diff --git "a/41008/metadata.json" "b/41008/metadata.json" new file mode 100644--- /dev/null +++ "b/41008/metadata.json" @@ -0,0 +1,38847 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "41008", + "quality_score": 0.8857, + "per_segment_quality_scores": [ + { + "start": 55.3, + "end": 56.28, + "probability": 0.8224 + }, + { + "start": 56.42, + "end": 59.74, + "probability": 0.5278 + }, + { + "start": 59.9, + "end": 65.18, + "probability": 0.987 + }, + { + "start": 66.78, + "end": 67.54, + "probability": 0.9794 + }, + { + "start": 69.5, + "end": 70.72, + "probability": 0.8633 + }, + { + "start": 70.88, + "end": 72.4, + "probability": 0.8078 + }, + { + "start": 72.88, + "end": 74.78, + "probability": 0.8958 + }, + { + "start": 75.0, + "end": 76.56, + "probability": 0.8754 + }, + { + "start": 77.14, + "end": 80.09, + "probability": 0.9924 + }, + { + "start": 80.56, + "end": 81.74, + "probability": 0.4578 + }, + { + "start": 81.84, + "end": 82.6, + "probability": 0.9849 + }, + { + "start": 83.62, + "end": 86.8, + "probability": 0.929 + }, + { + "start": 91.1, + "end": 92.58, + "probability": 0.9061 + }, + { + "start": 93.1, + "end": 94.64, + "probability": 0.6326 + }, + { + "start": 94.64, + "end": 94.64, + "probability": 0.99 + }, + { + "start": 94.64, + "end": 94.98, + "probability": 0.6787 + }, + { + "start": 95.78, + "end": 97.9, + "probability": 0.926 + }, + { + "start": 99.44, + "end": 100.9, + "probability": 0.729 + }, + { + "start": 101.28, + "end": 102.02, + "probability": 0.7967 + }, + { + "start": 102.18, + "end": 106.5, + "probability": 0.9805 + }, + { + "start": 107.2, + "end": 111.91, + "probability": 0.6669 + }, + { + "start": 112.74, + "end": 114.38, + "probability": 0.9233 + }, + { + "start": 115.04, + "end": 117.8, + "probability": 0.8904 + }, + { + "start": 118.56, + "end": 119.98, + "probability": 0.9452 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.24, + "end": 124.98, + "probability": 0.9325 + }, + { + "start": 126.2, + "end": 127.22, + "probability": 0.6495 + }, + { + "start": 127.94, + "end": 128.66, + "probability": 0.6681 + }, + { + "start": 129.96, + "end": 131.32, + "probability": 0.5086 + }, + { + "start": 131.6, + "end": 132.78, + "probability": 0.9699 + }, + { + "start": 133.06, + "end": 136.72, + "probability": 0.9807 + }, + { + "start": 137.82, + "end": 140.32, + "probability": 0.866 + }, + { + "start": 141.22, + "end": 144.64, + "probability": 0.9749 + }, + { + "start": 144.84, + "end": 147.48, + "probability": 0.9922 + }, + { + "start": 147.98, + "end": 152.42, + "probability": 0.9941 + }, + { + "start": 154.64, + "end": 155.2, + "probability": 0.4921 + }, + { + "start": 158.74, + "end": 161.62, + "probability": 0.8255 + }, + { + "start": 163.12, + "end": 164.6, + "probability": 0.7282 + }, + { + "start": 167.14, + "end": 173.44, + "probability": 0.7333 + }, + { + "start": 174.7, + "end": 177.2, + "probability": 0.8385 + }, + { + "start": 178.06, + "end": 180.6, + "probability": 0.9958 + }, + { + "start": 181.94, + "end": 186.14, + "probability": 0.9328 + }, + { + "start": 186.84, + "end": 190.4, + "probability": 0.9961 + }, + { + "start": 191.76, + "end": 196.92, + "probability": 0.9398 + }, + { + "start": 196.92, + "end": 199.46, + "probability": 0.9867 + }, + { + "start": 201.46, + "end": 202.5, + "probability": 0.6789 + }, + { + "start": 202.94, + "end": 206.1, + "probability": 0.9475 + }, + { + "start": 207.46, + "end": 213.38, + "probability": 0.9355 + }, + { + "start": 214.86, + "end": 218.66, + "probability": 0.6091 + }, + { + "start": 220.02, + "end": 222.94, + "probability": 0.9402 + }, + { + "start": 222.94, + "end": 225.52, + "probability": 0.9735 + }, + { + "start": 226.88, + "end": 232.54, + "probability": 0.7475 + }, + { + "start": 234.78, + "end": 236.58, + "probability": 0.7856 + }, + { + "start": 236.74, + "end": 239.48, + "probability": 0.9827 + }, + { + "start": 239.6, + "end": 240.78, + "probability": 0.901 + }, + { + "start": 241.46, + "end": 247.84, + "probability": 0.9034 + }, + { + "start": 248.3, + "end": 254.64, + "probability": 0.9043 + }, + { + "start": 254.64, + "end": 260.32, + "probability": 0.9976 + }, + { + "start": 260.4, + "end": 265.04, + "probability": 0.998 + }, + { + "start": 266.52, + "end": 269.6, + "probability": 0.9494 + }, + { + "start": 269.6, + "end": 274.36, + "probability": 0.9512 + }, + { + "start": 274.42, + "end": 277.66, + "probability": 0.8812 + }, + { + "start": 278.62, + "end": 282.42, + "probability": 0.7436 + }, + { + "start": 283.26, + "end": 284.72, + "probability": 0.6571 + }, + { + "start": 285.12, + "end": 288.94, + "probability": 0.9549 + }, + { + "start": 289.14, + "end": 293.14, + "probability": 0.6487 + }, + { + "start": 293.38, + "end": 294.7, + "probability": 0.9936 + }, + { + "start": 295.28, + "end": 296.68, + "probability": 0.967 + }, + { + "start": 297.72, + "end": 302.77, + "probability": 0.9709 + }, + { + "start": 304.12, + "end": 305.0, + "probability": 0.4962 + }, + { + "start": 305.06, + "end": 309.0, + "probability": 0.996 + }, + { + "start": 309.0, + "end": 313.72, + "probability": 0.9985 + }, + { + "start": 314.28, + "end": 317.02, + "probability": 0.6657 + }, + { + "start": 318.0, + "end": 322.36, + "probability": 0.9487 + }, + { + "start": 323.18, + "end": 327.88, + "probability": 0.9927 + }, + { + "start": 328.98, + "end": 332.5, + "probability": 0.8296 + }, + { + "start": 333.64, + "end": 337.98, + "probability": 0.9349 + }, + { + "start": 339.42, + "end": 341.48, + "probability": 0.9925 + }, + { + "start": 341.58, + "end": 344.06, + "probability": 0.9662 + }, + { + "start": 344.06, + "end": 347.86, + "probability": 0.9971 + }, + { + "start": 348.76, + "end": 349.38, + "probability": 0.915 + }, + { + "start": 349.58, + "end": 352.94, + "probability": 0.9917 + }, + { + "start": 352.94, + "end": 356.42, + "probability": 0.8126 + }, + { + "start": 356.9, + "end": 358.58, + "probability": 0.4844 + }, + { + "start": 359.22, + "end": 361.88, + "probability": 0.9957 + }, + { + "start": 361.88, + "end": 366.14, + "probability": 0.9941 + }, + { + "start": 366.72, + "end": 367.0, + "probability": 0.7297 + }, + { + "start": 369.54, + "end": 370.26, + "probability": 0.6501 + }, + { + "start": 370.44, + "end": 372.74, + "probability": 0.9781 + }, + { + "start": 372.82, + "end": 373.44, + "probability": 0.7418 + }, + { + "start": 374.88, + "end": 375.2, + "probability": 0.7758 + }, + { + "start": 375.48, + "end": 376.98, + "probability": 0.7529 + }, + { + "start": 377.08, + "end": 382.0, + "probability": 0.9878 + }, + { + "start": 382.78, + "end": 387.48, + "probability": 0.9944 + }, + { + "start": 388.14, + "end": 394.08, + "probability": 0.9888 + }, + { + "start": 394.72, + "end": 400.08, + "probability": 0.975 + }, + { + "start": 400.26, + "end": 402.82, + "probability": 0.6366 + }, + { + "start": 402.92, + "end": 406.14, + "probability": 0.942 + }, + { + "start": 407.02, + "end": 411.66, + "probability": 0.8619 + }, + { + "start": 411.78, + "end": 416.16, + "probability": 0.9551 + }, + { + "start": 416.88, + "end": 421.3, + "probability": 0.9841 + }, + { + "start": 421.36, + "end": 422.6, + "probability": 0.9621 + }, + { + "start": 423.36, + "end": 423.86, + "probability": 0.6594 + }, + { + "start": 424.02, + "end": 424.7, + "probability": 0.8045 + }, + { + "start": 424.76, + "end": 430.54, + "probability": 0.9551 + }, + { + "start": 430.54, + "end": 435.9, + "probability": 0.9561 + }, + { + "start": 436.78, + "end": 442.9, + "probability": 0.8979 + }, + { + "start": 443.04, + "end": 445.72, + "probability": 0.9369 + }, + { + "start": 447.26, + "end": 449.5, + "probability": 0.8779 + }, + { + "start": 449.84, + "end": 450.44, + "probability": 0.8639 + }, + { + "start": 450.96, + "end": 452.56, + "probability": 0.4101 + }, + { + "start": 452.56, + "end": 457.74, + "probability": 0.8069 + }, + { + "start": 458.42, + "end": 460.72, + "probability": 0.918 + }, + { + "start": 460.78, + "end": 462.44, + "probability": 0.9951 + }, + { + "start": 463.18, + "end": 466.57, + "probability": 0.6387 + }, + { + "start": 467.7, + "end": 468.86, + "probability": 0.5667 + }, + { + "start": 469.3, + "end": 473.8, + "probability": 0.9761 + }, + { + "start": 473.8, + "end": 476.56, + "probability": 0.9912 + }, + { + "start": 477.28, + "end": 481.92, + "probability": 0.9819 + }, + { + "start": 482.2, + "end": 484.74, + "probability": 0.7502 + }, + { + "start": 485.42, + "end": 486.9, + "probability": 0.9187 + }, + { + "start": 486.94, + "end": 488.92, + "probability": 0.6736 + }, + { + "start": 488.98, + "end": 490.77, + "probability": 0.9944 + }, + { + "start": 490.98, + "end": 491.34, + "probability": 0.9757 + }, + { + "start": 492.0, + "end": 495.82, + "probability": 0.923 + }, + { + "start": 495.94, + "end": 496.5, + "probability": 0.7327 + }, + { + "start": 497.2, + "end": 499.8, + "probability": 0.7218 + }, + { + "start": 500.24, + "end": 501.62, + "probability": 0.9922 + }, + { + "start": 501.62, + "end": 504.44, + "probability": 0.5518 + }, + { + "start": 504.98, + "end": 506.5, + "probability": 0.7502 + }, + { + "start": 506.5, + "end": 510.14, + "probability": 0.5036 + }, + { + "start": 510.2, + "end": 511.12, + "probability": 0.8276 + }, + { + "start": 511.24, + "end": 513.44, + "probability": 0.9268 + }, + { + "start": 513.54, + "end": 513.96, + "probability": 0.7363 + }, + { + "start": 514.95, + "end": 521.52, + "probability": 0.8923 + }, + { + "start": 522.46, + "end": 524.7, + "probability": 0.9271 + }, + { + "start": 525.14, + "end": 526.1, + "probability": 0.8292 + }, + { + "start": 526.2, + "end": 528.6, + "probability": 0.8661 + }, + { + "start": 533.2, + "end": 537.16, + "probability": 0.9862 + }, + { + "start": 538.36, + "end": 541.28, + "probability": 0.8091 + }, + { + "start": 541.32, + "end": 541.66, + "probability": 0.4278 + }, + { + "start": 541.68, + "end": 542.18, + "probability": 0.8497 + }, + { + "start": 542.34, + "end": 543.96, + "probability": 0.9878 + }, + { + "start": 545.4, + "end": 548.64, + "probability": 0.8679 + }, + { + "start": 548.88, + "end": 548.92, + "probability": 0.4782 + }, + { + "start": 549.64, + "end": 553.27, + "probability": 0.6457 + }, + { + "start": 554.02, + "end": 556.06, + "probability": 0.9954 + }, + { + "start": 556.88, + "end": 558.02, + "probability": 0.6746 + }, + { + "start": 558.56, + "end": 560.78, + "probability": 0.9829 + }, + { + "start": 561.6, + "end": 564.9, + "probability": 0.8856 + }, + { + "start": 565.16, + "end": 565.6, + "probability": 0.7554 + }, + { + "start": 566.34, + "end": 569.29, + "probability": 0.329 + }, + { + "start": 569.86, + "end": 572.44, + "probability": 0.998 + }, + { + "start": 575.6, + "end": 577.09, + "probability": 0.6447 + }, + { + "start": 577.34, + "end": 578.16, + "probability": 0.8977 + }, + { + "start": 579.9, + "end": 582.8, + "probability": 0.9996 + }, + { + "start": 583.24, + "end": 585.14, + "probability": 0.8292 + }, + { + "start": 585.86, + "end": 592.58, + "probability": 0.774 + }, + { + "start": 592.64, + "end": 599.86, + "probability": 0.9907 + }, + { + "start": 600.66, + "end": 601.04, + "probability": 0.436 + }, + { + "start": 601.18, + "end": 603.38, + "probability": 0.9614 + }, + { + "start": 603.52, + "end": 604.24, + "probability": 0.5055 + }, + { + "start": 616.64, + "end": 617.24, + "probability": 0.6545 + }, + { + "start": 618.5, + "end": 621.74, + "probability": 0.9324 + }, + { + "start": 622.62, + "end": 622.84, + "probability": 0.545 + }, + { + "start": 623.04, + "end": 623.92, + "probability": 0.9617 + }, + { + "start": 623.96, + "end": 624.62, + "probability": 0.7897 + }, + { + "start": 624.92, + "end": 625.63, + "probability": 0.9233 + }, + { + "start": 626.86, + "end": 629.44, + "probability": 0.9806 + }, + { + "start": 631.26, + "end": 633.1, + "probability": 0.8282 + }, + { + "start": 634.36, + "end": 637.02, + "probability": 0.8805 + }, + { + "start": 637.22, + "end": 639.84, + "probability": 0.6605 + }, + { + "start": 640.06, + "end": 641.86, + "probability": 0.989 + }, + { + "start": 643.72, + "end": 644.5, + "probability": 0.8447 + }, + { + "start": 645.1, + "end": 646.0, + "probability": 0.9452 + }, + { + "start": 646.1, + "end": 650.56, + "probability": 0.9895 + }, + { + "start": 650.74, + "end": 652.84, + "probability": 0.7218 + }, + { + "start": 653.52, + "end": 656.36, + "probability": 0.7707 + }, + { + "start": 656.96, + "end": 660.12, + "probability": 0.9958 + }, + { + "start": 661.32, + "end": 664.58, + "probability": 0.662 + }, + { + "start": 665.1, + "end": 667.6, + "probability": 0.9946 + }, + { + "start": 667.6, + "end": 670.04, + "probability": 0.9679 + }, + { + "start": 670.26, + "end": 670.56, + "probability": 0.8707 + }, + { + "start": 672.34, + "end": 673.28, + "probability": 0.8517 + }, + { + "start": 674.16, + "end": 675.26, + "probability": 0.6861 + }, + { + "start": 675.4, + "end": 676.62, + "probability": 0.7004 + }, + { + "start": 676.74, + "end": 678.08, + "probability": 0.8674 + }, + { + "start": 678.22, + "end": 684.22, + "probability": 0.8168 + }, + { + "start": 685.88, + "end": 692.18, + "probability": 0.6837 + }, + { + "start": 693.42, + "end": 697.42, + "probability": 0.9936 + }, + { + "start": 697.42, + "end": 703.6, + "probability": 0.9976 + }, + { + "start": 704.46, + "end": 709.54, + "probability": 0.9699 + }, + { + "start": 711.22, + "end": 716.39, + "probability": 0.9768 + }, + { + "start": 716.6, + "end": 722.46, + "probability": 0.989 + }, + { + "start": 723.94, + "end": 728.04, + "probability": 0.9042 + }, + { + "start": 728.04, + "end": 732.66, + "probability": 0.9525 + }, + { + "start": 733.94, + "end": 736.88, + "probability": 0.8796 + }, + { + "start": 736.92, + "end": 740.24, + "probability": 0.9976 + }, + { + "start": 740.24, + "end": 745.36, + "probability": 0.9957 + }, + { + "start": 746.68, + "end": 751.24, + "probability": 0.6329 + }, + { + "start": 753.0, + "end": 757.46, + "probability": 0.9398 + }, + { + "start": 758.36, + "end": 762.89, + "probability": 0.7731 + }, + { + "start": 763.86, + "end": 767.66, + "probability": 0.9967 + }, + { + "start": 767.66, + "end": 772.36, + "probability": 0.8428 + }, + { + "start": 773.0, + "end": 776.64, + "probability": 0.9366 + }, + { + "start": 778.1, + "end": 778.98, + "probability": 0.603 + }, + { + "start": 779.1, + "end": 782.52, + "probability": 0.989 + }, + { + "start": 782.52, + "end": 786.44, + "probability": 0.9588 + }, + { + "start": 787.56, + "end": 790.34, + "probability": 0.9572 + }, + { + "start": 790.38, + "end": 794.32, + "probability": 0.99 + }, + { + "start": 795.18, + "end": 796.94, + "probability": 0.9303 + }, + { + "start": 797.12, + "end": 802.76, + "probability": 0.8166 + }, + { + "start": 802.94, + "end": 806.22, + "probability": 0.9322 + }, + { + "start": 807.3, + "end": 809.62, + "probability": 0.9453 + }, + { + "start": 811.54, + "end": 814.05, + "probability": 0.8021 + }, + { + "start": 814.64, + "end": 819.58, + "probability": 0.7684 + }, + { + "start": 822.06, + "end": 822.64, + "probability": 0.5519 + }, + { + "start": 822.72, + "end": 823.14, + "probability": 0.8753 + }, + { + "start": 823.2, + "end": 826.02, + "probability": 0.9016 + }, + { + "start": 827.44, + "end": 831.42, + "probability": 0.9803 + }, + { + "start": 832.14, + "end": 832.88, + "probability": 0.3735 + }, + { + "start": 832.96, + "end": 833.96, + "probability": 0.7072 + }, + { + "start": 834.42, + "end": 837.16, + "probability": 0.9595 + }, + { + "start": 838.2, + "end": 839.12, + "probability": 0.8789 + }, + { + "start": 839.8, + "end": 842.42, + "probability": 0.8824 + }, + { + "start": 842.5, + "end": 848.36, + "probability": 0.9043 + }, + { + "start": 848.82, + "end": 849.78, + "probability": 0.404 + }, + { + "start": 850.8, + "end": 855.44, + "probability": 0.8823 + }, + { + "start": 855.9, + "end": 857.72, + "probability": 0.9882 + }, + { + "start": 858.66, + "end": 861.44, + "probability": 0.8517 + }, + { + "start": 862.02, + "end": 864.92, + "probability": 0.9944 + }, + { + "start": 865.54, + "end": 867.98, + "probability": 0.9998 + }, + { + "start": 868.68, + "end": 870.72, + "probability": 0.9899 + }, + { + "start": 871.78, + "end": 872.46, + "probability": 0.9479 + }, + { + "start": 874.06, + "end": 874.4, + "probability": 0.4507 + }, + { + "start": 874.54, + "end": 879.72, + "probability": 0.994 + }, + { + "start": 881.28, + "end": 881.96, + "probability": 0.7597 + }, + { + "start": 882.44, + "end": 887.78, + "probability": 0.9964 + }, + { + "start": 888.42, + "end": 889.12, + "probability": 0.7731 + }, + { + "start": 889.72, + "end": 893.32, + "probability": 0.8986 + }, + { + "start": 893.32, + "end": 897.26, + "probability": 0.8899 + }, + { + "start": 897.54, + "end": 898.04, + "probability": 0.7003 + }, + { + "start": 900.12, + "end": 901.96, + "probability": 0.8387 + }, + { + "start": 902.04, + "end": 902.32, + "probability": 0.6825 + }, + { + "start": 907.5, + "end": 910.34, + "probability": 0.3471 + }, + { + "start": 910.34, + "end": 911.82, + "probability": 0.766 + }, + { + "start": 911.92, + "end": 913.36, + "probability": 0.9634 + }, + { + "start": 913.44, + "end": 917.5, + "probability": 0.7461 + }, + { + "start": 918.06, + "end": 920.38, + "probability": 0.9976 + }, + { + "start": 921.16, + "end": 922.28, + "probability": 0.9658 + }, + { + "start": 922.32, + "end": 924.74, + "probability": 0.9319 + }, + { + "start": 924.92, + "end": 928.04, + "probability": 0.9277 + }, + { + "start": 928.22, + "end": 928.92, + "probability": 0.4829 + }, + { + "start": 930.08, + "end": 930.46, + "probability": 0.6331 + }, + { + "start": 930.86, + "end": 934.7, + "probability": 0.9917 + }, + { + "start": 934.7, + "end": 939.02, + "probability": 0.9956 + }, + { + "start": 939.12, + "end": 940.6, + "probability": 0.991 + }, + { + "start": 940.76, + "end": 941.86, + "probability": 0.8595 + }, + { + "start": 942.46, + "end": 946.13, + "probability": 0.9173 + }, + { + "start": 946.82, + "end": 949.18, + "probability": 0.9928 + }, + { + "start": 949.68, + "end": 951.44, + "probability": 0.8445 + }, + { + "start": 951.92, + "end": 953.57, + "probability": 0.8003 + }, + { + "start": 954.5, + "end": 957.02, + "probability": 0.8092 + }, + { + "start": 957.1, + "end": 958.86, + "probability": 0.9739 + }, + { + "start": 959.22, + "end": 960.26, + "probability": 0.9916 + }, + { + "start": 960.62, + "end": 961.56, + "probability": 0.9586 + }, + { + "start": 961.6, + "end": 964.0, + "probability": 0.9612 + }, + { + "start": 964.06, + "end": 964.84, + "probability": 0.9043 + }, + { + "start": 964.88, + "end": 965.58, + "probability": 0.8873 + }, + { + "start": 965.64, + "end": 966.23, + "probability": 0.814 + }, + { + "start": 967.0, + "end": 967.34, + "probability": 0.6446 + }, + { + "start": 967.42, + "end": 968.04, + "probability": 0.8933 + }, + { + "start": 968.1, + "end": 969.2, + "probability": 0.8423 + }, + { + "start": 969.64, + "end": 970.46, + "probability": 0.9594 + }, + { + "start": 970.56, + "end": 971.32, + "probability": 0.8217 + }, + { + "start": 971.34, + "end": 972.4, + "probability": 0.9229 + }, + { + "start": 972.82, + "end": 974.33, + "probability": 0.9717 + }, + { + "start": 974.82, + "end": 977.34, + "probability": 0.9678 + }, + { + "start": 977.48, + "end": 977.94, + "probability": 0.7597 + }, + { + "start": 978.08, + "end": 978.76, + "probability": 0.4605 + }, + { + "start": 978.76, + "end": 980.12, + "probability": 0.8748 + }, + { + "start": 980.28, + "end": 982.4, + "probability": 0.9859 + }, + { + "start": 982.4, + "end": 984.42, + "probability": 0.9885 + }, + { + "start": 984.5, + "end": 985.34, + "probability": 0.518 + }, + { + "start": 986.85, + "end": 990.4, + "probability": 0.989 + }, + { + "start": 991.7, + "end": 995.02, + "probability": 0.5403 + }, + { + "start": 995.26, + "end": 996.22, + "probability": 0.9624 + }, + { + "start": 997.34, + "end": 999.38, + "probability": 0.7572 + }, + { + "start": 999.52, + "end": 1000.1, + "probability": 0.934 + }, + { + "start": 1000.7, + "end": 1002.04, + "probability": 0.9172 + }, + { + "start": 1002.62, + "end": 1004.6, + "probability": 0.8762 + }, + { + "start": 1005.42, + "end": 1008.44, + "probability": 0.9458 + }, + { + "start": 1008.92, + "end": 1012.72, + "probability": 0.9858 + }, + { + "start": 1012.82, + "end": 1014.34, + "probability": 0.5865 + }, + { + "start": 1014.84, + "end": 1017.72, + "probability": 0.8896 + }, + { + "start": 1017.84, + "end": 1019.6, + "probability": 0.8759 + }, + { + "start": 1019.84, + "end": 1021.64, + "probability": 0.0816 + }, + { + "start": 1022.62, + "end": 1024.32, + "probability": 0.9714 + }, + { + "start": 1024.54, + "end": 1026.32, + "probability": 0.8971 + }, + { + "start": 1027.36, + "end": 1027.92, + "probability": 0.67 + }, + { + "start": 1027.94, + "end": 1028.76, + "probability": 0.6237 + }, + { + "start": 1028.96, + "end": 1030.98, + "probability": 0.9644 + }, + { + "start": 1031.74, + "end": 1033.88, + "probability": 0.7911 + }, + { + "start": 1034.48, + "end": 1035.42, + "probability": 0.5776 + }, + { + "start": 1035.42, + "end": 1037.06, + "probability": 0.8193 + }, + { + "start": 1037.06, + "end": 1041.34, + "probability": 0.8857 + }, + { + "start": 1041.48, + "end": 1041.9, + "probability": 0.4577 + }, + { + "start": 1041.98, + "end": 1042.62, + "probability": 0.7822 + }, + { + "start": 1042.62, + "end": 1045.22, + "probability": 0.5714 + }, + { + "start": 1045.28, + "end": 1045.7, + "probability": 0.5645 + }, + { + "start": 1045.92, + "end": 1048.36, + "probability": 0.9651 + }, + { + "start": 1048.82, + "end": 1049.66, + "probability": 0.865 + }, + { + "start": 1049.66, + "end": 1049.94, + "probability": 0.7378 + }, + { + "start": 1050.02, + "end": 1052.36, + "probability": 0.7793 + }, + { + "start": 1052.9, + "end": 1053.48, + "probability": 0.6889 + }, + { + "start": 1053.54, + "end": 1054.04, + "probability": 0.5987 + }, + { + "start": 1054.22, + "end": 1055.84, + "probability": 0.9802 + }, + { + "start": 1056.46, + "end": 1059.48, + "probability": 0.9937 + }, + { + "start": 1059.48, + "end": 1062.18, + "probability": 0.9943 + }, + { + "start": 1062.76, + "end": 1063.96, + "probability": 0.8965 + }, + { + "start": 1064.02, + "end": 1066.78, + "probability": 0.9677 + }, + { + "start": 1066.9, + "end": 1071.4, + "probability": 0.9629 + }, + { + "start": 1072.1, + "end": 1072.88, + "probability": 0.8954 + }, + { + "start": 1073.16, + "end": 1075.22, + "probability": 0.9355 + }, + { + "start": 1075.44, + "end": 1075.96, + "probability": 0.8517 + }, + { + "start": 1076.64, + "end": 1078.7, + "probability": 0.9941 + }, + { + "start": 1079.26, + "end": 1079.38, + "probability": 0.6751 + }, + { + "start": 1079.5, + "end": 1083.36, + "probability": 0.5535 + }, + { + "start": 1083.68, + "end": 1086.92, + "probability": 0.8946 + }, + { + "start": 1087.26, + "end": 1088.54, + "probability": 0.901 + }, + { + "start": 1088.7, + "end": 1092.36, + "probability": 0.7856 + }, + { + "start": 1092.74, + "end": 1093.08, + "probability": 0.7121 + }, + { + "start": 1093.22, + "end": 1093.6, + "probability": 0.7548 + }, + { + "start": 1093.64, + "end": 1096.56, + "probability": 0.6821 + }, + { + "start": 1096.56, + "end": 1097.05, + "probability": 0.6497 + }, + { + "start": 1097.68, + "end": 1098.84, + "probability": 0.7985 + }, + { + "start": 1099.2, + "end": 1102.44, + "probability": 0.6961 + }, + { + "start": 1102.54, + "end": 1103.22, + "probability": 0.7407 + }, + { + "start": 1103.26, + "end": 1103.84, + "probability": 0.5911 + }, + { + "start": 1103.92, + "end": 1105.38, + "probability": 0.638 + }, + { + "start": 1105.48, + "end": 1106.76, + "probability": 0.8408 + }, + { + "start": 1107.22, + "end": 1108.74, + "probability": 0.6011 + }, + { + "start": 1109.14, + "end": 1111.24, + "probability": 0.5206 + }, + { + "start": 1112.25, + "end": 1114.54, + "probability": 0.7796 + }, + { + "start": 1114.54, + "end": 1117.44, + "probability": 0.6945 + }, + { + "start": 1117.5, + "end": 1118.36, + "probability": 0.6136 + }, + { + "start": 1119.08, + "end": 1121.32, + "probability": 0.4387 + }, + { + "start": 1122.47, + "end": 1123.26, + "probability": 0.1658 + }, + { + "start": 1123.26, + "end": 1124.5, + "probability": 0.3442 + }, + { + "start": 1124.52, + "end": 1125.44, + "probability": 0.586 + }, + { + "start": 1125.62, + "end": 1126.77, + "probability": 0.934 + }, + { + "start": 1127.38, + "end": 1129.04, + "probability": 0.6829 + }, + { + "start": 1129.18, + "end": 1130.76, + "probability": 0.8493 + }, + { + "start": 1130.84, + "end": 1132.94, + "probability": 0.0437 + }, + { + "start": 1133.38, + "end": 1134.88, + "probability": 0.9846 + }, + { + "start": 1135.26, + "end": 1136.08, + "probability": 0.4825 + }, + { + "start": 1136.2, + "end": 1136.78, + "probability": 0.5801 + }, + { + "start": 1136.88, + "end": 1137.44, + "probability": 0.6199 + }, + { + "start": 1137.5, + "end": 1138.1, + "probability": 0.6539 + }, + { + "start": 1156.65, + "end": 1158.52, + "probability": 0.0487 + }, + { + "start": 1158.52, + "end": 1158.68, + "probability": 0.1113 + }, + { + "start": 1158.68, + "end": 1158.8, + "probability": 0.0847 + }, + { + "start": 1158.84, + "end": 1159.72, + "probability": 0.2526 + }, + { + "start": 1165.96, + "end": 1168.12, + "probability": 0.0446 + }, + { + "start": 1169.36, + "end": 1170.1, + "probability": 0.2409 + }, + { + "start": 1172.52, + "end": 1175.32, + "probability": 0.0454 + }, + { + "start": 1176.94, + "end": 1179.56, + "probability": 0.0583 + }, + { + "start": 1179.56, + "end": 1181.02, + "probability": 0.0909 + }, + { + "start": 1186.06, + "end": 1191.34, + "probability": 0.0551 + }, + { + "start": 1194.8, + "end": 1195.68, + "probability": 0.1137 + }, + { + "start": 1198.62, + "end": 1200.24, + "probability": 0.563 + }, + { + "start": 1203.02, + "end": 1204.68, + "probability": 0.7401 + }, + { + "start": 1204.84, + "end": 1204.84, + "probability": 0.0643 + }, + { + "start": 1205.02, + "end": 1206.3, + "probability": 0.0512 + }, + { + "start": 1206.98, + "end": 1208.2, + "probability": 0.0456 + }, + { + "start": 1209.36, + "end": 1212.78, + "probability": 0.3883 + }, + { + "start": 1212.78, + "end": 1213.58, + "probability": 0.0996 + }, + { + "start": 1214.16, + "end": 1215.48, + "probability": 0.0813 + }, + { + "start": 1215.48, + "end": 1215.48, + "probability": 0.1461 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1216.0, + "end": 1216.0, + "probability": 0.0 + }, + { + "start": 1217.41, + "end": 1219.32, + "probability": 0.7744 + }, + { + "start": 1219.6, + "end": 1223.14, + "probability": 0.9875 + }, + { + "start": 1223.64, + "end": 1225.0, + "probability": 0.7901 + }, + { + "start": 1225.78, + "end": 1228.0, + "probability": 0.9735 + }, + { + "start": 1228.64, + "end": 1230.06, + "probability": 0.9559 + }, + { + "start": 1230.74, + "end": 1235.4, + "probability": 0.989 + }, + { + "start": 1236.02, + "end": 1238.5, + "probability": 0.9945 + }, + { + "start": 1238.5, + "end": 1241.36, + "probability": 0.9871 + }, + { + "start": 1241.54, + "end": 1244.12, + "probability": 0.9883 + }, + { + "start": 1245.38, + "end": 1246.16, + "probability": 0.7502 + }, + { + "start": 1246.34, + "end": 1249.14, + "probability": 0.9937 + }, + { + "start": 1250.0, + "end": 1251.82, + "probability": 0.8068 + }, + { + "start": 1252.04, + "end": 1253.7, + "probability": 0.9927 + }, + { + "start": 1254.4, + "end": 1256.92, + "probability": 0.9019 + }, + { + "start": 1257.02, + "end": 1258.4, + "probability": 0.9529 + }, + { + "start": 1259.02, + "end": 1262.94, + "probability": 0.7343 + }, + { + "start": 1264.04, + "end": 1266.94, + "probability": 0.964 + }, + { + "start": 1267.46, + "end": 1270.52, + "probability": 0.998 + }, + { + "start": 1271.24, + "end": 1272.3, + "probability": 0.9692 + }, + { + "start": 1273.38, + "end": 1276.16, + "probability": 0.8462 + }, + { + "start": 1277.1, + "end": 1279.0, + "probability": 0.9019 + }, + { + "start": 1279.88, + "end": 1283.56, + "probability": 0.9893 + }, + { + "start": 1283.56, + "end": 1286.66, + "probability": 0.9985 + }, + { + "start": 1287.06, + "end": 1288.4, + "probability": 0.9607 + }, + { + "start": 1289.02, + "end": 1290.38, + "probability": 0.9419 + }, + { + "start": 1291.16, + "end": 1293.64, + "probability": 0.9788 + }, + { + "start": 1294.26, + "end": 1297.7, + "probability": 0.9573 + }, + { + "start": 1298.18, + "end": 1301.46, + "probability": 0.9935 + }, + { + "start": 1302.3, + "end": 1305.12, + "probability": 0.9655 + }, + { + "start": 1305.68, + "end": 1307.92, + "probability": 0.9163 + }, + { + "start": 1308.48, + "end": 1310.04, + "probability": 0.9949 + }, + { + "start": 1310.6, + "end": 1311.74, + "probability": 0.9893 + }, + { + "start": 1311.82, + "end": 1315.56, + "probability": 0.751 + }, + { + "start": 1316.56, + "end": 1320.58, + "probability": 0.9959 + }, + { + "start": 1320.58, + "end": 1325.02, + "probability": 0.9993 + }, + { + "start": 1326.2, + "end": 1327.26, + "probability": 0.9017 + }, + { + "start": 1327.36, + "end": 1327.82, + "probability": 0.8673 + }, + { + "start": 1327.9, + "end": 1331.12, + "probability": 0.9633 + }, + { + "start": 1331.86, + "end": 1332.98, + "probability": 0.7565 + }, + { + "start": 1333.08, + "end": 1335.5, + "probability": 0.9575 + }, + { + "start": 1337.14, + "end": 1341.43, + "probability": 0.9834 + }, + { + "start": 1343.93, + "end": 1347.02, + "probability": 0.9762 + }, + { + "start": 1347.8, + "end": 1353.08, + "probability": 0.9407 + }, + { + "start": 1353.14, + "end": 1354.12, + "probability": 0.7737 + }, + { + "start": 1354.8, + "end": 1356.3, + "probability": 0.9272 + }, + { + "start": 1356.6, + "end": 1359.52, + "probability": 0.7454 + }, + { + "start": 1360.26, + "end": 1364.7, + "probability": 0.89 + }, + { + "start": 1365.44, + "end": 1367.06, + "probability": 0.7851 + }, + { + "start": 1367.06, + "end": 1371.0, + "probability": 0.8853 + }, + { + "start": 1371.06, + "end": 1371.78, + "probability": 0.7847 + }, + { + "start": 1371.86, + "end": 1372.82, + "probability": 0.799 + }, + { + "start": 1373.22, + "end": 1373.84, + "probability": 0.8068 + }, + { + "start": 1373.96, + "end": 1374.64, + "probability": 0.9366 + }, + { + "start": 1374.72, + "end": 1375.58, + "probability": 0.9803 + }, + { + "start": 1375.96, + "end": 1376.54, + "probability": 0.9655 + }, + { + "start": 1376.64, + "end": 1378.12, + "probability": 0.8071 + }, + { + "start": 1378.82, + "end": 1382.88, + "probability": 0.9813 + }, + { + "start": 1383.32, + "end": 1386.8, + "probability": 0.9841 + }, + { + "start": 1386.9, + "end": 1390.3, + "probability": 0.9983 + }, + { + "start": 1390.88, + "end": 1393.8, + "probability": 0.9938 + }, + { + "start": 1394.48, + "end": 1396.87, + "probability": 0.9183 + }, + { + "start": 1397.36, + "end": 1400.58, + "probability": 0.9944 + }, + { + "start": 1401.48, + "end": 1402.56, + "probability": 0.6456 + }, + { + "start": 1403.98, + "end": 1406.4, + "probability": 0.8529 + }, + { + "start": 1407.36, + "end": 1410.36, + "probability": 0.8853 + }, + { + "start": 1410.74, + "end": 1411.9, + "probability": 0.086 + }, + { + "start": 1424.2, + "end": 1426.6, + "probability": 0.9039 + }, + { + "start": 1426.66, + "end": 1428.98, + "probability": 0.3297 + }, + { + "start": 1429.06, + "end": 1432.38, + "probability": 0.9507 + }, + { + "start": 1436.24, + "end": 1439.62, + "probability": 0.7998 + }, + { + "start": 1440.42, + "end": 1445.78, + "probability": 0.9756 + }, + { + "start": 1446.3, + "end": 1446.67, + "probability": 0.1167 + }, + { + "start": 1448.74, + "end": 1449.84, + "probability": 0.6342 + }, + { + "start": 1450.04, + "end": 1453.22, + "probability": 0.969 + }, + { + "start": 1454.0, + "end": 1455.36, + "probability": 0.9834 + }, + { + "start": 1455.92, + "end": 1456.94, + "probability": 0.7992 + }, + { + "start": 1457.26, + "end": 1457.74, + "probability": 0.7886 + }, + { + "start": 1457.84, + "end": 1459.66, + "probability": 0.8749 + }, + { + "start": 1459.84, + "end": 1460.9, + "probability": 0.9506 + }, + { + "start": 1460.96, + "end": 1463.38, + "probability": 0.9383 + }, + { + "start": 1463.46, + "end": 1464.6, + "probability": 0.9396 + }, + { + "start": 1464.68, + "end": 1467.14, + "probability": 0.8848 + }, + { + "start": 1467.72, + "end": 1469.64, + "probability": 0.9753 + }, + { + "start": 1469.8, + "end": 1470.16, + "probability": 0.4069 + }, + { + "start": 1470.34, + "end": 1474.06, + "probability": 0.927 + }, + { + "start": 1474.56, + "end": 1475.68, + "probability": 0.9723 + }, + { + "start": 1476.14, + "end": 1483.14, + "probability": 0.9784 + }, + { + "start": 1483.4, + "end": 1483.84, + "probability": 0.6115 + }, + { + "start": 1484.46, + "end": 1489.02, + "probability": 0.9656 + }, + { + "start": 1489.24, + "end": 1492.42, + "probability": 0.9632 + }, + { + "start": 1492.54, + "end": 1493.74, + "probability": 0.7366 + }, + { + "start": 1495.32, + "end": 1497.86, + "probability": 0.9293 + }, + { + "start": 1498.64, + "end": 1500.44, + "probability": 0.9742 + }, + { + "start": 1500.98, + "end": 1508.08, + "probability": 0.9972 + }, + { + "start": 1508.12, + "end": 1514.28, + "probability": 0.9904 + }, + { + "start": 1515.16, + "end": 1520.76, + "probability": 0.8064 + }, + { + "start": 1520.8, + "end": 1523.3, + "probability": 0.9285 + }, + { + "start": 1523.88, + "end": 1524.5, + "probability": 0.7386 + }, + { + "start": 1525.26, + "end": 1528.12, + "probability": 0.7349 + }, + { + "start": 1528.18, + "end": 1528.72, + "probability": 0.0481 + }, + { + "start": 1529.46, + "end": 1531.68, + "probability": 0.9728 + }, + { + "start": 1531.74, + "end": 1533.22, + "probability": 0.8923 + }, + { + "start": 1533.28, + "end": 1534.04, + "probability": 0.6952 + }, + { + "start": 1534.52, + "end": 1536.22, + "probability": 0.9306 + }, + { + "start": 1539.18, + "end": 1543.7, + "probability": 0.9948 + }, + { + "start": 1547.1, + "end": 1547.8, + "probability": 0.4785 + }, + { + "start": 1548.02, + "end": 1549.08, + "probability": 0.7255 + }, + { + "start": 1549.26, + "end": 1551.04, + "probability": 0.9951 + }, + { + "start": 1551.04, + "end": 1555.12, + "probability": 0.7793 + }, + { + "start": 1555.56, + "end": 1558.68, + "probability": 0.9819 + }, + { + "start": 1558.74, + "end": 1560.0, + "probability": 0.9941 + }, + { + "start": 1560.04, + "end": 1561.9, + "probability": 0.9259 + }, + { + "start": 1562.0, + "end": 1562.6, + "probability": 0.4156 + }, + { + "start": 1562.72, + "end": 1565.24, + "probability": 0.9189 + }, + { + "start": 1565.84, + "end": 1567.54, + "probability": 0.6953 + }, + { + "start": 1567.54, + "end": 1570.82, + "probability": 0.8577 + }, + { + "start": 1571.1, + "end": 1572.77, + "probability": 0.3772 + }, + { + "start": 1573.16, + "end": 1574.86, + "probability": 0.7713 + }, + { + "start": 1574.94, + "end": 1576.52, + "probability": 0.7876 + }, + { + "start": 1576.62, + "end": 1578.07, + "probability": 0.3985 + }, + { + "start": 1578.18, + "end": 1580.12, + "probability": 0.764 + }, + { + "start": 1581.78, + "end": 1584.64, + "probability": 0.5223 + }, + { + "start": 1584.8, + "end": 1586.18, + "probability": 0.7224 + }, + { + "start": 1586.32, + "end": 1587.24, + "probability": 0.6427 + }, + { + "start": 1587.44, + "end": 1588.58, + "probability": 0.9233 + }, + { + "start": 1588.82, + "end": 1591.53, + "probability": 0.9279 + }, + { + "start": 1591.92, + "end": 1594.26, + "probability": 0.9731 + }, + { + "start": 1596.0, + "end": 1600.38, + "probability": 0.9283 + }, + { + "start": 1600.38, + "end": 1605.06, + "probability": 0.9893 + }, + { + "start": 1605.96, + "end": 1607.74, + "probability": 0.7209 + }, + { + "start": 1608.24, + "end": 1609.76, + "probability": 0.9717 + }, + { + "start": 1610.16, + "end": 1611.75, + "probability": 0.9964 + }, + { + "start": 1612.02, + "end": 1612.7, + "probability": 0.9822 + }, + { + "start": 1613.46, + "end": 1614.44, + "probability": 0.9754 + }, + { + "start": 1614.54, + "end": 1615.9, + "probability": 0.9089 + }, + { + "start": 1616.28, + "end": 1617.28, + "probability": 0.7498 + }, + { + "start": 1617.68, + "end": 1618.9, + "probability": 0.9474 + }, + { + "start": 1619.04, + "end": 1619.88, + "probability": 0.9713 + }, + { + "start": 1619.92, + "end": 1620.46, + "probability": 0.717 + }, + { + "start": 1620.54, + "end": 1622.94, + "probability": 0.9214 + }, + { + "start": 1623.32, + "end": 1623.9, + "probability": 0.7825 + }, + { + "start": 1623.98, + "end": 1626.16, + "probability": 0.9944 + }, + { + "start": 1626.2, + "end": 1629.53, + "probability": 0.9839 + }, + { + "start": 1629.58, + "end": 1634.2, + "probability": 0.8424 + }, + { + "start": 1634.42, + "end": 1637.06, + "probability": 0.9163 + }, + { + "start": 1637.62, + "end": 1640.02, + "probability": 0.8408 + }, + { + "start": 1640.04, + "end": 1641.72, + "probability": 0.2833 + }, + { + "start": 1642.04, + "end": 1643.68, + "probability": 0.811 + }, + { + "start": 1644.08, + "end": 1645.92, + "probability": 0.9885 + }, + { + "start": 1646.3, + "end": 1649.68, + "probability": 0.9692 + }, + { + "start": 1650.1, + "end": 1653.59, + "probability": 0.7973 + }, + { + "start": 1654.02, + "end": 1655.14, + "probability": 0.8284 + }, + { + "start": 1655.46, + "end": 1656.8, + "probability": 0.8347 + }, + { + "start": 1656.8, + "end": 1657.58, + "probability": 0.8104 + }, + { + "start": 1657.64, + "end": 1658.94, + "probability": 0.8132 + }, + { + "start": 1659.34, + "end": 1664.84, + "probability": 0.9299 + }, + { + "start": 1664.96, + "end": 1666.92, + "probability": 0.9204 + }, + { + "start": 1667.24, + "end": 1668.42, + "probability": 0.8659 + }, + { + "start": 1668.92, + "end": 1670.9, + "probability": 0.959 + }, + { + "start": 1671.14, + "end": 1672.12, + "probability": 0.6983 + }, + { + "start": 1672.18, + "end": 1672.68, + "probability": 0.5366 + }, + { + "start": 1672.97, + "end": 1674.0, + "probability": 0.7761 + }, + { + "start": 1674.5, + "end": 1677.36, + "probability": 0.9496 + }, + { + "start": 1677.74, + "end": 1679.82, + "probability": 0.6386 + }, + { + "start": 1680.2, + "end": 1684.22, + "probability": 0.9364 + }, + { + "start": 1684.34, + "end": 1686.26, + "probability": 0.8315 + }, + { + "start": 1686.66, + "end": 1690.48, + "probability": 0.8397 + }, + { + "start": 1690.52, + "end": 1693.44, + "probability": 0.9789 + }, + { + "start": 1693.52, + "end": 1694.84, + "probability": 0.8631 + }, + { + "start": 1695.02, + "end": 1695.98, + "probability": 0.7522 + }, + { + "start": 1696.04, + "end": 1699.12, + "probability": 0.8269 + }, + { + "start": 1699.54, + "end": 1700.68, + "probability": 0.9946 + }, + { + "start": 1701.24, + "end": 1704.14, + "probability": 0.96 + }, + { + "start": 1704.14, + "end": 1706.7, + "probability": 0.9855 + }, + { + "start": 1707.04, + "end": 1708.22, + "probability": 0.8372 + }, + { + "start": 1708.5, + "end": 1711.18, + "probability": 0.9976 + }, + { + "start": 1711.18, + "end": 1717.06, + "probability": 0.8898 + }, + { + "start": 1718.2, + "end": 1719.18, + "probability": 0.6843 + }, + { + "start": 1719.38, + "end": 1723.04, + "probability": 0.9941 + }, + { + "start": 1723.46, + "end": 1726.88, + "probability": 0.9692 + }, + { + "start": 1726.88, + "end": 1730.18, + "probability": 0.9877 + }, + { + "start": 1730.62, + "end": 1732.98, + "probability": 0.792 + }, + { + "start": 1733.56, + "end": 1736.36, + "probability": 0.9786 + }, + { + "start": 1737.1, + "end": 1738.38, + "probability": 0.9646 + }, + { + "start": 1738.46, + "end": 1739.34, + "probability": 0.9928 + }, + { + "start": 1739.52, + "end": 1740.27, + "probability": 0.9421 + }, + { + "start": 1740.88, + "end": 1742.64, + "probability": 0.822 + }, + { + "start": 1742.72, + "end": 1743.22, + "probability": 0.7112 + }, + { + "start": 1743.22, + "end": 1743.78, + "probability": 0.7044 + }, + { + "start": 1744.24, + "end": 1746.96, + "probability": 0.9716 + }, + { + "start": 1746.96, + "end": 1750.14, + "probability": 0.9962 + }, + { + "start": 1750.64, + "end": 1752.1, + "probability": 0.7186 + }, + { + "start": 1752.96, + "end": 1753.03, + "probability": 0.0251 + }, + { + "start": 1754.16, + "end": 1755.56, + "probability": 0.9875 + }, + { + "start": 1755.7, + "end": 1756.52, + "probability": 0.709 + }, + { + "start": 1756.62, + "end": 1757.52, + "probability": 0.7246 + }, + { + "start": 1758.0, + "end": 1758.96, + "probability": 0.833 + }, + { + "start": 1759.38, + "end": 1760.4, + "probability": 0.8975 + }, + { + "start": 1760.84, + "end": 1762.78, + "probability": 0.9863 + }, + { + "start": 1762.84, + "end": 1763.74, + "probability": 0.9768 + }, + { + "start": 1763.84, + "end": 1764.98, + "probability": 0.7463 + }, + { + "start": 1765.02, + "end": 1766.23, + "probability": 0.4912 + }, + { + "start": 1766.74, + "end": 1768.8, + "probability": 0.7756 + }, + { + "start": 1769.44, + "end": 1772.44, + "probability": 0.9683 + }, + { + "start": 1772.44, + "end": 1779.03, + "probability": 0.8429 + }, + { + "start": 1780.1, + "end": 1782.98, + "probability": 0.9505 + }, + { + "start": 1783.26, + "end": 1790.2, + "probability": 0.7975 + }, + { + "start": 1790.36, + "end": 1790.86, + "probability": 0.62 + }, + { + "start": 1790.96, + "end": 1791.5, + "probability": 0.6031 + }, + { + "start": 1791.6, + "end": 1792.26, + "probability": 0.7295 + }, + { + "start": 1797.16, + "end": 1798.28, + "probability": 0.1792 + }, + { + "start": 1802.08, + "end": 1805.12, + "probability": 0.2653 + }, + { + "start": 1805.86, + "end": 1806.38, + "probability": 0.0611 + }, + { + "start": 1807.99, + "end": 1809.34, + "probability": 0.2157 + }, + { + "start": 1809.34, + "end": 1810.38, + "probability": 0.1075 + }, + { + "start": 1810.8, + "end": 1813.98, + "probability": 0.7541 + }, + { + "start": 1813.98, + "end": 1819.12, + "probability": 0.9933 + }, + { + "start": 1820.38, + "end": 1821.7, + "probability": 0.8059 + }, + { + "start": 1823.44, + "end": 1824.46, + "probability": 0.7691 + }, + { + "start": 1824.6, + "end": 1825.84, + "probability": 0.8341 + }, + { + "start": 1825.88, + "end": 1827.36, + "probability": 0.8268 + }, + { + "start": 1827.46, + "end": 1829.14, + "probability": 0.889 + }, + { + "start": 1829.74, + "end": 1833.38, + "probability": 0.6182 + }, + { + "start": 1833.44, + "end": 1834.5, + "probability": 0.5418 + }, + { + "start": 1835.2, + "end": 1836.9, + "probability": 0.8663 + }, + { + "start": 1838.06, + "end": 1839.3, + "probability": 0.594 + }, + { + "start": 1839.52, + "end": 1842.04, + "probability": 0.9937 + }, + { + "start": 1842.54, + "end": 1844.32, + "probability": 0.6933 + }, + { + "start": 1844.42, + "end": 1846.46, + "probability": 0.2491 + }, + { + "start": 1847.0, + "end": 1848.0, + "probability": 0.6248 + }, + { + "start": 1848.26, + "end": 1852.3, + "probability": 0.8582 + }, + { + "start": 1852.88, + "end": 1855.92, + "probability": 0.9473 + }, + { + "start": 1856.0, + "end": 1856.94, + "probability": 0.4922 + }, + { + "start": 1857.06, + "end": 1857.84, + "probability": 0.9707 + }, + { + "start": 1863.64, + "end": 1866.06, + "probability": 0.6706 + }, + { + "start": 1867.04, + "end": 1867.04, + "probability": 0.1986 + }, + { + "start": 1870.28, + "end": 1874.18, + "probability": 0.9062 + }, + { + "start": 1874.34, + "end": 1876.24, + "probability": 0.9959 + }, + { + "start": 1876.76, + "end": 1879.88, + "probability": 0.9971 + }, + { + "start": 1880.34, + "end": 1880.91, + "probability": 0.9757 + }, + { + "start": 1881.52, + "end": 1884.94, + "probability": 0.9962 + }, + { + "start": 1884.97, + "end": 1888.8, + "probability": 0.9966 + }, + { + "start": 1889.36, + "end": 1891.72, + "probability": 0.9877 + }, + { + "start": 1891.72, + "end": 1894.36, + "probability": 0.9442 + }, + { + "start": 1894.9, + "end": 1896.28, + "probability": 0.985 + }, + { + "start": 1896.6, + "end": 1897.74, + "probability": 0.9087 + }, + { + "start": 1897.96, + "end": 1900.76, + "probability": 0.9754 + }, + { + "start": 1901.38, + "end": 1904.7, + "probability": 0.981 + }, + { + "start": 1904.7, + "end": 1907.92, + "probability": 0.9869 + }, + { + "start": 1908.3, + "end": 1909.54, + "probability": 0.5774 + }, + { + "start": 1909.6, + "end": 1911.5, + "probability": 0.868 + }, + { + "start": 1911.78, + "end": 1913.06, + "probability": 0.9565 + }, + { + "start": 1913.44, + "end": 1915.9, + "probability": 0.8171 + }, + { + "start": 1916.2, + "end": 1916.38, + "probability": 0.6616 + }, + { + "start": 1916.48, + "end": 1918.14, + "probability": 0.5788 + }, + { + "start": 1918.76, + "end": 1920.94, + "probability": 0.9796 + }, + { + "start": 1920.94, + "end": 1923.2, + "probability": 0.9632 + }, + { + "start": 1924.14, + "end": 1925.5, + "probability": 0.7512 + }, + { + "start": 1926.14, + "end": 1928.6, + "probability": 0.9629 + }, + { + "start": 1929.48, + "end": 1932.78, + "probability": 0.993 + }, + { + "start": 1932.86, + "end": 1933.58, + "probability": 0.8138 + }, + { + "start": 1933.68, + "end": 1934.77, + "probability": 0.7571 + }, + { + "start": 1935.54, + "end": 1937.18, + "probability": 0.9507 + }, + { + "start": 1937.28, + "end": 1940.86, + "probability": 0.9899 + }, + { + "start": 1940.86, + "end": 1945.26, + "probability": 0.9607 + }, + { + "start": 1945.76, + "end": 1947.24, + "probability": 0.9683 + }, + { + "start": 1947.98, + "end": 1947.98, + "probability": 0.2349 + }, + { + "start": 1950.0, + "end": 1951.38, + "probability": 0.0136 + }, + { + "start": 1951.38, + "end": 1951.76, + "probability": 0.2674 + }, + { + "start": 1953.34, + "end": 1954.02, + "probability": 0.0671 + }, + { + "start": 1954.02, + "end": 1954.56, + "probability": 0.2836 + }, + { + "start": 1954.56, + "end": 1955.3, + "probability": 0.3751 + }, + { + "start": 1955.88, + "end": 1959.82, + "probability": 0.2768 + }, + { + "start": 1960.28, + "end": 1961.3, + "probability": 0.8787 + }, + { + "start": 1961.42, + "end": 1962.1, + "probability": 0.3864 + }, + { + "start": 1962.56, + "end": 1964.45, + "probability": 0.0243 + }, + { + "start": 1965.26, + "end": 1968.06, + "probability": 0.1159 + }, + { + "start": 1968.18, + "end": 1969.48, + "probability": 0.1052 + }, + { + "start": 1969.74, + "end": 1970.36, + "probability": 0.3055 + }, + { + "start": 1972.7, + "end": 1973.98, + "probability": 0.1347 + }, + { + "start": 1974.34, + "end": 1975.4, + "probability": 0.1316 + }, + { + "start": 1975.66, + "end": 1976.32, + "probability": 0.104 + }, + { + "start": 1977.08, + "end": 1981.58, + "probability": 0.9099 + }, + { + "start": 1982.64, + "end": 1985.48, + "probability": 0.983 + }, + { + "start": 1985.9, + "end": 1988.16, + "probability": 0.9273 + }, + { + "start": 1988.8, + "end": 1992.36, + "probability": 0.9912 + }, + { + "start": 1993.1, + "end": 1994.0, + "probability": 0.6521 + }, + { + "start": 1996.84, + "end": 1997.88, + "probability": 0.7869 + }, + { + "start": 1999.72, + "end": 2003.08, + "probability": 0.8748 + }, + { + "start": 2006.14, + "end": 2008.64, + "probability": 0.7702 + }, + { + "start": 2008.96, + "end": 2011.6, + "probability": 0.9501 + }, + { + "start": 2013.91, + "end": 2017.92, + "probability": 0.9575 + }, + { + "start": 2020.62, + "end": 2023.9, + "probability": 0.9994 + }, + { + "start": 2026.7, + "end": 2028.0, + "probability": 0.5194 + }, + { + "start": 2028.54, + "end": 2031.66, + "probability": 0.9544 + }, + { + "start": 2031.9, + "end": 2032.82, + "probability": 0.6471 + }, + { + "start": 2033.44, + "end": 2034.66, + "probability": 0.9333 + }, + { + "start": 2035.78, + "end": 2038.46, + "probability": 0.9965 + }, + { + "start": 2039.68, + "end": 2041.25, + "probability": 0.8247 + }, + { + "start": 2041.32, + "end": 2044.56, + "probability": 0.9994 + }, + { + "start": 2046.04, + "end": 2048.3, + "probability": 0.9951 + }, + { + "start": 2050.04, + "end": 2058.9, + "probability": 0.9945 + }, + { + "start": 2059.84, + "end": 2060.12, + "probability": 0.98 + }, + { + "start": 2061.02, + "end": 2061.76, + "probability": 0.9758 + }, + { + "start": 2063.12, + "end": 2065.56, + "probability": 0.5122 + }, + { + "start": 2065.7, + "end": 2068.58, + "probability": 0.9846 + }, + { + "start": 2068.72, + "end": 2070.98, + "probability": 0.9601 + }, + { + "start": 2072.68, + "end": 2073.42, + "probability": 0.9839 + }, + { + "start": 2075.26, + "end": 2080.36, + "probability": 0.8784 + }, + { + "start": 2080.76, + "end": 2082.66, + "probability": 0.9889 + }, + { + "start": 2083.1, + "end": 2084.1, + "probability": 0.9542 + }, + { + "start": 2084.78, + "end": 2085.8, + "probability": 0.6676 + }, + { + "start": 2088.56, + "end": 2089.91, + "probability": 0.7262 + }, + { + "start": 2090.4, + "end": 2092.46, + "probability": 0.9962 + }, + { + "start": 2092.56, + "end": 2093.54, + "probability": 0.9233 + }, + { + "start": 2093.9, + "end": 2094.72, + "probability": 0.8411 + }, + { + "start": 2094.76, + "end": 2095.82, + "probability": 0.9424 + }, + { + "start": 2095.86, + "end": 2097.38, + "probability": 0.961 + }, + { + "start": 2097.98, + "end": 2098.56, + "probability": 0.4473 + }, + { + "start": 2100.02, + "end": 2102.74, + "probability": 0.7878 + }, + { + "start": 2103.66, + "end": 2107.64, + "probability": 0.8205 + }, + { + "start": 2108.14, + "end": 2108.14, + "probability": 0.026 + }, + { + "start": 2108.14, + "end": 2111.62, + "probability": 0.8617 + }, + { + "start": 2112.68, + "end": 2115.58, + "probability": 0.7866 + }, + { + "start": 2115.74, + "end": 2117.88, + "probability": 0.7706 + }, + { + "start": 2118.52, + "end": 2120.5, + "probability": 0.8053 + }, + { + "start": 2121.24, + "end": 2128.56, + "probability": 0.9209 + }, + { + "start": 2132.25, + "end": 2136.92, + "probability": 0.9807 + }, + { + "start": 2137.44, + "end": 2139.18, + "probability": 0.9717 + }, + { + "start": 2141.4, + "end": 2142.46, + "probability": 0.7219 + }, + { + "start": 2142.98, + "end": 2143.52, + "probability": 0.6826 + }, + { + "start": 2143.52, + "end": 2147.82, + "probability": 0.7999 + }, + { + "start": 2148.26, + "end": 2149.66, + "probability": 0.983 + }, + { + "start": 2150.74, + "end": 2155.7, + "probability": 0.9705 + }, + { + "start": 2156.42, + "end": 2160.44, + "probability": 0.8596 + }, + { + "start": 2162.71, + "end": 2170.56, + "probability": 0.9567 + }, + { + "start": 2171.64, + "end": 2174.52, + "probability": 0.5858 + }, + { + "start": 2176.22, + "end": 2179.7, + "probability": 0.9274 + }, + { + "start": 2180.66, + "end": 2182.62, + "probability": 0.748 + }, + { + "start": 2183.28, + "end": 2185.82, + "probability": 0.8905 + }, + { + "start": 2185.86, + "end": 2187.38, + "probability": 0.9014 + }, + { + "start": 2188.06, + "end": 2190.74, + "probability": 0.9915 + }, + { + "start": 2190.84, + "end": 2191.72, + "probability": 0.6358 + }, + { + "start": 2191.88, + "end": 2192.78, + "probability": 0.8336 + }, + { + "start": 2193.26, + "end": 2196.52, + "probability": 0.9983 + }, + { + "start": 2196.52, + "end": 2203.58, + "probability": 0.9933 + }, + { + "start": 2204.46, + "end": 2206.76, + "probability": 0.9152 + }, + { + "start": 2207.7, + "end": 2211.84, + "probability": 0.9543 + }, + { + "start": 2213.46, + "end": 2216.64, + "probability": 0.984 + }, + { + "start": 2216.68, + "end": 2220.02, + "probability": 0.9394 + }, + { + "start": 2221.24, + "end": 2221.66, + "probability": 0.9841 + }, + { + "start": 2224.96, + "end": 2228.66, + "probability": 0.9976 + }, + { + "start": 2229.36, + "end": 2232.76, + "probability": 0.9902 + }, + { + "start": 2233.16, + "end": 2234.04, + "probability": 0.7645 + }, + { + "start": 2234.16, + "end": 2235.7, + "probability": 0.9162 + }, + { + "start": 2236.74, + "end": 2241.1, + "probability": 0.9912 + }, + { + "start": 2241.24, + "end": 2246.04, + "probability": 0.9883 + }, + { + "start": 2246.14, + "end": 2247.24, + "probability": 0.353 + }, + { + "start": 2247.94, + "end": 2250.0, + "probability": 0.995 + }, + { + "start": 2250.14, + "end": 2251.18, + "probability": 0.9689 + }, + { + "start": 2251.24, + "end": 2252.44, + "probability": 0.7767 + }, + { + "start": 2253.36, + "end": 2256.5, + "probability": 0.9839 + }, + { + "start": 2256.88, + "end": 2259.66, + "probability": 0.8385 + }, + { + "start": 2259.72, + "end": 2260.64, + "probability": 0.873 + }, + { + "start": 2261.16, + "end": 2264.78, + "probability": 0.9727 + }, + { + "start": 2265.96, + "end": 2270.3, + "probability": 0.9175 + }, + { + "start": 2272.2, + "end": 2275.08, + "probability": 0.7823 + }, + { + "start": 2275.28, + "end": 2279.81, + "probability": 0.9109 + }, + { + "start": 2281.18, + "end": 2281.8, + "probability": 0.6967 + }, + { + "start": 2282.5, + "end": 2283.3, + "probability": 0.8539 + }, + { + "start": 2283.94, + "end": 2286.82, + "probability": 0.8247 + }, + { + "start": 2287.84, + "end": 2290.62, + "probability": 0.7869 + }, + { + "start": 2291.3, + "end": 2294.5, + "probability": 0.9949 + }, + { + "start": 2295.82, + "end": 2297.84, + "probability": 0.5616 + }, + { + "start": 2298.0, + "end": 2300.24, + "probability": 0.5626 + }, + { + "start": 2301.26, + "end": 2302.04, + "probability": 0.8955 + }, + { + "start": 2303.56, + "end": 2306.56, + "probability": 0.9832 + }, + { + "start": 2306.56, + "end": 2310.18, + "probability": 0.998 + }, + { + "start": 2310.66, + "end": 2312.28, + "probability": 0.8881 + }, + { + "start": 2312.42, + "end": 2313.71, + "probability": 0.945 + }, + { + "start": 2314.6, + "end": 2315.48, + "probability": 0.9365 + }, + { + "start": 2315.7, + "end": 2316.9, + "probability": 0.9313 + }, + { + "start": 2317.02, + "end": 2317.88, + "probability": 0.9131 + }, + { + "start": 2317.96, + "end": 2318.88, + "probability": 0.9858 + }, + { + "start": 2318.98, + "end": 2319.89, + "probability": 0.9673 + }, + { + "start": 2320.64, + "end": 2323.82, + "probability": 0.8087 + }, + { + "start": 2324.06, + "end": 2327.93, + "probability": 0.5214 + }, + { + "start": 2328.18, + "end": 2331.08, + "probability": 0.9888 + }, + { + "start": 2331.1, + "end": 2332.98, + "probability": 0.9764 + }, + { + "start": 2333.1, + "end": 2334.3, + "probability": 0.8985 + }, + { + "start": 2334.78, + "end": 2335.66, + "probability": 0.6679 + }, + { + "start": 2335.78, + "end": 2336.54, + "probability": 0.6307 + }, + { + "start": 2336.74, + "end": 2339.86, + "probability": 0.7992 + }, + { + "start": 2340.46, + "end": 2341.72, + "probability": 0.8135 + }, + { + "start": 2342.64, + "end": 2345.72, + "probability": 0.9698 + }, + { + "start": 2345.72, + "end": 2349.3, + "probability": 0.9668 + }, + { + "start": 2349.46, + "end": 2349.98, + "probability": 0.9504 + }, + { + "start": 2350.18, + "end": 2350.76, + "probability": 0.6517 + }, + { + "start": 2351.54, + "end": 2355.52, + "probability": 0.8629 + }, + { + "start": 2355.78, + "end": 2356.94, + "probability": 0.6685 + }, + { + "start": 2357.16, + "end": 2358.0, + "probability": 0.9694 + }, + { + "start": 2358.14, + "end": 2359.36, + "probability": 0.772 + }, + { + "start": 2360.2, + "end": 2363.36, + "probability": 0.9649 + }, + { + "start": 2363.8, + "end": 2367.0, + "probability": 0.812 + }, + { + "start": 2367.22, + "end": 2369.48, + "probability": 0.7335 + }, + { + "start": 2369.6, + "end": 2371.96, + "probability": 0.999 + }, + { + "start": 2371.96, + "end": 2374.57, + "probability": 0.9775 + }, + { + "start": 2374.9, + "end": 2376.02, + "probability": 0.6871 + }, + { + "start": 2376.12, + "end": 2377.32, + "probability": 0.2377 + }, + { + "start": 2378.5, + "end": 2380.08, + "probability": 0.8472 + }, + { + "start": 2380.68, + "end": 2381.72, + "probability": 0.6357 + }, + { + "start": 2381.98, + "end": 2382.72, + "probability": 0.6003 + }, + { + "start": 2382.88, + "end": 2383.34, + "probability": 0.4709 + }, + { + "start": 2383.36, + "end": 2383.82, + "probability": 0.6542 + }, + { + "start": 2383.92, + "end": 2384.5, + "probability": 0.5658 + }, + { + "start": 2400.49, + "end": 2401.4, + "probability": 0.0678 + }, + { + "start": 2401.4, + "end": 2401.4, + "probability": 0.0253 + }, + { + "start": 2401.68, + "end": 2401.78, + "probability": 0.0538 + }, + { + "start": 2401.78, + "end": 2401.78, + "probability": 0.114 + }, + { + "start": 2401.78, + "end": 2401.88, + "probability": 0.059 + }, + { + "start": 2401.88, + "end": 2402.92, + "probability": 0.2928 + }, + { + "start": 2405.22, + "end": 2407.1, + "probability": 0.7111 + }, + { + "start": 2408.88, + "end": 2411.44, + "probability": 0.8922 + }, + { + "start": 2411.96, + "end": 2414.48, + "probability": 0.3274 + }, + { + "start": 2414.48, + "end": 2416.08, + "probability": 0.4769 + }, + { + "start": 2419.36, + "end": 2422.42, + "probability": 0.4641 + }, + { + "start": 2423.14, + "end": 2425.88, + "probability": 0.9468 + }, + { + "start": 2425.98, + "end": 2426.94, + "probability": 0.3997 + }, + { + "start": 2427.14, + "end": 2427.24, + "probability": 0.3851 + }, + { + "start": 2427.32, + "end": 2428.78, + "probability": 0.6534 + }, + { + "start": 2428.86, + "end": 2432.5, + "probability": 0.67 + }, + { + "start": 2432.68, + "end": 2434.24, + "probability": 0.3964 + }, + { + "start": 2435.0, + "end": 2435.2, + "probability": 0.0338 + }, + { + "start": 2435.62, + "end": 2435.76, + "probability": 0.3573 + }, + { + "start": 2435.76, + "end": 2438.22, + "probability": 0.5036 + }, + { + "start": 2438.44, + "end": 2442.18, + "probability": 0.9148 + }, + { + "start": 2442.28, + "end": 2443.54, + "probability": 0.9844 + }, + { + "start": 2444.54, + "end": 2447.1, + "probability": 0.9669 + }, + { + "start": 2447.8, + "end": 2449.0, + "probability": 0.4333 + }, + { + "start": 2449.0, + "end": 2450.64, + "probability": 0.6573 + }, + { + "start": 2450.68, + "end": 2451.86, + "probability": 0.1024 + }, + { + "start": 2452.0, + "end": 2453.94, + "probability": 0.6544 + }, + { + "start": 2453.94, + "end": 2457.68, + "probability": 0.4792 + }, + { + "start": 2457.78, + "end": 2458.1, + "probability": 0.8308 + }, + { + "start": 2459.8, + "end": 2461.8, + "probability": 0.856 + }, + { + "start": 2461.86, + "end": 2465.52, + "probability": 0.3717 + }, + { + "start": 2466.06, + "end": 2472.66, + "probability": 0.552 + }, + { + "start": 2473.2, + "end": 2476.8, + "probability": 0.8466 + }, + { + "start": 2477.1, + "end": 2477.83, + "probability": 0.9809 + }, + { + "start": 2478.16, + "end": 2478.9, + "probability": 0.8623 + }, + { + "start": 2478.98, + "end": 2480.56, + "probability": 0.7014 + }, + { + "start": 2480.94, + "end": 2481.98, + "probability": 0.5522 + }, + { + "start": 2482.22, + "end": 2486.22, + "probability": 0.9939 + }, + { + "start": 2486.22, + "end": 2491.22, + "probability": 0.9486 + }, + { + "start": 2491.22, + "end": 2497.06, + "probability": 0.9875 + }, + { + "start": 2497.72, + "end": 2497.72, + "probability": 0.4758 + }, + { + "start": 2497.72, + "end": 2501.22, + "probability": 0.934 + }, + { + "start": 2501.5, + "end": 2504.86, + "probability": 0.9823 + }, + { + "start": 2505.5, + "end": 2507.52, + "probability": 0.8344 + }, + { + "start": 2507.74, + "end": 2511.82, + "probability": 0.991 + }, + { + "start": 2512.12, + "end": 2512.46, + "probability": 0.8292 + }, + { + "start": 2512.7, + "end": 2514.76, + "probability": 0.6758 + }, + { + "start": 2514.86, + "end": 2517.12, + "probability": 0.7949 + }, + { + "start": 2517.58, + "end": 2519.84, + "probability": 0.9932 + }, + { + "start": 2519.84, + "end": 2522.8, + "probability": 0.9487 + }, + { + "start": 2523.3, + "end": 2527.56, + "probability": 0.9976 + }, + { + "start": 2527.56, + "end": 2531.86, + "probability": 0.9979 + }, + { + "start": 2532.24, + "end": 2536.22, + "probability": 0.9978 + }, + { + "start": 2536.27, + "end": 2540.66, + "probability": 0.9917 + }, + { + "start": 2541.2, + "end": 2546.34, + "probability": 0.9832 + }, + { + "start": 2547.6, + "end": 2550.22, + "probability": 0.9626 + }, + { + "start": 2550.54, + "end": 2551.8, + "probability": 0.7289 + }, + { + "start": 2552.02, + "end": 2555.16, + "probability": 0.9154 + }, + { + "start": 2555.16, + "end": 2560.67, + "probability": 0.9785 + }, + { + "start": 2561.18, + "end": 2561.56, + "probability": 0.7104 + }, + { + "start": 2561.72, + "end": 2564.65, + "probability": 0.9674 + }, + { + "start": 2564.7, + "end": 2567.78, + "probability": 0.9584 + }, + { + "start": 2567.88, + "end": 2568.96, + "probability": 0.6537 + }, + { + "start": 2569.24, + "end": 2570.76, + "probability": 0.9803 + }, + { + "start": 2570.86, + "end": 2571.24, + "probability": 0.9631 + }, + { + "start": 2571.38, + "end": 2573.08, + "probability": 0.8152 + }, + { + "start": 2573.24, + "end": 2577.3, + "probability": 0.9912 + }, + { + "start": 2578.12, + "end": 2582.2, + "probability": 0.9043 + }, + { + "start": 2582.32, + "end": 2582.9, + "probability": 0.8581 + }, + { + "start": 2583.1, + "end": 2586.6, + "probability": 0.9935 + }, + { + "start": 2587.34, + "end": 2591.2, + "probability": 0.9875 + }, + { + "start": 2591.2, + "end": 2597.2, + "probability": 0.9911 + }, + { + "start": 2597.32, + "end": 2602.9, + "probability": 0.9923 + }, + { + "start": 2603.18, + "end": 2606.16, + "probability": 0.9151 + }, + { + "start": 2606.16, + "end": 2610.62, + "probability": 0.7575 + }, + { + "start": 2611.0, + "end": 2613.34, + "probability": 0.998 + }, + { + "start": 2613.34, + "end": 2616.82, + "probability": 0.9033 + }, + { + "start": 2616.9, + "end": 2622.02, + "probability": 0.9434 + }, + { + "start": 2622.42, + "end": 2625.08, + "probability": 0.99 + }, + { + "start": 2625.08, + "end": 2627.6, + "probability": 0.9915 + }, + { + "start": 2627.64, + "end": 2627.9, + "probability": 0.4922 + }, + { + "start": 2628.02, + "end": 2628.78, + "probability": 0.7379 + }, + { + "start": 2629.54, + "end": 2631.72, + "probability": 0.6065 + }, + { + "start": 2632.36, + "end": 2632.86, + "probability": 0.6146 + }, + { + "start": 2652.88, + "end": 2654.76, + "probability": 0.8165 + }, + { + "start": 2655.5, + "end": 2660.28, + "probability": 0.9325 + }, + { + "start": 2663.28, + "end": 2664.88, + "probability": 0.6794 + }, + { + "start": 2664.88, + "end": 2667.2, + "probability": 0.954 + }, + { + "start": 2668.34, + "end": 2669.24, + "probability": 0.0768 + }, + { + "start": 2669.46, + "end": 2671.88, + "probability": 0.9532 + }, + { + "start": 2672.34, + "end": 2676.68, + "probability": 0.8921 + }, + { + "start": 2676.68, + "end": 2680.29, + "probability": 0.9591 + }, + { + "start": 2680.76, + "end": 2683.3, + "probability": 0.9948 + }, + { + "start": 2683.3, + "end": 2686.32, + "probability": 0.9647 + }, + { + "start": 2686.42, + "end": 2688.96, + "probability": 0.821 + }, + { + "start": 2689.42, + "end": 2690.2, + "probability": 0.7749 + }, + { + "start": 2690.82, + "end": 2691.68, + "probability": 0.9161 + }, + { + "start": 2693.04, + "end": 2693.3, + "probability": 0.0049 + }, + { + "start": 2693.3, + "end": 2693.32, + "probability": 0.5976 + }, + { + "start": 2693.32, + "end": 2693.76, + "probability": 0.0328 + }, + { + "start": 2693.84, + "end": 2696.76, + "probability": 0.5861 + }, + { + "start": 2696.88, + "end": 2700.9, + "probability": 0.9335 + }, + { + "start": 2700.9, + "end": 2705.66, + "probability": 0.8765 + }, + { + "start": 2706.2, + "end": 2709.06, + "probability": 0.8309 + }, + { + "start": 2710.06, + "end": 2713.4, + "probability": 0.9839 + }, + { + "start": 2713.4, + "end": 2715.72, + "probability": 0.9065 + }, + { + "start": 2717.18, + "end": 2721.62, + "probability": 0.9871 + }, + { + "start": 2721.62, + "end": 2724.9, + "probability": 0.9919 + }, + { + "start": 2725.62, + "end": 2730.06, + "probability": 0.981 + }, + { + "start": 2731.02, + "end": 2734.96, + "probability": 0.878 + }, + { + "start": 2735.16, + "end": 2738.84, + "probability": 0.8459 + }, + { + "start": 2739.04, + "end": 2742.36, + "probability": 0.9419 + }, + { + "start": 2742.36, + "end": 2746.54, + "probability": 0.7931 + }, + { + "start": 2746.84, + "end": 2747.48, + "probability": 0.7983 + }, + { + "start": 2747.82, + "end": 2752.9, + "probability": 0.9653 + }, + { + "start": 2752.9, + "end": 2759.62, + "probability": 0.9976 + }, + { + "start": 2760.1, + "end": 2764.04, + "probability": 0.9621 + }, + { + "start": 2764.04, + "end": 2768.26, + "probability": 0.9785 + }, + { + "start": 2770.1, + "end": 2771.38, + "probability": 0.5535 + }, + { + "start": 2771.58, + "end": 2774.38, + "probability": 0.9884 + }, + { + "start": 2774.38, + "end": 2777.06, + "probability": 0.908 + }, + { + "start": 2777.74, + "end": 2779.78, + "probability": 0.974 + }, + { + "start": 2782.0, + "end": 2784.3, + "probability": 0.9127 + }, + { + "start": 2785.49, + "end": 2786.62, + "probability": 0.9799 + }, + { + "start": 2786.7, + "end": 2787.02, + "probability": 0.9024 + }, + { + "start": 2787.1, + "end": 2787.6, + "probability": 0.8769 + }, + { + "start": 2788.86, + "end": 2790.2, + "probability": 0.7575 + }, + { + "start": 2795.84, + "end": 2799.64, + "probability": 0.9502 + }, + { + "start": 2799.76, + "end": 2801.23, + "probability": 0.9878 + }, + { + "start": 2802.01, + "end": 2806.76, + "probability": 0.7037 + }, + { + "start": 2806.94, + "end": 2809.76, + "probability": 0.3881 + }, + { + "start": 2809.84, + "end": 2814.2, + "probability": 0.5753 + }, + { + "start": 2814.54, + "end": 2816.31, + "probability": 0.9415 + }, + { + "start": 2817.02, + "end": 2820.14, + "probability": 0.9718 + }, + { + "start": 2821.56, + "end": 2824.36, + "probability": 0.991 + }, + { + "start": 2824.48, + "end": 2825.0, + "probability": 0.3565 + }, + { + "start": 2825.04, + "end": 2825.82, + "probability": 0.8588 + }, + { + "start": 2826.58, + "end": 2827.8, + "probability": 0.731 + }, + { + "start": 2828.44, + "end": 2831.24, + "probability": 0.8291 + }, + { + "start": 2831.78, + "end": 2833.17, + "probability": 0.9779 + }, + { + "start": 2833.52, + "end": 2834.0, + "probability": 0.2942 + }, + { + "start": 2834.66, + "end": 2835.46, + "probability": 0.0652 + }, + { + "start": 2835.46, + "end": 2839.19, + "probability": 0.9728 + }, + { + "start": 2842.13, + "end": 2844.46, + "probability": 0.6234 + }, + { + "start": 2844.56, + "end": 2844.56, + "probability": 0.1101 + }, + { + "start": 2844.56, + "end": 2848.44, + "probability": 0.915 + }, + { + "start": 2849.0, + "end": 2849.08, + "probability": 0.1267 + }, + { + "start": 2849.08, + "end": 2849.1, + "probability": 0.4384 + }, + { + "start": 2849.5, + "end": 2850.42, + "probability": 0.5433 + }, + { + "start": 2852.06, + "end": 2853.88, + "probability": 0.7695 + }, + { + "start": 2853.96, + "end": 2858.56, + "probability": 0.6404 + }, + { + "start": 2858.62, + "end": 2859.66, + "probability": 0.1205 + }, + { + "start": 2861.34, + "end": 2862.5, + "probability": 0.0056 + }, + { + "start": 2862.5, + "end": 2862.78, + "probability": 0.1871 + }, + { + "start": 2864.36, + "end": 2867.72, + "probability": 0.5729 + }, + { + "start": 2867.86, + "end": 2868.84, + "probability": 0.8736 + }, + { + "start": 2868.92, + "end": 2872.02, + "probability": 0.6633 + }, + { + "start": 2872.02, + "end": 2877.58, + "probability": 0.9352 + }, + { + "start": 2879.11, + "end": 2880.6, + "probability": 0.8409 + }, + { + "start": 2880.6, + "end": 2881.6, + "probability": 0.8557 + }, + { + "start": 2881.66, + "end": 2883.01, + "probability": 0.7216 + }, + { + "start": 2884.0, + "end": 2886.94, + "probability": 0.9336 + }, + { + "start": 2888.26, + "end": 2891.28, + "probability": 0.9759 + }, + { + "start": 2892.5, + "end": 2895.32, + "probability": 0.8573 + }, + { + "start": 2896.2, + "end": 2898.46, + "probability": 0.5711 + }, + { + "start": 2899.68, + "end": 2901.22, + "probability": 0.8459 + }, + { + "start": 2901.28, + "end": 2902.16, + "probability": 0.7512 + }, + { + "start": 2902.42, + "end": 2904.66, + "probability": 0.9298 + }, + { + "start": 2905.2, + "end": 2906.94, + "probability": 0.4692 + }, + { + "start": 2906.96, + "end": 2907.6, + "probability": 0.5231 + }, + { + "start": 2907.74, + "end": 2908.7, + "probability": 0.8612 + }, + { + "start": 2909.1, + "end": 2910.5, + "probability": 0.4026 + }, + { + "start": 2912.36, + "end": 2912.48, + "probability": 0.3397 + }, + { + "start": 2912.48, + "end": 2913.4, + "probability": 0.8252 + }, + { + "start": 2913.88, + "end": 2914.64, + "probability": 0.0493 + }, + { + "start": 2914.64, + "end": 2914.64, + "probability": 0.1779 + }, + { + "start": 2914.64, + "end": 2915.88, + "probability": 0.6164 + }, + { + "start": 2916.32, + "end": 2918.94, + "probability": 0.5796 + }, + { + "start": 2919.02, + "end": 2919.44, + "probability": 0.9301 + }, + { + "start": 2920.42, + "end": 2920.88, + "probability": 0.059 + }, + { + "start": 2920.88, + "end": 2923.54, + "probability": 0.3974 + }, + { + "start": 2924.48, + "end": 2925.7, + "probability": 0.4206 + }, + { + "start": 2925.7, + "end": 2928.78, + "probability": 0.7547 + }, + { + "start": 2929.22, + "end": 2932.1, + "probability": 0.9173 + }, + { + "start": 2933.48, + "end": 2936.4, + "probability": 0.2285 + }, + { + "start": 2936.54, + "end": 2940.19, + "probability": 0.7664 + }, + { + "start": 2941.62, + "end": 2946.34, + "probability": 0.8617 + }, + { + "start": 2947.4, + "end": 2951.88, + "probability": 0.9415 + }, + { + "start": 2952.1, + "end": 2956.3, + "probability": 0.926 + }, + { + "start": 2956.44, + "end": 2957.9, + "probability": 0.6495 + }, + { + "start": 2958.12, + "end": 2959.36, + "probability": 0.752 + }, + { + "start": 2959.72, + "end": 2962.98, + "probability": 0.996 + }, + { + "start": 2963.74, + "end": 2966.31, + "probability": 0.9891 + }, + { + "start": 2966.9, + "end": 2973.0, + "probability": 0.9363 + }, + { + "start": 2973.08, + "end": 2973.58, + "probability": 0.5511 + }, + { + "start": 2973.94, + "end": 2977.12, + "probability": 0.9449 + }, + { + "start": 2977.86, + "end": 2979.68, + "probability": 0.3494 + }, + { + "start": 2980.02, + "end": 2981.82, + "probability": 0.6237 + }, + { + "start": 2982.5, + "end": 2987.16, + "probability": 0.7267 + }, + { + "start": 2988.22, + "end": 2989.34, + "probability": 0.4765 + }, + { + "start": 2989.86, + "end": 2994.63, + "probability": 0.9712 + }, + { + "start": 2994.95, + "end": 2998.97, + "probability": 0.9912 + }, + { + "start": 2999.65, + "end": 3004.77, + "probability": 0.9817 + }, + { + "start": 3005.07, + "end": 3005.99, + "probability": 0.7635 + }, + { + "start": 3006.21, + "end": 3006.61, + "probability": 0.7612 + }, + { + "start": 3006.61, + "end": 3010.09, + "probability": 0.9683 + }, + { + "start": 3010.39, + "end": 3010.81, + "probability": 0.4241 + }, + { + "start": 3010.89, + "end": 3016.83, + "probability": 0.9954 + }, + { + "start": 3017.15, + "end": 3019.15, + "probability": 0.8204 + }, + { + "start": 3019.17, + "end": 3020.93, + "probability": 0.54 + }, + { + "start": 3020.93, + "end": 3021.55, + "probability": 0.4788 + }, + { + "start": 3021.55, + "end": 3021.69, + "probability": 0.491 + }, + { + "start": 3021.71, + "end": 3025.65, + "probability": 0.9886 + }, + { + "start": 3025.87, + "end": 3027.37, + "probability": 0.9844 + }, + { + "start": 3027.45, + "end": 3028.37, + "probability": 0.6353 + }, + { + "start": 3028.55, + "end": 3031.01, + "probability": 0.3175 + }, + { + "start": 3031.71, + "end": 3033.19, + "probability": 0.3088 + }, + { + "start": 3034.81, + "end": 3040.49, + "probability": 0.431 + }, + { + "start": 3041.13, + "end": 3043.75, + "probability": 0.8718 + }, + { + "start": 3043.89, + "end": 3045.89, + "probability": 0.6171 + }, + { + "start": 3046.23, + "end": 3046.49, + "probability": 0.3429 + }, + { + "start": 3046.49, + "end": 3047.21, + "probability": 0.3019 + }, + { + "start": 3047.45, + "end": 3050.09, + "probability": 0.9803 + }, + { + "start": 3050.91, + "end": 3051.15, + "probability": 0.0649 + }, + { + "start": 3051.15, + "end": 3052.03, + "probability": 0.9056 + }, + { + "start": 3052.13, + "end": 3054.05, + "probability": 0.8044 + }, + { + "start": 3054.85, + "end": 3058.19, + "probability": 0.8882 + }, + { + "start": 3058.23, + "end": 3059.87, + "probability": 0.7361 + }, + { + "start": 3059.97, + "end": 3061.39, + "probability": 0.1125 + }, + { + "start": 3062.01, + "end": 3062.99, + "probability": 0.5606 + }, + { + "start": 3063.81, + "end": 3065.29, + "probability": 0.5621 + }, + { + "start": 3065.83, + "end": 3066.57, + "probability": 0.713 + }, + { + "start": 3066.65, + "end": 3067.17, + "probability": 0.9577 + }, + { + "start": 3067.79, + "end": 3067.89, + "probability": 0.5452 + }, + { + "start": 3071.29, + "end": 3071.43, + "probability": 0.2199 + }, + { + "start": 3086.05, + "end": 3090.05, + "probability": 0.3713 + }, + { + "start": 3102.49, + "end": 3104.37, + "probability": 0.8629 + }, + { + "start": 3105.87, + "end": 3108.57, + "probability": 0.0432 + }, + { + "start": 3109.83, + "end": 3114.47, + "probability": 0.0732 + }, + { + "start": 3114.71, + "end": 3118.91, + "probability": 0.028 + }, + { + "start": 3119.41, + "end": 3119.63, + "probability": 0.0512 + }, + { + "start": 3119.63, + "end": 3122.1, + "probability": 0.096 + }, + { + "start": 3125.19, + "end": 3130.59, + "probability": 0.0481 + }, + { + "start": 3130.61, + "end": 3130.95, + "probability": 0.0535 + }, + { + "start": 3130.95, + "end": 3130.97, + "probability": 0.0203 + }, + { + "start": 3131.0, + "end": 3131.0, + "probability": 0.0 + }, + { + "start": 3131.0, + "end": 3131.0, + "probability": 0.0 + }, + { + "start": 3131.0, + "end": 3131.0, + "probability": 0.0 + }, + { + "start": 3131.0, + "end": 3131.0, + "probability": 0.0 + }, + { + "start": 3131.0, + "end": 3131.0, + "probability": 0.0 + }, + { + "start": 3131.0, + "end": 3131.0, + "probability": 0.0 + }, + { + "start": 3131.0, + "end": 3131.0, + "probability": 0.0 + }, + { + "start": 3131.0, + "end": 3131.0, + "probability": 0.0 + }, + { + "start": 3131.0, + "end": 3131.0, + "probability": 0.0 + }, + { + "start": 3133.31, + "end": 3133.66, + "probability": 0.1599 + }, + { + "start": 3135.01, + "end": 3135.36, + "probability": 0.035 + }, + { + "start": 3135.36, + "end": 3138.32, + "probability": 0.0684 + }, + { + "start": 3139.04, + "end": 3141.66, + "probability": 0.0348 + }, + { + "start": 3141.68, + "end": 3143.58, + "probability": 0.0812 + }, + { + "start": 3143.58, + "end": 3146.92, + "probability": 0.0459 + }, + { + "start": 3146.92, + "end": 3147.14, + "probability": 0.0765 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.0, + "end": 3265.0, + "probability": 0.0 + }, + { + "start": 3265.82, + "end": 3265.98, + "probability": 0.1495 + }, + { + "start": 3265.98, + "end": 3265.98, + "probability": 0.0309 + }, + { + "start": 3265.98, + "end": 3265.98, + "probability": 0.0307 + }, + { + "start": 3265.98, + "end": 3265.98, + "probability": 0.2373 + }, + { + "start": 3265.98, + "end": 3267.78, + "probability": 0.1132 + }, + { + "start": 3267.78, + "end": 3269.04, + "probability": 0.3179 + }, + { + "start": 3269.86, + "end": 3274.32, + "probability": 0.7852 + }, + { + "start": 3275.16, + "end": 3278.9, + "probability": 0.9909 + }, + { + "start": 3280.3, + "end": 3282.58, + "probability": 0.6631 + }, + { + "start": 3283.2, + "end": 3284.76, + "probability": 0.8755 + }, + { + "start": 3285.62, + "end": 3286.88, + "probability": 0.9801 + }, + { + "start": 3287.58, + "end": 3288.92, + "probability": 0.8302 + }, + { + "start": 3289.4, + "end": 3292.1, + "probability": 0.399 + }, + { + "start": 3292.1, + "end": 3293.05, + "probability": 0.2773 + }, + { + "start": 3293.7, + "end": 3294.7, + "probability": 0.5854 + }, + { + "start": 3295.5, + "end": 3296.54, + "probability": 0.6422 + }, + { + "start": 3297.54, + "end": 3298.38, + "probability": 0.5046 + }, + { + "start": 3298.52, + "end": 3299.5, + "probability": 0.8877 + }, + { + "start": 3299.6, + "end": 3301.32, + "probability": 0.9031 + }, + { + "start": 3302.58, + "end": 3304.88, + "probability": 0.8528 + }, + { + "start": 3305.74, + "end": 3308.92, + "probability": 0.8146 + }, + { + "start": 3309.68, + "end": 3312.98, + "probability": 0.8883 + }, + { + "start": 3313.5, + "end": 3316.58, + "probability": 0.7468 + }, + { + "start": 3316.76, + "end": 3319.0, + "probability": 0.8371 + }, + { + "start": 3320.18, + "end": 3321.08, + "probability": 0.9441 + }, + { + "start": 3321.34, + "end": 3325.9, + "probability": 0.9967 + }, + { + "start": 3325.9, + "end": 3330.56, + "probability": 0.9951 + }, + { + "start": 3331.52, + "end": 3335.48, + "probability": 0.9978 + }, + { + "start": 3336.08, + "end": 3340.6, + "probability": 0.9888 + }, + { + "start": 3341.42, + "end": 3341.77, + "probability": 0.4423 + }, + { + "start": 3342.64, + "end": 3347.26, + "probability": 0.8288 + }, + { + "start": 3347.96, + "end": 3351.58, + "probability": 0.9776 + }, + { + "start": 3352.54, + "end": 3355.58, + "probability": 0.7559 + }, + { + "start": 3355.82, + "end": 3359.0, + "probability": 0.8688 + }, + { + "start": 3359.44, + "end": 3361.85, + "probability": 0.9376 + }, + { + "start": 3362.46, + "end": 3372.54, + "probability": 0.9724 + }, + { + "start": 3373.4, + "end": 3376.22, + "probability": 0.9025 + }, + { + "start": 3377.1, + "end": 3380.9, + "probability": 0.9932 + }, + { + "start": 3381.0, + "end": 3384.86, + "probability": 0.9456 + }, + { + "start": 3385.4, + "end": 3389.54, + "probability": 0.6666 + }, + { + "start": 3390.52, + "end": 3392.9, + "probability": 0.8812 + }, + { + "start": 3392.98, + "end": 3393.38, + "probability": 0.7012 + }, + { + "start": 3393.46, + "end": 3395.66, + "probability": 0.9604 + }, + { + "start": 3396.28, + "end": 3401.7, + "probability": 0.981 + }, + { + "start": 3401.98, + "end": 3402.56, + "probability": 0.6471 + }, + { + "start": 3402.64, + "end": 3403.36, + "probability": 0.3029 + }, + { + "start": 3403.38, + "end": 3403.76, + "probability": 0.5872 + }, + { + "start": 3403.8, + "end": 3405.74, + "probability": 0.972 + }, + { + "start": 3405.86, + "end": 3408.64, + "probability": 0.797 + }, + { + "start": 3408.7, + "end": 3410.24, + "probability": 0.1333 + }, + { + "start": 3410.64, + "end": 3412.92, + "probability": 0.6572 + }, + { + "start": 3413.2, + "end": 3414.02, + "probability": 0.6421 + }, + { + "start": 3414.16, + "end": 3414.66, + "probability": 0.6039 + }, + { + "start": 3414.72, + "end": 3415.14, + "probability": 0.552 + }, + { + "start": 3415.2, + "end": 3418.24, + "probability": 0.2883 + }, + { + "start": 3419.44, + "end": 3419.68, + "probability": 0.2322 + }, + { + "start": 3420.26, + "end": 3423.02, + "probability": 0.0278 + }, + { + "start": 3423.02, + "end": 3423.34, + "probability": 0.021 + }, + { + "start": 3427.5, + "end": 3429.48, + "probability": 0.131 + }, + { + "start": 3430.06, + "end": 3430.48, + "probability": 0.054 + }, + { + "start": 3437.86, + "end": 3438.7, + "probability": 0.2842 + }, + { + "start": 3438.7, + "end": 3439.7, + "probability": 0.3214 + }, + { + "start": 3440.68, + "end": 3441.78, + "probability": 0.6758 + }, + { + "start": 3442.3, + "end": 3443.16, + "probability": 0.5918 + }, + { + "start": 3443.3, + "end": 3444.88, + "probability": 0.7592 + }, + { + "start": 3446.12, + "end": 3446.93, + "probability": 0.9321 + }, + { + "start": 3447.68, + "end": 3451.27, + "probability": 0.8838 + }, + { + "start": 3452.04, + "end": 3452.54, + "probability": 0.2231 + }, + { + "start": 3452.62, + "end": 3455.94, + "probability": 0.592 + }, + { + "start": 3456.04, + "end": 3457.6, + "probability": 0.8978 + }, + { + "start": 3458.74, + "end": 3462.94, + "probability": 0.8103 + }, + { + "start": 3463.0, + "end": 3464.76, + "probability": 0.1684 + }, + { + "start": 3465.12, + "end": 3468.02, + "probability": 0.9791 + }, + { + "start": 3468.38, + "end": 3469.12, + "probability": 0.8325 + }, + { + "start": 3469.78, + "end": 3469.9, + "probability": 0.0857 + }, + { + "start": 3472.14, + "end": 3472.34, + "probability": 0.1142 + }, + { + "start": 3473.78, + "end": 3475.32, + "probability": 0.6714 + }, + { + "start": 3475.64, + "end": 3476.18, + "probability": 0.8734 + }, + { + "start": 3479.8, + "end": 3482.88, + "probability": 0.0341 + }, + { + "start": 3490.36, + "end": 3490.8, + "probability": 0.3865 + }, + { + "start": 3505.88, + "end": 3508.06, + "probability": 0.6361 + }, + { + "start": 3508.06, + "end": 3509.04, + "probability": 0.9545 + }, + { + "start": 3509.52, + "end": 3510.5, + "probability": 0.6517 + }, + { + "start": 3511.66, + "end": 3511.74, + "probability": 0.2723 + }, + { + "start": 3511.74, + "end": 3511.74, + "probability": 0.1792 + }, + { + "start": 3511.74, + "end": 3513.46, + "probability": 0.7149 + }, + { + "start": 3513.7, + "end": 3514.32, + "probability": 0.3336 + }, + { + "start": 3514.92, + "end": 3515.0, + "probability": 0.0038 + }, + { + "start": 3518.06, + "end": 3519.06, + "probability": 0.043 + }, + { + "start": 3519.16, + "end": 3519.54, + "probability": 0.5443 + }, + { + "start": 3519.68, + "end": 3522.34, + "probability": 0.9778 + }, + { + "start": 3522.4, + "end": 3523.28, + "probability": 0.6128 + }, + { + "start": 3523.38, + "end": 3524.58, + "probability": 0.9404 + }, + { + "start": 3525.24, + "end": 3526.2, + "probability": 0.7859 + }, + { + "start": 3526.78, + "end": 3530.84, + "probability": 0.9902 + }, + { + "start": 3530.86, + "end": 3531.5, + "probability": 0.7972 + }, + { + "start": 3531.68, + "end": 3532.82, + "probability": 0.9529 + }, + { + "start": 3533.06, + "end": 3533.66, + "probability": 0.7964 + }, + { + "start": 3534.24, + "end": 3536.84, + "probability": 0.9941 + }, + { + "start": 3536.94, + "end": 3538.24, + "probability": 0.5642 + }, + { + "start": 3538.84, + "end": 3540.14, + "probability": 0.8664 + }, + { + "start": 3540.38, + "end": 3541.06, + "probability": 0.7166 + }, + { + "start": 3541.18, + "end": 3542.36, + "probability": 0.8987 + }, + { + "start": 3542.92, + "end": 3545.48, + "probability": 0.9678 + }, + { + "start": 3545.84, + "end": 3548.09, + "probability": 0.98 + }, + { + "start": 3549.08, + "end": 3550.42, + "probability": 0.9154 + }, + { + "start": 3550.96, + "end": 3551.84, + "probability": 0.7993 + }, + { + "start": 3551.9, + "end": 3554.0, + "probability": 0.9536 + }, + { + "start": 3554.44, + "end": 3555.04, + "probability": 0.8152 + }, + { + "start": 3555.12, + "end": 3558.34, + "probability": 0.9549 + }, + { + "start": 3558.88, + "end": 3560.4, + "probability": 0.734 + }, + { + "start": 3561.0, + "end": 3564.57, + "probability": 0.9708 + }, + { + "start": 3565.7, + "end": 3567.24, + "probability": 0.979 + }, + { + "start": 3567.4, + "end": 3568.84, + "probability": 0.5499 + }, + { + "start": 3569.04, + "end": 3569.91, + "probability": 0.9884 + }, + { + "start": 3570.64, + "end": 3572.48, + "probability": 0.8236 + }, + { + "start": 3572.86, + "end": 3574.46, + "probability": 0.8958 + }, + { + "start": 3574.64, + "end": 3576.87, + "probability": 0.9984 + }, + { + "start": 3577.22, + "end": 3577.78, + "probability": 0.4004 + }, + { + "start": 3577.86, + "end": 3580.32, + "probability": 0.9962 + }, + { + "start": 3580.7, + "end": 3582.3, + "probability": 0.9643 + }, + { + "start": 3582.5, + "end": 3586.32, + "probability": 0.6958 + }, + { + "start": 3586.8, + "end": 3587.72, + "probability": 0.8487 + }, + { + "start": 3587.84, + "end": 3588.86, + "probability": 0.7744 + }, + { + "start": 3589.22, + "end": 3593.8, + "probability": 0.9326 + }, + { + "start": 3594.02, + "end": 3595.88, + "probability": 0.9021 + }, + { + "start": 3596.42, + "end": 3599.8, + "probability": 0.5763 + }, + { + "start": 3599.8, + "end": 3599.8, + "probability": 0.2352 + }, + { + "start": 3600.34, + "end": 3602.68, + "probability": 0.7766 + }, + { + "start": 3603.1, + "end": 3604.86, + "probability": 0.8887 + }, + { + "start": 3606.0, + "end": 3607.36, + "probability": 0.6721 + }, + { + "start": 3607.86, + "end": 3610.36, + "probability": 0.8509 + }, + { + "start": 3610.92, + "end": 3613.9, + "probability": 0.9736 + }, + { + "start": 3614.92, + "end": 3621.2, + "probability": 0.6552 + }, + { + "start": 3621.76, + "end": 3622.62, + "probability": 0.7293 + }, + { + "start": 3622.64, + "end": 3625.78, + "probability": 0.9985 + }, + { + "start": 3626.26, + "end": 3631.46, + "probability": 0.9483 + }, + { + "start": 3631.74, + "end": 3632.3, + "probability": 0.5135 + }, + { + "start": 3632.36, + "end": 3632.96, + "probability": 0.907 + }, + { + "start": 3633.02, + "end": 3634.78, + "probability": 0.963 + }, + { + "start": 3635.12, + "end": 3637.0, + "probability": 0.9607 + }, + { + "start": 3637.22, + "end": 3641.08, + "probability": 0.9772 + }, + { + "start": 3641.68, + "end": 3642.56, + "probability": 0.9614 + }, + { + "start": 3643.54, + "end": 3646.28, + "probability": 0.903 + }, + { + "start": 3647.62, + "end": 3650.64, + "probability": 0.9823 + }, + { + "start": 3651.2, + "end": 3652.2, + "probability": 0.5287 + }, + { + "start": 3656.18, + "end": 3656.64, + "probability": 0.5709 + }, + { + "start": 3657.34, + "end": 3658.64, + "probability": 0.311 + }, + { + "start": 3665.24, + "end": 3668.54, + "probability": 0.6863 + }, + { + "start": 3674.26, + "end": 3676.32, + "probability": 0.9868 + }, + { + "start": 3676.48, + "end": 3677.56, + "probability": 0.767 + }, + { + "start": 3678.4, + "end": 3680.72, + "probability": 0.977 + }, + { + "start": 3680.94, + "end": 3683.48, + "probability": 0.9874 + }, + { + "start": 3684.02, + "end": 3686.0, + "probability": 0.7489 + }, + { + "start": 3686.04, + "end": 3687.96, + "probability": 0.7252 + }, + { + "start": 3688.08, + "end": 3688.96, + "probability": 0.6452 + }, + { + "start": 3689.36, + "end": 3690.1, + "probability": 0.8328 + }, + { + "start": 3690.12, + "end": 3691.36, + "probability": 0.9326 + }, + { + "start": 3691.56, + "end": 3692.48, + "probability": 0.5928 + }, + { + "start": 3693.66, + "end": 3694.32, + "probability": 0.3311 + }, + { + "start": 3694.32, + "end": 3694.76, + "probability": 0.6844 + }, + { + "start": 3695.58, + "end": 3696.18, + "probability": 0.5353 + }, + { + "start": 3696.22, + "end": 3697.32, + "probability": 0.6474 + }, + { + "start": 3697.42, + "end": 3697.58, + "probability": 0.1094 + }, + { + "start": 3697.8, + "end": 3698.78, + "probability": 0.5071 + }, + { + "start": 3698.9, + "end": 3702.38, + "probability": 0.7111 + }, + { + "start": 3705.4, + "end": 3706.56, + "probability": 0.6601 + }, + { + "start": 3706.8, + "end": 3709.1, + "probability": 0.601 + }, + { + "start": 3709.12, + "end": 3711.44, + "probability": 0.915 + }, + { + "start": 3711.83, + "end": 3712.04, + "probability": 0.5204 + }, + { + "start": 3712.04, + "end": 3713.82, + "probability": 0.9613 + }, + { + "start": 3713.86, + "end": 3714.7, + "probability": 0.2333 + }, + { + "start": 3714.7, + "end": 3714.86, + "probability": 0.2195 + }, + { + "start": 3715.06, + "end": 3715.84, + "probability": 0.8538 + }, + { + "start": 3716.34, + "end": 3717.54, + "probability": 0.6582 + }, + { + "start": 3717.54, + "end": 3720.72, + "probability": 0.7998 + }, + { + "start": 3720.94, + "end": 3722.16, + "probability": 0.9758 + }, + { + "start": 3724.96, + "end": 3725.7, + "probability": 0.1184 + }, + { + "start": 3726.72, + "end": 3728.14, + "probability": 0.7364 + }, + { + "start": 3728.22, + "end": 3729.16, + "probability": 0.731 + }, + { + "start": 3729.3, + "end": 3731.76, + "probability": 0.95 + }, + { + "start": 3732.1, + "end": 3733.4, + "probability": 0.8078 + }, + { + "start": 3733.46, + "end": 3734.16, + "probability": 0.6555 + }, + { + "start": 3734.58, + "end": 3735.66, + "probability": 0.6259 + }, + { + "start": 3736.56, + "end": 3736.64, + "probability": 0.0015 + }, + { + "start": 3737.62, + "end": 3738.42, + "probability": 0.2728 + }, + { + "start": 3738.88, + "end": 3741.66, + "probability": 0.4205 + }, + { + "start": 3741.78, + "end": 3742.02, + "probability": 0.5042 + }, + { + "start": 3742.58, + "end": 3744.8, + "probability": 0.5306 + }, + { + "start": 3744.8, + "end": 3747.2, + "probability": 0.9917 + }, + { + "start": 3747.44, + "end": 3748.08, + "probability": 0.7172 + }, + { + "start": 3748.36, + "end": 3750.19, + "probability": 0.9775 + }, + { + "start": 3751.04, + "end": 3753.1, + "probability": 0.8243 + }, + { + "start": 3754.22, + "end": 3755.24, + "probability": 0.6479 + }, + { + "start": 3755.98, + "end": 3756.86, + "probability": 0.7684 + }, + { + "start": 3758.05, + "end": 3762.18, + "probability": 0.8962 + }, + { + "start": 3763.02, + "end": 3764.24, + "probability": 0.9468 + }, + { + "start": 3773.12, + "end": 3776.86, + "probability": 0.7018 + }, + { + "start": 3776.94, + "end": 3777.38, + "probability": 0.353 + }, + { + "start": 3777.7, + "end": 3777.78, + "probability": 0.3563 + }, + { + "start": 3777.78, + "end": 3778.67, + "probability": 0.5374 + }, + { + "start": 3780.28, + "end": 3781.8, + "probability": 0.9714 + }, + { + "start": 3783.62, + "end": 3787.88, + "probability": 0.5025 + }, + { + "start": 3788.64, + "end": 3790.77, + "probability": 0.7821 + }, + { + "start": 3791.7, + "end": 3793.86, + "probability": 0.9753 + }, + { + "start": 3793.86, + "end": 3798.24, + "probability": 0.985 + }, + { + "start": 3798.4, + "end": 3802.72, + "probability": 0.8743 + }, + { + "start": 3802.72, + "end": 3809.66, + "probability": 0.9766 + }, + { + "start": 3809.88, + "end": 3813.56, + "probability": 0.9527 + }, + { + "start": 3813.66, + "end": 3814.02, + "probability": 0.8867 + }, + { + "start": 3814.16, + "end": 3814.78, + "probability": 0.9315 + }, + { + "start": 3815.22, + "end": 3816.4, + "probability": 0.9189 + }, + { + "start": 3817.08, + "end": 3821.74, + "probability": 0.9558 + }, + { + "start": 3821.74, + "end": 3825.6, + "probability": 0.9962 + }, + { + "start": 3825.6, + "end": 3830.42, + "probability": 0.9947 + }, + { + "start": 3831.04, + "end": 3834.44, + "probability": 0.989 + }, + { + "start": 3834.44, + "end": 3838.12, + "probability": 0.5931 + }, + { + "start": 3839.32, + "end": 3841.86, + "probability": 0.9469 + }, + { + "start": 3841.86, + "end": 3845.32, + "probability": 0.9937 + }, + { + "start": 3845.9, + "end": 3848.92, + "probability": 0.9657 + }, + { + "start": 3849.9, + "end": 3852.6, + "probability": 0.9717 + }, + { + "start": 3853.08, + "end": 3855.78, + "probability": 0.9393 + }, + { + "start": 3856.5, + "end": 3863.04, + "probability": 0.9246 + }, + { + "start": 3863.18, + "end": 3864.08, + "probability": 0.998 + }, + { + "start": 3864.36, + "end": 3865.18, + "probability": 0.5394 + }, + { + "start": 3865.6, + "end": 3869.42, + "probability": 0.8248 + }, + { + "start": 3871.01, + "end": 3874.88, + "probability": 0.8896 + }, + { + "start": 3875.46, + "end": 3877.96, + "probability": 0.9989 + }, + { + "start": 3878.04, + "end": 3881.66, + "probability": 0.7601 + }, + { + "start": 3883.02, + "end": 3886.6, + "probability": 0.9957 + }, + { + "start": 3886.69, + "end": 3888.71, + "probability": 0.4363 + }, + { + "start": 3889.0, + "end": 3893.1, + "probability": 0.9837 + }, + { + "start": 3895.3, + "end": 3896.64, + "probability": 0.4954 + }, + { + "start": 3897.14, + "end": 3897.58, + "probability": 0.6291 + }, + { + "start": 3897.72, + "end": 3901.74, + "probability": 0.9688 + }, + { + "start": 3902.14, + "end": 3903.18, + "probability": 0.83 + }, + { + "start": 3903.72, + "end": 3905.72, + "probability": 0.8938 + }, + { + "start": 3906.24, + "end": 3909.76, + "probability": 0.9865 + }, + { + "start": 3910.72, + "end": 3917.78, + "probability": 0.9232 + }, + { + "start": 3917.9, + "end": 3920.4, + "probability": 0.5041 + }, + { + "start": 3920.46, + "end": 3923.94, + "probability": 0.9924 + }, + { + "start": 3924.14, + "end": 3926.04, + "probability": 0.9798 + }, + { + "start": 3926.64, + "end": 3934.96, + "probability": 0.9495 + }, + { + "start": 3934.96, + "end": 3940.75, + "probability": 0.7235 + }, + { + "start": 3941.88, + "end": 3942.94, + "probability": 0.653 + }, + { + "start": 3943.5, + "end": 3944.36, + "probability": 0.8255 + }, + { + "start": 3944.48, + "end": 3944.94, + "probability": 0.9293 + }, + { + "start": 3945.02, + "end": 3946.48, + "probability": 0.8675 + }, + { + "start": 3946.6, + "end": 3946.94, + "probability": 0.6266 + }, + { + "start": 3947.12, + "end": 3949.56, + "probability": 0.8088 + }, + { + "start": 3950.62, + "end": 3951.96, + "probability": 0.8994 + }, + { + "start": 3953.12, + "end": 3958.64, + "probability": 0.7733 + }, + { + "start": 3958.76, + "end": 3960.04, + "probability": 0.0464 + }, + { + "start": 3960.12, + "end": 3961.34, + "probability": 0.98 + }, + { + "start": 3961.82, + "end": 3963.72, + "probability": 0.6315 + }, + { + "start": 3964.08, + "end": 3964.52, + "probability": 0.596 + }, + { + "start": 3964.56, + "end": 3965.06, + "probability": 0.6639 + }, + { + "start": 3965.06, + "end": 3965.54, + "probability": 0.7416 + }, + { + "start": 3965.62, + "end": 3966.0, + "probability": 0.76 + }, + { + "start": 3984.08, + "end": 3988.02, + "probability": 0.3909 + }, + { + "start": 3988.14, + "end": 3989.9, + "probability": 0.0482 + }, + { + "start": 3990.2, + "end": 3992.11, + "probability": 0.2335 + }, + { + "start": 3993.66, + "end": 3994.02, + "probability": 0.0872 + }, + { + "start": 3995.19, + "end": 3995.7, + "probability": 0.068 + }, + { + "start": 3995.82, + "end": 3998.5, + "probability": 0.0404 + }, + { + "start": 3999.14, + "end": 4002.34, + "probability": 0.0619 + }, + { + "start": 4003.98, + "end": 4004.46, + "probability": 0.0415 + }, + { + "start": 4005.07, + "end": 4005.84, + "probability": 0.3121 + }, + { + "start": 4005.84, + "end": 4010.2, + "probability": 0.036 + }, + { + "start": 4011.46, + "end": 4012.6, + "probability": 0.0268 + }, + { + "start": 4013.74, + "end": 4016.36, + "probability": 0.0321 + }, + { + "start": 4017.54, + "end": 4017.68, + "probability": 0.1194 + }, + { + "start": 4017.68, + "end": 4019.64, + "probability": 0.0309 + }, + { + "start": 4020.3, + "end": 4021.68, + "probability": 0.0405 + }, + { + "start": 4028.68, + "end": 4029.5, + "probability": 0.049 + }, + { + "start": 4032.74, + "end": 4033.46, + "probability": 0.0584 + }, + { + "start": 4033.72, + "end": 4034.04, + "probability": 0.5933 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.32, + "end": 4050.72, + "probability": 0.1444 + }, + { + "start": 4050.72, + "end": 4050.72, + "probability": 0.105 + }, + { + "start": 4050.72, + "end": 4050.72, + "probability": 0.0897 + }, + { + "start": 4050.72, + "end": 4053.74, + "probability": 0.0612 + }, + { + "start": 4054.72, + "end": 4057.76, + "probability": 0.7611 + }, + { + "start": 4057.78, + "end": 4059.52, + "probability": 0.7229 + }, + { + "start": 4062.24, + "end": 4071.82, + "probability": 0.9324 + }, + { + "start": 4075.44, + "end": 4078.68, + "probability": 0.8416 + }, + { + "start": 4080.36, + "end": 4085.36, + "probability": 0.9578 + }, + { + "start": 4088.38, + "end": 4090.46, + "probability": 0.8665 + }, + { + "start": 4091.08, + "end": 4093.46, + "probability": 0.9477 + }, + { + "start": 4096.42, + "end": 4098.08, + "probability": 0.505 + }, + { + "start": 4098.86, + "end": 4100.16, + "probability": 0.4462 + }, + { + "start": 4101.76, + "end": 4108.82, + "probability": 0.9324 + }, + { + "start": 4109.76, + "end": 4111.18, + "probability": 0.8043 + }, + { + "start": 4112.3, + "end": 4113.5, + "probability": 0.8181 + }, + { + "start": 4114.12, + "end": 4115.12, + "probability": 0.9227 + }, + { + "start": 4116.48, + "end": 4119.16, + "probability": 0.8318 + }, + { + "start": 4120.46, + "end": 4124.2, + "probability": 0.9912 + }, + { + "start": 4127.56, + "end": 4131.68, + "probability": 0.9983 + }, + { + "start": 4133.52, + "end": 4137.14, + "probability": 0.9814 + }, + { + "start": 4139.52, + "end": 4147.96, + "probability": 0.9209 + }, + { + "start": 4149.82, + "end": 4155.58, + "probability": 0.9906 + }, + { + "start": 4157.42, + "end": 4160.01, + "probability": 0.7335 + }, + { + "start": 4160.78, + "end": 4163.08, + "probability": 0.6978 + }, + { + "start": 4164.06, + "end": 4165.52, + "probability": 0.8488 + }, + { + "start": 4166.16, + "end": 4168.13, + "probability": 0.9857 + }, + { + "start": 4168.92, + "end": 4173.52, + "probability": 0.9662 + }, + { + "start": 4176.2, + "end": 4176.36, + "probability": 0.3154 + }, + { + "start": 4176.52, + "end": 4177.12, + "probability": 0.7644 + }, + { + "start": 4177.32, + "end": 4182.68, + "probability": 0.9442 + }, + { + "start": 4182.9, + "end": 4187.94, + "probability": 0.9532 + }, + { + "start": 4188.54, + "end": 4192.64, + "probability": 0.9873 + }, + { + "start": 4192.8, + "end": 4197.74, + "probability": 0.9871 + }, + { + "start": 4200.06, + "end": 4205.34, + "probability": 0.8819 + }, + { + "start": 4206.6, + "end": 4211.22, + "probability": 0.9938 + }, + { + "start": 4211.34, + "end": 4217.36, + "probability": 0.7126 + }, + { + "start": 4218.82, + "end": 4222.26, + "probability": 0.9797 + }, + { + "start": 4222.26, + "end": 4228.32, + "probability": 0.9976 + }, + { + "start": 4232.86, + "end": 4234.0, + "probability": 0.7436 + }, + { + "start": 4235.92, + "end": 4242.72, + "probability": 0.9985 + }, + { + "start": 4244.52, + "end": 4250.36, + "probability": 0.9878 + }, + { + "start": 4251.66, + "end": 4254.62, + "probability": 0.7241 + }, + { + "start": 4256.58, + "end": 4263.08, + "probability": 0.9164 + }, + { + "start": 4264.76, + "end": 4266.68, + "probability": 0.5484 + }, + { + "start": 4267.22, + "end": 4270.8, + "probability": 0.9956 + }, + { + "start": 4270.8, + "end": 4275.3, + "probability": 0.995 + }, + { + "start": 4277.22, + "end": 4284.26, + "probability": 0.9702 + }, + { + "start": 4284.3, + "end": 4287.3, + "probability": 0.9588 + }, + { + "start": 4288.18, + "end": 4292.82, + "probability": 0.8896 + }, + { + "start": 4294.12, + "end": 4297.68, + "probability": 0.6713 + }, + { + "start": 4298.72, + "end": 4300.84, + "probability": 0.7054 + }, + { + "start": 4303.06, + "end": 4307.04, + "probability": 0.6475 + }, + { + "start": 4307.66, + "end": 4312.58, + "probability": 0.9425 + }, + { + "start": 4312.64, + "end": 4314.86, + "probability": 0.863 + }, + { + "start": 4316.5, + "end": 4320.48, + "probability": 0.9966 + }, + { + "start": 4320.84, + "end": 4322.66, + "probability": 0.9207 + }, + { + "start": 4323.96, + "end": 4327.9, + "probability": 0.679 + }, + { + "start": 4329.4, + "end": 4332.1, + "probability": 0.875 + }, + { + "start": 4336.44, + "end": 4340.42, + "probability": 0.9424 + }, + { + "start": 4342.64, + "end": 4343.38, + "probability": 0.835 + }, + { + "start": 4344.08, + "end": 4345.42, + "probability": 0.8916 + }, + { + "start": 4346.56, + "end": 4349.7, + "probability": 0.5175 + }, + { + "start": 4350.7, + "end": 4354.06, + "probability": 0.989 + }, + { + "start": 4355.62, + "end": 4360.12, + "probability": 0.9834 + }, + { + "start": 4360.98, + "end": 4361.94, + "probability": 0.924 + }, + { + "start": 4362.68, + "end": 4364.74, + "probability": 0.8942 + }, + { + "start": 4364.8, + "end": 4369.78, + "probability": 0.9937 + }, + { + "start": 4371.4, + "end": 4373.4, + "probability": 0.9906 + }, + { + "start": 4376.06, + "end": 4383.8, + "probability": 0.999 + }, + { + "start": 4385.88, + "end": 4386.84, + "probability": 0.5491 + }, + { + "start": 4387.68, + "end": 4396.28, + "probability": 0.9734 + }, + { + "start": 4397.74, + "end": 4401.22, + "probability": 0.9773 + }, + { + "start": 4402.36, + "end": 4404.08, + "probability": 0.9315 + }, + { + "start": 4404.94, + "end": 4406.96, + "probability": 0.9625 + }, + { + "start": 4408.12, + "end": 4412.26, + "probability": 0.9764 + }, + { + "start": 4413.8, + "end": 4415.5, + "probability": 0.8032 + }, + { + "start": 4416.7, + "end": 4419.64, + "probability": 0.9842 + }, + { + "start": 4420.56, + "end": 4422.98, + "probability": 0.9925 + }, + { + "start": 4424.38, + "end": 4428.18, + "probability": 0.9926 + }, + { + "start": 4429.92, + "end": 4435.54, + "probability": 0.9845 + }, + { + "start": 4435.54, + "end": 4440.98, + "probability": 0.9964 + }, + { + "start": 4441.72, + "end": 4444.02, + "probability": 0.8484 + }, + { + "start": 4444.28, + "end": 4444.46, + "probability": 0.7217 + }, + { + "start": 4444.66, + "end": 4445.8, + "probability": 0.4915 + }, + { + "start": 4445.86, + "end": 4447.12, + "probability": 0.75 + }, + { + "start": 4449.04, + "end": 4455.86, + "probability": 0.8492 + }, + { + "start": 4456.64, + "end": 4459.7, + "probability": 0.5171 + }, + { + "start": 4460.42, + "end": 4460.52, + "probability": 0.4826 + }, + { + "start": 4463.28, + "end": 4465.78, + "probability": 0.8519 + }, + { + "start": 4467.14, + "end": 4469.46, + "probability": 0.9778 + }, + { + "start": 4471.7, + "end": 4477.14, + "probability": 0.7637 + }, + { + "start": 4478.8, + "end": 4481.48, + "probability": 0.954 + }, + { + "start": 4482.82, + "end": 4485.56, + "probability": 0.8708 + }, + { + "start": 4486.38, + "end": 4490.22, + "probability": 0.9907 + }, + { + "start": 4491.32, + "end": 4494.84, + "probability": 0.8477 + }, + { + "start": 4495.48, + "end": 4496.86, + "probability": 0.8475 + }, + { + "start": 4497.66, + "end": 4500.24, + "probability": 0.7671 + }, + { + "start": 4501.59, + "end": 4504.54, + "probability": 0.9961 + }, + { + "start": 4504.86, + "end": 4506.74, + "probability": 0.772 + }, + { + "start": 4507.88, + "end": 4508.4, + "probability": 0.7684 + }, + { + "start": 4508.46, + "end": 4512.64, + "probability": 0.9903 + }, + { + "start": 4513.72, + "end": 4517.68, + "probability": 0.9981 + }, + { + "start": 4518.8, + "end": 4519.5, + "probability": 0.7317 + }, + { + "start": 4520.16, + "end": 4521.93, + "probability": 0.6295 + }, + { + "start": 4522.7, + "end": 4524.52, + "probability": 0.7551 + }, + { + "start": 4525.2, + "end": 4527.52, + "probability": 0.929 + }, + { + "start": 4527.56, + "end": 4528.82, + "probability": 0.9235 + }, + { + "start": 4540.86, + "end": 4542.66, + "probability": 0.7671 + }, + { + "start": 4543.44, + "end": 4544.1, + "probability": 0.609 + }, + { + "start": 4545.98, + "end": 4548.68, + "probability": 0.9753 + }, + { + "start": 4550.66, + "end": 4552.88, + "probability": 0.9867 + }, + { + "start": 4552.88, + "end": 4555.62, + "probability": 0.7773 + }, + { + "start": 4556.56, + "end": 4559.4, + "probability": 0.9222 + }, + { + "start": 4559.46, + "end": 4564.84, + "probability": 0.9844 + }, + { + "start": 4565.42, + "end": 4567.92, + "probability": 0.9208 + }, + { + "start": 4568.62, + "end": 4570.72, + "probability": 0.8307 + }, + { + "start": 4571.2, + "end": 4575.22, + "probability": 0.972 + }, + { + "start": 4575.78, + "end": 4577.54, + "probability": 0.9899 + }, + { + "start": 4577.84, + "end": 4578.04, + "probability": 0.7621 + }, + { + "start": 4581.36, + "end": 4583.04, + "probability": 0.6029 + }, + { + "start": 4583.24, + "end": 4584.58, + "probability": 0.6436 + }, + { + "start": 4584.84, + "end": 4585.74, + "probability": 0.9731 + }, + { + "start": 4591.9, + "end": 4593.8, + "probability": 0.5886 + }, + { + "start": 4593.96, + "end": 4596.74, + "probability": 0.7536 + }, + { + "start": 4597.96, + "end": 4599.62, + "probability": 0.8061 + }, + { + "start": 4599.62, + "end": 4601.1, + "probability": 0.7224 + }, + { + "start": 4601.18, + "end": 4604.2, + "probability": 0.9848 + }, + { + "start": 4604.8, + "end": 4605.46, + "probability": 0.6266 + }, + { + "start": 4605.72, + "end": 4606.44, + "probability": 0.7706 + }, + { + "start": 4607.24, + "end": 4608.78, + "probability": 0.6373 + }, + { + "start": 4611.14, + "end": 4618.46, + "probability": 0.0191 + }, + { + "start": 4618.46, + "end": 4619.06, + "probability": 0.0662 + }, + { + "start": 4628.5, + "end": 4628.5, + "probability": 0.0818 + }, + { + "start": 4628.5, + "end": 4632.02, + "probability": 0.5271 + }, + { + "start": 4632.3, + "end": 4637.1, + "probability": 0.8401 + }, + { + "start": 4637.16, + "end": 4639.14, + "probability": 0.8497 + }, + { + "start": 4640.62, + "end": 4641.76, + "probability": 0.6488 + }, + { + "start": 4642.04, + "end": 4646.18, + "probability": 0.9077 + }, + { + "start": 4646.72, + "end": 4648.2, + "probability": 0.0545 + }, + { + "start": 4649.12, + "end": 4649.84, + "probability": 0.6141 + }, + { + "start": 4650.2, + "end": 4654.42, + "probability": 0.9805 + }, + { + "start": 4654.42, + "end": 4656.5, + "probability": 0.7556 + }, + { + "start": 4657.12, + "end": 4659.44, + "probability": 0.9413 + }, + { + "start": 4660.06, + "end": 4662.14, + "probability": 0.6764 + }, + { + "start": 4663.02, + "end": 4664.18, + "probability": 0.9099 + }, + { + "start": 4664.3, + "end": 4665.84, + "probability": 0.7936 + }, + { + "start": 4666.2, + "end": 4668.16, + "probability": 0.8549 + }, + { + "start": 4668.66, + "end": 4668.66, + "probability": 0.1419 + }, + { + "start": 4668.66, + "end": 4673.5, + "probability": 0.7996 + }, + { + "start": 4673.66, + "end": 4674.6, + "probability": 0.8617 + }, + { + "start": 4674.78, + "end": 4676.56, + "probability": 0.3818 + }, + { + "start": 4678.54, + "end": 4680.02, + "probability": 0.3678 + }, + { + "start": 4680.7, + "end": 4684.16, + "probability": 0.7622 + }, + { + "start": 4684.3, + "end": 4684.82, + "probability": 0.8196 + }, + { + "start": 4684.86, + "end": 4685.56, + "probability": 0.903 + }, + { + "start": 4685.64, + "end": 4686.38, + "probability": 0.9091 + }, + { + "start": 4686.84, + "end": 4687.56, + "probability": 0.9077 + }, + { + "start": 4687.68, + "end": 4688.36, + "probability": 0.4108 + }, + { + "start": 4688.54, + "end": 4688.94, + "probability": 0.7605 + }, + { + "start": 4689.02, + "end": 4689.78, + "probability": 0.9068 + }, + { + "start": 4689.9, + "end": 4690.56, + "probability": 0.6624 + }, + { + "start": 4690.66, + "end": 4691.22, + "probability": 0.6165 + }, + { + "start": 4691.26, + "end": 4691.88, + "probability": 0.8908 + }, + { + "start": 4692.38, + "end": 4693.66, + "probability": 0.8221 + }, + { + "start": 4693.88, + "end": 4694.06, + "probability": 0.8545 + }, + { + "start": 4694.68, + "end": 4696.1, + "probability": 0.7381 + }, + { + "start": 4696.22, + "end": 4701.0, + "probability": 0.9867 + }, + { + "start": 4701.0, + "end": 4707.84, + "probability": 0.8731 + }, + { + "start": 4708.8, + "end": 4712.68, + "probability": 0.7341 + }, + { + "start": 4712.8, + "end": 4713.72, + "probability": 0.8121 + }, + { + "start": 4714.34, + "end": 4717.78, + "probability": 0.9985 + }, + { + "start": 4717.94, + "end": 4719.68, + "probability": 0.7764 + }, + { + "start": 4720.92, + "end": 4723.56, + "probability": 0.9727 + }, + { + "start": 4724.55, + "end": 4727.7, + "probability": 0.8804 + }, + { + "start": 4727.7, + "end": 4731.3, + "probability": 0.9889 + }, + { + "start": 4731.7, + "end": 4733.74, + "probability": 0.8731 + }, + { + "start": 4733.82, + "end": 4737.7, + "probability": 0.2767 + }, + { + "start": 4737.74, + "end": 4738.1, + "probability": 0.3197 + }, + { + "start": 4738.18, + "end": 4739.62, + "probability": 0.9492 + }, + { + "start": 4740.18, + "end": 4742.88, + "probability": 0.9706 + }, + { + "start": 4742.9, + "end": 4743.66, + "probability": 0.9259 + }, + { + "start": 4744.3, + "end": 4746.3, + "probability": 0.9611 + }, + { + "start": 4749.14, + "end": 4750.66, + "probability": 0.8213 + }, + { + "start": 4751.64, + "end": 4756.32, + "probability": 0.7252 + }, + { + "start": 4756.82, + "end": 4757.85, + "probability": 0.9388 + }, + { + "start": 4758.32, + "end": 4759.82, + "probability": 0.942 + }, + { + "start": 4760.8, + "end": 4765.56, + "probability": 0.9844 + }, + { + "start": 4765.64, + "end": 4767.08, + "probability": 0.7459 + }, + { + "start": 4768.36, + "end": 4771.64, + "probability": 0.9912 + }, + { + "start": 4772.22, + "end": 4776.06, + "probability": 0.8113 + }, + { + "start": 4776.8, + "end": 4780.74, + "probability": 0.9302 + }, + { + "start": 4782.34, + "end": 4786.02, + "probability": 0.9857 + }, + { + "start": 4786.4, + "end": 4789.24, + "probability": 0.9302 + }, + { + "start": 4789.8, + "end": 4793.28, + "probability": 0.9456 + }, + { + "start": 4794.18, + "end": 4797.6, + "probability": 0.8833 + }, + { + "start": 4798.74, + "end": 4801.94, + "probability": 0.9991 + }, + { + "start": 4802.74, + "end": 4807.48, + "probability": 0.9994 + }, + { + "start": 4808.22, + "end": 4809.74, + "probability": 0.6637 + }, + { + "start": 4810.32, + "end": 4813.98, + "probability": 0.9261 + }, + { + "start": 4814.42, + "end": 4817.42, + "probability": 0.9956 + }, + { + "start": 4817.88, + "end": 4820.58, + "probability": 0.9404 + }, + { + "start": 4821.98, + "end": 4823.16, + "probability": 0.714 + }, + { + "start": 4823.3, + "end": 4827.26, + "probability": 0.9457 + }, + { + "start": 4828.38, + "end": 4828.82, + "probability": 0.6279 + }, + { + "start": 4828.88, + "end": 4830.19, + "probability": 0.9279 + }, + { + "start": 4830.6, + "end": 4831.06, + "probability": 0.7642 + }, + { + "start": 4831.16, + "end": 4832.4, + "probability": 0.9117 + }, + { + "start": 4833.02, + "end": 4834.48, + "probability": 0.9941 + }, + { + "start": 4834.64, + "end": 4836.16, + "probability": 0.9824 + }, + { + "start": 4836.58, + "end": 4838.74, + "probability": 0.9958 + }, + { + "start": 4839.22, + "end": 4840.2, + "probability": 0.5412 + }, + { + "start": 4841.06, + "end": 4846.58, + "probability": 0.9925 + }, + { + "start": 4847.04, + "end": 4849.18, + "probability": 0.8765 + }, + { + "start": 4849.62, + "end": 4852.66, + "probability": 0.9315 + }, + { + "start": 4853.2, + "end": 4855.42, + "probability": 0.9651 + }, + { + "start": 4855.82, + "end": 4857.8, + "probability": 0.8918 + }, + { + "start": 4858.22, + "end": 4859.7, + "probability": 0.8165 + }, + { + "start": 4860.02, + "end": 4863.88, + "probability": 0.979 + }, + { + "start": 4864.52, + "end": 4869.0, + "probability": 0.9854 + }, + { + "start": 4869.3, + "end": 4871.86, + "probability": 0.9979 + }, + { + "start": 4872.3, + "end": 4874.7, + "probability": 0.9085 + }, + { + "start": 4874.84, + "end": 4875.82, + "probability": 0.9523 + }, + { + "start": 4876.12, + "end": 4877.98, + "probability": 0.965 + }, + { + "start": 4878.38, + "end": 4880.18, + "probability": 0.9068 + }, + { + "start": 4880.68, + "end": 4885.9, + "probability": 0.9959 + }, + { + "start": 4886.14, + "end": 4891.4, + "probability": 0.9841 + }, + { + "start": 4891.74, + "end": 4894.02, + "probability": 0.9967 + }, + { + "start": 4894.56, + "end": 4899.24, + "probability": 0.9256 + }, + { + "start": 4899.94, + "end": 4905.26, + "probability": 0.6381 + }, + { + "start": 4905.26, + "end": 4910.54, + "probability": 0.928 + }, + { + "start": 4911.36, + "end": 4917.32, + "probability": 0.9982 + }, + { + "start": 4917.68, + "end": 4919.09, + "probability": 0.8949 + }, + { + "start": 4919.46, + "end": 4921.22, + "probability": 0.9536 + }, + { + "start": 4921.5, + "end": 4923.06, + "probability": 0.9256 + }, + { + "start": 4924.42, + "end": 4925.58, + "probability": 0.8004 + }, + { + "start": 4925.66, + "end": 4928.76, + "probability": 0.661 + }, + { + "start": 4928.76, + "end": 4929.1, + "probability": 0.0174 + }, + { + "start": 4929.78, + "end": 4935.18, + "probability": 0.9803 + }, + { + "start": 4935.58, + "end": 4937.36, + "probability": 0.9646 + }, + { + "start": 4937.44, + "end": 4938.6, + "probability": 0.9314 + }, + { + "start": 4938.98, + "end": 4944.74, + "probability": 0.9966 + }, + { + "start": 4945.08, + "end": 4946.3, + "probability": 0.7844 + }, + { + "start": 4946.44, + "end": 4949.82, + "probability": 0.7582 + }, + { + "start": 4950.74, + "end": 4952.42, + "probability": 0.8754 + }, + { + "start": 4955.76, + "end": 4961.34, + "probability": 0.9915 + }, + { + "start": 4961.74, + "end": 4965.56, + "probability": 0.9631 + }, + { + "start": 4965.56, + "end": 4969.4, + "probability": 0.9871 + }, + { + "start": 4969.64, + "end": 4970.82, + "probability": 0.7236 + }, + { + "start": 4971.14, + "end": 4972.64, + "probability": 0.8457 + }, + { + "start": 4973.0, + "end": 4976.3, + "probability": 0.9712 + }, + { + "start": 4976.3, + "end": 4980.22, + "probability": 0.9867 + }, + { + "start": 4980.6, + "end": 4982.58, + "probability": 0.9878 + }, + { + "start": 4982.66, + "end": 4984.02, + "probability": 0.8936 + }, + { + "start": 4984.58, + "end": 4987.44, + "probability": 0.9858 + }, + { + "start": 4987.8, + "end": 4990.1, + "probability": 0.9944 + }, + { + "start": 4990.78, + "end": 4994.9, + "probability": 0.9701 + }, + { + "start": 4995.66, + "end": 4999.88, + "probability": 0.4622 + }, + { + "start": 5000.44, + "end": 5004.16, + "probability": 0.8648 + }, + { + "start": 5004.62, + "end": 5005.84, + "probability": 0.847 + }, + { + "start": 5007.9, + "end": 5009.46, + "probability": 0.9093 + }, + { + "start": 5010.38, + "end": 5012.12, + "probability": 0.9598 + }, + { + "start": 5012.62, + "end": 5016.62, + "probability": 0.9983 + }, + { + "start": 5017.16, + "end": 5019.76, + "probability": 0.9996 + }, + { + "start": 5020.8, + "end": 5021.1, + "probability": 0.4801 + }, + { + "start": 5021.26, + "end": 5022.88, + "probability": 0.7606 + }, + { + "start": 5023.34, + "end": 5029.08, + "probability": 0.9948 + }, + { + "start": 5029.64, + "end": 5029.84, + "probability": 0.9478 + }, + { + "start": 5033.56, + "end": 5037.32, + "probability": 0.9006 + }, + { + "start": 5037.32, + "end": 5038.7, + "probability": 0.8495 + }, + { + "start": 5039.22, + "end": 5042.08, + "probability": 0.9915 + }, + { + "start": 5042.92, + "end": 5048.66, + "probability": 0.9835 + }, + { + "start": 5049.14, + "end": 5050.92, + "probability": 0.6803 + }, + { + "start": 5051.5, + "end": 5055.16, + "probability": 0.9472 + }, + { + "start": 5055.16, + "end": 5060.12, + "probability": 0.9922 + }, + { + "start": 5060.64, + "end": 5062.48, + "probability": 0.7499 + }, + { + "start": 5062.68, + "end": 5064.29, + "probability": 0.9338 + }, + { + "start": 5064.68, + "end": 5068.78, + "probability": 0.9739 + }, + { + "start": 5069.54, + "end": 5072.42, + "probability": 0.9717 + }, + { + "start": 5072.82, + "end": 5074.42, + "probability": 0.8856 + }, + { + "start": 5075.02, + "end": 5077.86, + "probability": 0.8245 + }, + { + "start": 5078.28, + "end": 5081.22, + "probability": 0.958 + }, + { + "start": 5081.48, + "end": 5085.48, + "probability": 0.9919 + }, + { + "start": 5085.94, + "end": 5089.52, + "probability": 0.9593 + }, + { + "start": 5090.0, + "end": 5092.46, + "probability": 0.9919 + }, + { + "start": 5092.82, + "end": 5094.7, + "probability": 0.9307 + }, + { + "start": 5095.38, + "end": 5101.06, + "probability": 0.979 + }, + { + "start": 5101.62, + "end": 5103.56, + "probability": 0.668 + }, + { + "start": 5104.46, + "end": 5108.34, + "probability": 0.903 + }, + { + "start": 5108.72, + "end": 5112.68, + "probability": 0.9555 + }, + { + "start": 5114.94, + "end": 5118.1, + "probability": 0.608 + }, + { + "start": 5118.48, + "end": 5121.66, + "probability": 0.9589 + }, + { + "start": 5122.96, + "end": 5127.84, + "probability": 0.8888 + }, + { + "start": 5129.04, + "end": 5132.16, + "probability": 0.9932 + }, + { + "start": 5132.74, + "end": 5137.3, + "probability": 0.9624 + }, + { + "start": 5137.86, + "end": 5141.78, + "probability": 0.8925 + }, + { + "start": 5141.78, + "end": 5145.88, + "probability": 0.9984 + }, + { + "start": 5146.56, + "end": 5148.3, + "probability": 0.8674 + }, + { + "start": 5148.42, + "end": 5154.74, + "probability": 0.9967 + }, + { + "start": 5155.26, + "end": 5155.92, + "probability": 0.8149 + }, + { + "start": 5156.04, + "end": 5157.42, + "probability": 0.7263 + }, + { + "start": 5157.88, + "end": 5160.2, + "probability": 0.9149 + }, + { + "start": 5160.64, + "end": 5162.94, + "probability": 0.974 + }, + { + "start": 5163.36, + "end": 5165.26, + "probability": 0.9956 + }, + { + "start": 5165.54, + "end": 5167.32, + "probability": 0.9966 + }, + { + "start": 5167.88, + "end": 5169.04, + "probability": 0.9829 + }, + { + "start": 5169.12, + "end": 5170.74, + "probability": 0.7489 + }, + { + "start": 5171.22, + "end": 5172.8, + "probability": 0.8459 + }, + { + "start": 5173.26, + "end": 5177.48, + "probability": 0.9986 + }, + { + "start": 5178.12, + "end": 5182.16, + "probability": 0.9752 + }, + { + "start": 5182.76, + "end": 5186.12, + "probability": 0.906 + }, + { + "start": 5186.78, + "end": 5190.16, + "probability": 0.9985 + }, + { + "start": 5190.58, + "end": 5195.42, + "probability": 0.9547 + }, + { + "start": 5195.9, + "end": 5197.26, + "probability": 0.8974 + }, + { + "start": 5197.66, + "end": 5205.64, + "probability": 0.9822 + }, + { + "start": 5206.04, + "end": 5209.54, + "probability": 0.9845 + }, + { + "start": 5210.0, + "end": 5213.76, + "probability": 0.9043 + }, + { + "start": 5214.4, + "end": 5215.47, + "probability": 0.6629 + }, + { + "start": 5216.14, + "end": 5216.68, + "probability": 0.6797 + }, + { + "start": 5216.88, + "end": 5218.52, + "probability": 0.8976 + }, + { + "start": 5218.96, + "end": 5220.02, + "probability": 0.5388 + }, + { + "start": 5220.44, + "end": 5223.3, + "probability": 0.5217 + }, + { + "start": 5223.42, + "end": 5224.42, + "probability": 0.7355 + }, + { + "start": 5224.7, + "end": 5225.62, + "probability": 0.6814 + }, + { + "start": 5225.96, + "end": 5226.74, + "probability": 0.4412 + }, + { + "start": 5226.78, + "end": 5229.52, + "probability": 0.719 + }, + { + "start": 5230.1, + "end": 5234.26, + "probability": 0.8616 + }, + { + "start": 5234.8, + "end": 5235.76, + "probability": 0.9697 + }, + { + "start": 5235.78, + "end": 5237.6, + "probability": 0.9921 + }, + { + "start": 5237.96, + "end": 5240.76, + "probability": 0.9919 + }, + { + "start": 5241.66, + "end": 5244.82, + "probability": 0.8308 + }, + { + "start": 5245.52, + "end": 5246.56, + "probability": 0.7622 + }, + { + "start": 5246.64, + "end": 5248.62, + "probability": 0.9702 + }, + { + "start": 5249.4, + "end": 5251.36, + "probability": 0.8831 + }, + { + "start": 5251.64, + "end": 5252.64, + "probability": 0.7993 + }, + { + "start": 5252.84, + "end": 5255.56, + "probability": 0.8404 + }, + { + "start": 5255.72, + "end": 5260.04, + "probability": 0.9811 + }, + { + "start": 5260.5, + "end": 5262.4, + "probability": 0.6099 + }, + { + "start": 5262.44, + "end": 5262.6, + "probability": 0.5018 + }, + { + "start": 5262.64, + "end": 5263.4, + "probability": 0.7136 + }, + { + "start": 5263.6, + "end": 5265.42, + "probability": 0.7247 + }, + { + "start": 5267.64, + "end": 5272.5, + "probability": 0.9012 + }, + { + "start": 5272.58, + "end": 5273.48, + "probability": 0.2359 + }, + { + "start": 5275.14, + "end": 5275.3, + "probability": 0.6959 + }, + { + "start": 5276.06, + "end": 5279.9, + "probability": 0.9258 + }, + { + "start": 5279.96, + "end": 5281.52, + "probability": 0.8337 + }, + { + "start": 5281.54, + "end": 5282.88, + "probability": 0.6503 + }, + { + "start": 5284.5, + "end": 5291.66, + "probability": 0.8558 + }, + { + "start": 5292.36, + "end": 5293.62, + "probability": 0.0417 + }, + { + "start": 5294.44, + "end": 5299.7, + "probability": 0.9551 + }, + { + "start": 5299.78, + "end": 5300.82, + "probability": 0.9066 + }, + { + "start": 5302.08, + "end": 5304.38, + "probability": 0.9922 + }, + { + "start": 5305.26, + "end": 5306.28, + "probability": 0.8199 + }, + { + "start": 5307.98, + "end": 5311.44, + "probability": 0.9579 + }, + { + "start": 5312.36, + "end": 5315.06, + "probability": 0.9958 + }, + { + "start": 5316.68, + "end": 5317.76, + "probability": 0.3157 + }, + { + "start": 5318.66, + "end": 5319.46, + "probability": 0.8622 + }, + { + "start": 5321.1, + "end": 5327.04, + "probability": 0.9629 + }, + { + "start": 5327.16, + "end": 5329.42, + "probability": 0.1474 + }, + { + "start": 5329.42, + "end": 5334.1, + "probability": 0.8834 + }, + { + "start": 5334.82, + "end": 5339.18, + "probability": 0.9798 + }, + { + "start": 5340.98, + "end": 5342.72, + "probability": 0.9395 + }, + { + "start": 5343.6, + "end": 5344.8, + "probability": 0.9766 + }, + { + "start": 5345.86, + "end": 5348.5, + "probability": 0.9844 + }, + { + "start": 5349.26, + "end": 5353.02, + "probability": 0.9769 + }, + { + "start": 5354.58, + "end": 5357.02, + "probability": 0.8325 + }, + { + "start": 5359.38, + "end": 5359.38, + "probability": 0.2201 + }, + { + "start": 5360.26, + "end": 5364.71, + "probability": 0.9807 + }, + { + "start": 5367.76, + "end": 5369.02, + "probability": 0.9918 + }, + { + "start": 5369.1, + "end": 5370.4, + "probability": 0.8179 + }, + { + "start": 5370.58, + "end": 5372.04, + "probability": 0.9554 + }, + { + "start": 5373.68, + "end": 5377.18, + "probability": 0.987 + }, + { + "start": 5378.36, + "end": 5380.64, + "probability": 0.8925 + }, + { + "start": 5384.3, + "end": 5385.04, + "probability": 0.346 + }, + { + "start": 5386.68, + "end": 5387.16, + "probability": 0.4953 + }, + { + "start": 5388.36, + "end": 5389.38, + "probability": 0.8063 + }, + { + "start": 5390.7, + "end": 5395.24, + "probability": 0.972 + }, + { + "start": 5395.88, + "end": 5397.82, + "probability": 0.879 + }, + { + "start": 5399.46, + "end": 5402.74, + "probability": 0.9536 + }, + { + "start": 5403.54, + "end": 5404.88, + "probability": 0.6616 + }, + { + "start": 5404.96, + "end": 5407.72, + "probability": 0.9671 + }, + { + "start": 5407.76, + "end": 5412.68, + "probability": 0.9759 + }, + { + "start": 5414.96, + "end": 5418.64, + "probability": 0.9897 + }, + { + "start": 5419.56, + "end": 5422.28, + "probability": 0.9666 + }, + { + "start": 5423.44, + "end": 5425.97, + "probability": 0.9504 + }, + { + "start": 5427.24, + "end": 5429.58, + "probability": 0.9625 + }, + { + "start": 5431.56, + "end": 5436.34, + "probability": 0.9958 + }, + { + "start": 5437.52, + "end": 5439.58, + "probability": 0.9205 + }, + { + "start": 5440.37, + "end": 5443.58, + "probability": 0.873 + }, + { + "start": 5445.16, + "end": 5446.98, + "probability": 0.8846 + }, + { + "start": 5447.34, + "end": 5450.12, + "probability": 0.9951 + }, + { + "start": 5452.18, + "end": 5458.9, + "probability": 0.9917 + }, + { + "start": 5458.9, + "end": 5464.74, + "probability": 0.9886 + }, + { + "start": 5466.44, + "end": 5466.62, + "probability": 0.1737 + }, + { + "start": 5467.18, + "end": 5468.4, + "probability": 0.7709 + }, + { + "start": 5469.24, + "end": 5470.74, + "probability": 0.8532 + }, + { + "start": 5471.58, + "end": 5472.98, + "probability": 0.893 + }, + { + "start": 5474.32, + "end": 5476.71, + "probability": 0.9683 + }, + { + "start": 5477.98, + "end": 5486.78, + "probability": 0.9793 + }, + { + "start": 5486.86, + "end": 5487.65, + "probability": 0.4519 + }, + { + "start": 5488.92, + "end": 5491.36, + "probability": 0.8093 + }, + { + "start": 5492.12, + "end": 5495.5, + "probability": 0.7905 + }, + { + "start": 5496.18, + "end": 5498.9, + "probability": 0.8503 + }, + { + "start": 5500.65, + "end": 5506.32, + "probability": 0.9805 + }, + { + "start": 5506.32, + "end": 5509.28, + "probability": 0.9598 + }, + { + "start": 5510.56, + "end": 5512.4, + "probability": 0.915 + }, + { + "start": 5517.42, + "end": 5521.86, + "probability": 0.9845 + }, + { + "start": 5522.04, + "end": 5523.68, + "probability": 0.7848 + }, + { + "start": 5523.72, + "end": 5524.54, + "probability": 0.4995 + }, + { + "start": 5525.44, + "end": 5533.9, + "probability": 0.9751 + }, + { + "start": 5535.34, + "end": 5536.78, + "probability": 0.9097 + }, + { + "start": 5538.42, + "end": 5543.18, + "probability": 0.9934 + }, + { + "start": 5543.34, + "end": 5545.02, + "probability": 0.7981 + }, + { + "start": 5546.52, + "end": 5549.36, + "probability": 0.8733 + }, + { + "start": 5550.28, + "end": 5551.84, + "probability": 0.0595 + }, + { + "start": 5552.58, + "end": 5555.92, + "probability": 0.8534 + }, + { + "start": 5557.06, + "end": 5558.66, + "probability": 0.9485 + }, + { + "start": 5560.64, + "end": 5562.02, + "probability": 0.9998 + }, + { + "start": 5565.38, + "end": 5568.52, + "probability": 0.7704 + }, + { + "start": 5569.63, + "end": 5571.86, + "probability": 0.1387 + }, + { + "start": 5572.86, + "end": 5579.14, + "probability": 0.9729 + }, + { + "start": 5579.92, + "end": 5582.88, + "probability": 0.9961 + }, + { + "start": 5583.62, + "end": 5585.36, + "probability": 0.0022 + }, + { + "start": 5588.12, + "end": 5590.32, + "probability": 0.4395 + }, + { + "start": 5591.26, + "end": 5598.08, + "probability": 0.9475 + }, + { + "start": 5598.98, + "end": 5601.74, + "probability": 0.9531 + }, + { + "start": 5602.7, + "end": 5608.04, + "probability": 0.0501 + }, + { + "start": 5609.62, + "end": 5616.38, + "probability": 0.9971 + }, + { + "start": 5617.36, + "end": 5621.44, + "probability": 0.9961 + }, + { + "start": 5624.76, + "end": 5630.46, + "probability": 0.9964 + }, + { + "start": 5630.52, + "end": 5632.44, + "probability": 0.9256 + }, + { + "start": 5632.88, + "end": 5635.52, + "probability": 0.8963 + }, + { + "start": 5636.1, + "end": 5636.66, + "probability": 0.3887 + }, + { + "start": 5637.18, + "end": 5638.84, + "probability": 0.9081 + }, + { + "start": 5640.28, + "end": 5644.02, + "probability": 0.8621 + }, + { + "start": 5645.02, + "end": 5650.46, + "probability": 0.9819 + }, + { + "start": 5651.4, + "end": 5656.7, + "probability": 0.9974 + }, + { + "start": 5657.74, + "end": 5662.97, + "probability": 0.9934 + }, + { + "start": 5666.7, + "end": 5668.1, + "probability": 0.5942 + }, + { + "start": 5669.36, + "end": 5673.14, + "probability": 0.7492 + }, + { + "start": 5674.2, + "end": 5676.38, + "probability": 0.942 + }, + { + "start": 5677.82, + "end": 5680.56, + "probability": 0.9736 + }, + { + "start": 5681.6, + "end": 5683.71, + "probability": 0.9878 + }, + { + "start": 5684.58, + "end": 5686.51, + "probability": 0.9688 + }, + { + "start": 5687.4, + "end": 5691.8, + "probability": 0.9957 + }, + { + "start": 5692.8, + "end": 5695.2, + "probability": 0.959 + }, + { + "start": 5697.66, + "end": 5700.82, + "probability": 0.993 + }, + { + "start": 5703.06, + "end": 5710.64, + "probability": 0.9969 + }, + { + "start": 5711.66, + "end": 5712.18, + "probability": 0.9814 + }, + { + "start": 5713.08, + "end": 5715.0, + "probability": 0.8985 + }, + { + "start": 5715.4, + "end": 5716.52, + "probability": 0.6257 + }, + { + "start": 5716.74, + "end": 5718.44, + "probability": 0.9922 + }, + { + "start": 5719.26, + "end": 5721.26, + "probability": 0.9866 + }, + { + "start": 5722.22, + "end": 5728.84, + "probability": 0.9985 + }, + { + "start": 5729.98, + "end": 5733.14, + "probability": 0.8057 + }, + { + "start": 5734.74, + "end": 5735.5, + "probability": 0.1165 + }, + { + "start": 5736.3, + "end": 5744.08, + "probability": 0.9868 + }, + { + "start": 5744.08, + "end": 5746.9, + "probability": 0.9958 + }, + { + "start": 5747.96, + "end": 5755.8, + "probability": 0.9908 + }, + { + "start": 5757.28, + "end": 5760.3, + "probability": 0.8652 + }, + { + "start": 5761.72, + "end": 5762.66, + "probability": 0.968 + }, + { + "start": 5764.02, + "end": 5766.18, + "probability": 0.9448 + }, + { + "start": 5767.14, + "end": 5770.44, + "probability": 0.7855 + }, + { + "start": 5772.46, + "end": 5777.42, + "probability": 0.7845 + }, + { + "start": 5778.36, + "end": 5782.58, + "probability": 0.9944 + }, + { + "start": 5782.58, + "end": 5787.92, + "probability": 0.9958 + }, + { + "start": 5789.06, + "end": 5792.55, + "probability": 0.9945 + }, + { + "start": 5793.48, + "end": 5795.88, + "probability": 0.9725 + }, + { + "start": 5796.32, + "end": 5798.28, + "probability": 0.9972 + }, + { + "start": 5798.9, + "end": 5802.24, + "probability": 0.916 + }, + { + "start": 5802.9, + "end": 5804.49, + "probability": 0.9307 + }, + { + "start": 5804.98, + "end": 5806.86, + "probability": 0.6068 + }, + { + "start": 5807.52, + "end": 5808.88, + "probability": 0.9548 + }, + { + "start": 5809.58, + "end": 5811.96, + "probability": 0.8358 + }, + { + "start": 5813.04, + "end": 5816.24, + "probability": 0.995 + }, + { + "start": 5816.6, + "end": 5817.92, + "probability": 0.9882 + }, + { + "start": 5818.34, + "end": 5821.93, + "probability": 0.9253 + }, + { + "start": 5822.58, + "end": 5823.89, + "probability": 0.5883 + }, + { + "start": 5830.46, + "end": 5834.92, + "probability": 0.943 + }, + { + "start": 5835.54, + "end": 5837.32, + "probability": 0.9824 + }, + { + "start": 5839.52, + "end": 5842.52, + "probability": 0.9748 + }, + { + "start": 5843.01, + "end": 5845.94, + "probability": 0.9748 + }, + { + "start": 5847.96, + "end": 5851.94, + "probability": 0.9964 + }, + { + "start": 5852.36, + "end": 5856.62, + "probability": 0.9118 + }, + { + "start": 5857.74, + "end": 5864.6, + "probability": 0.9935 + }, + { + "start": 5865.52, + "end": 5866.29, + "probability": 0.977 + }, + { + "start": 5866.58, + "end": 5867.24, + "probability": 0.7562 + }, + { + "start": 5867.68, + "end": 5872.26, + "probability": 0.9948 + }, + { + "start": 5873.6, + "end": 5881.0, + "probability": 0.9987 + }, + { + "start": 5881.92, + "end": 5883.06, + "probability": 0.9172 + }, + { + "start": 5883.26, + "end": 5889.2, + "probability": 0.9464 + }, + { + "start": 5890.78, + "end": 5891.46, + "probability": 0.8441 + }, + { + "start": 5893.96, + "end": 5897.34, + "probability": 0.9939 + }, + { + "start": 5897.46, + "end": 5898.54, + "probability": 0.8488 + }, + { + "start": 5899.42, + "end": 5904.72, + "probability": 0.9259 + }, + { + "start": 5905.26, + "end": 5907.8, + "probability": 0.9902 + }, + { + "start": 5907.94, + "end": 5908.92, + "probability": 0.9581 + }, + { + "start": 5909.06, + "end": 5910.12, + "probability": 0.7335 + }, + { + "start": 5910.58, + "end": 5912.14, + "probability": 0.9922 + }, + { + "start": 5913.68, + "end": 5917.5, + "probability": 0.9429 + }, + { + "start": 5917.56, + "end": 5925.24, + "probability": 0.9827 + }, + { + "start": 5925.38, + "end": 5926.1, + "probability": 0.922 + }, + { + "start": 5927.38, + "end": 5930.2, + "probability": 0.9958 + }, + { + "start": 5931.0, + "end": 5937.08, + "probability": 0.8875 + }, + { + "start": 5937.44, + "end": 5938.84, + "probability": 0.3603 + }, + { + "start": 5939.66, + "end": 5942.82, + "probability": 0.8567 + }, + { + "start": 5942.88, + "end": 5943.04, + "probability": 0.3734 + }, + { + "start": 5943.04, + "end": 5945.15, + "probability": 0.9092 + }, + { + "start": 5946.0, + "end": 5949.94, + "probability": 0.8329 + }, + { + "start": 5950.46, + "end": 5955.24, + "probability": 0.9025 + }, + { + "start": 5957.0, + "end": 5960.12, + "probability": 0.9678 + }, + { + "start": 5960.24, + "end": 5962.86, + "probability": 0.917 + }, + { + "start": 5964.4, + "end": 5967.94, + "probability": 0.9961 + }, + { + "start": 5968.16, + "end": 5973.74, + "probability": 0.9982 + }, + { + "start": 5974.84, + "end": 5977.08, + "probability": 0.9709 + }, + { + "start": 5978.1, + "end": 5984.18, + "probability": 0.9961 + }, + { + "start": 5985.34, + "end": 5986.56, + "probability": 0.8412 + }, + { + "start": 5988.78, + "end": 5995.92, + "probability": 0.7484 + }, + { + "start": 5996.76, + "end": 6001.46, + "probability": 0.9945 + }, + { + "start": 6002.88, + "end": 6004.94, + "probability": 0.9861 + }, + { + "start": 6005.56, + "end": 6008.16, + "probability": 0.9349 + }, + { + "start": 6008.24, + "end": 6015.26, + "probability": 0.9869 + }, + { + "start": 6015.26, + "end": 6019.46, + "probability": 0.9484 + }, + { + "start": 6020.32, + "end": 6022.08, + "probability": 0.8185 + }, + { + "start": 6023.02, + "end": 6023.98, + "probability": 0.9013 + }, + { + "start": 6024.32, + "end": 6024.52, + "probability": 0.6686 + }, + { + "start": 6024.78, + "end": 6026.28, + "probability": 0.6917 + }, + { + "start": 6026.56, + "end": 6028.86, + "probability": 0.9605 + }, + { + "start": 6029.6, + "end": 6033.42, + "probability": 0.7093 + }, + { + "start": 6033.54, + "end": 6034.66, + "probability": 0.7741 + }, + { + "start": 6034.74, + "end": 6036.38, + "probability": 0.7054 + }, + { + "start": 6036.48, + "end": 6037.14, + "probability": 0.4763 + }, + { + "start": 6037.74, + "end": 6040.26, + "probability": 0.7954 + }, + { + "start": 6040.5, + "end": 6041.49, + "probability": 0.9543 + }, + { + "start": 6042.12, + "end": 6042.48, + "probability": 0.0177 + }, + { + "start": 6042.48, + "end": 6043.1, + "probability": 0.8218 + }, + { + "start": 6043.24, + "end": 6044.72, + "probability": 0.5112 + }, + { + "start": 6045.04, + "end": 6046.86, + "probability": 0.5657 + }, + { + "start": 6047.86, + "end": 6050.66, + "probability": 0.9598 + }, + { + "start": 6050.66, + "end": 6056.46, + "probability": 0.9705 + }, + { + "start": 6056.84, + "end": 6058.54, + "probability": 0.9941 + }, + { + "start": 6058.62, + "end": 6063.72, + "probability": 0.9683 + }, + { + "start": 6064.02, + "end": 6066.51, + "probability": 0.8398 + }, + { + "start": 6067.28, + "end": 6068.24, + "probability": 0.6068 + }, + { + "start": 6068.34, + "end": 6069.01, + "probability": 0.8995 + }, + { + "start": 6069.22, + "end": 6072.56, + "probability": 0.6632 + }, + { + "start": 6072.72, + "end": 6074.52, + "probability": 0.8302 + }, + { + "start": 6074.56, + "end": 6075.08, + "probability": 0.5349 + }, + { + "start": 6075.96, + "end": 6076.28, + "probability": 0.2505 + }, + { + "start": 6076.3, + "end": 6076.78, + "probability": 0.8175 + }, + { + "start": 6076.88, + "end": 6081.2, + "probability": 0.9558 + }, + { + "start": 6081.26, + "end": 6083.38, + "probability": 0.2953 + }, + { + "start": 6084.08, + "end": 6086.88, + "probability": 0.8427 + }, + { + "start": 6086.88, + "end": 6088.0, + "probability": 0.6163 + }, + { + "start": 6089.52, + "end": 6090.2, + "probability": 0.6186 + }, + { + "start": 6090.26, + "end": 6091.54, + "probability": 0.4552 + }, + { + "start": 6094.38, + "end": 6095.1, + "probability": 0.1189 + }, + { + "start": 6100.14, + "end": 6100.76, + "probability": 0.034 + }, + { + "start": 6104.16, + "end": 6106.7, + "probability": 0.0376 + }, + { + "start": 6106.8, + "end": 6107.34, + "probability": 0.1005 + }, + { + "start": 6107.34, + "end": 6107.62, + "probability": 0.1248 + }, + { + "start": 6107.84, + "end": 6109.91, + "probability": 0.163 + }, + { + "start": 6112.56, + "end": 6113.58, + "probability": 0.0634 + }, + { + "start": 6116.0, + "end": 6116.14, + "probability": 0.0142 + }, + { + "start": 6117.54, + "end": 6118.1, + "probability": 0.1219 + }, + { + "start": 6119.24, + "end": 6119.24, + "probability": 0.063 + }, + { + "start": 6119.24, + "end": 6119.24, + "probability": 0.1486 + }, + { + "start": 6119.24, + "end": 6120.1, + "probability": 0.2099 + }, + { + "start": 6120.74, + "end": 6124.38, + "probability": 0.4153 + }, + { + "start": 6124.54, + "end": 6125.46, + "probability": 0.467 + }, + { + "start": 6126.44, + "end": 6127.7, + "probability": 0.0382 + }, + { + "start": 6127.7, + "end": 6130.08, + "probability": 0.4998 + }, + { + "start": 6130.22, + "end": 6132.1, + "probability": 0.0963 + }, + { + "start": 6132.44, + "end": 6135.14, + "probability": 0.3093 + }, + { + "start": 6136.18, + "end": 6140.76, + "probability": 0.9512 + }, + { + "start": 6140.86, + "end": 6144.22, + "probability": 0.9863 + }, + { + "start": 6144.78, + "end": 6147.3, + "probability": 0.9924 + }, + { + "start": 6148.54, + "end": 6150.86, + "probability": 0.9797 + }, + { + "start": 6152.18, + "end": 6154.4, + "probability": 0.7012 + }, + { + "start": 6154.66, + "end": 6156.28, + "probability": 0.2734 + }, + { + "start": 6156.56, + "end": 6158.72, + "probability": 0.9551 + }, + { + "start": 6160.36, + "end": 6161.86, + "probability": 0.3765 + }, + { + "start": 6162.38, + "end": 6163.82, + "probability": 0.9318 + }, + { + "start": 6166.3, + "end": 6169.85, + "probability": 0.2195 + }, + { + "start": 6171.24, + "end": 6172.54, + "probability": 0.7092 + }, + { + "start": 6173.32, + "end": 6178.7, + "probability": 0.6936 + }, + { + "start": 6179.36, + "end": 6183.7, + "probability": 0.7332 + }, + { + "start": 6183.82, + "end": 6186.42, + "probability": 0.9982 + }, + { + "start": 6186.5, + "end": 6189.28, + "probability": 0.913 + }, + { + "start": 6189.4, + "end": 6190.48, + "probability": 0.8103 + }, + { + "start": 6190.5, + "end": 6191.06, + "probability": 0.6435 + }, + { + "start": 6191.14, + "end": 6191.92, + "probability": 0.6224 + }, + { + "start": 6192.1, + "end": 6195.98, + "probability": 0.95 + }, + { + "start": 6198.18, + "end": 6199.51, + "probability": 0.8704 + }, + { + "start": 6200.38, + "end": 6202.0, + "probability": 0.9098 + }, + { + "start": 6206.05, + "end": 6209.64, + "probability": 0.6069 + }, + { + "start": 6210.12, + "end": 6211.62, + "probability": 0.7764 + }, + { + "start": 6211.7, + "end": 6212.86, + "probability": 0.7479 + }, + { + "start": 6212.96, + "end": 6213.58, + "probability": 0.7536 + }, + { + "start": 6213.64, + "end": 6214.42, + "probability": 0.3906 + }, + { + "start": 6214.86, + "end": 6217.54, + "probability": 0.1667 + }, + { + "start": 6218.78, + "end": 6220.06, + "probability": 0.8979 + }, + { + "start": 6220.22, + "end": 6221.64, + "probability": 0.6984 + }, + { + "start": 6222.96, + "end": 6224.22, + "probability": 0.9418 + }, + { + "start": 6225.78, + "end": 6229.33, + "probability": 0.9296 + }, + { + "start": 6230.14, + "end": 6234.97, + "probability": 0.9821 + }, + { + "start": 6235.6, + "end": 6239.03, + "probability": 0.9958 + }, + { + "start": 6239.82, + "end": 6242.72, + "probability": 0.9907 + }, + { + "start": 6243.56, + "end": 6249.18, + "probability": 0.9923 + }, + { + "start": 6249.88, + "end": 6249.88, + "probability": 0.0118 + }, + { + "start": 6249.9, + "end": 6249.9, + "probability": 0.0198 + }, + { + "start": 6249.92, + "end": 6251.98, + "probability": 0.9945 + }, + { + "start": 6252.16, + "end": 6253.7, + "probability": 0.8516 + }, + { + "start": 6253.72, + "end": 6256.28, + "probability": 0.9619 + }, + { + "start": 6256.36, + "end": 6257.5, + "probability": 0.7747 + }, + { + "start": 6258.3, + "end": 6263.76, + "probability": 0.9935 + }, + { + "start": 6264.36, + "end": 6265.5, + "probability": 0.9731 + }, + { + "start": 6265.62, + "end": 6268.28, + "probability": 0.9419 + }, + { + "start": 6269.06, + "end": 6274.36, + "probability": 0.9805 + }, + { + "start": 6274.36, + "end": 6277.82, + "probability": 0.9938 + }, + { + "start": 6278.6, + "end": 6284.08, + "probability": 0.9976 + }, + { + "start": 6285.12, + "end": 6289.22, + "probability": 0.8777 + }, + { + "start": 6289.5, + "end": 6296.86, + "probability": 0.9989 + }, + { + "start": 6297.42, + "end": 6301.72, + "probability": 0.9292 + }, + { + "start": 6301.94, + "end": 6309.52, + "probability": 0.9961 + }, + { + "start": 6310.16, + "end": 6312.1, + "probability": 0.9878 + }, + { + "start": 6312.2, + "end": 6312.94, + "probability": 0.129 + }, + { + "start": 6313.0, + "end": 6313.0, + "probability": 0.5283 + }, + { + "start": 6313.16, + "end": 6315.24, + "probability": 0.5215 + }, + { + "start": 6315.44, + "end": 6317.36, + "probability": 0.8112 + }, + { + "start": 6317.86, + "end": 6319.65, + "probability": 0.9624 + }, + { + "start": 6320.88, + "end": 6323.42, + "probability": 0.9536 + }, + { + "start": 6323.52, + "end": 6326.8, + "probability": 0.9779 + }, + { + "start": 6327.84, + "end": 6330.54, + "probability": 0.9791 + }, + { + "start": 6331.4, + "end": 6334.04, + "probability": 0.9511 + }, + { + "start": 6334.34, + "end": 6336.14, + "probability": 0.7502 + }, + { + "start": 6337.02, + "end": 6341.61, + "probability": 0.9924 + }, + { + "start": 6342.5, + "end": 6343.84, + "probability": 0.2927 + }, + { + "start": 6344.8, + "end": 6347.68, + "probability": 0.4485 + }, + { + "start": 6348.54, + "end": 6350.36, + "probability": 0.229 + }, + { + "start": 6351.94, + "end": 6356.56, + "probability": 0.9881 + }, + { + "start": 6357.68, + "end": 6360.08, + "probability": 0.9471 + }, + { + "start": 6360.56, + "end": 6362.92, + "probability": 0.9763 + }, + { + "start": 6364.14, + "end": 6367.46, + "probability": 0.9934 + }, + { + "start": 6367.96, + "end": 6371.02, + "probability": 0.9978 + }, + { + "start": 6371.52, + "end": 6374.62, + "probability": 0.9982 + }, + { + "start": 6375.28, + "end": 6377.6, + "probability": 0.999 + }, + { + "start": 6378.06, + "end": 6379.62, + "probability": 0.9777 + }, + { + "start": 6380.06, + "end": 6381.52, + "probability": 0.978 + }, + { + "start": 6381.9, + "end": 6383.18, + "probability": 0.9878 + }, + { + "start": 6383.54, + "end": 6387.84, + "probability": 0.991 + }, + { + "start": 6388.46, + "end": 6391.32, + "probability": 0.9824 + }, + { + "start": 6392.6, + "end": 6397.36, + "probability": 0.9819 + }, + { + "start": 6398.28, + "end": 6400.48, + "probability": 0.9502 + }, + { + "start": 6400.84, + "end": 6404.96, + "probability": 0.948 + }, + { + "start": 6405.78, + "end": 6407.72, + "probability": 0.6385 + }, + { + "start": 6408.22, + "end": 6412.64, + "probability": 0.7631 + }, + { + "start": 6413.58, + "end": 6413.58, + "probability": 0.0771 + }, + { + "start": 6413.58, + "end": 6416.65, + "probability": 0.8879 + }, + { + "start": 6417.88, + "end": 6421.8, + "probability": 0.9965 + }, + { + "start": 6422.4, + "end": 6427.31, + "probability": 0.9956 + }, + { + "start": 6427.6, + "end": 6428.7, + "probability": 0.6766 + }, + { + "start": 6429.24, + "end": 6431.56, + "probability": 0.9756 + }, + { + "start": 6431.7, + "end": 6432.84, + "probability": 0.7592 + }, + { + "start": 6433.0, + "end": 6434.6, + "probability": 0.8931 + }, + { + "start": 6434.62, + "end": 6436.48, + "probability": 0.9713 + }, + { + "start": 6437.08, + "end": 6438.6, + "probability": 0.8346 + }, + { + "start": 6439.36, + "end": 6444.92, + "probability": 0.9961 + }, + { + "start": 6444.94, + "end": 6445.58, + "probability": 0.251 + }, + { + "start": 6445.7, + "end": 6445.7, + "probability": 0.0151 + }, + { + "start": 6445.7, + "end": 6452.99, + "probability": 0.9732 + }, + { + "start": 6453.54, + "end": 6457.6, + "probability": 0.9668 + }, + { + "start": 6458.24, + "end": 6461.48, + "probability": 0.9974 + }, + { + "start": 6462.4, + "end": 6465.16, + "probability": 0.8357 + }, + { + "start": 6466.22, + "end": 6469.4, + "probability": 0.9567 + }, + { + "start": 6469.82, + "end": 6473.04, + "probability": 0.9929 + }, + { + "start": 6473.14, + "end": 6475.22, + "probability": 0.7579 + }, + { + "start": 6476.02, + "end": 6481.04, + "probability": 0.9795 + }, + { + "start": 6481.98, + "end": 6484.92, + "probability": 0.9115 + }, + { + "start": 6485.66, + "end": 6487.12, + "probability": 0.9735 + }, + { + "start": 6487.66, + "end": 6489.88, + "probability": 0.9828 + }, + { + "start": 6490.64, + "end": 6493.88, + "probability": 0.9951 + }, + { + "start": 6494.92, + "end": 6498.7, + "probability": 0.986 + }, + { + "start": 6498.7, + "end": 6502.7, + "probability": 0.9849 + }, + { + "start": 6502.8, + "end": 6503.38, + "probability": 0.9517 + }, + { + "start": 6503.46, + "end": 6503.84, + "probability": 0.9733 + }, + { + "start": 6503.92, + "end": 6504.96, + "probability": 0.9356 + }, + { + "start": 6505.88, + "end": 6507.72, + "probability": 0.7709 + }, + { + "start": 6508.66, + "end": 6510.98, + "probability": 0.9859 + }, + { + "start": 6511.14, + "end": 6511.88, + "probability": 0.7356 + }, + { + "start": 6511.98, + "end": 6513.1, + "probability": 0.9788 + }, + { + "start": 6513.34, + "end": 6513.9, + "probability": 0.9819 + }, + { + "start": 6513.96, + "end": 6515.2, + "probability": 0.9751 + }, + { + "start": 6515.58, + "end": 6517.18, + "probability": 0.9455 + }, + { + "start": 6517.64, + "end": 6520.44, + "probability": 0.9921 + }, + { + "start": 6520.8, + "end": 6523.92, + "probability": 0.9852 + }, + { + "start": 6524.6, + "end": 6526.44, + "probability": 0.7084 + }, + { + "start": 6527.88, + "end": 6530.86, + "probability": 0.5122 + }, + { + "start": 6531.6, + "end": 6534.1, + "probability": 0.7938 + }, + { + "start": 6534.62, + "end": 6536.46, + "probability": 0.6709 + }, + { + "start": 6537.06, + "end": 6540.82, + "probability": 0.9474 + }, + { + "start": 6541.36, + "end": 6544.48, + "probability": 0.0372 + }, + { + "start": 6544.48, + "end": 6545.26, + "probability": 0.4389 + }, + { + "start": 6545.58, + "end": 6547.5, + "probability": 0.1489 + }, + { + "start": 6548.12, + "end": 6551.28, + "probability": 0.8113 + }, + { + "start": 6551.84, + "end": 6553.86, + "probability": 0.7637 + }, + { + "start": 6554.52, + "end": 6561.62, + "probability": 0.9982 + }, + { + "start": 6562.06, + "end": 6562.84, + "probability": 0.6379 + }, + { + "start": 6563.14, + "end": 6566.64, + "probability": 0.9927 + }, + { + "start": 6566.76, + "end": 6570.14, + "probability": 0.7891 + }, + { + "start": 6570.28, + "end": 6574.96, + "probability": 0.9818 + }, + { + "start": 6575.98, + "end": 6576.08, + "probability": 0.0028 + }, + { + "start": 6583.26, + "end": 6584.95, + "probability": 0.1404 + }, + { + "start": 6585.3, + "end": 6586.92, + "probability": 0.3435 + }, + { + "start": 6587.6, + "end": 6590.28, + "probability": 0.7308 + }, + { + "start": 6590.28, + "end": 6590.34, + "probability": 0.3352 + }, + { + "start": 6590.34, + "end": 6591.74, + "probability": 0.8799 + }, + { + "start": 6593.62, + "end": 6598.46, + "probability": 0.9584 + }, + { + "start": 6600.04, + "end": 6601.58, + "probability": 0.9038 + }, + { + "start": 6602.86, + "end": 6604.96, + "probability": 0.969 + }, + { + "start": 6605.86, + "end": 6610.68, + "probability": 0.8194 + }, + { + "start": 6611.68, + "end": 6616.6, + "probability": 0.6177 + }, + { + "start": 6618.64, + "end": 6620.08, + "probability": 0.0579 + }, + { + "start": 6620.54, + "end": 6623.17, + "probability": 0.7388 + }, + { + "start": 6625.12, + "end": 6628.1, + "probability": 0.3128 + }, + { + "start": 6628.9, + "end": 6629.46, + "probability": 0.3736 + }, + { + "start": 6629.46, + "end": 6632.32, + "probability": 0.6447 + }, + { + "start": 6632.44, + "end": 6637.42, + "probability": 0.9944 + }, + { + "start": 6638.02, + "end": 6643.54, + "probability": 0.8089 + }, + { + "start": 6644.64, + "end": 6651.12, + "probability": 0.9919 + }, + { + "start": 6651.22, + "end": 6653.9, + "probability": 0.818 + }, + { + "start": 6654.36, + "end": 6655.06, + "probability": 0.6642 + }, + { + "start": 6655.16, + "end": 6656.38, + "probability": 0.8384 + }, + { + "start": 6656.5, + "end": 6657.2, + "probability": 0.7985 + }, + { + "start": 6658.1, + "end": 6662.32, + "probability": 0.9443 + }, + { + "start": 6663.06, + "end": 6663.92, + "probability": 0.9787 + }, + { + "start": 6664.66, + "end": 6668.2, + "probability": 0.7893 + }, + { + "start": 6668.72, + "end": 6670.13, + "probability": 0.2322 + }, + { + "start": 6670.96, + "end": 6672.7, + "probability": 0.5571 + }, + { + "start": 6672.9, + "end": 6674.92, + "probability": 0.448 + }, + { + "start": 6674.92, + "end": 6675.16, + "probability": 0.283 + }, + { + "start": 6675.16, + "end": 6675.42, + "probability": 0.1779 + }, + { + "start": 6675.42, + "end": 6676.4, + "probability": 0.5348 + }, + { + "start": 6676.4, + "end": 6678.94, + "probability": 0.414 + }, + { + "start": 6679.12, + "end": 6679.12, + "probability": 0.0677 + }, + { + "start": 6679.24, + "end": 6683.9, + "probability": 0.9605 + }, + { + "start": 6683.94, + "end": 6685.42, + "probability": 0.555 + }, + { + "start": 6685.44, + "end": 6686.24, + "probability": 0.7109 + }, + { + "start": 6687.24, + "end": 6689.42, + "probability": 0.3561 + }, + { + "start": 6689.42, + "end": 6689.94, + "probability": 0.5563 + }, + { + "start": 6690.24, + "end": 6692.12, + "probability": 0.7423 + }, + { + "start": 6692.18, + "end": 6692.18, + "probability": 0.2926 + }, + { + "start": 6692.4, + "end": 6692.64, + "probability": 0.3074 + }, + { + "start": 6692.64, + "end": 6693.44, + "probability": 0.5411 + }, + { + "start": 6693.46, + "end": 6694.96, + "probability": 0.6232 + }, + { + "start": 6696.0, + "end": 6698.68, + "probability": 0.9546 + }, + { + "start": 6699.3, + "end": 6701.22, + "probability": 0.9607 + }, + { + "start": 6701.36, + "end": 6703.32, + "probability": 0.8945 + }, + { + "start": 6705.0, + "end": 6706.48, + "probability": 0.3036 + }, + { + "start": 6707.2, + "end": 6708.17, + "probability": 0.5156 + }, + { + "start": 6708.82, + "end": 6709.48, + "probability": 0.3461 + }, + { + "start": 6709.84, + "end": 6712.58, + "probability": 0.9925 + }, + { + "start": 6712.78, + "end": 6714.1, + "probability": 0.8459 + }, + { + "start": 6714.4, + "end": 6716.74, + "probability": 0.9654 + }, + { + "start": 6717.18, + "end": 6718.28, + "probability": 0.7715 + }, + { + "start": 6718.38, + "end": 6718.86, + "probability": 0.6512 + }, + { + "start": 6718.96, + "end": 6720.67, + "probability": 0.9274 + }, + { + "start": 6721.18, + "end": 6725.19, + "probability": 0.9893 + }, + { + "start": 6725.4, + "end": 6725.91, + "probability": 0.9629 + }, + { + "start": 6726.62, + "end": 6731.08, + "probability": 0.8457 + }, + { + "start": 6731.78, + "end": 6735.72, + "probability": 0.9696 + }, + { + "start": 6737.74, + "end": 6740.54, + "probability": 0.9968 + }, + { + "start": 6740.68, + "end": 6741.78, + "probability": 0.9523 + }, + { + "start": 6742.36, + "end": 6744.86, + "probability": 0.9833 + }, + { + "start": 6746.08, + "end": 6748.92, + "probability": 0.8135 + }, + { + "start": 6749.94, + "end": 6751.02, + "probability": 0.7143 + }, + { + "start": 6752.12, + "end": 6754.0, + "probability": 0.9889 + }, + { + "start": 6755.82, + "end": 6757.18, + "probability": 0.7679 + }, + { + "start": 6758.08, + "end": 6761.62, + "probability": 0.9152 + }, + { + "start": 6763.26, + "end": 6765.88, + "probability": 0.9463 + }, + { + "start": 6766.82, + "end": 6767.92, + "probability": 0.6762 + }, + { + "start": 6769.16, + "end": 6770.38, + "probability": 0.8003 + }, + { + "start": 6771.16, + "end": 6772.34, + "probability": 0.5942 + }, + { + "start": 6772.36, + "end": 6772.44, + "probability": 0.6166 + }, + { + "start": 6772.44, + "end": 6773.36, + "probability": 0.8585 + }, + { + "start": 6774.54, + "end": 6776.82, + "probability": 0.9872 + }, + { + "start": 6777.72, + "end": 6778.6, + "probability": 0.8541 + }, + { + "start": 6779.6, + "end": 6780.86, + "probability": 0.989 + }, + { + "start": 6781.82, + "end": 6783.74, + "probability": 0.7485 + }, + { + "start": 6783.78, + "end": 6784.24, + "probability": 0.8367 + }, + { + "start": 6784.4, + "end": 6789.8, + "probability": 0.9978 + }, + { + "start": 6790.32, + "end": 6792.0, + "probability": 0.9573 + }, + { + "start": 6793.62, + "end": 6795.22, + "probability": 0.9889 + }, + { + "start": 6796.92, + "end": 6802.18, + "probability": 0.9932 + }, + { + "start": 6803.2, + "end": 6804.36, + "probability": 0.9618 + }, + { + "start": 6805.0, + "end": 6807.02, + "probability": 0.968 + }, + { + "start": 6809.12, + "end": 6810.92, + "probability": 0.9522 + }, + { + "start": 6811.82, + "end": 6816.48, + "probability": 0.027 + }, + { + "start": 6818.28, + "end": 6818.8, + "probability": 0.0051 + }, + { + "start": 6818.8, + "end": 6820.18, + "probability": 0.2693 + }, + { + "start": 6820.18, + "end": 6821.3, + "probability": 0.0788 + }, + { + "start": 6821.96, + "end": 6823.18, + "probability": 0.4786 + }, + { + "start": 6824.94, + "end": 6825.22, + "probability": 0.1086 + }, + { + "start": 6825.22, + "end": 6825.22, + "probability": 0.062 + }, + { + "start": 6825.22, + "end": 6825.22, + "probability": 0.1716 + }, + { + "start": 6825.22, + "end": 6825.22, + "probability": 0.0119 + }, + { + "start": 6825.22, + "end": 6825.22, + "probability": 0.3216 + }, + { + "start": 6825.22, + "end": 6829.84, + "probability": 0.5505 + }, + { + "start": 6831.04, + "end": 6833.0, + "probability": 0.8498 + }, + { + "start": 6833.06, + "end": 6834.28, + "probability": 0.6602 + }, + { + "start": 6834.42, + "end": 6834.91, + "probability": 0.0067 + }, + { + "start": 6835.12, + "end": 6835.3, + "probability": 0.0308 + }, + { + "start": 6835.3, + "end": 6836.52, + "probability": 0.571 + }, + { + "start": 6836.66, + "end": 6838.33, + "probability": 0.1781 + }, + { + "start": 6838.88, + "end": 6840.08, + "probability": 0.595 + }, + { + "start": 6840.68, + "end": 6841.06, + "probability": 0.0366 + }, + { + "start": 6841.22, + "end": 6843.22, + "probability": 0.5115 + }, + { + "start": 6843.3, + "end": 6846.12, + "probability": 0.7348 + }, + { + "start": 6847.3, + "end": 6850.7, + "probability": 0.9888 + }, + { + "start": 6850.78, + "end": 6851.28, + "probability": 0.1487 + }, + { + "start": 6851.44, + "end": 6853.08, + "probability": 0.927 + }, + { + "start": 6853.2, + "end": 6854.04, + "probability": 0.7172 + }, + { + "start": 6854.54, + "end": 6858.3, + "probability": 0.9971 + }, + { + "start": 6859.1, + "end": 6859.32, + "probability": 0.341 + }, + { + "start": 6860.32, + "end": 6866.32, + "probability": 0.9881 + }, + { + "start": 6866.4, + "end": 6867.5, + "probability": 0.6501 + }, + { + "start": 6867.62, + "end": 6867.72, + "probability": 0.1486 + }, + { + "start": 6867.72, + "end": 6871.3, + "probability": 0.7667 + }, + { + "start": 6871.6, + "end": 6873.48, + "probability": 0.8521 + }, + { + "start": 6874.86, + "end": 6875.02, + "probability": 0.5753 + }, + { + "start": 6875.44, + "end": 6878.24, + "probability": 0.8412 + }, + { + "start": 6878.5, + "end": 6880.66, + "probability": 0.8303 + }, + { + "start": 6880.84, + "end": 6881.76, + "probability": 0.0626 + }, + { + "start": 6881.84, + "end": 6886.92, + "probability": 0.9378 + }, + { + "start": 6887.94, + "end": 6890.06, + "probability": 0.0898 + }, + { + "start": 6890.42, + "end": 6891.06, + "probability": 0.0179 + }, + { + "start": 6891.06, + "end": 6892.66, + "probability": 0.1615 + }, + { + "start": 6892.98, + "end": 6898.54, + "probability": 0.2146 + }, + { + "start": 6900.5, + "end": 6905.82, + "probability": 0.1921 + }, + { + "start": 6907.4, + "end": 6909.62, + "probability": 0.0327 + }, + { + "start": 6909.62, + "end": 6910.68, + "probability": 0.0811 + }, + { + "start": 6910.74, + "end": 6910.74, + "probability": 0.1222 + }, + { + "start": 6910.74, + "end": 6913.48, + "probability": 0.4045 + }, + { + "start": 6914.6, + "end": 6916.5, + "probability": 0.1034 + }, + { + "start": 6916.5, + "end": 6916.5, + "probability": 0.1439 + }, + { + "start": 6916.5, + "end": 6916.52, + "probability": 0.0368 + }, + { + "start": 6916.52, + "end": 6918.7, + "probability": 0.0397 + }, + { + "start": 6918.74, + "end": 6921.78, + "probability": 0.6415 + }, + { + "start": 6922.62, + "end": 6924.0, + "probability": 0.7782 + }, + { + "start": 6937.04, + "end": 6937.5, + "probability": 0.6909 + }, + { + "start": 6938.8, + "end": 6939.28, + "probability": 0.0397 + }, + { + "start": 6939.28, + "end": 6939.28, + "probability": 0.0037 + }, + { + "start": 6939.28, + "end": 6939.28, + "probability": 0.2842 + }, + { + "start": 6939.28, + "end": 6939.28, + "probability": 0.1737 + }, + { + "start": 6939.28, + "end": 6939.28, + "probability": 0.4988 + }, + { + "start": 6939.28, + "end": 6939.97, + "probability": 0.2929 + }, + { + "start": 6940.6, + "end": 6942.6, + "probability": 0.6885 + }, + { + "start": 6944.26, + "end": 6952.82, + "probability": 0.9216 + }, + { + "start": 6952.82, + "end": 6957.28, + "probability": 0.9973 + }, + { + "start": 6959.02, + "end": 6960.62, + "probability": 0.6824 + }, + { + "start": 6961.62, + "end": 6966.71, + "probability": 0.9166 + }, + { + "start": 6966.84, + "end": 6973.2, + "probability": 0.8357 + }, + { + "start": 6974.08, + "end": 6977.82, + "probability": 0.96 + }, + { + "start": 6977.82, + "end": 6982.52, + "probability": 0.9976 + }, + { + "start": 6982.72, + "end": 6984.12, + "probability": 0.8371 + }, + { + "start": 6985.48, + "end": 6987.78, + "probability": 0.9956 + }, + { + "start": 6988.13, + "end": 6990.12, + "probability": 0.9727 + }, + { + "start": 6990.32, + "end": 6992.26, + "probability": 0.9773 + }, + { + "start": 6992.8, + "end": 6993.56, + "probability": 0.063 + }, + { + "start": 6993.82, + "end": 6996.96, + "probability": 0.9622 + }, + { + "start": 6998.24, + "end": 6999.96, + "probability": 0.9699 + }, + { + "start": 7001.54, + "end": 7004.68, + "probability": 0.995 + }, + { + "start": 7006.22, + "end": 7007.67, + "probability": 0.9188 + }, + { + "start": 7008.76, + "end": 7012.56, + "probability": 0.9593 + }, + { + "start": 7013.32, + "end": 7013.42, + "probability": 0.0636 + }, + { + "start": 7013.42, + "end": 7014.55, + "probability": 0.6845 + }, + { + "start": 7015.04, + "end": 7017.04, + "probability": 0.8389 + }, + { + "start": 7017.04, + "end": 7019.64, + "probability": 0.9797 + }, + { + "start": 7020.18, + "end": 7022.73, + "probability": 0.8635 + }, + { + "start": 7023.06, + "end": 7026.36, + "probability": 0.841 + }, + { + "start": 7026.86, + "end": 7028.36, + "probability": 0.8633 + }, + { + "start": 7028.38, + "end": 7030.34, + "probability": 0.9907 + }, + { + "start": 7031.9, + "end": 7033.8, + "probability": 0.8297 + }, + { + "start": 7034.86, + "end": 7037.9, + "probability": 0.9672 + }, + { + "start": 7040.1, + "end": 7041.42, + "probability": 0.9062 + }, + { + "start": 7042.56, + "end": 7044.04, + "probability": 0.7919 + }, + { + "start": 7044.14, + "end": 7045.03, + "probability": 0.998 + }, + { + "start": 7046.78, + "end": 7048.89, + "probability": 0.9971 + }, + { + "start": 7049.76, + "end": 7053.7, + "probability": 0.9814 + }, + { + "start": 7055.18, + "end": 7057.62, + "probability": 0.8816 + }, + { + "start": 7059.28, + "end": 7060.44, + "probability": 0.7838 + }, + { + "start": 7061.28, + "end": 7061.84, + "probability": 0.1833 + }, + { + "start": 7062.42, + "end": 7067.6, + "probability": 0.9744 + }, + { + "start": 7068.2, + "end": 7070.34, + "probability": 0.8112 + }, + { + "start": 7071.4, + "end": 7075.42, + "probability": 0.8898 + }, + { + "start": 7078.9, + "end": 7085.74, + "probability": 0.9972 + }, + { + "start": 7086.66, + "end": 7090.14, + "probability": 0.9579 + }, + { + "start": 7090.52, + "end": 7093.78, + "probability": 0.9952 + }, + { + "start": 7095.3, + "end": 7101.1, + "probability": 0.9963 + }, + { + "start": 7102.23, + "end": 7105.44, + "probability": 0.9954 + }, + { + "start": 7105.62, + "end": 7107.86, + "probability": 0.9583 + }, + { + "start": 7109.18, + "end": 7111.03, + "probability": 0.7624 + }, + { + "start": 7112.52, + "end": 7115.12, + "probability": 0.9966 + }, + { + "start": 7117.86, + "end": 7118.52, + "probability": 0.7201 + }, + { + "start": 7119.94, + "end": 7121.02, + "probability": 0.809 + }, + { + "start": 7122.8, + "end": 7126.14, + "probability": 0.9795 + }, + { + "start": 7126.56, + "end": 7127.06, + "probability": 0.7068 + }, + { + "start": 7127.52, + "end": 7131.02, + "probability": 0.9358 + }, + { + "start": 7132.44, + "end": 7133.86, + "probability": 0.9658 + }, + { + "start": 7134.06, + "end": 7136.36, + "probability": 0.8623 + }, + { + "start": 7137.44, + "end": 7141.28, + "probability": 0.6143 + }, + { + "start": 7141.84, + "end": 7142.9, + "probability": 0.9265 + }, + { + "start": 7143.4, + "end": 7144.98, + "probability": 0.8812 + }, + { + "start": 7145.02, + "end": 7146.72, + "probability": 0.865 + }, + { + "start": 7146.8, + "end": 7147.6, + "probability": 0.8174 + }, + { + "start": 7148.38, + "end": 7152.22, + "probability": 0.9926 + }, + { + "start": 7152.35, + "end": 7154.76, + "probability": 0.9932 + }, + { + "start": 7154.78, + "end": 7158.32, + "probability": 0.8598 + }, + { + "start": 7159.52, + "end": 7160.78, + "probability": 0.9872 + }, + { + "start": 7162.14, + "end": 7166.13, + "probability": 0.9557 + }, + { + "start": 7166.76, + "end": 7169.49, + "probability": 0.9456 + }, + { + "start": 7171.06, + "end": 7174.72, + "probability": 0.9595 + }, + { + "start": 7176.04, + "end": 7177.8, + "probability": 0.9279 + }, + { + "start": 7178.44, + "end": 7183.18, + "probability": 0.9666 + }, + { + "start": 7184.18, + "end": 7186.4, + "probability": 0.966 + }, + { + "start": 7186.62, + "end": 7188.44, + "probability": 0.9909 + }, + { + "start": 7188.56, + "end": 7191.26, + "probability": 0.9355 + }, + { + "start": 7191.56, + "end": 7193.22, + "probability": 0.8648 + }, + { + "start": 7193.92, + "end": 7197.74, + "probability": 0.9915 + }, + { + "start": 7197.86, + "end": 7198.98, + "probability": 0.7938 + }, + { + "start": 7199.84, + "end": 7207.58, + "probability": 0.9286 + }, + { + "start": 7207.58, + "end": 7207.82, + "probability": 0.0365 + }, + { + "start": 7207.96, + "end": 7208.92, + "probability": 0.7641 + }, + { + "start": 7209.16, + "end": 7210.12, + "probability": 0.8083 + }, + { + "start": 7210.64, + "end": 7211.86, + "probability": 0.7078 + }, + { + "start": 7212.46, + "end": 7216.34, + "probability": 0.9829 + }, + { + "start": 7217.2, + "end": 7219.34, + "probability": 0.9391 + }, + { + "start": 7220.24, + "end": 7223.62, + "probability": 0.9934 + }, + { + "start": 7223.74, + "end": 7226.76, + "probability": 0.9789 + }, + { + "start": 7227.42, + "end": 7231.66, + "probability": 0.8745 + }, + { + "start": 7233.04, + "end": 7233.86, + "probability": 0.8634 + }, + { + "start": 7234.74, + "end": 7236.52, + "probability": 0.9331 + }, + { + "start": 7237.32, + "end": 7242.56, + "probability": 0.9927 + }, + { + "start": 7244.04, + "end": 7246.57, + "probability": 0.7725 + }, + { + "start": 7248.44, + "end": 7256.36, + "probability": 0.9984 + }, + { + "start": 7256.94, + "end": 7261.06, + "probability": 0.9757 + }, + { + "start": 7261.28, + "end": 7263.06, + "probability": 0.7006 + }, + { + "start": 7263.7, + "end": 7268.08, + "probability": 0.8263 + }, + { + "start": 7268.28, + "end": 7272.74, + "probability": 0.999 + }, + { + "start": 7274.26, + "end": 7279.82, + "probability": 0.9667 + }, + { + "start": 7281.72, + "end": 7285.08, + "probability": 0.9927 + }, + { + "start": 7285.94, + "end": 7290.16, + "probability": 0.9805 + }, + { + "start": 7290.26, + "end": 7291.44, + "probability": 0.8632 + }, + { + "start": 7292.06, + "end": 7296.3, + "probability": 0.9953 + }, + { + "start": 7296.3, + "end": 7299.42, + "probability": 0.8008 + }, + { + "start": 7299.84, + "end": 7301.7, + "probability": 0.9427 + }, + { + "start": 7301.76, + "end": 7303.38, + "probability": 0.9959 + }, + { + "start": 7304.62, + "end": 7309.82, + "probability": 0.9792 + }, + { + "start": 7310.28, + "end": 7311.44, + "probability": 0.9336 + }, + { + "start": 7311.5, + "end": 7314.12, + "probability": 0.9593 + }, + { + "start": 7314.36, + "end": 7315.64, + "probability": 0.7845 + }, + { + "start": 7315.82, + "end": 7316.82, + "probability": 0.5141 + }, + { + "start": 7316.96, + "end": 7320.64, + "probability": 0.9966 + }, + { + "start": 7322.1, + "end": 7323.3, + "probability": 0.9902 + }, + { + "start": 7323.94, + "end": 7329.62, + "probability": 0.8927 + }, + { + "start": 7330.24, + "end": 7335.62, + "probability": 0.9924 + }, + { + "start": 7335.9, + "end": 7340.32, + "probability": 0.9949 + }, + { + "start": 7341.26, + "end": 7341.26, + "probability": 0.14 + }, + { + "start": 7341.42, + "end": 7341.96, + "probability": 0.6981 + }, + { + "start": 7342.02, + "end": 7344.05, + "probability": 0.9534 + }, + { + "start": 7345.06, + "end": 7345.68, + "probability": 0.7495 + }, + { + "start": 7345.8, + "end": 7346.38, + "probability": 0.9714 + }, + { + "start": 7346.6, + "end": 7351.22, + "probability": 0.8999 + }, + { + "start": 7352.4, + "end": 7358.04, + "probability": 0.9956 + }, + { + "start": 7358.1, + "end": 7358.94, + "probability": 0.6268 + }, + { + "start": 7359.12, + "end": 7360.38, + "probability": 0.9653 + }, + { + "start": 7361.14, + "end": 7365.56, + "probability": 0.9145 + }, + { + "start": 7366.2, + "end": 7367.74, + "probability": 0.8957 + }, + { + "start": 7368.14, + "end": 7371.68, + "probability": 0.9444 + }, + { + "start": 7371.78, + "end": 7375.46, + "probability": 0.9885 + }, + { + "start": 7375.87, + "end": 7379.18, + "probability": 0.9954 + }, + { + "start": 7379.3, + "end": 7379.72, + "probability": 0.5645 + }, + { + "start": 7379.76, + "end": 7380.74, + "probability": 0.662 + }, + { + "start": 7380.82, + "end": 7381.75, + "probability": 0.9594 + }, + { + "start": 7382.72, + "end": 7383.88, + "probability": 0.9841 + }, + { + "start": 7384.78, + "end": 7386.26, + "probability": 0.4954 + }, + { + "start": 7388.52, + "end": 7389.18, + "probability": 0.8062 + }, + { + "start": 7389.32, + "end": 7390.85, + "probability": 0.9946 + }, + { + "start": 7391.62, + "end": 7395.04, + "probability": 0.991 + }, + { + "start": 7395.76, + "end": 7395.94, + "probability": 0.2999 + }, + { + "start": 7396.0, + "end": 7396.54, + "probability": 0.4716 + }, + { + "start": 7396.66, + "end": 7396.98, + "probability": 0.8483 + }, + { + "start": 7397.0, + "end": 7397.72, + "probability": 0.476 + }, + { + "start": 7397.92, + "end": 7398.48, + "probability": 0.8262 + }, + { + "start": 7399.44, + "end": 7401.64, + "probability": 0.9604 + }, + { + "start": 7401.66, + "end": 7402.98, + "probability": 0.7927 + }, + { + "start": 7403.28, + "end": 7405.26, + "probability": 0.9856 + }, + { + "start": 7405.26, + "end": 7407.48, + "probability": 0.8589 + }, + { + "start": 7408.64, + "end": 7411.3, + "probability": 0.6705 + }, + { + "start": 7413.1, + "end": 7413.58, + "probability": 0.7644 + }, + { + "start": 7414.5, + "end": 7419.94, + "probability": 0.9973 + }, + { + "start": 7420.54, + "end": 7420.96, + "probability": 0.8667 + }, + { + "start": 7421.92, + "end": 7426.82, + "probability": 0.9939 + }, + { + "start": 7427.68, + "end": 7429.42, + "probability": 0.9846 + }, + { + "start": 7429.5, + "end": 7430.18, + "probability": 0.904 + }, + { + "start": 7430.66, + "end": 7431.6, + "probability": 0.7773 + }, + { + "start": 7433.48, + "end": 7434.35, + "probability": 0.3535 + }, + { + "start": 7434.46, + "end": 7435.44, + "probability": 0.8983 + }, + { + "start": 7435.9, + "end": 7437.92, + "probability": 0.7931 + }, + { + "start": 7439.22, + "end": 7440.86, + "probability": 0.827 + }, + { + "start": 7441.62, + "end": 7442.64, + "probability": 0.6154 + }, + { + "start": 7444.18, + "end": 7446.14, + "probability": 0.9548 + }, + { + "start": 7447.14, + "end": 7448.54, + "probability": 0.9509 + }, + { + "start": 7448.68, + "end": 7450.22, + "probability": 0.9819 + }, + { + "start": 7450.82, + "end": 7451.2, + "probability": 0.4959 + }, + { + "start": 7451.62, + "end": 7452.64, + "probability": 0.8224 + }, + { + "start": 7452.72, + "end": 7454.62, + "probability": 0.973 + }, + { + "start": 7455.54, + "end": 7457.12, + "probability": 0.5994 + }, + { + "start": 7457.9, + "end": 7461.36, + "probability": 0.9273 + }, + { + "start": 7462.34, + "end": 7466.76, + "probability": 0.9955 + }, + { + "start": 7467.76, + "end": 7469.6, + "probability": 0.9478 + }, + { + "start": 7470.66, + "end": 7475.58, + "probability": 0.937 + }, + { + "start": 7476.5, + "end": 7479.78, + "probability": 0.9784 + }, + { + "start": 7480.56, + "end": 7483.62, + "probability": 0.9949 + }, + { + "start": 7484.48, + "end": 7488.38, + "probability": 0.998 + }, + { + "start": 7488.66, + "end": 7490.66, + "probability": 0.8522 + }, + { + "start": 7490.9, + "end": 7490.9, + "probability": 0.4855 + }, + { + "start": 7491.16, + "end": 7492.63, + "probability": 0.98 + }, + { + "start": 7493.66, + "end": 7495.9, + "probability": 0.9971 + }, + { + "start": 7496.6, + "end": 7497.8, + "probability": 0.8262 + }, + { + "start": 7498.52, + "end": 7499.8, + "probability": 0.6211 + }, + { + "start": 7500.36, + "end": 7503.78, + "probability": 0.9805 + }, + { + "start": 7505.52, + "end": 7507.36, + "probability": 0.9232 + }, + { + "start": 7508.18, + "end": 7512.12, + "probability": 0.9673 + }, + { + "start": 7513.04, + "end": 7515.56, + "probability": 0.9924 + }, + { + "start": 7516.24, + "end": 7517.12, + "probability": 0.5284 + }, + { + "start": 7517.72, + "end": 7518.26, + "probability": 0.7567 + }, + { + "start": 7518.36, + "end": 7519.34, + "probability": 0.8909 + }, + { + "start": 7519.4, + "end": 7519.83, + "probability": 0.9407 + }, + { + "start": 7520.38, + "end": 7521.64, + "probability": 0.9409 + }, + { + "start": 7521.94, + "end": 7522.4, + "probability": 0.8986 + }, + { + "start": 7522.78, + "end": 7524.76, + "probability": 0.8231 + }, + { + "start": 7524.8, + "end": 7527.06, + "probability": 0.9707 + }, + { + "start": 7528.54, + "end": 7529.12, + "probability": 0.3273 + }, + { + "start": 7530.52, + "end": 7531.02, + "probability": 0.6036 + }, + { + "start": 7532.76, + "end": 7533.4, + "probability": 0.4505 + }, + { + "start": 7533.58, + "end": 7536.54, + "probability": 0.6762 + }, + { + "start": 7536.8, + "end": 7540.38, + "probability": 0.8765 + }, + { + "start": 7540.54, + "end": 7544.22, + "probability": 0.9463 + }, + { + "start": 7544.8, + "end": 7551.6, + "probability": 0.9607 + }, + { + "start": 7551.84, + "end": 7553.54, + "probability": 0.6406 + }, + { + "start": 7553.64, + "end": 7554.96, + "probability": 0.9729 + }, + { + "start": 7555.08, + "end": 7557.32, + "probability": 0.172 + }, + { + "start": 7559.32, + "end": 7561.32, + "probability": 0.431 + }, + { + "start": 7563.14, + "end": 7564.77, + "probability": 0.9925 + }, + { + "start": 7568.85, + "end": 7573.2, + "probability": 0.9867 + }, + { + "start": 7574.93, + "end": 7577.6, + "probability": 0.8022 + }, + { + "start": 7578.58, + "end": 7581.18, + "probability": 0.7859 + }, + { + "start": 7581.26, + "end": 7581.3, + "probability": 0.1393 + }, + { + "start": 7581.32, + "end": 7584.1, + "probability": 0.7059 + }, + { + "start": 7584.34, + "end": 7585.04, + "probability": 0.5402 + }, + { + "start": 7591.46, + "end": 7594.4, + "probability": 0.0466 + }, + { + "start": 7594.56, + "end": 7595.38, + "probability": 0.1041 + }, + { + "start": 7595.38, + "end": 7595.4, + "probability": 0.1006 + }, + { + "start": 7600.06, + "end": 7600.9, + "probability": 0.1547 + }, + { + "start": 7601.64, + "end": 7601.98, + "probability": 0.2208 + }, + { + "start": 7602.28, + "end": 7605.24, + "probability": 0.9362 + }, + { + "start": 7605.42, + "end": 7606.68, + "probability": 0.6401 + }, + { + "start": 7607.36, + "end": 7612.88, + "probability": 0.9275 + }, + { + "start": 7613.2, + "end": 7618.02, + "probability": 0.9692 + }, + { + "start": 7619.12, + "end": 7619.34, + "probability": 0.4707 + }, + { + "start": 7619.42, + "end": 7620.77, + "probability": 0.8162 + }, + { + "start": 7621.12, + "end": 7623.54, + "probability": 0.9006 + }, + { + "start": 7623.92, + "end": 7627.72, + "probability": 0.936 + }, + { + "start": 7627.72, + "end": 7632.75, + "probability": 0.9931 + }, + { + "start": 7634.02, + "end": 7636.2, + "probability": 0.9437 + }, + { + "start": 7637.58, + "end": 7642.66, + "probability": 0.9062 + }, + { + "start": 7643.62, + "end": 7649.02, + "probability": 0.5144 + }, + { + "start": 7649.72, + "end": 7652.82, + "probability": 0.8147 + }, + { + "start": 7660.88, + "end": 7662.52, + "probability": 0.6045 + }, + { + "start": 7662.74, + "end": 7662.74, + "probability": 0.4486 + }, + { + "start": 7662.74, + "end": 7663.84, + "probability": 0.747 + }, + { + "start": 7663.96, + "end": 7665.4, + "probability": 0.7874 + }, + { + "start": 7666.24, + "end": 7669.46, + "probability": 0.8804 + }, + { + "start": 7670.62, + "end": 7673.52, + "probability": 0.941 + }, + { + "start": 7674.44, + "end": 7674.54, + "probability": 0.6163 + }, + { + "start": 7674.62, + "end": 7675.84, + "probability": 0.8346 + }, + { + "start": 7676.1, + "end": 7682.78, + "probability": 0.9966 + }, + { + "start": 7682.78, + "end": 7688.54, + "probability": 0.9985 + }, + { + "start": 7689.52, + "end": 7692.94, + "probability": 0.9928 + }, + { + "start": 7693.48, + "end": 7695.04, + "probability": 0.9568 + }, + { + "start": 7696.24, + "end": 7699.04, + "probability": 0.9357 + }, + { + "start": 7699.82, + "end": 7703.6, + "probability": 0.9491 + }, + { + "start": 7704.52, + "end": 7704.96, + "probability": 0.9316 + }, + { + "start": 7705.0, + "end": 7705.96, + "probability": 0.9827 + }, + { + "start": 7706.14, + "end": 7713.3, + "probability": 0.991 + }, + { + "start": 7714.38, + "end": 7719.8, + "probability": 0.9864 + }, + { + "start": 7720.36, + "end": 7723.82, + "probability": 0.9252 + }, + { + "start": 7724.34, + "end": 7726.8, + "probability": 0.9952 + }, + { + "start": 7727.52, + "end": 7733.08, + "probability": 0.984 + }, + { + "start": 7733.72, + "end": 7737.4, + "probability": 0.8564 + }, + { + "start": 7738.06, + "end": 7740.56, + "probability": 0.8463 + }, + { + "start": 7741.5, + "end": 7743.76, + "probability": 0.9884 + }, + { + "start": 7744.84, + "end": 7748.12, + "probability": 0.9963 + }, + { + "start": 7748.74, + "end": 7752.26, + "probability": 0.9987 + }, + { + "start": 7752.26, + "end": 7757.34, + "probability": 0.9994 + }, + { + "start": 7758.16, + "end": 7760.12, + "probability": 0.8533 + }, + { + "start": 7760.64, + "end": 7761.56, + "probability": 0.96 + }, + { + "start": 7762.14, + "end": 7764.34, + "probability": 0.9246 + }, + { + "start": 7764.7, + "end": 7771.06, + "probability": 0.9868 + }, + { + "start": 7771.5, + "end": 7772.32, + "probability": 0.7986 + }, + { + "start": 7772.58, + "end": 7773.26, + "probability": 0.71 + }, + { + "start": 7773.38, + "end": 7773.96, + "probability": 0.8529 + }, + { + "start": 7774.58, + "end": 7778.74, + "probability": 0.9858 + }, + { + "start": 7779.24, + "end": 7781.12, + "probability": 0.9824 + }, + { + "start": 7781.56, + "end": 7782.9, + "probability": 0.9389 + }, + { + "start": 7783.1, + "end": 7784.68, + "probability": 0.9314 + }, + { + "start": 7784.7, + "end": 7787.56, + "probability": 0.9844 + }, + { + "start": 7787.92, + "end": 7788.58, + "probability": 0.6172 + }, + { + "start": 7789.16, + "end": 7790.62, + "probability": 0.672 + }, + { + "start": 7791.36, + "end": 7792.78, + "probability": 0.8782 + }, + { + "start": 7793.46, + "end": 7794.86, + "probability": 0.9786 + }, + { + "start": 7795.7, + "end": 7797.14, + "probability": 0.9824 + }, + { + "start": 7797.8, + "end": 7804.16, + "probability": 0.9832 + }, + { + "start": 7804.62, + "end": 7807.8, + "probability": 0.8944 + }, + { + "start": 7808.46, + "end": 7810.76, + "probability": 0.8635 + }, + { + "start": 7811.5, + "end": 7814.22, + "probability": 0.9862 + }, + { + "start": 7814.58, + "end": 7815.14, + "probability": 0.8042 + }, + { + "start": 7815.64, + "end": 7817.11, + "probability": 0.9846 + }, + { + "start": 7817.3, + "end": 7818.56, + "probability": 0.819 + }, + { + "start": 7819.16, + "end": 7820.7, + "probability": 0.9624 + }, + { + "start": 7820.92, + "end": 7823.12, + "probability": 0.9826 + }, + { + "start": 7823.2, + "end": 7826.08, + "probability": 0.9398 + }, + { + "start": 7826.6, + "end": 7829.84, + "probability": 0.9951 + }, + { + "start": 7829.84, + "end": 7833.56, + "probability": 0.997 + }, + { + "start": 7835.04, + "end": 7835.92, + "probability": 0.8685 + }, + { + "start": 7836.06, + "end": 7840.36, + "probability": 0.9954 + }, + { + "start": 7840.36, + "end": 7845.08, + "probability": 0.9692 + }, + { + "start": 7845.7, + "end": 7846.9, + "probability": 0.9788 + }, + { + "start": 7846.94, + "end": 7849.8, + "probability": 0.6812 + }, + { + "start": 7850.52, + "end": 7855.52, + "probability": 0.8688 + }, + { + "start": 7856.08, + "end": 7856.6, + "probability": 0.8289 + }, + { + "start": 7856.7, + "end": 7857.84, + "probability": 0.8624 + }, + { + "start": 7857.92, + "end": 7858.66, + "probability": 0.8586 + }, + { + "start": 7859.14, + "end": 7863.24, + "probability": 0.9894 + }, + { + "start": 7863.78, + "end": 7865.28, + "probability": 0.8945 + }, + { + "start": 7865.88, + "end": 7866.92, + "probability": 0.8061 + }, + { + "start": 7868.14, + "end": 7869.48, + "probability": 0.9448 + }, + { + "start": 7870.52, + "end": 7872.72, + "probability": 0.9891 + }, + { + "start": 7873.64, + "end": 7877.08, + "probability": 0.9906 + }, + { + "start": 7878.28, + "end": 7880.7, + "probability": 0.8615 + }, + { + "start": 7881.46, + "end": 7886.7, + "probability": 0.9988 + }, + { + "start": 7886.7, + "end": 7892.12, + "probability": 0.9995 + }, + { + "start": 7892.5, + "end": 7893.2, + "probability": 0.8773 + }, + { + "start": 7893.56, + "end": 7894.18, + "probability": 0.6011 + }, + { + "start": 7894.78, + "end": 7898.72, + "probability": 0.9943 + }, + { + "start": 7900.44, + "end": 7901.02, + "probability": 0.6111 + }, + { + "start": 7901.12, + "end": 7904.84, + "probability": 0.9965 + }, + { + "start": 7905.36, + "end": 7909.36, + "probability": 0.9934 + }, + { + "start": 7909.84, + "end": 7911.2, + "probability": 0.9816 + }, + { + "start": 7911.38, + "end": 7912.5, + "probability": 0.8664 + }, + { + "start": 7912.94, + "end": 7915.26, + "probability": 0.9901 + }, + { + "start": 7915.96, + "end": 7920.28, + "probability": 0.9878 + }, + { + "start": 7920.88, + "end": 7923.18, + "probability": 0.9608 + }, + { + "start": 7923.34, + "end": 7925.06, + "probability": 0.9033 + }, + { + "start": 7926.58, + "end": 7927.68, + "probability": 0.7699 + }, + { + "start": 7927.78, + "end": 7934.08, + "probability": 0.9868 + }, + { + "start": 7934.64, + "end": 7938.3, + "probability": 0.9894 + }, + { + "start": 7939.06, + "end": 7940.52, + "probability": 0.9744 + }, + { + "start": 7940.94, + "end": 7942.4, + "probability": 0.9894 + }, + { + "start": 7942.76, + "end": 7944.48, + "probability": 0.9808 + }, + { + "start": 7944.9, + "end": 7947.3, + "probability": 0.9959 + }, + { + "start": 7947.88, + "end": 7949.72, + "probability": 0.9949 + }, + { + "start": 7949.92, + "end": 7950.68, + "probability": 0.6528 + }, + { + "start": 7950.96, + "end": 7952.02, + "probability": 0.7458 + }, + { + "start": 7952.1, + "end": 7953.16, + "probability": 0.7553 + }, + { + "start": 7953.34, + "end": 7954.3, + "probability": 0.8331 + }, + { + "start": 7955.14, + "end": 7957.33, + "probability": 0.9678 + }, + { + "start": 7957.84, + "end": 7959.06, + "probability": 0.917 + }, + { + "start": 7959.1, + "end": 7960.16, + "probability": 0.9861 + }, + { + "start": 7960.6, + "end": 7961.8, + "probability": 0.991 + }, + { + "start": 7962.54, + "end": 7963.04, + "probability": 0.4911 + }, + { + "start": 7965.04, + "end": 7967.12, + "probability": 0.98 + }, + { + "start": 7967.3, + "end": 7968.78, + "probability": 0.993 + }, + { + "start": 7968.96, + "end": 7971.82, + "probability": 0.9858 + }, + { + "start": 7972.22, + "end": 7974.78, + "probability": 0.9466 + }, + { + "start": 7975.14, + "end": 7977.14, + "probability": 0.8761 + }, + { + "start": 7977.54, + "end": 7978.94, + "probability": 0.9248 + }, + { + "start": 7979.44, + "end": 7981.88, + "probability": 0.9839 + }, + { + "start": 7982.42, + "end": 7983.48, + "probability": 0.7926 + }, + { + "start": 7983.82, + "end": 7985.06, + "probability": 0.9849 + }, + { + "start": 7985.56, + "end": 7991.7, + "probability": 0.9897 + }, + { + "start": 7992.12, + "end": 7992.72, + "probability": 0.7824 + }, + { + "start": 7993.34, + "end": 7996.5, + "probability": 0.9496 + }, + { + "start": 7997.5, + "end": 7998.42, + "probability": 0.9258 + }, + { + "start": 7999.02, + "end": 7999.74, + "probability": 0.7608 + }, + { + "start": 8000.5, + "end": 8001.16, + "probability": 0.6671 + }, + { + "start": 8001.26, + "end": 8002.06, + "probability": 0.9725 + }, + { + "start": 8002.16, + "end": 8003.58, + "probability": 0.6175 + }, + { + "start": 8004.08, + "end": 8004.32, + "probability": 0.7122 + }, + { + "start": 8004.36, + "end": 8006.7, + "probability": 0.9941 + }, + { + "start": 8007.3, + "end": 8010.18, + "probability": 0.9785 + }, + { + "start": 8010.42, + "end": 8013.4, + "probability": 0.9905 + }, + { + "start": 8014.26, + "end": 8015.14, + "probability": 0.9862 + }, + { + "start": 8015.64, + "end": 8019.78, + "probability": 0.9552 + }, + { + "start": 8020.32, + "end": 8022.86, + "probability": 0.9435 + }, + { + "start": 8023.24, + "end": 8025.18, + "probability": 0.998 + }, + { + "start": 8025.58, + "end": 8030.52, + "probability": 0.9946 + }, + { + "start": 8030.94, + "end": 8034.38, + "probability": 0.9469 + }, + { + "start": 8034.82, + "end": 8035.84, + "probability": 0.7253 + }, + { + "start": 8035.98, + "end": 8037.31, + "probability": 0.934 + }, + { + "start": 8037.86, + "end": 8038.9, + "probability": 0.9134 + }, + { + "start": 8039.06, + "end": 8041.36, + "probability": 0.903 + }, + { + "start": 8041.76, + "end": 8043.48, + "probability": 0.9973 + }, + { + "start": 8044.1, + "end": 8045.78, + "probability": 0.9958 + }, + { + "start": 8045.88, + "end": 8047.48, + "probability": 0.9012 + }, + { + "start": 8047.8, + "end": 8048.56, + "probability": 0.9309 + }, + { + "start": 8048.68, + "end": 8049.48, + "probability": 0.7924 + }, + { + "start": 8049.86, + "end": 8051.3, + "probability": 0.7905 + }, + { + "start": 8051.78, + "end": 8053.18, + "probability": 0.9627 + }, + { + "start": 8053.28, + "end": 8056.22, + "probability": 0.995 + }, + { + "start": 8057.82, + "end": 8058.42, + "probability": 0.496 + }, + { + "start": 8058.54, + "end": 8059.54, + "probability": 0.5022 + }, + { + "start": 8059.66, + "end": 8065.34, + "probability": 0.9403 + }, + { + "start": 8065.82, + "end": 8066.53, + "probability": 0.9561 + }, + { + "start": 8067.4, + "end": 8068.12, + "probability": 0.6322 + }, + { + "start": 8068.12, + "end": 8070.66, + "probability": 0.9637 + }, + { + "start": 8070.68, + "end": 8074.34, + "probability": 0.9251 + }, + { + "start": 8074.42, + "end": 8076.26, + "probability": 0.7266 + }, + { + "start": 8076.4, + "end": 8080.72, + "probability": 0.8149 + }, + { + "start": 8081.26, + "end": 8083.46, + "probability": 0.9786 + }, + { + "start": 8083.52, + "end": 8084.54, + "probability": 0.7979 + }, + { + "start": 8084.92, + "end": 8088.12, + "probability": 0.9959 + }, + { + "start": 8090.1, + "end": 8091.7, + "probability": 0.9696 + }, + { + "start": 8092.3, + "end": 8093.0, + "probability": 0.9388 + }, + { + "start": 8093.76, + "end": 8097.06, + "probability": 0.9922 + }, + { + "start": 8097.68, + "end": 8100.78, + "probability": 0.958 + }, + { + "start": 8101.12, + "end": 8102.16, + "probability": 0.9765 + }, + { + "start": 8102.46, + "end": 8105.38, + "probability": 0.895 + }, + { + "start": 8105.7, + "end": 8109.42, + "probability": 0.9942 + }, + { + "start": 8109.72, + "end": 8111.18, + "probability": 0.9775 + }, + { + "start": 8111.48, + "end": 8112.98, + "probability": 0.9672 + }, + { + "start": 8113.5, + "end": 8113.74, + "probability": 0.7251 + }, + { + "start": 8113.82, + "end": 8118.32, + "probability": 0.9481 + }, + { + "start": 8118.94, + "end": 8123.06, + "probability": 0.9915 + }, + { + "start": 8123.06, + "end": 8123.97, + "probability": 0.179 + }, + { + "start": 8124.94, + "end": 8127.74, + "probability": 0.9988 + }, + { + "start": 8128.24, + "end": 8129.98, + "probability": 0.8762 + }, + { + "start": 8132.32, + "end": 8133.22, + "probability": 0.7568 + }, + { + "start": 8136.02, + "end": 8137.48, + "probability": 0.2968 + }, + { + "start": 8137.6, + "end": 8137.88, + "probability": 0.4033 + }, + { + "start": 8137.96, + "end": 8138.46, + "probability": 0.8814 + }, + { + "start": 8138.58, + "end": 8140.68, + "probability": 0.8145 + }, + { + "start": 8140.9, + "end": 8142.29, + "probability": 0.7829 + }, + { + "start": 8142.36, + "end": 8149.2, + "probability": 0.8467 + }, + { + "start": 8149.72, + "end": 8151.7, + "probability": 0.8608 + }, + { + "start": 8151.86, + "end": 8152.38, + "probability": 0.7722 + }, + { + "start": 8152.52, + "end": 8154.78, + "probability": 0.9751 + }, + { + "start": 8154.94, + "end": 8156.0, + "probability": 0.8355 + }, + { + "start": 8156.06, + "end": 8157.54, + "probability": 0.9855 + }, + { + "start": 8157.62, + "end": 8158.56, + "probability": 0.7927 + }, + { + "start": 8158.92, + "end": 8159.7, + "probability": 0.9092 + }, + { + "start": 8159.8, + "end": 8161.72, + "probability": 0.9745 + }, + { + "start": 8162.32, + "end": 8163.02, + "probability": 0.1451 + }, + { + "start": 8163.22, + "end": 8164.28, + "probability": 0.7629 + }, + { + "start": 8164.56, + "end": 8165.3, + "probability": 0.9209 + }, + { + "start": 8165.86, + "end": 8168.4, + "probability": 0.9445 + }, + { + "start": 8168.88, + "end": 8172.62, + "probability": 0.9932 + }, + { + "start": 8172.68, + "end": 8175.8, + "probability": 0.9773 + }, + { + "start": 8176.7, + "end": 8178.96, + "probability": 0.9449 + }, + { + "start": 8179.52, + "end": 8180.38, + "probability": 0.9907 + }, + { + "start": 8180.98, + "end": 8187.04, + "probability": 0.938 + }, + { + "start": 8187.28, + "end": 8188.13, + "probability": 0.9761 + }, + { + "start": 8188.58, + "end": 8192.76, + "probability": 0.9806 + }, + { + "start": 8193.54, + "end": 8197.5, + "probability": 0.9929 + }, + { + "start": 8197.5, + "end": 8201.2, + "probability": 0.9995 + }, + { + "start": 8201.86, + "end": 8205.46, + "probability": 0.966 + }, + { + "start": 8206.94, + "end": 8209.12, + "probability": 0.9153 + }, + { + "start": 8209.78, + "end": 8211.52, + "probability": 0.9976 + }, + { + "start": 8212.0, + "end": 8215.66, + "probability": 0.9974 + }, + { + "start": 8216.38, + "end": 8218.4, + "probability": 0.9966 + }, + { + "start": 8218.72, + "end": 8219.62, + "probability": 0.8929 + }, + { + "start": 8220.1, + "end": 8221.58, + "probability": 0.9748 + }, + { + "start": 8221.74, + "end": 8222.26, + "probability": 0.9449 + }, + { + "start": 8222.36, + "end": 8223.08, + "probability": 0.7465 + }, + { + "start": 8223.08, + "end": 8223.64, + "probability": 0.6863 + }, + { + "start": 8224.84, + "end": 8227.5, + "probability": 0.7038 + }, + { + "start": 8227.74, + "end": 8230.46, + "probability": 0.7673 + }, + { + "start": 8230.5, + "end": 8232.02, + "probability": 0.6027 + }, + { + "start": 8232.26, + "end": 8232.8, + "probability": 0.9325 + }, + { + "start": 8232.94, + "end": 8233.66, + "probability": 0.8781 + }, + { + "start": 8234.02, + "end": 8236.14, + "probability": 0.9985 + }, + { + "start": 8236.48, + "end": 8239.76, + "probability": 0.9909 + }, + { + "start": 8240.36, + "end": 8242.94, + "probability": 0.9495 + }, + { + "start": 8244.36, + "end": 8246.84, + "probability": 0.8011 + }, + { + "start": 8246.98, + "end": 8248.42, + "probability": 0.9803 + }, + { + "start": 8248.86, + "end": 8253.88, + "probability": 0.8568 + }, + { + "start": 8254.96, + "end": 8258.48, + "probability": 0.7623 + }, + { + "start": 8259.24, + "end": 8263.66, + "probability": 0.9989 + }, + { + "start": 8264.26, + "end": 8264.52, + "probability": 0.8325 + }, + { + "start": 8264.62, + "end": 8265.8, + "probability": 0.9243 + }, + { + "start": 8266.24, + "end": 8267.78, + "probability": 0.9689 + }, + { + "start": 8268.14, + "end": 8271.02, + "probability": 0.9983 + }, + { + "start": 8271.28, + "end": 8273.24, + "probability": 0.9992 + }, + { + "start": 8273.8, + "end": 8277.66, + "probability": 0.991 + }, + { + "start": 8278.04, + "end": 8279.0, + "probability": 0.648 + }, + { + "start": 8279.38, + "end": 8281.22, + "probability": 0.9863 + }, + { + "start": 8281.76, + "end": 8287.28, + "probability": 0.9981 + }, + { + "start": 8287.92, + "end": 8292.92, + "probability": 0.9959 + }, + { + "start": 8292.92, + "end": 8300.02, + "probability": 0.9961 + }, + { + "start": 8300.56, + "end": 8302.48, + "probability": 0.9993 + }, + { + "start": 8302.6, + "end": 8304.5, + "probability": 0.9897 + }, + { + "start": 8305.32, + "end": 8305.88, + "probability": 0.7653 + }, + { + "start": 8306.38, + "end": 8309.62, + "probability": 0.9145 + }, + { + "start": 8309.72, + "end": 8314.48, + "probability": 0.9734 + }, + { + "start": 8315.56, + "end": 8316.42, + "probability": 0.968 + }, + { + "start": 8318.32, + "end": 8319.39, + "probability": 0.9844 + }, + { + "start": 8320.32, + "end": 8321.02, + "probability": 0.9848 + }, + { + "start": 8322.1, + "end": 8322.82, + "probability": 0.8689 + }, + { + "start": 8323.88, + "end": 8329.42, + "probability": 0.9943 + }, + { + "start": 8329.42, + "end": 8332.4, + "probability": 0.9978 + }, + { + "start": 8333.36, + "end": 8335.18, + "probability": 0.6801 + }, + { + "start": 8335.22, + "end": 8336.44, + "probability": 0.9907 + }, + { + "start": 8337.36, + "end": 8340.38, + "probability": 0.9979 + }, + { + "start": 8340.92, + "end": 8344.94, + "probability": 0.9655 + }, + { + "start": 8345.9, + "end": 8351.02, + "probability": 0.9741 + }, + { + "start": 8351.46, + "end": 8352.34, + "probability": 0.983 + }, + { + "start": 8352.94, + "end": 8353.88, + "probability": 0.9235 + }, + { + "start": 8354.72, + "end": 8357.36, + "probability": 0.9959 + }, + { + "start": 8358.76, + "end": 8363.88, + "probability": 0.939 + }, + { + "start": 8364.62, + "end": 8369.7, + "probability": 0.9943 + }, + { + "start": 8370.04, + "end": 8371.42, + "probability": 0.9821 + }, + { + "start": 8371.94, + "end": 8372.78, + "probability": 0.5995 + }, + { + "start": 8373.12, + "end": 8378.46, + "probability": 0.9987 + }, + { + "start": 8379.14, + "end": 8380.64, + "probability": 0.9291 + }, + { + "start": 8380.94, + "end": 8382.12, + "probability": 0.9286 + }, + { + "start": 8382.6, + "end": 8383.98, + "probability": 0.9236 + }, + { + "start": 8384.14, + "end": 8384.7, + "probability": 0.7646 + }, + { + "start": 8384.9, + "end": 8386.03, + "probability": 0.9961 + }, + { + "start": 8386.68, + "end": 8388.2, + "probability": 0.9408 + }, + { + "start": 8388.4, + "end": 8392.24, + "probability": 0.9764 + }, + { + "start": 8392.44, + "end": 8394.04, + "probability": 0.9749 + }, + { + "start": 8394.48, + "end": 8397.58, + "probability": 0.9846 + }, + { + "start": 8398.48, + "end": 8400.6, + "probability": 0.9803 + }, + { + "start": 8400.82, + "end": 8403.34, + "probability": 0.8058 + }, + { + "start": 8404.06, + "end": 8406.84, + "probability": 0.9912 + }, + { + "start": 8407.6, + "end": 8408.5, + "probability": 0.9177 + }, + { + "start": 8409.32, + "end": 8411.24, + "probability": 0.9867 + }, + { + "start": 8412.38, + "end": 8413.1, + "probability": 0.879 + }, + { + "start": 8413.56, + "end": 8413.98, + "probability": 0.8796 + }, + { + "start": 8414.34, + "end": 8414.78, + "probability": 0.323 + }, + { + "start": 8415.36, + "end": 8417.36, + "probability": 0.7737 + }, + { + "start": 8418.1, + "end": 8421.38, + "probability": 0.9777 + }, + { + "start": 8421.6, + "end": 8424.16, + "probability": 0.5767 + }, + { + "start": 8430.2, + "end": 8430.34, + "probability": 0.0596 + }, + { + "start": 8430.34, + "end": 8430.34, + "probability": 0.0546 + }, + { + "start": 8430.34, + "end": 8432.38, + "probability": 0.963 + }, + { + "start": 8432.38, + "end": 8434.78, + "probability": 0.9668 + }, + { + "start": 8435.2, + "end": 8436.42, + "probability": 0.9331 + }, + { + "start": 8436.68, + "end": 8438.12, + "probability": 0.7255 + }, + { + "start": 8438.26, + "end": 8439.66, + "probability": 0.6022 + }, + { + "start": 8439.96, + "end": 8440.42, + "probability": 0.3612 + }, + { + "start": 8440.6, + "end": 8443.36, + "probability": 0.884 + }, + { + "start": 8444.86, + "end": 8446.52, + "probability": 0.9648 + }, + { + "start": 8447.42, + "end": 8448.5, + "probability": 0.9153 + }, + { + "start": 8449.66, + "end": 8452.8, + "probability": 0.9688 + }, + { + "start": 8454.32, + "end": 8457.36, + "probability": 0.9521 + }, + { + "start": 8457.98, + "end": 8459.66, + "probability": 0.3848 + }, + { + "start": 8459.7, + "end": 8460.47, + "probability": 0.4866 + }, + { + "start": 8460.92, + "end": 8461.46, + "probability": 0.166 + }, + { + "start": 8461.64, + "end": 8461.76, + "probability": 0.6633 + }, + { + "start": 8461.9, + "end": 8464.72, + "probability": 0.1929 + }, + { + "start": 8465.42, + "end": 8468.2, + "probability": 0.9007 + }, + { + "start": 8468.76, + "end": 8470.06, + "probability": 0.3527 + }, + { + "start": 8470.16, + "end": 8472.44, + "probability": 0.7692 + }, + { + "start": 8472.68, + "end": 8472.96, + "probability": 0.7363 + }, + { + "start": 8473.06, + "end": 8473.36, + "probability": 0.5603 + }, + { + "start": 8473.36, + "end": 8473.64, + "probability": 0.2351 + }, + { + "start": 8473.66, + "end": 8474.74, + "probability": 0.1192 + }, + { + "start": 8474.9, + "end": 8476.62, + "probability": 0.8115 + }, + { + "start": 8477.04, + "end": 8478.76, + "probability": 0.7397 + }, + { + "start": 8480.16, + "end": 8482.48, + "probability": 0.4998 + }, + { + "start": 8482.48, + "end": 8483.02, + "probability": 0.3034 + }, + { + "start": 8485.54, + "end": 8486.12, + "probability": 0.046 + }, + { + "start": 8486.12, + "end": 8486.48, + "probability": 0.034 + }, + { + "start": 8488.88, + "end": 8491.36, + "probability": 0.674 + }, + { + "start": 8491.92, + "end": 8495.12, + "probability": 0.9608 + }, + { + "start": 8495.82, + "end": 8497.8, + "probability": 0.994 + }, + { + "start": 8498.06, + "end": 8498.72, + "probability": 0.1771 + }, + { + "start": 8499.4, + "end": 8499.6, + "probability": 0.8677 + }, + { + "start": 8499.84, + "end": 8505.68, + "probability": 0.9886 + }, + { + "start": 8508.06, + "end": 8508.62, + "probability": 0.7383 + }, + { + "start": 8508.66, + "end": 8509.18, + "probability": 0.798 + }, + { + "start": 8509.24, + "end": 8512.72, + "probability": 0.9722 + }, + { + "start": 8515.06, + "end": 8516.04, + "probability": 0.9025 + }, + { + "start": 8516.58, + "end": 8517.52, + "probability": 0.4913 + }, + { + "start": 8518.42, + "end": 8522.56, + "probability": 0.9816 + }, + { + "start": 8522.56, + "end": 8528.98, + "probability": 0.9282 + }, + { + "start": 8530.28, + "end": 8533.68, + "probability": 0.9209 + }, + { + "start": 8534.62, + "end": 8536.52, + "probability": 0.9989 + }, + { + "start": 8537.72, + "end": 8538.44, + "probability": 0.7681 + }, + { + "start": 8539.56, + "end": 8542.16, + "probability": 0.9537 + }, + { + "start": 8542.68, + "end": 8543.04, + "probability": 0.7577 + }, + { + "start": 8544.14, + "end": 8547.0, + "probability": 0.9497 + }, + { + "start": 8547.72, + "end": 8550.94, + "probability": 0.9956 + }, + { + "start": 8551.52, + "end": 8555.32, + "probability": 0.9978 + }, + { + "start": 8556.92, + "end": 8558.78, + "probability": 0.8721 + }, + { + "start": 8560.44, + "end": 8562.86, + "probability": 0.9546 + }, + { + "start": 8564.24, + "end": 8565.52, + "probability": 0.848 + }, + { + "start": 8565.6, + "end": 8568.16, + "probability": 0.8708 + }, + { + "start": 8569.0, + "end": 8571.06, + "probability": 0.9511 + }, + { + "start": 8572.28, + "end": 8574.38, + "probability": 0.9356 + }, + { + "start": 8575.14, + "end": 8576.32, + "probability": 0.7618 + }, + { + "start": 8577.26, + "end": 8580.46, + "probability": 0.9518 + }, + { + "start": 8581.6, + "end": 8585.5, + "probability": 0.9856 + }, + { + "start": 8586.1, + "end": 8588.12, + "probability": 0.948 + }, + { + "start": 8589.02, + "end": 8591.84, + "probability": 0.8477 + }, + { + "start": 8592.36, + "end": 8593.72, + "probability": 0.9871 + }, + { + "start": 8593.8, + "end": 8596.06, + "probability": 0.8653 + }, + { + "start": 8596.6, + "end": 8597.86, + "probability": 0.95 + }, + { + "start": 8598.84, + "end": 8600.0, + "probability": 0.9171 + }, + { + "start": 8601.6, + "end": 8603.16, + "probability": 0.7672 + }, + { + "start": 8603.4, + "end": 8604.18, + "probability": 0.9483 + }, + { + "start": 8604.34, + "end": 8604.48, + "probability": 0.3356 + }, + { + "start": 8604.6, + "end": 8605.12, + "probability": 0.775 + }, + { + "start": 8606.3, + "end": 8607.92, + "probability": 0.9248 + }, + { + "start": 8608.62, + "end": 8610.48, + "probability": 0.9437 + }, + { + "start": 8610.56, + "end": 8612.2, + "probability": 0.9557 + }, + { + "start": 8613.08, + "end": 8616.32, + "probability": 0.8678 + }, + { + "start": 8617.38, + "end": 8619.1, + "probability": 0.8988 + }, + { + "start": 8620.2, + "end": 8621.55, + "probability": 0.4582 + }, + { + "start": 8621.96, + "end": 8622.46, + "probability": 0.8223 + }, + { + "start": 8623.06, + "end": 8625.66, + "probability": 0.9837 + }, + { + "start": 8626.54, + "end": 8630.1, + "probability": 0.9863 + }, + { + "start": 8630.8, + "end": 8633.36, + "probability": 0.9053 + }, + { + "start": 8633.56, + "end": 8634.74, + "probability": 0.2041 + }, + { + "start": 8635.22, + "end": 8636.26, + "probability": 0.3219 + }, + { + "start": 8636.3, + "end": 8642.78, + "probability": 0.9567 + }, + { + "start": 8642.8, + "end": 8642.8, + "probability": 0.0017 + }, + { + "start": 8643.08, + "end": 8643.88, + "probability": 0.0937 + }, + { + "start": 8644.16, + "end": 8646.22, + "probability": 0.9648 + }, + { + "start": 8646.64, + "end": 8648.62, + "probability": 0.7733 + }, + { + "start": 8649.76, + "end": 8654.92, + "probability": 0.9964 + }, + { + "start": 8656.52, + "end": 8660.64, + "probability": 0.9868 + }, + { + "start": 8660.64, + "end": 8664.48, + "probability": 0.9976 + }, + { + "start": 8666.1, + "end": 8666.98, + "probability": 0.7975 + }, + { + "start": 8668.48, + "end": 8670.42, + "probability": 0.7129 + }, + { + "start": 8671.36, + "end": 8674.0, + "probability": 0.9925 + }, + { + "start": 8674.92, + "end": 8676.12, + "probability": 0.7038 + }, + { + "start": 8677.2, + "end": 8678.02, + "probability": 0.849 + }, + { + "start": 8678.1, + "end": 8680.39, + "probability": 0.9756 + }, + { + "start": 8681.46, + "end": 8683.28, + "probability": 0.6648 + }, + { + "start": 8684.66, + "end": 8684.66, + "probability": 0.0054 + }, + { + "start": 8684.66, + "end": 8688.74, + "probability": 0.9751 + }, + { + "start": 8689.5, + "end": 8690.62, + "probability": 0.907 + }, + { + "start": 8691.96, + "end": 8696.42, + "probability": 0.78 + }, + { + "start": 8697.6, + "end": 8699.02, + "probability": 0.8162 + }, + { + "start": 8699.16, + "end": 8699.42, + "probability": 0.6741 + }, + { + "start": 8699.46, + "end": 8701.66, + "probability": 0.9348 + }, + { + "start": 8701.72, + "end": 8702.14, + "probability": 0.8575 + }, + { + "start": 8702.78, + "end": 8705.31, + "probability": 0.9956 + }, + { + "start": 8707.38, + "end": 8710.72, + "probability": 0.9275 + }, + { + "start": 8711.86, + "end": 8713.16, + "probability": 0.8784 + }, + { + "start": 8713.78, + "end": 8718.46, + "probability": 0.9129 + }, + { + "start": 8719.88, + "end": 8721.02, + "probability": 0.9028 + }, + { + "start": 8722.3, + "end": 8723.58, + "probability": 0.9355 + }, + { + "start": 8725.44, + "end": 8727.54, + "probability": 0.999 + }, + { + "start": 8729.16, + "end": 8729.96, + "probability": 0.9909 + }, + { + "start": 8730.0, + "end": 8730.56, + "probability": 0.7976 + }, + { + "start": 8730.64, + "end": 8733.04, + "probability": 0.8699 + }, + { + "start": 8733.92, + "end": 8735.56, + "probability": 0.949 + }, + { + "start": 8736.12, + "end": 8737.14, + "probability": 0.8391 + }, + { + "start": 8737.18, + "end": 8738.16, + "probability": 0.9809 + }, + { + "start": 8738.28, + "end": 8739.56, + "probability": 0.9479 + }, + { + "start": 8739.66, + "end": 8740.06, + "probability": 0.9313 + }, + { + "start": 8740.72, + "end": 8741.3, + "probability": 0.8547 + }, + { + "start": 8741.84, + "end": 8742.26, + "probability": 0.9609 + }, + { + "start": 8742.88, + "end": 8745.12, + "probability": 0.9013 + }, + { + "start": 8746.54, + "end": 8748.18, + "probability": 0.9878 + }, + { + "start": 8748.26, + "end": 8749.26, + "probability": 0.5363 + }, + { + "start": 8749.3, + "end": 8750.3, + "probability": 0.6866 + }, + { + "start": 8750.6, + "end": 8751.12, + "probability": 0.0402 + }, + { + "start": 8751.36, + "end": 8754.42, + "probability": 0.8384 + }, + { + "start": 8754.42, + "end": 8755.46, + "probability": 0.7865 + }, + { + "start": 8756.4, + "end": 8757.68, + "probability": 0.9077 + }, + { + "start": 8759.78, + "end": 8760.84, + "probability": 0.8408 + }, + { + "start": 8762.0, + "end": 8763.98, + "probability": 0.9077 + }, + { + "start": 8764.8, + "end": 8767.8, + "probability": 0.9539 + }, + { + "start": 8769.3, + "end": 8770.8, + "probability": 0.6231 + }, + { + "start": 8771.36, + "end": 8773.58, + "probability": 0.7935 + }, + { + "start": 8774.1, + "end": 8775.7, + "probability": 0.9915 + }, + { + "start": 8777.22, + "end": 8778.3, + "probability": 0.7109 + }, + { + "start": 8778.4, + "end": 8779.4, + "probability": 0.9788 + }, + { + "start": 8779.84, + "end": 8781.58, + "probability": 0.9728 + }, + { + "start": 8782.42, + "end": 8784.11, + "probability": 0.9839 + }, + { + "start": 8785.6, + "end": 8787.04, + "probability": 0.9801 + }, + { + "start": 8788.36, + "end": 8790.26, + "probability": 0.9949 + }, + { + "start": 8792.22, + "end": 8794.46, + "probability": 0.8197 + }, + { + "start": 8795.16, + "end": 8796.04, + "probability": 0.4599 + }, + { + "start": 8796.14, + "end": 8798.32, + "probability": 0.9941 + }, + { + "start": 8800.26, + "end": 8803.97, + "probability": 0.8018 + }, + { + "start": 8804.84, + "end": 8806.68, + "probability": 0.7061 + }, + { + "start": 8807.74, + "end": 8812.24, + "probability": 0.9727 + }, + { + "start": 8812.62, + "end": 8815.96, + "probability": 0.9815 + }, + { + "start": 8819.5, + "end": 8820.56, + "probability": 0.5502 + }, + { + "start": 8821.68, + "end": 8822.7, + "probability": 0.8112 + }, + { + "start": 8823.38, + "end": 8825.66, + "probability": 0.9443 + }, + { + "start": 8826.22, + "end": 8828.28, + "probability": 0.9928 + }, + { + "start": 8830.0, + "end": 8831.52, + "probability": 0.9524 + }, + { + "start": 8833.52, + "end": 8835.2, + "probability": 0.8136 + }, + { + "start": 8836.64, + "end": 8837.32, + "probability": 0.6668 + }, + { + "start": 8838.04, + "end": 8843.76, + "probability": 0.9654 + }, + { + "start": 8844.86, + "end": 8846.4, + "probability": 0.9658 + }, + { + "start": 8847.52, + "end": 8849.04, + "probability": 0.9991 + }, + { + "start": 8850.14, + "end": 8854.64, + "probability": 0.9656 + }, + { + "start": 8855.52, + "end": 8856.66, + "probability": 0.6827 + }, + { + "start": 8858.0, + "end": 8860.94, + "probability": 0.99 + }, + { + "start": 8862.34, + "end": 8864.92, + "probability": 0.7705 + }, + { + "start": 8868.0, + "end": 8868.54, + "probability": 0.9508 + }, + { + "start": 8870.66, + "end": 8871.28, + "probability": 0.993 + }, + { + "start": 8872.3, + "end": 8874.34, + "probability": 0.9989 + }, + { + "start": 8875.1, + "end": 8879.0, + "probability": 0.894 + }, + { + "start": 8879.56, + "end": 8882.28, + "probability": 0.9841 + }, + { + "start": 8883.82, + "end": 8885.83, + "probability": 0.9703 + }, + { + "start": 8887.2, + "end": 8889.5, + "probability": 0.992 + }, + { + "start": 8890.64, + "end": 8894.88, + "probability": 0.9794 + }, + { + "start": 8896.48, + "end": 8900.36, + "probability": 0.9888 + }, + { + "start": 8900.42, + "end": 8901.96, + "probability": 0.9846 + }, + { + "start": 8903.04, + "end": 8906.5, + "probability": 0.9972 + }, + { + "start": 8906.68, + "end": 8907.26, + "probability": 0.7506 + }, + { + "start": 8908.38, + "end": 8911.28, + "probability": 0.7882 + }, + { + "start": 8912.32, + "end": 8915.5, + "probability": 0.9902 + }, + { + "start": 8916.2, + "end": 8918.86, + "probability": 0.8364 + }, + { + "start": 8920.36, + "end": 8924.5, + "probability": 0.7492 + }, + { + "start": 8925.08, + "end": 8928.22, + "probability": 0.9211 + }, + { + "start": 8928.96, + "end": 8929.7, + "probability": 0.8636 + }, + { + "start": 8929.82, + "end": 8931.2, + "probability": 0.9958 + }, + { + "start": 8931.36, + "end": 8932.7, + "probability": 0.8262 + }, + { + "start": 8932.76, + "end": 8933.64, + "probability": 0.96 + }, + { + "start": 8936.04, + "end": 8938.74, + "probability": 0.9571 + }, + { + "start": 8939.22, + "end": 8940.9, + "probability": 0.7619 + }, + { + "start": 8940.96, + "end": 8941.88, + "probability": 0.9464 + }, + { + "start": 8943.22, + "end": 8945.84, + "probability": 0.7417 + }, + { + "start": 8946.82, + "end": 8949.3, + "probability": 0.9708 + }, + { + "start": 8950.68, + "end": 8952.08, + "probability": 0.9565 + }, + { + "start": 8952.18, + "end": 8952.86, + "probability": 0.7725 + }, + { + "start": 8953.06, + "end": 8953.3, + "probability": 0.7676 + }, + { + "start": 8953.34, + "end": 8954.38, + "probability": 0.9434 + }, + { + "start": 8954.46, + "end": 8955.86, + "probability": 0.8937 + }, + { + "start": 8955.94, + "end": 8957.16, + "probability": 0.9985 + }, + { + "start": 8957.96, + "end": 8960.2, + "probability": 0.9863 + }, + { + "start": 8960.82, + "end": 8963.74, + "probability": 0.8097 + }, + { + "start": 8966.22, + "end": 8968.96, + "probability": 0.9726 + }, + { + "start": 8969.6, + "end": 8971.0, + "probability": 0.7028 + }, + { + "start": 8972.9, + "end": 8975.6, + "probability": 0.9819 + }, + { + "start": 8975.76, + "end": 8977.52, + "probability": 0.9218 + }, + { + "start": 8977.6, + "end": 8977.92, + "probability": 0.6863 + }, + { + "start": 8979.1, + "end": 8979.3, + "probability": 0.4797 + }, + { + "start": 8979.34, + "end": 8983.76, + "probability": 0.9972 + }, + { + "start": 8984.6, + "end": 8985.08, + "probability": 0.8091 + }, + { + "start": 8985.2, + "end": 8986.92, + "probability": 0.9434 + }, + { + "start": 8987.1, + "end": 8987.42, + "probability": 0.7908 + }, + { + "start": 8988.24, + "end": 8989.8, + "probability": 0.969 + }, + { + "start": 8992.58, + "end": 8993.78, + "probability": 0.8072 + }, + { + "start": 8994.6, + "end": 8996.6, + "probability": 0.9866 + }, + { + "start": 8999.08, + "end": 9001.82, + "probability": 0.7752 + }, + { + "start": 9006.18, + "end": 9010.38, + "probability": 0.9292 + }, + { + "start": 9012.42, + "end": 9016.6, + "probability": 0.8573 + }, + { + "start": 9018.26, + "end": 9019.88, + "probability": 0.9315 + }, + { + "start": 9020.7, + "end": 9026.36, + "probability": 0.9762 + }, + { + "start": 9028.1, + "end": 9032.3, + "probability": 0.9115 + }, + { + "start": 9035.22, + "end": 9035.76, + "probability": 0.9479 + }, + { + "start": 9037.92, + "end": 9039.4, + "probability": 0.9879 + }, + { + "start": 9040.16, + "end": 9042.54, + "probability": 0.9101 + }, + { + "start": 9044.08, + "end": 9044.42, + "probability": 0.8328 + }, + { + "start": 9044.5, + "end": 9045.75, + "probability": 0.9941 + }, + { + "start": 9045.86, + "end": 9046.6, + "probability": 0.8582 + }, + { + "start": 9047.34, + "end": 9049.64, + "probability": 0.9946 + }, + { + "start": 9050.82, + "end": 9051.98, + "probability": 0.9702 + }, + { + "start": 9053.58, + "end": 9058.94, + "probability": 0.9856 + }, + { + "start": 9061.02, + "end": 9064.14, + "probability": 0.9242 + }, + { + "start": 9066.2, + "end": 9068.0, + "probability": 0.6734 + }, + { + "start": 9068.28, + "end": 9070.26, + "probability": 0.873 + }, + { + "start": 9070.9, + "end": 9072.04, + "probability": 0.9163 + }, + { + "start": 9072.18, + "end": 9073.22, + "probability": 0.6743 + }, + { + "start": 9073.48, + "end": 9075.64, + "probability": 0.8796 + }, + { + "start": 9077.16, + "end": 9082.82, + "probability": 0.9407 + }, + { + "start": 9084.54, + "end": 9086.12, + "probability": 0.9036 + }, + { + "start": 9087.7, + "end": 9088.86, + "probability": 0.9939 + }, + { + "start": 9090.18, + "end": 9094.38, + "probability": 0.9961 + }, + { + "start": 9094.56, + "end": 9095.82, + "probability": 0.6572 + }, + { + "start": 9096.36, + "end": 9098.9, + "probability": 0.9414 + }, + { + "start": 9099.64, + "end": 9101.38, + "probability": 0.9976 + }, + { + "start": 9101.76, + "end": 9103.1, + "probability": 0.8175 + }, + { + "start": 9103.9, + "end": 9105.86, + "probability": 0.9386 + }, + { + "start": 9106.76, + "end": 9108.82, + "probability": 0.9873 + }, + { + "start": 9109.0, + "end": 9112.64, + "probability": 0.9805 + }, + { + "start": 9113.34, + "end": 9115.92, + "probability": 0.6708 + }, + { + "start": 9116.52, + "end": 9117.9, + "probability": 0.9646 + }, + { + "start": 9120.12, + "end": 9125.58, + "probability": 0.9545 + }, + { + "start": 9125.66, + "end": 9130.48, + "probability": 0.9969 + }, + { + "start": 9130.72, + "end": 9133.58, + "probability": 0.9985 + }, + { + "start": 9137.24, + "end": 9139.22, + "probability": 0.9487 + }, + { + "start": 9139.78, + "end": 9140.86, + "probability": 0.8008 + }, + { + "start": 9141.44, + "end": 9142.36, + "probability": 0.939 + }, + { + "start": 9143.1, + "end": 9145.66, + "probability": 0.9665 + }, + { + "start": 9146.76, + "end": 9149.42, + "probability": 0.9973 + }, + { + "start": 9150.28, + "end": 9150.44, + "probability": 0.0401 + }, + { + "start": 9150.58, + "end": 9150.76, + "probability": 0.3463 + }, + { + "start": 9150.76, + "end": 9151.62, + "probability": 0.7858 + }, + { + "start": 9152.96, + "end": 9158.3, + "probability": 0.9956 + }, + { + "start": 9160.42, + "end": 9163.21, + "probability": 0.9956 + }, + { + "start": 9166.46, + "end": 9167.24, + "probability": 0.9731 + }, + { + "start": 9168.4, + "end": 9171.72, + "probability": 0.8992 + }, + { + "start": 9173.32, + "end": 9176.86, + "probability": 0.9907 + }, + { + "start": 9178.24, + "end": 9179.92, + "probability": 0.7872 + }, + { + "start": 9181.5, + "end": 9183.68, + "probability": 0.9971 + }, + { + "start": 9185.0, + "end": 9189.0, + "probability": 0.9961 + }, + { + "start": 9189.98, + "end": 9192.62, + "probability": 0.8202 + }, + { + "start": 9193.26, + "end": 9196.32, + "probability": 0.8851 + }, + { + "start": 9197.08, + "end": 9198.2, + "probability": 0.9048 + }, + { + "start": 9199.04, + "end": 9200.18, + "probability": 0.9817 + }, + { + "start": 9200.62, + "end": 9204.13, + "probability": 0.9791 + }, + { + "start": 9204.28, + "end": 9205.56, + "probability": 0.9336 + }, + { + "start": 9206.28, + "end": 9208.44, + "probability": 0.98 + }, + { + "start": 9208.58, + "end": 9209.32, + "probability": 0.7229 + }, + { + "start": 9211.66, + "end": 9214.41, + "probability": 0.9619 + }, + { + "start": 9215.86, + "end": 9217.0, + "probability": 0.9759 + }, + { + "start": 9218.18, + "end": 9219.42, + "probability": 0.9924 + }, + { + "start": 9220.58, + "end": 9221.86, + "probability": 0.9586 + }, + { + "start": 9222.88, + "end": 9226.22, + "probability": 0.961 + }, + { + "start": 9227.18, + "end": 9228.34, + "probability": 0.8753 + }, + { + "start": 9229.62, + "end": 9232.18, + "probability": 0.9713 + }, + { + "start": 9232.3, + "end": 9234.14, + "probability": 0.9342 + }, + { + "start": 9234.58, + "end": 9235.9, + "probability": 0.9565 + }, + { + "start": 9236.86, + "end": 9238.5, + "probability": 0.9591 + }, + { + "start": 9239.3, + "end": 9240.62, + "probability": 0.9248 + }, + { + "start": 9242.85, + "end": 9245.6, + "probability": 0.7739 + }, + { + "start": 9245.68, + "end": 9246.86, + "probability": 0.8799 + }, + { + "start": 9247.6, + "end": 9248.86, + "probability": 0.9485 + }, + { + "start": 9249.5, + "end": 9251.74, + "probability": 0.9822 + }, + { + "start": 9252.78, + "end": 9254.08, + "probability": 0.9882 + }, + { + "start": 9255.04, + "end": 9256.76, + "probability": 0.7599 + }, + { + "start": 9257.84, + "end": 9259.0, + "probability": 0.9199 + }, + { + "start": 9259.22, + "end": 9259.84, + "probability": 0.9291 + }, + { + "start": 9261.22, + "end": 9263.74, + "probability": 0.7467 + }, + { + "start": 9264.3, + "end": 9266.48, + "probability": 0.532 + }, + { + "start": 9266.78, + "end": 9270.04, + "probability": 0.9722 + }, + { + "start": 9270.92, + "end": 9271.64, + "probability": 0.6638 + }, + { + "start": 9272.04, + "end": 9272.66, + "probability": 0.8866 + }, + { + "start": 9273.02, + "end": 9273.86, + "probability": 0.748 + }, + { + "start": 9280.68, + "end": 9280.68, + "probability": 0.0462 + }, + { + "start": 9280.68, + "end": 9280.68, + "probability": 0.1034 + }, + { + "start": 9280.68, + "end": 9280.68, + "probability": 0.0819 + }, + { + "start": 9280.68, + "end": 9280.68, + "probability": 0.1413 + }, + { + "start": 9290.78, + "end": 9293.56, + "probability": 0.501 + }, + { + "start": 9294.68, + "end": 9295.74, + "probability": 0.6661 + }, + { + "start": 9296.06, + "end": 9300.06, + "probability": 0.9314 + }, + { + "start": 9300.6, + "end": 9306.72, + "probability": 0.9795 + }, + { + "start": 9308.46, + "end": 9310.92, + "probability": 0.9946 + }, + { + "start": 9315.0, + "end": 9317.38, + "probability": 0.5708 + }, + { + "start": 9319.04, + "end": 9321.42, + "probability": 0.7635 + }, + { + "start": 9322.08, + "end": 9323.68, + "probability": 0.7299 + }, + { + "start": 9324.2, + "end": 9326.54, + "probability": 0.6591 + }, + { + "start": 9327.06, + "end": 9329.97, + "probability": 0.4634 + }, + { + "start": 9332.04, + "end": 9334.04, + "probability": 0.937 + }, + { + "start": 9334.16, + "end": 9335.02, + "probability": 0.5313 + }, + { + "start": 9335.22, + "end": 9336.96, + "probability": 0.965 + }, + { + "start": 9337.36, + "end": 9337.52, + "probability": 0.7352 + }, + { + "start": 9337.9, + "end": 9339.16, + "probability": 0.8908 + }, + { + "start": 9339.32, + "end": 9339.56, + "probability": 0.8546 + }, + { + "start": 9339.64, + "end": 9343.16, + "probability": 0.9569 + }, + { + "start": 9343.48, + "end": 9345.18, + "probability": 0.2826 + }, + { + "start": 9346.02, + "end": 9348.64, + "probability": 0.9853 + }, + { + "start": 9348.8, + "end": 9349.68, + "probability": 0.7271 + }, + { + "start": 9349.8, + "end": 9350.96, + "probability": 0.9884 + }, + { + "start": 9351.08, + "end": 9352.84, + "probability": 0.709 + }, + { + "start": 9354.48, + "end": 9354.52, + "probability": 0.7175 + }, + { + "start": 9355.16, + "end": 9357.34, + "probability": 0.7944 + }, + { + "start": 9358.36, + "end": 9360.82, + "probability": 0.9972 + }, + { + "start": 9362.04, + "end": 9364.4, + "probability": 0.9444 + }, + { + "start": 9365.76, + "end": 9369.32, + "probability": 0.9698 + }, + { + "start": 9370.42, + "end": 9371.38, + "probability": 0.9847 + }, + { + "start": 9372.42, + "end": 9373.38, + "probability": 0.9214 + }, + { + "start": 9374.16, + "end": 9374.66, + "probability": 0.5266 + }, + { + "start": 9374.79, + "end": 9376.9, + "probability": 0.9982 + }, + { + "start": 9377.74, + "end": 9379.56, + "probability": 0.9504 + }, + { + "start": 9380.5, + "end": 9381.54, + "probability": 0.8845 + }, + { + "start": 9382.36, + "end": 9386.26, + "probability": 0.8973 + }, + { + "start": 9386.36, + "end": 9388.24, + "probability": 0.7944 + }, + { + "start": 9388.24, + "end": 9390.74, + "probability": 0.9912 + }, + { + "start": 9391.18, + "end": 9392.5, + "probability": 0.8407 + }, + { + "start": 9393.34, + "end": 9395.06, + "probability": 0.9774 + }, + { + "start": 9395.76, + "end": 9397.04, + "probability": 0.9355 + }, + { + "start": 9397.16, + "end": 9399.42, + "probability": 0.9921 + }, + { + "start": 9399.52, + "end": 9401.54, + "probability": 0.9966 + }, + { + "start": 9402.64, + "end": 9404.92, + "probability": 0.649 + }, + { + "start": 9406.7, + "end": 9410.24, + "probability": 0.9609 + }, + { + "start": 9410.3, + "end": 9412.16, + "probability": 0.9682 + }, + { + "start": 9412.22, + "end": 9413.14, + "probability": 0.7118 + }, + { + "start": 9413.28, + "end": 9413.92, + "probability": 0.9073 + }, + { + "start": 9414.85, + "end": 9418.24, + "probability": 0.9071 + }, + { + "start": 9418.58, + "end": 9419.14, + "probability": 0.1373 + }, + { + "start": 9419.36, + "end": 9419.66, + "probability": 0.1038 + }, + { + "start": 9419.66, + "end": 9420.04, + "probability": 0.4478 + }, + { + "start": 9420.22, + "end": 9420.56, + "probability": 0.1987 + }, + { + "start": 9420.8, + "end": 9423.22, + "probability": 0.6986 + }, + { + "start": 9423.32, + "end": 9424.28, + "probability": 0.7577 + }, + { + "start": 9425.12, + "end": 9426.56, + "probability": 0.7496 + }, + { + "start": 9427.34, + "end": 9429.42, + "probability": 0.9648 + }, + { + "start": 9429.5, + "end": 9430.46, + "probability": 0.7956 + }, + { + "start": 9431.44, + "end": 9434.04, + "probability": 0.8755 + }, + { + "start": 9434.5, + "end": 9436.06, + "probability": 0.9897 + }, + { + "start": 9436.14, + "end": 9437.26, + "probability": 0.741 + }, + { + "start": 9437.34, + "end": 9438.12, + "probability": 0.62 + }, + { + "start": 9439.32, + "end": 9441.24, + "probability": 0.882 + }, + { + "start": 9441.34, + "end": 9442.62, + "probability": 0.8667 + }, + { + "start": 9443.08, + "end": 9444.62, + "probability": 0.9819 + }, + { + "start": 9445.92, + "end": 9446.58, + "probability": 0.6597 + }, + { + "start": 9446.64, + "end": 9447.24, + "probability": 0.5154 + }, + { + "start": 9447.36, + "end": 9449.62, + "probability": 0.9677 + }, + { + "start": 9450.28, + "end": 9452.48, + "probability": 0.9581 + }, + { + "start": 9453.38, + "end": 9454.38, + "probability": 0.9834 + }, + { + "start": 9455.38, + "end": 9457.92, + "probability": 0.9889 + }, + { + "start": 9458.66, + "end": 9460.42, + "probability": 0.9225 + }, + { + "start": 9461.66, + "end": 9462.74, + "probability": 0.9146 + }, + { + "start": 9463.28, + "end": 9464.4, + "probability": 0.8111 + }, + { + "start": 9464.44, + "end": 9466.58, + "probability": 0.8927 + }, + { + "start": 9466.58, + "end": 9467.22, + "probability": 0.719 + }, + { + "start": 9467.32, + "end": 9469.24, + "probability": 0.8053 + }, + { + "start": 9469.64, + "end": 9470.9, + "probability": 0.8673 + }, + { + "start": 9471.02, + "end": 9471.62, + "probability": 0.9102 + }, + { + "start": 9471.88, + "end": 9473.26, + "probability": 0.9041 + }, + { + "start": 9473.32, + "end": 9474.6, + "probability": 0.9623 + }, + { + "start": 9475.3, + "end": 9478.8, + "probability": 0.9975 + }, + { + "start": 9478.9, + "end": 9481.16, + "probability": 0.7961 + }, + { + "start": 9481.58, + "end": 9482.9, + "probability": 0.9314 + }, + { + "start": 9483.4, + "end": 9485.48, + "probability": 0.9769 + }, + { + "start": 9485.64, + "end": 9487.92, + "probability": 0.7828 + }, + { + "start": 9488.0, + "end": 9488.0, + "probability": 0.0133 + }, + { + "start": 9488.0, + "end": 9488.56, + "probability": 0.2106 + }, + { + "start": 9488.56, + "end": 9489.08, + "probability": 0.8704 + }, + { + "start": 9489.92, + "end": 9489.94, + "probability": 0.0009 + }, + { + "start": 9489.94, + "end": 9491.32, + "probability": 0.5104 + }, + { + "start": 9491.46, + "end": 9492.68, + "probability": 0.9336 + }, + { + "start": 9493.72, + "end": 9494.24, + "probability": 0.9164 + }, + { + "start": 9495.5, + "end": 9498.46, + "probability": 0.9142 + }, + { + "start": 9499.32, + "end": 9502.96, + "probability": 0.9896 + }, + { + "start": 9504.14, + "end": 9505.96, + "probability": 0.9919 + }, + { + "start": 9507.0, + "end": 9510.46, + "probability": 0.844 + }, + { + "start": 9511.2, + "end": 9512.18, + "probability": 0.9839 + }, + { + "start": 9512.48, + "end": 9514.48, + "probability": 0.4202 + }, + { + "start": 9514.78, + "end": 9515.3, + "probability": 0.0726 + }, + { + "start": 9515.92, + "end": 9519.36, + "probability": 0.8434 + }, + { + "start": 9521.57, + "end": 9523.32, + "probability": 0.2496 + }, + { + "start": 9523.5, + "end": 9523.58, + "probability": 0.1457 + }, + { + "start": 9523.58, + "end": 9525.44, + "probability": 0.5298 + }, + { + "start": 9525.54, + "end": 9526.38, + "probability": 0.8643 + }, + { + "start": 9526.48, + "end": 9528.5, + "probability": 0.1144 + }, + { + "start": 9528.52, + "end": 9530.94, + "probability": 0.9087 + }, + { + "start": 9531.16, + "end": 9534.82, + "probability": 0.6836 + }, + { + "start": 9535.46, + "end": 9536.51, + "probability": 0.4074 + }, + { + "start": 9536.62, + "end": 9537.14, + "probability": 0.6158 + }, + { + "start": 9537.22, + "end": 9538.3, + "probability": 0.6969 + }, + { + "start": 9538.82, + "end": 9540.12, + "probability": 0.9699 + }, + { + "start": 9540.3, + "end": 9543.16, + "probability": 0.9682 + }, + { + "start": 9543.3, + "end": 9543.94, + "probability": 0.7729 + }, + { + "start": 9544.08, + "end": 9544.62, + "probability": 0.4398 + }, + { + "start": 9544.64, + "end": 9545.88, + "probability": 0.8762 + }, + { + "start": 9546.92, + "end": 9548.7, + "probability": 0.692 + }, + { + "start": 9549.34, + "end": 9550.18, + "probability": 0.4251 + }, + { + "start": 9550.18, + "end": 9550.54, + "probability": 0.2926 + }, + { + "start": 9551.66, + "end": 9551.66, + "probability": 0.3531 + }, + { + "start": 9551.66, + "end": 9553.44, + "probability": 0.9359 + }, + { + "start": 9554.7, + "end": 9560.96, + "probability": 0.9407 + }, + { + "start": 9561.84, + "end": 9562.68, + "probability": 0.8438 + }, + { + "start": 9562.88, + "end": 9564.7, + "probability": 0.6069 + }, + { + "start": 9565.9, + "end": 9568.1, + "probability": 0.8375 + }, + { + "start": 9569.1, + "end": 9570.71, + "probability": 0.9529 + }, + { + "start": 9571.38, + "end": 9574.4, + "probability": 0.6754 + }, + { + "start": 9574.66, + "end": 9576.16, + "probability": 0.9385 + }, + { + "start": 9576.46, + "end": 9578.24, + "probability": 0.9353 + }, + { + "start": 9578.38, + "end": 9579.6, + "probability": 0.9682 + }, + { + "start": 9581.14, + "end": 9582.32, + "probability": 0.8433 + }, + { + "start": 9583.68, + "end": 9585.82, + "probability": 0.9043 + }, + { + "start": 9586.82, + "end": 9587.86, + "probability": 0.6667 + }, + { + "start": 9588.7, + "end": 9590.72, + "probability": 0.8415 + }, + { + "start": 9591.7, + "end": 9594.36, + "probability": 0.6463 + }, + { + "start": 9594.86, + "end": 9597.38, + "probability": 0.9766 + }, + { + "start": 9597.5, + "end": 9600.04, + "probability": 0.9844 + }, + { + "start": 9601.42, + "end": 9604.07, + "probability": 0.5835 + }, + { + "start": 9605.38, + "end": 9606.18, + "probability": 0.7488 + }, + { + "start": 9607.02, + "end": 9610.74, + "probability": 0.9328 + }, + { + "start": 9611.0, + "end": 9611.98, + "probability": 0.6823 + }, + { + "start": 9613.98, + "end": 9614.52, + "probability": 0.0812 + }, + { + "start": 9615.22, + "end": 9616.72, + "probability": 0.7085 + }, + { + "start": 9616.86, + "end": 9617.72, + "probability": 0.7088 + }, + { + "start": 9617.96, + "end": 9620.56, + "probability": 0.9663 + }, + { + "start": 9622.18, + "end": 9623.6, + "probability": 0.9563 + }, + { + "start": 9623.7, + "end": 9624.74, + "probability": 0.7503 + }, + { + "start": 9624.86, + "end": 9626.12, + "probability": 0.7584 + }, + { + "start": 9626.54, + "end": 9628.22, + "probability": 0.696 + }, + { + "start": 9628.72, + "end": 9630.0, + "probability": 0.9384 + }, + { + "start": 9630.22, + "end": 9633.64, + "probability": 0.9761 + }, + { + "start": 9633.7, + "end": 9634.98, + "probability": 0.9395 + }, + { + "start": 9636.68, + "end": 9637.64, + "probability": 0.7279 + }, + { + "start": 9638.8, + "end": 9639.58, + "probability": 0.6114 + }, + { + "start": 9640.9, + "end": 9641.32, + "probability": 0.2327 + }, + { + "start": 9641.34, + "end": 9641.64, + "probability": 0.596 + }, + { + "start": 9641.64, + "end": 9643.52, + "probability": 0.8695 + }, + { + "start": 9643.8, + "end": 9646.62, + "probability": 0.814 + }, + { + "start": 9646.82, + "end": 9647.3, + "probability": 0.7922 + }, + { + "start": 9648.1, + "end": 9649.14, + "probability": 0.7823 + }, + { + "start": 9649.66, + "end": 9651.1, + "probability": 0.8646 + }, + { + "start": 9651.82, + "end": 9652.6, + "probability": 0.9124 + }, + { + "start": 9652.66, + "end": 9653.14, + "probability": 0.8956 + }, + { + "start": 9653.76, + "end": 9656.56, + "probability": 0.9316 + }, + { + "start": 9657.58, + "end": 9658.5, + "probability": 0.7692 + }, + { + "start": 9658.56, + "end": 9658.94, + "probability": 0.6149 + }, + { + "start": 9661.46, + "end": 9666.24, + "probability": 0.9844 + }, + { + "start": 9666.36, + "end": 9667.4, + "probability": 0.9354 + }, + { + "start": 9667.58, + "end": 9670.72, + "probability": 0.9915 + }, + { + "start": 9670.72, + "end": 9674.1, + "probability": 0.9139 + }, + { + "start": 9674.12, + "end": 9677.88, + "probability": 0.9977 + }, + { + "start": 9678.72, + "end": 9679.04, + "probability": 0.9084 + }, + { + "start": 9679.14, + "end": 9680.38, + "probability": 0.9283 + }, + { + "start": 9680.46, + "end": 9681.5, + "probability": 0.9583 + }, + { + "start": 9684.36, + "end": 9685.58, + "probability": 0.7038 + }, + { + "start": 9686.66, + "end": 9689.18, + "probability": 0.9216 + }, + { + "start": 9690.12, + "end": 9690.4, + "probability": 0.4051 + }, + { + "start": 9690.42, + "end": 9693.22, + "probability": 0.9312 + }, + { + "start": 9694.82, + "end": 9695.46, + "probability": 0.2536 + }, + { + "start": 9695.98, + "end": 9699.06, + "probability": 0.9179 + }, + { + "start": 9699.64, + "end": 9701.08, + "probability": 0.7437 + }, + { + "start": 9701.62, + "end": 9705.28, + "probability": 0.6627 + }, + { + "start": 9706.88, + "end": 9709.8, + "probability": 0.8462 + }, + { + "start": 9709.88, + "end": 9711.72, + "probability": 0.6758 + }, + { + "start": 9712.1, + "end": 9712.6, + "probability": 0.1063 + }, + { + "start": 9712.62, + "end": 9713.22, + "probability": 0.347 + }, + { + "start": 9713.28, + "end": 9715.52, + "probability": 0.9519 + }, + { + "start": 9715.84, + "end": 9717.26, + "probability": 0.9393 + }, + { + "start": 9718.18, + "end": 9721.28, + "probability": 0.9685 + }, + { + "start": 9722.52, + "end": 9723.56, + "probability": 0.7629 + }, + { + "start": 9724.86, + "end": 9725.6, + "probability": 0.6941 + }, + { + "start": 9726.7, + "end": 9731.52, + "probability": 0.9765 + }, + { + "start": 9732.16, + "end": 9733.48, + "probability": 0.895 + }, + { + "start": 9735.58, + "end": 9736.7, + "probability": 0.9746 + }, + { + "start": 9737.12, + "end": 9737.74, + "probability": 0.5774 + }, + { + "start": 9738.13, + "end": 9740.72, + "probability": 0.9966 + }, + { + "start": 9740.86, + "end": 9744.32, + "probability": 0.97 + }, + { + "start": 9745.4, + "end": 9746.73, + "probability": 0.971 + }, + { + "start": 9748.08, + "end": 9751.4, + "probability": 0.9971 + }, + { + "start": 9751.86, + "end": 9754.64, + "probability": 0.943 + }, + { + "start": 9755.02, + "end": 9758.84, + "probability": 0.9956 + }, + { + "start": 9759.16, + "end": 9760.06, + "probability": 0.9678 + }, + { + "start": 9760.16, + "end": 9760.62, + "probability": 0.7236 + }, + { + "start": 9760.72, + "end": 9762.14, + "probability": 0.9739 + }, + { + "start": 9763.16, + "end": 9764.44, + "probability": 0.9705 + }, + { + "start": 9765.96, + "end": 9767.42, + "probability": 0.8351 + }, + { + "start": 9768.28, + "end": 9769.56, + "probability": 0.9933 + }, + { + "start": 9769.66, + "end": 9772.13, + "probability": 0.9941 + }, + { + "start": 9772.58, + "end": 9773.62, + "probability": 0.8028 + }, + { + "start": 9775.44, + "end": 9776.84, + "probability": 0.9718 + }, + { + "start": 9777.74, + "end": 9778.8, + "probability": 0.9922 + }, + { + "start": 9780.22, + "end": 9782.76, + "probability": 0.9888 + }, + { + "start": 9783.64, + "end": 9785.58, + "probability": 0.9952 + }, + { + "start": 9785.62, + "end": 9788.32, + "probability": 0.9904 + }, + { + "start": 9789.22, + "end": 9789.64, + "probability": 0.4723 + }, + { + "start": 9790.74, + "end": 9794.54, + "probability": 0.9964 + }, + { + "start": 9794.76, + "end": 9798.04, + "probability": 0.6544 + }, + { + "start": 9798.12, + "end": 9798.86, + "probability": 0.945 + }, + { + "start": 9798.96, + "end": 9800.78, + "probability": 0.5616 + }, + { + "start": 9802.9, + "end": 9803.7, + "probability": 0.8548 + }, + { + "start": 9803.84, + "end": 9804.3, + "probability": 0.6226 + }, + { + "start": 9804.4, + "end": 9806.86, + "probability": 0.9597 + }, + { + "start": 9806.92, + "end": 9807.58, + "probability": 0.7053 + }, + { + "start": 9807.72, + "end": 9808.44, + "probability": 0.9804 + }, + { + "start": 9811.05, + "end": 9814.12, + "probability": 0.9885 + }, + { + "start": 9815.84, + "end": 9817.58, + "probability": 0.9795 + }, + { + "start": 9818.42, + "end": 9818.92, + "probability": 0.7647 + }, + { + "start": 9820.72, + "end": 9823.78, + "probability": 0.9856 + }, + { + "start": 9823.82, + "end": 9825.98, + "probability": 0.8348 + }, + { + "start": 9826.34, + "end": 9827.76, + "probability": 0.9598 + }, + { + "start": 9828.64, + "end": 9829.4, + "probability": 0.8994 + }, + { + "start": 9830.46, + "end": 9831.62, + "probability": 0.8321 + }, + { + "start": 9831.74, + "end": 9835.08, + "probability": 0.9701 + }, + { + "start": 9835.16, + "end": 9836.14, + "probability": 0.9169 + }, + { + "start": 9837.66, + "end": 9838.24, + "probability": 0.9116 + }, + { + "start": 9838.72, + "end": 9839.1, + "probability": 0.7744 + }, + { + "start": 9840.52, + "end": 9841.48, + "probability": 0.9946 + }, + { + "start": 9841.56, + "end": 9842.44, + "probability": 0.9844 + }, + { + "start": 9843.64, + "end": 9847.04, + "probability": 0.9893 + }, + { + "start": 9848.18, + "end": 9849.58, + "probability": 0.9249 + }, + { + "start": 9851.68, + "end": 9853.1, + "probability": 0.9368 + }, + { + "start": 9853.24, + "end": 9855.74, + "probability": 0.9138 + }, + { + "start": 9857.32, + "end": 9861.86, + "probability": 0.9131 + }, + { + "start": 9862.6, + "end": 9864.5, + "probability": 0.9781 + }, + { + "start": 9864.9, + "end": 9867.02, + "probability": 0.9711 + }, + { + "start": 9867.42, + "end": 9868.42, + "probability": 0.8259 + }, + { + "start": 9868.48, + "end": 9869.07, + "probability": 0.9764 + }, + { + "start": 9871.04, + "end": 9871.86, + "probability": 0.7148 + }, + { + "start": 9872.22, + "end": 9873.14, + "probability": 0.9778 + }, + { + "start": 9874.04, + "end": 9876.1, + "probability": 0.9969 + }, + { + "start": 9876.86, + "end": 9877.92, + "probability": 0.9285 + }, + { + "start": 9877.94, + "end": 9878.9, + "probability": 0.7986 + }, + { + "start": 9879.04, + "end": 9879.38, + "probability": 0.6042 + }, + { + "start": 9879.46, + "end": 9879.8, + "probability": 0.6961 + }, + { + "start": 9881.0, + "end": 9881.78, + "probability": 0.6381 + }, + { + "start": 9882.72, + "end": 9883.76, + "probability": 0.2885 + }, + { + "start": 9884.24, + "end": 9885.62, + "probability": 0.7999 + }, + { + "start": 9886.6, + "end": 9887.54, + "probability": 0.6084 + }, + { + "start": 9888.2, + "end": 9890.64, + "probability": 0.5937 + }, + { + "start": 9890.76, + "end": 9893.66, + "probability": 0.9555 + }, + { + "start": 9895.1, + "end": 9896.3, + "probability": 0.7446 + }, + { + "start": 9896.94, + "end": 9900.68, + "probability": 0.9602 + }, + { + "start": 9902.1, + "end": 9902.94, + "probability": 0.993 + }, + { + "start": 9904.1, + "end": 9905.9, + "probability": 0.9885 + }, + { + "start": 9906.52, + "end": 9908.02, + "probability": 0.9727 + }, + { + "start": 9909.18, + "end": 9910.88, + "probability": 0.9035 + }, + { + "start": 9911.72, + "end": 9915.44, + "probability": 0.833 + }, + { + "start": 9916.7, + "end": 9919.7, + "probability": 0.9933 + }, + { + "start": 9920.5, + "end": 9921.16, + "probability": 0.6468 + }, + { + "start": 9921.32, + "end": 9922.66, + "probability": 0.8342 + }, + { + "start": 9922.94, + "end": 9924.01, + "probability": 0.8921 + }, + { + "start": 9925.13, + "end": 9927.17, + "probability": 0.8436 + }, + { + "start": 9929.56, + "end": 9933.38, + "probability": 0.7526 + }, + { + "start": 9934.22, + "end": 9936.16, + "probability": 0.9961 + }, + { + "start": 9936.82, + "end": 9937.54, + "probability": 0.787 + }, + { + "start": 9937.64, + "end": 9939.86, + "probability": 0.9951 + }, + { + "start": 9939.98, + "end": 9940.48, + "probability": 0.7354 + }, + { + "start": 9940.52, + "end": 9941.26, + "probability": 0.6871 + }, + { + "start": 9941.98, + "end": 9944.24, + "probability": 0.9932 + }, + { + "start": 9944.98, + "end": 9947.32, + "probability": 0.9897 + }, + { + "start": 9948.3, + "end": 9949.8, + "probability": 0.8925 + }, + { + "start": 9950.62, + "end": 9952.48, + "probability": 0.9961 + }, + { + "start": 9953.04, + "end": 9955.08, + "probability": 0.9731 + }, + { + "start": 9955.74, + "end": 9956.3, + "probability": 0.7187 + }, + { + "start": 9957.18, + "end": 9958.44, + "probability": 0.8662 + }, + { + "start": 9959.3, + "end": 9962.58, + "probability": 0.9761 + }, + { + "start": 9962.62, + "end": 9965.02, + "probability": 0.9824 + }, + { + "start": 9965.2, + "end": 9965.76, + "probability": 0.7461 + }, + { + "start": 9965.82, + "end": 9966.94, + "probability": 0.6876 + }, + { + "start": 9967.04, + "end": 9967.9, + "probability": 0.9276 + }, + { + "start": 9968.98, + "end": 9969.86, + "probability": 0.5318 + }, + { + "start": 9971.4, + "end": 9973.6, + "probability": 0.9489 + }, + { + "start": 9974.1, + "end": 9977.16, + "probability": 0.9937 + }, + { + "start": 9978.12, + "end": 9979.66, + "probability": 0.9956 + }, + { + "start": 9981.4, + "end": 9983.86, + "probability": 0.9763 + }, + { + "start": 9985.18, + "end": 9986.52, + "probability": 0.8792 + }, + { + "start": 9986.62, + "end": 9987.16, + "probability": 0.9349 + }, + { + "start": 9987.24, + "end": 9989.62, + "probability": 0.8096 + }, + { + "start": 9990.86, + "end": 9992.98, + "probability": 0.7173 + }, + { + "start": 9994.32, + "end": 9997.58, + "probability": 0.9627 + }, + { + "start": 9997.82, + "end": 9998.45, + "probability": 0.3652 + }, + { + "start": 9998.86, + "end": 10001.16, + "probability": 0.9248 + }, + { + "start": 10002.38, + "end": 10006.1, + "probability": 0.8857 + }, + { + "start": 10006.28, + "end": 10007.78, + "probability": 0.8441 + }, + { + "start": 10008.68, + "end": 10011.38, + "probability": 0.9687 + }, + { + "start": 10011.52, + "end": 10012.42, + "probability": 0.8633 + }, + { + "start": 10013.46, + "end": 10015.42, + "probability": 0.7718 + }, + { + "start": 10016.58, + "end": 10017.28, + "probability": 0.4254 + }, + { + "start": 10018.12, + "end": 10022.36, + "probability": 0.941 + }, + { + "start": 10022.48, + "end": 10024.04, + "probability": 0.8973 + }, + { + "start": 10025.28, + "end": 10028.7, + "probability": 0.9211 + }, + { + "start": 10028.8, + "end": 10029.98, + "probability": 0.9925 + }, + { + "start": 10030.92, + "end": 10032.58, + "probability": 0.8319 + }, + { + "start": 10033.42, + "end": 10034.56, + "probability": 0.7568 + }, + { + "start": 10035.68, + "end": 10038.24, + "probability": 0.9591 + }, + { + "start": 10038.94, + "end": 10042.62, + "probability": 0.9935 + }, + { + "start": 10044.1, + "end": 10046.34, + "probability": 0.587 + }, + { + "start": 10047.02, + "end": 10047.74, + "probability": 0.5041 + }, + { + "start": 10048.86, + "end": 10050.36, + "probability": 0.8268 + }, + { + "start": 10050.92, + "end": 10053.1, + "probability": 0.9919 + }, + { + "start": 10053.68, + "end": 10054.36, + "probability": 0.7912 + }, + { + "start": 10054.92, + "end": 10057.22, + "probability": 0.9868 + }, + { + "start": 10058.14, + "end": 10059.42, + "probability": 0.8087 + }, + { + "start": 10059.58, + "end": 10060.28, + "probability": 0.9761 + }, + { + "start": 10061.56, + "end": 10061.66, + "probability": 0.1665 + }, + { + "start": 10061.66, + "end": 10062.3, + "probability": 0.97 + }, + { + "start": 10062.98, + "end": 10065.58, + "probability": 0.8865 + }, + { + "start": 10066.4, + "end": 10067.68, + "probability": 0.513 + }, + { + "start": 10068.82, + "end": 10071.66, + "probability": 0.886 + }, + { + "start": 10072.34, + "end": 10074.9, + "probability": 0.9894 + }, + { + "start": 10075.14, + "end": 10075.73, + "probability": 0.9553 + }, + { + "start": 10076.2, + "end": 10077.8, + "probability": 0.9716 + }, + { + "start": 10079.68, + "end": 10081.02, + "probability": 0.948 + }, + { + "start": 10081.26, + "end": 10083.72, + "probability": 0.9441 + }, + { + "start": 10084.46, + "end": 10089.82, + "probability": 0.9788 + }, + { + "start": 10091.2, + "end": 10094.04, + "probability": 0.8332 + }, + { + "start": 10094.26, + "end": 10096.54, + "probability": 0.847 + }, + { + "start": 10096.64, + "end": 10097.7, + "probability": 0.8756 + }, + { + "start": 10097.74, + "end": 10099.12, + "probability": 0.8502 + }, + { + "start": 10099.5, + "end": 10101.52, + "probability": 0.8988 + }, + { + "start": 10102.6, + "end": 10103.1, + "probability": 0.5777 + }, + { + "start": 10103.14, + "end": 10107.4, + "probability": 0.9711 + }, + { + "start": 10107.9, + "end": 10111.48, + "probability": 0.9567 + }, + { + "start": 10111.58, + "end": 10112.98, + "probability": 0.986 + }, + { + "start": 10113.12, + "end": 10113.64, + "probability": 0.9621 + }, + { + "start": 10113.7, + "end": 10114.36, + "probability": 0.8809 + }, + { + "start": 10115.08, + "end": 10118.28, + "probability": 0.9638 + }, + { + "start": 10118.74, + "end": 10119.62, + "probability": 0.5619 + }, + { + "start": 10119.88, + "end": 10120.84, + "probability": 0.9844 + }, + { + "start": 10120.98, + "end": 10123.58, + "probability": 0.9961 + }, + { + "start": 10123.6, + "end": 10126.02, + "probability": 0.8479 + }, + { + "start": 10126.08, + "end": 10126.52, + "probability": 0.8821 + }, + { + "start": 10126.96, + "end": 10128.6, + "probability": 0.9114 + }, + { + "start": 10128.76, + "end": 10130.24, + "probability": 0.9878 + }, + { + "start": 10131.4, + "end": 10133.06, + "probability": 0.6462 + }, + { + "start": 10135.02, + "end": 10135.28, + "probability": 0.0213 + }, + { + "start": 10135.28, + "end": 10135.54, + "probability": 0.2004 + }, + { + "start": 10137.28, + "end": 10139.04, + "probability": 0.8501 + }, + { + "start": 10139.62, + "end": 10140.28, + "probability": 0.7694 + }, + { + "start": 10141.9, + "end": 10143.54, + "probability": 0.9343 + }, + { + "start": 10144.6, + "end": 10148.66, + "probability": 0.9592 + }, + { + "start": 10149.96, + "end": 10151.23, + "probability": 0.9878 + }, + { + "start": 10153.92, + "end": 10154.38, + "probability": 0.7394 + }, + { + "start": 10154.94, + "end": 10155.7, + "probability": 0.5975 + }, + { + "start": 10155.8, + "end": 10156.82, + "probability": 0.9852 + }, + { + "start": 10158.88, + "end": 10159.7, + "probability": 0.7982 + }, + { + "start": 10159.82, + "end": 10160.62, + "probability": 0.9897 + }, + { + "start": 10160.98, + "end": 10161.48, + "probability": 0.9382 + }, + { + "start": 10162.82, + "end": 10163.18, + "probability": 0.7786 + }, + { + "start": 10163.2, + "end": 10165.46, + "probability": 0.9625 + }, + { + "start": 10166.46, + "end": 10166.92, + "probability": 0.9512 + }, + { + "start": 10167.1, + "end": 10167.52, + "probability": 0.7856 + }, + { + "start": 10167.68, + "end": 10168.78, + "probability": 0.892 + }, + { + "start": 10168.86, + "end": 10170.16, + "probability": 0.7261 + }, + { + "start": 10170.26, + "end": 10170.26, + "probability": 0.3244 + }, + { + "start": 10170.26, + "end": 10170.46, + "probability": 0.2867 + }, + { + "start": 10170.46, + "end": 10170.82, + "probability": 0.6663 + }, + { + "start": 10170.92, + "end": 10171.1, + "probability": 0.1631 + }, + { + "start": 10171.36, + "end": 10173.28, + "probability": 0.9711 + }, + { + "start": 10173.28, + "end": 10174.81, + "probability": 0.9678 + }, + { + "start": 10175.82, + "end": 10175.84, + "probability": 0.1587 + }, + { + "start": 10176.4, + "end": 10177.32, + "probability": 0.4003 + }, + { + "start": 10177.34, + "end": 10177.66, + "probability": 0.2159 + }, + { + "start": 10177.9, + "end": 10180.76, + "probability": 0.9717 + }, + { + "start": 10180.84, + "end": 10181.65, + "probability": 0.8021 + }, + { + "start": 10182.42, + "end": 10183.24, + "probability": 0.8921 + }, + { + "start": 10183.58, + "end": 10184.6, + "probability": 0.9547 + }, + { + "start": 10184.68, + "end": 10188.98, + "probability": 0.9531 + }, + { + "start": 10189.06, + "end": 10191.66, + "probability": 0.9104 + }, + { + "start": 10191.74, + "end": 10194.28, + "probability": 0.3981 + }, + { + "start": 10194.32, + "end": 10195.4, + "probability": 0.6469 + }, + { + "start": 10195.82, + "end": 10197.52, + "probability": 0.9893 + }, + { + "start": 10198.06, + "end": 10199.72, + "probability": 0.9562 + }, + { + "start": 10200.5, + "end": 10200.98, + "probability": 0.9539 + }, + { + "start": 10202.68, + "end": 10206.92, + "probability": 0.9961 + }, + { + "start": 10208.74, + "end": 10209.02, + "probability": 0.5709 + }, + { + "start": 10209.48, + "end": 10213.48, + "probability": 0.992 + }, + { + "start": 10214.0, + "end": 10215.36, + "probability": 0.9995 + }, + { + "start": 10215.48, + "end": 10216.64, + "probability": 0.6598 + }, + { + "start": 10217.5, + "end": 10220.6, + "probability": 0.9984 + }, + { + "start": 10220.72, + "end": 10223.24, + "probability": 0.766 + }, + { + "start": 10223.9, + "end": 10226.7, + "probability": 0.9596 + }, + { + "start": 10227.28, + "end": 10230.44, + "probability": 0.9024 + }, + { + "start": 10230.96, + "end": 10233.28, + "probability": 0.9943 + }, + { + "start": 10237.12, + "end": 10238.7, + "probability": 0.9761 + }, + { + "start": 10238.82, + "end": 10239.72, + "probability": 0.9119 + }, + { + "start": 10239.74, + "end": 10240.78, + "probability": 0.9446 + }, + { + "start": 10240.84, + "end": 10241.66, + "probability": 0.6524 + }, + { + "start": 10242.88, + "end": 10244.44, + "probability": 0.7792 + }, + { + "start": 10246.68, + "end": 10248.28, + "probability": 0.6933 + }, + { + "start": 10249.74, + "end": 10250.42, + "probability": 0.953 + }, + { + "start": 10251.14, + "end": 10253.84, + "probability": 0.9308 + }, + { + "start": 10254.66, + "end": 10256.29, + "probability": 0.9893 + }, + { + "start": 10256.78, + "end": 10258.26, + "probability": 0.9963 + }, + { + "start": 10258.32, + "end": 10261.72, + "probability": 0.6993 + }, + { + "start": 10262.24, + "end": 10262.72, + "probability": 0.7662 + }, + { + "start": 10262.74, + "end": 10265.42, + "probability": 0.9557 + }, + { + "start": 10265.58, + "end": 10266.42, + "probability": 0.79 + }, + { + "start": 10266.46, + "end": 10270.1, + "probability": 0.8193 + }, + { + "start": 10270.82, + "end": 10270.82, + "probability": 0.0433 + }, + { + "start": 10270.82, + "end": 10271.18, + "probability": 0.5596 + }, + { + "start": 10271.32, + "end": 10272.1, + "probability": 0.6168 + }, + { + "start": 10272.18, + "end": 10273.54, + "probability": 0.0363 + }, + { + "start": 10273.7, + "end": 10273.92, + "probability": 0.0536 + }, + { + "start": 10274.34, + "end": 10276.8, + "probability": 0.786 + }, + { + "start": 10277.34, + "end": 10278.24, + "probability": 0.9929 + }, + { + "start": 10278.3, + "end": 10281.1, + "probability": 0.8355 + }, + { + "start": 10282.1, + "end": 10286.72, + "probability": 0.9809 + }, + { + "start": 10287.88, + "end": 10290.22, + "probability": 0.8626 + }, + { + "start": 10290.98, + "end": 10296.62, + "probability": 0.9917 + }, + { + "start": 10296.8, + "end": 10297.88, + "probability": 0.9329 + }, + { + "start": 10298.4, + "end": 10300.1, + "probability": 0.9837 + }, + { + "start": 10300.16, + "end": 10301.3, + "probability": 0.5123 + }, + { + "start": 10301.38, + "end": 10302.24, + "probability": 0.8818 + }, + { + "start": 10303.2, + "end": 10304.16, + "probability": 0.9984 + }, + { + "start": 10304.7, + "end": 10307.3, + "probability": 0.9918 + }, + { + "start": 10307.92, + "end": 10311.92, + "probability": 0.9118 + }, + { + "start": 10311.92, + "end": 10314.52, + "probability": 0.8906 + }, + { + "start": 10315.18, + "end": 10316.3, + "probability": 0.9842 + }, + { + "start": 10316.74, + "end": 10318.53, + "probability": 0.9927 + }, + { + "start": 10318.72, + "end": 10319.64, + "probability": 0.8519 + }, + { + "start": 10319.7, + "end": 10321.18, + "probability": 0.8168 + }, + { + "start": 10322.0, + "end": 10326.68, + "probability": 0.9844 + }, + { + "start": 10327.14, + "end": 10328.58, + "probability": 0.999 + }, + { + "start": 10329.74, + "end": 10330.89, + "probability": 0.4971 + }, + { + "start": 10331.48, + "end": 10333.64, + "probability": 0.7353 + }, + { + "start": 10333.92, + "end": 10335.19, + "probability": 0.3906 + }, + { + "start": 10336.52, + "end": 10337.48, + "probability": 0.5721 + }, + { + "start": 10339.44, + "end": 10343.94, + "probability": 0.9878 + }, + { + "start": 10344.04, + "end": 10347.25, + "probability": 0.991 + }, + { + "start": 10348.08, + "end": 10348.2, + "probability": 0.2356 + }, + { + "start": 10348.72, + "end": 10349.66, + "probability": 0.3386 + }, + { + "start": 10351.44, + "end": 10354.74, + "probability": 0.5858 + }, + { + "start": 10354.94, + "end": 10355.82, + "probability": 0.7927 + }, + { + "start": 10355.96, + "end": 10356.14, + "probability": 0.8874 + }, + { + "start": 10357.22, + "end": 10359.98, + "probability": 0.9746 + }, + { + "start": 10359.98, + "end": 10363.72, + "probability": 0.8822 + }, + { + "start": 10364.14, + "end": 10365.07, + "probability": 0.6633 + }, + { + "start": 10365.5, + "end": 10366.94, + "probability": 0.9 + }, + { + "start": 10367.12, + "end": 10370.0, + "probability": 0.7082 + }, + { + "start": 10370.28, + "end": 10371.88, + "probability": 0.6826 + }, + { + "start": 10372.5, + "end": 10372.5, + "probability": 0.2542 + }, + { + "start": 10372.5, + "end": 10374.02, + "probability": 0.7876 + }, + { + "start": 10375.46, + "end": 10376.86, + "probability": 0.6142 + }, + { + "start": 10376.94, + "end": 10378.32, + "probability": 0.9643 + }, + { + "start": 10379.06, + "end": 10379.06, + "probability": 0.4223 + }, + { + "start": 10379.14, + "end": 10380.62, + "probability": 0.9245 + }, + { + "start": 10382.36, + "end": 10384.44, + "probability": 0.9714 + }, + { + "start": 10384.54, + "end": 10386.46, + "probability": 0.9833 + }, + { + "start": 10388.78, + "end": 10392.4, + "probability": 0.7825 + }, + { + "start": 10393.52, + "end": 10395.1, + "probability": 0.5933 + }, + { + "start": 10395.18, + "end": 10397.04, + "probability": 0.8336 + }, + { + "start": 10397.66, + "end": 10399.62, + "probability": 0.9609 + }, + { + "start": 10400.28, + "end": 10402.96, + "probability": 0.932 + }, + { + "start": 10404.8, + "end": 10407.58, + "probability": 0.9945 + }, + { + "start": 10408.76, + "end": 10412.64, + "probability": 0.3889 + }, + { + "start": 10412.76, + "end": 10414.22, + "probability": 0.9703 + }, + { + "start": 10415.66, + "end": 10419.72, + "probability": 0.8682 + }, + { + "start": 10421.68, + "end": 10424.18, + "probability": 0.9766 + }, + { + "start": 10425.24, + "end": 10425.82, + "probability": 0.8601 + }, + { + "start": 10426.86, + "end": 10428.76, + "probability": 0.9954 + }, + { + "start": 10429.6, + "end": 10432.3, + "probability": 0.9961 + }, + { + "start": 10432.88, + "end": 10433.81, + "probability": 0.9976 + }, + { + "start": 10434.66, + "end": 10435.6, + "probability": 0.9742 + }, + { + "start": 10436.76, + "end": 10438.64, + "probability": 0.9497 + }, + { + "start": 10439.32, + "end": 10440.9, + "probability": 0.5982 + }, + { + "start": 10440.96, + "end": 10442.32, + "probability": 0.8744 + }, + { + "start": 10443.46, + "end": 10445.96, + "probability": 0.8015 + }, + { + "start": 10447.88, + "end": 10450.26, + "probability": 0.8184 + }, + { + "start": 10450.9, + "end": 10452.54, + "probability": 0.8992 + }, + { + "start": 10453.26, + "end": 10455.48, + "probability": 0.9792 + }, + { + "start": 10457.42, + "end": 10458.24, + "probability": 0.8155 + }, + { + "start": 10459.42, + "end": 10462.28, + "probability": 0.7702 + }, + { + "start": 10462.94, + "end": 10464.36, + "probability": 0.5039 + }, + { + "start": 10465.74, + "end": 10470.3, + "probability": 0.9511 + }, + { + "start": 10470.3, + "end": 10473.06, + "probability": 0.9952 + }, + { + "start": 10474.08, + "end": 10477.68, + "probability": 0.998 + }, + { + "start": 10478.82, + "end": 10480.8, + "probability": 0.9982 + }, + { + "start": 10482.38, + "end": 10485.66, + "probability": 0.9968 + }, + { + "start": 10485.66, + "end": 10487.92, + "probability": 0.991 + }, + { + "start": 10489.36, + "end": 10492.06, + "probability": 0.9692 + }, + { + "start": 10492.06, + "end": 10494.54, + "probability": 0.9932 + }, + { + "start": 10495.28, + "end": 10497.56, + "probability": 0.9907 + }, + { + "start": 10497.56, + "end": 10500.22, + "probability": 0.9919 + }, + { + "start": 10501.1, + "end": 10503.94, + "probability": 0.9941 + }, + { + "start": 10505.58, + "end": 10510.5, + "probability": 0.9421 + }, + { + "start": 10510.5, + "end": 10513.68, + "probability": 0.9094 + }, + { + "start": 10516.0, + "end": 10518.44, + "probability": 0.3678 + }, + { + "start": 10518.44, + "end": 10518.58, + "probability": 0.4695 + }, + { + "start": 10520.26, + "end": 10520.52, + "probability": 0.545 + }, + { + "start": 10520.52, + "end": 10520.92, + "probability": 0.1594 + }, + { + "start": 10521.28, + "end": 10522.73, + "probability": 0.0747 + }, + { + "start": 10522.82, + "end": 10523.36, + "probability": 0.5574 + }, + { + "start": 10524.68, + "end": 10528.68, + "probability": 0.9469 + }, + { + "start": 10530.26, + "end": 10532.22, + "probability": 0.8965 + }, + { + "start": 10533.76, + "end": 10539.96, + "probability": 0.9897 + }, + { + "start": 10541.1, + "end": 10544.22, + "probability": 0.989 + }, + { + "start": 10544.34, + "end": 10545.12, + "probability": 0.9897 + }, + { + "start": 10546.62, + "end": 10550.9, + "probability": 0.9978 + }, + { + "start": 10550.98, + "end": 10551.42, + "probability": 0.0111 + }, + { + "start": 10551.42, + "end": 10552.38, + "probability": 0.053 + }, + { + "start": 10552.86, + "end": 10554.28, + "probability": 0.6314 + }, + { + "start": 10554.92, + "end": 10561.3, + "probability": 0.9041 + }, + { + "start": 10562.12, + "end": 10564.96, + "probability": 0.9795 + }, + { + "start": 10565.1, + "end": 10566.44, + "probability": 0.8246 + }, + { + "start": 10568.12, + "end": 10571.9, + "probability": 0.9649 + }, + { + "start": 10573.64, + "end": 10577.94, + "probability": 0.9701 + }, + { + "start": 10578.04, + "end": 10578.8, + "probability": 0.6978 + }, + { + "start": 10579.96, + "end": 10586.36, + "probability": 0.9882 + }, + { + "start": 10587.86, + "end": 10591.14, + "probability": 0.9948 + }, + { + "start": 10592.0, + "end": 10595.64, + "probability": 0.9956 + }, + { + "start": 10598.5, + "end": 10598.86, + "probability": 0.9665 + }, + { + "start": 10600.08, + "end": 10602.5, + "probability": 0.7271 + }, + { + "start": 10603.84, + "end": 10605.54, + "probability": 0.9917 + }, + { + "start": 10606.2, + "end": 10607.46, + "probability": 0.8591 + }, + { + "start": 10608.22, + "end": 10609.78, + "probability": 0.9712 + }, + { + "start": 10610.84, + "end": 10616.74, + "probability": 0.9729 + }, + { + "start": 10618.26, + "end": 10619.98, + "probability": 0.9058 + }, + { + "start": 10621.22, + "end": 10624.3, + "probability": 0.9567 + }, + { + "start": 10625.88, + "end": 10628.44, + "probability": 0.6442 + }, + { + "start": 10629.28, + "end": 10629.28, + "probability": 0.1718 + }, + { + "start": 10629.28, + "end": 10630.02, + "probability": 0.8606 + }, + { + "start": 10630.12, + "end": 10630.76, + "probability": 0.8261 + }, + { + "start": 10630.84, + "end": 10631.46, + "probability": 0.6778 + }, + { + "start": 10631.62, + "end": 10632.36, + "probability": 0.6597 + }, + { + "start": 10632.8, + "end": 10635.7, + "probability": 0.9929 + }, + { + "start": 10637.78, + "end": 10639.46, + "probability": 0.9286 + }, + { + "start": 10639.52, + "end": 10641.42, + "probability": 0.7749 + }, + { + "start": 10643.94, + "end": 10645.34, + "probability": 0.1226 + }, + { + "start": 10645.36, + "end": 10645.36, + "probability": 0.5661 + }, + { + "start": 10646.58, + "end": 10649.6, + "probability": 0.9309 + }, + { + "start": 10650.54, + "end": 10651.98, + "probability": 0.9972 + }, + { + "start": 10652.1, + "end": 10652.76, + "probability": 0.8055 + }, + { + "start": 10653.68, + "end": 10656.88, + "probability": 0.9946 + }, + { + "start": 10657.4, + "end": 10663.0, + "probability": 0.9678 + }, + { + "start": 10663.06, + "end": 10663.56, + "probability": 0.8845 + }, + { + "start": 10663.58, + "end": 10665.08, + "probability": 0.5258 + }, + { + "start": 10666.56, + "end": 10671.26, + "probability": 0.9987 + }, + { + "start": 10671.66, + "end": 10673.52, + "probability": 0.9663 + }, + { + "start": 10673.54, + "end": 10674.78, + "probability": 0.9958 + }, + { + "start": 10675.92, + "end": 10677.0, + "probability": 0.8248 + }, + { + "start": 10677.32, + "end": 10681.71, + "probability": 0.9961 + }, + { + "start": 10681.98, + "end": 10685.32, + "probability": 0.9907 + }, + { + "start": 10686.16, + "end": 10691.58, + "probability": 0.9717 + }, + { + "start": 10692.38, + "end": 10694.16, + "probability": 0.7315 + }, + { + "start": 10694.74, + "end": 10695.18, + "probability": 0.8701 + }, + { + "start": 10696.06, + "end": 10698.52, + "probability": 0.8818 + }, + { + "start": 10698.62, + "end": 10701.62, + "probability": 0.9705 + }, + { + "start": 10702.72, + "end": 10705.6, + "probability": 0.9809 + }, + { + "start": 10707.14, + "end": 10708.54, + "probability": 0.9819 + }, + { + "start": 10711.08, + "end": 10715.16, + "probability": 0.9976 + }, + { + "start": 10716.38, + "end": 10719.46, + "probability": 0.9802 + }, + { + "start": 10721.12, + "end": 10724.52, + "probability": 0.9702 + }, + { + "start": 10725.32, + "end": 10726.78, + "probability": 0.9987 + }, + { + "start": 10727.98, + "end": 10729.26, + "probability": 0.8765 + }, + { + "start": 10733.72, + "end": 10737.26, + "probability": 0.9208 + }, + { + "start": 10738.74, + "end": 10740.7, + "probability": 0.9952 + }, + { + "start": 10744.08, + "end": 10745.56, + "probability": 0.781 + }, + { + "start": 10745.76, + "end": 10747.34, + "probability": 0.9986 + }, + { + "start": 10747.34, + "end": 10748.24, + "probability": 0.5526 + }, + { + "start": 10748.3, + "end": 10748.86, + "probability": 0.0492 + }, + { + "start": 10748.98, + "end": 10749.1, + "probability": 0.2874 + }, + { + "start": 10749.58, + "end": 10751.16, + "probability": 0.9973 + }, + { + "start": 10751.26, + "end": 10754.12, + "probability": 0.8069 + }, + { + "start": 10755.1, + "end": 10757.66, + "probability": 0.9758 + }, + { + "start": 10760.14, + "end": 10761.52, + "probability": 0.9275 + }, + { + "start": 10762.32, + "end": 10763.82, + "probability": 0.7232 + }, + { + "start": 10764.44, + "end": 10766.46, + "probability": 0.9981 + }, + { + "start": 10767.3, + "end": 10768.62, + "probability": 0.8259 + }, + { + "start": 10769.18, + "end": 10770.36, + "probability": 0.9496 + }, + { + "start": 10771.9, + "end": 10774.76, + "probability": 0.989 + }, + { + "start": 10775.54, + "end": 10778.76, + "probability": 0.9409 + }, + { + "start": 10780.26, + "end": 10781.6, + "probability": 0.9489 + }, + { + "start": 10783.64, + "end": 10784.8, + "probability": 0.752 + }, + { + "start": 10787.2, + "end": 10788.36, + "probability": 0.9604 + }, + { + "start": 10789.48, + "end": 10790.46, + "probability": 0.956 + }, + { + "start": 10791.52, + "end": 10793.5, + "probability": 0.9992 + }, + { + "start": 10795.6, + "end": 10796.08, + "probability": 0.9978 + }, + { + "start": 10798.9, + "end": 10799.4, + "probability": 0.8746 + }, + { + "start": 10800.26, + "end": 10802.38, + "probability": 0.9257 + }, + { + "start": 10803.34, + "end": 10807.64, + "probability": 0.9917 + }, + { + "start": 10807.76, + "end": 10808.6, + "probability": 0.9941 + }, + { + "start": 10809.14, + "end": 10811.32, + "probability": 0.9208 + }, + { + "start": 10811.82, + "end": 10812.86, + "probability": 0.9417 + }, + { + "start": 10813.88, + "end": 10816.48, + "probability": 0.8288 + }, + { + "start": 10817.44, + "end": 10819.44, + "probability": 0.8595 + }, + { + "start": 10820.3, + "end": 10822.52, + "probability": 0.9779 + }, + { + "start": 10824.08, + "end": 10824.46, + "probability": 0.9683 + }, + { + "start": 10825.1, + "end": 10827.98, + "probability": 0.9539 + }, + { + "start": 10828.22, + "end": 10829.36, + "probability": 0.9792 + }, + { + "start": 10829.74, + "end": 10834.0, + "probability": 0.9061 + }, + { + "start": 10835.38, + "end": 10837.5, + "probability": 0.6939 + }, + { + "start": 10838.14, + "end": 10843.8, + "probability": 0.9967 + }, + { + "start": 10843.92, + "end": 10846.04, + "probability": 0.9656 + }, + { + "start": 10847.8, + "end": 10849.52, + "probability": 0.998 + }, + { + "start": 10850.16, + "end": 10851.66, + "probability": 0.9937 + }, + { + "start": 10851.8, + "end": 10852.84, + "probability": 0.9776 + }, + { + "start": 10853.04, + "end": 10854.22, + "probability": 0.9321 + }, + { + "start": 10855.4, + "end": 10855.91, + "probability": 0.8166 + }, + { + "start": 10856.82, + "end": 10858.14, + "probability": 0.9659 + }, + { + "start": 10859.0, + "end": 10862.06, + "probability": 0.9435 + }, + { + "start": 10863.08, + "end": 10867.94, + "probability": 0.9832 + }, + { + "start": 10868.5, + "end": 10870.28, + "probability": 0.9935 + }, + { + "start": 10871.2, + "end": 10872.0, + "probability": 0.7753 + }, + { + "start": 10873.36, + "end": 10874.34, + "probability": 0.7445 + }, + { + "start": 10875.36, + "end": 10881.01, + "probability": 0.9881 + }, + { + "start": 10881.26, + "end": 10882.7, + "probability": 0.938 + }, + { + "start": 10882.82, + "end": 10885.78, + "probability": 0.9961 + }, + { + "start": 10887.68, + "end": 10891.4, + "probability": 0.9595 + }, + { + "start": 10892.5, + "end": 10895.8, + "probability": 0.9918 + }, + { + "start": 10896.84, + "end": 10899.64, + "probability": 0.9814 + }, + { + "start": 10899.82, + "end": 10900.96, + "probability": 0.9427 + }, + { + "start": 10902.28, + "end": 10905.08, + "probability": 0.9948 + }, + { + "start": 10906.1, + "end": 10909.34, + "probability": 0.9661 + }, + { + "start": 10910.68, + "end": 10913.7, + "probability": 0.9756 + }, + { + "start": 10914.5, + "end": 10916.16, + "probability": 0.9899 + }, + { + "start": 10917.06, + "end": 10917.64, + "probability": 0.7974 + }, + { + "start": 10918.5, + "end": 10922.74, + "probability": 0.9571 + }, + { + "start": 10923.88, + "end": 10929.36, + "probability": 0.9758 + }, + { + "start": 10929.36, + "end": 10932.74, + "probability": 0.9575 + }, + { + "start": 10933.3, + "end": 10934.58, + "probability": 0.8672 + }, + { + "start": 10936.18, + "end": 10939.31, + "probability": 0.7508 + }, + { + "start": 10940.22, + "end": 10945.46, + "probability": 0.9971 + }, + { + "start": 10946.06, + "end": 10947.72, + "probability": 0.951 + }, + { + "start": 10948.9, + "end": 10950.56, + "probability": 0.981 + }, + { + "start": 10951.38, + "end": 10956.14, + "probability": 0.9891 + }, + { + "start": 10956.92, + "end": 10957.82, + "probability": 0.9463 + }, + { + "start": 10958.12, + "end": 10958.58, + "probability": 0.736 + }, + { + "start": 10959.12, + "end": 10960.44, + "probability": 0.6614 + }, + { + "start": 10961.34, + "end": 10963.42, + "probability": 0.8702 + }, + { + "start": 10964.32, + "end": 10965.48, + "probability": 0.7847 + }, + { + "start": 10966.08, + "end": 10968.86, + "probability": 0.5007 + }, + { + "start": 10970.06, + "end": 10972.8, + "probability": 0.6992 + }, + { + "start": 10973.64, + "end": 10977.62, + "probability": 0.7898 + }, + { + "start": 10977.68, + "end": 10978.2, + "probability": 0.2717 + }, + { + "start": 10978.22, + "end": 10978.6, + "probability": 0.4087 + }, + { + "start": 10978.62, + "end": 10979.14, + "probability": 0.6891 + }, + { + "start": 10985.88, + "end": 10985.98, + "probability": 0.1498 + }, + { + "start": 10986.52, + "end": 10991.55, + "probability": 0.0791 + }, + { + "start": 10993.94, + "end": 10994.68, + "probability": 0.0861 + }, + { + "start": 10996.38, + "end": 10999.38, + "probability": 0.1204 + }, + { + "start": 10999.6, + "end": 10999.6, + "probability": 0.1626 + }, + { + "start": 10999.6, + "end": 11001.76, + "probability": 0.8894 + }, + { + "start": 11001.76, + "end": 11005.22, + "probability": 0.9059 + }, + { + "start": 11005.38, + "end": 11007.04, + "probability": 0.7742 + }, + { + "start": 11007.42, + "end": 11007.76, + "probability": 0.5243 + }, + { + "start": 11008.6, + "end": 11009.9, + "probability": 0.9053 + }, + { + "start": 11010.38, + "end": 11016.0, + "probability": 0.7434 + }, + { + "start": 11016.42, + "end": 11017.48, + "probability": 0.7934 + }, + { + "start": 11017.86, + "end": 11020.22, + "probability": 0.8687 + }, + { + "start": 11021.2, + "end": 11022.48, + "probability": 0.2868 + }, + { + "start": 11023.14, + "end": 11024.56, + "probability": 0.5964 + }, + { + "start": 11025.22, + "end": 11025.72, + "probability": 0.318 + }, + { + "start": 11026.68, + "end": 11027.52, + "probability": 0.908 + }, + { + "start": 11028.36, + "end": 11030.42, + "probability": 0.9795 + }, + { + "start": 11030.52, + "end": 11031.68, + "probability": 0.7275 + }, + { + "start": 11031.78, + "end": 11032.15, + "probability": 0.98 + }, + { + "start": 11032.56, + "end": 11033.66, + "probability": 0.6851 + }, + { + "start": 11034.26, + "end": 11034.64, + "probability": 0.7007 + }, + { + "start": 11035.12, + "end": 11036.28, + "probability": 0.1836 + }, + { + "start": 11037.42, + "end": 11042.54, + "probability": 0.621 + }, + { + "start": 11043.96, + "end": 11046.36, + "probability": 0.8998 + }, + { + "start": 11046.36, + "end": 11047.78, + "probability": 0.788 + }, + { + "start": 11049.56, + "end": 11050.38, + "probability": 0.9272 + }, + { + "start": 11051.26, + "end": 11053.05, + "probability": 0.7361 + }, + { + "start": 11054.02, + "end": 11054.72, + "probability": 0.8927 + }, + { + "start": 11054.76, + "end": 11055.3, + "probability": 0.7286 + }, + { + "start": 11055.36, + "end": 11056.45, + "probability": 0.9851 + }, + { + "start": 11057.08, + "end": 11059.44, + "probability": 0.7465 + }, + { + "start": 11059.74, + "end": 11060.52, + "probability": 0.8855 + }, + { + "start": 11060.8, + "end": 11064.78, + "probability": 0.9834 + }, + { + "start": 11065.1, + "end": 11065.8, + "probability": 0.623 + }, + { + "start": 11066.6, + "end": 11068.46, + "probability": 0.7505 + }, + { + "start": 11069.38, + "end": 11072.82, + "probability": 0.8869 + }, + { + "start": 11073.42, + "end": 11079.04, + "probability": 0.9644 + }, + { + "start": 11079.46, + "end": 11081.58, + "probability": 0.8279 + }, + { + "start": 11082.02, + "end": 11082.5, + "probability": 0.7525 + }, + { + "start": 11082.9, + "end": 11084.0, + "probability": 0.8015 + }, + { + "start": 11086.62, + "end": 11088.84, + "probability": 0.9712 + }, + { + "start": 11089.34, + "end": 11093.68, + "probability": 0.9964 + }, + { + "start": 11094.3, + "end": 11097.08, + "probability": 0.6931 + }, + { + "start": 11098.38, + "end": 11099.68, + "probability": 0.85 + }, + { + "start": 11100.44, + "end": 11100.6, + "probability": 0.0713 + }, + { + "start": 11100.6, + "end": 11101.44, + "probability": 0.6025 + }, + { + "start": 11101.44, + "end": 11102.54, + "probability": 0.6541 + }, + { + "start": 11103.68, + "end": 11104.92, + "probability": 0.7898 + }, + { + "start": 11105.16, + "end": 11106.08, + "probability": 0.9592 + }, + { + "start": 11106.22, + "end": 11107.7, + "probability": 0.9922 + }, + { + "start": 11108.04, + "end": 11109.46, + "probability": 0.9807 + }, + { + "start": 11109.72, + "end": 11113.12, + "probability": 0.712 + }, + { + "start": 11113.72, + "end": 11116.98, + "probability": 0.0614 + }, + { + "start": 11116.98, + "end": 11117.68, + "probability": 0.1591 + }, + { + "start": 11118.3, + "end": 11121.12, + "probability": 0.7695 + }, + { + "start": 11121.48, + "end": 11122.34, + "probability": 0.9644 + }, + { + "start": 11122.42, + "end": 11123.46, + "probability": 0.9095 + }, + { + "start": 11125.0, + "end": 11129.02, + "probability": 0.9258 + }, + { + "start": 11130.0, + "end": 11132.64, + "probability": 0.9627 + }, + { + "start": 11133.44, + "end": 11135.09, + "probability": 0.9022 + }, + { + "start": 11135.28, + "end": 11139.62, + "probability": 0.9911 + }, + { + "start": 11140.16, + "end": 11141.38, + "probability": 0.8166 + }, + { + "start": 11141.46, + "end": 11142.96, + "probability": 0.9028 + }, + { + "start": 11143.28, + "end": 11144.0, + "probability": 0.8025 + }, + { + "start": 11144.08, + "end": 11144.76, + "probability": 0.9751 + }, + { + "start": 11145.12, + "end": 11147.22, + "probability": 0.926 + }, + { + "start": 11148.04, + "end": 11150.16, + "probability": 0.9385 + }, + { + "start": 11151.56, + "end": 11156.52, + "probability": 0.9651 + }, + { + "start": 11156.72, + "end": 11157.58, + "probability": 0.7585 + }, + { + "start": 11158.88, + "end": 11163.42, + "probability": 0.9946 + }, + { + "start": 11163.9, + "end": 11164.86, + "probability": 0.5376 + }, + { + "start": 11164.9, + "end": 11165.54, + "probability": 0.7046 + }, + { + "start": 11165.62, + "end": 11166.1, + "probability": 0.624 + }, + { + "start": 11167.78, + "end": 11171.45, + "probability": 0.9822 + }, + { + "start": 11172.44, + "end": 11175.62, + "probability": 0.975 + }, + { + "start": 11175.7, + "end": 11177.54, + "probability": 0.9004 + }, + { + "start": 11177.64, + "end": 11186.38, + "probability": 0.9172 + }, + { + "start": 11188.08, + "end": 11191.46, + "probability": 0.5609 + }, + { + "start": 11192.64, + "end": 11194.98, + "probability": 0.9032 + }, + { + "start": 11195.42, + "end": 11197.78, + "probability": 0.6772 + }, + { + "start": 11198.34, + "end": 11198.52, + "probability": 0.6577 + }, + { + "start": 11198.76, + "end": 11200.4, + "probability": 0.9951 + }, + { + "start": 11200.86, + "end": 11202.62, + "probability": 0.8518 + }, + { + "start": 11202.7, + "end": 11204.74, + "probability": 0.9932 + }, + { + "start": 11204.8, + "end": 11205.24, + "probability": 0.8028 + }, + { + "start": 11205.68, + "end": 11206.84, + "probability": 0.9152 + }, + { + "start": 11208.48, + "end": 11214.16, + "probability": 0.9868 + }, + { + "start": 11214.84, + "end": 11217.02, + "probability": 0.5993 + }, + { + "start": 11217.84, + "end": 11220.82, + "probability": 0.9141 + }, + { + "start": 11221.16, + "end": 11223.26, + "probability": 0.9732 + }, + { + "start": 11223.82, + "end": 11225.84, + "probability": 0.9131 + }, + { + "start": 11226.56, + "end": 11229.54, + "probability": 0.9927 + }, + { + "start": 11230.02, + "end": 11234.1, + "probability": 0.7955 + }, + { + "start": 11234.12, + "end": 11234.7, + "probability": 0.8704 + }, + { + "start": 11235.9, + "end": 11236.4, + "probability": 0.8298 + }, + { + "start": 11236.5, + "end": 11237.26, + "probability": 0.9093 + }, + { + "start": 11237.32, + "end": 11238.44, + "probability": 0.9473 + }, + { + "start": 11238.93, + "end": 11240.05, + "probability": 0.9477 + }, + { + "start": 11240.76, + "end": 11242.1, + "probability": 0.9902 + }, + { + "start": 11242.26, + "end": 11243.2, + "probability": 0.8626 + }, + { + "start": 11243.76, + "end": 11244.96, + "probability": 0.9623 + }, + { + "start": 11245.34, + "end": 11247.58, + "probability": 0.983 + }, + { + "start": 11248.24, + "end": 11249.74, + "probability": 0.9834 + }, + { + "start": 11250.96, + "end": 11252.35, + "probability": 0.9766 + }, + { + "start": 11252.46, + "end": 11254.7, + "probability": 0.9172 + }, + { + "start": 11255.08, + "end": 11257.34, + "probability": 0.9921 + }, + { + "start": 11257.76, + "end": 11261.4, + "probability": 0.9965 + }, + { + "start": 11261.46, + "end": 11263.1, + "probability": 0.9477 + }, + { + "start": 11263.46, + "end": 11267.14, + "probability": 0.9932 + }, + { + "start": 11267.14, + "end": 11269.8, + "probability": 0.9971 + }, + { + "start": 11270.26, + "end": 11271.82, + "probability": 0.966 + }, + { + "start": 11272.2, + "end": 11272.9, + "probability": 0.9329 + }, + { + "start": 11273.16, + "end": 11278.88, + "probability": 0.9958 + }, + { + "start": 11279.66, + "end": 11280.6, + "probability": 0.9303 + }, + { + "start": 11281.02, + "end": 11282.52, + "probability": 0.8857 + }, + { + "start": 11282.98, + "end": 11287.26, + "probability": 0.838 + }, + { + "start": 11287.84, + "end": 11289.16, + "probability": 0.9682 + }, + { + "start": 11289.44, + "end": 11290.84, + "probability": 0.9941 + }, + { + "start": 11291.1, + "end": 11292.26, + "probability": 0.9774 + }, + { + "start": 11292.68, + "end": 11293.7, + "probability": 0.7807 + }, + { + "start": 11294.2, + "end": 11296.14, + "probability": 0.7702 + }, + { + "start": 11296.48, + "end": 11300.98, + "probability": 0.9874 + }, + { + "start": 11302.8, + "end": 11304.02, + "probability": 0.7319 + }, + { + "start": 11304.6, + "end": 11308.14, + "probability": 0.7649 + }, + { + "start": 11308.56, + "end": 11309.48, + "probability": 0.6962 + }, + { + "start": 11309.64, + "end": 11310.68, + "probability": 0.9261 + }, + { + "start": 11311.04, + "end": 11313.08, + "probability": 0.8254 + }, + { + "start": 11314.24, + "end": 11315.7, + "probability": 0.9709 + }, + { + "start": 11316.66, + "end": 11317.3, + "probability": 0.7848 + }, + { + "start": 11317.66, + "end": 11319.18, + "probability": 0.9819 + }, + { + "start": 11319.26, + "end": 11320.02, + "probability": 0.6559 + }, + { + "start": 11320.12, + "end": 11321.92, + "probability": 0.6224 + }, + { + "start": 11321.98, + "end": 11323.23, + "probability": 0.9937 + }, + { + "start": 11323.88, + "end": 11325.46, + "probability": 0.9112 + }, + { + "start": 11325.5, + "end": 11330.62, + "probability": 0.8188 + }, + { + "start": 11331.0, + "end": 11333.59, + "probability": 0.9045 + }, + { + "start": 11335.78, + "end": 11337.7, + "probability": 0.7763 + }, + { + "start": 11338.08, + "end": 11339.32, + "probability": 0.9962 + }, + { + "start": 11339.46, + "end": 11340.08, + "probability": 0.6994 + }, + { + "start": 11341.26, + "end": 11342.54, + "probability": 0.662 + }, + { + "start": 11342.66, + "end": 11349.42, + "probability": 0.9626 + }, + { + "start": 11350.14, + "end": 11351.2, + "probability": 0.8285 + }, + { + "start": 11351.32, + "end": 11352.04, + "probability": 0.734 + }, + { + "start": 11352.1, + "end": 11352.98, + "probability": 0.8954 + }, + { + "start": 11353.62, + "end": 11356.22, + "probability": 0.694 + }, + { + "start": 11356.24, + "end": 11358.26, + "probability": 0.707 + }, + { + "start": 11358.9, + "end": 11358.94, + "probability": 0.075 + }, + { + "start": 11359.06, + "end": 11359.72, + "probability": 0.8904 + }, + { + "start": 11359.84, + "end": 11363.2, + "probability": 0.972 + }, + { + "start": 11363.86, + "end": 11366.08, + "probability": 0.947 + }, + { + "start": 11366.62, + "end": 11368.22, + "probability": 0.8253 + }, + { + "start": 11369.18, + "end": 11371.3, + "probability": 0.9953 + }, + { + "start": 11373.1, + "end": 11376.42, + "probability": 0.9347 + }, + { + "start": 11378.56, + "end": 11381.02, + "probability": 0.9619 + }, + { + "start": 11381.06, + "end": 11384.68, + "probability": 0.9248 + }, + { + "start": 11384.96, + "end": 11386.86, + "probability": 0.9349 + }, + { + "start": 11387.56, + "end": 11388.88, + "probability": 0.9962 + }, + { + "start": 11389.16, + "end": 11389.32, + "probability": 0.558 + }, + { + "start": 11389.46, + "end": 11391.22, + "probability": 0.9753 + }, + { + "start": 11391.34, + "end": 11392.98, + "probability": 0.9561 + }, + { + "start": 11392.98, + "end": 11395.72, + "probability": 0.9965 + }, + { + "start": 11396.14, + "end": 11397.7, + "probability": 0.9731 + }, + { + "start": 11398.3, + "end": 11399.48, + "probability": 0.5419 + }, + { + "start": 11399.74, + "end": 11400.64, + "probability": 0.8086 + }, + { + "start": 11400.82, + "end": 11402.28, + "probability": 0.9979 + }, + { + "start": 11402.76, + "end": 11404.2, + "probability": 0.7831 + }, + { + "start": 11404.48, + "end": 11407.18, + "probability": 0.9893 + }, + { + "start": 11407.92, + "end": 11408.96, + "probability": 0.9748 + }, + { + "start": 11410.04, + "end": 11411.28, + "probability": 0.8438 + }, + { + "start": 11411.9, + "end": 11412.87, + "probability": 0.9727 + }, + { + "start": 11413.12, + "end": 11414.26, + "probability": 0.9136 + }, + { + "start": 11414.58, + "end": 11415.74, + "probability": 0.7721 + }, + { + "start": 11416.64, + "end": 11418.18, + "probability": 0.5307 + }, + { + "start": 11418.46, + "end": 11421.68, + "probability": 0.8009 + }, + { + "start": 11423.3, + "end": 11424.0, + "probability": 0.6188 + }, + { + "start": 11424.08, + "end": 11424.66, + "probability": 0.7971 + }, + { + "start": 11424.74, + "end": 11426.62, + "probability": 0.7694 + }, + { + "start": 11426.84, + "end": 11428.22, + "probability": 0.9849 + }, + { + "start": 11429.1, + "end": 11433.62, + "probability": 0.5556 + }, + { + "start": 11434.28, + "end": 11435.52, + "probability": 0.9487 + }, + { + "start": 11435.62, + "end": 11440.12, + "probability": 0.9915 + }, + { + "start": 11440.34, + "end": 11442.1, + "probability": 0.9756 + }, + { + "start": 11443.68, + "end": 11445.1, + "probability": 0.9829 + }, + { + "start": 11447.63, + "end": 11449.08, + "probability": 0.5117 + }, + { + "start": 11449.08, + "end": 11449.08, + "probability": 0.1461 + }, + { + "start": 11449.08, + "end": 11450.24, + "probability": 0.9419 + }, + { + "start": 11451.22, + "end": 11452.94, + "probability": 0.8505 + }, + { + "start": 11455.44, + "end": 11458.46, + "probability": 0.8334 + }, + { + "start": 11458.98, + "end": 11464.16, + "probability": 0.9919 + }, + { + "start": 11464.74, + "end": 11465.22, + "probability": 0.7503 + }, + { + "start": 11465.28, + "end": 11466.48, + "probability": 0.629 + }, + { + "start": 11466.48, + "end": 11468.92, + "probability": 0.8997 + }, + { + "start": 11469.62, + "end": 11471.2, + "probability": 0.6123 + }, + { + "start": 11471.7, + "end": 11472.82, + "probability": 0.9828 + }, + { + "start": 11473.04, + "end": 11477.62, + "probability": 0.8031 + }, + { + "start": 11478.18, + "end": 11478.4, + "probability": 0.8108 + }, + { + "start": 11478.78, + "end": 11479.24, + "probability": 0.924 + }, + { + "start": 11479.64, + "end": 11482.64, + "probability": 0.9814 + }, + { + "start": 11483.12, + "end": 11486.8, + "probability": 0.9872 + }, + { + "start": 11487.5, + "end": 11491.02, + "probability": 0.9948 + }, + { + "start": 11491.3, + "end": 11493.08, + "probability": 0.9651 + }, + { + "start": 11493.66, + "end": 11497.58, + "probability": 0.9872 + }, + { + "start": 11497.98, + "end": 11499.74, + "probability": 0.5256 + }, + { + "start": 11500.42, + "end": 11501.58, + "probability": 0.9927 + }, + { + "start": 11502.12, + "end": 11504.66, + "probability": 0.8022 + }, + { + "start": 11505.18, + "end": 11506.72, + "probability": 0.3542 + }, + { + "start": 11507.26, + "end": 11509.14, + "probability": 0.6713 + }, + { + "start": 11510.12, + "end": 11513.26, + "probability": 0.7465 + }, + { + "start": 11513.88, + "end": 11515.12, + "probability": 0.9559 + }, + { + "start": 11515.2, + "end": 11515.64, + "probability": 0.7862 + }, + { + "start": 11515.64, + "end": 11516.8, + "probability": 0.8088 + }, + { + "start": 11517.02, + "end": 11517.6, + "probability": 0.9139 + }, + { + "start": 11518.06, + "end": 11518.76, + "probability": 0.9495 + }, + { + "start": 11519.98, + "end": 11525.58, + "probability": 0.9724 + }, + { + "start": 11530.06, + "end": 11531.0, + "probability": 0.2638 + }, + { + "start": 11531.0, + "end": 11531.9, + "probability": 0.1772 + }, + { + "start": 11532.98, + "end": 11534.04, + "probability": 0.2413 + }, + { + "start": 11536.78, + "end": 11540.44, + "probability": 0.098 + }, + { + "start": 11540.92, + "end": 11542.2, + "probability": 0.8273 + }, + { + "start": 11542.2, + "end": 11544.96, + "probability": 0.9078 + }, + { + "start": 11545.4, + "end": 11547.84, + "probability": 0.8525 + }, + { + "start": 11548.16, + "end": 11549.16, + "probability": 0.779 + }, + { + "start": 11549.54, + "end": 11551.87, + "probability": 0.8018 + }, + { + "start": 11552.36, + "end": 11554.1, + "probability": 0.9076 + }, + { + "start": 11554.16, + "end": 11558.4, + "probability": 0.9775 + }, + { + "start": 11558.56, + "end": 11560.86, + "probability": 0.8919 + }, + { + "start": 11561.18, + "end": 11561.82, + "probability": 0.8403 + }, + { + "start": 11562.38, + "end": 11563.96, + "probability": 0.8419 + }, + { + "start": 11564.4, + "end": 11567.8, + "probability": 0.8585 + }, + { + "start": 11567.92, + "end": 11570.48, + "probability": 0.8219 + }, + { + "start": 11570.6, + "end": 11570.86, + "probability": 0.9008 + }, + { + "start": 11571.96, + "end": 11572.64, + "probability": 0.7677 + }, + { + "start": 11572.74, + "end": 11574.14, + "probability": 0.9448 + }, + { + "start": 11574.34, + "end": 11575.08, + "probability": 0.7734 + }, + { + "start": 11575.96, + "end": 11577.42, + "probability": 0.8738 + }, + { + "start": 11578.36, + "end": 11581.06, + "probability": 0.9358 + }, + { + "start": 11581.66, + "end": 11584.44, + "probability": 0.926 + }, + { + "start": 11586.4, + "end": 11587.04, + "probability": 0.9282 + }, + { + "start": 11587.86, + "end": 11588.54, + "probability": 0.8773 + }, + { + "start": 11588.58, + "end": 11589.14, + "probability": 0.6801 + }, + { + "start": 11589.44, + "end": 11590.66, + "probability": 0.9398 + }, + { + "start": 11591.18, + "end": 11592.12, + "probability": 0.8878 + }, + { + "start": 11592.42, + "end": 11593.38, + "probability": 0.9912 + }, + { + "start": 11593.48, + "end": 11594.2, + "probability": 0.9478 + }, + { + "start": 11594.36, + "end": 11594.62, + "probability": 0.9723 + }, + { + "start": 11594.74, + "end": 11595.2, + "probability": 0.9376 + }, + { + "start": 11595.28, + "end": 11598.64, + "probability": 0.9362 + }, + { + "start": 11599.46, + "end": 11601.64, + "probability": 0.8789 + }, + { + "start": 11601.68, + "end": 11604.3, + "probability": 0.9863 + }, + { + "start": 11604.98, + "end": 11606.0, + "probability": 0.5555 + }, + { + "start": 11606.2, + "end": 11606.88, + "probability": 0.7963 + }, + { + "start": 11607.3, + "end": 11608.22, + "probability": 0.8501 + }, + { + "start": 11608.38, + "end": 11610.18, + "probability": 0.9249 + }, + { + "start": 11610.26, + "end": 11611.46, + "probability": 0.8535 + }, + { + "start": 11611.7, + "end": 11611.7, + "probability": 0.2999 + }, + { + "start": 11611.7, + "end": 11614.6, + "probability": 0.6574 + }, + { + "start": 11615.86, + "end": 11618.16, + "probability": 0.8366 + }, + { + "start": 11618.48, + "end": 11618.74, + "probability": 0.4529 + }, + { + "start": 11618.86, + "end": 11620.68, + "probability": 0.7867 + }, + { + "start": 11621.0, + "end": 11624.02, + "probability": 0.975 + }, + { + "start": 11624.3, + "end": 11628.02, + "probability": 0.7992 + }, + { + "start": 11629.84, + "end": 11633.64, + "probability": 0.1308 + }, + { + "start": 11634.14, + "end": 11634.36, + "probability": 0.0508 + }, + { + "start": 11634.36, + "end": 11635.18, + "probability": 0.1257 + }, + { + "start": 11635.64, + "end": 11635.64, + "probability": 0.0544 + }, + { + "start": 11635.64, + "end": 11635.64, + "probability": 0.0468 + }, + { + "start": 11635.64, + "end": 11638.7, + "probability": 0.5595 + }, + { + "start": 11638.8, + "end": 11638.96, + "probability": 0.6996 + }, + { + "start": 11638.96, + "end": 11640.62, + "probability": 0.9565 + }, + { + "start": 11640.78, + "end": 11642.56, + "probability": 0.6773 + }, + { + "start": 11642.88, + "end": 11644.72, + "probability": 0.944 + }, + { + "start": 11645.24, + "end": 11648.92, + "probability": 0.816 + }, + { + "start": 11648.94, + "end": 11653.1, + "probability": 0.9814 + }, + { + "start": 11653.32, + "end": 11654.28, + "probability": 0.9757 + }, + { + "start": 11654.88, + "end": 11656.32, + "probability": 0.8676 + }, + { + "start": 11657.4, + "end": 11658.58, + "probability": 0.0171 + }, + { + "start": 11658.58, + "end": 11658.58, + "probability": 0.0731 + }, + { + "start": 11658.58, + "end": 11658.58, + "probability": 0.0542 + }, + { + "start": 11658.58, + "end": 11658.58, + "probability": 0.1191 + }, + { + "start": 11658.58, + "end": 11659.96, + "probability": 0.8024 + }, + { + "start": 11660.04, + "end": 11660.14, + "probability": 0.3448 + }, + { + "start": 11660.16, + "end": 11660.84, + "probability": 0.92 + }, + { + "start": 11661.08, + "end": 11662.98, + "probability": 0.9771 + }, + { + "start": 11663.62, + "end": 11665.72, + "probability": 0.9572 + }, + { + "start": 11666.28, + "end": 11666.86, + "probability": 0.727 + }, + { + "start": 11666.98, + "end": 11671.06, + "probability": 0.951 + }, + { + "start": 11671.56, + "end": 11673.77, + "probability": 0.5789 + }, + { + "start": 11674.2, + "end": 11674.94, + "probability": 0.7869 + }, + { + "start": 11675.72, + "end": 11678.72, + "probability": 0.8933 + }, + { + "start": 11679.0, + "end": 11680.38, + "probability": 0.7981 + }, + { + "start": 11680.38, + "end": 11681.69, + "probability": 0.7752 + }, + { + "start": 11681.94, + "end": 11682.68, + "probability": 0.7574 + }, + { + "start": 11683.38, + "end": 11687.26, + "probability": 0.7478 + }, + { + "start": 11687.6, + "end": 11689.26, + "probability": 0.8702 + }, + { + "start": 11689.3, + "end": 11690.0, + "probability": 0.7207 + }, + { + "start": 11690.28, + "end": 11691.16, + "probability": 0.4803 + }, + { + "start": 11691.52, + "end": 11693.36, + "probability": 0.9029 + }, + { + "start": 11693.4, + "end": 11694.14, + "probability": 0.8024 + }, + { + "start": 11694.44, + "end": 11695.08, + "probability": 0.6635 + }, + { + "start": 11695.24, + "end": 11697.3, + "probability": 0.9027 + }, + { + "start": 11698.94, + "end": 11700.38, + "probability": 0.7482 + }, + { + "start": 11700.64, + "end": 11702.24, + "probability": 0.9902 + }, + { + "start": 11702.76, + "end": 11703.68, + "probability": 0.4365 + }, + { + "start": 11703.68, + "end": 11704.12, + "probability": 0.7672 + }, + { + "start": 11704.2, + "end": 11705.16, + "probability": 0.5138 + }, + { + "start": 11705.2, + "end": 11706.52, + "probability": 0.6239 + }, + { + "start": 11706.82, + "end": 11708.46, + "probability": 0.8475 + }, + { + "start": 11709.1, + "end": 11711.72, + "probability": 0.7573 + }, + { + "start": 11711.78, + "end": 11713.2, + "probability": 0.9209 + }, + { + "start": 11713.6, + "end": 11716.62, + "probability": 0.8821 + }, + { + "start": 11716.9, + "end": 11718.1, + "probability": 0.8421 + }, + { + "start": 11718.2, + "end": 11718.72, + "probability": 0.4166 + }, + { + "start": 11718.96, + "end": 11721.38, + "probability": 0.8774 + }, + { + "start": 11721.54, + "end": 11724.06, + "probability": 0.9696 + }, + { + "start": 11724.46, + "end": 11727.3, + "probability": 0.9165 + }, + { + "start": 11728.0, + "end": 11730.02, + "probability": 0.9421 + }, + { + "start": 11730.48, + "end": 11731.13, + "probability": 0.8503 + }, + { + "start": 11731.74, + "end": 11733.02, + "probability": 0.9443 + }, + { + "start": 11733.3, + "end": 11734.1, + "probability": 0.8886 + }, + { + "start": 11734.28, + "end": 11738.74, + "probability": 0.9668 + }, + { + "start": 11738.74, + "end": 11743.82, + "probability": 0.983 + }, + { + "start": 11744.2, + "end": 11747.28, + "probability": 0.9915 + }, + { + "start": 11747.3, + "end": 11748.24, + "probability": 0.8715 + }, + { + "start": 11749.0, + "end": 11751.15, + "probability": 0.9966 + }, + { + "start": 11751.36, + "end": 11754.9, + "probability": 0.896 + }, + { + "start": 11757.34, + "end": 11757.88, + "probability": 0.1746 + }, + { + "start": 11758.6, + "end": 11761.38, + "probability": 0.0913 + }, + { + "start": 11763.1, + "end": 11764.52, + "probability": 0.3884 + }, + { + "start": 11765.66, + "end": 11766.42, + "probability": 0.4037 + }, + { + "start": 11767.14, + "end": 11767.82, + "probability": 0.9207 + }, + { + "start": 11768.36, + "end": 11769.3, + "probability": 0.8367 + }, + { + "start": 11770.5, + "end": 11772.32, + "probability": 0.9312 + }, + { + "start": 11773.16, + "end": 11773.98, + "probability": 0.9884 + }, + { + "start": 11775.22, + "end": 11777.84, + "probability": 0.9458 + }, + { + "start": 11779.32, + "end": 11784.1, + "probability": 0.9831 + }, + { + "start": 11784.78, + "end": 11790.48, + "probability": 0.9582 + }, + { + "start": 11790.66, + "end": 11796.18, + "probability": 0.9902 + }, + { + "start": 11796.44, + "end": 11796.82, + "probability": 0.7456 + }, + { + "start": 11797.78, + "end": 11797.78, + "probability": 0.0945 + }, + { + "start": 11797.78, + "end": 11799.36, + "probability": 0.5175 + }, + { + "start": 11801.7, + "end": 11805.04, + "probability": 0.6064 + }, + { + "start": 11805.32, + "end": 11806.9, + "probability": 0.791 + }, + { + "start": 11807.04, + "end": 11807.14, + "probability": 0.1783 + }, + { + "start": 11807.14, + "end": 11808.8, + "probability": 0.8222 + }, + { + "start": 11809.12, + "end": 11811.04, + "probability": 0.9878 + }, + { + "start": 11811.64, + "end": 11812.08, + "probability": 0.0288 + }, + { + "start": 11812.68, + "end": 11812.84, + "probability": 0.0655 + }, + { + "start": 11812.84, + "end": 11813.64, + "probability": 0.7517 + }, + { + "start": 11814.08, + "end": 11815.06, + "probability": 0.8913 + }, + { + "start": 11817.06, + "end": 11817.1, + "probability": 0.22 + }, + { + "start": 11817.1, + "end": 11819.58, + "probability": 0.9831 + }, + { + "start": 11820.6, + "end": 11823.3, + "probability": 0.9681 + }, + { + "start": 11823.38, + "end": 11824.16, + "probability": 0.4379 + }, + { + "start": 11824.22, + "end": 11825.64, + "probability": 0.9819 + }, + { + "start": 11825.76, + "end": 11827.54, + "probability": 0.966 + }, + { + "start": 11827.9, + "end": 11828.6, + "probability": 0.2565 + }, + { + "start": 11828.98, + "end": 11833.02, + "probability": 0.9907 + }, + { + "start": 11833.62, + "end": 11836.38, + "probability": 0.947 + }, + { + "start": 11837.02, + "end": 11841.12, + "probability": 0.981 + }, + { + "start": 11841.22, + "end": 11841.9, + "probability": 0.7678 + }, + { + "start": 11841.98, + "end": 11843.2, + "probability": 0.7545 + }, + { + "start": 11844.06, + "end": 11845.1, + "probability": 0.9894 + }, + { + "start": 11845.2, + "end": 11846.28, + "probability": 0.9842 + }, + { + "start": 11847.2, + "end": 11848.56, + "probability": 0.9575 + }, + { + "start": 11849.7, + "end": 11851.84, + "probability": 0.9126 + }, + { + "start": 11852.42, + "end": 11854.74, + "probability": 0.9818 + }, + { + "start": 11855.08, + "end": 11857.22, + "probability": 0.9316 + }, + { + "start": 11858.36, + "end": 11862.38, + "probability": 0.9602 + }, + { + "start": 11862.98, + "end": 11866.56, + "probability": 0.9446 + }, + { + "start": 11867.5, + "end": 11868.54, + "probability": 0.5559 + }, + { + "start": 11869.56, + "end": 11873.62, + "probability": 0.9969 + }, + { + "start": 11873.8, + "end": 11875.34, + "probability": 0.9753 + }, + { + "start": 11875.46, + "end": 11876.96, + "probability": 0.828 + }, + { + "start": 11877.8, + "end": 11880.48, + "probability": 0.9706 + }, + { + "start": 11881.34, + "end": 11884.92, + "probability": 0.9871 + }, + { + "start": 11885.0, + "end": 11886.46, + "probability": 0.4342 + }, + { + "start": 11886.56, + "end": 11887.24, + "probability": 0.7154 + }, + { + "start": 11887.34, + "end": 11892.2, + "probability": 0.9921 + }, + { + "start": 11892.48, + "end": 11893.78, + "probability": 0.959 + }, + { + "start": 11893.78, + "end": 11895.8, + "probability": 0.8804 + }, + { + "start": 11896.36, + "end": 11898.86, + "probability": 0.9592 + }, + { + "start": 11900.76, + "end": 11903.73, + "probability": 0.9749 + }, + { + "start": 11904.0, + "end": 11904.64, + "probability": 0.7933 + }, + { + "start": 11905.1, + "end": 11907.42, + "probability": 0.9254 + }, + { + "start": 11908.52, + "end": 11912.96, + "probability": 0.9764 + }, + { + "start": 11915.93, + "end": 11920.22, + "probability": 0.9559 + }, + { + "start": 11920.46, + "end": 11921.0, + "probability": 0.7482 + }, + { + "start": 11921.52, + "end": 11922.94, + "probability": 0.5828 + }, + { + "start": 11922.94, + "end": 11927.02, + "probability": 0.9222 + }, + { + "start": 11927.1, + "end": 11929.02, + "probability": 0.3738 + }, + { + "start": 11930.4, + "end": 11933.28, + "probability": 0.9247 + }, + { + "start": 11933.76, + "end": 11938.16, + "probability": 0.9535 + }, + { + "start": 11938.28, + "end": 11940.14, + "probability": 0.7953 + }, + { + "start": 11941.1, + "end": 11942.7, + "probability": 0.993 + }, + { + "start": 11943.62, + "end": 11944.8, + "probability": 0.7636 + }, + { + "start": 11946.78, + "end": 11953.68, + "probability": 0.1231 + }, + { + "start": 11957.78, + "end": 11958.74, + "probability": 0.1666 + }, + { + "start": 11959.8, + "end": 11961.24, + "probability": 0.1604 + }, + { + "start": 11963.3, + "end": 11964.82, + "probability": 0.4191 + }, + { + "start": 11965.46, + "end": 11968.61, + "probability": 0.7967 + }, + { + "start": 11969.0, + "end": 11973.56, + "probability": 0.9715 + }, + { + "start": 11974.12, + "end": 11976.46, + "probability": 0.711 + }, + { + "start": 11976.48, + "end": 11977.18, + "probability": 0.8451 + }, + { + "start": 11977.36, + "end": 11977.92, + "probability": 0.6664 + }, + { + "start": 11978.48, + "end": 11979.86, + "probability": 0.828 + }, + { + "start": 11979.94, + "end": 11981.26, + "probability": 0.416 + }, + { + "start": 11981.26, + "end": 11982.7, + "probability": 0.7514 + }, + { + "start": 11982.9, + "end": 11983.6, + "probability": 0.8216 + }, + { + "start": 11983.62, + "end": 11984.58, + "probability": 0.6771 + }, + { + "start": 11985.14, + "end": 11988.54, + "probability": 0.9598 + }, + { + "start": 11989.12, + "end": 11991.32, + "probability": 0.5899 + }, + { + "start": 11992.34, + "end": 11994.4, + "probability": 0.9629 + }, + { + "start": 11994.96, + "end": 11996.26, + "probability": 0.486 + }, + { + "start": 11996.8, + "end": 11999.86, + "probability": 0.9442 + }, + { + "start": 12000.24, + "end": 12001.68, + "probability": 0.4664 + }, + { + "start": 12002.98, + "end": 12008.62, + "probability": 0.8414 + }, + { + "start": 12008.86, + "end": 12014.98, + "probability": 0.7038 + }, + { + "start": 12015.7, + "end": 12018.12, + "probability": 0.8315 + }, + { + "start": 12018.9, + "end": 12019.72, + "probability": 0.1502 + }, + { + "start": 12019.84, + "end": 12021.1, + "probability": 0.4995 + }, + { + "start": 12021.36, + "end": 12022.7, + "probability": 0.4885 + }, + { + "start": 12022.8, + "end": 12023.74, + "probability": 0.7349 + }, + { + "start": 12024.2, + "end": 12027.2, + "probability": 0.9753 + }, + { + "start": 12027.38, + "end": 12028.46, + "probability": 0.5391 + }, + { + "start": 12029.12, + "end": 12031.54, + "probability": 0.8943 + }, + { + "start": 12032.16, + "end": 12036.96, + "probability": 0.6657 + }, + { + "start": 12037.52, + "end": 12038.78, + "probability": 0.8582 + }, + { + "start": 12039.38, + "end": 12041.62, + "probability": 0.7751 + }, + { + "start": 12041.7, + "end": 12042.04, + "probability": 0.8489 + }, + { + "start": 12042.48, + "end": 12043.42, + "probability": 0.5586 + }, + { + "start": 12043.54, + "end": 12045.22, + "probability": 0.84 + }, + { + "start": 12045.46, + "end": 12046.42, + "probability": 0.8733 + }, + { + "start": 12046.46, + "end": 12048.4, + "probability": 0.7108 + }, + { + "start": 12048.6, + "end": 12049.76, + "probability": 0.6747 + }, + { + "start": 12049.84, + "end": 12050.58, + "probability": 0.8989 + }, + { + "start": 12050.86, + "end": 12053.64, + "probability": 0.934 + }, + { + "start": 12054.32, + "end": 12054.42, + "probability": 0.2724 + }, + { + "start": 12055.78, + "end": 12055.78, + "probability": 0.2725 + }, + { + "start": 12055.92, + "end": 12059.68, + "probability": 0.8029 + }, + { + "start": 12060.14, + "end": 12062.46, + "probability": 0.981 + }, + { + "start": 12063.26, + "end": 12064.84, + "probability": 0.7031 + }, + { + "start": 12067.54, + "end": 12067.88, + "probability": 0.292 + }, + { + "start": 12082.14, + "end": 12084.64, + "probability": 0.7097 + }, + { + "start": 12087.06, + "end": 12090.76, + "probability": 0.9447 + }, + { + "start": 12092.66, + "end": 12097.32, + "probability": 0.9909 + }, + { + "start": 12097.52, + "end": 12098.72, + "probability": 0.9813 + }, + { + "start": 12101.44, + "end": 12104.58, + "probability": 0.9084 + }, + { + "start": 12105.76, + "end": 12107.0, + "probability": 0.995 + }, + { + "start": 12108.18, + "end": 12114.5, + "probability": 0.9843 + }, + { + "start": 12114.58, + "end": 12118.42, + "probability": 0.9808 + }, + { + "start": 12120.1, + "end": 12121.7, + "probability": 0.9771 + }, + { + "start": 12123.34, + "end": 12127.42, + "probability": 0.9917 + }, + { + "start": 12129.1, + "end": 12132.26, + "probability": 0.9979 + }, + { + "start": 12135.9, + "end": 12136.96, + "probability": 0.8945 + }, + { + "start": 12139.18, + "end": 12140.02, + "probability": 0.0128 + }, + { + "start": 12144.9, + "end": 12147.68, + "probability": 0.5396 + }, + { + "start": 12148.38, + "end": 12148.44, + "probability": 0.006 + }, + { + "start": 12148.44, + "end": 12151.32, + "probability": 0.6633 + }, + { + "start": 12153.06, + "end": 12156.4, + "probability": 0.745 + }, + { + "start": 12158.1, + "end": 12164.96, + "probability": 0.7838 + }, + { + "start": 12166.42, + "end": 12167.04, + "probability": 0.3824 + }, + { + "start": 12168.4, + "end": 12169.42, + "probability": 0.6006 + }, + { + "start": 12171.18, + "end": 12171.18, + "probability": 0.002 + }, + { + "start": 12172.16, + "end": 12175.86, + "probability": 0.8889 + }, + { + "start": 12177.52, + "end": 12178.64, + "probability": 0.9494 + }, + { + "start": 12179.52, + "end": 12183.94, + "probability": 0.8076 + }, + { + "start": 12184.0, + "end": 12184.54, + "probability": 0.9438 + }, + { + "start": 12188.1, + "end": 12189.16, + "probability": 0.7951 + }, + { + "start": 12191.2, + "end": 12195.72, + "probability": 0.8409 + }, + { + "start": 12196.6, + "end": 12197.38, + "probability": 0.6464 + }, + { + "start": 12200.02, + "end": 12204.32, + "probability": 0.9837 + }, + { + "start": 12205.78, + "end": 12208.44, + "probability": 0.9768 + }, + { + "start": 12209.52, + "end": 12214.26, + "probability": 0.8269 + }, + { + "start": 12215.02, + "end": 12217.7, + "probability": 0.826 + }, + { + "start": 12218.36, + "end": 12219.56, + "probability": 0.8604 + }, + { + "start": 12220.94, + "end": 12224.54, + "probability": 0.9976 + }, + { + "start": 12225.44, + "end": 12228.6, + "probability": 0.9888 + }, + { + "start": 12229.64, + "end": 12231.3, + "probability": 0.899 + }, + { + "start": 12232.56, + "end": 12235.96, + "probability": 0.9903 + }, + { + "start": 12236.66, + "end": 12238.48, + "probability": 0.9843 + }, + { + "start": 12240.44, + "end": 12241.58, + "probability": 0.9543 + }, + { + "start": 12242.9, + "end": 12243.74, + "probability": 0.6236 + }, + { + "start": 12245.28, + "end": 12246.5, + "probability": 0.6882 + }, + { + "start": 12247.86, + "end": 12250.04, + "probability": 0.8993 + }, + { + "start": 12251.14, + "end": 12254.66, + "probability": 0.9797 + }, + { + "start": 12255.78, + "end": 12257.16, + "probability": 0.9082 + }, + { + "start": 12258.12, + "end": 12261.5, + "probability": 0.8916 + }, + { + "start": 12263.86, + "end": 12266.42, + "probability": 0.2034 + }, + { + "start": 12267.34, + "end": 12267.68, + "probability": 0.2656 + }, + { + "start": 12267.68, + "end": 12273.28, + "probability": 0.947 + }, + { + "start": 12274.12, + "end": 12274.62, + "probability": 0.9186 + }, + { + "start": 12275.74, + "end": 12278.48, + "probability": 0.9854 + }, + { + "start": 12278.48, + "end": 12282.92, + "probability": 0.9799 + }, + { + "start": 12283.0, + "end": 12283.28, + "probability": 0.8217 + }, + { + "start": 12287.32, + "end": 12290.14, + "probability": 0.5916 + }, + { + "start": 12292.32, + "end": 12293.88, + "probability": 0.8875 + }, + { + "start": 12298.02, + "end": 12301.82, + "probability": 0.8689 + }, + { + "start": 12303.2, + "end": 12308.88, + "probability": 0.9647 + }, + { + "start": 12310.18, + "end": 12312.62, + "probability": 0.9569 + }, + { + "start": 12313.42, + "end": 12314.86, + "probability": 0.9995 + }, + { + "start": 12316.4, + "end": 12322.72, + "probability": 0.9507 + }, + { + "start": 12323.48, + "end": 12327.92, + "probability": 0.9433 + }, + { + "start": 12328.96, + "end": 12329.69, + "probability": 0.8633 + }, + { + "start": 12331.98, + "end": 12333.24, + "probability": 0.9714 + }, + { + "start": 12333.46, + "end": 12335.04, + "probability": 0.7162 + }, + { + "start": 12335.94, + "end": 12337.76, + "probability": 0.9095 + }, + { + "start": 12338.82, + "end": 12342.86, + "probability": 0.9286 + }, + { + "start": 12343.6, + "end": 12344.12, + "probability": 0.9375 + }, + { + "start": 12345.02, + "end": 12347.88, + "probability": 0.9688 + }, + { + "start": 12348.68, + "end": 12350.12, + "probability": 0.8326 + }, + { + "start": 12351.84, + "end": 12352.38, + "probability": 0.5095 + }, + { + "start": 12353.16, + "end": 12356.68, + "probability": 0.5438 + }, + { + "start": 12359.4, + "end": 12364.88, + "probability": 0.9951 + }, + { + "start": 12366.72, + "end": 12368.56, + "probability": 0.7098 + }, + { + "start": 12369.26, + "end": 12370.86, + "probability": 0.8008 + }, + { + "start": 12372.34, + "end": 12376.6, + "probability": 0.9949 + }, + { + "start": 12377.48, + "end": 12381.32, + "probability": 0.8331 + }, + { + "start": 12382.78, + "end": 12385.18, + "probability": 0.9172 + }, + { + "start": 12386.06, + "end": 12387.98, + "probability": 0.991 + }, + { + "start": 12389.98, + "end": 12394.96, + "probability": 0.9919 + }, + { + "start": 12395.08, + "end": 12396.22, + "probability": 0.8819 + }, + { + "start": 12401.64, + "end": 12401.96, + "probability": 0.6519 + }, + { + "start": 12403.14, + "end": 12404.94, + "probability": 0.8005 + }, + { + "start": 12405.56, + "end": 12407.06, + "probability": 0.8672 + }, + { + "start": 12407.94, + "end": 12408.2, + "probability": 0.8721 + }, + { + "start": 12409.56, + "end": 12411.32, + "probability": 0.9342 + }, + { + "start": 12412.72, + "end": 12418.78, + "probability": 0.9644 + }, + { + "start": 12419.94, + "end": 12421.28, + "probability": 0.9444 + }, + { + "start": 12421.42, + "end": 12424.1, + "probability": 0.9351 + }, + { + "start": 12424.78, + "end": 12427.84, + "probability": 0.9882 + }, + { + "start": 12430.12, + "end": 12431.04, + "probability": 0.8244 + }, + { + "start": 12432.94, + "end": 12434.44, + "probability": 0.9677 + }, + { + "start": 12436.86, + "end": 12441.86, + "probability": 0.9579 + }, + { + "start": 12443.34, + "end": 12448.52, + "probability": 0.9806 + }, + { + "start": 12449.78, + "end": 12451.48, + "probability": 0.9742 + }, + { + "start": 12453.1, + "end": 12455.52, + "probability": 0.979 + }, + { + "start": 12456.5, + "end": 12458.46, + "probability": 0.9943 + }, + { + "start": 12459.4, + "end": 12461.38, + "probability": 0.9759 + }, + { + "start": 12462.4, + "end": 12465.6, + "probability": 0.7297 + }, + { + "start": 12466.7, + "end": 12472.08, + "probability": 0.9537 + }, + { + "start": 12473.16, + "end": 12478.82, + "probability": 0.8292 + }, + { + "start": 12479.46, + "end": 12485.34, + "probability": 0.9927 + }, + { + "start": 12485.48, + "end": 12487.86, + "probability": 0.9516 + }, + { + "start": 12489.5, + "end": 12489.72, + "probability": 0.5846 + }, + { + "start": 12490.44, + "end": 12491.68, + "probability": 0.26 + }, + { + "start": 12491.68, + "end": 12492.82, + "probability": 0.6316 + }, + { + "start": 12492.88, + "end": 12495.24, + "probability": 0.9816 + }, + { + "start": 12497.54, + "end": 12498.22, + "probability": 0.6324 + }, + { + "start": 12499.48, + "end": 12500.5, + "probability": 0.5449 + }, + { + "start": 12501.26, + "end": 12501.68, + "probability": 0.4173 + }, + { + "start": 12501.92, + "end": 12502.44, + "probability": 0.9178 + }, + { + "start": 12505.07, + "end": 12506.96, + "probability": 0.0191 + }, + { + "start": 12507.7, + "end": 12508.62, + "probability": 0.2848 + }, + { + "start": 12510.5, + "end": 12512.08, + "probability": 0.209 + }, + { + "start": 12514.78, + "end": 12516.44, + "probability": 0.302 + }, + { + "start": 12517.18, + "end": 12520.84, + "probability": 0.2326 + }, + { + "start": 12523.22, + "end": 12524.3, + "probability": 0.1648 + }, + { + "start": 12525.46, + "end": 12528.58, + "probability": 0.0235 + }, + { + "start": 12528.58, + "end": 12533.38, + "probability": 0.3472 + }, + { + "start": 12534.72, + "end": 12537.58, + "probability": 0.2405 + }, + { + "start": 12538.68, + "end": 12541.44, + "probability": 0.2405 + }, + { + "start": 12543.5, + "end": 12544.44, + "probability": 0.0478 + }, + { + "start": 12545.56, + "end": 12548.08, + "probability": 0.3628 + }, + { + "start": 12549.14, + "end": 12549.18, + "probability": 0.1308 + }, + { + "start": 12549.18, + "end": 12550.92, + "probability": 0.1767 + }, + { + "start": 12551.06, + "end": 12551.78, + "probability": 0.0063 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.0, + "end": 12634.0, + "probability": 0.0 + }, + { + "start": 12634.3, + "end": 12635.58, + "probability": 0.0779 + }, + { + "start": 12635.9, + "end": 12636.9, + "probability": 0.0457 + }, + { + "start": 12637.14, + "end": 12638.86, + "probability": 0.8657 + }, + { + "start": 12639.2, + "end": 12640.24, + "probability": 0.7927 + }, + { + "start": 12640.34, + "end": 12641.02, + "probability": 0.5513 + }, + { + "start": 12641.14, + "end": 12641.44, + "probability": 0.7267 + }, + { + "start": 12642.52, + "end": 12645.86, + "probability": 0.9583 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12776.0, + "end": 12776.0, + "probability": 0.0 + }, + { + "start": 12777.36, + "end": 12778.42, + "probability": 0.1283 + }, + { + "start": 12778.58, + "end": 12780.52, + "probability": 0.1344 + }, + { + "start": 12780.52, + "end": 12780.75, + "probability": 0.0394 + }, + { + "start": 12782.9, + "end": 12785.12, + "probability": 0.0047 + }, + { + "start": 12789.02, + "end": 12793.14, + "probability": 0.1727 + }, + { + "start": 12793.14, + "end": 12796.01, + "probability": 0.0414 + }, + { + "start": 12796.9, + "end": 12798.22, + "probability": 0.1887 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.0, + "end": 12899.0, + "probability": 0.0 + }, + { + "start": 12899.1, + "end": 12899.18, + "probability": 0.1001 + }, + { + "start": 12899.18, + "end": 12899.18, + "probability": 0.0244 + }, + { + "start": 12899.18, + "end": 12899.53, + "probability": 0.1708 + }, + { + "start": 12901.9, + "end": 12902.16, + "probability": 0.2904 + }, + { + "start": 12902.16, + "end": 12903.72, + "probability": 0.8999 + }, + { + "start": 12903.86, + "end": 12903.92, + "probability": 0.016 + }, + { + "start": 12904.1, + "end": 12905.46, + "probability": 0.804 + }, + { + "start": 12905.5, + "end": 12908.98, + "probability": 0.5166 + }, + { + "start": 12909.18, + "end": 12910.66, + "probability": 0.2183 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.0, + "end": 13025.0, + "probability": 0.0 + }, + { + "start": 13025.4, + "end": 13025.82, + "probability": 0.0686 + }, + { + "start": 13025.82, + "end": 13025.82, + "probability": 0.0543 + }, + { + "start": 13025.82, + "end": 13027.59, + "probability": 0.1242 + }, + { + "start": 13029.04, + "end": 13033.0, + "probability": 0.6491 + }, + { + "start": 13033.82, + "end": 13037.28, + "probability": 0.8615 + }, + { + "start": 13038.64, + "end": 13039.32, + "probability": 0.5338 + }, + { + "start": 13040.78, + "end": 13043.36, + "probability": 0.9572 + }, + { + "start": 13046.5, + "end": 13051.62, + "probability": 0.9912 + }, + { + "start": 13053.14, + "end": 13056.74, + "probability": 0.9108 + }, + { + "start": 13059.16, + "end": 13061.86, + "probability": 0.7879 + }, + { + "start": 13064.18, + "end": 13068.26, + "probability": 0.8552 + }, + { + "start": 13070.76, + "end": 13074.0, + "probability": 0.9937 + }, + { + "start": 13074.6, + "end": 13078.14, + "probability": 0.8765 + }, + { + "start": 13079.52, + "end": 13079.8, + "probability": 0.7007 + }, + { + "start": 13082.06, + "end": 13085.44, + "probability": 0.7012 + }, + { + "start": 13086.04, + "end": 13088.56, + "probability": 0.8701 + }, + { + "start": 13090.88, + "end": 13095.6, + "probability": 0.979 + }, + { + "start": 13098.58, + "end": 13104.3, + "probability": 0.9986 + }, + { + "start": 13104.54, + "end": 13108.3, + "probability": 0.8193 + }, + { + "start": 13109.3, + "end": 13113.74, + "probability": 0.7554 + }, + { + "start": 13114.8, + "end": 13120.24, + "probability": 0.9485 + }, + { + "start": 13122.9, + "end": 13128.22, + "probability": 0.9561 + }, + { + "start": 13129.48, + "end": 13131.29, + "probability": 0.9958 + }, + { + "start": 13132.1, + "end": 13133.2, + "probability": 0.4978 + }, + { + "start": 13134.74, + "end": 13137.02, + "probability": 0.813 + }, + { + "start": 13137.06, + "end": 13137.68, + "probability": 0.4915 + }, + { + "start": 13138.18, + "end": 13141.24, + "probability": 0.807 + }, + { + "start": 13141.96, + "end": 13146.18, + "probability": 0.9085 + }, + { + "start": 13147.8, + "end": 13149.02, + "probability": 0.8789 + }, + { + "start": 13150.46, + "end": 13153.02, + "probability": 0.6162 + }, + { + "start": 13154.24, + "end": 13155.72, + "probability": 0.247 + }, + { + "start": 13156.16, + "end": 13157.35, + "probability": 0.7189 + }, + { + "start": 13158.12, + "end": 13159.06, + "probability": 0.8518 + }, + { + "start": 13159.92, + "end": 13162.4, + "probability": 0.8909 + }, + { + "start": 13166.22, + "end": 13172.4, + "probability": 0.966 + }, + { + "start": 13173.02, + "end": 13174.04, + "probability": 0.846 + }, + { + "start": 13174.4, + "end": 13179.28, + "probability": 0.9959 + }, + { + "start": 13179.28, + "end": 13185.98, + "probability": 0.9631 + }, + { + "start": 13187.28, + "end": 13188.24, + "probability": 0.9577 + }, + { + "start": 13188.84, + "end": 13192.1, + "probability": 0.978 + }, + { + "start": 13193.64, + "end": 13194.76, + "probability": 0.6815 + }, + { + "start": 13195.82, + "end": 13197.46, + "probability": 0.9681 + }, + { + "start": 13198.28, + "end": 13201.12, + "probability": 0.9406 + }, + { + "start": 13202.48, + "end": 13205.26, + "probability": 0.9734 + }, + { + "start": 13206.84, + "end": 13208.26, + "probability": 0.9929 + }, + { + "start": 13209.6, + "end": 13212.26, + "probability": 0.9976 + }, + { + "start": 13213.66, + "end": 13216.41, + "probability": 0.993 + }, + { + "start": 13217.26, + "end": 13221.28, + "probability": 0.9194 + }, + { + "start": 13221.28, + "end": 13224.86, + "probability": 0.7393 + }, + { + "start": 13224.96, + "end": 13226.82, + "probability": 0.9976 + }, + { + "start": 13226.98, + "end": 13229.52, + "probability": 0.9048 + }, + { + "start": 13231.82, + "end": 13234.64, + "probability": 0.9877 + }, + { + "start": 13237.78, + "end": 13239.56, + "probability": 0.8407 + }, + { + "start": 13240.14, + "end": 13244.36, + "probability": 0.9433 + }, + { + "start": 13245.32, + "end": 13247.66, + "probability": 0.63 + }, + { + "start": 13250.36, + "end": 13251.85, + "probability": 0.9922 + }, + { + "start": 13252.3, + "end": 13254.22, + "probability": 0.9905 + }, + { + "start": 13254.94, + "end": 13257.98, + "probability": 0.4877 + }, + { + "start": 13258.48, + "end": 13260.04, + "probability": 0.9758 + }, + { + "start": 13260.5, + "end": 13265.04, + "probability": 0.9805 + }, + { + "start": 13266.24, + "end": 13270.06, + "probability": 0.9695 + }, + { + "start": 13273.28, + "end": 13273.9, + "probability": 0.9875 + }, + { + "start": 13275.16, + "end": 13279.24, + "probability": 0.5685 + }, + { + "start": 13279.9, + "end": 13282.24, + "probability": 0.8685 + }, + { + "start": 13283.06, + "end": 13284.65, + "probability": 0.9697 + }, + { + "start": 13285.84, + "end": 13286.74, + "probability": 0.8218 + }, + { + "start": 13287.94, + "end": 13289.48, + "probability": 0.9082 + }, + { + "start": 13289.6, + "end": 13291.04, + "probability": 0.9868 + }, + { + "start": 13293.54, + "end": 13295.34, + "probability": 0.9937 + }, + { + "start": 13296.44, + "end": 13297.64, + "probability": 0.968 + }, + { + "start": 13298.72, + "end": 13299.84, + "probability": 0.9561 + }, + { + "start": 13314.58, + "end": 13319.34, + "probability": 0.8392 + }, + { + "start": 13320.56, + "end": 13321.48, + "probability": 0.7268 + }, + { + "start": 13322.76, + "end": 13323.24, + "probability": 0.5726 + }, + { + "start": 13324.24, + "end": 13324.96, + "probability": 0.6306 + }, + { + "start": 13325.94, + "end": 13326.16, + "probability": 0.2698 + }, + { + "start": 13326.88, + "end": 13327.84, + "probability": 0.2422 + }, + { + "start": 13328.78, + "end": 13330.28, + "probability": 0.9556 + }, + { + "start": 13332.2, + "end": 13333.08, + "probability": 0.7076 + }, + { + "start": 13334.62, + "end": 13335.66, + "probability": 0.4425 + }, + { + "start": 13337.0, + "end": 13338.54, + "probability": 0.0532 + }, + { + "start": 13339.5, + "end": 13339.82, + "probability": 0.0263 + }, + { + "start": 13339.82, + "end": 13340.06, + "probability": 0.0671 + }, + { + "start": 13340.72, + "end": 13341.26, + "probability": 0.2938 + }, + { + "start": 13341.64, + "end": 13343.16, + "probability": 0.2116 + }, + { + "start": 13343.26, + "end": 13346.92, + "probability": 0.8677 + }, + { + "start": 13347.58, + "end": 13349.06, + "probability": 0.8958 + }, + { + "start": 13349.42, + "end": 13351.69, + "probability": 0.8345 + }, + { + "start": 13352.42, + "end": 13357.02, + "probability": 0.3543 + }, + { + "start": 13357.26, + "end": 13357.89, + "probability": 0.1484 + }, + { + "start": 13359.2, + "end": 13360.28, + "probability": 0.1676 + }, + { + "start": 13360.28, + "end": 13361.12, + "probability": 0.4882 + }, + { + "start": 13361.92, + "end": 13367.28, + "probability": 0.9507 + }, + { + "start": 13368.82, + "end": 13369.26, + "probability": 0.6802 + }, + { + "start": 13369.32, + "end": 13370.5, + "probability": 0.897 + }, + { + "start": 13370.74, + "end": 13375.08, + "probability": 0.8339 + }, + { + "start": 13375.24, + "end": 13376.29, + "probability": 0.9572 + }, + { + "start": 13376.74, + "end": 13379.52, + "probability": 0.9562 + }, + { + "start": 13379.98, + "end": 13380.5, + "probability": 0.9255 + }, + { + "start": 13381.5, + "end": 13386.44, + "probability": 0.5164 + }, + { + "start": 13387.9, + "end": 13392.66, + "probability": 0.9709 + }, + { + "start": 13392.9, + "end": 13393.11, + "probability": 0.0428 + }, + { + "start": 13394.42, + "end": 13395.08, + "probability": 0.3193 + }, + { + "start": 13395.08, + "end": 13395.66, + "probability": 0.4114 + }, + { + "start": 13396.64, + "end": 13399.28, + "probability": 0.9602 + }, + { + "start": 13402.82, + "end": 13405.6, + "probability": 0.9246 + }, + { + "start": 13405.74, + "end": 13406.66, + "probability": 0.6779 + }, + { + "start": 13407.3, + "end": 13408.26, + "probability": 0.3029 + }, + { + "start": 13410.02, + "end": 13412.58, + "probability": 0.8197 + }, + { + "start": 13415.13, + "end": 13415.56, + "probability": 0.0496 + }, + { + "start": 13415.56, + "end": 13418.02, + "probability": 0.8779 + }, + { + "start": 13418.64, + "end": 13419.1, + "probability": 0.3872 + }, + { + "start": 13420.42, + "end": 13426.96, + "probability": 0.0182 + }, + { + "start": 13428.1, + "end": 13430.02, + "probability": 0.5582 + }, + { + "start": 13430.34, + "end": 13433.78, + "probability": 0.3231 + }, + { + "start": 13433.92, + "end": 13435.07, + "probability": 0.9961 + }, + { + "start": 13436.06, + "end": 13437.98, + "probability": 0.1108 + }, + { + "start": 13438.16, + "end": 13440.94, + "probability": 0.3482 + }, + { + "start": 13441.0, + "end": 13442.1, + "probability": 0.0277 + }, + { + "start": 13442.34, + "end": 13443.11, + "probability": 0.0024 + }, + { + "start": 13444.68, + "end": 13446.28, + "probability": 0.0542 + }, + { + "start": 13446.8, + "end": 13449.2, + "probability": 0.2536 + }, + { + "start": 13449.2, + "end": 13451.34, + "probability": 0.1744 + }, + { + "start": 13452.02, + "end": 13453.62, + "probability": 0.1562 + }, + { + "start": 13454.6, + "end": 13458.4, + "probability": 0.0883 + }, + { + "start": 13458.82, + "end": 13459.52, + "probability": 0.0422 + }, + { + "start": 13475.5, + "end": 13476.42, + "probability": 0.0319 + }, + { + "start": 13477.0, + "end": 13480.02, + "probability": 0.1741 + }, + { + "start": 13480.22, + "end": 13482.54, + "probability": 0.0288 + }, + { + "start": 13482.54, + "end": 13482.83, + "probability": 0.1602 + }, + { + "start": 13484.42, + "end": 13487.98, + "probability": 0.2072 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.0, + "end": 13488.0, + "probability": 0.0 + }, + { + "start": 13488.64, + "end": 13489.62, + "probability": 0.7651 + }, + { + "start": 13489.68, + "end": 13490.58, + "probability": 0.8342 + }, + { + "start": 13491.11, + "end": 13491.5, + "probability": 0.4936 + }, + { + "start": 13491.5, + "end": 13492.52, + "probability": 0.8894 + }, + { + "start": 13492.92, + "end": 13496.14, + "probability": 0.4737 + }, + { + "start": 13496.8, + "end": 13499.9, + "probability": 0.9517 + }, + { + "start": 13500.06, + "end": 13502.32, + "probability": 0.0138 + }, + { + "start": 13502.86, + "end": 13503.84, + "probability": 0.2651 + }, + { + "start": 13504.08, + "end": 13504.82, + "probability": 0.1292 + }, + { + "start": 13504.82, + "end": 13504.84, + "probability": 0.3554 + }, + { + "start": 13504.98, + "end": 13507.56, + "probability": 0.1147 + }, + { + "start": 13508.92, + "end": 13510.12, + "probability": 0.9545 + }, + { + "start": 13511.06, + "end": 13513.94, + "probability": 0.9945 + }, + { + "start": 13517.28, + "end": 13517.82, + "probability": 0.0513 + }, + { + "start": 13517.82, + "end": 13518.28, + "probability": 0.192 + }, + { + "start": 13518.62, + "end": 13519.02, + "probability": 0.3237 + }, + { + "start": 13519.1, + "end": 13523.32, + "probability": 0.7778 + }, + { + "start": 13523.52, + "end": 13526.08, + "probability": 0.2097 + }, + { + "start": 13526.32, + "end": 13527.76, + "probability": 0.3591 + }, + { + "start": 13527.84, + "end": 13528.1, + "probability": 0.1989 + }, + { + "start": 13528.1, + "end": 13528.73, + "probability": 0.1115 + }, + { + "start": 13530.56, + "end": 13532.0, + "probability": 0.0301 + }, + { + "start": 13532.26, + "end": 13532.42, + "probability": 0.0044 + }, + { + "start": 13532.42, + "end": 13533.06, + "probability": 0.6058 + }, + { + "start": 13533.54, + "end": 13536.56, + "probability": 0.3779 + }, + { + "start": 13536.68, + "end": 13537.9, + "probability": 0.7276 + }, + { + "start": 13537.9, + "end": 13538.94, + "probability": 0.644 + }, + { + "start": 13539.22, + "end": 13539.94, + "probability": 0.8859 + }, + { + "start": 13540.56, + "end": 13542.72, + "probability": 0.1609 + }, + { + "start": 13543.26, + "end": 13544.16, + "probability": 0.1746 + }, + { + "start": 13544.16, + "end": 13544.16, + "probability": 0.2932 + }, + { + "start": 13544.16, + "end": 13546.42, + "probability": 0.681 + }, + { + "start": 13547.42, + "end": 13548.28, + "probability": 0.2268 + }, + { + "start": 13548.36, + "end": 13552.0, + "probability": 0.9443 + }, + { + "start": 13552.92, + "end": 13554.84, + "probability": 0.8286 + }, + { + "start": 13555.54, + "end": 13557.52, + "probability": 0.8291 + }, + { + "start": 13558.08, + "end": 13561.2, + "probability": 0.8807 + }, + { + "start": 13562.22, + "end": 13563.36, + "probability": 0.916 + }, + { + "start": 13564.82, + "end": 13568.24, + "probability": 0.149 + }, + { + "start": 13568.76, + "end": 13569.94, + "probability": 0.49 + }, + { + "start": 13570.31, + "end": 13571.78, + "probability": 0.5082 + }, + { + "start": 13572.12, + "end": 13572.26, + "probability": 0.1569 + }, + { + "start": 13572.26, + "end": 13572.26, + "probability": 0.0538 + }, + { + "start": 13572.26, + "end": 13572.26, + "probability": 0.1521 + }, + { + "start": 13572.26, + "end": 13575.5, + "probability": 0.7598 + }, + { + "start": 13575.52, + "end": 13576.0, + "probability": 0.6324 + }, + { + "start": 13576.18, + "end": 13578.92, + "probability": 0.5337 + }, + { + "start": 13579.48, + "end": 13581.04, + "probability": 0.013 + }, + { + "start": 13581.08, + "end": 13584.2, + "probability": 0.0915 + }, + { + "start": 13584.42, + "end": 13589.78, + "probability": 0.7531 + }, + { + "start": 13590.34, + "end": 13591.06, + "probability": 0.5651 + }, + { + "start": 13591.16, + "end": 13593.08, + "probability": 0.7134 + }, + { + "start": 13593.12, + "end": 13594.52, + "probability": 0.5303 + }, + { + "start": 13596.68, + "end": 13600.4, + "probability": 0.2766 + }, + { + "start": 13602.48, + "end": 13603.18, + "probability": 0.138 + }, + { + "start": 13603.36, + "end": 13603.48, + "probability": 0.5126 + }, + { + "start": 13603.84, + "end": 13604.88, + "probability": 0.1052 + }, + { + "start": 13604.88, + "end": 13606.16, + "probability": 0.1092 + }, + { + "start": 13606.5, + "end": 13606.5, + "probability": 0.0511 + }, + { + "start": 13606.5, + "end": 13609.8, + "probability": 0.5867 + }, + { + "start": 13612.54, + "end": 13613.04, + "probability": 0.4979 + }, + { + "start": 13613.04, + "end": 13614.06, + "probability": 0.327 + }, + { + "start": 13614.06, + "end": 13614.82, + "probability": 0.6993 + }, + { + "start": 13614.82, + "end": 13615.9, + "probability": 0.557 + }, + { + "start": 13616.16, + "end": 13619.42, + "probability": 0.3264 + }, + { + "start": 13620.42, + "end": 13621.16, + "probability": 0.0391 + }, + { + "start": 13621.28, + "end": 13625.44, + "probability": 0.4231 + }, + { + "start": 13625.92, + "end": 13626.92, + "probability": 0.1603 + }, + { + "start": 13629.53, + "end": 13632.7, + "probability": 0.9937 + }, + { + "start": 13633.66, + "end": 13637.24, + "probability": 0.852 + }, + { + "start": 13639.2, + "end": 13640.26, + "probability": 0.9116 + }, + { + "start": 13640.42, + "end": 13643.56, + "probability": 0.7079 + }, + { + "start": 13643.86, + "end": 13645.48, + "probability": 0.979 + }, + { + "start": 13645.7, + "end": 13646.28, + "probability": 0.908 + }, + { + "start": 13646.58, + "end": 13650.2, + "probability": 0.9662 + }, + { + "start": 13650.26, + "end": 13650.96, + "probability": 0.712 + }, + { + "start": 13651.14, + "end": 13652.32, + "probability": 0.9943 + }, + { + "start": 13652.56, + "end": 13655.22, + "probability": 0.9768 + }, + { + "start": 13656.06, + "end": 13658.06, + "probability": 0.6788 + }, + { + "start": 13658.42, + "end": 13661.46, + "probability": 0.947 + }, + { + "start": 13661.58, + "end": 13663.54, + "probability": 0.7583 + }, + { + "start": 13663.94, + "end": 13667.47, + "probability": 0.9604 + }, + { + "start": 13668.56, + "end": 13670.22, + "probability": 0.9917 + }, + { + "start": 13671.36, + "end": 13673.52, + "probability": 0.8315 + }, + { + "start": 13674.22, + "end": 13678.12, + "probability": 0.993 + }, + { + "start": 13678.28, + "end": 13680.94, + "probability": 0.9907 + }, + { + "start": 13681.5, + "end": 13687.52, + "probability": 0.8009 + }, + { + "start": 13687.94, + "end": 13690.04, + "probability": 0.9849 + }, + { + "start": 13690.64, + "end": 13693.7, + "probability": 0.5983 + }, + { + "start": 13695.34, + "end": 13695.82, + "probability": 0.1534 + }, + { + "start": 13695.82, + "end": 13695.88, + "probability": 0.1973 + }, + { + "start": 13695.88, + "end": 13696.96, + "probability": 0.1163 + }, + { + "start": 13697.16, + "end": 13699.28, + "probability": 0.2204 + }, + { + "start": 13699.48, + "end": 13701.0, + "probability": 0.4159 + }, + { + "start": 13701.34, + "end": 13702.1, + "probability": 0.6441 + }, + { + "start": 13702.22, + "end": 13703.13, + "probability": 0.5083 + }, + { + "start": 13703.56, + "end": 13706.58, + "probability": 0.3146 + }, + { + "start": 13706.78, + "end": 13711.44, + "probability": 0.321 + }, + { + "start": 13711.72, + "end": 13711.72, + "probability": 0.1203 + }, + { + "start": 13711.8, + "end": 13713.84, + "probability": 0.2786 + }, + { + "start": 13714.02, + "end": 13716.06, + "probability": 0.6533 + }, + { + "start": 13716.32, + "end": 13718.6, + "probability": 0.5684 + }, + { + "start": 13719.8, + "end": 13724.14, + "probability": 0.0727 + }, + { + "start": 13724.32, + "end": 13724.78, + "probability": 0.0743 + }, + { + "start": 13724.78, + "end": 13728.09, + "probability": 0.1455 + }, + { + "start": 13729.1, + "end": 13732.8, + "probability": 0.3733 + }, + { + "start": 13732.8, + "end": 13738.12, + "probability": 0.2712 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13806.0, + "end": 13806.0, + "probability": 0.0 + }, + { + "start": 13807.32, + "end": 13808.12, + "probability": 0.1556 + }, + { + "start": 13809.98, + "end": 13811.6, + "probability": 0.1862 + }, + { + "start": 13811.93, + "end": 13816.08, + "probability": 0.0153 + }, + { + "start": 13816.16, + "end": 13819.09, + "probability": 0.0297 + }, + { + "start": 13819.68, + "end": 13820.26, + "probability": 0.0724 + }, + { + "start": 13820.26, + "end": 13820.98, + "probability": 0.3146 + }, + { + "start": 13821.16, + "end": 13821.88, + "probability": 0.0379 + }, + { + "start": 13821.88, + "end": 13822.84, + "probability": 0.2738 + }, + { + "start": 13822.96, + "end": 13823.62, + "probability": 0.4641 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13931.0, + "end": 13931.0, + "probability": 0.0 + }, + { + "start": 13932.12, + "end": 13933.3, + "probability": 0.0252 + }, + { + "start": 13934.54, + "end": 13935.82, + "probability": 0.0384 + }, + { + "start": 13936.56, + "end": 13938.02, + "probability": 0.1998 + }, + { + "start": 13938.02, + "end": 13939.4, + "probability": 0.1759 + }, + { + "start": 13939.4, + "end": 13939.58, + "probability": 0.2911 + }, + { + "start": 13939.76, + "end": 13941.32, + "probability": 0.0959 + }, + { + "start": 13944.22, + "end": 13945.08, + "probability": 0.0379 + }, + { + "start": 13948.08, + "end": 13948.46, + "probability": 0.1754 + }, + { + "start": 13949.36, + "end": 13950.94, + "probability": 0.1127 + }, + { + "start": 13950.94, + "end": 13952.35, + "probability": 0.0979 + }, + { + "start": 13952.38, + "end": 13952.38, + "probability": 0.2713 + }, + { + "start": 13952.54, + "end": 13952.84, + "probability": 0.5751 + }, + { + "start": 13953.28, + "end": 13957.1, + "probability": 0.7759 + }, + { + "start": 13957.24, + "end": 13958.72, + "probability": 0.704 + }, + { + "start": 13959.32, + "end": 13960.24, + "probability": 0.936 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.0, + "end": 14056.0, + "probability": 0.0 + }, + { + "start": 14056.46, + "end": 14056.48, + "probability": 0.2655 + }, + { + "start": 14056.48, + "end": 14056.56, + "probability": 0.1325 + }, + { + "start": 14056.56, + "end": 14056.56, + "probability": 0.0627 + }, + { + "start": 14056.56, + "end": 14057.64, + "probability": 0.7079 + }, + { + "start": 14058.0, + "end": 14061.62, + "probability": 0.9774 + }, + { + "start": 14062.3, + "end": 14065.64, + "probability": 0.9956 + }, + { + "start": 14065.64, + "end": 14070.2, + "probability": 0.9821 + }, + { + "start": 14072.28, + "end": 14072.82, + "probability": 0.5626 + }, + { + "start": 14073.86, + "end": 14074.72, + "probability": 0.8596 + }, + { + "start": 14075.24, + "end": 14081.96, + "probability": 0.9905 + }, + { + "start": 14083.7, + "end": 14084.44, + "probability": 0.8795 + }, + { + "start": 14085.34, + "end": 14086.1, + "probability": 0.9893 + }, + { + "start": 14087.78, + "end": 14091.96, + "probability": 0.9973 + }, + { + "start": 14094.22, + "end": 14095.5, + "probability": 0.7576 + }, + { + "start": 14096.24, + "end": 14097.8, + "probability": 0.9746 + }, + { + "start": 14097.92, + "end": 14103.88, + "probability": 0.9504 + }, + { + "start": 14103.88, + "end": 14109.56, + "probability": 0.9943 + }, + { + "start": 14110.6, + "end": 14111.72, + "probability": 0.9857 + }, + { + "start": 14113.06, + "end": 14113.94, + "probability": 0.3591 + }, + { + "start": 14114.4, + "end": 14116.14, + "probability": 0.9578 + }, + { + "start": 14116.64, + "end": 14117.78, + "probability": 0.8505 + }, + { + "start": 14118.08, + "end": 14121.1, + "probability": 0.9661 + }, + { + "start": 14123.08, + "end": 14128.24, + "probability": 0.989 + }, + { + "start": 14129.64, + "end": 14132.04, + "probability": 0.829 + }, + { + "start": 14132.8, + "end": 14134.58, + "probability": 0.9238 + }, + { + "start": 14135.34, + "end": 14141.34, + "probability": 0.9436 + }, + { + "start": 14142.62, + "end": 14149.28, + "probability": 0.9985 + }, + { + "start": 14149.44, + "end": 14150.64, + "probability": 0.8918 + }, + { + "start": 14151.3, + "end": 14156.0, + "probability": 0.8549 + }, + { + "start": 14156.58, + "end": 14159.26, + "probability": 0.8411 + }, + { + "start": 14160.56, + "end": 14161.96, + "probability": 0.9954 + }, + { + "start": 14165.84, + "end": 14170.44, + "probability": 0.9947 + }, + { + "start": 14172.08, + "end": 14173.34, + "probability": 0.9995 + }, + { + "start": 14174.5, + "end": 14180.02, + "probability": 0.9575 + }, + { + "start": 14181.96, + "end": 14183.2, + "probability": 0.8714 + }, + { + "start": 14183.76, + "end": 14191.16, + "probability": 0.9844 + }, + { + "start": 14192.7, + "end": 14194.72, + "probability": 0.9934 + }, + { + "start": 14195.4, + "end": 14197.4, + "probability": 0.9797 + }, + { + "start": 14198.24, + "end": 14203.42, + "probability": 0.9979 + }, + { + "start": 14204.96, + "end": 14209.94, + "probability": 0.9993 + }, + { + "start": 14210.62, + "end": 14216.98, + "probability": 0.9991 + }, + { + "start": 14218.16, + "end": 14219.76, + "probability": 0.8191 + }, + { + "start": 14224.58, + "end": 14226.16, + "probability": 0.9983 + }, + { + "start": 14227.82, + "end": 14229.12, + "probability": 0.9625 + }, + { + "start": 14229.16, + "end": 14231.28, + "probability": 0.9768 + }, + { + "start": 14231.42, + "end": 14236.74, + "probability": 0.9566 + }, + { + "start": 14236.74, + "end": 14242.26, + "probability": 0.9974 + }, + { + "start": 14242.74, + "end": 14243.92, + "probability": 0.8774 + }, + { + "start": 14246.48, + "end": 14251.42, + "probability": 0.9219 + }, + { + "start": 14252.0, + "end": 14256.58, + "probability": 0.8864 + }, + { + "start": 14257.68, + "end": 14265.06, + "probability": 0.9911 + }, + { + "start": 14266.74, + "end": 14268.56, + "probability": 0.8402 + }, + { + "start": 14269.56, + "end": 14274.14, + "probability": 0.9528 + }, + { + "start": 14277.48, + "end": 14280.42, + "probability": 0.6723 + }, + { + "start": 14281.42, + "end": 14284.98, + "probability": 0.995 + }, + { + "start": 14285.7, + "end": 14286.68, + "probability": 0.699 + }, + { + "start": 14287.48, + "end": 14288.66, + "probability": 0.9336 + }, + { + "start": 14290.26, + "end": 14296.88, + "probability": 0.9974 + }, + { + "start": 14299.94, + "end": 14302.2, + "probability": 0.8635 + }, + { + "start": 14302.76, + "end": 14308.16, + "probability": 0.9919 + }, + { + "start": 14308.9, + "end": 14310.52, + "probability": 0.9307 + }, + { + "start": 14312.88, + "end": 14313.6, + "probability": 0.5708 + }, + { + "start": 14314.14, + "end": 14323.66, + "probability": 0.995 + }, + { + "start": 14324.34, + "end": 14328.02, + "probability": 0.9783 + }, + { + "start": 14329.8, + "end": 14331.88, + "probability": 0.9932 + }, + { + "start": 14332.56, + "end": 14333.82, + "probability": 0.9959 + }, + { + "start": 14335.0, + "end": 14337.68, + "probability": 0.9053 + }, + { + "start": 14338.24, + "end": 14342.5, + "probability": 0.989 + }, + { + "start": 14343.12, + "end": 14344.12, + "probability": 0.6243 + }, + { + "start": 14345.1, + "end": 14346.24, + "probability": 0.8684 + }, + { + "start": 14347.24, + "end": 14350.44, + "probability": 0.9856 + }, + { + "start": 14350.54, + "end": 14351.38, + "probability": 0.8344 + }, + { + "start": 14351.74, + "end": 14353.34, + "probability": 0.9969 + }, + { + "start": 14354.24, + "end": 14359.72, + "probability": 0.9704 + }, + { + "start": 14360.26, + "end": 14361.02, + "probability": 0.8821 + }, + { + "start": 14364.44, + "end": 14368.72, + "probability": 0.9517 + }, + { + "start": 14369.48, + "end": 14374.7, + "probability": 0.9858 + }, + { + "start": 14375.3, + "end": 14378.18, + "probability": 0.9668 + }, + { + "start": 14378.76, + "end": 14383.48, + "probability": 0.9937 + }, + { + "start": 14385.88, + "end": 14388.68, + "probability": 0.9948 + }, + { + "start": 14391.2, + "end": 14394.88, + "probability": 0.9393 + }, + { + "start": 14396.8, + "end": 14403.36, + "probability": 0.992 + }, + { + "start": 14404.0, + "end": 14405.46, + "probability": 0.8657 + }, + { + "start": 14406.0, + "end": 14410.4, + "probability": 0.9456 + }, + { + "start": 14411.16, + "end": 14413.48, + "probability": 0.6594 + }, + { + "start": 14414.54, + "end": 14418.68, + "probability": 0.9895 + }, + { + "start": 14421.48, + "end": 14422.48, + "probability": 0.8855 + }, + { + "start": 14424.68, + "end": 14428.28, + "probability": 0.902 + }, + { + "start": 14429.0, + "end": 14436.02, + "probability": 0.9863 + }, + { + "start": 14436.06, + "end": 14437.44, + "probability": 0.9002 + }, + { + "start": 14438.02, + "end": 14443.02, + "probability": 0.7975 + }, + { + "start": 14444.36, + "end": 14446.2, + "probability": 0.9721 + }, + { + "start": 14447.38, + "end": 14452.08, + "probability": 0.983 + }, + { + "start": 14452.96, + "end": 14454.24, + "probability": 0.916 + }, + { + "start": 14455.18, + "end": 14456.22, + "probability": 0.9668 + }, + { + "start": 14457.38, + "end": 14461.62, + "probability": 0.9528 + }, + { + "start": 14462.22, + "end": 14467.33, + "probability": 0.8274 + }, + { + "start": 14468.42, + "end": 14470.1, + "probability": 0.8947 + }, + { + "start": 14470.5, + "end": 14471.76, + "probability": 0.9961 + }, + { + "start": 14473.64, + "end": 14475.0, + "probability": 0.9712 + }, + { + "start": 14475.8, + "end": 14477.86, + "probability": 0.8519 + }, + { + "start": 14479.14, + "end": 14480.42, + "probability": 0.8393 + }, + { + "start": 14480.82, + "end": 14482.18, + "probability": 0.8929 + }, + { + "start": 14482.68, + "end": 14483.9, + "probability": 0.7826 + }, + { + "start": 14484.3, + "end": 14486.38, + "probability": 0.8794 + }, + { + "start": 14487.68, + "end": 14489.49, + "probability": 0.6648 + }, + { + "start": 14490.34, + "end": 14497.14, + "probability": 0.9821 + }, + { + "start": 14497.66, + "end": 14498.96, + "probability": 0.9512 + }, + { + "start": 14499.56, + "end": 14501.82, + "probability": 0.8416 + }, + { + "start": 14502.36, + "end": 14502.88, + "probability": 0.8988 + }, + { + "start": 14505.32, + "end": 14508.3, + "probability": 0.7164 + }, + { + "start": 14509.02, + "end": 14510.96, + "probability": 0.994 + }, + { + "start": 14511.78, + "end": 14513.92, + "probability": 0.9556 + }, + { + "start": 14514.96, + "end": 14519.36, + "probability": 0.9941 + }, + { + "start": 14519.98, + "end": 14521.3, + "probability": 0.692 + }, + { + "start": 14521.86, + "end": 14525.74, + "probability": 0.9789 + }, + { + "start": 14527.8, + "end": 14531.02, + "probability": 0.9878 + }, + { + "start": 14531.02, + "end": 14535.76, + "probability": 0.9687 + }, + { + "start": 14537.04, + "end": 14537.46, + "probability": 0.5769 + }, + { + "start": 14537.52, + "end": 14543.7, + "probability": 0.9714 + }, + { + "start": 14544.84, + "end": 14547.2, + "probability": 0.9983 + }, + { + "start": 14548.06, + "end": 14550.0, + "probability": 0.8418 + }, + { + "start": 14550.86, + "end": 14554.58, + "probability": 0.9109 + }, + { + "start": 14555.48, + "end": 14559.86, + "probability": 0.9771 + }, + { + "start": 14559.86, + "end": 14564.78, + "probability": 0.988 + }, + { + "start": 14565.64, + "end": 14567.07, + "probability": 0.9183 + }, + { + "start": 14567.96, + "end": 14570.11, + "probability": 0.9653 + }, + { + "start": 14570.76, + "end": 14571.4, + "probability": 0.7628 + }, + { + "start": 14572.18, + "end": 14576.46, + "probability": 0.9677 + }, + { + "start": 14577.04, + "end": 14578.76, + "probability": 0.9595 + }, + { + "start": 14579.36, + "end": 14586.5, + "probability": 0.9598 + }, + { + "start": 14587.4, + "end": 14587.98, + "probability": 0.9071 + }, + { + "start": 14588.78, + "end": 14590.48, + "probability": 0.9985 + }, + { + "start": 14591.44, + "end": 14593.86, + "probability": 0.8186 + }, + { + "start": 14594.24, + "end": 14599.54, + "probability": 0.9803 + }, + { + "start": 14599.92, + "end": 14601.08, + "probability": 0.9324 + }, + { + "start": 14601.32, + "end": 14601.52, + "probability": 0.7659 + }, + { + "start": 14603.18, + "end": 14605.08, + "probability": 0.9922 + }, + { + "start": 14606.34, + "end": 14608.92, + "probability": 0.8467 + }, + { + "start": 14609.18, + "end": 14610.44, + "probability": 0.7205 + }, + { + "start": 14611.04, + "end": 14612.78, + "probability": 0.8522 + }, + { + "start": 14613.74, + "end": 14615.46, + "probability": 0.8813 + }, + { + "start": 14616.37, + "end": 14619.18, + "probability": 0.3084 + }, + { + "start": 14619.56, + "end": 14621.84, + "probability": 0.8933 + }, + { + "start": 14622.0, + "end": 14623.18, + "probability": 0.8153 + }, + { + "start": 14624.36, + "end": 14624.98, + "probability": 0.5245 + }, + { + "start": 14625.22, + "end": 14626.68, + "probability": 0.6628 + }, + { + "start": 14626.82, + "end": 14628.98, + "probability": 0.8999 + }, + { + "start": 14629.78, + "end": 14631.39, + "probability": 0.7378 + }, + { + "start": 14634.08, + "end": 14634.86, + "probability": 0.793 + }, + { + "start": 14642.08, + "end": 14642.14, + "probability": 0.0821 + }, + { + "start": 14649.84, + "end": 14650.12, + "probability": 0.1357 + }, + { + "start": 14650.12, + "end": 14650.12, + "probability": 0.1996 + }, + { + "start": 14650.12, + "end": 14650.12, + "probability": 0.1005 + }, + { + "start": 14650.12, + "end": 14652.28, + "probability": 0.7725 + }, + { + "start": 14652.28, + "end": 14652.72, + "probability": 0.3402 + }, + { + "start": 14652.92, + "end": 14655.04, + "probability": 0.7287 + }, + { + "start": 14655.12, + "end": 14655.84, + "probability": 0.6166 + }, + { + "start": 14657.08, + "end": 14659.76, + "probability": 0.8838 + }, + { + "start": 14667.84, + "end": 14669.42, + "probability": 0.4906 + }, + { + "start": 14670.68, + "end": 14674.3, + "probability": 0.2913 + }, + { + "start": 14674.3, + "end": 14674.5, + "probability": 0.0208 + }, + { + "start": 14674.5, + "end": 14675.04, + "probability": 0.5795 + }, + { + "start": 14675.26, + "end": 14677.56, + "probability": 0.9676 + }, + { + "start": 14677.6, + "end": 14678.44, + "probability": 0.8555 + }, + { + "start": 14678.62, + "end": 14679.6, + "probability": 0.3607 + }, + { + "start": 14680.44, + "end": 14682.84, + "probability": 0.9707 + }, + { + "start": 14683.06, + "end": 14686.93, + "probability": 0.8101 + }, + { + "start": 14687.62, + "end": 14689.1, + "probability": 0.9803 + }, + { + "start": 14689.94, + "end": 14690.94, + "probability": 0.388 + }, + { + "start": 14691.94, + "end": 14693.92, + "probability": 0.7833 + }, + { + "start": 14695.26, + "end": 14697.54, + "probability": 0.4928 + }, + { + "start": 14697.68, + "end": 14698.06, + "probability": 0.6328 + }, + { + "start": 14698.06, + "end": 14701.6, + "probability": 0.9249 + }, + { + "start": 14701.6, + "end": 14703.58, + "probability": 0.9242 + }, + { + "start": 14704.38, + "end": 14707.66, + "probability": 0.9296 + }, + { + "start": 14708.28, + "end": 14712.06, + "probability": 0.9756 + }, + { + "start": 14712.06, + "end": 14714.88, + "probability": 0.9111 + }, + { + "start": 14715.54, + "end": 14719.7, + "probability": 0.7359 + }, + { + "start": 14719.76, + "end": 14722.58, + "probability": 0.9102 + }, + { + "start": 14723.71, + "end": 14727.16, + "probability": 0.8633 + }, + { + "start": 14727.76, + "end": 14731.56, + "probability": 0.9775 + }, + { + "start": 14731.66, + "end": 14734.4, + "probability": 0.9797 + }, + { + "start": 14735.16, + "end": 14738.66, + "probability": 0.9343 + }, + { + "start": 14738.66, + "end": 14742.72, + "probability": 0.6659 + }, + { + "start": 14743.14, + "end": 14744.98, + "probability": 0.9956 + }, + { + "start": 14745.16, + "end": 14747.5, + "probability": 0.9954 + }, + { + "start": 14747.86, + "end": 14750.48, + "probability": 0.9646 + }, + { + "start": 14751.3, + "end": 14751.5, + "probability": 0.4983 + }, + { + "start": 14751.64, + "end": 14754.04, + "probability": 0.9197 + }, + { + "start": 14754.08, + "end": 14756.74, + "probability": 0.9648 + }, + { + "start": 14756.82, + "end": 14757.34, + "probability": 0.9872 + }, + { + "start": 14758.66, + "end": 14759.47, + "probability": 0.5386 + }, + { + "start": 14759.6, + "end": 14762.0, + "probability": 0.9912 + }, + { + "start": 14762.98, + "end": 14764.98, + "probability": 0.7023 + }, + { + "start": 14764.98, + "end": 14767.04, + "probability": 0.9878 + }, + { + "start": 14767.72, + "end": 14771.78, + "probability": 0.9801 + }, + { + "start": 14772.36, + "end": 14773.6, + "probability": 0.996 + }, + { + "start": 14774.24, + "end": 14776.86, + "probability": 0.8383 + }, + { + "start": 14776.98, + "end": 14780.44, + "probability": 0.9926 + }, + { + "start": 14780.46, + "end": 14786.24, + "probability": 0.6058 + }, + { + "start": 14786.26, + "end": 14786.54, + "probability": 0.8624 + }, + { + "start": 14787.4, + "end": 14789.58, + "probability": 0.8188 + }, + { + "start": 14789.62, + "end": 14792.26, + "probability": 0.9509 + }, + { + "start": 14792.38, + "end": 14795.34, + "probability": 0.9198 + }, + { + "start": 14795.92, + "end": 14799.02, + "probability": 0.7712 + }, + { + "start": 14799.02, + "end": 14801.22, + "probability": 0.9854 + }, + { + "start": 14802.1, + "end": 14802.62, + "probability": 0.6832 + }, + { + "start": 14802.8, + "end": 14807.32, + "probability": 0.8916 + }, + { + "start": 14807.5, + "end": 14810.14, + "probability": 0.6772 + }, + { + "start": 14810.66, + "end": 14815.02, + "probability": 0.8508 + }, + { + "start": 14815.44, + "end": 14817.08, + "probability": 0.9716 + }, + { + "start": 14817.56, + "end": 14820.14, + "probability": 0.7149 + }, + { + "start": 14820.22, + "end": 14820.54, + "probability": 0.8357 + }, + { + "start": 14821.12, + "end": 14822.88, + "probability": 0.5825 + }, + { + "start": 14823.66, + "end": 14824.86, + "probability": 0.9033 + }, + { + "start": 14824.96, + "end": 14828.32, + "probability": 0.9308 + }, + { + "start": 14828.94, + "end": 14829.44, + "probability": 0.7559 + }, + { + "start": 14829.56, + "end": 14830.42, + "probability": 0.9229 + }, + { + "start": 14830.62, + "end": 14833.72, + "probability": 0.9907 + }, + { + "start": 14834.3, + "end": 14836.84, + "probability": 0.7191 + }, + { + "start": 14837.12, + "end": 14839.94, + "probability": 0.9208 + }, + { + "start": 14841.36, + "end": 14841.54, + "probability": 0.1496 + }, + { + "start": 14844.62, + "end": 14844.9, + "probability": 0.8949 + }, + { + "start": 14844.96, + "end": 14847.9, + "probability": 0.9896 + }, + { + "start": 14847.9, + "end": 14851.0, + "probability": 0.9845 + }, + { + "start": 14851.14, + "end": 14851.42, + "probability": 0.8256 + }, + { + "start": 14852.18, + "end": 14852.86, + "probability": 0.726 + }, + { + "start": 14853.58, + "end": 14855.52, + "probability": 0.9784 + }, + { + "start": 14855.62, + "end": 14856.54, + "probability": 0.9229 + }, + { + "start": 14856.62, + "end": 14857.84, + "probability": 0.9238 + }, + { + "start": 14858.56, + "end": 14858.56, + "probability": 0.0559 + }, + { + "start": 14859.32, + "end": 14862.91, + "probability": 0.9961 + }, + { + "start": 14864.44, + "end": 14867.32, + "probability": 0.7245 + }, + { + "start": 14867.94, + "end": 14868.76, + "probability": 0.6448 + }, + { + "start": 14869.5, + "end": 14870.88, + "probability": 0.9326 + }, + { + "start": 14872.28, + "end": 14874.48, + "probability": 0.826 + }, + { + "start": 14882.6, + "end": 14883.41, + "probability": 0.0662 + }, + { + "start": 14885.98, + "end": 14887.62, + "probability": 0.0409 + }, + { + "start": 14889.02, + "end": 14889.42, + "probability": 0.0348 + }, + { + "start": 14891.76, + "end": 14894.2, + "probability": 0.1442 + }, + { + "start": 14895.76, + "end": 14898.52, + "probability": 0.3365 + }, + { + "start": 14904.86, + "end": 14905.26, + "probability": 0.0936 + }, + { + "start": 14905.26, + "end": 14905.26, + "probability": 0.1112 + }, + { + "start": 14905.26, + "end": 14906.6, + "probability": 0.1075 + }, + { + "start": 14907.16, + "end": 14907.16, + "probability": 0.0608 + }, + { + "start": 14908.28, + "end": 14909.08, + "probability": 0.1748 + }, + { + "start": 14909.88, + "end": 14910.44, + "probability": 0.1226 + }, + { + "start": 14912.22, + "end": 14912.24, + "probability": 0.3289 + }, + { + "start": 14912.54, + "end": 14912.74, + "probability": 0.1768 + }, + { + "start": 14912.92, + "end": 14913.84, + "probability": 0.0273 + }, + { + "start": 14914.1, + "end": 14916.64, + "probability": 0.1183 + }, + { + "start": 14917.18, + "end": 14920.1, + "probability": 0.0363 + }, + { + "start": 14920.1, + "end": 14920.1, + "probability": 0.1493 + }, + { + "start": 14920.1, + "end": 14923.04, + "probability": 0.0123 + }, + { + "start": 14925.58, + "end": 14926.1, + "probability": 0.048 + }, + { + "start": 14927.1, + "end": 14927.56, + "probability": 0.1503 + }, + { + "start": 14927.78, + "end": 14928.46, + "probability": 0.0572 + }, + { + "start": 14928.56, + "end": 14928.74, + "probability": 0.0284 + }, + { + "start": 14928.86, + "end": 14930.3, + "probability": 0.4752 + }, + { + "start": 14930.3, + "end": 14930.76, + "probability": 0.0527 + }, + { + "start": 14930.92, + "end": 14930.92, + "probability": 0.313 + }, + { + "start": 14930.92, + "end": 14931.38, + "probability": 0.0588 + }, + { + "start": 14931.38, + "end": 14939.62, + "probability": 0.1122 + }, + { + "start": 14941.0, + "end": 14941.0, + "probability": 0.0 + }, + { + "start": 14941.0, + "end": 14941.0, + "probability": 0.0 + }, + { + "start": 14941.0, + "end": 14941.0, + "probability": 0.0 + }, + { + "start": 14941.0, + "end": 14941.0, + "probability": 0.0 + }, + { + "start": 14941.0, + "end": 14941.0, + "probability": 0.0 + }, + { + "start": 14941.24, + "end": 14943.54, + "probability": 0.6138 + }, + { + "start": 14953.27, + "end": 14958.13, + "probability": 0.0844 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.0, + "end": 15063.0, + "probability": 0.0 + }, + { + "start": 15063.28, + "end": 15063.46, + "probability": 0.2795 + }, + { + "start": 15063.46, + "end": 15064.8, + "probability": 0.1865 + }, + { + "start": 15065.58, + "end": 15068.71, + "probability": 0.9977 + }, + { + "start": 15069.06, + "end": 15069.76, + "probability": 0.8452 + }, + { + "start": 15069.96, + "end": 15071.92, + "probability": 0.9667 + }, + { + "start": 15072.12, + "end": 15076.78, + "probability": 0.9922 + }, + { + "start": 15077.9, + "end": 15082.22, + "probability": 0.9611 + }, + { + "start": 15082.82, + "end": 15085.5, + "probability": 0.9673 + }, + { + "start": 15086.62, + "end": 15090.32, + "probability": 0.9912 + }, + { + "start": 15093.7, + "end": 15095.0, + "probability": 0.892 + }, + { + "start": 15096.0, + "end": 15099.82, + "probability": 0.9773 + }, + { + "start": 15100.68, + "end": 15103.68, + "probability": 0.9989 + }, + { + "start": 15105.52, + "end": 15108.02, + "probability": 0.7865 + }, + { + "start": 15108.56, + "end": 15110.56, + "probability": 0.9933 + }, + { + "start": 15111.26, + "end": 15117.4, + "probability": 0.9984 + }, + { + "start": 15117.8, + "end": 15123.24, + "probability": 0.9827 + }, + { + "start": 15124.52, + "end": 15127.16, + "probability": 0.9978 + }, + { + "start": 15127.16, + "end": 15132.66, + "probability": 0.998 + }, + { + "start": 15132.72, + "end": 15133.0, + "probability": 0.8306 + }, + { + "start": 15133.16, + "end": 15140.6, + "probability": 0.9964 + }, + { + "start": 15140.8, + "end": 15142.28, + "probability": 0.8596 + }, + { + "start": 15142.36, + "end": 15143.52, + "probability": 0.8114 + }, + { + "start": 15144.1, + "end": 15144.62, + "probability": 0.9833 + }, + { + "start": 15144.84, + "end": 15147.64, + "probability": 0.9883 + }, + { + "start": 15148.02, + "end": 15150.02, + "probability": 0.9792 + }, + { + "start": 15151.46, + "end": 15155.32, + "probability": 0.9971 + }, + { + "start": 15156.38, + "end": 15158.48, + "probability": 0.973 + }, + { + "start": 15159.02, + "end": 15163.32, + "probability": 0.9694 + }, + { + "start": 15163.98, + "end": 15166.6, + "probability": 0.9946 + }, + { + "start": 15167.32, + "end": 15168.52, + "probability": 0.992 + }, + { + "start": 15169.24, + "end": 15172.58, + "probability": 0.9876 + }, + { + "start": 15173.36, + "end": 15175.2, + "probability": 0.9174 + }, + { + "start": 15175.94, + "end": 15177.84, + "probability": 0.9475 + }, + { + "start": 15179.0, + "end": 15182.6, + "probability": 0.9992 + }, + { + "start": 15183.08, + "end": 15185.2, + "probability": 0.9865 + }, + { + "start": 15186.18, + "end": 15188.18, + "probability": 0.9375 + }, + { + "start": 15188.74, + "end": 15192.62, + "probability": 0.9803 + }, + { + "start": 15193.5, + "end": 15196.36, + "probability": 0.9833 + }, + { + "start": 15196.64, + "end": 15202.02, + "probability": 0.9884 + }, + { + "start": 15202.66, + "end": 15206.96, + "probability": 0.9888 + }, + { + "start": 15208.08, + "end": 15211.6, + "probability": 0.9688 + }, + { + "start": 15212.14, + "end": 15213.1, + "probability": 0.9122 + }, + { + "start": 15213.56, + "end": 15217.02, + "probability": 0.9902 + }, + { + "start": 15217.02, + "end": 15219.24, + "probability": 0.9819 + }, + { + "start": 15219.3, + "end": 15223.36, + "probability": 0.9982 + }, + { + "start": 15224.06, + "end": 15227.86, + "probability": 0.9976 + }, + { + "start": 15227.86, + "end": 15230.54, + "probability": 0.9951 + }, + { + "start": 15231.28, + "end": 15232.24, + "probability": 0.6129 + }, + { + "start": 15232.58, + "end": 15233.72, + "probability": 0.6969 + }, + { + "start": 15233.84, + "end": 15235.6, + "probability": 0.9942 + }, + { + "start": 15236.34, + "end": 15239.82, + "probability": 0.993 + }, + { + "start": 15239.82, + "end": 15244.38, + "probability": 0.9908 + }, + { + "start": 15244.46, + "end": 15245.76, + "probability": 0.8268 + }, + { + "start": 15245.8, + "end": 15248.32, + "probability": 0.96 + }, + { + "start": 15248.84, + "end": 15250.18, + "probability": 0.9106 + }, + { + "start": 15250.94, + "end": 15253.54, + "probability": 0.9834 + }, + { + "start": 15254.06, + "end": 15258.16, + "probability": 0.983 + }, + { + "start": 15258.68, + "end": 15260.84, + "probability": 0.9985 + }, + { + "start": 15260.84, + "end": 15263.12, + "probability": 0.9832 + }, + { + "start": 15263.3, + "end": 15264.6, + "probability": 0.8237 + }, + { + "start": 15264.6, + "end": 15265.48, + "probability": 0.3728 + }, + { + "start": 15265.48, + "end": 15265.5, + "probability": 0.0057 + }, + { + "start": 15265.5, + "end": 15267.89, + "probability": 0.9512 + }, + { + "start": 15269.22, + "end": 15269.34, + "probability": 0.2869 + }, + { + "start": 15269.72, + "end": 15270.32, + "probability": 0.6368 + }, + { + "start": 15270.38, + "end": 15271.7, + "probability": 0.7056 + }, + { + "start": 15272.12, + "end": 15277.32, + "probability": 0.9317 + }, + { + "start": 15277.86, + "end": 15280.28, + "probability": 0.9989 + }, + { + "start": 15280.64, + "end": 15281.44, + "probability": 0.8075 + }, + { + "start": 15281.92, + "end": 15286.9, + "probability": 0.9722 + }, + { + "start": 15287.42, + "end": 15289.9, + "probability": 0.9113 + }, + { + "start": 15289.9, + "end": 15290.72, + "probability": 0.8655 + }, + { + "start": 15290.82, + "end": 15295.06, + "probability": 0.9935 + }, + { + "start": 15295.16, + "end": 15297.4, + "probability": 0.993 + }, + { + "start": 15297.52, + "end": 15298.82, + "probability": 0.8947 + }, + { + "start": 15299.18, + "end": 15301.26, + "probability": 0.5454 + }, + { + "start": 15304.44, + "end": 15304.72, + "probability": 0.1286 + }, + { + "start": 15304.72, + "end": 15306.42, + "probability": 0.592 + }, + { + "start": 15306.86, + "end": 15307.66, + "probability": 0.9013 + }, + { + "start": 15307.8, + "end": 15309.64, + "probability": 0.9785 + }, + { + "start": 15309.8, + "end": 15312.02, + "probability": 0.9842 + }, + { + "start": 15312.02, + "end": 15316.08, + "probability": 0.9885 + }, + { + "start": 15316.79, + "end": 15319.16, + "probability": 0.8643 + }, + { + "start": 15319.74, + "end": 15320.56, + "probability": 0.5887 + }, + { + "start": 15320.76, + "end": 15324.04, + "probability": 0.7232 + }, + { + "start": 15324.58, + "end": 15325.48, + "probability": 0.916 + }, + { + "start": 15326.06, + "end": 15327.84, + "probability": 0.7623 + }, + { + "start": 15328.2, + "end": 15331.48, + "probability": 0.9951 + }, + { + "start": 15331.48, + "end": 15333.64, + "probability": 0.9932 + }, + { + "start": 15333.7, + "end": 15335.14, + "probability": 0.8389 + }, + { + "start": 15336.17, + "end": 15341.66, + "probability": 0.9836 + }, + { + "start": 15343.26, + "end": 15346.1, + "probability": 0.9957 + }, + { + "start": 15346.34, + "end": 15352.08, + "probability": 0.9866 + }, + { + "start": 15352.68, + "end": 15358.24, + "probability": 0.9814 + }, + { + "start": 15359.24, + "end": 15361.9, + "probability": 0.8648 + }, + { + "start": 15362.02, + "end": 15362.26, + "probability": 0.5384 + }, + { + "start": 15362.36, + "end": 15363.22, + "probability": 0.4882 + }, + { + "start": 15363.34, + "end": 15366.12, + "probability": 0.8934 + }, + { + "start": 15367.64, + "end": 15370.55, + "probability": 0.9854 + }, + { + "start": 15371.3, + "end": 15376.74, + "probability": 0.8071 + }, + { + "start": 15377.58, + "end": 15379.44, + "probability": 0.7749 + }, + { + "start": 15379.72, + "end": 15382.84, + "probability": 0.9944 + }, + { + "start": 15383.32, + "end": 15386.6, + "probability": 0.9508 + }, + { + "start": 15386.64, + "end": 15389.34, + "probability": 0.9817 + }, + { + "start": 15389.8, + "end": 15390.04, + "probability": 0.7448 + }, + { + "start": 15390.12, + "end": 15391.62, + "probability": 0.9761 + }, + { + "start": 15391.84, + "end": 15393.98, + "probability": 0.7944 + }, + { + "start": 15394.06, + "end": 15394.54, + "probability": 0.9162 + }, + { + "start": 15394.88, + "end": 15396.74, + "probability": 0.9841 + }, + { + "start": 15396.86, + "end": 15398.32, + "probability": 0.9832 + }, + { + "start": 15398.78, + "end": 15401.88, + "probability": 0.9779 + }, + { + "start": 15402.56, + "end": 15407.08, + "probability": 0.9443 + }, + { + "start": 15408.03, + "end": 15412.98, + "probability": 0.9995 + }, + { + "start": 15414.12, + "end": 15414.76, + "probability": 0.9466 + }, + { + "start": 15415.54, + "end": 15416.62, + "probability": 0.9772 + }, + { + "start": 15417.72, + "end": 15420.26, + "probability": 0.6685 + }, + { + "start": 15421.04, + "end": 15424.28, + "probability": 0.9873 + }, + { + "start": 15424.72, + "end": 15426.96, + "probability": 0.7673 + }, + { + "start": 15427.44, + "end": 15430.17, + "probability": 0.9651 + }, + { + "start": 15430.56, + "end": 15432.78, + "probability": 0.9384 + }, + { + "start": 15433.52, + "end": 15434.54, + "probability": 0.9251 + }, + { + "start": 15434.8, + "end": 15436.66, + "probability": 0.994 + }, + { + "start": 15438.22, + "end": 15441.14, + "probability": 0.9357 + }, + { + "start": 15441.3, + "end": 15443.34, + "probability": 0.9868 + }, + { + "start": 15443.92, + "end": 15446.08, + "probability": 0.7524 + }, + { + "start": 15446.72, + "end": 15448.36, + "probability": 0.5111 + }, + { + "start": 15449.0, + "end": 15452.9, + "probability": 0.9917 + }, + { + "start": 15453.2, + "end": 15455.98, + "probability": 0.9705 + }, + { + "start": 15455.98, + "end": 15462.44, + "probability": 0.9898 + }, + { + "start": 15466.74, + "end": 15466.92, + "probability": 0.2566 + }, + { + "start": 15467.08, + "end": 15470.66, + "probability": 0.9681 + }, + { + "start": 15470.8, + "end": 15471.48, + "probability": 0.7293 + }, + { + "start": 15471.94, + "end": 15474.64, + "probability": 0.9912 + }, + { + "start": 15474.64, + "end": 15477.98, + "probability": 0.9948 + }, + { + "start": 15478.66, + "end": 15481.5, + "probability": 0.9691 + }, + { + "start": 15481.52, + "end": 15482.96, + "probability": 0.7795 + }, + { + "start": 15483.18, + "end": 15483.92, + "probability": 0.7293 + }, + { + "start": 15484.36, + "end": 15487.7, + "probability": 0.9919 + }, + { + "start": 15488.18, + "end": 15489.64, + "probability": 0.7298 + }, + { + "start": 15489.94, + "end": 15493.24, + "probability": 0.8645 + }, + { + "start": 15493.34, + "end": 15493.52, + "probability": 0.7574 + }, + { + "start": 15494.02, + "end": 15494.86, + "probability": 0.6389 + }, + { + "start": 15495.54, + "end": 15497.22, + "probability": 0.8774 + }, + { + "start": 15497.28, + "end": 15501.53, + "probability": 0.6187 + }, + { + "start": 15502.62, + "end": 15505.42, + "probability": 0.9403 + }, + { + "start": 15505.6, + "end": 15507.58, + "probability": 0.7361 + }, + { + "start": 15508.12, + "end": 15511.2, + "probability": 0.9799 + }, + { + "start": 15511.74, + "end": 15516.24, + "probability": 0.9742 + }, + { + "start": 15516.32, + "end": 15518.64, + "probability": 0.5678 + }, + { + "start": 15518.7, + "end": 15519.58, + "probability": 0.8917 + }, + { + "start": 15519.96, + "end": 15521.6, + "probability": 0.5009 + }, + { + "start": 15521.64, + "end": 15522.02, + "probability": 0.5394 + }, + { + "start": 15522.06, + "end": 15522.72, + "probability": 0.6204 + }, + { + "start": 15524.28, + "end": 15526.48, + "probability": 0.2235 + }, + { + "start": 15527.04, + "end": 15527.54, + "probability": 0.6155 + }, + { + "start": 15528.94, + "end": 15535.08, + "probability": 0.8249 + }, + { + "start": 15536.46, + "end": 15540.38, + "probability": 0.2184 + }, + { + "start": 15542.32, + "end": 15542.38, + "probability": 0.074 + }, + { + "start": 15542.38, + "end": 15544.18, + "probability": 0.0914 + }, + { + "start": 15544.58, + "end": 15545.0, + "probability": 0.0731 + }, + { + "start": 15545.0, + "end": 15545.0, + "probability": 0.1041 + }, + { + "start": 15545.0, + "end": 15547.7, + "probability": 0.5981 + }, + { + "start": 15549.92, + "end": 15552.64, + "probability": 0.4946 + }, + { + "start": 15552.74, + "end": 15556.0, + "probability": 0.3793 + }, + { + "start": 15569.8, + "end": 15577.28, + "probability": 0.052 + }, + { + "start": 15577.52, + "end": 15577.52, + "probability": 0.9214 + }, + { + "start": 15580.0, + "end": 15581.58, + "probability": 0.0743 + }, + { + "start": 15581.58, + "end": 15582.42, + "probability": 0.0512 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.0, + "end": 15634.0, + "probability": 0.0 + }, + { + "start": 15634.1, + "end": 15634.12, + "probability": 0.1077 + }, + { + "start": 15634.12, + "end": 15634.12, + "probability": 0.1266 + }, + { + "start": 15634.12, + "end": 15634.54, + "probability": 0.0316 + }, + { + "start": 15635.48, + "end": 15639.0, + "probability": 0.4361 + }, + { + "start": 15639.86, + "end": 15640.94, + "probability": 0.9465 + }, + { + "start": 15641.1, + "end": 15641.62, + "probability": 0.895 + }, + { + "start": 15641.68, + "end": 15643.5, + "probability": 0.8605 + }, + { + "start": 15644.84, + "end": 15646.5, + "probability": 0.9873 + }, + { + "start": 15648.08, + "end": 15650.54, + "probability": 0.9482 + }, + { + "start": 15652.02, + "end": 15656.16, + "probability": 0.716 + }, + { + "start": 15656.62, + "end": 15657.76, + "probability": 0.9785 + }, + { + "start": 15658.3, + "end": 15659.2, + "probability": 0.8848 + }, + { + "start": 15660.76, + "end": 15661.9, + "probability": 0.8062 + }, + { + "start": 15662.0, + "end": 15662.78, + "probability": 0.4484 + }, + { + "start": 15662.86, + "end": 15663.64, + "probability": 0.7592 + }, + { + "start": 15663.88, + "end": 15666.56, + "probability": 0.8179 + }, + { + "start": 15668.4, + "end": 15669.7, + "probability": 0.9247 + }, + { + "start": 15670.32, + "end": 15671.12, + "probability": 0.9375 + }, + { + "start": 15671.38, + "end": 15671.68, + "probability": 0.856 + }, + { + "start": 15671.98, + "end": 15673.28, + "probability": 0.979 + }, + { + "start": 15673.64, + "end": 15674.0, + "probability": 0.6912 + }, + { + "start": 15676.06, + "end": 15679.18, + "probability": 0.9964 + }, + { + "start": 15679.94, + "end": 15680.82, + "probability": 0.6812 + }, + { + "start": 15681.42, + "end": 15684.64, + "probability": 0.956 + }, + { + "start": 15685.72, + "end": 15686.58, + "probability": 0.9919 + }, + { + "start": 15687.74, + "end": 15693.74, + "probability": 0.9841 + }, + { + "start": 15694.22, + "end": 15695.0, + "probability": 0.3979 + }, + { + "start": 15695.38, + "end": 15696.04, + "probability": 0.3903 + }, + { + "start": 15696.3, + "end": 15696.78, + "probability": 0.5832 + }, + { + "start": 15696.94, + "end": 15699.94, + "probability": 0.9694 + }, + { + "start": 15700.38, + "end": 15705.78, + "probability": 0.9924 + }, + { + "start": 15707.08, + "end": 15711.02, + "probability": 0.9749 + }, + { + "start": 15711.8, + "end": 15716.08, + "probability": 0.9965 + }, + { + "start": 15717.16, + "end": 15721.6, + "probability": 0.9731 + }, + { + "start": 15721.86, + "end": 15722.98, + "probability": 0.7996 + }, + { + "start": 15723.06, + "end": 15723.26, + "probability": 0.7358 + }, + { + "start": 15723.7, + "end": 15725.0, + "probability": 0.9698 + }, + { + "start": 15725.56, + "end": 15727.48, + "probability": 0.8962 + }, + { + "start": 15727.86, + "end": 15728.78, + "probability": 0.8956 + }, + { + "start": 15730.68, + "end": 15732.38, + "probability": 0.9946 + }, + { + "start": 15733.04, + "end": 15733.04, + "probability": 0.0321 + }, + { + "start": 15733.04, + "end": 15734.85, + "probability": 0.9331 + }, + { + "start": 15736.46, + "end": 15737.42, + "probability": 0.6537 + }, + { + "start": 15738.16, + "end": 15742.34, + "probability": 0.9881 + }, + { + "start": 15742.88, + "end": 15745.76, + "probability": 0.7486 + }, + { + "start": 15745.96, + "end": 15746.9, + "probability": 0.6628 + }, + { + "start": 15747.76, + "end": 15749.14, + "probability": 0.7662 + }, + { + "start": 15749.78, + "end": 15753.74, + "probability": 0.8854 + }, + { + "start": 15755.06, + "end": 15756.22, + "probability": 0.9954 + }, + { + "start": 15757.2, + "end": 15758.16, + "probability": 0.9157 + }, + { + "start": 15758.58, + "end": 15759.74, + "probability": 0.8542 + }, + { + "start": 15760.9, + "end": 15764.44, + "probability": 0.9493 + }, + { + "start": 15765.06, + "end": 15766.9, + "probability": 0.9828 + }, + { + "start": 15767.68, + "end": 15768.22, + "probability": 0.6307 + }, + { + "start": 15768.86, + "end": 15769.7, + "probability": 0.8504 + }, + { + "start": 15771.2, + "end": 15774.3, + "probability": 0.9792 + }, + { + "start": 15775.16, + "end": 15778.66, + "probability": 0.9781 + }, + { + "start": 15779.26, + "end": 15780.0, + "probability": 0.4079 + }, + { + "start": 15780.52, + "end": 15781.58, + "probability": 0.9346 + }, + { + "start": 15783.26, + "end": 15788.0, + "probability": 0.9946 + }, + { + "start": 15788.72, + "end": 15790.98, + "probability": 0.8213 + }, + { + "start": 15792.22, + "end": 15792.24, + "probability": 0.0779 + }, + { + "start": 15792.24, + "end": 15792.82, + "probability": 0.7883 + }, + { + "start": 15794.18, + "end": 15795.2, + "probability": 0.989 + }, + { + "start": 15795.9, + "end": 15799.32, + "probability": 0.9833 + }, + { + "start": 15799.56, + "end": 15800.62, + "probability": 0.9284 + }, + { + "start": 15801.18, + "end": 15801.76, + "probability": 0.9043 + }, + { + "start": 15801.76, + "end": 15803.64, + "probability": 0.8293 + }, + { + "start": 15803.7, + "end": 15804.58, + "probability": 0.9822 + }, + { + "start": 15805.8, + "end": 15806.54, + "probability": 0.5106 + }, + { + "start": 15807.5, + "end": 15811.96, + "probability": 0.9969 + }, + { + "start": 15814.2, + "end": 15816.8, + "probability": 0.9366 + }, + { + "start": 15817.82, + "end": 15822.38, + "probability": 0.9829 + }, + { + "start": 15824.96, + "end": 15831.36, + "probability": 0.9976 + }, + { + "start": 15834.28, + "end": 15839.18, + "probability": 0.9049 + }, + { + "start": 15841.46, + "end": 15845.54, + "probability": 0.9982 + }, + { + "start": 15845.74, + "end": 15846.48, + "probability": 0.9838 + }, + { + "start": 15846.8, + "end": 15850.0, + "probability": 0.4277 + }, + { + "start": 15850.78, + "end": 15852.08, + "probability": 0.9719 + }, + { + "start": 15854.34, + "end": 15856.08, + "probability": 0.7779 + }, + { + "start": 15857.3, + "end": 15858.97, + "probability": 0.9979 + }, + { + "start": 15860.32, + "end": 15862.86, + "probability": 0.9773 + }, + { + "start": 15863.2, + "end": 15864.44, + "probability": 0.8806 + }, + { + "start": 15865.4, + "end": 15869.1, + "probability": 0.9922 + }, + { + "start": 15869.1, + "end": 15873.46, + "probability": 0.9985 + }, + { + "start": 15875.16, + "end": 15877.41, + "probability": 0.9779 + }, + { + "start": 15878.38, + "end": 15880.2, + "probability": 0.9928 + }, + { + "start": 15880.96, + "end": 15882.44, + "probability": 0.9927 + }, + { + "start": 15883.12, + "end": 15884.92, + "probability": 0.9526 + }, + { + "start": 15885.5, + "end": 15887.48, + "probability": 0.9367 + }, + { + "start": 15888.34, + "end": 15892.24, + "probability": 0.9544 + }, + { + "start": 15893.56, + "end": 15894.28, + "probability": 0.5997 + }, + { + "start": 15895.66, + "end": 15896.67, + "probability": 0.9985 + }, + { + "start": 15897.94, + "end": 15900.22, + "probability": 0.9362 + }, + { + "start": 15901.46, + "end": 15903.92, + "probability": 0.9897 + }, + { + "start": 15904.84, + "end": 15907.72, + "probability": 0.9869 + }, + { + "start": 15909.22, + "end": 15912.58, + "probability": 0.9944 + }, + { + "start": 15914.12, + "end": 15915.0, + "probability": 0.656 + }, + { + "start": 15916.86, + "end": 15918.88, + "probability": 0.7762 + }, + { + "start": 15920.46, + "end": 15923.0, + "probability": 0.964 + }, + { + "start": 15923.0, + "end": 15926.94, + "probability": 0.8983 + }, + { + "start": 15927.74, + "end": 15928.68, + "probability": 0.8779 + }, + { + "start": 15929.42, + "end": 15930.76, + "probability": 0.8212 + }, + { + "start": 15930.92, + "end": 15931.48, + "probability": 0.5197 + }, + { + "start": 15932.12, + "end": 15933.42, + "probability": 0.9395 + }, + { + "start": 15933.82, + "end": 15934.78, + "probability": 0.8645 + }, + { + "start": 15935.12, + "end": 15936.96, + "probability": 0.9039 + }, + { + "start": 15937.3, + "end": 15940.7, + "probability": 0.9968 + }, + { + "start": 15940.8, + "end": 15941.2, + "probability": 0.4249 + }, + { + "start": 15943.02, + "end": 15945.72, + "probability": 0.99 + }, + { + "start": 15945.95, + "end": 15949.14, + "probability": 0.9989 + }, + { + "start": 15950.52, + "end": 15951.74, + "probability": 0.8728 + }, + { + "start": 15952.4, + "end": 15953.18, + "probability": 0.7429 + }, + { + "start": 15954.68, + "end": 15956.56, + "probability": 0.7788 + }, + { + "start": 15957.24, + "end": 15958.72, + "probability": 0.9767 + }, + { + "start": 15960.26, + "end": 15961.7, + "probability": 0.7415 + }, + { + "start": 15962.44, + "end": 15963.9, + "probability": 0.9961 + }, + { + "start": 15964.18, + "end": 15965.6, + "probability": 0.9879 + }, + { + "start": 15965.84, + "end": 15967.12, + "probability": 0.7059 + }, + { + "start": 15967.48, + "end": 15968.22, + "probability": 0.7856 + }, + { + "start": 15968.58, + "end": 15970.34, + "probability": 0.9581 + }, + { + "start": 15971.32, + "end": 15973.7, + "probability": 0.8441 + }, + { + "start": 15974.28, + "end": 15975.78, + "probability": 0.9981 + }, + { + "start": 15976.48, + "end": 15979.66, + "probability": 0.8737 + }, + { + "start": 15980.96, + "end": 15983.04, + "probability": 0.9585 + }, + { + "start": 15983.6, + "end": 15984.76, + "probability": 0.9976 + }, + { + "start": 15985.5, + "end": 15986.34, + "probability": 0.942 + }, + { + "start": 15987.22, + "end": 15989.16, + "probability": 0.9869 + }, + { + "start": 15989.78, + "end": 15990.98, + "probability": 0.9193 + }, + { + "start": 15991.92, + "end": 15994.94, + "probability": 0.819 + }, + { + "start": 15995.84, + "end": 15996.52, + "probability": 0.9158 + }, + { + "start": 15997.4, + "end": 16000.56, + "probability": 0.9959 + }, + { + "start": 16004.7, + "end": 16005.68, + "probability": 0.9432 + }, + { + "start": 16010.22, + "end": 16010.54, + "probability": 0.3974 + }, + { + "start": 16011.9, + "end": 16013.06, + "probability": 0.825 + }, + { + "start": 16014.54, + "end": 16015.36, + "probability": 0.8368 + }, + { + "start": 16016.92, + "end": 16018.64, + "probability": 0.9565 + }, + { + "start": 16019.82, + "end": 16020.7, + "probability": 0.761 + }, + { + "start": 16020.7, + "end": 16021.98, + "probability": 0.8481 + }, + { + "start": 16022.14, + "end": 16029.76, + "probability": 0.7101 + }, + { + "start": 16030.84, + "end": 16034.96, + "probability": 0.3525 + }, + { + "start": 16036.9, + "end": 16038.06, + "probability": 0.0754 + }, + { + "start": 16046.12, + "end": 16048.3, + "probability": 0.1384 + }, + { + "start": 16051.16, + "end": 16053.36, + "probability": 0.3926 + }, + { + "start": 16053.42, + "end": 16053.8, + "probability": 0.159 + }, + { + "start": 16053.86, + "end": 16055.86, + "probability": 0.2184 + }, + { + "start": 16055.86, + "end": 16056.54, + "probability": 0.0451 + }, + { + "start": 16056.54, + "end": 16059.76, + "probability": 0.0741 + }, + { + "start": 16064.74, + "end": 16073.08, + "probability": 0.1535 + }, + { + "start": 16074.94, + "end": 16075.48, + "probability": 0.0888 + }, + { + "start": 16075.48, + "end": 16078.09, + "probability": 0.0715 + }, + { + "start": 16082.46, + "end": 16086.92, + "probability": 0.2366 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.0, + "end": 16103.0, + "probability": 0.0 + }, + { + "start": 16103.32, + "end": 16103.44, + "probability": 0.2944 + }, + { + "start": 16103.44, + "end": 16103.44, + "probability": 0.3176 + }, + { + "start": 16103.44, + "end": 16103.44, + "probability": 0.0373 + }, + { + "start": 16103.44, + "end": 16108.24, + "probability": 0.9259 + }, + { + "start": 16109.16, + "end": 16112.3, + "probability": 0.0973 + }, + { + "start": 16112.54, + "end": 16112.54, + "probability": 0.0454 + }, + { + "start": 16112.54, + "end": 16113.64, + "probability": 0.6311 + }, + { + "start": 16115.58, + "end": 16118.16, + "probability": 0.9746 + }, + { + "start": 16118.94, + "end": 16120.4, + "probability": 0.3397 + }, + { + "start": 16120.58, + "end": 16122.0, + "probability": 0.5477 + }, + { + "start": 16122.14, + "end": 16125.72, + "probability": 0.5692 + }, + { + "start": 16125.86, + "end": 16127.56, + "probability": 0.8476 + }, + { + "start": 16128.0, + "end": 16130.08, + "probability": 0.9549 + }, + { + "start": 16130.12, + "end": 16132.06, + "probability": 0.7673 + }, + { + "start": 16132.22, + "end": 16133.86, + "probability": 0.9722 + }, + { + "start": 16134.0, + "end": 16135.04, + "probability": 0.7945 + }, + { + "start": 16135.5, + "end": 16139.44, + "probability": 0.9791 + }, + { + "start": 16139.9, + "end": 16140.98, + "probability": 0.5148 + }, + { + "start": 16141.64, + "end": 16149.7, + "probability": 0.1315 + }, + { + "start": 16154.66, + "end": 16157.96, + "probability": 0.9775 + }, + { + "start": 16160.18, + "end": 16164.98, + "probability": 0.5894 + }, + { + "start": 16164.98, + "end": 16166.76, + "probability": 0.114 + }, + { + "start": 16166.76, + "end": 16168.7, + "probability": 0.1532 + }, + { + "start": 16169.02, + "end": 16169.68, + "probability": 0.2845 + }, + { + "start": 16170.26, + "end": 16171.04, + "probability": 0.3289 + }, + { + "start": 16171.04, + "end": 16171.04, + "probability": 0.33 + }, + { + "start": 16171.04, + "end": 16171.56, + "probability": 0.0966 + }, + { + "start": 16171.62, + "end": 16173.62, + "probability": 0.0518 + }, + { + "start": 16175.9, + "end": 16179.8, + "probability": 0.3572 + }, + { + "start": 16181.08, + "end": 16182.4, + "probability": 0.0335 + }, + { + "start": 16184.66, + "end": 16186.66, + "probability": 0.0787 + }, + { + "start": 16188.8, + "end": 16189.92, + "probability": 0.0307 + }, + { + "start": 16189.94, + "end": 16191.84, + "probability": 0.0927 + }, + { + "start": 16191.84, + "end": 16194.24, + "probability": 0.0547 + }, + { + "start": 16195.38, + "end": 16199.12, + "probability": 0.1175 + }, + { + "start": 16201.04, + "end": 16206.08, + "probability": 0.0662 + }, + { + "start": 16208.92, + "end": 16209.38, + "probability": 0.2837 + }, + { + "start": 16210.04, + "end": 16210.9, + "probability": 0.5723 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16245.0, + "end": 16245.0, + "probability": 0.0 + }, + { + "start": 16247.44, + "end": 16250.82, + "probability": 0.9012 + }, + { + "start": 16250.92, + "end": 16253.16, + "probability": 0.9353 + }, + { + "start": 16253.34, + "end": 16255.08, + "probability": 0.8762 + }, + { + "start": 16255.16, + "end": 16255.88, + "probability": 0.6598 + }, + { + "start": 16256.08, + "end": 16257.44, + "probability": 0.8507 + }, + { + "start": 16258.06, + "end": 16259.68, + "probability": 0.8524 + }, + { + "start": 16259.8, + "end": 16264.78, + "probability": 0.9888 + }, + { + "start": 16265.0, + "end": 16266.1, + "probability": 0.9585 + }, + { + "start": 16266.66, + "end": 16266.68, + "probability": 0.0679 + }, + { + "start": 16266.68, + "end": 16268.62, + "probability": 0.954 + }, + { + "start": 16269.42, + "end": 16269.88, + "probability": 0.8916 + }, + { + "start": 16271.8, + "end": 16272.54, + "probability": 0.8493 + }, + { + "start": 16272.88, + "end": 16280.54, + "probability": 0.9675 + }, + { + "start": 16280.74, + "end": 16283.36, + "probability": 0.9538 + }, + { + "start": 16284.56, + "end": 16285.94, + "probability": 0.2876 + }, + { + "start": 16286.82, + "end": 16290.34, + "probability": 0.9704 + }, + { + "start": 16290.5, + "end": 16291.74, + "probability": 0.8219 + }, + { + "start": 16291.9, + "end": 16299.38, + "probability": 0.9758 + }, + { + "start": 16299.64, + "end": 16300.18, + "probability": 0.7643 + }, + { + "start": 16301.22, + "end": 16306.62, + "probability": 0.901 + }, + { + "start": 16306.86, + "end": 16308.67, + "probability": 0.7036 + }, + { + "start": 16309.14, + "end": 16316.76, + "probability": 0.9969 + }, + { + "start": 16318.06, + "end": 16321.04, + "probability": 0.8204 + }, + { + "start": 16321.52, + "end": 16325.04, + "probability": 0.972 + }, + { + "start": 16325.56, + "end": 16328.9, + "probability": 0.8556 + }, + { + "start": 16329.46, + "end": 16332.12, + "probability": 0.8901 + }, + { + "start": 16333.0, + "end": 16334.3, + "probability": 0.9471 + }, + { + "start": 16334.38, + "end": 16335.14, + "probability": 0.9706 + }, + { + "start": 16335.34, + "end": 16338.9, + "probability": 0.8506 + }, + { + "start": 16339.48, + "end": 16345.08, + "probability": 0.9742 + }, + { + "start": 16345.14, + "end": 16348.42, + "probability": 0.9123 + }, + { + "start": 16349.06, + "end": 16349.74, + "probability": 0.7062 + }, + { + "start": 16350.2, + "end": 16355.56, + "probability": 0.9946 + }, + { + "start": 16356.1, + "end": 16357.96, + "probability": 0.9963 + }, + { + "start": 16358.54, + "end": 16358.9, + "probability": 0.735 + }, + { + "start": 16359.0, + "end": 16359.52, + "probability": 0.738 + }, + { + "start": 16359.52, + "end": 16361.8, + "probability": 0.9639 + }, + { + "start": 16361.9, + "end": 16363.36, + "probability": 0.6882 + }, + { + "start": 16363.48, + "end": 16368.12, + "probability": 0.9967 + }, + { + "start": 16368.16, + "end": 16372.22, + "probability": 0.9953 + }, + { + "start": 16372.32, + "end": 16373.44, + "probability": 0.9137 + }, + { + "start": 16373.82, + "end": 16376.56, + "probability": 0.9709 + }, + { + "start": 16376.56, + "end": 16380.6, + "probability": 0.9942 + }, + { + "start": 16380.64, + "end": 16383.36, + "probability": 0.6668 + }, + { + "start": 16383.36, + "end": 16383.5, + "probability": 0.2358 + }, + { + "start": 16383.6, + "end": 16383.66, + "probability": 0.3093 + }, + { + "start": 16383.74, + "end": 16384.8, + "probability": 0.7155 + }, + { + "start": 16385.06, + "end": 16385.28, + "probability": 0.8168 + }, + { + "start": 16385.44, + "end": 16387.48, + "probability": 0.8318 + }, + { + "start": 16387.64, + "end": 16388.62, + "probability": 0.7449 + }, + { + "start": 16388.8, + "end": 16390.78, + "probability": 0.906 + }, + { + "start": 16391.2, + "end": 16397.28, + "probability": 0.9484 + }, + { + "start": 16397.74, + "end": 16402.94, + "probability": 0.9932 + }, + { + "start": 16402.94, + "end": 16407.67, + "probability": 0.9941 + }, + { + "start": 16407.96, + "end": 16411.26, + "probability": 0.9873 + }, + { + "start": 16411.98, + "end": 16413.3, + "probability": 0.8672 + }, + { + "start": 16413.88, + "end": 16414.92, + "probability": 0.9814 + }, + { + "start": 16415.28, + "end": 16416.02, + "probability": 0.8364 + }, + { + "start": 16416.18, + "end": 16416.6, + "probability": 0.9014 + }, + { + "start": 16416.78, + "end": 16424.34, + "probability": 0.9769 + }, + { + "start": 16424.42, + "end": 16425.0, + "probability": 0.9234 + }, + { + "start": 16425.54, + "end": 16429.58, + "probability": 0.784 + }, + { + "start": 16429.7, + "end": 16429.98, + "probability": 0.7487 + }, + { + "start": 16430.06, + "end": 16430.28, + "probability": 0.7498 + }, + { + "start": 16430.4, + "end": 16432.92, + "probability": 0.9783 + }, + { + "start": 16433.0, + "end": 16435.84, + "probability": 0.9742 + }, + { + "start": 16435.84, + "end": 16437.32, + "probability": 0.6307 + }, + { + "start": 16437.34, + "end": 16437.78, + "probability": 0.1244 + }, + { + "start": 16438.5, + "end": 16440.22, + "probability": 0.589 + }, + { + "start": 16440.64, + "end": 16441.76, + "probability": 0.9901 + }, + { + "start": 16442.38, + "end": 16445.66, + "probability": 0.9944 + }, + { + "start": 16446.18, + "end": 16446.34, + "probability": 0.2562 + }, + { + "start": 16446.54, + "end": 16447.44, + "probability": 0.9655 + }, + { + "start": 16447.68, + "end": 16451.02, + "probability": 0.9633 + }, + { + "start": 16452.58, + "end": 16454.34, + "probability": 0.6979 + }, + { + "start": 16454.42, + "end": 16456.98, + "probability": 0.9272 + }, + { + "start": 16457.9, + "end": 16458.72, + "probability": 0.8707 + }, + { + "start": 16458.88, + "end": 16459.3, + "probability": 0.2755 + }, + { + "start": 16459.34, + "end": 16461.86, + "probability": 0.5449 + }, + { + "start": 16462.18, + "end": 16467.58, + "probability": 0.965 + }, + { + "start": 16467.58, + "end": 16472.84, + "probability": 0.8922 + }, + { + "start": 16473.32, + "end": 16477.16, + "probability": 0.9772 + }, + { + "start": 16477.58, + "end": 16478.26, + "probability": 0.8823 + }, + { + "start": 16478.26, + "end": 16478.7, + "probability": 0.5863 + }, + { + "start": 16478.74, + "end": 16481.9, + "probability": 0.9554 + }, + { + "start": 16482.3, + "end": 16484.58, + "probability": 0.8438 + }, + { + "start": 16485.04, + "end": 16487.06, + "probability": 0.9321 + }, + { + "start": 16487.1, + "end": 16490.74, + "probability": 0.9944 + }, + { + "start": 16491.26, + "end": 16492.26, + "probability": 0.9895 + }, + { + "start": 16492.7, + "end": 16493.32, + "probability": 0.9105 + }, + { + "start": 16493.52, + "end": 16496.09, + "probability": 0.9893 + }, + { + "start": 16496.4, + "end": 16500.42, + "probability": 0.9133 + }, + { + "start": 16501.16, + "end": 16501.66, + "probability": 0.0468 + }, + { + "start": 16501.66, + "end": 16501.78, + "probability": 0.5895 + }, + { + "start": 16501.78, + "end": 16502.1, + "probability": 0.8004 + }, + { + "start": 16502.18, + "end": 16502.58, + "probability": 0.8901 + }, + { + "start": 16502.7, + "end": 16504.96, + "probability": 0.9893 + }, + { + "start": 16505.06, + "end": 16505.48, + "probability": 0.8062 + }, + { + "start": 16506.1, + "end": 16509.08, + "probability": 0.9385 + }, + { + "start": 16509.32, + "end": 16512.8, + "probability": 0.9652 + }, + { + "start": 16513.32, + "end": 16515.7, + "probability": 0.9923 + }, + { + "start": 16516.08, + "end": 16516.76, + "probability": 0.7824 + }, + { + "start": 16516.92, + "end": 16518.0, + "probability": 0.9558 + }, + { + "start": 16519.64, + "end": 16520.94, + "probability": 0.4436 + }, + { + "start": 16521.6, + "end": 16522.52, + "probability": 0.981 + }, + { + "start": 16522.7, + "end": 16525.38, + "probability": 0.688 + }, + { + "start": 16525.48, + "end": 16525.88, + "probability": 0.5427 + }, + { + "start": 16525.92, + "end": 16527.52, + "probability": 0.9889 + }, + { + "start": 16528.08, + "end": 16529.24, + "probability": 0.7004 + }, + { + "start": 16529.44, + "end": 16530.24, + "probability": 0.8862 + }, + { + "start": 16530.3, + "end": 16531.69, + "probability": 0.8669 + }, + { + "start": 16531.92, + "end": 16532.3, + "probability": 0.0768 + }, + { + "start": 16532.3, + "end": 16532.84, + "probability": 0.0811 + }, + { + "start": 16533.08, + "end": 16535.06, + "probability": 0.8232 + }, + { + "start": 16535.86, + "end": 16536.52, + "probability": 0.9668 + }, + { + "start": 16536.64, + "end": 16536.9, + "probability": 0.3953 + }, + { + "start": 16536.96, + "end": 16537.52, + "probability": 0.9694 + }, + { + "start": 16537.74, + "end": 16538.59, + "probability": 0.9878 + }, + { + "start": 16539.4, + "end": 16539.68, + "probability": 0.9265 + }, + { + "start": 16540.1, + "end": 16542.04, + "probability": 0.9443 + }, + { + "start": 16542.16, + "end": 16544.06, + "probability": 0.9642 + }, + { + "start": 16544.9, + "end": 16547.76, + "probability": 0.9876 + }, + { + "start": 16547.96, + "end": 16550.7, + "probability": 0.9788 + }, + { + "start": 16551.18, + "end": 16553.16, + "probability": 0.9126 + }, + { + "start": 16553.62, + "end": 16555.62, + "probability": 0.9944 + }, + { + "start": 16555.9, + "end": 16559.54, + "probability": 0.999 + }, + { + "start": 16559.54, + "end": 16563.48, + "probability": 0.8228 + }, + { + "start": 16563.84, + "end": 16564.96, + "probability": 0.8796 + }, + { + "start": 16565.08, + "end": 16566.64, + "probability": 0.9958 + }, + { + "start": 16567.14, + "end": 16570.32, + "probability": 0.9924 + }, + { + "start": 16571.18, + "end": 16571.78, + "probability": 0.2653 + }, + { + "start": 16572.44, + "end": 16574.9, + "probability": 0.9575 + }, + { + "start": 16575.28, + "end": 16575.8, + "probability": 0.8865 + }, + { + "start": 16576.18, + "end": 16580.68, + "probability": 0.9761 + }, + { + "start": 16580.9, + "end": 16581.12, + "probability": 0.7319 + }, + { + "start": 16581.18, + "end": 16581.78, + "probability": 0.6797 + }, + { + "start": 16582.06, + "end": 16586.96, + "probability": 0.9746 + }, + { + "start": 16587.6, + "end": 16596.3, + "probability": 0.9788 + }, + { + "start": 16596.38, + "end": 16597.14, + "probability": 0.7044 + }, + { + "start": 16597.46, + "end": 16598.18, + "probability": 0.7513 + }, + { + "start": 16598.66, + "end": 16601.62, + "probability": 0.9483 + }, + { + "start": 16601.8, + "end": 16603.2, + "probability": 0.9776 + }, + { + "start": 16603.28, + "end": 16604.18, + "probability": 0.9835 + }, + { + "start": 16606.55, + "end": 16606.88, + "probability": 0.1899 + }, + { + "start": 16606.88, + "end": 16609.8, + "probability": 0.6739 + }, + { + "start": 16609.8, + "end": 16611.32, + "probability": 0.9985 + }, + { + "start": 16612.2, + "end": 16612.88, + "probability": 0.356 + }, + { + "start": 16612.96, + "end": 16614.08, + "probability": 0.9448 + }, + { + "start": 16615.08, + "end": 16615.42, + "probability": 0.6895 + }, + { + "start": 16615.44, + "end": 16617.28, + "probability": 0.906 + }, + { + "start": 16617.36, + "end": 16621.88, + "probability": 0.9895 + }, + { + "start": 16622.44, + "end": 16626.98, + "probability": 0.9982 + }, + { + "start": 16627.36, + "end": 16630.64, + "probability": 0.9563 + }, + { + "start": 16630.98, + "end": 16631.72, + "probability": 0.9785 + }, + { + "start": 16632.32, + "end": 16632.84, + "probability": 0.6867 + }, + { + "start": 16632.88, + "end": 16633.5, + "probability": 0.7285 + }, + { + "start": 16636.92, + "end": 16639.6, + "probability": 0.8021 + }, + { + "start": 16640.32, + "end": 16641.7, + "probability": 0.7038 + }, + { + "start": 16641.78, + "end": 16651.4, + "probability": 0.4524 + }, + { + "start": 16651.4, + "end": 16652.18, + "probability": 0.0134 + }, + { + "start": 16653.94, + "end": 16654.9, + "probability": 0.0691 + }, + { + "start": 16658.58, + "end": 16660.02, + "probability": 0.0643 + }, + { + "start": 16660.82, + "end": 16663.18, + "probability": 0.158 + }, + { + "start": 16664.58, + "end": 16665.54, + "probability": 0.099 + }, + { + "start": 16665.6, + "end": 16665.96, + "probability": 0.15 + }, + { + "start": 16666.3, + "end": 16667.72, + "probability": 0.1735 + }, + { + "start": 16670.95, + "end": 16671.86, + "probability": 0.2979 + }, + { + "start": 16671.86, + "end": 16672.64, + "probability": 0.0707 + }, + { + "start": 16673.34, + "end": 16676.4, + "probability": 0.2431 + }, + { + "start": 16676.84, + "end": 16679.46, + "probability": 0.0175 + }, + { + "start": 16679.62, + "end": 16683.6, + "probability": 0.2405 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16745.0, + "end": 16745.0, + "probability": 0.0 + }, + { + "start": 16751.22, + "end": 16751.24, + "probability": 0.0078 + }, + { + "start": 16761.76, + "end": 16764.56, + "probability": 0.6565 + }, + { + "start": 16768.4, + "end": 16770.46, + "probability": 0.6741 + }, + { + "start": 16775.04, + "end": 16776.28, + "probability": 0.31 + }, + { + "start": 16778.86, + "end": 16783.54, + "probability": 0.594 + }, + { + "start": 16785.64, + "end": 16793.4, + "probability": 0.9717 + }, + { + "start": 16795.56, + "end": 16797.5, + "probability": 0.9937 + }, + { + "start": 16799.28, + "end": 16800.3, + "probability": 0.9834 + }, + { + "start": 16801.04, + "end": 16802.1, + "probability": 0.8665 + }, + { + "start": 16803.62, + "end": 16807.74, + "probability": 0.7753 + }, + { + "start": 16807.92, + "end": 16809.76, + "probability": 0.9596 + }, + { + "start": 16810.02, + "end": 16811.3, + "probability": 0.7135 + }, + { + "start": 16812.68, + "end": 16817.04, + "probability": 0.9162 + }, + { + "start": 16819.1, + "end": 16823.34, + "probability": 0.9551 + }, + { + "start": 16823.34, + "end": 16832.9, + "probability": 0.9301 + }, + { + "start": 16834.7, + "end": 16837.18, + "probability": 0.9984 + }, + { + "start": 16839.12, + "end": 16840.86, + "probability": 0.8257 + }, + { + "start": 16842.46, + "end": 16843.7, + "probability": 0.9832 + }, + { + "start": 16846.06, + "end": 16849.6, + "probability": 0.7766 + }, + { + "start": 16853.2, + "end": 16859.44, + "probability": 0.9866 + }, + { + "start": 16863.46, + "end": 16867.32, + "probability": 0.9762 + }, + { + "start": 16868.26, + "end": 16870.9, + "probability": 0.9262 + }, + { + "start": 16873.34, + "end": 16874.4, + "probability": 0.9758 + }, + { + "start": 16875.48, + "end": 16876.5, + "probability": 0.8823 + }, + { + "start": 16880.38, + "end": 16882.88, + "probability": 0.958 + }, + { + "start": 16884.76, + "end": 16885.68, + "probability": 0.9938 + }, + { + "start": 16888.46, + "end": 16889.86, + "probability": 0.9675 + }, + { + "start": 16891.32, + "end": 16892.06, + "probability": 0.2165 + }, + { + "start": 16892.74, + "end": 16895.8, + "probability": 0.8641 + }, + { + "start": 16897.12, + "end": 16900.96, + "probability": 0.981 + }, + { + "start": 16902.1, + "end": 16904.04, + "probability": 0.8272 + }, + { + "start": 16908.72, + "end": 16911.06, + "probability": 0.9458 + }, + { + "start": 16913.2, + "end": 16914.94, + "probability": 0.9739 + }, + { + "start": 16915.6, + "end": 16917.43, + "probability": 0.9697 + }, + { + "start": 16919.56, + "end": 16923.14, + "probability": 0.5403 + }, + { + "start": 16924.6, + "end": 16931.24, + "probability": 0.981 + }, + { + "start": 16931.9, + "end": 16933.16, + "probability": 0.9821 + }, + { + "start": 16933.94, + "end": 16935.92, + "probability": 0.939 + }, + { + "start": 16939.1, + "end": 16940.72, + "probability": 0.7841 + }, + { + "start": 16941.38, + "end": 16943.82, + "probability": 0.8687 + }, + { + "start": 16945.36, + "end": 16948.32, + "probability": 0.995 + }, + { + "start": 16949.2, + "end": 16949.81, + "probability": 0.9871 + }, + { + "start": 16952.34, + "end": 16954.1, + "probability": 0.9713 + }, + { + "start": 16955.32, + "end": 16957.3, + "probability": 0.7597 + }, + { + "start": 16958.38, + "end": 16960.64, + "probability": 0.837 + }, + { + "start": 16961.24, + "end": 16962.56, + "probability": 0.5243 + }, + { + "start": 16963.54, + "end": 16965.68, + "probability": 0.8973 + }, + { + "start": 16966.28, + "end": 16966.98, + "probability": 0.9785 + }, + { + "start": 16969.44, + "end": 16971.62, + "probability": 0.8488 + }, + { + "start": 16975.34, + "end": 16980.3, + "probability": 0.9436 + }, + { + "start": 16981.24, + "end": 16982.3, + "probability": 0.6406 + }, + { + "start": 16983.18, + "end": 16986.58, + "probability": 0.987 + }, + { + "start": 16987.94, + "end": 16991.42, + "probability": 0.9741 + }, + { + "start": 16992.38, + "end": 16996.0, + "probability": 0.9945 + }, + { + "start": 16998.44, + "end": 16999.74, + "probability": 0.4081 + }, + { + "start": 17006.9, + "end": 17008.42, + "probability": 0.5605 + }, + { + "start": 17009.5, + "end": 17011.32, + "probability": 0.7198 + }, + { + "start": 17012.02, + "end": 17014.79, + "probability": 0.9985 + }, + { + "start": 17016.92, + "end": 17020.08, + "probability": 0.9927 + }, + { + "start": 17020.08, + "end": 17024.24, + "probability": 0.9912 + }, + { + "start": 17025.62, + "end": 17028.25, + "probability": 0.9927 + }, + { + "start": 17032.82, + "end": 17034.06, + "probability": 0.5682 + }, + { + "start": 17035.34, + "end": 17036.68, + "probability": 0.8282 + }, + { + "start": 17037.6, + "end": 17041.7, + "probability": 0.9111 + }, + { + "start": 17042.68, + "end": 17045.52, + "probability": 0.9836 + }, + { + "start": 17047.88, + "end": 17048.4, + "probability": 0.6963 + }, + { + "start": 17049.54, + "end": 17050.46, + "probability": 0.7889 + }, + { + "start": 17051.2, + "end": 17053.0, + "probability": 0.928 + }, + { + "start": 17054.32, + "end": 17055.44, + "probability": 0.9963 + }, + { + "start": 17057.48, + "end": 17058.58, + "probability": 0.0536 + }, + { + "start": 17059.14, + "end": 17061.14, + "probability": 0.7892 + }, + { + "start": 17062.18, + "end": 17063.06, + "probability": 0.8125 + }, + { + "start": 17063.14, + "end": 17065.42, + "probability": 0.999 + }, + { + "start": 17066.56, + "end": 17066.94, + "probability": 0.5639 + }, + { + "start": 17069.94, + "end": 17072.12, + "probability": 0.9995 + }, + { + "start": 17072.2, + "end": 17073.14, + "probability": 0.768 + }, + { + "start": 17073.54, + "end": 17074.28, + "probability": 0.7168 + }, + { + "start": 17075.98, + "end": 17077.88, + "probability": 0.9975 + }, + { + "start": 17079.02, + "end": 17080.98, + "probability": 0.9995 + }, + { + "start": 17081.58, + "end": 17083.36, + "probability": 0.6505 + }, + { + "start": 17083.38, + "end": 17084.8, + "probability": 0.7584 + }, + { + "start": 17085.28, + "end": 17087.56, + "probability": 0.8247 + }, + { + "start": 17087.88, + "end": 17089.98, + "probability": 0.9453 + }, + { + "start": 17091.24, + "end": 17093.93, + "probability": 0.8045 + }, + { + "start": 17094.72, + "end": 17095.46, + "probability": 0.7585 + }, + { + "start": 17103.48, + "end": 17106.4, + "probability": 0.9285 + }, + { + "start": 17107.0, + "end": 17112.8, + "probability": 0.9897 + }, + { + "start": 17113.92, + "end": 17116.84, + "probability": 0.9924 + }, + { + "start": 17117.36, + "end": 17118.4, + "probability": 0.9245 + }, + { + "start": 17120.98, + "end": 17120.98, + "probability": 0.1887 + }, + { + "start": 17121.18, + "end": 17125.7, + "probability": 0.9766 + }, + { + "start": 17126.72, + "end": 17127.84, + "probability": 0.9419 + }, + { + "start": 17128.74, + "end": 17133.06, + "probability": 0.9558 + }, + { + "start": 17133.68, + "end": 17134.76, + "probability": 0.8776 + }, + { + "start": 17135.18, + "end": 17137.55, + "probability": 0.9415 + }, + { + "start": 17138.2, + "end": 17140.14, + "probability": 0.9051 + }, + { + "start": 17141.5, + "end": 17146.64, + "probability": 0.9822 + }, + { + "start": 17147.18, + "end": 17149.72, + "probability": 0.9917 + }, + { + "start": 17150.28, + "end": 17151.62, + "probability": 0.9628 + }, + { + "start": 17152.0, + "end": 17155.78, + "probability": 0.9792 + }, + { + "start": 17157.66, + "end": 17158.56, + "probability": 0.2969 + }, + { + "start": 17159.74, + "end": 17161.08, + "probability": 0.9958 + }, + { + "start": 17162.38, + "end": 17162.86, + "probability": 0.7786 + }, + { + "start": 17164.54, + "end": 17165.84, + "probability": 0.6053 + }, + { + "start": 17168.5, + "end": 17170.22, + "probability": 0.8896 + }, + { + "start": 17170.82, + "end": 17172.34, + "probability": 0.9861 + }, + { + "start": 17173.96, + "end": 17177.3, + "probability": 0.9666 + }, + { + "start": 17178.2, + "end": 17182.42, + "probability": 0.9936 + }, + { + "start": 17182.94, + "end": 17187.18, + "probability": 0.7976 + }, + { + "start": 17190.04, + "end": 17191.44, + "probability": 0.9991 + }, + { + "start": 17192.38, + "end": 17196.74, + "probability": 0.9985 + }, + { + "start": 17196.74, + "end": 17201.36, + "probability": 0.9963 + }, + { + "start": 17202.12, + "end": 17205.58, + "probability": 0.9939 + }, + { + "start": 17206.34, + "end": 17206.9, + "probability": 0.8187 + }, + { + "start": 17207.68, + "end": 17211.84, + "probability": 0.6908 + }, + { + "start": 17215.12, + "end": 17217.36, + "probability": 0.7406 + }, + { + "start": 17218.44, + "end": 17224.56, + "probability": 0.9794 + }, + { + "start": 17225.92, + "end": 17226.98, + "probability": 0.9976 + }, + { + "start": 17228.18, + "end": 17232.18, + "probability": 0.9996 + }, + { + "start": 17232.24, + "end": 17234.58, + "probability": 0.9819 + }, + { + "start": 17235.38, + "end": 17238.44, + "probability": 0.9861 + }, + { + "start": 17240.6, + "end": 17241.66, + "probability": 0.8691 + }, + { + "start": 17242.9, + "end": 17244.3, + "probability": 0.9988 + }, + { + "start": 17245.26, + "end": 17246.98, + "probability": 0.6067 + }, + { + "start": 17249.8, + "end": 17252.66, + "probability": 0.864 + }, + { + "start": 17252.74, + "end": 17253.56, + "probability": 0.9801 + }, + { + "start": 17254.58, + "end": 17256.24, + "probability": 0.8366 + }, + { + "start": 17256.96, + "end": 17259.08, + "probability": 0.9434 + }, + { + "start": 17260.06, + "end": 17266.64, + "probability": 0.9541 + }, + { + "start": 17266.64, + "end": 17269.78, + "probability": 0.9902 + }, + { + "start": 17271.06, + "end": 17274.42, + "probability": 0.9888 + }, + { + "start": 17275.56, + "end": 17276.66, + "probability": 0.9044 + }, + { + "start": 17277.84, + "end": 17278.9, + "probability": 0.9321 + }, + { + "start": 17280.48, + "end": 17281.45, + "probability": 0.5323 + }, + { + "start": 17282.26, + "end": 17285.42, + "probability": 0.7062 + }, + { + "start": 17285.96, + "end": 17286.41, + "probability": 0.4787 + }, + { + "start": 17287.76, + "end": 17289.34, + "probability": 0.8999 + }, + { + "start": 17290.26, + "end": 17291.94, + "probability": 0.985 + }, + { + "start": 17292.96, + "end": 17295.56, + "probability": 0.9789 + }, + { + "start": 17296.46, + "end": 17297.04, + "probability": 0.8165 + }, + { + "start": 17299.02, + "end": 17301.96, + "probability": 0.9905 + }, + { + "start": 17302.62, + "end": 17304.92, + "probability": 0.9343 + }, + { + "start": 17307.14, + "end": 17307.82, + "probability": 0.7755 + }, + { + "start": 17308.8, + "end": 17309.84, + "probability": 0.964 + }, + { + "start": 17312.18, + "end": 17314.96, + "probability": 0.9782 + }, + { + "start": 17315.66, + "end": 17320.08, + "probability": 0.9631 + }, + { + "start": 17320.12, + "end": 17320.68, + "probability": 0.7791 + }, + { + "start": 17320.98, + "end": 17321.54, + "probability": 0.0251 + }, + { + "start": 17321.92, + "end": 17322.34, + "probability": 0.0029 + }, + { + "start": 17323.0, + "end": 17323.26, + "probability": 0.2434 + }, + { + "start": 17323.26, + "end": 17323.26, + "probability": 0.042 + }, + { + "start": 17323.28, + "end": 17323.28, + "probability": 0.5078 + }, + { + "start": 17323.28, + "end": 17323.32, + "probability": 0.3472 + }, + { + "start": 17323.32, + "end": 17323.8, + "probability": 0.494 + }, + { + "start": 17323.8, + "end": 17326.78, + "probability": 0.7504 + }, + { + "start": 17326.88, + "end": 17327.41, + "probability": 0.7184 + }, + { + "start": 17332.9, + "end": 17336.1, + "probability": 0.9834 + }, + { + "start": 17341.27, + "end": 17344.28, + "probability": 0.7279 + }, + { + "start": 17344.98, + "end": 17346.02, + "probability": 0.8274 + }, + { + "start": 17348.54, + "end": 17350.22, + "probability": 0.665 + }, + { + "start": 17351.02, + "end": 17352.74, + "probability": 0.8623 + }, + { + "start": 17353.86, + "end": 17354.76, + "probability": 0.3394 + }, + { + "start": 17356.46, + "end": 17357.26, + "probability": 0.2835 + }, + { + "start": 17357.84, + "end": 17360.5, + "probability": 0.6605 + }, + { + "start": 17361.32, + "end": 17362.39, + "probability": 0.981 + }, + { + "start": 17363.28, + "end": 17365.2, + "probability": 0.7937 + }, + { + "start": 17365.98, + "end": 17366.94, + "probability": 0.1744 + }, + { + "start": 17370.94, + "end": 17374.87, + "probability": 0.0483 + }, + { + "start": 17375.74, + "end": 17378.46, + "probability": 0.0319 + }, + { + "start": 17378.46, + "end": 17379.14, + "probability": 0.0434 + }, + { + "start": 17379.14, + "end": 17381.52, + "probability": 0.0148 + }, + { + "start": 17382.56, + "end": 17389.9, + "probability": 0.0985 + }, + { + "start": 17390.72, + "end": 17390.92, + "probability": 0.1203 + }, + { + "start": 17393.08, + "end": 17393.96, + "probability": 0.0403 + }, + { + "start": 17393.96, + "end": 17394.64, + "probability": 0.0091 + }, + { + "start": 17395.46, + "end": 17398.02, + "probability": 0.1058 + }, + { + "start": 17399.02, + "end": 17399.02, + "probability": 0.3091 + }, + { + "start": 17411.5, + "end": 17411.68, + "probability": 0.0563 + }, + { + "start": 17422.26, + "end": 17422.74, + "probability": 0.007 + }, + { + "start": 17422.74, + "end": 17423.0, + "probability": 0.1478 + }, + { + "start": 17423.0, + "end": 17423.0, + "probability": 0.0776 + }, + { + "start": 17423.0, + "end": 17423.0, + "probability": 0.0 + }, + { + "start": 17423.0, + "end": 17423.0, + "probability": 0.0 + }, + { + "start": 17423.0, + "end": 17423.0, + "probability": 0.0 + }, + { + "start": 17423.0, + "end": 17423.0, + "probability": 0.0 + }, + { + "start": 17423.0, + "end": 17423.0, + "probability": 0.0 + }, + { + "start": 17423.0, + "end": 17423.0, + "probability": 0.0 + }, + { + "start": 17423.0, + "end": 17423.0, + "probability": 0.0 + }, + { + "start": 17424.79, + "end": 17426.7, + "probability": 0.6476 + }, + { + "start": 17429.8, + "end": 17431.1, + "probability": 0.8044 + }, + { + "start": 17432.74, + "end": 17435.78, + "probability": 0.9966 + }, + { + "start": 17436.04, + "end": 17436.1, + "probability": 0.4426 + }, + { + "start": 17437.0, + "end": 17439.82, + "probability": 0.8917 + }, + { + "start": 17440.66, + "end": 17442.44, + "probability": 0.9891 + }, + { + "start": 17443.28, + "end": 17444.4, + "probability": 0.9976 + }, + { + "start": 17445.48, + "end": 17447.58, + "probability": 0.6127 + }, + { + "start": 17448.62, + "end": 17449.8, + "probability": 0.6109 + }, + { + "start": 17450.24, + "end": 17451.1, + "probability": 0.7536 + }, + { + "start": 17452.56, + "end": 17454.08, + "probability": 0.9709 + }, + { + "start": 17456.22, + "end": 17457.42, + "probability": 0.8354 + }, + { + "start": 17458.66, + "end": 17460.08, + "probability": 0.9611 + }, + { + "start": 17460.78, + "end": 17461.46, + "probability": 0.9111 + }, + { + "start": 17462.08, + "end": 17463.06, + "probability": 0.7886 + }, + { + "start": 17463.3, + "end": 17464.64, + "probability": 0.9175 + }, + { + "start": 17465.9, + "end": 17469.94, + "probability": 0.9614 + }, + { + "start": 17471.0, + "end": 17476.28, + "probability": 0.9802 + }, + { + "start": 17476.34, + "end": 17478.72, + "probability": 0.9936 + }, + { + "start": 17479.8, + "end": 17482.37, + "probability": 0.9324 + }, + { + "start": 17485.13, + "end": 17485.22, + "probability": 0.0908 + }, + { + "start": 17485.22, + "end": 17485.44, + "probability": 0.4842 + }, + { + "start": 17486.62, + "end": 17487.36, + "probability": 0.9151 + }, + { + "start": 17488.08, + "end": 17491.64, + "probability": 0.9937 + }, + { + "start": 17491.64, + "end": 17493.91, + "probability": 0.8902 + }, + { + "start": 17495.4, + "end": 17497.8, + "probability": 0.8528 + }, + { + "start": 17499.0, + "end": 17502.66, + "probability": 0.9937 + }, + { + "start": 17502.8, + "end": 17504.32, + "probability": 0.9546 + }, + { + "start": 17504.38, + "end": 17507.4, + "probability": 0.9888 + }, + { + "start": 17507.54, + "end": 17507.9, + "probability": 0.9686 + }, + { + "start": 17508.04, + "end": 17511.62, + "probability": 0.7215 + }, + { + "start": 17512.1, + "end": 17513.24, + "probability": 0.9053 + }, + { + "start": 17513.68, + "end": 17515.32, + "probability": 0.8917 + }, + { + "start": 17516.04, + "end": 17518.34, + "probability": 0.931 + }, + { + "start": 17519.52, + "end": 17522.42, + "probability": 0.8848 + }, + { + "start": 17522.6, + "end": 17524.28, + "probability": 0.9941 + }, + { + "start": 17524.84, + "end": 17526.16, + "probability": 0.5072 + }, + { + "start": 17526.54, + "end": 17527.34, + "probability": 0.8503 + }, + { + "start": 17527.36, + "end": 17528.04, + "probability": 0.9178 + }, + { + "start": 17528.96, + "end": 17532.56, + "probability": 0.9166 + }, + { + "start": 17532.66, + "end": 17535.12, + "probability": 0.6759 + }, + { + "start": 17536.22, + "end": 17538.14, + "probability": 0.785 + }, + { + "start": 17539.94, + "end": 17543.0, + "probability": 0.9679 + }, + { + "start": 17543.28, + "end": 17543.7, + "probability": 0.8716 + }, + { + "start": 17544.12, + "end": 17546.12, + "probability": 0.8052 + }, + { + "start": 17546.66, + "end": 17547.96, + "probability": 0.9802 + }, + { + "start": 17548.02, + "end": 17549.46, + "probability": 0.9584 + }, + { + "start": 17549.78, + "end": 17551.02, + "probability": 0.8713 + }, + { + "start": 17552.62, + "end": 17555.38, + "probability": 0.9032 + }, + { + "start": 17555.78, + "end": 17558.64, + "probability": 0.9521 + }, + { + "start": 17559.2, + "end": 17560.42, + "probability": 0.8715 + }, + { + "start": 17560.48, + "end": 17561.42, + "probability": 0.8303 + }, + { + "start": 17561.98, + "end": 17566.68, + "probability": 0.7969 + }, + { + "start": 17567.22, + "end": 17567.8, + "probability": 0.8602 + }, + { + "start": 17568.08, + "end": 17568.28, + "probability": 0.7268 + }, + { + "start": 17568.42, + "end": 17570.26, + "probability": 0.8305 + }, + { + "start": 17571.36, + "end": 17572.02, + "probability": 0.6936 + }, + { + "start": 17572.2, + "end": 17574.68, + "probability": 0.8794 + }, + { + "start": 17574.7, + "end": 17575.02, + "probability": 0.7928 + }, + { + "start": 17575.98, + "end": 17576.82, + "probability": 0.5132 + }, + { + "start": 17577.0, + "end": 17578.86, + "probability": 0.9712 + }, + { + "start": 17578.92, + "end": 17579.56, + "probability": 0.9781 + }, + { + "start": 17579.72, + "end": 17580.58, + "probability": 0.7398 + }, + { + "start": 17581.02, + "end": 17583.5, + "probability": 0.8589 + }, + { + "start": 17583.6, + "end": 17585.08, + "probability": 0.9209 + }, + { + "start": 17585.22, + "end": 17585.5, + "probability": 0.5878 + }, + { + "start": 17585.56, + "end": 17587.68, + "probability": 0.9684 + }, + { + "start": 17588.26, + "end": 17588.92, + "probability": 0.9966 + }, + { + "start": 17589.98, + "end": 17591.96, + "probability": 0.8173 + }, + { + "start": 17592.72, + "end": 17597.0, + "probability": 0.7281 + }, + { + "start": 17597.34, + "end": 17598.86, + "probability": 0.8269 + }, + { + "start": 17598.86, + "end": 17601.44, + "probability": 0.995 + }, + { + "start": 17602.7, + "end": 17607.46, + "probability": 0.9929 + }, + { + "start": 17608.8, + "end": 17609.32, + "probability": 0.9626 + }, + { + "start": 17610.28, + "end": 17610.72, + "probability": 0.5099 + }, + { + "start": 17610.92, + "end": 17616.0, + "probability": 0.929 + }, + { + "start": 17616.0, + "end": 17618.58, + "probability": 0.8759 + }, + { + "start": 17619.48, + "end": 17620.36, + "probability": 0.9175 + }, + { + "start": 17623.72, + "end": 17627.98, + "probability": 0.9957 + }, + { + "start": 17629.0, + "end": 17632.24, + "probability": 0.9241 + }, + { + "start": 17632.36, + "end": 17633.4, + "probability": 0.6534 + }, + { + "start": 17635.24, + "end": 17636.26, + "probability": 0.5125 + }, + { + "start": 17636.84, + "end": 17636.86, + "probability": 0.0767 + }, + { + "start": 17636.86, + "end": 17637.2, + "probability": 0.7182 + }, + { + "start": 17637.26, + "end": 17639.44, + "probability": 0.892 + }, + { + "start": 17640.4, + "end": 17643.12, + "probability": 0.8975 + }, + { + "start": 17643.54, + "end": 17644.32, + "probability": 0.7195 + }, + { + "start": 17644.7, + "end": 17646.92, + "probability": 0.9686 + }, + { + "start": 17647.4, + "end": 17648.26, + "probability": 0.7035 + }, + { + "start": 17648.8, + "end": 17650.22, + "probability": 0.9622 + }, + { + "start": 17651.1, + "end": 17653.54, + "probability": 0.9736 + }, + { + "start": 17654.04, + "end": 17658.58, + "probability": 0.8765 + }, + { + "start": 17658.62, + "end": 17661.02, + "probability": 0.9309 + }, + { + "start": 17661.88, + "end": 17664.12, + "probability": 0.9885 + }, + { + "start": 17664.46, + "end": 17667.42, + "probability": 0.9893 + }, + { + "start": 17668.8, + "end": 17668.8, + "probability": 0.8418 + }, + { + "start": 17670.16, + "end": 17671.22, + "probability": 0.988 + }, + { + "start": 17672.32, + "end": 17675.9, + "probability": 0.9946 + }, + { + "start": 17675.9, + "end": 17678.88, + "probability": 0.8716 + }, + { + "start": 17679.06, + "end": 17681.06, + "probability": 0.873 + }, + { + "start": 17681.14, + "end": 17681.77, + "probability": 0.8438 + }, + { + "start": 17681.98, + "end": 17683.62, + "probability": 0.6472 + }, + { + "start": 17683.98, + "end": 17687.7, + "probability": 0.9854 + }, + { + "start": 17689.27, + "end": 17691.72, + "probability": 0.9798 + }, + { + "start": 17692.36, + "end": 17692.88, + "probability": 0.5366 + }, + { + "start": 17693.66, + "end": 17695.6, + "probability": 0.7094 + }, + { + "start": 17696.12, + "end": 17697.62, + "probability": 0.5138 + }, + { + "start": 17697.7, + "end": 17698.68, + "probability": 0.2775 + }, + { + "start": 17699.08, + "end": 17702.14, + "probability": 0.8682 + }, + { + "start": 17702.5, + "end": 17703.26, + "probability": 0.5756 + }, + { + "start": 17704.06, + "end": 17706.18, + "probability": 0.7743 + }, + { + "start": 17706.24, + "end": 17706.74, + "probability": 0.9033 + }, + { + "start": 17706.88, + "end": 17710.02, + "probability": 0.77 + }, + { + "start": 17710.82, + "end": 17713.48, + "probability": 0.8441 + }, + { + "start": 17714.14, + "end": 17714.32, + "probability": 0.4757 + }, + { + "start": 17714.4, + "end": 17715.24, + "probability": 0.9047 + }, + { + "start": 17715.36, + "end": 17716.38, + "probability": 0.9223 + }, + { + "start": 17718.28, + "end": 17720.4, + "probability": 0.8937 + }, + { + "start": 17720.4, + "end": 17722.86, + "probability": 0.6746 + }, + { + "start": 17723.04, + "end": 17723.62, + "probability": 0.5176 + }, + { + "start": 17723.64, + "end": 17723.88, + "probability": 0.7619 + }, + { + "start": 17724.06, + "end": 17725.52, + "probability": 0.8234 + }, + { + "start": 17726.34, + "end": 17730.3, + "probability": 0.8488 + }, + { + "start": 17730.42, + "end": 17731.46, + "probability": 0.7145 + }, + { + "start": 17732.18, + "end": 17732.76, + "probability": 0.6971 + }, + { + "start": 17732.92, + "end": 17737.36, + "probability": 0.9619 + }, + { + "start": 17737.4, + "end": 17737.84, + "probability": 0.8738 + }, + { + "start": 17737.86, + "end": 17738.84, + "probability": 0.9529 + }, + { + "start": 17739.12, + "end": 17740.88, + "probability": 0.8066 + }, + { + "start": 17741.34, + "end": 17741.56, + "probability": 0.4493 + }, + { + "start": 17741.7, + "end": 17742.56, + "probability": 0.6062 + }, + { + "start": 17743.4, + "end": 17744.98, + "probability": 0.7928 + }, + { + "start": 17745.0, + "end": 17746.08, + "probability": 0.9604 + }, + { + "start": 17746.56, + "end": 17747.22, + "probability": 0.8613 + }, + { + "start": 17747.34, + "end": 17747.34, + "probability": 0.0017 + }, + { + "start": 17747.36, + "end": 17748.28, + "probability": 0.8283 + }, + { + "start": 17749.1, + "end": 17749.64, + "probability": 0.2725 + }, + { + "start": 17749.76, + "end": 17751.32, + "probability": 0.7421 + }, + { + "start": 17752.08, + "end": 17754.54, + "probability": 0.9298 + }, + { + "start": 17754.97, + "end": 17756.78, + "probability": 0.9025 + }, + { + "start": 17756.92, + "end": 17760.34, + "probability": 0.8914 + }, + { + "start": 17760.5, + "end": 17760.92, + "probability": 0.6612 + }, + { + "start": 17761.36, + "end": 17763.3, + "probability": 0.5794 + }, + { + "start": 17763.44, + "end": 17764.86, + "probability": 0.704 + }, + { + "start": 17765.62, + "end": 17766.96, + "probability": 0.7651 + }, + { + "start": 17767.58, + "end": 17768.28, + "probability": 0.7356 + }, + { + "start": 17768.38, + "end": 17769.38, + "probability": 0.957 + }, + { + "start": 17769.62, + "end": 17771.34, + "probability": 0.9591 + }, + { + "start": 17772.44, + "end": 17774.18, + "probability": 0.8174 + }, + { + "start": 17775.18, + "end": 17777.28, + "probability": 0.4724 + }, + { + "start": 17777.36, + "end": 17778.62, + "probability": 0.7482 + }, + { + "start": 17778.78, + "end": 17779.56, + "probability": 0.8213 + }, + { + "start": 17779.7, + "end": 17781.98, + "probability": 0.789 + }, + { + "start": 17783.0, + "end": 17783.96, + "probability": 0.934 + }, + { + "start": 17784.52, + "end": 17788.02, + "probability": 0.947 + }, + { + "start": 17789.5, + "end": 17792.6, + "probability": 0.9429 + }, + { + "start": 17793.28, + "end": 17794.72, + "probability": 0.3457 + }, + { + "start": 17794.88, + "end": 17797.8, + "probability": 0.7675 + }, + { + "start": 17798.24, + "end": 17800.2, + "probability": 0.7308 + }, + { + "start": 17800.82, + "end": 17801.1, + "probability": 0.4309 + }, + { + "start": 17802.28, + "end": 17805.28, + "probability": 0.9975 + }, + { + "start": 17806.4, + "end": 17808.68, + "probability": 0.9753 + }, + { + "start": 17808.7, + "end": 17810.5, + "probability": 0.9497 + }, + { + "start": 17811.24, + "end": 17812.96, + "probability": 0.9852 + }, + { + "start": 17813.68, + "end": 17816.0, + "probability": 0.981 + }, + { + "start": 17816.38, + "end": 17817.54, + "probability": 0.933 + }, + { + "start": 17817.82, + "end": 17819.8, + "probability": 0.9842 + }, + { + "start": 17820.2, + "end": 17822.52, + "probability": 0.7431 + }, + { + "start": 17822.64, + "end": 17824.16, + "probability": 0.9623 + }, + { + "start": 17824.44, + "end": 17825.36, + "probability": 0.9813 + }, + { + "start": 17825.62, + "end": 17826.48, + "probability": 0.751 + }, + { + "start": 17827.2, + "end": 17830.22, + "probability": 0.8788 + }, + { + "start": 17830.32, + "end": 17835.24, + "probability": 0.9565 + }, + { + "start": 17835.92, + "end": 17838.28, + "probability": 0.5625 + }, + { + "start": 17838.3, + "end": 17838.42, + "probability": 0.5279 + }, + { + "start": 17838.54, + "end": 17841.54, + "probability": 0.7796 + }, + { + "start": 17843.26, + "end": 17844.18, + "probability": 0.9948 + }, + { + "start": 17844.82, + "end": 17845.82, + "probability": 0.907 + }, + { + "start": 17846.98, + "end": 17848.08, + "probability": 0.9827 + }, + { + "start": 17849.34, + "end": 17851.5, + "probability": 0.9976 + }, + { + "start": 17852.52, + "end": 17854.16, + "probability": 0.3292 + }, + { + "start": 17854.56, + "end": 17857.1, + "probability": 0.6142 + }, + { + "start": 17857.76, + "end": 17859.68, + "probability": 0.9835 + }, + { + "start": 17859.84, + "end": 17860.6, + "probability": 0.9551 + }, + { + "start": 17860.76, + "end": 17861.04, + "probability": 0.4546 + }, + { + "start": 17861.22, + "end": 17863.44, + "probability": 0.9167 + }, + { + "start": 17863.52, + "end": 17865.74, + "probability": 0.9914 + }, + { + "start": 17865.74, + "end": 17869.7, + "probability": 0.9925 + }, + { + "start": 17870.38, + "end": 17871.86, + "probability": 0.9424 + }, + { + "start": 17871.94, + "end": 17873.6, + "probability": 0.7995 + }, + { + "start": 17873.68, + "end": 17880.16, + "probability": 0.9871 + }, + { + "start": 17880.4, + "end": 17881.84, + "probability": 0.7061 + }, + { + "start": 17881.96, + "end": 17882.12, + "probability": 0.7567 + }, + { + "start": 17882.84, + "end": 17884.2, + "probability": 0.8938 + }, + { + "start": 17885.36, + "end": 17887.14, + "probability": 0.9374 + }, + { + "start": 17888.26, + "end": 17888.76, + "probability": 0.7484 + }, + { + "start": 17888.8, + "end": 17890.28, + "probability": 0.994 + }, + { + "start": 17891.32, + "end": 17892.4, + "probability": 0.791 + }, + { + "start": 17892.52, + "end": 17893.86, + "probability": 0.9054 + }, + { + "start": 17894.42, + "end": 17895.64, + "probability": 0.949 + }, + { + "start": 17897.76, + "end": 17898.56, + "probability": 0.7067 + }, + { + "start": 17899.5, + "end": 17902.26, + "probability": 0.8986 + }, + { + "start": 17902.62, + "end": 17903.1, + "probability": 0.686 + }, + { + "start": 17903.16, + "end": 17903.82, + "probability": 0.7456 + }, + { + "start": 17903.94, + "end": 17904.94, + "probability": 0.734 + }, + { + "start": 17912.68, + "end": 17914.48, + "probability": 0.7864 + }, + { + "start": 17917.84, + "end": 17922.1, + "probability": 0.0562 + }, + { + "start": 17923.72, + "end": 17927.34, + "probability": 0.0933 + }, + { + "start": 17932.48, + "end": 17932.76, + "probability": 0.041 + }, + { + "start": 17932.76, + "end": 17934.15, + "probability": 0.0875 + }, + { + "start": 17938.5, + "end": 17941.74, + "probability": 0.0352 + }, + { + "start": 17941.74, + "end": 17943.14, + "probability": 0.1284 + }, + { + "start": 17947.1, + "end": 17947.8, + "probability": 0.0441 + }, + { + "start": 17947.8, + "end": 17948.7, + "probability": 0.1251 + }, + { + "start": 17948.7, + "end": 17951.3, + "probability": 0.0275 + }, + { + "start": 17952.86, + "end": 17952.92, + "probability": 0.23 + }, + { + "start": 17953.08, + "end": 17953.5, + "probability": 0.2007 + }, + { + "start": 17954.2, + "end": 17954.7, + "probability": 0.1834 + }, + { + "start": 17954.7, + "end": 17954.7, + "probability": 0.0108 + }, + { + "start": 17973.1, + "end": 17973.42, + "probability": 0.0026 + }, + { + "start": 17976.22, + "end": 17978.5, + "probability": 0.0744 + }, + { + "start": 17979.66, + "end": 17980.38, + "probability": 0.0204 + }, + { + "start": 17980.38, + "end": 17980.44, + "probability": 0.0267 + }, + { + "start": 18017.0, + "end": 18017.0, + "probability": 0.0 + }, + { + "start": 18017.0, + "end": 18017.0, + "probability": 0.0 + }, + { + "start": 18017.0, + "end": 18017.0, + "probability": 0.0 + }, + { + "start": 18017.0, + "end": 18017.0, + "probability": 0.0 + }, + { + "start": 18017.0, + "end": 18017.0, + "probability": 0.0 + }, + { + "start": 18017.0, + "end": 18017.0, + "probability": 0.0 + }, + { + "start": 18017.0, + "end": 18017.0, + "probability": 0.0 + }, + { + "start": 18037.5, + "end": 18039.66, + "probability": 0.1034 + }, + { + "start": 18040.12, + "end": 18040.22, + "probability": 0.0407 + }, + { + "start": 18040.22, + "end": 18040.22, + "probability": 0.0929 + }, + { + "start": 18040.22, + "end": 18040.7, + "probability": 0.181 + }, + { + "start": 18041.76, + "end": 18042.26, + "probability": 0.0145 + }, + { + "start": 18043.98, + "end": 18044.48, + "probability": 0.0146 + }, + { + "start": 18046.09, + "end": 18048.75, + "probability": 0.06 + }, + { + "start": 18049.7, + "end": 18050.5, + "probability": 0.1531 + }, + { + "start": 18056.28, + "end": 18060.08, + "probability": 0.0458 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.0, + "end": 18138.0, + "probability": 0.0 + }, + { + "start": 18138.3, + "end": 18138.4, + "probability": 0.1233 + }, + { + "start": 18138.4, + "end": 18138.5, + "probability": 0.0126 + }, + { + "start": 18140.4, + "end": 18142.34, + "probability": 0.9452 + }, + { + "start": 18143.98, + "end": 18144.46, + "probability": 0.9192 + }, + { + "start": 18145.28, + "end": 18146.24, + "probability": 0.789 + }, + { + "start": 18147.28, + "end": 18155.22, + "probability": 0.4856 + }, + { + "start": 18156.42, + "end": 18162.02, + "probability": 0.976 + }, + { + "start": 18163.38, + "end": 18164.8, + "probability": 0.6664 + }, + { + "start": 18165.9, + "end": 18167.72, + "probability": 0.9988 + }, + { + "start": 18169.36, + "end": 18173.56, + "probability": 0.9842 + }, + { + "start": 18174.92, + "end": 18176.06, + "probability": 0.9765 + }, + { + "start": 18177.32, + "end": 18179.18, + "probability": 0.9971 + }, + { + "start": 18181.54, + "end": 18183.42, + "probability": 0.791 + }, + { + "start": 18184.4, + "end": 18187.22, + "probability": 0.7967 + }, + { + "start": 18188.3, + "end": 18189.84, + "probability": 0.6863 + }, + { + "start": 18190.5, + "end": 18191.92, + "probability": 0.7964 + }, + { + "start": 18192.62, + "end": 18196.04, + "probability": 0.927 + }, + { + "start": 18197.14, + "end": 18199.72, + "probability": 0.8894 + }, + { + "start": 18200.8, + "end": 18204.12, + "probability": 0.7687 + }, + { + "start": 18204.72, + "end": 18206.04, + "probability": 0.9325 + }, + { + "start": 18207.66, + "end": 18208.56, + "probability": 0.8994 + }, + { + "start": 18210.49, + "end": 18214.58, + "probability": 0.8126 + }, + { + "start": 18216.38, + "end": 18220.26, + "probability": 0.9009 + }, + { + "start": 18221.16, + "end": 18222.86, + "probability": 0.9767 + }, + { + "start": 18224.1, + "end": 18226.68, + "probability": 0.9871 + }, + { + "start": 18227.46, + "end": 18232.32, + "probability": 0.9715 + }, + { + "start": 18233.98, + "end": 18235.22, + "probability": 0.9539 + }, + { + "start": 18236.28, + "end": 18240.44, + "probability": 0.811 + }, + { + "start": 18241.1, + "end": 18241.84, + "probability": 0.8819 + }, + { + "start": 18243.44, + "end": 18246.38, + "probability": 0.9644 + }, + { + "start": 18248.58, + "end": 18252.04, + "probability": 0.8583 + }, + { + "start": 18253.64, + "end": 18255.5, + "probability": 0.9094 + }, + { + "start": 18256.9, + "end": 18259.98, + "probability": 0.9412 + }, + { + "start": 18261.26, + "end": 18264.22, + "probability": 0.998 + }, + { + "start": 18265.16, + "end": 18267.68, + "probability": 0.9994 + }, + { + "start": 18268.36, + "end": 18272.14, + "probability": 0.964 + }, + { + "start": 18273.12, + "end": 18274.1, + "probability": 0.9877 + }, + { + "start": 18275.4, + "end": 18277.22, + "probability": 0.8057 + }, + { + "start": 18277.82, + "end": 18280.68, + "probability": 0.9985 + }, + { + "start": 18281.24, + "end": 18282.42, + "probability": 0.899 + }, + { + "start": 18283.38, + "end": 18285.08, + "probability": 0.7042 + }, + { + "start": 18286.0, + "end": 18288.2, + "probability": 0.9839 + }, + { + "start": 18289.28, + "end": 18290.88, + "probability": 0.9852 + }, + { + "start": 18291.94, + "end": 18293.21, + "probability": 0.9648 + }, + { + "start": 18294.08, + "end": 18297.18, + "probability": 0.9951 + }, + { + "start": 18298.1, + "end": 18299.18, + "probability": 0.868 + }, + { + "start": 18299.74, + "end": 18300.58, + "probability": 0.8807 + }, + { + "start": 18301.48, + "end": 18302.04, + "probability": 0.7415 + }, + { + "start": 18303.66, + "end": 18309.14, + "probability": 0.7681 + }, + { + "start": 18309.14, + "end": 18314.56, + "probability": 0.9985 + }, + { + "start": 18315.4, + "end": 18320.6, + "probability": 0.945 + }, + { + "start": 18321.32, + "end": 18326.94, + "probability": 0.742 + }, + { + "start": 18327.92, + "end": 18329.72, + "probability": 0.7495 + }, + { + "start": 18330.48, + "end": 18332.36, + "probability": 0.6012 + }, + { + "start": 18333.02, + "end": 18335.68, + "probability": 0.7646 + }, + { + "start": 18336.46, + "end": 18337.22, + "probability": 0.5711 + }, + { + "start": 18338.5, + "end": 18339.32, + "probability": 0.9073 + }, + { + "start": 18340.12, + "end": 18344.08, + "probability": 0.9967 + }, + { + "start": 18345.66, + "end": 18347.36, + "probability": 0.9919 + }, + { + "start": 18348.24, + "end": 18350.96, + "probability": 0.7121 + }, + { + "start": 18351.42, + "end": 18355.74, + "probability": 0.9487 + }, + { + "start": 18356.26, + "end": 18356.74, + "probability": 0.8558 + }, + { + "start": 18356.98, + "end": 18357.62, + "probability": 0.9603 + }, + { + "start": 18359.88, + "end": 18361.2, + "probability": 0.7514 + }, + { + "start": 18362.1, + "end": 18363.66, + "probability": 0.9771 + }, + { + "start": 18365.54, + "end": 18366.26, + "probability": 0.675 + }, + { + "start": 18368.04, + "end": 18370.87, + "probability": 0.9076 + }, + { + "start": 18371.66, + "end": 18374.24, + "probability": 0.9445 + }, + { + "start": 18375.08, + "end": 18375.72, + "probability": 0.489 + }, + { + "start": 18376.44, + "end": 18378.74, + "probability": 0.8816 + }, + { + "start": 18380.2, + "end": 18384.06, + "probability": 0.6802 + }, + { + "start": 18385.12, + "end": 18387.44, + "probability": 0.8769 + }, + { + "start": 18388.08, + "end": 18391.72, + "probability": 0.986 + }, + { + "start": 18392.28, + "end": 18395.5, + "probability": 0.9929 + }, + { + "start": 18396.24, + "end": 18398.1, + "probability": 0.7709 + }, + { + "start": 18399.1, + "end": 18400.28, + "probability": 0.9973 + }, + { + "start": 18401.32, + "end": 18403.48, + "probability": 0.8601 + }, + { + "start": 18404.58, + "end": 18406.56, + "probability": 0.7991 + }, + { + "start": 18407.38, + "end": 18408.8, + "probability": 0.9932 + }, + { + "start": 18409.98, + "end": 18411.42, + "probability": 0.9922 + }, + { + "start": 18412.86, + "end": 18414.88, + "probability": 0.9053 + }, + { + "start": 18415.58, + "end": 18417.18, + "probability": 0.8536 + }, + { + "start": 18418.34, + "end": 18419.42, + "probability": 0.9282 + }, + { + "start": 18420.6, + "end": 18422.02, + "probability": 0.9399 + }, + { + "start": 18422.1, + "end": 18423.64, + "probability": 0.9386 + }, + { + "start": 18424.96, + "end": 18427.15, + "probability": 0.8694 + }, + { + "start": 18428.72, + "end": 18429.62, + "probability": 0.8755 + }, + { + "start": 18429.78, + "end": 18433.42, + "probability": 0.8111 + }, + { + "start": 18433.58, + "end": 18434.18, + "probability": 0.6727 + }, + { + "start": 18434.82, + "end": 18436.06, + "probability": 0.9358 + }, + { + "start": 18437.16, + "end": 18439.96, + "probability": 0.9951 + }, + { + "start": 18441.14, + "end": 18442.12, + "probability": 0.8665 + }, + { + "start": 18442.94, + "end": 18445.66, + "probability": 0.8666 + }, + { + "start": 18446.82, + "end": 18449.56, + "probability": 0.9464 + }, + { + "start": 18450.42, + "end": 18453.14, + "probability": 0.7665 + }, + { + "start": 18453.34, + "end": 18457.34, + "probability": 0.8342 + }, + { + "start": 18458.98, + "end": 18459.3, + "probability": 0.5458 + }, + { + "start": 18460.14, + "end": 18462.34, + "probability": 0.9919 + }, + { + "start": 18463.52, + "end": 18467.18, + "probability": 0.9321 + }, + { + "start": 18468.26, + "end": 18470.82, + "probability": 0.8891 + }, + { + "start": 18473.42, + "end": 18477.6, + "probability": 0.9775 + }, + { + "start": 18478.98, + "end": 18479.58, + "probability": 0.8298 + }, + { + "start": 18480.12, + "end": 18483.12, + "probability": 0.9996 + }, + { + "start": 18484.22, + "end": 18488.04, + "probability": 0.9976 + }, + { + "start": 18489.26, + "end": 18489.66, + "probability": 0.494 + }, + { + "start": 18490.38, + "end": 18490.76, + "probability": 0.7516 + }, + { + "start": 18492.08, + "end": 18498.22, + "probability": 0.9753 + }, + { + "start": 18499.0, + "end": 18504.1, + "probability": 0.9819 + }, + { + "start": 18504.86, + "end": 18507.7, + "probability": 0.8716 + }, + { + "start": 18510.08, + "end": 18515.38, + "probability": 0.9922 + }, + { + "start": 18516.55, + "end": 18519.54, + "probability": 0.9966 + }, + { + "start": 18521.38, + "end": 18526.16, + "probability": 0.7937 + }, + { + "start": 18527.18, + "end": 18528.52, + "probability": 0.9648 + }, + { + "start": 18529.58, + "end": 18531.0, + "probability": 0.9808 + }, + { + "start": 18531.56, + "end": 18534.82, + "probability": 0.9813 + }, + { + "start": 18535.44, + "end": 18538.5, + "probability": 0.7315 + }, + { + "start": 18539.32, + "end": 18540.88, + "probability": 0.8887 + }, + { + "start": 18541.42, + "end": 18543.6, + "probability": 0.9841 + }, + { + "start": 18544.2, + "end": 18545.04, + "probability": 0.9352 + }, + { + "start": 18545.6, + "end": 18548.18, + "probability": 0.9619 + }, + { + "start": 18548.98, + "end": 18549.44, + "probability": 0.6653 + }, + { + "start": 18550.26, + "end": 18550.98, + "probability": 0.736 + }, + { + "start": 18551.4, + "end": 18555.04, + "probability": 0.972 + }, + { + "start": 18555.86, + "end": 18556.64, + "probability": 0.9629 + }, + { + "start": 18557.82, + "end": 18559.56, + "probability": 0.5439 + }, + { + "start": 18559.7, + "end": 18560.79, + "probability": 0.79 + }, + { + "start": 18562.42, + "end": 18563.98, + "probability": 0.9163 + }, + { + "start": 18564.52, + "end": 18568.88, + "probability": 0.6373 + }, + { + "start": 18570.08, + "end": 18570.74, + "probability": 0.7279 + }, + { + "start": 18572.64, + "end": 18573.86, + "probability": 0.8728 + }, + { + "start": 18587.72, + "end": 18593.48, + "probability": 0.0128 + }, + { + "start": 18593.48, + "end": 18594.42, + "probability": 0.0251 + }, + { + "start": 18595.44, + "end": 18596.78, + "probability": 0.0263 + }, + { + "start": 18597.74, + "end": 18602.84, + "probability": 0.1251 + }, + { + "start": 18602.94, + "end": 18603.28, + "probability": 0.0199 + }, + { + "start": 18607.1, + "end": 18609.3, + "probability": 0.0934 + }, + { + "start": 18610.96, + "end": 18613.92, + "probability": 0.0266 + }, + { + "start": 18614.48, + "end": 18618.86, + "probability": 0.0372 + }, + { + "start": 18619.04, + "end": 18620.09, + "probability": 0.2211 + }, + { + "start": 18620.46, + "end": 18622.03, + "probability": 0.3985 + }, + { + "start": 18622.88, + "end": 18623.79, + "probability": 0.1124 + }, + { + "start": 18625.36, + "end": 18629.76, + "probability": 0.3319 + }, + { + "start": 18630.34, + "end": 18633.76, + "probability": 0.3917 + }, + { + "start": 18638.84, + "end": 18641.74, + "probability": 0.0045 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.0, + "end": 18642.0, + "probability": 0.0 + }, + { + "start": 18642.14, + "end": 18645.62, + "probability": 0.6045 + }, + { + "start": 18646.26, + "end": 18646.38, + "probability": 0.013 + }, + { + "start": 18646.38, + "end": 18646.38, + "probability": 0.2652 + }, + { + "start": 18646.38, + "end": 18646.38, + "probability": 0.29 + }, + { + "start": 18646.38, + "end": 18646.38, + "probability": 0.1485 + }, + { + "start": 18646.38, + "end": 18646.38, + "probability": 0.3878 + }, + { + "start": 18646.38, + "end": 18646.38, + "probability": 0.173 + }, + { + "start": 18646.38, + "end": 18651.2, + "probability": 0.6961 + }, + { + "start": 18651.88, + "end": 18652.62, + "probability": 0.7816 + }, + { + "start": 18653.08, + "end": 18654.52, + "probability": 0.7723 + }, + { + "start": 18667.54, + "end": 18670.24, + "probability": 0.632 + }, + { + "start": 18670.62, + "end": 18670.66, + "probability": 0.5387 + }, + { + "start": 18670.66, + "end": 18671.14, + "probability": 0.7104 + }, + { + "start": 18671.28, + "end": 18671.72, + "probability": 0.6533 + }, + { + "start": 18672.16, + "end": 18673.32, + "probability": 0.4072 + }, + { + "start": 18674.08, + "end": 18674.5, + "probability": 0.0422 + }, + { + "start": 18675.1, + "end": 18676.06, + "probability": 0.4948 + }, + { + "start": 18676.32, + "end": 18679.26, + "probability": 0.8866 + }, + { + "start": 18680.14, + "end": 18680.14, + "probability": 0.7429 + }, + { + "start": 18680.22, + "end": 18680.88, + "probability": 0.7688 + }, + { + "start": 18681.02, + "end": 18683.04, + "probability": 0.9141 + }, + { + "start": 18684.11, + "end": 18685.6, + "probability": 0.6919 + }, + { + "start": 18685.64, + "end": 18686.78, + "probability": 0.8741 + }, + { + "start": 18687.6, + "end": 18689.38, + "probability": 0.563 + }, + { + "start": 18689.78, + "end": 18691.24, + "probability": 0.9116 + }, + { + "start": 18691.46, + "end": 18692.32, + "probability": 0.8779 + }, + { + "start": 18693.06, + "end": 18697.72, + "probability": 0.8264 + }, + { + "start": 18698.3, + "end": 18700.36, + "probability": 0.9715 + }, + { + "start": 18701.66, + "end": 18709.68, + "probability": 0.8504 + }, + { + "start": 18710.38, + "end": 18714.5, + "probability": 0.9354 + }, + { + "start": 18714.8, + "end": 18716.54, + "probability": 0.9229 + }, + { + "start": 18717.39, + "end": 18718.72, + "probability": 0.4728 + }, + { + "start": 18719.44, + "end": 18719.84, + "probability": 0.89 + }, + { + "start": 18720.6, + "end": 18724.94, + "probability": 0.946 + }, + { + "start": 18725.46, + "end": 18726.44, + "probability": 0.9744 + }, + { + "start": 18726.98, + "end": 18730.64, + "probability": 0.9601 + }, + { + "start": 18731.36, + "end": 18733.34, + "probability": 0.9926 + }, + { + "start": 18734.0, + "end": 18736.89, + "probability": 0.9927 + }, + { + "start": 18737.62, + "end": 18738.28, + "probability": 0.8755 + }, + { + "start": 18738.76, + "end": 18739.38, + "probability": 0.814 + }, + { + "start": 18739.74, + "end": 18740.66, + "probability": 0.8813 + }, + { + "start": 18740.8, + "end": 18741.4, + "probability": 0.8961 + }, + { + "start": 18742.12, + "end": 18742.92, + "probability": 0.928 + }, + { + "start": 18743.88, + "end": 18746.3, + "probability": 0.9917 + }, + { + "start": 18746.52, + "end": 18751.24, + "probability": 0.9717 + }, + { + "start": 18751.66, + "end": 18752.64, + "probability": 0.8732 + }, + { + "start": 18752.66, + "end": 18753.9, + "probability": 0.7467 + }, + { + "start": 18754.12, + "end": 18754.4, + "probability": 0.6355 + }, + { + "start": 18754.46, + "end": 18756.24, + "probability": 0.9929 + }, + { + "start": 18756.72, + "end": 18759.42, + "probability": 0.9902 + }, + { + "start": 18759.72, + "end": 18762.86, + "probability": 0.9802 + }, + { + "start": 18762.94, + "end": 18766.26, + "probability": 0.8575 + }, + { + "start": 18766.36, + "end": 18768.88, + "probability": 0.8913 + }, + { + "start": 18769.18, + "end": 18770.34, + "probability": 0.7503 + }, + { + "start": 18770.5, + "end": 18775.92, + "probability": 0.8768 + }, + { + "start": 18776.06, + "end": 18778.52, + "probability": 0.9957 + }, + { + "start": 18778.6, + "end": 18781.46, + "probability": 0.7495 + }, + { + "start": 18782.6, + "end": 18785.38, + "probability": 0.8263 + }, + { + "start": 18786.02, + "end": 18786.5, + "probability": 0.2254 + }, + { + "start": 18786.56, + "end": 18788.22, + "probability": 0.789 + }, + { + "start": 18788.24, + "end": 18788.36, + "probability": 0.7168 + }, + { + "start": 18788.44, + "end": 18789.08, + "probability": 0.7927 + }, + { + "start": 18789.18, + "end": 18790.9, + "probability": 0.9469 + }, + { + "start": 18790.94, + "end": 18791.4, + "probability": 0.9708 + }, + { + "start": 18792.28, + "end": 18792.78, + "probability": 0.9932 + }, + { + "start": 18793.54, + "end": 18794.86, + "probability": 0.757 + }, + { + "start": 18795.04, + "end": 18797.26, + "probability": 0.6541 + }, + { + "start": 18798.6, + "end": 18799.42, + "probability": 0.7836 + }, + { + "start": 18800.0, + "end": 18806.46, + "probability": 0.9804 + }, + { + "start": 18807.32, + "end": 18808.16, + "probability": 0.8774 + }, + { + "start": 18808.78, + "end": 18811.06, + "probability": 0.9953 + }, + { + "start": 18811.3, + "end": 18812.5, + "probability": 0.9453 + }, + { + "start": 18813.38, + "end": 18815.54, + "probability": 0.9852 + }, + { + "start": 18815.62, + "end": 18817.74, + "probability": 0.6064 + }, + { + "start": 18818.06, + "end": 18819.04, + "probability": 0.8889 + }, + { + "start": 18819.26, + "end": 18821.42, + "probability": 0.9769 + }, + { + "start": 18821.56, + "end": 18824.92, + "probability": 0.9854 + }, + { + "start": 18825.08, + "end": 18827.26, + "probability": 0.9852 + }, + { + "start": 18827.68, + "end": 18829.58, + "probability": 0.8887 + }, + { + "start": 18830.18, + "end": 18830.34, + "probability": 0.8402 + }, + { + "start": 18830.92, + "end": 18832.18, + "probability": 0.6248 + }, + { + "start": 18832.7, + "end": 18834.02, + "probability": 0.9518 + }, + { + "start": 18834.02, + "end": 18835.86, + "probability": 0.5427 + }, + { + "start": 18836.34, + "end": 18839.36, + "probability": 0.9748 + }, + { + "start": 18839.58, + "end": 18841.24, + "probability": 0.9802 + }, + { + "start": 18841.52, + "end": 18843.96, + "probability": 0.9983 + }, + { + "start": 18844.38, + "end": 18846.38, + "probability": 0.9622 + }, + { + "start": 18846.62, + "end": 18847.26, + "probability": 0.7803 + }, + { + "start": 18847.32, + "end": 18851.2, + "probability": 0.9401 + }, + { + "start": 18851.56, + "end": 18852.35, + "probability": 0.9553 + }, + { + "start": 18852.56, + "end": 18853.16, + "probability": 0.4505 + }, + { + "start": 18853.22, + "end": 18853.8, + "probability": 0.5381 + }, + { + "start": 18853.86, + "end": 18859.0, + "probability": 0.99 + }, + { + "start": 18859.3, + "end": 18860.56, + "probability": 0.9385 + }, + { + "start": 18860.84, + "end": 18861.34, + "probability": 0.8577 + }, + { + "start": 18861.42, + "end": 18863.72, + "probability": 0.9809 + }, + { + "start": 18864.28, + "end": 18866.92, + "probability": 0.9687 + }, + { + "start": 18867.22, + "end": 18868.08, + "probability": 0.9153 + }, + { + "start": 18868.36, + "end": 18869.02, + "probability": 0.5746 + }, + { + "start": 18869.36, + "end": 18870.27, + "probability": 0.8324 + }, + { + "start": 18870.94, + "end": 18875.76, + "probability": 0.8699 + }, + { + "start": 18876.04, + "end": 18877.84, + "probability": 0.9481 + }, + { + "start": 18878.1, + "end": 18881.38, + "probability": 0.9897 + }, + { + "start": 18881.78, + "end": 18883.54, + "probability": 0.9755 + }, + { + "start": 18883.96, + "end": 18885.24, + "probability": 0.9597 + }, + { + "start": 18885.88, + "end": 18889.8, + "probability": 0.8459 + }, + { + "start": 18890.54, + "end": 18891.86, + "probability": 0.8577 + }, + { + "start": 18891.92, + "end": 18892.46, + "probability": 0.9683 + }, + { + "start": 18892.78, + "end": 18893.32, + "probability": 0.6904 + }, + { + "start": 18893.5, + "end": 18896.26, + "probability": 0.9917 + }, + { + "start": 18897.38, + "end": 18898.26, + "probability": 0.9934 + }, + { + "start": 18899.06, + "end": 18900.06, + "probability": 0.9856 + }, + { + "start": 18900.74, + "end": 18902.64, + "probability": 0.9914 + }, + { + "start": 18902.7, + "end": 18903.06, + "probability": 0.7482 + }, + { + "start": 18903.98, + "end": 18906.46, + "probability": 0.9907 + }, + { + "start": 18906.9, + "end": 18907.5, + "probability": 0.4548 + }, + { + "start": 18908.18, + "end": 18908.86, + "probability": 0.9302 + }, + { + "start": 18909.24, + "end": 18910.18, + "probability": 0.9403 + }, + { + "start": 18910.22, + "end": 18910.96, + "probability": 0.824 + }, + { + "start": 18911.08, + "end": 18914.24, + "probability": 0.8105 + }, + { + "start": 18914.58, + "end": 18915.58, + "probability": 0.9659 + }, + { + "start": 18915.74, + "end": 18918.92, + "probability": 0.9945 + }, + { + "start": 18919.34, + "end": 18921.12, + "probability": 0.938 + }, + { + "start": 18922.14, + "end": 18924.62, + "probability": 0.9982 + }, + { + "start": 18925.36, + "end": 18929.22, + "probability": 0.7344 + }, + { + "start": 18929.3, + "end": 18930.28, + "probability": 0.7662 + }, + { + "start": 18930.4, + "end": 18930.7, + "probability": 0.8449 + }, + { + "start": 18930.74, + "end": 18933.76, + "probability": 0.9373 + }, + { + "start": 18934.0, + "end": 18935.04, + "probability": 0.2327 + }, + { + "start": 18935.84, + "end": 18938.6, + "probability": 0.8948 + }, + { + "start": 18938.66, + "end": 18940.56, + "probability": 0.9961 + }, + { + "start": 18940.62, + "end": 18942.42, + "probability": 0.8132 + }, + { + "start": 18943.02, + "end": 18944.82, + "probability": 0.9607 + }, + { + "start": 18944.88, + "end": 18945.48, + "probability": 0.7217 + }, + { + "start": 18945.74, + "end": 18949.0, + "probability": 0.998 + }, + { + "start": 18949.0, + "end": 18952.28, + "probability": 0.9813 + }, + { + "start": 18952.9, + "end": 18955.2, + "probability": 0.8268 + }, + { + "start": 18955.3, + "end": 18957.56, + "probability": 0.9958 + }, + { + "start": 18957.8, + "end": 18958.78, + "probability": 0.8014 + }, + { + "start": 18959.1, + "end": 18960.1, + "probability": 0.9668 + }, + { + "start": 18960.4, + "end": 18960.74, + "probability": 0.7291 + }, + { + "start": 18961.4, + "end": 18962.16, + "probability": 0.6993 + }, + { + "start": 18962.22, + "end": 18967.04, + "probability": 0.6352 + }, + { + "start": 18967.16, + "end": 18967.98, + "probability": 0.6304 + }, + { + "start": 18968.06, + "end": 18970.26, + "probability": 0.7662 + }, + { + "start": 18971.22, + "end": 18972.0, + "probability": 0.97 + }, + { + "start": 18972.68, + "end": 18972.92, + "probability": 0.5177 + }, + { + "start": 18973.94, + "end": 18974.44, + "probability": 0.7621 + }, + { + "start": 18983.22, + "end": 18983.32, + "probability": 0.445 + }, + { + "start": 18984.88, + "end": 18987.74, + "probability": 0.758 + }, + { + "start": 18988.66, + "end": 18989.58, + "probability": 0.3283 + }, + { + "start": 18989.58, + "end": 18992.28, + "probability": 0.7696 + }, + { + "start": 18992.58, + "end": 18997.4, + "probability": 0.9071 + }, + { + "start": 18998.1, + "end": 19001.0, + "probability": 0.9067 + }, + { + "start": 19001.46, + "end": 19003.82, + "probability": 0.9883 + }, + { + "start": 19004.38, + "end": 19006.7, + "probability": 0.8818 + }, + { + "start": 19007.4, + "end": 19013.1, + "probability": 0.9336 + }, + { + "start": 19013.18, + "end": 19013.73, + "probability": 0.8954 + }, + { + "start": 19014.98, + "end": 19017.76, + "probability": 0.993 + }, + { + "start": 19017.98, + "end": 19020.6, + "probability": 0.9941 + }, + { + "start": 19020.94, + "end": 19024.12, + "probability": 0.9976 + }, + { + "start": 19024.64, + "end": 19030.88, + "probability": 0.9863 + }, + { + "start": 19031.32, + "end": 19033.1, + "probability": 0.7354 + }, + { + "start": 19033.22, + "end": 19033.76, + "probability": 0.4684 + }, + { + "start": 19033.92, + "end": 19035.62, + "probability": 0.9856 + }, + { + "start": 19035.62, + "end": 19036.74, + "probability": 0.8284 + }, + { + "start": 19037.24, + "end": 19038.78, + "probability": 0.963 + }, + { + "start": 19038.82, + "end": 19044.46, + "probability": 0.9659 + }, + { + "start": 19044.9, + "end": 19046.22, + "probability": 0.7061 + }, + { + "start": 19046.78, + "end": 19048.94, + "probability": 0.8755 + }, + { + "start": 19049.08, + "end": 19051.66, + "probability": 0.887 + }, + { + "start": 19052.0, + "end": 19052.74, + "probability": 0.8396 + }, + { + "start": 19053.08, + "end": 19056.32, + "probability": 0.9688 + }, + { + "start": 19056.78, + "end": 19061.02, + "probability": 0.9314 + }, + { + "start": 19061.58, + "end": 19068.02, + "probability": 0.9977 + }, + { + "start": 19068.58, + "end": 19071.48, + "probability": 0.9912 + }, + { + "start": 19071.52, + "end": 19075.56, + "probability": 0.9984 + }, + { + "start": 19075.56, + "end": 19079.04, + "probability": 0.9824 + }, + { + "start": 19079.44, + "end": 19081.96, + "probability": 0.8073 + }, + { + "start": 19082.04, + "end": 19083.85, + "probability": 0.9956 + }, + { + "start": 19084.82, + "end": 19087.42, + "probability": 0.9868 + }, + { + "start": 19088.18, + "end": 19094.26, + "probability": 0.9764 + }, + { + "start": 19094.9, + "end": 19098.14, + "probability": 0.9421 + }, + { + "start": 19098.14, + "end": 19102.9, + "probability": 0.9888 + }, + { + "start": 19103.24, + "end": 19103.48, + "probability": 0.7116 + }, + { + "start": 19104.0, + "end": 19105.98, + "probability": 0.6124 + }, + { + "start": 19106.56, + "end": 19108.58, + "probability": 0.9758 + }, + { + "start": 19108.72, + "end": 19110.6, + "probability": 0.9594 + }, + { + "start": 19111.06, + "end": 19115.8, + "probability": 0.9932 + }, + { + "start": 19116.2, + "end": 19121.96, + "probability": 0.9972 + }, + { + "start": 19121.96, + "end": 19128.48, + "probability": 0.9996 + }, + { + "start": 19129.02, + "end": 19129.92, + "probability": 0.9966 + }, + { + "start": 19130.46, + "end": 19132.26, + "probability": 0.9983 + }, + { + "start": 19133.1, + "end": 19137.5, + "probability": 0.7782 + }, + { + "start": 19138.2, + "end": 19138.2, + "probability": 0.7634 + }, + { + "start": 19138.2, + "end": 19138.58, + "probability": 0.4537 + }, + { + "start": 19138.58, + "end": 19138.96, + "probability": 0.8699 + }, + { + "start": 19138.96, + "end": 19138.98, + "probability": 0.3586 + }, + { + "start": 19139.0, + "end": 19139.64, + "probability": 0.5532 + }, + { + "start": 19140.84, + "end": 19140.88, + "probability": 0.0926 + }, + { + "start": 19140.88, + "end": 19142.84, + "probability": 0.9851 + }, + { + "start": 19143.34, + "end": 19144.56, + "probability": 0.8687 + }, + { + "start": 19144.9, + "end": 19145.82, + "probability": 0.9912 + }, + { + "start": 19146.74, + "end": 19152.2, + "probability": 0.979 + }, + { + "start": 19152.44, + "end": 19154.76, + "probability": 0.9995 + }, + { + "start": 19154.9, + "end": 19160.24, + "probability": 0.9893 + }, + { + "start": 19160.58, + "end": 19162.92, + "probability": 0.9993 + }, + { + "start": 19163.52, + "end": 19168.5, + "probability": 0.991 + }, + { + "start": 19168.88, + "end": 19169.44, + "probability": 0.8495 + }, + { + "start": 19169.72, + "end": 19170.6, + "probability": 0.9785 + }, + { + "start": 19170.92, + "end": 19172.28, + "probability": 0.9608 + }, + { + "start": 19172.4, + "end": 19175.78, + "probability": 0.9862 + }, + { + "start": 19176.5, + "end": 19181.32, + "probability": 0.9436 + }, + { + "start": 19181.46, + "end": 19181.62, + "probability": 0.7307 + }, + { + "start": 19183.62, + "end": 19186.06, + "probability": 0.9615 + }, + { + "start": 19186.8, + "end": 19188.34, + "probability": 0.8318 + }, + { + "start": 19189.62, + "end": 19194.52, + "probability": 0.9289 + }, + { + "start": 19195.3, + "end": 19197.42, + "probability": 0.4677 + }, + { + "start": 19198.06, + "end": 19199.42, + "probability": 0.827 + }, + { + "start": 19199.72, + "end": 19201.34, + "probability": 0.7029 + }, + { + "start": 19201.7, + "end": 19204.0, + "probability": 0.9521 + }, + { + "start": 19204.48, + "end": 19206.82, + "probability": 0.8932 + }, + { + "start": 19209.36, + "end": 19211.88, + "probability": 0.6803 + }, + { + "start": 19215.8, + "end": 19218.14, + "probability": 0.9602 + }, + { + "start": 19218.26, + "end": 19219.31, + "probability": 0.9775 + }, + { + "start": 19219.5, + "end": 19220.6, + "probability": 0.5671 + }, + { + "start": 19221.28, + "end": 19224.9, + "probability": 0.8719 + }, + { + "start": 19225.52, + "end": 19228.4, + "probability": 0.9478 + }, + { + "start": 19230.08, + "end": 19235.52, + "probability": 0.9922 + }, + { + "start": 19236.1, + "end": 19239.88, + "probability": 0.9059 + }, + { + "start": 19241.8, + "end": 19243.44, + "probability": 0.8215 + }, + { + "start": 19244.22, + "end": 19246.02, + "probability": 0.6341 + }, + { + "start": 19247.02, + "end": 19249.9, + "probability": 0.8545 + }, + { + "start": 19250.7, + "end": 19255.48, + "probability": 0.8647 + }, + { + "start": 19258.3, + "end": 19258.98, + "probability": 0.824 + }, + { + "start": 19260.58, + "end": 19261.46, + "probability": 0.9868 + }, + { + "start": 19262.8, + "end": 19264.8, + "probability": 0.9971 + }, + { + "start": 19267.36, + "end": 19269.29, + "probability": 0.9706 + }, + { + "start": 19270.14, + "end": 19270.92, + "probability": 0.6892 + }, + { + "start": 19272.28, + "end": 19274.28, + "probability": 0.6758 + }, + { + "start": 19275.28, + "end": 19276.2, + "probability": 0.9889 + }, + { + "start": 19277.84, + "end": 19279.9, + "probability": 0.9754 + }, + { + "start": 19280.36, + "end": 19281.94, + "probability": 0.8575 + }, + { + "start": 19283.0, + "end": 19283.88, + "probability": 0.6983 + }, + { + "start": 19284.56, + "end": 19288.46, + "probability": 0.8241 + }, + { + "start": 19291.12, + "end": 19296.08, + "probability": 0.9015 + }, + { + "start": 19296.78, + "end": 19298.82, + "probability": 0.5533 + }, + { + "start": 19299.52, + "end": 19301.88, + "probability": 0.9757 + }, + { + "start": 19301.96, + "end": 19303.24, + "probability": 0.9589 + }, + { + "start": 19303.96, + "end": 19304.88, + "probability": 0.9098 + }, + { + "start": 19305.7, + "end": 19307.08, + "probability": 0.658 + }, + { + "start": 19308.0, + "end": 19309.0, + "probability": 0.7556 + }, + { + "start": 19309.86, + "end": 19311.34, + "probability": 0.9867 + }, + { + "start": 19311.68, + "end": 19312.64, + "probability": 0.9661 + }, + { + "start": 19312.76, + "end": 19313.68, + "probability": 0.9797 + }, + { + "start": 19314.56, + "end": 19316.3, + "probability": 0.8466 + }, + { + "start": 19316.94, + "end": 19318.64, + "probability": 0.9949 + }, + { + "start": 19319.78, + "end": 19324.22, + "probability": 0.8446 + }, + { + "start": 19324.22, + "end": 19326.1, + "probability": 0.8171 + }, + { + "start": 19327.02, + "end": 19336.2, + "probability": 0.9795 + }, + { + "start": 19337.66, + "end": 19340.68, + "probability": 0.8708 + }, + { + "start": 19343.2, + "end": 19347.18, + "probability": 0.8365 + }, + { + "start": 19348.24, + "end": 19351.05, + "probability": 0.7432 + }, + { + "start": 19352.12, + "end": 19356.06, + "probability": 0.9858 + }, + { + "start": 19357.89, + "end": 19360.38, + "probability": 0.6494 + }, + { + "start": 19361.52, + "end": 19363.75, + "probability": 0.9094 + }, + { + "start": 19364.52, + "end": 19365.5, + "probability": 0.9915 + }, + { + "start": 19366.36, + "end": 19366.92, + "probability": 0.8066 + }, + { + "start": 19367.5, + "end": 19368.98, + "probability": 0.9961 + }, + { + "start": 19369.22, + "end": 19369.7, + "probability": 0.7583 + }, + { + "start": 19370.26, + "end": 19371.03, + "probability": 0.9763 + }, + { + "start": 19372.54, + "end": 19376.12, + "probability": 0.9324 + }, + { + "start": 19376.52, + "end": 19377.72, + "probability": 0.6866 + }, + { + "start": 19377.92, + "end": 19380.86, + "probability": 0.9881 + }, + { + "start": 19381.12, + "end": 19381.56, + "probability": 0.6627 + }, + { + "start": 19383.78, + "end": 19386.08, + "probability": 0.8895 + }, + { + "start": 19387.74, + "end": 19391.82, + "probability": 0.9263 + }, + { + "start": 19394.08, + "end": 19396.8, + "probability": 0.7888 + }, + { + "start": 19397.76, + "end": 19398.46, + "probability": 0.8621 + }, + { + "start": 19398.62, + "end": 19401.98, + "probability": 0.9554 + }, + { + "start": 19402.18, + "end": 19403.62, + "probability": 0.8037 + }, + { + "start": 19403.62, + "end": 19404.62, + "probability": 0.9286 + }, + { + "start": 19406.03, + "end": 19410.48, + "probability": 0.9932 + }, + { + "start": 19411.06, + "end": 19412.0, + "probability": 0.9115 + }, + { + "start": 19412.54, + "end": 19415.12, + "probability": 0.8784 + }, + { + "start": 19415.94, + "end": 19417.84, + "probability": 0.6587 + }, + { + "start": 19418.06, + "end": 19419.38, + "probability": 0.9461 + }, + { + "start": 19419.56, + "end": 19422.96, + "probability": 0.8882 + }, + { + "start": 19425.2, + "end": 19428.28, + "probability": 0.9977 + }, + { + "start": 19428.66, + "end": 19431.69, + "probability": 0.9963 + }, + { + "start": 19431.84, + "end": 19432.94, + "probability": 0.7046 + }, + { + "start": 19433.72, + "end": 19434.38, + "probability": 0.7272 + }, + { + "start": 19434.48, + "end": 19435.68, + "probability": 0.7835 + }, + { + "start": 19436.48, + "end": 19438.54, + "probability": 0.874 + }, + { + "start": 19438.62, + "end": 19441.04, + "probability": 0.9888 + }, + { + "start": 19442.42, + "end": 19442.86, + "probability": 0.9633 + }, + { + "start": 19444.1, + "end": 19444.78, + "probability": 0.9935 + }, + { + "start": 19445.42, + "end": 19446.1, + "probability": 0.5033 + }, + { + "start": 19447.64, + "end": 19448.7, + "probability": 0.9482 + }, + { + "start": 19448.8, + "end": 19449.24, + "probability": 0.8049 + }, + { + "start": 19449.96, + "end": 19451.26, + "probability": 0.7195 + }, + { + "start": 19451.46, + "end": 19453.44, + "probability": 0.8424 + }, + { + "start": 19453.6, + "end": 19454.16, + "probability": 0.8801 + }, + { + "start": 19470.36, + "end": 19471.68, + "probability": 0.7794 + }, + { + "start": 19473.12, + "end": 19473.52, + "probability": 0.7054 + }, + { + "start": 19473.52, + "end": 19474.54, + "probability": 0.4334 + }, + { + "start": 19476.82, + "end": 19478.98, + "probability": 0.8163 + }, + { + "start": 19480.48, + "end": 19481.52, + "probability": 0.9409 + }, + { + "start": 19483.18, + "end": 19486.1, + "probability": 0.9663 + }, + { + "start": 19486.24, + "end": 19491.28, + "probability": 0.9662 + }, + { + "start": 19492.52, + "end": 19495.9, + "probability": 0.8122 + }, + { + "start": 19496.44, + "end": 19497.68, + "probability": 0.9839 + }, + { + "start": 19498.64, + "end": 19499.66, + "probability": 0.9005 + }, + { + "start": 19501.3, + "end": 19505.0, + "probability": 0.984 + }, + { + "start": 19506.76, + "end": 19509.06, + "probability": 0.9862 + }, + { + "start": 19509.2, + "end": 19510.84, + "probability": 0.9956 + }, + { + "start": 19512.5, + "end": 19514.06, + "probability": 0.8987 + }, + { + "start": 19515.72, + "end": 19518.26, + "probability": 0.9532 + }, + { + "start": 19518.84, + "end": 19522.22, + "probability": 0.9469 + }, + { + "start": 19522.36, + "end": 19524.28, + "probability": 0.8485 + }, + { + "start": 19525.74, + "end": 19529.6, + "probability": 0.8448 + }, + { + "start": 19530.26, + "end": 19532.68, + "probability": 0.5113 + }, + { + "start": 19533.96, + "end": 19539.24, + "probability": 0.8 + }, + { + "start": 19539.84, + "end": 19540.82, + "probability": 0.8457 + }, + { + "start": 19541.7, + "end": 19543.06, + "probability": 0.882 + }, + { + "start": 19544.72, + "end": 19546.3, + "probability": 0.8424 + }, + { + "start": 19547.14, + "end": 19547.68, + "probability": 0.6636 + }, + { + "start": 19550.64, + "end": 19554.0, + "probability": 0.901 + }, + { + "start": 19554.52, + "end": 19554.96, + "probability": 0.9125 + }, + { + "start": 19555.8, + "end": 19558.48, + "probability": 0.9961 + }, + { + "start": 19559.72, + "end": 19564.06, + "probability": 0.9969 + }, + { + "start": 19564.06, + "end": 19570.7, + "probability": 0.9377 + }, + { + "start": 19572.36, + "end": 19576.12, + "probability": 0.9146 + }, + { + "start": 19578.34, + "end": 19584.02, + "probability": 0.9408 + }, + { + "start": 19584.92, + "end": 19587.64, + "probability": 0.9836 + }, + { + "start": 19589.04, + "end": 19590.56, + "probability": 0.6842 + }, + { + "start": 19591.76, + "end": 19596.04, + "probability": 0.6602 + }, + { + "start": 19596.98, + "end": 19597.74, + "probability": 0.4202 + }, + { + "start": 19597.74, + "end": 19598.58, + "probability": 0.8641 + }, + { + "start": 19600.32, + "end": 19603.66, + "probability": 0.8966 + }, + { + "start": 19604.2, + "end": 19607.77, + "probability": 0.9698 + }, + { + "start": 19609.56, + "end": 19614.8, + "probability": 0.8099 + }, + { + "start": 19615.88, + "end": 19621.72, + "probability": 0.9183 + }, + { + "start": 19622.26, + "end": 19623.34, + "probability": 0.8754 + }, + { + "start": 19623.92, + "end": 19625.22, + "probability": 0.8716 + }, + { + "start": 19625.88, + "end": 19627.02, + "probability": 0.9952 + }, + { + "start": 19628.04, + "end": 19630.4, + "probability": 0.9919 + }, + { + "start": 19632.16, + "end": 19634.44, + "probability": 0.9497 + }, + { + "start": 19637.92, + "end": 19645.2, + "probability": 0.9074 + }, + { + "start": 19646.98, + "end": 19650.64, + "probability": 0.5687 + }, + { + "start": 19652.48, + "end": 19653.48, + "probability": 0.8154 + }, + { + "start": 19654.34, + "end": 19656.04, + "probability": 0.81 + }, + { + "start": 19656.56, + "end": 19659.1, + "probability": 0.7583 + }, + { + "start": 19661.26, + "end": 19664.02, + "probability": 0.914 + }, + { + "start": 19664.88, + "end": 19666.76, + "probability": 0.9248 + }, + { + "start": 19668.06, + "end": 19672.02, + "probability": 0.7136 + }, + { + "start": 19673.12, + "end": 19677.86, + "probability": 0.9714 + }, + { + "start": 19681.33, + "end": 19685.68, + "probability": 0.9539 + }, + { + "start": 19686.82, + "end": 19689.88, + "probability": 0.9907 + }, + { + "start": 19691.44, + "end": 19694.56, + "probability": 0.9954 + }, + { + "start": 19696.4, + "end": 19700.56, + "probability": 0.9124 + }, + { + "start": 19701.5, + "end": 19703.72, + "probability": 0.9827 + }, + { + "start": 19704.54, + "end": 19708.1, + "probability": 0.9989 + }, + { + "start": 19708.62, + "end": 19709.92, + "probability": 0.9841 + }, + { + "start": 19715.0, + "end": 19716.06, + "probability": 0.9875 + }, + { + "start": 19716.82, + "end": 19721.08, + "probability": 0.9992 + }, + { + "start": 19721.08, + "end": 19725.42, + "probability": 0.9093 + }, + { + "start": 19725.92, + "end": 19727.22, + "probability": 0.353 + }, + { + "start": 19727.88, + "end": 19732.24, + "probability": 0.9635 + }, + { + "start": 19732.34, + "end": 19740.08, + "probability": 0.9917 + }, + { + "start": 19741.46, + "end": 19747.78, + "probability": 0.9949 + }, + { + "start": 19748.1, + "end": 19748.82, + "probability": 0.5087 + }, + { + "start": 19748.86, + "end": 19750.52, + "probability": 0.9839 + }, + { + "start": 19751.38, + "end": 19752.8, + "probability": 0.677 + }, + { + "start": 19753.48, + "end": 19755.6, + "probability": 0.8189 + }, + { + "start": 19756.26, + "end": 19758.88, + "probability": 0.9584 + }, + { + "start": 19759.74, + "end": 19761.76, + "probability": 0.828 + }, + { + "start": 19762.66, + "end": 19766.98, + "probability": 0.9744 + }, + { + "start": 19767.02, + "end": 19768.16, + "probability": 0.9096 + }, + { + "start": 19768.52, + "end": 19770.9, + "probability": 0.9659 + }, + { + "start": 19771.36, + "end": 19774.08, + "probability": 0.9951 + }, + { + "start": 19774.66, + "end": 19775.92, + "probability": 0.9806 + }, + { + "start": 19776.64, + "end": 19780.66, + "probability": 0.993 + }, + { + "start": 19780.66, + "end": 19785.66, + "probability": 0.9578 + }, + { + "start": 19785.86, + "end": 19786.06, + "probability": 0.2549 + }, + { + "start": 19786.22, + "end": 19787.4, + "probability": 0.5354 + }, + { + "start": 19787.5, + "end": 19788.92, + "probability": 0.7371 + }, + { + "start": 19790.12, + "end": 19790.74, + "probability": 0.7151 + }, + { + "start": 19791.06, + "end": 19792.1, + "probability": 0.9834 + }, + { + "start": 19792.78, + "end": 19793.84, + "probability": 0.8368 + }, + { + "start": 19814.98, + "end": 19816.38, + "probability": 0.6651 + }, + { + "start": 19820.68, + "end": 19823.4, + "probability": 0.9937 + }, + { + "start": 19824.86, + "end": 19825.74, + "probability": 0.79 + }, + { + "start": 19827.9, + "end": 19829.4, + "probability": 0.8313 + }, + { + "start": 19830.48, + "end": 19833.66, + "probability": 0.9808 + }, + { + "start": 19835.02, + "end": 19838.1, + "probability": 0.9666 + }, + { + "start": 19838.76, + "end": 19842.04, + "probability": 0.9949 + }, + { + "start": 19843.96, + "end": 19849.34, + "probability": 0.8953 + }, + { + "start": 19850.36, + "end": 19853.76, + "probability": 0.9936 + }, + { + "start": 19854.84, + "end": 19855.74, + "probability": 0.8579 + }, + { + "start": 19855.92, + "end": 19859.2, + "probability": 0.9849 + }, + { + "start": 19859.7, + "end": 19862.74, + "probability": 0.9403 + }, + { + "start": 19863.72, + "end": 19865.9, + "probability": 0.8066 + }, + { + "start": 19866.34, + "end": 19868.32, + "probability": 0.9844 + }, + { + "start": 19868.5, + "end": 19871.16, + "probability": 0.9678 + }, + { + "start": 19871.46, + "end": 19873.32, + "probability": 0.9976 + }, + { + "start": 19874.06, + "end": 19879.56, + "probability": 0.9438 + }, + { + "start": 19880.24, + "end": 19882.7, + "probability": 0.9784 + }, + { + "start": 19884.76, + "end": 19886.08, + "probability": 0.6679 + }, + { + "start": 19886.32, + "end": 19888.38, + "probability": 0.9938 + }, + { + "start": 19888.38, + "end": 19891.26, + "probability": 0.9937 + }, + { + "start": 19891.94, + "end": 19895.08, + "probability": 0.8324 + }, + { + "start": 19895.32, + "end": 19896.8, + "probability": 0.792 + }, + { + "start": 19897.5, + "end": 19898.76, + "probability": 0.9609 + }, + { + "start": 19899.66, + "end": 19900.8, + "probability": 0.9694 + }, + { + "start": 19901.36, + "end": 19902.36, + "probability": 0.7432 + }, + { + "start": 19903.24, + "end": 19905.28, + "probability": 0.9106 + }, + { + "start": 19905.98, + "end": 19906.2, + "probability": 0.5086 + }, + { + "start": 19906.32, + "end": 19907.06, + "probability": 0.7287 + }, + { + "start": 19907.18, + "end": 19910.48, + "probability": 0.9543 + }, + { + "start": 19910.48, + "end": 19913.02, + "probability": 0.6638 + }, + { + "start": 19914.2, + "end": 19915.14, + "probability": 0.9928 + }, + { + "start": 19916.6, + "end": 19918.74, + "probability": 0.915 + }, + { + "start": 19919.22, + "end": 19924.02, + "probability": 0.7475 + }, + { + "start": 19925.52, + "end": 19926.0, + "probability": 0.4408 + }, + { + "start": 19926.44, + "end": 19928.92, + "probability": 0.8686 + }, + { + "start": 19929.04, + "end": 19931.16, + "probability": 0.9896 + }, + { + "start": 19931.5, + "end": 19932.5, + "probability": 0.8738 + }, + { + "start": 19933.0, + "end": 19939.36, + "probability": 0.8698 + }, + { + "start": 19939.86, + "end": 19941.1, + "probability": 0.8048 + }, + { + "start": 19941.12, + "end": 19941.84, + "probability": 0.8975 + }, + { + "start": 19942.28, + "end": 19944.44, + "probability": 0.999 + }, + { + "start": 19944.84, + "end": 19945.28, + "probability": 0.452 + }, + { + "start": 19945.4, + "end": 19948.56, + "probability": 0.982 + }, + { + "start": 19948.86, + "end": 19950.16, + "probability": 0.9409 + }, + { + "start": 19950.52, + "end": 19953.78, + "probability": 0.9978 + }, + { + "start": 19953.78, + "end": 19956.5, + "probability": 0.9971 + }, + { + "start": 19956.94, + "end": 19957.46, + "probability": 0.4654 + }, + { + "start": 19957.62, + "end": 19958.32, + "probability": 0.4886 + }, + { + "start": 19958.38, + "end": 19961.16, + "probability": 0.9575 + }, + { + "start": 19961.22, + "end": 19963.98, + "probability": 0.7808 + }, + { + "start": 19963.98, + "end": 19965.16, + "probability": 0.8037 + }, + { + "start": 19966.1, + "end": 19969.08, + "probability": 0.8389 + }, + { + "start": 19970.38, + "end": 19973.86, + "probability": 0.9651 + }, + { + "start": 19974.56, + "end": 19977.1, + "probability": 0.9982 + }, + { + "start": 19977.1, + "end": 19979.36, + "probability": 0.9952 + }, + { + "start": 19980.44, + "end": 19983.64, + "probability": 0.8557 + }, + { + "start": 19983.94, + "end": 19988.74, + "probability": 0.6562 + }, + { + "start": 19988.92, + "end": 19990.16, + "probability": 0.9812 + }, + { + "start": 19990.7, + "end": 19992.64, + "probability": 0.9205 + }, + { + "start": 19993.26, + "end": 19995.32, + "probability": 0.9239 + }, + { + "start": 19995.5, + "end": 19995.64, + "probability": 0.3577 + }, + { + "start": 19995.76, + "end": 19996.98, + "probability": 0.7633 + }, + { + "start": 19997.38, + "end": 20000.62, + "probability": 0.9627 + }, + { + "start": 20001.26, + "end": 20003.44, + "probability": 0.9777 + }, + { + "start": 20004.0, + "end": 20004.76, + "probability": 0.8158 + }, + { + "start": 20004.86, + "end": 20009.42, + "probability": 0.9368 + }, + { + "start": 20009.6, + "end": 20010.78, + "probability": 0.6017 + }, + { + "start": 20010.88, + "end": 20013.36, + "probability": 0.877 + }, + { + "start": 20014.08, + "end": 20018.44, + "probability": 0.9893 + }, + { + "start": 20019.2, + "end": 20019.38, + "probability": 0.4225 + }, + { + "start": 20019.7, + "end": 20024.05, + "probability": 0.884 + }, + { + "start": 20024.74, + "end": 20027.86, + "probability": 0.9984 + }, + { + "start": 20027.94, + "end": 20028.38, + "probability": 0.7975 + }, + { + "start": 20028.48, + "end": 20029.26, + "probability": 0.8321 + }, + { + "start": 20029.26, + "end": 20029.9, + "probability": 0.7492 + }, + { + "start": 20029.9, + "end": 20030.68, + "probability": 0.7052 + }, + { + "start": 20031.08, + "end": 20031.34, + "probability": 0.6868 + }, + { + "start": 20031.64, + "end": 20032.4, + "probability": 0.9064 + }, + { + "start": 20032.74, + "end": 20033.48, + "probability": 0.6391 + }, + { + "start": 20033.56, + "end": 20034.54, + "probability": 0.2687 + }, + { + "start": 20035.28, + "end": 20037.84, + "probability": 0.8661 + }, + { + "start": 20038.38, + "end": 20044.7, + "probability": 0.9812 + }, + { + "start": 20044.92, + "end": 20046.22, + "probability": 0.8828 + }, + { + "start": 20046.9, + "end": 20047.84, + "probability": 0.7045 + }, + { + "start": 20048.08, + "end": 20051.72, + "probability": 0.9818 + }, + { + "start": 20051.8, + "end": 20053.06, + "probability": 0.0309 + }, + { + "start": 20053.06, + "end": 20057.3, + "probability": 0.8329 + }, + { + "start": 20057.4, + "end": 20060.4, + "probability": 0.9618 + }, + { + "start": 20060.52, + "end": 20061.04, + "probability": 0.3682 + }, + { + "start": 20061.44, + "end": 20063.12, + "probability": 0.9282 + }, + { + "start": 20063.2, + "end": 20064.34, + "probability": 0.8469 + }, + { + "start": 20064.64, + "end": 20067.4, + "probability": 0.9815 + }, + { + "start": 20067.4, + "end": 20070.4, + "probability": 0.6729 + }, + { + "start": 20070.82, + "end": 20072.66, + "probability": 0.9651 + }, + { + "start": 20073.4, + "end": 20076.38, + "probability": 0.9873 + }, + { + "start": 20076.44, + "end": 20078.62, + "probability": 0.9236 + }, + { + "start": 20078.88, + "end": 20080.48, + "probability": 0.9486 + }, + { + "start": 20080.88, + "end": 20081.12, + "probability": 0.7742 + }, + { + "start": 20081.44, + "end": 20082.11, + "probability": 0.8359 + }, + { + "start": 20083.42, + "end": 20084.5, + "probability": 0.6307 + }, + { + "start": 20106.08, + "end": 20106.6, + "probability": 0.3802 + }, + { + "start": 20106.62, + "end": 20107.88, + "probability": 0.7292 + }, + { + "start": 20107.88, + "end": 20108.79, + "probability": 0.5725 + }, + { + "start": 20112.42, + "end": 20113.28, + "probability": 0.796 + }, + { + "start": 20114.58, + "end": 20117.2, + "probability": 0.9948 + }, + { + "start": 20118.16, + "end": 20122.72, + "probability": 0.8828 + }, + { + "start": 20125.98, + "end": 20129.64, + "probability": 0.9626 + }, + { + "start": 20130.08, + "end": 20132.92, + "probability": 0.6419 + }, + { + "start": 20134.26, + "end": 20136.84, + "probability": 0.8714 + }, + { + "start": 20139.1, + "end": 20141.34, + "probability": 0.8226 + }, + { + "start": 20141.92, + "end": 20143.44, + "probability": 0.9822 + }, + { + "start": 20145.94, + "end": 20146.76, + "probability": 0.6051 + }, + { + "start": 20146.9, + "end": 20148.98, + "probability": 0.6794 + }, + { + "start": 20149.14, + "end": 20150.88, + "probability": 0.9016 + }, + { + "start": 20151.84, + "end": 20153.98, + "probability": 0.9768 + }, + { + "start": 20155.22, + "end": 20157.92, + "probability": 0.6134 + }, + { + "start": 20159.02, + "end": 20161.84, + "probability": 0.7433 + }, + { + "start": 20162.78, + "end": 20163.86, + "probability": 0.9051 + }, + { + "start": 20165.26, + "end": 20168.68, + "probability": 0.8174 + }, + { + "start": 20168.68, + "end": 20176.52, + "probability": 0.9182 + }, + { + "start": 20176.62, + "end": 20181.1, + "probability": 0.771 + }, + { + "start": 20181.18, + "end": 20183.4, + "probability": 0.5278 + }, + { + "start": 20183.5, + "end": 20183.96, + "probability": 0.7041 + }, + { + "start": 20184.02, + "end": 20184.42, + "probability": 0.9684 + }, + { + "start": 20185.34, + "end": 20190.7, + "probability": 0.9712 + }, + { + "start": 20190.7, + "end": 20194.2, + "probability": 0.9337 + }, + { + "start": 20195.06, + "end": 20196.12, + "probability": 0.6696 + }, + { + "start": 20197.32, + "end": 20200.6, + "probability": 0.9047 + }, + { + "start": 20202.18, + "end": 20203.8, + "probability": 0.9647 + }, + { + "start": 20204.58, + "end": 20206.44, + "probability": 0.7059 + }, + { + "start": 20206.44, + "end": 20209.0, + "probability": 0.952 + }, + { + "start": 20209.48, + "end": 20211.2, + "probability": 0.8061 + }, + { + "start": 20212.1, + "end": 20214.38, + "probability": 0.8735 + }, + { + "start": 20214.38, + "end": 20217.86, + "probability": 0.8945 + }, + { + "start": 20218.04, + "end": 20220.28, + "probability": 0.7311 + }, + { + "start": 20221.26, + "end": 20224.92, + "probability": 0.7 + }, + { + "start": 20225.5, + "end": 20228.38, + "probability": 0.9893 + }, + { + "start": 20229.08, + "end": 20231.86, + "probability": 0.9263 + }, + { + "start": 20232.42, + "end": 20235.52, + "probability": 0.9825 + }, + { + "start": 20236.58, + "end": 20239.48, + "probability": 0.9683 + }, + { + "start": 20239.64, + "end": 20241.84, + "probability": 0.6265 + }, + { + "start": 20242.48, + "end": 20244.48, + "probability": 0.7726 + }, + { + "start": 20245.41, + "end": 20250.11, + "probability": 0.9035 + }, + { + "start": 20250.52, + "end": 20256.5, + "probability": 0.9108 + }, + { + "start": 20256.52, + "end": 20258.74, + "probability": 0.998 + }, + { + "start": 20259.76, + "end": 20260.6, + "probability": 0.6667 + }, + { + "start": 20261.24, + "end": 20262.8, + "probability": 0.1798 + }, + { + "start": 20263.26, + "end": 20267.19, + "probability": 0.8407 + }, + { + "start": 20267.38, + "end": 20271.86, + "probability": 0.9651 + }, + { + "start": 20272.64, + "end": 20275.86, + "probability": 0.9858 + }, + { + "start": 20276.24, + "end": 20276.58, + "probability": 0.7949 + }, + { + "start": 20278.03, + "end": 20280.22, + "probability": 0.8801 + }, + { + "start": 20282.1, + "end": 20283.26, + "probability": 0.884 + }, + { + "start": 20284.48, + "end": 20285.1, + "probability": 0.8759 + }, + { + "start": 20285.34, + "end": 20286.36, + "probability": 0.7302 + }, + { + "start": 20286.98, + "end": 20287.9, + "probability": 0.8012 + }, + { + "start": 20288.0, + "end": 20291.2, + "probability": 0.7845 + }, + { + "start": 20300.34, + "end": 20300.64, + "probability": 0.3641 + }, + { + "start": 20303.1, + "end": 20303.1, + "probability": 0.2337 + }, + { + "start": 20303.1, + "end": 20306.22, + "probability": 0.8542 + }, + { + "start": 20306.46, + "end": 20308.62, + "probability": 0.8861 + }, + { + "start": 20311.64, + "end": 20313.62, + "probability": 0.9421 + }, + { + "start": 20320.82, + "end": 20320.82, + "probability": 0.0426 + }, + { + "start": 20320.82, + "end": 20321.88, + "probability": 0.1485 + }, + { + "start": 20322.77, + "end": 20324.35, + "probability": 0.729 + }, + { + "start": 20324.8, + "end": 20325.18, + "probability": 0.5466 + }, + { + "start": 20325.34, + "end": 20326.98, + "probability": 0.7446 + }, + { + "start": 20328.42, + "end": 20329.34, + "probability": 0.7816 + }, + { + "start": 20330.08, + "end": 20330.28, + "probability": 0.6145 + }, + { + "start": 20333.06, + "end": 20333.46, + "probability": 0.7738 + }, + { + "start": 20336.12, + "end": 20336.68, + "probability": 0.0008 + }, + { + "start": 20337.02, + "end": 20337.74, + "probability": 0.4641 + }, + { + "start": 20339.14, + "end": 20340.74, + "probability": 0.7793 + }, + { + "start": 20341.22, + "end": 20342.8, + "probability": 0.6666 + }, + { + "start": 20343.34, + "end": 20345.94, + "probability": 0.9531 + }, + { + "start": 20346.58, + "end": 20351.36, + "probability": 0.9592 + }, + { + "start": 20351.4, + "end": 20351.76, + "probability": 0.9845 + }, + { + "start": 20352.28, + "end": 20352.88, + "probability": 0.8462 + }, + { + "start": 20356.1, + "end": 20358.98, + "probability": 0.8041 + }, + { + "start": 20359.6, + "end": 20361.02, + "probability": 0.7887 + }, + { + "start": 20361.4, + "end": 20361.76, + "probability": 0.5883 + }, + { + "start": 20361.94, + "end": 20363.26, + "probability": 0.9857 + }, + { + "start": 20363.7, + "end": 20364.1, + "probability": 0.8367 + }, + { + "start": 20364.22, + "end": 20365.46, + "probability": 0.9294 + }, + { + "start": 20365.92, + "end": 20366.34, + "probability": 0.8775 + }, + { + "start": 20366.92, + "end": 20368.3, + "probability": 0.991 + }, + { + "start": 20369.16, + "end": 20372.26, + "probability": 0.8166 + }, + { + "start": 20376.56, + "end": 20378.6, + "probability": 0.5713 + }, + { + "start": 20378.6, + "end": 20379.44, + "probability": 0.9105 + }, + { + "start": 20379.74, + "end": 20380.42, + "probability": 0.9879 + }, + { + "start": 20380.62, + "end": 20380.96, + "probability": 0.2383 + }, + { + "start": 20383.66, + "end": 20383.66, + "probability": 0.0004 + }, + { + "start": 20384.76, + "end": 20386.16, + "probability": 0.9889 + }, + { + "start": 20386.72, + "end": 20387.78, + "probability": 0.7711 + }, + { + "start": 20399.06, + "end": 20399.26, + "probability": 0.3483 + }, + { + "start": 20399.26, + "end": 20400.48, + "probability": 0.5026 + }, + { + "start": 20401.12, + "end": 20402.56, + "probability": 0.7265 + }, + { + "start": 20403.5, + "end": 20405.62, + "probability": 0.9171 + }, + { + "start": 20405.68, + "end": 20408.3, + "probability": 0.7615 + }, + { + "start": 20410.62, + "end": 20411.86, + "probability": 0.8053 + }, + { + "start": 20413.38, + "end": 20413.8, + "probability": 0.4528 + }, + { + "start": 20413.84, + "end": 20417.02, + "probability": 0.953 + }, + { + "start": 20417.16, + "end": 20418.76, + "probability": 0.8041 + }, + { + "start": 20418.88, + "end": 20420.54, + "probability": 0.9443 + }, + { + "start": 20421.14, + "end": 20423.54, + "probability": 0.9792 + }, + { + "start": 20424.3, + "end": 20427.6, + "probability": 0.9867 + }, + { + "start": 20428.3, + "end": 20429.26, + "probability": 0.832 + }, + { + "start": 20429.38, + "end": 20433.24, + "probability": 0.9643 + }, + { + "start": 20434.3, + "end": 20434.72, + "probability": 0.7401 + }, + { + "start": 20435.22, + "end": 20440.68, + "probability": 0.9246 + }, + { + "start": 20442.06, + "end": 20442.7, + "probability": 0.4678 + }, + { + "start": 20443.24, + "end": 20443.34, + "probability": 0.4572 + }, + { + "start": 20443.92, + "end": 20445.56, + "probability": 0.855 + }, + { + "start": 20446.56, + "end": 20449.48, + "probability": 0.955 + }, + { + "start": 20449.48, + "end": 20452.56, + "probability": 0.8761 + }, + { + "start": 20452.56, + "end": 20458.34, + "probability": 0.9753 + }, + { + "start": 20459.24, + "end": 20463.04, + "probability": 0.9917 + }, + { + "start": 20463.04, + "end": 20467.16, + "probability": 0.9954 + }, + { + "start": 20467.88, + "end": 20469.42, + "probability": 0.7296 + }, + { + "start": 20469.58, + "end": 20472.72, + "probability": 0.957 + }, + { + "start": 20472.82, + "end": 20475.66, + "probability": 0.9662 + }, + { + "start": 20476.02, + "end": 20478.0, + "probability": 0.9963 + }, + { + "start": 20478.56, + "end": 20480.92, + "probability": 0.8247 + }, + { + "start": 20481.0, + "end": 20486.12, + "probability": 0.9946 + }, + { + "start": 20486.5, + "end": 20486.74, + "probability": 0.292 + }, + { + "start": 20486.74, + "end": 20488.5, + "probability": 0.9904 + }, + { + "start": 20488.7, + "end": 20489.58, + "probability": 0.8304 + }, + { + "start": 20490.32, + "end": 20494.16, + "probability": 0.8808 + }, + { + "start": 20494.68, + "end": 20497.49, + "probability": 0.9274 + }, + { + "start": 20501.22, + "end": 20505.82, + "probability": 0.8909 + }, + { + "start": 20507.5, + "end": 20510.9, + "probability": 0.0597 + }, + { + "start": 20512.02, + "end": 20512.2, + "probability": 0.0802 + }, + { + "start": 20512.2, + "end": 20512.99, + "probability": 0.1907 + }, + { + "start": 20530.1, + "end": 20531.34, + "probability": 0.8896 + }, + { + "start": 20532.5, + "end": 20535.34, + "probability": 0.8802 + }, + { + "start": 20536.36, + "end": 20537.66, + "probability": 0.697 + }, + { + "start": 20540.66, + "end": 20543.3, + "probability": 0.6174 + }, + { + "start": 20544.38, + "end": 20545.22, + "probability": 0.6758 + }, + { + "start": 20545.66, + "end": 20546.28, + "probability": 0.6464 + }, + { + "start": 20548.22, + "end": 20548.84, + "probability": 0.5977 + }, + { + "start": 20549.78, + "end": 20550.42, + "probability": 0.7341 + }, + { + "start": 20551.36, + "end": 20551.78, + "probability": 0.3299 + }, + { + "start": 20553.66, + "end": 20554.26, + "probability": 0.67 + }, + { + "start": 20554.52, + "end": 20558.42, + "probability": 0.7 + }, + { + "start": 20559.68, + "end": 20563.98, + "probability": 0.6636 + }, + { + "start": 20566.8, + "end": 20567.98, + "probability": 0.5002 + }, + { + "start": 20569.52, + "end": 20572.38, + "probability": 0.7252 + }, + { + "start": 20573.68, + "end": 20576.04, + "probability": 0.8786 + }, + { + "start": 20576.9, + "end": 20580.3, + "probability": 0.485 + }, + { + "start": 20581.72, + "end": 20583.38, + "probability": 0.9771 + }, + { + "start": 20583.98, + "end": 20584.54, + "probability": 0.6031 + }, + { + "start": 20586.14, + "end": 20586.74, + "probability": 0.9547 + }, + { + "start": 20588.54, + "end": 20589.22, + "probability": 0.6696 + }, + { + "start": 20589.22, + "end": 20594.5, + "probability": 0.8556 + }, + { + "start": 20595.22, + "end": 20599.22, + "probability": 0.9873 + }, + { + "start": 20599.34, + "end": 20600.6, + "probability": 0.8508 + }, + { + "start": 20601.8, + "end": 20602.42, + "probability": 0.9631 + }, + { + "start": 20603.12, + "end": 20606.4, + "probability": 0.6519 + }, + { + "start": 20606.7, + "end": 20607.66, + "probability": 0.8478 + }, + { + "start": 20609.7, + "end": 20611.82, + "probability": 0.9708 + }, + { + "start": 20611.82, + "end": 20614.8, + "probability": 0.9439 + }, + { + "start": 20615.56, + "end": 20616.58, + "probability": 0.9728 + }, + { + "start": 20618.08, + "end": 20619.1, + "probability": 0.9761 + }, + { + "start": 20621.76, + "end": 20624.72, + "probability": 0.7319 + }, + { + "start": 20626.04, + "end": 20627.74, + "probability": 0.8253 + }, + { + "start": 20629.24, + "end": 20631.06, + "probability": 0.8721 + }, + { + "start": 20634.88, + "end": 20636.58, + "probability": 0.5508 + }, + { + "start": 20637.5, + "end": 20642.1, + "probability": 0.9752 + }, + { + "start": 20643.16, + "end": 20643.94, + "probability": 0.8172 + }, + { + "start": 20644.86, + "end": 20646.72, + "probability": 0.8639 + }, + { + "start": 20647.56, + "end": 20648.2, + "probability": 0.9835 + }, + { + "start": 20649.22, + "end": 20652.06, + "probability": 0.9479 + }, + { + "start": 20653.3, + "end": 20654.1, + "probability": 0.902 + }, + { + "start": 20655.56, + "end": 20656.8, + "probability": 0.497 + }, + { + "start": 20658.02, + "end": 20659.44, + "probability": 0.9679 + }, + { + "start": 20660.08, + "end": 20661.02, + "probability": 0.965 + }, + { + "start": 20662.0, + "end": 20664.26, + "probability": 0.9884 + }, + { + "start": 20666.18, + "end": 20669.02, + "probability": 0.8025 + }, + { + "start": 20670.3, + "end": 20673.26, + "probability": 0.9547 + }, + { + "start": 20673.86, + "end": 20675.64, + "probability": 0.6679 + }, + { + "start": 20678.16, + "end": 20678.74, + "probability": 0.8568 + }, + { + "start": 20679.66, + "end": 20680.58, + "probability": 0.9701 + }, + { + "start": 20680.74, + "end": 20681.02, + "probability": 0.8229 + }, + { + "start": 20681.14, + "end": 20682.72, + "probability": 0.8683 + }, + { + "start": 20682.82, + "end": 20684.1, + "probability": 0.9395 + }, + { + "start": 20685.86, + "end": 20686.94, + "probability": 0.9666 + }, + { + "start": 20688.28, + "end": 20688.9, + "probability": 0.8382 + }, + { + "start": 20690.16, + "end": 20691.24, + "probability": 0.8609 + }, + { + "start": 20691.98, + "end": 20692.92, + "probability": 0.8122 + }, + { + "start": 20694.3, + "end": 20697.38, + "probability": 0.9261 + }, + { + "start": 20698.72, + "end": 20699.48, + "probability": 0.7413 + }, + { + "start": 20699.54, + "end": 20702.26, + "probability": 0.3825 + }, + { + "start": 20702.26, + "end": 20703.26, + "probability": 0.5376 + }, + { + "start": 20704.12, + "end": 20704.84, + "probability": 0.8655 + }, + { + "start": 20704.94, + "end": 20705.76, + "probability": 0.769 + }, + { + "start": 20705.86, + "end": 20706.06, + "probability": 0.1895 + }, + { + "start": 20706.06, + "end": 20706.82, + "probability": 0.4249 + }, + { + "start": 20708.48, + "end": 20709.46, + "probability": 0.8619 + }, + { + "start": 20710.44, + "end": 20715.04, + "probability": 0.8196 + }, + { + "start": 20716.74, + "end": 20718.08, + "probability": 0.7743 + }, + { + "start": 20721.76, + "end": 20724.18, + "probability": 0.8765 + }, + { + "start": 20725.84, + "end": 20726.16, + "probability": 0.1351 + }, + { + "start": 20729.44, + "end": 20730.19, + "probability": 0.7092 + }, + { + "start": 20731.18, + "end": 20732.02, + "probability": 0.5213 + }, + { + "start": 20733.34, + "end": 20735.74, + "probability": 0.5115 + }, + { + "start": 20735.76, + "end": 20741.8, + "probability": 0.6738 + }, + { + "start": 20743.22, + "end": 20745.38, + "probability": 0.2692 + }, + { + "start": 20745.92, + "end": 20752.12, + "probability": 0.562 + }, + { + "start": 20754.48, + "end": 20754.48, + "probability": 0.4986 + }, + { + "start": 20754.48, + "end": 20756.31, + "probability": 0.6618 + }, + { + "start": 20758.22, + "end": 20758.78, + "probability": 0.4958 + }, + { + "start": 20759.32, + "end": 20759.74, + "probability": 0.5529 + }, + { + "start": 20760.0, + "end": 20760.66, + "probability": 0.6068 + }, + { + "start": 20761.66, + "end": 20763.71, + "probability": 0.0969 + }, + { + "start": 20764.56, + "end": 20765.96, + "probability": 0.5491 + }, + { + "start": 20766.86, + "end": 20773.98, + "probability": 0.8005 + }, + { + "start": 20775.06, + "end": 20777.58, + "probability": 0.5944 + }, + { + "start": 20779.42, + "end": 20780.34, + "probability": 0.6847 + }, + { + "start": 20782.8, + "end": 20784.38, + "probability": 0.8519 + }, + { + "start": 20787.88, + "end": 20790.32, + "probability": 0.9693 + }, + { + "start": 20790.74, + "end": 20791.23, + "probability": 0.6284 + }, + { + "start": 20791.58, + "end": 20795.56, + "probability": 0.9814 + }, + { + "start": 20796.26, + "end": 20798.46, + "probability": 0.8883 + }, + { + "start": 20798.46, + "end": 20801.7, + "probability": 0.927 + }, + { + "start": 20801.86, + "end": 20803.9, + "probability": 0.5403 + }, + { + "start": 20804.6, + "end": 20806.88, + "probability": 0.9016 + }, + { + "start": 20806.96, + "end": 20807.4, + "probability": 0.4237 + }, + { + "start": 20809.0, + "end": 20809.85, + "probability": 0.0233 + }, + { + "start": 20818.14, + "end": 20818.76, + "probability": 0.0422 + }, + { + "start": 20818.76, + "end": 20819.04, + "probability": 0.0318 + }, + { + "start": 20820.72, + "end": 20820.88, + "probability": 0.059 + }, + { + "start": 20820.88, + "end": 20820.88, + "probability": 0.258 + }, + { + "start": 20820.88, + "end": 20820.88, + "probability": 0.1726 + }, + { + "start": 20820.88, + "end": 20822.13, + "probability": 0.2638 + }, + { + "start": 20822.42, + "end": 20824.96, + "probability": 0.7166 + }, + { + "start": 20824.96, + "end": 20825.4, + "probability": 0.9591 + }, + { + "start": 20825.52, + "end": 20826.14, + "probability": 0.6318 + }, + { + "start": 20827.08, + "end": 20828.88, + "probability": 0.9529 + }, + { + "start": 20829.96, + "end": 20831.26, + "probability": 0.933 + }, + { + "start": 20831.86, + "end": 20833.4, + "probability": 0.6842 + }, + { + "start": 20833.4, + "end": 20833.76, + "probability": 0.2541 + }, + { + "start": 20833.76, + "end": 20837.1, + "probability": 0.9704 + }, + { + "start": 20837.68, + "end": 20838.4, + "probability": 0.9003 + }, + { + "start": 20838.56, + "end": 20839.86, + "probability": 0.27 + }, + { + "start": 20840.32, + "end": 20841.04, + "probability": 0.6567 + }, + { + "start": 20841.38, + "end": 20842.86, + "probability": 0.9412 + }, + { + "start": 20843.9, + "end": 20848.9, + "probability": 0.8682 + }, + { + "start": 20850.16, + "end": 20853.96, + "probability": 0.9885 + }, + { + "start": 20855.12, + "end": 20856.3, + "probability": 0.8682 + }, + { + "start": 20857.32, + "end": 20859.38, + "probability": 0.6511 + }, + { + "start": 20860.24, + "end": 20861.0, + "probability": 0.869 + }, + { + "start": 20861.1, + "end": 20864.36, + "probability": 0.8515 + }, + { + "start": 20864.54, + "end": 20868.88, + "probability": 0.8993 + }, + { + "start": 20869.26, + "end": 20870.66, + "probability": 0.0417 + }, + { + "start": 20871.38, + "end": 20872.73, + "probability": 0.349 + }, + { + "start": 20873.04, + "end": 20873.56, + "probability": 0.5911 + }, + { + "start": 20873.64, + "end": 20875.62, + "probability": 0.9819 + }, + { + "start": 20877.02, + "end": 20881.42, + "probability": 0.7904 + }, + { + "start": 20883.06, + "end": 20884.7, + "probability": 0.8278 + }, + { + "start": 20884.8, + "end": 20885.7, + "probability": 0.5468 + }, + { + "start": 20885.78, + "end": 20886.36, + "probability": 0.4841 + }, + { + "start": 20886.42, + "end": 20886.89, + "probability": 0.8759 + }, + { + "start": 20889.03, + "end": 20891.36, + "probability": 0.7429 + }, + { + "start": 20891.36, + "end": 20891.82, + "probability": 0.2221 + }, + { + "start": 20892.4, + "end": 20894.04, + "probability": 0.498 + }, + { + "start": 20894.38, + "end": 20894.62, + "probability": 0.6394 + }, + { + "start": 20894.76, + "end": 20896.62, + "probability": 0.9045 + }, + { + "start": 20896.89, + "end": 20900.06, + "probability": 0.8086 + }, + { + "start": 20900.8, + "end": 20903.46, + "probability": 0.2073 + }, + { + "start": 20906.84, + "end": 20908.86, + "probability": 0.2575 + }, + { + "start": 20909.34, + "end": 20909.44, + "probability": 0.0416 + }, + { + "start": 20910.26, + "end": 20910.52, + "probability": 0.2187 + }, + { + "start": 20912.76, + "end": 20914.54, + "probability": 0.4396 + }, + { + "start": 20914.66, + "end": 20915.96, + "probability": 0.6652 + }, + { + "start": 20916.08, + "end": 20918.08, + "probability": 0.2898 + }, + { + "start": 20918.66, + "end": 20921.82, + "probability": 0.9209 + }, + { + "start": 20921.82, + "end": 20924.54, + "probability": 0.9377 + }, + { + "start": 20924.62, + "end": 20925.0, + "probability": 0.8244 + }, + { + "start": 20926.24, + "end": 20926.86, + "probability": 0.3324 + }, + { + "start": 20926.88, + "end": 20929.82, + "probability": 0.6144 + }, + { + "start": 20930.52, + "end": 20930.62, + "probability": 0.5004 + }, + { + "start": 20930.62, + "end": 20930.62, + "probability": 0.6211 + }, + { + "start": 20930.62, + "end": 20931.48, + "probability": 0.343 + }, + { + "start": 20931.74, + "end": 20933.01, + "probability": 0.65 + }, + { + "start": 20933.34, + "end": 20934.08, + "probability": 0.8355 + }, + { + "start": 20934.1, + "end": 20935.62, + "probability": 0.0856 + }, + { + "start": 20940.7, + "end": 20942.36, + "probability": 0.9535 + }, + { + "start": 20943.3, + "end": 20947.08, + "probability": 0.9935 + }, + { + "start": 20947.7, + "end": 20951.96, + "probability": 0.9797 + }, + { + "start": 20952.84, + "end": 20954.4, + "probability": 0.8682 + }, + { + "start": 20954.4, + "end": 20954.9, + "probability": 0.6891 + }, + { + "start": 20954.98, + "end": 20959.5, + "probability": 0.987 + }, + { + "start": 20959.82, + "end": 20960.49, + "probability": 0.8823 + }, + { + "start": 20961.1, + "end": 20963.72, + "probability": 0.8477 + }, + { + "start": 20964.38, + "end": 20965.94, + "probability": 0.8433 + }, + { + "start": 20966.6, + "end": 20967.58, + "probability": 0.9888 + }, + { + "start": 20971.9, + "end": 20976.12, + "probability": 0.1494 + }, + { + "start": 20981.74, + "end": 20984.26, + "probability": 0.0792 + }, + { + "start": 24317.0, + "end": 24317.0, + "probability": 0.0 + }, + { + "start": 24317.24, + "end": 24319.1, + "probability": 0.2189 + }, + { + "start": 24319.1, + "end": 24321.34, + "probability": 0.8212 + }, + { + "start": 24321.56, + "end": 24322.98, + "probability": 0.8733 + }, + { + "start": 24323.04, + "end": 24323.46, + "probability": 0.8887 + }, + { + "start": 24324.7, + "end": 24330.62, + "probability": 0.7326 + }, + { + "start": 24331.8, + "end": 24334.82, + "probability": 0.8954 + }, + { + "start": 24335.42, + "end": 24337.14, + "probability": 0.5856 + }, + { + "start": 24337.76, + "end": 24339.18, + "probability": 0.8045 + }, + { + "start": 24339.38, + "end": 24341.1, + "probability": 0.6012 + }, + { + "start": 24341.54, + "end": 24344.24, + "probability": 0.7762 + }, + { + "start": 24345.56, + "end": 24346.28, + "probability": 0.8582 + }, + { + "start": 24348.82, + "end": 24349.46, + "probability": 0.8659 + }, + { + "start": 24349.56, + "end": 24352.96, + "probability": 0.9941 + }, + { + "start": 24353.23, + "end": 24357.02, + "probability": 0.8351 + }, + { + "start": 24357.22, + "end": 24359.16, + "probability": 0.2466 + }, + { + "start": 24359.7, + "end": 24360.42, + "probability": 0.7038 + }, + { + "start": 24360.64, + "end": 24364.06, + "probability": 0.9319 + }, + { + "start": 24364.1, + "end": 24366.7, + "probability": 0.9624 + }, + { + "start": 24368.78, + "end": 24370.12, + "probability": 0.7669 + }, + { + "start": 24371.38, + "end": 24371.96, + "probability": 0.7712 + }, + { + "start": 24372.46, + "end": 24373.3, + "probability": 0.4523 + }, + { + "start": 24373.48, + "end": 24373.72, + "probability": 0.3838 + }, + { + "start": 24373.8, + "end": 24374.92, + "probability": 0.7356 + }, + { + "start": 24374.98, + "end": 24377.56, + "probability": 0.7851 + }, + { + "start": 24377.88, + "end": 24380.36, + "probability": 0.8505 + }, + { + "start": 24380.48, + "end": 24381.92, + "probability": 0.9634 + }, + { + "start": 24381.94, + "end": 24383.22, + "probability": 0.8677 + }, + { + "start": 24383.82, + "end": 24385.1, + "probability": 0.6829 + }, + { + "start": 24386.91, + "end": 24391.72, + "probability": 0.974 + }, + { + "start": 24392.59, + "end": 24394.02, + "probability": 0.9749 + }, + { + "start": 24394.22, + "end": 24397.6, + "probability": 0.3318 + }, + { + "start": 24398.46, + "end": 24401.36, + "probability": 0.5681 + }, + { + "start": 24401.98, + "end": 24405.78, + "probability": 0.9902 + }, + { + "start": 24406.04, + "end": 24407.12, + "probability": 0.907 + }, + { + "start": 24407.62, + "end": 24408.92, + "probability": 0.4173 + }, + { + "start": 24409.5, + "end": 24410.48, + "probability": 0.9384 + }, + { + "start": 24411.16, + "end": 24414.92, + "probability": 0.5731 + }, + { + "start": 24414.92, + "end": 24416.9, + "probability": 0.9954 + }, + { + "start": 24417.1, + "end": 24417.28, + "probability": 0.3035 + }, + { + "start": 24417.36, + "end": 24419.66, + "probability": 0.8555 + }, + { + "start": 24420.28, + "end": 24423.0, + "probability": 0.9253 + }, + { + "start": 24425.9, + "end": 24427.18, + "probability": 0.8612 + }, + { + "start": 24427.56, + "end": 24429.02, + "probability": 0.9819 + }, + { + "start": 24431.82, + "end": 24436.52, + "probability": 0.4638 + }, + { + "start": 24436.6, + "end": 24438.98, + "probability": 0.8728 + }, + { + "start": 24439.94, + "end": 24442.9, + "probability": 0.9915 + }, + { + "start": 24445.6, + "end": 24447.13, + "probability": 0.6751 + }, + { + "start": 24448.12, + "end": 24449.44, + "probability": 0.8795 + }, + { + "start": 24450.16, + "end": 24451.22, + "probability": 0.6864 + }, + { + "start": 24452.0, + "end": 24454.54, + "probability": 0.9714 + }, + { + "start": 24456.18, + "end": 24458.22, + "probability": 0.6994 + }, + { + "start": 24459.54, + "end": 24465.72, + "probability": 0.9631 + }, + { + "start": 24467.6, + "end": 24470.52, + "probability": 0.995 + }, + { + "start": 24472.0, + "end": 24473.68, + "probability": 0.9988 + }, + { + "start": 24475.3, + "end": 24476.25, + "probability": 0.9924 + }, + { + "start": 24477.46, + "end": 24478.66, + "probability": 0.9713 + }, + { + "start": 24480.16, + "end": 24482.26, + "probability": 0.8798 + }, + { + "start": 24484.0, + "end": 24485.84, + "probability": 0.8371 + }, + { + "start": 24489.12, + "end": 24490.12, + "probability": 0.7763 + }, + { + "start": 24491.56, + "end": 24494.16, + "probability": 0.7303 + }, + { + "start": 24496.44, + "end": 24497.76, + "probability": 0.999 + }, + { + "start": 24499.8, + "end": 24502.86, + "probability": 0.9982 + }, + { + "start": 24505.04, + "end": 24511.38, + "probability": 0.9892 + }, + { + "start": 24513.24, + "end": 24513.7, + "probability": 0.7319 + }, + { + "start": 24515.08, + "end": 24516.84, + "probability": 0.9454 + }, + { + "start": 24518.28, + "end": 24520.8, + "probability": 0.7921 + }, + { + "start": 24522.18, + "end": 24523.1, + "probability": 0.9274 + }, + { + "start": 24524.4, + "end": 24525.34, + "probability": 0.9561 + }, + { + "start": 24526.52, + "end": 24527.04, + "probability": 0.9464 + }, + { + "start": 24528.58, + "end": 24531.26, + "probability": 0.9919 + }, + { + "start": 24531.42, + "end": 24531.66, + "probability": 0.7084 + }, + { + "start": 24532.64, + "end": 24533.02, + "probability": 0.5915 + }, + { + "start": 24533.12, + "end": 24533.46, + "probability": 0.5003 + }, + { + "start": 24534.18, + "end": 24534.56, + "probability": 0.0311 + }, + { + "start": 24534.56, + "end": 24536.5, + "probability": 0.844 + }, + { + "start": 24537.02, + "end": 24537.3, + "probability": 0.225 + }, + { + "start": 24537.3, + "end": 24539.48, + "probability": 0.5474 + }, + { + "start": 24540.44, + "end": 24543.2, + "probability": 0.1997 + }, + { + "start": 24543.3, + "end": 24543.3, + "probability": 0.0555 + }, + { + "start": 24545.34, + "end": 24546.82, + "probability": 0.0077 + }, + { + "start": 24546.82, + "end": 24546.82, + "probability": 0.3051 + }, + { + "start": 24546.82, + "end": 24546.82, + "probability": 0.1075 + }, + { + "start": 24546.82, + "end": 24546.82, + "probability": 0.5722 + }, + { + "start": 24546.82, + "end": 24546.82, + "probability": 0.0199 + }, + { + "start": 24546.82, + "end": 24549.18, + "probability": 0.0242 + }, + { + "start": 24549.36, + "end": 24551.82, + "probability": 0.5393 + }, + { + "start": 24555.36, + "end": 24555.88, + "probability": 0.0174 + }, + { + "start": 24557.06, + "end": 24557.74, + "probability": 0.0015 + }, + { + "start": 24558.32, + "end": 24560.4, + "probability": 0.025 + }, + { + "start": 24560.68, + "end": 24560.68, + "probability": 0.3014 + }, + { + "start": 24561.12, + "end": 24562.04, + "probability": 0.412 + }, + { + "start": 24562.04, + "end": 24563.4, + "probability": 0.8596 + }, + { + "start": 24563.6, + "end": 24567.26, + "probability": 0.9915 + }, + { + "start": 24567.66, + "end": 24568.84, + "probability": 0.7312 + }, + { + "start": 24568.84, + "end": 24570.5, + "probability": 0.5945 + }, + { + "start": 24571.63, + "end": 24573.82, + "probability": 0.9448 + }, + { + "start": 24573.88, + "end": 24574.63, + "probability": 0.9083 + }, + { + "start": 24575.14, + "end": 24576.14, + "probability": 0.788 + }, + { + "start": 24576.52, + "end": 24577.03, + "probability": 0.9702 + }, + { + "start": 24577.46, + "end": 24577.9, + "probability": 0.6765 + }, + { + "start": 24579.37, + "end": 24581.2, + "probability": 0.8557 + }, + { + "start": 24581.2, + "end": 24581.2, + "probability": 0.2676 + }, + { + "start": 24581.2, + "end": 24581.2, + "probability": 0.1502 + }, + { + "start": 24581.2, + "end": 24581.94, + "probability": 0.1626 + }, + { + "start": 24582.76, + "end": 24584.96, + "probability": 0.917 + }, + { + "start": 24585.94, + "end": 24587.38, + "probability": 0.898 + }, + { + "start": 24588.0, + "end": 24589.86, + "probability": 0.8523 + }, + { + "start": 24590.72, + "end": 24591.58, + "probability": 0.5385 + }, + { + "start": 24592.82, + "end": 24594.08, + "probability": 0.9157 + }, + { + "start": 24594.78, + "end": 24595.68, + "probability": 0.8872 + }, + { + "start": 24597.5, + "end": 24600.48, + "probability": 0.5642 + }, + { + "start": 24601.06, + "end": 24605.58, + "probability": 0.9747 + }, + { + "start": 24606.1, + "end": 24607.14, + "probability": 0.7012 + }, + { + "start": 24608.92, + "end": 24611.72, + "probability": 0.4958 + }, + { + "start": 24611.72, + "end": 24611.8, + "probability": 0.4391 + }, + { + "start": 24611.88, + "end": 24612.54, + "probability": 0.9336 + }, + { + "start": 24612.56, + "end": 24614.86, + "probability": 0.928 + }, + { + "start": 24615.04, + "end": 24616.22, + "probability": 0.6485 + }, + { + "start": 24617.92, + "end": 24619.08, + "probability": 0.8449 + }, + { + "start": 24620.24, + "end": 24621.24, + "probability": 0.7426 + }, + { + "start": 24622.68, + "end": 24627.44, + "probability": 0.9755 + }, + { + "start": 24627.56, + "end": 24628.02, + "probability": 0.752 + }, + { + "start": 24628.34, + "end": 24631.16, + "probability": 0.9884 + }, + { + "start": 24631.64, + "end": 24632.84, + "probability": 0.9075 + }, + { + "start": 24633.4, + "end": 24636.16, + "probability": 0.8643 + }, + { + "start": 24636.2, + "end": 24638.56, + "probability": 0.4878 + }, + { + "start": 24639.86, + "end": 24644.1, + "probability": 0.9639 + }, + { + "start": 24652.82, + "end": 24655.74, + "probability": 0.9835 + }, + { + "start": 24666.34, + "end": 24667.7, + "probability": 0.6816 + }, + { + "start": 24669.28, + "end": 24673.3, + "probability": 0.9444 + }, + { + "start": 24673.3, + "end": 24677.88, + "probability": 0.9963 + }, + { + "start": 24679.86, + "end": 24682.56, + "probability": 0.8579 + }, + { + "start": 24682.92, + "end": 24684.52, + "probability": 0.9858 + }, + { + "start": 24684.66, + "end": 24687.1, + "probability": 0.8604 + }, + { + "start": 24687.5, + "end": 24689.04, + "probability": 0.6798 + }, + { + "start": 24689.66, + "end": 24693.14, + "probability": 0.951 + }, + { + "start": 24693.92, + "end": 24698.06, + "probability": 0.987 + }, + { + "start": 24698.7, + "end": 24700.54, + "probability": 0.9755 + }, + { + "start": 24701.0, + "end": 24705.98, + "probability": 0.9401 + }, + { + "start": 24707.16, + "end": 24712.48, + "probability": 0.9194 + }, + { + "start": 24712.96, + "end": 24717.46, + "probability": 0.9806 + }, + { + "start": 24717.52, + "end": 24718.54, + "probability": 0.9717 + }, + { + "start": 24719.1, + "end": 24724.28, + "probability": 0.9406 + }, + { + "start": 24725.3, + "end": 24730.88, + "probability": 0.9893 + }, + { + "start": 24731.72, + "end": 24734.2, + "probability": 0.9914 + }, + { + "start": 24734.54, + "end": 24737.6, + "probability": 0.9634 + }, + { + "start": 24737.7, + "end": 24738.3, + "probability": 0.7072 + }, + { + "start": 24738.98, + "end": 24739.38, + "probability": 0.7129 + }, + { + "start": 24739.54, + "end": 24740.86, + "probability": 0.9514 + }, + { + "start": 24741.02, + "end": 24742.66, + "probability": 0.9879 + }, + { + "start": 24743.4, + "end": 24743.85, + "probability": 0.9697 + }, + { + "start": 24744.42, + "end": 24745.82, + "probability": 0.9287 + }, + { + "start": 24746.68, + "end": 24748.22, + "probability": 0.9828 + }, + { + "start": 24748.26, + "end": 24752.76, + "probability": 0.9351 + }, + { + "start": 24752.84, + "end": 24758.16, + "probability": 0.9661 + }, + { + "start": 24759.34, + "end": 24760.06, + "probability": 0.7323 + }, + { + "start": 24760.32, + "end": 24764.82, + "probability": 0.9878 + }, + { + "start": 24764.84, + "end": 24769.08, + "probability": 0.7979 + }, + { + "start": 24769.4, + "end": 24773.62, + "probability": 0.9839 + }, + { + "start": 24773.7, + "end": 24774.5, + "probability": 0.9025 + }, + { + "start": 24774.82, + "end": 24779.14, + "probability": 0.9423 + }, + { + "start": 24779.44, + "end": 24781.36, + "probability": 0.823 + }, + { + "start": 24781.68, + "end": 24782.86, + "probability": 0.8504 + }, + { + "start": 24782.94, + "end": 24783.36, + "probability": 0.7586 + }, + { + "start": 24783.4, + "end": 24784.0, + "probability": 0.8956 + }, + { + "start": 24784.26, + "end": 24787.32, + "probability": 0.9152 + }, + { + "start": 24788.04, + "end": 24789.2, + "probability": 0.7418 + }, + { + "start": 24789.24, + "end": 24790.4, + "probability": 0.7981 + }, + { + "start": 24791.24, + "end": 24793.92, + "probability": 0.9849 + }, + { + "start": 24793.92, + "end": 24797.44, + "probability": 0.997 + }, + { + "start": 24797.54, + "end": 24798.22, + "probability": 0.4776 + }, + { + "start": 24799.52, + "end": 24803.48, + "probability": 0.9946 + }, + { + "start": 24803.48, + "end": 24808.32, + "probability": 0.9959 + }, + { + "start": 24808.32, + "end": 24812.66, + "probability": 0.9971 + }, + { + "start": 24814.14, + "end": 24815.5, + "probability": 0.9882 + }, + { + "start": 24816.0, + "end": 24818.82, + "probability": 0.9651 + }, + { + "start": 24819.14, + "end": 24820.46, + "probability": 0.9527 + }, + { + "start": 24820.7, + "end": 24821.44, + "probability": 0.8279 + }, + { + "start": 24821.58, + "end": 24826.66, + "probability": 0.9566 + }, + { + "start": 24827.02, + "end": 24828.34, + "probability": 0.8691 + }, + { + "start": 24828.76, + "end": 24830.82, + "probability": 0.8434 + }, + { + "start": 24830.86, + "end": 24832.8, + "probability": 0.9883 + }, + { + "start": 24833.12, + "end": 24834.5, + "probability": 0.7643 + }, + { + "start": 24834.74, + "end": 24837.32, + "probability": 0.9873 + }, + { + "start": 24838.48, + "end": 24840.92, + "probability": 0.9559 + }, + { + "start": 24842.08, + "end": 24845.3, + "probability": 0.7782 + }, + { + "start": 24845.52, + "end": 24847.43, + "probability": 0.9688 + }, + { + "start": 24848.3, + "end": 24851.81, + "probability": 0.9885 + }, + { + "start": 24852.12, + "end": 24853.34, + "probability": 0.9849 + }, + { + "start": 24853.56, + "end": 24856.8, + "probability": 0.986 + }, + { + "start": 24857.1, + "end": 24860.18, + "probability": 0.967 + }, + { + "start": 24860.18, + "end": 24864.08, + "probability": 0.765 + }, + { + "start": 24864.46, + "end": 24864.76, + "probability": 0.745 + }, + { + "start": 24865.14, + "end": 24867.1, + "probability": 0.8743 + }, + { + "start": 24867.2, + "end": 24869.26, + "probability": 0.8728 + }, + { + "start": 24874.22, + "end": 24874.86, + "probability": 0.8961 + }, + { + "start": 24881.82, + "end": 24882.6, + "probability": 0.487 + }, + { + "start": 24883.14, + "end": 24884.18, + "probability": 0.7491 + }, + { + "start": 24885.08, + "end": 24887.04, + "probability": 0.6305 + }, + { + "start": 24887.14, + "end": 24888.6, + "probability": 0.749 + }, + { + "start": 24888.84, + "end": 24891.16, + "probability": 0.9023 + }, + { + "start": 24891.88, + "end": 24892.92, + "probability": 0.9314 + }, + { + "start": 24893.66, + "end": 24894.86, + "probability": 0.9321 + }, + { + "start": 24895.34, + "end": 24900.44, + "probability": 0.9897 + }, + { + "start": 24901.16, + "end": 24902.68, + "probability": 0.7266 + }, + { + "start": 24902.84, + "end": 24905.34, + "probability": 0.9759 + }, + { + "start": 24906.4, + "end": 24912.9, + "probability": 0.9635 + }, + { + "start": 24913.32, + "end": 24916.12, + "probability": 0.9043 + }, + { + "start": 24916.48, + "end": 24918.58, + "probability": 0.984 + }, + { + "start": 24918.68, + "end": 24918.86, + "probability": 0.8264 + }, + { + "start": 24918.98, + "end": 24919.84, + "probability": 0.7318 + }, + { + "start": 24920.2, + "end": 24923.54, + "probability": 0.9797 + }, + { + "start": 24923.88, + "end": 24927.88, + "probability": 0.9836 + }, + { + "start": 24927.88, + "end": 24931.22, + "probability": 0.9661 + }, + { + "start": 24931.6, + "end": 24932.54, + "probability": 0.8275 + }, + { + "start": 24932.66, + "end": 24934.3, + "probability": 0.9844 + }, + { + "start": 24934.64, + "end": 24938.42, + "probability": 0.9944 + }, + { + "start": 24938.42, + "end": 24941.96, + "probability": 0.9325 + }, + { + "start": 24942.6, + "end": 24948.84, + "probability": 0.9869 + }, + { + "start": 24948.84, + "end": 24954.64, + "probability": 0.9952 + }, + { + "start": 24955.02, + "end": 24958.38, + "probability": 0.9949 + }, + { + "start": 24958.38, + "end": 24961.58, + "probability": 0.9409 + }, + { + "start": 24962.06, + "end": 24964.02, + "probability": 0.994 + }, + { + "start": 24964.76, + "end": 24969.96, + "probability": 0.9767 + }, + { + "start": 24970.34, + "end": 24970.92, + "probability": 0.7938 + }, + { + "start": 24972.1, + "end": 24976.16, + "probability": 0.9976 + }, + { + "start": 24977.02, + "end": 24977.44, + "probability": 0.8483 + }, + { + "start": 24978.14, + "end": 24978.54, + "probability": 0.5708 + }, + { + "start": 24978.96, + "end": 24981.46, + "probability": 0.9812 + }, + { + "start": 24981.76, + "end": 24985.36, + "probability": 0.9946 + }, + { + "start": 24985.78, + "end": 24987.9, + "probability": 0.9222 + }, + { + "start": 24988.28, + "end": 24991.44, + "probability": 0.9955 + }, + { + "start": 24992.2, + "end": 24996.6, + "probability": 0.9449 + }, + { + "start": 24997.02, + "end": 24999.54, + "probability": 0.8507 + }, + { + "start": 25000.42, + "end": 25000.84, + "probability": 0.8185 + }, + { + "start": 25001.4, + "end": 25001.82, + "probability": 0.9802 + }, + { + "start": 25002.42, + "end": 25006.88, + "probability": 0.9774 + }, + { + "start": 25006.98, + "end": 25008.45, + "probability": 0.836 + }, + { + "start": 25009.48, + "end": 25013.65, + "probability": 0.9651 + }, + { + "start": 25015.38, + "end": 25017.76, + "probability": 0.8756 + }, + { + "start": 25017.8, + "end": 25018.54, + "probability": 0.8238 + }, + { + "start": 25018.74, + "end": 25019.92, + "probability": 0.9506 + }, + { + "start": 25020.28, + "end": 25021.4, + "probability": 0.9443 + }, + { + "start": 25021.88, + "end": 25024.7, + "probability": 0.9546 + }, + { + "start": 25025.08, + "end": 25027.6, + "probability": 0.9561 + }, + { + "start": 25028.24, + "end": 25028.72, + "probability": 0.9675 + }, + { + "start": 25028.84, + "end": 25033.04, + "probability": 0.9902 + }, + { + "start": 25033.52, + "end": 25034.82, + "probability": 0.8351 + }, + { + "start": 25035.18, + "end": 25036.8, + "probability": 0.9951 + }, + { + "start": 25037.2, + "end": 25042.9, + "probability": 0.9378 + }, + { + "start": 25043.34, + "end": 25044.5, + "probability": 0.9679 + }, + { + "start": 25045.04, + "end": 25046.58, + "probability": 0.8634 + }, + { + "start": 25046.78, + "end": 25047.62, + "probability": 0.9514 + }, + { + "start": 25048.26, + "end": 25048.86, + "probability": 0.6982 + }, + { + "start": 25049.08, + "end": 25050.44, + "probability": 0.7019 + }, + { + "start": 25050.86, + "end": 25053.79, + "probability": 0.8616 + }, + { + "start": 25054.18, + "end": 25055.24, + "probability": 0.8711 + }, + { + "start": 25055.54, + "end": 25056.12, + "probability": 0.8986 + }, + { + "start": 25056.86, + "end": 25061.88, + "probability": 0.9519 + }, + { + "start": 25062.44, + "end": 25066.2, + "probability": 0.8839 + }, + { + "start": 25066.98, + "end": 25068.34, + "probability": 0.7994 + }, + { + "start": 25068.92, + "end": 25069.92, + "probability": 0.957 + }, + { + "start": 25069.98, + "end": 25070.66, + "probability": 0.9462 + }, + { + "start": 25071.14, + "end": 25072.86, + "probability": 0.5289 + }, + { + "start": 25073.14, + "end": 25074.14, + "probability": 0.9775 + }, + { + "start": 25074.5, + "end": 25075.74, + "probability": 0.9287 + }, + { + "start": 25075.9, + "end": 25076.93, + "probability": 0.9589 + }, + { + "start": 25077.36, + "end": 25078.12, + "probability": 0.8538 + }, + { + "start": 25078.96, + "end": 25080.24, + "probability": 0.9896 + }, + { + "start": 25080.7, + "end": 25082.52, + "probability": 0.8962 + }, + { + "start": 25082.92, + "end": 25085.6, + "probability": 0.8113 + }, + { + "start": 25085.82, + "end": 25086.08, + "probability": 0.7503 + }, + { + "start": 25086.42, + "end": 25088.76, + "probability": 0.9084 + }, + { + "start": 25089.24, + "end": 25090.72, + "probability": 0.97 + }, + { + "start": 25105.3, + "end": 25105.54, + "probability": 0.3832 + }, + { + "start": 25105.6, + "end": 25107.36, + "probability": 0.5008 + }, + { + "start": 25109.28, + "end": 25111.18, + "probability": 0.889 + }, + { + "start": 25111.7, + "end": 25112.56, + "probability": 0.9946 + }, + { + "start": 25113.18, + "end": 25113.46, + "probability": 0.8465 + }, + { + "start": 25114.86, + "end": 25116.08, + "probability": 0.9896 + }, + { + "start": 25117.72, + "end": 25119.36, + "probability": 0.9662 + }, + { + "start": 25120.64, + "end": 25121.48, + "probability": 0.98 + }, + { + "start": 25121.66, + "end": 25127.22, + "probability": 0.9958 + }, + { + "start": 25128.56, + "end": 25131.22, + "probability": 0.6672 + }, + { + "start": 25132.18, + "end": 25133.42, + "probability": 0.7866 + }, + { + "start": 25133.58, + "end": 25134.24, + "probability": 0.7359 + }, + { + "start": 25134.28, + "end": 25136.02, + "probability": 0.9748 + }, + { + "start": 25137.18, + "end": 25137.66, + "probability": 0.1461 + }, + { + "start": 25138.28, + "end": 25142.74, + "probability": 0.9619 + }, + { + "start": 25143.6, + "end": 25145.72, + "probability": 0.9985 + }, + { + "start": 25146.96, + "end": 25151.54, + "probability": 0.998 + }, + { + "start": 25152.32, + "end": 25154.76, + "probability": 0.9873 + }, + { + "start": 25155.38, + "end": 25158.04, + "probability": 0.9958 + }, + { + "start": 25160.08, + "end": 25163.9, + "probability": 0.9977 + }, + { + "start": 25165.0, + "end": 25165.52, + "probability": 0.8792 + }, + { + "start": 25165.6, + "end": 25168.78, + "probability": 0.9365 + }, + { + "start": 25168.9, + "end": 25170.18, + "probability": 0.9172 + }, + { + "start": 25170.22, + "end": 25170.92, + "probability": 0.8517 + }, + { + "start": 25171.14, + "end": 25173.62, + "probability": 0.9933 + }, + { + "start": 25173.72, + "end": 25174.82, + "probability": 0.6698 + }, + { + "start": 25175.7, + "end": 25179.8, + "probability": 0.9421 + }, + { + "start": 25180.68, + "end": 25183.76, + "probability": 0.9253 + }, + { + "start": 25184.3, + "end": 25187.52, + "probability": 0.9771 + }, + { + "start": 25187.6, + "end": 25192.34, + "probability": 0.9806 + }, + { + "start": 25192.34, + "end": 25195.2, + "probability": 0.9417 + }, + { + "start": 25196.0, + "end": 25196.68, + "probability": 0.7802 + }, + { + "start": 25197.66, + "end": 25199.62, + "probability": 0.9961 + }, + { + "start": 25199.7, + "end": 25200.96, + "probability": 0.9526 + }, + { + "start": 25201.62, + "end": 25202.66, + "probability": 0.8877 + }, + { + "start": 25203.92, + "end": 25207.9, + "probability": 0.9976 + }, + { + "start": 25207.9, + "end": 25211.86, + "probability": 0.9839 + }, + { + "start": 25211.94, + "end": 25213.52, + "probability": 0.9956 + }, + { + "start": 25214.08, + "end": 25215.58, + "probability": 0.9646 + }, + { + "start": 25216.04, + "end": 25216.78, + "probability": 0.9454 + }, + { + "start": 25216.86, + "end": 25217.94, + "probability": 0.9849 + }, + { + "start": 25218.12, + "end": 25220.08, + "probability": 0.9941 + }, + { + "start": 25220.86, + "end": 25221.9, + "probability": 0.9902 + }, + { + "start": 25222.74, + "end": 25224.62, + "probability": 0.9675 + }, + { + "start": 25225.26, + "end": 25227.2, + "probability": 0.8748 + }, + { + "start": 25227.68, + "end": 25229.42, + "probability": 0.884 + }, + { + "start": 25231.88, + "end": 25233.6, + "probability": 0.7277 + }, + { + "start": 25233.74, + "end": 25234.46, + "probability": 0.8301 + }, + { + "start": 25235.24, + "end": 25237.42, + "probability": 0.9933 + }, + { + "start": 25237.66, + "end": 25239.14, + "probability": 0.9992 + }, + { + "start": 25239.14, + "end": 25240.44, + "probability": 0.9963 + }, + { + "start": 25240.56, + "end": 25241.92, + "probability": 0.9985 + }, + { + "start": 25242.04, + "end": 25242.34, + "probability": 0.8538 + }, + { + "start": 25243.84, + "end": 25247.02, + "probability": 0.998 + }, + { + "start": 25247.32, + "end": 25247.72, + "probability": 0.9493 + }, + { + "start": 25247.82, + "end": 25251.88, + "probability": 0.9651 + }, + { + "start": 25253.34, + "end": 25253.6, + "probability": 0.5124 + }, + { + "start": 25254.3, + "end": 25255.66, + "probability": 0.9577 + }, + { + "start": 25256.3, + "end": 25258.44, + "probability": 0.9473 + }, + { + "start": 25258.56, + "end": 25258.82, + "probability": 0.5125 + }, + { + "start": 25258.94, + "end": 25260.38, + "probability": 0.9951 + }, + { + "start": 25260.8, + "end": 25263.32, + "probability": 0.9517 + }, + { + "start": 25264.62, + "end": 25266.32, + "probability": 0.8582 + }, + { + "start": 25267.08, + "end": 25269.9, + "probability": 0.9536 + }, + { + "start": 25270.62, + "end": 25273.94, + "probability": 0.7397 + }, + { + "start": 25274.68, + "end": 25276.26, + "probability": 0.8375 + }, + { + "start": 25276.72, + "end": 25279.18, + "probability": 0.99 + }, + { + "start": 25279.64, + "end": 25280.72, + "probability": 0.9419 + }, + { + "start": 25281.48, + "end": 25282.82, + "probability": 0.9818 + }, + { + "start": 25283.2, + "end": 25286.22, + "probability": 0.988 + }, + { + "start": 25286.26, + "end": 25286.84, + "probability": 0.8746 + }, + { + "start": 25287.3, + "end": 25288.5, + "probability": 0.9858 + }, + { + "start": 25288.58, + "end": 25289.64, + "probability": 0.9014 + }, + { + "start": 25290.04, + "end": 25294.24, + "probability": 0.9902 + }, + { + "start": 25294.78, + "end": 25295.2, + "probability": 0.6827 + }, + { + "start": 25295.56, + "end": 25297.5, + "probability": 0.9707 + }, + { + "start": 25297.56, + "end": 25300.0, + "probability": 0.9427 + }, + { + "start": 25300.92, + "end": 25301.86, + "probability": 0.4969 + }, + { + "start": 25301.96, + "end": 25303.6, + "probability": 0.8792 + }, + { + "start": 25304.42, + "end": 25305.64, + "probability": 0.9216 + }, + { + "start": 25327.22, + "end": 25328.62, + "probability": 0.4285 + }, + { + "start": 25329.4, + "end": 25330.64, + "probability": 0.7269 + }, + { + "start": 25331.96, + "end": 25334.84, + "probability": 0.9687 + }, + { + "start": 25335.78, + "end": 25338.46, + "probability": 0.991 + }, + { + "start": 25339.32, + "end": 25341.56, + "probability": 0.7275 + }, + { + "start": 25342.9, + "end": 25347.12, + "probability": 0.8081 + }, + { + "start": 25347.16, + "end": 25347.46, + "probability": 0.5704 + }, + { + "start": 25347.52, + "end": 25348.12, + "probability": 0.8867 + }, + { + "start": 25348.18, + "end": 25351.76, + "probability": 0.8956 + }, + { + "start": 25351.92, + "end": 25354.5, + "probability": 0.6531 + }, + { + "start": 25355.2, + "end": 25357.86, + "probability": 0.3878 + }, + { + "start": 25359.28, + "end": 25361.66, + "probability": 0.9646 + }, + { + "start": 25362.48, + "end": 25364.36, + "probability": 0.9325 + }, + { + "start": 25365.18, + "end": 25365.9, + "probability": 0.5382 + }, + { + "start": 25366.72, + "end": 25370.1, + "probability": 0.9282 + }, + { + "start": 25370.24, + "end": 25371.04, + "probability": 0.6719 + }, + { + "start": 25371.6, + "end": 25372.52, + "probability": 0.8533 + }, + { + "start": 25372.76, + "end": 25376.34, + "probability": 0.741 + }, + { + "start": 25376.34, + "end": 25379.24, + "probability": 0.9969 + }, + { + "start": 25379.81, + "end": 25381.02, + "probability": 0.8596 + }, + { + "start": 25381.42, + "end": 25382.4, + "probability": 0.1771 + }, + { + "start": 25382.84, + "end": 25383.59, + "probability": 0.7561 + }, + { + "start": 25385.18, + "end": 25387.46, + "probability": 0.5977 + }, + { + "start": 25387.72, + "end": 25388.57, + "probability": 0.6157 + }, + { + "start": 25390.04, + "end": 25393.08, + "probability": 0.6611 + }, + { + "start": 25395.06, + "end": 25398.06, + "probability": 0.9807 + }, + { + "start": 25399.52, + "end": 25401.66, + "probability": 0.8839 + }, + { + "start": 25401.82, + "end": 25402.34, + "probability": 0.2887 + }, + { + "start": 25402.68, + "end": 25404.1, + "probability": 0.7471 + }, + { + "start": 25404.46, + "end": 25405.86, + "probability": 0.9838 + }, + { + "start": 25406.52, + "end": 25410.72, + "probability": 0.9606 + }, + { + "start": 25411.04, + "end": 25412.66, + "probability": 0.7974 + }, + { + "start": 25412.82, + "end": 25413.46, + "probability": 0.5424 + }, + { + "start": 25413.77, + "end": 25418.08, + "probability": 0.7736 + }, + { + "start": 25418.74, + "end": 25419.8, + "probability": 0.9468 + }, + { + "start": 25420.32, + "end": 25421.02, + "probability": 0.8767 + }, + { + "start": 25422.0, + "end": 25423.42, + "probability": 0.8057 + }, + { + "start": 25423.7, + "end": 25424.58, + "probability": 0.8991 + }, + { + "start": 25424.98, + "end": 25427.58, + "probability": 0.9007 + }, + { + "start": 25427.6, + "end": 25428.5, + "probability": 0.6606 + }, + { + "start": 25428.6, + "end": 25429.38, + "probability": 0.8268 + }, + { + "start": 25429.78, + "end": 25431.84, + "probability": 0.9365 + }, + { + "start": 25431.86, + "end": 25434.02, + "probability": 0.967 + }, + { + "start": 25434.2, + "end": 25437.64, + "probability": 0.7019 + }, + { + "start": 25437.7, + "end": 25439.12, + "probability": 0.4214 + }, + { + "start": 25442.03, + "end": 25443.8, + "probability": 0.448 + }, + { + "start": 25443.98, + "end": 25445.14, + "probability": 0.835 + }, + { + "start": 25445.16, + "end": 25448.64, + "probability": 0.7934 + }, + { + "start": 25448.72, + "end": 25449.66, + "probability": 0.783 + }, + { + "start": 25450.2, + "end": 25451.92, + "probability": 0.926 + }, + { + "start": 25452.0, + "end": 25452.82, + "probability": 0.8101 + }, + { + "start": 25453.22, + "end": 25454.92, + "probability": 0.9207 + }, + { + "start": 25455.0, + "end": 25456.06, + "probability": 0.8093 + }, + { + "start": 25456.46, + "end": 25457.24, + "probability": 0.8739 + }, + { + "start": 25457.88, + "end": 25458.88, + "probability": 0.9613 + }, + { + "start": 25459.54, + "end": 25460.46, + "probability": 0.9701 + }, + { + "start": 25461.28, + "end": 25463.44, + "probability": 0.962 + }, + { + "start": 25463.52, + "end": 25466.6, + "probability": 0.8629 + }, + { + "start": 25467.34, + "end": 25469.1, + "probability": 0.6649 + }, + { + "start": 25470.38, + "end": 25473.42, + "probability": 0.6566 + }, + { + "start": 25475.04, + "end": 25479.36, + "probability": 0.9329 + }, + { + "start": 25480.5, + "end": 25485.76, + "probability": 0.9852 + }, + { + "start": 25486.3, + "end": 25488.72, + "probability": 0.7847 + }, + { + "start": 25489.42, + "end": 25490.24, + "probability": 0.7203 + }, + { + "start": 25490.84, + "end": 25492.0, + "probability": 0.9969 + }, + { + "start": 25492.82, + "end": 25494.4, + "probability": 0.8037 + }, + { + "start": 25495.02, + "end": 25495.88, + "probability": 0.4567 + }, + { + "start": 25496.04, + "end": 25497.0, + "probability": 0.663 + }, + { + "start": 25497.14, + "end": 25499.8, + "probability": 0.9072 + }, + { + "start": 25500.84, + "end": 25501.88, + "probability": 0.4261 + }, + { + "start": 25501.88, + "end": 25506.26, + "probability": 0.9838 + }, + { + "start": 25506.76, + "end": 25509.2, + "probability": 0.7967 + }, + { + "start": 25509.36, + "end": 25510.16, + "probability": 0.8685 + }, + { + "start": 25510.26, + "end": 25513.9, + "probability": 0.8419 + }, + { + "start": 25515.24, + "end": 25519.24, + "probability": 0.8046 + }, + { + "start": 25519.24, + "end": 25522.42, + "probability": 0.9583 + }, + { + "start": 25522.94, + "end": 25525.76, + "probability": 0.5141 + }, + { + "start": 25526.56, + "end": 25529.24, + "probability": 0.9865 + }, + { + "start": 25530.12, + "end": 25532.82, + "probability": 0.9789 + }, + { + "start": 25533.8, + "end": 25535.2, + "probability": 0.7141 + }, + { + "start": 25535.5, + "end": 25538.18, + "probability": 0.7314 + }, + { + "start": 25538.5, + "end": 25539.44, + "probability": 0.5706 + }, + { + "start": 25539.86, + "end": 25540.74, + "probability": 0.463 + }, + { + "start": 25541.42, + "end": 25543.1, + "probability": 0.8909 + }, + { + "start": 25543.64, + "end": 25544.86, + "probability": 0.6318 + }, + { + "start": 25545.52, + "end": 25547.32, + "probability": 0.7512 + }, + { + "start": 25547.86, + "end": 25550.72, + "probability": 0.827 + }, + { + "start": 25550.92, + "end": 25555.38, + "probability": 0.9985 + }, + { + "start": 25555.46, + "end": 25557.37, + "probability": 0.9897 + }, + { + "start": 25557.96, + "end": 25559.4, + "probability": 0.8779 + }, + { + "start": 25559.6, + "end": 25560.12, + "probability": 0.8457 + }, + { + "start": 25560.74, + "end": 25561.76, + "probability": 0.8325 + }, + { + "start": 25562.66, + "end": 25565.04, + "probability": 0.993 + }, + { + "start": 25565.5, + "end": 25568.58, + "probability": 0.9043 + }, + { + "start": 25569.22, + "end": 25572.9, + "probability": 0.9858 + }, + { + "start": 25573.3, + "end": 25577.32, + "probability": 0.9712 + }, + { + "start": 25577.84, + "end": 25580.74, + "probability": 0.9481 + }, + { + "start": 25580.84, + "end": 25581.42, + "probability": 0.7631 + }, + { + "start": 25581.52, + "end": 25582.32, + "probability": 0.9832 + }, + { + "start": 25582.64, + "end": 25583.24, + "probability": 0.8957 + }, + { + "start": 25583.54, + "end": 25588.36, + "probability": 0.9392 + }, + { + "start": 25588.88, + "end": 25593.38, + "probability": 0.9814 + }, + { + "start": 25594.24, + "end": 25596.32, + "probability": 0.7646 + }, + { + "start": 25596.8, + "end": 25597.76, + "probability": 0.8021 + }, + { + "start": 25597.86, + "end": 25599.6, + "probability": 0.7603 + }, + { + "start": 25600.1, + "end": 25604.62, + "probability": 0.9549 + }, + { + "start": 25604.78, + "end": 25607.04, + "probability": 0.8011 + }, + { + "start": 25607.58, + "end": 25610.42, + "probability": 0.7441 + }, + { + "start": 25610.42, + "end": 25614.4, + "probability": 0.7234 + }, + { + "start": 25614.54, + "end": 25615.06, + "probability": 0.6664 + }, + { + "start": 25615.12, + "end": 25615.4, + "probability": 0.5801 + }, + { + "start": 25616.04, + "end": 25618.08, + "probability": 0.8537 + }, + { + "start": 25618.14, + "end": 25619.48, + "probability": 0.7084 + }, + { + "start": 25619.6, + "end": 25624.8, + "probability": 0.9586 + }, + { + "start": 25625.2, + "end": 25627.08, + "probability": 0.7592 + }, + { + "start": 25627.5, + "end": 25628.6, + "probability": 0.5387 + }, + { + "start": 25628.7, + "end": 25630.92, + "probability": 0.9567 + }, + { + "start": 25631.62, + "end": 25633.24, + "probability": 0.6509 + }, + { + "start": 25633.72, + "end": 25636.98, + "probability": 0.7992 + }, + { + "start": 25637.1, + "end": 25637.94, + "probability": 0.7135 + }, + { + "start": 25638.38, + "end": 25639.36, + "probability": 0.7349 + }, + { + "start": 25639.62, + "end": 25640.86, + "probability": 0.9722 + }, + { + "start": 25641.06, + "end": 25641.82, + "probability": 0.7325 + }, + { + "start": 25641.9, + "end": 25642.32, + "probability": 0.7145 + }, + { + "start": 25642.64, + "end": 25644.6, + "probability": 0.6161 + }, + { + "start": 25644.74, + "end": 25646.96, + "probability": 0.6917 + }, + { + "start": 25647.14, + "end": 25648.02, + "probability": 0.6617 + }, + { + "start": 25665.4, + "end": 25665.4, + "probability": 0.006 + }, + { + "start": 25665.4, + "end": 25667.56, + "probability": 0.561 + }, + { + "start": 25669.12, + "end": 25671.1, + "probability": 0.9709 + }, + { + "start": 25672.74, + "end": 25674.13, + "probability": 0.8618 + }, + { + "start": 25675.14, + "end": 25675.84, + "probability": 0.2255 + }, + { + "start": 25677.16, + "end": 25679.78, + "probability": 0.6531 + }, + { + "start": 25680.82, + "end": 25682.8, + "probability": 0.5434 + }, + { + "start": 25683.46, + "end": 25684.22, + "probability": 0.9507 + }, + { + "start": 25685.26, + "end": 25688.16, + "probability": 0.6222 + }, + { + "start": 25688.74, + "end": 25690.18, + "probability": 0.664 + }, + { + "start": 25690.98, + "end": 25693.52, + "probability": 0.9985 + }, + { + "start": 25694.14, + "end": 25696.02, + "probability": 0.8052 + }, + { + "start": 25696.54, + "end": 25697.88, + "probability": 0.9832 + }, + { + "start": 25698.92, + "end": 25701.4, + "probability": 0.9858 + }, + { + "start": 25702.14, + "end": 25705.76, + "probability": 0.7841 + }, + { + "start": 25706.46, + "end": 25711.44, + "probability": 0.999 + }, + { + "start": 25712.42, + "end": 25713.72, + "probability": 0.9563 + }, + { + "start": 25714.68, + "end": 25715.88, + "probability": 0.9907 + }, + { + "start": 25716.38, + "end": 25717.84, + "probability": 0.9839 + }, + { + "start": 25720.0, + "end": 25723.98, + "probability": 0.9398 + }, + { + "start": 25724.78, + "end": 25727.02, + "probability": 0.879 + }, + { + "start": 25729.0, + "end": 25729.48, + "probability": 0.0115 + }, + { + "start": 25729.48, + "end": 25729.48, + "probability": 0.2614 + }, + { + "start": 25729.48, + "end": 25729.48, + "probability": 0.2597 + }, + { + "start": 25729.48, + "end": 25729.48, + "probability": 0.3534 + }, + { + "start": 25729.48, + "end": 25729.48, + "probability": 0.0606 + }, + { + "start": 25729.48, + "end": 25729.48, + "probability": 0.0523 + }, + { + "start": 25729.48, + "end": 25730.56, + "probability": 0.5873 + }, + { + "start": 25731.54, + "end": 25735.0, + "probability": 0.5426 + }, + { + "start": 25735.86, + "end": 25738.68, + "probability": 0.8949 + }, + { + "start": 25740.24, + "end": 25743.12, + "probability": 0.8966 + }, + { + "start": 25743.74, + "end": 25744.62, + "probability": 0.6685 + }, + { + "start": 25745.5, + "end": 25750.98, + "probability": 0.9778 + }, + { + "start": 25752.12, + "end": 25753.26, + "probability": 0.7584 + }, + { + "start": 25754.56, + "end": 25755.4, + "probability": 0.9609 + }, + { + "start": 25756.34, + "end": 25759.26, + "probability": 0.9159 + }, + { + "start": 25760.4, + "end": 25762.32, + "probability": 0.996 + }, + { + "start": 25763.4, + "end": 25764.53, + "probability": 0.7406 + }, + { + "start": 25765.48, + "end": 25768.44, + "probability": 0.8822 + }, + { + "start": 25769.1, + "end": 25771.76, + "probability": 0.9938 + }, + { + "start": 25772.46, + "end": 25774.3, + "probability": 0.8574 + }, + { + "start": 25775.14, + "end": 25776.57, + "probability": 0.9967 + }, + { + "start": 25777.16, + "end": 25778.46, + "probability": 0.9401 + }, + { + "start": 25780.26, + "end": 25783.5, + "probability": 0.8878 + }, + { + "start": 25784.1, + "end": 25785.4, + "probability": 0.9089 + }, + { + "start": 25786.6, + "end": 25790.78, + "probability": 0.9727 + }, + { + "start": 25791.48, + "end": 25794.58, + "probability": 0.96 + }, + { + "start": 25795.14, + "end": 25796.48, + "probability": 0.7671 + }, + { + "start": 25797.5, + "end": 25797.96, + "probability": 0.5114 + }, + { + "start": 25798.24, + "end": 25802.02, + "probability": 0.9836 + }, + { + "start": 25802.42, + "end": 25807.26, + "probability": 0.8777 + }, + { + "start": 25807.9, + "end": 25809.03, + "probability": 0.7308 + }, + { + "start": 25810.22, + "end": 25812.06, + "probability": 0.8589 + }, + { + "start": 25813.76, + "end": 25815.26, + "probability": 0.5023 + }, + { + "start": 25816.1, + "end": 25818.76, + "probability": 0.9941 + }, + { + "start": 25819.62, + "end": 25823.54, + "probability": 0.9656 + }, + { + "start": 25824.28, + "end": 25828.25, + "probability": 0.9763 + }, + { + "start": 25829.42, + "end": 25830.58, + "probability": 0.6361 + }, + { + "start": 25831.8, + "end": 25834.7, + "probability": 0.7021 + }, + { + "start": 25835.08, + "end": 25837.84, + "probability": 0.9755 + }, + { + "start": 25838.52, + "end": 25839.78, + "probability": 0.4829 + }, + { + "start": 25840.48, + "end": 25842.08, + "probability": 0.9472 + }, + { + "start": 25842.64, + "end": 25844.36, + "probability": 0.5021 + }, + { + "start": 25845.08, + "end": 25847.36, + "probability": 0.9513 + }, + { + "start": 25847.84, + "end": 25848.88, + "probability": 0.9564 + }, + { + "start": 25848.94, + "end": 25850.0, + "probability": 0.8831 + }, + { + "start": 25850.76, + "end": 25851.95, + "probability": 0.7502 + }, + { + "start": 25852.98, + "end": 25856.81, + "probability": 0.6704 + }, + { + "start": 25857.78, + "end": 25859.72, + "probability": 0.9873 + }, + { + "start": 25860.6, + "end": 25865.14, + "probability": 0.9943 + }, + { + "start": 25865.4, + "end": 25869.58, + "probability": 0.9081 + }, + { + "start": 25870.34, + "end": 25873.62, + "probability": 0.841 + }, + { + "start": 25873.94, + "end": 25877.62, + "probability": 0.9889 + }, + { + "start": 25878.32, + "end": 25881.32, + "probability": 0.9438 + }, + { + "start": 25882.72, + "end": 25885.18, + "probability": 0.8855 + }, + { + "start": 25885.74, + "end": 25887.0, + "probability": 0.4788 + }, + { + "start": 25887.24, + "end": 25887.98, + "probability": 0.7967 + }, + { + "start": 25889.48, + "end": 25892.42, + "probability": 0.7979 + }, + { + "start": 25893.54, + "end": 25897.66, + "probability": 0.6091 + }, + { + "start": 25898.4, + "end": 25901.58, + "probability": 0.9863 + }, + { + "start": 25904.2, + "end": 25906.7, + "probability": 0.9717 + }, + { + "start": 25906.78, + "end": 25907.52, + "probability": 0.6762 + }, + { + "start": 25907.62, + "end": 25908.12, + "probability": 0.4873 + }, + { + "start": 25908.42, + "end": 25910.3, + "probability": 0.872 + }, + { + "start": 25913.04, + "end": 25913.6, + "probability": 0.0916 + }, + { + "start": 25916.31, + "end": 25917.48, + "probability": 0.2947 + }, + { + "start": 25919.04, + "end": 25922.56, + "probability": 0.1946 + }, + { + "start": 25922.66, + "end": 25922.98, + "probability": 0.1536 + }, + { + "start": 25922.98, + "end": 25923.12, + "probability": 0.6802 + }, + { + "start": 25923.12, + "end": 25923.12, + "probability": 0.4247 + }, + { + "start": 25923.12, + "end": 25925.42, + "probability": 0.4833 + }, + { + "start": 25925.46, + "end": 25926.18, + "probability": 0.9612 + }, + { + "start": 25926.28, + "end": 25927.0, + "probability": 0.8279 + }, + { + "start": 25927.5, + "end": 25928.52, + "probability": 0.3084 + }, + { + "start": 25930.16, + "end": 25932.04, + "probability": 0.0002 + }, + { + "start": 25933.52, + "end": 25933.9, + "probability": 0.07 + }, + { + "start": 25933.9, + "end": 25935.36, + "probability": 0.1783 + }, + { + "start": 25935.46, + "end": 25936.96, + "probability": 0.7462 + }, + { + "start": 25937.06, + "end": 25938.0, + "probability": 0.4309 + }, + { + "start": 25940.54, + "end": 25943.74, + "probability": 0.7666 + }, + { + "start": 25943.8, + "end": 25948.66, + "probability": 0.9773 + }, + { + "start": 25949.38, + "end": 25951.12, + "probability": 0.5127 + }, + { + "start": 25951.18, + "end": 25952.4, + "probability": 0.9205 + }, + { + "start": 25952.52, + "end": 25953.4, + "probability": 0.7561 + }, + { + "start": 25953.46, + "end": 25954.12, + "probability": 0.8145 + }, + { + "start": 25954.3, + "end": 25957.86, + "probability": 0.5926 + }, + { + "start": 25958.46, + "end": 25958.46, + "probability": 0.0258 + }, + { + "start": 25958.46, + "end": 25958.46, + "probability": 0.0594 + }, + { + "start": 25958.46, + "end": 25958.94, + "probability": 0.0337 + }, + { + "start": 25960.2, + "end": 25960.74, + "probability": 0.1034 + }, + { + "start": 25963.3, + "end": 25963.4, + "probability": 0.1531 + }, + { + "start": 25963.4, + "end": 25965.38, + "probability": 0.5506 + }, + { + "start": 25965.42, + "end": 25966.1, + "probability": 0.5699 + }, + { + "start": 25966.8, + "end": 25969.1, + "probability": 0.5924 + }, + { + "start": 25970.32, + "end": 25970.94, + "probability": 0.0176 + } + ], + "segments_count": 7766, + "words_count": 37628, + "avg_words_per_segment": 4.8452, + "avg_segment_duration": 2.0044, + "avg_words_per_minute": 86.8898, + "plenum_id": "41008", + "duration": 25983.27, + "title": null, + "plenum_date": "2014-12-03" +} \ No newline at end of file