diff --git "a/34015/metadata.json" "b/34015/metadata.json" new file mode 100644--- /dev/null +++ "b/34015/metadata.json" @@ -0,0 +1,55437 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "34015", + "quality_score": 0.8929, + "per_segment_quality_scores": [ + { + "start": 71.24, + "end": 71.24, + "probability": 0.0238 + }, + { + "start": 71.24, + "end": 74.6, + "probability": 0.8154 + }, + { + "start": 75.92, + "end": 78.62, + "probability": 0.9215 + }, + { + "start": 79.7, + "end": 80.48, + "probability": 0.8567 + }, + { + "start": 83.8, + "end": 88.42, + "probability": 0.9639 + }, + { + "start": 89.34, + "end": 91.74, + "probability": 0.8501 + }, + { + "start": 91.74, + "end": 95.28, + "probability": 0.9705 + }, + { + "start": 96.36, + "end": 98.92, + "probability": 0.803 + }, + { + "start": 98.92, + "end": 101.88, + "probability": 0.986 + }, + { + "start": 102.84, + "end": 103.1, + "probability": 0.7345 + }, + { + "start": 103.81, + "end": 104.82, + "probability": 0.8964 + }, + { + "start": 107.08, + "end": 108.14, + "probability": 0.8632 + }, + { + "start": 108.32, + "end": 110.68, + "probability": 0.9816 + }, + { + "start": 110.94, + "end": 112.5, + "probability": 0.8886 + }, + { + "start": 113.3, + "end": 117.24, + "probability": 0.9615 + }, + { + "start": 117.28, + "end": 118.98, + "probability": 0.9949 + }, + { + "start": 120.42, + "end": 122.68, + "probability": 0.9804 + }, + { + "start": 123.08, + "end": 125.08, + "probability": 0.9063 + }, + { + "start": 126.52, + "end": 127.92, + "probability": 0.7249 + }, + { + "start": 128.74, + "end": 133.32, + "probability": 0.9692 + }, + { + "start": 135.18, + "end": 145.32, + "probability": 0.7791 + }, + { + "start": 146.58, + "end": 149.06, + "probability": 0.8551 + }, + { + "start": 150.54, + "end": 153.38, + "probability": 0.983 + }, + { + "start": 153.48, + "end": 156.94, + "probability": 0.9883 + }, + { + "start": 157.54, + "end": 164.35, + "probability": 0.9395 + }, + { + "start": 164.64, + "end": 165.18, + "probability": 0.8395 + }, + { + "start": 170.66, + "end": 172.28, + "probability": 0.0256 + }, + { + "start": 172.78, + "end": 173.18, + "probability": 0.0197 + }, + { + "start": 227.21, + "end": 228.64, + "probability": 0.0526 + }, + { + "start": 229.42, + "end": 233.22, + "probability": 0.1997 + }, + { + "start": 233.6, + "end": 235.38, + "probability": 0.1266 + }, + { + "start": 257.24, + "end": 258.42, + "probability": 0.01 + }, + { + "start": 264.0, + "end": 265.78, + "probability": 0.024 + }, + { + "start": 266.53, + "end": 267.67, + "probability": 0.1279 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 323.0, + "end": 323.0, + "probability": 0.0 + }, + { + "start": 324.42, + "end": 326.88, + "probability": 0.1465 + }, + { + "start": 326.96, + "end": 327.72, + "probability": 0.2847 + }, + { + "start": 327.72, + "end": 327.96, + "probability": 0.1949 + }, + { + "start": 327.96, + "end": 328.84, + "probability": 0.1236 + }, + { + "start": 330.44, + "end": 334.78, + "probability": 0.2855 + }, + { + "start": 337.6, + "end": 339.46, + "probability": 0.1485 + }, + { + "start": 344.42, + "end": 346.19, + "probability": 0.1337 + }, + { + "start": 347.84, + "end": 353.4, + "probability": 0.0675 + }, + { + "start": 354.2, + "end": 354.6, + "probability": 0.0465 + }, + { + "start": 354.6, + "end": 354.94, + "probability": 0.1085 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.0, + "end": 460.0, + "probability": 0.0 + }, + { + "start": 460.18, + "end": 460.32, + "probability": 0.0671 + }, + { + "start": 460.9, + "end": 462.5, + "probability": 0.9735 + }, + { + "start": 463.04, + "end": 464.84, + "probability": 0.9917 + }, + { + "start": 465.66, + "end": 466.92, + "probability": 0.5122 + }, + { + "start": 467.58, + "end": 471.04, + "probability": 0.7512 + }, + { + "start": 471.7, + "end": 472.76, + "probability": 0.8553 + }, + { + "start": 473.38, + "end": 474.26, + "probability": 0.8457 + }, + { + "start": 474.92, + "end": 476.22, + "probability": 0.945 + }, + { + "start": 476.38, + "end": 478.58, + "probability": 0.9657 + }, + { + "start": 478.76, + "end": 480.76, + "probability": 0.9858 + }, + { + "start": 480.9, + "end": 484.12, + "probability": 0.8333 + }, + { + "start": 484.52, + "end": 486.1, + "probability": 0.998 + }, + { + "start": 487.32, + "end": 488.42, + "probability": 0.9826 + }, + { + "start": 489.52, + "end": 489.84, + "probability": 0.9968 + }, + { + "start": 490.52, + "end": 493.74, + "probability": 0.926 + }, + { + "start": 493.98, + "end": 497.08, + "probability": 0.801 + }, + { + "start": 497.88, + "end": 500.24, + "probability": 0.9929 + }, + { + "start": 500.82, + "end": 502.04, + "probability": 0.9966 + }, + { + "start": 503.16, + "end": 504.38, + "probability": 0.7902 + }, + { + "start": 504.5, + "end": 504.84, + "probability": 0.7178 + }, + { + "start": 505.7, + "end": 510.4, + "probability": 0.9294 + }, + { + "start": 510.82, + "end": 512.14, + "probability": 0.7364 + }, + { + "start": 513.82, + "end": 515.4, + "probability": 0.8933 + }, + { + "start": 516.1, + "end": 519.78, + "probability": 0.8735 + }, + { + "start": 519.78, + "end": 525.24, + "probability": 0.8413 + }, + { + "start": 526.42, + "end": 532.3, + "probability": 0.9111 + }, + { + "start": 533.72, + "end": 536.42, + "probability": 0.9224 + }, + { + "start": 536.46, + "end": 539.16, + "probability": 0.9446 + }, + { + "start": 539.34, + "end": 540.52, + "probability": 0.9907 + }, + { + "start": 540.82, + "end": 542.76, + "probability": 0.924 + }, + { + "start": 543.18, + "end": 544.9, + "probability": 0.7274 + }, + { + "start": 548.94, + "end": 551.44, + "probability": 0.7341 + }, + { + "start": 552.36, + "end": 556.74, + "probability": 0.9869 + }, + { + "start": 562.4, + "end": 563.02, + "probability": 0.2692 + }, + { + "start": 563.08, + "end": 567.52, + "probability": 0.9788 + }, + { + "start": 568.26, + "end": 570.43, + "probability": 0.7239 + }, + { + "start": 571.08, + "end": 572.6, + "probability": 0.9399 + }, + { + "start": 573.52, + "end": 575.02, + "probability": 0.9509 + }, + { + "start": 575.72, + "end": 577.1, + "probability": 0.7144 + }, + { + "start": 577.36, + "end": 578.4, + "probability": 0.8602 + }, + { + "start": 579.12, + "end": 579.36, + "probability": 0.284 + }, + { + "start": 580.18, + "end": 580.58, + "probability": 0.662 + }, + { + "start": 580.74, + "end": 581.26, + "probability": 0.656 + }, + { + "start": 581.66, + "end": 582.68, + "probability": 0.8411 + }, + { + "start": 582.78, + "end": 584.86, + "probability": 0.9219 + }, + { + "start": 585.32, + "end": 591.62, + "probability": 0.3519 + }, + { + "start": 591.62, + "end": 594.98, + "probability": 0.7197 + }, + { + "start": 594.98, + "end": 595.46, + "probability": 0.7241 + }, + { + "start": 596.08, + "end": 598.24, + "probability": 0.9926 + }, + { + "start": 598.24, + "end": 601.62, + "probability": 0.9356 + }, + { + "start": 602.34, + "end": 604.72, + "probability": 0.9731 + }, + { + "start": 605.18, + "end": 608.58, + "probability": 0.9872 + }, + { + "start": 608.58, + "end": 611.64, + "probability": 0.8584 + }, + { + "start": 612.42, + "end": 614.9, + "probability": 0.9725 + }, + { + "start": 615.44, + "end": 617.3, + "probability": 0.9695 + }, + { + "start": 617.7, + "end": 621.3, + "probability": 0.9945 + }, + { + "start": 621.94, + "end": 625.92, + "probability": 0.9353 + }, + { + "start": 626.66, + "end": 629.08, + "probability": 0.9501 + }, + { + "start": 629.08, + "end": 632.08, + "probability": 0.9906 + }, + { + "start": 632.72, + "end": 633.82, + "probability": 0.9063 + }, + { + "start": 636.66, + "end": 640.58, + "probability": 0.8305 + }, + { + "start": 640.58, + "end": 644.52, + "probability": 0.9939 + }, + { + "start": 644.96, + "end": 646.8, + "probability": 0.9562 + }, + { + "start": 648.56, + "end": 649.78, + "probability": 0.832 + }, + { + "start": 649.88, + "end": 652.26, + "probability": 0.9943 + }, + { + "start": 652.42, + "end": 653.88, + "probability": 0.7965 + }, + { + "start": 653.98, + "end": 657.46, + "probability": 0.9658 + }, + { + "start": 658.24, + "end": 659.54, + "probability": 0.9685 + }, + { + "start": 661.72, + "end": 661.72, + "probability": 0.1978 + }, + { + "start": 661.72, + "end": 662.6, + "probability": 0.6068 + }, + { + "start": 662.74, + "end": 663.66, + "probability": 0.8182 + }, + { + "start": 664.04, + "end": 665.68, + "probability": 0.8897 + }, + { + "start": 666.42, + "end": 668.38, + "probability": 0.9261 + }, + { + "start": 669.14, + "end": 671.06, + "probability": 0.9399 + }, + { + "start": 671.58, + "end": 675.94, + "probability": 0.7937 + }, + { + "start": 677.54, + "end": 678.7, + "probability": 0.7591 + }, + { + "start": 679.78, + "end": 682.26, + "probability": 0.8616 + }, + { + "start": 682.82, + "end": 684.24, + "probability": 0.8165 + }, + { + "start": 684.88, + "end": 690.86, + "probability": 0.9789 + }, + { + "start": 691.16, + "end": 695.46, + "probability": 0.9869 + }, + { + "start": 695.65, + "end": 696.69, + "probability": 0.9146 + }, + { + "start": 697.66, + "end": 699.56, + "probability": 0.928 + }, + { + "start": 700.0, + "end": 702.88, + "probability": 0.988 + }, + { + "start": 703.38, + "end": 703.82, + "probability": 0.684 + }, + { + "start": 703.94, + "end": 710.36, + "probability": 0.9466 + }, + { + "start": 710.64, + "end": 713.12, + "probability": 0.9286 + }, + { + "start": 713.92, + "end": 716.16, + "probability": 0.9731 + }, + { + "start": 716.68, + "end": 717.84, + "probability": 0.8959 + }, + { + "start": 718.0, + "end": 721.68, + "probability": 0.9796 + }, + { + "start": 722.0, + "end": 726.64, + "probability": 0.9756 + }, + { + "start": 726.72, + "end": 726.94, + "probability": 0.7786 + }, + { + "start": 727.58, + "end": 729.42, + "probability": 0.9611 + }, + { + "start": 729.56, + "end": 732.26, + "probability": 0.7259 + }, + { + "start": 732.84, + "end": 737.34, + "probability": 0.9813 + }, + { + "start": 737.8, + "end": 739.66, + "probability": 0.8397 + }, + { + "start": 740.88, + "end": 743.76, + "probability": 0.9844 + }, + { + "start": 743.82, + "end": 744.58, + "probability": 0.5988 + }, + { + "start": 744.88, + "end": 749.46, + "probability": 0.9473 + }, + { + "start": 750.18, + "end": 751.44, + "probability": 0.9512 + }, + { + "start": 752.28, + "end": 755.84, + "probability": 0.9551 + }, + { + "start": 755.84, + "end": 760.1, + "probability": 0.9939 + }, + { + "start": 760.18, + "end": 762.68, + "probability": 0.7611 + }, + { + "start": 763.24, + "end": 766.76, + "probability": 0.9871 + }, + { + "start": 767.54, + "end": 773.1, + "probability": 0.9912 + }, + { + "start": 773.96, + "end": 777.18, + "probability": 0.989 + }, + { + "start": 777.18, + "end": 780.16, + "probability": 0.9919 + }, + { + "start": 780.4, + "end": 782.44, + "probability": 0.7017 + }, + { + "start": 782.5, + "end": 783.94, + "probability": 0.9251 + }, + { + "start": 784.36, + "end": 784.86, + "probability": 0.6576 + }, + { + "start": 785.22, + "end": 787.88, + "probability": 0.9491 + }, + { + "start": 796.28, + "end": 796.92, + "probability": 0.7211 + }, + { + "start": 797.08, + "end": 798.1, + "probability": 0.9398 + }, + { + "start": 798.76, + "end": 800.72, + "probability": 0.9814 + }, + { + "start": 801.68, + "end": 803.82, + "probability": 0.8016 + }, + { + "start": 803.86, + "end": 805.06, + "probability": 0.925 + }, + { + "start": 805.12, + "end": 806.7, + "probability": 0.9964 + }, + { + "start": 807.54, + "end": 810.26, + "probability": 0.9821 + }, + { + "start": 811.52, + "end": 812.98, + "probability": 0.9973 + }, + { + "start": 813.52, + "end": 814.98, + "probability": 0.9942 + }, + { + "start": 815.52, + "end": 819.69, + "probability": 0.9876 + }, + { + "start": 820.9, + "end": 822.24, + "probability": 0.6882 + }, + { + "start": 822.54, + "end": 823.36, + "probability": 0.9686 + }, + { + "start": 824.24, + "end": 824.8, + "probability": 0.8232 + }, + { + "start": 824.88, + "end": 825.74, + "probability": 0.8455 + }, + { + "start": 826.06, + "end": 827.0, + "probability": 0.7651 + }, + { + "start": 827.4, + "end": 830.4, + "probability": 0.9627 + }, + { + "start": 830.62, + "end": 831.04, + "probability": 0.5358 + }, + { + "start": 831.26, + "end": 834.54, + "probability": 0.9935 + }, + { + "start": 834.94, + "end": 836.47, + "probability": 0.8682 + }, + { + "start": 837.36, + "end": 837.94, + "probability": 0.2151 + }, + { + "start": 837.94, + "end": 840.56, + "probability": 0.911 + }, + { + "start": 841.16, + "end": 843.86, + "probability": 0.9308 + }, + { + "start": 844.28, + "end": 845.78, + "probability": 0.9881 + }, + { + "start": 845.94, + "end": 848.13, + "probability": 0.9153 + }, + { + "start": 848.64, + "end": 851.82, + "probability": 0.9881 + }, + { + "start": 852.5, + "end": 854.62, + "probability": 0.9959 + }, + { + "start": 855.2, + "end": 856.64, + "probability": 0.9863 + }, + { + "start": 856.66, + "end": 857.83, + "probability": 0.659 + }, + { + "start": 858.68, + "end": 860.42, + "probability": 0.9121 + }, + { + "start": 860.5, + "end": 863.33, + "probability": 0.9807 + }, + { + "start": 863.74, + "end": 864.46, + "probability": 0.701 + }, + { + "start": 864.6, + "end": 866.32, + "probability": 0.877 + }, + { + "start": 866.92, + "end": 869.22, + "probability": 0.8769 + }, + { + "start": 869.38, + "end": 873.58, + "probability": 0.9906 + }, + { + "start": 873.72, + "end": 875.24, + "probability": 0.915 + }, + { + "start": 875.88, + "end": 878.56, + "probability": 0.7045 + }, + { + "start": 879.14, + "end": 881.5, + "probability": 0.8528 + }, + { + "start": 881.88, + "end": 885.86, + "probability": 0.9802 + }, + { + "start": 885.86, + "end": 888.28, + "probability": 0.9959 + }, + { + "start": 888.36, + "end": 888.62, + "probability": 0.8356 + }, + { + "start": 889.66, + "end": 892.74, + "probability": 0.792 + }, + { + "start": 893.66, + "end": 896.44, + "probability": 0.9984 + }, + { + "start": 896.48, + "end": 899.62, + "probability": 0.9938 + }, + { + "start": 899.88, + "end": 901.36, + "probability": 0.5276 + }, + { + "start": 901.48, + "end": 905.68, + "probability": 0.964 + }, + { + "start": 906.04, + "end": 909.98, + "probability": 0.9459 + }, + { + "start": 910.04, + "end": 910.72, + "probability": 0.4602 + }, + { + "start": 911.32, + "end": 912.44, + "probability": 0.0496 + }, + { + "start": 912.44, + "end": 912.58, + "probability": 0.5131 + }, + { + "start": 914.17, + "end": 915.98, + "probability": 0.9403 + }, + { + "start": 916.22, + "end": 918.16, + "probability": 0.9379 + }, + { + "start": 918.56, + "end": 918.96, + "probability": 0.7209 + }, + { + "start": 919.06, + "end": 922.58, + "probability": 0.9596 + }, + { + "start": 923.68, + "end": 923.68, + "probability": 0.073 + }, + { + "start": 923.68, + "end": 926.12, + "probability": 0.72 + }, + { + "start": 926.9, + "end": 930.46, + "probability": 0.6928 + }, + { + "start": 930.98, + "end": 934.78, + "probability": 0.0569 + }, + { + "start": 936.72, + "end": 939.22, + "probability": 0.2918 + }, + { + "start": 939.72, + "end": 940.04, + "probability": 0.2446 + }, + { + "start": 940.18, + "end": 941.31, + "probability": 0.8659 + }, + { + "start": 942.42, + "end": 946.47, + "probability": 0.2358 + }, + { + "start": 946.94, + "end": 948.9, + "probability": 0.326 + }, + { + "start": 948.9, + "end": 950.24, + "probability": 0.1029 + }, + { + "start": 951.56, + "end": 952.56, + "probability": 0.008 + }, + { + "start": 952.56, + "end": 953.28, + "probability": 0.2072 + }, + { + "start": 953.84, + "end": 954.32, + "probability": 0.1765 + }, + { + "start": 954.32, + "end": 956.78, + "probability": 0.7043 + }, + { + "start": 956.98, + "end": 958.6, + "probability": 0.8042 + }, + { + "start": 958.6, + "end": 959.09, + "probability": 0.1305 + }, + { + "start": 960.14, + "end": 963.99, + "probability": 0.1341 + }, + { + "start": 968.22, + "end": 968.43, + "probability": 0.2227 + }, + { + "start": 968.86, + "end": 969.44, + "probability": 0.9197 + }, + { + "start": 970.16, + "end": 973.68, + "probability": 0.9603 + }, + { + "start": 973.76, + "end": 974.84, + "probability": 0.7995 + }, + { + "start": 975.04, + "end": 978.6, + "probability": 0.9437 + }, + { + "start": 978.6, + "end": 981.26, + "probability": 0.9295 + }, + { + "start": 982.12, + "end": 986.76, + "probability": 0.9764 + }, + { + "start": 986.76, + "end": 991.08, + "probability": 0.9988 + }, + { + "start": 991.6, + "end": 996.42, + "probability": 0.9722 + }, + { + "start": 996.42, + "end": 999.38, + "probability": 0.9918 + }, + { + "start": 999.68, + "end": 1000.54, + "probability": 0.8643 + }, + { + "start": 1001.18, + "end": 1004.68, + "probability": 0.9766 + }, + { + "start": 1005.1, + "end": 1007.9, + "probability": 0.993 + }, + { + "start": 1008.32, + "end": 1011.6, + "probability": 0.9668 + }, + { + "start": 1012.06, + "end": 1014.74, + "probability": 0.9613 + }, + { + "start": 1014.74, + "end": 1017.22, + "probability": 0.9844 + }, + { + "start": 1018.7, + "end": 1018.7, + "probability": 0.3084 + }, + { + "start": 1018.7, + "end": 1019.2, + "probability": 0.7401 + }, + { + "start": 1019.54, + "end": 1024.36, + "probability": 0.9722 + }, + { + "start": 1024.92, + "end": 1029.12, + "probability": 0.9987 + }, + { + "start": 1029.52, + "end": 1030.28, + "probability": 0.7565 + }, + { + "start": 1030.54, + "end": 1031.58, + "probability": 0.0556 + }, + { + "start": 1032.32, + "end": 1037.08, + "probability": 0.0895 + }, + { + "start": 1037.56, + "end": 1038.84, + "probability": 0.7603 + }, + { + "start": 1039.14, + "end": 1041.38, + "probability": 0.6735 + }, + { + "start": 1041.94, + "end": 1046.64, + "probability": 0.9324 + }, + { + "start": 1046.64, + "end": 1048.26, + "probability": 0.8097 + }, + { + "start": 1048.6, + "end": 1053.54, + "probability": 0.9473 + }, + { + "start": 1054.6, + "end": 1056.86, + "probability": 0.6014 + }, + { + "start": 1057.22, + "end": 1058.55, + "probability": 0.8143 + }, + { + "start": 1058.92, + "end": 1059.58, + "probability": 0.7354 + }, + { + "start": 1059.74, + "end": 1062.22, + "probability": 0.8906 + }, + { + "start": 1062.48, + "end": 1068.48, + "probability": 0.9312 + }, + { + "start": 1068.5, + "end": 1069.1, + "probability": 0.2138 + }, + { + "start": 1069.1, + "end": 1070.28, + "probability": 0.7082 + }, + { + "start": 1070.6, + "end": 1070.76, + "probability": 0.1415 + }, + { + "start": 1070.76, + "end": 1074.28, + "probability": 0.9551 + }, + { + "start": 1075.22, + "end": 1080.52, + "probability": 0.5605 + }, + { + "start": 1082.36, + "end": 1085.7, + "probability": 0.7424 + }, + { + "start": 1086.51, + "end": 1091.24, + "probability": 0.9591 + }, + { + "start": 1092.72, + "end": 1094.64, + "probability": 0.7856 + }, + { + "start": 1095.2, + "end": 1096.98, + "probability": 0.9102 + }, + { + "start": 1097.08, + "end": 1100.06, + "probability": 0.9102 + }, + { + "start": 1100.42, + "end": 1105.26, + "probability": 0.9881 + }, + { + "start": 1105.72, + "end": 1112.14, + "probability": 0.9928 + }, + { + "start": 1112.54, + "end": 1115.52, + "probability": 0.9872 + }, + { + "start": 1116.66, + "end": 1117.38, + "probability": 0.9893 + }, + { + "start": 1118.18, + "end": 1120.4, + "probability": 0.9756 + }, + { + "start": 1120.8, + "end": 1126.22, + "probability": 0.9601 + }, + { + "start": 1126.88, + "end": 1129.69, + "probability": 0.9914 + }, + { + "start": 1131.3, + "end": 1131.39, + "probability": 0.0227 + }, + { + "start": 1132.4, + "end": 1132.86, + "probability": 0.517 + }, + { + "start": 1133.06, + "end": 1138.16, + "probability": 0.1294 + }, + { + "start": 1138.16, + "end": 1138.72, + "probability": 0.1082 + }, + { + "start": 1139.1, + "end": 1140.82, + "probability": 0.5178 + }, + { + "start": 1141.28, + "end": 1142.2, + "probability": 0.1108 + }, + { + "start": 1142.86, + "end": 1145.2, + "probability": 0.3187 + }, + { + "start": 1145.24, + "end": 1148.06, + "probability": 0.2421 + }, + { + "start": 1148.34, + "end": 1148.6, + "probability": 0.4988 + }, + { + "start": 1148.6, + "end": 1149.94, + "probability": 0.4396 + }, + { + "start": 1149.96, + "end": 1150.88, + "probability": 0.5543 + }, + { + "start": 1151.06, + "end": 1151.78, + "probability": 0.6334 + }, + { + "start": 1153.04, + "end": 1156.2, + "probability": 0.7578 + }, + { + "start": 1156.44, + "end": 1158.14, + "probability": 0.9663 + }, + { + "start": 1158.38, + "end": 1162.28, + "probability": 0.8971 + }, + { + "start": 1162.74, + "end": 1169.02, + "probability": 0.9131 + }, + { + "start": 1169.16, + "end": 1172.52, + "probability": 0.8757 + }, + { + "start": 1173.0, + "end": 1176.08, + "probability": 0.9777 + }, + { + "start": 1176.38, + "end": 1179.87, + "probability": 0.8466 + }, + { + "start": 1180.0, + "end": 1181.56, + "probability": 0.5832 + }, + { + "start": 1181.56, + "end": 1184.7, + "probability": 0.6238 + }, + { + "start": 1186.38, + "end": 1189.78, + "probability": 0.3245 + }, + { + "start": 1189.9, + "end": 1190.06, + "probability": 0.1444 + }, + { + "start": 1190.06, + "end": 1191.46, + "probability": 0.7373 + }, + { + "start": 1191.54, + "end": 1192.64, + "probability": 0.4422 + }, + { + "start": 1192.68, + "end": 1193.16, + "probability": 0.4262 + }, + { + "start": 1193.3, + "end": 1195.16, + "probability": 0.9746 + }, + { + "start": 1195.2, + "end": 1196.02, + "probability": 0.5265 + }, + { + "start": 1196.02, + "end": 1197.08, + "probability": 0.8802 + }, + { + "start": 1197.82, + "end": 1200.56, + "probability": 0.8635 + }, + { + "start": 1201.36, + "end": 1201.76, + "probability": 0.7136 + }, + { + "start": 1202.56, + "end": 1206.2, + "probability": 0.9551 + }, + { + "start": 1206.58, + "end": 1210.1, + "probability": 0.8531 + }, + { + "start": 1212.6, + "end": 1213.66, + "probability": 0.4566 + }, + { + "start": 1213.7, + "end": 1214.92, + "probability": 0.759 + }, + { + "start": 1215.0, + "end": 1215.8, + "probability": 0.8561 + }, + { + "start": 1216.22, + "end": 1217.02, + "probability": 0.9226 + }, + { + "start": 1217.18, + "end": 1218.04, + "probability": 0.8952 + }, + { + "start": 1218.3, + "end": 1218.9, + "probability": 0.6726 + }, + { + "start": 1219.0, + "end": 1220.72, + "probability": 0.8284 + }, + { + "start": 1221.04, + "end": 1224.74, + "probability": 0.9797 + }, + { + "start": 1225.7, + "end": 1227.04, + "probability": 0.9949 + }, + { + "start": 1229.98, + "end": 1234.9, + "probability": 0.8949 + }, + { + "start": 1235.22, + "end": 1235.68, + "probability": 0.6415 + }, + { + "start": 1235.9, + "end": 1243.3, + "probability": 0.9453 + }, + { + "start": 1243.9, + "end": 1249.56, + "probability": 0.9521 + }, + { + "start": 1249.56, + "end": 1253.48, + "probability": 0.7755 + }, + { + "start": 1253.82, + "end": 1256.02, + "probability": 0.8148 + }, + { + "start": 1256.12, + "end": 1256.9, + "probability": 0.9754 + }, + { + "start": 1257.06, + "end": 1257.81, + "probability": 0.9407 + }, + { + "start": 1258.14, + "end": 1260.58, + "probability": 0.9489 + }, + { + "start": 1260.78, + "end": 1262.04, + "probability": 0.8621 + }, + { + "start": 1262.88, + "end": 1267.2, + "probability": 0.8633 + }, + { + "start": 1267.22, + "end": 1267.86, + "probability": 0.4357 + }, + { + "start": 1267.86, + "end": 1269.74, + "probability": 0.3098 + }, + { + "start": 1269.96, + "end": 1272.9, + "probability": 0.814 + }, + { + "start": 1273.22, + "end": 1276.34, + "probability": 0.8911 + }, + { + "start": 1276.52, + "end": 1278.92, + "probability": 0.5902 + }, + { + "start": 1279.72, + "end": 1281.8, + "probability": 0.547 + }, + { + "start": 1281.96, + "end": 1285.36, + "probability": 0.584 + }, + { + "start": 1285.74, + "end": 1288.4, + "probability": 0.937 + }, + { + "start": 1288.7, + "end": 1290.54, + "probability": 0.9745 + }, + { + "start": 1290.98, + "end": 1294.68, + "probability": 0.9785 + }, + { + "start": 1295.2, + "end": 1296.02, + "probability": 0.9615 + }, + { + "start": 1296.16, + "end": 1297.55, + "probability": 0.9539 + }, + { + "start": 1297.86, + "end": 1299.56, + "probability": 0.968 + }, + { + "start": 1299.88, + "end": 1300.42, + "probability": 0.5137 + }, + { + "start": 1300.44, + "end": 1304.04, + "probability": 0.9756 + }, + { + "start": 1304.36, + "end": 1304.96, + "probability": 0.8043 + }, + { + "start": 1305.54, + "end": 1309.26, + "probability": 0.9448 + }, + { + "start": 1309.26, + "end": 1312.0, + "probability": 0.9569 + }, + { + "start": 1312.12, + "end": 1312.24, + "probability": 0.5373 + }, + { + "start": 1312.32, + "end": 1312.87, + "probability": 0.5448 + }, + { + "start": 1312.98, + "end": 1313.36, + "probability": 0.7456 + }, + { + "start": 1313.68, + "end": 1315.82, + "probability": 0.824 + }, + { + "start": 1316.22, + "end": 1320.14, + "probability": 0.9351 + }, + { + "start": 1320.84, + "end": 1321.34, + "probability": 0.8766 + }, + { + "start": 1321.62, + "end": 1324.14, + "probability": 0.9626 + }, + { + "start": 1324.22, + "end": 1327.88, + "probability": 0.8052 + }, + { + "start": 1327.94, + "end": 1328.84, + "probability": 0.5846 + }, + { + "start": 1328.84, + "end": 1329.28, + "probability": 0.0781 + }, + { + "start": 1329.82, + "end": 1335.9, + "probability": 0.3652 + }, + { + "start": 1341.24, + "end": 1342.96, + "probability": 0.1892 + }, + { + "start": 1345.35, + "end": 1348.76, + "probability": 0.6568 + }, + { + "start": 1348.86, + "end": 1353.1, + "probability": 0.238 + }, + { + "start": 1353.26, + "end": 1355.3, + "probability": 0.9858 + }, + { + "start": 1356.06, + "end": 1356.68, + "probability": 0.8223 + }, + { + "start": 1356.78, + "end": 1357.54, + "probability": 0.4843 + }, + { + "start": 1357.58, + "end": 1362.52, + "probability": 0.9613 + }, + { + "start": 1363.72, + "end": 1364.94, + "probability": 0.8026 + }, + { + "start": 1365.1, + "end": 1365.82, + "probability": 0.7403 + }, + { + "start": 1366.26, + "end": 1369.88, + "probability": 0.9075 + }, + { + "start": 1370.12, + "end": 1372.42, + "probability": 0.884 + }, + { + "start": 1372.84, + "end": 1375.28, + "probability": 0.9578 + }, + { + "start": 1375.32, + "end": 1377.16, + "probability": 0.998 + }, + { + "start": 1377.62, + "end": 1379.58, + "probability": 0.9989 + }, + { + "start": 1380.2, + "end": 1382.12, + "probability": 0.9074 + }, + { + "start": 1382.22, + "end": 1383.94, + "probability": 0.8508 + }, + { + "start": 1384.46, + "end": 1386.72, + "probability": 0.9159 + }, + { + "start": 1387.14, + "end": 1391.04, + "probability": 0.9958 + }, + { + "start": 1391.04, + "end": 1395.24, + "probability": 0.9568 + }, + { + "start": 1395.3, + "end": 1396.3, + "probability": 0.6738 + }, + { + "start": 1397.06, + "end": 1399.32, + "probability": 0.9814 + }, + { + "start": 1399.48, + "end": 1402.22, + "probability": 0.9971 + }, + { + "start": 1402.92, + "end": 1404.36, + "probability": 0.9603 + }, + { + "start": 1404.44, + "end": 1406.46, + "probability": 0.9887 + }, + { + "start": 1406.54, + "end": 1410.56, + "probability": 0.948 + }, + { + "start": 1410.58, + "end": 1412.8, + "probability": 0.7542 + }, + { + "start": 1412.86, + "end": 1413.92, + "probability": 0.7489 + }, + { + "start": 1414.18, + "end": 1416.72, + "probability": 0.8613 + }, + { + "start": 1417.5, + "end": 1418.36, + "probability": 0.0719 + }, + { + "start": 1418.36, + "end": 1420.75, + "probability": 0.0939 + }, + { + "start": 1421.51, + "end": 1425.91, + "probability": 0.8473 + }, + { + "start": 1426.32, + "end": 1427.02, + "probability": 0.669 + }, + { + "start": 1427.16, + "end": 1429.02, + "probability": 0.721 + }, + { + "start": 1429.14, + "end": 1434.02, + "probability": 0.9866 + }, + { + "start": 1434.66, + "end": 1435.72, + "probability": 0.8431 + }, + { + "start": 1436.46, + "end": 1442.42, + "probability": 0.486 + }, + { + "start": 1444.4, + "end": 1444.82, + "probability": 0.6604 + }, + { + "start": 1445.82, + "end": 1450.32, + "probability": 0.921 + }, + { + "start": 1450.96, + "end": 1453.92, + "probability": 0.8277 + }, + { + "start": 1453.92, + "end": 1458.08, + "probability": 0.9906 + }, + { + "start": 1459.24, + "end": 1461.4, + "probability": 0.6953 + }, + { + "start": 1462.48, + "end": 1463.12, + "probability": 0.3822 + }, + { + "start": 1463.62, + "end": 1463.72, + "probability": 0.8196 + }, + { + "start": 1466.24, + "end": 1466.5, + "probability": 0.59 + }, + { + "start": 1468.56, + "end": 1469.82, + "probability": 0.0854 + }, + { + "start": 1469.94, + "end": 1470.7, + "probability": 0.2734 + }, + { + "start": 1470.96, + "end": 1471.38, + "probability": 0.2821 + }, + { + "start": 1472.16, + "end": 1475.8, + "probability": 0.4922 + }, + { + "start": 1475.92, + "end": 1478.76, + "probability": 0.9578 + }, + { + "start": 1478.92, + "end": 1480.28, + "probability": 0.766 + }, + { + "start": 1480.9, + "end": 1482.32, + "probability": 0.7538 + }, + { + "start": 1482.4, + "end": 1483.56, + "probability": 0.9246 + }, + { + "start": 1484.0, + "end": 1487.86, + "probability": 0.6019 + }, + { + "start": 1488.22, + "end": 1493.26, + "probability": 0.9768 + }, + { + "start": 1493.96, + "end": 1496.66, + "probability": 0.9241 + }, + { + "start": 1496.92, + "end": 1497.82, + "probability": 0.6573 + }, + { + "start": 1498.4, + "end": 1502.26, + "probability": 0.8803 + }, + { + "start": 1502.64, + "end": 1505.24, + "probability": 0.962 + }, + { + "start": 1505.84, + "end": 1507.16, + "probability": 0.5502 + }, + { + "start": 1507.42, + "end": 1508.78, + "probability": 0.6716 + }, + { + "start": 1510.6, + "end": 1511.23, + "probability": 0.2478 + }, + { + "start": 1511.68, + "end": 1512.72, + "probability": 0.8892 + }, + { + "start": 1512.84, + "end": 1514.28, + "probability": 0.9022 + }, + { + "start": 1515.06, + "end": 1517.6, + "probability": 0.6479 + }, + { + "start": 1517.6, + "end": 1523.08, + "probability": 0.8342 + }, + { + "start": 1524.02, + "end": 1525.86, + "probability": 0.516 + }, + { + "start": 1526.08, + "end": 1528.66, + "probability": 0.7484 + }, + { + "start": 1529.38, + "end": 1535.58, + "probability": 0.9787 + }, + { + "start": 1536.6, + "end": 1540.78, + "probability": 0.9176 + }, + { + "start": 1541.52, + "end": 1543.16, + "probability": 0.6863 + }, + { + "start": 1543.78, + "end": 1550.76, + "probability": 0.9444 + }, + { + "start": 1551.6, + "end": 1557.92, + "probability": 0.9958 + }, + { + "start": 1558.48, + "end": 1559.52, + "probability": 0.9546 + }, + { + "start": 1560.3, + "end": 1565.48, + "probability": 0.7097 + }, + { + "start": 1566.22, + "end": 1571.36, + "probability": 0.8364 + }, + { + "start": 1572.64, + "end": 1574.1, + "probability": 0.7958 + }, + { + "start": 1574.83, + "end": 1575.56, + "probability": 0.1717 + }, + { + "start": 1575.6, + "end": 1583.34, + "probability": 0.926 + }, + { + "start": 1584.4, + "end": 1585.16, + "probability": 0.8003 + }, + { + "start": 1585.8, + "end": 1588.9, + "probability": 0.9968 + }, + { + "start": 1589.66, + "end": 1594.36, + "probability": 0.9345 + }, + { + "start": 1595.02, + "end": 1597.58, + "probability": 0.9315 + }, + { + "start": 1598.34, + "end": 1600.32, + "probability": 0.988 + }, + { + "start": 1601.14, + "end": 1605.2, + "probability": 0.9435 + }, + { + "start": 1605.6, + "end": 1610.86, + "probability": 0.9799 + }, + { + "start": 1612.1, + "end": 1616.6, + "probability": 0.8045 + }, + { + "start": 1617.5, + "end": 1619.84, + "probability": 0.7506 + }, + { + "start": 1619.92, + "end": 1622.44, + "probability": 0.985 + }, + { + "start": 1623.9, + "end": 1629.14, + "probability": 0.7705 + }, + { + "start": 1630.14, + "end": 1637.76, + "probability": 0.9801 + }, + { + "start": 1638.32, + "end": 1643.56, + "probability": 0.834 + }, + { + "start": 1644.66, + "end": 1644.88, + "probability": 0.52 + }, + { + "start": 1644.88, + "end": 1650.48, + "probability": 0.9323 + }, + { + "start": 1650.54, + "end": 1651.72, + "probability": 0.422 + }, + { + "start": 1652.62, + "end": 1653.16, + "probability": 0.8697 + }, + { + "start": 1654.6, + "end": 1658.02, + "probability": 0.9396 + }, + { + "start": 1658.02, + "end": 1658.62, + "probability": 0.9002 + }, + { + "start": 1660.24, + "end": 1664.22, + "probability": 0.7135 + }, + { + "start": 1664.68, + "end": 1667.64, + "probability": 0.952 + }, + { + "start": 1667.78, + "end": 1669.12, + "probability": 0.9032 + }, + { + "start": 1670.34, + "end": 1674.09, + "probability": 0.6887 + }, + { + "start": 1675.22, + "end": 1677.4, + "probability": 0.9609 + }, + { + "start": 1680.5, + "end": 1682.8, + "probability": 0.6395 + }, + { + "start": 1684.02, + "end": 1685.04, + "probability": 0.6443 + }, + { + "start": 1685.06, + "end": 1686.22, + "probability": 0.8023 + }, + { + "start": 1686.38, + "end": 1687.92, + "probability": 0.9218 + }, + { + "start": 1688.3, + "end": 1691.12, + "probability": 0.9614 + }, + { + "start": 1691.72, + "end": 1694.62, + "probability": 0.7352 + }, + { + "start": 1696.46, + "end": 1696.98, + "probability": 0.5117 + }, + { + "start": 1697.18, + "end": 1699.58, + "probability": 0.795 + }, + { + "start": 1700.86, + "end": 1704.08, + "probability": 0.6011 + }, + { + "start": 1706.14, + "end": 1709.34, + "probability": 0.9952 + }, + { + "start": 1709.74, + "end": 1717.26, + "probability": 0.8007 + }, + { + "start": 1718.72, + "end": 1724.8, + "probability": 0.8652 + }, + { + "start": 1724.8, + "end": 1728.58, + "probability": 0.9998 + }, + { + "start": 1729.84, + "end": 1737.06, + "probability": 0.9976 + }, + { + "start": 1739.18, + "end": 1740.06, + "probability": 0.6906 + }, + { + "start": 1740.18, + "end": 1741.08, + "probability": 0.4982 + }, + { + "start": 1741.18, + "end": 1742.98, + "probability": 0.8942 + }, + { + "start": 1743.08, + "end": 1743.28, + "probability": 0.872 + }, + { + "start": 1743.34, + "end": 1743.82, + "probability": 0.6669 + }, + { + "start": 1744.08, + "end": 1745.0, + "probability": 0.9725 + }, + { + "start": 1745.28, + "end": 1746.4, + "probability": 0.8451 + }, + { + "start": 1746.7, + "end": 1749.32, + "probability": 0.9246 + }, + { + "start": 1749.64, + "end": 1751.08, + "probability": 0.6796 + }, + { + "start": 1751.16, + "end": 1752.46, + "probability": 0.8639 + }, + { + "start": 1752.52, + "end": 1753.12, + "probability": 0.8906 + }, + { + "start": 1753.32, + "end": 1754.6, + "probability": 0.9348 + }, + { + "start": 1755.2, + "end": 1758.26, + "probability": 0.9014 + }, + { + "start": 1758.5, + "end": 1761.1, + "probability": 0.9709 + }, + { + "start": 1761.6, + "end": 1762.22, + "probability": 0.6946 + }, + { + "start": 1762.32, + "end": 1762.82, + "probability": 0.6679 + }, + { + "start": 1762.96, + "end": 1764.28, + "probability": 0.4947 + }, + { + "start": 1764.38, + "end": 1766.78, + "probability": 0.95 + }, + { + "start": 1767.4, + "end": 1767.48, + "probability": 0.4742 + }, + { + "start": 1767.52, + "end": 1768.1, + "probability": 0.9531 + }, + { + "start": 1768.18, + "end": 1769.78, + "probability": 0.9437 + }, + { + "start": 1770.18, + "end": 1772.54, + "probability": 0.803 + }, + { + "start": 1772.86, + "end": 1774.5, + "probability": 0.8853 + }, + { + "start": 1775.3, + "end": 1778.84, + "probability": 0.9943 + }, + { + "start": 1779.36, + "end": 1780.0, + "probability": 0.3899 + }, + { + "start": 1780.02, + "end": 1780.26, + "probability": 0.855 + }, + { + "start": 1780.36, + "end": 1783.88, + "probability": 0.9263 + }, + { + "start": 1784.46, + "end": 1785.59, + "probability": 0.9795 + }, + { + "start": 1785.74, + "end": 1786.76, + "probability": 0.9512 + }, + { + "start": 1787.06, + "end": 1790.92, + "probability": 0.98 + }, + { + "start": 1791.56, + "end": 1795.66, + "probability": 0.9379 + }, + { + "start": 1795.8, + "end": 1797.28, + "probability": 0.9016 + }, + { + "start": 1797.38, + "end": 1798.74, + "probability": 0.953 + }, + { + "start": 1799.66, + "end": 1800.84, + "probability": 0.7559 + }, + { + "start": 1801.76, + "end": 1808.74, + "probability": 0.9924 + }, + { + "start": 1809.04, + "end": 1811.54, + "probability": 0.6647 + }, + { + "start": 1811.58, + "end": 1812.62, + "probability": 0.7832 + }, + { + "start": 1812.74, + "end": 1818.84, + "probability": 0.9735 + }, + { + "start": 1819.28, + "end": 1819.9, + "probability": 0.9346 + }, + { + "start": 1820.02, + "end": 1820.9, + "probability": 0.9181 + }, + { + "start": 1821.32, + "end": 1823.24, + "probability": 0.9026 + }, + { + "start": 1823.6, + "end": 1827.68, + "probability": 0.963 + }, + { + "start": 1828.1, + "end": 1830.42, + "probability": 0.8708 + }, + { + "start": 1831.08, + "end": 1832.32, + "probability": 0.3507 + }, + { + "start": 1832.32, + "end": 1834.02, + "probability": 0.324 + }, + { + "start": 1834.2, + "end": 1834.42, + "probability": 0.6366 + }, + { + "start": 1834.54, + "end": 1837.28, + "probability": 0.6179 + }, + { + "start": 1837.36, + "end": 1838.38, + "probability": 0.9011 + }, + { + "start": 1838.5, + "end": 1839.3, + "probability": 0.7206 + }, + { + "start": 1839.36, + "end": 1842.4, + "probability": 0.9723 + }, + { + "start": 1843.58, + "end": 1845.61, + "probability": 0.9194 + }, + { + "start": 1847.48, + "end": 1849.32, + "probability": 0.8645 + }, + { + "start": 1850.76, + "end": 1852.83, + "probability": 0.9443 + }, + { + "start": 1853.44, + "end": 1854.64, + "probability": 0.9773 + }, + { + "start": 1854.72, + "end": 1855.52, + "probability": 0.7416 + }, + { + "start": 1856.52, + "end": 1857.77, + "probability": 0.9736 + }, + { + "start": 1858.0, + "end": 1858.76, + "probability": 0.8278 + }, + { + "start": 1859.02, + "end": 1860.94, + "probability": 0.9409 + }, + { + "start": 1861.64, + "end": 1861.72, + "probability": 0.0792 + }, + { + "start": 1861.72, + "end": 1861.72, + "probability": 0.4448 + }, + { + "start": 1861.72, + "end": 1861.98, + "probability": 0.3979 + }, + { + "start": 1861.98, + "end": 1862.74, + "probability": 0.7961 + }, + { + "start": 1863.54, + "end": 1865.24, + "probability": 0.4269 + }, + { + "start": 1865.38, + "end": 1870.56, + "probability": 0.9928 + }, + { + "start": 1870.72, + "end": 1874.32, + "probability": 0.9976 + }, + { + "start": 1874.42, + "end": 1876.26, + "probability": 0.8301 + }, + { + "start": 1877.3, + "end": 1880.12, + "probability": 0.0568 + }, + { + "start": 1881.04, + "end": 1881.2, + "probability": 0.2771 + }, + { + "start": 1881.2, + "end": 1881.2, + "probability": 0.4627 + }, + { + "start": 1881.2, + "end": 1881.2, + "probability": 0.1305 + }, + { + "start": 1881.2, + "end": 1882.14, + "probability": 0.604 + }, + { + "start": 1882.48, + "end": 1884.74, + "probability": 0.9356 + }, + { + "start": 1885.12, + "end": 1888.0, + "probability": 0.9949 + }, + { + "start": 1888.0, + "end": 1891.26, + "probability": 0.9625 + }, + { + "start": 1892.04, + "end": 1892.04, + "probability": 0.0062 + }, + { + "start": 1892.04, + "end": 1893.38, + "probability": 0.7725 + }, + { + "start": 1893.42, + "end": 1894.03, + "probability": 0.8765 + }, + { + "start": 1894.1, + "end": 1895.0, + "probability": 0.6436 + }, + { + "start": 1895.2, + "end": 1896.4, + "probability": 0.9128 + }, + { + "start": 1896.42, + "end": 1898.08, + "probability": 0.9411 + }, + { + "start": 1898.22, + "end": 1899.26, + "probability": 0.7991 + }, + { + "start": 1899.76, + "end": 1900.78, + "probability": 0.9535 + }, + { + "start": 1900.92, + "end": 1904.22, + "probability": 0.9763 + }, + { + "start": 1905.16, + "end": 1910.0, + "probability": 0.9378 + }, + { + "start": 1910.42, + "end": 1913.52, + "probability": 0.7003 + }, + { + "start": 1914.28, + "end": 1915.98, + "probability": 0.879 + }, + { + "start": 1916.28, + "end": 1918.7, + "probability": 0.0354 + }, + { + "start": 1919.02, + "end": 1920.63, + "probability": 0.2886 + }, + { + "start": 1922.24, + "end": 1922.24, + "probability": 0.1941 + }, + { + "start": 1922.24, + "end": 1922.24, + "probability": 0.0278 + }, + { + "start": 1922.24, + "end": 1922.24, + "probability": 0.1071 + }, + { + "start": 1922.24, + "end": 1922.24, + "probability": 0.0874 + }, + { + "start": 1922.24, + "end": 1922.24, + "probability": 0.0615 + }, + { + "start": 1922.24, + "end": 1923.86, + "probability": 0.8641 + }, + { + "start": 1924.46, + "end": 1925.52, + "probability": 0.7674 + }, + { + "start": 1925.9, + "end": 1926.74, + "probability": 0.7338 + }, + { + "start": 1926.76, + "end": 1927.52, + "probability": 0.7214 + }, + { + "start": 1927.74, + "end": 1928.66, + "probability": 0.6385 + }, + { + "start": 1929.28, + "end": 1930.48, + "probability": 0.8074 + }, + { + "start": 1930.52, + "end": 1935.06, + "probability": 0.989 + }, + { + "start": 1935.7, + "end": 1937.4, + "probability": 0.9276 + }, + { + "start": 1937.46, + "end": 1938.16, + "probability": 0.6862 + }, + { + "start": 1938.66, + "end": 1943.96, + "probability": 0.8499 + }, + { + "start": 1943.96, + "end": 1950.88, + "probability": 0.9824 + }, + { + "start": 1950.88, + "end": 1956.38, + "probability": 0.9975 + }, + { + "start": 1957.7, + "end": 1962.26, + "probability": 0.9878 + }, + { + "start": 1962.68, + "end": 1967.98, + "probability": 0.979 + }, + { + "start": 1969.26, + "end": 1969.26, + "probability": 0.722 + }, + { + "start": 1969.26, + "end": 1973.76, + "probability": 0.9338 + }, + { + "start": 1973.76, + "end": 1977.02, + "probability": 0.84 + }, + { + "start": 1977.04, + "end": 1979.7, + "probability": 0.8104 + }, + { + "start": 1979.76, + "end": 1980.44, + "probability": 0.7002 + }, + { + "start": 1980.86, + "end": 1985.18, + "probability": 0.9847 + }, + { + "start": 1985.74, + "end": 1988.28, + "probability": 0.7599 + }, + { + "start": 1988.88, + "end": 1988.88, + "probability": 0.0573 + }, + { + "start": 1988.88, + "end": 1991.56, + "probability": 0.7849 + }, + { + "start": 1991.62, + "end": 1996.74, + "probability": 0.9543 + }, + { + "start": 1997.0, + "end": 1998.16, + "probability": 0.8221 + }, + { + "start": 1998.6, + "end": 1999.56, + "probability": 0.9551 + }, + { + "start": 1999.88, + "end": 2002.7, + "probability": 0.9723 + }, + { + "start": 2004.0, + "end": 2005.24, + "probability": 0.8059 + }, + { + "start": 2006.0, + "end": 2008.08, + "probability": 0.5836 + }, + { + "start": 2008.08, + "end": 2009.66, + "probability": 0.7892 + }, + { + "start": 2009.8, + "end": 2010.7, + "probability": 0.1493 + }, + { + "start": 2010.78, + "end": 2011.38, + "probability": 0.0897 + }, + { + "start": 2011.38, + "end": 2012.78, + "probability": 0.656 + }, + { + "start": 2013.32, + "end": 2014.28, + "probability": 0.019 + }, + { + "start": 2014.28, + "end": 2015.42, + "probability": 0.7071 + }, + { + "start": 2015.52, + "end": 2017.5, + "probability": 0.8292 + }, + { + "start": 2017.6, + "end": 2020.6, + "probability": 0.8435 + }, + { + "start": 2020.84, + "end": 2021.64, + "probability": 0.7301 + }, + { + "start": 2022.28, + "end": 2024.94, + "probability": 0.9583 + }, + { + "start": 2026.04, + "end": 2026.5, + "probability": 0.6438 + }, + { + "start": 2026.64, + "end": 2028.48, + "probability": 0.9799 + }, + { + "start": 2028.54, + "end": 2030.36, + "probability": 0.883 + }, + { + "start": 2032.26, + "end": 2034.32, + "probability": 0.1302 + }, + { + "start": 2035.16, + "end": 2037.46, + "probability": 0.4827 + }, + { + "start": 2037.46, + "end": 2037.8, + "probability": 0.6014 + }, + { + "start": 2037.82, + "end": 2042.18, + "probability": 0.7383 + }, + { + "start": 2042.38, + "end": 2043.58, + "probability": 0.8207 + }, + { + "start": 2043.84, + "end": 2046.16, + "probability": 0.981 + }, + { + "start": 2046.32, + "end": 2047.32, + "probability": 0.6804 + }, + { + "start": 2047.42, + "end": 2050.62, + "probability": 0.7859 + }, + { + "start": 2050.86, + "end": 2051.72, + "probability": 0.8687 + }, + { + "start": 2052.16, + "end": 2053.06, + "probability": 0.9678 + }, + { + "start": 2053.16, + "end": 2055.12, + "probability": 0.856 + }, + { + "start": 2056.28, + "end": 2056.42, + "probability": 0.0011 + }, + { + "start": 2057.16, + "end": 2057.44, + "probability": 0.028 + }, + { + "start": 2057.44, + "end": 2057.44, + "probability": 0.151 + }, + { + "start": 2057.44, + "end": 2060.6, + "probability": 0.9339 + }, + { + "start": 2060.92, + "end": 2061.58, + "probability": 0.7365 + }, + { + "start": 2061.86, + "end": 2061.94, + "probability": 0.0931 + }, + { + "start": 2061.96, + "end": 2063.88, + "probability": 0.8517 + }, + { + "start": 2064.02, + "end": 2066.1, + "probability": 0.9967 + }, + { + "start": 2066.67, + "end": 2071.2, + "probability": 0.9764 + }, + { + "start": 2071.6, + "end": 2072.3, + "probability": 0.587 + }, + { + "start": 2072.78, + "end": 2074.28, + "probability": 0.7325 + }, + { + "start": 2074.28, + "end": 2077.2, + "probability": 0.9963 + }, + { + "start": 2077.8, + "end": 2079.89, + "probability": 0.8929 + }, + { + "start": 2080.6, + "end": 2086.32, + "probability": 0.9914 + }, + { + "start": 2087.18, + "end": 2091.4, + "probability": 0.9948 + }, + { + "start": 2091.78, + "end": 2094.2, + "probability": 0.8737 + }, + { + "start": 2094.28, + "end": 2096.44, + "probability": 0.939 + }, + { + "start": 2097.04, + "end": 2097.74, + "probability": 0.7243 + }, + { + "start": 2098.1, + "end": 2101.72, + "probability": 0.7971 + }, + { + "start": 2102.56, + "end": 2106.97, + "probability": 0.7665 + }, + { + "start": 2110.54, + "end": 2111.46, + "probability": 0.3739 + }, + { + "start": 2112.44, + "end": 2115.8, + "probability": 0.8072 + }, + { + "start": 2117.02, + "end": 2121.42, + "probability": 0.939 + }, + { + "start": 2121.46, + "end": 2123.8, + "probability": 0.9947 + }, + { + "start": 2124.84, + "end": 2130.82, + "probability": 0.9549 + }, + { + "start": 2131.38, + "end": 2132.76, + "probability": 0.7415 + }, + { + "start": 2134.12, + "end": 2140.02, + "probability": 0.9406 + }, + { + "start": 2140.02, + "end": 2144.02, + "probability": 0.949 + }, + { + "start": 2144.6, + "end": 2145.5, + "probability": 0.9663 + }, + { + "start": 2146.38, + "end": 2148.68, + "probability": 0.962 + }, + { + "start": 2148.74, + "end": 2155.34, + "probability": 0.9282 + }, + { + "start": 2156.31, + "end": 2161.74, + "probability": 0.938 + }, + { + "start": 2162.96, + "end": 2164.5, + "probability": 0.2353 + }, + { + "start": 2164.74, + "end": 2165.78, + "probability": 0.8334 + }, + { + "start": 2166.0, + "end": 2166.7, + "probability": 0.17 + }, + { + "start": 2166.9, + "end": 2168.56, + "probability": 0.5452 + }, + { + "start": 2168.72, + "end": 2172.88, + "probability": 0.9766 + }, + { + "start": 2173.34, + "end": 2180.08, + "probability": 0.9896 + }, + { + "start": 2180.44, + "end": 2186.46, + "probability": 0.9972 + }, + { + "start": 2186.52, + "end": 2186.9, + "probability": 0.384 + }, + { + "start": 2186.96, + "end": 2189.54, + "probability": 0.7284 + }, + { + "start": 2189.68, + "end": 2191.26, + "probability": 0.7617 + }, + { + "start": 2192.2, + "end": 2199.82, + "probability": 0.9472 + }, + { + "start": 2199.82, + "end": 2205.38, + "probability": 0.7258 + }, + { + "start": 2205.5, + "end": 2207.38, + "probability": 0.9982 + }, + { + "start": 2207.52, + "end": 2209.0, + "probability": 0.9928 + }, + { + "start": 2209.34, + "end": 2210.72, + "probability": 0.9609 + }, + { + "start": 2211.1, + "end": 2213.1, + "probability": 0.9973 + }, + { + "start": 2213.26, + "end": 2217.44, + "probability": 0.9712 + }, + { + "start": 2217.88, + "end": 2221.1, + "probability": 0.9868 + }, + { + "start": 2221.74, + "end": 2226.36, + "probability": 0.9801 + }, + { + "start": 2226.36, + "end": 2229.84, + "probability": 0.9018 + }, + { + "start": 2230.02, + "end": 2230.2, + "probability": 0.5616 + }, + { + "start": 2230.3, + "end": 2231.88, + "probability": 0.7259 + }, + { + "start": 2232.08, + "end": 2234.16, + "probability": 0.7589 + }, + { + "start": 2234.34, + "end": 2234.62, + "probability": 0.5552 + }, + { + "start": 2234.66, + "end": 2235.88, + "probability": 0.8662 + }, + { + "start": 2236.36, + "end": 2238.56, + "probability": 0.9766 + }, + { + "start": 2239.02, + "end": 2239.36, + "probability": 0.206 + }, + { + "start": 2239.42, + "end": 2242.52, + "probability": 0.9419 + }, + { + "start": 2242.58, + "end": 2244.24, + "probability": 0.9675 + }, + { + "start": 2244.54, + "end": 2245.76, + "probability": 0.6169 + }, + { + "start": 2245.76, + "end": 2245.92, + "probability": 0.204 + }, + { + "start": 2245.92, + "end": 2247.86, + "probability": 0.9485 + }, + { + "start": 2248.06, + "end": 2248.34, + "probability": 0.053 + }, + { + "start": 2248.38, + "end": 2250.54, + "probability": 0.7356 + }, + { + "start": 2250.54, + "end": 2251.15, + "probability": 0.6929 + }, + { + "start": 2251.84, + "end": 2253.7, + "probability": 0.957 + }, + { + "start": 2254.08, + "end": 2255.82, + "probability": 0.9886 + }, + { + "start": 2256.08, + "end": 2256.1, + "probability": 0.4357 + }, + { + "start": 2256.1, + "end": 2256.62, + "probability": 0.6715 + }, + { + "start": 2256.78, + "end": 2257.68, + "probability": 0.7393 + }, + { + "start": 2257.68, + "end": 2258.06, + "probability": 0.8607 + }, + { + "start": 2258.22, + "end": 2259.42, + "probability": 0.9255 + }, + { + "start": 2259.5, + "end": 2261.47, + "probability": 0.8615 + }, + { + "start": 2262.6, + "end": 2263.86, + "probability": 0.7769 + }, + { + "start": 2264.08, + "end": 2266.86, + "probability": 0.5503 + }, + { + "start": 2267.66, + "end": 2270.62, + "probability": 0.6533 + }, + { + "start": 2270.76, + "end": 2271.48, + "probability": 0.9901 + }, + { + "start": 2272.48, + "end": 2273.38, + "probability": 0.8342 + }, + { + "start": 2273.66, + "end": 2279.06, + "probability": 0.9644 + }, + { + "start": 2280.16, + "end": 2282.2, + "probability": 0.9963 + }, + { + "start": 2282.84, + "end": 2285.14, + "probability": 0.8273 + }, + { + "start": 2285.3, + "end": 2286.96, + "probability": 0.8605 + }, + { + "start": 2287.58, + "end": 2288.58, + "probability": 0.6938 + }, + { + "start": 2288.76, + "end": 2289.62, + "probability": 0.6209 + }, + { + "start": 2290.0, + "end": 2291.16, + "probability": 0.8206 + }, + { + "start": 2291.44, + "end": 2292.36, + "probability": 0.6532 + }, + { + "start": 2292.88, + "end": 2295.58, + "probability": 0.9922 + }, + { + "start": 2296.1, + "end": 2298.02, + "probability": 0.9608 + }, + { + "start": 2298.06, + "end": 2298.8, + "probability": 0.8442 + }, + { + "start": 2299.22, + "end": 2302.62, + "probability": 0.932 + }, + { + "start": 2303.1, + "end": 2304.38, + "probability": 0.9316 + }, + { + "start": 2304.48, + "end": 2306.9, + "probability": 0.7369 + }, + { + "start": 2307.38, + "end": 2308.58, + "probability": 0.9744 + }, + { + "start": 2309.86, + "end": 2311.32, + "probability": 0.7033 + }, + { + "start": 2311.48, + "end": 2313.96, + "probability": 0.8188 + }, + { + "start": 2319.84, + "end": 2321.76, + "probability": 0.598 + }, + { + "start": 2322.86, + "end": 2324.48, + "probability": 0.8499 + }, + { + "start": 2324.78, + "end": 2325.58, + "probability": 0.8883 + }, + { + "start": 2325.68, + "end": 2329.48, + "probability": 0.7387 + }, + { + "start": 2329.7, + "end": 2330.5, + "probability": 0.7039 + }, + { + "start": 2332.0, + "end": 2335.42, + "probability": 0.8623 + }, + { + "start": 2335.7, + "end": 2339.08, + "probability": 0.9544 + }, + { + "start": 2339.76, + "end": 2340.28, + "probability": 0.5922 + }, + { + "start": 2340.3, + "end": 2340.6, + "probability": 0.4229 + }, + { + "start": 2340.7, + "end": 2341.66, + "probability": 0.5903 + }, + { + "start": 2341.98, + "end": 2343.22, + "probability": 0.8916 + }, + { + "start": 2343.38, + "end": 2345.14, + "probability": 0.9881 + }, + { + "start": 2345.74, + "end": 2346.62, + "probability": 0.8339 + }, + { + "start": 2346.68, + "end": 2347.54, + "probability": 0.7057 + }, + { + "start": 2347.58, + "end": 2350.78, + "probability": 0.9592 + }, + { + "start": 2350.78, + "end": 2353.9, + "probability": 0.9985 + }, + { + "start": 2353.96, + "end": 2357.76, + "probability": 0.8541 + }, + { + "start": 2357.98, + "end": 2360.04, + "probability": 0.9651 + }, + { + "start": 2360.2, + "end": 2360.54, + "probability": 0.2889 + }, + { + "start": 2360.66, + "end": 2362.1, + "probability": 0.9885 + }, + { + "start": 2362.64, + "end": 2367.2, + "probability": 0.9002 + }, + { + "start": 2367.72, + "end": 2370.04, + "probability": 0.9335 + }, + { + "start": 2371.22, + "end": 2374.76, + "probability": 0.7182 + }, + { + "start": 2375.42, + "end": 2377.02, + "probability": 0.8687 + }, + { + "start": 2377.16, + "end": 2381.92, + "probability": 0.7475 + }, + { + "start": 2382.58, + "end": 2385.72, + "probability": 0.7643 + }, + { + "start": 2386.16, + "end": 2391.32, + "probability": 0.9832 + }, + { + "start": 2391.34, + "end": 2395.4, + "probability": 0.997 + }, + { + "start": 2395.4, + "end": 2399.98, + "probability": 0.9539 + }, + { + "start": 2400.38, + "end": 2402.25, + "probability": 0.6801 + }, + { + "start": 2402.84, + "end": 2403.44, + "probability": 0.646 + }, + { + "start": 2403.76, + "end": 2407.3, + "probability": 0.9863 + }, + { + "start": 2407.68, + "end": 2412.28, + "probability": 0.9781 + }, + { + "start": 2412.52, + "end": 2417.18, + "probability": 0.7983 + }, + { + "start": 2417.3, + "end": 2417.56, + "probability": 0.6721 + }, + { + "start": 2418.1, + "end": 2418.54, + "probability": 0.498 + }, + { + "start": 2418.54, + "end": 2420.84, + "probability": 0.7236 + }, + { + "start": 2420.94, + "end": 2423.56, + "probability": 0.3476 + }, + { + "start": 2423.76, + "end": 2423.76, + "probability": 0.2033 + }, + { + "start": 2423.76, + "end": 2423.76, + "probability": 0.1114 + }, + { + "start": 2423.76, + "end": 2423.76, + "probability": 0.1462 + }, + { + "start": 2423.76, + "end": 2424.8, + "probability": 0.6901 + }, + { + "start": 2425.56, + "end": 2427.82, + "probability": 0.9928 + }, + { + "start": 2427.82, + "end": 2431.2, + "probability": 0.9894 + }, + { + "start": 2431.82, + "end": 2432.78, + "probability": 0.8232 + }, + { + "start": 2433.16, + "end": 2435.82, + "probability": 0.9659 + }, + { + "start": 2436.08, + "end": 2437.14, + "probability": 0.8436 + }, + { + "start": 2437.18, + "end": 2438.74, + "probability": 0.8185 + }, + { + "start": 2439.1, + "end": 2440.7, + "probability": 0.9227 + }, + { + "start": 2441.02, + "end": 2443.48, + "probability": 0.9575 + }, + { + "start": 2443.5, + "end": 2444.66, + "probability": 0.9665 + }, + { + "start": 2444.74, + "end": 2445.44, + "probability": 0.7259 + }, + { + "start": 2445.84, + "end": 2446.8, + "probability": 0.6715 + }, + { + "start": 2447.04, + "end": 2449.72, + "probability": 0.6182 + }, + { + "start": 2450.04, + "end": 2453.86, + "probability": 0.9872 + }, + { + "start": 2453.98, + "end": 2454.54, + "probability": 0.5127 + }, + { + "start": 2454.8, + "end": 2457.7, + "probability": 0.8977 + }, + { + "start": 2457.98, + "end": 2461.32, + "probability": 0.9805 + }, + { + "start": 2461.5, + "end": 2467.18, + "probability": 0.9875 + }, + { + "start": 2467.84, + "end": 2470.48, + "probability": 0.9391 + }, + { + "start": 2470.56, + "end": 2471.62, + "probability": 0.9724 + }, + { + "start": 2472.04, + "end": 2473.22, + "probability": 0.9672 + }, + { + "start": 2473.56, + "end": 2474.74, + "probability": 0.9088 + }, + { + "start": 2475.16, + "end": 2479.24, + "probability": 0.9837 + }, + { + "start": 2479.68, + "end": 2482.38, + "probability": 0.9449 + }, + { + "start": 2482.96, + "end": 2483.94, + "probability": 0.5448 + }, + { + "start": 2484.02, + "end": 2484.56, + "probability": 0.855 + }, + { + "start": 2485.06, + "end": 2486.9, + "probability": 0.991 + }, + { + "start": 2487.28, + "end": 2488.72, + "probability": 0.6671 + }, + { + "start": 2488.8, + "end": 2489.42, + "probability": 0.6285 + }, + { + "start": 2489.56, + "end": 2491.3, + "probability": 0.8058 + }, + { + "start": 2491.78, + "end": 2492.48, + "probability": 0.3627 + }, + { + "start": 2492.48, + "end": 2493.04, + "probability": 0.7843 + }, + { + "start": 2493.3, + "end": 2497.28, + "probability": 0.9873 + }, + { + "start": 2497.6, + "end": 2501.28, + "probability": 0.9536 + }, + { + "start": 2502.18, + "end": 2502.96, + "probability": 0.0691 + }, + { + "start": 2503.2, + "end": 2506.32, + "probability": 0.9795 + }, + { + "start": 2506.74, + "end": 2510.2, + "probability": 0.9948 + }, + { + "start": 2510.26, + "end": 2513.78, + "probability": 0.842 + }, + { + "start": 2515.36, + "end": 2516.48, + "probability": 0.9678 + }, + { + "start": 2516.52, + "end": 2517.78, + "probability": 0.9205 + }, + { + "start": 2518.26, + "end": 2518.96, + "probability": 0.7615 + }, + { + "start": 2519.18, + "end": 2522.2, + "probability": 0.9319 + }, + { + "start": 2522.52, + "end": 2525.34, + "probability": 0.7827 + }, + { + "start": 2525.54, + "end": 2528.52, + "probability": 0.9918 + }, + { + "start": 2528.82, + "end": 2530.94, + "probability": 0.9783 + }, + { + "start": 2531.08, + "end": 2533.66, + "probability": 0.9956 + }, + { + "start": 2534.06, + "end": 2535.06, + "probability": 0.7525 + }, + { + "start": 2535.48, + "end": 2537.08, + "probability": 0.5988 + }, + { + "start": 2537.66, + "end": 2539.7, + "probability": 0.7097 + }, + { + "start": 2539.94, + "end": 2542.38, + "probability": 0.9142 + }, + { + "start": 2543.06, + "end": 2545.06, + "probability": 0.6189 + }, + { + "start": 2545.06, + "end": 2549.02, + "probability": 0.9941 + }, + { + "start": 2549.3, + "end": 2553.84, + "probability": 0.9355 + }, + { + "start": 2553.84, + "end": 2556.23, + "probability": 0.7483 + }, + { + "start": 2556.72, + "end": 2559.0, + "probability": 0.9781 + }, + { + "start": 2559.54, + "end": 2561.5, + "probability": 0.7418 + }, + { + "start": 2561.64, + "end": 2565.6, + "probability": 0.9764 + }, + { + "start": 2565.84, + "end": 2566.5, + "probability": 0.7876 + }, + { + "start": 2566.64, + "end": 2568.62, + "probability": 0.9797 + }, + { + "start": 2568.7, + "end": 2573.16, + "probability": 0.9756 + }, + { + "start": 2573.16, + "end": 2577.3, + "probability": 0.9005 + }, + { + "start": 2577.82, + "end": 2580.04, + "probability": 0.87 + }, + { + "start": 2581.32, + "end": 2587.48, + "probability": 0.9066 + }, + { + "start": 2587.48, + "end": 2590.34, + "probability": 0.9812 + }, + { + "start": 2590.52, + "end": 2592.3, + "probability": 0.8815 + }, + { + "start": 2594.48, + "end": 2595.5, + "probability": 0.5345 + }, + { + "start": 2596.04, + "end": 2598.1, + "probability": 0.58 + }, + { + "start": 2598.72, + "end": 2604.26, + "probability": 0.8127 + }, + { + "start": 2604.68, + "end": 2606.98, + "probability": 0.9294 + }, + { + "start": 2607.02, + "end": 2609.46, + "probability": 0.7168 + }, + { + "start": 2611.42, + "end": 2614.56, + "probability": 0.863 + }, + { + "start": 2615.66, + "end": 2619.14, + "probability": 0.7268 + }, + { + "start": 2619.56, + "end": 2620.52, + "probability": 0.8445 + }, + { + "start": 2620.7, + "end": 2622.92, + "probability": 0.9565 + }, + { + "start": 2623.12, + "end": 2625.67, + "probability": 0.9315 + }, + { + "start": 2626.76, + "end": 2628.7, + "probability": 0.9046 + }, + { + "start": 2629.22, + "end": 2631.02, + "probability": 0.7637 + }, + { + "start": 2631.66, + "end": 2634.8, + "probability": 0.9102 + }, + { + "start": 2634.8, + "end": 2639.36, + "probability": 0.9604 + }, + { + "start": 2639.66, + "end": 2641.4, + "probability": 0.9834 + }, + { + "start": 2641.44, + "end": 2646.54, + "probability": 0.9854 + }, + { + "start": 2647.3, + "end": 2649.64, + "probability": 0.6951 + }, + { + "start": 2650.04, + "end": 2650.88, + "probability": 0.6645 + }, + { + "start": 2650.98, + "end": 2653.7, + "probability": 0.9333 + }, + { + "start": 2653.7, + "end": 2656.08, + "probability": 0.6635 + }, + { + "start": 2656.18, + "end": 2656.96, + "probability": 0.8831 + }, + { + "start": 2657.0, + "end": 2657.76, + "probability": 0.8596 + }, + { + "start": 2658.24, + "end": 2659.22, + "probability": 0.9224 + }, + { + "start": 2659.46, + "end": 2661.64, + "probability": 0.6775 + }, + { + "start": 2661.76, + "end": 2663.66, + "probability": 0.5171 + }, + { + "start": 2664.06, + "end": 2666.2, + "probability": 0.9866 + }, + { + "start": 2666.2, + "end": 2668.72, + "probability": 0.8771 + }, + { + "start": 2669.18, + "end": 2670.46, + "probability": 0.8519 + }, + { + "start": 2670.68, + "end": 2675.04, + "probability": 0.9689 + }, + { + "start": 2675.18, + "end": 2678.94, + "probability": 0.7702 + }, + { + "start": 2678.98, + "end": 2679.3, + "probability": 0.5208 + }, + { + "start": 2679.46, + "end": 2680.18, + "probability": 0.6435 + }, + { + "start": 2680.2, + "end": 2681.16, + "probability": 0.5333 + }, + { + "start": 2681.3, + "end": 2687.22, + "probability": 0.9834 + }, + { + "start": 2688.46, + "end": 2691.06, + "probability": 0.9407 + }, + { + "start": 2691.12, + "end": 2692.0, + "probability": 0.7296 + }, + { + "start": 2692.33, + "end": 2694.32, + "probability": 0.9865 + }, + { + "start": 2695.44, + "end": 2696.44, + "probability": 0.8656 + }, + { + "start": 2696.87, + "end": 2699.7, + "probability": 0.6194 + }, + { + "start": 2700.2, + "end": 2706.06, + "probability": 0.9454 + }, + { + "start": 2706.54, + "end": 2707.72, + "probability": 0.6668 + }, + { + "start": 2708.44, + "end": 2713.5, + "probability": 0.9789 + }, + { + "start": 2713.56, + "end": 2716.26, + "probability": 0.8654 + }, + { + "start": 2716.58, + "end": 2719.24, + "probability": 0.1141 + }, + { + "start": 2719.4, + "end": 2724.34, + "probability": 0.5736 + }, + { + "start": 2724.72, + "end": 2725.78, + "probability": 0.925 + }, + { + "start": 2725.88, + "end": 2726.26, + "probability": 0.7152 + }, + { + "start": 2733.2, + "end": 2733.46, + "probability": 0.4111 + }, + { + "start": 2733.56, + "end": 2734.44, + "probability": 0.6558 + }, + { + "start": 2734.54, + "end": 2735.8, + "probability": 0.7743 + }, + { + "start": 2735.82, + "end": 2739.94, + "probability": 0.9734 + }, + { + "start": 2739.94, + "end": 2742.08, + "probability": 0.9906 + }, + { + "start": 2742.66, + "end": 2744.3, + "probability": 0.9816 + }, + { + "start": 2745.02, + "end": 2747.76, + "probability": 0.9746 + }, + { + "start": 2748.2, + "end": 2748.92, + "probability": 0.904 + }, + { + "start": 2749.92, + "end": 2750.62, + "probability": 0.9031 + }, + { + "start": 2751.28, + "end": 2753.88, + "probability": 0.9023 + }, + { + "start": 2754.84, + "end": 2756.86, + "probability": 0.9878 + }, + { + "start": 2756.94, + "end": 2759.08, + "probability": 0.9121 + }, + { + "start": 2759.08, + "end": 2761.9, + "probability": 0.8789 + }, + { + "start": 2762.5, + "end": 2763.26, + "probability": 0.6364 + }, + { + "start": 2763.3, + "end": 2766.62, + "probability": 0.9737 + }, + { + "start": 2766.62, + "end": 2769.68, + "probability": 0.9173 + }, + { + "start": 2770.32, + "end": 2772.92, + "probability": 0.9973 + }, + { + "start": 2772.92, + "end": 2775.64, + "probability": 0.999 + }, + { + "start": 2776.12, + "end": 2778.22, + "probability": 0.9545 + }, + { + "start": 2778.22, + "end": 2780.76, + "probability": 0.999 + }, + { + "start": 2781.66, + "end": 2784.84, + "probability": 0.8188 + }, + { + "start": 2785.2, + "end": 2788.36, + "probability": 0.9466 + }, + { + "start": 2788.78, + "end": 2790.72, + "probability": 0.8762 + }, + { + "start": 2791.0, + "end": 2793.9, + "probability": 0.9725 + }, + { + "start": 2794.78, + "end": 2799.6, + "probability": 0.9529 + }, + { + "start": 2799.92, + "end": 2801.2, + "probability": 0.9225 + }, + { + "start": 2801.48, + "end": 2802.24, + "probability": 0.7204 + }, + { + "start": 2803.12, + "end": 2806.88, + "probability": 0.9943 + }, + { + "start": 2807.7, + "end": 2810.12, + "probability": 0.992 + }, + { + "start": 2810.12, + "end": 2814.34, + "probability": 0.9712 + }, + { + "start": 2815.82, + "end": 2821.44, + "probability": 0.7548 + }, + { + "start": 2821.74, + "end": 2825.48, + "probability": 0.988 + }, + { + "start": 2825.48, + "end": 2829.96, + "probability": 0.9956 + }, + { + "start": 2830.62, + "end": 2832.68, + "probability": 0.988 + }, + { + "start": 2832.68, + "end": 2835.16, + "probability": 0.9928 + }, + { + "start": 2835.66, + "end": 2836.7, + "probability": 0.5335 + }, + { + "start": 2837.12, + "end": 2839.18, + "probability": 0.9921 + }, + { + "start": 2839.26, + "end": 2840.42, + "probability": 0.8657 + }, + { + "start": 2840.96, + "end": 2842.1, + "probability": 0.9009 + }, + { + "start": 2842.36, + "end": 2845.44, + "probability": 0.9868 + }, + { + "start": 2846.84, + "end": 2849.3, + "probability": 0.8782 + }, + { + "start": 2849.3, + "end": 2852.08, + "probability": 0.9102 + }, + { + "start": 2852.18, + "end": 2853.92, + "probability": 0.9888 + }, + { + "start": 2854.78, + "end": 2857.66, + "probability": 0.9108 + }, + { + "start": 2857.66, + "end": 2861.8, + "probability": 0.9831 + }, + { + "start": 2862.8, + "end": 2864.91, + "probability": 0.711 + }, + { + "start": 2865.1, + "end": 2865.96, + "probability": 0.732 + }, + { + "start": 2866.14, + "end": 2867.66, + "probability": 0.9413 + }, + { + "start": 2868.0, + "end": 2869.14, + "probability": 0.9739 + }, + { + "start": 2869.76, + "end": 2871.42, + "probability": 0.9529 + }, + { + "start": 2871.98, + "end": 2873.5, + "probability": 0.7413 + }, + { + "start": 2873.6, + "end": 2878.72, + "probability": 0.9583 + }, + { + "start": 2879.16, + "end": 2882.2, + "probability": 0.9893 + }, + { + "start": 2883.38, + "end": 2883.92, + "probability": 0.9543 + }, + { + "start": 2884.16, + "end": 2884.82, + "probability": 0.8471 + }, + { + "start": 2884.94, + "end": 2887.96, + "probability": 0.7646 + }, + { + "start": 2888.68, + "end": 2891.3, + "probability": 0.845 + }, + { + "start": 2892.26, + "end": 2893.28, + "probability": 0.7969 + }, + { + "start": 2893.84, + "end": 2894.14, + "probability": 0.688 + }, + { + "start": 2894.3, + "end": 2899.82, + "probability": 0.9785 + }, + { + "start": 2900.88, + "end": 2903.14, + "probability": 0.7463 + }, + { + "start": 2904.0, + "end": 2908.66, + "probability": 0.7427 + }, + { + "start": 2908.74, + "end": 2909.82, + "probability": 0.796 + }, + { + "start": 2911.2, + "end": 2913.02, + "probability": 0.9849 + }, + { + "start": 2913.66, + "end": 2915.4, + "probability": 0.7036 + }, + { + "start": 2915.4, + "end": 2918.16, + "probability": 0.9621 + }, + { + "start": 2918.42, + "end": 2919.02, + "probability": 0.7386 + }, + { + "start": 2919.34, + "end": 2919.68, + "probability": 0.9826 + }, + { + "start": 2919.74, + "end": 2920.26, + "probability": 0.9688 + }, + { + "start": 2920.36, + "end": 2920.84, + "probability": 0.9086 + }, + { + "start": 2921.3, + "end": 2921.76, + "probability": 0.9848 + }, + { + "start": 2921.84, + "end": 2924.94, + "probability": 0.9932 + }, + { + "start": 2925.36, + "end": 2927.92, + "probability": 0.8265 + }, + { + "start": 2928.36, + "end": 2929.86, + "probability": 0.9807 + }, + { + "start": 2931.0, + "end": 2934.58, + "probability": 0.9724 + }, + { + "start": 2934.78, + "end": 2936.18, + "probability": 0.8664 + }, + { + "start": 2936.54, + "end": 2938.8, + "probability": 0.8428 + }, + { + "start": 2939.14, + "end": 2940.36, + "probability": 0.8346 + }, + { + "start": 2940.82, + "end": 2943.08, + "probability": 0.9574 + }, + { + "start": 2943.44, + "end": 2946.0, + "probability": 0.9362 + }, + { + "start": 2946.68, + "end": 2947.8, + "probability": 0.9326 + }, + { + "start": 2948.18, + "end": 2949.26, + "probability": 0.8389 + }, + { + "start": 2949.32, + "end": 2954.38, + "probability": 0.981 + }, + { + "start": 2954.9, + "end": 2955.98, + "probability": 0.7326 + }, + { + "start": 2956.14, + "end": 2959.8, + "probability": 0.8246 + }, + { + "start": 2959.8, + "end": 2962.54, + "probability": 0.8874 + }, + { + "start": 2962.88, + "end": 2965.46, + "probability": 0.945 + }, + { + "start": 2966.14, + "end": 2967.18, + "probability": 0.9945 + }, + { + "start": 2968.22, + "end": 2969.64, + "probability": 0.964 + }, + { + "start": 2969.74, + "end": 2971.0, + "probability": 0.8968 + }, + { + "start": 2971.16, + "end": 2975.92, + "probability": 0.9592 + }, + { + "start": 2976.44, + "end": 2977.32, + "probability": 0.9144 + }, + { + "start": 2977.48, + "end": 2979.86, + "probability": 0.9989 + }, + { + "start": 2980.06, + "end": 2981.9, + "probability": 0.9162 + }, + { + "start": 2982.14, + "end": 2984.34, + "probability": 0.881 + }, + { + "start": 2985.02, + "end": 2988.28, + "probability": 0.7994 + }, + { + "start": 2988.5, + "end": 2989.55, + "probability": 0.6622 + }, + { + "start": 2992.12, + "end": 2996.92, + "probability": 0.9582 + }, + { + "start": 2998.24, + "end": 2999.56, + "probability": 0.7268 + }, + { + "start": 3000.96, + "end": 3001.74, + "probability": 0.7657 + }, + { + "start": 3002.36, + "end": 3003.18, + "probability": 0.8184 + }, + { + "start": 3004.12, + "end": 3006.5, + "probability": 0.8275 + }, + { + "start": 3007.36, + "end": 3011.0, + "probability": 0.9899 + }, + { + "start": 3011.0, + "end": 3016.84, + "probability": 0.8809 + }, + { + "start": 3017.82, + "end": 3018.62, + "probability": 0.7914 + }, + { + "start": 3019.04, + "end": 3022.2, + "probability": 0.9925 + }, + { + "start": 3022.8, + "end": 3027.7, + "probability": 0.9916 + }, + { + "start": 3027.9, + "end": 3031.08, + "probability": 0.7737 + }, + { + "start": 3031.14, + "end": 3033.01, + "probability": 0.7294 + }, + { + "start": 3033.12, + "end": 3036.2, + "probability": 0.8129 + }, + { + "start": 3036.56, + "end": 3040.38, + "probability": 0.9919 + }, + { + "start": 3040.64, + "end": 3041.73, + "probability": 0.889 + }, + { + "start": 3042.06, + "end": 3044.44, + "probability": 0.8057 + }, + { + "start": 3046.1, + "end": 3046.74, + "probability": 0.9306 + }, + { + "start": 3046.86, + "end": 3050.78, + "probability": 0.7486 + }, + { + "start": 3050.78, + "end": 3056.92, + "probability": 0.8961 + }, + { + "start": 3058.36, + "end": 3061.34, + "probability": 0.9636 + }, + { + "start": 3061.56, + "end": 3064.88, + "probability": 0.4903 + }, + { + "start": 3065.48, + "end": 3070.6, + "probability": 0.9654 + }, + { + "start": 3071.46, + "end": 3075.11, + "probability": 0.9074 + }, + { + "start": 3075.36, + "end": 3076.92, + "probability": 0.834 + }, + { + "start": 3077.58, + "end": 3080.4, + "probability": 0.9829 + }, + { + "start": 3080.6, + "end": 3081.46, + "probability": 0.961 + }, + { + "start": 3082.1, + "end": 3086.7, + "probability": 0.9828 + }, + { + "start": 3086.7, + "end": 3092.18, + "probability": 0.9937 + }, + { + "start": 3092.3, + "end": 3093.74, + "probability": 0.7075 + }, + { + "start": 3094.64, + "end": 3094.64, + "probability": 0.3115 + }, + { + "start": 3094.64, + "end": 3097.12, + "probability": 0.9897 + }, + { + "start": 3097.12, + "end": 3100.8, + "probability": 0.9192 + }, + { + "start": 3100.96, + "end": 3101.68, + "probability": 0.8027 + }, + { + "start": 3102.0, + "end": 3104.32, + "probability": 0.9108 + }, + { + "start": 3104.96, + "end": 3108.44, + "probability": 0.9915 + }, + { + "start": 3108.9, + "end": 3110.16, + "probability": 0.6839 + }, + { + "start": 3110.2, + "end": 3112.4, + "probability": 0.9933 + }, + { + "start": 3113.28, + "end": 3116.94, + "probability": 0.9954 + }, + { + "start": 3116.94, + "end": 3119.32, + "probability": 0.9897 + }, + { + "start": 3119.92, + "end": 3121.04, + "probability": 0.7876 + }, + { + "start": 3121.14, + "end": 3123.58, + "probability": 0.9925 + }, + { + "start": 3124.14, + "end": 3127.74, + "probability": 0.9966 + }, + { + "start": 3127.74, + "end": 3131.8, + "probability": 0.9821 + }, + { + "start": 3132.14, + "end": 3133.68, + "probability": 0.9671 + }, + { + "start": 3134.18, + "end": 3137.9, + "probability": 0.7618 + }, + { + "start": 3138.5, + "end": 3141.72, + "probability": 0.8739 + }, + { + "start": 3142.62, + "end": 3145.06, + "probability": 0.8995 + }, + { + "start": 3146.26, + "end": 3151.38, + "probability": 0.9131 + }, + { + "start": 3151.38, + "end": 3154.2, + "probability": 0.8971 + }, + { + "start": 3154.38, + "end": 3156.74, + "probability": 0.7273 + }, + { + "start": 3157.52, + "end": 3161.08, + "probability": 0.7985 + }, + { + "start": 3162.9, + "end": 3164.46, + "probability": 0.3774 + }, + { + "start": 3164.84, + "end": 3168.08, + "probability": 0.0164 + }, + { + "start": 3168.22, + "end": 3171.28, + "probability": 0.2986 + }, + { + "start": 3171.28, + "end": 3171.88, + "probability": 0.2089 + }, + { + "start": 3172.38, + "end": 3172.72, + "probability": 0.6485 + }, + { + "start": 3173.42, + "end": 3175.88, + "probability": 0.897 + }, + { + "start": 3176.06, + "end": 3181.04, + "probability": 0.7566 + }, + { + "start": 3184.08, + "end": 3185.12, + "probability": 0.9356 + }, + { + "start": 3185.88, + "end": 3186.4, + "probability": 0.7878 + }, + { + "start": 3186.84, + "end": 3187.8, + "probability": 0.3422 + }, + { + "start": 3187.8, + "end": 3188.08, + "probability": 0.371 + }, + { + "start": 3188.26, + "end": 3189.16, + "probability": 0.5693 + }, + { + "start": 3189.24, + "end": 3190.86, + "probability": 0.7276 + }, + { + "start": 3191.48, + "end": 3192.4, + "probability": 0.2531 + }, + { + "start": 3192.52, + "end": 3194.1, + "probability": 0.7293 + }, + { + "start": 3194.32, + "end": 3197.8, + "probability": 0.9253 + }, + { + "start": 3198.4, + "end": 3201.58, + "probability": 0.9828 + }, + { + "start": 3201.58, + "end": 3206.42, + "probability": 0.9835 + }, + { + "start": 3207.1, + "end": 3210.66, + "probability": 0.9458 + }, + { + "start": 3210.76, + "end": 3213.26, + "probability": 0.8079 + }, + { + "start": 3213.34, + "end": 3213.78, + "probability": 0.0613 + }, + { + "start": 3216.26, + "end": 3216.26, + "probability": 0.106 + }, + { + "start": 3217.12, + "end": 3220.14, + "probability": 0.9437 + }, + { + "start": 3220.3, + "end": 3221.0, + "probability": 0.496 + }, + { + "start": 3221.22, + "end": 3221.86, + "probability": 0.8813 + }, + { + "start": 3224.44, + "end": 3228.3, + "probability": 0.0237 + }, + { + "start": 3228.3, + "end": 3229.58, + "probability": 0.1123 + }, + { + "start": 3229.58, + "end": 3230.26, + "probability": 0.1811 + }, + { + "start": 3232.18, + "end": 3234.64, + "probability": 0.1013 + }, + { + "start": 3238.2, + "end": 3238.2, + "probability": 0.0548 + }, + { + "start": 3238.2, + "end": 3238.2, + "probability": 0.1458 + }, + { + "start": 3238.2, + "end": 3238.2, + "probability": 0.4991 + }, + { + "start": 3238.2, + "end": 3240.34, + "probability": 0.3427 + }, + { + "start": 3240.52, + "end": 3245.14, + "probability": 0.9186 + }, + { + "start": 3245.26, + "end": 3249.02, + "probability": 0.9942 + }, + { + "start": 3250.54, + "end": 3252.58, + "probability": 0.6825 + }, + { + "start": 3252.74, + "end": 3255.44, + "probability": 0.9102 + }, + { + "start": 3255.52, + "end": 3257.54, + "probability": 0.2067 + }, + { + "start": 3257.96, + "end": 3260.88, + "probability": 0.9261 + }, + { + "start": 3261.04, + "end": 3262.0, + "probability": 0.7821 + }, + { + "start": 3264.84, + "end": 3265.4, + "probability": 0.6948 + }, + { + "start": 3265.42, + "end": 3265.98, + "probability": 0.6446 + }, + { + "start": 3266.04, + "end": 3268.04, + "probability": 0.9702 + }, + { + "start": 3268.92, + "end": 3269.88, + "probability": 0.2035 + }, + { + "start": 3269.96, + "end": 3270.62, + "probability": 0.8236 + }, + { + "start": 3271.28, + "end": 3274.4, + "probability": 0.9712 + }, + { + "start": 3275.22, + "end": 3275.84, + "probability": 0.6391 + }, + { + "start": 3275.96, + "end": 3276.66, + "probability": 0.6472 + }, + { + "start": 3277.15, + "end": 3278.9, + "probability": 0.8169 + }, + { + "start": 3279.0, + "end": 3279.5, + "probability": 0.6269 + }, + { + "start": 3279.68, + "end": 3282.62, + "probability": 0.7454 + }, + { + "start": 3284.18, + "end": 3285.4, + "probability": 0.8521 + }, + { + "start": 3286.1, + "end": 3287.18, + "probability": 0.8369 + }, + { + "start": 3287.26, + "end": 3287.94, + "probability": 0.9143 + }, + { + "start": 3288.06, + "end": 3289.14, + "probability": 0.8891 + }, + { + "start": 3289.58, + "end": 3291.94, + "probability": 0.8018 + }, + { + "start": 3292.64, + "end": 3294.96, + "probability": 0.9484 + }, + { + "start": 3296.24, + "end": 3298.72, + "probability": 0.8046 + }, + { + "start": 3298.78, + "end": 3301.72, + "probability": 0.765 + }, + { + "start": 3302.76, + "end": 3309.08, + "probability": 0.7343 + }, + { + "start": 3310.38, + "end": 3311.54, + "probability": 0.8703 + }, + { + "start": 3312.34, + "end": 3315.0, + "probability": 0.7601 + }, + { + "start": 3315.82, + "end": 3320.9, + "probability": 0.854 + }, + { + "start": 3320.9, + "end": 3327.22, + "probability": 0.9599 + }, + { + "start": 3328.08, + "end": 3331.06, + "probability": 0.3796 + }, + { + "start": 3332.44, + "end": 3336.56, + "probability": 0.9954 + }, + { + "start": 3336.78, + "end": 3340.12, + "probability": 0.9849 + }, + { + "start": 3341.46, + "end": 3344.04, + "probability": 0.9348 + }, + { + "start": 3345.56, + "end": 3349.2, + "probability": 0.9907 + }, + { + "start": 3350.2, + "end": 3357.2, + "probability": 0.9866 + }, + { + "start": 3359.14, + "end": 3362.26, + "probability": 0.9632 + }, + { + "start": 3362.84, + "end": 3364.12, + "probability": 0.981 + }, + { + "start": 3364.66, + "end": 3370.44, + "probability": 0.8546 + }, + { + "start": 3370.56, + "end": 3372.8, + "probability": 0.8338 + }, + { + "start": 3374.52, + "end": 3376.23, + "probability": 0.9919 + }, + { + "start": 3376.5, + "end": 3383.18, + "probability": 0.9542 + }, + { + "start": 3383.9, + "end": 3384.32, + "probability": 0.6328 + }, + { + "start": 3385.76, + "end": 3386.9, + "probability": 0.9342 + }, + { + "start": 3387.8, + "end": 3390.24, + "probability": 0.9668 + }, + { + "start": 3391.12, + "end": 3394.68, + "probability": 0.8796 + }, + { + "start": 3396.84, + "end": 3400.16, + "probability": 0.9918 + }, + { + "start": 3401.34, + "end": 3402.34, + "probability": 0.8175 + }, + { + "start": 3402.58, + "end": 3405.7, + "probability": 0.6502 + }, + { + "start": 3406.62, + "end": 3407.64, + "probability": 0.8497 + }, + { + "start": 3408.58, + "end": 3410.32, + "probability": 0.9431 + }, + { + "start": 3410.86, + "end": 3412.68, + "probability": 0.8223 + }, + { + "start": 3412.94, + "end": 3417.24, + "probability": 0.9988 + }, + { + "start": 3417.24, + "end": 3421.96, + "probability": 0.9979 + }, + { + "start": 3423.3, + "end": 3426.96, + "probability": 0.9572 + }, + { + "start": 3427.32, + "end": 3427.68, + "probability": 0.5844 + }, + { + "start": 3429.5, + "end": 3430.29, + "probability": 0.7534 + }, + { + "start": 3431.46, + "end": 3432.92, + "probability": 0.9689 + }, + { + "start": 3433.76, + "end": 3435.12, + "probability": 0.9445 + }, + { + "start": 3435.26, + "end": 3443.76, + "probability": 0.9949 + }, + { + "start": 3446.02, + "end": 3447.24, + "probability": 0.9247 + }, + { + "start": 3447.82, + "end": 3448.44, + "probability": 0.9446 + }, + { + "start": 3450.18, + "end": 3451.42, + "probability": 0.8093 + }, + { + "start": 3452.42, + "end": 3458.06, + "probability": 0.9959 + }, + { + "start": 3458.19, + "end": 3464.22, + "probability": 0.9929 + }, + { + "start": 3465.02, + "end": 3466.56, + "probability": 0.729 + }, + { + "start": 3467.24, + "end": 3468.96, + "probability": 0.9334 + }, + { + "start": 3470.17, + "end": 3475.56, + "probability": 0.9964 + }, + { + "start": 3476.12, + "end": 3479.34, + "probability": 0.9983 + }, + { + "start": 3479.64, + "end": 3481.48, + "probability": 0.8316 + }, + { + "start": 3482.04, + "end": 3483.46, + "probability": 0.7656 + }, + { + "start": 3484.0, + "end": 3486.8, + "probability": 0.9639 + }, + { + "start": 3488.32, + "end": 3492.08, + "probability": 0.7786 + }, + { + "start": 3493.44, + "end": 3495.6, + "probability": 0.7497 + }, + { + "start": 3496.16, + "end": 3500.78, + "probability": 0.9937 + }, + { + "start": 3501.16, + "end": 3503.58, + "probability": 0.9983 + }, + { + "start": 3503.64, + "end": 3506.56, + "probability": 0.9696 + }, + { + "start": 3507.3, + "end": 3511.1, + "probability": 0.9587 + }, + { + "start": 3512.24, + "end": 3513.12, + "probability": 0.5146 + }, + { + "start": 3514.56, + "end": 3515.82, + "probability": 0.9197 + }, + { + "start": 3516.74, + "end": 3517.68, + "probability": 0.8645 + }, + { + "start": 3518.42, + "end": 3522.86, + "probability": 0.9784 + }, + { + "start": 3524.44, + "end": 3526.98, + "probability": 0.8671 + }, + { + "start": 3527.06, + "end": 3528.62, + "probability": 0.6757 + }, + { + "start": 3529.12, + "end": 3534.08, + "probability": 0.9388 + }, + { + "start": 3534.36, + "end": 3535.0, + "probability": 0.4804 + }, + { + "start": 3535.78, + "end": 3540.6, + "probability": 0.7943 + }, + { + "start": 3540.88, + "end": 3541.7, + "probability": 0.6672 + }, + { + "start": 3543.46, + "end": 3545.8, + "probability": 0.7429 + }, + { + "start": 3546.26, + "end": 3549.74, + "probability": 0.9723 + }, + { + "start": 3549.82, + "end": 3551.18, + "probability": 0.9898 + }, + { + "start": 3551.22, + "end": 3552.06, + "probability": 0.5996 + }, + { + "start": 3563.58, + "end": 3564.24, + "probability": 0.6126 + }, + { + "start": 3565.84, + "end": 3566.54, + "probability": 0.9513 + }, + { + "start": 3568.04, + "end": 3569.72, + "probability": 0.7114 + }, + { + "start": 3570.94, + "end": 3576.62, + "probability": 0.8944 + }, + { + "start": 3577.24, + "end": 3578.92, + "probability": 0.7249 + }, + { + "start": 3579.74, + "end": 3583.1, + "probability": 0.8556 + }, + { + "start": 3584.02, + "end": 3588.32, + "probability": 0.9708 + }, + { + "start": 3588.82, + "end": 3589.78, + "probability": 0.9004 + }, + { + "start": 3589.88, + "end": 3592.7, + "probability": 0.687 + }, + { + "start": 3593.46, + "end": 3598.52, + "probability": 0.9941 + }, + { + "start": 3599.0, + "end": 3601.52, + "probability": 0.998 + }, + { + "start": 3602.44, + "end": 3602.88, + "probability": 0.7214 + }, + { + "start": 3602.92, + "end": 3605.2, + "probability": 0.9042 + }, + { + "start": 3605.34, + "end": 3607.94, + "probability": 0.9903 + }, + { + "start": 3609.06, + "end": 3613.94, + "probability": 0.9928 + }, + { + "start": 3614.86, + "end": 3615.2, + "probability": 0.5104 + }, + { + "start": 3615.48, + "end": 3616.96, + "probability": 0.9653 + }, + { + "start": 3617.7, + "end": 3620.08, + "probability": 0.4419 + }, + { + "start": 3620.34, + "end": 3622.14, + "probability": 0.958 + }, + { + "start": 3622.24, + "end": 3628.64, + "probability": 0.9736 + }, + { + "start": 3629.4, + "end": 3629.4, + "probability": 0.0385 + }, + { + "start": 3629.4, + "end": 3631.3, + "probability": 0.9378 + }, + { + "start": 3632.86, + "end": 3634.58, + "probability": 0.5631 + }, + { + "start": 3635.56, + "end": 3636.0, + "probability": 0.3706 + }, + { + "start": 3636.06, + "end": 3637.02, + "probability": 0.9321 + }, + { + "start": 3637.1, + "end": 3638.84, + "probability": 0.924 + }, + { + "start": 3638.86, + "end": 3641.74, + "probability": 0.8454 + }, + { + "start": 3642.02, + "end": 3645.06, + "probability": 0.9256 + }, + { + "start": 3648.36, + "end": 3649.18, + "probability": 0.63 + }, + { + "start": 3649.44, + "end": 3650.64, + "probability": 0.6485 + }, + { + "start": 3651.7, + "end": 3654.28, + "probability": 0.9907 + }, + { + "start": 3655.52, + "end": 3659.04, + "probability": 0.9476 + }, + { + "start": 3659.24, + "end": 3661.86, + "probability": 0.9462 + }, + { + "start": 3662.1, + "end": 3663.18, + "probability": 0.9116 + }, + { + "start": 3663.86, + "end": 3664.54, + "probability": 0.5522 + }, + { + "start": 3664.78, + "end": 3665.56, + "probability": 0.8547 + }, + { + "start": 3665.6, + "end": 3666.18, + "probability": 0.7879 + }, + { + "start": 3666.3, + "end": 3667.5, + "probability": 0.7121 + }, + { + "start": 3668.48, + "end": 3672.12, + "probability": 0.9437 + }, + { + "start": 3672.6, + "end": 3673.32, + "probability": 0.9345 + }, + { + "start": 3673.42, + "end": 3673.93, + "probability": 0.9375 + }, + { + "start": 3674.88, + "end": 3676.32, + "probability": 0.9271 + }, + { + "start": 3676.5, + "end": 3679.44, + "probability": 0.9653 + }, + { + "start": 3679.56, + "end": 3680.54, + "probability": 0.6862 + }, + { + "start": 3681.18, + "end": 3682.71, + "probability": 0.9247 + }, + { + "start": 3683.14, + "end": 3684.6, + "probability": 0.8284 + }, + { + "start": 3684.62, + "end": 3686.4, + "probability": 0.8657 + }, + { + "start": 3686.71, + "end": 3693.02, + "probability": 0.9746 + }, + { + "start": 3693.02, + "end": 3697.98, + "probability": 0.9969 + }, + { + "start": 3698.04, + "end": 3704.78, + "probability": 0.888 + }, + { + "start": 3704.92, + "end": 3705.86, + "probability": 0.5829 + }, + { + "start": 3706.24, + "end": 3709.87, + "probability": 0.9783 + }, + { + "start": 3710.5, + "end": 3711.56, + "probability": 0.9192 + }, + { + "start": 3711.92, + "end": 3712.22, + "probability": 0.5787 + }, + { + "start": 3713.18, + "end": 3715.16, + "probability": 0.7806 + }, + { + "start": 3716.24, + "end": 3719.86, + "probability": 0.009 + }, + { + "start": 3720.42, + "end": 3723.82, + "probability": 0.7655 + }, + { + "start": 3723.92, + "end": 3725.54, + "probability": 0.885 + }, + { + "start": 3733.5, + "end": 3736.56, + "probability": 0.8726 + }, + { + "start": 3737.22, + "end": 3740.98, + "probability": 0.9636 + }, + { + "start": 3741.34, + "end": 3743.03, + "probability": 0.9915 + }, + { + "start": 3743.94, + "end": 3751.26, + "probability": 0.95 + }, + { + "start": 3751.26, + "end": 3753.36, + "probability": 0.2428 + }, + { + "start": 3753.56, + "end": 3754.38, + "probability": 0.8783 + }, + { + "start": 3754.5, + "end": 3755.21, + "probability": 0.459 + }, + { + "start": 3755.72, + "end": 3761.42, + "probability": 0.9423 + }, + { + "start": 3761.9, + "end": 3762.56, + "probability": 0.8057 + }, + { + "start": 3762.74, + "end": 3763.32, + "probability": 0.2756 + }, + { + "start": 3763.46, + "end": 3763.96, + "probability": 0.9333 + }, + { + "start": 3764.02, + "end": 3764.88, + "probability": 0.8992 + }, + { + "start": 3765.4, + "end": 3765.66, + "probability": 0.5328 + }, + { + "start": 3765.84, + "end": 3766.68, + "probability": 0.6563 + }, + { + "start": 3767.18, + "end": 3769.94, + "probability": 0.5004 + }, + { + "start": 3770.26, + "end": 3774.08, + "probability": 0.7563 + }, + { + "start": 3774.46, + "end": 3776.22, + "probability": 0.884 + }, + { + "start": 3776.44, + "end": 3781.14, + "probability": 0.6619 + }, + { + "start": 3781.94, + "end": 3784.08, + "probability": 0.0922 + }, + { + "start": 3785.08, + "end": 3790.68, + "probability": 0.7992 + }, + { + "start": 3791.58, + "end": 3794.04, + "probability": 0.9763 + }, + { + "start": 3795.38, + "end": 3798.6, + "probability": 0.9904 + }, + { + "start": 3798.64, + "end": 3801.25, + "probability": 0.9664 + }, + { + "start": 3802.22, + "end": 3803.62, + "probability": 0.9956 + }, + { + "start": 3804.56, + "end": 3805.46, + "probability": 0.9834 + }, + { + "start": 3806.36, + "end": 3806.84, + "probability": 0.5258 + }, + { + "start": 3806.96, + "end": 3808.26, + "probability": 0.6977 + }, + { + "start": 3808.3, + "end": 3811.68, + "probability": 0.9047 + }, + { + "start": 3811.74, + "end": 3813.5, + "probability": 0.8745 + }, + { + "start": 3814.62, + "end": 3819.7, + "probability": 0.9143 + }, + { + "start": 3819.7, + "end": 3825.66, + "probability": 0.8864 + }, + { + "start": 3825.94, + "end": 3827.26, + "probability": 0.8793 + }, + { + "start": 3828.24, + "end": 3828.52, + "probability": 0.4524 + }, + { + "start": 3828.94, + "end": 3830.42, + "probability": 0.8653 + }, + { + "start": 3830.52, + "end": 3833.56, + "probability": 0.9946 + }, + { + "start": 3834.16, + "end": 3835.16, + "probability": 0.9465 + }, + { + "start": 3835.62, + "end": 3836.92, + "probability": 0.917 + }, + { + "start": 3837.2, + "end": 3837.94, + "probability": 0.9443 + }, + { + "start": 3838.02, + "end": 3838.48, + "probability": 0.505 + }, + { + "start": 3838.48, + "end": 3838.92, + "probability": 0.4164 + }, + { + "start": 3839.02, + "end": 3839.26, + "probability": 0.5394 + }, + { + "start": 3841.36, + "end": 3841.62, + "probability": 0.3313 + }, + { + "start": 3841.62, + "end": 3844.22, + "probability": 0.6511 + }, + { + "start": 3844.76, + "end": 3845.82, + "probability": 0.8704 + }, + { + "start": 3846.04, + "end": 3850.94, + "probability": 0.9956 + }, + { + "start": 3851.88, + "end": 3856.82, + "probability": 0.9785 + }, + { + "start": 3857.26, + "end": 3858.34, + "probability": 0.8562 + }, + { + "start": 3858.42, + "end": 3859.9, + "probability": 0.9888 + }, + { + "start": 3860.16, + "end": 3860.42, + "probability": 0.3274 + }, + { + "start": 3860.46, + "end": 3863.08, + "probability": 0.9822 + }, + { + "start": 3864.28, + "end": 3865.3, + "probability": 0.6709 + }, + { + "start": 3865.68, + "end": 3871.74, + "probability": 0.9897 + }, + { + "start": 3871.92, + "end": 3872.02, + "probability": 0.4921 + }, + { + "start": 3873.14, + "end": 3875.82, + "probability": 0.7418 + }, + { + "start": 3876.2, + "end": 3878.14, + "probability": 0.938 + }, + { + "start": 3878.2, + "end": 3879.12, + "probability": 0.8245 + }, + { + "start": 3879.58, + "end": 3880.62, + "probability": 0.9265 + }, + { + "start": 3881.2, + "end": 3885.12, + "probability": 0.9803 + }, + { + "start": 3885.72, + "end": 3889.82, + "probability": 0.9873 + }, + { + "start": 3889.82, + "end": 3894.94, + "probability": 0.9229 + }, + { + "start": 3895.1, + "end": 3895.34, + "probability": 0.3694 + }, + { + "start": 3895.76, + "end": 3898.44, + "probability": 0.9607 + }, + { + "start": 3899.88, + "end": 3901.32, + "probability": 0.1407 + }, + { + "start": 3901.6, + "end": 3903.82, + "probability": 0.1761 + }, + { + "start": 3904.06, + "end": 3906.62, + "probability": 0.3127 + }, + { + "start": 3907.46, + "end": 3909.34, + "probability": 0.2198 + }, + { + "start": 3909.72, + "end": 3913.52, + "probability": 0.7527 + }, + { + "start": 3913.98, + "end": 3914.58, + "probability": 0.5245 + }, + { + "start": 3914.6, + "end": 3915.18, + "probability": 0.4323 + }, + { + "start": 3915.18, + "end": 3916.1, + "probability": 0.6045 + }, + { + "start": 3916.14, + "end": 3917.6, + "probability": 0.8013 + }, + { + "start": 3920.68, + "end": 3925.5, + "probability": 0.0501 + }, + { + "start": 3925.82, + "end": 3929.8, + "probability": 0.0171 + }, + { + "start": 3931.34, + "end": 3932.42, + "probability": 0.0279 + }, + { + "start": 3933.62, + "end": 3934.0, + "probability": 0.0254 + }, + { + "start": 3934.0, + "end": 3934.0, + "probability": 0.1175 + }, + { + "start": 3934.0, + "end": 3934.7, + "probability": 0.1279 + }, + { + "start": 3934.88, + "end": 3937.46, + "probability": 0.9281 + }, + { + "start": 3938.0, + "end": 3938.6, + "probability": 0.8036 + }, + { + "start": 3939.36, + "end": 3941.9, + "probability": 0.7322 + }, + { + "start": 3942.36, + "end": 3943.8, + "probability": 0.2691 + }, + { + "start": 3944.0, + "end": 3946.48, + "probability": 0.3893 + }, + { + "start": 3946.92, + "end": 3947.02, + "probability": 0.2103 + }, + { + "start": 3947.24, + "end": 3951.96, + "probability": 0.6035 + }, + { + "start": 3953.12, + "end": 3959.92, + "probability": 0.829 + }, + { + "start": 3960.52, + "end": 3960.9, + "probability": 0.2245 + }, + { + "start": 3961.26, + "end": 3963.3, + "probability": 0.7489 + }, + { + "start": 3963.48, + "end": 3964.9, + "probability": 0.8104 + }, + { + "start": 3965.0, + "end": 3967.02, + "probability": 0.1791 + }, + { + "start": 3967.56, + "end": 3971.48, + "probability": 0.6139 + }, + { + "start": 3975.54, + "end": 3979.24, + "probability": 0.7178 + }, + { + "start": 3979.3, + "end": 3983.71, + "probability": 0.77 + }, + { + "start": 3985.0, + "end": 3987.78, + "probability": 0.8865 + }, + { + "start": 3990.62, + "end": 3992.46, + "probability": 0.8615 + }, + { + "start": 3993.72, + "end": 3996.26, + "probability": 0.707 + }, + { + "start": 4022.56, + "end": 4023.76, + "probability": 0.5304 + }, + { + "start": 4024.56, + "end": 4025.62, + "probability": 0.7448 + }, + { + "start": 4026.84, + "end": 4028.88, + "probability": 0.9956 + }, + { + "start": 4028.88, + "end": 4030.26, + "probability": 0.828 + }, + { + "start": 4031.66, + "end": 4036.26, + "probability": 0.9359 + }, + { + "start": 4037.22, + "end": 4039.22, + "probability": 0.7954 + }, + { + "start": 4040.14, + "end": 4040.38, + "probability": 0.1171 + }, + { + "start": 4041.26, + "end": 4043.84, + "probability": 0.9931 + }, + { + "start": 4043.84, + "end": 4046.76, + "probability": 0.9993 + }, + { + "start": 4047.32, + "end": 4048.98, + "probability": 0.9826 + }, + { + "start": 4049.74, + "end": 4049.92, + "probability": 0.4968 + }, + { + "start": 4050.1, + "end": 4054.72, + "probability": 0.9972 + }, + { + "start": 4054.72, + "end": 4059.06, + "probability": 0.9948 + }, + { + "start": 4059.88, + "end": 4060.06, + "probability": 0.0199 + }, + { + "start": 4060.78, + "end": 4063.26, + "probability": 0.9902 + }, + { + "start": 4063.26, + "end": 4066.34, + "probability": 0.9977 + }, + { + "start": 4067.72, + "end": 4070.1, + "probability": 0.9641 + }, + { + "start": 4070.1, + "end": 4072.76, + "probability": 0.8453 + }, + { + "start": 4073.68, + "end": 4074.84, + "probability": 0.8852 + }, + { + "start": 4075.62, + "end": 4082.1, + "probability": 0.9896 + }, + { + "start": 4082.58, + "end": 4084.54, + "probability": 0.9984 + }, + { + "start": 4084.66, + "end": 4086.94, + "probability": 0.9834 + }, + { + "start": 4087.72, + "end": 4088.34, + "probability": 0.9686 + }, + { + "start": 4089.34, + "end": 4093.6, + "probability": 0.9854 + }, + { + "start": 4093.76, + "end": 4095.4, + "probability": 0.8417 + }, + { + "start": 4095.76, + "end": 4097.18, + "probability": 0.9115 + }, + { + "start": 4097.38, + "end": 4099.62, + "probability": 0.9635 + }, + { + "start": 4100.8, + "end": 4101.1, + "probability": 0.9132 + }, + { + "start": 4101.2, + "end": 4105.6, + "probability": 0.9918 + }, + { + "start": 4106.36, + "end": 4109.38, + "probability": 0.9975 + }, + { + "start": 4109.38, + "end": 4112.86, + "probability": 0.9943 + }, + { + "start": 4113.66, + "end": 4116.06, + "probability": 0.9927 + }, + { + "start": 4116.22, + "end": 4119.92, + "probability": 0.9922 + }, + { + "start": 4119.92, + "end": 4124.52, + "probability": 0.9615 + }, + { + "start": 4124.62, + "end": 4126.08, + "probability": 0.7719 + }, + { + "start": 4126.36, + "end": 4126.92, + "probability": 0.4283 + }, + { + "start": 4129.02, + "end": 4131.46, + "probability": 0.9991 + }, + { + "start": 4131.46, + "end": 4133.68, + "probability": 0.9913 + }, + { + "start": 4133.94, + "end": 4137.14, + "probability": 0.9895 + }, + { + "start": 4138.08, + "end": 4138.7, + "probability": 0.6972 + }, + { + "start": 4139.08, + "end": 4144.7, + "probability": 0.998 + }, + { + "start": 4145.06, + "end": 4150.4, + "probability": 0.9867 + }, + { + "start": 4151.2, + "end": 4154.26, + "probability": 0.9948 + }, + { + "start": 4154.26, + "end": 4156.68, + "probability": 0.9988 + }, + { + "start": 4157.26, + "end": 4161.02, + "probability": 0.971 + }, + { + "start": 4161.02, + "end": 4166.44, + "probability": 0.998 + }, + { + "start": 4167.1, + "end": 4168.28, + "probability": 0.7817 + }, + { + "start": 4168.36, + "end": 4170.72, + "probability": 0.6669 + }, + { + "start": 4171.18, + "end": 4173.44, + "probability": 0.97 + }, + { + "start": 4173.48, + "end": 4174.08, + "probability": 0.9646 + }, + { + "start": 4174.62, + "end": 4177.18, + "probability": 0.8818 + }, + { + "start": 4177.32, + "end": 4177.78, + "probability": 0.7852 + }, + { + "start": 4182.58, + "end": 4183.78, + "probability": 0.4148 + }, + { + "start": 4187.76, + "end": 4188.1, + "probability": 0.7423 + }, + { + "start": 4196.26, + "end": 4196.28, + "probability": 0.4648 + }, + { + "start": 4197.9, + "end": 4199.44, + "probability": 0.408 + }, + { + "start": 4199.48, + "end": 4201.3, + "probability": 0.7283 + }, + { + "start": 4202.92, + "end": 4207.36, + "probability": 0.7833 + }, + { + "start": 4208.24, + "end": 4214.24, + "probability": 0.9705 + }, + { + "start": 4214.24, + "end": 4218.5, + "probability": 0.9977 + }, + { + "start": 4218.58, + "end": 4226.06, + "probability": 0.9785 + }, + { + "start": 4227.28, + "end": 4234.32, + "probability": 0.6587 + }, + { + "start": 4234.34, + "end": 4239.14, + "probability": 0.9835 + }, + { + "start": 4239.74, + "end": 4241.07, + "probability": 0.5069 + }, + { + "start": 4241.56, + "end": 4246.92, + "probability": 0.7734 + }, + { + "start": 4247.42, + "end": 4251.74, + "probability": 0.9845 + }, + { + "start": 4251.76, + "end": 4254.74, + "probability": 0.9954 + }, + { + "start": 4254.92, + "end": 4262.22, + "probability": 0.984 + }, + { + "start": 4262.76, + "end": 4266.18, + "probability": 0.9185 + }, + { + "start": 4267.2, + "end": 4268.65, + "probability": 0.6795 + }, + { + "start": 4269.24, + "end": 4272.32, + "probability": 0.9305 + }, + { + "start": 4272.5, + "end": 4279.76, + "probability": 0.9152 + }, + { + "start": 4280.16, + "end": 4285.4, + "probability": 0.9609 + }, + { + "start": 4286.7, + "end": 4289.72, + "probability": 0.9269 + }, + { + "start": 4289.84, + "end": 4291.38, + "probability": 0.9303 + }, + { + "start": 4292.06, + "end": 4294.58, + "probability": 0.8511 + }, + { + "start": 4294.92, + "end": 4299.82, + "probability": 0.9941 + }, + { + "start": 4300.36, + "end": 4304.44, + "probability": 0.9951 + }, + { + "start": 4305.04, + "end": 4307.74, + "probability": 0.9587 + }, + { + "start": 4307.88, + "end": 4308.52, + "probability": 0.3721 + }, + { + "start": 4308.7, + "end": 4309.35, + "probability": 0.9255 + }, + { + "start": 4309.58, + "end": 4310.74, + "probability": 0.9019 + }, + { + "start": 4311.54, + "end": 4318.68, + "probability": 0.8436 + }, + { + "start": 4319.12, + "end": 4321.7, + "probability": 0.996 + }, + { + "start": 4321.74, + "end": 4326.88, + "probability": 0.9961 + }, + { + "start": 4327.82, + "end": 4333.04, + "probability": 0.9403 + }, + { + "start": 4333.94, + "end": 4336.16, + "probability": 0.8563 + }, + { + "start": 4337.06, + "end": 4341.08, + "probability": 0.9487 + }, + { + "start": 4342.68, + "end": 4344.04, + "probability": 0.5599 + }, + { + "start": 4344.12, + "end": 4345.74, + "probability": 0.6262 + }, + { + "start": 4345.78, + "end": 4345.88, + "probability": 0.3666 + }, + { + "start": 4345.94, + "end": 4346.88, + "probability": 0.3686 + }, + { + "start": 4347.36, + "end": 4350.72, + "probability": 0.8208 + }, + { + "start": 4351.48, + "end": 4352.92, + "probability": 0.9214 + }, + { + "start": 4353.9, + "end": 4355.12, + "probability": 0.4857 + }, + { + "start": 4356.2, + "end": 4357.98, + "probability": 0.8735 + }, + { + "start": 4359.12, + "end": 4360.36, + "probability": 0.5016 + }, + { + "start": 4360.36, + "end": 4360.4, + "probability": 0.0614 + }, + { + "start": 4360.46, + "end": 4361.36, + "probability": 0.0835 + }, + { + "start": 4361.4, + "end": 4361.8, + "probability": 0.4343 + }, + { + "start": 4361.92, + "end": 4364.82, + "probability": 0.4997 + }, + { + "start": 4365.86, + "end": 4370.7, + "probability": 0.6861 + }, + { + "start": 4370.78, + "end": 4370.78, + "probability": 0.6633 + }, + { + "start": 4371.08, + "end": 4376.03, + "probability": 0.9794 + }, + { + "start": 4376.7, + "end": 4379.2, + "probability": 0.998 + }, + { + "start": 4379.54, + "end": 4382.33, + "probability": 0.9508 + }, + { + "start": 4383.76, + "end": 4388.48, + "probability": 0.9541 + }, + { + "start": 4388.98, + "end": 4392.82, + "probability": 0.9749 + }, + { + "start": 4392.92, + "end": 4394.1, + "probability": 0.7629 + }, + { + "start": 4394.52, + "end": 4395.31, + "probability": 0.7851 + }, + { + "start": 4395.48, + "end": 4396.72, + "probability": 0.5608 + }, + { + "start": 4397.12, + "end": 4401.26, + "probability": 0.9172 + }, + { + "start": 4401.4, + "end": 4403.52, + "probability": 0.9302 + }, + { + "start": 4403.72, + "end": 4405.1, + "probability": 0.9827 + }, + { + "start": 4405.58, + "end": 4407.86, + "probability": 0.9788 + }, + { + "start": 4408.38, + "end": 4410.98, + "probability": 0.9867 + }, + { + "start": 4411.6, + "end": 4414.98, + "probability": 0.844 + }, + { + "start": 4415.2, + "end": 4417.1, + "probability": 0.9905 + }, + { + "start": 4418.62, + "end": 4424.64, + "probability": 0.9618 + }, + { + "start": 4424.98, + "end": 4425.24, + "probability": 0.8005 + }, + { + "start": 4425.66, + "end": 4427.48, + "probability": 0.7437 + }, + { + "start": 4427.62, + "end": 4428.6, + "probability": 0.9414 + }, + { + "start": 4438.07, + "end": 4440.72, + "probability": 0.0484 + }, + { + "start": 4440.72, + "end": 4440.72, + "probability": 0.0313 + }, + { + "start": 4447.5, + "end": 4448.48, + "probability": 0.1606 + }, + { + "start": 4449.3, + "end": 4450.08, + "probability": 0.0514 + }, + { + "start": 4456.56, + "end": 4456.56, + "probability": 0.2299 + }, + { + "start": 4456.56, + "end": 4460.56, + "probability": 0.5298 + }, + { + "start": 4461.84, + "end": 4463.3, + "probability": 0.9689 + }, + { + "start": 4464.08, + "end": 4465.96, + "probability": 0.8653 + }, + { + "start": 4466.16, + "end": 4468.0, + "probability": 0.9633 + }, + { + "start": 4468.18, + "end": 4470.2, + "probability": 0.807 + }, + { + "start": 4470.88, + "end": 4473.2, + "probability": 0.6989 + }, + { + "start": 4473.2, + "end": 4473.76, + "probability": 0.6583 + }, + { + "start": 4483.72, + "end": 4483.72, + "probability": 0.2772 + }, + { + "start": 4483.72, + "end": 4487.32, + "probability": 0.5044 + }, + { + "start": 4495.54, + "end": 4499.68, + "probability": 0.6276 + }, + { + "start": 4501.12, + "end": 4502.48, + "probability": 0.6364 + }, + { + "start": 4502.54, + "end": 4502.84, + "probability": 0.8718 + }, + { + "start": 4503.64, + "end": 4507.26, + "probability": 0.9191 + }, + { + "start": 4508.8, + "end": 4513.0, + "probability": 0.9797 + }, + { + "start": 4514.52, + "end": 4516.66, + "probability": 0.8199 + }, + { + "start": 4517.58, + "end": 4522.62, + "probability": 0.9717 + }, + { + "start": 4523.5, + "end": 4527.88, + "probability": 0.9609 + }, + { + "start": 4528.54, + "end": 4530.28, + "probability": 0.7311 + }, + { + "start": 4531.08, + "end": 4537.62, + "probability": 0.9891 + }, + { + "start": 4537.62, + "end": 4542.12, + "probability": 0.9972 + }, + { + "start": 4543.02, + "end": 4544.25, + "probability": 0.7817 + }, + { + "start": 4544.96, + "end": 4549.32, + "probability": 0.978 + }, + { + "start": 4549.66, + "end": 4553.12, + "probability": 0.975 + }, + { + "start": 4553.78, + "end": 4554.52, + "probability": 0.9569 + }, + { + "start": 4555.26, + "end": 4561.72, + "probability": 0.9517 + }, + { + "start": 4561.72, + "end": 4568.72, + "probability": 0.2944 + }, + { + "start": 4569.64, + "end": 4570.34, + "probability": 0.7369 + }, + { + "start": 4570.96, + "end": 4573.8, + "probability": 0.9883 + }, + { + "start": 4574.34, + "end": 4576.86, + "probability": 0.9253 + }, + { + "start": 4579.07, + "end": 4582.92, + "probability": 0.9873 + }, + { + "start": 4582.92, + "end": 4587.7, + "probability": 0.9899 + }, + { + "start": 4587.84, + "end": 4588.8, + "probability": 0.9973 + }, + { + "start": 4588.88, + "end": 4590.22, + "probability": 0.7061 + }, + { + "start": 4590.88, + "end": 4594.92, + "probability": 0.95 + }, + { + "start": 4595.38, + "end": 4600.1, + "probability": 0.9858 + }, + { + "start": 4601.24, + "end": 4605.08, + "probability": 0.9948 + }, + { + "start": 4605.46, + "end": 4606.82, + "probability": 0.8054 + }, + { + "start": 4608.49, + "end": 4616.56, + "probability": 0.9853 + }, + { + "start": 4616.72, + "end": 4617.92, + "probability": 0.9937 + }, + { + "start": 4618.46, + "end": 4625.3, + "probability": 0.89 + }, + { + "start": 4625.88, + "end": 4631.08, + "probability": 0.7411 + }, + { + "start": 4631.08, + "end": 4635.94, + "probability": 0.5525 + }, + { + "start": 4636.16, + "end": 4636.66, + "probability": 0.1944 + }, + { + "start": 4637.08, + "end": 4638.32, + "probability": 0.7249 + }, + { + "start": 4638.94, + "end": 4641.42, + "probability": 0.9298 + }, + { + "start": 4641.52, + "end": 4646.24, + "probability": 0.7631 + }, + { + "start": 4646.24, + "end": 4651.72, + "probability": 0.8349 + }, + { + "start": 4652.82, + "end": 4659.94, + "probability": 0.9628 + }, + { + "start": 4659.94, + "end": 4666.14, + "probability": 0.9984 + }, + { + "start": 4666.14, + "end": 4673.24, + "probability": 0.9922 + }, + { + "start": 4673.92, + "end": 4677.82, + "probability": 0.6639 + }, + { + "start": 4678.38, + "end": 4682.24, + "probability": 0.7284 + }, + { + "start": 4682.96, + "end": 4684.2, + "probability": 0.8633 + }, + { + "start": 4684.98, + "end": 4690.06, + "probability": 0.9631 + }, + { + "start": 4690.2, + "end": 4691.68, + "probability": 0.7666 + }, + { + "start": 4692.16, + "end": 4695.84, + "probability": 0.5423 + }, + { + "start": 4696.08, + "end": 4696.78, + "probability": 0.3742 + }, + { + "start": 4697.1, + "end": 4699.52, + "probability": 0.7632 + }, + { + "start": 4700.26, + "end": 4703.5, + "probability": 0.8671 + }, + { + "start": 4703.94, + "end": 4706.3, + "probability": 0.9951 + }, + { + "start": 4706.42, + "end": 4707.9, + "probability": 0.9287 + }, + { + "start": 4708.24, + "end": 4710.02, + "probability": 0.8687 + }, + { + "start": 4710.32, + "end": 4713.68, + "probability": 0.8796 + }, + { + "start": 4713.68, + "end": 4717.66, + "probability": 0.9977 + }, + { + "start": 4718.5, + "end": 4721.32, + "probability": 0.543 + }, + { + "start": 4721.74, + "end": 4723.24, + "probability": 0.7319 + }, + { + "start": 4724.02, + "end": 4727.74, + "probability": 0.95 + }, + { + "start": 4728.68, + "end": 4731.78, + "probability": 0.9726 + }, + { + "start": 4732.2, + "end": 4735.54, + "probability": 0.9904 + }, + { + "start": 4736.1, + "end": 4738.8, + "probability": 0.9823 + }, + { + "start": 4739.38, + "end": 4740.58, + "probability": 0.7328 + }, + { + "start": 4740.68, + "end": 4741.8, + "probability": 0.8229 + }, + { + "start": 4742.0, + "end": 4743.9, + "probability": 0.8002 + }, + { + "start": 4744.62, + "end": 4746.86, + "probability": 0.6161 + }, + { + "start": 4747.08, + "end": 4751.62, + "probability": 0.9414 + }, + { + "start": 4752.06, + "end": 4755.08, + "probability": 0.9974 + }, + { + "start": 4755.8, + "end": 4758.96, + "probability": 0.7135 + }, + { + "start": 4759.22, + "end": 4761.76, + "probability": 0.8838 + }, + { + "start": 4761.98, + "end": 4765.28, + "probability": 0.8312 + }, + { + "start": 4765.84, + "end": 4767.84, + "probability": 0.9064 + }, + { + "start": 4767.94, + "end": 4777.42, + "probability": 0.9676 + }, + { + "start": 4777.42, + "end": 4784.72, + "probability": 0.9995 + }, + { + "start": 4785.02, + "end": 4787.84, + "probability": 0.7678 + }, + { + "start": 4788.26, + "end": 4789.36, + "probability": 0.8796 + }, + { + "start": 4789.64, + "end": 4791.54, + "probability": 0.647 + }, + { + "start": 4791.76, + "end": 4793.54, + "probability": 0.6994 + }, + { + "start": 4793.82, + "end": 4800.44, + "probability": 0.9844 + }, + { + "start": 4801.26, + "end": 4803.22, + "probability": 0.9971 + }, + { + "start": 4803.68, + "end": 4804.26, + "probability": 0.6964 + }, + { + "start": 4804.36, + "end": 4807.02, + "probability": 0.7776 + }, + { + "start": 4807.48, + "end": 4809.96, + "probability": 0.777 + }, + { + "start": 4810.32, + "end": 4812.32, + "probability": 0.9773 + }, + { + "start": 4812.38, + "end": 4813.12, + "probability": 0.606 + }, + { + "start": 4813.52, + "end": 4820.45, + "probability": 0.9005 + }, + { + "start": 4821.0, + "end": 4826.32, + "probability": 0.9924 + }, + { + "start": 4826.32, + "end": 4831.85, + "probability": 0.9984 + }, + { + "start": 4832.3, + "end": 4835.74, + "probability": 0.9635 + }, + { + "start": 4836.44, + "end": 4836.6, + "probability": 0.2328 + }, + { + "start": 4836.6, + "end": 4837.93, + "probability": 0.8523 + }, + { + "start": 4838.8, + "end": 4841.6, + "probability": 0.9092 + }, + { + "start": 4841.93, + "end": 4848.12, + "probability": 0.992 + }, + { + "start": 4848.86, + "end": 4853.22, + "probability": 0.7448 + }, + { + "start": 4853.78, + "end": 4858.08, + "probability": 0.8187 + }, + { + "start": 4858.78, + "end": 4862.88, + "probability": 0.9171 + }, + { + "start": 4863.52, + "end": 4868.42, + "probability": 0.8896 + }, + { + "start": 4868.62, + "end": 4875.76, + "probability": 0.9793 + }, + { + "start": 4875.76, + "end": 4880.76, + "probability": 0.9984 + }, + { + "start": 4880.9, + "end": 4885.56, + "probability": 0.7801 + }, + { + "start": 4886.28, + "end": 4890.72, + "probability": 0.8276 + }, + { + "start": 4890.9, + "end": 4891.46, + "probability": 0.8775 + }, + { + "start": 4891.58, + "end": 4892.84, + "probability": 0.6639 + }, + { + "start": 4893.4, + "end": 4896.86, + "probability": 0.9812 + }, + { + "start": 4897.4, + "end": 4902.0, + "probability": 0.9936 + }, + { + "start": 4902.3, + "end": 4906.44, + "probability": 0.9218 + }, + { + "start": 4907.36, + "end": 4910.02, + "probability": 0.8719 + }, + { + "start": 4910.8, + "end": 4918.46, + "probability": 0.9966 + }, + { + "start": 4918.72, + "end": 4919.84, + "probability": 0.8641 + }, + { + "start": 4920.62, + "end": 4922.88, + "probability": 0.9916 + }, + { + "start": 4923.36, + "end": 4926.92, + "probability": 0.9959 + }, + { + "start": 4926.92, + "end": 4929.82, + "probability": 0.9918 + }, + { + "start": 4930.5, + "end": 4933.22, + "probability": 0.9935 + }, + { + "start": 4933.22, + "end": 4940.16, + "probability": 0.9767 + }, + { + "start": 4940.8, + "end": 4944.28, + "probability": 0.9438 + }, + { + "start": 4944.8, + "end": 4952.54, + "probability": 0.9916 + }, + { + "start": 4953.28, + "end": 4957.28, + "probability": 0.9919 + }, + { + "start": 4957.64, + "end": 4958.92, + "probability": 0.6706 + }, + { + "start": 4959.48, + "end": 4966.0, + "probability": 0.854 + }, + { + "start": 4966.42, + "end": 4968.9, + "probability": 0.9834 + }, + { + "start": 4969.28, + "end": 4970.9, + "probability": 0.9917 + }, + { + "start": 4971.3, + "end": 4976.28, + "probability": 0.9963 + }, + { + "start": 4976.28, + "end": 4981.02, + "probability": 0.9867 + }, + { + "start": 4981.5, + "end": 4982.56, + "probability": 0.8233 + }, + { + "start": 4983.12, + "end": 4989.46, + "probability": 0.9768 + }, + { + "start": 4989.76, + "end": 4994.8, + "probability": 0.8132 + }, + { + "start": 4995.18, + "end": 4997.08, + "probability": 0.811 + }, + { + "start": 4997.18, + "end": 4999.68, + "probability": 0.9241 + }, + { + "start": 5000.32, + "end": 5004.98, + "probability": 0.9367 + }, + { + "start": 5004.98, + "end": 5009.44, + "probability": 0.9474 + }, + { + "start": 5010.08, + "end": 5014.16, + "probability": 0.8242 + }, + { + "start": 5014.16, + "end": 5017.96, + "probability": 0.9616 + }, + { + "start": 5018.54, + "end": 5022.32, + "probability": 0.8279 + }, + { + "start": 5022.8, + "end": 5023.96, + "probability": 0.7456 + }, + { + "start": 5024.34, + "end": 5026.6, + "probability": 0.9441 + }, + { + "start": 5027.08, + "end": 5027.7, + "probability": 0.4291 + }, + { + "start": 5029.22, + "end": 5035.32, + "probability": 0.9945 + }, + { + "start": 5035.32, + "end": 5040.18, + "probability": 0.9692 + }, + { + "start": 5040.28, + "end": 5040.66, + "probability": 0.3975 + }, + { + "start": 5040.9, + "end": 5045.76, + "probability": 0.9956 + }, + { + "start": 5045.76, + "end": 5052.12, + "probability": 0.8747 + }, + { + "start": 5052.54, + "end": 5058.1, + "probability": 0.9982 + }, + { + "start": 5058.1, + "end": 5063.26, + "probability": 0.9726 + }, + { + "start": 5063.26, + "end": 5067.56, + "probability": 0.9998 + }, + { + "start": 5070.6, + "end": 5074.06, + "probability": 0.8306 + }, + { + "start": 5074.12, + "end": 5074.7, + "probability": 0.738 + }, + { + "start": 5075.08, + "end": 5076.02, + "probability": 0.9111 + }, + { + "start": 5076.28, + "end": 5077.74, + "probability": 0.8626 + }, + { + "start": 5078.12, + "end": 5087.36, + "probability": 0.9876 + }, + { + "start": 5087.66, + "end": 5088.12, + "probability": 0.8134 + }, + { + "start": 5090.24, + "end": 5091.9, + "probability": 0.5084 + }, + { + "start": 5095.82, + "end": 5098.82, + "probability": 0.5348 + }, + { + "start": 5115.84, + "end": 5119.94, + "probability": 0.8253 + }, + { + "start": 5121.26, + "end": 5124.32, + "probability": 0.5391 + }, + { + "start": 5125.55, + "end": 5128.32, + "probability": 0.8496 + }, + { + "start": 5130.86, + "end": 5131.73, + "probability": 0.9238 + }, + { + "start": 5131.92, + "end": 5132.76, + "probability": 0.3212 + }, + { + "start": 5133.7, + "end": 5134.06, + "probability": 0.1185 + }, + { + "start": 5134.1, + "end": 5136.12, + "probability": 0.9656 + }, + { + "start": 5136.34, + "end": 5138.98, + "probability": 0.9951 + }, + { + "start": 5139.04, + "end": 5141.65, + "probability": 0.8673 + }, + { + "start": 5142.32, + "end": 5143.0, + "probability": 0.5754 + }, + { + "start": 5143.08, + "end": 5144.52, + "probability": 0.9055 + }, + { + "start": 5144.64, + "end": 5146.64, + "probability": 0.7837 + }, + { + "start": 5147.78, + "end": 5152.16, + "probability": 0.978 + }, + { + "start": 5152.34, + "end": 5152.94, + "probability": 0.8318 + }, + { + "start": 5152.98, + "end": 5153.56, + "probability": 0.5251 + }, + { + "start": 5153.76, + "end": 5156.22, + "probability": 0.7524 + }, + { + "start": 5157.02, + "end": 5158.04, + "probability": 0.8635 + }, + { + "start": 5158.14, + "end": 5160.02, + "probability": 0.9871 + }, + { + "start": 5160.4, + "end": 5162.68, + "probability": 0.9576 + }, + { + "start": 5163.18, + "end": 5164.96, + "probability": 0.907 + }, + { + "start": 5165.36, + "end": 5167.64, + "probability": 0.8442 + }, + { + "start": 5167.98, + "end": 5168.98, + "probability": 0.933 + }, + { + "start": 5169.06, + "end": 5169.9, + "probability": 0.7253 + }, + { + "start": 5170.0, + "end": 5171.12, + "probability": 0.9976 + }, + { + "start": 5171.84, + "end": 5171.94, + "probability": 0.0026 + }, + { + "start": 5172.52, + "end": 5174.08, + "probability": 0.8652 + }, + { + "start": 5174.64, + "end": 5177.68, + "probability": 0.9666 + }, + { + "start": 5179.05, + "end": 5181.3, + "probability": 0.9649 + }, + { + "start": 5181.72, + "end": 5185.98, + "probability": 0.7147 + }, + { + "start": 5186.14, + "end": 5186.83, + "probability": 0.9684 + }, + { + "start": 5187.66, + "end": 5189.88, + "probability": 0.877 + }, + { + "start": 5190.22, + "end": 5191.46, + "probability": 0.7649 + }, + { + "start": 5192.21, + "end": 5194.94, + "probability": 0.9906 + }, + { + "start": 5195.9, + "end": 5201.12, + "probability": 0.9955 + }, + { + "start": 5201.12, + "end": 5207.3, + "probability": 0.9443 + }, + { + "start": 5207.8, + "end": 5209.5, + "probability": 0.9769 + }, + { + "start": 5211.39, + "end": 5214.84, + "probability": 0.9946 + }, + { + "start": 5215.28, + "end": 5216.74, + "probability": 0.4939 + }, + { + "start": 5216.94, + "end": 5221.92, + "probability": 0.7921 + }, + { + "start": 5222.34, + "end": 5225.9, + "probability": 0.8804 + }, + { + "start": 5226.02, + "end": 5227.26, + "probability": 0.7233 + }, + { + "start": 5227.6, + "end": 5228.84, + "probability": 0.9243 + }, + { + "start": 5229.74, + "end": 5232.56, + "probability": 0.7856 + }, + { + "start": 5233.12, + "end": 5235.32, + "probability": 0.9799 + }, + { + "start": 5235.76, + "end": 5236.76, + "probability": 0.8813 + }, + { + "start": 5236.9, + "end": 5239.34, + "probability": 0.9734 + }, + { + "start": 5239.64, + "end": 5243.44, + "probability": 0.989 + }, + { + "start": 5243.56, + "end": 5247.28, + "probability": 0.8127 + }, + { + "start": 5247.84, + "end": 5252.93, + "probability": 0.9907 + }, + { + "start": 5252.94, + "end": 5257.84, + "probability": 0.9719 + }, + { + "start": 5258.5, + "end": 5259.3, + "probability": 0.6325 + }, + { + "start": 5259.92, + "end": 5261.79, + "probability": 0.9368 + }, + { + "start": 5262.6, + "end": 5266.24, + "probability": 0.9751 + }, + { + "start": 5266.78, + "end": 5272.02, + "probability": 0.9951 + }, + { + "start": 5273.2, + "end": 5277.06, + "probability": 0.8534 + }, + { + "start": 5277.32, + "end": 5282.7, + "probability": 0.98 + }, + { + "start": 5283.22, + "end": 5285.1, + "probability": 0.9404 + }, + { + "start": 5285.62, + "end": 5289.78, + "probability": 0.99 + }, + { + "start": 5289.9, + "end": 5291.3, + "probability": 0.8657 + }, + { + "start": 5291.8, + "end": 5292.96, + "probability": 0.9804 + }, + { + "start": 5294.32, + "end": 5295.56, + "probability": 0.8498 + }, + { + "start": 5295.98, + "end": 5298.96, + "probability": 0.801 + }, + { + "start": 5299.46, + "end": 5305.52, + "probability": 0.9583 + }, + { + "start": 5305.62, + "end": 5308.06, + "probability": 0.9996 + }, + { + "start": 5308.6, + "end": 5311.48, + "probability": 0.9362 + }, + { + "start": 5312.26, + "end": 5314.8, + "probability": 0.7442 + }, + { + "start": 5315.16, + "end": 5316.76, + "probability": 0.7487 + }, + { + "start": 5317.24, + "end": 5319.54, + "probability": 0.9417 + }, + { + "start": 5319.78, + "end": 5323.04, + "probability": 0.9957 + }, + { + "start": 5323.04, + "end": 5325.7, + "probability": 0.998 + }, + { + "start": 5325.98, + "end": 5328.24, + "probability": 0.7281 + }, + { + "start": 5328.9, + "end": 5329.82, + "probability": 0.6698 + }, + { + "start": 5329.9, + "end": 5330.68, + "probability": 0.4887 + }, + { + "start": 5331.08, + "end": 5333.64, + "probability": 0.9878 + }, + { + "start": 5333.68, + "end": 5334.4, + "probability": 0.6606 + }, + { + "start": 5334.9, + "end": 5337.04, + "probability": 0.989 + }, + { + "start": 5337.56, + "end": 5338.88, + "probability": 0.91 + }, + { + "start": 5340.52, + "end": 5341.48, + "probability": 0.6029 + }, + { + "start": 5342.68, + "end": 5343.62, + "probability": 0.8925 + }, + { + "start": 5344.62, + "end": 5346.72, + "probability": 0.9491 + }, + { + "start": 5346.78, + "end": 5347.12, + "probability": 0.8527 + }, + { + "start": 5347.16, + "end": 5350.12, + "probability": 0.7374 + }, + { + "start": 5350.26, + "end": 5354.04, + "probability": 0.8242 + }, + { + "start": 5354.04, + "end": 5357.62, + "probability": 0.9897 + }, + { + "start": 5357.78, + "end": 5358.04, + "probability": 0.492 + }, + { + "start": 5358.16, + "end": 5359.74, + "probability": 0.5559 + }, + { + "start": 5360.16, + "end": 5361.37, + "probability": 0.9939 + }, + { + "start": 5363.86, + "end": 5366.26, + "probability": 0.9916 + }, + { + "start": 5372.4, + "end": 5373.14, + "probability": 0.6592 + }, + { + "start": 5375.18, + "end": 5375.76, + "probability": 0.0292 + }, + { + "start": 5378.24, + "end": 5381.44, + "probability": 0.1914 + }, + { + "start": 5386.74, + "end": 5387.75, + "probability": 0.1035 + }, + { + "start": 5388.57, + "end": 5390.37, + "probability": 0.0849 + }, + { + "start": 5392.43, + "end": 5392.43, + "probability": 0.0372 + }, + { + "start": 5392.43, + "end": 5395.55, + "probability": 0.4073 + }, + { + "start": 5396.29, + "end": 5397.99, + "probability": 0.8709 + }, + { + "start": 5398.66, + "end": 5399.76, + "probability": 0.8346 + }, + { + "start": 5401.13, + "end": 5402.83, + "probability": 0.851 + }, + { + "start": 5403.03, + "end": 5405.12, + "probability": 0.7683 + }, + { + "start": 5405.95, + "end": 5408.83, + "probability": 0.78 + }, + { + "start": 5408.91, + "end": 5409.67, + "probability": 0.7948 + }, + { + "start": 5430.29, + "end": 5433.69, + "probability": 0.5822 + }, + { + "start": 5435.63, + "end": 5440.01, + "probability": 0.9919 + }, + { + "start": 5440.55, + "end": 5442.47, + "probability": 0.7166 + }, + { + "start": 5443.25, + "end": 5444.07, + "probability": 0.3409 + }, + { + "start": 5444.87, + "end": 5449.25, + "probability": 0.9307 + }, + { + "start": 5449.25, + "end": 5453.47, + "probability": 0.7508 + }, + { + "start": 5453.71, + "end": 5456.81, + "probability": 0.9928 + }, + { + "start": 5456.81, + "end": 5459.51, + "probability": 0.9971 + }, + { + "start": 5459.67, + "end": 5462.41, + "probability": 0.9963 + }, + { + "start": 5462.47, + "end": 5463.25, + "probability": 0.8821 + }, + { + "start": 5463.71, + "end": 5464.85, + "probability": 0.8802 + }, + { + "start": 5465.81, + "end": 5470.27, + "probability": 0.9283 + }, + { + "start": 5470.91, + "end": 5474.69, + "probability": 0.9718 + }, + { + "start": 5476.51, + "end": 5479.49, + "probability": 0.9904 + }, + { + "start": 5480.01, + "end": 5481.43, + "probability": 0.8273 + }, + { + "start": 5481.49, + "end": 5485.97, + "probability": 0.9528 + }, + { + "start": 5488.93, + "end": 5490.39, + "probability": 0.8623 + }, + { + "start": 5490.39, + "end": 5491.53, + "probability": 0.4132 + }, + { + "start": 5491.53, + "end": 5491.97, + "probability": 0.3656 + }, + { + "start": 5491.97, + "end": 5494.01, + "probability": 0.9776 + }, + { + "start": 5494.77, + "end": 5495.87, + "probability": 0.9414 + }, + { + "start": 5495.91, + "end": 5497.29, + "probability": 0.895 + }, + { + "start": 5497.99, + "end": 5498.73, + "probability": 0.9904 + }, + { + "start": 5499.31, + "end": 5503.25, + "probability": 0.8845 + }, + { + "start": 5503.87, + "end": 5508.87, + "probability": 0.938 + }, + { + "start": 5509.45, + "end": 5512.05, + "probability": 0.9757 + }, + { + "start": 5512.05, + "end": 5516.25, + "probability": 0.9907 + }, + { + "start": 5517.01, + "end": 5519.09, + "probability": 0.999 + }, + { + "start": 5519.65, + "end": 5523.41, + "probability": 0.9769 + }, + { + "start": 5524.45, + "end": 5527.27, + "probability": 0.9668 + }, + { + "start": 5527.33, + "end": 5528.89, + "probability": 0.9279 + }, + { + "start": 5528.97, + "end": 5530.91, + "probability": 0.5834 + }, + { + "start": 5531.43, + "end": 5533.89, + "probability": 0.9822 + }, + { + "start": 5534.93, + "end": 5541.65, + "probability": 0.9755 + }, + { + "start": 5542.17, + "end": 5547.19, + "probability": 0.9887 + }, + { + "start": 5548.39, + "end": 5550.79, + "probability": 0.9963 + }, + { + "start": 5551.43, + "end": 5553.09, + "probability": 0.9409 + }, + { + "start": 5553.19, + "end": 5553.76, + "probability": 0.953 + }, + { + "start": 5554.25, + "end": 5555.93, + "probability": 0.9961 + }, + { + "start": 5556.47, + "end": 5558.01, + "probability": 0.8677 + }, + { + "start": 5558.55, + "end": 5563.01, + "probability": 0.9451 + }, + { + "start": 5563.41, + "end": 5568.35, + "probability": 0.9977 + }, + { + "start": 5569.33, + "end": 5571.73, + "probability": 0.9105 + }, + { + "start": 5571.75, + "end": 5572.99, + "probability": 0.9829 + }, + { + "start": 5573.95, + "end": 5580.83, + "probability": 0.9858 + }, + { + "start": 5582.11, + "end": 5587.03, + "probability": 0.9479 + }, + { + "start": 5588.39, + "end": 5589.09, + "probability": 0.8427 + }, + { + "start": 5589.09, + "end": 5593.09, + "probability": 0.9646 + }, + { + "start": 5593.15, + "end": 5595.69, + "probability": 0.7528 + }, + { + "start": 5596.27, + "end": 5597.18, + "probability": 0.9725 + }, + { + "start": 5597.33, + "end": 5598.13, + "probability": 0.9614 + }, + { + "start": 5598.19, + "end": 5599.52, + "probability": 0.9626 + }, + { + "start": 5600.67, + "end": 5601.05, + "probability": 0.6445 + }, + { + "start": 5601.09, + "end": 5601.51, + "probability": 0.8903 + }, + { + "start": 5601.59, + "end": 5603.97, + "probability": 0.9913 + }, + { + "start": 5604.73, + "end": 5610.07, + "probability": 0.8159 + }, + { + "start": 5610.79, + "end": 5614.67, + "probability": 0.9873 + }, + { + "start": 5615.37, + "end": 5616.41, + "probability": 0.4333 + }, + { + "start": 5616.87, + "end": 5621.27, + "probability": 0.9932 + }, + { + "start": 5621.69, + "end": 5622.27, + "probability": 0.8497 + }, + { + "start": 5622.69, + "end": 5625.53, + "probability": 0.9725 + }, + { + "start": 5626.25, + "end": 5628.43, + "probability": 0.554 + }, + { + "start": 5628.97, + "end": 5632.63, + "probability": 0.998 + }, + { + "start": 5632.73, + "end": 5635.05, + "probability": 0.8857 + }, + { + "start": 5635.43, + "end": 5636.29, + "probability": 0.8807 + }, + { + "start": 5636.51, + "end": 5637.65, + "probability": 0.9405 + }, + { + "start": 5638.27, + "end": 5640.93, + "probability": 0.9879 + }, + { + "start": 5642.23, + "end": 5646.25, + "probability": 0.9834 + }, + { + "start": 5646.75, + "end": 5648.55, + "probability": 0.8926 + }, + { + "start": 5648.65, + "end": 5650.97, + "probability": 0.9172 + }, + { + "start": 5651.03, + "end": 5651.89, + "probability": 0.8645 + }, + { + "start": 5652.79, + "end": 5653.03, + "probability": 0.6057 + }, + { + "start": 5653.23, + "end": 5659.15, + "probability": 0.9794 + }, + { + "start": 5659.69, + "end": 5661.51, + "probability": 0.9736 + }, + { + "start": 5661.97, + "end": 5664.85, + "probability": 0.8535 + }, + { + "start": 5665.91, + "end": 5670.07, + "probability": 0.9955 + }, + { + "start": 5670.59, + "end": 5672.41, + "probability": 0.923 + }, + { + "start": 5672.55, + "end": 5672.77, + "probability": 0.5833 + }, + { + "start": 5672.83, + "end": 5673.45, + "probability": 0.6977 + }, + { + "start": 5673.55, + "end": 5674.31, + "probability": 0.8127 + }, + { + "start": 5674.63, + "end": 5675.79, + "probability": 0.9703 + }, + { + "start": 5676.15, + "end": 5677.81, + "probability": 0.9584 + }, + { + "start": 5678.11, + "end": 5678.71, + "probability": 0.5775 + }, + { + "start": 5679.03, + "end": 5680.27, + "probability": 0.8976 + }, + { + "start": 5681.21, + "end": 5682.69, + "probability": 0.958 + }, + { + "start": 5682.95, + "end": 5685.25, + "probability": 0.8881 + }, + { + "start": 5685.25, + "end": 5686.68, + "probability": 0.98 + }, + { + "start": 5687.35, + "end": 5690.35, + "probability": 0.9897 + }, + { + "start": 5690.35, + "end": 5696.39, + "probability": 0.8704 + }, + { + "start": 5696.39, + "end": 5699.41, + "probability": 0.9967 + }, + { + "start": 5700.27, + "end": 5703.27, + "probability": 0.9768 + }, + { + "start": 5703.83, + "end": 5707.79, + "probability": 0.9927 + }, + { + "start": 5708.97, + "end": 5711.43, + "probability": 0.9981 + }, + { + "start": 5711.43, + "end": 5714.45, + "probability": 0.9146 + }, + { + "start": 5715.05, + "end": 5717.09, + "probability": 0.9972 + }, + { + "start": 5718.61, + "end": 5719.85, + "probability": 0.972 + }, + { + "start": 5719.91, + "end": 5723.87, + "probability": 0.9639 + }, + { + "start": 5723.87, + "end": 5727.03, + "probability": 0.9705 + }, + { + "start": 5727.69, + "end": 5730.87, + "probability": 0.9529 + }, + { + "start": 5731.23, + "end": 5737.51, + "probability": 0.6784 + }, + { + "start": 5737.99, + "end": 5739.85, + "probability": 0.9586 + }, + { + "start": 5741.7, + "end": 5745.35, + "probability": 0.9819 + }, + { + "start": 5745.79, + "end": 5748.99, + "probability": 0.9397 + }, + { + "start": 5749.27, + "end": 5751.69, + "probability": 0.9764 + }, + { + "start": 5751.85, + "end": 5755.45, + "probability": 0.9964 + }, + { + "start": 5755.97, + "end": 5757.31, + "probability": 0.6287 + }, + { + "start": 5757.67, + "end": 5760.19, + "probability": 0.9712 + }, + { + "start": 5760.99, + "end": 5763.49, + "probability": 0.6466 + }, + { + "start": 5763.61, + "end": 5763.99, + "probability": 0.6668 + }, + { + "start": 5764.49, + "end": 5767.57, + "probability": 0.9966 + }, + { + "start": 5767.57, + "end": 5770.93, + "probability": 0.9601 + }, + { + "start": 5771.29, + "end": 5772.47, + "probability": 0.1325 + }, + { + "start": 5772.51, + "end": 5773.25, + "probability": 0.593 + }, + { + "start": 5773.25, + "end": 5774.71, + "probability": 0.3957 + }, + { + "start": 5774.91, + "end": 5779.81, + "probability": 0.9888 + }, + { + "start": 5779.97, + "end": 5785.69, + "probability": 0.9944 + }, + { + "start": 5786.19, + "end": 5786.61, + "probability": 0.8697 + }, + { + "start": 5786.73, + "end": 5787.73, + "probability": 0.7642 + }, + { + "start": 5787.89, + "end": 5788.59, + "probability": 0.8013 + }, + { + "start": 5788.63, + "end": 5789.31, + "probability": 0.7051 + }, + { + "start": 5789.69, + "end": 5792.63, + "probability": 0.9468 + }, + { + "start": 5792.73, + "end": 5797.15, + "probability": 0.9897 + }, + { + "start": 5797.15, + "end": 5799.45, + "probability": 0.9782 + }, + { + "start": 5799.77, + "end": 5802.25, + "probability": 0.6752 + }, + { + "start": 5802.35, + "end": 5803.79, + "probability": 0.8357 + }, + { + "start": 5804.25, + "end": 5813.91, + "probability": 0.9296 + }, + { + "start": 5813.93, + "end": 5818.63, + "probability": 0.8977 + }, + { + "start": 5819.63, + "end": 5820.19, + "probability": 0.4356 + }, + { + "start": 5820.29, + "end": 5825.09, + "probability": 0.8296 + }, + { + "start": 5825.41, + "end": 5827.55, + "probability": 0.9172 + }, + { + "start": 5828.05, + "end": 5830.01, + "probability": 0.7769 + }, + { + "start": 5830.37, + "end": 5832.35, + "probability": 0.863 + }, + { + "start": 5832.41, + "end": 5833.37, + "probability": 0.908 + }, + { + "start": 5833.85, + "end": 5834.31, + "probability": 0.2857 + }, + { + "start": 5834.37, + "end": 5834.71, + "probability": 0.5794 + }, + { + "start": 5834.77, + "end": 5839.23, + "probability": 0.9771 + }, + { + "start": 5839.25, + "end": 5842.01, + "probability": 0.6904 + }, + { + "start": 5842.17, + "end": 5843.15, + "probability": 0.9041 + }, + { + "start": 5843.53, + "end": 5847.31, + "probability": 0.9967 + }, + { + "start": 5847.57, + "end": 5852.76, + "probability": 0.9604 + }, + { + "start": 5853.63, + "end": 5853.85, + "probability": 0.46 + }, + { + "start": 5853.97, + "end": 5855.55, + "probability": 0.9112 + }, + { + "start": 5855.61, + "end": 5857.69, + "probability": 0.9824 + }, + { + "start": 5857.81, + "end": 5860.47, + "probability": 0.9694 + }, + { + "start": 5861.41, + "end": 5865.59, + "probability": 0.7891 + }, + { + "start": 5866.71, + "end": 5871.03, + "probability": 0.9891 + }, + { + "start": 5871.03, + "end": 5874.89, + "probability": 0.9502 + }, + { + "start": 5874.97, + "end": 5877.43, + "probability": 0.9937 + }, + { + "start": 5877.43, + "end": 5880.49, + "probability": 0.9954 + }, + { + "start": 5880.93, + "end": 5883.63, + "probability": 0.9991 + }, + { + "start": 5884.11, + "end": 5885.29, + "probability": 0.9902 + }, + { + "start": 5885.37, + "end": 5886.15, + "probability": 0.8049 + }, + { + "start": 5886.25, + "end": 5888.87, + "probability": 0.559 + }, + { + "start": 5889.35, + "end": 5890.83, + "probability": 0.9961 + }, + { + "start": 5890.99, + "end": 5896.25, + "probability": 0.9272 + }, + { + "start": 5896.35, + "end": 5897.87, + "probability": 0.8792 + }, + { + "start": 5898.41, + "end": 5899.35, + "probability": 0.752 + }, + { + "start": 5899.49, + "end": 5902.21, + "probability": 0.9194 + }, + { + "start": 5902.21, + "end": 5905.29, + "probability": 0.9635 + }, + { + "start": 5905.87, + "end": 5910.03, + "probability": 0.7114 + }, + { + "start": 5910.81, + "end": 5914.31, + "probability": 0.9433 + }, + { + "start": 5915.11, + "end": 5918.27, + "probability": 0.9771 + }, + { + "start": 5918.33, + "end": 5921.87, + "probability": 0.99 + }, + { + "start": 5922.01, + "end": 5922.69, + "probability": 0.9707 + }, + { + "start": 5922.79, + "end": 5924.15, + "probability": 0.9138 + }, + { + "start": 5924.53, + "end": 5926.23, + "probability": 0.6521 + }, + { + "start": 5926.41, + "end": 5927.99, + "probability": 0.6266 + }, + { + "start": 5928.47, + "end": 5931.78, + "probability": 0.9785 + }, + { + "start": 5932.83, + "end": 5935.09, + "probability": 0.7847 + }, + { + "start": 5935.21, + "end": 5936.79, + "probability": 0.791 + }, + { + "start": 5937.19, + "end": 5939.93, + "probability": 0.5156 + }, + { + "start": 5940.49, + "end": 5942.07, + "probability": 0.8303 + }, + { + "start": 5942.21, + "end": 5945.91, + "probability": 0.9839 + }, + { + "start": 5946.35, + "end": 5948.81, + "probability": 0.7977 + }, + { + "start": 5948.91, + "end": 5952.03, + "probability": 0.9618 + }, + { + "start": 5952.25, + "end": 5953.93, + "probability": 0.9966 + }, + { + "start": 5954.37, + "end": 5959.57, + "probability": 0.9432 + }, + { + "start": 5959.57, + "end": 5963.59, + "probability": 0.9771 + }, + { + "start": 5963.83, + "end": 5965.13, + "probability": 0.8467 + }, + { + "start": 5965.61, + "end": 5969.01, + "probability": 0.9849 + }, + { + "start": 5969.01, + "end": 5972.03, + "probability": 0.9946 + }, + { + "start": 5972.11, + "end": 5974.51, + "probability": 0.972 + }, + { + "start": 5974.65, + "end": 5975.23, + "probability": 0.9567 + }, + { + "start": 5975.59, + "end": 5976.71, + "probability": 0.9361 + }, + { + "start": 5977.03, + "end": 5978.29, + "probability": 0.9036 + }, + { + "start": 5978.55, + "end": 5979.59, + "probability": 0.9832 + }, + { + "start": 5979.71, + "end": 5980.13, + "probability": 0.3519 + }, + { + "start": 5980.17, + "end": 5981.53, + "probability": 0.9976 + }, + { + "start": 5982.03, + "end": 5985.11, + "probability": 0.797 + }, + { + "start": 5985.89, + "end": 5988.93, + "probability": 0.9963 + }, + { + "start": 5989.37, + "end": 5989.81, + "probability": 0.7745 + }, + { + "start": 5990.59, + "end": 5992.25, + "probability": 0.7668 + }, + { + "start": 5992.59, + "end": 5993.65, + "probability": 0.5261 + }, + { + "start": 5994.33, + "end": 5996.47, + "probability": 0.6094 + }, + { + "start": 6002.73, + "end": 6003.41, + "probability": 0.4505 + }, + { + "start": 6011.09, + "end": 6011.83, + "probability": 0.6124 + }, + { + "start": 6011.91, + "end": 6012.63, + "probability": 0.7663 + }, + { + "start": 6012.73, + "end": 6015.31, + "probability": 0.9661 + }, + { + "start": 6016.25, + "end": 6022.25, + "probability": 0.9691 + }, + { + "start": 6022.49, + "end": 6026.21, + "probability": 0.9357 + }, + { + "start": 6026.77, + "end": 6028.22, + "probability": 0.9573 + }, + { + "start": 6028.81, + "end": 6030.81, + "probability": 0.961 + }, + { + "start": 6030.99, + "end": 6031.99, + "probability": 0.9541 + }, + { + "start": 6032.91, + "end": 6037.65, + "probability": 0.9028 + }, + { + "start": 6037.77, + "end": 6042.01, + "probability": 0.8789 + }, + { + "start": 6042.19, + "end": 6043.73, + "probability": 0.8245 + }, + { + "start": 6044.55, + "end": 6045.63, + "probability": 0.9969 + }, + { + "start": 6046.33, + "end": 6051.11, + "probability": 0.9675 + }, + { + "start": 6051.11, + "end": 6055.55, + "probability": 0.9954 + }, + { + "start": 6056.57, + "end": 6058.13, + "probability": 0.991 + }, + { + "start": 6058.23, + "end": 6058.63, + "probability": 0.7808 + }, + { + "start": 6058.77, + "end": 6059.87, + "probability": 0.8451 + }, + { + "start": 6059.91, + "end": 6064.07, + "probability": 0.7301 + }, + { + "start": 6064.13, + "end": 6067.27, + "probability": 0.987 + }, + { + "start": 6068.23, + "end": 6071.43, + "probability": 0.9445 + }, + { + "start": 6071.43, + "end": 6074.03, + "probability": 0.9967 + }, + { + "start": 6074.75, + "end": 6077.13, + "probability": 0.8664 + }, + { + "start": 6077.13, + "end": 6081.63, + "probability": 0.9983 + }, + { + "start": 6082.11, + "end": 6083.91, + "probability": 0.8266 + }, + { + "start": 6084.79, + "end": 6087.07, + "probability": 0.9842 + }, + { + "start": 6087.07, + "end": 6091.11, + "probability": 0.9939 + }, + { + "start": 6092.09, + "end": 6092.61, + "probability": 0.7923 + }, + { + "start": 6092.91, + "end": 6098.27, + "probability": 0.8437 + }, + { + "start": 6098.27, + "end": 6102.85, + "probability": 0.9688 + }, + { + "start": 6102.99, + "end": 6104.37, + "probability": 0.8452 + }, + { + "start": 6104.79, + "end": 6108.71, + "probability": 0.875 + }, + { + "start": 6109.53, + "end": 6113.49, + "probability": 0.9825 + }, + { + "start": 6113.49, + "end": 6117.85, + "probability": 0.9957 + }, + { + "start": 6118.45, + "end": 6121.27, + "probability": 0.7667 + }, + { + "start": 6122.07, + "end": 6125.19, + "probability": 0.788 + }, + { + "start": 6125.55, + "end": 6127.81, + "probability": 0.9382 + }, + { + "start": 6128.03, + "end": 6128.47, + "probability": 0.839 + }, + { + "start": 6128.91, + "end": 6129.79, + "probability": 0.5444 + }, + { + "start": 6130.45, + "end": 6132.29, + "probability": 0.663 + }, + { + "start": 6133.83, + "end": 6134.29, + "probability": 0.8346 + }, + { + "start": 6134.33, + "end": 6134.83, + "probability": 0.8821 + }, + { + "start": 6148.31, + "end": 6149.47, + "probability": 0.5124 + }, + { + "start": 6149.63, + "end": 6155.93, + "probability": 0.7621 + }, + { + "start": 6156.43, + "end": 6157.23, + "probability": 0.8823 + }, + { + "start": 6157.55, + "end": 6162.09, + "probability": 0.9588 + }, + { + "start": 6162.13, + "end": 6164.33, + "probability": 0.9419 + }, + { + "start": 6164.53, + "end": 6165.69, + "probability": 0.488 + }, + { + "start": 6166.13, + "end": 6168.03, + "probability": 0.6831 + }, + { + "start": 6168.29, + "end": 6169.43, + "probability": 0.689 + }, + { + "start": 6169.47, + "end": 6172.41, + "probability": 0.9729 + }, + { + "start": 6172.51, + "end": 6173.87, + "probability": 0.8196 + }, + { + "start": 6174.87, + "end": 6179.28, + "probability": 0.9683 + }, + { + "start": 6180.09, + "end": 6181.37, + "probability": 0.7062 + }, + { + "start": 6181.85, + "end": 6183.57, + "probability": 0.9558 + }, + { + "start": 6184.51, + "end": 6186.53, + "probability": 0.9967 + }, + { + "start": 6187.45, + "end": 6189.29, + "probability": 0.8689 + }, + { + "start": 6190.41, + "end": 6190.99, + "probability": 0.6133 + }, + { + "start": 6191.01, + "end": 6197.03, + "probability": 0.9916 + }, + { + "start": 6197.47, + "end": 6201.57, + "probability": 0.9945 + }, + { + "start": 6204.15, + "end": 6204.37, + "probability": 0.0619 + }, + { + "start": 6204.37, + "end": 6204.37, + "probability": 0.3303 + }, + { + "start": 6204.37, + "end": 6205.6, + "probability": 0.7502 + }, + { + "start": 6206.09, + "end": 6207.73, + "probability": 0.913 + }, + { + "start": 6207.79, + "end": 6210.23, + "probability": 0.8953 + }, + { + "start": 6210.23, + "end": 6212.81, + "probability": 0.9179 + }, + { + "start": 6212.91, + "end": 6213.65, + "probability": 0.5267 + }, + { + "start": 6214.01, + "end": 6218.57, + "probability": 0.9344 + }, + { + "start": 6219.19, + "end": 6220.91, + "probability": 0.9966 + }, + { + "start": 6221.45, + "end": 6222.69, + "probability": 0.9886 + }, + { + "start": 6222.85, + "end": 6227.69, + "probability": 0.6041 + }, + { + "start": 6227.69, + "end": 6227.71, + "probability": 0.579 + }, + { + "start": 6227.87, + "end": 6228.23, + "probability": 0.4628 + }, + { + "start": 6228.33, + "end": 6232.15, + "probability": 0.9902 + }, + { + "start": 6232.85, + "end": 6233.19, + "probability": 0.0226 + }, + { + "start": 6233.65, + "end": 6237.01, + "probability": 0.963 + }, + { + "start": 6238.33, + "end": 6238.63, + "probability": 0.7609 + }, + { + "start": 6238.93, + "end": 6242.09, + "probability": 0.9884 + }, + { + "start": 6242.47, + "end": 6244.37, + "probability": 0.7439 + }, + { + "start": 6244.97, + "end": 6244.97, + "probability": 0.0874 + }, + { + "start": 6244.97, + "end": 6245.75, + "probability": 0.4838 + }, + { + "start": 6245.75, + "end": 6247.15, + "probability": 0.9641 + }, + { + "start": 6247.25, + "end": 6248.61, + "probability": 0.8126 + }, + { + "start": 6248.69, + "end": 6252.33, + "probability": 0.9863 + }, + { + "start": 6252.99, + "end": 6257.95, + "probability": 0.9835 + }, + { + "start": 6258.09, + "end": 6258.67, + "probability": 0.765 + }, + { + "start": 6259.11, + "end": 6262.49, + "probability": 0.7932 + }, + { + "start": 6262.81, + "end": 6263.83, + "probability": 0.87 + }, + { + "start": 6264.31, + "end": 6268.19, + "probability": 0.9701 + }, + { + "start": 6268.2, + "end": 6271.57, + "probability": 0.9954 + }, + { + "start": 6271.97, + "end": 6272.99, + "probability": 0.9475 + }, + { + "start": 6273.47, + "end": 6274.65, + "probability": 0.9741 + }, + { + "start": 6275.01, + "end": 6277.48, + "probability": 0.9908 + }, + { + "start": 6277.81, + "end": 6278.49, + "probability": 0.7887 + }, + { + "start": 6278.51, + "end": 6280.29, + "probability": 0.9591 + }, + { + "start": 6280.67, + "end": 6281.51, + "probability": 0.7459 + }, + { + "start": 6281.65, + "end": 6284.93, + "probability": 0.9502 + }, + { + "start": 6285.39, + "end": 6286.06, + "probability": 0.9814 + }, + { + "start": 6286.31, + "end": 6287.75, + "probability": 0.7569 + }, + { + "start": 6288.05, + "end": 6293.21, + "probability": 0.9143 + }, + { + "start": 6293.63, + "end": 6297.77, + "probability": 0.9893 + }, + { + "start": 6298.13, + "end": 6299.39, + "probability": 0.9937 + }, + { + "start": 6299.73, + "end": 6301.05, + "probability": 0.5915 + }, + { + "start": 6301.05, + "end": 6301.23, + "probability": 0.0268 + }, + { + "start": 6301.23, + "end": 6302.21, + "probability": 0.72 + }, + { + "start": 6306.25, + "end": 6308.95, + "probability": 0.0188 + }, + { + "start": 6310.85, + "end": 6312.29, + "probability": 0.0247 + }, + { + "start": 6312.29, + "end": 6313.29, + "probability": 0.0715 + }, + { + "start": 6331.27, + "end": 6331.65, + "probability": 0.065 + }, + { + "start": 6331.65, + "end": 6333.09, + "probability": 0.2785 + }, + { + "start": 6334.31, + "end": 6336.57, + "probability": 0.5543 + }, + { + "start": 6337.17, + "end": 6339.11, + "probability": 0.7849 + }, + { + "start": 6339.77, + "end": 6341.13, + "probability": 0.859 + }, + { + "start": 6345.57, + "end": 6345.57, + "probability": 0.0503 + }, + { + "start": 6345.57, + "end": 6347.57, + "probability": 0.2928 + }, + { + "start": 6348.25, + "end": 6348.25, + "probability": 0.3213 + }, + { + "start": 6349.33, + "end": 6350.83, + "probability": 0.7109 + }, + { + "start": 6351.05, + "end": 6352.57, + "probability": 0.8687 + }, + { + "start": 6353.01, + "end": 6354.77, + "probability": 0.8391 + }, + { + "start": 6354.95, + "end": 6356.75, + "probability": 0.9794 + }, + { + "start": 6357.65, + "end": 6361.99, + "probability": 0.9789 + }, + { + "start": 6362.41, + "end": 6363.97, + "probability": 0.6252 + }, + { + "start": 6364.17, + "end": 6365.53, + "probability": 0.9924 + }, + { + "start": 6367.93, + "end": 6372.57, + "probability": 0.9849 + }, + { + "start": 6372.77, + "end": 6373.35, + "probability": 0.4981 + }, + { + "start": 6373.53, + "end": 6374.09, + "probability": 0.5943 + }, + { + "start": 6374.81, + "end": 6375.47, + "probability": 0.7454 + }, + { + "start": 6375.63, + "end": 6377.07, + "probability": 0.8497 + }, + { + "start": 6378.99, + "end": 6382.71, + "probability": 0.8873 + }, + { + "start": 6382.85, + "end": 6384.13, + "probability": 0.9933 + }, + { + "start": 6384.65, + "end": 6387.11, + "probability": 0.9199 + }, + { + "start": 6388.67, + "end": 6390.55, + "probability": 0.9855 + }, + { + "start": 6391.27, + "end": 6393.43, + "probability": 0.8347 + }, + { + "start": 6393.99, + "end": 6394.75, + "probability": 0.5327 + }, + { + "start": 6394.77, + "end": 6395.31, + "probability": 0.9007 + }, + { + "start": 6399.71, + "end": 6400.51, + "probability": 0.5105 + }, + { + "start": 6400.65, + "end": 6401.91, + "probability": 0.671 + }, + { + "start": 6402.61, + "end": 6407.61, + "probability": 0.9373 + }, + { + "start": 6408.13, + "end": 6410.23, + "probability": 0.8915 + }, + { + "start": 6410.47, + "end": 6412.31, + "probability": 0.9718 + }, + { + "start": 6412.37, + "end": 6413.07, + "probability": 0.8304 + }, + { + "start": 6413.13, + "end": 6413.83, + "probability": 0.8819 + }, + { + "start": 6413.89, + "end": 6414.79, + "probability": 0.9905 + }, + { + "start": 6415.37, + "end": 6416.01, + "probability": 0.3883 + }, + { + "start": 6416.89, + "end": 6424.83, + "probability": 0.985 + }, + { + "start": 6424.89, + "end": 6432.55, + "probability": 0.9979 + }, + { + "start": 6433.11, + "end": 6438.56, + "probability": 0.995 + }, + { + "start": 6439.51, + "end": 6440.49, + "probability": 0.7424 + }, + { + "start": 6441.21, + "end": 6445.33, + "probability": 0.9985 + }, + { + "start": 6446.61, + "end": 6448.63, + "probability": 0.98 + }, + { + "start": 6448.71, + "end": 6449.71, + "probability": 0.6898 + }, + { + "start": 6449.87, + "end": 6450.67, + "probability": 0.5974 + }, + { + "start": 6451.17, + "end": 6452.09, + "probability": 0.8414 + }, + { + "start": 6452.15, + "end": 6453.23, + "probability": 0.9003 + }, + { + "start": 6453.31, + "end": 6456.57, + "probability": 0.9937 + }, + { + "start": 6457.13, + "end": 6458.49, + "probability": 0.5646 + }, + { + "start": 6460.41, + "end": 6463.11, + "probability": 0.9895 + }, + { + "start": 6464.15, + "end": 6465.7, + "probability": 0.8441 + }, + { + "start": 6467.19, + "end": 6470.61, + "probability": 0.9875 + }, + { + "start": 6471.27, + "end": 6472.51, + "probability": 0.7572 + }, + { + "start": 6473.27, + "end": 6479.71, + "probability": 0.769 + }, + { + "start": 6479.93, + "end": 6480.57, + "probability": 0.7484 + }, + { + "start": 6480.69, + "end": 6481.85, + "probability": 0.8822 + }, + { + "start": 6482.09, + "end": 6483.01, + "probability": 0.7882 + }, + { + "start": 6483.21, + "end": 6483.33, + "probability": 0.1923 + }, + { + "start": 6483.47, + "end": 6483.91, + "probability": 0.4572 + }, + { + "start": 6483.91, + "end": 6484.93, + "probability": 0.6708 + }, + { + "start": 6485.09, + "end": 6485.35, + "probability": 0.4647 + }, + { + "start": 6485.51, + "end": 6485.77, + "probability": 0.7308 + }, + { + "start": 6485.81, + "end": 6490.53, + "probability": 0.9717 + }, + { + "start": 6490.71, + "end": 6491.55, + "probability": 0.4848 + }, + { + "start": 6491.55, + "end": 6491.55, + "probability": 0.7629 + }, + { + "start": 6491.65, + "end": 6492.41, + "probability": 0.9489 + }, + { + "start": 6492.77, + "end": 6493.97, + "probability": 0.6132 + }, + { + "start": 6494.67, + "end": 6495.77, + "probability": 0.5321 + }, + { + "start": 6497.11, + "end": 6497.59, + "probability": 0.0118 + }, + { + "start": 6497.59, + "end": 6497.59, + "probability": 0.1596 + }, + { + "start": 6497.59, + "end": 6498.25, + "probability": 0.174 + }, + { + "start": 6498.41, + "end": 6500.93, + "probability": 0.8751 + }, + { + "start": 6501.09, + "end": 6503.37, + "probability": 0.4832 + }, + { + "start": 6504.15, + "end": 6510.13, + "probability": 0.9894 + }, + { + "start": 6511.47, + "end": 6514.07, + "probability": 0.959 + }, + { + "start": 6514.27, + "end": 6515.19, + "probability": 0.8713 + }, + { + "start": 6515.39, + "end": 6520.57, + "probability": 0.9961 + }, + { + "start": 6521.25, + "end": 6523.67, + "probability": 0.9906 + }, + { + "start": 6523.97, + "end": 6525.91, + "probability": 0.6885 + }, + { + "start": 6526.31, + "end": 6529.23, + "probability": 0.9988 + }, + { + "start": 6529.77, + "end": 6534.53, + "probability": 0.9076 + }, + { + "start": 6535.13, + "end": 6537.87, + "probability": 0.9177 + }, + { + "start": 6539.25, + "end": 6544.55, + "probability": 0.9976 + }, + { + "start": 6545.29, + "end": 6549.83, + "probability": 0.9906 + }, + { + "start": 6549.83, + "end": 6556.73, + "probability": 0.9211 + }, + { + "start": 6556.73, + "end": 6561.75, + "probability": 0.9956 + }, + { + "start": 6562.55, + "end": 6563.23, + "probability": 0.6238 + }, + { + "start": 6563.41, + "end": 6566.99, + "probability": 0.9914 + }, + { + "start": 6568.09, + "end": 6569.07, + "probability": 0.9207 + }, + { + "start": 6569.53, + "end": 6570.65, + "probability": 0.9768 + }, + { + "start": 6571.61, + "end": 6576.07, + "probability": 0.9966 + }, + { + "start": 6576.61, + "end": 6581.43, + "probability": 0.9953 + }, + { + "start": 6582.21, + "end": 6583.25, + "probability": 0.6143 + }, + { + "start": 6583.41, + "end": 6585.01, + "probability": 0.9911 + }, + { + "start": 6585.11, + "end": 6588.93, + "probability": 0.6917 + }, + { + "start": 6589.87, + "end": 6591.65, + "probability": 0.3858 + }, + { + "start": 6591.65, + "end": 6596.13, + "probability": 0.9649 + }, + { + "start": 6596.31, + "end": 6597.87, + "probability": 0.845 + }, + { + "start": 6598.77, + "end": 6605.79, + "probability": 0.9941 + }, + { + "start": 6606.43, + "end": 6609.39, + "probability": 0.9979 + }, + { + "start": 6609.39, + "end": 6613.01, + "probability": 0.9966 + }, + { + "start": 6616.15, + "end": 6616.75, + "probability": 0.2267 + }, + { + "start": 6616.75, + "end": 6618.01, + "probability": 0.9635 + }, + { + "start": 6618.33, + "end": 6619.13, + "probability": 0.2189 + }, + { + "start": 6621.55, + "end": 6622.13, + "probability": 0.8685 + }, + { + "start": 6622.19, + "end": 6625.83, + "probability": 0.9975 + }, + { + "start": 6626.15, + "end": 6631.25, + "probability": 0.962 + }, + { + "start": 6631.61, + "end": 6632.99, + "probability": 0.9604 + }, + { + "start": 6633.55, + "end": 6638.81, + "probability": 0.9976 + }, + { + "start": 6641.13, + "end": 6643.57, + "probability": 0.5784 + }, + { + "start": 6643.77, + "end": 6648.03, + "probability": 0.9951 + }, + { + "start": 6648.69, + "end": 6650.99, + "probability": 0.9021 + }, + { + "start": 6651.49, + "end": 6654.09, + "probability": 0.8313 + }, + { + "start": 6654.29, + "end": 6657.03, + "probability": 0.8471 + }, + { + "start": 6657.11, + "end": 6659.21, + "probability": 0.8217 + }, + { + "start": 6659.75, + "end": 6664.57, + "probability": 0.9903 + }, + { + "start": 6665.65, + "end": 6668.35, + "probability": 0.9821 + }, + { + "start": 6669.03, + "end": 6673.13, + "probability": 0.9979 + }, + { + "start": 6673.23, + "end": 6673.99, + "probability": 0.8176 + }, + { + "start": 6674.49, + "end": 6677.53, + "probability": 0.9596 + }, + { + "start": 6678.07, + "end": 6680.65, + "probability": 0.9393 + }, + { + "start": 6681.75, + "end": 6685.8, + "probability": 0.975 + }, + { + "start": 6687.51, + "end": 6692.87, + "probability": 0.998 + }, + { + "start": 6693.17, + "end": 6696.71, + "probability": 0.9971 + }, + { + "start": 6697.15, + "end": 6699.01, + "probability": 0.7053 + }, + { + "start": 6699.59, + "end": 6705.13, + "probability": 0.9917 + }, + { + "start": 6705.79, + "end": 6709.21, + "probability": 0.9922 + }, + { + "start": 6710.69, + "end": 6712.49, + "probability": 0.543 + }, + { + "start": 6712.51, + "end": 6714.37, + "probability": 0.9896 + }, + { + "start": 6714.47, + "end": 6716.07, + "probability": 0.9541 + }, + { + "start": 6716.79, + "end": 6719.83, + "probability": 0.9469 + }, + { + "start": 6719.83, + "end": 6722.87, + "probability": 0.9806 + }, + { + "start": 6723.27, + "end": 6728.59, + "probability": 0.999 + }, + { + "start": 6728.59, + "end": 6737.87, + "probability": 0.9908 + }, + { + "start": 6738.85, + "end": 6740.11, + "probability": 0.8848 + }, + { + "start": 6740.33, + "end": 6742.03, + "probability": 0.8061 + }, + { + "start": 6743.17, + "end": 6746.27, + "probability": 0.9944 + }, + { + "start": 6746.47, + "end": 6750.47, + "probability": 0.9908 + }, + { + "start": 6750.85, + "end": 6752.39, + "probability": 0.9674 + }, + { + "start": 6753.01, + "end": 6756.93, + "probability": 0.7493 + }, + { + "start": 6757.41, + "end": 6760.31, + "probability": 0.9985 + }, + { + "start": 6760.91, + "end": 6763.17, + "probability": 0.7762 + }, + { + "start": 6763.43, + "end": 6767.31, + "probability": 0.9931 + }, + { + "start": 6768.07, + "end": 6772.77, + "probability": 0.9937 + }, + { + "start": 6772.95, + "end": 6778.15, + "probability": 0.9945 + }, + { + "start": 6778.33, + "end": 6778.91, + "probability": 0.8398 + }, + { + "start": 6779.01, + "end": 6781.05, + "probability": 0.6698 + }, + { + "start": 6781.75, + "end": 6783.89, + "probability": 0.9461 + }, + { + "start": 6785.77, + "end": 6788.48, + "probability": 0.9364 + }, + { + "start": 6789.65, + "end": 6790.07, + "probability": 0.6412 + }, + { + "start": 6790.25, + "end": 6791.33, + "probability": 0.7364 + }, + { + "start": 6791.43, + "end": 6793.97, + "probability": 0.9683 + }, + { + "start": 6794.07, + "end": 6795.19, + "probability": 0.8064 + }, + { + "start": 6795.27, + "end": 6795.75, + "probability": 0.5862 + }, + { + "start": 6796.19, + "end": 6797.59, + "probability": 0.991 + }, + { + "start": 6797.71, + "end": 6799.45, + "probability": 0.6563 + }, + { + "start": 6799.71, + "end": 6801.11, + "probability": 0.8625 + }, + { + "start": 6801.25, + "end": 6803.39, + "probability": 0.9972 + }, + { + "start": 6803.45, + "end": 6803.51, + "probability": 0.7257 + }, + { + "start": 6803.55, + "end": 6804.27, + "probability": 0.9722 + }, + { + "start": 6804.45, + "end": 6805.69, + "probability": 0.6996 + }, + { + "start": 6805.83, + "end": 6808.47, + "probability": 0.7879 + }, + { + "start": 6808.71, + "end": 6814.37, + "probability": 0.9102 + }, + { + "start": 6815.03, + "end": 6818.13, + "probability": 0.9121 + }, + { + "start": 6818.13, + "end": 6821.05, + "probability": 0.934 + }, + { + "start": 6821.73, + "end": 6823.13, + "probability": 0.9417 + }, + { + "start": 6823.23, + "end": 6824.33, + "probability": 0.9766 + }, + { + "start": 6824.39, + "end": 6824.83, + "probability": 0.8922 + }, + { + "start": 6825.31, + "end": 6827.57, + "probability": 0.9856 + }, + { + "start": 6827.63, + "end": 6829.31, + "probability": 0.9909 + }, + { + "start": 6829.61, + "end": 6831.35, + "probability": 0.9967 + }, + { + "start": 6831.45, + "end": 6833.71, + "probability": 0.9989 + }, + { + "start": 6834.03, + "end": 6835.93, + "probability": 0.9697 + }, + { + "start": 6836.03, + "end": 6840.67, + "probability": 0.9643 + }, + { + "start": 6841.01, + "end": 6843.27, + "probability": 0.9159 + }, + { + "start": 6843.63, + "end": 6844.47, + "probability": 0.972 + }, + { + "start": 6844.87, + "end": 6846.03, + "probability": 0.9852 + }, + { + "start": 6846.13, + "end": 6847.69, + "probability": 0.8693 + }, + { + "start": 6847.87, + "end": 6851.53, + "probability": 0.8181 + }, + { + "start": 6852.19, + "end": 6856.17, + "probability": 0.9644 + }, + { + "start": 6856.23, + "end": 6860.67, + "probability": 0.9293 + }, + { + "start": 6861.07, + "end": 6865.6, + "probability": 0.9574 + }, + { + "start": 6865.73, + "end": 6867.65, + "probability": 0.9729 + }, + { + "start": 6868.23, + "end": 6873.69, + "probability": 0.9863 + }, + { + "start": 6873.81, + "end": 6875.27, + "probability": 0.5538 + }, + { + "start": 6875.29, + "end": 6882.61, + "probability": 0.9751 + }, + { + "start": 6882.61, + "end": 6888.81, + "probability": 0.9889 + }, + { + "start": 6889.17, + "end": 6891.55, + "probability": 0.9952 + }, + { + "start": 6891.73, + "end": 6896.31, + "probability": 0.8685 + }, + { + "start": 6896.43, + "end": 6897.97, + "probability": 0.9744 + }, + { + "start": 6898.61, + "end": 6901.63, + "probability": 0.9631 + }, + { + "start": 6901.65, + "end": 6906.65, + "probability": 0.9854 + }, + { + "start": 6906.91, + "end": 6910.17, + "probability": 0.9648 + }, + { + "start": 6910.21, + "end": 6910.49, + "probability": 0.2715 + }, + { + "start": 6910.49, + "end": 6910.75, + "probability": 0.676 + }, + { + "start": 6910.83, + "end": 6912.35, + "probability": 0.7651 + }, + { + "start": 6912.37, + "end": 6912.95, + "probability": 0.9099 + }, + { + "start": 6935.69, + "end": 6937.65, + "probability": 0.5809 + }, + { + "start": 6937.85, + "end": 6937.85, + "probability": 0.5711 + }, + { + "start": 6937.85, + "end": 6938.57, + "probability": 0.764 + }, + { + "start": 6938.63, + "end": 6939.57, + "probability": 0.9139 + }, + { + "start": 6939.67, + "end": 6942.47, + "probability": 0.8507 + }, + { + "start": 6942.63, + "end": 6943.11, + "probability": 0.7182 + }, + { + "start": 6943.15, + "end": 6944.44, + "probability": 0.7674 + }, + { + "start": 6945.13, + "end": 6947.89, + "probability": 0.9888 + }, + { + "start": 6948.71, + "end": 6949.79, + "probability": 0.552 + }, + { + "start": 6949.99, + "end": 6950.27, + "probability": 0.7725 + }, + { + "start": 6950.33, + "end": 6951.71, + "probability": 0.9455 + }, + { + "start": 6952.07, + "end": 6957.93, + "probability": 0.9587 + }, + { + "start": 6958.03, + "end": 6961.13, + "probability": 0.9932 + }, + { + "start": 6961.13, + "end": 6966.03, + "probability": 0.9976 + }, + { + "start": 6966.09, + "end": 6968.29, + "probability": 0.6808 + }, + { + "start": 6968.33, + "end": 6974.29, + "probability": 0.9801 + }, + { + "start": 6974.93, + "end": 6977.73, + "probability": 0.5697 + }, + { + "start": 6977.91, + "end": 6978.63, + "probability": 0.9915 + }, + { + "start": 6978.87, + "end": 6984.77, + "probability": 0.943 + }, + { + "start": 6985.63, + "end": 6986.35, + "probability": 0.7474 + }, + { + "start": 6987.15, + "end": 6991.87, + "probability": 0.8266 + }, + { + "start": 6991.99, + "end": 6993.76, + "probability": 0.8389 + }, + { + "start": 6994.29, + "end": 6999.03, + "probability": 0.9929 + }, + { + "start": 6999.71, + "end": 7002.51, + "probability": 0.9717 + }, + { + "start": 7002.67, + "end": 7003.31, + "probability": 0.921 + }, + { + "start": 7003.43, + "end": 7004.57, + "probability": 0.7728 + }, + { + "start": 7005.03, + "end": 7006.85, + "probability": 0.9979 + }, + { + "start": 7007.77, + "end": 7012.89, + "probability": 0.9868 + }, + { + "start": 7012.89, + "end": 7016.21, + "probability": 0.9775 + }, + { + "start": 7016.89, + "end": 7020.37, + "probability": 0.958 + }, + { + "start": 7020.93, + "end": 7021.57, + "probability": 0.7526 + }, + { + "start": 7022.73, + "end": 7029.65, + "probability": 0.9636 + }, + { + "start": 7030.45, + "end": 7032.83, + "probability": 0.999 + }, + { + "start": 7032.89, + "end": 7036.73, + "probability": 0.9876 + }, + { + "start": 7037.73, + "end": 7039.95, + "probability": 0.9701 + }, + { + "start": 7040.47, + "end": 7044.11, + "probability": 0.9891 + }, + { + "start": 7044.63, + "end": 7047.25, + "probability": 0.748 + }, + { + "start": 7047.83, + "end": 7055.09, + "probability": 0.9756 + }, + { + "start": 7055.57, + "end": 7055.85, + "probability": 0.5898 + }, + { + "start": 7055.91, + "end": 7056.97, + "probability": 0.7647 + }, + { + "start": 7057.13, + "end": 7063.03, + "probability": 0.9436 + }, + { + "start": 7063.67, + "end": 7067.75, + "probability": 0.9354 + }, + { + "start": 7068.59, + "end": 7073.81, + "probability": 0.9721 + }, + { + "start": 7074.23, + "end": 7076.29, + "probability": 0.6623 + }, + { + "start": 7076.45, + "end": 7078.95, + "probability": 0.3871 + }, + { + "start": 7079.11, + "end": 7080.93, + "probability": 0.9095 + }, + { + "start": 7081.43, + "end": 7081.43, + "probability": 0.129 + }, + { + "start": 7081.43, + "end": 7084.37, + "probability": 0.7001 + }, + { + "start": 7084.37, + "end": 7084.75, + "probability": 0.7234 + }, + { + "start": 7085.07, + "end": 7085.95, + "probability": 0.9741 + }, + { + "start": 7086.05, + "end": 7087.69, + "probability": 0.9774 + }, + { + "start": 7087.71, + "end": 7088.89, + "probability": 0.8872 + }, + { + "start": 7089.23, + "end": 7091.13, + "probability": 0.9583 + }, + { + "start": 7093.47, + "end": 7097.77, + "probability": 0.6982 + }, + { + "start": 7098.51, + "end": 7103.31, + "probability": 0.7867 + }, + { + "start": 7104.33, + "end": 7104.95, + "probability": 0.8288 + }, + { + "start": 7105.03, + "end": 7107.75, + "probability": 0.9946 + }, + { + "start": 7107.75, + "end": 7111.43, + "probability": 0.9718 + }, + { + "start": 7113.15, + "end": 7116.19, + "probability": 0.9561 + }, + { + "start": 7116.23, + "end": 7117.03, + "probability": 0.9389 + }, + { + "start": 7118.01, + "end": 7119.71, + "probability": 0.7822 + }, + { + "start": 7120.88, + "end": 7123.21, + "probability": 0.9783 + }, + { + "start": 7123.27, + "end": 7125.77, + "probability": 0.9806 + }, + { + "start": 7126.2, + "end": 7129.27, + "probability": 0.9396 + }, + { + "start": 7129.89, + "end": 7131.63, + "probability": 0.8934 + }, + { + "start": 7131.69, + "end": 7132.84, + "probability": 0.8967 + }, + { + "start": 7133.35, + "end": 7136.01, + "probability": 0.7939 + }, + { + "start": 7136.11, + "end": 7136.71, + "probability": 0.8413 + }, + { + "start": 7136.81, + "end": 7138.43, + "probability": 0.9251 + }, + { + "start": 7139.11, + "end": 7141.05, + "probability": 0.9873 + }, + { + "start": 7141.69, + "end": 7144.06, + "probability": 0.9315 + }, + { + "start": 7144.35, + "end": 7145.99, + "probability": 0.9659 + }, + { + "start": 7146.33, + "end": 7148.91, + "probability": 0.958 + }, + { + "start": 7149.27, + "end": 7150.27, + "probability": 0.9207 + }, + { + "start": 7150.35, + "end": 7153.55, + "probability": 0.9733 + }, + { + "start": 7153.67, + "end": 7157.69, + "probability": 0.8964 + }, + { + "start": 7157.69, + "end": 7161.41, + "probability": 0.7549 + }, + { + "start": 7161.77, + "end": 7163.39, + "probability": 0.827 + }, + { + "start": 7163.51, + "end": 7164.63, + "probability": 0.9269 + }, + { + "start": 7164.91, + "end": 7165.95, + "probability": 0.9697 + }, + { + "start": 7166.33, + "end": 7166.83, + "probability": 0.8104 + }, + { + "start": 7166.85, + "end": 7167.77, + "probability": 0.6405 + }, + { + "start": 7167.81, + "end": 7169.21, + "probability": 0.9974 + }, + { + "start": 7169.79, + "end": 7172.03, + "probability": 0.6294 + }, + { + "start": 7172.03, + "end": 7172.05, + "probability": 0.6934 + }, + { + "start": 7172.11, + "end": 7173.71, + "probability": 0.986 + }, + { + "start": 7178.01, + "end": 7180.37, + "probability": 0.4537 + }, + { + "start": 7180.71, + "end": 7181.83, + "probability": 0.7497 + }, + { + "start": 7182.73, + "end": 7183.89, + "probability": 0.6767 + }, + { + "start": 7183.97, + "end": 7185.01, + "probability": 0.55 + }, + { + "start": 7185.09, + "end": 7186.85, + "probability": 0.8482 + }, + { + "start": 7187.49, + "end": 7188.95, + "probability": 0.978 + }, + { + "start": 7189.57, + "end": 7192.29, + "probability": 0.6686 + }, + { + "start": 7192.85, + "end": 7196.51, + "probability": 0.8621 + }, + { + "start": 7199.32, + "end": 7202.01, + "probability": 0.671 + }, + { + "start": 7202.71, + "end": 7207.29, + "probability": 0.8817 + }, + { + "start": 7207.29, + "end": 7207.49, + "probability": 0.644 + }, + { + "start": 7208.03, + "end": 7208.61, + "probability": 0.7437 + }, + { + "start": 7210.15, + "end": 7212.39, + "probability": 0.9498 + }, + { + "start": 7212.39, + "end": 7212.75, + "probability": 0.1431 + }, + { + "start": 7212.75, + "end": 7215.65, + "probability": 0.658 + }, + { + "start": 7215.69, + "end": 7216.55, + "probability": 0.7963 + }, + { + "start": 7228.29, + "end": 7229.17, + "probability": 0.5397 + }, + { + "start": 7231.67, + "end": 7234.88, + "probability": 0.9954 + }, + { + "start": 7235.15, + "end": 7238.01, + "probability": 0.9726 + }, + { + "start": 7239.41, + "end": 7240.31, + "probability": 0.813 + }, + { + "start": 7240.47, + "end": 7245.99, + "probability": 0.9834 + }, + { + "start": 7246.95, + "end": 7250.73, + "probability": 0.9961 + }, + { + "start": 7252.45, + "end": 7253.95, + "probability": 0.9609 + }, + { + "start": 7254.11, + "end": 7258.57, + "probability": 0.9954 + }, + { + "start": 7258.67, + "end": 7259.69, + "probability": 0.8002 + }, + { + "start": 7259.81, + "end": 7263.47, + "probability": 0.9985 + }, + { + "start": 7263.49, + "end": 7266.03, + "probability": 0.943 + }, + { + "start": 7266.25, + "end": 7266.79, + "probability": 0.5134 + }, + { + "start": 7267.47, + "end": 7268.49, + "probability": 0.5993 + }, + { + "start": 7268.49, + "end": 7271.05, + "probability": 0.874 + }, + { + "start": 7271.15, + "end": 7272.29, + "probability": 0.7874 + }, + { + "start": 7272.87, + "end": 7274.07, + "probability": 0.9833 + }, + { + "start": 7274.85, + "end": 7276.71, + "probability": 0.8641 + }, + { + "start": 7277.21, + "end": 7278.47, + "probability": 0.8839 + }, + { + "start": 7278.55, + "end": 7279.38, + "probability": 0.9572 + }, + { + "start": 7279.71, + "end": 7281.14, + "probability": 0.7297 + }, + { + "start": 7282.03, + "end": 7283.93, + "probability": 0.9369 + }, + { + "start": 7283.97, + "end": 7284.63, + "probability": 0.7892 + }, + { + "start": 7284.73, + "end": 7288.23, + "probability": 0.9958 + }, + { + "start": 7289.37, + "end": 7293.15, + "probability": 0.9183 + }, + { + "start": 7293.21, + "end": 7293.85, + "probability": 0.7273 + }, + { + "start": 7293.97, + "end": 7300.39, + "probability": 0.9657 + }, + { + "start": 7300.93, + "end": 7301.45, + "probability": 0.929 + }, + { + "start": 7302.07, + "end": 7305.15, + "probability": 0.5587 + }, + { + "start": 7305.27, + "end": 7310.39, + "probability": 0.9976 + }, + { + "start": 7311.67, + "end": 7312.67, + "probability": 0.9788 + }, + { + "start": 7313.19, + "end": 7313.97, + "probability": 0.7403 + }, + { + "start": 7314.09, + "end": 7317.85, + "probability": 0.9937 + }, + { + "start": 7318.71, + "end": 7319.79, + "probability": 0.8972 + }, + { + "start": 7320.25, + "end": 7320.83, + "probability": 0.6181 + }, + { + "start": 7320.97, + "end": 7325.19, + "probability": 0.9729 + }, + { + "start": 7325.71, + "end": 7326.75, + "probability": 0.585 + }, + { + "start": 7327.33, + "end": 7330.91, + "probability": 0.9338 + }, + { + "start": 7331.69, + "end": 7333.23, + "probability": 0.9756 + }, + { + "start": 7333.79, + "end": 7334.47, + "probability": 0.8632 + }, + { + "start": 7334.59, + "end": 7338.75, + "probability": 0.9961 + }, + { + "start": 7338.83, + "end": 7342.41, + "probability": 0.9589 + }, + { + "start": 7342.41, + "end": 7345.63, + "probability": 0.9998 + }, + { + "start": 7346.09, + "end": 7347.09, + "probability": 0.7494 + }, + { + "start": 7347.79, + "end": 7347.99, + "probability": 0.4012 + }, + { + "start": 7348.11, + "end": 7351.43, + "probability": 0.9902 + }, + { + "start": 7351.83, + "end": 7354.33, + "probability": 0.6757 + }, + { + "start": 7354.43, + "end": 7356.39, + "probability": 0.6667 + }, + { + "start": 7357.53, + "end": 7361.25, + "probability": 0.9961 + }, + { + "start": 7363.33, + "end": 7365.87, + "probability": 0.1741 + }, + { + "start": 7367.07, + "end": 7368.17, + "probability": 0.8304 + }, + { + "start": 7368.31, + "end": 7368.65, + "probability": 0.8458 + }, + { + "start": 7368.75, + "end": 7372.01, + "probability": 0.8841 + }, + { + "start": 7372.07, + "end": 7373.73, + "probability": 0.9373 + }, + { + "start": 7374.25, + "end": 7374.37, + "probability": 0.9951 + }, + { + "start": 7375.17, + "end": 7376.17, + "probability": 0.3614 + }, + { + "start": 7376.82, + "end": 7381.25, + "probability": 0.479 + }, + { + "start": 7381.88, + "end": 7387.02, + "probability": 0.8761 + }, + { + "start": 7387.21, + "end": 7388.62, + "probability": 0.9808 + }, + { + "start": 7388.83, + "end": 7389.73, + "probability": 0.9551 + }, + { + "start": 7389.73, + "end": 7390.38, + "probability": 0.8369 + }, + { + "start": 7390.65, + "end": 7391.85, + "probability": 0.9941 + }, + { + "start": 7392.55, + "end": 7395.29, + "probability": 0.291 + }, + { + "start": 7395.41, + "end": 7395.73, + "probability": 0.4857 + }, + { + "start": 7396.07, + "end": 7397.51, + "probability": 0.6592 + }, + { + "start": 7397.59, + "end": 7399.98, + "probability": 0.9933 + }, + { + "start": 7400.37, + "end": 7402.25, + "probability": 0.9749 + }, + { + "start": 7402.33, + "end": 7404.49, + "probability": 0.9787 + }, + { + "start": 7404.61, + "end": 7405.75, + "probability": 0.7088 + }, + { + "start": 7405.83, + "end": 7406.47, + "probability": 0.8834 + }, + { + "start": 7406.61, + "end": 7407.65, + "probability": 0.9659 + }, + { + "start": 7408.03, + "end": 7409.99, + "probability": 0.9994 + }, + { + "start": 7410.25, + "end": 7413.45, + "probability": 0.4676 + }, + { + "start": 7413.59, + "end": 7415.23, + "probability": 0.3016 + }, + { + "start": 7415.23, + "end": 7415.27, + "probability": 0.2065 + }, + { + "start": 7415.91, + "end": 7417.21, + "probability": 0.0573 + }, + { + "start": 7417.85, + "end": 7419.67, + "probability": 0.1052 + }, + { + "start": 7420.07, + "end": 7422.37, + "probability": 0.0963 + }, + { + "start": 7422.95, + "end": 7424.87, + "probability": 0.2156 + }, + { + "start": 7425.41, + "end": 7428.49, + "probability": 0.1648 + }, + { + "start": 7428.59, + "end": 7430.31, + "probability": 0.5145 + }, + { + "start": 7430.43, + "end": 7435.07, + "probability": 0.0867 + }, + { + "start": 7435.07, + "end": 7436.67, + "probability": 0.3407 + }, + { + "start": 7436.87, + "end": 7436.87, + "probability": 0.3647 + }, + { + "start": 7436.87, + "end": 7440.37, + "probability": 0.1998 + }, + { + "start": 7440.59, + "end": 7443.25, + "probability": 0.322 + }, + { + "start": 7444.01, + "end": 7448.49, + "probability": 0.4475 + }, + { + "start": 7448.49, + "end": 7450.63, + "probability": 0.0839 + }, + { + "start": 7450.87, + "end": 7454.25, + "probability": 0.5289 + }, + { + "start": 7454.43, + "end": 7455.25, + "probability": 0.7515 + }, + { + "start": 7455.25, + "end": 7457.73, + "probability": 0.6982 + }, + { + "start": 7458.39, + "end": 7463.07, + "probability": 0.9883 + }, + { + "start": 7463.09, + "end": 7463.61, + "probability": 0.9214 + }, + { + "start": 7463.85, + "end": 7466.19, + "probability": 0.7964 + }, + { + "start": 7466.43, + "end": 7468.95, + "probability": 0.9899 + }, + { + "start": 7469.31, + "end": 7471.49, + "probability": 0.6819 + }, + { + "start": 7471.91, + "end": 7472.89, + "probability": 0.5906 + }, + { + "start": 7473.21, + "end": 7475.67, + "probability": 0.9741 + }, + { + "start": 7475.89, + "end": 7479.77, + "probability": 0.9863 + }, + { + "start": 7479.91, + "end": 7480.36, + "probability": 0.5486 + }, + { + "start": 7480.61, + "end": 7480.83, + "probability": 0.9619 + }, + { + "start": 7480.91, + "end": 7481.83, + "probability": 0.8195 + }, + { + "start": 7482.05, + "end": 7485.11, + "probability": 0.9915 + }, + { + "start": 7485.15, + "end": 7485.95, + "probability": 0.6707 + }, + { + "start": 7486.05, + "end": 7487.79, + "probability": 0.8268 + }, + { + "start": 7488.05, + "end": 7489.37, + "probability": 0.9655 + }, + { + "start": 7489.41, + "end": 7492.21, + "probability": 0.9669 + }, + { + "start": 7492.29, + "end": 7495.83, + "probability": 0.9663 + }, + { + "start": 7495.93, + "end": 7498.65, + "probability": 0.3503 + }, + { + "start": 7498.65, + "end": 7500.38, + "probability": 0.9111 + }, + { + "start": 7500.95, + "end": 7501.89, + "probability": 0.3695 + }, + { + "start": 7501.95, + "end": 7502.83, + "probability": 0.7461 + }, + { + "start": 7503.07, + "end": 7504.13, + "probability": 0.9419 + }, + { + "start": 7504.21, + "end": 7505.29, + "probability": 0.7898 + }, + { + "start": 7505.63, + "end": 7509.57, + "probability": 0.9577 + }, + { + "start": 7509.65, + "end": 7510.73, + "probability": 0.5346 + }, + { + "start": 7510.79, + "end": 7512.43, + "probability": 0.849 + }, + { + "start": 7512.59, + "end": 7517.61, + "probability": 0.9613 + }, + { + "start": 7517.91, + "end": 7518.81, + "probability": 0.5184 + }, + { + "start": 7518.87, + "end": 7522.41, + "probability": 0.6643 + }, + { + "start": 7522.65, + "end": 7523.53, + "probability": 0.8634 + }, + { + "start": 7523.69, + "end": 7525.19, + "probability": 0.9061 + }, + { + "start": 7525.65, + "end": 7530.23, + "probability": 0.0998 + }, + { + "start": 7532.43, + "end": 7536.03, + "probability": 0.605 + }, + { + "start": 7536.03, + "end": 7537.45, + "probability": 0.2966 + }, + { + "start": 7537.73, + "end": 7540.11, + "probability": 0.9338 + }, + { + "start": 7541.37, + "end": 7546.83, + "probability": 0.4385 + }, + { + "start": 7547.25, + "end": 7550.73, + "probability": 0.5192 + }, + { + "start": 7550.91, + "end": 7551.15, + "probability": 0.3708 + }, + { + "start": 7551.29, + "end": 7554.71, + "probability": 0.3851 + }, + { + "start": 7555.81, + "end": 7556.39, + "probability": 0.733 + }, + { + "start": 7556.45, + "end": 7558.48, + "probability": 0.8555 + }, + { + "start": 7558.79, + "end": 7559.41, + "probability": 0.7644 + }, + { + "start": 7559.49, + "end": 7560.01, + "probability": 0.6417 + }, + { + "start": 7560.35, + "end": 7561.23, + "probability": 0.7511 + }, + { + "start": 7561.65, + "end": 7563.09, + "probability": 0.9961 + }, + { + "start": 7563.17, + "end": 7564.31, + "probability": 0.8208 + }, + { + "start": 7564.41, + "end": 7566.18, + "probability": 0.9282 + }, + { + "start": 7566.69, + "end": 7567.31, + "probability": 0.9487 + }, + { + "start": 7567.37, + "end": 7571.15, + "probability": 0.9566 + }, + { + "start": 7571.99, + "end": 7577.03, + "probability": 0.7738 + }, + { + "start": 7577.33, + "end": 7578.35, + "probability": 0.74 + }, + { + "start": 7578.73, + "end": 7579.25, + "probability": 0.9226 + }, + { + "start": 7579.33, + "end": 7580.08, + "probability": 0.981 + }, + { + "start": 7580.55, + "end": 7584.61, + "probability": 0.9364 + }, + { + "start": 7584.69, + "end": 7586.83, + "probability": 0.9982 + }, + { + "start": 7586.95, + "end": 7587.95, + "probability": 0.7809 + }, + { + "start": 7588.09, + "end": 7591.03, + "probability": 0.9806 + }, + { + "start": 7592.27, + "end": 7595.13, + "probability": 0.5507 + }, + { + "start": 7595.27, + "end": 7598.79, + "probability": 0.7148 + }, + { + "start": 7598.91, + "end": 7599.71, + "probability": 0.8447 + }, + { + "start": 7600.53, + "end": 7603.47, + "probability": 0.797 + }, + { + "start": 7603.75, + "end": 7609.01, + "probability": 0.9451 + }, + { + "start": 7609.27, + "end": 7610.73, + "probability": 0.9409 + }, + { + "start": 7610.81, + "end": 7611.77, + "probability": 0.9596 + }, + { + "start": 7611.87, + "end": 7614.85, + "probability": 0.897 + }, + { + "start": 7614.85, + "end": 7615.13, + "probability": 0.067 + }, + { + "start": 7615.67, + "end": 7618.57, + "probability": 0.9889 + }, + { + "start": 7618.65, + "end": 7620.21, + "probability": 0.8651 + }, + { + "start": 7620.29, + "end": 7622.03, + "probability": 0.9153 + }, + { + "start": 7622.43, + "end": 7625.05, + "probability": 0.7693 + }, + { + "start": 7625.15, + "end": 7627.65, + "probability": 0.9976 + }, + { + "start": 7627.65, + "end": 7629.55, + "probability": 0.9948 + }, + { + "start": 7629.61, + "end": 7632.39, + "probability": 0.9914 + }, + { + "start": 7632.67, + "end": 7635.93, + "probability": 0.8606 + }, + { + "start": 7636.07, + "end": 7638.69, + "probability": 0.914 + }, + { + "start": 7639.04, + "end": 7641.65, + "probability": 0.9824 + }, + { + "start": 7642.27, + "end": 7643.33, + "probability": 0.8365 + }, + { + "start": 7643.71, + "end": 7645.13, + "probability": 0.3721 + }, + { + "start": 7645.13, + "end": 7646.37, + "probability": 0.5717 + }, + { + "start": 7646.49, + "end": 7646.77, + "probability": 0.9194 + }, + { + "start": 7647.29, + "end": 7648.31, + "probability": 0.9976 + }, + { + "start": 7648.35, + "end": 7651.24, + "probability": 0.9287 + }, + { + "start": 7651.51, + "end": 7652.93, + "probability": 0.6265 + }, + { + "start": 7653.01, + "end": 7653.37, + "probability": 0.5781 + }, + { + "start": 7653.45, + "end": 7654.15, + "probability": 0.7307 + }, + { + "start": 7654.37, + "end": 7658.47, + "probability": 0.8723 + }, + { + "start": 7658.73, + "end": 7663.69, + "probability": 0.9656 + }, + { + "start": 7663.81, + "end": 7667.11, + "probability": 0.9405 + }, + { + "start": 7667.23, + "end": 7669.77, + "probability": 0.9191 + }, + { + "start": 7670.33, + "end": 7671.95, + "probability": 0.9907 + }, + { + "start": 7673.37, + "end": 7673.89, + "probability": 0.647 + }, + { + "start": 7674.27, + "end": 7675.45, + "probability": 0.7497 + }, + { + "start": 7675.53, + "end": 7676.99, + "probability": 0.8196 + }, + { + "start": 7677.35, + "end": 7680.93, + "probability": 0.9709 + }, + { + "start": 7681.41, + "end": 7685.39, + "probability": 0.9745 + }, + { + "start": 7685.53, + "end": 7685.81, + "probability": 0.8417 + }, + { + "start": 7685.89, + "end": 7686.17, + "probability": 0.8169 + }, + { + "start": 7686.25, + "end": 7687.99, + "probability": 0.9347 + }, + { + "start": 7688.05, + "end": 7688.77, + "probability": 0.6878 + }, + { + "start": 7688.89, + "end": 7689.57, + "probability": 0.8658 + }, + { + "start": 7689.89, + "end": 7690.09, + "probability": 0.5016 + }, + { + "start": 7690.21, + "end": 7692.21, + "probability": 0.9839 + }, + { + "start": 7692.57, + "end": 7694.79, + "probability": 0.9415 + }, + { + "start": 7694.79, + "end": 7698.05, + "probability": 0.9945 + }, + { + "start": 7698.41, + "end": 7702.09, + "probability": 0.9912 + }, + { + "start": 7702.13, + "end": 7703.59, + "probability": 0.6328 + }, + { + "start": 7704.59, + "end": 7704.93, + "probability": 0.4619 + }, + { + "start": 7705.31, + "end": 7705.37, + "probability": 0.3137 + }, + { + "start": 7706.03, + "end": 7708.45, + "probability": 0.3126 + }, + { + "start": 7713.43, + "end": 7713.83, + "probability": 0.4303 + }, + { + "start": 7714.17, + "end": 7719.05, + "probability": 0.9826 + }, + { + "start": 7719.31, + "end": 7721.07, + "probability": 0.9297 + }, + { + "start": 7721.17, + "end": 7721.75, + "probability": 0.7895 + }, + { + "start": 7721.79, + "end": 7722.15, + "probability": 0.5832 + }, + { + "start": 7722.15, + "end": 7723.23, + "probability": 0.7549 + }, + { + "start": 7723.67, + "end": 7725.53, + "probability": 0.9326 + }, + { + "start": 7725.83, + "end": 7726.99, + "probability": 0.788 + }, + { + "start": 7727.71, + "end": 7728.49, + "probability": 0.5866 + }, + { + "start": 7728.49, + "end": 7730.53, + "probability": 0.9376 + }, + { + "start": 7730.87, + "end": 7734.25, + "probability": 0.9805 + }, + { + "start": 7734.35, + "end": 7736.4, + "probability": 0.8387 + }, + { + "start": 7737.13, + "end": 7739.83, + "probability": 0.9735 + }, + { + "start": 7739.85, + "end": 7740.47, + "probability": 0.8031 + }, + { + "start": 7740.59, + "end": 7742.33, + "probability": 0.8553 + }, + { + "start": 7744.11, + "end": 7748.63, + "probability": 0.9151 + }, + { + "start": 7749.19, + "end": 7750.57, + "probability": 0.8868 + }, + { + "start": 7774.51, + "end": 7774.51, + "probability": 0.3049 + }, + { + "start": 7774.51, + "end": 7777.61, + "probability": 0.6893 + }, + { + "start": 7779.01, + "end": 7780.89, + "probability": 0.8167 + }, + { + "start": 7781.97, + "end": 7783.25, + "probability": 0.9941 + }, + { + "start": 7784.85, + "end": 7789.07, + "probability": 0.8306 + }, + { + "start": 7789.69, + "end": 7791.25, + "probability": 0.9859 + }, + { + "start": 7791.99, + "end": 7794.41, + "probability": 0.9877 + }, + { + "start": 7794.53, + "end": 7795.91, + "probability": 0.5277 + }, + { + "start": 7796.73, + "end": 7798.03, + "probability": 0.987 + }, + { + "start": 7799.21, + "end": 7804.17, + "probability": 0.9807 + }, + { + "start": 7805.05, + "end": 7805.99, + "probability": 0.8614 + }, + { + "start": 7806.09, + "end": 7807.09, + "probability": 0.9651 + }, + { + "start": 7807.21, + "end": 7809.91, + "probability": 0.9786 + }, + { + "start": 7810.79, + "end": 7814.05, + "probability": 0.7978 + }, + { + "start": 7815.05, + "end": 7818.91, + "probability": 0.9608 + }, + { + "start": 7819.69, + "end": 7825.41, + "probability": 0.9743 + }, + { + "start": 7825.97, + "end": 7827.13, + "probability": 0.873 + }, + { + "start": 7827.89, + "end": 7829.82, + "probability": 0.9407 + }, + { + "start": 7830.19, + "end": 7831.25, + "probability": 0.8217 + }, + { + "start": 7831.39, + "end": 7831.97, + "probability": 0.7648 + }, + { + "start": 7832.09, + "end": 7832.83, + "probability": 0.9335 + }, + { + "start": 7833.61, + "end": 7836.23, + "probability": 0.9287 + }, + { + "start": 7837.25, + "end": 7839.77, + "probability": 0.9757 + }, + { + "start": 7841.17, + "end": 7842.94, + "probability": 0.9885 + }, + { + "start": 7843.53, + "end": 7845.87, + "probability": 0.9855 + }, + { + "start": 7846.47, + "end": 7847.41, + "probability": 0.6786 + }, + { + "start": 7848.19, + "end": 7852.21, + "probability": 0.9762 + }, + { + "start": 7853.35, + "end": 7854.47, + "probability": 0.819 + }, + { + "start": 7855.63, + "end": 7857.29, + "probability": 0.9082 + }, + { + "start": 7857.89, + "end": 7863.17, + "probability": 0.9425 + }, + { + "start": 7863.27, + "end": 7864.23, + "probability": 0.9443 + }, + { + "start": 7864.99, + "end": 7866.81, + "probability": 0.5072 + }, + { + "start": 7867.49, + "end": 7870.35, + "probability": 0.9633 + }, + { + "start": 7871.9, + "end": 7874.93, + "probability": 0.988 + }, + { + "start": 7875.75, + "end": 7877.48, + "probability": 0.9637 + }, + { + "start": 7877.75, + "end": 7878.21, + "probability": 0.8304 + }, + { + "start": 7878.59, + "end": 7881.07, + "probability": 0.9678 + }, + { + "start": 7881.15, + "end": 7882.03, + "probability": 0.3462 + }, + { + "start": 7882.11, + "end": 7885.29, + "probability": 0.9948 + }, + { + "start": 7886.87, + "end": 7888.41, + "probability": 0.9226 + }, + { + "start": 7889.31, + "end": 7890.31, + "probability": 0.8878 + }, + { + "start": 7891.01, + "end": 7894.27, + "probability": 0.9875 + }, + { + "start": 7895.25, + "end": 7897.11, + "probability": 0.9688 + }, + { + "start": 7897.77, + "end": 7898.33, + "probability": 0.8931 + }, + { + "start": 7899.45, + "end": 7903.53, + "probability": 0.9698 + }, + { + "start": 7904.35, + "end": 7905.85, + "probability": 0.8508 + }, + { + "start": 7906.97, + "end": 7909.68, + "probability": 0.9825 + }, + { + "start": 7910.53, + "end": 7911.33, + "probability": 0.9499 + }, + { + "start": 7912.21, + "end": 7913.65, + "probability": 0.9041 + }, + { + "start": 7914.23, + "end": 7917.33, + "probability": 0.9837 + }, + { + "start": 7917.71, + "end": 7919.89, + "probability": 0.9792 + }, + { + "start": 7921.55, + "end": 7924.41, + "probability": 0.9827 + }, + { + "start": 7925.83, + "end": 7926.83, + "probability": 0.7339 + }, + { + "start": 7927.55, + "end": 7931.61, + "probability": 0.9541 + }, + { + "start": 7932.33, + "end": 7935.17, + "probability": 0.8795 + }, + { + "start": 7935.17, + "end": 7938.05, + "probability": 0.9871 + }, + { + "start": 7939.29, + "end": 7940.09, + "probability": 0.5234 + }, + { + "start": 7940.71, + "end": 7943.75, + "probability": 0.9677 + }, + { + "start": 7944.45, + "end": 7945.83, + "probability": 0.8847 + }, + { + "start": 7946.55, + "end": 7949.53, + "probability": 0.9943 + }, + { + "start": 7949.53, + "end": 7952.77, + "probability": 0.9794 + }, + { + "start": 7954.05, + "end": 7954.83, + "probability": 0.6465 + }, + { + "start": 7955.53, + "end": 7958.95, + "probability": 0.8368 + }, + { + "start": 7959.65, + "end": 7964.31, + "probability": 0.9375 + }, + { + "start": 7965.29, + "end": 7966.21, + "probability": 0.9238 + }, + { + "start": 7966.93, + "end": 7968.49, + "probability": 0.9348 + }, + { + "start": 7969.03, + "end": 7972.63, + "probability": 0.9922 + }, + { + "start": 7972.89, + "end": 7978.57, + "probability": 0.714 + }, + { + "start": 7980.03, + "end": 7981.31, + "probability": 0.7876 + }, + { + "start": 7982.29, + "end": 7983.63, + "probability": 0.7276 + }, + { + "start": 7983.67, + "end": 7984.35, + "probability": 0.9635 + }, + { + "start": 7985.91, + "end": 7988.73, + "probability": 0.9756 + }, + { + "start": 7989.67, + "end": 7990.87, + "probability": 0.2842 + }, + { + "start": 7990.95, + "end": 7991.59, + "probability": 0.5581 + }, + { + "start": 7991.59, + "end": 7992.89, + "probability": 0.3278 + }, + { + "start": 7992.95, + "end": 7993.81, + "probability": 0.8167 + }, + { + "start": 7995.55, + "end": 7996.65, + "probability": 0.565 + }, + { + "start": 8003.95, + "end": 8004.35, + "probability": 0.502 + }, + { + "start": 8004.35, + "end": 8004.91, + "probability": 0.6906 + }, + { + "start": 8006.89, + "end": 8007.95, + "probability": 0.6313 + }, + { + "start": 8011.91, + "end": 8014.17, + "probability": 0.8081 + }, + { + "start": 8016.03, + "end": 8017.21, + "probability": 0.8328 + }, + { + "start": 8017.33, + "end": 8018.73, + "probability": 0.8847 + }, + { + "start": 8018.87, + "end": 8020.57, + "probability": 0.9907 + }, + { + "start": 8021.49, + "end": 8023.15, + "probability": 0.4808 + }, + { + "start": 8026.65, + "end": 8026.87, + "probability": 0.8086 + }, + { + "start": 8027.27, + "end": 8028.39, + "probability": 0.9397 + }, + { + "start": 8028.95, + "end": 8030.97, + "probability": 0.9119 + }, + { + "start": 8030.99, + "end": 8031.67, + "probability": 0.8161 + }, + { + "start": 8031.81, + "end": 8032.47, + "probability": 0.745 + }, + { + "start": 8032.55, + "end": 8032.91, + "probability": 0.7516 + }, + { + "start": 8032.97, + "end": 8033.17, + "probability": 0.804 + }, + { + "start": 8033.33, + "end": 8034.76, + "probability": 0.7726 + }, + { + "start": 8035.29, + "end": 8036.44, + "probability": 0.4381 + }, + { + "start": 8037.81, + "end": 8039.73, + "probability": 0.8122 + }, + { + "start": 8039.77, + "end": 8043.17, + "probability": 0.9861 + }, + { + "start": 8043.61, + "end": 8044.79, + "probability": 0.8774 + }, + { + "start": 8045.75, + "end": 8047.95, + "probability": 0.8692 + }, + { + "start": 8048.31, + "end": 8050.31, + "probability": 0.991 + }, + { + "start": 8050.61, + "end": 8051.97, + "probability": 0.9766 + }, + { + "start": 8052.25, + "end": 8054.09, + "probability": 0.9987 + }, + { + "start": 8054.81, + "end": 8056.31, + "probability": 0.9418 + }, + { + "start": 8057.15, + "end": 8059.69, + "probability": 0.9062 + }, + { + "start": 8060.31, + "end": 8062.75, + "probability": 0.9845 + }, + { + "start": 8063.07, + "end": 8065.29, + "probability": 0.8514 + }, + { + "start": 8065.83, + "end": 8066.55, + "probability": 0.7707 + }, + { + "start": 8066.69, + "end": 8070.07, + "probability": 0.8527 + }, + { + "start": 8070.09, + "end": 8071.47, + "probability": 0.8706 + }, + { + "start": 8071.89, + "end": 8074.24, + "probability": 0.9917 + }, + { + "start": 8074.67, + "end": 8076.09, + "probability": 0.8927 + }, + { + "start": 8076.63, + "end": 8077.39, + "probability": 0.7901 + }, + { + "start": 8077.43, + "end": 8081.37, + "probability": 0.9977 + }, + { + "start": 8081.89, + "end": 8083.99, + "probability": 0.998 + }, + { + "start": 8084.47, + "end": 8086.49, + "probability": 0.9381 + }, + { + "start": 8087.01, + "end": 8090.19, + "probability": 0.9693 + }, + { + "start": 8090.23, + "end": 8093.33, + "probability": 0.8762 + }, + { + "start": 8093.83, + "end": 8098.75, + "probability": 0.9646 + }, + { + "start": 8099.33, + "end": 8102.21, + "probability": 0.8141 + }, + { + "start": 8102.71, + "end": 8103.69, + "probability": 0.937 + }, + { + "start": 8104.09, + "end": 8108.19, + "probability": 0.9813 + }, + { + "start": 8108.23, + "end": 8109.17, + "probability": 0.3712 + }, + { + "start": 8109.23, + "end": 8110.49, + "probability": 0.7487 + }, + { + "start": 8110.51, + "end": 8111.35, + "probability": 0.9254 + }, + { + "start": 8112.11, + "end": 8112.47, + "probability": 0.5634 + }, + { + "start": 8112.55, + "end": 8113.59, + "probability": 0.7673 + }, + { + "start": 8114.03, + "end": 8115.05, + "probability": 0.921 + }, + { + "start": 8115.53, + "end": 8117.93, + "probability": 0.9312 + }, + { + "start": 8118.39, + "end": 8122.83, + "probability": 0.9397 + }, + { + "start": 8123.37, + "end": 8126.63, + "probability": 0.961 + }, + { + "start": 8127.19, + "end": 8132.55, + "probability": 0.9492 + }, + { + "start": 8133.05, + "end": 8134.55, + "probability": 0.959 + }, + { + "start": 8135.27, + "end": 8136.57, + "probability": 0.8082 + }, + { + "start": 8136.85, + "end": 8139.23, + "probability": 0.9927 + }, + { + "start": 8139.65, + "end": 8140.61, + "probability": 0.7057 + }, + { + "start": 8141.15, + "end": 8144.63, + "probability": 0.9946 + }, + { + "start": 8145.43, + "end": 8146.29, + "probability": 0.944 + }, + { + "start": 8147.09, + "end": 8148.89, + "probability": 0.9072 + }, + { + "start": 8149.41, + "end": 8153.05, + "probability": 0.9795 + }, + { + "start": 8153.71, + "end": 8156.19, + "probability": 0.9879 + }, + { + "start": 8156.71, + "end": 8159.11, + "probability": 0.978 + }, + { + "start": 8160.21, + "end": 8163.01, + "probability": 0.9213 + }, + { + "start": 8163.71, + "end": 8165.09, + "probability": 0.6911 + }, + { + "start": 8165.73, + "end": 8170.13, + "probability": 0.9679 + }, + { + "start": 8170.13, + "end": 8170.85, + "probability": 0.7284 + }, + { + "start": 8170.95, + "end": 8172.41, + "probability": 0.3944 + }, + { + "start": 8172.59, + "end": 8173.37, + "probability": 0.9111 + }, + { + "start": 8173.47, + "end": 8177.21, + "probability": 0.972 + }, + { + "start": 8177.21, + "end": 8179.49, + "probability": 0.9731 + }, + { + "start": 8179.61, + "end": 8179.93, + "probability": 0.6737 + }, + { + "start": 8180.77, + "end": 8183.51, + "probability": 0.9871 + }, + { + "start": 8183.93, + "end": 8187.65, + "probability": 0.641 + }, + { + "start": 8189.05, + "end": 8189.45, + "probability": 0.8348 + }, + { + "start": 8189.79, + "end": 8190.77, + "probability": 0.7268 + }, + { + "start": 8191.15, + "end": 8191.47, + "probability": 0.8469 + }, + { + "start": 8191.53, + "end": 8193.66, + "probability": 0.98 + }, + { + "start": 8194.47, + "end": 8195.43, + "probability": 0.8829 + }, + { + "start": 8195.59, + "end": 8196.81, + "probability": 0.7446 + }, + { + "start": 8197.93, + "end": 8198.03, + "probability": 0.8761 + }, + { + "start": 8199.25, + "end": 8200.95, + "probability": 0.9628 + }, + { + "start": 8201.09, + "end": 8201.21, + "probability": 0.5715 + }, + { + "start": 8201.31, + "end": 8202.23, + "probability": 0.9177 + }, + { + "start": 8202.33, + "end": 8203.75, + "probability": 0.8018 + }, + { + "start": 8203.93, + "end": 8206.33, + "probability": 0.9868 + }, + { + "start": 8206.41, + "end": 8207.63, + "probability": 0.9206 + }, + { + "start": 8208.27, + "end": 8210.63, + "probability": 0.9928 + }, + { + "start": 8211.09, + "end": 8212.82, + "probability": 0.8333 + }, + { + "start": 8213.07, + "end": 8213.66, + "probability": 0.8947 + }, + { + "start": 8213.87, + "end": 8214.51, + "probability": 0.9443 + }, + { + "start": 8214.79, + "end": 8215.81, + "probability": 0.811 + }, + { + "start": 8216.33, + "end": 8216.47, + "probability": 0.3852 + }, + { + "start": 8216.53, + "end": 8217.45, + "probability": 0.8644 + }, + { + "start": 8217.73, + "end": 8218.99, + "probability": 0.9546 + }, + { + "start": 8219.55, + "end": 8222.11, + "probability": 0.9526 + }, + { + "start": 8222.15, + "end": 8226.01, + "probability": 0.9974 + }, + { + "start": 8226.39, + "end": 8227.65, + "probability": 0.875 + }, + { + "start": 8228.25, + "end": 8229.87, + "probability": 0.9718 + }, + { + "start": 8230.47, + "end": 8232.87, + "probability": 0.9314 + }, + { + "start": 8233.35, + "end": 8236.25, + "probability": 0.9974 + }, + { + "start": 8236.79, + "end": 8239.15, + "probability": 0.9436 + }, + { + "start": 8239.77, + "end": 8240.41, + "probability": 0.2845 + }, + { + "start": 8240.51, + "end": 8244.17, + "probability": 0.9644 + }, + { + "start": 8244.53, + "end": 8248.01, + "probability": 0.8989 + }, + { + "start": 8248.53, + "end": 8250.65, + "probability": 0.9877 + }, + { + "start": 8250.73, + "end": 8253.87, + "probability": 0.8715 + }, + { + "start": 8254.01, + "end": 8254.35, + "probability": 0.5889 + }, + { + "start": 8255.11, + "end": 8257.61, + "probability": 0.9812 + }, + { + "start": 8258.49, + "end": 8260.27, + "probability": 0.9944 + }, + { + "start": 8261.25, + "end": 8263.19, + "probability": 0.9956 + }, + { + "start": 8263.75, + "end": 8264.39, + "probability": 0.8613 + }, + { + "start": 8264.87, + "end": 8266.09, + "probability": 0.9829 + }, + { + "start": 8266.19, + "end": 8267.63, + "probability": 0.689 + }, + { + "start": 8267.69, + "end": 8267.79, + "probability": 0.2819 + }, + { + "start": 8267.85, + "end": 8267.97, + "probability": 0.7983 + }, + { + "start": 8268.03, + "end": 8270.51, + "probability": 0.9144 + }, + { + "start": 8273.43, + "end": 8275.59, + "probability": 0.7802 + }, + { + "start": 8276.21, + "end": 8277.35, + "probability": 0.8372 + }, + { + "start": 8277.57, + "end": 8277.67, + "probability": 0.3935 + }, + { + "start": 8278.37, + "end": 8279.78, + "probability": 0.8461 + }, + { + "start": 8281.26, + "end": 8281.51, + "probability": 0.0073 + }, + { + "start": 8281.51, + "end": 8283.15, + "probability": 0.9563 + }, + { + "start": 8283.99, + "end": 8288.09, + "probability": 0.9891 + }, + { + "start": 8288.21, + "end": 8289.65, + "probability": 0.999 + }, + { + "start": 8289.71, + "end": 8293.33, + "probability": 0.9854 + }, + { + "start": 8293.73, + "end": 8296.83, + "probability": 0.9855 + }, + { + "start": 8297.49, + "end": 8298.37, + "probability": 0.875 + }, + { + "start": 8298.83, + "end": 8299.65, + "probability": 0.5502 + }, + { + "start": 8299.85, + "end": 8300.97, + "probability": 0.8145 + }, + { + "start": 8301.51, + "end": 8302.87, + "probability": 0.9111 + }, + { + "start": 8303.87, + "end": 8306.27, + "probability": 0.9944 + }, + { + "start": 8307.05, + "end": 8309.13, + "probability": 0.9747 + }, + { + "start": 8309.53, + "end": 8310.31, + "probability": 0.9595 + }, + { + "start": 8310.77, + "end": 8311.47, + "probability": 0.9801 + }, + { + "start": 8311.77, + "end": 8312.87, + "probability": 0.9852 + }, + { + "start": 8312.95, + "end": 8314.33, + "probability": 0.5121 + }, + { + "start": 8314.41, + "end": 8316.89, + "probability": 0.9572 + }, + { + "start": 8317.37, + "end": 8319.03, + "probability": 0.7661 + }, + { + "start": 8319.73, + "end": 8321.63, + "probability": 0.8413 + }, + { + "start": 8321.81, + "end": 8323.45, + "probability": 0.9714 + }, + { + "start": 8323.69, + "end": 8325.95, + "probability": 0.907 + }, + { + "start": 8326.03, + "end": 8327.31, + "probability": 0.7227 + }, + { + "start": 8327.39, + "end": 8328.19, + "probability": 0.61 + }, + { + "start": 8328.27, + "end": 8328.99, + "probability": 0.858 + }, + { + "start": 8329.13, + "end": 8329.81, + "probability": 0.8917 + }, + { + "start": 8329.81, + "end": 8331.37, + "probability": 0.8932 + }, + { + "start": 8332.27, + "end": 8333.47, + "probability": 0.9349 + }, + { + "start": 8333.57, + "end": 8336.57, + "probability": 0.9315 + }, + { + "start": 8337.19, + "end": 8340.07, + "probability": 0.9753 + }, + { + "start": 8340.43, + "end": 8341.41, + "probability": 0.7799 + }, + { + "start": 8341.47, + "end": 8342.65, + "probability": 0.8658 + }, + { + "start": 8343.15, + "end": 8348.55, + "probability": 0.9978 + }, + { + "start": 8349.01, + "end": 8351.31, + "probability": 0.7845 + }, + { + "start": 8351.41, + "end": 8352.01, + "probability": 0.7639 + }, + { + "start": 8352.25, + "end": 8352.89, + "probability": 0.798 + }, + { + "start": 8353.29, + "end": 8355.09, + "probability": 0.8794 + }, + { + "start": 8355.25, + "end": 8356.63, + "probability": 0.786 + }, + { + "start": 8357.27, + "end": 8358.47, + "probability": 0.8293 + }, + { + "start": 8359.05, + "end": 8361.61, + "probability": 0.959 + }, + { + "start": 8361.91, + "end": 8363.51, + "probability": 0.5999 + }, + { + "start": 8363.75, + "end": 8367.45, + "probability": 0.9858 + }, + { + "start": 8367.51, + "end": 8368.07, + "probability": 0.6577 + }, + { + "start": 8368.47, + "end": 8369.37, + "probability": 0.8741 + }, + { + "start": 8369.79, + "end": 8371.51, + "probability": 0.9633 + }, + { + "start": 8371.57, + "end": 8372.19, + "probability": 0.9363 + }, + { + "start": 8372.25, + "end": 8373.43, + "probability": 0.7763 + }, + { + "start": 8373.87, + "end": 8376.31, + "probability": 0.981 + }, + { + "start": 8376.59, + "end": 8378.22, + "probability": 0.9878 + }, + { + "start": 8379.07, + "end": 8381.85, + "probability": 0.9891 + }, + { + "start": 8382.29, + "end": 8383.61, + "probability": 0.7211 + }, + { + "start": 8383.87, + "end": 8385.43, + "probability": 0.7167 + }, + { + "start": 8385.61, + "end": 8386.57, + "probability": 0.6205 + }, + { + "start": 8386.65, + "end": 8390.69, + "probability": 0.9784 + }, + { + "start": 8390.97, + "end": 8390.97, + "probability": 0.342 + }, + { + "start": 8391.11, + "end": 8395.99, + "probability": 0.9092 + }, + { + "start": 8396.45, + "end": 8397.17, + "probability": 0.6275 + }, + { + "start": 8397.71, + "end": 8401.03, + "probability": 0.9158 + }, + { + "start": 8401.03, + "end": 8403.61, + "probability": 0.9937 + }, + { + "start": 8404.07, + "end": 8406.71, + "probability": 0.9844 + }, + { + "start": 8407.31, + "end": 8410.53, + "probability": 0.9982 + }, + { + "start": 8410.99, + "end": 8416.91, + "probability": 0.9777 + }, + { + "start": 8416.91, + "end": 8421.91, + "probability": 0.8634 + }, + { + "start": 8422.67, + "end": 8423.63, + "probability": 0.7103 + }, + { + "start": 8423.71, + "end": 8427.05, + "probability": 0.6821 + }, + { + "start": 8427.21, + "end": 8427.79, + "probability": 0.9258 + }, + { + "start": 8427.93, + "end": 8430.15, + "probability": 0.9493 + }, + { + "start": 8430.77, + "end": 8432.57, + "probability": 0.9696 + }, + { + "start": 8432.95, + "end": 8434.81, + "probability": 0.7232 + }, + { + "start": 8435.19, + "end": 8440.25, + "probability": 0.9851 + }, + { + "start": 8440.77, + "end": 8443.63, + "probability": 0.9969 + }, + { + "start": 8444.03, + "end": 8445.11, + "probability": 0.7943 + }, + { + "start": 8445.53, + "end": 8446.11, + "probability": 0.5295 + }, + { + "start": 8447.11, + "end": 8447.19, + "probability": 0.0934 + }, + { + "start": 8447.19, + "end": 8447.39, + "probability": 0.272 + }, + { + "start": 8448.03, + "end": 8449.55, + "probability": 0.2454 + }, + { + "start": 8449.65, + "end": 8449.69, + "probability": 0.5742 + }, + { + "start": 8449.69, + "end": 8451.79, + "probability": 0.8721 + }, + { + "start": 8451.79, + "end": 8452.59, + "probability": 0.1033 + }, + { + "start": 8452.59, + "end": 8457.27, + "probability": 0.9346 + }, + { + "start": 8457.31, + "end": 8458.01, + "probability": 0.8669 + }, + { + "start": 8459.43, + "end": 8460.45, + "probability": 0.7827 + }, + { + "start": 8469.49, + "end": 8471.52, + "probability": 0.677 + }, + { + "start": 8472.21, + "end": 8478.49, + "probability": 0.6892 + }, + { + "start": 8478.67, + "end": 8479.37, + "probability": 0.8414 + }, + { + "start": 8479.51, + "end": 8480.41, + "probability": 0.4106 + }, + { + "start": 8480.47, + "end": 8481.29, + "probability": 0.6806 + }, + { + "start": 8482.17, + "end": 8484.07, + "probability": 0.7974 + }, + { + "start": 8484.27, + "end": 8484.93, + "probability": 0.7363 + }, + { + "start": 8484.97, + "end": 8490.47, + "probability": 0.9757 + }, + { + "start": 8491.25, + "end": 8492.35, + "probability": 0.2538 + }, + { + "start": 8492.41, + "end": 8492.73, + "probability": 0.511 + }, + { + "start": 8492.89, + "end": 8495.35, + "probability": 0.897 + }, + { + "start": 8496.17, + "end": 8499.93, + "probability": 0.9692 + }, + { + "start": 8499.93, + "end": 8503.27, + "probability": 0.9969 + }, + { + "start": 8503.77, + "end": 8506.37, + "probability": 0.9922 + }, + { + "start": 8506.47, + "end": 8509.61, + "probability": 0.915 + }, + { + "start": 8510.17, + "end": 8514.05, + "probability": 0.9669 + }, + { + "start": 8514.17, + "end": 8514.87, + "probability": 0.7519 + }, + { + "start": 8515.27, + "end": 8516.99, + "probability": 0.9797 + }, + { + "start": 8517.31, + "end": 8518.71, + "probability": 0.9053 + }, + { + "start": 8518.79, + "end": 8519.39, + "probability": 0.6732 + }, + { + "start": 8519.47, + "end": 8520.89, + "probability": 0.8823 + }, + { + "start": 8521.19, + "end": 8523.43, + "probability": 0.9932 + }, + { + "start": 8523.81, + "end": 8527.33, + "probability": 0.7442 + }, + { + "start": 8528.03, + "end": 8528.27, + "probability": 0.2572 + }, + { + "start": 8528.27, + "end": 8531.75, + "probability": 0.8421 + }, + { + "start": 8531.97, + "end": 8533.99, + "probability": 0.9803 + }, + { + "start": 8534.07, + "end": 8535.71, + "probability": 0.9104 + }, + { + "start": 8537.35, + "end": 8539.23, + "probability": 0.8075 + }, + { + "start": 8539.61, + "end": 8541.25, + "probability": 0.8327 + }, + { + "start": 8541.75, + "end": 8547.21, + "probability": 0.9781 + }, + { + "start": 8547.83, + "end": 8554.79, + "probability": 0.8938 + }, + { + "start": 8554.89, + "end": 8557.76, + "probability": 0.878 + }, + { + "start": 8558.69, + "end": 8560.37, + "probability": 0.7932 + }, + { + "start": 8560.87, + "end": 8563.74, + "probability": 0.9089 + }, + { + "start": 8564.97, + "end": 8568.03, + "probability": 0.7181 + }, + { + "start": 8568.09, + "end": 8573.67, + "probability": 0.9902 + }, + { + "start": 8574.07, + "end": 8577.63, + "probability": 0.9851 + }, + { + "start": 8577.71, + "end": 8580.59, + "probability": 0.9873 + }, + { + "start": 8581.09, + "end": 8585.13, + "probability": 0.9186 + }, + { + "start": 8585.35, + "end": 8586.75, + "probability": 0.6366 + }, + { + "start": 8586.95, + "end": 8586.99, + "probability": 0.7758 + }, + { + "start": 8586.99, + "end": 8591.11, + "probability": 0.9238 + }, + { + "start": 8591.59, + "end": 8601.25, + "probability": 0.7539 + }, + { + "start": 8601.91, + "end": 8605.67, + "probability": 0.9974 + }, + { + "start": 8605.67, + "end": 8609.13, + "probability": 0.6515 + }, + { + "start": 8609.77, + "end": 8613.81, + "probability": 0.8081 + }, + { + "start": 8614.31, + "end": 8615.63, + "probability": 0.807 + }, + { + "start": 8617.45, + "end": 8622.69, + "probability": 0.8728 + }, + { + "start": 8622.97, + "end": 8626.83, + "probability": 0.8078 + }, + { + "start": 8627.15, + "end": 8630.81, + "probability": 0.9847 + }, + { + "start": 8630.81, + "end": 8636.03, + "probability": 0.6623 + }, + { + "start": 8636.73, + "end": 8637.33, + "probability": 0.4629 + }, + { + "start": 8637.45, + "end": 8638.99, + "probability": 0.9956 + }, + { + "start": 8639.37, + "end": 8644.29, + "probability": 0.9081 + }, + { + "start": 8644.71, + "end": 8647.71, + "probability": 0.5674 + }, + { + "start": 8647.93, + "end": 8649.53, + "probability": 0.6509 + }, + { + "start": 8649.85, + "end": 8650.97, + "probability": 0.7266 + }, + { + "start": 8651.41, + "end": 8657.41, + "probability": 0.9665 + }, + { + "start": 8658.21, + "end": 8661.47, + "probability": 0.9601 + }, + { + "start": 8661.59, + "end": 8664.49, + "probability": 0.9813 + }, + { + "start": 8665.83, + "end": 8668.05, + "probability": 0.9919 + }, + { + "start": 8668.91, + "end": 8672.59, + "probability": 0.9863 + }, + { + "start": 8672.59, + "end": 8677.81, + "probability": 0.9814 + }, + { + "start": 8677.81, + "end": 8683.43, + "probability": 0.8223 + }, + { + "start": 8684.03, + "end": 8689.01, + "probability": 0.9878 + }, + { + "start": 8689.57, + "end": 8693.15, + "probability": 0.9766 + }, + { + "start": 8693.55, + "end": 8694.37, + "probability": 0.7151 + }, + { + "start": 8696.19, + "end": 8698.69, + "probability": 0.8865 + }, + { + "start": 8700.49, + "end": 8701.13, + "probability": 0.9411 + }, + { + "start": 8709.93, + "end": 8716.45, + "probability": 0.9677 + }, + { + "start": 8716.67, + "end": 8718.77, + "probability": 0.7996 + }, + { + "start": 8718.77, + "end": 8722.39, + "probability": 0.996 + }, + { + "start": 8722.55, + "end": 8725.29, + "probability": 0.981 + }, + { + "start": 8725.99, + "end": 8728.95, + "probability": 0.7709 + }, + { + "start": 8731.27, + "end": 8732.63, + "probability": 0.9924 + }, + { + "start": 8732.69, + "end": 8733.95, + "probability": 0.5755 + }, + { + "start": 8735.23, + "end": 8738.55, + "probability": 0.969 + }, + { + "start": 8739.25, + "end": 8740.49, + "probability": 0.8618 + }, + { + "start": 8740.87, + "end": 8744.49, + "probability": 0.9926 + }, + { + "start": 8745.15, + "end": 8751.03, + "probability": 0.7554 + }, + { + "start": 8751.03, + "end": 8756.51, + "probability": 0.9751 + }, + { + "start": 8756.85, + "end": 8759.73, + "probability": 0.8787 + }, + { + "start": 8760.19, + "end": 8762.03, + "probability": 0.7503 + }, + { + "start": 8762.45, + "end": 8762.59, + "probability": 0.0597 + }, + { + "start": 8762.59, + "end": 8762.59, + "probability": 0.1011 + }, + { + "start": 8762.59, + "end": 8767.11, + "probability": 0.9349 + }, + { + "start": 8767.15, + "end": 8768.17, + "probability": 0.9513 + }, + { + "start": 8768.59, + "end": 8768.87, + "probability": 0.2783 + }, + { + "start": 8768.87, + "end": 8771.87, + "probability": 0.9243 + }, + { + "start": 8772.55, + "end": 8773.53, + "probability": 0.8527 + }, + { + "start": 8774.29, + "end": 8779.21, + "probability": 0.6722 + }, + { + "start": 8779.75, + "end": 8780.97, + "probability": 0.8817 + }, + { + "start": 8781.53, + "end": 8783.65, + "probability": 0.9644 + }, + { + "start": 8784.17, + "end": 8785.75, + "probability": 0.3921 + }, + { + "start": 8786.55, + "end": 8791.47, + "probability": 0.8569 + }, + { + "start": 8792.45, + "end": 8793.39, + "probability": 0.7816 + }, + { + "start": 8794.25, + "end": 8800.29, + "probability": 0.9392 + }, + { + "start": 8801.23, + "end": 8809.53, + "probability": 0.5521 + }, + { + "start": 8810.03, + "end": 8811.23, + "probability": 0.3149 + }, + { + "start": 8811.47, + "end": 8813.37, + "probability": 0.6135 + }, + { + "start": 8813.67, + "end": 8817.41, + "probability": 0.9917 + }, + { + "start": 8818.95, + "end": 8826.4, + "probability": 0.9884 + }, + { + "start": 8826.71, + "end": 8827.63, + "probability": 0.8029 + }, + { + "start": 8828.21, + "end": 8829.69, + "probability": 0.2025 + }, + { + "start": 8830.37, + "end": 8831.13, + "probability": 0.0525 + }, + { + "start": 8831.67, + "end": 8836.05, + "probability": 0.9406 + }, + { + "start": 8836.35, + "end": 8839.67, + "probability": 0.802 + }, + { + "start": 8840.49, + "end": 8842.63, + "probability": 0.644 + }, + { + "start": 8843.67, + "end": 8845.41, + "probability": 0.6874 + }, + { + "start": 8845.85, + "end": 8848.05, + "probability": 0.9827 + }, + { + "start": 8848.89, + "end": 8852.75, + "probability": 0.9829 + }, + { + "start": 8853.13, + "end": 8854.51, + "probability": 0.9388 + }, + { + "start": 8854.97, + "end": 8858.05, + "probability": 0.9954 + }, + { + "start": 8858.57, + "end": 8862.35, + "probability": 0.9494 + }, + { + "start": 8862.93, + "end": 8864.33, + "probability": 0.9567 + }, + { + "start": 8864.41, + "end": 8864.97, + "probability": 0.806 + }, + { + "start": 8865.37, + "end": 8866.51, + "probability": 0.9171 + }, + { + "start": 8866.93, + "end": 8868.73, + "probability": 0.9802 + }, + { + "start": 8869.35, + "end": 8870.71, + "probability": 0.4501 + }, + { + "start": 8870.73, + "end": 8871.39, + "probability": 0.9081 + }, + { + "start": 8871.43, + "end": 8872.45, + "probability": 0.8344 + }, + { + "start": 8872.87, + "end": 8876.45, + "probability": 0.9995 + }, + { + "start": 8877.29, + "end": 8880.85, + "probability": 0.9972 + }, + { + "start": 8881.27, + "end": 8882.73, + "probability": 0.9141 + }, + { + "start": 8882.83, + "end": 8883.13, + "probability": 0.5877 + }, + { + "start": 8883.15, + "end": 8883.51, + "probability": 0.6611 + }, + { + "start": 8883.89, + "end": 8884.79, + "probability": 0.722 + }, + { + "start": 8884.95, + "end": 8885.91, + "probability": 0.8013 + }, + { + "start": 8886.41, + "end": 8887.49, + "probability": 0.8551 + }, + { + "start": 8887.79, + "end": 8890.17, + "probability": 0.9539 + }, + { + "start": 8890.37, + "end": 8891.47, + "probability": 0.9976 + }, + { + "start": 8892.31, + "end": 8897.13, + "probability": 0.7587 + }, + { + "start": 8897.83, + "end": 8900.15, + "probability": 0.9382 + }, + { + "start": 8900.31, + "end": 8904.09, + "probability": 0.9655 + }, + { + "start": 8904.65, + "end": 8905.78, + "probability": 0.9741 + }, + { + "start": 8905.83, + "end": 8910.53, + "probability": 0.9776 + }, + { + "start": 8910.67, + "end": 8914.19, + "probability": 0.9731 + }, + { + "start": 8914.19, + "end": 8917.07, + "probability": 0.9652 + }, + { + "start": 8917.71, + "end": 8921.31, + "probability": 0.9983 + }, + { + "start": 8922.43, + "end": 8923.79, + "probability": 0.853 + }, + { + "start": 8924.47, + "end": 8928.51, + "probability": 0.9884 + }, + { + "start": 8929.09, + "end": 8931.27, + "probability": 0.9829 + }, + { + "start": 8931.65, + "end": 8932.73, + "probability": 0.9611 + }, + { + "start": 8932.85, + "end": 8935.85, + "probability": 0.9544 + }, + { + "start": 8936.49, + "end": 8940.01, + "probability": 0.9751 + }, + { + "start": 8940.59, + "end": 8946.19, + "probability": 0.9823 + }, + { + "start": 8946.55, + "end": 8949.07, + "probability": 0.998 + }, + { + "start": 8949.69, + "end": 8950.49, + "probability": 0.8778 + }, + { + "start": 8951.51, + "end": 8954.51, + "probability": 0.9748 + }, + { + "start": 8954.51, + "end": 8955.77, + "probability": 0.8259 + }, + { + "start": 8956.21, + "end": 8960.07, + "probability": 0.6113 + }, + { + "start": 8960.21, + "end": 8960.21, + "probability": 0.0549 + }, + { + "start": 8960.21, + "end": 8960.21, + "probability": 0.4164 + }, + { + "start": 8960.21, + "end": 8962.61, + "probability": 0.5356 + }, + { + "start": 8964.29, + "end": 8966.99, + "probability": 0.8428 + }, + { + "start": 8967.05, + "end": 8970.49, + "probability": 0.9927 + }, + { + "start": 8970.85, + "end": 8971.55, + "probability": 0.9674 + }, + { + "start": 8971.67, + "end": 8972.21, + "probability": 0.8043 + }, + { + "start": 8972.67, + "end": 8975.47, + "probability": 0.8518 + }, + { + "start": 8975.47, + "end": 8975.89, + "probability": 0.2264 + }, + { + "start": 8975.89, + "end": 8977.97, + "probability": 0.8688 + }, + { + "start": 8978.11, + "end": 8978.39, + "probability": 0.3495 + }, + { + "start": 8978.39, + "end": 8978.87, + "probability": 0.731 + }, + { + "start": 8981.15, + "end": 8987.29, + "probability": 0.9814 + }, + { + "start": 8987.81, + "end": 8990.13, + "probability": 0.4106 + }, + { + "start": 8991.07, + "end": 8991.79, + "probability": 0.6201 + }, + { + "start": 8992.41, + "end": 8995.15, + "probability": 0.4178 + }, + { + "start": 8996.25, + "end": 8999.13, + "probability": 0.8186 + }, + { + "start": 9000.65, + "end": 9002.92, + "probability": 0.9095 + }, + { + "start": 9005.61, + "end": 9006.59, + "probability": 0.6173 + }, + { + "start": 9007.71, + "end": 9008.03, + "probability": 0.979 + }, + { + "start": 9008.73, + "end": 9009.61, + "probability": 0.8744 + }, + { + "start": 9011.04, + "end": 9013.97, + "probability": 0.9574 + }, + { + "start": 9014.77, + "end": 9015.51, + "probability": 0.9495 + }, + { + "start": 9016.13, + "end": 9016.95, + "probability": 0.8426 + }, + { + "start": 9018.49, + "end": 9021.47, + "probability": 0.9399 + }, + { + "start": 9022.63, + "end": 9024.73, + "probability": 0.9246 + }, + { + "start": 9025.53, + "end": 9027.27, + "probability": 0.9759 + }, + { + "start": 9028.13, + "end": 9028.45, + "probability": 0.7426 + }, + { + "start": 9029.47, + "end": 9030.29, + "probability": 0.3683 + }, + { + "start": 9032.17, + "end": 9034.35, + "probability": 0.8818 + }, + { + "start": 9035.05, + "end": 9036.25, + "probability": 0.9728 + }, + { + "start": 9036.97, + "end": 9037.93, + "probability": 0.9146 + }, + { + "start": 9038.63, + "end": 9040.43, + "probability": 0.9578 + }, + { + "start": 9041.39, + "end": 9042.97, + "probability": 0.958 + }, + { + "start": 9043.57, + "end": 9045.29, + "probability": 0.9463 + }, + { + "start": 9046.49, + "end": 9050.89, + "probability": 0.7426 + }, + { + "start": 9051.67, + "end": 9052.15, + "probability": 0.8154 + }, + { + "start": 9052.81, + "end": 9057.33, + "probability": 0.717 + }, + { + "start": 9058.15, + "end": 9060.31, + "probability": 0.9451 + }, + { + "start": 9060.99, + "end": 9063.95, + "probability": 0.7856 + }, + { + "start": 9064.51, + "end": 9065.03, + "probability": 0.9333 + }, + { + "start": 9065.81, + "end": 9066.93, + "probability": 0.9653 + }, + { + "start": 9067.83, + "end": 9069.75, + "probability": 0.9786 + }, + { + "start": 9070.91, + "end": 9072.67, + "probability": 0.9641 + }, + { + "start": 9073.57, + "end": 9075.31, + "probability": 0.8008 + }, + { + "start": 9076.41, + "end": 9076.91, + "probability": 0.5872 + }, + { + "start": 9078.27, + "end": 9079.07, + "probability": 0.8618 + }, + { + "start": 9080.09, + "end": 9081.85, + "probability": 0.7778 + }, + { + "start": 9082.59, + "end": 9085.01, + "probability": 0.8907 + }, + { + "start": 9087.31, + "end": 9087.85, + "probability": 0.9406 + }, + { + "start": 9089.49, + "end": 9090.53, + "probability": 0.8159 + }, + { + "start": 9091.57, + "end": 9093.65, + "probability": 0.962 + }, + { + "start": 9095.41, + "end": 9097.45, + "probability": 0.9801 + }, + { + "start": 9098.91, + "end": 9101.11, + "probability": 0.9631 + }, + { + "start": 9102.91, + "end": 9106.77, + "probability": 0.9573 + }, + { + "start": 9107.83, + "end": 9108.17, + "probability": 0.9064 + }, + { + "start": 9108.93, + "end": 9109.87, + "probability": 0.9473 + }, + { + "start": 9110.51, + "end": 9112.47, + "probability": 0.8872 + }, + { + "start": 9114.33, + "end": 9116.23, + "probability": 0.9688 + }, + { + "start": 9117.81, + "end": 9119.99, + "probability": 0.9675 + }, + { + "start": 9120.89, + "end": 9122.49, + "probability": 0.9693 + }, + { + "start": 9124.25, + "end": 9128.65, + "probability": 0.9572 + }, + { + "start": 9129.69, + "end": 9131.55, + "probability": 0.7141 + }, + { + "start": 9132.53, + "end": 9135.47, + "probability": 0.7988 + }, + { + "start": 9136.13, + "end": 9139.27, + "probability": 0.9665 + }, + { + "start": 9139.81, + "end": 9141.89, + "probability": 0.8563 + }, + { + "start": 9143.69, + "end": 9149.03, + "probability": 0.9465 + }, + { + "start": 9149.83, + "end": 9151.67, + "probability": 0.9218 + }, + { + "start": 9153.63, + "end": 9158.43, + "probability": 0.7913 + }, + { + "start": 9159.37, + "end": 9159.65, + "probability": 0.9351 + }, + { + "start": 9160.49, + "end": 9161.69, + "probability": 0.3022 + }, + { + "start": 9162.59, + "end": 9164.57, + "probability": 0.7868 + }, + { + "start": 9165.27, + "end": 9169.27, + "probability": 0.8682 + }, + { + "start": 9169.95, + "end": 9170.41, + "probability": 0.9553 + }, + { + "start": 9171.41, + "end": 9172.33, + "probability": 0.9882 + }, + { + "start": 9172.99, + "end": 9174.57, + "probability": 0.9535 + }, + { + "start": 9175.39, + "end": 9179.63, + "probability": 0.504 + }, + { + "start": 9184.67, + "end": 9185.71, + "probability": 0.2751 + }, + { + "start": 9189.89, + "end": 9190.15, + "probability": 0.7678 + }, + { + "start": 9191.61, + "end": 9192.37, + "probability": 0.5392 + }, + { + "start": 9193.45, + "end": 9194.97, + "probability": 0.676 + }, + { + "start": 9196.15, + "end": 9196.55, + "probability": 0.9567 + }, + { + "start": 9197.21, + "end": 9197.93, + "probability": 0.8904 + }, + { + "start": 9199.69, + "end": 9201.15, + "probability": 0.8585 + }, + { + "start": 9202.03, + "end": 9205.35, + "probability": 0.8285 + }, + { + "start": 9206.51, + "end": 9207.35, + "probability": 0.9719 + }, + { + "start": 9207.99, + "end": 9208.75, + "probability": 0.9028 + }, + { + "start": 9209.75, + "end": 9210.19, + "probability": 0.9844 + }, + { + "start": 9211.09, + "end": 9211.85, + "probability": 0.9507 + }, + { + "start": 9212.61, + "end": 9213.01, + "probability": 0.9375 + }, + { + "start": 9213.81, + "end": 9214.81, + "probability": 0.8143 + }, + { + "start": 9215.71, + "end": 9217.39, + "probability": 0.6611 + }, + { + "start": 9218.31, + "end": 9218.61, + "probability": 0.8234 + }, + { + "start": 9219.31, + "end": 9220.35, + "probability": 0.9514 + }, + { + "start": 9221.29, + "end": 9221.79, + "probability": 0.9862 + }, + { + "start": 9222.63, + "end": 9223.57, + "probability": 0.8823 + }, + { + "start": 9224.17, + "end": 9226.41, + "probability": 0.6427 + }, + { + "start": 9228.99, + "end": 9230.93, + "probability": 0.9736 + }, + { + "start": 9231.99, + "end": 9233.97, + "probability": 0.9733 + }, + { + "start": 9235.39, + "end": 9237.49, + "probability": 0.9401 + }, + { + "start": 9238.07, + "end": 9239.27, + "probability": 0.8397 + }, + { + "start": 9240.07, + "end": 9240.31, + "probability": 0.7373 + }, + { + "start": 9241.15, + "end": 9241.99, + "probability": 0.8011 + }, + { + "start": 9243.23, + "end": 9245.39, + "probability": 0.8569 + }, + { + "start": 9247.23, + "end": 9249.01, + "probability": 0.7583 + }, + { + "start": 9250.55, + "end": 9252.51, + "probability": 0.8555 + }, + { + "start": 9254.33, + "end": 9256.07, + "probability": 0.6074 + }, + { + "start": 9257.21, + "end": 9258.81, + "probability": 0.9552 + }, + { + "start": 9260.15, + "end": 9261.47, + "probability": 0.9103 + }, + { + "start": 9262.91, + "end": 9263.91, + "probability": 0.9671 + }, + { + "start": 9264.95, + "end": 9265.37, + "probability": 0.9803 + }, + { + "start": 9266.15, + "end": 9267.03, + "probability": 0.8329 + }, + { + "start": 9267.91, + "end": 9270.37, + "probability": 0.6094 + }, + { + "start": 9272.19, + "end": 9272.65, + "probability": 0.8617 + }, + { + "start": 9273.77, + "end": 9277.03, + "probability": 0.7957 + }, + { + "start": 9278.25, + "end": 9279.39, + "probability": 0.9452 + }, + { + "start": 9279.91, + "end": 9280.95, + "probability": 0.9231 + }, + { + "start": 9283.07, + "end": 9284.59, + "probability": 0.9179 + }, + { + "start": 9285.95, + "end": 9289.05, + "probability": 0.8587 + }, + { + "start": 9290.39, + "end": 9291.75, + "probability": 0.9148 + }, + { + "start": 9292.53, + "end": 9294.15, + "probability": 0.7594 + }, + { + "start": 9294.89, + "end": 9297.17, + "probability": 0.7514 + }, + { + "start": 9298.11, + "end": 9300.47, + "probability": 0.9045 + }, + { + "start": 9301.39, + "end": 9303.01, + "probability": 0.9218 + }, + { + "start": 9304.09, + "end": 9305.73, + "probability": 0.934 + }, + { + "start": 9307.01, + "end": 9308.71, + "probability": 0.9329 + }, + { + "start": 9309.65, + "end": 9312.33, + "probability": 0.9437 + }, + { + "start": 9313.25, + "end": 9313.51, + "probability": 0.7423 + }, + { + "start": 9314.21, + "end": 9315.01, + "probability": 0.777 + }, + { + "start": 9316.09, + "end": 9318.45, + "probability": 0.8875 + }, + { + "start": 9320.01, + "end": 9322.77, + "probability": 0.8983 + }, + { + "start": 9324.23, + "end": 9325.77, + "probability": 0.9054 + }, + { + "start": 9326.97, + "end": 9328.75, + "probability": 0.9395 + }, + { + "start": 9335.99, + "end": 9336.35, + "probability": 0.8499 + }, + { + "start": 9340.47, + "end": 9341.11, + "probability": 0.7376 + }, + { + "start": 9344.61, + "end": 9348.55, + "probability": 0.796 + }, + { + "start": 9350.13, + "end": 9350.63, + "probability": 0.9881 + }, + { + "start": 9351.31, + "end": 9351.75, + "probability": 0.7715 + }, + { + "start": 9353.51, + "end": 9355.39, + "probability": 0.9092 + }, + { + "start": 9358.33, + "end": 9358.81, + "probability": 0.9302 + }, + { + "start": 9359.85, + "end": 9360.63, + "probability": 0.8354 + }, + { + "start": 9361.39, + "end": 9361.83, + "probability": 0.9446 + }, + { + "start": 9363.17, + "end": 9364.23, + "probability": 0.9004 + }, + { + "start": 9365.69, + "end": 9367.63, + "probability": 0.8293 + }, + { + "start": 9368.45, + "end": 9370.53, + "probability": 0.9387 + }, + { + "start": 9374.03, + "end": 9374.51, + "probability": 0.7882 + }, + { + "start": 9375.49, + "end": 9379.27, + "probability": 0.9357 + }, + { + "start": 9380.03, + "end": 9382.01, + "probability": 0.7599 + }, + { + "start": 9382.59, + "end": 9385.43, + "probability": 0.9263 + }, + { + "start": 9386.17, + "end": 9386.51, + "probability": 0.9878 + }, + { + "start": 9387.13, + "end": 9390.65, + "probability": 0.9823 + }, + { + "start": 9391.31, + "end": 9395.57, + "probability": 0.9839 + }, + { + "start": 9396.33, + "end": 9397.23, + "probability": 0.8439 + }, + { + "start": 9397.93, + "end": 9398.19, + "probability": 0.6877 + }, + { + "start": 9398.85, + "end": 9399.83, + "probability": 0.6291 + }, + { + "start": 9400.61, + "end": 9400.89, + "probability": 0.8997 + }, + { + "start": 9401.95, + "end": 9402.73, + "probability": 0.9597 + }, + { + "start": 9403.71, + "end": 9404.13, + "probability": 0.9806 + }, + { + "start": 9404.69, + "end": 9405.45, + "probability": 0.8738 + }, + { + "start": 9406.25, + "end": 9408.25, + "probability": 0.9783 + }, + { + "start": 9409.37, + "end": 9409.89, + "probability": 0.9041 + }, + { + "start": 9410.47, + "end": 9411.65, + "probability": 0.5805 + }, + { + "start": 9413.21, + "end": 9420.73, + "probability": 0.6726 + }, + { + "start": 9421.87, + "end": 9422.95, + "probability": 0.3387 + }, + { + "start": 9423.85, + "end": 9425.69, + "probability": 0.5147 + }, + { + "start": 9427.19, + "end": 9427.47, + "probability": 0.5502 + }, + { + "start": 9428.85, + "end": 9429.69, + "probability": 0.7652 + }, + { + "start": 9431.57, + "end": 9431.89, + "probability": 0.8949 + }, + { + "start": 9432.59, + "end": 9433.81, + "probability": 0.7442 + }, + { + "start": 9434.49, + "end": 9436.35, + "probability": 0.9714 + }, + { + "start": 9437.25, + "end": 9439.39, + "probability": 0.968 + }, + { + "start": 9440.35, + "end": 9442.31, + "probability": 0.5511 + }, + { + "start": 9443.47, + "end": 9444.53, + "probability": 0.9377 + }, + { + "start": 9446.25, + "end": 9447.21, + "probability": 0.8112 + }, + { + "start": 9449.11, + "end": 9450.99, + "probability": 0.7754 + }, + { + "start": 9452.13, + "end": 9455.67, + "probability": 0.9474 + }, + { + "start": 9456.91, + "end": 9459.37, + "probability": 0.9479 + }, + { + "start": 9460.27, + "end": 9461.15, + "probability": 0.5772 + }, + { + "start": 9462.37, + "end": 9465.85, + "probability": 0.8182 + }, + { + "start": 9466.57, + "end": 9468.55, + "probability": 0.9501 + }, + { + "start": 9469.39, + "end": 9470.63, + "probability": 0.6733 + }, + { + "start": 9471.45, + "end": 9472.41, + "probability": 0.7136 + }, + { + "start": 9473.75, + "end": 9475.25, + "probability": 0.9015 + }, + { + "start": 9476.05, + "end": 9477.65, + "probability": 0.9762 + }, + { + "start": 9478.67, + "end": 9480.79, + "probability": 0.9774 + }, + { + "start": 9481.63, + "end": 9483.55, + "probability": 0.9574 + }, + { + "start": 9484.19, + "end": 9485.61, + "probability": 0.8361 + }, + { + "start": 9486.77, + "end": 9487.55, + "probability": 0.9934 + }, + { + "start": 9490.21, + "end": 9491.61, + "probability": 0.5841 + }, + { + "start": 9492.61, + "end": 9493.97, + "probability": 0.9268 + }, + { + "start": 9495.13, + "end": 9496.13, + "probability": 0.7295 + }, + { + "start": 9498.09, + "end": 9500.29, + "probability": 0.8138 + }, + { + "start": 9502.21, + "end": 9503.01, + "probability": 0.9742 + }, + { + "start": 9503.63, + "end": 9504.47, + "probability": 0.4023 + }, + { + "start": 9505.71, + "end": 9507.69, + "probability": 0.9616 + }, + { + "start": 9508.97, + "end": 9509.65, + "probability": 0.9923 + }, + { + "start": 9511.01, + "end": 9512.03, + "probability": 0.9542 + }, + { + "start": 9512.91, + "end": 9514.63, + "probability": 0.9467 + }, + { + "start": 9515.93, + "end": 9516.63, + "probability": 0.9352 + }, + { + "start": 9518.37, + "end": 9519.33, + "probability": 0.5885 + }, + { + "start": 9520.57, + "end": 9521.41, + "probability": 0.941 + }, + { + "start": 9523.49, + "end": 9524.59, + "probability": 0.9009 + }, + { + "start": 9525.33, + "end": 9527.13, + "probability": 0.8389 + }, + { + "start": 9527.71, + "end": 9529.11, + "probability": 0.9855 + }, + { + "start": 9529.97, + "end": 9531.97, + "probability": 0.984 + }, + { + "start": 9533.33, + "end": 9535.37, + "probability": 0.967 + }, + { + "start": 9536.43, + "end": 9538.69, + "probability": 0.7185 + }, + { + "start": 9539.89, + "end": 9540.53, + "probability": 0.7753 + }, + { + "start": 9541.37, + "end": 9542.29, + "probability": 0.8633 + }, + { + "start": 9543.03, + "end": 9544.51, + "probability": 0.878 + }, + { + "start": 9545.55, + "end": 9546.23, + "probability": 0.8927 + }, + { + "start": 9547.17, + "end": 9548.33, + "probability": 0.9594 + }, + { + "start": 9550.37, + "end": 9552.19, + "probability": 0.8597 + }, + { + "start": 9553.17, + "end": 9556.97, + "probability": 0.8784 + }, + { + "start": 9559.45, + "end": 9561.19, + "probability": 0.5428 + }, + { + "start": 9562.95, + "end": 9564.71, + "probability": 0.7472 + }, + { + "start": 9565.63, + "end": 9566.95, + "probability": 0.7505 + }, + { + "start": 9568.69, + "end": 9569.51, + "probability": 0.7994 + }, + { + "start": 9570.27, + "end": 9571.81, + "probability": 0.9432 + }, + { + "start": 9572.87, + "end": 9573.91, + "probability": 0.6849 + }, + { + "start": 9574.89, + "end": 9575.91, + "probability": 0.5111 + }, + { + "start": 9577.03, + "end": 9579.31, + "probability": 0.8247 + }, + { + "start": 9580.35, + "end": 9582.97, + "probability": 0.8105 + }, + { + "start": 9584.05, + "end": 9584.97, + "probability": 0.9789 + }, + { + "start": 9586.61, + "end": 9588.23, + "probability": 0.746 + }, + { + "start": 9589.19, + "end": 9595.55, + "probability": 0.9673 + }, + { + "start": 9595.67, + "end": 9596.81, + "probability": 0.6644 + }, + { + "start": 9596.83, + "end": 9597.23, + "probability": 0.4379 + }, + { + "start": 9598.57, + "end": 9599.71, + "probability": 0.7284 + }, + { + "start": 9600.83, + "end": 9605.75, + "probability": 0.0117 + }, + { + "start": 9608.67, + "end": 9611.67, + "probability": 0.355 + }, + { + "start": 9623.11, + "end": 9625.83, + "probability": 0.6486 + }, + { + "start": 9628.57, + "end": 9630.19, + "probability": 0.8971 + }, + { + "start": 9631.03, + "end": 9631.73, + "probability": 0.9524 + }, + { + "start": 9632.99, + "end": 9633.67, + "probability": 0.3479 + }, + { + "start": 9634.69, + "end": 9638.13, + "probability": 0.6027 + }, + { + "start": 9642.31, + "end": 9642.91, + "probability": 0.0002 + }, + { + "start": 9645.69, + "end": 9646.75, + "probability": 0.0609 + }, + { + "start": 9647.39, + "end": 9649.97, + "probability": 0.0438 + }, + { + "start": 9653.43, + "end": 9653.89, + "probability": 0.1495 + }, + { + "start": 9743.0, + "end": 9743.0, + "probability": 0.0 + }, + { + "start": 9743.22, + "end": 9743.7, + "probability": 0.1843 + }, + { + "start": 9743.7, + "end": 9744.02, + "probability": 0.0247 + }, + { + "start": 9744.02, + "end": 9747.28, + "probability": 0.6781 + }, + { + "start": 9747.96, + "end": 9750.32, + "probability": 0.77 + }, + { + "start": 9751.62, + "end": 9752.34, + "probability": 0.6337 + }, + { + "start": 9753.98, + "end": 9756.02, + "probability": 0.5588 + }, + { + "start": 9756.88, + "end": 9759.12, + "probability": 0.7561 + }, + { + "start": 9762.0, + "end": 9762.7, + "probability": 0.9661 + }, + { + "start": 9769.98, + "end": 9773.3, + "probability": 0.7212 + }, + { + "start": 9773.4, + "end": 9776.8, + "probability": 0.758 + }, + { + "start": 9777.17, + "end": 9780.36, + "probability": 0.998 + }, + { + "start": 9781.1, + "end": 9781.86, + "probability": 0.9135 + }, + { + "start": 9782.68, + "end": 9783.6, + "probability": 0.8789 + }, + { + "start": 9783.6, + "end": 9784.28, + "probability": 0.6237 + }, + { + "start": 9785.22, + "end": 9786.08, + "probability": 0.9542 + }, + { + "start": 9787.38, + "end": 9788.24, + "probability": 0.7717 + }, + { + "start": 9790.6, + "end": 9794.22, + "probability": 0.9763 + }, + { + "start": 9795.4, + "end": 9799.74, + "probability": 0.9562 + }, + { + "start": 9801.12, + "end": 9805.14, + "probability": 0.9956 + }, + { + "start": 9805.92, + "end": 9808.2, + "probability": 0.8288 + }, + { + "start": 9809.32, + "end": 9814.24, + "probability": 0.157 + }, + { + "start": 9814.32, + "end": 9815.6, + "probability": 0.7014 + }, + { + "start": 9815.6, + "end": 9816.96, + "probability": 0.8166 + }, + { + "start": 9817.38, + "end": 9818.18, + "probability": 0.9048 + }, + { + "start": 9819.12, + "end": 9821.04, + "probability": 0.9834 + }, + { + "start": 9821.56, + "end": 9822.1, + "probability": 0.8815 + }, + { + "start": 9822.18, + "end": 9823.78, + "probability": 0.9771 + }, + { + "start": 9824.52, + "end": 9824.84, + "probability": 0.8606 + }, + { + "start": 9825.02, + "end": 9825.59, + "probability": 0.6092 + }, + { + "start": 9826.42, + "end": 9826.82, + "probability": 0.4387 + }, + { + "start": 9827.54, + "end": 9827.86, + "probability": 0.781 + }, + { + "start": 9828.08, + "end": 9831.96, + "probability": 0.7693 + }, + { + "start": 9831.98, + "end": 9833.59, + "probability": 0.6545 + }, + { + "start": 9834.1, + "end": 9834.24, + "probability": 0.1012 + }, + { + "start": 9834.78, + "end": 9837.24, + "probability": 0.2307 + }, + { + "start": 9837.52, + "end": 9838.34, + "probability": 0.7803 + }, + { + "start": 9838.56, + "end": 9841.98, + "probability": 0.5289 + }, + { + "start": 9842.16, + "end": 9842.89, + "probability": 0.9116 + }, + { + "start": 9843.48, + "end": 9846.06, + "probability": 0.5523 + }, + { + "start": 9846.26, + "end": 9849.3, + "probability": 0.3744 + }, + { + "start": 9849.4, + "end": 9850.28, + "probability": 0.4445 + }, + { + "start": 9850.54, + "end": 9852.22, + "probability": 0.2477 + }, + { + "start": 9852.3, + "end": 9853.62, + "probability": 0.8096 + }, + { + "start": 9853.8, + "end": 9854.86, + "probability": 0.3839 + }, + { + "start": 9855.38, + "end": 9858.1, + "probability": 0.4077 + }, + { + "start": 9858.1, + "end": 9861.84, + "probability": 0.17 + }, + { + "start": 9861.88, + "end": 9863.99, + "probability": 0.6469 + }, + { + "start": 9864.92, + "end": 9867.24, + "probability": 0.9545 + }, + { + "start": 9870.24, + "end": 9870.5, + "probability": 0.0395 + }, + { + "start": 9870.5, + "end": 9870.71, + "probability": 0.5732 + }, + { + "start": 9872.56, + "end": 9874.48, + "probability": 0.5669 + }, + { + "start": 9875.4, + "end": 9876.68, + "probability": 0.7689 + }, + { + "start": 9877.34, + "end": 9878.86, + "probability": 0.7924 + }, + { + "start": 9878.92, + "end": 9881.36, + "probability": 0.6089 + }, + { + "start": 9882.1, + "end": 9883.1, + "probability": 0.9192 + }, + { + "start": 9883.36, + "end": 9883.79, + "probability": 0.9836 + }, + { + "start": 9884.5, + "end": 9888.02, + "probability": 0.9937 + }, + { + "start": 9888.84, + "end": 9892.8, + "probability": 0.9775 + }, + { + "start": 9893.58, + "end": 9894.36, + "probability": 0.916 + }, + { + "start": 9895.46, + "end": 9895.82, + "probability": 0.9255 + }, + { + "start": 9897.32, + "end": 9898.24, + "probability": 0.9539 + }, + { + "start": 9899.02, + "end": 9903.42, + "probability": 0.9813 + }, + { + "start": 9903.44, + "end": 9904.68, + "probability": 0.9974 + }, + { + "start": 9905.34, + "end": 9907.1, + "probability": 0.9984 + }, + { + "start": 9907.7, + "end": 9908.71, + "probability": 0.8207 + }, + { + "start": 9908.82, + "end": 9909.32, + "probability": 0.4553 + }, + { + "start": 9910.64, + "end": 9915.58, + "probability": 0.8678 + }, + { + "start": 9916.6, + "end": 9917.4, + "probability": 0.8994 + }, + { + "start": 9918.76, + "end": 9921.84, + "probability": 0.9753 + }, + { + "start": 9923.54, + "end": 9926.62, + "probability": 0.9542 + }, + { + "start": 9929.52, + "end": 9930.94, + "probability": 0.9916 + }, + { + "start": 9932.2, + "end": 9934.94, + "probability": 0.9468 + }, + { + "start": 9936.52, + "end": 9940.3, + "probability": 0.8524 + }, + { + "start": 9940.38, + "end": 9943.85, + "probability": 0.7505 + }, + { + "start": 9944.96, + "end": 9945.78, + "probability": 0.978 + }, + { + "start": 9946.52, + "end": 9948.56, + "probability": 0.7893 + }, + { + "start": 9949.2, + "end": 9951.6, + "probability": 0.8205 + }, + { + "start": 9952.12, + "end": 9953.66, + "probability": 0.9946 + }, + { + "start": 9954.78, + "end": 9955.24, + "probability": 0.4641 + }, + { + "start": 9956.0, + "end": 9956.82, + "probability": 0.6157 + }, + { + "start": 9959.12, + "end": 9960.3, + "probability": 0.9512 + }, + { + "start": 9961.76, + "end": 9964.18, + "probability": 0.976 + }, + { + "start": 9965.58, + "end": 9966.88, + "probability": 0.8765 + }, + { + "start": 9967.42, + "end": 9970.92, + "probability": 0.9704 + }, + { + "start": 9972.08, + "end": 9974.38, + "probability": 0.9957 + }, + { + "start": 9976.34, + "end": 9978.28, + "probability": 0.9966 + }, + { + "start": 9979.32, + "end": 9981.18, + "probability": 0.6303 + }, + { + "start": 9982.18, + "end": 9983.7, + "probability": 0.7716 + }, + { + "start": 9985.64, + "end": 9989.38, + "probability": 0.9702 + }, + { + "start": 9990.82, + "end": 9992.92, + "probability": 0.9934 + }, + { + "start": 9993.94, + "end": 9997.78, + "probability": 0.9846 + }, + { + "start": 9998.6, + "end": 10003.22, + "probability": 0.989 + }, + { + "start": 10004.08, + "end": 10006.54, + "probability": 0.9733 + }, + { + "start": 10007.26, + "end": 10009.92, + "probability": 0.9354 + }, + { + "start": 10010.46, + "end": 10011.56, + "probability": 0.9663 + }, + { + "start": 10012.0, + "end": 10012.46, + "probability": 0.998 + }, + { + "start": 10015.4, + "end": 10020.8, + "probability": 0.8902 + }, + { + "start": 10021.5, + "end": 10024.58, + "probability": 0.7409 + }, + { + "start": 10027.92, + "end": 10028.02, + "probability": 0.0155 + }, + { + "start": 10028.02, + "end": 10029.52, + "probability": 0.2704 + }, + { + "start": 10030.28, + "end": 10033.8, + "probability": 0.0587 + }, + { + "start": 10034.1, + "end": 10035.4, + "probability": 0.3675 + }, + { + "start": 10035.54, + "end": 10036.42, + "probability": 0.3782 + }, + { + "start": 10037.7, + "end": 10041.62, + "probability": 0.2058 + }, + { + "start": 10041.62, + "end": 10043.2, + "probability": 0.434 + }, + { + "start": 10043.2, + "end": 10043.32, + "probability": 0.3678 + }, + { + "start": 10043.44, + "end": 10046.02, + "probability": 0.7412 + }, + { + "start": 10046.22, + "end": 10046.8, + "probability": 0.5048 + }, + { + "start": 10046.8, + "end": 10046.8, + "probability": 0.6239 + }, + { + "start": 10046.92, + "end": 10049.2, + "probability": 0.8148 + }, + { + "start": 10049.28, + "end": 10050.66, + "probability": 0.9058 + }, + { + "start": 10051.04, + "end": 10052.17, + "probability": 0.9354 + }, + { + "start": 10052.28, + "end": 10054.34, + "probability": 0.7904 + }, + { + "start": 10054.9, + "end": 10057.4, + "probability": 0.5606 + }, + { + "start": 10057.52, + "end": 10058.12, + "probability": 0.8226 + }, + { + "start": 10059.8, + "end": 10060.66, + "probability": 0.9346 + }, + { + "start": 10060.96, + "end": 10061.52, + "probability": 0.9345 + }, + { + "start": 10063.66, + "end": 10067.18, + "probability": 0.9591 + }, + { + "start": 10068.52, + "end": 10070.8, + "probability": 0.9839 + }, + { + "start": 10071.9, + "end": 10072.74, + "probability": 0.7428 + }, + { + "start": 10073.52, + "end": 10074.74, + "probability": 0.7787 + }, + { + "start": 10075.32, + "end": 10079.92, + "probability": 0.973 + }, + { + "start": 10080.12, + "end": 10083.7, + "probability": 0.9948 + }, + { + "start": 10083.7, + "end": 10086.0, + "probability": 0.8177 + }, + { + "start": 10086.0, + "end": 10087.76, + "probability": 0.9851 + }, + { + "start": 10088.54, + "end": 10090.74, + "probability": 0.9858 + }, + { + "start": 10091.06, + "end": 10092.2, + "probability": 0.813 + }, + { + "start": 10092.36, + "end": 10094.44, + "probability": 0.9578 + }, + { + "start": 10095.46, + "end": 10097.0, + "probability": 0.9897 + }, + { + "start": 10097.62, + "end": 10099.8, + "probability": 0.9922 + }, + { + "start": 10099.98, + "end": 10101.14, + "probability": 0.3984 + }, + { + "start": 10102.14, + "end": 10103.4, + "probability": 0.5386 + }, + { + "start": 10104.06, + "end": 10106.16, + "probability": 0.5859 + }, + { + "start": 10106.74, + "end": 10107.26, + "probability": 0.5693 + }, + { + "start": 10107.68, + "end": 10109.78, + "probability": 0.9792 + }, + { + "start": 10111.38, + "end": 10112.96, + "probability": 0.9227 + }, + { + "start": 10113.32, + "end": 10114.64, + "probability": 0.8462 + }, + { + "start": 10115.34, + "end": 10115.74, + "probability": 0.9427 + }, + { + "start": 10116.78, + "end": 10118.92, + "probability": 0.9958 + }, + { + "start": 10119.32, + "end": 10120.11, + "probability": 0.9574 + }, + { + "start": 10120.88, + "end": 10123.52, + "probability": 0.9625 + }, + { + "start": 10124.38, + "end": 10126.8, + "probability": 0.8372 + }, + { + "start": 10129.1, + "end": 10131.24, + "probability": 0.9956 + }, + { + "start": 10132.3, + "end": 10133.46, + "probability": 0.9993 + }, + { + "start": 10134.66, + "end": 10140.56, + "probability": 0.8335 + }, + { + "start": 10141.58, + "end": 10141.7, + "probability": 0.8469 + }, + { + "start": 10142.3, + "end": 10143.6, + "probability": 0.9985 + }, + { + "start": 10144.92, + "end": 10145.64, + "probability": 0.8471 + }, + { + "start": 10145.7, + "end": 10146.18, + "probability": 0.969 + }, + { + "start": 10146.26, + "end": 10146.89, + "probability": 0.9823 + }, + { + "start": 10147.16, + "end": 10148.12, + "probability": 0.9875 + }, + { + "start": 10148.74, + "end": 10149.1, + "probability": 0.4038 + }, + { + "start": 10149.56, + "end": 10152.28, + "probability": 0.9879 + }, + { + "start": 10153.18, + "end": 10156.32, + "probability": 0.9886 + }, + { + "start": 10157.18, + "end": 10158.94, + "probability": 0.9521 + }, + { + "start": 10159.1, + "end": 10160.13, + "probability": 0.9463 + }, + { + "start": 10163.22, + "end": 10165.6, + "probability": 0.9816 + }, + { + "start": 10166.7, + "end": 10168.66, + "probability": 0.5203 + }, + { + "start": 10168.78, + "end": 10171.5, + "probability": 0.8477 + }, + { + "start": 10173.38, + "end": 10174.66, + "probability": 0.9124 + }, + { + "start": 10176.62, + "end": 10177.68, + "probability": 0.8333 + }, + { + "start": 10177.74, + "end": 10178.5, + "probability": 0.7047 + }, + { + "start": 10178.6, + "end": 10183.68, + "probability": 0.9293 + }, + { + "start": 10186.3, + "end": 10188.44, + "probability": 0.9085 + }, + { + "start": 10189.94, + "end": 10192.88, + "probability": 0.9792 + }, + { + "start": 10193.7, + "end": 10196.3, + "probability": 0.9768 + }, + { + "start": 10196.36, + "end": 10196.8, + "probability": 0.9575 + }, + { + "start": 10197.46, + "end": 10197.92, + "probability": 0.3964 + }, + { + "start": 10198.14, + "end": 10200.12, + "probability": 0.9897 + }, + { + "start": 10200.48, + "end": 10201.96, + "probability": 0.9436 + }, + { + "start": 10202.4, + "end": 10202.94, + "probability": 0.6361 + }, + { + "start": 10203.42, + "end": 10204.2, + "probability": 0.7373 + }, + { + "start": 10204.34, + "end": 10205.3, + "probability": 0.9134 + }, + { + "start": 10205.5, + "end": 10206.3, + "probability": 0.2046 + }, + { + "start": 10206.36, + "end": 10207.38, + "probability": 0.6591 + }, + { + "start": 10207.5, + "end": 10208.46, + "probability": 0.8079 + }, + { + "start": 10209.02, + "end": 10211.6, + "probability": 0.9714 + }, + { + "start": 10211.76, + "end": 10214.64, + "probability": 0.3338 + }, + { + "start": 10214.76, + "end": 10215.49, + "probability": 0.6441 + }, + { + "start": 10216.62, + "end": 10217.16, + "probability": 0.5495 + }, + { + "start": 10217.22, + "end": 10218.72, + "probability": 0.912 + }, + { + "start": 10218.82, + "end": 10219.3, + "probability": 0.1362 + }, + { + "start": 10219.36, + "end": 10220.32, + "probability": 0.8496 + }, + { + "start": 10221.86, + "end": 10222.88, + "probability": 0.9491 + }, + { + "start": 10222.88, + "end": 10223.64, + "probability": 0.9401 + }, + { + "start": 10224.24, + "end": 10226.34, + "probability": 0.9491 + }, + { + "start": 10226.42, + "end": 10230.68, + "probability": 0.7259 + }, + { + "start": 10230.82, + "end": 10231.5, + "probability": 0.5786 + }, + { + "start": 10232.22, + "end": 10235.06, + "probability": 0.8418 + }, + { + "start": 10235.72, + "end": 10237.68, + "probability": 0.8815 + }, + { + "start": 10237.84, + "end": 10242.8, + "probability": 0.7069 + }, + { + "start": 10242.86, + "end": 10244.08, + "probability": 0.8443 + }, + { + "start": 10244.28, + "end": 10248.54, + "probability": 0.7685 + }, + { + "start": 10249.02, + "end": 10249.82, + "probability": 0.7001 + }, + { + "start": 10250.82, + "end": 10252.36, + "probability": 0.7017 + }, + { + "start": 10253.24, + "end": 10255.24, + "probability": 0.9434 + }, + { + "start": 10255.38, + "end": 10255.84, + "probability": 0.8098 + }, + { + "start": 10255.96, + "end": 10256.94, + "probability": 0.8684 + }, + { + "start": 10258.2, + "end": 10259.32, + "probability": 0.9176 + }, + { + "start": 10260.58, + "end": 10262.84, + "probability": 0.9932 + }, + { + "start": 10262.92, + "end": 10263.95, + "probability": 0.8611 + }, + { + "start": 10265.4, + "end": 10268.32, + "probability": 0.6545 + }, + { + "start": 10269.38, + "end": 10271.56, + "probability": 0.7514 + }, + { + "start": 10271.64, + "end": 10272.36, + "probability": 0.4284 + }, + { + "start": 10273.5, + "end": 10273.6, + "probability": 0.0583 + }, + { + "start": 10273.6, + "end": 10274.7, + "probability": 0.6657 + }, + { + "start": 10274.82, + "end": 10275.44, + "probability": 0.506 + }, + { + "start": 10275.88, + "end": 10281.72, + "probability": 0.993 + }, + { + "start": 10282.1, + "end": 10285.42, + "probability": 0.9942 + }, + { + "start": 10287.02, + "end": 10288.12, + "probability": 0.804 + }, + { + "start": 10289.26, + "end": 10290.02, + "probability": 0.9922 + }, + { + "start": 10290.24, + "end": 10293.46, + "probability": 0.9486 + }, + { + "start": 10293.64, + "end": 10295.18, + "probability": 0.973 + }, + { + "start": 10295.3, + "end": 10296.74, + "probability": 0.9473 + }, + { + "start": 10298.72, + "end": 10300.12, + "probability": 0.7004 + }, + { + "start": 10300.3, + "end": 10301.43, + "probability": 0.8397 + }, + { + "start": 10301.74, + "end": 10304.48, + "probability": 0.8296 + }, + { + "start": 10304.64, + "end": 10306.58, + "probability": 0.7815 + }, + { + "start": 10306.9, + "end": 10307.96, + "probability": 0.9472 + }, + { + "start": 10308.06, + "end": 10309.74, + "probability": 0.9912 + }, + { + "start": 10311.14, + "end": 10311.84, + "probability": 0.9438 + }, + { + "start": 10311.98, + "end": 10313.18, + "probability": 0.9279 + }, + { + "start": 10313.64, + "end": 10316.12, + "probability": 0.991 + }, + { + "start": 10316.12, + "end": 10319.34, + "probability": 0.9901 + }, + { + "start": 10319.5, + "end": 10320.04, + "probability": 0.3223 + }, + { + "start": 10320.14, + "end": 10320.9, + "probability": 0.889 + }, + { + "start": 10321.96, + "end": 10323.22, + "probability": 0.8135 + }, + { + "start": 10323.38, + "end": 10325.98, + "probability": 0.8896 + }, + { + "start": 10327.94, + "end": 10329.12, + "probability": 0.8785 + }, + { + "start": 10329.14, + "end": 10331.88, + "probability": 0.9669 + }, + { + "start": 10332.16, + "end": 10332.64, + "probability": 0.4466 + }, + { + "start": 10333.42, + "end": 10334.86, + "probability": 0.9561 + }, + { + "start": 10335.76, + "end": 10336.37, + "probability": 0.7144 + }, + { + "start": 10338.02, + "end": 10339.18, + "probability": 0.9683 + }, + { + "start": 10339.46, + "end": 10339.86, + "probability": 0.9568 + }, + { + "start": 10340.0, + "end": 10341.22, + "probability": 0.8712 + }, + { + "start": 10341.34, + "end": 10343.32, + "probability": 0.0557 + }, + { + "start": 10344.1, + "end": 10346.76, + "probability": 0.8857 + }, + { + "start": 10347.22, + "end": 10347.84, + "probability": 0.7923 + }, + { + "start": 10348.0, + "end": 10348.44, + "probability": 0.6865 + }, + { + "start": 10349.62, + "end": 10351.04, + "probability": 0.9675 + }, + { + "start": 10351.08, + "end": 10352.09, + "probability": 0.981 + }, + { + "start": 10352.28, + "end": 10353.0, + "probability": 0.7379 + }, + { + "start": 10353.62, + "end": 10356.02, + "probability": 0.943 + }, + { + "start": 10356.5, + "end": 10356.5, + "probability": 0.0219 + }, + { + "start": 10358.12, + "end": 10358.6, + "probability": 0.0174 + }, + { + "start": 10358.6, + "end": 10358.6, + "probability": 0.0499 + }, + { + "start": 10358.6, + "end": 10359.32, + "probability": 0.777 + }, + { + "start": 10359.9, + "end": 10361.68, + "probability": 0.7125 + }, + { + "start": 10362.1, + "end": 10363.0, + "probability": 0.3326 + }, + { + "start": 10363.02, + "end": 10364.26, + "probability": 0.8303 + }, + { + "start": 10364.32, + "end": 10366.1, + "probability": 0.9862 + }, + { + "start": 10366.7, + "end": 10367.34, + "probability": 0.7254 + }, + { + "start": 10367.94, + "end": 10368.72, + "probability": 0.7325 + }, + { + "start": 10368.9, + "end": 10370.77, + "probability": 0.9233 + }, + { + "start": 10371.5, + "end": 10373.84, + "probability": 0.8842 + }, + { + "start": 10374.34, + "end": 10376.54, + "probability": 0.9917 + }, + { + "start": 10377.04, + "end": 10379.26, + "probability": 0.9762 + }, + { + "start": 10380.04, + "end": 10383.56, + "probability": 0.9703 + }, + { + "start": 10383.92, + "end": 10384.92, + "probability": 0.4872 + }, + { + "start": 10385.7, + "end": 10386.38, + "probability": 0.4274 + }, + { + "start": 10386.6, + "end": 10386.7, + "probability": 0.3065 + }, + { + "start": 10386.8, + "end": 10387.8, + "probability": 0.9041 + }, + { + "start": 10387.84, + "end": 10390.5, + "probability": 0.9341 + }, + { + "start": 10394.6, + "end": 10397.0, + "probability": 0.8198 + }, + { + "start": 10397.7, + "end": 10399.54, + "probability": 0.9975 + }, + { + "start": 10399.62, + "end": 10399.92, + "probability": 0.9519 + }, + { + "start": 10401.44, + "end": 10402.9, + "probability": 0.9976 + }, + { + "start": 10403.58, + "end": 10408.2, + "probability": 0.9561 + }, + { + "start": 10409.9, + "end": 10410.12, + "probability": 0.7429 + }, + { + "start": 10410.2, + "end": 10413.18, + "probability": 0.9788 + }, + { + "start": 10413.24, + "end": 10414.9, + "probability": 0.9645 + }, + { + "start": 10415.42, + "end": 10417.78, + "probability": 0.986 + }, + { + "start": 10418.58, + "end": 10419.21, + "probability": 0.9642 + }, + { + "start": 10420.44, + "end": 10421.36, + "probability": 0.586 + }, + { + "start": 10421.46, + "end": 10423.32, + "probability": 0.9229 + }, + { + "start": 10424.84, + "end": 10427.84, + "probability": 0.9445 + }, + { + "start": 10431.72, + "end": 10433.14, + "probability": 0.8926 + }, + { + "start": 10433.76, + "end": 10437.2, + "probability": 0.8447 + }, + { + "start": 10438.58, + "end": 10440.24, + "probability": 0.9814 + }, + { + "start": 10440.38, + "end": 10440.92, + "probability": 0.4708 + }, + { + "start": 10440.96, + "end": 10441.66, + "probability": 0.8444 + }, + { + "start": 10442.68, + "end": 10444.22, + "probability": 0.9948 + }, + { + "start": 10444.34, + "end": 10444.74, + "probability": 0.9293 + }, + { + "start": 10446.24, + "end": 10447.62, + "probability": 0.9411 + }, + { + "start": 10452.26, + "end": 10453.26, + "probability": 0.9784 + }, + { + "start": 10453.44, + "end": 10455.02, + "probability": 0.9966 + }, + { + "start": 10455.14, + "end": 10456.32, + "probability": 0.9865 + }, + { + "start": 10457.36, + "end": 10459.27, + "probability": 0.7364 + }, + { + "start": 10459.42, + "end": 10462.3, + "probability": 0.8427 + }, + { + "start": 10462.86, + "end": 10464.3, + "probability": 0.7949 + }, + { + "start": 10464.48, + "end": 10465.36, + "probability": 0.9488 + }, + { + "start": 10465.98, + "end": 10468.7, + "probability": 0.7234 + }, + { + "start": 10469.4, + "end": 10472.16, + "probability": 0.9068 + }, + { + "start": 10472.76, + "end": 10474.06, + "probability": 0.9719 + }, + { + "start": 10474.46, + "end": 10476.42, + "probability": 0.8427 + }, + { + "start": 10477.02, + "end": 10477.99, + "probability": 0.6266 + }, + { + "start": 10478.74, + "end": 10479.54, + "probability": 0.4928 + }, + { + "start": 10479.54, + "end": 10481.56, + "probability": 0.6377 + }, + { + "start": 10481.96, + "end": 10484.76, + "probability": 0.7767 + }, + { + "start": 10484.98, + "end": 10485.88, + "probability": 0.5807 + }, + { + "start": 10485.9, + "end": 10486.8, + "probability": 0.9146 + }, + { + "start": 10487.0, + "end": 10489.84, + "probability": 0.9001 + }, + { + "start": 10490.16, + "end": 10494.24, + "probability": 0.9928 + }, + { + "start": 10494.94, + "end": 10495.5, + "probability": 0.7765 + }, + { + "start": 10496.34, + "end": 10499.46, + "probability": 0.9058 + }, + { + "start": 10500.5, + "end": 10500.76, + "probability": 0.2164 + }, + { + "start": 10501.98, + "end": 10503.68, + "probability": 0.1678 + }, + { + "start": 10503.96, + "end": 10508.32, + "probability": 0.2433 + }, + { + "start": 10509.66, + "end": 10510.14, + "probability": 0.6871 + }, + { + "start": 10510.96, + "end": 10511.9, + "probability": 0.3675 + }, + { + "start": 10512.04, + "end": 10514.76, + "probability": 0.6605 + }, + { + "start": 10515.14, + "end": 10517.1, + "probability": 0.8315 + }, + { + "start": 10517.56, + "end": 10518.24, + "probability": 0.722 + }, + { + "start": 10518.38, + "end": 10519.08, + "probability": 0.7887 + }, + { + "start": 10519.44, + "end": 10521.5, + "probability": 0.9938 + }, + { + "start": 10521.7, + "end": 10522.12, + "probability": 0.9056 + }, + { + "start": 10522.5, + "end": 10523.16, + "probability": 0.9047 + }, + { + "start": 10525.3, + "end": 10525.82, + "probability": 0.9572 + }, + { + "start": 10526.34, + "end": 10527.7, + "probability": 0.963 + }, + { + "start": 10529.48, + "end": 10530.46, + "probability": 0.9606 + }, + { + "start": 10530.54, + "end": 10534.2, + "probability": 0.7532 + }, + { + "start": 10535.24, + "end": 10535.36, + "probability": 0.0002 + }, + { + "start": 10537.14, + "end": 10539.32, + "probability": 0.9785 + }, + { + "start": 10550.12, + "end": 10552.1, + "probability": 0.7035 + }, + { + "start": 10553.6, + "end": 10556.82, + "probability": 0.9901 + }, + { + "start": 10558.18, + "end": 10560.26, + "probability": 0.9327 + }, + { + "start": 10560.42, + "end": 10563.98, + "probability": 0.9878 + }, + { + "start": 10564.78, + "end": 10565.86, + "probability": 0.9646 + }, + { + "start": 10566.12, + "end": 10567.4, + "probability": 0.8906 + }, + { + "start": 10567.46, + "end": 10568.79, + "probability": 0.9917 + }, + { + "start": 10569.02, + "end": 10570.26, + "probability": 0.9963 + }, + { + "start": 10570.98, + "end": 10575.78, + "probability": 0.9924 + }, + { + "start": 10576.88, + "end": 10580.6, + "probability": 0.9858 + }, + { + "start": 10580.76, + "end": 10583.23, + "probability": 0.9686 + }, + { + "start": 10583.9, + "end": 10587.22, + "probability": 0.8988 + }, + { + "start": 10587.76, + "end": 10590.53, + "probability": 0.8494 + }, + { + "start": 10591.52, + "end": 10594.48, + "probability": 0.9956 + }, + { + "start": 10595.12, + "end": 10596.52, + "probability": 0.9897 + }, + { + "start": 10596.62, + "end": 10599.9, + "probability": 0.971 + }, + { + "start": 10599.96, + "end": 10601.26, + "probability": 0.993 + }, + { + "start": 10601.82, + "end": 10605.18, + "probability": 0.9153 + }, + { + "start": 10605.18, + "end": 10608.72, + "probability": 0.9939 + }, + { + "start": 10608.82, + "end": 10610.52, + "probability": 0.8405 + }, + { + "start": 10610.94, + "end": 10613.86, + "probability": 0.9863 + }, + { + "start": 10615.56, + "end": 10616.64, + "probability": 0.8308 + }, + { + "start": 10616.84, + "end": 10619.96, + "probability": 0.9384 + }, + { + "start": 10620.96, + "end": 10625.74, + "probability": 0.9761 + }, + { + "start": 10627.38, + "end": 10629.25, + "probability": 0.9839 + }, + { + "start": 10629.78, + "end": 10631.95, + "probability": 0.999 + }, + { + "start": 10632.6, + "end": 10634.68, + "probability": 0.9943 + }, + { + "start": 10635.42, + "end": 10640.62, + "probability": 0.9954 + }, + { + "start": 10641.32, + "end": 10643.78, + "probability": 0.9896 + }, + { + "start": 10644.94, + "end": 10646.06, + "probability": 0.8269 + }, + { + "start": 10646.22, + "end": 10650.22, + "probability": 0.9941 + }, + { + "start": 10650.22, + "end": 10655.16, + "probability": 0.9993 + }, + { + "start": 10655.22, + "end": 10659.24, + "probability": 0.9951 + }, + { + "start": 10660.2, + "end": 10663.86, + "probability": 0.9487 + }, + { + "start": 10664.08, + "end": 10665.8, + "probability": 0.9961 + }, + { + "start": 10666.5, + "end": 10670.44, + "probability": 0.9268 + }, + { + "start": 10670.98, + "end": 10673.28, + "probability": 0.9669 + }, + { + "start": 10673.54, + "end": 10674.52, + "probability": 0.7228 + }, + { + "start": 10675.46, + "end": 10679.48, + "probability": 0.9954 + }, + { + "start": 10679.52, + "end": 10680.92, + "probability": 0.9732 + }, + { + "start": 10682.0, + "end": 10684.56, + "probability": 0.9904 + }, + { + "start": 10684.94, + "end": 10687.2, + "probability": 0.8345 + }, + { + "start": 10687.54, + "end": 10688.66, + "probability": 0.9697 + }, + { + "start": 10689.28, + "end": 10689.88, + "probability": 0.458 + }, + { + "start": 10690.0, + "end": 10691.78, + "probability": 0.8742 + }, + { + "start": 10691.96, + "end": 10693.32, + "probability": 0.6958 + }, + { + "start": 10693.68, + "end": 10695.08, + "probability": 0.9634 + }, + { + "start": 10696.2, + "end": 10699.14, + "probability": 0.9835 + }, + { + "start": 10699.24, + "end": 10702.9, + "probability": 0.9331 + }, + { + "start": 10703.56, + "end": 10705.34, + "probability": 0.9253 + }, + { + "start": 10705.84, + "end": 10708.38, + "probability": 0.9896 + }, + { + "start": 10708.5, + "end": 10709.4, + "probability": 0.3585 + }, + { + "start": 10709.86, + "end": 10710.48, + "probability": 0.7965 + }, + { + "start": 10710.8, + "end": 10712.54, + "probability": 0.9697 + }, + { + "start": 10713.38, + "end": 10716.93, + "probability": 0.9864 + }, + { + "start": 10717.44, + "end": 10718.14, + "probability": 0.8387 + }, + { + "start": 10719.18, + "end": 10725.02, + "probability": 0.984 + }, + { + "start": 10725.28, + "end": 10729.62, + "probability": 0.9162 + }, + { + "start": 10730.42, + "end": 10731.22, + "probability": 0.6013 + }, + { + "start": 10732.18, + "end": 10733.75, + "probability": 0.999 + }, + { + "start": 10734.38, + "end": 10735.4, + "probability": 0.938 + }, + { + "start": 10735.66, + "end": 10737.53, + "probability": 0.9814 + }, + { + "start": 10739.06, + "end": 10740.07, + "probability": 0.9795 + }, + { + "start": 10740.72, + "end": 10742.26, + "probability": 0.9777 + }, + { + "start": 10743.02, + "end": 10743.64, + "probability": 0.9882 + }, + { + "start": 10743.88, + "end": 10745.88, + "probability": 0.9622 + }, + { + "start": 10746.2, + "end": 10747.16, + "probability": 0.6221 + }, + { + "start": 10747.66, + "end": 10749.32, + "probability": 0.7991 + }, + { + "start": 10749.98, + "end": 10751.37, + "probability": 0.9709 + }, + { + "start": 10751.84, + "end": 10752.16, + "probability": 0.5095 + }, + { + "start": 10752.18, + "end": 10754.14, + "probability": 0.9861 + }, + { + "start": 10754.62, + "end": 10758.86, + "probability": 0.9839 + }, + { + "start": 10759.8, + "end": 10765.7, + "probability": 0.9889 + }, + { + "start": 10766.6, + "end": 10767.88, + "probability": 0.6249 + }, + { + "start": 10767.96, + "end": 10769.38, + "probability": 0.9052 + }, + { + "start": 10769.48, + "end": 10770.14, + "probability": 0.8403 + }, + { + "start": 10770.5, + "end": 10774.04, + "probability": 0.9921 + }, + { + "start": 10775.42, + "end": 10776.89, + "probability": 0.9946 + }, + { + "start": 10777.9, + "end": 10780.58, + "probability": 0.8185 + }, + { + "start": 10782.44, + "end": 10783.42, + "probability": 0.6908 + }, + { + "start": 10784.16, + "end": 10784.66, + "probability": 0.5117 + }, + { + "start": 10785.46, + "end": 10788.42, + "probability": 0.9941 + }, + { + "start": 10788.42, + "end": 10792.32, + "probability": 0.9673 + }, + { + "start": 10793.48, + "end": 10795.78, + "probability": 0.9311 + }, + { + "start": 10796.42, + "end": 10797.72, + "probability": 0.9708 + }, + { + "start": 10797.88, + "end": 10799.8, + "probability": 0.9938 + }, + { + "start": 10800.1, + "end": 10801.96, + "probability": 0.9308 + }, + { + "start": 10802.78, + "end": 10804.16, + "probability": 0.8943 + }, + { + "start": 10805.06, + "end": 10808.5, + "probability": 0.9566 + }, + { + "start": 10809.26, + "end": 10810.96, + "probability": 0.5025 + }, + { + "start": 10811.86, + "end": 10814.26, + "probability": 0.9812 + }, + { + "start": 10814.48, + "end": 10816.42, + "probability": 0.6464 + }, + { + "start": 10816.44, + "end": 10822.34, + "probability": 0.9911 + }, + { + "start": 10823.34, + "end": 10824.16, + "probability": 0.975 + }, + { + "start": 10824.24, + "end": 10825.46, + "probability": 0.9839 + }, + { + "start": 10825.92, + "end": 10828.68, + "probability": 0.9985 + }, + { + "start": 10828.68, + "end": 10831.56, + "probability": 0.9978 + }, + { + "start": 10832.46, + "end": 10838.04, + "probability": 0.926 + }, + { + "start": 10838.66, + "end": 10842.68, + "probability": 0.9788 + }, + { + "start": 10843.7, + "end": 10845.9, + "probability": 0.9961 + }, + { + "start": 10846.72, + "end": 10847.48, + "probability": 0.7832 + }, + { + "start": 10847.7, + "end": 10848.1, + "probability": 0.3582 + }, + { + "start": 10848.16, + "end": 10849.31, + "probability": 0.9692 + }, + { + "start": 10849.58, + "end": 10851.2, + "probability": 0.9893 + }, + { + "start": 10851.66, + "end": 10852.94, + "probability": 0.8929 + }, + { + "start": 10853.3, + "end": 10859.28, + "probability": 0.7415 + }, + { + "start": 10859.42, + "end": 10860.52, + "probability": 0.7549 + }, + { + "start": 10860.72, + "end": 10863.36, + "probability": 0.9451 + }, + { + "start": 10863.46, + "end": 10863.9, + "probability": 0.1404 + }, + { + "start": 10864.28, + "end": 10865.78, + "probability": 0.9199 + }, + { + "start": 10865.88, + "end": 10869.94, + "probability": 0.9161 + }, + { + "start": 10870.46, + "end": 10870.84, + "probability": 0.0925 + }, + { + "start": 10870.92, + "end": 10871.66, + "probability": 0.3805 + }, + { + "start": 10871.66, + "end": 10874.24, + "probability": 0.965 + }, + { + "start": 10874.24, + "end": 10879.44, + "probability": 0.9839 + }, + { + "start": 10879.9, + "end": 10881.16, + "probability": 0.7559 + }, + { + "start": 10881.3, + "end": 10882.42, + "probability": 0.9658 + }, + { + "start": 10882.5, + "end": 10883.32, + "probability": 0.8533 + }, + { + "start": 10883.62, + "end": 10886.26, + "probability": 0.8289 + }, + { + "start": 10886.56, + "end": 10889.22, + "probability": 0.802 + }, + { + "start": 10889.48, + "end": 10891.0, + "probability": 0.9548 + }, + { + "start": 10891.3, + "end": 10894.28, + "probability": 0.6967 + }, + { + "start": 10895.14, + "end": 10895.72, + "probability": 0.7551 + }, + { + "start": 10895.82, + "end": 10896.48, + "probability": 0.8807 + }, + { + "start": 10896.66, + "end": 10898.76, + "probability": 0.8293 + }, + { + "start": 10899.56, + "end": 10904.52, + "probability": 0.9426 + }, + { + "start": 10905.34, + "end": 10908.0, + "probability": 0.9988 + }, + { + "start": 10908.25, + "end": 10911.44, + "probability": 0.9995 + }, + { + "start": 10912.3, + "end": 10914.06, + "probability": 0.7773 + }, + { + "start": 10914.62, + "end": 10917.06, + "probability": 0.9558 + }, + { + "start": 10918.0, + "end": 10923.78, + "probability": 0.2278 + }, + { + "start": 10923.78, + "end": 10927.98, + "probability": 0.9458 + }, + { + "start": 10927.98, + "end": 10932.12, + "probability": 0.9982 + }, + { + "start": 10932.6, + "end": 10933.04, + "probability": 0.4195 + }, + { + "start": 10933.6, + "end": 10935.2, + "probability": 0.8017 + }, + { + "start": 10935.7, + "end": 10937.32, + "probability": 0.9805 + }, + { + "start": 10938.38, + "end": 10941.5, + "probability": 0.8548 + }, + { + "start": 10941.6, + "end": 10942.36, + "probability": 0.8993 + }, + { + "start": 10942.84, + "end": 10944.64, + "probability": 0.9178 + }, + { + "start": 10944.78, + "end": 10945.24, + "probability": 0.7646 + }, + { + "start": 10945.36, + "end": 10946.32, + "probability": 0.5109 + }, + { + "start": 10946.84, + "end": 10948.05, + "probability": 0.6011 + }, + { + "start": 10948.32, + "end": 10954.36, + "probability": 0.5773 + }, + { + "start": 10954.5, + "end": 10956.0, + "probability": 0.3301 + }, + { + "start": 10956.98, + "end": 10961.0, + "probability": 0.4098 + }, + { + "start": 10961.06, + "end": 10963.56, + "probability": 0.0164 + }, + { + "start": 10964.12, + "end": 10968.38, + "probability": 0.9985 + }, + { + "start": 10968.76, + "end": 10970.44, + "probability": 0.9296 + }, + { + "start": 10970.78, + "end": 10975.3, + "probability": 0.9939 + }, + { + "start": 10975.38, + "end": 10976.0, + "probability": 0.7078 + }, + { + "start": 10976.38, + "end": 10976.9, + "probability": 0.4968 + }, + { + "start": 10977.3, + "end": 10980.32, + "probability": 0.7411 + }, + { + "start": 10980.54, + "end": 10982.14, + "probability": 0.3377 + }, + { + "start": 10982.28, + "end": 10983.6, + "probability": 0.6171 + }, + { + "start": 10983.72, + "end": 10986.06, + "probability": 0.8569 + }, + { + "start": 10986.06, + "end": 10988.64, + "probability": 0.9943 + }, + { + "start": 10989.34, + "end": 10990.16, + "probability": 0.7262 + }, + { + "start": 10991.0, + "end": 10991.38, + "probability": 0.4997 + }, + { + "start": 10991.44, + "end": 10995.6, + "probability": 0.769 + }, + { + "start": 10995.84, + "end": 10997.73, + "probability": 0.98 + }, + { + "start": 10998.02, + "end": 10998.78, + "probability": 0.9095 + }, + { + "start": 10999.36, + "end": 11000.9, + "probability": 0.9839 + }, + { + "start": 11001.12, + "end": 11001.84, + "probability": 0.9613 + }, + { + "start": 11001.92, + "end": 11003.18, + "probability": 0.8672 + }, + { + "start": 11003.82, + "end": 11005.74, + "probability": 0.9689 + }, + { + "start": 11005.76, + "end": 11010.56, + "probability": 0.9663 + }, + { + "start": 11010.56, + "end": 11014.72, + "probability": 0.9792 + }, + { + "start": 11015.43, + "end": 11019.56, + "probability": 0.998 + }, + { + "start": 11019.56, + "end": 11022.86, + "probability": 0.9983 + }, + { + "start": 11023.68, + "end": 11025.16, + "probability": 0.9628 + }, + { + "start": 11025.78, + "end": 11027.18, + "probability": 0.9433 + }, + { + "start": 11027.94, + "end": 11031.58, + "probability": 0.8593 + }, + { + "start": 11031.9, + "end": 11034.1, + "probability": 0.9507 + }, + { + "start": 11034.88, + "end": 11037.48, + "probability": 0.8653 + }, + { + "start": 11039.31, + "end": 11042.06, + "probability": 0.3348 + }, + { + "start": 11042.74, + "end": 11045.92, + "probability": 0.9457 + }, + { + "start": 11046.3, + "end": 11050.84, + "probability": 0.9983 + }, + { + "start": 11050.84, + "end": 11055.1, + "probability": 0.999 + }, + { + "start": 11056.52, + "end": 11057.94, + "probability": 0.988 + }, + { + "start": 11058.0, + "end": 11060.1, + "probability": 0.9954 + }, + { + "start": 11060.94, + "end": 11065.24, + "probability": 0.8186 + }, + { + "start": 11065.34, + "end": 11066.1, + "probability": 0.5882 + }, + { + "start": 11066.4, + "end": 11066.86, + "probability": 0.7506 + }, + { + "start": 11066.94, + "end": 11067.34, + "probability": 0.7424 + }, + { + "start": 11067.42, + "end": 11070.0, + "probability": 0.9185 + }, + { + "start": 11070.22, + "end": 11071.94, + "probability": 0.7746 + }, + { + "start": 11072.02, + "end": 11073.26, + "probability": 0.994 + }, + { + "start": 11074.22, + "end": 11075.84, + "probability": 0.9064 + }, + { + "start": 11076.6, + "end": 11078.82, + "probability": 0.9814 + }, + { + "start": 11080.44, + "end": 11080.92, + "probability": 0.0792 + }, + { + "start": 11082.08, + "end": 11082.26, + "probability": 0.2817 + }, + { + "start": 11082.26, + "end": 11084.64, + "probability": 0.8102 + }, + { + "start": 11084.94, + "end": 11085.08, + "probability": 0.7255 + }, + { + "start": 11085.18, + "end": 11085.38, + "probability": 0.6268 + }, + { + "start": 11085.48, + "end": 11087.22, + "probability": 0.9153 + }, + { + "start": 11087.38, + "end": 11094.24, + "probability": 0.7281 + }, + { + "start": 11094.64, + "end": 11096.58, + "probability": 0.6619 + }, + { + "start": 11096.88, + "end": 11097.38, + "probability": 0.5922 + }, + { + "start": 11097.38, + "end": 11100.24, + "probability": 0.991 + }, + { + "start": 11100.3, + "end": 11102.72, + "probability": 0.8403 + }, + { + "start": 11103.1, + "end": 11104.76, + "probability": 0.7816 + }, + { + "start": 11105.04, + "end": 11107.36, + "probability": 0.8971 + }, + { + "start": 11107.8, + "end": 11110.32, + "probability": 0.9951 + }, + { + "start": 11110.45, + "end": 11112.5, + "probability": 0.7821 + }, + { + "start": 11113.64, + "end": 11117.52, + "probability": 0.2987 + }, + { + "start": 11118.14, + "end": 11123.8, + "probability": 0.2886 + }, + { + "start": 11124.66, + "end": 11125.18, + "probability": 0.0888 + }, + { + "start": 11125.18, + "end": 11127.96, + "probability": 0.2076 + }, + { + "start": 11128.14, + "end": 11131.28, + "probability": 0.1282 + }, + { + "start": 11131.38, + "end": 11133.5, + "probability": 0.1453 + }, + { + "start": 11133.78, + "end": 11137.1, + "probability": 0.245 + }, + { + "start": 11137.2, + "end": 11137.42, + "probability": 0.1835 + }, + { + "start": 11138.6, + "end": 11140.92, + "probability": 0.0216 + }, + { + "start": 11141.1, + "end": 11141.1, + "probability": 0.1165 + }, + { + "start": 11141.1, + "end": 11144.28, + "probability": 0.7027 + }, + { + "start": 11144.4, + "end": 11146.02, + "probability": 0.565 + }, + { + "start": 11146.18, + "end": 11147.18, + "probability": 0.964 + }, + { + "start": 11147.24, + "end": 11149.54, + "probability": 0.9714 + }, + { + "start": 11149.62, + "end": 11151.7, + "probability": 0.9836 + }, + { + "start": 11152.46, + "end": 11155.3, + "probability": 0.9886 + }, + { + "start": 11155.84, + "end": 11159.34, + "probability": 0.5283 + }, + { + "start": 11159.34, + "end": 11160.62, + "probability": 0.705 + }, + { + "start": 11160.75, + "end": 11164.86, + "probability": 0.751 + }, + { + "start": 11165.24, + "end": 11168.52, + "probability": 0.8396 + }, + { + "start": 11168.9, + "end": 11170.3, + "probability": 0.9889 + }, + { + "start": 11170.62, + "end": 11172.0, + "probability": 0.9731 + }, + { + "start": 11172.26, + "end": 11176.24, + "probability": 0.1874 + }, + { + "start": 11176.24, + "end": 11177.78, + "probability": 0.2114 + }, + { + "start": 11178.28, + "end": 11180.1, + "probability": 0.7727 + }, + { + "start": 11180.24, + "end": 11182.76, + "probability": 0.4176 + }, + { + "start": 11183.28, + "end": 11185.42, + "probability": 0.6082 + }, + { + "start": 11186.18, + "end": 11189.18, + "probability": 0.9966 + }, + { + "start": 11189.52, + "end": 11193.5, + "probability": 0.9847 + }, + { + "start": 11194.24, + "end": 11195.62, + "probability": 0.8546 + }, + { + "start": 11195.66, + "end": 11196.82, + "probability": 0.9685 + }, + { + "start": 11197.24, + "end": 11201.7, + "probability": 0.9944 + }, + { + "start": 11202.36, + "end": 11204.36, + "probability": 0.1448 + }, + { + "start": 11204.46, + "end": 11206.46, + "probability": 0.949 + }, + { + "start": 11207.0, + "end": 11212.02, + "probability": 0.9814 + }, + { + "start": 11212.14, + "end": 11213.44, + "probability": 0.9778 + }, + { + "start": 11213.82, + "end": 11215.64, + "probability": 0.9941 + }, + { + "start": 11215.66, + "end": 11216.34, + "probability": 0.6167 + }, + { + "start": 11216.36, + "end": 11220.48, + "probability": 0.9956 + }, + { + "start": 11220.96, + "end": 11223.34, + "probability": 0.9971 + }, + { + "start": 11224.08, + "end": 11224.2, + "probability": 0.4687 + }, + { + "start": 11224.32, + "end": 11225.98, + "probability": 0.9835 + }, + { + "start": 11226.32, + "end": 11226.76, + "probability": 0.5922 + }, + { + "start": 11226.88, + "end": 11231.38, + "probability": 0.9444 + }, + { + "start": 11232.04, + "end": 11234.64, + "probability": 0.9886 + }, + { + "start": 11234.94, + "end": 11239.1, + "probability": 0.9917 + }, + { + "start": 11239.48, + "end": 11240.26, + "probability": 0.9214 + }, + { + "start": 11240.32, + "end": 11241.66, + "probability": 0.9483 + }, + { + "start": 11241.98, + "end": 11245.06, + "probability": 0.9912 + }, + { + "start": 11245.56, + "end": 11247.32, + "probability": 0.9893 + }, + { + "start": 11247.7, + "end": 11250.0, + "probability": 0.8183 + }, + { + "start": 11250.28, + "end": 11251.42, + "probability": 0.7716 + }, + { + "start": 11251.7, + "end": 11253.26, + "probability": 0.506 + }, + { + "start": 11253.32, + "end": 11255.96, + "probability": 0.6795 + }, + { + "start": 11256.24, + "end": 11257.5, + "probability": 0.8541 + }, + { + "start": 11257.92, + "end": 11261.64, + "probability": 0.9852 + }, + { + "start": 11261.64, + "end": 11264.3, + "probability": 0.989 + }, + { + "start": 11264.66, + "end": 11266.28, + "probability": 0.9543 + }, + { + "start": 11266.34, + "end": 11267.1, + "probability": 0.7876 + }, + { + "start": 11268.54, + "end": 11271.36, + "probability": 0.9066 + }, + { + "start": 11272.72, + "end": 11273.36, + "probability": 0.252 + }, + { + "start": 11288.08, + "end": 11289.14, + "probability": 0.5117 + }, + { + "start": 11289.8, + "end": 11291.16, + "probability": 0.6751 + }, + { + "start": 11291.58, + "end": 11294.56, + "probability": 0.8157 + }, + { + "start": 11294.64, + "end": 11296.26, + "probability": 0.0871 + }, + { + "start": 11296.94, + "end": 11297.42, + "probability": 0.8613 + }, + { + "start": 11299.32, + "end": 11301.6, + "probability": 0.9408 + }, + { + "start": 11301.64, + "end": 11306.17, + "probability": 0.9877 + }, + { + "start": 11307.5, + "end": 11307.62, + "probability": 0.5019 + }, + { + "start": 11307.64, + "end": 11308.7, + "probability": 0.9771 + }, + { + "start": 11308.88, + "end": 11313.2, + "probability": 0.9965 + }, + { + "start": 11313.34, + "end": 11313.54, + "probability": 0.5823 + }, + { + "start": 11315.94, + "end": 11318.42, + "probability": 0.6176 + }, + { + "start": 11318.48, + "end": 11319.7, + "probability": 0.9492 + }, + { + "start": 11320.04, + "end": 11327.48, + "probability": 0.9399 + }, + { + "start": 11328.18, + "end": 11329.06, + "probability": 0.7574 + }, + { + "start": 11330.28, + "end": 11333.38, + "probability": 0.7568 + }, + { + "start": 11334.86, + "end": 11337.84, + "probability": 0.8877 + }, + { + "start": 11338.36, + "end": 11341.56, + "probability": 0.8753 + }, + { + "start": 11341.56, + "end": 11342.38, + "probability": 0.8757 + }, + { + "start": 11343.28, + "end": 11345.26, + "probability": 0.8675 + }, + { + "start": 11346.44, + "end": 11349.72, + "probability": 0.911 + }, + { + "start": 11349.76, + "end": 11350.84, + "probability": 0.7908 + }, + { + "start": 11350.92, + "end": 11351.73, + "probability": 0.7873 + }, + { + "start": 11352.74, + "end": 11353.82, + "probability": 0.9697 + }, + { + "start": 11354.66, + "end": 11360.18, + "probability": 0.9883 + }, + { + "start": 11361.78, + "end": 11362.27, + "probability": 0.5009 + }, + { + "start": 11362.34, + "end": 11363.24, + "probability": 0.9404 + }, + { + "start": 11363.38, + "end": 11364.14, + "probability": 0.7707 + }, + { + "start": 11364.22, + "end": 11366.7, + "probability": 0.745 + }, + { + "start": 11367.48, + "end": 11372.54, + "probability": 0.9927 + }, + { + "start": 11372.54, + "end": 11376.62, + "probability": 0.9985 + }, + { + "start": 11376.94, + "end": 11380.68, + "probability": 0.0538 + }, + { + "start": 11381.44, + "end": 11385.44, + "probability": 0.0483 + }, + { + "start": 11385.78, + "end": 11386.5, + "probability": 0.2155 + }, + { + "start": 11386.6, + "end": 11390.16, + "probability": 0.4213 + }, + { + "start": 11390.86, + "end": 11392.02, + "probability": 0.9888 + }, + { + "start": 11392.02, + "end": 11392.86, + "probability": 0.3218 + }, + { + "start": 11393.32, + "end": 11393.76, + "probability": 0.3664 + }, + { + "start": 11393.86, + "end": 11396.8, + "probability": 0.9557 + }, + { + "start": 11397.5, + "end": 11400.2, + "probability": 0.8804 + }, + { + "start": 11400.8, + "end": 11405.38, + "probability": 0.9813 + }, + { + "start": 11405.44, + "end": 11406.04, + "probability": 0.8907 + }, + { + "start": 11406.28, + "end": 11406.38, + "probability": 0.0211 + }, + { + "start": 11406.6, + "end": 11409.78, + "probability": 0.8722 + }, + { + "start": 11410.26, + "end": 11413.84, + "probability": 0.5382 + }, + { + "start": 11415.06, + "end": 11416.6, + "probability": 0.6182 + }, + { + "start": 11416.98, + "end": 11419.26, + "probability": 0.4815 + }, + { + "start": 11420.54, + "end": 11422.78, + "probability": 0.7803 + }, + { + "start": 11422.9, + "end": 11424.36, + "probability": 0.7409 + }, + { + "start": 11424.5, + "end": 11425.39, + "probability": 0.9243 + }, + { + "start": 11425.92, + "end": 11427.5, + "probability": 0.1198 + }, + { + "start": 11427.5, + "end": 11431.72, + "probability": 0.731 + }, + { + "start": 11440.68, + "end": 11445.1, + "probability": 0.8217 + }, + { + "start": 11445.4, + "end": 11448.68, + "probability": 0.9918 + }, + { + "start": 11449.24, + "end": 11451.46, + "probability": 0.9841 + }, + { + "start": 11451.8, + "end": 11456.0, + "probability": 0.994 + }, + { + "start": 11456.38, + "end": 11459.86, + "probability": 0.6707 + }, + { + "start": 11460.12, + "end": 11464.92, + "probability": 0.989 + }, + { + "start": 11465.32, + "end": 11465.98, + "probability": 0.6547 + }, + { + "start": 11466.08, + "end": 11466.28, + "probability": 0.7889 + }, + { + "start": 11466.32, + "end": 11467.0, + "probability": 0.6963 + }, + { + "start": 11467.04, + "end": 11467.78, + "probability": 0.8708 + }, + { + "start": 11467.86, + "end": 11470.18, + "probability": 0.927 + }, + { + "start": 11470.66, + "end": 11473.94, + "probability": 0.9927 + }, + { + "start": 11473.94, + "end": 11478.24, + "probability": 0.6712 + }, + { + "start": 11478.42, + "end": 11481.28, + "probability": 0.6514 + }, + { + "start": 11482.26, + "end": 11484.1, + "probability": 0.5168 + }, + { + "start": 11484.4, + "end": 11485.78, + "probability": 0.9383 + }, + { + "start": 11486.16, + "end": 11488.12, + "probability": 0.9725 + }, + { + "start": 11488.7, + "end": 11489.38, + "probability": 0.8597 + }, + { + "start": 11489.44, + "end": 11490.16, + "probability": 0.5627 + }, + { + "start": 11490.32, + "end": 11491.24, + "probability": 0.9766 + }, + { + "start": 11491.34, + "end": 11492.0, + "probability": 0.9519 + }, + { + "start": 11492.16, + "end": 11493.92, + "probability": 0.9229 + }, + { + "start": 11494.04, + "end": 11495.3, + "probability": 0.9891 + }, + { + "start": 11495.64, + "end": 11497.96, + "probability": 0.9529 + }, + { + "start": 11500.18, + "end": 11501.4, + "probability": 0.5189 + }, + { + "start": 11501.78, + "end": 11503.61, + "probability": 0.8618 + }, + { + "start": 11504.38, + "end": 11506.54, + "probability": 0.87 + }, + { + "start": 11506.78, + "end": 11509.74, + "probability": 0.9836 + }, + { + "start": 11510.82, + "end": 11514.22, + "probability": 0.9946 + }, + { + "start": 11514.54, + "end": 11515.68, + "probability": 0.9966 + }, + { + "start": 11516.12, + "end": 11517.8, + "probability": 0.7973 + }, + { + "start": 11518.14, + "end": 11522.4, + "probability": 0.9673 + }, + { + "start": 11523.8, + "end": 11525.0, + "probability": 0.8667 + }, + { + "start": 11525.14, + "end": 11525.88, + "probability": 0.7639 + }, + { + "start": 11526.22, + "end": 11527.52, + "probability": 0.9946 + }, + { + "start": 11528.16, + "end": 11530.18, + "probability": 0.8112 + }, + { + "start": 11530.32, + "end": 11533.94, + "probability": 0.9972 + }, + { + "start": 11534.02, + "end": 11537.14, + "probability": 0.7997 + }, + { + "start": 11537.54, + "end": 11539.54, + "probability": 0.9463 + }, + { + "start": 11539.7, + "end": 11540.0, + "probability": 0.5043 + }, + { + "start": 11540.02, + "end": 11540.8, + "probability": 0.7532 + }, + { + "start": 11540.86, + "end": 11545.34, + "probability": 0.9175 + }, + { + "start": 11546.42, + "end": 11548.48, + "probability": 0.9902 + }, + { + "start": 11548.98, + "end": 11552.84, + "probability": 0.9825 + }, + { + "start": 11552.94, + "end": 11553.06, + "probability": 0.3849 + }, + { + "start": 11553.36, + "end": 11555.38, + "probability": 0.8048 + }, + { + "start": 11555.42, + "end": 11560.58, + "probability": 0.9888 + }, + { + "start": 11560.76, + "end": 11561.2, + "probability": 0.2344 + }, + { + "start": 11561.2, + "end": 11562.24, + "probability": 0.708 + }, + { + "start": 11562.74, + "end": 11564.74, + "probability": 0.754 + }, + { + "start": 11565.26, + "end": 11567.34, + "probability": 0.9258 + }, + { + "start": 11567.44, + "end": 11570.42, + "probability": 0.8885 + }, + { + "start": 11570.42, + "end": 11570.72, + "probability": 0.3368 + }, + { + "start": 11570.78, + "end": 11572.14, + "probability": 0.9847 + }, + { + "start": 11572.78, + "end": 11576.16, + "probability": 0.5014 + }, + { + "start": 11578.26, + "end": 11579.06, + "probability": 0.5046 + }, + { + "start": 11580.12, + "end": 11581.12, + "probability": 0.4516 + }, + { + "start": 11581.46, + "end": 11582.12, + "probability": 0.0743 + }, + { + "start": 11582.92, + "end": 11585.62, + "probability": 0.0881 + }, + { + "start": 11586.76, + "end": 11587.76, + "probability": 0.0674 + }, + { + "start": 11590.0, + "end": 11593.78, + "probability": 0.5475 + }, + { + "start": 11593.78, + "end": 11595.62, + "probability": 0.1338 + }, + { + "start": 11595.66, + "end": 11598.38, + "probability": 0.6927 + }, + { + "start": 11599.12, + "end": 11600.7, + "probability": 0.9978 + }, + { + "start": 11601.0, + "end": 11602.98, + "probability": 0.9844 + }, + { + "start": 11603.04, + "end": 11605.16, + "probability": 0.9663 + }, + { + "start": 11605.46, + "end": 11609.08, + "probability": 0.9903 + }, + { + "start": 11609.52, + "end": 11610.84, + "probability": 0.9991 + }, + { + "start": 11610.86, + "end": 11611.98, + "probability": 0.8147 + }, + { + "start": 11612.08, + "end": 11613.66, + "probability": 0.8408 + }, + { + "start": 11614.1, + "end": 11615.32, + "probability": 0.9194 + }, + { + "start": 11615.62, + "end": 11617.1, + "probability": 0.9952 + }, + { + "start": 11617.52, + "end": 11618.78, + "probability": 0.7428 + }, + { + "start": 11618.8, + "end": 11619.74, + "probability": 0.2928 + }, + { + "start": 11619.82, + "end": 11620.6, + "probability": 0.6011 + }, + { + "start": 11620.8, + "end": 11624.1, + "probability": 0.7284 + }, + { + "start": 11624.18, + "end": 11625.9, + "probability": 0.598 + }, + { + "start": 11626.56, + "end": 11627.34, + "probability": 0.347 + }, + { + "start": 11627.34, + "end": 11629.52, + "probability": 0.7204 + }, + { + "start": 11629.74, + "end": 11632.56, + "probability": 0.5887 + }, + { + "start": 11632.56, + "end": 11635.68, + "probability": 0.5289 + }, + { + "start": 11635.68, + "end": 11635.68, + "probability": 0.706 + }, + { + "start": 11635.68, + "end": 11636.92, + "probability": 0.9075 + }, + { + "start": 11637.04, + "end": 11638.38, + "probability": 0.5448 + }, + { + "start": 11640.61, + "end": 11643.36, + "probability": 0.9924 + }, + { + "start": 11643.44, + "end": 11645.07, + "probability": 0.8256 + }, + { + "start": 11645.12, + "end": 11645.54, + "probability": 0.0093 + }, + { + "start": 11645.54, + "end": 11645.86, + "probability": 0.3672 + }, + { + "start": 11646.02, + "end": 11646.02, + "probability": 0.1452 + }, + { + "start": 11646.02, + "end": 11646.72, + "probability": 0.7115 + }, + { + "start": 11646.8, + "end": 11648.86, + "probability": 0.9595 + }, + { + "start": 11649.02, + "end": 11650.3, + "probability": 0.3025 + }, + { + "start": 11650.52, + "end": 11652.22, + "probability": 0.813 + }, + { + "start": 11653.18, + "end": 11654.15, + "probability": 0.8088 + }, + { + "start": 11654.26, + "end": 11654.72, + "probability": 0.8708 + }, + { + "start": 11654.8, + "end": 11658.04, + "probability": 0.9941 + }, + { + "start": 11658.34, + "end": 11660.32, + "probability": 0.5253 + }, + { + "start": 11660.34, + "end": 11662.68, + "probability": 0.9735 + }, + { + "start": 11662.8, + "end": 11664.76, + "probability": 0.6723 + }, + { + "start": 11665.1, + "end": 11666.76, + "probability": 0.9886 + }, + { + "start": 11667.28, + "end": 11668.72, + "probability": 0.7541 + }, + { + "start": 11669.2, + "end": 11669.32, + "probability": 0.1287 + }, + { + "start": 11669.34, + "end": 11671.6, + "probability": 0.9303 + }, + { + "start": 11671.84, + "end": 11674.88, + "probability": 0.5416 + }, + { + "start": 11674.96, + "end": 11675.48, + "probability": 0.6758 + }, + { + "start": 11675.88, + "end": 11676.42, + "probability": 0.8956 + }, + { + "start": 11676.48, + "end": 11677.2, + "probability": 0.7156 + }, + { + "start": 11677.46, + "end": 11679.76, + "probability": 0.9847 + }, + { + "start": 11680.1, + "end": 11682.34, + "probability": 0.9891 + }, + { + "start": 11682.72, + "end": 11682.92, + "probability": 0.3536 + }, + { + "start": 11682.94, + "end": 11685.08, + "probability": 0.7386 + }, + { + "start": 11685.48, + "end": 11685.76, + "probability": 0.8789 + }, + { + "start": 11685.86, + "end": 11686.28, + "probability": 0.7206 + }, + { + "start": 11686.52, + "end": 11686.72, + "probability": 0.8722 + }, + { + "start": 11686.8, + "end": 11687.08, + "probability": 0.765 + }, + { + "start": 11687.14, + "end": 11687.86, + "probability": 0.6931 + }, + { + "start": 11687.94, + "end": 11690.91, + "probability": 0.7527 + }, + { + "start": 11691.08, + "end": 11691.32, + "probability": 0.3778 + }, + { + "start": 11691.32, + "end": 11692.6, + "probability": 0.9964 + }, + { + "start": 11693.26, + "end": 11697.0, + "probability": 0.926 + }, + { + "start": 11697.0, + "end": 11698.52, + "probability": 0.089 + }, + { + "start": 11699.54, + "end": 11703.5, + "probability": 0.8143 + }, + { + "start": 11703.6, + "end": 11707.8, + "probability": 0.8475 + }, + { + "start": 11707.9, + "end": 11711.5, + "probability": 0.9913 + }, + { + "start": 11711.7, + "end": 11712.3, + "probability": 0.7632 + }, + { + "start": 11712.36, + "end": 11712.72, + "probability": 0.7798 + }, + { + "start": 11712.88, + "end": 11714.34, + "probability": 0.6248 + }, + { + "start": 11714.72, + "end": 11716.12, + "probability": 0.9443 + }, + { + "start": 11716.26, + "end": 11718.5, + "probability": 0.2002 + }, + { + "start": 11718.86, + "end": 11721.72, + "probability": 0.9958 + }, + { + "start": 11721.72, + "end": 11723.96, + "probability": 0.9409 + }, + { + "start": 11724.28, + "end": 11727.0, + "probability": 0.9043 + }, + { + "start": 11727.26, + "end": 11729.04, + "probability": 0.8211 + }, + { + "start": 11729.66, + "end": 11730.88, + "probability": 0.8252 + }, + { + "start": 11731.3, + "end": 11733.68, + "probability": 0.092 + }, + { + "start": 11734.3, + "end": 11734.4, + "probability": 0.0132 + }, + { + "start": 11734.4, + "end": 11736.97, + "probability": 0.5481 + }, + { + "start": 11737.24, + "end": 11737.64, + "probability": 0.5997 + }, + { + "start": 11737.96, + "end": 11739.72, + "probability": 0.587 + }, + { + "start": 11739.76, + "end": 11743.22, + "probability": 0.7804 + }, + { + "start": 11743.22, + "end": 11743.24, + "probability": 0.4214 + }, + { + "start": 11743.24, + "end": 11743.5, + "probability": 0.509 + }, + { + "start": 11743.68, + "end": 11746.7, + "probability": 0.9037 + }, + { + "start": 11746.96, + "end": 11749.8, + "probability": 0.9406 + }, + { + "start": 11750.16, + "end": 11751.16, + "probability": 0.9467 + }, + { + "start": 11751.32, + "end": 11752.2, + "probability": 0.2226 + }, + { + "start": 11752.26, + "end": 11754.94, + "probability": 0.7491 + }, + { + "start": 11755.04, + "end": 11755.68, + "probability": 0.6838 + }, + { + "start": 11755.88, + "end": 11756.78, + "probability": 0.7834 + }, + { + "start": 11756.96, + "end": 11757.92, + "probability": 0.844 + }, + { + "start": 11758.12, + "end": 11761.94, + "probability": 0.9764 + }, + { + "start": 11761.94, + "end": 11765.2, + "probability": 0.9461 + }, + { + "start": 11766.36, + "end": 11766.82, + "probability": 0.4306 + }, + { + "start": 11767.6, + "end": 11768.94, + "probability": 0.888 + }, + { + "start": 11769.14, + "end": 11772.48, + "probability": 0.8965 + }, + { + "start": 11772.62, + "end": 11774.33, + "probability": 0.9634 + }, + { + "start": 11774.52, + "end": 11775.32, + "probability": 0.8956 + }, + { + "start": 11775.52, + "end": 11780.54, + "probability": 0.9014 + }, + { + "start": 11780.56, + "end": 11780.7, + "probability": 0.0181 + }, + { + "start": 11780.7, + "end": 11781.94, + "probability": 0.8189 + }, + { + "start": 11782.96, + "end": 11785.94, + "probability": 0.9587 + }, + { + "start": 11786.4, + "end": 11790.64, + "probability": 0.9455 + }, + { + "start": 11791.14, + "end": 11792.64, + "probability": 0.1809 + }, + { + "start": 11792.64, + "end": 11793.0, + "probability": 0.1272 + }, + { + "start": 11793.0, + "end": 11793.46, + "probability": 0.3866 + }, + { + "start": 11793.46, + "end": 11794.64, + "probability": 0.473 + }, + { + "start": 11794.72, + "end": 11796.8, + "probability": 0.8901 + }, + { + "start": 11796.8, + "end": 11799.52, + "probability": 0.8329 + }, + { + "start": 11800.12, + "end": 11804.58, + "probability": 0.1093 + }, + { + "start": 11804.58, + "end": 11804.58, + "probability": 0.4028 + }, + { + "start": 11804.66, + "end": 11805.2, + "probability": 0.5511 + }, + { + "start": 11805.2, + "end": 11806.0, + "probability": 0.8008 + }, + { + "start": 11806.04, + "end": 11806.41, + "probability": 0.5947 + }, + { + "start": 11806.62, + "end": 11810.84, + "probability": 0.8599 + }, + { + "start": 11810.98, + "end": 11813.16, + "probability": 0.8259 + }, + { + "start": 11813.16, + "end": 11815.2, + "probability": 0.7708 + }, + { + "start": 11815.88, + "end": 11817.7, + "probability": 0.0398 + }, + { + "start": 11817.7, + "end": 11818.58, + "probability": 0.7822 + }, + { + "start": 11818.62, + "end": 11821.46, + "probability": 0.2586 + }, + { + "start": 11821.54, + "end": 11822.0, + "probability": 0.9168 + }, + { + "start": 11822.02, + "end": 11823.16, + "probability": 0.6504 + }, + { + "start": 11823.3, + "end": 11824.42, + "probability": 0.9413 + }, + { + "start": 11824.7, + "end": 11825.85, + "probability": 0.9062 + }, + { + "start": 11826.7, + "end": 11831.54, + "probability": 0.9742 + }, + { + "start": 11832.0, + "end": 11833.46, + "probability": 0.7715 + }, + { + "start": 11833.98, + "end": 11834.06, + "probability": 0.0977 + }, + { + "start": 11834.08, + "end": 11835.74, + "probability": 0.8906 + }, + { + "start": 11836.08, + "end": 11841.68, + "probability": 0.9185 + }, + { + "start": 11841.96, + "end": 11842.92, + "probability": 0.9443 + }, + { + "start": 11843.0, + "end": 11843.98, + "probability": 0.5916 + }, + { + "start": 11844.42, + "end": 11845.09, + "probability": 0.8926 + }, + { + "start": 11845.68, + "end": 11846.34, + "probability": 0.8362 + }, + { + "start": 11847.28, + "end": 11849.04, + "probability": 0.8894 + }, + { + "start": 11849.14, + "end": 11849.74, + "probability": 0.4426 + }, + { + "start": 11850.18, + "end": 11851.32, + "probability": 0.1376 + }, + { + "start": 11851.32, + "end": 11853.05, + "probability": 0.9359 + }, + { + "start": 11853.34, + "end": 11860.78, + "probability": 0.5598 + }, + { + "start": 11865.81, + "end": 11866.22, + "probability": 0.1919 + }, + { + "start": 11866.22, + "end": 11866.24, + "probability": 0.0871 + }, + { + "start": 11866.24, + "end": 11867.22, + "probability": 0.7352 + }, + { + "start": 11868.12, + "end": 11872.28, + "probability": 0.6331 + }, + { + "start": 11873.24, + "end": 11877.3, + "probability": 0.5316 + }, + { + "start": 11877.92, + "end": 11879.18, + "probability": 0.5628 + }, + { + "start": 11879.2, + "end": 11880.74, + "probability": 0.7241 + }, + { + "start": 11880.74, + "end": 11882.68, + "probability": 0.72 + }, + { + "start": 11882.7, + "end": 11886.6, + "probability": 0.9775 + }, + { + "start": 11886.6, + "end": 11889.02, + "probability": 0.9597 + }, + { + "start": 11889.02, + "end": 11889.48, + "probability": 0.5231 + }, + { + "start": 11889.48, + "end": 11889.62, + "probability": 0.3757 + }, + { + "start": 11889.92, + "end": 11895.4, + "probability": 0.992 + }, + { + "start": 11895.46, + "end": 11897.56, + "probability": 0.8674 + }, + { + "start": 11897.56, + "end": 11899.06, + "probability": 0.5075 + }, + { + "start": 11899.26, + "end": 11899.78, + "probability": 0.9352 + }, + { + "start": 11899.88, + "end": 11900.55, + "probability": 0.8074 + }, + { + "start": 11901.12, + "end": 11903.93, + "probability": 0.768 + }, + { + "start": 11904.04, + "end": 11907.66, + "probability": 0.0901 + }, + { + "start": 11907.66, + "end": 11907.66, + "probability": 0.0119 + }, + { + "start": 11907.66, + "end": 11907.9, + "probability": 0.4869 + }, + { + "start": 11907.98, + "end": 11908.56, + "probability": 0.6481 + }, + { + "start": 11908.64, + "end": 11909.71, + "probability": 0.8394 + }, + { + "start": 11909.85, + "end": 11911.05, + "probability": 0.8321 + }, + { + "start": 11911.57, + "end": 11913.15, + "probability": 0.9829 + }, + { + "start": 11913.15, + "end": 11913.77, + "probability": 0.7734 + }, + { + "start": 11913.77, + "end": 11915.91, + "probability": 0.7465 + }, + { + "start": 11915.93, + "end": 11916.81, + "probability": 0.9568 + }, + { + "start": 11916.93, + "end": 11918.97, + "probability": 0.9505 + }, + { + "start": 11919.6, + "end": 11922.3, + "probability": 0.8657 + }, + { + "start": 11923.05, + "end": 11924.67, + "probability": 0.8955 + }, + { + "start": 11924.87, + "end": 11928.39, + "probability": 0.8381 + }, + { + "start": 11928.73, + "end": 11931.81, + "probability": 0.9736 + }, + { + "start": 11931.87, + "end": 11935.15, + "probability": 0.9956 + }, + { + "start": 11935.15, + "end": 11938.31, + "probability": 0.8605 + }, + { + "start": 11938.57, + "end": 11940.63, + "probability": 0.907 + }, + { + "start": 11941.01, + "end": 11942.45, + "probability": 0.7905 + }, + { + "start": 11942.61, + "end": 11942.69, + "probability": 0.0616 + }, + { + "start": 11942.69, + "end": 11944.17, + "probability": 0.9263 + }, + { + "start": 11944.45, + "end": 11946.21, + "probability": 0.9744 + }, + { + "start": 11946.91, + "end": 11948.23, + "probability": 0.9253 + }, + { + "start": 11948.25, + "end": 11949.27, + "probability": 0.6791 + }, + { + "start": 11949.83, + "end": 11951.09, + "probability": 0.8136 + }, + { + "start": 11951.15, + "end": 11955.69, + "probability": 0.9953 + }, + { + "start": 11956.01, + "end": 11957.33, + "probability": 0.8672 + }, + { + "start": 11957.61, + "end": 11958.69, + "probability": 0.8787 + }, + { + "start": 11958.73, + "end": 11959.37, + "probability": 0.8738 + }, + { + "start": 11959.57, + "end": 11960.9, + "probability": 0.9893 + }, + { + "start": 11961.25, + "end": 11962.85, + "probability": 0.9971 + }, + { + "start": 11963.51, + "end": 11964.47, + "probability": 0.3865 + }, + { + "start": 11964.89, + "end": 11965.61, + "probability": 0.7624 + }, + { + "start": 11965.77, + "end": 11965.87, + "probability": 0.0226 + }, + { + "start": 11965.87, + "end": 11966.36, + "probability": 0.4066 + }, + { + "start": 11966.53, + "end": 11967.15, + "probability": 0.5101 + }, + { + "start": 11967.23, + "end": 11967.61, + "probability": 0.4766 + }, + { + "start": 11967.81, + "end": 11969.19, + "probability": 0.9237 + }, + { + "start": 11969.53, + "end": 11970.93, + "probability": 0.9749 + }, + { + "start": 11971.27, + "end": 11973.39, + "probability": 0.9719 + }, + { + "start": 11974.45, + "end": 11975.13, + "probability": 0.018 + }, + { + "start": 11975.13, + "end": 11976.51, + "probability": 0.0272 + }, + { + "start": 11976.55, + "end": 11976.55, + "probability": 0.1073 + }, + { + "start": 11976.69, + "end": 11978.43, + "probability": 0.9951 + }, + { + "start": 11978.75, + "end": 11980.47, + "probability": 0.9961 + }, + { + "start": 11981.05, + "end": 11982.97, + "probability": 0.818 + }, + { + "start": 11983.01, + "end": 11985.25, + "probability": 0.9888 + }, + { + "start": 11985.29, + "end": 11987.77, + "probability": 0.7152 + }, + { + "start": 11987.83, + "end": 11988.29, + "probability": 0.6363 + }, + { + "start": 11988.69, + "end": 11990.19, + "probability": 0.9742 + }, + { + "start": 11990.31, + "end": 11990.85, + "probability": 0.7582 + }, + { + "start": 11991.03, + "end": 11991.77, + "probability": 0.927 + }, + { + "start": 11991.87, + "end": 11993.29, + "probability": 0.8932 + }, + { + "start": 11993.39, + "end": 11996.61, + "probability": 0.9956 + }, + { + "start": 11996.91, + "end": 11997.59, + "probability": 0.7333 + }, + { + "start": 11998.89, + "end": 12003.07, + "probability": 0.8417 + }, + { + "start": 12003.21, + "end": 12005.59, + "probability": 0.6758 + }, + { + "start": 12005.67, + "end": 12006.23, + "probability": 0.4375 + }, + { + "start": 12006.25, + "end": 12006.87, + "probability": 0.694 + }, + { + "start": 12007.93, + "end": 12008.53, + "probability": 0.8512 + }, + { + "start": 12008.53, + "end": 12011.59, + "probability": 0.7783 + }, + { + "start": 12012.19, + "end": 12014.23, + "probability": 0.9966 + }, + { + "start": 12015.19, + "end": 12015.83, + "probability": 0.5808 + }, + { + "start": 12016.21, + "end": 12018.77, + "probability": 0.906 + }, + { + "start": 12019.19, + "end": 12023.25, + "probability": 0.9588 + }, + { + "start": 12023.33, + "end": 12025.27, + "probability": 0.8467 + }, + { + "start": 12025.27, + "end": 12029.07, + "probability": 0.9277 + }, + { + "start": 12029.11, + "end": 12030.67, + "probability": 0.5523 + }, + { + "start": 12030.81, + "end": 12031.39, + "probability": 0.4986 + }, + { + "start": 12031.45, + "end": 12032.15, + "probability": 0.8185 + }, + { + "start": 12032.25, + "end": 12033.53, + "probability": 0.8981 + }, + { + "start": 12034.17, + "end": 12035.33, + "probability": 0.9467 + }, + { + "start": 12036.03, + "end": 12038.03, + "probability": 0.9927 + }, + { + "start": 12038.61, + "end": 12042.97, + "probability": 0.9464 + }, + { + "start": 12043.59, + "end": 12047.65, + "probability": 0.9967 + }, + { + "start": 12048.23, + "end": 12054.5, + "probability": 0.9956 + }, + { + "start": 12055.17, + "end": 12058.75, + "probability": 0.9971 + }, + { + "start": 12059.43, + "end": 12061.09, + "probability": 0.9954 + }, + { + "start": 12061.59, + "end": 12064.49, + "probability": 0.9528 + }, + { + "start": 12065.15, + "end": 12066.38, + "probability": 0.8013 + }, + { + "start": 12066.79, + "end": 12069.33, + "probability": 0.9973 + }, + { + "start": 12070.13, + "end": 12072.05, + "probability": 0.9568 + }, + { + "start": 12072.49, + "end": 12074.47, + "probability": 0.9281 + }, + { + "start": 12074.97, + "end": 12077.6, + "probability": 0.9983 + }, + { + "start": 12077.91, + "end": 12078.93, + "probability": 0.9517 + }, + { + "start": 12079.33, + "end": 12080.23, + "probability": 0.9119 + }, + { + "start": 12080.37, + "end": 12081.45, + "probability": 0.974 + }, + { + "start": 12081.59, + "end": 12082.39, + "probability": 0.5141 + }, + { + "start": 12082.95, + "end": 12083.33, + "probability": 0.5333 + }, + { + "start": 12083.43, + "end": 12084.15, + "probability": 0.8772 + }, + { + "start": 12084.19, + "end": 12086.83, + "probability": 0.9734 + }, + { + "start": 12087.29, + "end": 12089.72, + "probability": 0.9893 + }, + { + "start": 12090.33, + "end": 12094.13, + "probability": 0.9956 + }, + { + "start": 12094.13, + "end": 12097.83, + "probability": 0.9979 + }, + { + "start": 12098.01, + "end": 12098.99, + "probability": 0.6429 + }, + { + "start": 12099.69, + "end": 12100.27, + "probability": 0.7678 + }, + { + "start": 12100.79, + "end": 12101.41, + "probability": 0.8097 + }, + { + "start": 12101.95, + "end": 12104.01, + "probability": 0.9506 + }, + { + "start": 12104.31, + "end": 12106.63, + "probability": 0.9729 + }, + { + "start": 12107.05, + "end": 12108.89, + "probability": 0.9507 + }, + { + "start": 12108.97, + "end": 12109.55, + "probability": 0.7159 + }, + { + "start": 12109.75, + "end": 12112.03, + "probability": 0.5683 + }, + { + "start": 12112.99, + "end": 12113.45, + "probability": 0.9175 + }, + { + "start": 12114.19, + "end": 12116.95, + "probability": 0.8524 + }, + { + "start": 12118.33, + "end": 12122.05, + "probability": 0.9571 + }, + { + "start": 12123.15, + "end": 12128.25, + "probability": 0.099 + }, + { + "start": 12128.25, + "end": 12129.65, + "probability": 0.0571 + }, + { + "start": 12129.89, + "end": 12130.61, + "probability": 0.4675 + }, + { + "start": 12133.73, + "end": 12137.55, + "probability": 0.2703 + }, + { + "start": 12138.37, + "end": 12139.85, + "probability": 0.7964 + }, + { + "start": 12140.69, + "end": 12141.71, + "probability": 0.5291 + }, + { + "start": 12142.39, + "end": 12142.61, + "probability": 0.5161 + }, + { + "start": 12143.35, + "end": 12144.57, + "probability": 0.6791 + }, + { + "start": 12145.59, + "end": 12147.69, + "probability": 0.7805 + }, + { + "start": 12148.29, + "end": 12148.69, + "probability": 0.9753 + }, + { + "start": 12149.27, + "end": 12150.17, + "probability": 0.9451 + }, + { + "start": 12150.97, + "end": 12151.49, + "probability": 0.946 + }, + { + "start": 12152.23, + "end": 12152.93, + "probability": 0.941 + }, + { + "start": 12153.71, + "end": 12154.05, + "probability": 0.8742 + }, + { + "start": 12154.57, + "end": 12155.45, + "probability": 0.9196 + }, + { + "start": 12156.77, + "end": 12159.35, + "probability": 0.9579 + }, + { + "start": 12160.31, + "end": 12161.23, + "probability": 0.9866 + }, + { + "start": 12162.41, + "end": 12163.37, + "probability": 0.7803 + }, + { + "start": 12167.31, + "end": 12168.45, + "probability": 0.0017 + }, + { + "start": 12171.19, + "end": 12172.23, + "probability": 0.6865 + }, + { + "start": 12173.03, + "end": 12173.85, + "probability": 0.2291 + }, + { + "start": 12175.55, + "end": 12175.99, + "probability": 0.7354 + }, + { + "start": 12177.33, + "end": 12178.11, + "probability": 0.6499 + }, + { + "start": 12178.79, + "end": 12180.85, + "probability": 0.984 + }, + { + "start": 12181.65, + "end": 12183.41, + "probability": 0.9321 + }, + { + "start": 12184.01, + "end": 12185.63, + "probability": 0.9801 + }, + { + "start": 12186.43, + "end": 12186.87, + "probability": 0.8682 + }, + { + "start": 12187.45, + "end": 12188.33, + "probability": 0.9632 + }, + { + "start": 12189.21, + "end": 12191.33, + "probability": 0.9742 + }, + { + "start": 12192.69, + "end": 12194.63, + "probability": 0.8813 + }, + { + "start": 12195.35, + "end": 12195.77, + "probability": 0.5701 + }, + { + "start": 12196.87, + "end": 12198.03, + "probability": 0.8191 + }, + { + "start": 12201.87, + "end": 12202.33, + "probability": 0.949 + }, + { + "start": 12203.23, + "end": 12204.11, + "probability": 0.8497 + }, + { + "start": 12204.99, + "end": 12205.37, + "probability": 0.8973 + }, + { + "start": 12206.09, + "end": 12206.71, + "probability": 0.9632 + }, + { + "start": 12207.71, + "end": 12208.41, + "probability": 0.9399 + }, + { + "start": 12209.35, + "end": 12211.01, + "probability": 0.7619 + }, + { + "start": 12211.61, + "end": 12212.71, + "probability": 0.9582 + }, + { + "start": 12213.45, + "end": 12213.75, + "probability": 0.9834 + }, + { + "start": 12214.29, + "end": 12215.27, + "probability": 0.9121 + }, + { + "start": 12215.95, + "end": 12216.31, + "probability": 0.981 + }, + { + "start": 12217.09, + "end": 12217.93, + "probability": 0.9141 + }, + { + "start": 12218.63, + "end": 12220.29, + "probability": 0.4621 + }, + { + "start": 12221.81, + "end": 12223.73, + "probability": 0.9406 + }, + { + "start": 12224.61, + "end": 12227.97, + "probability": 0.9264 + }, + { + "start": 12229.33, + "end": 12230.99, + "probability": 0.7974 + }, + { + "start": 12231.81, + "end": 12232.23, + "probability": 0.9612 + }, + { + "start": 12233.39, + "end": 12234.21, + "probability": 0.8531 + }, + { + "start": 12235.13, + "end": 12236.65, + "probability": 0.9517 + }, + { + "start": 12237.65, + "end": 12238.21, + "probability": 0.6818 + }, + { + "start": 12239.11, + "end": 12239.83, + "probability": 0.5214 + }, + { + "start": 12241.19, + "end": 12242.97, + "probability": 0.9041 + }, + { + "start": 12244.55, + "end": 12245.71, + "probability": 0.7491 + }, + { + "start": 12248.93, + "end": 12249.79, + "probability": 0.6345 + }, + { + "start": 12251.47, + "end": 12253.27, + "probability": 0.9367 + }, + { + "start": 12253.81, + "end": 12254.65, + "probability": 0.8151 + }, + { + "start": 12255.41, + "end": 12255.87, + "probability": 0.8364 + }, + { + "start": 12257.23, + "end": 12258.01, + "probability": 0.9214 + }, + { + "start": 12259.03, + "end": 12259.57, + "probability": 0.9736 + }, + { + "start": 12260.45, + "end": 12261.29, + "probability": 0.9813 + }, + { + "start": 12262.19, + "end": 12262.59, + "probability": 0.9812 + }, + { + "start": 12263.17, + "end": 12263.99, + "probability": 0.9668 + }, + { + "start": 12264.89, + "end": 12265.61, + "probability": 0.9962 + }, + { + "start": 12266.17, + "end": 12266.89, + "probability": 0.9779 + }, + { + "start": 12268.29, + "end": 12269.95, + "probability": 0.9723 + }, + { + "start": 12271.55, + "end": 12272.83, + "probability": 0.2529 + }, + { + "start": 12295.23, + "end": 12296.61, + "probability": 0.3102 + }, + { + "start": 12298.33, + "end": 12301.05, + "probability": 0.5799 + }, + { + "start": 12302.59, + "end": 12303.91, + "probability": 0.6528 + }, + { + "start": 12304.81, + "end": 12305.19, + "probability": 0.6421 + }, + { + "start": 12306.05, + "end": 12307.79, + "probability": 0.9045 + }, + { + "start": 12309.35, + "end": 12310.01, + "probability": 0.903 + }, + { + "start": 12310.89, + "end": 12311.49, + "probability": 0.9773 + }, + { + "start": 12312.99, + "end": 12313.87, + "probability": 0.9677 + }, + { + "start": 12314.71, + "end": 12316.85, + "probability": 0.9614 + }, + { + "start": 12319.19, + "end": 12321.59, + "probability": 0.9778 + }, + { + "start": 12322.55, + "end": 12323.31, + "probability": 0.8673 + }, + { + "start": 12326.67, + "end": 12327.61, + "probability": 0.4815 + }, + { + "start": 12328.91, + "end": 12330.19, + "probability": 0.7747 + }, + { + "start": 12330.91, + "end": 12334.67, + "probability": 0.6461 + }, + { + "start": 12335.59, + "end": 12336.47, + "probability": 0.9237 + }, + { + "start": 12336.99, + "end": 12337.99, + "probability": 0.8003 + }, + { + "start": 12339.29, + "end": 12341.49, + "probability": 0.852 + }, + { + "start": 12342.91, + "end": 12346.77, + "probability": 0.8682 + }, + { + "start": 12348.03, + "end": 12350.27, + "probability": 0.9419 + }, + { + "start": 12351.05, + "end": 12352.01, + "probability": 0.97 + }, + { + "start": 12352.69, + "end": 12353.17, + "probability": 0.6829 + }, + { + "start": 12353.87, + "end": 12356.09, + "probability": 0.7708 + }, + { + "start": 12356.69, + "end": 12357.17, + "probability": 0.9513 + }, + { + "start": 12357.81, + "end": 12358.51, + "probability": 0.8569 + }, + { + "start": 12359.61, + "end": 12361.51, + "probability": 0.7958 + }, + { + "start": 12363.27, + "end": 12364.81, + "probability": 0.8835 + }, + { + "start": 12367.05, + "end": 12369.07, + "probability": 0.9574 + }, + { + "start": 12370.53, + "end": 12372.35, + "probability": 0.9516 + }, + { + "start": 12373.21, + "end": 12375.73, + "probability": 0.9705 + }, + { + "start": 12377.38, + "end": 12379.59, + "probability": 0.8875 + }, + { + "start": 12380.19, + "end": 12381.93, + "probability": 0.8309 + }, + { + "start": 12382.77, + "end": 12384.13, + "probability": 0.757 + }, + { + "start": 12384.87, + "end": 12385.19, + "probability": 0.9531 + }, + { + "start": 12386.97, + "end": 12387.95, + "probability": 0.9499 + }, + { + "start": 12389.19, + "end": 12390.83, + "probability": 0.9749 + }, + { + "start": 12392.31, + "end": 12392.73, + "probability": 0.877 + }, + { + "start": 12393.31, + "end": 12394.11, + "probability": 0.7561 + }, + { + "start": 12394.91, + "end": 12396.27, + "probability": 0.9742 + }, + { + "start": 12397.39, + "end": 12399.25, + "probability": 0.9785 + }, + { + "start": 12400.45, + "end": 12402.41, + "probability": 0.6219 + }, + { + "start": 12403.35, + "end": 12403.71, + "probability": 0.9596 + }, + { + "start": 12404.55, + "end": 12405.27, + "probability": 0.8452 + }, + { + "start": 12405.95, + "end": 12407.45, + "probability": 0.852 + }, + { + "start": 12408.75, + "end": 12410.39, + "probability": 0.9225 + }, + { + "start": 12413.85, + "end": 12415.93, + "probability": 0.7886 + }, + { + "start": 12417.63, + "end": 12418.05, + "probability": 0.8386 + }, + { + "start": 12418.67, + "end": 12419.47, + "probability": 0.4727 + }, + { + "start": 12420.29, + "end": 12422.67, + "probability": 0.8635 + }, + { + "start": 12424.43, + "end": 12425.27, + "probability": 0.4975 + }, + { + "start": 12425.99, + "end": 12428.01, + "probability": 0.2733 + }, + { + "start": 12429.09, + "end": 12430.37, + "probability": 0.629 + }, + { + "start": 12432.01, + "end": 12433.95, + "probability": 0.7797 + }, + { + "start": 12434.57, + "end": 12435.43, + "probability": 0.7705 + }, + { + "start": 12437.17, + "end": 12438.93, + "probability": 0.7203 + }, + { + "start": 12442.79, + "end": 12443.77, + "probability": 0.5487 + }, + { + "start": 12445.19, + "end": 12446.13, + "probability": 0.6489 + }, + { + "start": 12446.77, + "end": 12448.23, + "probability": 0.7429 + }, + { + "start": 12449.69, + "end": 12450.45, + "probability": 0.9669 + }, + { + "start": 12451.85, + "end": 12452.95, + "probability": 0.9255 + }, + { + "start": 12454.89, + "end": 12456.17, + "probability": 0.925 + }, + { + "start": 12459.61, + "end": 12459.99, + "probability": 0.9302 + }, + { + "start": 12460.53, + "end": 12461.67, + "probability": 0.853 + }, + { + "start": 12462.71, + "end": 12464.11, + "probability": 0.9012 + }, + { + "start": 12464.95, + "end": 12466.31, + "probability": 0.9602 + }, + { + "start": 12467.41, + "end": 12467.89, + "probability": 0.6067 + }, + { + "start": 12468.41, + "end": 12469.65, + "probability": 0.7967 + }, + { + "start": 12470.43, + "end": 12470.73, + "probability": 0.9206 + }, + { + "start": 12472.33, + "end": 12473.17, + "probability": 0.9716 + }, + { + "start": 12474.01, + "end": 12475.59, + "probability": 0.953 + }, + { + "start": 12477.85, + "end": 12478.21, + "probability": 0.7907 + }, + { + "start": 12479.67, + "end": 12480.59, + "probability": 0.9216 + }, + { + "start": 12482.79, + "end": 12484.93, + "probability": 0.9029 + }, + { + "start": 12486.27, + "end": 12488.61, + "probability": 0.8384 + }, + { + "start": 12489.33, + "end": 12489.83, + "probability": 0.9871 + }, + { + "start": 12491.03, + "end": 12491.85, + "probability": 0.8642 + }, + { + "start": 12493.25, + "end": 12494.61, + "probability": 0.6832 + }, + { + "start": 12495.75, + "end": 12498.11, + "probability": 0.8357 + }, + { + "start": 12499.43, + "end": 12501.35, + "probability": 0.8502 + }, + { + "start": 12502.51, + "end": 12504.59, + "probability": 0.9431 + }, + { + "start": 12505.37, + "end": 12505.83, + "probability": 0.943 + }, + { + "start": 12506.91, + "end": 12507.77, + "probability": 0.8195 + }, + { + "start": 12508.41, + "end": 12508.75, + "probability": 0.9858 + }, + { + "start": 12509.61, + "end": 12510.49, + "probability": 0.7942 + }, + { + "start": 12511.33, + "end": 12511.87, + "probability": 0.9958 + }, + { + "start": 12512.45, + "end": 12513.25, + "probability": 0.8497 + }, + { + "start": 12514.27, + "end": 12516.55, + "probability": 0.9842 + }, + { + "start": 12517.61, + "end": 12517.89, + "probability": 0.6977 + }, + { + "start": 12519.23, + "end": 12520.09, + "probability": 0.6142 + }, + { + "start": 12521.39, + "end": 12524.59, + "probability": 0.7245 + }, + { + "start": 12527.59, + "end": 12529.11, + "probability": 0.8621 + }, + { + "start": 12531.15, + "end": 12533.03, + "probability": 0.9025 + }, + { + "start": 12535.53, + "end": 12536.09, + "probability": 0.9756 + }, + { + "start": 12537.11, + "end": 12538.03, + "probability": 0.9438 + }, + { + "start": 12539.45, + "end": 12542.65, + "probability": 0.9502 + }, + { + "start": 12543.65, + "end": 12544.07, + "probability": 0.9814 + }, + { + "start": 12545.39, + "end": 12546.31, + "probability": 0.7905 + }, + { + "start": 12549.31, + "end": 12550.73, + "probability": 0.7596 + }, + { + "start": 12551.93, + "end": 12553.57, + "probability": 0.9445 + }, + { + "start": 12556.69, + "end": 12557.47, + "probability": 0.9451 + }, + { + "start": 12558.17, + "end": 12559.05, + "probability": 0.9149 + }, + { + "start": 12560.45, + "end": 12561.47, + "probability": 0.7295 + }, + { + "start": 12562.47, + "end": 12563.27, + "probability": 0.9294 + }, + { + "start": 12564.83, + "end": 12565.85, + "probability": 0.9409 + }, + { + "start": 12566.51, + "end": 12567.33, + "probability": 0.7009 + }, + { + "start": 12568.27, + "end": 12568.77, + "probability": 0.9611 + }, + { + "start": 12569.47, + "end": 12570.35, + "probability": 0.9683 + }, + { + "start": 12571.35, + "end": 12573.27, + "probability": 0.9666 + }, + { + "start": 12574.01, + "end": 12574.47, + "probability": 0.9858 + }, + { + "start": 12575.11, + "end": 12575.97, + "probability": 0.9093 + }, + { + "start": 12576.85, + "end": 12577.25, + "probability": 0.6528 + }, + { + "start": 12577.99, + "end": 12578.85, + "probability": 0.8094 + }, + { + "start": 12580.29, + "end": 12582.43, + "probability": 0.5975 + }, + { + "start": 12583.83, + "end": 12584.39, + "probability": 0.9837 + }, + { + "start": 12586.19, + "end": 12587.71, + "probability": 0.591 + }, + { + "start": 12591.97, + "end": 12593.39, + "probability": 0.8388 + }, + { + "start": 12594.13, + "end": 12595.65, + "probability": 0.3661 + }, + { + "start": 12596.31, + "end": 12598.33, + "probability": 0.7343 + }, + { + "start": 12600.11, + "end": 12600.57, + "probability": 0.5293 + }, + { + "start": 12602.23, + "end": 12602.99, + "probability": 0.9223 + }, + { + "start": 12603.73, + "end": 12605.55, + "probability": 0.9844 + }, + { + "start": 12606.83, + "end": 12608.77, + "probability": 0.951 + }, + { + "start": 12609.61, + "end": 12610.35, + "probability": 0.9736 + }, + { + "start": 12611.67, + "end": 12612.39, + "probability": 0.7797 + }, + { + "start": 12612.99, + "end": 12614.63, + "probability": 0.6579 + }, + { + "start": 12615.69, + "end": 12617.29, + "probability": 0.9738 + }, + { + "start": 12619.57, + "end": 12620.05, + "probability": 0.5196 + }, + { + "start": 12621.41, + "end": 12622.27, + "probability": 0.7935 + }, + { + "start": 12623.19, + "end": 12625.19, + "probability": 0.9534 + }, + { + "start": 12626.29, + "end": 12628.55, + "probability": 0.9766 + }, + { + "start": 12629.75, + "end": 12631.63, + "probability": 0.9875 + }, + { + "start": 12632.27, + "end": 12634.17, + "probability": 0.8617 + }, + { + "start": 12635.43, + "end": 12637.33, + "probability": 0.8291 + }, + { + "start": 12638.35, + "end": 12639.93, + "probability": 0.9674 + }, + { + "start": 12640.97, + "end": 12642.93, + "probability": 0.9732 + }, + { + "start": 12643.65, + "end": 12644.47, + "probability": 0.9564 + }, + { + "start": 12645.47, + "end": 12646.43, + "probability": 0.7565 + }, + { + "start": 12647.23, + "end": 12647.89, + "probability": 0.9931 + }, + { + "start": 12648.41, + "end": 12649.29, + "probability": 0.9695 + }, + { + "start": 12650.07, + "end": 12651.85, + "probability": 0.9497 + }, + { + "start": 12652.83, + "end": 12654.95, + "probability": 0.9872 + }, + { + "start": 12655.99, + "end": 12657.87, + "probability": 0.8741 + }, + { + "start": 12659.13, + "end": 12660.53, + "probability": 0.9393 + }, + { + "start": 12661.39, + "end": 12662.07, + "probability": 0.9436 + }, + { + "start": 12662.85, + "end": 12663.57, + "probability": 0.9756 + }, + { + "start": 12664.43, + "end": 12665.35, + "probability": 0.9931 + }, + { + "start": 12665.89, + "end": 12667.31, + "probability": 0.9725 + }, + { + "start": 12668.31, + "end": 12670.25, + "probability": 0.9908 + }, + { + "start": 12671.15, + "end": 12672.85, + "probability": 0.9819 + }, + { + "start": 12673.95, + "end": 12675.53, + "probability": 0.811 + }, + { + "start": 12676.13, + "end": 12677.59, + "probability": 0.8195 + }, + { + "start": 12678.71, + "end": 12680.67, + "probability": 0.975 + }, + { + "start": 12681.81, + "end": 12683.33, + "probability": 0.9467 + }, + { + "start": 12684.13, + "end": 12685.77, + "probability": 0.9779 + }, + { + "start": 12687.59, + "end": 12689.71, + "probability": 0.9799 + }, + { + "start": 12692.21, + "end": 12693.29, + "probability": 0.6316 + }, + { + "start": 12698.29, + "end": 12700.55, + "probability": 0.2927 + }, + { + "start": 12702.17, + "end": 12704.01, + "probability": 0.8835 + }, + { + "start": 12705.15, + "end": 12706.91, + "probability": 0.8267 + }, + { + "start": 12708.51, + "end": 12709.27, + "probability": 0.9825 + }, + { + "start": 12710.13, + "end": 12712.43, + "probability": 0.8758 + }, + { + "start": 12713.49, + "end": 12717.31, + "probability": 0.8792 + }, + { + "start": 12718.39, + "end": 12719.67, + "probability": 0.8875 + }, + { + "start": 12720.93, + "end": 12722.15, + "probability": 0.8695 + }, + { + "start": 12723.51, + "end": 12724.91, + "probability": 0.9569 + }, + { + "start": 12725.93, + "end": 12727.69, + "probability": 0.9437 + }, + { + "start": 12728.49, + "end": 12729.99, + "probability": 0.9691 + }, + { + "start": 12731.15, + "end": 12732.27, + "probability": 0.9725 + }, + { + "start": 12733.75, + "end": 12734.61, + "probability": 0.9875 + }, + { + "start": 12735.29, + "end": 12736.37, + "probability": 0.9353 + }, + { + "start": 12737.59, + "end": 12739.57, + "probability": 0.9578 + }, + { + "start": 12741.01, + "end": 12742.99, + "probability": 0.8153 + }, + { + "start": 12744.25, + "end": 12745.65, + "probability": 0.9489 + }, + { + "start": 12747.11, + "end": 12748.83, + "probability": 0.9757 + }, + { + "start": 12750.49, + "end": 12753.51, + "probability": 0.5758 + }, + { + "start": 12754.04, + "end": 12763.37, + "probability": 0.7457 + }, + { + "start": 12766.93, + "end": 12767.17, + "probability": 0.2736 + }, + { + "start": 12767.25, + "end": 12767.83, + "probability": 0.5021 + }, + { + "start": 12833.85, + "end": 12834.39, + "probability": 0.6383 + }, + { + "start": 12836.37, + "end": 12837.73, + "probability": 0.3202 + }, + { + "start": 12838.65, + "end": 12841.33, + "probability": 0.5697 + }, + { + "start": 12841.99, + "end": 12845.57, + "probability": 0.7673 + }, + { + "start": 12847.65, + "end": 12848.73, + "probability": 0.8314 + }, + { + "start": 12854.05, + "end": 12858.45, + "probability": 0.9873 + }, + { + "start": 12859.79, + "end": 12861.53, + "probability": 0.5023 + }, + { + "start": 12861.77, + "end": 12865.89, + "probability": 0.949 + }, + { + "start": 12866.19, + "end": 12870.09, + "probability": 0.0711 + }, + { + "start": 12870.21, + "end": 12871.29, + "probability": 0.2095 + }, + { + "start": 12871.29, + "end": 12871.37, + "probability": 0.422 + }, + { + "start": 12902.53, + "end": 12902.81, + "probability": 0.5333 + }, + { + "start": 12903.81, + "end": 12905.55, + "probability": 0.5878 + }, + { + "start": 12907.79, + "end": 12910.63, + "probability": 0.9578 + }, + { + "start": 12911.49, + "end": 12914.21, + "probability": 0.9729 + }, + { + "start": 12915.05, + "end": 12918.33, + "probability": 0.9751 + }, + { + "start": 12919.09, + "end": 12921.21, + "probability": 0.8535 + }, + { + "start": 12921.29, + "end": 12927.77, + "probability": 0.8898 + }, + { + "start": 12928.53, + "end": 12933.09, + "probability": 0.9966 + }, + { + "start": 12933.13, + "end": 12934.63, + "probability": 0.7609 + }, + { + "start": 12935.41, + "end": 12936.91, + "probability": 0.9435 + }, + { + "start": 12937.59, + "end": 12940.39, + "probability": 0.9246 + }, + { + "start": 12941.13, + "end": 12944.76, + "probability": 0.772 + }, + { + "start": 12946.33, + "end": 12948.75, + "probability": 0.9501 + }, + { + "start": 12949.41, + "end": 12955.03, + "probability": 0.9917 + }, + { + "start": 12956.43, + "end": 12960.45, + "probability": 0.87 + }, + { + "start": 12961.47, + "end": 12967.51, + "probability": 0.9897 + }, + { + "start": 12968.33, + "end": 12972.09, + "probability": 0.9876 + }, + { + "start": 12972.75, + "end": 12977.29, + "probability": 0.9978 + }, + { + "start": 12977.29, + "end": 12981.19, + "probability": 0.9912 + }, + { + "start": 12982.37, + "end": 12984.81, + "probability": 0.9202 + }, + { + "start": 12984.89, + "end": 12990.67, + "probability": 0.9665 + }, + { + "start": 12991.23, + "end": 12994.45, + "probability": 0.9107 + }, + { + "start": 12995.43, + "end": 13001.07, + "probability": 0.7706 + }, + { + "start": 13002.11, + "end": 13006.75, + "probability": 0.9818 + }, + { + "start": 13007.63, + "end": 13013.45, + "probability": 0.9766 + }, + { + "start": 13014.47, + "end": 13016.41, + "probability": 0.9349 + }, + { + "start": 13016.93, + "end": 13020.99, + "probability": 0.9875 + }, + { + "start": 13020.99, + "end": 13025.93, + "probability": 0.9967 + }, + { + "start": 13027.73, + "end": 13035.95, + "probability": 0.877 + }, + { + "start": 13036.59, + "end": 13038.07, + "probability": 0.947 + }, + { + "start": 13038.63, + "end": 13041.13, + "probability": 0.996 + }, + { + "start": 13041.97, + "end": 13045.11, + "probability": 0.9747 + }, + { + "start": 13045.83, + "end": 13047.83, + "probability": 0.9774 + }, + { + "start": 13049.23, + "end": 13049.99, + "probability": 0.5044 + }, + { + "start": 13050.03, + "end": 13050.03, + "probability": 0.7283 + }, + { + "start": 13050.03, + "end": 13050.51, + "probability": 0.4332 + }, + { + "start": 13050.57, + "end": 13052.73, + "probability": 0.9881 + }, + { + "start": 13053.25, + "end": 13055.07, + "probability": 0.9893 + }, + { + "start": 13055.99, + "end": 13057.35, + "probability": 0.9153 + }, + { + "start": 13060.11, + "end": 13063.63, + "probability": 0.9246 + }, + { + "start": 13064.35, + "end": 13066.77, + "probability": 0.9415 + }, + { + "start": 13067.41, + "end": 13071.67, + "probability": 0.7057 + }, + { + "start": 13072.65, + "end": 13076.67, + "probability": 0.7137 + }, + { + "start": 13076.89, + "end": 13081.99, + "probability": 0.9849 + }, + { + "start": 13082.07, + "end": 13084.45, + "probability": 0.9911 + }, + { + "start": 13085.25, + "end": 13091.65, + "probability": 0.9951 + }, + { + "start": 13092.07, + "end": 13095.53, + "probability": 0.8717 + }, + { + "start": 13096.33, + "end": 13097.77, + "probability": 0.9883 + }, + { + "start": 13098.23, + "end": 13101.13, + "probability": 0.7571 + }, + { + "start": 13102.03, + "end": 13103.15, + "probability": 0.9697 + }, + { + "start": 13103.21, + "end": 13105.35, + "probability": 0.9409 + }, + { + "start": 13105.39, + "end": 13110.97, + "probability": 0.9323 + }, + { + "start": 13111.85, + "end": 13115.99, + "probability": 0.9827 + }, + { + "start": 13115.99, + "end": 13119.99, + "probability": 0.9846 + }, + { + "start": 13120.79, + "end": 13123.27, + "probability": 0.7264 + }, + { + "start": 13123.27, + "end": 13126.75, + "probability": 0.9754 + }, + { + "start": 13127.65, + "end": 13129.79, + "probability": 0.9529 + }, + { + "start": 13130.49, + "end": 13135.27, + "probability": 0.9979 + }, + { + "start": 13135.93, + "end": 13137.21, + "probability": 0.8078 + }, + { + "start": 13137.77, + "end": 13141.33, + "probability": 0.9829 + }, + { + "start": 13141.81, + "end": 13144.25, + "probability": 0.9517 + }, + { + "start": 13144.83, + "end": 13149.85, + "probability": 0.9941 + }, + { + "start": 13150.07, + "end": 13150.81, + "probability": 0.7799 + }, + { + "start": 13150.89, + "end": 13151.17, + "probability": 0.858 + }, + { + "start": 13152.31, + "end": 13154.29, + "probability": 0.7274 + }, + { + "start": 13154.83, + "end": 13157.31, + "probability": 0.9503 + }, + { + "start": 13157.91, + "end": 13159.07, + "probability": 0.9248 + }, + { + "start": 13160.45, + "end": 13163.06, + "probability": 0.9893 + }, + { + "start": 13163.75, + "end": 13164.59, + "probability": 0.9987 + }, + { + "start": 13165.25, + "end": 13165.93, + "probability": 0.816 + }, + { + "start": 13167.35, + "end": 13168.43, + "probability": 0.7481 + }, + { + "start": 13169.47, + "end": 13171.33, + "probability": 0.872 + }, + { + "start": 13171.99, + "end": 13172.71, + "probability": 0.7224 + }, + { + "start": 13174.07, + "end": 13174.73, + "probability": 0.9568 + }, + { + "start": 13177.47, + "end": 13178.93, + "probability": 0.614 + }, + { + "start": 13179.09, + "end": 13179.87, + "probability": 0.869 + }, + { + "start": 13180.01, + "end": 13181.27, + "probability": 0.7996 + }, + { + "start": 13181.53, + "end": 13185.99, + "probability": 0.8893 + }, + { + "start": 13188.14, + "end": 13190.77, + "probability": 0.9165 + }, + { + "start": 13190.77, + "end": 13191.85, + "probability": 0.7605 + }, + { + "start": 13192.27, + "end": 13194.73, + "probability": 0.3431 + }, + { + "start": 13195.35, + "end": 13195.83, + "probability": 0.6652 + }, + { + "start": 13195.99, + "end": 13197.01, + "probability": 0.8981 + }, + { + "start": 13197.15, + "end": 13198.67, + "probability": 0.8425 + }, + { + "start": 13200.03, + "end": 13205.26, + "probability": 0.9619 + }, + { + "start": 13205.65, + "end": 13208.05, + "probability": 0.7954 + }, + { + "start": 13209.25, + "end": 13213.33, + "probability": 0.9957 + }, + { + "start": 13213.37, + "end": 13213.55, + "probability": 0.5562 + }, + { + "start": 13213.71, + "end": 13213.95, + "probability": 0.8805 + }, + { + "start": 13213.99, + "end": 13214.69, + "probability": 0.7454 + }, + { + "start": 13214.77, + "end": 13217.07, + "probability": 0.961 + }, + { + "start": 13229.79, + "end": 13231.27, + "probability": 0.1668 + }, + { + "start": 13231.27, + "end": 13231.27, + "probability": 0.0938 + }, + { + "start": 13231.27, + "end": 13231.27, + "probability": 0.0315 + }, + { + "start": 13231.27, + "end": 13232.37, + "probability": 0.0681 + }, + { + "start": 13232.37, + "end": 13236.01, + "probability": 0.8182 + }, + { + "start": 13236.47, + "end": 13238.39, + "probability": 0.5214 + }, + { + "start": 13238.57, + "end": 13239.93, + "probability": 0.9463 + }, + { + "start": 13240.33, + "end": 13242.39, + "probability": 0.8197 + }, + { + "start": 13242.47, + "end": 13246.09, + "probability": 0.992 + }, + { + "start": 13247.33, + "end": 13249.71, + "probability": 0.9708 + }, + { + "start": 13250.23, + "end": 13255.81, + "probability": 0.985 + }, + { + "start": 13255.93, + "end": 13256.77, + "probability": 0.5849 + }, + { + "start": 13257.63, + "end": 13260.63, + "probability": 0.9937 + }, + { + "start": 13261.23, + "end": 13262.21, + "probability": 0.7629 + }, + { + "start": 13263.89, + "end": 13263.89, + "probability": 0.4902 + }, + { + "start": 13264.11, + "end": 13265.31, + "probability": 0.9676 + }, + { + "start": 13265.79, + "end": 13269.19, + "probability": 0.9821 + }, + { + "start": 13269.69, + "end": 13272.55, + "probability": 0.9691 + }, + { + "start": 13273.53, + "end": 13276.46, + "probability": 0.9706 + }, + { + "start": 13276.77, + "end": 13277.77, + "probability": 0.9786 + }, + { + "start": 13277.97, + "end": 13279.65, + "probability": 0.9008 + }, + { + "start": 13280.17, + "end": 13284.27, + "probability": 0.9392 + }, + { + "start": 13284.33, + "end": 13287.77, + "probability": 0.9504 + }, + { + "start": 13288.13, + "end": 13289.97, + "probability": 0.9951 + }, + { + "start": 13290.03, + "end": 13290.47, + "probability": 0.6951 + }, + { + "start": 13290.63, + "end": 13290.83, + "probability": 0.8527 + }, + { + "start": 13290.93, + "end": 13293.1, + "probability": 0.7362 + }, + { + "start": 13294.89, + "end": 13300.55, + "probability": 0.9824 + }, + { + "start": 13300.61, + "end": 13304.29, + "probability": 0.9709 + }, + { + "start": 13304.91, + "end": 13310.61, + "probability": 0.6549 + }, + { + "start": 13311.21, + "end": 13317.65, + "probability": 0.9945 + }, + { + "start": 13318.07, + "end": 13319.07, + "probability": 0.8841 + }, + { + "start": 13319.27, + "end": 13320.93, + "probability": 0.9938 + }, + { + "start": 13321.09, + "end": 13322.81, + "probability": 0.9792 + }, + { + "start": 13323.31, + "end": 13324.38, + "probability": 0.8036 + }, + { + "start": 13325.27, + "end": 13327.07, + "probability": 0.9224 + }, + { + "start": 13327.83, + "end": 13329.83, + "probability": 0.9599 + }, + { + "start": 13330.31, + "end": 13332.19, + "probability": 0.9479 + }, + { + "start": 13332.59, + "end": 13333.61, + "probability": 0.7812 + }, + { + "start": 13333.69, + "end": 13335.07, + "probability": 0.9232 + }, + { + "start": 13335.25, + "end": 13339.01, + "probability": 0.9189 + }, + { + "start": 13339.63, + "end": 13342.23, + "probability": 0.7375 + }, + { + "start": 13342.35, + "end": 13343.79, + "probability": 0.8607 + }, + { + "start": 13344.17, + "end": 13346.01, + "probability": 0.9937 + }, + { + "start": 13346.95, + "end": 13349.89, + "probability": 0.9878 + }, + { + "start": 13350.03, + "end": 13353.43, + "probability": 0.9667 + }, + { + "start": 13353.43, + "end": 13356.93, + "probability": 0.9976 + }, + { + "start": 13357.81, + "end": 13359.07, + "probability": 0.831 + }, + { + "start": 13360.53, + "end": 13363.87, + "probability": 0.9954 + }, + { + "start": 13364.55, + "end": 13366.88, + "probability": 0.9948 + }, + { + "start": 13367.23, + "end": 13368.59, + "probability": 0.9285 + }, + { + "start": 13368.67, + "end": 13370.35, + "probability": 0.9966 + }, + { + "start": 13370.45, + "end": 13372.67, + "probability": 0.99 + }, + { + "start": 13373.01, + "end": 13375.03, + "probability": 0.943 + }, + { + "start": 13375.81, + "end": 13378.99, + "probability": 0.9866 + }, + { + "start": 13379.03, + "end": 13380.11, + "probability": 0.8636 + }, + { + "start": 13380.29, + "end": 13380.99, + "probability": 0.3881 + }, + { + "start": 13381.31, + "end": 13383.99, + "probability": 0.9919 + }, + { + "start": 13384.33, + "end": 13388.39, + "probability": 0.9284 + }, + { + "start": 13388.83, + "end": 13391.11, + "probability": 0.9844 + }, + { + "start": 13391.57, + "end": 13392.43, + "probability": 0.7056 + }, + { + "start": 13392.81, + "end": 13393.63, + "probability": 0.8927 + }, + { + "start": 13394.29, + "end": 13397.33, + "probability": 0.9954 + }, + { + "start": 13397.91, + "end": 13398.89, + "probability": 0.8298 + }, + { + "start": 13399.27, + "end": 13400.67, + "probability": 0.8637 + }, + { + "start": 13400.73, + "end": 13403.01, + "probability": 0.9928 + }, + { + "start": 13403.73, + "end": 13408.95, + "probability": 0.9629 + }, + { + "start": 13408.95, + "end": 13413.95, + "probability": 0.811 + }, + { + "start": 13414.09, + "end": 13417.49, + "probability": 0.8615 + }, + { + "start": 13418.23, + "end": 13418.47, + "probability": 0.7526 + }, + { + "start": 13418.57, + "end": 13419.67, + "probability": 0.9123 + }, + { + "start": 13419.77, + "end": 13426.99, + "probability": 0.9796 + }, + { + "start": 13427.53, + "end": 13428.79, + "probability": 0.4994 + }, + { + "start": 13429.31, + "end": 13430.07, + "probability": 0.9275 + }, + { + "start": 13430.19, + "end": 13431.27, + "probability": 0.9635 + }, + { + "start": 13431.39, + "end": 13431.87, + "probability": 0.883 + }, + { + "start": 13433.57, + "end": 13434.25, + "probability": 0.8947 + }, + { + "start": 13434.91, + "end": 13437.51, + "probability": 0.9803 + }, + { + "start": 13437.57, + "end": 13439.47, + "probability": 0.9707 + }, + { + "start": 13441.51, + "end": 13441.88, + "probability": 0.2013 + }, + { + "start": 13444.43, + "end": 13444.97, + "probability": 0.5015 + }, + { + "start": 13444.97, + "end": 13445.05, + "probability": 0.6376 + }, + { + "start": 13445.09, + "end": 13445.47, + "probability": 0.8295 + }, + { + "start": 13446.83, + "end": 13447.29, + "probability": 0.6762 + }, + { + "start": 13449.45, + "end": 13450.37, + "probability": 0.5386 + }, + { + "start": 13450.39, + "end": 13451.37, + "probability": 0.7522 + }, + { + "start": 13452.03, + "end": 13452.83, + "probability": 0.6926 + }, + { + "start": 13452.83, + "end": 13453.77, + "probability": 0.9482 + }, + { + "start": 13454.09, + "end": 13457.17, + "probability": 0.9535 + }, + { + "start": 13457.27, + "end": 13459.67, + "probability": 0.9487 + }, + { + "start": 13459.71, + "end": 13461.19, + "probability": 0.702 + }, + { + "start": 13461.97, + "end": 13462.43, + "probability": 0.4446 + }, + { + "start": 13462.53, + "end": 13462.55, + "probability": 0.2991 + }, + { + "start": 13462.55, + "end": 13464.45, + "probability": 0.9585 + }, + { + "start": 13464.85, + "end": 13466.15, + "probability": 0.9028 + }, + { + "start": 13469.03, + "end": 13470.43, + "probability": 0.112 + }, + { + "start": 13470.43, + "end": 13470.69, + "probability": 0.1191 + }, + { + "start": 13470.69, + "end": 13471.03, + "probability": 0.487 + }, + { + "start": 13471.03, + "end": 13471.69, + "probability": 0.1089 + }, + { + "start": 13471.87, + "end": 13472.07, + "probability": 0.1183 + }, + { + "start": 13472.07, + "end": 13475.67, + "probability": 0.2961 + }, + { + "start": 13476.27, + "end": 13480.05, + "probability": 0.1739 + }, + { + "start": 13480.11, + "end": 13482.13, + "probability": 0.3498 + }, + { + "start": 13482.21, + "end": 13482.43, + "probability": 0.4264 + }, + { + "start": 13482.43, + "end": 13482.83, + "probability": 0.643 + }, + { + "start": 13482.83, + "end": 13483.65, + "probability": 0.5025 + }, + { + "start": 13483.65, + "end": 13486.13, + "probability": 0.7588 + }, + { + "start": 13486.75, + "end": 13487.39, + "probability": 0.6982 + }, + { + "start": 13487.59, + "end": 13488.95, + "probability": 0.7552 + }, + { + "start": 13489.21, + "end": 13489.93, + "probability": 0.528 + }, + { + "start": 13489.93, + "end": 13491.77, + "probability": 0.6475 + }, + { + "start": 13493.89, + "end": 13496.35, + "probability": 0.978 + }, + { + "start": 13497.37, + "end": 13498.81, + "probability": 0.9849 + }, + { + "start": 13500.05, + "end": 13506.18, + "probability": 0.9979 + }, + { + "start": 13506.39, + "end": 13510.09, + "probability": 0.846 + }, + { + "start": 13511.67, + "end": 13514.09, + "probability": 0.9893 + }, + { + "start": 13515.07, + "end": 13518.17, + "probability": 0.8979 + }, + { + "start": 13519.03, + "end": 13523.17, + "probability": 0.924 + }, + { + "start": 13523.81, + "end": 13526.31, + "probability": 0.7434 + }, + { + "start": 13527.21, + "end": 13530.65, + "probability": 0.9941 + }, + { + "start": 13531.15, + "end": 13535.67, + "probability": 0.9694 + }, + { + "start": 13536.87, + "end": 13539.67, + "probability": 0.9961 + }, + { + "start": 13540.77, + "end": 13542.01, + "probability": 0.6395 + }, + { + "start": 13542.11, + "end": 13546.13, + "probability": 0.7346 + }, + { + "start": 13546.81, + "end": 13551.03, + "probability": 0.9858 + }, + { + "start": 13551.65, + "end": 13553.47, + "probability": 0.9507 + }, + { + "start": 13554.37, + "end": 13556.97, + "probability": 0.9375 + }, + { + "start": 13557.65, + "end": 13559.18, + "probability": 0.9053 + }, + { + "start": 13559.73, + "end": 13562.83, + "probability": 0.9631 + }, + { + "start": 13563.63, + "end": 13568.4, + "probability": 0.9934 + }, + { + "start": 13569.63, + "end": 13571.75, + "probability": 0.9934 + }, + { + "start": 13572.59, + "end": 13574.37, + "probability": 0.9787 + }, + { + "start": 13574.49, + "end": 13575.95, + "probability": 0.9958 + }, + { + "start": 13576.79, + "end": 13579.89, + "probability": 0.9874 + }, + { + "start": 13581.25, + "end": 13581.93, + "probability": 0.9985 + }, + { + "start": 13582.71, + "end": 13584.55, + "probability": 0.9749 + }, + { + "start": 13586.47, + "end": 13588.49, + "probability": 0.7043 + }, + { + "start": 13590.29, + "end": 13595.05, + "probability": 0.9815 + }, + { + "start": 13595.05, + "end": 13598.04, + "probability": 0.9731 + }, + { + "start": 13600.21, + "end": 13605.39, + "probability": 0.9936 + }, + { + "start": 13606.09, + "end": 13607.95, + "probability": 0.4937 + }, + { + "start": 13608.69, + "end": 13610.37, + "probability": 0.9342 + }, + { + "start": 13610.89, + "end": 13616.37, + "probability": 0.8563 + }, + { + "start": 13616.45, + "end": 13617.17, + "probability": 0.2146 + }, + { + "start": 13617.31, + "end": 13618.48, + "probability": 0.9937 + }, + { + "start": 13620.05, + "end": 13622.25, + "probability": 0.5532 + }, + { + "start": 13622.25, + "end": 13622.25, + "probability": 0.2987 + }, + { + "start": 13622.25, + "end": 13622.25, + "probability": 0.5723 + }, + { + "start": 13622.25, + "end": 13623.25, + "probability": 0.4652 + }, + { + "start": 13623.95, + "end": 13625.67, + "probability": 0.8358 + }, + { + "start": 13625.79, + "end": 13628.19, + "probability": 0.8761 + }, + { + "start": 13651.63, + "end": 13654.31, + "probability": 0.725 + }, + { + "start": 13656.17, + "end": 13663.17, + "probability": 0.9902 + }, + { + "start": 13663.21, + "end": 13663.71, + "probability": 0.7205 + }, + { + "start": 13663.75, + "end": 13666.91, + "probability": 0.8025 + }, + { + "start": 13667.75, + "end": 13668.49, + "probability": 0.2679 + }, + { + "start": 13669.27, + "end": 13669.93, + "probability": 0.4799 + }, + { + "start": 13669.93, + "end": 13675.31, + "probability": 0.9675 + }, + { + "start": 13676.71, + "end": 13677.42, + "probability": 0.9006 + }, + { + "start": 13677.77, + "end": 13680.05, + "probability": 0.7373 + }, + { + "start": 13680.15, + "end": 13680.87, + "probability": 0.7779 + }, + { + "start": 13681.75, + "end": 13685.37, + "probability": 0.9873 + }, + { + "start": 13686.05, + "end": 13687.73, + "probability": 0.7871 + }, + { + "start": 13687.79, + "end": 13688.33, + "probability": 0.661 + }, + { + "start": 13688.51, + "end": 13689.89, + "probability": 0.8441 + }, + { + "start": 13689.97, + "end": 13691.53, + "probability": 0.8352 + }, + { + "start": 13692.77, + "end": 13693.99, + "probability": 0.3944 + }, + { + "start": 13694.11, + "end": 13697.29, + "probability": 0.7196 + }, + { + "start": 13697.29, + "end": 13698.11, + "probability": 0.668 + }, + { + "start": 13698.47, + "end": 13699.65, + "probability": 0.9958 + }, + { + "start": 13699.73, + "end": 13699.89, + "probability": 0.1069 + }, + { + "start": 13699.91, + "end": 13700.83, + "probability": 0.8906 + }, + { + "start": 13700.91, + "end": 13701.47, + "probability": 0.845 + }, + { + "start": 13702.17, + "end": 13706.79, + "probability": 0.9067 + }, + { + "start": 13707.53, + "end": 13710.01, + "probability": 0.917 + }, + { + "start": 13710.33, + "end": 13712.67, + "probability": 0.9189 + }, + { + "start": 13712.77, + "end": 13717.57, + "probability": 0.6936 + }, + { + "start": 13717.69, + "end": 13718.81, + "probability": 0.5941 + }, + { + "start": 13718.89, + "end": 13719.71, + "probability": 0.5736 + }, + { + "start": 13720.47, + "end": 13721.83, + "probability": 0.9479 + }, + { + "start": 13722.51, + "end": 13727.33, + "probability": 0.6716 + }, + { + "start": 13727.41, + "end": 13728.89, + "probability": 0.4677 + }, + { + "start": 13729.03, + "end": 13734.25, + "probability": 0.907 + }, + { + "start": 13735.11, + "end": 13739.47, + "probability": 0.988 + }, + { + "start": 13739.55, + "end": 13740.37, + "probability": 0.8792 + }, + { + "start": 13740.71, + "end": 13741.53, + "probability": 0.8068 + }, + { + "start": 13742.05, + "end": 13743.39, + "probability": 0.9819 + }, + { + "start": 13743.49, + "end": 13744.15, + "probability": 0.5596 + }, + { + "start": 13744.53, + "end": 13746.38, + "probability": 0.6971 + }, + { + "start": 13746.93, + "end": 13747.73, + "probability": 0.7716 + }, + { + "start": 13748.51, + "end": 13749.99, + "probability": 0.7902 + }, + { + "start": 13750.73, + "end": 13754.17, + "probability": 0.9116 + }, + { + "start": 13754.91, + "end": 13755.13, + "probability": 0.0438 + }, + { + "start": 13755.13, + "end": 13758.17, + "probability": 0.9938 + }, + { + "start": 13758.45, + "end": 13763.29, + "probability": 0.155 + }, + { + "start": 13763.39, + "end": 13767.41, + "probability": 0.8139 + }, + { + "start": 13768.51, + "end": 13772.25, + "probability": 0.5099 + }, + { + "start": 13772.29, + "end": 13775.49, + "probability": 0.9731 + }, + { + "start": 13775.77, + "end": 13780.75, + "probability": 0.9813 + }, + { + "start": 13781.27, + "end": 13787.75, + "probability": 0.9883 + }, + { + "start": 13788.09, + "end": 13790.13, + "probability": 0.8072 + }, + { + "start": 13790.17, + "end": 13790.67, + "probability": 0.8832 + }, + { + "start": 13790.73, + "end": 13791.45, + "probability": 0.9912 + }, + { + "start": 13792.37, + "end": 13794.83, + "probability": 0.8012 + }, + { + "start": 13796.64, + "end": 13798.49, + "probability": 0.6457 + }, + { + "start": 13798.57, + "end": 13800.95, + "probability": 0.9158 + }, + { + "start": 13800.95, + "end": 13804.03, + "probability": 0.9613 + }, + { + "start": 13804.45, + "end": 13808.03, + "probability": 0.8719 + }, + { + "start": 13808.11, + "end": 13808.91, + "probability": 0.8545 + }, + { + "start": 13808.97, + "end": 13810.19, + "probability": 0.7623 + }, + { + "start": 13810.65, + "end": 13812.01, + "probability": 0.8218 + }, + { + "start": 13812.43, + "end": 13814.73, + "probability": 0.9917 + }, + { + "start": 13815.17, + "end": 13818.83, + "probability": 0.6417 + }, + { + "start": 13818.93, + "end": 13820.19, + "probability": 0.9604 + }, + { + "start": 13820.57, + "end": 13821.21, + "probability": 0.738 + }, + { + "start": 13821.25, + "end": 13822.67, + "probability": 0.9293 + }, + { + "start": 13822.71, + "end": 13825.17, + "probability": 0.9226 + }, + { + "start": 13825.63, + "end": 13825.99, + "probability": 0.5015 + }, + { + "start": 13826.31, + "end": 13830.63, + "probability": 0.6206 + }, + { + "start": 13830.63, + "end": 13833.55, + "probability": 0.8755 + }, + { + "start": 13833.73, + "end": 13834.37, + "probability": 0.7278 + }, + { + "start": 13835.25, + "end": 13835.83, + "probability": 0.3921 + }, + { + "start": 13835.85, + "end": 13836.87, + "probability": 0.6698 + }, + { + "start": 13836.93, + "end": 13840.23, + "probability": 0.9646 + }, + { + "start": 13840.41, + "end": 13843.27, + "probability": 0.8874 + }, + { + "start": 13843.53, + "end": 13847.11, + "probability": 0.9216 + }, + { + "start": 13847.11, + "end": 13849.59, + "probability": 0.6141 + }, + { + "start": 13850.05, + "end": 13850.71, + "probability": 0.762 + }, + { + "start": 13851.07, + "end": 13851.85, + "probability": 0.2287 + }, + { + "start": 13851.95, + "end": 13852.41, + "probability": 0.512 + }, + { + "start": 13852.49, + "end": 13853.65, + "probability": 0.3613 + }, + { + "start": 13853.71, + "end": 13854.33, + "probability": 0.5085 + }, + { + "start": 13854.39, + "end": 13855.45, + "probability": 0.926 + }, + { + "start": 13855.53, + "end": 13856.27, + "probability": 0.7246 + }, + { + "start": 13856.39, + "end": 13857.79, + "probability": 0.9004 + }, + { + "start": 13858.27, + "end": 13858.95, + "probability": 0.6534 + }, + { + "start": 13858.99, + "end": 13859.85, + "probability": 0.5884 + }, + { + "start": 13859.89, + "end": 13860.23, + "probability": 0.3428 + }, + { + "start": 13860.25, + "end": 13861.43, + "probability": 0.4794 + }, + { + "start": 13861.95, + "end": 13862.33, + "probability": 0.5031 + }, + { + "start": 13862.65, + "end": 13864.17, + "probability": 0.9421 + }, + { + "start": 13864.29, + "end": 13865.79, + "probability": 0.951 + }, + { + "start": 13865.89, + "end": 13870.27, + "probability": 0.9795 + }, + { + "start": 13870.61, + "end": 13873.93, + "probability": 0.8011 + }, + { + "start": 13874.03, + "end": 13877.81, + "probability": 0.9601 + }, + { + "start": 13877.83, + "end": 13878.05, + "probability": 0.7661 + }, + { + "start": 13878.47, + "end": 13879.15, + "probability": 0.5981 + }, + { + "start": 13879.67, + "end": 13881.25, + "probability": 0.9959 + }, + { + "start": 13881.41, + "end": 13882.05, + "probability": 0.8905 + }, + { + "start": 13882.15, + "end": 13883.83, + "probability": 0.8945 + }, + { + "start": 13884.65, + "end": 13886.13, + "probability": 0.9062 + }, + { + "start": 13886.55, + "end": 13887.45, + "probability": 0.3966 + }, + { + "start": 13887.61, + "end": 13888.03, + "probability": 0.7178 + }, + { + "start": 13888.15, + "end": 13890.55, + "probability": 0.7568 + }, + { + "start": 13899.67, + "end": 13900.13, + "probability": 0.4301 + }, + { + "start": 13900.37, + "end": 13900.37, + "probability": 0.5548 + }, + { + "start": 13900.41, + "end": 13900.75, + "probability": 0.5317 + }, + { + "start": 13900.75, + "end": 13901.01, + "probability": 0.9445 + }, + { + "start": 13903.39, + "end": 13904.33, + "probability": 0.6281 + }, + { + "start": 13905.83, + "end": 13906.43, + "probability": 0.2318 + }, + { + "start": 13907.27, + "end": 13908.29, + "probability": 0.3388 + }, + { + "start": 13913.11, + "end": 13914.69, + "probability": 0.589 + }, + { + "start": 13914.75, + "end": 13915.97, + "probability": 0.9729 + }, + { + "start": 13916.13, + "end": 13919.79, + "probability": 0.8125 + }, + { + "start": 13922.13, + "end": 13923.29, + "probability": 0.8562 + }, + { + "start": 13923.31, + "end": 13924.97, + "probability": 0.8419 + }, + { + "start": 13925.47, + "end": 13925.79, + "probability": 0.9111 + }, + { + "start": 13927.63, + "end": 13931.99, + "probability": 0.9888 + }, + { + "start": 13933.25, + "end": 13934.87, + "probability": 0.9336 + }, + { + "start": 13937.67, + "end": 13942.73, + "probability": 0.7734 + }, + { + "start": 13943.49, + "end": 13945.97, + "probability": 0.8359 + }, + { + "start": 13947.77, + "end": 13949.05, + "probability": 0.9579 + }, + { + "start": 13949.47, + "end": 13955.69, + "probability": 0.9233 + }, + { + "start": 13955.83, + "end": 13963.81, + "probability": 0.9792 + }, + { + "start": 13963.87, + "end": 13968.87, + "probability": 0.9916 + }, + { + "start": 13968.95, + "end": 13972.57, + "probability": 0.9693 + }, + { + "start": 13972.87, + "end": 13976.79, + "probability": 0.7488 + }, + { + "start": 13976.95, + "end": 13977.69, + "probability": 0.5522 + }, + { + "start": 13977.79, + "end": 13979.3, + "probability": 0.1917 + }, + { + "start": 13979.69, + "end": 13983.57, + "probability": 0.3003 + }, + { + "start": 13983.61, + "end": 13983.83, + "probability": 0.2037 + }, + { + "start": 13983.91, + "end": 13985.67, + "probability": 0.5329 + }, + { + "start": 13985.67, + "end": 13986.41, + "probability": 0.7774 + }, + { + "start": 13986.43, + "end": 13987.18, + "probability": 0.0428 + }, + { + "start": 13987.43, + "end": 13987.53, + "probability": 0.1217 + }, + { + "start": 13987.53, + "end": 13987.73, + "probability": 0.3515 + }, + { + "start": 13987.97, + "end": 13992.01, + "probability": 0.6659 + }, + { + "start": 13993.77, + "end": 13994.49, + "probability": 0.0138 + }, + { + "start": 13994.49, + "end": 13994.49, + "probability": 0.1153 + }, + { + "start": 13994.49, + "end": 13997.83, + "probability": 0.9912 + }, + { + "start": 13999.79, + "end": 14005.19, + "probability": 0.9796 + }, + { + "start": 14005.19, + "end": 14010.92, + "probability": 0.9968 + }, + { + "start": 14011.13, + "end": 14012.63, + "probability": 0.6749 + }, + { + "start": 14013.17, + "end": 14017.01, + "probability": 0.9788 + }, + { + "start": 14017.55, + "end": 14019.97, + "probability": 0.7821 + }, + { + "start": 14020.87, + "end": 14023.43, + "probability": 0.8322 + }, + { + "start": 14025.35, + "end": 14030.47, + "probability": 0.9911 + }, + { + "start": 14031.19, + "end": 14031.85, + "probability": 0.5786 + }, + { + "start": 14031.91, + "end": 14033.91, + "probability": 0.731 + }, + { + "start": 14034.05, + "end": 14037.05, + "probability": 0.8584 + }, + { + "start": 14037.77, + "end": 14040.99, + "probability": 0.9845 + }, + { + "start": 14041.91, + "end": 14045.67, + "probability": 0.9474 + }, + { + "start": 14045.79, + "end": 14048.93, + "probability": 0.9838 + }, + { + "start": 14051.9, + "end": 14055.89, + "probability": 0.8345 + }, + { + "start": 14056.11, + "end": 14058.29, + "probability": 0.985 + }, + { + "start": 14058.37, + "end": 14059.22, + "probability": 0.8717 + }, + { + "start": 14060.05, + "end": 14061.43, + "probability": 0.9399 + }, + { + "start": 14062.79, + "end": 14067.47, + "probability": 0.9757 + }, + { + "start": 14068.37, + "end": 14071.69, + "probability": 0.5848 + }, + { + "start": 14072.45, + "end": 14073.55, + "probability": 0.6881 + }, + { + "start": 14074.13, + "end": 14079.22, + "probability": 0.9716 + }, + { + "start": 14081.03, + "end": 14084.67, + "probability": 0.9886 + }, + { + "start": 14084.89, + "end": 14087.27, + "probability": 0.8252 + }, + { + "start": 14089.81, + "end": 14092.81, + "probability": 0.9532 + }, + { + "start": 14092.81, + "end": 14095.61, + "probability": 0.9836 + }, + { + "start": 14096.51, + "end": 14098.09, + "probability": 0.934 + }, + { + "start": 14099.15, + "end": 14102.03, + "probability": 0.9862 + }, + { + "start": 14103.53, + "end": 14105.67, + "probability": 0.8261 + }, + { + "start": 14105.83, + "end": 14110.97, + "probability": 0.9376 + }, + { + "start": 14112.49, + "end": 14117.07, + "probability": 0.8452 + }, + { + "start": 14117.43, + "end": 14119.55, + "probability": 0.7649 + }, + { + "start": 14120.27, + "end": 14121.29, + "probability": 0.8895 + }, + { + "start": 14121.81, + "end": 14127.43, + "probability": 0.9774 + }, + { + "start": 14128.39, + "end": 14132.17, + "probability": 0.8628 + }, + { + "start": 14133.95, + "end": 14137.85, + "probability": 0.9746 + }, + { + "start": 14138.25, + "end": 14139.95, + "probability": 0.998 + }, + { + "start": 14140.79, + "end": 14147.73, + "probability": 0.9371 + }, + { + "start": 14148.87, + "end": 14155.29, + "probability": 0.9351 + }, + { + "start": 14156.39, + "end": 14161.43, + "probability": 0.968 + }, + { + "start": 14161.89, + "end": 14164.05, + "probability": 0.9633 + }, + { + "start": 14164.57, + "end": 14170.05, + "probability": 0.8397 + }, + { + "start": 14171.23, + "end": 14176.05, + "probability": 0.8667 + }, + { + "start": 14177.49, + "end": 14181.83, + "probability": 0.8539 + }, + { + "start": 14183.31, + "end": 14186.01, + "probability": 0.9938 + }, + { + "start": 14186.01, + "end": 14191.53, + "probability": 0.9844 + }, + { + "start": 14192.37, + "end": 14194.83, + "probability": 0.7996 + }, + { + "start": 14196.39, + "end": 14201.55, + "probability": 0.9778 + }, + { + "start": 14201.71, + "end": 14202.95, + "probability": 0.9261 + }, + { + "start": 14203.09, + "end": 14206.31, + "probability": 0.6372 + }, + { + "start": 14207.11, + "end": 14209.33, + "probability": 0.8936 + }, + { + "start": 14210.11, + "end": 14211.87, + "probability": 0.9482 + }, + { + "start": 14212.49, + "end": 14212.89, + "probability": 0.6808 + }, + { + "start": 14213.59, + "end": 14214.31, + "probability": 0.7709 + }, + { + "start": 14214.57, + "end": 14218.29, + "probability": 0.8719 + }, + { + "start": 14218.45, + "end": 14222.45, + "probability": 0.9924 + }, + { + "start": 14222.93, + "end": 14225.09, + "probability": 0.6687 + }, + { + "start": 14225.51, + "end": 14225.51, + "probability": 0.1828 + }, + { + "start": 14225.51, + "end": 14226.09, + "probability": 0.4649 + }, + { + "start": 14229.99, + "end": 14232.61, + "probability": 0.9673 + }, + { + "start": 14243.21, + "end": 14246.15, + "probability": 0.977 + }, + { + "start": 14247.29, + "end": 14247.79, + "probability": 0.3575 + }, + { + "start": 14247.79, + "end": 14249.19, + "probability": 0.5226 + }, + { + "start": 14249.89, + "end": 14251.57, + "probability": 0.6217 + }, + { + "start": 14253.69, + "end": 14256.31, + "probability": 0.7355 + }, + { + "start": 14256.65, + "end": 14258.23, + "probability": 0.5295 + }, + { + "start": 14258.63, + "end": 14259.75, + "probability": 0.7186 + }, + { + "start": 14260.99, + "end": 14264.53, + "probability": 0.7673 + }, + { + "start": 14264.53, + "end": 14267.49, + "probability": 0.9969 + }, + { + "start": 14268.23, + "end": 14270.45, + "probability": 0.8992 + }, + { + "start": 14270.63, + "end": 14273.97, + "probability": 0.9884 + }, + { + "start": 14275.19, + "end": 14275.87, + "probability": 0.9125 + }, + { + "start": 14276.57, + "end": 14276.81, + "probability": 0.8627 + }, + { + "start": 14278.47, + "end": 14281.41, + "probability": 0.9919 + }, + { + "start": 14281.41, + "end": 14284.67, + "probability": 0.9875 + }, + { + "start": 14285.51, + "end": 14286.59, + "probability": 0.7867 + }, + { + "start": 14287.81, + "end": 14290.83, + "probability": 0.9875 + }, + { + "start": 14291.67, + "end": 14292.39, + "probability": 0.8875 + }, + { + "start": 14292.81, + "end": 14294.37, + "probability": 0.6927 + }, + { + "start": 14298.67, + "end": 14301.07, + "probability": 0.9494 + }, + { + "start": 14307.73, + "end": 14308.79, + "probability": 0.736 + }, + { + "start": 14309.01, + "end": 14313.29, + "probability": 0.8995 + }, + { + "start": 14314.61, + "end": 14321.99, + "probability": 0.9825 + }, + { + "start": 14321.99, + "end": 14326.23, + "probability": 0.9968 + }, + { + "start": 14326.23, + "end": 14331.65, + "probability": 0.9605 + }, + { + "start": 14332.57, + "end": 14335.31, + "probability": 0.8413 + }, + { + "start": 14337.01, + "end": 14340.85, + "probability": 0.9975 + }, + { + "start": 14342.07, + "end": 14348.38, + "probability": 0.9645 + }, + { + "start": 14349.53, + "end": 14355.97, + "probability": 0.9987 + }, + { + "start": 14357.53, + "end": 14358.81, + "probability": 0.9951 + }, + { + "start": 14359.55, + "end": 14362.37, + "probability": 0.7228 + }, + { + "start": 14362.99, + "end": 14367.65, + "probability": 0.9869 + }, + { + "start": 14369.29, + "end": 14372.65, + "probability": 0.5185 + }, + { + "start": 14373.23, + "end": 14374.39, + "probability": 0.9192 + }, + { + "start": 14374.45, + "end": 14376.29, + "probability": 0.955 + }, + { + "start": 14377.45, + "end": 14378.11, + "probability": 0.8306 + }, + { + "start": 14378.85, + "end": 14380.55, + "probability": 0.6392 + }, + { + "start": 14381.95, + "end": 14382.91, + "probability": 0.0007 + }, + { + "start": 14382.91, + "end": 14385.41, + "probability": 0.5018 + }, + { + "start": 14385.41, + "end": 14387.01, + "probability": 0.8507 + }, + { + "start": 14387.25, + "end": 14390.55, + "probability": 0.9366 + }, + { + "start": 14391.29, + "end": 14391.29, + "probability": 0.1148 + }, + { + "start": 14391.29, + "end": 14392.15, + "probability": 0.498 + }, + { + "start": 14392.19, + "end": 14393.89, + "probability": 0.7127 + }, + { + "start": 14397.73, + "end": 14397.83, + "probability": 0.1251 + }, + { + "start": 14397.83, + "end": 14397.83, + "probability": 0.0103 + }, + { + "start": 14397.83, + "end": 14398.93, + "probability": 0.9312 + }, + { + "start": 14401.09, + "end": 14401.25, + "probability": 0.3074 + }, + { + "start": 14401.79, + "end": 14403.53, + "probability": 0.435 + }, + { + "start": 14406.23, + "end": 14406.47, + "probability": 0.1078 + }, + { + "start": 14409.05, + "end": 14410.21, + "probability": 0.7472 + }, + { + "start": 14411.31, + "end": 14412.65, + "probability": 0.7987 + }, + { + "start": 14413.93, + "end": 14414.05, + "probability": 0.2698 + }, + { + "start": 14414.05, + "end": 14415.37, + "probability": 0.6192 + }, + { + "start": 14415.65, + "end": 14416.55, + "probability": 0.1427 + }, + { + "start": 14416.55, + "end": 14418.87, + "probability": 0.4107 + }, + { + "start": 14419.91, + "end": 14424.47, + "probability": 0.5844 + }, + { + "start": 14424.55, + "end": 14427.07, + "probability": 0.8994 + }, + { + "start": 14427.13, + "end": 14427.87, + "probability": 0.9141 + }, + { + "start": 14428.25, + "end": 14428.89, + "probability": 0.897 + }, + { + "start": 14428.93, + "end": 14429.67, + "probability": 0.1727 + }, + { + "start": 14429.75, + "end": 14430.81, + "probability": 0.5596 + }, + { + "start": 14430.89, + "end": 14431.82, + "probability": 0.1019 + }, + { + "start": 14432.45, + "end": 14432.73, + "probability": 0.9098 + }, + { + "start": 14433.45, + "end": 14437.05, + "probability": 0.5276 + }, + { + "start": 14437.81, + "end": 14438.81, + "probability": 0.5765 + }, + { + "start": 14439.35, + "end": 14442.39, + "probability": 0.4166 + }, + { + "start": 14442.73, + "end": 14448.59, + "probability": 0.9548 + }, + { + "start": 14448.69, + "end": 14453.73, + "probability": 0.9478 + }, + { + "start": 14454.83, + "end": 14456.04, + "probability": 0.1775 + }, + { + "start": 14457.81, + "end": 14458.07, + "probability": 0.8092 + }, + { + "start": 14458.21, + "end": 14462.45, + "probability": 0.9509 + }, + { + "start": 14463.01, + "end": 14463.43, + "probability": 0.6798 + }, + { + "start": 14463.73, + "end": 14464.45, + "probability": 0.8338 + }, + { + "start": 14467.79, + "end": 14468.71, + "probability": 0.8553 + }, + { + "start": 14472.83, + "end": 14474.29, + "probability": 0.9926 + }, + { + "start": 14474.71, + "end": 14476.23, + "probability": 0.9617 + }, + { + "start": 14476.39, + "end": 14478.99, + "probability": 0.9666 + }, + { + "start": 14478.99, + "end": 14483.99, + "probability": 0.984 + }, + { + "start": 14484.97, + "end": 14486.07, + "probability": 0.984 + }, + { + "start": 14486.29, + "end": 14489.51, + "probability": 0.984 + }, + { + "start": 14490.27, + "end": 14492.79, + "probability": 0.9827 + }, + { + "start": 14492.97, + "end": 14494.47, + "probability": 0.9961 + }, + { + "start": 14495.63, + "end": 14496.09, + "probability": 0.6566 + }, + { + "start": 14496.15, + "end": 14498.63, + "probability": 0.9728 + }, + { + "start": 14499.11, + "end": 14499.95, + "probability": 0.9042 + }, + { + "start": 14500.01, + "end": 14505.31, + "probability": 0.9974 + }, + { + "start": 14505.99, + "end": 14511.07, + "probability": 0.8772 + }, + { + "start": 14511.27, + "end": 14512.63, + "probability": 0.7271 + }, + { + "start": 14512.85, + "end": 14513.39, + "probability": 0.3297 + }, + { + "start": 14513.51, + "end": 14514.75, + "probability": 0.7477 + }, + { + "start": 14514.89, + "end": 14517.09, + "probability": 0.9548 + }, + { + "start": 14518.75, + "end": 14523.73, + "probability": 0.7535 + }, + { + "start": 14523.91, + "end": 14524.93, + "probability": 0.7025 + }, + { + "start": 14525.59, + "end": 14526.21, + "probability": 0.4676 + }, + { + "start": 14526.33, + "end": 14529.25, + "probability": 0.8926 + }, + { + "start": 14529.65, + "end": 14533.25, + "probability": 0.8138 + }, + { + "start": 14534.23, + "end": 14537.21, + "probability": 0.9421 + }, + { + "start": 14537.29, + "end": 14541.95, + "probability": 0.9499 + }, + { + "start": 14542.13, + "end": 14543.67, + "probability": 0.9252 + }, + { + "start": 14545.56, + "end": 14546.97, + "probability": 0.8323 + }, + { + "start": 14546.97, + "end": 14547.63, + "probability": 0.906 + }, + { + "start": 14547.75, + "end": 14550.47, + "probability": 0.7823 + }, + { + "start": 14550.61, + "end": 14551.13, + "probability": 0.76 + }, + { + "start": 14551.81, + "end": 14554.69, + "probability": 0.9702 + }, + { + "start": 14554.69, + "end": 14559.99, + "probability": 0.9704 + }, + { + "start": 14561.05, + "end": 14561.05, + "probability": 0.1222 + }, + { + "start": 14561.05, + "end": 14563.71, + "probability": 0.5163 + }, + { + "start": 14563.93, + "end": 14565.27, + "probability": 0.7741 + }, + { + "start": 14566.13, + "end": 14569.61, + "probability": 0.8813 + }, + { + "start": 14571.17, + "end": 14576.75, + "probability": 0.918 + }, + { + "start": 14576.75, + "end": 14581.83, + "probability": 0.7654 + }, + { + "start": 14581.93, + "end": 14582.61, + "probability": 0.6787 + }, + { + "start": 14583.27, + "end": 14585.67, + "probability": 0.7621 + }, + { + "start": 14586.21, + "end": 14588.65, + "probability": 0.9576 + }, + { + "start": 14590.23, + "end": 14596.35, + "probability": 0.9775 + }, + { + "start": 14596.49, + "end": 14597.05, + "probability": 0.679 + }, + { + "start": 14597.97, + "end": 14603.17, + "probability": 0.9885 + }, + { + "start": 14603.51, + "end": 14609.49, + "probability": 0.9952 + }, + { + "start": 14610.05, + "end": 14610.85, + "probability": 0.8399 + }, + { + "start": 14610.95, + "end": 14613.13, + "probability": 0.8657 + }, + { + "start": 14613.13, + "end": 14615.03, + "probability": 0.9763 + }, + { + "start": 14615.17, + "end": 14617.03, + "probability": 0.7639 + }, + { + "start": 14617.73, + "end": 14620.63, + "probability": 0.9844 + }, + { + "start": 14621.11, + "end": 14625.13, + "probability": 0.9858 + }, + { + "start": 14625.17, + "end": 14629.25, + "probability": 0.9928 + }, + { + "start": 14630.11, + "end": 14632.11, + "probability": 0.8378 + }, + { + "start": 14632.65, + "end": 14634.27, + "probability": 0.9779 + }, + { + "start": 14634.41, + "end": 14638.35, + "probability": 0.9968 + }, + { + "start": 14638.83, + "end": 14641.35, + "probability": 0.9928 + }, + { + "start": 14642.53, + "end": 14645.45, + "probability": 0.9171 + }, + { + "start": 14645.59, + "end": 14650.37, + "probability": 0.9645 + }, + { + "start": 14651.65, + "end": 14654.17, + "probability": 0.991 + }, + { + "start": 14654.17, + "end": 14656.39, + "probability": 0.9948 + }, + { + "start": 14656.87, + "end": 14661.07, + "probability": 0.9958 + }, + { + "start": 14662.07, + "end": 14666.63, + "probability": 0.7778 + }, + { + "start": 14667.09, + "end": 14671.87, + "probability": 0.917 + }, + { + "start": 14676.81, + "end": 14678.93, + "probability": 0.5635 + }, + { + "start": 14679.65, + "end": 14684.55, + "probability": 0.7706 + }, + { + "start": 14684.77, + "end": 14685.65, + "probability": 0.901 + }, + { + "start": 14686.39, + "end": 14689.23, + "probability": 0.9775 + }, + { + "start": 14689.77, + "end": 14691.89, + "probability": 0.7635 + }, + { + "start": 14694.77, + "end": 14696.99, + "probability": 0.9266 + }, + { + "start": 14697.91, + "end": 14698.79, + "probability": 0.8323 + }, + { + "start": 14699.53, + "end": 14699.93, + "probability": 0.7777 + }, + { + "start": 14700.33, + "end": 14701.81, + "probability": 0.7904 + }, + { + "start": 14704.33, + "end": 14705.1, + "probability": 0.0251 + }, + { + "start": 14707.39, + "end": 14711.72, + "probability": 0.7763 + }, + { + "start": 14715.81, + "end": 14717.73, + "probability": 0.5516 + }, + { + "start": 14719.23, + "end": 14727.95, + "probability": 0.986 + }, + { + "start": 14727.95, + "end": 14732.49, + "probability": 0.9115 + }, + { + "start": 14732.55, + "end": 14734.79, + "probability": 0.9976 + }, + { + "start": 14735.47, + "end": 14739.65, + "probability": 0.9966 + }, + { + "start": 14739.65, + "end": 14742.73, + "probability": 0.9932 + }, + { + "start": 14743.45, + "end": 14747.81, + "probability": 0.9971 + }, + { + "start": 14747.91, + "end": 14752.39, + "probability": 0.9877 + }, + { + "start": 14752.39, + "end": 14755.47, + "probability": 0.9968 + }, + { + "start": 14756.19, + "end": 14757.95, + "probability": 0.948 + }, + { + "start": 14758.53, + "end": 14763.21, + "probability": 0.9851 + }, + { + "start": 14764.35, + "end": 14770.37, + "probability": 0.999 + }, + { + "start": 14770.37, + "end": 14776.83, + "probability": 0.8903 + }, + { + "start": 14776.95, + "end": 14782.11, + "probability": 0.9094 + }, + { + "start": 14782.29, + "end": 14784.39, + "probability": 0.9701 + }, + { + "start": 14786.5, + "end": 14788.93, + "probability": 0.9916 + }, + { + "start": 14789.77, + "end": 14792.97, + "probability": 0.9396 + }, + { + "start": 14793.81, + "end": 14796.77, + "probability": 0.9768 + }, + { + "start": 14797.59, + "end": 14807.57, + "probability": 0.9882 + }, + { + "start": 14808.85, + "end": 14816.23, + "probability": 0.9995 + }, + { + "start": 14816.23, + "end": 14822.25, + "probability": 0.988 + }, + { + "start": 14822.99, + "end": 14828.93, + "probability": 0.9321 + }, + { + "start": 14829.63, + "end": 14839.01, + "probability": 0.96 + }, + { + "start": 14839.11, + "end": 14840.33, + "probability": 0.8405 + }, + { + "start": 14840.47, + "end": 14844.01, + "probability": 0.9485 + }, + { + "start": 14844.01, + "end": 14848.73, + "probability": 0.9968 + }, + { + "start": 14849.51, + "end": 14852.23, + "probability": 0.9837 + }, + { + "start": 14852.37, + "end": 14853.07, + "probability": 0.7023 + }, + { + "start": 14853.23, + "end": 14854.89, + "probability": 0.8127 + }, + { + "start": 14855.29, + "end": 14859.33, + "probability": 0.9878 + }, + { + "start": 14859.91, + "end": 14866.55, + "probability": 0.9952 + }, + { + "start": 14867.15, + "end": 14872.75, + "probability": 0.9558 + }, + { + "start": 14873.35, + "end": 14876.25, + "probability": 0.662 + }, + { + "start": 14876.31, + "end": 14879.69, + "probability": 0.9863 + }, + { + "start": 14880.35, + "end": 14883.49, + "probability": 0.9994 + }, + { + "start": 14883.49, + "end": 14887.99, + "probability": 0.9989 + }, + { + "start": 14888.05, + "end": 14891.55, + "probability": 0.9915 + }, + { + "start": 14891.91, + "end": 14896.81, + "probability": 0.9186 + }, + { + "start": 14897.35, + "end": 14898.57, + "probability": 0.7623 + }, + { + "start": 14899.17, + "end": 14904.93, + "probability": 0.9248 + }, + { + "start": 14904.93, + "end": 14909.13, + "probability": 0.9857 + }, + { + "start": 14909.27, + "end": 14912.17, + "probability": 0.9775 + }, + { + "start": 14912.41, + "end": 14916.87, + "probability": 0.8226 + }, + { + "start": 14916.97, + "end": 14917.55, + "probability": 0.7438 + }, + { + "start": 14917.69, + "end": 14917.89, + "probability": 0.5207 + }, + { + "start": 14918.55, + "end": 14922.65, + "probability": 0.96 + }, + { + "start": 14923.23, + "end": 14926.89, + "probability": 0.8907 + }, + { + "start": 14927.83, + "end": 14927.91, + "probability": 0.3345 + }, + { + "start": 14927.91, + "end": 14929.05, + "probability": 0.3833 + }, + { + "start": 14929.05, + "end": 14931.87, + "probability": 0.8804 + }, + { + "start": 14932.41, + "end": 14937.45, + "probability": 0.9798 + }, + { + "start": 14937.45, + "end": 14940.97, + "probability": 0.9909 + }, + { + "start": 14940.99, + "end": 14944.07, + "probability": 0.9865 + }, + { + "start": 14944.41, + "end": 14946.79, + "probability": 0.9831 + }, + { + "start": 14946.81, + "end": 14947.03, + "probability": 0.8246 + }, + { + "start": 14952.83, + "end": 14954.89, + "probability": 0.5074 + }, + { + "start": 14956.67, + "end": 14959.36, + "probability": 0.9961 + }, + { + "start": 14960.47, + "end": 14965.83, + "probability": 0.9136 + }, + { + "start": 14966.81, + "end": 14972.71, + "probability": 0.8936 + }, + { + "start": 14974.07, + "end": 14975.65, + "probability": 0.9751 + }, + { + "start": 14976.75, + "end": 14977.19, + "probability": 0.8193 + }, + { + "start": 14977.25, + "end": 14978.63, + "probability": 0.9092 + }, + { + "start": 14979.33, + "end": 14981.39, + "probability": 0.9984 + }, + { + "start": 14982.73, + "end": 14985.63, + "probability": 0.9882 + }, + { + "start": 14986.57, + "end": 14990.33, + "probability": 0.996 + }, + { + "start": 14991.47, + "end": 14996.29, + "probability": 0.9932 + }, + { + "start": 14996.33, + "end": 14996.91, + "probability": 0.9655 + }, + { + "start": 14997.03, + "end": 14997.81, + "probability": 0.8438 + }, + { + "start": 14998.37, + "end": 14999.07, + "probability": 0.5856 + }, + { + "start": 14999.75, + "end": 15000.79, + "probability": 0.9232 + }, + { + "start": 15001.69, + "end": 15005.31, + "probability": 0.9501 + }, + { + "start": 15006.15, + "end": 15007.37, + "probability": 0.7985 + }, + { + "start": 15008.01, + "end": 15010.99, + "probability": 0.9936 + }, + { + "start": 15012.23, + "end": 15015.51, + "probability": 0.9722 + }, + { + "start": 15017.45, + "end": 15021.95, + "probability": 0.9927 + }, + { + "start": 15021.95, + "end": 15026.83, + "probability": 0.9547 + }, + { + "start": 15026.91, + "end": 15027.79, + "probability": 0.9878 + }, + { + "start": 15029.35, + "end": 15033.31, + "probability": 0.9808 + }, + { + "start": 15033.31, + "end": 15037.03, + "probability": 0.9792 + }, + { + "start": 15037.55, + "end": 15037.9, + "probability": 0.5737 + }, + { + "start": 15039.15, + "end": 15041.63, + "probability": 0.8235 + }, + { + "start": 15042.51, + "end": 15045.6, + "probability": 0.8888 + }, + { + "start": 15046.19, + "end": 15046.67, + "probability": 0.9941 + }, + { + "start": 15047.45, + "end": 15049.03, + "probability": 0.9935 + }, + { + "start": 15049.99, + "end": 15051.25, + "probability": 0.8067 + }, + { + "start": 15051.35, + "end": 15051.93, + "probability": 0.9463 + }, + { + "start": 15051.95, + "end": 15052.83, + "probability": 0.8089 + }, + { + "start": 15053.07, + "end": 15053.93, + "probability": 0.756 + }, + { + "start": 15055.35, + "end": 15058.07, + "probability": 0.997 + }, + { + "start": 15058.73, + "end": 15062.39, + "probability": 0.9257 + }, + { + "start": 15062.67, + "end": 15063.61, + "probability": 0.8086 + }, + { + "start": 15064.37, + "end": 15065.79, + "probability": 0.9992 + }, + { + "start": 15068.67, + "end": 15073.13, + "probability": 0.8965 + }, + { + "start": 15073.13, + "end": 15076.81, + "probability": 0.9811 + }, + { + "start": 15077.31, + "end": 15078.13, + "probability": 0.7481 + }, + { + "start": 15079.29, + "end": 15081.53, + "probability": 0.9541 + }, + { + "start": 15082.85, + "end": 15087.49, + "probability": 0.9152 + }, + { + "start": 15088.23, + "end": 15090.73, + "probability": 0.4807 + }, + { + "start": 15091.93, + "end": 15093.63, + "probability": 0.7402 + }, + { + "start": 15094.77, + "end": 15098.77, + "probability": 0.9783 + }, + { + "start": 15098.83, + "end": 15099.95, + "probability": 0.989 + }, + { + "start": 15101.29, + "end": 15102.09, + "probability": 0.9346 + }, + { + "start": 15103.31, + "end": 15103.47, + "probability": 0.748 + }, + { + "start": 15103.57, + "end": 15105.89, + "probability": 0.9421 + }, + { + "start": 15106.39, + "end": 15108.43, + "probability": 0.9522 + }, + { + "start": 15109.03, + "end": 15111.52, + "probability": 0.6955 + }, + { + "start": 15112.03, + "end": 15113.51, + "probability": 0.6561 + }, + { + "start": 15114.07, + "end": 15116.89, + "probability": 0.9746 + }, + { + "start": 15117.53, + "end": 15118.95, + "probability": 0.9213 + }, + { + "start": 15121.11, + "end": 15124.4, + "probability": 0.0945 + }, + { + "start": 15126.01, + "end": 15126.71, + "probability": 0.0185 + }, + { + "start": 15126.71, + "end": 15126.77, + "probability": 0.0456 + }, + { + "start": 15126.77, + "end": 15126.77, + "probability": 0.1557 + }, + { + "start": 15126.77, + "end": 15126.77, + "probability": 0.1166 + }, + { + "start": 15126.77, + "end": 15131.27, + "probability": 0.719 + }, + { + "start": 15131.39, + "end": 15132.45, + "probability": 0.0523 + }, + { + "start": 15133.11, + "end": 15133.25, + "probability": 0.2365 + }, + { + "start": 15133.71, + "end": 15137.17, + "probability": 0.1116 + }, + { + "start": 15137.45, + "end": 15138.03, + "probability": 0.0398 + }, + { + "start": 15138.89, + "end": 15138.91, + "probability": 0.0168 + }, + { + "start": 15138.91, + "end": 15139.69, + "probability": 0.2726 + }, + { + "start": 15143.59, + "end": 15144.69, + "probability": 0.1027 + }, + { + "start": 15145.33, + "end": 15145.67, + "probability": 0.3183 + }, + { + "start": 15146.27, + "end": 15148.03, + "probability": 0.1088 + }, + { + "start": 15150.67, + "end": 15151.27, + "probability": 0.0085 + }, + { + "start": 15151.27, + "end": 15155.39, + "probability": 0.1577 + }, + { + "start": 15155.69, + "end": 15156.07, + "probability": 0.03 + }, + { + "start": 15156.39, + "end": 15158.21, + "probability": 0.0468 + }, + { + "start": 15158.81, + "end": 15161.19, + "probability": 0.2764 + }, + { + "start": 15171.13, + "end": 15173.73, + "probability": 0.0991 + }, + { + "start": 15174.19, + "end": 15177.69, + "probability": 0.0331 + }, + { + "start": 15178.55, + "end": 15180.53, + "probability": 0.043 + }, + { + "start": 15180.77, + "end": 15186.35, + "probability": 0.4314 + }, + { + "start": 15187.03, + "end": 15189.23, + "probability": 0.0748 + }, + { + "start": 15190.09, + "end": 15192.13, + "probability": 0.0911 + }, + { + "start": 15192.71, + "end": 15194.01, + "probability": 0.1767 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.0, + "end": 15195.0, + "probability": 0.0 + }, + { + "start": 15195.12, + "end": 15196.08, + "probability": 0.2976 + }, + { + "start": 15196.36, + "end": 15197.58, + "probability": 0.7269 + }, + { + "start": 15197.74, + "end": 15201.06, + "probability": 0.6695 + }, + { + "start": 15201.14, + "end": 15203.62, + "probability": 0.869 + }, + { + "start": 15203.66, + "end": 15205.76, + "probability": 0.9462 + }, + { + "start": 15205.92, + "end": 15207.88, + "probability": 0.9545 + }, + { + "start": 15208.02, + "end": 15208.86, + "probability": 0.344 + }, + { + "start": 15208.98, + "end": 15209.64, + "probability": 0.9375 + }, + { + "start": 15210.0, + "end": 15214.14, + "probability": 0.9796 + }, + { + "start": 15214.22, + "end": 15214.82, + "probability": 0.4847 + }, + { + "start": 15214.82, + "end": 15215.6, + "probability": 0.6662 + }, + { + "start": 15215.88, + "end": 15216.6, + "probability": 0.5436 + }, + { + "start": 15216.76, + "end": 15218.92, + "probability": 0.8234 + }, + { + "start": 15218.92, + "end": 15222.76, + "probability": 0.8512 + }, + { + "start": 15222.84, + "end": 15223.98, + "probability": 0.917 + }, + { + "start": 15224.1, + "end": 15224.78, + "probability": 0.5458 + }, + { + "start": 15224.88, + "end": 15225.64, + "probability": 0.9207 + }, + { + "start": 15226.38, + "end": 15230.24, + "probability": 0.98 + }, + { + "start": 15230.94, + "end": 15236.16, + "probability": 0.9912 + }, + { + "start": 15236.8, + "end": 15239.0, + "probability": 0.9972 + }, + { + "start": 15239.32, + "end": 15239.78, + "probability": 0.5996 + }, + { + "start": 15239.82, + "end": 15240.88, + "probability": 0.757 + }, + { + "start": 15241.2, + "end": 15244.66, + "probability": 0.9182 + }, + { + "start": 15244.86, + "end": 15245.3, + "probability": 0.8298 + }, + { + "start": 15245.6, + "end": 15248.7, + "probability": 0.9475 + }, + { + "start": 15249.04, + "end": 15249.54, + "probability": 0.0093 + }, + { + "start": 15249.54, + "end": 15251.4, + "probability": 0.4458 + }, + { + "start": 15251.88, + "end": 15252.96, + "probability": 0.9038 + }, + { + "start": 15253.04, + "end": 15256.62, + "probability": 0.9572 + }, + { + "start": 15256.84, + "end": 15257.62, + "probability": 0.413 + }, + { + "start": 15257.62, + "end": 15257.82, + "probability": 0.7845 + }, + { + "start": 15258.92, + "end": 15262.02, + "probability": 0.6119 + }, + { + "start": 15268.04, + "end": 15268.04, + "probability": 0.1281 + }, + { + "start": 15268.04, + "end": 15268.04, + "probability": 0.0562 + }, + { + "start": 15268.04, + "end": 15269.2, + "probability": 0.6055 + }, + { + "start": 15269.22, + "end": 15270.46, + "probability": 0.6407 + }, + { + "start": 15270.58, + "end": 15273.4, + "probability": 0.9473 + }, + { + "start": 15273.92, + "end": 15274.78, + "probability": 0.8848 + }, + { + "start": 15274.86, + "end": 15278.62, + "probability": 0.8897 + }, + { + "start": 15278.78, + "end": 15280.34, + "probability": 0.8247 + }, + { + "start": 15283.72, + "end": 15284.86, + "probability": 0.0726 + }, + { + "start": 15284.86, + "end": 15284.86, + "probability": 0.2131 + }, + { + "start": 15284.86, + "end": 15285.02, + "probability": 0.4725 + }, + { + "start": 15285.16, + "end": 15286.2, + "probability": 0.6436 + }, + { + "start": 15286.22, + "end": 15288.39, + "probability": 0.1045 + }, + { + "start": 15290.45, + "end": 15291.36, + "probability": 0.3517 + }, + { + "start": 15291.5, + "end": 15294.48, + "probability": 0.2352 + }, + { + "start": 15294.48, + "end": 15294.82, + "probability": 0.0883 + }, + { + "start": 15295.04, + "end": 15295.88, + "probability": 0.7169 + }, + { + "start": 15296.04, + "end": 15296.9, + "probability": 0.5389 + }, + { + "start": 15297.22, + "end": 15301.2, + "probability": 0.9937 + }, + { + "start": 15301.2, + "end": 15305.18, + "probability": 0.9947 + }, + { + "start": 15305.96, + "end": 15308.92, + "probability": 0.9954 + }, + { + "start": 15308.94, + "end": 15313.94, + "probability": 0.9967 + }, + { + "start": 15314.56, + "end": 15317.68, + "probability": 0.9742 + }, + { + "start": 15317.86, + "end": 15322.0, + "probability": 0.9891 + }, + { + "start": 15322.78, + "end": 15326.88, + "probability": 0.9873 + }, + { + "start": 15326.88, + "end": 15332.28, + "probability": 0.9978 + }, + { + "start": 15332.76, + "end": 15335.72, + "probability": 0.7836 + }, + { + "start": 15335.72, + "end": 15339.4, + "probability": 0.9351 + }, + { + "start": 15339.48, + "end": 15340.7, + "probability": 0.9534 + }, + { + "start": 15341.32, + "end": 15344.0, + "probability": 0.9973 + }, + { + "start": 15344.0, + "end": 15347.36, + "probability": 0.9956 + }, + { + "start": 15347.84, + "end": 15352.4, + "probability": 0.9548 + }, + { + "start": 15352.84, + "end": 15356.42, + "probability": 0.9894 + }, + { + "start": 15357.06, + "end": 15357.34, + "probability": 0.465 + }, + { + "start": 15357.42, + "end": 15362.01, + "probability": 0.9805 + }, + { + "start": 15362.82, + "end": 15363.4, + "probability": 0.0066 + }, + { + "start": 15363.4, + "end": 15363.94, + "probability": 0.0217 + }, + { + "start": 15363.94, + "end": 15366.48, + "probability": 0.5945 + }, + { + "start": 15366.48, + "end": 15370.56, + "probability": 0.1849 + }, + { + "start": 15370.56, + "end": 15370.56, + "probability": 0.0382 + }, + { + "start": 15370.56, + "end": 15370.72, + "probability": 0.626 + }, + { + "start": 15371.08, + "end": 15372.14, + "probability": 0.8306 + }, + { + "start": 15372.26, + "end": 15374.24, + "probability": 0.9925 + }, + { + "start": 15374.72, + "end": 15378.08, + "probability": 0.988 + }, + { + "start": 15378.4, + "end": 15382.26, + "probability": 0.8781 + }, + { + "start": 15382.42, + "end": 15382.72, + "probability": 0.6331 + }, + { + "start": 15382.82, + "end": 15383.92, + "probability": 0.5733 + }, + { + "start": 15384.0, + "end": 15384.52, + "probability": 0.7656 + }, + { + "start": 15384.54, + "end": 15385.48, + "probability": 0.9143 + }, + { + "start": 15386.1, + "end": 15388.74, + "probability": 0.9835 + }, + { + "start": 15389.14, + "end": 15390.58, + "probability": 0.8111 + }, + { + "start": 15390.74, + "end": 15393.2, + "probability": 0.9673 + }, + { + "start": 15393.28, + "end": 15395.08, + "probability": 0.841 + }, + { + "start": 15395.44, + "end": 15398.98, + "probability": 0.9827 + }, + { + "start": 15399.44, + "end": 15403.04, + "probability": 0.8651 + }, + { + "start": 15403.16, + "end": 15403.8, + "probability": 0.8263 + }, + { + "start": 15404.24, + "end": 15407.0, + "probability": 0.9817 + }, + { + "start": 15407.0, + "end": 15410.1, + "probability": 0.9983 + }, + { + "start": 15410.16, + "end": 15415.6, + "probability": 0.9873 + }, + { + "start": 15416.1, + "end": 15419.0, + "probability": 0.9885 + }, + { + "start": 15419.12, + "end": 15421.82, + "probability": 0.979 + }, + { + "start": 15422.18, + "end": 15426.84, + "probability": 0.9916 + }, + { + "start": 15427.26, + "end": 15429.68, + "probability": 0.9963 + }, + { + "start": 15429.68, + "end": 15431.88, + "probability": 0.9332 + }, + { + "start": 15432.38, + "end": 15436.0, + "probability": 0.9836 + }, + { + "start": 15436.4, + "end": 15438.02, + "probability": 0.9256 + }, + { + "start": 15438.08, + "end": 15439.24, + "probability": 0.7532 + }, + { + "start": 15439.44, + "end": 15439.78, + "probability": 0.5362 + }, + { + "start": 15439.92, + "end": 15440.42, + "probability": 0.9319 + }, + { + "start": 15440.76, + "end": 15443.28, + "probability": 0.809 + }, + { + "start": 15443.52, + "end": 15443.9, + "probability": 0.3421 + }, + { + "start": 15444.36, + "end": 15446.82, + "probability": 0.8647 + }, + { + "start": 15447.22, + "end": 15449.7, + "probability": 0.8723 + }, + { + "start": 15449.84, + "end": 15451.36, + "probability": 0.8005 + }, + { + "start": 15451.44, + "end": 15452.66, + "probability": 0.9336 + }, + { + "start": 15452.92, + "end": 15456.14, + "probability": 0.8294 + }, + { + "start": 15456.28, + "end": 15456.34, + "probability": 0.1909 + }, + { + "start": 15456.34, + "end": 15456.34, + "probability": 0.0214 + }, + { + "start": 15456.34, + "end": 15459.14, + "probability": 0.753 + }, + { + "start": 15459.72, + "end": 15460.28, + "probability": 0.5321 + }, + { + "start": 15460.8, + "end": 15463.06, + "probability": 0.853 + }, + { + "start": 15463.22, + "end": 15464.92, + "probability": 0.648 + }, + { + "start": 15467.24, + "end": 15468.87, + "probability": 0.976 + }, + { + "start": 15469.88, + "end": 15472.42, + "probability": 0.941 + }, + { + "start": 15498.98, + "end": 15500.08, + "probability": 0.3877 + }, + { + "start": 15501.78, + "end": 15503.02, + "probability": 0.8281 + }, + { + "start": 15503.08, + "end": 15504.86, + "probability": 0.887 + }, + { + "start": 15506.16, + "end": 15506.92, + "probability": 0.9187 + }, + { + "start": 15506.98, + "end": 15509.14, + "probability": 0.8691 + }, + { + "start": 15509.16, + "end": 15511.08, + "probability": 0.9839 + }, + { + "start": 15511.3, + "end": 15512.04, + "probability": 0.7672 + }, + { + "start": 15512.54, + "end": 15515.02, + "probability": 0.7337 + }, + { + "start": 15516.5, + "end": 15519.6, + "probability": 0.9724 + }, + { + "start": 15519.6, + "end": 15523.58, + "probability": 0.9956 + }, + { + "start": 15524.32, + "end": 15525.29, + "probability": 0.5542 + }, + { + "start": 15525.74, + "end": 15527.26, + "probability": 0.9182 + }, + { + "start": 15528.1, + "end": 15528.77, + "probability": 0.9545 + }, + { + "start": 15529.44, + "end": 15531.37, + "probability": 0.9165 + }, + { + "start": 15531.68, + "end": 15531.68, + "probability": 0.2429 + }, + { + "start": 15531.68, + "end": 15531.7, + "probability": 0.5717 + }, + { + "start": 15531.92, + "end": 15532.56, + "probability": 0.6327 + }, + { + "start": 15532.68, + "end": 15533.12, + "probability": 0.5505 + }, + { + "start": 15533.26, + "end": 15533.36, + "probability": 0.2374 + }, + { + "start": 15533.66, + "end": 15533.94, + "probability": 0.6981 + }, + { + "start": 15533.96, + "end": 15537.0, + "probability": 0.6133 + }, + { + "start": 15538.78, + "end": 15540.7, + "probability": 0.9958 + }, + { + "start": 15541.4, + "end": 15545.22, + "probability": 0.9628 + }, + { + "start": 15545.48, + "end": 15549.86, + "probability": 0.9854 + }, + { + "start": 15550.84, + "end": 15553.48, + "probability": 0.995 + }, + { + "start": 15554.76, + "end": 15557.14, + "probability": 0.9902 + }, + { + "start": 15557.76, + "end": 15560.66, + "probability": 0.994 + }, + { + "start": 15561.46, + "end": 15566.24, + "probability": 0.9983 + }, + { + "start": 15567.14, + "end": 15568.68, + "probability": 0.9794 + }, + { + "start": 15569.32, + "end": 15572.6, + "probability": 0.9872 + }, + { + "start": 15575.22, + "end": 15577.64, + "probability": 0.5434 + }, + { + "start": 15578.14, + "end": 15581.52, + "probability": 0.9502 + }, + { + "start": 15582.2, + "end": 15583.88, + "probability": 0.9969 + }, + { + "start": 15583.98, + "end": 15585.28, + "probability": 0.9175 + }, + { + "start": 15585.98, + "end": 15587.68, + "probability": 0.9447 + }, + { + "start": 15588.24, + "end": 15590.64, + "probability": 0.9849 + }, + { + "start": 15591.26, + "end": 15594.02, + "probability": 0.9609 + }, + { + "start": 15594.86, + "end": 15596.82, + "probability": 0.995 + }, + { + "start": 15597.02, + "end": 15601.0, + "probability": 0.9259 + }, + { + "start": 15601.2, + "end": 15601.86, + "probability": 0.7774 + }, + { + "start": 15602.22, + "end": 15603.42, + "probability": 0.9006 + }, + { + "start": 15603.52, + "end": 15604.0, + "probability": 0.9629 + }, + { + "start": 15604.88, + "end": 15607.26, + "probability": 0.9867 + }, + { + "start": 15607.44, + "end": 15609.56, + "probability": 0.7576 + }, + { + "start": 15610.1, + "end": 15611.16, + "probability": 0.7276 + }, + { + "start": 15611.32, + "end": 15614.6, + "probability": 0.8318 + }, + { + "start": 15615.86, + "end": 15617.3, + "probability": 0.9839 + }, + { + "start": 15619.3, + "end": 15621.82, + "probability": 0.8892 + }, + { + "start": 15622.34, + "end": 15623.27, + "probability": 0.9287 + }, + { + "start": 15624.38, + "end": 15626.34, + "probability": 0.9962 + }, + { + "start": 15626.82, + "end": 15629.48, + "probability": 0.9951 + }, + { + "start": 15629.54, + "end": 15633.04, + "probability": 0.9198 + }, + { + "start": 15633.72, + "end": 15635.68, + "probability": 0.908 + }, + { + "start": 15636.76, + "end": 15637.86, + "probability": 0.9098 + }, + { + "start": 15638.44, + "end": 15639.92, + "probability": 0.9162 + }, + { + "start": 15639.94, + "end": 15640.98, + "probability": 0.4571 + }, + { + "start": 15641.14, + "end": 15643.7, + "probability": 0.6288 + }, + { + "start": 15643.74, + "end": 15644.66, + "probability": 0.8537 + }, + { + "start": 15645.08, + "end": 15647.15, + "probability": 0.9957 + }, + { + "start": 15647.38, + "end": 15648.9, + "probability": 0.9247 + }, + { + "start": 15649.02, + "end": 15650.76, + "probability": 0.8225 + }, + { + "start": 15651.2, + "end": 15653.16, + "probability": 0.9154 + }, + { + "start": 15654.78, + "end": 15656.04, + "probability": 0.9138 + }, + { + "start": 15656.42, + "end": 15657.34, + "probability": 0.9698 + }, + { + "start": 15658.44, + "end": 15663.92, + "probability": 0.9775 + }, + { + "start": 15664.36, + "end": 15665.54, + "probability": 0.9749 + }, + { + "start": 15666.62, + "end": 15669.34, + "probability": 0.9827 + }, + { + "start": 15670.12, + "end": 15673.34, + "probability": 0.9706 + }, + { + "start": 15673.4, + "end": 15674.66, + "probability": 0.9897 + }, + { + "start": 15675.32, + "end": 15676.02, + "probability": 0.8604 + }, + { + "start": 15676.76, + "end": 15678.4, + "probability": 0.667 + }, + { + "start": 15678.42, + "end": 15681.64, + "probability": 0.98 + }, + { + "start": 15681.84, + "end": 15686.0, + "probability": 0.9844 + }, + { + "start": 15686.4, + "end": 15687.33, + "probability": 0.9983 + }, + { + "start": 15688.44, + "end": 15689.1, + "probability": 0.8966 + }, + { + "start": 15689.62, + "end": 15691.4, + "probability": 0.9861 + }, + { + "start": 15691.5, + "end": 15693.32, + "probability": 0.9976 + }, + { + "start": 15694.06, + "end": 15697.36, + "probability": 0.9919 + }, + { + "start": 15698.12, + "end": 15700.38, + "probability": 0.9961 + }, + { + "start": 15701.38, + "end": 15704.86, + "probability": 0.9866 + }, + { + "start": 15704.86, + "end": 15707.64, + "probability": 0.9956 + }, + { + "start": 15707.64, + "end": 15709.02, + "probability": 0.6758 + }, + { + "start": 15709.06, + "end": 15709.92, + "probability": 0.7972 + }, + { + "start": 15710.64, + "end": 15710.64, + "probability": 0.3143 + }, + { + "start": 15710.64, + "end": 15710.86, + "probability": 0.5129 + }, + { + "start": 15711.82, + "end": 15713.46, + "probability": 0.4979 + }, + { + "start": 15714.56, + "end": 15714.92, + "probability": 0.1313 + }, + { + "start": 15714.92, + "end": 15716.34, + "probability": 0.0686 + }, + { + "start": 15716.34, + "end": 15716.34, + "probability": 0.1329 + }, + { + "start": 15716.34, + "end": 15719.7, + "probability": 0.9866 + }, + { + "start": 15720.1, + "end": 15722.18, + "probability": 0.8262 + }, + { + "start": 15723.44, + "end": 15724.58, + "probability": 0.9637 + }, + { + "start": 15725.06, + "end": 15729.08, + "probability": 0.9972 + }, + { + "start": 15729.4, + "end": 15731.04, + "probability": 0.9678 + }, + { + "start": 15731.66, + "end": 15733.48, + "probability": 0.7059 + }, + { + "start": 15733.5, + "end": 15733.5, + "probability": 0.0658 + }, + { + "start": 15733.52, + "end": 15734.24, + "probability": 0.428 + }, + { + "start": 15734.84, + "end": 15736.24, + "probability": 0.8472 + }, + { + "start": 15737.22, + "end": 15739.26, + "probability": 0.7832 + }, + { + "start": 15744.62, + "end": 15746.36, + "probability": 0.0859 + }, + { + "start": 15747.81, + "end": 15749.76, + "probability": 0.2182 + }, + { + "start": 15749.86, + "end": 15752.88, + "probability": 0.2814 + }, + { + "start": 15753.62, + "end": 15754.24, + "probability": 0.0544 + }, + { + "start": 15756.72, + "end": 15758.82, + "probability": 0.1303 + }, + { + "start": 15760.04, + "end": 15761.76, + "probability": 0.0248 + }, + { + "start": 15763.64, + "end": 15764.94, + "probability": 0.2297 + }, + { + "start": 15764.94, + "end": 15767.32, + "probability": 0.1255 + }, + { + "start": 15767.82, + "end": 15769.14, + "probability": 0.1958 + }, + { + "start": 15769.24, + "end": 15774.98, + "probability": 0.2063 + }, + { + "start": 15776.58, + "end": 15777.96, + "probability": 0.0367 + }, + { + "start": 15777.96, + "end": 15777.96, + "probability": 0.0385 + }, + { + "start": 15781.54, + "end": 15782.08, + "probability": 0.0334 + }, + { + "start": 15783.14, + "end": 15791.44, + "probability": 0.0695 + }, + { + "start": 15791.44, + "end": 15791.78, + "probability": 0.1019 + }, + { + "start": 15791.78, + "end": 15791.78, + "probability": 0.1164 + }, + { + "start": 15792.64, + "end": 15792.64, + "probability": 0.0172 + }, + { + "start": 15793.62, + "end": 15794.4, + "probability": 0.001 + }, + { + "start": 15794.72, + "end": 15796.26, + "probability": 0.1046 + }, + { + "start": 15796.6, + "end": 15800.4, + "probability": 0.0227 + }, + { + "start": 15800.4, + "end": 15803.97, + "probability": 0.0195 + }, + { + "start": 15804.1, + "end": 15804.86, + "probability": 0.0407 + }, + { + "start": 15804.86, + "end": 15804.86, + "probability": 0.1505 + }, + { + "start": 15804.86, + "end": 15805.44, + "probability": 0.2585 + }, + { + "start": 15805.7, + "end": 15808.6, + "probability": 0.0162 + }, + { + "start": 15809.0, + "end": 15809.0, + "probability": 0.0 + }, + { + "start": 15809.0, + "end": 15809.0, + "probability": 0.0 + }, + { + "start": 15809.0, + "end": 15809.0, + "probability": 0.0 + }, + { + "start": 15809.0, + "end": 15809.0, + "probability": 0.0 + }, + { + "start": 15809.0, + "end": 15809.0, + "probability": 0.0 + }, + { + "start": 15809.0, + "end": 15809.0, + "probability": 0.0 + }, + { + "start": 15809.42, + "end": 15811.72, + "probability": 0.0266 + }, + { + "start": 15812.2, + "end": 15812.94, + "probability": 0.1104 + }, + { + "start": 15812.94, + "end": 15813.96, + "probability": 0.096 + }, + { + "start": 15813.96, + "end": 15814.26, + "probability": 0.2812 + }, + { + "start": 15814.84, + "end": 15814.91, + "probability": 0.0072 + }, + { + "start": 15815.54, + "end": 15819.88, + "probability": 0.2179 + }, + { + "start": 15819.88, + "end": 15821.78, + "probability": 0.1781 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.0, + "end": 15940.0, + "probability": 0.0 + }, + { + "start": 15940.44, + "end": 15940.44, + "probability": 0.087 + }, + { + "start": 15940.44, + "end": 15941.82, + "probability": 0.5006 + }, + { + "start": 15941.92, + "end": 15943.22, + "probability": 0.9714 + }, + { + "start": 15943.62, + "end": 15945.48, + "probability": 0.8481 + }, + { + "start": 15946.96, + "end": 15949.26, + "probability": 0.9538 + }, + { + "start": 15949.34, + "end": 15951.72, + "probability": 0.9159 + }, + { + "start": 15951.72, + "end": 15956.94, + "probability": 0.9772 + }, + { + "start": 15957.06, + "end": 15957.55, + "probability": 0.884 + }, + { + "start": 15958.12, + "end": 15959.32, + "probability": 0.8059 + }, + { + "start": 15959.8, + "end": 15961.26, + "probability": 0.9937 + }, + { + "start": 15961.38, + "end": 15961.72, + "probability": 0.4647 + }, + { + "start": 15962.44, + "end": 15966.52, + "probability": 0.9719 + }, + { + "start": 15967.7, + "end": 15967.96, + "probability": 0.4137 + }, + { + "start": 15968.22, + "end": 15972.92, + "probability": 0.4724 + }, + { + "start": 15972.92, + "end": 15976.48, + "probability": 0.5008 + }, + { + "start": 15976.5, + "end": 15979.32, + "probability": 0.2676 + }, + { + "start": 15982.16, + "end": 15985.89, + "probability": 0.5044 + }, + { + "start": 15986.56, + "end": 15988.02, + "probability": 0.2582 + }, + { + "start": 15988.14, + "end": 15991.4, + "probability": 0.2624 + }, + { + "start": 15991.7, + "end": 15993.52, + "probability": 0.4624 + }, + { + "start": 15994.6, + "end": 15996.26, + "probability": 0.1069 + }, + { + "start": 15996.46, + "end": 15999.46, + "probability": 0.0627 + }, + { + "start": 15999.72, + "end": 16000.2, + "probability": 0.0131 + }, + { + "start": 16001.44, + "end": 16003.6, + "probability": 0.3779 + }, + { + "start": 16003.92, + "end": 16010.66, + "probability": 0.8164 + }, + { + "start": 16011.82, + "end": 16016.72, + "probability": 0.9681 + }, + { + "start": 16017.28, + "end": 16020.0, + "probability": 0.806 + }, + { + "start": 16020.06, + "end": 16021.2, + "probability": 0.8409 + }, + { + "start": 16022.34, + "end": 16023.06, + "probability": 0.6318 + }, + { + "start": 16023.24, + "end": 16023.76, + "probability": 0.9349 + }, + { + "start": 16023.82, + "end": 16025.1, + "probability": 0.9011 + }, + { + "start": 16025.14, + "end": 16026.28, + "probability": 0.8507 + }, + { + "start": 16026.28, + "end": 16030.38, + "probability": 0.9384 + }, + { + "start": 16030.54, + "end": 16033.32, + "probability": 0.9707 + }, + { + "start": 16034.28, + "end": 16037.36, + "probability": 0.9897 + }, + { + "start": 16038.2, + "end": 16039.22, + "probability": 0.8053 + }, + { + "start": 16039.24, + "end": 16041.76, + "probability": 0.9907 + }, + { + "start": 16042.3, + "end": 16046.54, + "probability": 0.9663 + }, + { + "start": 16047.6, + "end": 16049.28, + "probability": 0.2255 + }, + { + "start": 16049.28, + "end": 16049.7, + "probability": 0.1609 + }, + { + "start": 16049.86, + "end": 16051.24, + "probability": 0.91 + }, + { + "start": 16051.92, + "end": 16052.73, + "probability": 0.2005 + }, + { + "start": 16054.08, + "end": 16055.48, + "probability": 0.1285 + }, + { + "start": 16055.64, + "end": 16055.85, + "probability": 0.4973 + }, + { + "start": 16056.84, + "end": 16060.08, + "probability": 0.1563 + }, + { + "start": 16060.34, + "end": 16061.94, + "probability": 0.2318 + }, + { + "start": 16062.66, + "end": 16066.28, + "probability": 0.5432 + }, + { + "start": 16068.24, + "end": 16069.78, + "probability": 0.121 + }, + { + "start": 16070.6, + "end": 16072.72, + "probability": 0.5853 + }, + { + "start": 16073.74, + "end": 16074.54, + "probability": 0.8903 + }, + { + "start": 16075.36, + "end": 16076.02, + "probability": 0.5367 + }, + { + "start": 16076.16, + "end": 16079.58, + "probability": 0.9613 + }, + { + "start": 16079.58, + "end": 16083.24, + "probability": 0.9878 + }, + { + "start": 16083.94, + "end": 16086.8, + "probability": 0.8749 + }, + { + "start": 16090.96, + "end": 16095.16, + "probability": 0.7773 + }, + { + "start": 16095.42, + "end": 16100.9, + "probability": 0.1329 + }, + { + "start": 16101.88, + "end": 16106.12, + "probability": 0.0866 + }, + { + "start": 16106.12, + "end": 16110.12, + "probability": 0.3794 + }, + { + "start": 16110.44, + "end": 16111.52, + "probability": 0.8489 + }, + { + "start": 16111.64, + "end": 16117.42, + "probability": 0.8384 + }, + { + "start": 16117.96, + "end": 16120.18, + "probability": 0.9419 + }, + { + "start": 16120.88, + "end": 16122.22, + "probability": 0.9206 + }, + { + "start": 16122.88, + "end": 16123.86, + "probability": 0.5372 + }, + { + "start": 16124.0, + "end": 16125.86, + "probability": 0.6655 + }, + { + "start": 16126.62, + "end": 16127.85, + "probability": 0.0403 + }, + { + "start": 16132.58, + "end": 16134.67, + "probability": 0.4174 + }, + { + "start": 16135.16, + "end": 16139.4, + "probability": 0.7854 + }, + { + "start": 16139.78, + "end": 16143.46, + "probability": 0.9759 + }, + { + "start": 16144.4, + "end": 16147.4, + "probability": 0.9547 + }, + { + "start": 16147.48, + "end": 16147.9, + "probability": 0.6093 + }, + { + "start": 16147.96, + "end": 16150.06, + "probability": 0.8336 + }, + { + "start": 16150.18, + "end": 16152.9, + "probability": 0.9945 + }, + { + "start": 16153.16, + "end": 16156.06, + "probability": 0.9738 + }, + { + "start": 16156.34, + "end": 16158.02, + "probability": 0.8543 + }, + { + "start": 16158.14, + "end": 16161.62, + "probability": 0.7817 + }, + { + "start": 16161.88, + "end": 16162.54, + "probability": 0.7695 + }, + { + "start": 16163.86, + "end": 16168.22, + "probability": 0.9292 + }, + { + "start": 16168.34, + "end": 16171.9, + "probability": 0.6148 + }, + { + "start": 16172.36, + "end": 16173.88, + "probability": 0.7891 + }, + { + "start": 16173.98, + "end": 16174.46, + "probability": 0.8141 + }, + { + "start": 16174.48, + "end": 16176.32, + "probability": 0.6593 + }, + { + "start": 16176.96, + "end": 16179.52, + "probability": 0.9716 + }, + { + "start": 16179.52, + "end": 16181.98, + "probability": 0.5854 + }, + { + "start": 16182.88, + "end": 16186.8, + "probability": 0.8734 + }, + { + "start": 16190.08, + "end": 16190.08, + "probability": 0.0608 + }, + { + "start": 16190.08, + "end": 16193.98, + "probability": 0.4762 + }, + { + "start": 16194.38, + "end": 16194.5, + "probability": 0.4254 + }, + { + "start": 16194.5, + "end": 16195.08, + "probability": 0.455 + }, + { + "start": 16195.16, + "end": 16195.72, + "probability": 0.465 + }, + { + "start": 16195.72, + "end": 16198.2, + "probability": 0.678 + }, + { + "start": 16198.24, + "end": 16199.66, + "probability": 0.9932 + }, + { + "start": 16200.24, + "end": 16203.2, + "probability": 0.3204 + }, + { + "start": 16213.08, + "end": 16215.1, + "probability": 0.7178 + }, + { + "start": 16218.34, + "end": 16223.86, + "probability": 0.1689 + }, + { + "start": 16233.92, + "end": 16235.44, + "probability": 0.018 + }, + { + "start": 16236.96, + "end": 16237.38, + "probability": 0.0899 + }, + { + "start": 16239.1, + "end": 16245.74, + "probability": 0.1665 + }, + { + "start": 16247.78, + "end": 16247.78, + "probability": 0.2987 + }, + { + "start": 16248.56, + "end": 16248.94, + "probability": 0.3151 + }, + { + "start": 16255.42, + "end": 16256.66, + "probability": 0.2499 + }, + { + "start": 16259.26, + "end": 16260.46, + "probability": 0.381 + }, + { + "start": 16261.54, + "end": 16261.54, + "probability": 0.1667 + }, + { + "start": 16261.54, + "end": 16263.94, + "probability": 0.0459 + }, + { + "start": 16263.94, + "end": 16265.76, + "probability": 0.0361 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.0, + "end": 16305.0, + "probability": 0.0 + }, + { + "start": 16305.2, + "end": 16305.2, + "probability": 0.0413 + }, + { + "start": 16305.2, + "end": 16306.92, + "probability": 0.1991 + }, + { + "start": 16307.0, + "end": 16308.27, + "probability": 0.844 + }, + { + "start": 16309.62, + "end": 16315.2, + "probability": 0.7998 + }, + { + "start": 16317.14, + "end": 16323.2, + "probability": 0.9419 + }, + { + "start": 16323.28, + "end": 16324.36, + "probability": 0.6347 + }, + { + "start": 16325.46, + "end": 16326.56, + "probability": 0.8122 + }, + { + "start": 16327.32, + "end": 16331.84, + "probability": 0.7986 + }, + { + "start": 16333.0, + "end": 16334.14, + "probability": 0.9698 + }, + { + "start": 16334.66, + "end": 16337.88, + "probability": 0.9932 + }, + { + "start": 16338.0, + "end": 16341.94, + "probability": 0.9837 + }, + { + "start": 16342.66, + "end": 16343.7, + "probability": 0.7495 + }, + { + "start": 16343.76, + "end": 16347.44, + "probability": 0.9755 + }, + { + "start": 16347.44, + "end": 16351.84, + "probability": 0.9965 + }, + { + "start": 16352.2, + "end": 16353.64, + "probability": 0.4965 + }, + { + "start": 16354.0, + "end": 16355.02, + "probability": 0.9915 + }, + { + "start": 16356.3, + "end": 16360.38, + "probability": 0.9277 + }, + { + "start": 16360.52, + "end": 16363.9, + "probability": 0.9849 + }, + { + "start": 16364.86, + "end": 16367.28, + "probability": 0.9596 + }, + { + "start": 16367.4, + "end": 16368.22, + "probability": 0.9424 + }, + { + "start": 16368.32, + "end": 16369.44, + "probability": 0.9962 + }, + { + "start": 16369.52, + "end": 16370.56, + "probability": 0.9856 + }, + { + "start": 16370.62, + "end": 16371.64, + "probability": 0.9711 + }, + { + "start": 16372.3, + "end": 16377.16, + "probability": 0.9972 + }, + { + "start": 16378.2, + "end": 16379.16, + "probability": 0.7539 + }, + { + "start": 16380.5, + "end": 16382.52, + "probability": 0.7825 + }, + { + "start": 16383.64, + "end": 16385.06, + "probability": 0.7599 + }, + { + "start": 16386.28, + "end": 16392.64, + "probability": 0.9338 + }, + { + "start": 16393.44, + "end": 16398.76, + "probability": 0.9919 + }, + { + "start": 16398.76, + "end": 16403.18, + "probability": 0.9828 + }, + { + "start": 16403.82, + "end": 16404.36, + "probability": 0.4272 + }, + { + "start": 16404.6, + "end": 16408.76, + "probability": 0.9022 + }, + { + "start": 16409.78, + "end": 16412.7, + "probability": 0.989 + }, + { + "start": 16412.7, + "end": 16419.94, + "probability": 0.9659 + }, + { + "start": 16419.98, + "end": 16420.88, + "probability": 0.7002 + }, + { + "start": 16421.08, + "end": 16424.38, + "probability": 0.7805 + }, + { + "start": 16425.18, + "end": 16427.38, + "probability": 0.6805 + }, + { + "start": 16428.32, + "end": 16433.74, + "probability": 0.8232 + }, + { + "start": 16434.52, + "end": 16437.0, + "probability": 0.9854 + }, + { + "start": 16438.04, + "end": 16441.72, + "probability": 0.9741 + }, + { + "start": 16446.84, + "end": 16451.56, + "probability": 0.9414 + }, + { + "start": 16451.66, + "end": 16453.7, + "probability": 0.7822 + }, + { + "start": 16454.6, + "end": 16456.39, + "probability": 0.7197 + }, + { + "start": 16459.56, + "end": 16461.46, + "probability": 0.8352 + }, + { + "start": 16461.56, + "end": 16463.82, + "probability": 0.8498 + }, + { + "start": 16463.96, + "end": 16468.26, + "probability": 0.9128 + }, + { + "start": 16468.26, + "end": 16472.46, + "probability": 0.9764 + }, + { + "start": 16472.62, + "end": 16477.92, + "probability": 0.9563 + }, + { + "start": 16477.92, + "end": 16477.92, + "probability": 0.5647 + }, + { + "start": 16477.92, + "end": 16479.54, + "probability": 0.952 + }, + { + "start": 16479.64, + "end": 16481.48, + "probability": 0.9595 + }, + { + "start": 16481.54, + "end": 16484.46, + "probability": 0.9468 + }, + { + "start": 16484.74, + "end": 16487.64, + "probability": 0.988 + }, + { + "start": 16487.66, + "end": 16488.36, + "probability": 0.6453 + }, + { + "start": 16488.44, + "end": 16489.24, + "probability": 0.7538 + }, + { + "start": 16489.7, + "end": 16496.64, + "probability": 0.9966 + }, + { + "start": 16497.46, + "end": 16499.68, + "probability": 0.9868 + }, + { + "start": 16499.8, + "end": 16501.1, + "probability": 0.9427 + }, + { + "start": 16501.82, + "end": 16502.0, + "probability": 0.7759 + }, + { + "start": 16502.44, + "end": 16504.12, + "probability": 0.685 + }, + { + "start": 16504.24, + "end": 16508.3, + "probability": 0.8792 + }, + { + "start": 16508.3, + "end": 16508.7, + "probability": 0.303 + }, + { + "start": 16509.54, + "end": 16511.44, + "probability": 0.1311 + }, + { + "start": 16513.18, + "end": 16518.64, + "probability": 0.0051 + }, + { + "start": 16518.8, + "end": 16521.32, + "probability": 0.079 + }, + { + "start": 16522.76, + "end": 16525.48, + "probability": 0.742 + }, + { + "start": 16526.16, + "end": 16526.9, + "probability": 0.7811 + }, + { + "start": 16527.58, + "end": 16531.26, + "probability": 0.8357 + }, + { + "start": 16532.0, + "end": 16534.92, + "probability": 0.8983 + }, + { + "start": 16536.36, + "end": 16537.34, + "probability": 0.913 + }, + { + "start": 16539.28, + "end": 16541.32, + "probability": 0.77 + }, + { + "start": 16541.44, + "end": 16543.24, + "probability": 0.8726 + }, + { + "start": 16543.68, + "end": 16548.0, + "probability": 0.9858 + }, + { + "start": 16548.08, + "end": 16550.98, + "probability": 0.9895 + }, + { + "start": 16551.3, + "end": 16554.78, + "probability": 0.804 + }, + { + "start": 16555.5, + "end": 16556.96, + "probability": 0.9519 + }, + { + "start": 16557.2, + "end": 16559.34, + "probability": 0.9932 + }, + { + "start": 16559.42, + "end": 16562.88, + "probability": 0.9884 + }, + { + "start": 16563.14, + "end": 16563.9, + "probability": 0.9611 + }, + { + "start": 16564.46, + "end": 16565.64, + "probability": 0.7799 + }, + { + "start": 16566.1, + "end": 16566.54, + "probability": 0.855 + }, + { + "start": 16566.6, + "end": 16567.42, + "probability": 0.9622 + }, + { + "start": 16567.8, + "end": 16568.96, + "probability": 0.9399 + }, + { + "start": 16569.0, + "end": 16569.9, + "probability": 0.917 + }, + { + "start": 16569.9, + "end": 16572.96, + "probability": 0.9921 + }, + { + "start": 16574.9, + "end": 16579.96, + "probability": 0.9948 + }, + { + "start": 16580.5, + "end": 16581.52, + "probability": 0.9683 + }, + { + "start": 16582.08, + "end": 16584.82, + "probability": 0.973 + }, + { + "start": 16584.84, + "end": 16584.96, + "probability": 0.5767 + }, + { + "start": 16584.98, + "end": 16585.3, + "probability": 0.7333 + }, + { + "start": 16585.78, + "end": 16587.5, + "probability": 0.873 + }, + { + "start": 16587.6, + "end": 16589.04, + "probability": 0.8071 + }, + { + "start": 16589.12, + "end": 16589.58, + "probability": 0.8847 + }, + { + "start": 16591.52, + "end": 16592.64, + "probability": 0.9133 + }, + { + "start": 16593.16, + "end": 16593.98, + "probability": 0.8273 + }, + { + "start": 16594.0, + "end": 16594.16, + "probability": 0.2848 + }, + { + "start": 16594.16, + "end": 16596.2, + "probability": 0.8661 + }, + { + "start": 16596.28, + "end": 16597.68, + "probability": 0.5863 + }, + { + "start": 16597.82, + "end": 16598.94, + "probability": 0.942 + }, + { + "start": 16600.12, + "end": 16602.24, + "probability": 0.9007 + }, + { + "start": 16602.28, + "end": 16603.42, + "probability": 0.6844 + }, + { + "start": 16603.5, + "end": 16606.06, + "probability": 0.552 + }, + { + "start": 16606.08, + "end": 16607.06, + "probability": 0.8804 + }, + { + "start": 16607.16, + "end": 16612.44, + "probability": 0.9645 + }, + { + "start": 16613.0, + "end": 16616.48, + "probability": 0.9946 + }, + { + "start": 16616.48, + "end": 16618.26, + "probability": 0.9075 + }, + { + "start": 16618.38, + "end": 16618.8, + "probability": 0.806 + }, + { + "start": 16620.32, + "end": 16621.78, + "probability": 0.9956 + }, + { + "start": 16621.82, + "end": 16622.82, + "probability": 0.8918 + }, + { + "start": 16623.34, + "end": 16626.32, + "probability": 0.9268 + }, + { + "start": 16626.36, + "end": 16628.32, + "probability": 0.8923 + }, + { + "start": 16628.66, + "end": 16630.32, + "probability": 0.8566 + }, + { + "start": 16630.62, + "end": 16631.98, + "probability": 0.9193 + }, + { + "start": 16633.6, + "end": 16635.58, + "probability": 0.9993 + }, + { + "start": 16635.58, + "end": 16639.32, + "probability": 0.8597 + }, + { + "start": 16639.4, + "end": 16640.46, + "probability": 0.8886 + }, + { + "start": 16640.94, + "end": 16644.86, + "probability": 0.8822 + }, + { + "start": 16644.98, + "end": 16645.92, + "probability": 0.8003 + }, + { + "start": 16647.56, + "end": 16649.96, + "probability": 0.9279 + }, + { + "start": 16650.1, + "end": 16651.41, + "probability": 0.975 + }, + { + "start": 16651.78, + "end": 16653.12, + "probability": 0.9711 + }, + { + "start": 16653.24, + "end": 16654.73, + "probability": 0.57 + }, + { + "start": 16656.16, + "end": 16657.49, + "probability": 0.7892 + }, + { + "start": 16658.3, + "end": 16660.86, + "probability": 0.8844 + }, + { + "start": 16661.6, + "end": 16662.54, + "probability": 0.9338 + }, + { + "start": 16663.68, + "end": 16665.42, + "probability": 0.9034 + }, + { + "start": 16665.88, + "end": 16666.58, + "probability": 0.953 + }, + { + "start": 16666.74, + "end": 16668.71, + "probability": 0.9244 + }, + { + "start": 16670.12, + "end": 16672.74, + "probability": 0.8635 + }, + { + "start": 16674.22, + "end": 16676.76, + "probability": 0.9958 + }, + { + "start": 16676.86, + "end": 16678.3, + "probability": 0.9581 + }, + { + "start": 16678.64, + "end": 16680.22, + "probability": 0.9966 + }, + { + "start": 16681.14, + "end": 16685.95, + "probability": 0.9954 + }, + { + "start": 16686.6, + "end": 16686.84, + "probability": 0.7778 + }, + { + "start": 16687.0, + "end": 16687.54, + "probability": 0.9907 + }, + { + "start": 16687.78, + "end": 16690.16, + "probability": 0.9854 + }, + { + "start": 16690.44, + "end": 16691.4, + "probability": 0.7852 + }, + { + "start": 16691.76, + "end": 16693.66, + "probability": 0.9739 + }, + { + "start": 16694.56, + "end": 16698.84, + "probability": 0.7111 + }, + { + "start": 16699.02, + "end": 16699.74, + "probability": 0.8712 + }, + { + "start": 16699.8, + "end": 16700.56, + "probability": 0.9325 + }, + { + "start": 16700.84, + "end": 16701.86, + "probability": 0.7611 + }, + { + "start": 16702.08, + "end": 16704.5, + "probability": 0.9205 + }, + { + "start": 16704.76, + "end": 16705.3, + "probability": 0.9202 + }, + { + "start": 16705.78, + "end": 16705.96, + "probability": 0.7498 + }, + { + "start": 16706.74, + "end": 16708.24, + "probability": 0.9377 + }, + { + "start": 16708.32, + "end": 16711.16, + "probability": 0.9177 + }, + { + "start": 16711.88, + "end": 16712.34, + "probability": 0.9115 + }, + { + "start": 16712.34, + "end": 16713.86, + "probability": 0.8795 + }, + { + "start": 16713.98, + "end": 16714.72, + "probability": 0.6127 + }, + { + "start": 16714.8, + "end": 16716.18, + "probability": 0.7927 + }, + { + "start": 16716.8, + "end": 16716.8, + "probability": 0.0003 + }, + { + "start": 16724.58, + "end": 16724.6, + "probability": 0.0023 + }, + { + "start": 16724.6, + "end": 16726.36, + "probability": 0.658 + }, + { + "start": 16731.06, + "end": 16734.36, + "probability": 0.6773 + }, + { + "start": 16738.4, + "end": 16741.48, + "probability": 0.5496 + }, + { + "start": 16742.56, + "end": 16744.28, + "probability": 0.9199 + }, + { + "start": 16744.28, + "end": 16745.66, + "probability": 0.7805 + }, + { + "start": 16746.94, + "end": 16752.46, + "probability": 0.8845 + }, + { + "start": 16753.58, + "end": 16755.88, + "probability": 0.9811 + }, + { + "start": 16757.1, + "end": 16759.38, + "probability": 0.6035 + }, + { + "start": 16760.12, + "end": 16763.12, + "probability": 0.9219 + }, + { + "start": 16763.82, + "end": 16765.02, + "probability": 0.9835 + }, + { + "start": 16766.4, + "end": 16772.86, + "probability": 0.8844 + }, + { + "start": 16773.8, + "end": 16780.0, + "probability": 0.8574 + }, + { + "start": 16780.56, + "end": 16784.74, + "probability": 0.9843 + }, + { + "start": 16785.8, + "end": 16789.1, + "probability": 0.8795 + }, + { + "start": 16790.3, + "end": 16793.36, + "probability": 0.9161 + }, + { + "start": 16794.58, + "end": 16797.8, + "probability": 0.9665 + }, + { + "start": 16797.98, + "end": 16799.04, + "probability": 0.3206 + }, + { + "start": 16799.86, + "end": 16804.06, + "probability": 0.9902 + }, + { + "start": 16804.1, + "end": 16807.66, + "probability": 0.996 + }, + { + "start": 16808.02, + "end": 16810.91, + "probability": 0.8944 + }, + { + "start": 16811.12, + "end": 16814.94, + "probability": 0.8741 + }, + { + "start": 16815.54, + "end": 16817.02, + "probability": 0.8141 + }, + { + "start": 16817.14, + "end": 16820.64, + "probability": 0.9937 + }, + { + "start": 16820.74, + "end": 16828.94, + "probability": 0.8634 + }, + { + "start": 16829.28, + "end": 16833.06, + "probability": 0.8115 + }, + { + "start": 16834.06, + "end": 16836.04, + "probability": 0.627 + }, + { + "start": 16836.08, + "end": 16836.32, + "probability": 0.7114 + }, + { + "start": 16836.38, + "end": 16837.42, + "probability": 0.8412 + }, + { + "start": 16837.52, + "end": 16838.96, + "probability": 0.828 + }, + { + "start": 16839.48, + "end": 16842.88, + "probability": 0.7859 + }, + { + "start": 16842.98, + "end": 16843.56, + "probability": 0.7369 + }, + { + "start": 16843.56, + "end": 16847.0, + "probability": 0.9135 + }, + { + "start": 16847.02, + "end": 16848.1, + "probability": 0.8773 + }, + { + "start": 16849.56, + "end": 16851.28, + "probability": 0.7273 + }, + { + "start": 16852.34, + "end": 16856.0, + "probability": 0.9603 + }, + { + "start": 16857.48, + "end": 16861.4, + "probability": 0.979 + }, + { + "start": 16861.46, + "end": 16867.41, + "probability": 0.9766 + }, + { + "start": 16868.32, + "end": 16873.88, + "probability": 0.9729 + }, + { + "start": 16874.44, + "end": 16875.82, + "probability": 0.8535 + }, + { + "start": 16876.48, + "end": 16883.86, + "probability": 0.941 + }, + { + "start": 16884.72, + "end": 16886.92, + "probability": 0.9752 + }, + { + "start": 16888.0, + "end": 16894.4, + "probability": 0.948 + }, + { + "start": 16895.4, + "end": 16895.98, + "probability": 0.8273 + }, + { + "start": 16896.76, + "end": 16897.26, + "probability": 0.9136 + }, + { + "start": 16898.34, + "end": 16899.7, + "probability": 0.9694 + }, + { + "start": 16899.88, + "end": 16905.22, + "probability": 0.9817 + }, + { + "start": 16906.82, + "end": 16908.66, + "probability": 0.9304 + }, + { + "start": 16909.42, + "end": 16911.14, + "probability": 0.6814 + }, + { + "start": 16911.3, + "end": 16912.56, + "probability": 0.9343 + }, + { + "start": 16912.7, + "end": 16915.04, + "probability": 0.9934 + }, + { + "start": 16915.1, + "end": 16916.12, + "probability": 0.5159 + }, + { + "start": 16916.34, + "end": 16918.66, + "probability": 0.9651 + }, + { + "start": 16920.16, + "end": 16924.46, + "probability": 0.8311 + }, + { + "start": 16925.36, + "end": 16928.32, + "probability": 0.6639 + }, + { + "start": 16928.4, + "end": 16933.38, + "probability": 0.7668 + }, + { + "start": 16934.94, + "end": 16937.32, + "probability": 0.9835 + }, + { + "start": 16938.48, + "end": 16939.56, + "probability": 0.2653 + }, + { + "start": 16940.06, + "end": 16940.88, + "probability": 0.895 + }, + { + "start": 16940.98, + "end": 16942.04, + "probability": 0.9705 + }, + { + "start": 16942.14, + "end": 16943.54, + "probability": 0.5905 + }, + { + "start": 16943.9, + "end": 16944.78, + "probability": 0.9756 + }, + { + "start": 16945.84, + "end": 16947.64, + "probability": 0.1216 + }, + { + "start": 16947.66, + "end": 16950.88, + "probability": 0.9364 + }, + { + "start": 16952.3, + "end": 16952.96, + "probability": 0.9758 + }, + { + "start": 16953.78, + "end": 16954.34, + "probability": 0.7386 + }, + { + "start": 16954.52, + "end": 16959.68, + "probability": 0.9402 + }, + { + "start": 16960.08, + "end": 16961.78, + "probability": 0.9068 + }, + { + "start": 16962.72, + "end": 16965.38, + "probability": 0.9722 + }, + { + "start": 16966.46, + "end": 16968.6, + "probability": 0.9645 + }, + { + "start": 16969.32, + "end": 16971.02, + "probability": 0.8693 + }, + { + "start": 16971.28, + "end": 16972.78, + "probability": 0.9734 + }, + { + "start": 16972.78, + "end": 16973.06, + "probability": 0.0455 + }, + { + "start": 16973.16, + "end": 16973.22, + "probability": 0.4173 + }, + { + "start": 16973.22, + "end": 16975.48, + "probability": 0.9818 + }, + { + "start": 16975.48, + "end": 16979.4, + "probability": 0.9458 + }, + { + "start": 16979.98, + "end": 16983.46, + "probability": 0.9766 + }, + { + "start": 16983.88, + "end": 16984.18, + "probability": 0.6903 + }, + { + "start": 16984.52, + "end": 16986.22, + "probability": 0.695 + }, + { + "start": 16986.38, + "end": 16988.62, + "probability": 0.7181 + }, + { + "start": 16988.76, + "end": 16991.6, + "probability": 0.8691 + }, + { + "start": 17015.72, + "end": 17016.88, + "probability": 0.6756 + }, + { + "start": 17017.7, + "end": 17018.68, + "probability": 0.7608 + }, + { + "start": 17018.74, + "end": 17021.58, + "probability": 0.9932 + }, + { + "start": 17021.7, + "end": 17022.61, + "probability": 0.9326 + }, + { + "start": 17023.34, + "end": 17025.96, + "probability": 0.8574 + }, + { + "start": 17026.18, + "end": 17031.14, + "probability": 0.9943 + }, + { + "start": 17031.14, + "end": 17034.94, + "probability": 0.9737 + }, + { + "start": 17035.72, + "end": 17036.52, + "probability": 0.7917 + }, + { + "start": 17036.58, + "end": 17037.04, + "probability": 0.6292 + }, + { + "start": 17037.22, + "end": 17037.84, + "probability": 0.9475 + }, + { + "start": 17037.92, + "end": 17038.56, + "probability": 0.7499 + }, + { + "start": 17039.04, + "end": 17040.38, + "probability": 0.9707 + }, + { + "start": 17040.38, + "end": 17043.08, + "probability": 0.9841 + }, + { + "start": 17043.16, + "end": 17046.48, + "probability": 0.9751 + }, + { + "start": 17046.58, + "end": 17046.58, + "probability": 0.7559 + }, + { + "start": 17047.88, + "end": 17048.72, + "probability": 0.6614 + }, + { + "start": 17050.12, + "end": 17051.0, + "probability": 0.8005 + }, + { + "start": 17051.14, + "end": 17051.94, + "probability": 0.8591 + }, + { + "start": 17052.06, + "end": 17053.5, + "probability": 0.9771 + }, + { + "start": 17053.88, + "end": 17055.02, + "probability": 0.7591 + }, + { + "start": 17055.12, + "end": 17055.64, + "probability": 0.8969 + }, + { + "start": 17055.7, + "end": 17057.6, + "probability": 0.8716 + }, + { + "start": 17058.0, + "end": 17059.8, + "probability": 0.9604 + }, + { + "start": 17060.24, + "end": 17060.82, + "probability": 0.9801 + }, + { + "start": 17061.46, + "end": 17062.44, + "probability": 0.9484 + }, + { + "start": 17063.28, + "end": 17069.68, + "probability": 0.9971 + }, + { + "start": 17070.12, + "end": 17071.22, + "probability": 0.6377 + }, + { + "start": 17071.4, + "end": 17072.0, + "probability": 0.7358 + }, + { + "start": 17072.1, + "end": 17072.66, + "probability": 0.7523 + }, + { + "start": 17072.66, + "end": 17073.32, + "probability": 0.7706 + }, + { + "start": 17074.0, + "end": 17077.84, + "probability": 0.9436 + }, + { + "start": 17078.5, + "end": 17081.28, + "probability": 0.9985 + }, + { + "start": 17081.28, + "end": 17084.46, + "probability": 0.968 + }, + { + "start": 17085.44, + "end": 17086.5, + "probability": 0.7521 + }, + { + "start": 17086.68, + "end": 17089.26, + "probability": 0.9963 + }, + { + "start": 17090.28, + "end": 17093.8, + "probability": 0.9972 + }, + { + "start": 17093.84, + "end": 17095.04, + "probability": 0.989 + }, + { + "start": 17095.26, + "end": 17097.7, + "probability": 0.9586 + }, + { + "start": 17098.54, + "end": 17099.4, + "probability": 0.544 + }, + { + "start": 17100.18, + "end": 17104.82, + "probability": 0.9115 + }, + { + "start": 17105.78, + "end": 17107.46, + "probability": 0.9844 + }, + { + "start": 17107.54, + "end": 17109.94, + "probability": 0.9963 + }, + { + "start": 17110.12, + "end": 17110.82, + "probability": 0.8415 + }, + { + "start": 17110.84, + "end": 17111.7, + "probability": 0.9545 + }, + { + "start": 17112.16, + "end": 17113.56, + "probability": 0.9548 + }, + { + "start": 17113.88, + "end": 17115.36, + "probability": 0.9313 + }, + { + "start": 17116.68, + "end": 17118.24, + "probability": 0.9877 + }, + { + "start": 17118.34, + "end": 17120.05, + "probability": 0.848 + }, + { + "start": 17120.86, + "end": 17121.8, + "probability": 0.9593 + }, + { + "start": 17122.4, + "end": 17127.4, + "probability": 0.9933 + }, + { + "start": 17127.5, + "end": 17128.2, + "probability": 0.5432 + }, + { + "start": 17128.9, + "end": 17131.58, + "probability": 0.9082 + }, + { + "start": 17131.7, + "end": 17132.52, + "probability": 0.9786 + }, + { + "start": 17132.64, + "end": 17134.82, + "probability": 0.7824 + }, + { + "start": 17135.28, + "end": 17137.74, + "probability": 0.9163 + }, + { + "start": 17138.34, + "end": 17141.04, + "probability": 0.9909 + }, + { + "start": 17141.04, + "end": 17143.9, + "probability": 0.9458 + }, + { + "start": 17144.5, + "end": 17145.66, + "probability": 0.7986 + }, + { + "start": 17146.4, + "end": 17151.84, + "probability": 0.9981 + }, + { + "start": 17152.34, + "end": 17155.66, + "probability": 0.999 + }, + { + "start": 17156.46, + "end": 17159.16, + "probability": 0.9854 + }, + { + "start": 17159.5, + "end": 17161.16, + "probability": 0.9596 + }, + { + "start": 17162.32, + "end": 17169.42, + "probability": 0.9948 + }, + { + "start": 17170.46, + "end": 17172.84, + "probability": 0.7996 + }, + { + "start": 17173.52, + "end": 17175.24, + "probability": 0.7441 + }, + { + "start": 17176.38, + "end": 17179.88, + "probability": 0.8208 + }, + { + "start": 17180.38, + "end": 17185.44, + "probability": 0.9626 + }, + { + "start": 17185.96, + "end": 17188.04, + "probability": 0.9922 + }, + { + "start": 17188.94, + "end": 17196.5, + "probability": 0.9683 + }, + { + "start": 17197.2, + "end": 17200.78, + "probability": 0.777 + }, + { + "start": 17200.88, + "end": 17205.5, + "probability": 0.9956 + }, + { + "start": 17205.94, + "end": 17209.38, + "probability": 0.685 + }, + { + "start": 17209.98, + "end": 17212.72, + "probability": 0.911 + }, + { + "start": 17213.24, + "end": 17218.06, + "probability": 0.9416 + }, + { + "start": 17218.42, + "end": 17221.7, + "probability": 0.9918 + }, + { + "start": 17221.82, + "end": 17222.06, + "probability": 0.7382 + }, + { + "start": 17222.52, + "end": 17224.1, + "probability": 0.7199 + }, + { + "start": 17224.22, + "end": 17226.52, + "probability": 0.9074 + }, + { + "start": 17226.62, + "end": 17228.28, + "probability": 0.9839 + }, + { + "start": 17237.04, + "end": 17237.04, + "probability": 0.0107 + }, + { + "start": 17237.04, + "end": 17237.08, + "probability": 0.3028 + }, + { + "start": 17237.08, + "end": 17237.56, + "probability": 0.1499 + }, + { + "start": 17237.56, + "end": 17237.56, + "probability": 0.1372 + }, + { + "start": 17237.56, + "end": 17237.56, + "probability": 0.165 + }, + { + "start": 17244.2, + "end": 17245.06, + "probability": 0.4332 + }, + { + "start": 17265.46, + "end": 17266.82, + "probability": 0.2725 + }, + { + "start": 17268.5, + "end": 17272.06, + "probability": 0.7209 + }, + { + "start": 17274.14, + "end": 17282.42, + "probability": 0.8747 + }, + { + "start": 17282.94, + "end": 17283.76, + "probability": 0.844 + }, + { + "start": 17284.58, + "end": 17284.58, + "probability": 0.1165 + }, + { + "start": 17285.1, + "end": 17291.52, + "probability": 0.9927 + }, + { + "start": 17291.84, + "end": 17292.52, + "probability": 0.8257 + }, + { + "start": 17293.24, + "end": 17294.14, + "probability": 0.5205 + }, + { + "start": 17294.2, + "end": 17297.7, + "probability": 0.9238 + }, + { + "start": 17297.82, + "end": 17299.6, + "probability": 0.8065 + }, + { + "start": 17300.54, + "end": 17302.12, + "probability": 0.7885 + }, + { + "start": 17302.24, + "end": 17304.88, + "probability": 0.8862 + }, + { + "start": 17305.36, + "end": 17305.94, + "probability": 0.6548 + }, + { + "start": 17307.08, + "end": 17309.8, + "probability": 0.9723 + }, + { + "start": 17310.82, + "end": 17314.96, + "probability": 0.9636 + }, + { + "start": 17315.06, + "end": 17316.4, + "probability": 0.8244 + }, + { + "start": 17316.92, + "end": 17317.68, + "probability": 0.6509 + }, + { + "start": 17318.82, + "end": 17319.14, + "probability": 0.7538 + }, + { + "start": 17319.38, + "end": 17320.53, + "probability": 0.9753 + }, + { + "start": 17320.66, + "end": 17323.4, + "probability": 0.8748 + }, + { + "start": 17324.54, + "end": 17325.94, + "probability": 0.9889 + }, + { + "start": 17327.04, + "end": 17329.7, + "probability": 0.7632 + }, + { + "start": 17330.54, + "end": 17334.7, + "probability": 0.9971 + }, + { + "start": 17335.8, + "end": 17336.36, + "probability": 0.6401 + }, + { + "start": 17336.52, + "end": 17337.66, + "probability": 0.9419 + }, + { + "start": 17337.76, + "end": 17340.35, + "probability": 0.6348 + }, + { + "start": 17340.72, + "end": 17341.22, + "probability": 0.8625 + }, + { + "start": 17341.3, + "end": 17348.06, + "probability": 0.9661 + }, + { + "start": 17348.12, + "end": 17350.96, + "probability": 0.9866 + }, + { + "start": 17351.86, + "end": 17353.02, + "probability": 0.9914 + }, + { + "start": 17354.82, + "end": 17356.64, + "probability": 0.9633 + }, + { + "start": 17357.88, + "end": 17360.12, + "probability": 0.873 + }, + { + "start": 17360.2, + "end": 17364.44, + "probability": 0.9795 + }, + { + "start": 17364.56, + "end": 17365.24, + "probability": 0.8044 + }, + { + "start": 17365.38, + "end": 17370.64, + "probability": 0.9324 + }, + { + "start": 17371.78, + "end": 17373.62, + "probability": 0.6815 + }, + { + "start": 17374.66, + "end": 17382.52, + "probability": 0.9963 + }, + { + "start": 17382.72, + "end": 17383.68, + "probability": 0.7842 + }, + { + "start": 17383.72, + "end": 17386.46, + "probability": 0.855 + }, + { + "start": 17386.66, + "end": 17388.06, + "probability": 0.7604 + }, + { + "start": 17388.22, + "end": 17391.5, + "probability": 0.9841 + }, + { + "start": 17391.58, + "end": 17395.64, + "probability": 0.821 + }, + { + "start": 17395.82, + "end": 17397.02, + "probability": 0.9778 + }, + { + "start": 17398.0, + "end": 17401.44, + "probability": 0.999 + }, + { + "start": 17401.6, + "end": 17402.06, + "probability": 0.8676 + }, + { + "start": 17402.3, + "end": 17405.7, + "probability": 0.9339 + }, + { + "start": 17406.38, + "end": 17413.08, + "probability": 0.9722 + }, + { + "start": 17413.56, + "end": 17417.52, + "probability": 0.978 + }, + { + "start": 17418.54, + "end": 17421.32, + "probability": 0.9876 + }, + { + "start": 17421.46, + "end": 17423.68, + "probability": 0.9054 + }, + { + "start": 17423.84, + "end": 17425.02, + "probability": 0.8989 + }, + { + "start": 17425.12, + "end": 17429.76, + "probability": 0.986 + }, + { + "start": 17430.76, + "end": 17431.6, + "probability": 0.987 + }, + { + "start": 17432.68, + "end": 17436.52, + "probability": 0.9805 + }, + { + "start": 17437.32, + "end": 17438.74, + "probability": 0.7081 + }, + { + "start": 17439.66, + "end": 17440.84, + "probability": 0.3519 + }, + { + "start": 17440.92, + "end": 17443.88, + "probability": 0.9937 + }, + { + "start": 17443.92, + "end": 17445.06, + "probability": 0.8853 + }, + { + "start": 17445.3, + "end": 17447.1, + "probability": 0.9922 + }, + { + "start": 17447.62, + "end": 17448.72, + "probability": 0.741 + }, + { + "start": 17449.46, + "end": 17450.2, + "probability": 0.6804 + }, + { + "start": 17450.3, + "end": 17452.74, + "probability": 0.9546 + }, + { + "start": 17452.88, + "end": 17457.12, + "probability": 0.8321 + }, + { + "start": 17457.12, + "end": 17457.12, + "probability": 0.5615 + }, + { + "start": 17457.12, + "end": 17458.78, + "probability": 0.6128 + }, + { + "start": 17459.34, + "end": 17460.56, + "probability": 0.6598 + }, + { + "start": 17461.18, + "end": 17465.19, + "probability": 0.7882 + }, + { + "start": 17466.26, + "end": 17469.3, + "probability": 0.9967 + }, + { + "start": 17469.36, + "end": 17471.74, + "probability": 0.9758 + }, + { + "start": 17471.92, + "end": 17472.08, + "probability": 0.6262 + }, + { + "start": 17472.26, + "end": 17473.84, + "probability": 0.721 + }, + { + "start": 17473.94, + "end": 17475.66, + "probability": 0.9072 + }, + { + "start": 17492.82, + "end": 17495.5, + "probability": 0.7079 + }, + { + "start": 17497.6, + "end": 17503.86, + "probability": 0.9756 + }, + { + "start": 17505.24, + "end": 17506.94, + "probability": 0.8692 + }, + { + "start": 17508.88, + "end": 17512.86, + "probability": 0.9811 + }, + { + "start": 17515.34, + "end": 17516.62, + "probability": 0.493 + }, + { + "start": 17518.02, + "end": 17519.68, + "probability": 0.7067 + }, + { + "start": 17523.06, + "end": 17529.26, + "probability": 0.7629 + }, + { + "start": 17530.02, + "end": 17531.7, + "probability": 0.9896 + }, + { + "start": 17531.8, + "end": 17532.08, + "probability": 0.9281 + }, + { + "start": 17532.62, + "end": 17533.36, + "probability": 0.7196 + }, + { + "start": 17533.86, + "end": 17534.74, + "probability": 0.7641 + }, + { + "start": 17535.42, + "end": 17536.9, + "probability": 0.8546 + }, + { + "start": 17536.98, + "end": 17539.54, + "probability": 0.2916 + }, + { + "start": 17539.54, + "end": 17541.01, + "probability": 0.4301 + }, + { + "start": 17541.82, + "end": 17545.82, + "probability": 0.8672 + }, + { + "start": 17545.86, + "end": 17547.8, + "probability": 0.9009 + }, + { + "start": 17549.38, + "end": 17550.1, + "probability": 0.7939 + }, + { + "start": 17551.14, + "end": 17552.04, + "probability": 0.7014 + }, + { + "start": 17552.26, + "end": 17553.32, + "probability": 0.922 + }, + { + "start": 17553.7, + "end": 17556.3, + "probability": 0.6591 + }, + { + "start": 17556.98, + "end": 17558.1, + "probability": 0.7834 + }, + { + "start": 17559.34, + "end": 17567.1, + "probability": 0.786 + }, + { + "start": 17567.38, + "end": 17568.26, + "probability": 0.9456 + }, + { + "start": 17568.86, + "end": 17569.86, + "probability": 0.8641 + }, + { + "start": 17570.6, + "end": 17574.02, + "probability": 0.8259 + }, + { + "start": 17574.88, + "end": 17578.72, + "probability": 0.9778 + }, + { + "start": 17579.48, + "end": 17585.08, + "probability": 0.7471 + }, + { + "start": 17585.22, + "end": 17586.94, + "probability": 0.8956 + }, + { + "start": 17587.62, + "end": 17589.92, + "probability": 0.9935 + }, + { + "start": 17591.38, + "end": 17591.95, + "probability": 0.9062 + }, + { + "start": 17594.02, + "end": 17595.18, + "probability": 0.9209 + }, + { + "start": 17598.16, + "end": 17600.8, + "probability": 0.8364 + }, + { + "start": 17601.44, + "end": 17603.16, + "probability": 0.6328 + }, + { + "start": 17604.04, + "end": 17604.2, + "probability": 0.3064 + }, + { + "start": 17605.94, + "end": 17607.34, + "probability": 0.9711 + }, + { + "start": 17608.64, + "end": 17608.8, + "probability": 0.5743 + }, + { + "start": 17609.7, + "end": 17614.18, + "probability": 0.779 + }, + { + "start": 17614.34, + "end": 17617.52, + "probability": 0.9324 + }, + { + "start": 17617.62, + "end": 17619.1, + "probability": 0.8184 + }, + { + "start": 17619.24, + "end": 17622.26, + "probability": 0.9629 + }, + { + "start": 17622.8, + "end": 17623.24, + "probability": 0.9734 + }, + { + "start": 17623.36, + "end": 17623.84, + "probability": 0.9397 + }, + { + "start": 17624.9, + "end": 17626.36, + "probability": 0.996 + }, + { + "start": 17626.9, + "end": 17628.08, + "probability": 0.9533 + }, + { + "start": 17628.74, + "end": 17632.56, + "probability": 0.9036 + }, + { + "start": 17633.86, + "end": 17637.8, + "probability": 0.8421 + }, + { + "start": 17638.02, + "end": 17638.88, + "probability": 0.9349 + }, + { + "start": 17639.86, + "end": 17641.96, + "probability": 0.9753 + }, + { + "start": 17642.36, + "end": 17643.7, + "probability": 0.4496 + }, + { + "start": 17643.84, + "end": 17646.3, + "probability": 0.8737 + }, + { + "start": 17646.62, + "end": 17647.24, + "probability": 0.5127 + }, + { + "start": 17647.32, + "end": 17649.14, + "probability": 0.8932 + }, + { + "start": 17650.26, + "end": 17650.82, + "probability": 0.9304 + }, + { + "start": 17652.16, + "end": 17653.46, + "probability": 0.9237 + }, + { + "start": 17654.06, + "end": 17657.0, + "probability": 0.9084 + }, + { + "start": 17657.44, + "end": 17658.14, + "probability": 0.9195 + }, + { + "start": 17659.5, + "end": 17660.52, + "probability": 0.511 + }, + { + "start": 17663.54, + "end": 17664.36, + "probability": 0.7562 + }, + { + "start": 17664.58, + "end": 17668.16, + "probability": 0.9059 + }, + { + "start": 17669.52, + "end": 17672.72, + "probability": 0.9614 + }, + { + "start": 17673.24, + "end": 17676.86, + "probability": 0.9875 + }, + { + "start": 17677.42, + "end": 17678.74, + "probability": 0.7057 + }, + { + "start": 17679.66, + "end": 17680.56, + "probability": 0.9157 + }, + { + "start": 17682.88, + "end": 17689.77, + "probability": 0.9954 + }, + { + "start": 17690.64, + "end": 17691.92, + "probability": 0.6814 + }, + { + "start": 17691.96, + "end": 17691.96, + "probability": 0.0858 + }, + { + "start": 17692.0, + "end": 17693.42, + "probability": 0.9888 + }, + { + "start": 17694.06, + "end": 17694.76, + "probability": 0.958 + }, + { + "start": 17696.1, + "end": 17697.16, + "probability": 0.3084 + }, + { + "start": 17698.18, + "end": 17699.58, + "probability": 0.7048 + }, + { + "start": 17699.72, + "end": 17701.56, + "probability": 0.8807 + }, + { + "start": 17702.5, + "end": 17704.36, + "probability": 0.9738 + }, + { + "start": 17722.7, + "end": 17724.24, + "probability": 0.0821 + }, + { + "start": 17725.24, + "end": 17727.1, + "probability": 0.81 + }, + { + "start": 17728.0, + "end": 17729.96, + "probability": 0.8449 + }, + { + "start": 17731.66, + "end": 17732.04, + "probability": 0.4895 + }, + { + "start": 17732.12, + "end": 17736.46, + "probability": 0.9598 + }, + { + "start": 17736.84, + "end": 17737.3, + "probability": 0.7825 + }, + { + "start": 17738.56, + "end": 17738.94, + "probability": 0.8752 + }, + { + "start": 17739.56, + "end": 17741.72, + "probability": 0.8265 + }, + { + "start": 17743.36, + "end": 17747.14, + "probability": 0.9674 + }, + { + "start": 17748.32, + "end": 17749.92, + "probability": 0.9701 + }, + { + "start": 17750.7, + "end": 17751.57, + "probability": 0.9583 + }, + { + "start": 17752.38, + "end": 17757.54, + "probability": 0.988 + }, + { + "start": 17757.54, + "end": 17761.06, + "probability": 0.9589 + }, + { + "start": 17761.92, + "end": 17763.66, + "probability": 0.9754 + }, + { + "start": 17764.24, + "end": 17766.78, + "probability": 0.9874 + }, + { + "start": 17768.08, + "end": 17773.38, + "probability": 0.9541 + }, + { + "start": 17773.54, + "end": 17774.7, + "probability": 0.843 + }, + { + "start": 17775.46, + "end": 17776.84, + "probability": 0.9447 + }, + { + "start": 17779.14, + "end": 17786.2, + "probability": 0.8565 + }, + { + "start": 17786.62, + "end": 17789.76, + "probability": 0.8361 + }, + { + "start": 17791.06, + "end": 17791.98, + "probability": 0.7573 + }, + { + "start": 17794.46, + "end": 17796.46, + "probability": 0.9028 + }, + { + "start": 17800.29, + "end": 17803.08, + "probability": 0.8002 + }, + { + "start": 17804.94, + "end": 17807.16, + "probability": 0.9703 + }, + { + "start": 17809.24, + "end": 17811.2, + "probability": 0.9949 + }, + { + "start": 17811.68, + "end": 17814.28, + "probability": 0.895 + }, + { + "start": 17814.32, + "end": 17816.62, + "probability": 0.9208 + }, + { + "start": 17817.54, + "end": 17822.2, + "probability": 0.9956 + }, + { + "start": 17822.74, + "end": 17825.06, + "probability": 0.8286 + }, + { + "start": 17825.16, + "end": 17829.82, + "probability": 0.9899 + }, + { + "start": 17831.04, + "end": 17833.36, + "probability": 0.5081 + }, + { + "start": 17834.22, + "end": 17836.78, + "probability": 0.928 + }, + { + "start": 17837.93, + "end": 17839.22, + "probability": 0.5096 + }, + { + "start": 17839.88, + "end": 17841.64, + "probability": 0.998 + }, + { + "start": 17842.42, + "end": 17846.9, + "probability": 0.866 + }, + { + "start": 17847.36, + "end": 17848.04, + "probability": 0.6412 + }, + { + "start": 17848.62, + "end": 17850.5, + "probability": 0.8806 + }, + { + "start": 17851.84, + "end": 17852.68, + "probability": 0.4652 + }, + { + "start": 17852.8, + "end": 17854.64, + "probability": 0.9225 + }, + { + "start": 17854.8, + "end": 17855.84, + "probability": 0.9404 + }, + { + "start": 17855.96, + "end": 17857.53, + "probability": 0.6961 + }, + { + "start": 17857.62, + "end": 17860.66, + "probability": 0.8572 + }, + { + "start": 17861.3, + "end": 17865.64, + "probability": 0.9937 + }, + { + "start": 17866.9, + "end": 17868.76, + "probability": 0.9962 + }, + { + "start": 17870.08, + "end": 17870.72, + "probability": 0.9195 + }, + { + "start": 17871.32, + "end": 17871.75, + "probability": 0.7969 + }, + { + "start": 17872.22, + "end": 17876.2, + "probability": 0.9732 + }, + { + "start": 17876.32, + "end": 17876.62, + "probability": 0.9654 + }, + { + "start": 17877.4, + "end": 17878.3, + "probability": 0.9927 + }, + { + "start": 17880.0, + "end": 17882.22, + "probability": 0.9609 + }, + { + "start": 17882.96, + "end": 17886.26, + "probability": 0.8667 + }, + { + "start": 17887.1, + "end": 17889.4, + "probability": 0.9674 + }, + { + "start": 17889.52, + "end": 17893.04, + "probability": 0.9855 + }, + { + "start": 17893.96, + "end": 17895.74, + "probability": 0.931 + }, + { + "start": 17895.82, + "end": 17896.34, + "probability": 0.5664 + }, + { + "start": 17896.44, + "end": 17896.72, + "probability": 0.0529 + }, + { + "start": 17896.98, + "end": 17898.1, + "probability": 0.9502 + }, + { + "start": 17899.18, + "end": 17902.32, + "probability": 0.8545 + }, + { + "start": 17902.76, + "end": 17904.32, + "probability": 0.9174 + }, + { + "start": 17905.14, + "end": 17906.7, + "probability": 0.8668 + }, + { + "start": 17907.22, + "end": 17908.22, + "probability": 0.7656 + }, + { + "start": 17909.0, + "end": 17911.22, + "probability": 0.9363 + }, + { + "start": 17912.08, + "end": 17912.74, + "probability": 0.998 + }, + { + "start": 17912.9, + "end": 17917.88, + "probability": 0.9935 + }, + { + "start": 17919.02, + "end": 17921.08, + "probability": 0.8864 + }, + { + "start": 17921.18, + "end": 17925.19, + "probability": 0.9917 + }, + { + "start": 17925.56, + "end": 17926.32, + "probability": 0.237 + }, + { + "start": 17926.52, + "end": 17932.06, + "probability": 0.9873 + }, + { + "start": 17933.34, + "end": 17933.78, + "probability": 0.6375 + }, + { + "start": 17934.38, + "end": 17935.28, + "probability": 0.9627 + }, + { + "start": 17936.32, + "end": 17939.62, + "probability": 0.972 + }, + { + "start": 17939.62, + "end": 17944.82, + "probability": 0.9922 + }, + { + "start": 17944.82, + "end": 17948.66, + "probability": 0.9946 + }, + { + "start": 17949.56, + "end": 17951.76, + "probability": 0.9984 + }, + { + "start": 17951.98, + "end": 17952.2, + "probability": 0.7938 + }, + { + "start": 17953.26, + "end": 17954.68, + "probability": 0.6581 + }, + { + "start": 17954.72, + "end": 17956.9, + "probability": 0.8247 + }, + { + "start": 17958.2, + "end": 17962.72, + "probability": 0.8362 + }, + { + "start": 17970.86, + "end": 17971.98, + "probability": 0.5524 + }, + { + "start": 17972.08, + "end": 17973.62, + "probability": 0.8703 + }, + { + "start": 17973.62, + "end": 17974.12, + "probability": 0.7361 + }, + { + "start": 17974.44, + "end": 17975.04, + "probability": 0.7166 + }, + { + "start": 17976.86, + "end": 17979.86, + "probability": 0.8698 + }, + { + "start": 17980.26, + "end": 17984.66, + "probability": 0.9469 + }, + { + "start": 17985.52, + "end": 17987.44, + "probability": 0.9124 + }, + { + "start": 17988.32, + "end": 17989.24, + "probability": 0.7944 + }, + { + "start": 17989.8, + "end": 17992.98, + "probability": 0.7262 + }, + { + "start": 17993.54, + "end": 17999.16, + "probability": 0.8906 + }, + { + "start": 17999.26, + "end": 18000.24, + "probability": 0.8466 + }, + { + "start": 18001.08, + "end": 18003.74, + "probability": 0.9977 + }, + { + "start": 18004.26, + "end": 18006.26, + "probability": 0.999 + }, + { + "start": 18007.08, + "end": 18008.74, + "probability": 0.8126 + }, + { + "start": 18009.42, + "end": 18010.42, + "probability": 0.9597 + }, + { + "start": 18010.54, + "end": 18015.52, + "probability": 0.9624 + }, + { + "start": 18015.72, + "end": 18018.58, + "probability": 0.8318 + }, + { + "start": 18019.2, + "end": 18025.04, + "probability": 0.9911 + }, + { + "start": 18025.56, + "end": 18027.22, + "probability": 0.8448 + }, + { + "start": 18027.8, + "end": 18030.46, + "probability": 0.748 + }, + { + "start": 18031.56, + "end": 18034.42, + "probability": 0.9792 + }, + { + "start": 18034.64, + "end": 18035.64, + "probability": 0.966 + }, + { + "start": 18036.68, + "end": 18038.88, + "probability": 0.9313 + }, + { + "start": 18040.33, + "end": 18043.86, + "probability": 0.9337 + }, + { + "start": 18044.46, + "end": 18048.88, + "probability": 0.9458 + }, + { + "start": 18048.94, + "end": 18051.47, + "probability": 0.966 + }, + { + "start": 18052.1, + "end": 18052.62, + "probability": 0.7582 + }, + { + "start": 18052.7, + "end": 18053.2, + "probability": 0.4896 + }, + { + "start": 18053.42, + "end": 18054.26, + "probability": 0.643 + }, + { + "start": 18054.38, + "end": 18055.48, + "probability": 0.9844 + }, + { + "start": 18056.92, + "end": 18059.56, + "probability": 0.986 + }, + { + "start": 18060.46, + "end": 18062.2, + "probability": 0.9465 + }, + { + "start": 18062.32, + "end": 18064.48, + "probability": 0.9271 + }, + { + "start": 18065.06, + "end": 18066.59, + "probability": 0.8385 + }, + { + "start": 18066.88, + "end": 18069.98, + "probability": 0.958 + }, + { + "start": 18069.98, + "end": 18073.36, + "probability": 0.9391 + }, + { + "start": 18074.0, + "end": 18075.24, + "probability": 0.693 + }, + { + "start": 18075.7, + "end": 18076.84, + "probability": 0.8994 + }, + { + "start": 18077.34, + "end": 18077.88, + "probability": 0.6872 + }, + { + "start": 18077.94, + "end": 18078.52, + "probability": 0.832 + }, + { + "start": 18078.6, + "end": 18079.26, + "probability": 0.7358 + }, + { + "start": 18079.42, + "end": 18080.44, + "probability": 0.9237 + }, + { + "start": 18081.44, + "end": 18084.36, + "probability": 0.9962 + }, + { + "start": 18084.86, + "end": 18087.44, + "probability": 0.9196 + }, + { + "start": 18088.16, + "end": 18089.84, + "probability": 0.9349 + }, + { + "start": 18090.84, + "end": 18093.38, + "probability": 0.9251 + }, + { + "start": 18093.94, + "end": 18094.76, + "probability": 0.8467 + }, + { + "start": 18095.02, + "end": 18096.64, + "probability": 0.876 + }, + { + "start": 18096.72, + "end": 18098.52, + "probability": 0.6652 + }, + { + "start": 18098.9, + "end": 18101.54, + "probability": 0.9505 + }, + { + "start": 18102.66, + "end": 18103.58, + "probability": 0.9411 + }, + { + "start": 18103.82, + "end": 18105.96, + "probability": 0.9889 + }, + { + "start": 18106.94, + "end": 18111.54, + "probability": 0.993 + }, + { + "start": 18112.16, + "end": 18113.62, + "probability": 0.9819 + }, + { + "start": 18114.64, + "end": 18116.84, + "probability": 0.9988 + }, + { + "start": 18117.36, + "end": 18118.92, + "probability": 0.9961 + }, + { + "start": 18120.22, + "end": 18121.88, + "probability": 0.5178 + }, + { + "start": 18122.06, + "end": 18123.58, + "probability": 0.9399 + }, + { + "start": 18124.36, + "end": 18127.42, + "probability": 0.8989 + }, + { + "start": 18127.46, + "end": 18128.82, + "probability": 0.9691 + }, + { + "start": 18129.08, + "end": 18130.44, + "probability": 0.9254 + }, + { + "start": 18130.98, + "end": 18132.76, + "probability": 0.9768 + }, + { + "start": 18133.18, + "end": 18137.36, + "probability": 0.9945 + }, + { + "start": 18138.48, + "end": 18139.9, + "probability": 0.6519 + }, + { + "start": 18140.46, + "end": 18142.12, + "probability": 0.8256 + }, + { + "start": 18142.46, + "end": 18144.22, + "probability": 0.7594 + }, + { + "start": 18144.34, + "end": 18147.04, + "probability": 0.8905 + }, + { + "start": 18147.58, + "end": 18149.34, + "probability": 0.8276 + }, + { + "start": 18149.44, + "end": 18150.6, + "probability": 0.5351 + }, + { + "start": 18150.82, + "end": 18154.78, + "probability": 0.9792 + }, + { + "start": 18156.3, + "end": 18158.56, + "probability": 0.4988 + }, + { + "start": 18159.9, + "end": 18162.64, + "probability": 0.7488 + }, + { + "start": 18163.92, + "end": 18164.74, + "probability": 0.9347 + }, + { + "start": 18165.36, + "end": 18166.4, + "probability": 0.9648 + }, + { + "start": 18166.7, + "end": 18167.62, + "probability": 0.769 + }, + { + "start": 18167.68, + "end": 18168.11, + "probability": 0.7729 + }, + { + "start": 18168.44, + "end": 18171.98, + "probability": 0.9927 + }, + { + "start": 18172.1, + "end": 18172.98, + "probability": 0.9718 + }, + { + "start": 18173.12, + "end": 18174.54, + "probability": 0.7317 + }, + { + "start": 18175.06, + "end": 18177.84, + "probability": 0.9888 + }, + { + "start": 18178.34, + "end": 18178.68, + "probability": 0.8754 + }, + { + "start": 18178.72, + "end": 18179.52, + "probability": 0.9349 + }, + { + "start": 18179.74, + "end": 18185.18, + "probability": 0.9954 + }, + { + "start": 18185.74, + "end": 18187.46, + "probability": 0.0387 + }, + { + "start": 18188.18, + "end": 18188.18, + "probability": 0.1946 + }, + { + "start": 18188.18, + "end": 18192.72, + "probability": 0.9404 + }, + { + "start": 18193.42, + "end": 18196.52, + "probability": 0.996 + }, + { + "start": 18196.62, + "end": 18197.94, + "probability": 0.9794 + }, + { + "start": 18198.52, + "end": 18202.14, + "probability": 0.7608 + }, + { + "start": 18203.24, + "end": 18205.2, + "probability": 0.8583 + }, + { + "start": 18205.96, + "end": 18207.56, + "probability": 0.9188 + }, + { + "start": 18207.96, + "end": 18209.98, + "probability": 0.5737 + }, + { + "start": 18210.2, + "end": 18212.4, + "probability": 0.7921 + }, + { + "start": 18213.78, + "end": 18214.96, + "probability": 0.6661 + }, + { + "start": 18215.12, + "end": 18216.36, + "probability": 0.9443 + }, + { + "start": 18216.66, + "end": 18217.88, + "probability": 0.9771 + }, + { + "start": 18218.34, + "end": 18222.38, + "probability": 0.9525 + }, + { + "start": 18222.92, + "end": 18224.08, + "probability": 0.5223 + }, + { + "start": 18224.18, + "end": 18225.86, + "probability": 0.8112 + }, + { + "start": 18225.92, + "end": 18226.4, + "probability": 0.7711 + }, + { + "start": 18226.58, + "end": 18229.22, + "probability": 0.8703 + }, + { + "start": 18229.44, + "end": 18230.72, + "probability": 0.9696 + }, + { + "start": 18230.92, + "end": 18231.26, + "probability": 0.7962 + }, + { + "start": 18231.92, + "end": 18233.08, + "probability": 0.5079 + }, + { + "start": 18233.4, + "end": 18235.38, + "probability": 0.7699 + }, + { + "start": 18235.4, + "end": 18235.6, + "probability": 0.9279 + }, + { + "start": 18255.38, + "end": 18256.68, + "probability": 0.6532 + }, + { + "start": 18256.88, + "end": 18256.88, + "probability": 0.4483 + }, + { + "start": 18256.88, + "end": 18257.66, + "probability": 0.79 + }, + { + "start": 18257.76, + "end": 18258.96, + "probability": 0.7573 + }, + { + "start": 18260.38, + "end": 18265.06, + "probability": 0.9401 + }, + { + "start": 18265.66, + "end": 18270.8, + "probability": 0.9868 + }, + { + "start": 18270.8, + "end": 18276.3, + "probability": 0.9966 + }, + { + "start": 18276.3, + "end": 18279.62, + "probability": 0.9988 + }, + { + "start": 18281.1, + "end": 18282.3, + "probability": 0.9985 + }, + { + "start": 18284.2, + "end": 18286.92, + "probability": 0.7053 + }, + { + "start": 18287.04, + "end": 18287.4, + "probability": 0.7242 + }, + { + "start": 18287.54, + "end": 18288.74, + "probability": 0.8279 + }, + { + "start": 18289.06, + "end": 18291.46, + "probability": 0.9795 + }, + { + "start": 18292.4, + "end": 18296.06, + "probability": 0.7471 + }, + { + "start": 18296.08, + "end": 18297.7, + "probability": 0.0503 + }, + { + "start": 18297.8, + "end": 18299.22, + "probability": 0.5555 + }, + { + "start": 18299.54, + "end": 18306.26, + "probability": 0.9881 + }, + { + "start": 18306.34, + "end": 18311.24, + "probability": 0.9932 + }, + { + "start": 18312.06, + "end": 18313.06, + "probability": 0.1851 + }, + { + "start": 18313.38, + "end": 18316.23, + "probability": 0.9971 + }, + { + "start": 18317.34, + "end": 18322.38, + "probability": 0.9863 + }, + { + "start": 18323.08, + "end": 18325.8, + "probability": 0.749 + }, + { + "start": 18326.84, + "end": 18329.88, + "probability": 0.9939 + }, + { + "start": 18330.86, + "end": 18336.07, + "probability": 0.9972 + }, + { + "start": 18336.52, + "end": 18337.8, + "probability": 0.2631 + }, + { + "start": 18338.86, + "end": 18339.26, + "probability": 0.0121 + }, + { + "start": 18339.26, + "end": 18340.94, + "probability": 0.6478 + }, + { + "start": 18341.12, + "end": 18343.98, + "probability": 0.4853 + }, + { + "start": 18344.12, + "end": 18344.74, + "probability": 0.4531 + }, + { + "start": 18344.74, + "end": 18345.08, + "probability": 0.6637 + }, + { + "start": 18345.18, + "end": 18347.2, + "probability": 0.0745 + }, + { + "start": 18347.88, + "end": 18349.44, + "probability": 0.231 + }, + { + "start": 18349.5, + "end": 18351.23, + "probability": 0.7825 + }, + { + "start": 18351.68, + "end": 18354.68, + "probability": 0.894 + }, + { + "start": 18355.32, + "end": 18359.24, + "probability": 0.9883 + }, + { + "start": 18359.94, + "end": 18361.96, + "probability": 0.9989 + }, + { + "start": 18362.02, + "end": 18363.02, + "probability": 0.8386 + }, + { + "start": 18363.28, + "end": 18369.22, + "probability": 0.9889 + }, + { + "start": 18369.34, + "end": 18371.36, + "probability": 0.9766 + }, + { + "start": 18371.86, + "end": 18376.04, + "probability": 0.9927 + }, + { + "start": 18376.52, + "end": 18379.04, + "probability": 0.9885 + }, + { + "start": 18379.04, + "end": 18383.06, + "probability": 0.9971 + }, + { + "start": 18383.44, + "end": 18385.36, + "probability": 0.9943 + }, + { + "start": 18385.88, + "end": 18387.62, + "probability": 0.9874 + }, + { + "start": 18387.72, + "end": 18390.22, + "probability": 0.9976 + }, + { + "start": 18390.66, + "end": 18393.39, + "probability": 0.9854 + }, + { + "start": 18393.54, + "end": 18395.54, + "probability": 0.9583 + }, + { + "start": 18396.84, + "end": 18399.98, + "probability": 0.9878 + }, + { + "start": 18400.06, + "end": 18401.82, + "probability": 0.4224 + }, + { + "start": 18401.82, + "end": 18402.06, + "probability": 0.2397 + }, + { + "start": 18402.06, + "end": 18402.95, + "probability": 0.4517 + }, + { + "start": 18403.52, + "end": 18407.69, + "probability": 0.9331 + }, + { + "start": 18409.24, + "end": 18410.46, + "probability": 0.8616 + }, + { + "start": 18410.7, + "end": 18411.14, + "probability": 0.2778 + }, + { + "start": 18411.34, + "end": 18417.16, + "probability": 0.9611 + }, + { + "start": 18417.44, + "end": 18419.7, + "probability": 0.8777 + }, + { + "start": 18420.36, + "end": 18423.92, + "probability": 0.986 + }, + { + "start": 18424.52, + "end": 18425.28, + "probability": 0.7178 + }, + { + "start": 18426.52, + "end": 18426.58, + "probability": 0.0144 + }, + { + "start": 18426.58, + "end": 18428.22, + "probability": 0.5694 + }, + { + "start": 18428.3, + "end": 18429.18, + "probability": 0.3836 + }, + { + "start": 18430.48, + "end": 18436.34, + "probability": 0.9272 + }, + { + "start": 18436.38, + "end": 18439.66, + "probability": 0.9839 + }, + { + "start": 18440.44, + "end": 18441.14, + "probability": 0.6908 + }, + { + "start": 18441.18, + "end": 18442.04, + "probability": 0.7914 + }, + { + "start": 18442.08, + "end": 18442.3, + "probability": 0.1858 + }, + { + "start": 18442.3, + "end": 18442.79, + "probability": 0.2285 + }, + { + "start": 18443.34, + "end": 18443.98, + "probability": 0.3782 + }, + { + "start": 18444.14, + "end": 18445.23, + "probability": 0.8371 + }, + { + "start": 18445.66, + "end": 18446.86, + "probability": 0.8348 + }, + { + "start": 18447.08, + "end": 18448.65, + "probability": 0.9663 + }, + { + "start": 18450.82, + "end": 18451.0, + "probability": 0.1511 + }, + { + "start": 18451.0, + "end": 18451.0, + "probability": 0.072 + }, + { + "start": 18451.0, + "end": 18451.72, + "probability": 0.447 + }, + { + "start": 18451.8, + "end": 18452.02, + "probability": 0.0233 + }, + { + "start": 18452.02, + "end": 18452.72, + "probability": 0.5331 + }, + { + "start": 18452.92, + "end": 18453.44, + "probability": 0.346 + }, + { + "start": 18454.26, + "end": 18457.08, + "probability": 0.7908 + }, + { + "start": 18457.18, + "end": 18459.14, + "probability": 0.9788 + }, + { + "start": 18459.24, + "end": 18460.43, + "probability": 0.9751 + }, + { + "start": 18460.68, + "end": 18462.38, + "probability": 0.9895 + }, + { + "start": 18463.06, + "end": 18463.06, + "probability": 0.2524 + }, + { + "start": 18463.06, + "end": 18464.3, + "probability": 0.931 + }, + { + "start": 18464.54, + "end": 18465.2, + "probability": 0.9589 + }, + { + "start": 18465.34, + "end": 18466.63, + "probability": 0.8064 + }, + { + "start": 18466.8, + "end": 18468.4, + "probability": 0.9263 + }, + { + "start": 18469.4, + "end": 18470.26, + "probability": 0.9204 + }, + { + "start": 18470.84, + "end": 18471.44, + "probability": 0.7226 + }, + { + "start": 18471.5, + "end": 18474.34, + "probability": 0.9944 + }, + { + "start": 18474.6, + "end": 18475.94, + "probability": 0.7431 + }, + { + "start": 18476.76, + "end": 18479.3, + "probability": 0.9864 + }, + { + "start": 18479.4, + "end": 18482.96, + "probability": 0.9797 + }, + { + "start": 18483.1, + "end": 18488.66, + "probability": 0.9216 + }, + { + "start": 18488.66, + "end": 18492.96, + "probability": 0.9942 + }, + { + "start": 18493.04, + "end": 18494.52, + "probability": 0.6623 + }, + { + "start": 18494.68, + "end": 18494.94, + "probability": 0.5075 + }, + { + "start": 18495.86, + "end": 18495.9, + "probability": 0.0288 + }, + { + "start": 18495.9, + "end": 18497.86, + "probability": 0.5685 + }, + { + "start": 18498.44, + "end": 18500.66, + "probability": 0.4278 + }, + { + "start": 18500.66, + "end": 18501.5, + "probability": 0.4406 + }, + { + "start": 18501.74, + "end": 18505.02, + "probability": 0.986 + }, + { + "start": 18505.02, + "end": 18508.12, + "probability": 0.911 + }, + { + "start": 18509.0, + "end": 18509.48, + "probability": 0.0522 + }, + { + "start": 18509.8, + "end": 18513.44, + "probability": 0.9676 + }, + { + "start": 18513.48, + "end": 18516.04, + "probability": 0.9116 + }, + { + "start": 18516.04, + "end": 18517.14, + "probability": 0.2551 + }, + { + "start": 18517.2, + "end": 18519.56, + "probability": 0.8289 + }, + { + "start": 18519.64, + "end": 18520.38, + "probability": 0.8876 + }, + { + "start": 18520.88, + "end": 18522.08, + "probability": 0.2059 + }, + { + "start": 18522.32, + "end": 18524.98, + "probability": 0.5246 + }, + { + "start": 18525.7, + "end": 18526.88, + "probability": 0.9845 + }, + { + "start": 18527.04, + "end": 18530.68, + "probability": 0.979 + }, + { + "start": 18530.74, + "end": 18534.32, + "probability": 0.3857 + }, + { + "start": 18534.48, + "end": 18534.48, + "probability": 0.0004 + }, + { + "start": 18535.38, + "end": 18536.68, + "probability": 0.0494 + }, + { + "start": 18536.68, + "end": 18536.68, + "probability": 0.1162 + }, + { + "start": 18536.68, + "end": 18538.16, + "probability": 0.3537 + }, + { + "start": 18538.24, + "end": 18539.42, + "probability": 0.9274 + }, + { + "start": 18539.9, + "end": 18541.78, + "probability": 0.2178 + }, + { + "start": 18542.4, + "end": 18542.6, + "probability": 0.1349 + }, + { + "start": 18542.74, + "end": 18546.01, + "probability": 0.6489 + }, + { + "start": 18547.74, + "end": 18550.58, + "probability": 0.1127 + }, + { + "start": 18550.58, + "end": 18550.58, + "probability": 0.2931 + }, + { + "start": 18550.62, + "end": 18551.62, + "probability": 0.6012 + }, + { + "start": 18551.66, + "end": 18551.66, + "probability": 0.291 + }, + { + "start": 18551.72, + "end": 18554.22, + "probability": 0.7687 + }, + { + "start": 18554.36, + "end": 18555.28, + "probability": 0.8906 + }, + { + "start": 18556.0, + "end": 18558.34, + "probability": 0.5316 + }, + { + "start": 18558.48, + "end": 18558.92, + "probability": 0.5022 + }, + { + "start": 18559.1, + "end": 18560.3, + "probability": 0.2135 + }, + { + "start": 18560.54, + "end": 18561.34, + "probability": 0.0393 + }, + { + "start": 18565.1, + "end": 18565.5, + "probability": 0.0685 + }, + { + "start": 18565.98, + "end": 18566.28, + "probability": 0.1837 + }, + { + "start": 18566.28, + "end": 18566.46, + "probability": 0.4604 + }, + { + "start": 18566.46, + "end": 18567.72, + "probability": 0.0356 + }, + { + "start": 18567.72, + "end": 18568.8, + "probability": 0.3944 + }, + { + "start": 18569.48, + "end": 18569.7, + "probability": 0.024 + }, + { + "start": 18569.7, + "end": 18570.08, + "probability": 0.1875 + }, + { + "start": 18570.44, + "end": 18570.78, + "probability": 0.2734 + }, + { + "start": 18570.88, + "end": 18571.6, + "probability": 0.7339 + }, + { + "start": 18571.68, + "end": 18572.4, + "probability": 0.8003 + }, + { + "start": 18572.52, + "end": 18573.96, + "probability": 0.7923 + }, + { + "start": 18574.06, + "end": 18574.74, + "probability": 0.2864 + }, + { + "start": 18575.4, + "end": 18576.84, + "probability": 0.4524 + }, + { + "start": 18577.1, + "end": 18578.88, + "probability": 0.8266 + }, + { + "start": 18578.92, + "end": 18580.26, + "probability": 0.7836 + }, + { + "start": 18580.54, + "end": 18580.54, + "probability": 0.2456 + }, + { + "start": 18580.62, + "end": 18582.5, + "probability": 0.2427 + }, + { + "start": 18582.72, + "end": 18583.7, + "probability": 0.682 + }, + { + "start": 18583.78, + "end": 18584.26, + "probability": 0.7197 + }, + { + "start": 18585.72, + "end": 18586.32, + "probability": 0.0454 + }, + { + "start": 18586.34, + "end": 18588.26, + "probability": 0.4965 + }, + { + "start": 18588.26, + "end": 18589.1, + "probability": 0.7036 + }, + { + "start": 18589.24, + "end": 18590.14, + "probability": 0.9759 + }, + { + "start": 18590.38, + "end": 18590.38, + "probability": 0.6002 + }, + { + "start": 18590.54, + "end": 18592.12, + "probability": 0.5606 + }, + { + "start": 18592.12, + "end": 18593.4, + "probability": 0.5173 + }, + { + "start": 18593.64, + "end": 18595.88, + "probability": 0.021 + }, + { + "start": 18596.78, + "end": 18596.78, + "probability": 0.0406 + }, + { + "start": 18596.78, + "end": 18598.8, + "probability": 0.9882 + }, + { + "start": 18598.88, + "end": 18603.6, + "probability": 0.9791 + }, + { + "start": 18603.8, + "end": 18606.96, + "probability": 0.036 + }, + { + "start": 18608.04, + "end": 18608.46, + "probability": 0.0036 + }, + { + "start": 18608.48, + "end": 18608.48, + "probability": 0.0193 + }, + { + "start": 18608.48, + "end": 18608.48, + "probability": 0.043 + }, + { + "start": 18608.48, + "end": 18609.38, + "probability": 0.5595 + }, + { + "start": 18609.54, + "end": 18613.1, + "probability": 0.9866 + }, + { + "start": 18613.1, + "end": 18616.82, + "probability": 0.9758 + }, + { + "start": 18616.88, + "end": 18620.42, + "probability": 0.9752 + }, + { + "start": 18620.84, + "end": 18624.84, + "probability": 0.9993 + }, + { + "start": 18625.2, + "end": 18628.46, + "probability": 0.9507 + }, + { + "start": 18628.66, + "end": 18629.48, + "probability": 0.7456 + }, + { + "start": 18629.68, + "end": 18630.72, + "probability": 0.7138 + }, + { + "start": 18630.82, + "end": 18633.5, + "probability": 0.6781 + }, + { + "start": 18634.3, + "end": 18637.0, + "probability": 0.7083 + }, + { + "start": 18637.24, + "end": 18640.64, + "probability": 0.7976 + }, + { + "start": 18640.84, + "end": 18644.22, + "probability": 0.9604 + }, + { + "start": 18644.76, + "end": 18647.42, + "probability": 0.9951 + }, + { + "start": 18649.06, + "end": 18653.32, + "probability": 0.9805 + }, + { + "start": 18653.66, + "end": 18656.34, + "probability": 0.9265 + }, + { + "start": 18656.96, + "end": 18657.22, + "probability": 0.0539 + }, + { + "start": 18657.22, + "end": 18660.86, + "probability": 0.8301 + }, + { + "start": 18661.14, + "end": 18662.88, + "probability": 0.5139 + }, + { + "start": 18663.02, + "end": 18664.8, + "probability": 0.9888 + }, + { + "start": 18664.92, + "end": 18669.06, + "probability": 0.9415 + }, + { + "start": 18669.14, + "end": 18671.18, + "probability": 0.7725 + }, + { + "start": 18671.28, + "end": 18673.04, + "probability": 0.7955 + }, + { + "start": 18673.24, + "end": 18673.46, + "probability": 0.6345 + }, + { + "start": 18673.72, + "end": 18676.42, + "probability": 0.9902 + }, + { + "start": 18676.42, + "end": 18678.64, + "probability": 0.9019 + }, + { + "start": 18678.88, + "end": 18680.46, + "probability": 0.6773 + }, + { + "start": 18680.66, + "end": 18683.52, + "probability": 0.9813 + }, + { + "start": 18683.62, + "end": 18686.23, + "probability": 0.6368 + }, + { + "start": 18686.68, + "end": 18686.98, + "probability": 0.0221 + }, + { + "start": 18686.98, + "end": 18690.58, + "probability": 0.7422 + }, + { + "start": 18690.64, + "end": 18691.14, + "probability": 0.5746 + }, + { + "start": 18691.2, + "end": 18692.18, + "probability": 0.929 + }, + { + "start": 18692.52, + "end": 18693.62, + "probability": 0.8209 + }, + { + "start": 18693.74, + "end": 18695.64, + "probability": 0.8726 + }, + { + "start": 18695.76, + "end": 18696.34, + "probability": 0.8952 + }, + { + "start": 18697.22, + "end": 18699.64, + "probability": 0.6782 + }, + { + "start": 18699.78, + "end": 18700.96, + "probability": 0.9438 + }, + { + "start": 18701.78, + "end": 18704.62, + "probability": 0.8799 + }, + { + "start": 18704.68, + "end": 18707.62, + "probability": 0.8411 + }, + { + "start": 18709.41, + "end": 18712.74, + "probability": 0.895 + }, + { + "start": 18713.34, + "end": 18715.16, + "probability": 0.7908 + }, + { + "start": 18715.22, + "end": 18715.6, + "probability": 0.941 + }, + { + "start": 18715.68, + "end": 18720.0, + "probability": 0.7661 + }, + { + "start": 18720.02, + "end": 18724.42, + "probability": 0.9937 + }, + { + "start": 18724.54, + "end": 18725.02, + "probability": 0.288 + }, + { + "start": 18725.06, + "end": 18725.84, + "probability": 0.7604 + }, + { + "start": 18725.94, + "end": 18726.6, + "probability": 0.638 + }, + { + "start": 18727.04, + "end": 18727.5, + "probability": 0.8962 + }, + { + "start": 18727.76, + "end": 18728.52, + "probability": 0.7747 + }, + { + "start": 18729.28, + "end": 18730.68, + "probability": 0.5434 + }, + { + "start": 18730.82, + "end": 18731.75, + "probability": 0.9761 + }, + { + "start": 18731.9, + "end": 18733.72, + "probability": 0.9602 + }, + { + "start": 18733.9, + "end": 18734.6, + "probability": 0.9563 + }, + { + "start": 18736.04, + "end": 18738.46, + "probability": 0.9916 + }, + { + "start": 18739.08, + "end": 18742.56, + "probability": 0.9592 + }, + { + "start": 18743.54, + "end": 18746.16, + "probability": 0.9929 + }, + { + "start": 18747.9, + "end": 18750.72, + "probability": 0.9373 + }, + { + "start": 18750.78, + "end": 18751.88, + "probability": 0.9758 + }, + { + "start": 18752.22, + "end": 18756.62, + "probability": 0.9932 + }, + { + "start": 18757.08, + "end": 18757.8, + "probability": 0.683 + }, + { + "start": 18758.32, + "end": 18759.2, + "probability": 0.6881 + }, + { + "start": 18760.25, + "end": 18762.02, + "probability": 0.9438 + }, + { + "start": 18763.74, + "end": 18767.68, + "probability": 0.9955 + }, + { + "start": 18769.14, + "end": 18773.78, + "probability": 0.9637 + }, + { + "start": 18774.6, + "end": 18775.58, + "probability": 0.1662 + }, + { + "start": 18775.58, + "end": 18775.76, + "probability": 0.4744 + }, + { + "start": 18776.1, + "end": 18778.02, + "probability": 0.0677 + }, + { + "start": 18778.02, + "end": 18778.32, + "probability": 0.0703 + }, + { + "start": 18778.44, + "end": 18780.02, + "probability": 0.0568 + }, + { + "start": 18780.54, + "end": 18786.78, + "probability": 0.7184 + }, + { + "start": 18787.02, + "end": 18787.38, + "probability": 0.2463 + }, + { + "start": 18787.38, + "end": 18791.78, + "probability": 0.9666 + }, + { + "start": 18792.34, + "end": 18792.8, + "probability": 0.2212 + }, + { + "start": 18793.36, + "end": 18794.2, + "probability": 0.1899 + }, + { + "start": 18802.22, + "end": 18802.22, + "probability": 0.1434 + }, + { + "start": 18802.22, + "end": 18802.22, + "probability": 0.1482 + }, + { + "start": 18802.22, + "end": 18803.44, + "probability": 0.0859 + }, + { + "start": 18803.8, + "end": 18806.42, + "probability": 0.7033 + }, + { + "start": 18806.62, + "end": 18807.18, + "probability": 0.833 + }, + { + "start": 18807.62, + "end": 18808.33, + "probability": 0.5072 + }, + { + "start": 18808.98, + "end": 18812.64, + "probability": 0.7923 + }, + { + "start": 18812.8, + "end": 18813.94, + "probability": 0.8646 + }, + { + "start": 18814.7, + "end": 18819.16, + "probability": 0.6829 + }, + { + "start": 18819.22, + "end": 18820.86, + "probability": 0.9312 + }, + { + "start": 18821.66, + "end": 18825.2, + "probability": 0.9408 + }, + { + "start": 18826.14, + "end": 18826.66, + "probability": 0.9167 + }, + { + "start": 18827.18, + "end": 18828.44, + "probability": 0.0116 + }, + { + "start": 18829.36, + "end": 18830.2, + "probability": 0.313 + }, + { + "start": 18830.2, + "end": 18832.08, + "probability": 0.8481 + }, + { + "start": 18832.18, + "end": 18833.04, + "probability": 0.7837 + }, + { + "start": 18833.2, + "end": 18833.64, + "probability": 0.5574 + }, + { + "start": 18833.74, + "end": 18833.96, + "probability": 0.7267 + }, + { + "start": 18834.04, + "end": 18834.42, + "probability": 0.2525 + }, + { + "start": 18834.56, + "end": 18835.2, + "probability": 0.0681 + }, + { + "start": 18835.36, + "end": 18836.68, + "probability": 0.4329 + }, + { + "start": 18838.0, + "end": 18838.46, + "probability": 0.1325 + }, + { + "start": 18838.46, + "end": 18838.48, + "probability": 0.0478 + }, + { + "start": 18838.48, + "end": 18841.24, + "probability": 0.4843 + }, + { + "start": 18841.58, + "end": 18843.76, + "probability": 0.164 + }, + { + "start": 18843.84, + "end": 18845.68, + "probability": 0.8137 + }, + { + "start": 18846.48, + "end": 18848.26, + "probability": 0.0772 + }, + { + "start": 18848.26, + "end": 18848.5, + "probability": 0.4571 + }, + { + "start": 18848.5, + "end": 18852.7, + "probability": 0.7704 + }, + { + "start": 18852.9, + "end": 18853.63, + "probability": 0.3588 + }, + { + "start": 18853.8, + "end": 18855.94, + "probability": 0.988 + }, + { + "start": 18855.94, + "end": 18859.16, + "probability": 0.8259 + }, + { + "start": 18859.42, + "end": 18860.64, + "probability": 0.0572 + }, + { + "start": 18860.64, + "end": 18861.4, + "probability": 0.3292 + }, + { + "start": 18861.62, + "end": 18863.18, + "probability": 0.084 + }, + { + "start": 18863.9, + "end": 18864.84, + "probability": 0.2085 + }, + { + "start": 18864.94, + "end": 18866.23, + "probability": 0.4162 + }, + { + "start": 18867.16, + "end": 18870.38, + "probability": 0.0897 + }, + { + "start": 18871.08, + "end": 18875.04, + "probability": 0.063 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.0, + "end": 18946.0, + "probability": 0.0 + }, + { + "start": 18946.22, + "end": 18946.32, + "probability": 0.2365 + }, + { + "start": 18946.32, + "end": 18946.32, + "probability": 0.0428 + }, + { + "start": 18946.32, + "end": 18946.32, + "probability": 0.0948 + }, + { + "start": 18946.32, + "end": 18946.32, + "probability": 0.0612 + }, + { + "start": 18946.32, + "end": 18946.32, + "probability": 0.05 + }, + { + "start": 18946.32, + "end": 18948.49, + "probability": 0.2062 + }, + { + "start": 18962.64, + "end": 18964.78, + "probability": 0.9633 + }, + { + "start": 18966.62, + "end": 18967.58, + "probability": 0.0113 + }, + { + "start": 18967.58, + "end": 18967.66, + "probability": 0.0117 + }, + { + "start": 18967.66, + "end": 18968.06, + "probability": 0.1761 + }, + { + "start": 18968.42, + "end": 18970.86, + "probability": 0.039 + }, + { + "start": 18971.7, + "end": 18973.34, + "probability": 0.1822 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.0, + "end": 19070.0, + "probability": 0.0 + }, + { + "start": 19070.36, + "end": 19071.62, + "probability": 0.2036 + }, + { + "start": 19071.64, + "end": 19072.12, + "probability": 0.255 + }, + { + "start": 19072.3, + "end": 19074.62, + "probability": 0.8986 + }, + { + "start": 19075.06, + "end": 19077.2, + "probability": 0.8032 + }, + { + "start": 19077.26, + "end": 19080.58, + "probability": 0.9528 + }, + { + "start": 19080.62, + "end": 19082.78, + "probability": 0.9878 + }, + { + "start": 19082.88, + "end": 19084.95, + "probability": 0.9851 + }, + { + "start": 19085.28, + "end": 19086.99, + "probability": 0.9893 + }, + { + "start": 19087.52, + "end": 19090.9, + "probability": 0.9647 + }, + { + "start": 19090.9, + "end": 19094.22, + "probability": 0.7367 + }, + { + "start": 19094.22, + "end": 19096.97, + "probability": 0.1312 + }, + { + "start": 19097.54, + "end": 19097.82, + "probability": 0.0736 + }, + { + "start": 19097.82, + "end": 19098.02, + "probability": 0.0632 + }, + { + "start": 19098.22, + "end": 19098.22, + "probability": 0.1696 + }, + { + "start": 19098.22, + "end": 19098.22, + "probability": 0.144 + }, + { + "start": 19098.22, + "end": 19099.56, + "probability": 0.6953 + }, + { + "start": 19099.6, + "end": 19100.9, + "probability": 0.6939 + }, + { + "start": 19101.04, + "end": 19105.42, + "probability": 0.981 + }, + { + "start": 19105.96, + "end": 19107.78, + "probability": 0.7836 + }, + { + "start": 19107.88, + "end": 19108.66, + "probability": 0.5963 + }, + { + "start": 19108.68, + "end": 19109.48, + "probability": 0.1238 + }, + { + "start": 19109.54, + "end": 19112.56, + "probability": 0.7538 + }, + { + "start": 19112.76, + "end": 19114.5, + "probability": 0.6489 + }, + { + "start": 19114.84, + "end": 19117.62, + "probability": 0.924 + }, + { + "start": 19117.92, + "end": 19119.16, + "probability": 0.8105 + }, + { + "start": 19119.24, + "end": 19120.28, + "probability": 0.8322 + }, + { + "start": 19120.58, + "end": 19124.04, + "probability": 0.972 + }, + { + "start": 19124.08, + "end": 19126.62, + "probability": 0.8459 + }, + { + "start": 19126.68, + "end": 19127.92, + "probability": 0.7505 + }, + { + "start": 19128.04, + "end": 19130.0, + "probability": 0.8309 + }, + { + "start": 19130.14, + "end": 19131.9, + "probability": 0.2965 + }, + { + "start": 19132.02, + "end": 19136.64, + "probability": 0.9916 + }, + { + "start": 19137.04, + "end": 19139.04, + "probability": 0.9744 + }, + { + "start": 19139.18, + "end": 19141.9, + "probability": 0.8556 + }, + { + "start": 19142.0, + "end": 19142.78, + "probability": 0.6326 + }, + { + "start": 19142.82, + "end": 19144.86, + "probability": 0.9292 + }, + { + "start": 19145.14, + "end": 19147.92, + "probability": 0.8767 + }, + { + "start": 19148.04, + "end": 19149.84, + "probability": 0.735 + }, + { + "start": 19150.2, + "end": 19151.32, + "probability": 0.9615 + }, + { + "start": 19151.6, + "end": 19153.02, + "probability": 0.3874 + }, + { + "start": 19153.18, + "end": 19155.9, + "probability": 0.9767 + }, + { + "start": 19156.06, + "end": 19156.88, + "probability": 0.7828 + }, + { + "start": 19157.02, + "end": 19159.26, + "probability": 0.442 + }, + { + "start": 19159.66, + "end": 19162.32, + "probability": 0.7001 + }, + { + "start": 19162.58, + "end": 19164.78, + "probability": 0.9941 + }, + { + "start": 19164.98, + "end": 19167.88, + "probability": 0.9801 + }, + { + "start": 19168.76, + "end": 19169.16, + "probability": 0.0066 + }, + { + "start": 19169.44, + "end": 19172.52, + "probability": 0.9463 + }, + { + "start": 19172.78, + "end": 19175.1, + "probability": 0.9174 + }, + { + "start": 19175.34, + "end": 19178.38, + "probability": 0.9338 + }, + { + "start": 19178.78, + "end": 19186.0, + "probability": 0.9873 + }, + { + "start": 19186.5, + "end": 19188.46, + "probability": 0.9961 + }, + { + "start": 19188.98, + "end": 19190.48, + "probability": 0.9177 + }, + { + "start": 19190.56, + "end": 19193.64, + "probability": 0.9793 + }, + { + "start": 19193.78, + "end": 19195.06, + "probability": 0.8223 + }, + { + "start": 19195.38, + "end": 19196.34, + "probability": 0.6812 + }, + { + "start": 19196.42, + "end": 19198.3, + "probability": 0.9961 + }, + { + "start": 19198.4, + "end": 19198.88, + "probability": 0.7922 + }, + { + "start": 19199.66, + "end": 19200.48, + "probability": 0.8273 + }, + { + "start": 19201.0, + "end": 19201.76, + "probability": 0.7896 + }, + { + "start": 19201.9, + "end": 19203.37, + "probability": 0.356 + }, + { + "start": 19204.76, + "end": 19206.86, + "probability": 0.4028 + }, + { + "start": 19206.94, + "end": 19207.64, + "probability": 0.4945 + }, + { + "start": 19207.78, + "end": 19209.74, + "probability": 0.8868 + }, + { + "start": 19209.82, + "end": 19212.33, + "probability": 0.7803 + }, + { + "start": 19213.0, + "end": 19215.66, + "probability": 0.7856 + }, + { + "start": 19216.02, + "end": 19218.96, + "probability": 0.9966 + }, + { + "start": 19219.24, + "end": 19221.54, + "probability": 0.9105 + }, + { + "start": 19221.6, + "end": 19221.9, + "probability": 0.6889 + }, + { + "start": 19222.48, + "end": 19222.48, + "probability": 0.1075 + }, + { + "start": 19222.48, + "end": 19225.44, + "probability": 0.77 + }, + { + "start": 19226.26, + "end": 19229.44, + "probability": 0.3653 + }, + { + "start": 19229.5, + "end": 19230.5, + "probability": 0.6718 + }, + { + "start": 19234.42, + "end": 19235.3, + "probability": 0.9287 + }, + { + "start": 19238.6, + "end": 19240.06, + "probability": 0.8899 + }, + { + "start": 19241.22, + "end": 19243.92, + "probability": 0.3154 + }, + { + "start": 19243.96, + "end": 19244.4, + "probability": 0.4378 + }, + { + "start": 19244.6, + "end": 19245.74, + "probability": 0.7673 + }, + { + "start": 19245.82, + "end": 19247.34, + "probability": 0.8077 + }, + { + "start": 19247.34, + "end": 19248.67, + "probability": 0.3011 + }, + { + "start": 19249.54, + "end": 19249.7, + "probability": 0.4655 + }, + { + "start": 19249.88, + "end": 19253.04, + "probability": 0.2512 + }, + { + "start": 19253.04, + "end": 19253.04, + "probability": 0.2625 + }, + { + "start": 19253.04, + "end": 19253.44, + "probability": 0.3081 + }, + { + "start": 19254.34, + "end": 19256.54, + "probability": 0.5148 + }, + { + "start": 19257.22, + "end": 19260.4, + "probability": 0.9002 + }, + { + "start": 19261.3, + "end": 19265.22, + "probability": 0.9614 + }, + { + "start": 19265.78, + "end": 19268.02, + "probability": 0.9747 + }, + { + "start": 19268.66, + "end": 19269.54, + "probability": 0.5351 + }, + { + "start": 19269.7, + "end": 19272.76, + "probability": 0.8711 + }, + { + "start": 19273.04, + "end": 19274.48, + "probability": 0.9507 + }, + { + "start": 19275.78, + "end": 19279.36, + "probability": 0.936 + }, + { + "start": 19279.82, + "end": 19282.18, + "probability": 0.9362 + }, + { + "start": 19282.28, + "end": 19283.24, + "probability": 0.8517 + }, + { + "start": 19283.52, + "end": 19284.04, + "probability": 0.7383 + }, + { + "start": 19284.16, + "end": 19284.66, + "probability": 0.6681 + }, + { + "start": 19285.1, + "end": 19287.04, + "probability": 0.924 + }, + { + "start": 19287.46, + "end": 19288.2, + "probability": 0.5044 + }, + { + "start": 19288.4, + "end": 19289.38, + "probability": 0.8203 + }, + { + "start": 19289.74, + "end": 19291.38, + "probability": 0.894 + }, + { + "start": 19292.1, + "end": 19293.59, + "probability": 0.7562 + }, + { + "start": 19294.02, + "end": 19298.14, + "probability": 0.769 + }, + { + "start": 19298.14, + "end": 19298.98, + "probability": 0.7776 + }, + { + "start": 19299.04, + "end": 19299.78, + "probability": 0.9252 + }, + { + "start": 19300.02, + "end": 19302.46, + "probability": 0.9153 + }, + { + "start": 19302.52, + "end": 19304.64, + "probability": 0.56 + }, + { + "start": 19304.88, + "end": 19305.26, + "probability": 0.7377 + }, + { + "start": 19305.56, + "end": 19309.16, + "probability": 0.5318 + }, + { + "start": 19315.65, + "end": 19318.32, + "probability": 0.7438 + }, + { + "start": 19319.96, + "end": 19323.34, + "probability": 0.9955 + }, + { + "start": 19323.46, + "end": 19325.56, + "probability": 0.6809 + }, + { + "start": 19325.56, + "end": 19326.52, + "probability": 0.756 + }, + { + "start": 19327.12, + "end": 19329.36, + "probability": 0.5046 + }, + { + "start": 19329.5, + "end": 19330.94, + "probability": 0.7561 + }, + { + "start": 19331.36, + "end": 19333.8, + "probability": 0.7057 + }, + { + "start": 19333.9, + "end": 19335.5, + "probability": 0.975 + }, + { + "start": 19335.94, + "end": 19337.6, + "probability": 0.8767 + }, + { + "start": 19338.0, + "end": 19339.6, + "probability": 0.6589 + }, + { + "start": 19340.48, + "end": 19343.04, + "probability": 0.9126 + }, + { + "start": 19351.36, + "end": 19351.36, + "probability": 0.1533 + }, + { + "start": 19351.36, + "end": 19352.56, + "probability": 0.5316 + }, + { + "start": 19354.2, + "end": 19358.46, + "probability": 0.9548 + }, + { + "start": 19358.54, + "end": 19358.76, + "probability": 0.4782 + }, + { + "start": 19358.8, + "end": 19359.78, + "probability": 0.9492 + }, + { + "start": 19360.82, + "end": 19361.62, + "probability": 0.8811 + }, + { + "start": 19362.78, + "end": 19366.68, + "probability": 0.8758 + }, + { + "start": 19368.08, + "end": 19370.62, + "probability": 0.8994 + }, + { + "start": 19372.02, + "end": 19374.6, + "probability": 0.7191 + }, + { + "start": 19374.74, + "end": 19375.44, + "probability": 0.8124 + }, + { + "start": 19376.64, + "end": 19382.66, + "probability": 0.9749 + }, + { + "start": 19383.1, + "end": 19383.98, + "probability": 0.7656 + }, + { + "start": 19384.44, + "end": 19385.86, + "probability": 0.9382 + }, + { + "start": 19386.86, + "end": 19386.88, + "probability": 0.513 + }, + { + "start": 19386.88, + "end": 19387.54, + "probability": 0.45 + }, + { + "start": 19387.62, + "end": 19389.4, + "probability": 0.6261 + }, + { + "start": 19389.4, + "end": 19391.36, + "probability": 0.876 + }, + { + "start": 19391.52, + "end": 19392.93, + "probability": 0.5889 + }, + { + "start": 19393.74, + "end": 19395.78, + "probability": 0.9895 + }, + { + "start": 19396.24, + "end": 19398.18, + "probability": 0.9918 + }, + { + "start": 19399.02, + "end": 19400.68, + "probability": 0.9832 + }, + { + "start": 19401.62, + "end": 19404.04, + "probability": 0.9897 + }, + { + "start": 19404.58, + "end": 19408.26, + "probability": 0.9414 + }, + { + "start": 19409.52, + "end": 19411.52, + "probability": 0.6195 + }, + { + "start": 19412.32, + "end": 19415.06, + "probability": 0.8128 + }, + { + "start": 19415.12, + "end": 19416.78, + "probability": 0.5533 + }, + { + "start": 19417.92, + "end": 19421.92, + "probability": 0.9636 + }, + { + "start": 19423.35, + "end": 19426.76, + "probability": 0.0068 + }, + { + "start": 19426.76, + "end": 19426.76, + "probability": 0.1489 + }, + { + "start": 19426.76, + "end": 19428.69, + "probability": 0.4711 + }, + { + "start": 19429.7, + "end": 19433.5, + "probability": 0.8577 + }, + { + "start": 19433.64, + "end": 19436.02, + "probability": 0.938 + }, + { + "start": 19436.06, + "end": 19437.28, + "probability": 0.9941 + }, + { + "start": 19437.38, + "end": 19437.64, + "probability": 0.3811 + }, + { + "start": 19438.18, + "end": 19439.74, + "probability": 0.7588 + }, + { + "start": 19440.14, + "end": 19441.32, + "probability": 0.925 + }, + { + "start": 19441.7, + "end": 19446.12, + "probability": 0.9817 + }, + { + "start": 19446.26, + "end": 19447.44, + "probability": 0.7926 + }, + { + "start": 19448.34, + "end": 19451.04, + "probability": 0.9741 + }, + { + "start": 19451.4, + "end": 19454.0, + "probability": 0.7668 + }, + { + "start": 19454.54, + "end": 19457.56, + "probability": 0.7488 + }, + { + "start": 19457.8, + "end": 19461.24, + "probability": 0.2456 + }, + { + "start": 19461.4, + "end": 19462.84, + "probability": 0.6407 + }, + { + "start": 19462.94, + "end": 19463.12, + "probability": 0.6938 + }, + { + "start": 19463.12, + "end": 19463.19, + "probability": 0.1703 + }, + { + "start": 19464.36, + "end": 19468.78, + "probability": 0.9565 + }, + { + "start": 19469.04, + "end": 19471.0, + "probability": 0.9917 + }, + { + "start": 19471.18, + "end": 19471.84, + "probability": 0.8374 + }, + { + "start": 19472.78, + "end": 19475.2, + "probability": 0.9937 + }, + { + "start": 19475.56, + "end": 19477.12, + "probability": 0.6028 + }, + { + "start": 19477.82, + "end": 19479.8, + "probability": 0.9275 + }, + { + "start": 19486.7, + "end": 19487.46, + "probability": 0.7093 + }, + { + "start": 19487.58, + "end": 19488.54, + "probability": 0.67 + }, + { + "start": 19489.02, + "end": 19490.8, + "probability": 0.9546 + }, + { + "start": 19490.94, + "end": 19493.98, + "probability": 0.9748 + }, + { + "start": 19495.22, + "end": 19499.38, + "probability": 0.9633 + }, + { + "start": 19499.44, + "end": 19500.48, + "probability": 0.9121 + }, + { + "start": 19501.24, + "end": 19502.46, + "probability": 0.6752 + }, + { + "start": 19503.42, + "end": 19506.5, + "probability": 0.7801 + }, + { + "start": 19507.34, + "end": 19507.84, + "probability": 0.8303 + }, + { + "start": 19507.96, + "end": 19511.44, + "probability": 0.9721 + }, + { + "start": 19512.52, + "end": 19515.22, + "probability": 0.9887 + }, + { + "start": 19515.22, + "end": 19517.76, + "probability": 0.987 + }, + { + "start": 19518.92, + "end": 19522.18, + "probability": 0.8872 + }, + { + "start": 19522.52, + "end": 19523.44, + "probability": 0.9979 + }, + { + "start": 19523.56, + "end": 19525.24, + "probability": 0.9475 + }, + { + "start": 19525.44, + "end": 19527.9, + "probability": 0.995 + }, + { + "start": 19527.96, + "end": 19531.22, + "probability": 0.9612 + }, + { + "start": 19531.72, + "end": 19532.1, + "probability": 0.8977 + }, + { + "start": 19532.18, + "end": 19533.15, + "probability": 0.9196 + }, + { + "start": 19533.6, + "end": 19536.18, + "probability": 0.9448 + }, + { + "start": 19537.49, + "end": 19540.36, + "probability": 0.901 + }, + { + "start": 19540.4, + "end": 19542.82, + "probability": 0.7712 + }, + { + "start": 19543.46, + "end": 19547.68, + "probability": 0.9833 + }, + { + "start": 19548.04, + "end": 19550.78, + "probability": 0.1184 + }, + { + "start": 19551.19, + "end": 19553.44, + "probability": 0.3991 + }, + { + "start": 19553.66, + "end": 19554.88, + "probability": 0.3405 + }, + { + "start": 19555.96, + "end": 19558.06, + "probability": 0.5527 + }, + { + "start": 19558.18, + "end": 19560.5, + "probability": 0.9653 + }, + { + "start": 19561.3, + "end": 19562.3, + "probability": 0.7229 + }, + { + "start": 19563.06, + "end": 19564.64, + "probability": 0.5179 + }, + { + "start": 19564.88, + "end": 19566.93, + "probability": 0.6712 + }, + { + "start": 19571.02, + "end": 19572.62, + "probability": 0.1171 + }, + { + "start": 19573.1, + "end": 19574.8, + "probability": 0.523 + }, + { + "start": 19575.7, + "end": 19580.59, + "probability": 0.7889 + }, + { + "start": 19581.76, + "end": 19583.94, + "probability": 0.4918 + }, + { + "start": 19584.0, + "end": 19586.22, + "probability": 0.8001 + }, + { + "start": 19587.34, + "end": 19592.46, + "probability": 0.9345 + }, + { + "start": 19592.92, + "end": 19597.88, + "probability": 0.9223 + }, + { + "start": 19598.46, + "end": 19603.18, + "probability": 0.9751 + }, + { + "start": 19603.44, + "end": 19603.81, + "probability": 0.7053 + }, + { + "start": 19604.4, + "end": 19607.86, + "probability": 0.9221 + }, + { + "start": 19608.96, + "end": 19610.9, + "probability": 0.3571 + }, + { + "start": 19611.26, + "end": 19612.34, + "probability": 0.4727 + }, + { + "start": 19613.02, + "end": 19613.92, + "probability": 0.7545 + }, + { + "start": 19614.36, + "end": 19615.52, + "probability": 0.9603 + }, + { + "start": 19615.62, + "end": 19616.96, + "probability": 0.856 + }, + { + "start": 19617.34, + "end": 19620.46, + "probability": 0.9695 + }, + { + "start": 19620.7, + "end": 19624.36, + "probability": 0.9463 + }, + { + "start": 19624.44, + "end": 19624.9, + "probability": 0.7332 + }, + { + "start": 19625.42, + "end": 19626.62, + "probability": 0.7109 + }, + { + "start": 19627.67, + "end": 19630.22, + "probability": 0.6346 + }, + { + "start": 19632.04, + "end": 19637.0, + "probability": 0.8162 + }, + { + "start": 19641.36, + "end": 19642.96, + "probability": 0.7296 + }, + { + "start": 19643.12, + "end": 19643.12, + "probability": 0.2628 + }, + { + "start": 19643.12, + "end": 19643.68, + "probability": 0.7555 + }, + { + "start": 19643.74, + "end": 19644.54, + "probability": 0.7153 + }, + { + "start": 19646.04, + "end": 19649.86, + "probability": 0.8511 + }, + { + "start": 19650.36, + "end": 19655.18, + "probability": 0.9946 + }, + { + "start": 19655.82, + "end": 19659.06, + "probability": 0.9864 + }, + { + "start": 19659.64, + "end": 19662.94, + "probability": 0.9985 + }, + { + "start": 19663.28, + "end": 19664.64, + "probability": 0.9668 + }, + { + "start": 19665.14, + "end": 19666.54, + "probability": 0.9868 + }, + { + "start": 19667.04, + "end": 19668.05, + "probability": 0.9717 + }, + { + "start": 19668.4, + "end": 19670.52, + "probability": 0.9812 + }, + { + "start": 19670.64, + "end": 19672.12, + "probability": 0.8957 + }, + { + "start": 19672.32, + "end": 19673.02, + "probability": 0.7478 + }, + { + "start": 19673.08, + "end": 19674.2, + "probability": 0.9482 + }, + { + "start": 19674.7, + "end": 19676.04, + "probability": 0.9342 + }, + { + "start": 19676.54, + "end": 19679.9, + "probability": 0.8408 + }, + { + "start": 19680.0, + "end": 19681.56, + "probability": 0.9829 + }, + { + "start": 19681.62, + "end": 19682.2, + "probability": 0.8174 + }, + { + "start": 19682.28, + "end": 19682.88, + "probability": 0.9432 + }, + { + "start": 19683.3, + "end": 19685.26, + "probability": 0.9321 + }, + { + "start": 19685.78, + "end": 19688.06, + "probability": 0.9919 + }, + { + "start": 19688.2, + "end": 19688.8, + "probability": 0.758 + }, + { + "start": 19689.04, + "end": 19689.6, + "probability": 0.8076 + }, + { + "start": 19690.04, + "end": 19691.82, + "probability": 0.891 + }, + { + "start": 19692.38, + "end": 19694.62, + "probability": 0.9751 + }, + { + "start": 19694.62, + "end": 19697.78, + "probability": 0.9729 + }, + { + "start": 19698.12, + "end": 19699.84, + "probability": 0.9894 + }, + { + "start": 19700.6, + "end": 19702.24, + "probability": 0.8083 + }, + { + "start": 19702.36, + "end": 19705.8, + "probability": 0.9937 + }, + { + "start": 19705.8, + "end": 19709.6, + "probability": 0.9851 + }, + { + "start": 19709.68, + "end": 19710.66, + "probability": 0.8041 + }, + { + "start": 19711.2, + "end": 19714.5, + "probability": 0.9918 + }, + { + "start": 19715.1, + "end": 19716.24, + "probability": 0.999 + }, + { + "start": 19716.36, + "end": 19717.1, + "probability": 0.8619 + }, + { + "start": 19717.18, + "end": 19718.66, + "probability": 0.9365 + }, + { + "start": 19719.04, + "end": 19719.46, + "probability": 0.8014 + }, + { + "start": 19719.7, + "end": 19720.6, + "probability": 0.9601 + }, + { + "start": 19720.74, + "end": 19722.02, + "probability": 0.848 + }, + { + "start": 19722.28, + "end": 19723.22, + "probability": 0.8521 + }, + { + "start": 19723.42, + "end": 19725.06, + "probability": 0.9845 + }, + { + "start": 19725.12, + "end": 19726.78, + "probability": 0.6864 + }, + { + "start": 19727.22, + "end": 19728.92, + "probability": 0.6211 + }, + { + "start": 19729.22, + "end": 19730.08, + "probability": 0.6301 + }, + { + "start": 19730.56, + "end": 19731.84, + "probability": 0.9099 + }, + { + "start": 19731.92, + "end": 19732.41, + "probability": 0.9351 + }, + { + "start": 19732.8, + "end": 19734.04, + "probability": 0.9158 + }, + { + "start": 19734.14, + "end": 19734.92, + "probability": 0.9392 + }, + { + "start": 19735.12, + "end": 19736.86, + "probability": 0.9738 + }, + { + "start": 19737.04, + "end": 19738.7, + "probability": 0.8024 + }, + { + "start": 19738.84, + "end": 19739.16, + "probability": 0.7019 + }, + { + "start": 19739.92, + "end": 19742.96, + "probability": 0.9436 + }, + { + "start": 19743.48, + "end": 19745.08, + "probability": 0.9831 + }, + { + "start": 19745.44, + "end": 19746.02, + "probability": 0.5159 + }, + { + "start": 19747.12, + "end": 19751.3, + "probability": 0.7004 + }, + { + "start": 19751.38, + "end": 19752.26, + "probability": 0.9924 + }, + { + "start": 19754.18, + "end": 19757.36, + "probability": 0.8484 + }, + { + "start": 19757.46, + "end": 19757.9, + "probability": 0.4673 + }, + { + "start": 19761.36, + "end": 19767.4, + "probability": 0.909 + }, + { + "start": 19770.08, + "end": 19772.42, + "probability": 0.5612 + }, + { + "start": 19773.1, + "end": 19773.52, + "probability": 0.1967 + }, + { + "start": 19773.52, + "end": 19774.5, + "probability": 0.4895 + }, + { + "start": 19774.58, + "end": 19774.94, + "probability": 0.6399 + }, + { + "start": 19775.0, + "end": 19775.72, + "probability": 0.7142 + }, + { + "start": 19777.02, + "end": 19778.44, + "probability": 0.8088 + }, + { + "start": 19787.97, + "end": 19791.22, + "probability": 0.3847 + }, + { + "start": 19791.28, + "end": 19792.75, + "probability": 0.8795 + }, + { + "start": 19793.62, + "end": 19794.16, + "probability": 0.2687 + }, + { + "start": 19794.16, + "end": 19796.32, + "probability": 0.2885 + }, + { + "start": 19797.38, + "end": 19798.76, + "probability": 0.5974 + }, + { + "start": 19798.86, + "end": 19804.6, + "probability": 0.8474 + }, + { + "start": 19805.78, + "end": 19808.28, + "probability": 0.1259 + }, + { + "start": 19808.28, + "end": 19808.54, + "probability": 0.5786 + }, + { + "start": 19808.56, + "end": 19810.84, + "probability": 0.9727 + }, + { + "start": 19812.34, + "end": 19818.32, + "probability": 0.6484 + }, + { + "start": 19818.32, + "end": 19822.6, + "probability": 0.9788 + }, + { + "start": 19822.72, + "end": 19822.8, + "probability": 0.067 + }, + { + "start": 19822.8, + "end": 19824.1, + "probability": 0.5141 + }, + { + "start": 19824.14, + "end": 19825.64, + "probability": 0.822 + }, + { + "start": 19837.96, + "end": 19839.92, + "probability": 0.6589 + }, + { + "start": 19841.96, + "end": 19842.72, + "probability": 0.6431 + }, + { + "start": 19842.86, + "end": 19843.54, + "probability": 0.7032 + }, + { + "start": 19843.58, + "end": 19847.78, + "probability": 0.9609 + }, + { + "start": 19848.58, + "end": 19854.66, + "probability": 0.9402 + }, + { + "start": 19855.82, + "end": 19857.44, + "probability": 0.7675 + }, + { + "start": 19857.52, + "end": 19858.57, + "probability": 0.7164 + }, + { + "start": 19859.98, + "end": 19860.76, + "probability": 0.9473 + }, + { + "start": 19860.92, + "end": 19862.0, + "probability": 0.9961 + }, + { + "start": 19862.44, + "end": 19867.14, + "probability": 0.9478 + }, + { + "start": 19867.22, + "end": 19867.81, + "probability": 0.9514 + }, + { + "start": 19869.98, + "end": 19876.4, + "probability": 0.9978 + }, + { + "start": 19876.82, + "end": 19879.36, + "probability": 0.8093 + }, + { + "start": 19880.46, + "end": 19883.68, + "probability": 0.9352 + }, + { + "start": 19883.82, + "end": 19884.86, + "probability": 0.5807 + }, + { + "start": 19885.1, + "end": 19885.2, + "probability": 0.3896 + }, + { + "start": 19885.2, + "end": 19887.24, + "probability": 0.9917 + }, + { + "start": 19890.18, + "end": 19890.66, + "probability": 0.4466 + }, + { + "start": 19891.1, + "end": 19891.42, + "probability": 0.5061 + }, + { + "start": 19891.54, + "end": 19891.56, + "probability": 0.3944 + }, + { + "start": 19891.56, + "end": 19893.02, + "probability": 0.939 + }, + { + "start": 19893.14, + "end": 19895.04, + "probability": 0.7708 + }, + { + "start": 19895.44, + "end": 19895.56, + "probability": 0.0662 + }, + { + "start": 19895.56, + "end": 19896.74, + "probability": 0.2343 + }, + { + "start": 19896.92, + "end": 19898.16, + "probability": 0.4198 + }, + { + "start": 19898.38, + "end": 19899.02, + "probability": 0.1242 + }, + { + "start": 19899.02, + "end": 19902.48, + "probability": 0.9116 + }, + { + "start": 19902.62, + "end": 19903.08, + "probability": 0.536 + }, + { + "start": 19903.2, + "end": 19903.81, + "probability": 0.7246 + }, + { + "start": 19905.18, + "end": 19908.08, + "probability": 0.8244 + }, + { + "start": 19908.46, + "end": 19908.46, + "probability": 0.5168 + }, + { + "start": 19908.46, + "end": 19909.77, + "probability": 0.9561 + }, + { + "start": 19910.32, + "end": 19912.1, + "probability": 0.9207 + }, + { + "start": 19912.44, + "end": 19913.98, + "probability": 0.0657 + }, + { + "start": 19913.98, + "end": 19914.92, + "probability": 0.1779 + }, + { + "start": 19915.22, + "end": 19921.08, + "probability": 0.8901 + }, + { + "start": 19922.06, + "end": 19926.88, + "probability": 0.9506 + }, + { + "start": 19927.62, + "end": 19930.34, + "probability": 0.9378 + }, + { + "start": 19930.9, + "end": 19933.48, + "probability": 0.9074 + }, + { + "start": 19933.48, + "end": 19937.7, + "probability": 0.9061 + }, + { + "start": 19938.1, + "end": 19938.9, + "probability": 0.9113 + }, + { + "start": 19939.53, + "end": 19941.97, + "probability": 0.5384 + }, + { + "start": 19942.72, + "end": 19946.02, + "probability": 0.7847 + }, + { + "start": 19946.66, + "end": 19949.66, + "probability": 0.8379 + }, + { + "start": 19950.48, + "end": 19954.6, + "probability": 0.9557 + }, + { + "start": 19955.8, + "end": 19956.76, + "probability": 0.6176 + }, + { + "start": 19957.44, + "end": 19960.6, + "probability": 0.9608 + }, + { + "start": 19961.5, + "end": 19969.06, + "probability": 0.9873 + }, + { + "start": 19970.56, + "end": 19974.7, + "probability": 0.9433 + }, + { + "start": 19976.02, + "end": 19977.04, + "probability": 0.7952 + }, + { + "start": 19977.16, + "end": 19980.5, + "probability": 0.876 + }, + { + "start": 19981.26, + "end": 19983.56, + "probability": 0.9842 + }, + { + "start": 19984.34, + "end": 19987.42, + "probability": 0.8073 + }, + { + "start": 19988.54, + "end": 19990.82, + "probability": 0.9404 + }, + { + "start": 19990.88, + "end": 19992.1, + "probability": 0.8032 + }, + { + "start": 19992.12, + "end": 19993.52, + "probability": 0.9285 + }, + { + "start": 19994.22, + "end": 20000.4, + "probability": 0.9893 + }, + { + "start": 20000.4, + "end": 20005.64, + "probability": 0.9539 + }, + { + "start": 20006.2, + "end": 20010.16, + "probability": 0.9803 + }, + { + "start": 20010.28, + "end": 20011.36, + "probability": 0.8715 + }, + { + "start": 20011.98, + "end": 20015.64, + "probability": 0.9653 + }, + { + "start": 20016.14, + "end": 20016.94, + "probability": 0.7183 + }, + { + "start": 20017.12, + "end": 20019.56, + "probability": 0.9126 + }, + { + "start": 20020.24, + "end": 20021.0, + "probability": 0.8784 + }, + { + "start": 20021.5, + "end": 20022.76, + "probability": 0.9188 + }, + { + "start": 20036.56, + "end": 20036.92, + "probability": 0.5944 + }, + { + "start": 20036.92, + "end": 20036.92, + "probability": 0.0355 + }, + { + "start": 20036.92, + "end": 20036.92, + "probability": 0.0351 + }, + { + "start": 20036.92, + "end": 20037.13, + "probability": 0.4304 + }, + { + "start": 20039.16, + "end": 20040.54, + "probability": 0.7579 + }, + { + "start": 20041.84, + "end": 20045.2, + "probability": 0.6222 + }, + { + "start": 20045.56, + "end": 20046.78, + "probability": 0.2256 + }, + { + "start": 20047.12, + "end": 20049.06, + "probability": 0.5735 + }, + { + "start": 20049.69, + "end": 20052.33, + "probability": 0.565 + }, + { + "start": 20052.94, + "end": 20055.7, + "probability": 0.9873 + }, + { + "start": 20056.32, + "end": 20057.1, + "probability": 0.8731 + }, + { + "start": 20057.22, + "end": 20059.3, + "probability": 0.8711 + }, + { + "start": 20060.44, + "end": 20062.16, + "probability": 0.5555 + }, + { + "start": 20062.78, + "end": 20066.16, + "probability": 0.9255 + }, + { + "start": 20067.4, + "end": 20071.78, + "probability": 0.9729 + }, + { + "start": 20071.78, + "end": 20077.86, + "probability": 0.9463 + }, + { + "start": 20077.88, + "end": 20081.18, + "probability": 0.9332 + }, + { + "start": 20081.5, + "end": 20082.72, + "probability": 0.5358 + }, + { + "start": 20082.82, + "end": 20087.62, + "probability": 0.9967 + }, + { + "start": 20088.32, + "end": 20090.0, + "probability": 0.817 + }, + { + "start": 20090.26, + "end": 20091.04, + "probability": 0.6042 + }, + { + "start": 20091.58, + "end": 20095.18, + "probability": 0.7817 + }, + { + "start": 20095.44, + "end": 20096.8, + "probability": 0.853 + }, + { + "start": 20097.38, + "end": 20099.88, + "probability": 0.9248 + }, + { + "start": 20100.6, + "end": 20102.28, + "probability": 0.8257 + }, + { + "start": 20102.54, + "end": 20103.72, + "probability": 0.9058 + }, + { + "start": 20104.48, + "end": 20107.24, + "probability": 0.8936 + }, + { + "start": 20108.84, + "end": 20110.84, + "probability": 0.746 + }, + { + "start": 20110.98, + "end": 20112.0, + "probability": 0.9551 + }, + { + "start": 20112.58, + "end": 20115.08, + "probability": 0.8535 + }, + { + "start": 20115.94, + "end": 20120.68, + "probability": 0.9796 + }, + { + "start": 20120.98, + "end": 20122.9, + "probability": 0.9169 + }, + { + "start": 20123.28, + "end": 20124.51, + "probability": 0.9614 + }, + { + "start": 20124.86, + "end": 20125.24, + "probability": 0.3778 + }, + { + "start": 20126.22, + "end": 20127.58, + "probability": 0.4728 + }, + { + "start": 20127.6, + "end": 20128.12, + "probability": 0.7468 + }, + { + "start": 20128.24, + "end": 20129.48, + "probability": 0.9192 + }, + { + "start": 20129.56, + "end": 20130.46, + "probability": 0.51 + }, + { + "start": 20130.46, + "end": 20133.52, + "probability": 0.917 + }, + { + "start": 20133.92, + "end": 20135.02, + "probability": 0.8501 + }, + { + "start": 20135.36, + "end": 20137.56, + "probability": 0.9888 + }, + { + "start": 20137.64, + "end": 20138.5, + "probability": 0.8181 + }, + { + "start": 20138.52, + "end": 20140.1, + "probability": 0.9745 + }, + { + "start": 20140.22, + "end": 20141.16, + "probability": 0.5291 + }, + { + "start": 20141.68, + "end": 20144.12, + "probability": 0.9385 + }, + { + "start": 20145.16, + "end": 20145.67, + "probability": 0.9736 + }, + { + "start": 20146.36, + "end": 20148.52, + "probability": 0.9284 + }, + { + "start": 20148.62, + "end": 20149.6, + "probability": 0.3865 + }, + { + "start": 20149.72, + "end": 20150.18, + "probability": 0.5166 + }, + { + "start": 20151.14, + "end": 20151.46, + "probability": 0.6289 + }, + { + "start": 20151.74, + "end": 20153.1, + "probability": 0.938 + }, + { + "start": 20153.36, + "end": 20154.48, + "probability": 0.8691 + }, + { + "start": 20154.48, + "end": 20155.0, + "probability": 0.3745 + }, + { + "start": 20155.08, + "end": 20156.72, + "probability": 0.0387 + }, + { + "start": 20157.8, + "end": 20162.46, + "probability": 0.9504 + }, + { + "start": 20162.6, + "end": 20163.2, + "probability": 0.7207 + }, + { + "start": 20163.6, + "end": 20164.38, + "probability": 0.5098 + }, + { + "start": 20165.04, + "end": 20169.5, + "probability": 0.9546 + }, + { + "start": 20170.4, + "end": 20176.86, + "probability": 0.9558 + }, + { + "start": 20177.82, + "end": 20181.2, + "probability": 0.9914 + }, + { + "start": 20181.2, + "end": 20186.06, + "probability": 0.9657 + }, + { + "start": 20186.62, + "end": 20188.72, + "probability": 0.8319 + }, + { + "start": 20189.02, + "end": 20194.18, + "probability": 0.7357 + }, + { + "start": 20194.68, + "end": 20198.46, + "probability": 0.9817 + }, + { + "start": 20199.72, + "end": 20201.8, + "probability": 0.9271 + }, + { + "start": 20201.84, + "end": 20203.94, + "probability": 0.9599 + }, + { + "start": 20204.58, + "end": 20207.08, + "probability": 0.5722 + }, + { + "start": 20207.76, + "end": 20209.66, + "probability": 0.7886 + }, + { + "start": 20210.14, + "end": 20213.06, + "probability": 0.7958 + }, + { + "start": 20213.26, + "end": 20214.06, + "probability": 0.6653 + }, + { + "start": 20214.56, + "end": 20217.22, + "probability": 0.9617 + }, + { + "start": 20217.56, + "end": 20221.64, + "probability": 0.9121 + }, + { + "start": 20221.64, + "end": 20224.72, + "probability": 0.9479 + }, + { + "start": 20225.76, + "end": 20226.76, + "probability": 0.7665 + }, + { + "start": 20227.58, + "end": 20228.72, + "probability": 0.7603 + }, + { + "start": 20229.2, + "end": 20233.58, + "probability": 0.9102 + }, + { + "start": 20234.24, + "end": 20235.7, + "probability": 0.9806 + }, + { + "start": 20236.8, + "end": 20241.2, + "probability": 0.9808 + }, + { + "start": 20241.2, + "end": 20247.6, + "probability": 0.9979 + }, + { + "start": 20248.9, + "end": 20250.54, + "probability": 0.7563 + }, + { + "start": 20251.16, + "end": 20251.94, + "probability": 0.9185 + }, + { + "start": 20252.02, + "end": 20257.6, + "probability": 0.9863 + }, + { + "start": 20258.52, + "end": 20259.12, + "probability": 0.633 + }, + { + "start": 20259.3, + "end": 20260.16, + "probability": 0.9663 + }, + { + "start": 20260.64, + "end": 20262.72, + "probability": 0.8603 + }, + { + "start": 20263.14, + "end": 20267.18, + "probability": 0.9928 + }, + { + "start": 20268.1, + "end": 20269.78, + "probability": 0.7563 + }, + { + "start": 20270.46, + "end": 20276.82, + "probability": 0.9912 + }, + { + "start": 20277.28, + "end": 20282.94, + "probability": 0.9842 + }, + { + "start": 20284.0, + "end": 20287.44, + "probability": 0.9723 + }, + { + "start": 20288.12, + "end": 20289.26, + "probability": 0.8194 + }, + { + "start": 20289.42, + "end": 20293.92, + "probability": 0.8981 + }, + { + "start": 20294.4, + "end": 20295.8, + "probability": 0.9832 + }, + { + "start": 20296.16, + "end": 20303.48, + "probability": 0.8652 + }, + { + "start": 20304.0, + "end": 20308.28, + "probability": 0.948 + }, + { + "start": 20309.1, + "end": 20309.72, + "probability": 0.8105 + }, + { + "start": 20309.98, + "end": 20316.0, + "probability": 0.9606 + }, + { + "start": 20316.08, + "end": 20319.44, + "probability": 0.9679 + }, + { + "start": 20320.26, + "end": 20322.98, + "probability": 0.9509 + }, + { + "start": 20322.98, + "end": 20326.7, + "probability": 0.9655 + }, + { + "start": 20327.64, + "end": 20328.34, + "probability": 0.8735 + }, + { + "start": 20328.78, + "end": 20334.34, + "probability": 0.9183 + }, + { + "start": 20335.14, + "end": 20340.46, + "probability": 0.9919 + }, + { + "start": 20340.82, + "end": 20341.6, + "probability": 0.5909 + }, + { + "start": 20341.92, + "end": 20342.52, + "probability": 0.9106 + }, + { + "start": 20343.16, + "end": 20344.76, + "probability": 0.8722 + }, + { + "start": 20345.1, + "end": 20347.26, + "probability": 0.9776 + }, + { + "start": 20347.64, + "end": 20350.53, + "probability": 0.9556 + }, + { + "start": 20352.7, + "end": 20360.6, + "probability": 0.9959 + }, + { + "start": 20360.6, + "end": 20366.82, + "probability": 0.9889 + }, + { + "start": 20367.56, + "end": 20369.7, + "probability": 0.9963 + }, + { + "start": 20370.28, + "end": 20371.32, + "probability": 0.9941 + }, + { + "start": 20372.12, + "end": 20374.32, + "probability": 0.9102 + }, + { + "start": 20375.04, + "end": 20380.28, + "probability": 0.9772 + }, + { + "start": 20380.28, + "end": 20385.0, + "probability": 0.9044 + }, + { + "start": 20385.72, + "end": 20388.94, + "probability": 0.9968 + }, + { + "start": 20388.94, + "end": 20392.14, + "probability": 0.9781 + }, + { + "start": 20392.88, + "end": 20396.26, + "probability": 0.9727 + }, + { + "start": 20396.4, + "end": 20399.52, + "probability": 0.957 + }, + { + "start": 20399.88, + "end": 20400.86, + "probability": 0.6878 + }, + { + "start": 20400.92, + "end": 20402.6, + "probability": 0.3677 + }, + { + "start": 20403.02, + "end": 20404.46, + "probability": 0.6468 + }, + { + "start": 20405.22, + "end": 20410.5, + "probability": 0.9148 + }, + { + "start": 20411.06, + "end": 20415.04, + "probability": 0.9059 + }, + { + "start": 20416.04, + "end": 20417.2, + "probability": 0.978 + }, + { + "start": 20417.94, + "end": 20421.3, + "probability": 0.7319 + }, + { + "start": 20422.74, + "end": 20423.64, + "probability": 0.8954 + }, + { + "start": 20423.82, + "end": 20425.48, + "probability": 0.5889 + }, + { + "start": 20426.42, + "end": 20427.1, + "probability": 0.4207 + }, + { + "start": 20427.76, + "end": 20432.62, + "probability": 0.9893 + }, + { + "start": 20433.08, + "end": 20436.7, + "probability": 0.9791 + }, + { + "start": 20437.86, + "end": 20440.61, + "probability": 0.9925 + }, + { + "start": 20442.76, + "end": 20444.5, + "probability": 0.9937 + }, + { + "start": 20445.42, + "end": 20449.68, + "probability": 0.903 + }, + { + "start": 20450.3, + "end": 20458.06, + "probability": 0.9958 + }, + { + "start": 20458.5, + "end": 20460.22, + "probability": 0.789 + }, + { + "start": 20461.06, + "end": 20466.08, + "probability": 0.9653 + }, + { + "start": 20466.16, + "end": 20469.5, + "probability": 0.8765 + }, + { + "start": 20469.9, + "end": 20470.84, + "probability": 0.6172 + }, + { + "start": 20471.08, + "end": 20472.76, + "probability": 0.5589 + }, + { + "start": 20472.84, + "end": 20477.32, + "probability": 0.8543 + }, + { + "start": 20477.84, + "end": 20482.46, + "probability": 0.9302 + }, + { + "start": 20482.58, + "end": 20486.76, + "probability": 0.9676 + }, + { + "start": 20488.12, + "end": 20491.22, + "probability": 0.5916 + }, + { + "start": 20492.0, + "end": 20495.86, + "probability": 0.9799 + }, + { + "start": 20499.52, + "end": 20503.7, + "probability": 0.7801 + }, + { + "start": 20505.34, + "end": 20508.38, + "probability": 0.8091 + }, + { + "start": 20509.12, + "end": 20511.24, + "probability": 0.7344 + }, + { + "start": 20511.96, + "end": 20517.92, + "probability": 0.907 + }, + { + "start": 20517.92, + "end": 20522.08, + "probability": 0.9754 + }, + { + "start": 20522.08, + "end": 20525.78, + "probability": 0.8542 + }, + { + "start": 20526.3, + "end": 20531.28, + "probability": 0.9875 + }, + { + "start": 20532.28, + "end": 20533.28, + "probability": 0.5947 + }, + { + "start": 20533.32, + "end": 20536.72, + "probability": 0.7091 + }, + { + "start": 20537.82, + "end": 20539.62, + "probability": 0.8279 + }, + { + "start": 20540.52, + "end": 20546.96, + "probability": 0.9254 + }, + { + "start": 20547.5, + "end": 20549.32, + "probability": 0.8243 + }, + { + "start": 20549.32, + "end": 20551.72, + "probability": 0.6061 + }, + { + "start": 20552.18, + "end": 20552.7, + "probability": 0.9037 + }, + { + "start": 20553.22, + "end": 20554.1, + "probability": 0.753 + }, + { + "start": 20554.82, + "end": 20557.0, + "probability": 0.9521 + }, + { + "start": 20557.54, + "end": 20559.22, + "probability": 0.877 + }, + { + "start": 20559.96, + "end": 20562.84, + "probability": 0.9873 + }, + { + "start": 20563.3, + "end": 20565.2, + "probability": 0.97 + }, + { + "start": 20565.72, + "end": 20566.7, + "probability": 0.8744 + }, + { + "start": 20567.28, + "end": 20569.92, + "probability": 0.9959 + }, + { + "start": 20569.92, + "end": 20574.0, + "probability": 0.9724 + }, + { + "start": 20574.48, + "end": 20580.66, + "probability": 0.9955 + }, + { + "start": 20581.28, + "end": 20582.84, + "probability": 0.9728 + }, + { + "start": 20583.36, + "end": 20584.68, + "probability": 0.7262 + }, + { + "start": 20585.38, + "end": 20590.08, + "probability": 0.9574 + }, + { + "start": 20590.8, + "end": 20593.48, + "probability": 0.9604 + }, + { + "start": 20594.12, + "end": 20595.16, + "probability": 0.6342 + }, + { + "start": 20595.98, + "end": 20597.12, + "probability": 0.9902 + }, + { + "start": 20597.66, + "end": 20598.6, + "probability": 0.9316 + }, + { + "start": 20599.34, + "end": 20600.22, + "probability": 0.9935 + }, + { + "start": 20600.8, + "end": 20602.03, + "probability": 0.6191 + }, + { + "start": 20603.44, + "end": 20604.5, + "probability": 0.8904 + }, + { + "start": 20605.1, + "end": 20608.04, + "probability": 0.8887 + }, + { + "start": 20608.74, + "end": 20612.9, + "probability": 0.8765 + }, + { + "start": 20612.9, + "end": 20619.34, + "probability": 0.9554 + }, + { + "start": 20619.76, + "end": 20621.54, + "probability": 0.9903 + }, + { + "start": 20621.98, + "end": 20624.52, + "probability": 0.9424 + }, + { + "start": 20625.18, + "end": 20628.9, + "probability": 0.967 + }, + { + "start": 20629.38, + "end": 20632.32, + "probability": 0.8393 + }, + { + "start": 20632.92, + "end": 20633.94, + "probability": 0.8927 + }, + { + "start": 20634.84, + "end": 20636.76, + "probability": 0.9795 + }, + { + "start": 20637.32, + "end": 20640.08, + "probability": 0.9767 + }, + { + "start": 20640.64, + "end": 20642.24, + "probability": 0.8878 + }, + { + "start": 20642.82, + "end": 20646.26, + "probability": 0.9865 + }, + { + "start": 20647.02, + "end": 20648.26, + "probability": 0.89 + }, + { + "start": 20649.06, + "end": 20651.52, + "probability": 0.9805 + }, + { + "start": 20652.02, + "end": 20654.72, + "probability": 0.9651 + }, + { + "start": 20655.18, + "end": 20657.9, + "probability": 0.9699 + }, + { + "start": 20658.0, + "end": 20659.82, + "probability": 0.9206 + }, + { + "start": 20660.34, + "end": 20661.66, + "probability": 0.9771 + }, + { + "start": 20662.26, + "end": 20664.2, + "probability": 0.9146 + }, + { + "start": 20664.28, + "end": 20664.8, + "probability": 0.6402 + }, + { + "start": 20665.68, + "end": 20666.62, + "probability": 0.9482 + }, + { + "start": 20667.22, + "end": 20667.46, + "probability": 0.2221 + }, + { + "start": 20667.46, + "end": 20668.74, + "probability": 0.6831 + }, + { + "start": 20668.74, + "end": 20669.34, + "probability": 0.5318 + }, + { + "start": 20669.4, + "end": 20671.06, + "probability": 0.9308 + }, + { + "start": 20671.1, + "end": 20671.88, + "probability": 0.7033 + }, + { + "start": 20671.98, + "end": 20674.08, + "probability": 0.8214 + }, + { + "start": 20674.42, + "end": 20674.98, + "probability": 0.3794 + }, + { + "start": 20675.32, + "end": 20676.02, + "probability": 0.3865 + }, + { + "start": 20676.36, + "end": 20676.36, + "probability": 0.7446 + }, + { + "start": 20676.38, + "end": 20676.74, + "probability": 0.6269 + }, + { + "start": 20676.86, + "end": 20677.44, + "probability": 0.5446 + }, + { + "start": 20677.44, + "end": 20679.74, + "probability": 0.5259 + }, + { + "start": 20679.96, + "end": 20679.96, + "probability": 0.0159 + }, + { + "start": 20679.96, + "end": 20679.96, + "probability": 0.0503 + }, + { + "start": 20679.96, + "end": 20679.96, + "probability": 0.0856 + }, + { + "start": 20679.96, + "end": 20681.64, + "probability": 0.6584 + }, + { + "start": 20681.84, + "end": 20681.86, + "probability": 0.1015 + }, + { + "start": 20681.86, + "end": 20682.64, + "probability": 0.732 + }, + { + "start": 20682.84, + "end": 20684.8, + "probability": 0.7718 + }, + { + "start": 20684.86, + "end": 20685.48, + "probability": 0.9739 + }, + { + "start": 20686.0, + "end": 20686.0, + "probability": 0.0071 + }, + { + "start": 20686.0, + "end": 20687.06, + "probability": 0.9658 + }, + { + "start": 20687.18, + "end": 20688.4, + "probability": 0.8885 + }, + { + "start": 20688.4, + "end": 20688.92, + "probability": 0.6243 + }, + { + "start": 20688.94, + "end": 20692.72, + "probability": 0.9506 + }, + { + "start": 20694.32, + "end": 20700.34, + "probability": 0.9924 + }, + { + "start": 20701.02, + "end": 20702.94, + "probability": 0.9988 + }, + { + "start": 20703.38, + "end": 20707.48, + "probability": 0.9768 + }, + { + "start": 20708.44, + "end": 20711.76, + "probability": 0.6689 + }, + { + "start": 20712.26, + "end": 20715.38, + "probability": 0.9612 + }, + { + "start": 20715.38, + "end": 20717.72, + "probability": 0.9697 + }, + { + "start": 20719.18, + "end": 20722.6, + "probability": 0.8884 + }, + { + "start": 20722.92, + "end": 20724.24, + "probability": 0.4945 + }, + { + "start": 20724.4, + "end": 20727.48, + "probability": 0.7325 + }, + { + "start": 20728.22, + "end": 20731.0, + "probability": 0.972 + }, + { + "start": 20731.3, + "end": 20731.44, + "probability": 0.894 + }, + { + "start": 20745.52, + "end": 20746.04, + "probability": 0.598 + }, + { + "start": 20746.12, + "end": 20749.22, + "probability": 0.6796 + }, + { + "start": 20750.87, + "end": 20758.02, + "probability": 0.8652 + }, + { + "start": 20758.02, + "end": 20763.78, + "probability": 0.9682 + }, + { + "start": 20764.3, + "end": 20764.78, + "probability": 0.6518 + }, + { + "start": 20764.98, + "end": 20765.98, + "probability": 0.6879 + }, + { + "start": 20766.02, + "end": 20770.84, + "probability": 0.9861 + }, + { + "start": 20770.95, + "end": 20774.5, + "probability": 0.9987 + }, + { + "start": 20775.08, + "end": 20775.8, + "probability": 0.858 + }, + { + "start": 20775.86, + "end": 20779.3, + "probability": 0.9963 + }, + { + "start": 20779.3, + "end": 20782.38, + "probability": 0.999 + }, + { + "start": 20782.48, + "end": 20785.32, + "probability": 0.9904 + }, + { + "start": 20786.02, + "end": 20787.92, + "probability": 0.9226 + }, + { + "start": 20788.04, + "end": 20792.02, + "probability": 0.9167 + }, + { + "start": 20792.26, + "end": 20792.48, + "probability": 0.3992 + }, + { + "start": 20793.0, + "end": 20793.62, + "probability": 0.9326 + }, + { + "start": 20793.98, + "end": 20797.16, + "probability": 0.994 + }, + { + "start": 20797.64, + "end": 20800.84, + "probability": 0.9971 + }, + { + "start": 20801.0, + "end": 20802.14, + "probability": 0.874 + }, + { + "start": 20802.32, + "end": 20802.98, + "probability": 0.9382 + }, + { + "start": 20803.04, + "end": 20804.28, + "probability": 0.9714 + }, + { + "start": 20804.36, + "end": 20804.8, + "probability": 0.5584 + }, + { + "start": 20805.28, + "end": 20805.98, + "probability": 0.8378 + }, + { + "start": 20806.08, + "end": 20806.8, + "probability": 0.8799 + }, + { + "start": 20806.86, + "end": 20809.32, + "probability": 0.9125 + }, + { + "start": 20809.74, + "end": 20811.88, + "probability": 0.945 + }, + { + "start": 20812.48, + "end": 20818.0, + "probability": 0.9443 + }, + { + "start": 20818.82, + "end": 20821.14, + "probability": 0.7674 + }, + { + "start": 20821.22, + "end": 20823.76, + "probability": 0.9114 + }, + { + "start": 20823.82, + "end": 20826.16, + "probability": 0.9976 + }, + { + "start": 20826.76, + "end": 20831.28, + "probability": 0.9863 + }, + { + "start": 20831.64, + "end": 20834.2, + "probability": 0.9769 + }, + { + "start": 20834.42, + "end": 20837.1, + "probability": 0.986 + }, + { + "start": 20837.84, + "end": 20838.48, + "probability": 0.9819 + }, + { + "start": 20839.0, + "end": 20843.26, + "probability": 0.9985 + }, + { + "start": 20843.4, + "end": 20844.08, + "probability": 0.4761 + }, + { + "start": 20844.2, + "end": 20845.54, + "probability": 0.9845 + }, + { + "start": 20845.62, + "end": 20846.76, + "probability": 0.9089 + }, + { + "start": 20847.2, + "end": 20849.58, + "probability": 0.964 + }, + { + "start": 20850.04, + "end": 20850.36, + "probability": 0.7242 + }, + { + "start": 20850.54, + "end": 20851.26, + "probability": 0.9189 + }, + { + "start": 20851.36, + "end": 20852.62, + "probability": 0.7096 + }, + { + "start": 20852.62, + "end": 20853.8, + "probability": 0.9312 + }, + { + "start": 20854.38, + "end": 20859.04, + "probability": 0.9888 + }, + { + "start": 20859.28, + "end": 20862.9, + "probability": 0.9976 + }, + { + "start": 20863.44, + "end": 20867.0, + "probability": 0.997 + }, + { + "start": 20867.04, + "end": 20867.04, + "probability": 0.4551 + }, + { + "start": 20867.92, + "end": 20868.82, + "probability": 0.8476 + }, + { + "start": 20868.9, + "end": 20869.82, + "probability": 0.6744 + }, + { + "start": 20870.3, + "end": 20872.28, + "probability": 0.7383 + }, + { + "start": 20872.58, + "end": 20874.36, + "probability": 0.6673 + }, + { + "start": 20874.96, + "end": 20877.22, + "probability": 0.8066 + }, + { + "start": 20877.3, + "end": 20878.24, + "probability": 0.8232 + }, + { + "start": 20878.68, + "end": 20879.16, + "probability": 0.5762 + }, + { + "start": 20879.32, + "end": 20882.66, + "probability": 0.9034 + }, + { + "start": 20882.82, + "end": 20885.74, + "probability": 0.9956 + }, + { + "start": 20886.28, + "end": 20888.24, + "probability": 0.6283 + }, + { + "start": 20888.98, + "end": 20893.88, + "probability": 0.7827 + }, + { + "start": 20894.32, + "end": 20895.3, + "probability": 0.7481 + }, + { + "start": 20895.34, + "end": 20895.76, + "probability": 0.7815 + }, + { + "start": 20895.84, + "end": 20898.02, + "probability": 0.9613 + }, + { + "start": 20898.18, + "end": 20901.32, + "probability": 0.9755 + }, + { + "start": 20901.8, + "end": 20906.24, + "probability": 0.9795 + }, + { + "start": 20906.66, + "end": 20909.88, + "probability": 0.9552 + }, + { + "start": 20910.48, + "end": 20912.46, + "probability": 0.9446 + }, + { + "start": 20913.04, + "end": 20915.98, + "probability": 0.9626 + }, + { + "start": 20916.7, + "end": 20917.5, + "probability": 0.4323 + }, + { + "start": 20918.7, + "end": 20925.35, + "probability": 0.7393 + }, + { + "start": 20925.9, + "end": 20927.98, + "probability": 0.9022 + }, + { + "start": 20928.06, + "end": 20929.98, + "probability": 0.8899 + }, + { + "start": 20930.1, + "end": 20934.8, + "probability": 0.9661 + }, + { + "start": 20934.98, + "end": 20938.1, + "probability": 0.9193 + }, + { + "start": 20938.72, + "end": 20940.38, + "probability": 0.9927 + }, + { + "start": 20940.52, + "end": 20942.2, + "probability": 0.9782 + }, + { + "start": 20942.28, + "end": 20944.08, + "probability": 0.7541 + }, + { + "start": 20944.2, + "end": 20947.66, + "probability": 0.9606 + }, + { + "start": 20947.74, + "end": 20949.28, + "probability": 0.8959 + }, + { + "start": 20949.48, + "end": 20950.26, + "probability": 0.7534 + }, + { + "start": 20950.36, + "end": 20954.6, + "probability": 0.9707 + }, + { + "start": 20955.12, + "end": 20957.36, + "probability": 0.9668 + }, + { + "start": 20957.96, + "end": 20961.92, + "probability": 0.9142 + }, + { + "start": 20961.92, + "end": 20965.4, + "probability": 0.998 + }, + { + "start": 20965.54, + "end": 20968.2, + "probability": 0.9927 + }, + { + "start": 20968.8, + "end": 20970.4, + "probability": 0.9107 + }, + { + "start": 20970.78, + "end": 20971.66, + "probability": 0.8815 + }, + { + "start": 20971.84, + "end": 20973.11, + "probability": 0.9741 + }, + { + "start": 20973.18, + "end": 20975.12, + "probability": 0.9694 + }, + { + "start": 20975.66, + "end": 20976.66, + "probability": 0.9967 + }, + { + "start": 20976.84, + "end": 20978.58, + "probability": 0.9551 + }, + { + "start": 20978.8, + "end": 20980.58, + "probability": 0.9764 + }, + { + "start": 20981.1, + "end": 20983.0, + "probability": 0.9785 + }, + { + "start": 20983.62, + "end": 20985.1, + "probability": 0.461 + }, + { + "start": 20985.24, + "end": 20987.5, + "probability": 0.9443 + }, + { + "start": 20988.04, + "end": 20990.02, + "probability": 0.8198 + }, + { + "start": 20990.36, + "end": 20992.18, + "probability": 0.9925 + }, + { + "start": 20992.3, + "end": 20995.28, + "probability": 0.7409 + }, + { + "start": 20995.5, + "end": 20995.86, + "probability": 0.9946 + }, + { + "start": 20997.86, + "end": 20998.7, + "probability": 0.0801 + }, + { + "start": 20998.7, + "end": 21003.5, + "probability": 0.9611 + }, + { + "start": 21003.7, + "end": 21008.52, + "probability": 0.9961 + }, + { + "start": 21008.64, + "end": 21010.3, + "probability": 0.6298 + }, + { + "start": 21010.72, + "end": 21011.06, + "probability": 0.4977 + }, + { + "start": 21011.1, + "end": 21012.42, + "probability": 0.6204 + }, + { + "start": 21012.68, + "end": 21016.46, + "probability": 0.751 + }, + { + "start": 21016.66, + "end": 21017.16, + "probability": 0.764 + }, + { + "start": 21017.26, + "end": 21017.56, + "probability": 0.3332 + }, + { + "start": 21017.6, + "end": 21018.21, + "probability": 0.8965 + }, + { + "start": 21019.1, + "end": 21020.46, + "probability": 0.7391 + }, + { + "start": 21020.66, + "end": 21021.8, + "probability": 0.9731 + }, + { + "start": 21021.84, + "end": 21025.48, + "probability": 0.98 + }, + { + "start": 21025.6, + "end": 21027.02, + "probability": 0.8762 + }, + { + "start": 21027.4, + "end": 21031.38, + "probability": 0.9368 + }, + { + "start": 21031.56, + "end": 21033.02, + "probability": 0.7028 + }, + { + "start": 21033.42, + "end": 21036.88, + "probability": 0.6223 + }, + { + "start": 21037.68, + "end": 21038.24, + "probability": 0.2776 + }, + { + "start": 21040.44, + "end": 21041.56, + "probability": 0.0402 + }, + { + "start": 21042.1, + "end": 21044.64, + "probability": 0.9013 + }, + { + "start": 21044.68, + "end": 21047.66, + "probability": 0.9902 + }, + { + "start": 21047.98, + "end": 21049.28, + "probability": 0.6814 + }, + { + "start": 21049.84, + "end": 21051.66, + "probability": 0.6841 + }, + { + "start": 21051.8, + "end": 21054.24, + "probability": 0.0316 + }, + { + "start": 21054.56, + "end": 21057.96, + "probability": 0.91 + }, + { + "start": 21058.0, + "end": 21060.64, + "probability": 0.9869 + }, + { + "start": 21060.78, + "end": 21062.58, + "probability": 0.8223 + }, + { + "start": 21062.6, + "end": 21064.0, + "probability": 0.6932 + }, + { + "start": 21064.0, + "end": 21068.44, + "probability": 0.905 + }, + { + "start": 21068.62, + "end": 21069.12, + "probability": 0.6541 + }, + { + "start": 21070.36, + "end": 21075.92, + "probability": 0.9526 + }, + { + "start": 21075.96, + "end": 21076.42, + "probability": 0.2404 + }, + { + "start": 21076.88, + "end": 21077.78, + "probability": 0.1724 + }, + { + "start": 21078.36, + "end": 21078.96, + "probability": 0.1452 + }, + { + "start": 21080.3, + "end": 21081.52, + "probability": 0.1218 + }, + { + "start": 21081.52, + "end": 21083.28, + "probability": 0.3851 + }, + { + "start": 21083.8, + "end": 21083.9, + "probability": 0.261 + }, + { + "start": 21083.96, + "end": 21084.76, + "probability": 0.8602 + }, + { + "start": 21084.96, + "end": 21086.1, + "probability": 0.6742 + }, + { + "start": 21087.0, + "end": 21088.1, + "probability": 0.5943 + }, + { + "start": 21089.16, + "end": 21091.6, + "probability": 0.8517 + }, + { + "start": 21091.64, + "end": 21093.22, + "probability": 0.4772 + }, + { + "start": 21093.62, + "end": 21095.26, + "probability": 0.9148 + }, + { + "start": 21095.38, + "end": 21097.44, + "probability": 0.9834 + }, + { + "start": 21097.86, + "end": 21098.92, + "probability": 0.9628 + }, + { + "start": 21099.62, + "end": 21099.62, + "probability": 0.0014 + }, + { + "start": 21099.62, + "end": 21101.9, + "probability": 0.394 + }, + { + "start": 21102.0, + "end": 21103.82, + "probability": 0.4815 + }, + { + "start": 21104.04, + "end": 21104.9, + "probability": 0.7302 + }, + { + "start": 21104.96, + "end": 21105.78, + "probability": 0.0518 + }, + { + "start": 21105.78, + "end": 21107.58, + "probability": 0.9562 + }, + { + "start": 21108.26, + "end": 21109.82, + "probability": 0.6809 + }, + { + "start": 21110.12, + "end": 21111.81, + "probability": 0.0931 + }, + { + "start": 21114.1, + "end": 21117.74, + "probability": 0.1692 + }, + { + "start": 21118.0, + "end": 21119.44, + "probability": 0.5066 + }, + { + "start": 21120.94, + "end": 21122.36, + "probability": 0.9136 + }, + { + "start": 21122.58, + "end": 21122.58, + "probability": 0.0157 + }, + { + "start": 21122.92, + "end": 21123.37, + "probability": 0.7382 + }, + { + "start": 21123.58, + "end": 21124.42, + "probability": 0.8554 + }, + { + "start": 21124.62, + "end": 21125.28, + "probability": 0.8377 + }, + { + "start": 21125.92, + "end": 21126.38, + "probability": 0.8843 + }, + { + "start": 21126.56, + "end": 21127.48, + "probability": 0.82 + }, + { + "start": 21127.5, + "end": 21128.78, + "probability": 0.9685 + }, + { + "start": 21128.84, + "end": 21129.76, + "probability": 0.8618 + }, + { + "start": 21131.87, + "end": 21134.24, + "probability": 0.6412 + }, + { + "start": 21136.04, + "end": 21137.66, + "probability": 0.9722 + }, + { + "start": 21138.84, + "end": 21141.86, + "probability": 0.7953 + }, + { + "start": 21142.66, + "end": 21145.52, + "probability": 0.9462 + }, + { + "start": 21145.66, + "end": 21146.26, + "probability": 0.9191 + }, + { + "start": 21146.32, + "end": 21146.96, + "probability": 0.954 + }, + { + "start": 21147.0, + "end": 21147.74, + "probability": 0.8542 + }, + { + "start": 21147.88, + "end": 21148.64, + "probability": 0.9561 + }, + { + "start": 21149.28, + "end": 21149.96, + "probability": 0.8855 + }, + { + "start": 21151.14, + "end": 21155.78, + "probability": 0.6772 + }, + { + "start": 21157.18, + "end": 21157.6, + "probability": 0.5763 + }, + { + "start": 21158.2, + "end": 21161.4, + "probability": 0.9392 + }, + { + "start": 21161.78, + "end": 21162.58, + "probability": 0.8684 + }, + { + "start": 21162.64, + "end": 21163.44, + "probability": 0.8727 + }, + { + "start": 21163.62, + "end": 21164.57, + "probability": 0.8436 + }, + { + "start": 21165.64, + "end": 21169.46, + "probability": 0.8227 + }, + { + "start": 21169.52, + "end": 21170.54, + "probability": 0.9544 + }, + { + "start": 21170.7, + "end": 21172.08, + "probability": 0.8056 + }, + { + "start": 21173.6, + "end": 21174.96, + "probability": 0.9001 + }, + { + "start": 21175.66, + "end": 21176.43, + "probability": 0.8005 + }, + { + "start": 21177.4, + "end": 21181.58, + "probability": 0.8052 + }, + { + "start": 21181.88, + "end": 21183.16, + "probability": 0.8733 + }, + { + "start": 21183.52, + "end": 21184.42, + "probability": 0.8216 + }, + { + "start": 21184.54, + "end": 21185.77, + "probability": 0.9331 + }, + { + "start": 21186.6, + "end": 21187.16, + "probability": 0.9409 + }, + { + "start": 21187.24, + "end": 21187.82, + "probability": 0.9098 + }, + { + "start": 21187.82, + "end": 21188.5, + "probability": 0.9749 + }, + { + "start": 21188.54, + "end": 21189.66, + "probability": 0.748 + }, + { + "start": 21189.66, + "end": 21192.56, + "probability": 0.8257 + }, + { + "start": 21192.94, + "end": 21194.46, + "probability": 0.6243 + }, + { + "start": 21194.82, + "end": 21196.5, + "probability": 0.9287 + }, + { + "start": 21196.88, + "end": 21198.82, + "probability": 0.9167 + }, + { + "start": 21199.2, + "end": 21201.16, + "probability": 0.7153 + }, + { + "start": 21201.26, + "end": 21202.06, + "probability": 0.7623 + }, + { + "start": 21202.54, + "end": 21203.94, + "probability": 0.7549 + }, + { + "start": 21204.1, + "end": 21205.7, + "probability": 0.3615 + }, + { + "start": 21205.76, + "end": 21206.12, + "probability": 0.8626 + }, + { + "start": 21206.2, + "end": 21207.86, + "probability": 0.6855 + }, + { + "start": 21208.56, + "end": 21209.93, + "probability": 0.6694 + }, + { + "start": 21211.3, + "end": 21212.3, + "probability": 0.9245 + }, + { + "start": 21212.32, + "end": 21214.32, + "probability": 0.719 + }, + { + "start": 21215.46, + "end": 21215.54, + "probability": 0.0723 + }, + { + "start": 21215.54, + "end": 21217.48, + "probability": 0.6191 + }, + { + "start": 21220.18, + "end": 21221.3, + "probability": 0.9036 + }, + { + "start": 21222.46, + "end": 21223.2, + "probability": 0.7866 + }, + { + "start": 21223.28, + "end": 21224.32, + "probability": 0.9363 + }, + { + "start": 21224.36, + "end": 21226.84, + "probability": 0.7957 + }, + { + "start": 21226.88, + "end": 21229.28, + "probability": 0.945 + }, + { + "start": 21229.92, + "end": 21235.16, + "probability": 0.6839 + }, + { + "start": 21235.18, + "end": 21239.16, + "probability": 0.9965 + }, + { + "start": 21239.16, + "end": 21242.82, + "probability": 0.9965 + }, + { + "start": 21243.18, + "end": 21243.68, + "probability": 0.6045 + }, + { + "start": 21243.78, + "end": 21244.16, + "probability": 0.4933 + }, + { + "start": 21244.9, + "end": 21247.42, + "probability": 0.9186 + }, + { + "start": 21247.7, + "end": 21248.84, + "probability": 0.9297 + }, + { + "start": 21248.92, + "end": 21249.89, + "probability": 0.707 + }, + { + "start": 21250.57, + "end": 21251.62, + "probability": 0.023 + }, + { + "start": 21251.62, + "end": 21252.89, + "probability": 0.6172 + }, + { + "start": 21253.92, + "end": 21254.12, + "probability": 0.1395 + }, + { + "start": 21254.22, + "end": 21255.89, + "probability": 0.3129 + }, + { + "start": 21256.22, + "end": 21260.76, + "probability": 0.8266 + }, + { + "start": 21260.82, + "end": 21261.54, + "probability": 0.4478 + }, + { + "start": 21261.7, + "end": 21264.02, + "probability": 0.7418 + }, + { + "start": 21264.1, + "end": 21264.95, + "probability": 0.9875 + }, + { + "start": 21265.02, + "end": 21266.95, + "probability": 0.8958 + }, + { + "start": 21267.14, + "end": 21267.2, + "probability": 0.0996 + }, + { + "start": 21267.2, + "end": 21270.2, + "probability": 0.6245 + }, + { + "start": 21270.36, + "end": 21275.56, + "probability": 0.8785 + }, + { + "start": 21275.8, + "end": 21279.22, + "probability": 0.999 + }, + { + "start": 21279.72, + "end": 21280.44, + "probability": 0.4756 + }, + { + "start": 21280.44, + "end": 21280.93, + "probability": 0.8203 + }, + { + "start": 21281.58, + "end": 21283.46, + "probability": 0.8748 + }, + { + "start": 21283.56, + "end": 21284.34, + "probability": 0.168 + }, + { + "start": 21284.34, + "end": 21285.54, + "probability": 0.8294 + }, + { + "start": 21286.42, + "end": 21289.66, + "probability": 0.8094 + }, + { + "start": 21289.7, + "end": 21290.08, + "probability": 0.7543 + }, + { + "start": 21290.7, + "end": 21292.0, + "probability": 0.5668 + }, + { + "start": 21292.06, + "end": 21292.34, + "probability": 0.8993 + }, + { + "start": 21292.44, + "end": 21297.26, + "probability": 0.9727 + }, + { + "start": 21297.92, + "end": 21305.04, + "probability": 0.9896 + }, + { + "start": 21306.81, + "end": 21306.88, + "probability": 0.4497 + }, + { + "start": 21306.88, + "end": 21308.04, + "probability": 0.1055 + }, + { + "start": 21309.28, + "end": 21315.82, + "probability": 0.9452 + }, + { + "start": 21316.44, + "end": 21317.08, + "probability": 0.7364 + }, + { + "start": 21317.34, + "end": 21318.24, + "probability": 0.6488 + }, + { + "start": 21321.44, + "end": 21323.12, + "probability": 0.1759 + }, + { + "start": 21325.6, + "end": 21329.86, + "probability": 0.1936 + }, + { + "start": 21330.48, + "end": 21330.88, + "probability": 0.0892 + }, + { + "start": 21332.12, + "end": 21333.44, + "probability": 0.3348 + }, + { + "start": 21335.18, + "end": 21337.86, + "probability": 0.4669 + }, + { + "start": 21338.18, + "end": 21343.88, + "probability": 0.9775 + }, + { + "start": 21344.68, + "end": 21348.22, + "probability": 0.2015 + }, + { + "start": 21348.94, + "end": 21349.84, + "probability": 0.1099 + }, + { + "start": 21350.22, + "end": 21352.81, + "probability": 0.2489 + }, + { + "start": 21352.86, + "end": 21353.0, + "probability": 0.1781 + }, + { + "start": 21353.08, + "end": 21353.99, + "probability": 0.3972 + }, + { + "start": 21354.56, + "end": 21356.6, + "probability": 0.8625 + }, + { + "start": 21357.38, + "end": 21359.72, + "probability": 0.0395 + }, + { + "start": 21359.72, + "end": 21359.72, + "probability": 0.3518 + }, + { + "start": 21359.72, + "end": 21359.72, + "probability": 0.3725 + }, + { + "start": 21359.72, + "end": 21362.62, + "probability": 0.6135 + }, + { + "start": 21363.56, + "end": 21367.46, + "probability": 0.7093 + }, + { + "start": 21376.76, + "end": 21377.04, + "probability": 0.3248 + }, + { + "start": 21379.3, + "end": 21379.86, + "probability": 0.6785 + }, + { + "start": 21379.94, + "end": 21380.94, + "probability": 0.7413 + }, + { + "start": 21381.39, + "end": 21386.7, + "probability": 0.829 + }, + { + "start": 21387.24, + "end": 21388.56, + "probability": 0.9511 + }, + { + "start": 21388.68, + "end": 21389.71, + "probability": 0.8243 + }, + { + "start": 21389.88, + "end": 21394.5, + "probability": 0.4863 + }, + { + "start": 21395.2, + "end": 21395.84, + "probability": 0.7386 + }, + { + "start": 21396.6, + "end": 21400.1, + "probability": 0.9841 + }, + { + "start": 21401.3, + "end": 21402.34, + "probability": 0.9827 + }, + { + "start": 21403.56, + "end": 21404.48, + "probability": 0.8931 + }, + { + "start": 21405.14, + "end": 21407.96, + "probability": 0.9847 + }, + { + "start": 21408.8, + "end": 21411.26, + "probability": 0.9556 + }, + { + "start": 21411.34, + "end": 21414.64, + "probability": 0.9152 + }, + { + "start": 21415.44, + "end": 21417.22, + "probability": 0.9781 + }, + { + "start": 21417.7, + "end": 21418.02, + "probability": 0.8959 + }, + { + "start": 21418.02, + "end": 21418.04, + "probability": 0.8034 + }, + { + "start": 21418.04, + "end": 21419.96, + "probability": 0.8376 + }, + { + "start": 21420.08, + "end": 21423.24, + "probability": 0.9545 + }, + { + "start": 21426.88, + "end": 21427.56, + "probability": 0.1008 + }, + { + "start": 21427.56, + "end": 21427.56, + "probability": 0.0334 + }, + { + "start": 21427.56, + "end": 21430.62, + "probability": 0.7943 + }, + { + "start": 21431.56, + "end": 21433.82, + "probability": 0.9102 + }, + { + "start": 21434.86, + "end": 21436.38, + "probability": 0.7046 + }, + { + "start": 21436.7, + "end": 21436.8, + "probability": 0.2795 + }, + { + "start": 21437.2, + "end": 21439.68, + "probability": 0.7935 + }, + { + "start": 21442.46, + "end": 21442.46, + "probability": 0.0567 + }, + { + "start": 21442.46, + "end": 21443.3, + "probability": 0.6812 + }, + { + "start": 21443.42, + "end": 21444.46, + "probability": 0.7171 + }, + { + "start": 21444.76, + "end": 21445.45, + "probability": 0.5562 + }, + { + "start": 21445.9, + "end": 21446.39, + "probability": 0.4673 + }, + { + "start": 21447.32, + "end": 21448.76, + "probability": 0.9606 + }, + { + "start": 21449.86, + "end": 21451.8, + "probability": 0.7291 + }, + { + "start": 21451.88, + "end": 21453.76, + "probability": 0.9241 + }, + { + "start": 21454.28, + "end": 21456.82, + "probability": 0.9895 + }, + { + "start": 21456.82, + "end": 21460.46, + "probability": 0.9329 + }, + { + "start": 21460.82, + "end": 21465.08, + "probability": 0.8687 + }, + { + "start": 21465.46, + "end": 21469.84, + "probability": 0.5652 + }, + { + "start": 21470.36, + "end": 21473.46, + "probability": 0.9043 + }, + { + "start": 21473.94, + "end": 21476.48, + "probability": 0.8936 + }, + { + "start": 21477.16, + "end": 21479.16, + "probability": 0.8389 + }, + { + "start": 21479.34, + "end": 21481.38, + "probability": 0.8356 + }, + { + "start": 21481.56, + "end": 21484.02, + "probability": 0.951 + }, + { + "start": 21484.08, + "end": 21485.04, + "probability": 0.9927 + }, + { + "start": 21486.72, + "end": 21489.7, + "probability": 0.9785 + }, + { + "start": 21489.84, + "end": 21492.08, + "probability": 0.9948 + }, + { + "start": 21492.6, + "end": 21493.53, + "probability": 0.869 + }, + { + "start": 21494.08, + "end": 21496.84, + "probability": 0.9283 + }, + { + "start": 21497.26, + "end": 21498.48, + "probability": 0.8055 + }, + { + "start": 21498.48, + "end": 21499.54, + "probability": 0.9402 + }, + { + "start": 21500.56, + "end": 21500.92, + "probability": 0.3321 + }, + { + "start": 21501.88, + "end": 21502.52, + "probability": 0.9883 + }, + { + "start": 21503.06, + "end": 21505.84, + "probability": 0.8954 + }, + { + "start": 21506.18, + "end": 21507.1, + "probability": 0.8 + }, + { + "start": 21507.36, + "end": 21508.08, + "probability": 0.9925 + }, + { + "start": 21508.72, + "end": 21509.72, + "probability": 0.9608 + }, + { + "start": 21509.9, + "end": 21512.22, + "probability": 0.9521 + }, + { + "start": 21512.52, + "end": 21513.54, + "probability": 0.9596 + }, + { + "start": 21514.38, + "end": 21516.78, + "probability": 0.9221 + }, + { + "start": 21517.68, + "end": 21519.83, + "probability": 0.9744 + }, + { + "start": 21520.3, + "end": 21522.06, + "probability": 0.944 + }, + { + "start": 21522.4, + "end": 21523.16, + "probability": 0.877 + }, + { + "start": 21523.44, + "end": 21524.08, + "probability": 0.9126 + }, + { + "start": 21524.42, + "end": 21525.5, + "probability": 0.9965 + }, + { + "start": 21525.86, + "end": 21527.1, + "probability": 0.8676 + }, + { + "start": 21528.58, + "end": 21530.76, + "probability": 0.9556 + }, + { + "start": 21531.44, + "end": 21533.86, + "probability": 0.9866 + }, + { + "start": 21534.3, + "end": 21536.42, + "probability": 0.5436 + }, + { + "start": 21537.4, + "end": 21537.84, + "probability": 0.5649 + }, + { + "start": 21538.2, + "end": 21541.04, + "probability": 0.7244 + }, + { + "start": 21541.68, + "end": 21542.49, + "probability": 0.9482 + }, + { + "start": 21543.0, + "end": 21543.62, + "probability": 0.9111 + }, + { + "start": 21544.0, + "end": 21544.72, + "probability": 0.8882 + }, + { + "start": 21544.8, + "end": 21545.42, + "probability": 0.9167 + }, + { + "start": 21545.6, + "end": 21547.78, + "probability": 0.9479 + }, + { + "start": 21548.46, + "end": 21550.0, + "probability": 0.7137 + }, + { + "start": 21550.7, + "end": 21552.62, + "probability": 0.7087 + }, + { + "start": 21552.94, + "end": 21553.66, + "probability": 0.9297 + }, + { + "start": 21554.26, + "end": 21555.52, + "probability": 0.9119 + }, + { + "start": 21555.8, + "end": 21556.76, + "probability": 0.5868 + }, + { + "start": 21557.38, + "end": 21560.16, + "probability": 0.7181 + }, + { + "start": 21560.68, + "end": 21562.44, + "probability": 0.8517 + }, + { + "start": 21563.08, + "end": 21563.96, + "probability": 0.6749 + }, + { + "start": 21564.3, + "end": 21565.32, + "probability": 0.6319 + }, + { + "start": 21565.34, + "end": 21566.62, + "probability": 0.9041 + }, + { + "start": 21566.82, + "end": 21568.1, + "probability": 0.9565 + }, + { + "start": 21568.14, + "end": 21569.18, + "probability": 0.6443 + }, + { + "start": 21569.24, + "end": 21569.86, + "probability": 0.7296 + }, + { + "start": 21570.44, + "end": 21572.98, + "probability": 0.8973 + }, + { + "start": 21573.38, + "end": 21573.75, + "probability": 0.1152 + }, + { + "start": 21574.56, + "end": 21575.04, + "probability": 0.8965 + }, + { + "start": 21575.24, + "end": 21576.29, + "probability": 0.798 + }, + { + "start": 21577.66, + "end": 21578.08, + "probability": 0.7291 + }, + { + "start": 21578.18, + "end": 21580.08, + "probability": 0.6517 + }, + { + "start": 21580.16, + "end": 21581.12, + "probability": 0.5733 + }, + { + "start": 21581.22, + "end": 21581.64, + "probability": 0.5196 + }, + { + "start": 21581.78, + "end": 21581.8, + "probability": 0.679 + }, + { + "start": 21581.8, + "end": 21581.94, + "probability": 0.3325 + }, + { + "start": 21596.17, + "end": 21598.26, + "probability": 0.1604 + }, + { + "start": 21598.26, + "end": 21598.38, + "probability": 0.0757 + }, + { + "start": 21598.38, + "end": 21599.38, + "probability": 0.3627 + }, + { + "start": 21599.38, + "end": 21600.32, + "probability": 0.2733 + }, + { + "start": 21601.36, + "end": 21601.56, + "probability": 0.3286 + }, + { + "start": 21603.0, + "end": 21603.12, + "probability": 0.0102 + }, + { + "start": 21603.12, + "end": 21603.12, + "probability": 0.0223 + }, + { + "start": 21605.14, + "end": 21605.6, + "probability": 0.0074 + }, + { + "start": 21606.26, + "end": 21606.48, + "probability": 0.0368 + }, + { + "start": 21606.48, + "end": 21606.78, + "probability": 0.2531 + }, + { + "start": 21606.84, + "end": 21606.88, + "probability": 0.1236 + }, + { + "start": 21606.92, + "end": 21607.38, + "probability": 0.1602 + }, + { + "start": 21607.44, + "end": 21607.72, + "probability": 0.0669 + }, + { + "start": 21607.72, + "end": 21610.5, + "probability": 0.2678 + }, + { + "start": 21610.72, + "end": 21611.6, + "probability": 0.05 + }, + { + "start": 21611.6, + "end": 21611.6, + "probability": 0.0254 + }, + { + "start": 21611.6, + "end": 21611.6, + "probability": 0.1193 + }, + { + "start": 21611.6, + "end": 21611.6, + "probability": 0.1411 + }, + { + "start": 21611.6, + "end": 21613.74, + "probability": 0.4135 + }, + { + "start": 21613.82, + "end": 21614.06, + "probability": 0.6811 + }, + { + "start": 21615.28, + "end": 21615.8, + "probability": 0.2662 + }, + { + "start": 21615.8, + "end": 21616.52, + "probability": 0.5284 + }, + { + "start": 21617.2, + "end": 21618.32, + "probability": 0.6798 + }, + { + "start": 21618.58, + "end": 21620.34, + "probability": 0.8683 + }, + { + "start": 21620.52, + "end": 21621.68, + "probability": 0.9541 + }, + { + "start": 21622.22, + "end": 21623.8, + "probability": 0.667 + }, + { + "start": 21624.36, + "end": 21627.26, + "probability": 0.1976 + }, + { + "start": 21627.26, + "end": 21627.26, + "probability": 0.0484 + }, + { + "start": 21627.26, + "end": 21629.0, + "probability": 0.4016 + }, + { + "start": 21629.46, + "end": 21632.44, + "probability": 0.9718 + }, + { + "start": 21633.28, + "end": 21635.04, + "probability": 0.7764 + }, + { + "start": 21635.46, + "end": 21637.19, + "probability": 0.95 + }, + { + "start": 21638.04, + "end": 21640.13, + "probability": 0.9697 + }, + { + "start": 21640.74, + "end": 21641.7, + "probability": 0.8482 + }, + { + "start": 21642.62, + "end": 21644.82, + "probability": 0.9393 + }, + { + "start": 21645.06, + "end": 21645.94, + "probability": 0.9341 + }, + { + "start": 21646.48, + "end": 21648.44, + "probability": 0.9893 + }, + { + "start": 21649.54, + "end": 21651.26, + "probability": 0.8462 + }, + { + "start": 21651.38, + "end": 21654.84, + "probability": 0.7729 + }, + { + "start": 21655.04, + "end": 21656.8, + "probability": 0.9917 + }, + { + "start": 21657.14, + "end": 21658.68, + "probability": 0.2772 + }, + { + "start": 21658.82, + "end": 21658.82, + "probability": 0.0399 + }, + { + "start": 21658.82, + "end": 21658.82, + "probability": 0.0213 + }, + { + "start": 21658.82, + "end": 21659.42, + "probability": 0.6623 + }, + { + "start": 21659.54, + "end": 21659.68, + "probability": 0.5557 + }, + { + "start": 21660.64, + "end": 21664.24, + "probability": 0.9083 + }, + { + "start": 21664.44, + "end": 21667.96, + "probability": 0.8591 + }, + { + "start": 21667.96, + "end": 21668.36, + "probability": 0.4776 + }, + { + "start": 21668.46, + "end": 21673.82, + "probability": 0.9749 + }, + { + "start": 21674.1, + "end": 21675.44, + "probability": 0.8933 + }, + { + "start": 21675.52, + "end": 21676.2, + "probability": 0.637 + }, + { + "start": 21676.24, + "end": 21676.76, + "probability": 0.8428 + }, + { + "start": 21677.49, + "end": 21679.24, + "probability": 0.6619 + }, + { + "start": 21679.32, + "end": 21680.37, + "probability": 0.9275 + }, + { + "start": 21680.7, + "end": 21682.82, + "probability": 0.8945 + }, + { + "start": 21683.0, + "end": 21685.32, + "probability": 0.6376 + }, + { + "start": 21685.38, + "end": 21686.32, + "probability": 0.7422 + }, + { + "start": 21686.38, + "end": 21687.24, + "probability": 0.952 + }, + { + "start": 21687.3, + "end": 21687.78, + "probability": 0.9658 + }, + { + "start": 21689.96, + "end": 21691.02, + "probability": 0.8979 + }, + { + "start": 21691.08, + "end": 21692.64, + "probability": 0.9885 + }, + { + "start": 21693.26, + "end": 21695.74, + "probability": 0.938 + }, + { + "start": 21696.76, + "end": 21697.62, + "probability": 0.3194 + }, + { + "start": 21697.68, + "end": 21697.76, + "probability": 0.1094 + }, + { + "start": 21697.76, + "end": 21700.48, + "probability": 0.923 + }, + { + "start": 21700.76, + "end": 21703.04, + "probability": 0.8528 + }, + { + "start": 21703.08, + "end": 21703.86, + "probability": 0.9838 + }, + { + "start": 21704.14, + "end": 21704.44, + "probability": 0.7862 + }, + { + "start": 21704.56, + "end": 21705.14, + "probability": 0.6455 + }, + { + "start": 21705.64, + "end": 21707.23, + "probability": 0.918 + }, + { + "start": 21707.76, + "end": 21709.08, + "probability": 0.9865 + }, + { + "start": 21709.36, + "end": 21710.42, + "probability": 0.9233 + }, + { + "start": 21710.84, + "end": 21713.0, + "probability": 0.98 + }, + { + "start": 21713.48, + "end": 21715.46, + "probability": 0.9741 + }, + { + "start": 21715.96, + "end": 21716.76, + "probability": 0.8969 + }, + { + "start": 21717.1, + "end": 21717.62, + "probability": 0.7261 + }, + { + "start": 21717.68, + "end": 21718.48, + "probability": 0.8647 + }, + { + "start": 21718.52, + "end": 21718.72, + "probability": 0.1394 + }, + { + "start": 21718.72, + "end": 21719.46, + "probability": 0.6223 + }, + { + "start": 21719.94, + "end": 21720.68, + "probability": 0.5744 + }, + { + "start": 21720.68, + "end": 21720.7, + "probability": 0.501 + }, + { + "start": 21720.7, + "end": 21722.45, + "probability": 0.8953 + }, + { + "start": 21722.5, + "end": 21725.68, + "probability": 0.9004 + }, + { + "start": 21726.04, + "end": 21728.02, + "probability": 0.9252 + }, + { + "start": 21728.14, + "end": 21729.32, + "probability": 0.1984 + }, + { + "start": 21729.78, + "end": 21733.02, + "probability": 0.1375 + }, + { + "start": 21733.04, + "end": 21734.36, + "probability": 0.3303 + }, + { + "start": 21734.36, + "end": 21734.36, + "probability": 0.0411 + }, + { + "start": 21734.36, + "end": 21734.4, + "probability": 0.3358 + }, + { + "start": 21734.4, + "end": 21734.4, + "probability": 0.0495 + }, + { + "start": 21734.4, + "end": 21734.4, + "probability": 0.3792 + }, + { + "start": 21734.4, + "end": 21734.4, + "probability": 0.3478 + }, + { + "start": 21734.4, + "end": 21734.4, + "probability": 0.2008 + }, + { + "start": 21734.4, + "end": 21736.51, + "probability": 0.3596 + }, + { + "start": 21737.14, + "end": 21741.94, + "probability": 0.2104 + }, + { + "start": 21762.38, + "end": 21766.12, + "probability": 0.2323 + }, + { + "start": 21766.12, + "end": 21768.2, + "probability": 0.0485 + }, + { + "start": 21768.64, + "end": 21768.8, + "probability": 0.0142 + }, + { + "start": 21769.46, + "end": 21770.26, + "probability": 0.0405 + }, + { + "start": 21778.4, + "end": 21778.68, + "probability": 0.0681 + }, + { + "start": 21778.68, + "end": 21778.96, + "probability": 0.1554 + }, + { + "start": 21779.5, + "end": 21783.72, + "probability": 0.0538 + }, + { + "start": 21793.46, + "end": 21794.5, + "probability": 0.0047 + }, + { + "start": 21794.5, + "end": 21798.2, + "probability": 0.0559 + }, + { + "start": 21799.0, + "end": 21801.66, + "probability": 0.0497 + }, + { + "start": 21803.75, + "end": 21806.5, + "probability": 0.0484 + }, + { + "start": 21806.5, + "end": 21806.5, + "probability": 0.0974 + }, + { + "start": 21806.5, + "end": 21806.68, + "probability": 0.033 + }, + { + "start": 21806.68, + "end": 21806.84, + "probability": 0.0135 + }, + { + "start": 21807.13, + "end": 21808.1, + "probability": 0.0088 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21809.0, + "end": 21809.0, + "probability": 0.0 + }, + { + "start": 21835.16, + "end": 21839.02, + "probability": 0.6504 + }, + { + "start": 21842.56, + "end": 21844.22, + "probability": 0.5031 + }, + { + "start": 21845.16, + "end": 21846.46, + "probability": 0.0038 + }, + { + "start": 21853.96, + "end": 21855.22, + "probability": 0.0871 + }, + { + "start": 21855.22, + "end": 21855.64, + "probability": 0.1635 + }, + { + "start": 21855.64, + "end": 21855.68, + "probability": 0.0216 + }, + { + "start": 21855.68, + "end": 21856.42, + "probability": 0.1063 + }, + { + "start": 21858.71, + "end": 21861.34, + "probability": 0.0531 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.0, + "end": 21934.0, + "probability": 0.0 + }, + { + "start": 21934.3, + "end": 21937.98, + "probability": 0.7548 + }, + { + "start": 21938.52, + "end": 21939.8, + "probability": 0.9976 + }, + { + "start": 21939.98, + "end": 21940.66, + "probability": 0.6448 + }, + { + "start": 21940.74, + "end": 21943.76, + "probability": 0.9826 + }, + { + "start": 21943.76, + "end": 21947.02, + "probability": 0.9817 + }, + { + "start": 21947.58, + "end": 21948.46, + "probability": 0.5805 + }, + { + "start": 21948.6, + "end": 21951.88, + "probability": 0.9222 + }, + { + "start": 21952.34, + "end": 21954.82, + "probability": 0.9882 + }, + { + "start": 21955.56, + "end": 21958.3, + "probability": 0.9572 + }, + { + "start": 21958.3, + "end": 21961.88, + "probability": 0.9653 + }, + { + "start": 21962.38, + "end": 21964.46, + "probability": 0.8925 + }, + { + "start": 21965.48, + "end": 21967.74, + "probability": 0.833 + }, + { + "start": 21967.9, + "end": 21969.46, + "probability": 0.9978 + }, + { + "start": 21969.82, + "end": 21970.78, + "probability": 0.9375 + }, + { + "start": 21971.1, + "end": 21971.96, + "probability": 0.9585 + }, + { + "start": 21972.52, + "end": 21973.28, + "probability": 0.8649 + }, + { + "start": 21974.38, + "end": 21976.94, + "probability": 0.983 + }, + { + "start": 21977.0, + "end": 21978.5, + "probability": 0.9954 + }, + { + "start": 21979.14, + "end": 21980.54, + "probability": 0.9192 + }, + { + "start": 21981.04, + "end": 21981.06, + "probability": 0.0456 + }, + { + "start": 21981.06, + "end": 21984.36, + "probability": 0.995 + }, + { + "start": 21984.36, + "end": 21988.96, + "probability": 0.9822 + }, + { + "start": 21989.26, + "end": 21990.92, + "probability": 0.985 + }, + { + "start": 21991.6, + "end": 21993.5, + "probability": 0.8252 + }, + { + "start": 21994.12, + "end": 21994.62, + "probability": 0.2733 + }, + { + "start": 21997.68, + "end": 21997.74, + "probability": 0.4207 + }, + { + "start": 21997.74, + "end": 21999.72, + "probability": 0.9858 + }, + { + "start": 21999.74, + "end": 22000.0, + "probability": 0.9494 + }, + { + "start": 22000.06, + "end": 22000.5, + "probability": 0.8519 + }, + { + "start": 22000.7, + "end": 22001.95, + "probability": 0.5806 + }, + { + "start": 22002.22, + "end": 22004.23, + "probability": 0.7763 + }, + { + "start": 22005.76, + "end": 22007.26, + "probability": 0.8553 + }, + { + "start": 22007.48, + "end": 22008.24, + "probability": 0.6694 + }, + { + "start": 22008.34, + "end": 22009.5, + "probability": 0.8333 + }, + { + "start": 22009.54, + "end": 22010.44, + "probability": 0.5964 + }, + { + "start": 22010.5, + "end": 22011.81, + "probability": 0.6754 + }, + { + "start": 22012.92, + "end": 22014.36, + "probability": 0.4933 + }, + { + "start": 22014.36, + "end": 22016.52, + "probability": 0.435 + }, + { + "start": 22016.52, + "end": 22018.62, + "probability": 0.5286 + }, + { + "start": 22018.74, + "end": 22020.64, + "probability": 0.1897 + }, + { + "start": 22021.54, + "end": 22021.64, + "probability": 0.0057 + }, + { + "start": 22022.2, + "end": 22023.36, + "probability": 0.2816 + }, + { + "start": 22023.6, + "end": 22023.6, + "probability": 0.7023 + }, + { + "start": 22023.8, + "end": 22024.74, + "probability": 0.6983 + }, + { + "start": 22024.76, + "end": 22026.22, + "probability": 0.458 + }, + { + "start": 22026.32, + "end": 22026.62, + "probability": 0.9202 + }, + { + "start": 22027.96, + "end": 22029.32, + "probability": 0.421 + }, + { + "start": 22029.38, + "end": 22030.34, + "probability": 0.8509 + }, + { + "start": 22030.52, + "end": 22034.38, + "probability": 0.9302 + }, + { + "start": 22035.72, + "end": 22040.14, + "probability": 0.9749 + }, + { + "start": 22041.14, + "end": 22042.83, + "probability": 0.9966 + }, + { + "start": 22043.36, + "end": 22045.38, + "probability": 0.9373 + }, + { + "start": 22045.64, + "end": 22046.77, + "probability": 0.9873 + }, + { + "start": 22047.44, + "end": 22050.48, + "probability": 0.7342 + }, + { + "start": 22050.88, + "end": 22052.84, + "probability": 0.9576 + }, + { + "start": 22053.2, + "end": 22055.5, + "probability": 0.9639 + }, + { + "start": 22055.84, + "end": 22059.74, + "probability": 0.8749 + }, + { + "start": 22060.08, + "end": 22061.0, + "probability": 0.901 + }, + { + "start": 22061.08, + "end": 22062.82, + "probability": 0.9718 + }, + { + "start": 22062.9, + "end": 22064.32, + "probability": 0.9849 + }, + { + "start": 22064.68, + "end": 22066.18, + "probability": 0.9899 + }, + { + "start": 22066.72, + "end": 22068.4, + "probability": 0.9736 + }, + { + "start": 22069.18, + "end": 22071.52, + "probability": 0.9919 + }, + { + "start": 22071.52, + "end": 22076.3, + "probability": 0.9963 + }, + { + "start": 22076.74, + "end": 22077.58, + "probability": 0.7165 + }, + { + "start": 22077.74, + "end": 22078.36, + "probability": 0.9088 + }, + { + "start": 22078.9, + "end": 22080.48, + "probability": 0.9941 + }, + { + "start": 22080.66, + "end": 22083.76, + "probability": 0.7734 + }, + { + "start": 22083.94, + "end": 22084.22, + "probability": 0.8098 + }, + { + "start": 22084.3, + "end": 22085.06, + "probability": 0.4511 + }, + { + "start": 22085.4, + "end": 22088.22, + "probability": 0.9116 + }, + { + "start": 22088.3, + "end": 22092.64, + "probability": 0.9497 + }, + { + "start": 22092.64, + "end": 22094.34, + "probability": 0.8446 + }, + { + "start": 22094.36, + "end": 22096.52, + "probability": 0.9895 + }, + { + "start": 22096.54, + "end": 22098.42, + "probability": 0.8278 + }, + { + "start": 22098.62, + "end": 22099.2, + "probability": 0.9387 + }, + { + "start": 22099.72, + "end": 22101.86, + "probability": 0.9506 + }, + { + "start": 22102.46, + "end": 22103.2, + "probability": 0.915 + }, + { + "start": 22103.26, + "end": 22103.76, + "probability": 0.8308 + }, + { + "start": 22103.78, + "end": 22105.9, + "probability": 0.9816 + }, + { + "start": 22106.24, + "end": 22106.96, + "probability": 0.7712 + }, + { + "start": 22107.04, + "end": 22109.7, + "probability": 0.9549 + }, + { + "start": 22109.74, + "end": 22113.56, + "probability": 0.9812 + }, + { + "start": 22114.88, + "end": 22115.42, + "probability": 0.9104 + }, + { + "start": 22115.54, + "end": 22118.78, + "probability": 0.8996 + }, + { + "start": 22119.24, + "end": 22122.46, + "probability": 0.9949 + }, + { + "start": 22122.84, + "end": 22125.7, + "probability": 0.9969 + }, + { + "start": 22126.04, + "end": 22130.24, + "probability": 0.9945 + }, + { + "start": 22130.58, + "end": 22133.02, + "probability": 0.856 + }, + { + "start": 22133.34, + "end": 22135.08, + "probability": 0.9844 + }, + { + "start": 22135.54, + "end": 22138.58, + "probability": 0.9955 + }, + { + "start": 22139.14, + "end": 22140.08, + "probability": 0.9814 + }, + { + "start": 22140.18, + "end": 22144.14, + "probability": 0.9607 + }, + { + "start": 22145.0, + "end": 22147.44, + "probability": 0.9287 + }, + { + "start": 22147.6, + "end": 22150.68, + "probability": 0.9937 + }, + { + "start": 22151.2, + "end": 22152.34, + "probability": 0.9657 + }, + { + "start": 22152.44, + "end": 22156.74, + "probability": 0.9849 + }, + { + "start": 22157.08, + "end": 22158.16, + "probability": 0.7688 + }, + { + "start": 22158.34, + "end": 22158.66, + "probability": 0.5106 + }, + { + "start": 22158.88, + "end": 22160.78, + "probability": 0.9909 + }, + { + "start": 22161.0, + "end": 22164.02, + "probability": 0.9897 + }, + { + "start": 22164.06, + "end": 22164.92, + "probability": 0.6562 + }, + { + "start": 22165.66, + "end": 22169.0, + "probability": 0.9517 + }, + { + "start": 22170.1, + "end": 22175.24, + "probability": 0.9981 + }, + { + "start": 22176.41, + "end": 22183.48, + "probability": 0.999 + }, + { + "start": 22183.64, + "end": 22187.12, + "probability": 0.9796 + }, + { + "start": 22187.7, + "end": 22190.14, + "probability": 0.9623 + }, + { + "start": 22190.76, + "end": 22191.68, + "probability": 0.5703 + }, + { + "start": 22192.6, + "end": 22195.36, + "probability": 0.8606 + }, + { + "start": 22196.38, + "end": 22202.0, + "probability": 0.998 + }, + { + "start": 22202.82, + "end": 22207.92, + "probability": 0.9914 + }, + { + "start": 22208.02, + "end": 22210.76, + "probability": 0.9563 + }, + { + "start": 22211.82, + "end": 22215.34, + "probability": 0.553 + }, + { + "start": 22215.82, + "end": 22219.48, + "probability": 0.9735 + }, + { + "start": 22219.86, + "end": 22222.36, + "probability": 0.9311 + }, + { + "start": 22222.36, + "end": 22225.22, + "probability": 0.9979 + }, + { + "start": 22225.72, + "end": 22228.3, + "probability": 0.952 + }, + { + "start": 22228.54, + "end": 22230.92, + "probability": 0.9934 + }, + { + "start": 22231.1, + "end": 22231.56, + "probability": 0.8527 + }, + { + "start": 22231.88, + "end": 22233.42, + "probability": 0.7331 + }, + { + "start": 22233.68, + "end": 22237.49, + "probability": 0.9446 + }, + { + "start": 22254.7, + "end": 22255.26, + "probability": 0.9189 + }, + { + "start": 22255.9, + "end": 22255.9, + "probability": 0.2589 + }, + { + "start": 22255.9, + "end": 22263.5, + "probability": 0.9054 + }, + { + "start": 22264.36, + "end": 22266.24, + "probability": 0.9639 + }, + { + "start": 22266.88, + "end": 22271.7, + "probability": 0.9939 + }, + { + "start": 22272.72, + "end": 22274.98, + "probability": 0.9678 + }, + { + "start": 22275.68, + "end": 22279.38, + "probability": 0.9795 + }, + { + "start": 22279.52, + "end": 22280.54, + "probability": 0.6902 + }, + { + "start": 22280.72, + "end": 22281.54, + "probability": 0.8696 + }, + { + "start": 22281.74, + "end": 22282.25, + "probability": 0.8479 + }, + { + "start": 22283.38, + "end": 22286.06, + "probability": 0.934 + }, + { + "start": 22287.36, + "end": 22289.84, + "probability": 0.8811 + }, + { + "start": 22290.62, + "end": 22292.52, + "probability": 0.9878 + }, + { + "start": 22293.5, + "end": 22297.14, + "probability": 0.9227 + }, + { + "start": 22297.62, + "end": 22303.36, + "probability": 0.9719 + }, + { + "start": 22304.28, + "end": 22308.3, + "probability": 0.9591 + }, + { + "start": 22308.52, + "end": 22310.93, + "probability": 0.9721 + }, + { + "start": 22312.34, + "end": 22315.43, + "probability": 0.7773 + }, + { + "start": 22316.06, + "end": 22323.7, + "probability": 0.9893 + }, + { + "start": 22323.8, + "end": 22325.38, + "probability": 0.929 + }, + { + "start": 22325.98, + "end": 22331.42, + "probability": 0.986 + }, + { + "start": 22331.92, + "end": 22335.9, + "probability": 0.9867 + }, + { + "start": 22336.5, + "end": 22338.58, + "probability": 0.8407 + }, + { + "start": 22339.08, + "end": 22344.6, + "probability": 0.9933 + }, + { + "start": 22344.6, + "end": 22349.0, + "probability": 0.9915 + }, + { + "start": 22349.34, + "end": 22349.5, + "probability": 0.4707 + }, + { + "start": 22350.8, + "end": 22350.8, + "probability": 0.0826 + }, + { + "start": 22350.8, + "end": 22351.7, + "probability": 0.7376 + }, + { + "start": 22352.96, + "end": 22358.1, + "probability": 0.985 + }, + { + "start": 22358.52, + "end": 22359.39, + "probability": 0.9976 + }, + { + "start": 22359.74, + "end": 22360.64, + "probability": 0.9507 + }, + { + "start": 22361.36, + "end": 22365.46, + "probability": 0.9294 + }, + { + "start": 22367.45, + "end": 22367.96, + "probability": 0.1232 + }, + { + "start": 22369.44, + "end": 22369.62, + "probability": 0.0678 + }, + { + "start": 22369.62, + "end": 22372.2, + "probability": 0.6835 + }, + { + "start": 22372.56, + "end": 22375.34, + "probability": 0.8582 + }, + { + "start": 22375.9, + "end": 22377.24, + "probability": 0.9951 + }, + { + "start": 22377.59, + "end": 22378.14, + "probability": 0.9352 + }, + { + "start": 22378.2, + "end": 22379.64, + "probability": 0.992 + }, + { + "start": 22380.04, + "end": 22383.0, + "probability": 0.9569 + }, + { + "start": 22383.88, + "end": 22388.16, + "probability": 0.9837 + }, + { + "start": 22388.8, + "end": 22390.36, + "probability": 0.7321 + }, + { + "start": 22390.98, + "end": 22391.1, + "probability": 0.6814 + }, + { + "start": 22391.18, + "end": 22392.44, + "probability": 0.9369 + }, + { + "start": 22392.8, + "end": 22393.86, + "probability": 0.8914 + }, + { + "start": 22394.3, + "end": 22398.5, + "probability": 0.9947 + }, + { + "start": 22399.08, + "end": 22403.56, + "probability": 0.8385 + }, + { + "start": 22404.08, + "end": 22405.32, + "probability": 0.859 + }, + { + "start": 22405.44, + "end": 22410.26, + "probability": 0.9648 + }, + { + "start": 22410.38, + "end": 22412.8, + "probability": 0.9912 + }, + { + "start": 22412.92, + "end": 22413.34, + "probability": 0.7587 + }, + { + "start": 22414.12, + "end": 22416.5, + "probability": 0.8878 + }, + { + "start": 22416.6, + "end": 22420.94, + "probability": 0.9237 + }, + { + "start": 22437.32, + "end": 22437.69, + "probability": 0.5585 + }, + { + "start": 22445.52, + "end": 22448.26, + "probability": 0.6766 + }, + { + "start": 22449.3, + "end": 22451.24, + "probability": 0.9956 + }, + { + "start": 22451.34, + "end": 22455.14, + "probability": 0.9958 + }, + { + "start": 22455.38, + "end": 22457.0, + "probability": 0.9878 + }, + { + "start": 22457.6, + "end": 22458.28, + "probability": 0.9314 + }, + { + "start": 22458.62, + "end": 22458.78, + "probability": 0.4443 + }, + { + "start": 22458.86, + "end": 22459.1, + "probability": 0.3521 + }, + { + "start": 22460.1, + "end": 22463.19, + "probability": 0.9688 + }, + { + "start": 22465.18, + "end": 22471.23, + "probability": 0.9776 + }, + { + "start": 22472.2, + "end": 22473.88, + "probability": 0.945 + }, + { + "start": 22474.42, + "end": 22478.12, + "probability": 0.9302 + }, + { + "start": 22478.52, + "end": 22483.3, + "probability": 0.9045 + }, + { + "start": 22483.88, + "end": 22485.74, + "probability": 0.9788 + }, + { + "start": 22486.58, + "end": 22490.32, + "probability": 0.9939 + }, + { + "start": 22490.5, + "end": 22493.98, + "probability": 0.957 + }, + { + "start": 22494.56, + "end": 22496.46, + "probability": 0.9948 + }, + { + "start": 22496.54, + "end": 22496.76, + "probability": 0.8001 + }, + { + "start": 22497.34, + "end": 22502.54, + "probability": 0.9955 + }, + { + "start": 22502.78, + "end": 22504.14, + "probability": 0.9134 + }, + { + "start": 22504.96, + "end": 22506.96, + "probability": 0.9333 + }, + { + "start": 22508.06, + "end": 22510.2, + "probability": 0.9695 + }, + { + "start": 22510.9, + "end": 22512.6, + "probability": 0.9644 + }, + { + "start": 22513.66, + "end": 22516.24, + "probability": 0.9372 + }, + { + "start": 22517.06, + "end": 22522.02, + "probability": 0.9775 + }, + { + "start": 22522.02, + "end": 22526.3, + "probability": 0.9083 + }, + { + "start": 22526.84, + "end": 22529.64, + "probability": 0.9514 + }, + { + "start": 22530.1, + "end": 22532.24, + "probability": 0.9951 + }, + { + "start": 22532.36, + "end": 22533.68, + "probability": 0.8288 + }, + { + "start": 22533.76, + "end": 22534.98, + "probability": 0.7234 + }, + { + "start": 22535.36, + "end": 22535.82, + "probability": 0.4004 + }, + { + "start": 22535.86, + "end": 22537.58, + "probability": 0.9631 + }, + { + "start": 22538.64, + "end": 22539.1, + "probability": 0.8432 + }, + { + "start": 22539.16, + "end": 22544.4, + "probability": 0.9956 + }, + { + "start": 22544.56, + "end": 22546.48, + "probability": 0.7656 + }, + { + "start": 22547.08, + "end": 22549.84, + "probability": 0.9927 + }, + { + "start": 22550.36, + "end": 22551.46, + "probability": 0.8592 + }, + { + "start": 22552.22, + "end": 22554.0, + "probability": 0.9945 + }, + { + "start": 22554.94, + "end": 22558.3, + "probability": 0.9902 + }, + { + "start": 22558.99, + "end": 22561.98, + "probability": 0.9926 + }, + { + "start": 22562.78, + "end": 22564.94, + "probability": 0.9895 + }, + { + "start": 22566.34, + "end": 22566.86, + "probability": 0.7052 + }, + { + "start": 22567.56, + "end": 22568.96, + "probability": 0.8755 + }, + { + "start": 22569.96, + "end": 22573.2, + "probability": 0.9703 + }, + { + "start": 22573.42, + "end": 22576.24, + "probability": 0.7662 + }, + { + "start": 22576.24, + "end": 22579.0, + "probability": 0.9977 + }, + { + "start": 22579.52, + "end": 22580.48, + "probability": 0.5633 + }, + { + "start": 22581.08, + "end": 22585.66, + "probability": 0.9759 + }, + { + "start": 22586.08, + "end": 22587.48, + "probability": 0.5535 + }, + { + "start": 22587.62, + "end": 22588.72, + "probability": 0.9526 + }, + { + "start": 22589.0, + "end": 22590.78, + "probability": 0.9095 + }, + { + "start": 22591.18, + "end": 22594.6, + "probability": 0.9753 + }, + { + "start": 22595.3, + "end": 22597.6, + "probability": 0.981 + }, + { + "start": 22598.32, + "end": 22601.86, + "probability": 0.9984 + }, + { + "start": 22602.7, + "end": 22606.18, + "probability": 0.9814 + }, + { + "start": 22606.18, + "end": 22609.72, + "probability": 0.9932 + }, + { + "start": 22610.08, + "end": 22612.3, + "probability": 0.9917 + }, + { + "start": 22612.94, + "end": 22615.98, + "probability": 0.7779 + }, + { + "start": 22616.2, + "end": 22616.94, + "probability": 0.6367 + }, + { + "start": 22617.0, + "end": 22618.5, + "probability": 0.8098 + }, + { + "start": 22620.16, + "end": 22621.16, + "probability": 0.7036 + }, + { + "start": 22621.36, + "end": 22621.68, + "probability": 0.3033 + }, + { + "start": 22621.68, + "end": 22622.8, + "probability": 0.8066 + }, + { + "start": 22622.96, + "end": 22623.54, + "probability": 0.1475 + }, + { + "start": 22623.62, + "end": 22627.64, + "probability": 0.9609 + }, + { + "start": 22628.14, + "end": 22628.66, + "probability": 0.0682 + }, + { + "start": 22628.66, + "end": 22629.58, + "probability": 0.5834 + }, + { + "start": 22629.84, + "end": 22631.18, + "probability": 0.9072 + }, + { + "start": 22631.56, + "end": 22634.58, + "probability": 0.7749 + }, + { + "start": 22634.58, + "end": 22637.42, + "probability": 0.9798 + }, + { + "start": 22637.78, + "end": 22640.76, + "probability": 0.9933 + }, + { + "start": 22641.02, + "end": 22641.98, + "probability": 0.9897 + }, + { + "start": 22642.34, + "end": 22645.88, + "probability": 0.9049 + }, + { + "start": 22646.0, + "end": 22647.3, + "probability": 0.9797 + }, + { + "start": 22647.78, + "end": 22650.86, + "probability": 0.9945 + }, + { + "start": 22651.3, + "end": 22654.34, + "probability": 0.9854 + }, + { + "start": 22654.8, + "end": 22654.98, + "probability": 0.1131 + }, + { + "start": 22654.98, + "end": 22658.28, + "probability": 0.9846 + }, + { + "start": 22658.28, + "end": 22661.08, + "probability": 0.9977 + }, + { + "start": 22661.4, + "end": 22662.42, + "probability": 0.597 + }, + { + "start": 22662.94, + "end": 22667.5, + "probability": 0.8854 + }, + { + "start": 22667.62, + "end": 22668.4, + "probability": 0.6171 + }, + { + "start": 22668.6, + "end": 22672.4, + "probability": 0.9846 + }, + { + "start": 22672.6, + "end": 22674.8, + "probability": 0.992 + }, + { + "start": 22675.02, + "end": 22675.4, + "probability": 0.6248 + }, + { + "start": 22676.02, + "end": 22677.13, + "probability": 0.8554 + }, + { + "start": 22677.88, + "end": 22683.02, + "probability": 0.8955 + }, + { + "start": 22684.98, + "end": 22689.66, + "probability": 0.9355 + }, + { + "start": 22691.75, + "end": 22696.18, + "probability": 0.9981 + }, + { + "start": 22697.42, + "end": 22698.42, + "probability": 0.4832 + }, + { + "start": 22698.96, + "end": 22698.96, + "probability": 0.2385 + }, + { + "start": 22698.96, + "end": 22702.2, + "probability": 0.7238 + }, + { + "start": 22703.96, + "end": 22704.43, + "probability": 0.5494 + }, + { + "start": 22708.1, + "end": 22708.32, + "probability": 0.1626 + }, + { + "start": 22708.9, + "end": 22709.4, + "probability": 0.006 + }, + { + "start": 22709.4, + "end": 22710.98, + "probability": 0.3333 + }, + { + "start": 22710.98, + "end": 22711.72, + "probability": 0.2028 + }, + { + "start": 22711.9, + "end": 22712.48, + "probability": 0.1432 + }, + { + "start": 22712.48, + "end": 22713.7, + "probability": 0.0887 + }, + { + "start": 22713.7, + "end": 22713.7, + "probability": 0.2962 + }, + { + "start": 22713.7, + "end": 22713.7, + "probability": 0.2804 + }, + { + "start": 22713.7, + "end": 22714.46, + "probability": 0.2464 + }, + { + "start": 22714.7, + "end": 22716.66, + "probability": 0.2066 + }, + { + "start": 22716.78, + "end": 22718.64, + "probability": 0.2453 + }, + { + "start": 22718.64, + "end": 22718.64, + "probability": 0.1185 + }, + { + "start": 22718.64, + "end": 22718.84, + "probability": 0.0967 + }, + { + "start": 22719.12, + "end": 22719.8, + "probability": 0.0684 + }, + { + "start": 22719.8, + "end": 22723.34, + "probability": 0.17 + }, + { + "start": 22723.54, + "end": 22723.89, + "probability": 0.0546 + }, + { + "start": 22724.2, + "end": 22724.2, + "probability": 0.1071 + }, + { + "start": 22724.2, + "end": 22724.86, + "probability": 0.3983 + }, + { + "start": 22725.78, + "end": 22727.62, + "probability": 0.2194 + }, + { + "start": 22727.78, + "end": 22728.22, + "probability": 0.3669 + }, + { + "start": 22729.14, + "end": 22732.12, + "probability": 0.1865 + }, + { + "start": 22732.12, + "end": 22732.82, + "probability": 0.3126 + }, + { + "start": 22732.92, + "end": 22737.58, + "probability": 0.5235 + }, + { + "start": 22737.7, + "end": 22739.3, + "probability": 0.5427 + }, + { + "start": 22739.52, + "end": 22739.52, + "probability": 0.2622 + }, + { + "start": 22739.82, + "end": 22744.78, + "probability": 0.9934 + }, + { + "start": 22745.08, + "end": 22746.9, + "probability": 0.9965 + }, + { + "start": 22747.06, + "end": 22751.3, + "probability": 0.9837 + }, + { + "start": 22751.38, + "end": 22752.34, + "probability": 0.4537 + }, + { + "start": 22752.6, + "end": 22753.8, + "probability": 0.9545 + }, + { + "start": 22753.86, + "end": 22754.63, + "probability": 0.8906 + }, + { + "start": 22755.06, + "end": 22756.68, + "probability": 0.9984 + }, + { + "start": 22756.96, + "end": 22757.14, + "probability": 0.6274 + }, + { + "start": 22757.34, + "end": 22758.62, + "probability": 0.601 + }, + { + "start": 22758.66, + "end": 22761.8, + "probability": 0.8812 + }, + { + "start": 22761.86, + "end": 22762.34, + "probability": 0.4342 + }, + { + "start": 22762.88, + "end": 22763.48, + "probability": 0.8851 + }, + { + "start": 22765.9, + "end": 22766.14, + "probability": 0.4005 + }, + { + "start": 22770.82, + "end": 22774.9, + "probability": 0.9813 + }, + { + "start": 22775.36, + "end": 22776.18, + "probability": 0.7122 + }, + { + "start": 22776.72, + "end": 22777.68, + "probability": 0.9416 + }, + { + "start": 22777.72, + "end": 22779.64, + "probability": 0.9875 + }, + { + "start": 22779.88, + "end": 22780.92, + "probability": 0.5334 + }, + { + "start": 22781.6, + "end": 22783.72, + "probability": 0.0156 + }, + { + "start": 22783.94, + "end": 22786.74, + "probability": 0.2207 + }, + { + "start": 22786.74, + "end": 22787.34, + "probability": 0.3797 + }, + { + "start": 22787.34, + "end": 22787.42, + "probability": 0.175 + }, + { + "start": 22787.56, + "end": 22787.76, + "probability": 0.0592 + }, + { + "start": 22787.76, + "end": 22789.48, + "probability": 0.7263 + }, + { + "start": 22789.48, + "end": 22790.62, + "probability": 0.7876 + }, + { + "start": 22790.62, + "end": 22791.08, + "probability": 0.0442 + }, + { + "start": 22792.24, + "end": 22793.02, + "probability": 0.2061 + }, + { + "start": 22793.58, + "end": 22796.78, + "probability": 0.2532 + }, + { + "start": 22797.84, + "end": 22798.56, + "probability": 0.0531 + }, + { + "start": 22798.56, + "end": 22798.56, + "probability": 0.0437 + }, + { + "start": 22798.56, + "end": 22798.56, + "probability": 0.1795 + }, + { + "start": 22798.56, + "end": 22798.56, + "probability": 0.0652 + }, + { + "start": 22798.56, + "end": 22798.56, + "probability": 0.0602 + }, + { + "start": 22798.56, + "end": 22799.4, + "probability": 0.5172 + }, + { + "start": 22800.06, + "end": 22801.08, + "probability": 0.4671 + }, + { + "start": 22801.14, + "end": 22802.98, + "probability": 0.8491 + }, + { + "start": 22803.12, + "end": 22805.18, + "probability": 0.7172 + }, + { + "start": 22811.22, + "end": 22811.5, + "probability": 0.1478 + }, + { + "start": 22811.5, + "end": 22811.6, + "probability": 0.0657 + }, + { + "start": 22811.6, + "end": 22811.6, + "probability": 0.0417 + }, + { + "start": 22811.6, + "end": 22813.98, + "probability": 0.5557 + }, + { + "start": 22814.58, + "end": 22818.58, + "probability": 0.6233 + }, + { + "start": 22820.2, + "end": 22820.2, + "probability": 0.0793 + }, + { + "start": 22820.2, + "end": 22822.58, + "probability": 0.7468 + }, + { + "start": 22822.72, + "end": 22823.49, + "probability": 0.862 + }, + { + "start": 22824.34, + "end": 22825.48, + "probability": 0.226 + }, + { + "start": 22825.58, + "end": 22826.54, + "probability": 0.9485 + }, + { + "start": 22826.94, + "end": 22831.62, + "probability": 0.99 + }, + { + "start": 22832.18, + "end": 22836.1, + "probability": 0.3786 + }, + { + "start": 22836.1, + "end": 22836.22, + "probability": 0.0994 + }, + { + "start": 22836.22, + "end": 22836.22, + "probability": 0.2035 + }, + { + "start": 22836.22, + "end": 22839.26, + "probability": 0.4126 + }, + { + "start": 22839.36, + "end": 22844.84, + "probability": 0.9787 + }, + { + "start": 22845.28, + "end": 22850.26, + "probability": 0.9142 + }, + { + "start": 22850.26, + "end": 22850.78, + "probability": 0.0417 + }, + { + "start": 22850.9, + "end": 22854.24, + "probability": 0.0357 + }, + { + "start": 22854.66, + "end": 22854.66, + "probability": 0.0672 + }, + { + "start": 22854.66, + "end": 22854.66, + "probability": 0.0337 + }, + { + "start": 22854.66, + "end": 22854.66, + "probability": 0.3745 + }, + { + "start": 22854.66, + "end": 22854.66, + "probability": 0.2031 + }, + { + "start": 22854.66, + "end": 22857.68, + "probability": 0.7653 + }, + { + "start": 22858.12, + "end": 22861.47, + "probability": 0.8018 + }, + { + "start": 22863.56, + "end": 22864.68, + "probability": 0.216 + }, + { + "start": 22864.68, + "end": 22864.68, + "probability": 0.1037 + }, + { + "start": 22864.68, + "end": 22864.68, + "probability": 0.1286 + }, + { + "start": 22864.68, + "end": 22864.9, + "probability": 0.1888 + }, + { + "start": 22865.06, + "end": 22867.38, + "probability": 0.6624 + }, + { + "start": 22867.5, + "end": 22868.42, + "probability": 0.6767 + }, + { + "start": 22868.54, + "end": 22869.56, + "probability": 0.8429 + }, + { + "start": 22871.38, + "end": 22872.24, + "probability": 0.5373 + }, + { + "start": 22873.58, + "end": 22874.44, + "probability": 0.1226 + }, + { + "start": 22875.34, + "end": 22877.66, + "probability": 0.5295 + }, + { + "start": 22878.1, + "end": 22880.2, + "probability": 0.1627 + }, + { + "start": 22880.96, + "end": 22885.12, + "probability": 0.67 + }, + { + "start": 22886.14, + "end": 22887.76, + "probability": 0.9453 + }, + { + "start": 22888.76, + "end": 22889.71, + "probability": 0.7868 + }, + { + "start": 22890.92, + "end": 22891.72, + "probability": 0.2615 + }, + { + "start": 22891.72, + "end": 22892.74, + "probability": 0.1287 + }, + { + "start": 22893.1, + "end": 22898.68, + "probability": 0.9536 + }, + { + "start": 22899.2, + "end": 22900.73, + "probability": 0.9963 + }, + { + "start": 22901.36, + "end": 22902.62, + "probability": 0.6675 + }, + { + "start": 22903.64, + "end": 22907.04, + "probability": 0.9785 + }, + { + "start": 22907.24, + "end": 22907.78, + "probability": 0.9705 + }, + { + "start": 22908.34, + "end": 22908.9, + "probability": 0.9375 + }, + { + "start": 22909.02, + "end": 22910.7, + "probability": 0.7441 + }, + { + "start": 22910.82, + "end": 22913.64, + "probability": 0.7745 + }, + { + "start": 22913.92, + "end": 22915.66, + "probability": 0.9004 + }, + { + "start": 22916.36, + "end": 22920.16, + "probability": 0.8188 + }, + { + "start": 22920.88, + "end": 22922.36, + "probability": 0.648 + }, + { + "start": 22922.4, + "end": 22925.02, + "probability": 0.3065 + }, + { + "start": 22925.16, + "end": 22928.28, + "probability": 0.9204 + }, + { + "start": 22928.38, + "end": 22929.62, + "probability": 0.5974 + }, + { + "start": 22930.28, + "end": 22930.88, + "probability": 0.9033 + }, + { + "start": 22930.88, + "end": 22931.86, + "probability": 0.5012 + }, + { + "start": 22931.94, + "end": 22934.36, + "probability": 0.8477 + }, + { + "start": 22934.46, + "end": 22939.82, + "probability": 0.9837 + }, + { + "start": 22940.08, + "end": 22941.16, + "probability": 0.1764 + }, + { + "start": 22942.28, + "end": 22944.18, + "probability": 0.6512 + }, + { + "start": 22946.34, + "end": 22946.44, + "probability": 0.1557 + }, + { + "start": 22946.44, + "end": 22946.44, + "probability": 0.1203 + }, + { + "start": 22946.44, + "end": 22948.02, + "probability": 0.0651 + }, + { + "start": 22948.06, + "end": 22951.16, + "probability": 0.9198 + }, + { + "start": 22951.76, + "end": 22952.46, + "probability": 0.4793 + }, + { + "start": 22952.58, + "end": 22952.94, + "probability": 0.5017 + }, + { + "start": 22953.02, + "end": 22955.38, + "probability": 0.6098 + }, + { + "start": 22955.84, + "end": 22957.38, + "probability": 0.2663 + }, + { + "start": 22957.64, + "end": 22958.0, + "probability": 0.3564 + }, + { + "start": 22958.0, + "end": 22958.66, + "probability": 0.2219 + }, + { + "start": 22959.72, + "end": 22963.22, + "probability": 0.3202 + }, + { + "start": 22966.2, + "end": 22968.02, + "probability": 0.1831 + }, + { + "start": 22968.7, + "end": 22971.18, + "probability": 0.0904 + }, + { + "start": 22971.54, + "end": 22975.4, + "probability": 0.9125 + }, + { + "start": 22978.13, + "end": 22981.15, + "probability": 0.2956 + }, + { + "start": 22982.42, + "end": 22988.36, + "probability": 0.3772 + }, + { + "start": 22988.36, + "end": 22991.42, + "probability": 0.8058 + }, + { + "start": 22991.6, + "end": 22991.8, + "probability": 0.0855 + }, + { + "start": 22991.8, + "end": 22991.8, + "probability": 0.3717 + }, + { + "start": 22991.8, + "end": 22991.8, + "probability": 0.0503 + }, + { + "start": 22991.8, + "end": 22994.54, + "probability": 0.4314 + }, + { + "start": 22996.5, + "end": 22998.68, + "probability": 0.6467 + }, + { + "start": 23006.6, + "end": 23007.22, + "probability": 0.438 + }, + { + "start": 23007.3, + "end": 23008.42, + "probability": 0.9347 + }, + { + "start": 23009.42, + "end": 23010.54, + "probability": 0.8519 + }, + { + "start": 23011.08, + "end": 23013.1, + "probability": 0.7766 + }, + { + "start": 23014.28, + "end": 23018.12, + "probability": 0.9276 + }, + { + "start": 23018.34, + "end": 23019.28, + "probability": 0.8786 + }, + { + "start": 23019.76, + "end": 23022.18, + "probability": 0.981 + }, + { + "start": 23022.38, + "end": 23025.66, + "probability": 0.9351 + }, + { + "start": 23026.58, + "end": 23030.4, + "probability": 0.8046 + }, + { + "start": 23031.08, + "end": 23031.98, + "probability": 0.6557 + }, + { + "start": 23032.1, + "end": 23036.0, + "probability": 0.9505 + }, + { + "start": 23036.52, + "end": 23039.36, + "probability": 0.9204 + }, + { + "start": 23039.44, + "end": 23045.9, + "probability": 0.9915 + }, + { + "start": 23046.58, + "end": 23047.46, + "probability": 0.3024 + }, + { + "start": 23047.46, + "end": 23051.08, + "probability": 0.964 + }, + { + "start": 23051.52, + "end": 23051.82, + "probability": 0.5169 + }, + { + "start": 23052.3, + "end": 23053.1, + "probability": 0.8967 + }, + { + "start": 23053.12, + "end": 23062.37, + "probability": 0.9824 + }, + { + "start": 23063.48, + "end": 23072.14, + "probability": 0.9888 + }, + { + "start": 23072.66, + "end": 23073.52, + "probability": 0.8833 + }, + { + "start": 23074.52, + "end": 23078.36, + "probability": 0.9868 + }, + { + "start": 23078.84, + "end": 23080.7, + "probability": 0.9866 + }, + { + "start": 23081.46, + "end": 23084.34, + "probability": 0.752 + }, + { + "start": 23084.34, + "end": 23087.7, + "probability": 0.9971 + }, + { + "start": 23088.0, + "end": 23089.32, + "probability": 0.9473 + }, + { + "start": 23089.82, + "end": 23091.82, + "probability": 0.9719 + }, + { + "start": 23092.24, + "end": 23092.48, + "probability": 0.7258 + }, + { + "start": 23092.66, + "end": 23095.76, + "probability": 0.9888 + }, + { + "start": 23096.28, + "end": 23099.34, + "probability": 0.9487 + }, + { + "start": 23099.46, + "end": 23100.84, + "probability": 0.7252 + }, + { + "start": 23100.9, + "end": 23101.74, + "probability": 0.9221 + }, + { + "start": 23102.32, + "end": 23105.56, + "probability": 0.9907 + }, + { + "start": 23106.06, + "end": 23106.68, + "probability": 0.9473 + }, + { + "start": 23106.74, + "end": 23110.1, + "probability": 0.973 + }, + { + "start": 23110.18, + "end": 23112.32, + "probability": 0.9908 + }, + { + "start": 23112.86, + "end": 23113.6, + "probability": 0.9518 + }, + { + "start": 23114.54, + "end": 23117.9, + "probability": 0.9941 + }, + { + "start": 23118.54, + "end": 23122.78, + "probability": 0.9918 + }, + { + "start": 23123.0, + "end": 23127.48, + "probability": 0.9767 + }, + { + "start": 23127.48, + "end": 23132.4, + "probability": 0.9982 + }, + { + "start": 23133.06, + "end": 23134.26, + "probability": 0.8978 + }, + { + "start": 23134.48, + "end": 23135.24, + "probability": 0.8355 + }, + { + "start": 23135.34, + "end": 23137.32, + "probability": 0.9629 + }, + { + "start": 23137.86, + "end": 23141.08, + "probability": 0.9873 + }, + { + "start": 23142.34, + "end": 23145.86, + "probability": 0.9927 + }, + { + "start": 23146.12, + "end": 23147.58, + "probability": 0.9388 + }, + { + "start": 23148.12, + "end": 23149.82, + "probability": 0.954 + }, + { + "start": 23150.28, + "end": 23152.28, + "probability": 0.9829 + }, + { + "start": 23152.66, + "end": 23159.06, + "probability": 0.9932 + }, + { + "start": 23159.8, + "end": 23163.72, + "probability": 0.9966 + }, + { + "start": 23164.52, + "end": 23165.6, + "probability": 0.8514 + }, + { + "start": 23166.0, + "end": 23171.1, + "probability": 0.9806 + }, + { + "start": 23171.6, + "end": 23172.32, + "probability": 0.6066 + }, + { + "start": 23172.74, + "end": 23174.7, + "probability": 0.9759 + }, + { + "start": 23175.26, + "end": 23177.44, + "probability": 0.9758 + }, + { + "start": 23177.84, + "end": 23179.16, + "probability": 0.8606 + }, + { + "start": 23179.24, + "end": 23180.12, + "probability": 0.9712 + }, + { + "start": 23180.22, + "end": 23184.14, + "probability": 0.9146 + }, + { + "start": 23184.3, + "end": 23189.79, + "probability": 0.9995 + }, + { + "start": 23190.12, + "end": 23195.56, + "probability": 0.9939 + }, + { + "start": 23196.82, + "end": 23196.82, + "probability": 0.2516 + }, + { + "start": 23196.82, + "end": 23196.84, + "probability": 0.4167 + }, + { + "start": 23196.84, + "end": 23197.26, + "probability": 0.5671 + }, + { + "start": 23197.56, + "end": 23200.4, + "probability": 0.9861 + }, + { + "start": 23200.46, + "end": 23201.54, + "probability": 0.8518 + }, + { + "start": 23201.78, + "end": 23202.16, + "probability": 0.9451 + }, + { + "start": 23202.52, + "end": 23202.88, + "probability": 0.2652 + }, + { + "start": 23205.36, + "end": 23208.12, + "probability": 0.7388 + }, + { + "start": 23214.62, + "end": 23216.14, + "probability": 0.7057 + }, + { + "start": 23217.0, + "end": 23218.34, + "probability": 0.7262 + }, + { + "start": 23218.86, + "end": 23220.07, + "probability": 0.7376 + }, + { + "start": 23221.6, + "end": 23224.34, + "probability": 0.8255 + }, + { + "start": 23225.1, + "end": 23230.77, + "probability": 0.9709 + }, + { + "start": 23232.34, + "end": 23233.12, + "probability": 0.5725 + }, + { + "start": 23233.44, + "end": 23235.44, + "probability": 0.905 + }, + { + "start": 23235.5, + "end": 23237.92, + "probability": 0.9871 + }, + { + "start": 23239.34, + "end": 23239.98, + "probability": 0.8266 + }, + { + "start": 23240.66, + "end": 23242.88, + "probability": 0.8867 + }, + { + "start": 23243.5, + "end": 23244.02, + "probability": 0.6623 + }, + { + "start": 23244.74, + "end": 23248.22, + "probability": 0.9766 + }, + { + "start": 23249.98, + "end": 23255.25, + "probability": 0.814 + }, + { + "start": 23255.3, + "end": 23260.74, + "probability": 0.9949 + }, + { + "start": 23261.32, + "end": 23267.1, + "probability": 0.9656 + }, + { + "start": 23267.44, + "end": 23267.8, + "probability": 0.9247 + }, + { + "start": 23268.6, + "end": 23272.06, + "probability": 0.6164 + }, + { + "start": 23273.04, + "end": 23277.3, + "probability": 0.8812 + }, + { + "start": 23278.32, + "end": 23278.92, + "probability": 0.4804 + }, + { + "start": 23279.62, + "end": 23283.22, + "probability": 0.9922 + }, + { + "start": 23283.5, + "end": 23284.94, + "probability": 0.9977 + }, + { + "start": 23285.46, + "end": 23288.24, + "probability": 0.6871 + }, + { + "start": 23289.38, + "end": 23291.46, + "probability": 0.8662 + }, + { + "start": 23291.64, + "end": 23293.65, + "probability": 0.7704 + }, + { + "start": 23294.38, + "end": 23295.6, + "probability": 0.7103 + }, + { + "start": 23296.38, + "end": 23297.16, + "probability": 0.8196 + }, + { + "start": 23297.7, + "end": 23299.02, + "probability": 0.9897 + }, + { + "start": 23299.5, + "end": 23299.88, + "probability": 0.771 + }, + { + "start": 23300.6, + "end": 23302.38, + "probability": 0.9084 + }, + { + "start": 23302.96, + "end": 23307.34, + "probability": 0.8571 + }, + { + "start": 23307.88, + "end": 23309.8, + "probability": 0.7192 + }, + { + "start": 23310.34, + "end": 23311.52, + "probability": 0.6263 + }, + { + "start": 23312.08, + "end": 23314.58, + "probability": 0.9681 + }, + { + "start": 23315.08, + "end": 23315.92, + "probability": 0.891 + }, + { + "start": 23316.7, + "end": 23319.32, + "probability": 0.9289 + }, + { + "start": 23319.88, + "end": 23321.94, + "probability": 0.9878 + }, + { + "start": 23322.58, + "end": 23322.96, + "probability": 0.7512 + }, + { + "start": 23323.08, + "end": 23323.86, + "probability": 0.8844 + }, + { + "start": 23324.24, + "end": 23326.8, + "probability": 0.9273 + }, + { + "start": 23327.92, + "end": 23329.0, + "probability": 0.9755 + }, + { + "start": 23329.34, + "end": 23330.34, + "probability": 0.9875 + }, + { + "start": 23330.76, + "end": 23332.0, + "probability": 0.9837 + }, + { + "start": 23332.1, + "end": 23333.34, + "probability": 0.9615 + }, + { + "start": 23334.34, + "end": 23339.54, + "probability": 0.9915 + }, + { + "start": 23340.12, + "end": 23345.98, + "probability": 0.9612 + }, + { + "start": 23346.56, + "end": 23347.42, + "probability": 0.875 + }, + { + "start": 23347.94, + "end": 23348.54, + "probability": 0.7708 + }, + { + "start": 23349.16, + "end": 23353.76, + "probability": 0.8615 + }, + { + "start": 23355.2, + "end": 23358.8, + "probability": 0.7488 + }, + { + "start": 23359.3, + "end": 23361.56, + "probability": 0.8462 + }, + { + "start": 23362.3, + "end": 23366.16, + "probability": 0.9851 + }, + { + "start": 23367.38, + "end": 23367.44, + "probability": 0.4101 + }, + { + "start": 23367.5, + "end": 23367.8, + "probability": 0.4848 + }, + { + "start": 23367.84, + "end": 23368.9, + "probability": 0.9688 + }, + { + "start": 23369.4, + "end": 23370.24, + "probability": 0.7611 + }, + { + "start": 23370.5, + "end": 23371.98, + "probability": 0.7612 + }, + { + "start": 23372.7, + "end": 23377.3, + "probability": 0.9965 + }, + { + "start": 23377.78, + "end": 23378.02, + "probability": 0.4542 + }, + { + "start": 23378.72, + "end": 23381.48, + "probability": 0.9004 + }, + { + "start": 23382.08, + "end": 23384.82, + "probability": 0.9604 + }, + { + "start": 23385.24, + "end": 23386.0, + "probability": 0.5592 + }, + { + "start": 23386.34, + "end": 23388.82, + "probability": 0.9066 + }, + { + "start": 23389.24, + "end": 23391.76, + "probability": 0.9622 + }, + { + "start": 23391.84, + "end": 23396.94, + "probability": 0.9346 + }, + { + "start": 23397.46, + "end": 23399.2, + "probability": 0.7458 + }, + { + "start": 23399.3, + "end": 23400.0, + "probability": 0.8612 + }, + { + "start": 23400.44, + "end": 23408.0, + "probability": 0.9905 + }, + { + "start": 23408.38, + "end": 23408.56, + "probability": 0.9194 + }, + { + "start": 23410.0, + "end": 23411.89, + "probability": 0.5274 + }, + { + "start": 23412.16, + "end": 23414.64, + "probability": 0.9578 + }, + { + "start": 23415.44, + "end": 23418.26, + "probability": 0.8948 + }, + { + "start": 23420.72, + "end": 23422.62, + "probability": 0.6454 + }, + { + "start": 23431.8, + "end": 23434.76, + "probability": 0.5695 + }, + { + "start": 23436.5, + "end": 23441.92, + "probability": 0.9668 + }, + { + "start": 23443.48, + "end": 23448.16, + "probability": 0.9835 + }, + { + "start": 23448.76, + "end": 23450.2, + "probability": 0.9775 + }, + { + "start": 23451.22, + "end": 23453.72, + "probability": 0.6701 + }, + { + "start": 23454.78, + "end": 23457.78, + "probability": 0.9907 + }, + { + "start": 23459.12, + "end": 23462.86, + "probability": 0.9454 + }, + { + "start": 23464.18, + "end": 23466.68, + "probability": 0.9059 + }, + { + "start": 23468.74, + "end": 23473.12, + "probability": 0.9273 + }, + { + "start": 23473.74, + "end": 23476.56, + "probability": 0.9661 + }, + { + "start": 23477.56, + "end": 23481.66, + "probability": 0.8265 + }, + { + "start": 23482.24, + "end": 23482.38, + "probability": 0.5345 + }, + { + "start": 23484.36, + "end": 23485.1, + "probability": 0.9342 + }, + { + "start": 23486.6, + "end": 23487.32, + "probability": 0.8564 + }, + { + "start": 23487.44, + "end": 23489.48, + "probability": 0.769 + }, + { + "start": 23489.52, + "end": 23490.6, + "probability": 0.8623 + }, + { + "start": 23490.66, + "end": 23491.18, + "probability": 0.5273 + }, + { + "start": 23492.94, + "end": 23497.02, + "probability": 0.991 + }, + { + "start": 23497.6, + "end": 23500.12, + "probability": 0.9215 + }, + { + "start": 23500.9, + "end": 23502.32, + "probability": 0.8889 + }, + { + "start": 23503.04, + "end": 23504.72, + "probability": 0.949 + }, + { + "start": 23505.34, + "end": 23506.58, + "probability": 0.9839 + }, + { + "start": 23507.78, + "end": 23508.38, + "probability": 0.9368 + }, + { + "start": 23508.94, + "end": 23512.42, + "probability": 0.9445 + }, + { + "start": 23512.58, + "end": 23513.48, + "probability": 0.9746 + }, + { + "start": 23514.16, + "end": 23515.26, + "probability": 0.812 + }, + { + "start": 23516.04, + "end": 23520.02, + "probability": 0.5752 + }, + { + "start": 23520.12, + "end": 23521.0, + "probability": 0.7928 + }, + { + "start": 23522.1, + "end": 23530.98, + "probability": 0.9872 + }, + { + "start": 23532.02, + "end": 23533.62, + "probability": 0.7723 + }, + { + "start": 23534.82, + "end": 23534.92, + "probability": 0.4728 + }, + { + "start": 23535.56, + "end": 23537.06, + "probability": 0.9082 + }, + { + "start": 23537.18, + "end": 23537.92, + "probability": 0.8255 + }, + { + "start": 23538.08, + "end": 23538.88, + "probability": 0.9833 + }, + { + "start": 23539.26, + "end": 23540.5, + "probability": 0.8937 + }, + { + "start": 23540.98, + "end": 23541.92, + "probability": 0.9855 + }, + { + "start": 23542.08, + "end": 23542.7, + "probability": 0.9447 + }, + { + "start": 23542.92, + "end": 23543.48, + "probability": 0.6281 + }, + { + "start": 23543.54, + "end": 23544.02, + "probability": 0.6278 + }, + { + "start": 23544.5, + "end": 23545.08, + "probability": 0.4969 + }, + { + "start": 23545.24, + "end": 23547.4, + "probability": 0.9327 + }, + { + "start": 23547.58, + "end": 23548.14, + "probability": 0.976 + }, + { + "start": 23548.46, + "end": 23553.72, + "probability": 0.9602 + }, + { + "start": 23554.4, + "end": 23556.57, + "probability": 0.9053 + }, + { + "start": 23557.88, + "end": 23558.58, + "probability": 0.8403 + }, + { + "start": 23560.02, + "end": 23561.58, + "probability": 0.7936 + }, + { + "start": 23562.62, + "end": 23565.18, + "probability": 0.8998 + }, + { + "start": 23566.44, + "end": 23567.86, + "probability": 0.611 + }, + { + "start": 23568.04, + "end": 23571.6, + "probability": 0.932 + }, + { + "start": 23572.64, + "end": 23573.28, + "probability": 0.9852 + }, + { + "start": 23574.7, + "end": 23575.94, + "probability": 0.7546 + }, + { + "start": 23577.24, + "end": 23579.44, + "probability": 0.9982 + }, + { + "start": 23580.8, + "end": 23581.86, + "probability": 0.5137 + }, + { + "start": 23582.7, + "end": 23587.82, + "probability": 0.9739 + }, + { + "start": 23589.3, + "end": 23590.56, + "probability": 0.8228 + }, + { + "start": 23590.76, + "end": 23597.0, + "probability": 0.9577 + }, + { + "start": 23597.76, + "end": 23598.82, + "probability": 0.96 + }, + { + "start": 23599.56, + "end": 23601.88, + "probability": 0.7783 + }, + { + "start": 23602.42, + "end": 23603.48, + "probability": 0.7681 + }, + { + "start": 23604.56, + "end": 23606.08, + "probability": 0.951 + }, + { + "start": 23606.96, + "end": 23608.88, + "probability": 0.9937 + }, + { + "start": 23609.58, + "end": 23611.2, + "probability": 0.7632 + }, + { + "start": 23611.68, + "end": 23613.28, + "probability": 0.8663 + }, + { + "start": 23613.84, + "end": 23618.66, + "probability": 0.7989 + }, + { + "start": 23619.08, + "end": 23620.64, + "probability": 0.7676 + }, + { + "start": 23621.32, + "end": 23623.58, + "probability": 0.9688 + }, + { + "start": 23623.92, + "end": 23624.98, + "probability": 0.638 + }, + { + "start": 23626.0, + "end": 23626.74, + "probability": 0.9005 + }, + { + "start": 23627.88, + "end": 23629.98, + "probability": 0.9414 + }, + { + "start": 23629.98, + "end": 23631.12, + "probability": 0.5178 + }, + { + "start": 23631.34, + "end": 23633.74, + "probability": 0.9106 + }, + { + "start": 23633.96, + "end": 23634.14, + "probability": 0.357 + }, + { + "start": 23635.2, + "end": 23637.58, + "probability": 0.8989 + }, + { + "start": 23638.6, + "end": 23642.84, + "probability": 0.8945 + }, + { + "start": 23643.92, + "end": 23649.76, + "probability": 0.9735 + }, + { + "start": 23649.86, + "end": 23656.32, + "probability": 0.9848 + }, + { + "start": 23657.14, + "end": 23659.26, + "probability": 0.978 + }, + { + "start": 23659.96, + "end": 23662.9, + "probability": 0.9893 + }, + { + "start": 23663.38, + "end": 23666.14, + "probability": 0.8305 + }, + { + "start": 23666.88, + "end": 23668.22, + "probability": 0.4251 + }, + { + "start": 23668.24, + "end": 23670.32, + "probability": 0.8983 + }, + { + "start": 23670.62, + "end": 23674.24, + "probability": 0.9312 + }, + { + "start": 23674.68, + "end": 23677.38, + "probability": 0.2035 + }, + { + "start": 23677.64, + "end": 23677.7, + "probability": 0.3748 + }, + { + "start": 23677.7, + "end": 23682.84, + "probability": 0.8979 + }, + { + "start": 23683.5, + "end": 23685.04, + "probability": 0.5665 + }, + { + "start": 23685.52, + "end": 23690.44, + "probability": 0.946 + }, + { + "start": 23691.42, + "end": 23695.4, + "probability": 0.9272 + }, + { + "start": 23695.54, + "end": 23696.08, + "probability": 0.3208 + }, + { + "start": 23696.08, + "end": 23696.43, + "probability": 0.4068 + }, + { + "start": 23697.66, + "end": 23700.26, + "probability": 0.6631 + }, + { + "start": 23701.06, + "end": 23701.5, + "probability": 0.6761 + }, + { + "start": 23701.84, + "end": 23701.94, + "probability": 0.7774 + }, + { + "start": 23703.92, + "end": 23705.48, + "probability": 0.6233 + }, + { + "start": 23707.36, + "end": 23707.84, + "probability": 0.2745 + }, + { + "start": 23707.84, + "end": 23707.88, + "probability": 0.2227 + }, + { + "start": 23707.88, + "end": 23709.82, + "probability": 0.692 + }, + { + "start": 23710.6, + "end": 23713.04, + "probability": 0.3184 + }, + { + "start": 23715.56, + "end": 23716.46, + "probability": 0.5165 + }, + { + "start": 23716.64, + "end": 23717.0, + "probability": 0.7058 + }, + { + "start": 23717.24, + "end": 23719.78, + "probability": 0.6696 + }, + { + "start": 23719.78, + "end": 23720.36, + "probability": 0.2189 + }, + { + "start": 23721.94, + "end": 23724.78, + "probability": 0.7807 + }, + { + "start": 23725.16, + "end": 23727.26, + "probability": 0.3766 + }, + { + "start": 23727.88, + "end": 23727.88, + "probability": 0.1325 + }, + { + "start": 23727.88, + "end": 23728.52, + "probability": 0.4278 + }, + { + "start": 23728.88, + "end": 23730.38, + "probability": 0.6751 + }, + { + "start": 23730.98, + "end": 23731.74, + "probability": 0.9801 + }, + { + "start": 23732.68, + "end": 23733.45, + "probability": 0.5316 + }, + { + "start": 23735.58, + "end": 23736.82, + "probability": 0.9175 + }, + { + "start": 23738.42, + "end": 23739.92, + "probability": 0.9924 + }, + { + "start": 23741.16, + "end": 23742.42, + "probability": 0.4363 + }, + { + "start": 23743.62, + "end": 23745.24, + "probability": 0.8535 + }, + { + "start": 23746.22, + "end": 23746.78, + "probability": 0.8779 + }, + { + "start": 23747.78, + "end": 23749.84, + "probability": 0.8741 + }, + { + "start": 23751.92, + "end": 23752.48, + "probability": 0.7258 + }, + { + "start": 23752.64, + "end": 23755.8, + "probability": 0.9951 + }, + { + "start": 23755.92, + "end": 23757.1, + "probability": 0.9249 + }, + { + "start": 23757.9, + "end": 23760.04, + "probability": 0.9969 + }, + { + "start": 23760.2, + "end": 23760.9, + "probability": 0.884 + }, + { + "start": 23762.56, + "end": 23764.78, + "probability": 0.9585 + }, + { + "start": 23766.8, + "end": 23771.58, + "probability": 0.8365 + }, + { + "start": 23772.8, + "end": 23775.58, + "probability": 0.9792 + }, + { + "start": 23788.0, + "end": 23788.9, + "probability": 0.0381 + }, + { + "start": 23788.9, + "end": 23788.9, + "probability": 0.0429 + }, + { + "start": 23788.9, + "end": 23792.08, + "probability": 0.2769 + }, + { + "start": 23793.8, + "end": 23797.92, + "probability": 0.9513 + }, + { + "start": 23798.68, + "end": 23799.84, + "probability": 0.813 + }, + { + "start": 23800.3, + "end": 23801.42, + "probability": 0.8397 + }, + { + "start": 23801.7, + "end": 23803.84, + "probability": 0.9761 + }, + { + "start": 23804.32, + "end": 23805.48, + "probability": 0.8466 + }, + { + "start": 23807.04, + "end": 23807.58, + "probability": 0.4783 + }, + { + "start": 23808.34, + "end": 23812.36, + "probability": 0.9622 + }, + { + "start": 23813.02, + "end": 23813.86, + "probability": 0.6345 + }, + { + "start": 23814.52, + "end": 23816.14, + "probability": 0.8955 + }, + { + "start": 23818.96, + "end": 23819.62, + "probability": 0.6348 + }, + { + "start": 23819.76, + "end": 23820.32, + "probability": 0.9043 + }, + { + "start": 23820.58, + "end": 23822.7, + "probability": 0.992 + }, + { + "start": 23823.62, + "end": 23825.82, + "probability": 0.9381 + }, + { + "start": 23826.6, + "end": 23827.62, + "probability": 0.936 + }, + { + "start": 23827.86, + "end": 23828.24, + "probability": 0.9882 + }, + { + "start": 23828.4, + "end": 23828.94, + "probability": 0.996 + }, + { + "start": 23829.06, + "end": 23829.66, + "probability": 0.9963 + }, + { + "start": 23829.72, + "end": 23830.62, + "probability": 0.971 + }, + { + "start": 23831.82, + "end": 23833.58, + "probability": 0.9614 + }, + { + "start": 23835.14, + "end": 23835.38, + "probability": 0.5281 + }, + { + "start": 23836.36, + "end": 23839.48, + "probability": 0.8917 + }, + { + "start": 23839.48, + "end": 23842.52, + "probability": 0.98 + }, + { + "start": 23843.34, + "end": 23846.72, + "probability": 0.9504 + }, + { + "start": 23848.66, + "end": 23852.6, + "probability": 0.9945 + }, + { + "start": 23852.6, + "end": 23857.62, + "probability": 0.9978 + }, + { + "start": 23859.12, + "end": 23860.28, + "probability": 0.9041 + }, + { + "start": 23861.72, + "end": 23862.9, + "probability": 0.6937 + }, + { + "start": 23863.58, + "end": 23865.36, + "probability": 0.5148 + }, + { + "start": 23866.08, + "end": 23867.16, + "probability": 0.9232 + }, + { + "start": 23870.06, + "end": 23871.06, + "probability": 0.8384 + }, + { + "start": 23871.94, + "end": 23873.12, + "probability": 0.7245 + }, + { + "start": 23873.94, + "end": 23876.26, + "probability": 0.8938 + }, + { + "start": 23877.88, + "end": 23879.16, + "probability": 0.9684 + }, + { + "start": 23880.18, + "end": 23881.04, + "probability": 0.9377 + }, + { + "start": 23882.54, + "end": 23883.34, + "probability": 0.9235 + }, + { + "start": 23884.38, + "end": 23887.16, + "probability": 0.8506 + }, + { + "start": 23887.52, + "end": 23888.06, + "probability": 0.9288 + }, + { + "start": 23888.4, + "end": 23892.14, + "probability": 0.9951 + }, + { + "start": 23892.8, + "end": 23895.35, + "probability": 0.8805 + }, + { + "start": 23895.98, + "end": 23901.04, + "probability": 0.9184 + }, + { + "start": 23901.04, + "end": 23903.74, + "probability": 0.973 + }, + { + "start": 23904.46, + "end": 23906.9, + "probability": 0.8891 + }, + { + "start": 23907.2, + "end": 23908.88, + "probability": 0.2848 + }, + { + "start": 23909.28, + "end": 23911.59, + "probability": 0.4623 + }, + { + "start": 23912.74, + "end": 23914.38, + "probability": 0.1173 + }, + { + "start": 23914.62, + "end": 23916.9, + "probability": 0.7674 + }, + { + "start": 23918.29, + "end": 23922.22, + "probability": 0.8696 + }, + { + "start": 23922.4, + "end": 23923.72, + "probability": 0.8245 + }, + { + "start": 23924.16, + "end": 23925.64, + "probability": 0.9713 + }, + { + "start": 23926.24, + "end": 23928.32, + "probability": 0.5967 + }, + { + "start": 23928.94, + "end": 23930.24, + "probability": 0.6097 + }, + { + "start": 23930.4, + "end": 23931.64, + "probability": 0.9718 + }, + { + "start": 23932.16, + "end": 23933.8, + "probability": 0.9036 + }, + { + "start": 23934.06, + "end": 23935.34, + "probability": 0.8693 + }, + { + "start": 23936.7, + "end": 23939.08, + "probability": 0.9876 + }, + { + "start": 23940.68, + "end": 23942.88, + "probability": 0.9826 + }, + { + "start": 23945.16, + "end": 23949.6, + "probability": 0.9348 + }, + { + "start": 23950.9, + "end": 23954.32, + "probability": 0.8258 + }, + { + "start": 23956.0, + "end": 23957.62, + "probability": 0.9526 + }, + { + "start": 23959.24, + "end": 23960.7, + "probability": 0.8171 + }, + { + "start": 23961.52, + "end": 23965.66, + "probability": 0.8571 + }, + { + "start": 23966.34, + "end": 23969.42, + "probability": 0.8521 + }, + { + "start": 23970.74, + "end": 23973.24, + "probability": 0.9938 + }, + { + "start": 23974.06, + "end": 23975.44, + "probability": 0.9917 + }, + { + "start": 23976.06, + "end": 23979.12, + "probability": 0.9688 + }, + { + "start": 23979.62, + "end": 23983.52, + "probability": 0.9427 + }, + { + "start": 23983.52, + "end": 23988.16, + "probability": 0.9801 + }, + { + "start": 23989.12, + "end": 23991.52, + "probability": 0.8963 + }, + { + "start": 23993.28, + "end": 23993.82, + "probability": 0.8975 + }, + { + "start": 23993.84, + "end": 23996.28, + "probability": 0.9984 + }, + { + "start": 23996.58, + "end": 23997.48, + "probability": 0.9385 + }, + { + "start": 23997.8, + "end": 24000.3, + "probability": 0.9917 + }, + { + "start": 24001.84, + "end": 24003.14, + "probability": 0.9402 + }, + { + "start": 24006.92, + "end": 24009.0, + "probability": 0.9485 + }, + { + "start": 24009.74, + "end": 24013.38, + "probability": 0.9931 + }, + { + "start": 24013.9, + "end": 24016.02, + "probability": 0.9829 + }, + { + "start": 24016.62, + "end": 24021.34, + "probability": 0.9229 + }, + { + "start": 24023.26, + "end": 24026.62, + "probability": 0.9421 + }, + { + "start": 24027.2, + "end": 24029.14, + "probability": 0.8027 + }, + { + "start": 24029.62, + "end": 24032.38, + "probability": 0.8528 + }, + { + "start": 24032.5, + "end": 24033.98, + "probability": 0.7046 + }, + { + "start": 24035.34, + "end": 24038.56, + "probability": 0.9871 + }, + { + "start": 24039.4, + "end": 24039.92, + "probability": 0.7024 + }, + { + "start": 24040.52, + "end": 24041.4, + "probability": 0.8714 + }, + { + "start": 24041.5, + "end": 24046.0, + "probability": 0.9937 + }, + { + "start": 24046.78, + "end": 24047.42, + "probability": 0.1804 + }, + { + "start": 24048.78, + "end": 24050.12, + "probability": 0.9808 + }, + { + "start": 24050.22, + "end": 24050.94, + "probability": 0.8876 + }, + { + "start": 24051.02, + "end": 24053.52, + "probability": 0.9928 + }, + { + "start": 24054.36, + "end": 24054.86, + "probability": 0.7144 + }, + { + "start": 24055.58, + "end": 24057.78, + "probability": 0.9639 + }, + { + "start": 24058.56, + "end": 24060.52, + "probability": 0.6158 + }, + { + "start": 24061.3, + "end": 24062.6, + "probability": 0.7678 + }, + { + "start": 24063.06, + "end": 24066.04, + "probability": 0.9097 + }, + { + "start": 24068.42, + "end": 24068.82, + "probability": 0.7488 + }, + { + "start": 24068.86, + "end": 24072.98, + "probability": 0.9961 + }, + { + "start": 24073.84, + "end": 24075.24, + "probability": 0.7701 + }, + { + "start": 24075.88, + "end": 24077.42, + "probability": 0.9657 + }, + { + "start": 24077.98, + "end": 24079.24, + "probability": 0.8742 + }, + { + "start": 24079.86, + "end": 24082.6, + "probability": 0.9854 + }, + { + "start": 24083.26, + "end": 24084.04, + "probability": 0.9842 + }, + { + "start": 24084.98, + "end": 24085.48, + "probability": 0.3874 + }, + { + "start": 24085.48, + "end": 24086.52, + "probability": 0.6039 + }, + { + "start": 24087.1, + "end": 24092.92, + "probability": 0.9823 + }, + { + "start": 24093.68, + "end": 24093.92, + "probability": 0.2181 + }, + { + "start": 24094.04, + "end": 24095.32, + "probability": 0.9235 + }, + { + "start": 24098.56, + "end": 24100.88, + "probability": 0.9893 + }, + { + "start": 24100.96, + "end": 24101.5, + "probability": 0.5948 + }, + { + "start": 24101.54, + "end": 24106.9, + "probability": 0.991 + }, + { + "start": 24108.12, + "end": 24109.92, + "probability": 0.6779 + }, + { + "start": 24112.58, + "end": 24112.94, + "probability": 0.515 + }, + { + "start": 24114.18, + "end": 24116.86, + "probability": 0.9507 + }, + { + "start": 24117.62, + "end": 24117.92, + "probability": 0.785 + }, + { + "start": 24119.7, + "end": 24122.34, + "probability": 0.9334 + }, + { + "start": 24122.98, + "end": 24124.48, + "probability": 0.8691 + }, + { + "start": 24125.18, + "end": 24128.42, + "probability": 0.9376 + }, + { + "start": 24130.12, + "end": 24131.82, + "probability": 0.5613 + }, + { + "start": 24132.3, + "end": 24133.28, + "probability": 0.9396 + }, + { + "start": 24134.82, + "end": 24135.38, + "probability": 0.693 + }, + { + "start": 24135.5, + "end": 24137.28, + "probability": 0.8517 + }, + { + "start": 24137.42, + "end": 24138.31, + "probability": 0.8978 + }, + { + "start": 24139.04, + "end": 24141.52, + "probability": 0.9639 + }, + { + "start": 24141.96, + "end": 24148.04, + "probability": 0.9771 + }, + { + "start": 24148.04, + "end": 24149.54, + "probability": 0.8094 + }, + { + "start": 24150.08, + "end": 24151.26, + "probability": 0.8461 + }, + { + "start": 24152.08, + "end": 24154.74, + "probability": 0.9859 + }, + { + "start": 24154.86, + "end": 24155.91, + "probability": 0.9486 + }, + { + "start": 24156.86, + "end": 24160.04, + "probability": 0.9974 + }, + { + "start": 24160.14, + "end": 24160.66, + "probability": 0.7055 + }, + { + "start": 24161.72, + "end": 24162.32, + "probability": 0.9593 + }, + { + "start": 24163.86, + "end": 24165.51, + "probability": 0.8662 + }, + { + "start": 24165.88, + "end": 24170.4, + "probability": 0.9237 + }, + { + "start": 24171.12, + "end": 24171.98, + "probability": 0.7419 + }, + { + "start": 24173.54, + "end": 24175.42, + "probability": 0.8286 + }, + { + "start": 24175.66, + "end": 24177.24, + "probability": 0.8159 + }, + { + "start": 24177.42, + "end": 24177.92, + "probability": 0.2201 + }, + { + "start": 24180.74, + "end": 24184.26, + "probability": 0.5423 + }, + { + "start": 24184.9, + "end": 24186.07, + "probability": 0.2926 + }, + { + "start": 24187.04, + "end": 24188.4, + "probability": 0.3346 + }, + { + "start": 24188.9, + "end": 24188.92, + "probability": 0.0039 + }, + { + "start": 24191.24, + "end": 24191.4, + "probability": 0.1738 + }, + { + "start": 24191.4, + "end": 24191.4, + "probability": 0.1226 + }, + { + "start": 24191.4, + "end": 24191.4, + "probability": 0.0182 + }, + { + "start": 24191.4, + "end": 24193.03, + "probability": 0.2141 + }, + { + "start": 24193.14, + "end": 24193.7, + "probability": 0.637 + }, + { + "start": 24194.32, + "end": 24194.86, + "probability": 0.7368 + }, + { + "start": 24195.64, + "end": 24197.22, + "probability": 0.8379 + }, + { + "start": 24198.08, + "end": 24199.24, + "probability": 0.1492 + }, + { + "start": 24202.09, + "end": 24205.38, + "probability": 0.5237 + }, + { + "start": 24206.04, + "end": 24208.5, + "probability": 0.9629 + }, + { + "start": 24208.5, + "end": 24210.68, + "probability": 0.9945 + }, + { + "start": 24211.32, + "end": 24213.04, + "probability": 0.9834 + }, + { + "start": 24213.12, + "end": 24214.34, + "probability": 0.9102 + }, + { + "start": 24214.58, + "end": 24215.22, + "probability": 0.6082 + }, + { + "start": 24216.96, + "end": 24218.84, + "probability": 0.9867 + }, + { + "start": 24219.6, + "end": 24220.74, + "probability": 0.7686 + }, + { + "start": 24220.76, + "end": 24223.62, + "probability": 0.7491 + }, + { + "start": 24224.18, + "end": 24224.72, + "probability": 0.8957 + }, + { + "start": 24225.24, + "end": 24226.4, + "probability": 0.9788 + }, + { + "start": 24226.5, + "end": 24227.26, + "probability": 0.8884 + }, + { + "start": 24227.72, + "end": 24228.18, + "probability": 0.3043 + }, + { + "start": 24228.32, + "end": 24228.86, + "probability": 0.8796 + }, + { + "start": 24236.06, + "end": 24236.94, + "probability": 0.7104 + }, + { + "start": 24238.78, + "end": 24239.96, + "probability": 0.7277 + }, + { + "start": 24241.58, + "end": 24244.46, + "probability": 0.6738 + }, + { + "start": 24245.28, + "end": 24245.74, + "probability": 0.8553 + }, + { + "start": 24246.64, + "end": 24247.76, + "probability": 0.5575 + }, + { + "start": 24249.04, + "end": 24250.26, + "probability": 0.8677 + }, + { + "start": 24251.32, + "end": 24253.14, + "probability": 0.994 + }, + { + "start": 24253.52, + "end": 24259.3, + "probability": 0.8999 + }, + { + "start": 24259.3, + "end": 24260.96, + "probability": 0.9206 + }, + { + "start": 24261.62, + "end": 24262.34, + "probability": 0.7897 + }, + { + "start": 24263.15, + "end": 24264.92, + "probability": 0.8724 + }, + { + "start": 24265.0, + "end": 24270.84, + "probability": 0.9336 + }, + { + "start": 24272.5, + "end": 24274.3, + "probability": 0.9896 + }, + { + "start": 24275.52, + "end": 24276.74, + "probability": 0.8108 + }, + { + "start": 24277.86, + "end": 24283.46, + "probability": 0.8959 + }, + { + "start": 24283.76, + "end": 24284.38, + "probability": 0.9858 + }, + { + "start": 24284.98, + "end": 24287.02, + "probability": 0.9946 + }, + { + "start": 24288.18, + "end": 24290.88, + "probability": 0.6974 + }, + { + "start": 24291.46, + "end": 24294.88, + "probability": 0.8081 + }, + { + "start": 24295.26, + "end": 24296.2, + "probability": 0.9125 + }, + { + "start": 24297.12, + "end": 24297.44, + "probability": 0.3677 + }, + { + "start": 24300.2, + "end": 24300.92, + "probability": 0.2195 + }, + { + "start": 24302.3, + "end": 24309.34, + "probability": 0.5249 + }, + { + "start": 24309.54, + "end": 24315.0, + "probability": 0.6959 + }, + { + "start": 24315.68, + "end": 24321.66, + "probability": 0.7102 + }, + { + "start": 24321.98, + "end": 24322.46, + "probability": 0.7136 + }, + { + "start": 24322.54, + "end": 24322.8, + "probability": 0.4722 + }, + { + "start": 24323.0, + "end": 24327.46, + "probability": 0.4953 + }, + { + "start": 24328.6, + "end": 24330.21, + "probability": 0.08 + }, + { + "start": 24331.82, + "end": 24333.02, + "probability": 0.7568 + }, + { + "start": 24333.54, + "end": 24333.82, + "probability": 0.725 + }, + { + "start": 24333.9, + "end": 24334.84, + "probability": 0.6624 + }, + { + "start": 24334.84, + "end": 24335.58, + "probability": 0.7881 + }, + { + "start": 24335.72, + "end": 24336.72, + "probability": 0.7129 + }, + { + "start": 24336.82, + "end": 24338.06, + "probability": 0.3995 + }, + { + "start": 24340.68, + "end": 24342.3, + "probability": 0.5579 + }, + { + "start": 24342.3, + "end": 24343.84, + "probability": 0.0982 + }, + { + "start": 24344.28, + "end": 24345.1, + "probability": 0.8149 + }, + { + "start": 24345.42, + "end": 24346.41, + "probability": 0.6944 + }, + { + "start": 24346.72, + "end": 24347.84, + "probability": 0.6977 + }, + { + "start": 24348.5, + "end": 24350.08, + "probability": 0.5947 + }, + { + "start": 24350.84, + "end": 24353.42, + "probability": 0.905 + }, + { + "start": 24353.52, + "end": 24354.52, + "probability": 0.9321 + }, + { + "start": 24355.04, + "end": 24359.74, + "probability": 0.7476 + }, + { + "start": 24360.66, + "end": 24360.98, + "probability": 0.9062 + }, + { + "start": 24361.68, + "end": 24362.74, + "probability": 0.9565 + }, + { + "start": 24362.94, + "end": 24363.08, + "probability": 0.2849 + }, + { + "start": 24363.4, + "end": 24365.38, + "probability": 0.9847 + }, + { + "start": 24365.84, + "end": 24366.98, + "probability": 0.9138 + }, + { + "start": 24367.06, + "end": 24367.38, + "probability": 0.5329 + }, + { + "start": 24367.6, + "end": 24367.88, + "probability": 0.3186 + }, + { + "start": 24368.02, + "end": 24368.64, + "probability": 0.4266 + }, + { + "start": 24368.76, + "end": 24370.5, + "probability": 0.9521 + }, + { + "start": 24374.66, + "end": 24377.32, + "probability": 0.9457 + }, + { + "start": 24378.54, + "end": 24380.24, + "probability": 0.9813 + }, + { + "start": 24380.64, + "end": 24381.38, + "probability": 0.9772 + }, + { + "start": 24383.84, + "end": 24385.04, + "probability": 0.9073 + }, + { + "start": 24387.3, + "end": 24389.34, + "probability": 0.984 + }, + { + "start": 24389.98, + "end": 24391.92, + "probability": 0.7843 + }, + { + "start": 24393.0, + "end": 24397.28, + "probability": 0.9566 + }, + { + "start": 24397.28, + "end": 24399.78, + "probability": 0.6202 + }, + { + "start": 24400.7, + "end": 24402.64, + "probability": 0.9408 + }, + { + "start": 24403.16, + "end": 24404.16, + "probability": 0.8562 + }, + { + "start": 24405.06, + "end": 24407.28, + "probability": 0.658 + }, + { + "start": 24408.12, + "end": 24408.84, + "probability": 0.8134 + }, + { + "start": 24409.02, + "end": 24410.0, + "probability": 0.8894 + }, + { + "start": 24410.5, + "end": 24411.02, + "probability": 0.9298 + }, + { + "start": 24411.44, + "end": 24413.04, + "probability": 0.9508 + }, + { + "start": 24413.68, + "end": 24415.1, + "probability": 0.9186 + }, + { + "start": 24416.12, + "end": 24418.78, + "probability": 0.6973 + }, + { + "start": 24419.54, + "end": 24425.3, + "probability": 0.9799 + }, + { + "start": 24425.84, + "end": 24426.18, + "probability": 0.6104 + }, + { + "start": 24426.36, + "end": 24426.62, + "probability": 0.9085 + }, + { + "start": 24426.76, + "end": 24429.78, + "probability": 0.99 + }, + { + "start": 24431.18, + "end": 24431.5, + "probability": 0.9224 + }, + { + "start": 24432.4, + "end": 24434.59, + "probability": 0.9756 + }, + { + "start": 24435.16, + "end": 24436.65, + "probability": 0.9673 + }, + { + "start": 24439.16, + "end": 24442.0, + "probability": 0.9722 + }, + { + "start": 24443.12, + "end": 24443.84, + "probability": 0.7166 + }, + { + "start": 24444.48, + "end": 24447.24, + "probability": 0.8632 + }, + { + "start": 24448.48, + "end": 24451.26, + "probability": 0.9932 + }, + { + "start": 24452.5, + "end": 24456.22, + "probability": 0.9769 + }, + { + "start": 24457.46, + "end": 24459.27, + "probability": 0.9702 + }, + { + "start": 24459.36, + "end": 24463.26, + "probability": 0.9987 + }, + { + "start": 24463.48, + "end": 24465.32, + "probability": 0.9986 + }, + { + "start": 24465.4, + "end": 24468.36, + "probability": 0.8974 + }, + { + "start": 24468.86, + "end": 24470.04, + "probability": 0.8245 + }, + { + "start": 24470.16, + "end": 24474.36, + "probability": 0.5025 + }, + { + "start": 24475.78, + "end": 24475.86, + "probability": 0.0477 + }, + { + "start": 24475.86, + "end": 24476.02, + "probability": 0.0935 + }, + { + "start": 24476.9, + "end": 24477.6, + "probability": 0.4641 + }, + { + "start": 24478.58, + "end": 24478.7, + "probability": 0.1279 + }, + { + "start": 24478.7, + "end": 24480.24, + "probability": 0.4689 + }, + { + "start": 24481.84, + "end": 24482.64, + "probability": 0.2876 + }, + { + "start": 24484.34, + "end": 24485.67, + "probability": 0.8428 + }, + { + "start": 24486.16, + "end": 24486.24, + "probability": 0.1065 + }, + { + "start": 24487.34, + "end": 24488.5, + "probability": 0.111 + }, + { + "start": 24488.5, + "end": 24491.22, + "probability": 0.3688 + }, + { + "start": 24491.36, + "end": 24491.5, + "probability": 0.186 + }, + { + "start": 24491.52, + "end": 24492.1, + "probability": 0.7838 + }, + { + "start": 24492.34, + "end": 24493.76, + "probability": 0.7476 + }, + { + "start": 24493.76, + "end": 24494.68, + "probability": 0.3915 + }, + { + "start": 24494.8, + "end": 24498.0, + "probability": 0.0406 + }, + { + "start": 24498.0, + "end": 24499.05, + "probability": 0.886 + }, + { + "start": 24500.83, + "end": 24503.16, + "probability": 0.9595 + }, + { + "start": 24503.22, + "end": 24504.2, + "probability": 0.8646 + }, + { + "start": 24504.58, + "end": 24504.9, + "probability": 0.7736 + }, + { + "start": 24506.56, + "end": 24508.19, + "probability": 0.8066 + }, + { + "start": 24508.92, + "end": 24510.56, + "probability": 0.9041 + }, + { + "start": 24511.82, + "end": 24513.98, + "probability": 0.8582 + }, + { + "start": 24515.62, + "end": 24516.2, + "probability": 0.8998 + }, + { + "start": 24517.6, + "end": 24519.68, + "probability": 0.7966 + }, + { + "start": 24521.34, + "end": 24523.2, + "probability": 0.7084 + }, + { + "start": 24523.78, + "end": 24526.2, + "probability": 0.8826 + }, + { + "start": 24526.8, + "end": 24528.92, + "probability": 0.7866 + }, + { + "start": 24529.46, + "end": 24531.2, + "probability": 0.834 + }, + { + "start": 24532.18, + "end": 24533.36, + "probability": 0.6933 + }, + { + "start": 24534.28, + "end": 24535.64, + "probability": 0.8468 + }, + { + "start": 24536.5, + "end": 24539.6, + "probability": 0.9836 + }, + { + "start": 24540.22, + "end": 24541.06, + "probability": 0.7239 + }, + { + "start": 24541.6, + "end": 24543.58, + "probability": 0.7661 + }, + { + "start": 24544.34, + "end": 24544.94, + "probability": 0.9521 + }, + { + "start": 24546.0, + "end": 24547.08, + "probability": 0.6841 + }, + { + "start": 24547.24, + "end": 24548.11, + "probability": 0.4636 + }, + { + "start": 24548.54, + "end": 24548.9, + "probability": 0.3503 + }, + { + "start": 24549.06, + "end": 24549.22, + "probability": 0.519 + }, + { + "start": 24549.72, + "end": 24550.88, + "probability": 0.4277 + }, + { + "start": 24550.98, + "end": 24553.12, + "probability": 0.9617 + }, + { + "start": 24554.12, + "end": 24556.24, + "probability": 0.5585 + }, + { + "start": 24556.94, + "end": 24558.0, + "probability": 0.8376 + }, + { + "start": 24559.02, + "end": 24559.7, + "probability": 0.1653 + }, + { + "start": 24559.74, + "end": 24560.84, + "probability": 0.7528 + }, + { + "start": 24560.92, + "end": 24561.94, + "probability": 0.6152 + }, + { + "start": 24562.02, + "end": 24563.75, + "probability": 0.5539 + }, + { + "start": 24564.41, + "end": 24565.97, + "probability": 0.793 + }, + { + "start": 24566.8, + "end": 24568.78, + "probability": 0.5059 + }, + { + "start": 24568.84, + "end": 24569.68, + "probability": 0.3475 + }, + { + "start": 24569.68, + "end": 24572.44, + "probability": 0.9417 + }, + { + "start": 24572.66, + "end": 24573.14, + "probability": 0.5593 + }, + { + "start": 24574.08, + "end": 24575.04, + "probability": 0.5115 + }, + { + "start": 24575.04, + "end": 24575.98, + "probability": 0.767 + }, + { + "start": 24576.96, + "end": 24577.46, + "probability": 0.0696 + }, + { + "start": 24578.18, + "end": 24581.1, + "probability": 0.7086 + }, + { + "start": 24581.54, + "end": 24582.46, + "probability": 0.293 + }, + { + "start": 24582.8, + "end": 24583.14, + "probability": 0.2266 + }, + { + "start": 24583.14, + "end": 24588.86, + "probability": 0.661 + }, + { + "start": 24589.16, + "end": 24595.32, + "probability": 0.7087 + }, + { + "start": 24595.46, + "end": 24595.76, + "probability": 0.4345 + }, + { + "start": 24596.04, + "end": 24597.08, + "probability": 0.2788 + }, + { + "start": 24597.08, + "end": 24600.12, + "probability": 0.9294 + }, + { + "start": 24602.28, + "end": 24602.42, + "probability": 0.104 + }, + { + "start": 24602.42, + "end": 24602.42, + "probability": 0.1418 + }, + { + "start": 24602.42, + "end": 24605.68, + "probability": 0.6973 + }, + { + "start": 24606.22, + "end": 24607.28, + "probability": 0.9595 + }, + { + "start": 24608.02, + "end": 24609.88, + "probability": 0.9716 + }, + { + "start": 24611.24, + "end": 24612.02, + "probability": 0.8014 + }, + { + "start": 24612.14, + "end": 24612.14, + "probability": 0.1413 + }, + { + "start": 24612.14, + "end": 24612.9, + "probability": 0.803 + }, + { + "start": 24613.02, + "end": 24614.57, + "probability": 0.1008 + }, + { + "start": 24617.88, + "end": 24618.12, + "probability": 0.0113 + }, + { + "start": 24618.12, + "end": 24618.12, + "probability": 0.3224 + }, + { + "start": 24618.2, + "end": 24622.34, + "probability": 0.9797 + }, + { + "start": 24622.54, + "end": 24623.38, + "probability": 0.6801 + }, + { + "start": 24623.44, + "end": 24623.96, + "probability": 0.5033 + }, + { + "start": 24624.7, + "end": 24629.8, + "probability": 0.4936 + }, + { + "start": 24630.2, + "end": 24635.54, + "probability": 0.7549 + }, + { + "start": 24635.74, + "end": 24636.21, + "probability": 0.2622 + }, + { + "start": 24636.6, + "end": 24638.24, + "probability": 0.578 + }, + { + "start": 24639.22, + "end": 24643.04, + "probability": 0.8325 + }, + { + "start": 24659.26, + "end": 24659.26, + "probability": 0.4647 + }, + { + "start": 24659.26, + "end": 24659.5, + "probability": 0.6243 + }, + { + "start": 24662.02, + "end": 24664.18, + "probability": 0.7993 + }, + { + "start": 24665.1, + "end": 24666.7, + "probability": 0.9026 + }, + { + "start": 24668.52, + "end": 24671.88, + "probability": 0.9725 + }, + { + "start": 24672.94, + "end": 24674.94, + "probability": 0.9741 + }, + { + "start": 24676.02, + "end": 24677.52, + "probability": 0.9692 + }, + { + "start": 24678.3, + "end": 24680.54, + "probability": 0.8992 + }, + { + "start": 24681.88, + "end": 24688.1, + "probability": 0.984 + }, + { + "start": 24688.1, + "end": 24693.56, + "probability": 0.9914 + }, + { + "start": 24695.22, + "end": 24699.06, + "probability": 0.7455 + }, + { + "start": 24699.6, + "end": 24703.68, + "probability": 0.6814 + }, + { + "start": 24704.08, + "end": 24706.66, + "probability": 0.9872 + }, + { + "start": 24707.66, + "end": 24708.54, + "probability": 0.8866 + }, + { + "start": 24709.3, + "end": 24712.16, + "probability": 0.8557 + }, + { + "start": 24713.28, + "end": 24715.4, + "probability": 0.9794 + }, + { + "start": 24716.34, + "end": 24718.38, + "probability": 0.97 + }, + { + "start": 24719.28, + "end": 24723.28, + "probability": 0.9485 + }, + { + "start": 24724.36, + "end": 24725.74, + "probability": 0.7964 + }, + { + "start": 24725.94, + "end": 24730.48, + "probability": 0.895 + }, + { + "start": 24730.48, + "end": 24735.62, + "probability": 0.9774 + }, + { + "start": 24735.96, + "end": 24737.06, + "probability": 0.9491 + }, + { + "start": 24737.74, + "end": 24740.04, + "probability": 0.9679 + }, + { + "start": 24741.56, + "end": 24743.54, + "probability": 0.9724 + }, + { + "start": 24744.06, + "end": 24749.86, + "probability": 0.875 + }, + { + "start": 24750.7, + "end": 24751.62, + "probability": 0.9497 + }, + { + "start": 24752.92, + "end": 24757.46, + "probability": 0.9257 + }, + { + "start": 24757.62, + "end": 24762.76, + "probability": 0.9628 + }, + { + "start": 24763.56, + "end": 24764.5, + "probability": 0.6302 + }, + { + "start": 24765.04, + "end": 24766.5, + "probability": 0.9324 + }, + { + "start": 24767.04, + "end": 24767.58, + "probability": 0.8813 + }, + { + "start": 24768.64, + "end": 24773.24, + "probability": 0.9729 + }, + { + "start": 24773.78, + "end": 24774.78, + "probability": 0.4964 + }, + { + "start": 24775.62, + "end": 24778.44, + "probability": 0.9927 + }, + { + "start": 24779.92, + "end": 24784.24, + "probability": 0.9731 + }, + { + "start": 24784.24, + "end": 24789.9, + "probability": 0.9678 + }, + { + "start": 24790.98, + "end": 24792.98, + "probability": 0.9503 + }, + { + "start": 24793.68, + "end": 24797.64, + "probability": 0.9672 + }, + { + "start": 24798.58, + "end": 24799.34, + "probability": 0.9405 + }, + { + "start": 24799.96, + "end": 24803.08, + "probability": 0.9629 + }, + { + "start": 24803.52, + "end": 24804.4, + "probability": 0.974 + }, + { + "start": 24804.94, + "end": 24807.42, + "probability": 0.9827 + }, + { + "start": 24808.3, + "end": 24810.14, + "probability": 0.7425 + }, + { + "start": 24810.72, + "end": 24813.88, + "probability": 0.9835 + }, + { + "start": 24814.48, + "end": 24818.36, + "probability": 0.9182 + }, + { + "start": 24819.18, + "end": 24821.1, + "probability": 0.864 + }, + { + "start": 24822.14, + "end": 24824.92, + "probability": 0.8383 + }, + { + "start": 24826.6, + "end": 24830.04, + "probability": 0.717 + }, + { + "start": 24831.1, + "end": 24832.56, + "probability": 0.6943 + }, + { + "start": 24833.2, + "end": 24839.62, + "probability": 0.8656 + }, + { + "start": 24840.12, + "end": 24842.6, + "probability": 0.9724 + }, + { + "start": 24843.56, + "end": 24845.38, + "probability": 0.9671 + }, + { + "start": 24845.98, + "end": 24846.94, + "probability": 0.8294 + }, + { + "start": 24847.4, + "end": 24850.9, + "probability": 0.9061 + }, + { + "start": 24851.24, + "end": 24855.2, + "probability": 0.9493 + }, + { + "start": 24855.94, + "end": 24861.72, + "probability": 0.8031 + }, + { + "start": 24862.44, + "end": 24865.44, + "probability": 0.9116 + }, + { + "start": 24865.96, + "end": 24871.16, + "probability": 0.9761 + }, + { + "start": 24871.88, + "end": 24874.88, + "probability": 0.9495 + }, + { + "start": 24875.8, + "end": 24877.3, + "probability": 0.9514 + }, + { + "start": 24877.8, + "end": 24879.32, + "probability": 0.8813 + }, + { + "start": 24879.48, + "end": 24880.72, + "probability": 0.9493 + }, + { + "start": 24881.32, + "end": 24883.56, + "probability": 0.9329 + }, + { + "start": 24884.16, + "end": 24888.4, + "probability": 0.9263 + }, + { + "start": 24889.52, + "end": 24893.82, + "probability": 0.8866 + }, + { + "start": 24894.36, + "end": 24896.16, + "probability": 0.9738 + }, + { + "start": 24897.2, + "end": 24901.02, + "probability": 0.953 + }, + { + "start": 24901.46, + "end": 24905.56, + "probability": 0.9429 + }, + { + "start": 24905.56, + "end": 24910.32, + "probability": 0.8835 + }, + { + "start": 24910.98, + "end": 24913.44, + "probability": 0.7366 + }, + { + "start": 24914.08, + "end": 24918.62, + "probability": 0.9426 + }, + { + "start": 24919.16, + "end": 24921.78, + "probability": 0.9845 + }, + { + "start": 24922.88, + "end": 24925.54, + "probability": 0.8949 + }, + { + "start": 24925.98, + "end": 24927.14, + "probability": 0.6071 + }, + { + "start": 24927.7, + "end": 24929.94, + "probability": 0.7254 + }, + { + "start": 24930.58, + "end": 24935.82, + "probability": 0.978 + }, + { + "start": 24936.68, + "end": 24939.06, + "probability": 0.7995 + }, + { + "start": 24939.7, + "end": 24943.18, + "probability": 0.9954 + }, + { + "start": 24943.82, + "end": 24946.16, + "probability": 0.9265 + }, + { + "start": 24946.92, + "end": 24949.92, + "probability": 0.9408 + }, + { + "start": 24951.1, + "end": 24954.0, + "probability": 0.9824 + }, + { + "start": 24954.0, + "end": 24957.7, + "probability": 0.9099 + }, + { + "start": 24957.82, + "end": 24963.0, + "probability": 0.936 + }, + { + "start": 24963.72, + "end": 24968.56, + "probability": 0.9546 + }, + { + "start": 24969.7, + "end": 24972.3, + "probability": 0.8003 + }, + { + "start": 24972.94, + "end": 24976.0, + "probability": 0.9821 + }, + { + "start": 24976.56, + "end": 24979.04, + "probability": 0.9731 + }, + { + "start": 24980.22, + "end": 24982.78, + "probability": 0.8041 + }, + { + "start": 24982.78, + "end": 24985.8, + "probability": 0.9391 + }, + { + "start": 24986.44, + "end": 24988.63, + "probability": 0.9936 + }, + { + "start": 24989.66, + "end": 24994.6, + "probability": 0.9761 + }, + { + "start": 24995.18, + "end": 24996.7, + "probability": 0.9854 + }, + { + "start": 24997.36, + "end": 24998.1, + "probability": 0.9031 + }, + { + "start": 24998.8, + "end": 25000.9, + "probability": 0.9523 + }, + { + "start": 25001.98, + "end": 25006.4, + "probability": 0.936 + }, + { + "start": 25007.0, + "end": 25008.22, + "probability": 0.8063 + }, + { + "start": 25008.8, + "end": 25009.74, + "probability": 0.9529 + }, + { + "start": 25010.54, + "end": 25014.5, + "probability": 0.9844 + }, + { + "start": 25015.28, + "end": 25017.24, + "probability": 0.9254 + }, + { + "start": 25017.84, + "end": 25023.94, + "probability": 0.8968 + }, + { + "start": 25024.92, + "end": 25026.58, + "probability": 0.6641 + }, + { + "start": 25027.6, + "end": 25029.8, + "probability": 0.9079 + }, + { + "start": 25030.68, + "end": 25030.72, + "probability": 0.1028 + }, + { + "start": 25030.72, + "end": 25032.46, + "probability": 0.9634 + }, + { + "start": 25032.86, + "end": 25034.48, + "probability": 0.9609 + }, + { + "start": 25034.9, + "end": 25035.92, + "probability": 0.9363 + }, + { + "start": 25036.58, + "end": 25042.7, + "probability": 0.8966 + }, + { + "start": 25043.04, + "end": 25046.0, + "probability": 0.7036 + }, + { + "start": 25046.56, + "end": 25049.6, + "probability": 0.9821 + }, + { + "start": 25049.6, + "end": 25052.3, + "probability": 0.9727 + }, + { + "start": 25052.86, + "end": 25053.32, + "probability": 0.8472 + }, + { + "start": 25053.86, + "end": 25055.74, + "probability": 0.5216 + }, + { + "start": 25056.1, + "end": 25059.3, + "probability": 0.7558 + }, + { + "start": 25073.44, + "end": 25073.98, + "probability": 0.5056 + }, + { + "start": 25075.15, + "end": 25078.92, + "probability": 0.8747 + }, + { + "start": 25080.86, + "end": 25081.74, + "probability": 0.7454 + }, + { + "start": 25082.66, + "end": 25084.47, + "probability": 0.9666 + }, + { + "start": 25087.23, + "end": 25096.28, + "probability": 0.9631 + }, + { + "start": 25096.4, + "end": 25098.8, + "probability": 0.9896 + }, + { + "start": 25098.94, + "end": 25100.34, + "probability": 0.949 + }, + { + "start": 25101.54, + "end": 25102.78, + "probability": 0.8677 + }, + { + "start": 25105.2, + "end": 25109.06, + "probability": 0.9435 + }, + { + "start": 25109.16, + "end": 25109.94, + "probability": 0.9056 + }, + { + "start": 25110.7, + "end": 25113.56, + "probability": 0.8387 + }, + { + "start": 25114.0, + "end": 25115.5, + "probability": 0.7068 + }, + { + "start": 25117.56, + "end": 25121.34, + "probability": 0.9896 + }, + { + "start": 25122.2, + "end": 25123.52, + "probability": 0.9788 + }, + { + "start": 25123.84, + "end": 25124.54, + "probability": 0.2556 + }, + { + "start": 25125.74, + "end": 25125.74, + "probability": 0.3939 + }, + { + "start": 25125.74, + "end": 25127.02, + "probability": 0.7513 + }, + { + "start": 25127.58, + "end": 25128.02, + "probability": 0.8799 + }, + { + "start": 25129.28, + "end": 25131.68, + "probability": 0.9208 + }, + { + "start": 25132.3, + "end": 25135.5, + "probability": 0.948 + }, + { + "start": 25135.64, + "end": 25137.9, + "probability": 0.8996 + }, + { + "start": 25138.8, + "end": 25145.16, + "probability": 0.975 + }, + { + "start": 25146.68, + "end": 25147.98, + "probability": 0.9961 + }, + { + "start": 25149.04, + "end": 25150.86, + "probability": 0.7517 + }, + { + "start": 25151.52, + "end": 25152.22, + "probability": 0.9661 + }, + { + "start": 25153.02, + "end": 25156.62, + "probability": 0.8679 + }, + { + "start": 25157.38, + "end": 25158.12, + "probability": 0.667 + }, + { + "start": 25159.08, + "end": 25160.7, + "probability": 0.9366 + }, + { + "start": 25162.08, + "end": 25164.64, + "probability": 0.9524 + }, + { + "start": 25166.4, + "end": 25167.37, + "probability": 0.9343 + }, + { + "start": 25168.44, + "end": 25172.8, + "probability": 0.9904 + }, + { + "start": 25173.5, + "end": 25175.18, + "probability": 0.9677 + }, + { + "start": 25175.28, + "end": 25176.54, + "probability": 0.9924 + }, + { + "start": 25176.98, + "end": 25178.04, + "probability": 0.8859 + }, + { + "start": 25178.84, + "end": 25182.8, + "probability": 0.9055 + }, + { + "start": 25182.94, + "end": 25183.56, + "probability": 0.8946 + }, + { + "start": 25183.66, + "end": 25184.26, + "probability": 0.9832 + }, + { + "start": 25184.34, + "end": 25185.18, + "probability": 0.7172 + }, + { + "start": 25186.74, + "end": 25190.36, + "probability": 0.9971 + }, + { + "start": 25190.58, + "end": 25191.5, + "probability": 0.7842 + }, + { + "start": 25191.98, + "end": 25193.66, + "probability": 0.9507 + }, + { + "start": 25193.92, + "end": 25194.52, + "probability": 0.9842 + }, + { + "start": 25195.3, + "end": 25198.16, + "probability": 0.9608 + }, + { + "start": 25199.12, + "end": 25203.58, + "probability": 0.9912 + }, + { + "start": 25203.58, + "end": 25209.2, + "probability": 0.9992 + }, + { + "start": 25210.64, + "end": 25214.72, + "probability": 0.7208 + }, + { + "start": 25215.5, + "end": 25218.92, + "probability": 0.569 + }, + { + "start": 25220.21, + "end": 25224.42, + "probability": 0.3484 + }, + { + "start": 25224.42, + "end": 25226.82, + "probability": 0.9829 + }, + { + "start": 25227.6, + "end": 25228.42, + "probability": 0.6485 + }, + { + "start": 25228.68, + "end": 25228.94, + "probability": 0.7399 + }, + { + "start": 25229.42, + "end": 25230.7, + "probability": 0.8827 + }, + { + "start": 25230.96, + "end": 25231.86, + "probability": 0.8343 + }, + { + "start": 25232.8, + "end": 25233.62, + "probability": 0.8325 + }, + { + "start": 25234.86, + "end": 25239.52, + "probability": 0.9731 + }, + { + "start": 25240.0, + "end": 25244.32, + "probability": 0.8863 + }, + { + "start": 25244.58, + "end": 25248.0, + "probability": 0.7362 + }, + { + "start": 25248.56, + "end": 25248.86, + "probability": 0.5718 + }, + { + "start": 25249.62, + "end": 25252.86, + "probability": 0.9585 + }, + { + "start": 25253.76, + "end": 25255.12, + "probability": 0.9992 + }, + { + "start": 25255.96, + "end": 25256.78, + "probability": 0.9931 + }, + { + "start": 25257.38, + "end": 25263.16, + "probability": 0.9345 + }, + { + "start": 25263.88, + "end": 25264.12, + "probability": 0.5199 + }, + { + "start": 25264.76, + "end": 25265.24, + "probability": 0.9425 + }, + { + "start": 25266.16, + "end": 25267.03, + "probability": 0.5357 + }, + { + "start": 25267.24, + "end": 25269.56, + "probability": 0.9636 + }, + { + "start": 25270.38, + "end": 25276.38, + "probability": 0.9863 + }, + { + "start": 25276.5, + "end": 25277.8, + "probability": 0.9696 + }, + { + "start": 25278.66, + "end": 25281.5, + "probability": 0.9912 + }, + { + "start": 25281.54, + "end": 25282.5, + "probability": 0.9388 + }, + { + "start": 25283.08, + "end": 25283.52, + "probability": 0.6152 + }, + { + "start": 25284.56, + "end": 25287.5, + "probability": 0.8173 + }, + { + "start": 25288.62, + "end": 25289.5, + "probability": 0.9267 + }, + { + "start": 25290.26, + "end": 25292.4, + "probability": 0.979 + }, + { + "start": 25292.46, + "end": 25294.38, + "probability": 0.8997 + }, + { + "start": 25295.58, + "end": 25296.84, + "probability": 0.9517 + }, + { + "start": 25297.26, + "end": 25298.64, + "probability": 0.9704 + }, + { + "start": 25299.44, + "end": 25301.96, + "probability": 0.9925 + }, + { + "start": 25302.42, + "end": 25307.04, + "probability": 0.9944 + }, + { + "start": 25307.2, + "end": 25309.08, + "probability": 0.0647 + }, + { + "start": 25309.08, + "end": 25313.01, + "probability": 0.8325 + }, + { + "start": 25314.04, + "end": 25317.4, + "probability": 0.9536 + }, + { + "start": 25317.98, + "end": 25318.92, + "probability": 0.9585 + }, + { + "start": 25319.6, + "end": 25323.08, + "probability": 0.9655 + }, + { + "start": 25323.52, + "end": 25324.14, + "probability": 0.7715 + }, + { + "start": 25324.4, + "end": 25325.64, + "probability": 0.8501 + }, + { + "start": 25326.32, + "end": 25330.46, + "probability": 0.8223 + }, + { + "start": 25331.28, + "end": 25333.16, + "probability": 0.7997 + }, + { + "start": 25334.38, + "end": 25336.94, + "probability": 0.9084 + }, + { + "start": 25337.1, + "end": 25337.38, + "probability": 0.7605 + }, + { + "start": 25338.48, + "end": 25339.43, + "probability": 0.6713 + }, + { + "start": 25339.8, + "end": 25344.78, + "probability": 0.948 + }, + { + "start": 25344.78, + "end": 25345.24, + "probability": 0.048 + }, + { + "start": 25345.24, + "end": 25347.18, + "probability": 0.5417 + }, + { + "start": 25347.34, + "end": 25350.86, + "probability": 0.215 + }, + { + "start": 25350.94, + "end": 25351.96, + "probability": 0.5054 + }, + { + "start": 25352.54, + "end": 25355.3, + "probability": 0.2623 + }, + { + "start": 25355.38, + "end": 25357.57, + "probability": 0.2367 + }, + { + "start": 25358.02, + "end": 25358.26, + "probability": 0.1659 + }, + { + "start": 25358.42, + "end": 25359.8, + "probability": 0.7452 + }, + { + "start": 25359.9, + "end": 25362.32, + "probability": 0.9834 + }, + { + "start": 25363.12, + "end": 25366.04, + "probability": 0.771 + }, + { + "start": 25367.18, + "end": 25370.66, + "probability": 0.9224 + }, + { + "start": 25371.54, + "end": 25373.2, + "probability": 0.0618 + }, + { + "start": 25373.2, + "end": 25375.28, + "probability": 0.5102 + }, + { + "start": 25375.88, + "end": 25377.12, + "probability": 0.4092 + }, + { + "start": 25377.59, + "end": 25378.92, + "probability": 0.6054 + }, + { + "start": 25387.6, + "end": 25388.4, + "probability": 0.0167 + }, + { + "start": 25388.4, + "end": 25389.42, + "probability": 0.1371 + }, + { + "start": 25389.42, + "end": 25389.46, + "probability": 0.1545 + }, + { + "start": 25389.46, + "end": 25389.66, + "probability": 0.0287 + }, + { + "start": 25406.8, + "end": 25408.18, + "probability": 0.5002 + }, + { + "start": 25409.22, + "end": 25411.08, + "probability": 0.9796 + }, + { + "start": 25411.84, + "end": 25412.62, + "probability": 0.9656 + }, + { + "start": 25413.8, + "end": 25414.9, + "probability": 0.9396 + }, + { + "start": 25416.02, + "end": 25416.74, + "probability": 0.9187 + }, + { + "start": 25417.3, + "end": 25418.06, + "probability": 0.9649 + }, + { + "start": 25418.8, + "end": 25424.3, + "probability": 0.9771 + }, + { + "start": 25426.38, + "end": 25426.82, + "probability": 0.8196 + }, + { + "start": 25427.9, + "end": 25429.94, + "probability": 0.8319 + }, + { + "start": 25431.08, + "end": 25432.9, + "probability": 0.943 + }, + { + "start": 25434.08, + "end": 25435.32, + "probability": 0.7523 + }, + { + "start": 25436.82, + "end": 25439.46, + "probability": 0.8747 + }, + { + "start": 25441.3, + "end": 25443.12, + "probability": 0.9842 + }, + { + "start": 25443.96, + "end": 25448.48, + "probability": 0.6612 + }, + { + "start": 25449.34, + "end": 25450.51, + "probability": 0.9709 + }, + { + "start": 25453.74, + "end": 25453.76, + "probability": 0.8413 + }, + { + "start": 25456.14, + "end": 25457.18, + "probability": 0.9034 + }, + { + "start": 25457.32, + "end": 25463.54, + "probability": 0.7346 + }, + { + "start": 25464.22, + "end": 25464.78, + "probability": 0.8935 + }, + { + "start": 25465.42, + "end": 25466.36, + "probability": 0.9513 + }, + { + "start": 25467.36, + "end": 25469.22, + "probability": 0.7957 + }, + { + "start": 25470.14, + "end": 25472.34, + "probability": 0.9922 + }, + { + "start": 25473.04, + "end": 25477.66, + "probability": 0.926 + }, + { + "start": 25478.38, + "end": 25482.1, + "probability": 0.6037 + }, + { + "start": 25482.66, + "end": 25489.52, + "probability": 0.9797 + }, + { + "start": 25490.08, + "end": 25493.58, + "probability": 0.9976 + }, + { + "start": 25494.68, + "end": 25495.78, + "probability": 0.9956 + }, + { + "start": 25496.4, + "end": 25497.78, + "probability": 0.9771 + }, + { + "start": 25500.4, + "end": 25504.8, + "probability": 0.9945 + }, + { + "start": 25505.34, + "end": 25506.58, + "probability": 0.9922 + }, + { + "start": 25508.02, + "end": 25508.84, + "probability": 0.8472 + }, + { + "start": 25509.44, + "end": 25513.28, + "probability": 0.8875 + }, + { + "start": 25515.3, + "end": 25519.16, + "probability": 0.9012 + }, + { + "start": 25521.46, + "end": 25522.22, + "probability": 0.8447 + }, + { + "start": 25522.94, + "end": 25523.52, + "probability": 0.7894 + }, + { + "start": 25523.82, + "end": 25525.34, + "probability": 0.9015 + }, + { + "start": 25525.56, + "end": 25526.38, + "probability": 0.9399 + }, + { + "start": 25527.62, + "end": 25528.48, + "probability": 0.9795 + }, + { + "start": 25529.38, + "end": 25532.44, + "probability": 0.9917 + }, + { + "start": 25533.06, + "end": 25537.68, + "probability": 0.9927 + }, + { + "start": 25540.06, + "end": 25541.1, + "probability": 0.9946 + }, + { + "start": 25542.84, + "end": 25547.34, + "probability": 0.9551 + }, + { + "start": 25548.16, + "end": 25548.98, + "probability": 0.9284 + }, + { + "start": 25550.0, + "end": 25551.08, + "probability": 0.6838 + }, + { + "start": 25552.62, + "end": 25553.9, + "probability": 0.9919 + }, + { + "start": 25554.78, + "end": 25558.6, + "probability": 0.9922 + }, + { + "start": 25559.66, + "end": 25560.26, + "probability": 0.9305 + }, + { + "start": 25560.82, + "end": 25561.88, + "probability": 0.7578 + }, + { + "start": 25562.42, + "end": 25563.38, + "probability": 0.8201 + }, + { + "start": 25563.44, + "end": 25567.64, + "probability": 0.9567 + }, + { + "start": 25568.5, + "end": 25569.36, + "probability": 0.9976 + }, + { + "start": 25570.14, + "end": 25572.9, + "probability": 0.9373 + }, + { + "start": 25577.0, + "end": 25579.86, + "probability": 0.9241 + }, + { + "start": 25580.7, + "end": 25581.25, + "probability": 0.9844 + }, + { + "start": 25584.51, + "end": 25586.52, + "probability": 0.7916 + }, + { + "start": 25587.42, + "end": 25589.68, + "probability": 0.9165 + }, + { + "start": 25590.74, + "end": 25592.74, + "probability": 0.9645 + }, + { + "start": 25593.18, + "end": 25593.62, + "probability": 0.8353 + }, + { + "start": 25594.72, + "end": 25596.21, + "probability": 0.7744 + }, + { + "start": 25596.59, + "end": 25597.2, + "probability": 0.6641 + }, + { + "start": 25597.9, + "end": 25600.02, + "probability": 0.918 + }, + { + "start": 25601.32, + "end": 25605.8, + "probability": 0.9622 + }, + { + "start": 25606.2, + "end": 25607.72, + "probability": 0.8833 + }, + { + "start": 25608.44, + "end": 25610.06, + "probability": 0.8654 + }, + { + "start": 25610.32, + "end": 25610.98, + "probability": 0.7394 + }, + { + "start": 25611.08, + "end": 25611.36, + "probability": 0.3727 + }, + { + "start": 25611.87, + "end": 25612.5, + "probability": 0.7707 + }, + { + "start": 25612.6, + "end": 25613.0, + "probability": 0.6839 + }, + { + "start": 25613.82, + "end": 25615.26, + "probability": 0.9296 + }, + { + "start": 25616.26, + "end": 25621.42, + "probability": 0.9345 + }, + { + "start": 25621.96, + "end": 25622.53, + "probability": 0.9644 + }, + { + "start": 25623.62, + "end": 25626.68, + "probability": 0.91 + }, + { + "start": 25627.32, + "end": 25628.88, + "probability": 0.9956 + }, + { + "start": 25629.4, + "end": 25629.88, + "probability": 0.8281 + }, + { + "start": 25630.88, + "end": 25634.18, + "probability": 0.9836 + }, + { + "start": 25634.86, + "end": 25641.94, + "probability": 0.9699 + }, + { + "start": 25642.5, + "end": 25643.88, + "probability": 0.8338 + }, + { + "start": 25644.46, + "end": 25645.16, + "probability": 0.4757 + }, + { + "start": 25645.76, + "end": 25648.1, + "probability": 0.9792 + }, + { + "start": 25648.64, + "end": 25650.84, + "probability": 0.7167 + }, + { + "start": 25651.2, + "end": 25652.08, + "probability": 0.8535 + }, + { + "start": 25652.44, + "end": 25653.38, + "probability": 0.9355 + }, + { + "start": 25653.72, + "end": 25654.84, + "probability": 0.8564 + }, + { + "start": 25655.06, + "end": 25655.96, + "probability": 0.7313 + }, + { + "start": 25656.0, + "end": 25657.26, + "probability": 0.1835 + }, + { + "start": 25657.3, + "end": 25657.74, + "probability": 0.5089 + }, + { + "start": 25657.82, + "end": 25660.46, + "probability": 0.8608 + }, + { + "start": 25660.58, + "end": 25660.76, + "probability": 0.8046 + }, + { + "start": 25664.42, + "end": 25664.94, + "probability": 0.6776 + }, + { + "start": 25666.02, + "end": 25670.76, + "probability": 0.5947 + }, + { + "start": 25671.14, + "end": 25672.24, + "probability": 0.9179 + }, + { + "start": 25694.18, + "end": 25695.82, + "probability": 0.5556 + }, + { + "start": 25699.16, + "end": 25700.96, + "probability": 0.4689 + }, + { + "start": 25702.72, + "end": 25703.68, + "probability": 0.8728 + }, + { + "start": 25704.24, + "end": 25705.12, + "probability": 0.8435 + }, + { + "start": 25706.0, + "end": 25706.64, + "probability": 0.9164 + }, + { + "start": 25707.34, + "end": 25710.78, + "probability": 0.6537 + }, + { + "start": 25711.14, + "end": 25712.46, + "probability": 0.7642 + }, + { + "start": 25712.72, + "end": 25714.74, + "probability": 0.8603 + }, + { + "start": 25715.76, + "end": 25717.56, + "probability": 0.9657 + }, + { + "start": 25718.74, + "end": 25719.46, + "probability": 0.6044 + }, + { + "start": 25719.58, + "end": 25720.44, + "probability": 0.7207 + }, + { + "start": 25720.5, + "end": 25721.36, + "probability": 0.7308 + }, + { + "start": 25721.46, + "end": 25722.16, + "probability": 0.8778 + }, + { + "start": 25722.44, + "end": 25723.26, + "probability": 0.6025 + }, + { + "start": 25724.24, + "end": 25726.04, + "probability": 0.9494 + }, + { + "start": 25726.88, + "end": 25727.94, + "probability": 0.982 + }, + { + "start": 25728.52, + "end": 25731.5, + "probability": 0.9334 + }, + { + "start": 25732.12, + "end": 25735.92, + "probability": 0.9777 + }, + { + "start": 25736.66, + "end": 25738.98, + "probability": 0.6653 + }, + { + "start": 25740.92, + "end": 25744.58, + "probability": 0.8659 + }, + { + "start": 25745.6, + "end": 25751.06, + "probability": 0.9582 + }, + { + "start": 25752.0, + "end": 25753.14, + "probability": 0.6617 + }, + { + "start": 25753.22, + "end": 25754.0, + "probability": 0.9474 + }, + { + "start": 25756.1, + "end": 25758.44, + "probability": 0.9961 + }, + { + "start": 25759.4, + "end": 25760.14, + "probability": 0.7582 + }, + { + "start": 25760.82, + "end": 25761.93, + "probability": 0.9954 + }, + { + "start": 25762.86, + "end": 25764.58, + "probability": 0.9277 + }, + { + "start": 25765.4, + "end": 25766.72, + "probability": 0.897 + }, + { + "start": 25767.58, + "end": 25771.1, + "probability": 0.9757 + }, + { + "start": 25772.16, + "end": 25774.22, + "probability": 0.9977 + }, + { + "start": 25775.64, + "end": 25776.34, + "probability": 0.8474 + }, + { + "start": 25778.36, + "end": 25780.6, + "probability": 0.9153 + }, + { + "start": 25782.24, + "end": 25784.15, + "probability": 0.9199 + }, + { + "start": 25784.8, + "end": 25785.38, + "probability": 0.9855 + }, + { + "start": 25785.88, + "end": 25787.9, + "probability": 0.8455 + }, + { + "start": 25788.08, + "end": 25791.76, + "probability": 0.9726 + }, + { + "start": 25791.94, + "end": 25792.92, + "probability": 0.6232 + }, + { + "start": 25794.58, + "end": 25798.86, + "probability": 0.8963 + }, + { + "start": 25801.18, + "end": 25802.52, + "probability": 0.9939 + }, + { + "start": 25803.18, + "end": 25805.6, + "probability": 0.9933 + }, + { + "start": 25806.6, + "end": 25808.05, + "probability": 0.8757 + }, + { + "start": 25809.06, + "end": 25810.34, + "probability": 0.8707 + }, + { + "start": 25811.0, + "end": 25811.72, + "probability": 0.7883 + }, + { + "start": 25812.38, + "end": 25816.2, + "probability": 0.9247 + }, + { + "start": 25817.46, + "end": 25818.88, + "probability": 0.5128 + }, + { + "start": 25820.02, + "end": 25821.64, + "probability": 0.9567 + }, + { + "start": 25821.8, + "end": 25827.54, + "probability": 0.9271 + }, + { + "start": 25829.0, + "end": 25831.14, + "probability": 0.9193 + }, + { + "start": 25832.36, + "end": 25833.14, + "probability": 0.9879 + }, + { + "start": 25834.32, + "end": 25835.12, + "probability": 0.8942 + }, + { + "start": 25836.84, + "end": 25839.66, + "probability": 0.755 + }, + { + "start": 25840.4, + "end": 25844.24, + "probability": 0.991 + }, + { + "start": 25844.66, + "end": 25848.66, + "probability": 0.9976 + }, + { + "start": 25849.18, + "end": 25850.32, + "probability": 0.5272 + }, + { + "start": 25850.84, + "end": 25852.44, + "probability": 0.8923 + }, + { + "start": 25853.28, + "end": 25854.18, + "probability": 0.7283 + }, + { + "start": 25854.9, + "end": 25855.76, + "probability": 0.5345 + }, + { + "start": 25855.94, + "end": 25857.18, + "probability": 0.9525 + }, + { + "start": 25857.26, + "end": 25858.82, + "probability": 0.998 + }, + { + "start": 25859.28, + "end": 25861.08, + "probability": 0.9767 + }, + { + "start": 25861.24, + "end": 25864.3, + "probability": 0.9636 + }, + { + "start": 25865.1, + "end": 25866.46, + "probability": 0.9789 + }, + { + "start": 25868.14, + "end": 25870.58, + "probability": 0.7899 + }, + { + "start": 25871.38, + "end": 25872.8, + "probability": 0.7928 + }, + { + "start": 25874.08, + "end": 25876.28, + "probability": 0.9871 + }, + { + "start": 25877.04, + "end": 25878.46, + "probability": 0.3138 + }, + { + "start": 25878.82, + "end": 25879.08, + "probability": 0.038 + }, + { + "start": 25879.12, + "end": 25879.96, + "probability": 0.8981 + }, + { + "start": 25880.02, + "end": 25882.1, + "probability": 0.9048 + }, + { + "start": 25882.2, + "end": 25884.54, + "probability": 0.9936 + }, + { + "start": 25884.68, + "end": 25885.54, + "probability": 0.8841 + }, + { + "start": 25885.62, + "end": 25886.28, + "probability": 0.6758 + }, + { + "start": 25886.38, + "end": 25887.0, + "probability": 0.9271 + }, + { + "start": 25887.54, + "end": 25889.4, + "probability": 0.897 + }, + { + "start": 25890.18, + "end": 25892.6, + "probability": 0.8072 + }, + { + "start": 25894.08, + "end": 25897.74, + "probability": 0.9888 + }, + { + "start": 25898.2, + "end": 25899.6, + "probability": 0.9801 + }, + { + "start": 25899.68, + "end": 25901.14, + "probability": 0.8916 + }, + { + "start": 25901.74, + "end": 25904.06, + "probability": 0.8242 + }, + { + "start": 25905.14, + "end": 25906.32, + "probability": 0.9105 + }, + { + "start": 25907.02, + "end": 25907.48, + "probability": 0.6388 + }, + { + "start": 25908.2, + "end": 25909.44, + "probability": 0.9855 + }, + { + "start": 25909.94, + "end": 25912.64, + "probability": 0.8784 + }, + { + "start": 25913.04, + "end": 25913.96, + "probability": 0.8535 + }, + { + "start": 25914.78, + "end": 25916.82, + "probability": 0.9907 + }, + { + "start": 25917.36, + "end": 25918.68, + "probability": 0.9853 + }, + { + "start": 25919.98, + "end": 25921.2, + "probability": 0.653 + }, + { + "start": 25922.11, + "end": 25923.2, + "probability": 0.3989 + }, + { + "start": 25923.2, + "end": 25924.1, + "probability": 0.6278 + }, + { + "start": 25924.4, + "end": 25925.4, + "probability": 0.7441 + }, + { + "start": 25926.74, + "end": 25927.7, + "probability": 0.9793 + }, + { + "start": 25929.44, + "end": 25930.14, + "probability": 0.941 + }, + { + "start": 25931.7, + "end": 25932.52, + "probability": 0.916 + }, + { + "start": 25932.56, + "end": 25933.32, + "probability": 0.9752 + }, + { + "start": 25933.44, + "end": 25934.42, + "probability": 0.8081 + }, + { + "start": 25934.9, + "end": 25935.8, + "probability": 0.9663 + }, + { + "start": 25935.9, + "end": 25941.56, + "probability": 0.9573 + }, + { + "start": 25942.9, + "end": 25947.48, + "probability": 0.9817 + }, + { + "start": 25947.62, + "end": 25949.08, + "probability": 0.947 + }, + { + "start": 25949.5, + "end": 25951.98, + "probability": 0.7176 + }, + { + "start": 25952.2, + "end": 25952.2, + "probability": 0.4013 + }, + { + "start": 25952.46, + "end": 25954.72, + "probability": 0.9405 + }, + { + "start": 25954.88, + "end": 25957.9, + "probability": 0.7792 + }, + { + "start": 25958.0, + "end": 25960.54, + "probability": 0.7549 + }, + { + "start": 25960.58, + "end": 25961.64, + "probability": 0.6442 + }, + { + "start": 25961.68, + "end": 25964.78, + "probability": 0.9277 + }, + { + "start": 25965.4, + "end": 25967.62, + "probability": 0.8559 + }, + { + "start": 25967.78, + "end": 25975.88, + "probability": 0.9039 + }, + { + "start": 25976.16, + "end": 25978.54, + "probability": 0.8865 + }, + { + "start": 25979.34, + "end": 25981.24, + "probability": 0.9847 + }, + { + "start": 25982.22, + "end": 25989.8, + "probability": 0.989 + }, + { + "start": 25990.34, + "end": 25993.64, + "probability": 0.9484 + }, + { + "start": 25993.8, + "end": 25994.08, + "probability": 0.7256 + }, + { + "start": 25994.44, + "end": 25995.08, + "probability": 0.7574 + }, + { + "start": 25995.5, + "end": 25997.16, + "probability": 0.908 + }, + { + "start": 26017.58, + "end": 26019.12, + "probability": 0.0852 + }, + { + "start": 26019.62, + "end": 26019.62, + "probability": 0.407 + }, + { + "start": 26019.86, + "end": 26020.34, + "probability": 0.7518 + }, + { + "start": 26020.46, + "end": 26021.58, + "probability": 0.8424 + }, + { + "start": 26021.8, + "end": 26023.44, + "probability": 0.7026 + }, + { + "start": 26023.54, + "end": 26026.02, + "probability": 0.9905 + }, + { + "start": 26026.56, + "end": 26028.42, + "probability": 0.9878 + }, + { + "start": 26029.12, + "end": 26033.62, + "probability": 0.9604 + }, + { + "start": 26034.1, + "end": 26036.16, + "probability": 0.492 + }, + { + "start": 26036.5, + "end": 26038.58, + "probability": 0.8457 + }, + { + "start": 26038.92, + "end": 26042.74, + "probability": 0.8516 + }, + { + "start": 26043.18, + "end": 26044.94, + "probability": 0.8418 + }, + { + "start": 26046.62, + "end": 26051.78, + "probability": 0.6519 + }, + { + "start": 26052.3, + "end": 26052.78, + "probability": 0.9004 + }, + { + "start": 26052.9, + "end": 26056.12, + "probability": 0.9542 + }, + { + "start": 26056.12, + "end": 26061.34, + "probability": 0.8337 + }, + { + "start": 26062.54, + "end": 26066.82, + "probability": 0.9866 + }, + { + "start": 26067.22, + "end": 26069.42, + "probability": 0.9946 + }, + { + "start": 26069.96, + "end": 26073.35, + "probability": 0.8635 + }, + { + "start": 26074.6, + "end": 26075.42, + "probability": 0.7937 + }, + { + "start": 26075.68, + "end": 26076.55, + "probability": 0.9819 + }, + { + "start": 26076.82, + "end": 26078.74, + "probability": 0.7485 + }, + { + "start": 26079.02, + "end": 26081.44, + "probability": 0.5993 + }, + { + "start": 26081.82, + "end": 26082.48, + "probability": 0.9323 + }, + { + "start": 26082.6, + "end": 26083.46, + "probability": 0.7979 + }, + { + "start": 26084.68, + "end": 26086.72, + "probability": 0.853 + }, + { + "start": 26086.84, + "end": 26090.4, + "probability": 0.9893 + }, + { + "start": 26090.7, + "end": 26094.28, + "probability": 0.9124 + }, + { + "start": 26094.3, + "end": 26094.62, + "probability": 0.7717 + }, + { + "start": 26095.22, + "end": 26098.08, + "probability": 0.7362 + }, + { + "start": 26098.14, + "end": 26099.72, + "probability": 0.5967 + }, + { + "start": 26100.1, + "end": 26100.7, + "probability": 0.493 + }, + { + "start": 26101.32, + "end": 26102.82, + "probability": 0.981 + }, + { + "start": 26102.92, + "end": 26103.38, + "probability": 0.8622 + }, + { + "start": 26103.66, + "end": 26104.76, + "probability": 0.9799 + }, + { + "start": 26105.06, + "end": 26105.8, + "probability": 0.9011 + }, + { + "start": 26106.3, + "end": 26106.8, + "probability": 0.8824 + }, + { + "start": 26106.86, + "end": 26107.4, + "probability": 0.9292 + }, + { + "start": 26107.46, + "end": 26108.04, + "probability": 0.6364 + }, + { + "start": 26108.54, + "end": 26109.7, + "probability": 0.8818 + }, + { + "start": 26109.78, + "end": 26110.92, + "probability": 0.8207 + }, + { + "start": 26111.26, + "end": 26111.78, + "probability": 0.4867 + }, + { + "start": 26112.24, + "end": 26112.9, + "probability": 0.6007 + }, + { + "start": 26113.08, + "end": 26114.14, + "probability": 0.7493 + }, + { + "start": 26114.32, + "end": 26115.42, + "probability": 0.8915 + }, + { + "start": 26116.32, + "end": 26118.32, + "probability": 0.9118 + }, + { + "start": 26118.38, + "end": 26119.24, + "probability": 0.5357 + }, + { + "start": 26119.26, + "end": 26120.19, + "probability": 0.9737 + }, + { + "start": 26121.44, + "end": 26123.04, + "probability": 0.9727 + }, + { + "start": 26123.2, + "end": 26125.92, + "probability": 0.8012 + }, + { + "start": 26126.02, + "end": 26127.32, + "probability": 0.7798 + }, + { + "start": 26127.34, + "end": 26127.81, + "probability": 0.9586 + }, + { + "start": 26128.18, + "end": 26131.12, + "probability": 0.7247 + }, + { + "start": 26132.96, + "end": 26133.84, + "probability": 0.8368 + }, + { + "start": 26134.78, + "end": 26135.62, + "probability": 0.9285 + }, + { + "start": 26136.68, + "end": 26136.86, + "probability": 0.3383 + }, + { + "start": 26136.94, + "end": 26138.64, + "probability": 0.8911 + }, + { + "start": 26138.76, + "end": 26141.38, + "probability": 0.8652 + }, + { + "start": 26141.82, + "end": 26143.8, + "probability": 0.8323 + }, + { + "start": 26144.14, + "end": 26146.46, + "probability": 0.9962 + }, + { + "start": 26146.64, + "end": 26147.34, + "probability": 0.767 + }, + { + "start": 26147.92, + "end": 26149.92, + "probability": 0.9567 + }, + { + "start": 26151.18, + "end": 26152.02, + "probability": 0.9497 + }, + { + "start": 26152.5, + "end": 26153.64, + "probability": 0.773 + }, + { + "start": 26154.38, + "end": 26156.7, + "probability": 0.9756 + }, + { + "start": 26156.82, + "end": 26157.72, + "probability": 0.8783 + }, + { + "start": 26157.78, + "end": 26158.86, + "probability": 0.9367 + }, + { + "start": 26159.02, + "end": 26159.99, + "probability": 0.9829 + }, + { + "start": 26160.38, + "end": 26162.24, + "probability": 0.6047 + }, + { + "start": 26162.32, + "end": 26164.1, + "probability": 0.9803 + }, + { + "start": 26164.16, + "end": 26165.9, + "probability": 0.6647 + }, + { + "start": 26166.06, + "end": 26166.9, + "probability": 0.9692 + }, + { + "start": 26166.98, + "end": 26167.76, + "probability": 0.5458 + }, + { + "start": 26167.92, + "end": 26170.28, + "probability": 0.885 + }, + { + "start": 26170.28, + "end": 26171.14, + "probability": 0.7239 + }, + { + "start": 26171.38, + "end": 26173.42, + "probability": 0.6353 + }, + { + "start": 26173.52, + "end": 26177.92, + "probability": 0.9849 + }, + { + "start": 26177.98, + "end": 26179.02, + "probability": 0.6611 + }, + { + "start": 26179.58, + "end": 26182.56, + "probability": 0.7306 + }, + { + "start": 26182.86, + "end": 26186.64, + "probability": 0.646 + }, + { + "start": 26186.88, + "end": 26188.72, + "probability": 0.9771 + }, + { + "start": 26188.82, + "end": 26190.32, + "probability": 0.8414 + }, + { + "start": 26190.52, + "end": 26193.24, + "probability": 0.9255 + }, + { + "start": 26193.34, + "end": 26196.74, + "probability": 0.8645 + }, + { + "start": 26196.86, + "end": 26198.18, + "probability": 0.7214 + }, + { + "start": 26198.38, + "end": 26199.7, + "probability": 0.8999 + }, + { + "start": 26199.84, + "end": 26201.04, + "probability": 0.7323 + }, + { + "start": 26202.73, + "end": 26203.74, + "probability": 0.9956 + }, + { + "start": 26203.84, + "end": 26204.74, + "probability": 0.9396 + }, + { + "start": 26204.8, + "end": 26208.7, + "probability": 0.9056 + }, + { + "start": 26208.82, + "end": 26209.31, + "probability": 0.0387 + }, + { + "start": 26209.48, + "end": 26210.91, + "probability": 0.8677 + }, + { + "start": 26211.48, + "end": 26213.16, + "probability": 0.9771 + }, + { + "start": 26213.76, + "end": 26216.96, + "probability": 0.9469 + }, + { + "start": 26217.22, + "end": 26217.6, + "probability": 0.9204 + }, + { + "start": 26217.78, + "end": 26220.62, + "probability": 0.8854 + }, + { + "start": 26221.16, + "end": 26222.16, + "probability": 0.9989 + }, + { + "start": 26222.3, + "end": 26223.28, + "probability": 0.998 + }, + { + "start": 26223.8, + "end": 26225.54, + "probability": 0.5678 + }, + { + "start": 26225.6, + "end": 26225.92, + "probability": 0.0667 + }, + { + "start": 26226.36, + "end": 26229.56, + "probability": 0.9753 + }, + { + "start": 26229.8, + "end": 26230.66, + "probability": 0.9258 + }, + { + "start": 26230.94, + "end": 26232.14, + "probability": 0.7705 + }, + { + "start": 26232.38, + "end": 26233.5, + "probability": 0.8775 + }, + { + "start": 26233.66, + "end": 26237.74, + "probability": 0.8604 + }, + { + "start": 26237.9, + "end": 26239.0, + "probability": 0.8203 + }, + { + "start": 26239.08, + "end": 26240.04, + "probability": 0.6859 + }, + { + "start": 26240.28, + "end": 26241.32, + "probability": 0.7655 + }, + { + "start": 26241.34, + "end": 26242.2, + "probability": 0.4653 + }, + { + "start": 26242.28, + "end": 26242.4, + "probability": 0.0977 + }, + { + "start": 26242.98, + "end": 26245.08, + "probability": 0.3704 + }, + { + "start": 26245.88, + "end": 26246.96, + "probability": 0.8849 + }, + { + "start": 26247.04, + "end": 26249.38, + "probability": 0.9324 + }, + { + "start": 26249.5, + "end": 26250.2, + "probability": 0.8132 + }, + { + "start": 26250.82, + "end": 26254.52, + "probability": 0.912 + }, + { + "start": 26254.88, + "end": 26255.94, + "probability": 0.7131 + }, + { + "start": 26256.04, + "end": 26256.54, + "probability": 0.5388 + }, + { + "start": 26256.62, + "end": 26256.76, + "probability": 0.148 + }, + { + "start": 26256.76, + "end": 26257.06, + "probability": 0.0258 + }, + { + "start": 26257.16, + "end": 26258.4, + "probability": 0.8238 + }, + { + "start": 26258.92, + "end": 26259.84, + "probability": 0.9135 + }, + { + "start": 26260.14, + "end": 26262.56, + "probability": 0.9482 + }, + { + "start": 26262.62, + "end": 26265.14, + "probability": 0.6967 + }, + { + "start": 26265.48, + "end": 26265.48, + "probability": 0.7915 + }, + { + "start": 26266.4, + "end": 26269.62, + "probability": 0.5959 + }, + { + "start": 26270.66, + "end": 26272.1, + "probability": 0.6168 + }, + { + "start": 26273.24, + "end": 26274.76, + "probability": 0.8959 + }, + { + "start": 26274.98, + "end": 26277.08, + "probability": 0.9697 + }, + { + "start": 26277.16, + "end": 26277.94, + "probability": 0.9318 + }, + { + "start": 26278.04, + "end": 26278.54, + "probability": 0.5831 + }, + { + "start": 26278.58, + "end": 26280.34, + "probability": 0.6167 + }, + { + "start": 26280.74, + "end": 26281.02, + "probability": 0.0378 + }, + { + "start": 26281.02, + "end": 26281.1, + "probability": 0.1349 + }, + { + "start": 26281.1, + "end": 26281.98, + "probability": 0.4706 + }, + { + "start": 26281.98, + "end": 26282.34, + "probability": 0.4539 + }, + { + "start": 26282.4, + "end": 26283.92, + "probability": 0.988 + }, + { + "start": 26284.02, + "end": 26284.74, + "probability": 0.7186 + }, + { + "start": 26284.82, + "end": 26288.24, + "probability": 0.7648 + }, + { + "start": 26288.3, + "end": 26288.65, + "probability": 0.8921 + }, + { + "start": 26288.84, + "end": 26289.62, + "probability": 0.979 + }, + { + "start": 26289.7, + "end": 26290.32, + "probability": 0.6779 + }, + { + "start": 26290.78, + "end": 26292.58, + "probability": 0.6907 + }, + { + "start": 26292.68, + "end": 26294.42, + "probability": 0.8748 + }, + { + "start": 26294.54, + "end": 26295.94, + "probability": 0.9302 + }, + { + "start": 26296.1, + "end": 26296.76, + "probability": 0.7422 + }, + { + "start": 26296.98, + "end": 26299.06, + "probability": 0.989 + }, + { + "start": 26301.16, + "end": 26301.36, + "probability": 0.6591 + }, + { + "start": 26301.56, + "end": 26301.92, + "probability": 0.3368 + }, + { + "start": 26301.92, + "end": 26304.36, + "probability": 0.8879 + }, + { + "start": 26304.44, + "end": 26306.46, + "probability": 0.8574 + }, + { + "start": 26306.52, + "end": 26306.94, + "probability": 0.8802 + }, + { + "start": 26307.08, + "end": 26307.76, + "probability": 0.7482 + }, + { + "start": 26308.92, + "end": 26313.0, + "probability": 0.9005 + }, + { + "start": 26313.5, + "end": 26314.56, + "probability": 0.7651 + }, + { + "start": 26327.62, + "end": 26328.58, + "probability": 0.2798 + }, + { + "start": 26328.7, + "end": 26329.96, + "probability": 0.9191 + }, + { + "start": 26330.06, + "end": 26331.52, + "probability": 0.9929 + }, + { + "start": 26332.22, + "end": 26337.78, + "probability": 0.9725 + }, + { + "start": 26337.92, + "end": 26339.68, + "probability": 0.8421 + }, + { + "start": 26339.7, + "end": 26340.82, + "probability": 0.588 + }, + { + "start": 26340.9, + "end": 26342.2, + "probability": 0.977 + }, + { + "start": 26342.26, + "end": 26342.6, + "probability": 0.8061 + }, + { + "start": 26342.76, + "end": 26343.02, + "probability": 0.806 + }, + { + "start": 26343.12, + "end": 26343.94, + "probability": 0.7924 + }, + { + "start": 26345.62, + "end": 26348.46, + "probability": 0.898 + }, + { + "start": 26348.6, + "end": 26349.6, + "probability": 0.9435 + }, + { + "start": 26350.08, + "end": 26354.2, + "probability": 0.9073 + }, + { + "start": 26354.42, + "end": 26355.32, + "probability": 0.8581 + }, + { + "start": 26355.64, + "end": 26356.66, + "probability": 0.8597 + }, + { + "start": 26356.78, + "end": 26358.64, + "probability": 0.9889 + }, + { + "start": 26358.9, + "end": 26360.28, + "probability": 0.9961 + }, + { + "start": 26361.16, + "end": 26364.82, + "probability": 0.9543 + }, + { + "start": 26366.08, + "end": 26369.04, + "probability": 0.9198 + }, + { + "start": 26369.74, + "end": 26372.68, + "probability": 0.9645 + }, + { + "start": 26374.02, + "end": 26377.18, + "probability": 0.6011 + }, + { + "start": 26377.96, + "end": 26380.1, + "probability": 0.7971 + }, + { + "start": 26380.74, + "end": 26385.81, + "probability": 0.9836 + }, + { + "start": 26386.94, + "end": 26391.6, + "probability": 0.903 + }, + { + "start": 26391.66, + "end": 26392.56, + "probability": 0.6702 + }, + { + "start": 26393.06, + "end": 26394.48, + "probability": 0.8263 + }, + { + "start": 26394.8, + "end": 26397.7, + "probability": 0.6783 + }, + { + "start": 26398.88, + "end": 26403.08, + "probability": 0.8592 + }, + { + "start": 26404.1, + "end": 26407.68, + "probability": 0.9773 + }, + { + "start": 26408.3, + "end": 26409.52, + "probability": 0.9681 + }, + { + "start": 26410.28, + "end": 26413.7, + "probability": 0.9738 + }, + { + "start": 26413.7, + "end": 26418.9, + "probability": 0.9856 + }, + { + "start": 26419.94, + "end": 26422.74, + "probability": 0.893 + }, + { + "start": 26423.3, + "end": 26426.52, + "probability": 0.9374 + }, + { + "start": 26427.34, + "end": 26431.3, + "probability": 0.9742 + }, + { + "start": 26432.46, + "end": 26434.84, + "probability": 0.9211 + }, + { + "start": 26435.56, + "end": 26437.28, + "probability": 0.9242 + }, + { + "start": 26437.72, + "end": 26442.28, + "probability": 0.9048 + }, + { + "start": 26443.16, + "end": 26449.88, + "probability": 0.9971 + }, + { + "start": 26450.08, + "end": 26457.2, + "probability": 0.7507 + }, + { + "start": 26457.2, + "end": 26462.46, + "probability": 0.9961 + }, + { + "start": 26463.06, + "end": 26466.94, + "probability": 0.9423 + }, + { + "start": 26467.12, + "end": 26470.22, + "probability": 0.7283 + }, + { + "start": 26470.5, + "end": 26474.42, + "probability": 0.9976 + }, + { + "start": 26474.42, + "end": 26478.28, + "probability": 0.9731 + }, + { + "start": 26479.26, + "end": 26479.62, + "probability": 0.3472 + }, + { + "start": 26480.06, + "end": 26483.18, + "probability": 0.9978 + }, + { + "start": 26483.34, + "end": 26485.72, + "probability": 0.9897 + }, + { + "start": 26485.84, + "end": 26488.32, + "probability": 0.7682 + }, + { + "start": 26488.86, + "end": 26496.46, + "probability": 0.8787 + }, + { + "start": 26497.48, + "end": 26500.66, + "probability": 0.9524 + }, + { + "start": 26501.2, + "end": 26504.24, + "probability": 0.9966 + }, + { + "start": 26504.8, + "end": 26509.5, + "probability": 0.9081 + }, + { + "start": 26510.04, + "end": 26512.08, + "probability": 0.7623 + }, + { + "start": 26512.68, + "end": 26513.46, + "probability": 0.6923 + }, + { + "start": 26513.68, + "end": 26515.9, + "probability": 0.9932 + }, + { + "start": 26519.26, + "end": 26521.42, + "probability": 0.9686 + }, + { + "start": 26525.2, + "end": 26526.06, + "probability": 0.8062 + }, + { + "start": 26526.78, + "end": 26530.12, + "probability": 0.7551 + }, + { + "start": 26530.22, + "end": 26530.48, + "probability": 0.2936 + }, + { + "start": 26530.68, + "end": 26533.66, + "probability": 0.7618 + }, + { + "start": 26536.76, + "end": 26539.98, + "probability": 0.8391 + }, + { + "start": 26540.66, + "end": 26544.28, + "probability": 0.6353 + }, + { + "start": 26544.42, + "end": 26546.86, + "probability": 0.6763 + }, + { + "start": 26547.02, + "end": 26551.72, + "probability": 0.9491 + }, + { + "start": 26551.84, + "end": 26552.12, + "probability": 0.0116 + }, + { + "start": 26553.0, + "end": 26555.54, + "probability": 0.9215 + }, + { + "start": 26556.18, + "end": 26559.3, + "probability": 0.542 + }, + { + "start": 26559.6, + "end": 26561.6, + "probability": 0.8409 + }, + { + "start": 26562.1, + "end": 26566.68, + "probability": 0.9816 + }, + { + "start": 26567.36, + "end": 26570.32, + "probability": 0.541 + }, + { + "start": 26570.32, + "end": 26573.48, + "probability": 0.8457 + }, + { + "start": 26573.68, + "end": 26574.0, + "probability": 0.508 + }, + { + "start": 26574.1, + "end": 26575.12, + "probability": 0.6248 + }, + { + "start": 26575.2, + "end": 26575.6, + "probability": 0.8876 + }, + { + "start": 26575.78, + "end": 26576.86, + "probability": 0.9644 + }, + { + "start": 26576.96, + "end": 26578.04, + "probability": 0.9605 + }, + { + "start": 26578.68, + "end": 26580.18, + "probability": 0.9556 + }, + { + "start": 26580.64, + "end": 26585.68, + "probability": 0.7659 + }, + { + "start": 26586.06, + "end": 26587.7, + "probability": 0.965 + }, + { + "start": 26588.12, + "end": 26589.66, + "probability": 0.8522 + }, + { + "start": 26590.08, + "end": 26590.74, + "probability": 0.705 + }, + { + "start": 26591.06, + "end": 26595.82, + "probability": 0.9789 + }, + { + "start": 26596.18, + "end": 26596.38, + "probability": 0.6529 + }, + { + "start": 26596.68, + "end": 26597.26, + "probability": 0.7577 + }, + { + "start": 26597.56, + "end": 26599.18, + "probability": 0.7803 + }, + { + "start": 26603.84, + "end": 26605.6, + "probability": 0.5591 + }, + { + "start": 26605.78, + "end": 26606.56, + "probability": 0.8628 + }, + { + "start": 26606.96, + "end": 26608.18, + "probability": 0.7381 + }, + { + "start": 26608.32, + "end": 26612.42, + "probability": 0.9801 + }, + { + "start": 26613.1, + "end": 26616.88, + "probability": 0.9842 + }, + { + "start": 26617.38, + "end": 26618.36, + "probability": 0.3274 + }, + { + "start": 26619.02, + "end": 26621.6, + "probability": 0.7876 + }, + { + "start": 26622.28, + "end": 26623.84, + "probability": 0.9829 + }, + { + "start": 26624.22, + "end": 26627.24, + "probability": 0.984 + }, + { + "start": 26627.66, + "end": 26632.68, + "probability": 0.9913 + }, + { + "start": 26633.0, + "end": 26639.56, + "probability": 0.9917 + }, + { + "start": 26640.26, + "end": 26643.78, + "probability": 0.6184 + }, + { + "start": 26644.54, + "end": 26649.4, + "probability": 0.906 + }, + { + "start": 26649.48, + "end": 26651.54, + "probability": 0.792 + }, + { + "start": 26652.0, + "end": 26653.8, + "probability": 0.5815 + }, + { + "start": 26654.18, + "end": 26654.98, + "probability": 0.845 + }, + { + "start": 26655.08, + "end": 26656.62, + "probability": 0.8692 + }, + { + "start": 26657.04, + "end": 26661.32, + "probability": 0.503 + }, + { + "start": 26661.5, + "end": 26661.7, + "probability": 0.2946 + }, + { + "start": 26661.72, + "end": 26662.96, + "probability": 0.6844 + }, + { + "start": 26663.1, + "end": 26667.04, + "probability": 0.989 + }, + { + "start": 26667.74, + "end": 26671.3, + "probability": 0.9898 + }, + { + "start": 26671.76, + "end": 26676.54, + "probability": 0.9941 + }, + { + "start": 26676.54, + "end": 26681.18, + "probability": 0.9854 + }, + { + "start": 26681.62, + "end": 26686.44, + "probability": 0.9927 + }, + { + "start": 26686.68, + "end": 26689.52, + "probability": 0.946 + }, + { + "start": 26689.74, + "end": 26690.34, + "probability": 0.7344 + }, + { + "start": 26690.86, + "end": 26692.12, + "probability": 0.8445 + }, + { + "start": 26692.28, + "end": 26692.6, + "probability": 0.3728 + }, + { + "start": 26692.62, + "end": 26693.98, + "probability": 0.8658 + }, + { + "start": 26698.3, + "end": 26698.9, + "probability": 0.6051 + }, + { + "start": 26699.1, + "end": 26701.96, + "probability": 0.9356 + }, + { + "start": 26702.24, + "end": 26704.5, + "probability": 0.2337 + }, + { + "start": 26704.5, + "end": 26705.46, + "probability": 0.7365 + }, + { + "start": 26705.5, + "end": 26706.35, + "probability": 0.6924 + }, + { + "start": 26707.74, + "end": 26710.88, + "probability": 0.9917 + }, + { + "start": 26711.28, + "end": 26714.4, + "probability": 0.9488 + }, + { + "start": 26715.52, + "end": 26718.14, + "probability": 0.9468 + }, + { + "start": 26718.6, + "end": 26719.36, + "probability": 0.815 + }, + { + "start": 26719.46, + "end": 26719.98, + "probability": 0.6898 + }, + { + "start": 26720.44, + "end": 26722.22, + "probability": 0.8253 + }, + { + "start": 26722.26, + "end": 26728.02, + "probability": 0.9863 + }, + { + "start": 26728.32, + "end": 26729.98, + "probability": 0.7174 + }, + { + "start": 26730.48, + "end": 26734.8, + "probability": 0.9928 + }, + { + "start": 26735.08, + "end": 26735.12, + "probability": 0.1012 + }, + { + "start": 26735.16, + "end": 26735.46, + "probability": 0.637 + }, + { + "start": 26735.54, + "end": 26736.76, + "probability": 0.8202 + }, + { + "start": 26737.18, + "end": 26739.38, + "probability": 0.9539 + }, + { + "start": 26739.72, + "end": 26741.36, + "probability": 0.9067 + }, + { + "start": 26741.8, + "end": 26743.88, + "probability": 0.6235 + }, + { + "start": 26744.34, + "end": 26745.68, + "probability": 0.8432 + }, + { + "start": 26745.86, + "end": 26746.06, + "probability": 0.7636 + }, + { + "start": 26746.74, + "end": 26746.98, + "probability": 0.6485 + }, + { + "start": 26747.52, + "end": 26748.62, + "probability": 0.7932 + }, + { + "start": 26757.24, + "end": 26758.88, + "probability": 0.5593 + }, + { + "start": 26759.72, + "end": 26760.32, + "probability": 0.6425 + }, + { + "start": 26760.5, + "end": 26764.42, + "probability": 0.929 + }, + { + "start": 26764.6, + "end": 26765.7, + "probability": 0.9629 + }, + { + "start": 26766.3, + "end": 26771.68, + "probability": 0.7968 + }, + { + "start": 26771.94, + "end": 26775.56, + "probability": 0.9951 + }, + { + "start": 26776.16, + "end": 26778.78, + "probability": 0.3308 + }, + { + "start": 26778.98, + "end": 26779.08, + "probability": 0.492 + }, + { + "start": 26779.28, + "end": 26781.17, + "probability": 0.8057 + }, + { + "start": 26781.5, + "end": 26782.22, + "probability": 0.8273 + }, + { + "start": 26782.58, + "end": 26782.86, + "probability": 0.5271 + }, + { + "start": 26782.86, + "end": 26785.94, + "probability": 0.5032 + }, + { + "start": 26786.54, + "end": 26788.76, + "probability": 0.6194 + }, + { + "start": 26788.82, + "end": 26796.74, + "probability": 0.9428 + }, + { + "start": 26796.98, + "end": 26799.7, + "probability": 0.7217 + }, + { + "start": 26800.18, + "end": 26802.34, + "probability": 0.9052 + }, + { + "start": 26802.72, + "end": 26806.03, + "probability": 0.6992 + }, + { + "start": 26806.54, + "end": 26808.86, + "probability": 0.9934 + }, + { + "start": 26809.22, + "end": 26811.18, + "probability": 0.948 + }, + { + "start": 26811.36, + "end": 26812.22, + "probability": 0.6597 + }, + { + "start": 26812.74, + "end": 26815.08, + "probability": 0.9305 + }, + { + "start": 26815.18, + "end": 26815.82, + "probability": 0.5355 + }, + { + "start": 26816.02, + "end": 26818.56, + "probability": 0.9833 + }, + { + "start": 26818.72, + "end": 26822.46, + "probability": 0.9907 + }, + { + "start": 26822.76, + "end": 26823.76, + "probability": 0.8361 + }, + { + "start": 26823.84, + "end": 26825.42, + "probability": 0.989 + }, + { + "start": 26826.06, + "end": 26826.2, + "probability": 0.0013 + }, + { + "start": 26828.38, + "end": 26829.84, + "probability": 0.7199 + }, + { + "start": 26830.48, + "end": 26832.42, + "probability": 0.9961 + }, + { + "start": 26832.48, + "end": 26834.82, + "probability": 0.9904 + }, + { + "start": 26834.96, + "end": 26838.06, + "probability": 0.6244 + }, + { + "start": 26841.6, + "end": 26844.7, + "probability": 0.7404 + }, + { + "start": 26845.16, + "end": 26849.72, + "probability": 0.9927 + }, + { + "start": 26849.88, + "end": 26851.28, + "probability": 0.975 + }, + { + "start": 26851.6, + "end": 26857.04, + "probability": 0.9648 + }, + { + "start": 26857.1, + "end": 26862.54, + "probability": 0.8789 + }, + { + "start": 26863.56, + "end": 26866.0, + "probability": 0.5026 + }, + { + "start": 26880.2, + "end": 26880.72, + "probability": 0.0681 + }, + { + "start": 26880.72, + "end": 26882.98, + "probability": 0.342 + }, + { + "start": 26883.02, + "end": 26885.44, + "probability": 0.9453 + }, + { + "start": 26886.82, + "end": 26888.8, + "probability": 0.3016 + }, + { + "start": 26890.96, + "end": 26894.54, + "probability": 0.7773 + }, + { + "start": 26910.66, + "end": 26911.08, + "probability": 0.014 + }, + { + "start": 26911.08, + "end": 26911.08, + "probability": 0.2357 + }, + { + "start": 26911.08, + "end": 26912.76, + "probability": 0.2969 + }, + { + "start": 26913.98, + "end": 26914.94, + "probability": 0.6785 + }, + { + "start": 26916.56, + "end": 26919.5, + "probability": 0.7365 + }, + { + "start": 26919.5, + "end": 26922.66, + "probability": 0.9729 + }, + { + "start": 26923.32, + "end": 26926.88, + "probability": 0.9562 + }, + { + "start": 26927.6, + "end": 26928.04, + "probability": 0.9613 + }, + { + "start": 26929.18, + "end": 26931.76, + "probability": 0.9545 + }, + { + "start": 26932.56, + "end": 26934.22, + "probability": 0.9305 + }, + { + "start": 26935.44, + "end": 26939.84, + "probability": 0.9495 + }, + { + "start": 26940.58, + "end": 26942.2, + "probability": 0.8485 + }, + { + "start": 26943.3, + "end": 26952.08, + "probability": 0.95 + }, + { + "start": 26953.34, + "end": 26961.4, + "probability": 0.9883 + }, + { + "start": 26961.42, + "end": 26961.84, + "probability": 0.8442 + }, + { + "start": 26961.94, + "end": 26962.46, + "probability": 0.8032 + }, + { + "start": 26963.0, + "end": 26963.7, + "probability": 0.6089 + }, + { + "start": 26963.84, + "end": 26964.6, + "probability": 0.5423 + }, + { + "start": 26965.02, + "end": 26967.42, + "probability": 0.9647 + }, + { + "start": 26968.8, + "end": 26972.46, + "probability": 0.8965 + }, + { + "start": 26973.0, + "end": 26977.24, + "probability": 0.9966 + }, + { + "start": 26978.38, + "end": 26980.4, + "probability": 0.8557 + }, + { + "start": 26981.16, + "end": 26982.24, + "probability": 0.839 + }, + { + "start": 26982.88, + "end": 26986.18, + "probability": 0.6832 + }, + { + "start": 26987.24, + "end": 26988.7, + "probability": 0.7829 + }, + { + "start": 26989.54, + "end": 26990.04, + "probability": 0.5695 + }, + { + "start": 26991.06, + "end": 26997.78, + "probability": 0.9678 + }, + { + "start": 26998.0, + "end": 26999.32, + "probability": 0.8989 + }, + { + "start": 26999.74, + "end": 27001.56, + "probability": 0.7824 + }, + { + "start": 27010.56, + "end": 27020.18, + "probability": 0.9151 + }, + { + "start": 27021.26, + "end": 27025.06, + "probability": 0.9319 + }, + { + "start": 27026.56, + "end": 27033.3, + "probability": 0.9703 + }, + { + "start": 27033.46, + "end": 27034.9, + "probability": 0.9727 + }, + { + "start": 27035.96, + "end": 27038.9, + "probability": 0.7519 + }, + { + "start": 27039.84, + "end": 27041.44, + "probability": 0.8799 + }, + { + "start": 27041.96, + "end": 27043.94, + "probability": 0.8682 + }, + { + "start": 27045.36, + "end": 27046.86, + "probability": 0.578 + }, + { + "start": 27047.46, + "end": 27053.22, + "probability": 0.9788 + }, + { + "start": 27054.96, + "end": 27056.52, + "probability": 0.9539 + }, + { + "start": 27057.34, + "end": 27061.56, + "probability": 0.9448 + }, + { + "start": 27061.6, + "end": 27065.16, + "probability": 0.9578 + }, + { + "start": 27066.34, + "end": 27068.48, + "probability": 0.9832 + }, + { + "start": 27070.04, + "end": 27073.06, + "probability": 0.7357 + }, + { + "start": 27074.42, + "end": 27076.1, + "probability": 0.8499 + }, + { + "start": 27076.3, + "end": 27078.1, + "probability": 0.9639 + }, + { + "start": 27078.6, + "end": 27081.98, + "probability": 0.8686 + }, + { + "start": 27082.94, + "end": 27086.68, + "probability": 0.7382 + }, + { + "start": 27087.16, + "end": 27088.68, + "probability": 0.8314 + }, + { + "start": 27089.9, + "end": 27091.66, + "probability": 0.9792 + }, + { + "start": 27092.22, + "end": 27095.04, + "probability": 0.9855 + }, + { + "start": 27095.72, + "end": 27097.55, + "probability": 0.998 + }, + { + "start": 27098.08, + "end": 27100.26, + "probability": 0.9883 + }, + { + "start": 27100.58, + "end": 27102.58, + "probability": 0.8418 + }, + { + "start": 27103.36, + "end": 27103.78, + "probability": 0.9932 + }, + { + "start": 27104.62, + "end": 27105.9, + "probability": 0.9321 + }, + { + "start": 27106.5, + "end": 27108.94, + "probability": 0.9893 + }, + { + "start": 27109.46, + "end": 27113.86, + "probability": 0.968 + }, + { + "start": 27116.7, + "end": 27119.38, + "probability": 0.8243 + }, + { + "start": 27120.14, + "end": 27121.96, + "probability": 0.9985 + }, + { + "start": 27122.5, + "end": 27124.62, + "probability": 0.9592 + }, + { + "start": 27124.9, + "end": 27128.38, + "probability": 0.9791 + }, + { + "start": 27129.94, + "end": 27132.16, + "probability": 0.9754 + }, + { + "start": 27133.14, + "end": 27135.46, + "probability": 0.9951 + }, + { + "start": 27136.02, + "end": 27137.16, + "probability": 0.8177 + }, + { + "start": 27137.84, + "end": 27138.48, + "probability": 0.5929 + }, + { + "start": 27139.36, + "end": 27140.04, + "probability": 0.7624 + }, + { + "start": 27140.98, + "end": 27142.31, + "probability": 0.913 + }, + { + "start": 27143.16, + "end": 27144.48, + "probability": 0.8896 + }, + { + "start": 27145.64, + "end": 27147.8, + "probability": 0.9767 + }, + { + "start": 27149.49, + "end": 27152.86, + "probability": 0.9224 + }, + { + "start": 27153.42, + "end": 27157.4, + "probability": 0.9985 + }, + { + "start": 27157.92, + "end": 27159.06, + "probability": 0.9738 + }, + { + "start": 27160.86, + "end": 27163.98, + "probability": 0.8834 + }, + { + "start": 27164.86, + "end": 27165.55, + "probability": 0.9426 + }, + { + "start": 27167.32, + "end": 27168.98, + "probability": 0.9619 + }, + { + "start": 27169.28, + "end": 27172.14, + "probability": 0.9697 + }, + { + "start": 27172.14, + "end": 27175.92, + "probability": 0.9946 + }, + { + "start": 27177.78, + "end": 27178.2, + "probability": 0.8383 + }, + { + "start": 27180.12, + "end": 27183.98, + "probability": 0.995 + }, + { + "start": 27183.98, + "end": 27187.9, + "probability": 0.9987 + }, + { + "start": 27188.84, + "end": 27195.08, + "probability": 0.9958 + }, + { + "start": 27195.2, + "end": 27195.98, + "probability": 0.7403 + }, + { + "start": 27196.58, + "end": 27198.94, + "probability": 0.8279 + }, + { + "start": 27199.7, + "end": 27204.7, + "probability": 0.8052 + }, + { + "start": 27205.08, + "end": 27207.66, + "probability": 0.9961 + }, + { + "start": 27207.96, + "end": 27209.02, + "probability": 0.8923 + }, + { + "start": 27209.08, + "end": 27209.66, + "probability": 0.7185 + }, + { + "start": 27209.72, + "end": 27210.04, + "probability": 0.7648 + }, + { + "start": 27210.68, + "end": 27211.94, + "probability": 0.9658 + }, + { + "start": 27213.2, + "end": 27214.54, + "probability": 0.8801 + }, + { + "start": 27215.28, + "end": 27217.64, + "probability": 0.9739 + }, + { + "start": 27219.72, + "end": 27221.0, + "probability": 0.5544 + }, + { + "start": 27224.68, + "end": 27226.44, + "probability": 0.6428 + }, + { + "start": 27227.52, + "end": 27227.6, + "probability": 0.46 + }, + { + "start": 27227.68, + "end": 27229.36, + "probability": 0.789 + }, + { + "start": 27229.92, + "end": 27234.46, + "probability": 0.8211 + }, + { + "start": 27235.74, + "end": 27237.48, + "probability": 0.7411 + }, + { + "start": 27238.18, + "end": 27243.88, + "probability": 0.9705 + }, + { + "start": 27244.02, + "end": 27245.24, + "probability": 0.822 + }, + { + "start": 27245.56, + "end": 27247.84, + "probability": 0.7893 + }, + { + "start": 27248.16, + "end": 27250.02, + "probability": 0.9782 + }, + { + "start": 27250.64, + "end": 27252.94, + "probability": 0.9884 + }, + { + "start": 27253.26, + "end": 27254.4, + "probability": 0.939 + }, + { + "start": 27254.66, + "end": 27256.26, + "probability": 0.9812 + }, + { + "start": 27256.4, + "end": 27257.34, + "probability": 0.7526 + }, + { + "start": 27259.32, + "end": 27261.42, + "probability": 0.7408 + }, + { + "start": 27261.96, + "end": 27266.12, + "probability": 0.7814 + }, + { + "start": 27266.7, + "end": 27269.62, + "probability": 0.9196 + }, + { + "start": 27269.94, + "end": 27271.38, + "probability": 0.8345 + }, + { + "start": 27271.44, + "end": 27273.68, + "probability": 0.9599 + }, + { + "start": 27273.98, + "end": 27275.2, + "probability": 0.7471 + }, + { + "start": 27276.0, + "end": 27278.54, + "probability": 0.3707 + }, + { + "start": 27279.12, + "end": 27279.94, + "probability": 0.3766 + }, + { + "start": 27279.94, + "end": 27282.36, + "probability": 0.7594 + }, + { + "start": 27284.12, + "end": 27284.92, + "probability": 0.9234 + }, + { + "start": 27285.64, + "end": 27285.74, + "probability": 0.7203 + }, + { + "start": 27285.74, + "end": 27287.46, + "probability": 0.7417 + }, + { + "start": 27287.66, + "end": 27288.54, + "probability": 0.7086 + }, + { + "start": 27288.6, + "end": 27289.46, + "probability": 0.5697 + }, + { + "start": 27289.46, + "end": 27291.68, + "probability": 0.8827 + }, + { + "start": 27291.8, + "end": 27294.3, + "probability": 0.5679 + }, + { + "start": 27294.42, + "end": 27297.12, + "probability": 0.9404 + }, + { + "start": 27297.36, + "end": 27299.22, + "probability": 0.8722 + }, + { + "start": 27299.58, + "end": 27301.6, + "probability": 0.896 + }, + { + "start": 27301.74, + "end": 27302.41, + "probability": 0.8574 + }, + { + "start": 27303.0, + "end": 27303.78, + "probability": 0.0817 + }, + { + "start": 27305.0, + "end": 27305.8, + "probability": 0.0731 + }, + { + "start": 27306.4, + "end": 27306.66, + "probability": 0.6956 + }, + { + "start": 27307.44, + "end": 27308.39, + "probability": 0.4718 + }, + { + "start": 27308.86, + "end": 27310.2, + "probability": 0.9609 + }, + { + "start": 27310.9, + "end": 27310.9, + "probability": 0.311 + }, + { + "start": 27311.16, + "end": 27311.32, + "probability": 0.8682 + }, + { + "start": 27311.96, + "end": 27312.16, + "probability": 0.683 + }, + { + "start": 27312.56, + "end": 27312.76, + "probability": 0.3787 + }, + { + "start": 27313.18, + "end": 27317.76, + "probability": 0.9746 + }, + { + "start": 27318.22, + "end": 27320.92, + "probability": 0.7985 + }, + { + "start": 27321.9, + "end": 27325.98, + "probability": 0.8126 + }, + { + "start": 27326.3, + "end": 27327.4, + "probability": 0.5834 + }, + { + "start": 27327.96, + "end": 27333.92, + "probability": 0.9333 + }, + { + "start": 27334.52, + "end": 27340.12, + "probability": 0.9622 + }, + { + "start": 27341.96, + "end": 27344.94, + "probability": 0.9288 + }, + { + "start": 27346.3, + "end": 27346.83, + "probability": 0.7298 + }, + { + "start": 27347.72, + "end": 27350.1, + "probability": 0.965 + }, + { + "start": 27350.88, + "end": 27354.34, + "probability": 0.9843 + }, + { + "start": 27354.72, + "end": 27356.44, + "probability": 0.9955 + }, + { + "start": 27356.9, + "end": 27358.33, + "probability": 0.9873 + }, + { + "start": 27358.6, + "end": 27361.72, + "probability": 0.9695 + }, + { + "start": 27362.9, + "end": 27364.34, + "probability": 0.7165 + }, + { + "start": 27364.88, + "end": 27367.9, + "probability": 0.8973 + }, + { + "start": 27368.86, + "end": 27369.78, + "probability": 0.7302 + }, + { + "start": 27369.9, + "end": 27371.02, + "probability": 0.751 + }, + { + "start": 27371.2, + "end": 27371.92, + "probability": 0.4815 + }, + { + "start": 27372.04, + "end": 27374.2, + "probability": 0.8718 + }, + { + "start": 27375.02, + "end": 27377.24, + "probability": 0.9119 + }, + { + "start": 27378.18, + "end": 27384.36, + "probability": 0.0662 + }, + { + "start": 27384.56, + "end": 27384.9, + "probability": 0.3961 + }, + { + "start": 27385.12, + "end": 27385.14, + "probability": 0.2149 + }, + { + "start": 27385.14, + "end": 27388.66, + "probability": 0.4554 + }, + { + "start": 27388.74, + "end": 27390.76, + "probability": 0.5928 + }, + { + "start": 27391.76, + "end": 27394.22, + "probability": 0.7397 + }, + { + "start": 27394.46, + "end": 27397.28, + "probability": 0.9436 + }, + { + "start": 27397.4, + "end": 27398.96, + "probability": 0.0299 + }, + { + "start": 27399.74, + "end": 27401.66, + "probability": 0.1459 + }, + { + "start": 27402.02, + "end": 27402.56, + "probability": 0.0633 + }, + { + "start": 27402.74, + "end": 27403.18, + "probability": 0.182 + }, + { + "start": 27403.34, + "end": 27404.06, + "probability": 0.1502 + }, + { + "start": 27404.24, + "end": 27405.44, + "probability": 0.2394 + }, + { + "start": 27405.6, + "end": 27406.84, + "probability": 0.7435 + }, + { + "start": 27406.96, + "end": 27409.24, + "probability": 0.8533 + }, + { + "start": 27409.66, + "end": 27410.58, + "probability": 0.8974 + }, + { + "start": 27410.92, + "end": 27414.68, + "probability": 0.9888 + }, + { + "start": 27415.02, + "end": 27415.56, + "probability": 0.1677 + }, + { + "start": 27415.56, + "end": 27418.76, + "probability": 0.3256 + }, + { + "start": 27419.52, + "end": 27420.84, + "probability": 0.8281 + }, + { + "start": 27421.2, + "end": 27423.0, + "probability": 0.7231 + }, + { + "start": 27423.12, + "end": 27425.42, + "probability": 0.5009 + }, + { + "start": 27425.68, + "end": 27426.72, + "probability": 0.9243 + }, + { + "start": 27427.1, + "end": 27428.38, + "probability": 0.8951 + }, + { + "start": 27429.74, + "end": 27431.5, + "probability": 0.2465 + }, + { + "start": 27431.52, + "end": 27431.56, + "probability": 0.0094 + }, + { + "start": 27431.78, + "end": 27432.68, + "probability": 0.0621 + }, + { + "start": 27432.86, + "end": 27434.98, + "probability": 0.4423 + }, + { + "start": 27435.24, + "end": 27435.96, + "probability": 0.4784 + }, + { + "start": 27436.38, + "end": 27438.66, + "probability": 0.7785 + }, + { + "start": 27439.0, + "end": 27443.29, + "probability": 0.931 + }, + { + "start": 27444.68, + "end": 27446.38, + "probability": 0.7986 + }, + { + "start": 27447.14, + "end": 27447.42, + "probability": 0.0378 + }, + { + "start": 27458.98, + "end": 27459.76, + "probability": 0.0619 + }, + { + "start": 27459.76, + "end": 27459.76, + "probability": 0.3158 + }, + { + "start": 27459.76, + "end": 27459.76, + "probability": 0.0463 + }, + { + "start": 27459.76, + "end": 27459.76, + "probability": 0.029 + }, + { + "start": 27459.76, + "end": 27459.76, + "probability": 0.0499 + }, + { + "start": 27459.76, + "end": 27459.76, + "probability": 0.0825 + }, + { + "start": 27459.76, + "end": 27459.76, + "probability": 0.081 + }, + { + "start": 27459.76, + "end": 27463.46, + "probability": 0.7246 + }, + { + "start": 27464.64, + "end": 27473.64, + "probability": 0.7398 + }, + { + "start": 27474.14, + "end": 27475.4, + "probability": 0.6625 + }, + { + "start": 27476.38, + "end": 27477.4, + "probability": 0.8333 + }, + { + "start": 27478.76, + "end": 27480.78, + "probability": 0.8705 + }, + { + "start": 27481.48, + "end": 27484.4, + "probability": 0.8467 + }, + { + "start": 27485.14, + "end": 27485.92, + "probability": 0.9095 + }, + { + "start": 27486.44, + "end": 27490.14, + "probability": 0.9988 + }, + { + "start": 27492.22, + "end": 27495.44, + "probability": 0.9971 + }, + { + "start": 27495.78, + "end": 27500.11, + "probability": 0.997 + }, + { + "start": 27501.6, + "end": 27503.06, + "probability": 0.9956 + }, + { + "start": 27503.94, + "end": 27507.28, + "probability": 0.9868 + }, + { + "start": 27507.8, + "end": 27508.88, + "probability": 0.9641 + }, + { + "start": 27509.06, + "end": 27510.72, + "probability": 0.988 + }, + { + "start": 27512.12, + "end": 27515.4, + "probability": 0.959 + }, + { + "start": 27515.4, + "end": 27515.4, + "probability": 0.3979 + }, + { + "start": 27515.4, + "end": 27516.18, + "probability": 0.339 + }, + { + "start": 27516.3, + "end": 27518.04, + "probability": 0.9971 + }, + { + "start": 27520.27, + "end": 27520.94, + "probability": 0.245 + }, + { + "start": 27520.94, + "end": 27523.78, + "probability": 0.1483 + }, + { + "start": 27524.4, + "end": 27525.64, + "probability": 0.6479 + }, + { + "start": 27527.18, + "end": 27528.0, + "probability": 0.845 + }, + { + "start": 27528.2, + "end": 27530.12, + "probability": 0.402 + }, + { + "start": 27530.22, + "end": 27530.34, + "probability": 0.1876 + }, + { + "start": 27530.34, + "end": 27531.56, + "probability": 0.774 + }, + { + "start": 27531.72, + "end": 27533.64, + "probability": 0.874 + }, + { + "start": 27535.09, + "end": 27535.93, + "probability": 0.324 + }, + { + "start": 27536.46, + "end": 27537.14, + "probability": 0.5066 + }, + { + "start": 27537.28, + "end": 27537.28, + "probability": 0.1756 + }, + { + "start": 27537.28, + "end": 27537.5, + "probability": 0.5674 + }, + { + "start": 27537.64, + "end": 27539.55, + "probability": 0.3933 + }, + { + "start": 27539.56, + "end": 27540.12, + "probability": 0.3789 + }, + { + "start": 27540.36, + "end": 27541.46, + "probability": 0.301 + }, + { + "start": 27541.82, + "end": 27543.18, + "probability": 0.707 + }, + { + "start": 27543.28, + "end": 27545.07, + "probability": 0.9741 + }, + { + "start": 27546.44, + "end": 27547.76, + "probability": 0.7049 + }, + { + "start": 27547.78, + "end": 27547.9, + "probability": 0.192 + }, + { + "start": 27547.9, + "end": 27548.68, + "probability": 0.3704 + }, + { + "start": 27549.08, + "end": 27549.66, + "probability": 0.6893 + }, + { + "start": 27549.74, + "end": 27551.05, + "probability": 0.9092 + }, + { + "start": 27551.74, + "end": 27553.85, + "probability": 0.9215 + }, + { + "start": 27554.44, + "end": 27555.94, + "probability": 0.8386 + }, + { + "start": 27556.82, + "end": 27557.62, + "probability": 0.9946 + }, + { + "start": 27559.2, + "end": 27560.94, + "probability": 0.9834 + }, + { + "start": 27561.04, + "end": 27563.62, + "probability": 0.9623 + }, + { + "start": 27564.44, + "end": 27566.08, + "probability": 0.8391 + }, + { + "start": 27566.6, + "end": 27568.46, + "probability": 0.9639 + }, + { + "start": 27569.04, + "end": 27569.06, + "probability": 0.2472 + }, + { + "start": 27569.06, + "end": 27570.64, + "probability": 0.8801 + }, + { + "start": 27570.64, + "end": 27570.82, + "probability": 0.2551 + }, + { + "start": 27570.92, + "end": 27572.14, + "probability": 0.9221 + }, + { + "start": 27572.3, + "end": 27575.12, + "probability": 0.917 + }, + { + "start": 27575.32, + "end": 27579.68, + "probability": 0.762 + }, + { + "start": 27579.82, + "end": 27583.74, + "probability": 0.87 + }, + { + "start": 27583.98, + "end": 27585.47, + "probability": 0.9866 + }, + { + "start": 27585.73, + "end": 27586.71, + "probability": 0.3811 + }, + { + "start": 27586.85, + "end": 27589.71, + "probability": 0.6706 + }, + { + "start": 27589.81, + "end": 27593.33, + "probability": 0.9922 + }, + { + "start": 27593.49, + "end": 27597.79, + "probability": 0.9174 + }, + { + "start": 27597.91, + "end": 27599.71, + "probability": 0.6165 + }, + { + "start": 27600.03, + "end": 27600.65, + "probability": 0.4849 + }, + { + "start": 27600.91, + "end": 27605.65, + "probability": 0.876 + }, + { + "start": 27606.27, + "end": 27609.35, + "probability": 0.8866 + }, + { + "start": 27609.43, + "end": 27611.27, + "probability": 0.9963 + }, + { + "start": 27611.55, + "end": 27612.87, + "probability": 0.7644 + }, + { + "start": 27612.87, + "end": 27617.15, + "probability": 0.5871 + }, + { + "start": 27617.45, + "end": 27617.45, + "probability": 0.1317 + }, + { + "start": 27617.45, + "end": 27617.45, + "probability": 0.0167 + }, + { + "start": 27617.45, + "end": 27617.45, + "probability": 0.0704 + }, + { + "start": 27617.45, + "end": 27617.45, + "probability": 0.0049 + }, + { + "start": 27617.45, + "end": 27619.19, + "probability": 0.5688 + }, + { + "start": 27619.25, + "end": 27620.35, + "probability": 0.9451 + }, + { + "start": 27621.07, + "end": 27621.21, + "probability": 0.385 + }, + { + "start": 27621.29, + "end": 27621.67, + "probability": 0.8836 + }, + { + "start": 27622.39, + "end": 27624.69, + "probability": 0.9701 + }, + { + "start": 27624.81, + "end": 27627.53, + "probability": 0.9948 + }, + { + "start": 27627.53, + "end": 27630.75, + "probability": 0.9956 + }, + { + "start": 27630.87, + "end": 27631.03, + "probability": 0.5832 + }, + { + "start": 27631.15, + "end": 27631.53, + "probability": 0.471 + }, + { + "start": 27631.63, + "end": 27632.63, + "probability": 0.9759 + }, + { + "start": 27633.65, + "end": 27634.51, + "probability": 0.9746 + }, + { + "start": 27635.43, + "end": 27639.05, + "probability": 0.974 + }, + { + "start": 27640.73, + "end": 27643.89, + "probability": 0.0727 + }, + { + "start": 27644.85, + "end": 27645.55, + "probability": 0.1084 + }, + { + "start": 27645.59, + "end": 27645.83, + "probability": 0.0232 + }, + { + "start": 27646.13, + "end": 27646.89, + "probability": 0.4072 + }, + { + "start": 27647.35, + "end": 27649.45, + "probability": 0.733 + }, + { + "start": 27650.47, + "end": 27650.69, + "probability": 0.2718 + }, + { + "start": 27651.43, + "end": 27653.47, + "probability": 0.1333 + }, + { + "start": 27653.59, + "end": 27654.99, + "probability": 0.1196 + }, + { + "start": 27656.81, + "end": 27659.93, + "probability": 0.0587 + }, + { + "start": 27660.59, + "end": 27663.05, + "probability": 0.0408 + }, + { + "start": 27663.78, + "end": 27665.49, + "probability": 0.1341 + }, + { + "start": 27665.49, + "end": 27667.25, + "probability": 0.0292 + }, + { + "start": 27667.51, + "end": 27668.79, + "probability": 0.0855 + }, + { + "start": 27671.37, + "end": 27673.77, + "probability": 0.1698 + }, + { + "start": 27673.77, + "end": 27676.09, + "probability": 0.1881 + }, + { + "start": 27679.41, + "end": 27683.15, + "probability": 0.2462 + }, + { + "start": 27684.81, + "end": 27685.27, + "probability": 0.0765 + }, + { + "start": 27685.27, + "end": 27686.57, + "probability": 0.1934 + }, + { + "start": 27686.57, + "end": 27687.89, + "probability": 0.6669 + }, + { + "start": 27688.17, + "end": 27688.29, + "probability": 0.1264 + }, + { + "start": 27688.33, + "end": 27690.15, + "probability": 0.2469 + }, + { + "start": 27690.83, + "end": 27696.49, + "probability": 0.0195 + }, + { + "start": 27698.11, + "end": 27699.01, + "probability": 0.1739 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.0, + "end": 27706.0, + "probability": 0.0 + }, + { + "start": 27706.14, + "end": 27706.42, + "probability": 0.0249 + }, + { + "start": 27707.7, + "end": 27708.34, + "probability": 0.7299 + }, + { + "start": 27709.62, + "end": 27711.62, + "probability": 0.8663 + }, + { + "start": 27711.98, + "end": 27717.8, + "probability": 0.9932 + }, + { + "start": 27719.1, + "end": 27722.54, + "probability": 0.694 + }, + { + "start": 27722.88, + "end": 27724.3, + "probability": 0.7139 + }, + { + "start": 27724.48, + "end": 27726.22, + "probability": 0.6682 + }, + { + "start": 27726.78, + "end": 27729.22, + "probability": 0.8397 + }, + { + "start": 27729.74, + "end": 27732.08, + "probability": 0.754 + }, + { + "start": 27733.32, + "end": 27736.14, + "probability": 0.9974 + }, + { + "start": 27736.9, + "end": 27740.42, + "probability": 0.9964 + }, + { + "start": 27741.18, + "end": 27745.66, + "probability": 0.936 + }, + { + "start": 27745.66, + "end": 27749.82, + "probability": 0.9953 + }, + { + "start": 27751.22, + "end": 27762.08, + "probability": 0.0519 + }, + { + "start": 27764.76, + "end": 27764.82, + "probability": 0.0952 + }, + { + "start": 27764.82, + "end": 27764.82, + "probability": 0.0658 + }, + { + "start": 27764.82, + "end": 27764.82, + "probability": 0.0507 + }, + { + "start": 27764.82, + "end": 27766.54, + "probability": 0.9069 + }, + { + "start": 27767.16, + "end": 27770.96, + "probability": 0.8619 + }, + { + "start": 27772.3, + "end": 27772.3, + "probability": 0.1881 + }, + { + "start": 27772.34, + "end": 27773.44, + "probability": 0.3862 + }, + { + "start": 27773.44, + "end": 27774.02, + "probability": 0.4611 + }, + { + "start": 27774.22, + "end": 27780.92, + "probability": 0.9744 + }, + { + "start": 27781.9, + "end": 27784.74, + "probability": 0.9562 + }, + { + "start": 27785.6, + "end": 27789.3, + "probability": 0.9873 + }, + { + "start": 27790.6, + "end": 27791.12, + "probability": 0.5291 + }, + { + "start": 27791.88, + "end": 27792.78, + "probability": 0.7617 + }, + { + "start": 27793.36, + "end": 27796.92, + "probability": 0.9939 + }, + { + "start": 27797.52, + "end": 27798.38, + "probability": 0.869 + }, + { + "start": 27799.84, + "end": 27801.34, + "probability": 0.9326 + }, + { + "start": 27801.44, + "end": 27804.16, + "probability": 0.9641 + }, + { + "start": 27804.9, + "end": 27806.28, + "probability": 0.9977 + }, + { + "start": 27807.24, + "end": 27810.62, + "probability": 0.9067 + }, + { + "start": 27811.4, + "end": 27814.78, + "probability": 0.8932 + }, + { + "start": 27816.06, + "end": 27818.82, + "probability": 0.7952 + }, + { + "start": 27818.82, + "end": 27824.86, + "probability": 0.6875 + }, + { + "start": 27824.86, + "end": 27831.1, + "probability": 0.9814 + }, + { + "start": 27832.58, + "end": 27835.46, + "probability": 0.9834 + }, + { + "start": 27836.24, + "end": 27838.28, + "probability": 0.8708 + }, + { + "start": 27839.1, + "end": 27842.58, + "probability": 0.8794 + }, + { + "start": 27843.1, + "end": 27847.34, + "probability": 0.959 + }, + { + "start": 27847.42, + "end": 27849.8, + "probability": 0.9543 + }, + { + "start": 27850.44, + "end": 27854.92, + "probability": 0.9909 + }, + { + "start": 27855.5, + "end": 27859.56, + "probability": 0.9975 + }, + { + "start": 27860.36, + "end": 27862.06, + "probability": 0.9477 + }, + { + "start": 27862.78, + "end": 27866.2, + "probability": 0.9821 + }, + { + "start": 27866.94, + "end": 27870.04, + "probability": 0.8274 + }, + { + "start": 27870.72, + "end": 27873.88, + "probability": 0.9778 + }, + { + "start": 27873.88, + "end": 27877.34, + "probability": 0.9944 + }, + { + "start": 27878.26, + "end": 27879.64, + "probability": 0.9393 + }, + { + "start": 27880.34, + "end": 27885.63, + "probability": 0.9983 + }, + { + "start": 27885.98, + "end": 27891.5, + "probability": 0.9865 + }, + { + "start": 27892.12, + "end": 27893.48, + "probability": 0.8271 + }, + { + "start": 27894.06, + "end": 27894.44, + "probability": 0.9661 + }, + { + "start": 27894.96, + "end": 27897.86, + "probability": 0.9826 + }, + { + "start": 27898.94, + "end": 27900.4, + "probability": 0.9909 + }, + { + "start": 27900.98, + "end": 27904.2, + "probability": 0.9692 + }, + { + "start": 27905.16, + "end": 27909.74, + "probability": 0.9917 + }, + { + "start": 27909.74, + "end": 27914.2, + "probability": 0.9971 + }, + { + "start": 27914.98, + "end": 27917.9, + "probability": 0.991 + }, + { + "start": 27917.9, + "end": 27921.56, + "probability": 0.9993 + }, + { + "start": 27921.96, + "end": 27922.85, + "probability": 0.6553 + }, + { + "start": 27923.84, + "end": 27927.36, + "probability": 0.9438 + }, + { + "start": 27928.34, + "end": 27931.18, + "probability": 0.9276 + }, + { + "start": 27931.76, + "end": 27934.11, + "probability": 0.9824 + }, + { + "start": 27934.7, + "end": 27936.7, + "probability": 0.9484 + }, + { + "start": 27937.32, + "end": 27941.66, + "probability": 0.9879 + }, + { + "start": 27943.3, + "end": 27947.68, + "probability": 0.9202 + }, + { + "start": 27947.68, + "end": 27955.0, + "probability": 0.9275 + }, + { + "start": 27955.26, + "end": 27957.92, + "probability": 0.9774 + }, + { + "start": 27958.74, + "end": 27960.08, + "probability": 0.761 + }, + { + "start": 27960.96, + "end": 27964.26, + "probability": 0.9926 + }, + { + "start": 27964.26, + "end": 27967.02, + "probability": 0.9764 + }, + { + "start": 27967.56, + "end": 27971.34, + "probability": 0.9939 + }, + { + "start": 27972.86, + "end": 27976.3, + "probability": 0.9843 + }, + { + "start": 27976.86, + "end": 27980.66, + "probability": 0.9918 + }, + { + "start": 27980.66, + "end": 27984.54, + "probability": 0.9909 + }, + { + "start": 27985.06, + "end": 27989.04, + "probability": 0.9182 + }, + { + "start": 27989.7, + "end": 27990.58, + "probability": 0.9607 + }, + { + "start": 27991.54, + "end": 27994.82, + "probability": 0.8633 + }, + { + "start": 27995.3, + "end": 27997.76, + "probability": 0.9653 + }, + { + "start": 27998.22, + "end": 27998.96, + "probability": 0.6649 + }, + { + "start": 27999.08, + "end": 27999.5, + "probability": 0.708 + }, + { + "start": 27999.6, + "end": 28001.66, + "probability": 0.7609 + }, + { + "start": 28002.5, + "end": 28006.08, + "probability": 0.9521 + }, + { + "start": 28007.2, + "end": 28009.58, + "probability": 0.8913 + }, + { + "start": 28010.16, + "end": 28015.56, + "probability": 0.9985 + }, + { + "start": 28018.02, + "end": 28019.58, + "probability": 0.9987 + }, + { + "start": 28020.44, + "end": 28022.36, + "probability": 0.9973 + }, + { + "start": 28022.98, + "end": 28025.54, + "probability": 0.8774 + }, + { + "start": 28026.2, + "end": 28028.0, + "probability": 0.9508 + }, + { + "start": 28028.64, + "end": 28031.68, + "probability": 0.9616 + }, + { + "start": 28032.14, + "end": 28035.92, + "probability": 0.9708 + }, + { + "start": 28036.58, + "end": 28036.98, + "probability": 0.7603 + }, + { + "start": 28037.62, + "end": 28038.5, + "probability": 0.772 + }, + { + "start": 28040.25, + "end": 28042.86, + "probability": 0.9631 + }, + { + "start": 28042.88, + "end": 28044.0, + "probability": 0.7407 + }, + { + "start": 28044.84, + "end": 28047.24, + "probability": 0.8394 + }, + { + "start": 28048.42, + "end": 28048.42, + "probability": 0.6662 + }, + { + "start": 28048.42, + "end": 28049.4, + "probability": 0.7977 + }, + { + "start": 28050.12, + "end": 28050.78, + "probability": 0.578 + }, + { + "start": 28051.4, + "end": 28052.02, + "probability": 0.8416 + }, + { + "start": 28052.02, + "end": 28053.3, + "probability": 0.8933 + }, + { + "start": 28053.44, + "end": 28056.7, + "probability": 0.8071 + }, + { + "start": 28057.72, + "end": 28058.7, + "probability": 0.7973 + }, + { + "start": 28059.6, + "end": 28060.86, + "probability": 0.1807 + }, + { + "start": 28061.54, + "end": 28063.72, + "probability": 0.6939 + }, + { + "start": 28064.59, + "end": 28068.3, + "probability": 0.9946 + }, + { + "start": 28068.42, + "end": 28076.22, + "probability": 0.9897 + }, + { + "start": 28077.72, + "end": 28082.22, + "probability": 0.998 + }, + { + "start": 28082.22, + "end": 28086.2, + "probability": 0.9988 + }, + { + "start": 28086.66, + "end": 28089.35, + "probability": 0.9941 + }, + { + "start": 28090.48, + "end": 28095.2, + "probability": 0.9862 + }, + { + "start": 28095.2, + "end": 28095.62, + "probability": 0.3993 + }, + { + "start": 28096.18, + "end": 28099.52, + "probability": 0.9196 + }, + { + "start": 28099.52, + "end": 28103.21, + "probability": 0.9964 + }, + { + "start": 28103.8, + "end": 28109.7, + "probability": 0.7854 + }, + { + "start": 28110.02, + "end": 28112.81, + "probability": 0.9529 + }, + { + "start": 28113.42, + "end": 28116.9, + "probability": 0.9729 + }, + { + "start": 28117.46, + "end": 28120.32, + "probability": 0.5688 + }, + { + "start": 28120.42, + "end": 28121.13, + "probability": 0.9497 + }, + { + "start": 28121.7, + "end": 28126.12, + "probability": 0.969 + }, + { + "start": 28126.64, + "end": 28127.0, + "probability": 0.81 + }, + { + "start": 28127.1, + "end": 28131.7, + "probability": 0.988 + }, + { + "start": 28131.72, + "end": 28133.88, + "probability": 0.8539 + }, + { + "start": 28133.88, + "end": 28134.2, + "probability": 0.7182 + }, + { + "start": 28134.46, + "end": 28135.12, + "probability": 0.7227 + }, + { + "start": 28135.44, + "end": 28136.14, + "probability": 0.3451 + }, + { + "start": 28136.42, + "end": 28137.46, + "probability": 0.0859 + }, + { + "start": 28139.98, + "end": 28144.86, + "probability": 0.9129 + }, + { + "start": 28145.18, + "end": 28146.98, + "probability": 0.9614 + }, + { + "start": 28148.6, + "end": 28149.12, + "probability": 0.8343 + }, + { + "start": 28166.74, + "end": 28166.74, + "probability": 0.3325 + }, + { + "start": 28166.74, + "end": 28169.3, + "probability": 0.781 + }, + { + "start": 28170.56, + "end": 28171.68, + "probability": 0.5493 + }, + { + "start": 28171.98, + "end": 28176.98, + "probability": 0.9933 + }, + { + "start": 28178.3, + "end": 28184.16, + "probability": 0.7903 + }, + { + "start": 28184.66, + "end": 28186.44, + "probability": 0.9185 + }, + { + "start": 28186.9, + "end": 28187.42, + "probability": 0.9365 + }, + { + "start": 28204.84, + "end": 28206.22, + "probability": 0.7637 + }, + { + "start": 28207.16, + "end": 28208.0, + "probability": 0.8879 + }, + { + "start": 28208.84, + "end": 28210.16, + "probability": 0.9175 + }, + { + "start": 28214.46, + "end": 28218.3, + "probability": 0.984 + }, + { + "start": 28220.04, + "end": 28222.46, + "probability": 0.9919 + }, + { + "start": 28223.96, + "end": 28226.96, + "probability": 0.9083 + }, + { + "start": 28228.36, + "end": 28233.84, + "probability": 0.8109 + }, + { + "start": 28234.76, + "end": 28238.96, + "probability": 0.9819 + }, + { + "start": 28239.96, + "end": 28240.74, + "probability": 0.8328 + }, + { + "start": 28241.88, + "end": 28244.92, + "probability": 0.98 + }, + { + "start": 28245.92, + "end": 28247.22, + "probability": 0.8898 + }, + { + "start": 28247.98, + "end": 28248.84, + "probability": 0.5725 + }, + { + "start": 28249.52, + "end": 28255.72, + "probability": 0.9743 + }, + { + "start": 28256.34, + "end": 28260.02, + "probability": 0.9876 + }, + { + "start": 28261.4, + "end": 28263.5, + "probability": 0.7982 + }, + { + "start": 28264.14, + "end": 28265.25, + "probability": 0.9377 + }, + { + "start": 28266.02, + "end": 28266.86, + "probability": 0.983 + }, + { + "start": 28268.6, + "end": 28273.04, + "probability": 0.9748 + }, + { + "start": 28274.04, + "end": 28281.12, + "probability": 0.9964 + }, + { + "start": 28282.28, + "end": 28283.75, + "probability": 0.9849 + }, + { + "start": 28284.66, + "end": 28286.8, + "probability": 0.9838 + }, + { + "start": 28287.7, + "end": 28288.9, + "probability": 0.8478 + }, + { + "start": 28289.94, + "end": 28294.72, + "probability": 0.9856 + }, + { + "start": 28294.72, + "end": 28299.38, + "probability": 0.9971 + }, + { + "start": 28300.48, + "end": 28303.54, + "probability": 0.9452 + }, + { + "start": 28304.54, + "end": 28310.78, + "probability": 0.9794 + }, + { + "start": 28310.78, + "end": 28315.98, + "probability": 0.7484 + }, + { + "start": 28318.5, + "end": 28319.24, + "probability": 0.7213 + }, + { + "start": 28320.22, + "end": 28323.96, + "probability": 0.995 + }, + { + "start": 28325.36, + "end": 28327.92, + "probability": 0.9979 + }, + { + "start": 28329.86, + "end": 28339.18, + "probability": 0.9754 + }, + { + "start": 28340.3, + "end": 28344.28, + "probability": 0.9901 + }, + { + "start": 28345.72, + "end": 28349.37, + "probability": 0.9838 + }, + { + "start": 28349.4, + "end": 28354.8, + "probability": 0.99 + }, + { + "start": 28355.8, + "end": 28357.28, + "probability": 0.6655 + }, + { + "start": 28357.86, + "end": 28358.88, + "probability": 0.8488 + }, + { + "start": 28361.44, + "end": 28362.98, + "probability": 0.9101 + }, + { + "start": 28364.8, + "end": 28368.46, + "probability": 0.9862 + }, + { + "start": 28368.46, + "end": 28373.7, + "probability": 0.9875 + }, + { + "start": 28375.1, + "end": 28375.1, + "probability": 0.6241 + }, + { + "start": 28375.28, + "end": 28376.06, + "probability": 0.8168 + }, + { + "start": 28376.34, + "end": 28380.5, + "probability": 0.9948 + }, + { + "start": 28382.86, + "end": 28384.56, + "probability": 0.776 + }, + { + "start": 28385.72, + "end": 28386.68, + "probability": 0.7207 + }, + { + "start": 28387.46, + "end": 28391.0, + "probability": 0.9253 + }, + { + "start": 28391.22, + "end": 28395.26, + "probability": 0.9941 + }, + { + "start": 28396.58, + "end": 28397.96, + "probability": 0.9163 + }, + { + "start": 28398.58, + "end": 28400.17, + "probability": 0.9812 + }, + { + "start": 28400.56, + "end": 28401.16, + "probability": 0.8857 + }, + { + "start": 28401.32, + "end": 28402.32, + "probability": 0.6489 + }, + { + "start": 28402.82, + "end": 28403.6, + "probability": 0.7752 + }, + { + "start": 28404.24, + "end": 28404.52, + "probability": 0.8687 + }, + { + "start": 28404.58, + "end": 28409.82, + "probability": 0.9844 + }, + { + "start": 28409.92, + "end": 28413.86, + "probability": 0.8931 + }, + { + "start": 28415.06, + "end": 28418.76, + "probability": 0.9055 + }, + { + "start": 28420.06, + "end": 28420.78, + "probability": 0.9447 + }, + { + "start": 28421.38, + "end": 28425.68, + "probability": 0.9205 + }, + { + "start": 28425.78, + "end": 28426.56, + "probability": 0.8314 + }, + { + "start": 28426.6, + "end": 28427.28, + "probability": 0.802 + }, + { + "start": 28427.46, + "end": 28428.58, + "probability": 0.9357 + }, + { + "start": 28430.1, + "end": 28431.22, + "probability": 0.8901 + }, + { + "start": 28431.88, + "end": 28433.3, + "probability": 0.9175 + }, + { + "start": 28434.42, + "end": 28435.92, + "probability": 0.8242 + }, + { + "start": 28436.96, + "end": 28438.32, + "probability": 0.6512 + }, + { + "start": 28438.86, + "end": 28440.72, + "probability": 0.8492 + }, + { + "start": 28441.28, + "end": 28443.44, + "probability": 0.9847 + }, + { + "start": 28443.9, + "end": 28446.14, + "probability": 0.9719 + }, + { + "start": 28446.14, + "end": 28448.96, + "probability": 0.9828 + }, + { + "start": 28449.28, + "end": 28452.04, + "probability": 0.4204 + }, + { + "start": 28452.04, + "end": 28452.82, + "probability": 0.9297 + }, + { + "start": 28453.24, + "end": 28456.26, + "probability": 0.9832 + }, + { + "start": 28456.6, + "end": 28458.36, + "probability": 0.9648 + }, + { + "start": 28458.84, + "end": 28459.24, + "probability": 0.8385 + }, + { + "start": 28459.98, + "end": 28461.58, + "probability": 0.8907 + }, + { + "start": 28462.34, + "end": 28463.88, + "probability": 0.9257 + }, + { + "start": 28464.78, + "end": 28465.56, + "probability": 0.2634 + }, + { + "start": 28465.62, + "end": 28469.16, + "probability": 0.9011 + }, + { + "start": 28469.26, + "end": 28470.12, + "probability": 0.9598 + }, + { + "start": 28470.16, + "end": 28470.76, + "probability": 0.9518 + }, + { + "start": 28471.52, + "end": 28472.38, + "probability": 0.8853 + }, + { + "start": 28473.22, + "end": 28474.02, + "probability": 0.9371 + }, + { + "start": 28474.22, + "end": 28475.18, + "probability": 0.7712 + }, + { + "start": 28475.26, + "end": 28475.98, + "probability": 0.8546 + }, + { + "start": 28476.28, + "end": 28477.34, + "probability": 0.9731 + }, + { + "start": 28477.44, + "end": 28478.38, + "probability": 0.8978 + }, + { + "start": 28478.58, + "end": 28479.32, + "probability": 0.3856 + }, + { + "start": 28480.16, + "end": 28480.92, + "probability": 0.9057 + }, + { + "start": 28481.84, + "end": 28484.8, + "probability": 0.8478 + }, + { + "start": 28484.86, + "end": 28485.32, + "probability": 0.8603 + }, + { + "start": 28485.42, + "end": 28486.2, + "probability": 0.9792 + }, + { + "start": 28486.86, + "end": 28490.06, + "probability": 0.9299 + }, + { + "start": 28490.76, + "end": 28492.34, + "probability": 0.8435 + }, + { + "start": 28493.04, + "end": 28493.56, + "probability": 0.6982 + }, + { + "start": 28494.06, + "end": 28495.26, + "probability": 0.9927 + }, + { + "start": 28496.22, + "end": 28496.5, + "probability": 0.9391 + }, + { + "start": 28497.56, + "end": 28499.32, + "probability": 0.9516 + }, + { + "start": 28499.88, + "end": 28500.62, + "probability": 0.959 + }, + { + "start": 28501.54, + "end": 28503.96, + "probability": 0.7816 + }, + { + "start": 28504.94, + "end": 28505.95, + "probability": 0.503 + }, + { + "start": 28506.7, + "end": 28507.48, + "probability": 0.5931 + }, + { + "start": 28508.24, + "end": 28510.1, + "probability": 0.7987 + }, + { + "start": 28511.08, + "end": 28513.22, + "probability": 0.9359 + }, + { + "start": 28514.08, + "end": 28515.5, + "probability": 0.9756 + }, + { + "start": 28516.16, + "end": 28520.04, + "probability": 0.907 + }, + { + "start": 28521.0, + "end": 28523.56, + "probability": 0.4993 + }, + { + "start": 28526.1, + "end": 28527.68, + "probability": 0.9792 + }, + { + "start": 28528.98, + "end": 28530.28, + "probability": 0.9941 + }, + { + "start": 28530.98, + "end": 28534.2, + "probability": 0.9927 + }, + { + "start": 28535.48, + "end": 28537.72, + "probability": 0.743 + }, + { + "start": 28538.28, + "end": 28538.83, + "probability": 0.7314 + }, + { + "start": 28540.3, + "end": 28541.38, + "probability": 0.8408 + }, + { + "start": 28541.98, + "end": 28543.08, + "probability": 0.8389 + }, + { + "start": 28543.6, + "end": 28544.95, + "probability": 0.9678 + }, + { + "start": 28545.5, + "end": 28548.88, + "probability": 0.9585 + }, + { + "start": 28549.0, + "end": 28550.93, + "probability": 0.895 + }, + { + "start": 28551.48, + "end": 28552.64, + "probability": 0.8741 + }, + { + "start": 28554.62, + "end": 28555.04, + "probability": 0.6929 + }, + { + "start": 28555.64, + "end": 28556.34, + "probability": 0.9137 + }, + { + "start": 28558.02, + "end": 28560.36, + "probability": 0.9241 + }, + { + "start": 28561.28, + "end": 28563.68, + "probability": 0.9961 + }, + { + "start": 28564.46, + "end": 28568.76, + "probability": 0.9799 + }, + { + "start": 28569.3, + "end": 28571.82, + "probability": 0.8103 + }, + { + "start": 28572.72, + "end": 28577.5, + "probability": 0.9115 + }, + { + "start": 28578.22, + "end": 28579.23, + "probability": 0.7704 + }, + { + "start": 28579.92, + "end": 28580.46, + "probability": 0.8125 + }, + { + "start": 28581.38, + "end": 28584.28, + "probability": 0.9915 + }, + { + "start": 28585.04, + "end": 28589.34, + "probability": 0.9559 + }, + { + "start": 28590.18, + "end": 28594.74, + "probability": 0.5488 + }, + { + "start": 28596.64, + "end": 28597.96, + "probability": 0.84 + }, + { + "start": 28598.48, + "end": 28603.92, + "probability": 0.9969 + }, + { + "start": 28604.94, + "end": 28608.18, + "probability": 0.9917 + }, + { + "start": 28609.26, + "end": 28616.8, + "probability": 0.9861 + }, + { + "start": 28617.6, + "end": 28620.38, + "probability": 0.7006 + }, + { + "start": 28620.74, + "end": 28621.94, + "probability": 0.9181 + }, + { + "start": 28622.18, + "end": 28623.24, + "probability": 0.9201 + }, + { + "start": 28624.38, + "end": 28625.52, + "probability": 0.9812 + }, + { + "start": 28626.46, + "end": 28629.48, + "probability": 0.9482 + }, + { + "start": 28630.34, + "end": 28631.92, + "probability": 0.9171 + }, + { + "start": 28632.52, + "end": 28637.58, + "probability": 0.9964 + }, + { + "start": 28638.0, + "end": 28640.8, + "probability": 0.9944 + }, + { + "start": 28641.1, + "end": 28641.12, + "probability": 0.2326 + }, + { + "start": 28641.12, + "end": 28641.56, + "probability": 0.6393 + }, + { + "start": 28641.94, + "end": 28642.69, + "probability": 0.4568 + }, + { + "start": 28643.76, + "end": 28646.74, + "probability": 0.9939 + }, + { + "start": 28647.36, + "end": 28651.16, + "probability": 0.9056 + }, + { + "start": 28651.6, + "end": 28654.7, + "probability": 0.9913 + }, + { + "start": 28658.1, + "end": 28659.38, + "probability": 0.5872 + }, + { + "start": 28661.14, + "end": 28661.62, + "probability": 0.8543 + }, + { + "start": 28662.6, + "end": 28667.5, + "probability": 0.7874 + }, + { + "start": 28667.54, + "end": 28673.54, + "probability": 0.9894 + }, + { + "start": 28673.94, + "end": 28674.56, + "probability": 0.3747 + }, + { + "start": 28675.36, + "end": 28675.46, + "probability": 0.2381 + }, + { + "start": 28676.06, + "end": 28676.5, + "probability": 0.5197 + }, + { + "start": 28677.07, + "end": 28681.14, + "probability": 0.9795 + }, + { + "start": 28681.22, + "end": 28683.0, + "probability": 0.9036 + }, + { + "start": 28683.42, + "end": 28685.14, + "probability": 0.9371 + }, + { + "start": 28685.24, + "end": 28686.22, + "probability": 0.5069 + }, + { + "start": 28686.78, + "end": 28687.5, + "probability": 0.6518 + }, + { + "start": 28687.64, + "end": 28689.16, + "probability": 0.7784 + }, + { + "start": 28690.88, + "end": 28693.74, + "probability": 0.879 + }, + { + "start": 28695.1, + "end": 28697.42, + "probability": 0.8041 + }, + { + "start": 28697.9, + "end": 28701.54, + "probability": 0.6706 + }, + { + "start": 28702.62, + "end": 28704.7, + "probability": 0.9068 + }, + { + "start": 28705.4, + "end": 28707.56, + "probability": 0.9881 + }, + { + "start": 28708.18, + "end": 28714.02, + "probability": 0.9052 + }, + { + "start": 28714.44, + "end": 28715.86, + "probability": 0.8103 + }, + { + "start": 28716.28, + "end": 28719.56, + "probability": 0.9898 + }, + { + "start": 28720.14, + "end": 28720.79, + "probability": 0.9092 + }, + { + "start": 28721.6, + "end": 28728.26, + "probability": 0.9187 + }, + { + "start": 28728.88, + "end": 28729.7, + "probability": 0.7843 + }, + { + "start": 28729.92, + "end": 28731.48, + "probability": 0.6138 + }, + { + "start": 28731.92, + "end": 28732.52, + "probability": 0.6348 + }, + { + "start": 28732.6, + "end": 28734.5, + "probability": 0.9922 + }, + { + "start": 28735.06, + "end": 28737.52, + "probability": 0.9381 + }, + { + "start": 28738.38, + "end": 28740.24, + "probability": 0.793 + }, + { + "start": 28740.66, + "end": 28741.36, + "probability": 0.8798 + }, + { + "start": 28741.82, + "end": 28744.24, + "probability": 0.8548 + }, + { + "start": 28745.44, + "end": 28746.38, + "probability": 0.6687 + }, + { + "start": 28747.0, + "end": 28747.62, + "probability": 0.9299 + }, + { + "start": 28748.44, + "end": 28752.54, + "probability": 0.9296 + }, + { + "start": 28753.02, + "end": 28754.24, + "probability": 0.5211 + }, + { + "start": 28756.16, + "end": 28757.1, + "probability": 0.9456 + }, + { + "start": 28764.42, + "end": 28765.68, + "probability": 0.415 + }, + { + "start": 28768.5, + "end": 28771.86, + "probability": 0.823 + }, + { + "start": 28773.02, + "end": 28775.1, + "probability": 0.7789 + }, + { + "start": 28775.96, + "end": 28776.94, + "probability": 0.9703 + }, + { + "start": 28777.9, + "end": 28779.7, + "probability": 0.8621 + }, + { + "start": 28779.92, + "end": 28782.08, + "probability": 0.2445 + }, + { + "start": 28783.24, + "end": 28784.3, + "probability": 0.9165 + }, + { + "start": 28784.78, + "end": 28787.22, + "probability": 0.9548 + }, + { + "start": 28788.22, + "end": 28796.1, + "probability": 0.884 + }, + { + "start": 28796.68, + "end": 28798.88, + "probability": 0.4808 + }, + { + "start": 28799.94, + "end": 28805.1, + "probability": 0.9296 + }, + { + "start": 28807.04, + "end": 28811.88, + "probability": 0.9932 + }, + { + "start": 28813.52, + "end": 28816.02, + "probability": 0.9713 + }, + { + "start": 28816.72, + "end": 28821.7, + "probability": 0.8136 + }, + { + "start": 28821.98, + "end": 28825.16, + "probability": 0.9915 + }, + { + "start": 28825.76, + "end": 28826.26, + "probability": 0.2743 + }, + { + "start": 28826.32, + "end": 28830.75, + "probability": 0.9868 + }, + { + "start": 28831.34, + "end": 28832.08, + "probability": 0.435 + }, + { + "start": 28832.22, + "end": 28832.82, + "probability": 0.7864 + }, + { + "start": 28833.3, + "end": 28835.48, + "probability": 0.8924 + }, + { + "start": 28836.66, + "end": 28844.6, + "probability": 0.9231 + }, + { + "start": 28844.68, + "end": 28848.64, + "probability": 0.9812 + }, + { + "start": 28850.08, + "end": 28851.9, + "probability": 0.9083 + }, + { + "start": 28853.48, + "end": 28857.7, + "probability": 0.9832 + }, + { + "start": 28857.92, + "end": 28861.78, + "probability": 0.9829 + }, + { + "start": 28862.18, + "end": 28863.32, + "probability": 0.8761 + }, + { + "start": 28863.94, + "end": 28864.78, + "probability": 0.8866 + }, + { + "start": 28865.32, + "end": 28866.28, + "probability": 0.9789 + }, + { + "start": 28866.4, + "end": 28868.08, + "probability": 0.8928 + }, + { + "start": 28868.94, + "end": 28871.38, + "probability": 0.9834 + }, + { + "start": 28872.72, + "end": 28875.6, + "probability": 0.9921 + }, + { + "start": 28875.66, + "end": 28879.52, + "probability": 0.8131 + }, + { + "start": 28880.4, + "end": 28883.16, + "probability": 0.9685 + }, + { + "start": 28883.16, + "end": 28887.76, + "probability": 0.937 + }, + { + "start": 28887.82, + "end": 28892.38, + "probability": 0.993 + }, + { + "start": 28893.4, + "end": 28897.54, + "probability": 0.9987 + }, + { + "start": 28898.24, + "end": 28902.58, + "probability": 0.9243 + }, + { + "start": 28902.66, + "end": 28903.44, + "probability": 0.7627 + }, + { + "start": 28903.52, + "end": 28904.74, + "probability": 0.9865 + }, + { + "start": 28905.88, + "end": 28906.34, + "probability": 0.4871 + }, + { + "start": 28906.5, + "end": 28910.12, + "probability": 0.8787 + }, + { + "start": 28910.72, + "end": 28916.08, + "probability": 0.7932 + }, + { + "start": 28916.68, + "end": 28920.6, + "probability": 0.9396 + }, + { + "start": 28922.42, + "end": 28922.86, + "probability": 0.6095 + }, + { + "start": 28923.0, + "end": 28926.24, + "probability": 0.9897 + }, + { + "start": 28926.28, + "end": 28931.3, + "probability": 0.9985 + }, + { + "start": 28931.86, + "end": 28933.38, + "probability": 0.6723 + }, + { + "start": 28935.04, + "end": 28935.76, + "probability": 0.4143 + }, + { + "start": 28936.06, + "end": 28939.5, + "probability": 0.9917 + }, + { + "start": 28939.5, + "end": 28944.14, + "probability": 0.9255 + }, + { + "start": 28945.2, + "end": 28952.3, + "probability": 0.9691 + }, + { + "start": 28952.3, + "end": 28957.0, + "probability": 0.9881 + }, + { + "start": 28958.06, + "end": 28963.26, + "probability": 0.9731 + }, + { + "start": 28963.84, + "end": 28967.56, + "probability": 0.9738 + }, + { + "start": 28968.3, + "end": 28969.62, + "probability": 0.4926 + }, + { + "start": 28970.58, + "end": 28975.84, + "probability": 0.9949 + }, + { + "start": 28975.84, + "end": 28979.52, + "probability": 0.9951 + }, + { + "start": 28979.94, + "end": 28985.38, + "probability": 0.9465 + }, + { + "start": 28985.76, + "end": 28989.26, + "probability": 0.9506 + }, + { + "start": 28990.55, + "end": 28991.88, + "probability": 0.8994 + }, + { + "start": 28992.78, + "end": 28994.68, + "probability": 0.991 + }, + { + "start": 28994.7, + "end": 28997.42, + "probability": 0.8839 + }, + { + "start": 28998.06, + "end": 28998.52, + "probability": 0.8518 + }, + { + "start": 28999.46, + "end": 29000.4, + "probability": 0.9013 + }, + { + "start": 29001.04, + "end": 29002.62, + "probability": 0.2614 + }, + { + "start": 29003.32, + "end": 29005.66, + "probability": 0.7981 + }, + { + "start": 29005.84, + "end": 29007.1, + "probability": 0.482 + }, + { + "start": 29007.28, + "end": 29008.38, + "probability": 0.9526 + }, + { + "start": 29008.56, + "end": 29011.92, + "probability": 0.6783 + }, + { + "start": 29012.04, + "end": 29014.42, + "probability": 0.9274 + }, + { + "start": 29014.62, + "end": 29015.66, + "probability": 0.165 + }, + { + "start": 29016.08, + "end": 29016.08, + "probability": 0.3071 + }, + { + "start": 29016.5, + "end": 29016.5, + "probability": 0.3778 + }, + { + "start": 29016.56, + "end": 29017.14, + "probability": 0.4627 + }, + { + "start": 29017.14, + "end": 29017.92, + "probability": 0.5445 + }, + { + "start": 29018.8, + "end": 29022.44, + "probability": 0.9279 + }, + { + "start": 29023.32, + "end": 29023.98, + "probability": 0.8097 + }, + { + "start": 29025.42, + "end": 29029.92, + "probability": 0.507 + }, + { + "start": 29030.2, + "end": 29032.98, + "probability": 0.0991 + }, + { + "start": 29033.7, + "end": 29034.34, + "probability": 0.1594 + }, + { + "start": 29034.54, + "end": 29035.2, + "probability": 0.629 + }, + { + "start": 29035.64, + "end": 29036.56, + "probability": 0.8575 + }, + { + "start": 29038.36, + "end": 29039.62, + "probability": 0.5359 + }, + { + "start": 29042.26, + "end": 29045.94, + "probability": 0.9898 + }, + { + "start": 29046.6, + "end": 29047.37, + "probability": 0.3936 + }, + { + "start": 29047.82, + "end": 29049.68, + "probability": 0.2091 + }, + { + "start": 29052.18, + "end": 29053.3, + "probability": 0.7935 + }, + { + "start": 29053.7, + "end": 29055.74, + "probability": 0.8137 + }, + { + "start": 29056.1, + "end": 29057.14, + "probability": 0.285 + }, + { + "start": 29057.52, + "end": 29059.46, + "probability": 0.2049 + }, + { + "start": 29060.26, + "end": 29060.34, + "probability": 0.1653 + }, + { + "start": 29060.34, + "end": 29062.64, + "probability": 0.5908 + }, + { + "start": 29063.78, + "end": 29066.36, + "probability": 0.5028 + }, + { + "start": 29067.18, + "end": 29067.66, + "probability": 0.4914 + }, + { + "start": 29067.84, + "end": 29068.74, + "probability": 0.9155 + }, + { + "start": 29068.84, + "end": 29074.84, + "probability": 0.7178 + }, + { + "start": 29074.84, + "end": 29078.86, + "probability": 0.818 + }, + { + "start": 29079.08, + "end": 29081.8, + "probability": 0.6918 + }, + { + "start": 29085.02, + "end": 29086.68, + "probability": 0.0617 + }, + { + "start": 29089.07, + "end": 29090.92, + "probability": 0.375 + }, + { + "start": 29094.46, + "end": 29095.2, + "probability": 0.0633 + }, + { + "start": 29095.2, + "end": 29097.42, + "probability": 0.0539 + }, + { + "start": 29097.56, + "end": 29097.91, + "probability": 0.1245 + }, + { + "start": 29099.34, + "end": 29099.86, + "probability": 0.3989 + }, + { + "start": 29100.8, + "end": 29101.9, + "probability": 0.7193 + }, + { + "start": 29102.8, + "end": 29102.96, + "probability": 0.0169 + }, + { + "start": 29103.08, + "end": 29103.48, + "probability": 0.4088 + }, + { + "start": 29110.58, + "end": 29110.68, + "probability": 0.0234 + }, + { + "start": 29110.68, + "end": 29113.34, + "probability": 0.5082 + }, + { + "start": 29113.72, + "end": 29114.32, + "probability": 0.4137 + }, + { + "start": 29115.58, + "end": 29116.9, + "probability": 0.0121 + }, + { + "start": 29117.3, + "end": 29117.4, + "probability": 0.1027 + }, + { + "start": 29117.4, + "end": 29120.7, + "probability": 0.5399 + }, + { + "start": 29122.48, + "end": 29126.24, + "probability": 0.8301 + }, + { + "start": 29127.06, + "end": 29129.0, + "probability": 0.6738 + }, + { + "start": 29130.68, + "end": 29132.58, + "probability": 0.7602 + }, + { + "start": 29133.36, + "end": 29135.54, + "probability": 0.8642 + }, + { + "start": 29136.5, + "end": 29141.08, + "probability": 0.9756 + }, + { + "start": 29141.8, + "end": 29143.16, + "probability": 0.9924 + }, + { + "start": 29143.78, + "end": 29147.74, + "probability": 0.8032 + }, + { + "start": 29149.0, + "end": 29149.32, + "probability": 0.4275 + }, + { + "start": 29149.78, + "end": 29150.62, + "probability": 0.7533 + }, + { + "start": 29151.0, + "end": 29155.64, + "probability": 0.9968 + }, + { + "start": 29156.44, + "end": 29158.76, + "probability": 0.9658 + }, + { + "start": 29159.5, + "end": 29163.91, + "probability": 0.9644 + }, + { + "start": 29164.18, + "end": 29169.8, + "probability": 0.954 + }, + { + "start": 29170.36, + "end": 29173.52, + "probability": 0.9383 + }, + { + "start": 29173.93, + "end": 29177.56, + "probability": 0.9975 + }, + { + "start": 29178.36, + "end": 29182.7, + "probability": 0.9977 + }, + { + "start": 29183.62, + "end": 29184.4, + "probability": 0.01 + }, + { + "start": 29184.98, + "end": 29190.62, + "probability": 0.955 + }, + { + "start": 29191.7, + "end": 29193.14, + "probability": 0.795 + }, + { + "start": 29193.96, + "end": 29198.62, + "probability": 0.9934 + }, + { + "start": 29198.9, + "end": 29199.43, + "probability": 0.8295 + }, + { + "start": 29200.56, + "end": 29205.44, + "probability": 0.9831 + }, + { + "start": 29206.18, + "end": 29207.07, + "probability": 0.8954 + }, + { + "start": 29207.26, + "end": 29212.04, + "probability": 0.9601 + }, + { + "start": 29213.1, + "end": 29218.26, + "probability": 0.7028 + }, + { + "start": 29219.04, + "end": 29219.8, + "probability": 0.9311 + }, + { + "start": 29220.34, + "end": 29222.7, + "probability": 0.9067 + }, + { + "start": 29222.94, + "end": 29228.28, + "probability": 0.9293 + }, + { + "start": 29229.46, + "end": 29229.94, + "probability": 0.8018 + }, + { + "start": 29230.62, + "end": 29230.86, + "probability": 0.3173 + }, + { + "start": 29230.9, + "end": 29231.96, + "probability": 0.6899 + }, + { + "start": 29232.08, + "end": 29233.46, + "probability": 0.6712 + }, + { + "start": 29233.96, + "end": 29234.42, + "probability": 0.9196 + }, + { + "start": 29234.54, + "end": 29236.68, + "probability": 0.9324 + }, + { + "start": 29237.74, + "end": 29239.5, + "probability": 0.9368 + }, + { + "start": 29240.94, + "end": 29243.26, + "probability": 0.855 + }, + { + "start": 29243.26, + "end": 29247.47, + "probability": 0.9415 + }, + { + "start": 29247.92, + "end": 29248.99, + "probability": 0.5638 + }, + { + "start": 29249.16, + "end": 29250.78, + "probability": 0.9941 + }, + { + "start": 29251.44, + "end": 29253.84, + "probability": 0.9945 + }, + { + "start": 29254.54, + "end": 29256.88, + "probability": 0.3884 + }, + { + "start": 29257.02, + "end": 29257.02, + "probability": 0.5138 + }, + { + "start": 29257.24, + "end": 29258.8, + "probability": 0.7651 + }, + { + "start": 29260.48, + "end": 29262.24, + "probability": 0.4143 + }, + { + "start": 29263.14, + "end": 29263.76, + "probability": 0.244 + }, + { + "start": 29263.76, + "end": 29263.76, + "probability": 0.2722 + }, + { + "start": 29263.78, + "end": 29267.3, + "probability": 0.988 + }, + { + "start": 29267.76, + "end": 29269.62, + "probability": 0.7872 + }, + { + "start": 29270.7, + "end": 29275.54, + "probability": 0.8655 + }, + { + "start": 29278.48, + "end": 29278.84, + "probability": 0.0915 + }, + { + "start": 29278.84, + "end": 29282.24, + "probability": 0.9673 + }, + { + "start": 29282.72, + "end": 29284.06, + "probability": 0.8313 + }, + { + "start": 29284.86, + "end": 29286.86, + "probability": 0.9834 + }, + { + "start": 29287.56, + "end": 29289.08, + "probability": 0.5164 + }, + { + "start": 29289.12, + "end": 29289.66, + "probability": 0.7545 + }, + { + "start": 29289.72, + "end": 29292.94, + "probability": 0.9896 + }, + { + "start": 29292.94, + "end": 29295.72, + "probability": 0.9999 + }, + { + "start": 29296.34, + "end": 29299.48, + "probability": 0.9722 + }, + { + "start": 29299.86, + "end": 29301.33, + "probability": 0.6665 + }, + { + "start": 29301.6, + "end": 29301.62, + "probability": 0.4459 + }, + { + "start": 29301.9, + "end": 29304.8, + "probability": 0.9539 + }, + { + "start": 29304.88, + "end": 29305.18, + "probability": 0.6223 + }, + { + "start": 29305.52, + "end": 29306.06, + "probability": 0.7262 + }, + { + "start": 29306.66, + "end": 29307.94, + "probability": 0.6664 + }, + { + "start": 29330.52, + "end": 29331.68, + "probability": 0.4695 + }, + { + "start": 29331.72, + "end": 29332.76, + "probability": 0.8212 + }, + { + "start": 29333.16, + "end": 29334.94, + "probability": 0.6237 + }, + { + "start": 29336.68, + "end": 29343.9, + "probability": 0.9697 + }, + { + "start": 29344.02, + "end": 29345.18, + "probability": 0.7553 + }, + { + "start": 29346.24, + "end": 29350.56, + "probability": 0.6943 + }, + { + "start": 29351.22, + "end": 29352.72, + "probability": 0.8229 + }, + { + "start": 29353.48, + "end": 29360.58, + "probability": 0.9427 + }, + { + "start": 29362.22, + "end": 29367.14, + "probability": 0.9658 + }, + { + "start": 29367.38, + "end": 29368.88, + "probability": 0.9456 + }, + { + "start": 29369.6, + "end": 29374.26, + "probability": 0.9813 + }, + { + "start": 29374.59, + "end": 29377.46, + "probability": 0.7541 + }, + { + "start": 29378.36, + "end": 29379.66, + "probability": 0.8488 + }, + { + "start": 29379.84, + "end": 29380.16, + "probability": 0.627 + }, + { + "start": 29380.26, + "end": 29381.74, + "probability": 0.9729 + }, + { + "start": 29381.84, + "end": 29385.26, + "probability": 0.7322 + }, + { + "start": 29385.32, + "end": 29385.74, + "probability": 0.6871 + }, + { + "start": 29387.94, + "end": 29390.7, + "probability": 0.9706 + }, + { + "start": 29391.1, + "end": 29393.1, + "probability": 0.9319 + }, + { + "start": 29394.78, + "end": 29397.06, + "probability": 0.9322 + }, + { + "start": 29399.86, + "end": 29405.04, + "probability": 0.9965 + }, + { + "start": 29405.72, + "end": 29407.34, + "probability": 0.9528 + }, + { + "start": 29407.94, + "end": 29411.91, + "probability": 0.9941 + }, + { + "start": 29412.48, + "end": 29414.44, + "probability": 0.8329 + }, + { + "start": 29414.62, + "end": 29417.3, + "probability": 0.9844 + }, + { + "start": 29418.16, + "end": 29421.1, + "probability": 0.9771 + }, + { + "start": 29421.58, + "end": 29422.66, + "probability": 0.9635 + }, + { + "start": 29422.74, + "end": 29423.78, + "probability": 0.9567 + }, + { + "start": 29423.86, + "end": 29425.64, + "probability": 0.8671 + }, + { + "start": 29426.5, + "end": 29430.62, + "probability": 0.9752 + }, + { + "start": 29431.26, + "end": 29434.92, + "probability": 0.9795 + }, + { + "start": 29435.48, + "end": 29436.2, + "probability": 0.826 + }, + { + "start": 29437.02, + "end": 29447.02, + "probability": 0.9961 + }, + { + "start": 29447.98, + "end": 29448.62, + "probability": 0.8612 + }, + { + "start": 29449.2, + "end": 29450.26, + "probability": 0.8963 + }, + { + "start": 29453.32, + "end": 29453.9, + "probability": 0.6678 + }, + { + "start": 29454.86, + "end": 29456.8, + "probability": 0.9783 + }, + { + "start": 29457.58, + "end": 29460.14, + "probability": 0.6298 + }, + { + "start": 29460.34, + "end": 29460.92, + "probability": 0.3331 + }, + { + "start": 29461.0, + "end": 29462.56, + "probability": 0.7777 + }, + { + "start": 29462.62, + "end": 29463.6, + "probability": 0.7784 + }, + { + "start": 29464.6, + "end": 29468.86, + "probability": 0.9332 + }, + { + "start": 29469.42, + "end": 29471.68, + "probability": 0.8613 + }, + { + "start": 29472.62, + "end": 29476.14, + "probability": 0.8887 + }, + { + "start": 29476.92, + "end": 29480.16, + "probability": 0.9953 + }, + { + "start": 29480.16, + "end": 29486.4, + "probability": 0.9855 + }, + { + "start": 29487.0, + "end": 29487.88, + "probability": 0.9159 + }, + { + "start": 29488.66, + "end": 29489.68, + "probability": 0.7705 + }, + { + "start": 29490.06, + "end": 29492.36, + "probability": 0.994 + }, + { + "start": 29492.36, + "end": 29495.72, + "probability": 0.9309 + }, + { + "start": 29497.1, + "end": 29500.36, + "probability": 0.991 + }, + { + "start": 29501.38, + "end": 29503.54, + "probability": 0.9917 + }, + { + "start": 29504.72, + "end": 29506.52, + "probability": 0.9927 + }, + { + "start": 29506.68, + "end": 29509.96, + "probability": 0.8698 + }, + { + "start": 29510.8, + "end": 29513.34, + "probability": 0.5158 + }, + { + "start": 29513.44, + "end": 29515.24, + "probability": 0.9736 + }, + { + "start": 29516.0, + "end": 29518.34, + "probability": 0.8933 + }, + { + "start": 29518.44, + "end": 29522.72, + "probability": 0.9808 + }, + { + "start": 29523.44, + "end": 29525.74, + "probability": 0.7785 + }, + { + "start": 29526.81, + "end": 29530.65, + "probability": 0.9817 + }, + { + "start": 29532.14, + "end": 29533.82, + "probability": 0.9399 + }, + { + "start": 29534.22, + "end": 29535.61, + "probability": 0.9952 + }, + { + "start": 29536.26, + "end": 29543.72, + "probability": 0.9477 + }, + { + "start": 29544.4, + "end": 29544.9, + "probability": 0.7372 + }, + { + "start": 29545.18, + "end": 29545.54, + "probability": 0.9727 + }, + { + "start": 29546.4, + "end": 29549.8, + "probability": 0.9979 + }, + { + "start": 29549.8, + "end": 29553.36, + "probability": 0.9935 + }, + { + "start": 29553.46, + "end": 29553.88, + "probability": 0.7251 + }, + { + "start": 29554.36, + "end": 29554.96, + "probability": 0.7816 + }, + { + "start": 29555.46, + "end": 29556.94, + "probability": 0.9722 + }, + { + "start": 29558.3, + "end": 29560.64, + "probability": 0.9777 + }, + { + "start": 29561.48, + "end": 29563.9, + "probability": 0.9833 + }, + { + "start": 29564.56, + "end": 29565.2, + "probability": 0.5094 + }, + { + "start": 29565.36, + "end": 29568.36, + "probability": 0.9543 + }, + { + "start": 29568.6, + "end": 29569.8, + "probability": 0.3662 + }, + { + "start": 29571.66, + "end": 29573.02, + "probability": 0.9087 + }, + { + "start": 29573.56, + "end": 29576.02, + "probability": 0.2514 + }, + { + "start": 29576.28, + "end": 29576.98, + "probability": 0.8269 + }, + { + "start": 29581.86, + "end": 29582.42, + "probability": 0.5453 + }, + { + "start": 29582.76, + "end": 29583.8, + "probability": 0.3963 + }, + { + "start": 29583.98, + "end": 29585.42, + "probability": 0.9429 + }, + { + "start": 29586.52, + "end": 29589.02, + "probability": 0.6782 + }, + { + "start": 29589.3, + "end": 29591.4, + "probability": 0.5441 + }, + { + "start": 29592.6, + "end": 29595.3, + "probability": 0.9775 + }, + { + "start": 29595.3, + "end": 29597.64, + "probability": 0.9966 + }, + { + "start": 29597.82, + "end": 29599.06, + "probability": 0.6438 + }, + { + "start": 29600.12, + "end": 29603.02, + "probability": 0.8934 + }, + { + "start": 29604.0, + "end": 29609.0, + "probability": 0.9565 + }, + { + "start": 29609.1, + "end": 29609.36, + "probability": 0.4276 + }, + { + "start": 29609.98, + "end": 29611.62, + "probability": 0.9895 + }, + { + "start": 29612.6, + "end": 29615.08, + "probability": 0.9578 + }, + { + "start": 29615.22, + "end": 29618.49, + "probability": 0.9515 + }, + { + "start": 29618.82, + "end": 29619.52, + "probability": 0.9447 + }, + { + "start": 29619.78, + "end": 29620.42, + "probability": 0.9834 + }, + { + "start": 29620.52, + "end": 29621.08, + "probability": 0.9813 + }, + { + "start": 29621.2, + "end": 29621.76, + "probability": 0.8993 + }, + { + "start": 29622.34, + "end": 29626.48, + "probability": 0.9614 + }, + { + "start": 29627.2, + "end": 29629.94, + "probability": 0.9824 + }, + { + "start": 29630.82, + "end": 29635.45, + "probability": 0.9675 + }, + { + "start": 29637.02, + "end": 29637.46, + "probability": 0.2322 + }, + { + "start": 29637.46, + "end": 29639.8, + "probability": 0.8116 + }, + { + "start": 29639.82, + "end": 29640.48, + "probability": 0.7838 + }, + { + "start": 29641.02, + "end": 29643.96, + "probability": 0.5883 + }, + { + "start": 29646.16, + "end": 29646.7, + "probability": 0.6408 + }, + { + "start": 29646.94, + "end": 29649.66, + "probability": 0.8475 + }, + { + "start": 29650.44, + "end": 29654.1, + "probability": 0.9977 + }, + { + "start": 29654.43, + "end": 29659.38, + "probability": 0.9401 + }, + { + "start": 29660.22, + "end": 29662.98, + "probability": 0.9867 + }, + { + "start": 29663.72, + "end": 29666.18, + "probability": 0.9919 + }, + { + "start": 29667.18, + "end": 29670.74, + "probability": 0.8592 + }, + { + "start": 29671.22, + "end": 29671.8, + "probability": 0.9022 + }, + { + "start": 29672.3, + "end": 29675.86, + "probability": 0.973 + }, + { + "start": 29676.66, + "end": 29681.5, + "probability": 0.986 + }, + { + "start": 29682.02, + "end": 29684.12, + "probability": 0.4919 + }, + { + "start": 29684.8, + "end": 29687.86, + "probability": 0.8059 + }, + { + "start": 29687.86, + "end": 29690.08, + "probability": 0.9054 + }, + { + "start": 29692.1, + "end": 29694.58, + "probability": 0.8653 + }, + { + "start": 29695.58, + "end": 29697.57, + "probability": 0.9081 + }, + { + "start": 29698.08, + "end": 29704.52, + "probability": 0.9319 + }, + { + "start": 29704.64, + "end": 29707.68, + "probability": 0.8575 + }, + { + "start": 29708.76, + "end": 29712.06, + "probability": 0.9839 + }, + { + "start": 29712.56, + "end": 29714.06, + "probability": 0.9957 + }, + { + "start": 29714.64, + "end": 29718.08, + "probability": 0.9942 + }, + { + "start": 29718.2, + "end": 29718.58, + "probability": 0.8577 + }, + { + "start": 29719.48, + "end": 29722.52, + "probability": 0.8154 + }, + { + "start": 29722.52, + "end": 29728.04, + "probability": 0.9717 + }, + { + "start": 29728.92, + "end": 29733.44, + "probability": 0.9974 + }, + { + "start": 29734.62, + "end": 29736.32, + "probability": 0.592 + }, + { + "start": 29736.32, + "end": 29737.14, + "probability": 0.4419 + }, + { + "start": 29737.2, + "end": 29739.06, + "probability": 0.9032 + }, + { + "start": 29739.16, + "end": 29740.3, + "probability": 0.5831 + }, + { + "start": 29741.02, + "end": 29743.7, + "probability": 0.9927 + }, + { + "start": 29744.96, + "end": 29746.0, + "probability": 0.7685 + }, + { + "start": 29747.04, + "end": 29748.72, + "probability": 0.6337 + }, + { + "start": 29748.74, + "end": 29749.12, + "probability": 0.5995 + }, + { + "start": 29749.18, + "end": 29750.74, + "probability": 0.9123 + }, + { + "start": 29752.21, + "end": 29754.44, + "probability": 0.7925 + }, + { + "start": 29754.72, + "end": 29758.7, + "probability": 0.0737 + }, + { + "start": 29759.5, + "end": 29762.5, + "probability": 0.5572 + }, + { + "start": 29762.56, + "end": 29764.95, + "probability": 0.8256 + }, + { + "start": 29765.1, + "end": 29766.34, + "probability": 0.1232 + }, + { + "start": 29767.64, + "end": 29769.74, + "probability": 0.973 + }, + { + "start": 29769.76, + "end": 29769.76, + "probability": 0.5771 + }, + { + "start": 29770.3, + "end": 29772.96, + "probability": 0.2091 + }, + { + "start": 29773.54, + "end": 29776.36, + "probability": 0.0309 + }, + { + "start": 29777.38, + "end": 29777.38, + "probability": 0.091 + }, + { + "start": 29777.38, + "end": 29778.42, + "probability": 0.4398 + }, + { + "start": 29778.42, + "end": 29779.72, + "probability": 0.4647 + }, + { + "start": 29779.86, + "end": 29781.62, + "probability": 0.6491 + }, + { + "start": 29781.96, + "end": 29783.48, + "probability": 0.9001 + }, + { + "start": 29784.12, + "end": 29786.92, + "probability": 0.9893 + }, + { + "start": 29786.94, + "end": 29791.66, + "probability": 0.9347 + }, + { + "start": 29791.72, + "end": 29794.0, + "probability": 0.9763 + }, + { + "start": 29795.14, + "end": 29796.84, + "probability": 0.8828 + }, + { + "start": 29797.56, + "end": 29800.4, + "probability": 0.8845 + }, + { + "start": 29801.16, + "end": 29803.74, + "probability": 0.9473 + }, + { + "start": 29803.78, + "end": 29805.4, + "probability": 0.651 + }, + { + "start": 29806.22, + "end": 29806.68, + "probability": 0.9298 + }, + { + "start": 29806.86, + "end": 29811.72, + "probability": 0.5748 + }, + { + "start": 29811.86, + "end": 29812.5, + "probability": 0.738 + }, + { + "start": 29813.32, + "end": 29813.48, + "probability": 0.6328 + }, + { + "start": 29813.56, + "end": 29814.08, + "probability": 0.6266 + }, + { + "start": 29814.26, + "end": 29818.48, + "probability": 0.9633 + }, + { + "start": 29819.8, + "end": 29821.8, + "probability": 0.9301 + }, + { + "start": 29823.44, + "end": 29824.58, + "probability": 0.796 + }, + { + "start": 29828.58, + "end": 29828.58, + "probability": 0.0026 + }, + { + "start": 29834.32, + "end": 29835.16, + "probability": 0.125 + }, + { + "start": 29835.16, + "end": 29838.28, + "probability": 0.723 + }, + { + "start": 29841.48, + "end": 29844.81, + "probability": 0.9463 + }, + { + "start": 29845.92, + "end": 29848.02, + "probability": 0.984 + }, + { + "start": 29848.62, + "end": 29849.84, + "probability": 0.916 + }, + { + "start": 29849.98, + "end": 29851.72, + "probability": 0.9109 + }, + { + "start": 29852.18, + "end": 29853.94, + "probability": 0.9895 + }, + { + "start": 29854.92, + "end": 29857.9, + "probability": 0.9889 + }, + { + "start": 29859.22, + "end": 29866.32, + "probability": 0.697 + }, + { + "start": 29866.44, + "end": 29866.98, + "probability": 0.9568 + }, + { + "start": 29867.66, + "end": 29871.34, + "probability": 0.972 + }, + { + "start": 29872.18, + "end": 29874.76, + "probability": 0.92 + }, + { + "start": 29875.62, + "end": 29878.5, + "probability": 0.8274 + }, + { + "start": 29878.64, + "end": 29880.32, + "probability": 0.9958 + }, + { + "start": 29880.44, + "end": 29882.08, + "probability": 0.9934 + }, + { + "start": 29882.62, + "end": 29886.16, + "probability": 0.9211 + }, + { + "start": 29886.96, + "end": 29890.42, + "probability": 0.9744 + }, + { + "start": 29890.58, + "end": 29893.34, + "probability": 0.9932 + }, + { + "start": 29894.88, + "end": 29895.98, + "probability": 0.9694 + }, + { + "start": 29896.76, + "end": 29898.42, + "probability": 0.9659 + }, + { + "start": 29898.98, + "end": 29901.36, + "probability": 0.9829 + }, + { + "start": 29902.72, + "end": 29903.84, + "probability": 0.9832 + }, + { + "start": 29905.68, + "end": 29908.16, + "probability": 0.8591 + }, + { + "start": 29908.24, + "end": 29910.94, + "probability": 0.9436 + }, + { + "start": 29911.52, + "end": 29914.4, + "probability": 0.8798 + }, + { + "start": 29915.04, + "end": 29916.4, + "probability": 0.7952 + }, + { + "start": 29917.54, + "end": 29919.99, + "probability": 0.8809 + }, + { + "start": 29920.54, + "end": 29921.8, + "probability": 0.9119 + }, + { + "start": 29922.24, + "end": 29923.12, + "probability": 0.7165 + }, + { + "start": 29923.84, + "end": 29927.12, + "probability": 0.8401 + }, + { + "start": 29927.84, + "end": 29930.1, + "probability": 0.9441 + }, + { + "start": 29930.8, + "end": 29933.48, + "probability": 0.9633 + }, + { + "start": 29934.06, + "end": 29935.82, + "probability": 0.9926 + }, + { + "start": 29936.34, + "end": 29937.74, + "probability": 0.9829 + }, + { + "start": 29938.38, + "end": 29940.9, + "probability": 0.9135 + }, + { + "start": 29941.62, + "end": 29943.94, + "probability": 0.9623 + }, + { + "start": 29944.54, + "end": 29946.48, + "probability": 0.9478 + }, + { + "start": 29947.2, + "end": 29949.82, + "probability": 0.9225 + }, + { + "start": 29949.84, + "end": 29950.88, + "probability": 0.7314 + }, + { + "start": 29951.32, + "end": 29952.1, + "probability": 0.7221 + }, + { + "start": 29952.16, + "end": 29955.66, + "probability": 0.9897 + }, + { + "start": 29956.68, + "end": 29958.0, + "probability": 0.5045 + }, + { + "start": 29958.56, + "end": 29959.84, + "probability": 0.5718 + }, + { + "start": 29960.27, + "end": 29966.32, + "probability": 0.9647 + }, + { + "start": 29966.52, + "end": 29976.22, + "probability": 0.9493 + }, + { + "start": 29976.56, + "end": 29978.84, + "probability": 0.8701 + }, + { + "start": 29980.06, + "end": 29981.58, + "probability": 0.996 + }, + { + "start": 29982.4, + "end": 29985.96, + "probability": 0.9884 + }, + { + "start": 29986.52, + "end": 29989.78, + "probability": 0.9443 + }, + { + "start": 29989.78, + "end": 29993.9, + "probability": 0.996 + }, + { + "start": 29994.44, + "end": 29996.14, + "probability": 0.5906 + }, + { + "start": 29996.7, + "end": 29999.16, + "probability": 0.86 + }, + { + "start": 30000.4, + "end": 30002.68, + "probability": 0.9977 + }, + { + "start": 30002.68, + "end": 30007.6, + "probability": 0.8722 + }, + { + "start": 30007.82, + "end": 30014.12, + "probability": 0.9897 + }, + { + "start": 30014.94, + "end": 30016.98, + "probability": 0.4929 + }, + { + "start": 30017.54, + "end": 30021.52, + "probability": 0.782 + }, + { + "start": 30022.14, + "end": 30026.82, + "probability": 0.9743 + }, + { + "start": 30026.82, + "end": 30030.82, + "probability": 0.9805 + }, + { + "start": 30031.5, + "end": 30031.7, + "probability": 0.2573 + }, + { + "start": 30031.74, + "end": 30037.34, + "probability": 0.9863 + }, + { + "start": 30038.04, + "end": 30043.38, + "probability": 0.9792 + }, + { + "start": 30043.92, + "end": 30047.74, + "probability": 0.9806 + }, + { + "start": 30047.84, + "end": 30048.56, + "probability": 0.7057 + }, + { + "start": 30048.96, + "end": 30049.7, + "probability": 0.8718 + }, + { + "start": 30049.9, + "end": 30050.72, + "probability": 0.8748 + }, + { + "start": 30051.32, + "end": 30055.54, + "probability": 0.966 + }, + { + "start": 30055.68, + "end": 30058.96, + "probability": 0.9888 + }, + { + "start": 30059.26, + "end": 30060.34, + "probability": 0.8904 + }, + { + "start": 30060.8, + "end": 30067.14, + "probability": 0.9925 + }, + { + "start": 30067.99, + "end": 30072.42, + "probability": 0.9286 + }, + { + "start": 30073.0, + "end": 30076.96, + "probability": 0.9141 + }, + { + "start": 30076.96, + "end": 30082.5, + "probability": 0.9976 + }, + { + "start": 30082.5, + "end": 30088.32, + "probability": 0.9976 + }, + { + "start": 30088.84, + "end": 30092.52, + "probability": 0.8829 + }, + { + "start": 30092.92, + "end": 30093.46, + "probability": 0.9086 + }, + { + "start": 30094.02, + "end": 30094.78, + "probability": 0.8611 + }, + { + "start": 30095.46, + "end": 30098.1, + "probability": 0.9966 + }, + { + "start": 30098.46, + "end": 30099.66, + "probability": 0.9979 + }, + { + "start": 30100.22, + "end": 30103.58, + "probability": 0.9614 + }, + { + "start": 30104.28, + "end": 30108.92, + "probability": 0.8036 + }, + { + "start": 30109.44, + "end": 30113.16, + "probability": 0.9712 + }, + { + "start": 30113.26, + "end": 30114.5, + "probability": 0.8699 + }, + { + "start": 30114.92, + "end": 30117.18, + "probability": 0.9841 + }, + { + "start": 30117.72, + "end": 30124.54, + "probability": 0.9886 + }, + { + "start": 30125.12, + "end": 30126.2, + "probability": 0.7721 + }, + { + "start": 30127.12, + "end": 30133.52, + "probability": 0.5597 + }, + { + "start": 30133.94, + "end": 30137.38, + "probability": 0.9409 + }, + { + "start": 30137.76, + "end": 30137.86, + "probability": 0.6883 + }, + { + "start": 30138.74, + "end": 30139.5, + "probability": 0.4662 + }, + { + "start": 30139.56, + "end": 30140.28, + "probability": 0.7466 + }, + { + "start": 30141.32, + "end": 30146.89, + "probability": 0.9592 + }, + { + "start": 30147.66, + "end": 30152.1, + "probability": 0.9519 + }, + { + "start": 30152.6, + "end": 30155.14, + "probability": 0.8164 + }, + { + "start": 30155.14, + "end": 30157.86, + "probability": 0.9922 + }, + { + "start": 30158.42, + "end": 30160.7, + "probability": 0.9886 + }, + { + "start": 30161.28, + "end": 30164.64, + "probability": 0.9945 + }, + { + "start": 30164.64, + "end": 30168.3, + "probability": 0.9876 + }, + { + "start": 30168.8, + "end": 30170.62, + "probability": 0.9944 + }, + { + "start": 30170.76, + "end": 30171.88, + "probability": 0.8196 + }, + { + "start": 30172.32, + "end": 30173.28, + "probability": 0.8915 + }, + { + "start": 30173.74, + "end": 30175.56, + "probability": 0.6813 + }, + { + "start": 30176.18, + "end": 30180.9, + "probability": 0.9159 + }, + { + "start": 30181.56, + "end": 30183.78, + "probability": 0.9792 + }, + { + "start": 30184.26, + "end": 30187.36, + "probability": 0.6513 + }, + { + "start": 30187.36, + "end": 30190.92, + "probability": 0.8608 + }, + { + "start": 30191.52, + "end": 30192.28, + "probability": 0.9888 + }, + { + "start": 30192.84, + "end": 30194.34, + "probability": 0.9789 + }, + { + "start": 30195.06, + "end": 30198.38, + "probability": 0.936 + }, + { + "start": 30198.54, + "end": 30201.99, + "probability": 0.9037 + }, + { + "start": 30202.68, + "end": 30204.88, + "probability": 0.9852 + }, + { + "start": 30206.32, + "end": 30210.0, + "probability": 0.9786 + }, + { + "start": 30210.0, + "end": 30213.88, + "probability": 0.9988 + }, + { + "start": 30214.44, + "end": 30219.5, + "probability": 0.9487 + }, + { + "start": 30220.4, + "end": 30220.56, + "probability": 0.4087 + }, + { + "start": 30221.1, + "end": 30222.24, + "probability": 0.9511 + }, + { + "start": 30222.88, + "end": 30226.58, + "probability": 0.9874 + }, + { + "start": 30227.1, + "end": 30232.04, + "probability": 0.9948 + }, + { + "start": 30232.74, + "end": 30233.42, + "probability": 0.7917 + }, + { + "start": 30233.52, + "end": 30234.2, + "probability": 0.9803 + }, + { + "start": 30234.64, + "end": 30235.88, + "probability": 0.6845 + }, + { + "start": 30236.06, + "end": 30237.56, + "probability": 0.9314 + }, + { + "start": 30238.14, + "end": 30241.68, + "probability": 0.9922 + }, + { + "start": 30241.76, + "end": 30243.72, + "probability": 0.9432 + }, + { + "start": 30244.32, + "end": 30244.92, + "probability": 0.2534 + }, + { + "start": 30245.06, + "end": 30250.68, + "probability": 0.9773 + }, + { + "start": 30250.86, + "end": 30252.44, + "probability": 0.9812 + }, + { + "start": 30253.18, + "end": 30258.2, + "probability": 0.889 + }, + { + "start": 30258.2, + "end": 30262.18, + "probability": 0.9932 + }, + { + "start": 30262.22, + "end": 30264.72, + "probability": 0.978 + }, + { + "start": 30266.48, + "end": 30266.52, + "probability": 0.2555 + }, + { + "start": 30266.52, + "end": 30268.92, + "probability": 0.7971 + }, + { + "start": 30269.88, + "end": 30274.04, + "probability": 0.9458 + }, + { + "start": 30274.14, + "end": 30274.52, + "probability": 0.4883 + }, + { + "start": 30274.94, + "end": 30278.22, + "probability": 0.9904 + }, + { + "start": 30278.56, + "end": 30279.72, + "probability": 0.998 + }, + { + "start": 30280.3, + "end": 30280.48, + "probability": 0.0915 + }, + { + "start": 30280.48, + "end": 30281.16, + "probability": 0.257 + }, + { + "start": 30281.52, + "end": 30283.34, + "probability": 0.6527 + }, + { + "start": 30283.8, + "end": 30286.08, + "probability": 0.8699 + }, + { + "start": 30286.38, + "end": 30288.96, + "probability": 0.9884 + }, + { + "start": 30289.3, + "end": 30289.94, + "probability": 0.58 + }, + { + "start": 30290.52, + "end": 30293.04, + "probability": 0.9971 + }, + { + "start": 30293.18, + "end": 30296.88, + "probability": 0.9701 + }, + { + "start": 30297.5, + "end": 30298.62, + "probability": 0.9592 + }, + { + "start": 30298.86, + "end": 30302.87, + "probability": 0.6517 + }, + { + "start": 30306.08, + "end": 30308.36, + "probability": 0.061 + }, + { + "start": 30309.96, + "end": 30318.28, + "probability": 0.9755 + }, + { + "start": 30318.28, + "end": 30324.68, + "probability": 0.9972 + }, + { + "start": 30325.2, + "end": 30327.56, + "probability": 0.8911 + }, + { + "start": 30328.24, + "end": 30328.24, + "probability": 0.2142 + }, + { + "start": 30329.24, + "end": 30330.16, + "probability": 0.2457 + }, + { + "start": 30330.9, + "end": 30332.82, + "probability": 0.7736 + }, + { + "start": 30333.28, + "end": 30336.62, + "probability": 0.9434 + }, + { + "start": 30336.62, + "end": 30340.36, + "probability": 0.9458 + }, + { + "start": 30340.56, + "end": 30341.4, + "probability": 0.8408 + }, + { + "start": 30341.76, + "end": 30343.46, + "probability": 0.968 + }, + { + "start": 30344.34, + "end": 30347.74, + "probability": 0.7599 + }, + { + "start": 30348.28, + "end": 30350.64, + "probability": 0.8805 + }, + { + "start": 30351.44, + "end": 30353.74, + "probability": 0.9155 + }, + { + "start": 30354.32, + "end": 30355.18, + "probability": 0.9844 + }, + { + "start": 30355.7, + "end": 30358.9, + "probability": 0.9798 + }, + { + "start": 30359.24, + "end": 30360.36, + "probability": 0.9972 + }, + { + "start": 30360.58, + "end": 30363.5, + "probability": 0.9731 + }, + { + "start": 30363.72, + "end": 30364.24, + "probability": 0.7478 + }, + { + "start": 30364.94, + "end": 30365.64, + "probability": 0.7044 + }, + { + "start": 30365.76, + "end": 30367.62, + "probability": 0.6496 + }, + { + "start": 30368.58, + "end": 30372.66, + "probability": 0.3342 + }, + { + "start": 30373.68, + "end": 30375.82, + "probability": 0.9867 + }, + { + "start": 30375.86, + "end": 30379.78, + "probability": 0.8752 + }, + { + "start": 30379.94, + "end": 30383.52, + "probability": 0.9384 + }, + { + "start": 30384.0, + "end": 30386.58, + "probability": 0.9985 + }, + { + "start": 30386.98, + "end": 30388.84, + "probability": 0.8767 + }, + { + "start": 30389.28, + "end": 30393.2, + "probability": 0.7499 + }, + { + "start": 30393.64, + "end": 30395.86, + "probability": 0.9532 + }, + { + "start": 30395.86, + "end": 30399.74, + "probability": 0.9336 + }, + { + "start": 30400.26, + "end": 30404.0, + "probability": 0.8892 + }, + { + "start": 30404.48, + "end": 30405.52, + "probability": 0.882 + }, + { + "start": 30405.78, + "end": 30409.76, + "probability": 0.7663 + }, + { + "start": 30409.8, + "end": 30413.56, + "probability": 0.9951 + }, + { + "start": 30413.7, + "end": 30416.08, + "probability": 0.9634 + }, + { + "start": 30416.14, + "end": 30417.66, + "probability": 0.7627 + }, + { + "start": 30418.3, + "end": 30420.7, + "probability": 0.9673 + }, + { + "start": 30420.7, + "end": 30420.8, + "probability": 0.0155 + }, + { + "start": 30420.8, + "end": 30422.24, + "probability": 0.9838 + }, + { + "start": 30423.24, + "end": 30423.8, + "probability": 0.0516 + }, + { + "start": 30426.76, + "end": 30426.86, + "probability": 0.2554 + }, + { + "start": 30427.08, + "end": 30427.08, + "probability": 0.1603 + }, + { + "start": 30427.08, + "end": 30427.08, + "probability": 0.5342 + }, + { + "start": 30427.08, + "end": 30427.71, + "probability": 0.8818 + }, + { + "start": 30428.58, + "end": 30429.64, + "probability": 0.1409 + }, + { + "start": 30430.22, + "end": 30431.46, + "probability": 0.0396 + }, + { + "start": 30431.74, + "end": 30432.88, + "probability": 0.5055 + }, + { + "start": 30432.88, + "end": 30434.66, + "probability": 0.8269 + }, + { + "start": 30434.66, + "end": 30434.86, + "probability": 0.7108 + }, + { + "start": 30435.48, + "end": 30436.22, + "probability": 0.89 + }, + { + "start": 30436.78, + "end": 30438.08, + "probability": 0.4209 + }, + { + "start": 30438.18, + "end": 30438.42, + "probability": 0.3288 + }, + { + "start": 30438.46, + "end": 30438.74, + "probability": 0.854 + }, + { + "start": 30439.6, + "end": 30440.22, + "probability": 0.0385 + }, + { + "start": 30440.22, + "end": 30440.85, + "probability": 0.3715 + }, + { + "start": 30442.04, + "end": 30443.08, + "probability": 0.728 + }, + { + "start": 30443.36, + "end": 30445.04, + "probability": 0.1828 + }, + { + "start": 30445.54, + "end": 30446.36, + "probability": 0.5234 + }, + { + "start": 30446.86, + "end": 30450.32, + "probability": 0.6742 + }, + { + "start": 30450.82, + "end": 30451.7, + "probability": 0.8375 + }, + { + "start": 30465.08, + "end": 30465.54, + "probability": 0.2827 + }, + { + "start": 30465.54, + "end": 30465.54, + "probability": 0.1537 + }, + { + "start": 30465.54, + "end": 30468.2, + "probability": 0.4936 + }, + { + "start": 30468.72, + "end": 30472.26, + "probability": 0.8705 + }, + { + "start": 30473.08, + "end": 30473.64, + "probability": 0.6835 + }, + { + "start": 30474.66, + "end": 30476.96, + "probability": 0.8929 + }, + { + "start": 30477.78, + "end": 30484.34, + "probability": 0.8411 + }, + { + "start": 30485.06, + "end": 30486.98, + "probability": 0.8502 + }, + { + "start": 30487.16, + "end": 30487.72, + "probability": 0.6487 + }, + { + "start": 30488.16, + "end": 30491.66, + "probability": 0.8054 + }, + { + "start": 30492.94, + "end": 30495.04, + "probability": 0.3604 + }, + { + "start": 30495.04, + "end": 30496.06, + "probability": 0.6496 + }, + { + "start": 30496.96, + "end": 30497.8, + "probability": 0.5314 + }, + { + "start": 30499.56, + "end": 30500.04, + "probability": 0.0151 + }, + { + "start": 30512.52, + "end": 30515.5, + "probability": 0.6285 + }, + { + "start": 30516.08, + "end": 30516.72, + "probability": 0.3241 + }, + { + "start": 30516.98, + "end": 30519.36, + "probability": 0.208 + }, + { + "start": 30520.2, + "end": 30521.66, + "probability": 0.2358 + }, + { + "start": 30523.44, + "end": 30526.0, + "probability": 0.6545 + }, + { + "start": 30526.14, + "end": 30529.32, + "probability": 0.7381 + }, + { + "start": 30530.58, + "end": 30531.18, + "probability": 0.6683 + }, + { + "start": 30531.18, + "end": 30533.15, + "probability": 0.6882 + }, + { + "start": 30534.14, + "end": 30534.52, + "probability": 0.0021 + }, + { + "start": 30534.52, + "end": 30535.44, + "probability": 0.0088 + }, + { + "start": 30535.64, + "end": 30535.98, + "probability": 0.4883 + }, + { + "start": 30535.98, + "end": 30537.36, + "probability": 0.3288 + }, + { + "start": 30537.36, + "end": 30538.58, + "probability": 0.766 + }, + { + "start": 30539.94, + "end": 30540.86, + "probability": 0.9741 + }, + { + "start": 30541.66, + "end": 30544.14, + "probability": 0.9707 + }, + { + "start": 30544.44, + "end": 30544.96, + "probability": 0.66 + }, + { + "start": 30545.1, + "end": 30546.6, + "probability": 0.9148 + }, + { + "start": 30546.8, + "end": 30548.56, + "probability": 0.7448 + }, + { + "start": 30549.48, + "end": 30551.0, + "probability": 0.9603 + }, + { + "start": 30551.04, + "end": 30552.76, + "probability": 0.7002 + }, + { + "start": 30554.8, + "end": 30555.9, + "probability": 0.4598 + }, + { + "start": 30556.64, + "end": 30559.1, + "probability": 0.5868 + }, + { + "start": 30559.16, + "end": 30560.2, + "probability": 0.8564 + }, + { + "start": 30564.88, + "end": 30567.8, + "probability": 0.6362 + }, + { + "start": 30569.06, + "end": 30572.58, + "probability": 0.8474 + }, + { + "start": 30572.82, + "end": 30574.48, + "probability": 0.9746 + }, + { + "start": 30575.24, + "end": 30578.14, + "probability": 0.954 + }, + { + "start": 30579.9, + "end": 30581.24, + "probability": 0.6659 + }, + { + "start": 30581.32, + "end": 30583.88, + "probability": 0.6532 + }, + { + "start": 30584.02, + "end": 30585.52, + "probability": 0.1557 + }, + { + "start": 30586.22, + "end": 30587.64, + "probability": 0.8686 + }, + { + "start": 30588.92, + "end": 30591.1, + "probability": 0.8832 + }, + { + "start": 30592.08, + "end": 30594.84, + "probability": 0.9327 + }, + { + "start": 30595.42, + "end": 30596.18, + "probability": 0.685 + }, + { + "start": 30597.24, + "end": 30600.8, + "probability": 0.8732 + }, + { + "start": 30602.26, + "end": 30604.62, + "probability": 0.7584 + }, + { + "start": 30605.84, + "end": 30606.6, + "probability": 0.677 + }, + { + "start": 30607.26, + "end": 30608.42, + "probability": 0.7576 + }, + { + "start": 30608.8, + "end": 30610.02, + "probability": 0.7045 + }, + { + "start": 30610.1, + "end": 30610.33, + "probability": 0.5432 + }, + { + "start": 30611.04, + "end": 30611.8, + "probability": 0.8197 + }, + { + "start": 30612.3, + "end": 30615.21, + "probability": 0.8291 + }, + { + "start": 30615.92, + "end": 30616.42, + "probability": 0.6404 + }, + { + "start": 30616.72, + "end": 30618.12, + "probability": 0.8682 + }, + { + "start": 30618.22, + "end": 30619.4, + "probability": 0.9104 + }, + { + "start": 30620.1, + "end": 30623.74, + "probability": 0.9607 + }, + { + "start": 30625.06, + "end": 30627.1, + "probability": 0.9425 + }, + { + "start": 30627.48, + "end": 30627.85, + "probability": 0.8359 + }, + { + "start": 30628.22, + "end": 30629.54, + "probability": 0.95 + }, + { + "start": 30629.64, + "end": 30630.3, + "probability": 0.598 + }, + { + "start": 30630.46, + "end": 30632.16, + "probability": 0.4369 + }, + { + "start": 30633.56, + "end": 30636.0, + "probability": 0.9055 + }, + { + "start": 30637.32, + "end": 30641.02, + "probability": 0.9461 + }, + { + "start": 30642.36, + "end": 30643.33, + "probability": 0.573 + }, + { + "start": 30644.28, + "end": 30645.88, + "probability": 0.9147 + }, + { + "start": 30646.46, + "end": 30647.88, + "probability": 0.9835 + }, + { + "start": 30649.22, + "end": 30650.92, + "probability": 0.6624 + }, + { + "start": 30652.02, + "end": 30652.66, + "probability": 0.7363 + }, + { + "start": 30654.12, + "end": 30657.23, + "probability": 0.7904 + }, + { + "start": 30659.26, + "end": 30664.34, + "probability": 0.9022 + }, + { + "start": 30664.34, + "end": 30667.34, + "probability": 0.9654 + }, + { + "start": 30668.88, + "end": 30670.08, + "probability": 0.4983 + }, + { + "start": 30671.76, + "end": 30677.04, + "probability": 0.8147 + }, + { + "start": 30677.26, + "end": 30680.84, + "probability": 0.9126 + }, + { + "start": 30681.96, + "end": 30684.1, + "probability": 0.7959 + }, + { + "start": 30685.46, + "end": 30687.63, + "probability": 0.8846 + }, + { + "start": 30688.8, + "end": 30689.42, + "probability": 0.2126 + }, + { + "start": 30689.6, + "end": 30690.58, + "probability": 0.8782 + }, + { + "start": 30690.96, + "end": 30692.0, + "probability": 0.2736 + }, + { + "start": 30692.84, + "end": 30694.7, + "probability": 0.8555 + }, + { + "start": 30695.96, + "end": 30699.52, + "probability": 0.9895 + }, + { + "start": 30701.94, + "end": 30703.02, + "probability": 0.7216 + }, + { + "start": 30704.66, + "end": 30705.94, + "probability": 0.7513 + }, + { + "start": 30706.6, + "end": 30707.12, + "probability": 0.9514 + }, + { + "start": 30709.1, + "end": 30710.04, + "probability": 0.9673 + }, + { + "start": 30710.16, + "end": 30711.36, + "probability": 0.8694 + }, + { + "start": 30711.46, + "end": 30714.18, + "probability": 0.5043 + }, + { + "start": 30715.22, + "end": 30717.36, + "probability": 0.8584 + }, + { + "start": 30718.06, + "end": 30719.9, + "probability": 0.8964 + }, + { + "start": 30722.9, + "end": 30726.32, + "probability": 0.9858 + }, + { + "start": 30727.36, + "end": 30729.06, + "probability": 0.869 + }, + { + "start": 30729.72, + "end": 30732.26, + "probability": 0.9823 + }, + { + "start": 30732.88, + "end": 30733.52, + "probability": 0.7103 + }, + { + "start": 30734.84, + "end": 30737.0, + "probability": 0.716 + }, + { + "start": 30737.1, + "end": 30737.46, + "probability": 0.8112 + }, + { + "start": 30737.54, + "end": 30738.58, + "probability": 0.9946 + }, + { + "start": 30738.66, + "end": 30740.3, + "probability": 0.8983 + }, + { + "start": 30740.38, + "end": 30743.22, + "probability": 0.8621 + }, + { + "start": 30743.38, + "end": 30743.9, + "probability": 0.2075 + }, + { + "start": 30743.92, + "end": 30744.71, + "probability": 0.9393 + }, + { + "start": 30746.44, + "end": 30749.16, + "probability": 0.729 + }, + { + "start": 30749.22, + "end": 30749.79, + "probability": 0.4925 + }, + { + "start": 30750.06, + "end": 30751.96, + "probability": 0.491 + }, + { + "start": 30752.08, + "end": 30752.29, + "probability": 0.3076 + }, + { + "start": 30752.54, + "end": 30753.36, + "probability": 0.5273 + }, + { + "start": 30753.88, + "end": 30756.52, + "probability": 0.9974 + }, + { + "start": 30757.36, + "end": 30760.84, + "probability": 0.8756 + }, + { + "start": 30761.36, + "end": 30762.66, + "probability": 0.7973 + }, + { + "start": 30762.88, + "end": 30764.36, + "probability": 0.9706 + }, + { + "start": 30764.7, + "end": 30765.94, + "probability": 0.8235 + }, + { + "start": 30766.92, + "end": 30770.48, + "probability": 0.9194 + }, + { + "start": 30772.32, + "end": 30772.96, + "probability": 0.8138 + }, + { + "start": 30773.06, + "end": 30774.06, + "probability": 0.7671 + }, + { + "start": 30774.38, + "end": 30778.66, + "probability": 0.99 + }, + { + "start": 30780.28, + "end": 30782.66, + "probability": 0.9878 + }, + { + "start": 30783.84, + "end": 30784.9, + "probability": 0.9984 + }, + { + "start": 30786.28, + "end": 30788.46, + "probability": 0.779 + }, + { + "start": 30788.74, + "end": 30790.68, + "probability": 0.9764 + }, + { + "start": 30791.26, + "end": 30796.0, + "probability": 0.9047 + }, + { + "start": 30796.9, + "end": 30797.8, + "probability": 0.9868 + }, + { + "start": 30799.12, + "end": 30800.08, + "probability": 0.8982 + }, + { + "start": 30800.4, + "end": 30802.5, + "probability": 0.2673 + }, + { + "start": 30802.5, + "end": 30803.1, + "probability": 0.3953 + }, + { + "start": 30803.26, + "end": 30804.16, + "probability": 0.5916 + }, + { + "start": 30805.68, + "end": 30806.56, + "probability": 0.7925 + }, + { + "start": 30807.58, + "end": 30808.64, + "probability": 0.8924 + }, + { + "start": 30809.38, + "end": 30813.5, + "probability": 0.7663 + }, + { + "start": 30814.32, + "end": 30815.4, + "probability": 0.803 + }, + { + "start": 30816.2, + "end": 30818.24, + "probability": 0.8789 + }, + { + "start": 30818.24, + "end": 30821.38, + "probability": 0.9331 + }, + { + "start": 30821.46, + "end": 30821.82, + "probability": 0.522 + }, + { + "start": 30821.86, + "end": 30822.48, + "probability": 0.6154 + }, + { + "start": 30822.66, + "end": 30823.65, + "probability": 0.3421 + }, + { + "start": 30824.84, + "end": 30826.98, + "probability": 0.8521 + }, + { + "start": 30827.64, + "end": 30828.52, + "probability": 0.5038 + }, + { + "start": 30829.38, + "end": 30833.46, + "probability": 0.9449 + }, + { + "start": 30833.6, + "end": 30836.26, + "probability": 0.9718 + }, + { + "start": 30837.12, + "end": 30839.02, + "probability": 0.7804 + }, + { + "start": 30839.6, + "end": 30841.0, + "probability": 0.9526 + }, + { + "start": 30842.1, + "end": 30842.4, + "probability": 0.7904 + }, + { + "start": 30843.54, + "end": 30844.48, + "probability": 0.777 + }, + { + "start": 30845.58, + "end": 30845.95, + "probability": 0.7764 + }, + { + "start": 30847.56, + "end": 30849.1, + "probability": 0.9541 + }, + { + "start": 30849.36, + "end": 30850.47, + "probability": 0.938 + }, + { + "start": 30851.72, + "end": 30853.44, + "probability": 0.8768 + }, + { + "start": 30853.7, + "end": 30856.32, + "probability": 0.7463 + }, + { + "start": 30856.98, + "end": 30858.66, + "probability": 0.986 + }, + { + "start": 30859.62, + "end": 30860.54, + "probability": 0.7735 + }, + { + "start": 30861.58, + "end": 30864.28, + "probability": 0.8405 + }, + { + "start": 30865.9, + "end": 30866.38, + "probability": 0.8176 + }, + { + "start": 30868.48, + "end": 30869.6, + "probability": 0.9464 + }, + { + "start": 30870.92, + "end": 30871.94, + "probability": 0.8909 + }, + { + "start": 30872.96, + "end": 30875.66, + "probability": 0.8611 + }, + { + "start": 30875.86, + "end": 30876.0, + "probability": 0.3686 + }, + { + "start": 30876.12, + "end": 30878.35, + "probability": 0.6864 + }, + { + "start": 30878.98, + "end": 30882.2, + "probability": 0.4737 + }, + { + "start": 30882.72, + "end": 30883.84, + "probability": 0.875 + }, + { + "start": 30885.18, + "end": 30886.24, + "probability": 0.8398 + }, + { + "start": 30886.62, + "end": 30886.96, + "probability": 0.8035 + }, + { + "start": 30887.12, + "end": 30887.54, + "probability": 0.7567 + }, + { + "start": 30887.62, + "end": 30888.4, + "probability": 0.7656 + }, + { + "start": 30888.86, + "end": 30890.22, + "probability": 0.6986 + }, + { + "start": 30890.46, + "end": 30891.95, + "probability": 0.635 + }, + { + "start": 30892.86, + "end": 30895.5, + "probability": 0.7033 + }, + { + "start": 30895.74, + "end": 30896.5, + "probability": 0.8888 + }, + { + "start": 30896.64, + "end": 30897.06, + "probability": 0.9651 + }, + { + "start": 30897.22, + "end": 30897.5, + "probability": 0.7884 + }, + { + "start": 30897.6, + "end": 30897.94, + "probability": 0.4177 + }, + { + "start": 30898.28, + "end": 30899.02, + "probability": 0.8286 + }, + { + "start": 30899.52, + "end": 30900.22, + "probability": 0.7916 + }, + { + "start": 30900.34, + "end": 30901.57, + "probability": 0.8068 + }, + { + "start": 30903.28, + "end": 30905.0, + "probability": 0.6804 + }, + { + "start": 30905.1, + "end": 30907.16, + "probability": 0.9699 + }, + { + "start": 30907.28, + "end": 30908.84, + "probability": 0.7876 + }, + { + "start": 30909.96, + "end": 30910.62, + "probability": 0.7915 + }, + { + "start": 30911.64, + "end": 30913.94, + "probability": 0.5051 + }, + { + "start": 30914.74, + "end": 30916.6, + "probability": 0.1603 + }, + { + "start": 30917.36, + "end": 30919.68, + "probability": 0.3616 + }, + { + "start": 30919.72, + "end": 30920.48, + "probability": 0.101 + }, + { + "start": 30921.0, + "end": 30923.34, + "probability": 0.5063 + }, + { + "start": 30924.4, + "end": 30925.1, + "probability": 0.6155 + }, + { + "start": 30925.68, + "end": 30927.57, + "probability": 0.9404 + }, + { + "start": 30928.8, + "end": 30929.88, + "probability": 0.9914 + }, + { + "start": 30930.74, + "end": 30932.26, + "probability": 0.7817 + }, + { + "start": 30932.8, + "end": 30935.64, + "probability": 0.8654 + }, + { + "start": 30935.8, + "end": 30936.72, + "probability": 0.991 + }, + { + "start": 30936.94, + "end": 30938.8, + "probability": 0.9395 + }, + { + "start": 30939.28, + "end": 30939.54, + "probability": 0.8445 + }, + { + "start": 30940.08, + "end": 30940.43, + "probability": 0.9756 + }, + { + "start": 30942.58, + "end": 30944.66, + "probability": 0.8645 + }, + { + "start": 30945.36, + "end": 30946.06, + "probability": 0.9571 + }, + { + "start": 30946.98, + "end": 30950.96, + "probability": 0.9863 + }, + { + "start": 30951.1, + "end": 30952.68, + "probability": 0.6771 + }, + { + "start": 30953.22, + "end": 30955.6, + "probability": 0.8716 + }, + { + "start": 30956.32, + "end": 30957.58, + "probability": 0.5247 + }, + { + "start": 30958.54, + "end": 30959.42, + "probability": 0.8983 + }, + { + "start": 30959.92, + "end": 30962.78, + "probability": 0.6976 + }, + { + "start": 30963.44, + "end": 30963.86, + "probability": 0.7694 + }, + { + "start": 30964.54, + "end": 30965.88, + "probability": 0.8005 + }, + { + "start": 30966.42, + "end": 30967.38, + "probability": 0.9296 + }, + { + "start": 30967.44, + "end": 30968.14, + "probability": 0.7911 + }, + { + "start": 30968.2, + "end": 30972.04, + "probability": 0.9901 + }, + { + "start": 30972.6, + "end": 30974.92, + "probability": 0.9638 + }, + { + "start": 30976.22, + "end": 30976.98, + "probability": 0.5599 + }, + { + "start": 30977.1, + "end": 30977.32, + "probability": 0.3972 + }, + { + "start": 30977.32, + "end": 30979.8, + "probability": 0.8115 + }, + { + "start": 30979.8, + "end": 30979.82, + "probability": 0.6708 + }, + { + "start": 30979.84, + "end": 30982.22, + "probability": 0.9197 + }, + { + "start": 30983.2, + "end": 30986.26, + "probability": 0.8613 + }, + { + "start": 30988.2, + "end": 30989.4, + "probability": 0.7286 + }, + { + "start": 30990.06, + "end": 30995.54, + "probability": 0.9814 + }, + { + "start": 31001.24, + "end": 31003.2, + "probability": 0.7039 + }, + { + "start": 31004.0, + "end": 31005.92, + "probability": 0.975 + }, + { + "start": 31006.94, + "end": 31008.56, + "probability": 0.92 + }, + { + "start": 31009.52, + "end": 31012.8, + "probability": 0.901 + }, + { + "start": 31013.94, + "end": 31017.88, + "probability": 0.9559 + }, + { + "start": 31017.88, + "end": 31019.28, + "probability": 0.3357 + }, + { + "start": 31019.78, + "end": 31021.9, + "probability": 0.6718 + }, + { + "start": 31021.9, + "end": 31023.8, + "probability": 0.9224 + }, + { + "start": 31023.94, + "end": 31026.44, + "probability": 0.0446 + }, + { + "start": 31027.48, + "end": 31030.7, + "probability": 0.7969 + }, + { + "start": 31031.62, + "end": 31032.5, + "probability": 0.7546 + }, + { + "start": 31032.94, + "end": 31033.82, + "probability": 0.8716 + }, + { + "start": 31033.96, + "end": 31037.1, + "probability": 0.9963 + }, + { + "start": 31037.74, + "end": 31039.24, + "probability": 0.9739 + }, + { + "start": 31040.2, + "end": 31045.46, + "probability": 0.9717 + }, + { + "start": 31046.68, + "end": 31050.38, + "probability": 0.7739 + }, + { + "start": 31050.38, + "end": 31053.96, + "probability": 0.9989 + }, + { + "start": 31055.54, + "end": 31056.96, + "probability": 0.7292 + }, + { + "start": 31057.1, + "end": 31061.8, + "probability": 0.9486 + }, + { + "start": 31062.16, + "end": 31065.06, + "probability": 0.9928 + }, + { + "start": 31066.22, + "end": 31070.46, + "probability": 0.9956 + }, + { + "start": 31070.46, + "end": 31075.0, + "probability": 0.9944 + }, + { + "start": 31075.1, + "end": 31077.5, + "probability": 0.9926 + }, + { + "start": 31078.14, + "end": 31080.04, + "probability": 0.978 + }, + { + "start": 31081.26, + "end": 31083.82, + "probability": 0.9941 + }, + { + "start": 31083.94, + "end": 31087.28, + "probability": 0.7938 + }, + { + "start": 31087.34, + "end": 31088.78, + "probability": 0.9985 + }, + { + "start": 31089.3, + "end": 31090.48, + "probability": 0.9981 + }, + { + "start": 31091.8, + "end": 31096.14, + "probability": 0.9897 + }, + { + "start": 31096.14, + "end": 31099.96, + "probability": 0.9962 + }, + { + "start": 31100.72, + "end": 31102.76, + "probability": 0.8921 + }, + { + "start": 31103.58, + "end": 31108.64, + "probability": 0.8945 + }, + { + "start": 31109.08, + "end": 31109.96, + "probability": 0.8096 + }, + { + "start": 31110.04, + "end": 31110.6, + "probability": 0.7726 + }, + { + "start": 31110.7, + "end": 31111.24, + "probability": 0.8524 + }, + { + "start": 31112.06, + "end": 31114.26, + "probability": 0.923 + }, + { + "start": 31114.26, + "end": 31118.06, + "probability": 0.96 + }, + { + "start": 31119.08, + "end": 31122.58, + "probability": 0.7965 + }, + { + "start": 31122.58, + "end": 31128.72, + "probability": 0.9964 + }, + { + "start": 31129.1, + "end": 31129.38, + "probability": 0.7565 + }, + { + "start": 31130.46, + "end": 31131.1, + "probability": 0.8419 + }, + { + "start": 31132.0, + "end": 31133.12, + "probability": 0.8945 + }, + { + "start": 31135.14, + "end": 31136.16, + "probability": 0.6669 + }, + { + "start": 31136.62, + "end": 31136.62, + "probability": 0.3554 + }, + { + "start": 31136.62, + "end": 31136.64, + "probability": 0.2321 + }, + { + "start": 31136.64, + "end": 31137.36, + "probability": 0.5913 + }, + { + "start": 31137.96, + "end": 31138.19, + "probability": 0.6362 + }, + { + "start": 31138.76, + "end": 31138.8, + "probability": 0.0524 + }, + { + "start": 31138.8, + "end": 31140.78, + "probability": 0.8228 + }, + { + "start": 31141.38, + "end": 31142.02, + "probability": 0.4803 + }, + { + "start": 31143.16, + "end": 31143.98, + "probability": 0.8082 + }, + { + "start": 31149.64, + "end": 31150.2, + "probability": 0.9469 + }, + { + "start": 31150.7, + "end": 31152.04, + "probability": 0.9293 + }, + { + "start": 31153.22, + "end": 31153.36, + "probability": 0.2674 + }, + { + "start": 31153.38, + "end": 31154.44, + "probability": 0.5341 + }, + { + "start": 31154.52, + "end": 31155.26, + "probability": 0.8979 + }, + { + "start": 31155.74, + "end": 31157.58, + "probability": 0.9589 + }, + { + "start": 31157.6, + "end": 31161.3, + "probability": 0.9771 + }, + { + "start": 31163.02, + "end": 31165.08, + "probability": 0.9016 + }, + { + "start": 31165.6, + "end": 31167.02, + "probability": 0.9751 + }, + { + "start": 31167.58, + "end": 31170.62, + "probability": 0.9753 + }, + { + "start": 31170.76, + "end": 31172.22, + "probability": 0.9939 + }, + { + "start": 31172.62, + "end": 31173.74, + "probability": 0.8564 + }, + { + "start": 31174.28, + "end": 31177.1, + "probability": 0.9663 + }, + { + "start": 31177.1, + "end": 31179.74, + "probability": 0.9985 + }, + { + "start": 31180.58, + "end": 31183.22, + "probability": 0.9956 + }, + { + "start": 31184.06, + "end": 31185.64, + "probability": 0.8634 + }, + { + "start": 31185.96, + "end": 31187.28, + "probability": 0.9677 + }, + { + "start": 31187.34, + "end": 31192.22, + "probability": 0.873 + }, + { + "start": 31192.28, + "end": 31192.92, + "probability": 0.5066 + }, + { + "start": 31193.1, + "end": 31195.65, + "probability": 0.9967 + }, + { + "start": 31196.66, + "end": 31198.74, + "probability": 0.9372 + }, + { + "start": 31199.34, + "end": 31201.54, + "probability": 0.9982 + }, + { + "start": 31201.86, + "end": 31203.58, + "probability": 0.6694 + }, + { + "start": 31204.08, + "end": 31204.56, + "probability": 0.1902 + }, + { + "start": 31204.56, + "end": 31207.58, + "probability": 0.5842 + }, + { + "start": 31207.58, + "end": 31210.92, + "probability": 0.9076 + }, + { + "start": 31211.54, + "end": 31213.46, + "probability": 0.8889 + }, + { + "start": 31213.64, + "end": 31214.0, + "probability": 0.2341 + }, + { + "start": 31214.14, + "end": 31218.7, + "probability": 0.9513 + }, + { + "start": 31219.12, + "end": 31222.08, + "probability": 0.7561 + }, + { + "start": 31222.3, + "end": 31226.2, + "probability": 0.9713 + }, + { + "start": 31226.76, + "end": 31229.86, + "probability": 0.9949 + }, + { + "start": 31230.22, + "end": 31231.58, + "probability": 0.9954 + }, + { + "start": 31232.14, + "end": 31232.92, + "probability": 0.7904 + }, + { + "start": 31233.04, + "end": 31234.12, + "probability": 0.8162 + }, + { + "start": 31234.18, + "end": 31236.24, + "probability": 0.766 + }, + { + "start": 31236.78, + "end": 31237.86, + "probability": 0.5403 + }, + { + "start": 31238.34, + "end": 31238.56, + "probability": 0.6549 + }, + { + "start": 31238.64, + "end": 31240.04, + "probability": 0.8661 + }, + { + "start": 31240.2, + "end": 31241.32, + "probability": 0.9487 + }, + { + "start": 31241.32, + "end": 31243.06, + "probability": 0.6837 + }, + { + "start": 31243.78, + "end": 31246.78, + "probability": 0.9951 + }, + { + "start": 31246.82, + "end": 31248.16, + "probability": 0.7381 + }, + { + "start": 31248.62, + "end": 31250.88, + "probability": 0.9961 + }, + { + "start": 31250.88, + "end": 31255.96, + "probability": 0.9722 + }, + { + "start": 31256.06, + "end": 31257.02, + "probability": 0.9203 + }, + { + "start": 31257.4, + "end": 31259.28, + "probability": 0.8561 + }, + { + "start": 31259.88, + "end": 31261.42, + "probability": 0.9736 + }, + { + "start": 31262.06, + "end": 31263.28, + "probability": 0.6549 + }, + { + "start": 31263.54, + "end": 31263.86, + "probability": 0.777 + }, + { + "start": 31264.24, + "end": 31264.72, + "probability": 0.6394 + }, + { + "start": 31264.8, + "end": 31268.08, + "probability": 0.8209 + }, + { + "start": 31268.68, + "end": 31273.18, + "probability": 0.7888 + }, + { + "start": 31282.62, + "end": 31282.64, + "probability": 0.3054 + }, + { + "start": 31282.64, + "end": 31282.64, + "probability": 0.0716 + }, + { + "start": 31282.64, + "end": 31283.0, + "probability": 0.371 + }, + { + "start": 31283.1, + "end": 31284.94, + "probability": 0.5115 + }, + { + "start": 31285.08, + "end": 31287.38, + "probability": 0.955 + }, + { + "start": 31288.42, + "end": 31291.08, + "probability": 0.7507 + }, + { + "start": 31293.0, + "end": 31294.46, + "probability": 0.7868 + }, + { + "start": 31294.54, + "end": 31295.64, + "probability": 0.4389 + }, + { + "start": 31295.72, + "end": 31297.26, + "probability": 0.9684 + }, + { + "start": 31297.9, + "end": 31299.06, + "probability": 0.9667 + }, + { + "start": 31299.28, + "end": 31300.99, + "probability": 0.7098 + }, + { + "start": 31301.62, + "end": 31302.94, + "probability": 0.0342 + }, + { + "start": 31303.46, + "end": 31305.54, + "probability": 0.262 + }, + { + "start": 31305.86, + "end": 31307.0, + "probability": 0.8671 + }, + { + "start": 31307.06, + "end": 31307.86, + "probability": 0.8511 + }, + { + "start": 31307.92, + "end": 31308.5, + "probability": 0.7586 + }, + { + "start": 31309.04, + "end": 31309.34, + "probability": 0.007 + } + ], + "segments_count": 11084, + "words_count": 54721, + "avg_words_per_segment": 4.9369, + "avg_segment_duration": 2.0746, + "avg_words_per_minute": 104.7478, + "plenum_id": "34015", + "duration": 31344.43, + "title": null, + "plenum_date": "2014-01-08" +} \ No newline at end of file