diff --git "a/32564/metadata.json" "b/32564/metadata.json" new file mode 100644--- /dev/null +++ "b/32564/metadata.json" @@ -0,0 +1,43797 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "32564", + "quality_score": 0.8669, + "per_segment_quality_scores": [ + { + "start": 46.62, + "end": 47.82, + "probability": 0.6405 + }, + { + "start": 52.86, + "end": 54.1, + "probability": 0.7796 + }, + { + "start": 54.2, + "end": 55.8, + "probability": 0.8462 + }, + { + "start": 56.18, + "end": 57.64, + "probability": 0.947 + }, + { + "start": 58.14, + "end": 58.84, + "probability": 0.7015 + }, + { + "start": 58.88, + "end": 64.1, + "probability": 0.8709 + }, + { + "start": 64.38, + "end": 67.54, + "probability": 0.9622 + }, + { + "start": 68.14, + "end": 69.58, + "probability": 0.5968 + }, + { + "start": 70.16, + "end": 74.28, + "probability": 0.8072 + }, + { + "start": 74.4, + "end": 75.52, + "probability": 0.6763 + }, + { + "start": 76.28, + "end": 79.64, + "probability": 0.6619 + }, + { + "start": 79.76, + "end": 83.06, + "probability": 0.807 + }, + { + "start": 83.22, + "end": 84.08, + "probability": 0.8066 + }, + { + "start": 84.66, + "end": 87.18, + "probability": 0.6673 + }, + { + "start": 87.56, + "end": 91.5, + "probability": 0.8416 + }, + { + "start": 92.04, + "end": 93.38, + "probability": 0.6161 + }, + { + "start": 93.7, + "end": 97.4, + "probability": 0.9604 + }, + { + "start": 97.62, + "end": 98.46, + "probability": 0.7294 + }, + { + "start": 99.12, + "end": 100.02, + "probability": 0.7426 + }, + { + "start": 102.49, + "end": 104.86, + "probability": 0.6186 + }, + { + "start": 104.86, + "end": 106.18, + "probability": 0.3468 + }, + { + "start": 106.68, + "end": 108.46, + "probability": 0.6971 + }, + { + "start": 109.12, + "end": 110.46, + "probability": 0.6495 + }, + { + "start": 111.0, + "end": 112.6, + "probability": 0.3702 + }, + { + "start": 113.66, + "end": 115.38, + "probability": 0.2536 + }, + { + "start": 115.38, + "end": 115.38, + "probability": 0.2201 + }, + { + "start": 115.38, + "end": 115.38, + "probability": 0.0311 + }, + { + "start": 115.38, + "end": 118.58, + "probability": 0.1123 + }, + { + "start": 120.88, + "end": 123.66, + "probability": 0.5198 + }, + { + "start": 124.38, + "end": 127.22, + "probability": 0.2432 + }, + { + "start": 127.94, + "end": 129.18, + "probability": 0.0371 + }, + { + "start": 132.6, + "end": 133.82, + "probability": 0.0177 + }, + { + "start": 133.82, + "end": 134.42, + "probability": 0.0318 + }, + { + "start": 135.9, + "end": 138.22, + "probability": 0.0349 + }, + { + "start": 140.32, + "end": 142.86, + "probability": 0.0567 + }, + { + "start": 142.88, + "end": 143.86, + "probability": 0.1192 + }, + { + "start": 144.04, + "end": 144.92, + "probability": 0.563 + }, + { + "start": 146.02, + "end": 147.26, + "probability": 0.0708 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.0, + "end": 264.0, + "probability": 0.0 + }, + { + "start": 264.12, + "end": 264.6, + "probability": 0.4965 + }, + { + "start": 265.54, + "end": 267.5, + "probability": 0.9941 + }, + { + "start": 267.9, + "end": 269.14, + "probability": 0.986 + }, + { + "start": 269.68, + "end": 272.4, + "probability": 0.9831 + }, + { + "start": 272.72, + "end": 275.68, + "probability": 0.913 + }, + { + "start": 276.14, + "end": 280.94, + "probability": 0.9912 + }, + { + "start": 281.26, + "end": 285.36, + "probability": 0.9951 + }, + { + "start": 286.68, + "end": 290.7, + "probability": 0.9953 + }, + { + "start": 290.7, + "end": 294.5, + "probability": 0.9645 + }, + { + "start": 295.82, + "end": 298.44, + "probability": 0.9947 + }, + { + "start": 298.44, + "end": 301.62, + "probability": 0.9965 + }, + { + "start": 302.14, + "end": 305.02, + "probability": 0.9975 + }, + { + "start": 305.02, + "end": 309.68, + "probability": 0.9821 + }, + { + "start": 309.8, + "end": 310.78, + "probability": 0.966 + }, + { + "start": 311.78, + "end": 314.16, + "probability": 0.9345 + }, + { + "start": 314.64, + "end": 320.18, + "probability": 0.9932 + }, + { + "start": 320.64, + "end": 321.54, + "probability": 0.7703 + }, + { + "start": 321.82, + "end": 323.62, + "probability": 0.941 + }, + { + "start": 323.68, + "end": 325.28, + "probability": 0.7721 + }, + { + "start": 325.28, + "end": 325.92, + "probability": 0.7743 + }, + { + "start": 326.38, + "end": 330.84, + "probability": 0.989 + }, + { + "start": 331.1, + "end": 332.96, + "probability": 0.9701 + }, + { + "start": 333.28, + "end": 334.54, + "probability": 0.6522 + }, + { + "start": 334.62, + "end": 336.14, + "probability": 0.8335 + }, + { + "start": 336.54, + "end": 338.22, + "probability": 0.9778 + }, + { + "start": 338.92, + "end": 342.5, + "probability": 0.9836 + }, + { + "start": 342.6, + "end": 344.32, + "probability": 0.5757 + }, + { + "start": 344.72, + "end": 348.7, + "probability": 0.9973 + }, + { + "start": 349.14, + "end": 350.82, + "probability": 0.6648 + }, + { + "start": 350.92, + "end": 354.1, + "probability": 0.9908 + }, + { + "start": 354.68, + "end": 358.0, + "probability": 0.9966 + }, + { + "start": 358.0, + "end": 360.44, + "probability": 0.9868 + }, + { + "start": 360.82, + "end": 361.22, + "probability": 0.8603 + }, + { + "start": 361.72, + "end": 364.16, + "probability": 0.9896 + }, + { + "start": 364.32, + "end": 366.52, + "probability": 0.969 + }, + { + "start": 367.0, + "end": 369.24, + "probability": 0.8628 + }, + { + "start": 369.5, + "end": 370.6, + "probability": 0.9191 + }, + { + "start": 371.72, + "end": 374.14, + "probability": 0.9393 + }, + { + "start": 374.52, + "end": 376.16, + "probability": 0.6808 + }, + { + "start": 376.32, + "end": 377.04, + "probability": 0.7304 + }, + { + "start": 377.4, + "end": 378.64, + "probability": 0.9923 + }, + { + "start": 379.3, + "end": 382.9, + "probability": 0.9994 + }, + { + "start": 382.9, + "end": 386.6, + "probability": 0.9378 + }, + { + "start": 386.96, + "end": 388.7, + "probability": 0.9308 + }, + { + "start": 389.06, + "end": 389.78, + "probability": 0.828 + }, + { + "start": 390.36, + "end": 395.38, + "probability": 0.9268 + }, + { + "start": 395.94, + "end": 400.24, + "probability": 0.8112 + }, + { + "start": 400.92, + "end": 401.44, + "probability": 0.362 + }, + { + "start": 402.14, + "end": 403.86, + "probability": 0.8253 + }, + { + "start": 404.1, + "end": 406.2, + "probability": 0.8938 + }, + { + "start": 406.2, + "end": 409.72, + "probability": 0.9667 + }, + { + "start": 410.12, + "end": 412.22, + "probability": 0.9805 + }, + { + "start": 412.22, + "end": 415.04, + "probability": 0.9212 + }, + { + "start": 415.54, + "end": 418.72, + "probability": 0.9986 + }, + { + "start": 418.72, + "end": 420.9, + "probability": 0.9961 + }, + { + "start": 421.26, + "end": 423.6, + "probability": 0.9025 + }, + { + "start": 424.2, + "end": 426.88, + "probability": 0.8658 + }, + { + "start": 427.52, + "end": 430.52, + "probability": 0.1437 + }, + { + "start": 430.52, + "end": 432.42, + "probability": 0.8228 + }, + { + "start": 432.88, + "end": 435.6, + "probability": 0.9972 + }, + { + "start": 435.6, + "end": 439.46, + "probability": 0.9964 + }, + { + "start": 439.82, + "end": 441.74, + "probability": 0.8922 + }, + { + "start": 441.74, + "end": 443.86, + "probability": 0.992 + }, + { + "start": 443.98, + "end": 444.6, + "probability": 0.8103 + }, + { + "start": 444.76, + "end": 445.28, + "probability": 0.8822 + }, + { + "start": 445.64, + "end": 446.86, + "probability": 0.9868 + }, + { + "start": 447.56, + "end": 449.44, + "probability": 0.9919 + }, + { + "start": 449.8, + "end": 453.24, + "probability": 0.997 + }, + { + "start": 453.56, + "end": 454.78, + "probability": 0.9472 + }, + { + "start": 455.28, + "end": 457.32, + "probability": 0.9913 + }, + { + "start": 457.68, + "end": 460.01, + "probability": 0.981 + }, + { + "start": 460.5, + "end": 461.98, + "probability": 0.9714 + }, + { + "start": 462.98, + "end": 467.58, + "probability": 0.9978 + }, + { + "start": 467.98, + "end": 470.4, + "probability": 0.9968 + }, + { + "start": 471.18, + "end": 471.82, + "probability": 0.5979 + }, + { + "start": 472.74, + "end": 476.08, + "probability": 0.9981 + }, + { + "start": 476.72, + "end": 477.42, + "probability": 0.975 + }, + { + "start": 477.64, + "end": 480.2, + "probability": 0.9752 + }, + { + "start": 480.64, + "end": 483.28, + "probability": 0.9709 + }, + { + "start": 483.78, + "end": 486.38, + "probability": 0.9893 + }, + { + "start": 486.48, + "end": 487.12, + "probability": 0.9432 + }, + { + "start": 487.24, + "end": 489.36, + "probability": 0.7306 + }, + { + "start": 489.8, + "end": 490.56, + "probability": 0.8917 + }, + { + "start": 490.64, + "end": 491.18, + "probability": 0.9004 + }, + { + "start": 491.42, + "end": 493.02, + "probability": 0.9507 + }, + { + "start": 493.84, + "end": 497.68, + "probability": 0.9991 + }, + { + "start": 498.04, + "end": 499.94, + "probability": 0.9956 + }, + { + "start": 500.38, + "end": 502.55, + "probability": 0.9933 + }, + { + "start": 503.12, + "end": 504.74, + "probability": 0.9121 + }, + { + "start": 505.26, + "end": 506.05, + "probability": 0.5018 + }, + { + "start": 507.44, + "end": 510.62, + "probability": 0.9878 + }, + { + "start": 510.98, + "end": 513.48, + "probability": 0.9918 + }, + { + "start": 513.76, + "end": 515.54, + "probability": 0.9908 + }, + { + "start": 515.94, + "end": 519.82, + "probability": 0.9899 + }, + { + "start": 519.82, + "end": 523.42, + "probability": 0.99 + }, + { + "start": 523.58, + "end": 526.68, + "probability": 0.7764 + }, + { + "start": 526.96, + "end": 530.08, + "probability": 0.9583 + }, + { + "start": 530.24, + "end": 533.9, + "probability": 0.9949 + }, + { + "start": 534.16, + "end": 536.14, + "probability": 0.9978 + }, + { + "start": 536.14, + "end": 539.22, + "probability": 0.9196 + }, + { + "start": 540.04, + "end": 542.34, + "probability": 0.9976 + }, + { + "start": 542.34, + "end": 544.58, + "probability": 0.9823 + }, + { + "start": 544.64, + "end": 545.54, + "probability": 0.862 + }, + { + "start": 545.8, + "end": 546.46, + "probability": 0.887 + }, + { + "start": 546.84, + "end": 547.84, + "probability": 0.9661 + }, + { + "start": 549.08, + "end": 550.2, + "probability": 0.6185 + }, + { + "start": 550.56, + "end": 554.54, + "probability": 0.989 + }, + { + "start": 554.54, + "end": 558.12, + "probability": 0.9857 + }, + { + "start": 558.36, + "end": 558.82, + "probability": 0.9001 + }, + { + "start": 558.88, + "end": 560.02, + "probability": 0.9754 + }, + { + "start": 560.18, + "end": 561.48, + "probability": 0.565 + }, + { + "start": 562.22, + "end": 563.18, + "probability": 0.3514 + }, + { + "start": 564.08, + "end": 564.75, + "probability": 0.986 + }, + { + "start": 565.3, + "end": 566.04, + "probability": 0.9438 + }, + { + "start": 567.0, + "end": 570.6, + "probability": 0.9789 + }, + { + "start": 571.22, + "end": 574.8, + "probability": 0.9633 + }, + { + "start": 575.66, + "end": 578.14, + "probability": 0.9934 + }, + { + "start": 578.14, + "end": 581.66, + "probability": 0.9917 + }, + { + "start": 582.16, + "end": 585.08, + "probability": 0.9929 + }, + { + "start": 585.08, + "end": 588.76, + "probability": 0.9817 + }, + { + "start": 589.38, + "end": 593.16, + "probability": 0.9958 + }, + { + "start": 593.16, + "end": 598.1, + "probability": 0.9977 + }, + { + "start": 598.64, + "end": 601.78, + "probability": 0.9404 + }, + { + "start": 601.78, + "end": 604.16, + "probability": 0.8838 + }, + { + "start": 604.26, + "end": 604.76, + "probability": 0.8964 + }, + { + "start": 604.82, + "end": 605.48, + "probability": 0.6379 + }, + { + "start": 605.76, + "end": 608.4, + "probability": 0.8073 + }, + { + "start": 608.8, + "end": 609.92, + "probability": 0.9531 + }, + { + "start": 610.48, + "end": 614.08, + "probability": 0.9961 + }, + { + "start": 614.38, + "end": 616.38, + "probability": 0.9987 + }, + { + "start": 616.54, + "end": 619.22, + "probability": 0.9481 + }, + { + "start": 619.48, + "end": 622.48, + "probability": 0.9961 + }, + { + "start": 623.44, + "end": 625.7, + "probability": 0.7389 + }, + { + "start": 625.7, + "end": 629.1, + "probability": 0.9795 + }, + { + "start": 629.4, + "end": 631.47, + "probability": 0.9414 + }, + { + "start": 632.54, + "end": 636.44, + "probability": 0.9862 + }, + { + "start": 636.72, + "end": 639.42, + "probability": 0.9753 + }, + { + "start": 640.06, + "end": 642.8, + "probability": 0.9963 + }, + { + "start": 642.8, + "end": 645.74, + "probability": 0.9722 + }, + { + "start": 646.22, + "end": 648.32, + "probability": 0.9963 + }, + { + "start": 648.44, + "end": 650.28, + "probability": 0.9482 + }, + { + "start": 650.5, + "end": 651.2, + "probability": 0.6708 + }, + { + "start": 651.66, + "end": 655.02, + "probability": 0.9973 + }, + { + "start": 655.02, + "end": 658.36, + "probability": 0.9761 + }, + { + "start": 658.94, + "end": 663.4, + "probability": 0.9929 + }, + { + "start": 663.96, + "end": 664.86, + "probability": 0.7238 + }, + { + "start": 665.0, + "end": 669.16, + "probability": 0.8739 + }, + { + "start": 669.16, + "end": 671.76, + "probability": 0.9846 + }, + { + "start": 672.18, + "end": 674.94, + "probability": 0.9798 + }, + { + "start": 675.02, + "end": 678.96, + "probability": 0.9982 + }, + { + "start": 679.36, + "end": 681.46, + "probability": 0.9241 + }, + { + "start": 681.64, + "end": 682.16, + "probability": 0.8999 + }, + { + "start": 682.26, + "end": 683.42, + "probability": 0.934 + }, + { + "start": 683.5, + "end": 684.37, + "probability": 0.8725 + }, + { + "start": 684.62, + "end": 686.98, + "probability": 0.9237 + }, + { + "start": 687.24, + "end": 688.18, + "probability": 0.9957 + }, + { + "start": 688.3, + "end": 690.76, + "probability": 0.9902 + }, + { + "start": 691.08, + "end": 692.22, + "probability": 0.9845 + }, + { + "start": 692.36, + "end": 693.13, + "probability": 0.9297 + }, + { + "start": 694.54, + "end": 697.86, + "probability": 0.9922 + }, + { + "start": 698.02, + "end": 702.14, + "probability": 0.996 + }, + { + "start": 702.54, + "end": 704.64, + "probability": 0.9938 + }, + { + "start": 705.0, + "end": 705.92, + "probability": 0.8181 + }, + { + "start": 706.16, + "end": 707.6, + "probability": 0.9616 + }, + { + "start": 708.16, + "end": 710.06, + "probability": 0.8936 + }, + { + "start": 710.06, + "end": 713.0, + "probability": 0.9979 + }, + { + "start": 713.1, + "end": 713.88, + "probability": 0.8499 + }, + { + "start": 714.38, + "end": 716.9, + "probability": 0.9947 + }, + { + "start": 716.9, + "end": 719.26, + "probability": 0.9956 + }, + { + "start": 719.8, + "end": 721.26, + "probability": 0.9988 + }, + { + "start": 722.6, + "end": 727.32, + "probability": 0.998 + }, + { + "start": 727.4, + "end": 729.0, + "probability": 0.9883 + }, + { + "start": 729.68, + "end": 732.68, + "probability": 0.8582 + }, + { + "start": 733.06, + "end": 734.34, + "probability": 0.9856 + }, + { + "start": 735.72, + "end": 736.02, + "probability": 0.7728 + }, + { + "start": 736.82, + "end": 738.94, + "probability": 0.95 + }, + { + "start": 741.12, + "end": 746.82, + "probability": 0.964 + }, + { + "start": 747.58, + "end": 750.54, + "probability": 0.9946 + }, + { + "start": 750.7, + "end": 753.04, + "probability": 0.9937 + }, + { + "start": 753.28, + "end": 753.9, + "probability": 0.7208 + }, + { + "start": 755.44, + "end": 756.16, + "probability": 0.8285 + }, + { + "start": 756.22, + "end": 760.14, + "probability": 0.9668 + }, + { + "start": 760.22, + "end": 761.7, + "probability": 0.7734 + }, + { + "start": 762.52, + "end": 763.34, + "probability": 0.7707 + }, + { + "start": 763.4, + "end": 768.06, + "probability": 0.9152 + }, + { + "start": 768.2, + "end": 769.3, + "probability": 0.9737 + }, + { + "start": 770.44, + "end": 771.88, + "probability": 0.9155 + }, + { + "start": 773.66, + "end": 776.82, + "probability": 0.8686 + }, + { + "start": 777.6, + "end": 778.68, + "probability": 0.7209 + }, + { + "start": 779.98, + "end": 783.6, + "probability": 0.9993 + }, + { + "start": 784.9, + "end": 788.3, + "probability": 0.9941 + }, + { + "start": 788.98, + "end": 790.25, + "probability": 0.9397 + }, + { + "start": 790.96, + "end": 791.66, + "probability": 0.962 + }, + { + "start": 792.72, + "end": 794.12, + "probability": 0.9861 + }, + { + "start": 794.64, + "end": 796.18, + "probability": 0.9775 + }, + { + "start": 796.6, + "end": 799.84, + "probability": 0.9955 + }, + { + "start": 801.32, + "end": 802.02, + "probability": 0.7946 + }, + { + "start": 802.1, + "end": 803.04, + "probability": 0.619 + }, + { + "start": 803.42, + "end": 806.9, + "probability": 0.9806 + }, + { + "start": 807.86, + "end": 810.86, + "probability": 0.9963 + }, + { + "start": 812.42, + "end": 815.08, + "probability": 0.9968 + }, + { + "start": 815.54, + "end": 820.5, + "probability": 0.9927 + }, + { + "start": 821.52, + "end": 827.02, + "probability": 0.9953 + }, + { + "start": 827.8, + "end": 831.22, + "probability": 0.9568 + }, + { + "start": 833.0, + "end": 833.96, + "probability": 0.7562 + }, + { + "start": 834.02, + "end": 836.54, + "probability": 0.8665 + }, + { + "start": 836.54, + "end": 840.2, + "probability": 0.8693 + }, + { + "start": 841.46, + "end": 845.1, + "probability": 0.9972 + }, + { + "start": 845.1, + "end": 848.56, + "probability": 0.8124 + }, + { + "start": 849.96, + "end": 852.04, + "probability": 0.9954 + }, + { + "start": 852.7, + "end": 854.98, + "probability": 0.9781 + }, + { + "start": 855.54, + "end": 857.1, + "probability": 0.9784 + }, + { + "start": 857.58, + "end": 861.66, + "probability": 0.9854 + }, + { + "start": 862.06, + "end": 866.98, + "probability": 0.9856 + }, + { + "start": 868.24, + "end": 873.06, + "probability": 0.9325 + }, + { + "start": 873.14, + "end": 874.16, + "probability": 0.8745 + }, + { + "start": 875.38, + "end": 879.68, + "probability": 0.9718 + }, + { + "start": 880.5, + "end": 883.16, + "probability": 0.9948 + }, + { + "start": 883.94, + "end": 887.92, + "probability": 0.9964 + }, + { + "start": 888.8, + "end": 890.11, + "probability": 0.9912 + }, + { + "start": 890.94, + "end": 894.84, + "probability": 0.935 + }, + { + "start": 895.22, + "end": 895.68, + "probability": 0.9232 + }, + { + "start": 896.4, + "end": 896.91, + "probability": 0.9014 + }, + { + "start": 897.78, + "end": 899.68, + "probability": 0.9729 + }, + { + "start": 900.28, + "end": 902.66, + "probability": 0.9793 + }, + { + "start": 904.6, + "end": 905.53, + "probability": 0.9675 + }, + { + "start": 905.72, + "end": 908.38, + "probability": 0.998 + }, + { + "start": 908.84, + "end": 912.72, + "probability": 0.9944 + }, + { + "start": 914.62, + "end": 917.94, + "probability": 0.8931 + }, + { + "start": 918.2, + "end": 923.28, + "probability": 0.9905 + }, + { + "start": 923.28, + "end": 928.12, + "probability": 0.9861 + }, + { + "start": 929.56, + "end": 929.98, + "probability": 0.6665 + }, + { + "start": 930.48, + "end": 934.52, + "probability": 0.989 + }, + { + "start": 934.88, + "end": 939.34, + "probability": 0.9904 + }, + { + "start": 939.34, + "end": 943.62, + "probability": 0.9954 + }, + { + "start": 944.44, + "end": 949.18, + "probability": 0.9793 + }, + { + "start": 951.22, + "end": 952.1, + "probability": 0.9025 + }, + { + "start": 952.2, + "end": 954.98, + "probability": 0.8478 + }, + { + "start": 955.34, + "end": 958.68, + "probability": 0.991 + }, + { + "start": 959.06, + "end": 963.1, + "probability": 0.9964 + }, + { + "start": 964.7, + "end": 968.36, + "probability": 0.9983 + }, + { + "start": 968.82, + "end": 973.08, + "probability": 0.9978 + }, + { + "start": 976.02, + "end": 979.51, + "probability": 0.9864 + }, + { + "start": 980.38, + "end": 983.8, + "probability": 0.9603 + }, + { + "start": 985.08, + "end": 986.9, + "probability": 0.9269 + }, + { + "start": 987.5, + "end": 990.14, + "probability": 0.9083 + }, + { + "start": 990.9, + "end": 996.58, + "probability": 0.967 + }, + { + "start": 997.68, + "end": 1001.66, + "probability": 0.9846 + }, + { + "start": 1002.08, + "end": 1005.34, + "probability": 0.9336 + }, + { + "start": 1007.5, + "end": 1011.6, + "probability": 0.9849 + }, + { + "start": 1013.46, + "end": 1015.64, + "probability": 0.8844 + }, + { + "start": 1017.64, + "end": 1020.86, + "probability": 0.9828 + }, + { + "start": 1021.78, + "end": 1025.54, + "probability": 0.9776 + }, + { + "start": 1026.3, + "end": 1028.1, + "probability": 0.8401 + }, + { + "start": 1028.52, + "end": 1031.28, + "probability": 0.9858 + }, + { + "start": 1032.46, + "end": 1032.84, + "probability": 0.5205 + }, + { + "start": 1033.6, + "end": 1034.4, + "probability": 0.8296 + }, + { + "start": 1034.5, + "end": 1038.1, + "probability": 0.9885 + }, + { + "start": 1039.0, + "end": 1044.64, + "probability": 0.947 + }, + { + "start": 1045.26, + "end": 1049.22, + "probability": 0.5297 + }, + { + "start": 1050.38, + "end": 1053.9, + "probability": 0.9911 + }, + { + "start": 1054.82, + "end": 1059.78, + "probability": 0.9473 + }, + { + "start": 1061.7, + "end": 1065.88, + "probability": 0.9982 + }, + { + "start": 1067.58, + "end": 1069.9, + "probability": 0.9756 + }, + { + "start": 1070.46, + "end": 1072.34, + "probability": 0.971 + }, + { + "start": 1074.54, + "end": 1075.16, + "probability": 0.6933 + }, + { + "start": 1075.24, + "end": 1075.96, + "probability": 0.6991 + }, + { + "start": 1076.1, + "end": 1079.42, + "probability": 0.9919 + }, + { + "start": 1080.04, + "end": 1081.72, + "probability": 0.7874 + }, + { + "start": 1082.72, + "end": 1084.2, + "probability": 0.8213 + }, + { + "start": 1085.06, + "end": 1089.26, + "probability": 0.9293 + }, + { + "start": 1089.74, + "end": 1092.88, + "probability": 0.9154 + }, + { + "start": 1093.84, + "end": 1095.54, + "probability": 0.4796 + }, + { + "start": 1098.22, + "end": 1100.78, + "probability": 0.1576 + }, + { + "start": 1101.24, + "end": 1103.22, + "probability": 0.911 + }, + { + "start": 1103.6, + "end": 1105.96, + "probability": 0.9485 + }, + { + "start": 1106.78, + "end": 1107.54, + "probability": 0.5022 + }, + { + "start": 1107.56, + "end": 1108.38, + "probability": 0.6543 + }, + { + "start": 1108.48, + "end": 1111.38, + "probability": 0.8538 + }, + { + "start": 1112.36, + "end": 1117.9, + "probability": 0.9978 + }, + { + "start": 1118.76, + "end": 1119.5, + "probability": 0.5624 + }, + { + "start": 1120.0, + "end": 1125.7, + "probability": 0.9893 + }, + { + "start": 1127.22, + "end": 1132.72, + "probability": 0.9902 + }, + { + "start": 1133.16, + "end": 1138.76, + "probability": 0.9738 + }, + { + "start": 1139.98, + "end": 1142.78, + "probability": 0.819 + }, + { + "start": 1143.36, + "end": 1149.32, + "probability": 0.9903 + }, + { + "start": 1149.88, + "end": 1156.22, + "probability": 0.873 + }, + { + "start": 1157.22, + "end": 1157.78, + "probability": 0.0882 + }, + { + "start": 1159.62, + "end": 1160.6, + "probability": 0.6712 + }, + { + "start": 1161.4, + "end": 1162.48, + "probability": 0.9154 + }, + { + "start": 1162.54, + "end": 1168.14, + "probability": 0.9656 + }, + { + "start": 1168.14, + "end": 1172.82, + "probability": 0.9901 + }, + { + "start": 1173.76, + "end": 1175.82, + "probability": 0.9719 + }, + { + "start": 1176.24, + "end": 1182.44, + "probability": 0.8682 + }, + { + "start": 1182.44, + "end": 1188.1, + "probability": 0.998 + }, + { + "start": 1188.76, + "end": 1193.76, + "probability": 0.9771 + }, + { + "start": 1194.66, + "end": 1196.2, + "probability": 0.869 + }, + { + "start": 1196.64, + "end": 1198.78, + "probability": 0.8403 + }, + { + "start": 1199.42, + "end": 1207.76, + "probability": 0.9943 + }, + { + "start": 1208.16, + "end": 1211.64, + "probability": 0.9877 + }, + { + "start": 1211.86, + "end": 1212.06, + "probability": 0.8638 + }, + { + "start": 1212.88, + "end": 1215.26, + "probability": 0.97 + }, + { + "start": 1215.4, + "end": 1218.62, + "probability": 0.7558 + }, + { + "start": 1219.52, + "end": 1223.72, + "probability": 0.9911 + }, + { + "start": 1223.82, + "end": 1225.28, + "probability": 0.9205 + }, + { + "start": 1225.92, + "end": 1230.18, + "probability": 0.9479 + }, + { + "start": 1238.96, + "end": 1242.44, + "probability": 0.6989 + }, + { + "start": 1245.18, + "end": 1248.08, + "probability": 0.9653 + }, + { + "start": 1248.78, + "end": 1249.34, + "probability": 0.7488 + }, + { + "start": 1250.9, + "end": 1251.26, + "probability": 0.6643 + }, + { + "start": 1251.26, + "end": 1251.7, + "probability": 0.9587 + }, + { + "start": 1251.8, + "end": 1252.0, + "probability": 0.9462 + }, + { + "start": 1252.1, + "end": 1254.04, + "probability": 0.9209 + }, + { + "start": 1254.16, + "end": 1255.72, + "probability": 0.9069 + }, + { + "start": 1257.2, + "end": 1259.38, + "probability": 0.8955 + }, + { + "start": 1260.48, + "end": 1260.72, + "probability": 0.7605 + }, + { + "start": 1260.8, + "end": 1267.08, + "probability": 0.9962 + }, + { + "start": 1268.26, + "end": 1270.7, + "probability": 0.9908 + }, + { + "start": 1272.34, + "end": 1275.78, + "probability": 0.069 + }, + { + "start": 1276.02, + "end": 1279.96, + "probability": 0.9953 + }, + { + "start": 1280.72, + "end": 1281.56, + "probability": 0.3663 + }, + { + "start": 1282.46, + "end": 1285.8, + "probability": 0.9687 + }, + { + "start": 1288.8, + "end": 1288.8, + "probability": 0.1634 + }, + { + "start": 1289.44, + "end": 1290.34, + "probability": 0.1188 + }, + { + "start": 1292.88, + "end": 1296.35, + "probability": 0.9009 + }, + { + "start": 1296.92, + "end": 1299.1, + "probability": 0.9772 + }, + { + "start": 1299.16, + "end": 1301.94, + "probability": 0.8794 + }, + { + "start": 1302.4, + "end": 1303.88, + "probability": 0.9731 + }, + { + "start": 1303.98, + "end": 1304.72, + "probability": 0.8161 + }, + { + "start": 1304.86, + "end": 1308.24, + "probability": 0.9953 + }, + { + "start": 1308.62, + "end": 1312.5, + "probability": 0.9895 + }, + { + "start": 1312.98, + "end": 1316.04, + "probability": 0.7908 + }, + { + "start": 1316.74, + "end": 1317.48, + "probability": 0.6995 + }, + { + "start": 1318.06, + "end": 1318.82, + "probability": 0.6817 + }, + { + "start": 1319.98, + "end": 1325.44, + "probability": 0.8964 + }, + { + "start": 1326.24, + "end": 1328.92, + "probability": 0.8997 + }, + { + "start": 1329.56, + "end": 1330.18, + "probability": 0.4144 + }, + { + "start": 1330.56, + "end": 1334.42, + "probability": 0.9868 + }, + { + "start": 1334.9, + "end": 1341.54, + "probability": 0.9966 + }, + { + "start": 1342.72, + "end": 1344.39, + "probability": 0.9133 + }, + { + "start": 1345.2, + "end": 1345.92, + "probability": 0.9893 + }, + { + "start": 1347.08, + "end": 1349.56, + "probability": 0.9808 + }, + { + "start": 1352.78, + "end": 1353.58, + "probability": 0.8553 + }, + { + "start": 1353.74, + "end": 1357.66, + "probability": 0.987 + }, + { + "start": 1358.58, + "end": 1361.24, + "probability": 0.9756 + }, + { + "start": 1362.16, + "end": 1362.86, + "probability": 0.8823 + }, + { + "start": 1364.96, + "end": 1366.6, + "probability": 0.998 + }, + { + "start": 1366.68, + "end": 1367.38, + "probability": 0.7613 + }, + { + "start": 1367.46, + "end": 1370.06, + "probability": 0.8391 + }, + { + "start": 1370.54, + "end": 1377.3, + "probability": 0.9941 + }, + { + "start": 1377.94, + "end": 1380.08, + "probability": 0.8191 + }, + { + "start": 1380.36, + "end": 1383.06, + "probability": 0.9736 + }, + { + "start": 1383.84, + "end": 1385.06, + "probability": 0.7146 + }, + { + "start": 1387.0, + "end": 1388.6, + "probability": 0.4341 + }, + { + "start": 1388.72, + "end": 1391.03, + "probability": 0.7633 + }, + { + "start": 1391.36, + "end": 1393.26, + "probability": 0.6857 + }, + { + "start": 1393.4, + "end": 1394.06, + "probability": 0.7816 + }, + { + "start": 1394.8, + "end": 1397.28, + "probability": 0.9163 + }, + { + "start": 1397.34, + "end": 1400.96, + "probability": 0.84 + }, + { + "start": 1401.42, + "end": 1401.98, + "probability": 0.3902 + }, + { + "start": 1401.98, + "end": 1403.52, + "probability": 0.9617 + }, + { + "start": 1403.58, + "end": 1404.98, + "probability": 0.6167 + }, + { + "start": 1406.12, + "end": 1408.52, + "probability": 0.9776 + }, + { + "start": 1409.02, + "end": 1412.42, + "probability": 0.9978 + }, + { + "start": 1413.08, + "end": 1415.81, + "probability": 0.9958 + }, + { + "start": 1416.4, + "end": 1419.42, + "probability": 0.9976 + }, + { + "start": 1419.96, + "end": 1421.24, + "probability": 0.9955 + }, + { + "start": 1421.82, + "end": 1424.62, + "probability": 0.9758 + }, + { + "start": 1425.56, + "end": 1427.45, + "probability": 0.5864 + }, + { + "start": 1428.02, + "end": 1428.84, + "probability": 0.8498 + }, + { + "start": 1429.06, + "end": 1434.24, + "probability": 0.9923 + }, + { + "start": 1434.24, + "end": 1439.04, + "probability": 0.9995 + }, + { + "start": 1439.38, + "end": 1443.98, + "probability": 0.993 + }, + { + "start": 1444.68, + "end": 1444.78, + "probability": 0.4453 + }, + { + "start": 1445.14, + "end": 1445.66, + "probability": 0.7088 + }, + { + "start": 1445.76, + "end": 1446.5, + "probability": 0.7139 + }, + { + "start": 1446.54, + "end": 1447.08, + "probability": 0.9434 + }, + { + "start": 1447.18, + "end": 1448.24, + "probability": 0.9932 + }, + { + "start": 1448.56, + "end": 1449.34, + "probability": 0.0412 + }, + { + "start": 1450.93, + "end": 1454.72, + "probability": 0.7726 + }, + { + "start": 1455.28, + "end": 1455.7, + "probability": 0.1263 + }, + { + "start": 1455.7, + "end": 1455.7, + "probability": 0.0306 + }, + { + "start": 1455.7, + "end": 1456.0, + "probability": 0.2325 + }, + { + "start": 1456.0, + "end": 1456.0, + "probability": 0.0648 + }, + { + "start": 1456.0, + "end": 1456.84, + "probability": 0.8001 + }, + { + "start": 1456.96, + "end": 1459.44, + "probability": 0.7613 + }, + { + "start": 1463.02, + "end": 1464.78, + "probability": 0.8585 + }, + { + "start": 1465.28, + "end": 1465.28, + "probability": 0.0987 + }, + { + "start": 1465.28, + "end": 1465.28, + "probability": 0.0303 + }, + { + "start": 1465.28, + "end": 1467.06, + "probability": 0.6349 + }, + { + "start": 1468.0, + "end": 1474.34, + "probability": 0.9619 + }, + { + "start": 1474.34, + "end": 1481.3, + "probability": 0.8997 + }, + { + "start": 1482.4, + "end": 1485.52, + "probability": 0.9521 + }, + { + "start": 1485.88, + "end": 1487.94, + "probability": 0.3998 + }, + { + "start": 1487.94, + "end": 1487.94, + "probability": 0.0329 + }, + { + "start": 1487.94, + "end": 1488.0, + "probability": 0.159 + }, + { + "start": 1488.28, + "end": 1488.3, + "probability": 0.2652 + }, + { + "start": 1488.3, + "end": 1493.7, + "probability": 0.9917 + }, + { + "start": 1493.74, + "end": 1494.7, + "probability": 0.981 + }, + { + "start": 1494.82, + "end": 1499.32, + "probability": 0.9049 + }, + { + "start": 1500.96, + "end": 1506.5, + "probability": 0.9933 + }, + { + "start": 1507.08, + "end": 1508.04, + "probability": 0.6729 + }, + { + "start": 1508.16, + "end": 1508.38, + "probability": 0.6263 + }, + { + "start": 1508.4, + "end": 1509.6, + "probability": 0.989 + }, + { + "start": 1510.62, + "end": 1511.62, + "probability": 0.7617 + }, + { + "start": 1512.08, + "end": 1513.16, + "probability": 0.5346 + }, + { + "start": 1513.56, + "end": 1514.68, + "probability": 0.9974 + }, + { + "start": 1515.38, + "end": 1515.84, + "probability": 0.7904 + }, + { + "start": 1515.96, + "end": 1517.2, + "probability": 0.8216 + }, + { + "start": 1517.44, + "end": 1518.36, + "probability": 0.4492 + }, + { + "start": 1518.42, + "end": 1519.86, + "probability": 0.9114 + }, + { + "start": 1520.14, + "end": 1520.75, + "probability": 0.5012 + }, + { + "start": 1520.98, + "end": 1521.84, + "probability": 0.6367 + }, + { + "start": 1522.18, + "end": 1523.38, + "probability": 0.9897 + }, + { + "start": 1524.28, + "end": 1529.18, + "probability": 0.8003 + }, + { + "start": 1529.24, + "end": 1530.6, + "probability": 0.4914 + }, + { + "start": 1530.94, + "end": 1534.74, + "probability": 0.712 + }, + { + "start": 1535.24, + "end": 1537.28, + "probability": 0.9888 + }, + { + "start": 1537.68, + "end": 1538.76, + "probability": 0.4175 + }, + { + "start": 1538.78, + "end": 1542.76, + "probability": 0.937 + }, + { + "start": 1543.2, + "end": 1543.72, + "probability": 0.556 + }, + { + "start": 1543.8, + "end": 1544.3, + "probability": 0.7377 + }, + { + "start": 1544.4, + "end": 1546.16, + "probability": 0.8671 + }, + { + "start": 1546.26, + "end": 1547.22, + "probability": 0.7219 + }, + { + "start": 1547.34, + "end": 1548.06, + "probability": 0.0019 + }, + { + "start": 1548.3, + "end": 1548.84, + "probability": 0.457 + }, + { + "start": 1548.92, + "end": 1549.6, + "probability": 0.1705 + }, + { + "start": 1549.96, + "end": 1551.76, + "probability": 0.9419 + }, + { + "start": 1551.88, + "end": 1553.72, + "probability": 0.0188 + }, + { + "start": 1554.0, + "end": 1557.42, + "probability": 0.7144 + }, + { + "start": 1557.44, + "end": 1557.51, + "probability": 0.0486 + }, + { + "start": 1558.42, + "end": 1558.5, + "probability": 0.0081 + }, + { + "start": 1558.74, + "end": 1560.34, + "probability": 0.9162 + }, + { + "start": 1560.78, + "end": 1563.34, + "probability": 0.8502 + }, + { + "start": 1563.68, + "end": 1567.32, + "probability": 0.3933 + }, + { + "start": 1567.32, + "end": 1567.76, + "probability": 0.8438 + }, + { + "start": 1567.84, + "end": 1568.5, + "probability": 0.8374 + }, + { + "start": 1568.6, + "end": 1569.56, + "probability": 0.7241 + }, + { + "start": 1569.64, + "end": 1570.44, + "probability": 0.9837 + }, + { + "start": 1570.52, + "end": 1571.54, + "probability": 0.4876 + }, + { + "start": 1571.6, + "end": 1572.61, + "probability": 0.8041 + }, + { + "start": 1572.68, + "end": 1573.5, + "probability": 0.5363 + }, + { + "start": 1573.58, + "end": 1574.28, + "probability": 0.0951 + }, + { + "start": 1574.28, + "end": 1574.28, + "probability": 0.0122 + }, + { + "start": 1574.28, + "end": 1574.28, + "probability": 0.2862 + }, + { + "start": 1574.28, + "end": 1574.88, + "probability": 0.3643 + }, + { + "start": 1575.84, + "end": 1577.2, + "probability": 0.5048 + }, + { + "start": 1577.58, + "end": 1577.8, + "probability": 0.3586 + }, + { + "start": 1577.8, + "end": 1580.26, + "probability": 0.2689 + }, + { + "start": 1580.44, + "end": 1580.8, + "probability": 0.6386 + }, + { + "start": 1581.04, + "end": 1581.44, + "probability": 0.4988 + }, + { + "start": 1581.6, + "end": 1582.96, + "probability": 0.7882 + }, + { + "start": 1582.98, + "end": 1584.6, + "probability": 0.8506 + }, + { + "start": 1584.6, + "end": 1584.6, + "probability": 0.1592 + }, + { + "start": 1584.6, + "end": 1584.76, + "probability": 0.0422 + }, + { + "start": 1584.94, + "end": 1585.02, + "probability": 0.2217 + }, + { + "start": 1585.36, + "end": 1585.56, + "probability": 0.4091 + }, + { + "start": 1586.22, + "end": 1586.82, + "probability": 0.7439 + }, + { + "start": 1586.9, + "end": 1590.72, + "probability": 0.9763 + }, + { + "start": 1590.96, + "end": 1593.04, + "probability": 0.8044 + }, + { + "start": 1593.48, + "end": 1594.62, + "probability": 0.89 + }, + { + "start": 1595.34, + "end": 1596.37, + "probability": 0.9797 + }, + { + "start": 1597.32, + "end": 1602.24, + "probability": 0.9934 + }, + { + "start": 1602.72, + "end": 1603.74, + "probability": 0.8704 + }, + { + "start": 1604.16, + "end": 1607.0, + "probability": 0.9943 + }, + { + "start": 1607.0, + "end": 1610.08, + "probability": 0.9972 + }, + { + "start": 1610.42, + "end": 1613.71, + "probability": 0.9946 + }, + { + "start": 1614.46, + "end": 1619.0, + "probability": 0.9946 + }, + { + "start": 1619.86, + "end": 1622.88, + "probability": 0.9482 + }, + { + "start": 1623.52, + "end": 1624.06, + "probability": 0.8083 + }, + { + "start": 1624.18, + "end": 1624.54, + "probability": 0.8011 + }, + { + "start": 1624.54, + "end": 1626.94, + "probability": 0.8629 + }, + { + "start": 1627.14, + "end": 1628.36, + "probability": 0.9961 + }, + { + "start": 1628.5, + "end": 1629.44, + "probability": 0.7147 + }, + { + "start": 1629.9, + "end": 1631.78, + "probability": 0.9687 + }, + { + "start": 1632.02, + "end": 1634.84, + "probability": 0.8893 + }, + { + "start": 1635.52, + "end": 1638.34, + "probability": 0.875 + }, + { + "start": 1639.08, + "end": 1643.02, + "probability": 0.8672 + }, + { + "start": 1643.48, + "end": 1645.12, + "probability": 0.9809 + }, + { + "start": 1646.68, + "end": 1649.98, + "probability": 0.8591 + }, + { + "start": 1650.06, + "end": 1651.45, + "probability": 0.8647 + }, + { + "start": 1652.38, + "end": 1652.98, + "probability": 0.7208 + }, + { + "start": 1653.08, + "end": 1655.6, + "probability": 0.6696 + }, + { + "start": 1655.72, + "end": 1658.38, + "probability": 0.747 + }, + { + "start": 1658.76, + "end": 1661.76, + "probability": 0.9827 + }, + { + "start": 1662.46, + "end": 1665.36, + "probability": 0.9464 + }, + { + "start": 1676.3, + "end": 1676.3, + "probability": 0.2927 + }, + { + "start": 1676.3, + "end": 1677.8, + "probability": 0.8909 + }, + { + "start": 1680.72, + "end": 1683.44, + "probability": 0.7485 + }, + { + "start": 1684.9, + "end": 1687.88, + "probability": 0.7891 + }, + { + "start": 1688.46, + "end": 1689.59, + "probability": 0.7656 + }, + { + "start": 1690.84, + "end": 1693.16, + "probability": 0.9838 + }, + { + "start": 1694.74, + "end": 1698.28, + "probability": 0.6793 + }, + { + "start": 1698.8, + "end": 1700.18, + "probability": 0.8673 + }, + { + "start": 1701.98, + "end": 1706.34, + "probability": 0.976 + }, + { + "start": 1706.78, + "end": 1707.68, + "probability": 0.4874 + }, + { + "start": 1707.9, + "end": 1708.82, + "probability": 0.8817 + }, + { + "start": 1709.58, + "end": 1713.04, + "probability": 0.2617 + }, + { + "start": 1713.18, + "end": 1714.44, + "probability": 0.6028 + }, + { + "start": 1714.54, + "end": 1716.2, + "probability": 0.5587 + }, + { + "start": 1719.66, + "end": 1721.8, + "probability": 0.7663 + }, + { + "start": 1724.62, + "end": 1734.76, + "probability": 0.5517 + }, + { + "start": 1735.02, + "end": 1736.26, + "probability": 0.9751 + }, + { + "start": 1737.4, + "end": 1738.88, + "probability": 0.5643 + }, + { + "start": 1740.46, + "end": 1742.55, + "probability": 0.7409 + }, + { + "start": 1743.92, + "end": 1744.34, + "probability": 0.4864 + }, + { + "start": 1744.42, + "end": 1745.06, + "probability": 0.8734 + }, + { + "start": 1745.1, + "end": 1746.36, + "probability": 0.6006 + }, + { + "start": 1746.44, + "end": 1748.52, + "probability": 0.7405 + }, + { + "start": 1748.64, + "end": 1751.3, + "probability": 0.6982 + }, + { + "start": 1753.74, + "end": 1755.14, + "probability": 0.4952 + }, + { + "start": 1755.24, + "end": 1756.9, + "probability": 0.9675 + }, + { + "start": 1757.12, + "end": 1758.96, + "probability": 0.6748 + }, + { + "start": 1759.06, + "end": 1759.98, + "probability": 0.6105 + }, + { + "start": 1760.44, + "end": 1762.5, + "probability": 0.4584 + }, + { + "start": 1764.2, + "end": 1769.74, + "probability": 0.8302 + }, + { + "start": 1770.18, + "end": 1771.62, + "probability": 0.6663 + }, + { + "start": 1772.7, + "end": 1773.72, + "probability": 0.4164 + }, + { + "start": 1774.56, + "end": 1777.0, + "probability": 0.9297 + }, + { + "start": 1777.28, + "end": 1778.0, + "probability": 0.7225 + }, + { + "start": 1778.1, + "end": 1781.32, + "probability": 0.7666 + }, + { + "start": 1781.4, + "end": 1783.24, + "probability": 0.946 + }, + { + "start": 1784.08, + "end": 1784.48, + "probability": 0.7333 + }, + { + "start": 1784.54, + "end": 1785.56, + "probability": 0.8762 + }, + { + "start": 1786.44, + "end": 1788.12, + "probability": 0.7931 + }, + { + "start": 1788.3, + "end": 1789.76, + "probability": 0.4992 + }, + { + "start": 1789.82, + "end": 1792.32, + "probability": 0.7489 + }, + { + "start": 1793.4, + "end": 1794.06, + "probability": 0.5809 + }, + { + "start": 1794.3, + "end": 1795.52, + "probability": 0.629 + }, + { + "start": 1796.0, + "end": 1799.0, + "probability": 0.6315 + }, + { + "start": 1799.68, + "end": 1802.94, + "probability": 0.69 + }, + { + "start": 1803.62, + "end": 1806.2, + "probability": 0.5976 + }, + { + "start": 1806.8, + "end": 1810.32, + "probability": 0.8051 + }, + { + "start": 1811.1, + "end": 1811.48, + "probability": 0.8944 + }, + { + "start": 1811.66, + "end": 1814.38, + "probability": 0.7856 + }, + { + "start": 1814.98, + "end": 1817.74, + "probability": 0.9222 + }, + { + "start": 1819.06, + "end": 1819.88, + "probability": 0.5083 + }, + { + "start": 1819.88, + "end": 1822.68, + "probability": 0.5711 + }, + { + "start": 1822.9, + "end": 1823.8, + "probability": 0.2924 + }, + { + "start": 1823.84, + "end": 1825.08, + "probability": 0.9958 + }, + { + "start": 1825.2, + "end": 1826.92, + "probability": 0.8794 + }, + { + "start": 1826.98, + "end": 1829.71, + "probability": 0.9688 + }, + { + "start": 1830.38, + "end": 1831.5, + "probability": 0.7182 + }, + { + "start": 1831.92, + "end": 1834.7, + "probability": 0.9919 + }, + { + "start": 1834.74, + "end": 1838.82, + "probability": 0.8354 + }, + { + "start": 1839.54, + "end": 1840.54, + "probability": 0.957 + }, + { + "start": 1841.54, + "end": 1844.16, + "probability": 0.9557 + }, + { + "start": 1844.24, + "end": 1844.31, + "probability": 0.7925 + }, + { + "start": 1844.74, + "end": 1846.04, + "probability": 0.928 + }, + { + "start": 1846.28, + "end": 1846.38, + "probability": 0.2222 + }, + { + "start": 1847.58, + "end": 1853.58, + "probability": 0.4639 + }, + { + "start": 1853.84, + "end": 1858.36, + "probability": 0.5415 + }, + { + "start": 1858.66, + "end": 1860.14, + "probability": 0.7971 + }, + { + "start": 1860.42, + "end": 1861.15, + "probability": 0.8827 + }, + { + "start": 1861.94, + "end": 1862.82, + "probability": 0.9554 + }, + { + "start": 1863.22, + "end": 1865.14, + "probability": 0.8716 + }, + { + "start": 1865.26, + "end": 1865.86, + "probability": 0.5183 + }, + { + "start": 1866.26, + "end": 1868.03, + "probability": 0.8424 + }, + { + "start": 1868.24, + "end": 1869.6, + "probability": 0.5051 + }, + { + "start": 1869.96, + "end": 1872.34, + "probability": 0.9211 + }, + { + "start": 1873.34, + "end": 1875.07, + "probability": 0.7667 + }, + { + "start": 1875.88, + "end": 1878.96, + "probability": 0.7662 + }, + { + "start": 1879.44, + "end": 1884.18, + "probability": 0.9378 + }, + { + "start": 1884.72, + "end": 1889.14, + "probability": 0.9725 + }, + { + "start": 1889.56, + "end": 1891.58, + "probability": 0.9631 + }, + { + "start": 1893.06, + "end": 1894.58, + "probability": 0.8342 + }, + { + "start": 1895.48, + "end": 1901.78, + "probability": 0.8921 + }, + { + "start": 1908.48, + "end": 1909.86, + "probability": 0.6656 + }, + { + "start": 1914.4, + "end": 1922.02, + "probability": 0.783 + }, + { + "start": 1923.84, + "end": 1924.42, + "probability": 0.9749 + }, + { + "start": 1925.42, + "end": 1926.02, + "probability": 0.7876 + }, + { + "start": 1927.18, + "end": 1931.68, + "probability": 0.8226 + }, + { + "start": 1933.56, + "end": 1936.66, + "probability": 0.5659 + }, + { + "start": 1938.38, + "end": 1942.6, + "probability": 0.8928 + }, + { + "start": 1945.4, + "end": 1946.26, + "probability": 0.8907 + }, + { + "start": 1947.72, + "end": 1949.72, + "probability": 0.9635 + }, + { + "start": 1954.08, + "end": 1955.38, + "probability": 0.7995 + }, + { + "start": 1956.06, + "end": 1961.64, + "probability": 0.9658 + }, + { + "start": 1962.38, + "end": 1967.76, + "probability": 0.5429 + }, + { + "start": 1967.84, + "end": 1970.5, + "probability": 0.7523 + }, + { + "start": 1971.98, + "end": 1975.42, + "probability": 0.9486 + }, + { + "start": 1975.5, + "end": 1977.16, + "probability": 0.8072 + }, + { + "start": 1977.48, + "end": 1979.08, + "probability": 0.5276 + }, + { + "start": 1979.1, + "end": 1981.14, + "probability": 0.3721 + }, + { + "start": 1981.86, + "end": 1989.38, + "probability": 0.7859 + }, + { + "start": 1990.28, + "end": 1990.74, + "probability": 0.6626 + }, + { + "start": 1990.88, + "end": 1997.32, + "probability": 0.6852 + }, + { + "start": 1998.32, + "end": 1998.94, + "probability": 0.8464 + }, + { + "start": 1999.06, + "end": 2000.01, + "probability": 0.9102 + }, + { + "start": 2000.6, + "end": 2001.1, + "probability": 0.5401 + }, + { + "start": 2001.24, + "end": 2004.16, + "probability": 0.7755 + }, + { + "start": 2005.4, + "end": 2009.02, + "probability": 0.7004 + }, + { + "start": 2010.54, + "end": 2011.56, + "probability": 0.6546 + }, + { + "start": 2012.8, + "end": 2015.2, + "probability": 0.4773 + }, + { + "start": 2015.36, + "end": 2016.7, + "probability": 0.2273 + }, + { + "start": 2016.7, + "end": 2017.1, + "probability": 0.7954 + }, + { + "start": 2017.56, + "end": 2020.7, + "probability": 0.6699 + }, + { + "start": 2021.4, + "end": 2026.64, + "probability": 0.9072 + }, + { + "start": 2026.68, + "end": 2027.7, + "probability": 0.9297 + }, + { + "start": 2028.34, + "end": 2029.42, + "probability": 0.9258 + }, + { + "start": 2029.8, + "end": 2031.8, + "probability": 0.8236 + }, + { + "start": 2031.94, + "end": 2033.02, + "probability": 0.8121 + }, + { + "start": 2033.06, + "end": 2033.4, + "probability": 0.7646 + }, + { + "start": 2034.22, + "end": 2038.5, + "probability": 0.7988 + }, + { + "start": 2038.54, + "end": 2042.18, + "probability": 0.9886 + }, + { + "start": 2042.74, + "end": 2045.08, + "probability": 0.3133 + }, + { + "start": 2046.18, + "end": 2048.76, + "probability": 0.9497 + }, + { + "start": 2049.54, + "end": 2050.88, + "probability": 0.5197 + }, + { + "start": 2051.1, + "end": 2051.72, + "probability": 0.8826 + }, + { + "start": 2052.86, + "end": 2053.92, + "probability": 0.731 + }, + { + "start": 2053.98, + "end": 2055.04, + "probability": 0.7322 + }, + { + "start": 2055.75, + "end": 2058.94, + "probability": 0.9943 + }, + { + "start": 2059.4, + "end": 2062.42, + "probability": 0.756 + }, + { + "start": 2062.72, + "end": 2064.58, + "probability": 0.7123 + }, + { + "start": 2066.0, + "end": 2068.44, + "probability": 0.7991 + }, + { + "start": 2068.84, + "end": 2068.86, + "probability": 0.3855 + }, + { + "start": 2069.78, + "end": 2071.88, + "probability": 0.4321 + }, + { + "start": 2073.14, + "end": 2076.9, + "probability": 0.6191 + }, + { + "start": 2077.08, + "end": 2078.1, + "probability": 0.8445 + }, + { + "start": 2078.88, + "end": 2079.92, + "probability": 0.7625 + }, + { + "start": 2080.0, + "end": 2080.78, + "probability": 0.8043 + }, + { + "start": 2080.9, + "end": 2084.78, + "probability": 0.7699 + }, + { + "start": 2087.16, + "end": 2089.3, + "probability": 0.4497 + }, + { + "start": 2090.3, + "end": 2091.7, + "probability": 0.9946 + }, + { + "start": 2092.62, + "end": 2093.54, + "probability": 0.7344 + }, + { + "start": 2093.78, + "end": 2097.15, + "probability": 0.8978 + }, + { + "start": 2097.54, + "end": 2098.6, + "probability": 0.748 + }, + { + "start": 2099.32, + "end": 2100.0, + "probability": 0.8208 + }, + { + "start": 2100.76, + "end": 2102.36, + "probability": 0.9361 + }, + { + "start": 2102.46, + "end": 2103.55, + "probability": 0.8647 + }, + { + "start": 2105.8, + "end": 2109.08, + "probability": 0.754 + }, + { + "start": 2109.88, + "end": 2110.76, + "probability": 0.8341 + }, + { + "start": 2111.62, + "end": 2113.74, + "probability": 0.8486 + }, + { + "start": 2114.32, + "end": 2116.48, + "probability": 0.9099 + }, + { + "start": 2118.66, + "end": 2124.0, + "probability": 0.9194 + }, + { + "start": 2128.1, + "end": 2131.16, + "probability": 0.9585 + }, + { + "start": 2131.32, + "end": 2132.16, + "probability": 0.718 + }, + { + "start": 2132.24, + "end": 2135.18, + "probability": 0.8624 + }, + { + "start": 2135.36, + "end": 2137.2, + "probability": 0.9834 + }, + { + "start": 2139.32, + "end": 2140.04, + "probability": 0.476 + }, + { + "start": 2140.42, + "end": 2147.68, + "probability": 0.9363 + }, + { + "start": 2148.1, + "end": 2149.98, + "probability": 0.9233 + }, + { + "start": 2151.42, + "end": 2151.86, + "probability": 0.6245 + }, + { + "start": 2152.42, + "end": 2154.62, + "probability": 0.9509 + }, + { + "start": 2155.18, + "end": 2156.84, + "probability": 0.5551 + }, + { + "start": 2157.58, + "end": 2159.18, + "probability": 0.8655 + }, + { + "start": 2159.74, + "end": 2160.96, + "probability": 0.8584 + }, + { + "start": 2162.48, + "end": 2162.58, + "probability": 0.2319 + }, + { + "start": 2164.84, + "end": 2165.0, + "probability": 0.6571 + }, + { + "start": 2165.56, + "end": 2168.98, + "probability": 0.7383 + }, + { + "start": 2172.08, + "end": 2172.64, + "probability": 0.002 + }, + { + "start": 2173.36, + "end": 2177.36, + "probability": 0.8716 + }, + { + "start": 2178.2, + "end": 2179.28, + "probability": 0.8083 + }, + { + "start": 2179.48, + "end": 2179.94, + "probability": 0.5225 + }, + { + "start": 2179.96, + "end": 2182.44, + "probability": 0.9855 + }, + { + "start": 2182.52, + "end": 2183.02, + "probability": 0.7432 + }, + { + "start": 2184.18, + "end": 2188.78, + "probability": 0.793 + }, + { + "start": 2188.78, + "end": 2192.84, + "probability": 0.9473 + }, + { + "start": 2193.82, + "end": 2194.68, + "probability": 0.8369 + }, + { + "start": 2196.98, + "end": 2198.6, + "probability": 0.877 + }, + { + "start": 2198.84, + "end": 2200.98, + "probability": 0.9302 + }, + { + "start": 2202.5, + "end": 2204.87, + "probability": 0.667 + }, + { + "start": 2205.6, + "end": 2206.88, + "probability": 0.9548 + }, + { + "start": 2207.96, + "end": 2209.08, + "probability": 0.8776 + }, + { + "start": 2209.58, + "end": 2211.4, + "probability": 0.7592 + }, + { + "start": 2211.86, + "end": 2212.46, + "probability": 0.4116 + }, + { + "start": 2213.66, + "end": 2217.08, + "probability": 0.9172 + }, + { + "start": 2217.96, + "end": 2218.62, + "probability": 0.744 + }, + { + "start": 2218.76, + "end": 2219.76, + "probability": 0.9678 + }, + { + "start": 2220.26, + "end": 2223.78, + "probability": 0.6044 + }, + { + "start": 2223.94, + "end": 2225.46, + "probability": 0.7274 + }, + { + "start": 2226.06, + "end": 2227.12, + "probability": 0.7716 + }, + { + "start": 2228.12, + "end": 2228.98, + "probability": 0.0059 + }, + { + "start": 2229.14, + "end": 2229.14, + "probability": 0.3599 + }, + { + "start": 2229.14, + "end": 2229.58, + "probability": 0.1559 + }, + { + "start": 2229.74, + "end": 2230.04, + "probability": 0.5057 + }, + { + "start": 2230.04, + "end": 2230.83, + "probability": 0.8332 + }, + { + "start": 2231.24, + "end": 2231.58, + "probability": 0.7346 + }, + { + "start": 2231.66, + "end": 2231.8, + "probability": 0.4671 + }, + { + "start": 2231.82, + "end": 2232.88, + "probability": 0.7888 + }, + { + "start": 2233.18, + "end": 2236.84, + "probability": 0.6545 + }, + { + "start": 2236.94, + "end": 2238.14, + "probability": 0.8169 + }, + { + "start": 2238.22, + "end": 2238.46, + "probability": 0.729 + }, + { + "start": 2239.42, + "end": 2242.74, + "probability": 0.6892 + }, + { + "start": 2244.16, + "end": 2246.6, + "probability": 0.6722 + }, + { + "start": 2247.52, + "end": 2249.62, + "probability": 0.7043 + }, + { + "start": 2251.04, + "end": 2251.5, + "probability": 0.5006 + }, + { + "start": 2252.22, + "end": 2255.7, + "probability": 0.7945 + }, + { + "start": 2256.66, + "end": 2262.52, + "probability": 0.9826 + }, + { + "start": 2263.3, + "end": 2268.64, + "probability": 0.7421 + }, + { + "start": 2269.12, + "end": 2270.02, + "probability": 0.42 + }, + { + "start": 2270.14, + "end": 2273.44, + "probability": 0.9829 + }, + { + "start": 2285.96, + "end": 2288.28, + "probability": 0.8773 + }, + { + "start": 2292.36, + "end": 2294.38, + "probability": 0.5566 + }, + { + "start": 2295.94, + "end": 2297.76, + "probability": 0.8816 + }, + { + "start": 2301.18, + "end": 2305.66, + "probability": 0.9733 + }, + { + "start": 2308.24, + "end": 2311.52, + "probability": 0.9397 + }, + { + "start": 2314.0, + "end": 2314.82, + "probability": 0.7227 + }, + { + "start": 2317.44, + "end": 2318.49, + "probability": 0.9664 + }, + { + "start": 2319.58, + "end": 2323.58, + "probability": 0.687 + }, + { + "start": 2325.28, + "end": 2328.54, + "probability": 0.8871 + }, + { + "start": 2330.8, + "end": 2333.84, + "probability": 0.7515 + }, + { + "start": 2333.98, + "end": 2336.02, + "probability": 0.7605 + }, + { + "start": 2336.66, + "end": 2337.2, + "probability": 0.4492 + }, + { + "start": 2337.86, + "end": 2338.12, + "probability": 0.974 + }, + { + "start": 2341.56, + "end": 2342.16, + "probability": 0.6342 + }, + { + "start": 2342.36, + "end": 2344.26, + "probability": 0.7732 + }, + { + "start": 2344.32, + "end": 2345.1, + "probability": 0.9624 + }, + { + "start": 2345.26, + "end": 2346.26, + "probability": 0.7744 + }, + { + "start": 2347.46, + "end": 2348.52, + "probability": 0.6265 + }, + { + "start": 2350.48, + "end": 2352.76, + "probability": 0.8174 + }, + { + "start": 2354.02, + "end": 2357.36, + "probability": 0.9427 + }, + { + "start": 2361.32, + "end": 2365.5, + "probability": 0.8369 + }, + { + "start": 2366.4, + "end": 2368.58, + "probability": 0.9803 + }, + { + "start": 2368.58, + "end": 2371.52, + "probability": 0.7043 + }, + { + "start": 2375.8, + "end": 2377.12, + "probability": 0.6399 + }, + { + "start": 2380.46, + "end": 2385.06, + "probability": 0.844 + }, + { + "start": 2386.52, + "end": 2390.02, + "probability": 0.9851 + }, + { + "start": 2390.12, + "end": 2392.02, + "probability": 0.7032 + }, + { + "start": 2394.38, + "end": 2394.96, + "probability": 0.7603 + }, + { + "start": 2399.04, + "end": 2401.48, + "probability": 0.5597 + }, + { + "start": 2402.48, + "end": 2402.88, + "probability": 0.6116 + }, + { + "start": 2404.62, + "end": 2406.1, + "probability": 0.5008 + }, + { + "start": 2407.78, + "end": 2411.6, + "probability": 0.6697 + }, + { + "start": 2415.32, + "end": 2415.74, + "probability": 0.7389 + }, + { + "start": 2415.84, + "end": 2417.12, + "probability": 0.745 + }, + { + "start": 2417.24, + "end": 2421.62, + "probability": 0.6228 + }, + { + "start": 2421.83, + "end": 2424.06, + "probability": 0.8416 + }, + { + "start": 2424.16, + "end": 2425.2, + "probability": 0.586 + }, + { + "start": 2427.1, + "end": 2428.76, + "probability": 0.7057 + }, + { + "start": 2429.54, + "end": 2430.42, + "probability": 0.5552 + }, + { + "start": 2431.3, + "end": 2436.5, + "probability": 0.9803 + }, + { + "start": 2437.5, + "end": 2438.36, + "probability": 0.9332 + }, + { + "start": 2439.02, + "end": 2439.9, + "probability": 0.9203 + }, + { + "start": 2441.6, + "end": 2442.39, + "probability": 0.9683 + }, + { + "start": 2443.64, + "end": 2444.56, + "probability": 0.497 + }, + { + "start": 2445.22, + "end": 2446.57, + "probability": 0.9683 + }, + { + "start": 2448.4, + "end": 2448.87, + "probability": 0.9115 + }, + { + "start": 2449.14, + "end": 2449.68, + "probability": 0.8495 + }, + { + "start": 2449.74, + "end": 2450.58, + "probability": 0.9081 + }, + { + "start": 2451.8, + "end": 2458.5, + "probability": 0.9705 + }, + { + "start": 2460.5, + "end": 2463.88, + "probability": 0.9382 + }, + { + "start": 2466.48, + "end": 2468.26, + "probability": 0.7167 + }, + { + "start": 2469.88, + "end": 2471.62, + "probability": 0.9784 + }, + { + "start": 2474.2, + "end": 2476.28, + "probability": 0.9961 + }, + { + "start": 2477.58, + "end": 2478.6, + "probability": 0.8401 + }, + { + "start": 2480.88, + "end": 2481.52, + "probability": 0.125 + }, + { + "start": 2483.18, + "end": 2484.3, + "probability": 0.7112 + }, + { + "start": 2485.36, + "end": 2487.22, + "probability": 0.7993 + }, + { + "start": 2488.88, + "end": 2492.82, + "probability": 0.6141 + }, + { + "start": 2493.66, + "end": 2494.55, + "probability": 0.9077 + }, + { + "start": 2496.22, + "end": 2497.52, + "probability": 0.9554 + }, + { + "start": 2499.74, + "end": 2500.0, + "probability": 0.587 + }, + { + "start": 2500.86, + "end": 2501.5, + "probability": 0.9422 + }, + { + "start": 2502.44, + "end": 2504.08, + "probability": 0.9894 + }, + { + "start": 2505.54, + "end": 2507.04, + "probability": 0.7849 + }, + { + "start": 2509.84, + "end": 2510.88, + "probability": 0.9551 + }, + { + "start": 2512.5, + "end": 2513.64, + "probability": 0.9362 + }, + { + "start": 2515.14, + "end": 2517.36, + "probability": 0.9485 + }, + { + "start": 2517.36, + "end": 2519.38, + "probability": 0.5444 + }, + { + "start": 2519.5, + "end": 2521.84, + "probability": 0.6707 + }, + { + "start": 2522.92, + "end": 2523.38, + "probability": 0.5299 + }, + { + "start": 2523.52, + "end": 2524.4, + "probability": 0.7201 + }, + { + "start": 2524.56, + "end": 2525.59, + "probability": 0.9197 + }, + { + "start": 2526.1, + "end": 2526.9, + "probability": 0.8927 + }, + { + "start": 2527.24, + "end": 2528.08, + "probability": 0.7739 + }, + { + "start": 2528.94, + "end": 2532.18, + "probability": 0.7149 + }, + { + "start": 2535.68, + "end": 2536.19, + "probability": 0.4395 + }, + { + "start": 2537.8, + "end": 2538.62, + "probability": 0.9866 + }, + { + "start": 2544.88, + "end": 2550.38, + "probability": 0.7528 + }, + { + "start": 2551.64, + "end": 2558.96, + "probability": 0.9976 + }, + { + "start": 2559.62, + "end": 2560.76, + "probability": 0.8651 + }, + { + "start": 2561.56, + "end": 2564.24, + "probability": 0.9111 + }, + { + "start": 2564.56, + "end": 2566.02, + "probability": 0.9943 + }, + { + "start": 2567.46, + "end": 2570.76, + "probability": 0.7683 + }, + { + "start": 2571.76, + "end": 2572.39, + "probability": 0.6235 + }, + { + "start": 2573.32, + "end": 2574.16, + "probability": 0.2692 + }, + { + "start": 2574.22, + "end": 2574.81, + "probability": 0.3768 + }, + { + "start": 2575.26, + "end": 2575.98, + "probability": 0.8879 + }, + { + "start": 2577.26, + "end": 2578.14, + "probability": 0.7435 + }, + { + "start": 2579.68, + "end": 2583.7, + "probability": 0.9927 + }, + { + "start": 2583.84, + "end": 2587.4, + "probability": 0.9839 + }, + { + "start": 2588.24, + "end": 2589.92, + "probability": 0.9247 + }, + { + "start": 2590.42, + "end": 2593.84, + "probability": 0.6511 + }, + { + "start": 2594.76, + "end": 2595.3, + "probability": 0.3465 + }, + { + "start": 2595.36, + "end": 2596.18, + "probability": 0.9939 + }, + { + "start": 2596.28, + "end": 2597.06, + "probability": 0.9894 + }, + { + "start": 2598.98, + "end": 2600.97, + "probability": 0.7413 + }, + { + "start": 2601.76, + "end": 2603.79, + "probability": 0.8453 + }, + { + "start": 2604.46, + "end": 2605.56, + "probability": 0.748 + }, + { + "start": 2606.0, + "end": 2607.58, + "probability": 0.8508 + }, + { + "start": 2607.86, + "end": 2608.42, + "probability": 0.8192 + }, + { + "start": 2609.42, + "end": 2610.34, + "probability": 0.9975 + }, + { + "start": 2611.14, + "end": 2611.7, + "probability": 0.7647 + }, + { + "start": 2612.92, + "end": 2613.7, + "probability": 0.9126 + }, + { + "start": 2617.88, + "end": 2619.06, + "probability": 0.9993 + }, + { + "start": 2620.36, + "end": 2621.32, + "probability": 0.7173 + }, + { + "start": 2624.58, + "end": 2624.96, + "probability": 0.6794 + }, + { + "start": 2626.58, + "end": 2627.5, + "probability": 0.848 + }, + { + "start": 2628.92, + "end": 2632.62, + "probability": 0.8892 + }, + { + "start": 2633.18, + "end": 2633.81, + "probability": 0.9789 + }, + { + "start": 2634.6, + "end": 2635.64, + "probability": 0.9882 + }, + { + "start": 2637.56, + "end": 2638.2, + "probability": 0.8922 + }, + { + "start": 2641.34, + "end": 2642.54, + "probability": 0.664 + }, + { + "start": 2643.4, + "end": 2645.66, + "probability": 0.5389 + }, + { + "start": 2647.18, + "end": 2650.68, + "probability": 0.8501 + }, + { + "start": 2652.82, + "end": 2656.28, + "probability": 0.7613 + }, + { + "start": 2657.5, + "end": 2660.1, + "probability": 0.9109 + }, + { + "start": 2661.86, + "end": 2663.84, + "probability": 0.9854 + }, + { + "start": 2665.48, + "end": 2668.2, + "probability": 0.8873 + }, + { + "start": 2669.66, + "end": 2671.49, + "probability": 0.5488 + }, + { + "start": 2672.06, + "end": 2673.2, + "probability": 0.817 + }, + { + "start": 2673.74, + "end": 2675.98, + "probability": 0.9634 + }, + { + "start": 2678.1, + "end": 2680.24, + "probability": 0.9093 + }, + { + "start": 2683.58, + "end": 2684.76, + "probability": 0.9619 + }, + { + "start": 2686.96, + "end": 2688.16, + "probability": 0.9779 + }, + { + "start": 2689.96, + "end": 2690.84, + "probability": 0.9205 + }, + { + "start": 2691.56, + "end": 2692.64, + "probability": 0.7186 + }, + { + "start": 2693.32, + "end": 2696.22, + "probability": 0.9612 + }, + { + "start": 2697.16, + "end": 2699.1, + "probability": 0.8528 + }, + { + "start": 2701.0, + "end": 2701.9, + "probability": 0.9778 + }, + { + "start": 2702.74, + "end": 2706.38, + "probability": 0.9431 + }, + { + "start": 2707.38, + "end": 2709.2, + "probability": 0.8394 + }, + { + "start": 2711.22, + "end": 2711.96, + "probability": 0.7602 + }, + { + "start": 2713.3, + "end": 2717.68, + "probability": 0.9556 + }, + { + "start": 2719.26, + "end": 2721.92, + "probability": 0.9294 + }, + { + "start": 2722.62, + "end": 2723.68, + "probability": 0.7876 + }, + { + "start": 2724.54, + "end": 2727.6, + "probability": 0.4608 + }, + { + "start": 2727.6, + "end": 2731.15, + "probability": 0.4675 + }, + { + "start": 2732.4, + "end": 2733.16, + "probability": 0.6724 + }, + { + "start": 2734.38, + "end": 2735.47, + "probability": 0.7385 + }, + { + "start": 2739.24, + "end": 2740.6, + "probability": 0.9548 + }, + { + "start": 2741.52, + "end": 2745.54, + "probability": 0.8179 + }, + { + "start": 2746.76, + "end": 2747.38, + "probability": 0.8046 + }, + { + "start": 2748.14, + "end": 2751.0, + "probability": 0.98 + }, + { + "start": 2752.04, + "end": 2756.92, + "probability": 0.8245 + }, + { + "start": 2758.06, + "end": 2759.86, + "probability": 0.4725 + }, + { + "start": 2760.5, + "end": 2762.48, + "probability": 0.77 + }, + { + "start": 2763.88, + "end": 2767.18, + "probability": 0.7441 + }, + { + "start": 2767.46, + "end": 2767.82, + "probability": 0.4831 + }, + { + "start": 2767.9, + "end": 2768.22, + "probability": 0.9338 + }, + { + "start": 2768.48, + "end": 2769.12, + "probability": 0.7435 + }, + { + "start": 2771.62, + "end": 2772.94, + "probability": 0.9048 + }, + { + "start": 2774.44, + "end": 2776.86, + "probability": 0.9989 + }, + { + "start": 2776.86, + "end": 2779.3, + "probability": 0.8697 + }, + { + "start": 2781.22, + "end": 2784.46, + "probability": 0.9324 + }, + { + "start": 2786.08, + "end": 2789.16, + "probability": 0.9655 + }, + { + "start": 2789.32, + "end": 2792.06, + "probability": 0.9653 + }, + { + "start": 2793.38, + "end": 2800.8, + "probability": 0.9026 + }, + { + "start": 2801.76, + "end": 2802.5, + "probability": 0.9164 + }, + { + "start": 2803.74, + "end": 2805.56, + "probability": 0.9575 + }, + { + "start": 2807.52, + "end": 2810.14, + "probability": 0.9973 + }, + { + "start": 2810.5, + "end": 2811.52, + "probability": 0.986 + }, + { + "start": 2813.44, + "end": 2814.44, + "probability": 0.9224 + }, + { + "start": 2819.6, + "end": 2820.69, + "probability": 0.9854 + }, + { + "start": 2820.74, + "end": 2822.28, + "probability": 0.7115 + }, + { + "start": 2822.58, + "end": 2823.62, + "probability": 0.9083 + }, + { + "start": 2824.26, + "end": 2825.66, + "probability": 0.9821 + }, + { + "start": 2826.32, + "end": 2828.97, + "probability": 0.7866 + }, + { + "start": 2830.3, + "end": 2832.43, + "probability": 0.7004 + }, + { + "start": 2833.24, + "end": 2836.14, + "probability": 0.9192 + }, + { + "start": 2836.86, + "end": 2838.0, + "probability": 0.8797 + }, + { + "start": 2838.28, + "end": 2840.66, + "probability": 0.8612 + }, + { + "start": 2841.32, + "end": 2843.22, + "probability": 0.9936 + }, + { + "start": 2843.38, + "end": 2844.36, + "probability": 0.5821 + }, + { + "start": 2846.52, + "end": 2846.82, + "probability": 0.7184 + }, + { + "start": 2846.9, + "end": 2849.2, + "probability": 0.9101 + }, + { + "start": 2849.7, + "end": 2852.04, + "probability": 0.7963 + }, + { + "start": 2852.98, + "end": 2853.64, + "probability": 0.9377 + }, + { + "start": 2856.04, + "end": 2857.96, + "probability": 0.9621 + }, + { + "start": 2862.38, + "end": 2862.68, + "probability": 0.7742 + }, + { + "start": 2862.84, + "end": 2865.12, + "probability": 0.9692 + }, + { + "start": 2865.12, + "end": 2868.14, + "probability": 0.9569 + }, + { + "start": 2869.36, + "end": 2871.9, + "probability": 0.9446 + }, + { + "start": 2872.88, + "end": 2875.3, + "probability": 0.8716 + }, + { + "start": 2875.32, + "end": 2876.96, + "probability": 0.9609 + }, + { + "start": 2877.16, + "end": 2880.32, + "probability": 0.9888 + }, + { + "start": 2881.32, + "end": 2886.76, + "probability": 0.8148 + }, + { + "start": 2887.7, + "end": 2888.58, + "probability": 0.818 + }, + { + "start": 2889.36, + "end": 2891.62, + "probability": 0.6908 + }, + { + "start": 2892.4, + "end": 2893.04, + "probability": 0.551 + }, + { + "start": 2893.72, + "end": 2894.9, + "probability": 0.9694 + }, + { + "start": 2895.48, + "end": 2896.64, + "probability": 0.98 + }, + { + "start": 2899.04, + "end": 2900.98, + "probability": 0.7964 + }, + { + "start": 2903.14, + "end": 2903.98, + "probability": 0.7682 + }, + { + "start": 2904.54, + "end": 2905.18, + "probability": 0.8521 + }, + { + "start": 2906.1, + "end": 2906.8, + "probability": 0.7741 + }, + { + "start": 2908.14, + "end": 2909.18, + "probability": 0.7705 + }, + { + "start": 2910.24, + "end": 2912.54, + "probability": 0.9272 + }, + { + "start": 2912.54, + "end": 2915.1, + "probability": 0.8931 + }, + { + "start": 2915.92, + "end": 2917.86, + "probability": 0.994 + }, + { + "start": 2918.0, + "end": 2919.16, + "probability": 0.8027 + }, + { + "start": 2919.32, + "end": 2920.82, + "probability": 0.9852 + }, + { + "start": 2922.12, + "end": 2923.14, + "probability": 0.9943 + }, + { + "start": 2923.24, + "end": 2926.46, + "probability": 0.9103 + }, + { + "start": 2926.46, + "end": 2930.2, + "probability": 0.9449 + }, + { + "start": 2930.94, + "end": 2932.04, + "probability": 0.9902 + }, + { + "start": 2933.26, + "end": 2937.74, + "probability": 0.9043 + }, + { + "start": 2937.88, + "end": 2938.18, + "probability": 0.5604 + }, + { + "start": 2939.94, + "end": 2940.86, + "probability": 0.9731 + }, + { + "start": 2942.0, + "end": 2943.54, + "probability": 0.9499 + }, + { + "start": 2944.04, + "end": 2944.76, + "probability": 0.6405 + }, + { + "start": 2944.88, + "end": 2945.58, + "probability": 0.6262 + }, + { + "start": 2945.58, + "end": 2946.14, + "probability": 0.3512 + }, + { + "start": 2949.16, + "end": 2950.86, + "probability": 0.676 + }, + { + "start": 2951.66, + "end": 2953.48, + "probability": 0.7674 + }, + { + "start": 2954.18, + "end": 2955.66, + "probability": 0.9665 + }, + { + "start": 2957.26, + "end": 2957.92, + "probability": 0.5134 + }, + { + "start": 2957.96, + "end": 2959.06, + "probability": 0.834 + }, + { + "start": 2959.68, + "end": 2961.64, + "probability": 0.7775 + }, + { + "start": 2961.64, + "end": 2963.1, + "probability": 0.7362 + }, + { + "start": 2964.04, + "end": 2967.62, + "probability": 0.7146 + }, + { + "start": 2968.08, + "end": 2968.38, + "probability": 0.4568 + }, + { + "start": 2968.44, + "end": 2968.84, + "probability": 0.3571 + }, + { + "start": 2968.92, + "end": 2969.34, + "probability": 0.8204 + }, + { + "start": 2969.42, + "end": 2969.84, + "probability": 0.5938 + }, + { + "start": 2969.92, + "end": 2971.1, + "probability": 0.788 + }, + { + "start": 2971.98, + "end": 2973.46, + "probability": 0.9233 + }, + { + "start": 2974.36, + "end": 2977.44, + "probability": 0.8459 + }, + { + "start": 2977.96, + "end": 2981.72, + "probability": 0.7999 + }, + { + "start": 2982.48, + "end": 2983.28, + "probability": 0.5928 + }, + { + "start": 2984.06, + "end": 2984.32, + "probability": 0.4535 + }, + { + "start": 2984.32, + "end": 2987.44, + "probability": 0.9583 + }, + { + "start": 2988.18, + "end": 2990.0, + "probability": 0.9287 + }, + { + "start": 2990.88, + "end": 2994.1, + "probability": 0.9507 + }, + { + "start": 2995.48, + "end": 2996.06, + "probability": 0.5003 + }, + { + "start": 2996.2, + "end": 2996.5, + "probability": 0.8171 + }, + { + "start": 2996.62, + "end": 3000.34, + "probability": 0.8097 + }, + { + "start": 3001.58, + "end": 3002.58, + "probability": 0.6461 + }, + { + "start": 3002.66, + "end": 3004.76, + "probability": 0.6775 + }, + { + "start": 3005.34, + "end": 3008.7, + "probability": 0.8837 + }, + { + "start": 3010.22, + "end": 3011.64, + "probability": 0.458 + }, + { + "start": 3011.84, + "end": 3012.66, + "probability": 0.6685 + }, + { + "start": 3012.68, + "end": 3013.92, + "probability": 0.6595 + }, + { + "start": 3014.38, + "end": 3015.04, + "probability": 0.8338 + }, + { + "start": 3015.32, + "end": 3022.72, + "probability": 0.9681 + }, + { + "start": 3023.76, + "end": 3025.3, + "probability": 0.994 + }, + { + "start": 3026.04, + "end": 3026.52, + "probability": 0.5909 + }, + { + "start": 3027.24, + "end": 3029.72, + "probability": 0.9802 + }, + { + "start": 3030.44, + "end": 3033.5, + "probability": 0.9777 + }, + { + "start": 3033.9, + "end": 3036.06, + "probability": 0.899 + }, + { + "start": 3036.74, + "end": 3039.26, + "probability": 0.9544 + }, + { + "start": 3040.0, + "end": 3041.96, + "probability": 0.9688 + }, + { + "start": 3042.02, + "end": 3042.34, + "probability": 0.4897 + }, + { + "start": 3042.34, + "end": 3043.06, + "probability": 0.6873 + }, + { + "start": 3044.32, + "end": 3045.55, + "probability": 0.0423 + }, + { + "start": 3046.08, + "end": 3046.52, + "probability": 0.3965 + }, + { + "start": 3047.32, + "end": 3048.44, + "probability": 0.9575 + }, + { + "start": 3049.06, + "end": 3049.56, + "probability": 0.7248 + }, + { + "start": 3050.7, + "end": 3051.5, + "probability": 0.5192 + }, + { + "start": 3051.52, + "end": 3056.0, + "probability": 0.7309 + }, + { + "start": 3056.92, + "end": 3059.54, + "probability": 0.4243 + }, + { + "start": 3059.6, + "end": 3059.82, + "probability": 0.5964 + }, + { + "start": 3060.9, + "end": 3062.76, + "probability": 0.9822 + }, + { + "start": 3062.82, + "end": 3066.16, + "probability": 0.8018 + }, + { + "start": 3067.74, + "end": 3073.04, + "probability": 0.9778 + }, + { + "start": 3073.08, + "end": 3075.42, + "probability": 0.9126 + }, + { + "start": 3076.02, + "end": 3079.82, + "probability": 0.7535 + }, + { + "start": 3080.16, + "end": 3081.08, + "probability": 0.5893 + }, + { + "start": 3082.3, + "end": 3083.72, + "probability": 0.143 + }, + { + "start": 3084.12, + "end": 3085.42, + "probability": 0.1485 + }, + { + "start": 3086.34, + "end": 3092.18, + "probability": 0.0497 + }, + { + "start": 3092.18, + "end": 3092.36, + "probability": 0.05 + }, + { + "start": 3093.82, + "end": 3097.34, + "probability": 0.0809 + }, + { + "start": 3101.08, + "end": 3106.6, + "probability": 0.0163 + }, + { + "start": 3110.0, + "end": 3112.78, + "probability": 0.1568 + }, + { + "start": 3115.18, + "end": 3116.94, + "probability": 0.0371 + }, + { + "start": 3138.68, + "end": 3139.26, + "probability": 0.4975 + }, + { + "start": 3140.02, + "end": 3143.12, + "probability": 0.992 + }, + { + "start": 3144.08, + "end": 3149.58, + "probability": 0.9864 + }, + { + "start": 3150.56, + "end": 3155.4, + "probability": 0.9868 + }, + { + "start": 3156.22, + "end": 3162.0, + "probability": 0.9858 + }, + { + "start": 3162.84, + "end": 3165.22, + "probability": 0.9627 + }, + { + "start": 3166.02, + "end": 3170.98, + "probability": 0.9718 + }, + { + "start": 3170.98, + "end": 3175.96, + "probability": 0.8962 + }, + { + "start": 3176.96, + "end": 3180.3, + "probability": 0.8542 + }, + { + "start": 3181.02, + "end": 3182.1, + "probability": 0.9763 + }, + { + "start": 3183.72, + "end": 3185.44, + "probability": 0.6958 + }, + { + "start": 3186.12, + "end": 3187.12, + "probability": 0.7202 + }, + { + "start": 3188.04, + "end": 3191.82, + "probability": 0.978 + }, + { + "start": 3192.9, + "end": 3198.28, + "probability": 0.9839 + }, + { + "start": 3198.92, + "end": 3200.72, + "probability": 0.9747 + }, + { + "start": 3201.82, + "end": 3208.12, + "probability": 0.7268 + }, + { + "start": 3208.7, + "end": 3209.87, + "probability": 0.9258 + }, + { + "start": 3210.2, + "end": 3211.34, + "probability": 0.9735 + }, + { + "start": 3212.66, + "end": 3213.9, + "probability": 0.7904 + }, + { + "start": 3214.94, + "end": 3218.18, + "probability": 0.8532 + }, + { + "start": 3218.82, + "end": 3222.7, + "probability": 0.8638 + }, + { + "start": 3222.76, + "end": 3226.2, + "probability": 0.9956 + }, + { + "start": 3227.78, + "end": 3231.38, + "probability": 0.9688 + }, + { + "start": 3232.06, + "end": 3233.4, + "probability": 0.9458 + }, + { + "start": 3234.06, + "end": 3237.56, + "probability": 0.7427 + }, + { + "start": 3238.44, + "end": 3241.22, + "probability": 0.9924 + }, + { + "start": 3241.26, + "end": 3245.32, + "probability": 0.9802 + }, + { + "start": 3245.94, + "end": 3246.88, + "probability": 0.5898 + }, + { + "start": 3247.78, + "end": 3253.08, + "probability": 0.9747 + }, + { + "start": 3253.9, + "end": 3254.52, + "probability": 0.897 + }, + { + "start": 3255.24, + "end": 3256.64, + "probability": 0.7973 + }, + { + "start": 3257.48, + "end": 3259.76, + "probability": 0.7913 + }, + { + "start": 3259.76, + "end": 3268.7, + "probability": 0.9617 + }, + { + "start": 3268.82, + "end": 3275.38, + "probability": 0.9969 + }, + { + "start": 3276.86, + "end": 3280.78, + "probability": 0.9135 + }, + { + "start": 3280.78, + "end": 3286.62, + "probability": 0.9688 + }, + { + "start": 3288.02, + "end": 3291.28, + "probability": 0.9967 + }, + { + "start": 3292.02, + "end": 3298.02, + "probability": 0.9634 + }, + { + "start": 3298.74, + "end": 3300.38, + "probability": 0.9763 + }, + { + "start": 3301.64, + "end": 3310.28, + "probability": 0.8929 + }, + { + "start": 3311.0, + "end": 3324.56, + "probability": 0.9082 + }, + { + "start": 3324.56, + "end": 3332.02, + "probability": 0.9928 + }, + { + "start": 3333.66, + "end": 3335.76, + "probability": 0.3276 + }, + { + "start": 3336.02, + "end": 3336.93, + "probability": 0.0007 + }, + { + "start": 3338.68, + "end": 3339.84, + "probability": 0.5095 + }, + { + "start": 3339.9, + "end": 3340.93, + "probability": 0.7889 + }, + { + "start": 3341.98, + "end": 3344.7, + "probability": 0.5334 + }, + { + "start": 3345.06, + "end": 3347.74, + "probability": 0.9774 + }, + { + "start": 3347.8, + "end": 3351.94, + "probability": 0.9763 + }, + { + "start": 3351.94, + "end": 3356.42, + "probability": 0.9977 + }, + { + "start": 3357.06, + "end": 3357.78, + "probability": 0.9136 + }, + { + "start": 3358.68, + "end": 3362.56, + "probability": 0.9808 + }, + { + "start": 3363.08, + "end": 3364.5, + "probability": 0.9654 + }, + { + "start": 3365.8, + "end": 3366.54, + "probability": 0.8249 + }, + { + "start": 3367.22, + "end": 3375.4, + "probability": 0.5572 + }, + { + "start": 3375.4, + "end": 3382.4, + "probability": 0.878 + }, + { + "start": 3383.1, + "end": 3385.24, + "probability": 0.9572 + }, + { + "start": 3386.0, + "end": 3396.16, + "probability": 0.9228 + }, + { + "start": 3396.16, + "end": 3400.02, + "probability": 0.9984 + }, + { + "start": 3400.54, + "end": 3405.3, + "probability": 0.847 + }, + { + "start": 3405.84, + "end": 3407.4, + "probability": 0.9678 + }, + { + "start": 3408.18, + "end": 3411.32, + "probability": 0.88 + }, + { + "start": 3411.86, + "end": 3415.42, + "probability": 0.9086 + }, + { + "start": 3416.04, + "end": 3420.42, + "probability": 0.9966 + }, + { + "start": 3421.48, + "end": 3423.44, + "probability": 0.6636 + }, + { + "start": 3424.14, + "end": 3429.8, + "probability": 0.9854 + }, + { + "start": 3431.02, + "end": 3432.06, + "probability": 0.9309 + }, + { + "start": 3432.88, + "end": 3437.86, + "probability": 0.9813 + }, + { + "start": 3438.68, + "end": 3439.52, + "probability": 0.913 + }, + { + "start": 3440.1, + "end": 3444.2, + "probability": 0.9505 + }, + { + "start": 3444.2, + "end": 3448.46, + "probability": 0.9919 + }, + { + "start": 3449.4, + "end": 3458.98, + "probability": 0.8441 + }, + { + "start": 3459.18, + "end": 3459.9, + "probability": 0.899 + }, + { + "start": 3460.0, + "end": 3461.26, + "probability": 0.9348 + }, + { + "start": 3461.68, + "end": 3462.96, + "probability": 0.7213 + }, + { + "start": 3463.84, + "end": 3471.52, + "probability": 0.3233 + }, + { + "start": 3471.52, + "end": 3472.06, + "probability": 0.2767 + }, + { + "start": 3472.12, + "end": 3476.78, + "probability": 0.971 + }, + { + "start": 3477.52, + "end": 3478.6, + "probability": 0.753 + }, + { + "start": 3479.2, + "end": 3483.34, + "probability": 0.9983 + }, + { + "start": 3484.04, + "end": 3489.06, + "probability": 0.9976 + }, + { + "start": 3489.68, + "end": 3491.8, + "probability": 0.7922 + }, + { + "start": 3492.8, + "end": 3493.14, + "probability": 0.7111 + }, + { + "start": 3494.06, + "end": 3497.88, + "probability": 0.9819 + }, + { + "start": 3498.94, + "end": 3501.94, + "probability": 0.9491 + }, + { + "start": 3503.22, + "end": 3504.02, + "probability": 0.5548 + }, + { + "start": 3504.16, + "end": 3508.78, + "probability": 0.5915 + }, + { + "start": 3508.88, + "end": 3512.3, + "probability": 0.6565 + }, + { + "start": 3513.14, + "end": 3515.4, + "probability": 0.8506 + }, + { + "start": 3518.8, + "end": 3520.6, + "probability": 0.9426 + }, + { + "start": 3520.66, + "end": 3522.56, + "probability": 0.8031 + }, + { + "start": 3522.64, + "end": 3526.2, + "probability": 0.8398 + }, + { + "start": 3527.2, + "end": 3531.16, + "probability": 0.7303 + }, + { + "start": 3532.48, + "end": 3534.76, + "probability": 0.6987 + }, + { + "start": 3534.94, + "end": 3538.86, + "probability": 0.994 + }, + { + "start": 3540.54, + "end": 3541.98, + "probability": 0.816 + }, + { + "start": 3542.06, + "end": 3545.0, + "probability": 0.9451 + }, + { + "start": 3546.04, + "end": 3550.5, + "probability": 0.7598 + }, + { + "start": 3550.68, + "end": 3552.1, + "probability": 0.9087 + }, + { + "start": 3552.92, + "end": 3554.2, + "probability": 0.4764 + }, + { + "start": 3554.28, + "end": 3557.27, + "probability": 0.9587 + }, + { + "start": 3558.48, + "end": 3558.8, + "probability": 0.4304 + }, + { + "start": 3558.84, + "end": 3560.1, + "probability": 0.8324 + }, + { + "start": 3560.16, + "end": 3562.06, + "probability": 0.9969 + }, + { + "start": 3563.1, + "end": 3567.66, + "probability": 0.6006 + }, + { + "start": 3568.54, + "end": 3572.04, + "probability": 0.9849 + }, + { + "start": 3574.1, + "end": 3575.96, + "probability": 0.8969 + }, + { + "start": 3577.12, + "end": 3580.12, + "probability": 0.9941 + }, + { + "start": 3581.02, + "end": 3582.34, + "probability": 0.7865 + }, + { + "start": 3583.68, + "end": 3584.86, + "probability": 0.695 + }, + { + "start": 3585.64, + "end": 3587.78, + "probability": 0.9449 + }, + { + "start": 3589.08, + "end": 3595.66, + "probability": 0.8722 + }, + { + "start": 3596.02, + "end": 3597.94, + "probability": 0.9926 + }, + { + "start": 3598.32, + "end": 3602.48, + "probability": 0.9858 + }, + { + "start": 3602.8, + "end": 3605.9, + "probability": 0.9901 + }, + { + "start": 3606.04, + "end": 3607.76, + "probability": 0.9863 + }, + { + "start": 3609.3, + "end": 3610.3, + "probability": 0.5007 + }, + { + "start": 3610.78, + "end": 3614.37, + "probability": 0.6087 + }, + { + "start": 3615.38, + "end": 3616.42, + "probability": 0.7755 + }, + { + "start": 3618.08, + "end": 3621.12, + "probability": 0.688 + }, + { + "start": 3621.16, + "end": 3623.32, + "probability": 0.9089 + }, + { + "start": 3623.98, + "end": 3626.65, + "probability": 0.825 + }, + { + "start": 3627.26, + "end": 3628.74, + "probability": 0.8246 + }, + { + "start": 3628.94, + "end": 3632.9, + "probability": 0.9719 + }, + { + "start": 3633.38, + "end": 3637.04, + "probability": 0.9954 + }, + { + "start": 3637.46, + "end": 3639.17, + "probability": 0.9599 + }, + { + "start": 3639.44, + "end": 3640.66, + "probability": 0.3841 + }, + { + "start": 3640.98, + "end": 3640.98, + "probability": 0.2189 + }, + { + "start": 3640.98, + "end": 3642.4, + "probability": 0.7159 + }, + { + "start": 3643.66, + "end": 3644.94, + "probability": 0.7116 + }, + { + "start": 3644.96, + "end": 3645.82, + "probability": 0.4633 + }, + { + "start": 3645.88, + "end": 3648.18, + "probability": 0.9883 + }, + { + "start": 3651.62, + "end": 3654.26, + "probability": 0.9229 + }, + { + "start": 3655.36, + "end": 3661.9, + "probability": 0.9647 + }, + { + "start": 3661.9, + "end": 3662.02, + "probability": 0.0567 + }, + { + "start": 3662.5, + "end": 3662.62, + "probability": 0.3249 + }, + { + "start": 3662.62, + "end": 3663.68, + "probability": 0.2714 + }, + { + "start": 3663.68, + "end": 3665.38, + "probability": 0.6882 + }, + { + "start": 3665.38, + "end": 3667.12, + "probability": 0.3536 + }, + { + "start": 3667.2, + "end": 3668.08, + "probability": 0.5785 + }, + { + "start": 3668.76, + "end": 3670.02, + "probability": 0.9177 + }, + { + "start": 3670.5, + "end": 3671.26, + "probability": 0.42 + }, + { + "start": 3671.42, + "end": 3672.58, + "probability": 0.8821 + }, + { + "start": 3672.72, + "end": 3673.98, + "probability": 0.9873 + }, + { + "start": 3674.08, + "end": 3674.26, + "probability": 0.3533 + }, + { + "start": 3674.4, + "end": 3674.66, + "probability": 0.2483 + }, + { + "start": 3674.66, + "end": 3677.84, + "probability": 0.8073 + }, + { + "start": 3678.32, + "end": 3678.76, + "probability": 0.4273 + }, + { + "start": 3678.78, + "end": 3679.5, + "probability": 0.8326 + }, + { + "start": 3679.56, + "end": 3680.04, + "probability": 0.1634 + }, + { + "start": 3682.04, + "end": 3682.2, + "probability": 0.0022 + }, + { + "start": 3682.2, + "end": 3683.28, + "probability": 0.2128 + }, + { + "start": 3684.26, + "end": 3685.24, + "probability": 0.1929 + }, + { + "start": 3685.44, + "end": 3686.7, + "probability": 0.8073 + }, + { + "start": 3688.22, + "end": 3691.16, + "probability": 0.7928 + }, + { + "start": 3691.26, + "end": 3694.0, + "probability": 0.6775 + }, + { + "start": 3694.8, + "end": 3696.12, + "probability": 0.3101 + }, + { + "start": 3696.9, + "end": 3703.22, + "probability": 0.9359 + }, + { + "start": 3703.26, + "end": 3704.16, + "probability": 0.8772 + }, + { + "start": 3704.5, + "end": 3705.28, + "probability": 0.6118 + }, + { + "start": 3705.62, + "end": 3712.41, + "probability": 0.9966 + }, + { + "start": 3712.48, + "end": 3719.32, + "probability": 0.999 + }, + { + "start": 3719.98, + "end": 3720.94, + "probability": 0.0119 + }, + { + "start": 3721.78, + "end": 3722.74, + "probability": 0.5152 + }, + { + "start": 3723.52, + "end": 3723.6, + "probability": 0.2902 + }, + { + "start": 3723.6, + "end": 3727.78, + "probability": 0.8309 + }, + { + "start": 3728.06, + "end": 3733.72, + "probability": 0.8304 + }, + { + "start": 3734.92, + "end": 3738.28, + "probability": 0.9733 + }, + { + "start": 3738.28, + "end": 3744.94, + "probability": 0.9836 + }, + { + "start": 3745.24, + "end": 3747.36, + "probability": 0.3893 + }, + { + "start": 3748.52, + "end": 3755.8, + "probability": 0.9115 + }, + { + "start": 3756.12, + "end": 3759.14, + "probability": 0.9963 + }, + { + "start": 3759.44, + "end": 3761.58, + "probability": 0.9841 + }, + { + "start": 3762.32, + "end": 3767.82, + "probability": 0.9325 + }, + { + "start": 3767.82, + "end": 3773.58, + "probability": 0.8741 + }, + { + "start": 3774.38, + "end": 3777.48, + "probability": 0.9896 + }, + { + "start": 3778.64, + "end": 3783.84, + "probability": 0.8162 + }, + { + "start": 3783.84, + "end": 3789.84, + "probability": 0.9926 + }, + { + "start": 3790.34, + "end": 3791.9, + "probability": 0.9796 + }, + { + "start": 3792.56, + "end": 3798.22, + "probability": 0.9919 + }, + { + "start": 3798.82, + "end": 3802.14, + "probability": 0.9878 + }, + { + "start": 3809.38, + "end": 3811.1, + "probability": 0.9001 + }, + { + "start": 3812.66, + "end": 3814.14, + "probability": 0.9393 + }, + { + "start": 3814.26, + "end": 3816.64, + "probability": 0.9795 + }, + { + "start": 3817.54, + "end": 3818.9, + "probability": 0.9834 + }, + { + "start": 3819.34, + "end": 3820.38, + "probability": 0.8538 + }, + { + "start": 3820.48, + "end": 3820.64, + "probability": 0.4987 + }, + { + "start": 3820.68, + "end": 3821.66, + "probability": 0.9613 + }, + { + "start": 3822.1, + "end": 3825.0, + "probability": 0.9985 + }, + { + "start": 3825.82, + "end": 3827.24, + "probability": 0.9944 + }, + { + "start": 3828.08, + "end": 3832.58, + "probability": 0.9935 + }, + { + "start": 3832.6, + "end": 3833.26, + "probability": 0.0577 + }, + { + "start": 3833.26, + "end": 3840.98, + "probability": 0.9891 + }, + { + "start": 3842.26, + "end": 3842.7, + "probability": 0.4376 + }, + { + "start": 3843.38, + "end": 3847.08, + "probability": 0.7442 + }, + { + "start": 3847.88, + "end": 3849.22, + "probability": 0.6324 + }, + { + "start": 3850.28, + "end": 3851.22, + "probability": 0.9598 + }, + { + "start": 3852.1, + "end": 3853.1, + "probability": 0.9783 + }, + { + "start": 3854.02, + "end": 3855.64, + "probability": 0.9229 + }, + { + "start": 3856.68, + "end": 3857.22, + "probability": 0.1878 + }, + { + "start": 3857.22, + "end": 3857.22, + "probability": 0.4024 + }, + { + "start": 3857.22, + "end": 3861.16, + "probability": 0.6528 + }, + { + "start": 3861.46, + "end": 3864.12, + "probability": 0.991 + }, + { + "start": 3865.24, + "end": 3870.88, + "probability": 0.8724 + }, + { + "start": 3871.4, + "end": 3872.74, + "probability": 0.8251 + }, + { + "start": 3873.26, + "end": 3876.06, + "probability": 0.9833 + }, + { + "start": 3879.44, + "end": 3882.04, + "probability": 0.7472 + }, + { + "start": 3882.64, + "end": 3886.54, + "probability": 0.9747 + }, + { + "start": 3887.8, + "end": 3888.78, + "probability": 0.8424 + }, + { + "start": 3889.4, + "end": 3891.5, + "probability": 0.8063 + }, + { + "start": 3892.62, + "end": 3893.78, + "probability": 0.6488 + }, + { + "start": 3894.4, + "end": 3894.52, + "probability": 0.3463 + }, + { + "start": 3894.52, + "end": 3897.34, + "probability": 0.5955 + }, + { + "start": 3897.38, + "end": 3903.22, + "probability": 0.9735 + }, + { + "start": 3903.38, + "end": 3903.72, + "probability": 0.8373 + }, + { + "start": 3903.94, + "end": 3904.68, + "probability": 0.4442 + }, + { + "start": 3906.5, + "end": 3908.5, + "probability": 0.9295 + }, + { + "start": 3908.74, + "end": 3911.62, + "probability": 0.9231 + }, + { + "start": 3912.12, + "end": 3915.32, + "probability": 0.9109 + }, + { + "start": 3915.5, + "end": 3916.18, + "probability": 0.4231 + }, + { + "start": 3918.69, + "end": 3920.13, + "probability": 0.1942 + }, + { + "start": 3921.34, + "end": 3924.88, + "probability": 0.6364 + }, + { + "start": 3925.52, + "end": 3930.48, + "probability": 0.9866 + }, + { + "start": 3930.88, + "end": 3934.62, + "probability": 0.997 + }, + { + "start": 3935.22, + "end": 3936.96, + "probability": 0.9883 + }, + { + "start": 3938.94, + "end": 3942.54, + "probability": 0.9647 + }, + { + "start": 3942.56, + "end": 3947.16, + "probability": 0.9798 + }, + { + "start": 3947.5, + "end": 3948.86, + "probability": 0.9725 + }, + { + "start": 3949.28, + "end": 3950.59, + "probability": 0.8945 + }, + { + "start": 3950.94, + "end": 3951.78, + "probability": 0.457 + }, + { + "start": 3952.26, + "end": 3955.56, + "probability": 0.6858 + }, + { + "start": 3955.56, + "end": 3959.0, + "probability": 0.887 + }, + { + "start": 3959.1, + "end": 3959.62, + "probability": 0.5953 + }, + { + "start": 3959.84, + "end": 3961.42, + "probability": 0.5048 + }, + { + "start": 3961.72, + "end": 3961.84, + "probability": 0.4434 + }, + { + "start": 3961.94, + "end": 3963.22, + "probability": 0.3333 + }, + { + "start": 3963.22, + "end": 3965.16, + "probability": 0.5906 + }, + { + "start": 3965.28, + "end": 3967.02, + "probability": 0.5934 + }, + { + "start": 3967.38, + "end": 3969.82, + "probability": 0.6377 + }, + { + "start": 3970.26, + "end": 3974.06, + "probability": 0.895 + }, + { + "start": 3974.06, + "end": 3974.94, + "probability": 0.7182 + }, + { + "start": 3975.06, + "end": 3975.58, + "probability": 0.8856 + }, + { + "start": 3977.45, + "end": 3979.12, + "probability": 0.9116 + }, + { + "start": 3979.3, + "end": 3982.19, + "probability": 0.8552 + }, + { + "start": 3983.12, + "end": 3984.12, + "probability": 0.6216 + }, + { + "start": 3984.22, + "end": 3987.34, + "probability": 0.9933 + }, + { + "start": 3987.46, + "end": 3988.5, + "probability": 0.8227 + }, + { + "start": 3989.0, + "end": 3992.72, + "probability": 0.9771 + }, + { + "start": 3992.72, + "end": 3996.7, + "probability": 0.9995 + }, + { + "start": 3997.62, + "end": 4002.56, + "probability": 0.9958 + }, + { + "start": 4003.12, + "end": 4008.93, + "probability": 0.9011 + }, + { + "start": 4010.42, + "end": 4010.8, + "probability": 0.0779 + }, + { + "start": 4010.8, + "end": 4014.74, + "probability": 0.6705 + }, + { + "start": 4015.66, + "end": 4019.28, + "probability": 0.9895 + }, + { + "start": 4020.04, + "end": 4020.34, + "probability": 0.5159 + }, + { + "start": 4020.86, + "end": 4026.14, + "probability": 0.9128 + }, + { + "start": 4026.72, + "end": 4031.86, + "probability": 0.9951 + }, + { + "start": 4033.44, + "end": 4034.0, + "probability": 0.4471 + }, + { + "start": 4034.1, + "end": 4039.1, + "probability": 0.8607 + }, + { + "start": 4039.24, + "end": 4043.16, + "probability": 0.8916 + }, + { + "start": 4043.7, + "end": 4044.06, + "probability": 0.6488 + }, + { + "start": 4044.26, + "end": 4045.16, + "probability": 0.7642 + }, + { + "start": 4045.32, + "end": 4049.72, + "probability": 0.9873 + }, + { + "start": 4049.74, + "end": 4050.28, + "probability": 0.8731 + }, + { + "start": 4050.72, + "end": 4052.86, + "probability": 0.8242 + }, + { + "start": 4053.14, + "end": 4058.92, + "probability": 0.9225 + }, + { + "start": 4059.64, + "end": 4062.0, + "probability": 0.6662 + }, + { + "start": 4062.06, + "end": 4066.16, + "probability": 0.9113 + }, + { + "start": 4066.76, + "end": 4069.9, + "probability": 0.9227 + }, + { + "start": 4070.14, + "end": 4070.96, + "probability": 0.589 + }, + { + "start": 4071.12, + "end": 4072.06, + "probability": 0.7268 + }, + { + "start": 4072.64, + "end": 4073.38, + "probability": 0.9658 + }, + { + "start": 4075.2, + "end": 4078.5, + "probability": 0.6407 + }, + { + "start": 4079.34, + "end": 4084.76, + "probability": 0.9762 + }, + { + "start": 4087.1, + "end": 4088.02, + "probability": 0.7284 + }, + { + "start": 4088.68, + "end": 4094.86, + "probability": 0.9974 + }, + { + "start": 4096.38, + "end": 4102.56, + "probability": 0.9728 + }, + { + "start": 4103.94, + "end": 4105.1, + "probability": 0.9121 + }, + { + "start": 4106.2, + "end": 4106.66, + "probability": 0.5688 + }, + { + "start": 4107.58, + "end": 4113.34, + "probability": 0.9565 + }, + { + "start": 4113.34, + "end": 4118.25, + "probability": 0.9922 + }, + { + "start": 4118.94, + "end": 4120.0, + "probability": 0.9225 + }, + { + "start": 4120.82, + "end": 4122.16, + "probability": 0.9921 + }, + { + "start": 4122.94, + "end": 4128.6, + "probability": 0.8829 + }, + { + "start": 4128.6, + "end": 4134.34, + "probability": 0.948 + }, + { + "start": 4135.32, + "end": 4139.92, + "probability": 0.998 + }, + { + "start": 4141.04, + "end": 4141.84, + "probability": 0.4957 + }, + { + "start": 4141.9, + "end": 4144.74, + "probability": 0.9179 + }, + { + "start": 4144.84, + "end": 4147.02, + "probability": 0.947 + }, + { + "start": 4147.18, + "end": 4147.8, + "probability": 0.938 + }, + { + "start": 4148.16, + "end": 4148.6, + "probability": 0.6332 + }, + { + "start": 4148.74, + "end": 4150.94, + "probability": 0.9755 + }, + { + "start": 4151.28, + "end": 4153.32, + "probability": 0.9827 + }, + { + "start": 4153.54, + "end": 4154.5, + "probability": 0.9869 + }, + { + "start": 4155.4, + "end": 4156.9, + "probability": 0.9246 + }, + { + "start": 4158.9, + "end": 4163.9, + "probability": 0.9967 + }, + { + "start": 4164.02, + "end": 4166.44, + "probability": 0.8745 + }, + { + "start": 4166.76, + "end": 4167.2, + "probability": 0.8533 + }, + { + "start": 4167.28, + "end": 4168.62, + "probability": 0.9478 + }, + { + "start": 4168.7, + "end": 4173.9, + "probability": 0.9913 + }, + { + "start": 4174.76, + "end": 4178.28, + "probability": 0.9944 + }, + { + "start": 4178.98, + "end": 4180.76, + "probability": 0.8388 + }, + { + "start": 4181.34, + "end": 4183.66, + "probability": 0.8779 + }, + { + "start": 4184.3, + "end": 4185.9, + "probability": 0.9116 + }, + { + "start": 4186.34, + "end": 4190.28, + "probability": 0.9626 + }, + { + "start": 4191.24, + "end": 4194.52, + "probability": 0.9762 + }, + { + "start": 4195.94, + "end": 4196.78, + "probability": 0.654 + }, + { + "start": 4197.04, + "end": 4197.88, + "probability": 0.6596 + }, + { + "start": 4198.02, + "end": 4198.82, + "probability": 0.9439 + }, + { + "start": 4199.04, + "end": 4203.18, + "probability": 0.9556 + }, + { + "start": 4204.0, + "end": 4209.68, + "probability": 0.9741 + }, + { + "start": 4211.2, + "end": 4211.88, + "probability": 0.6252 + }, + { + "start": 4212.98, + "end": 4213.7, + "probability": 0.6357 + }, + { + "start": 4213.78, + "end": 4215.92, + "probability": 0.9962 + }, + { + "start": 4215.92, + "end": 4219.84, + "probability": 0.9707 + }, + { + "start": 4220.32, + "end": 4227.82, + "probability": 0.9954 + }, + { + "start": 4228.66, + "end": 4229.34, + "probability": 0.684 + }, + { + "start": 4230.0, + "end": 4233.56, + "probability": 0.952 + }, + { + "start": 4235.28, + "end": 4243.28, + "probability": 0.9603 + }, + { + "start": 4243.84, + "end": 4246.74, + "probability": 0.6428 + }, + { + "start": 4248.98, + "end": 4249.7, + "probability": 0.5708 + }, + { + "start": 4250.88, + "end": 4254.98, + "probability": 0.9314 + }, + { + "start": 4258.2, + "end": 4260.06, + "probability": 0.9727 + }, + { + "start": 4261.3, + "end": 4264.74, + "probability": 0.9648 + }, + { + "start": 4266.02, + "end": 4267.94, + "probability": 0.8975 + }, + { + "start": 4268.04, + "end": 4268.7, + "probability": 0.8536 + }, + { + "start": 4269.04, + "end": 4271.46, + "probability": 0.7734 + }, + { + "start": 4271.7, + "end": 4279.74, + "probability": 0.98 + }, + { + "start": 4280.32, + "end": 4282.86, + "probability": 0.9882 + }, + { + "start": 4283.22, + "end": 4284.48, + "probability": 0.8966 + }, + { + "start": 4284.82, + "end": 4291.5, + "probability": 0.8474 + }, + { + "start": 4292.88, + "end": 4295.54, + "probability": 0.8406 + }, + { + "start": 4296.14, + "end": 4298.62, + "probability": 0.9639 + }, + { + "start": 4299.32, + "end": 4300.04, + "probability": 0.7117 + }, + { + "start": 4300.66, + "end": 4301.9, + "probability": 0.9863 + }, + { + "start": 4303.56, + "end": 4307.32, + "probability": 0.645 + }, + { + "start": 4308.16, + "end": 4310.37, + "probability": 0.8084 + }, + { + "start": 4312.2, + "end": 4312.97, + "probability": 0.9849 + }, + { + "start": 4314.56, + "end": 4318.14, + "probability": 0.9985 + }, + { + "start": 4319.1, + "end": 4325.58, + "probability": 0.9766 + }, + { + "start": 4328.3, + "end": 4328.3, + "probability": 0.2507 + }, + { + "start": 4328.3, + "end": 4331.98, + "probability": 0.9881 + }, + { + "start": 4332.04, + "end": 4332.76, + "probability": 0.6956 + }, + { + "start": 4333.3, + "end": 4334.14, + "probability": 0.8379 + }, + { + "start": 4334.72, + "end": 4335.94, + "probability": 0.9669 + }, + { + "start": 4336.94, + "end": 4339.48, + "probability": 0.9834 + }, + { + "start": 4340.02, + "end": 4341.92, + "probability": 0.9871 + }, + { + "start": 4342.36, + "end": 4345.16, + "probability": 0.8899 + }, + { + "start": 4346.4, + "end": 4347.64, + "probability": 0.8798 + }, + { + "start": 4348.0, + "end": 4348.32, + "probability": 0.6482 + }, + { + "start": 4348.64, + "end": 4349.98, + "probability": 0.7546 + }, + { + "start": 4350.0, + "end": 4351.66, + "probability": 0.9153 + }, + { + "start": 4351.74, + "end": 4352.16, + "probability": 0.6885 + }, + { + "start": 4352.16, + "end": 4352.83, + "probability": 0.1203 + }, + { + "start": 4353.08, + "end": 4353.5, + "probability": 0.7784 + }, + { + "start": 4353.74, + "end": 4356.28, + "probability": 0.6521 + }, + { + "start": 4356.28, + "end": 4360.34, + "probability": 0.9557 + }, + { + "start": 4360.4, + "end": 4361.92, + "probability": 0.9545 + }, + { + "start": 4361.98, + "end": 4366.36, + "probability": 0.9755 + }, + { + "start": 4366.6, + "end": 4367.66, + "probability": 0.9423 + }, + { + "start": 4367.88, + "end": 4369.7, + "probability": 0.9554 + }, + { + "start": 4370.26, + "end": 4370.66, + "probability": 0.6188 + }, + { + "start": 4370.72, + "end": 4375.72, + "probability": 0.8958 + }, + { + "start": 4376.16, + "end": 4380.58, + "probability": 0.8778 + }, + { + "start": 4380.96, + "end": 4386.8, + "probability": 0.9878 + }, + { + "start": 4386.92, + "end": 4387.82, + "probability": 0.8472 + }, + { + "start": 4388.16, + "end": 4389.86, + "probability": 0.8355 + }, + { + "start": 4390.56, + "end": 4396.08, + "probability": 0.9928 + }, + { + "start": 4396.98, + "end": 4398.48, + "probability": 0.7112 + }, + { + "start": 4398.96, + "end": 4403.86, + "probability": 0.9858 + }, + { + "start": 4405.14, + "end": 4405.86, + "probability": 0.9238 + }, + { + "start": 4405.86, + "end": 4407.7, + "probability": 0.7374 + }, + { + "start": 4407.88, + "end": 4410.67, + "probability": 0.9287 + }, + { + "start": 4411.04, + "end": 4412.2, + "probability": 0.7982 + }, + { + "start": 4412.44, + "end": 4415.7, + "probability": 0.9854 + }, + { + "start": 4415.74, + "end": 4416.08, + "probability": 0.798 + }, + { + "start": 4417.06, + "end": 4420.12, + "probability": 0.7368 + }, + { + "start": 4420.18, + "end": 4424.52, + "probability": 0.8102 + }, + { + "start": 4425.64, + "end": 4427.34, + "probability": 0.8344 + }, + { + "start": 4428.06, + "end": 4431.54, + "probability": 0.9832 + }, + { + "start": 4432.48, + "end": 4436.1, + "probability": 0.8813 + }, + { + "start": 4437.32, + "end": 4440.0, + "probability": 0.9968 + }, + { + "start": 4443.14, + "end": 4445.09, + "probability": 0.8907 + }, + { + "start": 4445.6, + "end": 4446.12, + "probability": 0.7088 + }, + { + "start": 4446.34, + "end": 4448.6, + "probability": 0.7683 + }, + { + "start": 4449.64, + "end": 4452.32, + "probability": 0.9492 + }, + { + "start": 4452.64, + "end": 4453.22, + "probability": 0.8655 + }, + { + "start": 4454.24, + "end": 4456.62, + "probability": 0.9722 + }, + { + "start": 4456.62, + "end": 4461.02, + "probability": 0.8973 + }, + { + "start": 4462.3, + "end": 4463.57, + "probability": 0.7832 + }, + { + "start": 4464.06, + "end": 4466.76, + "probability": 0.9961 + }, + { + "start": 4466.76, + "end": 4471.06, + "probability": 0.9603 + }, + { + "start": 4472.08, + "end": 4472.1, + "probability": 0.2366 + }, + { + "start": 4473.12, + "end": 4475.8, + "probability": 0.9764 + }, + { + "start": 4475.8, + "end": 4478.08, + "probability": 0.7904 + }, + { + "start": 4480.86, + "end": 4483.36, + "probability": 0.9785 + }, + { + "start": 4484.12, + "end": 4490.04, + "probability": 0.9606 + }, + { + "start": 4491.08, + "end": 4492.34, + "probability": 0.0784 + }, + { + "start": 4492.68, + "end": 4495.34, + "probability": 0.8987 + }, + { + "start": 4496.8, + "end": 4502.34, + "probability": 0.9384 + }, + { + "start": 4503.28, + "end": 4506.94, + "probability": 0.9534 + }, + { + "start": 4507.02, + "end": 4509.34, + "probability": 0.9849 + }, + { + "start": 4509.8, + "end": 4510.54, + "probability": 0.8346 + }, + { + "start": 4510.62, + "end": 4514.88, + "probability": 0.8468 + }, + { + "start": 4514.98, + "end": 4515.82, + "probability": 0.7441 + }, + { + "start": 4516.62, + "end": 4518.8, + "probability": 0.9951 + }, + { + "start": 4518.96, + "end": 4523.62, + "probability": 0.9958 + }, + { + "start": 4524.28, + "end": 4527.28, + "probability": 0.9819 + }, + { + "start": 4527.28, + "end": 4530.42, + "probability": 0.9796 + }, + { + "start": 4532.02, + "end": 4532.18, + "probability": 0.2783 + }, + { + "start": 4532.88, + "end": 4534.3, + "probability": 0.9927 + }, + { + "start": 4535.84, + "end": 4536.64, + "probability": 0.8448 + }, + { + "start": 4536.94, + "end": 4537.94, + "probability": 0.7964 + }, + { + "start": 4538.0, + "end": 4541.92, + "probability": 0.9787 + }, + { + "start": 4541.92, + "end": 4546.0, + "probability": 0.9987 + }, + { + "start": 4546.1, + "end": 4547.54, + "probability": 0.9721 + }, + { + "start": 4548.24, + "end": 4553.8, + "probability": 0.7194 + }, + { + "start": 4554.42, + "end": 4555.86, + "probability": 0.8286 + }, + { + "start": 4556.1, + "end": 4560.04, + "probability": 0.8649 + }, + { + "start": 4560.04, + "end": 4564.22, + "probability": 0.9827 + }, + { + "start": 4564.92, + "end": 4566.9, + "probability": 0.7574 + }, + { + "start": 4567.86, + "end": 4568.82, + "probability": 0.7694 + }, + { + "start": 4569.04, + "end": 4570.82, + "probability": 0.4993 + }, + { + "start": 4570.98, + "end": 4572.3, + "probability": 0.9932 + }, + { + "start": 4574.02, + "end": 4578.66, + "probability": 0.9976 + }, + { + "start": 4578.66, + "end": 4584.86, + "probability": 0.9934 + }, + { + "start": 4586.42, + "end": 4589.04, + "probability": 0.9965 + }, + { + "start": 4590.72, + "end": 4594.7, + "probability": 0.9791 + }, + { + "start": 4595.26, + "end": 4598.16, + "probability": 0.8223 + }, + { + "start": 4598.38, + "end": 4601.5, + "probability": 0.9652 + }, + { + "start": 4602.5, + "end": 4603.54, + "probability": 0.8091 + }, + { + "start": 4603.66, + "end": 4607.58, + "probability": 0.958 + }, + { + "start": 4608.32, + "end": 4610.94, + "probability": 0.8376 + }, + { + "start": 4611.26, + "end": 4616.74, + "probability": 0.9894 + }, + { + "start": 4617.14, + "end": 4623.28, + "probability": 0.9629 + }, + { + "start": 4625.48, + "end": 4626.88, + "probability": 0.9765 + }, + { + "start": 4627.8, + "end": 4629.88, + "probability": 0.9932 + }, + { + "start": 4629.96, + "end": 4636.34, + "probability": 0.9641 + }, + { + "start": 4637.2, + "end": 4639.4, + "probability": 0.9873 + }, + { + "start": 4639.56, + "end": 4639.9, + "probability": 0.4834 + }, + { + "start": 4639.9, + "end": 4640.0, + "probability": 0.3704 + }, + { + "start": 4641.42, + "end": 4641.82, + "probability": 0.1985 + }, + { + "start": 4642.18, + "end": 4643.26, + "probability": 0.6484 + }, + { + "start": 4643.76, + "end": 4644.4, + "probability": 0.9042 + }, + { + "start": 4645.26, + "end": 4646.26, + "probability": 0.9735 + }, + { + "start": 4646.6, + "end": 4647.26, + "probability": 0.9359 + }, + { + "start": 4648.32, + "end": 4651.5, + "probability": 0.9861 + }, + { + "start": 4656.46, + "end": 4660.48, + "probability": 0.994 + }, + { + "start": 4660.94, + "end": 4661.98, + "probability": 0.8961 + }, + { + "start": 4662.2, + "end": 4663.1, + "probability": 0.7101 + }, + { + "start": 4663.5, + "end": 4665.31, + "probability": 0.9564 + }, + { + "start": 4666.16, + "end": 4667.12, + "probability": 0.9313 + }, + { + "start": 4667.48, + "end": 4672.52, + "probability": 0.9897 + }, + { + "start": 4672.64, + "end": 4677.24, + "probability": 0.986 + }, + { + "start": 4677.28, + "end": 4678.08, + "probability": 0.8881 + }, + { + "start": 4678.78, + "end": 4682.52, + "probability": 0.9912 + }, + { + "start": 4683.84, + "end": 4683.84, + "probability": 0.0435 + }, + { + "start": 4683.84, + "end": 4685.58, + "probability": 0.5039 + }, + { + "start": 4687.14, + "end": 4690.54, + "probability": 0.9449 + }, + { + "start": 4691.72, + "end": 4694.76, + "probability": 0.5816 + }, + { + "start": 4695.5, + "end": 4697.74, + "probability": 0.9633 + }, + { + "start": 4698.4, + "end": 4700.72, + "probability": 0.8613 + }, + { + "start": 4701.34, + "end": 4703.28, + "probability": 0.9736 + }, + { + "start": 4704.14, + "end": 4704.5, + "probability": 0.41 + }, + { + "start": 4704.64, + "end": 4705.08, + "probability": 0.9216 + }, + { + "start": 4705.28, + "end": 4706.76, + "probability": 0.7517 + }, + { + "start": 4707.18, + "end": 4708.06, + "probability": 0.8499 + }, + { + "start": 4709.14, + "end": 4711.34, + "probability": 0.9547 + }, + { + "start": 4711.56, + "end": 4716.1, + "probability": 0.9169 + }, + { + "start": 4717.1, + "end": 4719.0, + "probability": 0.6658 + }, + { + "start": 4719.1, + "end": 4720.56, + "probability": 0.9022 + }, + { + "start": 4720.6, + "end": 4722.84, + "probability": 0.941 + }, + { + "start": 4723.42, + "end": 4727.42, + "probability": 0.3779 + }, + { + "start": 4728.3, + "end": 4734.4, + "probability": 0.9749 + }, + { + "start": 4734.74, + "end": 4734.96, + "probability": 0.6898 + }, + { + "start": 4735.66, + "end": 4737.42, + "probability": 0.895 + }, + { + "start": 4737.58, + "end": 4740.18, + "probability": 0.7875 + }, + { + "start": 4741.14, + "end": 4742.59, + "probability": 0.8442 + }, + { + "start": 4744.84, + "end": 4748.94, + "probability": 0.5601 + }, + { + "start": 4749.02, + "end": 4749.93, + "probability": 0.058 + }, + { + "start": 4750.92, + "end": 4751.68, + "probability": 0.0086 + }, + { + "start": 4752.22, + "end": 4753.5, + "probability": 0.0832 + }, + { + "start": 4754.1, + "end": 4755.52, + "probability": 0.0913 + }, + { + "start": 4756.3, + "end": 4758.16, + "probability": 0.8243 + }, + { + "start": 4760.52, + "end": 4764.08, + "probability": 0.7583 + }, + { + "start": 4764.76, + "end": 4764.76, + "probability": 0.0134 + }, + { + "start": 4764.76, + "end": 4765.58, + "probability": 0.8455 + }, + { + "start": 4766.22, + "end": 4767.28, + "probability": 0.9829 + }, + { + "start": 4768.36, + "end": 4770.14, + "probability": 0.9286 + }, + { + "start": 4771.46, + "end": 4772.16, + "probability": 0.6927 + }, + { + "start": 4773.1, + "end": 4778.34, + "probability": 0.6739 + }, + { + "start": 4778.34, + "end": 4782.04, + "probability": 0.9327 + }, + { + "start": 4783.0, + "end": 4784.16, + "probability": 0.9994 + }, + { + "start": 4784.82, + "end": 4787.32, + "probability": 0.9995 + }, + { + "start": 4787.36, + "end": 4788.42, + "probability": 0.8666 + }, + { + "start": 4789.6, + "end": 4791.24, + "probability": 0.8028 + }, + { + "start": 4792.16, + "end": 4794.34, + "probability": 0.9872 + }, + { + "start": 4794.96, + "end": 4796.32, + "probability": 0.5602 + }, + { + "start": 4798.1, + "end": 4800.1, + "probability": 0.904 + }, + { + "start": 4800.72, + "end": 4802.41, + "probability": 0.9954 + }, + { + "start": 4803.22, + "end": 4804.76, + "probability": 0.8463 + }, + { + "start": 4805.7, + "end": 4810.34, + "probability": 0.9924 + }, + { + "start": 4811.04, + "end": 4813.64, + "probability": 0.9911 + }, + { + "start": 4815.28, + "end": 4818.34, + "probability": 0.8958 + }, + { + "start": 4819.4, + "end": 4820.73, + "probability": 0.9616 + }, + { + "start": 4822.1, + "end": 4823.03, + "probability": 0.9982 + }, + { + "start": 4823.82, + "end": 4824.84, + "probability": 0.9214 + }, + { + "start": 4824.92, + "end": 4826.92, + "probability": 0.9863 + }, + { + "start": 4827.52, + "end": 4829.58, + "probability": 0.9176 + }, + { + "start": 4830.24, + "end": 4831.6, + "probability": 0.7942 + }, + { + "start": 4832.04, + "end": 4832.64, + "probability": 0.6583 + }, + { + "start": 4832.74, + "end": 4832.84, + "probability": 0.8993 + }, + { + "start": 4832.9, + "end": 4838.22, + "probability": 0.9813 + }, + { + "start": 4838.24, + "end": 4839.26, + "probability": 0.6429 + }, + { + "start": 4839.92, + "end": 4840.82, + "probability": 0.6127 + }, + { + "start": 4842.52, + "end": 4843.0, + "probability": 0.2797 + }, + { + "start": 4843.0, + "end": 4843.0, + "probability": 0.1139 + }, + { + "start": 4843.0, + "end": 4843.94, + "probability": 0.8076 + }, + { + "start": 4844.04, + "end": 4846.11, + "probability": 0.9539 + }, + { + "start": 4846.46, + "end": 4849.58, + "probability": 0.8484 + }, + { + "start": 4849.96, + "end": 4851.88, + "probability": 0.8666 + }, + { + "start": 4851.94, + "end": 4852.98, + "probability": 0.7405 + }, + { + "start": 4853.26, + "end": 4853.36, + "probability": 0.1793 + }, + { + "start": 4853.36, + "end": 4854.4, + "probability": 0.0869 + }, + { + "start": 4854.4, + "end": 4855.06, + "probability": 0.0567 + }, + { + "start": 4855.06, + "end": 4855.92, + "probability": 0.0344 + }, + { + "start": 4856.08, + "end": 4856.86, + "probability": 0.4688 + }, + { + "start": 4856.9, + "end": 4858.62, + "probability": 0.5862 + }, + { + "start": 4859.19, + "end": 4859.42, + "probability": 0.2081 + }, + { + "start": 4859.42, + "end": 4860.14, + "probability": 0.8274 + }, + { + "start": 4860.94, + "end": 4860.94, + "probability": 0.2981 + }, + { + "start": 4860.94, + "end": 4860.94, + "probability": 0.2271 + }, + { + "start": 4860.94, + "end": 4860.94, + "probability": 0.2554 + }, + { + "start": 4860.94, + "end": 4863.84, + "probability": 0.8424 + }, + { + "start": 4864.08, + "end": 4866.5, + "probability": 0.9473 + }, + { + "start": 4867.2, + "end": 4869.84, + "probability": 0.0664 + }, + { + "start": 4870.5, + "end": 4871.48, + "probability": 0.3247 + }, + { + "start": 4871.6, + "end": 4872.16, + "probability": 0.4652 + }, + { + "start": 4872.28, + "end": 4875.52, + "probability": 0.7531 + }, + { + "start": 4875.86, + "end": 4880.82, + "probability": 0.9385 + }, + { + "start": 4881.18, + "end": 4882.76, + "probability": 0.4995 + }, + { + "start": 4884.26, + "end": 4884.46, + "probability": 0.1147 + }, + { + "start": 4884.46, + "end": 4887.19, + "probability": 0.175 + }, + { + "start": 4887.36, + "end": 4887.9, + "probability": 0.3444 + }, + { + "start": 4888.04, + "end": 4888.5, + "probability": 0.5448 + }, + { + "start": 4888.7, + "end": 4890.52, + "probability": 0.7495 + }, + { + "start": 4890.66, + "end": 4891.92, + "probability": 0.8004 + }, + { + "start": 4891.92, + "end": 4894.64, + "probability": 0.8297 + }, + { + "start": 4894.88, + "end": 4898.76, + "probability": 0.824 + }, + { + "start": 4898.9, + "end": 4900.34, + "probability": 0.7455 + }, + { + "start": 4900.62, + "end": 4904.66, + "probability": 0.9473 + }, + { + "start": 4904.78, + "end": 4905.3, + "probability": 0.8895 + }, + { + "start": 4905.86, + "end": 4906.92, + "probability": 0.8011 + }, + { + "start": 4906.94, + "end": 4912.8, + "probability": 0.958 + }, + { + "start": 4913.3, + "end": 4913.52, + "probability": 0.9552 + }, + { + "start": 4913.52, + "end": 4915.9, + "probability": 0.9922 + }, + { + "start": 4915.9, + "end": 4917.74, + "probability": 0.7903 + }, + { + "start": 4918.12, + "end": 4918.98, + "probability": 0.65 + }, + { + "start": 4919.1, + "end": 4921.32, + "probability": 0.8739 + }, + { + "start": 4921.7, + "end": 4926.48, + "probability": 0.7699 + }, + { + "start": 4926.66, + "end": 4928.9, + "probability": 0.9316 + }, + { + "start": 4928.92, + "end": 4931.54, + "probability": 0.9845 + }, + { + "start": 4931.64, + "end": 4935.24, + "probability": 0.8516 + }, + { + "start": 4935.8, + "end": 4935.8, + "probability": 0.1263 + }, + { + "start": 4935.8, + "end": 4939.1, + "probability": 0.8898 + }, + { + "start": 4939.68, + "end": 4941.32, + "probability": 0.099 + }, + { + "start": 4942.76, + "end": 4943.38, + "probability": 0.2002 + }, + { + "start": 4943.38, + "end": 4943.38, + "probability": 0.0047 + }, + { + "start": 4948.82, + "end": 4952.34, + "probability": 0.8253 + }, + { + "start": 4952.4, + "end": 4952.4, + "probability": 0.0861 + }, + { + "start": 4952.4, + "end": 4952.4, + "probability": 0.0119 + }, + { + "start": 4952.4, + "end": 4952.4, + "probability": 0.008 + }, + { + "start": 4952.4, + "end": 4956.48, + "probability": 0.0583 + }, + { + "start": 4956.48, + "end": 4956.52, + "probability": 0.1704 + }, + { + "start": 4956.52, + "end": 4956.52, + "probability": 0.102 + }, + { + "start": 4957.28, + "end": 4959.3, + "probability": 0.6243 + }, + { + "start": 4960.2, + "end": 4960.54, + "probability": 0.0105 + }, + { + "start": 4960.76, + "end": 4960.76, + "probability": 0.1276 + }, + { + "start": 4960.76, + "end": 4960.76, + "probability": 0.0577 + }, + { + "start": 4960.76, + "end": 4964.34, + "probability": 0.8614 + }, + { + "start": 4965.26, + "end": 4966.44, + "probability": 0.0314 + }, + { + "start": 4966.44, + "end": 4969.55, + "probability": 0.1564 + }, + { + "start": 4970.94, + "end": 4971.88, + "probability": 0.4991 + }, + { + "start": 4972.94, + "end": 4972.94, + "probability": 0.0223 + }, + { + "start": 4972.94, + "end": 4972.94, + "probability": 0.0749 + }, + { + "start": 4972.94, + "end": 4972.94, + "probability": 0.1113 + }, + { + "start": 4972.94, + "end": 4972.94, + "probability": 0.2655 + }, + { + "start": 4972.94, + "end": 4973.9, + "probability": 0.3152 + }, + { + "start": 4973.9, + "end": 4975.45, + "probability": 0.7557 + }, + { + "start": 4976.48, + "end": 4976.64, + "probability": 0.4638 + }, + { + "start": 4976.7, + "end": 4978.6, + "probability": 0.9233 + }, + { + "start": 4978.96, + "end": 4980.46, + "probability": 0.8929 + }, + { + "start": 4980.72, + "end": 4980.8, + "probability": 0.0163 + }, + { + "start": 4980.8, + "end": 4982.4, + "probability": 0.9165 + }, + { + "start": 4982.44, + "end": 4986.74, + "probability": 0.9797 + }, + { + "start": 4986.76, + "end": 4987.88, + "probability": 0.5072 + }, + { + "start": 4987.9, + "end": 4988.62, + "probability": 0.6252 + }, + { + "start": 4989.3, + "end": 4989.64, + "probability": 0.0628 + }, + { + "start": 4989.78, + "end": 4989.9, + "probability": 0.3372 + }, + { + "start": 4989.9, + "end": 4989.9, + "probability": 0.0742 + }, + { + "start": 4989.9, + "end": 4990.04, + "probability": 0.1128 + }, + { + "start": 4990.7, + "end": 4991.5, + "probability": 0.8617 + }, + { + "start": 4991.6, + "end": 4992.34, + "probability": 0.5991 + }, + { + "start": 4992.34, + "end": 4993.3, + "probability": 0.6583 + }, + { + "start": 4993.68, + "end": 4994.89, + "probability": 0.548 + }, + { + "start": 4995.78, + "end": 4997.58, + "probability": 0.6512 + }, + { + "start": 4998.12, + "end": 4998.66, + "probability": 0.0398 + }, + { + "start": 4998.66, + "end": 4998.7, + "probability": 0.0225 + }, + { + "start": 4998.7, + "end": 5000.9, + "probability": 0.3606 + }, + { + "start": 5001.04, + "end": 5002.38, + "probability": 0.7623 + }, + { + "start": 5002.38, + "end": 5003.42, + "probability": 0.7088 + }, + { + "start": 5003.42, + "end": 5005.3, + "probability": 0.5489 + }, + { + "start": 5005.4, + "end": 5006.54, + "probability": 0.3984 + }, + { + "start": 5006.54, + "end": 5008.3, + "probability": 0.8075 + }, + { + "start": 5008.8, + "end": 5013.04, + "probability": 0.8601 + }, + { + "start": 5013.04, + "end": 5013.08, + "probability": 0.1278 + }, + { + "start": 5013.08, + "end": 5014.26, + "probability": 0.5685 + }, + { + "start": 5015.58, + "end": 5016.0, + "probability": 0.5955 + }, + { + "start": 5016.06, + "end": 5016.72, + "probability": 0.6204 + }, + { + "start": 5017.19, + "end": 5020.02, + "probability": 0.7836 + }, + { + "start": 5020.28, + "end": 5023.48, + "probability": 0.8583 + }, + { + "start": 5023.7, + "end": 5026.3, + "probability": 0.9369 + }, + { + "start": 5026.3, + "end": 5030.26, + "probability": 0.9985 + }, + { + "start": 5030.26, + "end": 5030.28, + "probability": 0.003 + }, + { + "start": 5030.28, + "end": 5030.28, + "probability": 0.1318 + }, + { + "start": 5030.28, + "end": 5031.57, + "probability": 0.9932 + }, + { + "start": 5032.0, + "end": 5034.56, + "probability": 0.9884 + }, + { + "start": 5034.68, + "end": 5038.58, + "probability": 0.9953 + }, + { + "start": 5038.88, + "end": 5040.38, + "probability": 0.8925 + }, + { + "start": 5040.52, + "end": 5040.66, + "probability": 0.8745 + }, + { + "start": 5040.72, + "end": 5043.84, + "probability": 0.9926 + }, + { + "start": 5044.28, + "end": 5045.78, + "probability": 0.9836 + }, + { + "start": 5046.98, + "end": 5046.98, + "probability": 0.0332 + }, + { + "start": 5046.98, + "end": 5049.07, + "probability": 0.9287 + }, + { + "start": 5050.16, + "end": 5054.16, + "probability": 0.6499 + }, + { + "start": 5054.28, + "end": 5054.36, + "probability": 0.1062 + }, + { + "start": 5054.44, + "end": 5056.52, + "probability": 0.9693 + }, + { + "start": 5056.7, + "end": 5057.62, + "probability": 0.9917 + }, + { + "start": 5057.68, + "end": 5060.64, + "probability": 0.9706 + }, + { + "start": 5061.26, + "end": 5063.02, + "probability": 0.8381 + }, + { + "start": 5063.58, + "end": 5065.4, + "probability": 0.98 + }, + { + "start": 5065.92, + "end": 5066.34, + "probability": 0.9453 + }, + { + "start": 5066.4, + "end": 5067.41, + "probability": 0.9507 + }, + { + "start": 5067.88, + "end": 5068.58, + "probability": 0.8744 + }, + { + "start": 5068.72, + "end": 5068.88, + "probability": 0.9198 + }, + { + "start": 5069.22, + "end": 5071.0, + "probability": 0.946 + }, + { + "start": 5071.5, + "end": 5072.66, + "probability": 0.9877 + }, + { + "start": 5072.94, + "end": 5074.5, + "probability": 0.9803 + }, + { + "start": 5074.74, + "end": 5076.2, + "probability": 0.9954 + }, + { + "start": 5076.46, + "end": 5076.76, + "probability": 0.9828 + }, + { + "start": 5077.86, + "end": 5078.1, + "probability": 0.8427 + }, + { + "start": 5078.14, + "end": 5079.42, + "probability": 0.9818 + }, + { + "start": 5079.9, + "end": 5082.06, + "probability": 0.9512 + }, + { + "start": 5082.3, + "end": 5085.54, + "probability": 0.5002 + }, + { + "start": 5085.82, + "end": 5086.7, + "probability": 0.0444 + }, + { + "start": 5087.84, + "end": 5087.86, + "probability": 0.0298 + }, + { + "start": 5087.86, + "end": 5087.86, + "probability": 0.027 + }, + { + "start": 5087.86, + "end": 5087.86, + "probability": 0.0441 + }, + { + "start": 5087.86, + "end": 5090.88, + "probability": 0.8634 + }, + { + "start": 5091.2, + "end": 5091.2, + "probability": 0.1474 + }, + { + "start": 5091.2, + "end": 5096.34, + "probability": 0.9606 + }, + { + "start": 5096.58, + "end": 5099.72, + "probability": 0.7862 + }, + { + "start": 5099.74, + "end": 5100.25, + "probability": 0.8135 + }, + { + "start": 5100.96, + "end": 5103.16, + "probability": 0.3643 + }, + { + "start": 5103.16, + "end": 5103.96, + "probability": 0.9307 + }, + { + "start": 5104.24, + "end": 5105.1, + "probability": 0.8901 + }, + { + "start": 5105.98, + "end": 5107.77, + "probability": 0.9797 + }, + { + "start": 5107.92, + "end": 5110.84, + "probability": 0.9699 + }, + { + "start": 5111.1, + "end": 5114.3, + "probability": 0.9579 + }, + { + "start": 5114.36, + "end": 5114.64, + "probability": 0.0042 + }, + { + "start": 5114.64, + "end": 5117.88, + "probability": 0.5669 + }, + { + "start": 5118.52, + "end": 5121.22, + "probability": 0.6536 + }, + { + "start": 5122.22, + "end": 5122.42, + "probability": 0.6504 + }, + { + "start": 5122.46, + "end": 5123.48, + "probability": 0.8026 + }, + { + "start": 5123.66, + "end": 5125.18, + "probability": 0.6636 + }, + { + "start": 5125.24, + "end": 5125.78, + "probability": 0.7692 + }, + { + "start": 5125.9, + "end": 5127.28, + "probability": 0.9051 + }, + { + "start": 5127.76, + "end": 5129.36, + "probability": 0.5275 + }, + { + "start": 5129.44, + "end": 5129.44, + "probability": 0.1553 + }, + { + "start": 5129.44, + "end": 5131.58, + "probability": 0.7602 + }, + { + "start": 5133.78, + "end": 5134.46, + "probability": 0.2638 + }, + { + "start": 5135.18, + "end": 5139.52, + "probability": 0.7585 + }, + { + "start": 5139.98, + "end": 5141.12, + "probability": 0.615 + }, + { + "start": 5144.88, + "end": 5150.66, + "probability": 0.3789 + }, + { + "start": 5151.16, + "end": 5152.5, + "probability": 0.1187 + }, + { + "start": 5152.5, + "end": 5153.23, + "probability": 0.0338 + }, + { + "start": 5154.38, + "end": 5157.64, + "probability": 0.141 + }, + { + "start": 5171.6, + "end": 5173.34, + "probability": 0.0023 + }, + { + "start": 5178.78, + "end": 5180.56, + "probability": 0.0294 + }, + { + "start": 5187.66, + "end": 5189.02, + "probability": 0.0226 + }, + { + "start": 5191.36, + "end": 5192.88, + "probability": 0.0202 + }, + { + "start": 5195.4, + "end": 5200.78, + "probability": 0.0245 + }, + { + "start": 5201.74, + "end": 5202.92, + "probability": 0.0195 + }, + { + "start": 5203.18, + "end": 5206.5, + "probability": 0.1613 + }, + { + "start": 5206.68, + "end": 5207.74, + "probability": 0.0388 + }, + { + "start": 5208.36, + "end": 5208.46, + "probability": 0.0129 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5226.0, + "end": 5226.0, + "probability": 0.0 + }, + { + "start": 5236.08, + "end": 5237.94, + "probability": 0.0348 + }, + { + "start": 5238.26, + "end": 5239.4, + "probability": 0.1046 + }, + { + "start": 5239.4, + "end": 5241.03, + "probability": 0.0327 + }, + { + "start": 5241.88, + "end": 5243.18, + "probability": 0.148 + }, + { + "start": 5245.48, + "end": 5250.06, + "probability": 0.2028 + }, + { + "start": 5250.74, + "end": 5252.56, + "probability": 0.0903 + }, + { + "start": 5254.09, + "end": 5255.54, + "probability": 0.0225 + }, + { + "start": 5257.0, + "end": 5258.65, + "probability": 0.0613 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.0, + "end": 5366.0, + "probability": 0.0 + }, + { + "start": 5366.2, + "end": 5367.3, + "probability": 0.6047 + }, + { + "start": 5368.72, + "end": 5372.56, + "probability": 0.9969 + }, + { + "start": 5373.52, + "end": 5378.66, + "probability": 0.9954 + }, + { + "start": 5378.66, + "end": 5384.44, + "probability": 0.9744 + }, + { + "start": 5385.36, + "end": 5385.72, + "probability": 0.8336 + }, + { + "start": 5385.96, + "end": 5390.36, + "probability": 0.9803 + }, + { + "start": 5390.36, + "end": 5394.0, + "probability": 0.9936 + }, + { + "start": 5394.58, + "end": 5394.98, + "probability": 0.756 + }, + { + "start": 5396.18, + "end": 5396.56, + "probability": 0.4927 + }, + { + "start": 5397.7, + "end": 5404.22, + "probability": 0.9756 + }, + { + "start": 5406.16, + "end": 5409.78, + "probability": 0.9869 + }, + { + "start": 5409.78, + "end": 5415.6, + "probability": 0.9991 + }, + { + "start": 5416.34, + "end": 5418.22, + "probability": 0.8247 + }, + { + "start": 5419.54, + "end": 5424.54, + "probability": 0.9036 + }, + { + "start": 5424.64, + "end": 5426.48, + "probability": 0.9951 + }, + { + "start": 5427.62, + "end": 5428.84, + "probability": 0.9382 + }, + { + "start": 5429.42, + "end": 5433.04, + "probability": 0.9891 + }, + { + "start": 5433.54, + "end": 5434.64, + "probability": 0.8274 + }, + { + "start": 5434.7, + "end": 5435.56, + "probability": 0.8912 + }, + { + "start": 5435.64, + "end": 5439.08, + "probability": 0.9712 + }, + { + "start": 5439.88, + "end": 5442.86, + "probability": 0.9712 + }, + { + "start": 5442.96, + "end": 5444.6, + "probability": 0.9808 + }, + { + "start": 5445.24, + "end": 5450.14, + "probability": 0.9612 + }, + { + "start": 5450.54, + "end": 5456.42, + "probability": 0.9796 + }, + { + "start": 5456.54, + "end": 5458.48, + "probability": 0.8685 + }, + { + "start": 5459.74, + "end": 5461.44, + "probability": 0.8765 + }, + { + "start": 5461.54, + "end": 5464.76, + "probability": 0.9873 + }, + { + "start": 5465.28, + "end": 5466.78, + "probability": 0.9751 + }, + { + "start": 5467.38, + "end": 5469.46, + "probability": 0.9585 + }, + { + "start": 5469.88, + "end": 5473.16, + "probability": 0.8094 + }, + { + "start": 5474.16, + "end": 5476.96, + "probability": 0.9584 + }, + { + "start": 5477.34, + "end": 5484.58, + "probability": 0.9933 + }, + { + "start": 5485.26, + "end": 5486.98, + "probability": 0.9984 + }, + { + "start": 5487.06, + "end": 5489.4, + "probability": 0.9976 + }, + { + "start": 5490.62, + "end": 5495.34, + "probability": 0.9927 + }, + { + "start": 5495.34, + "end": 5499.18, + "probability": 0.9676 + }, + { + "start": 5501.36, + "end": 5504.36, + "probability": 0.9797 + }, + { + "start": 5504.88, + "end": 5507.24, + "probability": 0.9782 + }, + { + "start": 5508.3, + "end": 5512.28, + "probability": 0.9978 + }, + { + "start": 5512.88, + "end": 5518.54, + "probability": 0.9775 + }, + { + "start": 5519.02, + "end": 5521.18, + "probability": 0.7499 + }, + { + "start": 5521.74, + "end": 5523.52, + "probability": 0.998 + }, + { + "start": 5524.28, + "end": 5527.9, + "probability": 0.9786 + }, + { + "start": 5528.76, + "end": 5532.72, + "probability": 0.9919 + }, + { + "start": 5534.26, + "end": 5537.22, + "probability": 0.7114 + }, + { + "start": 5537.8, + "end": 5542.74, + "probability": 0.9782 + }, + { + "start": 5542.8, + "end": 5545.55, + "probability": 0.8481 + }, + { + "start": 5546.68, + "end": 5551.3, + "probability": 0.9926 + }, + { + "start": 5552.02, + "end": 5553.34, + "probability": 0.9969 + }, + { + "start": 5554.6, + "end": 5556.32, + "probability": 0.9902 + }, + { + "start": 5557.28, + "end": 5559.8, + "probability": 0.9854 + }, + { + "start": 5560.28, + "end": 5564.4, + "probability": 0.9982 + }, + { + "start": 5564.74, + "end": 5570.1, + "probability": 0.9765 + }, + { + "start": 5570.68, + "end": 5574.02, + "probability": 0.9861 + }, + { + "start": 5574.4, + "end": 5581.06, + "probability": 0.9813 + }, + { + "start": 5581.8, + "end": 5582.5, + "probability": 0.774 + }, + { + "start": 5583.34, + "end": 5588.08, + "probability": 0.9796 + }, + { + "start": 5588.08, + "end": 5592.7, + "probability": 0.9781 + }, + { + "start": 5593.6, + "end": 5595.1, + "probability": 0.7911 + }, + { + "start": 5595.18, + "end": 5597.1, + "probability": 0.9969 + }, + { + "start": 5597.88, + "end": 5602.26, + "probability": 0.8245 + }, + { + "start": 5603.12, + "end": 5606.08, + "probability": 0.9602 + }, + { + "start": 5606.64, + "end": 5610.78, + "probability": 0.9512 + }, + { + "start": 5611.14, + "end": 5611.34, + "probability": 0.6815 + }, + { + "start": 5611.9, + "end": 5613.02, + "probability": 0.5358 + }, + { + "start": 5613.16, + "end": 5614.98, + "probability": 0.8434 + }, + { + "start": 5615.72, + "end": 5617.42, + "probability": 0.653 + }, + { + "start": 5618.97, + "end": 5621.66, + "probability": 0.8773 + }, + { + "start": 5630.12, + "end": 5632.26, + "probability": 0.7105 + }, + { + "start": 5632.8, + "end": 5633.74, + "probability": 0.576 + }, + { + "start": 5633.86, + "end": 5634.6, + "probability": 0.9739 + }, + { + "start": 5636.8, + "end": 5637.0, + "probability": 0.1707 + }, + { + "start": 5637.0, + "end": 5637.0, + "probability": 0.2287 + }, + { + "start": 5637.0, + "end": 5639.02, + "probability": 0.9691 + }, + { + "start": 5639.36, + "end": 5647.42, + "probability": 0.9933 + }, + { + "start": 5647.42, + "end": 5653.94, + "probability": 0.9974 + }, + { + "start": 5654.66, + "end": 5657.6, + "probability": 0.9893 + }, + { + "start": 5657.86, + "end": 5659.86, + "probability": 0.7551 + }, + { + "start": 5660.5, + "end": 5663.04, + "probability": 0.9688 + }, + { + "start": 5663.72, + "end": 5668.02, + "probability": 0.9802 + }, + { + "start": 5668.02, + "end": 5671.04, + "probability": 0.9976 + }, + { + "start": 5671.56, + "end": 5672.66, + "probability": 0.9827 + }, + { + "start": 5673.4, + "end": 5674.86, + "probability": 0.6329 + }, + { + "start": 5675.5, + "end": 5683.22, + "probability": 0.9601 + }, + { + "start": 5683.22, + "end": 5689.67, + "probability": 0.9965 + }, + { + "start": 5690.78, + "end": 5697.48, + "probability": 0.989 + }, + { + "start": 5697.6, + "end": 5698.22, + "probability": 0.8715 + }, + { + "start": 5698.32, + "end": 5698.94, + "probability": 0.6914 + }, + { + "start": 5699.42, + "end": 5702.38, + "probability": 0.9113 + }, + { + "start": 5702.96, + "end": 5706.62, + "probability": 0.9735 + }, + { + "start": 5706.72, + "end": 5709.5, + "probability": 0.9901 + }, + { + "start": 5710.22, + "end": 5711.16, + "probability": 0.9316 + }, + { + "start": 5711.4, + "end": 5713.6, + "probability": 0.8364 + }, + { + "start": 5713.82, + "end": 5716.46, + "probability": 0.9769 + }, + { + "start": 5717.24, + "end": 5722.86, + "probability": 0.9749 + }, + { + "start": 5722.9, + "end": 5726.74, + "probability": 0.9979 + }, + { + "start": 5727.68, + "end": 5731.36, + "probability": 0.9919 + }, + { + "start": 5731.36, + "end": 5736.34, + "probability": 0.9845 + }, + { + "start": 5736.46, + "end": 5737.96, + "probability": 0.9827 + }, + { + "start": 5738.06, + "end": 5739.36, + "probability": 0.8462 + }, + { + "start": 5739.64, + "end": 5740.42, + "probability": 0.9074 + }, + { + "start": 5741.1, + "end": 5744.0, + "probability": 0.5313 + }, + { + "start": 5744.26, + "end": 5747.02, + "probability": 0.9504 + }, + { + "start": 5747.42, + "end": 5751.4, + "probability": 0.9668 + }, + { + "start": 5751.4, + "end": 5754.96, + "probability": 0.9985 + }, + { + "start": 5755.38, + "end": 5756.56, + "probability": 0.9052 + }, + { + "start": 5757.33, + "end": 5762.46, + "probability": 0.8821 + }, + { + "start": 5762.7, + "end": 5766.96, + "probability": 0.8239 + }, + { + "start": 5767.24, + "end": 5767.44, + "probability": 0.7234 + }, + { + "start": 5768.66, + "end": 5770.28, + "probability": 0.7118 + }, + { + "start": 5770.66, + "end": 5773.02, + "probability": 0.7718 + }, + { + "start": 5773.04, + "end": 5775.0, + "probability": 0.9937 + }, + { + "start": 5775.02, + "end": 5775.93, + "probability": 0.2654 + }, + { + "start": 5776.78, + "end": 5778.54, + "probability": 0.0693 + }, + { + "start": 5778.72, + "end": 5780.56, + "probability": 0.6326 + }, + { + "start": 5781.2, + "end": 5785.88, + "probability": 0.9106 + }, + { + "start": 5785.88, + "end": 5788.58, + "probability": 0.8013 + }, + { + "start": 5791.24, + "end": 5793.88, + "probability": 0.4731 + }, + { + "start": 5795.2, + "end": 5797.64, + "probability": 0.5008 + }, + { + "start": 5797.92, + "end": 5799.22, + "probability": 0.9379 + }, + { + "start": 5799.3, + "end": 5799.9, + "probability": 0.916 + }, + { + "start": 5810.74, + "end": 5811.52, + "probability": 0.4989 + }, + { + "start": 5811.52, + "end": 5812.6, + "probability": 0.4569 + }, + { + "start": 5815.98, + "end": 5817.3, + "probability": 0.7175 + }, + { + "start": 5818.38, + "end": 5821.76, + "probability": 0.9424 + }, + { + "start": 5825.96, + "end": 5828.78, + "probability": 0.8089 + }, + { + "start": 5828.78, + "end": 5831.62, + "probability": 0.7946 + }, + { + "start": 5834.0, + "end": 5835.78, + "probability": 0.936 + }, + { + "start": 5837.18, + "end": 5838.73, + "probability": 0.8906 + }, + { + "start": 5838.94, + "end": 5840.27, + "probability": 0.9835 + }, + { + "start": 5841.74, + "end": 5844.54, + "probability": 0.985 + }, + { + "start": 5846.6, + "end": 5852.04, + "probability": 0.96 + }, + { + "start": 5853.16, + "end": 5856.34, + "probability": 0.9802 + }, + { + "start": 5858.18, + "end": 5861.86, + "probability": 0.673 + }, + { + "start": 5862.42, + "end": 5863.12, + "probability": 0.7216 + }, + { + "start": 5863.4, + "end": 5867.08, + "probability": 0.6676 + }, + { + "start": 5867.08, + "end": 5870.84, + "probability": 0.9951 + }, + { + "start": 5870.96, + "end": 5871.86, + "probability": 0.9917 + }, + { + "start": 5873.23, + "end": 5877.68, + "probability": 0.6203 + }, + { + "start": 5878.58, + "end": 5881.54, + "probability": 0.9756 + }, + { + "start": 5881.54, + "end": 5885.85, + "probability": 0.9939 + }, + { + "start": 5887.22, + "end": 5888.08, + "probability": 0.5962 + }, + { + "start": 5889.54, + "end": 5895.4, + "probability": 0.7946 + }, + { + "start": 5895.66, + "end": 5896.54, + "probability": 0.8857 + }, + { + "start": 5898.38, + "end": 5903.16, + "probability": 0.863 + }, + { + "start": 5904.0, + "end": 5910.12, + "probability": 0.7941 + }, + { + "start": 5910.88, + "end": 5912.88, + "probability": 0.8554 + }, + { + "start": 5913.68, + "end": 5916.54, + "probability": 0.8968 + }, + { + "start": 5917.52, + "end": 5922.82, + "probability": 0.9689 + }, + { + "start": 5923.3, + "end": 5925.18, + "probability": 0.8643 + }, + { + "start": 5926.2, + "end": 5927.36, + "probability": 0.9907 + }, + { + "start": 5928.2, + "end": 5933.14, + "probability": 0.9807 + }, + { + "start": 5934.48, + "end": 5940.78, + "probability": 0.9893 + }, + { + "start": 5941.74, + "end": 5943.34, + "probability": 0.5811 + }, + { + "start": 5943.5, + "end": 5944.92, + "probability": 0.8416 + }, + { + "start": 5945.6, + "end": 5947.66, + "probability": 0.8352 + }, + { + "start": 5949.14, + "end": 5950.88, + "probability": 0.9915 + }, + { + "start": 5950.96, + "end": 5953.36, + "probability": 0.9911 + }, + { + "start": 5953.66, + "end": 5956.78, + "probability": 0.8695 + }, + { + "start": 5956.88, + "end": 5958.79, + "probability": 0.9561 + }, + { + "start": 5959.82, + "end": 5965.86, + "probability": 0.8943 + }, + { + "start": 5965.86, + "end": 5967.44, + "probability": 0.7399 + }, + { + "start": 5967.98, + "end": 5968.78, + "probability": 0.5854 + }, + { + "start": 5968.92, + "end": 5969.58, + "probability": 0.9824 + }, + { + "start": 5969.72, + "end": 5974.04, + "probability": 0.9884 + }, + { + "start": 5975.06, + "end": 5976.7, + "probability": 0.5636 + }, + { + "start": 5977.74, + "end": 5983.42, + "probability": 0.6688 + }, + { + "start": 5983.8, + "end": 5986.82, + "probability": 0.972 + }, + { + "start": 5988.1, + "end": 5989.56, + "probability": 0.7426 + }, + { + "start": 5990.16, + "end": 5994.6, + "probability": 0.9775 + }, + { + "start": 5994.74, + "end": 5997.28, + "probability": 0.6953 + }, + { + "start": 5997.3, + "end": 5998.8, + "probability": 0.7512 + }, + { + "start": 5999.56, + "end": 6000.02, + "probability": 0.9545 + }, + { + "start": 6001.66, + "end": 6003.06, + "probability": 0.9658 + }, + { + "start": 6003.92, + "end": 6004.78, + "probability": 0.9414 + }, + { + "start": 6004.96, + "end": 6006.44, + "probability": 0.7837 + }, + { + "start": 6006.58, + "end": 6009.86, + "probability": 0.8781 + }, + { + "start": 6010.0, + "end": 6010.44, + "probability": 0.6642 + }, + { + "start": 6010.62, + "end": 6011.2, + "probability": 0.4604 + }, + { + "start": 6011.72, + "end": 6016.02, + "probability": 0.9941 + }, + { + "start": 6016.4, + "end": 6017.28, + "probability": 0.9462 + }, + { + "start": 6017.36, + "end": 6018.42, + "probability": 0.7399 + }, + { + "start": 6018.86, + "end": 6019.96, + "probability": 0.7007 + }, + { + "start": 6020.0, + "end": 6021.16, + "probability": 0.9743 + }, + { + "start": 6023.28, + "end": 6025.74, + "probability": 0.9223 + }, + { + "start": 6025.86, + "end": 6026.66, + "probability": 0.9932 + }, + { + "start": 6027.0, + "end": 6027.18, + "probability": 0.5486 + }, + { + "start": 6027.32, + "end": 6028.9, + "probability": 0.9852 + }, + { + "start": 6029.34, + "end": 6033.84, + "probability": 0.9531 + }, + { + "start": 6035.52, + "end": 6037.54, + "probability": 0.6816 + }, + { + "start": 6037.64, + "end": 6040.04, + "probability": 0.9414 + }, + { + "start": 6040.78, + "end": 6044.2, + "probability": 0.747 + }, + { + "start": 6045.48, + "end": 6046.94, + "probability": 0.4708 + }, + { + "start": 6050.48, + "end": 6051.42, + "probability": 0.043 + }, + { + "start": 6055.34, + "end": 6056.02, + "probability": 0.2532 + }, + { + "start": 6056.02, + "end": 6058.44, + "probability": 0.6814 + }, + { + "start": 6058.96, + "end": 6061.32, + "probability": 0.7749 + }, + { + "start": 6063.48, + "end": 6066.22, + "probability": 0.7168 + }, + { + "start": 6068.18, + "end": 6073.24, + "probability": 0.9951 + }, + { + "start": 6073.81, + "end": 6080.98, + "probability": 0.9826 + }, + { + "start": 6082.84, + "end": 6082.84, + "probability": 0.1359 + }, + { + "start": 6082.84, + "end": 6084.13, + "probability": 0.959 + }, + { + "start": 6084.32, + "end": 6085.74, + "probability": 0.6411 + }, + { + "start": 6086.18, + "end": 6087.5, + "probability": 0.9885 + }, + { + "start": 6088.4, + "end": 6090.52, + "probability": 0.0636 + }, + { + "start": 6090.52, + "end": 6090.74, + "probability": 0.105 + }, + { + "start": 6090.74, + "end": 6092.1, + "probability": 0.0977 + }, + { + "start": 6092.2, + "end": 6092.78, + "probability": 0.4351 + }, + { + "start": 6092.9, + "end": 6097.28, + "probability": 0.235 + }, + { + "start": 6097.28, + "end": 6103.2, + "probability": 0.3793 + }, + { + "start": 6103.68, + "end": 6109.98, + "probability": 0.9768 + }, + { + "start": 6110.62, + "end": 6113.48, + "probability": 0.8118 + }, + { + "start": 6114.0, + "end": 6116.1, + "probability": 0.9692 + }, + { + "start": 6116.84, + "end": 6121.42, + "probability": 0.9422 + }, + { + "start": 6123.02, + "end": 6128.0, + "probability": 0.9619 + }, + { + "start": 6128.9, + "end": 6132.92, + "probability": 0.4844 + }, + { + "start": 6133.22, + "end": 6135.72, + "probability": 0.9963 + }, + { + "start": 6136.78, + "end": 6139.26, + "probability": 0.8218 + }, + { + "start": 6139.92, + "end": 6143.9, + "probability": 0.9561 + }, + { + "start": 6146.64, + "end": 6148.12, + "probability": 0.9924 + }, + { + "start": 6148.24, + "end": 6150.14, + "probability": 0.9472 + }, + { + "start": 6151.08, + "end": 6155.56, + "probability": 0.9741 + }, + { + "start": 6155.56, + "end": 6161.38, + "probability": 0.9324 + }, + { + "start": 6162.04, + "end": 6163.6, + "probability": 0.7589 + }, + { + "start": 6164.44, + "end": 6165.08, + "probability": 0.6581 + }, + { + "start": 6165.76, + "end": 6166.93, + "probability": 0.9843 + }, + { + "start": 6167.94, + "end": 6172.32, + "probability": 0.996 + }, + { + "start": 6173.14, + "end": 6175.18, + "probability": 0.9546 + }, + { + "start": 6176.26, + "end": 6179.66, + "probability": 0.79 + }, + { + "start": 6182.32, + "end": 6187.84, + "probability": 0.7506 + }, + { + "start": 6188.42, + "end": 6190.4, + "probability": 0.8114 + }, + { + "start": 6191.0, + "end": 6192.96, + "probability": 0.9311 + }, + { + "start": 6193.64, + "end": 6197.1, + "probability": 0.895 + }, + { + "start": 6197.84, + "end": 6199.8, + "probability": 0.9348 + }, + { + "start": 6199.96, + "end": 6203.0, + "probability": 0.9604 + }, + { + "start": 6203.76, + "end": 6207.22, + "probability": 0.9944 + }, + { + "start": 6209.42, + "end": 6209.88, + "probability": 0.7173 + }, + { + "start": 6210.0, + "end": 6212.46, + "probability": 0.4143 + }, + { + "start": 6212.5, + "end": 6213.75, + "probability": 0.5773 + }, + { + "start": 6214.64, + "end": 6215.68, + "probability": 0.7984 + }, + { + "start": 6216.72, + "end": 6220.96, + "probability": 0.977 + }, + { + "start": 6221.78, + "end": 6223.7, + "probability": 0.9096 + }, + { + "start": 6224.84, + "end": 6231.8, + "probability": 0.9574 + }, + { + "start": 6231.86, + "end": 6232.92, + "probability": 0.7435 + }, + { + "start": 6233.72, + "end": 6235.12, + "probability": 0.8975 + }, + { + "start": 6236.12, + "end": 6237.98, + "probability": 0.9007 + }, + { + "start": 6239.18, + "end": 6242.3, + "probability": 0.7269 + }, + { + "start": 6243.04, + "end": 6245.04, + "probability": 0.9916 + }, + { + "start": 6245.68, + "end": 6247.96, + "probability": 0.9434 + }, + { + "start": 6248.72, + "end": 6250.66, + "probability": 0.9514 + }, + { + "start": 6251.24, + "end": 6253.37, + "probability": 0.9752 + }, + { + "start": 6254.34, + "end": 6255.5, + "probability": 0.5572 + }, + { + "start": 6255.72, + "end": 6257.2, + "probability": 0.9151 + }, + { + "start": 6257.24, + "end": 6258.48, + "probability": 0.916 + }, + { + "start": 6259.34, + "end": 6262.08, + "probability": 0.9928 + }, + { + "start": 6262.6, + "end": 6267.06, + "probability": 0.9109 + }, + { + "start": 6267.06, + "end": 6271.52, + "probability": 0.8958 + }, + { + "start": 6271.66, + "end": 6271.92, + "probability": 0.655 + }, + { + "start": 6272.62, + "end": 6274.12, + "probability": 0.75 + }, + { + "start": 6274.32, + "end": 6275.64, + "probability": 0.6638 + }, + { + "start": 6276.64, + "end": 6277.28, + "probability": 0.6113 + }, + { + "start": 6279.58, + "end": 6281.04, + "probability": 0.9416 + }, + { + "start": 6290.1, + "end": 6290.52, + "probability": 0.4594 + }, + { + "start": 6290.62, + "end": 6291.16, + "probability": 0.717 + }, + { + "start": 6292.26, + "end": 6294.18, + "probability": 0.5569 + }, + { + "start": 6295.16, + "end": 6297.02, + "probability": 0.9564 + }, + { + "start": 6297.12, + "end": 6299.7, + "probability": 0.8765 + }, + { + "start": 6300.12, + "end": 6300.9, + "probability": 0.7444 + }, + { + "start": 6300.94, + "end": 6302.74, + "probability": 0.9495 + }, + { + "start": 6304.1, + "end": 6305.28, + "probability": 0.7966 + }, + { + "start": 6306.56, + "end": 6310.2, + "probability": 0.8696 + }, + { + "start": 6310.28, + "end": 6311.16, + "probability": 0.2433 + }, + { + "start": 6312.78, + "end": 6318.96, + "probability": 0.8818 + }, + { + "start": 6319.78, + "end": 6321.1, + "probability": 0.7152 + }, + { + "start": 6323.72, + "end": 6326.3, + "probability": 0.839 + }, + { + "start": 6326.74, + "end": 6328.42, + "probability": 0.9924 + }, + { + "start": 6328.42, + "end": 6330.76, + "probability": 0.9918 + }, + { + "start": 6331.84, + "end": 6334.14, + "probability": 0.6335 + }, + { + "start": 6335.1, + "end": 6336.3, + "probability": 0.9897 + }, + { + "start": 6336.98, + "end": 6338.22, + "probability": 0.9806 + }, + { + "start": 6338.62, + "end": 6339.6, + "probability": 0.9076 + }, + { + "start": 6339.68, + "end": 6340.24, + "probability": 0.6593 + }, + { + "start": 6340.38, + "end": 6341.18, + "probability": 0.4974 + }, + { + "start": 6341.32, + "end": 6344.28, + "probability": 0.8386 + }, + { + "start": 6345.34, + "end": 6346.41, + "probability": 0.9238 + }, + { + "start": 6347.5, + "end": 6348.44, + "probability": 0.9912 + }, + { + "start": 6349.06, + "end": 6350.64, + "probability": 0.9625 + }, + { + "start": 6351.22, + "end": 6353.18, + "probability": 0.835 + }, + { + "start": 6354.4, + "end": 6358.56, + "probability": 0.9969 + }, + { + "start": 6359.78, + "end": 6361.9, + "probability": 0.7796 + }, + { + "start": 6362.9, + "end": 6365.5, + "probability": 0.9288 + }, + { + "start": 6366.08, + "end": 6368.2, + "probability": 0.9928 + }, + { + "start": 6368.26, + "end": 6369.4, + "probability": 0.8299 + }, + { + "start": 6370.04, + "end": 6373.88, + "probability": 0.4401 + }, + { + "start": 6374.08, + "end": 6375.75, + "probability": 0.7688 + }, + { + "start": 6376.4, + "end": 6378.18, + "probability": 0.7959 + }, + { + "start": 6378.32, + "end": 6381.54, + "probability": 0.8655 + }, + { + "start": 6381.58, + "end": 6385.45, + "probability": 0.9873 + }, + { + "start": 6385.58, + "end": 6390.88, + "probability": 0.9964 + }, + { + "start": 6391.26, + "end": 6392.9, + "probability": 0.9934 + }, + { + "start": 6393.42, + "end": 6395.7, + "probability": 0.9212 + }, + { + "start": 6396.44, + "end": 6397.04, + "probability": 0.7481 + }, + { + "start": 6397.8, + "end": 6398.56, + "probability": 0.6752 + }, + { + "start": 6398.6, + "end": 6399.96, + "probability": 0.9068 + }, + { + "start": 6400.04, + "end": 6401.7, + "probability": 0.9087 + }, + { + "start": 6402.02, + "end": 6403.92, + "probability": 0.96 + }, + { + "start": 6404.08, + "end": 6404.92, + "probability": 0.6932 + }, + { + "start": 6405.42, + "end": 6406.9, + "probability": 0.997 + }, + { + "start": 6407.0, + "end": 6409.18, + "probability": 0.8406 + }, + { + "start": 6409.3, + "end": 6413.72, + "probability": 0.916 + }, + { + "start": 6414.22, + "end": 6415.5, + "probability": 0.9987 + }, + { + "start": 6415.58, + "end": 6415.78, + "probability": 0.797 + }, + { + "start": 6415.8, + "end": 6418.94, + "probability": 0.9188 + }, + { + "start": 6419.42, + "end": 6419.98, + "probability": 0.6661 + }, + { + "start": 6420.02, + "end": 6423.92, + "probability": 0.877 + }, + { + "start": 6423.92, + "end": 6426.04, + "probability": 0.9964 + }, + { + "start": 6427.12, + "end": 6428.36, + "probability": 0.9401 + }, + { + "start": 6428.9, + "end": 6431.98, + "probability": 0.9395 + }, + { + "start": 6432.44, + "end": 6433.61, + "probability": 0.5133 + }, + { + "start": 6434.24, + "end": 6434.86, + "probability": 0.41 + }, + { + "start": 6435.12, + "end": 6436.46, + "probability": 0.7566 + }, + { + "start": 6436.84, + "end": 6439.58, + "probability": 0.8857 + }, + { + "start": 6440.08, + "end": 6442.88, + "probability": 0.9639 + }, + { + "start": 6443.48, + "end": 6445.5, + "probability": 0.2717 + }, + { + "start": 6445.68, + "end": 6445.92, + "probability": 0.1042 + }, + { + "start": 6446.48, + "end": 6448.02, + "probability": 0.8135 + }, + { + "start": 6448.42, + "end": 6450.36, + "probability": 0.8699 + }, + { + "start": 6450.42, + "end": 6452.16, + "probability": 0.9911 + }, + { + "start": 6452.56, + "end": 6456.56, + "probability": 0.956 + }, + { + "start": 6457.26, + "end": 6458.82, + "probability": 0.79 + }, + { + "start": 6459.04, + "end": 6460.06, + "probability": 0.2096 + }, + { + "start": 6460.18, + "end": 6464.1, + "probability": 0.8801 + }, + { + "start": 6464.12, + "end": 6469.04, + "probability": 0.9111 + }, + { + "start": 6469.46, + "end": 6471.48, + "probability": 0.9709 + }, + { + "start": 6471.8, + "end": 6474.68, + "probability": 0.9773 + }, + { + "start": 6475.12, + "end": 6477.76, + "probability": 0.8047 + }, + { + "start": 6477.86, + "end": 6479.6, + "probability": 0.9957 + }, + { + "start": 6479.68, + "end": 6481.96, + "probability": 0.855 + }, + { + "start": 6482.34, + "end": 6482.82, + "probability": 0.6409 + }, + { + "start": 6482.9, + "end": 6483.0, + "probability": 0.812 + }, + { + "start": 6483.1, + "end": 6483.66, + "probability": 0.816 + }, + { + "start": 6483.92, + "end": 6484.48, + "probability": 0.8362 + }, + { + "start": 6484.58, + "end": 6485.3, + "probability": 0.8019 + }, + { + "start": 6485.34, + "end": 6485.68, + "probability": 0.7603 + }, + { + "start": 6485.9, + "end": 6486.95, + "probability": 0.9578 + }, + { + "start": 6487.42, + "end": 6487.68, + "probability": 0.0543 + }, + { + "start": 6487.68, + "end": 6487.68, + "probability": 0.213 + }, + { + "start": 6487.68, + "end": 6488.12, + "probability": 0.2479 + }, + { + "start": 6488.54, + "end": 6490.0, + "probability": 0.1973 + }, + { + "start": 6490.02, + "end": 6492.8, + "probability": 0.5504 + }, + { + "start": 6492.96, + "end": 6493.12, + "probability": 0.2526 + }, + { + "start": 6494.2, + "end": 6494.71, + "probability": 0.6279 + }, + { + "start": 6494.82, + "end": 6496.82, + "probability": 0.9798 + }, + { + "start": 6497.32, + "end": 6498.18, + "probability": 0.782 + }, + { + "start": 6498.7, + "end": 6499.08, + "probability": 0.9294 + }, + { + "start": 6501.2, + "end": 6501.6, + "probability": 0.3916 + }, + { + "start": 6501.64, + "end": 6502.98, + "probability": 0.8285 + }, + { + "start": 6503.18, + "end": 6505.42, + "probability": 0.6905 + }, + { + "start": 6505.56, + "end": 6506.7, + "probability": 0.5018 + }, + { + "start": 6508.82, + "end": 6509.38, + "probability": 0.2233 + }, + { + "start": 6512.16, + "end": 6515.34, + "probability": 0.7444 + }, + { + "start": 6515.46, + "end": 6521.3, + "probability": 0.6112 + }, + { + "start": 6521.38, + "end": 6522.24, + "probability": 0.5209 + }, + { + "start": 6522.66, + "end": 6523.8, + "probability": 0.6594 + }, + { + "start": 6525.88, + "end": 6528.48, + "probability": 0.767 + }, + { + "start": 6529.14, + "end": 6530.66, + "probability": 0.7952 + }, + { + "start": 6530.74, + "end": 6531.62, + "probability": 0.9122 + }, + { + "start": 6531.8, + "end": 6536.24, + "probability": 0.9618 + }, + { + "start": 6537.74, + "end": 6538.48, + "probability": 0.5488 + }, + { + "start": 6538.56, + "end": 6542.4, + "probability": 0.9974 + }, + { + "start": 6543.52, + "end": 6546.31, + "probability": 0.9942 + }, + { + "start": 6546.4, + "end": 6546.56, + "probability": 0.5455 + }, + { + "start": 6546.56, + "end": 6546.78, + "probability": 0.5025 + }, + { + "start": 6546.82, + "end": 6549.22, + "probability": 0.9799 + }, + { + "start": 6549.3, + "end": 6550.09, + "probability": 0.6558 + }, + { + "start": 6551.94, + "end": 6553.96, + "probability": 0.9507 + }, + { + "start": 6554.32, + "end": 6557.98, + "probability": 0.9842 + }, + { + "start": 6557.98, + "end": 6560.2, + "probability": 0.9719 + }, + { + "start": 6560.9, + "end": 6563.5, + "probability": 0.7233 + }, + { + "start": 6565.14, + "end": 6567.22, + "probability": 0.8461 + }, + { + "start": 6568.26, + "end": 6568.7, + "probability": 0.8796 + }, + { + "start": 6568.82, + "end": 6569.78, + "probability": 0.9651 + }, + { + "start": 6569.84, + "end": 6573.46, + "probability": 0.884 + }, + { + "start": 6575.52, + "end": 6576.34, + "probability": 0.9224 + }, + { + "start": 6576.82, + "end": 6578.02, + "probability": 0.966 + }, + { + "start": 6578.96, + "end": 6579.87, + "probability": 0.8164 + }, + { + "start": 6581.06, + "end": 6585.68, + "probability": 0.913 + }, + { + "start": 6587.62, + "end": 6587.82, + "probability": 0.8327 + }, + { + "start": 6588.98, + "end": 6589.85, + "probability": 0.231 + }, + { + "start": 6591.66, + "end": 6596.9, + "probability": 0.5486 + }, + { + "start": 6597.84, + "end": 6600.08, + "probability": 0.9961 + }, + { + "start": 6601.0, + "end": 6602.8, + "probability": 0.7724 + }, + { + "start": 6604.08, + "end": 6605.44, + "probability": 0.9224 + }, + { + "start": 6605.48, + "end": 6605.88, + "probability": 0.913 + }, + { + "start": 6605.94, + "end": 6606.46, + "probability": 0.9766 + }, + { + "start": 6607.64, + "end": 6611.14, + "probability": 0.756 + }, + { + "start": 6611.94, + "end": 6618.76, + "probability": 0.9839 + }, + { + "start": 6618.76, + "end": 6624.42, + "probability": 0.9969 + }, + { + "start": 6626.1, + "end": 6626.42, + "probability": 0.8998 + }, + { + "start": 6626.64, + "end": 6627.18, + "probability": 0.6177 + }, + { + "start": 6627.22, + "end": 6630.36, + "probability": 0.993 + }, + { + "start": 6631.36, + "end": 6634.32, + "probability": 0.9976 + }, + { + "start": 6635.24, + "end": 6635.72, + "probability": 0.7897 + }, + { + "start": 6635.82, + "end": 6636.64, + "probability": 0.9468 + }, + { + "start": 6636.68, + "end": 6637.56, + "probability": 0.9744 + }, + { + "start": 6637.62, + "end": 6638.18, + "probability": 0.7562 + }, + { + "start": 6638.82, + "end": 6639.5, + "probability": 0.7615 + }, + { + "start": 6639.6, + "end": 6641.82, + "probability": 0.9032 + }, + { + "start": 6642.44, + "end": 6644.52, + "probability": 0.8404 + }, + { + "start": 6646.32, + "end": 6654.8, + "probability": 0.9982 + }, + { + "start": 6656.18, + "end": 6657.2, + "probability": 0.7627 + }, + { + "start": 6657.4, + "end": 6659.02, + "probability": 0.9945 + }, + { + "start": 6659.16, + "end": 6660.09, + "probability": 0.7318 + }, + { + "start": 6660.72, + "end": 6661.66, + "probability": 0.7826 + }, + { + "start": 6662.68, + "end": 6663.67, + "probability": 0.9629 + }, + { + "start": 6664.96, + "end": 6667.62, + "probability": 0.9966 + }, + { + "start": 6668.28, + "end": 6672.36, + "probability": 0.9043 + }, + { + "start": 6672.36, + "end": 6675.76, + "probability": 0.9189 + }, + { + "start": 6676.32, + "end": 6681.34, + "probability": 0.9867 + }, + { + "start": 6681.62, + "end": 6683.24, + "probability": 0.9943 + }, + { + "start": 6683.62, + "end": 6684.76, + "probability": 0.9775 + }, + { + "start": 6685.12, + "end": 6687.26, + "probability": 0.9946 + }, + { + "start": 6687.42, + "end": 6689.04, + "probability": 0.9584 + }, + { + "start": 6689.06, + "end": 6689.79, + "probability": 0.8089 + }, + { + "start": 6690.66, + "end": 6694.18, + "probability": 0.9957 + }, + { + "start": 6694.22, + "end": 6700.12, + "probability": 0.765 + }, + { + "start": 6700.58, + "end": 6703.06, + "probability": 0.9771 + }, + { + "start": 6703.44, + "end": 6705.06, + "probability": 0.9844 + }, + { + "start": 6705.1, + "end": 6706.02, + "probability": 0.8737 + }, + { + "start": 6706.12, + "end": 6708.3, + "probability": 0.9574 + }, + { + "start": 6708.84, + "end": 6711.64, + "probability": 0.999 + }, + { + "start": 6712.32, + "end": 6713.78, + "probability": 0.8664 + }, + { + "start": 6714.62, + "end": 6715.4, + "probability": 0.7036 + }, + { + "start": 6715.5, + "end": 6718.0, + "probability": 0.9351 + }, + { + "start": 6718.18, + "end": 6719.28, + "probability": 0.5213 + }, + { + "start": 6720.54, + "end": 6722.54, + "probability": 0.9805 + }, + { + "start": 6723.38, + "end": 6724.46, + "probability": 0.6914 + }, + { + "start": 6724.52, + "end": 6725.48, + "probability": 0.9927 + }, + { + "start": 6725.6, + "end": 6726.78, + "probability": 0.7615 + }, + { + "start": 6728.36, + "end": 6728.98, + "probability": 0.8555 + }, + { + "start": 6729.16, + "end": 6732.32, + "probability": 0.947 + }, + { + "start": 6733.2, + "end": 6733.64, + "probability": 0.915 + }, + { + "start": 6733.7, + "end": 6735.74, + "probability": 0.9844 + }, + { + "start": 6735.84, + "end": 6736.28, + "probability": 0.7056 + }, + { + "start": 6737.46, + "end": 6737.9, + "probability": 0.6083 + }, + { + "start": 6738.14, + "end": 6739.64, + "probability": 0.9765 + }, + { + "start": 6740.24, + "end": 6742.7, + "probability": 0.8575 + }, + { + "start": 6743.86, + "end": 6748.24, + "probability": 0.9961 + }, + { + "start": 6748.4, + "end": 6749.24, + "probability": 0.5116 + }, + { + "start": 6749.9, + "end": 6753.0, + "probability": 0.9585 + }, + { + "start": 6753.1, + "end": 6753.64, + "probability": 0.8451 + }, + { + "start": 6753.68, + "end": 6755.7, + "probability": 0.9977 + }, + { + "start": 6756.12, + "end": 6756.48, + "probability": 0.4014 + }, + { + "start": 6756.58, + "end": 6758.3, + "probability": 0.9844 + }, + { + "start": 6758.9, + "end": 6760.98, + "probability": 0.9338 + }, + { + "start": 6761.78, + "end": 6762.36, + "probability": 0.712 + }, + { + "start": 6762.48, + "end": 6763.26, + "probability": 0.6279 + }, + { + "start": 6763.66, + "end": 6765.78, + "probability": 0.9033 + }, + { + "start": 6766.8, + "end": 6769.1, + "probability": 0.6413 + }, + { + "start": 6769.84, + "end": 6770.82, + "probability": 0.7083 + }, + { + "start": 6772.34, + "end": 6772.86, + "probability": 0.4471 + }, + { + "start": 6775.22, + "end": 6776.18, + "probability": 0.6217 + }, + { + "start": 6782.96, + "end": 6783.68, + "probability": 0.518 + }, + { + "start": 6783.86, + "end": 6784.22, + "probability": 0.3738 + }, + { + "start": 6784.3, + "end": 6785.12, + "probability": 0.7343 + }, + { + "start": 6785.34, + "end": 6786.54, + "probability": 0.8447 + }, + { + "start": 6787.81, + "end": 6792.44, + "probability": 0.821 + }, + { + "start": 6793.16, + "end": 6794.12, + "probability": 0.9902 + }, + { + "start": 6795.42, + "end": 6798.84, + "probability": 0.9875 + }, + { + "start": 6799.94, + "end": 6802.64, + "probability": 0.9888 + }, + { + "start": 6803.92, + "end": 6805.9, + "probability": 0.9871 + }, + { + "start": 6806.76, + "end": 6808.58, + "probability": 0.9941 + }, + { + "start": 6809.62, + "end": 6811.7, + "probability": 0.9822 + }, + { + "start": 6812.66, + "end": 6817.02, + "probability": 0.9777 + }, + { + "start": 6818.2, + "end": 6820.6, + "probability": 0.9814 + }, + { + "start": 6821.92, + "end": 6824.0, + "probability": 0.8672 + }, + { + "start": 6825.3, + "end": 6826.28, + "probability": 0.7622 + }, + { + "start": 6826.36, + "end": 6832.7, + "probability": 0.9508 + }, + { + "start": 6833.28, + "end": 6835.18, + "probability": 0.8463 + }, + { + "start": 6835.9, + "end": 6836.98, + "probability": 0.843 + }, + { + "start": 6837.82, + "end": 6842.24, + "probability": 0.9735 + }, + { + "start": 6842.24, + "end": 6847.94, + "probability": 0.9526 + }, + { + "start": 6849.3, + "end": 6857.58, + "probability": 0.7829 + }, + { + "start": 6857.64, + "end": 6861.68, + "probability": 0.9829 + }, + { + "start": 6862.66, + "end": 6867.38, + "probability": 0.9783 + }, + { + "start": 6868.32, + "end": 6869.83, + "probability": 0.8471 + }, + { + "start": 6870.54, + "end": 6873.02, + "probability": 0.9956 + }, + { + "start": 6873.1, + "end": 6873.61, + "probability": 0.9465 + }, + { + "start": 6874.5, + "end": 6882.62, + "probability": 0.986 + }, + { + "start": 6883.7, + "end": 6887.08, + "probability": 0.9561 + }, + { + "start": 6887.88, + "end": 6893.5, + "probability": 0.7932 + }, + { + "start": 6894.12, + "end": 6895.74, + "probability": 0.861 + }, + { + "start": 6897.24, + "end": 6898.8, + "probability": 0.8953 + }, + { + "start": 6899.73, + "end": 6901.86, + "probability": 0.9437 + }, + { + "start": 6902.54, + "end": 6904.38, + "probability": 0.8941 + }, + { + "start": 6905.2, + "end": 6906.9, + "probability": 0.8934 + }, + { + "start": 6907.72, + "end": 6911.62, + "probability": 0.9668 + }, + { + "start": 6911.74, + "end": 6912.34, + "probability": 0.4204 + }, + { + "start": 6913.08, + "end": 6920.96, + "probability": 0.9482 + }, + { + "start": 6921.44, + "end": 6922.44, + "probability": 0.7549 + }, + { + "start": 6923.66, + "end": 6926.86, + "probability": 0.9972 + }, + { + "start": 6926.86, + "end": 6932.72, + "probability": 0.8871 + }, + { + "start": 6933.6, + "end": 6941.42, + "probability": 0.9766 + }, + { + "start": 6941.48, + "end": 6942.46, + "probability": 0.5498 + }, + { + "start": 6943.14, + "end": 6945.94, + "probability": 0.9525 + }, + { + "start": 6946.84, + "end": 6950.24, + "probability": 0.9021 + }, + { + "start": 6950.24, + "end": 6954.9, + "probability": 0.9974 + }, + { + "start": 6955.46, + "end": 6957.42, + "probability": 0.9324 + }, + { + "start": 6958.64, + "end": 6959.16, + "probability": 0.6657 + }, + { + "start": 6960.94, + "end": 6961.88, + "probability": 0.8875 + }, + { + "start": 6962.78, + "end": 6965.07, + "probability": 0.8845 + }, + { + "start": 6966.44, + "end": 6972.3, + "probability": 0.9073 + }, + { + "start": 6972.5, + "end": 6974.06, + "probability": 0.9107 + }, + { + "start": 6975.0, + "end": 6980.48, + "probability": 0.9727 + }, + { + "start": 6981.82, + "end": 6986.76, + "probability": 0.9341 + }, + { + "start": 6987.5, + "end": 6989.16, + "probability": 0.9812 + }, + { + "start": 6990.66, + "end": 6992.32, + "probability": 0.8519 + }, + { + "start": 6994.66, + "end": 6996.32, + "probability": 0.9917 + }, + { + "start": 6998.28, + "end": 7000.36, + "probability": 0.988 + }, + { + "start": 7000.74, + "end": 7001.66, + "probability": 0.8609 + }, + { + "start": 7002.64, + "end": 7007.06, + "probability": 0.8744 + }, + { + "start": 7007.94, + "end": 7010.66, + "probability": 0.9604 + }, + { + "start": 7011.58, + "end": 7018.24, + "probability": 0.9797 + }, + { + "start": 7018.32, + "end": 7020.5, + "probability": 0.9392 + }, + { + "start": 7021.46, + "end": 7023.3, + "probability": 0.9109 + }, + { + "start": 7024.32, + "end": 7027.12, + "probability": 0.9842 + }, + { + "start": 7027.24, + "end": 7028.02, + "probability": 0.7082 + }, + { + "start": 7028.8, + "end": 7034.34, + "probability": 0.9622 + }, + { + "start": 7034.34, + "end": 7041.42, + "probability": 0.9691 + }, + { + "start": 7042.08, + "end": 7048.66, + "probability": 0.9918 + }, + { + "start": 7048.66, + "end": 7052.78, + "probability": 0.9949 + }, + { + "start": 7052.78, + "end": 7059.44, + "probability": 0.9401 + }, + { + "start": 7059.56, + "end": 7059.86, + "probability": 0.649 + }, + { + "start": 7060.5, + "end": 7062.68, + "probability": 0.8816 + }, + { + "start": 7062.78, + "end": 7066.84, + "probability": 0.7218 + }, + { + "start": 7067.2, + "end": 7067.92, + "probability": 0.9147 + }, + { + "start": 7072.0, + "end": 7072.62, + "probability": 0.6373 + }, + { + "start": 7075.86, + "end": 7076.6, + "probability": 0.7872 + }, + { + "start": 7079.04, + "end": 7080.16, + "probability": 0.8771 + }, + { + "start": 7082.5, + "end": 7087.72, + "probability": 0.9634 + }, + { + "start": 7087.72, + "end": 7091.48, + "probability": 0.9807 + }, + { + "start": 7093.14, + "end": 7099.68, + "probability": 0.9775 + }, + { + "start": 7101.96, + "end": 7105.52, + "probability": 0.9935 + }, + { + "start": 7106.28, + "end": 7108.0, + "probability": 0.9946 + }, + { + "start": 7109.58, + "end": 7115.62, + "probability": 0.9711 + }, + { + "start": 7115.88, + "end": 7117.66, + "probability": 0.8424 + }, + { + "start": 7118.18, + "end": 7120.46, + "probability": 0.5468 + }, + { + "start": 7121.16, + "end": 7124.8, + "probability": 0.9824 + }, + { + "start": 7126.04, + "end": 7130.62, + "probability": 0.98 + }, + { + "start": 7131.82, + "end": 7134.98, + "probability": 0.3198 + }, + { + "start": 7135.92, + "end": 7139.9, + "probability": 0.9889 + }, + { + "start": 7140.86, + "end": 7145.04, + "probability": 0.8893 + }, + { + "start": 7146.66, + "end": 7150.34, + "probability": 0.5572 + }, + { + "start": 7151.14, + "end": 7152.02, + "probability": 0.6176 + }, + { + "start": 7152.1, + "end": 7154.38, + "probability": 0.8158 + }, + { + "start": 7154.82, + "end": 7155.64, + "probability": 0.8493 + }, + { + "start": 7158.2, + "end": 7158.2, + "probability": 0.0368 + }, + { + "start": 7158.2, + "end": 7158.2, + "probability": 0.0189 + }, + { + "start": 7158.2, + "end": 7160.5, + "probability": 0.7165 + }, + { + "start": 7163.22, + "end": 7165.57, + "probability": 0.8923 + }, + { + "start": 7166.48, + "end": 7173.06, + "probability": 0.7125 + }, + { + "start": 7174.38, + "end": 7175.98, + "probability": 0.9825 + }, + { + "start": 7176.12, + "end": 7182.62, + "probability": 0.991 + }, + { + "start": 7183.3, + "end": 7183.98, + "probability": 0.7727 + }, + { + "start": 7184.54, + "end": 7185.02, + "probability": 0.0454 + }, + { + "start": 7185.02, + "end": 7185.34, + "probability": 0.3253 + }, + { + "start": 7185.7, + "end": 7185.76, + "probability": 0.1863 + }, + { + "start": 7185.82, + "end": 7185.82, + "probability": 0.2366 + }, + { + "start": 7185.92, + "end": 7185.94, + "probability": 0.1518 + }, + { + "start": 7185.94, + "end": 7187.3, + "probability": 0.9111 + }, + { + "start": 7187.36, + "end": 7190.84, + "probability": 0.8301 + }, + { + "start": 7191.02, + "end": 7193.48, + "probability": 0.4806 + }, + { + "start": 7193.84, + "end": 7194.74, + "probability": 0.1576 + }, + { + "start": 7194.86, + "end": 7198.0, + "probability": 0.7178 + }, + { + "start": 7198.0, + "end": 7199.86, + "probability": 0.9663 + }, + { + "start": 7199.9, + "end": 7201.92, + "probability": 0.8619 + }, + { + "start": 7202.4, + "end": 7204.2, + "probability": 0.6478 + }, + { + "start": 7205.46, + "end": 7207.38, + "probability": 0.9663 + }, + { + "start": 7207.38, + "end": 7210.46, + "probability": 0.6123 + }, + { + "start": 7210.8, + "end": 7212.5, + "probability": 0.9368 + }, + { + "start": 7213.4, + "end": 7215.7, + "probability": 0.9666 + }, + { + "start": 7216.48, + "end": 7222.98, + "probability": 0.9792 + }, + { + "start": 7223.5, + "end": 7227.24, + "probability": 0.877 + }, + { + "start": 7227.4, + "end": 7227.84, + "probability": 0.8441 + }, + { + "start": 7227.9, + "end": 7230.22, + "probability": 0.9956 + }, + { + "start": 7230.58, + "end": 7236.82, + "probability": 0.9663 + }, + { + "start": 7237.12, + "end": 7237.96, + "probability": 0.4627 + }, + { + "start": 7238.06, + "end": 7239.51, + "probability": 0.9409 + }, + { + "start": 7239.78, + "end": 7240.44, + "probability": 0.1592 + }, + { + "start": 7241.66, + "end": 7244.14, + "probability": 0.6321 + }, + { + "start": 7244.32, + "end": 7249.1, + "probability": 0.6772 + }, + { + "start": 7249.24, + "end": 7252.2, + "probability": 0.6345 + }, + { + "start": 7252.46, + "end": 7254.78, + "probability": 0.998 + }, + { + "start": 7255.02, + "end": 7258.16, + "probability": 0.9971 + }, + { + "start": 7258.3, + "end": 7258.94, + "probability": 0.0217 + }, + { + "start": 7259.3, + "end": 7261.9, + "probability": 0.8101 + }, + { + "start": 7261.9, + "end": 7266.34, + "probability": 0.9912 + }, + { + "start": 7266.4, + "end": 7268.78, + "probability": 0.9942 + }, + { + "start": 7269.32, + "end": 7269.94, + "probability": 0.7468 + }, + { + "start": 7270.0, + "end": 7273.52, + "probability": 0.9863 + }, + { + "start": 7273.66, + "end": 7274.6, + "probability": 0.8044 + }, + { + "start": 7274.92, + "end": 7276.54, + "probability": 0.9391 + }, + { + "start": 7277.36, + "end": 7279.6, + "probability": 0.9939 + }, + { + "start": 7279.74, + "end": 7282.48, + "probability": 0.6862 + }, + { + "start": 7282.9, + "end": 7285.96, + "probability": 0.881 + }, + { + "start": 7286.9, + "end": 7287.04, + "probability": 0.404 + }, + { + "start": 7287.22, + "end": 7290.42, + "probability": 0.7693 + }, + { + "start": 7290.58, + "end": 7292.28, + "probability": 0.7616 + }, + { + "start": 7292.54, + "end": 7293.98, + "probability": 0.7396 + }, + { + "start": 7294.86, + "end": 7298.24, + "probability": 0.9693 + }, + { + "start": 7298.48, + "end": 7300.2, + "probability": 0.9976 + }, + { + "start": 7300.6, + "end": 7308.74, + "probability": 0.9243 + }, + { + "start": 7309.06, + "end": 7309.06, + "probability": 0.281 + }, + { + "start": 7309.08, + "end": 7311.9, + "probability": 0.9807 + }, + { + "start": 7312.34, + "end": 7312.66, + "probability": 0.8131 + }, + { + "start": 7313.4, + "end": 7315.42, + "probability": 0.9919 + }, + { + "start": 7315.5, + "end": 7317.1, + "probability": 0.8603 + }, + { + "start": 7317.3, + "end": 7318.14, + "probability": 0.8246 + }, + { + "start": 7318.32, + "end": 7324.44, + "probability": 0.9869 + }, + { + "start": 7324.48, + "end": 7325.34, + "probability": 0.7546 + }, + { + "start": 7325.46, + "end": 7327.34, + "probability": 0.786 + }, + { + "start": 7327.54, + "end": 7330.16, + "probability": 0.9644 + }, + { + "start": 7330.32, + "end": 7331.98, + "probability": 0.9767 + }, + { + "start": 7332.58, + "end": 7335.56, + "probability": 0.6778 + }, + { + "start": 7338.78, + "end": 7339.24, + "probability": 0.5896 + }, + { + "start": 7339.56, + "end": 7339.66, + "probability": 0.5966 + }, + { + "start": 7340.58, + "end": 7342.1, + "probability": 0.8483 + }, + { + "start": 7342.18, + "end": 7342.7, + "probability": 0.8408 + }, + { + "start": 7342.76, + "end": 7343.18, + "probability": 0.4553 + }, + { + "start": 7343.2, + "end": 7344.62, + "probability": 0.9438 + }, + { + "start": 7345.18, + "end": 7347.62, + "probability": 0.9798 + }, + { + "start": 7348.86, + "end": 7349.76, + "probability": 0.5783 + }, + { + "start": 7349.92, + "end": 7351.28, + "probability": 0.9756 + }, + { + "start": 7353.78, + "end": 7356.4, + "probability": 0.7608 + }, + { + "start": 7358.1, + "end": 7359.6, + "probability": 0.9624 + }, + { + "start": 7359.74, + "end": 7360.04, + "probability": 0.1486 + }, + { + "start": 7360.24, + "end": 7366.24, + "probability": 0.9919 + }, + { + "start": 7366.52, + "end": 7368.16, + "probability": 0.9595 + }, + { + "start": 7369.18, + "end": 7369.52, + "probability": 0.8921 + }, + { + "start": 7371.9, + "end": 7373.14, + "probability": 0.7167 + }, + { + "start": 7373.22, + "end": 7379.42, + "probability": 0.9585 + }, + { + "start": 7379.42, + "end": 7385.7, + "probability": 0.9694 + }, + { + "start": 7386.38, + "end": 7389.88, + "probability": 0.9147 + }, + { + "start": 7390.7, + "end": 7394.54, + "probability": 0.9467 + }, + { + "start": 7394.54, + "end": 7397.7, + "probability": 0.9143 + }, + { + "start": 7398.54, + "end": 7406.56, + "probability": 0.957 + }, + { + "start": 7407.5, + "end": 7409.6, + "probability": 0.7628 + }, + { + "start": 7410.86, + "end": 7413.86, + "probability": 0.9912 + }, + { + "start": 7413.94, + "end": 7414.54, + "probability": 0.7679 + }, + { + "start": 7414.62, + "end": 7415.45, + "probability": 0.5918 + }, + { + "start": 7416.76, + "end": 7418.58, + "probability": 0.717 + }, + { + "start": 7418.66, + "end": 7420.23, + "probability": 0.6353 + }, + { + "start": 7421.3, + "end": 7422.08, + "probability": 0.9406 + }, + { + "start": 7422.28, + "end": 7422.98, + "probability": 0.9092 + }, + { + "start": 7423.0, + "end": 7424.04, + "probability": 0.9409 + }, + { + "start": 7424.74, + "end": 7425.48, + "probability": 0.9773 + }, + { + "start": 7425.64, + "end": 7428.9, + "probability": 0.9825 + }, + { + "start": 7429.9, + "end": 7438.34, + "probability": 0.9445 + }, + { + "start": 7438.34, + "end": 7444.94, + "probability": 0.9983 + }, + { + "start": 7446.0, + "end": 7448.72, + "probability": 0.4723 + }, + { + "start": 7448.92, + "end": 7453.02, + "probability": 0.9849 + }, + { + "start": 7454.84, + "end": 7455.96, + "probability": 0.61 + }, + { + "start": 7456.6, + "end": 7460.58, + "probability": 0.7747 + }, + { + "start": 7460.58, + "end": 7462.87, + "probability": 0.9703 + }, + { + "start": 7463.76, + "end": 7467.62, + "probability": 0.7563 + }, + { + "start": 7468.08, + "end": 7468.87, + "probability": 0.5614 + }, + { + "start": 7469.56, + "end": 7471.14, + "probability": 0.917 + }, + { + "start": 7473.64, + "end": 7474.7, + "probability": 0.9091 + }, + { + "start": 7475.46, + "end": 7476.38, + "probability": 0.9443 + }, + { + "start": 7479.52, + "end": 7486.06, + "probability": 0.9008 + }, + { + "start": 7488.14, + "end": 7493.14, + "probability": 0.9784 + }, + { + "start": 7494.2, + "end": 7494.74, + "probability": 0.7083 + }, + { + "start": 7494.86, + "end": 7498.17, + "probability": 0.9972 + }, + { + "start": 7500.24, + "end": 7505.04, + "probability": 0.9733 + }, + { + "start": 7505.74, + "end": 7506.22, + "probability": 0.5569 + }, + { + "start": 7506.22, + "end": 7510.0, + "probability": 0.9619 + }, + { + "start": 7511.12, + "end": 7514.68, + "probability": 0.9805 + }, + { + "start": 7517.26, + "end": 7518.14, + "probability": 0.8316 + }, + { + "start": 7518.2, + "end": 7519.2, + "probability": 0.8955 + }, + { + "start": 7519.36, + "end": 7521.56, + "probability": 0.9864 + }, + { + "start": 7523.08, + "end": 7527.02, + "probability": 0.8608 + }, + { + "start": 7528.28, + "end": 7531.66, + "probability": 0.7516 + }, + { + "start": 7532.4, + "end": 7535.62, + "probability": 0.9248 + }, + { + "start": 7536.82, + "end": 7538.34, + "probability": 0.9235 + }, + { + "start": 7539.44, + "end": 7545.76, + "probability": 0.9663 + }, + { + "start": 7547.36, + "end": 7548.9, + "probability": 0.9147 + }, + { + "start": 7552.18, + "end": 7558.44, + "probability": 0.9292 + }, + { + "start": 7558.56, + "end": 7559.68, + "probability": 0.5647 + }, + { + "start": 7560.72, + "end": 7566.46, + "probability": 0.9821 + }, + { + "start": 7567.34, + "end": 7573.34, + "probability": 0.8883 + }, + { + "start": 7573.82, + "end": 7576.78, + "probability": 0.7897 + }, + { + "start": 7576.78, + "end": 7580.66, + "probability": 0.9812 + }, + { + "start": 7581.26, + "end": 7582.76, + "probability": 0.9172 + }, + { + "start": 7582.96, + "end": 7583.72, + "probability": 0.4348 + }, + { + "start": 7584.2, + "end": 7589.62, + "probability": 0.9757 + }, + { + "start": 7589.62, + "end": 7595.48, + "probability": 0.8438 + }, + { + "start": 7595.58, + "end": 7595.92, + "probability": 0.711 + }, + { + "start": 7596.22, + "end": 7600.22, + "probability": 0.9902 + }, + { + "start": 7600.32, + "end": 7607.7, + "probability": 0.8797 + }, + { + "start": 7608.19, + "end": 7612.26, + "probability": 0.7517 + }, + { + "start": 7612.26, + "end": 7615.28, + "probability": 0.9679 + }, + { + "start": 7615.78, + "end": 7618.14, + "probability": 0.9006 + }, + { + "start": 7618.14, + "end": 7623.76, + "probability": 0.9316 + }, + { + "start": 7636.02, + "end": 7639.52, + "probability": 0.6751 + }, + { + "start": 7640.34, + "end": 7642.42, + "probability": 0.8983 + }, + { + "start": 7642.86, + "end": 7649.1, + "probability": 0.9958 + }, + { + "start": 7650.94, + "end": 7653.94, + "probability": 0.8853 + }, + { + "start": 7657.48, + "end": 7661.54, + "probability": 0.7372 + }, + { + "start": 7663.7, + "end": 7669.66, + "probability": 0.9897 + }, + { + "start": 7670.88, + "end": 7675.56, + "probability": 0.9661 + }, + { + "start": 7676.94, + "end": 7685.54, + "probability": 0.9995 + }, + { + "start": 7687.14, + "end": 7690.7, + "probability": 0.9921 + }, + { + "start": 7691.76, + "end": 7696.5, + "probability": 0.9718 + }, + { + "start": 7697.66, + "end": 7704.24, + "probability": 0.9913 + }, + { + "start": 7704.5, + "end": 7706.26, + "probability": 0.9948 + }, + { + "start": 7707.06, + "end": 7708.98, + "probability": 0.9167 + }, + { + "start": 7709.8, + "end": 7718.4, + "probability": 0.9261 + }, + { + "start": 7718.4, + "end": 7723.6, + "probability": 0.9823 + }, + { + "start": 7723.68, + "end": 7724.12, + "probability": 0.3006 + }, + { + "start": 7724.24, + "end": 7725.46, + "probability": 0.7209 + }, + { + "start": 7726.3, + "end": 7727.38, + "probability": 0.7412 + }, + { + "start": 7728.9, + "end": 7729.94, + "probability": 0.5931 + }, + { + "start": 7730.9, + "end": 7737.02, + "probability": 0.9871 + }, + { + "start": 7738.0, + "end": 7740.52, + "probability": 0.6697 + }, + { + "start": 7740.6, + "end": 7744.64, + "probability": 0.9937 + }, + { + "start": 7744.64, + "end": 7750.88, + "probability": 0.9878 + }, + { + "start": 7751.46, + "end": 7755.82, + "probability": 0.8479 + }, + { + "start": 7757.2, + "end": 7760.36, + "probability": 0.8671 + }, + { + "start": 7760.98, + "end": 7762.22, + "probability": 0.707 + }, + { + "start": 7764.28, + "end": 7765.34, + "probability": 0.9171 + }, + { + "start": 7765.48, + "end": 7768.58, + "probability": 0.812 + }, + { + "start": 7771.5, + "end": 7777.32, + "probability": 0.9724 + }, + { + "start": 7777.9, + "end": 7780.48, + "probability": 0.936 + }, + { + "start": 7781.5, + "end": 7783.06, + "probability": 0.7202 + }, + { + "start": 7784.32, + "end": 7786.94, + "probability": 0.9675 + }, + { + "start": 7787.1, + "end": 7788.51, + "probability": 0.9816 + }, + { + "start": 7789.2, + "end": 7789.97, + "probability": 0.9341 + }, + { + "start": 7792.26, + "end": 7793.78, + "probability": 0.9932 + }, + { + "start": 7793.96, + "end": 7797.86, + "probability": 0.8724 + }, + { + "start": 7798.9, + "end": 7803.9, + "probability": 0.8549 + }, + { + "start": 7804.4, + "end": 7805.8, + "probability": 0.9098 + }, + { + "start": 7806.32, + "end": 7807.9, + "probability": 0.9625 + }, + { + "start": 7810.08, + "end": 7812.02, + "probability": 0.9492 + }, + { + "start": 7812.2, + "end": 7813.11, + "probability": 0.9961 + }, + { + "start": 7813.92, + "end": 7815.11, + "probability": 0.9883 + }, + { + "start": 7815.74, + "end": 7817.18, + "probability": 0.9936 + }, + { + "start": 7819.16, + "end": 7822.1, + "probability": 0.9402 + }, + { + "start": 7822.56, + "end": 7824.94, + "probability": 0.7765 + }, + { + "start": 7825.46, + "end": 7828.74, + "probability": 0.7528 + }, + { + "start": 7828.74, + "end": 7829.88, + "probability": 0.9072 + }, + { + "start": 7830.68, + "end": 7831.26, + "probability": 0.9678 + }, + { + "start": 7833.78, + "end": 7837.04, + "probability": 0.8584 + }, + { + "start": 7840.06, + "end": 7843.82, + "probability": 0.7283 + }, + { + "start": 7844.08, + "end": 7845.9, + "probability": 0.665 + }, + { + "start": 7846.0, + "end": 7848.52, + "probability": 0.9314 + }, + { + "start": 7848.58, + "end": 7851.1, + "probability": 0.9976 + }, + { + "start": 7851.18, + "end": 7851.5, + "probability": 0.7401 + }, + { + "start": 7851.94, + "end": 7854.12, + "probability": 0.796 + }, + { + "start": 7854.72, + "end": 7858.92, + "probability": 0.8779 + }, + { + "start": 7859.16, + "end": 7861.0, + "probability": 0.7702 + }, + { + "start": 7861.16, + "end": 7863.26, + "probability": 0.7564 + }, + { + "start": 7863.88, + "end": 7866.26, + "probability": 0.7055 + }, + { + "start": 7882.86, + "end": 7883.32, + "probability": 0.2498 + }, + { + "start": 7883.36, + "end": 7885.98, + "probability": 0.7365 + }, + { + "start": 7886.66, + "end": 7888.9, + "probability": 0.9587 + }, + { + "start": 7889.04, + "end": 7889.54, + "probability": 0.5721 + }, + { + "start": 7889.66, + "end": 7890.36, + "probability": 0.8248 + }, + { + "start": 7890.58, + "end": 7891.98, + "probability": 0.9174 + }, + { + "start": 7892.58, + "end": 7893.06, + "probability": 0.8876 + }, + { + "start": 7893.18, + "end": 7893.4, + "probability": 0.8502 + }, + { + "start": 7893.46, + "end": 7897.3, + "probability": 0.9844 + }, + { + "start": 7897.64, + "end": 7902.24, + "probability": 0.9282 + }, + { + "start": 7902.99, + "end": 7908.34, + "probability": 0.9933 + }, + { + "start": 7908.64, + "end": 7910.58, + "probability": 0.9554 + }, + { + "start": 7911.18, + "end": 7913.22, + "probability": 0.9976 + }, + { + "start": 7915.99, + "end": 7917.6, + "probability": 0.4482 + }, + { + "start": 7917.6, + "end": 7917.91, + "probability": 0.8867 + }, + { + "start": 7918.96, + "end": 7923.06, + "probability": 0.9944 + }, + { + "start": 7923.34, + "end": 7923.9, + "probability": 0.5645 + }, + { + "start": 7925.26, + "end": 7930.0, + "probability": 0.9864 + }, + { + "start": 7930.14, + "end": 7933.28, + "probability": 0.9969 + }, + { + "start": 7933.3, + "end": 7935.2, + "probability": 0.996 + }, + { + "start": 7935.56, + "end": 7936.54, + "probability": 0.6587 + }, + { + "start": 7936.84, + "end": 7938.98, + "probability": 0.9857 + }, + { + "start": 7939.12, + "end": 7941.09, + "probability": 0.9624 + }, + { + "start": 7941.4, + "end": 7942.06, + "probability": 0.5695 + }, + { + "start": 7942.12, + "end": 7943.54, + "probability": 0.7222 + }, + { + "start": 7943.98, + "end": 7944.16, + "probability": 0.731 + }, + { + "start": 7944.18, + "end": 7945.26, + "probability": 0.9814 + }, + { + "start": 7945.4, + "end": 7946.66, + "probability": 0.9825 + }, + { + "start": 7946.82, + "end": 7949.94, + "probability": 0.9925 + }, + { + "start": 7950.36, + "end": 7952.06, + "probability": 0.9587 + }, + { + "start": 7952.4, + "end": 7953.34, + "probability": 0.7861 + }, + { + "start": 7953.38, + "end": 7955.86, + "probability": 0.9719 + }, + { + "start": 7955.98, + "end": 7961.12, + "probability": 0.9433 + }, + { + "start": 7961.12, + "end": 7964.38, + "probability": 0.9385 + }, + { + "start": 7964.84, + "end": 7969.1, + "probability": 0.6486 + }, + { + "start": 7969.38, + "end": 7970.64, + "probability": 0.8905 + }, + { + "start": 7970.88, + "end": 7975.5, + "probability": 0.9965 + }, + { + "start": 7975.86, + "end": 7980.12, + "probability": 0.8059 + }, + { + "start": 7980.46, + "end": 7982.74, + "probability": 0.8475 + }, + { + "start": 7983.08, + "end": 7983.24, + "probability": 0.0884 + }, + { + "start": 7984.28, + "end": 7985.1, + "probability": 0.528 + }, + { + "start": 7985.34, + "end": 7985.6, + "probability": 0.5989 + }, + { + "start": 7985.7, + "end": 7991.31, + "probability": 0.9861 + }, + { + "start": 7991.54, + "end": 7992.58, + "probability": 0.8818 + }, + { + "start": 7992.58, + "end": 7997.0, + "probability": 0.993 + }, + { + "start": 7997.26, + "end": 7998.46, + "probability": 0.5955 + }, + { + "start": 7998.96, + "end": 8002.64, + "probability": 0.8936 + }, + { + "start": 8002.8, + "end": 8003.94, + "probability": 0.8889 + }, + { + "start": 8004.26, + "end": 8005.08, + "probability": 0.9307 + }, + { + "start": 8005.52, + "end": 8005.98, + "probability": 0.5287 + }, + { + "start": 8006.3, + "end": 8007.28, + "probability": 0.9867 + }, + { + "start": 8010.1, + "end": 8012.44, + "probability": 0.7357 + }, + { + "start": 8012.52, + "end": 8013.86, + "probability": 0.9979 + }, + { + "start": 8014.8, + "end": 8016.1, + "probability": 0.9548 + }, + { + "start": 8016.62, + "end": 8018.02, + "probability": 0.9504 + }, + { + "start": 8019.1, + "end": 8024.4, + "probability": 0.9008 + }, + { + "start": 8026.88, + "end": 8026.88, + "probability": 0.2828 + }, + { + "start": 8026.88, + "end": 8027.66, + "probability": 0.7357 + }, + { + "start": 8029.18, + "end": 8030.1, + "probability": 0.3931 + }, + { + "start": 8030.24, + "end": 8030.9, + "probability": 0.5708 + }, + { + "start": 8030.9, + "end": 8032.26, + "probability": 0.8623 + }, + { + "start": 8032.66, + "end": 8033.8, + "probability": 0.9292 + }, + { + "start": 8033.82, + "end": 8035.02, + "probability": 0.8555 + }, + { + "start": 8035.16, + "end": 8039.9, + "probability": 0.9971 + }, + { + "start": 8040.96, + "end": 8045.84, + "probability": 0.9969 + }, + { + "start": 8046.9, + "end": 8051.06, + "probability": 0.724 + }, + { + "start": 8052.8, + "end": 8053.98, + "probability": 0.9774 + }, + { + "start": 8054.32, + "end": 8056.8, + "probability": 0.9831 + }, + { + "start": 8057.36, + "end": 8060.4, + "probability": 0.7522 + }, + { + "start": 8060.8, + "end": 8062.24, + "probability": 0.9758 + }, + { + "start": 8063.76, + "end": 8066.98, + "probability": 0.9674 + }, + { + "start": 8067.1, + "end": 8072.02, + "probability": 0.941 + }, + { + "start": 8072.44, + "end": 8073.62, + "probability": 0.6757 + }, + { + "start": 8073.88, + "end": 8075.7, + "probability": 0.8697 + }, + { + "start": 8076.34, + "end": 8083.16, + "probability": 0.9868 + }, + { + "start": 8083.36, + "end": 8087.2, + "probability": 0.6767 + }, + { + "start": 8087.66, + "end": 8089.2, + "probability": 0.3414 + }, + { + "start": 8089.2, + "end": 8092.24, + "probability": 0.7562 + }, + { + "start": 8093.3, + "end": 8095.34, + "probability": 0.8142 + }, + { + "start": 8095.42, + "end": 8095.76, + "probability": 0.6874 + }, + { + "start": 8095.82, + "end": 8096.7, + "probability": 0.8359 + }, + { + "start": 8097.16, + "end": 8098.82, + "probability": 0.9935 + }, + { + "start": 8098.9, + "end": 8101.3, + "probability": 0.9119 + }, + { + "start": 8101.4, + "end": 8102.1, + "probability": 0.8124 + }, + { + "start": 8102.42, + "end": 8103.5, + "probability": 0.787 + }, + { + "start": 8103.78, + "end": 8105.93, + "probability": 0.9951 + }, + { + "start": 8106.1, + "end": 8109.58, + "probability": 0.9511 + }, + { + "start": 8109.78, + "end": 8111.2, + "probability": 0.726 + }, + { + "start": 8111.36, + "end": 8111.82, + "probability": 0.9511 + }, + { + "start": 8112.02, + "end": 8117.24, + "probability": 0.9954 + }, + { + "start": 8117.82, + "end": 8118.74, + "probability": 0.952 + }, + { + "start": 8118.8, + "end": 8119.12, + "probability": 0.8201 + }, + { + "start": 8119.24, + "end": 8119.86, + "probability": 0.7391 + }, + { + "start": 8119.92, + "end": 8124.48, + "probability": 0.9209 + }, + { + "start": 8125.52, + "end": 8127.34, + "probability": 0.9209 + }, + { + "start": 8127.58, + "end": 8130.3, + "probability": 0.8683 + }, + { + "start": 8131.1, + "end": 8133.74, + "probability": 0.9927 + }, + { + "start": 8134.0, + "end": 8135.28, + "probability": 0.9518 + }, + { + "start": 8135.54, + "end": 8137.38, + "probability": 0.9236 + }, + { + "start": 8138.1, + "end": 8140.56, + "probability": 0.5167 + }, + { + "start": 8140.7, + "end": 8141.04, + "probability": 0.9269 + }, + { + "start": 8141.14, + "end": 8142.32, + "probability": 0.915 + }, + { + "start": 8142.64, + "end": 8143.6, + "probability": 0.6154 + }, + { + "start": 8144.14, + "end": 8148.4, + "probability": 0.9867 + }, + { + "start": 8148.64, + "end": 8150.18, + "probability": 0.9041 + }, + { + "start": 8150.92, + "end": 8157.2, + "probability": 0.9982 + }, + { + "start": 8158.04, + "end": 8159.19, + "probability": 0.9558 + }, + { + "start": 8162.57, + "end": 8165.33, + "probability": 0.9925 + }, + { + "start": 8165.6, + "end": 8170.86, + "probability": 0.9991 + }, + { + "start": 8170.9, + "end": 8172.52, + "probability": 0.43 + }, + { + "start": 8173.28, + "end": 8175.22, + "probability": 0.8467 + }, + { + "start": 8182.72, + "end": 8185.9, + "probability": 0.7999 + }, + { + "start": 8186.36, + "end": 8188.12, + "probability": 0.992 + }, + { + "start": 8188.4, + "end": 8191.84, + "probability": 0.998 + }, + { + "start": 8192.1, + "end": 8194.04, + "probability": 0.9932 + }, + { + "start": 8194.62, + "end": 8197.98, + "probability": 0.979 + }, + { + "start": 8198.08, + "end": 8199.68, + "probability": 0.9785 + }, + { + "start": 8200.94, + "end": 8201.62, + "probability": 0.4885 + }, + { + "start": 8201.94, + "end": 8202.82, + "probability": 0.8991 + }, + { + "start": 8202.94, + "end": 8204.1, + "probability": 0.3913 + }, + { + "start": 8204.2, + "end": 8206.64, + "probability": 0.9129 + }, + { + "start": 8207.12, + "end": 8207.62, + "probability": 0.5265 + }, + { + "start": 8207.74, + "end": 8210.22, + "probability": 0.8745 + }, + { + "start": 8210.3, + "end": 8210.74, + "probability": 0.4905 + }, + { + "start": 8210.78, + "end": 8211.36, + "probability": 0.7153 + }, + { + "start": 8211.48, + "end": 8217.42, + "probability": 0.9951 + }, + { + "start": 8217.72, + "end": 8218.82, + "probability": 0.8454 + }, + { + "start": 8219.16, + "end": 8221.0, + "probability": 0.9954 + }, + { + "start": 8221.5, + "end": 8224.36, + "probability": 0.9685 + }, + { + "start": 8225.16, + "end": 8226.58, + "probability": 0.9595 + }, + { + "start": 8231.98, + "end": 8233.34, + "probability": 0.6943 + }, + { + "start": 8233.56, + "end": 8234.82, + "probability": 0.9956 + }, + { + "start": 8234.98, + "end": 8236.8, + "probability": 0.8439 + }, + { + "start": 8236.86, + "end": 8242.26, + "probability": 0.9287 + }, + { + "start": 8242.38, + "end": 8242.88, + "probability": 0.7556 + }, + { + "start": 8242.94, + "end": 8245.1, + "probability": 0.98 + }, + { + "start": 8245.28, + "end": 8249.06, + "probability": 0.9816 + }, + { + "start": 8250.33, + "end": 8251.58, + "probability": 0.6631 + }, + { + "start": 8251.64, + "end": 8253.06, + "probability": 0.9736 + }, + { + "start": 8253.4, + "end": 8254.8, + "probability": 0.859 + }, + { + "start": 8255.0, + "end": 8256.04, + "probability": 0.8522 + }, + { + "start": 8256.4, + "end": 8258.68, + "probability": 0.1093 + }, + { + "start": 8258.88, + "end": 8264.36, + "probability": 0.867 + }, + { + "start": 8264.96, + "end": 8266.33, + "probability": 0.5517 + }, + { + "start": 8266.62, + "end": 8269.96, + "probability": 0.3272 + }, + { + "start": 8270.06, + "end": 8271.32, + "probability": 0.6468 + }, + { + "start": 8271.32, + "end": 8271.67, + "probability": 0.1879 + }, + { + "start": 8271.84, + "end": 8274.93, + "probability": 0.523 + }, + { + "start": 8275.58, + "end": 8276.74, + "probability": 0.8521 + }, + { + "start": 8276.98, + "end": 8277.4, + "probability": 0.4735 + }, + { + "start": 8277.42, + "end": 8279.08, + "probability": 0.8769 + }, + { + "start": 8279.22, + "end": 8280.3, + "probability": 0.8743 + }, + { + "start": 8280.42, + "end": 8281.78, + "probability": 0.9663 + }, + { + "start": 8282.36, + "end": 8287.04, + "probability": 0.9276 + }, + { + "start": 8287.38, + "end": 8291.36, + "probability": 0.7478 + }, + { + "start": 8291.44, + "end": 8293.5, + "probability": 0.7459 + }, + { + "start": 8294.22, + "end": 8298.94, + "probability": 0.8806 + }, + { + "start": 8299.58, + "end": 8301.24, + "probability": 0.7501 + }, + { + "start": 8301.32, + "end": 8307.88, + "probability": 0.9385 + }, + { + "start": 8308.24, + "end": 8310.24, + "probability": 0.9593 + }, + { + "start": 8310.54, + "end": 8311.04, + "probability": 0.8197 + }, + { + "start": 8311.06, + "end": 8313.2, + "probability": 0.9952 + }, + { + "start": 8313.56, + "end": 8321.28, + "probability": 0.984 + }, + { + "start": 8321.7, + "end": 8322.78, + "probability": 0.5264 + }, + { + "start": 8322.86, + "end": 8324.26, + "probability": 0.7252 + }, + { + "start": 8324.4, + "end": 8325.48, + "probability": 0.9414 + }, + { + "start": 8325.72, + "end": 8327.62, + "probability": 0.9792 + }, + { + "start": 8328.24, + "end": 8329.42, + "probability": 0.8758 + }, + { + "start": 8329.78, + "end": 8330.44, + "probability": 0.9859 + }, + { + "start": 8332.89, + "end": 8338.66, + "probability": 0.601 + }, + { + "start": 8339.08, + "end": 8342.42, + "probability": 0.9961 + }, + { + "start": 8342.52, + "end": 8342.96, + "probability": 0.7435 + }, + { + "start": 8343.92, + "end": 8345.86, + "probability": 0.9826 + }, + { + "start": 8346.58, + "end": 8346.92, + "probability": 0.3642 + }, + { + "start": 8346.92, + "end": 8348.08, + "probability": 0.9111 + }, + { + "start": 8348.28, + "end": 8352.6, + "probability": 0.9808 + }, + { + "start": 8352.6, + "end": 8356.72, + "probability": 0.9671 + }, + { + "start": 8357.68, + "end": 8358.42, + "probability": 0.8445 + }, + { + "start": 8358.5, + "end": 8358.94, + "probability": 0.8731 + }, + { + "start": 8359.16, + "end": 8359.68, + "probability": 0.9108 + }, + { + "start": 8359.76, + "end": 8360.76, + "probability": 0.8637 + }, + { + "start": 8361.22, + "end": 8367.68, + "probability": 0.8159 + }, + { + "start": 8367.98, + "end": 8368.9, + "probability": 0.8843 + }, + { + "start": 8369.14, + "end": 8372.76, + "probability": 0.7048 + }, + { + "start": 8373.02, + "end": 8373.54, + "probability": 0.7849 + }, + { + "start": 8373.64, + "end": 8373.76, + "probability": 0.4808 + }, + { + "start": 8373.86, + "end": 8374.82, + "probability": 0.98 + }, + { + "start": 8375.26, + "end": 8376.8, + "probability": 0.9355 + }, + { + "start": 8376.92, + "end": 8378.86, + "probability": 0.9777 + }, + { + "start": 8380.38, + "end": 8381.06, + "probability": 0.6629 + }, + { + "start": 8381.3, + "end": 8385.26, + "probability": 0.8301 + }, + { + "start": 8385.76, + "end": 8393.78, + "probability": 0.9937 + }, + { + "start": 8394.02, + "end": 8395.18, + "probability": 0.7734 + }, + { + "start": 8395.24, + "end": 8397.38, + "probability": 0.5186 + }, + { + "start": 8398.58, + "end": 8402.78, + "probability": 0.9714 + }, + { + "start": 8403.06, + "end": 8403.84, + "probability": 0.7808 + }, + { + "start": 8403.94, + "end": 8405.34, + "probability": 0.7959 + }, + { + "start": 8405.8, + "end": 8410.18, + "probability": 0.8774 + }, + { + "start": 8410.8, + "end": 8414.24, + "probability": 0.8564 + }, + { + "start": 8414.36, + "end": 8415.06, + "probability": 0.8293 + }, + { + "start": 8415.14, + "end": 8416.2, + "probability": 0.9773 + }, + { + "start": 8416.28, + "end": 8419.01, + "probability": 0.9862 + }, + { + "start": 8419.04, + "end": 8422.18, + "probability": 0.987 + }, + { + "start": 8422.5, + "end": 8423.64, + "probability": 0.9021 + }, + { + "start": 8424.56, + "end": 8426.74, + "probability": 0.7144 + }, + { + "start": 8426.88, + "end": 8427.74, + "probability": 0.9159 + }, + { + "start": 8429.68, + "end": 8429.68, + "probability": 0.0814 + }, + { + "start": 8429.68, + "end": 8433.92, + "probability": 0.9467 + }, + { + "start": 8435.26, + "end": 8439.52, + "probability": 0.8527 + }, + { + "start": 8439.6, + "end": 8443.74, + "probability": 0.6147 + }, + { + "start": 8444.36, + "end": 8445.0, + "probability": 0.8345 + }, + { + "start": 8445.14, + "end": 8445.98, + "probability": 0.6709 + }, + { + "start": 8446.26, + "end": 8450.84, + "probability": 0.8002 + }, + { + "start": 8451.58, + "end": 8456.92, + "probability": 0.5938 + }, + { + "start": 8457.24, + "end": 8459.06, + "probability": 0.8515 + }, + { + "start": 8459.44, + "end": 8461.34, + "probability": 0.8658 + }, + { + "start": 8461.88, + "end": 8465.4, + "probability": 0.9781 + }, + { + "start": 8465.98, + "end": 8467.04, + "probability": 0.7621 + }, + { + "start": 8467.36, + "end": 8468.52, + "probability": 0.9259 + }, + { + "start": 8468.94, + "end": 8469.48, + "probability": 0.6903 + }, + { + "start": 8469.5, + "end": 8474.18, + "probability": 0.9611 + }, + { + "start": 8474.34, + "end": 8475.27, + "probability": 0.682 + }, + { + "start": 8475.54, + "end": 8476.86, + "probability": 0.9421 + }, + { + "start": 8477.18, + "end": 8479.7, + "probability": 0.9907 + }, + { + "start": 8479.86, + "end": 8480.78, + "probability": 0.6795 + }, + { + "start": 8481.5, + "end": 8485.78, + "probability": 0.9345 + }, + { + "start": 8486.26, + "end": 8487.06, + "probability": 0.4998 + }, + { + "start": 8487.22, + "end": 8492.18, + "probability": 0.8958 + }, + { + "start": 8492.52, + "end": 8495.86, + "probability": 0.9747 + }, + { + "start": 8496.44, + "end": 8496.72, + "probability": 0.6779 + }, + { + "start": 8496.78, + "end": 8502.06, + "probability": 0.9817 + }, + { + "start": 8502.08, + "end": 8505.82, + "probability": 0.9782 + }, + { + "start": 8506.22, + "end": 8513.32, + "probability": 0.9429 + }, + { + "start": 8513.8, + "end": 8516.54, + "probability": 0.9946 + }, + { + "start": 8516.54, + "end": 8519.88, + "probability": 0.9928 + }, + { + "start": 8520.6, + "end": 8520.9, + "probability": 0.7553 + }, + { + "start": 8521.78, + "end": 8524.2, + "probability": 0.6895 + }, + { + "start": 8524.56, + "end": 8524.96, + "probability": 0.6446 + }, + { + "start": 8525.06, + "end": 8525.88, + "probability": 0.819 + }, + { + "start": 8526.28, + "end": 8527.76, + "probability": 0.9412 + }, + { + "start": 8528.16, + "end": 8529.78, + "probability": 0.9327 + }, + { + "start": 8530.16, + "end": 8532.16, + "probability": 0.4535 + }, + { + "start": 8532.32, + "end": 8534.1, + "probability": 0.9531 + }, + { + "start": 8534.42, + "end": 8535.08, + "probability": 0.3352 + }, + { + "start": 8535.18, + "end": 8536.46, + "probability": 0.8164 + }, + { + "start": 8536.62, + "end": 8537.46, + "probability": 0.821 + }, + { + "start": 8537.6, + "end": 8538.18, + "probability": 0.9228 + }, + { + "start": 8538.26, + "end": 8538.98, + "probability": 0.6943 + }, + { + "start": 8542.22, + "end": 8545.0, + "probability": 0.6438 + }, + { + "start": 8545.11, + "end": 8548.02, + "probability": 0.8704 + }, + { + "start": 8548.5, + "end": 8550.0, + "probability": 0.9879 + }, + { + "start": 8550.18, + "end": 8551.51, + "probability": 0.9673 + }, + { + "start": 8551.88, + "end": 8553.25, + "probability": 0.9976 + }, + { + "start": 8554.08, + "end": 8554.14, + "probability": 0.5335 + }, + { + "start": 8554.14, + "end": 8556.62, + "probability": 0.7263 + }, + { + "start": 8556.96, + "end": 8558.1, + "probability": 0.7857 + }, + { + "start": 8558.2, + "end": 8559.2, + "probability": 0.7953 + }, + { + "start": 8559.66, + "end": 8560.66, + "probability": 0.7131 + }, + { + "start": 8561.06, + "end": 8562.22, + "probability": 0.9067 + }, + { + "start": 8562.28, + "end": 8562.9, + "probability": 0.9375 + }, + { + "start": 8563.3, + "end": 8563.96, + "probability": 0.9542 + }, + { + "start": 8564.4, + "end": 8566.0, + "probability": 0.9773 + }, + { + "start": 8566.3, + "end": 8569.28, + "probability": 0.886 + }, + { + "start": 8569.78, + "end": 8573.64, + "probability": 0.9796 + }, + { + "start": 8574.42, + "end": 8577.88, + "probability": 0.6667 + }, + { + "start": 8578.76, + "end": 8579.55, + "probability": 0.8795 + }, + { + "start": 8580.74, + "end": 8582.84, + "probability": 0.4973 + }, + { + "start": 8583.06, + "end": 8584.76, + "probability": 0.9626 + }, + { + "start": 8585.22, + "end": 8586.12, + "probability": 0.9746 + }, + { + "start": 8586.54, + "end": 8588.22, + "probability": 0.9751 + }, + { + "start": 8588.38, + "end": 8589.84, + "probability": 0.9827 + }, + { + "start": 8590.12, + "end": 8591.42, + "probability": 0.683 + }, + { + "start": 8593.7, + "end": 8594.08, + "probability": 0.8056 + }, + { + "start": 8595.38, + "end": 8598.26, + "probability": 0.6213 + }, + { + "start": 8603.18, + "end": 8606.78, + "probability": 0.6866 + }, + { + "start": 8607.56, + "end": 8610.52, + "probability": 0.8557 + }, + { + "start": 8610.52, + "end": 8612.9, + "probability": 0.9883 + }, + { + "start": 8612.96, + "end": 8613.88, + "probability": 0.8402 + }, + { + "start": 8614.08, + "end": 8614.96, + "probability": 0.9581 + }, + { + "start": 8615.7, + "end": 8618.86, + "probability": 0.6801 + }, + { + "start": 8618.92, + "end": 8622.46, + "probability": 0.9653 + }, + { + "start": 8622.7, + "end": 8623.58, + "probability": 0.6302 + }, + { + "start": 8623.64, + "end": 8625.26, + "probability": 0.8145 + }, + { + "start": 8625.8, + "end": 8626.18, + "probability": 0.5025 + }, + { + "start": 8626.32, + "end": 8628.4, + "probability": 0.8939 + }, + { + "start": 8628.56, + "end": 8631.48, + "probability": 0.9675 + }, + { + "start": 8631.88, + "end": 8633.92, + "probability": 0.7581 + }, + { + "start": 8634.26, + "end": 8634.84, + "probability": 0.4733 + }, + { + "start": 8634.92, + "end": 8635.16, + "probability": 0.8887 + }, + { + "start": 8635.24, + "end": 8636.08, + "probability": 0.8245 + }, + { + "start": 8636.48, + "end": 8639.7, + "probability": 0.9687 + }, + { + "start": 8639.86, + "end": 8642.36, + "probability": 0.9053 + }, + { + "start": 8642.92, + "end": 8646.42, + "probability": 0.9912 + }, + { + "start": 8646.42, + "end": 8650.6, + "probability": 0.8431 + }, + { + "start": 8651.12, + "end": 8656.64, + "probability": 0.6361 + }, + { + "start": 8656.64, + "end": 8658.0, + "probability": 0.7005 + }, + { + "start": 8658.22, + "end": 8659.78, + "probability": 0.736 + }, + { + "start": 8659.86, + "end": 8661.84, + "probability": 0.91 + }, + { + "start": 8662.32, + "end": 8664.96, + "probability": 0.877 + }, + { + "start": 8665.1, + "end": 8665.64, + "probability": 0.4684 + }, + { + "start": 8665.9, + "end": 8668.8, + "probability": 0.9854 + }, + { + "start": 8670.64, + "end": 8674.12, + "probability": 0.7015 + }, + { + "start": 8674.92, + "end": 8675.9, + "probability": 0.9069 + }, + { + "start": 8676.46, + "end": 8678.82, + "probability": 0.7698 + }, + { + "start": 8679.42, + "end": 8682.64, + "probability": 0.9495 + }, + { + "start": 8682.7, + "end": 8684.06, + "probability": 0.891 + }, + { + "start": 8684.62, + "end": 8689.02, + "probability": 0.6878 + }, + { + "start": 8689.42, + "end": 8689.94, + "probability": 0.2862 + }, + { + "start": 8690.16, + "end": 8690.18, + "probability": 0.1401 + }, + { + "start": 8690.18, + "end": 8690.18, + "probability": 0.0693 + }, + { + "start": 8690.18, + "end": 8692.36, + "probability": 0.3826 + }, + { + "start": 8693.02, + "end": 8697.54, + "probability": 0.8083 + }, + { + "start": 8697.66, + "end": 8703.16, + "probability": 0.9855 + }, + { + "start": 8703.38, + "end": 8706.18, + "probability": 0.8633 + }, + { + "start": 8706.58, + "end": 8706.58, + "probability": 0.5045 + }, + { + "start": 8706.58, + "end": 8706.66, + "probability": 0.074 + }, + { + "start": 8706.66, + "end": 8708.36, + "probability": 0.6137 + }, + { + "start": 8708.38, + "end": 8709.06, + "probability": 0.8956 + }, + { + "start": 8709.26, + "end": 8710.84, + "probability": 0.9284 + }, + { + "start": 8711.06, + "end": 8713.3, + "probability": 0.9678 + }, + { + "start": 8713.38, + "end": 8714.3, + "probability": 0.699 + }, + { + "start": 8714.5, + "end": 8715.36, + "probability": 0.8058 + }, + { + "start": 8715.52, + "end": 8716.16, + "probability": 0.7225 + }, + { + "start": 8716.32, + "end": 8720.36, + "probability": 0.9812 + }, + { + "start": 8723.74, + "end": 8727.48, + "probability": 0.8618 + }, + { + "start": 8727.7, + "end": 8730.12, + "probability": 0.9045 + }, + { + "start": 8730.58, + "end": 8732.3, + "probability": 0.7913 + }, + { + "start": 8735.46, + "end": 8741.94, + "probability": 0.7926 + }, + { + "start": 8743.32, + "end": 8747.69, + "probability": 0.9961 + }, + { + "start": 8748.08, + "end": 8752.26, + "probability": 0.9497 + }, + { + "start": 8761.1, + "end": 8765.46, + "probability": 0.8622 + }, + { + "start": 8766.28, + "end": 8772.4, + "probability": 0.9475 + }, + { + "start": 8772.94, + "end": 8775.24, + "probability": 0.8315 + }, + { + "start": 8775.7, + "end": 8777.58, + "probability": 0.8785 + }, + { + "start": 8777.92, + "end": 8783.0, + "probability": 0.9578 + }, + { + "start": 8783.64, + "end": 8786.1, + "probability": 0.9814 + }, + { + "start": 8786.38, + "end": 8787.3, + "probability": 0.7524 + }, + { + "start": 8787.5, + "end": 8792.16, + "probability": 0.9916 + }, + { + "start": 8792.64, + "end": 8793.26, + "probability": 0.7083 + }, + { + "start": 8793.44, + "end": 8794.42, + "probability": 0.9178 + }, + { + "start": 8794.46, + "end": 8795.92, + "probability": 0.7912 + }, + { + "start": 8796.5, + "end": 8800.56, + "probability": 0.798 + }, + { + "start": 8800.98, + "end": 8803.74, + "probability": 0.9914 + }, + { + "start": 8803.82, + "end": 8804.8, + "probability": 0.738 + }, + { + "start": 8805.0, + "end": 8807.82, + "probability": 0.999 + }, + { + "start": 8807.88, + "end": 8811.66, + "probability": 0.9907 + }, + { + "start": 8811.66, + "end": 8815.94, + "probability": 0.9875 + }, + { + "start": 8816.04, + "end": 8817.96, + "probability": 0.764 + }, + { + "start": 8819.1, + "end": 8819.8, + "probability": 0.4569 + }, + { + "start": 8820.42, + "end": 8826.18, + "probability": 0.9462 + }, + { + "start": 8826.64, + "end": 8833.2, + "probability": 0.9962 + }, + { + "start": 8833.62, + "end": 8837.62, + "probability": 0.9803 + }, + { + "start": 8837.94, + "end": 8843.04, + "probability": 0.8404 + }, + { + "start": 8847.92, + "end": 8849.12, + "probability": 0.7163 + }, + { + "start": 8853.98, + "end": 8856.04, + "probability": 0.6086 + }, + { + "start": 8857.62, + "end": 8861.08, + "probability": 0.7195 + }, + { + "start": 8861.66, + "end": 8863.3, + "probability": 0.9456 + }, + { + "start": 8863.42, + "end": 8866.8, + "probability": 0.7954 + }, + { + "start": 8866.88, + "end": 8868.79, + "probability": 0.9744 + }, + { + "start": 8869.48, + "end": 8870.32, + "probability": 0.669 + }, + { + "start": 8870.78, + "end": 8871.54, + "probability": 0.5383 + }, + { + "start": 8872.08, + "end": 8873.0, + "probability": 0.6233 + }, + { + "start": 8873.5, + "end": 8876.62, + "probability": 0.0127 + }, + { + "start": 8892.34, + "end": 8895.66, + "probability": 0.0248 + }, + { + "start": 8895.81, + "end": 8902.62, + "probability": 0.511 + }, + { + "start": 8902.8, + "end": 8906.96, + "probability": 0.7451 + }, + { + "start": 8907.36, + "end": 8908.28, + "probability": 0.6715 + }, + { + "start": 8908.34, + "end": 8913.76, + "probability": 0.9936 + }, + { + "start": 8914.0, + "end": 8915.12, + "probability": 0.8889 + }, + { + "start": 8915.64, + "end": 8916.76, + "probability": 0.6725 + }, + { + "start": 8917.4, + "end": 8922.62, + "probability": 0.5993 + }, + { + "start": 8922.86, + "end": 8930.22, + "probability": 0.6606 + }, + { + "start": 8930.48, + "end": 8934.5, + "probability": 0.8988 + }, + { + "start": 8934.88, + "end": 8937.84, + "probability": 0.981 + }, + { + "start": 8938.5, + "end": 8939.32, + "probability": 0.6949 + }, + { + "start": 8939.42, + "end": 8940.0, + "probability": 0.7042 + }, + { + "start": 8940.06, + "end": 8940.84, + "probability": 0.7744 + }, + { + "start": 8959.07, + "end": 8960.46, + "probability": 0.3257 + }, + { + "start": 8967.13, + "end": 8967.74, + "probability": 0.0329 + }, + { + "start": 8968.2, + "end": 8975.02, + "probability": 0.6525 + }, + { + "start": 8975.04, + "end": 8978.94, + "probability": 0.2863 + }, + { + "start": 8979.34, + "end": 8983.84, + "probability": 0.8738 + }, + { + "start": 8983.84, + "end": 8988.96, + "probability": 0.9932 + }, + { + "start": 8989.7, + "end": 8990.77, + "probability": 0.9878 + }, + { + "start": 8991.28, + "end": 8994.56, + "probability": 0.8407 + }, + { + "start": 8994.76, + "end": 8998.06, + "probability": 0.936 + }, + { + "start": 8998.84, + "end": 9002.1, + "probability": 0.6909 + }, + { + "start": 9002.16, + "end": 9003.32, + "probability": 0.7929 + }, + { + "start": 9003.38, + "end": 9003.76, + "probability": 0.4977 + }, + { + "start": 9003.92, + "end": 9008.02, + "probability": 0.9909 + }, + { + "start": 9008.78, + "end": 9009.38, + "probability": 0.6767 + }, + { + "start": 9009.44, + "end": 9010.14, + "probability": 0.7631 + }, + { + "start": 9010.74, + "end": 9011.68, + "probability": 0.907 + }, + { + "start": 9020.04, + "end": 9022.84, + "probability": 0.5503 + }, + { + "start": 9023.64, + "end": 9024.88, + "probability": 0.1757 + }, + { + "start": 9026.97, + "end": 9027.04, + "probability": 0.0587 + }, + { + "start": 9027.4, + "end": 9028.72, + "probability": 0.464 + }, + { + "start": 9029.7, + "end": 9031.82, + "probability": 0.5274 + }, + { + "start": 9032.16, + "end": 9034.3, + "probability": 0.9019 + }, + { + "start": 9034.42, + "end": 9037.34, + "probability": 0.8356 + }, + { + "start": 9038.28, + "end": 9041.72, + "probability": 0.7453 + }, + { + "start": 9041.72, + "end": 9042.56, + "probability": 0.5791 + }, + { + "start": 9042.68, + "end": 9045.6, + "probability": 0.9652 + }, + { + "start": 9046.16, + "end": 9046.68, + "probability": 0.5592 + }, + { + "start": 9046.76, + "end": 9047.3, + "probability": 0.5076 + }, + { + "start": 9047.34, + "end": 9048.26, + "probability": 0.573 + }, + { + "start": 9054.99, + "end": 9056.66, + "probability": 0.4252 + }, + { + "start": 9057.26, + "end": 9057.72, + "probability": 0.0061 + }, + { + "start": 9061.26, + "end": 9062.26, + "probability": 0.0165 + }, + { + "start": 9063.18, + "end": 9063.28, + "probability": 0.1638 + }, + { + "start": 9063.32, + "end": 9064.32, + "probability": 0.0429 + }, + { + "start": 9065.12, + "end": 9067.38, + "probability": 0.6064 + }, + { + "start": 9067.86, + "end": 9071.56, + "probability": 0.8534 + }, + { + "start": 9072.74, + "end": 9076.26, + "probability": 0.6288 + }, + { + "start": 9076.36, + "end": 9079.22, + "probability": 0.9845 + }, + { + "start": 9079.58, + "end": 9082.36, + "probability": 0.8721 + }, + { + "start": 9082.9, + "end": 9087.6, + "probability": 0.8005 + }, + { + "start": 9088.26, + "end": 9093.16, + "probability": 0.9694 + }, + { + "start": 9108.9, + "end": 9117.04, + "probability": 0.3078 + }, + { + "start": 9117.04, + "end": 9118.29, + "probability": 0.0144 + }, + { + "start": 9120.0, + "end": 9121.32, + "probability": 0.0276 + }, + { + "start": 9124.26, + "end": 9125.16, + "probability": 0.0059 + }, + { + "start": 9131.22, + "end": 9136.34, + "probability": 0.0203 + }, + { + "start": 9137.17, + "end": 9137.84, + "probability": 0.0146 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9168.0, + "end": 9168.0, + "probability": 0.0 + }, + { + "start": 9173.46, + "end": 9176.5, + "probability": 0.9365 + }, + { + "start": 9176.58, + "end": 9177.96, + "probability": 0.6523 + }, + { + "start": 9178.06, + "end": 9180.54, + "probability": 0.988 + }, + { + "start": 9181.58, + "end": 9182.48, + "probability": 0.7119 + }, + { + "start": 9183.06, + "end": 9183.56, + "probability": 0.6673 + }, + { + "start": 9183.6, + "end": 9186.9, + "probability": 0.8187 + }, + { + "start": 9187.48, + "end": 9188.54, + "probability": 0.8213 + }, + { + "start": 9189.8, + "end": 9190.76, + "probability": 0.5002 + }, + { + "start": 9201.72, + "end": 9202.69, + "probability": 0.0531 + }, + { + "start": 9203.72, + "end": 9204.52, + "probability": 0.0184 + }, + { + "start": 9204.52, + "end": 9209.0, + "probability": 0.0733 + }, + { + "start": 9209.74, + "end": 9210.62, + "probability": 0.0147 + }, + { + "start": 9210.62, + "end": 9211.38, + "probability": 0.328 + }, + { + "start": 9211.42, + "end": 9212.22, + "probability": 0.5932 + }, + { + "start": 9212.68, + "end": 9212.7, + "probability": 0.2224 + }, + { + "start": 9212.7, + "end": 9212.7, + "probability": 0.2924 + }, + { + "start": 9212.7, + "end": 9212.7, + "probability": 0.0384 + }, + { + "start": 9212.7, + "end": 9217.12, + "probability": 0.9702 + }, + { + "start": 9217.12, + "end": 9220.5, + "probability": 0.5423 + }, + { + "start": 9221.36, + "end": 9226.46, + "probability": 0.6782 + }, + { + "start": 9226.56, + "end": 9228.64, + "probability": 0.5313 + }, + { + "start": 9229.3, + "end": 9234.04, + "probability": 0.998 + }, + { + "start": 9234.16, + "end": 9238.48, + "probability": 0.9266 + }, + { + "start": 9238.48, + "end": 9240.88, + "probability": 0.9246 + }, + { + "start": 9241.48, + "end": 9246.58, + "probability": 0.9847 + }, + { + "start": 9247.5, + "end": 9253.74, + "probability": 0.9966 + }, + { + "start": 9253.74, + "end": 9259.32, + "probability": 0.9924 + }, + { + "start": 9260.12, + "end": 9260.72, + "probability": 0.8019 + }, + { + "start": 9260.72, + "end": 9268.42, + "probability": 0.9719 + }, + { + "start": 9268.74, + "end": 9272.24, + "probability": 0.8452 + }, + { + "start": 9273.04, + "end": 9275.88, + "probability": 0.7709 + }, + { + "start": 9275.88, + "end": 9279.54, + "probability": 0.9973 + }, + { + "start": 9280.18, + "end": 9283.86, + "probability": 0.9809 + }, + { + "start": 9284.58, + "end": 9287.03, + "probability": 0.9966 + }, + { + "start": 9287.42, + "end": 9294.76, + "probability": 0.9753 + }, + { + "start": 9294.76, + "end": 9299.5, + "probability": 0.9973 + }, + { + "start": 9300.2, + "end": 9304.08, + "probability": 0.9809 + }, + { + "start": 9304.08, + "end": 9310.12, + "probability": 0.9876 + }, + { + "start": 9310.96, + "end": 9314.66, + "probability": 0.9969 + }, + { + "start": 9314.66, + "end": 9317.16, + "probability": 0.9995 + }, + { + "start": 9317.8, + "end": 9322.02, + "probability": 0.988 + }, + { + "start": 9322.02, + "end": 9326.28, + "probability": 0.9993 + }, + { + "start": 9326.84, + "end": 9332.02, + "probability": 0.9943 + }, + { + "start": 9332.02, + "end": 9336.5, + "probability": 0.9977 + }, + { + "start": 9337.3, + "end": 9341.54, + "probability": 0.8502 + }, + { + "start": 9341.54, + "end": 9346.6, + "probability": 0.9838 + }, + { + "start": 9346.6, + "end": 9351.04, + "probability": 0.9744 + }, + { + "start": 9351.54, + "end": 9358.28, + "probability": 0.9903 + }, + { + "start": 9358.74, + "end": 9362.06, + "probability": 0.9781 + }, + { + "start": 9362.58, + "end": 9367.36, + "probability": 0.9914 + }, + { + "start": 9367.36, + "end": 9371.36, + "probability": 0.9968 + }, + { + "start": 9371.38, + "end": 9375.26, + "probability": 0.9994 + }, + { + "start": 9375.94, + "end": 9380.0, + "probability": 0.9908 + }, + { + "start": 9380.0, + "end": 9384.88, + "probability": 0.9826 + }, + { + "start": 9385.4, + "end": 9387.04, + "probability": 0.7715 + }, + { + "start": 9387.46, + "end": 9391.5, + "probability": 0.9901 + }, + { + "start": 9391.54, + "end": 9392.02, + "probability": 0.7737 + }, + { + "start": 9393.09, + "end": 9397.3, + "probability": 0.9824 + }, + { + "start": 9397.3, + "end": 9401.3, + "probability": 0.4026 + }, + { + "start": 9401.3, + "end": 9402.68, + "probability": 0.0577 + }, + { + "start": 9402.92, + "end": 9405.1, + "probability": 0.9875 + }, + { + "start": 9405.44, + "end": 9406.84, + "probability": 0.5164 + }, + { + "start": 9407.0, + "end": 9408.82, + "probability": 0.9622 + }, + { + "start": 9409.54, + "end": 9417.04, + "probability": 0.88 + }, + { + "start": 9419.5, + "end": 9420.88, + "probability": 0.576 + }, + { + "start": 9420.88, + "end": 9421.44, + "probability": 0.606 + }, + { + "start": 9421.96, + "end": 9422.62, + "probability": 0.4032 + }, + { + "start": 9422.64, + "end": 9423.9, + "probability": 0.605 + }, + { + "start": 9425.12, + "end": 9426.86, + "probability": 0.0006 + }, + { + "start": 9432.66, + "end": 9434.18, + "probability": 0.0379 + }, + { + "start": 9438.1, + "end": 9441.82, + "probability": 0.7508 + }, + { + "start": 9442.06, + "end": 9444.58, + "probability": 0.9806 + }, + { + "start": 9445.0, + "end": 9445.9, + "probability": 0.8067 + }, + { + "start": 9446.26, + "end": 9449.86, + "probability": 0.952 + }, + { + "start": 9449.98, + "end": 9450.38, + "probability": 0.3986 + }, + { + "start": 9450.44, + "end": 9450.92, + "probability": 0.5131 + }, + { + "start": 9450.94, + "end": 9451.7, + "probability": 0.6679 + }, + { + "start": 9454.76, + "end": 9455.6, + "probability": 0.0927 + }, + { + "start": 9456.7, + "end": 9464.28, + "probability": 0.3423 + }, + { + "start": 9464.5, + "end": 9464.72, + "probability": 0.0661 + }, + { + "start": 9464.72, + "end": 9465.5, + "probability": 0.1009 + }, + { + "start": 9466.48, + "end": 9470.96, + "probability": 0.3664 + }, + { + "start": 9471.34, + "end": 9476.3, + "probability": 0.8936 + }, + { + "start": 9476.46, + "end": 9478.34, + "probability": 0.1199 + }, + { + "start": 9478.34, + "end": 9481.08, + "probability": 0.9111 + }, + { + "start": 9484.12, + "end": 9484.28, + "probability": 0.083 + }, + { + "start": 9484.98, + "end": 9485.4, + "probability": 0.2163 + }, + { + "start": 9485.4, + "end": 9485.6, + "probability": 0.0357 + }, + { + "start": 9486.36, + "end": 9486.36, + "probability": 0.1097 + }, + { + "start": 9486.36, + "end": 9487.7, + "probability": 0.37 + }, + { + "start": 9488.48, + "end": 9494.2, + "probability": 0.7715 + }, + { + "start": 9494.35, + "end": 9497.66, + "probability": 0.4237 + }, + { + "start": 9497.68, + "end": 9499.04, + "probability": 0.1804 + }, + { + "start": 9499.12, + "end": 9500.0, + "probability": 0.9216 + }, + { + "start": 9500.84, + "end": 9503.1, + "probability": 0.9401 + }, + { + "start": 9503.28, + "end": 9505.0, + "probability": 0.9598 + }, + { + "start": 9505.08, + "end": 9505.36, + "probability": 0.8694 + }, + { + "start": 9515.16, + "end": 9515.46, + "probability": 0.3824 + }, + { + "start": 9515.5, + "end": 9516.52, + "probability": 0.6032 + }, + { + "start": 9516.96, + "end": 9517.93, + "probability": 0.9357 + }, + { + "start": 9518.4, + "end": 9518.76, + "probability": 0.978 + }, + { + "start": 9518.86, + "end": 9520.32, + "probability": 0.8021 + }, + { + "start": 9521.26, + "end": 9524.33, + "probability": 0.9973 + }, + { + "start": 9524.9, + "end": 9528.15, + "probability": 0.9963 + }, + { + "start": 9529.96, + "end": 9530.4, + "probability": 0.0851 + }, + { + "start": 9531.2, + "end": 9532.74, + "probability": 0.019 + }, + { + "start": 9532.74, + "end": 9539.1, + "probability": 0.6648 + }, + { + "start": 9539.1, + "end": 9544.7, + "probability": 0.8996 + }, + { + "start": 9545.4, + "end": 9550.02, + "probability": 0.9934 + }, + { + "start": 9550.02, + "end": 9553.74, + "probability": 0.8601 + }, + { + "start": 9553.78, + "end": 9555.32, + "probability": 0.7614 + }, + { + "start": 9555.5, + "end": 9556.41, + "probability": 0.8462 + }, + { + "start": 9556.64, + "end": 9561.64, + "probability": 0.9595 + }, + { + "start": 9561.88, + "end": 9567.84, + "probability": 0.9518 + }, + { + "start": 9567.84, + "end": 9574.06, + "probability": 0.9969 + }, + { + "start": 9575.0, + "end": 9578.22, + "probability": 0.9835 + }, + { + "start": 9578.88, + "end": 9583.86, + "probability": 0.8899 + }, + { + "start": 9584.56, + "end": 9587.94, + "probability": 0.8885 + }, + { + "start": 9588.42, + "end": 9596.74, + "probability": 0.9855 + }, + { + "start": 9597.12, + "end": 9600.72, + "probability": 0.9882 + }, + { + "start": 9601.92, + "end": 9604.24, + "probability": 0.873 + }, + { + "start": 9605.24, + "end": 9609.62, + "probability": 0.9753 + }, + { + "start": 9609.92, + "end": 9610.64, + "probability": 0.536 + }, + { + "start": 9610.64, + "end": 9613.6, + "probability": 0.571 + }, + { + "start": 9614.37, + "end": 9618.82, + "probability": 0.9479 + }, + { + "start": 9619.56, + "end": 9621.42, + "probability": 0.1539 + }, + { + "start": 9621.42, + "end": 9625.96, + "probability": 0.9311 + }, + { + "start": 9626.06, + "end": 9627.84, + "probability": 0.5621 + }, + { + "start": 9628.42, + "end": 9628.7, + "probability": 0.0334 + }, + { + "start": 9629.24, + "end": 9630.76, + "probability": 0.8513 + }, + { + "start": 9632.1, + "end": 9634.08, + "probability": 0.537 + }, + { + "start": 9643.66, + "end": 9644.94, + "probability": 0.007 + }, + { + "start": 9646.48, + "end": 9647.88, + "probability": 0.0005 + }, + { + "start": 9648.86, + "end": 9651.72, + "probability": 0.5254 + }, + { + "start": 9651.86, + "end": 9654.12, + "probability": 0.5992 + }, + { + "start": 9654.38, + "end": 9658.12, + "probability": 0.8495 + }, + { + "start": 9663.3, + "end": 9665.42, + "probability": 0.8509 + }, + { + "start": 9665.86, + "end": 9666.8, + "probability": 0.6758 + }, + { + "start": 9669.66, + "end": 9671.46, + "probability": 0.0021 + }, + { + "start": 9674.06, + "end": 9676.94, + "probability": 0.2796 + }, + { + "start": 9679.14, + "end": 9679.14, + "probability": 0.2281 + }, + { + "start": 9679.14, + "end": 9679.14, + "probability": 0.352 + }, + { + "start": 9679.14, + "end": 9679.14, + "probability": 0.1135 + }, + { + "start": 9679.14, + "end": 9682.12, + "probability": 0.5914 + }, + { + "start": 9683.2, + "end": 9684.3, + "probability": 0.7292 + }, + { + "start": 9685.72, + "end": 9685.72, + "probability": 0.1202 + }, + { + "start": 9685.72, + "end": 9688.78, + "probability": 0.6772 + }, + { + "start": 9689.16, + "end": 9691.2, + "probability": 0.8779 + }, + { + "start": 9691.26, + "end": 9693.24, + "probability": 0.5507 + }, + { + "start": 9693.34, + "end": 9695.44, + "probability": 0.5114 + }, + { + "start": 9695.94, + "end": 9698.96, + "probability": 0.9751 + }, + { + "start": 9704.24, + "end": 9708.5, + "probability": 0.9249 + }, + { + "start": 9708.92, + "end": 9710.74, + "probability": 0.8972 + }, + { + "start": 9710.76, + "end": 9711.36, + "probability": 0.7986 + }, + { + "start": 9716.44, + "end": 9718.02, + "probability": 0.6287 + }, + { + "start": 9718.12, + "end": 9718.12, + "probability": 0.5499 + }, + { + "start": 9718.12, + "end": 9718.74, + "probability": 0.8401 + }, + { + "start": 9718.84, + "end": 9720.24, + "probability": 0.6587 + }, + { + "start": 9720.34, + "end": 9723.64, + "probability": 0.9078 + }, + { + "start": 9723.76, + "end": 9725.48, + "probability": 0.9258 + }, + { + "start": 9726.0, + "end": 9727.62, + "probability": 0.9043 + }, + { + "start": 9727.94, + "end": 9731.36, + "probability": 0.9694 + }, + { + "start": 9731.8, + "end": 9736.12, + "probability": 0.9603 + }, + { + "start": 9736.32, + "end": 9741.3, + "probability": 0.9884 + }, + { + "start": 9742.05, + "end": 9745.66, + "probability": 0.9713 + }, + { + "start": 9745.98, + "end": 9748.12, + "probability": 0.9692 + }, + { + "start": 9748.62, + "end": 9752.06, + "probability": 0.6319 + }, + { + "start": 9752.52, + "end": 9753.92, + "probability": 0.7555 + }, + { + "start": 9754.0, + "end": 9757.22, + "probability": 0.9716 + }, + { + "start": 9757.28, + "end": 9758.32, + "probability": 0.9662 + }, + { + "start": 9758.4, + "end": 9764.78, + "probability": 0.9816 + }, + { + "start": 9764.96, + "end": 9766.82, + "probability": 0.9692 + }, + { + "start": 9767.34, + "end": 9768.66, + "probability": 0.9389 + }, + { + "start": 9768.76, + "end": 9769.0, + "probability": 0.903 + }, + { + "start": 9769.06, + "end": 9771.08, + "probability": 0.9839 + }, + { + "start": 9771.42, + "end": 9776.4, + "probability": 0.9785 + }, + { + "start": 9776.52, + "end": 9777.62, + "probability": 0.5828 + }, + { + "start": 9777.82, + "end": 9778.84, + "probability": 0.8707 + }, + { + "start": 9778.92, + "end": 9781.34, + "probability": 0.8023 + }, + { + "start": 9781.42, + "end": 9783.24, + "probability": 0.8554 + }, + { + "start": 9783.58, + "end": 9784.24, + "probability": 0.8324 + }, + { + "start": 9785.0, + "end": 9786.82, + "probability": 0.8948 + }, + { + "start": 9786.94, + "end": 9787.26, + "probability": 0.9496 + }, + { + "start": 9787.38, + "end": 9789.82, + "probability": 0.9949 + }, + { + "start": 9789.83, + "end": 9793.06, + "probability": 0.4889 + }, + { + "start": 9793.1, + "end": 9794.46, + "probability": 0.6188 + }, + { + "start": 9794.46, + "end": 9796.3, + "probability": 0.6337 + }, + { + "start": 9796.52, + "end": 9800.1, + "probability": 0.9 + }, + { + "start": 9800.12, + "end": 9803.0, + "probability": 0.8324 + }, + { + "start": 9803.28, + "end": 9807.22, + "probability": 0.99 + }, + { + "start": 9807.32, + "end": 9808.44, + "probability": 0.834 + }, + { + "start": 9808.8, + "end": 9810.27, + "probability": 0.993 + }, + { + "start": 9812.28, + "end": 9813.32, + "probability": 0.8177 + }, + { + "start": 9816.04, + "end": 9817.18, + "probability": 0.8556 + }, + { + "start": 9817.24, + "end": 9818.28, + "probability": 0.9128 + }, + { + "start": 9818.42, + "end": 9823.16, + "probability": 0.9956 + }, + { + "start": 9823.44, + "end": 9827.4, + "probability": 0.3085 + }, + { + "start": 9827.84, + "end": 9828.44, + "probability": 0.2265 + }, + { + "start": 9828.9, + "end": 9831.04, + "probability": 0.8414 + }, + { + "start": 9832.88, + "end": 9833.54, + "probability": 0.7502 + }, + { + "start": 9833.66, + "end": 9838.38, + "probability": 0.9111 + }, + { + "start": 9838.56, + "end": 9839.16, + "probability": 0.8072 + }, + { + "start": 9840.14, + "end": 9843.06, + "probability": 0.9935 + }, + { + "start": 9843.06, + "end": 9845.88, + "probability": 0.9975 + }, + { + "start": 9846.86, + "end": 9849.14, + "probability": 0.9797 + }, + { + "start": 9850.6, + "end": 9852.04, + "probability": 0.873 + }, + { + "start": 9852.18, + "end": 9855.68, + "probability": 0.9897 + }, + { + "start": 9855.84, + "end": 9859.14, + "probability": 0.9564 + }, + { + "start": 9860.3, + "end": 9865.36, + "probability": 0.9907 + }, + { + "start": 9866.46, + "end": 9869.04, + "probability": 0.9954 + }, + { + "start": 9869.32, + "end": 9875.1, + "probability": 0.9983 + }, + { + "start": 9876.1, + "end": 9876.28, + "probability": 0.8918 + }, + { + "start": 9876.84, + "end": 9876.9, + "probability": 0.2651 + }, + { + "start": 9878.3, + "end": 9881.9, + "probability": 0.9927 + }, + { + "start": 9882.02, + "end": 9883.08, + "probability": 0.998 + }, + { + "start": 9883.74, + "end": 9886.5, + "probability": 0.9947 + }, + { + "start": 9888.54, + "end": 9891.88, + "probability": 0.9971 + }, + { + "start": 9892.08, + "end": 9897.92, + "probability": 0.9942 + }, + { + "start": 9898.9, + "end": 9903.94, + "probability": 0.9186 + }, + { + "start": 9906.04, + "end": 9912.18, + "probability": 0.9528 + }, + { + "start": 9913.82, + "end": 9915.38, + "probability": 0.9727 + }, + { + "start": 9916.43, + "end": 9922.2, + "probability": 0.8269 + }, + { + "start": 9923.8, + "end": 9924.56, + "probability": 0.8389 + }, + { + "start": 9924.84, + "end": 9932.94, + "probability": 0.9944 + }, + { + "start": 9933.58, + "end": 9935.58, + "probability": 0.8198 + }, + { + "start": 9936.32, + "end": 9939.8, + "probability": 0.9954 + }, + { + "start": 9941.02, + "end": 9942.72, + "probability": 0.7789 + }, + { + "start": 9943.68, + "end": 9949.78, + "probability": 0.8046 + }, + { + "start": 9950.38, + "end": 9954.64, + "probability": 0.9626 + }, + { + "start": 9956.28, + "end": 9956.3, + "probability": 0.0045 + }, + { + "start": 9956.3, + "end": 9962.96, + "probability": 0.9501 + }, + { + "start": 9963.72, + "end": 9967.2, + "probability": 0.9705 + }, + { + "start": 9967.36, + "end": 9968.64, + "probability": 0.0703 + }, + { + "start": 9969.34, + "end": 9977.24, + "probability": 0.9921 + }, + { + "start": 9979.84, + "end": 9983.04, + "probability": 0.9138 + }, + { + "start": 9983.4, + "end": 9986.8, + "probability": 0.9946 + }, + { + "start": 9987.64, + "end": 9992.12, + "probability": 0.9843 + }, + { + "start": 9994.09, + "end": 9998.44, + "probability": 0.9331 + }, + { + "start": 9999.08, + "end": 10006.14, + "probability": 0.9369 + }, + { + "start": 10006.8, + "end": 10010.44, + "probability": 0.994 + }, + { + "start": 10010.83, + "end": 10015.28, + "probability": 0.9994 + }, + { + "start": 10016.1, + "end": 10023.44, + "probability": 0.9987 + }, + { + "start": 10025.2, + "end": 10026.14, + "probability": 0.3436 + }, + { + "start": 10027.12, + "end": 10030.52, + "probability": 0.8044 + }, + { + "start": 10031.24, + "end": 10034.64, + "probability": 0.988 + }, + { + "start": 10034.86, + "end": 10036.52, + "probability": 0.7404 + }, + { + "start": 10037.12, + "end": 10045.84, + "probability": 0.9744 + }, + { + "start": 10047.3, + "end": 10050.14, + "probability": 0.8774 + }, + { + "start": 10050.76, + "end": 10056.68, + "probability": 0.9432 + }, + { + "start": 10057.24, + "end": 10062.34, + "probability": 0.65 + }, + { + "start": 10063.74, + "end": 10069.72, + "probability": 0.9702 + }, + { + "start": 10071.88, + "end": 10079.82, + "probability": 0.995 + }, + { + "start": 10080.1, + "end": 10082.47, + "probability": 0.4666 + }, + { + "start": 10082.74, + "end": 10084.56, + "probability": 0.4247 + }, + { + "start": 10087.46, + "end": 10088.92, + "probability": 0.8641 + }, + { + "start": 10088.94, + "end": 10090.8, + "probability": 0.6021 + }, + { + "start": 10090.86, + "end": 10091.66, + "probability": 0.6604 + }, + { + "start": 10091.74, + "end": 10092.94, + "probability": 0.5994 + }, + { + "start": 10093.43, + "end": 10093.64, + "probability": 0.247 + }, + { + "start": 10093.64, + "end": 10093.64, + "probability": 0.3861 + }, + { + "start": 10093.7, + "end": 10097.26, + "probability": 0.8101 + }, + { + "start": 10097.36, + "end": 10099.14, + "probability": 0.9845 + }, + { + "start": 10099.62, + "end": 10106.46, + "probability": 0.9885 + }, + { + "start": 10107.06, + "end": 10108.56, + "probability": 0.0493 + }, + { + "start": 10108.96, + "end": 10110.94, + "probability": 0.2164 + }, + { + "start": 10111.24, + "end": 10112.1, + "probability": 0.1911 + }, + { + "start": 10112.46, + "end": 10114.16, + "probability": 0.1363 + }, + { + "start": 10114.36, + "end": 10115.91, + "probability": 0.429 + }, + { + "start": 10116.52, + "end": 10117.94, + "probability": 0.5761 + }, + { + "start": 10118.04, + "end": 10118.81, + "probability": 0.0603 + }, + { + "start": 10119.3, + "end": 10121.46, + "probability": 0.1273 + }, + { + "start": 10121.64, + "end": 10122.4, + "probability": 0.4329 + }, + { + "start": 10122.56, + "end": 10123.96, + "probability": 0.8861 + }, + { + "start": 10124.16, + "end": 10127.12, + "probability": 0.8222 + }, + { + "start": 10127.82, + "end": 10132.08, + "probability": 0.6859 + }, + { + "start": 10132.86, + "end": 10133.5, + "probability": 0.0091 + }, + { + "start": 10133.5, + "end": 10137.6, + "probability": 0.9656 + }, + { + "start": 10138.08, + "end": 10138.66, + "probability": 0.0649 + }, + { + "start": 10138.86, + "end": 10139.4, + "probability": 0.3559 + }, + { + "start": 10140.25, + "end": 10140.5, + "probability": 0.0509 + }, + { + "start": 10140.5, + "end": 10142.08, + "probability": 0.7912 + }, + { + "start": 10142.24, + "end": 10143.76, + "probability": 0.973 + }, + { + "start": 10143.98, + "end": 10145.12, + "probability": 0.9009 + }, + { + "start": 10145.22, + "end": 10145.96, + "probability": 0.2461 + }, + { + "start": 10146.62, + "end": 10148.95, + "probability": 0.9921 + }, + { + "start": 10149.76, + "end": 10151.82, + "probability": 0.8207 + }, + { + "start": 10152.14, + "end": 10152.24, + "probability": 0.0166 + }, + { + "start": 10152.24, + "end": 10155.08, + "probability": 0.8566 + }, + { + "start": 10155.46, + "end": 10158.12, + "probability": 0.9967 + }, + { + "start": 10158.24, + "end": 10159.24, + "probability": 0.8486 + }, + { + "start": 10160.52, + "end": 10160.58, + "probability": 0.0038 + }, + { + "start": 10160.58, + "end": 10160.7, + "probability": 0.7493 + }, + { + "start": 10160.9, + "end": 10161.9, + "probability": 0.7126 + }, + { + "start": 10162.08, + "end": 10164.17, + "probability": 0.9883 + }, + { + "start": 10164.78, + "end": 10167.4, + "probability": 0.9384 + }, + { + "start": 10167.62, + "end": 10172.4, + "probability": 0.9253 + }, + { + "start": 10173.44, + "end": 10175.98, + "probability": 0.9829 + }, + { + "start": 10176.12, + "end": 10178.4, + "probability": 0.9961 + }, + { + "start": 10180.28, + "end": 10184.42, + "probability": 0.9654 + }, + { + "start": 10186.22, + "end": 10189.32, + "probability": 0.9575 + }, + { + "start": 10190.07, + "end": 10193.36, + "probability": 0.7402 + }, + { + "start": 10193.98, + "end": 10197.04, + "probability": 0.5402 + }, + { + "start": 10197.44, + "end": 10200.2, + "probability": 0.9578 + }, + { + "start": 10201.0, + "end": 10203.28, + "probability": 0.8015 + }, + { + "start": 10203.72, + "end": 10207.02, + "probability": 0.9937 + }, + { + "start": 10207.8, + "end": 10208.35, + "probability": 0.2303 + }, + { + "start": 10209.6, + "end": 10212.46, + "probability": 0.5908 + }, + { + "start": 10212.46, + "end": 10213.52, + "probability": 0.0484 + }, + { + "start": 10213.54, + "end": 10220.2, + "probability": 0.8767 + }, + { + "start": 10222.02, + "end": 10232.42, + "probability": 0.9707 + }, + { + "start": 10232.74, + "end": 10232.82, + "probability": 0.0326 + }, + { + "start": 10232.82, + "end": 10238.84, + "probability": 0.6014 + }, + { + "start": 10238.9, + "end": 10239.52, + "probability": 0.6116 + }, + { + "start": 10240.08, + "end": 10240.42, + "probability": 0.779 + }, + { + "start": 10240.42, + "end": 10242.71, + "probability": 0.5654 + }, + { + "start": 10243.26, + "end": 10247.0, + "probability": 0.2334 + }, + { + "start": 10247.52, + "end": 10248.7, + "probability": 0.6041 + }, + { + "start": 10248.7, + "end": 10253.02, + "probability": 0.8852 + }, + { + "start": 10255.74, + "end": 10256.04, + "probability": 0.7639 + }, + { + "start": 10256.18, + "end": 10257.78, + "probability": 0.7135 + }, + { + "start": 10257.82, + "end": 10263.02, + "probability": 0.762 + }, + { + "start": 10264.8, + "end": 10268.06, + "probability": 0.9308 + }, + { + "start": 10268.13, + "end": 10274.14, + "probability": 0.9819 + }, + { + "start": 10274.16, + "end": 10274.24, + "probability": 0.283 + }, + { + "start": 10274.3, + "end": 10274.68, + "probability": 0.829 + }, + { + "start": 10274.78, + "end": 10276.18, + "probability": 0.7973 + }, + { + "start": 10276.48, + "end": 10282.0, + "probability": 0.6645 + }, + { + "start": 10284.3, + "end": 10286.2, + "probability": 0.015 + }, + { + "start": 10288.94, + "end": 10289.76, + "probability": 0.0374 + }, + { + "start": 10289.76, + "end": 10289.76, + "probability": 0.5866 + }, + { + "start": 10289.76, + "end": 10289.76, + "probability": 0.1888 + }, + { + "start": 10289.76, + "end": 10289.94, + "probability": 0.1733 + }, + { + "start": 10289.94, + "end": 10289.94, + "probability": 0.8706 + }, + { + "start": 10289.94, + "end": 10292.22, + "probability": 0.9678 + }, + { + "start": 10293.88, + "end": 10296.08, + "probability": 0.8117 + }, + { + "start": 10297.36, + "end": 10300.34, + "probability": 0.9602 + }, + { + "start": 10300.64, + "end": 10301.94, + "probability": 0.8316 + }, + { + "start": 10302.58, + "end": 10303.5, + "probability": 0.4994 + }, + { + "start": 10304.11, + "end": 10307.86, + "probability": 0.5829 + }, + { + "start": 10309.52, + "end": 10311.64, + "probability": 0.8792 + }, + { + "start": 10311.82, + "end": 10314.46, + "probability": 0.9521 + }, + { + "start": 10314.94, + "end": 10318.5, + "probability": 0.9886 + }, + { + "start": 10318.56, + "end": 10319.16, + "probability": 0.5754 + }, + { + "start": 10319.48, + "end": 10322.36, + "probability": 0.5284 + }, + { + "start": 10323.54, + "end": 10325.44, + "probability": 0.1761 + }, + { + "start": 10325.46, + "end": 10329.06, + "probability": 0.4647 + }, + { + "start": 10329.36, + "end": 10334.14, + "probability": 0.9275 + }, + { + "start": 10334.14, + "end": 10337.34, + "probability": 0.9942 + }, + { + "start": 10337.44, + "end": 10340.88, + "probability": 0.9947 + }, + { + "start": 10341.04, + "end": 10342.6, + "probability": 0.0867 + }, + { + "start": 10343.02, + "end": 10345.88, + "probability": 0.3711 + }, + { + "start": 10346.08, + "end": 10346.08, + "probability": 0.1741 + }, + { + "start": 10346.08, + "end": 10346.08, + "probability": 0.2169 + }, + { + "start": 10346.08, + "end": 10346.52, + "probability": 0.2245 + }, + { + "start": 10346.58, + "end": 10348.64, + "probability": 0.8159 + }, + { + "start": 10348.72, + "end": 10352.55, + "probability": 0.6828 + }, + { + "start": 10353.92, + "end": 10357.79, + "probability": 0.9893 + }, + { + "start": 10358.4, + "end": 10359.54, + "probability": 0.6905 + }, + { + "start": 10359.72, + "end": 10361.52, + "probability": 0.9383 + }, + { + "start": 10361.58, + "end": 10363.32, + "probability": 0.8481 + }, + { + "start": 10364.44, + "end": 10369.26, + "probability": 0.899 + }, + { + "start": 10369.26, + "end": 10372.88, + "probability": 0.9961 + }, + { + "start": 10373.34, + "end": 10376.18, + "probability": 0.9436 + }, + { + "start": 10376.18, + "end": 10379.96, + "probability": 0.9932 + }, + { + "start": 10381.64, + "end": 10382.2, + "probability": 0.3314 + }, + { + "start": 10382.3, + "end": 10383.02, + "probability": 0.9155 + }, + { + "start": 10383.36, + "end": 10388.7, + "probability": 0.9771 + }, + { + "start": 10389.82, + "end": 10395.18, + "probability": 0.9814 + }, + { + "start": 10395.26, + "end": 10398.16, + "probability": 0.9212 + }, + { + "start": 10399.16, + "end": 10401.82, + "probability": 0.9522 + }, + { + "start": 10402.7, + "end": 10403.26, + "probability": 0.9157 + }, + { + "start": 10404.76, + "end": 10410.94, + "probability": 0.9524 + }, + { + "start": 10411.06, + "end": 10413.7, + "probability": 0.9914 + }, + { + "start": 10414.68, + "end": 10415.24, + "probability": 0.5908 + }, + { + "start": 10416.04, + "end": 10417.98, + "probability": 0.8374 + }, + { + "start": 10418.04, + "end": 10419.7, + "probability": 0.9523 + }, + { + "start": 10419.78, + "end": 10421.98, + "probability": 0.7697 + }, + { + "start": 10422.12, + "end": 10423.24, + "probability": 0.662 + }, + { + "start": 10423.56, + "end": 10424.58, + "probability": 0.8561 + }, + { + "start": 10424.58, + "end": 10427.1, + "probability": 0.4186 + }, + { + "start": 10427.1, + "end": 10430.1, + "probability": 0.5656 + }, + { + "start": 10430.26, + "end": 10431.44, + "probability": 0.81 + }, + { + "start": 10431.88, + "end": 10437.62, + "probability": 0.8745 + }, + { + "start": 10437.8, + "end": 10439.67, + "probability": 0.104 + }, + { + "start": 10440.74, + "end": 10441.96, + "probability": 0.1169 + }, + { + "start": 10444.74, + "end": 10447.26, + "probability": 0.0587 + }, + { + "start": 10447.56, + "end": 10448.9, + "probability": 0.6547 + }, + { + "start": 10449.24, + "end": 10450.5, + "probability": 0.5576 + }, + { + "start": 10450.6, + "end": 10452.7, + "probability": 0.2615 + }, + { + "start": 10452.9, + "end": 10453.66, + "probability": 0.4685 + }, + { + "start": 10453.92, + "end": 10454.49, + "probability": 0.0903 + }, + { + "start": 10456.08, + "end": 10458.56, + "probability": 0.5406 + }, + { + "start": 10459.53, + "end": 10461.02, + "probability": 0.6692 + }, + { + "start": 10461.16, + "end": 10463.43, + "probability": 0.2555 + }, + { + "start": 10464.24, + "end": 10465.54, + "probability": 0.5566 + }, + { + "start": 10466.0, + "end": 10468.22, + "probability": 0.9169 + }, + { + "start": 10468.52, + "end": 10471.3, + "probability": 0.4994 + }, + { + "start": 10471.38, + "end": 10472.2, + "probability": 0.8938 + }, + { + "start": 10472.32, + "end": 10474.67, + "probability": 0.9507 + }, + { + "start": 10475.56, + "end": 10480.6, + "probability": 0.9373 + }, + { + "start": 10481.44, + "end": 10483.38, + "probability": 0.9802 + }, + { + "start": 10483.74, + "end": 10488.18, + "probability": 0.9929 + }, + { + "start": 10489.08, + "end": 10495.48, + "probability": 0.9725 + }, + { + "start": 10496.04, + "end": 10501.2, + "probability": 0.994 + }, + { + "start": 10501.92, + "end": 10504.46, + "probability": 0.7743 + }, + { + "start": 10504.94, + "end": 10505.96, + "probability": 0.8 + }, + { + "start": 10506.12, + "end": 10507.3, + "probability": 0.6536 + }, + { + "start": 10507.78, + "end": 10509.62, + "probability": 0.1009 + }, + { + "start": 10510.22, + "end": 10512.9, + "probability": 0.1075 + }, + { + "start": 10512.9, + "end": 10512.9, + "probability": 0.0311 + }, + { + "start": 10512.9, + "end": 10514.78, + "probability": 0.4349 + }, + { + "start": 10515.78, + "end": 10517.4, + "probability": 0.7625 + }, + { + "start": 10517.42, + "end": 10518.16, + "probability": 0.7411 + }, + { + "start": 10518.26, + "end": 10520.28, + "probability": 0.9814 + }, + { + "start": 10521.6, + "end": 10524.72, + "probability": 0.1229 + }, + { + "start": 10524.98, + "end": 10526.76, + "probability": 0.6474 + }, + { + "start": 10527.74, + "end": 10531.94, + "probability": 0.5571 + }, + { + "start": 10531.94, + "end": 10534.12, + "probability": 0.0505 + }, + { + "start": 10534.28, + "end": 10535.09, + "probability": 0.1758 + }, + { + "start": 10535.34, + "end": 10538.74, + "probability": 0.5112 + }, + { + "start": 10539.12, + "end": 10540.82, + "probability": 0.6987 + }, + { + "start": 10540.82, + "end": 10541.92, + "probability": 0.8598 + }, + { + "start": 10542.26, + "end": 10548.52, + "probability": 0.8202 + }, + { + "start": 10548.52, + "end": 10554.3, + "probability": 0.7451 + }, + { + "start": 10555.02, + "end": 10557.08, + "probability": 0.8489 + }, + { + "start": 10557.52, + "end": 10563.06, + "probability": 0.9834 + }, + { + "start": 10563.32, + "end": 10563.46, + "probability": 0.202 + }, + { + "start": 10563.66, + "end": 10567.1, + "probability": 0.9664 + }, + { + "start": 10567.96, + "end": 10570.8, + "probability": 0.9194 + }, + { + "start": 10570.88, + "end": 10572.25, + "probability": 0.0376 + }, + { + "start": 10572.72, + "end": 10572.72, + "probability": 0.3304 + }, + { + "start": 10572.72, + "end": 10573.48, + "probability": 0.5746 + }, + { + "start": 10573.58, + "end": 10576.4, + "probability": 0.9716 + }, + { + "start": 10576.4, + "end": 10578.06, + "probability": 0.8722 + }, + { + "start": 10578.18, + "end": 10578.92, + "probability": 0.0017 + }, + { + "start": 10579.64, + "end": 10579.78, + "probability": 0.0758 + }, + { + "start": 10579.78, + "end": 10580.76, + "probability": 0.027 + }, + { + "start": 10581.46, + "end": 10584.82, + "probability": 0.9678 + }, + { + "start": 10585.54, + "end": 10590.7, + "probability": 0.9588 + }, + { + "start": 10592.4, + "end": 10592.98, + "probability": 0.2823 + }, + { + "start": 10592.98, + "end": 10593.3, + "probability": 0.5995 + }, + { + "start": 10593.48, + "end": 10598.1, + "probability": 0.9918 + }, + { + "start": 10598.12, + "end": 10598.86, + "probability": 0.4042 + }, + { + "start": 10599.0, + "end": 10599.98, + "probability": 0.7599 + }, + { + "start": 10600.1, + "end": 10601.1, + "probability": 0.5178 + }, + { + "start": 10601.22, + "end": 10603.08, + "probability": 0.2902 + }, + { + "start": 10603.22, + "end": 10603.6, + "probability": 0.1565 + }, + { + "start": 10603.62, + "end": 10604.28, + "probability": 0.3102 + }, + { + "start": 10604.56, + "end": 10605.5, + "probability": 0.6475 + }, + { + "start": 10606.52, + "end": 10610.98, + "probability": 0.8706 + }, + { + "start": 10611.6, + "end": 10612.62, + "probability": 0.9336 + }, + { + "start": 10615.86, + "end": 10616.42, + "probability": 0.4068 + }, + { + "start": 10616.56, + "end": 10620.02, + "probability": 0.8569 + }, + { + "start": 10620.22, + "end": 10620.22, + "probability": 0.2473 + }, + { + "start": 10620.22, + "end": 10620.34, + "probability": 0.5142 + }, + { + "start": 10620.36, + "end": 10620.36, + "probability": 0.6453 + }, + { + "start": 10620.4, + "end": 10622.54, + "probability": 0.7019 + }, + { + "start": 10622.54, + "end": 10626.65, + "probability": 0.7647 + }, + { + "start": 10627.78, + "end": 10629.37, + "probability": 0.9461 + }, + { + "start": 10629.7, + "end": 10631.0, + "probability": 0.9212 + }, + { + "start": 10632.18, + "end": 10633.52, + "probability": 0.9414 + }, + { + "start": 10633.62, + "end": 10634.93, + "probability": 0.9937 + }, + { + "start": 10635.82, + "end": 10639.26, + "probability": 0.9678 + }, + { + "start": 10639.88, + "end": 10642.04, + "probability": 0.8242 + }, + { + "start": 10642.52, + "end": 10645.08, + "probability": 0.9797 + }, + { + "start": 10645.84, + "end": 10651.14, + "probability": 0.9941 + }, + { + "start": 10651.9, + "end": 10656.68, + "probability": 0.994 + }, + { + "start": 10656.78, + "end": 10658.18, + "probability": 0.9844 + }, + { + "start": 10658.98, + "end": 10662.24, + "probability": 0.7944 + }, + { + "start": 10663.24, + "end": 10666.1, + "probability": 0.8834 + }, + { + "start": 10666.1, + "end": 10668.4, + "probability": 0.8991 + }, + { + "start": 10668.82, + "end": 10673.38, + "probability": 0.994 + }, + { + "start": 10673.76, + "end": 10678.12, + "probability": 0.9876 + }, + { + "start": 10678.5, + "end": 10680.94, + "probability": 0.998 + }, + { + "start": 10680.94, + "end": 10683.82, + "probability": 0.9663 + }, + { + "start": 10683.9, + "end": 10684.72, + "probability": 0.8873 + }, + { + "start": 10684.8, + "end": 10685.58, + "probability": 0.9966 + }, + { + "start": 10687.42, + "end": 10692.04, + "probability": 0.9985 + }, + { + "start": 10692.04, + "end": 10696.26, + "probability": 0.9993 + }, + { + "start": 10698.48, + "end": 10700.3, + "probability": 0.1422 + }, + { + "start": 10700.3, + "end": 10700.3, + "probability": 0.5159 + }, + { + "start": 10700.3, + "end": 10701.42, + "probability": 0.6962 + }, + { + "start": 10701.42, + "end": 10704.86, + "probability": 0.957 + }, + { + "start": 10705.36, + "end": 10708.5, + "probability": 0.9548 + }, + { + "start": 10708.86, + "end": 10715.44, + "probability": 0.989 + }, + { + "start": 10717.26, + "end": 10718.1, + "probability": 0.8024 + }, + { + "start": 10719.66, + "end": 10720.1, + "probability": 0.6398 + }, + { + "start": 10722.08, + "end": 10722.44, + "probability": 0.6025 + }, + { + "start": 10722.44, + "end": 10724.2, + "probability": 0.8215 + }, + { + "start": 10724.34, + "end": 10726.3, + "probability": 0.4964 + }, + { + "start": 10726.68, + "end": 10732.76, + "probability": 0.8817 + }, + { + "start": 10733.28, + "end": 10734.46, + "probability": 0.7242 + }, + { + "start": 10734.56, + "end": 10737.02, + "probability": 0.9861 + }, + { + "start": 10738.34, + "end": 10739.38, + "probability": 0.5413 + }, + { + "start": 10740.72, + "end": 10742.92, + "probability": 0.7631 + }, + { + "start": 10743.66, + "end": 10745.76, + "probability": 0.9902 + }, + { + "start": 10746.52, + "end": 10746.56, + "probability": 0.0872 + }, + { + "start": 10746.56, + "end": 10748.46, + "probability": 0.9277 + }, + { + "start": 10749.86, + "end": 10751.34, + "probability": 0.0897 + }, + { + "start": 10751.84, + "end": 10754.86, + "probability": 0.8071 + }, + { + "start": 10754.92, + "end": 10755.16, + "probability": 0.331 + }, + { + "start": 10755.24, + "end": 10756.48, + "probability": 0.6659 + }, + { + "start": 10756.52, + "end": 10757.22, + "probability": 0.5455 + }, + { + "start": 10757.4, + "end": 10761.28, + "probability": 0.6603 + }, + { + "start": 10761.3, + "end": 10762.28, + "probability": 0.8462 + }, + { + "start": 10762.3, + "end": 10764.14, + "probability": 0.3928 + }, + { + "start": 10764.58, + "end": 10766.28, + "probability": 0.7925 + }, + { + "start": 10766.36, + "end": 10767.18, + "probability": 0.2393 + }, + { + "start": 10767.26, + "end": 10769.59, + "probability": 0.808 + }, + { + "start": 10769.84, + "end": 10770.44, + "probability": 0.6592 + }, + { + "start": 10770.9, + "end": 10773.64, + "probability": 0.896 + }, + { + "start": 10774.24, + "end": 10778.52, + "probability": 0.9937 + }, + { + "start": 10778.96, + "end": 10781.3, + "probability": 0.9802 + }, + { + "start": 10782.06, + "end": 10784.54, + "probability": 0.9966 + }, + { + "start": 10784.88, + "end": 10787.96, + "probability": 0.1146 + }, + { + "start": 10787.96, + "end": 10789.82, + "probability": 0.1693 + }, + { + "start": 10790.0, + "end": 10792.28, + "probability": 0.7231 + }, + { + "start": 10792.9, + "end": 10793.77, + "probability": 0.6377 + }, + { + "start": 10793.92, + "end": 10794.1, + "probability": 0.7002 + }, + { + "start": 10794.14, + "end": 10794.8, + "probability": 0.9717 + }, + { + "start": 10794.9, + "end": 10796.05, + "probability": 0.9482 + }, + { + "start": 10796.56, + "end": 10799.03, + "probability": 0.918 + }, + { + "start": 10799.3, + "end": 10804.0, + "probability": 0.3103 + }, + { + "start": 10804.0, + "end": 10805.02, + "probability": 0.4541 + }, + { + "start": 10805.36, + "end": 10808.02, + "probability": 0.8215 + }, + { + "start": 10808.78, + "end": 10812.1, + "probability": 0.9896 + }, + { + "start": 10813.72, + "end": 10817.22, + "probability": 0.9073 + }, + { + "start": 10817.46, + "end": 10819.74, + "probability": 0.9824 + }, + { + "start": 10821.96, + "end": 10823.44, + "probability": 0.9802 + }, + { + "start": 10824.54, + "end": 10827.68, + "probability": 0.9978 + }, + { + "start": 10827.8, + "end": 10833.6, + "probability": 0.997 + }, + { + "start": 10834.88, + "end": 10834.88, + "probability": 0.0243 + }, + { + "start": 10834.88, + "end": 10839.02, + "probability": 0.9901 + }, + { + "start": 10839.98, + "end": 10845.26, + "probability": 0.9041 + }, + { + "start": 10846.3, + "end": 10846.5, + "probability": 0.0481 + }, + { + "start": 10846.5, + "end": 10848.72, + "probability": 0.7819 + }, + { + "start": 10849.24, + "end": 10851.38, + "probability": 0.9854 + }, + { + "start": 10851.56, + "end": 10855.46, + "probability": 0.9617 + }, + { + "start": 10856.24, + "end": 10858.18, + "probability": 0.8716 + }, + { + "start": 10860.4, + "end": 10860.82, + "probability": 0.3773 + }, + { + "start": 10860.82, + "end": 10863.1, + "probability": 0.5061 + }, + { + "start": 10863.52, + "end": 10863.84, + "probability": 0.1118 + }, + { + "start": 10863.84, + "end": 10866.3, + "probability": 0.5397 + }, + { + "start": 10866.34, + "end": 10868.14, + "probability": 0.8103 + }, + { + "start": 10868.42, + "end": 10868.66, + "probability": 0.6244 + }, + { + "start": 10868.66, + "end": 10868.68, + "probability": 0.3192 + }, + { + "start": 10868.68, + "end": 10868.68, + "probability": 0.0123 + }, + { + "start": 10868.68, + "end": 10869.75, + "probability": 0.447 + }, + { + "start": 10869.94, + "end": 10870.04, + "probability": 0.1882 + }, + { + "start": 10870.24, + "end": 10870.48, + "probability": 0.3162 + }, + { + "start": 10870.66, + "end": 10871.4, + "probability": 0.7783 + }, + { + "start": 10871.62, + "end": 10871.74, + "probability": 0.0886 + }, + { + "start": 10871.74, + "end": 10872.78, + "probability": 0.4305 + }, + { + "start": 10872.82, + "end": 10874.28, + "probability": 0.6581 + }, + { + "start": 10875.18, + "end": 10875.3, + "probability": 0.0844 + }, + { + "start": 10875.34, + "end": 10876.48, + "probability": 0.7438 + }, + { + "start": 10877.46, + "end": 10880.08, + "probability": 0.8012 + }, + { + "start": 10881.24, + "end": 10883.12, + "probability": 0.9472 + }, + { + "start": 10883.94, + "end": 10888.32, + "probability": 0.9724 + }, + { + "start": 10889.02, + "end": 10894.4, + "probability": 0.9694 + }, + { + "start": 10894.46, + "end": 10895.72, + "probability": 0.7242 + }, + { + "start": 10896.46, + "end": 10900.26, + "probability": 0.9854 + }, + { + "start": 10900.44, + "end": 10900.54, + "probability": 0.4613 + }, + { + "start": 10900.62, + "end": 10901.1, + "probability": 0.9622 + }, + { + "start": 10903.58, + "end": 10905.31, + "probability": 0.9666 + }, + { + "start": 10905.98, + "end": 10907.04, + "probability": 0.9545 + }, + { + "start": 10907.54, + "end": 10911.5, + "probability": 0.9355 + }, + { + "start": 10912.32, + "end": 10915.96, + "probability": 0.8501 + }, + { + "start": 10916.92, + "end": 10918.14, + "probability": 0.7824 + }, + { + "start": 10918.74, + "end": 10921.48, + "probability": 0.9902 + }, + { + "start": 10921.48, + "end": 10923.54, + "probability": 0.853 + }, + { + "start": 10923.74, + "end": 10928.68, + "probability": 0.946 + }, + { + "start": 10930.32, + "end": 10932.32, + "probability": 0.9062 + }, + { + "start": 10934.18, + "end": 10934.78, + "probability": 0.3733 + }, + { + "start": 10936.88, + "end": 10937.76, + "probability": 0.4663 + }, + { + "start": 10940.18, + "end": 10942.62, + "probability": 0.8512 + }, + { + "start": 10943.98, + "end": 10946.84, + "probability": 0.8683 + }, + { + "start": 10947.42, + "end": 10949.0, + "probability": 0.8731 + }, + { + "start": 10949.04, + "end": 10950.64, + "probability": 0.9707 + }, + { + "start": 10951.66, + "end": 10953.96, + "probability": 0.9531 + }, + { + "start": 10956.12, + "end": 10956.61, + "probability": 0.5928 + }, + { + "start": 10956.78, + "end": 10958.28, + "probability": 0.9904 + }, + { + "start": 10959.94, + "end": 10960.04, + "probability": 0.2737 + }, + { + "start": 10960.88, + "end": 10960.98, + "probability": 0.057 + }, + { + "start": 10960.98, + "end": 10964.54, + "probability": 0.9002 + }, + { + "start": 10964.8, + "end": 10965.3, + "probability": 0.0986 + }, + { + "start": 10966.16, + "end": 10967.14, + "probability": 0.3402 + }, + { + "start": 10967.14, + "end": 10967.63, + "probability": 0.3615 + }, + { + "start": 10968.5, + "end": 10968.52, + "probability": 0.3137 + }, + { + "start": 10968.62, + "end": 10970.92, + "probability": 0.7437 + }, + { + "start": 10971.0, + "end": 10974.14, + "probability": 0.9059 + }, + { + "start": 10974.38, + "end": 10978.96, + "probability": 0.901 + }, + { + "start": 10979.0, + "end": 10981.92, + "probability": 0.9186 + }, + { + "start": 10982.54, + "end": 10986.74, + "probability": 0.9951 + }, + { + "start": 10989.74, + "end": 10993.44, + "probability": 0.8681 + }, + { + "start": 10995.14, + "end": 10997.88, + "probability": 0.8067 + }, + { + "start": 10998.9, + "end": 10999.58, + "probability": 0.3991 + }, + { + "start": 11000.14, + "end": 11001.16, + "probability": 0.946 + }, + { + "start": 11001.22, + "end": 11001.7, + "probability": 0.6736 + }, + { + "start": 11001.82, + "end": 11004.86, + "probability": 0.7533 + }, + { + "start": 11005.98, + "end": 11006.4, + "probability": 0.5518 + }, + { + "start": 11006.48, + "end": 11011.12, + "probability": 0.8548 + }, + { + "start": 11011.44, + "end": 11015.32, + "probability": 0.9887 + }, + { + "start": 11015.8, + "end": 11019.2, + "probability": 0.8832 + }, + { + "start": 11019.56, + "end": 11020.38, + "probability": 0.4658 + }, + { + "start": 11021.04, + "end": 11025.36, + "probability": 0.791 + }, + { + "start": 11025.48, + "end": 11027.74, + "probability": 0.9795 + }, + { + "start": 11028.92, + "end": 11029.8, + "probability": 0.5286 + }, + { + "start": 11030.94, + "end": 11032.04, + "probability": 0.4987 + }, + { + "start": 11032.32, + "end": 11036.52, + "probability": 0.7589 + }, + { + "start": 11036.52, + "end": 11040.2, + "probability": 0.9615 + }, + { + "start": 11040.94, + "end": 11046.04, + "probability": 0.8092 + }, + { + "start": 11046.12, + "end": 11046.8, + "probability": 0.371 + }, + { + "start": 11047.5, + "end": 11048.6, + "probability": 0.5511 + }, + { + "start": 11048.92, + "end": 11050.2, + "probability": 0.8099 + }, + { + "start": 11050.96, + "end": 11055.36, + "probability": 0.991 + }, + { + "start": 11055.44, + "end": 11056.14, + "probability": 0.988 + }, + { + "start": 11057.34, + "end": 11061.86, + "probability": 0.9169 + }, + { + "start": 11062.85, + "end": 11067.02, + "probability": 0.9324 + }, + { + "start": 11068.3, + "end": 11070.85, + "probability": 0.2793 + }, + { + "start": 11071.84, + "end": 11072.36, + "probability": 0.1188 + }, + { + "start": 11072.94, + "end": 11073.46, + "probability": 0.0705 + }, + { + "start": 11073.94, + "end": 11076.9, + "probability": 0.9915 + }, + { + "start": 11077.04, + "end": 11077.88, + "probability": 0.8518 + }, + { + "start": 11078.06, + "end": 11083.15, + "probability": 0.9562 + }, + { + "start": 11084.26, + "end": 11085.18, + "probability": 0.2688 + }, + { + "start": 11085.44, + "end": 11087.07, + "probability": 0.3662 + }, + { + "start": 11087.24, + "end": 11087.48, + "probability": 0.2154 + }, + { + "start": 11087.92, + "end": 11088.42, + "probability": 0.3948 + }, + { + "start": 11088.46, + "end": 11088.46, + "probability": 0.297 + }, + { + "start": 11088.64, + "end": 11089.93, + "probability": 0.1449 + }, + { + "start": 11090.3, + "end": 11091.34, + "probability": 0.6219 + }, + { + "start": 11092.2, + "end": 11094.71, + "probability": 0.1273 + }, + { + "start": 11096.68, + "end": 11096.84, + "probability": 0.4695 + }, + { + "start": 11097.38, + "end": 11098.94, + "probability": 0.0641 + }, + { + "start": 11099.28, + "end": 11103.42, + "probability": 0.8207 + }, + { + "start": 11105.34, + "end": 11109.42, + "probability": 0.9788 + }, + { + "start": 11109.54, + "end": 11111.7, + "probability": 0.9919 + }, + { + "start": 11112.02, + "end": 11112.78, + "probability": 0.8043 + }, + { + "start": 11112.9, + "end": 11112.96, + "probability": 0.1366 + }, + { + "start": 11113.18, + "end": 11113.34, + "probability": 0.4174 + }, + { + "start": 11113.34, + "end": 11115.48, + "probability": 0.9418 + }, + { + "start": 11115.64, + "end": 11117.18, + "probability": 0.9102 + }, + { + "start": 11117.52, + "end": 11119.02, + "probability": 0.92 + }, + { + "start": 11119.02, + "end": 11124.56, + "probability": 0.9907 + }, + { + "start": 11125.92, + "end": 11127.04, + "probability": 0.7069 + }, + { + "start": 11127.12, + "end": 11127.78, + "probability": 0.7867 + }, + { + "start": 11128.08, + "end": 11129.08, + "probability": 0.836 + }, + { + "start": 11129.12, + "end": 11132.06, + "probability": 0.9581 + }, + { + "start": 11133.42, + "end": 11135.32, + "probability": 0.7242 + }, + { + "start": 11135.84, + "end": 11138.5, + "probability": 0.3844 + }, + { + "start": 11138.5, + "end": 11139.02, + "probability": 0.0801 + }, + { + "start": 11139.02, + "end": 11139.02, + "probability": 0.2262 + }, + { + "start": 11139.02, + "end": 11139.02, + "probability": 0.3257 + }, + { + "start": 11139.02, + "end": 11139.02, + "probability": 0.0555 + }, + { + "start": 11139.02, + "end": 11141.76, + "probability": 0.6062 + }, + { + "start": 11141.9, + "end": 11143.88, + "probability": 0.8463 + }, + { + "start": 11144.1, + "end": 11144.89, + "probability": 0.1846 + }, + { + "start": 11146.34, + "end": 11148.26, + "probability": 0.3675 + }, + { + "start": 11148.52, + "end": 11149.98, + "probability": 0.8638 + }, + { + "start": 11151.02, + "end": 11155.06, + "probability": 0.9886 + }, + { + "start": 11155.6, + "end": 11155.6, + "probability": 0.071 + }, + { + "start": 11155.78, + "end": 11156.86, + "probability": 0.7563 + }, + { + "start": 11157.64, + "end": 11157.7, + "probability": 0.0828 + }, + { + "start": 11157.7, + "end": 11162.32, + "probability": 0.9834 + }, + { + "start": 11162.4, + "end": 11163.84, + "probability": 0.2409 + }, + { + "start": 11163.86, + "end": 11164.56, + "probability": 0.2996 + }, + { + "start": 11164.56, + "end": 11165.96, + "probability": 0.4351 + }, + { + "start": 11166.24, + "end": 11168.76, + "probability": 0.7899 + }, + { + "start": 11168.92, + "end": 11170.64, + "probability": 0.7036 + }, + { + "start": 11170.8, + "end": 11172.28, + "probability": 0.9521 + }, + { + "start": 11172.34, + "end": 11172.36, + "probability": 0.0067 + }, + { + "start": 11175.24, + "end": 11175.38, + "probability": 0.0774 + }, + { + "start": 11175.38, + "end": 11175.38, + "probability": 0.0653 + }, + { + "start": 11175.38, + "end": 11175.38, + "probability": 0.0352 + }, + { + "start": 11175.38, + "end": 11178.32, + "probability": 0.6051 + }, + { + "start": 11179.06, + "end": 11181.04, + "probability": 0.4224 + }, + { + "start": 11182.14, + "end": 11182.8, + "probability": 0.0928 + }, + { + "start": 11182.8, + "end": 11182.88, + "probability": 0.0754 + }, + { + "start": 11182.88, + "end": 11183.08, + "probability": 0.0905 + }, + { + "start": 11183.08, + "end": 11184.06, + "probability": 0.6668 + }, + { + "start": 11184.12, + "end": 11185.2, + "probability": 0.7166 + }, + { + "start": 11185.28, + "end": 11186.28, + "probability": 0.2391 + }, + { + "start": 11186.3, + "end": 11188.02, + "probability": 0.7611 + }, + { + "start": 11188.1, + "end": 11189.42, + "probability": 0.6782 + }, + { + "start": 11189.96, + "end": 11196.28, + "probability": 0.0215 + }, + { + "start": 11197.46, + "end": 11198.26, + "probability": 0.0086 + }, + { + "start": 11198.26, + "end": 11198.66, + "probability": 0.1434 + }, + { + "start": 11198.92, + "end": 11199.4, + "probability": 0.0542 + }, + { + "start": 11199.4, + "end": 11199.8, + "probability": 0.0775 + }, + { + "start": 11199.8, + "end": 11199.8, + "probability": 0.1664 + }, + { + "start": 11199.8, + "end": 11200.7, + "probability": 0.6495 + }, + { + "start": 11200.74, + "end": 11201.68, + "probability": 0.619 + }, + { + "start": 11201.78, + "end": 11202.72, + "probability": 0.8539 + }, + { + "start": 11202.84, + "end": 11203.78, + "probability": 0.7901 + }, + { + "start": 11204.44, + "end": 11207.84, + "probability": 0.7143 + }, + { + "start": 11207.96, + "end": 11209.92, + "probability": 0.6786 + }, + { + "start": 11210.04, + "end": 11211.16, + "probability": 0.4036 + }, + { + "start": 11211.4, + "end": 11211.86, + "probability": 0.0076 + }, + { + "start": 11211.86, + "end": 11212.48, + "probability": 0.1126 + }, + { + "start": 11212.64, + "end": 11213.68, + "probability": 0.85 + }, + { + "start": 11213.9, + "end": 11216.36, + "probability": 0.8766 + }, + { + "start": 11216.66, + "end": 11217.8, + "probability": 0.0348 + }, + { + "start": 11217.88, + "end": 11218.52, + "probability": 0.7274 + }, + { + "start": 11218.6, + "end": 11219.02, + "probability": 0.8635 + }, + { + "start": 11219.08, + "end": 11219.5, + "probability": 0.5435 + }, + { + "start": 11219.54, + "end": 11220.74, + "probability": 0.4577 + }, + { + "start": 11220.78, + "end": 11222.4, + "probability": 0.7121 + }, + { + "start": 11222.57, + "end": 11223.63, + "probability": 0.2372 + }, + { + "start": 11224.32, + "end": 11227.0, + "probability": 0.551 + }, + { + "start": 11227.08, + "end": 11228.96, + "probability": 0.7233 + }, + { + "start": 11230.44, + "end": 11231.28, + "probability": 0.0044 + }, + { + "start": 11231.3, + "end": 11231.74, + "probability": 0.1295 + }, + { + "start": 11232.16, + "end": 11233.46, + "probability": 0.842 + }, + { + "start": 11234.18, + "end": 11240.96, + "probability": 0.9888 + }, + { + "start": 11241.76, + "end": 11244.78, + "probability": 0.995 + }, + { + "start": 11247.0, + "end": 11252.56, + "probability": 0.947 + }, + { + "start": 11254.28, + "end": 11255.5, + "probability": 0.382 + }, + { + "start": 11255.62, + "end": 11256.41, + "probability": 0.8903 + }, + { + "start": 11256.72, + "end": 11259.28, + "probability": 0.1725 + }, + { + "start": 11259.48, + "end": 11260.76, + "probability": 0.7459 + }, + { + "start": 11261.34, + "end": 11266.12, + "probability": 0.9917 + }, + { + "start": 11266.12, + "end": 11270.28, + "probability": 0.9969 + }, + { + "start": 11270.46, + "end": 11270.72, + "probability": 0.3506 + }, + { + "start": 11270.72, + "end": 11270.72, + "probability": 0.2524 + }, + { + "start": 11270.72, + "end": 11270.72, + "probability": 0.1345 + }, + { + "start": 11270.72, + "end": 11272.28, + "probability": 0.6147 + }, + { + "start": 11272.76, + "end": 11274.54, + "probability": 0.6332 + }, + { + "start": 11275.0, + "end": 11276.0, + "probability": 0.2543 + }, + { + "start": 11276.0, + "end": 11277.56, + "probability": 0.4672 + }, + { + "start": 11278.02, + "end": 11278.5, + "probability": 0.7118 + }, + { + "start": 11279.06, + "end": 11279.32, + "probability": 0.3022 + }, + { + "start": 11279.32, + "end": 11280.16, + "probability": 0.5279 + }, + { + "start": 11281.06, + "end": 11283.46, + "probability": 0.6548 + }, + { + "start": 11283.68, + "end": 11284.18, + "probability": 0.0828 + }, + { + "start": 11284.18, + "end": 11287.98, + "probability": 0.3941 + }, + { + "start": 11288.78, + "end": 11288.84, + "probability": 0.0021 + }, + { + "start": 11288.88, + "end": 11288.98, + "probability": 0.125 + }, + { + "start": 11289.32, + "end": 11289.42, + "probability": 0.1535 + }, + { + "start": 11289.42, + "end": 11291.92, + "probability": 0.7371 + }, + { + "start": 11292.06, + "end": 11293.18, + "probability": 0.4049 + }, + { + "start": 11293.72, + "end": 11301.32, + "probability": 0.986 + }, + { + "start": 11301.5, + "end": 11304.54, + "probability": 0.9862 + }, + { + "start": 11305.18, + "end": 11309.84, + "probability": 0.9896 + }, + { + "start": 11310.4, + "end": 11313.18, + "probability": 0.996 + }, + { + "start": 11313.78, + "end": 11313.84, + "probability": 0.0344 + }, + { + "start": 11313.84, + "end": 11317.78, + "probability": 0.9829 + }, + { + "start": 11317.78, + "end": 11321.5, + "probability": 0.8231 + }, + { + "start": 11322.38, + "end": 11325.98, + "probability": 0.9932 + }, + { + "start": 11326.58, + "end": 11328.76, + "probability": 0.9958 + }, + { + "start": 11329.32, + "end": 11333.6, + "probability": 0.9831 + }, + { + "start": 11333.92, + "end": 11337.0, + "probability": 0.9968 + }, + { + "start": 11337.04, + "end": 11338.38, + "probability": 0.8195 + }, + { + "start": 11339.02, + "end": 11341.3, + "probability": 0.9563 + }, + { + "start": 11342.08, + "end": 11343.15, + "probability": 0.8813 + }, + { + "start": 11343.82, + "end": 11346.44, + "probability": 0.9954 + }, + { + "start": 11346.96, + "end": 11348.38, + "probability": 0.9824 + }, + { + "start": 11348.84, + "end": 11352.54, + "probability": 0.9966 + }, + { + "start": 11352.94, + "end": 11354.18, + "probability": 0.9104 + }, + { + "start": 11354.3, + "end": 11356.48, + "probability": 0.1798 + }, + { + "start": 11356.56, + "end": 11358.0, + "probability": 0.7255 + }, + { + "start": 11358.62, + "end": 11358.64, + "probability": 0.1976 + }, + { + "start": 11358.64, + "end": 11360.6, + "probability": 0.7302 + }, + { + "start": 11362.46, + "end": 11365.9, + "probability": 0.0321 + }, + { + "start": 11365.9, + "end": 11365.9, + "probability": 0.0184 + }, + { + "start": 11365.9, + "end": 11367.98, + "probability": 0.289 + }, + { + "start": 11368.9, + "end": 11370.94, + "probability": 0.3103 + }, + { + "start": 11371.56, + "end": 11372.98, + "probability": 0.3666 + }, + { + "start": 11373.76, + "end": 11375.22, + "probability": 0.7594 + }, + { + "start": 11376.08, + "end": 11376.6, + "probability": 0.1109 + }, + { + "start": 11376.6, + "end": 11376.6, + "probability": 0.2354 + }, + { + "start": 11376.68, + "end": 11377.76, + "probability": 0.8618 + }, + { + "start": 11378.2, + "end": 11381.1, + "probability": 0.985 + }, + { + "start": 11381.5, + "end": 11382.38, + "probability": 0.9319 + }, + { + "start": 11382.54, + "end": 11383.26, + "probability": 0.9435 + }, + { + "start": 11383.56, + "end": 11386.18, + "probability": 0.8928 + }, + { + "start": 11386.34, + "end": 11387.93, + "probability": 0.757 + }, + { + "start": 11388.36, + "end": 11390.46, + "probability": 0.9771 + }, + { + "start": 11390.48, + "end": 11394.4, + "probability": 0.9705 + }, + { + "start": 11394.66, + "end": 11396.28, + "probability": 0.9646 + }, + { + "start": 11397.78, + "end": 11403.7, + "probability": 0.1726 + }, + { + "start": 11405.8, + "end": 11407.04, + "probability": 0.0159 + }, + { + "start": 11407.1, + "end": 11407.16, + "probability": 0.1828 + }, + { + "start": 11407.16, + "end": 11407.16, + "probability": 0.0248 + }, + { + "start": 11407.16, + "end": 11407.96, + "probability": 0.4535 + }, + { + "start": 11408.66, + "end": 11412.66, + "probability": 0.3502 + }, + { + "start": 11414.06, + "end": 11416.38, + "probability": 0.2696 + }, + { + "start": 11418.42, + "end": 11419.46, + "probability": 0.104 + }, + { + "start": 11419.5, + "end": 11420.32, + "probability": 0.0285 + }, + { + "start": 11420.32, + "end": 11420.32, + "probability": 0.2273 + }, + { + "start": 11420.32, + "end": 11421.54, + "probability": 0.6454 + }, + { + "start": 11422.28, + "end": 11423.36, + "probability": 0.094 + }, + { + "start": 11424.06, + "end": 11425.46, + "probability": 0.6409 + }, + { + "start": 11425.92, + "end": 11425.92, + "probability": 0.5436 + }, + { + "start": 11425.92, + "end": 11426.04, + "probability": 0.0674 + }, + { + "start": 11426.04, + "end": 11426.04, + "probability": 0.0528 + }, + { + "start": 11426.04, + "end": 11432.86, + "probability": 0.9878 + }, + { + "start": 11432.88, + "end": 11434.56, + "probability": 0.8329 + }, + { + "start": 11436.08, + "end": 11436.34, + "probability": 0.7507 + }, + { + "start": 11436.96, + "end": 11437.06, + "probability": 0.4055 + }, + { + "start": 11437.12, + "end": 11438.42, + "probability": 0.7614 + }, + { + "start": 11438.42, + "end": 11438.7, + "probability": 0.4883 + }, + { + "start": 11438.92, + "end": 11441.82, + "probability": 0.5568 + }, + { + "start": 11442.04, + "end": 11443.78, + "probability": 0.4748 + }, + { + "start": 11445.84, + "end": 11448.1, + "probability": 0.9381 + }, + { + "start": 11449.18, + "end": 11449.7, + "probability": 0.5316 + }, + { + "start": 11449.72, + "end": 11450.36, + "probability": 0.5864 + }, + { + "start": 11450.42, + "end": 11452.92, + "probability": 0.6871 + }, + { + "start": 11453.44, + "end": 11455.6, + "probability": 0.8927 + }, + { + "start": 11455.78, + "end": 11458.5, + "probability": 0.9557 + }, + { + "start": 11458.86, + "end": 11461.78, + "probability": 0.9072 + }, + { + "start": 11461.96, + "end": 11462.06, + "probability": 0.4537 + }, + { + "start": 11464.02, + "end": 11466.1, + "probability": 0.9671 + }, + { + "start": 11466.26, + "end": 11467.12, + "probability": 0.5408 + }, + { + "start": 11467.12, + "end": 11469.3, + "probability": 0.6365 + }, + { + "start": 11469.52, + "end": 11470.9, + "probability": 0.3354 + }, + { + "start": 11470.92, + "end": 11470.92, + "probability": 0.339 + }, + { + "start": 11470.92, + "end": 11472.24, + "probability": 0.6318 + }, + { + "start": 11473.74, + "end": 11475.26, + "probability": 0.493 + }, + { + "start": 11475.68, + "end": 11477.24, + "probability": 0.4392 + }, + { + "start": 11477.6, + "end": 11480.38, + "probability": 0.6152 + }, + { + "start": 11480.65, + "end": 11488.24, + "probability": 0.9757 + }, + { + "start": 11488.78, + "end": 11490.16, + "probability": 0.3766 + }, + { + "start": 11490.92, + "end": 11493.29, + "probability": 0.8225 + }, + { + "start": 11494.08, + "end": 11494.78, + "probability": 0.5346 + }, + { + "start": 11494.92, + "end": 11496.76, + "probability": 0.5273 + }, + { + "start": 11497.14, + "end": 11499.96, + "probability": 0.0731 + }, + { + "start": 11499.96, + "end": 11503.52, + "probability": 0.9413 + }, + { + "start": 11503.74, + "end": 11505.64, + "probability": 0.9917 + }, + { + "start": 11506.38, + "end": 11508.2, + "probability": 0.9325 + }, + { + "start": 11508.4, + "end": 11512.02, + "probability": 0.9915 + }, + { + "start": 11512.3, + "end": 11513.36, + "probability": 0.3937 + }, + { + "start": 11513.54, + "end": 11517.46, + "probability": 0.995 + }, + { + "start": 11517.73, + "end": 11520.64, + "probability": 0.9142 + }, + { + "start": 11521.9, + "end": 11523.62, + "probability": 0.9842 + }, + { + "start": 11524.14, + "end": 11526.34, + "probability": 0.9981 + }, + { + "start": 11527.2, + "end": 11527.66, + "probability": 0.7916 + }, + { + "start": 11528.82, + "end": 11530.2, + "probability": 0.9702 + }, + { + "start": 11530.4, + "end": 11531.59, + "probability": 0.5682 + }, + { + "start": 11531.78, + "end": 11535.36, + "probability": 0.8206 + }, + { + "start": 11535.92, + "end": 11540.86, + "probability": 0.9909 + }, + { + "start": 11540.96, + "end": 11541.9, + "probability": 0.9099 + }, + { + "start": 11544.02, + "end": 11548.4, + "probability": 0.9994 + }, + { + "start": 11548.4, + "end": 11552.94, + "probability": 0.9934 + }, + { + "start": 11553.92, + "end": 11558.72, + "probability": 0.9979 + }, + { + "start": 11559.38, + "end": 11563.08, + "probability": 0.9898 + }, + { + "start": 11563.18, + "end": 11565.32, + "probability": 0.9862 + }, + { + "start": 11565.76, + "end": 11568.88, + "probability": 0.9775 + }, + { + "start": 11569.28, + "end": 11572.42, + "probability": 0.6367 + }, + { + "start": 11572.9, + "end": 11574.96, + "probability": 0.9484 + }, + { + "start": 11575.56, + "end": 11577.22, + "probability": 0.9507 + }, + { + "start": 11582.78, + "end": 11585.74, + "probability": 0.6936 + }, + { + "start": 11585.84, + "end": 11588.0, + "probability": 0.5932 + }, + { + "start": 11590.74, + "end": 11593.6, + "probability": 0.2332 + }, + { + "start": 11595.34, + "end": 11597.56, + "probability": 0.6042 + }, + { + "start": 11598.64, + "end": 11601.26, + "probability": 0.711 + }, + { + "start": 11605.09, + "end": 11609.94, + "probability": 0.7901 + }, + { + "start": 11610.36, + "end": 11612.74, + "probability": 0.7744 + }, + { + "start": 11613.42, + "end": 11614.6, + "probability": 0.0006 + }, + { + "start": 11615.59, + "end": 11619.08, + "probability": 0.9966 + }, + { + "start": 11619.94, + "end": 11620.16, + "probability": 0.7463 + }, + { + "start": 11620.42, + "end": 11620.52, + "probability": 0.0095 + }, + { + "start": 11620.52, + "end": 11621.7, + "probability": 0.9054 + }, + { + "start": 11622.54, + "end": 11626.9, + "probability": 0.8046 + }, + { + "start": 11628.18, + "end": 11633.8, + "probability": 0.9647 + }, + { + "start": 11635.24, + "end": 11638.0, + "probability": 0.8572 + }, + { + "start": 11638.54, + "end": 11639.94, + "probability": 0.865 + }, + { + "start": 11640.36, + "end": 11641.28, + "probability": 0.9617 + }, + { + "start": 11641.82, + "end": 11644.44, + "probability": 0.6892 + }, + { + "start": 11645.24, + "end": 11648.22, + "probability": 0.5697 + }, + { + "start": 11648.28, + "end": 11649.12, + "probability": 0.9095 + }, + { + "start": 11649.62, + "end": 11651.28, + "probability": 0.6837 + }, + { + "start": 11651.68, + "end": 11653.72, + "probability": 0.8218 + }, + { + "start": 11654.62, + "end": 11659.66, + "probability": 0.8083 + }, + { + "start": 11660.59, + "end": 11664.24, + "probability": 0.9891 + }, + { + "start": 11665.72, + "end": 11669.4, + "probability": 0.9813 + }, + { + "start": 11670.38, + "end": 11673.58, + "probability": 0.8748 + }, + { + "start": 11674.1, + "end": 11675.3, + "probability": 0.6064 + }, + { + "start": 11676.3, + "end": 11679.04, + "probability": 0.9628 + }, + { + "start": 11679.9, + "end": 11682.22, + "probability": 0.7241 + }, + { + "start": 11682.78, + "end": 11683.5, + "probability": 0.7402 + }, + { + "start": 11684.32, + "end": 11689.62, + "probability": 0.9578 + }, + { + "start": 11690.22, + "end": 11692.58, + "probability": 0.9781 + }, + { + "start": 11693.22, + "end": 11701.06, + "probability": 0.977 + }, + { + "start": 11701.62, + "end": 11705.86, + "probability": 0.79 + }, + { + "start": 11706.42, + "end": 11710.82, + "probability": 0.8943 + }, + { + "start": 11711.54, + "end": 11715.8, + "probability": 0.9944 + }, + { + "start": 11716.14, + "end": 11719.72, + "probability": 0.819 + }, + { + "start": 11720.46, + "end": 11721.62, + "probability": 0.5962 + }, + { + "start": 11723.1, + "end": 11723.66, + "probability": 0.8406 + }, + { + "start": 11724.18, + "end": 11726.92, + "probability": 0.7388 + }, + { + "start": 11728.26, + "end": 11730.74, + "probability": 0.9385 + }, + { + "start": 11732.38, + "end": 11733.38, + "probability": 0.9777 + }, + { + "start": 11735.08, + "end": 11738.28, + "probability": 0.9752 + }, + { + "start": 11738.88, + "end": 11741.96, + "probability": 0.9003 + }, + { + "start": 11742.0, + "end": 11743.24, + "probability": 0.636 + }, + { + "start": 11745.16, + "end": 11747.5, + "probability": 0.96 + }, + { + "start": 11748.86, + "end": 11749.38, + "probability": 0.4211 + }, + { + "start": 11749.56, + "end": 11750.16, + "probability": 0.6555 + }, + { + "start": 11750.16, + "end": 11753.5, + "probability": 0.8403 + }, + { + "start": 11753.86, + "end": 11756.68, + "probability": 0.0179 + }, + { + "start": 11758.2, + "end": 11759.24, + "probability": 0.2487 + }, + { + "start": 11759.74, + "end": 11762.18, + "probability": 0.2656 + }, + { + "start": 11762.36, + "end": 11762.36, + "probability": 0.0536 + }, + { + "start": 11762.7, + "end": 11764.76, + "probability": 0.5967 + }, + { + "start": 11764.8, + "end": 11765.94, + "probability": 0.0785 + }, + { + "start": 11766.6, + "end": 11766.92, + "probability": 0.2436 + }, + { + "start": 11767.68, + "end": 11768.72, + "probability": 0.0427 + }, + { + "start": 11768.72, + "end": 11772.04, + "probability": 0.1937 + }, + { + "start": 11773.52, + "end": 11774.16, + "probability": 0.1156 + }, + { + "start": 11774.62, + "end": 11780.54, + "probability": 0.53 + }, + { + "start": 11780.64, + "end": 11784.02, + "probability": 0.9157 + }, + { + "start": 11784.72, + "end": 11786.24, + "probability": 0.6964 + }, + { + "start": 11787.1, + "end": 11788.68, + "probability": 0.96 + }, + { + "start": 11789.72, + "end": 11794.54, + "probability": 0.99 + }, + { + "start": 11795.56, + "end": 11795.7, + "probability": 0.3949 + }, + { + "start": 11795.92, + "end": 11801.86, + "probability": 0.7629 + }, + { + "start": 11802.94, + "end": 11805.24, + "probability": 0.524 + }, + { + "start": 11805.44, + "end": 11806.74, + "probability": 0.6668 + }, + { + "start": 11807.04, + "end": 11808.12, + "probability": 0.7727 + }, + { + "start": 11808.92, + "end": 11810.06, + "probability": 0.7198 + }, + { + "start": 11811.0, + "end": 11815.48, + "probability": 0.5611 + }, + { + "start": 11816.28, + "end": 11819.44, + "probability": 0.8937 + }, + { + "start": 11820.68, + "end": 11822.26, + "probability": 0.9956 + }, + { + "start": 11823.76, + "end": 11831.32, + "probability": 0.8659 + }, + { + "start": 11832.62, + "end": 11835.54, + "probability": 0.8351 + }, + { + "start": 11836.12, + "end": 11837.72, + "probability": 0.9316 + }, + { + "start": 11838.34, + "end": 11839.74, + "probability": 0.7061 + }, + { + "start": 11840.4, + "end": 11841.24, + "probability": 0.4036 + }, + { + "start": 11842.42, + "end": 11846.42, + "probability": 0.861 + }, + { + "start": 11848.42, + "end": 11850.82, + "probability": 0.925 + }, + { + "start": 11851.62, + "end": 11852.71, + "probability": 0.9651 + }, + { + "start": 11853.88, + "end": 11855.96, + "probability": 0.8756 + }, + { + "start": 11856.68, + "end": 11859.82, + "probability": 0.9453 + }, + { + "start": 11864.56, + "end": 11866.92, + "probability": 0.9922 + }, + { + "start": 11867.52, + "end": 11869.56, + "probability": 0.9756 + }, + { + "start": 11869.66, + "end": 11870.46, + "probability": 0.684 + }, + { + "start": 11871.0, + "end": 11872.18, + "probability": 0.5061 + }, + { + "start": 11872.24, + "end": 11876.8, + "probability": 0.9463 + }, + { + "start": 11877.28, + "end": 11883.14, + "probability": 0.6486 + }, + { + "start": 11883.56, + "end": 11884.66, + "probability": 0.5255 + }, + { + "start": 11884.68, + "end": 11888.12, + "probability": 0.6881 + }, + { + "start": 11888.24, + "end": 11889.71, + "probability": 0.8472 + }, + { + "start": 11890.72, + "end": 11893.88, + "probability": 0.6668 + }, + { + "start": 11894.5, + "end": 11895.44, + "probability": 0.7791 + }, + { + "start": 11897.89, + "end": 11900.86, + "probability": 0.8253 + }, + { + "start": 11901.54, + "end": 11904.42, + "probability": 0.6097 + }, + { + "start": 11906.98, + "end": 11908.34, + "probability": 0.735 + }, + { + "start": 11908.64, + "end": 11909.48, + "probability": 0.8317 + }, + { + "start": 11910.52, + "end": 11911.74, + "probability": 0.7048 + }, + { + "start": 11911.94, + "end": 11912.74, + "probability": 0.8528 + }, + { + "start": 11912.88, + "end": 11913.62, + "probability": 0.9219 + }, + { + "start": 11913.74, + "end": 11914.72, + "probability": 0.8829 + }, + { + "start": 11915.48, + "end": 11917.2, + "probability": 0.9328 + }, + { + "start": 11917.36, + "end": 11918.64, + "probability": 0.8065 + }, + { + "start": 11918.74, + "end": 11920.72, + "probability": 0.7409 + }, + { + "start": 11921.82, + "end": 11922.78, + "probability": 0.138 + }, + { + "start": 11926.04, + "end": 11926.36, + "probability": 0.0021 + }, + { + "start": 11926.36, + "end": 11926.36, + "probability": 0.105 + }, + { + "start": 11926.36, + "end": 11926.36, + "probability": 0.0801 + }, + { + "start": 11926.36, + "end": 11926.36, + "probability": 0.0697 + }, + { + "start": 11926.36, + "end": 11927.42, + "probability": 0.1096 + }, + { + "start": 11927.54, + "end": 11930.21, + "probability": 0.9097 + }, + { + "start": 11930.8, + "end": 11933.1, + "probability": 0.963 + }, + { + "start": 11934.38, + "end": 11936.68, + "probability": 0.5283 + }, + { + "start": 11936.98, + "end": 11941.64, + "probability": 0.6147 + }, + { + "start": 11941.64, + "end": 11946.56, + "probability": 0.8955 + }, + { + "start": 11946.68, + "end": 11946.78, + "probability": 0.3634 + }, + { + "start": 11947.72, + "end": 11949.7, + "probability": 0.3278 + }, + { + "start": 11950.2, + "end": 11958.02, + "probability": 0.9576 + }, + { + "start": 11958.48, + "end": 11960.44, + "probability": 0.8849 + }, + { + "start": 11961.66, + "end": 11966.94, + "probability": 0.9912 + }, + { + "start": 11967.04, + "end": 11973.18, + "probability": 0.7848 + }, + { + "start": 11973.72, + "end": 11977.08, + "probability": 0.7538 + }, + { + "start": 11977.08, + "end": 11981.0, + "probability": 0.996 + }, + { + "start": 11982.16, + "end": 11986.46, + "probability": 0.998 + }, + { + "start": 11986.7, + "end": 11987.08, + "probability": 0.2354 + }, + { + "start": 11987.1, + "end": 11987.84, + "probability": 0.6815 + }, + { + "start": 11988.54, + "end": 11992.02, + "probability": 0.9401 + }, + { + "start": 11992.34, + "end": 11997.28, + "probability": 0.9619 + }, + { + "start": 11997.76, + "end": 12002.58, + "probability": 0.9849 + }, + { + "start": 12002.76, + "end": 12005.6, + "probability": 0.9963 + }, + { + "start": 12005.6, + "end": 12009.2, + "probability": 0.9941 + }, + { + "start": 12009.86, + "end": 12013.5, + "probability": 0.8446 + }, + { + "start": 12014.06, + "end": 12019.26, + "probability": 0.9646 + }, + { + "start": 12019.32, + "end": 12022.68, + "probability": 0.9636 + }, + { + "start": 12022.76, + "end": 12025.21, + "probability": 0.9871 + }, + { + "start": 12025.64, + "end": 12027.07, + "probability": 0.9487 + }, + { + "start": 12027.38, + "end": 12029.78, + "probability": 0.9087 + }, + { + "start": 12029.88, + "end": 12031.97, + "probability": 0.9956 + }, + { + "start": 12032.3, + "end": 12033.96, + "probability": 0.8596 + }, + { + "start": 12034.2, + "end": 12034.38, + "probability": 0.8041 + }, + { + "start": 12034.48, + "end": 12037.42, + "probability": 0.886 + }, + { + "start": 12037.52, + "end": 12038.94, + "probability": 0.7728 + }, + { + "start": 12039.22, + "end": 12041.07, + "probability": 0.9666 + }, + { + "start": 12041.74, + "end": 12045.72, + "probability": 0.9856 + }, + { + "start": 12046.08, + "end": 12048.69, + "probability": 0.9126 + }, + { + "start": 12048.75, + "end": 12053.4, + "probability": 0.9744 + }, + { + "start": 12054.7, + "end": 12056.4, + "probability": 0.9803 + }, + { + "start": 12056.76, + "end": 12057.74, + "probability": 0.8194 + }, + { + "start": 12057.86, + "end": 12060.02, + "probability": 0.9752 + }, + { + "start": 12060.18, + "end": 12061.44, + "probability": 0.5701 + }, + { + "start": 12061.72, + "end": 12062.5, + "probability": 0.9465 + }, + { + "start": 12062.64, + "end": 12063.48, + "probability": 0.8388 + }, + { + "start": 12063.62, + "end": 12063.84, + "probability": 0.8262 + }, + { + "start": 12063.98, + "end": 12066.56, + "probability": 0.9844 + }, + { + "start": 12066.94, + "end": 12069.56, + "probability": 0.9899 + }, + { + "start": 12069.96, + "end": 12070.59, + "probability": 0.8486 + }, + { + "start": 12071.44, + "end": 12072.02, + "probability": 0.8789 + }, + { + "start": 12073.02, + "end": 12075.3, + "probability": 0.9741 + }, + { + "start": 12075.58, + "end": 12077.08, + "probability": 0.9799 + }, + { + "start": 12077.26, + "end": 12079.76, + "probability": 0.9469 + }, + { + "start": 12080.32, + "end": 12082.7, + "probability": 0.988 + }, + { + "start": 12083.14, + "end": 12084.48, + "probability": 0.9985 + }, + { + "start": 12084.88, + "end": 12086.26, + "probability": 0.9598 + }, + { + "start": 12086.48, + "end": 12087.74, + "probability": 0.9795 + }, + { + "start": 12087.86, + "end": 12089.04, + "probability": 0.8818 + }, + { + "start": 12089.22, + "end": 12091.3, + "probability": 0.9634 + }, + { + "start": 12091.46, + "end": 12093.6, + "probability": 0.9641 + }, + { + "start": 12093.8, + "end": 12095.04, + "probability": 0.774 + }, + { + "start": 12095.12, + "end": 12096.82, + "probability": 0.9088 + }, + { + "start": 12097.16, + "end": 12099.26, + "probability": 0.9945 + }, + { + "start": 12099.52, + "end": 12099.52, + "probability": 0.1846 + }, + { + "start": 12099.52, + "end": 12101.7, + "probability": 0.7772 + }, + { + "start": 12101.84, + "end": 12102.62, + "probability": 0.2456 + }, + { + "start": 12102.62, + "end": 12103.3, + "probability": 0.2406 + }, + { + "start": 12103.3, + "end": 12103.3, + "probability": 0.0303 + }, + { + "start": 12103.3, + "end": 12104.62, + "probability": 0.5831 + }, + { + "start": 12104.64, + "end": 12107.14, + "probability": 0.2626 + }, + { + "start": 12107.3, + "end": 12109.46, + "probability": 0.555 + }, + { + "start": 12109.92, + "end": 12109.92, + "probability": 0.3272 + }, + { + "start": 12109.92, + "end": 12111.32, + "probability": 0.5642 + }, + { + "start": 12111.5, + "end": 12112.62, + "probability": 0.7764 + }, + { + "start": 12112.86, + "end": 12113.64, + "probability": 0.9873 + }, + { + "start": 12113.96, + "end": 12116.54, + "probability": 0.4826 + }, + { + "start": 12118.6, + "end": 12119.78, + "probability": 0.1026 + }, + { + "start": 12119.78, + "end": 12119.78, + "probability": 0.0985 + }, + { + "start": 12119.78, + "end": 12119.78, + "probability": 0.1593 + }, + { + "start": 12119.78, + "end": 12120.02, + "probability": 0.0111 + }, + { + "start": 12120.02, + "end": 12122.62, + "probability": 0.721 + }, + { + "start": 12122.72, + "end": 12123.64, + "probability": 0.681 + }, + { + "start": 12123.64, + "end": 12125.77, + "probability": 0.8126 + }, + { + "start": 12125.92, + "end": 12126.08, + "probability": 0.2357 + }, + { + "start": 12126.08, + "end": 12126.5, + "probability": 0.1523 + }, + { + "start": 12126.5, + "end": 12128.22, + "probability": 0.5953 + }, + { + "start": 12128.22, + "end": 12131.72, + "probability": 0.7291 + }, + { + "start": 12131.92, + "end": 12133.1, + "probability": 0.4171 + }, + { + "start": 12133.1, + "end": 12136.32, + "probability": 0.76 + }, + { + "start": 12136.48, + "end": 12140.22, + "probability": 0.8163 + }, + { + "start": 12140.58, + "end": 12141.32, + "probability": 0.4151 + }, + { + "start": 12141.56, + "end": 12142.6, + "probability": 0.26 + }, + { + "start": 12142.6, + "end": 12147.88, + "probability": 0.9756 + }, + { + "start": 12147.92, + "end": 12150.48, + "probability": 0.9463 + }, + { + "start": 12150.68, + "end": 12154.12, + "probability": 0.9794 + }, + { + "start": 12154.2, + "end": 12154.36, + "probability": 0.2079 + }, + { + "start": 12154.56, + "end": 12156.78, + "probability": 0.9875 + }, + { + "start": 12157.52, + "end": 12158.98, + "probability": 0.9361 + }, + { + "start": 12159.04, + "end": 12161.3, + "probability": 0.9795 + }, + { + "start": 12161.44, + "end": 12161.68, + "probability": 0.7444 + }, + { + "start": 12161.8, + "end": 12164.96, + "probability": 0.8122 + }, + { + "start": 12165.34, + "end": 12168.88, + "probability": 0.9285 + }, + { + "start": 12181.18, + "end": 12181.66, + "probability": 0.0249 + }, + { + "start": 12183.02, + "end": 12186.24, + "probability": 0.1138 + }, + { + "start": 12186.24, + "end": 12187.45, + "probability": 0.2233 + }, + { + "start": 12188.6, + "end": 12189.56, + "probability": 0.0744 + }, + { + "start": 12190.4, + "end": 12191.36, + "probability": 0.0059 + }, + { + "start": 12192.26, + "end": 12193.92, + "probability": 0.0491 + }, + { + "start": 12193.92, + "end": 12194.46, + "probability": 0.0467 + }, + { + "start": 12194.48, + "end": 12197.55, + "probability": 0.0683 + }, + { + "start": 12198.12, + "end": 12198.94, + "probability": 0.12 + }, + { + "start": 12199.86, + "end": 12201.46, + "probability": 0.156 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.0, + "end": 12311.0, + "probability": 0.0 + }, + { + "start": 12311.86, + "end": 12316.18, + "probability": 0.8108 + }, + { + "start": 12317.46, + "end": 12318.34, + "probability": 0.6298 + }, + { + "start": 12318.62, + "end": 12319.7, + "probability": 0.9449 + }, + { + "start": 12319.8, + "end": 12321.16, + "probability": 0.9961 + }, + { + "start": 12321.76, + "end": 12324.5, + "probability": 0.9794 + }, + { + "start": 12325.44, + "end": 12326.14, + "probability": 0.9604 + }, + { + "start": 12326.92, + "end": 12328.86, + "probability": 0.9905 + }, + { + "start": 12329.66, + "end": 12333.22, + "probability": 0.9793 + }, + { + "start": 12333.54, + "end": 12335.06, + "probability": 0.9125 + }, + { + "start": 12335.56, + "end": 12336.98, + "probability": 0.7771 + }, + { + "start": 12337.26, + "end": 12342.08, + "probability": 0.9757 + }, + { + "start": 12343.26, + "end": 12347.74, + "probability": 0.9919 + }, + { + "start": 12347.84, + "end": 12349.26, + "probability": 0.9834 + }, + { + "start": 12349.38, + "end": 12350.16, + "probability": 0.7876 + }, + { + "start": 12350.62, + "end": 12352.22, + "probability": 0.6781 + }, + { + "start": 12352.86, + "end": 12355.88, + "probability": 0.8374 + }, + { + "start": 12356.58, + "end": 12359.3, + "probability": 0.8992 + }, + { + "start": 12359.84, + "end": 12366.12, + "probability": 0.8633 + }, + { + "start": 12366.52, + "end": 12371.56, + "probability": 0.9951 + }, + { + "start": 12371.66, + "end": 12373.72, + "probability": 0.9846 + }, + { + "start": 12373.94, + "end": 12379.24, + "probability": 0.9888 + }, + { + "start": 12379.7, + "end": 12381.64, + "probability": 0.8231 + }, + { + "start": 12382.24, + "end": 12384.72, + "probability": 0.9642 + }, + { + "start": 12385.12, + "end": 12388.4, + "probability": 0.9642 + }, + { + "start": 12388.98, + "end": 12390.24, + "probability": 0.7436 + }, + { + "start": 12390.72, + "end": 12399.44, + "probability": 0.9984 + }, + { + "start": 12399.56, + "end": 12401.68, + "probability": 0.9361 + }, + { + "start": 12403.16, + "end": 12405.74, + "probability": 0.9417 + }, + { + "start": 12406.64, + "end": 12411.24, + "probability": 0.9777 + }, + { + "start": 12412.46, + "end": 12414.94, + "probability": 0.6935 + }, + { + "start": 12415.44, + "end": 12417.54, + "probability": 0.7195 + }, + { + "start": 12417.88, + "end": 12418.68, + "probability": 0.5537 + }, + { + "start": 12419.62, + "end": 12420.22, + "probability": 0.7838 + }, + { + "start": 12420.32, + "end": 12422.84, + "probability": 0.9368 + }, + { + "start": 12422.84, + "end": 12424.16, + "probability": 0.6544 + }, + { + "start": 12424.46, + "end": 12424.82, + "probability": 0.6627 + }, + { + "start": 12424.92, + "end": 12429.16, + "probability": 0.8232 + }, + { + "start": 12429.16, + "end": 12433.62, + "probability": 0.9971 + }, + { + "start": 12434.48, + "end": 12438.24, + "probability": 0.9891 + }, + { + "start": 12439.34, + "end": 12443.24, + "probability": 0.9936 + }, + { + "start": 12443.68, + "end": 12447.92, + "probability": 0.9885 + }, + { + "start": 12448.98, + "end": 12452.06, + "probability": 0.9655 + }, + { + "start": 12452.6, + "end": 12455.48, + "probability": 0.9431 + }, + { + "start": 12456.16, + "end": 12458.84, + "probability": 0.8617 + }, + { + "start": 12458.92, + "end": 12462.62, + "probability": 0.9312 + }, + { + "start": 12462.94, + "end": 12467.98, + "probability": 0.9808 + }, + { + "start": 12468.48, + "end": 12471.02, + "probability": 0.9904 + }, + { + "start": 12471.02, + "end": 12473.3, + "probability": 0.9408 + }, + { + "start": 12473.62, + "end": 12475.15, + "probability": 0.9785 + }, + { + "start": 12475.78, + "end": 12477.48, + "probability": 0.9659 + }, + { + "start": 12477.98, + "end": 12481.03, + "probability": 0.9489 + }, + { + "start": 12481.32, + "end": 12487.54, + "probability": 0.9385 + }, + { + "start": 12487.76, + "end": 12491.28, + "probability": 0.9936 + }, + { + "start": 12491.6, + "end": 12493.13, + "probability": 0.855 + }, + { + "start": 12494.9, + "end": 12495.24, + "probability": 0.2533 + }, + { + "start": 12495.86, + "end": 12496.0, + "probability": 0.1524 + }, + { + "start": 12496.0, + "end": 12496.0, + "probability": 0.1085 + }, + { + "start": 12496.0, + "end": 12496.0, + "probability": 0.1522 + }, + { + "start": 12496.0, + "end": 12496.0, + "probability": 0.2109 + }, + { + "start": 12496.0, + "end": 12499.46, + "probability": 0.7247 + }, + { + "start": 12500.06, + "end": 12504.1, + "probability": 0.9578 + }, + { + "start": 12504.26, + "end": 12505.94, + "probability": 0.951 + }, + { + "start": 12506.18, + "end": 12506.82, + "probability": 0.639 + }, + { + "start": 12507.0, + "end": 12507.58, + "probability": 0.8925 + }, + { + "start": 12507.88, + "end": 12509.38, + "probability": 0.7095 + }, + { + "start": 12509.8, + "end": 12511.42, + "probability": 0.7924 + }, + { + "start": 12511.7, + "end": 12515.56, + "probability": 0.9336 + }, + { + "start": 12515.68, + "end": 12515.94, + "probability": 0.0081 + }, + { + "start": 12515.94, + "end": 12516.08, + "probability": 0.513 + }, + { + "start": 12516.32, + "end": 12519.43, + "probability": 0.0614 + }, + { + "start": 12520.0, + "end": 12520.32, + "probability": 0.1611 + }, + { + "start": 12520.36, + "end": 12522.94, + "probability": 0.5358 + }, + { + "start": 12523.04, + "end": 12524.06, + "probability": 0.1502 + }, + { + "start": 12524.2, + "end": 12526.88, + "probability": 0.487 + }, + { + "start": 12527.08, + "end": 12528.8, + "probability": 0.4886 + }, + { + "start": 12528.8, + "end": 12529.72, + "probability": 0.1431 + }, + { + "start": 12530.24, + "end": 12531.14, + "probability": 0.0287 + }, + { + "start": 12531.14, + "end": 12532.62, + "probability": 0.6004 + }, + { + "start": 12532.82, + "end": 12534.1, + "probability": 0.2247 + }, + { + "start": 12534.54, + "end": 12536.34, + "probability": 0.7519 + }, + { + "start": 12536.34, + "end": 12538.6, + "probability": 0.5498 + }, + { + "start": 12540.52, + "end": 12542.64, + "probability": 0.0674 + }, + { + "start": 12542.64, + "end": 12544.08, + "probability": 0.3347 + }, + { + "start": 12544.14, + "end": 12545.5, + "probability": 0.6384 + }, + { + "start": 12545.62, + "end": 12547.04, + "probability": 0.3601 + }, + { + "start": 12547.22, + "end": 12548.1, + "probability": 0.6224 + }, + { + "start": 12548.2, + "end": 12549.76, + "probability": 0.6928 + }, + { + "start": 12549.96, + "end": 12551.76, + "probability": 0.7977 + }, + { + "start": 12551.98, + "end": 12555.18, + "probability": 0.9753 + }, + { + "start": 12555.18, + "end": 12558.34, + "probability": 0.8503 + }, + { + "start": 12558.86, + "end": 12559.92, + "probability": 0.9284 + }, + { + "start": 12560.02, + "end": 12563.6, + "probability": 0.9089 + }, + { + "start": 12564.06, + "end": 12564.06, + "probability": 0.4216 + }, + { + "start": 12564.06, + "end": 12565.3, + "probability": 0.8149 + }, + { + "start": 12566.6, + "end": 12568.26, + "probability": 0.6922 + }, + { + "start": 12570.5, + "end": 12576.78, + "probability": 0.9719 + }, + { + "start": 12577.46, + "end": 12581.66, + "probability": 0.9825 + }, + { + "start": 12581.94, + "end": 12585.42, + "probability": 0.8302 + }, + { + "start": 12586.32, + "end": 12587.74, + "probability": 0.9829 + }, + { + "start": 12587.86, + "end": 12588.6, + "probability": 0.9758 + }, + { + "start": 12589.5, + "end": 12592.38, + "probability": 0.9973 + }, + { + "start": 12592.9, + "end": 12593.76, + "probability": 0.4898 + }, + { + "start": 12593.82, + "end": 12596.13, + "probability": 0.9952 + }, + { + "start": 12596.34, + "end": 12597.24, + "probability": 0.9739 + }, + { + "start": 12597.64, + "end": 12598.18, + "probability": 0.7408 + }, + { + "start": 12598.42, + "end": 12600.14, + "probability": 0.9841 + }, + { + "start": 12600.72, + "end": 12604.92, + "probability": 0.9587 + }, + { + "start": 12605.0, + "end": 12606.16, + "probability": 0.8317 + }, + { + "start": 12606.48, + "end": 12608.42, + "probability": 0.7248 + }, + { + "start": 12608.7, + "end": 12611.68, + "probability": 0.8975 + }, + { + "start": 12611.88, + "end": 12612.22, + "probability": 0.5386 + }, + { + "start": 12612.28, + "end": 12614.4, + "probability": 0.9855 + }, + { + "start": 12614.82, + "end": 12616.36, + "probability": 0.9501 + }, + { + "start": 12616.68, + "end": 12621.16, + "probability": 0.9683 + }, + { + "start": 12621.52, + "end": 12624.42, + "probability": 0.8235 + }, + { + "start": 12624.64, + "end": 12629.1, + "probability": 0.9664 + }, + { + "start": 12629.66, + "end": 12631.26, + "probability": 0.8718 + }, + { + "start": 12631.26, + "end": 12632.28, + "probability": 0.3893 + }, + { + "start": 12632.42, + "end": 12635.56, + "probability": 0.7202 + }, + { + "start": 12635.78, + "end": 12636.42, + "probability": 0.3622 + }, + { + "start": 12636.6, + "end": 12637.22, + "probability": 0.3563 + }, + { + "start": 12637.32, + "end": 12639.58, + "probability": 0.9371 + }, + { + "start": 12639.86, + "end": 12646.22, + "probability": 0.9843 + }, + { + "start": 12646.38, + "end": 12649.64, + "probability": 0.9589 + }, + { + "start": 12649.9, + "end": 12653.14, + "probability": 0.9635 + }, + { + "start": 12653.18, + "end": 12654.74, + "probability": 0.5264 + }, + { + "start": 12655.1, + "end": 12656.56, + "probability": 0.9939 + }, + { + "start": 12656.9, + "end": 12658.47, + "probability": 0.9933 + }, + { + "start": 12659.14, + "end": 12660.88, + "probability": 0.1814 + }, + { + "start": 12662.26, + "end": 12662.26, + "probability": 0.0749 + }, + { + "start": 12662.26, + "end": 12662.62, + "probability": 0.1091 + }, + { + "start": 12662.64, + "end": 12663.84, + "probability": 0.7621 + }, + { + "start": 12666.42, + "end": 12667.74, + "probability": 0.3461 + }, + { + "start": 12667.76, + "end": 12671.72, + "probability": 0.1623 + }, + { + "start": 12671.94, + "end": 12674.3, + "probability": 0.2636 + }, + { + "start": 12674.44, + "end": 12675.38, + "probability": 0.0748 + }, + { + "start": 12675.5, + "end": 12675.76, + "probability": 0.2368 + }, + { + "start": 12675.76, + "end": 12675.76, + "probability": 0.6006 + }, + { + "start": 12675.76, + "end": 12675.76, + "probability": 0.0897 + }, + { + "start": 12675.76, + "end": 12675.76, + "probability": 0.045 + }, + { + "start": 12675.76, + "end": 12675.76, + "probability": 0.3275 + }, + { + "start": 12675.76, + "end": 12675.76, + "probability": 0.2004 + }, + { + "start": 12675.76, + "end": 12675.76, + "probability": 0.0798 + }, + { + "start": 12675.76, + "end": 12677.4, + "probability": 0.6826 + }, + { + "start": 12678.04, + "end": 12679.52, + "probability": 0.9782 + }, + { + "start": 12681.26, + "end": 12681.42, + "probability": 0.2152 + }, + { + "start": 12681.42, + "end": 12682.68, + "probability": 0.459 + }, + { + "start": 12683.52, + "end": 12684.78, + "probability": 0.9486 + }, + { + "start": 12685.2, + "end": 12685.62, + "probability": 0.9489 + }, + { + "start": 12685.72, + "end": 12686.36, + "probability": 0.957 + }, + { + "start": 12686.84, + "end": 12688.8, + "probability": 0.9446 + }, + { + "start": 12689.26, + "end": 12691.86, + "probability": 0.6474 + }, + { + "start": 12691.88, + "end": 12695.42, + "probability": 0.4412 + }, + { + "start": 12695.68, + "end": 12697.04, + "probability": 0.9664 + }, + { + "start": 12697.26, + "end": 12699.54, + "probability": 0.9521 + }, + { + "start": 12699.9, + "end": 12701.66, + "probability": 0.9831 + }, + { + "start": 12701.9, + "end": 12703.34, + "probability": 0.7066 + }, + { + "start": 12703.7, + "end": 12705.22, + "probability": 0.9782 + }, + { + "start": 12705.3, + "end": 12707.76, + "probability": 0.9281 + }, + { + "start": 12708.18, + "end": 12709.58, + "probability": 0.8741 + }, + { + "start": 12709.72, + "end": 12710.18, + "probability": 0.8725 + }, + { + "start": 12710.26, + "end": 12714.44, + "probability": 0.9832 + }, + { + "start": 12715.26, + "end": 12716.14, + "probability": 0.9449 + }, + { + "start": 12716.22, + "end": 12717.0, + "probability": 0.6053 + }, + { + "start": 12717.44, + "end": 12718.52, + "probability": 0.5709 + }, + { + "start": 12718.88, + "end": 12721.6, + "probability": 0.9928 + }, + { + "start": 12721.98, + "end": 12724.02, + "probability": 0.8072 + }, + { + "start": 12724.1, + "end": 12725.8, + "probability": 0.9545 + }, + { + "start": 12726.02, + "end": 12727.26, + "probability": 0.8378 + }, + { + "start": 12727.7, + "end": 12731.0, + "probability": 0.9874 + }, + { + "start": 12731.08, + "end": 12734.16, + "probability": 0.9814 + }, + { + "start": 12735.3, + "end": 12736.9, + "probability": 0.9969 + }, + { + "start": 12737.22, + "end": 12739.02, + "probability": 0.8966 + }, + { + "start": 12739.66, + "end": 12743.06, + "probability": 0.7928 + }, + { + "start": 12743.22, + "end": 12744.8, + "probability": 0.9912 + }, + { + "start": 12745.56, + "end": 12746.87, + "probability": 0.9946 + }, + { + "start": 12748.34, + "end": 12748.78, + "probability": 0.1014 + }, + { + "start": 12751.72, + "end": 12751.72, + "probability": 0.3453 + }, + { + "start": 12751.72, + "end": 12751.72, + "probability": 0.2016 + }, + { + "start": 12751.72, + "end": 12752.93, + "probability": 0.7007 + }, + { + "start": 12753.02, + "end": 12756.24, + "probability": 0.809 + }, + { + "start": 12756.56, + "end": 12759.53, + "probability": 0.4239 + }, + { + "start": 12759.66, + "end": 12760.42, + "probability": 0.2533 + }, + { + "start": 12760.64, + "end": 12760.72, + "probability": 0.0176 + }, + { + "start": 12760.72, + "end": 12760.72, + "probability": 0.3188 + }, + { + "start": 12760.72, + "end": 12761.54, + "probability": 0.5362 + }, + { + "start": 12761.54, + "end": 12763.16, + "probability": 0.9261 + }, + { + "start": 12763.26, + "end": 12764.28, + "probability": 0.9069 + }, + { + "start": 12764.36, + "end": 12765.16, + "probability": 0.8489 + }, + { + "start": 12765.24, + "end": 12766.16, + "probability": 0.8343 + }, + { + "start": 12766.3, + "end": 12766.44, + "probability": 0.0191 + }, + { + "start": 12766.44, + "end": 12767.1, + "probability": 0.1859 + }, + { + "start": 12767.28, + "end": 12767.68, + "probability": 0.0922 + }, + { + "start": 12767.84, + "end": 12768.94, + "probability": 0.9958 + }, + { + "start": 12768.98, + "end": 12769.72, + "probability": 0.4296 + }, + { + "start": 12769.72, + "end": 12770.9, + "probability": 0.667 + }, + { + "start": 12771.16, + "end": 12771.84, + "probability": 0.8287 + }, + { + "start": 12771.92, + "end": 12775.32, + "probability": 0.841 + }, + { + "start": 12776.16, + "end": 12781.16, + "probability": 0.9669 + }, + { + "start": 12782.3, + "end": 12782.76, + "probability": 0.0899 + }, + { + "start": 12782.76, + "end": 12783.53, + "probability": 0.6009 + }, + { + "start": 12783.76, + "end": 12784.69, + "probability": 0.9673 + }, + { + "start": 12785.2, + "end": 12789.06, + "probability": 0.9874 + }, + { + "start": 12789.52, + "end": 12791.0, + "probability": 0.8742 + }, + { + "start": 12791.52, + "end": 12794.62, + "probability": 0.7599 + }, + { + "start": 12794.68, + "end": 12796.64, + "probability": 0.8984 + }, + { + "start": 12797.04, + "end": 12798.24, + "probability": 0.8923 + }, + { + "start": 12798.64, + "end": 12803.4, + "probability": 0.9355 + }, + { + "start": 12803.54, + "end": 12804.2, + "probability": 0.9115 + }, + { + "start": 12804.28, + "end": 12806.7, + "probability": 0.6588 + }, + { + "start": 12807.04, + "end": 12807.82, + "probability": 0.9824 + }, + { + "start": 12807.82, + "end": 12808.5, + "probability": 0.9388 + }, + { + "start": 12808.78, + "end": 12812.4, + "probability": 0.9709 + }, + { + "start": 12812.56, + "end": 12817.4, + "probability": 0.9775 + }, + { + "start": 12817.7, + "end": 12817.7, + "probability": 0.5364 + }, + { + "start": 12817.82, + "end": 12820.32, + "probability": 0.7846 + }, + { + "start": 12820.68, + "end": 12822.67, + "probability": 0.9275 + }, + { + "start": 12823.4, + "end": 12825.3, + "probability": 0.7532 + }, + { + "start": 12825.36, + "end": 12827.48, + "probability": 0.9294 + }, + { + "start": 12827.62, + "end": 12828.38, + "probability": 0.582 + }, + { + "start": 12828.86, + "end": 12830.14, + "probability": 0.7802 + }, + { + "start": 12830.6, + "end": 12834.92, + "probability": 0.0775 + }, + { + "start": 12834.92, + "end": 12834.92, + "probability": 0.1238 + }, + { + "start": 12834.92, + "end": 12835.1, + "probability": 0.0305 + }, + { + "start": 12835.1, + "end": 12835.26, + "probability": 0.1914 + }, + { + "start": 12835.48, + "end": 12838.56, + "probability": 0.6272 + }, + { + "start": 12839.0, + "end": 12841.33, + "probability": 0.6321 + }, + { + "start": 12842.24, + "end": 12844.64, + "probability": 0.4757 + }, + { + "start": 12846.94, + "end": 12847.36, + "probability": 0.0463 + }, + { + "start": 12848.02, + "end": 12848.28, + "probability": 0.1519 + }, + { + "start": 12848.28, + "end": 12848.28, + "probability": 0.129 + }, + { + "start": 12848.28, + "end": 12848.28, + "probability": 0.0952 + }, + { + "start": 12848.28, + "end": 12848.28, + "probability": 0.2013 + }, + { + "start": 12848.28, + "end": 12848.28, + "probability": 0.1341 + }, + { + "start": 12848.28, + "end": 12849.54, + "probability": 0.7015 + }, + { + "start": 12849.68, + "end": 12850.16, + "probability": 0.5756 + }, + { + "start": 12850.22, + "end": 12850.85, + "probability": 0.8394 + }, + { + "start": 12851.38, + "end": 12853.84, + "probability": 0.9266 + }, + { + "start": 12854.4, + "end": 12855.81, + "probability": 0.5105 + }, + { + "start": 12856.66, + "end": 12857.85, + "probability": 0.8428 + }, + { + "start": 12859.39, + "end": 12864.04, + "probability": 0.9325 + }, + { + "start": 12864.8, + "end": 12867.48, + "probability": 0.8488 + }, + { + "start": 12868.1, + "end": 12871.42, + "probability": 0.9977 + }, + { + "start": 12871.48, + "end": 12874.9, + "probability": 0.8632 + }, + { + "start": 12875.76, + "end": 12877.1, + "probability": 0.8271 + }, + { + "start": 12877.2, + "end": 12878.48, + "probability": 0.9521 + }, + { + "start": 12878.54, + "end": 12880.54, + "probability": 0.9914 + }, + { + "start": 12881.42, + "end": 12885.18, + "probability": 0.9956 + }, + { + "start": 12885.62, + "end": 12886.46, + "probability": 0.9652 + }, + { + "start": 12886.58, + "end": 12887.26, + "probability": 0.7462 + }, + { + "start": 12887.34, + "end": 12888.34, + "probability": 0.9412 + }, + { + "start": 12889.46, + "end": 12891.6, + "probability": 0.9496 + }, + { + "start": 12892.56, + "end": 12892.56, + "probability": 0.3397 + }, + { + "start": 12892.56, + "end": 12892.96, + "probability": 0.8434 + }, + { + "start": 12893.68, + "end": 12894.76, + "probability": 0.8921 + }, + { + "start": 12894.9, + "end": 12898.38, + "probability": 0.98 + }, + { + "start": 12898.56, + "end": 12899.66, + "probability": 0.9641 + }, + { + "start": 12899.72, + "end": 12906.32, + "probability": 0.9297 + }, + { + "start": 12907.96, + "end": 12911.24, + "probability": 0.8704 + }, + { + "start": 12912.28, + "end": 12913.07, + "probability": 0.9329 + }, + { + "start": 12914.5, + "end": 12915.2, + "probability": 0.8971 + }, + { + "start": 12915.94, + "end": 12916.66, + "probability": 0.8951 + }, + { + "start": 12917.26, + "end": 12918.7, + "probability": 0.9558 + }, + { + "start": 12919.42, + "end": 12921.62, + "probability": 0.9293 + }, + { + "start": 12921.88, + "end": 12922.95, + "probability": 0.9966 + }, + { + "start": 12923.8, + "end": 12926.06, + "probability": 0.9245 + }, + { + "start": 12926.06, + "end": 12927.98, + "probability": 0.8555 + }, + { + "start": 12928.22, + "end": 12928.64, + "probability": 0.6624 + }, + { + "start": 12929.26, + "end": 12930.88, + "probability": 0.9961 + }, + { + "start": 12931.8, + "end": 12933.5, + "probability": 0.9627 + }, + { + "start": 12934.18, + "end": 12936.62, + "probability": 0.9574 + }, + { + "start": 12936.9, + "end": 12937.26, + "probability": 0.5905 + }, + { + "start": 12937.28, + "end": 12938.34, + "probability": 0.8636 + }, + { + "start": 12939.08, + "end": 12940.39, + "probability": 0.8716 + }, + { + "start": 12941.32, + "end": 12942.06, + "probability": 0.9023 + }, + { + "start": 12942.6, + "end": 12943.68, + "probability": 0.9881 + }, + { + "start": 12943.74, + "end": 12944.52, + "probability": 0.8661 + }, + { + "start": 12944.58, + "end": 12946.32, + "probability": 0.9868 + }, + { + "start": 12946.9, + "end": 12949.72, + "probability": 0.9987 + }, + { + "start": 12951.48, + "end": 12955.54, + "probability": 0.9774 + }, + { + "start": 12955.66, + "end": 12956.68, + "probability": 0.8215 + }, + { + "start": 12957.02, + "end": 12958.08, + "probability": 0.8927 + }, + { + "start": 12958.84, + "end": 12959.9, + "probability": 0.9473 + }, + { + "start": 12960.48, + "end": 12963.98, + "probability": 0.8238 + }, + { + "start": 12964.1, + "end": 12965.74, + "probability": 0.9397 + }, + { + "start": 12966.46, + "end": 12967.9, + "probability": 0.9946 + }, + { + "start": 12969.14, + "end": 12972.7, + "probability": 0.9703 + }, + { + "start": 12972.94, + "end": 12975.1, + "probability": 0.9929 + }, + { + "start": 12975.18, + "end": 12979.48, + "probability": 0.9767 + }, + { + "start": 12980.2, + "end": 12981.01, + "probability": 0.9531 + }, + { + "start": 12982.0, + "end": 12985.36, + "probability": 0.97 + }, + { + "start": 12985.44, + "end": 12986.26, + "probability": 0.7598 + }, + { + "start": 12987.34, + "end": 12988.74, + "probability": 0.7516 + }, + { + "start": 12988.88, + "end": 12989.64, + "probability": 0.7893 + }, + { + "start": 12990.42, + "end": 12990.62, + "probability": 0.4573 + }, + { + "start": 12990.62, + "end": 12994.9, + "probability": 0.9951 + }, + { + "start": 12995.48, + "end": 12996.12, + "probability": 0.8656 + }, + { + "start": 12997.02, + "end": 13003.78, + "probability": 0.9985 + }, + { + "start": 13004.9, + "end": 13010.18, + "probability": 0.936 + }, + { + "start": 13010.4, + "end": 13015.36, + "probability": 0.9917 + }, + { + "start": 13015.48, + "end": 13021.4, + "probability": 0.9895 + }, + { + "start": 13021.4, + "end": 13022.42, + "probability": 0.9985 + }, + { + "start": 13023.2, + "end": 13031.32, + "probability": 0.9937 + }, + { + "start": 13031.54, + "end": 13032.18, + "probability": 0.5947 + }, + { + "start": 13032.26, + "end": 13033.86, + "probability": 0.9807 + }, + { + "start": 13034.34, + "end": 13034.84, + "probability": 0.9163 + }, + { + "start": 13035.24, + "end": 13038.4, + "probability": 0.9995 + }, + { + "start": 13038.7, + "end": 13042.26, + "probability": 0.9897 + }, + { + "start": 13043.02, + "end": 13045.42, + "probability": 0.8724 + }, + { + "start": 13045.46, + "end": 13047.02, + "probability": 0.5592 + }, + { + "start": 13047.08, + "end": 13047.9, + "probability": 0.7263 + }, + { + "start": 13047.96, + "end": 13050.32, + "probability": 0.9943 + }, + { + "start": 13052.06, + "end": 13053.36, + "probability": 0.8486 + }, + { + "start": 13053.44, + "end": 13055.88, + "probability": 0.9128 + }, + { + "start": 13056.7, + "end": 13060.72, + "probability": 0.9402 + }, + { + "start": 13061.3, + "end": 13063.68, + "probability": 0.992 + }, + { + "start": 13063.74, + "end": 13064.54, + "probability": 0.8567 + }, + { + "start": 13064.84, + "end": 13069.02, + "probability": 0.9772 + }, + { + "start": 13069.44, + "end": 13070.92, + "probability": 0.991 + }, + { + "start": 13071.02, + "end": 13072.2, + "probability": 0.87 + }, + { + "start": 13073.44, + "end": 13074.72, + "probability": 0.937 + }, + { + "start": 13074.8, + "end": 13077.16, + "probability": 0.9377 + }, + { + "start": 13077.62, + "end": 13081.06, + "probability": 0.9595 + }, + { + "start": 13081.28, + "end": 13083.78, + "probability": 0.981 + }, + { + "start": 13084.08, + "end": 13088.04, + "probability": 0.5927 + }, + { + "start": 13088.68, + "end": 13091.26, + "probability": 0.6366 + }, + { + "start": 13092.42, + "end": 13093.46, + "probability": 0.3273 + }, + { + "start": 13093.8, + "end": 13094.14, + "probability": 0.4599 + }, + { + "start": 13094.24, + "end": 13096.64, + "probability": 0.8743 + }, + { + "start": 13097.24, + "end": 13100.4, + "probability": 0.9364 + }, + { + "start": 13101.5, + "end": 13105.32, + "probability": 0.9641 + }, + { + "start": 13105.54, + "end": 13108.7, + "probability": 0.8629 + }, + { + "start": 13108.8, + "end": 13110.82, + "probability": 0.9771 + }, + { + "start": 13111.06, + "end": 13111.52, + "probability": 0.2916 + }, + { + "start": 13111.64, + "end": 13112.96, + "probability": 0.3309 + }, + { + "start": 13113.0, + "end": 13114.4, + "probability": 0.9943 + }, + { + "start": 13114.8, + "end": 13117.91, + "probability": 0.9636 + }, + { + "start": 13118.48, + "end": 13118.72, + "probability": 0.0611 + }, + { + "start": 13119.12, + "end": 13119.12, + "probability": 0.403 + }, + { + "start": 13119.12, + "end": 13120.03, + "probability": 0.538 + }, + { + "start": 13120.28, + "end": 13121.26, + "probability": 0.0456 + }, + { + "start": 13121.5, + "end": 13122.1, + "probability": 0.2388 + }, + { + "start": 13122.14, + "end": 13122.88, + "probability": 0.0267 + }, + { + "start": 13122.92, + "end": 13124.74, + "probability": 0.7473 + }, + { + "start": 13125.4, + "end": 13125.54, + "probability": 0.5363 + }, + { + "start": 13125.7, + "end": 13126.49, + "probability": 0.832 + }, + { + "start": 13126.7, + "end": 13128.28, + "probability": 0.8604 + }, + { + "start": 13128.32, + "end": 13130.02, + "probability": 0.7441 + }, + { + "start": 13130.26, + "end": 13131.42, + "probability": 0.0391 + }, + { + "start": 13131.9, + "end": 13132.48, + "probability": 0.0233 + }, + { + "start": 13132.48, + "end": 13134.52, + "probability": 0.7205 + }, + { + "start": 13135.72, + "end": 13141.34, + "probability": 0.9712 + }, + { + "start": 13141.44, + "end": 13141.96, + "probability": 0.7016 + }, + { + "start": 13142.16, + "end": 13144.06, + "probability": 0.6077 + }, + { + "start": 13145.1, + "end": 13148.44, + "probability": 0.8032 + }, + { + "start": 13149.02, + "end": 13150.18, + "probability": 0.8006 + }, + { + "start": 13151.1, + "end": 13154.58, + "probability": 0.7955 + }, + { + "start": 13156.94, + "end": 13158.5, + "probability": 0.805 + }, + { + "start": 13158.76, + "end": 13158.96, + "probability": 0.9785 + }, + { + "start": 13161.42, + "end": 13165.96, + "probability": 0.9788 + }, + { + "start": 13167.9, + "end": 13169.42, + "probability": 0.6737 + }, + { + "start": 13174.14, + "end": 13177.26, + "probability": 0.7364 + }, + { + "start": 13178.14, + "end": 13181.98, + "probability": 0.9959 + }, + { + "start": 13182.54, + "end": 13183.86, + "probability": 0.9064 + }, + { + "start": 13184.76, + "end": 13190.98, + "probability": 0.9784 + }, + { + "start": 13192.88, + "end": 13194.76, + "probability": 0.6617 + }, + { + "start": 13195.64, + "end": 13198.54, + "probability": 0.9635 + }, + { + "start": 13200.54, + "end": 13202.16, + "probability": 0.9901 + }, + { + "start": 13203.12, + "end": 13207.18, + "probability": 0.9601 + }, + { + "start": 13208.54, + "end": 13209.62, + "probability": 0.9818 + }, + { + "start": 13210.36, + "end": 13213.12, + "probability": 0.9277 + }, + { + "start": 13213.8, + "end": 13215.62, + "probability": 0.999 + }, + { + "start": 13217.02, + "end": 13218.88, + "probability": 0.8386 + }, + { + "start": 13218.98, + "end": 13219.52, + "probability": 0.566 + }, + { + "start": 13219.72, + "end": 13220.84, + "probability": 0.959 + }, + { + "start": 13221.36, + "end": 13224.36, + "probability": 0.9795 + }, + { + "start": 13225.8, + "end": 13227.52, + "probability": 0.9786 + }, + { + "start": 13228.1, + "end": 13233.64, + "probability": 0.8604 + }, + { + "start": 13234.0, + "end": 13236.46, + "probability": 0.9672 + }, + { + "start": 13236.48, + "end": 13236.48, + "probability": 0.3532 + }, + { + "start": 13236.6, + "end": 13236.88, + "probability": 0.212 + }, + { + "start": 13237.02, + "end": 13239.9, + "probability": 0.8334 + }, + { + "start": 13239.9, + "end": 13241.58, + "probability": 0.8336 + }, + { + "start": 13241.7, + "end": 13242.78, + "probability": 0.3635 + }, + { + "start": 13242.82, + "end": 13247.64, + "probability": 0.9595 + }, + { + "start": 13247.64, + "end": 13253.12, + "probability": 0.8718 + }, + { + "start": 13253.48, + "end": 13256.56, + "probability": 0.8052 + }, + { + "start": 13256.76, + "end": 13258.08, + "probability": 0.8737 + }, + { + "start": 13259.46, + "end": 13261.04, + "probability": 0.7238 + }, + { + "start": 13261.6, + "end": 13267.0, + "probability": 0.9221 + }, + { + "start": 13267.7, + "end": 13268.9, + "probability": 0.0688 + }, + { + "start": 13269.68, + "end": 13273.78, + "probability": 0.9982 + }, + { + "start": 13274.1, + "end": 13274.78, + "probability": 0.4233 + }, + { + "start": 13275.2, + "end": 13277.82, + "probability": 0.9941 + }, + { + "start": 13277.82, + "end": 13283.12, + "probability": 0.822 + }, + { + "start": 13283.3, + "end": 13284.96, + "probability": 0.8422 + }, + { + "start": 13285.24, + "end": 13285.99, + "probability": 0.9735 + }, + { + "start": 13288.3, + "end": 13292.22, + "probability": 0.9741 + }, + { + "start": 13292.22, + "end": 13294.86, + "probability": 0.9329 + }, + { + "start": 13295.56, + "end": 13296.8, + "probability": 0.9894 + }, + { + "start": 13297.14, + "end": 13299.26, + "probability": 0.988 + }, + { + "start": 13299.38, + "end": 13304.08, + "probability": 0.949 + }, + { + "start": 13304.74, + "end": 13306.98, + "probability": 0.9928 + }, + { + "start": 13307.18, + "end": 13308.54, + "probability": 0.9896 + }, + { + "start": 13308.76, + "end": 13310.32, + "probability": 0.9556 + }, + { + "start": 13311.04, + "end": 13313.7, + "probability": 0.7613 + }, + { + "start": 13314.24, + "end": 13317.1, + "probability": 0.9903 + }, + { + "start": 13317.1, + "end": 13320.22, + "probability": 0.9979 + }, + { + "start": 13322.73, + "end": 13324.74, + "probability": 0.7349 + }, + { + "start": 13324.9, + "end": 13325.04, + "probability": 0.5266 + }, + { + "start": 13325.04, + "end": 13328.48, + "probability": 0.9901 + }, + { + "start": 13328.48, + "end": 13331.02, + "probability": 0.996 + }, + { + "start": 13331.88, + "end": 13334.04, + "probability": 0.9688 + }, + { + "start": 13336.0, + "end": 13339.3, + "probability": 0.9938 + }, + { + "start": 13339.3, + "end": 13342.96, + "probability": 0.7367 + }, + { + "start": 13344.02, + "end": 13347.2, + "probability": 0.9594 + }, + { + "start": 13347.96, + "end": 13349.94, + "probability": 0.9304 + }, + { + "start": 13350.56, + "end": 13353.04, + "probability": 0.841 + }, + { + "start": 13355.24, + "end": 13359.42, + "probability": 0.9905 + }, + { + "start": 13361.06, + "end": 13362.6, + "probability": 0.8376 + }, + { + "start": 13362.78, + "end": 13365.6, + "probability": 0.9915 + }, + { + "start": 13365.68, + "end": 13366.22, + "probability": 0.272 + }, + { + "start": 13366.44, + "end": 13369.2, + "probability": 0.6736 + }, + { + "start": 13369.52, + "end": 13369.82, + "probability": 0.0287 + }, + { + "start": 13369.82, + "end": 13370.7, + "probability": 0.1975 + }, + { + "start": 13371.06, + "end": 13371.52, + "probability": 0.411 + }, + { + "start": 13371.86, + "end": 13373.36, + "probability": 0.8598 + }, + { + "start": 13373.42, + "end": 13375.04, + "probability": 0.9961 + }, + { + "start": 13375.14, + "end": 13375.58, + "probability": 0.6597 + }, + { + "start": 13376.86, + "end": 13381.56, + "probability": 0.9609 + }, + { + "start": 13381.7, + "end": 13383.56, + "probability": 0.826 + }, + { + "start": 13383.86, + "end": 13384.74, + "probability": 0.8508 + }, + { + "start": 13384.92, + "end": 13385.86, + "probability": 0.8831 + }, + { + "start": 13386.08, + "end": 13386.76, + "probability": 0.6861 + }, + { + "start": 13386.9, + "end": 13388.28, + "probability": 0.871 + }, + { + "start": 13388.42, + "end": 13389.42, + "probability": 0.9863 + }, + { + "start": 13389.76, + "end": 13390.14, + "probability": 0.5403 + }, + { + "start": 13390.26, + "end": 13391.14, + "probability": 0.3454 + }, + { + "start": 13391.4, + "end": 13391.78, + "probability": 0.3815 + }, + { + "start": 13391.86, + "end": 13391.96, + "probability": 0.6771 + }, + { + "start": 13391.98, + "end": 13393.08, + "probability": 0.8657 + }, + { + "start": 13393.18, + "end": 13393.74, + "probability": 0.8066 + }, + { + "start": 13394.38, + "end": 13397.9, + "probability": 0.9202 + }, + { + "start": 13398.04, + "end": 13398.16, + "probability": 0.0063 + }, + { + "start": 13398.16, + "end": 13402.38, + "probability": 0.8365 + }, + { + "start": 13402.38, + "end": 13405.52, + "probability": 0.9722 + }, + { + "start": 13405.94, + "end": 13406.94, + "probability": 0.529 + }, + { + "start": 13407.04, + "end": 13409.2, + "probability": 0.8636 + }, + { + "start": 13409.22, + "end": 13409.44, + "probability": 0.4691 + }, + { + "start": 13409.58, + "end": 13412.68, + "probability": 0.9958 + }, + { + "start": 13412.74, + "end": 13413.26, + "probability": 0.9851 + }, + { + "start": 13413.34, + "end": 13414.5, + "probability": 0.8281 + }, + { + "start": 13414.9, + "end": 13417.18, + "probability": 0.9834 + }, + { + "start": 13417.4, + "end": 13418.44, + "probability": 0.9606 + }, + { + "start": 13418.62, + "end": 13419.76, + "probability": 0.9645 + }, + { + "start": 13420.0, + "end": 13421.68, + "probability": 0.849 + }, + { + "start": 13421.94, + "end": 13424.76, + "probability": 0.9833 + }, + { + "start": 13424.84, + "end": 13425.2, + "probability": 0.3469 + }, + { + "start": 13425.3, + "end": 13426.58, + "probability": 0.644 + }, + { + "start": 13426.74, + "end": 13428.96, + "probability": 0.8281 + }, + { + "start": 13429.68, + "end": 13430.52, + "probability": 0.5111 + }, + { + "start": 13431.1, + "end": 13432.12, + "probability": 0.9122 + }, + { + "start": 13432.76, + "end": 13433.94, + "probability": 0.8265 + }, + { + "start": 13434.34, + "end": 13435.06, + "probability": 0.0082 + }, + { + "start": 13435.06, + "end": 13435.45, + "probability": 0.0179 + }, + { + "start": 13436.7, + "end": 13437.3, + "probability": 0.3051 + }, + { + "start": 13441.56, + "end": 13441.72, + "probability": 0.0109 + }, + { + "start": 13441.72, + "end": 13442.16, + "probability": 0.5763 + }, + { + "start": 13443.1, + "end": 13443.64, + "probability": 0.6085 + }, + { + "start": 13443.78, + "end": 13444.74, + "probability": 0.6472 + }, + { + "start": 13445.0, + "end": 13447.78, + "probability": 0.9044 + }, + { + "start": 13448.32, + "end": 13448.76, + "probability": 0.4296 + }, + { + "start": 13448.9, + "end": 13451.9, + "probability": 0.6377 + }, + { + "start": 13452.04, + "end": 13452.28, + "probability": 0.0276 + }, + { + "start": 13452.38, + "end": 13453.24, + "probability": 0.152 + }, + { + "start": 13453.24, + "end": 13454.16, + "probability": 0.6219 + }, + { + "start": 13454.24, + "end": 13455.26, + "probability": 0.9292 + }, + { + "start": 13455.76, + "end": 13459.22, + "probability": 0.9785 + }, + { + "start": 13459.7, + "end": 13462.66, + "probability": 0.2456 + }, + { + "start": 13464.7, + "end": 13467.72, + "probability": 0.5776 + }, + { + "start": 13467.94, + "end": 13470.84, + "probability": 0.8609 + }, + { + "start": 13470.84, + "end": 13472.55, + "probability": 0.3681 + }, + { + "start": 13473.68, + "end": 13474.04, + "probability": 0.1157 + }, + { + "start": 13474.04, + "end": 13476.12, + "probability": 0.8803 + }, + { + "start": 13478.04, + "end": 13480.0, + "probability": 0.5336 + }, + { + "start": 13480.0, + "end": 13482.98, + "probability": 0.5489 + }, + { + "start": 13483.82, + "end": 13484.8, + "probability": 0.8192 + }, + { + "start": 13486.32, + "end": 13486.94, + "probability": 0.8415 + }, + { + "start": 13487.28, + "end": 13487.48, + "probability": 0.8735 + }, + { + "start": 13487.72, + "end": 13488.5, + "probability": 0.9204 + }, + { + "start": 13488.84, + "end": 13489.36, + "probability": 0.061 + }, + { + "start": 13489.64, + "end": 13490.58, + "probability": 0.3148 + }, + { + "start": 13490.94, + "end": 13491.86, + "probability": 0.7079 + }, + { + "start": 13492.0, + "end": 13494.22, + "probability": 0.6899 + }, + { + "start": 13495.1, + "end": 13496.18, + "probability": 0.9652 + }, + { + "start": 13496.92, + "end": 13501.0, + "probability": 0.9495 + }, + { + "start": 13501.24, + "end": 13501.88, + "probability": 0.3814 + }, + { + "start": 13501.92, + "end": 13502.86, + "probability": 0.7833 + }, + { + "start": 13503.08, + "end": 13508.14, + "probability": 0.9986 + }, + { + "start": 13508.18, + "end": 13508.58, + "probability": 0.4634 + }, + { + "start": 13508.7, + "end": 13508.94, + "probability": 0.4909 + }, + { + "start": 13509.64, + "end": 13512.94, + "probability": 0.9972 + }, + { + "start": 13513.66, + "end": 13515.22, + "probability": 0.9578 + }, + { + "start": 13515.66, + "end": 13519.16, + "probability": 0.9932 + }, + { + "start": 13519.16, + "end": 13519.76, + "probability": 0.8003 + }, + { + "start": 13520.0, + "end": 13520.46, + "probability": 0.4154 + }, + { + "start": 13520.5, + "end": 13522.62, + "probability": 0.8853 + }, + { + "start": 13522.78, + "end": 13524.8, + "probability": 0.7139 + }, + { + "start": 13524.88, + "end": 13525.5, + "probability": 0.7195 + }, + { + "start": 13525.94, + "end": 13529.73, + "probability": 0.6396 + }, + { + "start": 13530.94, + "end": 13535.84, + "probability": 0.9272 + }, + { + "start": 13536.4, + "end": 13538.04, + "probability": 0.9282 + }, + { + "start": 13538.2, + "end": 13540.16, + "probability": 0.698 + }, + { + "start": 13540.28, + "end": 13543.5, + "probability": 0.9673 + }, + { + "start": 13543.98, + "end": 13546.42, + "probability": 0.8125 + }, + { + "start": 13547.3, + "end": 13551.3, + "probability": 0.9757 + }, + { + "start": 13552.14, + "end": 13555.38, + "probability": 0.8883 + }, + { + "start": 13556.34, + "end": 13557.2, + "probability": 0.474 + }, + { + "start": 13557.32, + "end": 13558.66, + "probability": 0.9637 + }, + { + "start": 13558.78, + "end": 13565.46, + "probability": 0.9899 + }, + { + "start": 13565.66, + "end": 13566.54, + "probability": 0.3609 + }, + { + "start": 13567.54, + "end": 13568.34, + "probability": 0.979 + }, + { + "start": 13569.16, + "end": 13571.42, + "probability": 0.9579 + }, + { + "start": 13572.36, + "end": 13572.9, + "probability": 0.973 + }, + { + "start": 13573.74, + "end": 13574.96, + "probability": 0.9849 + }, + { + "start": 13575.0, + "end": 13580.0, + "probability": 0.9945 + }, + { + "start": 13580.68, + "end": 13581.24, + "probability": 0.4869 + }, + { + "start": 13581.34, + "end": 13584.12, + "probability": 0.9729 + }, + { + "start": 13584.64, + "end": 13588.26, + "probability": 0.7567 + }, + { + "start": 13588.88, + "end": 13594.94, + "probability": 0.9953 + }, + { + "start": 13596.08, + "end": 13597.22, + "probability": 0.8783 + }, + { + "start": 13597.68, + "end": 13601.04, + "probability": 0.9473 + }, + { + "start": 13602.02, + "end": 13603.62, + "probability": 0.9545 + }, + { + "start": 13603.86, + "end": 13607.36, + "probability": 0.9758 + }, + { + "start": 13608.0, + "end": 13609.26, + "probability": 0.9111 + }, + { + "start": 13609.72, + "end": 13611.92, + "probability": 0.8524 + }, + { + "start": 13612.46, + "end": 13613.42, + "probability": 0.811 + }, + { + "start": 13614.3, + "end": 13623.14, + "probability": 0.9236 + }, + { + "start": 13623.42, + "end": 13624.22, + "probability": 0.8978 + }, + { + "start": 13624.32, + "end": 13625.4, + "probability": 0.8654 + }, + { + "start": 13626.0, + "end": 13627.84, + "probability": 0.9729 + }, + { + "start": 13628.56, + "end": 13629.42, + "probability": 0.5527 + }, + { + "start": 13629.46, + "end": 13631.32, + "probability": 0.785 + }, + { + "start": 13631.36, + "end": 13635.26, + "probability": 0.9312 + }, + { + "start": 13635.84, + "end": 13638.04, + "probability": 0.959 + }, + { + "start": 13638.74, + "end": 13645.48, + "probability": 0.866 + }, + { + "start": 13645.62, + "end": 13646.96, + "probability": 0.6005 + }, + { + "start": 13647.08, + "end": 13648.78, + "probability": 0.8843 + }, + { + "start": 13650.0, + "end": 13653.86, + "probability": 0.9753 + }, + { + "start": 13654.02, + "end": 13657.94, + "probability": 0.9821 + }, + { + "start": 13658.22, + "end": 13660.06, + "probability": 0.8382 + }, + { + "start": 13660.7, + "end": 13662.86, + "probability": 0.9961 + }, + { + "start": 13663.34, + "end": 13668.12, + "probability": 0.8217 + }, + { + "start": 13668.96, + "end": 13672.22, + "probability": 0.8782 + }, + { + "start": 13672.78, + "end": 13673.86, + "probability": 0.7752 + }, + { + "start": 13674.36, + "end": 13675.02, + "probability": 0.7519 + }, + { + "start": 13675.12, + "end": 13678.77, + "probability": 0.9588 + }, + { + "start": 13684.08, + "end": 13684.66, + "probability": 0.0097 + }, + { + "start": 13684.66, + "end": 13684.66, + "probability": 0.0353 + }, + { + "start": 13684.66, + "end": 13685.56, + "probability": 0.6718 + }, + { + "start": 13685.64, + "end": 13687.98, + "probability": 0.8522 + }, + { + "start": 13688.56, + "end": 13694.6, + "probability": 0.9924 + }, + { + "start": 13694.74, + "end": 13696.8, + "probability": 0.9178 + }, + { + "start": 13697.44, + "end": 13699.16, + "probability": 0.856 + }, + { + "start": 13699.94, + "end": 13702.78, + "probability": 0.9814 + }, + { + "start": 13703.56, + "end": 13705.36, + "probability": 0.6695 + }, + { + "start": 13705.6, + "end": 13708.14, + "probability": 0.9816 + }, + { + "start": 13708.66, + "end": 13709.36, + "probability": 0.7322 + }, + { + "start": 13709.92, + "end": 13712.96, + "probability": 0.978 + }, + { + "start": 13713.44, + "end": 13714.16, + "probability": 0.4465 + }, + { + "start": 13714.3, + "end": 13715.06, + "probability": 0.8469 + }, + { + "start": 13715.36, + "end": 13716.26, + "probability": 0.9271 + }, + { + "start": 13716.64, + "end": 13717.44, + "probability": 0.9554 + }, + { + "start": 13717.52, + "end": 13718.84, + "probability": 0.9723 + }, + { + "start": 13719.36, + "end": 13720.7, + "probability": 0.7758 + }, + { + "start": 13721.42, + "end": 13723.72, + "probability": 0.9188 + }, + { + "start": 13724.54, + "end": 13727.24, + "probability": 0.8712 + }, + { + "start": 13727.74, + "end": 13727.86, + "probability": 0.4443 + }, + { + "start": 13728.12, + "end": 13729.16, + "probability": 0.6171 + }, + { + "start": 13729.24, + "end": 13730.98, + "probability": 0.7485 + }, + { + "start": 13731.5, + "end": 13733.54, + "probability": 0.9225 + }, + { + "start": 13734.12, + "end": 13736.3, + "probability": 0.8264 + }, + { + "start": 13736.32, + "end": 13739.28, + "probability": 0.6554 + }, + { + "start": 13739.68, + "end": 13740.48, + "probability": 0.5087 + }, + { + "start": 13740.78, + "end": 13742.14, + "probability": 0.6467 + }, + { + "start": 13742.56, + "end": 13745.56, + "probability": 0.1703 + }, + { + "start": 13745.56, + "end": 13745.7, + "probability": 0.0322 + }, + { + "start": 13746.18, + "end": 13746.7, + "probability": 0.4147 + }, + { + "start": 13748.08, + "end": 13748.66, + "probability": 0.792 + }, + { + "start": 13748.76, + "end": 13750.06, + "probability": 0.8556 + }, + { + "start": 13750.2, + "end": 13751.06, + "probability": 0.783 + }, + { + "start": 13751.44, + "end": 13754.44, + "probability": 0.9009 + }, + { + "start": 13754.56, + "end": 13755.66, + "probability": 0.8868 + }, + { + "start": 13755.9, + "end": 13757.62, + "probability": 0.5671 + }, + { + "start": 13759.14, + "end": 13761.78, + "probability": 0.6778 + }, + { + "start": 13764.2, + "end": 13765.14, + "probability": 0.9814 + }, + { + "start": 13766.38, + "end": 13767.1, + "probability": 0.9136 + }, + { + "start": 13769.26, + "end": 13772.18, + "probability": 0.9907 + }, + { + "start": 13772.36, + "end": 13772.86, + "probability": 0.963 + }, + { + "start": 13772.96, + "end": 13773.6, + "probability": 0.8923 + }, + { + "start": 13773.66, + "end": 13775.11, + "probability": 0.9871 + }, + { + "start": 13775.62, + "end": 13778.98, + "probability": 0.9971 + }, + { + "start": 13781.26, + "end": 13785.16, + "probability": 0.776 + }, + { + "start": 13785.96, + "end": 13787.52, + "probability": 0.9685 + }, + { + "start": 13788.1, + "end": 13788.88, + "probability": 0.9333 + }, + { + "start": 13789.62, + "end": 13790.6, + "probability": 0.9158 + }, + { + "start": 13792.58, + "end": 13794.24, + "probability": 0.9965 + }, + { + "start": 13795.12, + "end": 13796.58, + "probability": 0.3704 + }, + { + "start": 13798.4, + "end": 13798.92, + "probability": 0.505 + }, + { + "start": 13799.28, + "end": 13800.9, + "probability": 0.991 + }, + { + "start": 13800.96, + "end": 13801.74, + "probability": 0.9785 + }, + { + "start": 13802.46, + "end": 13806.04, + "probability": 0.9927 + }, + { + "start": 13806.18, + "end": 13809.14, + "probability": 0.9517 + }, + { + "start": 13810.04, + "end": 13811.46, + "probability": 0.7232 + }, + { + "start": 13812.9, + "end": 13814.78, + "probability": 0.946 + }, + { + "start": 13815.66, + "end": 13817.23, + "probability": 0.7256 + }, + { + "start": 13819.42, + "end": 13826.66, + "probability": 0.991 + }, + { + "start": 13827.58, + "end": 13829.18, + "probability": 0.9735 + }, + { + "start": 13830.08, + "end": 13831.86, + "probability": 0.8467 + }, + { + "start": 13831.98, + "end": 13836.4, + "probability": 0.9207 + }, + { + "start": 13837.34, + "end": 13842.76, + "probability": 0.9933 + }, + { + "start": 13844.22, + "end": 13847.45, + "probability": 0.999 + }, + { + "start": 13847.7, + "end": 13848.1, + "probability": 0.5793 + }, + { + "start": 13848.38, + "end": 13849.38, + "probability": 0.9937 + }, + { + "start": 13849.6, + "end": 13850.51, + "probability": 0.9388 + }, + { + "start": 13850.78, + "end": 13851.18, + "probability": 0.9856 + }, + { + "start": 13851.66, + "end": 13852.4, + "probability": 0.9341 + }, + { + "start": 13853.62, + "end": 13854.96, + "probability": 0.9874 + }, + { + "start": 13855.62, + "end": 13858.03, + "probability": 0.9901 + }, + { + "start": 13858.72, + "end": 13859.74, + "probability": 0.9545 + }, + { + "start": 13859.78, + "end": 13866.12, + "probability": 0.9819 + }, + { + "start": 13866.8, + "end": 13869.7, + "probability": 0.9985 + }, + { + "start": 13869.82, + "end": 13871.96, + "probability": 0.9897 + }, + { + "start": 13871.96, + "end": 13874.28, + "probability": 0.9941 + }, + { + "start": 13874.72, + "end": 13875.68, + "probability": 0.9553 + }, + { + "start": 13875.8, + "end": 13877.08, + "probability": 0.9544 + }, + { + "start": 13877.18, + "end": 13880.26, + "probability": 0.9946 + }, + { + "start": 13880.54, + "end": 13881.42, + "probability": 0.9536 + }, + { + "start": 13881.6, + "end": 13882.72, + "probability": 0.967 + }, + { + "start": 13883.0, + "end": 13884.12, + "probability": 0.6736 + }, + { + "start": 13884.2, + "end": 13887.0, + "probability": 0.9938 + }, + { + "start": 13888.66, + "end": 13891.02, + "probability": 0.9593 + }, + { + "start": 13891.78, + "end": 13893.94, + "probability": 0.9727 + }, + { + "start": 13894.0, + "end": 13897.1, + "probability": 0.9927 + }, + { + "start": 13897.92, + "end": 13902.6, + "probability": 0.9544 + }, + { + "start": 13903.14, + "end": 13905.5, + "probability": 0.8996 + }, + { + "start": 13906.08, + "end": 13907.78, + "probability": 0.9668 + }, + { + "start": 13907.78, + "end": 13909.54, + "probability": 0.8739 + }, + { + "start": 13909.58, + "end": 13911.7, + "probability": 0.9963 + }, + { + "start": 13912.1, + "end": 13912.16, + "probability": 0.5757 + }, + { + "start": 13912.16, + "end": 13913.5, + "probability": 0.9363 + }, + { + "start": 13913.98, + "end": 13917.76, + "probability": 0.994 + }, + { + "start": 13917.94, + "end": 13918.88, + "probability": 0.666 + }, + { + "start": 13918.94, + "end": 13921.71, + "probability": 0.9944 + }, + { + "start": 13922.26, + "end": 13924.32, + "probability": 0.9746 + }, + { + "start": 13925.32, + "end": 13929.96, + "probability": 0.936 + }, + { + "start": 13930.68, + "end": 13934.36, + "probability": 0.9766 + }, + { + "start": 13935.74, + "end": 13936.54, + "probability": 0.7111 + }, + { + "start": 13937.0, + "end": 13938.48, + "probability": 0.8997 + }, + { + "start": 13938.52, + "end": 13939.46, + "probability": 0.7288 + }, + { + "start": 13939.8, + "end": 13942.1, + "probability": 0.9382 + }, + { + "start": 13942.92, + "end": 13945.74, + "probability": 0.9969 + }, + { + "start": 13945.82, + "end": 13947.36, + "probability": 0.9828 + }, + { + "start": 13948.04, + "end": 13949.06, + "probability": 0.9144 + }, + { + "start": 13949.16, + "end": 13949.74, + "probability": 0.9604 + }, + { + "start": 13949.78, + "end": 13950.86, + "probability": 0.9429 + }, + { + "start": 13951.36, + "end": 13952.24, + "probability": 0.9506 + }, + { + "start": 13952.52, + "end": 13954.06, + "probability": 0.989 + }, + { + "start": 13954.1, + "end": 13955.84, + "probability": 0.994 + }, + { + "start": 13956.1, + "end": 13959.12, + "probability": 0.9907 + }, + { + "start": 13959.12, + "end": 13961.46, + "probability": 0.9819 + }, + { + "start": 13962.1, + "end": 13962.98, + "probability": 0.4617 + }, + { + "start": 13963.8, + "end": 13964.16, + "probability": 0.7663 + }, + { + "start": 13964.26, + "end": 13966.0, + "probability": 0.7568 + }, + { + "start": 13966.04, + "end": 13966.66, + "probability": 0.9248 + }, + { + "start": 13966.94, + "end": 13968.04, + "probability": 0.9691 + }, + { + "start": 13968.04, + "end": 13968.74, + "probability": 0.8639 + }, + { + "start": 13968.86, + "end": 13969.34, + "probability": 0.6263 + }, + { + "start": 13969.48, + "end": 13972.28, + "probability": 0.9842 + }, + { + "start": 13972.38, + "end": 13973.26, + "probability": 0.9828 + }, + { + "start": 13973.94, + "end": 13974.62, + "probability": 0.8343 + }, + { + "start": 13974.66, + "end": 13975.36, + "probability": 0.9257 + }, + { + "start": 13975.78, + "end": 13978.02, + "probability": 0.9692 + }, + { + "start": 13978.58, + "end": 13980.22, + "probability": 0.9966 + }, + { + "start": 13980.36, + "end": 13981.3, + "probability": 0.9065 + }, + { + "start": 13981.84, + "end": 13982.12, + "probability": 0.6795 + }, + { + "start": 13982.16, + "end": 13982.88, + "probability": 0.9771 + }, + { + "start": 13983.2, + "end": 13983.94, + "probability": 0.9644 + }, + { + "start": 13984.44, + "end": 13985.1, + "probability": 0.9551 + }, + { + "start": 13985.26, + "end": 13985.86, + "probability": 0.9794 + }, + { + "start": 13986.74, + "end": 13987.98, + "probability": 0.94 + }, + { + "start": 13988.04, + "end": 13991.4, + "probability": 0.7983 + }, + { + "start": 13991.62, + "end": 13994.94, + "probability": 0.9702 + }, + { + "start": 13995.76, + "end": 13995.94, + "probability": 0.7033 + }, + { + "start": 13996.06, + "end": 13997.8, + "probability": 0.9891 + }, + { + "start": 13997.96, + "end": 13999.94, + "probability": 0.8851 + }, + { + "start": 13999.98, + "end": 14001.7, + "probability": 0.4122 + }, + { + "start": 14001.72, + "end": 14004.56, + "probability": 0.9679 + }, + { + "start": 14009.12, + "end": 14010.66, + "probability": 0.766 + }, + { + "start": 14013.12, + "end": 14015.5, + "probability": 0.8933 + }, + { + "start": 14015.68, + "end": 14018.92, + "probability": 0.6481 + }, + { + "start": 14020.12, + "end": 14023.32, + "probability": 0.9881 + }, + { + "start": 14024.28, + "end": 14029.2, + "probability": 0.9525 + }, + { + "start": 14030.54, + "end": 14031.59, + "probability": 0.9387 + }, + { + "start": 14032.56, + "end": 14033.82, + "probability": 0.9946 + }, + { + "start": 14033.98, + "end": 14034.4, + "probability": 0.9585 + }, + { + "start": 14034.5, + "end": 14035.56, + "probability": 0.9583 + }, + { + "start": 14035.98, + "end": 14038.05, + "probability": 0.9556 + }, + { + "start": 14038.28, + "end": 14038.87, + "probability": 0.8772 + }, + { + "start": 14041.18, + "end": 14044.62, + "probability": 0.1141 + }, + { + "start": 14044.62, + "end": 14045.48, + "probability": 0.2258 + }, + { + "start": 14046.12, + "end": 14046.24, + "probability": 0.0566 + }, + { + "start": 14046.26, + "end": 14046.82, + "probability": 0.91 + }, + { + "start": 14046.88, + "end": 14048.76, + "probability": 0.9783 + }, + { + "start": 14051.21, + "end": 14055.64, + "probability": 0.9601 + }, + { + "start": 14055.7, + "end": 14058.02, + "probability": 0.5506 + }, + { + "start": 14059.24, + "end": 14060.5, + "probability": 0.7977 + }, + { + "start": 14060.62, + "end": 14061.46, + "probability": 0.456 + }, + { + "start": 14061.6, + "end": 14062.22, + "probability": 0.9641 + }, + { + "start": 14063.36, + "end": 14064.92, + "probability": 0.9745 + }, + { + "start": 14066.34, + "end": 14069.68, + "probability": 0.7829 + }, + { + "start": 14070.64, + "end": 14071.56, + "probability": 0.9648 + }, + { + "start": 14073.35, + "end": 14074.26, + "probability": 0.6129 + }, + { + "start": 14075.02, + "end": 14079.02, + "probability": 0.9981 + }, + { + "start": 14079.58, + "end": 14083.46, + "probability": 0.9989 + }, + { + "start": 14085.26, + "end": 14086.58, + "probability": 0.9613 + }, + { + "start": 14087.74, + "end": 14088.79, + "probability": 0.9945 + }, + { + "start": 14089.54, + "end": 14091.72, + "probability": 0.9673 + }, + { + "start": 14092.22, + "end": 14097.12, + "probability": 0.9473 + }, + { + "start": 14097.18, + "end": 14099.74, + "probability": 0.9279 + }, + { + "start": 14101.86, + "end": 14103.98, + "probability": 0.9412 + }, + { + "start": 14104.72, + "end": 14109.54, + "probability": 0.9854 + }, + { + "start": 14109.7, + "end": 14112.04, + "probability": 0.9628 + }, + { + "start": 14113.34, + "end": 14114.83, + "probability": 0.998 + }, + { + "start": 14115.34, + "end": 14116.74, + "probability": 0.9575 + }, + { + "start": 14117.06, + "end": 14118.24, + "probability": 0.9913 + }, + { + "start": 14118.42, + "end": 14119.4, + "probability": 0.7675 + }, + { + "start": 14123.0, + "end": 14126.22, + "probability": 0.9963 + }, + { + "start": 14127.04, + "end": 14128.6, + "probability": 0.9854 + }, + { + "start": 14130.68, + "end": 14136.38, + "probability": 0.9965 + }, + { + "start": 14138.94, + "end": 14139.64, + "probability": 0.5133 + }, + { + "start": 14140.88, + "end": 14141.96, + "probability": 0.9951 + }, + { + "start": 14142.32, + "end": 14143.4, + "probability": 0.6064 + }, + { + "start": 14143.44, + "end": 14145.8, + "probability": 0.9771 + }, + { + "start": 14146.62, + "end": 14148.52, + "probability": 0.9926 + }, + { + "start": 14149.82, + "end": 14152.54, + "probability": 0.9945 + }, + { + "start": 14156.42, + "end": 14156.9, + "probability": 0.6209 + }, + { + "start": 14156.96, + "end": 14157.98, + "probability": 0.6782 + }, + { + "start": 14158.1, + "end": 14158.84, + "probability": 0.8997 + }, + { + "start": 14159.22, + "end": 14161.0, + "probability": 0.9949 + }, + { + "start": 14161.12, + "end": 14161.44, + "probability": 0.5312 + }, + { + "start": 14161.68, + "end": 14162.04, + "probability": 0.6226 + }, + { + "start": 14165.84, + "end": 14168.72, + "probability": 0.9946 + }, + { + "start": 14170.34, + "end": 14172.86, + "probability": 0.9963 + }, + { + "start": 14173.1, + "end": 14174.38, + "probability": 0.7794 + }, + { + "start": 14174.7, + "end": 14177.3, + "probability": 0.9952 + }, + { + "start": 14180.14, + "end": 14183.92, + "probability": 0.9647 + }, + { + "start": 14184.02, + "end": 14186.18, + "probability": 0.9661 + }, + { + "start": 14186.18, + "end": 14188.2, + "probability": 0.9474 + }, + { + "start": 14191.64, + "end": 14195.94, + "probability": 0.8442 + }, + { + "start": 14195.94, + "end": 14198.54, + "probability": 0.9838 + }, + { + "start": 14200.02, + "end": 14201.1, + "probability": 0.9398 + }, + { + "start": 14202.28, + "end": 14203.24, + "probability": 0.7432 + }, + { + "start": 14204.14, + "end": 14205.96, + "probability": 0.6989 + }, + { + "start": 14206.86, + "end": 14210.32, + "probability": 0.5562 + }, + { + "start": 14210.86, + "end": 14214.04, + "probability": 0.8647 + }, + { + "start": 14215.04, + "end": 14218.5, + "probability": 0.9468 + }, + { + "start": 14221.26, + "end": 14222.3, + "probability": 0.0682 + }, + { + "start": 14222.3, + "end": 14222.3, + "probability": 0.2208 + }, + { + "start": 14222.3, + "end": 14223.29, + "probability": 0.4507 + }, + { + "start": 14224.26, + "end": 14227.46, + "probability": 0.9324 + }, + { + "start": 14228.02, + "end": 14229.52, + "probability": 0.6077 + }, + { + "start": 14230.1, + "end": 14231.16, + "probability": 0.8069 + }, + { + "start": 14240.04, + "end": 14242.5, + "probability": 0.881 + }, + { + "start": 14243.78, + "end": 14244.52, + "probability": 0.8068 + }, + { + "start": 14251.48, + "end": 14254.12, + "probability": 0.5454 + }, + { + "start": 14255.26, + "end": 14258.76, + "probability": 0.9915 + }, + { + "start": 14259.9, + "end": 14260.52, + "probability": 0.9509 + }, + { + "start": 14260.94, + "end": 14262.64, + "probability": 0.9604 + }, + { + "start": 14262.78, + "end": 14263.72, + "probability": 0.5951 + }, + { + "start": 14263.72, + "end": 14265.62, + "probability": 0.7467 + }, + { + "start": 14266.4, + "end": 14270.64, + "probability": 0.9548 + }, + { + "start": 14271.54, + "end": 14276.86, + "probability": 0.9749 + }, + { + "start": 14277.06, + "end": 14277.82, + "probability": 0.8126 + }, + { + "start": 14277.96, + "end": 14278.86, + "probability": 0.8062 + }, + { + "start": 14278.96, + "end": 14280.24, + "probability": 0.6288 + }, + { + "start": 14281.82, + "end": 14283.08, + "probability": 0.7971 + }, + { + "start": 14283.1, + "end": 14286.22, + "probability": 0.9388 + }, + { + "start": 14286.42, + "end": 14286.92, + "probability": 0.7799 + }, + { + "start": 14286.96, + "end": 14287.68, + "probability": 0.7205 + }, + { + "start": 14287.76, + "end": 14294.06, + "probability": 0.9943 + }, + { + "start": 14294.12, + "end": 14298.34, + "probability": 0.9775 + }, + { + "start": 14298.88, + "end": 14300.02, + "probability": 0.6499 + }, + { + "start": 14300.54, + "end": 14303.6, + "probability": 0.943 + }, + { + "start": 14303.98, + "end": 14304.7, + "probability": 0.9653 + }, + { + "start": 14305.42, + "end": 14308.06, + "probability": 0.9146 + }, + { + "start": 14308.74, + "end": 14312.36, + "probability": 0.9395 + }, + { + "start": 14312.46, + "end": 14313.48, + "probability": 0.8369 + }, + { + "start": 14313.52, + "end": 14315.18, + "probability": 0.9211 + }, + { + "start": 14315.68, + "end": 14316.34, + "probability": 0.9063 + }, + { + "start": 14316.5, + "end": 14322.74, + "probability": 0.9741 + }, + { + "start": 14323.28, + "end": 14324.88, + "probability": 0.7649 + }, + { + "start": 14325.2, + "end": 14327.62, + "probability": 0.9399 + }, + { + "start": 14327.98, + "end": 14330.0, + "probability": 0.9966 + }, + { + "start": 14330.36, + "end": 14332.12, + "probability": 0.7654 + }, + { + "start": 14332.16, + "end": 14332.5, + "probability": 0.5211 + }, + { + "start": 14332.6, + "end": 14333.2, + "probability": 0.9406 + }, + { + "start": 14333.28, + "end": 14334.38, + "probability": 0.9878 + }, + { + "start": 14335.02, + "end": 14336.08, + "probability": 0.5923 + }, + { + "start": 14336.38, + "end": 14337.72, + "probability": 0.9407 + }, + { + "start": 14338.5, + "end": 14340.24, + "probability": 0.9886 + }, + { + "start": 14341.94, + "end": 14348.72, + "probability": 0.7957 + }, + { + "start": 14348.72, + "end": 14349.6, + "probability": 0.5466 + }, + { + "start": 14349.92, + "end": 14351.24, + "probability": 0.9349 + }, + { + "start": 14352.18, + "end": 14352.52, + "probability": 0.7328 + }, + { + "start": 14352.56, + "end": 14355.06, + "probability": 0.9933 + }, + { + "start": 14355.8, + "end": 14359.08, + "probability": 0.9712 + }, + { + "start": 14359.08, + "end": 14362.36, + "probability": 0.9937 + }, + { + "start": 14362.6, + "end": 14364.52, + "probability": 0.89 + }, + { + "start": 14365.4, + "end": 14368.46, + "probability": 0.837 + }, + { + "start": 14369.4, + "end": 14372.06, + "probability": 0.9873 + }, + { + "start": 14372.22, + "end": 14375.04, + "probability": 0.8742 + }, + { + "start": 14375.74, + "end": 14376.62, + "probability": 0.8142 + }, + { + "start": 14376.72, + "end": 14381.78, + "probability": 0.9331 + }, + { + "start": 14382.42, + "end": 14385.7, + "probability": 0.9806 + }, + { + "start": 14385.7, + "end": 14388.82, + "probability": 0.6654 + }, + { + "start": 14389.18, + "end": 14390.44, + "probability": 0.5623 + }, + { + "start": 14390.9, + "end": 14393.08, + "probability": 0.9474 + }, + { + "start": 14393.36, + "end": 14396.94, + "probability": 0.9815 + }, + { + "start": 14398.08, + "end": 14401.32, + "probability": 0.9883 + }, + { + "start": 14401.4, + "end": 14404.78, + "probability": 0.984 + }, + { + "start": 14406.36, + "end": 14410.08, + "probability": 0.7537 + }, + { + "start": 14410.68, + "end": 14412.7, + "probability": 0.3785 + }, + { + "start": 14413.4, + "end": 14416.48, + "probability": 0.9353 + }, + { + "start": 14417.08, + "end": 14421.06, + "probability": 0.8594 + }, + { + "start": 14421.46, + "end": 14422.84, + "probability": 0.6926 + }, + { + "start": 14422.94, + "end": 14423.24, + "probability": 0.5962 + }, + { + "start": 14423.72, + "end": 14427.58, + "probability": 0.6921 + }, + { + "start": 14427.84, + "end": 14429.42, + "probability": 0.9008 + }, + { + "start": 14429.88, + "end": 14431.8, + "probability": 0.9281 + }, + { + "start": 14431.9, + "end": 14433.31, + "probability": 0.9799 + }, + { + "start": 14433.9, + "end": 14434.5, + "probability": 0.5267 + }, + { + "start": 14435.94, + "end": 14440.9, + "probability": 0.9565 + }, + { + "start": 14441.22, + "end": 14443.08, + "probability": 0.5856 + }, + { + "start": 14444.02, + "end": 14445.94, + "probability": 0.6883 + }, + { + "start": 14446.12, + "end": 14448.56, + "probability": 0.634 + }, + { + "start": 14449.1, + "end": 14449.32, + "probability": 0.541 + }, + { + "start": 14449.8, + "end": 14454.5, + "probability": 0.8864 + }, + { + "start": 14454.58, + "end": 14457.96, + "probability": 0.3982 + }, + { + "start": 14458.34, + "end": 14459.1, + "probability": 0.2659 + }, + { + "start": 14459.74, + "end": 14461.46, + "probability": 0.5969 + }, + { + "start": 14462.0, + "end": 14464.36, + "probability": 0.6267 + }, + { + "start": 14464.48, + "end": 14466.6, + "probability": 0.6253 + }, + { + "start": 14467.3, + "end": 14469.12, + "probability": 0.9854 + }, + { + "start": 14469.2, + "end": 14470.32, + "probability": 0.5684 + }, + { + "start": 14470.72, + "end": 14472.48, + "probability": 0.6346 + }, + { + "start": 14472.9, + "end": 14477.56, + "probability": 0.957 + }, + { + "start": 14478.48, + "end": 14481.7, + "probability": 0.9739 + }, + { + "start": 14482.14, + "end": 14482.64, + "probability": 0.7671 + }, + { + "start": 14482.66, + "end": 14482.84, + "probability": 0.8429 + }, + { + "start": 14483.36, + "end": 14483.6, + "probability": 0.049 + }, + { + "start": 14483.6, + "end": 14484.23, + "probability": 0.8213 + }, + { + "start": 14484.84, + "end": 14486.15, + "probability": 0.4084 + }, + { + "start": 14486.54, + "end": 14489.5, + "probability": 0.2724 + }, + { + "start": 14489.5, + "end": 14489.8, + "probability": 0.677 + }, + { + "start": 14490.84, + "end": 14492.18, + "probability": 0.8459 + }, + { + "start": 14492.26, + "end": 14495.1, + "probability": 0.5545 + }, + { + "start": 14495.12, + "end": 14495.74, + "probability": 0.7241 + }, + { + "start": 14496.18, + "end": 14496.46, + "probability": 0.7913 + }, + { + "start": 14496.6, + "end": 14497.62, + "probability": 0.9796 + }, + { + "start": 14497.96, + "end": 14500.42, + "probability": 0.9744 + }, + { + "start": 14500.58, + "end": 14504.4, + "probability": 0.8225 + }, + { + "start": 14504.54, + "end": 14504.7, + "probability": 0.8362 + }, + { + "start": 14505.46, + "end": 14507.32, + "probability": 0.6286 + }, + { + "start": 14507.38, + "end": 14511.74, + "probability": 0.9543 + }, + { + "start": 14512.32, + "end": 14513.08, + "probability": 0.64 + }, + { + "start": 14513.78, + "end": 14515.2, + "probability": 0.6531 + }, + { + "start": 14517.5, + "end": 14519.76, + "probability": 0.7735 + }, + { + "start": 14521.22, + "end": 14522.36, + "probability": 0.2697 + }, + { + "start": 14522.54, + "end": 14523.24, + "probability": 0.7173 + }, + { + "start": 14524.72, + "end": 14526.7, + "probability": 0.8781 + }, + { + "start": 14528.66, + "end": 14531.7, + "probability": 0.6318 + }, + { + "start": 14534.12, + "end": 14537.92, + "probability": 0.9933 + }, + { + "start": 14537.92, + "end": 14545.64, + "probability": 0.981 + }, + { + "start": 14546.24, + "end": 14547.2, + "probability": 0.6838 + }, + { + "start": 14547.94, + "end": 14550.1, + "probability": 0.735 + }, + { + "start": 14550.6, + "end": 14551.14, + "probability": 0.3814 + }, + { + "start": 14551.14, + "end": 14554.06, + "probability": 0.9849 + }, + { + "start": 14554.34, + "end": 14557.02, + "probability": 0.3335 + }, + { + "start": 14557.02, + "end": 14561.82, + "probability": 0.9749 + }, + { + "start": 14562.02, + "end": 14563.64, + "probability": 0.9702 + }, + { + "start": 14563.7, + "end": 14566.32, + "probability": 0.9929 + }, + { + "start": 14567.82, + "end": 14568.32, + "probability": 0.3957 + }, + { + "start": 14568.5, + "end": 14569.78, + "probability": 0.1663 + }, + { + "start": 14569.78, + "end": 14569.94, + "probability": 0.1799 + }, + { + "start": 14571.0, + "end": 14573.12, + "probability": 0.7808 + }, + { + "start": 14573.51, + "end": 14577.84, + "probability": 0.7793 + }, + { + "start": 14577.9, + "end": 14580.48, + "probability": 0.9911 + }, + { + "start": 14580.5, + "end": 14582.26, + "probability": 0.9808 + }, + { + "start": 14582.88, + "end": 14583.24, + "probability": 0.5346 + }, + { + "start": 14583.34, + "end": 14584.78, + "probability": 0.9807 + }, + { + "start": 14585.5, + "end": 14586.18, + "probability": 0.7783 + }, + { + "start": 14587.66, + "end": 14591.88, + "probability": 0.9471 + }, + { + "start": 14593.32, + "end": 14594.56, + "probability": 0.9395 + }, + { + "start": 14595.86, + "end": 14597.74, + "probability": 0.9717 + }, + { + "start": 14598.7, + "end": 14601.22, + "probability": 0.882 + }, + { + "start": 14601.66, + "end": 14606.6, + "probability": 0.7416 + }, + { + "start": 14609.06, + "end": 14609.9, + "probability": 0.65 + }, + { + "start": 14611.88, + "end": 14613.32, + "probability": 0.9658 + }, + { + "start": 14613.42, + "end": 14617.08, + "probability": 0.967 + }, + { + "start": 14619.16, + "end": 14621.28, + "probability": 0.9858 + }, + { + "start": 14621.92, + "end": 14624.4, + "probability": 0.9949 + }, + { + "start": 14627.32, + "end": 14628.52, + "probability": 0.8087 + }, + { + "start": 14629.04, + "end": 14630.12, + "probability": 0.8862 + }, + { + "start": 14630.88, + "end": 14633.14, + "probability": 0.9984 + }, + { + "start": 14633.32, + "end": 14635.78, + "probability": 0.9868 + }, + { + "start": 14636.84, + "end": 14639.58, + "probability": 0.9714 + }, + { + "start": 14640.9, + "end": 14643.1, + "probability": 0.5676 + }, + { + "start": 14643.2, + "end": 14646.18, + "probability": 0.9976 + }, + { + "start": 14646.7, + "end": 14651.04, + "probability": 0.9985 + }, + { + "start": 14652.0, + "end": 14653.38, + "probability": 0.9912 + }, + { + "start": 14654.12, + "end": 14659.54, + "probability": 0.9344 + }, + { + "start": 14659.56, + "end": 14661.6, + "probability": 0.9812 + }, + { + "start": 14662.9, + "end": 14664.68, + "probability": 0.8962 + }, + { + "start": 14665.88, + "end": 14667.1, + "probability": 0.8782 + }, + { + "start": 14667.96, + "end": 14668.74, + "probability": 0.9201 + }, + { + "start": 14669.12, + "end": 14671.44, + "probability": 0.9839 + }, + { + "start": 14671.84, + "end": 14677.1, + "probability": 0.9504 + }, + { + "start": 14679.68, + "end": 14681.74, + "probability": 0.9573 + }, + { + "start": 14682.3, + "end": 14683.7, + "probability": 0.9988 + }, + { + "start": 14684.98, + "end": 14685.28, + "probability": 0.5324 + }, + { + "start": 14685.38, + "end": 14686.24, + "probability": 0.9636 + }, + { + "start": 14686.32, + "end": 14688.58, + "probability": 0.9946 + }, + { + "start": 14689.68, + "end": 14693.18, + "probability": 0.9894 + }, + { + "start": 14694.14, + "end": 14697.1, + "probability": 0.9729 + }, + { + "start": 14698.04, + "end": 14698.7, + "probability": 0.747 + }, + { + "start": 14700.06, + "end": 14703.8, + "probability": 0.8562 + }, + { + "start": 14704.06, + "end": 14708.22, + "probability": 0.7427 + }, + { + "start": 14708.78, + "end": 14712.64, + "probability": 0.9775 + }, + { + "start": 14713.54, + "end": 14715.82, + "probability": 0.9287 + }, + { + "start": 14716.4, + "end": 14718.68, + "probability": 0.8515 + }, + { + "start": 14719.68, + "end": 14728.1, + "probability": 0.958 + }, + { + "start": 14729.34, + "end": 14732.0, + "probability": 0.8006 + }, + { + "start": 14732.54, + "end": 14734.5, + "probability": 0.8628 + }, + { + "start": 14734.8, + "end": 14735.7, + "probability": 0.4983 + }, + { + "start": 14735.72, + "end": 14736.2, + "probability": 0.5154 + }, + { + "start": 14736.5, + "end": 14740.28, + "probability": 0.8648 + }, + { + "start": 14740.48, + "end": 14742.24, + "probability": 0.915 + }, + { + "start": 14742.8, + "end": 14745.76, + "probability": 0.9261 + }, + { + "start": 14746.66, + "end": 14748.84, + "probability": 0.967 + }, + { + "start": 14749.32, + "end": 14754.2, + "probability": 0.8901 + }, + { + "start": 14754.52, + "end": 14758.55, + "probability": 0.9697 + }, + { + "start": 14758.9, + "end": 14760.37, + "probability": 0.978 + }, + { + "start": 14761.12, + "end": 14762.9, + "probability": 0.9874 + }, + { + "start": 14763.0, + "end": 14763.88, + "probability": 0.9613 + }, + { + "start": 14764.0, + "end": 14765.2, + "probability": 0.7786 + }, + { + "start": 14765.4, + "end": 14767.38, + "probability": 0.9516 + }, + { + "start": 14767.96, + "end": 14769.12, + "probability": 0.4774 + }, + { + "start": 14769.7, + "end": 14771.8, + "probability": 0.9434 + }, + { + "start": 14772.54, + "end": 14778.16, + "probability": 0.9813 + }, + { + "start": 14778.38, + "end": 14778.58, + "probability": 0.3975 + }, + { + "start": 14779.04, + "end": 14781.54, + "probability": 0.8625 + }, + { + "start": 14782.72, + "end": 14784.92, + "probability": 0.469 + }, + { + "start": 14785.86, + "end": 14788.76, + "probability": 0.9837 + }, + { + "start": 14789.4, + "end": 14791.74, + "probability": 0.9216 + }, + { + "start": 14799.24, + "end": 14801.05, + "probability": 0.9697 + }, + { + "start": 14801.78, + "end": 14802.9, + "probability": 0.4895 + }, + { + "start": 14803.04, + "end": 14803.04, + "probability": 0.8292 + }, + { + "start": 14803.06, + "end": 14803.58, + "probability": 0.5897 + }, + { + "start": 14803.94, + "end": 14805.16, + "probability": 0.5809 + }, + { + "start": 14806.56, + "end": 14808.38, + "probability": 0.5539 + }, + { + "start": 14808.52, + "end": 14808.82, + "probability": 0.5963 + }, + { + "start": 14808.88, + "end": 14811.74, + "probability": 0.8029 + }, + { + "start": 14811.76, + "end": 14813.3, + "probability": 0.8638 + }, + { + "start": 14813.38, + "end": 14813.94, + "probability": 0.7416 + }, + { + "start": 14814.34, + "end": 14815.52, + "probability": 0.4161 + }, + { + "start": 14815.58, + "end": 14815.88, + "probability": 0.3798 + }, + { + "start": 14815.88, + "end": 14816.2, + "probability": 0.4187 + }, + { + "start": 14816.22, + "end": 14817.7, + "probability": 0.6743 + }, + { + "start": 14817.8, + "end": 14819.78, + "probability": 0.854 + }, + { + "start": 14820.82, + "end": 14822.2, + "probability": 0.8483 + }, + { + "start": 14822.52, + "end": 14823.42, + "probability": 0.7734 + }, + { + "start": 14823.42, + "end": 14824.18, + "probability": 0.8753 + }, + { + "start": 14824.96, + "end": 14828.38, + "probability": 0.9132 + }, + { + "start": 14829.56, + "end": 14831.44, + "probability": 0.9692 + }, + { + "start": 14832.3, + "end": 14834.08, + "probability": 0.9078 + }, + { + "start": 14834.86, + "end": 14835.38, + "probability": 0.6442 + }, + { + "start": 14836.22, + "end": 14837.1, + "probability": 0.9409 + }, + { + "start": 14839.26, + "end": 14841.56, + "probability": 0.9487 + }, + { + "start": 14846.98, + "end": 14850.74, + "probability": 0.9977 + }, + { + "start": 14851.9, + "end": 14853.76, + "probability": 0.7345 + }, + { + "start": 14854.38, + "end": 14855.03, + "probability": 0.8112 + }, + { + "start": 14856.28, + "end": 14857.22, + "probability": 0.8616 + }, + { + "start": 14858.06, + "end": 14860.32, + "probability": 0.9828 + }, + { + "start": 14861.2, + "end": 14863.66, + "probability": 0.9875 + }, + { + "start": 14864.18, + "end": 14867.34, + "probability": 0.8009 + }, + { + "start": 14870.62, + "end": 14871.34, + "probability": 0.6125 + }, + { + "start": 14872.5, + "end": 14875.24, + "probability": 0.7436 + }, + { + "start": 14876.04, + "end": 14877.1, + "probability": 0.7222 + }, + { + "start": 14877.62, + "end": 14878.1, + "probability": 0.9062 + }, + { + "start": 14879.06, + "end": 14879.5, + "probability": 0.7861 + }, + { + "start": 14881.66, + "end": 14883.32, + "probability": 0.9703 + }, + { + "start": 14884.38, + "end": 14888.68, + "probability": 0.9832 + }, + { + "start": 14888.78, + "end": 14889.34, + "probability": 0.9559 + }, + { + "start": 14890.16, + "end": 14891.08, + "probability": 0.6437 + }, + { + "start": 14891.28, + "end": 14893.1, + "probability": 0.6653 + }, + { + "start": 14893.48, + "end": 14895.66, + "probability": 0.8564 + }, + { + "start": 14896.18, + "end": 14897.82, + "probability": 0.7394 + }, + { + "start": 14898.0, + "end": 14898.0, + "probability": 0.8474 + }, + { + "start": 14898.0, + "end": 14898.74, + "probability": 0.735 + }, + { + "start": 14898.74, + "end": 14900.16, + "probability": 0.813 + }, + { + "start": 14900.5, + "end": 14904.76, + "probability": 0.8582 + }, + { + "start": 14905.18, + "end": 14907.16, + "probability": 0.9636 + }, + { + "start": 14907.68, + "end": 14909.46, + "probability": 0.8447 + }, + { + "start": 14910.56, + "end": 14914.7, + "probability": 0.9972 + }, + { + "start": 14915.82, + "end": 14918.16, + "probability": 0.9754 + }, + { + "start": 14919.64, + "end": 14921.26, + "probability": 0.9565 + }, + { + "start": 14922.58, + "end": 14924.9, + "probability": 0.9004 + }, + { + "start": 14925.84, + "end": 14927.04, + "probability": 0.8805 + }, + { + "start": 14927.9, + "end": 14928.44, + "probability": 0.5272 + }, + { + "start": 14929.54, + "end": 14930.0, + "probability": 0.6715 + }, + { + "start": 14930.6, + "end": 14933.54, + "probability": 0.9924 + }, + { + "start": 14934.36, + "end": 14935.1, + "probability": 0.9802 + }, + { + "start": 14936.18, + "end": 14940.08, + "probability": 0.9885 + }, + { + "start": 14941.0, + "end": 14943.18, + "probability": 0.6507 + }, + { + "start": 14943.8, + "end": 14946.08, + "probability": 0.5396 + }, + { + "start": 14946.54, + "end": 14947.96, + "probability": 0.7578 + }, + { + "start": 14949.6, + "end": 14950.48, + "probability": 0.9766 + }, + { + "start": 14951.3, + "end": 14954.34, + "probability": 0.991 + }, + { + "start": 14955.48, + "end": 14957.6, + "probability": 0.9713 + }, + { + "start": 14958.42, + "end": 14959.14, + "probability": 0.9865 + }, + { + "start": 14961.76, + "end": 14964.04, + "probability": 0.9129 + }, + { + "start": 14964.92, + "end": 14966.62, + "probability": 0.8335 + }, + { + "start": 14967.34, + "end": 14968.0, + "probability": 0.9491 + }, + { + "start": 14968.36, + "end": 14968.36, + "probability": 0.7582 + }, + { + "start": 14968.96, + "end": 14970.82, + "probability": 0.8382 + }, + { + "start": 14972.66, + "end": 14973.02, + "probability": 0.4446 + }, + { + "start": 14974.58, + "end": 14975.32, + "probability": 0.6093 + }, + { + "start": 14975.66, + "end": 14975.66, + "probability": 0.43 + }, + { + "start": 14976.24, + "end": 14978.5, + "probability": 0.8948 + }, + { + "start": 14980.12, + "end": 14981.5, + "probability": 0.9636 + }, + { + "start": 14981.68, + "end": 14984.84, + "probability": 0.811 + }, + { + "start": 14984.9, + "end": 14986.74, + "probability": 0.6389 + }, + { + "start": 14987.9, + "end": 14989.9, + "probability": 0.8647 + }, + { + "start": 14995.94, + "end": 14996.42, + "probability": 0.7401 + }, + { + "start": 14999.98, + "end": 15002.96, + "probability": 0.6936 + }, + { + "start": 15003.76, + "end": 15004.5, + "probability": 0.7712 + }, + { + "start": 15005.24, + "end": 15005.98, + "probability": 0.638 + }, + { + "start": 15006.44, + "end": 15007.46, + "probability": 0.9296 + }, + { + "start": 15007.5, + "end": 15009.38, + "probability": 0.94 + }, + { + "start": 15009.8, + "end": 15011.86, + "probability": 0.9746 + }, + { + "start": 15012.7, + "end": 15014.44, + "probability": 0.9832 + }, + { + "start": 15017.08, + "end": 15018.94, + "probability": 0.9926 + }, + { + "start": 15019.46, + "end": 15020.04, + "probability": 0.6513 + }, + { + "start": 15020.66, + "end": 15022.66, + "probability": 0.924 + }, + { + "start": 15023.44, + "end": 15025.92, + "probability": 0.8909 + }, + { + "start": 15026.64, + "end": 15029.42, + "probability": 0.8027 + }, + { + "start": 15030.18, + "end": 15032.74, + "probability": 0.8611 + }, + { + "start": 15032.86, + "end": 15033.76, + "probability": 0.9648 + }, + { + "start": 15034.22, + "end": 15037.92, + "probability": 0.9315 + }, + { + "start": 15038.24, + "end": 15040.7, + "probability": 0.8521 + }, + { + "start": 15041.52, + "end": 15044.06, + "probability": 0.9098 + }, + { + "start": 15044.16, + "end": 15047.24, + "probability": 0.5063 + }, + { + "start": 15048.08, + "end": 15054.58, + "probability": 0.7493 + }, + { + "start": 15054.96, + "end": 15056.06, + "probability": 0.8734 + }, + { + "start": 15056.22, + "end": 15057.5, + "probability": 0.9576 + }, + { + "start": 15057.86, + "end": 15058.7, + "probability": 0.7744 + }, + { + "start": 15059.56, + "end": 15062.22, + "probability": 0.9767 + }, + { + "start": 15062.68, + "end": 15067.4, + "probability": 0.9515 + }, + { + "start": 15068.04, + "end": 15070.48, + "probability": 0.8461 + }, + { + "start": 15070.98, + "end": 15075.9, + "probability": 0.9689 + }, + { + "start": 15076.42, + "end": 15078.6, + "probability": 0.9816 + }, + { + "start": 15079.36, + "end": 15082.14, + "probability": 0.9902 + }, + { + "start": 15082.5, + "end": 15086.06, + "probability": 0.9707 + }, + { + "start": 15086.7, + "end": 15087.7, + "probability": 0.6292 + }, + { + "start": 15087.8, + "end": 15092.64, + "probability": 0.8216 + }, + { + "start": 15093.1, + "end": 15093.62, + "probability": 0.7384 + }, + { + "start": 15093.66, + "end": 15094.18, + "probability": 0.9382 + }, + { + "start": 15094.26, + "end": 15096.82, + "probability": 0.9815 + }, + { + "start": 15097.28, + "end": 15099.3, + "probability": 0.9717 + }, + { + "start": 15100.26, + "end": 15101.68, + "probability": 0.719 + }, + { + "start": 15102.34, + "end": 15107.24, + "probability": 0.7637 + }, + { + "start": 15107.88, + "end": 15108.72, + "probability": 0.8396 + }, + { + "start": 15108.9, + "end": 15112.44, + "probability": 0.9114 + }, + { + "start": 15112.86, + "end": 15115.36, + "probability": 0.9943 + }, + { + "start": 15115.36, + "end": 15117.78, + "probability": 0.9784 + }, + { + "start": 15118.72, + "end": 15121.98, + "probability": 0.9516 + }, + { + "start": 15122.78, + "end": 15123.04, + "probability": 0.4603 + }, + { + "start": 15123.16, + "end": 15124.18, + "probability": 0.9355 + }, + { + "start": 15124.6, + "end": 15128.38, + "probability": 0.9838 + }, + { + "start": 15129.04, + "end": 15133.22, + "probability": 0.9616 + }, + { + "start": 15133.22, + "end": 15137.26, + "probability": 0.9084 + }, + { + "start": 15138.14, + "end": 15140.96, + "probability": 0.9835 + }, + { + "start": 15141.12, + "end": 15143.64, + "probability": 0.931 + }, + { + "start": 15143.98, + "end": 15145.74, + "probability": 0.961 + }, + { + "start": 15146.42, + "end": 15147.74, + "probability": 0.6207 + }, + { + "start": 15148.3, + "end": 15154.66, + "probability": 0.9435 + }, + { + "start": 15155.08, + "end": 15156.38, + "probability": 0.9891 + }, + { + "start": 15156.48, + "end": 15156.94, + "probability": 0.9335 + }, + { + "start": 15156.98, + "end": 15157.6, + "probability": 0.9044 + }, + { + "start": 15158.06, + "end": 15159.74, + "probability": 0.9988 + }, + { + "start": 15160.44, + "end": 15163.66, + "probability": 0.9969 + }, + { + "start": 15163.66, + "end": 15167.04, + "probability": 0.9963 + }, + { + "start": 15167.74, + "end": 15169.12, + "probability": 0.8385 + }, + { + "start": 15169.2, + "end": 15170.02, + "probability": 0.94 + }, + { + "start": 15170.16, + "end": 15174.65, + "probability": 0.6663 + }, + { + "start": 15175.58, + "end": 15177.52, + "probability": 0.8572 + }, + { + "start": 15177.9, + "end": 15180.02, + "probability": 0.9971 + }, + { + "start": 15180.08, + "end": 15181.24, + "probability": 0.6663 + }, + { + "start": 15181.36, + "end": 15182.24, + "probability": 0.8387 + }, + { + "start": 15182.38, + "end": 15183.18, + "probability": 0.8096 + }, + { + "start": 15184.16, + "end": 15186.16, + "probability": 0.9162 + }, + { + "start": 15186.72, + "end": 15189.14, + "probability": 0.8643 + }, + { + "start": 15190.36, + "end": 15191.32, + "probability": 0.8262 + }, + { + "start": 15191.4, + "end": 15193.6, + "probability": 0.9697 + }, + { + "start": 15194.04, + "end": 15195.68, + "probability": 0.9518 + }, + { + "start": 15196.34, + "end": 15198.52, + "probability": 0.7775 + }, + { + "start": 15198.68, + "end": 15204.1, + "probability": 0.9873 + }, + { + "start": 15204.84, + "end": 15206.42, + "probability": 0.92 + }, + { + "start": 15206.92, + "end": 15208.26, + "probability": 0.8939 + }, + { + "start": 15208.42, + "end": 15209.78, + "probability": 0.9784 + }, + { + "start": 15210.22, + "end": 15212.58, + "probability": 0.9354 + }, + { + "start": 15212.64, + "end": 15213.18, + "probability": 0.5596 + }, + { + "start": 15213.26, + "end": 15218.26, + "probability": 0.9602 + }, + { + "start": 15218.92, + "end": 15220.2, + "probability": 0.7947 + }, + { + "start": 15220.44, + "end": 15220.7, + "probability": 0.7003 + }, + { + "start": 15221.38, + "end": 15223.66, + "probability": 0.7985 + }, + { + "start": 15223.74, + "end": 15227.8, + "probability": 0.7784 + }, + { + "start": 15228.5, + "end": 15230.86, + "probability": 0.7491 + }, + { + "start": 15232.2, + "end": 15235.62, + "probability": 0.7706 + }, + { + "start": 15236.68, + "end": 15237.38, + "probability": 0.9363 + }, + { + "start": 15239.7, + "end": 15242.38, + "probability": 0.9502 + }, + { + "start": 15246.5, + "end": 15247.04, + "probability": 0.7717 + }, + { + "start": 15247.14, + "end": 15247.88, + "probability": 0.6725 + }, + { + "start": 15248.06, + "end": 15248.8, + "probability": 0.7354 + }, + { + "start": 15248.92, + "end": 15250.78, + "probability": 0.792 + }, + { + "start": 15250.78, + "end": 15253.5, + "probability": 0.9451 + }, + { + "start": 15253.58, + "end": 15254.48, + "probability": 0.8391 + }, + { + "start": 15254.7, + "end": 15255.54, + "probability": 0.7704 + }, + { + "start": 15256.1, + "end": 15259.2, + "probability": 0.9165 + }, + { + "start": 15259.2, + "end": 15262.94, + "probability": 0.8459 + }, + { + "start": 15263.04, + "end": 15266.08, + "probability": 0.9613 + }, + { + "start": 15267.34, + "end": 15267.64, + "probability": 0.403 + }, + { + "start": 15267.76, + "end": 15270.72, + "probability": 0.9471 + }, + { + "start": 15271.14, + "end": 15273.52, + "probability": 0.9831 + }, + { + "start": 15273.78, + "end": 15274.18, + "probability": 0.7909 + }, + { + "start": 15275.0, + "end": 15276.02, + "probability": 0.9816 + }, + { + "start": 15276.7, + "end": 15281.58, + "probability": 0.9027 + }, + { + "start": 15282.8, + "end": 15285.2, + "probability": 0.9678 + }, + { + "start": 15286.06, + "end": 15288.66, + "probability": 0.8101 + }, + { + "start": 15291.42, + "end": 15293.32, + "probability": 0.0228 + }, + { + "start": 15293.32, + "end": 15293.32, + "probability": 0.1457 + }, + { + "start": 15293.32, + "end": 15293.5, + "probability": 0.2701 + }, + { + "start": 15293.78, + "end": 15294.5, + "probability": 0.4128 + }, + { + "start": 15294.5, + "end": 15297.04, + "probability": 0.608 + }, + { + "start": 15297.7, + "end": 15299.38, + "probability": 0.5962 + }, + { + "start": 15299.86, + "end": 15300.86, + "probability": 0.7432 + }, + { + "start": 15301.4, + "end": 15303.96, + "probability": 0.8671 + }, + { + "start": 15304.06, + "end": 15308.1, + "probability": 0.7651 + }, + { + "start": 15308.26, + "end": 15309.98, + "probability": 0.5101 + }, + { + "start": 15310.22, + "end": 15310.98, + "probability": 0.8657 + }, + { + "start": 15311.32, + "end": 15313.7, + "probability": 0.9893 + }, + { + "start": 15313.8, + "end": 15314.58, + "probability": 0.7022 + }, + { + "start": 15315.36, + "end": 15315.88, + "probability": 0.0707 + }, + { + "start": 15316.1, + "end": 15316.44, + "probability": 0.2266 + }, + { + "start": 15316.88, + "end": 15318.16, + "probability": 0.9436 + }, + { + "start": 15318.64, + "end": 15319.09, + "probability": 0.6862 + }, + { + "start": 15320.28, + "end": 15320.66, + "probability": 0.7541 + }, + { + "start": 15320.7, + "end": 15323.26, + "probability": 0.8014 + }, + { + "start": 15323.6, + "end": 15326.9, + "probability": 0.9543 + }, + { + "start": 15327.74, + "end": 15331.06, + "probability": 0.9896 + }, + { + "start": 15331.66, + "end": 15332.68, + "probability": 0.4996 + }, + { + "start": 15333.56, + "end": 15336.04, + "probability": 0.9931 + }, + { + "start": 15336.04, + "end": 15338.8, + "probability": 0.9996 + }, + { + "start": 15339.34, + "end": 15341.0, + "probability": 0.8952 + }, + { + "start": 15341.76, + "end": 15346.54, + "probability": 0.4884 + }, + { + "start": 15346.66, + "end": 15347.66, + "probability": 0.622 + }, + { + "start": 15347.68, + "end": 15348.16, + "probability": 0.4839 + }, + { + "start": 15348.22, + "end": 15348.68, + "probability": 0.6869 + }, + { + "start": 15349.1, + "end": 15353.02, + "probability": 0.9746 + }, + { + "start": 15353.02, + "end": 15356.1, + "probability": 0.9513 + }, + { + "start": 15356.74, + "end": 15360.74, + "probability": 0.998 + }, + { + "start": 15360.74, + "end": 15365.1, + "probability": 0.999 + }, + { + "start": 15365.6, + "end": 15366.32, + "probability": 0.6567 + }, + { + "start": 15366.48, + "end": 15367.02, + "probability": 0.9364 + }, + { + "start": 15367.12, + "end": 15367.88, + "probability": 0.9108 + }, + { + "start": 15367.94, + "end": 15369.6, + "probability": 0.7278 + }, + { + "start": 15369.76, + "end": 15370.13, + "probability": 0.981 + }, + { + "start": 15370.68, + "end": 15372.0, + "probability": 0.7605 + }, + { + "start": 15372.66, + "end": 15373.38, + "probability": 0.9443 + }, + { + "start": 15373.62, + "end": 15377.48, + "probability": 0.9924 + }, + { + "start": 15378.24, + "end": 15379.22, + "probability": 0.9935 + }, + { + "start": 15379.94, + "end": 15382.48, + "probability": 0.9818 + }, + { + "start": 15382.62, + "end": 15385.8, + "probability": 0.992 + }, + { + "start": 15386.34, + "end": 15387.36, + "probability": 0.5609 + }, + { + "start": 15387.72, + "end": 15389.58, + "probability": 0.9917 + }, + { + "start": 15389.66, + "end": 15392.0, + "probability": 0.7383 + }, + { + "start": 15392.02, + "end": 15396.12, + "probability": 0.9941 + }, + { + "start": 15396.2, + "end": 15397.0, + "probability": 0.8184 + }, + { + "start": 15397.7, + "end": 15401.16, + "probability": 0.9677 + }, + { + "start": 15401.42, + "end": 15402.2, + "probability": 0.7709 + }, + { + "start": 15403.04, + "end": 15404.18, + "probability": 0.7531 + }, + { + "start": 15404.8, + "end": 15406.42, + "probability": 0.9485 + }, + { + "start": 15407.26, + "end": 15409.14, + "probability": 0.9887 + }, + { + "start": 15409.82, + "end": 15412.4, + "probability": 0.9617 + }, + { + "start": 15412.98, + "end": 15414.0, + "probability": 0.8606 + }, + { + "start": 15414.18, + "end": 15414.86, + "probability": 0.7153 + }, + { + "start": 15414.86, + "end": 15416.28, + "probability": 0.799 + }, + { + "start": 15418.8, + "end": 15420.62, + "probability": 0.7792 + }, + { + "start": 15421.18, + "end": 15422.5, + "probability": 0.8021 + }, + { + "start": 15423.3, + "end": 15428.6, + "probability": 0.9038 + }, + { + "start": 15429.06, + "end": 15429.5, + "probability": 0.6935 + }, + { + "start": 15429.68, + "end": 15429.76, + "probability": 0.6519 + }, + { + "start": 15429.84, + "end": 15434.34, + "probability": 0.9937 + }, + { + "start": 15434.94, + "end": 15435.68, + "probability": 0.7335 + }, + { + "start": 15436.14, + "end": 15438.53, + "probability": 0.6367 + }, + { + "start": 15439.32, + "end": 15440.64, + "probability": 0.9255 + }, + { + "start": 15440.82, + "end": 15441.05, + "probability": 0.8494 + }, + { + "start": 15441.56, + "end": 15442.33, + "probability": 0.9694 + }, + { + "start": 15442.68, + "end": 15443.22, + "probability": 0.772 + }, + { + "start": 15443.28, + "end": 15444.4, + "probability": 0.7001 + }, + { + "start": 15444.94, + "end": 15448.3, + "probability": 0.9692 + }, + { + "start": 15448.3, + "end": 15451.72, + "probability": 0.978 + }, + { + "start": 15451.78, + "end": 15452.5, + "probability": 0.8101 + }, + { + "start": 15452.8, + "end": 15455.24, + "probability": 0.9733 + }, + { + "start": 15455.44, + "end": 15456.17, + "probability": 0.9368 + }, + { + "start": 15456.78, + "end": 15458.26, + "probability": 0.878 + }, + { + "start": 15458.34, + "end": 15461.92, + "probability": 0.9442 + }, + { + "start": 15462.68, + "end": 15465.76, + "probability": 0.9937 + }, + { + "start": 15465.88, + "end": 15468.94, + "probability": 0.9196 + }, + { + "start": 15468.94, + "end": 15472.3, + "probability": 0.9715 + }, + { + "start": 15472.66, + "end": 15474.2, + "probability": 0.7977 + }, + { + "start": 15474.26, + "end": 15474.98, + "probability": 0.8976 + }, + { + "start": 15475.02, + "end": 15476.9, + "probability": 0.9503 + }, + { + "start": 15477.48, + "end": 15480.46, + "probability": 0.9696 + }, + { + "start": 15481.0, + "end": 15483.04, + "probability": 0.6232 + }, + { + "start": 15483.2, + "end": 15484.66, + "probability": 0.9948 + }, + { + "start": 15485.6, + "end": 15487.72, + "probability": 0.6456 + }, + { + "start": 15488.24, + "end": 15489.7, + "probability": 0.7604 + }, + { + "start": 15497.76, + "end": 15500.42, + "probability": 0.9714 + }, + { + "start": 15503.34, + "end": 15505.02, + "probability": 0.6023 + }, + { + "start": 15505.94, + "end": 15507.66, + "probability": 0.6744 + }, + { + "start": 15509.41, + "end": 15511.79, + "probability": 0.9875 + }, + { + "start": 15512.56, + "end": 15514.6, + "probability": 0.9758 + }, + { + "start": 15514.76, + "end": 15518.36, + "probability": 0.7812 + }, + { + "start": 15519.36, + "end": 15520.98, + "probability": 0.8437 + }, + { + "start": 15522.48, + "end": 15525.41, + "probability": 0.9945 + }, + { + "start": 15525.5, + "end": 15530.78, + "probability": 0.9033 + }, + { + "start": 15531.08, + "end": 15533.36, + "probability": 0.973 + }, + { + "start": 15533.96, + "end": 15536.78, + "probability": 0.9988 + }, + { + "start": 15536.78, + "end": 15541.16, + "probability": 0.9955 + }, + { + "start": 15541.86, + "end": 15543.54, + "probability": 0.8711 + }, + { + "start": 15544.34, + "end": 15544.98, + "probability": 0.7305 + }, + { + "start": 15545.58, + "end": 15548.02, + "probability": 0.9515 + }, + { + "start": 15549.8, + "end": 15551.79, + "probability": 0.976 + }, + { + "start": 15552.62, + "end": 15553.62, + "probability": 0.9624 + }, + { + "start": 15554.18, + "end": 15554.98, + "probability": 0.9318 + }, + { + "start": 15555.04, + "end": 15556.56, + "probability": 0.9985 + }, + { + "start": 15557.1, + "end": 15559.9, + "probability": 0.8184 + }, + { + "start": 15560.5, + "end": 15561.44, + "probability": 0.6142 + }, + { + "start": 15561.5, + "end": 15566.86, + "probability": 0.858 + }, + { + "start": 15566.86, + "end": 15569.9, + "probability": 0.9984 + }, + { + "start": 15570.6, + "end": 15571.78, + "probability": 0.8831 + }, + { + "start": 15571.94, + "end": 15574.46, + "probability": 0.9717 + }, + { + "start": 15574.54, + "end": 15576.32, + "probability": 0.7554 + }, + { + "start": 15576.8, + "end": 15577.74, + "probability": 0.4342 + }, + { + "start": 15578.34, + "end": 15580.3, + "probability": 0.688 + }, + { + "start": 15580.66, + "end": 15582.14, + "probability": 0.9954 + }, + { + "start": 15582.26, + "end": 15585.36, + "probability": 0.9978 + }, + { + "start": 15585.36, + "end": 15590.04, + "probability": 0.9899 + }, + { + "start": 15590.34, + "end": 15591.22, + "probability": 0.9946 + }, + { + "start": 15592.18, + "end": 15593.96, + "probability": 0.7655 + }, + { + "start": 15594.34, + "end": 15596.52, + "probability": 0.9878 + }, + { + "start": 15597.92, + "end": 15599.96, + "probability": 0.8677 + }, + { + "start": 15600.06, + "end": 15601.58, + "probability": 0.9479 + }, + { + "start": 15602.04, + "end": 15605.38, + "probability": 0.9819 + }, + { + "start": 15605.74, + "end": 15607.64, + "probability": 0.9793 + }, + { + "start": 15608.12, + "end": 15610.78, + "probability": 0.9097 + }, + { + "start": 15610.92, + "end": 15613.64, + "probability": 0.9445 + }, + { + "start": 15613.74, + "end": 15620.12, + "probability": 0.9886 + }, + { + "start": 15620.12, + "end": 15628.32, + "probability": 0.9781 + }, + { + "start": 15628.42, + "end": 15631.86, + "probability": 0.8514 + }, + { + "start": 15632.22, + "end": 15633.8, + "probability": 0.6744 + }, + { + "start": 15634.14, + "end": 15634.72, + "probability": 0.7754 + }, + { + "start": 15634.8, + "end": 15638.04, + "probability": 0.9598 + }, + { + "start": 15638.04, + "end": 15642.44, + "probability": 0.6685 + }, + { + "start": 15643.18, + "end": 15644.98, + "probability": 0.998 + }, + { + "start": 15645.96, + "end": 15648.06, + "probability": 0.4696 + }, + { + "start": 15648.28, + "end": 15651.78, + "probability": 0.7931 + }, + { + "start": 15651.92, + "end": 15656.66, + "probability": 0.9466 + }, + { + "start": 15657.46, + "end": 15659.96, + "probability": 0.9648 + }, + { + "start": 15660.64, + "end": 15664.08, + "probability": 0.9922 + }, + { + "start": 15664.08, + "end": 15667.94, + "probability": 0.9998 + }, + { + "start": 15668.04, + "end": 15668.94, + "probability": 0.7972 + }, + { + "start": 15669.4, + "end": 15670.34, + "probability": 0.8532 + }, + { + "start": 15670.48, + "end": 15670.7, + "probability": 0.1158 + }, + { + "start": 15670.7, + "end": 15671.83, + "probability": 0.7197 + }, + { + "start": 15672.32, + "end": 15675.92, + "probability": 0.1763 + }, + { + "start": 15675.92, + "end": 15677.14, + "probability": 0.3808 + }, + { + "start": 15677.22, + "end": 15681.44, + "probability": 0.958 + }, + { + "start": 15681.66, + "end": 15682.72, + "probability": 0.7828 + }, + { + "start": 15682.88, + "end": 15683.16, + "probability": 0.0356 + }, + { + "start": 15685.04, + "end": 15686.12, + "probability": 0.0086 + }, + { + "start": 15686.12, + "end": 15686.12, + "probability": 0.0028 + }, + { + "start": 15686.12, + "end": 15687.82, + "probability": 0.3364 + }, + { + "start": 15687.82, + "end": 15691.52, + "probability": 0.8469 + }, + { + "start": 15691.84, + "end": 15692.6, + "probability": 0.4421 + }, + { + "start": 15693.75, + "end": 15695.74, + "probability": 0.3091 + }, + { + "start": 15695.74, + "end": 15696.73, + "probability": 0.6981 + }, + { + "start": 15698.96, + "end": 15702.08, + "probability": 0.5042 + }, + { + "start": 15702.8, + "end": 15704.02, + "probability": 0.57 + }, + { + "start": 15704.44, + "end": 15706.0, + "probability": 0.0449 + }, + { + "start": 15706.24, + "end": 15709.66, + "probability": 0.2332 + }, + { + "start": 15710.3, + "end": 15711.66, + "probability": 0.5513 + }, + { + "start": 15712.88, + "end": 15713.66, + "probability": 0.0234 + }, + { + "start": 15716.26, + "end": 15717.28, + "probability": 0.1843 + }, + { + "start": 15718.36, + "end": 15720.22, + "probability": 0.0265 + }, + { + "start": 15720.46, + "end": 15721.37, + "probability": 0.0428 + }, + { + "start": 15721.54, + "end": 15722.1, + "probability": 0.005 + }, + { + "start": 15722.1, + "end": 15722.16, + "probability": 0.1151 + }, + { + "start": 15722.16, + "end": 15722.16, + "probability": 0.0106 + }, + { + "start": 15722.16, + "end": 15723.67, + "probability": 0.0765 + }, + { + "start": 15724.76, + "end": 15726.41, + "probability": 0.6098 + }, + { + "start": 15726.72, + "end": 15727.3, + "probability": 0.199 + }, + { + "start": 15727.3, + "end": 15730.2, + "probability": 0.5656 + }, + { + "start": 15730.68, + "end": 15731.7, + "probability": 0.1283 + }, + { + "start": 15731.82, + "end": 15735.7, + "probability": 0.0498 + }, + { + "start": 15735.7, + "end": 15739.08, + "probability": 0.2807 + }, + { + "start": 15739.1, + "end": 15739.66, + "probability": 0.4042 + }, + { + "start": 15739.66, + "end": 15740.9, + "probability": 0.3881 + }, + { + "start": 15741.76, + "end": 15743.84, + "probability": 0.2258 + }, + { + "start": 15744.78, + "end": 15747.0, + "probability": 0.1766 + }, + { + "start": 15747.44, + "end": 15749.22, + "probability": 0.4781 + }, + { + "start": 15749.26, + "end": 15751.44, + "probability": 0.1738 + }, + { + "start": 15751.78, + "end": 15753.64, + "probability": 0.6246 + }, + { + "start": 15753.78, + "end": 15753.8, + "probability": 0.0198 + }, + { + "start": 15754.66, + "end": 15755.04, + "probability": 0.1038 + }, + { + "start": 15755.04, + "end": 15757.46, + "probability": 0.3983 + }, + { + "start": 15757.78, + "end": 15758.88, + "probability": 0.6235 + }, + { + "start": 15760.16, + "end": 15760.66, + "probability": 0.1557 + }, + { + "start": 15761.62, + "end": 15762.94, + "probability": 0.2601 + }, + { + "start": 15763.22, + "end": 15764.28, + "probability": 0.3179 + }, + { + "start": 15764.28, + "end": 15765.95, + "probability": 0.1925 + }, + { + "start": 15766.24, + "end": 15767.76, + "probability": 0.3294 + }, + { + "start": 15767.8, + "end": 15768.08, + "probability": 0.0037 + }, + { + "start": 15782.0, + "end": 15782.0, + "probability": 0.0 + }, + { + "start": 15782.0, + "end": 15782.0, + "probability": 0.0 + }, + { + "start": 15782.48, + "end": 15785.9, + "probability": 0.3729 + }, + { + "start": 15785.9, + "end": 15787.48, + "probability": 0.0225 + }, + { + "start": 15787.76, + "end": 15789.1, + "probability": 0.027 + }, + { + "start": 15790.2, + "end": 15795.4, + "probability": 0.2772 + }, + { + "start": 15797.17, + "end": 15800.14, + "probability": 0.1749 + }, + { + "start": 15800.66, + "end": 15804.32, + "probability": 0.5885 + }, + { + "start": 15804.32, + "end": 15804.4, + "probability": 0.3004 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15902.0, + "end": 15902.0, + "probability": 0.0 + }, + { + "start": 15903.4, + "end": 15903.64, + "probability": 0.1022 + }, + { + "start": 15903.64, + "end": 15907.7, + "probability": 0.3742 + }, + { + "start": 15907.92, + "end": 15908.06, + "probability": 0.1107 + }, + { + "start": 15908.14, + "end": 15909.62, + "probability": 0.5487 + }, + { + "start": 15909.64, + "end": 15911.02, + "probability": 0.8138 + }, + { + "start": 15911.16, + "end": 15911.98, + "probability": 0.3448 + }, + { + "start": 15912.56, + "end": 15914.16, + "probability": 0.7693 + }, + { + "start": 15914.3, + "end": 15914.82, + "probability": 0.8328 + }, + { + "start": 15914.9, + "end": 15916.52, + "probability": 0.9525 + }, + { + "start": 15916.94, + "end": 15918.58, + "probability": 0.7852 + }, + { + "start": 15918.84, + "end": 15920.24, + "probability": 0.9109 + }, + { + "start": 15921.19, + "end": 15924.12, + "probability": 0.9958 + }, + { + "start": 15924.12, + "end": 15926.96, + "probability": 0.9788 + }, + { + "start": 15927.9, + "end": 15928.88, + "probability": 0.9185 + }, + { + "start": 15930.22, + "end": 15932.36, + "probability": 0.1586 + }, + { + "start": 15932.36, + "end": 15934.4, + "probability": 0.3852 + }, + { + "start": 15934.74, + "end": 15934.86, + "probability": 0.1414 + }, + { + "start": 15934.86, + "end": 15938.8, + "probability": 0.5912 + }, + { + "start": 15940.55, + "end": 15942.72, + "probability": 0.3242 + }, + { + "start": 15942.76, + "end": 15943.62, + "probability": 0.2091 + }, + { + "start": 15943.62, + "end": 15944.88, + "probability": 0.2995 + }, + { + "start": 15945.92, + "end": 15947.72, + "probability": 0.0247 + }, + { + "start": 15948.1, + "end": 15949.92, + "probability": 0.0266 + }, + { + "start": 15952.7, + "end": 15953.12, + "probability": 0.2469 + }, + { + "start": 15955.08, + "end": 15958.24, + "probability": 0.556 + }, + { + "start": 15959.34, + "end": 15961.2, + "probability": 0.1447 + }, + { + "start": 15961.66, + "end": 15968.7, + "probability": 0.07 + }, + { + "start": 15969.02, + "end": 15972.24, + "probability": 0.1153 + }, + { + "start": 15973.58, + "end": 15979.52, + "probability": 0.1117 + }, + { + "start": 15980.1, + "end": 15983.17, + "probability": 0.0667 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.0, + "end": 16023.0, + "probability": 0.0 + }, + { + "start": 16023.32, + "end": 16024.62, + "probability": 0.726 + }, + { + "start": 16025.94, + "end": 16031.7, + "probability": 0.9665 + }, + { + "start": 16032.42, + "end": 16036.36, + "probability": 0.9989 + }, + { + "start": 16036.36, + "end": 16040.54, + "probability": 0.9945 + }, + { + "start": 16040.64, + "end": 16042.06, + "probability": 0.0253 + }, + { + "start": 16042.1, + "end": 16042.22, + "probability": 0.0808 + }, + { + "start": 16042.22, + "end": 16042.9, + "probability": 0.3803 + }, + { + "start": 16043.44, + "end": 16045.96, + "probability": 0.9128 + }, + { + "start": 16046.4, + "end": 16048.24, + "probability": 0.9756 + }, + { + "start": 16048.56, + "end": 16052.44, + "probability": 0.0926 + }, + { + "start": 16052.46, + "end": 16056.24, + "probability": 0.6346 + }, + { + "start": 16061.22, + "end": 16062.72, + "probability": 0.0498 + }, + { + "start": 16064.8, + "end": 16066.64, + "probability": 0.0149 + }, + { + "start": 16066.64, + "end": 16066.64, + "probability": 0.2174 + }, + { + "start": 16066.64, + "end": 16066.64, + "probability": 0.1532 + }, + { + "start": 16066.64, + "end": 16066.64, + "probability": 0.075 + }, + { + "start": 16066.64, + "end": 16066.71, + "probability": 0.2152 + }, + { + "start": 16067.06, + "end": 16067.32, + "probability": 0.1289 + }, + { + "start": 16068.34, + "end": 16069.5, + "probability": 0.1847 + }, + { + "start": 16069.5, + "end": 16072.03, + "probability": 0.2136 + }, + { + "start": 16074.3, + "end": 16076.6, + "probability": 0.0771 + }, + { + "start": 16077.24, + "end": 16077.52, + "probability": 0.0726 + }, + { + "start": 16077.52, + "end": 16077.94, + "probability": 0.1461 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16147.0, + "end": 16147.0, + "probability": 0.0 + }, + { + "start": 16154.22, + "end": 16154.98, + "probability": 0.067 + }, + { + "start": 16154.98, + "end": 16155.12, + "probability": 0.0334 + }, + { + "start": 16155.3, + "end": 16155.64, + "probability": 0.1236 + }, + { + "start": 16155.64, + "end": 16156.44, + "probability": 0.1249 + }, + { + "start": 16160.39, + "end": 16165.06, + "probability": 0.041 + }, + { + "start": 16165.22, + "end": 16166.46, + "probability": 0.0954 + }, + { + "start": 16169.12, + "end": 16170.5, + "probability": 0.0941 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.0, + "end": 16275.0, + "probability": 0.0 + }, + { + "start": 16275.4, + "end": 16275.54, + "probability": 0.0339 + }, + { + "start": 16276.84, + "end": 16276.88, + "probability": 0.0584 + }, + { + "start": 16278.38, + "end": 16278.8, + "probability": 0.0672 + }, + { + "start": 16278.8, + "end": 16279.36, + "probability": 0.1683 + }, + { + "start": 16279.5, + "end": 16280.78, + "probability": 0.0576 + }, + { + "start": 16281.12, + "end": 16281.26, + "probability": 0.2464 + }, + { + "start": 16281.26, + "end": 16281.82, + "probability": 0.096 + }, + { + "start": 16284.79, + "end": 16288.1, + "probability": 0.1848 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.0, + "end": 16397.0, + "probability": 0.0 + }, + { + "start": 16397.16, + "end": 16403.44, + "probability": 0.9895 + }, + { + "start": 16404.58, + "end": 16404.96, + "probability": 0.5868 + }, + { + "start": 16404.98, + "end": 16405.9, + "probability": 0.8447 + }, + { + "start": 16406.08, + "end": 16411.08, + "probability": 0.9592 + }, + { + "start": 16411.28, + "end": 16414.26, + "probability": 0.9846 + }, + { + "start": 16415.18, + "end": 16417.36, + "probability": 0.7192 + }, + { + "start": 16418.76, + "end": 16420.5, + "probability": 0.9395 + }, + { + "start": 16421.12, + "end": 16421.8, + "probability": 0.9876 + }, + { + "start": 16423.46, + "end": 16424.82, + "probability": 0.7694 + }, + { + "start": 16424.88, + "end": 16426.66, + "probability": 0.978 + }, + { + "start": 16431.3, + "end": 16433.1, + "probability": 0.7611 + }, + { + "start": 16434.5, + "end": 16436.98, + "probability": 0.8966 + }, + { + "start": 16437.12, + "end": 16437.72, + "probability": 0.796 + }, + { + "start": 16438.12, + "end": 16438.99, + "probability": 0.9888 + }, + { + "start": 16440.12, + "end": 16442.88, + "probability": 0.9976 + }, + { + "start": 16443.06, + "end": 16446.22, + "probability": 0.9753 + }, + { + "start": 16446.32, + "end": 16448.08, + "probability": 0.8205 + }, + { + "start": 16448.2, + "end": 16449.4, + "probability": 0.7623 + }, + { + "start": 16449.84, + "end": 16451.7, + "probability": 0.8993 + }, + { + "start": 16451.8, + "end": 16454.74, + "probability": 0.5846 + }, + { + "start": 16456.0, + "end": 16457.2, + "probability": 0.7048 + }, + { + "start": 16457.34, + "end": 16459.18, + "probability": 0.9934 + }, + { + "start": 16459.72, + "end": 16461.82, + "probability": 0.8961 + }, + { + "start": 16463.64, + "end": 16469.8, + "probability": 0.9949 + }, + { + "start": 16469.84, + "end": 16471.0, + "probability": 0.9624 + }, + { + "start": 16471.46, + "end": 16472.34, + "probability": 0.8689 + }, + { + "start": 16472.84, + "end": 16475.2, + "probability": 0.7548 + }, + { + "start": 16475.62, + "end": 16475.72, + "probability": 0.0238 + }, + { + "start": 16475.8, + "end": 16480.58, + "probability": 0.8658 + }, + { + "start": 16480.72, + "end": 16481.92, + "probability": 0.9875 + }, + { + "start": 16482.06, + "end": 16483.28, + "probability": 0.7194 + }, + { + "start": 16484.2, + "end": 16490.12, + "probability": 0.9757 + }, + { + "start": 16490.82, + "end": 16494.62, + "probability": 0.9985 + }, + { + "start": 16495.6, + "end": 16497.32, + "probability": 0.743 + }, + { + "start": 16497.5, + "end": 16497.9, + "probability": 0.855 + }, + { + "start": 16497.98, + "end": 16500.16, + "probability": 0.9747 + }, + { + "start": 16500.66, + "end": 16502.68, + "probability": 0.994 + }, + { + "start": 16503.58, + "end": 16504.2, + "probability": 0.7647 + }, + { + "start": 16504.26, + "end": 16505.02, + "probability": 0.838 + }, + { + "start": 16505.44, + "end": 16506.86, + "probability": 0.9412 + }, + { + "start": 16507.06, + "end": 16507.76, + "probability": 0.559 + }, + { + "start": 16509.06, + "end": 16509.8, + "probability": 0.6166 + }, + { + "start": 16510.62, + "end": 16511.77, + "probability": 0.9608 + }, + { + "start": 16511.84, + "end": 16512.74, + "probability": 0.9638 + }, + { + "start": 16512.78, + "end": 16513.34, + "probability": 0.9618 + }, + { + "start": 16513.34, + "end": 16514.06, + "probability": 0.8351 + }, + { + "start": 16514.5, + "end": 16515.92, + "probability": 0.7952 + }, + { + "start": 16516.32, + "end": 16517.14, + "probability": 0.9592 + }, + { + "start": 16517.94, + "end": 16520.48, + "probability": 0.98 + }, + { + "start": 16521.14, + "end": 16521.69, + "probability": 0.9253 + }, + { + "start": 16522.52, + "end": 16523.36, + "probability": 0.3719 + }, + { + "start": 16523.48, + "end": 16524.66, + "probability": 0.9722 + }, + { + "start": 16524.8, + "end": 16525.88, + "probability": 0.8768 + }, + { + "start": 16526.82, + "end": 16528.3, + "probability": 0.8688 + }, + { + "start": 16528.36, + "end": 16531.04, + "probability": 0.8483 + }, + { + "start": 16531.2, + "end": 16531.42, + "probability": 0.5521 + }, + { + "start": 16531.5, + "end": 16531.94, + "probability": 0.591 + }, + { + "start": 16532.02, + "end": 16534.02, + "probability": 0.866 + }, + { + "start": 16534.24, + "end": 16537.0, + "probability": 0.7366 + }, + { + "start": 16537.36, + "end": 16537.85, + "probability": 0.8323 + }, + { + "start": 16538.1, + "end": 16538.62, + "probability": 0.7854 + }, + { + "start": 16538.74, + "end": 16541.35, + "probability": 0.9718 + }, + { + "start": 16541.74, + "end": 16542.48, + "probability": 0.8245 + }, + { + "start": 16542.56, + "end": 16543.1, + "probability": 0.7801 + }, + { + "start": 16543.6, + "end": 16544.46, + "probability": 0.7799 + }, + { + "start": 16545.4, + "end": 16545.94, + "probability": 0.7056 + }, + { + "start": 16545.98, + "end": 16546.41, + "probability": 0.5378 + }, + { + "start": 16548.02, + "end": 16551.3, + "probability": 0.9548 + }, + { + "start": 16552.18, + "end": 16556.48, + "probability": 0.9012 + }, + { + "start": 16557.1, + "end": 16559.28, + "probability": 0.8855 + }, + { + "start": 16559.34, + "end": 16560.25, + "probability": 0.955 + }, + { + "start": 16560.96, + "end": 16562.34, + "probability": 0.9946 + }, + { + "start": 16563.12, + "end": 16565.22, + "probability": 0.9237 + }, + { + "start": 16565.44, + "end": 16566.46, + "probability": 0.8533 + }, + { + "start": 16566.76, + "end": 16570.88, + "probability": 0.9849 + }, + { + "start": 16571.02, + "end": 16571.62, + "probability": 0.8916 + }, + { + "start": 16572.4, + "end": 16573.44, + "probability": 0.959 + }, + { + "start": 16573.64, + "end": 16581.42, + "probability": 0.9935 + }, + { + "start": 16581.62, + "end": 16582.64, + "probability": 0.7151 + }, + { + "start": 16583.06, + "end": 16583.94, + "probability": 0.7862 + }, + { + "start": 16583.94, + "end": 16587.4, + "probability": 0.8988 + }, + { + "start": 16589.58, + "end": 16589.8, + "probability": 0.0256 + }, + { + "start": 16589.8, + "end": 16592.82, + "probability": 0.998 + }, + { + "start": 16593.8, + "end": 16598.24, + "probability": 0.993 + }, + { + "start": 16598.46, + "end": 16600.88, + "probability": 0.8329 + }, + { + "start": 16601.32, + "end": 16601.84, + "probability": 0.6284 + }, + { + "start": 16601.92, + "end": 16604.42, + "probability": 0.9636 + }, + { + "start": 16605.08, + "end": 16606.22, + "probability": 0.8381 + }, + { + "start": 16608.06, + "end": 16608.8, + "probability": 0.8979 + }, + { + "start": 16609.9, + "end": 16615.28, + "probability": 0.9888 + }, + { + "start": 16615.52, + "end": 16616.52, + "probability": 0.9543 + }, + { + "start": 16616.7, + "end": 16618.84, + "probability": 0.9626 + }, + { + "start": 16619.28, + "end": 16620.12, + "probability": 0.8459 + }, + { + "start": 16620.3, + "end": 16621.96, + "probability": 0.9886 + }, + { + "start": 16622.14, + "end": 16626.26, + "probability": 0.9883 + }, + { + "start": 16626.46, + "end": 16627.81, + "probability": 0.8032 + }, + { + "start": 16627.94, + "end": 16628.78, + "probability": 0.6517 + }, + { + "start": 16628.98, + "end": 16631.88, + "probability": 0.9475 + }, + { + "start": 16632.26, + "end": 16634.64, + "probability": 0.9575 + }, + { + "start": 16634.72, + "end": 16638.24, + "probability": 0.9568 + }, + { + "start": 16638.84, + "end": 16639.46, + "probability": 0.7277 + }, + { + "start": 16641.66, + "end": 16648.54, + "probability": 0.9769 + }, + { + "start": 16649.42, + "end": 16650.88, + "probability": 0.7429 + }, + { + "start": 16651.24, + "end": 16655.32, + "probability": 0.9983 + }, + { + "start": 16655.32, + "end": 16659.68, + "probability": 0.8977 + }, + { + "start": 16661.56, + "end": 16663.62, + "probability": 0.4997 + }, + { + "start": 16666.84, + "end": 16668.16, + "probability": 0.9165 + }, + { + "start": 16669.52, + "end": 16671.5, + "probability": 0.9733 + }, + { + "start": 16671.5, + "end": 16673.92, + "probability": 0.9645 + }, + { + "start": 16675.2, + "end": 16676.82, + "probability": 0.8636 + }, + { + "start": 16677.4, + "end": 16678.74, + "probability": 0.9033 + }, + { + "start": 16679.08, + "end": 16681.36, + "probability": 0.8977 + }, + { + "start": 16681.42, + "end": 16682.56, + "probability": 0.9753 + }, + { + "start": 16682.68, + "end": 16684.32, + "probability": 0.9614 + }, + { + "start": 16684.62, + "end": 16685.17, + "probability": 0.8467 + }, + { + "start": 16685.4, + "end": 16686.22, + "probability": 0.7191 + }, + { + "start": 16686.44, + "end": 16688.64, + "probability": 0.9896 + }, + { + "start": 16688.86, + "end": 16694.98, + "probability": 0.9058 + }, + { + "start": 16696.5, + "end": 16697.68, + "probability": 0.4073 + }, + { + "start": 16697.68, + "end": 16700.0, + "probability": 0.0132 + }, + { + "start": 16700.0, + "end": 16700.76, + "probability": 0.4473 + }, + { + "start": 16700.96, + "end": 16702.2, + "probability": 0.1544 + }, + { + "start": 16702.92, + "end": 16703.02, + "probability": 0.0498 + }, + { + "start": 16703.02, + "end": 16703.02, + "probability": 0.075 + }, + { + "start": 16703.02, + "end": 16704.0, + "probability": 0.5573 + }, + { + "start": 16704.42, + "end": 16707.46, + "probability": 0.6766 + }, + { + "start": 16707.86, + "end": 16708.88, + "probability": 0.7253 + }, + { + "start": 16709.48, + "end": 16709.8, + "probability": 0.1308 + }, + { + "start": 16709.8, + "end": 16711.76, + "probability": 0.7057 + }, + { + "start": 16712.08, + "end": 16715.34, + "probability": 0.9398 + }, + { + "start": 16715.34, + "end": 16716.6, + "probability": 0.0133 + }, + { + "start": 16717.26, + "end": 16723.68, + "probability": 0.4951 + }, + { + "start": 16723.9, + "end": 16723.9, + "probability": 0.4203 + }, + { + "start": 16723.9, + "end": 16725.98, + "probability": 0.3736 + }, + { + "start": 16726.64, + "end": 16729.24, + "probability": 0.4684 + }, + { + "start": 16730.23, + "end": 16730.32, + "probability": 0.2342 + }, + { + "start": 16730.94, + "end": 16732.58, + "probability": 0.8253 + }, + { + "start": 16732.68, + "end": 16734.11, + "probability": 0.9712 + }, + { + "start": 16734.48, + "end": 16736.58, + "probability": 0.9489 + }, + { + "start": 16737.12, + "end": 16741.38, + "probability": 0.9658 + }, + { + "start": 16741.52, + "end": 16742.66, + "probability": 0.9951 + }, + { + "start": 16744.3, + "end": 16748.14, + "probability": 0.8189 + }, + { + "start": 16748.94, + "end": 16749.86, + "probability": 0.9589 + }, + { + "start": 16749.88, + "end": 16751.04, + "probability": 0.7238 + }, + { + "start": 16751.52, + "end": 16754.8, + "probability": 0.8976 + }, + { + "start": 16754.88, + "end": 16756.77, + "probability": 0.942 + }, + { + "start": 16756.86, + "end": 16758.82, + "probability": 0.7134 + }, + { + "start": 16759.6, + "end": 16761.86, + "probability": 0.6379 + }, + { + "start": 16764.8, + "end": 16768.68, + "probability": 0.9336 + }, + { + "start": 16768.68, + "end": 16771.59, + "probability": 0.869 + }, + { + "start": 16771.6, + "end": 16771.98, + "probability": 0.1295 + }, + { + "start": 16772.22, + "end": 16773.62, + "probability": 0.6284 + }, + { + "start": 16776.58, + "end": 16779.54, + "probability": 0.0937 + }, + { + "start": 16779.54, + "end": 16780.26, + "probability": 0.3724 + }, + { + "start": 16780.26, + "end": 16780.9, + "probability": 0.4294 + }, + { + "start": 16780.94, + "end": 16782.93, + "probability": 0.5745 + }, + { + "start": 16783.18, + "end": 16784.34, + "probability": 0.7517 + }, + { + "start": 16784.34, + "end": 16785.88, + "probability": 0.4135 + }, + { + "start": 16785.94, + "end": 16786.0, + "probability": 0.1279 + }, + { + "start": 16786.0, + "end": 16786.78, + "probability": 0.804 + }, + { + "start": 16786.94, + "end": 16788.8, + "probability": 0.958 + }, + { + "start": 16789.26, + "end": 16790.84, + "probability": 0.8367 + }, + { + "start": 16791.72, + "end": 16793.61, + "probability": 0.2845 + }, + { + "start": 16793.82, + "end": 16799.36, + "probability": 0.9924 + }, + { + "start": 16799.92, + "end": 16802.6, + "probability": 0.9961 + }, + { + "start": 16802.86, + "end": 16806.14, + "probability": 0.9321 + }, + { + "start": 16806.14, + "end": 16808.74, + "probability": 0.8737 + }, + { + "start": 16809.3, + "end": 16810.8, + "probability": 0.7828 + }, + { + "start": 16811.28, + "end": 16815.18, + "probability": 0.9706 + }, + { + "start": 16816.04, + "end": 16818.24, + "probability": 0.9455 + }, + { + "start": 16818.34, + "end": 16819.86, + "probability": 0.8115 + }, + { + "start": 16819.92, + "end": 16820.66, + "probability": 0.7502 + }, + { + "start": 16820.74, + "end": 16821.13, + "probability": 0.7677 + }, + { + "start": 16821.88, + "end": 16823.92, + "probability": 0.9844 + }, + { + "start": 16830.08, + "end": 16837.02, + "probability": 0.9938 + }, + { + "start": 16838.02, + "end": 16842.42, + "probability": 0.9712 + }, + { + "start": 16842.94, + "end": 16843.72, + "probability": 0.3496 + }, + { + "start": 16844.82, + "end": 16848.4, + "probability": 0.9551 + }, + { + "start": 16849.16, + "end": 16852.72, + "probability": 0.9784 + }, + { + "start": 16853.32, + "end": 16855.82, + "probability": 0.8657 + }, + { + "start": 16856.84, + "end": 16860.0, + "probability": 0.9534 + }, + { + "start": 16860.12, + "end": 16862.21, + "probability": 0.781 + }, + { + "start": 16863.08, + "end": 16863.74, + "probability": 0.6422 + }, + { + "start": 16863.84, + "end": 16868.84, + "probability": 0.9748 + }, + { + "start": 16868.9, + "end": 16869.78, + "probability": 0.9619 + }, + { + "start": 16872.92, + "end": 16874.08, + "probability": 0.4121 + }, + { + "start": 16874.78, + "end": 16876.64, + "probability": 0.9954 + }, + { + "start": 16877.06, + "end": 16879.9, + "probability": 0.8883 + }, + { + "start": 16880.26, + "end": 16881.58, + "probability": 0.9871 + }, + { + "start": 16882.0, + "end": 16886.86, + "probability": 0.9556 + }, + { + "start": 16887.24, + "end": 16889.76, + "probability": 0.8536 + }, + { + "start": 16890.26, + "end": 16890.56, + "probability": 0.0336 + }, + { + "start": 16890.56, + "end": 16891.28, + "probability": 0.1728 + }, + { + "start": 16891.68, + "end": 16891.68, + "probability": 0.0208 + }, + { + "start": 16891.68, + "end": 16895.02, + "probability": 0.1723 + }, + { + "start": 16895.4, + "end": 16896.14, + "probability": 0.5016 + }, + { + "start": 16896.26, + "end": 16900.3, + "probability": 0.7691 + }, + { + "start": 16900.56, + "end": 16908.06, + "probability": 0.8247 + }, + { + "start": 16908.16, + "end": 16910.1, + "probability": 0.5613 + }, + { + "start": 16910.62, + "end": 16913.82, + "probability": 0.7965 + }, + { + "start": 16914.66, + "end": 16915.62, + "probability": 0.5663 + }, + { + "start": 16918.0, + "end": 16923.44, + "probability": 0.0121 + }, + { + "start": 16924.4, + "end": 16926.34, + "probability": 0.0999 + }, + { + "start": 16926.34, + "end": 16928.5, + "probability": 0.0793 + }, + { + "start": 16929.06, + "end": 16930.76, + "probability": 0.0209 + }, + { + "start": 16933.42, + "end": 16935.44, + "probability": 0.2127 + }, + { + "start": 16935.74, + "end": 16939.73, + "probability": 0.5025 + }, + { + "start": 16941.06, + "end": 16942.82, + "probability": 0.1678 + }, + { + "start": 16942.82, + "end": 16944.62, + "probability": 0.0078 + }, + { + "start": 16945.56, + "end": 16945.66, + "probability": 0.1455 + }, + { + "start": 16946.38, + "end": 16946.4, + "probability": 0.0637 + }, + { + "start": 16946.4, + "end": 16947.26, + "probability": 0.0693 + }, + { + "start": 16947.78, + "end": 16948.84, + "probability": 0.7046 + }, + { + "start": 16949.46, + "end": 16953.84, + "probability": 0.7312 + }, + { + "start": 16955.78, + "end": 16959.66, + "probability": 0.9957 + }, + { + "start": 16960.82, + "end": 16962.68, + "probability": 0.3281 + }, + { + "start": 16962.68, + "end": 16964.48, + "probability": 0.4075 + }, + { + "start": 16965.6, + "end": 16969.2, + "probability": 0.2705 + }, + { + "start": 16969.32, + "end": 16969.32, + "probability": 0.3261 + }, + { + "start": 16969.32, + "end": 16971.3, + "probability": 0.4438 + }, + { + "start": 16971.68, + "end": 16974.17, + "probability": 0.6969 + }, + { + "start": 16982.04, + "end": 16983.24, + "probability": 0.4929 + }, + { + "start": 16983.44, + "end": 16987.8, + "probability": 0.5103 + }, + { + "start": 16987.94, + "end": 16989.46, + "probability": 0.1144 + }, + { + "start": 16989.66, + "end": 16991.08, + "probability": 0.8653 + }, + { + "start": 16991.22, + "end": 16994.08, + "probability": 0.8735 + }, + { + "start": 16994.08, + "end": 16996.7, + "probability": 0.6999 + }, + { + "start": 16996.86, + "end": 16997.62, + "probability": 0.0061 + }, + { + "start": 17012.2, + "end": 17013.86, + "probability": 0.2689 + }, + { + "start": 17015.84, + "end": 17019.08, + "probability": 0.4134 + }, + { + "start": 17019.08, + "end": 17021.1, + "probability": 0.5391 + }, + { + "start": 17021.32, + "end": 17022.16, + "probability": 0.7324 + }, + { + "start": 17022.52, + "end": 17023.28, + "probability": 0.477 + }, + { + "start": 17023.46, + "end": 17026.82, + "probability": 0.7336 + }, + { + "start": 17027.64, + "end": 17029.96, + "probability": 0.747 + }, + { + "start": 17030.14, + "end": 17033.14, + "probability": 0.6466 + }, + { + "start": 17033.24, + "end": 17035.54, + "probability": 0.8534 + }, + { + "start": 17035.8, + "end": 17036.97, + "probability": 0.9226 + }, + { + "start": 17037.32, + "end": 17039.22, + "probability": 0.8794 + }, + { + "start": 17039.66, + "end": 17041.3, + "probability": 0.9375 + }, + { + "start": 17041.54, + "end": 17043.2, + "probability": 0.5911 + }, + { + "start": 17043.3, + "end": 17044.32, + "probability": 0.978 + }, + { + "start": 17046.54, + "end": 17050.4, + "probability": 0.7406 + }, + { + "start": 17051.32, + "end": 17053.86, + "probability": 0.9914 + }, + { + "start": 17054.62, + "end": 17057.46, + "probability": 0.3942 + }, + { + "start": 17058.02, + "end": 17064.88, + "probability": 0.979 + }, + { + "start": 17065.78, + "end": 17070.66, + "probability": 0.9625 + }, + { + "start": 17071.38, + "end": 17074.46, + "probability": 0.992 + }, + { + "start": 17075.09, + "end": 17080.02, + "probability": 0.8711 + }, + { + "start": 17080.2, + "end": 17082.38, + "probability": 0.925 + }, + { + "start": 17083.22, + "end": 17086.18, + "probability": 0.9434 + }, + { + "start": 17086.4, + "end": 17088.14, + "probability": 0.9031 + }, + { + "start": 17089.3, + "end": 17092.76, + "probability": 0.9868 + }, + { + "start": 17092.76, + "end": 17099.84, + "probability": 0.988 + }, + { + "start": 17100.4, + "end": 17101.22, + "probability": 0.835 + }, + { + "start": 17101.4, + "end": 17102.34, + "probability": 0.642 + }, + { + "start": 17102.5, + "end": 17105.28, + "probability": 0.994 + }, + { + "start": 17105.84, + "end": 17108.44, + "probability": 0.8357 + }, + { + "start": 17109.32, + "end": 17115.27, + "probability": 0.9792 + }, + { + "start": 17116.34, + "end": 17116.98, + "probability": 0.6187 + }, + { + "start": 17117.28, + "end": 17118.62, + "probability": 0.6525 + }, + { + "start": 17118.62, + "end": 17123.2, + "probability": 0.9922 + }, + { + "start": 17123.72, + "end": 17127.58, + "probability": 0.9896 + }, + { + "start": 17127.58, + "end": 17131.82, + "probability": 0.9536 + }, + { + "start": 17131.98, + "end": 17133.14, + "probability": 0.5645 + }, + { + "start": 17134.1, + "end": 17136.32, + "probability": 0.5043 + }, + { + "start": 17140.54, + "end": 17140.7, + "probability": 0.016 + }, + { + "start": 17140.7, + "end": 17143.12, + "probability": 0.9849 + }, + { + "start": 17143.86, + "end": 17147.5, + "probability": 0.9785 + }, + { + "start": 17148.4, + "end": 17148.4, + "probability": 0.005 + }, + { + "start": 17148.4, + "end": 17150.74, + "probability": 0.6018 + }, + { + "start": 17152.02, + "end": 17158.88, + "probability": 0.8594 + }, + { + "start": 17159.8, + "end": 17160.76, + "probability": 0.6278 + }, + { + "start": 17160.88, + "end": 17164.36, + "probability": 0.9842 + }, + { + "start": 17165.14, + "end": 17169.16, + "probability": 0.8768 + }, + { + "start": 17170.34, + "end": 17171.0, + "probability": 0.5292 + }, + { + "start": 17171.02, + "end": 17174.9, + "probability": 0.9097 + }, + { + "start": 17174.96, + "end": 17177.84, + "probability": 0.825 + }, + { + "start": 17178.06, + "end": 17181.1, + "probability": 0.9528 + }, + { + "start": 17181.62, + "end": 17185.68, + "probability": 0.9813 + }, + { + "start": 17187.62, + "end": 17190.64, + "probability": 0.9795 + }, + { + "start": 17191.4, + "end": 17194.48, + "probability": 0.9963 + }, + { + "start": 17195.18, + "end": 17200.88, + "probability": 0.9834 + }, + { + "start": 17200.88, + "end": 17210.07, + "probability": 0.8474 + }, + { + "start": 17210.6, + "end": 17213.5, + "probability": 0.1707 + }, + { + "start": 17213.5, + "end": 17215.04, + "probability": 0.1046 + }, + { + "start": 17215.88, + "end": 17218.1, + "probability": 0.0537 + }, + { + "start": 17218.1, + "end": 17220.96, + "probability": 0.2207 + }, + { + "start": 17221.86, + "end": 17223.66, + "probability": 0.2593 + }, + { + "start": 17223.86, + "end": 17227.9, + "probability": 0.2764 + }, + { + "start": 17227.9, + "end": 17230.82, + "probability": 0.4916 + }, + { + "start": 17231.4, + "end": 17232.02, + "probability": 0.5898 + }, + { + "start": 17232.02, + "end": 17234.68, + "probability": 0.7737 + }, + { + "start": 17235.04, + "end": 17236.65, + "probability": 0.6668 + }, + { + "start": 17238.36, + "end": 17241.84, + "probability": 0.0195 + }, + { + "start": 17241.84, + "end": 17243.28, + "probability": 0.0341 + }, + { + "start": 17243.92, + "end": 17250.96, + "probability": 0.2357 + }, + { + "start": 17250.96, + "end": 17254.28, + "probability": 0.0819 + }, + { + "start": 17254.28, + "end": 17256.73, + "probability": 0.1274 + }, + { + "start": 17257.4, + "end": 17257.98, + "probability": 0.0433 + }, + { + "start": 17260.88, + "end": 17262.5, + "probability": 0.0111 + }, + { + "start": 17262.68, + "end": 17262.89, + "probability": 0.1589 + }, + { + "start": 17263.94, + "end": 17264.1, + "probability": 0.0041 + }, + { + "start": 17264.7, + "end": 17267.94, + "probability": 0.1026 + }, + { + "start": 17268.22, + "end": 17269.67, + "probability": 0.089 + }, + { + "start": 17270.04, + "end": 17274.52, + "probability": 0.3051 + }, + { + "start": 17274.52, + "end": 17278.66, + "probability": 0.0621 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.0, + "end": 17297.0, + "probability": 0.0 + }, + { + "start": 17297.14, + "end": 17297.32, + "probability": 0.0119 + }, + { + "start": 17297.32, + "end": 17297.32, + "probability": 0.0139 + }, + { + "start": 17297.32, + "end": 17297.32, + "probability": 0.0179 + }, + { + "start": 17297.32, + "end": 17299.6, + "probability": 0.0872 + }, + { + "start": 17299.6, + "end": 17302.28, + "probability": 0.698 + }, + { + "start": 17303.16, + "end": 17304.94, + "probability": 0.6684 + }, + { + "start": 17305.46, + "end": 17308.0, + "probability": 0.4914 + }, + { + "start": 17308.6, + "end": 17315.4, + "probability": 0.9958 + }, + { + "start": 17315.42, + "end": 17315.46, + "probability": 0.1997 + }, + { + "start": 17316.32, + "end": 17317.22, + "probability": 0.5325 + }, + { + "start": 17317.54, + "end": 17317.62, + "probability": 0.5423 + }, + { + "start": 17317.62, + "end": 17319.04, + "probability": 0.4772 + }, + { + "start": 17319.04, + "end": 17323.36, + "probability": 0.6333 + }, + { + "start": 17323.36, + "end": 17324.4, + "probability": 0.1135 + }, + { + "start": 17324.64, + "end": 17325.22, + "probability": 0.1958 + }, + { + "start": 17325.54, + "end": 17327.12, + "probability": 0.2747 + }, + { + "start": 17327.14, + "end": 17328.5, + "probability": 0.2103 + }, + { + "start": 17328.84, + "end": 17331.32, + "probability": 0.6393 + }, + { + "start": 17331.34, + "end": 17332.54, + "probability": 0.9655 + }, + { + "start": 17333.26, + "end": 17335.42, + "probability": 0.9219 + }, + { + "start": 17337.58, + "end": 17341.5, + "probability": 0.7668 + }, + { + "start": 17342.34, + "end": 17342.98, + "probability": 0.6815 + }, + { + "start": 17343.64, + "end": 17343.64, + "probability": 0.0609 + }, + { + "start": 17343.64, + "end": 17344.2, + "probability": 0.468 + }, + { + "start": 17344.2, + "end": 17347.04, + "probability": 0.7246 + }, + { + "start": 17347.63, + "end": 17354.86, + "probability": 0.8965 + }, + { + "start": 17355.72, + "end": 17361.94, + "probability": 0.8424 + }, + { + "start": 17362.26, + "end": 17368.82, + "probability": 0.9822 + }, + { + "start": 17368.82, + "end": 17375.66, + "probability": 0.9868 + }, + { + "start": 17375.66, + "end": 17379.62, + "probability": 0.999 + }, + { + "start": 17380.26, + "end": 17383.12, + "probability": 0.9928 + }, + { + "start": 17383.78, + "end": 17386.52, + "probability": 0.9836 + }, + { + "start": 17386.94, + "end": 17388.26, + "probability": 0.9387 + }, + { + "start": 17388.76, + "end": 17394.32, + "probability": 0.9618 + }, + { + "start": 17395.66, + "end": 17395.66, + "probability": 0.0373 + }, + { + "start": 17395.66, + "end": 17401.26, + "probability": 0.7936 + }, + { + "start": 17401.26, + "end": 17404.48, + "probability": 0.9985 + }, + { + "start": 17405.14, + "end": 17409.0, + "probability": 0.9958 + }, + { + "start": 17409.78, + "end": 17413.64, + "probability": 0.995 + }, + { + "start": 17413.64, + "end": 17419.02, + "probability": 0.9904 + }, + { + "start": 17419.5, + "end": 17419.98, + "probability": 0.7577 + }, + { + "start": 17420.82, + "end": 17425.86, + "probability": 0.855 + }, + { + "start": 17426.04, + "end": 17427.88, + "probability": 0.9962 + }, + { + "start": 17428.76, + "end": 17429.6, + "probability": 0.9209 + }, + { + "start": 17429.74, + "end": 17433.18, + "probability": 0.7834 + }, + { + "start": 17433.2, + "end": 17433.98, + "probability": 0.7387 + }, + { + "start": 17434.62, + "end": 17436.42, + "probability": 0.9661 + }, + { + "start": 17451.08, + "end": 17457.4, + "probability": 0.111 + }, + { + "start": 17457.98, + "end": 17459.12, + "probability": 0.6583 + }, + { + "start": 17460.12, + "end": 17462.34, + "probability": 0.9116 + }, + { + "start": 17462.86, + "end": 17463.84, + "probability": 0.9388 + }, + { + "start": 17463.84, + "end": 17464.12, + "probability": 0.9582 + }, + { + "start": 17466.78, + "end": 17467.96, + "probability": 0.8955 + }, + { + "start": 17468.16, + "end": 17468.96, + "probability": 0.8599 + }, + { + "start": 17468.98, + "end": 17470.3, + "probability": 0.9846 + }, + { + "start": 17470.84, + "end": 17472.84, + "probability": 0.6812 + }, + { + "start": 17472.9, + "end": 17478.42, + "probability": 0.6876 + }, + { + "start": 17478.52, + "end": 17479.66, + "probability": 0.597 + }, + { + "start": 17479.74, + "end": 17480.52, + "probability": 0.8575 + }, + { + "start": 17480.66, + "end": 17481.84, + "probability": 0.9478 + }, + { + "start": 17481.9, + "end": 17482.96, + "probability": 0.88 + }, + { + "start": 17483.25, + "end": 17488.6, + "probability": 0.5013 + }, + { + "start": 17488.88, + "end": 17489.8, + "probability": 0.0797 + }, + { + "start": 17490.76, + "end": 17491.3, + "probability": 0.4423 + }, + { + "start": 17494.44, + "end": 17495.28, + "probability": 0.7215 + }, + { + "start": 17496.74, + "end": 17501.16, + "probability": 0.8113 + }, + { + "start": 17502.2, + "end": 17504.68, + "probability": 0.7658 + }, + { + "start": 17506.18, + "end": 17507.18, + "probability": 0.981 + }, + { + "start": 17508.02, + "end": 17510.68, + "probability": 0.6193 + }, + { + "start": 17511.98, + "end": 17516.46, + "probability": 0.9823 + }, + { + "start": 17517.48, + "end": 17524.52, + "probability": 0.9561 + }, + { + "start": 17525.16, + "end": 17528.24, + "probability": 0.9307 + }, + { + "start": 17528.72, + "end": 17530.6, + "probability": 0.9084 + }, + { + "start": 17531.56, + "end": 17538.2, + "probability": 0.7505 + }, + { + "start": 17538.36, + "end": 17540.48, + "probability": 0.9921 + }, + { + "start": 17541.02, + "end": 17543.1, + "probability": 0.9072 + }, + { + "start": 17543.86, + "end": 17549.98, + "probability": 0.9665 + }, + { + "start": 17550.7, + "end": 17551.1, + "probability": 0.5926 + }, + { + "start": 17551.18, + "end": 17551.68, + "probability": 0.8131 + }, + { + "start": 17552.1, + "end": 17558.54, + "probability": 0.9407 + }, + { + "start": 17558.88, + "end": 17563.24, + "probability": 0.8822 + }, + { + "start": 17564.62, + "end": 17567.28, + "probability": 0.9805 + }, + { + "start": 17568.02, + "end": 17569.5, + "probability": 0.9915 + }, + { + "start": 17570.24, + "end": 17571.6, + "probability": 0.9461 + }, + { + "start": 17572.12, + "end": 17575.68, + "probability": 0.9899 + }, + { + "start": 17575.9, + "end": 17583.06, + "probability": 0.9824 + }, + { + "start": 17583.64, + "end": 17584.26, + "probability": 0.5046 + }, + { + "start": 17584.84, + "end": 17586.24, + "probability": 0.9595 + }, + { + "start": 17586.8, + "end": 17587.58, + "probability": 0.3251 + }, + { + "start": 17588.02, + "end": 17589.52, + "probability": 0.8972 + }, + { + "start": 17590.48, + "end": 17591.78, + "probability": 0.7546 + }, + { + "start": 17592.04, + "end": 17601.9, + "probability": 0.9863 + }, + { + "start": 17602.42, + "end": 17604.52, + "probability": 0.9702 + }, + { + "start": 17605.48, + "end": 17608.16, + "probability": 0.9849 + }, + { + "start": 17608.76, + "end": 17612.18, + "probability": 0.8743 + }, + { + "start": 17612.76, + "end": 17614.24, + "probability": 0.7511 + }, + { + "start": 17614.9, + "end": 17616.6, + "probability": 0.9527 + }, + { + "start": 17616.94, + "end": 17623.08, + "probability": 0.7649 + }, + { + "start": 17624.68, + "end": 17626.0, + "probability": 0.9966 + }, + { + "start": 17626.52, + "end": 17630.1, + "probability": 0.7465 + }, + { + "start": 17631.08, + "end": 17632.98, + "probability": 0.7204 + }, + { + "start": 17633.04, + "end": 17642.7, + "probability": 0.9974 + }, + { + "start": 17642.78, + "end": 17644.16, + "probability": 0.7414 + }, + { + "start": 17644.34, + "end": 17645.46, + "probability": 0.9851 + }, + { + "start": 17645.9, + "end": 17648.58, + "probability": 0.8948 + }, + { + "start": 17649.22, + "end": 17651.52, + "probability": 0.9378 + }, + { + "start": 17651.98, + "end": 17654.62, + "probability": 0.9734 + }, + { + "start": 17655.08, + "end": 17663.0, + "probability": 0.9833 + }, + { + "start": 17663.76, + "end": 17666.54, + "probability": 0.865 + }, + { + "start": 17668.46, + "end": 17673.4, + "probability": 0.832 + }, + { + "start": 17673.94, + "end": 17674.68, + "probability": 0.5647 + }, + { + "start": 17675.56, + "end": 17677.88, + "probability": 0.9346 + }, + { + "start": 17678.58, + "end": 17682.94, + "probability": 0.8779 + }, + { + "start": 17683.3, + "end": 17685.76, + "probability": 0.6667 + }, + { + "start": 17686.34, + "end": 17690.96, + "probability": 0.9863 + }, + { + "start": 17691.02, + "end": 17695.28, + "probability": 0.9966 + }, + { + "start": 17695.78, + "end": 17698.36, + "probability": 0.5822 + }, + { + "start": 17698.54, + "end": 17701.34, + "probability": 0.8877 + }, + { + "start": 17701.9, + "end": 17702.88, + "probability": 0.6668 + }, + { + "start": 17702.96, + "end": 17704.66, + "probability": 0.9691 + }, + { + "start": 17705.06, + "end": 17705.66, + "probability": 0.4973 + }, + { + "start": 17705.68, + "end": 17707.5, + "probability": 0.7759 + }, + { + "start": 17708.02, + "end": 17710.12, + "probability": 0.921 + }, + { + "start": 17722.0, + "end": 17726.68, + "probability": 0.7703 + }, + { + "start": 17731.54, + "end": 17732.46, + "probability": 0.608 + }, + { + "start": 17734.4, + "end": 17735.22, + "probability": 0.8336 + }, + { + "start": 17737.3, + "end": 17738.7, + "probability": 0.8962 + }, + { + "start": 17740.08, + "end": 17744.14, + "probability": 0.9447 + }, + { + "start": 17745.42, + "end": 17747.14, + "probability": 0.7683 + }, + { + "start": 17748.14, + "end": 17753.3, + "probability": 0.9962 + }, + { + "start": 17754.5, + "end": 17755.74, + "probability": 0.7755 + }, + { + "start": 17756.9, + "end": 17761.02, + "probability": 0.5469 + }, + { + "start": 17761.02, + "end": 17762.62, + "probability": 0.6613 + }, + { + "start": 17762.89, + "end": 17765.98, + "probability": 0.6076 + }, + { + "start": 17766.44, + "end": 17767.6, + "probability": 0.9608 + }, + { + "start": 17768.24, + "end": 17770.54, + "probability": 0.9579 + }, + { + "start": 17771.44, + "end": 17772.41, + "probability": 0.371 + }, + { + "start": 17772.98, + "end": 17775.46, + "probability": 0.8063 + }, + { + "start": 17775.64, + "end": 17776.78, + "probability": 0.897 + }, + { + "start": 17778.54, + "end": 17781.14, + "probability": 0.9823 + }, + { + "start": 17781.14, + "end": 17784.62, + "probability": 0.6271 + }, + { + "start": 17786.9, + "end": 17790.2, + "probability": 0.9868 + }, + { + "start": 17791.5, + "end": 17792.88, + "probability": 0.8684 + }, + { + "start": 17794.12, + "end": 17796.54, + "probability": 0.7548 + }, + { + "start": 17797.36, + "end": 17801.62, + "probability": 0.8413 + }, + { + "start": 17801.78, + "end": 17803.72, + "probability": 0.2201 + }, + { + "start": 17805.5, + "end": 17806.09, + "probability": 0.2472 + }, + { + "start": 17809.04, + "end": 17809.26, + "probability": 0.0627 + }, + { + "start": 17809.26, + "end": 17809.26, + "probability": 0.2409 + }, + { + "start": 17809.26, + "end": 17809.79, + "probability": 0.2583 + }, + { + "start": 17810.3, + "end": 17810.64, + "probability": 0.3741 + }, + { + "start": 17810.76, + "end": 17812.9, + "probability": 0.7806 + }, + { + "start": 17813.22, + "end": 17814.76, + "probability": 0.9628 + }, + { + "start": 17815.52, + "end": 17817.02, + "probability": 0.9521 + }, + { + "start": 17817.24, + "end": 17823.62, + "probability": 0.5369 + }, + { + "start": 17824.06, + "end": 17824.76, + "probability": 0.4425 + }, + { + "start": 17824.84, + "end": 17825.46, + "probability": 0.6434 + }, + { + "start": 17826.24, + "end": 17830.34, + "probability": 0.8815 + }, + { + "start": 17832.16, + "end": 17832.96, + "probability": 0.9355 + }, + { + "start": 17833.24, + "end": 17835.66, + "probability": 0.9562 + }, + { + "start": 17835.7, + "end": 17836.0, + "probability": 0.6399 + }, + { + "start": 17837.34, + "end": 17840.44, + "probability": 0.8553 + }, + { + "start": 17840.98, + "end": 17844.56, + "probability": 0.8287 + }, + { + "start": 17844.9, + "end": 17846.52, + "probability": 0.9645 + }, + { + "start": 17847.58, + "end": 17851.72, + "probability": 0.9146 + }, + { + "start": 17851.98, + "end": 17853.43, + "probability": 0.8265 + }, + { + "start": 17854.12, + "end": 17855.76, + "probability": 0.2322 + }, + { + "start": 17856.64, + "end": 17857.98, + "probability": 0.7651 + }, + { + "start": 17858.42, + "end": 17860.42, + "probability": 0.8997 + }, + { + "start": 17860.86, + "end": 17861.22, + "probability": 0.9157 + }, + { + "start": 17861.74, + "end": 17865.1, + "probability": 0.9646 + }, + { + "start": 17865.66, + "end": 17870.14, + "probability": 0.8398 + }, + { + "start": 17870.14, + "end": 17870.8, + "probability": 0.487 + }, + { + "start": 17870.8, + "end": 17875.36, + "probability": 0.9932 + }, + { + "start": 17875.62, + "end": 17877.3, + "probability": 0.9991 + }, + { + "start": 17877.48, + "end": 17878.51, + "probability": 0.9854 + }, + { + "start": 17879.52, + "end": 17881.75, + "probability": 0.8271 + }, + { + "start": 17882.34, + "end": 17883.84, + "probability": 0.9694 + }, + { + "start": 17883.98, + "end": 17884.02, + "probability": 0.3366 + }, + { + "start": 17884.02, + "end": 17887.18, + "probability": 0.984 + }, + { + "start": 17887.52, + "end": 17889.1, + "probability": 0.9777 + }, + { + "start": 17889.3, + "end": 17890.32, + "probability": 0.4928 + }, + { + "start": 17890.82, + "end": 17892.02, + "probability": 0.8233 + }, + { + "start": 17892.78, + "end": 17894.56, + "probability": 0.9661 + }, + { + "start": 17894.66, + "end": 17896.94, + "probability": 0.9246 + }, + { + "start": 17897.44, + "end": 17899.72, + "probability": 0.9833 + }, + { + "start": 17900.02, + "end": 17901.32, + "probability": 0.9404 + }, + { + "start": 17901.82, + "end": 17903.22, + "probability": 0.9719 + }, + { + "start": 17903.34, + "end": 17903.84, + "probability": 0.7843 + }, + { + "start": 17904.28, + "end": 17906.02, + "probability": 0.9609 + }, + { + "start": 17906.46, + "end": 17908.0, + "probability": 0.9927 + }, + { + "start": 17908.34, + "end": 17910.18, + "probability": 0.9889 + }, + { + "start": 17910.6, + "end": 17914.5, + "probability": 0.9889 + }, + { + "start": 17914.88, + "end": 17919.62, + "probability": 0.9956 + }, + { + "start": 17919.7, + "end": 17921.38, + "probability": 0.653 + }, + { + "start": 17921.82, + "end": 17922.9, + "probability": 0.7618 + }, + { + "start": 17923.1, + "end": 17927.86, + "probability": 0.9674 + }, + { + "start": 17928.44, + "end": 17934.26, + "probability": 0.9424 + }, + { + "start": 17934.86, + "end": 17939.26, + "probability": 0.6317 + }, + { + "start": 17939.5, + "end": 17940.66, + "probability": 0.5126 + }, + { + "start": 17941.0, + "end": 17942.0, + "probability": 0.7846 + }, + { + "start": 17942.08, + "end": 17942.54, + "probability": 0.5561 + }, + { + "start": 17942.56, + "end": 17944.6, + "probability": 0.9927 + }, + { + "start": 17946.12, + "end": 17948.72, + "probability": 0.9614 + }, + { + "start": 17948.82, + "end": 17952.14, + "probability": 0.7438 + }, + { + "start": 17953.42, + "end": 17954.3, + "probability": 0.8603 + }, + { + "start": 17961.64, + "end": 17961.64, + "probability": 0.71 + }, + { + "start": 17961.64, + "end": 17962.34, + "probability": 0.5728 + }, + { + "start": 17962.38, + "end": 17964.04, + "probability": 0.6153 + }, + { + "start": 17964.42, + "end": 17966.93, + "probability": 0.9877 + }, + { + "start": 17967.26, + "end": 17970.02, + "probability": 0.8811 + }, + { + "start": 17970.34, + "end": 17972.54, + "probability": 0.7251 + }, + { + "start": 17974.06, + "end": 17977.66, + "probability": 0.9736 + }, + { + "start": 17978.44, + "end": 17979.02, + "probability": 0.6679 + }, + { + "start": 17979.1, + "end": 17980.22, + "probability": 0.8949 + }, + { + "start": 17980.3, + "end": 17984.8, + "probability": 0.9395 + }, + { + "start": 17984.86, + "end": 17986.48, + "probability": 0.9814 + }, + { + "start": 17987.18, + "end": 17989.58, + "probability": 0.883 + }, + { + "start": 17989.74, + "end": 17990.72, + "probability": 0.5248 + }, + { + "start": 17991.04, + "end": 17991.6, + "probability": 0.9061 + }, + { + "start": 17991.92, + "end": 17996.88, + "probability": 0.9883 + }, + { + "start": 17997.7, + "end": 17998.52, + "probability": 0.8896 + }, + { + "start": 17998.74, + "end": 18000.18, + "probability": 0.7729 + }, + { + "start": 18000.6, + "end": 18003.66, + "probability": 0.9928 + }, + { + "start": 18004.44, + "end": 18007.44, + "probability": 0.7637 + }, + { + "start": 18008.7, + "end": 18009.92, + "probability": 0.9594 + }, + { + "start": 18010.08, + "end": 18010.78, + "probability": 0.5909 + }, + { + "start": 18010.88, + "end": 18015.38, + "probability": 0.9744 + }, + { + "start": 18015.86, + "end": 18019.32, + "probability": 0.9524 + }, + { + "start": 18019.44, + "end": 18025.08, + "probability": 0.9982 + }, + { + "start": 18026.14, + "end": 18027.22, + "probability": 0.8207 + }, + { + "start": 18028.76, + "end": 18030.58, + "probability": 0.6705 + }, + { + "start": 18030.58, + "end": 18034.3, + "probability": 0.8932 + }, + { + "start": 18034.36, + "end": 18040.88, + "probability": 0.9818 + }, + { + "start": 18041.3, + "end": 18044.24, + "probability": 0.9985 + }, + { + "start": 18044.68, + "end": 18046.76, + "probability": 0.8526 + }, + { + "start": 18046.82, + "end": 18049.52, + "probability": 0.991 + }, + { + "start": 18050.02, + "end": 18051.34, + "probability": 0.7968 + }, + { + "start": 18052.58, + "end": 18052.93, + "probability": 0.0217 + }, + { + "start": 18053.24, + "end": 18054.38, + "probability": 0.1153 + }, + { + "start": 18054.38, + "end": 18054.78, + "probability": 0.5986 + }, + { + "start": 18054.8, + "end": 18056.64, + "probability": 0.7628 + }, + { + "start": 18056.72, + "end": 18061.1, + "probability": 0.9524 + }, + { + "start": 18061.74, + "end": 18064.72, + "probability": 0.9899 + }, + { + "start": 18065.94, + "end": 18066.81, + "probability": 0.8708 + }, + { + "start": 18067.08, + "end": 18069.38, + "probability": 0.9827 + }, + { + "start": 18069.68, + "end": 18073.56, + "probability": 0.8279 + }, + { + "start": 18073.74, + "end": 18075.24, + "probability": 0.9766 + }, + { + "start": 18075.78, + "end": 18077.96, + "probability": 0.9982 + }, + { + "start": 18078.62, + "end": 18079.98, + "probability": 0.5133 + }, + { + "start": 18080.28, + "end": 18082.74, + "probability": 0.9806 + }, + { + "start": 18082.92, + "end": 18083.7, + "probability": 0.9392 + }, + { + "start": 18084.1, + "end": 18087.52, + "probability": 0.9658 + }, + { + "start": 18087.62, + "end": 18089.46, + "probability": 0.8228 + }, + { + "start": 18089.84, + "end": 18091.88, + "probability": 0.8828 + }, + { + "start": 18092.58, + "end": 18093.52, + "probability": 0.4981 + }, + { + "start": 18093.6, + "end": 18095.66, + "probability": 0.6482 + }, + { + "start": 18095.68, + "end": 18096.72, + "probability": 0.6326 + }, + { + "start": 18097.74, + "end": 18099.1, + "probability": 0.9193 + }, + { + "start": 18099.52, + "end": 18101.0, + "probability": 0.8325 + }, + { + "start": 18101.12, + "end": 18103.08, + "probability": 0.9972 + }, + { + "start": 18103.16, + "end": 18104.22, + "probability": 0.8365 + }, + { + "start": 18104.82, + "end": 18107.32, + "probability": 0.9777 + }, + { + "start": 18107.78, + "end": 18111.52, + "probability": 0.9571 + }, + { + "start": 18111.9, + "end": 18113.62, + "probability": 0.9832 + }, + { + "start": 18114.38, + "end": 18117.3, + "probability": 0.9705 + }, + { + "start": 18117.38, + "end": 18118.96, + "probability": 0.9351 + }, + { + "start": 18119.32, + "end": 18122.24, + "probability": 0.9258 + }, + { + "start": 18122.68, + "end": 18128.02, + "probability": 0.8678 + }, + { + "start": 18128.3, + "end": 18130.56, + "probability": 0.9335 + }, + { + "start": 18130.9, + "end": 18138.5, + "probability": 0.8901 + }, + { + "start": 18140.88, + "end": 18145.06, + "probability": 0.9818 + }, + { + "start": 18145.82, + "end": 18146.92, + "probability": 0.8452 + }, + { + "start": 18147.08, + "end": 18149.12, + "probability": 0.984 + }, + { + "start": 18149.54, + "end": 18153.84, + "probability": 0.9701 + }, + { + "start": 18153.88, + "end": 18153.88, + "probability": 0.5214 + }, + { + "start": 18154.28, + "end": 18154.96, + "probability": 0.5541 + }, + { + "start": 18155.0, + "end": 18158.18, + "probability": 0.8203 + }, + { + "start": 18158.54, + "end": 18159.26, + "probability": 0.7509 + }, + { + "start": 18159.32, + "end": 18163.36, + "probability": 0.9697 + }, + { + "start": 18163.58, + "end": 18163.9, + "probability": 0.7969 + }, + { + "start": 18164.34, + "end": 18167.18, + "probability": 0.7378 + }, + { + "start": 18167.18, + "end": 18169.72, + "probability": 0.7462 + }, + { + "start": 18170.7, + "end": 18171.88, + "probability": 0.8528 + }, + { + "start": 18172.84, + "end": 18175.38, + "probability": 0.9915 + }, + { + "start": 18181.58, + "end": 18182.9, + "probability": 0.8394 + }, + { + "start": 18191.29, + "end": 18194.38, + "probability": 0.5396 + }, + { + "start": 18195.28, + "end": 18196.32, + "probability": 0.5501 + }, + { + "start": 18197.08, + "end": 18201.64, + "probability": 0.9863 + }, + { + "start": 18202.44, + "end": 18206.89, + "probability": 0.9404 + }, + { + "start": 18208.12, + "end": 18209.04, + "probability": 0.9644 + }, + { + "start": 18209.98, + "end": 18212.1, + "probability": 0.9858 + }, + { + "start": 18213.72, + "end": 18215.1, + "probability": 0.8113 + }, + { + "start": 18215.94, + "end": 18216.72, + "probability": 0.4312 + }, + { + "start": 18218.32, + "end": 18219.2, + "probability": 0.9586 + }, + { + "start": 18219.86, + "end": 18221.1, + "probability": 0.9297 + }, + { + "start": 18221.52, + "end": 18222.7, + "probability": 0.8905 + }, + { + "start": 18223.2, + "end": 18223.72, + "probability": 0.6376 + }, + { + "start": 18223.88, + "end": 18225.66, + "probability": 0.8438 + }, + { + "start": 18226.38, + "end": 18227.58, + "probability": 0.9607 + }, + { + "start": 18228.36, + "end": 18229.46, + "probability": 0.9868 + }, + { + "start": 18229.98, + "end": 18230.9, + "probability": 0.9788 + }, + { + "start": 18231.72, + "end": 18232.22, + "probability": 0.45 + }, + { + "start": 18233.0, + "end": 18233.78, + "probability": 0.7304 + }, + { + "start": 18234.46, + "end": 18238.7, + "probability": 0.9991 + }, + { + "start": 18239.94, + "end": 18241.52, + "probability": 0.9731 + }, + { + "start": 18242.8, + "end": 18247.86, + "probability": 0.9929 + }, + { + "start": 18248.42, + "end": 18252.44, + "probability": 0.9997 + }, + { + "start": 18253.04, + "end": 18256.48, + "probability": 0.9557 + }, + { + "start": 18256.5, + "end": 18258.54, + "probability": 0.9885 + }, + { + "start": 18259.34, + "end": 18266.66, + "probability": 0.8857 + }, + { + "start": 18267.61, + "end": 18271.38, + "probability": 0.9906 + }, + { + "start": 18271.86, + "end": 18275.92, + "probability": 0.9783 + }, + { + "start": 18278.52, + "end": 18282.42, + "probability": 0.9976 + }, + { + "start": 18282.42, + "end": 18285.78, + "probability": 0.9979 + }, + { + "start": 18286.4, + "end": 18290.8, + "probability": 0.9697 + }, + { + "start": 18291.66, + "end": 18296.96, + "probability": 0.972 + }, + { + "start": 18297.92, + "end": 18300.36, + "probability": 0.9926 + }, + { + "start": 18300.48, + "end": 18302.9, + "probability": 0.6538 + }, + { + "start": 18302.9, + "end": 18309.92, + "probability": 0.9824 + }, + { + "start": 18310.06, + "end": 18315.3, + "probability": 0.989 + }, + { + "start": 18315.9, + "end": 18318.82, + "probability": 0.9454 + }, + { + "start": 18319.48, + "end": 18324.02, + "probability": 0.9834 + }, + { + "start": 18325.16, + "end": 18327.8, + "probability": 0.6196 + }, + { + "start": 18328.38, + "end": 18330.98, + "probability": 0.8896 + }, + { + "start": 18331.6, + "end": 18332.62, + "probability": 0.9917 + }, + { + "start": 18333.24, + "end": 18340.94, + "probability": 0.9921 + }, + { + "start": 18341.56, + "end": 18344.96, + "probability": 0.9496 + }, + { + "start": 18345.58, + "end": 18350.4, + "probability": 0.9945 + }, + { + "start": 18351.16, + "end": 18355.64, + "probability": 0.9835 + }, + { + "start": 18356.04, + "end": 18358.08, + "probability": 0.8878 + }, + { + "start": 18358.66, + "end": 18359.8, + "probability": 0.8731 + }, + { + "start": 18359.94, + "end": 18361.88, + "probability": 0.9962 + }, + { + "start": 18362.92, + "end": 18364.72, + "probability": 0.9917 + }, + { + "start": 18365.72, + "end": 18369.7, + "probability": 0.9928 + }, + { + "start": 18369.86, + "end": 18373.16, + "probability": 0.9362 + }, + { + "start": 18373.16, + "end": 18373.98, + "probability": 0.2467 + }, + { + "start": 18374.28, + "end": 18374.88, + "probability": 0.6547 + }, + { + "start": 18375.52, + "end": 18382.04, + "probability": 0.9828 + }, + { + "start": 18382.24, + "end": 18382.54, + "probability": 0.4969 + }, + { + "start": 18383.64, + "end": 18386.24, + "probability": 0.6738 + }, + { + "start": 18387.2, + "end": 18389.16, + "probability": 0.9374 + }, + { + "start": 18389.78, + "end": 18393.28, + "probability": 0.8531 + }, + { + "start": 18393.76, + "end": 18394.82, + "probability": 0.9226 + }, + { + "start": 18395.28, + "end": 18403.08, + "probability": 0.9878 + }, + { + "start": 18403.84, + "end": 18404.7, + "probability": 0.6407 + }, + { + "start": 18404.72, + "end": 18408.36, + "probability": 0.902 + }, + { + "start": 18408.48, + "end": 18409.32, + "probability": 0.9528 + }, + { + "start": 18410.04, + "end": 18413.72, + "probability": 0.9851 + }, + { + "start": 18414.3, + "end": 18419.42, + "probability": 0.9482 + }, + { + "start": 18419.6, + "end": 18421.02, + "probability": 0.7233 + }, + { + "start": 18421.34, + "end": 18422.62, + "probability": 0.8239 + }, + { + "start": 18422.9, + "end": 18423.78, + "probability": 0.953 + }, + { + "start": 18423.9, + "end": 18425.15, + "probability": 0.9897 + }, + { + "start": 18425.72, + "end": 18426.94, + "probability": 0.8672 + }, + { + "start": 18427.56, + "end": 18430.04, + "probability": 0.9829 + }, + { + "start": 18430.54, + "end": 18430.86, + "probability": 0.7797 + }, + { + "start": 18430.94, + "end": 18433.22, + "probability": 0.8135 + }, + { + "start": 18433.32, + "end": 18434.67, + "probability": 0.7654 + }, + { + "start": 18435.36, + "end": 18435.86, + "probability": 0.2501 + }, + { + "start": 18436.1, + "end": 18436.7, + "probability": 0.6487 + }, + { + "start": 18437.8, + "end": 18438.44, + "probability": 0.6758 + }, + { + "start": 18438.58, + "end": 18442.18, + "probability": 0.9868 + }, + { + "start": 18442.42, + "end": 18445.94, + "probability": 0.984 + }, + { + "start": 18446.0, + "end": 18448.38, + "probability": 0.9989 + }, + { + "start": 18448.68, + "end": 18450.34, + "probability": 0.6309 + }, + { + "start": 18450.42, + "end": 18453.2, + "probability": 0.9377 + }, + { + "start": 18457.78, + "end": 18459.18, + "probability": 0.9453 + }, + { + "start": 18459.22, + "end": 18461.79, + "probability": 0.9668 + }, + { + "start": 18466.14, + "end": 18468.48, + "probability": 0.1631 + }, + { + "start": 18469.38, + "end": 18470.24, + "probability": 0.316 + }, + { + "start": 18471.58, + "end": 18471.58, + "probability": 0.026 + }, + { + "start": 18471.58, + "end": 18474.2, + "probability": 0.6825 + }, + { + "start": 18476.3, + "end": 18479.24, + "probability": 0.9834 + }, + { + "start": 18480.4, + "end": 18480.84, + "probability": 0.981 + }, + { + "start": 18483.24, + "end": 18483.54, + "probability": 0.4966 + }, + { + "start": 18485.42, + "end": 18488.3, + "probability": 0.9555 + }, + { + "start": 18490.2, + "end": 18498.82, + "probability": 0.9603 + }, + { + "start": 18499.74, + "end": 18502.26, + "probability": 0.957 + }, + { + "start": 18502.66, + "end": 18503.9, + "probability": 0.9617 + }, + { + "start": 18503.94, + "end": 18504.4, + "probability": 0.8292 + }, + { + "start": 18506.46, + "end": 18509.82, + "probability": 0.9973 + }, + { + "start": 18509.88, + "end": 18510.9, + "probability": 0.9212 + }, + { + "start": 18511.0, + "end": 18514.24, + "probability": 0.9344 + }, + { + "start": 18514.36, + "end": 18515.2, + "probability": 0.9787 + }, + { + "start": 18517.34, + "end": 18520.32, + "probability": 0.92 + }, + { + "start": 18520.5, + "end": 18523.72, + "probability": 0.9211 + }, + { + "start": 18523.82, + "end": 18524.78, + "probability": 0.9642 + }, + { + "start": 18524.8, + "end": 18525.38, + "probability": 0.757 + }, + { + "start": 18526.3, + "end": 18529.68, + "probability": 0.6783 + }, + { + "start": 18530.5, + "end": 18534.4, + "probability": 0.9641 + }, + { + "start": 18535.42, + "end": 18536.14, + "probability": 0.7321 + }, + { + "start": 18537.46, + "end": 18537.7, + "probability": 0.5972 + }, + { + "start": 18537.78, + "end": 18538.92, + "probability": 0.9795 + }, + { + "start": 18539.1, + "end": 18540.08, + "probability": 0.8648 + }, + { + "start": 18540.18, + "end": 18542.1, + "probability": 0.9345 + }, + { + "start": 18542.48, + "end": 18543.54, + "probability": 0.9546 + }, + { + "start": 18544.1, + "end": 18548.84, + "probability": 0.9983 + }, + { + "start": 18549.6, + "end": 18553.74, + "probability": 0.9988 + }, + { + "start": 18554.02, + "end": 18555.7, + "probability": 0.9946 + }, + { + "start": 18555.78, + "end": 18555.88, + "probability": 0.6411 + }, + { + "start": 18556.78, + "end": 18557.48, + "probability": 0.4884 + }, + { + "start": 18558.26, + "end": 18558.26, + "probability": 0.0003 + }, + { + "start": 18558.54, + "end": 18559.2, + "probability": 0.4646 + }, + { + "start": 18559.2, + "end": 18559.2, + "probability": 0.0798 + }, + { + "start": 18559.2, + "end": 18560.92, + "probability": 0.4104 + }, + { + "start": 18560.98, + "end": 18560.98, + "probability": 0.3181 + }, + { + "start": 18560.98, + "end": 18561.72, + "probability": 0.3741 + }, + { + "start": 18561.92, + "end": 18565.28, + "probability": 0.9923 + }, + { + "start": 18566.8, + "end": 18567.04, + "probability": 0.0437 + }, + { + "start": 18567.04, + "end": 18569.4, + "probability": 0.7828 + }, + { + "start": 18569.56, + "end": 18574.76, + "probability": 0.9927 + }, + { + "start": 18575.26, + "end": 18577.18, + "probability": 0.9354 + }, + { + "start": 18577.9, + "end": 18580.44, + "probability": 0.9944 + }, + { + "start": 18581.14, + "end": 18582.18, + "probability": 0.9426 + }, + { + "start": 18583.22, + "end": 18585.76, + "probability": 0.9526 + }, + { + "start": 18586.5, + "end": 18589.48, + "probability": 0.9771 + }, + { + "start": 18590.32, + "end": 18592.16, + "probability": 0.9712 + }, + { + "start": 18593.04, + "end": 18597.4, + "probability": 0.9971 + }, + { + "start": 18598.28, + "end": 18600.28, + "probability": 0.6643 + }, + { + "start": 18601.54, + "end": 18605.24, + "probability": 0.9951 + }, + { + "start": 18605.8, + "end": 18607.6, + "probability": 0.9765 + }, + { + "start": 18607.64, + "end": 18609.15, + "probability": 0.8633 + }, + { + "start": 18609.32, + "end": 18613.28, + "probability": 0.9907 + }, + { + "start": 18613.34, + "end": 18613.8, + "probability": 0.7302 + }, + { + "start": 18615.5, + "end": 18616.36, + "probability": 0.897 + }, + { + "start": 18616.84, + "end": 18617.44, + "probability": 0.8678 + }, + { + "start": 18617.46, + "end": 18617.74, + "probability": 0.7545 + }, + { + "start": 18617.86, + "end": 18618.3, + "probability": 0.5852 + }, + { + "start": 18618.56, + "end": 18620.88, + "probability": 0.9517 + }, + { + "start": 18621.28, + "end": 18622.58, + "probability": 0.5556 + }, + { + "start": 18623.92, + "end": 18625.68, + "probability": 0.9525 + }, + { + "start": 18625.76, + "end": 18626.26, + "probability": 0.4442 + }, + { + "start": 18626.34, + "end": 18627.56, + "probability": 0.8535 + }, + { + "start": 18627.68, + "end": 18628.32, + "probability": 0.5676 + }, + { + "start": 18629.02, + "end": 18630.84, + "probability": 0.9404 + }, + { + "start": 18631.28, + "end": 18633.7, + "probability": 0.9717 + }, + { + "start": 18634.52, + "end": 18635.24, + "probability": 0.6968 + }, + { + "start": 18636.96, + "end": 18637.93, + "probability": 0.9044 + }, + { + "start": 18638.08, + "end": 18639.0, + "probability": 0.8774 + }, + { + "start": 18639.02, + "end": 18640.34, + "probability": 0.5805 + }, + { + "start": 18640.5, + "end": 18641.38, + "probability": 0.9092 + }, + { + "start": 18641.4, + "end": 18642.26, + "probability": 0.8582 + }, + { + "start": 18642.28, + "end": 18644.32, + "probability": 0.8519 + }, + { + "start": 18644.74, + "end": 18649.08, + "probability": 0.9974 + }, + { + "start": 18649.1, + "end": 18652.58, + "probability": 0.9835 + }, + { + "start": 18653.04, + "end": 18655.16, + "probability": 0.9795 + }, + { + "start": 18656.32, + "end": 18659.1, + "probability": 0.9652 + }, + { + "start": 18660.58, + "end": 18662.44, + "probability": 0.5729 + }, + { + "start": 18663.4, + "end": 18664.94, + "probability": 0.8603 + }, + { + "start": 18666.88, + "end": 18668.22, + "probability": 0.9194 + }, + { + "start": 18669.82, + "end": 18670.94, + "probability": 0.8321 + }, + { + "start": 18673.46, + "end": 18674.16, + "probability": 0.9488 + }, + { + "start": 18675.2, + "end": 18676.46, + "probability": 0.804 + }, + { + "start": 18677.98, + "end": 18682.08, + "probability": 0.9282 + }, + { + "start": 18684.44, + "end": 18689.72, + "probability": 0.9986 + }, + { + "start": 18690.82, + "end": 18695.4, + "probability": 0.8685 + }, + { + "start": 18697.35, + "end": 18704.32, + "probability": 0.8987 + }, + { + "start": 18704.78, + "end": 18705.44, + "probability": 0.7588 + }, + { + "start": 18706.98, + "end": 18710.02, + "probability": 0.6886 + }, + { + "start": 18712.14, + "end": 18713.5, + "probability": 0.8356 + }, + { + "start": 18714.36, + "end": 18715.58, + "probability": 0.7462 + }, + { + "start": 18716.94, + "end": 18720.76, + "probability": 0.9606 + }, + { + "start": 18721.3, + "end": 18721.88, + "probability": 0.7836 + }, + { + "start": 18722.92, + "end": 18723.84, + "probability": 0.9095 + }, + { + "start": 18724.22, + "end": 18728.62, + "probability": 0.9788 + }, + { + "start": 18728.8, + "end": 18729.6, + "probability": 0.8661 + }, + { + "start": 18731.14, + "end": 18734.5, + "probability": 0.9912 + }, + { + "start": 18736.06, + "end": 18739.14, + "probability": 0.7724 + }, + { + "start": 18740.62, + "end": 18741.8, + "probability": 0.6155 + }, + { + "start": 18742.66, + "end": 18746.64, + "probability": 0.983 + }, + { + "start": 18749.2, + "end": 18754.94, + "probability": 0.9846 + }, + { + "start": 18756.74, + "end": 18758.98, + "probability": 0.9059 + }, + { + "start": 18760.0, + "end": 18761.36, + "probability": 0.98 + }, + { + "start": 18762.08, + "end": 18768.5, + "probability": 0.9877 + }, + { + "start": 18769.16, + "end": 18771.1, + "probability": 0.9977 + }, + { + "start": 18771.88, + "end": 18774.1, + "probability": 0.8492 + }, + { + "start": 18774.94, + "end": 18777.8, + "probability": 0.972 + }, + { + "start": 18778.76, + "end": 18782.28, + "probability": 0.8214 + }, + { + "start": 18782.32, + "end": 18783.1, + "probability": 0.7877 + }, + { + "start": 18783.4, + "end": 18783.96, + "probability": 0.9375 + }, + { + "start": 18785.12, + "end": 18785.96, + "probability": 0.9685 + }, + { + "start": 18786.74, + "end": 18788.72, + "probability": 0.9926 + }, + { + "start": 18789.86, + "end": 18794.38, + "probability": 0.9631 + }, + { + "start": 18795.78, + "end": 18798.52, + "probability": 0.9838 + }, + { + "start": 18799.82, + "end": 18801.6, + "probability": 0.9334 + }, + { + "start": 18802.5, + "end": 18806.88, + "probability": 0.9771 + }, + { + "start": 18807.98, + "end": 18809.92, + "probability": 0.991 + }, + { + "start": 18811.7, + "end": 18817.36, + "probability": 0.996 + }, + { + "start": 18818.72, + "end": 18823.66, + "probability": 0.9902 + }, + { + "start": 18824.4, + "end": 18825.36, + "probability": 0.7817 + }, + { + "start": 18826.58, + "end": 18829.28, + "probability": 0.9305 + }, + { + "start": 18829.86, + "end": 18831.02, + "probability": 0.1528 + }, + { + "start": 18832.38, + "end": 18836.96, + "probability": 0.9907 + }, + { + "start": 18838.74, + "end": 18842.58, + "probability": 0.8107 + }, + { + "start": 18842.78, + "end": 18843.73, + "probability": 0.9598 + }, + { + "start": 18844.46, + "end": 18846.08, + "probability": 0.9765 + }, + { + "start": 18846.12, + "end": 18846.5, + "probability": 0.8203 + }, + { + "start": 18846.52, + "end": 18848.76, + "probability": 0.9216 + }, + { + "start": 18849.24, + "end": 18849.88, + "probability": 0.6836 + }, + { + "start": 18849.9, + "end": 18850.54, + "probability": 0.9538 + }, + { + "start": 18851.14, + "end": 18853.44, + "probability": 0.5686 + }, + { + "start": 18854.02, + "end": 18856.08, + "probability": 0.9971 + }, + { + "start": 18856.66, + "end": 18857.6, + "probability": 0.8266 + }, + { + "start": 18857.88, + "end": 18863.12, + "probability": 0.8952 + }, + { + "start": 18864.14, + "end": 18865.79, + "probability": 0.628 + }, + { + "start": 18865.98, + "end": 18867.18, + "probability": 0.9922 + }, + { + "start": 18867.96, + "end": 18868.02, + "probability": 0.249 + }, + { + "start": 18868.02, + "end": 18871.58, + "probability": 0.9517 + }, + { + "start": 18871.68, + "end": 18872.18, + "probability": 0.4107 + }, + { + "start": 18872.68, + "end": 18877.08, + "probability": 0.986 + }, + { + "start": 18877.58, + "end": 18880.92, + "probability": 0.9387 + }, + { + "start": 18882.08, + "end": 18883.6, + "probability": 0.6925 + }, + { + "start": 18884.44, + "end": 18885.56, + "probability": 0.9899 + }, + { + "start": 18886.4, + "end": 18887.68, + "probability": 0.9945 + }, + { + "start": 18887.9, + "end": 18888.5, + "probability": 0.6201 + }, + { + "start": 18888.58, + "end": 18889.52, + "probability": 0.601 + }, + { + "start": 18890.4, + "end": 18891.84, + "probability": 0.9467 + }, + { + "start": 18892.42, + "end": 18895.28, + "probability": 0.8762 + }, + { + "start": 18896.06, + "end": 18898.0, + "probability": 0.7794 + }, + { + "start": 18899.44, + "end": 18900.52, + "probability": 0.7451 + }, + { + "start": 18901.04, + "end": 18901.3, + "probability": 0.8273 + }, + { + "start": 18902.22, + "end": 18905.66, + "probability": 0.9177 + }, + { + "start": 18906.46, + "end": 18909.08, + "probability": 0.8901 + }, + { + "start": 18910.0, + "end": 18910.76, + "probability": 0.7642 + }, + { + "start": 18910.96, + "end": 18912.4, + "probability": 0.7455 + }, + { + "start": 18912.48, + "end": 18913.28, + "probability": 0.7027 + }, + { + "start": 18913.58, + "end": 18914.34, + "probability": 0.6324 + }, + { + "start": 18914.48, + "end": 18915.34, + "probability": 0.2545 + }, + { + "start": 18916.48, + "end": 18921.96, + "probability": 0.9682 + }, + { + "start": 18922.92, + "end": 18924.02, + "probability": 0.9347 + }, + { + "start": 18924.24, + "end": 18924.72, + "probability": 0.9306 + }, + { + "start": 18925.86, + "end": 18927.48, + "probability": 0.9052 + }, + { + "start": 18928.04, + "end": 18929.92, + "probability": 0.9966 + }, + { + "start": 18931.5, + "end": 18933.18, + "probability": 0.9983 + }, + { + "start": 18933.74, + "end": 18934.76, + "probability": 0.9886 + }, + { + "start": 18935.32, + "end": 18935.92, + "probability": 0.793 + }, + { + "start": 18936.8, + "end": 18938.12, + "probability": 0.9626 + }, + { + "start": 18938.54, + "end": 18939.98, + "probability": 0.9819 + }, + { + "start": 18940.44, + "end": 18941.67, + "probability": 0.8369 + }, + { + "start": 18942.14, + "end": 18942.64, + "probability": 0.7428 + }, + { + "start": 18942.86, + "end": 18943.18, + "probability": 0.6068 + }, + { + "start": 18945.44, + "end": 18948.2, + "probability": 0.4226 + }, + { + "start": 18948.62, + "end": 18949.02, + "probability": 0.7383 + }, + { + "start": 18949.5, + "end": 18950.04, + "probability": 0.7598 + }, + { + "start": 18950.3, + "end": 18951.74, + "probability": 0.8486 + }, + { + "start": 18951.86, + "end": 18952.12, + "probability": 0.3843 + }, + { + "start": 18952.22, + "end": 18953.64, + "probability": 0.8842 + }, + { + "start": 18955.72, + "end": 18958.18, + "probability": 0.9281 + }, + { + "start": 18959.46, + "end": 18959.89, + "probability": 0.6877 + }, + { + "start": 18961.66, + "end": 18963.3, + "probability": 0.7874 + }, + { + "start": 18963.72, + "end": 18967.66, + "probability": 0.7859 + }, + { + "start": 18969.0, + "end": 18971.1, + "probability": 0.8545 + }, + { + "start": 18972.1, + "end": 18973.44, + "probability": 0.8481 + }, + { + "start": 18974.4, + "end": 18975.54, + "probability": 0.9912 + }, + { + "start": 18978.52, + "end": 18982.24, + "probability": 0.2968 + }, + { + "start": 18983.08, + "end": 18983.54, + "probability": 0.8875 + }, + { + "start": 18983.74, + "end": 18985.54, + "probability": 0.7918 + }, + { + "start": 18985.76, + "end": 18986.62, + "probability": 0.8635 + }, + { + "start": 18986.68, + "end": 18990.32, + "probability": 0.8008 + }, + { + "start": 18990.52, + "end": 18994.4, + "probability": 0.9878 + }, + { + "start": 18996.1, + "end": 18996.52, + "probability": 0.9285 + }, + { + "start": 18997.8, + "end": 18998.6, + "probability": 0.9771 + }, + { + "start": 18999.7, + "end": 19000.88, + "probability": 0.9325 + }, + { + "start": 19001.84, + "end": 19005.98, + "probability": 0.9894 + }, + { + "start": 19007.46, + "end": 19008.5, + "probability": 0.8852 + }, + { + "start": 19010.04, + "end": 19013.0, + "probability": 0.9967 + }, + { + "start": 19014.48, + "end": 19016.24, + "probability": 0.9755 + }, + { + "start": 19018.12, + "end": 19020.1, + "probability": 0.9831 + }, + { + "start": 19021.88, + "end": 19027.82, + "probability": 0.985 + }, + { + "start": 19027.82, + "end": 19031.72, + "probability": 0.7335 + }, + { + "start": 19034.66, + "end": 19038.38, + "probability": 0.7161 + }, + { + "start": 19039.72, + "end": 19043.62, + "probability": 0.8221 + }, + { + "start": 19046.54, + "end": 19047.92, + "probability": 0.9492 + }, + { + "start": 19050.16, + "end": 19051.26, + "probability": 0.2268 + }, + { + "start": 19051.64, + "end": 19055.68, + "probability": 0.9592 + }, + { + "start": 19057.1, + "end": 19059.06, + "probability": 0.9972 + }, + { + "start": 19059.96, + "end": 19062.22, + "probability": 0.8665 + }, + { + "start": 19063.16, + "end": 19064.36, + "probability": 0.98 + }, + { + "start": 19066.72, + "end": 19068.46, + "probability": 0.9904 + }, + { + "start": 19068.46, + "end": 19068.68, + "probability": 0.4116 + }, + { + "start": 19068.68, + "end": 19069.94, + "probability": 0.9849 + }, + { + "start": 19070.08, + "end": 19070.92, + "probability": 0.676 + }, + { + "start": 19071.8, + "end": 19075.5, + "probability": 0.9025 + }, + { + "start": 19077.6, + "end": 19083.08, + "probability": 0.9983 + }, + { + "start": 19083.24, + "end": 19084.18, + "probability": 0.6954 + }, + { + "start": 19084.3, + "end": 19090.76, + "probability": 0.9663 + }, + { + "start": 19091.6, + "end": 19092.88, + "probability": 0.9324 + }, + { + "start": 19093.34, + "end": 19093.74, + "probability": 0.5024 + }, + { + "start": 19093.9, + "end": 19097.04, + "probability": 0.9862 + }, + { + "start": 19097.1, + "end": 19098.76, + "probability": 0.8727 + }, + { + "start": 19099.42, + "end": 19104.6, + "probability": 0.9728 + }, + { + "start": 19105.74, + "end": 19106.74, + "probability": 0.8132 + }, + { + "start": 19106.88, + "end": 19107.88, + "probability": 0.7165 + }, + { + "start": 19109.02, + "end": 19111.14, + "probability": 0.988 + }, + { + "start": 19111.42, + "end": 19115.26, + "probability": 0.9609 + }, + { + "start": 19115.28, + "end": 19116.16, + "probability": 0.7502 + }, + { + "start": 19117.46, + "end": 19118.52, + "probability": 0.8852 + }, + { + "start": 19121.86, + "end": 19123.23, + "probability": 0.8375 + }, + { + "start": 19124.4, + "end": 19127.98, + "probability": 0.8005 + }, + { + "start": 19128.58, + "end": 19130.28, + "probability": 0.9134 + }, + { + "start": 19131.14, + "end": 19136.62, + "probability": 0.9839 + }, + { + "start": 19136.84, + "end": 19137.4, + "probability": 0.4057 + }, + { + "start": 19140.3, + "end": 19142.26, + "probability": 0.955 + }, + { + "start": 19145.38, + "end": 19146.24, + "probability": 0.4109 + }, + { + "start": 19148.08, + "end": 19149.88, + "probability": 0.7792 + }, + { + "start": 19150.64, + "end": 19153.4, + "probability": 0.7817 + }, + { + "start": 19153.94, + "end": 19154.9, + "probability": 0.5566 + }, + { + "start": 19154.96, + "end": 19155.62, + "probability": 0.4026 + }, + { + "start": 19155.84, + "end": 19159.52, + "probability": 0.9966 + }, + { + "start": 19159.74, + "end": 19161.8, + "probability": 0.9958 + }, + { + "start": 19162.52, + "end": 19163.6, + "probability": 0.8638 + }, + { + "start": 19164.8, + "end": 19166.22, + "probability": 0.9469 + }, + { + "start": 19166.34, + "end": 19170.52, + "probability": 0.9594 + }, + { + "start": 19170.76, + "end": 19172.56, + "probability": 0.4261 + }, + { + "start": 19174.62, + "end": 19177.16, + "probability": 0.6794 + }, + { + "start": 19177.3, + "end": 19179.78, + "probability": 0.8726 + }, + { + "start": 19181.3, + "end": 19181.44, + "probability": 0.3993 + }, + { + "start": 19181.58, + "end": 19186.06, + "probability": 0.8669 + }, + { + "start": 19187.66, + "end": 19188.59, + "probability": 0.7169 + }, + { + "start": 19189.68, + "end": 19189.86, + "probability": 0.477 + }, + { + "start": 19189.96, + "end": 19191.78, + "probability": 0.9071 + }, + { + "start": 19191.88, + "end": 19195.14, + "probability": 0.7446 + }, + { + "start": 19195.84, + "end": 19196.92, + "probability": 0.1889 + }, + { + "start": 19197.22, + "end": 19197.64, + "probability": 0.2676 + }, + { + "start": 19198.16, + "end": 19198.72, + "probability": 0.5927 + }, + { + "start": 19199.84, + "end": 19200.92, + "probability": 0.3566 + }, + { + "start": 19201.42, + "end": 19201.42, + "probability": 0.3938 + }, + { + "start": 19201.42, + "end": 19202.94, + "probability": 0.4387 + }, + { + "start": 19202.94, + "end": 19204.94, + "probability": 0.1716 + }, + { + "start": 19204.94, + "end": 19205.24, + "probability": 0.5545 + }, + { + "start": 19205.44, + "end": 19209.04, + "probability": 0.9902 + }, + { + "start": 19209.48, + "end": 19210.0, + "probability": 0.9829 + }, + { + "start": 19211.32, + "end": 19212.0, + "probability": 0.8002 + }, + { + "start": 19212.42, + "end": 19212.82, + "probability": 0.5951 + }, + { + "start": 19213.68, + "end": 19214.26, + "probability": 0.7604 + }, + { + "start": 19214.74, + "end": 19216.34, + "probability": 0.8257 + }, + { + "start": 19217.04, + "end": 19217.88, + "probability": 0.8801 + }, + { + "start": 19234.62, + "end": 19234.88, + "probability": 0.1298 + }, + { + "start": 19234.88, + "end": 19234.88, + "probability": 0.0722 + }, + { + "start": 19234.88, + "end": 19235.4, + "probability": 0.0134 + }, + { + "start": 19235.94, + "end": 19236.42, + "probability": 0.6636 + }, + { + "start": 19237.58, + "end": 19237.68, + "probability": 0.0097 + }, + { + "start": 19237.68, + "end": 19238.4, + "probability": 0.6125 + }, + { + "start": 19238.62, + "end": 19239.82, + "probability": 0.2167 + }, + { + "start": 19240.02, + "end": 19241.06, + "probability": 0.8354 + }, + { + "start": 19242.7, + "end": 19244.28, + "probability": 0.9242 + }, + { + "start": 19244.3, + "end": 19246.02, + "probability": 0.9114 + }, + { + "start": 19246.96, + "end": 19247.06, + "probability": 0.7908 + }, + { + "start": 19248.14, + "end": 19251.22, + "probability": 0.9465 + }, + { + "start": 19252.3, + "end": 19254.8, + "probability": 0.988 + }, + { + "start": 19255.86, + "end": 19259.56, + "probability": 0.9935 + }, + { + "start": 19260.9, + "end": 19261.02, + "probability": 0.1853 + }, + { + "start": 19261.02, + "end": 19264.2, + "probability": 0.9563 + }, + { + "start": 19264.78, + "end": 19264.8, + "probability": 0.0489 + }, + { + "start": 19265.52, + "end": 19266.02, + "probability": 0.573 + }, + { + "start": 19266.02, + "end": 19270.36, + "probability": 0.6214 + }, + { + "start": 19270.96, + "end": 19272.68, + "probability": 0.6763 + }, + { + "start": 19273.62, + "end": 19276.48, + "probability": 0.9803 + }, + { + "start": 19277.28, + "end": 19278.16, + "probability": 0.8422 + }, + { + "start": 19278.2, + "end": 19281.62, + "probability": 0.9927 + }, + { + "start": 19281.68, + "end": 19287.09, + "probability": 0.9885 + }, + { + "start": 19287.62, + "end": 19290.43, + "probability": 0.8404 + }, + { + "start": 19291.02, + "end": 19296.3, + "probability": 0.9941 + }, + { + "start": 19296.92, + "end": 19298.62, + "probability": 0.8477 + }, + { + "start": 19298.64, + "end": 19299.78, + "probability": 0.9479 + }, + { + "start": 19300.06, + "end": 19302.7, + "probability": 0.9249 + }, + { + "start": 19303.56, + "end": 19307.66, + "probability": 0.8962 + }, + { + "start": 19307.66, + "end": 19308.82, + "probability": 0.8698 + }, + { + "start": 19309.5, + "end": 19312.28, + "probability": 0.9458 + }, + { + "start": 19312.48, + "end": 19313.17, + "probability": 0.4823 + }, + { + "start": 19314.36, + "end": 19316.6, + "probability": 0.3887 + }, + { + "start": 19317.62, + "end": 19319.15, + "probability": 0.939 + }, + { + "start": 19320.12, + "end": 19322.64, + "probability": 0.9953 + }, + { + "start": 19322.74, + "end": 19324.49, + "probability": 0.9805 + }, + { + "start": 19324.94, + "end": 19326.94, + "probability": 0.8823 + }, + { + "start": 19327.82, + "end": 19330.18, + "probability": 0.8064 + }, + { + "start": 19332.26, + "end": 19338.9, + "probability": 0.8518 + }, + { + "start": 19338.96, + "end": 19340.04, + "probability": 0.8621 + }, + { + "start": 19340.62, + "end": 19342.16, + "probability": 0.589 + }, + { + "start": 19342.18, + "end": 19346.14, + "probability": 0.9958 + }, + { + "start": 19346.28, + "end": 19346.82, + "probability": 0.8572 + }, + { + "start": 19346.92, + "end": 19347.85, + "probability": 0.9709 + }, + { + "start": 19347.96, + "end": 19348.98, + "probability": 0.9831 + }, + { + "start": 19349.84, + "end": 19351.36, + "probability": 0.9944 + }, + { + "start": 19351.88, + "end": 19352.5, + "probability": 0.8931 + }, + { + "start": 19352.6, + "end": 19353.4, + "probability": 0.9096 + }, + { + "start": 19353.5, + "end": 19354.88, + "probability": 0.4456 + }, + { + "start": 19355.72, + "end": 19358.92, + "probability": 0.4963 + }, + { + "start": 19360.22, + "end": 19361.68, + "probability": 0.9868 + }, + { + "start": 19361.9, + "end": 19366.76, + "probability": 0.9558 + }, + { + "start": 19367.26, + "end": 19370.06, + "probability": 0.9574 + }, + { + "start": 19370.74, + "end": 19373.14, + "probability": 0.5638 + }, + { + "start": 19373.86, + "end": 19376.02, + "probability": 0.8577 + }, + { + "start": 19376.68, + "end": 19377.8, + "probability": 0.0656 + }, + { + "start": 19378.04, + "end": 19385.96, + "probability": 0.9777 + }, + { + "start": 19386.44, + "end": 19390.92, + "probability": 0.9883 + }, + { + "start": 19390.98, + "end": 19392.18, + "probability": 0.9863 + }, + { + "start": 19393.08, + "end": 19395.66, + "probability": 0.6996 + }, + { + "start": 19396.04, + "end": 19398.66, + "probability": 0.9266 + }, + { + "start": 19399.77, + "end": 19401.32, + "probability": 0.5079 + }, + { + "start": 19401.32, + "end": 19401.42, + "probability": 0.035 + }, + { + "start": 19402.7, + "end": 19405.26, + "probability": 0.9514 + }, + { + "start": 19406.1, + "end": 19409.63, + "probability": 0.9709 + }, + { + "start": 19410.24, + "end": 19412.86, + "probability": 0.9976 + }, + { + "start": 19412.86, + "end": 19416.26, + "probability": 0.9992 + }, + { + "start": 19417.26, + "end": 19420.4, + "probability": 0.9941 + }, + { + "start": 19420.5, + "end": 19421.12, + "probability": 0.7801 + }, + { + "start": 19421.14, + "end": 19422.02, + "probability": 0.913 + }, + { + "start": 19422.46, + "end": 19423.02, + "probability": 0.8795 + }, + { + "start": 19423.08, + "end": 19424.32, + "probability": 0.9795 + }, + { + "start": 19425.18, + "end": 19429.86, + "probability": 0.9944 + }, + { + "start": 19429.94, + "end": 19430.06, + "probability": 0.5841 + }, + { + "start": 19430.12, + "end": 19433.2, + "probability": 0.9679 + }, + { + "start": 19433.84, + "end": 19434.26, + "probability": 0.7232 + }, + { + "start": 19434.34, + "end": 19437.02, + "probability": 0.7891 + }, + { + "start": 19437.06, + "end": 19441.26, + "probability": 0.9863 + }, + { + "start": 19441.72, + "end": 19445.62, + "probability": 0.9956 + }, + { + "start": 19446.64, + "end": 19449.08, + "probability": 0.9956 + }, + { + "start": 19449.32, + "end": 19450.12, + "probability": 0.6911 + }, + { + "start": 19450.6, + "end": 19453.26, + "probability": 0.9207 + }, + { + "start": 19453.98, + "end": 19455.5, + "probability": 0.8951 + }, + { + "start": 19456.06, + "end": 19457.12, + "probability": 0.8159 + }, + { + "start": 19457.48, + "end": 19461.76, + "probability": 0.968 + }, + { + "start": 19461.76, + "end": 19461.86, + "probability": 0.3081 + }, + { + "start": 19462.08, + "end": 19462.96, + "probability": 0.5938 + }, + { + "start": 19463.08, + "end": 19463.74, + "probability": 0.4379 + }, + { + "start": 19463.76, + "end": 19464.66, + "probability": 0.3348 + }, + { + "start": 19464.68, + "end": 19466.26, + "probability": 0.6455 + }, + { + "start": 19466.32, + "end": 19467.58, + "probability": 0.6018 + }, + { + "start": 19467.64, + "end": 19468.42, + "probability": 0.969 + }, + { + "start": 19468.98, + "end": 19470.7, + "probability": 0.9836 + }, + { + "start": 19471.24, + "end": 19472.28, + "probability": 0.8252 + }, + { + "start": 19472.42, + "end": 19474.84, + "probability": 0.6423 + }, + { + "start": 19475.32, + "end": 19477.5, + "probability": 0.8015 + }, + { + "start": 19477.68, + "end": 19478.02, + "probability": 0.9444 + }, + { + "start": 19478.42, + "end": 19480.28, + "probability": 0.8018 + }, + { + "start": 19480.98, + "end": 19484.44, + "probability": 0.7922 + }, + { + "start": 19484.52, + "end": 19485.6, + "probability": 0.6791 + }, + { + "start": 19486.04, + "end": 19486.86, + "probability": 0.6059 + }, + { + "start": 19487.44, + "end": 19490.3, + "probability": 0.9117 + }, + { + "start": 19490.84, + "end": 19492.24, + "probability": 0.9764 + }, + { + "start": 19492.86, + "end": 19493.73, + "probability": 0.9771 + }, + { + "start": 19494.38, + "end": 19496.36, + "probability": 0.9941 + }, + { + "start": 19496.6, + "end": 19497.62, + "probability": 0.689 + }, + { + "start": 19497.98, + "end": 19500.26, + "probability": 0.9798 + }, + { + "start": 19500.94, + "end": 19503.1, + "probability": 0.7887 + }, + { + "start": 19504.0, + "end": 19504.2, + "probability": 0.5181 + }, + { + "start": 19504.26, + "end": 19504.6, + "probability": 0.6852 + }, + { + "start": 19504.7, + "end": 19505.04, + "probability": 0.7546 + }, + { + "start": 19505.16, + "end": 19505.82, + "probability": 0.7498 + }, + { + "start": 19505.92, + "end": 19506.74, + "probability": 0.5185 + }, + { + "start": 19507.08, + "end": 19509.32, + "probability": 0.7258 + }, + { + "start": 19509.36, + "end": 19510.66, + "probability": 0.8154 + }, + { + "start": 19512.04, + "end": 19515.58, + "probability": 0.9462 + }, + { + "start": 19516.38, + "end": 19518.92, + "probability": 0.995 + }, + { + "start": 19519.78, + "end": 19520.27, + "probability": 0.8773 + }, + { + "start": 19520.62, + "end": 19521.4, + "probability": 0.8223 + }, + { + "start": 19521.42, + "end": 19523.76, + "probability": 0.8974 + }, + { + "start": 19524.2, + "end": 19526.6, + "probability": 0.9942 + }, + { + "start": 19526.6, + "end": 19527.12, + "probability": 0.592 + }, + { + "start": 19527.24, + "end": 19527.68, + "probability": 0.4207 + }, + { + "start": 19528.38, + "end": 19529.8, + "probability": 0.9563 + }, + { + "start": 19530.28, + "end": 19532.78, + "probability": 0.9944 + }, + { + "start": 19533.66, + "end": 19535.2, + "probability": 0.7179 + }, + { + "start": 19535.3, + "end": 19536.9, + "probability": 0.9148 + }, + { + "start": 19537.14, + "end": 19538.84, + "probability": 0.7731 + }, + { + "start": 19539.14, + "end": 19541.2, + "probability": 0.9297 + }, + { + "start": 19541.6, + "end": 19545.38, + "probability": 0.9921 + }, + { + "start": 19545.62, + "end": 19546.22, + "probability": 0.8718 + }, + { + "start": 19546.64, + "end": 19548.82, + "probability": 0.8367 + }, + { + "start": 19549.26, + "end": 19550.62, + "probability": 0.9766 + }, + { + "start": 19550.8, + "end": 19551.46, + "probability": 0.4985 + }, + { + "start": 19551.6, + "end": 19552.38, + "probability": 0.9595 + }, + { + "start": 19552.78, + "end": 19554.04, + "probability": 0.9937 + }, + { + "start": 19554.66, + "end": 19556.52, + "probability": 0.8168 + }, + { + "start": 19557.08, + "end": 19559.12, + "probability": 0.837 + }, + { + "start": 19559.16, + "end": 19561.62, + "probability": 0.9777 + }, + { + "start": 19562.4, + "end": 19563.72, + "probability": 0.7824 + }, + { + "start": 19563.86, + "end": 19564.4, + "probability": 0.9178 + }, + { + "start": 19564.74, + "end": 19568.78, + "probability": 0.9712 + }, + { + "start": 19569.24, + "end": 19569.4, + "probability": 0.3144 + }, + { + "start": 19569.5, + "end": 19570.74, + "probability": 0.9968 + }, + { + "start": 19571.32, + "end": 19571.32, + "probability": 0.0393 + }, + { + "start": 19571.32, + "end": 19571.32, + "probability": 0.3722 + }, + { + "start": 19571.32, + "end": 19571.32, + "probability": 0.086 + }, + { + "start": 19571.32, + "end": 19573.2, + "probability": 0.8511 + }, + { + "start": 19573.44, + "end": 19574.96, + "probability": 0.7547 + }, + { + "start": 19575.06, + "end": 19575.66, + "probability": 0.5376 + }, + { + "start": 19576.3, + "end": 19579.98, + "probability": 0.8541 + }, + { + "start": 19580.6, + "end": 19583.04, + "probability": 0.9963 + }, + { + "start": 19583.7, + "end": 19588.54, + "probability": 0.9274 + }, + { + "start": 19588.84, + "end": 19590.09, + "probability": 0.6737 + }, + { + "start": 19590.4, + "end": 19590.74, + "probability": 0.7845 + }, + { + "start": 19590.82, + "end": 19592.72, + "probability": 0.6732 + }, + { + "start": 19592.76, + "end": 19593.64, + "probability": 0.6592 + }, + { + "start": 19595.26, + "end": 19598.62, + "probability": 0.9941 + }, + { + "start": 19598.7, + "end": 19601.76, + "probability": 0.9821 + }, + { + "start": 19601.86, + "end": 19603.5, + "probability": 0.8423 + }, + { + "start": 19604.22, + "end": 19604.78, + "probability": 0.8217 + }, + { + "start": 19604.88, + "end": 19605.72, + "probability": 0.9091 + }, + { + "start": 19605.84, + "end": 19606.72, + "probability": 0.8456 + }, + { + "start": 19607.14, + "end": 19607.32, + "probability": 0.3038 + }, + { + "start": 19607.42, + "end": 19607.8, + "probability": 0.7169 + }, + { + "start": 19607.84, + "end": 19610.78, + "probability": 0.855 + }, + { + "start": 19611.46, + "end": 19611.64, + "probability": 0.9207 + }, + { + "start": 19611.68, + "end": 19612.44, + "probability": 0.5363 + }, + { + "start": 19612.58, + "end": 19614.8, + "probability": 0.661 + }, + { + "start": 19614.86, + "end": 19615.64, + "probability": 0.7973 + }, + { + "start": 19615.8, + "end": 19616.69, + "probability": 0.4718 + }, + { + "start": 19617.08, + "end": 19620.34, + "probability": 0.6701 + }, + { + "start": 19621.02, + "end": 19621.22, + "probability": 0.6848 + }, + { + "start": 19621.26, + "end": 19627.46, + "probability": 0.9682 + }, + { + "start": 19627.68, + "end": 19629.0, + "probability": 0.8029 + }, + { + "start": 19630.48, + "end": 19630.72, + "probability": 0.6583 + }, + { + "start": 19630.88, + "end": 19631.46, + "probability": 0.937 + }, + { + "start": 19631.68, + "end": 19632.92, + "probability": 0.9728 + }, + { + "start": 19633.62, + "end": 19635.38, + "probability": 0.031 + }, + { + "start": 19635.38, + "end": 19636.79, + "probability": 0.9895 + }, + { + "start": 19637.26, + "end": 19638.2, + "probability": 0.0497 + }, + { + "start": 19638.46, + "end": 19639.88, + "probability": 0.5944 + }, + { + "start": 19640.06, + "end": 19641.86, + "probability": 0.7952 + }, + { + "start": 19641.9, + "end": 19644.06, + "probability": 0.9604 + }, + { + "start": 19644.3, + "end": 19646.41, + "probability": 0.8303 + }, + { + "start": 19647.14, + "end": 19648.12, + "probability": 0.9355 + }, + { + "start": 19648.3, + "end": 19651.02, + "probability": 0.6639 + }, + { + "start": 19651.08, + "end": 19651.76, + "probability": 0.8025 + }, + { + "start": 19652.04, + "end": 19653.94, + "probability": 0.9194 + }, + { + "start": 19653.94, + "end": 19656.7, + "probability": 0.7338 + }, + { + "start": 19657.04, + "end": 19658.77, + "probability": 0.9915 + }, + { + "start": 19660.16, + "end": 19663.38, + "probability": 0.9839 + }, + { + "start": 19663.56, + "end": 19666.24, + "probability": 0.7674 + }, + { + "start": 19666.6, + "end": 19667.86, + "probability": 0.9886 + }, + { + "start": 19668.04, + "end": 19669.0, + "probability": 0.9269 + }, + { + "start": 19669.24, + "end": 19671.1, + "probability": 0.8543 + }, + { + "start": 19671.5, + "end": 19672.23, + "probability": 0.9512 + }, + { + "start": 19672.38, + "end": 19673.36, + "probability": 0.9307 + }, + { + "start": 19673.82, + "end": 19675.36, + "probability": 0.4469 + }, + { + "start": 19675.5, + "end": 19677.78, + "probability": 0.7696 + }, + { + "start": 19678.74, + "end": 19680.78, + "probability": 0.9936 + }, + { + "start": 19681.1, + "end": 19682.66, + "probability": 0.9963 + }, + { + "start": 19682.88, + "end": 19684.56, + "probability": 0.9966 + }, + { + "start": 19684.82, + "end": 19686.86, + "probability": 0.8911 + }, + { + "start": 19687.3, + "end": 19691.22, + "probability": 0.9967 + }, + { + "start": 19692.36, + "end": 19694.6, + "probability": 0.9393 + }, + { + "start": 19695.36, + "end": 19697.64, + "probability": 0.9443 + }, + { + "start": 19698.22, + "end": 19698.34, + "probability": 0.0466 + }, + { + "start": 19698.34, + "end": 19699.39, + "probability": 0.4853 + }, + { + "start": 19699.88, + "end": 19700.34, + "probability": 0.9777 + }, + { + "start": 19700.34, + "end": 19701.04, + "probability": 0.6021 + }, + { + "start": 19701.14, + "end": 19701.94, + "probability": 0.9429 + }, + { + "start": 19702.02, + "end": 19704.68, + "probability": 0.9597 + }, + { + "start": 19705.16, + "end": 19707.9, + "probability": 0.9078 + }, + { + "start": 19708.38, + "end": 19713.6, + "probability": 0.9706 + }, + { + "start": 19714.16, + "end": 19715.64, + "probability": 0.999 + }, + { + "start": 19716.68, + "end": 19718.26, + "probability": 0.9305 + }, + { + "start": 19718.9, + "end": 19719.9, + "probability": 0.519 + }, + { + "start": 19719.92, + "end": 19721.94, + "probability": 0.9337 + }, + { + "start": 19722.04, + "end": 19722.32, + "probability": 0.942 + }, + { + "start": 19722.44, + "end": 19723.16, + "probability": 0.8344 + }, + { + "start": 19723.28, + "end": 19725.64, + "probability": 0.9829 + }, + { + "start": 19725.76, + "end": 19725.76, + "probability": 0.3309 + }, + { + "start": 19725.96, + "end": 19726.4, + "probability": 0.4619 + }, + { + "start": 19726.54, + "end": 19727.28, + "probability": 0.904 + }, + { + "start": 19727.6, + "end": 19729.09, + "probability": 0.9976 + }, + { + "start": 19729.94, + "end": 19732.26, + "probability": 0.9568 + }, + { + "start": 19732.92, + "end": 19733.76, + "probability": 0.9951 + }, + { + "start": 19735.44, + "end": 19737.0, + "probability": 0.8723 + }, + { + "start": 19737.52, + "end": 19741.6, + "probability": 0.9751 + }, + { + "start": 19743.14, + "end": 19744.02, + "probability": 0.7143 + }, + { + "start": 19744.1, + "end": 19745.62, + "probability": 0.9862 + }, + { + "start": 19745.7, + "end": 19746.86, + "probability": 0.9951 + }, + { + "start": 19747.42, + "end": 19748.5, + "probability": 0.9543 + }, + { + "start": 19752.34, + "end": 19754.2, + "probability": 0.0923 + }, + { + "start": 19754.72, + "end": 19757.88, + "probability": 0.9093 + }, + { + "start": 19758.32, + "end": 19759.54, + "probability": 0.8334 + }, + { + "start": 19759.62, + "end": 19761.89, + "probability": 0.8623 + }, + { + "start": 19762.2, + "end": 19762.5, + "probability": 0.8961 + }, + { + "start": 19764.36, + "end": 19765.12, + "probability": 0.7658 + }, + { + "start": 19765.54, + "end": 19767.06, + "probability": 0.8167 + }, + { + "start": 19768.96, + "end": 19771.4, + "probability": 0.8468 + }, + { + "start": 19772.38, + "end": 19775.04, + "probability": 0.0491 + }, + { + "start": 19777.74, + "end": 19778.7, + "probability": 0.547 + }, + { + "start": 19779.68, + "end": 19780.06, + "probability": 0.0538 + }, + { + "start": 19781.02, + "end": 19781.37, + "probability": 0.5169 + }, + { + "start": 19782.42, + "end": 19783.32, + "probability": 0.5521 + }, + { + "start": 19783.32, + "end": 19783.32, + "probability": 0.3393 + }, + { + "start": 19788.4, + "end": 19788.94, + "probability": 0.2285 + }, + { + "start": 19788.94, + "end": 19789.16, + "probability": 0.0526 + }, + { + "start": 19789.16, + "end": 19789.44, + "probability": 0.0601 + }, + { + "start": 19789.44, + "end": 19790.04, + "probability": 0.2395 + }, + { + "start": 19790.94, + "end": 19793.38, + "probability": 0.8848 + }, + { + "start": 19793.66, + "end": 19794.98, + "probability": 0.9259 + }, + { + "start": 19796.06, + "end": 19797.4, + "probability": 0.3826 + }, + { + "start": 19798.27, + "end": 19802.76, + "probability": 0.9241 + }, + { + "start": 19804.3, + "end": 19807.14, + "probability": 0.7014 + }, + { + "start": 19807.82, + "end": 19811.28, + "probability": 0.9315 + }, + { + "start": 19812.6, + "end": 19817.66, + "probability": 0.9297 + }, + { + "start": 19817.66, + "end": 19820.78, + "probability": 0.9951 + }, + { + "start": 19821.3, + "end": 19824.64, + "probability": 0.9782 + }, + { + "start": 19824.64, + "end": 19828.34, + "probability": 0.9779 + }, + { + "start": 19829.16, + "end": 19833.14, + "probability": 0.998 + }, + { + "start": 19833.14, + "end": 19836.3, + "probability": 0.998 + }, + { + "start": 19836.88, + "end": 19842.76, + "probability": 0.997 + }, + { + "start": 19842.76, + "end": 19849.88, + "probability": 0.9993 + }, + { + "start": 19850.02, + "end": 19850.04, + "probability": 0.0722 + }, + { + "start": 19850.04, + "end": 19852.28, + "probability": 0.8906 + }, + { + "start": 19852.76, + "end": 19854.16, + "probability": 0.9564 + }, + { + "start": 19854.26, + "end": 19857.72, + "probability": 0.9476 + }, + { + "start": 19857.72, + "end": 19861.16, + "probability": 0.998 + }, + { + "start": 19861.22, + "end": 19862.92, + "probability": 0.9837 + }, + { + "start": 19863.2, + "end": 19864.9, + "probability": 0.9922 + }, + { + "start": 19865.76, + "end": 19870.04, + "probability": 0.9987 + }, + { + "start": 19870.4, + "end": 19871.0, + "probability": 0.9075 + }, + { + "start": 19871.1, + "end": 19871.92, + "probability": 0.5861 + }, + { + "start": 19872.16, + "end": 19872.79, + "probability": 0.8398 + }, + { + "start": 19873.26, + "end": 19874.12, + "probability": 0.8608 + }, + { + "start": 19874.58, + "end": 19876.05, + "probability": 0.516 + }, + { + "start": 19877.66, + "end": 19881.46, + "probability": 0.9938 + }, + { + "start": 19881.46, + "end": 19886.48, + "probability": 0.9912 + }, + { + "start": 19887.32, + "end": 19890.1, + "probability": 0.9262 + }, + { + "start": 19890.14, + "end": 19890.82, + "probability": 0.9556 + }, + { + "start": 19890.94, + "end": 19891.62, + "probability": 0.954 + }, + { + "start": 19892.02, + "end": 19894.84, + "probability": 0.945 + }, + { + "start": 19895.4, + "end": 19896.82, + "probability": 0.9263 + }, + { + "start": 19897.4, + "end": 19898.54, + "probability": 0.9082 + }, + { + "start": 19899.08, + "end": 19902.94, + "probability": 0.969 + }, + { + "start": 19903.36, + "end": 19905.2, + "probability": 0.9656 + }, + { + "start": 19905.32, + "end": 19906.22, + "probability": 0.976 + }, + { + "start": 19906.38, + "end": 19909.28, + "probability": 0.9426 + }, + { + "start": 19910.36, + "end": 19911.88, + "probability": 0.9334 + }, + { + "start": 19911.96, + "end": 19912.8, + "probability": 0.7764 + }, + { + "start": 19912.96, + "end": 19916.86, + "probability": 0.9346 + }, + { + "start": 19917.34, + "end": 19921.2, + "probability": 0.9684 + }, + { + "start": 19924.96, + "end": 19926.36, + "probability": 0.8427 + }, + { + "start": 19926.48, + "end": 19927.88, + "probability": 0.9395 + }, + { + "start": 19928.2, + "end": 19929.48, + "probability": 0.8328 + }, + { + "start": 19929.62, + "end": 19931.46, + "probability": 0.9363 + }, + { + "start": 19931.78, + "end": 19935.2, + "probability": 0.9926 + }, + { + "start": 19935.72, + "end": 19938.14, + "probability": 0.9956 + }, + { + "start": 19938.22, + "end": 19941.72, + "probability": 0.9481 + }, + { + "start": 19942.46, + "end": 19946.6, + "probability": 0.8626 + }, + { + "start": 19946.6, + "end": 19950.84, + "probability": 0.9968 + }, + { + "start": 19951.08, + "end": 19954.44, + "probability": 0.9935 + }, + { + "start": 19954.94, + "end": 19955.2, + "probability": 0.3119 + }, + { + "start": 19955.44, + "end": 19955.78, + "probability": 0.6654 + }, + { + "start": 19955.86, + "end": 19956.56, + "probability": 0.9759 + }, + { + "start": 19956.92, + "end": 19959.3, + "probability": 0.9876 + }, + { + "start": 19960.24, + "end": 19962.7, + "probability": 0.9904 + }, + { + "start": 19963.2, + "end": 19966.52, + "probability": 0.9951 + }, + { + "start": 19967.04, + "end": 19968.36, + "probability": 0.9889 + }, + { + "start": 19968.72, + "end": 19971.54, + "probability": 0.973 + }, + { + "start": 19971.86, + "end": 19973.92, + "probability": 0.9961 + }, + { + "start": 19974.04, + "end": 19977.04, + "probability": 0.7858 + }, + { + "start": 19977.14, + "end": 19981.2, + "probability": 0.9629 + }, + { + "start": 19981.2, + "end": 19984.44, + "probability": 0.9984 + }, + { + "start": 19984.74, + "end": 19987.39, + "probability": 0.9869 + }, + { + "start": 19988.03, + "end": 19991.38, + "probability": 0.6521 + }, + { + "start": 19991.74, + "end": 19996.1, + "probability": 0.7033 + }, + { + "start": 19996.44, + "end": 19997.38, + "probability": 0.9583 + }, + { + "start": 19997.98, + "end": 19999.3, + "probability": 0.9355 + }, + { + "start": 19999.96, + "end": 20001.96, + "probability": 0.6933 + }, + { + "start": 20001.96, + "end": 20003.6, + "probability": 0.6465 + }, + { + "start": 20004.36, + "end": 20005.42, + "probability": 0.978 + }, + { + "start": 20005.98, + "end": 20009.08, + "probability": 0.9955 + }, + { + "start": 20009.2, + "end": 20010.72, + "probability": 0.8537 + }, + { + "start": 20011.16, + "end": 20017.16, + "probability": 0.9976 + }, + { + "start": 20017.66, + "end": 20020.14, + "probability": 0.959 + }, + { + "start": 20020.32, + "end": 20020.52, + "probability": 0.5129 + }, + { + "start": 20021.12, + "end": 20021.68, + "probability": 0.7414 + }, + { + "start": 20022.18, + "end": 20023.9, + "probability": 0.8002 + }, + { + "start": 20026.28, + "end": 20027.84, + "probability": 0.9764 + }, + { + "start": 20032.0, + "end": 20032.62, + "probability": 0.0084 + }, + { + "start": 20050.62, + "end": 20050.72, + "probability": 0.0267 + }, + { + "start": 20051.32, + "end": 20051.96, + "probability": 0.0391 + }, + { + "start": 20059.18, + "end": 20059.32, + "probability": 0.0007 + }, + { + "start": 20068.04, + "end": 20070.0, + "probability": 0.7902 + }, + { + "start": 20070.56, + "end": 20071.6, + "probability": 0.981 + }, + { + "start": 20072.74, + "end": 20076.62, + "probability": 0.6366 + }, + { + "start": 20078.24, + "end": 20081.08, + "probability": 0.9945 + }, + { + "start": 20081.96, + "end": 20085.32, + "probability": 0.9619 + }, + { + "start": 20086.22, + "end": 20087.56, + "probability": 0.8762 + }, + { + "start": 20087.62, + "end": 20092.1, + "probability": 0.9636 + }, + { + "start": 20092.98, + "end": 20096.74, + "probability": 0.8531 + }, + { + "start": 20096.82, + "end": 20097.76, + "probability": 0.9172 + }, + { + "start": 20098.36, + "end": 20101.04, + "probability": 0.9951 + }, + { + "start": 20102.06, + "end": 20104.06, + "probability": 0.9046 + }, + { + "start": 20105.0, + "end": 20105.78, + "probability": 0.8369 + }, + { + "start": 20106.6, + "end": 20108.1, + "probability": 0.8154 + }, + { + "start": 20109.02, + "end": 20110.14, + "probability": 0.7955 + }, + { + "start": 20110.92, + "end": 20110.92, + "probability": 0.1675 + }, + { + "start": 20110.92, + "end": 20114.42, + "probability": 0.6849 + }, + { + "start": 20114.82, + "end": 20115.72, + "probability": 0.9001 + }, + { + "start": 20115.92, + "end": 20117.1, + "probability": 0.978 + }, + { + "start": 20117.26, + "end": 20122.06, + "probability": 0.9966 + }, + { + "start": 20122.06, + "end": 20125.74, + "probability": 0.9243 + }, + { + "start": 20125.86, + "end": 20126.7, + "probability": 0.9473 + }, + { + "start": 20127.38, + "end": 20132.18, + "probability": 0.9948 + }, + { + "start": 20133.08, + "end": 20137.42, + "probability": 0.9974 + }, + { + "start": 20138.38, + "end": 20141.61, + "probability": 0.9971 + }, + { + "start": 20141.74, + "end": 20143.26, + "probability": 0.8789 + }, + { + "start": 20143.7, + "end": 20147.64, + "probability": 0.981 + }, + { + "start": 20148.32, + "end": 20151.8, + "probability": 0.8845 + }, + { + "start": 20151.98, + "end": 20155.22, + "probability": 0.8649 + }, + { + "start": 20155.62, + "end": 20157.88, + "probability": 0.9797 + }, + { + "start": 20158.58, + "end": 20160.84, + "probability": 0.9341 + }, + { + "start": 20161.24, + "end": 20162.76, + "probability": 0.9912 + }, + { + "start": 20162.82, + "end": 20163.94, + "probability": 0.9882 + }, + { + "start": 20164.92, + "end": 20166.4, + "probability": 0.7372 + }, + { + "start": 20166.92, + "end": 20170.1, + "probability": 0.9829 + }, + { + "start": 20171.18, + "end": 20172.62, + "probability": 0.8481 + }, + { + "start": 20172.82, + "end": 20177.12, + "probability": 0.984 + }, + { + "start": 20177.74, + "end": 20180.1, + "probability": 0.905 + }, + { + "start": 20180.58, + "end": 20182.1, + "probability": 0.7565 + }, + { + "start": 20182.18, + "end": 20183.34, + "probability": 0.9688 + }, + { + "start": 20184.0, + "end": 20187.64, + "probability": 0.8667 + }, + { + "start": 20188.26, + "end": 20190.96, + "probability": 0.9355 + }, + { + "start": 20191.04, + "end": 20192.26, + "probability": 0.8394 + }, + { + "start": 20193.24, + "end": 20195.62, + "probability": 0.9356 + }, + { + "start": 20196.6, + "end": 20197.72, + "probability": 0.978 + }, + { + "start": 20198.64, + "end": 20201.42, + "probability": 0.9416 + }, + { + "start": 20202.3, + "end": 20204.11, + "probability": 0.9137 + }, + { + "start": 20204.96, + "end": 20206.16, + "probability": 0.9871 + }, + { + "start": 20206.7, + "end": 20210.9, + "probability": 0.9744 + }, + { + "start": 20212.02, + "end": 20214.22, + "probability": 0.9922 + }, + { + "start": 20214.68, + "end": 20218.42, + "probability": 0.9954 + }, + { + "start": 20218.58, + "end": 20219.36, + "probability": 0.6917 + }, + { + "start": 20219.94, + "end": 20221.66, + "probability": 0.9147 + }, + { + "start": 20221.72, + "end": 20222.54, + "probability": 0.909 + }, + { + "start": 20223.36, + "end": 20224.32, + "probability": 0.4629 + }, + { + "start": 20224.76, + "end": 20228.86, + "probability": 0.9912 + }, + { + "start": 20229.32, + "end": 20233.64, + "probability": 0.9799 + }, + { + "start": 20234.48, + "end": 20235.56, + "probability": 0.8271 + }, + { + "start": 20236.42, + "end": 20238.2, + "probability": 0.8759 + }, + { + "start": 20238.88, + "end": 20241.94, + "probability": 0.8039 + }, + { + "start": 20242.0, + "end": 20242.84, + "probability": 0.7944 + }, + { + "start": 20243.1, + "end": 20246.42, + "probability": 0.9805 + }, + { + "start": 20246.6, + "end": 20249.9, + "probability": 0.9443 + }, + { + "start": 20250.46, + "end": 20253.3, + "probability": 0.9868 + }, + { + "start": 20253.3, + "end": 20254.06, + "probability": 0.7985 + }, + { + "start": 20254.86, + "end": 20255.68, + "probability": 0.9766 + }, + { + "start": 20255.82, + "end": 20258.56, + "probability": 0.9777 + }, + { + "start": 20258.74, + "end": 20259.82, + "probability": 0.7223 + }, + { + "start": 20259.84, + "end": 20260.36, + "probability": 0.5072 + }, + { + "start": 20260.82, + "end": 20263.0, + "probability": 0.9917 + }, + { + "start": 20263.62, + "end": 20264.74, + "probability": 0.8894 + }, + { + "start": 20265.06, + "end": 20266.3, + "probability": 0.427 + }, + { + "start": 20266.36, + "end": 20268.28, + "probability": 0.7946 + }, + { + "start": 20268.42, + "end": 20271.04, + "probability": 0.9905 + }, + { + "start": 20271.28, + "end": 20273.84, + "probability": 0.8716 + }, + { + "start": 20274.08, + "end": 20275.8, + "probability": 0.0755 + }, + { + "start": 20276.08, + "end": 20279.36, + "probability": 0.4987 + }, + { + "start": 20279.44, + "end": 20280.84, + "probability": 0.3346 + }, + { + "start": 20280.94, + "end": 20281.26, + "probability": 0.8708 + }, + { + "start": 20281.7, + "end": 20282.58, + "probability": 0.8017 + }, + { + "start": 20282.66, + "end": 20286.16, + "probability": 0.8885 + }, + { + "start": 20286.36, + "end": 20290.52, + "probability": 0.945 + }, + { + "start": 20290.52, + "end": 20292.2, + "probability": 0.9878 + }, + { + "start": 20292.26, + "end": 20294.12, + "probability": 0.9629 + }, + { + "start": 20295.06, + "end": 20298.0, + "probability": 0.9163 + }, + { + "start": 20299.06, + "end": 20302.18, + "probability": 0.789 + }, + { + "start": 20303.0, + "end": 20304.58, + "probability": 0.8906 + }, + { + "start": 20305.81, + "end": 20309.7, + "probability": 0.6636 + }, + { + "start": 20309.74, + "end": 20310.16, + "probability": 0.9661 + }, + { + "start": 20310.82, + "end": 20311.6, + "probability": 0.995 + }, + { + "start": 20312.42, + "end": 20315.32, + "probability": 0.9224 + }, + { + "start": 20316.42, + "end": 20319.24, + "probability": 0.8717 + }, + { + "start": 20319.36, + "end": 20320.62, + "probability": 0.809 + }, + { + "start": 20321.32, + "end": 20323.86, + "probability": 0.9619 + }, + { + "start": 20324.82, + "end": 20326.58, + "probability": 0.9683 + }, + { + "start": 20326.68, + "end": 20329.86, + "probability": 0.9949 + }, + { + "start": 20329.86, + "end": 20332.98, + "probability": 0.9946 + }, + { + "start": 20333.02, + "end": 20333.95, + "probability": 0.8455 + }, + { + "start": 20334.98, + "end": 20338.04, + "probability": 0.8967 + }, + { + "start": 20338.52, + "end": 20339.1, + "probability": 0.6496 + }, + { + "start": 20339.72, + "end": 20340.68, + "probability": 0.9795 + }, + { + "start": 20340.98, + "end": 20342.58, + "probability": 0.941 + }, + { + "start": 20343.24, + "end": 20344.84, + "probability": 0.905 + }, + { + "start": 20345.4, + "end": 20348.4, + "probability": 0.9971 + }, + { + "start": 20348.78, + "end": 20350.7, + "probability": 0.7695 + }, + { + "start": 20351.08, + "end": 20353.54, + "probability": 0.9722 + }, + { + "start": 20353.94, + "end": 20355.74, + "probability": 0.8744 + }, + { + "start": 20355.74, + "end": 20355.81, + "probability": 0.3049 + }, + { + "start": 20356.06, + "end": 20356.46, + "probability": 0.4651 + }, + { + "start": 20356.5, + "end": 20360.7, + "probability": 0.888 + }, + { + "start": 20360.78, + "end": 20361.78, + "probability": 0.5728 + }, + { + "start": 20362.28, + "end": 20364.31, + "probability": 0.9549 + }, + { + "start": 20364.68, + "end": 20366.18, + "probability": 0.7852 + }, + { + "start": 20366.28, + "end": 20369.7, + "probability": 0.988 + }, + { + "start": 20370.0, + "end": 20371.42, + "probability": 0.9975 + }, + { + "start": 20371.48, + "end": 20372.11, + "probability": 0.9519 + }, + { + "start": 20372.44, + "end": 20375.8, + "probability": 0.9595 + }, + { + "start": 20375.8, + "end": 20376.44, + "probability": 0.7323 + }, + { + "start": 20376.94, + "end": 20378.32, + "probability": 0.8488 + }, + { + "start": 20378.48, + "end": 20378.88, + "probability": 0.4659 + }, + { + "start": 20378.92, + "end": 20380.26, + "probability": 0.7297 + }, + { + "start": 20380.32, + "end": 20381.78, + "probability": 0.9609 + }, + { + "start": 20382.48, + "end": 20383.75, + "probability": 0.922 + }, + { + "start": 20384.0, + "end": 20385.06, + "probability": 0.1666 + }, + { + "start": 20385.06, + "end": 20389.46, + "probability": 0.9489 + }, + { + "start": 20395.18, + "end": 20395.74, + "probability": 0.6272 + }, + { + "start": 20395.76, + "end": 20398.64, + "probability": 0.6551 + }, + { + "start": 20399.66, + "end": 20400.04, + "probability": 0.8562 + }, + { + "start": 20400.04, + "end": 20401.04, + "probability": 0.9877 + }, + { + "start": 20401.14, + "end": 20403.08, + "probability": 0.9871 + }, + { + "start": 20403.7, + "end": 20410.0, + "probability": 0.9827 + }, + { + "start": 20411.04, + "end": 20412.86, + "probability": 0.9551 + }, + { + "start": 20414.62, + "end": 20419.62, + "probability": 0.988 + }, + { + "start": 20419.64, + "end": 20422.3, + "probability": 0.9976 + }, + { + "start": 20423.02, + "end": 20423.93, + "probability": 0.9894 + }, + { + "start": 20424.9, + "end": 20426.45, + "probability": 0.9976 + }, + { + "start": 20427.4, + "end": 20428.46, + "probability": 0.9167 + }, + { + "start": 20428.94, + "end": 20431.74, + "probability": 0.7804 + }, + { + "start": 20431.9, + "end": 20432.7, + "probability": 0.945 + }, + { + "start": 20432.86, + "end": 20434.64, + "probability": 0.998 + }, + { + "start": 20435.14, + "end": 20440.22, + "probability": 0.9904 + }, + { + "start": 20440.76, + "end": 20444.0, + "probability": 0.9973 + }, + { + "start": 20444.62, + "end": 20445.66, + "probability": 0.9065 + }, + { + "start": 20445.78, + "end": 20451.42, + "probability": 0.9884 + }, + { + "start": 20452.6, + "end": 20453.64, + "probability": 0.9907 + }, + { + "start": 20454.6, + "end": 20458.66, + "probability": 0.9871 + }, + { + "start": 20459.86, + "end": 20463.2, + "probability": 0.7339 + }, + { + "start": 20463.7, + "end": 20466.42, + "probability": 0.959 + }, + { + "start": 20467.04, + "end": 20468.0, + "probability": 0.9685 + }, + { + "start": 20468.9, + "end": 20470.08, + "probability": 0.4945 + }, + { + "start": 20471.8, + "end": 20480.3, + "probability": 0.9868 + }, + { + "start": 20481.06, + "end": 20484.08, + "probability": 0.8166 + }, + { + "start": 20485.6, + "end": 20490.34, + "probability": 0.9512 + }, + { + "start": 20491.02, + "end": 20494.02, + "probability": 0.9877 + }, + { + "start": 20495.36, + "end": 20499.52, + "probability": 0.9832 + }, + { + "start": 20500.64, + "end": 20506.32, + "probability": 0.9808 + }, + { + "start": 20506.94, + "end": 20508.36, + "probability": 0.7644 + }, + { + "start": 20509.79, + "end": 20515.68, + "probability": 0.9207 + }, + { + "start": 20516.7, + "end": 20522.8, + "probability": 0.9261 + }, + { + "start": 20524.28, + "end": 20527.12, + "probability": 0.3751 + }, + { + "start": 20527.66, + "end": 20529.32, + "probability": 0.8916 + }, + { + "start": 20529.9, + "end": 20534.8, + "probability": 0.9917 + }, + { + "start": 20535.24, + "end": 20538.56, + "probability": 0.9694 + }, + { + "start": 20539.42, + "end": 20540.94, + "probability": 0.7684 + }, + { + "start": 20540.94, + "end": 20548.72, + "probability": 0.9658 + }, + { + "start": 20548.84, + "end": 20549.0, + "probability": 0.3077 + }, + { + "start": 20549.06, + "end": 20550.26, + "probability": 0.6839 + }, + { + "start": 20550.3, + "end": 20552.14, + "probability": 0.9941 + }, + { + "start": 20552.62, + "end": 20553.62, + "probability": 0.9395 + }, + { + "start": 20553.72, + "end": 20557.52, + "probability": 0.8875 + }, + { + "start": 20558.02, + "end": 20562.34, + "probability": 0.9973 + }, + { + "start": 20563.18, + "end": 20570.42, + "probability": 0.957 + }, + { + "start": 20570.9, + "end": 20574.2, + "probability": 0.9977 + }, + { + "start": 20574.44, + "end": 20574.62, + "probability": 0.7318 + }, + { + "start": 20575.28, + "end": 20575.96, + "probability": 0.6207 + }, + { + "start": 20576.28, + "end": 20577.84, + "probability": 0.9863 + }, + { + "start": 20578.28, + "end": 20581.66, + "probability": 0.9499 + }, + { + "start": 20581.94, + "end": 20582.64, + "probability": 0.8334 + }, + { + "start": 20583.72, + "end": 20585.68, + "probability": 0.755 + }, + { + "start": 20585.9, + "end": 20586.27, + "probability": 0.777 + }, + { + "start": 20586.36, + "end": 20586.88, + "probability": 0.458 + }, + { + "start": 20586.88, + "end": 20588.02, + "probability": 0.3926 + }, + { + "start": 20588.14, + "end": 20588.64, + "probability": 0.0679 + }, + { + "start": 20588.64, + "end": 20588.66, + "probability": 0.1948 + }, + { + "start": 20588.66, + "end": 20589.85, + "probability": 0.7411 + }, + { + "start": 20590.96, + "end": 20593.06, + "probability": 0.0625 + }, + { + "start": 20594.56, + "end": 20595.84, + "probability": 0.9121 + }, + { + "start": 20603.84, + "end": 20604.88, + "probability": 0.5815 + }, + { + "start": 20605.98, + "end": 20608.64, + "probability": 0.8108 + }, + { + "start": 20609.66, + "end": 20615.72, + "probability": 0.9932 + }, + { + "start": 20616.64, + "end": 20619.28, + "probability": 0.8769 + }, + { + "start": 20620.62, + "end": 20625.72, + "probability": 0.9989 + }, + { + "start": 20626.44, + "end": 20627.56, + "probability": 0.7083 + }, + { + "start": 20627.72, + "end": 20630.14, + "probability": 0.9798 + }, + { + "start": 20630.34, + "end": 20632.04, + "probability": 0.6982 + }, + { + "start": 20632.14, + "end": 20634.88, + "probability": 0.8696 + }, + { + "start": 20634.92, + "end": 20635.68, + "probability": 0.8233 + }, + { + "start": 20635.84, + "end": 20637.38, + "probability": 0.9841 + }, + { + "start": 20638.1, + "end": 20640.87, + "probability": 0.9715 + }, + { + "start": 20641.64, + "end": 20644.48, + "probability": 0.9578 + }, + { + "start": 20645.16, + "end": 20645.52, + "probability": 0.2953 + }, + { + "start": 20645.54, + "end": 20645.82, + "probability": 0.4326 + }, + { + "start": 20646.24, + "end": 20646.68, + "probability": 0.4996 + }, + { + "start": 20648.12, + "end": 20651.78, + "probability": 0.7905 + }, + { + "start": 20652.34, + "end": 20655.24, + "probability": 0.9316 + }, + { + "start": 20656.62, + "end": 20659.5, + "probability": 0.9735 + }, + { + "start": 20660.24, + "end": 20662.78, + "probability": 0.9864 + }, + { + "start": 20662.92, + "end": 20663.8, + "probability": 0.7986 + }, + { + "start": 20663.94, + "end": 20668.52, + "probability": 0.8379 + }, + { + "start": 20668.52, + "end": 20670.78, + "probability": 0.9897 + }, + { + "start": 20671.84, + "end": 20675.98, + "probability": 0.9984 + }, + { + "start": 20676.08, + "end": 20678.4, + "probability": 0.854 + }, + { + "start": 20679.88, + "end": 20681.88, + "probability": 0.6924 + }, + { + "start": 20682.96, + "end": 20684.52, + "probability": 0.9919 + }, + { + "start": 20685.4, + "end": 20687.8, + "probability": 0.8281 + }, + { + "start": 20688.36, + "end": 20690.44, + "probability": 0.9617 + }, + { + "start": 20691.64, + "end": 20696.34, + "probability": 0.8839 + }, + { + "start": 20696.96, + "end": 20699.7, + "probability": 0.9352 + }, + { + "start": 20700.22, + "end": 20700.76, + "probability": 0.7582 + }, + { + "start": 20701.28, + "end": 20701.62, + "probability": 0.9732 + }, + { + "start": 20702.0, + "end": 20702.48, + "probability": 0.7176 + }, + { + "start": 20702.66, + "end": 20708.56, + "probability": 0.9922 + }, + { + "start": 20709.58, + "end": 20710.26, + "probability": 0.7743 + }, + { + "start": 20710.36, + "end": 20713.02, + "probability": 0.9739 + }, + { + "start": 20713.12, + "end": 20713.96, + "probability": 0.989 + }, + { + "start": 20714.68, + "end": 20716.0, + "probability": 0.9979 + }, + { + "start": 20716.82, + "end": 20718.28, + "probability": 0.5695 + }, + { + "start": 20718.54, + "end": 20719.64, + "probability": 0.8391 + }, + { + "start": 20719.68, + "end": 20720.82, + "probability": 0.9286 + }, + { + "start": 20721.16, + "end": 20722.08, + "probability": 0.896 + }, + { + "start": 20722.2, + "end": 20724.84, + "probability": 0.9937 + }, + { + "start": 20725.52, + "end": 20729.16, + "probability": 0.7732 + }, + { + "start": 20729.36, + "end": 20730.68, + "probability": 0.7622 + }, + { + "start": 20731.36, + "end": 20732.7, + "probability": 0.8724 + }, + { + "start": 20732.8, + "end": 20735.56, + "probability": 0.9497 + }, + { + "start": 20736.08, + "end": 20738.7, + "probability": 0.9646 + }, + { + "start": 20739.7, + "end": 20741.2, + "probability": 0.9421 + }, + { + "start": 20741.26, + "end": 20742.32, + "probability": 0.6722 + }, + { + "start": 20742.78, + "end": 20744.36, + "probability": 0.9682 + }, + { + "start": 20744.74, + "end": 20746.0, + "probability": 0.9797 + }, + { + "start": 20746.74, + "end": 20747.98, + "probability": 0.8271 + }, + { + "start": 20748.08, + "end": 20752.6, + "probability": 0.9587 + }, + { + "start": 20752.6, + "end": 20757.66, + "probability": 0.8311 + }, + { + "start": 20757.76, + "end": 20761.02, + "probability": 0.9481 + }, + { + "start": 20761.86, + "end": 20762.62, + "probability": 0.6438 + }, + { + "start": 20762.74, + "end": 20763.14, + "probability": 0.468 + }, + { + "start": 20763.22, + "end": 20763.64, + "probability": 0.5398 + }, + { + "start": 20763.72, + "end": 20764.5, + "probability": 0.8039 + }, + { + "start": 20764.56, + "end": 20766.98, + "probability": 0.7486 + }, + { + "start": 20768.28, + "end": 20768.94, + "probability": 0.7671 + }, + { + "start": 20769.04, + "end": 20773.5, + "probability": 0.8571 + }, + { + "start": 20774.14, + "end": 20776.5, + "probability": 0.9568 + }, + { + "start": 20778.72, + "end": 20780.46, + "probability": 0.9845 + }, + { + "start": 20781.2, + "end": 20782.0, + "probability": 0.9243 + }, + { + "start": 20782.96, + "end": 20784.22, + "probability": 0.8862 + }, + { + "start": 20785.52, + "end": 20786.56, + "probability": 0.9243 + }, + { + "start": 20786.68, + "end": 20787.58, + "probability": 0.944 + }, + { + "start": 20788.06, + "end": 20788.66, + "probability": 0.8018 + }, + { + "start": 20789.08, + "end": 20789.08, + "probability": 0.4245 + }, + { + "start": 20789.08, + "end": 20789.5, + "probability": 0.5115 + }, + { + "start": 20790.1, + "end": 20790.98, + "probability": 0.924 + }, + { + "start": 20791.84, + "end": 20792.62, + "probability": 0.8058 + }, + { + "start": 20793.02, + "end": 20794.8, + "probability": 0.8936 + }, + { + "start": 20795.8, + "end": 20798.08, + "probability": 0.9868 + }, + { + "start": 20798.14, + "end": 20799.0, + "probability": 0.853 + }, + { + "start": 20799.06, + "end": 20799.7, + "probability": 0.9494 + }, + { + "start": 20800.78, + "end": 20801.88, + "probability": 0.7707 + }, + { + "start": 20801.96, + "end": 20803.1, + "probability": 0.3683 + }, + { + "start": 20803.6, + "end": 20805.52, + "probability": 0.9159 + }, + { + "start": 20805.66, + "end": 20806.98, + "probability": 0.4248 + }, + { + "start": 20806.98, + "end": 20808.06, + "probability": 0.3162 + }, + { + "start": 20808.14, + "end": 20808.42, + "probability": 0.3266 + }, + { + "start": 20808.52, + "end": 20808.94, + "probability": 0.6482 + }, + { + "start": 20809.44, + "end": 20812.0, + "probability": 0.9379 + }, + { + "start": 20812.32, + "end": 20812.76, + "probability": 0.9578 + }, + { + "start": 20813.22, + "end": 20813.72, + "probability": 0.736 + }, + { + "start": 20813.82, + "end": 20814.92, + "probability": 0.8721 + }, + { + "start": 20815.02, + "end": 20816.04, + "probability": 0.9704 + }, + { + "start": 20816.1, + "end": 20816.98, + "probability": 0.9459 + }, + { + "start": 20817.68, + "end": 20819.98, + "probability": 0.9373 + }, + { + "start": 20820.04, + "end": 20821.42, + "probability": 0.9503 + }, + { + "start": 20822.08, + "end": 20822.84, + "probability": 0.7882 + }, + { + "start": 20823.58, + "end": 20826.54, + "probability": 0.8374 + }, + { + "start": 20827.22, + "end": 20827.82, + "probability": 0.9077 + }, + { + "start": 20828.42, + "end": 20830.9, + "probability": 0.825 + }, + { + "start": 20831.52, + "end": 20833.34, + "probability": 0.9143 + }, + { + "start": 20833.36, + "end": 20834.74, + "probability": 0.9389 + }, + { + "start": 20834.92, + "end": 20835.04, + "probability": 0.1739 + }, + { + "start": 20835.1, + "end": 20836.88, + "probability": 0.9354 + }, + { + "start": 20837.38, + "end": 20840.14, + "probability": 0.9881 + }, + { + "start": 20840.96, + "end": 20841.48, + "probability": 0.6526 + }, + { + "start": 20841.56, + "end": 20843.86, + "probability": 0.9706 + }, + { + "start": 20843.96, + "end": 20845.68, + "probability": 0.9331 + }, + { + "start": 20846.52, + "end": 20849.24, + "probability": 0.9793 + }, + { + "start": 20850.56, + "end": 20852.64, + "probability": 0.9075 + }, + { + "start": 20853.42, + "end": 20855.54, + "probability": 0.8606 + }, + { + "start": 20856.68, + "end": 20858.4, + "probability": 0.4837 + }, + { + "start": 20873.26, + "end": 20873.26, + "probability": 0.1399 + }, + { + "start": 20876.11, + "end": 20876.58, + "probability": 0.1894 + }, + { + "start": 20878.31, + "end": 20881.28, + "probability": 0.8177 + }, + { + "start": 20883.01, + "end": 20886.96, + "probability": 0.8583 + }, + { + "start": 20887.71, + "end": 20892.82, + "probability": 0.9958 + }, + { + "start": 20893.69, + "end": 20893.85, + "probability": 0.8735 + }, + { + "start": 20895.29, + "end": 20899.91, + "probability": 0.7277 + }, + { + "start": 20900.59, + "end": 20901.52, + "probability": 0.8236 + }, + { + "start": 20902.61, + "end": 20903.67, + "probability": 0.8353 + }, + { + "start": 20904.33, + "end": 20906.31, + "probability": 0.957 + }, + { + "start": 20906.41, + "end": 20908.61, + "probability": 0.9888 + }, + { + "start": 20910.23, + "end": 20912.65, + "probability": 0.9878 + }, + { + "start": 20912.75, + "end": 20914.93, + "probability": 0.9589 + }, + { + "start": 20916.17, + "end": 20918.81, + "probability": 0.9844 + }, + { + "start": 20919.71, + "end": 20924.99, + "probability": 0.8854 + }, + { + "start": 20925.63, + "end": 20925.73, + "probability": 0.824 + }, + { + "start": 20926.51, + "end": 20927.76, + "probability": 0.9672 + }, + { + "start": 20929.41, + "end": 20934.21, + "probability": 0.9875 + }, + { + "start": 20934.75, + "end": 20936.61, + "probability": 0.8701 + }, + { + "start": 20936.63, + "end": 20939.57, + "probability": 0.8915 + }, + { + "start": 20940.19, + "end": 20940.55, + "probability": 0.8456 + }, + { + "start": 20940.89, + "end": 20942.17, + "probability": 0.9206 + }, + { + "start": 20943.61, + "end": 20945.61, + "probability": 0.5868 + }, + { + "start": 20945.93, + "end": 20949.31, + "probability": 0.8795 + }, + { + "start": 20949.31, + "end": 20952.53, + "probability": 0.8645 + }, + { + "start": 20954.79, + "end": 20958.57, + "probability": 0.9928 + }, + { + "start": 20958.65, + "end": 20959.39, + "probability": 0.929 + }, + { + "start": 20959.79, + "end": 20959.95, + "probability": 0.0087 + }, + { + "start": 20961.25, + "end": 20966.05, + "probability": 0.6641 + }, + { + "start": 20967.07, + "end": 20969.79, + "probability": 0.6484 + }, + { + "start": 20970.53, + "end": 20974.17, + "probability": 0.9927 + }, + { + "start": 20974.65, + "end": 20981.89, + "probability": 0.9395 + }, + { + "start": 20981.93, + "end": 20989.43, + "probability": 0.989 + }, + { + "start": 20990.15, + "end": 20994.13, + "probability": 0.968 + }, + { + "start": 20994.71, + "end": 20997.73, + "probability": 0.9979 + }, + { + "start": 20997.91, + "end": 21000.39, + "probability": 0.9956 + }, + { + "start": 21001.61, + "end": 21002.24, + "probability": 0.8999 + }, + { + "start": 21003.99, + "end": 21012.55, + "probability": 0.982 + }, + { + "start": 21012.55, + "end": 21016.49, + "probability": 0.999 + }, + { + "start": 21017.09, + "end": 21018.39, + "probability": 0.9516 + }, + { + "start": 21019.19, + "end": 21019.67, + "probability": 0.6512 + }, + { + "start": 21019.67, + "end": 21021.77, + "probability": 0.9089 + }, + { + "start": 21021.77, + "end": 21025.75, + "probability": 0.7436 + }, + { + "start": 21025.99, + "end": 21026.93, + "probability": 0.5078 + }, + { + "start": 21027.19, + "end": 21029.01, + "probability": 0.8669 + }, + { + "start": 21029.53, + "end": 21032.45, + "probability": 0.8784 + }, + { + "start": 21032.81, + "end": 21034.71, + "probability": 0.9807 + }, + { + "start": 21034.71, + "end": 21039.89, + "probability": 0.7638 + }, + { + "start": 21040.37, + "end": 21047.99, + "probability": 0.5367 + }, + { + "start": 21048.15, + "end": 21054.67, + "probability": 0.9641 + }, + { + "start": 21055.17, + "end": 21057.97, + "probability": 0.812 + }, + { + "start": 21058.41, + "end": 21060.97, + "probability": 0.8015 + }, + { + "start": 21061.55, + "end": 21063.25, + "probability": 0.8764 + }, + { + "start": 21063.71, + "end": 21064.87, + "probability": 0.9479 + }, + { + "start": 21064.95, + "end": 21067.13, + "probability": 0.8807 + }, + { + "start": 21067.25, + "end": 21069.03, + "probability": 0.9331 + }, + { + "start": 21069.17, + "end": 21069.39, + "probability": 0.3568 + }, + { + "start": 21069.77, + "end": 21070.31, + "probability": 0.7124 + }, + { + "start": 21070.55, + "end": 21071.51, + "probability": 0.9305 + }, + { + "start": 21076.21, + "end": 21077.47, + "probability": 0.6508 + }, + { + "start": 21078.11, + "end": 21079.53, + "probability": 0.9341 + }, + { + "start": 21085.05, + "end": 21086.83, + "probability": 0.7113 + }, + { + "start": 21088.45, + "end": 21089.39, + "probability": 0.7749 + }, + { + "start": 21095.35, + "end": 21096.15, + "probability": 0.0691 + }, + { + "start": 21098.49, + "end": 21099.65, + "probability": 0.5607 + }, + { + "start": 21101.79, + "end": 21106.21, + "probability": 0.9913 + }, + { + "start": 21106.35, + "end": 21109.97, + "probability": 0.5714 + }, + { + "start": 21111.09, + "end": 21111.63, + "probability": 0.8427 + }, + { + "start": 21111.97, + "end": 21113.79, + "probability": 0.6283 + }, + { + "start": 21113.89, + "end": 21114.26, + "probability": 0.9149 + }, + { + "start": 21114.51, + "end": 21115.06, + "probability": 0.9736 + }, + { + "start": 21115.41, + "end": 21115.47, + "probability": 0.2061 + }, + { + "start": 21115.67, + "end": 21116.79, + "probability": 0.975 + }, + { + "start": 21116.89, + "end": 21122.21, + "probability": 0.9864 + }, + { + "start": 21122.55, + "end": 21125.41, + "probability": 0.7886 + }, + { + "start": 21126.65, + "end": 21131.01, + "probability": 0.9869 + }, + { + "start": 21131.09, + "end": 21133.75, + "probability": 0.832 + }, + { + "start": 21133.93, + "end": 21134.99, + "probability": 0.5298 + }, + { + "start": 21135.61, + "end": 21138.07, + "probability": 0.7495 + }, + { + "start": 21138.75, + "end": 21142.07, + "probability": 0.682 + }, + { + "start": 21143.03, + "end": 21144.0, + "probability": 0.9644 + }, + { + "start": 21144.69, + "end": 21145.53, + "probability": 0.9852 + }, + { + "start": 21145.85, + "end": 21146.89, + "probability": 0.9013 + }, + { + "start": 21146.91, + "end": 21150.95, + "probability": 0.895 + }, + { + "start": 21151.29, + "end": 21152.27, + "probability": 0.5273 + }, + { + "start": 21152.69, + "end": 21153.07, + "probability": 0.764 + }, + { + "start": 21153.11, + "end": 21154.55, + "probability": 0.9647 + }, + { + "start": 21154.87, + "end": 21156.47, + "probability": 0.8991 + }, + { + "start": 21156.67, + "end": 21158.25, + "probability": 0.664 + }, + { + "start": 21158.43, + "end": 21160.27, + "probability": 0.9812 + }, + { + "start": 21160.35, + "end": 21163.09, + "probability": 0.9031 + }, + { + "start": 21164.35, + "end": 21166.47, + "probability": 0.9067 + }, + { + "start": 21166.65, + "end": 21167.59, + "probability": 0.9661 + }, + { + "start": 21167.65, + "end": 21169.03, + "probability": 0.9403 + }, + { + "start": 21169.11, + "end": 21170.21, + "probability": 0.8208 + }, + { + "start": 21170.83, + "end": 21171.49, + "probability": 0.9672 + }, + { + "start": 21171.57, + "end": 21174.19, + "probability": 0.8941 + }, + { + "start": 21174.25, + "end": 21174.93, + "probability": 0.831 + }, + { + "start": 21174.97, + "end": 21175.85, + "probability": 0.9146 + }, + { + "start": 21176.67, + "end": 21178.27, + "probability": 0.8799 + }, + { + "start": 21178.37, + "end": 21179.47, + "probability": 0.9233 + }, + { + "start": 21180.33, + "end": 21181.21, + "probability": 0.9909 + }, + { + "start": 21181.29, + "end": 21181.91, + "probability": 0.9888 + }, + { + "start": 21182.05, + "end": 21184.31, + "probability": 0.9497 + }, + { + "start": 21185.39, + "end": 21185.73, + "probability": 0.6992 + }, + { + "start": 21185.85, + "end": 21186.47, + "probability": 0.8693 + }, + { + "start": 21186.51, + "end": 21187.73, + "probability": 0.9915 + }, + { + "start": 21187.83, + "end": 21188.47, + "probability": 0.7684 + }, + { + "start": 21188.51, + "end": 21190.02, + "probability": 0.9512 + }, + { + "start": 21191.05, + "end": 21191.41, + "probability": 0.7705 + }, + { + "start": 21191.63, + "end": 21191.97, + "probability": 0.9708 + }, + { + "start": 21192.39, + "end": 21196.35, + "probability": 0.992 + }, + { + "start": 21196.85, + "end": 21197.53, + "probability": 0.9822 + }, + { + "start": 21197.67, + "end": 21198.99, + "probability": 0.7743 + }, + { + "start": 21199.45, + "end": 21203.51, + "probability": 0.9834 + }, + { + "start": 21204.51, + "end": 21205.53, + "probability": 0.9348 + }, + { + "start": 21205.81, + "end": 21207.03, + "probability": 0.9572 + }, + { + "start": 21207.19, + "end": 21208.13, + "probability": 0.6518 + }, + { + "start": 21208.19, + "end": 21209.39, + "probability": 0.8519 + }, + { + "start": 21209.75, + "end": 21211.77, + "probability": 0.7186 + }, + { + "start": 21212.55, + "end": 21214.57, + "probability": 0.9863 + }, + { + "start": 21214.87, + "end": 21215.53, + "probability": 0.6201 + }, + { + "start": 21215.63, + "end": 21216.89, + "probability": 0.4975 + }, + { + "start": 21217.45, + "end": 21220.33, + "probability": 0.9849 + }, + { + "start": 21220.43, + "end": 21221.08, + "probability": 0.9956 + }, + { + "start": 21221.95, + "end": 21222.19, + "probability": 0.5564 + }, + { + "start": 21222.49, + "end": 21224.45, + "probability": 0.9842 + }, + { + "start": 21224.75, + "end": 21225.49, + "probability": 0.749 + }, + { + "start": 21225.53, + "end": 21226.03, + "probability": 0.8427 + }, + { + "start": 21226.13, + "end": 21226.83, + "probability": 0.8052 + }, + { + "start": 21228.25, + "end": 21228.67, + "probability": 0.0278 + }, + { + "start": 21228.67, + "end": 21229.09, + "probability": 0.5485 + }, + { + "start": 21229.19, + "end": 21230.35, + "probability": 0.7662 + }, + { + "start": 21230.39, + "end": 21233.91, + "probability": 0.9772 + }, + { + "start": 21234.69, + "end": 21240.19, + "probability": 0.9862 + }, + { + "start": 21240.55, + "end": 21244.05, + "probability": 0.9889 + }, + { + "start": 21244.05, + "end": 21248.61, + "probability": 0.9873 + }, + { + "start": 21248.79, + "end": 21250.76, + "probability": 0.9551 + }, + { + "start": 21253.15, + "end": 21253.35, + "probability": 0.5446 + }, + { + "start": 21253.87, + "end": 21254.57, + "probability": 0.7869 + }, + { + "start": 21254.87, + "end": 21255.99, + "probability": 0.8671 + }, + { + "start": 21255.99, + "end": 21257.31, + "probability": 0.709 + }, + { + "start": 21257.65, + "end": 21258.79, + "probability": 0.9858 + }, + { + "start": 21258.97, + "end": 21259.83, + "probability": 0.9553 + }, + { + "start": 21259.89, + "end": 21262.15, + "probability": 0.822 + }, + { + "start": 21262.37, + "end": 21264.05, + "probability": 0.9576 + }, + { + "start": 21264.27, + "end": 21265.87, + "probability": 0.5098 + }, + { + "start": 21266.55, + "end": 21266.89, + "probability": 0.9102 + }, + { + "start": 21266.95, + "end": 21269.75, + "probability": 0.9092 + }, + { + "start": 21270.11, + "end": 21272.1, + "probability": 0.9938 + }, + { + "start": 21272.27, + "end": 21273.47, + "probability": 0.9014 + }, + { + "start": 21273.57, + "end": 21274.27, + "probability": 0.8043 + }, + { + "start": 21274.35, + "end": 21275.41, + "probability": 0.9863 + }, + { + "start": 21275.51, + "end": 21276.75, + "probability": 0.8837 + }, + { + "start": 21277.07, + "end": 21278.05, + "probability": 0.8789 + }, + { + "start": 21278.17, + "end": 21279.15, + "probability": 0.9572 + }, + { + "start": 21279.41, + "end": 21283.69, + "probability": 0.9021 + }, + { + "start": 21283.69, + "end": 21286.01, + "probability": 0.9395 + }, + { + "start": 21286.11, + "end": 21287.33, + "probability": 0.6795 + }, + { + "start": 21287.43, + "end": 21288.07, + "probability": 0.9176 + }, + { + "start": 21289.65, + "end": 21290.41, + "probability": 0.8756 + }, + { + "start": 21290.49, + "end": 21291.62, + "probability": 0.8623 + }, + { + "start": 21291.83, + "end": 21294.35, + "probability": 0.9533 + }, + { + "start": 21294.47, + "end": 21295.19, + "probability": 0.7162 + }, + { + "start": 21295.57, + "end": 21296.31, + "probability": 0.9383 + }, + { + "start": 21296.49, + "end": 21297.45, + "probability": 0.9431 + }, + { + "start": 21297.91, + "end": 21299.55, + "probability": 0.9604 + }, + { + "start": 21299.57, + "end": 21300.47, + "probability": 0.9194 + }, + { + "start": 21300.73, + "end": 21305.27, + "probability": 0.9917 + }, + { + "start": 21305.67, + "end": 21307.29, + "probability": 0.9911 + }, + { + "start": 21307.45, + "end": 21308.09, + "probability": 0.8788 + }, + { + "start": 21308.45, + "end": 21309.34, + "probability": 0.9631 + }, + { + "start": 21309.45, + "end": 21312.67, + "probability": 0.9924 + }, + { + "start": 21312.85, + "end": 21315.49, + "probability": 0.9944 + }, + { + "start": 21316.15, + "end": 21319.53, + "probability": 0.8073 + }, + { + "start": 21320.13, + "end": 21323.43, + "probability": 0.9764 + }, + { + "start": 21323.83, + "end": 21326.25, + "probability": 0.99 + }, + { + "start": 21327.23, + "end": 21329.79, + "probability": 0.9972 + }, + { + "start": 21330.21, + "end": 21330.67, + "probability": 0.653 + }, + { + "start": 21330.93, + "end": 21331.71, + "probability": 0.984 + }, + { + "start": 21331.95, + "end": 21332.77, + "probability": 0.8281 + }, + { + "start": 21332.95, + "end": 21333.65, + "probability": 0.5206 + }, + { + "start": 21333.93, + "end": 21336.97, + "probability": 0.9165 + }, + { + "start": 21337.51, + "end": 21338.27, + "probability": 0.917 + }, + { + "start": 21339.13, + "end": 21339.73, + "probability": 0.6812 + }, + { + "start": 21339.83, + "end": 21342.21, + "probability": 0.7627 + }, + { + "start": 21342.47, + "end": 21344.95, + "probability": 0.8939 + }, + { + "start": 21346.39, + "end": 21347.75, + "probability": 0.9977 + }, + { + "start": 21356.05, + "end": 21360.33, + "probability": 0.2129 + }, + { + "start": 21361.25, + "end": 21363.85, + "probability": 0.4554 + }, + { + "start": 21363.93, + "end": 21366.01, + "probability": 0.9485 + }, + { + "start": 21366.69, + "end": 21366.91, + "probability": 0.5871 + }, + { + "start": 21367.03, + "end": 21370.75, + "probability": 0.8553 + }, + { + "start": 21370.75, + "end": 21371.27, + "probability": 0.8553 + }, + { + "start": 21371.41, + "end": 21372.79, + "probability": 0.933 + }, + { + "start": 21373.23, + "end": 21374.23, + "probability": 0.9777 + }, + { + "start": 21374.71, + "end": 21374.81, + "probability": 0.8634 + }, + { + "start": 21376.21, + "end": 21378.97, + "probability": 0.7866 + }, + { + "start": 21379.05, + "end": 21381.73, + "probability": 0.7925 + }, + { + "start": 21381.77, + "end": 21384.65, + "probability": 0.9126 + }, + { + "start": 21385.31, + "end": 21392.37, + "probability": 0.9844 + }, + { + "start": 21393.35, + "end": 21395.95, + "probability": 0.8191 + }, + { + "start": 21397.27, + "end": 21398.29, + "probability": 0.8761 + }, + { + "start": 21399.05, + "end": 21402.63, + "probability": 0.861 + }, + { + "start": 21402.73, + "end": 21404.99, + "probability": 0.9292 + }, + { + "start": 21405.45, + "end": 21411.87, + "probability": 0.9608 + }, + { + "start": 21412.85, + "end": 21413.51, + "probability": 0.4627 + }, + { + "start": 21414.59, + "end": 21416.07, + "probability": 0.5293 + }, + { + "start": 21416.75, + "end": 21418.29, + "probability": 0.8742 + }, + { + "start": 21418.93, + "end": 21420.33, + "probability": 0.7452 + }, + { + "start": 21420.45, + "end": 21421.47, + "probability": 0.6853 + }, + { + "start": 21422.29, + "end": 21425.43, + "probability": 0.7724 + }, + { + "start": 21426.13, + "end": 21427.05, + "probability": 0.4244 + }, + { + "start": 21427.59, + "end": 21431.79, + "probability": 0.7962 + }, + { + "start": 21432.33, + "end": 21434.16, + "probability": 0.9892 + }, + { + "start": 21436.35, + "end": 21440.53, + "probability": 0.8694 + }, + { + "start": 21442.05, + "end": 21443.75, + "probability": 0.0574 + }, + { + "start": 21444.73, + "end": 21448.05, + "probability": 0.9918 + }, + { + "start": 21449.17, + "end": 21452.47, + "probability": 0.5792 + }, + { + "start": 21453.11, + "end": 21454.73, + "probability": 0.8731 + }, + { + "start": 21455.27, + "end": 21456.75, + "probability": 0.9476 + }, + { + "start": 21457.31, + "end": 21458.81, + "probability": 0.8389 + }, + { + "start": 21459.63, + "end": 21460.89, + "probability": 0.9165 + }, + { + "start": 21461.01, + "end": 21464.67, + "probability": 0.9873 + }, + { + "start": 21465.59, + "end": 21468.91, + "probability": 0.8417 + }, + { + "start": 21470.44, + "end": 21477.81, + "probability": 0.9475 + }, + { + "start": 21478.23, + "end": 21480.01, + "probability": 0.9906 + }, + { + "start": 21480.69, + "end": 21482.19, + "probability": 0.9912 + }, + { + "start": 21483.15, + "end": 21487.35, + "probability": 0.8541 + }, + { + "start": 21488.29, + "end": 21489.75, + "probability": 0.3611 + }, + { + "start": 21490.47, + "end": 21494.82, + "probability": 0.9522 + }, + { + "start": 21495.41, + "end": 21500.73, + "probability": 0.883 + }, + { + "start": 21502.11, + "end": 21504.93, + "probability": 0.8565 + }, + { + "start": 21505.71, + "end": 21506.9, + "probability": 0.7236 + }, + { + "start": 21508.61, + "end": 21513.89, + "probability": 0.9659 + }, + { + "start": 21515.05, + "end": 21515.95, + "probability": 0.5077 + }, + { + "start": 21517.19, + "end": 21517.67, + "probability": 0.7283 + }, + { + "start": 21517.79, + "end": 21519.39, + "probability": 0.8814 + }, + { + "start": 21519.97, + "end": 21520.79, + "probability": 0.7857 + }, + { + "start": 21521.75, + "end": 21523.71, + "probability": 0.9658 + }, + { + "start": 21523.99, + "end": 21524.43, + "probability": 0.8439 + }, + { + "start": 21525.39, + "end": 21527.01, + "probability": 0.9063 + }, + { + "start": 21528.65, + "end": 21529.79, + "probability": 0.9774 + }, + { + "start": 21531.63, + "end": 21531.81, + "probability": 0.0795 + }, + { + "start": 21531.81, + "end": 21532.35, + "probability": 0.8506 + }, + { + "start": 21532.65, + "end": 21534.01, + "probability": 0.89 + }, + { + "start": 21534.11, + "end": 21535.17, + "probability": 0.8712 + }, + { + "start": 21535.85, + "end": 21539.35, + "probability": 0.9366 + }, + { + "start": 21539.47, + "end": 21540.13, + "probability": 0.6817 + }, + { + "start": 21541.05, + "end": 21541.09, + "probability": 0.1604 + }, + { + "start": 21541.09, + "end": 21542.73, + "probability": 0.6862 + }, + { + "start": 21542.75, + "end": 21544.06, + "probability": 0.9482 + }, + { + "start": 21544.59, + "end": 21549.33, + "probability": 0.674 + }, + { + "start": 21549.85, + "end": 21551.0, + "probability": 0.293 + }, + { + "start": 21551.61, + "end": 21554.41, + "probability": 0.7675 + }, + { + "start": 21554.51, + "end": 21555.63, + "probability": 0.7927 + }, + { + "start": 21556.05, + "end": 21560.07, + "probability": 0.9429 + }, + { + "start": 21560.07, + "end": 21567.65, + "probability": 0.9631 + }, + { + "start": 21567.73, + "end": 21568.09, + "probability": 0.4149 + }, + { + "start": 21568.35, + "end": 21569.51, + "probability": 0.9775 + }, + { + "start": 21569.73, + "end": 21571.17, + "probability": 0.6605 + }, + { + "start": 21571.43, + "end": 21572.57, + "probability": 0.958 + }, + { + "start": 21573.33, + "end": 21577.37, + "probability": 0.99 + }, + { + "start": 21577.69, + "end": 21578.42, + "probability": 0.6439 + }, + { + "start": 21578.57, + "end": 21579.43, + "probability": 0.6485 + }, + { + "start": 21579.53, + "end": 21580.53, + "probability": 0.8761 + }, + { + "start": 21581.67, + "end": 21582.48, + "probability": 0.9556 + }, + { + "start": 21584.49, + "end": 21584.55, + "probability": 0.7158 + }, + { + "start": 21584.55, + "end": 21584.55, + "probability": 0.0836 + }, + { + "start": 21584.55, + "end": 21585.77, + "probability": 0.4024 + }, + { + "start": 21585.87, + "end": 21587.45, + "probability": 0.841 + }, + { + "start": 21587.65, + "end": 21588.53, + "probability": 0.8186 + }, + { + "start": 21588.61, + "end": 21589.97, + "probability": 0.62 + }, + { + "start": 21589.97, + "end": 21592.39, + "probability": 0.9323 + }, + { + "start": 21593.03, + "end": 21596.17, + "probability": 0.5827 + }, + { + "start": 21596.27, + "end": 21604.43, + "probability": 0.7016 + }, + { + "start": 21604.51, + "end": 21607.19, + "probability": 0.624 + }, + { + "start": 21607.35, + "end": 21608.09, + "probability": 0.8396 + }, + { + "start": 21608.15, + "end": 21611.33, + "probability": 0.5111 + }, + { + "start": 21611.83, + "end": 21612.89, + "probability": 0.8316 + }, + { + "start": 21614.23, + "end": 21614.43, + "probability": 0.3421 + }, + { + "start": 21614.43, + "end": 21614.43, + "probability": 0.4328 + }, + { + "start": 21614.49, + "end": 21616.93, + "probability": 0.8734 + }, + { + "start": 21616.99, + "end": 21619.05, + "probability": 0.8853 + }, + { + "start": 21619.91, + "end": 21620.99, + "probability": 0.1843 + }, + { + "start": 21620.99, + "end": 21620.99, + "probability": 0.0846 + }, + { + "start": 21620.99, + "end": 21622.48, + "probability": 0.6555 + }, + { + "start": 21623.13, + "end": 21627.36, + "probability": 0.5394 + }, + { + "start": 21627.63, + "end": 21630.11, + "probability": 0.8035 + }, + { + "start": 21630.21, + "end": 21632.77, + "probability": 0.6339 + }, + { + "start": 21633.25, + "end": 21637.35, + "probability": 0.3846 + }, + { + "start": 21637.35, + "end": 21639.77, + "probability": 0.8267 + }, + { + "start": 21639.77, + "end": 21642.79, + "probability": 0.9669 + }, + { + "start": 21643.29, + "end": 21644.19, + "probability": 0.728 + }, + { + "start": 21646.11, + "end": 21646.29, + "probability": 0.1071 + }, + { + "start": 21649.23, + "end": 21652.27, + "probability": 0.5836 + }, + { + "start": 21652.83, + "end": 21654.63, + "probability": 0.8728 + }, + { + "start": 21655.33, + "end": 21659.41, + "probability": 0.7996 + }, + { + "start": 21659.67, + "end": 21661.5, + "probability": 0.463 + }, + { + "start": 21662.69, + "end": 21664.13, + "probability": 0.7555 + }, + { + "start": 21664.19, + "end": 21665.91, + "probability": 0.8726 + }, + { + "start": 21666.89, + "end": 21669.43, + "probability": 0.7605 + }, + { + "start": 21670.47, + "end": 21672.59, + "probability": 0.9895 + }, + { + "start": 21674.35, + "end": 21675.29, + "probability": 0.8591 + }, + { + "start": 21677.73, + "end": 21678.99, + "probability": 0.9685 + }, + { + "start": 21679.69, + "end": 21684.65, + "probability": 0.9464 + }, + { + "start": 21685.25, + "end": 21688.95, + "probability": 0.9867 + }, + { + "start": 21690.63, + "end": 21695.03, + "probability": 0.9905 + }, + { + "start": 21695.65, + "end": 21697.45, + "probability": 0.587 + }, + { + "start": 21698.29, + "end": 21700.77, + "probability": 0.9485 + }, + { + "start": 21701.17, + "end": 21702.27, + "probability": 0.9688 + }, + { + "start": 21703.97, + "end": 21706.85, + "probability": 0.9953 + }, + { + "start": 21707.47, + "end": 21712.43, + "probability": 0.9886 + }, + { + "start": 21713.73, + "end": 21717.69, + "probability": 0.9763 + }, + { + "start": 21718.63, + "end": 21720.35, + "probability": 0.8589 + }, + { + "start": 21720.93, + "end": 21723.01, + "probability": 0.9929 + }, + { + "start": 21726.35, + "end": 21728.71, + "probability": 0.962 + }, + { + "start": 21728.71, + "end": 21729.29, + "probability": 0.7517 + }, + { + "start": 21730.07, + "end": 21731.15, + "probability": 0.6243 + }, + { + "start": 21732.19, + "end": 21738.23, + "probability": 0.8909 + }, + { + "start": 21739.21, + "end": 21741.71, + "probability": 0.9814 + }, + { + "start": 21743.21, + "end": 21747.45, + "probability": 0.9793 + }, + { + "start": 21747.97, + "end": 21750.13, + "probability": 0.9985 + }, + { + "start": 21750.59, + "end": 21752.13, + "probability": 0.9985 + }, + { + "start": 21752.63, + "end": 21756.25, + "probability": 0.871 + }, + { + "start": 21756.91, + "end": 21758.26, + "probability": 0.77 + }, + { + "start": 21759.27, + "end": 21762.41, + "probability": 0.9603 + }, + { + "start": 21762.53, + "end": 21763.55, + "probability": 0.9249 + }, + { + "start": 21763.61, + "end": 21764.73, + "probability": 0.9961 + }, + { + "start": 21766.87, + "end": 21771.43, + "probability": 0.809 + }, + { + "start": 21771.73, + "end": 21773.09, + "probability": 0.9591 + }, + { + "start": 21774.05, + "end": 21776.41, + "probability": 0.8138 + }, + { + "start": 21776.63, + "end": 21777.55, + "probability": 0.8708 + }, + { + "start": 21778.13, + "end": 21779.39, + "probability": 0.9639 + }, + { + "start": 21780.05, + "end": 21780.29, + "probability": 0.4758 + }, + { + "start": 21780.33, + "end": 21782.73, + "probability": 0.9509 + }, + { + "start": 21783.53, + "end": 21784.37, + "probability": 0.6174 + }, + { + "start": 21784.49, + "end": 21785.45, + "probability": 0.9003 + }, + { + "start": 21785.51, + "end": 21786.4, + "probability": 0.9845 + }, + { + "start": 21799.45, + "end": 21799.67, + "probability": 0.8726 + }, + { + "start": 21801.41, + "end": 21801.81, + "probability": 0.0238 + }, + { + "start": 21801.81, + "end": 21805.27, + "probability": 0.0138 + }, + { + "start": 21806.29, + "end": 21809.65, + "probability": 0.043 + }, + { + "start": 21812.24, + "end": 21815.37, + "probability": 0.1115 + }, + { + "start": 21821.05, + "end": 21823.05, + "probability": 0.0266 + }, + { + "start": 21837.99, + "end": 21838.33, + "probability": 0.135 + }, + { + "start": 21839.27, + "end": 21839.45, + "probability": 0.5098 + }, + { + "start": 21840.89, + "end": 21840.99, + "probability": 0.0175 + }, + { + "start": 21841.95, + "end": 21843.75, + "probability": 0.049 + }, + { + "start": 21843.75, + "end": 21844.35, + "probability": 0.3003 + }, + { + "start": 21844.41, + "end": 21845.41, + "probability": 0.045 + }, + { + "start": 21845.61, + "end": 21846.05, + "probability": 0.0932 + }, + { + "start": 21851.59, + "end": 21853.13, + "probability": 0.4735 + }, + { + "start": 21854.79, + "end": 21856.03, + "probability": 0.6444 + }, + { + "start": 21856.57, + "end": 21859.53, + "probability": 0.9358 + }, + { + "start": 21859.73, + "end": 21861.03, + "probability": 0.9204 + }, + { + "start": 21861.33, + "end": 21862.89, + "probability": 0.9374 + }, + { + "start": 21863.09, + "end": 21864.23, + "probability": 0.5483 + }, + { + "start": 21866.25, + "end": 21872.99, + "probability": 0.812 + }, + { + "start": 21874.23, + "end": 21877.6, + "probability": 0.5444 + }, + { + "start": 21879.55, + "end": 21880.23, + "probability": 0.8601 + }, + { + "start": 21882.03, + "end": 21883.23, + "probability": 0.9812 + }, + { + "start": 21885.13, + "end": 21889.95, + "probability": 0.9207 + }, + { + "start": 21890.99, + "end": 21896.03, + "probability": 0.9756 + }, + { + "start": 21896.83, + "end": 21898.73, + "probability": 0.8318 + }, + { + "start": 21900.63, + "end": 21902.33, + "probability": 0.9966 + }, + { + "start": 21904.53, + "end": 21907.17, + "probability": 0.7655 + }, + { + "start": 21907.47, + "end": 21911.77, + "probability": 0.9976 + }, + { + "start": 21913.33, + "end": 21920.25, + "probability": 0.9951 + }, + { + "start": 21922.17, + "end": 21924.53, + "probability": 0.8855 + }, + { + "start": 21925.13, + "end": 21926.53, + "probability": 0.9714 + }, + { + "start": 21928.17, + "end": 21930.45, + "probability": 0.9537 + }, + { + "start": 21931.81, + "end": 21934.45, + "probability": 0.1468 + }, + { + "start": 21934.45, + "end": 21940.77, + "probability": 0.7599 + }, + { + "start": 21940.93, + "end": 21946.03, + "probability": 0.7394 + }, + { + "start": 21948.23, + "end": 21952.33, + "probability": 0.7526 + }, + { + "start": 21953.17, + "end": 21954.57, + "probability": 0.8016 + }, + { + "start": 21955.61, + "end": 21957.05, + "probability": 0.9717 + }, + { + "start": 21957.11, + "end": 21962.03, + "probability": 0.9807 + }, + { + "start": 21963.13, + "end": 21968.99, + "probability": 0.7997 + }, + { + "start": 21969.31, + "end": 21969.53, + "probability": 0.1834 + }, + { + "start": 21970.41, + "end": 21971.53, + "probability": 0.1374 + }, + { + "start": 21971.97, + "end": 21972.74, + "probability": 0.4506 + }, + { + "start": 21972.83, + "end": 21974.41, + "probability": 0.6985 + }, + { + "start": 21974.49, + "end": 21976.45, + "probability": 0.9515 + }, + { + "start": 21976.91, + "end": 21979.99, + "probability": 0.94 + }, + { + "start": 21980.01, + "end": 21981.86, + "probability": 0.9699 + }, + { + "start": 21982.41, + "end": 21983.61, + "probability": 0.9365 + }, + { + "start": 21983.83, + "end": 21984.49, + "probability": 0.7495 + }, + { + "start": 21985.49, + "end": 21987.09, + "probability": 0.1912 + }, + { + "start": 21987.25, + "end": 21988.41, + "probability": 0.5357 + }, + { + "start": 21988.63, + "end": 21990.67, + "probability": 0.6734 + }, + { + "start": 21990.67, + "end": 21991.39, + "probability": 0.4553 + }, + { + "start": 21991.39, + "end": 21991.39, + "probability": 0.1502 + }, + { + "start": 21991.39, + "end": 21991.39, + "probability": 0.0392 + }, + { + "start": 21991.39, + "end": 21992.93, + "probability": 0.6222 + }, + { + "start": 21993.05, + "end": 21994.05, + "probability": 0.4877 + }, + { + "start": 21994.75, + "end": 21997.07, + "probability": 0.4893 + }, + { + "start": 21997.71, + "end": 21998.49, + "probability": 0.1085 + }, + { + "start": 22000.85, + "end": 22001.11, + "probability": 0.1438 + }, + { + "start": 22001.11, + "end": 22004.07, + "probability": 0.5306 + }, + { + "start": 22004.29, + "end": 22005.31, + "probability": 0.1111 + }, + { + "start": 22005.31, + "end": 22006.87, + "probability": 0.0985 + }, + { + "start": 22007.31, + "end": 22008.15, + "probability": 0.2354 + }, + { + "start": 22009.01, + "end": 22011.69, + "probability": 0.9718 + }, + { + "start": 22018.17, + "end": 22020.67, + "probability": 0.3844 + }, + { + "start": 22021.23, + "end": 22023.33, + "probability": 0.7673 + }, + { + "start": 22024.43, + "end": 22025.27, + "probability": 0.4042 + }, + { + "start": 22025.37, + "end": 22028.05, + "probability": 0.5722 + }, + { + "start": 22029.1, + "end": 22032.7, + "probability": 0.1429 + }, + { + "start": 22033.85, + "end": 22034.03, + "probability": 0.11 + }, + { + "start": 22034.63, + "end": 22034.69, + "probability": 0.0 + }, + { + "start": 22035.35, + "end": 22035.45, + "probability": 0.0007 + }, + { + "start": 22036.25, + "end": 22038.43, + "probability": 0.0734 + }, + { + "start": 22039.13, + "end": 22041.69, + "probability": 0.1729 + }, + { + "start": 22043.67, + "end": 22046.19, + "probability": 0.5225 + }, + { + "start": 22046.35, + "end": 22047.13, + "probability": 0.7155 + }, + { + "start": 22047.19, + "end": 22052.41, + "probability": 0.9601 + }, + { + "start": 22063.91, + "end": 22064.05, + "probability": 0.4931 + }, + { + "start": 22064.05, + "end": 22065.75, + "probability": 0.9661 + }, + { + "start": 22066.81, + "end": 22068.47, + "probability": 0.7178 + }, + { + "start": 22068.53, + "end": 22068.53, + "probability": 0.4005 + }, + { + "start": 22068.75, + "end": 22071.95, + "probability": 0.8879 + }, + { + "start": 22071.95, + "end": 22075.99, + "probability": 0.8725 + }, + { + "start": 22076.71, + "end": 22080.51, + "probability": 0.9618 + }, + { + "start": 22080.51, + "end": 22083.71, + "probability": 0.7497 + }, + { + "start": 22084.45, + "end": 22087.11, + "probability": 0.962 + }, + { + "start": 22091.05, + "end": 22091.31, + "probability": 0.7389 + }, + { + "start": 22103.89, + "end": 22104.89, + "probability": 0.5327 + }, + { + "start": 22104.95, + "end": 22105.83, + "probability": 0.8218 + }, + { + "start": 22106.15, + "end": 22111.61, + "probability": 0.9845 + }, + { + "start": 22111.61, + "end": 22115.53, + "probability": 0.8543 + }, + { + "start": 22115.69, + "end": 22115.89, + "probability": 0.1918 + }, + { + "start": 22116.05, + "end": 22116.49, + "probability": 0.8386 + }, + { + "start": 22117.43, + "end": 22120.63, + "probability": 0.9919 + }, + { + "start": 22120.63, + "end": 22125.55, + "probability": 0.8922 + }, + { + "start": 22125.71, + "end": 22126.25, + "probability": 0.8451 + }, + { + "start": 22126.43, + "end": 22128.91, + "probability": 0.9527 + }, + { + "start": 22129.47, + "end": 22131.89, + "probability": 0.998 + }, + { + "start": 22132.67, + "end": 22133.17, + "probability": 0.7437 + }, + { + "start": 22133.29, + "end": 22134.07, + "probability": 0.8783 + }, + { + "start": 22134.37, + "end": 22135.35, + "probability": 0.8507 + }, + { + "start": 22135.41, + "end": 22136.45, + "probability": 0.937 + }, + { + "start": 22136.51, + "end": 22139.05, + "probability": 0.9398 + }, + { + "start": 22139.61, + "end": 22143.91, + "probability": 0.9848 + }, + { + "start": 22145.07, + "end": 22146.05, + "probability": 0.9326 + }, + { + "start": 22146.29, + "end": 22150.21, + "probability": 0.9917 + }, + { + "start": 22150.85, + "end": 22153.53, + "probability": 0.9491 + }, + { + "start": 22153.53, + "end": 22156.57, + "probability": 0.9101 + }, + { + "start": 22156.65, + "end": 22157.23, + "probability": 0.8297 + }, + { + "start": 22157.55, + "end": 22160.45, + "probability": 0.9954 + }, + { + "start": 22160.45, + "end": 22162.79, + "probability": 0.9875 + }, + { + "start": 22163.43, + "end": 22166.61, + "probability": 0.9946 + }, + { + "start": 22166.61, + "end": 22169.89, + "probability": 0.9978 + }, + { + "start": 22170.65, + "end": 22173.15, + "probability": 0.9507 + }, + { + "start": 22173.29, + "end": 22176.69, + "probability": 0.9491 + }, + { + "start": 22177.71, + "end": 22179.81, + "probability": 0.6531 + }, + { + "start": 22180.09, + "end": 22183.77, + "probability": 0.95 + }, + { + "start": 22183.97, + "end": 22188.65, + "probability": 0.9027 + }, + { + "start": 22189.25, + "end": 22189.79, + "probability": 0.4978 + }, + { + "start": 22189.99, + "end": 22192.35, + "probability": 0.8018 + }, + { + "start": 22192.95, + "end": 22193.89, + "probability": 0.9277 + }, + { + "start": 22193.93, + "end": 22197.81, + "probability": 0.9218 + }, + { + "start": 22198.97, + "end": 22202.69, + "probability": 0.8541 + }, + { + "start": 22202.79, + "end": 22204.01, + "probability": 0.378 + }, + { + "start": 22204.01, + "end": 22205.27, + "probability": 0.7335 + }, + { + "start": 22205.93, + "end": 22207.23, + "probability": 0.5054 + }, + { + "start": 22213.31, + "end": 22213.31, + "probability": 0.0549 + }, + { + "start": 22213.31, + "end": 22213.31, + "probability": 0.1986 + }, + { + "start": 22213.31, + "end": 22215.75, + "probability": 0.5826 + }, + { + "start": 22215.93, + "end": 22221.99, + "probability": 0.9788 + }, + { + "start": 22222.59, + "end": 22224.09, + "probability": 0.9184 + }, + { + "start": 22225.41, + "end": 22226.19, + "probability": 0.5644 + }, + { + "start": 22226.41, + "end": 22227.24, + "probability": 0.7186 + }, + { + "start": 22228.07, + "end": 22229.71, + "probability": 0.2949 + }, + { + "start": 22229.71, + "end": 22232.23, + "probability": 0.9423 + }, + { + "start": 22232.51, + "end": 22233.57, + "probability": 0.8508 + }, + { + "start": 22236.76, + "end": 22240.99, + "probability": 0.9771 + }, + { + "start": 22241.83, + "end": 22242.95, + "probability": 0.6862 + }, + { + "start": 22243.51, + "end": 22246.41, + "probability": 0.0413 + }, + { + "start": 22248.09, + "end": 22252.93, + "probability": 0.185 + }, + { + "start": 22254.99, + "end": 22258.01, + "probability": 0.0513 + }, + { + "start": 22258.77, + "end": 22264.73, + "probability": 0.4417 + }, + { + "start": 22264.79, + "end": 22266.41, + "probability": 0.2135 + }, + { + "start": 22267.15, + "end": 22267.83, + "probability": 0.303 + }, + { + "start": 22269.27, + "end": 22274.85, + "probability": 0.9366 + }, + { + "start": 22274.85, + "end": 22275.35, + "probability": 0.0483 + }, + { + "start": 22275.35, + "end": 22276.03, + "probability": 0.5781 + }, + { + "start": 22276.35, + "end": 22277.93, + "probability": 0.2225 + }, + { + "start": 22278.73, + "end": 22279.37, + "probability": 0.0447 + }, + { + "start": 22295.55, + "end": 22298.49, + "probability": 0.6741 + }, + { + "start": 22299.09, + "end": 22303.59, + "probability": 0.071 + }, + { + "start": 22304.21, + "end": 22304.33, + "probability": 0.1432 + }, + { + "start": 22304.39, + "end": 22306.09, + "probability": 0.1153 + }, + { + "start": 22306.09, + "end": 22306.81, + "probability": 0.0199 + }, + { + "start": 22307.03, + "end": 22307.49, + "probability": 0.2679 + }, + { + "start": 22307.67, + "end": 22308.49, + "probability": 0.3694 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.0, + "end": 22341.0, + "probability": 0.0 + }, + { + "start": 22341.12, + "end": 22341.24, + "probability": 0.1128 + }, + { + "start": 22341.24, + "end": 22342.14, + "probability": 0.2685 + }, + { + "start": 22342.14, + "end": 22346.56, + "probability": 0.9794 + }, + { + "start": 22346.7, + "end": 22347.56, + "probability": 0.9096 + }, + { + "start": 22348.14, + "end": 22352.78, + "probability": 0.9565 + }, + { + "start": 22352.78, + "end": 22358.42, + "probability": 0.9852 + }, + { + "start": 22359.02, + "end": 22361.22, + "probability": 0.842 + }, + { + "start": 22361.22, + "end": 22364.44, + "probability": 0.8076 + }, + { + "start": 22365.1, + "end": 22368.12, + "probability": 0.99 + }, + { + "start": 22368.24, + "end": 22372.68, + "probability": 0.9964 + }, + { + "start": 22374.12, + "end": 22374.86, + "probability": 0.6333 + }, + { + "start": 22375.52, + "end": 22378.06, + "probability": 0.7398 + }, + { + "start": 22380.08, + "end": 22382.84, + "probability": 0.955 + }, + { + "start": 22383.7, + "end": 22384.94, + "probability": 0.4677 + }, + { + "start": 22385.62, + "end": 22387.16, + "probability": 0.9711 + }, + { + "start": 22387.82, + "end": 22388.48, + "probability": 0.8904 + }, + { + "start": 22389.32, + "end": 22389.56, + "probability": 0.1974 + }, + { + "start": 22391.6, + "end": 22394.9, + "probability": 0.7195 + }, + { + "start": 22398.94, + "end": 22400.28, + "probability": 0.4192 + }, + { + "start": 22400.42, + "end": 22401.34, + "probability": 0.4834 + }, + { + "start": 22401.72, + "end": 22403.18, + "probability": 0.7173 + }, + { + "start": 22403.84, + "end": 22407.22, + "probability": 0.8994 + }, + { + "start": 22407.84, + "end": 22408.42, + "probability": 0.9219 + }, + { + "start": 22408.98, + "end": 22409.98, + "probability": 0.7182 + }, + { + "start": 22412.66, + "end": 22414.16, + "probability": 0.8704 + }, + { + "start": 22414.68, + "end": 22415.24, + "probability": 0.5624 + }, + { + "start": 22415.96, + "end": 22417.32, + "probability": 0.8656 + }, + { + "start": 22417.5, + "end": 22418.0, + "probability": 0.8725 + }, + { + "start": 22418.12, + "end": 22419.76, + "probability": 0.9084 + }, + { + "start": 22420.38, + "end": 22421.22, + "probability": 0.95 + }, + { + "start": 22421.88, + "end": 22423.72, + "probability": 0.8811 + }, + { + "start": 22424.92, + "end": 22428.14, + "probability": 0.9731 + }, + { + "start": 22429.8, + "end": 22432.2, + "probability": 0.2745 + }, + { + "start": 22432.44, + "end": 22433.8, + "probability": 0.7374 + }, + { + "start": 22434.1, + "end": 22434.92, + "probability": 0.6998 + }, + { + "start": 22435.38, + "end": 22437.98, + "probability": 0.6358 + }, + { + "start": 22438.54, + "end": 22440.02, + "probability": 0.803 + }, + { + "start": 22440.26, + "end": 22442.22, + "probability": 0.9058 + }, + { + "start": 22442.52, + "end": 22444.32, + "probability": 0.9913 + }, + { + "start": 22445.3, + "end": 22447.84, + "probability": 0.4558 + }, + { + "start": 22456.54, + "end": 22457.1, + "probability": 0.1601 + }, + { + "start": 22457.1, + "end": 22457.12, + "probability": 0.0252 + }, + { + "start": 22457.12, + "end": 22457.12, + "probability": 0.0636 + }, + { + "start": 22457.12, + "end": 22457.12, + "probability": 0.0127 + }, + { + "start": 22462.84, + "end": 22464.96, + "probability": 0.9164 + }, + { + "start": 22464.98, + "end": 22467.12, + "probability": 0.5986 + }, + { + "start": 22467.2, + "end": 22467.84, + "probability": 0.7598 + }, + { + "start": 22471.48, + "end": 22472.34, + "probability": 0.5039 + }, + { + "start": 22480.36, + "end": 22481.02, + "probability": 0.0078 + }, + { + "start": 22484.7, + "end": 22487.24, + "probability": 0.1699 + }, + { + "start": 22487.24, + "end": 22487.48, + "probability": 0.0097 + }, + { + "start": 22487.48, + "end": 22487.56, + "probability": 0.0344 + }, + { + "start": 22487.56, + "end": 22492.82, + "probability": 0.3886 + }, + { + "start": 22494.28, + "end": 22494.42, + "probability": 0.0516 + }, + { + "start": 22497.94, + "end": 22498.66, + "probability": 0.1149 + }, + { + "start": 22498.76, + "end": 22499.5, + "probability": 0.209 + }, + { + "start": 22499.9, + "end": 22504.0, + "probability": 0.086 + }, + { + "start": 22504.0, + "end": 22505.2, + "probability": 0.0702 + }, + { + "start": 22505.2, + "end": 22506.54, + "probability": 0.017 + }, + { + "start": 22506.54, + "end": 22506.54, + "probability": 0.1069 + }, + { + "start": 22506.54, + "end": 22508.14, + "probability": 0.3016 + }, + { + "start": 22508.3, + "end": 22508.5, + "probability": 0.916 + }, + { + "start": 22524.04, + "end": 22526.76, + "probability": 0.6472 + }, + { + "start": 22527.98, + "end": 22533.1, + "probability": 0.3908 + }, + { + "start": 22533.24, + "end": 22538.14, + "probability": 0.9434 + }, + { + "start": 22538.14, + "end": 22542.72, + "probability": 0.9967 + }, + { + "start": 22542.72, + "end": 22547.58, + "probability": 0.9995 + }, + { + "start": 22548.26, + "end": 22552.72, + "probability": 0.9958 + }, + { + "start": 22553.3, + "end": 22555.86, + "probability": 0.8 + }, + { + "start": 22556.48, + "end": 22559.04, + "probability": 0.9038 + }, + { + "start": 22559.68, + "end": 22561.18, + "probability": 0.8299 + }, + { + "start": 22561.98, + "end": 22565.1, + "probability": 0.9398 + }, + { + "start": 22565.1, + "end": 22567.92, + "probability": 0.9788 + }, + { + "start": 22568.62, + "end": 22571.25, + "probability": 0.9895 + }, + { + "start": 22572.5, + "end": 22573.46, + "probability": 0.3833 + }, + { + "start": 22574.26, + "end": 22578.96, + "probability": 0.717 + }, + { + "start": 22579.56, + "end": 22583.26, + "probability": 0.8424 + }, + { + "start": 22583.4, + "end": 22584.36, + "probability": 0.7376 + }, + { + "start": 22585.16, + "end": 22588.5, + "probability": 0.7132 + }, + { + "start": 22589.08, + "end": 22592.6, + "probability": 0.9461 + }, + { + "start": 22593.26, + "end": 22596.74, + "probability": 0.9397 + }, + { + "start": 22596.86, + "end": 22599.62, + "probability": 0.989 + }, + { + "start": 22599.78, + "end": 22603.18, + "probability": 0.8706 + }, + { + "start": 22603.36, + "end": 22607.06, + "probability": 0.8632 + }, + { + "start": 22607.46, + "end": 22608.18, + "probability": 0.7323 + }, + { + "start": 22608.88, + "end": 22611.34, + "probability": 0.7351 + }, + { + "start": 22611.54, + "end": 22614.32, + "probability": 0.8798 + }, + { + "start": 22615.8, + "end": 22616.08, + "probability": 0.7019 + }, + { + "start": 22620.78, + "end": 22621.36, + "probability": 0.2619 + }, + { + "start": 22621.36, + "end": 22623.17, + "probability": 0.6169 + }, + { + "start": 22623.34, + "end": 22624.06, + "probability": 0.4268 + }, + { + "start": 22624.14, + "end": 22625.78, + "probability": 0.6812 + }, + { + "start": 22626.48, + "end": 22627.16, + "probability": 0.7354 + }, + { + "start": 22627.68, + "end": 22629.0, + "probability": 0.9227 + }, + { + "start": 22629.02, + "end": 22629.48, + "probability": 0.8769 + }, + { + "start": 22629.64, + "end": 22630.94, + "probability": 0.8446 + }, + { + "start": 22631.42, + "end": 22632.12, + "probability": 0.8633 + }, + { + "start": 22634.59, + "end": 22635.5, + "probability": 0.4319 + }, + { + "start": 22635.5, + "end": 22635.5, + "probability": 0.212 + }, + { + "start": 22635.5, + "end": 22636.32, + "probability": 0.3927 + }, + { + "start": 22637.04, + "end": 22639.04, + "probability": 0.6605 + }, + { + "start": 22639.96, + "end": 22640.74, + "probability": 0.576 + }, + { + "start": 22641.08, + "end": 22643.22, + "probability": 0.8136 + }, + { + "start": 22646.5, + "end": 22647.3, + "probability": 0.822 + }, + { + "start": 22649.3, + "end": 22653.3, + "probability": 0.207 + }, + { + "start": 22654.28, + "end": 22654.28, + "probability": 0.0001 + }, + { + "start": 22654.98, + "end": 22655.74, + "probability": 0.72 + }, + { + "start": 22656.58, + "end": 22656.58, + "probability": 0.4974 + }, + { + "start": 22663.94, + "end": 22663.94, + "probability": 0.0071 + }, + { + "start": 22674.06, + "end": 22676.34, + "probability": 0.5118 + }, + { + "start": 22685.2, + "end": 22689.58, + "probability": 0.0446 + }, + { + "start": 22695.32, + "end": 22696.02, + "probability": 0.138 + }, + { + "start": 22697.82, + "end": 22699.66, + "probability": 0.038 + }, + { + "start": 22699.66, + "end": 22700.28, + "probability": 0.523 + }, + { + "start": 22700.28, + "end": 22700.35, + "probability": 0.7071 + }, + { + "start": 22700.54, + "end": 22701.08, + "probability": 0.0207 + }, + { + "start": 22707.6, + "end": 22708.08, + "probability": 0.1495 + }, + { + "start": 22708.08, + "end": 22708.08, + "probability": 0.1185 + }, + { + "start": 22708.08, + "end": 22708.14, + "probability": 0.0352 + }, + { + "start": 22708.14, + "end": 22710.92, + "probability": 0.1066 + }, + { + "start": 22710.92, + "end": 22710.92, + "probability": 0.0146 + }, + { + "start": 22710.92, + "end": 22711.27, + "probability": 0.0142 + }, + { + "start": 22712.52, + "end": 22714.24, + "probability": 0.1293 + }, + { + "start": 22716.3, + "end": 22716.84, + "probability": 0.0459 + }, + { + "start": 22718.06, + "end": 22720.08, + "probability": 0.0552 + }, + { + "start": 22757.0, + "end": 22757.0, + "probability": 0.0 + }, + { + "start": 22757.0, + "end": 22757.0, + "probability": 0.0 + }, + { + "start": 22757.0, + "end": 22757.0, + "probability": 0.0 + }, + { + "start": 22757.0, + "end": 22757.0, + "probability": 0.0 + }, + { + "start": 22757.22, + "end": 22757.22, + "probability": 0.0914 + }, + { + "start": 22757.22, + "end": 22757.22, + "probability": 0.0956 + }, + { + "start": 22757.22, + "end": 22759.24, + "probability": 0.0445 + }, + { + "start": 22759.24, + "end": 22762.8, + "probability": 0.9525 + }, + { + "start": 22763.72, + "end": 22767.68, + "probability": 0.8171 + }, + { + "start": 22767.68, + "end": 22772.16, + "probability": 0.9928 + }, + { + "start": 22772.76, + "end": 22774.12, + "probability": 0.8687 + }, + { + "start": 22774.28, + "end": 22778.78, + "probability": 0.9598 + }, + { + "start": 22778.9, + "end": 22782.66, + "probability": 0.9716 + }, + { + "start": 22783.2, + "end": 22786.24, + "probability": 0.999 + }, + { + "start": 22786.24, + "end": 22789.9, + "probability": 0.9824 + }, + { + "start": 22790.72, + "end": 22797.26, + "probability": 0.8802 + }, + { + "start": 22797.26, + "end": 22811.1, + "probability": 0.9829 + }, + { + "start": 22811.12, + "end": 22817.82, + "probability": 0.9971 + }, + { + "start": 22818.4, + "end": 22818.76, + "probability": 0.2983 + }, + { + "start": 22821.28, + "end": 22823.26, + "probability": 0.5628 + }, + { + "start": 22823.84, + "end": 22828.1, + "probability": 0.9907 + }, + { + "start": 22828.22, + "end": 22833.24, + "probability": 0.947 + }, + { + "start": 22833.84, + "end": 22837.46, + "probability": 0.9863 + }, + { + "start": 22837.46, + "end": 22843.62, + "probability": 0.9959 + }, + { + "start": 22844.08, + "end": 22849.4, + "probability": 0.995 + }, + { + "start": 22849.92, + "end": 22853.09, + "probability": 0.8701 + }, + { + "start": 22853.94, + "end": 22855.38, + "probability": 0.6277 + }, + { + "start": 22856.12, + "end": 22856.5, + "probability": 0.5161 + }, + { + "start": 22856.6, + "end": 22860.14, + "probability": 0.9845 + }, + { + "start": 22860.14, + "end": 22868.9, + "probability": 0.9595 + }, + { + "start": 22870.22, + "end": 22872.78, + "probability": 0.9843 + }, + { + "start": 22872.86, + "end": 22876.22, + "probability": 0.9 + }, + { + "start": 22876.86, + "end": 22881.24, + "probability": 0.9448 + }, + { + "start": 22881.9, + "end": 22885.06, + "probability": 0.98 + }, + { + "start": 22885.56, + "end": 22885.78, + "probability": 0.5648 + }, + { + "start": 22886.34, + "end": 22886.6, + "probability": 0.2301 + }, + { + "start": 22886.6, + "end": 22889.38, + "probability": 0.9976 + }, + { + "start": 22889.38, + "end": 22892.74, + "probability": 0.999 + }, + { + "start": 22892.96, + "end": 22895.84, + "probability": 0.9637 + }, + { + "start": 22896.4, + "end": 22902.7, + "probability": 0.9583 + }, + { + "start": 22903.16, + "end": 22904.38, + "probability": 0.7693 + }, + { + "start": 22904.54, + "end": 22909.34, + "probability": 0.9797 + }, + { + "start": 22910.32, + "end": 22911.06, + "probability": 0.4592 + }, + { + "start": 22911.1, + "end": 22914.76, + "probability": 0.9701 + }, + { + "start": 22914.84, + "end": 22917.82, + "probability": 0.9989 + }, + { + "start": 22917.82, + "end": 22921.22, + "probability": 0.975 + }, + { + "start": 22921.36, + "end": 22922.26, + "probability": 0.7933 + }, + { + "start": 22922.42, + "end": 22922.94, + "probability": 0.7783 + }, + { + "start": 22924.28, + "end": 22925.0, + "probability": 0.7281 + }, + { + "start": 22926.27, + "end": 22929.44, + "probability": 0.8617 + }, + { + "start": 22930.22, + "end": 22931.02, + "probability": 0.7772 + }, + { + "start": 22931.84, + "end": 22933.18, + "probability": 0.9868 + }, + { + "start": 22933.18, + "end": 22933.9, + "probability": 0.9549 + }, + { + "start": 22934.02, + "end": 22935.36, + "probability": 0.6773 + }, + { + "start": 22937.1, + "end": 22939.94, + "probability": 0.7455 + }, + { + "start": 22940.44, + "end": 22941.62, + "probability": 0.9199 + }, + { + "start": 22943.06, + "end": 22945.62, + "probability": 0.958 + }, + { + "start": 22946.66, + "end": 22947.51, + "probability": 0.0386 + }, + { + "start": 22949.74, + "end": 22950.74, + "probability": 0.6026 + }, + { + "start": 22952.4, + "end": 22955.32, + "probability": 0.1705 + }, + { + "start": 22958.24, + "end": 22962.3, + "probability": 0.1543 + }, + { + "start": 22962.3, + "end": 22962.48, + "probability": 0.0553 + }, + { + "start": 22962.64, + "end": 22964.66, + "probability": 0.6285 + }, + { + "start": 22964.77, + "end": 22966.26, + "probability": 0.6885 + }, + { + "start": 22967.42, + "end": 22970.94, + "probability": 0.7756 + }, + { + "start": 22972.08, + "end": 22976.88, + "probability": 0.974 + }, + { + "start": 22976.94, + "end": 22980.08, + "probability": 0.8421 + }, + { + "start": 22982.66, + "end": 22984.76, + "probability": 0.7624 + }, + { + "start": 22985.3, + "end": 22988.12, + "probability": 0.9351 + }, + { + "start": 22988.76, + "end": 22989.66, + "probability": 0.039 + }, + { + "start": 22990.26, + "end": 22991.16, + "probability": 0.6233 + }, + { + "start": 22991.28, + "end": 22993.12, + "probability": 0.9884 + }, + { + "start": 22993.88, + "end": 22994.64, + "probability": 0.6914 + }, + { + "start": 22994.66, + "end": 22995.24, + "probability": 0.852 + }, + { + "start": 22996.24, + "end": 23001.38, + "probability": 0.0304 + }, + { + "start": 23001.6, + "end": 23002.14, + "probability": 0.1752 + }, + { + "start": 23002.36, + "end": 23004.24, + "probability": 0.0062 + }, + { + "start": 23005.04, + "end": 23005.82, + "probability": 0.3031 + }, + { + "start": 23043.1, + "end": 23045.46, + "probability": 0.5189 + }, + { + "start": 23046.06, + "end": 23047.34, + "probability": 0.9378 + }, + { + "start": 23047.5, + "end": 23054.98, + "probability": 0.9847 + }, + { + "start": 23054.98, + "end": 23061.34, + "probability": 0.9876 + }, + { + "start": 23061.9, + "end": 23064.54, + "probability": 0.9932 + }, + { + "start": 23064.66, + "end": 23067.94, + "probability": 0.923 + }, + { + "start": 23068.4, + "end": 23070.52, + "probability": 0.9346 + }, + { + "start": 23070.74, + "end": 23073.62, + "probability": 0.9882 + }, + { + "start": 23073.74, + "end": 23074.82, + "probability": 0.7753 + }, + { + "start": 23075.6, + "end": 23078.9, + "probability": 0.9597 + }, + { + "start": 23079.46, + "end": 23081.88, + "probability": 0.9605 + }, + { + "start": 23082.46, + "end": 23082.84, + "probability": 0.7522 + }, + { + "start": 23083.04, + "end": 23085.76, + "probability": 0.9971 + }, + { + "start": 23086.56, + "end": 23088.52, + "probability": 0.9791 + }, + { + "start": 23088.74, + "end": 23096.1, + "probability": 0.9961 + }, + { + "start": 23096.28, + "end": 23100.2, + "probability": 0.9883 + }, + { + "start": 23100.84, + "end": 23101.26, + "probability": 0.5418 + }, + { + "start": 23101.38, + "end": 23104.92, + "probability": 0.9642 + }, + { + "start": 23104.92, + "end": 23107.64, + "probability": 0.8339 + }, + { + "start": 23107.72, + "end": 23108.1, + "probability": 0.7414 + }, + { + "start": 23108.8, + "end": 23111.3, + "probability": 0.9952 + }, + { + "start": 23111.32, + "end": 23114.36, + "probability": 0.924 + }, + { + "start": 23115.18, + "end": 23120.14, + "probability": 0.7672 + }, + { + "start": 23121.04, + "end": 23121.42, + "probability": 0.3081 + }, + { + "start": 23121.68, + "end": 23125.16, + "probability": 0.853 + }, + { + "start": 23126.1, + "end": 23128.55, + "probability": 0.5614 + }, + { + "start": 23129.76, + "end": 23135.72, + "probability": 0.9694 + }, + { + "start": 23135.9, + "end": 23140.18, + "probability": 0.9951 + }, + { + "start": 23140.76, + "end": 23142.54, + "probability": 0.9899 + }, + { + "start": 23142.8, + "end": 23147.38, + "probability": 0.9831 + }, + { + "start": 23147.56, + "end": 23149.14, + "probability": 0.9496 + }, + { + "start": 23149.84, + "end": 23153.46, + "probability": 0.9818 + }, + { + "start": 23153.46, + "end": 23158.18, + "probability": 0.8673 + }, + { + "start": 23158.86, + "end": 23162.84, + "probability": 0.7601 + }, + { + "start": 23163.5, + "end": 23165.24, + "probability": 0.952 + }, + { + "start": 23165.94, + "end": 23170.32, + "probability": 0.9658 + }, + { + "start": 23171.04, + "end": 23173.96, + "probability": 0.9488 + }, + { + "start": 23174.76, + "end": 23177.58, + "probability": 0.9711 + }, + { + "start": 23178.28, + "end": 23178.84, + "probability": 0.6395 + }, + { + "start": 23179.18, + "end": 23181.02, + "probability": 0.8458 + }, + { + "start": 23181.22, + "end": 23183.8, + "probability": 0.9385 + }, + { + "start": 23183.8, + "end": 23187.44, + "probability": 0.9926 + }, + { + "start": 23188.02, + "end": 23190.55, + "probability": 0.6398 + }, + { + "start": 23191.32, + "end": 23193.84, + "probability": 0.6261 + }, + { + "start": 23194.38, + "end": 23199.54, + "probability": 0.9868 + }, + { + "start": 23200.12, + "end": 23203.67, + "probability": 0.9897 + }, + { + "start": 23203.75, + "end": 23209.46, + "probability": 0.9985 + }, + { + "start": 23210.16, + "end": 23214.28, + "probability": 0.9839 + }, + { + "start": 23214.28, + "end": 23218.7, + "probability": 0.9941 + }, + { + "start": 23219.38, + "end": 23220.26, + "probability": 0.6251 + }, + { + "start": 23220.94, + "end": 23225.04, + "probability": 0.87 + }, + { + "start": 23225.04, + "end": 23229.9, + "probability": 0.9673 + }, + { + "start": 23230.62, + "end": 23234.02, + "probability": 0.9197 + }, + { + "start": 23234.46, + "end": 23236.54, + "probability": 0.8757 + }, + { + "start": 23237.08, + "end": 23245.8, + "probability": 0.9934 + }, + { + "start": 23246.74, + "end": 23247.2, + "probability": 0.3935 + }, + { + "start": 23247.32, + "end": 23254.11, + "probability": 0.9907 + }, + { + "start": 23255.82, + "end": 23263.32, + "probability": 0.7327 + }, + { + "start": 23264.42, + "end": 23268.34, + "probability": 0.8996 + }, + { + "start": 23268.8, + "end": 23273.12, + "probability": 0.9978 + }, + { + "start": 23273.12, + "end": 23279.08, + "probability": 0.9917 + }, + { + "start": 23279.26, + "end": 23279.82, + "probability": 0.7517 + }, + { + "start": 23280.6, + "end": 23281.24, + "probability": 0.692 + }, + { + "start": 23283.52, + "end": 23287.06, + "probability": 0.8931 + }, + { + "start": 23287.56, + "end": 23289.62, + "probability": 0.5431 + }, + { + "start": 23290.7, + "end": 23291.28, + "probability": 0.1707 + }, + { + "start": 23291.28, + "end": 23291.28, + "probability": 0.3065 + }, + { + "start": 23291.28, + "end": 23291.96, + "probability": 0.5554 + }, + { + "start": 23292.08, + "end": 23292.62, + "probability": 0.2918 + }, + { + "start": 23293.1, + "end": 23294.22, + "probability": 0.871 + }, + { + "start": 23295.64, + "end": 23296.14, + "probability": 0.1844 + }, + { + "start": 23297.18, + "end": 23297.46, + "probability": 0.0502 + }, + { + "start": 23299.81, + "end": 23302.8, + "probability": 0.5649 + }, + { + "start": 23303.48, + "end": 23303.52, + "probability": 0.366 + }, + { + "start": 23303.6, + "end": 23304.78, + "probability": 0.1328 + }, + { + "start": 23304.94, + "end": 23306.33, + "probability": 0.4675 + }, + { + "start": 23306.52, + "end": 23307.06, + "probability": 0.827 + }, + { + "start": 23307.68, + "end": 23313.18, + "probability": 0.248 + }, + { + "start": 23313.46, + "end": 23317.3, + "probability": 0.0367 + }, + { + "start": 23321.66, + "end": 23322.44, + "probability": 0.0195 + }, + { + "start": 23323.1, + "end": 23326.48, + "probability": 0.5052 + }, + { + "start": 23327.52, + "end": 23328.8, + "probability": 0.9348 + }, + { + "start": 23328.8, + "end": 23329.24, + "probability": 0.7649 + }, + { + "start": 23329.26, + "end": 23334.7, + "probability": 0.9924 + }, + { + "start": 23334.82, + "end": 23336.36, + "probability": 0.9285 + }, + { + "start": 23337.28, + "end": 23339.12, + "probability": 0.996 + }, + { + "start": 23340.0, + "end": 23344.6, + "probability": 0.7961 + }, + { + "start": 23344.66, + "end": 23346.6, + "probability": 0.7959 + }, + { + "start": 23346.68, + "end": 23349.8, + "probability": 0.929 + }, + { + "start": 23349.9, + "end": 23352.03, + "probability": 0.9731 + }, + { + "start": 23352.62, + "end": 23353.62, + "probability": 0.7812 + }, + { + "start": 23353.78, + "end": 23356.14, + "probability": 0.9865 + }, + { + "start": 23356.64, + "end": 23357.8, + "probability": 0.7959 + }, + { + "start": 23358.18, + "end": 23359.68, + "probability": 0.9704 + }, + { + "start": 23360.02, + "end": 23360.8, + "probability": 0.866 + }, + { + "start": 23360.92, + "end": 23362.68, + "probability": 0.9175 + }, + { + "start": 23363.22, + "end": 23365.64, + "probability": 0.9642 + }, + { + "start": 23366.06, + "end": 23369.6, + "probability": 0.9728 + }, + { + "start": 23369.9, + "end": 23370.16, + "probability": 0.6824 + }, + { + "start": 23370.7, + "end": 23371.48, + "probability": 0.671 + }, + { + "start": 23371.86, + "end": 23373.92, + "probability": 0.9918 + }, + { + "start": 23374.8, + "end": 23375.26, + "probability": 0.7092 + }, + { + "start": 23375.3, + "end": 23380.34, + "probability": 0.9242 + }, + { + "start": 23381.28, + "end": 23382.52, + "probability": 0.6287 + }, + { + "start": 23382.62, + "end": 23383.2, + "probability": 0.7254 + }, + { + "start": 23384.08, + "end": 23384.46, + "probability": 0.2174 + }, + { + "start": 23388.4, + "end": 23395.76, + "probability": 0.2446 + }, + { + "start": 23396.74, + "end": 23401.26, + "probability": 0.0552 + }, + { + "start": 23402.46, + "end": 23404.62, + "probability": 0.8917 + }, + { + "start": 23405.26, + "end": 23406.68, + "probability": 0.7834 + }, + { + "start": 23407.1, + "end": 23410.06, + "probability": 0.9188 + }, + { + "start": 23410.78, + "end": 23415.02, + "probability": 0.8509 + }, + { + "start": 23416.06, + "end": 23419.64, + "probability": 0.9183 + }, + { + "start": 23419.8, + "end": 23421.68, + "probability": 0.9425 + }, + { + "start": 23422.12, + "end": 23429.18, + "probability": 0.9548 + }, + { + "start": 23429.44, + "end": 23432.83, + "probability": 0.2999 + }, + { + "start": 23433.3, + "end": 23437.72, + "probability": 0.4786 + }, + { + "start": 23438.82, + "end": 23441.76, + "probability": 0.8356 + }, + { + "start": 23445.22, + "end": 23445.74, + "probability": 0.5269 + }, + { + "start": 23445.82, + "end": 23446.66, + "probability": 0.898 + }, + { + "start": 23447.1, + "end": 23448.16, + "probability": 0.3137 + }, + { + "start": 23448.28, + "end": 23449.08, + "probability": 0.6689 + }, + { + "start": 23449.28, + "end": 23450.78, + "probability": 0.8438 + }, + { + "start": 23450.86, + "end": 23454.12, + "probability": 0.7568 + }, + { + "start": 23454.74, + "end": 23456.74, + "probability": 0.8955 + }, + { + "start": 23457.06, + "end": 23460.94, + "probability": 0.7836 + }, + { + "start": 23460.94, + "end": 23463.94, + "probability": 0.9731 + }, + { + "start": 23464.88, + "end": 23467.64, + "probability": 0.9316 + }, + { + "start": 23468.38, + "end": 23471.14, + "probability": 0.7426 + }, + { + "start": 23471.24, + "end": 23475.92, + "probability": 0.9228 + }, + { + "start": 23475.92, + "end": 23481.9, + "probability": 0.9513 + }, + { + "start": 23482.6, + "end": 23484.03, + "probability": 0.8761 + }, + { + "start": 23484.72, + "end": 23485.96, + "probability": 0.9081 + }, + { + "start": 23486.98, + "end": 23489.82, + "probability": 0.9894 + }, + { + "start": 23489.9, + "end": 23491.05, + "probability": 0.9153 + }, + { + "start": 23491.66, + "end": 23493.26, + "probability": 0.941 + }, + { + "start": 23494.02, + "end": 23495.7, + "probability": 0.6477 + }, + { + "start": 23496.46, + "end": 23497.94, + "probability": 0.9627 + }, + { + "start": 23498.2, + "end": 23499.88, + "probability": 0.5928 + }, + { + "start": 23499.96, + "end": 23502.26, + "probability": 0.9507 + }, + { + "start": 23502.38, + "end": 23505.56, + "probability": 0.0706 + }, + { + "start": 23505.7, + "end": 23508.0, + "probability": 0.5632 + }, + { + "start": 23508.1, + "end": 23509.34, + "probability": 0.5586 + }, + { + "start": 23509.42, + "end": 23510.42, + "probability": 0.9645 + }, + { + "start": 23511.28, + "end": 23512.02, + "probability": 0.7366 + }, + { + "start": 23512.92, + "end": 23515.14, + "probability": 0.7504 + }, + { + "start": 23515.88, + "end": 23517.1, + "probability": 0.9886 + }, + { + "start": 23517.18, + "end": 23517.74, + "probability": 0.8508 + }, + { + "start": 23518.02, + "end": 23519.79, + "probability": 0.7275 + }, + { + "start": 23520.62, + "end": 23521.88, + "probability": 0.9251 + }, + { + "start": 23522.9, + "end": 23526.48, + "probability": 0.9881 + }, + { + "start": 23526.66, + "end": 23529.26, + "probability": 0.674 + }, + { + "start": 23529.44, + "end": 23531.31, + "probability": 0.8869 + }, + { + "start": 23532.72, + "end": 23534.5, + "probability": 0.6502 + }, + { + "start": 23536.5, + "end": 23537.58, + "probability": 0.8755 + }, + { + "start": 23537.96, + "end": 23541.42, + "probability": 0.9748 + }, + { + "start": 23541.42, + "end": 23546.76, + "probability": 0.863 + }, + { + "start": 23557.26, + "end": 23560.04, + "probability": 0.3149 + }, + { + "start": 23560.46, + "end": 23561.06, + "probability": 0.5607 + }, + { + "start": 23561.32, + "end": 23562.06, + "probability": 0.7252 + }, + { + "start": 23562.48, + "end": 23563.78, + "probability": 0.841 + }, + { + "start": 23564.72, + "end": 23567.39, + "probability": 0.0345 + }, + { + "start": 23576.38, + "end": 23579.74, + "probability": 0.031 + }, + { + "start": 23580.04, + "end": 23580.4, + "probability": 0.0313 + }, + { + "start": 23580.4, + "end": 23580.4, + "probability": 0.2338 + }, + { + "start": 23580.4, + "end": 23582.94, + "probability": 0.2131 + }, + { + "start": 23583.62, + "end": 23588.24, + "probability": 0.9313 + }, + { + "start": 23589.92, + "end": 23595.44, + "probability": 0.6302 + }, + { + "start": 23595.96, + "end": 23600.0, + "probability": 0.6293 + }, + { + "start": 23600.44, + "end": 23605.19, + "probability": 0.4615 + }, + { + "start": 23611.66, + "end": 23612.12, + "probability": 0.1693 + }, + { + "start": 23619.34, + "end": 23623.38, + "probability": 0.1747 + }, + { + "start": 23625.52, + "end": 23627.1, + "probability": 0.851 + }, + { + "start": 23628.42, + "end": 23629.46, + "probability": 0.8356 + }, + { + "start": 23631.54, + "end": 23632.0, + "probability": 0.4073 + }, + { + "start": 23632.02, + "end": 23632.52, + "probability": 0.6448 + }, + { + "start": 23633.9, + "end": 23636.36, + "probability": 0.1209 + }, + { + "start": 23636.94, + "end": 23641.69, + "probability": 0.0524 + }, + { + "start": 23648.48, + "end": 23648.88, + "probability": 0.1537 + }, + { + "start": 23648.88, + "end": 23650.38, + "probability": 0.7169 + }, + { + "start": 23650.5, + "end": 23653.92, + "probability": 0.9167 + }, + { + "start": 23654.38, + "end": 23658.36, + "probability": 0.9181 + }, + { + "start": 23659.08, + "end": 23659.7, + "probability": 0.6434 + }, + { + "start": 23661.5, + "end": 23665.7, + "probability": 0.9866 + }, + { + "start": 23665.7, + "end": 23669.26, + "probability": 0.9728 + }, + { + "start": 23670.58, + "end": 23671.72, + "probability": 0.6296 + }, + { + "start": 23671.74, + "end": 23675.62, + "probability": 0.9792 + }, + { + "start": 23688.74, + "end": 23691.28, + "probability": 0.5416 + }, + { + "start": 23692.3, + "end": 23696.52, + "probability": 0.9937 + }, + { + "start": 23696.54, + "end": 23700.38, + "probability": 0.9966 + }, + { + "start": 23700.46, + "end": 23703.68, + "probability": 0.9458 + }, + { + "start": 23704.38, + "end": 23708.48, + "probability": 0.9982 + }, + { + "start": 23708.86, + "end": 23710.64, + "probability": 0.8199 + }, + { + "start": 23711.04, + "end": 23714.4, + "probability": 0.9849 + }, + { + "start": 23715.0, + "end": 23717.86, + "probability": 0.9974 + }, + { + "start": 23718.7, + "end": 23722.12, + "probability": 0.983 + }, + { + "start": 23722.6, + "end": 23725.54, + "probability": 0.9887 + }, + { + "start": 23726.2, + "end": 23729.56, + "probability": 0.9917 + }, + { + "start": 23730.08, + "end": 23734.3, + "probability": 0.9917 + }, + { + "start": 23734.3, + "end": 23739.22, + "probability": 0.9987 + }, + { + "start": 23739.9, + "end": 23743.86, + "probability": 0.8635 + }, + { + "start": 23744.5, + "end": 23749.12, + "probability": 0.8776 + }, + { + "start": 23749.12, + "end": 23752.3, + "probability": 0.998 + }, + { + "start": 23753.0, + "end": 23756.66, + "probability": 0.9852 + }, + { + "start": 23756.88, + "end": 23761.22, + "probability": 0.9495 + }, + { + "start": 23761.74, + "end": 23765.42, + "probability": 0.9761 + }, + { + "start": 23765.5, + "end": 23769.48, + "probability": 0.9873 + }, + { + "start": 23770.16, + "end": 23773.12, + "probability": 0.9545 + }, + { + "start": 23773.12, + "end": 23777.24, + "probability": 0.9977 + }, + { + "start": 23777.92, + "end": 23780.12, + "probability": 0.7395 + }, + { + "start": 23780.34, + "end": 23784.5, + "probability": 0.918 + }, + { + "start": 23784.5, + "end": 23788.34, + "probability": 0.457 + }, + { + "start": 23789.0, + "end": 23792.56, + "probability": 0.9573 + }, + { + "start": 23792.96, + "end": 23798.48, + "probability": 0.989 + }, + { + "start": 23798.68, + "end": 23801.34, + "probability": 0.9559 + }, + { + "start": 23801.36, + "end": 23804.56, + "probability": 0.9171 + }, + { + "start": 23805.1, + "end": 23806.64, + "probability": 0.9614 + }, + { + "start": 23807.28, + "end": 23809.08, + "probability": 0.8192 + }, + { + "start": 23809.82, + "end": 23813.52, + "probability": 0.9811 + }, + { + "start": 23814.16, + "end": 23821.86, + "probability": 0.9495 + }, + { + "start": 23822.46, + "end": 23826.18, + "probability": 0.9924 + }, + { + "start": 23827.1, + "end": 23829.98, + "probability": 0.9888 + }, + { + "start": 23830.02, + "end": 23833.0, + "probability": 0.9944 + }, + { + "start": 23833.88, + "end": 23834.58, + "probability": 0.9188 + }, + { + "start": 23835.26, + "end": 23838.8, + "probability": 0.8176 + }, + { + "start": 23839.4, + "end": 23843.56, + "probability": 0.9886 + }, + { + "start": 23843.66, + "end": 23844.66, + "probability": 0.7347 + }, + { + "start": 23845.12, + "end": 23845.6, + "probability": 0.9944 + }, + { + "start": 23846.28, + "end": 23849.2, + "probability": 0.9512 + }, + { + "start": 23850.04, + "end": 23854.04, + "probability": 0.9938 + }, + { + "start": 23854.04, + "end": 23859.94, + "probability": 0.9814 + }, + { + "start": 23860.2, + "end": 23860.74, + "probability": 0.7555 + }, + { + "start": 23861.9, + "end": 23862.58, + "probability": 0.7365 + }, + { + "start": 23862.82, + "end": 23866.0, + "probability": 0.9155 + }, + { + "start": 23866.42, + "end": 23867.0, + "probability": 0.6088 + }, + { + "start": 23867.14, + "end": 23868.48, + "probability": 0.75 + }, + { + "start": 23869.0, + "end": 23871.18, + "probability": 0.6652 + }, + { + "start": 23871.7, + "end": 23872.54, + "probability": 0.7706 + }, + { + "start": 23873.2, + "end": 23875.67, + "probability": 0.9678 + }, + { + "start": 23877.38, + "end": 23880.12, + "probability": 0.3345 + }, + { + "start": 23880.12, + "end": 23880.76, + "probability": 0.5338 + }, + { + "start": 23880.96, + "end": 23881.76, + "probability": 0.7633 + }, + { + "start": 23882.24, + "end": 23888.91, + "probability": 0.0963 + }, + { + "start": 23895.04, + "end": 23896.0, + "probability": 0.0953 + }, + { + "start": 23896.96, + "end": 23897.62, + "probability": 0.0712 + }, + { + "start": 23897.62, + "end": 23901.11, + "probability": 0.559 + }, + { + "start": 23902.3, + "end": 23905.62, + "probability": 0.9547 + }, + { + "start": 23905.62, + "end": 23908.86, + "probability": 0.9877 + }, + { + "start": 23910.18, + "end": 23915.08, + "probability": 0.4997 + }, + { + "start": 23915.72, + "end": 23917.2, + "probability": 0.4911 + }, + { + "start": 23918.2, + "end": 23919.28, + "probability": 0.6383 + }, + { + "start": 23919.92, + "end": 23922.94, + "probability": 0.5364 + }, + { + "start": 23923.28, + "end": 23924.28, + "probability": 0.5922 + }, + { + "start": 23925.14, + "end": 23928.12, + "probability": 0.8166 + }, + { + "start": 23928.5, + "end": 23928.98, + "probability": 0.77 + }, + { + "start": 23932.94, + "end": 23934.84, + "probability": 0.7093 + }, + { + "start": 23936.3, + "end": 23938.56, + "probability": 0.9849 + }, + { + "start": 23938.56, + "end": 23942.38, + "probability": 0.9849 + }, + { + "start": 23943.02, + "end": 23947.3, + "probability": 0.9957 + }, + { + "start": 23948.66, + "end": 23950.18, + "probability": 0.6804 + }, + { + "start": 23950.74, + "end": 23953.76, + "probability": 0.6932 + }, + { + "start": 23954.32, + "end": 23957.59, + "probability": 0.9205 + }, + { + "start": 23957.76, + "end": 23961.8, + "probability": 0.9923 + }, + { + "start": 23962.78, + "end": 23967.02, + "probability": 0.9681 + }, + { + "start": 23967.02, + "end": 23970.96, + "probability": 0.9878 + }, + { + "start": 23971.82, + "end": 23975.06, + "probability": 0.925 + }, + { + "start": 23975.06, + "end": 23978.1, + "probability": 0.9956 + }, + { + "start": 23978.66, + "end": 23979.82, + "probability": 0.8979 + }, + { + "start": 23980.86, + "end": 23983.02, + "probability": 0.7933 + }, + { + "start": 23983.94, + "end": 23988.36, + "probability": 0.5218 + }, + { + "start": 23988.36, + "end": 23995.66, + "probability": 0.9867 + }, + { + "start": 23995.66, + "end": 24000.8, + "probability": 0.9928 + }, + { + "start": 24001.38, + "end": 24005.04, + "probability": 0.8352 + }, + { + "start": 24005.04, + "end": 24008.9, + "probability": 0.871 + }, + { + "start": 24009.8, + "end": 24012.82, + "probability": 0.822 + }, + { + "start": 24013.68, + "end": 24017.84, + "probability": 0.9794 + }, + { + "start": 24018.36, + "end": 24024.6, + "probability": 0.9845 + }, + { + "start": 24025.5, + "end": 24028.0, + "probability": 0.8432 + }, + { + "start": 24028.08, + "end": 24030.24, + "probability": 0.837 + }, + { + "start": 24030.78, + "end": 24033.52, + "probability": 0.8221 + }, + { + "start": 24033.52, + "end": 24036.84, + "probability": 0.7899 + }, + { + "start": 24037.6, + "end": 24041.06, + "probability": 0.8106 + }, + { + "start": 24041.82, + "end": 24042.6, + "probability": 0.6032 + }, + { + "start": 24043.28, + "end": 24044.08, + "probability": 0.5003 + }, + { + "start": 24044.18, + "end": 24046.22, + "probability": 0.6279 + }, + { + "start": 24046.28, + "end": 24046.92, + "probability": 0.6247 + }, + { + "start": 24047.42, + "end": 24048.2, + "probability": 0.905 + }, + { + "start": 24048.26, + "end": 24049.24, + "probability": 0.62 + }, + { + "start": 24049.32, + "end": 24049.98, + "probability": 0.8863 + }, + { + "start": 24050.34, + "end": 24051.7, + "probability": 0.4157 + }, + { + "start": 24051.78, + "end": 24052.3, + "probability": 0.3189 + }, + { + "start": 24052.98, + "end": 24057.21, + "probability": 0.8877 + }, + { + "start": 24058.96, + "end": 24060.62, + "probability": 0.007 + }, + { + "start": 24060.76, + "end": 24061.22, + "probability": 0.7094 + }, + { + "start": 24061.32, + "end": 24062.2, + "probability": 0.6884 + }, + { + "start": 24064.99, + "end": 24066.48, + "probability": 0.0503 + }, + { + "start": 24067.28, + "end": 24068.12, + "probability": 0.1884 + }, + { + "start": 24076.1, + "end": 24076.56, + "probability": 0.0213 + }, + { + "start": 24076.56, + "end": 24076.7, + "probability": 0.0349 + }, + { + "start": 24076.7, + "end": 24076.7, + "probability": 0.5708 + }, + { + "start": 24076.7, + "end": 24076.7, + "probability": 0.0311 + }, + { + "start": 24076.7, + "end": 24079.7, + "probability": 0.6933 + }, + { + "start": 24080.14, + "end": 24082.54, + "probability": 0.9426 + }, + { + "start": 24082.54, + "end": 24086.08, + "probability": 0.8045 + }, + { + "start": 24087.6, + "end": 24091.28, + "probability": 0.8758 + }, + { + "start": 24091.91, + "end": 24096.32, + "probability": 0.8662 + }, + { + "start": 24096.94, + "end": 24097.78, + "probability": 0.748 + }, + { + "start": 24098.26, + "end": 24100.2, + "probability": 0.984 + }, + { + "start": 24100.26, + "end": 24100.44, + "probability": 0.9377 + }, + { + "start": 24111.14, + "end": 24111.68, + "probability": 0.3348 + }, + { + "start": 24111.86, + "end": 24115.16, + "probability": 0.5927 + }, + { + "start": 24115.9, + "end": 24118.08, + "probability": 0.9226 + }, + { + "start": 24118.08, + "end": 24120.86, + "probability": 0.9551 + }, + { + "start": 24121.92, + "end": 24123.94, + "probability": 0.6774 + }, + { + "start": 24124.1, + "end": 24126.24, + "probability": 0.203 + }, + { + "start": 24126.38, + "end": 24130.22, + "probability": 0.8857 + }, + { + "start": 24131.5, + "end": 24138.9, + "probability": 0.993 + }, + { + "start": 24140.62, + "end": 24143.36, + "probability": 0.9867 + }, + { + "start": 24143.36, + "end": 24146.54, + "probability": 0.9859 + }, + { + "start": 24147.52, + "end": 24150.56, + "probability": 0.9888 + }, + { + "start": 24150.72, + "end": 24152.14, + "probability": 0.9855 + }, + { + "start": 24152.32, + "end": 24156.16, + "probability": 0.9886 + }, + { + "start": 24156.16, + "end": 24159.86, + "probability": 0.9855 + }, + { + "start": 24160.66, + "end": 24166.48, + "probability": 0.9838 + }, + { + "start": 24166.94, + "end": 24173.12, + "probability": 0.9924 + }, + { + "start": 24173.3, + "end": 24175.98, + "probability": 0.985 + }, + { + "start": 24176.34, + "end": 24181.6, + "probability": 0.8672 + }, + { + "start": 24182.0, + "end": 24183.18, + "probability": 0.8444 + }, + { + "start": 24183.28, + "end": 24185.22, + "probability": 0.9391 + }, + { + "start": 24185.36, + "end": 24188.38, + "probability": 0.9739 + }, + { + "start": 24188.92, + "end": 24193.52, + "probability": 0.9971 + }, + { + "start": 24193.66, + "end": 24196.31, + "probability": 0.958 + }, + { + "start": 24196.38, + "end": 24197.38, + "probability": 0.7375 + }, + { + "start": 24200.1, + "end": 24200.82, + "probability": 0.2336 + }, + { + "start": 24201.38, + "end": 24205.98, + "probability": 0.9756 + }, + { + "start": 24205.98, + "end": 24211.66, + "probability": 0.9973 + }, + { + "start": 24212.16, + "end": 24214.5, + "probability": 0.9907 + }, + { + "start": 24215.58, + "end": 24217.78, + "probability": 0.6013 + }, + { + "start": 24217.78, + "end": 24221.34, + "probability": 0.9951 + }, + { + "start": 24221.38, + "end": 24226.84, + "probability": 0.9913 + }, + { + "start": 24227.36, + "end": 24228.72, + "probability": 0.9318 + }, + { + "start": 24229.44, + "end": 24234.06, + "probability": 0.9577 + }, + { + "start": 24234.18, + "end": 24234.44, + "probability": 0.7206 + }, + { + "start": 24235.04, + "end": 24235.84, + "probability": 0.8025 + }, + { + "start": 24236.46, + "end": 24239.12, + "probability": 0.802 + }, + { + "start": 24239.16, + "end": 24242.1, + "probability": 0.5067 + }, + { + "start": 24242.46, + "end": 24243.16, + "probability": 0.2337 + }, + { + "start": 24243.16, + "end": 24243.16, + "probability": 0.2661 + }, + { + "start": 24243.16, + "end": 24243.9, + "probability": 0.4795 + }, + { + "start": 24243.9, + "end": 24244.96, + "probability": 0.2301 + }, + { + "start": 24245.08, + "end": 24249.18, + "probability": 0.9756 + }, + { + "start": 24249.78, + "end": 24252.46, + "probability": 0.3285 + }, + { + "start": 24252.58, + "end": 24253.1, + "probability": 0.5432 + }, + { + "start": 24254.3, + "end": 24255.8, + "probability": 0.1678 + }, + { + "start": 24259.16, + "end": 24259.52, + "probability": 0.0857 + }, + { + "start": 24263.12, + "end": 24266.76, + "probability": 0.0571 + }, + { + "start": 24269.64, + "end": 24270.24, + "probability": 0.1553 + }, + { + "start": 24270.24, + "end": 24271.92, + "probability": 0.361 + }, + { + "start": 24272.0, + "end": 24275.46, + "probability": 0.8346 + }, + { + "start": 24275.6, + "end": 24278.86, + "probability": 0.8663 + }, + { + "start": 24279.28, + "end": 24282.26, + "probability": 0.9695 + }, + { + "start": 24285.64, + "end": 24291.96, + "probability": 0.9412 + }, + { + "start": 24293.66, + "end": 24295.32, + "probability": 0.6387 + }, + { + "start": 24295.32, + "end": 24295.66, + "probability": 0.8831 + }, + { + "start": 24295.78, + "end": 24297.44, + "probability": 0.9585 + }, + { + "start": 24297.72, + "end": 24298.08, + "probability": 0.7337 + }, + { + "start": 24298.56, + "end": 24300.1, + "probability": 0.7346 + }, + { + "start": 24300.32, + "end": 24301.76, + "probability": 0.7326 + }, + { + "start": 24302.16, + "end": 24304.06, + "probability": 0.9425 + }, + { + "start": 24304.12, + "end": 24304.74, + "probability": 0.7621 + }, + { + "start": 24304.82, + "end": 24305.3, + "probability": 0.5246 + }, + { + "start": 24305.46, + "end": 24308.72, + "probability": 0.8733 + }, + { + "start": 24308.72, + "end": 24312.16, + "probability": 0.8264 + }, + { + "start": 24312.72, + "end": 24315.19, + "probability": 0.3567 + }, + { + "start": 24315.88, + "end": 24316.14, + "probability": 0.7735 + }, + { + "start": 24317.24, + "end": 24317.84, + "probability": 0.6286 + }, + { + "start": 24318.44, + "end": 24319.72, + "probability": 0.6557 + }, + { + "start": 24319.72, + "end": 24319.76, + "probability": 0.6321 + }, + { + "start": 24319.82, + "end": 24320.8, + "probability": 0.5785 + }, + { + "start": 24321.1, + "end": 24321.98, + "probability": 0.6668 + }, + { + "start": 24322.04, + "end": 24323.0, + "probability": 0.7537 + }, + { + "start": 24323.72, + "end": 24328.56, + "probability": 0.9595 + }, + { + "start": 24328.56, + "end": 24331.48, + "probability": 0.5465 + }, + { + "start": 24332.04, + "end": 24334.42, + "probability": 0.4345 + }, + { + "start": 24335.2, + "end": 24337.1, + "probability": 0.8413 + }, + { + "start": 24337.24, + "end": 24339.2, + "probability": 0.0857 + }, + { + "start": 24339.2, + "end": 24343.28, + "probability": 0.4713 + }, + { + "start": 24343.46, + "end": 24344.9, + "probability": 0.6143 + }, + { + "start": 24345.06, + "end": 24347.16, + "probability": 0.9023 + }, + { + "start": 24347.3, + "end": 24347.86, + "probability": 0.7516 + }, + { + "start": 24348.08, + "end": 24352.9, + "probability": 0.9966 + }, + { + "start": 24352.9, + "end": 24359.86, + "probability": 0.8858 + }, + { + "start": 24360.12, + "end": 24362.88, + "probability": 0.6945 + }, + { + "start": 24362.88, + "end": 24366.36, + "probability": 0.9952 + }, + { + "start": 24366.46, + "end": 24368.8, + "probability": 0.7538 + }, + { + "start": 24368.8, + "end": 24371.4, + "probability": 0.9839 + }, + { + "start": 24371.54, + "end": 24375.34, + "probability": 0.9725 + }, + { + "start": 24375.52, + "end": 24376.12, + "probability": 0.8012 + }, + { + "start": 24376.76, + "end": 24379.2, + "probability": 0.9865 + }, + { + "start": 24379.2, + "end": 24381.58, + "probability": 0.9926 + }, + { + "start": 24381.68, + "end": 24384.46, + "probability": 0.6706 + }, + { + "start": 24384.5, + "end": 24388.72, + "probability": 0.9764 + }, + { + "start": 24388.92, + "end": 24390.02, + "probability": 0.8319 + }, + { + "start": 24390.48, + "end": 24391.42, + "probability": 0.5618 + }, + { + "start": 24391.52, + "end": 24394.54, + "probability": 0.8064 + }, + { + "start": 24394.94, + "end": 24398.2, + "probability": 0.992 + }, + { + "start": 24398.32, + "end": 24400.3, + "probability": 0.7593 + }, + { + "start": 24402.4, + "end": 24402.4, + "probability": 0.7048 + }, + { + "start": 24402.4, + "end": 24404.98, + "probability": 0.4515 + }, + { + "start": 24405.62, + "end": 24408.38, + "probability": 0.4906 + }, + { + "start": 24408.4, + "end": 24409.16, + "probability": 0.7585 + }, + { + "start": 24409.4, + "end": 24410.52, + "probability": 0.9277 + }, + { + "start": 24410.84, + "end": 24411.06, + "probability": 0.8435 + }, + { + "start": 24412.44, + "end": 24412.74, + "probability": 0.5037 + }, + { + "start": 24412.88, + "end": 24416.06, + "probability": 0.8908 + }, + { + "start": 24417.28, + "end": 24418.38, + "probability": 0.9426 + }, + { + "start": 24418.88, + "end": 24421.66, + "probability": 0.9652 + }, + { + "start": 24422.16, + "end": 24423.02, + "probability": 0.752 + }, + { + "start": 24423.08, + "end": 24423.73, + "probability": 0.8706 + }, + { + "start": 24423.94, + "end": 24427.82, + "probability": 0.8706 + }, + { + "start": 24428.97, + "end": 24431.28, + "probability": 0.7479 + }, + { + "start": 24431.5, + "end": 24432.31, + "probability": 0.2251 + }, + { + "start": 24432.72, + "end": 24435.68, + "probability": 0.0975 + }, + { + "start": 24436.3, + "end": 24436.6, + "probability": 0.0206 + }, + { + "start": 24436.6, + "end": 24437.86, + "probability": 0.5056 + }, + { + "start": 24438.62, + "end": 24440.86, + "probability": 0.8886 + }, + { + "start": 24441.22, + "end": 24441.98, + "probability": 0.3029 + }, + { + "start": 24442.84, + "end": 24443.66, + "probability": 0.6778 + }, + { + "start": 24453.28, + "end": 24454.6, + "probability": 0.0832 + }, + { + "start": 24460.48, + "end": 24461.62, + "probability": 0.0631 + }, + { + "start": 24467.7, + "end": 24472.06, + "probability": 0.5127 + }, + { + "start": 24472.06, + "end": 24475.28, + "probability": 0.9128 + }, + { + "start": 24475.54, + "end": 24475.76, + "probability": 0.0956 + }, + { + "start": 24475.76, + "end": 24476.28, + "probability": 0.5191 + }, + { + "start": 24477.36, + "end": 24479.76, + "probability": 0.3222 + }, + { + "start": 24480.42, + "end": 24484.6, + "probability": 0.0904 + }, + { + "start": 24485.29, + "end": 24487.77, + "probability": 0.0097 + }, + { + "start": 24489.09, + "end": 24490.69, + "probability": 0.1091 + }, + { + "start": 24493.46, + "end": 24493.7, + "probability": 0.0475 + }, + { + "start": 24493.87, + "end": 24495.64, + "probability": 0.0327 + }, + { + "start": 24495.76, + "end": 24496.34, + "probability": 0.0225 + }, + { + "start": 24496.34, + "end": 24496.48, + "probability": 0.0104 + }, + { + "start": 24497.14, + "end": 24497.76, + "probability": 0.0599 + }, + { + "start": 24497.76, + "end": 24497.76, + "probability": 0.0935 + }, + { + "start": 24505.16, + "end": 24508.446, + "probability": 0.0 + }, + { + "start": 24508.446, + "end": 24508.446, + "probability": 0.0 + } + ], + "segments_count": 8756, + "words_count": 43714, + "avg_words_per_segment": 4.9925, + "avg_segment_duration": 2.0438, + "avg_words_per_minute": 107.0179, + "plenum_id": "32564", + "duration": 24508.43, + "title": null, + "plenum_date": "2013-11-25" +} \ No newline at end of file