10892.99, + "probability": 0.6998 + }, + { + "start": 10893.07, + "end": 10894.45, + "probability": 0.8889 + }, + { + "start": 10895.17, + "end": 10895.47, + "probability": 0.0738 + }, + { + "start": 10897.91, + "end": 10900.89, + "probability": 0.4644 + }, + { + "start": 10901.41, + "end": 10903.23, + "probability": 0.997 + }, + { + "start": 10903.61, + "end": 10904.37, + "probability": 0.1763 + }, + { + "start": 10904.61, + "end": 10905.61, + "probability": 0.9839 + }, + { + "start": 10906.79, + "end": 10909.71, + "probability": 0.9814 + }, + { + "start": 10911.93, + "end": 10913.03, + "probability": 0.9797 + }, + { + "start": 10913.47, + "end": 10913.47, + "probability": 0.0935 + }, + { + "start": 10913.47, + "end": 10913.47, + "probability": 0.6331 + }, + { + "start": 10913.47, + "end": 10914.79, + "probability": 0.6458 + }, + { + "start": 10914.79, + "end": 10916.23, + "probability": 0.981 + }, + { + "start": 10916.59, + "end": 10916.59, + "probability": 0.0515 + }, + { + "start": 10916.59, + "end": 10917.33, + "probability": 0.3508 + }, + { + "start": 10917.35, + "end": 10919.13, + "probability": 0.8057 + }, + { + "start": 10919.29, + "end": 10920.73, + "probability": 0.9888 + }, + { + "start": 10920.89, + "end": 10921.71, + "probability": 0.4147 + }, + { + "start": 10921.95, + "end": 10922.55, + "probability": 0.545 + }, + { + "start": 10922.69, + "end": 10924.67, + "probability": 0.1151 + }, + { + "start": 10924.71, + "end": 10925.81, + "probability": 0.1473 + }, + { + "start": 10925.81, + "end": 10926.89, + "probability": 0.0902 + }, + { + "start": 10927.19, + "end": 10927.19, + "probability": 0.5439 + }, + { + "start": 10927.73, + "end": 10927.93, + "probability": 0.0675 + }, + { + "start": 10927.93, + "end": 10927.93, + "probability": 0.3049 + }, + { + "start": 10927.93, + "end": 10927.93, + "probability": 0.0385 + }, + { + "start": 10927.93, + "end": 10927.93, + "probability": 0.0067 + }, + { + "start": 10927.93, + "end": 10932.59, + "probability": 0.9373 + }, + { + "start": 10932.97, + "end": 10939.17, + "probability": 0.877 + }, + { + "start": 10939.33, + "end": 10941.43, + "probability": 0.9983 + }, + { + "start": 10942.83, + "end": 10949.51, + "probability": 0.9937 + }, + { + "start": 10949.95, + "end": 10950.71, + "probability": 0.6647 + }, + { + "start": 10950.95, + "end": 10951.43, + "probability": 0.4596 + }, + { + "start": 10952.41, + "end": 10953.15, + "probability": 0.0029 + }, + { + "start": 10953.15, + "end": 10953.15, + "probability": 0.0098 + }, + { + "start": 10953.15, + "end": 10954.87, + "probability": 0.2611 + }, + { + "start": 10955.09, + "end": 10956.45, + "probability": 0.9076 + }, + { + "start": 10956.57, + "end": 10958.27, + "probability": 0.906 + }, + { + "start": 10959.33, + "end": 10963.63, + "probability": 0.9819 + }, + { + "start": 10964.07, + "end": 10966.85, + "probability": 0.7852 + }, + { + "start": 10967.32, + "end": 10967.97, + "probability": 0.0023 + }, + { + "start": 10967.97, + "end": 10967.97, + "probability": 0.0275 + }, + { + "start": 10967.97, + "end": 10970.65, + "probability": 0.7381 + }, + { + "start": 10970.71, + "end": 10974.22, + "probability": 0.9878 + }, + { + "start": 10974.79, + "end": 10977.47, + "probability": 0.8986 + }, + { + "start": 10977.59, + "end": 10980.67, + "probability": 0.98 + }, + { + "start": 10981.43, + "end": 10981.79, + "probability": 0.3714 + }, + { + "start": 10982.45, + "end": 10982.63, + "probability": 0.351 + }, + { + "start": 10982.63, + "end": 10983.61, + "probability": 0.099 + }, + { + "start": 10984.59, + "end": 10986.17, + "probability": 0.7931 + }, + { + "start": 10988.65, + "end": 10989.65, + "probability": 0.9387 + }, + { + "start": 10991.03, + "end": 10991.69, + "probability": 0.9124 + }, + { + "start": 10993.05, + "end": 10993.57, + "probability": 0.9616 + }, + { + "start": 10994.27, + "end": 10996.35, + "probability": 0.7828 + }, + { + "start": 10997.09, + "end": 10998.31, + "probability": 0.9951 + }, + { + "start": 10999.6, + "end": 11000.23, + "probability": 0.0292 + }, + { + "start": 11000.23, + "end": 11000.23, + "probability": 0.2418 + }, + { + "start": 11000.23, + "end": 11000.23, + "probability": 0.0858 + }, + { + "start": 11000.23, + "end": 11001.28, + "probability": 0.6799 + }, + { + "start": 11003.37, + "end": 11004.77, + "probability": 0.2796 + }, + { + "start": 11005.43, + "end": 11006.11, + "probability": 0.3648 + }, + { + "start": 11006.79, + "end": 11009.11, + "probability": 0.7032 + }, + { + "start": 11009.79, + "end": 11010.51, + "probability": 0.9046 + }, + { + "start": 11011.05, + "end": 11011.82, + "probability": 0.8614 + }, + { + "start": 11013.73, + "end": 11014.47, + "probability": 0.7857 + }, + { + "start": 11014.61, + "end": 11018.35, + "probability": 0.9692 + }, + { + "start": 11018.45, + "end": 11019.35, + "probability": 0.8777 + }, + { + "start": 11019.85, + "end": 11024.71, + "probability": 0.9539 + }, + { + "start": 11024.71, + "end": 11029.11, + "probability": 0.9214 + }, + { + "start": 11029.57, + "end": 11032.13, + "probability": 0.9942 + }, + { + "start": 11032.13, + "end": 11035.41, + "probability": 0.9977 + }, + { + "start": 11035.89, + "end": 11037.27, + "probability": 0.8271 + }, + { + "start": 11038.01, + "end": 11038.25, + "probability": 0.1937 + }, + { + "start": 11038.95, + "end": 11041.91, + "probability": 0.3558 + }, + { + "start": 11042.03, + "end": 11044.53, + "probability": 0.9901 + }, + { + "start": 11044.99, + "end": 11046.69, + "probability": 0.9887 + }, + { + "start": 11047.59, + "end": 11049.07, + "probability": 0.7543 + }, + { + "start": 11049.29, + "end": 11050.99, + "probability": 0.9243 + }, + { + "start": 11051.11, + "end": 11052.39, + "probability": 0.843 + }, + { + "start": 11052.81, + "end": 11054.65, + "probability": 0.3292 + }, + { + "start": 11054.77, + "end": 11056.07, + "probability": 0.6056 + }, + { + "start": 11056.17, + "end": 11056.79, + "probability": 0.4525 + }, + { + "start": 11056.85, + "end": 11058.27, + "probability": 0.7136 + }, + { + "start": 11059.83, + "end": 11061.83, + "probability": 0.2137 + }, + { + "start": 11062.57, + "end": 11064.07, + "probability": 0.5148 + }, + { + "start": 11064.51, + "end": 11065.65, + "probability": 0.7257 + }, + { + "start": 11065.83, + "end": 11066.77, + "probability": 0.5358 + }, + { + "start": 11066.83, + "end": 11067.73, + "probability": 0.6741 + }, + { + "start": 11067.89, + "end": 11074.69, + "probability": 0.9787 + }, + { + "start": 11075.75, + "end": 11077.39, + "probability": 0.894 + }, + { + "start": 11078.13, + "end": 11079.73, + "probability": 0.8254 + }, + { + "start": 11079.87, + "end": 11082.13, + "probability": 0.9867 + }, + { + "start": 11082.33, + "end": 11084.47, + "probability": 0.1155 + }, + { + "start": 11084.67, + "end": 11084.79, + "probability": 0.0001 + }, + { + "start": 11086.35, + "end": 11087.81, + "probability": 0.5978 + }, + { + "start": 11089.23, + "end": 11089.41, + "probability": 0.2016 + }, + { + "start": 11089.41, + "end": 11090.21, + "probability": 0.5403 + }, + { + "start": 11090.21, + "end": 11091.86, + "probability": 0.7278 + }, + { + "start": 11092.72, + "end": 11096.91, + "probability": 0.9421 + }, + { + "start": 11096.95, + "end": 11097.23, + "probability": 0.5531 + }, + { + "start": 11097.29, + "end": 11100.37, + "probability": 0.9912 + }, + { + "start": 11100.37, + "end": 11106.09, + "probability": 0.9893 + }, + { + "start": 11106.77, + "end": 11107.43, + "probability": 0.1086 + }, + { + "start": 11107.99, + "end": 11107.99, + "probability": 0.1315 + }, + { + "start": 11107.99, + "end": 11108.69, + "probability": 0.9478 + }, + { + "start": 11110.73, + "end": 11111.45, + "probability": 0.3771 + }, + { + "start": 11111.45, + "end": 11112.63, + "probability": 0.7001 + }, + { + "start": 11112.81, + "end": 11115.31, + "probability": 0.9712 + }, + { + "start": 11116.47, + "end": 11121.37, + "probability": 0.7954 + }, + { + "start": 11122.25, + "end": 11123.29, + "probability": 0.0425 + }, + { + "start": 11123.29, + "end": 11123.31, + "probability": 0.001 + }, + { + "start": 11128.55, + "end": 11130.29, + "probability": 0.0269 + }, + { + "start": 11132.11, + "end": 11136.87, + "probability": 0.9966 + }, + { + "start": 11136.91, + "end": 11138.83, + "probability": 0.7099 + }, + { + "start": 11138.89, + "end": 11140.11, + "probability": 0.8984 + }, + { + "start": 11140.91, + "end": 11144.35, + "probability": 0.9966 + }, + { + "start": 11144.43, + "end": 11145.05, + "probability": 0.8408 + }, + { + "start": 11145.19, + "end": 11148.47, + "probability": 0.8997 + }, + { + "start": 11149.15, + "end": 11150.45, + "probability": 0.7758 + }, + { + "start": 11151.09, + "end": 11153.19, + "probability": 0.9277 + }, + { + "start": 11154.09, + "end": 11158.61, + "probability": 0.995 + }, + { + "start": 11158.85, + "end": 11159.41, + "probability": 0.9197 + }, + { + "start": 11159.51, + "end": 11159.79, + "probability": 0.4702 + }, + { + "start": 11159.83, + "end": 11160.89, + "probability": 0.8939 + }, + { + "start": 11161.37, + "end": 11163.29, + "probability": 0.9274 + }, + { + "start": 11164.41, + "end": 11166.07, + "probability": 0.991 + }, + { + "start": 11166.67, + "end": 11169.69, + "probability": 0.9934 + }, + { + "start": 11169.69, + "end": 11172.91, + "probability": 0.9917 + }, + { + "start": 11173.95, + "end": 11174.31, + "probability": 0.6455 + }, + { + "start": 11174.37, + "end": 11176.09, + "probability": 0.9902 + }, + { + "start": 11176.65, + "end": 11179.53, + "probability": 0.941 + }, + { + "start": 11180.65, + "end": 11182.25, + "probability": 0.8245 + }, + { + "start": 11184.45, + "end": 11190.49, + "probability": 0.9946 + }, + { + "start": 11190.49, + "end": 11196.31, + "probability": 0.9982 + }, + { + "start": 11197.81, + "end": 11198.95, + "probability": 0.9597 + }, + { + "start": 11199.09, + "end": 11200.73, + "probability": 0.7563 + }, + { + "start": 11200.77, + "end": 11202.91, + "probability": 0.5468 + }, + { + "start": 11202.97, + "end": 11203.21, + "probability": 0.7385 + }, + { + "start": 11204.31, + "end": 11209.72, + "probability": 0.9929 + }, + { + "start": 11210.27, + "end": 11215.15, + "probability": 0.9902 + }, + { + "start": 11215.81, + "end": 11222.41, + "probability": 0.982 + }, + { + "start": 11222.87, + "end": 11226.39, + "probability": 0.9469 + }, + { + "start": 11226.57, + "end": 11226.97, + "probability": 0.8667 + }, + { + "start": 11227.05, + "end": 11228.55, + "probability": 0.7727 + }, + { + "start": 11228.99, + "end": 11229.92, + "probability": 0.9027 + }, + { + "start": 11230.47, + "end": 11232.69, + "probability": 0.8887 + }, + { + "start": 11233.09, + "end": 11236.22, + "probability": 0.9928 + }, + { + "start": 11236.71, + "end": 11242.73, + "probability": 0.9962 + }, + { + "start": 11243.23, + "end": 11245.45, + "probability": 0.9829 + }, + { + "start": 11245.57, + "end": 11246.39, + "probability": 0.8335 + }, + { + "start": 11246.47, + "end": 11247.43, + "probability": 0.8002 + }, + { + "start": 11247.89, + "end": 11250.35, + "probability": 0.8331 + }, + { + "start": 11250.43, + "end": 11253.47, + "probability": 0.8088 + }, + { + "start": 11253.99, + "end": 11254.65, + "probability": 0.1836 + }, + { + "start": 11255.83, + "end": 11256.07, + "probability": 0.4707 + }, + { + "start": 11256.07, + "end": 11256.97, + "probability": 0.4934 + }, + { + "start": 11258.13, + "end": 11258.35, + "probability": 0.0668 + }, + { + "start": 11258.35, + "end": 11261.73, + "probability": 0.8181 + }, + { + "start": 11262.83, + "end": 11263.33, + "probability": 0.0205 + }, + { + "start": 11263.33, + "end": 11263.43, + "probability": 0.0327 + }, + { + "start": 11263.67, + "end": 11264.44, + "probability": 0.9193 + }, + { + "start": 11264.87, + "end": 11267.13, + "probability": 0.8617 + }, + { + "start": 11268.99, + "end": 11269.09, + "probability": 0.1079 + }, + { + "start": 11269.09, + "end": 11273.33, + "probability": 0.9757 + }, + { + "start": 11273.45, + "end": 11275.53, + "probability": 0.5933 + }, + { + "start": 11275.79, + "end": 11282.07, + "probability": 0.8973 + }, + { + "start": 11283.43, + "end": 11284.45, + "probability": 0.7934 + }, + { + "start": 11284.65, + "end": 11285.59, + "probability": 0.9227 + }, + { + "start": 11285.69, + "end": 11288.71, + "probability": 0.9735 + }, + { + "start": 11289.29, + "end": 11292.83, + "probability": 0.8999 + }, + { + "start": 11294.55, + "end": 11294.79, + "probability": 0.5776 + }, + { + "start": 11294.91, + "end": 11295.29, + "probability": 0.8966 + }, + { + "start": 11295.39, + "end": 11297.65, + "probability": 0.9342 + }, + { + "start": 11297.71, + "end": 11302.09, + "probability": 0.952 + }, + { + "start": 11302.89, + "end": 11308.23, + "probability": 0.9863 + }, + { + "start": 11308.65, + "end": 11310.44, + "probability": 0.9395 + }, + { + "start": 11310.79, + "end": 11311.96, + "probability": 0.904 + }, + { + "start": 11312.83, + "end": 11313.39, + "probability": 0.7511 + }, + { + "start": 11313.41, + "end": 11316.25, + "probability": 0.9023 + }, + { + "start": 11317.37, + "end": 11319.43, + "probability": 0.7314 + }, + { + "start": 11320.09, + "end": 11320.09, + "probability": 0.0174 + }, + { + "start": 11320.09, + "end": 11321.09, + "probability": 0.7198 + }, + { + "start": 11321.11, + "end": 11326.79, + "probability": 0.9628 + }, + { + "start": 11326.89, + "end": 11327.37, + "probability": 0.092 + }, + { + "start": 11327.37, + "end": 11327.49, + "probability": 0.0665 + }, + { + "start": 11327.61, + "end": 11328.67, + "probability": 0.8276 + }, + { + "start": 11328.73, + "end": 11330.82, + "probability": 0.969 + }, + { + "start": 11331.43, + "end": 11332.41, + "probability": 0.9414 + }, + { + "start": 11333.65, + "end": 11337.09, + "probability": 0.7555 + }, + { + "start": 11337.57, + "end": 11337.85, + "probability": 0.6323 + }, + { + "start": 11337.89, + "end": 11338.57, + "probability": 0.5209 + }, + { + "start": 11338.63, + "end": 11343.51, + "probability": 0.9803 + }, + { + "start": 11344.07, + "end": 11344.56, + "probability": 0.6572 + }, + { + "start": 11345.13, + "end": 11345.51, + "probability": 0.8123 + }, + { + "start": 11345.51, + "end": 11346.21, + "probability": 0.8908 + }, + { + "start": 11346.49, + "end": 11348.63, + "probability": 0.9931 + }, + { + "start": 11348.75, + "end": 11350.95, + "probability": 0.5061 + }, + { + "start": 11351.49, + "end": 11355.09, + "probability": 0.1567 + }, + { + "start": 11355.21, + "end": 11355.21, + "probability": 0.1395 + }, + { + "start": 11355.21, + "end": 11356.51, + "probability": 0.7555 + }, + { + "start": 11356.51, + "end": 11357.01, + "probability": 0.003 + }, + { + "start": 11358.47, + "end": 11359.37, + "probability": 0.7991 + }, + { + "start": 11359.53, + "end": 11360.95, + "probability": 0.8732 + }, + { + "start": 11360.95, + "end": 11362.87, + "probability": 0.9716 + }, + { + "start": 11362.95, + "end": 11366.11, + "probability": 0.9429 + }, + { + "start": 11366.47, + "end": 11370.17, + "probability": 0.9977 + }, + { + "start": 11370.17, + "end": 11374.05, + "probability": 0.9561 + }, + { + "start": 11374.33, + "end": 11377.37, + "probability": 0.893 + }, + { + "start": 11377.99, + "end": 11381.9, + "probability": 0.8527 + }, + { + "start": 11382.63, + "end": 11384.99, + "probability": 0.9954 + }, + { + "start": 11385.17, + "end": 11386.47, + "probability": 0.9395 + }, + { + "start": 11387.88, + "end": 11391.51, + "probability": 0.9967 + }, + { + "start": 11392.01, + "end": 11393.47, + "probability": 0.8131 + }, + { + "start": 11393.91, + "end": 11395.97, + "probability": 0.9858 + }, + { + "start": 11396.27, + "end": 11400.35, + "probability": 0.9268 + }, + { + "start": 11400.43, + "end": 11400.53, + "probability": 0.0093 + }, + { + "start": 11401.09, + "end": 11401.99, + "probability": 0.2462 + }, + { + "start": 11402.27, + "end": 11404.85, + "probability": 0.9248 + }, + { + "start": 11405.03, + "end": 11406.33, + "probability": 0.9071 + }, + { + "start": 11406.61, + "end": 11412.33, + "probability": 0.9639 + }, + { + "start": 11412.33, + "end": 11412.51, + "probability": 0.005 + }, + { + "start": 11414.78, + "end": 11414.78, + "probability": 0.0566 + }, + { + "start": 11414.78, + "end": 11414.78, + "probability": 0.0653 + }, + { + "start": 11414.78, + "end": 11417.28, + "probability": 0.9189 + }, + { + "start": 11417.74, + "end": 11418.02, + "probability": 0.11 + }, + { + "start": 11418.02, + "end": 11418.8, + "probability": 0.1793 + }, + { + "start": 11418.8, + "end": 11425.94, + "probability": 0.9771 + }, + { + "start": 11425.96, + "end": 11428.82, + "probability": 0.8685 + }, + { + "start": 11432.52, + "end": 11433.42, + "probability": 0.6557 + }, + { + "start": 11433.56, + "end": 11434.4, + "probability": 0.9709 + }, + { + "start": 11434.48, + "end": 11436.28, + "probability": 0.9968 + }, + { + "start": 11437.68, + "end": 11441.78, + "probability": 0.9635 + }, + { + "start": 11443.84, + "end": 11446.18, + "probability": 0.9779 + }, + { + "start": 11446.22, + "end": 11447.76, + "probability": 0.8847 + }, + { + "start": 11448.82, + "end": 11452.2, + "probability": 0.9741 + }, + { + "start": 11452.34, + "end": 11453.64, + "probability": 0.8914 + }, + { + "start": 11453.64, + "end": 11454.84, + "probability": 0.9683 + }, + { + "start": 11455.36, + "end": 11456.57, + "probability": 0.9592 + }, + { + "start": 11457.62, + "end": 11462.54, + "probability": 0.9763 + }, + { + "start": 11462.96, + "end": 11464.6, + "probability": 0.6875 + }, + { + "start": 11464.66, + "end": 11465.52, + "probability": 0.8574 + }, + { + "start": 11466.0, + "end": 11467.84, + "probability": 0.612 + }, + { + "start": 11468.92, + "end": 11470.24, + "probability": 0.886 + }, + { + "start": 11470.34, + "end": 11471.85, + "probability": 0.9858 + }, + { + "start": 11472.46, + "end": 11475.13, + "probability": 0.9929 + }, + { + "start": 11477.12, + "end": 11481.36, + "probability": 0.9618 + }, + { + "start": 11482.64, + "end": 11483.62, + "probability": 0.6188 + }, + { + "start": 11486.16, + "end": 11488.18, + "probability": 0.9995 + }, + { + "start": 11488.52, + "end": 11494.7, + "probability": 0.9413 + }, + { + "start": 11495.26, + "end": 11496.62, + "probability": 0.9779 + }, + { + "start": 11496.96, + "end": 11497.62, + "probability": 0.9373 + }, + { + "start": 11497.96, + "end": 11501.44, + "probability": 0.6901 + }, + { + "start": 11501.9, + "end": 11504.0, + "probability": 0.2456 + }, + { + "start": 11504.9, + "end": 11507.08, + "probability": 0.9778 + }, + { + "start": 11507.48, + "end": 11508.66, + "probability": 0.9668 + }, + { + "start": 11509.78, + "end": 11513.58, + "probability": 0.9634 + }, + { + "start": 11514.72, + "end": 11515.54, + "probability": 0.8546 + }, + { + "start": 11515.78, + "end": 11516.1, + "probability": 0.5972 + }, + { + "start": 11516.16, + "end": 11518.9, + "probability": 0.9766 + }, + { + "start": 11519.98, + "end": 11521.08, + "probability": 0.8779 + }, + { + "start": 11521.12, + "end": 11522.0, + "probability": 0.8086 + }, + { + "start": 11522.24, + "end": 11525.58, + "probability": 0.7018 + }, + { + "start": 11525.58, + "end": 11526.76, + "probability": 0.8948 + }, + { + "start": 11528.28, + "end": 11529.04, + "probability": 0.7108 + }, + { + "start": 11529.06, + "end": 11530.06, + "probability": 0.951 + }, + { + "start": 11530.08, + "end": 11530.92, + "probability": 0.6843 + }, + { + "start": 11531.5, + "end": 11532.08, + "probability": 0.8398 + }, + { + "start": 11532.12, + "end": 11535.36, + "probability": 0.8019 + }, + { + "start": 11535.82, + "end": 11537.26, + "probability": 0.9721 + }, + { + "start": 11537.34, + "end": 11537.78, + "probability": 0.9873 + }, + { + "start": 11537.86, + "end": 11538.66, + "probability": 0.9824 + }, + { + "start": 11538.76, + "end": 11540.1, + "probability": 0.9264 + }, + { + "start": 11540.16, + "end": 11542.3, + "probability": 0.9825 + }, + { + "start": 11542.84, + "end": 11547.52, + "probability": 0.9499 + }, + { + "start": 11548.28, + "end": 11549.96, + "probability": 0.8541 + }, + { + "start": 11550.44, + "end": 11552.94, + "probability": 0.9768 + }, + { + "start": 11553.7, + "end": 11555.06, + "probability": 0.7732 + }, + { + "start": 11555.58, + "end": 11559.42, + "probability": 0.9917 + }, + { + "start": 11559.7, + "end": 11561.3, + "probability": 0.9716 + }, + { + "start": 11561.78, + "end": 11563.46, + "probability": 0.7349 + }, + { + "start": 11563.68, + "end": 11564.66, + "probability": 0.5585 + }, + { + "start": 11568.12, + "end": 11570.98, + "probability": 0.8401 + }, + { + "start": 11571.82, + "end": 11578.0, + "probability": 0.936 + }, + { + "start": 11579.08, + "end": 11582.84, + "probability": 0.9824 + }, + { + "start": 11583.4, + "end": 11585.78, + "probability": 0.9761 + }, + { + "start": 11586.58, + "end": 11588.48, + "probability": 0.835 + }, + { + "start": 11588.62, + "end": 11590.84, + "probability": 0.9747 + }, + { + "start": 11591.86, + "end": 11597.16, + "probability": 0.9944 + }, + { + "start": 11598.02, + "end": 11602.24, + "probability": 0.9954 + }, + { + "start": 11602.66, + "end": 11604.88, + "probability": 0.7025 + }, + { + "start": 11605.36, + "end": 11605.9, + "probability": 0.1326 + }, + { + "start": 11606.14, + "end": 11608.0, + "probability": 0.943 + }, + { + "start": 11608.6, + "end": 11614.88, + "probability": 0.9702 + }, + { + "start": 11615.74, + "end": 11620.36, + "probability": 0.9897 + }, + { + "start": 11620.36, + "end": 11623.66, + "probability": 0.9937 + }, + { + "start": 11623.8, + "end": 11631.34, + "probability": 0.9768 + }, + { + "start": 11632.98, + "end": 11639.68, + "probability": 0.9514 + }, + { + "start": 11640.38, + "end": 11642.22, + "probability": 0.817 + }, + { + "start": 11642.74, + "end": 11645.66, + "probability": 0.9961 + }, + { + "start": 11647.2, + "end": 11649.07, + "probability": 0.9863 + }, + { + "start": 11650.78, + "end": 11652.0, + "probability": 0.7387 + }, + { + "start": 11652.2, + "end": 11652.54, + "probability": 0.4695 + }, + { + "start": 11652.6, + "end": 11653.16, + "probability": 0.8182 + }, + { + "start": 11653.24, + "end": 11655.54, + "probability": 0.9201 + }, + { + "start": 11657.52, + "end": 11660.72, + "probability": 0.9484 + }, + { + "start": 11661.6, + "end": 11666.82, + "probability": 0.9964 + }, + { + "start": 11667.64, + "end": 11670.08, + "probability": 0.9933 + }, + { + "start": 11670.26, + "end": 11671.34, + "probability": 0.7468 + }, + { + "start": 11672.18, + "end": 11673.65, + "probability": 0.9843 + }, + { + "start": 11674.08, + "end": 11675.4, + "probability": 0.933 + }, + { + "start": 11675.86, + "end": 11679.04, + "probability": 0.9875 + }, + { + "start": 11680.48, + "end": 11683.94, + "probability": 0.7214 + }, + { + "start": 11684.46, + "end": 11687.2, + "probability": 0.7394 + }, + { + "start": 11687.7, + "end": 11688.36, + "probability": 0.5967 + }, + { + "start": 11688.46, + "end": 11689.54, + "probability": 0.7202 + }, + { + "start": 11689.92, + "end": 11690.48, + "probability": 0.8066 + }, + { + "start": 11690.54, + "end": 11691.74, + "probability": 0.7564 + }, + { + "start": 11692.6, + "end": 11698.7, + "probability": 0.881 + }, + { + "start": 11699.9, + "end": 11703.76, + "probability": 0.9537 + }, + { + "start": 11705.24, + "end": 11705.26, + "probability": 0.873 + }, + { + "start": 11705.96, + "end": 11710.32, + "probability": 0.9285 + }, + { + "start": 11711.64, + "end": 11715.04, + "probability": 0.9941 + }, + { + "start": 11716.32, + "end": 11717.92, + "probability": 0.8578 + }, + { + "start": 11718.92, + "end": 11721.16, + "probability": 0.7631 + }, + { + "start": 11722.6, + "end": 11727.38, + "probability": 0.9361 + }, + { + "start": 11727.54, + "end": 11728.54, + "probability": 0.8773 + }, + { + "start": 11728.68, + "end": 11730.44, + "probability": 0.8931 + }, + { + "start": 11730.76, + "end": 11731.72, + "probability": 0.8182 + }, + { + "start": 11733.32, + "end": 11737.68, + "probability": 0.9733 + }, + { + "start": 11738.04, + "end": 11739.56, + "probability": 0.5477 + }, + { + "start": 11740.76, + "end": 11742.44, + "probability": 0.9305 + }, + { + "start": 11743.94, + "end": 11746.8, + "probability": 0.6279 + }, + { + "start": 11747.06, + "end": 11749.88, + "probability": 0.9119 + }, + { + "start": 11749.88, + "end": 11750.02, + "probability": 0.665 + }, + { + "start": 11750.18, + "end": 11750.66, + "probability": 0.7985 + }, + { + "start": 11750.96, + "end": 11757.5, + "probability": 0.986 + }, + { + "start": 11757.68, + "end": 11761.18, + "probability": 0.9958 + }, + { + "start": 11761.64, + "end": 11762.52, + "probability": 0.2215 + }, + { + "start": 11762.52, + "end": 11764.06, + "probability": 0.6028 + }, + { + "start": 11764.94, + "end": 11765.4, + "probability": 0.4787 + }, + { + "start": 11765.58, + "end": 11767.3, + "probability": 0.7816 + }, + { + "start": 11768.26, + "end": 11771.88, + "probability": 0.9265 + }, + { + "start": 11772.48, + "end": 11774.2, + "probability": 0.5859 + }, + { + "start": 11774.92, + "end": 11775.82, + "probability": 0.9736 + }, + { + "start": 11776.82, + "end": 11781.44, + "probability": 0.8815 + }, + { + "start": 11782.38, + "end": 11783.94, + "probability": 0.8675 + }, + { + "start": 11784.08, + "end": 11784.98, + "probability": 0.8296 + }, + { + "start": 11785.16, + "end": 11787.8, + "probability": 0.9924 + }, + { + "start": 11788.44, + "end": 11791.64, + "probability": 0.9245 + }, + { + "start": 11791.64, + "end": 11794.52, + "probability": 0.9952 + }, + { + "start": 11795.7, + "end": 11799.94, + "probability": 0.9106 + }, + { + "start": 11800.04, + "end": 11802.4, + "probability": 0.9954 + }, + { + "start": 11803.24, + "end": 11805.72, + "probability": 0.9819 + }, + { + "start": 11805.86, + "end": 11807.12, + "probability": 0.959 + }, + { + "start": 11807.42, + "end": 11808.3, + "probability": 0.9556 + }, + { + "start": 11808.42, + "end": 11809.96, + "probability": 0.9397 + }, + { + "start": 11810.02, + "end": 11811.9, + "probability": 0.8582 + }, + { + "start": 11813.1, + "end": 11815.76, + "probability": 0.8339 + }, + { + "start": 11816.88, + "end": 11819.06, + "probability": 0.8671 + }, + { + "start": 11819.92, + "end": 11824.32, + "probability": 0.9342 + }, + { + "start": 11824.48, + "end": 11826.44, + "probability": 0.7045 + }, + { + "start": 11827.22, + "end": 11829.52, + "probability": 0.9129 + }, + { + "start": 11830.12, + "end": 11832.0, + "probability": 0.5545 + }, + { + "start": 11832.1, + "end": 11833.46, + "probability": 0.8086 + }, + { + "start": 11833.9, + "end": 11835.16, + "probability": 0.6442 + }, + { + "start": 11836.12, + "end": 11839.22, + "probability": 0.8816 + }, + { + "start": 11839.76, + "end": 11841.76, + "probability": 0.9941 + }, + { + "start": 11845.14, + "end": 11849.7, + "probability": 0.9761 + }, + { + "start": 11849.84, + "end": 11851.32, + "probability": 0.5248 + }, + { + "start": 11851.42, + "end": 11853.22, + "probability": 0.8232 + }, + { + "start": 11854.96, + "end": 11855.86, + "probability": 0.9944 + }, + { + "start": 11856.54, + "end": 11857.44, + "probability": 0.9279 + }, + { + "start": 11857.56, + "end": 11857.96, + "probability": 0.6155 + }, + { + "start": 11858.14, + "end": 11860.16, + "probability": 0.988 + }, + { + "start": 11862.54, + "end": 11862.66, + "probability": 0.1872 + }, + { + "start": 11862.66, + "end": 11864.85, + "probability": 0.6509 + }, + { + "start": 11865.58, + "end": 11866.8, + "probability": 0.9218 + }, + { + "start": 11866.82, + "end": 11867.74, + "probability": 0.8021 + }, + { + "start": 11871.68, + "end": 11874.02, + "probability": 0.8922 + }, + { + "start": 11875.36, + "end": 11877.56, + "probability": 0.9906 + }, + { + "start": 11878.76, + "end": 11881.54, + "probability": 0.9733 + }, + { + "start": 11882.08, + "end": 11885.68, + "probability": 0.7948 + }, + { + "start": 11887.12, + "end": 11890.92, + "probability": 0.939 + }, + { + "start": 11892.26, + "end": 11893.16, + "probability": 0.7805 + }, + { + "start": 11893.74, + "end": 11896.6, + "probability": 0.9357 + }, + { + "start": 11897.36, + "end": 11898.54, + "probability": 0.8667 + }, + { + "start": 11898.7, + "end": 11900.5, + "probability": 0.9917 + }, + { + "start": 11900.92, + "end": 11902.16, + "probability": 0.9373 + }, + { + "start": 11902.84, + "end": 11905.24, + "probability": 0.9429 + }, + { + "start": 11905.28, + "end": 11907.3, + "probability": 0.9954 + }, + { + "start": 11907.88, + "end": 11909.52, + "probability": 0.8972 + }, + { + "start": 11910.34, + "end": 11912.91, + "probability": 0.9958 + }, + { + "start": 11916.64, + "end": 11920.9, + "probability": 0.7977 + }, + { + "start": 11920.96, + "end": 11922.74, + "probability": 0.7271 + }, + { + "start": 11922.9, + "end": 11923.79, + "probability": 0.9294 + }, + { + "start": 11924.92, + "end": 11926.8, + "probability": 0.9461 + }, + { + "start": 11926.96, + "end": 11927.74, + "probability": 0.9358 + }, + { + "start": 11927.76, + "end": 11928.46, + "probability": 0.8687 + }, + { + "start": 11928.5, + "end": 11932.52, + "probability": 0.9926 + }, + { + "start": 11933.54, + "end": 11936.66, + "probability": 0.9644 + }, + { + "start": 11937.68, + "end": 11940.04, + "probability": 0.9946 + }, + { + "start": 11940.6, + "end": 11943.48, + "probability": 0.9926 + }, + { + "start": 11945.2, + "end": 11945.6, + "probability": 0.8655 + }, + { + "start": 11945.84, + "end": 11947.46, + "probability": 0.9489 + }, + { + "start": 11947.56, + "end": 11950.16, + "probability": 0.9247 + }, + { + "start": 11950.28, + "end": 11954.08, + "probability": 0.8984 + }, + { + "start": 11958.22, + "end": 11958.22, + "probability": 0.2115 + }, + { + "start": 11960.2, + "end": 11961.28, + "probability": 0.6357 + }, + { + "start": 11963.46, + "end": 11967.12, + "probability": 0.8574 + }, + { + "start": 11968.94, + "end": 11970.8, + "probability": 0.9927 + }, + { + "start": 11972.66, + "end": 11974.47, + "probability": 0.97 + }, + { + "start": 11974.6, + "end": 11976.68, + "probability": 0.6568 + }, + { + "start": 11976.76, + "end": 11981.34, + "probability": 0.9521 + }, + { + "start": 11982.32, + "end": 11984.84, + "probability": 0.7943 + }, + { + "start": 11985.12, + "end": 11986.84, + "probability": 0.9848 + }, + { + "start": 11987.26, + "end": 11992.72, + "probability": 0.9054 + }, + { + "start": 11993.42, + "end": 11994.26, + "probability": 0.0281 + }, + { + "start": 11994.26, + "end": 11995.04, + "probability": 0.0767 + }, + { + "start": 11995.2, + "end": 11995.64, + "probability": 0.7001 + }, + { + "start": 11996.08, + "end": 12002.06, + "probability": 0.8579 + }, + { + "start": 12002.22, + "end": 12003.42, + "probability": 0.8219 + }, + { + "start": 12003.62, + "end": 12005.48, + "probability": 0.932 + }, + { + "start": 12006.06, + "end": 12011.26, + "probability": 0.9935 + }, + { + "start": 12012.0, + "end": 12015.18, + "probability": 0.5714 + }, + { + "start": 12015.26, + "end": 12017.76, + "probability": 0.1581 + }, + { + "start": 12017.76, + "end": 12018.26, + "probability": 0.2356 + }, + { + "start": 12018.48, + "end": 12019.4, + "probability": 0.7917 + }, + { + "start": 12020.34, + "end": 12021.3, + "probability": 0.247 + }, + { + "start": 12021.54, + "end": 12023.54, + "probability": 0.9885 + }, + { + "start": 12023.78, + "end": 12026.78, + "probability": 0.8779 + }, + { + "start": 12026.9, + "end": 12027.48, + "probability": 0.0545 + }, + { + "start": 12028.92, + "end": 12029.6, + "probability": 0.3749 + }, + { + "start": 12030.14, + "end": 12032.68, + "probability": 0.7065 + }, + { + "start": 12032.92, + "end": 12035.18, + "probability": 0.7323 + }, + { + "start": 12035.98, + "end": 12038.58, + "probability": 0.9235 + }, + { + "start": 12039.61, + "end": 12041.82, + "probability": 0.9126 + }, + { + "start": 12042.08, + "end": 12044.88, + "probability": 0.9374 + }, + { + "start": 12045.3, + "end": 12048.5, + "probability": 0.9236 + }, + { + "start": 12048.84, + "end": 12052.86, + "probability": 0.9563 + }, + { + "start": 12052.86, + "end": 12056.91, + "probability": 0.7826 + }, + { + "start": 12058.0, + "end": 12059.3, + "probability": 0.8992 + }, + { + "start": 12059.52, + "end": 12064.14, + "probability": 0.8796 + }, + { + "start": 12064.14, + "end": 12068.44, + "probability": 0.9893 + }, + { + "start": 12068.7, + "end": 12069.78, + "probability": 0.2038 + }, + { + "start": 12069.86, + "end": 12070.34, + "probability": 0.4202 + }, + { + "start": 12070.36, + "end": 12070.86, + "probability": 0.7117 + }, + { + "start": 12071.74, + "end": 12073.9, + "probability": 0.0338 + }, + { + "start": 12075.78, + "end": 12076.22, + "probability": 0.015 + }, + { + "start": 12077.32, + "end": 12078.23, + "probability": 0.0736 + }, + { + "start": 12078.32, + "end": 12078.94, + "probability": 0.09 + }, + { + "start": 12079.18, + "end": 12080.42, + "probability": 0.6461 + }, + { + "start": 12080.64, + "end": 12082.46, + "probability": 0.8325 + }, + { + "start": 12082.52, + "end": 12083.08, + "probability": 0.5234 + }, + { + "start": 12083.2, + "end": 12085.36, + "probability": 0.8757 + }, + { + "start": 12087.98, + "end": 12088.38, + "probability": 0.7867 + }, + { + "start": 12088.38, + "end": 12093.4, + "probability": 0.7404 + }, + { + "start": 12093.76, + "end": 12097.44, + "probability": 0.9899 + }, + { + "start": 12097.9, + "end": 12101.4, + "probability": 0.8739 + }, + { + "start": 12101.4, + "end": 12104.42, + "probability": 0.8521 + }, + { + "start": 12108.0, + "end": 12117.5, + "probability": 0.8309 + }, + { + "start": 12117.6, + "end": 12119.24, + "probability": 0.7581 + }, + { + "start": 12119.9, + "end": 12120.36, + "probability": 0.479 + }, + { + "start": 12140.68, + "end": 12141.04, + "probability": 0.22 + }, + { + "start": 12141.04, + "end": 12142.12, + "probability": 0.5227 + }, + { + "start": 12142.36, + "end": 12143.18, + "probability": 0.979 + }, + { + "start": 12143.4, + "end": 12143.7, + "probability": 0.837 + }, + { + "start": 12143.78, + "end": 12145.28, + "probability": 0.8936 + }, + { + "start": 12145.36, + "end": 12150.28, + "probability": 0.9917 + }, + { + "start": 12150.32, + "end": 12154.44, + "probability": 0.9877 + }, + { + "start": 12155.1, + "end": 12158.76, + "probability": 0.9467 + }, + { + "start": 12158.84, + "end": 12161.68, + "probability": 0.9899 + }, + { + "start": 12161.68, + "end": 12165.12, + "probability": 0.9839 + }, + { + "start": 12165.28, + "end": 12168.96, + "probability": 0.9907 + }, + { + "start": 12169.52, + "end": 12173.23, + "probability": 0.9914 + }, + { + "start": 12174.02, + "end": 12176.72, + "probability": 0.9351 + }, + { + "start": 12176.8, + "end": 12181.96, + "probability": 0.9951 + }, + { + "start": 12181.96, + "end": 12186.4, + "probability": 0.9938 + }, + { + "start": 12187.08, + "end": 12189.52, + "probability": 0.9748 + }, + { + "start": 12189.52, + "end": 12191.64, + "probability": 0.8066 + }, + { + "start": 12191.76, + "end": 12194.23, + "probability": 0.9833 + }, + { + "start": 12194.7, + "end": 12195.48, + "probability": 0.8514 + }, + { + "start": 12200.98, + "end": 12203.92, + "probability": 0.989 + }, + { + "start": 12203.92, + "end": 12206.6, + "probability": 0.9888 + }, + { + "start": 12207.04, + "end": 12209.16, + "probability": 0.8781 + }, + { + "start": 12209.22, + "end": 12212.68, + "probability": 0.9941 + }, + { + "start": 12214.12, + "end": 12216.7, + "probability": 0.9312 + }, + { + "start": 12216.7, + "end": 12219.32, + "probability": 0.8871 + }, + { + "start": 12219.38, + "end": 12222.04, + "probability": 0.9736 + }, + { + "start": 12222.36, + "end": 12226.4, + "probability": 0.9674 + }, + { + "start": 12227.4, + "end": 12231.22, + "probability": 0.991 + }, + { + "start": 12231.6, + "end": 12232.58, + "probability": 0.5946 + }, + { + "start": 12232.64, + "end": 12234.16, + "probability": 0.944 + }, + { + "start": 12234.26, + "end": 12238.28, + "probability": 0.8922 + }, + { + "start": 12238.88, + "end": 12241.36, + "probability": 0.8103 + }, + { + "start": 12241.36, + "end": 12244.54, + "probability": 0.9935 + }, + { + "start": 12244.54, + "end": 12248.72, + "probability": 0.9539 + }, + { + "start": 12248.8, + "end": 12251.98, + "probability": 0.9938 + }, + { + "start": 12251.98, + "end": 12255.48, + "probability": 0.986 + }, + { + "start": 12255.92, + "end": 12257.6, + "probability": 0.9054 + }, + { + "start": 12257.7, + "end": 12258.28, + "probability": 0.8129 + }, + { + "start": 12258.52, + "end": 12261.62, + "probability": 0.9607 + }, + { + "start": 12261.82, + "end": 12265.44, + "probability": 0.9924 + }, + { + "start": 12266.14, + "end": 12272.74, + "probability": 0.8882 + }, + { + "start": 12272.98, + "end": 12275.22, + "probability": 0.9619 + }, + { + "start": 12275.28, + "end": 12279.38, + "probability": 0.69 + }, + { + "start": 12280.2, + "end": 12284.32, + "probability": 0.9462 + }, + { + "start": 12284.32, + "end": 12288.52, + "probability": 0.7934 + }, + { + "start": 12289.0, + "end": 12292.26, + "probability": 0.9845 + }, + { + "start": 12292.61, + "end": 12293.22, + "probability": 0.6264 + }, + { + "start": 12293.24, + "end": 12294.76, + "probability": 0.8392 + }, + { + "start": 12294.8, + "end": 12300.34, + "probability": 0.9713 + }, + { + "start": 12300.79, + "end": 12300.84, + "probability": 0.4493 + }, + { + "start": 12301.74, + "end": 12302.26, + "probability": 0.4506 + }, + { + "start": 12302.28, + "end": 12306.13, + "probability": 0.6002 + }, + { + "start": 12308.82, + "end": 12314.0, + "probability": 0.9905 + }, + { + "start": 12314.54, + "end": 12316.0, + "probability": 0.3935 + }, + { + "start": 12316.06, + "end": 12318.3, + "probability": 0.9424 + }, + { + "start": 12318.68, + "end": 12321.12, + "probability": 0.9503 + }, + { + "start": 12321.74, + "end": 12323.88, + "probability": 0.7289 + }, + { + "start": 12324.1, + "end": 12327.68, + "probability": 0.875 + }, + { + "start": 12331.4, + "end": 12334.22, + "probability": 0.6618 + }, + { + "start": 12334.44, + "end": 12337.74, + "probability": 0.2331 + }, + { + "start": 12338.06, + "end": 12338.99, + "probability": 0.77 + }, + { + "start": 12340.08, + "end": 12341.76, + "probability": 0.8472 + }, + { + "start": 12360.22, + "end": 12367.24, + "probability": 0.0742 + }, + { + "start": 12375.58, + "end": 12376.4, + "probability": 0.0005 + }, + { + "start": 12378.94, + "end": 12381.96, + "probability": 0.0653 + }, + { + "start": 12382.14, + "end": 12385.66, + "probability": 0.0263 + }, + { + "start": 12394.22, + "end": 12394.86, + "probability": 0.0127 + }, + { + "start": 12409.16, + "end": 12411.18, + "probability": 0.0614 + }, + { + "start": 12411.18, + "end": 12412.8, + "probability": 0.0466 + }, + { + "start": 12414.32, + "end": 12417.58, + "probability": 0.0859 + }, + { + "start": 12417.78, + "end": 12421.6, + "probability": 0.7345 + }, + { + "start": 12422.24, + "end": 12423.2, + "probability": 0.285 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.0, + "end": 12424.0, + "probability": 0.0 + }, + { + "start": 12424.23, + "end": 12424.3, + "probability": 0.1086 + }, + { + "start": 12424.3, + "end": 12424.84, + "probability": 0.156 + }, + { + "start": 12424.94, + "end": 12427.0, + "probability": 0.8446 + }, + { + "start": 12427.7, + "end": 12431.96, + "probability": 0.3955 + }, + { + "start": 12432.62, + "end": 12441.52, + "probability": 0.7498 + }, + { + "start": 12441.62, + "end": 12442.28, + "probability": 0.8654 + }, + { + "start": 12443.02, + "end": 12443.44, + "probability": 0.0883 + } + ], + "segments_count": 4482, + "words_count": 22006, + "avg_words_per_segment": 4.9099, + "avg_segment_duration": 2.0646, + "avg_words_per_minute": 105.9702, + "plenum_id": "11401", + "duration": 12459.73, + "title": null, + "plenum_date": "2011-01-04" +} \ No newline at end of file