diff --git "a/14588/metadata.json" "b/14588/metadata.json" new file mode 100644--- /dev/null +++ "b/14588/metadata.json" @@ -0,0 +1,20327 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "14588", + "quality_score": 0.9253, + "per_segment_quality_scores": [ + { + "start": 20.22, + "end": 20.56, + "probability": 0.1607 + }, + { + "start": 43.0, + "end": 45.0, + "probability": 0.7948 + }, + { + "start": 45.9, + "end": 48.96, + "probability": 0.7751 + }, + { + "start": 50.06, + "end": 52.49, + "probability": 0.676 + }, + { + "start": 53.76, + "end": 56.22, + "probability": 0.9906 + }, + { + "start": 56.88, + "end": 58.94, + "probability": 0.7134 + }, + { + "start": 60.66, + "end": 61.8, + "probability": 0.824 + }, + { + "start": 62.08, + "end": 63.38, + "probability": 0.762 + }, + { + "start": 63.46, + "end": 66.02, + "probability": 0.958 + }, + { + "start": 66.02, + "end": 69.6, + "probability": 0.9961 + }, + { + "start": 70.44, + "end": 71.18, + "probability": 0.5948 + }, + { + "start": 73.02, + "end": 73.34, + "probability": 0.2951 + }, + { + "start": 74.96, + "end": 76.78, + "probability": 0.6581 + }, + { + "start": 79.04, + "end": 80.26, + "probability": 0.7941 + }, + { + "start": 80.4, + "end": 83.34, + "probability": 0.8932 + }, + { + "start": 83.88, + "end": 87.08, + "probability": 0.9958 + }, + { + "start": 87.08, + "end": 90.1, + "probability": 0.9691 + }, + { + "start": 91.54, + "end": 93.3, + "probability": 0.5918 + }, + { + "start": 93.44, + "end": 95.6, + "probability": 0.8726 + }, + { + "start": 96.14, + "end": 98.7, + "probability": 0.9607 + }, + { + "start": 102.24, + "end": 104.5, + "probability": 0.6308 + }, + { + "start": 111.96, + "end": 113.92, + "probability": 0.5993 + }, + { + "start": 115.7, + "end": 119.06, + "probability": 0.811 + }, + { + "start": 119.96, + "end": 120.0, + "probability": 0.4187 + }, + { + "start": 120.1, + "end": 120.48, + "probability": 0.8819 + }, + { + "start": 120.6, + "end": 125.02, + "probability": 0.9734 + }, + { + "start": 126.36, + "end": 128.72, + "probability": 0.9033 + }, + { + "start": 130.54, + "end": 133.88, + "probability": 0.9806 + }, + { + "start": 133.96, + "end": 136.26, + "probability": 0.9635 + }, + { + "start": 137.12, + "end": 142.46, + "probability": 0.9175 + }, + { + "start": 142.46, + "end": 145.18, + "probability": 0.9915 + }, + { + "start": 145.34, + "end": 147.58, + "probability": 0.6563 + }, + { + "start": 148.18, + "end": 149.25, + "probability": 0.8914 + }, + { + "start": 150.02, + "end": 150.38, + "probability": 0.3734 + }, + { + "start": 150.4, + "end": 151.38, + "probability": 0.8968 + }, + { + "start": 151.5, + "end": 154.82, + "probability": 0.9871 + }, + { + "start": 155.08, + "end": 157.1, + "probability": 0.9741 + }, + { + "start": 158.2, + "end": 159.46, + "probability": 0.8415 + }, + { + "start": 160.14, + "end": 165.04, + "probability": 0.9448 + }, + { + "start": 165.96, + "end": 169.62, + "probability": 0.9717 + }, + { + "start": 170.34, + "end": 173.34, + "probability": 0.998 + }, + { + "start": 173.34, + "end": 175.84, + "probability": 0.9733 + }, + { + "start": 176.46, + "end": 177.08, + "probability": 0.9373 + }, + { + "start": 177.78, + "end": 178.46, + "probability": 0.9217 + }, + { + "start": 179.12, + "end": 181.82, + "probability": 0.9854 + }, + { + "start": 182.42, + "end": 186.02, + "probability": 0.8781 + }, + { + "start": 186.58, + "end": 190.22, + "probability": 0.9966 + }, + { + "start": 190.78, + "end": 193.58, + "probability": 0.7918 + }, + { + "start": 193.82, + "end": 195.22, + "probability": 0.9629 + }, + { + "start": 195.72, + "end": 196.42, + "probability": 0.8841 + }, + { + "start": 197.3, + "end": 201.41, + "probability": 0.8741 + }, + { + "start": 202.74, + "end": 208.56, + "probability": 0.9968 + }, + { + "start": 208.96, + "end": 209.58, + "probability": 0.6406 + }, + { + "start": 209.7, + "end": 211.86, + "probability": 0.8986 + }, + { + "start": 212.3, + "end": 216.58, + "probability": 0.797 + }, + { + "start": 217.2, + "end": 218.78, + "probability": 0.9532 + }, + { + "start": 218.86, + "end": 219.1, + "probability": 0.7661 + }, + { + "start": 219.7, + "end": 220.32, + "probability": 0.5691 + }, + { + "start": 220.36, + "end": 222.4, + "probability": 0.8612 + }, + { + "start": 223.44, + "end": 225.1, + "probability": 0.6733 + }, + { + "start": 228.58, + "end": 232.08, + "probability": 0.828 + }, + { + "start": 233.72, + "end": 239.62, + "probability": 0.8169 + }, + { + "start": 239.62, + "end": 244.76, + "probability": 0.9661 + }, + { + "start": 245.58, + "end": 248.86, + "probability": 0.974 + }, + { + "start": 249.92, + "end": 253.28, + "probability": 0.9883 + }, + { + "start": 254.04, + "end": 257.36, + "probability": 0.7326 + }, + { + "start": 258.04, + "end": 260.34, + "probability": 0.7925 + }, + { + "start": 261.4, + "end": 266.34, + "probability": 0.8766 + }, + { + "start": 266.98, + "end": 268.58, + "probability": 0.8955 + }, + { + "start": 268.74, + "end": 269.0, + "probability": 0.3677 + }, + { + "start": 269.2, + "end": 272.24, + "probability": 0.8206 + }, + { + "start": 273.12, + "end": 276.36, + "probability": 0.9261 + }, + { + "start": 276.52, + "end": 279.46, + "probability": 0.9901 + }, + { + "start": 280.56, + "end": 285.68, + "probability": 0.8285 + }, + { + "start": 286.22, + "end": 291.16, + "probability": 0.7717 + }, + { + "start": 291.82, + "end": 293.92, + "probability": 0.9605 + }, + { + "start": 294.16, + "end": 296.88, + "probability": 0.9572 + }, + { + "start": 297.0, + "end": 299.72, + "probability": 0.988 + }, + { + "start": 299.92, + "end": 300.72, + "probability": 0.9671 + }, + { + "start": 301.16, + "end": 304.04, + "probability": 0.9883 + }, + { + "start": 304.22, + "end": 307.68, + "probability": 0.9941 + }, + { + "start": 308.16, + "end": 310.88, + "probability": 0.9875 + }, + { + "start": 311.44, + "end": 312.3, + "probability": 0.8688 + }, + { + "start": 312.52, + "end": 316.9, + "probability": 0.9945 + }, + { + "start": 316.9, + "end": 319.3, + "probability": 0.864 + }, + { + "start": 319.5, + "end": 319.7, + "probability": 0.3717 + }, + { + "start": 319.94, + "end": 321.94, + "probability": 0.9707 + }, + { + "start": 322.32, + "end": 323.18, + "probability": 0.8058 + }, + { + "start": 324.06, + "end": 324.72, + "probability": 0.6311 + }, + { + "start": 325.42, + "end": 327.66, + "probability": 0.9868 + }, + { + "start": 329.46, + "end": 331.36, + "probability": 0.5497 + }, + { + "start": 331.48, + "end": 331.88, + "probability": 0.4705 + }, + { + "start": 331.88, + "end": 334.94, + "probability": 0.9744 + }, + { + "start": 335.48, + "end": 338.04, + "probability": 0.9854 + }, + { + "start": 339.3, + "end": 343.58, + "probability": 0.9946 + }, + { + "start": 344.54, + "end": 345.7, + "probability": 0.9521 + }, + { + "start": 346.12, + "end": 350.44, + "probability": 0.9971 + }, + { + "start": 351.62, + "end": 354.88, + "probability": 0.9967 + }, + { + "start": 354.97, + "end": 358.32, + "probability": 0.9922 + }, + { + "start": 359.16, + "end": 360.38, + "probability": 0.6001 + }, + { + "start": 360.62, + "end": 362.66, + "probability": 0.9978 + }, + { + "start": 363.58, + "end": 366.76, + "probability": 0.9887 + }, + { + "start": 367.54, + "end": 370.28, + "probability": 0.9883 + }, + { + "start": 372.2, + "end": 374.68, + "probability": 0.999 + }, + { + "start": 374.78, + "end": 377.08, + "probability": 0.8887 + }, + { + "start": 377.16, + "end": 378.18, + "probability": 0.9268 + }, + { + "start": 378.54, + "end": 381.59, + "probability": 0.9673 + }, + { + "start": 383.12, + "end": 384.02, + "probability": 0.7569 + }, + { + "start": 384.06, + "end": 385.26, + "probability": 0.7175 + }, + { + "start": 385.52, + "end": 387.14, + "probability": 0.6958 + }, + { + "start": 387.64, + "end": 390.84, + "probability": 0.9764 + }, + { + "start": 391.02, + "end": 391.66, + "probability": 0.8626 + }, + { + "start": 392.3, + "end": 394.72, + "probability": 0.9512 + }, + { + "start": 396.14, + "end": 399.14, + "probability": 0.8522 + }, + { + "start": 399.74, + "end": 400.76, + "probability": 0.9696 + }, + { + "start": 401.32, + "end": 402.76, + "probability": 0.7287 + }, + { + "start": 402.78, + "end": 403.16, + "probability": 0.7862 + }, + { + "start": 403.7, + "end": 406.02, + "probability": 0.7726 + }, + { + "start": 406.54, + "end": 408.25, + "probability": 0.8263 + }, + { + "start": 409.28, + "end": 409.62, + "probability": 0.5985 + }, + { + "start": 409.64, + "end": 410.57, + "probability": 0.6993 + }, + { + "start": 410.74, + "end": 411.26, + "probability": 0.481 + }, + { + "start": 411.28, + "end": 412.78, + "probability": 0.8575 + }, + { + "start": 414.54, + "end": 416.58, + "probability": 0.6475 + }, + { + "start": 417.34, + "end": 420.4, + "probability": 0.9606 + }, + { + "start": 421.0, + "end": 421.84, + "probability": 0.7672 + }, + { + "start": 422.84, + "end": 427.84, + "probability": 0.8623 + }, + { + "start": 428.24, + "end": 431.4, + "probability": 0.97 + }, + { + "start": 432.34, + "end": 433.74, + "probability": 0.6811 + }, + { + "start": 434.92, + "end": 436.43, + "probability": 0.6478 + }, + { + "start": 437.2, + "end": 441.64, + "probability": 0.9473 + }, + { + "start": 442.94, + "end": 444.68, + "probability": 0.9907 + }, + { + "start": 445.54, + "end": 449.4, + "probability": 0.9419 + }, + { + "start": 450.68, + "end": 454.64, + "probability": 0.8928 + }, + { + "start": 455.18, + "end": 457.82, + "probability": 0.9673 + }, + { + "start": 457.86, + "end": 458.7, + "probability": 0.7489 + }, + { + "start": 458.84, + "end": 463.04, + "probability": 0.9956 + }, + { + "start": 463.78, + "end": 464.2, + "probability": 0.5181 + }, + { + "start": 464.36, + "end": 464.7, + "probability": 0.8809 + }, + { + "start": 464.74, + "end": 467.96, + "probability": 0.9779 + }, + { + "start": 467.96, + "end": 471.22, + "probability": 0.9885 + }, + { + "start": 471.78, + "end": 475.18, + "probability": 0.7594 + }, + { + "start": 476.5, + "end": 478.16, + "probability": 0.9788 + }, + { + "start": 478.56, + "end": 479.92, + "probability": 0.8747 + }, + { + "start": 480.02, + "end": 480.96, + "probability": 0.9149 + }, + { + "start": 481.14, + "end": 483.22, + "probability": 0.5391 + }, + { + "start": 483.82, + "end": 484.6, + "probability": 0.6339 + }, + { + "start": 484.88, + "end": 489.06, + "probability": 0.9932 + }, + { + "start": 489.22, + "end": 492.6, + "probability": 0.9845 + }, + { + "start": 493.28, + "end": 494.72, + "probability": 0.9768 + }, + { + "start": 494.88, + "end": 496.12, + "probability": 0.9244 + }, + { + "start": 496.16, + "end": 497.42, + "probability": 0.9204 + }, + { + "start": 497.44, + "end": 497.82, + "probability": 0.8646 + }, + { + "start": 498.68, + "end": 500.58, + "probability": 0.8276 + }, + { + "start": 501.1, + "end": 501.6, + "probability": 0.023 + }, + { + "start": 501.96, + "end": 504.4, + "probability": 0.9858 + }, + { + "start": 504.42, + "end": 507.94, + "probability": 0.9884 + }, + { + "start": 508.1, + "end": 508.8, + "probability": 0.782 + }, + { + "start": 509.4, + "end": 510.66, + "probability": 0.7037 + }, + { + "start": 510.76, + "end": 512.1, + "probability": 0.6182 + }, + { + "start": 512.38, + "end": 512.92, + "probability": 0.7912 + }, + { + "start": 513.14, + "end": 514.48, + "probability": 0.7771 + }, + { + "start": 515.0, + "end": 518.66, + "probability": 0.9983 + }, + { + "start": 518.66, + "end": 521.8, + "probability": 0.9925 + }, + { + "start": 522.16, + "end": 523.32, + "probability": 0.8928 + }, + { + "start": 523.6, + "end": 525.28, + "probability": 0.9333 + }, + { + "start": 525.56, + "end": 526.24, + "probability": 0.7276 + }, + { + "start": 526.66, + "end": 531.7, + "probability": 0.6342 + }, + { + "start": 532.06, + "end": 534.64, + "probability": 0.8153 + }, + { + "start": 535.22, + "end": 536.88, + "probability": 0.9242 + }, + { + "start": 538.98, + "end": 541.4, + "probability": 0.9808 + }, + { + "start": 542.36, + "end": 545.26, + "probability": 0.7149 + }, + { + "start": 546.02, + "end": 550.94, + "probability": 0.9875 + }, + { + "start": 551.96, + "end": 555.98, + "probability": 0.6036 + }, + { + "start": 557.06, + "end": 562.56, + "probability": 0.7778 + }, + { + "start": 562.7, + "end": 563.02, + "probability": 0.8369 + }, + { + "start": 564.64, + "end": 565.2, + "probability": 0.7573 + }, + { + "start": 565.32, + "end": 566.36, + "probability": 0.904 + }, + { + "start": 566.36, + "end": 571.9, + "probability": 0.9756 + }, + { + "start": 571.9, + "end": 576.42, + "probability": 0.886 + }, + { + "start": 577.24, + "end": 581.58, + "probability": 0.4589 + }, + { + "start": 582.7, + "end": 587.04, + "probability": 0.8074 + }, + { + "start": 587.92, + "end": 591.44, + "probability": 0.9291 + }, + { + "start": 592.04, + "end": 592.76, + "probability": 0.7059 + }, + { + "start": 592.84, + "end": 595.02, + "probability": 0.9858 + }, + { + "start": 595.32, + "end": 596.6, + "probability": 0.8959 + }, + { + "start": 597.74, + "end": 601.9, + "probability": 0.9822 + }, + { + "start": 602.62, + "end": 607.3, + "probability": 0.9932 + }, + { + "start": 608.26, + "end": 609.54, + "probability": 0.746 + }, + { + "start": 609.78, + "end": 611.02, + "probability": 0.9924 + }, + { + "start": 612.12, + "end": 614.3, + "probability": 0.9816 + }, + { + "start": 614.96, + "end": 617.94, + "probability": 0.9439 + }, + { + "start": 618.4, + "end": 620.98, + "probability": 0.9767 + }, + { + "start": 621.16, + "end": 622.12, + "probability": 0.7284 + }, + { + "start": 623.0, + "end": 624.0, + "probability": 0.9364 + }, + { + "start": 624.34, + "end": 625.76, + "probability": 0.6248 + }, + { + "start": 625.94, + "end": 627.26, + "probability": 0.8327 + }, + { + "start": 627.9, + "end": 629.74, + "probability": 0.765 + }, + { + "start": 632.22, + "end": 633.28, + "probability": 0.7524 + }, + { + "start": 634.38, + "end": 638.58, + "probability": 0.9407 + }, + { + "start": 639.58, + "end": 643.82, + "probability": 0.9006 + }, + { + "start": 644.78, + "end": 646.22, + "probability": 0.9482 + }, + { + "start": 646.86, + "end": 651.42, + "probability": 0.972 + }, + { + "start": 652.02, + "end": 657.82, + "probability": 0.9498 + }, + { + "start": 658.7, + "end": 662.52, + "probability": 0.9694 + }, + { + "start": 662.52, + "end": 666.42, + "probability": 0.9097 + }, + { + "start": 667.1, + "end": 667.94, + "probability": 0.4443 + }, + { + "start": 668.58, + "end": 672.0, + "probability": 0.7851 + }, + { + "start": 672.0, + "end": 676.0, + "probability": 0.9193 + }, + { + "start": 676.62, + "end": 684.32, + "probability": 0.8321 + }, + { + "start": 684.38, + "end": 685.28, + "probability": 0.8987 + }, + { + "start": 685.62, + "end": 687.98, + "probability": 0.7976 + }, + { + "start": 688.76, + "end": 695.06, + "probability": 0.9319 + }, + { + "start": 695.1, + "end": 695.96, + "probability": 0.8812 + }, + { + "start": 696.34, + "end": 698.2, + "probability": 0.9774 + }, + { + "start": 698.9, + "end": 703.66, + "probability": 0.9943 + }, + { + "start": 703.66, + "end": 708.42, + "probability": 0.7083 + }, + { + "start": 708.82, + "end": 710.0, + "probability": 0.6985 + }, + { + "start": 710.58, + "end": 713.92, + "probability": 0.9727 + }, + { + "start": 714.36, + "end": 720.02, + "probability": 0.9326 + }, + { + "start": 720.3, + "end": 720.6, + "probability": 0.2785 + }, + { + "start": 721.66, + "end": 725.38, + "probability": 0.9695 + }, + { + "start": 725.64, + "end": 727.2, + "probability": 0.8656 + }, + { + "start": 728.14, + "end": 730.84, + "probability": 0.9305 + }, + { + "start": 731.24, + "end": 735.56, + "probability": 0.9397 + }, + { + "start": 735.68, + "end": 736.24, + "probability": 0.5292 + }, + { + "start": 736.9, + "end": 740.26, + "probability": 0.9822 + }, + { + "start": 740.26, + "end": 743.4, + "probability": 0.9772 + }, + { + "start": 743.94, + "end": 746.74, + "probability": 0.8009 + }, + { + "start": 746.98, + "end": 750.68, + "probability": 0.9299 + }, + { + "start": 750.9, + "end": 752.54, + "probability": 0.894 + }, + { + "start": 752.62, + "end": 752.84, + "probability": 0.8361 + }, + { + "start": 753.22, + "end": 753.84, + "probability": 0.5087 + }, + { + "start": 753.92, + "end": 756.78, + "probability": 0.8184 + }, + { + "start": 756.96, + "end": 759.56, + "probability": 0.901 + }, + { + "start": 760.18, + "end": 762.32, + "probability": 0.9163 + }, + { + "start": 763.42, + "end": 764.7, + "probability": 0.5962 + }, + { + "start": 764.8, + "end": 771.16, + "probability": 0.9839 + }, + { + "start": 773.66, + "end": 774.5, + "probability": 0.8195 + }, + { + "start": 775.68, + "end": 780.22, + "probability": 0.6843 + }, + { + "start": 780.98, + "end": 781.9, + "probability": 0.3402 + }, + { + "start": 782.96, + "end": 785.88, + "probability": 0.9045 + }, + { + "start": 785.94, + "end": 787.74, + "probability": 0.752 + }, + { + "start": 788.94, + "end": 791.68, + "probability": 0.9819 + }, + { + "start": 793.28, + "end": 794.4, + "probability": 0.9042 + }, + { + "start": 795.26, + "end": 796.84, + "probability": 0.8244 + }, + { + "start": 796.92, + "end": 797.66, + "probability": 0.8225 + }, + { + "start": 798.54, + "end": 799.38, + "probability": 0.8799 + }, + { + "start": 800.28, + "end": 804.74, + "probability": 0.988 + }, + { + "start": 805.64, + "end": 806.22, + "probability": 0.6671 + }, + { + "start": 806.34, + "end": 811.12, + "probability": 0.8952 + }, + { + "start": 812.02, + "end": 813.16, + "probability": 0.8689 + }, + { + "start": 814.18, + "end": 815.46, + "probability": 0.9486 + }, + { + "start": 815.58, + "end": 816.88, + "probability": 0.929 + }, + { + "start": 817.08, + "end": 822.32, + "probability": 0.9738 + }, + { + "start": 822.46, + "end": 824.66, + "probability": 0.6341 + }, + { + "start": 825.44, + "end": 827.72, + "probability": 0.7222 + }, + { + "start": 828.64, + "end": 832.68, + "probability": 0.9221 + }, + { + "start": 833.32, + "end": 835.12, + "probability": 0.985 + }, + { + "start": 835.26, + "end": 836.6, + "probability": 0.9225 + }, + { + "start": 837.48, + "end": 841.0, + "probability": 0.8922 + }, + { + "start": 841.0, + "end": 844.68, + "probability": 0.9575 + }, + { + "start": 845.2, + "end": 846.44, + "probability": 0.9587 + }, + { + "start": 846.5, + "end": 848.24, + "probability": 0.9498 + }, + { + "start": 848.26, + "end": 848.74, + "probability": 0.6554 + }, + { + "start": 848.8, + "end": 850.88, + "probability": 0.8601 + }, + { + "start": 851.32, + "end": 853.1, + "probability": 0.8332 + }, + { + "start": 853.54, + "end": 854.46, + "probability": 0.5193 + }, + { + "start": 854.96, + "end": 857.52, + "probability": 0.9001 + }, + { + "start": 864.1, + "end": 864.58, + "probability": 0.6896 + }, + { + "start": 865.06, + "end": 871.9, + "probability": 0.8927 + }, + { + "start": 872.66, + "end": 874.16, + "probability": 0.9335 + }, + { + "start": 874.7, + "end": 875.88, + "probability": 0.9817 + }, + { + "start": 883.02, + "end": 886.32, + "probability": 0.9896 + }, + { + "start": 886.32, + "end": 889.5, + "probability": 0.9919 + }, + { + "start": 890.46, + "end": 894.06, + "probability": 0.9884 + }, + { + "start": 894.06, + "end": 896.82, + "probability": 0.9968 + }, + { + "start": 897.02, + "end": 898.76, + "probability": 0.658 + }, + { + "start": 898.9, + "end": 899.32, + "probability": 0.8431 + }, + { + "start": 900.0, + "end": 904.84, + "probability": 0.962 + }, + { + "start": 905.36, + "end": 907.94, + "probability": 0.9039 + }, + { + "start": 908.02, + "end": 911.0, + "probability": 0.6738 + }, + { + "start": 911.8, + "end": 912.42, + "probability": 0.9821 + }, + { + "start": 913.04, + "end": 914.7, + "probability": 0.9928 + }, + { + "start": 915.28, + "end": 921.74, + "probability": 0.922 + }, + { + "start": 921.82, + "end": 923.26, + "probability": 0.9957 + }, + { + "start": 923.44, + "end": 925.28, + "probability": 0.8195 + }, + { + "start": 925.42, + "end": 926.5, + "probability": 0.8386 + }, + { + "start": 926.94, + "end": 928.65, + "probability": 0.9946 + }, + { + "start": 929.1, + "end": 931.9, + "probability": 0.0281 + }, + { + "start": 931.9, + "end": 934.3, + "probability": 0.8836 + }, + { + "start": 934.78, + "end": 938.62, + "probability": 0.9909 + }, + { + "start": 939.28, + "end": 939.34, + "probability": 0.0645 + }, + { + "start": 939.34, + "end": 939.34, + "probability": 0.5926 + }, + { + "start": 939.34, + "end": 940.53, + "probability": 0.721 + }, + { + "start": 941.16, + "end": 942.72, + "probability": 0.8867 + }, + { + "start": 942.86, + "end": 946.18, + "probability": 0.747 + }, + { + "start": 946.62, + "end": 949.5, + "probability": 0.8897 + }, + { + "start": 950.06, + "end": 953.52, + "probability": 0.6791 + }, + { + "start": 954.16, + "end": 955.2, + "probability": 0.9629 + }, + { + "start": 956.0, + "end": 959.82, + "probability": 0.9895 + }, + { + "start": 960.36, + "end": 964.2, + "probability": 0.9067 + }, + { + "start": 966.14, + "end": 968.8, + "probability": 0.8332 + }, + { + "start": 968.9, + "end": 970.9, + "probability": 0.989 + }, + { + "start": 971.18, + "end": 973.78, + "probability": 0.0018 + }, + { + "start": 973.86, + "end": 976.32, + "probability": 0.9861 + }, + { + "start": 978.14, + "end": 980.88, + "probability": 0.7717 + }, + { + "start": 981.44, + "end": 983.1, + "probability": 0.8736 + }, + { + "start": 984.14, + "end": 989.51, + "probability": 0.979 + }, + { + "start": 990.4, + "end": 991.48, + "probability": 0.9865 + }, + { + "start": 992.86, + "end": 993.26, + "probability": 0.8487 + }, + { + "start": 994.06, + "end": 995.56, + "probability": 0.7708 + }, + { + "start": 996.8, + "end": 999.44, + "probability": 0.6852 + }, + { + "start": 1001.02, + "end": 1005.84, + "probability": 0.9232 + }, + { + "start": 1006.18, + "end": 1006.82, + "probability": 0.5649 + }, + { + "start": 1006.9, + "end": 1007.78, + "probability": 0.654 + }, + { + "start": 1007.8, + "end": 1008.9, + "probability": 0.8678 + }, + { + "start": 1009.06, + "end": 1009.88, + "probability": 0.6766 + }, + { + "start": 1010.46, + "end": 1014.98, + "probability": 0.8339 + }, + { + "start": 1015.1, + "end": 1016.68, + "probability": 0.978 + }, + { + "start": 1018.4, + "end": 1020.74, + "probability": 0.912 + }, + { + "start": 1020.88, + "end": 1022.26, + "probability": 0.9309 + }, + { + "start": 1022.42, + "end": 1025.56, + "probability": 0.8994 + }, + { + "start": 1025.76, + "end": 1030.14, + "probability": 0.8537 + }, + { + "start": 1030.52, + "end": 1032.04, + "probability": 0.7022 + }, + { + "start": 1032.48, + "end": 1033.44, + "probability": 0.4757 + }, + { + "start": 1033.94, + "end": 1034.66, + "probability": 0.8052 + }, + { + "start": 1034.76, + "end": 1035.63, + "probability": 0.9634 + }, + { + "start": 1036.5, + "end": 1037.52, + "probability": 0.7292 + }, + { + "start": 1038.12, + "end": 1040.0, + "probability": 0.8402 + }, + { + "start": 1040.54, + "end": 1041.36, + "probability": 0.6783 + }, + { + "start": 1041.44, + "end": 1043.7, + "probability": 0.9062 + }, + { + "start": 1044.38, + "end": 1046.44, + "probability": 0.9494 + }, + { + "start": 1046.44, + "end": 1050.08, + "probability": 0.8191 + }, + { + "start": 1050.48, + "end": 1051.4, + "probability": 0.5212 + }, + { + "start": 1051.48, + "end": 1052.44, + "probability": 0.6505 + }, + { + "start": 1052.88, + "end": 1054.69, + "probability": 0.978 + }, + { + "start": 1055.16, + "end": 1056.36, + "probability": 0.8764 + }, + { + "start": 1056.8, + "end": 1057.14, + "probability": 0.9058 + }, + { + "start": 1057.28, + "end": 1060.0, + "probability": 0.9911 + }, + { + "start": 1060.56, + "end": 1061.42, + "probability": 0.9317 + }, + { + "start": 1061.5, + "end": 1062.46, + "probability": 0.9389 + }, + { + "start": 1062.68, + "end": 1063.0, + "probability": 0.7635 + }, + { + "start": 1063.36, + "end": 1064.0, + "probability": 0.8838 + }, + { + "start": 1064.08, + "end": 1064.68, + "probability": 0.5519 + }, + { + "start": 1065.14, + "end": 1068.92, + "probability": 0.9731 + }, + { + "start": 1069.36, + "end": 1070.88, + "probability": 0.9846 + }, + { + "start": 1071.08, + "end": 1073.42, + "probability": 0.9512 + }, + { + "start": 1073.96, + "end": 1077.06, + "probability": 0.9909 + }, + { + "start": 1077.12, + "end": 1078.06, + "probability": 0.8775 + }, + { + "start": 1078.14, + "end": 1079.78, + "probability": 0.9292 + }, + { + "start": 1080.3, + "end": 1083.12, + "probability": 0.9951 + }, + { + "start": 1083.12, + "end": 1086.16, + "probability": 0.9948 + }, + { + "start": 1086.6, + "end": 1088.2, + "probability": 0.9919 + }, + { + "start": 1088.74, + "end": 1092.22, + "probability": 0.854 + }, + { + "start": 1092.68, + "end": 1094.36, + "probability": 0.9863 + }, + { + "start": 1094.68, + "end": 1095.38, + "probability": 0.1684 + }, + { + "start": 1095.56, + "end": 1097.94, + "probability": 0.9539 + }, + { + "start": 1098.16, + "end": 1099.1, + "probability": 0.9811 + }, + { + "start": 1099.18, + "end": 1100.18, + "probability": 0.8276 + }, + { + "start": 1100.22, + "end": 1100.56, + "probability": 0.7676 + }, + { + "start": 1100.66, + "end": 1101.0, + "probability": 0.6344 + }, + { + "start": 1101.02, + "end": 1101.34, + "probability": 0.5276 + }, + { + "start": 1101.4, + "end": 1105.96, + "probability": 0.9254 + }, + { + "start": 1106.38, + "end": 1109.18, + "probability": 0.9249 + }, + { + "start": 1109.2, + "end": 1110.5, + "probability": 0.697 + }, + { + "start": 1111.0, + "end": 1111.71, + "probability": 0.9111 + }, + { + "start": 1112.02, + "end": 1112.64, + "probability": 0.9519 + }, + { + "start": 1113.4, + "end": 1114.82, + "probability": 0.495 + }, + { + "start": 1116.88, + "end": 1117.49, + "probability": 0.6501 + }, + { + "start": 1118.34, + "end": 1121.0, + "probability": 0.7868 + }, + { + "start": 1121.1, + "end": 1122.91, + "probability": 0.8442 + }, + { + "start": 1123.36, + "end": 1124.58, + "probability": 0.7909 + }, + { + "start": 1125.58, + "end": 1126.7, + "probability": 0.7285 + }, + { + "start": 1127.0, + "end": 1129.48, + "probability": 0.5721 + }, + { + "start": 1134.52, + "end": 1137.4, + "probability": 0.5035 + }, + { + "start": 1138.18, + "end": 1139.16, + "probability": 0.9837 + }, + { + "start": 1139.8, + "end": 1140.12, + "probability": 0.4727 + }, + { + "start": 1142.58, + "end": 1145.8, + "probability": 0.8333 + }, + { + "start": 1146.2, + "end": 1146.7, + "probability": 0.8007 + }, + { + "start": 1147.34, + "end": 1149.28, + "probability": 0.5642 + }, + { + "start": 1150.1, + "end": 1151.22, + "probability": 0.8676 + }, + { + "start": 1151.86, + "end": 1152.44, + "probability": 0.6793 + }, + { + "start": 1153.74, + "end": 1155.58, + "probability": 0.9128 + }, + { + "start": 1156.64, + "end": 1158.04, + "probability": 0.9282 + }, + { + "start": 1159.42, + "end": 1161.12, + "probability": 0.591 + }, + { + "start": 1162.2, + "end": 1163.93, + "probability": 0.9874 + }, + { + "start": 1164.72, + "end": 1166.3, + "probability": 0.7365 + }, + { + "start": 1167.14, + "end": 1171.98, + "probability": 0.5781 + }, + { + "start": 1173.66, + "end": 1174.44, + "probability": 0.5671 + }, + { + "start": 1175.5, + "end": 1176.42, + "probability": 0.8672 + }, + { + "start": 1176.44, + "end": 1178.78, + "probability": 0.9944 + }, + { + "start": 1179.62, + "end": 1180.88, + "probability": 0.9478 + }, + { + "start": 1181.0, + "end": 1185.28, + "probability": 0.9642 + }, + { + "start": 1185.94, + "end": 1192.14, + "probability": 0.8285 + }, + { + "start": 1192.66, + "end": 1192.88, + "probability": 0.7841 + }, + { + "start": 1193.32, + "end": 1193.9, + "probability": 0.7339 + }, + { + "start": 1194.1, + "end": 1195.3, + "probability": 0.8745 + }, + { + "start": 1202.28, + "end": 1202.9, + "probability": 0.0374 + }, + { + "start": 1204.68, + "end": 1207.04, + "probability": 0.5218 + }, + { + "start": 1208.04, + "end": 1208.74, + "probability": 0.6721 + }, + { + "start": 1208.88, + "end": 1210.02, + "probability": 0.8496 + }, + { + "start": 1210.06, + "end": 1217.06, + "probability": 0.8532 + }, + { + "start": 1218.04, + "end": 1222.16, + "probability": 0.7861 + }, + { + "start": 1222.96, + "end": 1226.06, + "probability": 0.853 + }, + { + "start": 1227.22, + "end": 1229.32, + "probability": 0.7974 + }, + { + "start": 1229.96, + "end": 1231.5, + "probability": 0.9434 + }, + { + "start": 1232.02, + "end": 1234.01, + "probability": 0.7231 + }, + { + "start": 1234.92, + "end": 1235.5, + "probability": 0.6137 + }, + { + "start": 1235.56, + "end": 1239.98, + "probability": 0.925 + }, + { + "start": 1240.68, + "end": 1243.46, + "probability": 0.9912 + }, + { + "start": 1244.1, + "end": 1246.18, + "probability": 0.981 + }, + { + "start": 1246.86, + "end": 1249.32, + "probability": 0.4899 + }, + { + "start": 1249.38, + "end": 1253.62, + "probability": 0.9653 + }, + { + "start": 1254.2, + "end": 1257.04, + "probability": 0.931 + }, + { + "start": 1258.74, + "end": 1261.62, + "probability": 0.8568 + }, + { + "start": 1262.96, + "end": 1269.56, + "probability": 0.9665 + }, + { + "start": 1270.18, + "end": 1270.92, + "probability": 0.5272 + }, + { + "start": 1271.08, + "end": 1278.3, + "probability": 0.7675 + }, + { + "start": 1279.02, + "end": 1280.72, + "probability": 0.7033 + }, + { + "start": 1281.42, + "end": 1282.64, + "probability": 0.899 + }, + { + "start": 1283.22, + "end": 1287.56, + "probability": 0.9181 + }, + { + "start": 1288.2, + "end": 1288.42, + "probability": 0.6078 + }, + { + "start": 1288.96, + "end": 1290.36, + "probability": 0.5392 + }, + { + "start": 1290.7, + "end": 1292.2, + "probability": 0.5369 + }, + { + "start": 1292.28, + "end": 1294.24, + "probability": 0.9868 + }, + { + "start": 1294.74, + "end": 1295.1, + "probability": 0.7929 + }, + { + "start": 1296.04, + "end": 1297.06, + "probability": 0.7777 + }, + { + "start": 1297.24, + "end": 1303.88, + "probability": 0.6575 + }, + { + "start": 1304.58, + "end": 1306.92, + "probability": 0.8829 + }, + { + "start": 1307.0, + "end": 1308.78, + "probability": 0.8762 + }, + { + "start": 1309.2, + "end": 1317.86, + "probability": 0.9563 + }, + { + "start": 1318.3, + "end": 1323.36, + "probability": 0.9343 + }, + { + "start": 1323.94, + "end": 1325.08, + "probability": 0.6842 + }, + { + "start": 1325.82, + "end": 1326.5, + "probability": 0.652 + }, + { + "start": 1326.6, + "end": 1326.6, + "probability": 0.5993 + }, + { + "start": 1326.6, + "end": 1327.16, + "probability": 0.5745 + }, + { + "start": 1328.0, + "end": 1328.58, + "probability": 0.3839 + }, + { + "start": 1330.6, + "end": 1331.9, + "probability": 0.3385 + }, + { + "start": 1332.22, + "end": 1333.6, + "probability": 0.1476 + }, + { + "start": 1333.6, + "end": 1334.24, + "probability": 0.0259 + }, + { + "start": 1335.28, + "end": 1335.94, + "probability": 0.1728 + }, + { + "start": 1337.7, + "end": 1338.3, + "probability": 0.6945 + }, + { + "start": 1338.46, + "end": 1339.78, + "probability": 0.5724 + }, + { + "start": 1341.28, + "end": 1341.94, + "probability": 0.9045 + }, + { + "start": 1342.1, + "end": 1342.96, + "probability": 0.8202 + }, + { + "start": 1343.08, + "end": 1346.08, + "probability": 0.997 + }, + { + "start": 1346.98, + "end": 1349.68, + "probability": 0.9897 + }, + { + "start": 1350.06, + "end": 1352.0, + "probability": 0.6802 + }, + { + "start": 1352.08, + "end": 1353.22, + "probability": 0.7917 + }, + { + "start": 1353.4, + "end": 1356.4, + "probability": 0.7649 + }, + { + "start": 1356.5, + "end": 1356.78, + "probability": 0.4502 + }, + { + "start": 1356.82, + "end": 1357.74, + "probability": 0.5899 + }, + { + "start": 1358.24, + "end": 1359.06, + "probability": 0.8821 + }, + { + "start": 1359.16, + "end": 1360.1, + "probability": 0.8496 + }, + { + "start": 1360.12, + "end": 1363.41, + "probability": 0.9543 + }, + { + "start": 1363.78, + "end": 1366.36, + "probability": 0.9917 + }, + { + "start": 1366.44, + "end": 1368.6, + "probability": 0.8646 + }, + { + "start": 1369.1, + "end": 1372.56, + "probability": 0.9979 + }, + { + "start": 1372.56, + "end": 1377.0, + "probability": 0.9944 + }, + { + "start": 1378.22, + "end": 1378.72, + "probability": 0.6487 + }, + { + "start": 1378.88, + "end": 1382.38, + "probability": 0.8288 + }, + { + "start": 1382.5, + "end": 1384.88, + "probability": 0.9738 + }, + { + "start": 1385.2, + "end": 1386.56, + "probability": 0.8494 + }, + { + "start": 1387.16, + "end": 1387.7, + "probability": 0.7513 + }, + { + "start": 1388.58, + "end": 1391.26, + "probability": 0.4999 + }, + { + "start": 1392.66, + "end": 1394.14, + "probability": 0.5481 + }, + { + "start": 1394.42, + "end": 1395.72, + "probability": 0.8944 + }, + { + "start": 1396.34, + "end": 1398.46, + "probability": 0.5884 + }, + { + "start": 1400.02, + "end": 1400.9, + "probability": 0.6873 + }, + { + "start": 1401.08, + "end": 1403.72, + "probability": 0.765 + }, + { + "start": 1404.46, + "end": 1409.04, + "probability": 0.9476 + }, + { + "start": 1409.52, + "end": 1412.92, + "probability": 0.9868 + }, + { + "start": 1413.14, + "end": 1418.64, + "probability": 0.8851 + }, + { + "start": 1418.74, + "end": 1423.72, + "probability": 0.8977 + }, + { + "start": 1424.28, + "end": 1426.18, + "probability": 0.8841 + }, + { + "start": 1426.82, + "end": 1430.26, + "probability": 0.9854 + }, + { + "start": 1431.34, + "end": 1433.92, + "probability": 0.9476 + }, + { + "start": 1433.96, + "end": 1440.65, + "probability": 0.8745 + }, + { + "start": 1441.3, + "end": 1446.34, + "probability": 0.759 + }, + { + "start": 1446.4, + "end": 1447.84, + "probability": 0.9779 + }, + { + "start": 1448.08, + "end": 1448.64, + "probability": 0.9188 + }, + { + "start": 1448.98, + "end": 1449.86, + "probability": 0.92 + }, + { + "start": 1450.42, + "end": 1453.46, + "probability": 0.8833 + }, + { + "start": 1454.04, + "end": 1457.68, + "probability": 0.9935 + }, + { + "start": 1457.68, + "end": 1460.7, + "probability": 0.9863 + }, + { + "start": 1460.82, + "end": 1461.38, + "probability": 0.506 + }, + { + "start": 1461.78, + "end": 1463.62, + "probability": 0.9961 + }, + { + "start": 1464.88, + "end": 1465.16, + "probability": 0.4152 + }, + { + "start": 1465.18, + "end": 1465.98, + "probability": 0.9806 + }, + { + "start": 1466.04, + "end": 1469.24, + "probability": 0.9945 + }, + { + "start": 1470.2, + "end": 1474.64, + "probability": 0.9722 + }, + { + "start": 1474.76, + "end": 1476.0, + "probability": 0.9191 + }, + { + "start": 1476.58, + "end": 1479.82, + "probability": 0.9912 + }, + { + "start": 1479.86, + "end": 1484.28, + "probability": 0.9748 + }, + { + "start": 1484.92, + "end": 1486.46, + "probability": 0.9847 + }, + { + "start": 1486.96, + "end": 1487.4, + "probability": 0.7619 + }, + { + "start": 1487.5, + "end": 1489.44, + "probability": 0.5705 + }, + { + "start": 1489.86, + "end": 1492.6, + "probability": 0.7529 + }, + { + "start": 1493.22, + "end": 1494.44, + "probability": 0.3537 + }, + { + "start": 1495.58, + "end": 1497.14, + "probability": 0.9895 + }, + { + "start": 1497.6, + "end": 1498.26, + "probability": 0.7854 + }, + { + "start": 1498.32, + "end": 1498.76, + "probability": 0.5927 + }, + { + "start": 1499.02, + "end": 1500.18, + "probability": 0.3437 + }, + { + "start": 1501.86, + "end": 1503.1, + "probability": 0.7018 + }, + { + "start": 1503.18, + "end": 1504.5, + "probability": 0.9626 + }, + { + "start": 1504.64, + "end": 1510.0, + "probability": 0.9864 + }, + { + "start": 1510.0, + "end": 1514.38, + "probability": 0.9992 + }, + { + "start": 1515.28, + "end": 1519.14, + "probability": 0.9596 + }, + { + "start": 1521.12, + "end": 1523.42, + "probability": 0.9895 + }, + { + "start": 1523.72, + "end": 1529.42, + "probability": 0.9918 + }, + { + "start": 1530.0, + "end": 1532.56, + "probability": 0.5084 + }, + { + "start": 1533.32, + "end": 1534.58, + "probability": 0.7757 + }, + { + "start": 1537.1, + "end": 1542.44, + "probability": 0.8112 + }, + { + "start": 1543.22, + "end": 1546.06, + "probability": 0.8518 + }, + { + "start": 1546.34, + "end": 1547.42, + "probability": 0.7582 + }, + { + "start": 1547.64, + "end": 1549.0, + "probability": 0.8739 + }, + { + "start": 1549.86, + "end": 1556.14, + "probability": 0.9956 + }, + { + "start": 1556.34, + "end": 1557.22, + "probability": 0.8096 + }, + { + "start": 1558.42, + "end": 1563.94, + "probability": 0.9186 + }, + { + "start": 1565.16, + "end": 1567.89, + "probability": 0.9478 + }, + { + "start": 1570.98, + "end": 1571.1, + "probability": 0.5036 + }, + { + "start": 1571.54, + "end": 1574.02, + "probability": 0.9268 + }, + { + "start": 1574.44, + "end": 1575.22, + "probability": 0.8165 + }, + { + "start": 1576.46, + "end": 1577.24, + "probability": 0.9701 + }, + { + "start": 1577.42, + "end": 1580.18, + "probability": 0.9016 + }, + { + "start": 1580.28, + "end": 1580.76, + "probability": 0.9147 + }, + { + "start": 1580.98, + "end": 1582.26, + "probability": 0.8991 + }, + { + "start": 1583.22, + "end": 1588.0, + "probability": 0.1881 + }, + { + "start": 1588.3, + "end": 1588.3, + "probability": 0.0453 + }, + { + "start": 1588.3, + "end": 1588.3, + "probability": 0.0806 + }, + { + "start": 1588.3, + "end": 1588.3, + "probability": 0.1471 + }, + { + "start": 1588.3, + "end": 1588.62, + "probability": 0.0287 + }, + { + "start": 1589.38, + "end": 1590.32, + "probability": 0.154 + }, + { + "start": 1590.94, + "end": 1591.44, + "probability": 0.2202 + }, + { + "start": 1591.44, + "end": 1592.73, + "probability": 0.3864 + }, + { + "start": 1593.26, + "end": 1594.04, + "probability": 0.2704 + }, + { + "start": 1594.4, + "end": 1594.4, + "probability": 0.0682 + }, + { + "start": 1594.4, + "end": 1595.0, + "probability": 0.5331 + }, + { + "start": 1596.48, + "end": 1597.64, + "probability": 0.459 + }, + { + "start": 1597.86, + "end": 1599.74, + "probability": 0.7826 + }, + { + "start": 1600.2, + "end": 1604.14, + "probability": 0.9613 + }, + { + "start": 1606.71, + "end": 1608.44, + "probability": 0.8949 + }, + { + "start": 1608.5, + "end": 1608.88, + "probability": 0.7161 + }, + { + "start": 1608.96, + "end": 1610.5, + "probability": 0.9867 + }, + { + "start": 1610.52, + "end": 1611.78, + "probability": 0.6461 + }, + { + "start": 1611.88, + "end": 1615.82, + "probability": 0.3954 + }, + { + "start": 1616.0, + "end": 1616.84, + "probability": 0.0193 + }, + { + "start": 1616.86, + "end": 1616.86, + "probability": 0.2085 + }, + { + "start": 1616.86, + "end": 1616.86, + "probability": 0.3684 + }, + { + "start": 1616.86, + "end": 1618.16, + "probability": 0.1787 + }, + { + "start": 1620.22, + "end": 1621.58, + "probability": 0.3191 + }, + { + "start": 1623.06, + "end": 1623.24, + "probability": 0.3631 + }, + { + "start": 1624.06, + "end": 1625.52, + "probability": 0.6512 + }, + { + "start": 1626.76, + "end": 1627.12, + "probability": 0.2897 + }, + { + "start": 1627.34, + "end": 1627.58, + "probability": 0.1152 + }, + { + "start": 1627.58, + "end": 1627.58, + "probability": 0.2087 + }, + { + "start": 1627.58, + "end": 1633.24, + "probability": 0.9201 + }, + { + "start": 1633.24, + "end": 1639.9, + "probability": 0.9911 + }, + { + "start": 1640.94, + "end": 1647.92, + "probability": 0.9202 + }, + { + "start": 1648.88, + "end": 1652.46, + "probability": 0.8843 + }, + { + "start": 1653.66, + "end": 1657.22, + "probability": 0.8359 + }, + { + "start": 1658.18, + "end": 1662.46, + "probability": 0.9614 + }, + { + "start": 1662.54, + "end": 1666.26, + "probability": 0.8287 + }, + { + "start": 1667.24, + "end": 1668.6, + "probability": 0.9754 + }, + { + "start": 1668.84, + "end": 1671.68, + "probability": 0.981 + }, + { + "start": 1671.84, + "end": 1672.86, + "probability": 0.6412 + }, + { + "start": 1673.1, + "end": 1675.64, + "probability": 0.8676 + }, + { + "start": 1676.32, + "end": 1679.54, + "probability": 0.9834 + }, + { + "start": 1679.62, + "end": 1682.06, + "probability": 0.8838 + }, + { + "start": 1682.26, + "end": 1684.06, + "probability": 0.9798 + }, + { + "start": 1685.28, + "end": 1688.38, + "probability": 0.7725 + }, + { + "start": 1689.4, + "end": 1693.3, + "probability": 0.5418 + }, + { + "start": 1693.88, + "end": 1698.88, + "probability": 0.7144 + }, + { + "start": 1699.8, + "end": 1705.92, + "probability": 0.9778 + }, + { + "start": 1707.18, + "end": 1712.5, + "probability": 0.9799 + }, + { + "start": 1712.76, + "end": 1715.62, + "probability": 0.8669 + }, + { + "start": 1715.82, + "end": 1716.38, + "probability": 0.8362 + }, + { + "start": 1716.64, + "end": 1717.1, + "probability": 0.7546 + }, + { + "start": 1717.18, + "end": 1718.38, + "probability": 0.9581 + }, + { + "start": 1718.82, + "end": 1720.19, + "probability": 0.9961 + }, + { + "start": 1721.14, + "end": 1724.54, + "probability": 0.7756 + }, + { + "start": 1724.54, + "end": 1726.88, + "probability": 0.8968 + }, + { + "start": 1727.92, + "end": 1730.96, + "probability": 0.8698 + }, + { + "start": 1731.64, + "end": 1737.04, + "probability": 0.9526 + }, + { + "start": 1738.26, + "end": 1741.78, + "probability": 0.9526 + }, + { + "start": 1742.32, + "end": 1743.96, + "probability": 0.8441 + }, + { + "start": 1744.36, + "end": 1748.72, + "probability": 0.9016 + }, + { + "start": 1748.82, + "end": 1754.16, + "probability": 0.9979 + }, + { + "start": 1754.44, + "end": 1755.3, + "probability": 0.857 + }, + { + "start": 1755.64, + "end": 1756.0, + "probability": 0.8734 + }, + { + "start": 1756.5, + "end": 1757.14, + "probability": 0.2868 + }, + { + "start": 1757.34, + "end": 1759.7, + "probability": 0.6845 + }, + { + "start": 1759.88, + "end": 1760.94, + "probability": 0.9912 + }, + { + "start": 1761.02, + "end": 1767.26, + "probability": 0.9543 + }, + { + "start": 1767.28, + "end": 1767.66, + "probability": 0.9373 + }, + { + "start": 1768.22, + "end": 1773.54, + "probability": 0.7717 + }, + { + "start": 1774.78, + "end": 1778.98, + "probability": 0.9817 + }, + { + "start": 1779.42, + "end": 1782.04, + "probability": 0.9949 + }, + { + "start": 1782.4, + "end": 1783.52, + "probability": 0.938 + }, + { + "start": 1784.14, + "end": 1788.5, + "probability": 0.824 + }, + { + "start": 1789.46, + "end": 1789.96, + "probability": 0.5733 + }, + { + "start": 1790.26, + "end": 1791.68, + "probability": 0.7974 + }, + { + "start": 1791.96, + "end": 1793.56, + "probability": 0.7188 + }, + { + "start": 1794.24, + "end": 1798.0, + "probability": 0.937 + }, + { + "start": 1799.4, + "end": 1802.12, + "probability": 0.7538 + }, + { + "start": 1802.22, + "end": 1804.06, + "probability": 0.5865 + }, + { + "start": 1805.92, + "end": 1810.0, + "probability": 0.8429 + }, + { + "start": 1810.04, + "end": 1811.1, + "probability": 0.7529 + }, + { + "start": 1811.32, + "end": 1811.88, + "probability": 0.8002 + }, + { + "start": 1811.98, + "end": 1817.06, + "probability": 0.9821 + }, + { + "start": 1818.02, + "end": 1818.9, + "probability": 0.78 + }, + { + "start": 1819.18, + "end": 1821.42, + "probability": 0.9009 + }, + { + "start": 1822.54, + "end": 1824.7, + "probability": 0.8457 + }, + { + "start": 1824.88, + "end": 1829.2, + "probability": 0.9673 + }, + { + "start": 1829.38, + "end": 1829.72, + "probability": 0.6622 + }, + { + "start": 1829.88, + "end": 1831.22, + "probability": 0.976 + }, + { + "start": 1832.18, + "end": 1836.92, + "probability": 0.9592 + }, + { + "start": 1837.9, + "end": 1840.3, + "probability": 0.9855 + }, + { + "start": 1841.18, + "end": 1842.31, + "probability": 0.9983 + }, + { + "start": 1843.04, + "end": 1847.46, + "probability": 0.9816 + }, + { + "start": 1848.34, + "end": 1852.16, + "probability": 0.9967 + }, + { + "start": 1853.12, + "end": 1853.22, + "probability": 0.8311 + }, + { + "start": 1854.72, + "end": 1856.48, + "probability": 0.9888 + }, + { + "start": 1857.3, + "end": 1860.3, + "probability": 0.9945 + }, + { + "start": 1861.22, + "end": 1865.52, + "probability": 0.9915 + }, + { + "start": 1866.6, + "end": 1871.82, + "probability": 0.9387 + }, + { + "start": 1872.52, + "end": 1876.74, + "probability": 0.829 + }, + { + "start": 1877.3, + "end": 1880.8, + "probability": 0.9925 + }, + { + "start": 1880.9, + "end": 1881.5, + "probability": 0.9055 + }, + { + "start": 1882.08, + "end": 1882.9, + "probability": 0.5146 + }, + { + "start": 1883.8, + "end": 1887.24, + "probability": 0.9884 + }, + { + "start": 1888.06, + "end": 1892.68, + "probability": 0.9388 + }, + { + "start": 1893.14, + "end": 1894.77, + "probability": 0.8628 + }, + { + "start": 1895.48, + "end": 1897.56, + "probability": 0.7196 + }, + { + "start": 1898.46, + "end": 1902.47, + "probability": 0.958 + }, + { + "start": 1902.92, + "end": 1904.3, + "probability": 0.9306 + }, + { + "start": 1904.52, + "end": 1905.44, + "probability": 0.7586 + }, + { + "start": 1905.56, + "end": 1908.08, + "probability": 0.6211 + }, + { + "start": 1908.46, + "end": 1909.12, + "probability": 0.8203 + }, + { + "start": 1910.38, + "end": 1913.74, + "probability": 0.9697 + }, + { + "start": 1914.0, + "end": 1915.24, + "probability": 0.6501 + }, + { + "start": 1915.32, + "end": 1915.94, + "probability": 0.6353 + }, + { + "start": 1916.06, + "end": 1918.08, + "probability": 0.8951 + }, + { + "start": 1918.18, + "end": 1918.59, + "probability": 0.8521 + }, + { + "start": 1918.94, + "end": 1920.36, + "probability": 0.9757 + }, + { + "start": 1920.8, + "end": 1922.34, + "probability": 0.9138 + }, + { + "start": 1922.54, + "end": 1923.06, + "probability": 0.5947 + }, + { + "start": 1923.12, + "end": 1925.1, + "probability": 0.7687 + }, + { + "start": 1925.74, + "end": 1931.46, + "probability": 0.9707 + }, + { + "start": 1931.46, + "end": 1935.6, + "probability": 0.9885 + }, + { + "start": 1936.5, + "end": 1942.52, + "probability": 0.9967 + }, + { + "start": 1942.52, + "end": 1945.16, + "probability": 0.9188 + }, + { + "start": 1945.92, + "end": 1947.92, + "probability": 0.6285 + }, + { + "start": 1948.2, + "end": 1953.36, + "probability": 0.8177 + }, + { + "start": 1953.44, + "end": 1954.46, + "probability": 0.1747 + }, + { + "start": 1954.48, + "end": 1960.38, + "probability": 0.9166 + }, + { + "start": 1960.42, + "end": 1961.4, + "probability": 0.7657 + }, + { + "start": 1961.58, + "end": 1962.38, + "probability": 0.5892 + }, + { + "start": 1962.9, + "end": 1963.4, + "probability": 0.5387 + }, + { + "start": 1963.64, + "end": 1965.69, + "probability": 0.8267 + }, + { + "start": 1965.88, + "end": 1969.26, + "probability": 0.9462 + }, + { + "start": 1970.0, + "end": 1971.84, + "probability": 0.3138 + }, + { + "start": 1971.98, + "end": 1973.04, + "probability": 0.4431 + }, + { + "start": 1973.62, + "end": 1974.3, + "probability": 0.4859 + }, + { + "start": 1974.42, + "end": 1975.08, + "probability": 0.6042 + }, + { + "start": 1975.32, + "end": 1979.62, + "probability": 0.952 + }, + { + "start": 1980.88, + "end": 1984.62, + "probability": 0.9966 + }, + { + "start": 1985.22, + "end": 1985.66, + "probability": 0.5019 + }, + { + "start": 1986.84, + "end": 1989.44, + "probability": 0.8965 + }, + { + "start": 1989.56, + "end": 1990.98, + "probability": 0.7795 + }, + { + "start": 1992.06, + "end": 1996.54, + "probability": 0.6476 + }, + { + "start": 1997.14, + "end": 1999.26, + "probability": 0.1771 + }, + { + "start": 2000.96, + "end": 2004.08, + "probability": 0.3458 + }, + { + "start": 2004.44, + "end": 2005.08, + "probability": 0.567 + }, + { + "start": 2005.92, + "end": 2007.0, + "probability": 0.6607 + }, + { + "start": 2009.02, + "end": 2016.56, + "probability": 0.8441 + }, + { + "start": 2017.32, + "end": 2021.06, + "probability": 0.9575 + }, + { + "start": 2021.16, + "end": 2024.18, + "probability": 0.9596 + }, + { + "start": 2024.7, + "end": 2025.56, + "probability": 0.5262 + }, + { + "start": 2025.7, + "end": 2026.2, + "probability": 0.627 + }, + { + "start": 2026.34, + "end": 2028.38, + "probability": 0.9796 + }, + { + "start": 2029.26, + "end": 2031.84, + "probability": 0.8873 + }, + { + "start": 2032.76, + "end": 2036.08, + "probability": 0.4736 + }, + { + "start": 2037.04, + "end": 2038.6, + "probability": 0.5797 + }, + { + "start": 2039.46, + "end": 2042.2, + "probability": 0.8096 + }, + { + "start": 2042.26, + "end": 2052.5, + "probability": 0.8628 + }, + { + "start": 2053.52, + "end": 2057.08, + "probability": 0.9318 + }, + { + "start": 2057.76, + "end": 2060.98, + "probability": 0.92 + }, + { + "start": 2061.6, + "end": 2063.96, + "probability": 0.9583 + }, + { + "start": 2064.92, + "end": 2067.24, + "probability": 0.665 + }, + { + "start": 2067.84, + "end": 2069.18, + "probability": 0.7143 + }, + { + "start": 2069.84, + "end": 2070.61, + "probability": 0.9712 + }, + { + "start": 2071.12, + "end": 2073.38, + "probability": 0.6837 + }, + { + "start": 2073.44, + "end": 2075.66, + "probability": 0.5655 + }, + { + "start": 2076.56, + "end": 2076.72, + "probability": 0.265 + }, + { + "start": 2076.82, + "end": 2079.88, + "probability": 0.9109 + }, + { + "start": 2080.2, + "end": 2082.24, + "probability": 0.9482 + }, + { + "start": 2082.52, + "end": 2088.38, + "probability": 0.8315 + }, + { + "start": 2089.46, + "end": 2089.96, + "probability": 0.61 + }, + { + "start": 2090.3, + "end": 2094.16, + "probability": 0.9966 + }, + { + "start": 2094.9, + "end": 2097.65, + "probability": 0.9934 + }, + { + "start": 2099.92, + "end": 2100.34, + "probability": 0.0978 + }, + { + "start": 2100.34, + "end": 2100.34, + "probability": 0.2015 + }, + { + "start": 2100.34, + "end": 2100.34, + "probability": 0.3387 + }, + { + "start": 2100.34, + "end": 2102.5, + "probability": 0.8385 + }, + { + "start": 2102.5, + "end": 2102.9, + "probability": 0.3504 + }, + { + "start": 2102.96, + "end": 2104.46, + "probability": 0.9607 + }, + { + "start": 2104.56, + "end": 2108.04, + "probability": 0.8429 + }, + { + "start": 2108.12, + "end": 2110.28, + "probability": 0.5577 + }, + { + "start": 2110.88, + "end": 2112.98, + "probability": 0.4971 + }, + { + "start": 2113.88, + "end": 2114.74, + "probability": 0.487 + }, + { + "start": 2114.9, + "end": 2118.06, + "probability": 0.6829 + }, + { + "start": 2118.26, + "end": 2120.6, + "probability": 0.5043 + }, + { + "start": 2120.62, + "end": 2121.46, + "probability": 0.6738 + }, + { + "start": 2121.54, + "end": 2122.54, + "probability": 0.8167 + }, + { + "start": 2122.62, + "end": 2126.24, + "probability": 0.9718 + }, + { + "start": 2126.44, + "end": 2128.14, + "probability": 0.9338 + }, + { + "start": 2128.92, + "end": 2133.36, + "probability": 0.9268 + }, + { + "start": 2133.66, + "end": 2134.94, + "probability": 0.9961 + }, + { + "start": 2135.66, + "end": 2135.9, + "probability": 0.9264 + }, + { + "start": 2137.12, + "end": 2140.28, + "probability": 0.9952 + }, + { + "start": 2141.38, + "end": 2146.24, + "probability": 0.9779 + }, + { + "start": 2146.3, + "end": 2148.28, + "probability": 0.6442 + }, + { + "start": 2148.72, + "end": 2152.37, + "probability": 0.8938 + }, + { + "start": 2152.94, + "end": 2155.16, + "probability": 0.9244 + }, + { + "start": 2156.22, + "end": 2159.16, + "probability": 0.6537 + }, + { + "start": 2160.36, + "end": 2164.44, + "probability": 0.9875 + }, + { + "start": 2165.1, + "end": 2168.78, + "probability": 0.9725 + }, + { + "start": 2169.06, + "end": 2169.74, + "probability": 0.9222 + }, + { + "start": 2170.42, + "end": 2173.18, + "probability": 0.6774 + }, + { + "start": 2173.84, + "end": 2176.06, + "probability": 0.7677 + }, + { + "start": 2176.18, + "end": 2177.58, + "probability": 0.9883 + }, + { + "start": 2177.8, + "end": 2178.48, + "probability": 0.9841 + }, + { + "start": 2178.96, + "end": 2179.72, + "probability": 0.996 + }, + { + "start": 2179.84, + "end": 2180.6, + "probability": 0.9622 + }, + { + "start": 2181.56, + "end": 2184.08, + "probability": 0.9738 + }, + { + "start": 2184.54, + "end": 2187.88, + "probability": 0.7486 + }, + { + "start": 2188.8, + "end": 2191.92, + "probability": 0.8173 + }, + { + "start": 2192.2, + "end": 2195.86, + "probability": 0.8568 + }, + { + "start": 2196.92, + "end": 2198.54, + "probability": 0.8251 + }, + { + "start": 2199.18, + "end": 2201.62, + "probability": 0.8242 + }, + { + "start": 2201.96, + "end": 2206.54, + "probability": 0.9966 + }, + { + "start": 2206.54, + "end": 2210.84, + "probability": 0.8456 + }, + { + "start": 2211.23, + "end": 2215.21, + "probability": 0.93 + }, + { + "start": 2215.96, + "end": 2219.62, + "probability": 0.98 + }, + { + "start": 2220.02, + "end": 2221.2, + "probability": 0.683 + }, + { + "start": 2221.2, + "end": 2225.0, + "probability": 0.7839 + }, + { + "start": 2225.08, + "end": 2226.8, + "probability": 0.7486 + }, + { + "start": 2227.24, + "end": 2230.56, + "probability": 0.939 + }, + { + "start": 2230.98, + "end": 2233.24, + "probability": 0.9492 + }, + { + "start": 2233.32, + "end": 2233.68, + "probability": 0.2809 + }, + { + "start": 2234.22, + "end": 2234.78, + "probability": 0.8634 + }, + { + "start": 2234.84, + "end": 2235.48, + "probability": 0.5997 + }, + { + "start": 2235.6, + "end": 2239.16, + "probability": 0.7832 + }, + { + "start": 2240.02, + "end": 2242.9, + "probability": 0.6584 + }, + { + "start": 2242.9, + "end": 2246.68, + "probability": 0.8939 + }, + { + "start": 2246.76, + "end": 2247.3, + "probability": 0.5857 + }, + { + "start": 2247.3, + "end": 2247.6, + "probability": 0.5183 + }, + { + "start": 2247.76, + "end": 2248.72, + "probability": 0.6174 + }, + { + "start": 2248.9, + "end": 2249.54, + "probability": 0.5649 + }, + { + "start": 2251.32, + "end": 2254.22, + "probability": 0.4356 + }, + { + "start": 2254.26, + "end": 2256.48, + "probability": 0.5886 + }, + { + "start": 2256.54, + "end": 2259.92, + "probability": 0.8386 + }, + { + "start": 2260.58, + "end": 2264.08, + "probability": 0.9801 + }, + { + "start": 2264.08, + "end": 2266.2, + "probability": 0.9964 + }, + { + "start": 2266.64, + "end": 2268.49, + "probability": 0.7568 + }, + { + "start": 2268.9, + "end": 2269.18, + "probability": 0.877 + }, + { + "start": 2270.46, + "end": 2272.12, + "probability": 0.7059 + }, + { + "start": 2272.94, + "end": 2275.46, + "probability": 0.9863 + }, + { + "start": 2276.34, + "end": 2282.0, + "probability": 0.9918 + }, + { + "start": 2282.5, + "end": 2283.42, + "probability": 0.8771 + }, + { + "start": 2284.02, + "end": 2285.06, + "probability": 0.9784 + }, + { + "start": 2285.74, + "end": 2288.36, + "probability": 0.7858 + }, + { + "start": 2288.88, + "end": 2289.88, + "probability": 0.7194 + }, + { + "start": 2290.56, + "end": 2294.5, + "probability": 0.8692 + }, + { + "start": 2295.02, + "end": 2297.14, + "probability": 0.7941 + }, + { + "start": 2297.74, + "end": 2300.28, + "probability": 0.811 + }, + { + "start": 2300.5, + "end": 2300.78, + "probability": 0.7548 + }, + { + "start": 2301.96, + "end": 2305.66, + "probability": 0.9761 + }, + { + "start": 2306.03, + "end": 2309.74, + "probability": 0.6559 + }, + { + "start": 2310.26, + "end": 2312.13, + "probability": 0.8094 + }, + { + "start": 2314.16, + "end": 2314.9, + "probability": 0.5976 + }, + { + "start": 2314.9, + "end": 2314.9, + "probability": 0.5165 + }, + { + "start": 2314.9, + "end": 2314.97, + "probability": 0.0457 + }, + { + "start": 2315.78, + "end": 2316.3, + "probability": 0.3343 + }, + { + "start": 2317.64, + "end": 2320.78, + "probability": 0.6392 + }, + { + "start": 2320.88, + "end": 2323.56, + "probability": 0.8086 + }, + { + "start": 2324.38, + "end": 2325.12, + "probability": 0.5132 + }, + { + "start": 2325.58, + "end": 2326.64, + "probability": 0.58 + }, + { + "start": 2326.76, + "end": 2327.28, + "probability": 0.9343 + }, + { + "start": 2327.38, + "end": 2328.56, + "probability": 0.8001 + }, + { + "start": 2329.08, + "end": 2335.14, + "probability": 0.9508 + }, + { + "start": 2335.62, + "end": 2339.28, + "probability": 0.9983 + }, + { + "start": 2340.6, + "end": 2341.78, + "probability": 0.962 + }, + { + "start": 2341.96, + "end": 2343.22, + "probability": 0.7663 + }, + { + "start": 2343.4, + "end": 2345.42, + "probability": 0.9717 + }, + { + "start": 2345.58, + "end": 2347.52, + "probability": 0.7911 + }, + { + "start": 2347.58, + "end": 2351.62, + "probability": 0.9921 + }, + { + "start": 2351.8, + "end": 2354.1, + "probability": 0.8747 + }, + { + "start": 2355.1, + "end": 2355.4, + "probability": 0.0 + }, + { + "start": 2358.46, + "end": 2361.44, + "probability": 0.754 + }, + { + "start": 2361.96, + "end": 2365.12, + "probability": 0.9595 + }, + { + "start": 2365.48, + "end": 2367.94, + "probability": 0.9797 + }, + { + "start": 2368.42, + "end": 2371.74, + "probability": 0.9945 + }, + { + "start": 2372.02, + "end": 2373.86, + "probability": 0.9971 + }, + { + "start": 2374.42, + "end": 2378.38, + "probability": 0.9506 + }, + { + "start": 2378.7, + "end": 2379.68, + "probability": 0.8891 + }, + { + "start": 2379.76, + "end": 2382.3, + "probability": 0.9938 + }, + { + "start": 2382.3, + "end": 2386.0, + "probability": 0.9674 + }, + { + "start": 2386.68, + "end": 2390.42, + "probability": 0.9786 + }, + { + "start": 2390.64, + "end": 2391.34, + "probability": 0.8059 + }, + { + "start": 2391.84, + "end": 2393.68, + "probability": 0.9965 + }, + { + "start": 2393.88, + "end": 2397.36, + "probability": 0.9949 + }, + { + "start": 2397.64, + "end": 2398.67, + "probability": 0.8996 + }, + { + "start": 2399.06, + "end": 2402.44, + "probability": 0.9407 + }, + { + "start": 2402.9, + "end": 2403.02, + "probability": 0.3853 + }, + { + "start": 2403.02, + "end": 2405.11, + "probability": 0.512 + }, + { + "start": 2406.32, + "end": 2410.24, + "probability": 0.8026 + }, + { + "start": 2410.82, + "end": 2414.92, + "probability": 0.9904 + }, + { + "start": 2415.44, + "end": 2417.36, + "probability": 0.6553 + }, + { + "start": 2418.94, + "end": 2420.86, + "probability": 0.9929 + }, + { + "start": 2420.9, + "end": 2426.06, + "probability": 0.9804 + }, + { + "start": 2426.06, + "end": 2432.32, + "probability": 0.982 + }, + { + "start": 2432.74, + "end": 2434.32, + "probability": 0.993 + }, + { + "start": 2434.86, + "end": 2439.2, + "probability": 0.9093 + }, + { + "start": 2439.76, + "end": 2448.58, + "probability": 0.8989 + }, + { + "start": 2449.16, + "end": 2450.32, + "probability": 0.7014 + }, + { + "start": 2450.68, + "end": 2453.48, + "probability": 0.9799 + }, + { + "start": 2453.66, + "end": 2454.48, + "probability": 0.8735 + }, + { + "start": 2455.18, + "end": 2456.5, + "probability": 0.9264 + }, + { + "start": 2456.64, + "end": 2458.82, + "probability": 0.9851 + }, + { + "start": 2458.92, + "end": 2459.96, + "probability": 0.4259 + }, + { + "start": 2459.96, + "end": 2461.52, + "probability": 0.5948 + }, + { + "start": 2461.72, + "end": 2464.68, + "probability": 0.6782 + }, + { + "start": 2465.08, + "end": 2465.64, + "probability": 0.3586 + }, + { + "start": 2465.72, + "end": 2466.78, + "probability": 0.4203 + }, + { + "start": 2466.98, + "end": 2469.9, + "probability": 0.8982 + }, + { + "start": 2470.42, + "end": 2471.9, + "probability": 0.8996 + }, + { + "start": 2472.02, + "end": 2475.46, + "probability": 0.9144 + }, + { + "start": 2475.98, + "end": 2478.64, + "probability": 0.9357 + }, + { + "start": 2479.24, + "end": 2480.74, + "probability": 0.9428 + }, + { + "start": 2481.1, + "end": 2482.22, + "probability": 0.9648 + }, + { + "start": 2482.66, + "end": 2484.92, + "probability": 0.9819 + }, + { + "start": 2484.98, + "end": 2489.04, + "probability": 0.9121 + }, + { + "start": 2489.1, + "end": 2489.32, + "probability": 0.7804 + }, + { + "start": 2489.66, + "end": 2492.94, + "probability": 0.9756 + }, + { + "start": 2494.3, + "end": 2495.54, + "probability": 0.8165 + }, + { + "start": 2496.78, + "end": 2497.9, + "probability": 0.7463 + }, + { + "start": 2498.14, + "end": 2501.38, + "probability": 0.9443 + }, + { + "start": 2501.54, + "end": 2502.72, + "probability": 0.5212 + }, + { + "start": 2503.36, + "end": 2505.06, + "probability": 0.6531 + }, + { + "start": 2505.86, + "end": 2507.4, + "probability": 0.9632 + }, + { + "start": 2507.78, + "end": 2511.56, + "probability": 0.7049 + }, + { + "start": 2512.18, + "end": 2517.0, + "probability": 0.972 + }, + { + "start": 2517.0, + "end": 2517.66, + "probability": 0.7804 + }, + { + "start": 2517.8, + "end": 2520.22, + "probability": 0.6314 + }, + { + "start": 2520.5, + "end": 2521.38, + "probability": 0.9298 + }, + { + "start": 2523.66, + "end": 2526.06, + "probability": 0.7317 + }, + { + "start": 2526.62, + "end": 2530.04, + "probability": 0.9646 + }, + { + "start": 2530.6, + "end": 2535.22, + "probability": 0.9902 + }, + { + "start": 2535.22, + "end": 2538.32, + "probability": 0.9935 + }, + { + "start": 2538.96, + "end": 2542.88, + "probability": 0.9912 + }, + { + "start": 2543.3, + "end": 2545.58, + "probability": 0.9948 + }, + { + "start": 2546.14, + "end": 2548.12, + "probability": 0.7702 + }, + { + "start": 2548.42, + "end": 2549.74, + "probability": 0.3964 + }, + { + "start": 2549.8, + "end": 2550.94, + "probability": 0.7822 + }, + { + "start": 2552.1, + "end": 2553.58, + "probability": 0.7397 + }, + { + "start": 2553.72, + "end": 2554.21, + "probability": 0.512 + }, + { + "start": 2554.7, + "end": 2555.77, + "probability": 0.6617 + }, + { + "start": 2556.39, + "end": 2557.7, + "probability": 0.5799 + }, + { + "start": 2558.8, + "end": 2560.02, + "probability": 0.4284 + }, + { + "start": 2560.08, + "end": 2563.14, + "probability": 0.7378 + }, + { + "start": 2563.5, + "end": 2564.32, + "probability": 0.9425 + }, + { + "start": 2564.42, + "end": 2566.74, + "probability": 0.95 + }, + { + "start": 2567.2, + "end": 2569.46, + "probability": 0.4778 + }, + { + "start": 2569.56, + "end": 2569.56, + "probability": 0.1593 + }, + { + "start": 2569.56, + "end": 2569.88, + "probability": 0.2363 + }, + { + "start": 2570.24, + "end": 2574.54, + "probability": 0.9802 + }, + { + "start": 2574.98, + "end": 2577.6, + "probability": 0.9692 + }, + { + "start": 2578.34, + "end": 2581.48, + "probability": 0.9941 + }, + { + "start": 2582.4, + "end": 2583.18, + "probability": 0.9181 + }, + { + "start": 2584.78, + "end": 2589.04, + "probability": 0.9848 + }, + { + "start": 2589.2, + "end": 2593.56, + "probability": 0.9655 + }, + { + "start": 2594.5, + "end": 2597.38, + "probability": 0.9668 + }, + { + "start": 2598.46, + "end": 2602.66, + "probability": 0.8709 + }, + { + "start": 2603.52, + "end": 2605.72, + "probability": 0.6119 + }, + { + "start": 2605.88, + "end": 2608.8, + "probability": 0.9708 + }, + { + "start": 2609.44, + "end": 2611.82, + "probability": 0.6683 + }, + { + "start": 2612.64, + "end": 2617.78, + "probability": 0.9212 + }, + { + "start": 2617.82, + "end": 2626.6, + "probability": 0.8788 + }, + { + "start": 2626.6, + "end": 2630.14, + "probability": 0.992 + }, + { + "start": 2630.74, + "end": 2634.36, + "probability": 0.9967 + }, + { + "start": 2634.88, + "end": 2637.88, + "probability": 0.8149 + }, + { + "start": 2638.72, + "end": 2639.24, + "probability": 0.4841 + }, + { + "start": 2640.48, + "end": 2645.0, + "probability": 0.8685 + }, + { + "start": 2645.12, + "end": 2649.22, + "probability": 0.9755 + }, + { + "start": 2649.22, + "end": 2652.74, + "probability": 0.9971 + }, + { + "start": 2653.26, + "end": 2655.92, + "probability": 0.9033 + }, + { + "start": 2655.92, + "end": 2658.5, + "probability": 0.9995 + }, + { + "start": 2659.34, + "end": 2662.02, + "probability": 0.9807 + }, + { + "start": 2663.02, + "end": 2663.51, + "probability": 0.7447 + }, + { + "start": 2665.92, + "end": 2668.24, + "probability": 0.9994 + }, + { + "start": 2668.36, + "end": 2675.28, + "probability": 0.9935 + }, + { + "start": 2676.16, + "end": 2677.56, + "probability": 0.7033 + }, + { + "start": 2678.08, + "end": 2682.0, + "probability": 0.999 + }, + { + "start": 2682.88, + "end": 2686.46, + "probability": 0.9973 + }, + { + "start": 2686.74, + "end": 2687.58, + "probability": 0.9714 + }, + { + "start": 2688.1, + "end": 2690.0, + "probability": 0.9075 + }, + { + "start": 2690.84, + "end": 2692.1, + "probability": 0.7919 + }, + { + "start": 2692.62, + "end": 2695.32, + "probability": 0.9368 + }, + { + "start": 2695.32, + "end": 2699.2, + "probability": 0.9689 + }, + { + "start": 2699.34, + "end": 2700.32, + "probability": 0.7057 + }, + { + "start": 2701.28, + "end": 2704.2, + "probability": 0.9945 + }, + { + "start": 2704.76, + "end": 2708.5, + "probability": 0.9933 + }, + { + "start": 2709.1, + "end": 2711.47, + "probability": 0.6827 + }, + { + "start": 2712.52, + "end": 2717.56, + "probability": 0.9255 + }, + { + "start": 2718.76, + "end": 2723.72, + "probability": 0.951 + }, + { + "start": 2724.74, + "end": 2727.78, + "probability": 0.9734 + }, + { + "start": 2728.78, + "end": 2733.88, + "probability": 0.8106 + }, + { + "start": 2734.3, + "end": 2736.56, + "probability": 0.9976 + }, + { + "start": 2738.14, + "end": 2743.36, + "probability": 0.9893 + }, + { + "start": 2744.12, + "end": 2748.4, + "probability": 0.9967 + }, + { + "start": 2750.1, + "end": 2754.4, + "probability": 0.9963 + }, + { + "start": 2755.36, + "end": 2759.46, + "probability": 0.9286 + }, + { + "start": 2760.12, + "end": 2762.48, + "probability": 0.8465 + }, + { + "start": 2762.96, + "end": 2769.1, + "probability": 0.9956 + }, + { + "start": 2769.38, + "end": 2771.06, + "probability": 0.9973 + }, + { + "start": 2771.7, + "end": 2776.04, + "probability": 0.9944 + }, + { + "start": 2776.78, + "end": 2778.18, + "probability": 0.4098 + }, + { + "start": 2778.26, + "end": 2779.02, + "probability": 0.7485 + }, + { + "start": 2779.12, + "end": 2780.3, + "probability": 0.7427 + }, + { + "start": 2783.66, + "end": 2786.44, + "probability": 0.5886 + }, + { + "start": 2786.66, + "end": 2788.54, + "probability": 0.8114 + }, + { + "start": 2789.56, + "end": 2792.54, + "probability": 0.6324 + }, + { + "start": 2792.54, + "end": 2795.16, + "probability": 0.9927 + }, + { + "start": 2795.18, + "end": 2799.52, + "probability": 0.9897 + }, + { + "start": 2800.08, + "end": 2802.22, + "probability": 0.4047 + }, + { + "start": 2802.38, + "end": 2802.54, + "probability": 0.4136 + }, + { + "start": 2802.86, + "end": 2805.14, + "probability": 0.4536 + }, + { + "start": 2805.16, + "end": 2806.2, + "probability": 0.9257 + }, + { + "start": 2806.44, + "end": 2806.94, + "probability": 0.863 + }, + { + "start": 2806.98, + "end": 2808.9, + "probability": 0.9517 + }, + { + "start": 2809.02, + "end": 2809.42, + "probability": 0.0371 + }, + { + "start": 2809.88, + "end": 2812.62, + "probability": 0.9165 + }, + { + "start": 2812.96, + "end": 2815.28, + "probability": 0.9763 + }, + { + "start": 2815.4, + "end": 2817.0, + "probability": 0.8228 + }, + { + "start": 2817.56, + "end": 2819.48, + "probability": 0.9952 + }, + { + "start": 2819.82, + "end": 2823.05, + "probability": 0.9082 + }, + { + "start": 2823.58, + "end": 2826.22, + "probability": 0.9792 + }, + { + "start": 2826.34, + "end": 2827.14, + "probability": 0.4302 + }, + { + "start": 2828.18, + "end": 2829.1, + "probability": 0.7395 + }, + { + "start": 2829.76, + "end": 2837.16, + "probability": 0.9863 + }, + { + "start": 2837.74, + "end": 2839.02, + "probability": 0.5588 + }, + { + "start": 2839.24, + "end": 2843.08, + "probability": 0.9928 + }, + { + "start": 2843.4, + "end": 2845.02, + "probability": 0.9534 + }, + { + "start": 2845.46, + "end": 2848.41, + "probability": 0.9442 + }, + { + "start": 2848.74, + "end": 2850.32, + "probability": 0.9848 + }, + { + "start": 2851.04, + "end": 2854.1, + "probability": 0.8263 + }, + { + "start": 2854.66, + "end": 2857.79, + "probability": 0.9894 + }, + { + "start": 2858.56, + "end": 2861.44, + "probability": 0.9976 + }, + { + "start": 2861.44, + "end": 2865.34, + "probability": 0.991 + }, + { + "start": 2865.92, + "end": 2868.82, + "probability": 0.3486 + }, + { + "start": 2868.86, + "end": 2872.66, + "probability": 0.8533 + }, + { + "start": 2876.26, + "end": 2876.98, + "probability": 0.5492 + }, + { + "start": 2878.32, + "end": 2881.12, + "probability": 0.9865 + }, + { + "start": 2881.12, + "end": 2886.78, + "probability": 0.9915 + }, + { + "start": 2887.42, + "end": 2890.24, + "probability": 0.9914 + }, + { + "start": 2890.78, + "end": 2895.14, + "probability": 0.8636 + }, + { + "start": 2895.14, + "end": 2898.92, + "probability": 0.9521 + }, + { + "start": 2898.92, + "end": 2903.02, + "probability": 0.9829 + }, + { + "start": 2903.22, + "end": 2910.52, + "probability": 0.9275 + }, + { + "start": 2911.0, + "end": 2914.76, + "probability": 0.9963 + }, + { + "start": 2914.76, + "end": 2919.0, + "probability": 0.9823 + }, + { + "start": 2919.4, + "end": 2919.82, + "probability": 0.7468 + }, + { + "start": 2920.34, + "end": 2926.12, + "probability": 0.6616 + }, + { + "start": 2926.68, + "end": 2931.52, + "probability": 0.9768 + }, + { + "start": 2932.38, + "end": 2935.66, + "probability": 0.782 + }, + { + "start": 2936.04, + "end": 2937.48, + "probability": 0.8317 + }, + { + "start": 2937.96, + "end": 2941.12, + "probability": 0.9477 + }, + { + "start": 2941.48, + "end": 2941.78, + "probability": 0.3224 + }, + { + "start": 2941.78, + "end": 2942.08, + "probability": 0.6178 + }, + { + "start": 2942.18, + "end": 2943.08, + "probability": 0.882 + }, + { + "start": 2943.62, + "end": 2946.06, + "probability": 0.899 + }, + { + "start": 2946.76, + "end": 2947.16, + "probability": 0.9192 + }, + { + "start": 2947.96, + "end": 2949.12, + "probability": 0.5037 + }, + { + "start": 2949.44, + "end": 2951.9, + "probability": 0.9931 + }, + { + "start": 2952.88, + "end": 2957.22, + "probability": 0.9835 + }, + { + "start": 2957.3, + "end": 2957.92, + "probability": 0.5972 + }, + { + "start": 2958.0, + "end": 2959.1, + "probability": 0.97 + }, + { + "start": 2959.42, + "end": 2961.09, + "probability": 0.8576 + }, + { + "start": 2961.32, + "end": 2962.52, + "probability": 0.975 + }, + { + "start": 2963.24, + "end": 2970.46, + "probability": 0.9971 + }, + { + "start": 2970.46, + "end": 2975.04, + "probability": 0.9993 + }, + { + "start": 2975.24, + "end": 2976.24, + "probability": 0.9594 + }, + { + "start": 2977.38, + "end": 2978.86, + "probability": 0.8538 + }, + { + "start": 2979.02, + "end": 2984.98, + "probability": 0.9644 + }, + { + "start": 2984.98, + "end": 2988.08, + "probability": 0.9305 + }, + { + "start": 2988.22, + "end": 2992.9, + "probability": 0.9889 + }, + { + "start": 2993.78, + "end": 2994.94, + "probability": 0.7748 + }, + { + "start": 2995.36, + "end": 2999.12, + "probability": 0.9982 + }, + { + "start": 2999.4, + "end": 3005.34, + "probability": 0.9899 + }, + { + "start": 3005.82, + "end": 3008.26, + "probability": 0.7924 + }, + { + "start": 3008.4, + "end": 3010.16, + "probability": 0.9933 + }, + { + "start": 3010.58, + "end": 3011.62, + "probability": 0.9912 + }, + { + "start": 3012.22, + "end": 3013.34, + "probability": 0.9976 + }, + { + "start": 3014.04, + "end": 3014.96, + "probability": 0.581 + }, + { + "start": 3015.76, + "end": 3020.66, + "probability": 0.981 + }, + { + "start": 3020.94, + "end": 3023.7, + "probability": 0.989 + }, + { + "start": 3024.5, + "end": 3030.28, + "probability": 0.999 + }, + { + "start": 3031.0, + "end": 3033.42, + "probability": 0.7799 + }, + { + "start": 3033.92, + "end": 3037.1, + "probability": 0.9329 + }, + { + "start": 3037.92, + "end": 3042.24, + "probability": 0.9734 + }, + { + "start": 3042.94, + "end": 3046.62, + "probability": 0.9873 + }, + { + "start": 3046.62, + "end": 3050.16, + "probability": 0.9136 + }, + { + "start": 3050.68, + "end": 3058.12, + "probability": 0.9932 + }, + { + "start": 3060.02, + "end": 3063.19, + "probability": 0.8491 + }, + { + "start": 3063.24, + "end": 3068.0, + "probability": 0.9696 + }, + { + "start": 3068.34, + "end": 3069.16, + "probability": 0.482 + }, + { + "start": 3069.98, + "end": 3072.6, + "probability": 0.6249 + }, + { + "start": 3073.04, + "end": 3076.04, + "probability": 0.9898 + }, + { + "start": 3076.04, + "end": 3078.94, + "probability": 0.855 + }, + { + "start": 3078.94, + "end": 3080.22, + "probability": 0.9458 + }, + { + "start": 3080.66, + "end": 3081.26, + "probability": 0.7845 + }, + { + "start": 3082.9, + "end": 3084.5, + "probability": 0.9551 + }, + { + "start": 3084.5, + "end": 3088.52, + "probability": 0.7632 + }, + { + "start": 3088.74, + "end": 3090.3, + "probability": 0.4426 + }, + { + "start": 3090.88, + "end": 3092.72, + "probability": 0.2451 + }, + { + "start": 3092.86, + "end": 3096.13, + "probability": 0.895 + }, + { + "start": 3097.6, + "end": 3097.98, + "probability": 0.1948 + }, + { + "start": 3098.96, + "end": 3101.72, + "probability": 0.1652 + }, + { + "start": 3101.82, + "end": 3102.12, + "probability": 0.4661 + }, + { + "start": 3102.36, + "end": 3104.74, + "probability": 0.112 + }, + { + "start": 3106.12, + "end": 3108.58, + "probability": 0.8201 + }, + { + "start": 3109.86, + "end": 3111.18, + "probability": 0.0014 + }, + { + "start": 3113.4, + "end": 3114.3, + "probability": 0.6163 + }, + { + "start": 3116.14, + "end": 3117.38, + "probability": 0.7652 + }, + { + "start": 3118.28, + "end": 3122.98, + "probability": 0.9971 + }, + { + "start": 3122.98, + "end": 3128.42, + "probability": 0.9981 + }, + { + "start": 3128.82, + "end": 3132.26, + "probability": 0.9287 + }, + { + "start": 3133.24, + "end": 3134.22, + "probability": 0.048 + }, + { + "start": 3134.76, + "end": 3135.24, + "probability": 0.3521 + }, + { + "start": 3138.16, + "end": 3141.1, + "probability": 0.7105 + }, + { + "start": 3141.26, + "end": 3142.12, + "probability": 0.5303 + }, + { + "start": 3142.24, + "end": 3144.58, + "probability": 0.8528 + }, + { + "start": 3144.64, + "end": 3145.74, + "probability": 0.9119 + }, + { + "start": 3145.8, + "end": 3147.32, + "probability": 0.9492 + }, + { + "start": 3148.22, + "end": 3148.78, + "probability": 0.779 + }, + { + "start": 3149.44, + "end": 3155.16, + "probability": 0.9951 + }, + { + "start": 3155.52, + "end": 3156.54, + "probability": 0.8981 + }, + { + "start": 3156.9, + "end": 3160.54, + "probability": 0.9958 + }, + { + "start": 3161.52, + "end": 3162.24, + "probability": 0.7615 + }, + { + "start": 3162.84, + "end": 3166.48, + "probability": 0.9846 + }, + { + "start": 3167.38, + "end": 3169.06, + "probability": 0.8712 + }, + { + "start": 3169.58, + "end": 3175.72, + "probability": 0.9941 + }, + { + "start": 3175.84, + "end": 3176.6, + "probability": 0.9593 + }, + { + "start": 3177.6, + "end": 3181.86, + "probability": 0.999 + }, + { + "start": 3182.3, + "end": 3186.16, + "probability": 0.9779 + }, + { + "start": 3187.16, + "end": 3188.84, + "probability": 0.9981 + }, + { + "start": 3189.48, + "end": 3195.74, + "probability": 0.9939 + }, + { + "start": 3195.74, + "end": 3201.72, + "probability": 0.9963 + }, + { + "start": 3202.68, + "end": 3207.62, + "probability": 0.9845 + }, + { + "start": 3208.5, + "end": 3211.82, + "probability": 0.9982 + }, + { + "start": 3211.82, + "end": 3215.2, + "probability": 0.9916 + }, + { + "start": 3215.66, + "end": 3218.72, + "probability": 0.9984 + }, + { + "start": 3218.72, + "end": 3222.98, + "probability": 0.9413 + }, + { + "start": 3223.74, + "end": 3224.38, + "probability": 0.6899 + }, + { + "start": 3224.46, + "end": 3225.02, + "probability": 0.7453 + }, + { + "start": 3225.48, + "end": 3228.86, + "probability": 0.6751 + }, + { + "start": 3229.3, + "end": 3233.58, + "probability": 0.9875 + }, + { + "start": 3233.76, + "end": 3236.94, + "probability": 0.9355 + }, + { + "start": 3236.94, + "end": 3240.4, + "probability": 0.9961 + }, + { + "start": 3241.44, + "end": 3246.64, + "probability": 0.9194 + }, + { + "start": 3247.66, + "end": 3249.0, + "probability": 0.6234 + }, + { + "start": 3249.64, + "end": 3252.16, + "probability": 0.9409 + }, + { + "start": 3252.66, + "end": 3256.28, + "probability": 0.9087 + }, + { + "start": 3256.74, + "end": 3262.44, + "probability": 0.9357 + }, + { + "start": 3262.86, + "end": 3266.62, + "probability": 0.9773 + }, + { + "start": 3267.54, + "end": 3271.8, + "probability": 0.9568 + }, + { + "start": 3271.8, + "end": 3276.78, + "probability": 0.9956 + }, + { + "start": 3277.24, + "end": 3281.64, + "probability": 0.9896 + }, + { + "start": 3282.06, + "end": 3283.7, + "probability": 0.9246 + }, + { + "start": 3284.32, + "end": 3288.02, + "probability": 0.9912 + }, + { + "start": 3288.7, + "end": 3294.68, + "probability": 0.9958 + }, + { + "start": 3294.68, + "end": 3300.06, + "probability": 0.9971 + }, + { + "start": 3300.6, + "end": 3306.0, + "probability": 0.9751 + }, + { + "start": 3306.94, + "end": 3307.62, + "probability": 0.8362 + }, + { + "start": 3308.24, + "end": 3310.38, + "probability": 0.999 + }, + { + "start": 3310.78, + "end": 3313.06, + "probability": 0.9569 + }, + { + "start": 3313.74, + "end": 3317.42, + "probability": 0.9487 + }, + { + "start": 3318.16, + "end": 3322.8, + "probability": 0.9838 + }, + { + "start": 3323.76, + "end": 3326.02, + "probability": 0.8414 + }, + { + "start": 3326.84, + "end": 3328.04, + "probability": 0.9321 + }, + { + "start": 3336.74, + "end": 3340.56, + "probability": 0.9318 + }, + { + "start": 3341.22, + "end": 3342.09, + "probability": 0.5751 + }, + { + "start": 3345.08, + "end": 3354.5, + "probability": 0.8257 + }, + { + "start": 3355.55, + "end": 3359.2, + "probability": 0.9686 + }, + { + "start": 3359.54, + "end": 3362.38, + "probability": 0.8306 + }, + { + "start": 3362.38, + "end": 3363.92, + "probability": 0.0357 + }, + { + "start": 3366.62, + "end": 3370.54, + "probability": 0.743 + }, + { + "start": 3370.88, + "end": 3372.08, + "probability": 0.9644 + }, + { + "start": 3373.24, + "end": 3377.94, + "probability": 0.9086 + }, + { + "start": 3378.32, + "end": 3383.34, + "probability": 0.9861 + }, + { + "start": 3383.36, + "end": 3384.02, + "probability": 0.544 + }, + { + "start": 3384.38, + "end": 3386.68, + "probability": 0.7778 + }, + { + "start": 3387.58, + "end": 3388.66, + "probability": 0.6461 + }, + { + "start": 3389.12, + "end": 3393.5, + "probability": 0.8347 + }, + { + "start": 3394.02, + "end": 3395.78, + "probability": 0.9794 + }, + { + "start": 3396.56, + "end": 3398.48, + "probability": 0.9459 + }, + { + "start": 3398.64, + "end": 3399.4, + "probability": 0.2935 + }, + { + "start": 3399.5, + "end": 3401.58, + "probability": 0.9105 + }, + { + "start": 3401.76, + "end": 3403.46, + "probability": 0.6836 + }, + { + "start": 3403.56, + "end": 3406.16, + "probability": 0.9232 + }, + { + "start": 3406.46, + "end": 3409.56, + "probability": 0.9112 + }, + { + "start": 3409.6, + "end": 3412.96, + "probability": 0.9773 + }, + { + "start": 3413.28, + "end": 3416.56, + "probability": 0.482 + }, + { + "start": 3417.5, + "end": 3418.6, + "probability": 0.7526 + }, + { + "start": 3419.16, + "end": 3423.17, + "probability": 0.8622 + }, + { + "start": 3424.6, + "end": 3428.94, + "probability": 0.9819 + }, + { + "start": 3429.64, + "end": 3432.98, + "probability": 0.9842 + }, + { + "start": 3433.62, + "end": 3437.98, + "probability": 0.9706 + }, + { + "start": 3438.59, + "end": 3444.44, + "probability": 0.9515 + }, + { + "start": 3444.98, + "end": 3445.52, + "probability": 0.7346 + }, + { + "start": 3446.2, + "end": 3446.92, + "probability": 0.4986 + }, + { + "start": 3447.56, + "end": 3450.28, + "probability": 0.9729 + }, + { + "start": 3452.02, + "end": 3452.6, + "probability": 0.3345 + }, + { + "start": 3452.76, + "end": 3454.38, + "probability": 0.8223 + }, + { + "start": 3454.56, + "end": 3461.32, + "probability": 0.9854 + }, + { + "start": 3463.12, + "end": 3465.6, + "probability": 0.9578 + }, + { + "start": 3466.12, + "end": 3468.9, + "probability": 0.9504 + }, + { + "start": 3470.5, + "end": 3472.16, + "probability": 0.9468 + }, + { + "start": 3472.78, + "end": 3474.88, + "probability": 0.978 + }, + { + "start": 3475.58, + "end": 3479.1, + "probability": 0.9975 + }, + { + "start": 3479.44, + "end": 3484.74, + "probability": 0.9067 + }, + { + "start": 3484.74, + "end": 3490.74, + "probability": 0.9102 + }, + { + "start": 3491.6, + "end": 3492.38, + "probability": 0.6635 + }, + { + "start": 3492.66, + "end": 3493.34, + "probability": 0.8167 + }, + { + "start": 3493.54, + "end": 3498.94, + "probability": 0.9973 + }, + { + "start": 3501.58, + "end": 3504.08, + "probability": 0.9564 + }, + { + "start": 3505.46, + "end": 3507.32, + "probability": 0.7605 + }, + { + "start": 3507.44, + "end": 3511.72, + "probability": 0.9565 + }, + { + "start": 3511.84, + "end": 3513.9, + "probability": 0.9522 + }, + { + "start": 3514.46, + "end": 3516.94, + "probability": 0.9136 + }, + { + "start": 3518.32, + "end": 3522.58, + "probability": 0.9823 + }, + { + "start": 3522.76, + "end": 3524.38, + "probability": 0.8585 + }, + { + "start": 3525.18, + "end": 3527.32, + "probability": 0.99 + }, + { + "start": 3527.32, + "end": 3530.46, + "probability": 0.9946 + }, + { + "start": 3531.22, + "end": 3532.32, + "probability": 0.7253 + }, + { + "start": 3532.48, + "end": 3535.7, + "probability": 0.9546 + }, + { + "start": 3535.7, + "end": 3538.5, + "probability": 0.9605 + }, + { + "start": 3538.94, + "end": 3541.96, + "probability": 0.9669 + }, + { + "start": 3542.08, + "end": 3544.51, + "probability": 0.9532 + }, + { + "start": 3546.04, + "end": 3548.04, + "probability": 0.8809 + }, + { + "start": 3548.2, + "end": 3550.32, + "probability": 0.9914 + }, + { + "start": 3550.84, + "end": 3556.7, + "probability": 0.9932 + }, + { + "start": 3557.68, + "end": 3559.74, + "probability": 0.8525 + }, + { + "start": 3563.08, + "end": 3568.92, + "probability": 0.9799 + }, + { + "start": 3569.34, + "end": 3571.64, + "probability": 0.9675 + }, + { + "start": 3572.36, + "end": 3576.64, + "probability": 0.993 + }, + { + "start": 3577.38, + "end": 3581.42, + "probability": 0.9514 + }, + { + "start": 3583.13, + "end": 3590.5, + "probability": 0.995 + }, + { + "start": 3591.06, + "end": 3594.16, + "probability": 0.9929 + }, + { + "start": 3594.34, + "end": 3596.96, + "probability": 0.7802 + }, + { + "start": 3597.18, + "end": 3597.92, + "probability": 0.9797 + }, + { + "start": 3599.5, + "end": 3602.84, + "probability": 0.9712 + }, + { + "start": 3603.0, + "end": 3606.52, + "probability": 0.9995 + }, + { + "start": 3607.14, + "end": 3610.14, + "probability": 0.9995 + }, + { + "start": 3610.46, + "end": 3617.78, + "probability": 0.9966 + }, + { + "start": 3617.88, + "end": 3622.34, + "probability": 0.9985 + }, + { + "start": 3622.9, + "end": 3624.3, + "probability": 0.7216 + }, + { + "start": 3625.51, + "end": 3629.24, + "probability": 0.99 + }, + { + "start": 3630.0, + "end": 3632.62, + "probability": 0.9007 + }, + { + "start": 3633.14, + "end": 3639.1, + "probability": 0.7143 + }, + { + "start": 3639.16, + "end": 3644.28, + "probability": 0.9952 + }, + { + "start": 3646.01, + "end": 3649.18, + "probability": 0.9789 + }, + { + "start": 3649.54, + "end": 3651.86, + "probability": 0.9146 + }, + { + "start": 3652.74, + "end": 3656.88, + "probability": 0.9874 + }, + { + "start": 3657.6, + "end": 3660.46, + "probability": 0.9933 + }, + { + "start": 3661.04, + "end": 3662.16, + "probability": 0.9988 + }, + { + "start": 3662.3, + "end": 3663.4, + "probability": 0.7905 + }, + { + "start": 3664.32, + "end": 3668.56, + "probability": 0.9676 + }, + { + "start": 3668.84, + "end": 3674.69, + "probability": 0.9731 + }, + { + "start": 3674.74, + "end": 3678.6, + "probability": 0.9823 + }, + { + "start": 3679.36, + "end": 3685.38, + "probability": 0.8276 + }, + { + "start": 3687.5, + "end": 3691.0, + "probability": 0.5042 + }, + { + "start": 3691.62, + "end": 3691.72, + "probability": 0.3029 + }, + { + "start": 3692.7, + "end": 3696.08, + "probability": 0.9933 + }, + { + "start": 3696.2, + "end": 3697.28, + "probability": 0.9436 + }, + { + "start": 3702.16, + "end": 3705.66, + "probability": 0.5024 + }, + { + "start": 3705.66, + "end": 3706.44, + "probability": 0.7321 + }, + { + "start": 3706.46, + "end": 3709.24, + "probability": 0.5983 + }, + { + "start": 3709.28, + "end": 3713.9, + "probability": 0.77 + }, + { + "start": 3714.52, + "end": 3723.42, + "probability": 0.9561 + }, + { + "start": 3724.08, + "end": 3728.8, + "probability": 0.627 + }, + { + "start": 3728.9, + "end": 3730.4, + "probability": 0.6989 + }, + { + "start": 3730.52, + "end": 3731.6, + "probability": 0.8957 + }, + { + "start": 3731.76, + "end": 3732.1, + "probability": 0.3558 + }, + { + "start": 3732.12, + "end": 3734.48, + "probability": 0.9615 + }, + { + "start": 3735.62, + "end": 3737.42, + "probability": 0.7283 + }, + { + "start": 3737.62, + "end": 3739.0, + "probability": 0.8444 + }, + { + "start": 3739.06, + "end": 3740.6, + "probability": 0.5544 + }, + { + "start": 3740.72, + "end": 3742.28, + "probability": 0.9717 + }, + { + "start": 3742.4, + "end": 3742.82, + "probability": 0.874 + }, + { + "start": 3742.94, + "end": 3745.36, + "probability": 0.8963 + }, + { + "start": 3745.36, + "end": 3749.68, + "probability": 0.946 + }, + { + "start": 3749.68, + "end": 3753.02, + "probability": 0.974 + }, + { + "start": 3753.96, + "end": 3756.64, + "probability": 0.4968 + }, + { + "start": 3757.08, + "end": 3758.14, + "probability": 0.745 + }, + { + "start": 3759.6, + "end": 3764.34, + "probability": 0.9452 + }, + { + "start": 3765.14, + "end": 3769.24, + "probability": 0.9756 + }, + { + "start": 3769.24, + "end": 3774.0, + "probability": 0.9403 + }, + { + "start": 3774.52, + "end": 3780.26, + "probability": 0.9945 + }, + { + "start": 3781.08, + "end": 3789.48, + "probability": 0.9878 + }, + { + "start": 3790.3, + "end": 3790.78, + "probability": 0.8136 + }, + { + "start": 3790.86, + "end": 3791.54, + "probability": 0.7377 + }, + { + "start": 3791.58, + "end": 3797.0, + "probability": 0.8516 + }, + { + "start": 3798.04, + "end": 3803.46, + "probability": 0.9197 + }, + { + "start": 3803.84, + "end": 3805.52, + "probability": 0.9717 + }, + { + "start": 3805.62, + "end": 3809.32, + "probability": 0.9478 + }, + { + "start": 3810.55, + "end": 3812.54, + "probability": 0.9338 + }, + { + "start": 3812.7, + "end": 3813.3, + "probability": 0.9091 + }, + { + "start": 3813.3, + "end": 3814.44, + "probability": 0.9331 + }, + { + "start": 3815.1, + "end": 3819.06, + "probability": 0.9924 + }, + { + "start": 3819.46, + "end": 3824.28, + "probability": 0.8362 + }, + { + "start": 3824.86, + "end": 3826.12, + "probability": 0.9573 + }, + { + "start": 3826.54, + "end": 3830.86, + "probability": 0.9919 + }, + { + "start": 3831.52, + "end": 3834.06, + "probability": 0.9906 + }, + { + "start": 3834.62, + "end": 3837.36, + "probability": 0.8828 + }, + { + "start": 3837.94, + "end": 3839.18, + "probability": 0.8416 + }, + { + "start": 3839.36, + "end": 3840.55, + "probability": 0.9565 + }, + { + "start": 3840.7, + "end": 3842.94, + "probability": 0.9078 + }, + { + "start": 3843.64, + "end": 3845.8, + "probability": 0.8782 + }, + { + "start": 3846.36, + "end": 3851.4, + "probability": 0.8449 + }, + { + "start": 3851.52, + "end": 3854.16, + "probability": 0.9852 + }, + { + "start": 3855.2, + "end": 3855.88, + "probability": 0.4533 + }, + { + "start": 3856.9, + "end": 3862.26, + "probability": 0.9552 + }, + { + "start": 3863.18, + "end": 3865.34, + "probability": 0.7877 + }, + { + "start": 3866.24, + "end": 3871.48, + "probability": 0.8791 + }, + { + "start": 3872.88, + "end": 3875.66, + "probability": 0.9767 + }, + { + "start": 3876.16, + "end": 3877.78, + "probability": 0.985 + }, + { + "start": 3877.9, + "end": 3881.14, + "probability": 0.6505 + }, + { + "start": 3881.72, + "end": 3884.4, + "probability": 0.9712 + }, + { + "start": 3886.86, + "end": 3889.0, + "probability": 0.6016 + }, + { + "start": 3889.18, + "end": 3890.68, + "probability": 0.7128 + }, + { + "start": 3894.6, + "end": 3897.42, + "probability": 0.9417 + }, + { + "start": 3899.36, + "end": 3900.12, + "probability": 0.8213 + }, + { + "start": 3900.32, + "end": 3905.08, + "probability": 0.9846 + }, + { + "start": 3906.3, + "end": 3908.28, + "probability": 0.8105 + }, + { + "start": 3908.74, + "end": 3911.12, + "probability": 0.8909 + }, + { + "start": 3912.34, + "end": 3913.9, + "probability": 0.7145 + }, + { + "start": 3913.9, + "end": 3917.2, + "probability": 0.9716 + }, + { + "start": 3918.32, + "end": 3922.32, + "probability": 0.688 + }, + { + "start": 3922.32, + "end": 3922.86, + "probability": 0.3055 + }, + { + "start": 3922.86, + "end": 3923.62, + "probability": 0.0178 + }, + { + "start": 3923.74, + "end": 3923.78, + "probability": 0.3272 + }, + { + "start": 3923.78, + "end": 3925.4, + "probability": 0.6847 + }, + { + "start": 3925.68, + "end": 3926.88, + "probability": 0.8044 + }, + { + "start": 3929.78, + "end": 3932.64, + "probability": 0.8605 + }, + { + "start": 3934.6, + "end": 3937.76, + "probability": 0.9783 + }, + { + "start": 3938.26, + "end": 3940.36, + "probability": 0.8047 + }, + { + "start": 3940.72, + "end": 3942.56, + "probability": 0.9851 + }, + { + "start": 3943.24, + "end": 3944.12, + "probability": 0.6113 + }, + { + "start": 3944.48, + "end": 3945.75, + "probability": 0.6553 + }, + { + "start": 3946.12, + "end": 3947.72, + "probability": 0.9015 + }, + { + "start": 3948.6, + "end": 3950.64, + "probability": 0.6615 + }, + { + "start": 3957.06, + "end": 3958.94, + "probability": 0.6761 + }, + { + "start": 3959.58, + "end": 3962.82, + "probability": 0.9794 + }, + { + "start": 3963.34, + "end": 3964.92, + "probability": 0.8669 + }, + { + "start": 3965.54, + "end": 3968.42, + "probability": 0.8853 + }, + { + "start": 3969.08, + "end": 3975.34, + "probability": 0.9925 + }, + { + "start": 3975.86, + "end": 3978.82, + "probability": 0.9743 + }, + { + "start": 3979.4, + "end": 3987.0, + "probability": 0.9325 + }, + { + "start": 3987.7, + "end": 3988.74, + "probability": 0.671 + }, + { + "start": 3989.66, + "end": 3994.44, + "probability": 0.9688 + }, + { + "start": 3994.44, + "end": 4000.92, + "probability": 0.7048 + }, + { + "start": 4001.56, + "end": 4006.34, + "probability": 0.9719 + }, + { + "start": 4006.34, + "end": 4010.24, + "probability": 0.983 + }, + { + "start": 4012.2, + "end": 4012.46, + "probability": 0.6885 + }, + { + "start": 4012.66, + "end": 4013.6, + "probability": 0.6478 + }, + { + "start": 4013.82, + "end": 4016.58, + "probability": 0.9963 + }, + { + "start": 4017.14, + "end": 4019.9, + "probability": 0.9968 + }, + { + "start": 4020.64, + "end": 4021.66, + "probability": 0.8438 + }, + { + "start": 4021.76, + "end": 4025.42, + "probability": 0.9966 + }, + { + "start": 4026.24, + "end": 4027.58, + "probability": 0.9763 + }, + { + "start": 4027.94, + "end": 4030.36, + "probability": 0.9526 + }, + { + "start": 4031.46, + "end": 4035.1, + "probability": 0.9989 + }, + { + "start": 4035.68, + "end": 4038.92, + "probability": 0.9701 + }, + { + "start": 4039.76, + "end": 4043.86, + "probability": 0.9971 + }, + { + "start": 4044.48, + "end": 4045.5, + "probability": 0.7673 + }, + { + "start": 4046.18, + "end": 4048.78, + "probability": 0.6688 + }, + { + "start": 4049.24, + "end": 4050.2, + "probability": 0.8478 + }, + { + "start": 4051.02, + "end": 4051.86, + "probability": 0.9471 + }, + { + "start": 4052.62, + "end": 4056.02, + "probability": 0.8283 + }, + { + "start": 4056.54, + "end": 4060.48, + "probability": 0.9434 + }, + { + "start": 4060.68, + "end": 4063.5, + "probability": 0.7328 + }, + { + "start": 4064.06, + "end": 4065.06, + "probability": 0.6158 + }, + { + "start": 4065.5, + "end": 4065.72, + "probability": 0.7176 + }, + { + "start": 4066.52, + "end": 4067.26, + "probability": 0.9545 + }, + { + "start": 4067.38, + "end": 4068.2, + "probability": 0.8717 + }, + { + "start": 4068.32, + "end": 4069.78, + "probability": 0.9852 + }, + { + "start": 4070.92, + "end": 4072.46, + "probability": 0.9141 + }, + { + "start": 4072.6, + "end": 4074.64, + "probability": 0.998 + }, + { + "start": 4075.26, + "end": 4075.94, + "probability": 0.7057 + }, + { + "start": 4076.96, + "end": 4080.6, + "probability": 0.9642 + }, + { + "start": 4081.28, + "end": 4084.48, + "probability": 0.8194 + }, + { + "start": 4086.24, + "end": 4086.46, + "probability": 0.4812 + }, + { + "start": 4091.02, + "end": 4095.24, + "probability": 0.998 + }, + { + "start": 4095.24, + "end": 4098.24, + "probability": 0.9983 + }, + { + "start": 4098.78, + "end": 4101.04, + "probability": 0.8978 + }, + { + "start": 4101.2, + "end": 4101.36, + "probability": 0.5134 + }, + { + "start": 4101.48, + "end": 4101.72, + "probability": 0.926 + }, + { + "start": 4101.84, + "end": 4104.64, + "probability": 0.8838 + }, + { + "start": 4104.78, + "end": 4107.56, + "probability": 0.9821 + }, + { + "start": 4109.24, + "end": 4111.28, + "probability": 0.9937 + }, + { + "start": 4111.28, + "end": 4113.5, + "probability": 0.9893 + }, + { + "start": 4114.48, + "end": 4114.84, + "probability": 0.6912 + }, + { + "start": 4115.0, + "end": 4119.92, + "probability": 0.877 + }, + { + "start": 4120.66, + "end": 4124.1, + "probability": 0.9792 + }, + { + "start": 4124.68, + "end": 4126.54, + "probability": 0.9897 + }, + { + "start": 4127.7, + "end": 4132.28, + "probability": 0.9761 + }, + { + "start": 4132.84, + "end": 4136.08, + "probability": 0.9536 + }, + { + "start": 4136.16, + "end": 4139.24, + "probability": 0.841 + }, + { + "start": 4140.12, + "end": 4141.72, + "probability": 0.8671 + }, + { + "start": 4142.38, + "end": 4143.38, + "probability": 0.6901 + }, + { + "start": 4143.56, + "end": 4146.94, + "probability": 0.9705 + }, + { + "start": 4147.84, + "end": 4148.9, + "probability": 0.9158 + }, + { + "start": 4149.0, + "end": 4150.92, + "probability": 0.8144 + }, + { + "start": 4151.62, + "end": 4154.24, + "probability": 0.9917 + }, + { + "start": 4154.52, + "end": 4155.36, + "probability": 0.9049 + }, + { + "start": 4156.4, + "end": 4160.5, + "probability": 0.981 + }, + { + "start": 4161.76, + "end": 4164.32, + "probability": 0.9871 + }, + { + "start": 4164.46, + "end": 4165.33, + "probability": 0.9006 + }, + { + "start": 4166.12, + "end": 4167.88, + "probability": 0.9874 + }, + { + "start": 4169.58, + "end": 4169.84, + "probability": 0.1323 + }, + { + "start": 4169.84, + "end": 4170.5, + "probability": 0.8954 + }, + { + "start": 4171.4, + "end": 4172.1, + "probability": 0.8472 + }, + { + "start": 4178.14, + "end": 4180.2, + "probability": 0.7069 + }, + { + "start": 4180.44, + "end": 4185.98, + "probability": 0.7743 + }, + { + "start": 4185.98, + "end": 4191.1, + "probability": 0.9185 + }, + { + "start": 4191.6, + "end": 4196.14, + "probability": 0.9718 + }, + { + "start": 4197.28, + "end": 4198.0, + "probability": 0.7314 + }, + { + "start": 4198.2, + "end": 4198.6, + "probability": 0.8677 + }, + { + "start": 4198.7, + "end": 4205.38, + "probability": 0.8564 + }, + { + "start": 4206.12, + "end": 4209.73, + "probability": 0.4847 + }, + { + "start": 4210.56, + "end": 4211.92, + "probability": 0.8752 + }, + { + "start": 4212.68, + "end": 4215.55, + "probability": 0.7759 + }, + { + "start": 4217.54, + "end": 4218.56, + "probability": 0.8633 + }, + { + "start": 4218.62, + "end": 4220.76, + "probability": 0.8188 + }, + { + "start": 4221.14, + "end": 4222.78, + "probability": 0.8115 + }, + { + "start": 4223.72, + "end": 4226.22, + "probability": 0.8874 + }, + { + "start": 4228.38, + "end": 4229.0, + "probability": 0.6899 + }, + { + "start": 4229.6, + "end": 4230.82, + "probability": 0.7707 + }, + { + "start": 4232.72, + "end": 4235.36, + "probability": 0.4898 + }, + { + "start": 4235.42, + "end": 4236.6, + "probability": 0.7754 + }, + { + "start": 4236.8, + "end": 4237.72, + "probability": 0.7539 + }, + { + "start": 4237.9, + "end": 4243.06, + "probability": 0.9854 + }, + { + "start": 4243.06, + "end": 4246.96, + "probability": 0.9894 + }, + { + "start": 4248.02, + "end": 4252.02, + "probability": 0.9872 + }, + { + "start": 4252.02, + "end": 4256.54, + "probability": 0.9893 + }, + { + "start": 4256.94, + "end": 4262.54, + "probability": 0.9955 + }, + { + "start": 4262.7, + "end": 4264.12, + "probability": 0.7686 + }, + { + "start": 4264.4, + "end": 4268.6, + "probability": 0.9479 + }, + { + "start": 4269.08, + "end": 4273.32, + "probability": 0.9914 + }, + { + "start": 4273.8, + "end": 4277.14, + "probability": 0.9779 + }, + { + "start": 4277.32, + "end": 4278.14, + "probability": 0.8111 + }, + { + "start": 4278.2, + "end": 4282.92, + "probability": 0.9887 + }, + { + "start": 4283.54, + "end": 4284.44, + "probability": 0.8575 + }, + { + "start": 4284.68, + "end": 4285.66, + "probability": 0.9511 + }, + { + "start": 4285.74, + "end": 4290.82, + "probability": 0.9754 + }, + { + "start": 4290.82, + "end": 4295.72, + "probability": 0.998 + }, + { + "start": 4295.96, + "end": 4297.92, + "probability": 0.9538 + }, + { + "start": 4298.67, + "end": 4300.96, + "probability": 0.998 + }, + { + "start": 4301.08, + "end": 4303.0, + "probability": 0.9963 + }, + { + "start": 4303.8, + "end": 4307.04, + "probability": 0.9557 + }, + { + "start": 4307.58, + "end": 4311.08, + "probability": 0.9744 + }, + { + "start": 4311.12, + "end": 4314.96, + "probability": 0.992 + }, + { + "start": 4315.4, + "end": 4320.12, + "probability": 0.9928 + }, + { + "start": 4321.52, + "end": 4326.38, + "probability": 0.9837 + }, + { + "start": 4326.38, + "end": 4330.9, + "probability": 0.9982 + }, + { + "start": 4330.96, + "end": 4333.2, + "probability": 0.8763 + }, + { + "start": 4334.08, + "end": 4338.36, + "probability": 0.996 + }, + { + "start": 4338.36, + "end": 4343.24, + "probability": 0.9988 + }, + { + "start": 4343.96, + "end": 4344.66, + "probability": 0.4953 + }, + { + "start": 4344.72, + "end": 4347.76, + "probability": 0.9606 + }, + { + "start": 4348.54, + "end": 4354.16, + "probability": 0.9928 + }, + { + "start": 4354.16, + "end": 4358.84, + "probability": 0.9771 + }, + { + "start": 4359.56, + "end": 4363.54, + "probability": 0.9989 + }, + { + "start": 4363.62, + "end": 4365.0, + "probability": 0.9963 + }, + { + "start": 4365.56, + "end": 4369.0, + "probability": 0.9615 + }, + { + "start": 4369.26, + "end": 4374.12, + "probability": 0.998 + }, + { + "start": 4374.2, + "end": 4377.48, + "probability": 0.9948 + }, + { + "start": 4377.48, + "end": 4380.96, + "probability": 0.9988 + }, + { + "start": 4381.12, + "end": 4381.7, + "probability": 0.7026 + }, + { + "start": 4385.22, + "end": 4386.26, + "probability": 0.8257 + }, + { + "start": 4386.46, + "end": 4388.98, + "probability": 0.7529 + }, + { + "start": 4389.68, + "end": 4390.9, + "probability": 0.5483 + }, + { + "start": 4391.88, + "end": 4394.36, + "probability": 0.3482 + }, + { + "start": 4395.02, + "end": 4399.62, + "probability": 0.9973 + }, + { + "start": 4400.56, + "end": 4401.84, + "probability": 0.9142 + }, + { + "start": 4402.44, + "end": 4405.96, + "probability": 0.9919 + }, + { + "start": 4406.48, + "end": 4409.7, + "probability": 0.9237 + }, + { + "start": 4410.24, + "end": 4412.88, + "probability": 0.9834 + }, + { + "start": 4413.98, + "end": 4418.38, + "probability": 0.9485 + }, + { + "start": 4419.38, + "end": 4419.84, + "probability": 0.6503 + }, + { + "start": 4419.96, + "end": 4422.1, + "probability": 0.9765 + }, + { + "start": 4422.1, + "end": 4425.78, + "probability": 0.9959 + }, + { + "start": 4426.82, + "end": 4429.08, + "probability": 0.9871 + }, + { + "start": 4429.6, + "end": 4433.64, + "probability": 0.9984 + }, + { + "start": 4434.64, + "end": 4437.66, + "probability": 0.8362 + }, + { + "start": 4438.24, + "end": 4441.0, + "probability": 0.9961 + }, + { + "start": 4441.42, + "end": 4445.1, + "probability": 0.6863 + }, + { + "start": 4445.8, + "end": 4447.0, + "probability": 0.9662 + }, + { + "start": 4447.58, + "end": 4450.64, + "probability": 0.874 + }, + { + "start": 4451.16, + "end": 4453.18, + "probability": 0.7588 + }, + { + "start": 4453.24, + "end": 4455.06, + "probability": 0.9728 + }, + { + "start": 4455.06, + "end": 4457.92, + "probability": 0.8923 + }, + { + "start": 4458.26, + "end": 4468.26, + "probability": 0.9914 + }, + { + "start": 4469.08, + "end": 4470.34, + "probability": 0.4043 + }, + { + "start": 4470.54, + "end": 4473.36, + "probability": 0.6006 + }, + { + "start": 4473.52, + "end": 4477.52, + "probability": 0.9867 + }, + { + "start": 4479.08, + "end": 4479.52, + "probability": 0.7085 + }, + { + "start": 4480.36, + "end": 4481.36, + "probability": 0.0105 + }, + { + "start": 4482.16, + "end": 4487.14, + "probability": 0.9896 + }, + { + "start": 4487.84, + "end": 4489.18, + "probability": 0.9783 + }, + { + "start": 4490.36, + "end": 4494.62, + "probability": 0.9234 + }, + { + "start": 4494.92, + "end": 4495.9, + "probability": 0.7398 + }, + { + "start": 4496.92, + "end": 4500.2, + "probability": 0.9508 + }, + { + "start": 4500.56, + "end": 4501.0, + "probability": 0.8345 + }, + { + "start": 4501.84, + "end": 4505.42, + "probability": 0.9934 + }, + { + "start": 4505.98, + "end": 4506.84, + "probability": 0.9498 + }, + { + "start": 4507.24, + "end": 4509.56, + "probability": 0.9957 + }, + { + "start": 4509.58, + "end": 4513.54, + "probability": 0.9878 + }, + { + "start": 4513.82, + "end": 4517.26, + "probability": 0.9659 + }, + { + "start": 4518.44, + "end": 4522.96, + "probability": 0.9954 + }, + { + "start": 4523.54, + "end": 4526.04, + "probability": 0.9961 + }, + { + "start": 4526.08, + "end": 4529.34, + "probability": 0.9713 + }, + { + "start": 4529.48, + "end": 4531.24, + "probability": 0.7737 + }, + { + "start": 4532.12, + "end": 4532.54, + "probability": 0.5401 + }, + { + "start": 4532.64, + "end": 4536.38, + "probability": 0.9578 + }, + { + "start": 4536.38, + "end": 4541.5, + "probability": 0.9324 + }, + { + "start": 4542.34, + "end": 4546.08, + "probability": 0.996 + }, + { + "start": 4546.08, + "end": 4551.14, + "probability": 0.9734 + }, + { + "start": 4552.46, + "end": 4556.42, + "probability": 0.9454 + }, + { + "start": 4557.08, + "end": 4557.88, + "probability": 0.9971 + }, + { + "start": 4558.5, + "end": 4562.7, + "probability": 0.9984 + }, + { + "start": 4562.98, + "end": 4566.62, + "probability": 0.9996 + }, + { + "start": 4567.76, + "end": 4569.18, + "probability": 0.8339 + }, + { + "start": 4570.99, + "end": 4574.56, + "probability": 0.9952 + }, + { + "start": 4575.4, + "end": 4578.76, + "probability": 0.9963 + }, + { + "start": 4581.78, + "end": 4582.38, + "probability": 0.6099 + }, + { + "start": 4582.5, + "end": 4582.84, + "probability": 0.8162 + }, + { + "start": 4582.92, + "end": 4583.86, + "probability": 0.8673 + }, + { + "start": 4583.94, + "end": 4587.08, + "probability": 0.9835 + }, + { + "start": 4587.26, + "end": 4592.9, + "probability": 0.8754 + }, + { + "start": 4593.4, + "end": 4597.52, + "probability": 0.9965 + }, + { + "start": 4597.94, + "end": 4598.92, + "probability": 0.5523 + }, + { + "start": 4599.28, + "end": 4600.08, + "probability": 0.7758 + }, + { + "start": 4600.16, + "end": 4600.78, + "probability": 0.6752 + }, + { + "start": 4600.92, + "end": 4602.68, + "probability": 0.8177 + }, + { + "start": 4602.88, + "end": 4604.58, + "probability": 0.72 + }, + { + "start": 4604.66, + "end": 4605.48, + "probability": 0.9899 + }, + { + "start": 4605.86, + "end": 4608.16, + "probability": 0.9925 + }, + { + "start": 4608.64, + "end": 4612.46, + "probability": 0.9922 + }, + { + "start": 4613.0, + "end": 4614.4, + "probability": 0.5669 + }, + { + "start": 4614.52, + "end": 4617.08, + "probability": 0.9883 + }, + { + "start": 4617.54, + "end": 4619.94, + "probability": 0.9913 + }, + { + "start": 4620.08, + "end": 4623.06, + "probability": 0.8284 + }, + { + "start": 4623.58, + "end": 4623.58, + "probability": 0.0555 + }, + { + "start": 4623.58, + "end": 4624.4, + "probability": 0.6443 + }, + { + "start": 4624.44, + "end": 4627.36, + "probability": 0.8032 + }, + { + "start": 4627.52, + "end": 4633.08, + "probability": 0.8765 + }, + { + "start": 4633.08, + "end": 4635.24, + "probability": 0.998 + }, + { + "start": 4635.7, + "end": 4639.26, + "probability": 0.9769 + }, + { + "start": 4639.44, + "end": 4641.24, + "probability": 0.796 + }, + { + "start": 4641.66, + "end": 4646.6, + "probability": 0.9937 + }, + { + "start": 4646.76, + "end": 4647.38, + "probability": 0.7307 + }, + { + "start": 4647.5, + "end": 4648.28, + "probability": 0.8089 + }, + { + "start": 4648.6, + "end": 4649.18, + "probability": 0.8759 + }, + { + "start": 4649.62, + "end": 4651.48, + "probability": 0.8569 + }, + { + "start": 4651.74, + "end": 4654.3, + "probability": 0.697 + }, + { + "start": 4654.72, + "end": 4659.5, + "probability": 0.9731 + }, + { + "start": 4659.56, + "end": 4663.12, + "probability": 0.9708 + }, + { + "start": 4663.54, + "end": 4665.52, + "probability": 0.8487 + }, + { + "start": 4665.56, + "end": 4666.7, + "probability": 0.9603 + }, + { + "start": 4668.3, + "end": 4670.04, + "probability": 0.7238 + }, + { + "start": 4670.18, + "end": 4671.64, + "probability": 0.814 + }, + { + "start": 4671.82, + "end": 4676.76, + "probability": 0.9951 + }, + { + "start": 4676.82, + "end": 4679.74, + "probability": 0.9978 + }, + { + "start": 4680.36, + "end": 4681.96, + "probability": 0.7776 + }, + { + "start": 4682.14, + "end": 4686.24, + "probability": 0.9839 + }, + { + "start": 4686.32, + "end": 4688.02, + "probability": 0.6899 + }, + { + "start": 4688.02, + "end": 4689.12, + "probability": 0.5382 + }, + { + "start": 4689.36, + "end": 4690.18, + "probability": 0.9451 + }, + { + "start": 4691.22, + "end": 4695.96, + "probability": 0.9523 + }, + { + "start": 4696.7, + "end": 4701.0, + "probability": 0.9078 + }, + { + "start": 4701.0, + "end": 4702.36, + "probability": 0.5211 + }, + { + "start": 4702.9, + "end": 4709.24, + "probability": 0.9966 + }, + { + "start": 4710.48, + "end": 4715.92, + "probability": 0.9735 + }, + { + "start": 4716.44, + "end": 4716.54, + "probability": 0.8337 + }, + { + "start": 4719.1, + "end": 4719.44, + "probability": 0.4395 + }, + { + "start": 4720.52, + "end": 4723.04, + "probability": 0.8347 + }, + { + "start": 4723.12, + "end": 4724.1, + "probability": 0.6624 + }, + { + "start": 4724.14, + "end": 4725.74, + "probability": 0.7998 + }, + { + "start": 4725.74, + "end": 4726.12, + "probability": 0.5966 + }, + { + "start": 4726.85, + "end": 4729.16, + "probability": 0.9393 + }, + { + "start": 4729.3, + "end": 4731.72, + "probability": 0.9724 + }, + { + "start": 4732.26, + "end": 4734.92, + "probability": 0.9879 + }, + { + "start": 4735.1, + "end": 4736.46, + "probability": 0.7834 + }, + { + "start": 4737.42, + "end": 4737.76, + "probability": 0.2782 + }, + { + "start": 4737.76, + "end": 4740.14, + "probability": 0.5921 + }, + { + "start": 4740.16, + "end": 4740.36, + "probability": 0.0179 + }, + { + "start": 4740.6, + "end": 4741.6, + "probability": 0.2943 + }, + { + "start": 4742.7, + "end": 4748.46, + "probability": 0.9927 + }, + { + "start": 4748.92, + "end": 4749.8, + "probability": 0.8612 + }, + { + "start": 4750.12, + "end": 4751.4, + "probability": 0.8115 + }, + { + "start": 4751.48, + "end": 4753.3, + "probability": 0.9627 + }, + { + "start": 4753.86, + "end": 4757.9, + "probability": 0.9741 + }, + { + "start": 4758.36, + "end": 4760.16, + "probability": 0.5479 + }, + { + "start": 4761.08, + "end": 4763.7, + "probability": 0.9827 + }, + { + "start": 4764.14, + "end": 4767.8, + "probability": 0.9823 + }, + { + "start": 4768.7, + "end": 4771.56, + "probability": 0.9729 + }, + { + "start": 4772.8, + "end": 4774.72, + "probability": 0.9246 + }, + { + "start": 4775.38, + "end": 4777.78, + "probability": 0.9987 + }, + { + "start": 4780.45, + "end": 4782.64, + "probability": 0.9009 + }, + { + "start": 4783.06, + "end": 4785.7, + "probability": 0.9899 + }, + { + "start": 4786.98, + "end": 4794.28, + "probability": 0.945 + }, + { + "start": 4794.94, + "end": 4797.78, + "probability": 0.994 + }, + { + "start": 4798.36, + "end": 4799.82, + "probability": 0.7645 + }, + { + "start": 4800.58, + "end": 4803.41, + "probability": 0.974 + }, + { + "start": 4803.46, + "end": 4806.12, + "probability": 0.9779 + }, + { + "start": 4807.12, + "end": 4814.42, + "probability": 0.9927 + }, + { + "start": 4814.54, + "end": 4819.04, + "probability": 0.9836 + }, + { + "start": 4819.68, + "end": 4821.36, + "probability": 0.978 + }, + { + "start": 4821.9, + "end": 4823.33, + "probability": 0.4957 + }, + { + "start": 4824.12, + "end": 4827.3, + "probability": 0.8908 + }, + { + "start": 4828.12, + "end": 4829.9, + "probability": 0.7564 + }, + { + "start": 4830.56, + "end": 4833.02, + "probability": 0.812 + }, + { + "start": 4833.88, + "end": 4836.08, + "probability": 0.9233 + }, + { + "start": 4836.32, + "end": 4838.56, + "probability": 0.9886 + }, + { + "start": 4839.1, + "end": 4843.16, + "probability": 0.9033 + }, + { + "start": 4843.68, + "end": 4850.74, + "probability": 0.9974 + }, + { + "start": 4850.74, + "end": 4854.34, + "probability": 0.9883 + }, + { + "start": 4855.3, + "end": 4858.98, + "probability": 0.7496 + }, + { + "start": 4858.98, + "end": 4862.76, + "probability": 0.9714 + }, + { + "start": 4863.3, + "end": 4865.58, + "probability": 0.8221 + }, + { + "start": 4866.08, + "end": 4873.66, + "probability": 0.9688 + }, + { + "start": 4874.14, + "end": 4878.3, + "probability": 0.9876 + }, + { + "start": 4878.4, + "end": 4879.74, + "probability": 0.9269 + }, + { + "start": 4879.84, + "end": 4884.98, + "probability": 0.9456 + }, + { + "start": 4885.1, + "end": 4885.34, + "probability": 0.8481 + }, + { + "start": 4885.56, + "end": 4886.52, + "probability": 0.9358 + }, + { + "start": 4886.62, + "end": 4888.26, + "probability": 0.8582 + }, + { + "start": 4888.46, + "end": 4891.6, + "probability": 0.9894 + }, + { + "start": 4893.08, + "end": 4896.08, + "probability": 0.6472 + }, + { + "start": 4896.16, + "end": 4897.69, + "probability": 0.9897 + }, + { + "start": 4897.8, + "end": 4898.7, + "probability": 0.6097 + }, + { + "start": 4898.78, + "end": 4899.5, + "probability": 0.7565 + }, + { + "start": 4900.16, + "end": 4902.16, + "probability": 0.9948 + }, + { + "start": 4902.2, + "end": 4906.84, + "probability": 0.2897 + }, + { + "start": 4907.16, + "end": 4909.36, + "probability": 0.7466 + }, + { + "start": 4909.48, + "end": 4913.04, + "probability": 0.5853 + }, + { + "start": 4913.12, + "end": 4913.96, + "probability": 0.4851 + }, + { + "start": 4913.96, + "end": 4916.71, + "probability": 0.4842 + }, + { + "start": 4918.86, + "end": 4920.06, + "probability": 0.1895 + }, + { + "start": 4920.06, + "end": 4920.94, + "probability": 0.1969 + }, + { + "start": 4921.26, + "end": 4924.32, + "probability": 0.2119 + }, + { + "start": 4924.38, + "end": 4924.38, + "probability": 0.2769 + }, + { + "start": 4924.68, + "end": 4925.06, + "probability": 0.2663 + }, + { + "start": 4926.42, + "end": 4927.16, + "probability": 0.009 + }, + { + "start": 4927.7, + "end": 4928.04, + "probability": 0.3907 + }, + { + "start": 4929.56, + "end": 4930.6, + "probability": 0.0698 + }, + { + "start": 4930.88, + "end": 4932.92, + "probability": 0.1045 + }, + { + "start": 4932.92, + "end": 4934.2, + "probability": 0.1836 + }, + { + "start": 4935.44, + "end": 4936.84, + "probability": 0.3243 + }, + { + "start": 4938.46, + "end": 4939.3, + "probability": 0.1031 + }, + { + "start": 4940.1, + "end": 4940.1, + "probability": 0.659 + }, + { + "start": 4940.1, + "end": 4940.1, + "probability": 0.0178 + }, + { + "start": 4940.1, + "end": 4940.1, + "probability": 0.0357 + }, + { + "start": 4940.1, + "end": 4940.76, + "probability": 0.5952 + }, + { + "start": 4941.21, + "end": 4943.98, + "probability": 0.9193 + }, + { + "start": 4944.59, + "end": 4946.14, + "probability": 0.82 + }, + { + "start": 4946.22, + "end": 4947.9, + "probability": 0.8366 + }, + { + "start": 4948.18, + "end": 4950.46, + "probability": 0.9062 + }, + { + "start": 4950.84, + "end": 4953.82, + "probability": 0.8818 + }, + { + "start": 4954.76, + "end": 4958.58, + "probability": 0.957 + }, + { + "start": 4959.1, + "end": 4959.73, + "probability": 0.8383 + }, + { + "start": 4960.62, + "end": 4963.64, + "probability": 0.8792 + }, + { + "start": 4963.78, + "end": 4967.12, + "probability": 0.9081 + }, + { + "start": 4968.44, + "end": 4969.02, + "probability": 0.4665 + }, + { + "start": 4969.22, + "end": 4970.36, + "probability": 0.5343 + }, + { + "start": 4970.68, + "end": 4974.34, + "probability": 0.7137 + }, + { + "start": 4974.44, + "end": 4975.5, + "probability": 0.7569 + }, + { + "start": 4977.62, + "end": 4978.74, + "probability": 0.6225 + }, + { + "start": 4979.28, + "end": 4986.78, + "probability": 0.7796 + }, + { + "start": 4987.14, + "end": 4987.76, + "probability": 0.129 + }, + { + "start": 4989.08, + "end": 4993.58, + "probability": 0.9587 + }, + { + "start": 4994.34, + "end": 4994.82, + "probability": 0.5858 + }, + { + "start": 4994.92, + "end": 4998.4, + "probability": 0.9762 + }, + { + "start": 4998.4, + "end": 5002.98, + "probability": 0.8524 + }, + { + "start": 5003.76, + "end": 5007.72, + "probability": 0.9924 + }, + { + "start": 5007.72, + "end": 5011.66, + "probability": 0.9396 + }, + { + "start": 5012.4, + "end": 5014.8, + "probability": 0.8354 + }, + { + "start": 5015.1, + "end": 5018.54, + "probability": 0.84 + }, + { + "start": 5019.18, + "end": 5023.7, + "probability": 0.9924 + }, + { + "start": 5023.7, + "end": 5028.52, + "probability": 0.9919 + }, + { + "start": 5028.9, + "end": 5031.5, + "probability": 0.9433 + }, + { + "start": 5031.88, + "end": 5037.68, + "probability": 0.4846 + }, + { + "start": 5037.78, + "end": 5044.08, + "probability": 0.9574 + }, + { + "start": 5044.18, + "end": 5045.28, + "probability": 0.8489 + }, + { + "start": 5045.44, + "end": 5048.04, + "probability": 0.8396 + }, + { + "start": 5049.66, + "end": 5050.66, + "probability": 0.8735 + }, + { + "start": 5050.66, + "end": 5053.44, + "probability": 0.6673 + }, + { + "start": 5053.98, + "end": 5057.08, + "probability": 0.7923 + }, + { + "start": 5057.52, + "end": 5059.24, + "probability": 0.7028 + }, + { + "start": 5059.64, + "end": 5061.76, + "probability": 0.9497 + }, + { + "start": 5062.46, + "end": 5066.5, + "probability": 0.9861 + }, + { + "start": 5067.2, + "end": 5071.16, + "probability": 0.9822 + }, + { + "start": 5071.16, + "end": 5073.92, + "probability": 0.9862 + }, + { + "start": 5074.4, + "end": 5077.9, + "probability": 0.9926 + }, + { + "start": 5078.52, + "end": 5082.16, + "probability": 0.9567 + }, + { + "start": 5082.16, + "end": 5085.46, + "probability": 0.9949 + }, + { + "start": 5085.72, + "end": 5086.18, + "probability": 0.3818 + }, + { + "start": 5086.28, + "end": 5087.44, + "probability": 0.656 + }, + { + "start": 5087.88, + "end": 5088.76, + "probability": 0.5928 + }, + { + "start": 5088.84, + "end": 5090.28, + "probability": 0.9976 + }, + { + "start": 5091.18, + "end": 5093.16, + "probability": 0.9663 + }, + { + "start": 5093.84, + "end": 5096.42, + "probability": 0.9928 + }, + { + "start": 5097.02, + "end": 5100.82, + "probability": 0.9875 + }, + { + "start": 5100.82, + "end": 5105.2, + "probability": 0.87 + }, + { + "start": 5106.44, + "end": 5108.28, + "probability": 0.668 + }, + { + "start": 5109.7, + "end": 5113.64, + "probability": 0.9863 + }, + { + "start": 5114.28, + "end": 5115.9, + "probability": 0.8683 + }, + { + "start": 5115.98, + "end": 5117.56, + "probability": 0.8306 + }, + { + "start": 5117.96, + "end": 5120.22, + "probability": 0.9795 + }, + { + "start": 5120.84, + "end": 5126.14, + "probability": 0.984 + }, + { + "start": 5126.14, + "end": 5130.46, + "probability": 0.9888 + }, + { + "start": 5131.06, + "end": 5133.8, + "probability": 0.9951 + }, + { + "start": 5133.8, + "end": 5136.98, + "probability": 0.9222 + }, + { + "start": 5137.24, + "end": 5139.46, + "probability": 0.6758 + }, + { + "start": 5139.8, + "end": 5142.28, + "probability": 0.9951 + }, + { + "start": 5142.8, + "end": 5147.44, + "probability": 0.9943 + }, + { + "start": 5147.84, + "end": 5149.82, + "probability": 0.9784 + }, + { + "start": 5150.22, + "end": 5150.42, + "probability": 0.7442 + }, + { + "start": 5150.9, + "end": 5151.36, + "probability": 0.4994 + }, + { + "start": 5151.44, + "end": 5151.54, + "probability": 0.6272 + }, + { + "start": 5153.14, + "end": 5153.74, + "probability": 0.7295 + }, + { + "start": 5154.18, + "end": 5155.56, + "probability": 0.8446 + }, + { + "start": 5156.1, + "end": 5156.56, + "probability": 0.9183 + }, + { + "start": 5158.04, + "end": 5159.22, + "probability": 0.8625 + }, + { + "start": 5160.66, + "end": 5160.94, + "probability": 0.9824 + }, + { + "start": 5161.64, + "end": 5164.86, + "probability": 0.9097 + }, + { + "start": 5165.4, + "end": 5165.9, + "probability": 0.863 + }, + { + "start": 5166.46, + "end": 5168.7, + "probability": 0.9466 + }, + { + "start": 5170.24, + "end": 5172.84, + "probability": 0.7704 + }, + { + "start": 5173.0, + "end": 5174.66, + "probability": 0.9536 + }, + { + "start": 5175.28, + "end": 5178.1, + "probability": 0.963 + }, + { + "start": 5181.22, + "end": 5184.94, + "probability": 0.6963 + }, + { + "start": 5190.16, + "end": 5193.34, + "probability": 0.8626 + }, + { + "start": 5194.08, + "end": 5196.56, + "probability": 0.9902 + }, + { + "start": 5196.68, + "end": 5198.1, + "probability": 0.9902 + }, + { + "start": 5198.96, + "end": 5200.18, + "probability": 0.9945 + }, + { + "start": 5200.82, + "end": 5202.12, + "probability": 0.9937 + }, + { + "start": 5203.78, + "end": 5206.56, + "probability": 0.91 + }, + { + "start": 5210.92, + "end": 5215.6, + "probability": 0.9923 + }, + { + "start": 5215.74, + "end": 5216.37, + "probability": 0.7128 + }, + { + "start": 5217.18, + "end": 5221.79, + "probability": 0.9662 + }, + { + "start": 5223.24, + "end": 5228.28, + "probability": 0.5806 + }, + { + "start": 5229.6, + "end": 5230.84, + "probability": 0.9185 + }, + { + "start": 5230.88, + "end": 5231.9, + "probability": 0.8369 + }, + { + "start": 5232.32, + "end": 5233.2, + "probability": 0.8354 + }, + { + "start": 5233.32, + "end": 5236.18, + "probability": 0.9982 + }, + { + "start": 5236.38, + "end": 5238.1, + "probability": 0.9961 + }, + { + "start": 5239.72, + "end": 5241.76, + "probability": 0.9408 + }, + { + "start": 5244.3, + "end": 5247.76, + "probability": 0.9435 + }, + { + "start": 5248.8, + "end": 5249.92, + "probability": 0.7229 + }, + { + "start": 5250.45, + "end": 5255.1, + "probability": 0.9926 + }, + { + "start": 5255.76, + "end": 5258.12, + "probability": 0.9668 + }, + { + "start": 5258.94, + "end": 5261.7, + "probability": 0.8453 + }, + { + "start": 5262.72, + "end": 5271.86, + "probability": 0.8382 + }, + { + "start": 5273.56, + "end": 5274.8, + "probability": 0.8236 + }, + { + "start": 5275.06, + "end": 5276.15, + "probability": 0.9301 + }, + { + "start": 5276.54, + "end": 5277.3, + "probability": 0.7905 + }, + { + "start": 5277.42, + "end": 5285.44, + "probability": 0.8412 + }, + { + "start": 5288.72, + "end": 5289.46, + "probability": 0.8017 + }, + { + "start": 5289.64, + "end": 5290.84, + "probability": 0.7694 + }, + { + "start": 5291.54, + "end": 5293.2, + "probability": 0.9793 + }, + { + "start": 5293.5, + "end": 5295.0, + "probability": 0.9839 + }, + { + "start": 5295.14, + "end": 5297.34, + "probability": 0.9565 + }, + { + "start": 5298.08, + "end": 5301.1, + "probability": 0.9856 + }, + { + "start": 5301.1, + "end": 5303.42, + "probability": 0.683 + }, + { + "start": 5304.08, + "end": 5306.16, + "probability": 0.9704 + }, + { + "start": 5307.1, + "end": 5307.46, + "probability": 0.8149 + }, + { + "start": 5307.58, + "end": 5310.58, + "probability": 0.9932 + }, + { + "start": 5310.8, + "end": 5311.98, + "probability": 0.6855 + }, + { + "start": 5313.06, + "end": 5316.86, + "probability": 0.9678 + }, + { + "start": 5317.36, + "end": 5320.74, + "probability": 0.9915 + }, + { + "start": 5321.83, + "end": 5325.58, + "probability": 0.9846 + }, + { + "start": 5326.04, + "end": 5326.32, + "probability": 0.5658 + }, + { + "start": 5326.36, + "end": 5327.38, + "probability": 0.865 + }, + { + "start": 5327.84, + "end": 5332.72, + "probability": 0.9516 + }, + { + "start": 5334.66, + "end": 5335.7, + "probability": 0.9644 + }, + { + "start": 5335.8, + "end": 5338.94, + "probability": 0.9587 + }, + { + "start": 5339.66, + "end": 5344.26, + "probability": 0.8199 + }, + { + "start": 5344.86, + "end": 5345.22, + "probability": 0.7726 + }, + { + "start": 5345.96, + "end": 5350.96, + "probability": 0.9824 + }, + { + "start": 5351.08, + "end": 5352.78, + "probability": 0.6731 + }, + { + "start": 5353.7, + "end": 5360.3, + "probability": 0.9485 + }, + { + "start": 5361.06, + "end": 5361.48, + "probability": 0.9624 + }, + { + "start": 5361.6, + "end": 5364.64, + "probability": 0.9589 + }, + { + "start": 5365.3, + "end": 5370.16, + "probability": 0.9936 + }, + { + "start": 5370.74, + "end": 5373.76, + "probability": 0.9663 + }, + { + "start": 5374.16, + "end": 5377.64, + "probability": 0.8875 + }, + { + "start": 5378.64, + "end": 5381.56, + "probability": 0.9937 + }, + { + "start": 5381.96, + "end": 5383.28, + "probability": 0.9082 + }, + { + "start": 5383.56, + "end": 5386.1, + "probability": 0.9866 + }, + { + "start": 5386.74, + "end": 5388.42, + "probability": 0.7413 + }, + { + "start": 5388.7, + "end": 5391.22, + "probability": 0.9481 + }, + { + "start": 5392.86, + "end": 5394.66, + "probability": 0.6549 + }, + { + "start": 5394.86, + "end": 5396.48, + "probability": 0.6768 + }, + { + "start": 5396.68, + "end": 5399.74, + "probability": 0.6779 + }, + { + "start": 5400.2, + "end": 5401.32, + "probability": 0.72 + }, + { + "start": 5401.42, + "end": 5401.66, + "probability": 0.8477 + }, + { + "start": 5408.54, + "end": 5409.82, + "probability": 0.6578 + }, + { + "start": 5410.38, + "end": 5414.66, + "probability": 0.9589 + }, + { + "start": 5414.9, + "end": 5415.6, + "probability": 0.7602 + }, + { + "start": 5416.32, + "end": 5420.14, + "probability": 0.9852 + }, + { + "start": 5420.2, + "end": 5424.88, + "probability": 0.9927 + }, + { + "start": 5425.42, + "end": 5426.96, + "probability": 0.7877 + }, + { + "start": 5427.54, + "end": 5431.16, + "probability": 0.7804 + }, + { + "start": 5432.12, + "end": 5432.98, + "probability": 0.665 + }, + { + "start": 5434.22, + "end": 5436.1, + "probability": 0.9154 + }, + { + "start": 5438.94, + "end": 5439.22, + "probability": 0.3819 + }, + { + "start": 5439.24, + "end": 5440.94, + "probability": 0.7056 + }, + { + "start": 5441.78, + "end": 5441.98, + "probability": 0.947 + }, + { + "start": 5444.11, + "end": 5445.86, + "probability": 0.5635 + }, + { + "start": 5447.08, + "end": 5454.32, + "probability": 0.9363 + }, + { + "start": 5455.16, + "end": 5458.86, + "probability": 0.925 + }, + { + "start": 5458.86, + "end": 5463.22, + "probability": 0.9697 + }, + { + "start": 5464.38, + "end": 5464.88, + "probability": 0.5275 + }, + { + "start": 5465.42, + "end": 5467.22, + "probability": 0.8158 + }, + { + "start": 5467.94, + "end": 5469.04, + "probability": 0.6721 + }, + { + "start": 5469.04, + "end": 5469.1, + "probability": 0.309 + }, + { + "start": 5469.1, + "end": 5469.7, + "probability": 0.7042 + }, + { + "start": 5470.06, + "end": 5471.64, + "probability": 0.3024 + }, + { + "start": 5471.78, + "end": 5471.96, + "probability": 0.5001 + }, + { + "start": 5471.96, + "end": 5473.58, + "probability": 0.98 + }, + { + "start": 5474.32, + "end": 5476.26, + "probability": 0.979 + }, + { + "start": 5476.26, + "end": 5476.32, + "probability": 0.4283 + }, + { + "start": 5476.32, + "end": 5481.6, + "probability": 0.5914 + }, + { + "start": 5484.88, + "end": 5485.04, + "probability": 0.0478 + }, + { + "start": 5485.08, + "end": 5485.08, + "probability": 0.1378 + }, + { + "start": 5485.08, + "end": 5485.08, + "probability": 0.032 + }, + { + "start": 5485.08, + "end": 5485.08, + "probability": 0.1683 + }, + { + "start": 5485.08, + "end": 5485.48, + "probability": 0.6044 + }, + { + "start": 5485.98, + "end": 5486.14, + "probability": 0.4975 + }, + { + "start": 5486.52, + "end": 5486.66, + "probability": 0.8282 + }, + { + "start": 5489.66, + "end": 5492.14, + "probability": 0.6395 + }, + { + "start": 5495.22, + "end": 5500.54, + "probability": 0.718 + }, + { + "start": 5500.62, + "end": 5500.7, + "probability": 0.3538 + }, + { + "start": 5500.82, + "end": 5501.78, + "probability": 0.8015 + }, + { + "start": 5501.96, + "end": 5503.16, + "probability": 0.0284 + }, + { + "start": 5503.6, + "end": 5506.04, + "probability": 0.7991 + }, + { + "start": 5506.14, + "end": 5512.0, + "probability": 0.9814 + }, + { + "start": 5512.44, + "end": 5514.5, + "probability": 0.994 + }, + { + "start": 5514.5, + "end": 5516.44, + "probability": 0.9918 + }, + { + "start": 5517.38, + "end": 5518.88, + "probability": 0.9002 + }, + { + "start": 5518.96, + "end": 5522.62, + "probability": 0.9344 + }, + { + "start": 5523.3, + "end": 5525.72, + "probability": 0.9932 + }, + { + "start": 5526.24, + "end": 5529.78, + "probability": 0.822 + }, + { + "start": 5530.6, + "end": 5530.98, + "probability": 0.4754 + }, + { + "start": 5531.1, + "end": 5534.18, + "probability": 0.9331 + }, + { + "start": 5534.46, + "end": 5538.02, + "probability": 0.9836 + }, + { + "start": 5538.9, + "end": 5540.6, + "probability": 0.9928 + }, + { + "start": 5541.16, + "end": 5544.36, + "probability": 0.9847 + }, + { + "start": 5545.38, + "end": 5547.68, + "probability": 0.9928 + }, + { + "start": 5548.5, + "end": 5551.54, + "probability": 0.9914 + }, + { + "start": 5551.78, + "end": 5556.18, + "probability": 0.8027 + }, + { + "start": 5556.82, + "end": 5556.92, + "probability": 0.2764 + }, + { + "start": 5558.48, + "end": 5561.84, + "probability": 0.9828 + }, + { + "start": 5561.84, + "end": 5564.82, + "probability": 0.9947 + }, + { + "start": 5565.38, + "end": 5566.64, + "probability": 0.9918 + }, + { + "start": 5567.3, + "end": 5567.46, + "probability": 0.4158 + }, + { + "start": 5567.78, + "end": 5571.96, + "probability": 0.9981 + }, + { + "start": 5571.96, + "end": 5576.56, + "probability": 0.9995 + }, + { + "start": 5577.3, + "end": 5577.48, + "probability": 0.0125 + }, + { + "start": 5577.66, + "end": 5578.92, + "probability": 0.9796 + }, + { + "start": 5583.46, + "end": 5584.5, + "probability": 0.802 + }, + { + "start": 5586.41, + "end": 5588.7, + "probability": 0.8507 + }, + { + "start": 5588.94, + "end": 5591.3, + "probability": 0.9565 + }, + { + "start": 5592.06, + "end": 5594.62, + "probability": 0.8879 + }, + { + "start": 5594.62, + "end": 5598.6, + "probability": 0.9835 + }, + { + "start": 5599.1, + "end": 5602.5, + "probability": 0.9592 + }, + { + "start": 5602.5, + "end": 5608.52, + "probability": 0.9489 + }, + { + "start": 5609.12, + "end": 5610.54, + "probability": 0.7463 + }, + { + "start": 5610.64, + "end": 5614.58, + "probability": 0.9744 + }, + { + "start": 5614.58, + "end": 5618.46, + "probability": 0.9971 + }, + { + "start": 5619.04, + "end": 5622.62, + "probability": 0.9923 + }, + { + "start": 5622.68, + "end": 5626.72, + "probability": 0.9937 + }, + { + "start": 5627.1, + "end": 5628.07, + "probability": 0.9382 + }, + { + "start": 5628.72, + "end": 5633.48, + "probability": 0.9969 + }, + { + "start": 5633.92, + "end": 5637.42, + "probability": 0.7955 + }, + { + "start": 5637.94, + "end": 5642.54, + "probability": 0.9541 + }, + { + "start": 5643.16, + "end": 5645.14, + "probability": 0.972 + }, + { + "start": 5645.14, + "end": 5648.66, + "probability": 0.9135 + }, + { + "start": 5651.82, + "end": 5655.02, + "probability": 0.8011 + }, + { + "start": 5655.46, + "end": 5663.42, + "probability": 0.7494 + }, + { + "start": 5663.54, + "end": 5667.78, + "probability": 0.9875 + }, + { + "start": 5669.78, + "end": 5672.16, + "probability": 0.3209 + }, + { + "start": 5672.16, + "end": 5674.96, + "probability": 0.97 + }, + { + "start": 5675.98, + "end": 5676.46, + "probability": 0.5728 + }, + { + "start": 5676.62, + "end": 5679.08, + "probability": 0.5513 + }, + { + "start": 5679.76, + "end": 5683.56, + "probability": 0.7947 + }, + { + "start": 5683.6, + "end": 5683.6, + "probability": 0.3572 + }, + { + "start": 5683.62, + "end": 5684.16, + "probability": 0.4242 + }, + { + "start": 5684.16, + "end": 5687.56, + "probability": 0.939 + }, + { + "start": 5687.72, + "end": 5689.5, + "probability": 0.9831 + }, + { + "start": 5692.63, + "end": 5697.1, + "probability": 0.9922 + }, + { + "start": 5698.12, + "end": 5701.52, + "probability": 0.9148 + }, + { + "start": 5702.26, + "end": 5706.06, + "probability": 0.8692 + }, + { + "start": 5706.24, + "end": 5708.4, + "probability": 0.497 + }, + { + "start": 5709.24, + "end": 5709.52, + "probability": 0.4923 + }, + { + "start": 5709.62, + "end": 5710.64, + "probability": 0.8541 + }, + { + "start": 5711.34, + "end": 5712.58, + "probability": 0.8107 + }, + { + "start": 5713.28, + "end": 5717.84, + "probability": 0.7183 + }, + { + "start": 5718.04, + "end": 5720.7, + "probability": 0.5768 + }, + { + "start": 5721.24, + "end": 5722.76, + "probability": 0.3643 + }, + { + "start": 5724.8, + "end": 5729.32, + "probability": 0.9187 + }, + { + "start": 5729.92, + "end": 5733.52, + "probability": 0.9816 + }, + { + "start": 5734.26, + "end": 5734.68, + "probability": 0.8788 + }, + { + "start": 5735.4, + "end": 5739.12, + "probability": 0.8333 + }, + { + "start": 5739.72, + "end": 5741.66, + "probability": 0.2348 + }, + { + "start": 5741.72, + "end": 5743.0, + "probability": 0.7522 + }, + { + "start": 5743.0, + "end": 5743.78, + "probability": 0.7741 + }, + { + "start": 5744.02, + "end": 5744.26, + "probability": 0.8691 + }, + { + "start": 5745.2, + "end": 5750.66, + "probability": 0.9821 + }, + { + "start": 5750.88, + "end": 5756.28, + "probability": 0.9154 + }, + { + "start": 5757.78, + "end": 5761.0, + "probability": 0.7484 + }, + { + "start": 5762.18, + "end": 5763.28, + "probability": 0.7792 + }, + { + "start": 5764.03, + "end": 5768.44, + "probability": 0.9043 + }, + { + "start": 5768.62, + "end": 5770.0, + "probability": 0.5988 + }, + { + "start": 5770.0, + "end": 5770.98, + "probability": 0.6002 + }, + { + "start": 5771.48, + "end": 5772.78, + "probability": 0.5765 + }, + { + "start": 5774.02, + "end": 5775.68, + "probability": 0.4341 + }, + { + "start": 5776.18, + "end": 5776.58, + "probability": 0.5696 + }, + { + "start": 5776.66, + "end": 5780.36, + "probability": 0.9907 + }, + { + "start": 5781.0, + "end": 5786.42, + "probability": 0.9845 + }, + { + "start": 5786.58, + "end": 5790.26, + "probability": 0.9857 + }, + { + "start": 5790.9, + "end": 5797.82, + "probability": 0.9647 + }, + { + "start": 5798.0, + "end": 5799.28, + "probability": 0.7314 + }, + { + "start": 5800.3, + "end": 5807.16, + "probability": 0.9077 + }, + { + "start": 5807.94, + "end": 5813.84, + "probability": 0.9964 + }, + { + "start": 5814.7, + "end": 5815.62, + "probability": 0.5635 + }, + { + "start": 5815.86, + "end": 5820.24, + "probability": 0.9928 + }, + { + "start": 5820.42, + "end": 5823.22, + "probability": 0.9823 + }, + { + "start": 5824.04, + "end": 5826.1, + "probability": 0.9707 + }, + { + "start": 5826.92, + "end": 5831.66, + "probability": 0.9806 + }, + { + "start": 5832.14, + "end": 5833.28, + "probability": 0.6756 + }, + { + "start": 5834.16, + "end": 5838.02, + "probability": 0.9748 + }, + { + "start": 5838.78, + "end": 5843.6, + "probability": 0.993 + }, + { + "start": 5843.6, + "end": 5849.08, + "probability": 0.9778 + }, + { + "start": 5850.23, + "end": 5851.22, + "probability": 0.7399 + }, + { + "start": 5852.8, + "end": 5856.04, + "probability": 0.9079 + }, + { + "start": 5857.8, + "end": 5860.58, + "probability": 0.9447 + }, + { + "start": 5860.58, + "end": 5864.58, + "probability": 0.9947 + }, + { + "start": 5865.2, + "end": 5869.98, + "probability": 0.9725 + }, + { + "start": 5870.46, + "end": 5872.02, + "probability": 0.9224 + }, + { + "start": 5872.38, + "end": 5874.04, + "probability": 0.9407 + }, + { + "start": 5874.54, + "end": 5881.12, + "probability": 0.8229 + }, + { + "start": 5884.16, + "end": 5887.84, + "probability": 0.9934 + }, + { + "start": 5888.14, + "end": 5889.04, + "probability": 0.7756 + }, + { + "start": 5889.82, + "end": 5892.16, + "probability": 0.9151 + }, + { + "start": 5892.58, + "end": 5894.56, + "probability": 0.476 + }, + { + "start": 5895.3, + "end": 5896.74, + "probability": 0.5924 + }, + { + "start": 5897.44, + "end": 5898.46, + "probability": 0.6758 + }, + { + "start": 5899.72, + "end": 5902.08, + "probability": 0.7397 + }, + { + "start": 5903.86, + "end": 5905.02, + "probability": 0.7662 + }, + { + "start": 5906.54, + "end": 5907.98, + "probability": 0.9026 + }, + { + "start": 5908.74, + "end": 5911.75, + "probability": 0.7361 + }, + { + "start": 5915.22, + "end": 5915.8, + "probability": 0.7044 + }, + { + "start": 5916.64, + "end": 5917.36, + "probability": 0.7508 + }, + { + "start": 5917.92, + "end": 5920.52, + "probability": 0.8527 + }, + { + "start": 5921.82, + "end": 5924.7, + "probability": 0.799 + }, + { + "start": 5924.86, + "end": 5930.1, + "probability": 0.9617 + }, + { + "start": 5930.66, + "end": 5933.92, + "probability": 0.9948 + }, + { + "start": 5934.02, + "end": 5935.46, + "probability": 0.998 + }, + { + "start": 5936.28, + "end": 5937.98, + "probability": 0.9873 + }, + { + "start": 5938.56, + "end": 5941.34, + "probability": 0.9899 + }, + { + "start": 5941.38, + "end": 5944.54, + "probability": 0.9238 + }, + { + "start": 5945.66, + "end": 5946.42, + "probability": 0.7101 + }, + { + "start": 5946.44, + "end": 5948.54, + "probability": 0.5451 + }, + { + "start": 5948.68, + "end": 5950.4, + "probability": 0.9495 + }, + { + "start": 5951.42, + "end": 5954.74, + "probability": 0.9842 + }, + { + "start": 5955.74, + "end": 5957.76, + "probability": 0.9946 + }, + { + "start": 5958.58, + "end": 5960.98, + "probability": 0.9894 + }, + { + "start": 5960.98, + "end": 5963.44, + "probability": 0.8818 + }, + { + "start": 5963.44, + "end": 5967.12, + "probability": 0.9806 + }, + { + "start": 5967.6, + "end": 5968.59, + "probability": 0.8585 + }, + { + "start": 5968.8, + "end": 5969.54, + "probability": 0.7993 + }, + { + "start": 5970.1, + "end": 5975.84, + "probability": 0.9958 + }, + { + "start": 5976.16, + "end": 5978.38, + "probability": 0.9784 + }, + { + "start": 5978.46, + "end": 5981.54, + "probability": 0.7336 + }, + { + "start": 5982.22, + "end": 5982.22, + "probability": 0.2754 + }, + { + "start": 5982.22, + "end": 5984.62, + "probability": 0.918 + }, + { + "start": 5984.78, + "end": 5986.4, + "probability": 0.4981 + }, + { + "start": 5986.9, + "end": 5987.52, + "probability": 0.8368 + }, + { + "start": 5988.02, + "end": 5992.82, + "probability": 0.8745 + }, + { + "start": 5992.88, + "end": 5993.72, + "probability": 0.8502 + }, + { + "start": 5994.08, + "end": 5994.78, + "probability": 0.8767 + }, + { + "start": 5995.58, + "end": 5996.78, + "probability": 0.5029 + }, + { + "start": 5996.92, + "end": 5997.42, + "probability": 0.5124 + }, + { + "start": 5997.82, + "end": 6002.92, + "probability": 0.9967 + }, + { + "start": 6004.4, + "end": 6007.06, + "probability": 0.9239 + }, + { + "start": 6007.46, + "end": 6012.18, + "probability": 0.984 + }, + { + "start": 6012.18, + "end": 6015.38, + "probability": 0.9934 + }, + { + "start": 6015.62, + "end": 6016.82, + "probability": 0.9695 + }, + { + "start": 6017.02, + "end": 6017.44, + "probability": 0.4935 + }, + { + "start": 6017.56, + "end": 6017.95, + "probability": 0.59 + }, + { + "start": 6018.24, + "end": 6019.82, + "probability": 0.999 + }, + { + "start": 6020.14, + "end": 6021.96, + "probability": 0.4616 + }, + { + "start": 6022.2, + "end": 6024.98, + "probability": 0.665 + }, + { + "start": 6025.28, + "end": 6026.5, + "probability": 0.4226 + }, + { + "start": 6026.5, + "end": 6027.76, + "probability": 0.8067 + }, + { + "start": 6027.98, + "end": 6030.32, + "probability": 0.7737 + }, + { + "start": 6030.56, + "end": 6033.5, + "probability": 0.9624 + }, + { + "start": 6034.08, + "end": 6036.46, + "probability": 0.9843 + }, + { + "start": 6037.16, + "end": 6039.48, + "probability": 0.8044 + }, + { + "start": 6040.06, + "end": 6041.08, + "probability": 0.9575 + }, + { + "start": 6041.38, + "end": 6045.78, + "probability": 0.9909 + }, + { + "start": 6046.42, + "end": 6046.96, + "probability": 0.8976 + }, + { + "start": 6047.66, + "end": 6050.22, + "probability": 0.8763 + }, + { + "start": 6051.0, + "end": 6053.96, + "probability": 0.9485 + }, + { + "start": 6054.7, + "end": 6057.56, + "probability": 0.9241 + }, + { + "start": 6058.56, + "end": 6058.92, + "probability": 0.7158 + }, + { + "start": 6060.92, + "end": 6062.66, + "probability": 0.7255 + }, + { + "start": 6068.64, + "end": 6069.78, + "probability": 0.3316 + }, + { + "start": 6069.9, + "end": 6070.64, + "probability": 0.6523 + }, + { + "start": 6070.74, + "end": 6071.46, + "probability": 0.7447 + }, + { + "start": 6071.82, + "end": 6074.54, + "probability": 0.9844 + }, + { + "start": 6075.52, + "end": 6077.08, + "probability": 0.7179 + }, + { + "start": 6077.2, + "end": 6079.82, + "probability": 0.7987 + }, + { + "start": 6080.8, + "end": 6081.58, + "probability": 0.9468 + }, + { + "start": 6082.0, + "end": 6083.14, + "probability": 0.891 + }, + { + "start": 6083.58, + "end": 6085.6, + "probability": 0.8868 + }, + { + "start": 6087.0, + "end": 6089.74, + "probability": 0.7675 + }, + { + "start": 6089.88, + "end": 6091.88, + "probability": 0.9489 + }, + { + "start": 6092.58, + "end": 6097.52, + "probability": 0.9052 + }, + { + "start": 6097.62, + "end": 6099.76, + "probability": 0.8184 + }, + { + "start": 6099.82, + "end": 6102.0, + "probability": 0.8437 + }, + { + "start": 6104.72, + "end": 6108.56, + "probability": 0.5799 + }, + { + "start": 6111.24, + "end": 6112.4, + "probability": 0.6532 + }, + { + "start": 6114.42, + "end": 6115.16, + "probability": 0.7516 + }, + { + "start": 6115.2, + "end": 6116.38, + "probability": 0.8303 + }, + { + "start": 6116.78, + "end": 6117.86, + "probability": 0.6121 + }, + { + "start": 6119.14, + "end": 6121.12, + "probability": 0.8003 + }, + { + "start": 6121.22, + "end": 6122.2, + "probability": 0.913 + }, + { + "start": 6122.28, + "end": 6124.68, + "probability": 0.9207 + }, + { + "start": 6124.68, + "end": 6127.08, + "probability": 0.7792 + }, + { + "start": 6127.66, + "end": 6130.5, + "probability": 0.8672 + }, + { + "start": 6131.22, + "end": 6133.94, + "probability": 0.9588 + }, + { + "start": 6134.9, + "end": 6135.72, + "probability": 0.5619 + }, + { + "start": 6135.88, + "end": 6137.72, + "probability": 0.7272 + }, + { + "start": 6137.76, + "end": 6138.28, + "probability": 0.4338 + }, + { + "start": 6138.4, + "end": 6138.9, + "probability": 0.7916 + }, + { + "start": 6139.12, + "end": 6141.3, + "probability": 0.7987 + }, + { + "start": 6142.02, + "end": 6143.56, + "probability": 0.8292 + }, + { + "start": 6144.32, + "end": 6147.85, + "probability": 0.9033 + }, + { + "start": 6148.6, + "end": 6149.76, + "probability": 0.6664 + }, + { + "start": 6150.54, + "end": 6154.62, + "probability": 0.9753 + }, + { + "start": 6154.78, + "end": 6156.84, + "probability": 0.8933 + }, + { + "start": 6157.24, + "end": 6158.16, + "probability": 0.9899 + }, + { + "start": 6158.4, + "end": 6158.58, + "probability": 0.8154 + }, + { + "start": 6161.22, + "end": 6163.86, + "probability": 0.7576 + }, + { + "start": 6163.86, + "end": 6168.14, + "probability": 0.9945 + }, + { + "start": 6169.16, + "end": 6172.17, + "probability": 0.9846 + }, + { + "start": 6172.62, + "end": 6179.62, + "probability": 0.9863 + }, + { + "start": 6180.84, + "end": 6186.08, + "probability": 0.9604 + }, + { + "start": 6187.0, + "end": 6189.76, + "probability": 0.9989 + }, + { + "start": 6190.34, + "end": 6195.34, + "probability": 0.9744 + }, + { + "start": 6196.0, + "end": 6198.82, + "probability": 0.9764 + }, + { + "start": 6199.76, + "end": 6205.78, + "probability": 0.9749 + }, + { + "start": 6206.36, + "end": 6208.9, + "probability": 0.8887 + }, + { + "start": 6209.04, + "end": 6211.42, + "probability": 0.9712 + }, + { + "start": 6212.5, + "end": 6216.4, + "probability": 0.9693 + }, + { + "start": 6216.4, + "end": 6220.92, + "probability": 0.9922 + }, + { + "start": 6221.38, + "end": 6225.62, + "probability": 0.9947 + }, + { + "start": 6226.36, + "end": 6226.5, + "probability": 0.4408 + }, + { + "start": 6226.96, + "end": 6232.94, + "probability": 0.6432 + }, + { + "start": 6233.04, + "end": 6234.8, + "probability": 0.9609 + }, + { + "start": 6235.5, + "end": 6240.62, + "probability": 0.9966 + }, + { + "start": 6241.14, + "end": 6243.46, + "probability": 0.9752 + }, + { + "start": 6244.72, + "end": 6249.86, + "probability": 0.9214 + }, + { + "start": 6249.92, + "end": 6250.6, + "probability": 0.3109 + }, + { + "start": 6250.8, + "end": 6251.56, + "probability": 0.9538 + }, + { + "start": 6251.64, + "end": 6253.5, + "probability": 0.9944 + }, + { + "start": 6254.16, + "end": 6255.18, + "probability": 0.6486 + }, + { + "start": 6255.24, + "end": 6257.12, + "probability": 0.763 + }, + { + "start": 6257.68, + "end": 6260.1, + "probability": 0.989 + }, + { + "start": 6260.1, + "end": 6263.52, + "probability": 0.9918 + }, + { + "start": 6264.22, + "end": 6267.82, + "probability": 0.9604 + }, + { + "start": 6269.28, + "end": 6274.36, + "probability": 0.9048 + }, + { + "start": 6274.64, + "end": 6275.96, + "probability": 0.6301 + }, + { + "start": 6276.92, + "end": 6280.88, + "probability": 0.7498 + }, + { + "start": 6281.76, + "end": 6286.72, + "probability": 0.9621 + }, + { + "start": 6287.46, + "end": 6289.64, + "probability": 0.9485 + }, + { + "start": 6290.6, + "end": 6294.24, + "probability": 0.9948 + }, + { + "start": 6295.96, + "end": 6300.55, + "probability": 0.9607 + }, + { + "start": 6301.98, + "end": 6305.14, + "probability": 0.947 + }, + { + "start": 6305.3, + "end": 6309.1, + "probability": 0.9459 + }, + { + "start": 6310.12, + "end": 6311.6, + "probability": 0.6521 + }, + { + "start": 6311.64, + "end": 6315.0, + "probability": 0.954 + }, + { + "start": 6315.0, + "end": 6318.58, + "probability": 0.7524 + }, + { + "start": 6320.26, + "end": 6323.11, + "probability": 0.6665 + }, + { + "start": 6323.84, + "end": 6325.64, + "probability": 0.7632 + }, + { + "start": 6325.7, + "end": 6327.46, + "probability": 0.9208 + }, + { + "start": 6327.66, + "end": 6329.86, + "probability": 0.8108 + }, + { + "start": 6329.86, + "end": 6333.3, + "probability": 0.9265 + }, + { + "start": 6333.88, + "end": 6338.2, + "probability": 0.9928 + }, + { + "start": 6339.12, + "end": 6339.7, + "probability": 0.8383 + }, + { + "start": 6339.88, + "end": 6341.22, + "probability": 0.7353 + }, + { + "start": 6341.36, + "end": 6346.22, + "probability": 0.9681 + }, + { + "start": 6346.82, + "end": 6349.02, + "probability": 0.9841 + }, + { + "start": 6349.76, + "end": 6352.88, + "probability": 0.6747 + }, + { + "start": 6353.62, + "end": 6357.02, + "probability": 0.8122 + }, + { + "start": 6357.56, + "end": 6362.08, + "probability": 0.9775 + }, + { + "start": 6363.16, + "end": 6365.88, + "probability": 0.8707 + }, + { + "start": 6366.34, + "end": 6367.16, + "probability": 0.7477 + }, + { + "start": 6367.16, + "end": 6367.76, + "probability": 0.514 + }, + { + "start": 6367.84, + "end": 6368.22, + "probability": 0.6135 + }, + { + "start": 6368.36, + "end": 6369.56, + "probability": 0.5907 + }, + { + "start": 6369.62, + "end": 6370.34, + "probability": 0.2698 + }, + { + "start": 6371.7, + "end": 6373.04, + "probability": 0.2785 + }, + { + "start": 6373.62, + "end": 6375.14, + "probability": 0.2434 + }, + { + "start": 6375.66, + "end": 6376.16, + "probability": 0.5765 + }, + { + "start": 6376.94, + "end": 6381.6, + "probability": 0.8775 + }, + { + "start": 6384.58, + "end": 6385.94, + "probability": 0.3185 + }, + { + "start": 6386.2, + "end": 6388.64, + "probability": 0.7215 + }, + { + "start": 6389.58, + "end": 6393.64, + "probability": 0.8317 + }, + { + "start": 6393.68, + "end": 6396.12, + "probability": 0.7955 + }, + { + "start": 6396.44, + "end": 6399.74, + "probability": 0.9443 + }, + { + "start": 6401.0, + "end": 6403.28, + "probability": 0.4623 + }, + { + "start": 6404.08, + "end": 6406.12, + "probability": 0.005 + }, + { + "start": 6406.46, + "end": 6408.12, + "probability": 0.2319 + }, + { + "start": 6408.32, + "end": 6409.02, + "probability": 0.6709 + }, + { + "start": 6410.04, + "end": 6414.68, + "probability": 0.9946 + }, + { + "start": 6417.4, + "end": 6418.86, + "probability": 0.9543 + }, + { + "start": 6419.06, + "end": 6422.46, + "probability": 0.9928 + }, + { + "start": 6422.84, + "end": 6426.32, + "probability": 0.9538 + }, + { + "start": 6428.16, + "end": 6432.18, + "probability": 0.9568 + }, + { + "start": 6436.7, + "end": 6437.4, + "probability": 0.6538 + }, + { + "start": 6437.82, + "end": 6438.92, + "probability": 0.9719 + }, + { + "start": 6439.46, + "end": 6440.0, + "probability": 0.8541 + }, + { + "start": 6442.06, + "end": 6442.8, + "probability": 0.9174 + }, + { + "start": 6455.14, + "end": 6456.76, + "probability": 0.501 + }, + { + "start": 6457.02, + "end": 6457.12, + "probability": 0.7904 + }, + { + "start": 6457.12, + "end": 6458.5, + "probability": 0.5867 + }, + { + "start": 6459.48, + "end": 6461.48, + "probability": 0.9448 + }, + { + "start": 6462.7, + "end": 6467.0, + "probability": 0.9964 + }, + { + "start": 6467.52, + "end": 6469.12, + "probability": 0.9358 + }, + { + "start": 6470.38, + "end": 6472.86, + "probability": 0.98 + }, + { + "start": 6473.06, + "end": 6476.66, + "probability": 0.916 + }, + { + "start": 6477.16, + "end": 6478.11, + "probability": 0.9048 + }, + { + "start": 6478.4, + "end": 6480.44, + "probability": 0.9346 + }, + { + "start": 6480.44, + "end": 6483.44, + "probability": 0.9701 + }, + { + "start": 6484.52, + "end": 6485.76, + "probability": 0.5632 + }, + { + "start": 6485.86, + "end": 6487.88, + "probability": 0.9731 + }, + { + "start": 6487.98, + "end": 6489.52, + "probability": 0.9877 + }, + { + "start": 6490.64, + "end": 6492.98, + "probability": 0.97 + }, + { + "start": 6493.42, + "end": 6498.26, + "probability": 0.9886 + }, + { + "start": 6499.58, + "end": 6502.1, + "probability": 0.9952 + }, + { + "start": 6502.6, + "end": 6506.3, + "probability": 0.9892 + }, + { + "start": 6506.3, + "end": 6509.4, + "probability": 0.9963 + }, + { + "start": 6509.92, + "end": 6512.22, + "probability": 0.9812 + }, + { + "start": 6513.61, + "end": 6518.58, + "probability": 0.9123 + }, + { + "start": 6519.28, + "end": 6521.9, + "probability": 0.9954 + }, + { + "start": 6521.9, + "end": 6524.26, + "probability": 0.974 + }, + { + "start": 6525.76, + "end": 6529.92, + "probability": 0.9769 + }, + { + "start": 6530.74, + "end": 6533.56, + "probability": 0.9393 + }, + { + "start": 6534.76, + "end": 6536.74, + "probability": 0.9833 + }, + { + "start": 6536.74, + "end": 6539.64, + "probability": 0.8991 + }, + { + "start": 6540.32, + "end": 6541.0, + "probability": 0.6286 + }, + { + "start": 6541.86, + "end": 6545.08, + "probability": 0.999 + }, + { + "start": 6545.08, + "end": 6548.08, + "probability": 0.9967 + }, + { + "start": 6548.7, + "end": 6550.88, + "probability": 0.9985 + }, + { + "start": 6550.88, + "end": 6553.12, + "probability": 0.9873 + }, + { + "start": 6554.38, + "end": 6557.68, + "probability": 0.993 + }, + { + "start": 6557.76, + "end": 6561.22, + "probability": 0.9971 + }, + { + "start": 6561.22, + "end": 6563.52, + "probability": 0.7712 + }, + { + "start": 6564.84, + "end": 6567.46, + "probability": 0.9949 + }, + { + "start": 6567.46, + "end": 6570.44, + "probability": 0.7149 + }, + { + "start": 6571.58, + "end": 6573.08, + "probability": 0.7075 + }, + { + "start": 6573.3, + "end": 6573.74, + "probability": 0.5333 + }, + { + "start": 6573.96, + "end": 6576.3, + "probability": 0.9725 + }, + { + "start": 6576.4, + "end": 6577.96, + "probability": 0.9723 + }, + { + "start": 6578.56, + "end": 6582.02, + "probability": 0.9966 + }, + { + "start": 6582.34, + "end": 6582.7, + "probability": 0.733 + }, + { + "start": 6583.32, + "end": 6583.88, + "probability": 0.8295 + }, + { + "start": 6587.7, + "end": 6590.42, + "probability": 0.8813 + }, + { + "start": 6591.32, + "end": 6593.02, + "probability": 0.9549 + }, + { + "start": 6593.78, + "end": 6595.56, + "probability": 0.9696 + }, + { + "start": 6595.66, + "end": 6598.48, + "probability": 0.9817 + }, + { + "start": 6599.1, + "end": 6602.6, + "probability": 0.9927 + }, + { + "start": 6602.6, + "end": 6606.46, + "probability": 0.9949 + }, + { + "start": 6607.92, + "end": 6611.72, + "probability": 0.7171 + }, + { + "start": 6612.44, + "end": 6620.38, + "probability": 0.9917 + }, + { + "start": 6620.88, + "end": 6623.36, + "probability": 0.9255 + }, + { + "start": 6623.42, + "end": 6625.44, + "probability": 0.9798 + }, + { + "start": 6626.48, + "end": 6626.98, + "probability": 0.7146 + }, + { + "start": 6627.62, + "end": 6632.44, + "probability": 0.9234 + }, + { + "start": 6633.22, + "end": 6635.82, + "probability": 0.8838 + }, + { + "start": 6635.82, + "end": 6639.5, + "probability": 0.9929 + }, + { + "start": 6640.28, + "end": 6644.2, + "probability": 0.9986 + }, + { + "start": 6644.42, + "end": 6648.76, + "probability": 0.8702 + }, + { + "start": 6649.84, + "end": 6651.67, + "probability": 0.979 + }, + { + "start": 6652.52, + "end": 6653.96, + "probability": 0.9216 + }, + { + "start": 6654.32, + "end": 6659.42, + "probability": 0.9949 + }, + { + "start": 6660.18, + "end": 6661.3, + "probability": 0.9983 + }, + { + "start": 6661.5, + "end": 6666.38, + "probability": 0.9733 + }, + { + "start": 6667.0, + "end": 6670.5, + "probability": 0.9587 + }, + { + "start": 6670.64, + "end": 6674.72, + "probability": 0.7144 + }, + { + "start": 6674.78, + "end": 6676.34, + "probability": 0.98 + }, + { + "start": 6677.54, + "end": 6679.9, + "probability": 0.953 + }, + { + "start": 6679.9, + "end": 6683.38, + "probability": 0.9911 + }, + { + "start": 6692.16, + "end": 6692.8, + "probability": 0.4059 + }, + { + "start": 6693.56, + "end": 6695.31, + "probability": 0.5568 + }, + { + "start": 6696.68, + "end": 6700.46, + "probability": 0.9624 + }, + { + "start": 6701.28, + "end": 6703.21, + "probability": 0.9922 + }, + { + "start": 6703.28, + "end": 6706.26, + "probability": 0.9958 + }, + { + "start": 6707.22, + "end": 6708.24, + "probability": 0.8677 + }, + { + "start": 6708.7, + "end": 6721.42, + "probability": 0.8658 + }, + { + "start": 6722.5, + "end": 6725.38, + "probability": 0.9455 + }, + { + "start": 6725.98, + "end": 6733.94, + "probability": 0.9976 + }, + { + "start": 6734.08, + "end": 6737.43, + "probability": 0.9924 + }, + { + "start": 6738.54, + "end": 6744.66, + "probability": 0.9655 + }, + { + "start": 6746.1, + "end": 6746.9, + "probability": 0.7738 + }, + { + "start": 6748.26, + "end": 6749.78, + "probability": 0.7427 + }, + { + "start": 6750.44, + "end": 6755.6, + "probability": 0.9608 + }, + { + "start": 6756.2, + "end": 6759.58, + "probability": 0.8511 + }, + { + "start": 6759.74, + "end": 6761.92, + "probability": 0.853 + }, + { + "start": 6764.94, + "end": 6770.68, + "probability": 0.4659 + }, + { + "start": 6771.32, + "end": 6774.54, + "probability": 0.9435 + }, + { + "start": 6774.54, + "end": 6779.28, + "probability": 0.9925 + }, + { + "start": 6780.0, + "end": 6785.48, + "probability": 0.7139 + }, + { + "start": 6785.48, + "end": 6788.74, + "probability": 0.9834 + }, + { + "start": 6788.74, + "end": 6792.54, + "probability": 0.9929 + }, + { + "start": 6793.86, + "end": 6796.02, + "probability": 0.5237 + }, + { + "start": 6796.94, + "end": 6797.94, + "probability": 0.7563 + }, + { + "start": 6798.18, + "end": 6798.44, + "probability": 0.31 + }, + { + "start": 6798.52, + "end": 6801.0, + "probability": 0.9754 + }, + { + "start": 6801.82, + "end": 6805.26, + "probability": 0.9795 + }, + { + "start": 6805.3, + "end": 6807.28, + "probability": 0.938 + }, + { + "start": 6807.74, + "end": 6813.5, + "probability": 0.9497 + }, + { + "start": 6813.56, + "end": 6814.14, + "probability": 0.7155 + }, + { + "start": 6814.28, + "end": 6815.08, + "probability": 0.9418 + }, + { + "start": 6815.5, + "end": 6816.0, + "probability": 0.9696 + }, + { + "start": 6816.12, + "end": 6816.54, + "probability": 0.9586 + }, + { + "start": 6816.98, + "end": 6817.36, + "probability": 0.9017 + }, + { + "start": 6817.44, + "end": 6817.68, + "probability": 0.852 + }, + { + "start": 6817.76, + "end": 6818.44, + "probability": 0.7415 + }, + { + "start": 6820.2, + "end": 6820.2, + "probability": 0.0057 + }, + { + "start": 6820.2, + "end": 6821.76, + "probability": 0.4807 + }, + { + "start": 6821.88, + "end": 6824.86, + "probability": 0.3985 + }, + { + "start": 6824.94, + "end": 6826.44, + "probability": 0.9905 + }, + { + "start": 6828.48, + "end": 6829.56, + "probability": 0.7526 + }, + { + "start": 6830.4, + "end": 6835.36, + "probability": 0.9889 + }, + { + "start": 6835.36, + "end": 6839.92, + "probability": 0.9985 + }, + { + "start": 6841.32, + "end": 6845.1, + "probability": 0.9455 + }, + { + "start": 6845.3, + "end": 6848.74, + "probability": 0.9229 + }, + { + "start": 6849.82, + "end": 6853.4, + "probability": 0.8874 + }, + { + "start": 6854.72, + "end": 6857.5, + "probability": 0.9969 + }, + { + "start": 6860.02, + "end": 6861.38, + "probability": 0.5006 + }, + { + "start": 6862.78, + "end": 6866.38, + "probability": 0.9551 + }, + { + "start": 6866.68, + "end": 6869.06, + "probability": 0.988 + }, + { + "start": 6869.22, + "end": 6871.08, + "probability": 0.9686 + }, + { + "start": 6873.22, + "end": 6878.64, + "probability": 0.8873 + }, + { + "start": 6878.72, + "end": 6881.0, + "probability": 0.9489 + }, + { + "start": 6882.0, + "end": 6884.58, + "probability": 0.783 + }, + { + "start": 6885.38, + "end": 6891.18, + "probability": 0.9866 + }, + { + "start": 6892.46, + "end": 6895.5, + "probability": 0.9056 + }, + { + "start": 6896.28, + "end": 6898.04, + "probability": 0.5732 + }, + { + "start": 6899.06, + "end": 6899.52, + "probability": 0.2909 + }, + { + "start": 6900.44, + "end": 6905.06, + "probability": 0.9986 + }, + { + "start": 6905.64, + "end": 6907.42, + "probability": 0.9989 + }, + { + "start": 6908.24, + "end": 6912.26, + "probability": 0.9896 + }, + { + "start": 6913.2, + "end": 6913.4, + "probability": 0.6242 + }, + { + "start": 6913.94, + "end": 6917.86, + "probability": 0.9514 + }, + { + "start": 6918.1, + "end": 6921.28, + "probability": 0.9987 + }, + { + "start": 6921.4, + "end": 6927.5, + "probability": 0.9929 + }, + { + "start": 6927.8, + "end": 6931.7, + "probability": 0.9009 + }, + { + "start": 6932.42, + "end": 6936.36, + "probability": 0.9922 + }, + { + "start": 6936.4, + "end": 6940.36, + "probability": 0.944 + }, + { + "start": 6940.6, + "end": 6940.7, + "probability": 0.2674 + }, + { + "start": 6940.82, + "end": 6946.52, + "probability": 0.9664 + }, + { + "start": 6947.32, + "end": 6952.56, + "probability": 0.9719 + }, + { + "start": 6953.52, + "end": 6956.16, + "probability": 0.9938 + }, + { + "start": 6956.36, + "end": 6958.7, + "probability": 0.9893 + }, + { + "start": 6959.86, + "end": 6961.32, + "probability": 0.9171 + }, + { + "start": 6961.86, + "end": 6964.54, + "probability": 0.9363 + }, + { + "start": 6964.54, + "end": 6968.1, + "probability": 0.9955 + }, + { + "start": 6968.76, + "end": 6972.36, + "probability": 0.8933 + }, + { + "start": 6972.98, + "end": 6975.84, + "probability": 0.8716 + }, + { + "start": 6975.84, + "end": 6979.54, + "probability": 0.9988 + }, + { + "start": 6980.98, + "end": 6986.02, + "probability": 0.9854 + }, + { + "start": 6988.1, + "end": 6992.78, + "probability": 0.9543 + }, + { + "start": 6993.6, + "end": 6995.96, + "probability": 0.8868 + }, + { + "start": 6996.66, + "end": 6999.92, + "probability": 0.7115 + }, + { + "start": 7000.82, + "end": 7005.36, + "probability": 0.9947 + }, + { + "start": 7006.36, + "end": 7010.5, + "probability": 0.939 + }, + { + "start": 7011.16, + "end": 7014.34, + "probability": 0.988 + }, + { + "start": 7014.58, + "end": 7015.26, + "probability": 0.8999 + }, + { + "start": 7015.46, + "end": 7016.44, + "probability": 0.88 + }, + { + "start": 7016.6, + "end": 7017.12, + "probability": 0.5074 + }, + { + "start": 7017.16, + "end": 7018.21, + "probability": 0.6808 + }, + { + "start": 7018.56, + "end": 7024.44, + "probability": 0.9849 + }, + { + "start": 7024.48, + "end": 7025.44, + "probability": 0.7781 + }, + { + "start": 7025.56, + "end": 7026.2, + "probability": 0.9124 + }, + { + "start": 7026.88, + "end": 7028.5, + "probability": 0.5638 + }, + { + "start": 7029.08, + "end": 7035.5, + "probability": 0.7985 + }, + { + "start": 7037.34, + "end": 7041.32, + "probability": 0.7708 + }, + { + "start": 7041.58, + "end": 7044.94, + "probability": 0.9805 + }, + { + "start": 7045.04, + "end": 7048.76, + "probability": 0.7094 + }, + { + "start": 7049.18, + "end": 7054.09, + "probability": 0.902 + }, + { + "start": 7056.72, + "end": 7060.22, + "probability": 0.7834 + }, + { + "start": 7061.18, + "end": 7063.86, + "probability": 0.8493 + }, + { + "start": 7065.46, + "end": 7066.44, + "probability": 0.5314 + }, + { + "start": 7066.5, + "end": 7072.56, + "probability": 0.8252 + }, + { + "start": 7075.34, + "end": 7077.06, + "probability": 0.5616 + }, + { + "start": 7077.86, + "end": 7081.74, + "probability": 0.9949 + }, + { + "start": 7082.58, + "end": 7086.68, + "probability": 0.9546 + }, + { + "start": 7087.28, + "end": 7087.7, + "probability": 0.8083 + }, + { + "start": 7089.16, + "end": 7092.8, + "probability": 0.9036 + }, + { + "start": 7093.78, + "end": 7095.88, + "probability": 0.9092 + }, + { + "start": 7095.96, + "end": 7097.18, + "probability": 0.7511 + }, + { + "start": 7097.38, + "end": 7098.68, + "probability": 0.9301 + }, + { + "start": 7099.2, + "end": 7101.92, + "probability": 0.9275 + }, + { + "start": 7102.9, + "end": 7105.3, + "probability": 0.9409 + }, + { + "start": 7105.82, + "end": 7108.26, + "probability": 0.9891 + }, + { + "start": 7108.86, + "end": 7110.86, + "probability": 0.8552 + }, + { + "start": 7111.18, + "end": 7116.72, + "probability": 0.9675 + }, + { + "start": 7117.82, + "end": 7118.32, + "probability": 0.2815 + }, + { + "start": 7119.36, + "end": 7122.2, + "probability": 0.803 + }, + { + "start": 7123.12, + "end": 7125.44, + "probability": 0.8535 + }, + { + "start": 7127.04, + "end": 7128.38, + "probability": 0.8685 + }, + { + "start": 7134.76, + "end": 7136.64, + "probability": 0.7302 + }, + { + "start": 7137.42, + "end": 7140.34, + "probability": 0.804 + }, + { + "start": 7140.4, + "end": 7143.22, + "probability": 0.93 + }, + { + "start": 7144.24, + "end": 7148.01, + "probability": 0.8302 + }, + { + "start": 7148.52, + "end": 7152.44, + "probability": 0.9907 + }, + { + "start": 7152.84, + "end": 7155.32, + "probability": 0.8263 + }, + { + "start": 7155.74, + "end": 7158.16, + "probability": 0.9738 + }, + { + "start": 7158.6, + "end": 7163.48, + "probability": 0.9806 + }, + { + "start": 7163.48, + "end": 7168.38, + "probability": 0.9749 + }, + { + "start": 7169.18, + "end": 7171.32, + "probability": 0.6351 + }, + { + "start": 7171.72, + "end": 7171.94, + "probability": 0.7033 + }, + { + "start": 7173.5, + "end": 7177.24, + "probability": 0.9968 + }, + { + "start": 7178.32, + "end": 7178.97, + "probability": 0.9912 + }, + { + "start": 7179.56, + "end": 7182.54, + "probability": 0.4003 + }, + { + "start": 7183.56, + "end": 7184.94, + "probability": 0.9675 + }, + { + "start": 7185.68, + "end": 7187.18, + "probability": 0.9138 + }, + { + "start": 7187.96, + "end": 7189.14, + "probability": 0.9814 + }, + { + "start": 7189.26, + "end": 7191.98, + "probability": 0.9904 + }, + { + "start": 7193.36, + "end": 7195.62, + "probability": 0.979 + }, + { + "start": 7196.42, + "end": 7199.36, + "probability": 0.8293 + }, + { + "start": 7199.48, + "end": 7201.36, + "probability": 0.9589 + }, + { + "start": 7202.48, + "end": 7203.68, + "probability": 0.9214 + }, + { + "start": 7203.76, + "end": 7207.2, + "probability": 0.8944 + }, + { + "start": 7207.86, + "end": 7212.36, + "probability": 0.9873 + }, + { + "start": 7213.22, + "end": 7215.6, + "probability": 0.9609 + }, + { + "start": 7216.3, + "end": 7220.04, + "probability": 0.9353 + }, + { + "start": 7220.86, + "end": 7223.06, + "probability": 0.9008 + }, + { + "start": 7223.16, + "end": 7223.56, + "probability": 0.8201 + }, + { + "start": 7224.08, + "end": 7227.16, + "probability": 0.7078 + }, + { + "start": 7227.84, + "end": 7231.24, + "probability": 0.8461 + }, + { + "start": 7231.76, + "end": 7234.78, + "probability": 0.9608 + }, + { + "start": 7236.74, + "end": 7236.84, + "probability": 0.501 + }, + { + "start": 7237.52, + "end": 7238.7, + "probability": 0.9008 + }, + { + "start": 7242.42, + "end": 7245.7, + "probability": 0.3145 + }, + { + "start": 7245.76, + "end": 7248.2, + "probability": 0.6132 + }, + { + "start": 7248.56, + "end": 7249.26, + "probability": 0.0326 + }, + { + "start": 7249.26, + "end": 7249.26, + "probability": 0.053 + }, + { + "start": 7249.26, + "end": 7250.07, + "probability": 0.7015 + }, + { + "start": 7252.66, + "end": 7253.26, + "probability": 0.3601 + }, + { + "start": 7253.28, + "end": 7254.48, + "probability": 0.8039 + }, + { + "start": 7254.62, + "end": 7255.82, + "probability": 0.9066 + }, + { + "start": 7255.88, + "end": 7256.55, + "probability": 0.6666 + }, + { + "start": 7258.08, + "end": 7258.76, + "probability": 0.6901 + }, + { + "start": 7259.9, + "end": 7261.54, + "probability": 0.6407 + }, + { + "start": 7263.3, + "end": 7264.5, + "probability": 0.9866 + }, + { + "start": 7264.66, + "end": 7264.68, + "probability": 0.0546 + }, + { + "start": 7264.68, + "end": 7265.1, + "probability": 0.8935 + }, + { + "start": 7267.68, + "end": 7269.04, + "probability": 0.9412 + }, + { + "start": 7279.84, + "end": 7283.49, + "probability": 0.7717 + }, + { + "start": 7284.3, + "end": 7286.52, + "probability": 0.8924 + }, + { + "start": 7286.66, + "end": 7290.78, + "probability": 0.7999 + }, + { + "start": 7290.9, + "end": 7293.96, + "probability": 0.9809 + }, + { + "start": 7293.96, + "end": 7298.32, + "probability": 0.9873 + }, + { + "start": 7298.96, + "end": 7302.1, + "probability": 0.9099 + }, + { + "start": 7302.96, + "end": 7303.98, + "probability": 0.7064 + }, + { + "start": 7304.18, + "end": 7309.72, + "probability": 0.996 + }, + { + "start": 7311.4, + "end": 7312.6, + "probability": 0.6653 + }, + { + "start": 7312.72, + "end": 7316.3, + "probability": 0.9902 + }, + { + "start": 7316.3, + "end": 7319.5, + "probability": 0.9967 + }, + { + "start": 7320.38, + "end": 7322.08, + "probability": 0.9319 + }, + { + "start": 7322.2, + "end": 7325.96, + "probability": 0.9884 + }, + { + "start": 7325.96, + "end": 7330.1, + "probability": 0.9967 + }, + { + "start": 7330.78, + "end": 7331.62, + "probability": 0.6081 + }, + { + "start": 7332.14, + "end": 7334.79, + "probability": 0.5906 + }, + { + "start": 7335.2, + "end": 7339.94, + "probability": 0.8794 + }, + { + "start": 7341.33, + "end": 7346.56, + "probability": 0.9385 + }, + { + "start": 7346.56, + "end": 7349.76, + "probability": 0.9846 + }, + { + "start": 7351.5, + "end": 7353.22, + "probability": 0.0663 + }, + { + "start": 7353.22, + "end": 7353.22, + "probability": 0.0556 + }, + { + "start": 7353.22, + "end": 7354.18, + "probability": 0.478 + }, + { + "start": 7354.3, + "end": 7355.28, + "probability": 0.3661 + }, + { + "start": 7355.32, + "end": 7356.77, + "probability": 0.5179 + }, + { + "start": 7356.98, + "end": 7359.06, + "probability": 0.7434 + }, + { + "start": 7360.08, + "end": 7364.8, + "probability": 0.831 + }, + { + "start": 7365.34, + "end": 7367.68, + "probability": 0.9661 + }, + { + "start": 7369.14, + "end": 7375.48, + "probability": 0.8542 + }, + { + "start": 7376.22, + "end": 7379.02, + "probability": 0.9569 + }, + { + "start": 7379.1, + "end": 7380.98, + "probability": 0.8312 + }, + { + "start": 7382.46, + "end": 7384.26, + "probability": 0.9941 + }, + { + "start": 7385.1, + "end": 7386.78, + "probability": 0.9164 + }, + { + "start": 7387.54, + "end": 7388.22, + "probability": 0.7915 + }, + { + "start": 7388.86, + "end": 7390.2, + "probability": 0.8944 + }, + { + "start": 7390.34, + "end": 7393.58, + "probability": 0.9938 + }, + { + "start": 7394.52, + "end": 7396.9, + "probability": 0.9004 + }, + { + "start": 7398.1, + "end": 7398.2, + "probability": 0.0418 + }, + { + "start": 7398.28, + "end": 7401.3, + "probability": 0.8937 + }, + { + "start": 7402.2, + "end": 7405.34, + "probability": 0.9497 + }, + { + "start": 7405.46, + "end": 7406.7, + "probability": 0.9924 + }, + { + "start": 7407.14, + "end": 7411.55, + "probability": 0.925 + }, + { + "start": 7414.54, + "end": 7416.8, + "probability": 0.9966 + }, + { + "start": 7416.92, + "end": 7419.21, + "probability": 0.9894 + }, + { + "start": 7419.42, + "end": 7420.46, + "probability": 0.9061 + }, + { + "start": 7421.26, + "end": 7424.08, + "probability": 0.9981 + }, + { + "start": 7424.84, + "end": 7426.16, + "probability": 0.1647 + }, + { + "start": 7427.52, + "end": 7429.9, + "probability": 0.3691 + }, + { + "start": 7429.92, + "end": 7431.28, + "probability": 0.9132 + }, + { + "start": 7431.28, + "end": 7436.34, + "probability": 0.4896 + }, + { + "start": 7436.56, + "end": 7437.54, + "probability": 0.9911 + }, + { + "start": 7437.64, + "end": 7439.48, + "probability": 0.9926 + }, + { + "start": 7440.68, + "end": 7442.74, + "probability": 0.8705 + }, + { + "start": 7443.96, + "end": 7446.56, + "probability": 0.6587 + }, + { + "start": 7448.06, + "end": 7453.28, + "probability": 0.876 + }, + { + "start": 7454.76, + "end": 7460.48, + "probability": 0.8832 + }, + { + "start": 7461.16, + "end": 7465.66, + "probability": 0.9868 + }, + { + "start": 7466.5, + "end": 7467.48, + "probability": 0.9622 + }, + { + "start": 7468.58, + "end": 7473.38, + "probability": 0.9954 + }, + { + "start": 7473.54, + "end": 7476.2, + "probability": 0.8523 + }, + { + "start": 7476.88, + "end": 7478.22, + "probability": 0.9831 + }, + { + "start": 7479.1, + "end": 7484.5, + "probability": 0.981 + }, + { + "start": 7484.64, + "end": 7485.22, + "probability": 0.8518 + }, + { + "start": 7485.34, + "end": 7486.22, + "probability": 0.607 + }, + { + "start": 7487.24, + "end": 7489.86, + "probability": 0.9639 + }, + { + "start": 7490.98, + "end": 7494.54, + "probability": 0.9279 + }, + { + "start": 7495.1, + "end": 7498.52, + "probability": 0.9229 + }, + { + "start": 7498.52, + "end": 7502.94, + "probability": 0.96 + }, + { + "start": 7503.98, + "end": 7504.4, + "probability": 0.7344 + }, + { + "start": 7504.54, + "end": 7506.47, + "probability": 0.9229 + }, + { + "start": 7506.72, + "end": 7509.0, + "probability": 0.8255 + }, + { + "start": 7509.64, + "end": 7510.4, + "probability": 0.6947 + }, + { + "start": 7510.8, + "end": 7512.0, + "probability": 0.5807 + }, + { + "start": 7512.72, + "end": 7515.64, + "probability": 0.9877 + }, + { + "start": 7516.24, + "end": 7518.02, + "probability": 0.9137 + }, + { + "start": 7518.28, + "end": 7520.54, + "probability": 0.7295 + }, + { + "start": 7520.64, + "end": 7522.0, + "probability": 0.6406 + }, + { + "start": 7522.48, + "end": 7526.62, + "probability": 0.9418 + }, + { + "start": 7528.05, + "end": 7531.7, + "probability": 0.9248 + }, + { + "start": 7532.2, + "end": 7534.18, + "probability": 0.9093 + }, + { + "start": 7534.54, + "end": 7536.24, + "probability": 0.6719 + }, + { + "start": 7536.76, + "end": 7537.64, + "probability": 0.8615 + }, + { + "start": 7538.12, + "end": 7538.48, + "probability": 0.8679 + }, + { + "start": 7538.54, + "end": 7539.98, + "probability": 0.4863 + }, + { + "start": 7540.62, + "end": 7543.6, + "probability": 0.9156 + }, + { + "start": 7544.34, + "end": 7545.36, + "probability": 0.9843 + }, + { + "start": 7545.74, + "end": 7546.98, + "probability": 0.9539 + }, + { + "start": 7547.58, + "end": 7550.0, + "probability": 0.9492 + }, + { + "start": 7550.78, + "end": 7551.94, + "probability": 0.68 + }, + { + "start": 7553.48, + "end": 7554.9, + "probability": 0.9727 + }, + { + "start": 7555.1, + "end": 7557.42, + "probability": 0.9734 + }, + { + "start": 7557.98, + "end": 7559.08, + "probability": 0.9649 + }, + { + "start": 7559.46, + "end": 7560.58, + "probability": 0.94 + }, + { + "start": 7560.96, + "end": 7563.56, + "probability": 0.9863 + }, + { + "start": 7564.94, + "end": 7568.06, + "probability": 0.9956 + }, + { + "start": 7569.16, + "end": 7573.24, + "probability": 0.9906 + }, + { + "start": 7573.38, + "end": 7574.24, + "probability": 0.8945 + }, + { + "start": 7575.92, + "end": 7577.72, + "probability": 0.1673 + }, + { + "start": 7578.46, + "end": 7580.54, + "probability": 0.7225 + }, + { + "start": 7582.44, + "end": 7583.66, + "probability": 0.7592 + }, + { + "start": 7583.78, + "end": 7584.86, + "probability": 0.8357 + }, + { + "start": 7585.44, + "end": 7586.26, + "probability": 0.4202 + }, + { + "start": 7586.9, + "end": 7588.26, + "probability": 0.9789 + }, + { + "start": 7589.22, + "end": 7590.88, + "probability": 0.918 + }, + { + "start": 7591.78, + "end": 7592.18, + "probability": 0.9113 + }, + { + "start": 7592.64, + "end": 7595.58, + "probability": 0.9365 + }, + { + "start": 7595.96, + "end": 7598.58, + "probability": 0.8965 + }, + { + "start": 7599.68, + "end": 7601.91, + "probability": 0.9758 + }, + { + "start": 7601.98, + "end": 7606.5, + "probability": 0.9788 + }, + { + "start": 7607.68, + "end": 7608.76, + "probability": 0.6922 + }, + { + "start": 7609.12, + "end": 7613.32, + "probability": 0.9659 + }, + { + "start": 7613.44, + "end": 7615.03, + "probability": 0.9062 + }, + { + "start": 7615.78, + "end": 7618.4, + "probability": 0.9778 + }, + { + "start": 7619.42, + "end": 7620.96, + "probability": 0.9978 + }, + { + "start": 7621.16, + "end": 7623.86, + "probability": 0.9673 + }, + { + "start": 7623.92, + "end": 7628.01, + "probability": 0.9924 + }, + { + "start": 7628.44, + "end": 7633.02, + "probability": 0.9983 + }, + { + "start": 7633.28, + "end": 7634.27, + "probability": 0.8629 + }, + { + "start": 7634.46, + "end": 7639.1, + "probability": 0.9242 + }, + { + "start": 7639.1, + "end": 7642.34, + "probability": 0.9875 + }, + { + "start": 7642.9, + "end": 7644.96, + "probability": 0.7493 + }, + { + "start": 7646.34, + "end": 7647.84, + "probability": 0.738 + }, + { + "start": 7648.42, + "end": 7649.04, + "probability": 0.6545 + }, + { + "start": 7649.16, + "end": 7650.8, + "probability": 0.8295 + }, + { + "start": 7651.12, + "end": 7652.7, + "probability": 0.5115 + }, + { + "start": 7653.66, + "end": 7654.26, + "probability": 0.9042 + }, + { + "start": 7654.38, + "end": 7655.6, + "probability": 0.8846 + }, + { + "start": 7656.06, + "end": 7659.28, + "probability": 0.978 + }, + { + "start": 7659.52, + "end": 7661.82, + "probability": 0.9777 + }, + { + "start": 7663.18, + "end": 7664.26, + "probability": 0.9105 + }, + { + "start": 7665.38, + "end": 7666.4, + "probability": 0.812 + }, + { + "start": 7666.56, + "end": 7669.28, + "probability": 0.9054 + }, + { + "start": 7669.28, + "end": 7672.5, + "probability": 0.8833 + }, + { + "start": 7672.72, + "end": 7674.1, + "probability": 0.8457 + }, + { + "start": 7674.78, + "end": 7677.82, + "probability": 0.9751 + }, + { + "start": 7678.22, + "end": 7678.72, + "probability": 0.507 + }, + { + "start": 7679.22, + "end": 7680.9, + "probability": 0.9347 + }, + { + "start": 7682.26, + "end": 7689.12, + "probability": 0.9913 + }, + { + "start": 7689.34, + "end": 7693.82, + "probability": 0.9934 + }, + { + "start": 7694.64, + "end": 7696.94, + "probability": 0.9894 + }, + { + "start": 7697.54, + "end": 7698.12, + "probability": 0.5817 + }, + { + "start": 7698.22, + "end": 7700.9, + "probability": 0.9975 + }, + { + "start": 7701.5, + "end": 7704.44, + "probability": 0.9857 + }, + { + "start": 7704.8, + "end": 7709.22, + "probability": 0.9849 + }, + { + "start": 7709.8, + "end": 7710.94, + "probability": 0.9905 + }, + { + "start": 7711.26, + "end": 7715.16, + "probability": 0.9951 + }, + { + "start": 7715.28, + "end": 7716.16, + "probability": 0.9668 + }, + { + "start": 7716.9, + "end": 7718.36, + "probability": 0.9835 + }, + { + "start": 7718.96, + "end": 7720.06, + "probability": 0.8858 + }, + { + "start": 7720.62, + "end": 7723.22, + "probability": 0.9854 + }, + { + "start": 7723.94, + "end": 7724.86, + "probability": 0.5093 + }, + { + "start": 7724.86, + "end": 7726.4, + "probability": 0.8012 + }, + { + "start": 7726.48, + "end": 7730.0, + "probability": 0.9839 + }, + { + "start": 7731.78, + "end": 7732.02, + "probability": 0.5836 + }, + { + "start": 7735.22, + "end": 7736.78, + "probability": 0.7327 + }, + { + "start": 7737.54, + "end": 7738.18, + "probability": 0.7897 + }, + { + "start": 7745.54, + "end": 7746.66, + "probability": 0.8547 + }, + { + "start": 7746.72, + "end": 7747.7, + "probability": 0.8371 + }, + { + "start": 7748.0, + "end": 7754.34, + "probability": 0.8872 + }, + { + "start": 7754.74, + "end": 7757.14, + "probability": 0.9192 + }, + { + "start": 7757.22, + "end": 7762.84, + "probability": 0.8764 + }, + { + "start": 7762.84, + "end": 7767.0, + "probability": 0.9818 + }, + { + "start": 7767.06, + "end": 7768.18, + "probability": 0.9976 + }, + { + "start": 7768.56, + "end": 7769.66, + "probability": 0.8005 + }, + { + "start": 7769.8, + "end": 7770.97, + "probability": 0.754 + }, + { + "start": 7772.24, + "end": 7776.62, + "probability": 0.9928 + }, + { + "start": 7777.2, + "end": 7777.96, + "probability": 0.7255 + }, + { + "start": 7778.66, + "end": 7779.83, + "probability": 0.7885 + }, + { + "start": 7781.72, + "end": 7786.84, + "probability": 0.9748 + }, + { + "start": 7786.84, + "end": 7792.7, + "probability": 0.9971 + }, + { + "start": 7793.36, + "end": 7795.14, + "probability": 0.9814 + }, + { + "start": 7795.32, + "end": 7797.64, + "probability": 0.9034 + }, + { + "start": 7798.04, + "end": 7799.76, + "probability": 0.7456 + }, + { + "start": 7799.98, + "end": 7804.94, + "probability": 0.9795 + }, + { + "start": 7810.18, + "end": 7813.74, + "probability": 0.5956 + }, + { + "start": 7814.46, + "end": 7814.78, + "probability": 0.6506 + }, + { + "start": 7814.94, + "end": 7817.64, + "probability": 0.9705 + }, + { + "start": 7817.74, + "end": 7818.56, + "probability": 0.7402 + }, + { + "start": 7818.66, + "end": 7819.04, + "probability": 0.4262 + }, + { + "start": 7819.84, + "end": 7820.49, + "probability": 0.6551 + }, + { + "start": 7822.74, + "end": 7823.56, + "probability": 0.8873 + }, + { + "start": 7823.88, + "end": 7826.4, + "probability": 0.0428 + }, + { + "start": 7826.4, + "end": 7826.44, + "probability": 0.0677 + }, + { + "start": 7826.44, + "end": 7828.4, + "probability": 0.2036 + }, + { + "start": 7829.04, + "end": 7829.9, + "probability": 0.2202 + }, + { + "start": 7829.9, + "end": 7831.76, + "probability": 0.9301 + }, + { + "start": 7832.3, + "end": 7833.18, + "probability": 0.6133 + }, + { + "start": 7834.04, + "end": 7834.2, + "probability": 0.1945 + }, + { + "start": 7834.92, + "end": 7835.96, + "probability": 0.5024 + }, + { + "start": 7836.72, + "end": 7838.2, + "probability": 0.982 + }, + { + "start": 7838.58, + "end": 7839.12, + "probability": 0.8558 + }, + { + "start": 7839.38, + "end": 7842.32, + "probability": 0.6779 + }, + { + "start": 7842.32, + "end": 7845.56, + "probability": 0.9967 + }, + { + "start": 7846.18, + "end": 7847.78, + "probability": 0.8161 + }, + { + "start": 7847.94, + "end": 7851.54, + "probability": 0.9838 + }, + { + "start": 7852.12, + "end": 7852.92, + "probability": 0.7099 + }, + { + "start": 7853.0, + "end": 7854.02, + "probability": 0.5914 + }, + { + "start": 7854.48, + "end": 7856.46, + "probability": 0.9742 + }, + { + "start": 7856.58, + "end": 7857.9, + "probability": 0.5689 + }, + { + "start": 7858.04, + "end": 7859.74, + "probability": 0.9785 + }, + { + "start": 7860.44, + "end": 7861.42, + "probability": 0.1963 + }, + { + "start": 7861.56, + "end": 7862.84, + "probability": 0.7631 + }, + { + "start": 7863.16, + "end": 7866.44, + "probability": 0.9767 + }, + { + "start": 7867.3, + "end": 7867.76, + "probability": 0.5999 + }, + { + "start": 7867.94, + "end": 7872.38, + "probability": 0.9941 + }, + { + "start": 7873.02, + "end": 7875.08, + "probability": 0.9937 + }, + { + "start": 7875.66, + "end": 7878.02, + "probability": 0.8087 + }, + { + "start": 7879.16, + "end": 7882.02, + "probability": 0.9963 + }, + { + "start": 7882.02, + "end": 7885.26, + "probability": 0.9893 + }, + { + "start": 7885.72, + "end": 7886.12, + "probability": 0.6479 + }, + { + "start": 7886.14, + "end": 7888.72, + "probability": 0.7802 + }, + { + "start": 7888.72, + "end": 7891.44, + "probability": 0.9479 + }, + { + "start": 7891.88, + "end": 7894.88, + "probability": 0.8701 + }, + { + "start": 7896.54, + "end": 7898.54, + "probability": 0.6502 + }, + { + "start": 7898.78, + "end": 7900.56, + "probability": 0.9697 + }, + { + "start": 7900.7, + "end": 7902.02, + "probability": 0.7676 + }, + { + "start": 7902.38, + "end": 7904.76, + "probability": 0.9946 + }, + { + "start": 7905.34, + "end": 7908.42, + "probability": 0.9147 + }, + { + "start": 7909.04, + "end": 7910.52, + "probability": 0.9792 + }, + { + "start": 7910.54, + "end": 7911.2, + "probability": 0.8896 + }, + { + "start": 7912.36, + "end": 7913.84, + "probability": 0.9027 + }, + { + "start": 7914.74, + "end": 7916.12, + "probability": 0.5172 + }, + { + "start": 7917.1, + "end": 7918.56, + "probability": 0.9777 + }, + { + "start": 7920.26, + "end": 7921.04, + "probability": 0.5605 + }, + { + "start": 7921.74, + "end": 7924.12, + "probability": 0.8398 + }, + { + "start": 7924.28, + "end": 7924.62, + "probability": 0.4809 + }, + { + "start": 7924.66, + "end": 7925.46, + "probability": 0.9377 + }, + { + "start": 7925.94, + "end": 7926.7, + "probability": 0.8125 + }, + { + "start": 7926.8, + "end": 7928.86, + "probability": 0.8094 + }, + { + "start": 7929.02, + "end": 7929.64, + "probability": 0.5201 + }, + { + "start": 7930.04, + "end": 7930.66, + "probability": 0.7083 + }, + { + "start": 7931.56, + "end": 7934.8, + "probability": 0.9901 + }, + { + "start": 7934.98, + "end": 7935.36, + "probability": 0.8568 + }, + { + "start": 7935.88, + "end": 7936.98, + "probability": 0.5901 + }, + { + "start": 7937.12, + "end": 7939.04, + "probability": 0.443 + }, + { + "start": 7939.16, + "end": 7939.38, + "probability": 0.4708 + }, + { + "start": 7939.46, + "end": 7944.5, + "probability": 0.9839 + }, + { + "start": 7945.2, + "end": 7948.12, + "probability": 0.9575 + }, + { + "start": 7948.78, + "end": 7950.98, + "probability": 0.9812 + }, + { + "start": 7951.12, + "end": 7954.03, + "probability": 0.8514 + }, + { + "start": 7954.34, + "end": 7955.98, + "probability": 0.9956 + }, + { + "start": 7956.56, + "end": 7957.5, + "probability": 0.976 + }, + { + "start": 7958.34, + "end": 7958.76, + "probability": 0.937 + }, + { + "start": 7959.08, + "end": 7964.02, + "probability": 0.9789 + }, + { + "start": 7964.66, + "end": 7966.64, + "probability": 0.9977 + }, + { + "start": 7967.6, + "end": 7969.04, + "probability": 0.7676 + }, + { + "start": 7969.66, + "end": 7970.04, + "probability": 0.7477 + }, + { + "start": 7970.94, + "end": 7973.7, + "probability": 0.989 + }, + { + "start": 7973.92, + "end": 7977.52, + "probability": 0.8936 + }, + { + "start": 7978.14, + "end": 7979.14, + "probability": 0.5091 + }, + { + "start": 7979.14, + "end": 7981.34, + "probability": 0.989 + }, + { + "start": 7981.5, + "end": 7982.22, + "probability": 0.3359 + }, + { + "start": 7983.34, + "end": 7983.64, + "probability": 0.7413 + }, + { + "start": 7983.74, + "end": 7984.42, + "probability": 0.8428 + }, + { + "start": 7984.52, + "end": 7986.26, + "probability": 0.441 + }, + { + "start": 7986.26, + "end": 7987.96, + "probability": 0.8386 + }, + { + "start": 7988.3, + "end": 7988.66, + "probability": 0.615 + }, + { + "start": 7988.72, + "end": 7989.17, + "probability": 0.916 + }, + { + "start": 7989.42, + "end": 7990.66, + "probability": 0.9849 + }, + { + "start": 7992.57, + "end": 7993.86, + "probability": 0.6464 + }, + { + "start": 7994.0, + "end": 7998.44, + "probability": 0.9401 + }, + { + "start": 7998.44, + "end": 7998.74, + "probability": 0.8435 + }, + { + "start": 8000.92, + "end": 8002.2, + "probability": 0.9824 + }, + { + "start": 8002.72, + "end": 8006.44, + "probability": 0.9988 + }, + { + "start": 8006.54, + "end": 8008.06, + "probability": 0.9937 + }, + { + "start": 8009.08, + "end": 8010.09, + "probability": 0.9531 + }, + { + "start": 8013.72, + "end": 8015.42, + "probability": 0.6625 + }, + { + "start": 8015.6, + "end": 8016.46, + "probability": 0.967 + }, + { + "start": 8016.56, + "end": 8017.28, + "probability": 0.9655 + }, + { + "start": 8017.34, + "end": 8019.0, + "probability": 0.966 + }, + { + "start": 8019.48, + "end": 8023.25, + "probability": 0.9788 + }, + { + "start": 8024.04, + "end": 8026.0, + "probability": 0.9244 + }, + { + "start": 8026.56, + "end": 8029.32, + "probability": 0.853 + }, + { + "start": 8030.22, + "end": 8030.22, + "probability": 0.0117 + }, + { + "start": 8030.42, + "end": 8032.1, + "probability": 0.1539 + }, + { + "start": 8033.88, + "end": 8036.0, + "probability": 0.5996 + }, + { + "start": 8036.22, + "end": 8036.26, + "probability": 0.0486 + }, + { + "start": 8036.28, + "end": 8037.62, + "probability": 0.7874 + }, + { + "start": 8039.08, + "end": 8042.69, + "probability": 0.8125 + }, + { + "start": 8044.22, + "end": 8044.84, + "probability": 0.1572 + }, + { + "start": 8061.88, + "end": 8062.64, + "probability": 0.1216 + }, + { + "start": 8062.98, + "end": 8064.36, + "probability": 0.7039 + }, + { + "start": 8064.78, + "end": 8065.14, + "probability": 0.9406 + }, + { + "start": 8073.0, + "end": 8077.34, + "probability": 0.4018 + }, + { + "start": 8083.7, + "end": 8086.0, + "probability": 0.0005 + }, + { + "start": 8086.54, + "end": 8090.4, + "probability": 0.1535 + }, + { + "start": 8092.76, + "end": 8097.86, + "probability": 0.04 + }, + { + "start": 8100.14, + "end": 8101.67, + "probability": 0.0278 + }, + { + "start": 8104.16, + "end": 8104.58, + "probability": 0.0606 + }, + { + "start": 8105.14, + "end": 8105.8, + "probability": 0.2546 + }, + { + "start": 8107.0, + "end": 8109.82, + "probability": 0.0997 + }, + { + "start": 8110.04, + "end": 8114.78, + "probability": 0.0604 + }, + { + "start": 8116.66, + "end": 8120.42, + "probability": 0.2817 + }, + { + "start": 8120.52, + "end": 8123.88, + "probability": 0.0532 + }, + { + "start": 8124.0, + "end": 8124.0, + "probability": 0.0 + }, + { + "start": 8124.0, + "end": 8124.0, + "probability": 0.0 + }, + { + "start": 8124.0, + "end": 8124.0, + "probability": 0.0 + }, + { + "start": 8124.0, + "end": 8124.0, + "probability": 0.0 + }, + { + "start": 8124.0, + "end": 8124.0, + "probability": 0.0 + }, + { + "start": 8124.16, + "end": 8124.46, + "probability": 0.0273 + }, + { + "start": 8124.46, + "end": 8124.46, + "probability": 0.1342 + }, + { + "start": 8124.46, + "end": 8127.46, + "probability": 0.6969 + }, + { + "start": 8127.46, + "end": 8131.3, + "probability": 0.9222 + }, + { + "start": 8145.5, + "end": 8145.98, + "probability": 0.5158 + }, + { + "start": 8146.54, + "end": 8146.78, + "probability": 0.0646 + }, + { + "start": 8146.78, + "end": 8146.78, + "probability": 0.0832 + }, + { + "start": 8146.78, + "end": 8146.78, + "probability": 0.0635 + }, + { + "start": 8146.78, + "end": 8151.23, + "probability": 0.9604 + }, + { + "start": 8152.66, + "end": 8155.94, + "probability": 0.9517 + }, + { + "start": 8156.12, + "end": 8160.22, + "probability": 0.9352 + }, + { + "start": 8160.3, + "end": 8164.06, + "probability": 0.9834 + }, + { + "start": 8166.74, + "end": 8169.62, + "probability": 0.0184 + }, + { + "start": 8170.56, + "end": 8173.84, + "probability": 0.7882 + }, + { + "start": 8174.7, + "end": 8177.4, + "probability": 0.3805 + }, + { + "start": 8177.74, + "end": 8178.12, + "probability": 0.5914 + }, + { + "start": 8178.26, + "end": 8180.84, + "probability": 0.8273 + }, + { + "start": 8181.38, + "end": 8183.9, + "probability": 0.9657 + }, + { + "start": 8184.98, + "end": 8191.34, + "probability": 0.9974 + }, + { + "start": 8191.76, + "end": 8194.14, + "probability": 0.9789 + }, + { + "start": 8194.92, + "end": 8197.54, + "probability": 0.9988 + }, + { + "start": 8197.54, + "end": 8201.82, + "probability": 0.9823 + }, + { + "start": 8202.4, + "end": 8208.96, + "probability": 0.9995 + }, + { + "start": 8209.66, + "end": 8214.96, + "probability": 0.9852 + }, + { + "start": 8215.6, + "end": 8217.26, + "probability": 0.8893 + }, + { + "start": 8217.32, + "end": 8221.18, + "probability": 0.996 + }, + { + "start": 8221.8, + "end": 8226.02, + "probability": 0.9975 + }, + { + "start": 8227.06, + "end": 8230.74, + "probability": 0.9623 + }, + { + "start": 8231.5, + "end": 8236.98, + "probability": 0.9725 + }, + { + "start": 8237.5, + "end": 8243.42, + "probability": 0.9888 + }, + { + "start": 8244.14, + "end": 8248.0, + "probability": 0.9856 + }, + { + "start": 8248.06, + "end": 8249.36, + "probability": 0.8861 + }, + { + "start": 8249.82, + "end": 8255.6, + "probability": 0.9973 + }, + { + "start": 8256.12, + "end": 8258.24, + "probability": 0.9159 + }, + { + "start": 8259.46, + "end": 8261.34, + "probability": 0.9213 + }, + { + "start": 8262.08, + "end": 8266.9, + "probability": 0.9816 + }, + { + "start": 8267.58, + "end": 8269.26, + "probability": 0.9936 + }, + { + "start": 8270.1, + "end": 8274.5, + "probability": 0.9913 + }, + { + "start": 8274.5, + "end": 8280.38, + "probability": 0.991 + }, + { + "start": 8282.48, + "end": 8285.8, + "probability": 0.4231 + }, + { + "start": 8286.2, + "end": 8287.16, + "probability": 0.8077 + }, + { + "start": 8287.54, + "end": 8292.66, + "probability": 0.9174 + }, + { + "start": 8292.98, + "end": 8294.42, + "probability": 0.9308 + }, + { + "start": 8294.94, + "end": 8296.44, + "probability": 0.9797 + }, + { + "start": 8296.92, + "end": 8300.44, + "probability": 0.9939 + }, + { + "start": 8300.98, + "end": 8303.26, + "probability": 0.9985 + }, + { + "start": 8304.18, + "end": 8310.58, + "probability": 0.9613 + }, + { + "start": 8311.24, + "end": 8313.98, + "probability": 0.8006 + }, + { + "start": 8314.1, + "end": 8316.08, + "probability": 0.9927 + }, + { + "start": 8316.64, + "end": 8318.08, + "probability": 0.6738 + }, + { + "start": 8318.32, + "end": 8320.06, + "probability": 0.9133 + }, + { + "start": 8320.56, + "end": 8321.86, + "probability": 0.8771 + }, + { + "start": 8322.22, + "end": 8323.9, + "probability": 0.979 + }, + { + "start": 8324.0, + "end": 8324.5, + "probability": 0.5631 + }, + { + "start": 8324.54, + "end": 8327.8, + "probability": 0.912 + }, + { + "start": 8329.0, + "end": 8331.62, + "probability": 0.9508 + }, + { + "start": 8332.74, + "end": 8335.8, + "probability": 0.6352 + }, + { + "start": 8336.47, + "end": 8339.48, + "probability": 0.3875 + }, + { + "start": 8340.38, + "end": 8342.68, + "probability": 0.9705 + }, + { + "start": 8343.42, + "end": 8343.98, + "probability": 0.7848 + }, + { + "start": 8344.02, + "end": 8344.24, + "probability": 0.9329 + }, + { + "start": 8344.28, + "end": 8348.98, + "probability": 0.9634 + }, + { + "start": 8349.7, + "end": 8351.76, + "probability": 0.7921 + }, + { + "start": 8351.84, + "end": 8355.18, + "probability": 0.9917 + }, + { + "start": 8355.72, + "end": 8357.58, + "probability": 0.9983 + }, + { + "start": 8358.82, + "end": 8361.74, + "probability": 0.9622 + }, + { + "start": 8361.9, + "end": 8366.5, + "probability": 0.9868 + }, + { + "start": 8367.62, + "end": 8369.88, + "probability": 0.9818 + }, + { + "start": 8370.82, + "end": 8374.41, + "probability": 0.9179 + }, + { + "start": 8374.86, + "end": 8375.7, + "probability": 0.8911 + }, + { + "start": 8375.9, + "end": 8379.52, + "probability": 0.4962 + }, + { + "start": 8380.4, + "end": 8382.18, + "probability": 0.9866 + }, + { + "start": 8382.9, + "end": 8386.5, + "probability": 0.993 + }, + { + "start": 8387.02, + "end": 8388.4, + "probability": 0.6721 + }, + { + "start": 8389.9, + "end": 8391.7, + "probability": 0.8358 + }, + { + "start": 8392.94, + "end": 8395.34, + "probability": 0.9939 + }, + { + "start": 8395.44, + "end": 8397.04, + "probability": 0.9397 + }, + { + "start": 8397.6, + "end": 8398.48, + "probability": 0.7417 + }, + { + "start": 8398.78, + "end": 8399.48, + "probability": 0.622 + }, + { + "start": 8399.86, + "end": 8403.18, + "probability": 0.9849 + }, + { + "start": 8404.04, + "end": 8406.82, + "probability": 0.9889 + }, + { + "start": 8407.92, + "end": 8409.08, + "probability": 0.9312 + }, + { + "start": 8409.22, + "end": 8414.42, + "probability": 0.9937 + }, + { + "start": 8414.7, + "end": 8415.88, + "probability": 0.9843 + }, + { + "start": 8416.2, + "end": 8418.04, + "probability": 0.9381 + }, + { + "start": 8419.14, + "end": 8421.58, + "probability": 0.7163 + }, + { + "start": 8422.3, + "end": 8425.46, + "probability": 0.9712 + }, + { + "start": 8425.46, + "end": 8428.88, + "probability": 0.9776 + }, + { + "start": 8429.12, + "end": 8429.74, + "probability": 0.9791 + }, + { + "start": 8430.22, + "end": 8430.9, + "probability": 0.8242 + }, + { + "start": 8431.64, + "end": 8434.62, + "probability": 0.9927 + }, + { + "start": 8434.62, + "end": 8436.96, + "probability": 0.9995 + }, + { + "start": 8438.16, + "end": 8440.18, + "probability": 0.989 + }, + { + "start": 8440.38, + "end": 8442.66, + "probability": 0.9795 + }, + { + "start": 8443.04, + "end": 8444.12, + "probability": 0.94 + }, + { + "start": 8444.44, + "end": 8447.0, + "probability": 0.9946 + }, + { + "start": 8449.0, + "end": 8449.72, + "probability": 0.6824 + }, + { + "start": 8450.42, + "end": 8453.1, + "probability": 0.9749 + }, + { + "start": 8453.76, + "end": 8454.34, + "probability": 0.9316 + }, + { + "start": 8454.78, + "end": 8457.38, + "probability": 0.7843 + }, + { + "start": 8457.7, + "end": 8459.1, + "probability": 0.9504 + }, + { + "start": 8459.88, + "end": 8462.16, + "probability": 0.8848 + }, + { + "start": 8462.54, + "end": 8467.42, + "probability": 0.9972 + }, + { + "start": 8468.0, + "end": 8470.92, + "probability": 0.9352 + }, + { + "start": 8471.18, + "end": 8474.84, + "probability": 0.7751 + }, + { + "start": 8475.3, + "end": 8478.2, + "probability": 0.9948 + }, + { + "start": 8479.5, + "end": 8480.32, + "probability": 0.772 + }, + { + "start": 8480.9, + "end": 8484.7, + "probability": 0.981 + }, + { + "start": 8484.7, + "end": 8487.46, + "probability": 0.9961 + }, + { + "start": 8488.98, + "end": 8491.84, + "probability": 0.9695 + }, + { + "start": 8492.28, + "end": 8493.88, + "probability": 0.9795 + }, + { + "start": 8494.38, + "end": 8495.65, + "probability": 0.964 + }, + { + "start": 8496.66, + "end": 8498.8, + "probability": 0.9205 + }, + { + "start": 8499.4, + "end": 8502.02, + "probability": 0.9637 + }, + { + "start": 8502.02, + "end": 8506.24, + "probability": 0.9928 + }, + { + "start": 8506.84, + "end": 8507.6, + "probability": 0.6457 + }, + { + "start": 8508.16, + "end": 8508.95, + "probability": 0.9287 + }, + { + "start": 8509.22, + "end": 8511.85, + "probability": 0.9972 + }, + { + "start": 8512.42, + "end": 8513.56, + "probability": 0.7455 + }, + { + "start": 8513.74, + "end": 8514.06, + "probability": 0.8351 + }, + { + "start": 8514.12, + "end": 8515.64, + "probability": 0.9753 + }, + { + "start": 8516.16, + "end": 8517.46, + "probability": 0.9104 + }, + { + "start": 8517.86, + "end": 8520.78, + "probability": 0.9848 + }, + { + "start": 8521.12, + "end": 8522.44, + "probability": 0.9706 + }, + { + "start": 8522.98, + "end": 8525.2, + "probability": 0.9811 + }, + { + "start": 8525.72, + "end": 8530.06, + "probability": 0.9934 + }, + { + "start": 8530.06, + "end": 8532.2, + "probability": 0.9961 + }, + { + "start": 8532.64, + "end": 8535.46, + "probability": 0.9705 + }, + { + "start": 8535.98, + "end": 8538.04, + "probability": 0.9902 + }, + { + "start": 8540.1, + "end": 8544.68, + "probability": 0.9386 + }, + { + "start": 8544.78, + "end": 8546.68, + "probability": 0.9902 + }, + { + "start": 8546.86, + "end": 8550.38, + "probability": 0.949 + }, + { + "start": 8551.18, + "end": 8552.86, + "probability": 0.9963 + }, + { + "start": 8553.1, + "end": 8559.28, + "probability": 0.9903 + }, + { + "start": 8559.48, + "end": 8564.04, + "probability": 0.9402 + }, + { + "start": 8564.74, + "end": 8569.26, + "probability": 0.7314 + }, + { + "start": 8569.92, + "end": 8571.48, + "probability": 0.9477 + }, + { + "start": 8571.74, + "end": 8572.56, + "probability": 0.96 + }, + { + "start": 8572.66, + "end": 8573.56, + "probability": 0.9078 + }, + { + "start": 8574.06, + "end": 8576.34, + "probability": 0.9927 + }, + { + "start": 8576.94, + "end": 8578.06, + "probability": 0.5766 + }, + { + "start": 8578.92, + "end": 8580.18, + "probability": 0.4169 + }, + { + "start": 8580.94, + "end": 8582.26, + "probability": 0.5225 + }, + { + "start": 8582.26, + "end": 8586.82, + "probability": 0.7554 + }, + { + "start": 8586.98, + "end": 8588.16, + "probability": 0.9785 + }, + { + "start": 8588.64, + "end": 8590.7, + "probability": 0.1035 + }, + { + "start": 8590.88, + "end": 8592.08, + "probability": 0.952 + }, + { + "start": 8592.7, + "end": 8595.64, + "probability": 0.9865 + }, + { + "start": 8595.78, + "end": 8596.94, + "probability": 0.5294 + }, + { + "start": 8597.6, + "end": 8598.68, + "probability": 0.683 + }, + { + "start": 8599.23, + "end": 8601.4, + "probability": 0.8625 + }, + { + "start": 8601.4, + "end": 8603.7, + "probability": 0.816 + }, + { + "start": 8605.86, + "end": 8607.72, + "probability": 0.9934 + }, + { + "start": 8608.38, + "end": 8609.48, + "probability": 0.7188 + }, + { + "start": 8610.08, + "end": 8610.56, + "probability": 0.7017 + }, + { + "start": 8610.72, + "end": 8611.4, + "probability": 0.8839 + }, + { + "start": 8611.7, + "end": 8613.66, + "probability": 0.8913 + }, + { + "start": 8613.88, + "end": 8614.6, + "probability": 0.8408 + }, + { + "start": 8616.14, + "end": 8618.32, + "probability": 0.9979 + }, + { + "start": 8619.18, + "end": 8625.08, + "probability": 0.9736 + }, + { + "start": 8625.68, + "end": 8629.5, + "probability": 0.9961 + }, + { + "start": 8630.12, + "end": 8636.06, + "probability": 0.9974 + }, + { + "start": 8637.28, + "end": 8640.64, + "probability": 0.9978 + }, + { + "start": 8641.06, + "end": 8643.9, + "probability": 0.9921 + }, + { + "start": 8644.52, + "end": 8648.46, + "probability": 0.9951 + }, + { + "start": 8649.2, + "end": 8652.4, + "probability": 0.9945 + }, + { + "start": 8652.82, + "end": 8655.78, + "probability": 0.814 + }, + { + "start": 8655.88, + "end": 8657.68, + "probability": 0.9453 + }, + { + "start": 8658.16, + "end": 8659.47, + "probability": 0.9055 + }, + { + "start": 8660.28, + "end": 8666.98, + "probability": 0.9585 + }, + { + "start": 8667.62, + "end": 8668.3, + "probability": 0.7231 + }, + { + "start": 8668.52, + "end": 8671.79, + "probability": 0.7754 + }, + { + "start": 8672.02, + "end": 8672.38, + "probability": 0.961 + }, + { + "start": 8672.88, + "end": 8676.34, + "probability": 0.9509 + }, + { + "start": 8677.04, + "end": 8680.76, + "probability": 0.9941 + }, + { + "start": 8680.76, + "end": 8684.12, + "probability": 0.9753 + }, + { + "start": 8684.22, + "end": 8685.64, + "probability": 0.9953 + }, + { + "start": 8685.98, + "end": 8688.68, + "probability": 0.991 + }, + { + "start": 8689.16, + "end": 8692.6, + "probability": 0.9823 + }, + { + "start": 8693.0, + "end": 8694.72, + "probability": 0.9489 + }, + { + "start": 8696.44, + "end": 8698.96, + "probability": 0.9787 + }, + { + "start": 8699.02, + "end": 8703.06, + "probability": 0.9992 + }, + { + "start": 8703.06, + "end": 8707.24, + "probability": 0.9998 + }, + { + "start": 8707.38, + "end": 8709.66, + "probability": 0.989 + }, + { + "start": 8710.32, + "end": 8713.08, + "probability": 0.9318 + }, + { + "start": 8713.3, + "end": 8717.96, + "probability": 0.9935 + }, + { + "start": 8718.6, + "end": 8719.02, + "probability": 0.7052 + }, + { + "start": 8719.44, + "end": 8720.0, + "probability": 0.4455 + }, + { + "start": 8720.76, + "end": 8722.42, + "probability": 0.8999 + }, + { + "start": 8723.16, + "end": 8724.28, + "probability": 0.579 + }, + { + "start": 8735.46, + "end": 8735.6, + "probability": 0.0134 + }, + { + "start": 8735.6, + "end": 8735.96, + "probability": 0.3694 + }, + { + "start": 8737.18, + "end": 8738.02, + "probability": 0.7516 + }, + { + "start": 8738.04, + "end": 8740.32, + "probability": 0.932 + }, + { + "start": 8740.42, + "end": 8745.92, + "probability": 0.9724 + }, + { + "start": 8746.74, + "end": 8749.16, + "probability": 0.9591 + }, + { + "start": 8749.26, + "end": 8750.58, + "probability": 0.9934 + }, + { + "start": 8752.2, + "end": 8752.34, + "probability": 0.4565 + }, + { + "start": 8753.16, + "end": 8754.14, + "probability": 0.98 + }, + { + "start": 8755.32, + "end": 8758.92, + "probability": 0.9624 + }, + { + "start": 8759.44, + "end": 8762.76, + "probability": 0.7466 + }, + { + "start": 8763.92, + "end": 8764.36, + "probability": 0.0078 + }, + { + "start": 8764.54, + "end": 8768.7, + "probability": 0.994 + }, + { + "start": 8768.74, + "end": 8773.86, + "probability": 0.9795 + }, + { + "start": 8774.78, + "end": 8777.1, + "probability": 0.9782 + }, + { + "start": 8777.18, + "end": 8777.4, + "probability": 0.4153 + }, + { + "start": 8778.08, + "end": 8778.7, + "probability": 0.9517 + }, + { + "start": 8779.72, + "end": 8781.76, + "probability": 0.955 + }, + { + "start": 8781.86, + "end": 8785.98, + "probability": 0.9475 + }, + { + "start": 8787.0, + "end": 8788.46, + "probability": 0.926 + }, + { + "start": 8789.1, + "end": 8791.54, + "probability": 0.7067 + }, + { + "start": 8791.64, + "end": 8795.26, + "probability": 0.9497 + }, + { + "start": 8795.7, + "end": 8797.74, + "probability": 0.8952 + }, + { + "start": 8798.06, + "end": 8800.6, + "probability": 0.9536 + }, + { + "start": 8801.26, + "end": 8802.08, + "probability": 0.6451 + }, + { + "start": 8803.56, + "end": 8806.2, + "probability": 0.7678 + }, + { + "start": 8807.48, + "end": 8810.84, + "probability": 0.9768 + }, + { + "start": 8811.62, + "end": 8818.22, + "probability": 0.99 + }, + { + "start": 8820.46, + "end": 8822.02, + "probability": 0.967 + }, + { + "start": 8823.1, + "end": 8825.96, + "probability": 0.9972 + }, + { + "start": 8825.96, + "end": 8830.32, + "probability": 0.9932 + }, + { + "start": 8831.64, + "end": 8838.94, + "probability": 0.9968 + }, + { + "start": 8839.34, + "end": 8839.96, + "probability": 0.6735 + }, + { + "start": 8841.14, + "end": 8843.96, + "probability": 0.9736 + }, + { + "start": 8844.08, + "end": 8847.22, + "probability": 0.999 + }, + { + "start": 8847.58, + "end": 8848.62, + "probability": 0.9984 + }, + { + "start": 8849.4, + "end": 8850.42, + "probability": 0.9945 + }, + { + "start": 8850.92, + "end": 8852.16, + "probability": 0.9872 + }, + { + "start": 8852.26, + "end": 8853.36, + "probability": 0.9916 + }, + { + "start": 8853.68, + "end": 8855.36, + "probability": 0.9167 + }, + { + "start": 8856.12, + "end": 8857.52, + "probability": 0.788 + }, + { + "start": 8859.04, + "end": 8864.04, + "probability": 0.9756 + }, + { + "start": 8864.24, + "end": 8865.64, + "probability": 0.9868 + }, + { + "start": 8865.7, + "end": 8866.58, + "probability": 0.9872 + }, + { + "start": 8866.72, + "end": 8868.08, + "probability": 0.9849 + }, + { + "start": 8868.74, + "end": 8871.54, + "probability": 0.9814 + }, + { + "start": 8871.6, + "end": 8875.82, + "probability": 0.9867 + }, + { + "start": 8876.98, + "end": 8878.9, + "probability": 0.7122 + }, + { + "start": 8882.37, + "end": 8883.82, + "probability": 0.998 + }, + { + "start": 8884.5, + "end": 8885.08, + "probability": 0.9731 + }, + { + "start": 8885.14, + "end": 8887.52, + "probability": 0.9805 + }, + { + "start": 8888.0, + "end": 8892.12, + "probability": 0.7113 + }, + { + "start": 8893.64, + "end": 8896.36, + "probability": 0.953 + }, + { + "start": 8897.16, + "end": 8897.68, + "probability": 0.7969 + }, + { + "start": 8897.94, + "end": 8902.74, + "probability": 0.8612 + }, + { + "start": 8902.94, + "end": 8907.14, + "probability": 0.8586 + }, + { + "start": 8907.82, + "end": 8911.28, + "probability": 0.9687 + }, + { + "start": 8911.4, + "end": 8912.62, + "probability": 0.8607 + }, + { + "start": 8914.16, + "end": 8916.69, + "probability": 0.9995 + }, + { + "start": 8918.22, + "end": 8919.74, + "probability": 0.9993 + }, + { + "start": 8919.9, + "end": 8921.03, + "probability": 0.892 + }, + { + "start": 8922.78, + "end": 8926.84, + "probability": 0.9934 + }, + { + "start": 8927.76, + "end": 8931.12, + "probability": 0.9758 + }, + { + "start": 8932.12, + "end": 8933.32, + "probability": 0.795 + }, + { + "start": 8934.1, + "end": 8934.42, + "probability": 0.665 + }, + { + "start": 8935.0, + "end": 8936.14, + "probability": 0.817 + }, + { + "start": 8936.36, + "end": 8939.06, + "probability": 0.928 + }, + { + "start": 8939.68, + "end": 8942.06, + "probability": 0.8722 + }, + { + "start": 8942.7, + "end": 8945.42, + "probability": 0.8415 + }, + { + "start": 8945.86, + "end": 8951.72, + "probability": 0.9951 + }, + { + "start": 8952.26, + "end": 8954.2, + "probability": 0.9866 + }, + { + "start": 8955.28, + "end": 8957.7, + "probability": 0.1287 + }, + { + "start": 8963.56, + "end": 8963.66, + "probability": 0.1769 + }, + { + "start": 8964.82, + "end": 8969.34, + "probability": 0.4342 + }, + { + "start": 8970.64, + "end": 8972.96, + "probability": 0.3285 + }, + { + "start": 8973.94, + "end": 8975.64, + "probability": 0.415 + }, + { + "start": 8975.74, + "end": 8976.96, + "probability": 0.9662 + }, + { + "start": 8977.3, + "end": 8980.16, + "probability": 0.7828 + }, + { + "start": 8981.57, + "end": 8985.44, + "probability": 0.728 + }, + { + "start": 8985.56, + "end": 8987.31, + "probability": 0.1428 + }, + { + "start": 8987.96, + "end": 8991.96, + "probability": 0.5134 + }, + { + "start": 8993.12, + "end": 8995.34, + "probability": 0.6509 + }, + { + "start": 8996.46, + "end": 8998.74, + "probability": 0.8422 + }, + { + "start": 9001.75, + "end": 9003.56, + "probability": 0.7251 + }, + { + "start": 9003.58, + "end": 9007.56, + "probability": 0.5264 + }, + { + "start": 9007.68, + "end": 9012.02, + "probability": 0.7613 + }, + { + "start": 9012.14, + "end": 9014.26, + "probability": 0.9712 + }, + { + "start": 9014.4, + "end": 9018.82, + "probability": 0.6514 + }, + { + "start": 9019.2, + "end": 9019.5, + "probability": 0.1283 + }, + { + "start": 9019.52, + "end": 9021.04, + "probability": 0.3607 + }, + { + "start": 9021.3, + "end": 9023.02, + "probability": 0.235 + }, + { + "start": 9023.74, + "end": 9026.1, + "probability": 0.5308 + }, + { + "start": 9026.32, + "end": 9027.36, + "probability": 0.142 + }, + { + "start": 9028.22, + "end": 9030.98, + "probability": 0.2547 + }, + { + "start": 9031.14, + "end": 9032.0, + "probability": 0.6021 + }, + { + "start": 9032.12, + "end": 9033.08, + "probability": 0.5487 + }, + { + "start": 9033.42, + "end": 9034.04, + "probability": 0.895 + }, + { + "start": 9043.68, + "end": 9044.32, + "probability": 0.5031 + }, + { + "start": 9044.42, + "end": 9045.6, + "probability": 0.396 + }, + { + "start": 9045.76, + "end": 9046.22, + "probability": 0.6503 + }, + { + "start": 9046.28, + "end": 9047.3, + "probability": 0.8987 + }, + { + "start": 9047.36, + "end": 9050.12, + "probability": 0.7884 + }, + { + "start": 9051.16, + "end": 9055.38, + "probability": 0.9681 + }, + { + "start": 9055.72, + "end": 9058.36, + "probability": 0.9744 + }, + { + "start": 9058.36, + "end": 9061.52, + "probability": 0.9912 + }, + { + "start": 9063.0, + "end": 9063.96, + "probability": 0.2123 + }, + { + "start": 9065.24, + "end": 9066.8, + "probability": 0.4836 + }, + { + "start": 9071.54, + "end": 9072.9, + "probability": 0.1167 + }, + { + "start": 9073.24, + "end": 9075.14, + "probability": 0.4242 + }, + { + "start": 9075.2, + "end": 9076.49, + "probability": 0.3205 + }, + { + "start": 9077.4, + "end": 9079.18, + "probability": 0.0379 + }, + { + "start": 9079.28, + "end": 9082.94, + "probability": 0.9182 + }, + { + "start": 9083.56, + "end": 9085.06, + "probability": 0.4874 + }, + { + "start": 9085.24, + "end": 9087.06, + "probability": 0.3898 + }, + { + "start": 9087.38, + "end": 9090.48, + "probability": 0.9947 + }, + { + "start": 9091.24, + "end": 9092.14, + "probability": 0.8396 + }, + { + "start": 9092.58, + "end": 9093.84, + "probability": 0.9609 + }, + { + "start": 9094.22, + "end": 9095.02, + "probability": 0.8397 + }, + { + "start": 9095.06, + "end": 9097.7, + "probability": 0.8787 + }, + { + "start": 9097.8, + "end": 9099.26, + "probability": 0.9112 + }, + { + "start": 9099.62, + "end": 9100.62, + "probability": 0.8234 + }, + { + "start": 9100.68, + "end": 9101.18, + "probability": 0.812 + }, + { + "start": 9101.28, + "end": 9101.88, + "probability": 0.8501 + }, + { + "start": 9101.94, + "end": 9103.38, + "probability": 0.704 + }, + { + "start": 9103.98, + "end": 9105.06, + "probability": 0.6582 + }, + { + "start": 9105.14, + "end": 9106.82, + "probability": 0.859 + }, + { + "start": 9106.96, + "end": 9107.72, + "probability": 0.7829 + }, + { + "start": 9108.1, + "end": 9108.8, + "probability": 0.9621 + }, + { + "start": 9108.86, + "end": 9109.48, + "probability": 0.9236 + }, + { + "start": 9109.52, + "end": 9111.26, + "probability": 0.7675 + }, + { + "start": 9111.66, + "end": 9114.61, + "probability": 0.9905 + }, + { + "start": 9116.56, + "end": 9118.96, + "probability": 0.8417 + }, + { + "start": 9119.74, + "end": 9121.8, + "probability": 0.2796 + }, + { + "start": 9122.88, + "end": 9125.74, + "probability": 0.9179 + }, + { + "start": 9125.74, + "end": 9129.28, + "probability": 0.9138 + }, + { + "start": 9129.34, + "end": 9132.28, + "probability": 0.9439 + }, + { + "start": 9132.74, + "end": 9135.6, + "probability": 0.9287 + }, + { + "start": 9135.6, + "end": 9138.66, + "probability": 0.9638 + }, + { + "start": 9139.44, + "end": 9143.64, + "probability": 0.965 + }, + { + "start": 9144.14, + "end": 9147.36, + "probability": 0.9393 + }, + { + "start": 9148.0, + "end": 9149.64, + "probability": 0.6988 + }, + { + "start": 9150.0, + "end": 9151.74, + "probability": 0.0259 + }, + { + "start": 9151.74, + "end": 9151.74, + "probability": 0.0242 + }, + { + "start": 9151.74, + "end": 9152.74, + "probability": 0.5316 + }, + { + "start": 9153.3, + "end": 9157.47, + "probability": 0.9631 + }, + { + "start": 9157.9, + "end": 9161.64, + "probability": 0.944 + }, + { + "start": 9162.48, + "end": 9164.52, + "probability": 0.8125 + }, + { + "start": 9164.9, + "end": 9165.87, + "probability": 0.6422 + }, + { + "start": 9166.82, + "end": 9169.34, + "probability": 0.7831 + }, + { + "start": 9172.23, + "end": 9175.28, + "probability": 0.1389 + }, + { + "start": 9178.54, + "end": 9178.98, + "probability": 0.1415 + }, + { + "start": 9186.26, + "end": 9186.82, + "probability": 0.036 + }, + { + "start": 9187.12, + "end": 9190.66, + "probability": 0.4912 + }, + { + "start": 9190.7, + "end": 9194.98, + "probability": 0.8101 + }, + { + "start": 9195.64, + "end": 9197.84, + "probability": 0.6558 + }, + { + "start": 9198.02, + "end": 9198.98, + "probability": 0.6461 + }, + { + "start": 9200.96, + "end": 9201.06, + "probability": 0.0524 + }, + { + "start": 9201.06, + "end": 9201.06, + "probability": 0.1575 + }, + { + "start": 9201.06, + "end": 9202.28, + "probability": 0.6849 + }, + { + "start": 9205.64, + "end": 9209.5, + "probability": 0.7927 + }, + { + "start": 9215.66, + "end": 9216.66, + "probability": 0.5177 + }, + { + "start": 9220.8, + "end": 9222.86, + "probability": 0.5839 + }, + { + "start": 9224.74, + "end": 9229.84, + "probability": 0.7378 + }, + { + "start": 9233.15, + "end": 9236.74, + "probability": 0.9039 + }, + { + "start": 9239.13, + "end": 9242.98, + "probability": 0.8981 + }, + { + "start": 9247.43, + "end": 9250.54, + "probability": 0.9899 + }, + { + "start": 9251.96, + "end": 9252.8, + "probability": 0.908 + }, + { + "start": 9254.42, + "end": 9257.6, + "probability": 0.9891 + }, + { + "start": 9257.7, + "end": 9258.36, + "probability": 0.8535 + }, + { + "start": 9259.26, + "end": 9260.96, + "probability": 0.8726 + }, + { + "start": 9261.5, + "end": 9262.84, + "probability": 0.957 + }, + { + "start": 9264.14, + "end": 9267.46, + "probability": 0.9655 + }, + { + "start": 9268.72, + "end": 9272.18, + "probability": 0.979 + }, + { + "start": 9273.12, + "end": 9274.08, + "probability": 0.9374 + }, + { + "start": 9274.68, + "end": 9275.68, + "probability": 0.9457 + }, + { + "start": 9276.58, + "end": 9280.5, + "probability": 0.8547 + }, + { + "start": 9281.48, + "end": 9283.4, + "probability": 0.844 + }, + { + "start": 9284.6, + "end": 9289.48, + "probability": 0.8895 + }, + { + "start": 9291.3, + "end": 9293.58, + "probability": 0.9858 + }, + { + "start": 9295.34, + "end": 9297.54, + "probability": 0.998 + }, + { + "start": 9299.04, + "end": 9299.82, + "probability": 0.6788 + }, + { + "start": 9300.5, + "end": 9301.52, + "probability": 0.9861 + }, + { + "start": 9302.42, + "end": 9306.6, + "probability": 0.9104 + }, + { + "start": 9306.6, + "end": 9310.44, + "probability": 0.9772 + }, + { + "start": 9314.1, + "end": 9316.54, + "probability": 0.884 + }, + { + "start": 9317.1, + "end": 9317.72, + "probability": 0.5591 + }, + { + "start": 9318.4, + "end": 9322.34, + "probability": 0.9927 + }, + { + "start": 9325.36, + "end": 9326.4, + "probability": 0.9876 + }, + { + "start": 9326.42, + "end": 9327.62, + "probability": 0.9166 + }, + { + "start": 9327.84, + "end": 9329.56, + "probability": 0.8116 + }, + { + "start": 9331.54, + "end": 9332.34, + "probability": 0.9794 + }, + { + "start": 9333.06, + "end": 9333.58, + "probability": 0.587 + }, + { + "start": 9337.64, + "end": 9339.6, + "probability": 0.999 + }, + { + "start": 9339.78, + "end": 9342.68, + "probability": 0.9613 + }, + { + "start": 9343.04, + "end": 9347.66, + "probability": 0.9645 + }, + { + "start": 9347.82, + "end": 9349.74, + "probability": 0.7319 + }, + { + "start": 9351.44, + "end": 9354.86, + "probability": 0.6534 + }, + { + "start": 9355.94, + "end": 9356.46, + "probability": 0.1815 + }, + { + "start": 9356.94, + "end": 9357.2, + "probability": 0.5216 + }, + { + "start": 9357.36, + "end": 9360.62, + "probability": 0.9376 + }, + { + "start": 9363.42, + "end": 9365.98, + "probability": 0.8535 + }, + { + "start": 9367.4, + "end": 9367.76, + "probability": 0.7397 + }, + { + "start": 9368.16, + "end": 9368.88, + "probability": 0.6795 + }, + { + "start": 9369.06, + "end": 9369.46, + "probability": 0.6687 + }, + { + "start": 9369.9, + "end": 9370.78, + "probability": 0.8962 + }, + { + "start": 9370.98, + "end": 9371.74, + "probability": 0.8604 + }, + { + "start": 9371.82, + "end": 9372.16, + "probability": 0.9548 + }, + { + "start": 9372.38, + "end": 9373.4, + "probability": 0.966 + }, + { + "start": 9374.48, + "end": 9375.14, + "probability": 0.9632 + }, + { + "start": 9376.1, + "end": 9378.56, + "probability": 0.9487 + }, + { + "start": 9379.44, + "end": 9381.44, + "probability": 0.9277 + }, + { + "start": 9382.14, + "end": 9383.32, + "probability": 0.7462 + }, + { + "start": 9385.1, + "end": 9388.18, + "probability": 0.9497 + }, + { + "start": 9388.8, + "end": 9391.86, + "probability": 0.8954 + }, + { + "start": 9392.94, + "end": 9393.6, + "probability": 0.8953 + }, + { + "start": 9393.9, + "end": 9395.72, + "probability": 0.9763 + }, + { + "start": 9396.04, + "end": 9400.66, + "probability": 0.8768 + }, + { + "start": 9401.96, + "end": 9404.32, + "probability": 0.8105 + }, + { + "start": 9404.48, + "end": 9405.14, + "probability": 0.6726 + }, + { + "start": 9405.48, + "end": 9407.44, + "probability": 0.9679 + }, + { + "start": 9409.2, + "end": 9410.46, + "probability": 0.9507 + }, + { + "start": 9412.34, + "end": 9414.96, + "probability": 0.9813 + }, + { + "start": 9415.04, + "end": 9416.4, + "probability": 0.9739 + }, + { + "start": 9416.46, + "end": 9417.38, + "probability": 0.9612 + }, + { + "start": 9418.0, + "end": 9420.1, + "probability": 0.8952 + }, + { + "start": 9421.3, + "end": 9424.54, + "probability": 0.9988 + }, + { + "start": 9424.6, + "end": 9428.52, + "probability": 0.7901 + }, + { + "start": 9428.62, + "end": 9429.48, + "probability": 0.6711 + }, + { + "start": 9429.6, + "end": 9430.34, + "probability": 0.9406 + }, + { + "start": 9430.5, + "end": 9431.36, + "probability": 0.8664 + }, + { + "start": 9431.38, + "end": 9432.4, + "probability": 0.9452 + }, + { + "start": 9432.48, + "end": 9433.2, + "probability": 0.9508 + }, + { + "start": 9433.3, + "end": 9433.9, + "probability": 0.9236 + }, + { + "start": 9434.42, + "end": 9435.3, + "probability": 0.9394 + }, + { + "start": 9435.42, + "end": 9436.16, + "probability": 0.8894 + }, + { + "start": 9436.28, + "end": 9437.12, + "probability": 0.2361 + }, + { + "start": 9437.42, + "end": 9438.38, + "probability": 0.4575 + }, + { + "start": 9440.42, + "end": 9441.22, + "probability": 0.9321 + }, + { + "start": 9441.52, + "end": 9442.88, + "probability": 0.7323 + }, + { + "start": 9443.02, + "end": 9444.32, + "probability": 0.9393 + }, + { + "start": 9445.34, + "end": 9447.28, + "probability": 0.6913 + }, + { + "start": 9448.56, + "end": 9451.06, + "probability": 0.6356 + }, + { + "start": 9453.12, + "end": 9458.36, + "probability": 0.8161 + }, + { + "start": 9462.12, + "end": 9465.6, + "probability": 0.4089 + }, + { + "start": 9466.0, + "end": 9467.16, + "probability": 0.7602 + }, + { + "start": 9468.3, + "end": 9471.58, + "probability": 0.4452 + }, + { + "start": 9473.2, + "end": 9475.6, + "probability": 0.9842 + }, + { + "start": 9477.0, + "end": 9478.84, + "probability": 0.6298 + }, + { + "start": 9480.74, + "end": 9483.14, + "probability": 0.2968 + }, + { + "start": 9483.66, + "end": 9484.34, + "probability": 0.8972 + }, + { + "start": 9485.84, + "end": 9487.44, + "probability": 0.9837 + }, + { + "start": 9488.18, + "end": 9491.08, + "probability": 0.9194 + }, + { + "start": 9492.82, + "end": 9496.54, + "probability": 0.7748 + }, + { + "start": 9499.2, + "end": 9500.21, + "probability": 0.9474 + }, + { + "start": 9500.48, + "end": 9501.1, + "probability": 0.8457 + }, + { + "start": 9501.3, + "end": 9506.74, + "probability": 0.7648 + }, + { + "start": 9507.7, + "end": 9509.88, + "probability": 0.7674 + }, + { + "start": 9510.5, + "end": 9513.01, + "probability": 0.8977 + }, + { + "start": 9514.54, + "end": 9519.2, + "probability": 0.9652 + }, + { + "start": 9519.32, + "end": 9520.76, + "probability": 0.657 + }, + { + "start": 9520.84, + "end": 9523.78, + "probability": 0.9849 + }, + { + "start": 9525.04, + "end": 9527.34, + "probability": 0.827 + }, + { + "start": 9527.96, + "end": 9528.76, + "probability": 0.7441 + }, + { + "start": 9528.86, + "end": 9531.14, + "probability": 0.6007 + }, + { + "start": 9531.9, + "end": 9535.72, + "probability": 0.9739 + }, + { + "start": 9536.4, + "end": 9537.0, + "probability": 0.9539 + }, + { + "start": 9537.36, + "end": 9539.16, + "probability": 0.7471 + }, + { + "start": 9539.52, + "end": 9540.86, + "probability": 0.7163 + }, + { + "start": 9540.94, + "end": 9543.76, + "probability": 0.9902 + }, + { + "start": 9544.3, + "end": 9547.76, + "probability": 0.9893 + }, + { + "start": 9549.72, + "end": 9550.78, + "probability": 0.845 + }, + { + "start": 9550.88, + "end": 9552.56, + "probability": 0.9839 + }, + { + "start": 9554.18, + "end": 9557.28, + "probability": 0.9399 + }, + { + "start": 9561.76, + "end": 9563.46, + "probability": 0.9634 + }, + { + "start": 9563.54, + "end": 9567.38, + "probability": 0.9909 + }, + { + "start": 9568.94, + "end": 9569.78, + "probability": 0.927 + }, + { + "start": 9571.3, + "end": 9574.18, + "probability": 0.9927 + }, + { + "start": 9574.88, + "end": 9580.64, + "probability": 0.9279 + }, + { + "start": 9581.18, + "end": 9582.82, + "probability": 0.6087 + }, + { + "start": 9585.74, + "end": 9587.66, + "probability": 0.9215 + }, + { + "start": 9587.76, + "end": 9589.78, + "probability": 0.9909 + }, + { + "start": 9589.94, + "end": 9591.14, + "probability": 0.949 + }, + { + "start": 9591.8, + "end": 9593.58, + "probability": 0.8571 + }, + { + "start": 9593.72, + "end": 9594.34, + "probability": 0.8185 + }, + { + "start": 9594.48, + "end": 9595.12, + "probability": 0.9067 + }, + { + "start": 9595.24, + "end": 9598.24, + "probability": 0.9841 + }, + { + "start": 9599.26, + "end": 9607.2, + "probability": 0.7416 + }, + { + "start": 9609.86, + "end": 9610.92, + "probability": 0.7428 + }, + { + "start": 9613.16, + "end": 9614.56, + "probability": 0.9371 + }, + { + "start": 9615.72, + "end": 9617.16, + "probability": 0.0331 + }, + { + "start": 9617.26, + "end": 9618.56, + "probability": 0.3801 + }, + { + "start": 9618.6, + "end": 9620.24, + "probability": 0.9123 + }, + { + "start": 9621.88, + "end": 9623.34, + "probability": 0.6924 + }, + { + "start": 9630.18, + "end": 9632.92, + "probability": 0.6767 + }, + { + "start": 9636.9, + "end": 9638.32, + "probability": 0.2616 + }, + { + "start": 9638.42, + "end": 9646.22, + "probability": 0.9714 + }, + { + "start": 9648.98, + "end": 9650.16, + "probability": 0.6576 + }, + { + "start": 9652.4, + "end": 9654.94, + "probability": 0.9937 + }, + { + "start": 9655.46, + "end": 9656.72, + "probability": 0.9941 + }, + { + "start": 9659.32, + "end": 9660.14, + "probability": 0.8355 + }, + { + "start": 9661.2, + "end": 9663.52, + "probability": 0.9943 + }, + { + "start": 9664.4, + "end": 9665.58, + "probability": 0.9912 + }, + { + "start": 9666.84, + "end": 9669.76, + "probability": 0.9658 + }, + { + "start": 9669.98, + "end": 9671.44, + "probability": 0.9668 + }, + { + "start": 9672.72, + "end": 9676.96, + "probability": 0.8955 + }, + { + "start": 9678.06, + "end": 9678.96, + "probability": 0.4303 + }, + { + "start": 9679.1, + "end": 9680.12, + "probability": 0.7942 + }, + { + "start": 9680.2, + "end": 9682.98, + "probability": 0.7328 + }, + { + "start": 9683.36, + "end": 9685.12, + "probability": 0.8416 + }, + { + "start": 9686.26, + "end": 9687.46, + "probability": 0.8334 + }, + { + "start": 9689.26, + "end": 9691.24, + "probability": 0.9167 + }, + { + "start": 9691.64, + "end": 9692.6, + "probability": 0.9963 + }, + { + "start": 9697.6, + "end": 9698.88, + "probability": 0.5109 + }, + { + "start": 9703.4, + "end": 9705.3, + "probability": 0.9875 + }, + { + "start": 9707.16, + "end": 9708.82, + "probability": 0.8859 + }, + { + "start": 9709.52, + "end": 9714.68, + "probability": 0.9004 + }, + { + "start": 9715.82, + "end": 9719.22, + "probability": 0.3459 + }, + { + "start": 9720.68, + "end": 9722.78, + "probability": 0.9366 + }, + { + "start": 9723.48, + "end": 9725.02, + "probability": 0.8998 + }, + { + "start": 9725.1, + "end": 9725.96, + "probability": 0.6709 + }, + { + "start": 9726.88, + "end": 9727.44, + "probability": 0.7503 + }, + { + "start": 9727.7, + "end": 9731.06, + "probability": 0.9917 + }, + { + "start": 9733.14, + "end": 9735.72, + "probability": 0.9964 + }, + { + "start": 9735.88, + "end": 9737.16, + "probability": 0.6953 + }, + { + "start": 9738.84, + "end": 9740.12, + "probability": 0.9785 + }, + { + "start": 9740.92, + "end": 9741.6, + "probability": 0.6754 + }, + { + "start": 9745.16, + "end": 9748.44, + "probability": 0.8767 + }, + { + "start": 9748.94, + "end": 9754.2, + "probability": 0.9023 + }, + { + "start": 9755.36, + "end": 9757.96, + "probability": 0.9114 + }, + { + "start": 9758.02, + "end": 9760.32, + "probability": 0.7753 + }, + { + "start": 9760.48, + "end": 9761.18, + "probability": 0.8948 + }, + { + "start": 9761.9, + "end": 9762.86, + "probability": 0.907 + }, + { + "start": 9764.76, + "end": 9771.56, + "probability": 0.9876 + }, + { + "start": 9771.56, + "end": 9773.3, + "probability": 0.9238 + }, + { + "start": 9774.48, + "end": 9777.5, + "probability": 0.7366 + }, + { + "start": 9778.18, + "end": 9781.08, + "probability": 0.9553 + }, + { + "start": 9782.77, + "end": 9786.28, + "probability": 0.9727 + }, + { + "start": 9787.52, + "end": 9790.18, + "probability": 0.9165 + }, + { + "start": 9790.26, + "end": 9793.54, + "probability": 0.4475 + }, + { + "start": 9794.2, + "end": 9796.99, + "probability": 0.9935 + }, + { + "start": 9799.2, + "end": 9800.98, + "probability": 0.5112 + }, + { + "start": 9801.14, + "end": 9803.66, + "probability": 0.9873 + }, + { + "start": 9804.86, + "end": 9806.2, + "probability": 0.7709 + }, + { + "start": 9806.98, + "end": 9809.06, + "probability": 0.8193 + }, + { + "start": 9809.8, + "end": 9810.68, + "probability": 0.9919 + }, + { + "start": 9811.24, + "end": 9812.61, + "probability": 0.9951 + }, + { + "start": 9814.52, + "end": 9815.28, + "probability": 0.7628 + }, + { + "start": 9817.1, + "end": 9817.92, + "probability": 0.8537 + }, + { + "start": 9819.58, + "end": 9820.58, + "probability": 0.9629 + }, + { + "start": 9824.76, + "end": 9830.42, + "probability": 0.9866 + }, + { + "start": 9832.16, + "end": 9833.46, + "probability": 0.9476 + }, + { + "start": 9834.76, + "end": 9839.46, + "probability": 0.9707 + }, + { + "start": 9839.46, + "end": 9843.22, + "probability": 0.9958 + }, + { + "start": 9846.0, + "end": 9846.18, + "probability": 0.53 + }, + { + "start": 9846.7, + "end": 9850.46, + "probability": 0.6691 + }, + { + "start": 9850.54, + "end": 9851.88, + "probability": 0.8112 + }, + { + "start": 9851.9, + "end": 9853.78, + "probability": 0.922 + }, + { + "start": 9853.92, + "end": 9854.78, + "probability": 0.7225 + }, + { + "start": 9855.08, + "end": 9855.62, + "probability": 0.9042 + }, + { + "start": 9856.04, + "end": 9856.88, + "probability": 0.8125 + }, + { + "start": 9857.58, + "end": 9859.28, + "probability": 0.9868 + }, + { + "start": 9862.68, + "end": 9865.98, + "probability": 0.9749 + }, + { + "start": 9866.58, + "end": 9867.35, + "probability": 0.5186 + }, + { + "start": 9869.52, + "end": 9870.6, + "probability": 0.7993 + }, + { + "start": 9874.04, + "end": 9881.36, + "probability": 0.8442 + }, + { + "start": 9881.36, + "end": 9881.8, + "probability": 0.6592 + }, + { + "start": 9882.16, + "end": 9884.68, + "probability": 0.3204 + }, + { + "start": 9885.11, + "end": 9886.5, + "probability": 0.295 + }, + { + "start": 9886.66, + "end": 9890.8, + "probability": 0.7623 + }, + { + "start": 9890.96, + "end": 9894.08, + "probability": 0.9937 + }, + { + "start": 9895.52, + "end": 9900.44, + "probability": 0.7793 + }, + { + "start": 9900.9, + "end": 9902.52, + "probability": 0.2004 + }, + { + "start": 9903.58, + "end": 9907.46, + "probability": 0.8286 + }, + { + "start": 9908.1, + "end": 9912.64, + "probability": 0.8576 + }, + { + "start": 9912.94, + "end": 9913.76, + "probability": 0.9718 + }, + { + "start": 9914.52, + "end": 9920.43, + "probability": 0.9395 + }, + { + "start": 9920.66, + "end": 9921.56, + "probability": 0.8889 + }, + { + "start": 9921.92, + "end": 9922.74, + "probability": 0.5128 + }, + { + "start": 9922.74, + "end": 9924.86, + "probability": 0.6837 + }, + { + "start": 9927.78, + "end": 9928.56, + "probability": 0.0214 + }, + { + "start": 9929.1, + "end": 9930.16, + "probability": 0.1147 + }, + { + "start": 9930.42, + "end": 9932.44, + "probability": 0.596 + }, + { + "start": 9933.6, + "end": 9939.36, + "probability": 0.3645 + }, + { + "start": 9941.3, + "end": 9942.5, + "probability": 0.1359 + }, + { + "start": 9942.5, + "end": 9942.5, + "probability": 0.1001 + }, + { + "start": 9942.5, + "end": 9946.64, + "probability": 0.4653 + }, + { + "start": 9946.88, + "end": 9947.54, + "probability": 0.2964 + }, + { + "start": 9949.34, + "end": 9950.92, + "probability": 0.7472 + }, + { + "start": 9951.62, + "end": 9955.18, + "probability": 0.6038 + }, + { + "start": 9955.86, + "end": 9960.66, + "probability": 0.9606 + }, + { + "start": 9961.44, + "end": 9966.1, + "probability": 0.9861 + }, + { + "start": 9966.7, + "end": 9970.86, + "probability": 0.9697 + }, + { + "start": 9971.06, + "end": 9972.28, + "probability": 0.9474 + }, + { + "start": 9973.44, + "end": 9976.98, + "probability": 0.9626 + }, + { + "start": 9979.18, + "end": 9982.98, + "probability": 0.7917 + }, + { + "start": 9983.6, + "end": 9987.04, + "probability": 0.7394 + }, + { + "start": 9988.46, + "end": 9991.88, + "probability": 0.989 + }, + { + "start": 9992.48, + "end": 9993.06, + "probability": 0.7592 + }, + { + "start": 9993.7, + "end": 9996.64, + "probability": 0.997 + }, + { + "start": 9997.34, + "end": 10000.16, + "probability": 0.9333 + }, + { + "start": 10001.34, + "end": 10002.47, + "probability": 0.5924 + }, + { + "start": 10002.66, + "end": 10004.18, + "probability": 0.9788 + }, + { + "start": 10005.74, + "end": 10006.24, + "probability": 0.7147 + }, + { + "start": 10006.86, + "end": 10010.34, + "probability": 0.8357 + }, + { + "start": 10011.62, + "end": 10012.98, + "probability": 0.7351 + }, + { + "start": 10015.46, + "end": 10020.26, + "probability": 0.8246 + }, + { + "start": 10020.34, + "end": 10021.82, + "probability": 0.8643 + }, + { + "start": 10023.88, + "end": 10024.12, + "probability": 0.6639 + }, + { + "start": 10026.47, + "end": 10030.14, + "probability": 0.8178 + }, + { + "start": 10030.76, + "end": 10031.64, + "probability": 0.7214 + }, + { + "start": 10032.82, + "end": 10035.0, + "probability": 0.8655 + }, + { + "start": 10035.86, + "end": 10037.72, + "probability": 0.7662 + }, + { + "start": 10037.78, + "end": 10039.18, + "probability": 0.9048 + }, + { + "start": 10039.38, + "end": 10040.02, + "probability": 0.6581 + }, + { + "start": 10040.54, + "end": 10041.88, + "probability": 0.6351 + }, + { + "start": 10042.96, + "end": 10045.52, + "probability": 0.9219 + }, + { + "start": 10045.62, + "end": 10046.58, + "probability": 0.5225 + }, + { + "start": 10046.96, + "end": 10049.78, + "probability": 0.316 + }, + { + "start": 10050.1, + "end": 10051.56, + "probability": 0.6689 + }, + { + "start": 10051.68, + "end": 10052.52, + "probability": 0.6807 + }, + { + "start": 10052.62, + "end": 10053.5, + "probability": 0.748 + }, + { + "start": 10053.8, + "end": 10054.36, + "probability": 0.9746 + }, + { + "start": 10054.82, + "end": 10055.6, + "probability": 0.9392 + }, + { + "start": 10055.8, + "end": 10056.5, + "probability": 0.9705 + }, + { + "start": 10058.4, + "end": 10059.86, + "probability": 0.3303 + }, + { + "start": 10059.86, + "end": 10061.94, + "probability": 0.2998 + }, + { + "start": 10061.96, + "end": 10062.18, + "probability": 0.0532 + }, + { + "start": 10062.18, + "end": 10066.88, + "probability": 0.7827 + }, + { + "start": 10067.26, + "end": 10069.54, + "probability": 0.9832 + }, + { + "start": 10069.66, + "end": 10072.02, + "probability": 0.7296 + }, + { + "start": 10073.88, + "end": 10075.81, + "probability": 0.9934 + }, + { + "start": 10076.14, + "end": 10079.72, + "probability": 0.9806 + }, + { + "start": 10079.72, + "end": 10080.52, + "probability": 0.9805 + }, + { + "start": 10081.54, + "end": 10082.46, + "probability": 0.5316 + }, + { + "start": 10082.72, + "end": 10084.2, + "probability": 0.6119 + }, + { + "start": 10084.2, + "end": 10084.87, + "probability": 0.5666 + }, + { + "start": 10085.76, + "end": 10087.06, + "probability": 0.9133 + }, + { + "start": 10087.64, + "end": 10088.36, + "probability": 0.5258 + }, + { + "start": 10089.14, + "end": 10090.0, + "probability": 0.9369 + }, + { + "start": 10090.68, + "end": 10096.96, + "probability": 0.9839 + }, + { + "start": 10097.94, + "end": 10099.7, + "probability": 0.9281 + }, + { + "start": 10100.38, + "end": 10104.2, + "probability": 0.9282 + }, + { + "start": 10104.8, + "end": 10105.78, + "probability": 0.9818 + }, + { + "start": 10109.0, + "end": 10110.44, + "probability": 0.7985 + }, + { + "start": 10111.24, + "end": 10111.7, + "probability": 0.6436 + }, + { + "start": 10112.54, + "end": 10112.92, + "probability": 0.8926 + }, + { + "start": 10113.64, + "end": 10114.2, + "probability": 0.8429 + }, + { + "start": 10115.22, + "end": 10116.62, + "probability": 0.8399 + }, + { + "start": 10117.48, + "end": 10120.3, + "probability": 0.9469 + }, + { + "start": 10120.4, + "end": 10123.16, + "probability": 0.9865 + }, + { + "start": 10123.7, + "end": 10125.64, + "probability": 0.8818 + }, + { + "start": 10126.08, + "end": 10131.5, + "probability": 0.7978 + }, + { + "start": 10133.35, + "end": 10136.0, + "probability": 0.9424 + }, + { + "start": 10137.06, + "end": 10138.74, + "probability": 0.9471 + }, + { + "start": 10142.16, + "end": 10148.26, + "probability": 0.7252 + }, + { + "start": 10149.76, + "end": 10154.24, + "probability": 0.7447 + }, + { + "start": 10154.78, + "end": 10155.28, + "probability": 0.9215 + }, + { + "start": 10156.3, + "end": 10156.94, + "probability": 0.5164 + }, + { + "start": 10157.54, + "end": 10160.56, + "probability": 0.9785 + }, + { + "start": 10162.28, + "end": 10167.44, + "probability": 0.9728 + }, + { + "start": 10168.94, + "end": 10172.48, + "probability": 0.8855 + }, + { + "start": 10173.5, + "end": 10174.34, + "probability": 0.886 + }, + { + "start": 10175.04, + "end": 10178.22, + "probability": 0.9943 + }, + { + "start": 10179.34, + "end": 10183.66, + "probability": 0.8039 + }, + { + "start": 10185.24, + "end": 10190.58, + "probability": 0.9685 + }, + { + "start": 10192.54, + "end": 10193.26, + "probability": 0.8249 + }, + { + "start": 10193.94, + "end": 10194.72, + "probability": 0.9856 + }, + { + "start": 10194.8, + "end": 10196.35, + "probability": 0.9463 + }, + { + "start": 10197.54, + "end": 10198.02, + "probability": 0.8601 + }, + { + "start": 10199.02, + "end": 10200.24, + "probability": 0.9502 + }, + { + "start": 10200.72, + "end": 10202.32, + "probability": 0.8285 + }, + { + "start": 10202.9, + "end": 10203.34, + "probability": 0.7713 + }, + { + "start": 10204.02, + "end": 10205.32, + "probability": 0.758 + }, + { + "start": 10205.42, + "end": 10208.78, + "probability": 0.9766 + }, + { + "start": 10209.68, + "end": 10211.82, + "probability": 0.9824 + }, + { + "start": 10212.98, + "end": 10219.61, + "probability": 0.9845 + }, + { + "start": 10220.7, + "end": 10226.42, + "probability": 0.983 + }, + { + "start": 10227.54, + "end": 10229.66, + "probability": 0.8429 + }, + { + "start": 10230.38, + "end": 10232.42, + "probability": 0.8071 + }, + { + "start": 10232.5, + "end": 10234.35, + "probability": 0.8663 + }, + { + "start": 10235.44, + "end": 10237.9, + "probability": 0.9691 + }, + { + "start": 10238.14, + "end": 10239.06, + "probability": 0.2494 + }, + { + "start": 10240.16, + "end": 10241.18, + "probability": 0.5174 + }, + { + "start": 10241.32, + "end": 10242.88, + "probability": 0.9718 + }, + { + "start": 10242.9, + "end": 10246.26, + "probability": 0.9931 + }, + { + "start": 10246.26, + "end": 10249.65, + "probability": 0.9985 + }, + { + "start": 10250.64, + "end": 10252.56, + "probability": 0.5166 + }, + { + "start": 10252.92, + "end": 10256.72, + "probability": 0.9917 + }, + { + "start": 10257.3, + "end": 10261.44, + "probability": 0.8008 + }, + { + "start": 10262.14, + "end": 10264.14, + "probability": 0.9952 + }, + { + "start": 10264.24, + "end": 10268.92, + "probability": 0.9979 + }, + { + "start": 10269.68, + "end": 10273.44, + "probability": 0.9554 + }, + { + "start": 10273.44, + "end": 10274.32, + "probability": 0.9966 + }, + { + "start": 10274.84, + "end": 10278.28, + "probability": 0.9635 + }, + { + "start": 10278.3, + "end": 10279.06, + "probability": 0.7698 + }, + { + "start": 10279.62, + "end": 10281.9, + "probability": 0.9819 + }, + { + "start": 10282.24, + "end": 10285.53, + "probability": 0.9725 + }, + { + "start": 10287.0, + "end": 10288.92, + "probability": 0.8259 + }, + { + "start": 10289.3, + "end": 10290.46, + "probability": 0.6981 + }, + { + "start": 10290.78, + "end": 10293.04, + "probability": 0.9792 + }, + { + "start": 10295.16, + "end": 10295.46, + "probability": 0.8167 + }, + { + "start": 10295.54, + "end": 10297.34, + "probability": 0.8765 + }, + { + "start": 10297.6, + "end": 10301.9, + "probability": 0.992 + }, + { + "start": 10303.54, + "end": 10304.04, + "probability": 0.572 + }, + { + "start": 10304.26, + "end": 10306.04, + "probability": 0.9552 + }, + { + "start": 10307.66, + "end": 10310.52, + "probability": 0.1375 + }, + { + "start": 10311.14, + "end": 10311.14, + "probability": 0.1491 + }, + { + "start": 10311.74, + "end": 10314.84, + "probability": 0.8694 + }, + { + "start": 10315.1, + "end": 10317.84, + "probability": 0.7221 + }, + { + "start": 10318.96, + "end": 10319.94, + "probability": 0.8365 + }, + { + "start": 10324.26, + "end": 10325.98, + "probability": 0.7596 + }, + { + "start": 10327.26, + "end": 10331.02, + "probability": 0.6915 + }, + { + "start": 10334.86, + "end": 10337.84, + "probability": 0.955 + }, + { + "start": 10338.96, + "end": 10342.88, + "probability": 0.7179 + }, + { + "start": 10343.02, + "end": 10344.52, + "probability": 0.9297 + }, + { + "start": 10345.22, + "end": 10347.08, + "probability": 0.8704 + }, + { + "start": 10347.88, + "end": 10349.9, + "probability": 0.8142 + }, + { + "start": 10350.52, + "end": 10354.56, + "probability": 0.9667 + }, + { + "start": 10355.36, + "end": 10357.7, + "probability": 0.985 + }, + { + "start": 10358.64, + "end": 10361.34, + "probability": 0.9963 + }, + { + "start": 10361.46, + "end": 10362.54, + "probability": 0.5329 + }, + { + "start": 10362.6, + "end": 10363.08, + "probability": 0.8408 + }, + { + "start": 10363.16, + "end": 10363.68, + "probability": 0.6136 + }, + { + "start": 10363.76, + "end": 10364.32, + "probability": 0.9729 + }, + { + "start": 10366.2, + "end": 10367.32, + "probability": 0.931 + }, + { + "start": 10368.81, + "end": 10372.84, + "probability": 0.889 + }, + { + "start": 10372.96, + "end": 10374.94, + "probability": 0.9325 + }, + { + "start": 10376.26, + "end": 10377.64, + "probability": 0.8842 + }, + { + "start": 10378.02, + "end": 10378.74, + "probability": 0.6135 + }, + { + "start": 10379.14, + "end": 10380.19, + "probability": 0.6382 + }, + { + "start": 10380.52, + "end": 10382.52, + "probability": 0.9729 + }, + { + "start": 10383.36, + "end": 10385.62, + "probability": 0.6126 + }, + { + "start": 10386.2, + "end": 10389.04, + "probability": 0.9949 + }, + { + "start": 10389.18, + "end": 10390.82, + "probability": 0.9882 + }, + { + "start": 10391.2, + "end": 10392.78, + "probability": 0.6561 + }, + { + "start": 10393.64, + "end": 10396.38, + "probability": 0.9911 + }, + { + "start": 10397.14, + "end": 10398.68, + "probability": 0.8877 + }, + { + "start": 10398.88, + "end": 10402.22, + "probability": 0.9868 + }, + { + "start": 10402.98, + "end": 10405.92, + "probability": 0.9417 + }, + { + "start": 10405.98, + "end": 10407.76, + "probability": 0.7129 + }, + { + "start": 10408.64, + "end": 10410.82, + "probability": 0.8765 + }, + { + "start": 10411.74, + "end": 10412.74, + "probability": 0.8869 + }, + { + "start": 10413.04, + "end": 10415.62, + "probability": 0.9688 + }, + { + "start": 10416.34, + "end": 10418.64, + "probability": 0.6488 + }, + { + "start": 10418.7, + "end": 10420.6, + "probability": 0.7875 + }, + { + "start": 10420.68, + "end": 10421.28, + "probability": 0.843 + }, + { + "start": 10421.38, + "end": 10422.28, + "probability": 0.8591 + }, + { + "start": 10423.06, + "end": 10423.24, + "probability": 0.091 + }, + { + "start": 10423.24, + "end": 10424.06, + "probability": 0.4697 + }, + { + "start": 10424.18, + "end": 10425.18, + "probability": 0.6452 + }, + { + "start": 10425.24, + "end": 10425.83, + "probability": 0.7763 + }, + { + "start": 10427.54, + "end": 10427.68, + "probability": 0.3363 + }, + { + "start": 10427.92, + "end": 10429.56, + "probability": 0.9932 + }, + { + "start": 10430.12, + "end": 10437.68, + "probability": 0.9933 + }, + { + "start": 10438.02, + "end": 10443.78, + "probability": 0.9794 + }, + { + "start": 10444.48, + "end": 10448.04, + "probability": 0.9847 + }, + { + "start": 10449.8, + "end": 10453.46, + "probability": 0.9521 + }, + { + "start": 10454.68, + "end": 10458.6, + "probability": 0.8709 + }, + { + "start": 10459.14, + "end": 10460.66, + "probability": 0.9404 + }, + { + "start": 10460.86, + "end": 10468.66, + "probability": 0.9386 + }, + { + "start": 10469.4, + "end": 10469.82, + "probability": 0.5547 + }, + { + "start": 10471.12, + "end": 10474.62, + "probability": 0.9172 + }, + { + "start": 10474.62, + "end": 10481.12, + "probability": 0.9993 + }, + { + "start": 10481.2, + "end": 10485.44, + "probability": 0.7724 + }, + { + "start": 10486.44, + "end": 10491.64, + "probability": 0.9917 + }, + { + "start": 10491.64, + "end": 10493.78, + "probability": 0.9977 + }, + { + "start": 10495.0, + "end": 10497.2, + "probability": 0.8917 + }, + { + "start": 10497.54, + "end": 10498.76, + "probability": 0.6588 + }, + { + "start": 10498.98, + "end": 10499.16, + "probability": 0.4673 + }, + { + "start": 10499.28, + "end": 10500.02, + "probability": 0.9275 + }, + { + "start": 10500.14, + "end": 10501.2, + "probability": 0.9059 + }, + { + "start": 10501.28, + "end": 10502.0, + "probability": 0.8274 + }, + { + "start": 10502.52, + "end": 10505.3, + "probability": 0.9105 + }, + { + "start": 10505.3, + "end": 10507.58, + "probability": 0.8741 + }, + { + "start": 10509.1, + "end": 10513.72, + "probability": 0.9695 + }, + { + "start": 10514.24, + "end": 10519.44, + "probability": 0.9946 + }, + { + "start": 10519.94, + "end": 10521.22, + "probability": 0.6506 + }, + { + "start": 10521.28, + "end": 10523.22, + "probability": 0.7703 + }, + { + "start": 10523.76, + "end": 10528.2, + "probability": 0.9437 + }, + { + "start": 10529.94, + "end": 10530.16, + "probability": 0.4419 + }, + { + "start": 10530.74, + "end": 10533.26, + "probability": 0.9558 + }, + { + "start": 10534.67, + "end": 10537.0, + "probability": 0.433 + }, + { + "start": 10541.48, + "end": 10542.62, + "probability": 0.7731 + }, + { + "start": 10542.84, + "end": 10543.46, + "probability": 0.8204 + }, + { + "start": 10543.68, + "end": 10544.19, + "probability": 0.7213 + }, + { + "start": 10544.48, + "end": 10547.98, + "probability": 0.9552 + }, + { + "start": 10547.98, + "end": 10554.3, + "probability": 0.9403 + }, + { + "start": 10554.3, + "end": 10557.48, + "probability": 0.9474 + }, + { + "start": 10558.72, + "end": 10566.82, + "probability": 0.9538 + }, + { + "start": 10567.8, + "end": 10570.1, + "probability": 0.9773 + }, + { + "start": 10570.8, + "end": 10575.48, + "probability": 0.8887 + }, + { + "start": 10576.04, + "end": 10580.48, + "probability": 0.9952 + }, + { + "start": 10580.92, + "end": 10583.91, + "probability": 0.986 + }, + { + "start": 10584.48, + "end": 10585.14, + "probability": 0.3349 + }, + { + "start": 10585.32, + "end": 10586.14, + "probability": 0.7591 + }, + { + "start": 10586.72, + "end": 10587.22, + "probability": 0.8564 + }, + { + "start": 10587.32, + "end": 10589.44, + "probability": 0.9592 + }, + { + "start": 10589.88, + "end": 10592.94, + "probability": 0.8868 + }, + { + "start": 10593.58, + "end": 10594.22, + "probability": 0.8472 + }, + { + "start": 10594.4, + "end": 10597.0, + "probability": 0.8352 + }, + { + "start": 10597.22, + "end": 10602.32, + "probability": 0.7898 + }, + { + "start": 10603.24, + "end": 10604.73, + "probability": 0.8285 + }, + { + "start": 10605.14, + "end": 10605.92, + "probability": 0.7577 + }, + { + "start": 10605.94, + "end": 10609.28, + "probability": 0.9834 + }, + { + "start": 10609.5, + "end": 10612.62, + "probability": 0.9941 + }, + { + "start": 10612.62, + "end": 10616.78, + "probability": 0.9911 + }, + { + "start": 10616.84, + "end": 10620.8, + "probability": 0.9197 + }, + { + "start": 10621.0, + "end": 10621.8, + "probability": 0.5359 + }, + { + "start": 10622.0, + "end": 10624.86, + "probability": 0.8903 + }, + { + "start": 10625.8, + "end": 10628.62, + "probability": 0.9553 + }, + { + "start": 10629.28, + "end": 10635.28, + "probability": 0.6651 + }, + { + "start": 10635.92, + "end": 10639.42, + "probability": 0.8271 + }, + { + "start": 10641.2, + "end": 10646.82, + "probability": 0.7815 + }, + { + "start": 10648.1, + "end": 10649.86, + "probability": 0.8003 + }, + { + "start": 10650.28, + "end": 10655.36, + "probability": 0.9159 + }, + { + "start": 10656.44, + "end": 10658.34, + "probability": 0.9471 + }, + { + "start": 10659.16, + "end": 10661.0, + "probability": 0.9934 + }, + { + "start": 10661.24, + "end": 10663.9, + "probability": 0.9098 + }, + { + "start": 10663.94, + "end": 10664.64, + "probability": 0.6888 + }, + { + "start": 10665.32, + "end": 10671.84, + "probability": 0.9903 + }, + { + "start": 10672.1, + "end": 10675.84, + "probability": 0.9963 + }, + { + "start": 10676.22, + "end": 10677.52, + "probability": 0.8651 + }, + { + "start": 10678.06, + "end": 10681.62, + "probability": 0.8915 + }, + { + "start": 10682.26, + "end": 10685.5, + "probability": 0.9927 + }, + { + "start": 10685.5, + "end": 10689.96, + "probability": 0.9962 + }, + { + "start": 10690.0, + "end": 10693.34, + "probability": 0.9949 + }, + { + "start": 10693.34, + "end": 10696.58, + "probability": 0.9113 + }, + { + "start": 10697.14, + "end": 10700.3, + "probability": 0.9956 + }, + { + "start": 10701.04, + "end": 10702.06, + "probability": 0.9117 + }, + { + "start": 10702.24, + "end": 10704.38, + "probability": 0.9968 + }, + { + "start": 10704.68, + "end": 10707.82, + "probability": 0.9888 + }, + { + "start": 10707.9, + "end": 10709.55, + "probability": 0.9414 + }, + { + "start": 10710.26, + "end": 10715.36, + "probability": 0.8686 + }, + { + "start": 10715.56, + "end": 10716.4, + "probability": 0.969 + }, + { + "start": 10716.88, + "end": 10722.4, + "probability": 0.8828 + }, + { + "start": 10723.48, + "end": 10724.52, + "probability": 0.8831 + }, + { + "start": 10725.1, + "end": 10725.68, + "probability": 0.963 + }, + { + "start": 10725.7, + "end": 10728.75, + "probability": 0.9438 + }, + { + "start": 10729.2, + "end": 10731.16, + "probability": 0.8627 + }, + { + "start": 10731.28, + "end": 10731.96, + "probability": 0.7335 + }, + { + "start": 10732.04, + "end": 10732.42, + "probability": 0.7881 + }, + { + "start": 10733.04, + "end": 10735.24, + "probability": 0.9697 + }, + { + "start": 10735.86, + "end": 10737.94, + "probability": 0.9938 + }, + { + "start": 10738.5, + "end": 10740.44, + "probability": 0.998 + }, + { + "start": 10741.86, + "end": 10744.1, + "probability": 0.9897 + }, + { + "start": 10744.92, + "end": 10751.86, + "probability": 0.8951 + }, + { + "start": 10752.18, + "end": 10753.98, + "probability": 0.5084 + }, + { + "start": 10754.22, + "end": 10758.32, + "probability": 0.8351 + }, + { + "start": 10758.4, + "end": 10762.04, + "probability": 0.9304 + }, + { + "start": 10762.92, + "end": 10763.74, + "probability": 0.566 + }, + { + "start": 10764.32, + "end": 10765.04, + "probability": 0.6587 + }, + { + "start": 10765.64, + "end": 10768.12, + "probability": 0.8607 + }, + { + "start": 10768.6, + "end": 10768.86, + "probability": 0.4081 + }, + { + "start": 10769.12, + "end": 10769.52, + "probability": 0.4746 + }, + { + "start": 10769.58, + "end": 10770.44, + "probability": 0.6675 + }, + { + "start": 10771.68, + "end": 10773.42, + "probability": 0.7049 + }, + { + "start": 10774.38, + "end": 10774.68, + "probability": 0.0 + }, + { + "start": 10775.44, + "end": 10779.92, + "probability": 0.6776 + }, + { + "start": 10780.54, + "end": 10783.55, + "probability": 0.9977 + }, + { + "start": 10784.78, + "end": 10788.34, + "probability": 0.9709 + }, + { + "start": 10789.96, + "end": 10791.04, + "probability": 0.729 + }, + { + "start": 10791.04, + "end": 10798.06, + "probability": 0.9217 + }, + { + "start": 10799.32, + "end": 10805.41, + "probability": 0.9921 + }, + { + "start": 10805.62, + "end": 10810.2, + "probability": 0.9185 + }, + { + "start": 10810.38, + "end": 10811.44, + "probability": 0.2952 + }, + { + "start": 10812.58, + "end": 10813.76, + "probability": 0.7012 + }, + { + "start": 10813.8, + "end": 10814.46, + "probability": 0.7447 + }, + { + "start": 10815.28, + "end": 10817.16, + "probability": 0.6333 + }, + { + "start": 10818.01, + "end": 10820.1, + "probability": 0.7441 + }, + { + "start": 10829.68, + "end": 10831.58, + "probability": 0.2345 + }, + { + "start": 10833.66, + "end": 10837.32, + "probability": 0.2131 + }, + { + "start": 10837.62, + "end": 10837.72, + "probability": 0.0773 + }, + { + "start": 10839.64, + "end": 10842.0, + "probability": 0.5421 + }, + { + "start": 10842.24, + "end": 10847.64, + "probability": 0.9701 + }, + { + "start": 10847.82, + "end": 10848.36, + "probability": 0.9187 + }, + { + "start": 10849.98, + "end": 10850.54, + "probability": 0.8746 + }, + { + "start": 10852.84, + "end": 10854.12, + "probability": 0.7552 + }, + { + "start": 10854.24, + "end": 10858.9, + "probability": 0.868 + }, + { + "start": 10859.32, + "end": 10860.72, + "probability": 0.9774 + }, + { + "start": 10860.8, + "end": 10861.38, + "probability": 0.6862 + }, + { + "start": 10867.86, + "end": 10869.24, + "probability": 0.4536 + }, + { + "start": 10873.68, + "end": 10876.02, + "probability": 0.0066 + }, + { + "start": 10877.0, + "end": 10878.72, + "probability": 0.402 + }, + { + "start": 10879.92, + "end": 10887.52, + "probability": 0.7381 + }, + { + "start": 10888.34, + "end": 10892.24, + "probability": 0.9956 + }, + { + "start": 10894.1, + "end": 10895.5, + "probability": 0.9946 + }, + { + "start": 10896.62, + "end": 10899.82, + "probability": 0.989 + }, + { + "start": 10900.78, + "end": 10903.32, + "probability": 0.9973 + }, + { + "start": 10904.32, + "end": 10905.62, + "probability": 0.9956 + }, + { + "start": 10905.86, + "end": 10909.2, + "probability": 0.9815 + }, + { + "start": 10910.14, + "end": 10912.92, + "probability": 0.9163 + }, + { + "start": 10913.9, + "end": 10919.48, + "probability": 0.9932 + }, + { + "start": 10920.42, + "end": 10921.16, + "probability": 0.7918 + }, + { + "start": 10921.22, + "end": 10927.02, + "probability": 0.9336 + }, + { + "start": 10927.02, + "end": 10928.6, + "probability": 0.7522 + }, + { + "start": 10929.3, + "end": 10935.0, + "probability": 0.9882 + }, + { + "start": 10939.08, + "end": 10942.74, + "probability": 0.8881 + }, + { + "start": 10943.46, + "end": 10947.66, + "probability": 0.9775 + }, + { + "start": 10948.48, + "end": 10949.6, + "probability": 0.991 + }, + { + "start": 10949.68, + "end": 10952.7, + "probability": 0.9077 + }, + { + "start": 10953.34, + "end": 10959.44, + "probability": 0.9931 + }, + { + "start": 10960.14, + "end": 10962.98, + "probability": 0.9819 + }, + { + "start": 10963.96, + "end": 10964.4, + "probability": 0.7381 + }, + { + "start": 10964.54, + "end": 10970.96, + "probability": 0.9858 + }, + { + "start": 10972.28, + "end": 10974.58, + "probability": 0.7895 + }, + { + "start": 10975.52, + "end": 10984.6, + "probability": 0.9866 + }, + { + "start": 10984.74, + "end": 10986.84, + "probability": 0.9898 + }, + { + "start": 10986.96, + "end": 10987.98, + "probability": 0.9255 + }, + { + "start": 10989.08, + "end": 10992.62, + "probability": 0.9194 + }, + { + "start": 10993.9, + "end": 10995.98, + "probability": 0.9314 + }, + { + "start": 10996.62, + "end": 11001.2, + "probability": 0.9114 + }, + { + "start": 11001.62, + "end": 11002.06, + "probability": 0.4082 + }, + { + "start": 11003.16, + "end": 11004.0, + "probability": 0.5411 + }, + { + "start": 11004.8, + "end": 11008.24, + "probability": 0.7928 + }, + { + "start": 11008.3, + "end": 11008.58, + "probability": 0.7559 + }, + { + "start": 11008.58, + "end": 11011.14, + "probability": 0.8469 + }, + { + "start": 11013.04, + "end": 11016.78, + "probability": 0.6996 + }, + { + "start": 11017.52, + "end": 11018.16, + "probability": 0.6625 + }, + { + "start": 11019.26, + "end": 11020.96, + "probability": 0.719 + }, + { + "start": 11024.58, + "end": 11027.34, + "probability": 0.0646 + }, + { + "start": 11040.56, + "end": 11043.42, + "probability": 0.5547 + }, + { + "start": 11044.4, + "end": 11046.52, + "probability": 0.9151 + }, + { + "start": 11046.7, + "end": 11047.91, + "probability": 0.7838 + }, + { + "start": 11049.08, + "end": 11051.45, + "probability": 0.9294 + }, + { + "start": 11054.08, + "end": 11055.32, + "probability": 0.6984 + }, + { + "start": 11055.34, + "end": 11056.7, + "probability": 0.8251 + }, + { + "start": 11056.74, + "end": 11057.82, + "probability": 0.9124 + }, + { + "start": 11058.72, + "end": 11059.76, + "probability": 0.6343 + }, + { + "start": 11060.46, + "end": 11061.96, + "probability": 0.9016 + }, + { + "start": 11062.32, + "end": 11068.62, + "probability": 0.9574 + }, + { + "start": 11069.68, + "end": 11073.24, + "probability": 0.9965 + }, + { + "start": 11074.72, + "end": 11078.44, + "probability": 0.9205 + }, + { + "start": 11081.0, + "end": 11084.48, + "probability": 0.9989 + }, + { + "start": 11085.04, + "end": 11086.06, + "probability": 0.736 + }, + { + "start": 11086.8, + "end": 11090.0, + "probability": 0.9873 + }, + { + "start": 11091.02, + "end": 11093.32, + "probability": 0.9939 + }, + { + "start": 11093.94, + "end": 11096.3, + "probability": 0.9585 + }, + { + "start": 11097.54, + "end": 11099.08, + "probability": 0.7653 + }, + { + "start": 11099.26, + "end": 11101.92, + "probability": 0.9241 + }, + { + "start": 11101.96, + "end": 11102.98, + "probability": 0.8625 + }, + { + "start": 11103.04, + "end": 11107.0, + "probability": 0.994 + }, + { + "start": 11107.7, + "end": 11110.26, + "probability": 0.7444 + }, + { + "start": 11110.82, + "end": 11111.46, + "probability": 0.1754 + }, + { + "start": 11112.08, + "end": 11112.42, + "probability": 0.1599 + }, + { + "start": 11112.46, + "end": 11113.3, + "probability": 0.3848 + }, + { + "start": 11113.82, + "end": 11115.42, + "probability": 0.3369 + }, + { + "start": 11115.7, + "end": 11122.38, + "probability": 0.9955 + }, + { + "start": 11122.7, + "end": 11123.26, + "probability": 0.7856 + }, + { + "start": 11123.38, + "end": 11123.86, + "probability": 0.4946 + }, + { + "start": 11124.38, + "end": 11125.9, + "probability": 0.4987 + }, + { + "start": 11126.0, + "end": 11127.06, + "probability": 0.4279 + }, + { + "start": 11128.0, + "end": 11130.88, + "probability": 0.817 + }, + { + "start": 11131.32, + "end": 11135.87, + "probability": 0.9731 + }, + { + "start": 11136.22, + "end": 11138.03, + "probability": 0.9777 + }, + { + "start": 11138.72, + "end": 11142.8, + "probability": 0.9753 + }, + { + "start": 11143.18, + "end": 11147.7, + "probability": 0.8711 + }, + { + "start": 11148.28, + "end": 11150.9, + "probability": 0.8697 + }, + { + "start": 11151.42, + "end": 11155.46, + "probability": 0.9011 + }, + { + "start": 11156.0, + "end": 11157.62, + "probability": 0.5227 + }, + { + "start": 11158.24, + "end": 11160.44, + "probability": 0.9907 + }, + { + "start": 11160.46, + "end": 11161.26, + "probability": 0.8612 + }, + { + "start": 11161.66, + "end": 11163.98, + "probability": 0.6997 + }, + { + "start": 11164.52, + "end": 11168.64, + "probability": 0.7986 + }, + { + "start": 11169.22, + "end": 11171.87, + "probability": 0.9552 + }, + { + "start": 11172.02, + "end": 11172.94, + "probability": 0.841 + }, + { + "start": 11173.26, + "end": 11175.8, + "probability": 0.9904 + }, + { + "start": 11176.32, + "end": 11178.06, + "probability": 0.8517 + }, + { + "start": 11178.22, + "end": 11181.1, + "probability": 0.8081 + }, + { + "start": 11190.0, + "end": 11190.22, + "probability": 0.376 + }, + { + "start": 11190.28, + "end": 11190.96, + "probability": 0.6622 + }, + { + "start": 11191.14, + "end": 11193.54, + "probability": 0.9577 + }, + { + "start": 11194.24, + "end": 11194.74, + "probability": 0.8863 + }, + { + "start": 11194.8, + "end": 11195.8, + "probability": 0.9174 + }, + { + "start": 11195.92, + "end": 11197.02, + "probability": 0.6797 + }, + { + "start": 11197.82, + "end": 11198.18, + "probability": 0.9243 + }, + { + "start": 11198.36, + "end": 11198.52, + "probability": 0.7975 + }, + { + "start": 11198.62, + "end": 11200.66, + "probability": 0.7178 + }, + { + "start": 11200.8, + "end": 11203.96, + "probability": 0.9477 + }, + { + "start": 11205.18, + "end": 11206.22, + "probability": 0.8309 + }, + { + "start": 11206.3, + "end": 11207.54, + "probability": 0.7571 + }, + { + "start": 11207.66, + "end": 11209.32, + "probability": 0.8114 + }, + { + "start": 11209.34, + "end": 11211.6, + "probability": 0.8586 + }, + { + "start": 11212.0, + "end": 11213.03, + "probability": 0.9083 + }, + { + "start": 11214.1, + "end": 11216.42, + "probability": 0.6877 + }, + { + "start": 11216.76, + "end": 11218.52, + "probability": 0.5631 + }, + { + "start": 11219.28, + "end": 11223.48, + "probability": 0.925 + }, + { + "start": 11224.46, + "end": 11225.74, + "probability": 0.6668 + }, + { + "start": 11225.92, + "end": 11227.12, + "probability": 0.8944 + }, + { + "start": 11227.8, + "end": 11228.9, + "probability": 0.9854 + }, + { + "start": 11229.04, + "end": 11233.97, + "probability": 0.8789 + }, + { + "start": 11234.8, + "end": 11236.12, + "probability": 0.5441 + }, + { + "start": 11236.28, + "end": 11238.62, + "probability": 0.99 + }, + { + "start": 11239.08, + "end": 11241.44, + "probability": 0.8693 + }, + { + "start": 11241.78, + "end": 11243.18, + "probability": 0.8883 + }, + { + "start": 11243.7, + "end": 11246.56, + "probability": 0.9282 + }, + { + "start": 11246.7, + "end": 11247.48, + "probability": 0.7001 + }, + { + "start": 11247.54, + "end": 11248.12, + "probability": 0.9355 + }, + { + "start": 11248.64, + "end": 11251.02, + "probability": 0.8457 + }, + { + "start": 11251.8, + "end": 11253.94, + "probability": 0.9758 + }, + { + "start": 11254.24, + "end": 11256.46, + "probability": 0.7891 + }, + { + "start": 11256.98, + "end": 11258.18, + "probability": 0.5961 + }, + { + "start": 11258.62, + "end": 11258.96, + "probability": 0.7791 + }, + { + "start": 11259.06, + "end": 11259.34, + "probability": 0.9582 + }, + { + "start": 11259.44, + "end": 11260.46, + "probability": 0.9656 + }, + { + "start": 11260.64, + "end": 11263.4, + "probability": 0.9721 + }, + { + "start": 11263.58, + "end": 11264.56, + "probability": 0.8373 + }, + { + "start": 11265.1, + "end": 11267.86, + "probability": 0.8703 + }, + { + "start": 11268.32, + "end": 11269.74, + "probability": 0.8647 + }, + { + "start": 11269.86, + "end": 11272.04, + "probability": 0.9647 + }, + { + "start": 11272.46, + "end": 11273.02, + "probability": 0.9352 + }, + { + "start": 11273.28, + "end": 11274.85, + "probability": 0.8455 + }, + { + "start": 11275.44, + "end": 11278.28, + "probability": 0.8778 + }, + { + "start": 11278.66, + "end": 11280.84, + "probability": 0.8695 + }, + { + "start": 11281.34, + "end": 11284.28, + "probability": 0.9578 + }, + { + "start": 11284.62, + "end": 11287.14, + "probability": 0.5305 + }, + { + "start": 11287.38, + "end": 11290.52, + "probability": 0.8301 + }, + { + "start": 11291.9, + "end": 11293.76, + "probability": 0.8083 + }, + { + "start": 11293.76, + "end": 11295.85, + "probability": 0.798 + }, + { + "start": 11297.7, + "end": 11302.58, + "probability": 0.624 + }, + { + "start": 11302.74, + "end": 11303.84, + "probability": 0.343 + }, + { + "start": 11304.0, + "end": 11304.72, + "probability": 0.8897 + }, + { + "start": 11304.78, + "end": 11305.38, + "probability": 0.2571 + }, + { + "start": 11305.5, + "end": 11306.1, + "probability": 0.5571 + }, + { + "start": 11306.16, + "end": 11306.96, + "probability": 0.7007 + }, + { + "start": 11315.52, + "end": 11318.88, + "probability": 0.1178 + }, + { + "start": 11320.58, + "end": 11321.2, + "probability": 0.0606 + }, + { + "start": 11322.68, + "end": 11324.16, + "probability": 0.0879 + }, + { + "start": 11324.16, + "end": 11326.64, + "probability": 0.7814 + }, + { + "start": 11326.82, + "end": 11327.08, + "probability": 0.1653 + }, + { + "start": 11327.08, + "end": 11327.38, + "probability": 0.3429 + }, + { + "start": 11327.46, + "end": 11332.84, + "probability": 0.886 + }, + { + "start": 11334.12, + "end": 11339.4, + "probability": 0.9932 + }, + { + "start": 11339.58, + "end": 11340.42, + "probability": 0.3042 + }, + { + "start": 11340.62, + "end": 11341.24, + "probability": 0.5909 + }, + { + "start": 11341.26, + "end": 11342.34, + "probability": 0.9908 + }, + { + "start": 11342.92, + "end": 11343.82, + "probability": 0.7535 + }, + { + "start": 11344.4, + "end": 11345.36, + "probability": 0.7023 + }, + { + "start": 11357.4, + "end": 11358.84, + "probability": 0.7007 + }, + { + "start": 11360.18, + "end": 11360.38, + "probability": 0.6131 + }, + { + "start": 11360.46, + "end": 11360.88, + "probability": 0.7372 + }, + { + "start": 11360.96, + "end": 11364.96, + "probability": 0.9186 + }, + { + "start": 11365.14, + "end": 11366.52, + "probability": 0.8864 + }, + { + "start": 11367.46, + "end": 11371.5, + "probability": 0.9892 + }, + { + "start": 11372.38, + "end": 11375.26, + "probability": 0.9951 + }, + { + "start": 11375.32, + "end": 11377.54, + "probability": 0.9715 + }, + { + "start": 11379.08, + "end": 11379.42, + "probability": 0.3442 + }, + { + "start": 11379.52, + "end": 11382.94, + "probability": 0.9862 + }, + { + "start": 11384.32, + "end": 11386.36, + "probability": 0.7276 + }, + { + "start": 11387.56, + "end": 11388.74, + "probability": 0.9144 + }, + { + "start": 11389.26, + "end": 11390.08, + "probability": 0.9279 + }, + { + "start": 11391.42, + "end": 11392.96, + "probability": 0.8404 + }, + { + "start": 11393.66, + "end": 11397.5, + "probability": 0.9466 + }, + { + "start": 11398.52, + "end": 11400.66, + "probability": 0.7479 + }, + { + "start": 11400.82, + "end": 11402.5, + "probability": 0.7396 + }, + { + "start": 11402.72, + "end": 11405.08, + "probability": 0.9705 + }, + { + "start": 11405.74, + "end": 11408.66, + "probability": 0.7859 + }, + { + "start": 11410.44, + "end": 11411.49, + "probability": 0.6637 + }, + { + "start": 11411.9, + "end": 11414.42, + "probability": 0.0437 + }, + { + "start": 11414.48, + "end": 11417.36, + "probability": 0.7397 + }, + { + "start": 11417.48, + "end": 11419.3, + "probability": 0.4502 + }, + { + "start": 11420.26, + "end": 11422.98, + "probability": 0.9664 + }, + { + "start": 11423.66, + "end": 11425.26, + "probability": 0.9939 + }, + { + "start": 11426.18, + "end": 11430.24, + "probability": 0.976 + }, + { + "start": 11430.3, + "end": 11432.7, + "probability": 0.6514 + }, + { + "start": 11434.08, + "end": 11435.54, + "probability": 0.8203 + }, + { + "start": 11435.84, + "end": 11437.56, + "probability": 0.9461 + }, + { + "start": 11437.62, + "end": 11438.68, + "probability": 0.5162 + }, + { + "start": 11439.1, + "end": 11440.8, + "probability": 0.9526 + }, + { + "start": 11440.86, + "end": 11442.14, + "probability": 0.9784 + }, + { + "start": 11443.4, + "end": 11443.4, + "probability": 0.4797 + }, + { + "start": 11443.4, + "end": 11444.9, + "probability": 0.5386 + }, + { + "start": 11445.08, + "end": 11445.56, + "probability": 0.0891 + }, + { + "start": 11445.76, + "end": 11446.14, + "probability": 0.8368 + }, + { + "start": 11447.14, + "end": 11452.86, + "probability": 0.9734 + }, + { + "start": 11452.96, + "end": 11453.3, + "probability": 0.8365 + }, + { + "start": 11453.8, + "end": 11454.66, + "probability": 0.5969 + }, + { + "start": 11456.12, + "end": 11456.12, + "probability": 0.3294 + }, + { + "start": 11456.12, + "end": 11459.92, + "probability": 0.9404 + }, + { + "start": 11460.34, + "end": 11464.58, + "probability": 0.9306 + }, + { + "start": 11465.68, + "end": 11467.04, + "probability": 0.5094 + }, + { + "start": 11468.26, + "end": 11469.26, + "probability": 0.8378 + }, + { + "start": 11471.66, + "end": 11476.06, + "probability": 0.9485 + }, + { + "start": 11476.16, + "end": 11480.84, + "probability": 0.9588 + }, + { + "start": 11481.88, + "end": 11484.26, + "probability": 0.9323 + }, + { + "start": 11485.16, + "end": 11491.08, + "probability": 0.9958 + }, + { + "start": 11491.1, + "end": 11493.82, + "probability": 0.9779 + }, + { + "start": 11494.86, + "end": 11498.54, + "probability": 0.9634 + }, + { + "start": 11498.62, + "end": 11501.48, + "probability": 0.9677 + }, + { + "start": 11502.06, + "end": 11502.2, + "probability": 0.3012 + }, + { + "start": 11502.26, + "end": 11503.46, + "probability": 0.7769 + }, + { + "start": 11503.6, + "end": 11504.42, + "probability": 0.7231 + }, + { + "start": 11504.68, + "end": 11505.3, + "probability": 0.9865 + }, + { + "start": 11505.42, + "end": 11506.24, + "probability": 0.8894 + }, + { + "start": 11507.42, + "end": 11508.16, + "probability": 0.9244 + }, + { + "start": 11508.58, + "end": 11511.24, + "probability": 0.9758 + }, + { + "start": 11511.24, + "end": 11513.52, + "probability": 0.9577 + }, + { + "start": 11514.16, + "end": 11517.1, + "probability": 0.9985 + }, + { + "start": 11517.1, + "end": 11521.0, + "probability": 0.9119 + }, + { + "start": 11522.28, + "end": 11524.58, + "probability": 0.9846 + }, + { + "start": 11525.12, + "end": 11527.84, + "probability": 0.1044 + }, + { + "start": 11527.84, + "end": 11531.32, + "probability": 0.6928 + }, + { + "start": 11531.76, + "end": 11532.25, + "probability": 0.624 + }, + { + "start": 11532.66, + "end": 11536.66, + "probability": 0.8252 + }, + { + "start": 11536.66, + "end": 11538.78, + "probability": 0.982 + }, + { + "start": 11539.2, + "end": 11541.04, + "probability": 0.9585 + }, + { + "start": 11542.19, + "end": 11543.84, + "probability": 0.9973 + }, + { + "start": 11545.26, + "end": 11548.02, + "probability": 0.8819 + }, + { + "start": 11548.36, + "end": 11549.94, + "probability": 0.6672 + }, + { + "start": 11549.94, + "end": 11551.76, + "probability": 0.9904 + }, + { + "start": 11552.78, + "end": 11556.26, + "probability": 0.5837 + }, + { + "start": 11557.4, + "end": 11558.4, + "probability": 0.5115 + }, + { + "start": 11559.54, + "end": 11559.54, + "probability": 0.5719 + }, + { + "start": 11559.54, + "end": 11561.94, + "probability": 0.7291 + }, + { + "start": 11564.14, + "end": 11565.2, + "probability": 0.7977 + }, + { + "start": 11565.54, + "end": 11568.34, + "probability": 0.7183 + }, + { + "start": 11569.08, + "end": 11569.6, + "probability": 0.9052 + }, + { + "start": 11570.12, + "end": 11573.28, + "probability": 0.9821 + }, + { + "start": 11573.4, + "end": 11575.62, + "probability": 0.9858 + }, + { + "start": 11576.12, + "end": 11577.58, + "probability": 0.7595 + }, + { + "start": 11578.12, + "end": 11579.0, + "probability": 0.8049 + }, + { + "start": 11580.02, + "end": 11582.1, + "probability": 0.9272 + }, + { + "start": 11582.18, + "end": 11588.12, + "probability": 0.9028 + }, + { + "start": 11588.8, + "end": 11590.5, + "probability": 0.7043 + }, + { + "start": 11590.58, + "end": 11593.3, + "probability": 0.8789 + }, + { + "start": 11593.84, + "end": 11596.5, + "probability": 0.9784 + }, + { + "start": 11596.52, + "end": 11597.62, + "probability": 0.9857 + }, + { + "start": 11598.46, + "end": 11599.22, + "probability": 0.7172 + }, + { + "start": 11599.66, + "end": 11601.27, + "probability": 0.9136 + }, + { + "start": 11601.92, + "end": 11602.71, + "probability": 0.6492 + }, + { + "start": 11602.82, + "end": 11604.76, + "probability": 0.7178 + }, + { + "start": 11604.92, + "end": 11606.36, + "probability": 0.9141 + }, + { + "start": 11607.22, + "end": 11608.16, + "probability": 0.3843 + }, + { + "start": 11608.42, + "end": 11610.56, + "probability": 0.7515 + }, + { + "start": 11611.14, + "end": 11612.68, + "probability": 0.6906 + }, + { + "start": 11613.04, + "end": 11615.44, + "probability": 0.8824 + }, + { + "start": 11615.5, + "end": 11616.76, + "probability": 0.4842 + }, + { + "start": 11617.22, + "end": 11619.68, + "probability": 0.9365 + }, + { + "start": 11620.08, + "end": 11621.96, + "probability": 0.6669 + }, + { + "start": 11623.12, + "end": 11625.52, + "probability": 0.8005 + }, + { + "start": 11626.28, + "end": 11627.39, + "probability": 0.5637 + }, + { + "start": 11627.62, + "end": 11627.66, + "probability": 0.3569 + }, + { + "start": 11627.66, + "end": 11629.7, + "probability": 0.6843 + }, + { + "start": 11629.88, + "end": 11630.4, + "probability": 0.9653 + }, + { + "start": 11631.44, + "end": 11634.44, + "probability": 0.9706 + }, + { + "start": 11634.44, + "end": 11638.06, + "probability": 0.8342 + }, + { + "start": 11638.1, + "end": 11638.68, + "probability": 0.5283 + }, + { + "start": 11639.22, + "end": 11640.88, + "probability": 0.9254 + }, + { + "start": 11641.24, + "end": 11642.26, + "probability": 0.8176 + }, + { + "start": 11642.38, + "end": 11645.66, + "probability": 0.9514 + }, + { + "start": 11647.1, + "end": 11648.6, + "probability": 0.835 + }, + { + "start": 11649.14, + "end": 11651.78, + "probability": 0.8417 + }, + { + "start": 11652.58, + "end": 11652.92, + "probability": 0.8542 + }, + { + "start": 11653.48, + "end": 11658.22, + "probability": 0.9121 + }, + { + "start": 11658.96, + "end": 11660.34, + "probability": 0.977 + }, + { + "start": 11661.48, + "end": 11662.24, + "probability": 0.8387 + }, + { + "start": 11662.26, + "end": 11664.32, + "probability": 0.7417 + }, + { + "start": 11664.48, + "end": 11667.4, + "probability": 0.7388 + }, + { + "start": 11667.86, + "end": 11670.66, + "probability": 0.8418 + }, + { + "start": 11670.76, + "end": 11671.8, + "probability": 0.3409 + }, + { + "start": 11671.88, + "end": 11673.51, + "probability": 0.8754 + }, + { + "start": 11674.4, + "end": 11675.08, + "probability": 0.7613 + }, + { + "start": 11676.02, + "end": 11677.42, + "probability": 0.9224 + }, + { + "start": 11677.48, + "end": 11678.66, + "probability": 0.8103 + }, + { + "start": 11678.8, + "end": 11678.9, + "probability": 0.8137 + }, + { + "start": 11678.9, + "end": 11679.18, + "probability": 0.2532 + }, + { + "start": 11679.78, + "end": 11681.86, + "probability": 0.9741 + }, + { + "start": 11682.98, + "end": 11683.44, + "probability": 0.726 + }, + { + "start": 11684.68, + "end": 11686.32, + "probability": 0.8558 + }, + { + "start": 11687.26, + "end": 11688.9, + "probability": 0.8027 + }, + { + "start": 11689.2, + "end": 11689.36, + "probability": 0.6098 + }, + { + "start": 11689.36, + "end": 11691.36, + "probability": 0.3282 + }, + { + "start": 11691.48, + "end": 11692.38, + "probability": 0.4995 + }, + { + "start": 11692.56, + "end": 11695.74, + "probability": 0.8394 + }, + { + "start": 11696.14, + "end": 11696.5, + "probability": 0.7533 + }, + { + "start": 11697.1, + "end": 11698.6, + "probability": 0.929 + }, + { + "start": 11698.6, + "end": 11699.12, + "probability": 0.5385 + }, + { + "start": 11699.24, + "end": 11700.8, + "probability": 0.9072 + }, + { + "start": 11701.34, + "end": 11703.0, + "probability": 0.3738 + }, + { + "start": 11703.22, + "end": 11703.24, + "probability": 0.6132 + }, + { + "start": 11703.24, + "end": 11704.08, + "probability": 0.5937 + }, + { + "start": 11704.44, + "end": 11704.46, + "probability": 0.1488 + }, + { + "start": 11704.46, + "end": 11705.4, + "probability": 0.8735 + }, + { + "start": 11705.86, + "end": 11708.3, + "probability": 0.9935 + }, + { + "start": 11708.3, + "end": 11710.1, + "probability": 0.959 + }, + { + "start": 11710.44, + "end": 11711.52, + "probability": 0.8277 + }, + { + "start": 11711.82, + "end": 11713.26, + "probability": 0.96 + }, + { + "start": 11713.94, + "end": 11717.1, + "probability": 0.4593 + }, + { + "start": 11717.3, + "end": 11719.01, + "probability": 0.4306 + }, + { + "start": 11720.08, + "end": 11722.32, + "probability": 0.8916 + }, + { + "start": 11722.66, + "end": 11724.3, + "probability": 0.8954 + }, + { + "start": 11724.36, + "end": 11724.94, + "probability": 0.8173 + }, + { + "start": 11725.0, + "end": 11725.7, + "probability": 0.7755 + }, + { + "start": 11726.8, + "end": 11730.06, + "probability": 0.9385 + }, + { + "start": 11730.58, + "end": 11731.1, + "probability": 0.6211 + }, + { + "start": 11731.24, + "end": 11732.48, + "probability": 0.859 + }, + { + "start": 11733.16, + "end": 11734.52, + "probability": 0.9744 + }, + { + "start": 11734.56, + "end": 11735.72, + "probability": 0.4963 + }, + { + "start": 11735.72, + "end": 11739.28, + "probability": 0.7105 + }, + { + "start": 11739.34, + "end": 11740.46, + "probability": 0.8847 + }, + { + "start": 11740.76, + "end": 11742.42, + "probability": 0.8722 + }, + { + "start": 11743.32, + "end": 11744.08, + "probability": 0.7272 + }, + { + "start": 11744.58, + "end": 11747.34, + "probability": 0.7661 + }, + { + "start": 11747.74, + "end": 11752.86, + "probability": 0.8468 + }, + { + "start": 11753.52, + "end": 11755.92, + "probability": 0.7162 + }, + { + "start": 11756.06, + "end": 11756.5, + "probability": 0.4427 + }, + { + "start": 11756.56, + "end": 11757.0, + "probability": 0.8506 + }, + { + "start": 11757.66, + "end": 11759.78, + "probability": 0.9121 + }, + { + "start": 11760.04, + "end": 11761.2, + "probability": 0.6963 + }, + { + "start": 11762.22, + "end": 11767.08, + "probability": 0.9915 + }, + { + "start": 11767.54, + "end": 11770.64, + "probability": 0.9325 + }, + { + "start": 11770.64, + "end": 11773.56, + "probability": 0.998 + }, + { + "start": 11774.74, + "end": 11776.3, + "probability": 0.9246 + }, + { + "start": 11777.16, + "end": 11779.2, + "probability": 0.9878 + }, + { + "start": 11779.94, + "end": 11780.44, + "probability": 0.5345 + }, + { + "start": 11781.16, + "end": 11782.98, + "probability": 0.7949 + }, + { + "start": 11783.52, + "end": 11785.52, + "probability": 0.7729 + }, + { + "start": 11785.54, + "end": 11786.96, + "probability": 0.9471 + }, + { + "start": 11787.38, + "end": 11787.74, + "probability": 0.6525 + }, + { + "start": 11787.76, + "end": 11788.28, + "probability": 0.6951 + }, + { + "start": 11788.3, + "end": 11789.16, + "probability": 0.747 + }, + { + "start": 11790.08, + "end": 11792.94, + "probability": 0.9928 + }, + { + "start": 11793.64, + "end": 11794.32, + "probability": 0.9932 + }, + { + "start": 11794.96, + "end": 11799.14, + "probability": 0.6613 + }, + { + "start": 11799.3, + "end": 11799.68, + "probability": 0.6018 + }, + { + "start": 11799.94, + "end": 11800.18, + "probability": 0.8912 + }, + { + "start": 11801.26, + "end": 11804.76, + "probability": 0.9874 + }, + { + "start": 11805.14, + "end": 11806.22, + "probability": 0.8632 + }, + { + "start": 11807.1, + "end": 11808.64, + "probability": 0.9624 + }, + { + "start": 11808.8, + "end": 11810.0, + "probability": 0.9282 + }, + { + "start": 11810.4, + "end": 11811.24, + "probability": 0.4935 + }, + { + "start": 11811.38, + "end": 11812.22, + "probability": 0.9365 + }, + { + "start": 11812.3, + "end": 11813.62, + "probability": 0.9711 + }, + { + "start": 11814.34, + "end": 11817.84, + "probability": 0.9211 + }, + { + "start": 11818.34, + "end": 11820.08, + "probability": 0.5713 + }, + { + "start": 11820.5, + "end": 11822.56, + "probability": 0.6006 + }, + { + "start": 11822.56, + "end": 11825.46, + "probability": 0.8655 + }, + { + "start": 11825.56, + "end": 11826.52, + "probability": 0.7639 + }, + { + "start": 11826.64, + "end": 11827.86, + "probability": 0.6933 + }, + { + "start": 11828.48, + "end": 11829.2, + "probability": 0.8298 + }, + { + "start": 11829.44, + "end": 11829.66, + "probability": 0.8313 + }, + { + "start": 11830.18, + "end": 11832.08, + "probability": 0.6081 + }, + { + "start": 11832.92, + "end": 11834.93, + "probability": 0.7286 + }, + { + "start": 11835.58, + "end": 11838.68, + "probability": 0.3169 + }, + { + "start": 11838.98, + "end": 11841.54, + "probability": 0.7444 + }, + { + "start": 11842.1, + "end": 11845.58, + "probability": 0.95 + }, + { + "start": 11846.62, + "end": 11847.8, + "probability": 0.9724 + }, + { + "start": 11849.1, + "end": 11850.04, + "probability": 0.8608 + }, + { + "start": 11863.2, + "end": 11864.3, + "probability": 0.5757 + }, + { + "start": 11865.78, + "end": 11869.62, + "probability": 0.7974 + }, + { + "start": 11870.98, + "end": 11872.14, + "probability": 0.7997 + }, + { + "start": 11874.04, + "end": 11874.94, + "probability": 0.5571 + }, + { + "start": 11875.0, + "end": 11876.7, + "probability": 0.9657 + }, + { + "start": 11876.74, + "end": 11878.26, + "probability": 0.9786 + }, + { + "start": 11878.96, + "end": 11880.22, + "probability": 0.7883 + }, + { + "start": 11880.26, + "end": 11881.28, + "probability": 0.8341 + }, + { + "start": 11881.42, + "end": 11883.64, + "probability": 0.705 + }, + { + "start": 11884.6, + "end": 11886.28, + "probability": 0.9842 + }, + { + "start": 11887.12, + "end": 11890.82, + "probability": 0.8584 + }, + { + "start": 11892.02, + "end": 11895.78, + "probability": 0.9483 + }, + { + "start": 11895.82, + "end": 11897.32, + "probability": 0.7524 + }, + { + "start": 11898.92, + "end": 11899.36, + "probability": 0.0215 + }, + { + "start": 11900.2, + "end": 11903.56, + "probability": 0.794 + }, + { + "start": 11904.92, + "end": 11906.46, + "probability": 0.8013 + }, + { + "start": 11907.26, + "end": 11908.6, + "probability": 0.9785 + }, + { + "start": 11908.72, + "end": 11909.66, + "probability": 0.9255 + }, + { + "start": 11909.82, + "end": 11912.92, + "probability": 0.9408 + }, + { + "start": 11913.86, + "end": 11918.36, + "probability": 0.9789 + }, + { + "start": 11918.96, + "end": 11921.18, + "probability": 0.9971 + }, + { + "start": 11921.94, + "end": 11923.0, + "probability": 0.3513 + }, + { + "start": 11923.64, + "end": 11927.18, + "probability": 0.6098 + }, + { + "start": 11927.7, + "end": 11929.2, + "probability": 0.9968 + }, + { + "start": 11929.26, + "end": 11930.6, + "probability": 0.9119 + }, + { + "start": 11931.2, + "end": 11932.52, + "probability": 0.9083 + }, + { + "start": 11933.22, + "end": 11936.22, + "probability": 0.7876 + }, + { + "start": 11937.06, + "end": 11938.74, + "probability": 0.9981 + }, + { + "start": 11939.52, + "end": 11944.9, + "probability": 0.9561 + }, + { + "start": 11945.82, + "end": 11949.6, + "probability": 0.8671 + }, + { + "start": 11950.7, + "end": 11954.16, + "probability": 0.7643 + }, + { + "start": 11955.08, + "end": 11959.3, + "probability": 0.8054 + }, + { + "start": 11960.02, + "end": 11961.26, + "probability": 0.9986 + }, + { + "start": 11961.36, + "end": 11962.16, + "probability": 0.9812 + }, + { + "start": 11962.26, + "end": 11963.18, + "probability": 0.9832 + }, + { + "start": 11963.44, + "end": 11963.86, + "probability": 0.7508 + }, + { + "start": 11964.46, + "end": 11966.8, + "probability": 0.9649 + }, + { + "start": 11967.26, + "end": 11969.48, + "probability": 0.8812 + }, + { + "start": 11970.02, + "end": 11972.54, + "probability": 0.9876 + }, + { + "start": 11973.02, + "end": 11973.88, + "probability": 0.9104 + }, + { + "start": 11974.74, + "end": 11976.5, + "probability": 0.8572 + }, + { + "start": 11977.78, + "end": 11983.3, + "probability": 0.9643 + }, + { + "start": 11983.88, + "end": 11985.3, + "probability": 0.9351 + }, + { + "start": 11985.5, + "end": 11986.72, + "probability": 0.9578 + }, + { + "start": 11989.0, + "end": 11989.94, + "probability": 0.3911 + }, + { + "start": 11990.52, + "end": 11993.66, + "probability": 0.9101 + }, + { + "start": 11995.06, + "end": 11995.34, + "probability": 0.3559 + }, + { + "start": 11995.5, + "end": 11998.5, + "probability": 0.9334 + }, + { + "start": 11999.06, + "end": 11999.58, + "probability": 0.7864 + }, + { + "start": 12000.86, + "end": 12006.46, + "probability": 0.9693 + }, + { + "start": 12006.52, + "end": 12009.16, + "probability": 0.8908 + }, + { + "start": 12009.8, + "end": 12011.62, + "probability": 0.8614 + }, + { + "start": 12013.4, + "end": 12014.8, + "probability": 0.7456 + }, + { + "start": 12015.34, + "end": 12018.02, + "probability": 0.876 + }, + { + "start": 12018.08, + "end": 12019.94, + "probability": 0.843 + }, + { + "start": 12028.22, + "end": 12029.68, + "probability": 0.7316 + }, + { + "start": 12030.7, + "end": 12032.36, + "probability": 0.6508 + }, + { + "start": 12033.94, + "end": 12036.34, + "probability": 0.8195 + }, + { + "start": 12036.8, + "end": 12037.52, + "probability": 0.7651 + }, + { + "start": 12037.96, + "end": 12041.84, + "probability": 0.9868 + }, + { + "start": 12042.76, + "end": 12046.94, + "probability": 0.9932 + }, + { + "start": 12047.04, + "end": 12048.26, + "probability": 0.7796 + }, + { + "start": 12049.06, + "end": 12051.62, + "probability": 0.9452 + }, + { + "start": 12053.02, + "end": 12058.36, + "probability": 0.9923 + }, + { + "start": 12059.94, + "end": 12061.22, + "probability": 0.5635 + }, + { + "start": 12062.78, + "end": 12063.54, + "probability": 0.2704 + }, + { + "start": 12063.88, + "end": 12068.9, + "probability": 0.9683 + }, + { + "start": 12069.26, + "end": 12072.18, + "probability": 0.8257 + }, + { + "start": 12072.88, + "end": 12073.92, + "probability": 0.9697 + }, + { + "start": 12074.64, + "end": 12077.98, + "probability": 0.962 + }, + { + "start": 12081.12, + "end": 12082.0, + "probability": 0.0281 + }, + { + "start": 12082.0, + "end": 12082.26, + "probability": 0.2903 + }, + { + "start": 12082.44, + "end": 12084.52, + "probability": 0.9814 + }, + { + "start": 12084.56, + "end": 12086.42, + "probability": 0.9225 + }, + { + "start": 12086.72, + "end": 12088.9, + "probability": 0.76 + }, + { + "start": 12089.04, + "end": 12091.16, + "probability": 0.9152 + }, + { + "start": 12092.0, + "end": 12092.5, + "probability": 0.7956 + }, + { + "start": 12093.68, + "end": 12099.58, + "probability": 0.9262 + }, + { + "start": 12099.86, + "end": 12101.08, + "probability": 0.9715 + }, + { + "start": 12101.94, + "end": 12103.1, + "probability": 0.7432 + }, + { + "start": 12103.16, + "end": 12106.22, + "probability": 0.856 + }, + { + "start": 12107.98, + "end": 12110.74, + "probability": 0.7908 + }, + { + "start": 12110.86, + "end": 12115.44, + "probability": 0.7475 + }, + { + "start": 12115.96, + "end": 12117.02, + "probability": 0.6099 + }, + { + "start": 12118.54, + "end": 12122.66, + "probability": 0.9492 + }, + { + "start": 12123.68, + "end": 12124.82, + "probability": 0.9983 + }, + { + "start": 12125.46, + "end": 12130.94, + "probability": 0.8079 + }, + { + "start": 12132.26, + "end": 12134.54, + "probability": 0.8663 + }, + { + "start": 12134.84, + "end": 12137.76, + "probability": 0.9753 + }, + { + "start": 12137.82, + "end": 12138.46, + "probability": 0.6528 + }, + { + "start": 12138.8, + "end": 12140.34, + "probability": 0.6255 + }, + { + "start": 12140.36, + "end": 12141.93, + "probability": 0.8497 + }, + { + "start": 12145.6, + "end": 12145.6, + "probability": 0.0509 + }, + { + "start": 12145.6, + "end": 12147.68, + "probability": 0.7554 + }, + { + "start": 12149.2, + "end": 12155.4, + "probability": 0.6226 + }, + { + "start": 12156.76, + "end": 12157.72, + "probability": 0.5371 + }, + { + "start": 12157.8, + "end": 12158.88, + "probability": 0.6768 + }, + { + "start": 12159.26, + "end": 12160.34, + "probability": 0.8735 + }, + { + "start": 12161.46, + "end": 12163.12, + "probability": 0.6728 + }, + { + "start": 12164.0, + "end": 12172.0, + "probability": 0.9688 + }, + { + "start": 12172.0, + "end": 12176.94, + "probability": 0.9339 + }, + { + "start": 12177.88, + "end": 12181.96, + "probability": 0.9949 + }, + { + "start": 12181.96, + "end": 12187.96, + "probability": 0.9902 + }, + { + "start": 12187.96, + "end": 12192.26, + "probability": 0.9841 + }, + { + "start": 12193.84, + "end": 12194.84, + "probability": 0.9043 + }, + { + "start": 12195.92, + "end": 12198.08, + "probability": 0.8956 + }, + { + "start": 12199.54, + "end": 12199.64, + "probability": 0.7102 + }, + { + "start": 12201.17, + "end": 12206.6, + "probability": 0.7109 + }, + { + "start": 12207.64, + "end": 12208.9, + "probability": 0.3833 + }, + { + "start": 12208.92, + "end": 12208.98, + "probability": 0.2875 + }, + { + "start": 12208.98, + "end": 12212.28, + "probability": 0.7955 + }, + { + "start": 12213.14, + "end": 12216.84, + "probability": 0.9795 + }, + { + "start": 12217.1, + "end": 12219.18, + "probability": 0.9854 + }, + { + "start": 12220.44, + "end": 12224.98, + "probability": 0.9885 + }, + { + "start": 12224.98, + "end": 12228.12, + "probability": 0.9908 + }, + { + "start": 12229.14, + "end": 12233.72, + "probability": 0.7666 + }, + { + "start": 12233.72, + "end": 12238.76, + "probability": 0.988 + }, + { + "start": 12239.22, + "end": 12241.84, + "probability": 0.9024 + }, + { + "start": 12242.74, + "end": 12243.8, + "probability": 0.7897 + }, + { + "start": 12244.2, + "end": 12245.16, + "probability": 0.9125 + }, + { + "start": 12245.4, + "end": 12248.2, + "probability": 0.7076 + }, + { + "start": 12248.26, + "end": 12249.04, + "probability": 0.8936 + }, + { + "start": 12249.46, + "end": 12253.1, + "probability": 0.9372 + }, + { + "start": 12253.52, + "end": 12255.76, + "probability": 0.8174 + }, + { + "start": 12255.84, + "end": 12258.64, + "probability": 0.7753 + }, + { + "start": 12259.26, + "end": 12260.74, + "probability": 0.8648 + }, + { + "start": 12261.32, + "end": 12267.76, + "probability": 0.7457 + }, + { + "start": 12267.8, + "end": 12269.6, + "probability": 0.0873 + }, + { + "start": 12270.06, + "end": 12270.76, + "probability": 0.5056 + }, + { + "start": 12270.78, + "end": 12271.84, + "probability": 0.6853 + }, + { + "start": 12272.3, + "end": 12272.82, + "probability": 0.761 + }, + { + "start": 12289.1, + "end": 12291.98, + "probability": 0.0983 + }, + { + "start": 12292.54, + "end": 12294.88, + "probability": 0.0718 + }, + { + "start": 12294.88, + "end": 12294.88, + "probability": 0.024 + }, + { + "start": 12294.88, + "end": 12296.06, + "probability": 0.9326 + }, + { + "start": 12297.18, + "end": 12298.02, + "probability": 0.0542 + }, + { + "start": 12298.02, + "end": 12298.02, + "probability": 0.0933 + }, + { + "start": 12298.02, + "end": 12298.02, + "probability": 0.1051 + }, + { + "start": 12298.02, + "end": 12298.02, + "probability": 0.0967 + }, + { + "start": 12298.02, + "end": 12299.6, + "probability": 0.3507 + }, + { + "start": 12302.08, + "end": 12305.82, + "probability": 0.2628 + }, + { + "start": 12306.6, + "end": 12307.82, + "probability": 0.732 + }, + { + "start": 12307.88, + "end": 12308.78, + "probability": 0.5258 + }, + { + "start": 12308.94, + "end": 12310.5, + "probability": 0.6022 + }, + { + "start": 12310.92, + "end": 12312.2, + "probability": 0.9696 + }, + { + "start": 12312.86, + "end": 12315.78, + "probability": 0.9698 + }, + { + "start": 12316.24, + "end": 12317.78, + "probability": 0.2076 + }, + { + "start": 12318.38, + "end": 12320.42, + "probability": 0.7725 + }, + { + "start": 12321.48, + "end": 12324.7, + "probability": 0.7661 + }, + { + "start": 12325.26, + "end": 12325.56, + "probability": 0.0538 + }, + { + "start": 12326.2, + "end": 12329.96, + "probability": 0.977 + }, + { + "start": 12330.38, + "end": 12330.68, + "probability": 0.7675 + }, + { + "start": 12331.76, + "end": 12333.32, + "probability": 0.8616 + }, + { + "start": 12334.6, + "end": 12337.28, + "probability": 0.838 + }, + { + "start": 12337.28, + "end": 12340.08, + "probability": 0.4909 + }, + { + "start": 12340.48, + "end": 12342.78, + "probability": 0.7931 + }, + { + "start": 12342.92, + "end": 12344.42, + "probability": 0.459 + }, + { + "start": 12345.2, + "end": 12346.64, + "probability": 0.5635 + }, + { + "start": 12347.28, + "end": 12350.2, + "probability": 0.9553 + }, + { + "start": 12357.54, + "end": 12357.54, + "probability": 0.3181 + }, + { + "start": 12367.02, + "end": 12370.86, + "probability": 0.6835 + }, + { + "start": 12371.86, + "end": 12377.36, + "probability": 0.972 + }, + { + "start": 12378.3, + "end": 12381.98, + "probability": 0.8858 + }, + { + "start": 12382.62, + "end": 12386.16, + "probability": 0.9919 + }, + { + "start": 12387.06, + "end": 12390.92, + "probability": 0.8177 + }, + { + "start": 12391.58, + "end": 12396.52, + "probability": 0.9962 + }, + { + "start": 12398.02, + "end": 12400.82, + "probability": 0.9862 + }, + { + "start": 12400.98, + "end": 12401.5, + "probability": 0.0374 + }, + { + "start": 12401.62, + "end": 12402.64, + "probability": 0.9594 + }, + { + "start": 12402.7, + "end": 12402.96, + "probability": 0.6067 + }, + { + "start": 12403.44, + "end": 12404.1, + "probability": 0.4196 + }, + { + "start": 12404.26, + "end": 12408.48, + "probability": 0.9255 + }, + { + "start": 12409.32, + "end": 12416.0, + "probability": 0.8913 + }, + { + "start": 12416.06, + "end": 12417.66, + "probability": 0.9497 + }, + { + "start": 12417.86, + "end": 12422.24, + "probability": 0.9834 + }, + { + "start": 12423.04, + "end": 12427.92, + "probability": 0.9824 + }, + { + "start": 12428.6, + "end": 12429.52, + "probability": 0.807 + }, + { + "start": 12430.72, + "end": 12435.82, + "probability": 0.9921 + }, + { + "start": 12436.22, + "end": 12437.58, + "probability": 0.8096 + }, + { + "start": 12437.72, + "end": 12438.7, + "probability": 0.912 + }, + { + "start": 12438.76, + "end": 12439.94, + "probability": 0.8319 + }, + { + "start": 12440.72, + "end": 12441.72, + "probability": 0.7474 + }, + { + "start": 12441.88, + "end": 12444.74, + "probability": 0.9936 + }, + { + "start": 12446.4, + "end": 12450.12, + "probability": 0.9867 + }, + { + "start": 12451.36, + "end": 12455.58, + "probability": 0.9972 + }, + { + "start": 12457.0, + "end": 12463.58, + "probability": 0.9572 + }, + { + "start": 12464.52, + "end": 12468.82, + "probability": 0.9897 + }, + { + "start": 12469.9, + "end": 12473.88, + "probability": 0.9977 + }, + { + "start": 12474.44, + "end": 12475.52, + "probability": 0.7468 + }, + { + "start": 12476.62, + "end": 12479.48, + "probability": 0.7233 + }, + { + "start": 12479.54, + "end": 12481.02, + "probability": 0.8723 + }, + { + "start": 12481.46, + "end": 12486.12, + "probability": 0.9894 + }, + { + "start": 12486.74, + "end": 12489.95, + "probability": 0.8187 + }, + { + "start": 12493.4, + "end": 12496.3, + "probability": 0.991 + }, + { + "start": 12496.86, + "end": 12499.64, + "probability": 0.9785 + }, + { + "start": 12499.76, + "end": 12500.8, + "probability": 0.9934 + }, + { + "start": 12500.94, + "end": 12501.98, + "probability": 0.7878 + }, + { + "start": 12502.68, + "end": 12507.64, + "probability": 0.9748 + }, + { + "start": 12509.9, + "end": 12516.26, + "probability": 0.7034 + }, + { + "start": 12516.88, + "end": 12521.92, + "probability": 0.9645 + }, + { + "start": 12521.92, + "end": 12525.32, + "probability": 0.9883 + }, + { + "start": 12525.62, + "end": 12528.16, + "probability": 0.8811 + }, + { + "start": 12529.06, + "end": 12531.4, + "probability": 0.9486 + }, + { + "start": 12531.96, + "end": 12537.36, + "probability": 0.9228 + }, + { + "start": 12537.46, + "end": 12537.72, + "probability": 0.7674 + }, + { + "start": 12538.18, + "end": 12541.52, + "probability": 0.9395 + }, + { + "start": 12547.5, + "end": 12550.02, + "probability": 0.3896 + }, + { + "start": 12550.48, + "end": 12551.16, + "probability": 0.5523 + }, + { + "start": 12551.92, + "end": 12553.7, + "probability": 0.3955 + }, + { + "start": 12554.46, + "end": 12557.24, + "probability": 0.8321 + }, + { + "start": 12558.74, + "end": 12562.8, + "probability": 0.5222 + }, + { + "start": 12563.52, + "end": 12565.14, + "probability": 0.7952 + }, + { + "start": 12565.24, + "end": 12566.3, + "probability": 0.2987 + }, + { + "start": 12566.4, + "end": 12567.16, + "probability": 0.581 + }, + { + "start": 12567.92, + "end": 12569.14, + "probability": 0.7344 + }, + { + "start": 12570.06, + "end": 12571.5, + "probability": 0.8962 + }, + { + "start": 12572.1, + "end": 12574.66, + "probability": 0.6037 + }, + { + "start": 12576.6, + "end": 12577.22, + "probability": 0.1461 + }, + { + "start": 12578.3, + "end": 12579.02, + "probability": 0.4047 + }, + { + "start": 12579.92, + "end": 12581.32, + "probability": 0.7244 + }, + { + "start": 12581.52, + "end": 12585.53, + "probability": 0.5483 + }, + { + "start": 12588.33, + "end": 12589.84, + "probability": 0.2142 + }, + { + "start": 12590.84, + "end": 12594.28, + "probability": 0.1581 + }, + { + "start": 12597.2, + "end": 12602.94, + "probability": 0.5688 + }, + { + "start": 12608.3, + "end": 12609.12, + "probability": 0.1956 + }, + { + "start": 12610.81, + "end": 12612.86, + "probability": 0.0806 + }, + { + "start": 12613.6, + "end": 12615.04, + "probability": 0.0623 + }, + { + "start": 12615.04, + "end": 12615.04, + "probability": 0.0989 + }, + { + "start": 12615.04, + "end": 12617.56, + "probability": 0.0362 + }, + { + "start": 12618.28, + "end": 12618.28, + "probability": 0.033 + }, + { + "start": 12618.28, + "end": 12618.28, + "probability": 0.0877 + }, + { + "start": 12618.28, + "end": 12618.28, + "probability": 0.0443 + }, + { + "start": 12618.28, + "end": 12618.28, + "probability": 0.1531 + }, + { + "start": 12618.28, + "end": 12618.36, + "probability": 0.0037 + }, + { + "start": 12618.36, + "end": 12618.64, + "probability": 0.0094 + }, + { + "start": 12618.64, + "end": 12619.301, + "probability": 0.0307 + }, + { + "start": 12619.301, + "end": 12619.301, + "probability": 0.0 + } + ], + "segments_count": 4062, + "words_count": 21391, + "avg_words_per_segment": 5.2661, + "avg_segment_duration": 2.3867, + "avg_words_per_minute": 101.7061, + "plenum_id": "14588", + "duration": 12619.3, + "title": null, + "plenum_date": "2011-07-05" +} \ No newline at end of file