diff --git "a/68044/metadata.json" "b/68044/metadata.json" new file mode 100644--- /dev/null +++ "b/68044/metadata.json" @@ -0,0 +1,35827 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "68044", + "quality_score": 0.9127, + "per_segment_quality_scores": [ + { + "start": 84.22, + "end": 84.94, + "probability": 0.5462 + }, + { + "start": 85.1, + "end": 85.1, + "probability": 0.5562 + }, + { + "start": 85.1, + "end": 88.09, + "probability": 0.666 + }, + { + "start": 89.04, + "end": 91.3, + "probability": 0.7573 + }, + { + "start": 92.04, + "end": 92.48, + "probability": 0.6239 + }, + { + "start": 93.02, + "end": 95.66, + "probability": 0.9755 + }, + { + "start": 96.8, + "end": 97.68, + "probability": 0.9497 + }, + { + "start": 97.72, + "end": 100.7, + "probability": 0.9898 + }, + { + "start": 103.71, + "end": 106.7, + "probability": 0.5224 + }, + { + "start": 106.8, + "end": 107.78, + "probability": 0.7715 + }, + { + "start": 108.74, + "end": 111.62, + "probability": 0.9345 + }, + { + "start": 111.62, + "end": 114.62, + "probability": 0.9972 + }, + { + "start": 115.2, + "end": 116.16, + "probability": 0.8316 + }, + { + "start": 116.84, + "end": 118.64, + "probability": 0.7254 + }, + { + "start": 118.72, + "end": 119.06, + "probability": 0.2391 + }, + { + "start": 120.34, + "end": 120.34, + "probability": 0.0268 + }, + { + "start": 120.34, + "end": 123.14, + "probability": 0.5366 + }, + { + "start": 123.16, + "end": 126.7, + "probability": 0.946 + }, + { + "start": 126.96, + "end": 127.32, + "probability": 0.5839 + }, + { + "start": 127.9, + "end": 128.36, + "probability": 0.4612 + }, + { + "start": 128.52, + "end": 130.2, + "probability": 0.6004 + }, + { + "start": 130.52, + "end": 132.72, + "probability": 0.6874 + }, + { + "start": 133.52, + "end": 135.6, + "probability": 0.9035 + }, + { + "start": 135.76, + "end": 137.04, + "probability": 0.869 + }, + { + "start": 138.81, + "end": 143.13, + "probability": 0.8993 + }, + { + "start": 144.28, + "end": 145.54, + "probability": 0.7861 + }, + { + "start": 145.68, + "end": 146.62, + "probability": 0.016 + }, + { + "start": 146.64, + "end": 149.06, + "probability": 0.759 + }, + { + "start": 149.74, + "end": 152.02, + "probability": 0.5715 + }, + { + "start": 152.36, + "end": 155.72, + "probability": 0.9852 + }, + { + "start": 155.72, + "end": 159.52, + "probability": 0.9834 + }, + { + "start": 160.54, + "end": 161.1, + "probability": 0.5542 + }, + { + "start": 161.96, + "end": 165.41, + "probability": 0.9826 + }, + { + "start": 167.46, + "end": 169.6, + "probability": 0.7426 + }, + { + "start": 170.22, + "end": 174.98, + "probability": 0.9409 + }, + { + "start": 175.52, + "end": 178.56, + "probability": 0.985 + }, + { + "start": 180.08, + "end": 180.76, + "probability": 0.6973 + }, + { + "start": 180.84, + "end": 189.08, + "probability": 0.8445 + }, + { + "start": 189.42, + "end": 190.0, + "probability": 0.6074 + }, + { + "start": 191.52, + "end": 191.98, + "probability": 0.7702 + }, + { + "start": 192.08, + "end": 193.3, + "probability": 0.9604 + }, + { + "start": 194.5, + "end": 196.26, + "probability": 0.364 + }, + { + "start": 200.48, + "end": 207.48, + "probability": 0.8774 + }, + { + "start": 207.56, + "end": 209.72, + "probability": 0.9141 + }, + { + "start": 210.08, + "end": 211.24, + "probability": 0.7972 + }, + { + "start": 211.86, + "end": 214.15, + "probability": 0.9758 + }, + { + "start": 215.08, + "end": 219.76, + "probability": 0.9827 + }, + { + "start": 220.32, + "end": 221.11, + "probability": 0.6311 + }, + { + "start": 221.5, + "end": 223.62, + "probability": 0.8926 + }, + { + "start": 224.24, + "end": 224.68, + "probability": 0.4541 + }, + { + "start": 225.12, + "end": 225.86, + "probability": 0.7462 + }, + { + "start": 226.0, + "end": 229.64, + "probability": 0.9042 + }, + { + "start": 229.96, + "end": 231.94, + "probability": 0.929 + }, + { + "start": 232.52, + "end": 240.38, + "probability": 0.7485 + }, + { + "start": 240.84, + "end": 244.18, + "probability": 0.9366 + }, + { + "start": 244.76, + "end": 247.88, + "probability": 0.6428 + }, + { + "start": 248.32, + "end": 248.56, + "probability": 0.2954 + }, + { + "start": 248.6, + "end": 252.98, + "probability": 0.9266 + }, + { + "start": 252.98, + "end": 257.38, + "probability": 0.9958 + }, + { + "start": 258.04, + "end": 261.44, + "probability": 0.7531 + }, + { + "start": 261.98, + "end": 266.08, + "probability": 0.8412 + }, + { + "start": 266.16, + "end": 271.5, + "probability": 0.887 + }, + { + "start": 272.12, + "end": 274.28, + "probability": 0.7438 + }, + { + "start": 274.42, + "end": 277.8, + "probability": 0.9907 + }, + { + "start": 278.26, + "end": 284.1, + "probability": 0.8636 + }, + { + "start": 284.5, + "end": 285.58, + "probability": 0.9198 + }, + { + "start": 285.92, + "end": 286.74, + "probability": 0.9834 + }, + { + "start": 287.98, + "end": 289.26, + "probability": 0.5317 + }, + { + "start": 289.28, + "end": 291.1, + "probability": 0.988 + }, + { + "start": 291.16, + "end": 292.88, + "probability": 0.9933 + }, + { + "start": 293.38, + "end": 298.38, + "probability": 0.9182 + }, + { + "start": 299.5, + "end": 302.7, + "probability": 0.8838 + }, + { + "start": 303.78, + "end": 305.08, + "probability": 0.6992 + }, + { + "start": 305.56, + "end": 306.6, + "probability": 0.8671 + }, + { + "start": 307.18, + "end": 308.8, + "probability": 0.9196 + }, + { + "start": 309.38, + "end": 312.26, + "probability": 0.9788 + }, + { + "start": 312.8, + "end": 315.82, + "probability": 0.5964 + }, + { + "start": 316.5, + "end": 318.72, + "probability": 0.9792 + }, + { + "start": 319.24, + "end": 320.2, + "probability": 0.9549 + }, + { + "start": 320.32, + "end": 323.8, + "probability": 0.9826 + }, + { + "start": 323.9, + "end": 324.64, + "probability": 0.5444 + }, + { + "start": 324.66, + "end": 327.82, + "probability": 0.9624 + }, + { + "start": 328.22, + "end": 330.44, + "probability": 0.9937 + }, + { + "start": 330.7, + "end": 330.98, + "probability": 0.8638 + }, + { + "start": 331.0, + "end": 332.04, + "probability": 0.9088 + }, + { + "start": 332.48, + "end": 333.16, + "probability": 0.925 + }, + { + "start": 333.22, + "end": 335.02, + "probability": 0.9882 + }, + { + "start": 335.02, + "end": 337.82, + "probability": 0.7243 + }, + { + "start": 338.04, + "end": 339.42, + "probability": 0.997 + }, + { + "start": 339.86, + "end": 340.32, + "probability": 0.4298 + }, + { + "start": 340.34, + "end": 345.32, + "probability": 0.9351 + }, + { + "start": 345.96, + "end": 347.16, + "probability": 0.7555 + }, + { + "start": 347.26, + "end": 348.32, + "probability": 0.9664 + }, + { + "start": 348.42, + "end": 348.78, + "probability": 0.7437 + }, + { + "start": 348.8, + "end": 349.16, + "probability": 0.7814 + }, + { + "start": 349.32, + "end": 350.94, + "probability": 0.913 + }, + { + "start": 353.39, + "end": 358.68, + "probability": 0.6786 + }, + { + "start": 358.9, + "end": 360.06, + "probability": 0.7954 + }, + { + "start": 360.88, + "end": 363.98, + "probability": 0.8857 + }, + { + "start": 364.54, + "end": 369.56, + "probability": 0.8988 + }, + { + "start": 369.86, + "end": 375.9, + "probability": 0.9154 + }, + { + "start": 376.12, + "end": 376.98, + "probability": 0.9141 + }, + { + "start": 378.38, + "end": 381.6, + "probability": 0.9054 + }, + { + "start": 381.76, + "end": 385.3, + "probability": 0.8613 + }, + { + "start": 385.44, + "end": 387.46, + "probability": 0.999 + }, + { + "start": 387.66, + "end": 391.22, + "probability": 0.966 + }, + { + "start": 391.52, + "end": 392.86, + "probability": 0.9138 + }, + { + "start": 393.56, + "end": 397.22, + "probability": 0.9421 + }, + { + "start": 397.91, + "end": 402.46, + "probability": 0.9744 + }, + { + "start": 403.22, + "end": 409.22, + "probability": 0.7576 + }, + { + "start": 410.0, + "end": 413.06, + "probability": 0.9969 + }, + { + "start": 413.14, + "end": 413.6, + "probability": 0.7952 + }, + { + "start": 414.96, + "end": 416.34, + "probability": 0.6892 + }, + { + "start": 417.61, + "end": 425.36, + "probability": 0.9762 + }, + { + "start": 426.12, + "end": 427.02, + "probability": 0.4702 + }, + { + "start": 428.3, + "end": 429.72, + "probability": 0.7321 + }, + { + "start": 430.2, + "end": 433.0, + "probability": 0.5107 + }, + { + "start": 433.26, + "end": 438.96, + "probability": 0.9933 + }, + { + "start": 442.14, + "end": 443.62, + "probability": 0.8461 + }, + { + "start": 444.14, + "end": 447.76, + "probability": 0.9534 + }, + { + "start": 448.06, + "end": 456.58, + "probability": 0.9883 + }, + { + "start": 456.58, + "end": 461.28, + "probability": 0.8413 + }, + { + "start": 461.56, + "end": 463.2, + "probability": 0.7564 + }, + { + "start": 463.76, + "end": 466.06, + "probability": 0.6715 + }, + { + "start": 466.16, + "end": 466.76, + "probability": 0.88 + }, + { + "start": 467.22, + "end": 468.06, + "probability": 0.7478 + }, + { + "start": 469.6, + "end": 475.34, + "probability": 0.8898 + }, + { + "start": 475.82, + "end": 478.0, + "probability": 0.6598 + }, + { + "start": 478.04, + "end": 480.2, + "probability": 0.8023 + }, + { + "start": 480.3, + "end": 480.74, + "probability": 0.7951 + }, + { + "start": 480.98, + "end": 482.98, + "probability": 0.8993 + }, + { + "start": 483.62, + "end": 488.18, + "probability": 0.9448 + }, + { + "start": 492.04, + "end": 493.48, + "probability": 0.7022 + }, + { + "start": 494.0, + "end": 495.78, + "probability": 0.8322 + }, + { + "start": 495.86, + "end": 496.2, + "probability": 0.4619 + }, + { + "start": 496.28, + "end": 496.98, + "probability": 0.8335 + }, + { + "start": 497.34, + "end": 498.38, + "probability": 0.9863 + }, + { + "start": 498.66, + "end": 499.52, + "probability": 0.7088 + }, + { + "start": 499.98, + "end": 506.16, + "probability": 0.9419 + }, + { + "start": 506.48, + "end": 507.22, + "probability": 0.9454 + }, + { + "start": 507.7, + "end": 510.14, + "probability": 0.8281 + }, + { + "start": 513.29, + "end": 515.0, + "probability": 0.8724 + }, + { + "start": 515.1, + "end": 517.18, + "probability": 0.6312 + }, + { + "start": 517.26, + "end": 519.7, + "probability": 0.78 + }, + { + "start": 519.74, + "end": 520.74, + "probability": 0.9673 + }, + { + "start": 520.94, + "end": 521.64, + "probability": 0.8068 + }, + { + "start": 522.32, + "end": 523.5, + "probability": 0.7638 + }, + { + "start": 523.58, + "end": 525.1, + "probability": 0.954 + }, + { + "start": 525.54, + "end": 526.4, + "probability": 0.8227 + }, + { + "start": 526.4, + "end": 528.9, + "probability": 0.7571 + }, + { + "start": 529.8, + "end": 530.5, + "probability": 0.7534 + }, + { + "start": 530.94, + "end": 537.82, + "probability": 0.9851 + }, + { + "start": 537.82, + "end": 543.48, + "probability": 0.7694 + }, + { + "start": 544.08, + "end": 545.86, + "probability": 0.8093 + }, + { + "start": 546.98, + "end": 549.22, + "probability": 0.9502 + }, + { + "start": 549.4, + "end": 549.64, + "probability": 0.575 + }, + { + "start": 549.64, + "end": 551.6, + "probability": 0.8926 + }, + { + "start": 552.0, + "end": 556.84, + "probability": 0.9227 + }, + { + "start": 556.94, + "end": 561.64, + "probability": 0.8563 + }, + { + "start": 562.26, + "end": 563.3, + "probability": 0.7807 + }, + { + "start": 563.42, + "end": 569.88, + "probability": 0.9953 + }, + { + "start": 569.9, + "end": 571.34, + "probability": 0.6873 + }, + { + "start": 571.42, + "end": 573.1, + "probability": 0.8216 + }, + { + "start": 573.52, + "end": 576.2, + "probability": 0.9115 + }, + { + "start": 576.44, + "end": 576.98, + "probability": 0.5504 + }, + { + "start": 577.1, + "end": 584.12, + "probability": 0.9658 + }, + { + "start": 585.18, + "end": 587.32, + "probability": 0.4102 + }, + { + "start": 588.34, + "end": 589.6, + "probability": 0.7926 + }, + { + "start": 589.84, + "end": 592.68, + "probability": 0.907 + }, + { + "start": 592.88, + "end": 594.7, + "probability": 0.8434 + }, + { + "start": 595.14, + "end": 597.69, + "probability": 0.9424 + }, + { + "start": 599.18, + "end": 600.06, + "probability": 0.3781 + }, + { + "start": 600.44, + "end": 602.79, + "probability": 0.8657 + }, + { + "start": 603.66, + "end": 604.94, + "probability": 0.7794 + }, + { + "start": 605.4, + "end": 609.86, + "probability": 0.8871 + }, + { + "start": 609.92, + "end": 612.08, + "probability": 0.7381 + }, + { + "start": 612.7, + "end": 614.88, + "probability": 0.9949 + }, + { + "start": 615.1, + "end": 617.12, + "probability": 0.8774 + }, + { + "start": 618.18, + "end": 619.92, + "probability": 0.6174 + }, + { + "start": 620.22, + "end": 620.6, + "probability": 0.0096 + }, + { + "start": 620.6, + "end": 621.36, + "probability": 0.9417 + }, + { + "start": 621.78, + "end": 622.62, + "probability": 0.5052 + }, + { + "start": 622.8, + "end": 624.26, + "probability": 0.9736 + }, + { + "start": 624.7, + "end": 624.94, + "probability": 0.4189 + }, + { + "start": 625.26, + "end": 625.7, + "probability": 0.7924 + }, + { + "start": 625.78, + "end": 626.74, + "probability": 0.7401 + }, + { + "start": 627.1, + "end": 629.98, + "probability": 0.8394 + }, + { + "start": 630.06, + "end": 632.38, + "probability": 0.9966 + }, + { + "start": 632.94, + "end": 634.18, + "probability": 0.9919 + }, + { + "start": 634.74, + "end": 636.64, + "probability": 0.9849 + }, + { + "start": 637.16, + "end": 639.61, + "probability": 0.6969 + }, + { + "start": 640.06, + "end": 643.88, + "probability": 0.9473 + }, + { + "start": 644.3, + "end": 644.6, + "probability": 0.7372 + }, + { + "start": 644.66, + "end": 647.84, + "probability": 0.9899 + }, + { + "start": 648.34, + "end": 649.96, + "probability": 0.9616 + }, + { + "start": 650.8, + "end": 651.28, + "probability": 0.3402 + }, + { + "start": 651.28, + "end": 652.5, + "probability": 0.7763 + }, + { + "start": 652.62, + "end": 652.62, + "probability": 0.2023 + }, + { + "start": 652.62, + "end": 655.94, + "probability": 0.8729 + }, + { + "start": 656.92, + "end": 660.5, + "probability": 0.9937 + }, + { + "start": 660.5, + "end": 665.78, + "probability": 0.6286 + }, + { + "start": 666.04, + "end": 667.52, + "probability": 0.9917 + }, + { + "start": 668.74, + "end": 671.38, + "probability": 0.7175 + }, + { + "start": 672.18, + "end": 673.92, + "probability": 0.9404 + }, + { + "start": 674.12, + "end": 675.05, + "probability": 0.9564 + }, + { + "start": 675.54, + "end": 676.72, + "probability": 0.7553 + }, + { + "start": 676.76, + "end": 677.98, + "probability": 0.7557 + }, + { + "start": 678.02, + "end": 679.14, + "probability": 0.7367 + }, + { + "start": 679.96, + "end": 683.12, + "probability": 0.9683 + }, + { + "start": 683.6, + "end": 684.02, + "probability": 0.032 + }, + { + "start": 685.32, + "end": 687.32, + "probability": 0.9873 + }, + { + "start": 690.48, + "end": 692.64, + "probability": 0.743 + }, + { + "start": 693.78, + "end": 694.78, + "probability": 0.7817 + }, + { + "start": 696.14, + "end": 697.62, + "probability": 0.9017 + }, + { + "start": 697.86, + "end": 700.96, + "probability": 0.9473 + }, + { + "start": 700.96, + "end": 705.12, + "probability": 0.9918 + }, + { + "start": 705.64, + "end": 709.26, + "probability": 0.9271 + }, + { + "start": 710.52, + "end": 711.24, + "probability": 0.9021 + }, + { + "start": 713.14, + "end": 715.14, + "probability": 0.7634 + }, + { + "start": 715.14, + "end": 715.76, + "probability": 0.1209 + }, + { + "start": 715.8, + "end": 719.48, + "probability": 0.9557 + }, + { + "start": 719.48, + "end": 719.62, + "probability": 0.5359 + }, + { + "start": 721.06, + "end": 721.06, + "probability": 0.0162 + }, + { + "start": 721.06, + "end": 721.06, + "probability": 0.0206 + }, + { + "start": 721.06, + "end": 721.06, + "probability": 0.0306 + }, + { + "start": 721.96, + "end": 722.28, + "probability": 0.7401 + }, + { + "start": 722.38, + "end": 723.06, + "probability": 0.4427 + }, + { + "start": 723.24, + "end": 727.28, + "probability": 0.7569 + }, + { + "start": 727.88, + "end": 729.03, + "probability": 0.7305 + }, + { + "start": 730.02, + "end": 733.56, + "probability": 0.8885 + }, + { + "start": 733.58, + "end": 738.04, + "probability": 0.9872 + }, + { + "start": 738.38, + "end": 738.88, + "probability": 0.6286 + }, + { + "start": 739.1, + "end": 742.94, + "probability": 0.8788 + }, + { + "start": 742.94, + "end": 745.2, + "probability": 0.9703 + }, + { + "start": 745.9, + "end": 749.78, + "probability": 0.9578 + }, + { + "start": 750.9, + "end": 755.06, + "probability": 0.7909 + }, + { + "start": 755.12, + "end": 755.12, + "probability": 0.2586 + }, + { + "start": 755.12, + "end": 755.12, + "probability": 0.4626 + }, + { + "start": 755.12, + "end": 755.92, + "probability": 0.5601 + }, + { + "start": 756.0, + "end": 759.3, + "probability": 0.8651 + }, + { + "start": 760.12, + "end": 762.26, + "probability": 0.9081 + }, + { + "start": 763.08, + "end": 765.08, + "probability": 0.9709 + }, + { + "start": 765.2, + "end": 770.52, + "probability": 0.7578 + }, + { + "start": 770.8, + "end": 772.54, + "probability": 0.9839 + }, + { + "start": 773.02, + "end": 775.36, + "probability": 0.9908 + }, + { + "start": 775.48, + "end": 777.84, + "probability": 0.9897 + }, + { + "start": 777.96, + "end": 781.98, + "probability": 0.9902 + }, + { + "start": 782.28, + "end": 782.98, + "probability": 0.8896 + }, + { + "start": 783.06, + "end": 783.98, + "probability": 0.8732 + }, + { + "start": 784.14, + "end": 784.38, + "probability": 0.7338 + }, + { + "start": 784.44, + "end": 785.06, + "probability": 0.9738 + }, + { + "start": 785.46, + "end": 786.6, + "probability": 0.7367 + }, + { + "start": 786.72, + "end": 787.44, + "probability": 0.9814 + }, + { + "start": 787.66, + "end": 790.52, + "probability": 0.9916 + }, + { + "start": 790.6, + "end": 791.74, + "probability": 0.5485 + }, + { + "start": 791.88, + "end": 792.98, + "probability": 0.778 + }, + { + "start": 793.28, + "end": 793.3, + "probability": 0.0575 + }, + { + "start": 793.32, + "end": 793.72, + "probability": 0.662 + }, + { + "start": 794.14, + "end": 795.74, + "probability": 0.9681 + }, + { + "start": 795.92, + "end": 798.2, + "probability": 0.5326 + }, + { + "start": 798.2, + "end": 798.3, + "probability": 0.5802 + }, + { + "start": 799.44, + "end": 800.04, + "probability": 0.9796 + }, + { + "start": 800.7, + "end": 805.08, + "probability": 0.9598 + }, + { + "start": 805.08, + "end": 809.78, + "probability": 0.7018 + }, + { + "start": 809.84, + "end": 811.2, + "probability": 0.1978 + }, + { + "start": 811.8, + "end": 813.4, + "probability": 0.8466 + }, + { + "start": 813.56, + "end": 816.96, + "probability": 0.7177 + }, + { + "start": 818.24, + "end": 820.08, + "probability": 0.2329 + }, + { + "start": 820.16, + "end": 824.46, + "probability": 0.8915 + }, + { + "start": 824.88, + "end": 825.4, + "probability": 0.5088 + }, + { + "start": 825.52, + "end": 826.6, + "probability": 0.6432 + }, + { + "start": 826.68, + "end": 827.02, + "probability": 0.0583 + }, + { + "start": 827.62, + "end": 828.0, + "probability": 0.252 + }, + { + "start": 828.44, + "end": 831.22, + "probability": 0.1927 + }, + { + "start": 831.74, + "end": 832.18, + "probability": 0.0172 + }, + { + "start": 832.18, + "end": 833.22, + "probability": 0.4261 + }, + { + "start": 833.62, + "end": 834.38, + "probability": 0.3731 + }, + { + "start": 835.16, + "end": 836.98, + "probability": 0.4324 + }, + { + "start": 837.06, + "end": 837.3, + "probability": 0.3701 + }, + { + "start": 837.3, + "end": 840.04, + "probability": 0.7329 + }, + { + "start": 840.74, + "end": 843.46, + "probability": 0.7145 + }, + { + "start": 843.46, + "end": 845.76, + "probability": 0.3934 + }, + { + "start": 846.22, + "end": 846.42, + "probability": 0.1937 + }, + { + "start": 846.5, + "end": 848.84, + "probability": 0.8839 + }, + { + "start": 848.84, + "end": 851.3, + "probability": 0.5878 + }, + { + "start": 851.68, + "end": 853.32, + "probability": 0.9016 + }, + { + "start": 854.22, + "end": 854.5, + "probability": 0.4128 + }, + { + "start": 854.66, + "end": 855.58, + "probability": 0.6904 + }, + { + "start": 856.16, + "end": 860.76, + "probability": 0.9519 + }, + { + "start": 868.0, + "end": 869.92, + "probability": 0.6562 + }, + { + "start": 870.26, + "end": 872.04, + "probability": 0.9163 + }, + { + "start": 872.6, + "end": 876.02, + "probability": 0.9756 + }, + { + "start": 876.1, + "end": 876.28, + "probability": 0.4031 + }, + { + "start": 876.74, + "end": 880.2, + "probability": 0.9302 + }, + { + "start": 880.2, + "end": 883.56, + "probability": 0.9906 + }, + { + "start": 884.1, + "end": 887.42, + "probability": 0.9871 + }, + { + "start": 887.42, + "end": 893.06, + "probability": 0.9323 + }, + { + "start": 894.5, + "end": 896.6, + "probability": 0.742 + }, + { + "start": 896.74, + "end": 899.6, + "probability": 0.9867 + }, + { + "start": 900.34, + "end": 905.94, + "probability": 0.9941 + }, + { + "start": 906.54, + "end": 908.7, + "probability": 0.9688 + }, + { + "start": 909.8, + "end": 912.34, + "probability": 0.8565 + }, + { + "start": 912.48, + "end": 913.96, + "probability": 0.9672 + }, + { + "start": 914.06, + "end": 915.76, + "probability": 0.9526 + }, + { + "start": 916.38, + "end": 916.62, + "probability": 0.5374 + }, + { + "start": 916.92, + "end": 918.48, + "probability": 0.9758 + }, + { + "start": 918.92, + "end": 924.24, + "probability": 0.9972 + }, + { + "start": 924.24, + "end": 929.34, + "probability": 0.998 + }, + { + "start": 929.66, + "end": 934.48, + "probability": 0.8077 + }, + { + "start": 934.48, + "end": 938.2, + "probability": 0.998 + }, + { + "start": 938.84, + "end": 942.46, + "probability": 0.9958 + }, + { + "start": 942.46, + "end": 945.26, + "probability": 0.9967 + }, + { + "start": 946.06, + "end": 947.58, + "probability": 0.4572 + }, + { + "start": 947.68, + "end": 949.6, + "probability": 0.8236 + }, + { + "start": 951.42, + "end": 952.22, + "probability": 0.7152 + }, + { + "start": 952.42, + "end": 952.9, + "probability": 0.7274 + }, + { + "start": 952.96, + "end": 953.5, + "probability": 0.8708 + }, + { + "start": 953.66, + "end": 954.74, + "probability": 0.8575 + }, + { + "start": 954.88, + "end": 956.54, + "probability": 0.9466 + }, + { + "start": 956.54, + "end": 956.82, + "probability": 0.3598 + }, + { + "start": 957.28, + "end": 958.2, + "probability": 0.5123 + }, + { + "start": 961.04, + "end": 962.3, + "probability": 0.7331 + }, + { + "start": 962.38, + "end": 962.98, + "probability": 0.7253 + }, + { + "start": 963.1, + "end": 965.1, + "probability": 0.9668 + }, + { + "start": 965.82, + "end": 967.77, + "probability": 0.951 + }, + { + "start": 968.04, + "end": 969.5, + "probability": 0.8135 + }, + { + "start": 969.6, + "end": 970.58, + "probability": 0.7033 + }, + { + "start": 970.64, + "end": 972.36, + "probability": 0.6569 + }, + { + "start": 972.76, + "end": 975.04, + "probability": 0.9407 + }, + { + "start": 975.18, + "end": 977.7, + "probability": 0.8657 + }, + { + "start": 978.14, + "end": 979.86, + "probability": 0.9566 + }, + { + "start": 980.04, + "end": 983.2, + "probability": 0.8781 + }, + { + "start": 983.42, + "end": 984.2, + "probability": 0.4333 + }, + { + "start": 984.54, + "end": 986.0, + "probability": 0.4569 + }, + { + "start": 986.4, + "end": 987.38, + "probability": 0.6947 + }, + { + "start": 987.64, + "end": 991.04, + "probability": 0.9777 + }, + { + "start": 991.42, + "end": 993.58, + "probability": 0.5839 + }, + { + "start": 994.1, + "end": 997.34, + "probability": 0.9844 + }, + { + "start": 997.86, + "end": 1000.38, + "probability": 0.9985 + }, + { + "start": 1000.48, + "end": 1001.44, + "probability": 0.6723 + }, + { + "start": 1001.52, + "end": 1003.7, + "probability": 0.8364 + }, + { + "start": 1004.18, + "end": 1005.7, + "probability": 0.9594 + }, + { + "start": 1006.04, + "end": 1008.14, + "probability": 0.6776 + }, + { + "start": 1008.26, + "end": 1010.52, + "probability": 0.7997 + }, + { + "start": 1010.58, + "end": 1010.8, + "probability": 0.8022 + }, + { + "start": 1010.92, + "end": 1013.84, + "probability": 0.9823 + }, + { + "start": 1013.9, + "end": 1015.6, + "probability": 0.967 + }, + { + "start": 1016.08, + "end": 1017.28, + "probability": 0.7518 + }, + { + "start": 1017.3, + "end": 1020.44, + "probability": 0.7936 + }, + { + "start": 1020.5, + "end": 1021.36, + "probability": 0.9853 + }, + { + "start": 1022.08, + "end": 1022.86, + "probability": 0.6497 + }, + { + "start": 1022.92, + "end": 1023.72, + "probability": 0.707 + }, + { + "start": 1024.16, + "end": 1025.2, + "probability": 0.7726 + }, + { + "start": 1025.32, + "end": 1026.34, + "probability": 0.9261 + }, + { + "start": 1026.78, + "end": 1029.25, + "probability": 0.8723 + }, + { + "start": 1029.76, + "end": 1034.24, + "probability": 0.9863 + }, + { + "start": 1034.52, + "end": 1035.1, + "probability": 0.6313 + }, + { + "start": 1035.52, + "end": 1036.6, + "probability": 0.8845 + }, + { + "start": 1036.9, + "end": 1037.18, + "probability": 0.777 + }, + { + "start": 1037.34, + "end": 1038.48, + "probability": 0.9509 + }, + { + "start": 1038.84, + "end": 1040.8, + "probability": 0.9861 + }, + { + "start": 1041.08, + "end": 1043.49, + "probability": 0.7469 + }, + { + "start": 1043.76, + "end": 1046.48, + "probability": 0.9465 + }, + { + "start": 1046.88, + "end": 1048.46, + "probability": 0.9324 + }, + { + "start": 1048.58, + "end": 1050.1, + "probability": 0.9178 + }, + { + "start": 1050.7, + "end": 1050.8, + "probability": 0.3116 + }, + { + "start": 1050.86, + "end": 1051.9, + "probability": 0.2776 + }, + { + "start": 1052.36, + "end": 1052.74, + "probability": 0.3896 + }, + { + "start": 1053.06, + "end": 1053.46, + "probability": 0.5125 + }, + { + "start": 1053.94, + "end": 1054.26, + "probability": 0.4337 + }, + { + "start": 1054.28, + "end": 1054.76, + "probability": 0.4198 + }, + { + "start": 1055.14, + "end": 1056.22, + "probability": 0.7073 + }, + { + "start": 1056.38, + "end": 1056.5, + "probability": 0.3408 + }, + { + "start": 1056.58, + "end": 1062.52, + "probability": 0.5668 + }, + { + "start": 1062.58, + "end": 1063.66, + "probability": 0.7386 + }, + { + "start": 1064.18, + "end": 1066.46, + "probability": 0.8013 + }, + { + "start": 1067.02, + "end": 1072.9, + "probability": 0.9435 + }, + { + "start": 1073.5, + "end": 1075.36, + "probability": 0.9734 + }, + { + "start": 1077.72, + "end": 1077.82, + "probability": 0.5386 + }, + { + "start": 1077.96, + "end": 1079.28, + "probability": 0.6715 + }, + { + "start": 1079.36, + "end": 1081.1, + "probability": 0.9902 + }, + { + "start": 1083.0, + "end": 1085.04, + "probability": 0.817 + }, + { + "start": 1086.38, + "end": 1093.24, + "probability": 0.762 + }, + { + "start": 1093.72, + "end": 1095.55, + "probability": 0.9413 + }, + { + "start": 1095.72, + "end": 1097.62, + "probability": 0.8581 + }, + { + "start": 1099.08, + "end": 1100.42, + "probability": 0.6906 + }, + { + "start": 1100.96, + "end": 1101.98, + "probability": 0.9065 + }, + { + "start": 1102.42, + "end": 1107.24, + "probability": 0.9722 + }, + { + "start": 1107.8, + "end": 1109.54, + "probability": 0.8861 + }, + { + "start": 1109.7, + "end": 1110.74, + "probability": 0.7368 + }, + { + "start": 1110.86, + "end": 1112.08, + "probability": 0.9209 + }, + { + "start": 1113.26, + "end": 1117.82, + "probability": 0.9858 + }, + { + "start": 1118.08, + "end": 1122.08, + "probability": 0.621 + }, + { + "start": 1122.62, + "end": 1124.66, + "probability": 0.9446 + }, + { + "start": 1125.82, + "end": 1127.06, + "probability": 0.5567 + }, + { + "start": 1127.24, + "end": 1128.36, + "probability": 0.9048 + }, + { + "start": 1128.98, + "end": 1131.66, + "probability": 0.4543 + }, + { + "start": 1131.76, + "end": 1131.86, + "probability": 0.1446 + }, + { + "start": 1132.06, + "end": 1133.28, + "probability": 0.7523 + }, + { + "start": 1133.54, + "end": 1137.46, + "probability": 0.8701 + }, + { + "start": 1137.54, + "end": 1140.4, + "probability": 0.8298 + }, + { + "start": 1140.56, + "end": 1140.56, + "probability": 0.1312 + }, + { + "start": 1140.56, + "end": 1142.06, + "probability": 0.6832 + }, + { + "start": 1142.2, + "end": 1142.97, + "probability": 0.6981 + }, + { + "start": 1144.24, + "end": 1145.26, + "probability": 0.5996 + }, + { + "start": 1145.6, + "end": 1146.22, + "probability": 0.5626 + }, + { + "start": 1147.94, + "end": 1148.76, + "probability": 0.6259 + }, + { + "start": 1150.56, + "end": 1151.14, + "probability": 0.4862 + }, + { + "start": 1153.68, + "end": 1153.8, + "probability": 0.4323 + }, + { + "start": 1154.08, + "end": 1156.3, + "probability": 0.9531 + }, + { + "start": 1156.44, + "end": 1160.74, + "probability": 0.7518 + }, + { + "start": 1160.82, + "end": 1161.1, + "probability": 0.6491 + }, + { + "start": 1161.7, + "end": 1164.82, + "probability": 0.9843 + }, + { + "start": 1164.82, + "end": 1168.32, + "probability": 0.9941 + }, + { + "start": 1168.78, + "end": 1170.48, + "probability": 0.6891 + }, + { + "start": 1171.0, + "end": 1171.44, + "probability": 0.3645 + }, + { + "start": 1171.52, + "end": 1171.74, + "probability": 0.3381 + }, + { + "start": 1175.1, + "end": 1176.66, + "probability": 0.5489 + }, + { + "start": 1176.66, + "end": 1177.74, + "probability": 0.4168 + }, + { + "start": 1177.86, + "end": 1178.48, + "probability": 0.7878 + }, + { + "start": 1178.6, + "end": 1180.56, + "probability": 0.8062 + }, + { + "start": 1180.62, + "end": 1180.64, + "probability": 0.2303 + }, + { + "start": 1180.64, + "end": 1180.78, + "probability": 0.7228 + }, + { + "start": 1181.15, + "end": 1183.9, + "probability": 0.2064 + }, + { + "start": 1183.9, + "end": 1184.76, + "probability": 0.1188 + }, + { + "start": 1185.3, + "end": 1186.02, + "probability": 0.4392 + }, + { + "start": 1186.9, + "end": 1188.52, + "probability": 0.5984 + }, + { + "start": 1189.0, + "end": 1194.64, + "probability": 0.9163 + }, + { + "start": 1195.72, + "end": 1196.71, + "probability": 0.5509 + }, + { + "start": 1198.8, + "end": 1202.0, + "probability": 0.522 + }, + { + "start": 1203.2, + "end": 1207.94, + "probability": 0.9612 + }, + { + "start": 1208.14, + "end": 1209.3, + "probability": 0.8779 + }, + { + "start": 1209.38, + "end": 1210.02, + "probability": 0.6811 + }, + { + "start": 1210.88, + "end": 1213.12, + "probability": 0.9331 + }, + { + "start": 1214.2, + "end": 1217.22, + "probability": 0.6233 + }, + { + "start": 1218.02, + "end": 1220.28, + "probability": 0.9837 + }, + { + "start": 1221.1, + "end": 1225.86, + "probability": 0.669 + }, + { + "start": 1225.98, + "end": 1226.82, + "probability": 0.7349 + }, + { + "start": 1227.14, + "end": 1229.02, + "probability": 0.9604 + }, + { + "start": 1229.08, + "end": 1230.02, + "probability": 0.7863 + }, + { + "start": 1230.38, + "end": 1233.84, + "probability": 0.9944 + }, + { + "start": 1234.72, + "end": 1236.04, + "probability": 0.8168 + }, + { + "start": 1236.72, + "end": 1237.76, + "probability": 0.8806 + }, + { + "start": 1238.5, + "end": 1240.1, + "probability": 0.7873 + }, + { + "start": 1241.2, + "end": 1243.2, + "probability": 0.8437 + }, + { + "start": 1243.36, + "end": 1244.5, + "probability": 0.6797 + }, + { + "start": 1245.1, + "end": 1250.72, + "probability": 0.9402 + }, + { + "start": 1250.72, + "end": 1257.66, + "probability": 0.9722 + }, + { + "start": 1258.2, + "end": 1259.18, + "probability": 0.3362 + }, + { + "start": 1260.06, + "end": 1260.6, + "probability": 0.6307 + }, + { + "start": 1260.74, + "end": 1261.14, + "probability": 0.3252 + }, + { + "start": 1261.28, + "end": 1263.22, + "probability": 0.8445 + }, + { + "start": 1268.86, + "end": 1269.8, + "probability": 0.7818 + }, + { + "start": 1271.18, + "end": 1272.52, + "probability": 0.7867 + }, + { + "start": 1272.94, + "end": 1276.06, + "probability": 0.9809 + }, + { + "start": 1276.06, + "end": 1279.58, + "probability": 0.9907 + }, + { + "start": 1280.08, + "end": 1282.52, + "probability": 0.7881 + }, + { + "start": 1283.14, + "end": 1288.62, + "probability": 0.888 + }, + { + "start": 1289.36, + "end": 1289.36, + "probability": 0.02 + }, + { + "start": 1289.36, + "end": 1291.46, + "probability": 0.8837 + }, + { + "start": 1292.08, + "end": 1294.28, + "probability": 0.9192 + }, + { + "start": 1294.7, + "end": 1297.8, + "probability": 0.9441 + }, + { + "start": 1298.22, + "end": 1298.46, + "probability": 0.7542 + }, + { + "start": 1299.54, + "end": 1300.14, + "probability": 0.6406 + }, + { + "start": 1300.2, + "end": 1301.26, + "probability": 0.7295 + }, + { + "start": 1301.32, + "end": 1303.01, + "probability": 0.6604 + }, + { + "start": 1304.4, + "end": 1305.88, + "probability": 0.7108 + }, + { + "start": 1306.34, + "end": 1309.4, + "probability": 0.9697 + }, + { + "start": 1309.4, + "end": 1311.04, + "probability": 0.9464 + }, + { + "start": 1311.5, + "end": 1312.62, + "probability": 0.96 + }, + { + "start": 1313.12, + "end": 1314.12, + "probability": 0.9466 + }, + { + "start": 1315.02, + "end": 1318.48, + "probability": 0.965 + }, + { + "start": 1319.66, + "end": 1323.45, + "probability": 0.9783 + }, + { + "start": 1323.93, + "end": 1325.12, + "probability": 0.998 + }, + { + "start": 1326.42, + "end": 1328.48, + "probability": 0.8047 + }, + { + "start": 1329.26, + "end": 1331.52, + "probability": 0.9212 + }, + { + "start": 1332.32, + "end": 1336.56, + "probability": 0.8584 + }, + { + "start": 1336.56, + "end": 1342.12, + "probability": 0.7871 + }, + { + "start": 1342.36, + "end": 1344.16, + "probability": 0.8088 + }, + { + "start": 1345.24, + "end": 1347.44, + "probability": 0.4614 + }, + { + "start": 1347.91, + "end": 1350.08, + "probability": 0.814 + }, + { + "start": 1351.38, + "end": 1352.84, + "probability": 0.6512 + }, + { + "start": 1353.6, + "end": 1354.08, + "probability": 0.7908 + }, + { + "start": 1358.58, + "end": 1360.3, + "probability": 0.5284 + }, + { + "start": 1361.16, + "end": 1362.04, + "probability": 0.732 + }, + { + "start": 1362.24, + "end": 1363.72, + "probability": 0.9486 + }, + { + "start": 1364.46, + "end": 1370.38, + "probability": 0.9551 + }, + { + "start": 1370.9, + "end": 1375.04, + "probability": 0.9797 + }, + { + "start": 1376.34, + "end": 1380.78, + "probability": 0.8938 + }, + { + "start": 1381.32, + "end": 1382.9, + "probability": 0.9236 + }, + { + "start": 1383.24, + "end": 1384.04, + "probability": 0.9557 + }, + { + "start": 1384.82, + "end": 1387.74, + "probability": 0.9905 + }, + { + "start": 1388.2, + "end": 1389.16, + "probability": 0.5229 + }, + { + "start": 1389.24, + "end": 1389.94, + "probability": 0.8464 + }, + { + "start": 1390.64, + "end": 1391.96, + "probability": 0.6437 + }, + { + "start": 1392.04, + "end": 1392.44, + "probability": 0.674 + }, + { + "start": 1392.58, + "end": 1393.9, + "probability": 0.5603 + }, + { + "start": 1394.0, + "end": 1394.34, + "probability": 0.8772 + }, + { + "start": 1394.46, + "end": 1394.7, + "probability": 0.9342 + }, + { + "start": 1394.78, + "end": 1398.28, + "probability": 0.9899 + }, + { + "start": 1398.36, + "end": 1402.6, + "probability": 0.9655 + }, + { + "start": 1402.82, + "end": 1405.34, + "probability": 0.9563 + }, + { + "start": 1405.94, + "end": 1407.96, + "probability": 0.5018 + }, + { + "start": 1408.22, + "end": 1409.32, + "probability": 0.7048 + }, + { + "start": 1409.42, + "end": 1410.64, + "probability": 0.9084 + }, + { + "start": 1411.12, + "end": 1411.98, + "probability": 0.9416 + }, + { + "start": 1412.14, + "end": 1416.04, + "probability": 0.9499 + }, + { + "start": 1416.24, + "end": 1417.56, + "probability": 0.9893 + }, + { + "start": 1418.32, + "end": 1421.14, + "probability": 0.8988 + }, + { + "start": 1421.78, + "end": 1423.38, + "probability": 0.9809 + }, + { + "start": 1423.46, + "end": 1425.86, + "probability": 0.9828 + }, + { + "start": 1425.96, + "end": 1428.52, + "probability": 0.8931 + }, + { + "start": 1429.72, + "end": 1431.08, + "probability": 0.8083 + }, + { + "start": 1431.36, + "end": 1435.5, + "probability": 0.9979 + }, + { + "start": 1435.66, + "end": 1441.06, + "probability": 0.9867 + }, + { + "start": 1441.6, + "end": 1443.2, + "probability": 0.8569 + }, + { + "start": 1443.24, + "end": 1444.6, + "probability": 0.905 + }, + { + "start": 1444.7, + "end": 1447.52, + "probability": 0.771 + }, + { + "start": 1447.52, + "end": 1450.76, + "probability": 0.8744 + }, + { + "start": 1450.84, + "end": 1451.48, + "probability": 0.7659 + }, + { + "start": 1451.56, + "end": 1453.52, + "probability": 0.9878 + }, + { + "start": 1453.52, + "end": 1455.82, + "probability": 0.9852 + }, + { + "start": 1456.6, + "end": 1458.6, + "probability": 0.9824 + }, + { + "start": 1458.7, + "end": 1460.76, + "probability": 0.7249 + }, + { + "start": 1460.86, + "end": 1464.28, + "probability": 0.8903 + }, + { + "start": 1464.3, + "end": 1465.14, + "probability": 0.7011 + }, + { + "start": 1466.14, + "end": 1466.7, + "probability": 0.8625 + }, + { + "start": 1466.84, + "end": 1468.44, + "probability": 0.9586 + }, + { + "start": 1468.58, + "end": 1472.48, + "probability": 0.9798 + }, + { + "start": 1472.48, + "end": 1476.68, + "probability": 0.9985 + }, + { + "start": 1476.88, + "end": 1477.42, + "probability": 0.6579 + }, + { + "start": 1477.46, + "end": 1479.08, + "probability": 0.6584 + }, + { + "start": 1479.2, + "end": 1479.7, + "probability": 0.9366 + }, + { + "start": 1479.76, + "end": 1485.0, + "probability": 0.7125 + }, + { + "start": 1485.1, + "end": 1487.72, + "probability": 0.9781 + }, + { + "start": 1487.96, + "end": 1490.26, + "probability": 0.9854 + }, + { + "start": 1490.5, + "end": 1497.06, + "probability": 0.9517 + }, + { + "start": 1498.56, + "end": 1504.04, + "probability": 0.9758 + }, + { + "start": 1505.56, + "end": 1509.52, + "probability": 0.993 + }, + { + "start": 1509.72, + "end": 1511.88, + "probability": 0.9629 + }, + { + "start": 1512.02, + "end": 1512.94, + "probability": 0.6777 + }, + { + "start": 1513.9, + "end": 1515.14, + "probability": 0.5276 + }, + { + "start": 1515.24, + "end": 1515.52, + "probability": 0.6785 + }, + { + "start": 1515.62, + "end": 1518.18, + "probability": 0.8179 + }, + { + "start": 1518.5, + "end": 1520.94, + "probability": 0.8758 + }, + { + "start": 1522.5, + "end": 1524.0, + "probability": 0.8545 + }, + { + "start": 1524.18, + "end": 1525.78, + "probability": 0.818 + }, + { + "start": 1525.78, + "end": 1528.98, + "probability": 0.7528 + }, + { + "start": 1529.1, + "end": 1531.64, + "probability": 0.9569 + }, + { + "start": 1531.84, + "end": 1532.32, + "probability": 0.9006 + }, + { + "start": 1532.32, + "end": 1535.46, + "probability": 0.994 + }, + { + "start": 1535.46, + "end": 1539.34, + "probability": 0.8637 + }, + { + "start": 1539.52, + "end": 1540.72, + "probability": 0.8376 + }, + { + "start": 1540.88, + "end": 1543.68, + "probability": 0.9958 + }, + { + "start": 1543.8, + "end": 1545.08, + "probability": 0.9665 + }, + { + "start": 1545.3, + "end": 1548.48, + "probability": 0.9857 + }, + { + "start": 1548.56, + "end": 1550.56, + "probability": 0.9876 + }, + { + "start": 1550.68, + "end": 1555.24, + "probability": 0.9047 + }, + { + "start": 1555.84, + "end": 1556.2, + "probability": 0.8693 + }, + { + "start": 1556.92, + "end": 1558.04, + "probability": 0.6919 + }, + { + "start": 1558.56, + "end": 1562.48, + "probability": 0.9658 + }, + { + "start": 1562.6, + "end": 1566.86, + "probability": 0.9884 + }, + { + "start": 1567.24, + "end": 1571.6, + "probability": 0.988 + }, + { + "start": 1571.6, + "end": 1575.66, + "probability": 0.9987 + }, + { + "start": 1576.04, + "end": 1576.6, + "probability": 0.5846 + }, + { + "start": 1576.66, + "end": 1578.68, + "probability": 0.9681 + }, + { + "start": 1578.8, + "end": 1580.32, + "probability": 0.7688 + }, + { + "start": 1580.48, + "end": 1580.9, + "probability": 0.8512 + }, + { + "start": 1581.6, + "end": 1585.32, + "probability": 0.9961 + }, + { + "start": 1585.36, + "end": 1588.86, + "probability": 0.9088 + }, + { + "start": 1588.98, + "end": 1591.18, + "probability": 0.9629 + }, + { + "start": 1591.3, + "end": 1595.1, + "probability": 0.9661 + }, + { + "start": 1595.1, + "end": 1596.94, + "probability": 0.9569 + }, + { + "start": 1597.02, + "end": 1600.16, + "probability": 0.984 + }, + { + "start": 1600.26, + "end": 1601.78, + "probability": 0.9364 + }, + { + "start": 1602.2, + "end": 1606.36, + "probability": 0.9614 + }, + { + "start": 1606.36, + "end": 1611.36, + "probability": 0.8912 + }, + { + "start": 1611.38, + "end": 1611.62, + "probability": 0.3821 + }, + { + "start": 1611.72, + "end": 1612.5, + "probability": 0.7664 + }, + { + "start": 1612.62, + "end": 1614.7, + "probability": 0.9567 + }, + { + "start": 1615.12, + "end": 1618.38, + "probability": 0.7818 + }, + { + "start": 1619.1, + "end": 1621.28, + "probability": 0.932 + }, + { + "start": 1621.46, + "end": 1623.02, + "probability": 0.9424 + }, + { + "start": 1623.04, + "end": 1625.2, + "probability": 0.9802 + }, + { + "start": 1625.54, + "end": 1628.3, + "probability": 0.998 + }, + { + "start": 1629.12, + "end": 1630.08, + "probability": 0.6965 + }, + { + "start": 1630.24, + "end": 1631.34, + "probability": 0.898 + }, + { + "start": 1631.44, + "end": 1633.34, + "probability": 0.9793 + }, + { + "start": 1633.44, + "end": 1636.32, + "probability": 0.9678 + }, + { + "start": 1636.78, + "end": 1639.38, + "probability": 0.9348 + }, + { + "start": 1640.14, + "end": 1643.1, + "probability": 0.9985 + }, + { + "start": 1643.1, + "end": 1647.22, + "probability": 0.9924 + }, + { + "start": 1647.54, + "end": 1650.94, + "probability": 0.9945 + }, + { + "start": 1650.94, + "end": 1654.3, + "probability": 0.9137 + }, + { + "start": 1654.72, + "end": 1657.86, + "probability": 0.9993 + }, + { + "start": 1657.86, + "end": 1661.64, + "probability": 0.9988 + }, + { + "start": 1661.7, + "end": 1663.0, + "probability": 0.8387 + }, + { + "start": 1663.4, + "end": 1663.76, + "probability": 0.3093 + }, + { + "start": 1663.94, + "end": 1664.22, + "probability": 0.6249 + }, + { + "start": 1664.54, + "end": 1668.16, + "probability": 0.9912 + }, + { + "start": 1668.56, + "end": 1669.64, + "probability": 0.4299 + }, + { + "start": 1669.98, + "end": 1672.66, + "probability": 0.8725 + }, + { + "start": 1673.12, + "end": 1674.62, + "probability": 0.7997 + }, + { + "start": 1675.58, + "end": 1676.64, + "probability": 0.7834 + }, + { + "start": 1676.72, + "end": 1677.72, + "probability": 0.6423 + }, + { + "start": 1678.26, + "end": 1682.58, + "probability": 0.9736 + }, + { + "start": 1682.58, + "end": 1687.2, + "probability": 0.8857 + }, + { + "start": 1687.3, + "end": 1688.56, + "probability": 0.6718 + }, + { + "start": 1688.74, + "end": 1692.22, + "probability": 0.9894 + }, + { + "start": 1693.0, + "end": 1695.73, + "probability": 0.998 + }, + { + "start": 1696.4, + "end": 1698.44, + "probability": 0.9962 + }, + { + "start": 1699.16, + "end": 1704.8, + "probability": 0.9936 + }, + { + "start": 1704.92, + "end": 1707.54, + "probability": 0.6976 + }, + { + "start": 1708.14, + "end": 1714.64, + "probability": 0.9895 + }, + { + "start": 1715.66, + "end": 1721.08, + "probability": 0.9488 + }, + { + "start": 1721.32, + "end": 1722.68, + "probability": 0.8756 + }, + { + "start": 1723.26, + "end": 1727.24, + "probability": 0.977 + }, + { + "start": 1727.38, + "end": 1729.76, + "probability": 0.9919 + }, + { + "start": 1729.86, + "end": 1731.48, + "probability": 0.884 + }, + { + "start": 1731.82, + "end": 1735.9, + "probability": 0.9675 + }, + { + "start": 1735.96, + "end": 1737.86, + "probability": 0.8704 + }, + { + "start": 1738.26, + "end": 1742.52, + "probability": 0.9418 + }, + { + "start": 1742.88, + "end": 1744.36, + "probability": 0.9287 + }, + { + "start": 1744.84, + "end": 1745.98, + "probability": 0.9168 + }, + { + "start": 1746.36, + "end": 1750.68, + "probability": 0.959 + }, + { + "start": 1750.72, + "end": 1751.16, + "probability": 0.9153 + }, + { + "start": 1751.22, + "end": 1752.22, + "probability": 0.9645 + }, + { + "start": 1752.54, + "end": 1754.8, + "probability": 0.7418 + }, + { + "start": 1754.86, + "end": 1756.16, + "probability": 0.943 + }, + { + "start": 1756.3, + "end": 1757.02, + "probability": 0.6308 + }, + { + "start": 1757.02, + "end": 1760.5, + "probability": 0.756 + }, + { + "start": 1760.76, + "end": 1761.36, + "probability": 0.4801 + }, + { + "start": 1761.84, + "end": 1763.36, + "probability": 0.9324 + }, + { + "start": 1763.74, + "end": 1763.96, + "probability": 0.764 + }, + { + "start": 1764.44, + "end": 1765.18, + "probability": 0.4963 + }, + { + "start": 1765.34, + "end": 1768.1, + "probability": 0.8274 + }, + { + "start": 1768.28, + "end": 1769.82, + "probability": 0.8973 + }, + { + "start": 1770.72, + "end": 1771.42, + "probability": 0.4076 + }, + { + "start": 1771.5, + "end": 1777.46, + "probability": 0.9296 + }, + { + "start": 1777.7, + "end": 1778.22, + "probability": 0.8367 + }, + { + "start": 1779.1, + "end": 1780.12, + "probability": 0.7196 + }, + { + "start": 1780.2, + "end": 1782.0, + "probability": 0.9351 + }, + { + "start": 1782.42, + "end": 1786.58, + "probability": 0.9401 + }, + { + "start": 1787.58, + "end": 1792.0, + "probability": 0.8838 + }, + { + "start": 1792.52, + "end": 1793.96, + "probability": 0.9692 + }, + { + "start": 1794.2, + "end": 1795.02, + "probability": 0.7285 + }, + { + "start": 1795.2, + "end": 1796.48, + "probability": 0.731 + }, + { + "start": 1797.04, + "end": 1797.88, + "probability": 0.617 + }, + { + "start": 1798.36, + "end": 1798.94, + "probability": 0.7485 + }, + { + "start": 1799.0, + "end": 1800.28, + "probability": 0.9117 + }, + { + "start": 1800.32, + "end": 1802.94, + "probability": 0.9557 + }, + { + "start": 1803.08, + "end": 1804.12, + "probability": 0.6045 + }, + { + "start": 1804.48, + "end": 1806.06, + "probability": 0.4424 + }, + { + "start": 1806.08, + "end": 1806.66, + "probability": 0.633 + }, + { + "start": 1806.82, + "end": 1810.36, + "probability": 0.9492 + }, + { + "start": 1811.5, + "end": 1816.5, + "probability": 0.9844 + }, + { + "start": 1817.44, + "end": 1819.41, + "probability": 0.9934 + }, + { + "start": 1819.9, + "end": 1825.16, + "probability": 0.8564 + }, + { + "start": 1825.28, + "end": 1827.64, + "probability": 0.9951 + }, + { + "start": 1828.56, + "end": 1830.82, + "probability": 0.991 + }, + { + "start": 1831.08, + "end": 1832.04, + "probability": 0.269 + }, + { + "start": 1832.32, + "end": 1836.3, + "probability": 0.9773 + }, + { + "start": 1836.4, + "end": 1837.88, + "probability": 0.9244 + }, + { + "start": 1837.96, + "end": 1843.36, + "probability": 0.9951 + }, + { + "start": 1843.58, + "end": 1844.68, + "probability": 0.0915 + }, + { + "start": 1845.38, + "end": 1845.56, + "probability": 0.0272 + }, + { + "start": 1845.56, + "end": 1845.74, + "probability": 0.1596 + }, + { + "start": 1845.74, + "end": 1845.74, + "probability": 0.0169 + }, + { + "start": 1845.74, + "end": 1848.32, + "probability": 0.5327 + }, + { + "start": 1848.46, + "end": 1850.56, + "probability": 0.9962 + }, + { + "start": 1850.66, + "end": 1856.46, + "probability": 0.72 + }, + { + "start": 1856.46, + "end": 1859.24, + "probability": 0.9236 + }, + { + "start": 1859.36, + "end": 1864.38, + "probability": 0.998 + }, + { + "start": 1864.46, + "end": 1865.9, + "probability": 0.5531 + }, + { + "start": 1867.32, + "end": 1874.56, + "probability": 0.9479 + }, + { + "start": 1874.56, + "end": 1881.0, + "probability": 0.9976 + }, + { + "start": 1881.98, + "end": 1889.2, + "probability": 0.9166 + }, + { + "start": 1889.5, + "end": 1890.21, + "probability": 0.6641 + }, + { + "start": 1891.06, + "end": 1893.68, + "probability": 0.9991 + }, + { + "start": 1893.68, + "end": 1897.34, + "probability": 0.9982 + }, + { + "start": 1897.48, + "end": 1905.56, + "probability": 0.9943 + }, + { + "start": 1905.66, + "end": 1907.16, + "probability": 0.964 + }, + { + "start": 1907.7, + "end": 1910.1, + "probability": 0.8542 + }, + { + "start": 1912.68, + "end": 1918.62, + "probability": 0.9552 + }, + { + "start": 1918.76, + "end": 1920.02, + "probability": 0.9568 + }, + { + "start": 1920.2, + "end": 1923.16, + "probability": 0.8372 + }, + { + "start": 1924.18, + "end": 1927.12, + "probability": 0.9167 + }, + { + "start": 1927.16, + "end": 1928.16, + "probability": 0.9535 + }, + { + "start": 1928.68, + "end": 1932.06, + "probability": 0.882 + }, + { + "start": 1932.18, + "end": 1934.74, + "probability": 0.8305 + }, + { + "start": 1934.88, + "end": 1935.51, + "probability": 0.9971 + }, + { + "start": 1936.54, + "end": 1938.94, + "probability": 0.968 + }, + { + "start": 1939.02, + "end": 1941.76, + "probability": 0.9884 + }, + { + "start": 1941.76, + "end": 1945.1, + "probability": 0.9228 + }, + { + "start": 1945.22, + "end": 1946.44, + "probability": 0.9591 + }, + { + "start": 1946.68, + "end": 1951.24, + "probability": 0.9925 + }, + { + "start": 1952.38, + "end": 1954.3, + "probability": 0.7649 + }, + { + "start": 1954.42, + "end": 1958.04, + "probability": 0.9386 + }, + { + "start": 1959.0, + "end": 1964.16, + "probability": 0.9979 + }, + { + "start": 1964.74, + "end": 1967.98, + "probability": 0.9983 + }, + { + "start": 1968.16, + "end": 1969.18, + "probability": 0.7078 + }, + { + "start": 1969.38, + "end": 1970.14, + "probability": 0.6144 + }, + { + "start": 1970.24, + "end": 1972.34, + "probability": 0.9683 + }, + { + "start": 1972.72, + "end": 1973.8, + "probability": 0.9021 + }, + { + "start": 1973.88, + "end": 1974.62, + "probability": 0.2963 + }, + { + "start": 1975.22, + "end": 1979.44, + "probability": 0.9739 + }, + { + "start": 1979.68, + "end": 1981.7, + "probability": 0.9863 + }, + { + "start": 1982.12, + "end": 1985.14, + "probability": 0.7562 + }, + { + "start": 1985.6, + "end": 1989.88, + "probability": 0.9945 + }, + { + "start": 1990.74, + "end": 1993.38, + "probability": 0.9861 + }, + { + "start": 1993.46, + "end": 1996.16, + "probability": 0.9956 + }, + { + "start": 1997.88, + "end": 2003.2, + "probability": 0.9463 + }, + { + "start": 2003.84, + "end": 2005.62, + "probability": 0.8392 + }, + { + "start": 2006.4, + "end": 2010.64, + "probability": 0.9857 + }, + { + "start": 2011.24, + "end": 2011.84, + "probability": 0.7332 + }, + { + "start": 2012.0, + "end": 2012.4, + "probability": 0.9445 + }, + { + "start": 2012.48, + "end": 2016.52, + "probability": 0.9902 + }, + { + "start": 2017.22, + "end": 2017.28, + "probability": 0.018 + }, + { + "start": 2017.28, + "end": 2022.66, + "probability": 0.8746 + }, + { + "start": 2023.08, + "end": 2026.96, + "probability": 0.699 + }, + { + "start": 2026.96, + "end": 2031.32, + "probability": 0.9902 + }, + { + "start": 2031.38, + "end": 2035.58, + "probability": 0.9921 + }, + { + "start": 2036.02, + "end": 2040.98, + "probability": 0.965 + }, + { + "start": 2041.72, + "end": 2043.02, + "probability": 0.9831 + }, + { + "start": 2043.16, + "end": 2043.38, + "probability": 0.5459 + }, + { + "start": 2043.48, + "end": 2044.54, + "probability": 0.7926 + }, + { + "start": 2044.62, + "end": 2045.41, + "probability": 0.3656 + }, + { + "start": 2046.48, + "end": 2049.02, + "probability": 0.9023 + }, + { + "start": 2049.44, + "end": 2054.15, + "probability": 0.9977 + }, + { + "start": 2054.26, + "end": 2060.5, + "probability": 0.9976 + }, + { + "start": 2061.54, + "end": 2062.74, + "probability": 0.9695 + }, + { + "start": 2063.14, + "end": 2065.8, + "probability": 0.4062 + }, + { + "start": 2065.8, + "end": 2070.82, + "probability": 0.9622 + }, + { + "start": 2070.82, + "end": 2074.32, + "probability": 0.9983 + }, + { + "start": 2074.32, + "end": 2075.92, + "probability": 0.9044 + }, + { + "start": 2076.36, + "end": 2078.32, + "probability": 0.9346 + }, + { + "start": 2078.4, + "end": 2078.72, + "probability": 0.799 + }, + { + "start": 2079.56, + "end": 2083.68, + "probability": 0.9486 + }, + { + "start": 2084.2, + "end": 2086.18, + "probability": 0.9176 + }, + { + "start": 2086.24, + "end": 2087.51, + "probability": 0.4961 + }, + { + "start": 2087.62, + "end": 2088.84, + "probability": 0.1778 + }, + { + "start": 2091.02, + "end": 2093.08, + "probability": 0.9214 + }, + { + "start": 2093.7, + "end": 2093.82, + "probability": 0.3053 + }, + { + "start": 2093.82, + "end": 2093.92, + "probability": 0.5778 + }, + { + "start": 2094.74, + "end": 2096.72, + "probability": 0.7256 + }, + { + "start": 2096.74, + "end": 2097.2, + "probability": 0.9185 + }, + { + "start": 2098.54, + "end": 2107.8, + "probability": 0.9421 + }, + { + "start": 2108.2, + "end": 2109.73, + "probability": 0.9763 + }, + { + "start": 2110.3, + "end": 2115.62, + "probability": 0.9781 + }, + { + "start": 2115.82, + "end": 2121.0, + "probability": 0.7833 + }, + { + "start": 2121.06, + "end": 2124.62, + "probability": 0.4156 + }, + { + "start": 2124.76, + "end": 2125.96, + "probability": 0.9595 + }, + { + "start": 2126.08, + "end": 2128.72, + "probability": 0.2905 + }, + { + "start": 2128.94, + "end": 2130.7, + "probability": 0.9917 + }, + { + "start": 2130.92, + "end": 2134.14, + "probability": 0.6965 + }, + { + "start": 2134.22, + "end": 2137.96, + "probability": 0.9731 + }, + { + "start": 2137.96, + "end": 2139.34, + "probability": 0.7872 + }, + { + "start": 2139.42, + "end": 2139.82, + "probability": 0.4852 + }, + { + "start": 2140.24, + "end": 2141.14, + "probability": 0.7676 + }, + { + "start": 2141.2, + "end": 2143.48, + "probability": 0.9446 + }, + { + "start": 2143.72, + "end": 2145.1, + "probability": 0.9182 + }, + { + "start": 2145.66, + "end": 2147.5, + "probability": 0.9071 + }, + { + "start": 2148.24, + "end": 2152.7, + "probability": 0.9973 + }, + { + "start": 2152.7, + "end": 2157.38, + "probability": 0.9531 + }, + { + "start": 2157.46, + "end": 2159.64, + "probability": 0.9824 + }, + { + "start": 2159.78, + "end": 2160.9, + "probability": 0.6537 + }, + { + "start": 2161.14, + "end": 2164.44, + "probability": 0.8623 + }, + { + "start": 2164.62, + "end": 2166.06, + "probability": 0.88 + }, + { + "start": 2166.48, + "end": 2169.96, + "probability": 0.9893 + }, + { + "start": 2169.96, + "end": 2173.54, + "probability": 0.9976 + }, + { + "start": 2173.6, + "end": 2174.16, + "probability": 0.6257 + }, + { + "start": 2174.74, + "end": 2177.42, + "probability": 0.9969 + }, + { + "start": 2177.42, + "end": 2179.62, + "probability": 0.9861 + }, + { + "start": 2180.12, + "end": 2180.54, + "probability": 0.2552 + }, + { + "start": 2180.58, + "end": 2181.52, + "probability": 0.7924 + }, + { + "start": 2181.6, + "end": 2184.54, + "probability": 0.9287 + }, + { + "start": 2184.54, + "end": 2188.42, + "probability": 0.9864 + }, + { + "start": 2188.42, + "end": 2191.92, + "probability": 0.9972 + }, + { + "start": 2192.4, + "end": 2194.44, + "probability": 0.9774 + }, + { + "start": 2194.54, + "end": 2195.28, + "probability": 0.7818 + }, + { + "start": 2195.58, + "end": 2199.3, + "probability": 0.9122 + }, + { + "start": 2199.4, + "end": 2200.68, + "probability": 0.9927 + }, + { + "start": 2201.32, + "end": 2206.04, + "probability": 0.9704 + }, + { + "start": 2206.04, + "end": 2212.7, + "probability": 0.9861 + }, + { + "start": 2213.1, + "end": 2215.76, + "probability": 0.9757 + }, + { + "start": 2216.24, + "end": 2219.4, + "probability": 0.9515 + }, + { + "start": 2219.82, + "end": 2221.82, + "probability": 0.9633 + }, + { + "start": 2221.84, + "end": 2223.88, + "probability": 0.9436 + }, + { + "start": 2223.98, + "end": 2226.08, + "probability": 0.7355 + }, + { + "start": 2226.48, + "end": 2227.72, + "probability": 0.8818 + }, + { + "start": 2227.76, + "end": 2232.34, + "probability": 0.9927 + }, + { + "start": 2233.4, + "end": 2233.82, + "probability": 0.5217 + }, + { + "start": 2233.92, + "end": 2236.38, + "probability": 0.9786 + }, + { + "start": 2236.38, + "end": 2240.14, + "probability": 0.939 + }, + { + "start": 2240.29, + "end": 2243.34, + "probability": 0.8384 + }, + { + "start": 2243.7, + "end": 2245.04, + "probability": 0.752 + }, + { + "start": 2245.3, + "end": 2246.24, + "probability": 0.7214 + }, + { + "start": 2246.32, + "end": 2247.12, + "probability": 0.8895 + }, + { + "start": 2247.26, + "end": 2250.66, + "probability": 0.835 + }, + { + "start": 2250.68, + "end": 2250.78, + "probability": 0.2048 + }, + { + "start": 2251.16, + "end": 2255.64, + "probability": 0.7378 + }, + { + "start": 2255.64, + "end": 2261.48, + "probability": 0.9068 + }, + { + "start": 2262.28, + "end": 2265.28, + "probability": 0.9238 + }, + { + "start": 2265.78, + "end": 2271.9, + "probability": 0.9758 + }, + { + "start": 2272.64, + "end": 2273.56, + "probability": 0.4797 + }, + { + "start": 2273.84, + "end": 2274.06, + "probability": 0.646 + }, + { + "start": 2274.32, + "end": 2276.7, + "probability": 0.6882 + }, + { + "start": 2277.78, + "end": 2280.88, + "probability": 0.5477 + }, + { + "start": 2281.68, + "end": 2286.62, + "probability": 0.9908 + }, + { + "start": 2286.68, + "end": 2289.02, + "probability": 0.7823 + }, + { + "start": 2289.08, + "end": 2291.04, + "probability": 0.0716 + }, + { + "start": 2291.24, + "end": 2294.16, + "probability": 0.7922 + }, + { + "start": 2294.24, + "end": 2297.72, + "probability": 0.8149 + }, + { + "start": 2299.72, + "end": 2302.32, + "probability": 0.9739 + }, + { + "start": 2302.42, + "end": 2304.32, + "probability": 0.5554 + }, + { + "start": 2304.7, + "end": 2307.04, + "probability": 0.6259 + }, + { + "start": 2307.62, + "end": 2311.6, + "probability": 0.9159 + }, + { + "start": 2311.96, + "end": 2313.14, + "probability": 0.8433 + }, + { + "start": 2313.28, + "end": 2317.6, + "probability": 0.9453 + }, + { + "start": 2318.02, + "end": 2320.18, + "probability": 0.8918 + }, + { + "start": 2320.18, + "end": 2325.26, + "probability": 0.8751 + }, + { + "start": 2325.34, + "end": 2326.68, + "probability": 0.5639 + }, + { + "start": 2327.02, + "end": 2327.94, + "probability": 0.5598 + }, + { + "start": 2328.0, + "end": 2328.48, + "probability": 0.8373 + }, + { + "start": 2328.54, + "end": 2330.7, + "probability": 0.9587 + }, + { + "start": 2331.06, + "end": 2334.26, + "probability": 0.9788 + }, + { + "start": 2334.26, + "end": 2336.88, + "probability": 0.9848 + }, + { + "start": 2337.46, + "end": 2340.1, + "probability": 0.9964 + }, + { + "start": 2340.1, + "end": 2343.86, + "probability": 0.9849 + }, + { + "start": 2343.86, + "end": 2346.5, + "probability": 0.5005 + }, + { + "start": 2346.88, + "end": 2350.04, + "probability": 0.998 + }, + { + "start": 2350.04, + "end": 2354.34, + "probability": 0.9941 + }, + { + "start": 2354.88, + "end": 2360.26, + "probability": 0.9995 + }, + { + "start": 2360.26, + "end": 2366.44, + "probability": 0.9961 + }, + { + "start": 2366.82, + "end": 2371.86, + "probability": 0.9716 + }, + { + "start": 2372.18, + "end": 2377.78, + "probability": 0.9872 + }, + { + "start": 2377.88, + "end": 2378.46, + "probability": 0.7441 + }, + { + "start": 2378.72, + "end": 2380.68, + "probability": 0.6257 + }, + { + "start": 2381.34, + "end": 2385.82, + "probability": 0.9325 + }, + { + "start": 2387.04, + "end": 2391.16, + "probability": 0.9877 + }, + { + "start": 2391.34, + "end": 2395.38, + "probability": 0.8596 + }, + { + "start": 2395.6, + "end": 2397.34, + "probability": 0.219 + }, + { + "start": 2398.04, + "end": 2400.04, + "probability": 0.7002 + }, + { + "start": 2400.18, + "end": 2403.86, + "probability": 0.9868 + }, + { + "start": 2403.94, + "end": 2404.44, + "probability": 0.4742 + }, + { + "start": 2404.5, + "end": 2406.58, + "probability": 0.9885 + }, + { + "start": 2410.6, + "end": 2411.95, + "probability": 0.6387 + }, + { + "start": 2412.66, + "end": 2416.26, + "probability": 0.9492 + }, + { + "start": 2416.34, + "end": 2417.0, + "probability": 0.0716 + }, + { + "start": 2417.07, + "end": 2418.06, + "probability": 0.7981 + }, + { + "start": 2418.08, + "end": 2418.73, + "probability": 0.7524 + }, + { + "start": 2419.3, + "end": 2422.9, + "probability": 0.448 + }, + { + "start": 2423.1, + "end": 2423.52, + "probability": 0.8654 + }, + { + "start": 2423.56, + "end": 2430.24, + "probability": 0.9863 + }, + { + "start": 2430.62, + "end": 2437.74, + "probability": 0.9622 + }, + { + "start": 2438.36, + "end": 2442.18, + "probability": 0.9753 + }, + { + "start": 2442.18, + "end": 2445.66, + "probability": 0.9941 + }, + { + "start": 2446.56, + "end": 2451.88, + "probability": 0.9266 + }, + { + "start": 2452.4, + "end": 2457.7, + "probability": 0.9939 + }, + { + "start": 2457.84, + "end": 2459.86, + "probability": 0.8848 + }, + { + "start": 2459.94, + "end": 2464.62, + "probability": 0.8548 + }, + { + "start": 2464.62, + "end": 2466.1, + "probability": 0.7479 + }, + { + "start": 2466.74, + "end": 2467.86, + "probability": 0.6018 + }, + { + "start": 2468.12, + "end": 2468.64, + "probability": 0.3703 + }, + { + "start": 2468.68, + "end": 2472.52, + "probability": 0.9685 + }, + { + "start": 2472.76, + "end": 2476.74, + "probability": 0.9299 + }, + { + "start": 2477.64, + "end": 2478.06, + "probability": 0.2092 + }, + { + "start": 2478.78, + "end": 2483.5, + "probability": 0.9513 + }, + { + "start": 2483.74, + "end": 2486.54, + "probability": 0.6919 + }, + { + "start": 2486.68, + "end": 2488.5, + "probability": 0.9668 + }, + { + "start": 2488.9, + "end": 2490.34, + "probability": 0.8859 + }, + { + "start": 2490.4, + "end": 2492.7, + "probability": 0.9836 + }, + { + "start": 2493.18, + "end": 2498.12, + "probability": 0.9924 + }, + { + "start": 2498.84, + "end": 2503.4, + "probability": 0.9331 + }, + { + "start": 2504.32, + "end": 2508.98, + "probability": 0.9825 + }, + { + "start": 2509.5, + "end": 2517.18, + "probability": 0.9499 + }, + { + "start": 2517.62, + "end": 2519.0, + "probability": 0.4146 + }, + { + "start": 2519.68, + "end": 2523.64, + "probability": 0.9919 + }, + { + "start": 2525.14, + "end": 2530.16, + "probability": 0.9307 + }, + { + "start": 2530.62, + "end": 2535.34, + "probability": 0.978 + }, + { + "start": 2536.0, + "end": 2543.06, + "probability": 0.9647 + }, + { + "start": 2544.18, + "end": 2549.52, + "probability": 0.9257 + }, + { + "start": 2549.96, + "end": 2551.81, + "probability": 0.989 + }, + { + "start": 2552.14, + "end": 2552.84, + "probability": 0.9099 + }, + { + "start": 2552.92, + "end": 2553.5, + "probability": 0.9763 + }, + { + "start": 2553.86, + "end": 2554.34, + "probability": 0.4956 + }, + { + "start": 2554.76, + "end": 2555.38, + "probability": 0.9058 + }, + { + "start": 2555.58, + "end": 2557.72, + "probability": 0.939 + }, + { + "start": 2558.14, + "end": 2560.82, + "probability": 0.96 + }, + { + "start": 2560.82, + "end": 2564.14, + "probability": 0.993 + }, + { + "start": 2564.52, + "end": 2568.96, + "probability": 0.9878 + }, + { + "start": 2569.94, + "end": 2573.24, + "probability": 0.8964 + }, + { + "start": 2574.22, + "end": 2579.34, + "probability": 0.7035 + }, + { + "start": 2579.66, + "end": 2582.26, + "probability": 0.9171 + }, + { + "start": 2583.36, + "end": 2585.12, + "probability": 0.4914 + }, + { + "start": 2589.04, + "end": 2589.68, + "probability": 0.7399 + }, + { + "start": 2590.5, + "end": 2595.36, + "probability": 0.7015 + }, + { + "start": 2595.48, + "end": 2599.02, + "probability": 0.3677 + }, + { + "start": 2599.06, + "end": 2600.66, + "probability": 0.5775 + }, + { + "start": 2601.16, + "end": 2602.36, + "probability": 0.8976 + }, + { + "start": 2603.48, + "end": 2604.18, + "probability": 0.7743 + }, + { + "start": 2604.28, + "end": 2607.26, + "probability": 0.9274 + }, + { + "start": 2607.42, + "end": 2610.26, + "probability": 0.7778 + }, + { + "start": 2610.82, + "end": 2614.32, + "probability": 0.9219 + }, + { + "start": 2614.32, + "end": 2619.24, + "probability": 0.9175 + }, + { + "start": 2619.24, + "end": 2624.94, + "probability": 0.9873 + }, + { + "start": 2625.58, + "end": 2631.7, + "probability": 0.9941 + }, + { + "start": 2631.7, + "end": 2639.58, + "probability": 0.656 + }, + { + "start": 2640.94, + "end": 2644.84, + "probability": 0.953 + }, + { + "start": 2645.52, + "end": 2646.6, + "probability": 0.7915 + }, + { + "start": 2646.64, + "end": 2647.3, + "probability": 0.4153 + }, + { + "start": 2647.46, + "end": 2648.0, + "probability": 0.7567 + }, + { + "start": 2648.04, + "end": 2650.82, + "probability": 0.9734 + }, + { + "start": 2650.96, + "end": 2652.36, + "probability": 0.6968 + }, + { + "start": 2652.54, + "end": 2654.68, + "probability": 0.7961 + }, + { + "start": 2654.88, + "end": 2656.88, + "probability": 0.9187 + }, + { + "start": 2657.26, + "end": 2659.23, + "probability": 0.9309 + }, + { + "start": 2659.84, + "end": 2665.18, + "probability": 0.9592 + }, + { + "start": 2665.18, + "end": 2671.86, + "probability": 0.9974 + }, + { + "start": 2672.0, + "end": 2675.92, + "probability": 0.9381 + }, + { + "start": 2676.2, + "end": 2678.2, + "probability": 0.8867 + }, + { + "start": 2678.38, + "end": 2679.1, + "probability": 0.6074 + }, + { + "start": 2679.72, + "end": 2681.54, + "probability": 0.7808 + }, + { + "start": 2682.34, + "end": 2684.22, + "probability": 0.4953 + }, + { + "start": 2684.44, + "end": 2688.54, + "probability": 0.9883 + }, + { + "start": 2688.86, + "end": 2689.52, + "probability": 0.6248 + }, + { + "start": 2689.6, + "end": 2691.9, + "probability": 0.9863 + }, + { + "start": 2692.8, + "end": 2693.84, + "probability": 0.0944 + }, + { + "start": 2694.44, + "end": 2696.72, + "probability": 0.9821 + }, + { + "start": 2696.72, + "end": 2702.28, + "probability": 0.9916 + }, + { + "start": 2702.5, + "end": 2703.54, + "probability": 0.6863 + }, + { + "start": 2703.62, + "end": 2705.06, + "probability": 0.975 + }, + { + "start": 2705.72, + "end": 2711.36, + "probability": 0.9941 + }, + { + "start": 2711.36, + "end": 2712.18, + "probability": 0.6566 + }, + { + "start": 2712.2, + "end": 2716.92, + "probability": 0.985 + }, + { + "start": 2717.48, + "end": 2720.44, + "probability": 0.9993 + }, + { + "start": 2720.5, + "end": 2721.9, + "probability": 0.8641 + }, + { + "start": 2722.34, + "end": 2729.71, + "probability": 0.9794 + }, + { + "start": 2729.82, + "end": 2738.4, + "probability": 0.8757 + }, + { + "start": 2738.86, + "end": 2744.94, + "probability": 0.987 + }, + { + "start": 2746.16, + "end": 2746.82, + "probability": 0.6493 + }, + { + "start": 2749.22, + "end": 2752.44, + "probability": 0.9549 + }, + { + "start": 2753.48, + "end": 2754.04, + "probability": 0.32 + }, + { + "start": 2754.06, + "end": 2760.88, + "probability": 0.6665 + }, + { + "start": 2761.08, + "end": 2762.74, + "probability": 0.7744 + }, + { + "start": 2763.48, + "end": 2767.92, + "probability": 0.9301 + }, + { + "start": 2768.48, + "end": 2773.44, + "probability": 0.988 + }, + { + "start": 2773.7, + "end": 2783.66, + "probability": 0.9863 + }, + { + "start": 2784.84, + "end": 2788.16, + "probability": 0.9677 + }, + { + "start": 2788.48, + "end": 2792.04, + "probability": 0.9953 + }, + { + "start": 2792.04, + "end": 2795.24, + "probability": 0.9741 + }, + { + "start": 2795.66, + "end": 2796.84, + "probability": 0.786 + }, + { + "start": 2797.62, + "end": 2801.04, + "probability": 0.9687 + }, + { + "start": 2801.3, + "end": 2801.8, + "probability": 0.8303 + }, + { + "start": 2802.1, + "end": 2808.84, + "probability": 0.8754 + }, + { + "start": 2809.18, + "end": 2812.33, + "probability": 0.9805 + }, + { + "start": 2814.18, + "end": 2816.64, + "probability": 0.6366 + }, + { + "start": 2816.64, + "end": 2817.6, + "probability": 0.8029 + }, + { + "start": 2817.7, + "end": 2818.02, + "probability": 0.7371 + }, + { + "start": 2818.04, + "end": 2820.16, + "probability": 0.706 + }, + { + "start": 2820.22, + "end": 2820.72, + "probability": 0.681 + }, + { + "start": 2820.8, + "end": 2823.42, + "probability": 0.9875 + }, + { + "start": 2823.72, + "end": 2824.8, + "probability": 0.8806 + }, + { + "start": 2824.92, + "end": 2828.06, + "probability": 0.8562 + }, + { + "start": 2828.1, + "end": 2828.76, + "probability": 0.7807 + }, + { + "start": 2829.24, + "end": 2831.48, + "probability": 0.7266 + }, + { + "start": 2831.74, + "end": 2833.2, + "probability": 0.9958 + }, + { + "start": 2833.46, + "end": 2834.8, + "probability": 0.9245 + }, + { + "start": 2834.88, + "end": 2835.34, + "probability": 0.8924 + }, + { + "start": 2836.62, + "end": 2839.32, + "probability": 0.8154 + }, + { + "start": 2841.56, + "end": 2841.72, + "probability": 0.2751 + }, + { + "start": 2859.54, + "end": 2860.8, + "probability": 0.4993 + }, + { + "start": 2860.88, + "end": 2862.08, + "probability": 0.6711 + }, + { + "start": 2862.52, + "end": 2866.45, + "probability": 0.988 + }, + { + "start": 2866.7, + "end": 2871.2, + "probability": 0.9829 + }, + { + "start": 2871.28, + "end": 2871.5, + "probability": 0.8389 + }, + { + "start": 2872.4, + "end": 2876.68, + "probability": 0.7094 + }, + { + "start": 2877.3, + "end": 2879.02, + "probability": 0.6828 + }, + { + "start": 2879.48, + "end": 2884.62, + "probability": 0.9664 + }, + { + "start": 2885.06, + "end": 2886.4, + "probability": 0.9626 + }, + { + "start": 2886.46, + "end": 2887.94, + "probability": 0.9581 + }, + { + "start": 2888.56, + "end": 2891.52, + "probability": 0.9892 + }, + { + "start": 2892.72, + "end": 2895.48, + "probability": 0.9982 + }, + { + "start": 2896.16, + "end": 2899.5, + "probability": 0.9902 + }, + { + "start": 2899.5, + "end": 2904.82, + "probability": 0.9975 + }, + { + "start": 2905.82, + "end": 2910.3, + "probability": 0.9937 + }, + { + "start": 2910.88, + "end": 2912.64, + "probability": 0.8806 + }, + { + "start": 2912.82, + "end": 2917.22, + "probability": 0.7453 + }, + { + "start": 2917.4, + "end": 2919.48, + "probability": 0.6509 + }, + { + "start": 2919.6, + "end": 2922.24, + "probability": 0.9171 + }, + { + "start": 2923.24, + "end": 2927.64, + "probability": 0.991 + }, + { + "start": 2927.78, + "end": 2933.74, + "probability": 0.9951 + }, + { + "start": 2934.3, + "end": 2940.68, + "probability": 0.9889 + }, + { + "start": 2942.14, + "end": 2946.96, + "probability": 0.7422 + }, + { + "start": 2946.96, + "end": 2951.4, + "probability": 0.9836 + }, + { + "start": 2952.14, + "end": 2956.0, + "probability": 0.9717 + }, + { + "start": 2956.6, + "end": 2958.22, + "probability": 0.9176 + }, + { + "start": 2959.0, + "end": 2961.34, + "probability": 0.4571 + }, + { + "start": 2962.52, + "end": 2967.92, + "probability": 0.9855 + }, + { + "start": 2967.92, + "end": 2974.86, + "probability": 0.8799 + }, + { + "start": 2976.62, + "end": 2976.88, + "probability": 0.2717 + }, + { + "start": 2976.92, + "end": 2983.62, + "probability": 0.9878 + }, + { + "start": 2983.62, + "end": 2992.14, + "probability": 0.9224 + }, + { + "start": 2993.44, + "end": 2998.3, + "probability": 0.9932 + }, + { + "start": 2999.04, + "end": 3002.84, + "probability": 0.9902 + }, + { + "start": 3003.38, + "end": 3007.8, + "probability": 0.9854 + }, + { + "start": 3007.8, + "end": 3012.28, + "probability": 0.9986 + }, + { + "start": 3013.62, + "end": 3015.42, + "probability": 0.6117 + }, + { + "start": 3015.54, + "end": 3018.84, + "probability": 0.9049 + }, + { + "start": 3019.02, + "end": 3021.86, + "probability": 0.8579 + }, + { + "start": 3022.44, + "end": 3024.42, + "probability": 0.8996 + }, + { + "start": 3025.49, + "end": 3029.15, + "probability": 0.8979 + }, + { + "start": 3031.5, + "end": 3035.46, + "probability": 0.9637 + }, + { + "start": 3035.48, + "end": 3038.62, + "probability": 0.9209 + }, + { + "start": 3038.74, + "end": 3040.58, + "probability": 0.1603 + }, + { + "start": 3040.76, + "end": 3044.38, + "probability": 0.5637 + }, + { + "start": 3045.43, + "end": 3048.64, + "probability": 0.6511 + }, + { + "start": 3048.66, + "end": 3049.2, + "probability": 0.4766 + }, + { + "start": 3049.36, + "end": 3050.18, + "probability": 0.764 + }, + { + "start": 3051.7, + "end": 3058.48, + "probability": 0.518 + }, + { + "start": 3067.54, + "end": 3070.76, + "probability": 0.0736 + }, + { + "start": 3070.76, + "end": 3071.52, + "probability": 0.0159 + }, + { + "start": 3071.7, + "end": 3072.18, + "probability": 0.0641 + }, + { + "start": 3072.18, + "end": 3073.14, + "probability": 0.2776 + }, + { + "start": 3073.28, + "end": 3073.88, + "probability": 0.2227 + }, + { + "start": 3073.92, + "end": 3074.88, + "probability": 0.0531 + }, + { + "start": 3078.48, + "end": 3083.26, + "probability": 0.5448 + }, + { + "start": 3083.52, + "end": 3086.1, + "probability": 0.082 + }, + { + "start": 3086.16, + "end": 3089.82, + "probability": 0.0446 + }, + { + "start": 3091.66, + "end": 3092.26, + "probability": 0.041 + }, + { + "start": 3092.26, + "end": 3092.52, + "probability": 0.0616 + }, + { + "start": 3092.66, + "end": 3094.16, + "probability": 0.0783 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3146.0, + "end": 3146.0, + "probability": 0.0 + }, + { + "start": 3154.88, + "end": 3158.02, + "probability": 0.4557 + }, + { + "start": 3158.14, + "end": 3163.02, + "probability": 0.7208 + }, + { + "start": 3163.14, + "end": 3165.84, + "probability": 0.9404 + }, + { + "start": 3166.12, + "end": 3167.26, + "probability": 0.8721 + }, + { + "start": 3167.54, + "end": 3170.5, + "probability": 0.9863 + }, + { + "start": 3170.5, + "end": 3172.76, + "probability": 0.9439 + }, + { + "start": 3172.9, + "end": 3174.0, + "probability": 0.7588 + }, + { + "start": 3174.08, + "end": 3177.96, + "probability": 0.6279 + }, + { + "start": 3178.16, + "end": 3178.88, + "probability": 0.7097 + }, + { + "start": 3179.0, + "end": 3182.44, + "probability": 0.8625 + }, + { + "start": 3182.72, + "end": 3188.08, + "probability": 0.9822 + }, + { + "start": 3198.82, + "end": 3200.5, + "probability": 0.7416 + }, + { + "start": 3200.66, + "end": 3201.3, + "probability": 0.5297 + }, + { + "start": 3201.36, + "end": 3203.24, + "probability": 0.6394 + }, + { + "start": 3203.34, + "end": 3206.56, + "probability": 0.5853 + }, + { + "start": 3207.1, + "end": 3212.18, + "probability": 0.9969 + }, + { + "start": 3213.16, + "end": 3215.78, + "probability": 0.9648 + }, + { + "start": 3217.1, + "end": 3226.38, + "probability": 0.9935 + }, + { + "start": 3226.66, + "end": 3228.6, + "probability": 0.9919 + }, + { + "start": 3228.7, + "end": 3229.72, + "probability": 0.814 + }, + { + "start": 3229.96, + "end": 3231.9, + "probability": 0.9977 + }, + { + "start": 3232.3, + "end": 3236.18, + "probability": 0.998 + }, + { + "start": 3236.9, + "end": 3237.94, + "probability": 0.9551 + }, + { + "start": 3238.02, + "end": 3239.66, + "probability": 0.9725 + }, + { + "start": 3240.16, + "end": 3245.04, + "probability": 0.9881 + }, + { + "start": 3245.56, + "end": 3252.24, + "probability": 0.9977 + }, + { + "start": 3252.76, + "end": 3254.77, + "probability": 0.9498 + }, + { + "start": 3255.48, + "end": 3256.98, + "probability": 0.8779 + }, + { + "start": 3257.58, + "end": 3263.56, + "probability": 0.9919 + }, + { + "start": 3263.94, + "end": 3269.74, + "probability": 0.9946 + }, + { + "start": 3270.0, + "end": 3275.96, + "probability": 0.9876 + }, + { + "start": 3277.1, + "end": 3277.82, + "probability": 0.8983 + }, + { + "start": 3278.0, + "end": 3280.24, + "probability": 0.9053 + }, + { + "start": 3280.7, + "end": 3284.84, + "probability": 0.9192 + }, + { + "start": 3285.38, + "end": 3290.52, + "probability": 0.9963 + }, + { + "start": 3290.52, + "end": 3297.08, + "probability": 0.9941 + }, + { + "start": 3298.12, + "end": 3302.92, + "probability": 0.9826 + }, + { + "start": 3303.24, + "end": 3303.82, + "probability": 0.599 + }, + { + "start": 3303.92, + "end": 3304.84, + "probability": 0.7787 + }, + { + "start": 3304.9, + "end": 3308.56, + "probability": 0.9777 + }, + { + "start": 3309.06, + "end": 3312.78, + "probability": 0.7566 + }, + { + "start": 3312.86, + "end": 3314.84, + "probability": 0.9752 + }, + { + "start": 3315.24, + "end": 3317.48, + "probability": 0.8239 + }, + { + "start": 3317.68, + "end": 3318.14, + "probability": 0.7996 + }, + { + "start": 3318.28, + "end": 3319.1, + "probability": 0.8059 + }, + { + "start": 3319.2, + "end": 3320.06, + "probability": 0.936 + }, + { + "start": 3320.44, + "end": 3321.82, + "probability": 0.9404 + }, + { + "start": 3321.86, + "end": 3323.28, + "probability": 0.6776 + }, + { + "start": 3323.36, + "end": 3324.88, + "probability": 0.8748 + }, + { + "start": 3325.08, + "end": 3328.9, + "probability": 0.9501 + }, + { + "start": 3329.06, + "end": 3332.16, + "probability": 0.8331 + }, + { + "start": 3332.56, + "end": 3339.26, + "probability": 0.91 + }, + { + "start": 3339.76, + "end": 3340.8, + "probability": 0.9203 + }, + { + "start": 3341.26, + "end": 3342.92, + "probability": 0.9078 + }, + { + "start": 3343.52, + "end": 3345.0, + "probability": 0.9318 + }, + { + "start": 3345.36, + "end": 3346.62, + "probability": 0.7288 + }, + { + "start": 3346.78, + "end": 3348.52, + "probability": 0.9438 + }, + { + "start": 3348.76, + "end": 3350.36, + "probability": 0.8295 + }, + { + "start": 3350.9, + "end": 3351.96, + "probability": 0.6602 + }, + { + "start": 3352.02, + "end": 3353.42, + "probability": 0.9842 + }, + { + "start": 3353.66, + "end": 3358.14, + "probability": 0.9423 + }, + { + "start": 3358.14, + "end": 3363.02, + "probability": 0.9848 + }, + { + "start": 3363.12, + "end": 3368.18, + "probability": 0.9907 + }, + { + "start": 3368.54, + "end": 3374.52, + "probability": 0.9557 + }, + { + "start": 3374.52, + "end": 3379.92, + "probability": 0.9832 + }, + { + "start": 3379.92, + "end": 3384.42, + "probability": 0.9881 + }, + { + "start": 3384.8, + "end": 3385.86, + "probability": 0.7787 + }, + { + "start": 3386.18, + "end": 3389.96, + "probability": 0.976 + }, + { + "start": 3390.2, + "end": 3392.22, + "probability": 0.9321 + }, + { + "start": 3392.66, + "end": 3394.52, + "probability": 0.9581 + }, + { + "start": 3394.6, + "end": 3395.32, + "probability": 0.978 + }, + { + "start": 3395.34, + "end": 3395.78, + "probability": 0.9774 + }, + { + "start": 3395.8, + "end": 3397.02, + "probability": 0.977 + }, + { + "start": 3397.48, + "end": 3397.64, + "probability": 0.4596 + }, + { + "start": 3398.8, + "end": 3400.66, + "probability": 0.2332 + }, + { + "start": 3401.32, + "end": 3403.44, + "probability": 0.5346 + }, + { + "start": 3403.94, + "end": 3408.22, + "probability": 0.9753 + }, + { + "start": 3408.22, + "end": 3412.04, + "probability": 0.9937 + }, + { + "start": 3412.56, + "end": 3415.66, + "probability": 0.8712 + }, + { + "start": 3416.7, + "end": 3421.36, + "probability": 0.9941 + }, + { + "start": 3421.36, + "end": 3426.94, + "probability": 0.9899 + }, + { + "start": 3427.34, + "end": 3429.74, + "probability": 0.8202 + }, + { + "start": 3430.46, + "end": 3432.4, + "probability": 0.9353 + }, + { + "start": 3432.5, + "end": 3433.99, + "probability": 0.6906 + }, + { + "start": 3434.84, + "end": 3439.22, + "probability": 0.8155 + }, + { + "start": 3439.3, + "end": 3443.06, + "probability": 0.9594 + }, + { + "start": 3443.1, + "end": 3445.68, + "probability": 0.9979 + }, + { + "start": 3445.92, + "end": 3447.06, + "probability": 0.7252 + }, + { + "start": 3447.26, + "end": 3451.56, + "probability": 0.9356 + }, + { + "start": 3451.68, + "end": 3457.14, + "probability": 0.9936 + }, + { + "start": 3457.14, + "end": 3461.2, + "probability": 0.9102 + }, + { + "start": 3461.6, + "end": 3462.8, + "probability": 0.8012 + }, + { + "start": 3463.8, + "end": 3468.58, + "probability": 0.9974 + }, + { + "start": 3468.82, + "end": 3473.84, + "probability": 0.9933 + }, + { + "start": 3474.28, + "end": 3477.88, + "probability": 0.9974 + }, + { + "start": 3478.46, + "end": 3482.22, + "probability": 0.9517 + }, + { + "start": 3482.58, + "end": 3486.1, + "probability": 0.8573 + }, + { + "start": 3486.44, + "end": 3488.18, + "probability": 0.7788 + }, + { + "start": 3488.34, + "end": 3488.78, + "probability": 0.8534 + }, + { + "start": 3489.1, + "end": 3490.63, + "probability": 0.9822 + }, + { + "start": 3491.1, + "end": 3491.96, + "probability": 0.9465 + }, + { + "start": 3492.04, + "end": 3492.4, + "probability": 0.783 + }, + { + "start": 3492.58, + "end": 3493.54, + "probability": 0.9668 + }, + { + "start": 3493.74, + "end": 3494.44, + "probability": 0.9745 + }, + { + "start": 3495.22, + "end": 3499.16, + "probability": 0.3675 + }, + { + "start": 3499.18, + "end": 3501.02, + "probability": 0.9893 + }, + { + "start": 3501.02, + "end": 3504.9, + "probability": 0.9857 + }, + { + "start": 3505.38, + "end": 3505.8, + "probability": 0.7558 + }, + { + "start": 3506.06, + "end": 3509.84, + "probability": 0.9944 + }, + { + "start": 3509.92, + "end": 3510.56, + "probability": 0.8507 + }, + { + "start": 3510.76, + "end": 3512.96, + "probability": 0.6304 + }, + { + "start": 3513.28, + "end": 3516.98, + "probability": 0.9661 + }, + { + "start": 3516.98, + "end": 3521.98, + "probability": 0.9854 + }, + { + "start": 3522.42, + "end": 3523.56, + "probability": 0.5613 + }, + { + "start": 3523.66, + "end": 3523.94, + "probability": 0.9424 + }, + { + "start": 3524.0, + "end": 3526.96, + "probability": 0.9946 + }, + { + "start": 3527.02, + "end": 3528.42, + "probability": 0.761 + }, + { + "start": 3528.8, + "end": 3529.16, + "probability": 0.879 + }, + { + "start": 3529.34, + "end": 3529.72, + "probability": 0.657 + }, + { + "start": 3529.84, + "end": 3530.94, + "probability": 0.6391 + }, + { + "start": 3531.22, + "end": 3533.24, + "probability": 0.958 + }, + { + "start": 3533.32, + "end": 3534.04, + "probability": 0.7967 + }, + { + "start": 3535.58, + "end": 3539.5, + "probability": 0.8322 + }, + { + "start": 3540.04, + "end": 3541.62, + "probability": 0.9922 + }, + { + "start": 3541.8, + "end": 3546.72, + "probability": 0.9951 + }, + { + "start": 3546.84, + "end": 3552.08, + "probability": 0.8875 + }, + { + "start": 3552.46, + "end": 3553.24, + "probability": 0.4827 + }, + { + "start": 3556.6, + "end": 3557.2, + "probability": 0.2525 + }, + { + "start": 3557.86, + "end": 3560.54, + "probability": 0.175 + }, + { + "start": 3561.92, + "end": 3562.98, + "probability": 0.0214 + }, + { + "start": 3564.12, + "end": 3568.98, + "probability": 0.0144 + }, + { + "start": 3569.88, + "end": 3570.72, + "probability": 0.1761 + }, + { + "start": 3593.54, + "end": 3594.3, + "probability": 0.0728 + }, + { + "start": 3601.96, + "end": 3603.62, + "probability": 0.1944 + }, + { + "start": 3604.0, + "end": 3607.8, + "probability": 0.902 + }, + { + "start": 3607.8, + "end": 3612.44, + "probability": 0.8819 + }, + { + "start": 3613.56, + "end": 3616.82, + "probability": 0.3942 + }, + { + "start": 3616.82, + "end": 3621.37, + "probability": 0.9551 + }, + { + "start": 3622.56, + "end": 3626.8, + "probability": 0.9758 + }, + { + "start": 3626.8, + "end": 3631.12, + "probability": 0.9987 + }, + { + "start": 3631.96, + "end": 3634.42, + "probability": 0.9502 + }, + { + "start": 3634.42, + "end": 3638.8, + "probability": 0.9451 + }, + { + "start": 3639.28, + "end": 3642.34, + "probability": 0.9808 + }, + { + "start": 3642.96, + "end": 3646.18, + "probability": 0.9629 + }, + { + "start": 3646.18, + "end": 3651.12, + "probability": 0.9993 + }, + { + "start": 3651.12, + "end": 3655.28, + "probability": 0.9729 + }, + { + "start": 3656.12, + "end": 3661.16, + "probability": 0.9852 + }, + { + "start": 3661.16, + "end": 3664.66, + "probability": 0.978 + }, + { + "start": 3664.66, + "end": 3669.78, + "probability": 0.9752 + }, + { + "start": 3670.22, + "end": 3672.58, + "probability": 0.843 + }, + { + "start": 3672.78, + "end": 3676.88, + "probability": 0.7258 + }, + { + "start": 3677.34, + "end": 3682.76, + "probability": 0.9572 + }, + { + "start": 3682.76, + "end": 3687.9, + "probability": 0.9577 + }, + { + "start": 3688.5, + "end": 3689.58, + "probability": 0.499 + }, + { + "start": 3691.44, + "end": 3696.92, + "probability": 0.969 + }, + { + "start": 3697.52, + "end": 3700.98, + "probability": 0.9105 + }, + { + "start": 3702.0, + "end": 3705.6, + "probability": 0.8419 + }, + { + "start": 3705.74, + "end": 3705.96, + "probability": 0.325 + }, + { + "start": 3705.96, + "end": 3711.36, + "probability": 0.9686 + }, + { + "start": 3711.5, + "end": 3712.4, + "probability": 0.7704 + }, + { + "start": 3712.6, + "end": 3714.4, + "probability": 0.1503 + }, + { + "start": 3715.02, + "end": 3717.18, + "probability": 0.7322 + }, + { + "start": 3717.4, + "end": 3719.44, + "probability": 0.7456 + }, + { + "start": 3725.32, + "end": 3727.33, + "probability": 0.0428 + }, + { + "start": 3729.42, + "end": 3732.1, + "probability": 0.1589 + }, + { + "start": 3748.12, + "end": 3751.08, + "probability": 0.0408 + }, + { + "start": 3751.58, + "end": 3753.1, + "probability": 0.5969 + }, + { + "start": 3753.42, + "end": 3755.06, + "probability": 0.758 + }, + { + "start": 3758.84, + "end": 3765.94, + "probability": 0.1368 + }, + { + "start": 3768.1, + "end": 3768.6, + "probability": 0.0469 + }, + { + "start": 3768.6, + "end": 3771.34, + "probability": 0.0304 + }, + { + "start": 3771.71, + "end": 3773.88, + "probability": 0.035 + }, + { + "start": 3774.72, + "end": 3774.96, + "probability": 0.0087 + }, + { + "start": 3776.1, + "end": 3777.0, + "probability": 0.011 + }, + { + "start": 3777.6, + "end": 3778.3, + "probability": 0.0258 + }, + { + "start": 3779.87, + "end": 3780.44, + "probability": 0.1091 + }, + { + "start": 3780.56, + "end": 3783.04, + "probability": 0.0269 + }, + { + "start": 3783.24, + "end": 3785.3, + "probability": 0.1084 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.0, + "end": 3804.0, + "probability": 0.0 + }, + { + "start": 3804.26, + "end": 3804.28, + "probability": 0.0005 + }, + { + "start": 3804.52, + "end": 3804.52, + "probability": 0.0743 + }, + { + "start": 3804.52, + "end": 3804.52, + "probability": 0.2098 + }, + { + "start": 3804.52, + "end": 3806.7, + "probability": 0.0706 + }, + { + "start": 3806.76, + "end": 3808.22, + "probability": 0.6859 + }, + { + "start": 3808.42, + "end": 3810.36, + "probability": 0.0901 + }, + { + "start": 3811.16, + "end": 3819.0, + "probability": 0.814 + }, + { + "start": 3819.06, + "end": 3820.04, + "probability": 0.8395 + }, + { + "start": 3820.74, + "end": 3821.18, + "probability": 0.7943 + }, + { + "start": 3821.36, + "end": 3822.12, + "probability": 0.8905 + }, + { + "start": 3822.38, + "end": 3823.26, + "probability": 0.982 + }, + { + "start": 3823.4, + "end": 3824.1, + "probability": 0.9658 + }, + { + "start": 3824.16, + "end": 3824.86, + "probability": 0.9767 + }, + { + "start": 3824.86, + "end": 3826.06, + "probability": 0.8232 + }, + { + "start": 3826.28, + "end": 3829.32, + "probability": 0.8895 + }, + { + "start": 3830.58, + "end": 3836.62, + "probability": 0.947 + }, + { + "start": 3837.28, + "end": 3839.62, + "probability": 0.9956 + }, + { + "start": 3840.88, + "end": 3843.66, + "probability": 0.4216 + }, + { + "start": 3843.86, + "end": 3845.72, + "probability": 0.9302 + }, + { + "start": 3849.07, + "end": 3852.08, + "probability": 0.9443 + }, + { + "start": 3852.68, + "end": 3855.24, + "probability": 0.9673 + }, + { + "start": 3855.96, + "end": 3864.88, + "probability": 0.9817 + }, + { + "start": 3865.82, + "end": 3867.38, + "probability": 0.7791 + }, + { + "start": 3867.98, + "end": 3870.38, + "probability": 0.5886 + }, + { + "start": 3871.26, + "end": 3874.6, + "probability": 0.9346 + }, + { + "start": 3875.78, + "end": 3879.34, + "probability": 0.851 + }, + { + "start": 3880.12, + "end": 3882.28, + "probability": 0.99 + }, + { + "start": 3882.32, + "end": 3885.06, + "probability": 0.9816 + }, + { + "start": 3886.7, + "end": 3896.12, + "probability": 0.978 + }, + { + "start": 3897.16, + "end": 3899.06, + "probability": 0.9626 + }, + { + "start": 3899.82, + "end": 3902.44, + "probability": 0.9973 + }, + { + "start": 3903.56, + "end": 3910.13, + "probability": 0.9795 + }, + { + "start": 3910.66, + "end": 3915.48, + "probability": 0.9977 + }, + { + "start": 3916.76, + "end": 3920.5, + "probability": 0.9978 + }, + { + "start": 3920.92, + "end": 3922.54, + "probability": 0.6039 + }, + { + "start": 3922.74, + "end": 3925.86, + "probability": 0.9961 + }, + { + "start": 3925.88, + "end": 3927.0, + "probability": 0.8646 + }, + { + "start": 3927.28, + "end": 3934.98, + "probability": 0.9656 + }, + { + "start": 3936.57, + "end": 3940.94, + "probability": 0.984 + }, + { + "start": 3941.74, + "end": 3942.4, + "probability": 0.8416 + }, + { + "start": 3942.56, + "end": 3947.26, + "probability": 0.9409 + }, + { + "start": 3953.62, + "end": 3957.6, + "probability": 0.6884 + }, + { + "start": 3958.82, + "end": 3961.68, + "probability": 0.6347 + }, + { + "start": 3965.01, + "end": 3966.94, + "probability": 0.7937 + }, + { + "start": 3967.0, + "end": 3967.1, + "probability": 0.4928 + }, + { + "start": 3968.66, + "end": 3971.42, + "probability": 0.9421 + }, + { + "start": 3976.06, + "end": 3978.32, + "probability": 0.7405 + }, + { + "start": 3978.5, + "end": 3981.08, + "probability": 0.9879 + }, + { + "start": 3981.14, + "end": 3982.04, + "probability": 0.7954 + }, + { + "start": 3984.04, + "end": 3986.88, + "probability": 0.9962 + }, + { + "start": 3987.26, + "end": 3991.82, + "probability": 0.9814 + }, + { + "start": 3993.22, + "end": 3994.1, + "probability": 0.9919 + }, + { + "start": 4001.44, + "end": 4008.6, + "probability": 0.8872 + }, + { + "start": 4014.3, + "end": 4017.24, + "probability": 0.8601 + }, + { + "start": 4017.3, + "end": 4021.26, + "probability": 0.98 + }, + { + "start": 4022.36, + "end": 4024.98, + "probability": 0.9966 + }, + { + "start": 4025.04, + "end": 4025.74, + "probability": 0.9609 + }, + { + "start": 4025.82, + "end": 4026.88, + "probability": 0.9706 + }, + { + "start": 4027.58, + "end": 4031.91, + "probability": 0.9389 + }, + { + "start": 4032.54, + "end": 4035.24, + "probability": 0.9974 + }, + { + "start": 4036.02, + "end": 4039.1, + "probability": 0.8958 + }, + { + "start": 4039.18, + "end": 4040.72, + "probability": 0.876 + }, + { + "start": 4041.48, + "end": 4044.33, + "probability": 0.9927 + }, + { + "start": 4044.98, + "end": 4051.14, + "probability": 0.8219 + }, + { + "start": 4051.64, + "end": 4053.14, + "probability": 0.9362 + }, + { + "start": 4053.76, + "end": 4060.3, + "probability": 0.9705 + }, + { + "start": 4060.3, + "end": 4066.16, + "probability": 0.9989 + }, + { + "start": 4067.4, + "end": 4068.16, + "probability": 0.7326 + }, + { + "start": 4068.88, + "end": 4070.28, + "probability": 0.858 + }, + { + "start": 4070.82, + "end": 4071.74, + "probability": 0.7288 + }, + { + "start": 4071.88, + "end": 4076.34, + "probability": 0.9941 + }, + { + "start": 4082.68, + "end": 4083.94, + "probability": 0.9593 + }, + { + "start": 4084.1, + "end": 4085.12, + "probability": 0.5002 + }, + { + "start": 4085.98, + "end": 4087.96, + "probability": 0.8475 + }, + { + "start": 4088.52, + "end": 4093.04, + "probability": 0.8958 + }, + { + "start": 4093.04, + "end": 4098.38, + "probability": 0.8824 + }, + { + "start": 4099.02, + "end": 4103.56, + "probability": 0.9038 + }, + { + "start": 4103.56, + "end": 4108.86, + "probability": 0.4853 + }, + { + "start": 4109.0, + "end": 4112.26, + "probability": 0.9912 + }, + { + "start": 4113.2, + "end": 4116.88, + "probability": 0.9482 + }, + { + "start": 4117.69, + "end": 4120.42, + "probability": 0.9419 + }, + { + "start": 4120.86, + "end": 4124.34, + "probability": 0.9847 + }, + { + "start": 4125.06, + "end": 4125.88, + "probability": 0.6355 + }, + { + "start": 4127.06, + "end": 4128.72, + "probability": 0.984 + }, + { + "start": 4129.02, + "end": 4130.42, + "probability": 0.998 + }, + { + "start": 4130.64, + "end": 4133.43, + "probability": 0.9683 + }, + { + "start": 4133.96, + "end": 4135.0, + "probability": 0.9678 + }, + { + "start": 4135.16, + "end": 4136.24, + "probability": 0.7637 + }, + { + "start": 4136.84, + "end": 4137.84, + "probability": 0.812 + }, + { + "start": 4137.88, + "end": 4140.92, + "probability": 0.9891 + }, + { + "start": 4141.04, + "end": 4142.66, + "probability": 0.4167 + }, + { + "start": 4142.76, + "end": 4143.82, + "probability": 0.0942 + }, + { + "start": 4144.98, + "end": 4148.9, + "probability": 0.783 + }, + { + "start": 4149.06, + "end": 4151.96, + "probability": 0.7703 + }, + { + "start": 4152.06, + "end": 4152.72, + "probability": 0.6963 + }, + { + "start": 4153.94, + "end": 4156.04, + "probability": 0.4304 + }, + { + "start": 4156.26, + "end": 4158.38, + "probability": 0.9788 + }, + { + "start": 4158.5, + "end": 4159.34, + "probability": 0.6733 + }, + { + "start": 4159.74, + "end": 4161.1, + "probability": 0.9973 + }, + { + "start": 4161.14, + "end": 4162.02, + "probability": 0.8481 + }, + { + "start": 4162.06, + "end": 4163.62, + "probability": 0.9883 + }, + { + "start": 4163.68, + "end": 4166.08, + "probability": 0.9613 + }, + { + "start": 4166.08, + "end": 4167.13, + "probability": 0.9309 + }, + { + "start": 4167.78, + "end": 4171.38, + "probability": 0.9916 + }, + { + "start": 4171.72, + "end": 4173.66, + "probability": 0.8799 + }, + { + "start": 4174.62, + "end": 4175.22, + "probability": 0.3265 + }, + { + "start": 4176.72, + "end": 4179.44, + "probability": 0.5481 + }, + { + "start": 4179.5, + "end": 4181.76, + "probability": 0.9225 + }, + { + "start": 4181.98, + "end": 4184.02, + "probability": 0.4858 + }, + { + "start": 4184.32, + "end": 4188.7, + "probability": 0.0796 + }, + { + "start": 4188.7, + "end": 4190.19, + "probability": 0.1147 + }, + { + "start": 4190.8, + "end": 4191.7, + "probability": 0.4103 + }, + { + "start": 4191.7, + "end": 4193.2, + "probability": 0.9831 + }, + { + "start": 4193.32, + "end": 4193.98, + "probability": 0.9526 + }, + { + "start": 4193.98, + "end": 4194.64, + "probability": 0.6328 + }, + { + "start": 4194.72, + "end": 4195.92, + "probability": 0.9719 + }, + { + "start": 4196.34, + "end": 4200.0, + "probability": 0.9901 + }, + { + "start": 4200.68, + "end": 4206.58, + "probability": 0.9867 + }, + { + "start": 4206.74, + "end": 4207.48, + "probability": 0.3208 + }, + { + "start": 4208.38, + "end": 4210.21, + "probability": 0.998 + }, + { + "start": 4211.04, + "end": 4212.0, + "probability": 0.0091 + }, + { + "start": 4212.88, + "end": 4214.26, + "probability": 0.3558 + }, + { + "start": 4218.28, + "end": 4225.32, + "probability": 0.9882 + }, + { + "start": 4225.32, + "end": 4231.06, + "probability": 0.9967 + }, + { + "start": 4232.3, + "end": 4234.4, + "probability": 0.4994 + }, + { + "start": 4236.14, + "end": 4239.04, + "probability": 0.835 + }, + { + "start": 4239.04, + "end": 4245.38, + "probability": 0.7443 + }, + { + "start": 4246.38, + "end": 4246.9, + "probability": 0.8076 + }, + { + "start": 4246.92, + "end": 4247.66, + "probability": 0.5049 + }, + { + "start": 4247.76, + "end": 4248.76, + "probability": 0.9868 + }, + { + "start": 4248.84, + "end": 4249.86, + "probability": 0.8813 + }, + { + "start": 4250.44, + "end": 4254.71, + "probability": 0.9834 + }, + { + "start": 4254.88, + "end": 4258.62, + "probability": 0.9032 + }, + { + "start": 4259.96, + "end": 4266.06, + "probability": 0.8835 + }, + { + "start": 4268.1, + "end": 4270.1, + "probability": 0.9967 + }, + { + "start": 4270.62, + "end": 4272.44, + "probability": 0.9412 + }, + { + "start": 4272.94, + "end": 4276.1, + "probability": 0.9009 + }, + { + "start": 4276.54, + "end": 4278.0, + "probability": 0.7989 + }, + { + "start": 4278.2, + "end": 4280.2, + "probability": 0.9193 + }, + { + "start": 4280.2, + "end": 4283.64, + "probability": 0.9925 + }, + { + "start": 4284.14, + "end": 4285.32, + "probability": 0.8793 + }, + { + "start": 4286.18, + "end": 4294.16, + "probability": 0.9951 + }, + { + "start": 4294.56, + "end": 4299.94, + "probability": 0.7384 + }, + { + "start": 4300.3, + "end": 4301.68, + "probability": 0.8551 + }, + { + "start": 4301.82, + "end": 4305.71, + "probability": 0.9629 + }, + { + "start": 4308.34, + "end": 4311.96, + "probability": 0.9082 + }, + { + "start": 4313.2, + "end": 4315.35, + "probability": 0.8703 + }, + { + "start": 4316.24, + "end": 4320.38, + "probability": 0.9956 + }, + { + "start": 4320.38, + "end": 4323.84, + "probability": 0.9517 + }, + { + "start": 4325.2, + "end": 4327.92, + "probability": 0.7468 + }, + { + "start": 4328.08, + "end": 4330.44, + "probability": 0.9932 + }, + { + "start": 4331.2, + "end": 4332.3, + "probability": 0.9277 + }, + { + "start": 4333.2, + "end": 4334.42, + "probability": 0.307 + }, + { + "start": 4334.86, + "end": 4336.9, + "probability": 0.7255 + }, + { + "start": 4337.0, + "end": 4340.56, + "probability": 0.9807 + }, + { + "start": 4340.72, + "end": 4341.54, + "probability": 0.6662 + }, + { + "start": 4343.08, + "end": 4348.38, + "probability": 0.9224 + }, + { + "start": 4348.46, + "end": 4352.3, + "probability": 0.9933 + }, + { + "start": 4352.54, + "end": 4358.88, + "probability": 0.9976 + }, + { + "start": 4360.67, + "end": 4363.12, + "probability": 0.9036 + }, + { + "start": 4364.5, + "end": 4370.0, + "probability": 0.9879 + }, + { + "start": 4370.42, + "end": 4373.48, + "probability": 0.932 + }, + { + "start": 4373.94, + "end": 4379.44, + "probability": 0.9899 + }, + { + "start": 4379.92, + "end": 4381.78, + "probability": 0.5149 + }, + { + "start": 4381.86, + "end": 4382.48, + "probability": 0.9272 + }, + { + "start": 4382.56, + "end": 4383.08, + "probability": 0.9461 + }, + { + "start": 4383.1, + "end": 4383.64, + "probability": 0.8106 + }, + { + "start": 4383.68, + "end": 4384.06, + "probability": 0.4247 + }, + { + "start": 4384.14, + "end": 4384.98, + "probability": 0.4824 + }, + { + "start": 4385.68, + "end": 4388.68, + "probability": 0.918 + }, + { + "start": 4388.86, + "end": 4391.2, + "probability": 0.6235 + }, + { + "start": 4392.77, + "end": 4394.46, + "probability": 0.8621 + }, + { + "start": 4395.35, + "end": 4396.68, + "probability": 0.6965 + }, + { + "start": 4397.5, + "end": 4397.98, + "probability": 0.9834 + }, + { + "start": 4402.3, + "end": 4405.12, + "probability": 0.701 + }, + { + "start": 4410.5, + "end": 4410.74, + "probability": 0.5556 + }, + { + "start": 4413.72, + "end": 4416.28, + "probability": 0.8492 + }, + { + "start": 4416.54, + "end": 4418.08, + "probability": 0.9491 + }, + { + "start": 4418.2, + "end": 4421.8, + "probability": 0.9191 + }, + { + "start": 4421.88, + "end": 4423.08, + "probability": 0.9705 + }, + { + "start": 4423.48, + "end": 4425.64, + "probability": 0.9933 + }, + { + "start": 4425.7, + "end": 4426.52, + "probability": 0.9571 + }, + { + "start": 4426.6, + "end": 4427.88, + "probability": 0.974 + }, + { + "start": 4428.84, + "end": 4429.98, + "probability": 0.7653 + }, + { + "start": 4430.12, + "end": 4436.36, + "probability": 0.7025 + }, + { + "start": 4437.4, + "end": 4441.12, + "probability": 0.9146 + }, + { + "start": 4441.34, + "end": 4443.8, + "probability": 0.9866 + }, + { + "start": 4444.72, + "end": 4448.08, + "probability": 0.9975 + }, + { + "start": 4449.02, + "end": 4454.54, + "probability": 0.9168 + }, + { + "start": 4457.08, + "end": 4457.6, + "probability": 0.4166 + }, + { + "start": 4457.6, + "end": 4461.5, + "probability": 0.9969 + }, + { + "start": 4462.7, + "end": 4465.68, + "probability": 0.7612 + }, + { + "start": 4466.54, + "end": 4467.71, + "probability": 0.8556 + }, + { + "start": 4469.12, + "end": 4473.12, + "probability": 0.851 + }, + { + "start": 4473.16, + "end": 4473.98, + "probability": 0.8066 + }, + { + "start": 4474.84, + "end": 4479.82, + "probability": 0.9543 + }, + { + "start": 4481.52, + "end": 4482.6, + "probability": 0.936 + }, + { + "start": 4483.58, + "end": 4484.08, + "probability": 0.7407 + }, + { + "start": 4484.68, + "end": 4485.28, + "probability": 0.3192 + }, + { + "start": 4486.2, + "end": 4487.08, + "probability": 0.8686 + }, + { + "start": 4487.72, + "end": 4488.82, + "probability": 0.9768 + }, + { + "start": 4489.08, + "end": 4490.58, + "probability": 0.9612 + }, + { + "start": 4490.88, + "end": 4491.72, + "probability": 0.8938 + }, + { + "start": 4492.38, + "end": 4493.36, + "probability": 0.7714 + }, + { + "start": 4493.64, + "end": 4495.32, + "probability": 0.623 + }, + { + "start": 4496.1, + "end": 4501.64, + "probability": 0.9794 + }, + { + "start": 4502.34, + "end": 4504.64, + "probability": 0.9897 + }, + { + "start": 4505.08, + "end": 4505.68, + "probability": 0.5131 + }, + { + "start": 4508.22, + "end": 4510.62, + "probability": 0.6206 + }, + { + "start": 4510.78, + "end": 4511.64, + "probability": 0.6542 + }, + { + "start": 4512.94, + "end": 4515.12, + "probability": 0.0644 + }, + { + "start": 4515.34, + "end": 4519.28, + "probability": 0.877 + }, + { + "start": 4519.34, + "end": 4520.27, + "probability": 0.8219 + }, + { + "start": 4521.12, + "end": 4523.94, + "probability": 0.5832 + }, + { + "start": 4523.94, + "end": 4525.12, + "probability": 0.3165 + }, + { + "start": 4525.78, + "end": 4526.3, + "probability": 0.011 + }, + { + "start": 4526.3, + "end": 4527.78, + "probability": 0.5826 + }, + { + "start": 4529.34, + "end": 4529.72, + "probability": 0.3745 + }, + { + "start": 4529.72, + "end": 4531.48, + "probability": 0.4735 + }, + { + "start": 4531.48, + "end": 4531.98, + "probability": 0.39 + }, + { + "start": 4532.14, + "end": 4535.94, + "probability": 0.8879 + }, + { + "start": 4536.08, + "end": 4536.32, + "probability": 0.7619 + }, + { + "start": 4536.5, + "end": 4536.92, + "probability": 0.0773 + }, + { + "start": 4536.98, + "end": 4538.34, + "probability": 0.9924 + }, + { + "start": 4538.98, + "end": 4540.62, + "probability": 0.9053 + }, + { + "start": 4540.76, + "end": 4541.92, + "probability": 0.8734 + }, + { + "start": 4542.8, + "end": 4543.76, + "probability": 0.9186 + }, + { + "start": 4543.86, + "end": 4544.64, + "probability": 0.9746 + }, + { + "start": 4544.76, + "end": 4546.52, + "probability": 0.9663 + }, + { + "start": 4547.22, + "end": 4549.5, + "probability": 0.9966 + }, + { + "start": 4549.92, + "end": 4551.74, + "probability": 0.9771 + }, + { + "start": 4551.76, + "end": 4552.4, + "probability": 0.5738 + }, + { + "start": 4553.04, + "end": 4554.28, + "probability": 0.9956 + }, + { + "start": 4554.56, + "end": 4556.78, + "probability": 0.9834 + }, + { + "start": 4557.7, + "end": 4557.98, + "probability": 0.6887 + }, + { + "start": 4558.04, + "end": 4559.76, + "probability": 0.8258 + }, + { + "start": 4559.86, + "end": 4563.06, + "probability": 0.9349 + }, + { + "start": 4563.86, + "end": 4566.3, + "probability": 0.9584 + }, + { + "start": 4566.34, + "end": 4567.62, + "probability": 0.9984 + }, + { + "start": 4568.16, + "end": 4569.0, + "probability": 0.7881 + }, + { + "start": 4569.08, + "end": 4570.56, + "probability": 0.7947 + }, + { + "start": 4570.9, + "end": 4574.04, + "probability": 0.9604 + }, + { + "start": 4574.46, + "end": 4576.44, + "probability": 0.9273 + }, + { + "start": 4576.52, + "end": 4581.14, + "probability": 0.8228 + }, + { + "start": 4581.24, + "end": 4582.82, + "probability": 0.5924 + }, + { + "start": 4583.1, + "end": 4583.56, + "probability": 0.7962 + }, + { + "start": 4584.2, + "end": 4586.04, + "probability": 0.7937 + }, + { + "start": 4586.12, + "end": 4587.52, + "probability": 0.8669 + }, + { + "start": 4588.36, + "end": 4590.24, + "probability": 0.9494 + }, + { + "start": 4590.38, + "end": 4591.04, + "probability": 0.8636 + }, + { + "start": 4591.12, + "end": 4594.58, + "probability": 0.8929 + }, + { + "start": 4599.25, + "end": 4604.22, + "probability": 0.9928 + }, + { + "start": 4605.14, + "end": 4605.9, + "probability": 0.8154 + }, + { + "start": 4606.52, + "end": 4607.06, + "probability": 0.7026 + }, + { + "start": 4607.1, + "end": 4608.26, + "probability": 0.9841 + }, + { + "start": 4608.86, + "end": 4611.52, + "probability": 0.9847 + }, + { + "start": 4612.56, + "end": 4615.16, + "probability": 0.8433 + }, + { + "start": 4615.28, + "end": 4615.8, + "probability": 0.7256 + }, + { + "start": 4615.94, + "end": 4617.0, + "probability": 0.7045 + }, + { + "start": 4617.14, + "end": 4618.26, + "probability": 0.77 + }, + { + "start": 4618.32, + "end": 4619.42, + "probability": 0.8034 + }, + { + "start": 4620.66, + "end": 4622.32, + "probability": 0.5913 + }, + { + "start": 4622.36, + "end": 4623.42, + "probability": 0.9388 + }, + { + "start": 4624.0, + "end": 4624.88, + "probability": 0.8409 + }, + { + "start": 4625.08, + "end": 4625.26, + "probability": 0.7354 + }, + { + "start": 4625.26, + "end": 4629.76, + "probability": 0.9576 + }, + { + "start": 4630.64, + "end": 4632.24, + "probability": 0.9717 + }, + { + "start": 4633.06, + "end": 4636.84, + "probability": 0.9632 + }, + { + "start": 4637.36, + "end": 4637.9, + "probability": 0.4238 + }, + { + "start": 4639.32, + "end": 4641.06, + "probability": 0.9376 + }, + { + "start": 4643.06, + "end": 4646.52, + "probability": 0.967 + }, + { + "start": 4649.44, + "end": 4651.88, + "probability": 0.57 + }, + { + "start": 4652.04, + "end": 4653.52, + "probability": 0.9925 + }, + { + "start": 4660.16, + "end": 4660.88, + "probability": 0.2405 + }, + { + "start": 4660.88, + "end": 4663.5, + "probability": 0.9422 + }, + { + "start": 4664.64, + "end": 4665.28, + "probability": 0.5024 + }, + { + "start": 4665.4, + "end": 4671.76, + "probability": 0.9846 + }, + { + "start": 4672.16, + "end": 4673.3, + "probability": 0.9842 + }, + { + "start": 4673.44, + "end": 4674.84, + "probability": 0.9068 + }, + { + "start": 4674.96, + "end": 4679.72, + "probability": 0.9816 + }, + { + "start": 4681.92, + "end": 4683.24, + "probability": 0.6851 + }, + { + "start": 4683.28, + "end": 4685.78, + "probability": 0.9753 + }, + { + "start": 4688.8, + "end": 4690.04, + "probability": 0.6719 + }, + { + "start": 4692.02, + "end": 4692.54, + "probability": 0.1185 + }, + { + "start": 4692.54, + "end": 4694.38, + "probability": 0.6688 + }, + { + "start": 4695.98, + "end": 4698.96, + "probability": 0.6693 + }, + { + "start": 4699.24, + "end": 4703.12, + "probability": 0.791 + }, + { + "start": 4704.0, + "end": 4704.7, + "probability": 0.5502 + }, + { + "start": 4705.32, + "end": 4709.5, + "probability": 0.9143 + }, + { + "start": 4710.36, + "end": 4713.51, + "probability": 0.803 + }, + { + "start": 4714.18, + "end": 4714.36, + "probability": 0.3794 + }, + { + "start": 4714.48, + "end": 4715.38, + "probability": 0.8723 + }, + { + "start": 4716.32, + "end": 4717.78, + "probability": 0.8975 + }, + { + "start": 4718.22, + "end": 4718.82, + "probability": 0.4831 + }, + { + "start": 4718.88, + "end": 4719.78, + "probability": 0.6355 + }, + { + "start": 4719.96, + "end": 4722.72, + "probability": 0.981 + }, + { + "start": 4724.0, + "end": 4725.61, + "probability": 0.1151 + }, + { + "start": 4726.04, + "end": 4728.74, + "probability": 0.0976 + }, + { + "start": 4729.24, + "end": 4730.2, + "probability": 0.1867 + }, + { + "start": 4733.83, + "end": 4736.56, + "probability": 0.6044 + }, + { + "start": 4736.56, + "end": 4737.32, + "probability": 0.1173 + }, + { + "start": 4737.5, + "end": 4740.82, + "probability": 0.728 + }, + { + "start": 4740.86, + "end": 4743.38, + "probability": 0.8226 + }, + { + "start": 4743.56, + "end": 4744.66, + "probability": 0.8533 + }, + { + "start": 4744.66, + "end": 4747.36, + "probability": 0.2603 + }, + { + "start": 4747.6, + "end": 4752.34, + "probability": 0.9756 + }, + { + "start": 4752.38, + "end": 4754.46, + "probability": 0.6609 + }, + { + "start": 4755.1, + "end": 4755.88, + "probability": 0.7911 + }, + { + "start": 4755.98, + "end": 4756.18, + "probability": 0.8774 + }, + { + "start": 4756.3, + "end": 4756.44, + "probability": 0.5803 + }, + { + "start": 4756.56, + "end": 4757.38, + "probability": 0.4785 + }, + { + "start": 4757.38, + "end": 4758.86, + "probability": 0.5947 + }, + { + "start": 4758.88, + "end": 4762.02, + "probability": 0.9391 + }, + { + "start": 4762.02, + "end": 4763.72, + "probability": 0.5193 + }, + { + "start": 4763.78, + "end": 4767.1, + "probability": 0.9897 + }, + { + "start": 4767.48, + "end": 4767.96, + "probability": 0.4634 + }, + { + "start": 4769.29, + "end": 4770.91, + "probability": 0.9526 + }, + { + "start": 4771.5, + "end": 4772.36, + "probability": 0.7198 + }, + { + "start": 4773.78, + "end": 4774.56, + "probability": 0.9795 + }, + { + "start": 4775.06, + "end": 4777.68, + "probability": 0.9417 + }, + { + "start": 4779.46, + "end": 4784.28, + "probability": 0.5004 + }, + { + "start": 4786.16, + "end": 4786.82, + "probability": 0.9272 + }, + { + "start": 4787.7, + "end": 4796.06, + "probability": 0.8091 + }, + { + "start": 4796.06, + "end": 4796.75, + "probability": 0.3567 + }, + { + "start": 4798.94, + "end": 4799.48, + "probability": 0.4672 + }, + { + "start": 4799.7, + "end": 4799.94, + "probability": 0.2679 + }, + { + "start": 4799.94, + "end": 4800.36, + "probability": 0.4238 + }, + { + "start": 4801.8, + "end": 4802.08, + "probability": 0.7861 + }, + { + "start": 4802.12, + "end": 4802.58, + "probability": 0.7178 + }, + { + "start": 4802.68, + "end": 4803.02, + "probability": 0.5532 + }, + { + "start": 4805.54, + "end": 4814.64, + "probability": 0.8848 + }, + { + "start": 4816.18, + "end": 4818.78, + "probability": 0.6986 + }, + { + "start": 4819.6, + "end": 4820.32, + "probability": 0.5016 + }, + { + "start": 4820.42, + "end": 4820.66, + "probability": 0.008 + }, + { + "start": 4822.2, + "end": 4825.39, + "probability": 0.9936 + }, + { + "start": 4825.82, + "end": 4828.34, + "probability": 0.6943 + }, + { + "start": 4828.34, + "end": 4829.66, + "probability": 0.7739 + }, + { + "start": 4829.74, + "end": 4830.52, + "probability": 0.7626 + }, + { + "start": 4831.0, + "end": 4831.66, + "probability": 0.7951 + }, + { + "start": 4832.12, + "end": 4833.58, + "probability": 0.5737 + }, + { + "start": 4833.58, + "end": 4836.89, + "probability": 0.9895 + }, + { + "start": 4837.66, + "end": 4842.38, + "probability": 0.9932 + }, + { + "start": 4842.44, + "end": 4844.44, + "probability": 0.9751 + }, + { + "start": 4844.64, + "end": 4845.58, + "probability": 0.5744 + }, + { + "start": 4845.82, + "end": 4847.44, + "probability": 0.9609 + }, + { + "start": 4847.48, + "end": 4847.96, + "probability": 0.8762 + }, + { + "start": 4848.84, + "end": 4851.02, + "probability": 0.5881 + }, + { + "start": 4851.12, + "end": 4852.54, + "probability": 0.7509 + }, + { + "start": 4852.66, + "end": 4857.1, + "probability": 0.9679 + }, + { + "start": 4863.2, + "end": 4867.06, + "probability": 0.5732 + }, + { + "start": 4867.08, + "end": 4867.66, + "probability": 0.8292 + }, + { + "start": 4868.2, + "end": 4868.22, + "probability": 0.0158 + }, + { + "start": 4868.22, + "end": 4868.22, + "probability": 0.2097 + }, + { + "start": 4868.22, + "end": 4870.4, + "probability": 0.8169 + }, + { + "start": 4871.62, + "end": 4877.58, + "probability": 0.9896 + }, + { + "start": 4877.78, + "end": 4880.0, + "probability": 0.7969 + }, + { + "start": 4880.17, + "end": 4884.16, + "probability": 0.8248 + }, + { + "start": 4884.6, + "end": 4886.02, + "probability": 0.9957 + }, + { + "start": 4886.08, + "end": 4888.1, + "probability": 0.9463 + }, + { + "start": 4888.3, + "end": 4889.34, + "probability": 0.9767 + }, + { + "start": 4890.58, + "end": 4890.68, + "probability": 0.7032 + }, + { + "start": 4890.68, + "end": 4893.04, + "probability": 0.5955 + }, + { + "start": 4893.52, + "end": 4895.38, + "probability": 0.8665 + }, + { + "start": 4895.78, + "end": 4896.9, + "probability": 0.8347 + }, + { + "start": 4897.7, + "end": 4898.0, + "probability": 0.2759 + }, + { + "start": 4898.0, + "end": 4899.36, + "probability": 0.264 + }, + { + "start": 4899.48, + "end": 4900.86, + "probability": 0.6235 + }, + { + "start": 4900.86, + "end": 4904.2, + "probability": 0.7327 + }, + { + "start": 4904.44, + "end": 4905.76, + "probability": 0.7766 + }, + { + "start": 4906.72, + "end": 4910.46, + "probability": 0.9829 + }, + { + "start": 4911.14, + "end": 4914.64, + "probability": 0.933 + }, + { + "start": 4914.96, + "end": 4917.02, + "probability": 0.825 + }, + { + "start": 4917.38, + "end": 4919.16, + "probability": 0.5989 + }, + { + "start": 4920.5, + "end": 4923.12, + "probability": 0.9478 + }, + { + "start": 4923.48, + "end": 4924.02, + "probability": 0.9543 + }, + { + "start": 4924.04, + "end": 4926.48, + "probability": 0.7492 + }, + { + "start": 4926.64, + "end": 4930.38, + "probability": 0.8673 + }, + { + "start": 4930.68, + "end": 4931.68, + "probability": 0.9924 + }, + { + "start": 4934.32, + "end": 4935.82, + "probability": 0.5031 + }, + { + "start": 4938.08, + "end": 4939.92, + "probability": 0.9746 + }, + { + "start": 4940.06, + "end": 4941.22, + "probability": 0.8014 + }, + { + "start": 4941.26, + "end": 4943.18, + "probability": 0.9932 + }, + { + "start": 4943.54, + "end": 4948.54, + "probability": 0.9915 + }, + { + "start": 4948.54, + "end": 4952.38, + "probability": 0.9618 + }, + { + "start": 4953.14, + "end": 4954.88, + "probability": 0.9976 + }, + { + "start": 4955.56, + "end": 4958.8, + "probability": 0.9946 + }, + { + "start": 4959.04, + "end": 4961.38, + "probability": 0.9814 + }, + { + "start": 4962.44, + "end": 4964.8, + "probability": 0.9688 + }, + { + "start": 4965.84, + "end": 4968.1, + "probability": 0.9942 + }, + { + "start": 4969.14, + "end": 4974.1, + "probability": 0.9826 + }, + { + "start": 4974.82, + "end": 4975.88, + "probability": 0.9883 + }, + { + "start": 4975.96, + "end": 4978.87, + "probability": 0.9244 + }, + { + "start": 4980.18, + "end": 4982.42, + "probability": 0.9862 + }, + { + "start": 4982.64, + "end": 4983.22, + "probability": 0.9834 + }, + { + "start": 4983.6, + "end": 4984.64, + "probability": 0.9941 + }, + { + "start": 4986.61, + "end": 4987.58, + "probability": 0.9761 + }, + { + "start": 4987.58, + "end": 4988.2, + "probability": 0.0537 + }, + { + "start": 4988.58, + "end": 4989.74, + "probability": 0.7781 + }, + { + "start": 4990.72, + "end": 4993.5, + "probability": 0.9965 + }, + { + "start": 4993.94, + "end": 4995.56, + "probability": 0.9851 + }, + { + "start": 4995.74, + "end": 4997.74, + "probability": 0.8796 + }, + { + "start": 4997.78, + "end": 4998.94, + "probability": 0.7578 + }, + { + "start": 4999.63, + "end": 5004.32, + "probability": 0.8065 + }, + { + "start": 5004.46, + "end": 5005.94, + "probability": 0.9978 + }, + { + "start": 5006.34, + "end": 5009.0, + "probability": 0.9911 + }, + { + "start": 5010.1, + "end": 5012.16, + "probability": 0.3307 + }, + { + "start": 5019.58, + "end": 5021.32, + "probability": 0.5614 + }, + { + "start": 5021.64, + "end": 5023.72, + "probability": 0.631 + }, + { + "start": 5023.9, + "end": 5024.64, + "probability": 0.6277 + }, + { + "start": 5024.8, + "end": 5027.86, + "probability": 0.9753 + }, + { + "start": 5027.98, + "end": 5029.06, + "probability": 0.4833 + }, + { + "start": 5029.3, + "end": 5030.54, + "probability": 0.915 + }, + { + "start": 5030.7, + "end": 5031.76, + "probability": 0.6316 + }, + { + "start": 5031.86, + "end": 5034.69, + "probability": 0.9441 + }, + { + "start": 5035.2, + "end": 5035.34, + "probability": 0.4291 + }, + { + "start": 5035.42, + "end": 5035.92, + "probability": 0.8255 + }, + { + "start": 5035.98, + "end": 5036.84, + "probability": 0.8964 + }, + { + "start": 5036.94, + "end": 5037.78, + "probability": 0.7512 + }, + { + "start": 5037.94, + "end": 5040.4, + "probability": 0.9819 + }, + { + "start": 5040.44, + "end": 5041.98, + "probability": 0.979 + }, + { + "start": 5041.98, + "end": 5043.18, + "probability": 0.5165 + }, + { + "start": 5043.24, + "end": 5044.34, + "probability": 0.5484 + }, + { + "start": 5044.52, + "end": 5046.66, + "probability": 0.6036 + }, + { + "start": 5046.84, + "end": 5047.72, + "probability": 0.2618 + }, + { + "start": 5047.8, + "end": 5049.72, + "probability": 0.7986 + }, + { + "start": 5050.68, + "end": 5051.34, + "probability": 0.8306 + }, + { + "start": 5051.98, + "end": 5054.34, + "probability": 0.9785 + }, + { + "start": 5054.36, + "end": 5054.81, + "probability": 0.8555 + }, + { + "start": 5055.62, + "end": 5057.2, + "probability": 0.74 + }, + { + "start": 5057.28, + "end": 5058.86, + "probability": 0.592 + }, + { + "start": 5058.86, + "end": 5059.2, + "probability": 0.7304 + }, + { + "start": 5060.5, + "end": 5062.2, + "probability": 0.6691 + }, + { + "start": 5062.3, + "end": 5064.64, + "probability": 0.7355 + }, + { + "start": 5075.3, + "end": 5075.42, + "probability": 0.5034 + }, + { + "start": 5075.42, + "end": 5075.88, + "probability": 0.482 + }, + { + "start": 5076.02, + "end": 5077.06, + "probability": 0.4126 + }, + { + "start": 5077.7, + "end": 5082.28, + "probability": 0.9713 + }, + { + "start": 5082.38, + "end": 5082.74, + "probability": 0.6945 + }, + { + "start": 5083.24, + "end": 5086.08, + "probability": 0.9745 + }, + { + "start": 5086.68, + "end": 5087.52, + "probability": 0.7279 + }, + { + "start": 5088.04, + "end": 5089.34, + "probability": 0.5888 + }, + { + "start": 5089.5, + "end": 5090.44, + "probability": 0.0261 + }, + { + "start": 5090.66, + "end": 5091.76, + "probability": 0.7827 + }, + { + "start": 5092.32, + "end": 5093.71, + "probability": 0.7227 + }, + { + "start": 5094.04, + "end": 5095.4, + "probability": 0.6331 + }, + { + "start": 5095.6, + "end": 5096.22, + "probability": 0.9621 + }, + { + "start": 5096.4, + "end": 5099.3, + "probability": 0.5829 + }, + { + "start": 5099.94, + "end": 5101.03, + "probability": 0.5638 + }, + { + "start": 5101.68, + "end": 5102.58, + "probability": 0.4224 + }, + { + "start": 5102.58, + "end": 5103.06, + "probability": 0.7102 + }, + { + "start": 5103.06, + "end": 5103.94, + "probability": 0.9069 + }, + { + "start": 5104.5, + "end": 5107.45, + "probability": 0.7801 + }, + { + "start": 5107.46, + "end": 5109.04, + "probability": 0.9712 + }, + { + "start": 5109.72, + "end": 5109.72, + "probability": 0.4322 + }, + { + "start": 5109.72, + "end": 5111.64, + "probability": 0.8651 + }, + { + "start": 5112.08, + "end": 5112.57, + "probability": 0.9387 + }, + { + "start": 5113.02, + "end": 5114.04, + "probability": 0.9655 + }, + { + "start": 5114.58, + "end": 5117.74, + "probability": 0.9854 + }, + { + "start": 5118.22, + "end": 5119.4, + "probability": 0.924 + }, + { + "start": 5119.56, + "end": 5119.9, + "probability": 0.8101 + }, + { + "start": 5121.02, + "end": 5123.06, + "probability": 0.9753 + }, + { + "start": 5123.18, + "end": 5123.36, + "probability": 0.2499 + }, + { + "start": 5123.36, + "end": 5127.94, + "probability": 0.7947 + }, + { + "start": 5128.12, + "end": 5129.44, + "probability": 0.8714 + }, + { + "start": 5129.68, + "end": 5130.98, + "probability": 0.1279 + }, + { + "start": 5131.04, + "end": 5132.22, + "probability": 0.6093 + }, + { + "start": 5132.28, + "end": 5133.74, + "probability": 0.6572 + }, + { + "start": 5141.52, + "end": 5145.18, + "probability": 0.094 + }, + { + "start": 5146.57, + "end": 5149.02, + "probability": 0.0905 + }, + { + "start": 5152.28, + "end": 5156.4, + "probability": 0.0367 + }, + { + "start": 5156.4, + "end": 5159.04, + "probability": 0.6668 + }, + { + "start": 5159.18, + "end": 5160.66, + "probability": 0.7492 + }, + { + "start": 5161.5, + "end": 5163.2, + "probability": 0.0889 + }, + { + "start": 5163.2, + "end": 5164.57, + "probability": 0.0824 + }, + { + "start": 5166.34, + "end": 5170.94, + "probability": 0.0594 + }, + { + "start": 5179.86, + "end": 5180.5, + "probability": 0.1256 + }, + { + "start": 5181.18, + "end": 5182.84, + "probability": 0.1111 + }, + { + "start": 5182.92, + "end": 5182.92, + "probability": 0.3093 + }, + { + "start": 5182.96, + "end": 5189.16, + "probability": 0.0177 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.0, + "end": 5213.0, + "probability": 0.0 + }, + { + "start": 5213.04, + "end": 5214.1, + "probability": 0.1626 + }, + { + "start": 5214.1, + "end": 5214.54, + "probability": 0.201 + }, + { + "start": 5214.54, + "end": 5216.08, + "probability": 0.9644 + }, + { + "start": 5216.24, + "end": 5217.56, + "probability": 0.8666 + }, + { + "start": 5217.56, + "end": 5218.72, + "probability": 0.7278 + }, + { + "start": 5219.26, + "end": 5221.52, + "probability": 0.7191 + }, + { + "start": 5221.62, + "end": 5225.32, + "probability": 0.912 + }, + { + "start": 5225.42, + "end": 5228.5, + "probability": 0.9012 + }, + { + "start": 5229.12, + "end": 5232.22, + "probability": 0.7556 + }, + { + "start": 5232.94, + "end": 5233.8, + "probability": 0.7193 + }, + { + "start": 5233.9, + "end": 5236.86, + "probability": 0.9443 + }, + { + "start": 5237.26, + "end": 5241.58, + "probability": 0.7625 + }, + { + "start": 5241.58, + "end": 5242.62, + "probability": 0.4396 + }, + { + "start": 5242.66, + "end": 5245.74, + "probability": 0.8235 + }, + { + "start": 5245.86, + "end": 5247.12, + "probability": 0.8027 + }, + { + "start": 5247.22, + "end": 5248.56, + "probability": 0.724 + }, + { + "start": 5249.0, + "end": 5249.68, + "probability": 0.8577 + }, + { + "start": 5249.8, + "end": 5252.3, + "probability": 0.9894 + }, + { + "start": 5252.34, + "end": 5252.8, + "probability": 0.6609 + }, + { + "start": 5253.8, + "end": 5256.2, + "probability": 0.9136 + }, + { + "start": 5256.52, + "end": 5260.62, + "probability": 0.8463 + }, + { + "start": 5260.9, + "end": 5261.84, + "probability": 0.5737 + }, + { + "start": 5263.14, + "end": 5264.78, + "probability": 0.7764 + }, + { + "start": 5275.16, + "end": 5275.78, + "probability": 0.7019 + }, + { + "start": 5277.24, + "end": 5278.86, + "probability": 0.7086 + }, + { + "start": 5279.0, + "end": 5280.64, + "probability": 0.947 + }, + { + "start": 5280.82, + "end": 5283.24, + "probability": 0.95 + }, + { + "start": 5283.86, + "end": 5285.13, + "probability": 0.9111 + }, + { + "start": 5285.72, + "end": 5287.5, + "probability": 0.98 + }, + { + "start": 5288.0, + "end": 5290.6, + "probability": 0.9651 + }, + { + "start": 5291.18, + "end": 5296.42, + "probability": 0.9976 + }, + { + "start": 5297.06, + "end": 5299.92, + "probability": 0.9902 + }, + { + "start": 5300.04, + "end": 5303.04, + "probability": 0.9873 + }, + { + "start": 5303.04, + "end": 5306.08, + "probability": 0.9873 + }, + { + "start": 5307.22, + "end": 5309.66, + "probability": 0.9854 + }, + { + "start": 5310.36, + "end": 5311.92, + "probability": 0.8469 + }, + { + "start": 5312.3, + "end": 5313.26, + "probability": 0.8833 + }, + { + "start": 5313.76, + "end": 5317.64, + "probability": 0.9749 + }, + { + "start": 5317.74, + "end": 5318.96, + "probability": 0.9341 + }, + { + "start": 5319.06, + "end": 5321.48, + "probability": 0.7914 + }, + { + "start": 5321.66, + "end": 5322.64, + "probability": 0.9007 + }, + { + "start": 5323.04, + "end": 5325.9, + "probability": 0.9919 + }, + { + "start": 5327.02, + "end": 5331.02, + "probability": 0.9966 + }, + { + "start": 5331.76, + "end": 5334.94, + "probability": 0.981 + }, + { + "start": 5335.52, + "end": 5339.38, + "probability": 0.9256 + }, + { + "start": 5339.94, + "end": 5341.6, + "probability": 0.8105 + }, + { + "start": 5342.24, + "end": 5346.92, + "probability": 0.9053 + }, + { + "start": 5348.54, + "end": 5353.22, + "probability": 0.9968 + }, + { + "start": 5354.36, + "end": 5354.64, + "probability": 0.4348 + }, + { + "start": 5354.68, + "end": 5358.92, + "probability": 0.9314 + }, + { + "start": 5359.82, + "end": 5363.6, + "probability": 0.9762 + }, + { + "start": 5364.3, + "end": 5366.62, + "probability": 0.971 + }, + { + "start": 5367.22, + "end": 5371.8, + "probability": 0.9844 + }, + { + "start": 5372.3, + "end": 5373.14, + "probability": 0.7974 + }, + { + "start": 5373.74, + "end": 5379.58, + "probability": 0.998 + }, + { + "start": 5379.68, + "end": 5383.4, + "probability": 0.9836 + }, + { + "start": 5384.12, + "end": 5386.62, + "probability": 0.9985 + }, + { + "start": 5387.26, + "end": 5389.7, + "probability": 0.9458 + }, + { + "start": 5390.36, + "end": 5391.54, + "probability": 0.9944 + }, + { + "start": 5391.6, + "end": 5395.46, + "probability": 0.9742 + }, + { + "start": 5396.1, + "end": 5402.5, + "probability": 0.9833 + }, + { + "start": 5403.2, + "end": 5404.26, + "probability": 0.792 + }, + { + "start": 5404.94, + "end": 5406.38, + "probability": 0.9175 + }, + { + "start": 5407.1, + "end": 5409.32, + "probability": 0.9485 + }, + { + "start": 5409.82, + "end": 5410.96, + "probability": 0.9038 + }, + { + "start": 5411.06, + "end": 5412.06, + "probability": 0.8386 + }, + { + "start": 5412.68, + "end": 5413.8, + "probability": 0.9642 + }, + { + "start": 5413.96, + "end": 5416.62, + "probability": 0.9995 + }, + { + "start": 5417.12, + "end": 5421.0, + "probability": 0.998 + }, + { + "start": 5421.52, + "end": 5422.42, + "probability": 0.8145 + }, + { + "start": 5422.62, + "end": 5423.7, + "probability": 0.8126 + }, + { + "start": 5423.8, + "end": 5425.5, + "probability": 0.9794 + }, + { + "start": 5426.14, + "end": 5428.64, + "probability": 0.9962 + }, + { + "start": 5429.38, + "end": 5432.34, + "probability": 0.9971 + }, + { + "start": 5433.18, + "end": 5433.88, + "probability": 0.8032 + }, + { + "start": 5434.04, + "end": 5435.48, + "probability": 0.8979 + }, + { + "start": 5435.52, + "end": 5438.48, + "probability": 0.8496 + }, + { + "start": 5438.52, + "end": 5439.24, + "probability": 0.8433 + }, + { + "start": 5439.74, + "end": 5440.92, + "probability": 0.9396 + }, + { + "start": 5441.52, + "end": 5443.7, + "probability": 0.9636 + }, + { + "start": 5444.16, + "end": 5447.0, + "probability": 0.9993 + }, + { + "start": 5447.0, + "end": 5450.5, + "probability": 0.9998 + }, + { + "start": 5450.96, + "end": 5453.02, + "probability": 0.9679 + }, + { + "start": 5453.4, + "end": 5453.92, + "probability": 0.834 + }, + { + "start": 5455.7, + "end": 5457.66, + "probability": 0.9342 + }, + { + "start": 5457.94, + "end": 5459.41, + "probability": 0.8715 + }, + { + "start": 5460.62, + "end": 5463.58, + "probability": 0.9688 + }, + { + "start": 5464.1, + "end": 5465.0, + "probability": 0.7739 + }, + { + "start": 5465.14, + "end": 5466.2, + "probability": 0.1734 + }, + { + "start": 5466.28, + "end": 5466.94, + "probability": 0.5731 + }, + { + "start": 5467.36, + "end": 5468.78, + "probability": 0.804 + }, + { + "start": 5489.36, + "end": 5489.78, + "probability": 0.0762 + }, + { + "start": 5489.78, + "end": 5489.78, + "probability": 0.1367 + }, + { + "start": 5489.78, + "end": 5489.8, + "probability": 0.0513 + }, + { + "start": 5489.8, + "end": 5489.8, + "probability": 0.0808 + }, + { + "start": 5489.8, + "end": 5491.68, + "probability": 0.3265 + }, + { + "start": 5491.76, + "end": 5492.74, + "probability": 0.7701 + }, + { + "start": 5492.82, + "end": 5494.52, + "probability": 0.513 + }, + { + "start": 5495.6, + "end": 5499.0, + "probability": 0.7674 + }, + { + "start": 5499.1, + "end": 5500.94, + "probability": 0.769 + }, + { + "start": 5501.12, + "end": 5505.22, + "probability": 0.108 + }, + { + "start": 5506.08, + "end": 5507.06, + "probability": 0.0279 + }, + { + "start": 5508.36, + "end": 5510.18, + "probability": 0.58 + }, + { + "start": 5510.6, + "end": 5512.34, + "probability": 0.571 + }, + { + "start": 5512.66, + "end": 5513.9, + "probability": 0.5381 + }, + { + "start": 5513.98, + "end": 5514.1, + "probability": 0.2192 + }, + { + "start": 5514.1, + "end": 5515.42, + "probability": 0.9324 + }, + { + "start": 5515.48, + "end": 5516.66, + "probability": 0.5875 + }, + { + "start": 5516.98, + "end": 5521.06, + "probability": 0.8168 + }, + { + "start": 5521.14, + "end": 5521.58, + "probability": 0.431 + }, + { + "start": 5521.62, + "end": 5522.14, + "probability": 0.7731 + }, + { + "start": 5522.46, + "end": 5523.4, + "probability": 0.8794 + }, + { + "start": 5527.62, + "end": 5528.48, + "probability": 0.4952 + }, + { + "start": 5528.52, + "end": 5528.96, + "probability": 0.5129 + }, + { + "start": 5531.4, + "end": 5534.3, + "probability": 0.7741 + }, + { + "start": 5534.42, + "end": 5535.98, + "probability": 0.9854 + }, + { + "start": 5536.18, + "end": 5537.68, + "probability": 0.0417 + }, + { + "start": 5538.08, + "end": 5540.12, + "probability": 0.931 + }, + { + "start": 5540.52, + "end": 5542.46, + "probability": 0.8853 + }, + { + "start": 5543.8, + "end": 5546.04, + "probability": 0.7069 + }, + { + "start": 5546.58, + "end": 5547.1, + "probability": 0.9054 + }, + { + "start": 5550.48, + "end": 5554.1, + "probability": 0.8043 + }, + { + "start": 5555.92, + "end": 5556.72, + "probability": 0.6422 + }, + { + "start": 5557.16, + "end": 5562.58, + "probability": 0.9951 + }, + { + "start": 5563.04, + "end": 5566.24, + "probability": 0.9966 + }, + { + "start": 5567.22, + "end": 5572.5, + "probability": 0.9741 + }, + { + "start": 5573.34, + "end": 5576.66, + "probability": 0.6158 + }, + { + "start": 5577.2, + "end": 5578.44, + "probability": 0.6881 + }, + { + "start": 5578.5, + "end": 5586.06, + "probability": 0.9557 + }, + { + "start": 5586.32, + "end": 5588.96, + "probability": 0.9315 + }, + { + "start": 5589.44, + "end": 5593.64, + "probability": 0.9332 + }, + { + "start": 5594.06, + "end": 5597.18, + "probability": 0.9812 + }, + { + "start": 5598.1, + "end": 5598.9, + "probability": 0.8121 + }, + { + "start": 5599.28, + "end": 5603.26, + "probability": 0.8148 + }, + { + "start": 5603.26, + "end": 5609.04, + "probability": 0.9069 + }, + { + "start": 5609.92, + "end": 5611.65, + "probability": 0.8446 + }, + { + "start": 5612.46, + "end": 5613.34, + "probability": 0.7643 + }, + { + "start": 5613.64, + "end": 5614.18, + "probability": 0.9103 + }, + { + "start": 5614.3, + "end": 5615.04, + "probability": 0.9204 + }, + { + "start": 5615.3, + "end": 5616.14, + "probability": 0.88 + }, + { + "start": 5616.32, + "end": 5618.72, + "probability": 0.9316 + }, + { + "start": 5619.32, + "end": 5622.68, + "probability": 0.9545 + }, + { + "start": 5623.84, + "end": 5626.28, + "probability": 0.8765 + }, + { + "start": 5626.78, + "end": 5633.24, + "probability": 0.9927 + }, + { + "start": 5634.1, + "end": 5634.82, + "probability": 0.7654 + }, + { + "start": 5635.88, + "end": 5637.4, + "probability": 0.8279 + }, + { + "start": 5638.04, + "end": 5639.28, + "probability": 0.6898 + }, + { + "start": 5639.82, + "end": 5641.06, + "probability": 0.6254 + }, + { + "start": 5641.82, + "end": 5644.24, + "probability": 0.8979 + }, + { + "start": 5645.36, + "end": 5650.76, + "probability": 0.943 + }, + { + "start": 5651.34, + "end": 5652.58, + "probability": 0.9041 + }, + { + "start": 5653.0, + "end": 5654.12, + "probability": 0.8903 + }, + { + "start": 5654.46, + "end": 5656.94, + "probability": 0.9385 + }, + { + "start": 5657.42, + "end": 5661.28, + "probability": 0.1085 + }, + { + "start": 5661.32, + "end": 5663.34, + "probability": 0.9952 + }, + { + "start": 5664.26, + "end": 5665.46, + "probability": 0.9189 + }, + { + "start": 5666.1, + "end": 5672.74, + "probability": 0.9869 + }, + { + "start": 5673.42, + "end": 5681.36, + "probability": 0.996 + }, + { + "start": 5681.6, + "end": 5682.04, + "probability": 0.7439 + }, + { + "start": 5682.16, + "end": 5684.08, + "probability": 0.8304 + }, + { + "start": 5684.22, + "end": 5685.02, + "probability": 0.5948 + }, + { + "start": 5685.82, + "end": 5688.24, + "probability": 0.9457 + }, + { + "start": 5689.0, + "end": 5691.66, + "probability": 0.9482 + }, + { + "start": 5692.2, + "end": 5696.2, + "probability": 0.6662 + }, + { + "start": 5696.8, + "end": 5699.42, + "probability": 0.9786 + }, + { + "start": 5700.6, + "end": 5703.12, + "probability": 0.9849 + }, + { + "start": 5703.9, + "end": 5705.6, + "probability": 0.986 + }, + { + "start": 5706.12, + "end": 5709.18, + "probability": 0.9673 + }, + { + "start": 5709.8, + "end": 5716.56, + "probability": 0.9978 + }, + { + "start": 5716.64, + "end": 5724.78, + "probability": 0.9871 + }, + { + "start": 5725.38, + "end": 5730.36, + "probability": 0.9678 + }, + { + "start": 5731.08, + "end": 5734.28, + "probability": 0.9796 + }, + { + "start": 5734.28, + "end": 5737.06, + "probability": 0.9957 + }, + { + "start": 5737.64, + "end": 5740.76, + "probability": 0.9965 + }, + { + "start": 5741.34, + "end": 5744.58, + "probability": 0.9931 + }, + { + "start": 5745.2, + "end": 5750.0, + "probability": 0.8233 + }, + { + "start": 5750.34, + "end": 5751.08, + "probability": 0.7632 + }, + { + "start": 5751.26, + "end": 5751.84, + "probability": 0.9146 + }, + { + "start": 5751.92, + "end": 5752.76, + "probability": 0.8838 + }, + { + "start": 5752.8, + "end": 5755.88, + "probability": 0.9893 + }, + { + "start": 5756.46, + "end": 5757.52, + "probability": 0.2552 + }, + { + "start": 5758.08, + "end": 5759.28, + "probability": 0.9386 + }, + { + "start": 5760.22, + "end": 5765.42, + "probability": 0.9819 + }, + { + "start": 5765.54, + "end": 5767.0, + "probability": 0.9795 + }, + { + "start": 5768.44, + "end": 5769.86, + "probability": 0.9955 + }, + { + "start": 5770.5, + "end": 5775.76, + "probability": 0.9834 + }, + { + "start": 5776.1, + "end": 5778.16, + "probability": 0.9841 + }, + { + "start": 5780.46, + "end": 5783.6, + "probability": 0.7978 + }, + { + "start": 5783.9, + "end": 5785.7, + "probability": 0.8401 + }, + { + "start": 5785.8, + "end": 5787.38, + "probability": 0.9139 + }, + { + "start": 5788.16, + "end": 5789.12, + "probability": 0.7066 + }, + { + "start": 5789.24, + "end": 5790.08, + "probability": 0.7428 + }, + { + "start": 5805.56, + "end": 5805.86, + "probability": 0.6888 + }, + { + "start": 5808.38, + "end": 5809.56, + "probability": 0.7625 + }, + { + "start": 5810.54, + "end": 5813.46, + "probability": 0.9472 + }, + { + "start": 5814.28, + "end": 5816.48, + "probability": 0.5614 + }, + { + "start": 5816.94, + "end": 5818.32, + "probability": 0.9418 + }, + { + "start": 5818.44, + "end": 5821.08, + "probability": 0.9576 + }, + { + "start": 5821.14, + "end": 5824.42, + "probability": 0.9854 + }, + { + "start": 5825.98, + "end": 5827.6, + "probability": 0.8935 + }, + { + "start": 5828.68, + "end": 5830.1, + "probability": 0.9839 + }, + { + "start": 5830.62, + "end": 5832.8, + "probability": 0.8597 + }, + { + "start": 5833.42, + "end": 5834.36, + "probability": 0.3414 + }, + { + "start": 5836.2, + "end": 5837.82, + "probability": 0.915 + }, + { + "start": 5839.56, + "end": 5840.74, + "probability": 0.7369 + }, + { + "start": 5841.58, + "end": 5845.4, + "probability": 0.99 + }, + { + "start": 5846.5, + "end": 5849.66, + "probability": 0.9677 + }, + { + "start": 5849.66, + "end": 5853.62, + "probability": 0.9791 + }, + { + "start": 5854.26, + "end": 5858.76, + "probability": 0.9891 + }, + { + "start": 5859.3, + "end": 5860.08, + "probability": 0.7396 + }, + { + "start": 5861.02, + "end": 5862.48, + "probability": 0.9259 + }, + { + "start": 5864.8, + "end": 5866.94, + "probability": 0.8696 + }, + { + "start": 5867.82, + "end": 5871.68, + "probability": 0.9675 + }, + { + "start": 5872.22, + "end": 5872.44, + "probability": 0.3536 + }, + { + "start": 5872.44, + "end": 5874.96, + "probability": 0.9819 + }, + { + "start": 5875.36, + "end": 5876.58, + "probability": 0.8864 + }, + { + "start": 5876.68, + "end": 5881.58, + "probability": 0.9534 + }, + { + "start": 5881.66, + "end": 5883.38, + "probability": 0.9972 + }, + { + "start": 5883.78, + "end": 5886.82, + "probability": 0.981 + }, + { + "start": 5887.28, + "end": 5887.52, + "probability": 0.359 + }, + { + "start": 5888.96, + "end": 5893.08, + "probability": 0.6416 + }, + { + "start": 5893.88, + "end": 5894.8, + "probability": 0.9557 + }, + { + "start": 5895.46, + "end": 5899.26, + "probability": 0.9559 + }, + { + "start": 5900.32, + "end": 5905.24, + "probability": 0.9575 + }, + { + "start": 5905.94, + "end": 5906.34, + "probability": 0.3107 + }, + { + "start": 5907.16, + "end": 5910.26, + "probability": 0.9425 + }, + { + "start": 5910.62, + "end": 5910.94, + "probability": 0.7938 + }, + { + "start": 5913.08, + "end": 5914.72, + "probability": 0.9683 + }, + { + "start": 5915.46, + "end": 5916.08, + "probability": 0.792 + }, + { + "start": 5916.08, + "end": 5918.02, + "probability": 0.8826 + }, + { + "start": 5918.72, + "end": 5920.3, + "probability": 0.7247 + }, + { + "start": 5923.5, + "end": 5925.02, + "probability": 0.7793 + }, + { + "start": 5925.68, + "end": 5926.14, + "probability": 0.3619 + }, + { + "start": 5927.27, + "end": 5929.58, + "probability": 0.9564 + }, + { + "start": 5929.72, + "end": 5931.25, + "probability": 0.9403 + }, + { + "start": 5931.74, + "end": 5934.98, + "probability": 0.993 + }, + { + "start": 5936.66, + "end": 5939.62, + "probability": 0.5992 + }, + { + "start": 5940.52, + "end": 5947.5, + "probability": 0.9419 + }, + { + "start": 5947.94, + "end": 5952.76, + "probability": 0.921 + }, + { + "start": 5953.08, + "end": 5953.56, + "probability": 0.45 + }, + { + "start": 5954.18, + "end": 5955.22, + "probability": 0.7207 + }, + { + "start": 5955.78, + "end": 5958.62, + "probability": 0.9827 + }, + { + "start": 5959.12, + "end": 5959.7, + "probability": 0.8931 + }, + { + "start": 5960.26, + "end": 5961.98, + "probability": 0.7595 + }, + { + "start": 5962.38, + "end": 5963.18, + "probability": 0.6141 + }, + { + "start": 5963.94, + "end": 5965.36, + "probability": 0.5517 + }, + { + "start": 5966.32, + "end": 5967.96, + "probability": 0.7672 + }, + { + "start": 5968.14, + "end": 5971.46, + "probability": 0.9833 + }, + { + "start": 5972.06, + "end": 5973.52, + "probability": 0.9888 + }, + { + "start": 5974.86, + "end": 5977.24, + "probability": 0.9097 + }, + { + "start": 5980.42, + "end": 5982.5, + "probability": 0.9692 + }, + { + "start": 5982.78, + "end": 5983.84, + "probability": 0.9821 + }, + { + "start": 5984.26, + "end": 5986.34, + "probability": 0.7015 + }, + { + "start": 5989.0, + "end": 5992.66, + "probability": 0.9875 + }, + { + "start": 5992.8, + "end": 5998.1, + "probability": 0.958 + }, + { + "start": 5999.2, + "end": 6000.04, + "probability": 0.9607 + }, + { + "start": 6001.84, + "end": 6002.73, + "probability": 0.9956 + }, + { + "start": 6004.06, + "end": 6006.36, + "probability": 0.9766 + }, + { + "start": 6010.58, + "end": 6014.7, + "probability": 0.7792 + }, + { + "start": 6015.74, + "end": 6017.62, + "probability": 0.9451 + }, + { + "start": 6018.66, + "end": 6019.44, + "probability": 0.8343 + }, + { + "start": 6020.74, + "end": 6026.86, + "probability": 0.9877 + }, + { + "start": 6028.44, + "end": 6030.14, + "probability": 0.9934 + }, + { + "start": 6030.62, + "end": 6032.66, + "probability": 0.5568 + }, + { + "start": 6033.2, + "end": 6034.8, + "probability": 0.7073 + }, + { + "start": 6036.54, + "end": 6038.34, + "probability": 0.7631 + }, + { + "start": 6041.82, + "end": 6042.76, + "probability": 0.7058 + }, + { + "start": 6043.82, + "end": 6045.2, + "probability": 0.9992 + }, + { + "start": 6045.98, + "end": 6049.58, + "probability": 0.9989 + }, + { + "start": 6049.58, + "end": 6053.28, + "probability": 0.9945 + }, + { + "start": 6053.82, + "end": 6055.76, + "probability": 0.718 + }, + { + "start": 6056.32, + "end": 6058.76, + "probability": 0.9878 + }, + { + "start": 6060.06, + "end": 6060.98, + "probability": 0.9645 + }, + { + "start": 6062.58, + "end": 6064.52, + "probability": 0.5421 + }, + { + "start": 6064.64, + "end": 6065.02, + "probability": 0.8865 + }, + { + "start": 6065.04, + "end": 6065.7, + "probability": 0.6041 + }, + { + "start": 6066.63, + "end": 6071.06, + "probability": 0.9977 + }, + { + "start": 6072.02, + "end": 6072.86, + "probability": 0.9727 + }, + { + "start": 6073.86, + "end": 6075.42, + "probability": 0.9883 + }, + { + "start": 6075.84, + "end": 6078.7, + "probability": 0.999 + }, + { + "start": 6080.24, + "end": 6081.4, + "probability": 0.9473 + }, + { + "start": 6082.86, + "end": 6086.7, + "probability": 0.9932 + }, + { + "start": 6089.18, + "end": 6090.52, + "probability": 0.9824 + }, + { + "start": 6092.01, + "end": 6094.8, + "probability": 0.9227 + }, + { + "start": 6095.52, + "end": 6098.91, + "probability": 0.9801 + }, + { + "start": 6099.94, + "end": 6102.46, + "probability": 0.9992 + }, + { + "start": 6104.92, + "end": 6109.88, + "probability": 0.9751 + }, + { + "start": 6110.32, + "end": 6110.73, + "probability": 0.563 + }, + { + "start": 6111.1, + "end": 6111.66, + "probability": 0.0977 + }, + { + "start": 6113.36, + "end": 6115.16, + "probability": 0.4868 + }, + { + "start": 6115.24, + "end": 6115.68, + "probability": 0.9382 + }, + { + "start": 6116.32, + "end": 6117.18, + "probability": 0.5508 + }, + { + "start": 6117.4, + "end": 6120.2, + "probability": 0.7158 + }, + { + "start": 6121.36, + "end": 6124.64, + "probability": 0.6948 + }, + { + "start": 6125.14, + "end": 6128.0, + "probability": 0.9625 + }, + { + "start": 6128.2, + "end": 6129.47, + "probability": 0.958 + }, + { + "start": 6129.74, + "end": 6135.1, + "probability": 0.9142 + }, + { + "start": 6135.56, + "end": 6136.24, + "probability": 0.6157 + }, + { + "start": 6136.42, + "end": 6136.78, + "probability": 0.4885 + }, + { + "start": 6137.68, + "end": 6139.06, + "probability": 0.6877 + }, + { + "start": 6139.12, + "end": 6140.12, + "probability": 0.9663 + }, + { + "start": 6140.4, + "end": 6142.68, + "probability": 0.9085 + }, + { + "start": 6143.7, + "end": 6144.26, + "probability": 0.7659 + }, + { + "start": 6146.08, + "end": 6149.04, + "probability": 0.5529 + }, + { + "start": 6151.62, + "end": 6152.1, + "probability": 0.3714 + }, + { + "start": 6153.0, + "end": 6153.08, + "probability": 0.0339 + }, + { + "start": 6156.04, + "end": 6157.56, + "probability": 0.396 + }, + { + "start": 6158.4, + "end": 6160.34, + "probability": 0.2753 + }, + { + "start": 6160.68, + "end": 6161.18, + "probability": 0.3848 + }, + { + "start": 6162.68, + "end": 6163.68, + "probability": 0.5405 + }, + { + "start": 6163.78, + "end": 6164.14, + "probability": 0.4755 + }, + { + "start": 6165.08, + "end": 6166.22, + "probability": 0.9762 + }, + { + "start": 6166.36, + "end": 6166.86, + "probability": 0.6117 + }, + { + "start": 6166.9, + "end": 6168.58, + "probability": 0.9907 + }, + { + "start": 6168.94, + "end": 6176.78, + "probability": 0.8004 + }, + { + "start": 6177.24, + "end": 6178.02, + "probability": 0.7576 + }, + { + "start": 6178.14, + "end": 6179.36, + "probability": 0.5552 + }, + { + "start": 6180.56, + "end": 6180.62, + "probability": 0.5773 + }, + { + "start": 6180.62, + "end": 6184.56, + "probability": 0.8594 + }, + { + "start": 6185.32, + "end": 6187.58, + "probability": 0.7991 + }, + { + "start": 6189.5, + "end": 6190.56, + "probability": 0.7057 + }, + { + "start": 6191.32, + "end": 6195.4, + "probability": 0.9546 + }, + { + "start": 6196.68, + "end": 6198.46, + "probability": 0.751 + }, + { + "start": 6200.42, + "end": 6205.56, + "probability": 0.9561 + }, + { + "start": 6206.42, + "end": 6210.62, + "probability": 0.9043 + }, + { + "start": 6212.3, + "end": 6214.84, + "probability": 0.9915 + }, + { + "start": 6214.98, + "end": 6216.8, + "probability": 0.9773 + }, + { + "start": 6217.44, + "end": 6219.24, + "probability": 0.9871 + }, + { + "start": 6219.88, + "end": 6220.78, + "probability": 0.9737 + }, + { + "start": 6221.52, + "end": 6223.46, + "probability": 0.9415 + }, + { + "start": 6225.1, + "end": 6225.78, + "probability": 0.8918 + }, + { + "start": 6226.74, + "end": 6228.82, + "probability": 0.9782 + }, + { + "start": 6229.44, + "end": 6230.76, + "probability": 0.975 + }, + { + "start": 6231.08, + "end": 6231.34, + "probability": 0.7742 + }, + { + "start": 6232.6, + "end": 6233.86, + "probability": 0.7969 + }, + { + "start": 6234.42, + "end": 6235.1, + "probability": 0.7003 + }, + { + "start": 6235.24, + "end": 6237.06, + "probability": 0.816 + }, + { + "start": 6237.9, + "end": 6240.84, + "probability": 0.9979 + }, + { + "start": 6241.68, + "end": 6244.02, + "probability": 0.8888 + }, + { + "start": 6245.28, + "end": 6247.88, + "probability": 0.7642 + }, + { + "start": 6248.38, + "end": 6253.1, + "probability": 0.9914 + }, + { + "start": 6254.04, + "end": 6257.52, + "probability": 0.9639 + }, + { + "start": 6257.68, + "end": 6259.0, + "probability": 0.8864 + }, + { + "start": 6259.48, + "end": 6260.6, + "probability": 0.6696 + }, + { + "start": 6260.94, + "end": 6263.24, + "probability": 0.9416 + }, + { + "start": 6263.58, + "end": 6265.82, + "probability": 0.9849 + }, + { + "start": 6266.34, + "end": 6266.74, + "probability": 0.7788 + }, + { + "start": 6267.12, + "end": 6275.8, + "probability": 0.987 + }, + { + "start": 6276.2, + "end": 6277.4, + "probability": 0.8452 + }, + { + "start": 6277.62, + "end": 6278.1, + "probability": 0.7123 + }, + { + "start": 6278.2, + "end": 6280.78, + "probability": 0.817 + }, + { + "start": 6281.16, + "end": 6284.3, + "probability": 0.9854 + }, + { + "start": 6284.98, + "end": 6286.28, + "probability": 0.4962 + }, + { + "start": 6286.28, + "end": 6287.24, + "probability": 0.7268 + }, + { + "start": 6288.22, + "end": 6291.2, + "probability": 0.6472 + }, + { + "start": 6291.2, + "end": 6292.06, + "probability": 0.0674 + }, + { + "start": 6293.58, + "end": 6294.24, + "probability": 0.1158 + }, + { + "start": 6294.24, + "end": 6294.38, + "probability": 0.1529 + }, + { + "start": 6294.38, + "end": 6294.84, + "probability": 0.0423 + }, + { + "start": 6295.66, + "end": 6298.24, + "probability": 0.4065 + }, + { + "start": 6298.6, + "end": 6299.9, + "probability": 0.4592 + }, + { + "start": 6299.9, + "end": 6300.92, + "probability": 0.748 + }, + { + "start": 6301.14, + "end": 6301.18, + "probability": 0.4918 + }, + { + "start": 6301.18, + "end": 6303.7, + "probability": 0.7363 + }, + { + "start": 6305.34, + "end": 6305.56, + "probability": 0.02 + }, + { + "start": 6306.1, + "end": 6308.36, + "probability": 0.3964 + }, + { + "start": 6308.64, + "end": 6309.4, + "probability": 0.2434 + }, + { + "start": 6309.47, + "end": 6311.16, + "probability": 0.0022 + }, + { + "start": 6312.06, + "end": 6316.96, + "probability": 0.8047 + }, + { + "start": 6317.0, + "end": 6323.44, + "probability": 0.123 + }, + { + "start": 6323.8, + "end": 6324.64, + "probability": 0.2458 + }, + { + "start": 6325.88, + "end": 6326.38, + "probability": 0.2491 + }, + { + "start": 6326.84, + "end": 6327.2, + "probability": 0.4169 + }, + { + "start": 6328.7, + "end": 6332.43, + "probability": 0.1072 + }, + { + "start": 6333.06, + "end": 6336.1, + "probability": 0.0303 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6399.0, + "end": 6399.0, + "probability": 0.0 + }, + { + "start": 6400.14, + "end": 6401.78, + "probability": 0.1888 + }, + { + "start": 6404.4, + "end": 6405.5, + "probability": 0.0361 + }, + { + "start": 6406.82, + "end": 6408.66, + "probability": 0.0344 + }, + { + "start": 6409.02, + "end": 6411.64, + "probability": 0.2179 + }, + { + "start": 6416.42, + "end": 6419.0, + "probability": 0.0904 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6529.0, + "end": 6529.0, + "probability": 0.0 + }, + { + "start": 6547.78, + "end": 6547.78, + "probability": 0.021 + }, + { + "start": 6548.74, + "end": 6548.86, + "probability": 0.001 + }, + { + "start": 6549.38, + "end": 6550.6, + "probability": 0.1304 + }, + { + "start": 6552.44, + "end": 6553.34, + "probability": 0.034 + }, + { + "start": 6594.73, + "end": 6595.53, + "probability": 0.0543 + }, + { + "start": 6596.94, + "end": 6598.91, + "probability": 0.1562 + }, + { + "start": 6600.44, + "end": 6603.74, + "probability": 0.1777 + }, + { + "start": 6607.5, + "end": 6609.46, + "probability": 0.0695 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.0, + "end": 6668.0, + "probability": 0.0 + }, + { + "start": 6668.26, + "end": 6668.26, + "probability": 0.2033 + }, + { + "start": 6668.26, + "end": 6668.6, + "probability": 0.0333 + }, + { + "start": 6669.78, + "end": 6675.0, + "probability": 0.5367 + }, + { + "start": 6675.0, + "end": 6678.84, + "probability": 0.6855 + }, + { + "start": 6679.3, + "end": 6682.94, + "probability": 0.9976 + }, + { + "start": 6682.94, + "end": 6687.06, + "probability": 0.9974 + }, + { + "start": 6687.46, + "end": 6688.78, + "probability": 0.9907 + }, + { + "start": 6690.06, + "end": 6691.64, + "probability": 0.9976 + }, + { + "start": 6693.0, + "end": 6695.42, + "probability": 0.9925 + }, + { + "start": 6696.0, + "end": 6703.38, + "probability": 0.9619 + }, + { + "start": 6703.46, + "end": 6709.24, + "probability": 0.9279 + }, + { + "start": 6710.26, + "end": 6711.78, + "probability": 0.9325 + }, + { + "start": 6712.64, + "end": 6715.24, + "probability": 0.9811 + }, + { + "start": 6715.94, + "end": 6718.08, + "probability": 0.7297 + }, + { + "start": 6718.62, + "end": 6723.5, + "probability": 0.9958 + }, + { + "start": 6723.68, + "end": 6724.38, + "probability": 0.6604 + }, + { + "start": 6724.84, + "end": 6726.4, + "probability": 0.9897 + }, + { + "start": 6726.82, + "end": 6733.24, + "probability": 0.9956 + }, + { + "start": 6733.62, + "end": 6734.18, + "probability": 0.7182 + }, + { + "start": 6734.86, + "end": 6736.5, + "probability": 0.9189 + }, + { + "start": 6736.58, + "end": 6738.04, + "probability": 0.8952 + }, + { + "start": 6744.08, + "end": 6744.78, + "probability": 0.64 + }, + { + "start": 6744.86, + "end": 6746.52, + "probability": 0.9655 + }, + { + "start": 6746.54, + "end": 6747.06, + "probability": 0.6899 + }, + { + "start": 6748.06, + "end": 6750.01, + "probability": 0.8628 + }, + { + "start": 6750.94, + "end": 6752.36, + "probability": 0.553 + }, + { + "start": 6752.38, + "end": 6752.8, + "probability": 0.8986 + }, + { + "start": 6752.98, + "end": 6754.24, + "probability": 0.8613 + }, + { + "start": 6754.42, + "end": 6755.68, + "probability": 0.5699 + }, + { + "start": 6755.76, + "end": 6759.44, + "probability": 0.9847 + }, + { + "start": 6760.22, + "end": 6761.36, + "probability": 0.7871 + }, + { + "start": 6761.5, + "end": 6762.74, + "probability": 0.9993 + }, + { + "start": 6763.64, + "end": 6765.16, + "probability": 0.9799 + }, + { + "start": 6765.8, + "end": 6767.44, + "probability": 0.9919 + }, + { + "start": 6767.84, + "end": 6770.16, + "probability": 0.998 + }, + { + "start": 6770.68, + "end": 6773.26, + "probability": 0.9893 + }, + { + "start": 6773.26, + "end": 6776.68, + "probability": 0.9443 + }, + { + "start": 6777.34, + "end": 6778.52, + "probability": 0.9861 + }, + { + "start": 6779.04, + "end": 6780.78, + "probability": 0.9043 + }, + { + "start": 6780.84, + "end": 6784.02, + "probability": 0.9883 + }, + { + "start": 6784.12, + "end": 6785.04, + "probability": 0.757 + }, + { + "start": 6785.5, + "end": 6785.88, + "probability": 0.4919 + }, + { + "start": 6785.94, + "end": 6787.34, + "probability": 0.7495 + }, + { + "start": 6787.36, + "end": 6788.96, + "probability": 0.854 + }, + { + "start": 6789.32, + "end": 6790.12, + "probability": 0.8515 + }, + { + "start": 6790.38, + "end": 6791.12, + "probability": 0.7571 + }, + { + "start": 6791.22, + "end": 6794.3, + "probability": 0.9849 + }, + { + "start": 6794.36, + "end": 6796.84, + "probability": 0.9726 + }, + { + "start": 6796.98, + "end": 6799.8, + "probability": 0.9937 + }, + { + "start": 6799.8, + "end": 6802.48, + "probability": 0.9979 + }, + { + "start": 6802.9, + "end": 6803.08, + "probability": 0.5132 + }, + { + "start": 6803.16, + "end": 6803.86, + "probability": 0.7461 + }, + { + "start": 6803.96, + "end": 6805.06, + "probability": 0.9679 + }, + { + "start": 6805.48, + "end": 6808.66, + "probability": 0.9954 + }, + { + "start": 6808.66, + "end": 6813.88, + "probability": 0.8918 + }, + { + "start": 6814.16, + "end": 6816.32, + "probability": 0.9973 + }, + { + "start": 6816.98, + "end": 6819.02, + "probability": 0.9369 + }, + { + "start": 6819.1, + "end": 6820.22, + "probability": 0.703 + }, + { + "start": 6820.66, + "end": 6822.74, + "probability": 0.9849 + }, + { + "start": 6822.88, + "end": 6823.64, + "probability": 0.8356 + }, + { + "start": 6824.46, + "end": 6826.18, + "probability": 0.9778 + }, + { + "start": 6826.78, + "end": 6831.56, + "probability": 0.9312 + }, + { + "start": 6831.9, + "end": 6833.64, + "probability": 0.849 + }, + { + "start": 6834.08, + "end": 6837.85, + "probability": 0.9927 + }, + { + "start": 6837.86, + "end": 6841.9, + "probability": 0.9924 + }, + { + "start": 6842.64, + "end": 6843.4, + "probability": 0.3039 + }, + { + "start": 6843.48, + "end": 6845.24, + "probability": 0.9875 + }, + { + "start": 6845.64, + "end": 6848.88, + "probability": 0.9716 + }, + { + "start": 6849.82, + "end": 6849.98, + "probability": 0.5698 + }, + { + "start": 6850.1, + "end": 6850.64, + "probability": 0.9663 + }, + { + "start": 6850.74, + "end": 6851.68, + "probability": 0.8506 + }, + { + "start": 6852.06, + "end": 6856.68, + "probability": 0.7464 + }, + { + "start": 6858.22, + "end": 6860.06, + "probability": 0.8083 + }, + { + "start": 6860.68, + "end": 6861.4, + "probability": 0.7799 + }, + { + "start": 6861.46, + "end": 6862.48, + "probability": 0.8382 + }, + { + "start": 6862.88, + "end": 6864.26, + "probability": 0.8723 + }, + { + "start": 6864.54, + "end": 6865.48, + "probability": 0.3181 + }, + { + "start": 6865.68, + "end": 6867.68, + "probability": 0.8925 + }, + { + "start": 6868.1, + "end": 6868.76, + "probability": 0.8208 + }, + { + "start": 6868.88, + "end": 6869.78, + "probability": 0.668 + }, + { + "start": 6870.12, + "end": 6871.22, + "probability": 0.2883 + }, + { + "start": 6871.32, + "end": 6873.4, + "probability": 0.7322 + }, + { + "start": 6873.92, + "end": 6879.7, + "probability": 0.9795 + }, + { + "start": 6879.78, + "end": 6880.44, + "probability": 0.8781 + }, + { + "start": 6880.52, + "end": 6881.3, + "probability": 0.9371 + }, + { + "start": 6881.8, + "end": 6882.1, + "probability": 0.8154 + }, + { + "start": 6882.12, + "end": 6883.3, + "probability": 0.9121 + }, + { + "start": 6883.3, + "end": 6887.88, + "probability": 0.905 + }, + { + "start": 6888.03, + "end": 6891.04, + "probability": 0.9957 + }, + { + "start": 6891.6, + "end": 6892.06, + "probability": 0.349 + }, + { + "start": 6892.2, + "end": 6893.83, + "probability": 0.9794 + }, + { + "start": 6893.92, + "end": 6896.46, + "probability": 0.9001 + }, + { + "start": 6896.48, + "end": 6901.12, + "probability": 0.9922 + }, + { + "start": 6901.64, + "end": 6903.08, + "probability": 0.8046 + }, + { + "start": 6903.9, + "end": 6905.72, + "probability": 0.9838 + }, + { + "start": 6906.1, + "end": 6908.64, + "probability": 0.9878 + }, + { + "start": 6909.1, + "end": 6910.26, + "probability": 0.9708 + }, + { + "start": 6911.1, + "end": 6912.42, + "probability": 0.9976 + }, + { + "start": 6912.94, + "end": 6914.38, + "probability": 0.9784 + }, + { + "start": 6915.0, + "end": 6917.08, + "probability": 0.7139 + }, + { + "start": 6917.18, + "end": 6919.12, + "probability": 0.8814 + }, + { + "start": 6920.0, + "end": 6921.44, + "probability": 0.9225 + }, + { + "start": 6921.76, + "end": 6923.22, + "probability": 0.9937 + }, + { + "start": 6923.66, + "end": 6925.26, + "probability": 0.9854 + }, + { + "start": 6925.32, + "end": 6926.58, + "probability": 0.9777 + }, + { + "start": 6926.74, + "end": 6929.02, + "probability": 0.6519 + }, + { + "start": 6929.68, + "end": 6930.9, + "probability": 0.99 + }, + { + "start": 6931.44, + "end": 6935.22, + "probability": 0.9598 + }, + { + "start": 6936.04, + "end": 6936.62, + "probability": 0.9077 + }, + { + "start": 6937.18, + "end": 6940.0, + "probability": 0.969 + }, + { + "start": 6940.68, + "end": 6941.96, + "probability": 0.8914 + }, + { + "start": 6942.04, + "end": 6942.32, + "probability": 0.7895 + }, + { + "start": 6942.36, + "end": 6943.66, + "probability": 0.9709 + }, + { + "start": 6943.86, + "end": 6945.68, + "probability": 0.9119 + }, + { + "start": 6946.06, + "end": 6947.48, + "probability": 0.9733 + }, + { + "start": 6947.8, + "end": 6949.06, + "probability": 0.9858 + }, + { + "start": 6949.14, + "end": 6950.2, + "probability": 0.9825 + }, + { + "start": 6952.3, + "end": 6952.76, + "probability": 0.4163 + }, + { + "start": 6952.76, + "end": 6953.26, + "probability": 0.6399 + }, + { + "start": 6953.32, + "end": 6955.0, + "probability": 0.7165 + }, + { + "start": 6955.7, + "end": 6957.32, + "probability": 0.9865 + }, + { + "start": 6958.28, + "end": 6959.76, + "probability": 0.9895 + }, + { + "start": 6960.5, + "end": 6962.26, + "probability": 0.9452 + }, + { + "start": 6962.78, + "end": 6963.44, + "probability": 0.9386 + }, + { + "start": 6964.69, + "end": 6966.06, + "probability": 0.6223 + }, + { + "start": 6966.06, + "end": 6966.76, + "probability": 0.7634 + }, + { + "start": 6967.28, + "end": 6968.5, + "probability": 0.9481 + }, + { + "start": 6968.92, + "end": 6970.16, + "probability": 0.9683 + }, + { + "start": 6970.26, + "end": 6970.56, + "probability": 0.6796 + }, + { + "start": 6971.16, + "end": 6973.82, + "probability": 0.9248 + }, + { + "start": 6973.88, + "end": 6975.28, + "probability": 0.8047 + }, + { + "start": 6975.32, + "end": 6976.04, + "probability": 0.707 + }, + { + "start": 6976.76, + "end": 6978.5, + "probability": 0.4914 + }, + { + "start": 6979.0, + "end": 6980.58, + "probability": 0.7252 + }, + { + "start": 6981.48, + "end": 6983.42, + "probability": 0.7878 + }, + { + "start": 6983.6, + "end": 6984.5, + "probability": 0.9362 + }, + { + "start": 6985.64, + "end": 6986.8, + "probability": 0.7878 + }, + { + "start": 6987.06, + "end": 6990.2, + "probability": 0.9627 + }, + { + "start": 6990.3, + "end": 6992.82, + "probability": 0.9863 + }, + { + "start": 6993.38, + "end": 6994.64, + "probability": 0.7686 + }, + { + "start": 6994.74, + "end": 6998.84, + "probability": 0.8225 + }, + { + "start": 7000.18, + "end": 7002.32, + "probability": 0.7566 + }, + { + "start": 7002.58, + "end": 7003.5, + "probability": 0.5734 + }, + { + "start": 7003.56, + "end": 7004.06, + "probability": 0.9104 + }, + { + "start": 7004.64, + "end": 7006.24, + "probability": 0.6578 + }, + { + "start": 7007.83, + "end": 7009.72, + "probability": 0.7567 + }, + { + "start": 7009.78, + "end": 7011.52, + "probability": 0.9806 + }, + { + "start": 7011.64, + "end": 7012.22, + "probability": 0.5016 + }, + { + "start": 7012.62, + "end": 7013.3, + "probability": 0.2976 + }, + { + "start": 7013.4, + "end": 7013.84, + "probability": 0.3707 + }, + { + "start": 7013.84, + "end": 7014.06, + "probability": 0.6052 + }, + { + "start": 7014.18, + "end": 7015.26, + "probability": 0.5056 + }, + { + "start": 7015.5, + "end": 7018.06, + "probability": 0.9646 + }, + { + "start": 7018.72, + "end": 7020.14, + "probability": 0.9762 + }, + { + "start": 7020.36, + "end": 7021.86, + "probability": 0.8796 + }, + { + "start": 7022.22, + "end": 7023.82, + "probability": 0.8233 + }, + { + "start": 7024.26, + "end": 7027.24, + "probability": 0.3781 + }, + { + "start": 7027.24, + "end": 7027.24, + "probability": 0.0177 + }, + { + "start": 7027.24, + "end": 7027.24, + "probability": 0.1655 + }, + { + "start": 7027.24, + "end": 7029.38, + "probability": 0.7438 + }, + { + "start": 7029.5, + "end": 7033.18, + "probability": 0.9216 + }, + { + "start": 7033.56, + "end": 7034.94, + "probability": 0.95 + }, + { + "start": 7035.48, + "end": 7036.44, + "probability": 0.6457 + }, + { + "start": 7036.54, + "end": 7037.32, + "probability": 0.8606 + }, + { + "start": 7037.54, + "end": 7037.92, + "probability": 0.678 + }, + { + "start": 7037.94, + "end": 7038.92, + "probability": 0.9491 + }, + { + "start": 7039.14, + "end": 7039.16, + "probability": 0.4206 + }, + { + "start": 7039.26, + "end": 7039.76, + "probability": 0.7609 + }, + { + "start": 7040.04, + "end": 7041.12, + "probability": 0.5306 + }, + { + "start": 7041.24, + "end": 7042.06, + "probability": 0.7201 + }, + { + "start": 7042.2, + "end": 7043.5, + "probability": 0.9616 + }, + { + "start": 7043.96, + "end": 7045.53, + "probability": 0.917 + }, + { + "start": 7046.84, + "end": 7048.06, + "probability": 0.811 + }, + { + "start": 7048.52, + "end": 7049.84, + "probability": 0.9568 + }, + { + "start": 7049.92, + "end": 7050.2, + "probability": 0.8083 + }, + { + "start": 7050.6, + "end": 7051.34, + "probability": 0.7709 + }, + { + "start": 7051.5, + "end": 7051.9, + "probability": 0.1903 + }, + { + "start": 7051.94, + "end": 7054.0, + "probability": 0.7102 + }, + { + "start": 7054.0, + "end": 7054.3, + "probability": 0.6472 + }, + { + "start": 7054.88, + "end": 7058.44, + "probability": 0.9954 + }, + { + "start": 7059.32, + "end": 7061.38, + "probability": 0.6064 + }, + { + "start": 7062.32, + "end": 7063.08, + "probability": 0.7722 + }, + { + "start": 7063.56, + "end": 7064.92, + "probability": 0.827 + }, + { + "start": 7065.24, + "end": 7066.04, + "probability": 0.9831 + }, + { + "start": 7066.34, + "end": 7067.28, + "probability": 0.8719 + }, + { + "start": 7067.62, + "end": 7068.36, + "probability": 0.9851 + }, + { + "start": 7068.64, + "end": 7069.5, + "probability": 0.9401 + }, + { + "start": 7069.88, + "end": 7070.62, + "probability": 0.8532 + }, + { + "start": 7070.86, + "end": 7071.64, + "probability": 0.9524 + }, + { + "start": 7071.9, + "end": 7072.76, + "probability": 0.7932 + }, + { + "start": 7072.82, + "end": 7073.7, + "probability": 0.989 + }, + { + "start": 7073.76, + "end": 7074.54, + "probability": 0.8644 + }, + { + "start": 7075.24, + "end": 7076.32, + "probability": 0.5591 + }, + { + "start": 7076.54, + "end": 7079.94, + "probability": 0.9639 + }, + { + "start": 7079.98, + "end": 7080.5, + "probability": 0.8 + }, + { + "start": 7080.54, + "end": 7081.52, + "probability": 0.9425 + }, + { + "start": 7081.78, + "end": 7082.32, + "probability": 0.5799 + }, + { + "start": 7082.42, + "end": 7083.08, + "probability": 0.484 + }, + { + "start": 7083.14, + "end": 7083.14, + "probability": 0.6664 + }, + { + "start": 7083.16, + "end": 7084.66, + "probability": 0.5497 + }, + { + "start": 7085.1, + "end": 7085.76, + "probability": 0.4312 + }, + { + "start": 7085.76, + "end": 7086.26, + "probability": 0.5671 + }, + { + "start": 7086.72, + "end": 7088.38, + "probability": 0.744 + }, + { + "start": 7088.98, + "end": 7089.5, + "probability": 0.8543 + }, + { + "start": 7090.92, + "end": 7091.86, + "probability": 0.8721 + }, + { + "start": 7092.08, + "end": 7092.88, + "probability": 0.9675 + }, + { + "start": 7092.94, + "end": 7094.76, + "probability": 0.7368 + }, + { + "start": 7095.18, + "end": 7097.48, + "probability": 0.8302 + }, + { + "start": 7098.14, + "end": 7099.14, + "probability": 0.8022 + }, + { + "start": 7099.24, + "end": 7100.42, + "probability": 0.9639 + }, + { + "start": 7100.62, + "end": 7102.2, + "probability": 0.6214 + }, + { + "start": 7102.56, + "end": 7103.4, + "probability": 0.8708 + }, + { + "start": 7103.78, + "end": 7104.86, + "probability": 0.9102 + }, + { + "start": 7104.88, + "end": 7105.96, + "probability": 0.73 + }, + { + "start": 7106.06, + "end": 7106.36, + "probability": 0.7252 + }, + { + "start": 7107.64, + "end": 7110.16, + "probability": 0.8748 + }, + { + "start": 7110.7, + "end": 7111.6, + "probability": 0.7935 + }, + { + "start": 7112.12, + "end": 7113.84, + "probability": 0.9512 + }, + { + "start": 7114.06, + "end": 7118.04, + "probability": 0.9927 + }, + { + "start": 7118.54, + "end": 7119.22, + "probability": 0.906 + }, + { + "start": 7119.3, + "end": 7121.24, + "probability": 0.7375 + }, + { + "start": 7121.3, + "end": 7121.9, + "probability": 0.6446 + }, + { + "start": 7122.18, + "end": 7122.82, + "probability": 0.9504 + }, + { + "start": 7122.86, + "end": 7123.7, + "probability": 0.8209 + }, + { + "start": 7123.86, + "end": 7126.68, + "probability": 0.9064 + }, + { + "start": 7126.88, + "end": 7127.56, + "probability": 0.7214 + }, + { + "start": 7127.7, + "end": 7128.26, + "probability": 0.8589 + }, + { + "start": 7128.6, + "end": 7129.74, + "probability": 0.1274 + }, + { + "start": 7130.14, + "end": 7131.78, + "probability": 0.9318 + }, + { + "start": 7148.22, + "end": 7149.34, + "probability": 0.6489 + }, + { + "start": 7149.34, + "end": 7149.68, + "probability": 0.8694 + }, + { + "start": 7150.7, + "end": 7152.72, + "probability": 0.7047 + }, + { + "start": 7153.24, + "end": 7155.74, + "probability": 0.5511 + }, + { + "start": 7157.12, + "end": 7159.38, + "probability": 0.643 + }, + { + "start": 7159.44, + "end": 7160.06, + "probability": 0.7942 + }, + { + "start": 7161.92, + "end": 7166.84, + "probability": 0.8715 + }, + { + "start": 7167.36, + "end": 7169.84, + "probability": 0.5968 + }, + { + "start": 7170.54, + "end": 7172.0, + "probability": 0.9219 + }, + { + "start": 7172.24, + "end": 7174.78, + "probability": 0.9897 + }, + { + "start": 7176.98, + "end": 7181.54, + "probability": 0.9465 + }, + { + "start": 7181.94, + "end": 7183.48, + "probability": 0.9847 + }, + { + "start": 7184.34, + "end": 7187.1, + "probability": 0.9615 + }, + { + "start": 7188.0, + "end": 7190.86, + "probability": 0.9934 + }, + { + "start": 7191.78, + "end": 7196.44, + "probability": 0.9927 + }, + { + "start": 7197.1, + "end": 7199.5, + "probability": 0.99 + }, + { + "start": 7199.56, + "end": 7201.04, + "probability": 0.5917 + }, + { + "start": 7202.16, + "end": 7204.1, + "probability": 0.9867 + }, + { + "start": 7205.16, + "end": 7207.82, + "probability": 0.9897 + }, + { + "start": 7208.04, + "end": 7213.26, + "probability": 0.8684 + }, + { + "start": 7213.78, + "end": 7217.02, + "probability": 0.9509 + }, + { + "start": 7219.26, + "end": 7222.38, + "probability": 0.9895 + }, + { + "start": 7224.49, + "end": 7226.7, + "probability": 0.6736 + }, + { + "start": 7226.78, + "end": 7228.4, + "probability": 0.7586 + }, + { + "start": 7229.28, + "end": 7230.6, + "probability": 0.6735 + }, + { + "start": 7230.68, + "end": 7232.22, + "probability": 0.9679 + }, + { + "start": 7232.34, + "end": 7236.14, + "probability": 0.9746 + }, + { + "start": 7237.1, + "end": 7238.22, + "probability": 0.6903 + }, + { + "start": 7238.22, + "end": 7240.0, + "probability": 0.8843 + }, + { + "start": 7240.0, + "end": 7240.98, + "probability": 0.3798 + }, + { + "start": 7241.86, + "end": 7245.42, + "probability": 0.991 + }, + { + "start": 7246.24, + "end": 7247.38, + "probability": 0.4284 + }, + { + "start": 7247.48, + "end": 7248.84, + "probability": 0.8997 + }, + { + "start": 7248.92, + "end": 7250.76, + "probability": 0.9947 + }, + { + "start": 7251.92, + "end": 7254.18, + "probability": 0.9397 + }, + { + "start": 7254.98, + "end": 7257.3, + "probability": 0.9316 + }, + { + "start": 7258.02, + "end": 7261.3, + "probability": 0.5998 + }, + { + "start": 7261.86, + "end": 7263.08, + "probability": 0.7016 + }, + { + "start": 7263.74, + "end": 7266.76, + "probability": 0.9659 + }, + { + "start": 7267.8, + "end": 7272.76, + "probability": 0.9982 + }, + { + "start": 7273.7, + "end": 7276.82, + "probability": 0.8671 + }, + { + "start": 7277.84, + "end": 7283.86, + "probability": 0.9849 + }, + { + "start": 7284.52, + "end": 7288.88, + "probability": 0.982 + }, + { + "start": 7290.58, + "end": 7295.36, + "probability": 0.9991 + }, + { + "start": 7295.36, + "end": 7300.24, + "probability": 0.9952 + }, + { + "start": 7301.02, + "end": 7302.86, + "probability": 0.8716 + }, + { + "start": 7303.54, + "end": 7305.96, + "probability": 0.9302 + }, + { + "start": 7306.58, + "end": 7310.96, + "probability": 0.8219 + }, + { + "start": 7311.92, + "end": 7312.74, + "probability": 0.9526 + }, + { + "start": 7313.44, + "end": 7317.48, + "probability": 0.9665 + }, + { + "start": 7317.78, + "end": 7318.64, + "probability": 0.8419 + }, + { + "start": 7318.82, + "end": 7319.9, + "probability": 0.5931 + }, + { + "start": 7320.88, + "end": 7322.78, + "probability": 0.8914 + }, + { + "start": 7322.94, + "end": 7325.16, + "probability": 0.9455 + }, + { + "start": 7325.9, + "end": 7331.5, + "probability": 0.9701 + }, + { + "start": 7333.46, + "end": 7334.9, + "probability": 0.5072 + }, + { + "start": 7335.14, + "end": 7339.9, + "probability": 0.9812 + }, + { + "start": 7340.28, + "end": 7341.59, + "probability": 0.9795 + }, + { + "start": 7342.38, + "end": 7344.1, + "probability": 0.9713 + }, + { + "start": 7344.98, + "end": 7348.7, + "probability": 0.9982 + }, + { + "start": 7349.56, + "end": 7352.44, + "probability": 0.9866 + }, + { + "start": 7353.3, + "end": 7357.58, + "probability": 0.9956 + }, + { + "start": 7358.66, + "end": 7360.8, + "probability": 0.9868 + }, + { + "start": 7361.5, + "end": 7365.22, + "probability": 0.8034 + }, + { + "start": 7365.38, + "end": 7366.2, + "probability": 0.607 + }, + { + "start": 7366.34, + "end": 7366.82, + "probability": 0.4427 + }, + { + "start": 7366.84, + "end": 7367.56, + "probability": 0.7951 + }, + { + "start": 7369.24, + "end": 7370.68, + "probability": 0.8384 + }, + { + "start": 7371.8, + "end": 7374.54, + "probability": 0.9469 + }, + { + "start": 7375.06, + "end": 7380.04, + "probability": 0.9858 + }, + { + "start": 7380.2, + "end": 7381.78, + "probability": 0.7611 + }, + { + "start": 7382.44, + "end": 7388.7, + "probability": 0.9295 + }, + { + "start": 7389.78, + "end": 7392.0, + "probability": 0.9873 + }, + { + "start": 7392.9, + "end": 7401.02, + "probability": 0.9679 + }, + { + "start": 7401.56, + "end": 7402.64, + "probability": 0.7107 + }, + { + "start": 7403.66, + "end": 7406.68, + "probability": 0.9844 + }, + { + "start": 7407.76, + "end": 7408.67, + "probability": 0.791 + }, + { + "start": 7408.98, + "end": 7414.14, + "probability": 0.8658 + }, + { + "start": 7414.92, + "end": 7422.26, + "probability": 0.9648 + }, + { + "start": 7423.04, + "end": 7430.1, + "probability": 0.9669 + }, + { + "start": 7431.46, + "end": 7438.12, + "probability": 0.9971 + }, + { + "start": 7438.94, + "end": 7443.26, + "probability": 0.9938 + }, + { + "start": 7443.86, + "end": 7446.2, + "probability": 0.9205 + }, + { + "start": 7446.96, + "end": 7447.5, + "probability": 0.5271 + }, + { + "start": 7448.88, + "end": 7452.02, + "probability": 0.874 + }, + { + "start": 7452.76, + "end": 7455.32, + "probability": 0.9355 + }, + { + "start": 7456.42, + "end": 7460.78, + "probability": 0.9943 + }, + { + "start": 7461.4, + "end": 7462.72, + "probability": 0.9407 + }, + { + "start": 7463.7, + "end": 7467.44, + "probability": 0.9976 + }, + { + "start": 7467.44, + "end": 7472.16, + "probability": 0.8707 + }, + { + "start": 7472.72, + "end": 7474.26, + "probability": 0.9888 + }, + { + "start": 7475.18, + "end": 7478.86, + "probability": 0.9911 + }, + { + "start": 7479.72, + "end": 7480.36, + "probability": 0.3992 + }, + { + "start": 7480.54, + "end": 7485.2, + "probability": 0.9589 + }, + { + "start": 7486.04, + "end": 7491.84, + "probability": 0.9863 + }, + { + "start": 7492.48, + "end": 7494.94, + "probability": 0.9952 + }, + { + "start": 7495.52, + "end": 7500.6, + "probability": 0.989 + }, + { + "start": 7500.6, + "end": 7503.8, + "probability": 0.9978 + }, + { + "start": 7505.0, + "end": 7508.38, + "probability": 0.9404 + }, + { + "start": 7509.24, + "end": 7509.9, + "probability": 0.6203 + }, + { + "start": 7510.0, + "end": 7514.36, + "probability": 0.9944 + }, + { + "start": 7515.02, + "end": 7516.52, + "probability": 0.9021 + }, + { + "start": 7517.14, + "end": 7519.5, + "probability": 0.9736 + }, + { + "start": 7520.32, + "end": 7527.5, + "probability": 0.9957 + }, + { + "start": 7528.38, + "end": 7532.18, + "probability": 0.9969 + }, + { + "start": 7532.32, + "end": 7538.38, + "probability": 0.9842 + }, + { + "start": 7539.04, + "end": 7540.95, + "probability": 0.9174 + }, + { + "start": 7541.74, + "end": 7545.02, + "probability": 0.9927 + }, + { + "start": 7546.18, + "end": 7546.6, + "probability": 0.8111 + }, + { + "start": 7550.78, + "end": 7553.04, + "probability": 0.7473 + }, + { + "start": 7553.94, + "end": 7557.52, + "probability": 0.8516 + }, + { + "start": 7558.14, + "end": 7561.5, + "probability": 0.8643 + }, + { + "start": 7562.04, + "end": 7564.5, + "probability": 0.9535 + }, + { + "start": 7565.24, + "end": 7570.68, + "probability": 0.9956 + }, + { + "start": 7571.88, + "end": 7574.4, + "probability": 0.9626 + }, + { + "start": 7575.04, + "end": 7577.8, + "probability": 0.603 + }, + { + "start": 7579.18, + "end": 7582.46, + "probability": 0.9663 + }, + { + "start": 7583.36, + "end": 7588.22, + "probability": 0.9893 + }, + { + "start": 7588.94, + "end": 7594.42, + "probability": 0.9878 + }, + { + "start": 7596.52, + "end": 7600.92, + "probability": 0.8247 + }, + { + "start": 7602.14, + "end": 7605.5, + "probability": 0.8592 + }, + { + "start": 7606.22, + "end": 7608.32, + "probability": 0.763 + }, + { + "start": 7609.36, + "end": 7612.66, + "probability": 0.9766 + }, + { + "start": 7613.3, + "end": 7614.09, + "probability": 0.6931 + }, + { + "start": 7616.46, + "end": 7617.08, + "probability": 0.9709 + }, + { + "start": 7618.32, + "end": 7619.98, + "probability": 0.7346 + }, + { + "start": 7621.42, + "end": 7625.7, + "probability": 0.9585 + }, + { + "start": 7626.1, + "end": 7628.1, + "probability": 0.9604 + }, + { + "start": 7628.6, + "end": 7630.22, + "probability": 0.8267 + }, + { + "start": 7630.32, + "end": 7637.0, + "probability": 0.9243 + }, + { + "start": 7637.46, + "end": 7641.38, + "probability": 0.9434 + }, + { + "start": 7642.08, + "end": 7642.44, + "probability": 0.8685 + }, + { + "start": 7643.02, + "end": 7645.24, + "probability": 0.9946 + }, + { + "start": 7645.62, + "end": 7651.1, + "probability": 0.9945 + }, + { + "start": 7651.24, + "end": 7654.38, + "probability": 0.9626 + }, + { + "start": 7655.66, + "end": 7660.28, + "probability": 0.9865 + }, + { + "start": 7660.78, + "end": 7662.5, + "probability": 0.7034 + }, + { + "start": 7662.88, + "end": 7663.56, + "probability": 0.8554 + }, + { + "start": 7664.06, + "end": 7666.88, + "probability": 0.9874 + }, + { + "start": 7667.44, + "end": 7668.8, + "probability": 0.7347 + }, + { + "start": 7669.42, + "end": 7670.18, + "probability": 0.6561 + }, + { + "start": 7671.84, + "end": 7673.28, + "probability": 0.7395 + }, + { + "start": 7674.1, + "end": 7679.52, + "probability": 0.9962 + }, + { + "start": 7680.14, + "end": 7681.88, + "probability": 0.9711 + }, + { + "start": 7682.34, + "end": 7687.54, + "probability": 0.867 + }, + { + "start": 7688.36, + "end": 7694.66, + "probability": 0.9814 + }, + { + "start": 7696.48, + "end": 7699.98, + "probability": 0.7188 + }, + { + "start": 7700.26, + "end": 7702.9, + "probability": 0.9923 + }, + { + "start": 7703.44, + "end": 7707.7, + "probability": 0.9956 + }, + { + "start": 7708.5, + "end": 7709.34, + "probability": 0.6255 + }, + { + "start": 7709.74, + "end": 7712.42, + "probability": 0.989 + }, + { + "start": 7712.5, + "end": 7713.74, + "probability": 0.7147 + }, + { + "start": 7713.94, + "end": 7715.16, + "probability": 0.9016 + }, + { + "start": 7717.5, + "end": 7719.54, + "probability": 0.8408 + }, + { + "start": 7720.12, + "end": 7724.04, + "probability": 0.9907 + }, + { + "start": 7724.74, + "end": 7728.58, + "probability": 0.8955 + }, + { + "start": 7728.64, + "end": 7729.74, + "probability": 0.7977 + }, + { + "start": 7730.16, + "end": 7731.88, + "probability": 0.9766 + }, + { + "start": 7732.74, + "end": 7734.43, + "probability": 0.9971 + }, + { + "start": 7734.74, + "end": 7735.66, + "probability": 0.8166 + }, + { + "start": 7736.06, + "end": 7737.38, + "probability": 0.5525 + }, + { + "start": 7738.04, + "end": 7740.38, + "probability": 0.6293 + }, + { + "start": 7741.16, + "end": 7743.16, + "probability": 0.9012 + }, + { + "start": 7743.6, + "end": 7748.36, + "probability": 0.8413 + }, + { + "start": 7749.02, + "end": 7750.48, + "probability": 0.9131 + }, + { + "start": 7750.74, + "end": 7752.42, + "probability": 0.9799 + }, + { + "start": 7752.62, + "end": 7753.68, + "probability": 0.7206 + }, + { + "start": 7754.48, + "end": 7758.06, + "probability": 0.9755 + }, + { + "start": 7758.06, + "end": 7762.46, + "probability": 0.9945 + }, + { + "start": 7763.3, + "end": 7764.2, + "probability": 0.8745 + }, + { + "start": 7765.08, + "end": 7767.24, + "probability": 0.4807 + }, + { + "start": 7767.24, + "end": 7767.8, + "probability": 0.7639 + }, + { + "start": 7768.26, + "end": 7771.18, + "probability": 0.9578 + }, + { + "start": 7771.78, + "end": 7775.14, + "probability": 0.9764 + }, + { + "start": 7775.5, + "end": 7779.14, + "probability": 0.9786 + }, + { + "start": 7779.14, + "end": 7781.9, + "probability": 0.9862 + }, + { + "start": 7782.0, + "end": 7782.38, + "probability": 0.7686 + }, + { + "start": 7782.76, + "end": 7785.3, + "probability": 0.9777 + }, + { + "start": 7785.48, + "end": 7789.32, + "probability": 0.7452 + }, + { + "start": 7790.04, + "end": 7791.42, + "probability": 0.8411 + }, + { + "start": 7804.34, + "end": 7804.74, + "probability": 0.6541 + }, + { + "start": 7810.14, + "end": 7810.42, + "probability": 0.3698 + }, + { + "start": 7810.5, + "end": 7813.68, + "probability": 0.7631 + }, + { + "start": 7814.98, + "end": 7820.6, + "probability": 0.9766 + }, + { + "start": 7821.92, + "end": 7824.94, + "probability": 0.9276 + }, + { + "start": 7825.48, + "end": 7827.72, + "probability": 0.0428 + }, + { + "start": 7828.58, + "end": 7830.9, + "probability": 0.9952 + }, + { + "start": 7832.0, + "end": 7838.28, + "probability": 0.9348 + }, + { + "start": 7840.3, + "end": 7840.86, + "probability": 0.8025 + }, + { + "start": 7841.54, + "end": 7842.58, + "probability": 0.9832 + }, + { + "start": 7843.22, + "end": 7845.04, + "probability": 0.8708 + }, + { + "start": 7846.14, + "end": 7847.1, + "probability": 0.8011 + }, + { + "start": 7847.9, + "end": 7854.62, + "probability": 0.9966 + }, + { + "start": 7855.26, + "end": 7857.56, + "probability": 0.7336 + }, + { + "start": 7857.6, + "end": 7860.98, + "probability": 0.7218 + }, + { + "start": 7862.14, + "end": 7863.14, + "probability": 0.9245 + }, + { + "start": 7863.18, + "end": 7864.51, + "probability": 0.9467 + }, + { + "start": 7865.72, + "end": 7867.84, + "probability": 0.9268 + }, + { + "start": 7868.0, + "end": 7870.2, + "probability": 0.9283 + }, + { + "start": 7870.76, + "end": 7873.02, + "probability": 0.4989 + }, + { + "start": 7873.68, + "end": 7877.72, + "probability": 0.2136 + }, + { + "start": 7878.12, + "end": 7878.4, + "probability": 0.192 + }, + { + "start": 7878.44, + "end": 7880.94, + "probability": 0.8329 + }, + { + "start": 7882.14, + "end": 7883.96, + "probability": 0.7583 + }, + { + "start": 7885.18, + "end": 7886.14, + "probability": 0.9146 + }, + { + "start": 7886.76, + "end": 7889.5, + "probability": 0.9893 + }, + { + "start": 7890.68, + "end": 7892.98, + "probability": 0.994 + }, + { + "start": 7893.14, + "end": 7896.28, + "probability": 0.9158 + }, + { + "start": 7896.34, + "end": 7897.52, + "probability": 0.8541 + }, + { + "start": 7898.26, + "end": 7899.28, + "probability": 0.9951 + }, + { + "start": 7899.44, + "end": 7900.59, + "probability": 0.7671 + }, + { + "start": 7903.12, + "end": 7904.1, + "probability": 0.3153 + }, + { + "start": 7904.1, + "end": 7904.78, + "probability": 0.1921 + }, + { + "start": 7905.1, + "end": 7908.48, + "probability": 0.5607 + }, + { + "start": 7908.48, + "end": 7913.34, + "probability": 0.9293 + }, + { + "start": 7913.74, + "end": 7915.38, + "probability": 0.8892 + }, + { + "start": 7915.56, + "end": 7917.0, + "probability": 0.3062 + }, + { + "start": 7917.02, + "end": 7918.6, + "probability": 0.9527 + }, + { + "start": 7918.72, + "end": 7920.02, + "probability": 0.8243 + }, + { + "start": 7920.18, + "end": 7924.52, + "probability": 0.9235 + }, + { + "start": 7925.4, + "end": 7933.74, + "probability": 0.9708 + }, + { + "start": 7934.58, + "end": 7937.14, + "probability": 0.7947 + }, + { + "start": 7937.18, + "end": 7939.04, + "probability": 0.862 + }, + { + "start": 7939.78, + "end": 7940.9, + "probability": 0.7966 + }, + { + "start": 7942.3, + "end": 7942.48, + "probability": 0.8497 + }, + { + "start": 7942.58, + "end": 7944.92, + "probability": 0.9771 + }, + { + "start": 7945.14, + "end": 7946.42, + "probability": 0.4705 + }, + { + "start": 7946.46, + "end": 7949.48, + "probability": 0.9537 + }, + { + "start": 7949.6, + "end": 7952.72, + "probability": 0.69 + }, + { + "start": 7952.92, + "end": 7953.46, + "probability": 0.6756 + }, + { + "start": 7954.08, + "end": 7958.5, + "probability": 0.7761 + }, + { + "start": 7959.54, + "end": 7960.1, + "probability": 0.8009 + }, + { + "start": 7960.14, + "end": 7960.62, + "probability": 0.7094 + }, + { + "start": 7960.64, + "end": 7961.36, + "probability": 0.6917 + }, + { + "start": 7961.9, + "end": 7965.62, + "probability": 0.9774 + }, + { + "start": 7965.64, + "end": 7966.16, + "probability": 0.9235 + }, + { + "start": 7968.76, + "end": 7974.58, + "probability": 0.9376 + }, + { + "start": 7974.58, + "end": 7978.12, + "probability": 0.9937 + }, + { + "start": 7979.12, + "end": 7981.8, + "probability": 0.8338 + }, + { + "start": 7982.2, + "end": 7987.08, + "probability": 0.9868 + }, + { + "start": 7987.26, + "end": 7988.2, + "probability": 0.8054 + }, + { + "start": 7988.3, + "end": 7989.52, + "probability": 0.9976 + }, + { + "start": 7990.3, + "end": 7992.05, + "probability": 0.9934 + }, + { + "start": 7993.1, + "end": 7994.18, + "probability": 0.2876 + }, + { + "start": 7994.4, + "end": 7997.28, + "probability": 0.7067 + }, + { + "start": 7997.54, + "end": 7999.58, + "probability": 0.762 + }, + { + "start": 7999.6, + "end": 8001.66, + "probability": 0.1297 + }, + { + "start": 8004.46, + "end": 8007.3, + "probability": 0.8332 + }, + { + "start": 8007.9, + "end": 8009.34, + "probability": 0.9275 + }, + { + "start": 8009.52, + "end": 8010.44, + "probability": 0.7244 + }, + { + "start": 8010.52, + "end": 8014.48, + "probability": 0.8304 + }, + { + "start": 8015.58, + "end": 8017.08, + "probability": 0.9743 + }, + { + "start": 8017.22, + "end": 8020.02, + "probability": 0.9775 + }, + { + "start": 8020.78, + "end": 8023.52, + "probability": 0.804 + }, + { + "start": 8023.6, + "end": 8024.5, + "probability": 0.8775 + }, + { + "start": 8024.7, + "end": 8026.32, + "probability": 0.7515 + }, + { + "start": 8026.4, + "end": 8026.68, + "probability": 0.8783 + }, + { + "start": 8026.86, + "end": 8028.52, + "probability": 0.9382 + }, + { + "start": 8028.64, + "end": 8030.54, + "probability": 0.6746 + }, + { + "start": 8030.8, + "end": 8032.54, + "probability": 0.9594 + }, + { + "start": 8032.96, + "end": 8038.66, + "probability": 0.7647 + }, + { + "start": 8039.8, + "end": 8045.16, + "probability": 0.9938 + }, + { + "start": 8045.16, + "end": 8048.6, + "probability": 0.5901 + }, + { + "start": 8048.72, + "end": 8049.4, + "probability": 0.6978 + }, + { + "start": 8050.04, + "end": 8052.01, + "probability": 0.7959 + }, + { + "start": 8052.52, + "end": 8055.68, + "probability": 0.7816 + }, + { + "start": 8055.82, + "end": 8057.29, + "probability": 0.7684 + }, + { + "start": 8058.14, + "end": 8059.6, + "probability": 0.8206 + }, + { + "start": 8059.74, + "end": 8062.7, + "probability": 0.9713 + }, + { + "start": 8062.86, + "end": 8063.36, + "probability": 0.9143 + }, + { + "start": 8063.4, + "end": 8064.08, + "probability": 0.5264 + }, + { + "start": 8064.36, + "end": 8066.12, + "probability": 0.889 + }, + { + "start": 8066.64, + "end": 8067.92, + "probability": 0.9917 + }, + { + "start": 8068.34, + "end": 8069.82, + "probability": 0.9976 + }, + { + "start": 8070.36, + "end": 8073.3, + "probability": 0.9866 + }, + { + "start": 8073.8, + "end": 8074.58, + "probability": 0.9884 + }, + { + "start": 8075.0, + "end": 8077.56, + "probability": 0.9426 + }, + { + "start": 8077.94, + "end": 8080.34, + "probability": 0.768 + }, + { + "start": 8081.08, + "end": 8082.68, + "probability": 0.8977 + }, + { + "start": 8083.26, + "end": 8085.52, + "probability": 0.9434 + }, + { + "start": 8085.58, + "end": 8087.48, + "probability": 0.9722 + }, + { + "start": 8088.18, + "end": 8088.82, + "probability": 0.7043 + }, + { + "start": 8088.92, + "end": 8089.76, + "probability": 0.7026 + }, + { + "start": 8090.3, + "end": 8093.5, + "probability": 0.9278 + }, + { + "start": 8094.14, + "end": 8096.3, + "probability": 0.9832 + }, + { + "start": 8096.4, + "end": 8097.2, + "probability": 0.5345 + }, + { + "start": 8097.7, + "end": 8099.2, + "probability": 0.9338 + }, + { + "start": 8099.3, + "end": 8100.76, + "probability": 0.7245 + }, + { + "start": 8101.24, + "end": 8103.6, + "probability": 0.8884 + }, + { + "start": 8104.48, + "end": 8106.4, + "probability": 0.9445 + }, + { + "start": 8107.0, + "end": 8110.16, + "probability": 0.9886 + }, + { + "start": 8111.06, + "end": 8114.1, + "probability": 0.9419 + }, + { + "start": 8114.18, + "end": 8114.94, + "probability": 0.8707 + }, + { + "start": 8115.74, + "end": 8117.78, + "probability": 0.83 + }, + { + "start": 8118.1, + "end": 8122.68, + "probability": 0.9674 + }, + { + "start": 8123.1, + "end": 8124.56, + "probability": 0.9757 + }, + { + "start": 8126.48, + "end": 8127.44, + "probability": 0.0843 + }, + { + "start": 8127.44, + "end": 8127.54, + "probability": 0.0108 + }, + { + "start": 8127.54, + "end": 8128.17, + "probability": 0.4845 + }, + { + "start": 8128.36, + "end": 8128.62, + "probability": 0.1935 + }, + { + "start": 8128.66, + "end": 8130.06, + "probability": 0.6787 + }, + { + "start": 8130.26, + "end": 8134.0, + "probability": 0.8925 + }, + { + "start": 8135.62, + "end": 8135.96, + "probability": 0.0484 + }, + { + "start": 8135.96, + "end": 8136.82, + "probability": 0.3426 + }, + { + "start": 8136.82, + "end": 8137.26, + "probability": 0.8849 + }, + { + "start": 8140.78, + "end": 8142.46, + "probability": 0.6947 + }, + { + "start": 8142.54, + "end": 8144.84, + "probability": 0.8229 + }, + { + "start": 8145.06, + "end": 8146.38, + "probability": 0.6591 + }, + { + "start": 8146.46, + "end": 8147.5, + "probability": 0.9492 + }, + { + "start": 8147.66, + "end": 8148.96, + "probability": 0.8443 + }, + { + "start": 8150.0, + "end": 8154.38, + "probability": 0.8358 + }, + { + "start": 8155.56, + "end": 8158.36, + "probability": 0.9805 + }, + { + "start": 8159.26, + "end": 8162.88, + "probability": 0.9227 + }, + { + "start": 8162.88, + "end": 8168.1, + "probability": 0.9847 + }, + { + "start": 8169.48, + "end": 8170.92, + "probability": 0.8131 + }, + { + "start": 8171.22, + "end": 8175.16, + "probability": 0.9619 + }, + { + "start": 8176.04, + "end": 8177.6, + "probability": 0.9179 + }, + { + "start": 8178.32, + "end": 8182.9, + "probability": 0.9941 + }, + { + "start": 8183.78, + "end": 8187.42, + "probability": 0.9041 + }, + { + "start": 8188.06, + "end": 8189.48, + "probability": 0.9624 + }, + { + "start": 8190.1, + "end": 8191.26, + "probability": 0.9914 + }, + { + "start": 8191.26, + "end": 8198.78, + "probability": 0.9913 + }, + { + "start": 8199.36, + "end": 8200.92, + "probability": 0.83 + }, + { + "start": 8201.8, + "end": 8205.16, + "probability": 0.9679 + }, + { + "start": 8205.8, + "end": 8209.16, + "probability": 0.9399 + }, + { + "start": 8210.42, + "end": 8210.76, + "probability": 0.6772 + }, + { + "start": 8211.18, + "end": 8214.18, + "probability": 0.9916 + }, + { + "start": 8214.54, + "end": 8217.1, + "probability": 0.9895 + }, + { + "start": 8217.84, + "end": 8219.96, + "probability": 0.6146 + }, + { + "start": 8220.66, + "end": 8221.36, + "probability": 0.4526 + }, + { + "start": 8221.7, + "end": 8226.54, + "probability": 0.9896 + }, + { + "start": 8226.8, + "end": 8231.88, + "probability": 0.9917 + }, + { + "start": 8233.71, + "end": 8237.28, + "probability": 0.9982 + }, + { + "start": 8238.16, + "end": 8245.7, + "probability": 0.9673 + }, + { + "start": 8246.12, + "end": 8251.28, + "probability": 0.9814 + }, + { + "start": 8252.54, + "end": 8254.52, + "probability": 0.8875 + }, + { + "start": 8255.28, + "end": 8257.16, + "probability": 0.998 + }, + { + "start": 8257.8, + "end": 8261.24, + "probability": 0.9986 + }, + { + "start": 8262.2, + "end": 8270.92, + "probability": 0.9983 + }, + { + "start": 8270.98, + "end": 8272.26, + "probability": 0.9025 + }, + { + "start": 8272.38, + "end": 8274.59, + "probability": 0.9973 + }, + { + "start": 8275.16, + "end": 8279.62, + "probability": 0.8871 + }, + { + "start": 8280.04, + "end": 8282.24, + "probability": 0.9253 + }, + { + "start": 8282.32, + "end": 8284.52, + "probability": 0.7742 + }, + { + "start": 8285.26, + "end": 8287.56, + "probability": 0.9637 + }, + { + "start": 8288.3, + "end": 8292.28, + "probability": 0.9807 + }, + { + "start": 8292.8, + "end": 8295.28, + "probability": 0.9565 + }, + { + "start": 8296.54, + "end": 8297.72, + "probability": 0.7121 + }, + { + "start": 8297.9, + "end": 8301.44, + "probability": 0.9723 + }, + { + "start": 8301.98, + "end": 8305.62, + "probability": 0.9326 + }, + { + "start": 8305.78, + "end": 8311.1, + "probability": 0.9469 + }, + { + "start": 8311.26, + "end": 8312.42, + "probability": 0.9041 + }, + { + "start": 8312.7, + "end": 8313.86, + "probability": 0.9071 + }, + { + "start": 8313.98, + "end": 8315.34, + "probability": 0.8539 + }, + { + "start": 8316.16, + "end": 8318.58, + "probability": 0.9787 + }, + { + "start": 8319.8, + "end": 8321.24, + "probability": 0.6911 + }, + { + "start": 8321.28, + "end": 8325.56, + "probability": 0.9863 + }, + { + "start": 8326.18, + "end": 8329.08, + "probability": 0.9902 + }, + { + "start": 8329.54, + "end": 8329.96, + "probability": 0.9473 + }, + { + "start": 8331.3, + "end": 8333.52, + "probability": 0.9903 + }, + { + "start": 8333.68, + "end": 8335.27, + "probability": 0.5594 + }, + { + "start": 8335.96, + "end": 8337.1, + "probability": 0.5109 + }, + { + "start": 8337.6, + "end": 8340.3, + "probability": 0.9007 + }, + { + "start": 8340.72, + "end": 8341.74, + "probability": 0.788 + }, + { + "start": 8341.88, + "end": 8342.54, + "probability": 0.7498 + }, + { + "start": 8342.7, + "end": 8344.18, + "probability": 0.1298 + }, + { + "start": 8344.3, + "end": 8345.36, + "probability": 0.8068 + }, + { + "start": 8345.82, + "end": 8347.46, + "probability": 0.8682 + }, + { + "start": 8357.5, + "end": 8360.42, + "probability": 0.0742 + }, + { + "start": 8360.42, + "end": 8361.22, + "probability": 0.0728 + }, + { + "start": 8362.24, + "end": 8363.3, + "probability": 0.0521 + }, + { + "start": 8365.02, + "end": 8367.46, + "probability": 0.057 + }, + { + "start": 8367.46, + "end": 8369.82, + "probability": 0.7027 + }, + { + "start": 8370.02, + "end": 8371.48, + "probability": 0.8867 + }, + { + "start": 8372.18, + "end": 8372.46, + "probability": 0.2664 + }, + { + "start": 8372.54, + "end": 8373.02, + "probability": 0.8419 + }, + { + "start": 8373.08, + "end": 8374.18, + "probability": 0.6699 + }, + { + "start": 8374.2, + "end": 8375.88, + "probability": 0.7089 + }, + { + "start": 8376.0, + "end": 8378.64, + "probability": 0.7723 + }, + { + "start": 8378.96, + "end": 8379.61, + "probability": 0.8376 + }, + { + "start": 8380.7, + "end": 8382.4, + "probability": 0.8974 + }, + { + "start": 8383.12, + "end": 8383.96, + "probability": 0.8757 + }, + { + "start": 8385.0, + "end": 8388.08, + "probability": 0.8244 + }, + { + "start": 8390.34, + "end": 8393.38, + "probability": 0.7116 + }, + { + "start": 8393.38, + "end": 8393.38, + "probability": 0.7325 + }, + { + "start": 8393.38, + "end": 8393.45, + "probability": 0.8018 + }, + { + "start": 8394.26, + "end": 8398.94, + "probability": 0.9909 + }, + { + "start": 8398.94, + "end": 8404.8, + "probability": 0.998 + }, + { + "start": 8405.54, + "end": 8406.68, + "probability": 0.6512 + }, + { + "start": 8406.86, + "end": 8407.36, + "probability": 0.7858 + }, + { + "start": 8407.46, + "end": 8410.68, + "probability": 0.9469 + }, + { + "start": 8410.68, + "end": 8414.12, + "probability": 0.9785 + }, + { + "start": 8414.26, + "end": 8414.92, + "probability": 0.4963 + }, + { + "start": 8415.08, + "end": 8415.74, + "probability": 0.7314 + }, + { + "start": 8416.24, + "end": 8420.0, + "probability": 0.9876 + }, + { + "start": 8420.0, + "end": 8424.28, + "probability": 0.9896 + }, + { + "start": 8424.42, + "end": 8425.42, + "probability": 0.9166 + }, + { + "start": 8425.5, + "end": 8428.12, + "probability": 0.9468 + }, + { + "start": 8428.64, + "end": 8432.3, + "probability": 0.985 + }, + { + "start": 8432.9, + "end": 8436.72, + "probability": 0.9419 + }, + { + "start": 8437.3, + "end": 8438.04, + "probability": 0.184 + }, + { + "start": 8438.68, + "end": 8439.67, + "probability": 0.8403 + }, + { + "start": 8439.92, + "end": 8440.28, + "probability": 0.0338 + }, + { + "start": 8440.28, + "end": 8443.72, + "probability": 0.8392 + }, + { + "start": 8443.96, + "end": 8444.06, + "probability": 0.324 + }, + { + "start": 8444.38, + "end": 8444.44, + "probability": 0.1339 + }, + { + "start": 8444.44, + "end": 8448.0, + "probability": 0.9746 + }, + { + "start": 8448.0, + "end": 8452.18, + "probability": 0.956 + }, + { + "start": 8452.78, + "end": 8453.96, + "probability": 0.7134 + }, + { + "start": 8454.54, + "end": 8458.52, + "probability": 0.9937 + }, + { + "start": 8459.6, + "end": 8462.22, + "probability": 0.8966 + }, + { + "start": 8463.36, + "end": 8466.06, + "probability": 0.9004 + }, + { + "start": 8467.24, + "end": 8471.68, + "probability": 0.978 + }, + { + "start": 8471.68, + "end": 8476.32, + "probability": 0.9657 + }, + { + "start": 8476.78, + "end": 8479.72, + "probability": 0.5548 + }, + { + "start": 8479.86, + "end": 8483.06, + "probability": 0.9925 + }, + { + "start": 8483.58, + "end": 8487.58, + "probability": 0.9249 + }, + { + "start": 8487.98, + "end": 8489.8, + "probability": 0.9834 + }, + { + "start": 8490.28, + "end": 8491.28, + "probability": 0.2121 + }, + { + "start": 8491.88, + "end": 8494.4, + "probability": 0.1621 + }, + { + "start": 8496.04, + "end": 8496.34, + "probability": 0.3681 + }, + { + "start": 8498.52, + "end": 8501.8, + "probability": 0.5737 + }, + { + "start": 8501.82, + "end": 8505.14, + "probability": 0.9273 + }, + { + "start": 8505.62, + "end": 8506.82, + "probability": 0.8346 + }, + { + "start": 8507.24, + "end": 8509.36, + "probability": 0.8713 + }, + { + "start": 8509.42, + "end": 8510.56, + "probability": 0.8853 + }, + { + "start": 8510.56, + "end": 8511.04, + "probability": 0.5017 + }, + { + "start": 8511.16, + "end": 8514.88, + "probability": 0.9694 + }, + { + "start": 8515.12, + "end": 8517.24, + "probability": 0.9238 + }, + { + "start": 8517.88, + "end": 8519.54, + "probability": 0.9384 + }, + { + "start": 8519.86, + "end": 8525.7, + "probability": 0.9756 + }, + { + "start": 8525.74, + "end": 8526.58, + "probability": 0.7313 + }, + { + "start": 8527.6, + "end": 8528.84, + "probability": 0.7962 + }, + { + "start": 8529.46, + "end": 8534.12, + "probability": 0.9937 + }, + { + "start": 8534.16, + "end": 8534.54, + "probability": 0.2832 + }, + { + "start": 8534.56, + "end": 8535.9, + "probability": 0.9809 + }, + { + "start": 8537.0, + "end": 8541.54, + "probability": 0.9907 + }, + { + "start": 8542.0, + "end": 8543.22, + "probability": 0.9633 + }, + { + "start": 8543.64, + "end": 8547.38, + "probability": 0.9915 + }, + { + "start": 8548.16, + "end": 8552.27, + "probability": 0.9619 + }, + { + "start": 8552.32, + "end": 8557.38, + "probability": 0.9995 + }, + { + "start": 8557.38, + "end": 8561.38, + "probability": 0.9999 + }, + { + "start": 8562.16, + "end": 8563.42, + "probability": 0.7175 + }, + { + "start": 8563.48, + "end": 8564.56, + "probability": 0.6161 + }, + { + "start": 8564.66, + "end": 8566.04, + "probability": 0.883 + }, + { + "start": 8566.06, + "end": 8568.56, + "probability": 0.9976 + }, + { + "start": 8568.56, + "end": 8570.88, + "probability": 0.9998 + }, + { + "start": 8571.48, + "end": 8573.96, + "probability": 0.9901 + }, + { + "start": 8574.5, + "end": 8577.38, + "probability": 0.9951 + }, + { + "start": 8577.58, + "end": 8580.02, + "probability": 0.9883 + }, + { + "start": 8581.16, + "end": 8583.94, + "probability": 0.9891 + }, + { + "start": 8584.62, + "end": 8589.7, + "probability": 0.945 + }, + { + "start": 8590.28, + "end": 8590.85, + "probability": 0.5513 + }, + { + "start": 8592.6, + "end": 8595.28, + "probability": 0.9809 + }, + { + "start": 8596.1, + "end": 8597.62, + "probability": 0.9907 + }, + { + "start": 8597.9, + "end": 8604.04, + "probability": 0.998 + }, + { + "start": 8605.44, + "end": 8609.66, + "probability": 0.6166 + }, + { + "start": 8610.26, + "end": 8613.6, + "probability": 0.987 + }, + { + "start": 8613.76, + "end": 8616.42, + "probability": 0.998 + }, + { + "start": 8617.1, + "end": 8622.58, + "probability": 0.9979 + }, + { + "start": 8623.56, + "end": 8625.96, + "probability": 0.9495 + }, + { + "start": 8625.96, + "end": 8626.88, + "probability": 0.9084 + }, + { + "start": 8627.06, + "end": 8631.18, + "probability": 0.9973 + }, + { + "start": 8632.1, + "end": 8635.68, + "probability": 0.9434 + }, + { + "start": 8637.12, + "end": 8642.48, + "probability": 0.9338 + }, + { + "start": 8643.22, + "end": 8646.21, + "probability": 0.9946 + }, + { + "start": 8646.38, + "end": 8648.22, + "probability": 0.9909 + }, + { + "start": 8648.66, + "end": 8653.04, + "probability": 0.9861 + }, + { + "start": 8653.04, + "end": 8657.56, + "probability": 0.9692 + }, + { + "start": 8657.76, + "end": 8659.32, + "probability": 0.955 + }, + { + "start": 8660.18, + "end": 8661.86, + "probability": 0.6949 + }, + { + "start": 8662.02, + "end": 8664.31, + "probability": 0.9707 + }, + { + "start": 8664.42, + "end": 8667.26, + "probability": 0.9964 + }, + { + "start": 8667.66, + "end": 8671.46, + "probability": 0.9843 + }, + { + "start": 8671.54, + "end": 8676.36, + "probability": 0.9573 + }, + { + "start": 8676.44, + "end": 8676.7, + "probability": 0.2643 + }, + { + "start": 8676.9, + "end": 8679.8, + "probability": 0.8885 + }, + { + "start": 8679.8, + "end": 8682.61, + "probability": 0.6831 + }, + { + "start": 8683.48, + "end": 8686.64, + "probability": 0.9134 + }, + { + "start": 8687.16, + "end": 8688.8, + "probability": 0.5772 + }, + { + "start": 8689.28, + "end": 8693.74, + "probability": 0.9099 + }, + { + "start": 8695.68, + "end": 8701.16, + "probability": 0.947 + }, + { + "start": 8701.64, + "end": 8703.6, + "probability": 0.4292 + }, + { + "start": 8704.38, + "end": 8710.38, + "probability": 0.9375 + }, + { + "start": 8710.84, + "end": 8714.34, + "probability": 0.9819 + }, + { + "start": 8715.0, + "end": 8718.28, + "probability": 0.7352 + }, + { + "start": 8718.94, + "end": 8722.26, + "probability": 0.8785 + }, + { + "start": 8722.6, + "end": 8726.64, + "probability": 0.9988 + }, + { + "start": 8727.1, + "end": 8730.82, + "probability": 0.9979 + }, + { + "start": 8731.06, + "end": 8732.08, + "probability": 0.9173 + }, + { + "start": 8732.14, + "end": 8736.62, + "probability": 0.9735 + }, + { + "start": 8736.62, + "end": 8741.32, + "probability": 0.9976 + }, + { + "start": 8742.3, + "end": 8744.98, + "probability": 0.9946 + }, + { + "start": 8745.76, + "end": 8750.64, + "probability": 0.988 + }, + { + "start": 8751.1, + "end": 8753.76, + "probability": 0.9776 + }, + { + "start": 8753.8, + "end": 8756.18, + "probability": 0.873 + }, + { + "start": 8756.18, + "end": 8759.52, + "probability": 0.9974 + }, + { + "start": 8760.5, + "end": 8764.8, + "probability": 0.9943 + }, + { + "start": 8764.8, + "end": 8769.32, + "probability": 0.9995 + }, + { + "start": 8770.68, + "end": 8773.8, + "probability": 0.6708 + }, + { + "start": 8775.22, + "end": 8777.26, + "probability": 0.9736 + }, + { + "start": 8777.28, + "end": 8778.44, + "probability": 0.8776 + }, + { + "start": 8778.76, + "end": 8780.1, + "probability": 0.7974 + }, + { + "start": 8780.28, + "end": 8781.74, + "probability": 0.9569 + }, + { + "start": 8782.28, + "end": 8787.18, + "probability": 0.9709 + }, + { + "start": 8787.64, + "end": 8792.52, + "probability": 0.9386 + }, + { + "start": 8793.36, + "end": 8794.36, + "probability": 0.6465 + }, + { + "start": 8794.48, + "end": 8795.64, + "probability": 0.8584 + }, + { + "start": 8795.98, + "end": 8796.64, + "probability": 0.8333 + }, + { + "start": 8796.8, + "end": 8801.1, + "probability": 0.9834 + }, + { + "start": 8801.62, + "end": 8805.1, + "probability": 0.9814 + }, + { + "start": 8805.52, + "end": 8806.04, + "probability": 0.6597 + }, + { + "start": 8806.4, + "end": 8808.32, + "probability": 0.9603 + }, + { + "start": 8809.06, + "end": 8814.36, + "probability": 0.9952 + }, + { + "start": 8815.22, + "end": 8815.76, + "probability": 0.6453 + }, + { + "start": 8816.88, + "end": 8825.34, + "probability": 0.9966 + }, + { + "start": 8825.98, + "end": 8830.72, + "probability": 0.9207 + }, + { + "start": 8831.3, + "end": 8836.96, + "probability": 0.9936 + }, + { + "start": 8838.26, + "end": 8843.68, + "probability": 0.7821 + }, + { + "start": 8843.68, + "end": 8848.02, + "probability": 0.9867 + }, + { + "start": 8848.2, + "end": 8849.44, + "probability": 0.7335 + }, + { + "start": 8850.82, + "end": 8852.0, + "probability": 0.9427 + }, + { + "start": 8852.88, + "end": 8854.12, + "probability": 0.9985 + }, + { + "start": 8854.98, + "end": 8857.56, + "probability": 0.9946 + }, + { + "start": 8858.0, + "end": 8858.88, + "probability": 0.4785 + }, + { + "start": 8859.14, + "end": 8860.04, + "probability": 0.6955 + }, + { + "start": 8860.3, + "end": 8861.54, + "probability": 0.9025 + }, + { + "start": 8862.18, + "end": 8863.84, + "probability": 0.9465 + }, + { + "start": 8865.24, + "end": 8868.02, + "probability": 0.809 + }, + { + "start": 8868.68, + "end": 8873.54, + "probability": 0.979 + }, + { + "start": 8873.7, + "end": 8874.1, + "probability": 0.6614 + }, + { + "start": 8874.2, + "end": 8875.56, + "probability": 0.9976 + }, + { + "start": 8875.68, + "end": 8876.16, + "probability": 0.7308 + }, + { + "start": 8876.16, + "end": 8880.66, + "probability": 0.9906 + }, + { + "start": 8881.3, + "end": 8884.14, + "probability": 0.9901 + }, + { + "start": 8884.14, + "end": 8887.5, + "probability": 0.9986 + }, + { + "start": 8888.04, + "end": 8893.08, + "probability": 0.9956 + }, + { + "start": 8893.4, + "end": 8895.28, + "probability": 0.9814 + }, + { + "start": 8895.7, + "end": 8899.88, + "probability": 0.995 + }, + { + "start": 8900.64, + "end": 8903.48, + "probability": 0.9901 + }, + { + "start": 8905.0, + "end": 8905.62, + "probability": 0.8038 + }, + { + "start": 8906.6, + "end": 8908.8, + "probability": 0.8921 + }, + { + "start": 8909.1, + "end": 8909.78, + "probability": 0.7888 + }, + { + "start": 8911.18, + "end": 8912.12, + "probability": 0.6609 + }, + { + "start": 8912.74, + "end": 8913.94, + "probability": 0.7722 + }, + { + "start": 8914.2, + "end": 8915.04, + "probability": 0.7663 + }, + { + "start": 8933.34, + "end": 8934.72, + "probability": 0.5028 + }, + { + "start": 8934.9, + "end": 8938.83, + "probability": 0.8996 + }, + { + "start": 8939.68, + "end": 8940.3, + "probability": 0.6264 + }, + { + "start": 8940.42, + "end": 8942.56, + "probability": 0.9326 + }, + { + "start": 8942.68, + "end": 8947.28, + "probability": 0.9893 + }, + { + "start": 8947.36, + "end": 8948.81, + "probability": 0.9141 + }, + { + "start": 8949.88, + "end": 8953.34, + "probability": 0.9866 + }, + { + "start": 8953.4, + "end": 8954.69, + "probability": 0.5589 + }, + { + "start": 8955.9, + "end": 8959.04, + "probability": 0.8448 + }, + { + "start": 8960.36, + "end": 8963.7, + "probability": 0.9627 + }, + { + "start": 8964.04, + "end": 8965.74, + "probability": 0.9844 + }, + { + "start": 8966.94, + "end": 8971.06, + "probability": 0.8929 + }, + { + "start": 8971.88, + "end": 8973.88, + "probability": 0.9905 + }, + { + "start": 8974.58, + "end": 8978.74, + "probability": 0.9917 + }, + { + "start": 8980.26, + "end": 8981.02, + "probability": 0.632 + }, + { + "start": 8981.8, + "end": 8982.54, + "probability": 0.8049 + }, + { + "start": 8983.78, + "end": 8985.02, + "probability": 0.7854 + }, + { + "start": 8985.72, + "end": 8989.38, + "probability": 0.9951 + }, + { + "start": 8989.84, + "end": 8992.68, + "probability": 0.9897 + }, + { + "start": 8993.2, + "end": 8996.1, + "probability": 0.976 + }, + { + "start": 8996.1, + "end": 9000.36, + "probability": 0.9315 + }, + { + "start": 9000.44, + "end": 9000.51, + "probability": 0.0594 + }, + { + "start": 9000.52, + "end": 9001.34, + "probability": 0.3765 + }, + { + "start": 9001.76, + "end": 9002.76, + "probability": 0.5526 + }, + { + "start": 9003.06, + "end": 9005.72, + "probability": 0.1847 + }, + { + "start": 9007.08, + "end": 9007.84, + "probability": 0.2426 + }, + { + "start": 9007.94, + "end": 9008.15, + "probability": 0.0714 + }, + { + "start": 9009.18, + "end": 9009.68, + "probability": 0.386 + }, + { + "start": 9009.86, + "end": 9010.0, + "probability": 0.0454 + }, + { + "start": 9010.02, + "end": 9012.68, + "probability": 0.5599 + }, + { + "start": 9013.5, + "end": 9019.76, + "probability": 0.9529 + }, + { + "start": 9020.6, + "end": 9021.65, + "probability": 0.9717 + }, + { + "start": 9022.07, + "end": 9025.14, + "probability": 0.9466 + }, + { + "start": 9025.3, + "end": 9026.16, + "probability": 0.6002 + }, + { + "start": 9026.42, + "end": 9026.92, + "probability": 0.8319 + }, + { + "start": 9027.0, + "end": 9028.95, + "probability": 0.9883 + }, + { + "start": 9029.36, + "end": 9031.26, + "probability": 0.9625 + }, + { + "start": 9031.42, + "end": 9031.66, + "probability": 0.762 + }, + { + "start": 9031.84, + "end": 9032.28, + "probability": 0.9661 + }, + { + "start": 9032.7, + "end": 9036.4, + "probability": 0.9883 + }, + { + "start": 9036.82, + "end": 9037.96, + "probability": 0.9725 + }, + { + "start": 9037.96, + "end": 9039.02, + "probability": 0.7029 + }, + { + "start": 9039.12, + "end": 9039.66, + "probability": 0.6931 + }, + { + "start": 9040.94, + "end": 9042.22, + "probability": 0.1491 + }, + { + "start": 9042.3, + "end": 9047.62, + "probability": 0.9743 + }, + { + "start": 9048.1, + "end": 9051.58, + "probability": 0.988 + }, + { + "start": 9051.72, + "end": 9053.25, + "probability": 0.8414 + }, + { + "start": 9054.08, + "end": 9057.92, + "probability": 0.9972 + }, + { + "start": 9058.5, + "end": 9060.84, + "probability": 0.9497 + }, + { + "start": 9062.02, + "end": 9065.92, + "probability": 0.9844 + }, + { + "start": 9066.44, + "end": 9070.38, + "probability": 0.9922 + }, + { + "start": 9071.16, + "end": 9076.24, + "probability": 0.6869 + }, + { + "start": 9077.04, + "end": 9078.88, + "probability": 0.7361 + }, + { + "start": 9078.94, + "end": 9082.2, + "probability": 0.9868 + }, + { + "start": 9082.94, + "end": 9084.8, + "probability": 0.8255 + }, + { + "start": 9084.94, + "end": 9086.99, + "probability": 0.9646 + }, + { + "start": 9087.74, + "end": 9092.9, + "probability": 0.9792 + }, + { + "start": 9093.72, + "end": 9098.84, + "probability": 0.8477 + }, + { + "start": 9099.9, + "end": 9100.24, + "probability": 0.4958 + }, + { + "start": 9100.5, + "end": 9103.76, + "probability": 0.9953 + }, + { + "start": 9103.84, + "end": 9104.05, + "probability": 0.9673 + }, + { + "start": 9105.64, + "end": 9111.1, + "probability": 0.9941 + }, + { + "start": 9111.94, + "end": 9115.53, + "probability": 0.9961 + }, + { + "start": 9116.22, + "end": 9119.6, + "probability": 0.9954 + }, + { + "start": 9120.12, + "end": 9125.06, + "probability": 0.9956 + }, + { + "start": 9125.72, + "end": 9128.5, + "probability": 0.949 + }, + { + "start": 9129.14, + "end": 9132.18, + "probability": 0.9956 + }, + { + "start": 9133.24, + "end": 9135.86, + "probability": 0.8811 + }, + { + "start": 9136.54, + "end": 9137.06, + "probability": 0.8055 + }, + { + "start": 9137.14, + "end": 9138.3, + "probability": 0.9913 + }, + { + "start": 9139.02, + "end": 9140.3, + "probability": 0.857 + }, + { + "start": 9140.88, + "end": 9144.1, + "probability": 0.995 + }, + { + "start": 9144.5, + "end": 9148.27, + "probability": 0.9941 + }, + { + "start": 9148.32, + "end": 9153.16, + "probability": 0.9465 + }, + { + "start": 9153.9, + "end": 9157.08, + "probability": 0.978 + }, + { + "start": 9157.78, + "end": 9162.18, + "probability": 0.9697 + }, + { + "start": 9162.66, + "end": 9167.06, + "probability": 0.9749 + }, + { + "start": 9167.76, + "end": 9172.56, + "probability": 0.9924 + }, + { + "start": 9172.64, + "end": 9174.24, + "probability": 0.9153 + }, + { + "start": 9174.28, + "end": 9176.64, + "probability": 0.9932 + }, + { + "start": 9176.84, + "end": 9180.82, + "probability": 0.9243 + }, + { + "start": 9181.2, + "end": 9181.64, + "probability": 0.94 + }, + { + "start": 9181.68, + "end": 9183.48, + "probability": 0.9512 + }, + { + "start": 9183.64, + "end": 9185.82, + "probability": 0.9983 + }, + { + "start": 9186.42, + "end": 9188.92, + "probability": 0.9949 + }, + { + "start": 9188.92, + "end": 9192.96, + "probability": 0.9978 + }, + { + "start": 9193.48, + "end": 9195.32, + "probability": 0.998 + }, + { + "start": 9195.82, + "end": 9199.18, + "probability": 0.8794 + }, + { + "start": 9201.74, + "end": 9202.34, + "probability": 0.6469 + }, + { + "start": 9203.42, + "end": 9204.62, + "probability": 0.9596 + }, + { + "start": 9204.84, + "end": 9207.68, + "probability": 0.966 + }, + { + "start": 9207.76, + "end": 9209.1, + "probability": 0.2353 + }, + { + "start": 9209.34, + "end": 9213.9, + "probability": 0.9736 + }, + { + "start": 9214.64, + "end": 9217.6, + "probability": 0.9873 + }, + { + "start": 9218.4, + "end": 9221.2, + "probability": 0.9429 + }, + { + "start": 9221.44, + "end": 9222.64, + "probability": 0.4016 + }, + { + "start": 9222.88, + "end": 9226.66, + "probability": 0.5874 + }, + { + "start": 9227.8, + "end": 9235.32, + "probability": 0.9798 + }, + { + "start": 9235.4, + "end": 9238.58, + "probability": 0.8717 + }, + { + "start": 9238.58, + "end": 9240.8, + "probability": 0.9816 + }, + { + "start": 9241.42, + "end": 9245.54, + "probability": 0.9361 + }, + { + "start": 9246.24, + "end": 9248.38, + "probability": 0.9776 + }, + { + "start": 9249.16, + "end": 9250.17, + "probability": 0.7795 + }, + { + "start": 9251.02, + "end": 9252.88, + "probability": 0.9845 + }, + { + "start": 9253.62, + "end": 9257.9, + "probability": 0.9919 + }, + { + "start": 9258.14, + "end": 9258.9, + "probability": 0.9824 + }, + { + "start": 9259.54, + "end": 9260.44, + "probability": 0.9294 + }, + { + "start": 9260.52, + "end": 9261.68, + "probability": 0.9365 + }, + { + "start": 9262.02, + "end": 9264.74, + "probability": 0.9373 + }, + { + "start": 9265.28, + "end": 9267.76, + "probability": 0.9291 + }, + { + "start": 9268.8, + "end": 9270.74, + "probability": 0.9508 + }, + { + "start": 9271.92, + "end": 9272.7, + "probability": 0.8041 + }, + { + "start": 9273.54, + "end": 9274.6, + "probability": 0.9879 + }, + { + "start": 9276.34, + "end": 9280.46, + "probability": 0.584 + }, + { + "start": 9282.86, + "end": 9285.54, + "probability": 0.68 + }, + { + "start": 9286.36, + "end": 9291.92, + "probability": 0.9486 + }, + { + "start": 9292.8, + "end": 9296.28, + "probability": 0.949 + }, + { + "start": 9297.74, + "end": 9299.68, + "probability": 0.9894 + }, + { + "start": 9299.78, + "end": 9301.1, + "probability": 0.9856 + }, + { + "start": 9301.68, + "end": 9303.78, + "probability": 0.9974 + }, + { + "start": 9304.58, + "end": 9306.28, + "probability": 0.7852 + }, + { + "start": 9306.36, + "end": 9307.24, + "probability": 0.9255 + }, + { + "start": 9307.36, + "end": 9309.06, + "probability": 0.987 + }, + { + "start": 9310.38, + "end": 9314.72, + "probability": 0.9958 + }, + { + "start": 9315.22, + "end": 9318.42, + "probability": 0.9967 + }, + { + "start": 9318.7, + "end": 9319.96, + "probability": 0.9097 + }, + { + "start": 9320.64, + "end": 9322.5, + "probability": 0.9258 + }, + { + "start": 9323.18, + "end": 9325.48, + "probability": 0.9925 + }, + { + "start": 9325.52, + "end": 9327.62, + "probability": 0.9979 + }, + { + "start": 9327.88, + "end": 9332.42, + "probability": 0.996 + }, + { + "start": 9332.42, + "end": 9336.74, + "probability": 0.9988 + }, + { + "start": 9336.86, + "end": 9337.84, + "probability": 0.8354 + }, + { + "start": 9338.0, + "end": 9339.98, + "probability": 0.9969 + }, + { + "start": 9340.88, + "end": 9343.56, + "probability": 0.9219 + }, + { + "start": 9344.28, + "end": 9346.0, + "probability": 0.9973 + }, + { + "start": 9347.4, + "end": 9349.0, + "probability": 0.5749 + }, + { + "start": 9349.12, + "end": 9349.54, + "probability": 0.7775 + }, + { + "start": 9349.78, + "end": 9353.64, + "probability": 0.9722 + }, + { + "start": 9353.96, + "end": 9359.12, + "probability": 0.991 + }, + { + "start": 9359.12, + "end": 9365.66, + "probability": 0.994 + }, + { + "start": 9367.52, + "end": 9371.94, + "probability": 0.9915 + }, + { + "start": 9372.24, + "end": 9372.95, + "probability": 0.7017 + }, + { + "start": 9374.52, + "end": 9377.74, + "probability": 0.7485 + }, + { + "start": 9378.3, + "end": 9380.1, + "probability": 0.9955 + }, + { + "start": 9382.3, + "end": 9385.04, + "probability": 0.9343 + }, + { + "start": 9386.6, + "end": 9390.38, + "probability": 0.9625 + }, + { + "start": 9394.82, + "end": 9395.48, + "probability": 0.3681 + }, + { + "start": 9396.56, + "end": 9399.54, + "probability": 0.9863 + }, + { + "start": 9399.6, + "end": 9401.14, + "probability": 0.8023 + }, + { + "start": 9401.24, + "end": 9402.3, + "probability": 0.1622 + }, + { + "start": 9406.86, + "end": 9409.98, + "probability": 0.9415 + }, + { + "start": 9410.06, + "end": 9415.26, + "probability": 0.8931 + }, + { + "start": 9415.8, + "end": 9417.62, + "probability": 0.6508 + }, + { + "start": 9418.18, + "end": 9424.58, + "probability": 0.9969 + }, + { + "start": 9424.94, + "end": 9428.24, + "probability": 0.9443 + }, + { + "start": 9428.96, + "end": 9436.0, + "probability": 0.99 + }, + { + "start": 9436.16, + "end": 9436.64, + "probability": 0.8329 + }, + { + "start": 9436.8, + "end": 9441.72, + "probability": 0.9902 + }, + { + "start": 9442.26, + "end": 9444.96, + "probability": 0.9965 + }, + { + "start": 9444.96, + "end": 9448.64, + "probability": 0.9965 + }, + { + "start": 9448.84, + "end": 9451.84, + "probability": 0.9641 + }, + { + "start": 9452.18, + "end": 9452.34, + "probability": 0.6959 + }, + { + "start": 9454.02, + "end": 9457.46, + "probability": 0.8113 + }, + { + "start": 9458.12, + "end": 9458.74, + "probability": 0.6016 + }, + { + "start": 9462.02, + "end": 9463.08, + "probability": 0.7167 + }, + { + "start": 9466.48, + "end": 9466.98, + "probability": 0.8524 + }, + { + "start": 9467.08, + "end": 9468.58, + "probability": 0.9312 + }, + { + "start": 9468.8, + "end": 9472.0, + "probability": 0.9856 + }, + { + "start": 9472.2, + "end": 9475.48, + "probability": 0.9895 + }, + { + "start": 9475.62, + "end": 9476.14, + "probability": 0.5765 + }, + { + "start": 9476.22, + "end": 9479.54, + "probability": 0.9963 + }, + { + "start": 9479.54, + "end": 9482.18, + "probability": 0.9932 + }, + { + "start": 9483.26, + "end": 9486.7, + "probability": 0.9756 + }, + { + "start": 9487.18, + "end": 9491.24, + "probability": 0.9951 + }, + { + "start": 9492.63, + "end": 9495.04, + "probability": 0.5486 + }, + { + "start": 9495.22, + "end": 9497.58, + "probability": 0.9894 + }, + { + "start": 9497.8, + "end": 9498.54, + "probability": 0.6123 + }, + { + "start": 9498.7, + "end": 9505.12, + "probability": 0.9882 + }, + { + "start": 9505.33, + "end": 9509.08, + "probability": 0.9952 + }, + { + "start": 9509.98, + "end": 9510.62, + "probability": 0.6684 + }, + { + "start": 9510.96, + "end": 9511.5, + "probability": 0.4435 + }, + { + "start": 9511.96, + "end": 9516.04, + "probability": 0.9878 + }, + { + "start": 9516.54, + "end": 9521.62, + "probability": 0.9926 + }, + { + "start": 9521.62, + "end": 9526.28, + "probability": 0.989 + }, + { + "start": 9526.54, + "end": 9529.08, + "probability": 0.9967 + }, + { + "start": 9529.5, + "end": 9533.98, + "probability": 0.9927 + }, + { + "start": 9534.16, + "end": 9536.7, + "probability": 0.9624 + }, + { + "start": 9536.78, + "end": 9537.58, + "probability": 0.8881 + }, + { + "start": 9537.98, + "end": 9539.12, + "probability": 0.9761 + }, + { + "start": 9539.44, + "end": 9541.56, + "probability": 0.8779 + }, + { + "start": 9542.32, + "end": 9542.86, + "probability": 0.9027 + }, + { + "start": 9543.44, + "end": 9544.44, + "probability": 0.9552 + }, + { + "start": 9545.32, + "end": 9550.12, + "probability": 0.9992 + }, + { + "start": 9550.84, + "end": 9556.34, + "probability": 0.9967 + }, + { + "start": 9557.58, + "end": 9563.08, + "probability": 0.9957 + }, + { + "start": 9563.08, + "end": 9567.38, + "probability": 0.9922 + }, + { + "start": 9567.92, + "end": 9572.06, + "probability": 0.9941 + }, + { + "start": 9572.54, + "end": 9573.89, + "probability": 0.8779 + }, + { + "start": 9574.54, + "end": 9575.0, + "probability": 0.9172 + }, + { + "start": 9575.3, + "end": 9577.1, + "probability": 0.981 + }, + { + "start": 9577.74, + "end": 9582.36, + "probability": 0.9966 + }, + { + "start": 9582.82, + "end": 9584.2, + "probability": 0.8844 + }, + { + "start": 9584.54, + "end": 9586.14, + "probability": 0.9566 + }, + { + "start": 9586.48, + "end": 9587.6, + "probability": 0.9326 + }, + { + "start": 9587.98, + "end": 9590.6, + "probability": 0.9843 + }, + { + "start": 9590.8, + "end": 9591.38, + "probability": 0.952 + }, + { + "start": 9591.6, + "end": 9592.04, + "probability": 0.6404 + }, + { + "start": 9592.08, + "end": 9592.66, + "probability": 0.9891 + }, + { + "start": 9592.9, + "end": 9594.96, + "probability": 0.9531 + }, + { + "start": 9595.48, + "end": 9597.0, + "probability": 0.9121 + }, + { + "start": 9597.6, + "end": 9604.4, + "probability": 0.9916 + }, + { + "start": 9604.9, + "end": 9605.3, + "probability": 0.3922 + }, + { + "start": 9605.34, + "end": 9605.68, + "probability": 0.8518 + }, + { + "start": 9605.82, + "end": 9609.22, + "probability": 0.9741 + }, + { + "start": 9609.22, + "end": 9612.66, + "probability": 0.9983 + }, + { + "start": 9612.92, + "end": 9614.64, + "probability": 0.8937 + }, + { + "start": 9614.84, + "end": 9619.64, + "probability": 0.9781 + }, + { + "start": 9619.96, + "end": 9622.82, + "probability": 0.9793 + }, + { + "start": 9623.14, + "end": 9625.34, + "probability": 0.9896 + }, + { + "start": 9625.5, + "end": 9626.12, + "probability": 0.8152 + }, + { + "start": 9626.8, + "end": 9628.88, + "probability": 0.8315 + }, + { + "start": 9628.96, + "end": 9630.64, + "probability": 0.5736 + }, + { + "start": 9630.72, + "end": 9634.2, + "probability": 0.8708 + }, + { + "start": 9634.32, + "end": 9635.98, + "probability": 0.7379 + }, + { + "start": 9636.02, + "end": 9637.47, + "probability": 0.9048 + }, + { + "start": 9638.02, + "end": 9638.98, + "probability": 0.6069 + }, + { + "start": 9638.98, + "end": 9639.54, + "probability": 0.1847 + }, + { + "start": 9639.9, + "end": 9640.68, + "probability": 0.6927 + }, + { + "start": 9651.56, + "end": 9653.68, + "probability": 0.1693 + }, + { + "start": 9655.6, + "end": 9657.0, + "probability": 0.0614 + }, + { + "start": 9657.8, + "end": 9657.9, + "probability": 0.0522 + }, + { + "start": 9657.9, + "end": 9660.52, + "probability": 0.7973 + }, + { + "start": 9660.62, + "end": 9660.84, + "probability": 0.4118 + }, + { + "start": 9660.9, + "end": 9665.58, + "probability": 0.2772 + }, + { + "start": 9665.66, + "end": 9665.78, + "probability": 0.1812 + }, + { + "start": 9665.78, + "end": 9666.3, + "probability": 0.294 + }, + { + "start": 9666.38, + "end": 9667.23, + "probability": 0.7437 + }, + { + "start": 9667.5, + "end": 9669.13, + "probability": 0.6724 + }, + { + "start": 9670.02, + "end": 9672.02, + "probability": 0.8827 + }, + { + "start": 9672.44, + "end": 9673.54, + "probability": 0.798 + }, + { + "start": 9673.7, + "end": 9675.0, + "probability": 0.0858 + }, + { + "start": 9675.62, + "end": 9679.04, + "probability": 0.8143 + }, + { + "start": 9681.34, + "end": 9682.74, + "probability": 0.8669 + }, + { + "start": 9688.7, + "end": 9690.72, + "probability": 0.8542 + }, + { + "start": 9695.58, + "end": 9697.26, + "probability": 0.4914 + }, + { + "start": 9700.42, + "end": 9705.11, + "probability": 0.9982 + }, + { + "start": 9705.8, + "end": 9708.42, + "probability": 0.9689 + }, + { + "start": 9708.42, + "end": 9710.9, + "probability": 0.9953 + }, + { + "start": 9713.3, + "end": 9717.18, + "probability": 0.9793 + }, + { + "start": 9717.7, + "end": 9719.98, + "probability": 0.9866 + }, + { + "start": 9721.08, + "end": 9724.7, + "probability": 0.9183 + }, + { + "start": 9725.14, + "end": 9727.16, + "probability": 0.9805 + }, + { + "start": 9727.72, + "end": 9732.72, + "probability": 0.9727 + }, + { + "start": 9733.46, + "end": 9734.48, + "probability": 0.7324 + }, + { + "start": 9734.54, + "end": 9735.92, + "probability": 0.9761 + }, + { + "start": 9736.48, + "end": 9738.96, + "probability": 0.8744 + }, + { + "start": 9738.96, + "end": 9743.5, + "probability": 0.8472 + }, + { + "start": 9747.76, + "end": 9750.92, + "probability": 0.8478 + }, + { + "start": 9751.02, + "end": 9752.3, + "probability": 0.8879 + }, + { + "start": 9752.4, + "end": 9755.52, + "probability": 0.9861 + }, + { + "start": 9755.52, + "end": 9758.34, + "probability": 0.9867 + }, + { + "start": 9759.2, + "end": 9762.82, + "probability": 0.9861 + }, + { + "start": 9762.82, + "end": 9765.84, + "probability": 0.9822 + }, + { + "start": 9766.54, + "end": 9769.42, + "probability": 0.9943 + }, + { + "start": 9769.88, + "end": 9771.82, + "probability": 0.9833 + }, + { + "start": 9772.94, + "end": 9776.84, + "probability": 0.8209 + }, + { + "start": 9777.68, + "end": 9780.56, + "probability": 0.9946 + }, + { + "start": 9781.04, + "end": 9784.24, + "probability": 0.9746 + }, + { + "start": 9784.98, + "end": 9787.7, + "probability": 0.909 + }, + { + "start": 9788.72, + "end": 9790.28, + "probability": 0.9393 + }, + { + "start": 9790.44, + "end": 9792.54, + "probability": 0.9828 + }, + { + "start": 9793.08, + "end": 9795.88, + "probability": 0.9906 + }, + { + "start": 9797.64, + "end": 9798.26, + "probability": 0.4761 + }, + { + "start": 9798.32, + "end": 9799.94, + "probability": 0.7907 + }, + { + "start": 9800.4, + "end": 9803.34, + "probability": 0.9647 + }, + { + "start": 9804.16, + "end": 9808.92, + "probability": 0.9854 + }, + { + "start": 9809.08, + "end": 9809.5, + "probability": 0.8609 + }, + { + "start": 9809.66, + "end": 9810.96, + "probability": 0.8556 + }, + { + "start": 9811.58, + "end": 9814.48, + "probability": 0.9395 + }, + { + "start": 9815.04, + "end": 9817.96, + "probability": 0.9827 + }, + { + "start": 9817.96, + "end": 9821.02, + "probability": 0.9032 + }, + { + "start": 9821.52, + "end": 9826.1, + "probability": 0.9856 + }, + { + "start": 9826.96, + "end": 9829.62, + "probability": 0.8448 + }, + { + "start": 9829.62, + "end": 9833.64, + "probability": 0.9972 + }, + { + "start": 9834.18, + "end": 9840.24, + "probability": 0.9639 + }, + { + "start": 9840.78, + "end": 9845.06, + "probability": 0.9635 + }, + { + "start": 9845.54, + "end": 9849.0, + "probability": 0.9829 + }, + { + "start": 9851.04, + "end": 9851.46, + "probability": 0.7374 + }, + { + "start": 9851.54, + "end": 9856.76, + "probability": 0.9693 + }, + { + "start": 9857.3, + "end": 9860.68, + "probability": 0.9899 + }, + { + "start": 9861.18, + "end": 9864.02, + "probability": 0.8915 + }, + { + "start": 9864.02, + "end": 9867.2, + "probability": 0.9926 + }, + { + "start": 9868.02, + "end": 9872.0, + "probability": 0.9738 + }, + { + "start": 9872.0, + "end": 9875.52, + "probability": 0.7272 + }, + { + "start": 9876.16, + "end": 9879.34, + "probability": 0.9983 + }, + { + "start": 9879.34, + "end": 9882.7, + "probability": 0.9942 + }, + { + "start": 9883.12, + "end": 9885.54, + "probability": 0.9564 + }, + { + "start": 9886.26, + "end": 9890.5, + "probability": 0.9939 + }, + { + "start": 9891.5, + "end": 9892.78, + "probability": 0.7931 + }, + { + "start": 9893.24, + "end": 9896.38, + "probability": 0.8632 + }, + { + "start": 9896.82, + "end": 9900.48, + "probability": 0.9946 + }, + { + "start": 9901.92, + "end": 9905.22, + "probability": 0.9974 + }, + { + "start": 9905.3, + "end": 9908.22, + "probability": 0.963 + }, + { + "start": 9908.82, + "end": 9912.78, + "probability": 0.9977 + }, + { + "start": 9914.08, + "end": 9916.76, + "probability": 0.9666 + }, + { + "start": 9916.76, + "end": 9920.76, + "probability": 0.9965 + }, + { + "start": 9921.6, + "end": 9926.62, + "probability": 0.9977 + }, + { + "start": 9927.18, + "end": 9928.08, + "probability": 0.7403 + }, + { + "start": 9928.86, + "end": 9931.0, + "probability": 0.9581 + }, + { + "start": 9931.88, + "end": 9932.9, + "probability": 0.9105 + }, + { + "start": 9933.56, + "end": 9934.24, + "probability": 0.7504 + }, + { + "start": 9934.38, + "end": 9935.16, + "probability": 0.7904 + }, + { + "start": 9935.36, + "end": 9939.22, + "probability": 0.9868 + }, + { + "start": 9941.94, + "end": 9946.82, + "probability": 0.9945 + }, + { + "start": 9947.06, + "end": 9948.26, + "probability": 0.9547 + }, + { + "start": 9949.12, + "end": 9950.98, + "probability": 0.9827 + }, + { + "start": 9951.72, + "end": 9954.4, + "probability": 0.9916 + }, + { + "start": 9955.22, + "end": 9958.62, + "probability": 0.9402 + }, + { + "start": 9958.62, + "end": 9961.76, + "probability": 0.9175 + }, + { + "start": 9963.38, + "end": 9967.58, + "probability": 0.9937 + }, + { + "start": 9968.12, + "end": 9970.46, + "probability": 0.7155 + }, + { + "start": 9970.94, + "end": 9973.98, + "probability": 0.9831 + }, + { + "start": 9974.62, + "end": 9977.38, + "probability": 0.9411 + }, + { + "start": 9977.9, + "end": 9980.83, + "probability": 0.9543 + }, + { + "start": 9982.04, + "end": 9982.67, + "probability": 0.3763 + }, + { + "start": 9983.66, + "end": 9985.12, + "probability": 0.824 + }, + { + "start": 9985.82, + "end": 9990.0, + "probability": 0.9927 + }, + { + "start": 9990.88, + "end": 9993.18, + "probability": 0.9681 + }, + { + "start": 9993.6, + "end": 9995.72, + "probability": 0.9964 + }, + { + "start": 9996.22, + "end": 9997.56, + "probability": 0.925 + }, + { + "start": 9998.08, + "end": 10001.02, + "probability": 0.9984 + }, + { + "start": 10001.02, + "end": 10004.26, + "probability": 0.9873 + }, + { + "start": 10004.84, + "end": 10007.04, + "probability": 0.8071 + }, + { + "start": 10007.82, + "end": 10010.4, + "probability": 0.8321 + }, + { + "start": 10010.92, + "end": 10013.14, + "probability": 0.6807 + }, + { + "start": 10013.74, + "end": 10018.7, + "probability": 0.8887 + }, + { + "start": 10019.18, + "end": 10022.02, + "probability": 0.9563 + }, + { + "start": 10022.68, + "end": 10022.9, + "probability": 0.7356 + }, + { + "start": 10022.98, + "end": 10026.06, + "probability": 0.9894 + }, + { + "start": 10026.74, + "end": 10030.66, + "probability": 0.9935 + }, + { + "start": 10030.66, + "end": 10033.7, + "probability": 0.9934 + }, + { + "start": 10034.36, + "end": 10037.52, + "probability": 0.9189 + }, + { + "start": 10038.04, + "end": 10041.3, + "probability": 0.9992 + }, + { + "start": 10041.9, + "end": 10044.22, + "probability": 0.9371 + }, + { + "start": 10045.76, + "end": 10047.24, + "probability": 0.8046 + }, + { + "start": 10047.78, + "end": 10049.18, + "probability": 0.9886 + }, + { + "start": 10049.74, + "end": 10051.6, + "probability": 0.82 + }, + { + "start": 10052.04, + "end": 10053.66, + "probability": 0.9376 + }, + { + "start": 10053.66, + "end": 10054.38, + "probability": 0.8085 + }, + { + "start": 10054.92, + "end": 10056.88, + "probability": 0.835 + }, + { + "start": 10057.48, + "end": 10059.18, + "probability": 0.8916 + }, + { + "start": 10059.68, + "end": 10064.54, + "probability": 0.998 + }, + { + "start": 10064.54, + "end": 10068.6, + "probability": 0.9971 + }, + { + "start": 10068.7, + "end": 10069.0, + "probability": 0.7616 + }, + { + "start": 10070.12, + "end": 10071.42, + "probability": 0.6404 + }, + { + "start": 10071.52, + "end": 10071.95, + "probability": 0.4135 + }, + { + "start": 10072.06, + "end": 10072.94, + "probability": 0.9541 + }, + { + "start": 10073.38, + "end": 10074.78, + "probability": 0.9211 + }, + { + "start": 10075.68, + "end": 10076.72, + "probability": 0.7674 + }, + { + "start": 10078.2, + "end": 10081.06, + "probability": 0.8998 + }, + { + "start": 10081.76, + "end": 10082.46, + "probability": 0.2669 + }, + { + "start": 10087.6, + "end": 10088.5, + "probability": 0.7358 + }, + { + "start": 10089.72, + "end": 10093.48, + "probability": 0.8299 + }, + { + "start": 10095.22, + "end": 10099.94, + "probability": 0.9581 + }, + { + "start": 10099.94, + "end": 10106.98, + "probability": 0.9492 + }, + { + "start": 10107.72, + "end": 10109.16, + "probability": 0.956 + }, + { + "start": 10110.06, + "end": 10111.86, + "probability": 0.9831 + }, + { + "start": 10111.86, + "end": 10114.2, + "probability": 0.7311 + }, + { + "start": 10114.84, + "end": 10120.54, + "probability": 0.9275 + }, + { + "start": 10121.62, + "end": 10126.36, + "probability": 0.9987 + }, + { + "start": 10127.24, + "end": 10131.3, + "probability": 0.9854 + }, + { + "start": 10131.92, + "end": 10134.72, + "probability": 0.968 + }, + { + "start": 10135.32, + "end": 10139.12, + "probability": 0.7344 + }, + { + "start": 10139.68, + "end": 10142.2, + "probability": 0.8923 + }, + { + "start": 10142.84, + "end": 10149.68, + "probability": 0.9621 + }, + { + "start": 10150.38, + "end": 10150.38, + "probability": 0.2728 + }, + { + "start": 10150.56, + "end": 10151.5, + "probability": 0.5231 + }, + { + "start": 10151.54, + "end": 10151.96, + "probability": 0.953 + }, + { + "start": 10152.14, + "end": 10155.18, + "probability": 0.9872 + }, + { + "start": 10155.18, + "end": 10160.74, + "probability": 0.959 + }, + { + "start": 10160.8, + "end": 10162.2, + "probability": 0.9374 + }, + { + "start": 10165.68, + "end": 10166.88, + "probability": 0.5427 + }, + { + "start": 10166.92, + "end": 10167.12, + "probability": 0.4404 + }, + { + "start": 10167.16, + "end": 10169.78, + "probability": 0.9273 + }, + { + "start": 10179.02, + "end": 10179.48, + "probability": 0.492 + }, + { + "start": 10179.48, + "end": 10181.7, + "probability": 0.2275 + }, + { + "start": 10182.54, + "end": 10183.02, + "probability": 0.1402 + }, + { + "start": 10183.04, + "end": 10183.1, + "probability": 0.0614 + }, + { + "start": 10183.1, + "end": 10185.52, + "probability": 0.3303 + }, + { + "start": 10189.2, + "end": 10197.14, + "probability": 0.0962 + }, + { + "start": 10198.98, + "end": 10200.86, + "probability": 0.039 + }, + { + "start": 10200.86, + "end": 10200.86, + "probability": 0.1595 + }, + { + "start": 10200.86, + "end": 10203.14, + "probability": 0.097 + }, + { + "start": 10203.88, + "end": 10207.38, + "probability": 0.214 + }, + { + "start": 10210.2, + "end": 10214.4, + "probability": 0.0852 + }, + { + "start": 10216.84, + "end": 10217.0, + "probability": 0.0931 + }, + { + "start": 10221.32, + "end": 10223.84, + "probability": 0.2043 + }, + { + "start": 10223.95, + "end": 10224.3, + "probability": 0.0421 + }, + { + "start": 10226.24, + "end": 10229.04, + "probability": 0.0322 + }, + { + "start": 10229.66, + "end": 10230.74, + "probability": 0.0378 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10293.0, + "end": 10293.0, + "probability": 0.0 + }, + { + "start": 10294.36, + "end": 10294.4, + "probability": 0.5539 + }, + { + "start": 10294.4, + "end": 10297.19, + "probability": 0.9971 + }, + { + "start": 10297.3, + "end": 10298.87, + "probability": 0.9983 + }, + { + "start": 10299.06, + "end": 10300.88, + "probability": 0.9353 + }, + { + "start": 10302.94, + "end": 10309.22, + "probability": 0.986 + }, + { + "start": 10309.4, + "end": 10309.84, + "probability": 0.8977 + }, + { + "start": 10311.36, + "end": 10315.78, + "probability": 0.9954 + }, + { + "start": 10315.78, + "end": 10319.68, + "probability": 0.9951 + }, + { + "start": 10319.96, + "end": 10320.5, + "probability": 0.5927 + }, + { + "start": 10323.34, + "end": 10326.1, + "probability": 0.9171 + }, + { + "start": 10327.58, + "end": 10329.76, + "probability": 0.7655 + }, + { + "start": 10330.28, + "end": 10331.5, + "probability": 0.7235 + }, + { + "start": 10332.06, + "end": 10333.76, + "probability": 0.9537 + }, + { + "start": 10334.44, + "end": 10337.52, + "probability": 0.9902 + }, + { + "start": 10338.18, + "end": 10340.04, + "probability": 0.8152 + }, + { + "start": 10341.82, + "end": 10347.32, + "probability": 0.7226 + }, + { + "start": 10348.08, + "end": 10351.54, + "probability": 0.9954 + }, + { + "start": 10352.14, + "end": 10354.82, + "probability": 0.9653 + }, + { + "start": 10357.04, + "end": 10360.92, + "probability": 0.4894 + }, + { + "start": 10361.08, + "end": 10362.74, + "probability": 0.7453 + }, + { + "start": 10363.5, + "end": 10366.24, + "probability": 0.5003 + }, + { + "start": 10367.1, + "end": 10372.24, + "probability": 0.9656 + }, + { + "start": 10372.32, + "end": 10373.34, + "probability": 0.687 + }, + { + "start": 10377.36, + "end": 10378.16, + "probability": 0.0085 + }, + { + "start": 10380.24, + "end": 10380.98, + "probability": 0.4915 + }, + { + "start": 10380.98, + "end": 10380.98, + "probability": 0.0311 + }, + { + "start": 10380.98, + "end": 10381.38, + "probability": 0.0911 + }, + { + "start": 10381.38, + "end": 10381.38, + "probability": 0.0998 + }, + { + "start": 10381.38, + "end": 10385.02, + "probability": 0.7006 + }, + { + "start": 10385.06, + "end": 10385.76, + "probability": 0.9583 + }, + { + "start": 10386.52, + "end": 10387.12, + "probability": 0.7326 + }, + { + "start": 10387.44, + "end": 10388.66, + "probability": 0.6385 + }, + { + "start": 10389.9, + "end": 10391.88, + "probability": 0.0416 + }, + { + "start": 10392.18, + "end": 10392.72, + "probability": 0.0856 + }, + { + "start": 10392.72, + "end": 10392.98, + "probability": 0.0639 + }, + { + "start": 10393.08, + "end": 10394.4, + "probability": 0.6762 + }, + { + "start": 10394.6, + "end": 10395.8, + "probability": 0.7371 + }, + { + "start": 10396.1, + "end": 10400.8, + "probability": 0.7841 + }, + { + "start": 10401.28, + "end": 10401.96, + "probability": 0.7491 + }, + { + "start": 10402.08, + "end": 10407.08, + "probability": 0.9273 + }, + { + "start": 10408.4, + "end": 10408.76, + "probability": 0.6982 + }, + { + "start": 10408.84, + "end": 10415.52, + "probability": 0.9409 + }, + { + "start": 10415.62, + "end": 10416.74, + "probability": 0.9835 + }, + { + "start": 10417.18, + "end": 10418.92, + "probability": 0.998 + }, + { + "start": 10418.92, + "end": 10423.1, + "probability": 0.9637 + }, + { + "start": 10423.34, + "end": 10424.96, + "probability": 0.8646 + }, + { + "start": 10425.12, + "end": 10427.76, + "probability": 0.301 + }, + { + "start": 10427.78, + "end": 10427.86, + "probability": 0.4557 + }, + { + "start": 10427.86, + "end": 10432.76, + "probability": 0.9372 + }, + { + "start": 10432.86, + "end": 10433.26, + "probability": 0.8648 + }, + { + "start": 10433.36, + "end": 10433.76, + "probability": 0.685 + }, + { + "start": 10433.9, + "end": 10434.96, + "probability": 0.9779 + }, + { + "start": 10435.1, + "end": 10435.42, + "probability": 0.68 + }, + { + "start": 10435.94, + "end": 10437.02, + "probability": 0.9902 + }, + { + "start": 10437.04, + "end": 10440.98, + "probability": 0.886 + }, + { + "start": 10441.0, + "end": 10444.56, + "probability": 0.249 + }, + { + "start": 10445.14, + "end": 10445.24, + "probability": 0.7674 + }, + { + "start": 10445.24, + "end": 10448.9, + "probability": 0.3518 + }, + { + "start": 10449.18, + "end": 10449.94, + "probability": 0.4049 + }, + { + "start": 10450.02, + "end": 10451.56, + "probability": 0.9359 + }, + { + "start": 10451.68, + "end": 10452.75, + "probability": 0.9208 + }, + { + "start": 10452.84, + "end": 10453.19, + "probability": 0.9739 + }, + { + "start": 10454.1, + "end": 10458.4, + "probability": 0.9741 + }, + { + "start": 10459.44, + "end": 10460.16, + "probability": 0.704 + }, + { + "start": 10460.26, + "end": 10462.5, + "probability": 0.9666 + }, + { + "start": 10464.84, + "end": 10467.12, + "probability": 0.5129 + }, + { + "start": 10467.98, + "end": 10468.3, + "probability": 0.3916 + }, + { + "start": 10468.3, + "end": 10472.96, + "probability": 0.9398 + }, + { + "start": 10473.26, + "end": 10474.52, + "probability": 0.9543 + }, + { + "start": 10474.7, + "end": 10475.4, + "probability": 0.9177 + }, + { + "start": 10475.5, + "end": 10476.9, + "probability": 0.8616 + }, + { + "start": 10477.02, + "end": 10477.66, + "probability": 0.8104 + }, + { + "start": 10477.8, + "end": 10478.5, + "probability": 0.5985 + }, + { + "start": 10478.58, + "end": 10486.1, + "probability": 0.7339 + }, + { + "start": 10486.24, + "end": 10492.18, + "probability": 0.9433 + }, + { + "start": 10492.8, + "end": 10500.8, + "probability": 0.8833 + }, + { + "start": 10501.7, + "end": 10503.48, + "probability": 0.9648 + }, + { + "start": 10503.96, + "end": 10511.08, + "probability": 0.9114 + }, + { + "start": 10511.24, + "end": 10512.82, + "probability": 0.8992 + }, + { + "start": 10513.08, + "end": 10517.98, + "probability": 0.9722 + }, + { + "start": 10518.44, + "end": 10521.08, + "probability": 0.8452 + }, + { + "start": 10521.3, + "end": 10525.52, + "probability": 0.9907 + }, + { + "start": 10525.58, + "end": 10528.18, + "probability": 0.3589 + }, + { + "start": 10529.7, + "end": 10532.48, + "probability": 0.734 + }, + { + "start": 10532.56, + "end": 10534.54, + "probability": 0.9086 + }, + { + "start": 10534.84, + "end": 10535.96, + "probability": 0.336 + }, + { + "start": 10536.04, + "end": 10537.64, + "probability": 0.9868 + }, + { + "start": 10537.96, + "end": 10539.4, + "probability": 0.062 + }, + { + "start": 10539.52, + "end": 10541.1, + "probability": 0.2062 + }, + { + "start": 10541.28, + "end": 10543.1, + "probability": 0.0236 + }, + { + "start": 10543.4, + "end": 10545.38, + "probability": 0.1507 + }, + { + "start": 10545.96, + "end": 10548.5, + "probability": 0.2566 + }, + { + "start": 10549.1, + "end": 10550.64, + "probability": 0.0178 + }, + { + "start": 10551.1, + "end": 10557.84, + "probability": 0.0516 + }, + { + "start": 10558.04, + "end": 10558.6, + "probability": 0.3985 + }, + { + "start": 10558.74, + "end": 10564.42, + "probability": 0.8801 + }, + { + "start": 10564.9, + "end": 10565.46, + "probability": 0.5096 + }, + { + "start": 10565.86, + "end": 10570.58, + "probability": 0.6723 + }, + { + "start": 10572.46, + "end": 10573.34, + "probability": 0.4967 + }, + { + "start": 10575.9, + "end": 10582.12, + "probability": 0.9543 + }, + { + "start": 10582.86, + "end": 10589.92, + "probability": 0.9974 + }, + { + "start": 10589.92, + "end": 10593.9, + "probability": 0.9805 + }, + { + "start": 10594.8, + "end": 10595.96, + "probability": 0.4526 + }, + { + "start": 10596.78, + "end": 10602.2, + "probability": 0.7171 + }, + { + "start": 10602.2, + "end": 10610.88, + "probability": 0.9944 + }, + { + "start": 10611.74, + "end": 10613.72, + "probability": 0.3956 + }, + { + "start": 10616.88, + "end": 10619.68, + "probability": 0.9938 + }, + { + "start": 10622.9, + "end": 10626.78, + "probability": 0.7085 + }, + { + "start": 10627.8, + "end": 10630.26, + "probability": 0.8809 + }, + { + "start": 10630.76, + "end": 10633.28, + "probability": 0.9885 + }, + { + "start": 10633.42, + "end": 10634.78, + "probability": 0.8811 + }, + { + "start": 10635.46, + "end": 10636.48, + "probability": 0.9672 + }, + { + "start": 10637.84, + "end": 10641.32, + "probability": 0.9175 + }, + { + "start": 10642.96, + "end": 10648.62, + "probability": 0.6438 + }, + { + "start": 10649.88, + "end": 10652.74, + "probability": 0.854 + }, + { + "start": 10654.72, + "end": 10655.96, + "probability": 0.4482 + }, + { + "start": 10656.42, + "end": 10659.8, + "probability": 0.9917 + }, + { + "start": 10659.8, + "end": 10664.84, + "probability": 0.9819 + }, + { + "start": 10664.96, + "end": 10666.42, + "probability": 0.6315 + }, + { + "start": 10667.3, + "end": 10668.94, + "probability": 0.3514 + }, + { + "start": 10670.74, + "end": 10678.22, + "probability": 0.9239 + }, + { + "start": 10678.44, + "end": 10679.53, + "probability": 0.9148 + }, + { + "start": 10680.56, + "end": 10684.38, + "probability": 0.9563 + }, + { + "start": 10684.42, + "end": 10684.72, + "probability": 0.8648 + }, + { + "start": 10684.72, + "end": 10690.24, + "probability": 0.9811 + }, + { + "start": 10690.32, + "end": 10692.5, + "probability": 0.9932 + }, + { + "start": 10693.34, + "end": 10697.74, + "probability": 0.8416 + }, + { + "start": 10698.2, + "end": 10702.32, + "probability": 0.9956 + }, + { + "start": 10704.56, + "end": 10710.14, + "probability": 0.9712 + }, + { + "start": 10712.14, + "end": 10714.56, + "probability": 0.862 + }, + { + "start": 10715.76, + "end": 10718.8, + "probability": 0.994 + }, + { + "start": 10719.88, + "end": 10725.9, + "probability": 0.9917 + }, + { + "start": 10727.02, + "end": 10731.84, + "probability": 0.9938 + }, + { + "start": 10733.76, + "end": 10739.75, + "probability": 0.7906 + }, + { + "start": 10741.82, + "end": 10744.64, + "probability": 0.9886 + }, + { + "start": 10745.2, + "end": 10746.52, + "probability": 0.5377 + }, + { + "start": 10747.36, + "end": 10752.56, + "probability": 0.9194 + }, + { + "start": 10752.68, + "end": 10754.86, + "probability": 0.8984 + }, + { + "start": 10755.88, + "end": 10757.38, + "probability": 0.8217 + }, + { + "start": 10758.82, + "end": 10763.16, + "probability": 0.9294 + }, + { + "start": 10763.26, + "end": 10768.16, + "probability": 0.8777 + }, + { + "start": 10769.18, + "end": 10771.96, + "probability": 0.656 + }, + { + "start": 10774.44, + "end": 10776.92, + "probability": 0.9805 + }, + { + "start": 10777.94, + "end": 10778.54, + "probability": 0.958 + }, + { + "start": 10780.14, + "end": 10786.84, + "probability": 0.9868 + }, + { + "start": 10788.48, + "end": 10794.9, + "probability": 0.9841 + }, + { + "start": 10796.52, + "end": 10796.9, + "probability": 0.4844 + }, + { + "start": 10796.98, + "end": 10802.66, + "probability": 0.9965 + }, + { + "start": 10802.8, + "end": 10803.98, + "probability": 0.6876 + }, + { + "start": 10804.62, + "end": 10811.08, + "probability": 0.9717 + }, + { + "start": 10813.61, + "end": 10816.37, + "probability": 0.9157 + }, + { + "start": 10816.6, + "end": 10818.88, + "probability": 0.2184 + }, + { + "start": 10819.0, + "end": 10820.62, + "probability": 0.0451 + }, + { + "start": 10821.38, + "end": 10821.6, + "probability": 0.3638 + }, + { + "start": 10821.6, + "end": 10821.6, + "probability": 0.3292 + }, + { + "start": 10821.6, + "end": 10822.9, + "probability": 0.8234 + }, + { + "start": 10823.02, + "end": 10824.64, + "probability": 0.2241 + }, + { + "start": 10824.84, + "end": 10825.88, + "probability": 0.4406 + }, + { + "start": 10825.88, + "end": 10826.02, + "probability": 0.3704 + }, + { + "start": 10826.2, + "end": 10828.43, + "probability": 0.5454 + }, + { + "start": 10828.94, + "end": 10832.0, + "probability": 0.625 + }, + { + "start": 10832.0, + "end": 10834.74, + "probability": 0.8283 + }, + { + "start": 10834.84, + "end": 10837.26, + "probability": 0.9299 + }, + { + "start": 10837.26, + "end": 10837.5, + "probability": 0.3234 + }, + { + "start": 10837.64, + "end": 10839.02, + "probability": 0.3013 + }, + { + "start": 10839.58, + "end": 10839.76, + "probability": 0.2872 + }, + { + "start": 10839.76, + "end": 10839.76, + "probability": 0.104 + }, + { + "start": 10839.76, + "end": 10840.25, + "probability": 0.1169 + }, + { + "start": 10840.68, + "end": 10842.76, + "probability": 0.1995 + }, + { + "start": 10842.82, + "end": 10842.9, + "probability": 0.6366 + }, + { + "start": 10842.9, + "end": 10843.84, + "probability": 0.1597 + }, + { + "start": 10843.96, + "end": 10844.38, + "probability": 0.6352 + }, + { + "start": 10844.54, + "end": 10845.52, + "probability": 0.3376 + }, + { + "start": 10845.52, + "end": 10848.24, + "probability": 0.9977 + }, + { + "start": 10848.28, + "end": 10849.64, + "probability": 0.8395 + }, + { + "start": 10849.96, + "end": 10852.78, + "probability": 0.9981 + }, + { + "start": 10852.86, + "end": 10854.76, + "probability": 0.4646 + }, + { + "start": 10855.38, + "end": 10855.86, + "probability": 0.4511 + }, + { + "start": 10855.86, + "end": 10857.0, + "probability": 0.8433 + }, + { + "start": 10857.04, + "end": 10857.42, + "probability": 0.0713 + }, + { + "start": 10857.42, + "end": 10860.43, + "probability": 0.3101 + }, + { + "start": 10860.56, + "end": 10861.34, + "probability": 0.1992 + }, + { + "start": 10861.44, + "end": 10861.44, + "probability": 0.1002 + }, + { + "start": 10861.44, + "end": 10862.36, + "probability": 0.5123 + }, + { + "start": 10862.52, + "end": 10864.16, + "probability": 0.4953 + }, + { + "start": 10864.26, + "end": 10866.11, + "probability": 0.0021 + }, + { + "start": 10867.56, + "end": 10867.74, + "probability": 0.2633 + }, + { + "start": 10867.74, + "end": 10867.74, + "probability": 0.0941 + }, + { + "start": 10867.74, + "end": 10867.74, + "probability": 0.2354 + }, + { + "start": 10867.74, + "end": 10868.58, + "probability": 0.052 + }, + { + "start": 10868.88, + "end": 10871.28, + "probability": 0.9597 + }, + { + "start": 10872.22, + "end": 10876.52, + "probability": 0.9813 + }, + { + "start": 10876.52, + "end": 10882.46, + "probability": 0.9494 + }, + { + "start": 10882.48, + "end": 10882.94, + "probability": 0.7292 + }, + { + "start": 10883.22, + "end": 10885.02, + "probability": 0.9452 + }, + { + "start": 10885.12, + "end": 10887.04, + "probability": 0.793 + }, + { + "start": 10887.48, + "end": 10889.68, + "probability": 0.8705 + }, + { + "start": 10889.76, + "end": 10890.56, + "probability": 0.6669 + }, + { + "start": 10890.64, + "end": 10890.74, + "probability": 0.8849 + }, + { + "start": 10891.7, + "end": 10891.7, + "probability": 0.6838 + }, + { + "start": 10891.7, + "end": 10894.56, + "probability": 0.958 + }, + { + "start": 10896.36, + "end": 10897.98, + "probability": 0.2849 + }, + { + "start": 10898.12, + "end": 10898.64, + "probability": 0.6064 + }, + { + "start": 10900.34, + "end": 10902.78, + "probability": 0.8831 + }, + { + "start": 10904.01, + "end": 10905.85, + "probability": 0.7109 + }, + { + "start": 10906.5, + "end": 10908.08, + "probability": 0.6648 + }, + { + "start": 10908.94, + "end": 10910.04, + "probability": 0.8514 + }, + { + "start": 10910.26, + "end": 10912.4, + "probability": 0.8062 + }, + { + "start": 10913.96, + "end": 10921.48, + "probability": 0.9507 + }, + { + "start": 10922.74, + "end": 10926.18, + "probability": 0.987 + }, + { + "start": 10927.16, + "end": 10928.42, + "probability": 0.9395 + }, + { + "start": 10929.04, + "end": 10932.12, + "probability": 0.9619 + }, + { + "start": 10932.14, + "end": 10935.98, + "probability": 0.9815 + }, + { + "start": 10936.74, + "end": 10941.36, + "probability": 0.9867 + }, + { + "start": 10942.24, + "end": 10944.36, + "probability": 0.9989 + }, + { + "start": 10946.12, + "end": 10946.82, + "probability": 0.6996 + }, + { + "start": 10946.9, + "end": 10948.2, + "probability": 0.9417 + }, + { + "start": 10948.28, + "end": 10952.32, + "probability": 0.9706 + }, + { + "start": 10953.34, + "end": 10957.92, + "probability": 0.9551 + }, + { + "start": 10959.56, + "end": 10965.18, + "probability": 0.9509 + }, + { + "start": 10966.04, + "end": 10968.88, + "probability": 0.8535 + }, + { + "start": 10969.66, + "end": 10972.55, + "probability": 0.9773 + }, + { + "start": 10972.64, + "end": 10976.94, + "probability": 0.9038 + }, + { + "start": 10977.1, + "end": 10980.34, + "probability": 0.8142 + }, + { + "start": 10981.06, + "end": 10982.4, + "probability": 0.8242 + }, + { + "start": 10983.2, + "end": 10987.92, + "probability": 0.9325 + }, + { + "start": 10989.04, + "end": 10995.3, + "probability": 0.9886 + }, + { + "start": 10996.92, + "end": 11000.0, + "probability": 0.9905 + }, + { + "start": 11000.0, + "end": 11002.24, + "probability": 0.8813 + }, + { + "start": 11002.96, + "end": 11003.66, + "probability": 0.5685 + }, + { + "start": 11003.76, + "end": 11004.52, + "probability": 0.6036 + }, + { + "start": 11005.14, + "end": 11007.24, + "probability": 0.8218 + }, + { + "start": 11007.64, + "end": 11008.04, + "probability": 0.6553 + }, + { + "start": 11008.2, + "end": 11010.3, + "probability": 0.9901 + }, + { + "start": 11010.64, + "end": 11011.2, + "probability": 0.3616 + }, + { + "start": 11013.88, + "end": 11015.42, + "probability": 0.9634 + }, + { + "start": 11015.52, + "end": 11016.52, + "probability": 0.9723 + }, + { + "start": 11017.0, + "end": 11019.83, + "probability": 0.9807 + }, + { + "start": 11021.12, + "end": 11021.96, + "probability": 0.7416 + }, + { + "start": 11022.08, + "end": 11025.92, + "probability": 0.9251 + }, + { + "start": 11025.92, + "end": 11030.02, + "probability": 0.9974 + }, + { + "start": 11030.86, + "end": 11033.58, + "probability": 0.9507 + }, + { + "start": 11033.6, + "end": 11037.56, + "probability": 0.9507 + }, + { + "start": 11038.34, + "end": 11041.52, + "probability": 0.7912 + }, + { + "start": 11041.68, + "end": 11042.52, + "probability": 0.9268 + }, + { + "start": 11042.72, + "end": 11044.16, + "probability": 0.8037 + }, + { + "start": 11044.88, + "end": 11047.04, + "probability": 0.9831 + }, + { + "start": 11048.0, + "end": 11049.02, + "probability": 0.8652 + }, + { + "start": 11049.5, + "end": 11050.2, + "probability": 0.6853 + }, + { + "start": 11050.36, + "end": 11051.14, + "probability": 0.9504 + }, + { + "start": 11051.24, + "end": 11052.6, + "probability": 0.9947 + }, + { + "start": 11052.86, + "end": 11053.38, + "probability": 0.862 + }, + { + "start": 11053.98, + "end": 11055.72, + "probability": 0.7055 + }, + { + "start": 11055.9, + "end": 11058.08, + "probability": 0.817 + }, + { + "start": 11058.88, + "end": 11059.74, + "probability": 0.7057 + }, + { + "start": 11059.82, + "end": 11063.04, + "probability": 0.8484 + }, + { + "start": 11064.26, + "end": 11065.4, + "probability": 0.7023 + }, + { + "start": 11066.78, + "end": 11068.82, + "probability": 0.9157 + }, + { + "start": 11070.36, + "end": 11071.1, + "probability": 0.7049 + }, + { + "start": 11071.72, + "end": 11073.16, + "probability": 0.8975 + }, + { + "start": 11076.98, + "end": 11077.9, + "probability": 0.9393 + }, + { + "start": 11078.46, + "end": 11080.83, + "probability": 0.8637 + }, + { + "start": 11082.62, + "end": 11086.3, + "probability": 0.9802 + }, + { + "start": 11086.4, + "end": 11092.02, + "probability": 0.9908 + }, + { + "start": 11092.12, + "end": 11092.12, + "probability": 0.1718 + }, + { + "start": 11092.12, + "end": 11093.02, + "probability": 0.8845 + }, + { + "start": 11093.52, + "end": 11093.52, + "probability": 0.6121 + }, + { + "start": 11093.52, + "end": 11097.16, + "probability": 0.992 + }, + { + "start": 11098.02, + "end": 11101.02, + "probability": 0.8403 + }, + { + "start": 11101.16, + "end": 11102.18, + "probability": 0.8547 + }, + { + "start": 11102.74, + "end": 11105.2, + "probability": 0.7219 + }, + { + "start": 11105.9, + "end": 11109.36, + "probability": 0.9524 + }, + { + "start": 11109.48, + "end": 11110.2, + "probability": 0.8221 + }, + { + "start": 11110.56, + "end": 11112.02, + "probability": 0.9941 + }, + { + "start": 11112.4, + "end": 11116.18, + "probability": 0.9924 + }, + { + "start": 11116.18, + "end": 11120.86, + "probability": 0.9922 + }, + { + "start": 11122.48, + "end": 11122.58, + "probability": 0.8268 + }, + { + "start": 11123.82, + "end": 11125.46, + "probability": 0.991 + }, + { + "start": 11126.36, + "end": 11128.4, + "probability": 0.8079 + }, + { + "start": 11128.46, + "end": 11131.14, + "probability": 0.8308 + }, + { + "start": 11131.34, + "end": 11133.16, + "probability": 0.9768 + }, + { + "start": 11133.68, + "end": 11139.14, + "probability": 0.9919 + }, + { + "start": 11139.36, + "end": 11139.8, + "probability": 0.7462 + }, + { + "start": 11140.26, + "end": 11142.6, + "probability": 0.9663 + }, + { + "start": 11142.6, + "end": 11145.42, + "probability": 0.8984 + }, + { + "start": 11146.02, + "end": 11147.92, + "probability": 0.8124 + }, + { + "start": 11147.92, + "end": 11149.18, + "probability": 0.7506 + }, + { + "start": 11149.34, + "end": 11150.58, + "probability": 0.4197 + }, + { + "start": 11150.68, + "end": 11151.42, + "probability": 0.7235 + }, + { + "start": 11151.88, + "end": 11152.66, + "probability": 0.8852 + }, + { + "start": 11153.22, + "end": 11154.64, + "probability": 0.988 + }, + { + "start": 11156.26, + "end": 11157.2, + "probability": 0.0172 + }, + { + "start": 11157.74, + "end": 11158.68, + "probability": 0.5299 + }, + { + "start": 11159.86, + "end": 11160.24, + "probability": 0.9055 + }, + { + "start": 11161.1, + "end": 11162.46, + "probability": 0.8961 + }, + { + "start": 11163.4, + "end": 11163.84, + "probability": 0.9701 + }, + { + "start": 11165.24, + "end": 11165.98, + "probability": 0.6028 + }, + { + "start": 11167.3, + "end": 11169.08, + "probability": 0.8342 + }, + { + "start": 11169.78, + "end": 11170.2, + "probability": 0.9881 + }, + { + "start": 11171.1, + "end": 11172.18, + "probability": 0.4857 + }, + { + "start": 11173.7, + "end": 11175.66, + "probability": 0.903 + }, + { + "start": 11176.54, + "end": 11176.94, + "probability": 0.9972 + }, + { + "start": 11177.9, + "end": 11178.86, + "probability": 0.9665 + }, + { + "start": 11179.88, + "end": 11180.36, + "probability": 0.9924 + }, + { + "start": 11181.28, + "end": 11182.22, + "probability": 0.879 + }, + { + "start": 11183.44, + "end": 11185.62, + "probability": 0.8949 + }, + { + "start": 11186.68, + "end": 11188.7, + "probability": 0.8358 + }, + { + "start": 11189.52, + "end": 11191.38, + "probability": 0.7478 + }, + { + "start": 11192.4, + "end": 11194.14, + "probability": 0.9187 + }, + { + "start": 11195.89, + "end": 11199.18, + "probability": 0.8869 + }, + { + "start": 11203.64, + "end": 11204.1, + "probability": 0.883 + }, + { + "start": 11204.9, + "end": 11205.92, + "probability": 0.942 + }, + { + "start": 11207.02, + "end": 11208.94, + "probability": 0.9568 + }, + { + "start": 11210.14, + "end": 11211.7, + "probability": 0.9849 + }, + { + "start": 11212.58, + "end": 11214.3, + "probability": 0.9766 + }, + { + "start": 11215.74, + "end": 11216.2, + "probability": 0.7837 + }, + { + "start": 11216.94, + "end": 11218.0, + "probability": 0.9147 + }, + { + "start": 11218.8, + "end": 11220.66, + "probability": 0.8245 + }, + { + "start": 11221.4, + "end": 11221.88, + "probability": 0.8782 + }, + { + "start": 11222.66, + "end": 11223.46, + "probability": 0.6192 + }, + { + "start": 11224.42, + "end": 11227.16, + "probability": 0.9443 + }, + { + "start": 11228.1, + "end": 11228.68, + "probability": 0.9919 + }, + { + "start": 11229.66, + "end": 11231.72, + "probability": 0.8792 + }, + { + "start": 11232.56, + "end": 11233.34, + "probability": 0.9769 + }, + { + "start": 11234.24, + "end": 11236.26, + "probability": 0.9195 + }, + { + "start": 11237.16, + "end": 11239.16, + "probability": 0.9761 + }, + { + "start": 11240.46, + "end": 11242.66, + "probability": 0.9777 + }, + { + "start": 11243.48, + "end": 11246.18, + "probability": 0.9478 + }, + { + "start": 11247.26, + "end": 11249.52, + "probability": 0.9565 + }, + { + "start": 11250.1, + "end": 11250.6, + "probability": 0.8413 + }, + { + "start": 11252.02, + "end": 11252.96, + "probability": 0.9537 + }, + { + "start": 11253.82, + "end": 11254.1, + "probability": 0.9722 + }, + { + "start": 11254.82, + "end": 11255.74, + "probability": 0.8635 + }, + { + "start": 11257.04, + "end": 11261.3, + "probability": 0.9249 + }, + { + "start": 11262.16, + "end": 11262.42, + "probability": 0.5699 + }, + { + "start": 11263.5, + "end": 11266.14, + "probability": 0.7597 + }, + { + "start": 11266.96, + "end": 11267.68, + "probability": 0.7621 + }, + { + "start": 11269.1, + "end": 11271.3, + "probability": 0.8233 + }, + { + "start": 11272.24, + "end": 11273.8, + "probability": 0.9265 + }, + { + "start": 11274.68, + "end": 11276.34, + "probability": 0.9058 + }, + { + "start": 11277.22, + "end": 11279.28, + "probability": 0.9478 + }, + { + "start": 11280.4, + "end": 11280.86, + "probability": 0.9774 + }, + { + "start": 11281.52, + "end": 11282.42, + "probability": 0.7042 + }, + { + "start": 11283.3, + "end": 11286.84, + "probability": 0.9335 + }, + { + "start": 11287.78, + "end": 11288.84, + "probability": 0.9229 + }, + { + "start": 11289.56, + "end": 11290.52, + "probability": 0.9393 + }, + { + "start": 11291.26, + "end": 11291.66, + "probability": 0.9148 + }, + { + "start": 11292.84, + "end": 11293.82, + "probability": 0.6167 + }, + { + "start": 11294.56, + "end": 11296.4, + "probability": 0.9709 + }, + { + "start": 11297.82, + "end": 11300.26, + "probability": 0.9563 + }, + { + "start": 11301.46, + "end": 11301.96, + "probability": 0.993 + }, + { + "start": 11303.76, + "end": 11304.72, + "probability": 0.9639 + }, + { + "start": 11305.54, + "end": 11307.76, + "probability": 0.8987 + }, + { + "start": 11308.72, + "end": 11310.8, + "probability": 0.8109 + }, + { + "start": 11312.51, + "end": 11315.12, + "probability": 0.6326 + }, + { + "start": 11315.8, + "end": 11318.0, + "probability": 0.9455 + }, + { + "start": 11320.92, + "end": 11321.88, + "probability": 0.8694 + }, + { + "start": 11322.8, + "end": 11323.94, + "probability": 0.9211 + }, + { + "start": 11324.78, + "end": 11326.7, + "probability": 0.906 + }, + { + "start": 11327.7, + "end": 11329.84, + "probability": 0.9077 + }, + { + "start": 11330.56, + "end": 11331.14, + "probability": 0.9847 + }, + { + "start": 11333.32, + "end": 11334.2, + "probability": 0.9316 + }, + { + "start": 11335.28, + "end": 11335.96, + "probability": 0.9823 + }, + { + "start": 11336.52, + "end": 11337.36, + "probability": 0.8445 + }, + { + "start": 11338.0, + "end": 11340.18, + "probability": 0.9037 + }, + { + "start": 11341.48, + "end": 11343.62, + "probability": 0.9655 + }, + { + "start": 11344.7, + "end": 11346.78, + "probability": 0.9114 + }, + { + "start": 11348.3, + "end": 11348.74, + "probability": 0.8892 + }, + { + "start": 11350.14, + "end": 11350.96, + "probability": 0.9426 + }, + { + "start": 11351.92, + "end": 11354.18, + "probability": 0.9249 + }, + { + "start": 11355.98, + "end": 11358.1, + "probability": 0.9595 + }, + { + "start": 11358.94, + "end": 11359.78, + "probability": 0.9946 + }, + { + "start": 11360.42, + "end": 11363.1, + "probability": 0.8615 + }, + { + "start": 11368.18, + "end": 11369.1, + "probability": 0.5264 + }, + { + "start": 11370.44, + "end": 11373.0, + "probability": 0.559 + }, + { + "start": 11373.54, + "end": 11373.98, + "probability": 0.5839 + }, + { + "start": 11375.54, + "end": 11376.46, + "probability": 0.7849 + }, + { + "start": 11378.32, + "end": 11378.72, + "probability": 0.8687 + }, + { + "start": 11379.8, + "end": 11380.82, + "probability": 0.6238 + }, + { + "start": 11381.74, + "end": 11383.48, + "probability": 0.8339 + }, + { + "start": 11384.38, + "end": 11386.36, + "probability": 0.8882 + }, + { + "start": 11387.74, + "end": 11389.98, + "probability": 0.2004 + }, + { + "start": 11392.3, + "end": 11392.64, + "probability": 0.1942 + }, + { + "start": 11402.12, + "end": 11403.62, + "probability": 0.3409 + }, + { + "start": 11405.12, + "end": 11405.52, + "probability": 0.5621 + }, + { + "start": 11406.6, + "end": 11407.44, + "probability": 0.7971 + }, + { + "start": 11408.76, + "end": 11409.24, + "probability": 0.9209 + }, + { + "start": 11410.78, + "end": 11411.68, + "probability": 0.8739 + }, + { + "start": 11414.12, + "end": 11416.6, + "probability": 0.7669 + }, + { + "start": 11420.46, + "end": 11420.92, + "probability": 0.9435 + }, + { + "start": 11422.16, + "end": 11423.0, + "probability": 0.9539 + }, + { + "start": 11424.4, + "end": 11427.04, + "probability": 0.9689 + }, + { + "start": 11428.22, + "end": 11428.8, + "probability": 0.9932 + }, + { + "start": 11430.58, + "end": 11432.0, + "probability": 0.808 + }, + { + "start": 11432.8, + "end": 11434.84, + "probability": 0.6623 + }, + { + "start": 11441.28, + "end": 11441.86, + "probability": 0.752 + }, + { + "start": 11444.04, + "end": 11445.08, + "probability": 0.504 + }, + { + "start": 11446.78, + "end": 11447.72, + "probability": 0.8727 + }, + { + "start": 11448.98, + "end": 11450.1, + "probability": 0.8927 + }, + { + "start": 11450.92, + "end": 11451.24, + "probability": 0.7811 + }, + { + "start": 11452.38, + "end": 11453.6, + "probability": 0.9227 + }, + { + "start": 11454.62, + "end": 11455.08, + "probability": 0.9479 + }, + { + "start": 11456.22, + "end": 11457.02, + "probability": 0.8831 + }, + { + "start": 11457.98, + "end": 11460.32, + "probability": 0.9696 + }, + { + "start": 11461.8, + "end": 11464.26, + "probability": 0.9828 + }, + { + "start": 11465.12, + "end": 11465.62, + "probability": 0.9924 + }, + { + "start": 11467.12, + "end": 11467.98, + "probability": 0.524 + }, + { + "start": 11469.7, + "end": 11471.16, + "probability": 0.8153 + }, + { + "start": 11472.64, + "end": 11477.16, + "probability": 0.8558 + }, + { + "start": 11477.84, + "end": 11480.28, + "probability": 0.9076 + }, + { + "start": 11482.28, + "end": 11482.72, + "probability": 0.6184 + }, + { + "start": 11483.46, + "end": 11484.52, + "probability": 0.7443 + }, + { + "start": 11485.52, + "end": 11488.18, + "probability": 0.9265 + }, + { + "start": 11488.78, + "end": 11489.26, + "probability": 0.9714 + }, + { + "start": 11490.88, + "end": 11492.5, + "probability": 0.6677 + }, + { + "start": 11493.38, + "end": 11493.68, + "probability": 0.7839 + }, + { + "start": 11495.64, + "end": 11496.64, + "probability": 0.566 + }, + { + "start": 11499.04, + "end": 11499.88, + "probability": 0.9414 + }, + { + "start": 11500.52, + "end": 11501.4, + "probability": 0.926 + }, + { + "start": 11502.62, + "end": 11503.4, + "probability": 0.9005 + }, + { + "start": 11504.08, + "end": 11505.08, + "probability": 0.8975 + }, + { + "start": 11506.32, + "end": 11507.26, + "probability": 0.9934 + }, + { + "start": 11507.94, + "end": 11509.16, + "probability": 0.843 + }, + { + "start": 11510.6, + "end": 11511.7, + "probability": 0.9895 + }, + { + "start": 11512.7, + "end": 11514.34, + "probability": 0.8711 + }, + { + "start": 11515.04, + "end": 11515.5, + "probability": 0.9766 + }, + { + "start": 11517.1, + "end": 11518.08, + "probability": 0.729 + }, + { + "start": 11518.84, + "end": 11519.26, + "probability": 0.5228 + }, + { + "start": 11520.38, + "end": 11521.38, + "probability": 0.9206 + }, + { + "start": 11522.06, + "end": 11524.78, + "probability": 0.7418 + }, + { + "start": 11525.66, + "end": 11528.76, + "probability": 0.9583 + }, + { + "start": 11530.0, + "end": 11531.18, + "probability": 0.8564 + }, + { + "start": 11532.62, + "end": 11534.56, + "probability": 0.905 + }, + { + "start": 11535.18, + "end": 11536.2, + "probability": 0.9412 + }, + { + "start": 11537.34, + "end": 11538.34, + "probability": 0.8786 + }, + { + "start": 11539.8, + "end": 11542.96, + "probability": 0.5528 + }, + { + "start": 11543.94, + "end": 11544.88, + "probability": 0.9147 + }, + { + "start": 11546.5, + "end": 11546.98, + "probability": 0.797 + }, + { + "start": 11547.74, + "end": 11548.66, + "probability": 0.9591 + }, + { + "start": 11550.74, + "end": 11553.3, + "probability": 0.5952 + }, + { + "start": 11554.62, + "end": 11556.74, + "probability": 0.9522 + }, + { + "start": 11557.94, + "end": 11560.54, + "probability": 0.9823 + }, + { + "start": 11561.48, + "end": 11563.46, + "probability": 0.9795 + }, + { + "start": 11564.68, + "end": 11566.54, + "probability": 0.9556 + }, + { + "start": 11567.92, + "end": 11569.76, + "probability": 0.8213 + }, + { + "start": 11572.64, + "end": 11575.08, + "probability": 0.9688 + }, + { + "start": 11576.24, + "end": 11578.52, + "probability": 0.6513 + }, + { + "start": 11584.94, + "end": 11588.96, + "probability": 0.5774 + }, + { + "start": 11591.63, + "end": 11594.92, + "probability": 0.872 + }, + { + "start": 11596.76, + "end": 11599.5, + "probability": 0.741 + }, + { + "start": 11600.52, + "end": 11602.64, + "probability": 0.9562 + }, + { + "start": 11603.56, + "end": 11604.52, + "probability": 0.9512 + }, + { + "start": 11605.08, + "end": 11605.92, + "probability": 0.9066 + }, + { + "start": 11606.56, + "end": 11608.66, + "probability": 0.9226 + }, + { + "start": 11610.18, + "end": 11612.44, + "probability": 0.8765 + }, + { + "start": 11613.76, + "end": 11614.16, + "probability": 0.9797 + }, + { + "start": 11615.28, + "end": 11615.94, + "probability": 0.1802 + }, + { + "start": 11615.98, + "end": 11618.94, + "probability": 0.8895 + }, + { + "start": 11619.82, + "end": 11620.61, + "probability": 0.3573 + }, + { + "start": 11621.82, + "end": 11622.28, + "probability": 0.9798 + }, + { + "start": 11623.82, + "end": 11626.38, + "probability": 0.5058 + }, + { + "start": 11628.12, + "end": 11628.98, + "probability": 0.7507 + }, + { + "start": 11629.96, + "end": 11630.26, + "probability": 0.9748 + }, + { + "start": 11632.08, + "end": 11632.84, + "probability": 0.5327 + }, + { + "start": 11634.0, + "end": 11635.34, + "probability": 0.0412 + }, + { + "start": 11636.72, + "end": 11637.6, + "probability": 0.7496 + }, + { + "start": 11639.14, + "end": 11640.25, + "probability": 0.2485 + }, + { + "start": 11641.32, + "end": 11642.24, + "probability": 0.96 + }, + { + "start": 11643.46, + "end": 11644.6, + "probability": 0.8811 + }, + { + "start": 11646.28, + "end": 11647.0, + "probability": 0.9613 + }, + { + "start": 11648.16, + "end": 11649.08, + "probability": 0.9524 + }, + { + "start": 11650.74, + "end": 11652.8, + "probability": 0.9828 + }, + { + "start": 11654.14, + "end": 11656.52, + "probability": 0.9061 + }, + { + "start": 11658.56, + "end": 11659.02, + "probability": 0.7931 + }, + { + "start": 11661.42, + "end": 11663.02, + "probability": 0.5898 + }, + { + "start": 11665.4, + "end": 11667.38, + "probability": 0.5468 + }, + { + "start": 11667.48, + "end": 11668.16, + "probability": 0.6038 + }, + { + "start": 11668.84, + "end": 11669.92, + "probability": 0.9094 + }, + { + "start": 11670.12, + "end": 11672.22, + "probability": 0.2197 + }, + { + "start": 11672.94, + "end": 11675.6, + "probability": 0.6259 + }, + { + "start": 11676.42, + "end": 11678.0, + "probability": 0.9089 + }, + { + "start": 11680.4, + "end": 11681.22, + "probability": 0.7485 + }, + { + "start": 11682.0, + "end": 11682.44, + "probability": 0.9876 + }, + { + "start": 11684.36, + "end": 11685.46, + "probability": 0.7207 + }, + { + "start": 11686.08, + "end": 11689.4, + "probability": 0.6475 + }, + { + "start": 11689.98, + "end": 11690.49, + "probability": 0.2351 + }, + { + "start": 11691.26, + "end": 11692.94, + "probability": 0.859 + }, + { + "start": 11693.7, + "end": 11694.66, + "probability": 0.9691 + }, + { + "start": 11695.7, + "end": 11696.38, + "probability": 0.7361 + }, + { + "start": 11698.44, + "end": 11698.88, + "probability": 0.89 + }, + { + "start": 11699.5, + "end": 11700.32, + "probability": 0.8185 + }, + { + "start": 11702.92, + "end": 11703.66, + "probability": 0.8787 + }, + { + "start": 11704.18, + "end": 11705.02, + "probability": 0.9277 + }, + { + "start": 11707.2, + "end": 11707.72, + "probability": 0.9115 + }, + { + "start": 11708.44, + "end": 11709.44, + "probability": 0.7936 + }, + { + "start": 11710.14, + "end": 11710.56, + "probability": 0.5808 + }, + { + "start": 11712.02, + "end": 11713.9, + "probability": 0.8015 + }, + { + "start": 11715.08, + "end": 11716.02, + "probability": 0.4922 + }, + { + "start": 11716.92, + "end": 11718.82, + "probability": 0.9485 + }, + { + "start": 11720.22, + "end": 11722.42, + "probability": 0.9635 + }, + { + "start": 11723.34, + "end": 11726.8, + "probability": 0.8293 + }, + { + "start": 11728.14, + "end": 11731.48, + "probability": 0.8146 + }, + { + "start": 11732.96, + "end": 11734.22, + "probability": 0.9874 + }, + { + "start": 11735.04, + "end": 11736.28, + "probability": 0.9793 + }, + { + "start": 11737.16, + "end": 11739.24, + "probability": 0.9543 + }, + { + "start": 11740.2, + "end": 11740.98, + "probability": 0.8671 + }, + { + "start": 11741.56, + "end": 11742.32, + "probability": 0.8217 + }, + { + "start": 11743.1, + "end": 11744.92, + "probability": 0.9411 + }, + { + "start": 11745.72, + "end": 11747.06, + "probability": 0.924 + }, + { + "start": 11749.36, + "end": 11749.78, + "probability": 0.4934 + }, + { + "start": 11750.62, + "end": 11751.42, + "probability": 0.8947 + }, + { + "start": 11752.46, + "end": 11753.88, + "probability": 0.984 + }, + { + "start": 11755.48, + "end": 11756.3, + "probability": 0.9913 + }, + { + "start": 11757.38, + "end": 11758.58, + "probability": 0.9764 + }, + { + "start": 11759.86, + "end": 11761.82, + "probability": 0.9737 + }, + { + "start": 11762.72, + "end": 11766.98, + "probability": 0.849 + }, + { + "start": 11767.74, + "end": 11768.96, + "probability": 0.9358 + }, + { + "start": 11770.06, + "end": 11771.14, + "probability": 0.8566 + }, + { + "start": 11773.12, + "end": 11773.6, + "probability": 0.8278 + }, + { + "start": 11775.12, + "end": 11776.04, + "probability": 0.9514 + }, + { + "start": 11776.94, + "end": 11779.36, + "probability": 0.8429 + }, + { + "start": 11781.53, + "end": 11785.8, + "probability": 0.8422 + }, + { + "start": 11787.24, + "end": 11791.28, + "probability": 0.9341 + }, + { + "start": 11792.78, + "end": 11794.8, + "probability": 0.7619 + }, + { + "start": 11796.16, + "end": 11798.66, + "probability": 0.8669 + }, + { + "start": 11798.92, + "end": 11800.8, + "probability": 0.9465 + }, + { + "start": 11801.46, + "end": 11804.2, + "probability": 0.8927 + }, + { + "start": 11805.24, + "end": 11806.16, + "probability": 0.9852 + }, + { + "start": 11806.8, + "end": 11807.94, + "probability": 0.7921 + }, + { + "start": 11808.78, + "end": 11810.84, + "probability": 0.9171 + }, + { + "start": 11812.1, + "end": 11816.64, + "probability": 0.8376 + }, + { + "start": 11817.96, + "end": 11820.14, + "probability": 0.9624 + }, + { + "start": 11820.78, + "end": 11822.78, + "probability": 0.9473 + }, + { + "start": 11824.1, + "end": 11825.0, + "probability": 0.9956 + }, + { + "start": 11826.38, + "end": 11827.18, + "probability": 0.952 + }, + { + "start": 11828.36, + "end": 11829.18, + "probability": 0.8007 + }, + { + "start": 11829.78, + "end": 11830.6, + "probability": 0.5888 + }, + { + "start": 11831.44, + "end": 11832.84, + "probability": 0.8064 + }, + { + "start": 11833.9, + "end": 11834.66, + "probability": 0.707 + }, + { + "start": 11835.7, + "end": 11840.18, + "probability": 0.9689 + }, + { + "start": 11841.04, + "end": 11843.3, + "probability": 0.9393 + }, + { + "start": 11844.28, + "end": 11846.1, + "probability": 0.9666 + }, + { + "start": 11847.08, + "end": 11850.82, + "probability": 0.9169 + }, + { + "start": 11852.18, + "end": 11852.94, + "probability": 0.5937 + }, + { + "start": 11853.52, + "end": 11855.06, + "probability": 0.6934 + }, + { + "start": 11855.7, + "end": 11861.54, + "probability": 0.8972 + }, + { + "start": 11861.66, + "end": 11861.76, + "probability": 0.1375 + }, + { + "start": 11862.56, + "end": 11869.96, + "probability": 0.4403 + }, + { + "start": 11871.98, + "end": 11873.56, + "probability": 0.7736 + }, + { + "start": 11873.58, + "end": 11875.08, + "probability": 0.5347 + }, + { + "start": 11876.4, + "end": 11879.32, + "probability": 0.8298 + }, + { + "start": 11879.94, + "end": 11884.2, + "probability": 0.693 + }, + { + "start": 11884.86, + "end": 11886.66, + "probability": 0.9471 + }, + { + "start": 11887.98, + "end": 11889.44, + "probability": 0.531 + }, + { + "start": 11890.1, + "end": 11893.1, + "probability": 0.4127 + }, + { + "start": 11893.7, + "end": 11893.8, + "probability": 0.5911 + }, + { + "start": 11894.68, + "end": 11895.3, + "probability": 0.8156 + }, + { + "start": 11896.68, + "end": 11898.84, + "probability": 0.3378 + }, + { + "start": 11899.4, + "end": 11899.84, + "probability": 0.7575 + }, + { + "start": 11903.66, + "end": 11904.12, + "probability": 0.1775 + }, + { + "start": 11905.02, + "end": 11907.28, + "probability": 0.821 + }, + { + "start": 11907.66, + "end": 11908.28, + "probability": 0.6123 + }, + { + "start": 11909.2, + "end": 11909.48, + "probability": 0.5486 + }, + { + "start": 11909.56, + "end": 11910.04, + "probability": 0.5163 + }, + { + "start": 11910.2, + "end": 11912.18, + "probability": 0.8298 + }, + { + "start": 11912.3, + "end": 11913.16, + "probability": 0.3758 + }, + { + "start": 11913.2, + "end": 11915.4, + "probability": 0.9665 + }, + { + "start": 11916.7, + "end": 11919.34, + "probability": 0.2903 + }, + { + "start": 11922.84, + "end": 11925.26, + "probability": 0.0268 + }, + { + "start": 11925.92, + "end": 11926.06, + "probability": 0.0149 + }, + { + "start": 11930.5, + "end": 11931.2, + "probability": 0.1435 + }, + { + "start": 11932.0, + "end": 11933.24, + "probability": 0.1188 + }, + { + "start": 11933.99, + "end": 11936.12, + "probability": 0.0205 + }, + { + "start": 11936.12, + "end": 11937.52, + "probability": 0.0339 + }, + { + "start": 11939.16, + "end": 11941.3, + "probability": 0.0468 + }, + { + "start": 11944.4, + "end": 11944.64, + "probability": 0.0287 + }, + { + "start": 12016.28, + "end": 12016.28, + "probability": 0.0903 + }, + { + "start": 12016.28, + "end": 12017.0, + "probability": 0.1749 + }, + { + "start": 12017.36, + "end": 12018.74, + "probability": 0.3022 + }, + { + "start": 12019.4, + "end": 12019.4, + "probability": 0.2067 + }, + { + "start": 12019.4, + "end": 12024.14, + "probability": 0.954 + }, + { + "start": 12024.14, + "end": 12030.94, + "probability": 0.9852 + }, + { + "start": 12031.52, + "end": 12033.96, + "probability": 0.846 + }, + { + "start": 12034.4, + "end": 12035.2, + "probability": 0.4895 + }, + { + "start": 12035.24, + "end": 12036.94, + "probability": 0.9437 + }, + { + "start": 12056.88, + "end": 12057.56, + "probability": 0.1724 + }, + { + "start": 12058.2, + "end": 12061.26, + "probability": 0.7856 + }, + { + "start": 12063.08, + "end": 12067.22, + "probability": 0.8843 + }, + { + "start": 12069.32, + "end": 12071.08, + "probability": 0.8905 + }, + { + "start": 12072.02, + "end": 12073.08, + "probability": 0.8602 + }, + { + "start": 12074.16, + "end": 12074.93, + "probability": 0.9541 + }, + { + "start": 12075.42, + "end": 12076.76, + "probability": 0.8967 + }, + { + "start": 12077.08, + "end": 12081.04, + "probability": 0.9818 + }, + { + "start": 12081.56, + "end": 12082.98, + "probability": 0.6937 + }, + { + "start": 12083.58, + "end": 12089.5, + "probability": 0.9469 + }, + { + "start": 12090.26, + "end": 12092.88, + "probability": 0.9594 + }, + { + "start": 12093.62, + "end": 12094.44, + "probability": 0.7898 + }, + { + "start": 12094.54, + "end": 12098.62, + "probability": 0.9915 + }, + { + "start": 12099.0, + "end": 12102.06, + "probability": 0.7265 + }, + { + "start": 12102.34, + "end": 12102.94, + "probability": 0.6158 + }, + { + "start": 12103.42, + "end": 12105.2, + "probability": 0.9326 + }, + { + "start": 12105.36, + "end": 12107.32, + "probability": 0.9294 + }, + { + "start": 12107.38, + "end": 12109.24, + "probability": 0.6467 + }, + { + "start": 12112.82, + "end": 12113.0, + "probability": 0.1076 + }, + { + "start": 12113.0, + "end": 12113.0, + "probability": 0.1429 + }, + { + "start": 12113.0, + "end": 12113.0, + "probability": 0.0606 + }, + { + "start": 12113.0, + "end": 12117.38, + "probability": 0.9117 + }, + { + "start": 12117.9, + "end": 12118.38, + "probability": 0.6281 + }, + { + "start": 12118.48, + "end": 12119.48, + "probability": 0.8214 + }, + { + "start": 12119.62, + "end": 12121.38, + "probability": 0.8914 + }, + { + "start": 12121.6, + "end": 12122.76, + "probability": 0.9191 + }, + { + "start": 12123.22, + "end": 12123.52, + "probability": 0.0955 + }, + { + "start": 12123.52, + "end": 12124.7, + "probability": 0.5367 + }, + { + "start": 12125.26, + "end": 12126.78, + "probability": 0.353 + }, + { + "start": 12126.78, + "end": 12127.56, + "probability": 0.6914 + }, + { + "start": 12127.56, + "end": 12128.76, + "probability": 0.8342 + }, + { + "start": 12128.9, + "end": 12130.38, + "probability": 0.4868 + }, + { + "start": 12130.7, + "end": 12131.3, + "probability": 0.4129 + }, + { + "start": 12131.34, + "end": 12131.72, + "probability": 0.6275 + }, + { + "start": 12131.86, + "end": 12133.16, + "probability": 0.5488 + }, + { + "start": 12133.16, + "end": 12137.14, + "probability": 0.9546 + }, + { + "start": 12137.28, + "end": 12141.86, + "probability": 0.6105 + }, + { + "start": 12142.02, + "end": 12144.1, + "probability": 0.0893 + }, + { + "start": 12144.1, + "end": 12145.28, + "probability": 0.6491 + }, + { + "start": 12146.18, + "end": 12149.38, + "probability": 0.5657 + }, + { + "start": 12149.74, + "end": 12150.46, + "probability": 0.621 + }, + { + "start": 12151.02, + "end": 12151.8, + "probability": 0.9564 + }, + { + "start": 12152.94, + "end": 12155.44, + "probability": 0.8384 + }, + { + "start": 12155.6, + "end": 12155.92, + "probability": 0.0099 + }, + { + "start": 12156.08, + "end": 12156.99, + "probability": 0.1971 + }, + { + "start": 12157.66, + "end": 12157.86, + "probability": 0.1852 + }, + { + "start": 12157.86, + "end": 12157.86, + "probability": 0.3969 + }, + { + "start": 12157.86, + "end": 12159.5, + "probability": 0.7468 + }, + { + "start": 12159.66, + "end": 12162.0, + "probability": 0.978 + }, + { + "start": 12162.72, + "end": 12165.26, + "probability": 0.5566 + }, + { + "start": 12165.36, + "end": 12166.88, + "probability": 0.7278 + }, + { + "start": 12166.9, + "end": 12172.78, + "probability": 0.9608 + }, + { + "start": 12173.06, + "end": 12175.12, + "probability": 0.9194 + }, + { + "start": 12175.84, + "end": 12176.82, + "probability": 0.5122 + }, + { + "start": 12177.44, + "end": 12179.4, + "probability": 0.8787 + }, + { + "start": 12180.24, + "end": 12181.54, + "probability": 0.9436 + }, + { + "start": 12181.9, + "end": 12183.94, + "probability": 0.9641 + }, + { + "start": 12184.12, + "end": 12186.68, + "probability": 0.6084 + }, + { + "start": 12187.14, + "end": 12187.76, + "probability": 0.6743 + }, + { + "start": 12188.28, + "end": 12195.46, + "probability": 0.9763 + }, + { + "start": 12195.94, + "end": 12197.5, + "probability": 0.9326 + }, + { + "start": 12197.54, + "end": 12200.9, + "probability": 0.8277 + }, + { + "start": 12201.26, + "end": 12202.98, + "probability": 0.8048 + }, + { + "start": 12203.3, + "end": 12204.39, + "probability": 0.6272 + }, + { + "start": 12204.46, + "end": 12204.9, + "probability": 0.4132 + }, + { + "start": 12205.06, + "end": 12206.02, + "probability": 0.2647 + }, + { + "start": 12206.06, + "end": 12207.2, + "probability": 0.6601 + }, + { + "start": 12207.28, + "end": 12207.9, + "probability": 0.6337 + }, + { + "start": 12208.04, + "end": 12208.55, + "probability": 0.7744 + }, + { + "start": 12208.96, + "end": 12209.72, + "probability": 0.8403 + }, + { + "start": 12209.8, + "end": 12211.44, + "probability": 0.9634 + }, + { + "start": 12211.72, + "end": 12216.04, + "probability": 0.9946 + }, + { + "start": 12216.18, + "end": 12216.74, + "probability": 0.6066 + }, + { + "start": 12217.08, + "end": 12218.62, + "probability": 0.9372 + }, + { + "start": 12219.18, + "end": 12221.1, + "probability": 0.7309 + }, + { + "start": 12221.26, + "end": 12221.48, + "probability": 0.4341 + }, + { + "start": 12221.54, + "end": 12223.46, + "probability": 0.7565 + }, + { + "start": 12223.68, + "end": 12225.78, + "probability": 0.6999 + }, + { + "start": 12225.78, + "end": 12225.78, + "probability": 0.1191 + }, + { + "start": 12225.78, + "end": 12230.14, + "probability": 0.9358 + }, + { + "start": 12230.86, + "end": 12230.86, + "probability": 0.0532 + }, + { + "start": 12230.86, + "end": 12230.86, + "probability": 0.0345 + }, + { + "start": 12230.86, + "end": 12231.86, + "probability": 0.3778 + }, + { + "start": 12231.86, + "end": 12232.68, + "probability": 0.7238 + }, + { + "start": 12232.9, + "end": 12234.93, + "probability": 0.9541 + }, + { + "start": 12235.76, + "end": 12236.48, + "probability": 0.9304 + }, + { + "start": 12237.34, + "end": 12239.45, + "probability": 0.3213 + }, + { + "start": 12240.54, + "end": 12241.24, + "probability": 0.1599 + }, + { + "start": 12241.76, + "end": 12242.76, + "probability": 0.3395 + }, + { + "start": 12242.76, + "end": 12243.96, + "probability": 0.67 + }, + { + "start": 12244.28, + "end": 12245.18, + "probability": 0.719 + }, + { + "start": 12245.28, + "end": 12246.5, + "probability": 0.4667 + }, + { + "start": 12247.06, + "end": 12248.68, + "probability": 0.9027 + }, + { + "start": 12248.92, + "end": 12249.88, + "probability": 0.9411 + }, + { + "start": 12250.24, + "end": 12251.48, + "probability": 0.9866 + }, + { + "start": 12252.06, + "end": 12254.22, + "probability": 0.9811 + }, + { + "start": 12254.6, + "end": 12255.98, + "probability": 0.8855 + }, + { + "start": 12256.48, + "end": 12258.82, + "probability": 0.8007 + }, + { + "start": 12259.54, + "end": 12260.8, + "probability": 0.8011 + }, + { + "start": 12260.9, + "end": 12262.38, + "probability": 0.9766 + }, + { + "start": 12262.54, + "end": 12264.68, + "probability": 0.8172 + }, + { + "start": 12265.02, + "end": 12267.47, + "probability": 0.9644 + }, + { + "start": 12268.28, + "end": 12269.34, + "probability": 0.2024 + }, + { + "start": 12270.04, + "end": 12272.4, + "probability": 0.4938 + }, + { + "start": 12273.0, + "end": 12274.84, + "probability": 0.9946 + }, + { + "start": 12275.1, + "end": 12278.38, + "probability": 0.9894 + }, + { + "start": 12279.56, + "end": 12281.18, + "probability": 0.7228 + }, + { + "start": 12281.68, + "end": 12283.04, + "probability": 0.8153 + }, + { + "start": 12283.3, + "end": 12286.84, + "probability": 0.9694 + }, + { + "start": 12287.36, + "end": 12288.34, + "probability": 0.9011 + }, + { + "start": 12288.44, + "end": 12289.68, + "probability": 0.9677 + }, + { + "start": 12289.76, + "end": 12290.76, + "probability": 0.9671 + }, + { + "start": 12291.04, + "end": 12292.16, + "probability": 0.9875 + }, + { + "start": 12292.18, + "end": 12293.53, + "probability": 0.7936 + }, + { + "start": 12294.24, + "end": 12296.62, + "probability": 0.9234 + }, + { + "start": 12298.64, + "end": 12301.0, + "probability": 0.6211 + }, + { + "start": 12301.52, + "end": 12303.96, + "probability": 0.9312 + }, + { + "start": 12305.38, + "end": 12307.62, + "probability": 0.8675 + }, + { + "start": 12308.88, + "end": 12314.06, + "probability": 0.8898 + }, + { + "start": 12315.12, + "end": 12315.58, + "probability": 0.95 + }, + { + "start": 12315.86, + "end": 12319.48, + "probability": 0.8934 + }, + { + "start": 12320.0, + "end": 12320.64, + "probability": 0.969 + }, + { + "start": 12321.58, + "end": 12324.44, + "probability": 0.959 + }, + { + "start": 12325.4, + "end": 12329.46, + "probability": 0.9203 + }, + { + "start": 12329.58, + "end": 12332.12, + "probability": 0.8872 + }, + { + "start": 12332.32, + "end": 12333.36, + "probability": 0.9036 + }, + { + "start": 12333.78, + "end": 12335.8, + "probability": 0.9007 + }, + { + "start": 12337.1, + "end": 12337.56, + "probability": 0.8334 + }, + { + "start": 12338.2, + "end": 12339.11, + "probability": 0.9786 + }, + { + "start": 12339.36, + "end": 12340.55, + "probability": 0.9906 + }, + { + "start": 12340.94, + "end": 12343.08, + "probability": 0.7232 + }, + { + "start": 12343.16, + "end": 12344.56, + "probability": 0.7225 + }, + { + "start": 12344.64, + "end": 12345.06, + "probability": 0.4826 + }, + { + "start": 12345.12, + "end": 12346.98, + "probability": 0.8611 + }, + { + "start": 12347.38, + "end": 12348.3, + "probability": 0.9912 + }, + { + "start": 12348.52, + "end": 12350.04, + "probability": 0.9961 + }, + { + "start": 12351.24, + "end": 12355.0, + "probability": 0.7831 + }, + { + "start": 12356.78, + "end": 12358.42, + "probability": 0.7883 + }, + { + "start": 12358.58, + "end": 12359.22, + "probability": 0.4512 + }, + { + "start": 12359.4, + "end": 12359.54, + "probability": 0.4227 + }, + { + "start": 12360.04, + "end": 12361.78, + "probability": 0.9279 + }, + { + "start": 12362.4, + "end": 12363.64, + "probability": 0.8105 + }, + { + "start": 12364.1, + "end": 12367.4, + "probability": 0.9831 + }, + { + "start": 12367.82, + "end": 12374.34, + "probability": 0.9938 + }, + { + "start": 12374.84, + "end": 12375.54, + "probability": 0.9891 + }, + { + "start": 12375.84, + "end": 12377.9, + "probability": 0.9973 + }, + { + "start": 12378.08, + "end": 12378.66, + "probability": 0.8481 + }, + { + "start": 12379.28, + "end": 12380.04, + "probability": 0.6499 + }, + { + "start": 12380.18, + "end": 12386.54, + "probability": 0.9207 + }, + { + "start": 12386.54, + "end": 12391.3, + "probability": 0.9808 + }, + { + "start": 12392.5, + "end": 12394.38, + "probability": 0.7938 + }, + { + "start": 12394.94, + "end": 12399.32, + "probability": 0.4042 + }, + { + "start": 12400.54, + "end": 12403.02, + "probability": 0.5026 + }, + { + "start": 12403.66, + "end": 12404.02, + "probability": 0.8509 + }, + { + "start": 12405.5, + "end": 12411.4, + "probability": 0.9736 + }, + { + "start": 12411.44, + "end": 12412.69, + "probability": 0.9971 + }, + { + "start": 12412.92, + "end": 12414.57, + "probability": 0.9813 + }, + { + "start": 12415.24, + "end": 12417.92, + "probability": 0.8649 + }, + { + "start": 12418.09, + "end": 12421.94, + "probability": 0.9186 + }, + { + "start": 12422.58, + "end": 12422.9, + "probability": 0.5254 + }, + { + "start": 12422.98, + "end": 12422.98, + "probability": 0.1368 + }, + { + "start": 12423.02, + "end": 12423.28, + "probability": 0.3726 + }, + { + "start": 12423.28, + "end": 12424.14, + "probability": 0.424 + }, + { + "start": 12425.06, + "end": 12426.5, + "probability": 0.5417 + }, + { + "start": 12426.54, + "end": 12427.1, + "probability": 0.7882 + }, + { + "start": 12427.12, + "end": 12428.01, + "probability": 0.508 + }, + { + "start": 12428.46, + "end": 12434.26, + "probability": 0.9386 + }, + { + "start": 12434.38, + "end": 12434.88, + "probability": 0.3076 + }, + { + "start": 12434.9, + "end": 12437.56, + "probability": 0.8494 + }, + { + "start": 12437.62, + "end": 12438.47, + "probability": 0.9421 + }, + { + "start": 12438.94, + "end": 12440.3, + "probability": 0.9494 + }, + { + "start": 12440.42, + "end": 12442.56, + "probability": 0.9897 + }, + { + "start": 12442.84, + "end": 12444.74, + "probability": 0.9266 + }, + { + "start": 12445.08, + "end": 12448.16, + "probability": 0.8975 + }, + { + "start": 12448.92, + "end": 12452.8, + "probability": 0.9263 + }, + { + "start": 12453.52, + "end": 12454.6, + "probability": 0.9723 + }, + { + "start": 12455.22, + "end": 12457.22, + "probability": 0.9634 + }, + { + "start": 12458.38, + "end": 12459.46, + "probability": 0.7283 + }, + { + "start": 12459.92, + "end": 12461.16, + "probability": 0.3899 + }, + { + "start": 12461.16, + "end": 12462.06, + "probability": 0.3518 + }, + { + "start": 12462.36, + "end": 12462.98, + "probability": 0.1855 + }, + { + "start": 12462.98, + "end": 12463.78, + "probability": 0.3381 + }, + { + "start": 12465.48, + "end": 12470.72, + "probability": 0.8231 + }, + { + "start": 12471.34, + "end": 12472.94, + "probability": 0.9564 + }, + { + "start": 12473.08, + "end": 12473.54, + "probability": 0.6589 + }, + { + "start": 12473.68, + "end": 12473.94, + "probability": 0.7411 + }, + { + "start": 12474.32, + "end": 12477.14, + "probability": 0.4501 + }, + { + "start": 12478.83, + "end": 12482.32, + "probability": 0.9775 + }, + { + "start": 12482.98, + "end": 12483.74, + "probability": 0.5575 + }, + { + "start": 12483.74, + "end": 12484.0, + "probability": 0.496 + }, + { + "start": 12484.32, + "end": 12485.08, + "probability": 0.7119 + }, + { + "start": 12485.1, + "end": 12489.92, + "probability": 0.8828 + }, + { + "start": 12490.4, + "end": 12492.1, + "probability": 0.9317 + }, + { + "start": 12492.18, + "end": 12492.88, + "probability": 0.9637 + }, + { + "start": 12493.74, + "end": 12495.01, + "probability": 0.9436 + }, + { + "start": 12497.64, + "end": 12497.64, + "probability": 0.5031 + }, + { + "start": 12497.64, + "end": 12497.64, + "probability": 0.5088 + }, + { + "start": 12497.64, + "end": 12497.84, + "probability": 0.2574 + }, + { + "start": 12497.84, + "end": 12498.64, + "probability": 0.5791 + }, + { + "start": 12499.54, + "end": 12500.34, + "probability": 0.5122 + }, + { + "start": 12500.88, + "end": 12504.16, + "probability": 0.8416 + }, + { + "start": 12504.58, + "end": 12505.94, + "probability": 0.8115 + }, + { + "start": 12505.98, + "end": 12506.56, + "probability": 0.4078 + }, + { + "start": 12507.02, + "end": 12508.02, + "probability": 0.2945 + }, + { + "start": 12508.3, + "end": 12510.13, + "probability": 0.918 + }, + { + "start": 12510.46, + "end": 12510.56, + "probability": 0.0189 + }, + { + "start": 12510.56, + "end": 12513.51, + "probability": 0.8696 + }, + { + "start": 12513.98, + "end": 12515.18, + "probability": 0.986 + }, + { + "start": 12515.66, + "end": 12516.08, + "probability": 0.873 + }, + { + "start": 12517.3, + "end": 12518.07, + "probability": 0.9424 + }, + { + "start": 12518.44, + "end": 12521.06, + "probability": 0.8844 + }, + { + "start": 12521.58, + "end": 12521.92, + "probability": 0.4498 + }, + { + "start": 12521.92, + "end": 12522.98, + "probability": 0.5081 + }, + { + "start": 12523.44, + "end": 12524.48, + "probability": 0.9277 + }, + { + "start": 12524.52, + "end": 12526.98, + "probability": 0.9835 + }, + { + "start": 12527.2, + "end": 12527.88, + "probability": 0.8806 + }, + { + "start": 12528.12, + "end": 12528.58, + "probability": 0.5813 + }, + { + "start": 12528.62, + "end": 12530.24, + "probability": 0.4923 + }, + { + "start": 12530.72, + "end": 12531.16, + "probability": 0.8783 + }, + { + "start": 12532.02, + "end": 12532.64, + "probability": 0.9388 + }, + { + "start": 12532.82, + "end": 12534.04, + "probability": 0.9543 + }, + { + "start": 12534.52, + "end": 12536.6, + "probability": 0.9468 + }, + { + "start": 12536.68, + "end": 12539.1, + "probability": 0.9724 + }, + { + "start": 12540.32, + "end": 12541.28, + "probability": 0.4798 + }, + { + "start": 12541.56, + "end": 12541.78, + "probability": 0.2578 + }, + { + "start": 12541.9, + "end": 12543.44, + "probability": 0.2251 + }, + { + "start": 12543.68, + "end": 12544.4, + "probability": 0.9792 + }, + { + "start": 12544.76, + "end": 12551.24, + "probability": 0.9951 + }, + { + "start": 12551.52, + "end": 12552.52, + "probability": 0.5341 + }, + { + "start": 12552.92, + "end": 12556.34, + "probability": 0.9012 + }, + { + "start": 12556.58, + "end": 12558.62, + "probability": 0.9644 + }, + { + "start": 12559.04, + "end": 12560.05, + "probability": 0.9298 + }, + { + "start": 12560.8, + "end": 12564.34, + "probability": 0.9356 + }, + { + "start": 12564.48, + "end": 12566.52, + "probability": 0.9656 + }, + { + "start": 12567.32, + "end": 12571.72, + "probability": 0.591 + }, + { + "start": 12572.11, + "end": 12575.04, + "probability": 0.6921 + }, + { + "start": 12575.3, + "end": 12578.82, + "probability": 0.9966 + }, + { + "start": 12579.54, + "end": 12580.58, + "probability": 0.8177 + }, + { + "start": 12581.11, + "end": 12583.54, + "probability": 0.9861 + }, + { + "start": 12583.68, + "end": 12584.48, + "probability": 0.3218 + }, + { + "start": 12584.98, + "end": 12588.64, + "probability": 0.7489 + }, + { + "start": 12588.74, + "end": 12592.76, + "probability": 0.6229 + }, + { + "start": 12592.9, + "end": 12594.32, + "probability": 0.9922 + }, + { + "start": 12594.74, + "end": 12595.58, + "probability": 0.8611 + }, + { + "start": 12595.68, + "end": 12596.26, + "probability": 0.861 + }, + { + "start": 12596.58, + "end": 12597.54, + "probability": 0.816 + }, + { + "start": 12597.72, + "end": 12599.06, + "probability": 0.8706 + }, + { + "start": 12599.36, + "end": 12600.16, + "probability": 0.5002 + }, + { + "start": 12601.5, + "end": 12601.86, + "probability": 0.6482 + }, + { + "start": 12602.44, + "end": 12604.12, + "probability": 0.7761 + }, + { + "start": 12605.62, + "end": 12605.64, + "probability": 0.1033 + }, + { + "start": 12607.02, + "end": 12612.58, + "probability": 0.8116 + }, + { + "start": 12613.7, + "end": 12617.16, + "probability": 0.7761 + }, + { + "start": 12617.18, + "end": 12618.84, + "probability": 0.7644 + }, + { + "start": 12619.64, + "end": 12625.12, + "probability": 0.9774 + }, + { + "start": 12625.44, + "end": 12627.22, + "probability": 0.9835 + }, + { + "start": 12627.64, + "end": 12632.68, + "probability": 0.6893 + }, + { + "start": 12633.68, + "end": 12636.04, + "probability": 0.9816 + }, + { + "start": 12636.8, + "end": 12637.4, + "probability": 0.8987 + }, + { + "start": 12637.72, + "end": 12638.62, + "probability": 0.8944 + }, + { + "start": 12638.82, + "end": 12640.05, + "probability": 0.9219 + }, + { + "start": 12640.3, + "end": 12640.84, + "probability": 0.5484 + }, + { + "start": 12641.3, + "end": 12642.68, + "probability": 0.822 + }, + { + "start": 12642.68, + "end": 12643.7, + "probability": 0.7557 + }, + { + "start": 12644.0, + "end": 12646.04, + "probability": 0.9473 + }, + { + "start": 12646.48, + "end": 12647.66, + "probability": 0.7299 + }, + { + "start": 12648.88, + "end": 12654.24, + "probability": 0.6971 + }, + { + "start": 12654.66, + "end": 12660.46, + "probability": 0.9509 + }, + { + "start": 12660.84, + "end": 12663.63, + "probability": 0.7026 + }, + { + "start": 12664.02, + "end": 12667.26, + "probability": 0.9741 + }, + { + "start": 12667.72, + "end": 12668.82, + "probability": 0.8455 + }, + { + "start": 12669.34, + "end": 12674.14, + "probability": 0.6932 + }, + { + "start": 12674.22, + "end": 12674.3, + "probability": 0.5654 + }, + { + "start": 12674.3, + "end": 12677.42, + "probability": 0.9722 + }, + { + "start": 12677.52, + "end": 12677.86, + "probability": 0.8306 + }, + { + "start": 12678.12, + "end": 12682.1, + "probability": 0.985 + }, + { + "start": 12682.5, + "end": 12682.6, + "probability": 0.4964 + }, + { + "start": 12682.94, + "end": 12684.9, + "probability": 0.8749 + }, + { + "start": 12685.08, + "end": 12689.2, + "probability": 0.9028 + }, + { + "start": 12692.28, + "end": 12697.54, + "probability": 0.9921 + }, + { + "start": 12697.68, + "end": 12701.7, + "probability": 0.5291 + }, + { + "start": 12702.84, + "end": 12703.94, + "probability": 0.4971 + }, + { + "start": 12705.58, + "end": 12707.6, + "probability": 0.9773 + }, + { + "start": 12708.54, + "end": 12709.83, + "probability": 0.9988 + }, + { + "start": 12710.26, + "end": 12711.72, + "probability": 0.9119 + }, + { + "start": 12711.82, + "end": 12712.32, + "probability": 0.9208 + }, + { + "start": 12713.08, + "end": 12714.22, + "probability": 0.9727 + }, + { + "start": 12714.84, + "end": 12719.98, + "probability": 0.9538 + }, + { + "start": 12720.38, + "end": 12720.94, + "probability": 0.2363 + }, + { + "start": 12722.26, + "end": 12723.44, + "probability": 0.9194 + }, + { + "start": 12724.28, + "end": 12725.13, + "probability": 0.7985 + }, + { + "start": 12726.02, + "end": 12728.08, + "probability": 0.2385 + }, + { + "start": 12728.2, + "end": 12731.36, + "probability": 0.9357 + }, + { + "start": 12731.82, + "end": 12732.34, + "probability": 0.8295 + }, + { + "start": 12733.18, + "end": 12733.92, + "probability": 0.9774 + }, + { + "start": 12737.48, + "end": 12740.44, + "probability": 0.9312 + }, + { + "start": 12742.24, + "end": 12746.84, + "probability": 0.919 + }, + { + "start": 12747.32, + "end": 12749.38, + "probability": 0.9176 + }, + { + "start": 12750.88, + "end": 12753.02, + "probability": 0.8804 + }, + { + "start": 12753.62, + "end": 12754.99, + "probability": 0.8702 + }, + { + "start": 12755.98, + "end": 12757.04, + "probability": 0.5692 + }, + { + "start": 12758.16, + "end": 12758.24, + "probability": 0.1218 + }, + { + "start": 12758.24, + "end": 12764.5, + "probability": 0.855 + }, + { + "start": 12765.52, + "end": 12766.82, + "probability": 0.8679 + }, + { + "start": 12767.9, + "end": 12769.28, + "probability": 0.936 + }, + { + "start": 12770.16, + "end": 12774.06, + "probability": 0.9424 + }, + { + "start": 12774.54, + "end": 12776.74, + "probability": 0.8675 + }, + { + "start": 12777.56, + "end": 12781.52, + "probability": 0.9438 + }, + { + "start": 12781.82, + "end": 12782.74, + "probability": 0.858 + }, + { + "start": 12783.64, + "end": 12786.16, + "probability": 0.9442 + }, + { + "start": 12786.36, + "end": 12789.28, + "probability": 0.3987 + }, + { + "start": 12789.28, + "end": 12790.4, + "probability": 0.9368 + }, + { + "start": 12791.66, + "end": 12792.4, + "probability": 0.5557 + }, + { + "start": 12792.9, + "end": 12795.82, + "probability": 0.4562 + }, + { + "start": 12796.46, + "end": 12797.88, + "probability": 0.7693 + }, + { + "start": 12798.86, + "end": 12801.02, + "probability": 0.3647 + }, + { + "start": 12801.02, + "end": 12802.54, + "probability": 0.4264 + }, + { + "start": 12802.54, + "end": 12802.54, + "probability": 0.8663 + }, + { + "start": 12802.54, + "end": 12806.14, + "probability": 0.9184 + }, + { + "start": 12806.22, + "end": 12811.48, + "probability": 0.9552 + }, + { + "start": 12811.88, + "end": 12812.98, + "probability": 0.7769 + }, + { + "start": 12813.6, + "end": 12815.92, + "probability": 0.7528 + }, + { + "start": 12816.72, + "end": 12819.44, + "probability": 0.9401 + }, + { + "start": 12819.98, + "end": 12821.26, + "probability": 0.9736 + }, + { + "start": 12823.58, + "end": 12827.74, + "probability": 0.83 + }, + { + "start": 12828.88, + "end": 12831.06, + "probability": 0.8548 + }, + { + "start": 12831.56, + "end": 12834.04, + "probability": 0.9042 + }, + { + "start": 12834.82, + "end": 12840.06, + "probability": 0.9777 + }, + { + "start": 12840.06, + "end": 12845.3, + "probability": 0.9906 + }, + { + "start": 12845.82, + "end": 12846.28, + "probability": 0.6579 + }, + { + "start": 12846.38, + "end": 12850.64, + "probability": 0.8503 + }, + { + "start": 12850.74, + "end": 12852.4, + "probability": 0.8901 + }, + { + "start": 12852.72, + "end": 12853.52, + "probability": 0.373 + }, + { + "start": 12853.62, + "end": 12853.8, + "probability": 0.3479 + }, + { + "start": 12853.8, + "end": 12855.88, + "probability": 0.9958 + }, + { + "start": 12856.42, + "end": 12857.5, + "probability": 0.9966 + }, + { + "start": 12857.88, + "end": 12859.52, + "probability": 0.7668 + }, + { + "start": 12859.62, + "end": 12861.67, + "probability": 0.9972 + }, + { + "start": 12862.32, + "end": 12864.26, + "probability": 0.8251 + }, + { + "start": 12865.18, + "end": 12868.02, + "probability": 0.91 + }, + { + "start": 12868.62, + "end": 12870.94, + "probability": 0.9277 + }, + { + "start": 12871.2, + "end": 12873.61, + "probability": 0.9895 + }, + { + "start": 12874.78, + "end": 12876.42, + "probability": 0.6198 + }, + { + "start": 12876.92, + "end": 12880.64, + "probability": 0.9132 + }, + { + "start": 12880.78, + "end": 12884.3, + "probability": 0.9353 + }, + { + "start": 12885.28, + "end": 12887.54, + "probability": 0.8145 + }, + { + "start": 12888.22, + "end": 12891.12, + "probability": 0.5654 + }, + { + "start": 12891.74, + "end": 12893.64, + "probability": 0.7114 + }, + { + "start": 12894.72, + "end": 12895.72, + "probability": 0.6929 + }, + { + "start": 12897.14, + "end": 12898.26, + "probability": 0.8301 + }, + { + "start": 12898.32, + "end": 12898.56, + "probability": 0.7077 + }, + { + "start": 12898.72, + "end": 12898.96, + "probability": 0.7503 + }, + { + "start": 12899.1, + "end": 12902.9, + "probability": 0.8384 + }, + { + "start": 12903.28, + "end": 12904.16, + "probability": 0.4388 + }, + { + "start": 12904.66, + "end": 12906.3, + "probability": 0.9512 + }, + { + "start": 12906.46, + "end": 12906.9, + "probability": 0.8507 + }, + { + "start": 12906.98, + "end": 12908.08, + "probability": 0.1838 + }, + { + "start": 12908.18, + "end": 12910.22, + "probability": 0.998 + }, + { + "start": 12910.56, + "end": 12911.1, + "probability": 0.7216 + }, + { + "start": 12912.54, + "end": 12913.24, + "probability": 0.8516 + }, + { + "start": 12914.34, + "end": 12916.76, + "probability": 0.9941 + }, + { + "start": 12916.88, + "end": 12917.44, + "probability": 0.8465 + }, + { + "start": 12917.7, + "end": 12918.28, + "probability": 0.9666 + }, + { + "start": 12918.82, + "end": 12918.96, + "probability": 0.5876 + }, + { + "start": 12919.12, + "end": 12919.86, + "probability": 0.4596 + }, + { + "start": 12920.06, + "end": 12920.64, + "probability": 0.4548 + }, + { + "start": 12920.74, + "end": 12921.48, + "probability": 0.6685 + }, + { + "start": 12921.52, + "end": 12922.5, + "probability": 0.4654 + }, + { + "start": 12922.58, + "end": 12923.64, + "probability": 0.7014 + }, + { + "start": 12924.14, + "end": 12925.41, + "probability": 0.9388 + }, + { + "start": 12925.72, + "end": 12926.26, + "probability": 0.9049 + }, + { + "start": 12926.3, + "end": 12929.28, + "probability": 0.8718 + }, + { + "start": 12929.54, + "end": 12932.9, + "probability": 0.9527 + }, + { + "start": 12933.92, + "end": 12944.06, + "probability": 0.9892 + }, + { + "start": 12944.72, + "end": 12946.48, + "probability": 0.9249 + }, + { + "start": 12947.32, + "end": 12947.36, + "probability": 0.5728 + }, + { + "start": 12950.5, + "end": 12950.94, + "probability": 0.468 + }, + { + "start": 12951.68, + "end": 12957.98, + "probability": 0.9403 + }, + { + "start": 12959.14, + "end": 12963.12, + "probability": 0.8138 + }, + { + "start": 12965.8, + "end": 12966.72, + "probability": 0.2863 + }, + { + "start": 12967.6, + "end": 12968.6, + "probability": 0.3283 + }, + { + "start": 12968.98, + "end": 12971.38, + "probability": 0.0781 + }, + { + "start": 12973.3, + "end": 12975.68, + "probability": 0.8438 + }, + { + "start": 12976.94, + "end": 12977.74, + "probability": 0.8678 + }, + { + "start": 12978.5, + "end": 12980.84, + "probability": 0.9065 + }, + { + "start": 12981.54, + "end": 12983.53, + "probability": 0.9836 + }, + { + "start": 12983.78, + "end": 12987.76, + "probability": 0.3218 + }, + { + "start": 12988.14, + "end": 12989.52, + "probability": 0.8628 + }, + { + "start": 12990.74, + "end": 12997.38, + "probability": 0.2019 + }, + { + "start": 12997.86, + "end": 12999.89, + "probability": 0.7256 + }, + { + "start": 13000.46, + "end": 13002.58, + "probability": 0.9744 + }, + { + "start": 13003.6, + "end": 13004.44, + "probability": 0.3763 + }, + { + "start": 13004.7, + "end": 13005.92, + "probability": 0.7397 + }, + { + "start": 13006.12, + "end": 13008.08, + "probability": 0.9151 + }, + { + "start": 13008.16, + "end": 13009.28, + "probability": 0.5077 + }, + { + "start": 13010.72, + "end": 13013.88, + "probability": 0.8743 + }, + { + "start": 13015.58, + "end": 13018.48, + "probability": 0.9932 + }, + { + "start": 13019.72, + "end": 13022.78, + "probability": 0.9963 + }, + { + "start": 13022.91, + "end": 13027.2, + "probability": 0.3672 + }, + { + "start": 13027.26, + "end": 13028.38, + "probability": 0.3474 + }, + { + "start": 13029.0, + "end": 13029.74, + "probability": 0.043 + }, + { + "start": 13031.54, + "end": 13032.74, + "probability": 0.1209 + }, + { + "start": 13032.92, + "end": 13037.36, + "probability": 0.5364 + }, + { + "start": 13037.94, + "end": 13038.12, + "probability": 0.0591 + }, + { + "start": 13038.12, + "end": 13038.76, + "probability": 0.9248 + }, + { + "start": 13039.38, + "end": 13041.26, + "probability": 0.6129 + }, + { + "start": 13041.48, + "end": 13042.44, + "probability": 0.5299 + }, + { + "start": 13043.0, + "end": 13046.36, + "probability": 0.9377 + }, + { + "start": 13047.4, + "end": 13049.66, + "probability": 0.9285 + }, + { + "start": 13050.26, + "end": 13052.62, + "probability": 0.9837 + }, + { + "start": 13053.86, + "end": 13055.18, + "probability": 0.8076 + }, + { + "start": 13056.2, + "end": 13059.4, + "probability": 0.661 + }, + { + "start": 13060.2, + "end": 13062.72, + "probability": 0.9603 + }, + { + "start": 13063.44, + "end": 13064.34, + "probability": 0.6538 + }, + { + "start": 13064.48, + "end": 13064.98, + "probability": 0.2296 + }, + { + "start": 13065.08, + "end": 13066.32, + "probability": 0.7545 + }, + { + "start": 13066.4, + "end": 13066.68, + "probability": 0.5451 + }, + { + "start": 13066.7, + "end": 13067.56, + "probability": 0.8804 + }, + { + "start": 13068.82, + "end": 13069.12, + "probability": 0.7424 + }, + { + "start": 13069.24, + "end": 13069.74, + "probability": 0.7379 + }, + { + "start": 13072.5, + "end": 13072.5, + "probability": 0.0266 + }, + { + "start": 13072.5, + "end": 13074.24, + "probability": 0.6701 + }, + { + "start": 13074.42, + "end": 13074.9, + "probability": 0.4105 + }, + { + "start": 13074.94, + "end": 13079.66, + "probability": 0.7392 + }, + { + "start": 13080.8, + "end": 13085.56, + "probability": 0.2399 + }, + { + "start": 13086.16, + "end": 13087.04, + "probability": 0.7749 + }, + { + "start": 13088.34, + "end": 13091.0, + "probability": 0.9478 + }, + { + "start": 13092.08, + "end": 13092.98, + "probability": 0.7433 + }, + { + "start": 13094.58, + "end": 13096.74, + "probability": 0.8583 + }, + { + "start": 13098.9, + "end": 13101.04, + "probability": 0.9941 + }, + { + "start": 13101.04, + "end": 13104.58, + "probability": 0.8356 + }, + { + "start": 13104.64, + "end": 13109.28, + "probability": 0.9917 + }, + { + "start": 13109.8, + "end": 13112.74, + "probability": 0.3617 + }, + { + "start": 13113.84, + "end": 13115.36, + "probability": 0.036 + }, + { + "start": 13116.92, + "end": 13117.92, + "probability": 0.3479 + }, + { + "start": 13119.98, + "end": 13120.8, + "probability": 0.0407 + }, + { + "start": 13121.3, + "end": 13122.98, + "probability": 0.1038 + }, + { + "start": 13122.98, + "end": 13122.98, + "probability": 0.3981 + }, + { + "start": 13122.98, + "end": 13123.38, + "probability": 0.431 + }, + { + "start": 13123.58, + "end": 13124.5, + "probability": 0.5179 + }, + { + "start": 13126.78, + "end": 13127.38, + "probability": 0.4884 + }, + { + "start": 13130.14, + "end": 13131.3, + "probability": 0.1923 + }, + { + "start": 13131.3, + "end": 13131.54, + "probability": 0.0495 + }, + { + "start": 13132.12, + "end": 13133.24, + "probability": 0.2383 + }, + { + "start": 13133.24, + "end": 13133.8, + "probability": 0.4198 + }, + { + "start": 13133.98, + "end": 13134.52, + "probability": 0.4438 + }, + { + "start": 13134.62, + "end": 13136.11, + "probability": 0.9697 + }, + { + "start": 13137.42, + "end": 13139.1, + "probability": 0.9844 + }, + { + "start": 13140.1, + "end": 13143.16, + "probability": 0.8699 + }, + { + "start": 13143.22, + "end": 13145.26, + "probability": 0.4964 + }, + { + "start": 13145.5, + "end": 13146.76, + "probability": 0.5956 + }, + { + "start": 13147.28, + "end": 13148.92, + "probability": 0.9073 + }, + { + "start": 13149.38, + "end": 13151.28, + "probability": 0.8057 + }, + { + "start": 13152.04, + "end": 13152.92, + "probability": 0.8246 + }, + { + "start": 13153.08, + "end": 13154.22, + "probability": 0.5136 + }, + { + "start": 13154.5, + "end": 13156.18, + "probability": 0.6924 + }, + { + "start": 13156.36, + "end": 13156.76, + "probability": 0.0552 + }, + { + "start": 13156.76, + "end": 13160.41, + "probability": 0.0955 + }, + { + "start": 13161.46, + "end": 13167.64, + "probability": 0.9562 + }, + { + "start": 13168.1, + "end": 13169.48, + "probability": 0.767 + }, + { + "start": 13170.96, + "end": 13171.38, + "probability": 0.3962 + }, + { + "start": 13172.72, + "end": 13177.0, + "probability": 0.8491 + }, + { + "start": 13177.0, + "end": 13181.92, + "probability": 0.9634 + }, + { + "start": 13182.34, + "end": 13183.2, + "probability": 0.7387 + }, + { + "start": 13183.24, + "end": 13184.7, + "probability": 0.7745 + }, + { + "start": 13185.04, + "end": 13185.7, + "probability": 0.7821 + }, + { + "start": 13185.98, + "end": 13187.16, + "probability": 0.5434 + }, + { + "start": 13188.22, + "end": 13189.64, + "probability": 0.9989 + }, + { + "start": 13189.72, + "end": 13190.52, + "probability": 0.8683 + }, + { + "start": 13190.56, + "end": 13192.5, + "probability": 0.9951 + }, + { + "start": 13193.1, + "end": 13197.88, + "probability": 0.9592 + }, + { + "start": 13198.16, + "end": 13202.47, + "probability": 0.9941 + }, + { + "start": 13203.18, + "end": 13204.52, + "probability": 0.7567 + }, + { + "start": 13205.82, + "end": 13206.64, + "probability": 0.9296 + }, + { + "start": 13207.94, + "end": 13209.23, + "probability": 0.8675 + }, + { + "start": 13209.84, + "end": 13210.94, + "probability": 0.9775 + }, + { + "start": 13211.5, + "end": 13212.14, + "probability": 0.8801 + }, + { + "start": 13214.02, + "end": 13214.66, + "probability": 0.8259 + }, + { + "start": 13215.08, + "end": 13217.5, + "probability": 0.9962 + }, + { + "start": 13217.5, + "end": 13221.0, + "probability": 0.6015 + }, + { + "start": 13221.44, + "end": 13222.56, + "probability": 0.3373 + }, + { + "start": 13222.62, + "end": 13223.48, + "probability": 0.7734 + }, + { + "start": 13224.15, + "end": 13225.51, + "probability": 0.7979 + }, + { + "start": 13226.38, + "end": 13228.82, + "probability": 0.9679 + }, + { + "start": 13229.4, + "end": 13234.44, + "probability": 0.8928 + }, + { + "start": 13234.88, + "end": 13238.74, + "probability": 0.9832 + }, + { + "start": 13239.06, + "end": 13242.66, + "probability": 0.9383 + }, + { + "start": 13242.88, + "end": 13244.12, + "probability": 0.8032 + }, + { + "start": 13244.2, + "end": 13246.09, + "probability": 0.9949 + }, + { + "start": 13246.8, + "end": 13248.88, + "probability": 0.791 + }, + { + "start": 13249.2, + "end": 13253.12, + "probability": 0.9809 + }, + { + "start": 13253.36, + "end": 13255.66, + "probability": 0.8958 + }, + { + "start": 13255.68, + "end": 13256.18, + "probability": 0.6672 + }, + { + "start": 13256.24, + "end": 13256.86, + "probability": 0.3497 + }, + { + "start": 13257.36, + "end": 13263.22, + "probability": 0.7919 + }, + { + "start": 13263.68, + "end": 13266.42, + "probability": 0.9721 + }, + { + "start": 13266.72, + "end": 13269.76, + "probability": 0.9412 + }, + { + "start": 13269.84, + "end": 13270.28, + "probability": 0.6844 + }, + { + "start": 13271.02, + "end": 13273.24, + "probability": 0.3262 + }, + { + "start": 13273.4, + "end": 13274.24, + "probability": 0.4838 + }, + { + "start": 13274.32, + "end": 13276.04, + "probability": 0.9824 + }, + { + "start": 13276.16, + "end": 13276.96, + "probability": 0.9971 + }, + { + "start": 13277.96, + "end": 13281.9, + "probability": 0.9432 + }, + { + "start": 13282.68, + "end": 13286.82, + "probability": 0.6399 + }, + { + "start": 13286.88, + "end": 13287.58, + "probability": 0.3376 + }, + { + "start": 13287.88, + "end": 13288.66, + "probability": 0.7904 + }, + { + "start": 13288.88, + "end": 13289.42, + "probability": 0.7296 + }, + { + "start": 13289.42, + "end": 13290.28, + "probability": 0.6745 + }, + { + "start": 13290.3, + "end": 13291.4, + "probability": 0.896 + }, + { + "start": 13293.62, + "end": 13298.7, + "probability": 0.2469 + }, + { + "start": 13298.76, + "end": 13299.38, + "probability": 0.1221 + }, + { + "start": 13299.38, + "end": 13299.38, + "probability": 0.314 + }, + { + "start": 13299.38, + "end": 13300.48, + "probability": 0.3242 + }, + { + "start": 13300.48, + "end": 13300.82, + "probability": 0.4445 + }, + { + "start": 13300.82, + "end": 13301.66, + "probability": 0.7722 + }, + { + "start": 13301.92, + "end": 13302.9, + "probability": 0.8706 + }, + { + "start": 13303.04, + "end": 13304.42, + "probability": 0.9751 + }, + { + "start": 13304.48, + "end": 13308.26, + "probability": 0.2954 + }, + { + "start": 13308.26, + "end": 13312.54, + "probability": 0.9836 + }, + { + "start": 13312.54, + "end": 13317.02, + "probability": 0.9786 + }, + { + "start": 13317.14, + "end": 13319.3, + "probability": 0.5556 + }, + { + "start": 13319.88, + "end": 13320.6, + "probability": 0.5529 + }, + { + "start": 13320.8, + "end": 13321.56, + "probability": 0.4438 + }, + { + "start": 13321.56, + "end": 13322.72, + "probability": 0.6023 + }, + { + "start": 13330.68, + "end": 13333.26, + "probability": 0.9259 + }, + { + "start": 13335.92, + "end": 13337.72, + "probability": 0.1918 + }, + { + "start": 13339.1, + "end": 13340.23, + "probability": 0.2688 + }, + { + "start": 13340.96, + "end": 13345.64, + "probability": 0.7036 + }, + { + "start": 13346.62, + "end": 13349.46, + "probability": 0.7415 + }, + { + "start": 13350.06, + "end": 13353.24, + "probability": 0.6102 + }, + { + "start": 13353.24, + "end": 13356.96, + "probability": 0.9533 + }, + { + "start": 13356.96, + "end": 13361.5, + "probability": 0.9756 + }, + { + "start": 13362.04, + "end": 13363.78, + "probability": 0.765 + }, + { + "start": 13363.84, + "end": 13366.52, + "probability": 0.8805 + }, + { + "start": 13366.58, + "end": 13370.66, + "probability": 0.9466 + }, + { + "start": 13371.1, + "end": 13373.42, + "probability": 0.6074 + }, + { + "start": 13373.84, + "end": 13374.4, + "probability": 0.984 + }, + { + "start": 13375.54, + "end": 13377.08, + "probability": 0.8904 + }, + { + "start": 13378.54, + "end": 13380.3, + "probability": 0.6408 + }, + { + "start": 13381.14, + "end": 13385.36, + "probability": 0.675 + }, + { + "start": 13386.72, + "end": 13388.94, + "probability": 0.9187 + }, + { + "start": 13389.42, + "end": 13391.24, + "probability": 0.6281 + }, + { + "start": 13391.28, + "end": 13402.12, + "probability": 0.9913 + }, + { + "start": 13403.08, + "end": 13409.14, + "probability": 0.9883 + }, + { + "start": 13409.66, + "end": 13411.0, + "probability": 0.9418 + }, + { + "start": 13412.26, + "end": 13418.02, + "probability": 0.9928 + }, + { + "start": 13419.02, + "end": 13425.56, + "probability": 0.9263 + }, + { + "start": 13425.9, + "end": 13427.08, + "probability": 0.8262 + }, + { + "start": 13427.14, + "end": 13427.72, + "probability": 0.8412 + }, + { + "start": 13428.7, + "end": 13435.34, + "probability": 0.9082 + }, + { + "start": 13436.36, + "end": 13437.48, + "probability": 0.7988 + }, + { + "start": 13438.04, + "end": 13439.02, + "probability": 0.767 + }, + { + "start": 13440.22, + "end": 13441.36, + "probability": 0.9218 + }, + { + "start": 13442.06, + "end": 13445.26, + "probability": 0.9735 + }, + { + "start": 13446.16, + "end": 13449.6, + "probability": 0.9578 + }, + { + "start": 13450.16, + "end": 13451.7, + "probability": 0.5907 + }, + { + "start": 13452.32, + "end": 13453.22, + "probability": 0.8686 + }, + { + "start": 13453.68, + "end": 13458.66, + "probability": 0.6841 + }, + { + "start": 13459.56, + "end": 13460.04, + "probability": 0.5352 + }, + { + "start": 13461.9, + "end": 13468.08, + "probability": 0.99 + }, + { + "start": 13468.08, + "end": 13473.34, + "probability": 0.9475 + }, + { + "start": 13474.52, + "end": 13475.02, + "probability": 0.7888 + }, + { + "start": 13475.34, + "end": 13476.86, + "probability": 0.876 + }, + { + "start": 13477.88, + "end": 13484.94, + "probability": 0.9636 + }, + { + "start": 13486.36, + "end": 13488.0, + "probability": 0.8311 + }, + { + "start": 13489.3, + "end": 13491.04, + "probability": 0.8811 + }, + { + "start": 13492.0, + "end": 13493.4, + "probability": 0.9917 + }, + { + "start": 13494.32, + "end": 13498.7, + "probability": 0.8477 + }, + { + "start": 13499.12, + "end": 13499.78, + "probability": 0.7791 + }, + { + "start": 13499.9, + "end": 13500.64, + "probability": 0.5555 + }, + { + "start": 13500.74, + "end": 13501.36, + "probability": 0.6667 + }, + { + "start": 13501.46, + "end": 13502.52, + "probability": 0.7554 + }, + { + "start": 13502.76, + "end": 13503.76, + "probability": 0.6917 + }, + { + "start": 13504.98, + "end": 13508.62, + "probability": 0.8064 + }, + { + "start": 13510.54, + "end": 13511.96, + "probability": 0.3087 + }, + { + "start": 13512.64, + "end": 13517.48, + "probability": 0.9465 + }, + { + "start": 13517.98, + "end": 13518.92, + "probability": 0.9186 + }, + { + "start": 13519.88, + "end": 13520.64, + "probability": 0.8807 + }, + { + "start": 13521.44, + "end": 13525.98, + "probability": 0.9916 + }, + { + "start": 13526.62, + "end": 13527.84, + "probability": 0.7673 + }, + { + "start": 13528.5, + "end": 13529.92, + "probability": 0.7302 + }, + { + "start": 13530.54, + "end": 13531.46, + "probability": 0.6064 + }, + { + "start": 13532.0, + "end": 13535.9, + "probability": 0.8581 + }, + { + "start": 13536.72, + "end": 13537.0, + "probability": 0.8237 + }, + { + "start": 13537.64, + "end": 13539.78, + "probability": 0.9949 + }, + { + "start": 13541.44, + "end": 13543.48, + "probability": 0.9553 + }, + { + "start": 13544.46, + "end": 13545.36, + "probability": 0.918 + }, + { + "start": 13545.44, + "end": 13550.16, + "probability": 0.7905 + }, + { + "start": 13550.4, + "end": 13551.3, + "probability": 0.7626 + }, + { + "start": 13552.34, + "end": 13553.56, + "probability": 0.808 + }, + { + "start": 13554.52, + "end": 13557.36, + "probability": 0.7921 + }, + { + "start": 13558.1, + "end": 13561.92, + "probability": 0.787 + }, + { + "start": 13561.92, + "end": 13566.6, + "probability": 0.9956 + }, + { + "start": 13567.9, + "end": 13568.94, + "probability": 0.9614 + }, + { + "start": 13569.6, + "end": 13572.0, + "probability": 0.995 + }, + { + "start": 13573.14, + "end": 13573.62, + "probability": 0.774 + }, + { + "start": 13573.68, + "end": 13574.94, + "probability": 0.8979 + }, + { + "start": 13575.34, + "end": 13579.52, + "probability": 0.8987 + }, + { + "start": 13579.64, + "end": 13582.8, + "probability": 0.9973 + }, + { + "start": 13583.68, + "end": 13585.92, + "probability": 0.7566 + }, + { + "start": 13587.02, + "end": 13587.92, + "probability": 0.8776 + }, + { + "start": 13589.06, + "end": 13589.84, + "probability": 0.8404 + }, + { + "start": 13590.98, + "end": 13592.26, + "probability": 0.9126 + }, + { + "start": 13593.3, + "end": 13598.22, + "probability": 0.8412 + }, + { + "start": 13598.22, + "end": 13598.74, + "probability": 0.905 + }, + { + "start": 13599.78, + "end": 13604.56, + "probability": 0.8177 + }, + { + "start": 13605.48, + "end": 13606.98, + "probability": 0.8059 + }, + { + "start": 13608.42, + "end": 13615.58, + "probability": 0.9172 + }, + { + "start": 13617.32, + "end": 13618.34, + "probability": 0.8121 + }, + { + "start": 13618.64, + "end": 13622.2, + "probability": 0.8534 + }, + { + "start": 13622.88, + "end": 13633.88, + "probability": 0.979 + }, + { + "start": 13634.44, + "end": 13637.76, + "probability": 0.7971 + }, + { + "start": 13639.02, + "end": 13640.06, + "probability": 0.7876 + }, + { + "start": 13640.78, + "end": 13643.5, + "probability": 0.9741 + }, + { + "start": 13644.3, + "end": 13646.3, + "probability": 0.7835 + }, + { + "start": 13647.08, + "end": 13649.18, + "probability": 0.9794 + }, + { + "start": 13649.98, + "end": 13652.94, + "probability": 0.9851 + }, + { + "start": 13653.74, + "end": 13654.28, + "probability": 0.8024 + }, + { + "start": 13654.98, + "end": 13656.08, + "probability": 0.5042 + }, + { + "start": 13657.02, + "end": 13660.38, + "probability": 0.9507 + }, + { + "start": 13660.84, + "end": 13661.56, + "probability": 0.9563 + }, + { + "start": 13662.82, + "end": 13663.28, + "probability": 0.5515 + }, + { + "start": 13663.84, + "end": 13665.16, + "probability": 0.9521 + }, + { + "start": 13665.8, + "end": 13669.02, + "probability": 0.9941 + }, + { + "start": 13669.02, + "end": 13675.06, + "probability": 0.6647 + }, + { + "start": 13675.76, + "end": 13681.6, + "probability": 0.9927 + }, + { + "start": 13681.6, + "end": 13686.74, + "probability": 0.9436 + }, + { + "start": 13686.98, + "end": 13687.6, + "probability": 0.7302 + }, + { + "start": 13688.6, + "end": 13691.18, + "probability": 0.9199 + }, + { + "start": 13693.22, + "end": 13698.82, + "probability": 0.9195 + }, + { + "start": 13700.22, + "end": 13706.28, + "probability": 0.9352 + }, + { + "start": 13706.54, + "end": 13708.12, + "probability": 0.9107 + }, + { + "start": 13708.86, + "end": 13714.52, + "probability": 0.908 + }, + { + "start": 13715.86, + "end": 13717.44, + "probability": 0.8915 + }, + { + "start": 13718.5, + "end": 13722.02, + "probability": 0.8842 + }, + { + "start": 13722.9, + "end": 13726.1, + "probability": 0.9878 + }, + { + "start": 13726.7, + "end": 13728.86, + "probability": 0.9393 + }, + { + "start": 13729.28, + "end": 13731.36, + "probability": 0.7234 + }, + { + "start": 13732.12, + "end": 13732.64, + "probability": 0.9126 + }, + { + "start": 13733.04, + "end": 13738.54, + "probability": 0.8704 + }, + { + "start": 13739.52, + "end": 13744.48, + "probability": 0.9873 + }, + { + "start": 13744.74, + "end": 13750.38, + "probability": 0.9922 + }, + { + "start": 13750.94, + "end": 13752.77, + "probability": 0.9961 + }, + { + "start": 13753.24, + "end": 13755.74, + "probability": 0.9136 + }, + { + "start": 13756.38, + "end": 13763.52, + "probability": 0.9884 + }, + { + "start": 13763.9, + "end": 13767.86, + "probability": 0.666 + }, + { + "start": 13768.36, + "end": 13770.76, + "probability": 0.9019 + }, + { + "start": 13770.98, + "end": 13776.42, + "probability": 0.9602 + }, + { + "start": 13776.88, + "end": 13780.96, + "probability": 0.8344 + }, + { + "start": 13781.32, + "end": 13782.16, + "probability": 0.7075 + }, + { + "start": 13782.82, + "end": 13789.4, + "probability": 0.95 + }, + { + "start": 13790.0, + "end": 13791.56, + "probability": 0.6746 + }, + { + "start": 13792.5, + "end": 13794.08, + "probability": 0.8319 + }, + { + "start": 13794.98, + "end": 13802.12, + "probability": 0.9595 + }, + { + "start": 13802.66, + "end": 13803.74, + "probability": 0.7142 + }, + { + "start": 13804.24, + "end": 13806.18, + "probability": 0.8116 + }, + { + "start": 13806.36, + "end": 13812.02, + "probability": 0.9299 + }, + { + "start": 13812.92, + "end": 13814.74, + "probability": 0.8893 + }, + { + "start": 13815.88, + "end": 13817.38, + "probability": 0.9152 + }, + { + "start": 13819.12, + "end": 13821.24, + "probability": 0.9939 + }, + { + "start": 13822.14, + "end": 13825.58, + "probability": 0.8981 + }, + { + "start": 13825.94, + "end": 13827.42, + "probability": 0.6218 + }, + { + "start": 13827.9, + "end": 13829.64, + "probability": 0.6924 + }, + { + "start": 13829.7, + "end": 13830.16, + "probability": 0.8001 + }, + { + "start": 13830.26, + "end": 13830.84, + "probability": 0.8409 + }, + { + "start": 13831.14, + "end": 13832.1, + "probability": 0.8167 + }, + { + "start": 13833.54, + "end": 13842.46, + "probability": 0.957 + }, + { + "start": 13843.18, + "end": 13850.0, + "probability": 0.9658 + }, + { + "start": 13850.88, + "end": 13852.8, + "probability": 0.6669 + }, + { + "start": 13853.24, + "end": 13854.26, + "probability": 0.8723 + }, + { + "start": 13855.12, + "end": 13861.16, + "probability": 0.9757 + }, + { + "start": 13861.92, + "end": 13865.66, + "probability": 0.9828 + }, + { + "start": 13866.72, + "end": 13867.46, + "probability": 0.802 + }, + { + "start": 13868.84, + "end": 13874.38, + "probability": 0.9846 + }, + { + "start": 13876.6, + "end": 13877.3, + "probability": 0.9723 + }, + { + "start": 13878.08, + "end": 13879.2, + "probability": 0.6841 + }, + { + "start": 13879.9, + "end": 13880.46, + "probability": 0.6326 + }, + { + "start": 13881.18, + "end": 13884.5, + "probability": 0.666 + }, + { + "start": 13885.0, + "end": 13886.2, + "probability": 0.7236 + }, + { + "start": 13887.36, + "end": 13888.38, + "probability": 0.9888 + }, + { + "start": 13889.56, + "end": 13890.08, + "probability": 0.66 + }, + { + "start": 13891.02, + "end": 13893.02, + "probability": 0.958 + }, + { + "start": 13893.22, + "end": 13893.66, + "probability": 0.5274 + }, + { + "start": 13895.44, + "end": 13896.44, + "probability": 0.6419 + }, + { + "start": 13897.74, + "end": 13899.94, + "probability": 0.682 + }, + { + "start": 13900.5, + "end": 13901.68, + "probability": 0.3738 + }, + { + "start": 13901.84, + "end": 13902.5, + "probability": 0.5113 + }, + { + "start": 13902.98, + "end": 13905.58, + "probability": 0.6062 + }, + { + "start": 13905.58, + "end": 13908.46, + "probability": 0.9893 + }, + { + "start": 13909.24, + "end": 13911.64, + "probability": 0.6234 + }, + { + "start": 13912.0, + "end": 13912.6, + "probability": 0.9246 + }, + { + "start": 13913.96, + "end": 13915.68, + "probability": 0.9456 + }, + { + "start": 13916.4, + "end": 13917.6, + "probability": 0.9402 + }, + { + "start": 13918.16, + "end": 13920.84, + "probability": 0.9065 + }, + { + "start": 13921.16, + "end": 13921.92, + "probability": 0.9868 + }, + { + "start": 13922.88, + "end": 13925.72, + "probability": 0.9938 + }, + { + "start": 13926.68, + "end": 13928.08, + "probability": 0.5826 + }, + { + "start": 13928.52, + "end": 13931.26, + "probability": 0.9875 + }, + { + "start": 13931.74, + "end": 13933.25, + "probability": 0.8404 + }, + { + "start": 13934.3, + "end": 13936.28, + "probability": 0.5243 + }, + { + "start": 13936.56, + "end": 13941.04, + "probability": 0.8983 + }, + { + "start": 13941.68, + "end": 13944.02, + "probability": 0.9153 + }, + { + "start": 13944.58, + "end": 13946.56, + "probability": 0.8745 + }, + { + "start": 13947.6, + "end": 13948.42, + "probability": 0.7127 + }, + { + "start": 13949.1, + "end": 13949.9, + "probability": 0.8035 + }, + { + "start": 13949.98, + "end": 13951.67, + "probability": 0.9399 + }, + { + "start": 13952.96, + "end": 13955.98, + "probability": 0.9028 + }, + { + "start": 13956.46, + "end": 13959.86, + "probability": 0.9829 + }, + { + "start": 13960.82, + "end": 13961.86, + "probability": 0.5437 + }, + { + "start": 13962.76, + "end": 13965.02, + "probability": 0.9534 + }, + { + "start": 13966.24, + "end": 13968.16, + "probability": 0.9309 + }, + { + "start": 13968.64, + "end": 13972.44, + "probability": 0.9357 + }, + { + "start": 13973.56, + "end": 13979.18, + "probability": 0.7392 + }, + { + "start": 13980.22, + "end": 13981.58, + "probability": 0.7908 + }, + { + "start": 13982.94, + "end": 13984.08, + "probability": 0.8036 + }, + { + "start": 13984.34, + "end": 13986.32, + "probability": 0.9602 + }, + { + "start": 13986.38, + "end": 13990.78, + "probability": 0.5551 + }, + { + "start": 13990.86, + "end": 13991.34, + "probability": 0.6771 + }, + { + "start": 13991.48, + "end": 13992.56, + "probability": 0.8288 + }, + { + "start": 13992.86, + "end": 13993.58, + "probability": 0.025 + }, + { + "start": 13993.82, + "end": 13995.56, + "probability": 0.5234 + }, + { + "start": 13995.64, + "end": 13995.74, + "probability": 0.7366 + }, + { + "start": 13995.94, + "end": 13996.18, + "probability": 0.5621 + }, + { + "start": 13996.26, + "end": 13997.08, + "probability": 0.4939 + }, + { + "start": 13997.14, + "end": 13998.66, + "probability": 0.8252 + }, + { + "start": 13998.66, + "end": 14003.54, + "probability": 0.6029 + }, + { + "start": 14014.4, + "end": 14014.92, + "probability": 0.1739 + }, + { + "start": 14015.26, + "end": 14016.2, + "probability": 0.255 + }, + { + "start": 14017.12, + "end": 14017.48, + "probability": 0.0277 + }, + { + "start": 14017.48, + "end": 14017.48, + "probability": 0.5792 + }, + { + "start": 14017.48, + "end": 14017.96, + "probability": 0.11 + }, + { + "start": 14020.54, + "end": 14025.5, + "probability": 0.2149 + }, + { + "start": 14025.5, + "end": 14025.7, + "probability": 0.053 + }, + { + "start": 14026.4, + "end": 14026.54, + "probability": 0.1662 + }, + { + "start": 14026.54, + "end": 14026.54, + "probability": 0.063 + }, + { + "start": 14026.54, + "end": 14026.54, + "probability": 0.4078 + }, + { + "start": 14026.54, + "end": 14026.54, + "probability": 0.0473 + }, + { + "start": 14026.54, + "end": 14026.54, + "probability": 0.0706 + }, + { + "start": 14026.54, + "end": 14026.54, + "probability": 0.1403 + }, + { + "start": 14026.54, + "end": 14027.42, + "probability": 0.5748 + }, + { + "start": 14027.76, + "end": 14028.63, + "probability": 0.7332 + }, + { + "start": 14029.28, + "end": 14029.64, + "probability": 0.227 + }, + { + "start": 14029.64, + "end": 14030.56, + "probability": 0.6074 + }, + { + "start": 14031.08, + "end": 14031.64, + "probability": 0.5602 + }, + { + "start": 14031.72, + "end": 14033.6, + "probability": 0.618 + }, + { + "start": 14033.72, + "end": 14034.04, + "probability": 0.5574 + }, + { + "start": 14034.14, + "end": 14036.32, + "probability": 0.9753 + }, + { + "start": 14036.66, + "end": 14038.02, + "probability": 0.951 + }, + { + "start": 14038.72, + "end": 14039.7, + "probability": 0.8725 + }, + { + "start": 14041.68, + "end": 14043.42, + "probability": 0.0361 + }, + { + "start": 14045.18, + "end": 14046.92, + "probability": 0.0377 + }, + { + "start": 14051.3, + "end": 14054.5, + "probability": 0.7451 + }, + { + "start": 14062.56, + "end": 14065.46, + "probability": 0.657 + }, + { + "start": 14066.48, + "end": 14072.12, + "probability": 0.7856 + }, + { + "start": 14072.82, + "end": 14076.88, + "probability": 0.768 + }, + { + "start": 14077.6, + "end": 14078.5, + "probability": 0.6833 + }, + { + "start": 14079.76, + "end": 14080.14, + "probability": 0.5037 + }, + { + "start": 14080.2, + "end": 14080.66, + "probability": 0.5455 + }, + { + "start": 14080.7, + "end": 14081.2, + "probability": 0.7582 + }, + { + "start": 14081.26, + "end": 14084.92, + "probability": 0.983 + }, + { + "start": 14085.04, + "end": 14092.98, + "probability": 0.9878 + }, + { + "start": 14093.7, + "end": 14099.84, + "probability": 0.845 + }, + { + "start": 14099.88, + "end": 14100.68, + "probability": 0.7391 + }, + { + "start": 14100.76, + "end": 14107.14, + "probability": 0.8813 + }, + { + "start": 14108.12, + "end": 14112.22, + "probability": 0.9761 + }, + { + "start": 14113.04, + "end": 14116.98, + "probability": 0.8827 + }, + { + "start": 14117.6, + "end": 14119.14, + "probability": 0.9502 + }, + { + "start": 14119.68, + "end": 14123.04, + "probability": 0.9893 + }, + { + "start": 14123.18, + "end": 14130.08, + "probability": 0.9977 + }, + { + "start": 14130.3, + "end": 14131.58, + "probability": 0.7717 + }, + { + "start": 14131.72, + "end": 14133.73, + "probability": 0.9979 + }, + { + "start": 14134.56, + "end": 14138.52, + "probability": 0.9926 + }, + { + "start": 14139.96, + "end": 14140.76, + "probability": 0.7334 + }, + { + "start": 14140.96, + "end": 14143.6, + "probability": 0.8829 + }, + { + "start": 14144.24, + "end": 14147.14, + "probability": 0.9036 + }, + { + "start": 14148.26, + "end": 14154.24, + "probability": 0.9919 + }, + { + "start": 14154.24, + "end": 14159.3, + "probability": 0.9988 + }, + { + "start": 14159.6, + "end": 14161.42, + "probability": 0.9966 + }, + { + "start": 14162.1, + "end": 14162.72, + "probability": 0.1323 + }, + { + "start": 14162.72, + "end": 14163.68, + "probability": 0.6991 + }, + { + "start": 14163.76, + "end": 14168.06, + "probability": 0.9944 + }, + { + "start": 14168.58, + "end": 14169.44, + "probability": 0.8083 + }, + { + "start": 14170.28, + "end": 14174.61, + "probability": 0.9911 + }, + { + "start": 14174.88, + "end": 14178.92, + "probability": 0.9734 + }, + { + "start": 14179.64, + "end": 14181.64, + "probability": 0.9854 + }, + { + "start": 14182.7, + "end": 14184.56, + "probability": 0.2898 + }, + { + "start": 14184.74, + "end": 14185.74, + "probability": 0.843 + }, + { + "start": 14185.86, + "end": 14188.38, + "probability": 0.9984 + }, + { + "start": 14189.18, + "end": 14199.2, + "probability": 0.9944 + }, + { + "start": 14200.08, + "end": 14202.22, + "probability": 0.9467 + }, + { + "start": 14202.64, + "end": 14210.52, + "probability": 0.9929 + }, + { + "start": 14210.52, + "end": 14211.2, + "probability": 0.0217 + }, + { + "start": 14211.58, + "end": 14215.92, + "probability": 0.9978 + }, + { + "start": 14216.1, + "end": 14221.52, + "probability": 0.9789 + }, + { + "start": 14221.52, + "end": 14226.16, + "probability": 0.995 + }, + { + "start": 14226.28, + "end": 14227.28, + "probability": 0.909 + }, + { + "start": 14227.88, + "end": 14228.42, + "probability": 0.6189 + }, + { + "start": 14228.48, + "end": 14231.06, + "probability": 0.9279 + }, + { + "start": 14231.32, + "end": 14237.06, + "probability": 0.8895 + }, + { + "start": 14237.4, + "end": 14239.64, + "probability": 0.9069 + }, + { + "start": 14240.2, + "end": 14240.98, + "probability": 0.5969 + }, + { + "start": 14241.1, + "end": 14245.78, + "probability": 0.9883 + }, + { + "start": 14246.26, + "end": 14246.84, + "probability": 0.6612 + }, + { + "start": 14247.06, + "end": 14250.28, + "probability": 0.9961 + }, + { + "start": 14250.28, + "end": 14255.9, + "probability": 0.9785 + }, + { + "start": 14255.9, + "end": 14260.06, + "probability": 0.9954 + }, + { + "start": 14260.26, + "end": 14261.48, + "probability": 0.9988 + }, + { + "start": 14262.0, + "end": 14265.12, + "probability": 0.9985 + }, + { + "start": 14265.12, + "end": 14269.96, + "probability": 0.9948 + }, + { + "start": 14270.18, + "end": 14272.54, + "probability": 0.996 + }, + { + "start": 14272.54, + "end": 14276.34, + "probability": 0.9492 + }, + { + "start": 14276.92, + "end": 14284.12, + "probability": 0.9857 + }, + { + "start": 14284.28, + "end": 14285.8, + "probability": 0.9966 + }, + { + "start": 14286.28, + "end": 14289.66, + "probability": 0.9841 + }, + { + "start": 14289.66, + "end": 14294.24, + "probability": 0.8678 + }, + { + "start": 14294.44, + "end": 14298.3, + "probability": 0.9965 + }, + { + "start": 14298.58, + "end": 14304.38, + "probability": 0.9953 + }, + { + "start": 14304.82, + "end": 14309.62, + "probability": 0.9976 + }, + { + "start": 14313.54, + "end": 14315.88, + "probability": 0.8984 + }, + { + "start": 14316.22, + "end": 14316.58, + "probability": 0.5054 + }, + { + "start": 14316.76, + "end": 14320.3, + "probability": 0.9869 + }, + { + "start": 14320.3, + "end": 14324.7, + "probability": 0.944 + }, + { + "start": 14324.76, + "end": 14326.18, + "probability": 0.7413 + }, + { + "start": 14326.24, + "end": 14327.38, + "probability": 0.5549 + }, + { + "start": 14327.88, + "end": 14330.12, + "probability": 0.9047 + }, + { + "start": 14330.64, + "end": 14333.74, + "probability": 0.994 + }, + { + "start": 14334.08, + "end": 14334.66, + "probability": 0.9633 + }, + { + "start": 14334.9, + "end": 14335.66, + "probability": 0.9517 + }, + { + "start": 14336.4, + "end": 14337.64, + "probability": 0.984 + }, + { + "start": 14337.94, + "end": 14339.36, + "probability": 0.9806 + }, + { + "start": 14339.52, + "end": 14339.84, + "probability": 0.9436 + }, + { + "start": 14339.88, + "end": 14343.96, + "probability": 0.9968 + }, + { + "start": 14344.04, + "end": 14347.28, + "probability": 0.7521 + }, + { + "start": 14347.56, + "end": 14348.84, + "probability": 0.8798 + }, + { + "start": 14349.28, + "end": 14350.14, + "probability": 0.9054 + }, + { + "start": 14350.48, + "end": 14352.78, + "probability": 0.7412 + }, + { + "start": 14353.0, + "end": 14355.08, + "probability": 0.9941 + }, + { + "start": 14355.52, + "end": 14356.0, + "probability": 0.5536 + }, + { + "start": 14356.06, + "end": 14356.52, + "probability": 0.761 + }, + { + "start": 14356.6, + "end": 14360.33, + "probability": 0.9954 + }, + { + "start": 14361.04, + "end": 14361.84, + "probability": 0.8525 + }, + { + "start": 14362.64, + "end": 14367.68, + "probability": 0.9755 + }, + { + "start": 14367.68, + "end": 14370.8, + "probability": 0.9969 + }, + { + "start": 14371.42, + "end": 14372.3, + "probability": 0.7959 + }, + { + "start": 14372.36, + "end": 14373.94, + "probability": 0.792 + }, + { + "start": 14374.38, + "end": 14376.16, + "probability": 0.8848 + }, + { + "start": 14376.4, + "end": 14382.7, + "probability": 0.6286 + }, + { + "start": 14382.84, + "end": 14385.9, + "probability": 0.8387 + }, + { + "start": 14385.98, + "end": 14390.82, + "probability": 0.9829 + }, + { + "start": 14390.84, + "end": 14395.34, + "probability": 0.9881 + }, + { + "start": 14395.4, + "end": 14399.26, + "probability": 0.9924 + }, + { + "start": 14399.26, + "end": 14402.62, + "probability": 0.9985 + }, + { + "start": 14403.08, + "end": 14409.44, + "probability": 0.9877 + }, + { + "start": 14409.66, + "end": 14413.44, + "probability": 0.9474 + }, + { + "start": 14413.68, + "end": 14417.22, + "probability": 0.9563 + }, + { + "start": 14417.7, + "end": 14420.68, + "probability": 0.9954 + }, + { + "start": 14420.88, + "end": 14425.45, + "probability": 0.9998 + }, + { + "start": 14425.58, + "end": 14427.08, + "probability": 0.854 + }, + { + "start": 14427.58, + "end": 14428.32, + "probability": 0.8774 + }, + { + "start": 14428.44, + "end": 14429.52, + "probability": 0.9607 + }, + { + "start": 14429.62, + "end": 14431.48, + "probability": 0.9468 + }, + { + "start": 14432.0, + "end": 14435.0, + "probability": 0.9852 + }, + { + "start": 14435.56, + "end": 14439.13, + "probability": 0.8876 + }, + { + "start": 14439.64, + "end": 14441.88, + "probability": 0.9988 + }, + { + "start": 14442.28, + "end": 14444.4, + "probability": 0.9967 + }, + { + "start": 14444.7, + "end": 14445.94, + "probability": 0.8931 + }, + { + "start": 14446.16, + "end": 14450.86, + "probability": 0.991 + }, + { + "start": 14450.94, + "end": 14451.52, + "probability": 0.5511 + }, + { + "start": 14451.72, + "end": 14453.54, + "probability": 0.9989 + }, + { + "start": 14455.24, + "end": 14456.16, + "probability": 0.7193 + }, + { + "start": 14456.24, + "end": 14456.92, + "probability": 0.719 + }, + { + "start": 14457.3, + "end": 14460.58, + "probability": 0.9953 + }, + { + "start": 14460.76, + "end": 14461.16, + "probability": 0.8532 + }, + { + "start": 14461.3, + "end": 14461.66, + "probability": 0.6119 + }, + { + "start": 14461.76, + "end": 14466.3, + "probability": 0.9805 + }, + { + "start": 14466.46, + "end": 14468.84, + "probability": 0.9919 + }, + { + "start": 14469.26, + "end": 14472.94, + "probability": 0.7684 + }, + { + "start": 14473.34, + "end": 14475.24, + "probability": 0.9972 + }, + { + "start": 14475.42, + "end": 14476.72, + "probability": 0.9688 + }, + { + "start": 14476.78, + "end": 14480.01, + "probability": 0.972 + }, + { + "start": 14480.5, + "end": 14483.58, + "probability": 0.9955 + }, + { + "start": 14483.74, + "end": 14487.98, + "probability": 0.978 + }, + { + "start": 14488.2, + "end": 14489.39, + "probability": 0.9367 + }, + { + "start": 14489.92, + "end": 14490.66, + "probability": 0.9438 + }, + { + "start": 14491.06, + "end": 14492.0, + "probability": 0.7296 + }, + { + "start": 14492.28, + "end": 14493.38, + "probability": 0.69 + }, + { + "start": 14493.5, + "end": 14494.06, + "probability": 0.7559 + }, + { + "start": 14494.34, + "end": 14498.98, + "probability": 0.9129 + }, + { + "start": 14499.26, + "end": 14504.4, + "probability": 0.9945 + }, + { + "start": 14504.82, + "end": 14508.58, + "probability": 0.8588 + }, + { + "start": 14508.74, + "end": 14509.1, + "probability": 0.6797 + }, + { + "start": 14509.16, + "end": 14510.9, + "probability": 0.9907 + }, + { + "start": 14511.04, + "end": 14512.86, + "probability": 0.9494 + }, + { + "start": 14513.38, + "end": 14516.46, + "probability": 0.8706 + }, + { + "start": 14516.58, + "end": 14518.91, + "probability": 0.9442 + }, + { + "start": 14519.74, + "end": 14523.12, + "probability": 0.9844 + }, + { + "start": 14523.46, + "end": 14524.12, + "probability": 0.7692 + }, + { + "start": 14524.58, + "end": 14525.78, + "probability": 0.7439 + }, + { + "start": 14525.94, + "end": 14528.4, + "probability": 0.9317 + }, + { + "start": 14528.46, + "end": 14530.6, + "probability": 0.9806 + }, + { + "start": 14530.64, + "end": 14533.24, + "probability": 0.9429 + }, + { + "start": 14533.94, + "end": 14536.28, + "probability": 0.5123 + }, + { + "start": 14536.42, + "end": 14541.48, + "probability": 0.9941 + }, + { + "start": 14541.62, + "end": 14544.12, + "probability": 0.9891 + }, + { + "start": 14544.3, + "end": 14548.98, + "probability": 0.9784 + }, + { + "start": 14549.46, + "end": 14553.54, + "probability": 0.998 + }, + { + "start": 14553.7, + "end": 14553.92, + "probability": 0.1961 + }, + { + "start": 14554.26, + "end": 14557.42, + "probability": 0.9863 + }, + { + "start": 14557.52, + "end": 14560.86, + "probability": 0.9977 + }, + { + "start": 14560.94, + "end": 14564.68, + "probability": 0.9922 + }, + { + "start": 14565.1, + "end": 14565.7, + "probability": 0.6759 + }, + { + "start": 14565.88, + "end": 14570.06, + "probability": 0.9983 + }, + { + "start": 14570.42, + "end": 14570.66, + "probability": 0.3499 + }, + { + "start": 14570.7, + "end": 14571.18, + "probability": 0.6687 + }, + { + "start": 14571.54, + "end": 14576.82, + "probability": 0.972 + }, + { + "start": 14576.94, + "end": 14577.57, + "probability": 0.9864 + }, + { + "start": 14578.32, + "end": 14579.38, + "probability": 0.9063 + }, + { + "start": 14579.5, + "end": 14580.76, + "probability": 0.9556 + }, + { + "start": 14581.1, + "end": 14581.78, + "probability": 0.9326 + }, + { + "start": 14582.04, + "end": 14584.74, + "probability": 0.9876 + }, + { + "start": 14584.82, + "end": 14586.64, + "probability": 0.6232 + }, + { + "start": 14587.32, + "end": 14589.06, + "probability": 0.8255 + }, + { + "start": 14589.22, + "end": 14594.44, + "probability": 0.808 + }, + { + "start": 14594.94, + "end": 14596.6, + "probability": 0.9956 + }, + { + "start": 14596.74, + "end": 14596.98, + "probability": 0.9485 + }, + { + "start": 14597.04, + "end": 14598.46, + "probability": 0.9082 + }, + { + "start": 14598.66, + "end": 14599.4, + "probability": 0.7824 + }, + { + "start": 14599.8, + "end": 14602.38, + "probability": 0.9855 + }, + { + "start": 14602.76, + "end": 14603.42, + "probability": 0.7565 + }, + { + "start": 14603.56, + "end": 14606.16, + "probability": 0.9905 + }, + { + "start": 14606.5, + "end": 14612.56, + "probability": 0.9865 + }, + { + "start": 14612.7, + "end": 14618.08, + "probability": 0.9716 + }, + { + "start": 14618.2, + "end": 14623.02, + "probability": 0.2493 + }, + { + "start": 14623.64, + "end": 14623.9, + "probability": 0.2308 + }, + { + "start": 14623.9, + "end": 14623.9, + "probability": 0.1673 + }, + { + "start": 14623.9, + "end": 14624.48, + "probability": 0.0403 + }, + { + "start": 14624.62, + "end": 14625.0, + "probability": 0.1316 + }, + { + "start": 14625.0, + "end": 14628.18, + "probability": 0.9893 + }, + { + "start": 14628.26, + "end": 14631.86, + "probability": 0.6591 + }, + { + "start": 14632.04, + "end": 14633.38, + "probability": 0.7197 + }, + { + "start": 14633.64, + "end": 14634.8, + "probability": 0.7671 + }, + { + "start": 14634.92, + "end": 14638.58, + "probability": 0.9766 + }, + { + "start": 14638.94, + "end": 14640.74, + "probability": 0.9832 + }, + { + "start": 14641.4, + "end": 14641.93, + "probability": 0.2397 + }, + { + "start": 14643.28, + "end": 14647.64, + "probability": 0.9746 + }, + { + "start": 14647.64, + "end": 14650.04, + "probability": 0.9418 + }, + { + "start": 14650.38, + "end": 14650.54, + "probability": 0.0897 + }, + { + "start": 14650.66, + "end": 14651.28, + "probability": 0.7943 + }, + { + "start": 14651.38, + "end": 14655.28, + "probability": 0.7328 + }, + { + "start": 14655.84, + "end": 14657.76, + "probability": 0.7385 + }, + { + "start": 14657.84, + "end": 14659.71, + "probability": 0.7203 + }, + { + "start": 14660.34, + "end": 14665.6, + "probability": 0.9688 + }, + { + "start": 14665.6, + "end": 14671.56, + "probability": 0.9386 + }, + { + "start": 14671.6, + "end": 14672.12, + "probability": 0.8028 + }, + { + "start": 14672.28, + "end": 14673.1, + "probability": 0.7696 + }, + { + "start": 14692.46, + "end": 14693.08, + "probability": 0.0389 + }, + { + "start": 14693.08, + "end": 14696.76, + "probability": 0.7833 + }, + { + "start": 14697.16, + "end": 14700.44, + "probability": 0.7317 + }, + { + "start": 14701.26, + "end": 14705.62, + "probability": 0.8585 + }, + { + "start": 14706.18, + "end": 14709.42, + "probability": 0.6452 + }, + { + "start": 14709.56, + "end": 14711.38, + "probability": 0.9309 + }, + { + "start": 14712.26, + "end": 14715.86, + "probability": 0.004 + }, + { + "start": 14716.8, + "end": 14717.99, + "probability": 0.0479 + }, + { + "start": 14720.46, + "end": 14721.54, + "probability": 0.1936 + }, + { + "start": 14721.54, + "end": 14721.54, + "probability": 0.1337 + }, + { + "start": 14721.54, + "end": 14721.54, + "probability": 0.1281 + }, + { + "start": 14721.54, + "end": 14721.54, + "probability": 0.2528 + }, + { + "start": 14721.54, + "end": 14721.54, + "probability": 0.1337 + }, + { + "start": 14721.54, + "end": 14721.54, + "probability": 0.2513 + }, + { + "start": 14721.54, + "end": 14722.88, + "probability": 0.2488 + }, + { + "start": 14723.18, + "end": 14723.78, + "probability": 0.6246 + }, + { + "start": 14727.02, + "end": 14729.88, + "probability": 0.7993 + }, + { + "start": 14734.54, + "end": 14734.86, + "probability": 0.3062 + }, + { + "start": 14736.4, + "end": 14737.6, + "probability": 0.5369 + }, + { + "start": 14738.2, + "end": 14739.92, + "probability": 0.5103 + }, + { + "start": 14744.58, + "end": 14748.12, + "probability": 0.8971 + }, + { + "start": 14748.84, + "end": 14750.94, + "probability": 0.9993 + }, + { + "start": 14752.51, + "end": 14755.4, + "probability": 0.9838 + }, + { + "start": 14757.62, + "end": 14758.3, + "probability": 0.7056 + }, + { + "start": 14758.8, + "end": 14762.82, + "probability": 0.9945 + }, + { + "start": 14765.48, + "end": 14768.74, + "probability": 0.5507 + }, + { + "start": 14769.58, + "end": 14775.72, + "probability": 0.8812 + }, + { + "start": 14777.3, + "end": 14778.98, + "probability": 0.9653 + }, + { + "start": 14780.68, + "end": 14782.9, + "probability": 0.9194 + }, + { + "start": 14784.94, + "end": 14786.44, + "probability": 0.9995 + }, + { + "start": 14788.14, + "end": 14793.54, + "probability": 0.8824 + }, + { + "start": 14794.34, + "end": 14795.66, + "probability": 0.7024 + }, + { + "start": 14796.8, + "end": 14800.21, + "probability": 0.98 + }, + { + "start": 14801.36, + "end": 14803.68, + "probability": 0.749 + }, + { + "start": 14804.88, + "end": 14809.96, + "probability": 0.9909 + }, + { + "start": 14811.26, + "end": 14812.62, + "probability": 0.9767 + }, + { + "start": 14814.6, + "end": 14816.7, + "probability": 0.9917 + }, + { + "start": 14816.8, + "end": 14819.7, + "probability": 0.9923 + }, + { + "start": 14821.26, + "end": 14822.78, + "probability": 0.9933 + }, + { + "start": 14826.08, + "end": 14827.38, + "probability": 0.7931 + }, + { + "start": 14829.5, + "end": 14831.56, + "probability": 0.8008 + }, + { + "start": 14832.4, + "end": 14833.64, + "probability": 0.9835 + }, + { + "start": 14835.12, + "end": 14839.48, + "probability": 0.6624 + }, + { + "start": 14841.34, + "end": 14844.56, + "probability": 0.9528 + }, + { + "start": 14845.1, + "end": 14846.98, + "probability": 0.7132 + }, + { + "start": 14847.6, + "end": 14849.38, + "probability": 0.9655 + }, + { + "start": 14849.64, + "end": 14850.86, + "probability": 0.9075 + }, + { + "start": 14850.94, + "end": 14852.54, + "probability": 0.8552 + }, + { + "start": 14853.38, + "end": 14855.38, + "probability": 0.7949 + }, + { + "start": 14856.62, + "end": 14857.48, + "probability": 0.7372 + }, + { + "start": 14857.5, + "end": 14859.64, + "probability": 0.994 + }, + { + "start": 14860.5, + "end": 14860.92, + "probability": 0.9541 + }, + { + "start": 14861.12, + "end": 14864.96, + "probability": 0.9965 + }, + { + "start": 14865.1, + "end": 14866.3, + "probability": 0.927 + }, + { + "start": 14866.98, + "end": 14871.1, + "probability": 0.9956 + }, + { + "start": 14871.26, + "end": 14872.7, + "probability": 0.9695 + }, + { + "start": 14873.4, + "end": 14874.47, + "probability": 0.9575 + }, + { + "start": 14875.2, + "end": 14876.12, + "probability": 0.9869 + }, + { + "start": 14876.14, + "end": 14877.08, + "probability": 0.9671 + }, + { + "start": 14877.52, + "end": 14878.38, + "probability": 0.9141 + }, + { + "start": 14878.52, + "end": 14878.96, + "probability": 0.5281 + }, + { + "start": 14879.04, + "end": 14879.96, + "probability": 0.8319 + }, + { + "start": 14880.1, + "end": 14880.58, + "probability": 0.6289 + }, + { + "start": 14880.74, + "end": 14880.84, + "probability": 0.9503 + }, + { + "start": 14881.44, + "end": 14882.7, + "probability": 0.7071 + }, + { + "start": 14883.5, + "end": 14885.12, + "probability": 0.8096 + }, + { + "start": 14885.44, + "end": 14886.58, + "probability": 0.9266 + }, + { + "start": 14888.12, + "end": 14891.92, + "probability": 0.8564 + }, + { + "start": 14892.26, + "end": 14894.17, + "probability": 0.8853 + }, + { + "start": 14894.54, + "end": 14895.74, + "probability": 0.9572 + }, + { + "start": 14895.8, + "end": 14896.54, + "probability": 0.6468 + }, + { + "start": 14896.58, + "end": 14897.38, + "probability": 0.7663 + }, + { + "start": 14897.96, + "end": 14898.74, + "probability": 0.9579 + }, + { + "start": 14898.82, + "end": 14902.18, + "probability": 0.9396 + }, + { + "start": 14903.18, + "end": 14903.44, + "probability": 0.7995 + }, + { + "start": 14903.48, + "end": 14905.24, + "probability": 0.9678 + }, + { + "start": 14905.28, + "end": 14906.48, + "probability": 0.8464 + }, + { + "start": 14907.0, + "end": 14908.28, + "probability": 0.5128 + }, + { + "start": 14909.12, + "end": 14909.52, + "probability": 0.9967 + }, + { + "start": 14911.72, + "end": 14913.22, + "probability": 0.7867 + }, + { + "start": 14914.56, + "end": 14916.24, + "probability": 0.9019 + }, + { + "start": 14916.56, + "end": 14918.28, + "probability": 0.9501 + }, + { + "start": 14918.4, + "end": 14919.16, + "probability": 0.8213 + }, + { + "start": 14919.2, + "end": 14919.6, + "probability": 0.7701 + }, + { + "start": 14919.64, + "end": 14920.72, + "probability": 0.8615 + }, + { + "start": 14921.42, + "end": 14924.8, + "probability": 0.9444 + }, + { + "start": 14925.84, + "end": 14926.46, + "probability": 0.6975 + }, + { + "start": 14926.82, + "end": 14928.48, + "probability": 0.9463 + }, + { + "start": 14928.54, + "end": 14929.3, + "probability": 0.968 + }, + { + "start": 14929.7, + "end": 14931.56, + "probability": 0.9806 + }, + { + "start": 14931.62, + "end": 14933.04, + "probability": 0.9837 + }, + { + "start": 14933.12, + "end": 14934.04, + "probability": 0.9863 + }, + { + "start": 14934.06, + "end": 14934.88, + "probability": 0.9363 + }, + { + "start": 14936.64, + "end": 14939.68, + "probability": 0.9984 + }, + { + "start": 14939.82, + "end": 14940.68, + "probability": 0.9198 + }, + { + "start": 14941.8, + "end": 14945.18, + "probability": 0.998 + }, + { + "start": 14945.92, + "end": 14951.22, + "probability": 0.9658 + }, + { + "start": 14952.68, + "end": 14955.0, + "probability": 0.8721 + }, + { + "start": 14955.56, + "end": 14956.79, + "probability": 0.7781 + }, + { + "start": 14956.92, + "end": 14959.04, + "probability": 0.9974 + }, + { + "start": 14959.66, + "end": 14961.5, + "probability": 0.9951 + }, + { + "start": 14961.54, + "end": 14962.28, + "probability": 0.5584 + }, + { + "start": 14962.54, + "end": 14967.01, + "probability": 0.97 + }, + { + "start": 14968.02, + "end": 14970.78, + "probability": 0.9727 + }, + { + "start": 14971.62, + "end": 14973.34, + "probability": 0.9834 + }, + { + "start": 14974.38, + "end": 14977.46, + "probability": 0.9462 + }, + { + "start": 14977.5, + "end": 14979.92, + "probability": 0.6445 + }, + { + "start": 14980.08, + "end": 14982.42, + "probability": 0.911 + }, + { + "start": 14982.58, + "end": 14984.36, + "probability": 0.7942 + }, + { + "start": 14986.06, + "end": 14989.81, + "probability": 0.7045 + }, + { + "start": 15003.84, + "end": 15004.78, + "probability": 0.0426 + }, + { + "start": 15006.22, + "end": 15006.88, + "probability": 0.5704 + }, + { + "start": 15007.24, + "end": 15007.96, + "probability": 0.6331 + }, + { + "start": 15012.74, + "end": 15015.06, + "probability": 0.6382 + }, + { + "start": 15016.92, + "end": 15019.26, + "probability": 0.8824 + }, + { + "start": 15020.64, + "end": 15022.16, + "probability": 0.9784 + }, + { + "start": 15023.46, + "end": 15024.94, + "probability": 0.9183 + }, + { + "start": 15026.12, + "end": 15027.82, + "probability": 0.5594 + }, + { + "start": 15029.28, + "end": 15031.62, + "probability": 0.99 + }, + { + "start": 15033.38, + "end": 15035.78, + "probability": 0.9843 + }, + { + "start": 15035.78, + "end": 15037.86, + "probability": 0.7316 + }, + { + "start": 15038.9, + "end": 15041.22, + "probability": 0.981 + }, + { + "start": 15041.36, + "end": 15042.1, + "probability": 0.942 + }, + { + "start": 15043.62, + "end": 15045.74, + "probability": 0.8781 + }, + { + "start": 15046.64, + "end": 15047.52, + "probability": 0.6393 + }, + { + "start": 15048.58, + "end": 15049.7, + "probability": 0.9908 + }, + { + "start": 15050.48, + "end": 15051.7, + "probability": 0.9906 + }, + { + "start": 15052.24, + "end": 15052.64, + "probability": 0.555 + }, + { + "start": 15053.64, + "end": 15055.18, + "probability": 0.996 + }, + { + "start": 15056.2, + "end": 15058.88, + "probability": 0.9946 + }, + { + "start": 15060.3, + "end": 15064.34, + "probability": 0.998 + }, + { + "start": 15064.34, + "end": 15068.7, + "probability": 0.8965 + }, + { + "start": 15069.46, + "end": 15070.38, + "probability": 0.6066 + }, + { + "start": 15071.72, + "end": 15075.94, + "probability": 0.9914 + }, + { + "start": 15075.94, + "end": 15079.68, + "probability": 0.9988 + }, + { + "start": 15080.72, + "end": 15083.79, + "probability": 0.9888 + }, + { + "start": 15085.06, + "end": 15087.7, + "probability": 0.989 + }, + { + "start": 15087.7, + "end": 15091.72, + "probability": 0.9746 + }, + { + "start": 15092.76, + "end": 15099.8, + "probability": 0.9727 + }, + { + "start": 15101.26, + "end": 15102.72, + "probability": 0.8964 + }, + { + "start": 15103.52, + "end": 15105.32, + "probability": 0.8928 + }, + { + "start": 15106.4, + "end": 15109.07, + "probability": 0.5787 + }, + { + "start": 15110.38, + "end": 15114.24, + "probability": 0.98 + }, + { + "start": 15114.98, + "end": 15118.02, + "probability": 0.9795 + }, + { + "start": 15119.6, + "end": 15124.46, + "probability": 0.9822 + }, + { + "start": 15124.46, + "end": 15129.38, + "probability": 0.9929 + }, + { + "start": 15130.64, + "end": 15131.38, + "probability": 0.7463 + }, + { + "start": 15131.64, + "end": 15135.02, + "probability": 0.967 + }, + { + "start": 15135.64, + "end": 15138.6, + "probability": 0.9971 + }, + { + "start": 15139.74, + "end": 15145.84, + "probability": 0.9841 + }, + { + "start": 15146.5, + "end": 15148.14, + "probability": 0.8578 + }, + { + "start": 15149.2, + "end": 15151.18, + "probability": 0.6806 + }, + { + "start": 15152.48, + "end": 15156.76, + "probability": 0.8081 + }, + { + "start": 15158.12, + "end": 15162.07, + "probability": 0.9546 + }, + { + "start": 15163.18, + "end": 15164.3, + "probability": 0.7119 + }, + { + "start": 15165.3, + "end": 15166.28, + "probability": 0.4792 + }, + { + "start": 15167.12, + "end": 15168.4, + "probability": 0.7587 + }, + { + "start": 15168.88, + "end": 15170.82, + "probability": 0.9479 + }, + { + "start": 15171.28, + "end": 15173.38, + "probability": 0.6758 + }, + { + "start": 15175.26, + "end": 15176.16, + "probability": 0.9728 + }, + { + "start": 15177.2, + "end": 15179.94, + "probability": 0.989 + }, + { + "start": 15181.06, + "end": 15185.22, + "probability": 0.9937 + }, + { + "start": 15186.72, + "end": 15192.02, + "probability": 0.9987 + }, + { + "start": 15192.5, + "end": 15194.46, + "probability": 0.9678 + }, + { + "start": 15195.16, + "end": 15196.18, + "probability": 0.6898 + }, + { + "start": 15197.42, + "end": 15201.62, + "probability": 0.8599 + }, + { + "start": 15202.26, + "end": 15202.7, + "probability": 0.5241 + }, + { + "start": 15203.58, + "end": 15211.02, + "probability": 0.9888 + }, + { + "start": 15211.7, + "end": 15215.56, + "probability": 0.9796 + }, + { + "start": 15216.1, + "end": 15219.26, + "probability": 0.98 + }, + { + "start": 15219.36, + "end": 15219.64, + "probability": 0.7888 + }, + { + "start": 15220.62, + "end": 15222.68, + "probability": 0.9038 + }, + { + "start": 15222.88, + "end": 15223.98, + "probability": 0.6193 + }, + { + "start": 15224.0, + "end": 15224.56, + "probability": 0.802 + }, + { + "start": 15224.6, + "end": 15224.9, + "probability": 0.6844 + }, + { + "start": 15225.0, + "end": 15225.4, + "probability": 0.6566 + }, + { + "start": 15225.48, + "end": 15226.68, + "probability": 0.7847 + }, + { + "start": 15227.38, + "end": 15228.02, + "probability": 0.7861 + }, + { + "start": 15228.24, + "end": 15229.92, + "probability": 0.6905 + }, + { + "start": 15230.12, + "end": 15231.32, + "probability": 0.9189 + }, + { + "start": 15232.4, + "end": 15236.09, + "probability": 0.4698 + }, + { + "start": 15243.72, + "end": 15244.44, + "probability": 0.5273 + }, + { + "start": 15244.54, + "end": 15245.76, + "probability": 0.885 + }, + { + "start": 15254.18, + "end": 15256.24, + "probability": 0.7772 + }, + { + "start": 15257.02, + "end": 15258.22, + "probability": 0.7739 + }, + { + "start": 15259.44, + "end": 15264.4, + "probability": 0.9702 + }, + { + "start": 15265.06, + "end": 15268.6, + "probability": 0.9601 + }, + { + "start": 15269.02, + "end": 15271.66, + "probability": 0.9916 + }, + { + "start": 15271.92, + "end": 15276.04, + "probability": 0.9986 + }, + { + "start": 15276.86, + "end": 15277.6, + "probability": 0.6261 + }, + { + "start": 15278.26, + "end": 15282.72, + "probability": 0.9919 + }, + { + "start": 15282.72, + "end": 15286.36, + "probability": 0.9987 + }, + { + "start": 15287.56, + "end": 15291.52, + "probability": 0.9803 + }, + { + "start": 15292.16, + "end": 15293.38, + "probability": 0.7753 + }, + { + "start": 15293.62, + "end": 15296.82, + "probability": 0.8534 + }, + { + "start": 15297.82, + "end": 15303.58, + "probability": 0.9957 + }, + { + "start": 15303.78, + "end": 15303.88, + "probability": 0.7588 + }, + { + "start": 15305.72, + "end": 15310.92, + "probability": 0.9623 + }, + { + "start": 15312.2, + "end": 15313.62, + "probability": 0.9907 + }, + { + "start": 15314.5, + "end": 15316.02, + "probability": 0.9841 + }, + { + "start": 15316.98, + "end": 15319.86, + "probability": 0.9769 + }, + { + "start": 15319.86, + "end": 15323.78, + "probability": 0.9918 + }, + { + "start": 15324.78, + "end": 15329.86, + "probability": 0.9954 + }, + { + "start": 15330.62, + "end": 15336.6, + "probability": 0.9873 + }, + { + "start": 15337.6, + "end": 15343.42, + "probability": 0.993 + }, + { + "start": 15344.04, + "end": 15348.88, + "probability": 0.9949 + }, + { + "start": 15349.84, + "end": 15355.0, + "probability": 0.9964 + }, + { + "start": 15355.8, + "end": 15360.6, + "probability": 0.9761 + }, + { + "start": 15360.6, + "end": 15365.08, + "probability": 0.9994 + }, + { + "start": 15365.8, + "end": 15369.66, + "probability": 0.9985 + }, + { + "start": 15369.66, + "end": 15374.46, + "probability": 0.9871 + }, + { + "start": 15375.1, + "end": 15378.78, + "probability": 0.9861 + }, + { + "start": 15378.82, + "end": 15380.6, + "probability": 0.9643 + }, + { + "start": 15381.28, + "end": 15382.24, + "probability": 0.4901 + }, + { + "start": 15382.34, + "end": 15383.36, + "probability": 0.84 + }, + { + "start": 15383.4, + "end": 15384.18, + "probability": 0.8339 + }, + { + "start": 15384.66, + "end": 15386.04, + "probability": 0.9858 + }, + { + "start": 15386.7, + "end": 15389.86, + "probability": 0.9932 + }, + { + "start": 15390.64, + "end": 15391.7, + "probability": 0.9331 + }, + { + "start": 15392.54, + "end": 15395.24, + "probability": 0.9746 + }, + { + "start": 15395.66, + "end": 15398.72, + "probability": 0.9987 + }, + { + "start": 15399.26, + "end": 15401.5, + "probability": 0.9991 + }, + { + "start": 15402.06, + "end": 15403.22, + "probability": 0.9979 + }, + { + "start": 15403.76, + "end": 15406.28, + "probability": 0.9978 + }, + { + "start": 15406.7, + "end": 15407.46, + "probability": 0.7498 + }, + { + "start": 15408.18, + "end": 15410.78, + "probability": 0.7131 + }, + { + "start": 15411.3, + "end": 15415.46, + "probability": 0.9956 + }, + { + "start": 15415.46, + "end": 15420.88, + "probability": 0.9915 + }, + { + "start": 15421.5, + "end": 15424.02, + "probability": 0.993 + }, + { + "start": 15424.1, + "end": 15425.68, + "probability": 0.8823 + }, + { + "start": 15426.14, + "end": 15427.9, + "probability": 0.3827 + }, + { + "start": 15428.52, + "end": 15430.05, + "probability": 0.9956 + }, + { + "start": 15430.16, + "end": 15431.6, + "probability": 0.959 + }, + { + "start": 15432.0, + "end": 15435.46, + "probability": 0.7957 + }, + { + "start": 15436.06, + "end": 15442.04, + "probability": 0.9857 + }, + { + "start": 15442.06, + "end": 15442.42, + "probability": 0.7143 + }, + { + "start": 15442.5, + "end": 15445.04, + "probability": 0.6944 + }, + { + "start": 15445.6, + "end": 15448.58, + "probability": 0.9922 + }, + { + "start": 15449.08, + "end": 15455.72, + "probability": 0.9727 + }, + { + "start": 15455.84, + "end": 15457.04, + "probability": 0.973 + }, + { + "start": 15457.4, + "end": 15460.34, + "probability": 0.8993 + }, + { + "start": 15460.92, + "end": 15461.32, + "probability": 0.7871 + }, + { + "start": 15461.82, + "end": 15463.7, + "probability": 0.9683 + }, + { + "start": 15463.72, + "end": 15465.96, + "probability": 0.7669 + }, + { + "start": 15466.68, + "end": 15468.64, + "probability": 0.9565 + }, + { + "start": 15469.52, + "end": 15470.04, + "probability": 0.5688 + }, + { + "start": 15490.46, + "end": 15490.9, + "probability": 0.3943 + }, + { + "start": 15490.92, + "end": 15491.16, + "probability": 0.7394 + }, + { + "start": 15492.0, + "end": 15494.26, + "probability": 0.7404 + }, + { + "start": 15494.42, + "end": 15496.44, + "probability": 0.6884 + }, + { + "start": 15498.1, + "end": 15503.8, + "probability": 0.9907 + }, + { + "start": 15505.12, + "end": 15507.08, + "probability": 0.9849 + }, + { + "start": 15508.1, + "end": 15511.72, + "probability": 0.9342 + }, + { + "start": 15512.7, + "end": 15517.02, + "probability": 0.8434 + }, + { + "start": 15519.08, + "end": 15526.38, + "probability": 0.9921 + }, + { + "start": 15526.38, + "end": 15532.64, + "probability": 0.9945 + }, + { + "start": 15533.72, + "end": 15534.9, + "probability": 0.9861 + }, + { + "start": 15535.42, + "end": 15535.56, + "probability": 0.7375 + }, + { + "start": 15535.82, + "end": 15537.9, + "probability": 0.8756 + }, + { + "start": 15538.32, + "end": 15539.06, + "probability": 0.887 + }, + { + "start": 15539.16, + "end": 15540.17, + "probability": 0.5615 + }, + { + "start": 15541.32, + "end": 15542.14, + "probability": 0.9268 + }, + { + "start": 15542.92, + "end": 15546.24, + "probability": 0.99 + }, + { + "start": 15547.38, + "end": 15551.48, + "probability": 0.986 + }, + { + "start": 15553.0, + "end": 15554.3, + "probability": 0.9824 + }, + { + "start": 15554.78, + "end": 15556.08, + "probability": 0.9911 + }, + { + "start": 15556.96, + "end": 15562.58, + "probability": 0.9971 + }, + { + "start": 15563.76, + "end": 15563.76, + "probability": 0.4249 + }, + { + "start": 15563.88, + "end": 15564.86, + "probability": 0.6978 + }, + { + "start": 15565.02, + "end": 15568.86, + "probability": 0.9883 + }, + { + "start": 15569.62, + "end": 15572.08, + "probability": 0.8607 + }, + { + "start": 15573.2, + "end": 15578.32, + "probability": 0.9566 + }, + { + "start": 15578.92, + "end": 15580.22, + "probability": 0.9349 + }, + { + "start": 15580.38, + "end": 15582.08, + "probability": 0.9573 + }, + { + "start": 15582.7, + "end": 15586.12, + "probability": 0.912 + }, + { + "start": 15586.5, + "end": 15588.94, + "probability": 0.987 + }, + { + "start": 15589.66, + "end": 15592.13, + "probability": 0.9849 + }, + { + "start": 15593.74, + "end": 15598.46, + "probability": 0.9622 + }, + { + "start": 15599.16, + "end": 15602.02, + "probability": 0.9778 + }, + { + "start": 15602.86, + "end": 15608.98, + "probability": 0.9966 + }, + { + "start": 15609.2, + "end": 15612.72, + "probability": 0.9702 + }, + { + "start": 15613.24, + "end": 15616.74, + "probability": 0.9693 + }, + { + "start": 15617.28, + "end": 15621.22, + "probability": 0.9883 + }, + { + "start": 15621.54, + "end": 15623.32, + "probability": 0.8359 + }, + { + "start": 15623.56, + "end": 15626.3, + "probability": 0.9719 + }, + { + "start": 15626.82, + "end": 15630.12, + "probability": 0.9932 + }, + { + "start": 15630.64, + "end": 15632.82, + "probability": 0.9425 + }, + { + "start": 15633.52, + "end": 15635.68, + "probability": 0.8744 + }, + { + "start": 15636.36, + "end": 15638.0, + "probability": 0.8493 + }, + { + "start": 15638.46, + "end": 15642.97, + "probability": 0.9817 + }, + { + "start": 15644.14, + "end": 15644.84, + "probability": 0.9753 + }, + { + "start": 15645.06, + "end": 15645.84, + "probability": 0.4203 + }, + { + "start": 15646.24, + "end": 15649.44, + "probability": 0.9907 + }, + { + "start": 15650.02, + "end": 15651.12, + "probability": 0.6908 + }, + { + "start": 15651.84, + "end": 15657.58, + "probability": 0.9536 + }, + { + "start": 15657.84, + "end": 15662.1, + "probability": 0.9362 + }, + { + "start": 15662.88, + "end": 15663.98, + "probability": 0.863 + }, + { + "start": 15664.08, + "end": 15665.1, + "probability": 0.5266 + }, + { + "start": 15665.18, + "end": 15665.96, + "probability": 0.8258 + }, + { + "start": 15666.06, + "end": 15667.0, + "probability": 0.8667 + }, + { + "start": 15667.62, + "end": 15670.8, + "probability": 0.986 + }, + { + "start": 15670.8, + "end": 15673.84, + "probability": 0.9927 + }, + { + "start": 15674.14, + "end": 15675.48, + "probability": 0.9983 + }, + { + "start": 15676.14, + "end": 15678.86, + "probability": 0.9899 + }, + { + "start": 15679.84, + "end": 15681.38, + "probability": 0.7221 + }, + { + "start": 15681.76, + "end": 15684.32, + "probability": 0.9489 + }, + { + "start": 15685.38, + "end": 15689.48, + "probability": 0.97 + }, + { + "start": 15699.22, + "end": 15702.42, + "probability": 0.6857 + }, + { + "start": 15703.88, + "end": 15704.18, + "probability": 0.5703 + }, + { + "start": 15704.38, + "end": 15708.64, + "probability": 0.888 + }, + { + "start": 15708.72, + "end": 15708.96, + "probability": 0.6756 + }, + { + "start": 15709.08, + "end": 15709.56, + "probability": 0.9648 + }, + { + "start": 15711.6, + "end": 15712.38, + "probability": 0.9863 + }, + { + "start": 15713.52, + "end": 15715.22, + "probability": 0.9565 + }, + { + "start": 15716.46, + "end": 15720.2, + "probability": 0.9824 + }, + { + "start": 15721.0, + "end": 15724.38, + "probability": 0.9573 + }, + { + "start": 15725.26, + "end": 15728.74, + "probability": 0.9946 + }, + { + "start": 15728.88, + "end": 15730.24, + "probability": 0.9028 + }, + { + "start": 15731.06, + "end": 15731.52, + "probability": 0.8646 + }, + { + "start": 15731.52, + "end": 15732.88, + "probability": 0.9728 + }, + { + "start": 15733.7, + "end": 15734.66, + "probability": 0.9878 + }, + { + "start": 15735.9, + "end": 15737.3, + "probability": 0.9902 + }, + { + "start": 15738.3, + "end": 15741.3, + "probability": 0.7795 + }, + { + "start": 15741.44, + "end": 15742.38, + "probability": 0.8835 + }, + { + "start": 15742.8, + "end": 15745.06, + "probability": 0.9561 + }, + { + "start": 15745.86, + "end": 15748.57, + "probability": 0.9779 + }, + { + "start": 15748.7, + "end": 15751.52, + "probability": 0.981 + }, + { + "start": 15752.02, + "end": 15755.7, + "probability": 0.9978 + }, + { + "start": 15756.66, + "end": 15760.18, + "probability": 0.9778 + }, + { + "start": 15761.04, + "end": 15763.76, + "probability": 0.856 + }, + { + "start": 15765.0, + "end": 15765.34, + "probability": 0.1997 + }, + { + "start": 15765.34, + "end": 15769.3, + "probability": 0.6533 + }, + { + "start": 15769.42, + "end": 15771.42, + "probability": 0.2071 + }, + { + "start": 15771.66, + "end": 15773.44, + "probability": 0.866 + }, + { + "start": 15773.66, + "end": 15774.08, + "probability": 0.5258 + }, + { + "start": 15774.14, + "end": 15775.36, + "probability": 0.9677 + }, + { + "start": 15775.42, + "end": 15777.96, + "probability": 0.9869 + }, + { + "start": 15778.35, + "end": 15779.7, + "probability": 0.9473 + }, + { + "start": 15779.76, + "end": 15780.4, + "probability": 0.3575 + }, + { + "start": 15780.42, + "end": 15781.82, + "probability": 0.9981 + }, + { + "start": 15781.94, + "end": 15782.9, + "probability": 0.9739 + }, + { + "start": 15783.84, + "end": 15786.12, + "probability": 0.9474 + }, + { + "start": 15786.2, + "end": 15786.79, + "probability": 0.9737 + }, + { + "start": 15787.68, + "end": 15788.77, + "probability": 0.9834 + }, + { + "start": 15789.82, + "end": 15790.6, + "probability": 0.8757 + }, + { + "start": 15791.34, + "end": 15792.61, + "probability": 0.9823 + }, + { + "start": 15793.36, + "end": 15794.32, + "probability": 0.993 + }, + { + "start": 15795.06, + "end": 15796.01, + "probability": 0.7982 + }, + { + "start": 15796.48, + "end": 15797.48, + "probability": 0.834 + }, + { + "start": 15798.02, + "end": 15798.94, + "probability": 0.9328 + }, + { + "start": 15799.04, + "end": 15799.9, + "probability": 0.9723 + }, + { + "start": 15800.26, + "end": 15801.58, + "probability": 0.9741 + }, + { + "start": 15801.86, + "end": 15803.12, + "probability": 0.9738 + }, + { + "start": 15803.42, + "end": 15806.78, + "probability": 0.9593 + }, + { + "start": 15807.28, + "end": 15808.04, + "probability": 0.9028 + }, + { + "start": 15808.18, + "end": 15809.89, + "probability": 0.9844 + }, + { + "start": 15810.94, + "end": 15812.12, + "probability": 0.6009 + }, + { + "start": 15812.24, + "end": 15814.3, + "probability": 0.9557 + }, + { + "start": 15815.2, + "end": 15816.5, + "probability": 0.8805 + }, + { + "start": 15816.94, + "end": 15818.64, + "probability": 0.9763 + }, + { + "start": 15818.72, + "end": 15819.48, + "probability": 0.8946 + }, + { + "start": 15820.06, + "end": 15825.44, + "probability": 0.9767 + }, + { + "start": 15826.14, + "end": 15828.34, + "probability": 0.999 + }, + { + "start": 15828.78, + "end": 15831.96, + "probability": 0.9867 + }, + { + "start": 15832.42, + "end": 15834.04, + "probability": 0.9102 + }, + { + "start": 15835.06, + "end": 15836.51, + "probability": 0.9932 + }, + { + "start": 15837.56, + "end": 15840.52, + "probability": 0.9156 + }, + { + "start": 15840.64, + "end": 15841.9, + "probability": 0.9561 + }, + { + "start": 15842.78, + "end": 15843.34, + "probability": 0.4818 + }, + { + "start": 15844.2, + "end": 15845.2, + "probability": 0.7285 + }, + { + "start": 15846.84, + "end": 15849.2, + "probability": 0.9958 + }, + { + "start": 15849.32, + "end": 15853.24, + "probability": 0.8973 + }, + { + "start": 15853.24, + "end": 15857.1, + "probability": 0.9801 + }, + { + "start": 15857.52, + "end": 15859.64, + "probability": 0.9849 + }, + { + "start": 15859.78, + "end": 15860.9, + "probability": 0.898 + }, + { + "start": 15861.34, + "end": 15865.76, + "probability": 0.9946 + }, + { + "start": 15865.88, + "end": 15866.38, + "probability": 0.7217 + }, + { + "start": 15866.44, + "end": 15868.06, + "probability": 0.9182 + }, + { + "start": 15868.24, + "end": 15868.84, + "probability": 0.7238 + }, + { + "start": 15868.88, + "end": 15870.18, + "probability": 0.9554 + }, + { + "start": 15870.3, + "end": 15871.2, + "probability": 0.7585 + }, + { + "start": 15871.58, + "end": 15872.44, + "probability": 0.8837 + }, + { + "start": 15872.56, + "end": 15873.9, + "probability": 0.9315 + }, + { + "start": 15874.14, + "end": 15876.02, + "probability": 0.9963 + }, + { + "start": 15876.96, + "end": 15878.24, + "probability": 0.9219 + }, + { + "start": 15878.74, + "end": 15880.82, + "probability": 0.8101 + }, + { + "start": 15880.94, + "end": 15882.9, + "probability": 0.9965 + }, + { + "start": 15883.46, + "end": 15884.94, + "probability": 0.9346 + }, + { + "start": 15885.16, + "end": 15886.0, + "probability": 0.6498 + }, + { + "start": 15886.38, + "end": 15887.54, + "probability": 0.8954 + }, + { + "start": 15887.62, + "end": 15888.42, + "probability": 0.5981 + }, + { + "start": 15888.98, + "end": 15891.0, + "probability": 0.9934 + }, + { + "start": 15891.0, + "end": 15891.16, + "probability": 0.5274 + }, + { + "start": 15891.5, + "end": 15893.36, + "probability": 0.9985 + }, + { + "start": 15894.04, + "end": 15896.28, + "probability": 0.8366 + }, + { + "start": 15896.56, + "end": 15897.34, + "probability": 0.4859 + }, + { + "start": 15898.04, + "end": 15899.96, + "probability": 0.8956 + }, + { + "start": 15899.98, + "end": 15900.88, + "probability": 0.8461 + }, + { + "start": 15917.64, + "end": 15919.76, + "probability": 0.4742 + }, + { + "start": 15919.84, + "end": 15921.1, + "probability": 0.827 + }, + { + "start": 15922.68, + "end": 15931.16, + "probability": 0.9542 + }, + { + "start": 15931.16, + "end": 15936.04, + "probability": 0.9856 + }, + { + "start": 15936.24, + "end": 15937.06, + "probability": 0.7343 + }, + { + "start": 15937.22, + "end": 15940.54, + "probability": 0.9916 + }, + { + "start": 15940.66, + "end": 15942.92, + "probability": 0.9967 + }, + { + "start": 15943.74, + "end": 15945.7, + "probability": 0.9954 + }, + { + "start": 15945.88, + "end": 15950.64, + "probability": 0.9941 + }, + { + "start": 15950.74, + "end": 15951.46, + "probability": 0.5387 + }, + { + "start": 15952.04, + "end": 15955.74, + "probability": 0.9743 + }, + { + "start": 15956.26, + "end": 15957.16, + "probability": 0.9746 + }, + { + "start": 15957.46, + "end": 15958.4, + "probability": 0.6963 + }, + { + "start": 15958.48, + "end": 15960.08, + "probability": 0.9849 + }, + { + "start": 15960.18, + "end": 15961.3, + "probability": 0.8331 + }, + { + "start": 15961.38, + "end": 15962.32, + "probability": 0.8951 + }, + { + "start": 15963.22, + "end": 15965.72, + "probability": 0.9425 + }, + { + "start": 15967.06, + "end": 15973.5, + "probability": 0.9695 + }, + { + "start": 15973.92, + "end": 15974.6, + "probability": 0.9271 + }, + { + "start": 15974.76, + "end": 15975.12, + "probability": 0.9382 + }, + { + "start": 15975.68, + "end": 15977.66, + "probability": 0.9947 + }, + { + "start": 15977.7, + "end": 15979.36, + "probability": 0.9971 + }, + { + "start": 15979.54, + "end": 15981.62, + "probability": 0.9977 + }, + { + "start": 15981.62, + "end": 15985.4, + "probability": 0.9985 + }, + { + "start": 15985.52, + "end": 15985.82, + "probability": 0.9611 + }, + { + "start": 15985.9, + "end": 15988.06, + "probability": 0.986 + }, + { + "start": 15988.68, + "end": 15991.56, + "probability": 0.7088 + }, + { + "start": 15992.44, + "end": 15998.0, + "probability": 0.9846 + }, + { + "start": 15998.18, + "end": 15998.3, + "probability": 0.6973 + }, + { + "start": 15998.42, + "end": 15998.66, + "probability": 0.8386 + }, + { + "start": 15998.82, + "end": 16006.78, + "probability": 0.9934 + }, + { + "start": 16006.94, + "end": 16012.56, + "probability": 0.9972 + }, + { + "start": 16012.56, + "end": 16019.46, + "probability": 0.9939 + }, + { + "start": 16019.62, + "end": 16022.58, + "probability": 0.9938 + }, + { + "start": 16022.88, + "end": 16026.02, + "probability": 0.9581 + }, + { + "start": 16026.2, + "end": 16031.46, + "probability": 0.7574 + }, + { + "start": 16031.46, + "end": 16033.9, + "probability": 0.8972 + }, + { + "start": 16034.12, + "end": 16041.44, + "probability": 0.9939 + }, + { + "start": 16042.04, + "end": 16047.04, + "probability": 0.9958 + }, + { + "start": 16047.04, + "end": 16051.42, + "probability": 0.9906 + }, + { + "start": 16052.14, + "end": 16057.6, + "probability": 0.9883 + }, + { + "start": 16058.62, + "end": 16059.48, + "probability": 0.7059 + }, + { + "start": 16059.62, + "end": 16060.06, + "probability": 0.703 + }, + { + "start": 16060.06, + "end": 16061.14, + "probability": 0.9756 + }, + { + "start": 16061.66, + "end": 16064.48, + "probability": 0.9922 + }, + { + "start": 16068.02, + "end": 16075.14, + "probability": 0.9958 + }, + { + "start": 16075.9, + "end": 16079.62, + "probability": 0.9975 + }, + { + "start": 16079.62, + "end": 16085.46, + "probability": 0.9922 + }, + { + "start": 16085.58, + "end": 16088.74, + "probability": 0.9965 + }, + { + "start": 16088.9, + "end": 16092.8, + "probability": 0.9771 + }, + { + "start": 16092.94, + "end": 16093.94, + "probability": 0.6966 + }, + { + "start": 16094.02, + "end": 16100.88, + "probability": 0.9921 + }, + { + "start": 16100.96, + "end": 16102.32, + "probability": 0.9548 + }, + { + "start": 16103.02, + "end": 16105.6, + "probability": 0.9971 + }, + { + "start": 16106.36, + "end": 16109.3, + "probability": 0.9958 + }, + { + "start": 16109.42, + "end": 16111.78, + "probability": 0.9976 + }, + { + "start": 16111.88, + "end": 16118.64, + "probability": 0.9871 + }, + { + "start": 16119.7, + "end": 16122.4, + "probability": 0.9939 + }, + { + "start": 16122.48, + "end": 16126.66, + "probability": 0.9862 + }, + { + "start": 16127.46, + "end": 16131.88, + "probability": 0.9731 + }, + { + "start": 16132.36, + "end": 16136.6, + "probability": 0.9985 + }, + { + "start": 16137.48, + "end": 16145.16, + "probability": 0.9922 + }, + { + "start": 16145.16, + "end": 16148.62, + "probability": 0.9982 + }, + { + "start": 16149.78, + "end": 16153.02, + "probability": 0.98 + }, + { + "start": 16153.02, + "end": 16157.8, + "probability": 0.9974 + }, + { + "start": 16159.04, + "end": 16160.4, + "probability": 0.6826 + }, + { + "start": 16161.34, + "end": 16162.58, + "probability": 0.6373 + }, + { + "start": 16163.04, + "end": 16165.02, + "probability": 0.9554 + }, + { + "start": 16165.14, + "end": 16168.8, + "probability": 0.9316 + }, + { + "start": 16168.8, + "end": 16173.74, + "probability": 0.9491 + }, + { + "start": 16174.3, + "end": 16177.22, + "probability": 0.9592 + }, + { + "start": 16177.74, + "end": 16181.52, + "probability": 0.9901 + }, + { + "start": 16182.04, + "end": 16186.32, + "probability": 0.9229 + }, + { + "start": 16186.32, + "end": 16189.5, + "probability": 0.9983 + }, + { + "start": 16189.58, + "end": 16191.42, + "probability": 0.9961 + }, + { + "start": 16191.98, + "end": 16193.98, + "probability": 0.9959 + }, + { + "start": 16194.52, + "end": 16198.44, + "probability": 0.8484 + }, + { + "start": 16199.2, + "end": 16202.66, + "probability": 0.9985 + }, + { + "start": 16203.94, + "end": 16206.7, + "probability": 0.9997 + }, + { + "start": 16207.36, + "end": 16208.82, + "probability": 0.8757 + }, + { + "start": 16209.34, + "end": 16215.18, + "probability": 0.998 + }, + { + "start": 16215.18, + "end": 16218.44, + "probability": 0.9973 + }, + { + "start": 16219.18, + "end": 16224.26, + "probability": 0.9761 + }, + { + "start": 16224.34, + "end": 16225.5, + "probability": 0.9632 + }, + { + "start": 16226.24, + "end": 16229.0, + "probability": 0.5703 + }, + { + "start": 16229.82, + "end": 16235.6, + "probability": 0.9814 + }, + { + "start": 16236.3, + "end": 16237.72, + "probability": 0.9834 + }, + { + "start": 16237.98, + "end": 16242.34, + "probability": 0.8085 + }, + { + "start": 16242.34, + "end": 16245.48, + "probability": 0.9897 + }, + { + "start": 16245.48, + "end": 16249.92, + "probability": 0.9696 + }, + { + "start": 16250.04, + "end": 16252.09, + "probability": 0.6948 + }, + { + "start": 16253.42, + "end": 16253.46, + "probability": 0.7393 + }, + { + "start": 16253.96, + "end": 16254.72, + "probability": 0.0941 + }, + { + "start": 16254.72, + "end": 16254.72, + "probability": 0.029 + }, + { + "start": 16254.72, + "end": 16254.72, + "probability": 0.1536 + }, + { + "start": 16254.72, + "end": 16254.72, + "probability": 0.1227 + }, + { + "start": 16254.72, + "end": 16255.24, + "probability": 0.2553 + }, + { + "start": 16255.74, + "end": 16258.36, + "probability": 0.6802 + }, + { + "start": 16258.36, + "end": 16259.18, + "probability": 0.6121 + }, + { + "start": 16260.22, + "end": 16261.62, + "probability": 0.7457 + }, + { + "start": 16262.54, + "end": 16265.2, + "probability": 0.4769 + }, + { + "start": 16266.12, + "end": 16267.44, + "probability": 0.3235 + }, + { + "start": 16267.98, + "end": 16268.78, + "probability": 0.4444 + }, + { + "start": 16268.88, + "end": 16269.48, + "probability": 0.7311 + }, + { + "start": 16269.72, + "end": 16273.62, + "probability": 0.9792 + }, + { + "start": 16274.89, + "end": 16277.84, + "probability": 0.7564 + }, + { + "start": 16279.38, + "end": 16281.62, + "probability": 0.8474 + }, + { + "start": 16282.16, + "end": 16284.68, + "probability": 0.8667 + }, + { + "start": 16285.34, + "end": 16286.88, + "probability": 0.7629 + }, + { + "start": 16287.22, + "end": 16288.58, + "probability": 0.8622 + }, + { + "start": 16289.0, + "end": 16289.38, + "probability": 0.8021 + }, + { + "start": 16294.34, + "end": 16295.64, + "probability": 0.272 + }, + { + "start": 16307.28, + "end": 16307.66, + "probability": 0.2485 + }, + { + "start": 16307.66, + "end": 16310.96, + "probability": 0.6371 + }, + { + "start": 16311.56, + "end": 16314.24, + "probability": 0.7783 + }, + { + "start": 16314.36, + "end": 16315.98, + "probability": 0.2903 + }, + { + "start": 16316.14, + "end": 16316.86, + "probability": 0.6962 + }, + { + "start": 16317.4, + "end": 16319.56, + "probability": 0.8116 + }, + { + "start": 16320.96, + "end": 16325.12, + "probability": 0.5683 + }, + { + "start": 16325.68, + "end": 16327.66, + "probability": 0.5083 + }, + { + "start": 16328.2, + "end": 16331.54, + "probability": 0.9277 + }, + { + "start": 16331.66, + "end": 16335.28, + "probability": 0.9019 + }, + { + "start": 16335.68, + "end": 16337.72, + "probability": 0.66 + }, + { + "start": 16337.74, + "end": 16339.2, + "probability": 0.7415 + }, + { + "start": 16341.38, + "end": 16341.84, + "probability": 0.29 + }, + { + "start": 16341.88, + "end": 16343.56, + "probability": 0.5918 + }, + { + "start": 16344.72, + "end": 16345.08, + "probability": 0.9272 + }, + { + "start": 16345.34, + "end": 16346.4, + "probability": 0.8958 + }, + { + "start": 16346.4, + "end": 16347.94, + "probability": 0.403 + }, + { + "start": 16349.28, + "end": 16353.34, + "probability": 0.9751 + }, + { + "start": 16353.34, + "end": 16357.4, + "probability": 0.9937 + }, + { + "start": 16358.02, + "end": 16362.58, + "probability": 0.9795 + }, + { + "start": 16362.6, + "end": 16365.56, + "probability": 0.9718 + }, + { + "start": 16366.42, + "end": 16368.74, + "probability": 0.9731 + }, + { + "start": 16369.0, + "end": 16372.08, + "probability": 0.9302 + }, + { + "start": 16372.44, + "end": 16373.96, + "probability": 0.9427 + }, + { + "start": 16374.5, + "end": 16379.58, + "probability": 0.8611 + }, + { + "start": 16380.26, + "end": 16382.24, + "probability": 0.9148 + }, + { + "start": 16382.3, + "end": 16386.6, + "probability": 0.9897 + }, + { + "start": 16386.92, + "end": 16389.78, + "probability": 0.9875 + }, + { + "start": 16390.28, + "end": 16392.18, + "probability": 0.8518 + }, + { + "start": 16392.52, + "end": 16394.58, + "probability": 0.8718 + }, + { + "start": 16395.04, + "end": 16395.49, + "probability": 0.8813 + }, + { + "start": 16395.94, + "end": 16397.24, + "probability": 0.702 + }, + { + "start": 16397.3, + "end": 16399.72, + "probability": 0.9607 + }, + { + "start": 16399.9, + "end": 16401.9, + "probability": 0.661 + }, + { + "start": 16402.24, + "end": 16402.6, + "probability": 0.4069 + }, + { + "start": 16402.64, + "end": 16404.06, + "probability": 0.6334 + }, + { + "start": 16404.16, + "end": 16407.48, + "probability": 0.5547 + }, + { + "start": 16408.24, + "end": 16409.09, + "probability": 0.9153 + }, + { + "start": 16410.69, + "end": 16413.76, + "probability": 0.5304 + }, + { + "start": 16413.86, + "end": 16414.44, + "probability": 0.6173 + }, + { + "start": 16415.04, + "end": 16415.68, + "probability": 0.8013 + }, + { + "start": 16416.64, + "end": 16418.88, + "probability": 0.9613 + }, + { + "start": 16419.2, + "end": 16421.4, + "probability": 0.9765 + }, + { + "start": 16421.64, + "end": 16423.74, + "probability": 0.9498 + }, + { + "start": 16424.4, + "end": 16425.32, + "probability": 0.7284 + }, + { + "start": 16428.45, + "end": 16431.82, + "probability": 0.9972 + }, + { + "start": 16431.82, + "end": 16437.28, + "probability": 0.9305 + }, + { + "start": 16437.46, + "end": 16440.65, + "probability": 0.7735 + }, + { + "start": 16441.82, + "end": 16442.04, + "probability": 0.284 + }, + { + "start": 16442.08, + "end": 16443.72, + "probability": 0.9399 + }, + { + "start": 16444.24, + "end": 16446.2, + "probability": 0.7238 + }, + { + "start": 16446.84, + "end": 16449.34, + "probability": 0.977 + }, + { + "start": 16450.6, + "end": 16453.08, + "probability": 0.6766 + }, + { + "start": 16453.26, + "end": 16454.22, + "probability": 0.5741 + }, + { + "start": 16454.26, + "end": 16454.66, + "probability": 0.4392 + }, + { + "start": 16454.84, + "end": 16454.94, + "probability": 0.6461 + }, + { + "start": 16455.3, + "end": 16456.56, + "probability": 0.6099 + }, + { + "start": 16456.66, + "end": 16458.22, + "probability": 0.7933 + }, + { + "start": 16458.38, + "end": 16460.98, + "probability": 0.7681 + }, + { + "start": 16462.22, + "end": 16463.22, + "probability": 0.679 + }, + { + "start": 16464.26, + "end": 16467.36, + "probability": 0.9851 + }, + { + "start": 16467.96, + "end": 16471.34, + "probability": 0.998 + }, + { + "start": 16471.36, + "end": 16474.96, + "probability": 0.999 + }, + { + "start": 16475.12, + "end": 16479.5, + "probability": 0.9207 + }, + { + "start": 16479.64, + "end": 16484.38, + "probability": 0.6295 + }, + { + "start": 16484.9, + "end": 16486.6, + "probability": 0.8751 + }, + { + "start": 16486.98, + "end": 16488.68, + "probability": 0.9256 + }, + { + "start": 16489.2, + "end": 16496.52, + "probability": 0.791 + }, + { + "start": 16496.86, + "end": 16500.35, + "probability": 0.9918 + }, + { + "start": 16500.42, + "end": 16504.76, + "probability": 0.8725 + }, + { + "start": 16505.02, + "end": 16506.16, + "probability": 0.895 + }, + { + "start": 16506.38, + "end": 16508.66, + "probability": 0.9635 + }, + { + "start": 16508.72, + "end": 16510.28, + "probability": 0.8381 + }, + { + "start": 16510.5, + "end": 16511.46, + "probability": 0.7661 + }, + { + "start": 16511.56, + "end": 16512.74, + "probability": 0.7061 + }, + { + "start": 16513.92, + "end": 16514.52, + "probability": 0.8979 + }, + { + "start": 16514.6, + "end": 16515.1, + "probability": 0.5902 + }, + { + "start": 16515.2, + "end": 16518.3, + "probability": 0.8462 + }, + { + "start": 16518.56, + "end": 16519.24, + "probability": 0.5001 + }, + { + "start": 16519.38, + "end": 16520.22, + "probability": 0.7528 + }, + { + "start": 16520.4, + "end": 16521.72, + "probability": 0.9092 + }, + { + "start": 16522.08, + "end": 16524.48, + "probability": 0.9335 + }, + { + "start": 16524.8, + "end": 16526.16, + "probability": 0.9708 + }, + { + "start": 16526.4, + "end": 16527.06, + "probability": 0.4487 + }, + { + "start": 16527.4, + "end": 16528.74, + "probability": 0.9575 + }, + { + "start": 16528.9, + "end": 16531.82, + "probability": 0.9781 + }, + { + "start": 16531.84, + "end": 16533.54, + "probability": 0.7505 + }, + { + "start": 16533.94, + "end": 16536.66, + "probability": 0.9313 + }, + { + "start": 16536.88, + "end": 16537.66, + "probability": 0.576 + }, + { + "start": 16537.76, + "end": 16538.7, + "probability": 0.7031 + }, + { + "start": 16538.76, + "end": 16541.58, + "probability": 0.8043 + }, + { + "start": 16542.52, + "end": 16544.1, + "probability": 0.9766 + }, + { + "start": 16544.12, + "end": 16546.94, + "probability": 0.9622 + }, + { + "start": 16547.74, + "end": 16551.82, + "probability": 0.8916 + }, + { + "start": 16551.82, + "end": 16556.44, + "probability": 0.9639 + }, + { + "start": 16557.32, + "end": 16558.9, + "probability": 0.1547 + }, + { + "start": 16559.3, + "end": 16560.54, + "probability": 0.7374 + }, + { + "start": 16566.84, + "end": 16568.06, + "probability": 0.7909 + }, + { + "start": 16571.3, + "end": 16572.64, + "probability": 0.6768 + }, + { + "start": 16572.64, + "end": 16573.7, + "probability": 0.6584 + }, + { + "start": 16574.54, + "end": 16579.18, + "probability": 0.8148 + }, + { + "start": 16580.08, + "end": 16580.82, + "probability": 0.6785 + }, + { + "start": 16581.04, + "end": 16585.9, + "probability": 0.9389 + }, + { + "start": 16586.64, + "end": 16588.38, + "probability": 0.9897 + }, + { + "start": 16588.94, + "end": 16592.0, + "probability": 0.9754 + }, + { + "start": 16592.7, + "end": 16596.37, + "probability": 0.9951 + }, + { + "start": 16596.46, + "end": 16600.84, + "probability": 0.9844 + }, + { + "start": 16601.22, + "end": 16603.96, + "probability": 0.9984 + }, + { + "start": 16604.98, + "end": 16609.96, + "probability": 0.9445 + }, + { + "start": 16610.64, + "end": 16614.88, + "probability": 0.9874 + }, + { + "start": 16615.74, + "end": 16619.52, + "probability": 0.9873 + }, + { + "start": 16620.04, + "end": 16623.62, + "probability": 0.9897 + }, + { + "start": 16624.06, + "end": 16625.14, + "probability": 0.5013 + }, + { + "start": 16625.52, + "end": 16626.1, + "probability": 0.9325 + }, + { + "start": 16626.4, + "end": 16626.86, + "probability": 0.7037 + }, + { + "start": 16627.48, + "end": 16630.34, + "probability": 0.8599 + }, + { + "start": 16630.34, + "end": 16635.58, + "probability": 0.9916 + }, + { + "start": 16636.26, + "end": 16639.94, + "probability": 0.9414 + }, + { + "start": 16639.94, + "end": 16645.16, + "probability": 0.9919 + }, + { + "start": 16645.78, + "end": 16650.86, + "probability": 0.9955 + }, + { + "start": 16651.52, + "end": 16655.14, + "probability": 0.9973 + }, + { + "start": 16655.88, + "end": 16656.5, + "probability": 0.7149 + }, + { + "start": 16657.04, + "end": 16661.17, + "probability": 0.9746 + }, + { + "start": 16661.62, + "end": 16663.94, + "probability": 0.9316 + }, + { + "start": 16664.04, + "end": 16668.44, + "probability": 0.9639 + }, + { + "start": 16668.84, + "end": 16669.9, + "probability": 0.7682 + }, + { + "start": 16670.26, + "end": 16671.36, + "probability": 0.9893 + }, + { + "start": 16671.9, + "end": 16675.64, + "probability": 0.7964 + }, + { + "start": 16676.18, + "end": 16679.46, + "probability": 0.8104 + }, + { + "start": 16679.84, + "end": 16682.24, + "probability": 0.9885 + }, + { + "start": 16682.92, + "end": 16686.54, + "probability": 0.8797 + }, + { + "start": 16687.4, + "end": 16687.4, + "probability": 0.0501 + }, + { + "start": 16687.4, + "end": 16689.79, + "probability": 0.9492 + }, + { + "start": 16690.32, + "end": 16696.9, + "probability": 0.8907 + }, + { + "start": 16697.6, + "end": 16700.4, + "probability": 0.9604 + }, + { + "start": 16701.24, + "end": 16707.58, + "probability": 0.9446 + }, + { + "start": 16708.02, + "end": 16711.6, + "probability": 0.8285 + }, + { + "start": 16712.2, + "end": 16715.92, + "probability": 0.9712 + }, + { + "start": 16716.56, + "end": 16721.4, + "probability": 0.9792 + }, + { + "start": 16721.88, + "end": 16725.68, + "probability": 0.986 + }, + { + "start": 16726.18, + "end": 16726.56, + "probability": 0.7121 + }, + { + "start": 16726.62, + "end": 16727.96, + "probability": 0.86 + }, + { + "start": 16728.44, + "end": 16729.05, + "probability": 0.9441 + }, + { + "start": 16729.96, + "end": 16733.13, + "probability": 0.982 + }, + { + "start": 16733.64, + "end": 16736.04, + "probability": 0.9968 + }, + { + "start": 16736.18, + "end": 16736.64, + "probability": 0.8698 + }, + { + "start": 16736.74, + "end": 16738.3, + "probability": 0.994 + }, + { + "start": 16738.66, + "end": 16738.9, + "probability": 0.714 + }, + { + "start": 16739.76, + "end": 16741.6, + "probability": 0.7125 + }, + { + "start": 16741.68, + "end": 16743.72, + "probability": 0.8394 + }, + { + "start": 16760.72, + "end": 16763.64, + "probability": 0.7769 + }, + { + "start": 16764.14, + "end": 16764.24, + "probability": 0.7375 + }, + { + "start": 16764.32, + "end": 16766.7, + "probability": 0.9865 + }, + { + "start": 16767.32, + "end": 16769.04, + "probability": 0.9159 + }, + { + "start": 16769.12, + "end": 16770.78, + "probability": 0.558 + }, + { + "start": 16770.94, + "end": 16773.02, + "probability": 0.8403 + }, + { + "start": 16773.54, + "end": 16776.32, + "probability": 0.918 + }, + { + "start": 16777.45, + "end": 16781.82, + "probability": 0.8486 + }, + { + "start": 16782.0, + "end": 16784.04, + "probability": 0.568 + }, + { + "start": 16785.82, + "end": 16787.66, + "probability": 0.5147 + }, + { + "start": 16787.78, + "end": 16793.74, + "probability": 0.8095 + }, + { + "start": 16793.86, + "end": 16797.93, + "probability": 0.5028 + }, + { + "start": 16798.94, + "end": 16800.68, + "probability": 0.7559 + }, + { + "start": 16800.92, + "end": 16801.94, + "probability": 0.8955 + }, + { + "start": 16802.0, + "end": 16802.62, + "probability": 0.9148 + }, + { + "start": 16802.7, + "end": 16803.44, + "probability": 0.9073 + }, + { + "start": 16803.82, + "end": 16804.8, + "probability": 0.9445 + }, + { + "start": 16804.94, + "end": 16806.94, + "probability": 0.7214 + }, + { + "start": 16807.1, + "end": 16808.36, + "probability": 0.9575 + }, + { + "start": 16808.64, + "end": 16810.86, + "probability": 0.9862 + }, + { + "start": 16810.98, + "end": 16812.06, + "probability": 0.7497 + }, + { + "start": 16812.24, + "end": 16814.06, + "probability": 0.9865 + }, + { + "start": 16814.74, + "end": 16815.74, + "probability": 0.7674 + }, + { + "start": 16816.04, + "end": 16818.67, + "probability": 0.9081 + }, + { + "start": 16820.04, + "end": 16823.22, + "probability": 0.7318 + }, + { + "start": 16823.74, + "end": 16824.99, + "probability": 0.959 + }, + { + "start": 16825.5, + "end": 16825.5, + "probability": 0.3827 + }, + { + "start": 16825.7, + "end": 16828.64, + "probability": 0.6628 + }, + { + "start": 16828.64, + "end": 16830.9, + "probability": 0.6759 + }, + { + "start": 16831.56, + "end": 16833.36, + "probability": 0.9048 + }, + { + "start": 16834.08, + "end": 16835.4, + "probability": 0.7451 + }, + { + "start": 16836.18, + "end": 16836.72, + "probability": 0.3433 + }, + { + "start": 16837.18, + "end": 16838.14, + "probability": 0.9326 + }, + { + "start": 16838.28, + "end": 16839.22, + "probability": 0.9216 + }, + { + "start": 16839.32, + "end": 16840.64, + "probability": 0.9292 + }, + { + "start": 16841.16, + "end": 16842.18, + "probability": 0.7389 + }, + { + "start": 16842.26, + "end": 16842.98, + "probability": 0.7204 + }, + { + "start": 16843.08, + "end": 16843.42, + "probability": 0.5714 + }, + { + "start": 16843.84, + "end": 16845.46, + "probability": 0.8866 + }, + { + "start": 16845.74, + "end": 16849.86, + "probability": 0.8999 + }, + { + "start": 16849.9, + "end": 16852.34, + "probability": 0.5829 + }, + { + "start": 16852.34, + "end": 16853.42, + "probability": 0.1684 + }, + { + "start": 16855.32, + "end": 16857.72, + "probability": 0.6822 + }, + { + "start": 16858.34, + "end": 16859.02, + "probability": 0.9033 + }, + { + "start": 16859.12, + "end": 16859.54, + "probability": 0.4278 + }, + { + "start": 16859.7, + "end": 16861.89, + "probability": 0.9854 + }, + { + "start": 16863.66, + "end": 16865.86, + "probability": 0.9141 + }, + { + "start": 16866.94, + "end": 16870.6, + "probability": 0.9865 + }, + { + "start": 16870.76, + "end": 16872.08, + "probability": 0.6867 + }, + { + "start": 16872.16, + "end": 16873.38, + "probability": 0.6816 + }, + { + "start": 16873.56, + "end": 16874.02, + "probability": 0.6244 + }, + { + "start": 16874.14, + "end": 16874.78, + "probability": 0.6639 + }, + { + "start": 16874.92, + "end": 16875.58, + "probability": 0.4509 + }, + { + "start": 16875.9, + "end": 16877.02, + "probability": 0.8926 + }, + { + "start": 16877.06, + "end": 16877.65, + "probability": 0.586 + }, + { + "start": 16877.8, + "end": 16879.09, + "probability": 0.7318 + }, + { + "start": 16879.48, + "end": 16882.1, + "probability": 0.9499 + }, + { + "start": 16882.16, + "end": 16884.96, + "probability": 0.9852 + }, + { + "start": 16885.08, + "end": 16886.54, + "probability": 0.8114 + }, + { + "start": 16886.78, + "end": 16888.42, + "probability": 0.5078 + }, + { + "start": 16889.14, + "end": 16891.36, + "probability": 0.8963 + }, + { + "start": 16892.38, + "end": 16894.94, + "probability": 0.9979 + }, + { + "start": 16895.76, + "end": 16897.96, + "probability": 0.622 + }, + { + "start": 16898.04, + "end": 16900.68, + "probability": 0.8625 + }, + { + "start": 16901.06, + "end": 16901.58, + "probability": 0.698 + }, + { + "start": 16901.8, + "end": 16903.18, + "probability": 0.6218 + }, + { + "start": 16903.58, + "end": 16904.24, + "probability": 0.7437 + }, + { + "start": 16904.56, + "end": 16905.72, + "probability": 0.4539 + }, + { + "start": 16905.96, + "end": 16907.43, + "probability": 0.6967 + }, + { + "start": 16908.32, + "end": 16913.4, + "probability": 0.7972 + }, + { + "start": 16913.4, + "end": 16916.98, + "probability": 0.9425 + }, + { + "start": 16917.06, + "end": 16918.66, + "probability": 0.9033 + }, + { + "start": 16919.02, + "end": 16920.22, + "probability": 0.648 + }, + { + "start": 16920.32, + "end": 16922.0, + "probability": 0.9961 + }, + { + "start": 16922.44, + "end": 16925.84, + "probability": 0.6509 + }, + { + "start": 16926.18, + "end": 16933.34, + "probability": 0.7831 + }, + { + "start": 16933.46, + "end": 16934.96, + "probability": 0.8281 + }, + { + "start": 16935.04, + "end": 16936.22, + "probability": 0.7798 + }, + { + "start": 16936.3, + "end": 16937.22, + "probability": 0.4234 + }, + { + "start": 16937.38, + "end": 16938.98, + "probability": 0.7433 + }, + { + "start": 16939.84, + "end": 16942.9, + "probability": 0.9022 + }, + { + "start": 16943.02, + "end": 16944.68, + "probability": 0.948 + }, + { + "start": 16944.7, + "end": 16946.02, + "probability": 0.3622 + }, + { + "start": 16946.78, + "end": 16948.84, + "probability": 0.8535 + }, + { + "start": 16949.42, + "end": 16952.42, + "probability": 0.5701 + }, + { + "start": 16952.58, + "end": 16953.6, + "probability": 0.641 + }, + { + "start": 16953.6, + "end": 16958.32, + "probability": 0.992 + }, + { + "start": 16958.44, + "end": 16959.58, + "probability": 0.6975 + }, + { + "start": 16959.72, + "end": 16962.5, + "probability": 0.512 + }, + { + "start": 16962.86, + "end": 16965.26, + "probability": 0.9956 + }, + { + "start": 16965.38, + "end": 16966.56, + "probability": 0.7749 + }, + { + "start": 16966.96, + "end": 16968.78, + "probability": 0.8558 + }, + { + "start": 16968.78, + "end": 16970.16, + "probability": 0.817 + }, + { + "start": 16970.16, + "end": 16970.34, + "probability": 0.4501 + }, + { + "start": 16970.44, + "end": 16970.58, + "probability": 0.3652 + }, + { + "start": 16971.16, + "end": 16973.06, + "probability": 0.5079 + }, + { + "start": 16973.2, + "end": 16975.36, + "probability": 0.7063 + }, + { + "start": 16975.72, + "end": 16976.38, + "probability": 0.9873 + }, + { + "start": 16977.1, + "end": 16978.94, + "probability": 0.9733 + }, + { + "start": 16980.0, + "end": 16981.72, + "probability": 0.5494 + }, + { + "start": 16982.14, + "end": 16983.8, + "probability": 0.9606 + }, + { + "start": 16984.44, + "end": 16986.66, + "probability": 0.6965 + }, + { + "start": 16986.98, + "end": 16987.9, + "probability": 0.5645 + }, + { + "start": 16988.5, + "end": 16989.84, + "probability": 0.9572 + }, + { + "start": 16990.3, + "end": 16994.22, + "probability": 0.9515 + }, + { + "start": 16994.54, + "end": 16994.62, + "probability": 0.645 + }, + { + "start": 16994.66, + "end": 16995.4, + "probability": 0.6841 + }, + { + "start": 16995.48, + "end": 16997.56, + "probability": 0.9868 + }, + { + "start": 16997.68, + "end": 17001.18, + "probability": 0.968 + }, + { + "start": 17001.18, + "end": 17003.6, + "probability": 0.864 + }, + { + "start": 17003.66, + "end": 17003.88, + "probability": 0.788 + }, + { + "start": 17004.64, + "end": 17005.92, + "probability": 0.6637 + }, + { + "start": 17006.04, + "end": 17007.8, + "probability": 0.5448 + }, + { + "start": 17007.84, + "end": 17008.74, + "probability": 0.7679 + }, + { + "start": 17023.5, + "end": 17025.52, + "probability": 0.7381 + }, + { + "start": 17025.52, + "end": 17026.76, + "probability": 0.7094 + }, + { + "start": 17026.96, + "end": 17027.22, + "probability": 0.7668 + }, + { + "start": 17027.4, + "end": 17032.24, + "probability": 0.9131 + }, + { + "start": 17032.26, + "end": 17035.86, + "probability": 0.7877 + }, + { + "start": 17036.68, + "end": 17042.08, + "probability": 0.9532 + }, + { + "start": 17043.58, + "end": 17048.44, + "probability": 0.9884 + }, + { + "start": 17048.6, + "end": 17051.72, + "probability": 0.9128 + }, + { + "start": 17052.38, + "end": 17053.98, + "probability": 0.4501 + }, + { + "start": 17054.59, + "end": 17060.56, + "probability": 0.9785 + }, + { + "start": 17060.56, + "end": 17065.02, + "probability": 0.9965 + }, + { + "start": 17065.2, + "end": 17068.16, + "probability": 0.9972 + }, + { + "start": 17069.4, + "end": 17071.46, + "probability": 0.8237 + }, + { + "start": 17073.08, + "end": 17077.44, + "probability": 0.9883 + }, + { + "start": 17077.44, + "end": 17082.48, + "probability": 0.9949 + }, + { + "start": 17083.1, + "end": 17086.04, + "probability": 0.9482 + }, + { + "start": 17087.32, + "end": 17091.02, + "probability": 0.9955 + }, + { + "start": 17091.3, + "end": 17093.74, + "probability": 0.9774 + }, + { + "start": 17093.8, + "end": 17096.12, + "probability": 0.9972 + }, + { + "start": 17096.68, + "end": 17099.64, + "probability": 0.9811 + }, + { + "start": 17099.64, + "end": 17102.22, + "probability": 0.9663 + }, + { + "start": 17102.32, + "end": 17105.6, + "probability": 0.9965 + }, + { + "start": 17105.6, + "end": 17109.12, + "probability": 0.9943 + }, + { + "start": 17110.1, + "end": 17114.16, + "probability": 0.8374 + }, + { + "start": 17115.24, + "end": 17116.22, + "probability": 0.3789 + }, + { + "start": 17116.76, + "end": 17120.5, + "probability": 0.9977 + }, + { + "start": 17120.5, + "end": 17123.96, + "probability": 0.9941 + }, + { + "start": 17124.42, + "end": 17126.88, + "probability": 0.9458 + }, + { + "start": 17126.96, + "end": 17130.92, + "probability": 0.9865 + }, + { + "start": 17131.44, + "end": 17133.9, + "probability": 0.9958 + }, + { + "start": 17133.9, + "end": 17136.46, + "probability": 0.9991 + }, + { + "start": 17137.44, + "end": 17138.42, + "probability": 0.3085 + }, + { + "start": 17139.68, + "end": 17143.18, + "probability": 0.9973 + }, + { + "start": 17143.18, + "end": 17147.9, + "probability": 0.9877 + }, + { + "start": 17148.52, + "end": 17150.92, + "probability": 0.7352 + }, + { + "start": 17150.92, + "end": 17153.98, + "probability": 0.9959 + }, + { + "start": 17153.98, + "end": 17156.8, + "probability": 0.9978 + }, + { + "start": 17157.44, + "end": 17159.32, + "probability": 0.7759 + }, + { + "start": 17159.38, + "end": 17164.6, + "probability": 0.9818 + }, + { + "start": 17165.29, + "end": 17168.6, + "probability": 0.9958 + }, + { + "start": 17169.24, + "end": 17170.64, + "probability": 0.953 + }, + { + "start": 17171.42, + "end": 17174.88, + "probability": 0.9894 + }, + { + "start": 17175.0, + "end": 17184.44, + "probability": 0.98 + }, + { + "start": 17184.58, + "end": 17185.58, + "probability": 0.7998 + }, + { + "start": 17185.72, + "end": 17188.74, + "probability": 0.9819 + }, + { + "start": 17188.86, + "end": 17191.16, + "probability": 0.9888 + }, + { + "start": 17191.3, + "end": 17193.28, + "probability": 0.9957 + }, + { + "start": 17193.88, + "end": 17195.84, + "probability": 0.9913 + }, + { + "start": 17197.06, + "end": 17203.0, + "probability": 0.942 + }, + { + "start": 17203.18, + "end": 17205.32, + "probability": 0.9583 + }, + { + "start": 17205.84, + "end": 17207.04, + "probability": 0.4671 + }, + { + "start": 17207.18, + "end": 17212.88, + "probability": 0.9957 + }, + { + "start": 17213.44, + "end": 17217.54, + "probability": 0.9976 + }, + { + "start": 17217.54, + "end": 17221.44, + "probability": 0.9536 + }, + { + "start": 17221.5, + "end": 17224.54, + "probability": 0.9993 + }, + { + "start": 17225.02, + "end": 17230.24, + "probability": 0.9939 + }, + { + "start": 17230.3, + "end": 17231.4, + "probability": 0.7421 + }, + { + "start": 17231.52, + "end": 17235.68, + "probability": 0.9053 + }, + { + "start": 17236.18, + "end": 17236.5, + "probability": 0.7714 + }, + { + "start": 17236.56, + "end": 17238.58, + "probability": 0.9751 + }, + { + "start": 17238.96, + "end": 17241.9, + "probability": 0.8809 + }, + { + "start": 17242.34, + "end": 17244.06, + "probability": 0.9922 + }, + { + "start": 17244.84, + "end": 17246.7, + "probability": 0.8503 + }, + { + "start": 17247.48, + "end": 17248.88, + "probability": 0.7458 + }, + { + "start": 17249.08, + "end": 17255.06, + "probability": 0.8995 + }, + { + "start": 17255.1, + "end": 17258.52, + "probability": 0.9215 + }, + { + "start": 17258.58, + "end": 17262.18, + "probability": 0.9976 + }, + { + "start": 17262.86, + "end": 17269.88, + "probability": 0.9818 + }, + { + "start": 17269.98, + "end": 17271.98, + "probability": 0.9929 + }, + { + "start": 17272.02, + "end": 17274.54, + "probability": 0.9053 + }, + { + "start": 17275.34, + "end": 17278.72, + "probability": 0.9719 + }, + { + "start": 17278.86, + "end": 17279.2, + "probability": 0.7836 + }, + { + "start": 17280.14, + "end": 17281.38, + "probability": 0.631 + }, + { + "start": 17281.52, + "end": 17283.76, + "probability": 0.6501 + }, + { + "start": 17288.64, + "end": 17290.22, + "probability": 0.593 + }, + { + "start": 17290.96, + "end": 17295.9, + "probability": 0.9561 + }, + { + "start": 17297.3, + "end": 17305.06, + "probability": 0.9959 + }, + { + "start": 17305.06, + "end": 17314.92, + "probability": 0.994 + }, + { + "start": 17316.0, + "end": 17319.66, + "probability": 0.9899 + }, + { + "start": 17320.52, + "end": 17320.74, + "probability": 0.8528 + }, + { + "start": 17320.86, + "end": 17321.6, + "probability": 0.931 + }, + { + "start": 17321.72, + "end": 17322.6, + "probability": 0.6253 + }, + { + "start": 17322.74, + "end": 17325.3, + "probability": 0.9781 + }, + { + "start": 17325.94, + "end": 17331.12, + "probability": 0.9892 + }, + { + "start": 17331.12, + "end": 17337.38, + "probability": 0.9969 + }, + { + "start": 17338.36, + "end": 17342.08, + "probability": 0.9838 + }, + { + "start": 17342.08, + "end": 17346.4, + "probability": 0.9928 + }, + { + "start": 17346.4, + "end": 17352.28, + "probability": 0.9967 + }, + { + "start": 17352.5, + "end": 17353.02, + "probability": 0.7522 + }, + { + "start": 17353.88, + "end": 17355.56, + "probability": 0.85 + }, + { + "start": 17355.7, + "end": 17356.14, + "probability": 0.6208 + }, + { + "start": 17356.14, + "end": 17356.56, + "probability": 0.9571 + }, + { + "start": 17356.6, + "end": 17359.62, + "probability": 0.978 + }, + { + "start": 17360.74, + "end": 17363.18, + "probability": 0.839 + }, + { + "start": 17363.66, + "end": 17364.54, + "probability": 0.604 + }, + { + "start": 17364.66, + "end": 17366.98, + "probability": 0.9043 + }, + { + "start": 17367.6, + "end": 17368.74, + "probability": 0.9727 + }, + { + "start": 17370.66, + "end": 17370.76, + "probability": 0.9475 + }, + { + "start": 17372.74, + "end": 17374.34, + "probability": 0.7575 + }, + { + "start": 17374.98, + "end": 17378.16, + "probability": 0.9685 + }, + { + "start": 17378.36, + "end": 17380.02, + "probability": 0.7651 + }, + { + "start": 17380.2, + "end": 17382.8, + "probability": 0.9234 + }, + { + "start": 17383.58, + "end": 17387.7, + "probability": 0.9935 + }, + { + "start": 17387.82, + "end": 17391.38, + "probability": 0.8868 + }, + { + "start": 17391.54, + "end": 17392.72, + "probability": 0.8101 + }, + { + "start": 17393.22, + "end": 17394.3, + "probability": 0.5196 + }, + { + "start": 17394.78, + "end": 17395.4, + "probability": 0.7856 + }, + { + "start": 17395.58, + "end": 17399.24, + "probability": 0.9089 + }, + { + "start": 17399.52, + "end": 17400.96, + "probability": 0.8399 + }, + { + "start": 17401.46, + "end": 17402.7, + "probability": 0.9612 + }, + { + "start": 17402.78, + "end": 17403.62, + "probability": 0.9292 + }, + { + "start": 17403.78, + "end": 17406.88, + "probability": 0.8826 + }, + { + "start": 17407.18, + "end": 17409.54, + "probability": 0.926 + }, + { + "start": 17409.9, + "end": 17413.58, + "probability": 0.9774 + }, + { + "start": 17413.94, + "end": 17414.36, + "probability": 0.6231 + }, + { + "start": 17414.48, + "end": 17417.68, + "probability": 0.9918 + }, + { + "start": 17417.76, + "end": 17421.18, + "probability": 0.9961 + }, + { + "start": 17421.6, + "end": 17421.8, + "probability": 0.7768 + }, + { + "start": 17422.28, + "end": 17423.88, + "probability": 0.692 + }, + { + "start": 17423.98, + "end": 17424.44, + "probability": 0.7425 + }, + { + "start": 17424.66, + "end": 17427.14, + "probability": 0.9409 + }, + { + "start": 17427.94, + "end": 17429.84, + "probability": 0.934 + }, + { + "start": 17430.6, + "end": 17431.7, + "probability": 0.5514 + }, + { + "start": 17431.72, + "end": 17432.26, + "probability": 0.458 + }, + { + "start": 17432.36, + "end": 17433.28, + "probability": 0.6849 + }, + { + "start": 17434.08, + "end": 17434.32, + "probability": 0.0829 + }, + { + "start": 17451.88, + "end": 17452.02, + "probability": 0.1437 + }, + { + "start": 17452.02, + "end": 17454.86, + "probability": 0.6643 + }, + { + "start": 17455.3, + "end": 17455.58, + "probability": 0.4377 + }, + { + "start": 17455.66, + "end": 17457.88, + "probability": 0.9438 + }, + { + "start": 17457.9, + "end": 17460.52, + "probability": 0.8087 + }, + { + "start": 17461.0, + "end": 17463.7, + "probability": 0.9862 + }, + { + "start": 17464.76, + "end": 17464.92, + "probability": 0.4232 + }, + { + "start": 17464.98, + "end": 17466.42, + "probability": 0.6349 + }, + { + "start": 17466.58, + "end": 17473.34, + "probability": 0.944 + }, + { + "start": 17474.02, + "end": 17474.02, + "probability": 0.031 + }, + { + "start": 17474.02, + "end": 17475.88, + "probability": 0.1066 + }, + { + "start": 17477.04, + "end": 17478.46, + "probability": 0.8491 + }, + { + "start": 17481.9, + "end": 17487.32, + "probability": 0.9194 + }, + { + "start": 17493.01, + "end": 17495.33, + "probability": 0.7657 + }, + { + "start": 17501.84, + "end": 17503.22, + "probability": 0.3361 + }, + { + "start": 17503.52, + "end": 17505.34, + "probability": 0.5405 + }, + { + "start": 17506.36, + "end": 17510.6, + "probability": 0.8899 + }, + { + "start": 17510.6, + "end": 17515.58, + "probability": 0.8198 + }, + { + "start": 17515.58, + "end": 17522.66, + "probability": 0.9813 + }, + { + "start": 17522.68, + "end": 17523.66, + "probability": 0.7445 + }, + { + "start": 17524.04, + "end": 17528.26, + "probability": 0.995 + }, + { + "start": 17529.52, + "end": 17533.86, + "probability": 0.9907 + }, + { + "start": 17534.5, + "end": 17537.5, + "probability": 0.9907 + }, + { + "start": 17538.56, + "end": 17542.3, + "probability": 0.9739 + }, + { + "start": 17542.5, + "end": 17545.06, + "probability": 0.9537 + }, + { + "start": 17546.16, + "end": 17549.88, + "probability": 0.9758 + }, + { + "start": 17550.72, + "end": 17554.98, + "probability": 0.9676 + }, + { + "start": 17555.96, + "end": 17556.8, + "probability": 0.7155 + }, + { + "start": 17557.0, + "end": 17561.2, + "probability": 0.9341 + }, + { + "start": 17561.52, + "end": 17563.12, + "probability": 0.8774 + }, + { + "start": 17563.88, + "end": 17565.0, + "probability": 0.7737 + }, + { + "start": 17565.82, + "end": 17566.92, + "probability": 0.7892 + }, + { + "start": 17567.4, + "end": 17568.58, + "probability": 0.9483 + }, + { + "start": 17569.0, + "end": 17573.46, + "probability": 0.983 + }, + { + "start": 17573.62, + "end": 17575.98, + "probability": 0.9388 + }, + { + "start": 17576.32, + "end": 17579.64, + "probability": 0.207 + }, + { + "start": 17579.7, + "end": 17581.12, + "probability": 0.6423 + }, + { + "start": 17581.8, + "end": 17584.8, + "probability": 0.2002 + }, + { + "start": 17584.88, + "end": 17589.1, + "probability": 0.9964 + }, + { + "start": 17589.92, + "end": 17591.78, + "probability": 0.9448 + }, + { + "start": 17592.46, + "end": 17594.26, + "probability": 0.9757 + }, + { + "start": 17594.4, + "end": 17597.86, + "probability": 0.7736 + }, + { + "start": 17597.9, + "end": 17599.1, + "probability": 0.9111 + }, + { + "start": 17599.42, + "end": 17600.62, + "probability": 0.9485 + }, + { + "start": 17600.66, + "end": 17601.56, + "probability": 0.8916 + }, + { + "start": 17601.62, + "end": 17603.0, + "probability": 0.9731 + }, + { + "start": 17603.12, + "end": 17605.92, + "probability": 0.9395 + }, + { + "start": 17606.76, + "end": 17609.68, + "probability": 0.9925 + }, + { + "start": 17609.82, + "end": 17611.94, + "probability": 0.9976 + }, + { + "start": 17612.58, + "end": 17614.02, + "probability": 0.6913 + }, + { + "start": 17614.66, + "end": 17615.9, + "probability": 0.9093 + }, + { + "start": 17616.78, + "end": 17618.08, + "probability": 0.8481 + }, + { + "start": 17619.12, + "end": 17620.16, + "probability": 0.6682 + }, + { + "start": 17620.38, + "end": 17622.2, + "probability": 0.7968 + }, + { + "start": 17622.52, + "end": 17625.44, + "probability": 0.9593 + }, + { + "start": 17626.1, + "end": 17627.02, + "probability": 0.6748 + }, + { + "start": 17628.3, + "end": 17631.44, + "probability": 0.9498 + }, + { + "start": 17632.48, + "end": 17633.88, + "probability": 0.9558 + }, + { + "start": 17634.22, + "end": 17635.44, + "probability": 0.6507 + }, + { + "start": 17635.56, + "end": 17638.14, + "probability": 0.8513 + }, + { + "start": 17638.88, + "end": 17643.24, + "probability": 0.9855 + }, + { + "start": 17644.46, + "end": 17645.36, + "probability": 0.9007 + }, + { + "start": 17646.08, + "end": 17647.04, + "probability": 0.9781 + }, + { + "start": 17647.6, + "end": 17648.58, + "probability": 0.9692 + }, + { + "start": 17649.14, + "end": 17652.88, + "probability": 0.9224 + }, + { + "start": 17654.32, + "end": 17658.44, + "probability": 0.9863 + }, + { + "start": 17658.68, + "end": 17660.24, + "probability": 0.7598 + }, + { + "start": 17660.38, + "end": 17661.42, + "probability": 0.9469 + }, + { + "start": 17661.76, + "end": 17666.34, + "probability": 0.9946 + }, + { + "start": 17666.34, + "end": 17669.8, + "probability": 0.9956 + }, + { + "start": 17669.88, + "end": 17671.5, + "probability": 0.9954 + }, + { + "start": 17671.94, + "end": 17673.86, + "probability": 0.9016 + }, + { + "start": 17673.96, + "end": 17674.34, + "probability": 0.6992 + }, + { + "start": 17674.4, + "end": 17675.52, + "probability": 0.9734 + }, + { + "start": 17677.02, + "end": 17677.6, + "probability": 0.8683 + }, + { + "start": 17677.78, + "end": 17678.78, + "probability": 0.9644 + }, + { + "start": 17678.88, + "end": 17681.44, + "probability": 0.979 + }, + { + "start": 17681.6, + "end": 17683.64, + "probability": 0.9715 + }, + { + "start": 17684.16, + "end": 17686.14, + "probability": 0.9962 + }, + { + "start": 17686.82, + "end": 17690.0, + "probability": 0.9854 + }, + { + "start": 17690.24, + "end": 17690.62, + "probability": 0.7527 + }, + { + "start": 17691.02, + "end": 17692.58, + "probability": 0.6812 + }, + { + "start": 17692.96, + "end": 17697.0, + "probability": 0.9978 + }, + { + "start": 17697.7, + "end": 17698.36, + "probability": 0.8059 + }, + { + "start": 17699.18, + "end": 17699.92, + "probability": 0.0188 + }, + { + "start": 17711.5, + "end": 17712.72, + "probability": 0.2812 + }, + { + "start": 17712.72, + "end": 17712.72, + "probability": 0.2409 + }, + { + "start": 17712.72, + "end": 17714.14, + "probability": 0.2877 + }, + { + "start": 17714.38, + "end": 17719.18, + "probability": 0.5001 + }, + { + "start": 17719.56, + "end": 17721.86, + "probability": 0.708 + }, + { + "start": 17721.92, + "end": 17725.48, + "probability": 0.6673 + }, + { + "start": 17726.24, + "end": 17730.6, + "probability": 0.8105 + }, + { + "start": 17731.08, + "end": 17732.54, + "probability": 0.5022 + }, + { + "start": 17732.58, + "end": 17737.5, + "probability": 0.8981 + }, + { + "start": 17738.1, + "end": 17741.88, + "probability": 0.7641 + }, + { + "start": 17742.56, + "end": 17743.84, + "probability": 0.6017 + }, + { + "start": 17744.5, + "end": 17751.1, + "probability": 0.7981 + }, + { + "start": 17751.58, + "end": 17756.54, + "probability": 0.9506 + }, + { + "start": 17761.6, + "end": 17763.66, + "probability": 0.5184 + }, + { + "start": 17763.78, + "end": 17766.86, + "probability": 0.6202 + }, + { + "start": 17766.96, + "end": 17769.86, + "probability": 0.9937 + }, + { + "start": 17769.92, + "end": 17771.23, + "probability": 0.8314 + }, + { + "start": 17772.68, + "end": 17777.56, + "probability": 0.96 + }, + { + "start": 17777.92, + "end": 17779.18, + "probability": 0.9964 + }, + { + "start": 17779.8, + "end": 17783.86, + "probability": 0.7642 + }, + { + "start": 17784.22, + "end": 17784.92, + "probability": 0.2612 + }, + { + "start": 17785.22, + "end": 17786.48, + "probability": 0.6956 + }, + { + "start": 17786.48, + "end": 17786.9, + "probability": 0.5367 + }, + { + "start": 17787.12, + "end": 17789.96, + "probability": 0.484 + }, + { + "start": 17790.52, + "end": 17793.02, + "probability": 0.9478 + }, + { + "start": 17793.3, + "end": 17793.82, + "probability": 0.5251 + }, + { + "start": 17793.84, + "end": 17798.74, + "probability": 0.9266 + }, + { + "start": 17798.84, + "end": 17801.9, + "probability": 0.8341 + }, + { + "start": 17802.06, + "end": 17805.38, + "probability": 0.6621 + }, + { + "start": 17805.62, + "end": 17806.92, + "probability": 0.9502 + }, + { + "start": 17807.84, + "end": 17810.1, + "probability": 0.7253 + }, + { + "start": 17810.14, + "end": 17811.44, + "probability": 0.4983 + }, + { + "start": 17813.16, + "end": 17819.16, + "probability": 0.7314 + }, + { + "start": 17819.24, + "end": 17819.72, + "probability": 0.6738 + }, + { + "start": 17819.72, + "end": 17820.98, + "probability": 0.3822 + }, + { + "start": 17821.12, + "end": 17821.12, + "probability": 0.218 + }, + { + "start": 17821.12, + "end": 17822.62, + "probability": 0.7071 + }, + { + "start": 17823.22, + "end": 17826.48, + "probability": 0.5577 + }, + { + "start": 17826.64, + "end": 17827.98, + "probability": 0.9904 + }, + { + "start": 17828.06, + "end": 17829.64, + "probability": 0.6849 + }, + { + "start": 17829.72, + "end": 17830.16, + "probability": 0.8826 + }, + { + "start": 17830.86, + "end": 17835.1, + "probability": 0.8872 + }, + { + "start": 17835.12, + "end": 17835.6, + "probability": 0.6611 + }, + { + "start": 17836.0, + "end": 17843.04, + "probability": 0.9659 + }, + { + "start": 17843.08, + "end": 17847.36, + "probability": 0.9763 + }, + { + "start": 17847.84, + "end": 17852.24, + "probability": 0.8573 + }, + { + "start": 17852.26, + "end": 17854.8, + "probability": 0.9541 + }, + { + "start": 17854.9, + "end": 17855.42, + "probability": 0.3387 + }, + { + "start": 17855.74, + "end": 17858.16, + "probability": 0.8013 + }, + { + "start": 17858.58, + "end": 17859.5, + "probability": 0.8529 + }, + { + "start": 17859.8, + "end": 17862.31, + "probability": 0.9766 + }, + { + "start": 17863.36, + "end": 17863.84, + "probability": 0.7605 + }, + { + "start": 17865.02, + "end": 17866.88, + "probability": 0.6614 + }, + { + "start": 17868.18, + "end": 17871.42, + "probability": 0.5035 + }, + { + "start": 17871.48, + "end": 17873.26, + "probability": 0.8425 + }, + { + "start": 17873.38, + "end": 17877.88, + "probability": 0.8083 + }, + { + "start": 17880.54, + "end": 17880.98, + "probability": 0.0554 + }, + { + "start": 17880.98, + "end": 17881.06, + "probability": 0.1339 + }, + { + "start": 17881.06, + "end": 17881.7, + "probability": 0.5104 + }, + { + "start": 17882.2, + "end": 17887.1, + "probability": 0.7754 + }, + { + "start": 17887.42, + "end": 17888.98, + "probability": 0.7636 + }, + { + "start": 17889.08, + "end": 17892.18, + "probability": 0.995 + }, + { + "start": 17892.72, + "end": 17894.28, + "probability": 0.8782 + }, + { + "start": 17895.28, + "end": 17896.06, + "probability": 0.9163 + }, + { + "start": 17896.52, + "end": 17898.98, + "probability": 0.9868 + }, + { + "start": 17899.06, + "end": 17900.54, + "probability": 0.9444 + }, + { + "start": 17900.62, + "end": 17900.96, + "probability": 0.8348 + }, + { + "start": 17901.08, + "end": 17902.73, + "probability": 0.9136 + }, + { + "start": 17902.84, + "end": 17903.56, + "probability": 0.8452 + }, + { + "start": 17904.5, + "end": 17905.95, + "probability": 0.937 + }, + { + "start": 17906.4, + "end": 17907.4, + "probability": 0.802 + }, + { + "start": 17908.34, + "end": 17910.39, + "probability": 0.9915 + }, + { + "start": 17910.72, + "end": 17912.86, + "probability": 0.9125 + }, + { + "start": 17912.92, + "end": 17915.93, + "probability": 0.819 + }, + { + "start": 17916.72, + "end": 17917.7, + "probability": 0.903 + }, + { + "start": 17917.76, + "end": 17919.08, + "probability": 0.6837 + }, + { + "start": 17919.2, + "end": 17923.62, + "probability": 0.9746 + }, + { + "start": 17924.1, + "end": 17929.96, + "probability": 0.4464 + }, + { + "start": 17930.08, + "end": 17932.18, + "probability": 0.5509 + }, + { + "start": 17932.88, + "end": 17936.14, + "probability": 0.817 + }, + { + "start": 17936.38, + "end": 17937.22, + "probability": 0.8079 + }, + { + "start": 17937.32, + "end": 17938.22, + "probability": 0.9741 + }, + { + "start": 17938.26, + "end": 17939.0, + "probability": 0.9421 + }, + { + "start": 17939.08, + "end": 17939.52, + "probability": 0.9294 + }, + { + "start": 17940.06, + "end": 17941.89, + "probability": 0.854 + }, + { + "start": 17942.2, + "end": 17944.44, + "probability": 0.7723 + }, + { + "start": 17945.02, + "end": 17946.48, + "probability": 0.9053 + }, + { + "start": 17947.38, + "end": 17949.52, + "probability": 0.2213 + }, + { + "start": 17949.78, + "end": 17952.86, + "probability": 0.414 + }, + { + "start": 17954.52, + "end": 17956.44, + "probability": 0.7978 + }, + { + "start": 17958.5, + "end": 17958.94, + "probability": 0.6376 + }, + { + "start": 17959.46, + "end": 17960.56, + "probability": 0.8321 + }, + { + "start": 17963.0, + "end": 17965.56, + "probability": 0.6668 + }, + { + "start": 17966.62, + "end": 17967.76, + "probability": 0.7912 + }, + { + "start": 17968.22, + "end": 17969.44, + "probability": 0.9741 + }, + { + "start": 17969.54, + "end": 17973.66, + "probability": 0.9993 + }, + { + "start": 17973.74, + "end": 17977.34, + "probability": 0.6808 + }, + { + "start": 17978.3, + "end": 17980.08, + "probability": 0.611 + }, + { + "start": 17980.88, + "end": 17983.38, + "probability": 0.9329 + }, + { + "start": 17984.08, + "end": 17985.34, + "probability": 0.9194 + }, + { + "start": 17986.2, + "end": 17988.95, + "probability": 0.9924 + }, + { + "start": 17989.24, + "end": 17990.4, + "probability": 0.9385 + }, + { + "start": 17990.5, + "end": 17993.44, + "probability": 0.7298 + }, + { + "start": 17993.9, + "end": 17996.16, + "probability": 0.7912 + }, + { + "start": 17996.92, + "end": 17997.38, + "probability": 0.9714 + }, + { + "start": 17998.38, + "end": 17999.38, + "probability": 0.9424 + }, + { + "start": 18000.72, + "end": 18001.26, + "probability": 0.6369 + }, + { + "start": 18002.26, + "end": 18003.38, + "probability": 0.973 + }, + { + "start": 18004.34, + "end": 18005.54, + "probability": 0.979 + }, + { + "start": 18006.12, + "end": 18011.36, + "probability": 0.9915 + }, + { + "start": 18011.4, + "end": 18012.82, + "probability": 0.8911 + }, + { + "start": 18013.52, + "end": 18015.66, + "probability": 0.9508 + }, + { + "start": 18016.82, + "end": 18020.94, + "probability": 0.99 + }, + { + "start": 18021.48, + "end": 18027.86, + "probability": 0.8893 + }, + { + "start": 18029.12, + "end": 18031.02, + "probability": 0.9673 + }, + { + "start": 18032.4, + "end": 18040.74, + "probability": 0.9771 + }, + { + "start": 18041.16, + "end": 18043.1, + "probability": 0.8828 + }, + { + "start": 18043.92, + "end": 18046.72, + "probability": 0.9663 + }, + { + "start": 18050.54, + "end": 18051.28, + "probability": 0.7201 + }, + { + "start": 18051.36, + "end": 18057.02, + "probability": 0.9849 + }, + { + "start": 18057.22, + "end": 18059.96, + "probability": 0.6949 + }, + { + "start": 18060.02, + "end": 18060.8, + "probability": 0.8384 + }, + { + "start": 18061.66, + "end": 18063.1, + "probability": 0.8106 + }, + { + "start": 18063.24, + "end": 18069.06, + "probability": 0.9899 + }, + { + "start": 18069.58, + "end": 18070.78, + "probability": 0.9491 + }, + { + "start": 18072.68, + "end": 18080.18, + "probability": 0.9677 + }, + { + "start": 18081.0, + "end": 18084.62, + "probability": 0.9935 + }, + { + "start": 18087.54, + "end": 18093.1, + "probability": 0.9913 + }, + { + "start": 18094.26, + "end": 18098.26, + "probability": 0.9834 + }, + { + "start": 18098.72, + "end": 18102.06, + "probability": 0.9928 + }, + { + "start": 18102.62, + "end": 18108.04, + "probability": 0.9875 + }, + { + "start": 18108.08, + "end": 18110.42, + "probability": 0.9009 + }, + { + "start": 18110.76, + "end": 18116.76, + "probability": 0.9957 + }, + { + "start": 18117.46, + "end": 18122.14, + "probability": 0.9692 + }, + { + "start": 18122.82, + "end": 18127.74, + "probability": 0.9951 + }, + { + "start": 18128.34, + "end": 18130.34, + "probability": 0.9112 + }, + { + "start": 18130.92, + "end": 18133.0, + "probability": 0.904 + }, + { + "start": 18133.52, + "end": 18134.44, + "probability": 0.7572 + }, + { + "start": 18134.84, + "end": 18135.84, + "probability": 0.9268 + }, + { + "start": 18136.76, + "end": 18140.4, + "probability": 0.9724 + }, + { + "start": 18141.14, + "end": 18143.7, + "probability": 0.9862 + }, + { + "start": 18144.16, + "end": 18144.76, + "probability": 0.7903 + }, + { + "start": 18144.82, + "end": 18148.46, + "probability": 0.9816 + }, + { + "start": 18149.24, + "end": 18151.56, + "probability": 0.998 + }, + { + "start": 18152.52, + "end": 18155.53, + "probability": 0.9866 + }, + { + "start": 18156.14, + "end": 18157.62, + "probability": 0.8905 + }, + { + "start": 18158.06, + "end": 18158.9, + "probability": 0.8544 + }, + { + "start": 18159.02, + "end": 18160.2, + "probability": 0.9328 + }, + { + "start": 18160.7, + "end": 18161.72, + "probability": 0.8149 + }, + { + "start": 18162.38, + "end": 18166.02, + "probability": 0.9705 + }, + { + "start": 18166.74, + "end": 18172.22, + "probability": 0.9353 + }, + { + "start": 18172.84, + "end": 18175.7, + "probability": 0.9784 + }, + { + "start": 18176.5, + "end": 18179.26, + "probability": 0.9972 + }, + { + "start": 18179.7, + "end": 18182.48, + "probability": 0.9087 + }, + { + "start": 18182.66, + "end": 18183.58, + "probability": 0.8581 + }, + { + "start": 18184.2, + "end": 18187.98, + "probability": 0.8763 + }, + { + "start": 18188.06, + "end": 18189.02, + "probability": 0.6756 + }, + { + "start": 18189.1, + "end": 18195.18, + "probability": 0.9744 + }, + { + "start": 18195.24, + "end": 18197.98, + "probability": 0.7988 + }, + { + "start": 18198.16, + "end": 18200.28, + "probability": 0.7294 + }, + { + "start": 18200.88, + "end": 18201.78, + "probability": 0.0002 + }, + { + "start": 18203.26, + "end": 18205.48, + "probability": 0.8437 + }, + { + "start": 18205.92, + "end": 18206.72, + "probability": 0.853 + }, + { + "start": 18206.78, + "end": 18214.44, + "probability": 0.9686 + }, + { + "start": 18214.52, + "end": 18217.22, + "probability": 0.8149 + }, + { + "start": 18217.32, + "end": 18219.63, + "probability": 0.9199 + }, + { + "start": 18220.66, + "end": 18225.84, + "probability": 0.9514 + }, + { + "start": 18226.2, + "end": 18227.84, + "probability": 0.7835 + }, + { + "start": 18228.04, + "end": 18232.92, + "probability": 0.8262 + }, + { + "start": 18233.56, + "end": 18234.77, + "probability": 0.9258 + }, + { + "start": 18235.52, + "end": 18237.26, + "probability": 0.6117 + }, + { + "start": 18237.78, + "end": 18239.62, + "probability": 0.7851 + }, + { + "start": 18240.6, + "end": 18241.36, + "probability": 0.7674 + }, + { + "start": 18241.4, + "end": 18246.6, + "probability": 0.9479 + }, + { + "start": 18247.28, + "end": 18250.66, + "probability": 0.9485 + }, + { + "start": 18250.72, + "end": 18252.38, + "probability": 0.9333 + }, + { + "start": 18252.82, + "end": 18259.34, + "probability": 0.9939 + }, + { + "start": 18259.44, + "end": 18264.48, + "probability": 0.9966 + }, + { + "start": 18264.56, + "end": 18268.34, + "probability": 0.9968 + }, + { + "start": 18268.84, + "end": 18270.88, + "probability": 0.9111 + }, + { + "start": 18271.0, + "end": 18272.3, + "probability": 0.9359 + }, + { + "start": 18272.66, + "end": 18274.52, + "probability": 0.9282 + }, + { + "start": 18274.88, + "end": 18276.28, + "probability": 0.8439 + }, + { + "start": 18277.7, + "end": 18278.38, + "probability": 0.8892 + }, + { + "start": 18278.7, + "end": 18282.14, + "probability": 0.8872 + }, + { + "start": 18282.4, + "end": 18284.46, + "probability": 0.9689 + }, + { + "start": 18286.5, + "end": 18287.42, + "probability": 0.9332 + }, + { + "start": 18288.94, + "end": 18290.38, + "probability": 0.8586 + }, + { + "start": 18290.38, + "end": 18291.3, + "probability": 0.5124 + }, + { + "start": 18291.42, + "end": 18292.64, + "probability": 0.4928 + }, + { + "start": 18292.72, + "end": 18296.62, + "probability": 0.9887 + }, + { + "start": 18296.62, + "end": 18300.22, + "probability": 0.8237 + }, + { + "start": 18300.34, + "end": 18306.4, + "probability": 0.9593 + }, + { + "start": 18307.2, + "end": 18308.3, + "probability": 0.8491 + }, + { + "start": 18308.44, + "end": 18309.7, + "probability": 0.8473 + }, + { + "start": 18310.14, + "end": 18313.16, + "probability": 0.9196 + }, + { + "start": 18313.46, + "end": 18319.62, + "probability": 0.9328 + }, + { + "start": 18320.44, + "end": 18323.64, + "probability": 0.6568 + }, + { + "start": 18324.58, + "end": 18325.72, + "probability": 0.753 + }, + { + "start": 18326.02, + "end": 18326.32, + "probability": 0.1604 + }, + { + "start": 18326.7, + "end": 18327.42, + "probability": 0.5792 + }, + { + "start": 18327.46, + "end": 18329.5, + "probability": 0.6672 + }, + { + "start": 18330.08, + "end": 18331.7, + "probability": 0.8655 + }, + { + "start": 18331.98, + "end": 18333.24, + "probability": 0.9685 + }, + { + "start": 18333.52, + "end": 18334.74, + "probability": 0.9407 + }, + { + "start": 18334.74, + "end": 18335.62, + "probability": 0.0275 + }, + { + "start": 18337.02, + "end": 18337.34, + "probability": 0.147 + }, + { + "start": 18337.34, + "end": 18337.34, + "probability": 0.1225 + }, + { + "start": 18337.34, + "end": 18337.8, + "probability": 0.531 + }, + { + "start": 18337.98, + "end": 18339.96, + "probability": 0.7161 + }, + { + "start": 18340.0, + "end": 18342.72, + "probability": 0.9863 + }, + { + "start": 18343.04, + "end": 18349.0, + "probability": 0.928 + }, + { + "start": 18349.8, + "end": 18350.48, + "probability": 0.9206 + }, + { + "start": 18351.16, + "end": 18351.3, + "probability": 0.2662 + }, + { + "start": 18351.72, + "end": 18352.92, + "probability": 0.8874 + }, + { + "start": 18353.08, + "end": 18354.22, + "probability": 0.9459 + }, + { + "start": 18354.56, + "end": 18355.54, + "probability": 0.8699 + }, + { + "start": 18355.6, + "end": 18361.86, + "probability": 0.9551 + }, + { + "start": 18362.32, + "end": 18363.26, + "probability": 0.9265 + }, + { + "start": 18363.34, + "end": 18364.86, + "probability": 0.9397 + }, + { + "start": 18365.28, + "end": 18367.18, + "probability": 0.8761 + }, + { + "start": 18367.24, + "end": 18369.6, + "probability": 0.9881 + }, + { + "start": 18370.22, + "end": 18371.12, + "probability": 0.7791 + }, + { + "start": 18371.32, + "end": 18372.94, + "probability": 0.9314 + }, + { + "start": 18373.36, + "end": 18374.38, + "probability": 0.9115 + }, + { + "start": 18374.62, + "end": 18375.39, + "probability": 0.635 + }, + { + "start": 18376.1, + "end": 18379.42, + "probability": 0.9895 + }, + { + "start": 18379.42, + "end": 18382.86, + "probability": 0.9807 + }, + { + "start": 18383.18, + "end": 18383.5, + "probability": 0.2781 + }, + { + "start": 18383.8, + "end": 18384.04, + "probability": 0.444 + }, + { + "start": 18384.1, + "end": 18384.96, + "probability": 0.9384 + }, + { + "start": 18385.32, + "end": 18386.56, + "probability": 0.9552 + }, + { + "start": 18386.9, + "end": 18388.24, + "probability": 0.6421 + }, + { + "start": 18388.78, + "end": 18388.92, + "probability": 0.7405 + }, + { + "start": 18388.96, + "end": 18390.08, + "probability": 0.9212 + }, + { + "start": 18390.16, + "end": 18393.9, + "probability": 0.989 + }, + { + "start": 18393.94, + "end": 18394.94, + "probability": 0.9108 + }, + { + "start": 18395.28, + "end": 18399.4, + "probability": 0.9824 + }, + { + "start": 18399.4, + "end": 18404.14, + "probability": 0.9489 + }, + { + "start": 18404.66, + "end": 18405.16, + "probability": 0.7367 + }, + { + "start": 18405.3, + "end": 18407.88, + "probability": 0.9944 + }, + { + "start": 18407.88, + "end": 18411.1, + "probability": 0.9395 + }, + { + "start": 18411.66, + "end": 18412.08, + "probability": 0.7772 + }, + { + "start": 18412.72, + "end": 18413.96, + "probability": 0.6889 + }, + { + "start": 18414.18, + "end": 18417.3, + "probability": 0.9854 + }, + { + "start": 18418.47, + "end": 18419.6, + "probability": 0.8948 + }, + { + "start": 18421.68, + "end": 18426.56, + "probability": 0.9028 + }, + { + "start": 18426.64, + "end": 18427.28, + "probability": 0.8442 + }, + { + "start": 18434.84, + "end": 18436.44, + "probability": 0.6317 + }, + { + "start": 18437.02, + "end": 18438.44, + "probability": 0.93 + }, + { + "start": 18438.52, + "end": 18440.9, + "probability": 0.726 + }, + { + "start": 18441.54, + "end": 18443.88, + "probability": 0.7729 + }, + { + "start": 18444.28, + "end": 18448.5, + "probability": 0.9035 + }, + { + "start": 18448.88, + "end": 18449.34, + "probability": 0.6432 + }, + { + "start": 18449.8, + "end": 18452.02, + "probability": 0.9459 + }, + { + "start": 18452.16, + "end": 18457.06, + "probability": 0.8583 + }, + { + "start": 18457.66, + "end": 18462.9, + "probability": 0.6954 + }, + { + "start": 18463.38, + "end": 18464.58, + "probability": 0.9818 + }, + { + "start": 18464.96, + "end": 18465.72, + "probability": 0.9606 + }, + { + "start": 18465.96, + "end": 18466.66, + "probability": 0.931 + }, + { + "start": 18466.7, + "end": 18467.7, + "probability": 0.9663 + }, + { + "start": 18467.7, + "end": 18471.32, + "probability": 0.9958 + }, + { + "start": 18471.32, + "end": 18476.58, + "probability": 0.9901 + }, + { + "start": 18477.04, + "end": 18478.64, + "probability": 0.9648 + }, + { + "start": 18478.72, + "end": 18486.8, + "probability": 0.9464 + }, + { + "start": 18487.06, + "end": 18493.88, + "probability": 0.9924 + }, + { + "start": 18494.7, + "end": 18495.3, + "probability": 0.6633 + }, + { + "start": 18495.38, + "end": 18499.12, + "probability": 0.8028 + }, + { + "start": 18499.14, + "end": 18500.8, + "probability": 0.7242 + }, + { + "start": 18500.84, + "end": 18501.48, + "probability": 0.7092 + }, + { + "start": 18501.56, + "end": 18504.18, + "probability": 0.9417 + }, + { + "start": 18505.5, + "end": 18506.22, + "probability": 0.0039 + }, + { + "start": 18506.22, + "end": 18506.24, + "probability": 0.3565 + }, + { + "start": 18506.24, + "end": 18507.37, + "probability": 0.7599 + }, + { + "start": 18509.5, + "end": 18510.74, + "probability": 0.9727 + }, + { + "start": 18512.54, + "end": 18513.1, + "probability": 0.4091 + }, + { + "start": 18513.66, + "end": 18515.04, + "probability": 0.4781 + }, + { + "start": 18515.3, + "end": 18516.3, + "probability": 0.5157 + }, + { + "start": 18518.8, + "end": 18519.7, + "probability": 0.6008 + }, + { + "start": 18520.82, + "end": 18522.56, + "probability": 0.9289 + }, + { + "start": 18522.84, + "end": 18527.12, + "probability": 0.957 + }, + { + "start": 18528.19, + "end": 18532.34, + "probability": 0.5286 + }, + { + "start": 18532.42, + "end": 18533.2, + "probability": 0.8501 + }, + { + "start": 18539.3, + "end": 18539.68, + "probability": 0.2617 + }, + { + "start": 18539.88, + "end": 18541.06, + "probability": 0.1256 + }, + { + "start": 18555.8, + "end": 18559.12, + "probability": 0.7003 + }, + { + "start": 18559.74, + "end": 18564.56, + "probability": 0.9168 + }, + { + "start": 18573.44, + "end": 18573.44, + "probability": 0.1736 + }, + { + "start": 18573.44, + "end": 18573.44, + "probability": 0.0679 + }, + { + "start": 18573.44, + "end": 18576.08, + "probability": 0.6042 + }, + { + "start": 18578.44, + "end": 18582.02, + "probability": 0.0939 + }, + { + "start": 18582.94, + "end": 18583.04, + "probability": 0.2429 + }, + { + "start": 18583.04, + "end": 18583.24, + "probability": 0.3245 + }, + { + "start": 18583.78, + "end": 18584.51, + "probability": 0.5409 + }, + { + "start": 18585.4, + "end": 18589.56, + "probability": 0.7675 + }, + { + "start": 18590.04, + "end": 18592.86, + "probability": 0.667 + }, + { + "start": 18593.5, + "end": 18594.64, + "probability": 0.0049 + }, + { + "start": 18595.6, + "end": 18597.0, + "probability": 0.086 + }, + { + "start": 18597.0, + "end": 18597.3, + "probability": 0.3152 + }, + { + "start": 18599.22, + "end": 18600.28, + "probability": 0.6851 + }, + { + "start": 18601.16, + "end": 18601.4, + "probability": 0.4173 + }, + { + "start": 18603.64, + "end": 18605.4, + "probability": 0.6114 + }, + { + "start": 18606.06, + "end": 18608.22, + "probability": 0.609 + }, + { + "start": 18609.57, + "end": 18612.5, + "probability": 0.7151 + }, + { + "start": 18613.12, + "end": 18613.8, + "probability": 0.5871 + }, + { + "start": 18614.6, + "end": 18618.16, + "probability": 0.8082 + }, + { + "start": 18619.12, + "end": 18620.52, + "probability": 0.8249 + }, + { + "start": 18621.88, + "end": 18622.88, + "probability": 0.7895 + }, + { + "start": 18624.34, + "end": 18627.68, + "probability": 0.99 + }, + { + "start": 18629.38, + "end": 18631.16, + "probability": 0.9195 + }, + { + "start": 18631.76, + "end": 18636.2, + "probability": 0.9011 + }, + { + "start": 18637.78, + "end": 18640.26, + "probability": 0.7487 + }, + { + "start": 18641.36, + "end": 18643.2, + "probability": 0.8875 + }, + { + "start": 18645.7, + "end": 18648.24, + "probability": 0.7533 + }, + { + "start": 18649.64, + "end": 18650.58, + "probability": 0.7089 + }, + { + "start": 18652.12, + "end": 18655.58, + "probability": 0.9849 + }, + { + "start": 18657.0, + "end": 18661.68, + "probability": 0.9385 + }, + { + "start": 18664.0, + "end": 18665.76, + "probability": 0.9263 + }, + { + "start": 18666.8, + "end": 18667.94, + "probability": 0.9735 + }, + { + "start": 18669.2, + "end": 18673.24, + "probability": 0.9552 + }, + { + "start": 18673.92, + "end": 18676.97, + "probability": 0.988 + }, + { + "start": 18677.94, + "end": 18678.58, + "probability": 0.8458 + }, + { + "start": 18678.68, + "end": 18679.34, + "probability": 0.9673 + }, + { + "start": 18681.1, + "end": 18684.66, + "probability": 0.5914 + }, + { + "start": 18685.22, + "end": 18686.06, + "probability": 0.4862 + }, + { + "start": 18686.88, + "end": 18687.98, + "probability": 0.9646 + }, + { + "start": 18688.04, + "end": 18688.82, + "probability": 0.7142 + }, + { + "start": 18690.42, + "end": 18691.8, + "probability": 0.9308 + }, + { + "start": 18692.98, + "end": 18697.34, + "probability": 0.9637 + }, + { + "start": 18698.2, + "end": 18698.96, + "probability": 0.7112 + }, + { + "start": 18703.0, + "end": 18704.32, + "probability": 0.8252 + }, + { + "start": 18706.82, + "end": 18708.4, + "probability": 0.9238 + }, + { + "start": 18708.52, + "end": 18708.9, + "probability": 0.7265 + }, + { + "start": 18708.94, + "end": 18714.1, + "probability": 0.9749 + }, + { + "start": 18715.14, + "end": 18717.6, + "probability": 0.8729 + }, + { + "start": 18718.22, + "end": 18720.54, + "probability": 0.9526 + }, + { + "start": 18720.98, + "end": 18725.66, + "probability": 0.9622 + }, + { + "start": 18726.3, + "end": 18729.6, + "probability": 0.9962 + }, + { + "start": 18730.96, + "end": 18732.06, + "probability": 0.7494 + }, + { + "start": 18732.66, + "end": 18733.9, + "probability": 0.9999 + }, + { + "start": 18735.84, + "end": 18737.4, + "probability": 0.9893 + }, + { + "start": 18740.8, + "end": 18742.24, + "probability": 0.9735 + }, + { + "start": 18743.14, + "end": 18743.24, + "probability": 0.2495 + }, + { + "start": 18743.24, + "end": 18744.28, + "probability": 0.732 + }, + { + "start": 18747.5, + "end": 18749.78, + "probability": 0.8152 + }, + { + "start": 18749.98, + "end": 18752.0, + "probability": 0.9549 + }, + { + "start": 18752.96, + "end": 18754.64, + "probability": 0.9666 + }, + { + "start": 18755.64, + "end": 18761.38, + "probability": 0.9862 + }, + { + "start": 18761.38, + "end": 18766.06, + "probability": 0.9833 + }, + { + "start": 18767.22, + "end": 18770.22, + "probability": 0.8457 + }, + { + "start": 18771.08, + "end": 18772.58, + "probability": 0.9357 + }, + { + "start": 18773.42, + "end": 18776.11, + "probability": 0.5975 + }, + { + "start": 18776.92, + "end": 18782.1, + "probability": 0.9616 + }, + { + "start": 18782.16, + "end": 18782.5, + "probability": 0.7943 + }, + { + "start": 18782.56, + "end": 18782.88, + "probability": 0.4755 + }, + { + "start": 18783.08, + "end": 18787.5, + "probability": 0.9951 + }, + { + "start": 18788.84, + "end": 18790.76, + "probability": 0.7905 + }, + { + "start": 18791.24, + "end": 18793.34, + "probability": 0.9788 + }, + { + "start": 18793.74, + "end": 18793.94, + "probability": 0.8164 + }, + { + "start": 18794.88, + "end": 18797.78, + "probability": 0.9518 + }, + { + "start": 18798.08, + "end": 18799.42, + "probability": 0.9751 + }, + { + "start": 18800.26, + "end": 18800.76, + "probability": 0.9449 + }, + { + "start": 18801.62, + "end": 18802.72, + "probability": 0.8702 + }, + { + "start": 18803.26, + "end": 18807.52, + "probability": 0.9866 + }, + { + "start": 18809.26, + "end": 18809.88, + "probability": 0.8387 + }, + { + "start": 18810.24, + "end": 18810.94, + "probability": 0.9053 + }, + { + "start": 18812.48, + "end": 18813.86, + "probability": 0.9524 + }, + { + "start": 18813.94, + "end": 18819.12, + "probability": 0.8914 + }, + { + "start": 18819.44, + "end": 18819.62, + "probability": 0.2575 + }, + { + "start": 18819.7, + "end": 18822.7, + "probability": 0.6873 + }, + { + "start": 18822.7, + "end": 18822.78, + "probability": 0.0171 + }, + { + "start": 18822.78, + "end": 18824.2, + "probability": 0.7542 + }, + { + "start": 18824.7, + "end": 18825.48, + "probability": 0.6319 + }, + { + "start": 18826.62, + "end": 18827.64, + "probability": 0.9514 + }, + { + "start": 18828.84, + "end": 18831.84, + "probability": 0.9299 + }, + { + "start": 18832.24, + "end": 18833.24, + "probability": 0.9924 + }, + { + "start": 18833.66, + "end": 18835.01, + "probability": 0.8262 + }, + { + "start": 18835.66, + "end": 18838.16, + "probability": 0.9932 + }, + { + "start": 18838.98, + "end": 18839.68, + "probability": 0.8601 + }, + { + "start": 18839.86, + "end": 18842.06, + "probability": 0.8402 + }, + { + "start": 18842.3, + "end": 18845.28, + "probability": 0.6436 + }, + { + "start": 18845.78, + "end": 18847.8, + "probability": 0.9142 + }, + { + "start": 18848.12, + "end": 18851.1, + "probability": 0.967 + }, + { + "start": 18851.1, + "end": 18854.5, + "probability": 0.7757 + }, + { + "start": 18854.84, + "end": 18859.84, + "probability": 0.9089 + }, + { + "start": 18860.24, + "end": 18860.59, + "probability": 0.5442 + }, + { + "start": 18861.46, + "end": 18863.4, + "probability": 0.8004 + }, + { + "start": 18863.66, + "end": 18865.32, + "probability": 0.8816 + }, + { + "start": 18866.54, + "end": 18867.42, + "probability": 0.7527 + }, + { + "start": 18867.52, + "end": 18870.38, + "probability": 0.8025 + }, + { + "start": 18871.2, + "end": 18872.74, + "probability": 0.9509 + }, + { + "start": 18873.4, + "end": 18875.08, + "probability": 0.9852 + }, + { + "start": 18875.08, + "end": 18875.94, + "probability": 0.9889 + }, + { + "start": 18876.12, + "end": 18882.54, + "probability": 0.9908 + }, + { + "start": 18883.52, + "end": 18884.34, + "probability": 0.8988 + }, + { + "start": 18885.54, + "end": 18885.54, + "probability": 0.0361 + }, + { + "start": 18885.54, + "end": 18887.29, + "probability": 0.9819 + }, + { + "start": 18887.88, + "end": 18891.17, + "probability": 0.9433 + }, + { + "start": 18892.62, + "end": 18893.89, + "probability": 0.6063 + }, + { + "start": 18895.02, + "end": 18898.24, + "probability": 0.5436 + }, + { + "start": 18898.8, + "end": 18899.3, + "probability": 0.9075 + }, + { + "start": 18902.1, + "end": 18902.2, + "probability": 0.6193 + }, + { + "start": 18905.08, + "end": 18908.4, + "probability": 0.7578 + }, + { + "start": 18908.62, + "end": 18912.74, + "probability": 0.583 + }, + { + "start": 18912.8, + "end": 18913.28, + "probability": 0.9624 + }, + { + "start": 18914.28, + "end": 18914.94, + "probability": 0.761 + }, + { + "start": 18915.16, + "end": 18918.94, + "probability": 0.9116 + }, + { + "start": 18919.5, + "end": 18922.68, + "probability": 0.7909 + }, + { + "start": 18922.9, + "end": 18926.24, + "probability": 0.8247 + }, + { + "start": 18926.44, + "end": 18930.4, + "probability": 0.9365 + }, + { + "start": 18930.6, + "end": 18931.12, + "probability": 0.5397 + }, + { + "start": 18931.18, + "end": 18931.78, + "probability": 0.8638 + }, + { + "start": 18931.88, + "end": 18932.27, + "probability": 0.9468 + }, + { + "start": 18932.66, + "end": 18936.52, + "probability": 0.8341 + }, + { + "start": 18936.86, + "end": 18941.18, + "probability": 0.9172 + }, + { + "start": 18941.52, + "end": 18943.02, + "probability": 0.8223 + }, + { + "start": 18943.22, + "end": 18947.18, + "probability": 0.9835 + }, + { + "start": 18947.62, + "end": 18952.08, + "probability": 0.884 + }, + { + "start": 18952.36, + "end": 18954.06, + "probability": 0.7346 + }, + { + "start": 18954.34, + "end": 18958.52, + "probability": 0.6618 + }, + { + "start": 18958.84, + "end": 18959.6, + "probability": 0.8456 + }, + { + "start": 18959.92, + "end": 18962.79, + "probability": 0.897 + }, + { + "start": 18963.34, + "end": 18965.54, + "probability": 0.9902 + }, + { + "start": 18965.84, + "end": 18966.48, + "probability": 0.4786 + }, + { + "start": 18967.56, + "end": 18969.12, + "probability": 0.7558 + }, + { + "start": 18969.24, + "end": 18969.72, + "probability": 0.317 + }, + { + "start": 18969.74, + "end": 18970.66, + "probability": 0.57 + }, + { + "start": 18970.72, + "end": 18971.33, + "probability": 0.527 + }, + { + "start": 18971.54, + "end": 18972.4, + "probability": 0.7543 + }, + { + "start": 18972.98, + "end": 18978.24, + "probability": 0.9581 + }, + { + "start": 18978.24, + "end": 18982.14, + "probability": 0.7826 + }, + { + "start": 18982.52, + "end": 18983.18, + "probability": 0.62 + }, + { + "start": 18983.68, + "end": 18984.2, + "probability": 0.4034 + }, + { + "start": 18985.06, + "end": 18985.48, + "probability": 0.6948 + }, + { + "start": 18986.64, + "end": 18986.78, + "probability": 0.058 + }, + { + "start": 18987.84, + "end": 18989.78, + "probability": 0.3423 + }, + { + "start": 19000.44, + "end": 19000.56, + "probability": 0.058 + }, + { + "start": 19001.29, + "end": 19001.8, + "probability": 0.1395 + }, + { + "start": 19001.8, + "end": 19001.86, + "probability": 0.1008 + }, + { + "start": 19001.9, + "end": 19002.48, + "probability": 0.0432 + }, + { + "start": 19020.96, + "end": 19021.94, + "probability": 0.2223 + }, + { + "start": 19023.36, + "end": 19027.72, + "probability": 0.9626 + }, + { + "start": 19029.0, + "end": 19029.0, + "probability": 0.1512 + }, + { + "start": 19029.0, + "end": 19031.44, + "probability": 0.855 + }, + { + "start": 19040.26, + "end": 19042.48, + "probability": 0.7453 + }, + { + "start": 19043.56, + "end": 19045.78, + "probability": 0.7135 + }, + { + "start": 19045.88, + "end": 19049.68, + "probability": 0.957 + }, + { + "start": 19050.54, + "end": 19051.5, + "probability": 0.8268 + }, + { + "start": 19052.66, + "end": 19055.22, + "probability": 0.9856 + }, + { + "start": 19055.26, + "end": 19057.76, + "probability": 0.9771 + }, + { + "start": 19058.38, + "end": 19061.26, + "probability": 0.953 + }, + { + "start": 19061.78, + "end": 19063.38, + "probability": 0.9887 + }, + { + "start": 19064.28, + "end": 19066.46, + "probability": 0.9106 + }, + { + "start": 19066.8, + "end": 19069.62, + "probability": 0.9935 + }, + { + "start": 19069.62, + "end": 19073.54, + "probability": 0.9426 + }, + { + "start": 19074.36, + "end": 19078.16, + "probability": 0.9928 + }, + { + "start": 19079.04, + "end": 19082.64, + "probability": 0.9347 + }, + { + "start": 19082.7, + "end": 19083.68, + "probability": 0.9803 + }, + { + "start": 19084.62, + "end": 19086.86, + "probability": 0.5555 + }, + { + "start": 19086.86, + "end": 19090.22, + "probability": 0.9482 + }, + { + "start": 19090.94, + "end": 19093.66, + "probability": 0.8761 + }, + { + "start": 19094.1, + "end": 19095.58, + "probability": 0.6687 + }, + { + "start": 19095.62, + "end": 19098.14, + "probability": 0.9928 + }, + { + "start": 19098.14, + "end": 19101.5, + "probability": 0.853 + }, + { + "start": 19102.88, + "end": 19108.2, + "probability": 0.9267 + }, + { + "start": 19108.52, + "end": 19112.34, + "probability": 0.9766 + }, + { + "start": 19112.66, + "end": 19113.72, + "probability": 0.8197 + }, + { + "start": 19114.22, + "end": 19119.8, + "probability": 0.9233 + }, + { + "start": 19119.9, + "end": 19121.7, + "probability": 0.8574 + }, + { + "start": 19123.12, + "end": 19126.88, + "probability": 0.9958 + }, + { + "start": 19126.88, + "end": 19131.74, + "probability": 0.9605 + }, + { + "start": 19132.18, + "end": 19133.66, + "probability": 0.9574 + }, + { + "start": 19134.66, + "end": 19139.88, + "probability": 0.9928 + }, + { + "start": 19140.6, + "end": 19140.94, + "probability": 0.8205 + }, + { + "start": 19141.06, + "end": 19144.38, + "probability": 0.9882 + }, + { + "start": 19144.88, + "end": 19148.84, + "probability": 0.993 + }, + { + "start": 19150.28, + "end": 19151.14, + "probability": 0.7674 + }, + { + "start": 19153.06, + "end": 19155.94, + "probability": 0.8968 + }, + { + "start": 19156.38, + "end": 19157.52, + "probability": 0.9664 + }, + { + "start": 19157.86, + "end": 19159.12, + "probability": 0.6245 + }, + { + "start": 19159.22, + "end": 19163.22, + "probability": 0.9814 + }, + { + "start": 19164.04, + "end": 19167.34, + "probability": 0.9222 + }, + { + "start": 19167.86, + "end": 19170.14, + "probability": 0.5045 + }, + { + "start": 19170.66, + "end": 19171.82, + "probability": 0.8401 + }, + { + "start": 19173.36, + "end": 19175.3, + "probability": 0.9478 + }, + { + "start": 19175.44, + "end": 19176.32, + "probability": 0.8444 + }, + { + "start": 19177.12, + "end": 19178.66, + "probability": 0.9089 + }, + { + "start": 19178.72, + "end": 19179.74, + "probability": 0.9744 + }, + { + "start": 19180.56, + "end": 19185.08, + "probability": 0.9805 + }, + { + "start": 19186.48, + "end": 19187.0, + "probability": 0.0171 + }, + { + "start": 19187.0, + "end": 19187.4, + "probability": 0.5204 + }, + { + "start": 19187.54, + "end": 19188.8, + "probability": 0.5601 + }, + { + "start": 19190.02, + "end": 19191.08, + "probability": 0.7407 + }, + { + "start": 19192.32, + "end": 19192.96, + "probability": 0.626 + }, + { + "start": 19193.42, + "end": 19196.1, + "probability": 0.9179 + }, + { + "start": 19196.62, + "end": 19197.47, + "probability": 0.9352 + }, + { + "start": 19197.56, + "end": 19201.34, + "probability": 0.7384 + }, + { + "start": 19201.42, + "end": 19202.54, + "probability": 0.8304 + }, + { + "start": 19202.62, + "end": 19203.82, + "probability": 0.6599 + }, + { + "start": 19203.92, + "end": 19204.58, + "probability": 0.9549 + }, + { + "start": 19205.04, + "end": 19209.5, + "probability": 0.9581 + }, + { + "start": 19209.62, + "end": 19212.68, + "probability": 0.6417 + }, + { + "start": 19213.96, + "end": 19216.96, + "probability": 0.9945 + }, + { + "start": 19218.8, + "end": 19221.88, + "probability": 0.9408 + }, + { + "start": 19221.88, + "end": 19225.56, + "probability": 0.9854 + }, + { + "start": 19225.56, + "end": 19229.04, + "probability": 0.9971 + }, + { + "start": 19229.66, + "end": 19233.5, + "probability": 0.9268 + }, + { + "start": 19234.12, + "end": 19235.94, + "probability": 0.9971 + }, + { + "start": 19236.52, + "end": 19239.8, + "probability": 0.9147 + }, + { + "start": 19239.8, + "end": 19243.4, + "probability": 0.967 + }, + { + "start": 19244.4, + "end": 19245.06, + "probability": 0.8721 + }, + { + "start": 19245.42, + "end": 19246.38, + "probability": 0.5931 + }, + { + "start": 19247.08, + "end": 19248.2, + "probability": 0.8521 + }, + { + "start": 19248.3, + "end": 19251.9, + "probability": 0.9448 + }, + { + "start": 19251.9, + "end": 19255.22, + "probability": 0.9913 + }, + { + "start": 19255.86, + "end": 19260.5, + "probability": 0.9812 + }, + { + "start": 19260.6, + "end": 19261.64, + "probability": 0.7366 + }, + { + "start": 19261.96, + "end": 19264.2, + "probability": 0.9906 + }, + { + "start": 19264.22, + "end": 19264.76, + "probability": 0.7657 + }, + { + "start": 19265.54, + "end": 19266.4, + "probability": 0.7171 + }, + { + "start": 19269.24, + "end": 19271.63, + "probability": 0.946 + }, + { + "start": 19272.36, + "end": 19273.58, + "probability": 0.5074 + }, + { + "start": 19274.73, + "end": 19277.26, + "probability": 0.8869 + }, + { + "start": 19279.18, + "end": 19280.08, + "probability": 0.7073 + }, + { + "start": 19281.72, + "end": 19283.22, + "probability": 0.9431 + }, + { + "start": 19286.18, + "end": 19287.88, + "probability": 0.784 + }, + { + "start": 19287.98, + "end": 19291.24, + "probability": 0.5928 + }, + { + "start": 19291.66, + "end": 19295.32, + "probability": 0.986 + }, + { + "start": 19296.04, + "end": 19298.48, + "probability": 0.5607 + }, + { + "start": 19298.5, + "end": 19298.88, + "probability": 0.8564 + }, + { + "start": 19300.94, + "end": 19304.82, + "probability": 0.5645 + }, + { + "start": 19305.96, + "end": 19307.36, + "probability": 0.5608 + }, + { + "start": 19307.52, + "end": 19309.62, + "probability": 0.5725 + }, + { + "start": 19309.62, + "end": 19310.04, + "probability": 0.9047 + }, + { + "start": 19310.26, + "end": 19310.98, + "probability": 0.4938 + }, + { + "start": 19311.08, + "end": 19311.68, + "probability": 0.7812 + }, + { + "start": 19312.08, + "end": 19312.64, + "probability": 0.4255 + }, + { + "start": 19312.64, + "end": 19316.82, + "probability": 0.8215 + }, + { + "start": 19317.44, + "end": 19320.13, + "probability": 0.5299 + }, + { + "start": 19320.86, + "end": 19325.64, + "probability": 0.6308 + }, + { + "start": 19326.2, + "end": 19328.36, + "probability": 0.523 + }, + { + "start": 19329.8, + "end": 19330.28, + "probability": 0.5149 + }, + { + "start": 19330.98, + "end": 19331.62, + "probability": 0.7764 + }, + { + "start": 19332.54, + "end": 19334.56, + "probability": 0.7643 + }, + { + "start": 19335.3, + "end": 19337.4, + "probability": 0.9819 + }, + { + "start": 19337.8, + "end": 19338.36, + "probability": 0.832 + }, + { + "start": 19339.38, + "end": 19342.7, + "probability": 0.8769 + }, + { + "start": 19343.02, + "end": 19344.9, + "probability": 0.9632 + }, + { + "start": 19345.36, + "end": 19346.62, + "probability": 0.9636 + }, + { + "start": 19346.8, + "end": 19348.36, + "probability": 0.8585 + }, + { + "start": 19348.88, + "end": 19350.5, + "probability": 0.9387 + }, + { + "start": 19351.68, + "end": 19353.52, + "probability": 0.9904 + }, + { + "start": 19353.7, + "end": 19355.16, + "probability": 0.9521 + }, + { + "start": 19355.44, + "end": 19358.38, + "probability": 0.7184 + }, + { + "start": 19359.2, + "end": 19359.94, + "probability": 0.7426 + }, + { + "start": 19360.5, + "end": 19361.94, + "probability": 0.8895 + }, + { + "start": 19362.54, + "end": 19366.56, + "probability": 0.9126 + }, + { + "start": 19366.56, + "end": 19370.32, + "probability": 0.9682 + }, + { + "start": 19370.48, + "end": 19371.36, + "probability": 0.9851 + }, + { + "start": 19371.56, + "end": 19376.24, + "probability": 0.9891 + }, + { + "start": 19376.24, + "end": 19382.18, + "probability": 0.888 + }, + { + "start": 19382.26, + "end": 19382.8, + "probability": 0.8076 + }, + { + "start": 19383.02, + "end": 19383.68, + "probability": 0.6386 + }, + { + "start": 19383.76, + "end": 19384.52, + "probability": 0.2957 + }, + { + "start": 19385.7, + "end": 19387.4, + "probability": 0.9487 + }, + { + "start": 19387.62, + "end": 19391.08, + "probability": 0.981 + }, + { + "start": 19391.08, + "end": 19394.66, + "probability": 0.9534 + }, + { + "start": 19395.0, + "end": 19397.06, + "probability": 0.9219 + }, + { + "start": 19397.22, + "end": 19400.68, + "probability": 0.9142 + }, + { + "start": 19401.36, + "end": 19404.08, + "probability": 0.9919 + }, + { + "start": 19404.68, + "end": 19408.52, + "probability": 0.991 + }, + { + "start": 19409.32, + "end": 19410.36, + "probability": 0.5806 + }, + { + "start": 19410.4, + "end": 19415.82, + "probability": 0.9507 + }, + { + "start": 19417.5, + "end": 19418.98, + "probability": 0.9373 + }, + { + "start": 19419.94, + "end": 19422.94, + "probability": 0.8223 + }, + { + "start": 19423.18, + "end": 19428.4, + "probability": 0.9609 + }, + { + "start": 19429.02, + "end": 19432.32, + "probability": 0.6942 + }, + { + "start": 19432.98, + "end": 19434.94, + "probability": 0.9833 + }, + { + "start": 19435.88, + "end": 19436.78, + "probability": 0.9253 + }, + { + "start": 19436.88, + "end": 19437.72, + "probability": 0.597 + }, + { + "start": 19437.98, + "end": 19444.6, + "probability": 0.8195 + }, + { + "start": 19445.42, + "end": 19446.45, + "probability": 0.6401 + }, + { + "start": 19447.04, + "end": 19450.78, + "probability": 0.7323 + }, + { + "start": 19451.52, + "end": 19454.0, + "probability": 0.8613 + }, + { + "start": 19454.62, + "end": 19456.72, + "probability": 0.9883 + }, + { + "start": 19456.92, + "end": 19458.74, + "probability": 0.9636 + }, + { + "start": 19458.88, + "end": 19459.66, + "probability": 0.5424 + }, + { + "start": 19460.02, + "end": 19464.48, + "probability": 0.9793 + }, + { + "start": 19464.78, + "end": 19465.82, + "probability": 0.9834 + }, + { + "start": 19465.96, + "end": 19466.38, + "probability": 0.7011 + }, + { + "start": 19467.12, + "end": 19468.02, + "probability": 0.914 + }, + { + "start": 19468.46, + "end": 19472.9, + "probability": 0.9342 + }, + { + "start": 19472.9, + "end": 19477.16, + "probability": 0.9707 + }, + { + "start": 19478.12, + "end": 19480.46, + "probability": 0.9732 + }, + { + "start": 19481.04, + "end": 19481.52, + "probability": 0.6175 + }, + { + "start": 19481.94, + "end": 19483.26, + "probability": 0.9057 + }, + { + "start": 19483.48, + "end": 19485.74, + "probability": 0.6817 + }, + { + "start": 19486.12, + "end": 19492.19, + "probability": 0.946 + }, + { + "start": 19493.8, + "end": 19494.36, + "probability": 0.7589 + }, + { + "start": 19494.4, + "end": 19495.36, + "probability": 0.9684 + }, + { + "start": 19495.48, + "end": 19496.28, + "probability": 0.7346 + }, + { + "start": 19496.62, + "end": 19500.64, + "probability": 0.9866 + }, + { + "start": 19501.08, + "end": 19507.02, + "probability": 0.9962 + }, + { + "start": 19507.44, + "end": 19511.9, + "probability": 0.9375 + }, + { + "start": 19512.46, + "end": 19516.82, + "probability": 0.9644 + }, + { + "start": 19517.2, + "end": 19517.42, + "probability": 0.8888 + }, + { + "start": 19518.42, + "end": 19520.64, + "probability": 0.7172 + }, + { + "start": 19521.84, + "end": 19524.06, + "probability": 0.7209 + }, + { + "start": 19524.1, + "end": 19525.0, + "probability": 0.5361 + }, + { + "start": 19525.02, + "end": 19525.4, + "probability": 0.8634 + }, + { + "start": 19540.8, + "end": 19541.52, + "probability": 0.6547 + }, + { + "start": 19542.22, + "end": 19547.7, + "probability": 0.9841 + }, + { + "start": 19550.38, + "end": 19552.78, + "probability": 0.9872 + }, + { + "start": 19552.88, + "end": 19553.84, + "probability": 0.461 + }, + { + "start": 19554.22, + "end": 19556.88, + "probability": 0.6743 + }, + { + "start": 19556.92, + "end": 19558.44, + "probability": 0.7648 + }, + { + "start": 19558.54, + "end": 19560.1, + "probability": 0.6136 + }, + { + "start": 19560.72, + "end": 19564.62, + "probability": 0.995 + }, + { + "start": 19567.12, + "end": 19568.96, + "probability": 0.9539 + }, + { + "start": 19569.54, + "end": 19571.4, + "probability": 0.9969 + }, + { + "start": 19572.24, + "end": 19572.44, + "probability": 0.5264 + }, + { + "start": 19572.52, + "end": 19574.5, + "probability": 0.9502 + }, + { + "start": 19575.0, + "end": 19579.9, + "probability": 0.993 + }, + { + "start": 19580.24, + "end": 19581.58, + "probability": 0.7156 + }, + { + "start": 19581.94, + "end": 19582.2, + "probability": 0.5515 + }, + { + "start": 19582.32, + "end": 19584.64, + "probability": 0.9435 + }, + { + "start": 19584.88, + "end": 19585.58, + "probability": 0.918 + }, + { + "start": 19585.98, + "end": 19586.82, + "probability": 0.9562 + }, + { + "start": 19587.02, + "end": 19587.5, + "probability": 0.9811 + }, + { + "start": 19587.82, + "end": 19588.54, + "probability": 0.9901 + }, + { + "start": 19588.6, + "end": 19589.48, + "probability": 0.7991 + }, + { + "start": 19589.8, + "end": 19591.2, + "probability": 0.5144 + }, + { + "start": 19591.54, + "end": 19592.52, + "probability": 0.8633 + }, + { + "start": 19592.58, + "end": 19593.14, + "probability": 0.9531 + }, + { + "start": 19593.7, + "end": 19597.02, + "probability": 0.8245 + }, + { + "start": 19597.64, + "end": 19601.24, + "probability": 0.9313 + }, + { + "start": 19601.5, + "end": 19602.22, + "probability": 0.8651 + }, + { + "start": 19602.36, + "end": 19602.92, + "probability": 0.6996 + }, + { + "start": 19603.02, + "end": 19603.58, + "probability": 0.5232 + }, + { + "start": 19603.88, + "end": 19604.82, + "probability": 0.8874 + }, + { + "start": 19604.9, + "end": 19608.62, + "probability": 0.9796 + }, + { + "start": 19609.95, + "end": 19612.64, + "probability": 0.9455 + }, + { + "start": 19613.42, + "end": 19617.52, + "probability": 0.8184 + }, + { + "start": 19618.68, + "end": 19622.8, + "probability": 0.9965 + }, + { + "start": 19623.52, + "end": 19624.92, + "probability": 0.8785 + }, + { + "start": 19625.34, + "end": 19628.96, + "probability": 0.9206 + }, + { + "start": 19629.24, + "end": 19632.84, + "probability": 0.8989 + }, + { + "start": 19633.46, + "end": 19635.46, + "probability": 0.928 + }, + { + "start": 19635.6, + "end": 19636.28, + "probability": 0.9532 + }, + { + "start": 19636.62, + "end": 19639.16, + "probability": 0.9584 + }, + { + "start": 19639.48, + "end": 19640.52, + "probability": 0.8442 + }, + { + "start": 19640.9, + "end": 19641.56, + "probability": 0.9335 + }, + { + "start": 19641.74, + "end": 19643.44, + "probability": 0.965 + }, + { + "start": 19643.8, + "end": 19645.84, + "probability": 0.9585 + }, + { + "start": 19646.44, + "end": 19648.9, + "probability": 0.9943 + }, + { + "start": 19649.26, + "end": 19650.5, + "probability": 0.6611 + }, + { + "start": 19650.84, + "end": 19651.22, + "probability": 0.4795 + }, + { + "start": 19651.38, + "end": 19653.24, + "probability": 0.9657 + }, + { + "start": 19654.02, + "end": 19655.78, + "probability": 0.9116 + }, + { + "start": 19656.34, + "end": 19658.48, + "probability": 0.9615 + }, + { + "start": 19658.54, + "end": 19662.32, + "probability": 0.9753 + }, + { + "start": 19662.7, + "end": 19664.96, + "probability": 0.9208 + }, + { + "start": 19665.38, + "end": 19669.14, + "probability": 0.9753 + }, + { + "start": 19669.44, + "end": 19674.55, + "probability": 0.95 + }, + { + "start": 19675.04, + "end": 19675.47, + "probability": 0.8401 + }, + { + "start": 19676.2, + "end": 19676.7, + "probability": 0.6365 + }, + { + "start": 19676.76, + "end": 19677.64, + "probability": 0.9465 + }, + { + "start": 19678.04, + "end": 19678.92, + "probability": 0.5345 + }, + { + "start": 19679.0, + "end": 19680.28, + "probability": 0.9642 + }, + { + "start": 19680.8, + "end": 19681.76, + "probability": 0.9014 + }, + { + "start": 19682.12, + "end": 19686.32, + "probability": 0.9752 + }, + { + "start": 19686.7, + "end": 19687.22, + "probability": 0.6848 + }, + { + "start": 19687.74, + "end": 19688.4, + "probability": 0.7943 + }, + { + "start": 19688.72, + "end": 19689.26, + "probability": 0.8397 + }, + { + "start": 19689.52, + "end": 19692.64, + "probability": 0.9982 + }, + { + "start": 19692.64, + "end": 19696.88, + "probability": 0.9979 + }, + { + "start": 19696.92, + "end": 19701.84, + "probability": 0.975 + }, + { + "start": 19702.02, + "end": 19703.34, + "probability": 0.7459 + }, + { + "start": 19704.02, + "end": 19706.12, + "probability": 0.9988 + }, + { + "start": 19706.85, + "end": 19709.14, + "probability": 0.9937 + }, + { + "start": 19709.72, + "end": 19711.54, + "probability": 0.9805 + }, + { + "start": 19713.34, + "end": 19718.88, + "probability": 0.999 + }, + { + "start": 19719.36, + "end": 19723.18, + "probability": 0.802 + }, + { + "start": 19723.8, + "end": 19726.32, + "probability": 0.8401 + }, + { + "start": 19726.92, + "end": 19730.76, + "probability": 0.9918 + }, + { + "start": 19730.88, + "end": 19733.96, + "probability": 0.9368 + }, + { + "start": 19734.38, + "end": 19739.5, + "probability": 0.9692 + }, + { + "start": 19739.5, + "end": 19744.4, + "probability": 0.9747 + }, + { + "start": 19744.56, + "end": 19745.68, + "probability": 0.98 + }, + { + "start": 19746.54, + "end": 19749.16, + "probability": 0.7476 + }, + { + "start": 19749.26, + "end": 19754.62, + "probability": 0.9615 + }, + { + "start": 19754.9, + "end": 19757.8, + "probability": 0.9894 + }, + { + "start": 19758.26, + "end": 19759.26, + "probability": 0.9636 + }, + { + "start": 19759.42, + "end": 19763.16, + "probability": 0.8163 + }, + { + "start": 19763.58, + "end": 19764.38, + "probability": 0.7123 + }, + { + "start": 19764.68, + "end": 19765.52, + "probability": 0.8059 + }, + { + "start": 19765.78, + "end": 19767.3, + "probability": 0.937 + }, + { + "start": 19767.54, + "end": 19767.94, + "probability": 0.8926 + }, + { + "start": 19768.2, + "end": 19772.06, + "probability": 0.8763 + }, + { + "start": 19772.06, + "end": 19775.34, + "probability": 0.9792 + }, + { + "start": 19776.42, + "end": 19777.5, + "probability": 0.7234 + }, + { + "start": 19777.5, + "end": 19782.48, + "probability": 0.9864 + }, + { + "start": 19782.6, + "end": 19783.7, + "probability": 0.6953 + }, + { + "start": 19784.1, + "end": 19785.24, + "probability": 0.9595 + }, + { + "start": 19785.54, + "end": 19788.26, + "probability": 0.9177 + }, + { + "start": 19788.7, + "end": 19792.26, + "probability": 0.9994 + }, + { + "start": 19792.64, + "end": 19796.22, + "probability": 0.9951 + }, + { + "start": 19796.32, + "end": 19799.06, + "probability": 0.8936 + }, + { + "start": 19799.06, + "end": 19802.16, + "probability": 0.9988 + }, + { + "start": 19802.8, + "end": 19805.92, + "probability": 0.9991 + }, + { + "start": 19805.92, + "end": 19810.12, + "probability": 0.9989 + }, + { + "start": 19810.56, + "end": 19813.58, + "probability": 0.9627 + }, + { + "start": 19813.58, + "end": 19817.06, + "probability": 0.98 + }, + { + "start": 19817.42, + "end": 19820.9, + "probability": 0.8552 + }, + { + "start": 19820.9, + "end": 19824.12, + "probability": 0.9932 + }, + { + "start": 19824.56, + "end": 19826.7, + "probability": 0.4585 + }, + { + "start": 19827.06, + "end": 19828.2, + "probability": 0.8162 + }, + { + "start": 19828.46, + "end": 19829.68, + "probability": 0.749 + }, + { + "start": 19830.04, + "end": 19832.3, + "probability": 0.883 + }, + { + "start": 19832.38, + "end": 19836.28, + "probability": 0.8144 + }, + { + "start": 19836.82, + "end": 19839.97, + "probability": 0.6657 + }, + { + "start": 19840.18, + "end": 19842.96, + "probability": 0.9913 + }, + { + "start": 19843.42, + "end": 19845.3, + "probability": 0.8269 + }, + { + "start": 19845.92, + "end": 19849.04, + "probability": 0.7884 + }, + { + "start": 19849.04, + "end": 19852.24, + "probability": 0.8026 + }, + { + "start": 19852.44, + "end": 19855.7, + "probability": 0.9423 + }, + { + "start": 19855.96, + "end": 19862.76, + "probability": 0.9445 + }, + { + "start": 19863.5, + "end": 19864.48, + "probability": 0.7054 + }, + { + "start": 19864.58, + "end": 19865.68, + "probability": 0.7835 + }, + { + "start": 19865.8, + "end": 19867.6, + "probability": 0.7015 + }, + { + "start": 19867.66, + "end": 19868.84, + "probability": 0.8223 + }, + { + "start": 19869.26, + "end": 19870.54, + "probability": 0.9404 + }, + { + "start": 19870.64, + "end": 19871.46, + "probability": 0.8141 + }, + { + "start": 19872.1, + "end": 19872.7, + "probability": 0.8769 + }, + { + "start": 19873.12, + "end": 19875.1, + "probability": 0.864 + }, + { + "start": 19875.42, + "end": 19876.1, + "probability": 0.0466 + }, + { + "start": 19876.28, + "end": 19879.92, + "probability": 0.6722 + }, + { + "start": 19879.94, + "end": 19884.88, + "probability": 0.9668 + }, + { + "start": 19885.2, + "end": 19889.5, + "probability": 0.9831 + }, + { + "start": 19890.06, + "end": 19895.98, + "probability": 0.9847 + }, + { + "start": 19896.04, + "end": 19896.42, + "probability": 0.8838 + }, + { + "start": 19896.56, + "end": 19896.92, + "probability": 0.828 + }, + { + "start": 19897.9, + "end": 19898.52, + "probability": 0.8005 + }, + { + "start": 19898.88, + "end": 19899.48, + "probability": 0.9204 + }, + { + "start": 19899.82, + "end": 19900.92, + "probability": 0.9185 + }, + { + "start": 19901.28, + "end": 19903.68, + "probability": 0.9927 + }, + { + "start": 19903.72, + "end": 19912.14, + "probability": 0.974 + }, + { + "start": 19912.58, + "end": 19916.58, + "probability": 0.967 + }, + { + "start": 19916.66, + "end": 19917.7, + "probability": 0.7001 + }, + { + "start": 19918.08, + "end": 19919.4, + "probability": 0.9761 + }, + { + "start": 19919.72, + "end": 19921.88, + "probability": 0.8953 + }, + { + "start": 19922.18, + "end": 19923.94, + "probability": 0.9896 + }, + { + "start": 19924.44, + "end": 19925.08, + "probability": 0.8702 + }, + { + "start": 19925.2, + "end": 19926.0, + "probability": 0.8798 + }, + { + "start": 19926.34, + "end": 19927.02, + "probability": 0.8752 + }, + { + "start": 19927.12, + "end": 19927.86, + "probability": 0.8784 + }, + { + "start": 19928.5, + "end": 19929.18, + "probability": 0.7436 + }, + { + "start": 19929.38, + "end": 19933.82, + "probability": 0.9626 + }, + { + "start": 19933.9, + "end": 19938.34, + "probability": 0.9619 + }, + { + "start": 19938.42, + "end": 19941.46, + "probability": 0.9906 + }, + { + "start": 19942.26, + "end": 19946.06, + "probability": 0.9973 + }, + { + "start": 19946.06, + "end": 19950.32, + "probability": 0.989 + }, + { + "start": 19950.58, + "end": 19952.48, + "probability": 0.9126 + }, + { + "start": 19953.08, + "end": 19953.36, + "probability": 0.7653 + }, + { + "start": 19953.7, + "end": 19955.34, + "probability": 0.7698 + }, + { + "start": 19957.14, + "end": 19957.34, + "probability": 0.3101 + }, + { + "start": 19957.34, + "end": 19958.9, + "probability": 0.2407 + }, + { + "start": 19959.14, + "end": 19959.46, + "probability": 0.5982 + }, + { + "start": 19959.46, + "end": 19960.84, + "probability": 0.6382 + }, + { + "start": 19961.3, + "end": 19961.76, + "probability": 0.4628 + }, + { + "start": 19961.76, + "end": 19962.6, + "probability": 0.7632 + }, + { + "start": 19962.78, + "end": 19962.96, + "probability": 0.8625 + }, + { + "start": 19963.24, + "end": 19963.86, + "probability": 0.9014 + }, + { + "start": 19964.0, + "end": 19965.62, + "probability": 0.8276 + }, + { + "start": 19965.74, + "end": 19967.27, + "probability": 0.9359 + }, + { + "start": 19968.06, + "end": 19969.44, + "probability": 0.88 + }, + { + "start": 19971.54, + "end": 19974.46, + "probability": 0.7616 + }, + { + "start": 19977.12, + "end": 19980.18, + "probability": 0.9946 + }, + { + "start": 19980.3, + "end": 19981.6, + "probability": 0.9945 + }, + { + "start": 19982.08, + "end": 19983.62, + "probability": 0.9825 + }, + { + "start": 19983.98, + "end": 19986.48, + "probability": 0.9971 + }, + { + "start": 19987.06, + "end": 19989.92, + "probability": 0.7279 + }, + { + "start": 19991.08, + "end": 19995.66, + "probability": 0.7006 + }, + { + "start": 19996.26, + "end": 20002.48, + "probability": 0.793 + }, + { + "start": 20002.6, + "end": 20004.12, + "probability": 0.7722 + }, + { + "start": 20004.24, + "end": 20006.3, + "probability": 0.9854 + }, + { + "start": 20006.36, + "end": 20008.14, + "probability": 0.6234 + }, + { + "start": 20008.66, + "end": 20009.82, + "probability": 0.7436 + }, + { + "start": 20010.24, + "end": 20010.46, + "probability": 0.8087 + }, + { + "start": 20011.66, + "end": 20012.34, + "probability": 0.6628 + }, + { + "start": 20012.6, + "end": 20014.28, + "probability": 0.9336 + }, + { + "start": 20014.78, + "end": 20017.46, + "probability": 0.9713 + }, + { + "start": 20017.56, + "end": 20018.92, + "probability": 0.9641 + }, + { + "start": 20019.48, + "end": 20021.1, + "probability": 0.8149 + }, + { + "start": 20029.4, + "end": 20031.5, + "probability": 0.9163 + }, + { + "start": 20031.78, + "end": 20032.22, + "probability": 0.3312 + }, + { + "start": 20032.68, + "end": 20033.0, + "probability": 0.6414 + }, + { + "start": 20038.52, + "end": 20039.38, + "probability": 0.3891 + }, + { + "start": 20040.38, + "end": 20043.28, + "probability": 0.1067 + }, + { + "start": 20044.54, + "end": 20046.3, + "probability": 0.8138 + }, + { + "start": 20047.06, + "end": 20047.64, + "probability": 0.436 + }, + { + "start": 20048.52, + "end": 20049.44, + "probability": 0.9009 + }, + { + "start": 20050.12, + "end": 20053.36, + "probability": 0.993 + }, + { + "start": 20054.62, + "end": 20055.92, + "probability": 0.9016 + }, + { + "start": 20056.92, + "end": 20059.9, + "probability": 0.5358 + }, + { + "start": 20060.48, + "end": 20061.9, + "probability": 0.7187 + }, + { + "start": 20062.62, + "end": 20064.3, + "probability": 0.0442 + }, + { + "start": 20064.34, + "end": 20064.34, + "probability": 0.0469 + }, + { + "start": 20064.34, + "end": 20064.54, + "probability": 0.1871 + }, + { + "start": 20086.04, + "end": 20087.38, + "probability": 0.2278 + }, + { + "start": 20089.24, + "end": 20092.94, + "probability": 0.9575 + }, + { + "start": 20094.72, + "end": 20095.88, + "probability": 0.7002 + }, + { + "start": 20096.72, + "end": 20100.08, + "probability": 0.9918 + }, + { + "start": 20100.96, + "end": 20101.34, + "probability": 0.9378 + }, + { + "start": 20101.48, + "end": 20106.12, + "probability": 0.955 + }, + { + "start": 20106.32, + "end": 20107.06, + "probability": 0.4754 + }, + { + "start": 20107.2, + "end": 20108.06, + "probability": 0.5115 + }, + { + "start": 20108.86, + "end": 20110.96, + "probability": 0.9878 + }, + { + "start": 20111.94, + "end": 20118.76, + "probability": 0.9968 + }, + { + "start": 20120.04, + "end": 20120.32, + "probability": 0.6819 + }, + { + "start": 20120.52, + "end": 20121.62, + "probability": 0.8882 + }, + { + "start": 20121.76, + "end": 20124.56, + "probability": 0.9924 + }, + { + "start": 20124.84, + "end": 20127.28, + "probability": 0.9294 + }, + { + "start": 20127.8, + "end": 20129.28, + "probability": 0.8667 + }, + { + "start": 20130.28, + "end": 20132.24, + "probability": 0.9609 + }, + { + "start": 20133.04, + "end": 20137.9, + "probability": 0.7999 + }, + { + "start": 20139.26, + "end": 20143.02, + "probability": 0.9851 + }, + { + "start": 20143.4, + "end": 20144.64, + "probability": 0.9052 + }, + { + "start": 20146.14, + "end": 20149.96, + "probability": 0.9858 + }, + { + "start": 20150.64, + "end": 20152.12, + "probability": 0.8849 + }, + { + "start": 20152.22, + "end": 20153.78, + "probability": 0.929 + }, + { + "start": 20154.26, + "end": 20157.78, + "probability": 0.9593 + }, + { + "start": 20158.24, + "end": 20159.98, + "probability": 0.9888 + }, + { + "start": 20161.08, + "end": 20164.94, + "probability": 0.9583 + }, + { + "start": 20165.98, + "end": 20166.55, + "probability": 0.9504 + }, + { + "start": 20167.44, + "end": 20170.46, + "probability": 0.8813 + }, + { + "start": 20170.86, + "end": 20173.04, + "probability": 0.957 + }, + { + "start": 20174.42, + "end": 20181.34, + "probability": 0.9312 + }, + { + "start": 20182.24, + "end": 20185.92, + "probability": 0.9683 + }, + { + "start": 20186.04, + "end": 20186.94, + "probability": 0.9452 + }, + { + "start": 20188.34, + "end": 20190.3, + "probability": 0.9406 + }, + { + "start": 20190.76, + "end": 20192.74, + "probability": 0.9833 + }, + { + "start": 20193.14, + "end": 20194.88, + "probability": 0.9541 + }, + { + "start": 20195.38, + "end": 20197.6, + "probability": 0.9686 + }, + { + "start": 20197.76, + "end": 20198.76, + "probability": 0.9976 + }, + { + "start": 20199.78, + "end": 20205.02, + "probability": 0.9951 + }, + { + "start": 20206.88, + "end": 20212.84, + "probability": 0.9871 + }, + { + "start": 20213.24, + "end": 20214.54, + "probability": 0.9538 + }, + { + "start": 20214.62, + "end": 20215.98, + "probability": 0.9376 + }, + { + "start": 20216.26, + "end": 20217.9, + "probability": 0.8699 + }, + { + "start": 20218.26, + "end": 20222.16, + "probability": 0.967 + }, + { + "start": 20222.76, + "end": 20225.8, + "probability": 0.985 + }, + { + "start": 20226.32, + "end": 20227.38, + "probability": 0.6971 + }, + { + "start": 20227.62, + "end": 20234.46, + "probability": 0.9901 + }, + { + "start": 20235.68, + "end": 20240.0, + "probability": 0.9913 + }, + { + "start": 20240.0, + "end": 20244.9, + "probability": 0.9981 + }, + { + "start": 20245.84, + "end": 20248.8, + "probability": 0.876 + }, + { + "start": 20248.8, + "end": 20251.84, + "probability": 0.998 + }, + { + "start": 20252.6, + "end": 20253.48, + "probability": 0.9753 + }, + { + "start": 20253.62, + "end": 20254.16, + "probability": 0.701 + }, + { + "start": 20254.58, + "end": 20258.22, + "probability": 0.9629 + }, + { + "start": 20259.54, + "end": 20262.3, + "probability": 0.9749 + }, + { + "start": 20262.5, + "end": 20265.24, + "probability": 0.9975 + }, + { + "start": 20265.24, + "end": 20269.74, + "probability": 0.9663 + }, + { + "start": 20270.42, + "end": 20271.66, + "probability": 0.9827 + }, + { + "start": 20272.44, + "end": 20275.06, + "probability": 0.9888 + }, + { + "start": 20275.98, + "end": 20277.84, + "probability": 0.6629 + }, + { + "start": 20278.5, + "end": 20282.32, + "probability": 0.9886 + }, + { + "start": 20282.8, + "end": 20284.32, + "probability": 0.8913 + }, + { + "start": 20285.1, + "end": 20290.2, + "probability": 0.9968 + }, + { + "start": 20290.68, + "end": 20294.86, + "probability": 0.9964 + }, + { + "start": 20295.7, + "end": 20301.72, + "probability": 0.9973 + }, + { + "start": 20302.88, + "end": 20306.74, + "probability": 0.9971 + }, + { + "start": 20307.14, + "end": 20311.16, + "probability": 0.9967 + }, + { + "start": 20311.74, + "end": 20312.56, + "probability": 0.9377 + }, + { + "start": 20312.98, + "end": 20319.24, + "probability": 0.9551 + }, + { + "start": 20319.82, + "end": 20322.64, + "probability": 0.9609 + }, + { + "start": 20323.3, + "end": 20323.8, + "probability": 0.8381 + }, + { + "start": 20324.38, + "end": 20325.22, + "probability": 0.7443 + }, + { + "start": 20325.5, + "end": 20328.84, + "probability": 0.8789 + }, + { + "start": 20329.0, + "end": 20329.82, + "probability": 0.9109 + }, + { + "start": 20350.34, + "end": 20351.38, + "probability": 0.523 + }, + { + "start": 20352.78, + "end": 20353.56, + "probability": 0.8964 + }, + { + "start": 20355.84, + "end": 20356.8, + "probability": 0.9028 + }, + { + "start": 20357.72, + "end": 20359.43, + "probability": 0.8549 + }, + { + "start": 20360.34, + "end": 20361.64, + "probability": 0.7214 + }, + { + "start": 20363.85, + "end": 20366.0, + "probability": 0.9092 + }, + { + "start": 20366.44, + "end": 20368.56, + "probability": 0.9834 + }, + { + "start": 20369.3, + "end": 20370.62, + "probability": 0.9772 + }, + { + "start": 20370.74, + "end": 20372.02, + "probability": 0.7477 + }, + { + "start": 20373.14, + "end": 20373.72, + "probability": 0.7404 + }, + { + "start": 20373.78, + "end": 20376.96, + "probability": 0.9448 + }, + { + "start": 20377.4, + "end": 20378.28, + "probability": 0.751 + }, + { + "start": 20379.32, + "end": 20382.68, + "probability": 0.9692 + }, + { + "start": 20382.88, + "end": 20384.2, + "probability": 0.9497 + }, + { + "start": 20384.84, + "end": 20385.68, + "probability": 0.9478 + }, + { + "start": 20386.6, + "end": 20387.5, + "probability": 0.7671 + }, + { + "start": 20388.48, + "end": 20393.02, + "probability": 0.8886 + }, + { + "start": 20393.58, + "end": 20396.62, + "probability": 0.9967 + }, + { + "start": 20397.26, + "end": 20403.74, + "probability": 0.6723 + }, + { + "start": 20403.74, + "end": 20405.14, + "probability": 0.5639 + }, + { + "start": 20406.0, + "end": 20407.68, + "probability": 0.6319 + }, + { + "start": 20408.34, + "end": 20415.8, + "probability": 0.9656 + }, + { + "start": 20416.2, + "end": 20419.68, + "probability": 0.6346 + }, + { + "start": 20420.1, + "end": 20422.78, + "probability": 0.7412 + }, + { + "start": 20423.12, + "end": 20425.96, + "probability": 0.981 + }, + { + "start": 20426.66, + "end": 20430.3, + "probability": 0.8734 + }, + { + "start": 20431.11, + "end": 20434.38, + "probability": 0.9973 + }, + { + "start": 20434.38, + "end": 20438.2, + "probability": 0.9699 + }, + { + "start": 20438.98, + "end": 20440.74, + "probability": 0.9788 + }, + { + "start": 20440.84, + "end": 20443.62, + "probability": 0.9688 + }, + { + "start": 20444.02, + "end": 20445.82, + "probability": 0.9747 + }, + { + "start": 20446.24, + "end": 20447.54, + "probability": 0.9226 + }, + { + "start": 20447.94, + "end": 20451.54, + "probability": 0.9296 + }, + { + "start": 20451.74, + "end": 20452.66, + "probability": 0.7313 + }, + { + "start": 20453.22, + "end": 20459.16, + "probability": 0.9915 + }, + { + "start": 20460.02, + "end": 20464.96, + "probability": 0.9954 + }, + { + "start": 20465.0, + "end": 20469.68, + "probability": 0.9955 + }, + { + "start": 20469.98, + "end": 20471.0, + "probability": 0.9869 + }, + { + "start": 20471.1, + "end": 20474.0, + "probability": 0.8303 + }, + { + "start": 20474.06, + "end": 20477.04, + "probability": 0.8718 + }, + { + "start": 20478.65, + "end": 20480.6, + "probability": 0.7203 + }, + { + "start": 20481.7, + "end": 20482.88, + "probability": 0.0781 + }, + { + "start": 20483.86, + "end": 20487.74, + "probability": 0.9468 + }, + { + "start": 20489.82, + "end": 20490.42, + "probability": 0.4583 + }, + { + "start": 20490.6, + "end": 20495.22, + "probability": 0.9844 + }, + { + "start": 20495.78, + "end": 20496.64, + "probability": 0.8036 + }, + { + "start": 20497.26, + "end": 20499.58, + "probability": 0.8923 + }, + { + "start": 20500.16, + "end": 20502.54, + "probability": 0.9098 + }, + { + "start": 20503.54, + "end": 20507.28, + "probability": 0.9941 + }, + { + "start": 20507.86, + "end": 20508.62, + "probability": 0.7435 + }, + { + "start": 20509.14, + "end": 20513.46, + "probability": 0.9958 + }, + { + "start": 20515.6, + "end": 20517.0, + "probability": 0.6833 + }, + { + "start": 20517.6, + "end": 20520.06, + "probability": 0.9865 + }, + { + "start": 20520.9, + "end": 20521.8, + "probability": 0.9902 + }, + { + "start": 20522.82, + "end": 20523.84, + "probability": 0.8537 + }, + { + "start": 20524.26, + "end": 20527.18, + "probability": 0.7994 + }, + { + "start": 20527.18, + "end": 20529.34, + "probability": 0.9101 + }, + { + "start": 20530.1, + "end": 20533.92, + "probability": 0.8475 + }, + { + "start": 20534.12, + "end": 20534.7, + "probability": 0.5777 + }, + { + "start": 20534.8, + "end": 20539.5, + "probability": 0.8841 + }, + { + "start": 20540.64, + "end": 20541.9, + "probability": 0.9878 + }, + { + "start": 20542.28, + "end": 20545.46, + "probability": 0.9563 + }, + { + "start": 20546.16, + "end": 20547.12, + "probability": 0.8504 + }, + { + "start": 20547.68, + "end": 20548.64, + "probability": 0.9844 + }, + { + "start": 20549.74, + "end": 20550.42, + "probability": 0.1305 + }, + { + "start": 20551.48, + "end": 20553.4, + "probability": 0.285 + }, + { + "start": 20554.2, + "end": 20555.38, + "probability": 0.6985 + }, + { + "start": 20555.5, + "end": 20555.92, + "probability": 0.8181 + }, + { + "start": 20556.1, + "end": 20557.8, + "probability": 0.9067 + }, + { + "start": 20558.8, + "end": 20559.92, + "probability": 0.913 + }, + { + "start": 20560.6, + "end": 20562.24, + "probability": 0.9874 + }, + { + "start": 20562.7, + "end": 20564.52, + "probability": 0.9877 + }, + { + "start": 20565.02, + "end": 20566.34, + "probability": 0.9985 + }, + { + "start": 20566.62, + "end": 20569.52, + "probability": 0.9922 + }, + { + "start": 20569.52, + "end": 20572.66, + "probability": 0.9977 + }, + { + "start": 20573.1, + "end": 20574.62, + "probability": 0.8166 + }, + { + "start": 20575.08, + "end": 20575.5, + "probability": 0.772 + }, + { + "start": 20575.56, + "end": 20576.56, + "probability": 0.981 + }, + { + "start": 20576.64, + "end": 20577.1, + "probability": 0.3767 + }, + { + "start": 20577.74, + "end": 20578.68, + "probability": 0.9116 + }, + { + "start": 20579.22, + "end": 20580.65, + "probability": 0.9976 + }, + { + "start": 20581.82, + "end": 20586.0, + "probability": 0.9383 + }, + { + "start": 20586.16, + "end": 20588.46, + "probability": 0.887 + }, + { + "start": 20588.94, + "end": 20589.7, + "probability": 0.4884 + }, + { + "start": 20589.9, + "end": 20592.06, + "probability": 0.9113 + }, + { + "start": 20592.7, + "end": 20594.14, + "probability": 0.9907 + }, + { + "start": 20594.4, + "end": 20594.98, + "probability": 0.5822 + }, + { + "start": 20595.12, + "end": 20595.56, + "probability": 0.6795 + }, + { + "start": 20596.02, + "end": 20597.82, + "probability": 0.5075 + }, + { + "start": 20597.86, + "end": 20598.88, + "probability": 0.6906 + }, + { + "start": 20599.48, + "end": 20601.76, + "probability": 0.8398 + }, + { + "start": 20601.76, + "end": 20604.42, + "probability": 0.9895 + }, + { + "start": 20605.0, + "end": 20611.22, + "probability": 0.9899 + }, + { + "start": 20612.04, + "end": 20614.64, + "probability": 0.9109 + }, + { + "start": 20615.44, + "end": 20617.74, + "probability": 0.979 + }, + { + "start": 20617.88, + "end": 20619.78, + "probability": 0.9904 + }, + { + "start": 20620.44, + "end": 20621.4, + "probability": 0.7077 + }, + { + "start": 20621.64, + "end": 20626.26, + "probability": 0.9371 + }, + { + "start": 20626.74, + "end": 20627.58, + "probability": 0.8528 + }, + { + "start": 20627.78, + "end": 20630.16, + "probability": 0.943 + }, + { + "start": 20630.84, + "end": 20633.5, + "probability": 0.8488 + }, + { + "start": 20634.16, + "end": 20638.48, + "probability": 0.9585 + }, + { + "start": 20639.18, + "end": 20644.58, + "probability": 0.9913 + }, + { + "start": 20645.44, + "end": 20648.14, + "probability": 0.9461 + }, + { + "start": 20648.76, + "end": 20651.98, + "probability": 0.9768 + }, + { + "start": 20652.38, + "end": 20653.44, + "probability": 0.7435 + }, + { + "start": 20654.08, + "end": 20657.98, + "probability": 0.9858 + }, + { + "start": 20658.44, + "end": 20662.14, + "probability": 0.6608 + }, + { + "start": 20663.03, + "end": 20666.67, + "probability": 0.9275 + }, + { + "start": 20667.14, + "end": 20667.16, + "probability": 0.4097 + }, + { + "start": 20667.38, + "end": 20671.98, + "probability": 0.9576 + }, + { + "start": 20671.98, + "end": 20674.96, + "probability": 0.9829 + }, + { + "start": 20675.3, + "end": 20676.8, + "probability": 0.9857 + }, + { + "start": 20676.88, + "end": 20677.82, + "probability": 0.8159 + }, + { + "start": 20678.2, + "end": 20678.78, + "probability": 0.8007 + }, + { + "start": 20679.02, + "end": 20679.98, + "probability": 0.8306 + }, + { + "start": 20680.38, + "end": 20681.91, + "probability": 0.9536 + }, + { + "start": 20682.58, + "end": 20687.14, + "probability": 0.9077 + }, + { + "start": 20687.34, + "end": 20687.58, + "probability": 0.76 + }, + { + "start": 20687.62, + "end": 20688.96, + "probability": 0.7597 + }, + { + "start": 20689.4, + "end": 20691.04, + "probability": 0.9078 + }, + { + "start": 20691.14, + "end": 20693.94, + "probability": 0.8725 + }, + { + "start": 20694.58, + "end": 20695.48, + "probability": 0.6944 + }, + { + "start": 20695.56, + "end": 20695.68, + "probability": 0.5981 + }, + { + "start": 20695.84, + "end": 20700.1, + "probability": 0.9696 + }, + { + "start": 20700.94, + "end": 20702.56, + "probability": 0.7297 + }, + { + "start": 20702.7, + "end": 20703.64, + "probability": 0.6784 + }, + { + "start": 20703.96, + "end": 20704.3, + "probability": 0.7051 + }, + { + "start": 20704.42, + "end": 20707.16, + "probability": 0.6656 + }, + { + "start": 20707.26, + "end": 20707.68, + "probability": 0.901 + }, + { + "start": 20708.04, + "end": 20711.5, + "probability": 0.8926 + }, + { + "start": 20712.4, + "end": 20712.94, + "probability": 0.66 + }, + { + "start": 20712.98, + "end": 20714.98, + "probability": 0.8641 + }, + { + "start": 20715.14, + "end": 20717.22, + "probability": 0.6267 + }, + { + "start": 20717.74, + "end": 20718.68, + "probability": 0.5763 + }, + { + "start": 20718.74, + "end": 20719.4, + "probability": 0.9257 + }, + { + "start": 20719.78, + "end": 20724.98, + "probability": 0.9609 + }, + { + "start": 20724.98, + "end": 20725.4, + "probability": 0.7608 + }, + { + "start": 20726.46, + "end": 20727.28, + "probability": 0.7017 + }, + { + "start": 20728.1, + "end": 20732.7, + "probability": 0.982 + }, + { + "start": 20733.76, + "end": 20735.34, + "probability": 0.9417 + }, + { + "start": 20737.06, + "end": 20737.1, + "probability": 0.1731 + }, + { + "start": 20744.44, + "end": 20745.22, + "probability": 0.04 + }, + { + "start": 20748.86, + "end": 20749.56, + "probability": 0.0294 + }, + { + "start": 20752.58, + "end": 20752.86, + "probability": 0.0506 + }, + { + "start": 20753.68, + "end": 20754.42, + "probability": 0.0419 + }, + { + "start": 20754.42, + "end": 20756.22, + "probability": 0.0709 + }, + { + "start": 20756.82, + "end": 20757.44, + "probability": 0.097 + }, + { + "start": 20759.5, + "end": 20759.98, + "probability": 0.106 + }, + { + "start": 20761.0, + "end": 20764.08, + "probability": 0.0671 + }, + { + "start": 20781.6, + "end": 20790.16, + "probability": 0.424 + }, + { + "start": 20791.78, + "end": 20796.5, + "probability": 0.467 + }, + { + "start": 20796.5, + "end": 20799.8, + "probability": 0.6382 + }, + { + "start": 20801.36, + "end": 20804.94, + "probability": 0.6834 + }, + { + "start": 20805.12, + "end": 20806.36, + "probability": 0.3255 + }, + { + "start": 20806.5, + "end": 20807.54, + "probability": 0.3926 + }, + { + "start": 20808.52, + "end": 20810.22, + "probability": 0.7113 + }, + { + "start": 20810.32, + "end": 20812.74, + "probability": 0.8874 + }, + { + "start": 20812.74, + "end": 20815.52, + "probability": 0.6615 + }, + { + "start": 20815.8, + "end": 20817.76, + "probability": 0.7086 + }, + { + "start": 20820.68, + "end": 20821.59, + "probability": 0.7731 + }, + { + "start": 20823.02, + "end": 20823.64, + "probability": 0.731 + }, + { + "start": 20828.22, + "end": 20829.76, + "probability": 0.6758 + }, + { + "start": 20831.66, + "end": 20833.36, + "probability": 0.8537 + }, + { + "start": 20833.36, + "end": 20835.7, + "probability": 0.9683 + }, + { + "start": 20835.76, + "end": 20836.48, + "probability": 0.9733 + }, + { + "start": 20837.4, + "end": 20838.62, + "probability": 0.6356 + }, + { + "start": 20839.64, + "end": 20839.86, + "probability": 0.753 + }, + { + "start": 20840.46, + "end": 20841.74, + "probability": 0.9601 + }, + { + "start": 20842.42, + "end": 20843.04, + "probability": 0.4636 + }, + { + "start": 20843.86, + "end": 20844.34, + "probability": 0.819 + }, + { + "start": 20844.48, + "end": 20847.94, + "probability": 0.4986 + }, + { + "start": 20848.14, + "end": 20851.09, + "probability": 0.4943 + }, + { + "start": 20851.98, + "end": 20854.0, + "probability": 0.526 + }, + { + "start": 20854.04, + "end": 20855.22, + "probability": 0.6544 + }, + { + "start": 20855.36, + "end": 20856.65, + "probability": 0.9332 + }, + { + "start": 20856.84, + "end": 20857.68, + "probability": 0.6667 + }, + { + "start": 20857.8, + "end": 20858.54, + "probability": 0.526 + }, + { + "start": 20859.32, + "end": 20861.62, + "probability": 0.9073 + }, + { + "start": 20863.18, + "end": 20865.28, + "probability": 0.817 + }, + { + "start": 20865.28, + "end": 20867.64, + "probability": 0.9199 + }, + { + "start": 20868.64, + "end": 20869.92, + "probability": 0.9215 + }, + { + "start": 20870.18, + "end": 20870.56, + "probability": 0.9211 + }, + { + "start": 20870.78, + "end": 20874.08, + "probability": 0.8521 + }, + { + "start": 20875.04, + "end": 20875.46, + "probability": 0.793 + }, + { + "start": 20876.72, + "end": 20877.64, + "probability": 0.6951 + }, + { + "start": 20878.44, + "end": 20879.62, + "probability": 0.7134 + }, + { + "start": 20880.26, + "end": 20883.22, + "probability": 0.8384 + }, + { + "start": 20883.4, + "end": 20884.3, + "probability": 0.7725 + }, + { + "start": 20884.5, + "end": 20885.86, + "probability": 0.6389 + }, + { + "start": 20885.92, + "end": 20886.68, + "probability": 0.4502 + }, + { + "start": 20887.98, + "end": 20890.44, + "probability": 0.6212 + }, + { + "start": 20890.56, + "end": 20891.64, + "probability": 0.8811 + }, + { + "start": 20891.74, + "end": 20892.08, + "probability": 0.522 + }, + { + "start": 20893.06, + "end": 20895.34, + "probability": 0.9643 + }, + { + "start": 20895.34, + "end": 20900.7, + "probability": 0.848 + }, + { + "start": 20901.16, + "end": 20902.42, + "probability": 0.8048 + }, + { + "start": 20903.98, + "end": 20905.2, + "probability": 0.8316 + }, + { + "start": 20906.22, + "end": 20911.68, + "probability": 0.8208 + }, + { + "start": 20912.76, + "end": 20915.78, + "probability": 0.7506 + }, + { + "start": 20915.78, + "end": 20918.24, + "probability": 0.9395 + }, + { + "start": 20918.8, + "end": 20920.06, + "probability": 0.763 + }, + { + "start": 20922.02, + "end": 20922.63, + "probability": 0.2323 + }, + { + "start": 20922.72, + "end": 20923.76, + "probability": 0.2342 + }, + { + "start": 20923.76, + "end": 20924.99, + "probability": 0.6631 + }, + { + "start": 20925.72, + "end": 20928.9, + "probability": 0.3599 + }, + { + "start": 20929.04, + "end": 20929.12, + "probability": 0.0501 + }, + { + "start": 20929.12, + "end": 20929.55, + "probability": 0.0668 + }, + { + "start": 20929.86, + "end": 20930.28, + "probability": 0.2891 + }, + { + "start": 20930.68, + "end": 20931.9, + "probability": 0.2096 + }, + { + "start": 20932.46, + "end": 20934.92, + "probability": 0.4638 + }, + { + "start": 20935.9, + "end": 20937.76, + "probability": 0.6373 + }, + { + "start": 20938.4, + "end": 20940.76, + "probability": 0.8291 + }, + { + "start": 20940.76, + "end": 20944.72, + "probability": 0.9286 + }, + { + "start": 20945.26, + "end": 20947.14, + "probability": 0.7512 + }, + { + "start": 20947.4, + "end": 20950.84, + "probability": 0.8768 + }, + { + "start": 20950.84, + "end": 20955.46, + "probability": 0.784 + }, + { + "start": 20956.5, + "end": 20957.02, + "probability": 0.4059 + }, + { + "start": 20957.66, + "end": 20960.46, + "probability": 0.6882 + }, + { + "start": 20960.56, + "end": 20962.28, + "probability": 0.6935 + }, + { + "start": 20962.72, + "end": 20964.98, + "probability": 0.8684 + }, + { + "start": 20965.92, + "end": 20969.6, + "probability": 0.885 + }, + { + "start": 20969.6, + "end": 20973.8, + "probability": 0.7693 + }, + { + "start": 20973.8, + "end": 20979.08, + "probability": 0.9915 + }, + { + "start": 20979.08, + "end": 20984.24, + "probability": 0.9373 + }, + { + "start": 20985.36, + "end": 20989.1, + "probability": 0.8989 + }, + { + "start": 20990.7, + "end": 20991.22, + "probability": 0.1113 + }, + { + "start": 20991.22, + "end": 20992.8, + "probability": 0.8403 + }, + { + "start": 20993.0, + "end": 20994.2, + "probability": 0.7978 + }, + { + "start": 20994.28, + "end": 20995.36, + "probability": 0.7298 + }, + { + "start": 20995.86, + "end": 20997.22, + "probability": 0.3812 + }, + { + "start": 20997.22, + "end": 20997.96, + "probability": 0.8258 + }, + { + "start": 20998.34, + "end": 20998.86, + "probability": 0.903 + }, + { + "start": 20998.92, + "end": 20998.98, + "probability": 0.3967 + }, + { + "start": 20998.98, + "end": 20999.46, + "probability": 0.8218 + }, + { + "start": 20999.46, + "end": 20999.56, + "probability": 0.7278 + }, + { + "start": 21000.16, + "end": 21000.62, + "probability": 0.5546 + }, + { + "start": 21000.62, + "end": 21001.34, + "probability": 0.4396 + }, + { + "start": 21001.66, + "end": 21001.98, + "probability": 0.4322 + }, + { + "start": 21002.02, + "end": 21002.54, + "probability": 0.7465 + }, + { + "start": 21003.0, + "end": 21003.56, + "probability": 0.8576 + }, + { + "start": 21003.56, + "end": 21003.82, + "probability": 0.4291 + }, + { + "start": 21004.22, + "end": 21005.62, + "probability": 0.9048 + }, + { + "start": 21005.74, + "end": 21006.4, + "probability": 0.6628 + }, + { + "start": 21006.48, + "end": 21007.58, + "probability": 0.2828 + }, + { + "start": 21007.76, + "end": 21008.52, + "probability": 0.8047 + }, + { + "start": 21008.68, + "end": 21009.74, + "probability": 0.4057 + }, + { + "start": 21010.6, + "end": 21011.82, + "probability": 0.2047 + }, + { + "start": 21012.04, + "end": 21013.2, + "probability": 0.3777 + }, + { + "start": 21013.36, + "end": 21018.7, + "probability": 0.4521 + }, + { + "start": 21018.76, + "end": 21019.7, + "probability": 0.5022 + }, + { + "start": 21019.84, + "end": 21021.24, + "probability": 0.3827 + }, + { + "start": 21022.74, + "end": 21022.8, + "probability": 0.0206 + }, + { + "start": 21022.8, + "end": 21022.9, + "probability": 0.1168 + }, + { + "start": 21022.9, + "end": 21023.18, + "probability": 0.4236 + }, + { + "start": 21023.24, + "end": 21023.85, + "probability": 0.1559 + }, + { + "start": 21024.22, + "end": 21024.84, + "probability": 0.4752 + }, + { + "start": 21024.9, + "end": 21025.39, + "probability": 0.0406 + }, + { + "start": 21025.68, + "end": 21025.98, + "probability": 0.524 + }, + { + "start": 21026.42, + "end": 21026.87, + "probability": 0.9287 + }, + { + "start": 21028.04, + "end": 21028.92, + "probability": 0.8148 + }, + { + "start": 21029.54, + "end": 21031.46, + "probability": 0.9183 + }, + { + "start": 21032.18, + "end": 21034.4, + "probability": 0.1159 + }, + { + "start": 21034.57, + "end": 21034.97, + "probability": 0.0284 + }, + { + "start": 21036.36, + "end": 21036.95, + "probability": 0.9399 + }, + { + "start": 21037.38, + "end": 21037.38, + "probability": 0.4515 + }, + { + "start": 21037.38, + "end": 21037.87, + "probability": 0.9888 + }, + { + "start": 21038.36, + "end": 21038.38, + "probability": 0.2302 + }, + { + "start": 21038.38, + "end": 21038.87, + "probability": 0.937 + }, + { + "start": 21039.1, + "end": 21039.58, + "probability": 0.5188 + }, + { + "start": 21039.74, + "end": 21040.02, + "probability": 0.1898 + }, + { + "start": 21040.02, + "end": 21040.04, + "probability": 0.0828 + }, + { + "start": 21040.04, + "end": 21040.5, + "probability": 0.5036 + }, + { + "start": 21040.5, + "end": 21041.59, + "probability": 0.2185 + }, + { + "start": 21042.88, + "end": 21043.3, + "probability": 0.0085 + }, + { + "start": 21044.12, + "end": 21044.47, + "probability": 0.3521 + }, + { + "start": 21045.27, + "end": 21047.72, + "probability": 0.6878 + }, + { + "start": 21047.82, + "end": 21048.7, + "probability": 0.8462 + }, + { + "start": 21048.82, + "end": 21049.34, + "probability": 0.0907 + }, + { + "start": 21049.8, + "end": 21050.4, + "probability": 0.1562 + }, + { + "start": 21051.62, + "end": 21052.96, + "probability": 0.6859 + }, + { + "start": 21053.02, + "end": 21053.1, + "probability": 0.2882 + }, + { + "start": 21053.1, + "end": 21053.86, + "probability": 0.7518 + }, + { + "start": 21055.04, + "end": 21055.04, + "probability": 0.722 + }, + { + "start": 21055.06, + "end": 21055.62, + "probability": 0.47 + }, + { + "start": 21055.68, + "end": 21056.5, + "probability": 0.75 + }, + { + "start": 21056.5, + "end": 21057.8, + "probability": 0.917 + }, + { + "start": 21057.86, + "end": 21059.0, + "probability": 0.2525 + }, + { + "start": 21059.1, + "end": 21060.84, + "probability": 0.6343 + }, + { + "start": 21061.0, + "end": 21063.04, + "probability": 0.7021 + }, + { + "start": 21063.08, + "end": 21063.51, + "probability": 0.7312 + }, + { + "start": 21063.62, + "end": 21065.06, + "probability": 0.7568 + }, + { + "start": 21065.06, + "end": 21066.16, + "probability": 0.5866 + }, + { + "start": 21066.16, + "end": 21066.58, + "probability": 0.1205 + }, + { + "start": 21066.64, + "end": 21066.96, + "probability": 0.2918 + }, + { + "start": 21066.96, + "end": 21068.62, + "probability": 0.2848 + }, + { + "start": 21068.64, + "end": 21069.7, + "probability": 0.3245 + }, + { + "start": 21069.7, + "end": 21070.66, + "probability": 0.0553 + }, + { + "start": 21071.76, + "end": 21072.28, + "probability": 0.4611 + }, + { + "start": 21087.14, + "end": 21088.88, + "probability": 0.6147 + }, + { + "start": 21089.98, + "end": 21095.58, + "probability": 0.9771 + }, + { + "start": 21102.74, + "end": 21105.6, + "probability": 0.7699 + }, + { + "start": 21107.62, + "end": 21110.56, + "probability": 0.1109 + }, + { + "start": 21112.3, + "end": 21112.4, + "probability": 0.0685 + }, + { + "start": 21112.4, + "end": 21112.7, + "probability": 0.1 + }, + { + "start": 21113.64, + "end": 21113.74, + "probability": 0.1957 + }, + { + "start": 21113.78, + "end": 21114.52, + "probability": 0.2101 + }, + { + "start": 21115.26, + "end": 21115.46, + "probability": 0.0541 + }, + { + "start": 21119.1, + "end": 21119.62, + "probability": 0.0049 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + }, + { + "start": 21219.193, + "end": 21219.193, + "probability": 0.0 + } + ], + "segments_count": 7162, + "words_count": 35840, + "avg_words_per_segment": 5.0042, + "avg_segment_duration": 2.2036, + "avg_words_per_minute": 101.3423, + "plenum_id": "68044", + "duration": 21219.18, + "title": null, + "plenum_date": "2017-11-29" +} \ No newline at end of file