diff --git "a/102267/metadata.json" "b/102267/metadata.json" new file mode 100644--- /dev/null +++ "b/102267/metadata.json" @@ -0,0 +1,12107 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "102267", + "quality_score": 0.9033, + "per_segment_quality_scores": [ + { + "start": 30.64, + "end": 31.06, + "probability": 0.4515 + }, + { + "start": 36.64, + "end": 38.5, + "probability": 0.8142 + }, + { + "start": 39.28, + "end": 42.31, + "probability": 0.9871 + }, + { + "start": 43.0, + "end": 46.66, + "probability": 0.9978 + }, + { + "start": 47.9, + "end": 49.16, + "probability": 0.7552 + }, + { + "start": 50.08, + "end": 52.82, + "probability": 0.7544 + }, + { + "start": 54.0, + "end": 55.74, + "probability": 0.7448 + }, + { + "start": 56.04, + "end": 57.52, + "probability": 0.7624 + }, + { + "start": 58.1, + "end": 58.1, + "probability": 0.4695 + }, + { + "start": 58.22, + "end": 61.71, + "probability": 0.6852 + }, + { + "start": 67.48, + "end": 67.98, + "probability": 0.1157 + }, + { + "start": 121.16, + "end": 123.18, + "probability": 0.7302 + }, + { + "start": 124.16, + "end": 129.38, + "probability": 0.9671 + }, + { + "start": 130.52, + "end": 133.8, + "probability": 0.9913 + }, + { + "start": 133.84, + "end": 135.06, + "probability": 0.9346 + }, + { + "start": 135.82, + "end": 138.8, + "probability": 0.9935 + }, + { + "start": 141.0, + "end": 144.86, + "probability": 0.9994 + }, + { + "start": 145.4, + "end": 152.72, + "probability": 0.9172 + }, + { + "start": 153.44, + "end": 154.96, + "probability": 0.9272 + }, + { + "start": 155.46, + "end": 160.74, + "probability": 0.9893 + }, + { + "start": 160.84, + "end": 161.4, + "probability": 0.8934 + }, + { + "start": 161.98, + "end": 166.62, + "probability": 0.9877 + }, + { + "start": 166.82, + "end": 168.02, + "probability": 0.7004 + }, + { + "start": 168.76, + "end": 169.6, + "probability": 0.7555 + }, + { + "start": 169.84, + "end": 172.18, + "probability": 0.998 + }, + { + "start": 173.34, + "end": 178.14, + "probability": 0.7564 + }, + { + "start": 178.18, + "end": 179.4, + "probability": 0.9962 + }, + { + "start": 180.12, + "end": 181.38, + "probability": 0.9775 + }, + { + "start": 182.64, + "end": 188.0, + "probability": 0.9691 + }, + { + "start": 188.5, + "end": 188.88, + "probability": 0.7385 + }, + { + "start": 189.68, + "end": 192.8, + "probability": 0.8988 + }, + { + "start": 193.64, + "end": 197.0, + "probability": 0.9948 + }, + { + "start": 197.58, + "end": 201.2, + "probability": 0.9988 + }, + { + "start": 201.88, + "end": 203.28, + "probability": 0.9758 + }, + { + "start": 204.7, + "end": 205.78, + "probability": 0.9456 + }, + { + "start": 205.92, + "end": 206.18, + "probability": 0.873 + }, + { + "start": 206.3, + "end": 207.86, + "probability": 0.9946 + }, + { + "start": 208.82, + "end": 209.68, + "probability": 0.8963 + }, + { + "start": 210.08, + "end": 212.74, + "probability": 0.9874 + }, + { + "start": 212.74, + "end": 214.9, + "probability": 0.7435 + }, + { + "start": 215.02, + "end": 216.22, + "probability": 0.7578 + }, + { + "start": 217.12, + "end": 217.76, + "probability": 0.5223 + }, + { + "start": 219.96, + "end": 222.36, + "probability": 0.9751 + }, + { + "start": 223.38, + "end": 226.88, + "probability": 0.9595 + }, + { + "start": 227.84, + "end": 228.8, + "probability": 0.501 + }, + { + "start": 228.8, + "end": 230.52, + "probability": 0.9678 + }, + { + "start": 230.66, + "end": 231.48, + "probability": 0.7174 + }, + { + "start": 231.6, + "end": 238.08, + "probability": 0.9831 + }, + { + "start": 238.88, + "end": 244.26, + "probability": 0.9924 + }, + { + "start": 244.73, + "end": 247.98, + "probability": 0.9857 + }, + { + "start": 247.98, + "end": 250.18, + "probability": 0.9994 + }, + { + "start": 251.98, + "end": 254.94, + "probability": 0.9893 + }, + { + "start": 254.94, + "end": 259.6, + "probability": 0.8502 + }, + { + "start": 260.42, + "end": 262.2, + "probability": 0.5504 + }, + { + "start": 262.24, + "end": 264.02, + "probability": 0.6404 + }, + { + "start": 264.38, + "end": 264.6, + "probability": 0.5571 + }, + { + "start": 266.42, + "end": 267.14, + "probability": 0.5992 + }, + { + "start": 267.46, + "end": 269.76, + "probability": 0.8975 + }, + { + "start": 276.62, + "end": 277.47, + "probability": 0.6408 + }, + { + "start": 278.42, + "end": 280.08, + "probability": 0.9751 + }, + { + "start": 280.22, + "end": 280.98, + "probability": 0.7087 + }, + { + "start": 281.38, + "end": 288.56, + "probability": 0.9673 + }, + { + "start": 289.16, + "end": 289.84, + "probability": 0.9128 + }, + { + "start": 289.94, + "end": 290.86, + "probability": 0.6877 + }, + { + "start": 290.9, + "end": 291.9, + "probability": 0.9701 + }, + { + "start": 292.02, + "end": 292.9, + "probability": 0.6708 + }, + { + "start": 293.38, + "end": 293.54, + "probability": 0.9198 + }, + { + "start": 294.72, + "end": 296.4, + "probability": 0.5679 + }, + { + "start": 297.06, + "end": 299.9, + "probability": 0.8247 + }, + { + "start": 300.64, + "end": 301.6, + "probability": 0.9461 + }, + { + "start": 302.04, + "end": 307.04, + "probability": 0.9731 + }, + { + "start": 307.8, + "end": 310.27, + "probability": 0.9915 + }, + { + "start": 311.2, + "end": 312.5, + "probability": 0.5491 + }, + { + "start": 313.04, + "end": 313.68, + "probability": 0.9827 + }, + { + "start": 314.96, + "end": 317.32, + "probability": 0.9027 + }, + { + "start": 317.44, + "end": 318.25, + "probability": 0.6941 + }, + { + "start": 318.36, + "end": 320.2, + "probability": 0.8873 + }, + { + "start": 321.22, + "end": 322.95, + "probability": 0.9686 + }, + { + "start": 323.08, + "end": 324.36, + "probability": 0.9804 + }, + { + "start": 324.76, + "end": 326.26, + "probability": 0.7387 + }, + { + "start": 327.46, + "end": 330.12, + "probability": 0.9753 + }, + { + "start": 330.28, + "end": 331.16, + "probability": 0.9762 + }, + { + "start": 331.72, + "end": 335.64, + "probability": 0.856 + }, + { + "start": 336.74, + "end": 338.44, + "probability": 0.6152 + }, + { + "start": 338.74, + "end": 339.32, + "probability": 0.5455 + }, + { + "start": 339.38, + "end": 340.79, + "probability": 0.2583 + }, + { + "start": 341.32, + "end": 343.52, + "probability": 0.8939 + }, + { + "start": 343.68, + "end": 344.44, + "probability": 0.7896 + }, + { + "start": 344.9, + "end": 345.44, + "probability": 0.6972 + }, + { + "start": 345.56, + "end": 346.68, + "probability": 0.6316 + }, + { + "start": 347.08, + "end": 348.94, + "probability": 0.895 + }, + { + "start": 349.56, + "end": 350.1, + "probability": 0.4341 + }, + { + "start": 351.56, + "end": 353.5, + "probability": 0.8187 + }, + { + "start": 354.06, + "end": 356.12, + "probability": 0.6747 + }, + { + "start": 356.72, + "end": 358.46, + "probability": 0.7464 + }, + { + "start": 359.16, + "end": 361.42, + "probability": 0.6213 + }, + { + "start": 361.84, + "end": 363.92, + "probability": 0.7361 + }, + { + "start": 364.88, + "end": 367.04, + "probability": 0.9824 + }, + { + "start": 368.22, + "end": 371.06, + "probability": 0.8314 + }, + { + "start": 371.14, + "end": 372.18, + "probability": 0.7528 + }, + { + "start": 373.38, + "end": 374.58, + "probability": 0.7388 + }, + { + "start": 376.0, + "end": 379.36, + "probability": 0.9692 + }, + { + "start": 380.46, + "end": 381.06, + "probability": 0.9541 + }, + { + "start": 381.12, + "end": 382.18, + "probability": 0.563 + }, + { + "start": 382.24, + "end": 385.29, + "probability": 0.9839 + }, + { + "start": 387.12, + "end": 388.04, + "probability": 0.7143 + }, + { + "start": 388.94, + "end": 390.22, + "probability": 0.8086 + }, + { + "start": 391.02, + "end": 391.68, + "probability": 0.9159 + }, + { + "start": 392.52, + "end": 394.34, + "probability": 0.8483 + }, + { + "start": 395.1, + "end": 397.24, + "probability": 0.9395 + }, + { + "start": 398.28, + "end": 400.06, + "probability": 0.8605 + }, + { + "start": 400.98, + "end": 402.8, + "probability": 0.9668 + }, + { + "start": 403.32, + "end": 405.7, + "probability": 0.9363 + }, + { + "start": 406.34, + "end": 408.22, + "probability": 0.7992 + }, + { + "start": 408.9, + "end": 411.32, + "probability": 0.9963 + }, + { + "start": 412.84, + "end": 418.54, + "probability": 0.8044 + }, + { + "start": 418.58, + "end": 420.88, + "probability": 0.975 + }, + { + "start": 421.48, + "end": 424.78, + "probability": 0.7733 + }, + { + "start": 426.0, + "end": 429.54, + "probability": 0.9829 + }, + { + "start": 429.66, + "end": 431.66, + "probability": 0.9614 + }, + { + "start": 432.32, + "end": 434.84, + "probability": 0.8972 + }, + { + "start": 435.18, + "end": 440.5, + "probability": 0.9947 + }, + { + "start": 441.04, + "end": 442.02, + "probability": 0.4515 + }, + { + "start": 442.78, + "end": 445.24, + "probability": 0.8926 + }, + { + "start": 445.86, + "end": 446.82, + "probability": 0.7705 + }, + { + "start": 447.1, + "end": 448.1, + "probability": 0.9645 + }, + { + "start": 448.4, + "end": 449.94, + "probability": 0.9679 + }, + { + "start": 450.2, + "end": 451.16, + "probability": 0.6373 + }, + { + "start": 451.26, + "end": 454.84, + "probability": 0.9936 + }, + { + "start": 455.3, + "end": 459.5, + "probability": 0.9787 + }, + { + "start": 459.9, + "end": 462.68, + "probability": 0.9906 + }, + { + "start": 463.1, + "end": 463.28, + "probability": 0.7986 + }, + { + "start": 465.02, + "end": 465.46, + "probability": 0.6463 + }, + { + "start": 465.7, + "end": 467.34, + "probability": 0.8416 + }, + { + "start": 478.1, + "end": 479.02, + "probability": 0.4829 + }, + { + "start": 479.6, + "end": 481.04, + "probability": 0.9443 + }, + { + "start": 482.34, + "end": 485.8, + "probability": 0.4349 + }, + { + "start": 487.58, + "end": 489.38, + "probability": 0.8845 + }, + { + "start": 490.52, + "end": 491.7, + "probability": 0.7583 + }, + { + "start": 492.24, + "end": 495.0, + "probability": 0.9901 + }, + { + "start": 495.92, + "end": 497.3, + "probability": 0.859 + }, + { + "start": 498.1, + "end": 500.24, + "probability": 0.5155 + }, + { + "start": 501.4, + "end": 502.3, + "probability": 0.4619 + }, + { + "start": 503.26, + "end": 504.42, + "probability": 0.8564 + }, + { + "start": 506.38, + "end": 510.0, + "probability": 0.8677 + }, + { + "start": 512.9, + "end": 518.84, + "probability": 0.9528 + }, + { + "start": 519.8, + "end": 521.3, + "probability": 0.5987 + }, + { + "start": 522.42, + "end": 526.24, + "probability": 0.8688 + }, + { + "start": 527.8, + "end": 532.02, + "probability": 0.7621 + }, + { + "start": 533.04, + "end": 535.46, + "probability": 0.8944 + }, + { + "start": 536.5, + "end": 537.14, + "probability": 0.9698 + }, + { + "start": 537.24, + "end": 539.32, + "probability": 0.9783 + }, + { + "start": 539.58, + "end": 543.08, + "probability": 0.4897 + }, + { + "start": 543.78, + "end": 544.96, + "probability": 0.9734 + }, + { + "start": 545.54, + "end": 546.88, + "probability": 0.4148 + }, + { + "start": 547.6, + "end": 549.34, + "probability": 0.7948 + }, + { + "start": 549.74, + "end": 550.76, + "probability": 0.8928 + }, + { + "start": 551.7, + "end": 553.8, + "probability": 0.8662 + }, + { + "start": 554.18, + "end": 555.5, + "probability": 0.92 + }, + { + "start": 555.74, + "end": 558.24, + "probability": 0.9048 + }, + { + "start": 558.68, + "end": 559.64, + "probability": 0.963 + }, + { + "start": 560.02, + "end": 560.94, + "probability": 0.9654 + }, + { + "start": 561.52, + "end": 562.78, + "probability": 0.9909 + }, + { + "start": 563.04, + "end": 565.04, + "probability": 0.9065 + }, + { + "start": 565.78, + "end": 570.88, + "probability": 0.998 + }, + { + "start": 572.72, + "end": 573.98, + "probability": 0.6399 + }, + { + "start": 574.64, + "end": 577.64, + "probability": 0.9968 + }, + { + "start": 578.4, + "end": 582.24, + "probability": 0.991 + }, + { + "start": 582.34, + "end": 585.84, + "probability": 0.9843 + }, + { + "start": 587.1, + "end": 590.8, + "probability": 0.9841 + }, + { + "start": 592.7, + "end": 594.04, + "probability": 0.9748 + }, + { + "start": 595.66, + "end": 598.82, + "probability": 0.9062 + }, + { + "start": 602.28, + "end": 604.38, + "probability": 0.9949 + }, + { + "start": 604.46, + "end": 606.64, + "probability": 0.8819 + }, + { + "start": 616.26, + "end": 617.46, + "probability": 0.6573 + }, + { + "start": 618.2, + "end": 621.54, + "probability": 0.9855 + }, + { + "start": 622.06, + "end": 623.44, + "probability": 0.8511 + }, + { + "start": 624.3, + "end": 627.8, + "probability": 0.9677 + }, + { + "start": 628.62, + "end": 632.08, + "probability": 0.9242 + }, + { + "start": 632.56, + "end": 635.86, + "probability": 0.9346 + }, + { + "start": 636.16, + "end": 639.64, + "probability": 0.7969 + }, + { + "start": 639.72, + "end": 640.6, + "probability": 0.9468 + }, + { + "start": 641.46, + "end": 642.59, + "probability": 0.6489 + }, + { + "start": 643.22, + "end": 646.04, + "probability": 0.9433 + }, + { + "start": 646.66, + "end": 649.48, + "probability": 0.9087 + }, + { + "start": 650.04, + "end": 654.02, + "probability": 0.9929 + }, + { + "start": 654.16, + "end": 656.99, + "probability": 0.8004 + }, + { + "start": 658.47, + "end": 664.06, + "probability": 0.9673 + }, + { + "start": 664.72, + "end": 666.18, + "probability": 0.6095 + }, + { + "start": 666.38, + "end": 670.66, + "probability": 0.9315 + }, + { + "start": 671.08, + "end": 672.62, + "probability": 0.5966 + }, + { + "start": 674.28, + "end": 677.22, + "probability": 0.7577 + }, + { + "start": 677.92, + "end": 683.32, + "probability": 0.1037 + }, + { + "start": 685.56, + "end": 685.56, + "probability": 0.0601 + }, + { + "start": 685.56, + "end": 685.56, + "probability": 0.4997 + }, + { + "start": 685.56, + "end": 686.1, + "probability": 0.6386 + }, + { + "start": 687.1, + "end": 689.44, + "probability": 0.6266 + }, + { + "start": 692.3, + "end": 694.6, + "probability": 0.7454 + }, + { + "start": 695.68, + "end": 697.59, + "probability": 0.9233 + }, + { + "start": 698.56, + "end": 700.26, + "probability": 0.9978 + }, + { + "start": 701.36, + "end": 702.4, + "probability": 0.7708 + }, + { + "start": 703.68, + "end": 705.42, + "probability": 0.9828 + }, + { + "start": 706.4, + "end": 708.14, + "probability": 0.9054 + }, + { + "start": 709.28, + "end": 711.14, + "probability": 0.5058 + }, + { + "start": 711.6, + "end": 713.48, + "probability": 0.616 + }, + { + "start": 714.18, + "end": 714.74, + "probability": 0.9926 + }, + { + "start": 715.44, + "end": 716.3, + "probability": 0.9909 + }, + { + "start": 717.16, + "end": 720.12, + "probability": 0.9912 + }, + { + "start": 721.28, + "end": 722.44, + "probability": 0.5436 + }, + { + "start": 722.98, + "end": 726.5, + "probability": 0.9656 + }, + { + "start": 727.5, + "end": 732.32, + "probability": 0.9888 + }, + { + "start": 733.34, + "end": 738.7, + "probability": 0.9961 + }, + { + "start": 739.76, + "end": 743.1, + "probability": 0.9802 + }, + { + "start": 743.64, + "end": 745.36, + "probability": 0.9669 + }, + { + "start": 745.86, + "end": 750.64, + "probability": 0.9873 + }, + { + "start": 750.64, + "end": 753.48, + "probability": 0.9985 + }, + { + "start": 754.14, + "end": 754.94, + "probability": 0.9778 + }, + { + "start": 757.64, + "end": 758.3, + "probability": 0.8013 + }, + { + "start": 759.02, + "end": 760.7, + "probability": 0.9533 + }, + { + "start": 767.7, + "end": 768.86, + "probability": 0.6719 + }, + { + "start": 769.66, + "end": 771.8, + "probability": 0.6739 + }, + { + "start": 773.12, + "end": 775.96, + "probability": 0.9233 + }, + { + "start": 776.86, + "end": 780.38, + "probability": 0.9189 + }, + { + "start": 781.4, + "end": 784.4, + "probability": 0.9599 + }, + { + "start": 785.26, + "end": 786.06, + "probability": 0.5276 + }, + { + "start": 786.86, + "end": 789.06, + "probability": 0.8722 + }, + { + "start": 791.16, + "end": 792.48, + "probability": 0.754 + }, + { + "start": 792.52, + "end": 795.82, + "probability": 0.832 + }, + { + "start": 796.48, + "end": 797.56, + "probability": 0.7396 + }, + { + "start": 798.14, + "end": 801.78, + "probability": 0.9987 + }, + { + "start": 802.86, + "end": 807.1, + "probability": 0.9962 + }, + { + "start": 807.38, + "end": 809.34, + "probability": 0.9883 + }, + { + "start": 809.94, + "end": 813.58, + "probability": 0.9957 + }, + { + "start": 814.42, + "end": 816.2, + "probability": 0.9622 + }, + { + "start": 817.32, + "end": 821.98, + "probability": 0.9796 + }, + { + "start": 821.98, + "end": 826.36, + "probability": 0.9992 + }, + { + "start": 827.3, + "end": 831.9, + "probability": 0.999 + }, + { + "start": 831.9, + "end": 836.9, + "probability": 0.9976 + }, + { + "start": 837.64, + "end": 841.3, + "probability": 0.9881 + }, + { + "start": 841.3, + "end": 845.22, + "probability": 0.9976 + }, + { + "start": 845.56, + "end": 845.76, + "probability": 0.7141 + }, + { + "start": 846.36, + "end": 846.84, + "probability": 0.5489 + }, + { + "start": 846.88, + "end": 848.4, + "probability": 0.9097 + }, + { + "start": 858.2, + "end": 859.88, + "probability": 0.6544 + }, + { + "start": 861.56, + "end": 862.86, + "probability": 0.9658 + }, + { + "start": 863.0, + "end": 863.52, + "probability": 0.7132 + }, + { + "start": 863.64, + "end": 867.04, + "probability": 0.9711 + }, + { + "start": 867.46, + "end": 868.32, + "probability": 0.7288 + }, + { + "start": 868.42, + "end": 868.98, + "probability": 0.8566 + }, + { + "start": 870.28, + "end": 872.88, + "probability": 0.5498 + }, + { + "start": 873.86, + "end": 874.1, + "probability": 0.6848 + }, + { + "start": 877.51, + "end": 881.0, + "probability": 0.4553 + }, + { + "start": 881.64, + "end": 883.72, + "probability": 0.9307 + }, + { + "start": 883.9, + "end": 884.42, + "probability": 0.8757 + }, + { + "start": 884.46, + "end": 885.16, + "probability": 0.7278 + }, + { + "start": 885.24, + "end": 886.92, + "probability": 0.9353 + }, + { + "start": 887.94, + "end": 890.0, + "probability": 0.82 + }, + { + "start": 890.68, + "end": 893.42, + "probability": 0.746 + }, + { + "start": 895.1, + "end": 897.44, + "probability": 0.8199 + }, + { + "start": 898.18, + "end": 899.14, + "probability": 0.3723 + }, + { + "start": 900.1, + "end": 900.54, + "probability": 0.5742 + }, + { + "start": 901.1, + "end": 902.04, + "probability": 0.7424 + }, + { + "start": 902.78, + "end": 903.48, + "probability": 0.991 + }, + { + "start": 904.76, + "end": 906.84, + "probability": 0.9512 + }, + { + "start": 907.34, + "end": 908.84, + "probability": 0.8338 + }, + { + "start": 909.08, + "end": 912.92, + "probability": 0.8083 + }, + { + "start": 913.68, + "end": 914.2, + "probability": 0.9586 + }, + { + "start": 915.38, + "end": 919.36, + "probability": 0.9097 + }, + { + "start": 919.44, + "end": 923.24, + "probability": 0.9844 + }, + { + "start": 925.4, + "end": 926.44, + "probability": 0.3387 + }, + { + "start": 927.1, + "end": 928.1, + "probability": 0.9255 + }, + { + "start": 928.62, + "end": 930.54, + "probability": 0.7845 + }, + { + "start": 931.48, + "end": 934.4, + "probability": 0.8838 + }, + { + "start": 935.4, + "end": 936.44, + "probability": 0.8873 + }, + { + "start": 937.22, + "end": 938.86, + "probability": 0.8741 + }, + { + "start": 939.76, + "end": 939.9, + "probability": 0.4523 + }, + { + "start": 943.64, + "end": 944.84, + "probability": 0.64 + }, + { + "start": 944.92, + "end": 946.36, + "probability": 0.9476 + }, + { + "start": 955.32, + "end": 957.1, + "probability": 0.6104 + }, + { + "start": 958.1, + "end": 960.74, + "probability": 0.9192 + }, + { + "start": 961.34, + "end": 962.18, + "probability": 0.9484 + }, + { + "start": 962.96, + "end": 966.8, + "probability": 0.7189 + }, + { + "start": 966.8, + "end": 973.2, + "probability": 0.8589 + }, + { + "start": 973.6, + "end": 974.82, + "probability": 0.5199 + }, + { + "start": 974.98, + "end": 976.02, + "probability": 0.5103 + }, + { + "start": 976.42, + "end": 978.44, + "probability": 0.9142 + }, + { + "start": 978.7, + "end": 981.78, + "probability": 0.9239 + }, + { + "start": 982.96, + "end": 985.06, + "probability": 0.981 + }, + { + "start": 985.14, + "end": 988.16, + "probability": 0.9663 + }, + { + "start": 988.5, + "end": 993.9, + "probability": 0.9871 + }, + { + "start": 994.18, + "end": 996.0, + "probability": 0.5893 + }, + { + "start": 996.6, + "end": 1002.04, + "probability": 0.9336 + }, + { + "start": 1002.26, + "end": 1003.0, + "probability": 0.2916 + }, + { + "start": 1003.56, + "end": 1004.26, + "probability": 0.6691 + }, + { + "start": 1004.58, + "end": 1007.32, + "probability": 0.9982 + }, + { + "start": 1008.58, + "end": 1011.72, + "probability": 0.9929 + }, + { + "start": 1012.22, + "end": 1012.62, + "probability": 0.5128 + }, + { + "start": 1013.62, + "end": 1017.18, + "probability": 0.5189 + }, + { + "start": 1017.38, + "end": 1019.52, + "probability": 0.5943 + }, + { + "start": 1019.76, + "end": 1024.4, + "probability": 0.9772 + }, + { + "start": 1025.02, + "end": 1028.58, + "probability": 0.9301 + }, + { + "start": 1028.64, + "end": 1032.86, + "probability": 0.9827 + }, + { + "start": 1033.3, + "end": 1033.86, + "probability": 0.813 + }, + { + "start": 1034.02, + "end": 1036.3, + "probability": 0.9019 + }, + { + "start": 1036.7, + "end": 1037.8, + "probability": 0.9046 + }, + { + "start": 1038.0, + "end": 1040.08, + "probability": 0.5885 + }, + { + "start": 1040.54, + "end": 1045.28, + "probability": 0.9906 + }, + { + "start": 1045.28, + "end": 1050.78, + "probability": 0.9935 + }, + { + "start": 1051.16, + "end": 1054.74, + "probability": 0.9717 + }, + { + "start": 1054.74, + "end": 1057.16, + "probability": 0.9742 + }, + { + "start": 1057.78, + "end": 1058.26, + "probability": 0.5909 + }, + { + "start": 1058.36, + "end": 1058.8, + "probability": 0.4136 + }, + { + "start": 1059.16, + "end": 1059.96, + "probability": 0.9411 + }, + { + "start": 1060.12, + "end": 1060.88, + "probability": 0.8283 + }, + { + "start": 1061.26, + "end": 1062.56, + "probability": 0.853 + }, + { + "start": 1062.6, + "end": 1065.3, + "probability": 0.9307 + }, + { + "start": 1065.42, + "end": 1065.96, + "probability": 0.8926 + }, + { + "start": 1066.06, + "end": 1066.58, + "probability": 0.8736 + }, + { + "start": 1067.24, + "end": 1067.74, + "probability": 0.6348 + }, + { + "start": 1067.76, + "end": 1070.18, + "probability": 0.7224 + }, + { + "start": 1080.4, + "end": 1081.14, + "probability": 0.6797 + }, + { + "start": 1081.7, + "end": 1082.68, + "probability": 0.887 + }, + { + "start": 1083.8, + "end": 1086.62, + "probability": 0.8465 + }, + { + "start": 1087.92, + "end": 1089.78, + "probability": 0.9158 + }, + { + "start": 1091.38, + "end": 1093.5, + "probability": 0.9915 + }, + { + "start": 1093.92, + "end": 1098.34, + "probability": 0.9421 + }, + { + "start": 1099.24, + "end": 1101.86, + "probability": 0.9956 + }, + { + "start": 1101.9, + "end": 1106.46, + "probability": 0.9819 + }, + { + "start": 1106.46, + "end": 1109.9, + "probability": 0.9785 + }, + { + "start": 1112.02, + "end": 1115.88, + "probability": 0.8756 + }, + { + "start": 1116.64, + "end": 1119.76, + "probability": 0.7563 + }, + { + "start": 1120.38, + "end": 1120.82, + "probability": 0.4752 + }, + { + "start": 1121.34, + "end": 1123.7, + "probability": 0.7847 + }, + { + "start": 1124.66, + "end": 1125.4, + "probability": 0.6733 + }, + { + "start": 1125.62, + "end": 1129.66, + "probability": 0.9654 + }, + { + "start": 1130.2, + "end": 1134.34, + "probability": 0.8599 + }, + { + "start": 1134.34, + "end": 1138.0, + "probability": 0.575 + }, + { + "start": 1138.48, + "end": 1144.22, + "probability": 0.9612 + }, + { + "start": 1144.22, + "end": 1148.48, + "probability": 0.9987 + }, + { + "start": 1149.18, + "end": 1153.68, + "probability": 0.9972 + }, + { + "start": 1154.3, + "end": 1158.38, + "probability": 0.9965 + }, + { + "start": 1159.54, + "end": 1160.7, + "probability": 0.5856 + }, + { + "start": 1160.7, + "end": 1160.7, + "probability": 0.3289 + }, + { + "start": 1160.7, + "end": 1161.58, + "probability": 0.5288 + }, + { + "start": 1163.06, + "end": 1165.58, + "probability": 0.7881 + }, + { + "start": 1166.24, + "end": 1167.34, + "probability": 0.6588 + }, + { + "start": 1167.56, + "end": 1168.68, + "probability": 0.1988 + }, + { + "start": 1168.74, + "end": 1169.14, + "probability": 0.6304 + }, + { + "start": 1169.34, + "end": 1170.24, + "probability": 0.9267 + }, + { + "start": 1170.38, + "end": 1171.34, + "probability": 0.7505 + }, + { + "start": 1172.76, + "end": 1178.74, + "probability": 0.0576 + }, + { + "start": 1179.82, + "end": 1180.08, + "probability": 0.5868 + }, + { + "start": 1181.88, + "end": 1182.84, + "probability": 0.9832 + }, + { + "start": 1185.52, + "end": 1189.54, + "probability": 0.9336 + }, + { + "start": 1190.36, + "end": 1190.5, + "probability": 0.3072 + }, + { + "start": 1190.68, + "end": 1192.66, + "probability": 0.9766 + }, + { + "start": 1193.24, + "end": 1194.7, + "probability": 0.4402 + }, + { + "start": 1196.2, + "end": 1201.28, + "probability": 0.8957 + }, + { + "start": 1201.28, + "end": 1207.58, + "probability": 0.9033 + }, + { + "start": 1208.66, + "end": 1211.28, + "probability": 0.9338 + }, + { + "start": 1212.9, + "end": 1217.04, + "probability": 0.8995 + }, + { + "start": 1217.84, + "end": 1221.76, + "probability": 0.9179 + }, + { + "start": 1222.76, + "end": 1224.52, + "probability": 0.8828 + }, + { + "start": 1225.12, + "end": 1230.58, + "probability": 0.9898 + }, + { + "start": 1230.96, + "end": 1231.58, + "probability": 0.6926 + }, + { + "start": 1231.84, + "end": 1234.18, + "probability": 0.8124 + }, + { + "start": 1234.94, + "end": 1239.32, + "probability": 0.8951 + }, + { + "start": 1239.32, + "end": 1246.58, + "probability": 0.9971 + }, + { + "start": 1247.04, + "end": 1248.72, + "probability": 0.9861 + }, + { + "start": 1248.76, + "end": 1250.18, + "probability": 0.9891 + }, + { + "start": 1250.26, + "end": 1252.54, + "probability": 0.9658 + }, + { + "start": 1252.64, + "end": 1254.9, + "probability": 0.917 + }, + { + "start": 1255.36, + "end": 1256.04, + "probability": 0.7446 + }, + { + "start": 1256.48, + "end": 1262.0, + "probability": 0.9858 + }, + { + "start": 1262.52, + "end": 1264.1, + "probability": 0.9499 + }, + { + "start": 1264.18, + "end": 1271.7, + "probability": 0.8962 + }, + { + "start": 1272.0, + "end": 1274.1, + "probability": 0.998 + }, + { + "start": 1274.6, + "end": 1278.67, + "probability": 0.9718 + }, + { + "start": 1281.04, + "end": 1283.8, + "probability": 0.9414 + }, + { + "start": 1284.4, + "end": 1287.5, + "probability": 0.9698 + }, + { + "start": 1288.2, + "end": 1294.92, + "probability": 0.7103 + }, + { + "start": 1295.06, + "end": 1298.64, + "probability": 0.7735 + }, + { + "start": 1299.12, + "end": 1300.76, + "probability": 0.8887 + }, + { + "start": 1301.48, + "end": 1303.76, + "probability": 0.8755 + }, + { + "start": 1303.92, + "end": 1304.85, + "probability": 0.9868 + }, + { + "start": 1305.4, + "end": 1311.94, + "probability": 0.8978 + }, + { + "start": 1312.14, + "end": 1312.96, + "probability": 0.7501 + }, + { + "start": 1315.12, + "end": 1317.52, + "probability": 0.76 + }, + { + "start": 1317.84, + "end": 1319.16, + "probability": 0.6217 + }, + { + "start": 1319.92, + "end": 1320.22, + "probability": 0.6935 + }, + { + "start": 1320.74, + "end": 1324.56, + "probability": 0.8984 + }, + { + "start": 1325.08, + "end": 1326.9, + "probability": 0.5156 + }, + { + "start": 1328.38, + "end": 1330.72, + "probability": 0.8975 + }, + { + "start": 1348.0, + "end": 1353.54, + "probability": 0.0057 + }, + { + "start": 1353.54, + "end": 1355.72, + "probability": 0.0421 + }, + { + "start": 1389.56, + "end": 1390.28, + "probability": 0.1753 + }, + { + "start": 1391.06, + "end": 1391.58, + "probability": 0.6382 + }, + { + "start": 1392.86, + "end": 1393.68, + "probability": 0.7515 + }, + { + "start": 1394.64, + "end": 1400.02, + "probability": 0.6107 + }, + { + "start": 1400.94, + "end": 1403.92, + "probability": 0.6985 + }, + { + "start": 1404.76, + "end": 1406.32, + "probability": 0.986 + }, + { + "start": 1407.2, + "end": 1407.76, + "probability": 0.6962 + }, + { + "start": 1409.18, + "end": 1415.76, + "probability": 0.584 + }, + { + "start": 1416.04, + "end": 1417.48, + "probability": 0.784 + }, + { + "start": 1418.18, + "end": 1420.7, + "probability": 0.7917 + }, + { + "start": 1421.6, + "end": 1425.26, + "probability": 0.9606 + }, + { + "start": 1426.58, + "end": 1430.46, + "probability": 0.9605 + }, + { + "start": 1431.34, + "end": 1431.56, + "probability": 0.9799 + }, + { + "start": 1432.14, + "end": 1433.5, + "probability": 0.8296 + }, + { + "start": 1434.92, + "end": 1437.16, + "probability": 0.773 + }, + { + "start": 1437.76, + "end": 1438.72, + "probability": 0.7691 + }, + { + "start": 1441.38, + "end": 1442.1, + "probability": 0.9824 + }, + { + "start": 1443.16, + "end": 1443.34, + "probability": 0.9088 + }, + { + "start": 1445.06, + "end": 1446.65, + "probability": 0.9963 + }, + { + "start": 1447.84, + "end": 1448.3, + "probability": 0.8228 + }, + { + "start": 1449.74, + "end": 1450.44, + "probability": 0.719 + }, + { + "start": 1451.58, + "end": 1455.56, + "probability": 0.9235 + }, + { + "start": 1456.1, + "end": 1457.74, + "probability": 0.9784 + }, + { + "start": 1458.46, + "end": 1459.98, + "probability": 0.9969 + }, + { + "start": 1460.9, + "end": 1461.48, + "probability": 0.9226 + }, + { + "start": 1462.02, + "end": 1462.56, + "probability": 0.6852 + }, + { + "start": 1463.24, + "end": 1465.92, + "probability": 0.9759 + }, + { + "start": 1466.62, + "end": 1468.3, + "probability": 0.9988 + }, + { + "start": 1468.58, + "end": 1472.44, + "probability": 0.9969 + }, + { + "start": 1473.6, + "end": 1478.34, + "probability": 0.9519 + }, + { + "start": 1478.98, + "end": 1480.42, + "probability": 0.602 + }, + { + "start": 1481.28, + "end": 1483.78, + "probability": 0.9264 + }, + { + "start": 1484.48, + "end": 1486.74, + "probability": 0.9852 + }, + { + "start": 1487.38, + "end": 1488.62, + "probability": 0.9933 + }, + { + "start": 1489.54, + "end": 1493.26, + "probability": 0.8652 + }, + { + "start": 1493.94, + "end": 1498.3, + "probability": 0.9928 + }, + { + "start": 1499.4, + "end": 1500.56, + "probability": 0.9757 + }, + { + "start": 1500.84, + "end": 1503.5, + "probability": 0.9954 + }, + { + "start": 1504.08, + "end": 1506.84, + "probability": 0.938 + }, + { + "start": 1507.42, + "end": 1510.66, + "probability": 0.9973 + }, + { + "start": 1511.58, + "end": 1516.6, + "probability": 0.9871 + }, + { + "start": 1517.62, + "end": 1518.28, + "probability": 0.8189 + }, + { + "start": 1519.68, + "end": 1522.12, + "probability": 0.9943 + }, + { + "start": 1522.6, + "end": 1523.68, + "probability": 0.9795 + }, + { + "start": 1524.38, + "end": 1526.12, + "probability": 0.9476 + }, + { + "start": 1526.94, + "end": 1527.88, + "probability": 0.6151 + }, + { + "start": 1528.16, + "end": 1530.9, + "probability": 0.9294 + }, + { + "start": 1532.0, + "end": 1532.12, + "probability": 0.2357 + }, + { + "start": 1532.34, + "end": 1535.18, + "probability": 0.9741 + }, + { + "start": 1536.46, + "end": 1540.72, + "probability": 0.9653 + }, + { + "start": 1541.44, + "end": 1545.8, + "probability": 0.9716 + }, + { + "start": 1546.2, + "end": 1547.94, + "probability": 0.9664 + }, + { + "start": 1549.4, + "end": 1551.4, + "probability": 0.9927 + }, + { + "start": 1551.92, + "end": 1553.36, + "probability": 0.9736 + }, + { + "start": 1554.36, + "end": 1555.6, + "probability": 0.9689 + }, + { + "start": 1557.8, + "end": 1559.56, + "probability": 0.8781 + }, + { + "start": 1560.28, + "end": 1561.18, + "probability": 0.9985 + }, + { + "start": 1561.7, + "end": 1562.02, + "probability": 0.7784 + }, + { + "start": 1563.18, + "end": 1563.28, + "probability": 0.5109 + }, + { + "start": 1563.92, + "end": 1564.12, + "probability": 0.8635 + }, + { + "start": 1565.62, + "end": 1566.48, + "probability": 0.6763 + }, + { + "start": 1567.26, + "end": 1568.68, + "probability": 0.9804 + }, + { + "start": 1569.22, + "end": 1569.5, + "probability": 0.8441 + }, + { + "start": 1571.6, + "end": 1576.58, + "probability": 0.9763 + }, + { + "start": 1577.14, + "end": 1578.66, + "probability": 0.8925 + }, + { + "start": 1579.22, + "end": 1581.54, + "probability": 0.992 + }, + { + "start": 1582.2, + "end": 1586.3, + "probability": 0.8835 + }, + { + "start": 1587.16, + "end": 1587.42, + "probability": 0.9593 + }, + { + "start": 1589.02, + "end": 1590.44, + "probability": 0.7842 + }, + { + "start": 1591.14, + "end": 1595.94, + "probability": 0.9661 + }, + { + "start": 1596.5, + "end": 1599.16, + "probability": 0.9913 + }, + { + "start": 1599.94, + "end": 1602.42, + "probability": 0.7865 + }, + { + "start": 1604.64, + "end": 1605.38, + "probability": 0.6459 + }, + { + "start": 1605.6, + "end": 1609.58, + "probability": 0.9727 + }, + { + "start": 1610.06, + "end": 1612.06, + "probability": 0.9172 + }, + { + "start": 1612.46, + "end": 1614.16, + "probability": 0.9495 + }, + { + "start": 1614.64, + "end": 1619.7, + "probability": 0.9616 + }, + { + "start": 1621.18, + "end": 1623.28, + "probability": 0.8287 + }, + { + "start": 1623.92, + "end": 1625.34, + "probability": 0.6124 + }, + { + "start": 1625.98, + "end": 1627.78, + "probability": 0.739 + }, + { + "start": 1628.22, + "end": 1631.44, + "probability": 0.9836 + }, + { + "start": 1631.52, + "end": 1632.76, + "probability": 0.9052 + }, + { + "start": 1633.46, + "end": 1635.46, + "probability": 0.9977 + }, + { + "start": 1635.8, + "end": 1637.96, + "probability": 0.9808 + }, + { + "start": 1638.78, + "end": 1639.96, + "probability": 0.9831 + }, + { + "start": 1641.56, + "end": 1642.55, + "probability": 0.9312 + }, + { + "start": 1643.44, + "end": 1644.56, + "probability": 0.9936 + }, + { + "start": 1644.88, + "end": 1647.56, + "probability": 0.9338 + }, + { + "start": 1648.1, + "end": 1650.72, + "probability": 0.9525 + }, + { + "start": 1651.26, + "end": 1653.14, + "probability": 0.9886 + }, + { + "start": 1653.9, + "end": 1654.48, + "probability": 0.9287 + }, + { + "start": 1656.34, + "end": 1656.68, + "probability": 0.8419 + }, + { + "start": 1657.06, + "end": 1657.5, + "probability": 0.4899 + }, + { + "start": 1657.76, + "end": 1658.42, + "probability": 0.9378 + }, + { + "start": 1658.72, + "end": 1659.3, + "probability": 0.9447 + }, + { + "start": 1659.76, + "end": 1664.34, + "probability": 0.9534 + }, + { + "start": 1665.08, + "end": 1666.24, + "probability": 0.8453 + }, + { + "start": 1666.78, + "end": 1667.32, + "probability": 0.7713 + }, + { + "start": 1667.78, + "end": 1672.28, + "probability": 0.9949 + }, + { + "start": 1673.54, + "end": 1677.6, + "probability": 0.9877 + }, + { + "start": 1678.82, + "end": 1680.32, + "probability": 0.916 + }, + { + "start": 1681.38, + "end": 1684.5, + "probability": 0.9859 + }, + { + "start": 1685.7, + "end": 1689.04, + "probability": 0.9859 + }, + { + "start": 1689.04, + "end": 1692.64, + "probability": 0.984 + }, + { + "start": 1693.6, + "end": 1696.68, + "probability": 0.9075 + }, + { + "start": 1698.68, + "end": 1701.48, + "probability": 0.9861 + }, + { + "start": 1702.58, + "end": 1707.02, + "probability": 0.9353 + }, + { + "start": 1708.1, + "end": 1708.58, + "probability": 0.772 + }, + { + "start": 1710.12, + "end": 1713.96, + "probability": 0.9893 + }, + { + "start": 1715.24, + "end": 1719.72, + "probability": 0.9922 + }, + { + "start": 1720.7, + "end": 1724.24, + "probability": 0.9561 + }, + { + "start": 1725.22, + "end": 1727.77, + "probability": 0.7776 + }, + { + "start": 1728.9, + "end": 1731.3, + "probability": 0.8283 + }, + { + "start": 1731.64, + "end": 1732.52, + "probability": 0.9672 + }, + { + "start": 1732.64, + "end": 1733.66, + "probability": 0.8649 + }, + { + "start": 1734.9, + "end": 1737.78, + "probability": 0.9813 + }, + { + "start": 1740.16, + "end": 1741.22, + "probability": 0.9225 + }, + { + "start": 1743.46, + "end": 1747.14, + "probability": 0.4489 + }, + { + "start": 1751.76, + "end": 1752.64, + "probability": 0.7758 + }, + { + "start": 1753.46, + "end": 1754.34, + "probability": 0.721 + }, + { + "start": 1754.64, + "end": 1756.26, + "probability": 0.5089 + }, + { + "start": 1759.78, + "end": 1761.34, + "probability": 0.7666 + }, + { + "start": 1765.3, + "end": 1766.0, + "probability": 0.7812 + }, + { + "start": 1769.38, + "end": 1770.28, + "probability": 0.7917 + }, + { + "start": 1771.56, + "end": 1774.5, + "probability": 0.9157 + }, + { + "start": 1776.12, + "end": 1777.55, + "probability": 0.9829 + }, + { + "start": 1778.48, + "end": 1779.56, + "probability": 0.8262 + }, + { + "start": 1780.64, + "end": 1782.78, + "probability": 0.8877 + }, + { + "start": 1785.54, + "end": 1786.52, + "probability": 0.9792 + }, + { + "start": 1786.78, + "end": 1787.42, + "probability": 0.8429 + }, + { + "start": 1787.58, + "end": 1788.96, + "probability": 0.9531 + }, + { + "start": 1790.2, + "end": 1790.62, + "probability": 0.8123 + }, + { + "start": 1791.66, + "end": 1793.58, + "probability": 0.9206 + }, + { + "start": 1794.52, + "end": 1797.43, + "probability": 0.8886 + }, + { + "start": 1798.16, + "end": 1798.52, + "probability": 0.9655 + }, + { + "start": 1798.6, + "end": 1799.24, + "probability": 0.9708 + }, + { + "start": 1799.3, + "end": 1800.9, + "probability": 0.6572 + }, + { + "start": 1802.4, + "end": 1803.79, + "probability": 0.604 + }, + { + "start": 1804.28, + "end": 1809.5, + "probability": 0.9047 + }, + { + "start": 1809.58, + "end": 1811.96, + "probability": 0.5991 + }, + { + "start": 1813.08, + "end": 1813.88, + "probability": 0.7514 + }, + { + "start": 1814.62, + "end": 1817.18, + "probability": 0.6438 + }, + { + "start": 1817.18, + "end": 1820.34, + "probability": 0.9994 + }, + { + "start": 1821.1, + "end": 1824.22, + "probability": 0.9956 + }, + { + "start": 1825.02, + "end": 1826.74, + "probability": 0.6647 + }, + { + "start": 1828.76, + "end": 1829.81, + "probability": 0.9771 + }, + { + "start": 1830.04, + "end": 1832.62, + "probability": 0.8442 + }, + { + "start": 1833.22, + "end": 1833.76, + "probability": 0.6383 + }, + { + "start": 1835.24, + "end": 1836.98, + "probability": 0.9314 + }, + { + "start": 1837.94, + "end": 1839.5, + "probability": 0.7547 + }, + { + "start": 1839.9, + "end": 1841.98, + "probability": 0.7862 + }, + { + "start": 1843.9, + "end": 1844.52, + "probability": 0.918 + }, + { + "start": 1845.44, + "end": 1848.0, + "probability": 0.9631 + }, + { + "start": 1849.14, + "end": 1851.54, + "probability": 0.9834 + }, + { + "start": 1853.12, + "end": 1858.78, + "probability": 0.9563 + }, + { + "start": 1859.52, + "end": 1864.42, + "probability": 0.7764 + }, + { + "start": 1864.5, + "end": 1866.08, + "probability": 0.841 + }, + { + "start": 1866.44, + "end": 1868.14, + "probability": 0.9209 + }, + { + "start": 1868.84, + "end": 1871.34, + "probability": 0.9736 + }, + { + "start": 1872.08, + "end": 1874.28, + "probability": 0.9743 + }, + { + "start": 1874.98, + "end": 1877.0, + "probability": 0.9432 + }, + { + "start": 1877.2, + "end": 1879.76, + "probability": 0.9548 + }, + { + "start": 1882.14, + "end": 1882.46, + "probability": 0.6477 + }, + { + "start": 1882.98, + "end": 1885.18, + "probability": 0.9858 + }, + { + "start": 1885.56, + "end": 1887.64, + "probability": 0.9691 + }, + { + "start": 1887.74, + "end": 1889.3, + "probability": 0.8988 + }, + { + "start": 1890.66, + "end": 1892.38, + "probability": 0.9733 + }, + { + "start": 1892.76, + "end": 1893.26, + "probability": 0.9526 + }, + { + "start": 1893.66, + "end": 1894.92, + "probability": 0.992 + }, + { + "start": 1895.04, + "end": 1896.84, + "probability": 0.9705 + }, + { + "start": 1897.82, + "end": 1900.44, + "probability": 0.9486 + }, + { + "start": 1900.56, + "end": 1901.1, + "probability": 0.4917 + }, + { + "start": 1901.28, + "end": 1902.68, + "probability": 0.9561 + }, + { + "start": 1903.18, + "end": 1904.18, + "probability": 0.7613 + }, + { + "start": 1904.54, + "end": 1907.02, + "probability": 0.9491 + }, + { + "start": 1907.8, + "end": 1909.72, + "probability": 0.9859 + }, + { + "start": 1911.94, + "end": 1914.89, + "probability": 0.948 + }, + { + "start": 1915.94, + "end": 1919.14, + "probability": 0.9968 + }, + { + "start": 1919.8, + "end": 1922.6, + "probability": 0.9929 + }, + { + "start": 1923.46, + "end": 1925.02, + "probability": 0.924 + }, + { + "start": 1926.1, + "end": 1926.42, + "probability": 0.4556 + }, + { + "start": 1927.02, + "end": 1927.5, + "probability": 0.7643 + }, + { + "start": 1928.72, + "end": 1930.86, + "probability": 0.9727 + }, + { + "start": 1931.0, + "end": 1932.92, + "probability": 0.8324 + }, + { + "start": 1933.58, + "end": 1935.12, + "probability": 0.958 + }, + { + "start": 1935.66, + "end": 1936.44, + "probability": 0.9916 + }, + { + "start": 1937.02, + "end": 1937.76, + "probability": 0.8438 + }, + { + "start": 1939.46, + "end": 1939.82, + "probability": 0.8786 + }, + { + "start": 1940.58, + "end": 1942.14, + "probability": 0.9078 + }, + { + "start": 1944.16, + "end": 1948.02, + "probability": 0.9958 + }, + { + "start": 1948.74, + "end": 1949.22, + "probability": 0.848 + }, + { + "start": 1950.78, + "end": 1953.56, + "probability": 0.8746 + }, + { + "start": 1955.14, + "end": 1958.18, + "probability": 0.9934 + }, + { + "start": 1959.32, + "end": 1959.76, + "probability": 0.8459 + }, + { + "start": 1960.88, + "end": 1963.36, + "probability": 0.9922 + }, + { + "start": 1964.3, + "end": 1964.64, + "probability": 0.7251 + }, + { + "start": 1965.44, + "end": 1966.68, + "probability": 0.8425 + }, + { + "start": 1967.52, + "end": 1968.98, + "probability": 0.9088 + }, + { + "start": 1969.9, + "end": 1971.35, + "probability": 0.4941 + }, + { + "start": 1971.98, + "end": 1973.06, + "probability": 0.9615 + }, + { + "start": 1974.52, + "end": 1975.3, + "probability": 0.7889 + }, + { + "start": 1977.5, + "end": 1977.82, + "probability": 0.9007 + }, + { + "start": 1978.56, + "end": 1979.44, + "probability": 0.9018 + }, + { + "start": 1980.24, + "end": 1981.8, + "probability": 0.8446 + }, + { + "start": 1984.16, + "end": 1985.46, + "probability": 0.9744 + }, + { + "start": 1986.82, + "end": 1987.98, + "probability": 0.9982 + }, + { + "start": 1988.56, + "end": 1989.18, + "probability": 0.9915 + }, + { + "start": 1989.74, + "end": 1992.16, + "probability": 0.969 + }, + { + "start": 1993.12, + "end": 1993.4, + "probability": 0.773 + }, + { + "start": 2005.84, + "end": 2008.5, + "probability": 0.1708 + }, + { + "start": 2012.5, + "end": 2015.78, + "probability": 0.2622 + }, + { + "start": 2016.6, + "end": 2016.7, + "probability": 0.028 + }, + { + "start": 2127.32, + "end": 2131.02, + "probability": 0.684 + }, + { + "start": 2131.6, + "end": 2135.44, + "probability": 0.9827 + }, + { + "start": 2136.14, + "end": 2136.92, + "probability": 0.9277 + }, + { + "start": 2137.34, + "end": 2138.76, + "probability": 0.857 + }, + { + "start": 2139.34, + "end": 2143.82, + "probability": 0.9758 + }, + { + "start": 2144.18, + "end": 2146.94, + "probability": 0.994 + }, + { + "start": 2147.6, + "end": 2149.32, + "probability": 0.9907 + }, + { + "start": 2149.52, + "end": 2149.92, + "probability": 0.9676 + }, + { + "start": 2150.72, + "end": 2151.34, + "probability": 0.071 + }, + { + "start": 2151.38, + "end": 2152.94, + "probability": 0.7134 + }, + { + "start": 2156.5, + "end": 2156.86, + "probability": 0.7949 + }, + { + "start": 2160.68, + "end": 2162.78, + "probability": 0.8228 + }, + { + "start": 2164.34, + "end": 2167.3, + "probability": 0.8241 + }, + { + "start": 2168.28, + "end": 2170.7, + "probability": 0.9347 + }, + { + "start": 2171.94, + "end": 2172.76, + "probability": 0.9878 + }, + { + "start": 2173.62, + "end": 2175.0, + "probability": 0.9655 + }, + { + "start": 2175.7, + "end": 2177.58, + "probability": 0.7081 + }, + { + "start": 2182.2, + "end": 2185.48, + "probability": 0.9805 + }, + { + "start": 2185.86, + "end": 2188.98, + "probability": 0.6719 + }, + { + "start": 2190.36, + "end": 2190.84, + "probability": 0.9766 + }, + { + "start": 2191.58, + "end": 2192.24, + "probability": 0.7971 + }, + { + "start": 2193.46, + "end": 2194.5, + "probability": 0.7304 + }, + { + "start": 2195.34, + "end": 2196.22, + "probability": 0.986 + }, + { + "start": 2197.14, + "end": 2199.28, + "probability": 0.9905 + }, + { + "start": 2201.02, + "end": 2202.98, + "probability": 0.8898 + }, + { + "start": 2203.82, + "end": 2205.54, + "probability": 0.9761 + }, + { + "start": 2209.38, + "end": 2212.58, + "probability": 0.9972 + }, + { + "start": 2213.18, + "end": 2219.3, + "probability": 0.9489 + }, + { + "start": 2220.74, + "end": 2224.34, + "probability": 0.8736 + }, + { + "start": 2224.62, + "end": 2225.48, + "probability": 0.8743 + }, + { + "start": 2226.28, + "end": 2230.3, + "probability": 0.9839 + }, + { + "start": 2232.46, + "end": 2234.46, + "probability": 0.9977 + }, + { + "start": 2235.1, + "end": 2236.6, + "probability": 0.895 + }, + { + "start": 2237.32, + "end": 2241.56, + "probability": 0.9829 + }, + { + "start": 2242.68, + "end": 2248.26, + "probability": 0.9888 + }, + { + "start": 2248.82, + "end": 2250.32, + "probability": 0.9756 + }, + { + "start": 2251.3, + "end": 2256.44, + "probability": 0.9966 + }, + { + "start": 2257.36, + "end": 2259.22, + "probability": 0.989 + }, + { + "start": 2261.14, + "end": 2264.86, + "probability": 0.9322 + }, + { + "start": 2265.46, + "end": 2266.38, + "probability": 0.7607 + }, + { + "start": 2267.18, + "end": 2267.48, + "probability": 0.7039 + }, + { + "start": 2267.7, + "end": 2268.22, + "probability": 0.8658 + }, + { + "start": 2268.32, + "end": 2272.3, + "probability": 0.9965 + }, + { + "start": 2272.3, + "end": 2277.1, + "probability": 0.9973 + }, + { + "start": 2278.56, + "end": 2285.02, + "probability": 0.9992 + }, + { + "start": 2285.94, + "end": 2286.64, + "probability": 0.5063 + }, + { + "start": 2287.18, + "end": 2287.68, + "probability": 0.9805 + }, + { + "start": 2288.64, + "end": 2291.64, + "probability": 0.9974 + }, + { + "start": 2292.8, + "end": 2297.24, + "probability": 0.9943 + }, + { + "start": 2297.32, + "end": 2302.74, + "probability": 0.9992 + }, + { + "start": 2303.42, + "end": 2307.96, + "probability": 0.996 + }, + { + "start": 2308.76, + "end": 2314.28, + "probability": 0.9984 + }, + { + "start": 2315.54, + "end": 2317.62, + "probability": 0.9343 + }, + { + "start": 2317.78, + "end": 2319.96, + "probability": 0.784 + }, + { + "start": 2320.1, + "end": 2321.3, + "probability": 0.9385 + }, + { + "start": 2321.8, + "end": 2325.24, + "probability": 0.9639 + }, + { + "start": 2326.08, + "end": 2329.38, + "probability": 0.9886 + }, + { + "start": 2330.04, + "end": 2334.62, + "probability": 0.9978 + }, + { + "start": 2334.64, + "end": 2340.46, + "probability": 0.9927 + }, + { + "start": 2341.38, + "end": 2344.86, + "probability": 0.9992 + }, + { + "start": 2345.46, + "end": 2348.98, + "probability": 0.8339 + }, + { + "start": 2349.9, + "end": 2352.44, + "probability": 0.8531 + }, + { + "start": 2353.06, + "end": 2355.06, + "probability": 0.9973 + }, + { + "start": 2355.66, + "end": 2356.52, + "probability": 0.9828 + }, + { + "start": 2357.74, + "end": 2360.62, + "probability": 0.9727 + }, + { + "start": 2361.52, + "end": 2362.48, + "probability": 0.9148 + }, + { + "start": 2363.08, + "end": 2368.1, + "probability": 0.9429 + }, + { + "start": 2368.7, + "end": 2369.6, + "probability": 0.8827 + }, + { + "start": 2370.16, + "end": 2373.26, + "probability": 0.9885 + }, + { + "start": 2374.5, + "end": 2378.54, + "probability": 0.996 + }, + { + "start": 2379.34, + "end": 2382.16, + "probability": 0.9596 + }, + { + "start": 2382.94, + "end": 2384.9, + "probability": 0.8922 + }, + { + "start": 2385.12, + "end": 2385.36, + "probability": 0.8204 + }, + { + "start": 2385.62, + "end": 2390.1, + "probability": 0.9814 + }, + { + "start": 2391.1, + "end": 2392.8, + "probability": 0.9988 + }, + { + "start": 2393.56, + "end": 2395.12, + "probability": 0.8261 + }, + { + "start": 2395.68, + "end": 2396.5, + "probability": 0.8923 + }, + { + "start": 2396.86, + "end": 2398.52, + "probability": 0.9854 + }, + { + "start": 2398.54, + "end": 2399.04, + "probability": 0.7872 + }, + { + "start": 2400.2, + "end": 2401.8, + "probability": 0.967 + }, + { + "start": 2402.58, + "end": 2403.0, + "probability": 0.0784 + }, + { + "start": 2403.04, + "end": 2407.26, + "probability": 0.7788 + }, + { + "start": 2408.02, + "end": 2411.04, + "probability": 0.9776 + }, + { + "start": 2411.04, + "end": 2414.24, + "probability": 0.9938 + }, + { + "start": 2415.24, + "end": 2418.54, + "probability": 0.9727 + }, + { + "start": 2418.54, + "end": 2422.02, + "probability": 0.9863 + }, + { + "start": 2422.76, + "end": 2424.7, + "probability": 0.9141 + }, + { + "start": 2425.62, + "end": 2427.68, + "probability": 0.9912 + }, + { + "start": 2428.14, + "end": 2428.22, + "probability": 0.46 + }, + { + "start": 2428.8, + "end": 2432.83, + "probability": 0.9861 + }, + { + "start": 2433.86, + "end": 2435.36, + "probability": 0.9031 + }, + { + "start": 2435.86, + "end": 2437.64, + "probability": 0.967 + }, + { + "start": 2437.72, + "end": 2439.58, + "probability": 0.9806 + }, + { + "start": 2441.26, + "end": 2442.6, + "probability": 0.7386 + }, + { + "start": 2443.14, + "end": 2444.02, + "probability": 0.9163 + }, + { + "start": 2444.58, + "end": 2446.44, + "probability": 0.9984 + }, + { + "start": 2447.46, + "end": 2450.54, + "probability": 0.9773 + }, + { + "start": 2451.04, + "end": 2453.32, + "probability": 0.9909 + }, + { + "start": 2454.42, + "end": 2457.18, + "probability": 0.9561 + }, + { + "start": 2458.24, + "end": 2461.58, + "probability": 0.9702 + }, + { + "start": 2462.2, + "end": 2462.68, + "probability": 0.9937 + }, + { + "start": 2463.64, + "end": 2466.4, + "probability": 0.9755 + }, + { + "start": 2466.8, + "end": 2468.4, + "probability": 0.7015 + }, + { + "start": 2468.9, + "end": 2473.98, + "probability": 0.9714 + }, + { + "start": 2474.54, + "end": 2475.22, + "probability": 0.8241 + }, + { + "start": 2475.88, + "end": 2482.3, + "probability": 0.9929 + }, + { + "start": 2483.24, + "end": 2484.14, + "probability": 0.9416 + }, + { + "start": 2485.44, + "end": 2485.54, + "probability": 0.5127 + }, + { + "start": 2486.14, + "end": 2489.32, + "probability": 0.7969 + }, + { + "start": 2490.2, + "end": 2493.6, + "probability": 0.9216 + }, + { + "start": 2494.46, + "end": 2498.26, + "probability": 0.8314 + }, + { + "start": 2498.92, + "end": 2500.24, + "probability": 0.8183 + }, + { + "start": 2500.72, + "end": 2503.24, + "probability": 0.5506 + }, + { + "start": 2503.28, + "end": 2503.98, + "probability": 0.8684 + }, + { + "start": 2504.54, + "end": 2505.14, + "probability": 0.9404 + }, + { + "start": 2505.7, + "end": 2507.58, + "probability": 0.7147 + }, + { + "start": 2514.66, + "end": 2516.96, + "probability": 0.8585 + }, + { + "start": 2517.08, + "end": 2518.76, + "probability": 0.9917 + }, + { + "start": 2519.82, + "end": 2522.64, + "probability": 0.9987 + }, + { + "start": 2523.36, + "end": 2526.5, + "probability": 0.9944 + }, + { + "start": 2527.84, + "end": 2532.84, + "probability": 0.9971 + }, + { + "start": 2532.84, + "end": 2539.04, + "probability": 0.978 + }, + { + "start": 2539.68, + "end": 2541.04, + "probability": 0.9771 + }, + { + "start": 2542.44, + "end": 2545.38, + "probability": 0.9937 + }, + { + "start": 2546.08, + "end": 2549.34, + "probability": 0.9964 + }, + { + "start": 2550.78, + "end": 2555.24, + "probability": 0.9923 + }, + { + "start": 2556.2, + "end": 2560.08, + "probability": 0.9967 + }, + { + "start": 2561.0, + "end": 2561.54, + "probability": 0.9275 + }, + { + "start": 2562.24, + "end": 2565.3, + "probability": 0.9951 + }, + { + "start": 2565.92, + "end": 2569.04, + "probability": 0.9827 + }, + { + "start": 2569.58, + "end": 2571.28, + "probability": 0.9515 + }, + { + "start": 2571.92, + "end": 2572.62, + "probability": 0.8928 + }, + { + "start": 2573.24, + "end": 2576.74, + "probability": 0.9824 + }, + { + "start": 2576.74, + "end": 2580.8, + "probability": 0.9985 + }, + { + "start": 2581.9, + "end": 2585.78, + "probability": 0.998 + }, + { + "start": 2585.78, + "end": 2589.94, + "probability": 0.9986 + }, + { + "start": 2590.44, + "end": 2593.16, + "probability": 0.9971 + }, + { + "start": 2593.68, + "end": 2596.36, + "probability": 0.7199 + }, + { + "start": 2596.36, + "end": 2599.88, + "probability": 0.9982 + }, + { + "start": 2600.5, + "end": 2604.86, + "probability": 0.9957 + }, + { + "start": 2605.88, + "end": 2608.84, + "probability": 0.4974 + }, + { + "start": 2609.36, + "end": 2612.86, + "probability": 0.979 + }, + { + "start": 2613.12, + "end": 2616.42, + "probability": 0.9922 + }, + { + "start": 2616.88, + "end": 2617.4, + "probability": 0.7834 + }, + { + "start": 2617.94, + "end": 2620.1, + "probability": 0.9976 + }, + { + "start": 2621.02, + "end": 2625.58, + "probability": 0.9941 + }, + { + "start": 2626.5, + "end": 2634.68, + "probability": 0.99 + }, + { + "start": 2634.86, + "end": 2640.54, + "probability": 0.998 + }, + { + "start": 2640.58, + "end": 2644.8, + "probability": 0.9966 + }, + { + "start": 2646.22, + "end": 2646.7, + "probability": 0.5021 + }, + { + "start": 2647.2, + "end": 2651.56, + "probability": 0.9912 + }, + { + "start": 2651.56, + "end": 2656.88, + "probability": 0.9878 + }, + { + "start": 2657.82, + "end": 2660.24, + "probability": 0.9802 + }, + { + "start": 2661.0, + "end": 2664.72, + "probability": 0.9823 + }, + { + "start": 2665.18, + "end": 2667.36, + "probability": 0.9798 + }, + { + "start": 2668.24, + "end": 2671.86, + "probability": 0.9943 + }, + { + "start": 2672.32, + "end": 2676.32, + "probability": 0.9973 + }, + { + "start": 2677.63, + "end": 2681.04, + "probability": 0.9817 + }, + { + "start": 2681.54, + "end": 2684.52, + "probability": 0.9697 + }, + { + "start": 2685.34, + "end": 2686.36, + "probability": 0.5594 + }, + { + "start": 2687.1, + "end": 2688.42, + "probability": 0.8628 + }, + { + "start": 2688.78, + "end": 2690.0, + "probability": 0.8091 + }, + { + "start": 2690.26, + "end": 2691.98, + "probability": 0.5327 + }, + { + "start": 2693.56, + "end": 2693.76, + "probability": 0.9191 + }, + { + "start": 2710.52, + "end": 2712.18, + "probability": 0.7516 + }, + { + "start": 2712.78, + "end": 2713.26, + "probability": 0.5645 + }, + { + "start": 2713.42, + "end": 2714.12, + "probability": 0.6921 + }, + { + "start": 2714.92, + "end": 2715.86, + "probability": 0.7419 + }, + { + "start": 2716.34, + "end": 2720.32, + "probability": 0.9755 + }, + { + "start": 2721.04, + "end": 2722.72, + "probability": 0.9771 + }, + { + "start": 2723.48, + "end": 2727.12, + "probability": 0.5483 + }, + { + "start": 2728.1, + "end": 2733.14, + "probability": 0.8145 + }, + { + "start": 2733.34, + "end": 2733.56, + "probability": 0.8481 + }, + { + "start": 2733.92, + "end": 2734.56, + "probability": 0.7555 + }, + { + "start": 2735.0, + "end": 2735.42, + "probability": 0.8977 + }, + { + "start": 2736.62, + "end": 2739.92, + "probability": 0.9808 + }, + { + "start": 2740.84, + "end": 2743.64, + "probability": 0.902 + }, + { + "start": 2744.74, + "end": 2746.6, + "probability": 0.5195 + }, + { + "start": 2748.06, + "end": 2750.1, + "probability": 0.7762 + }, + { + "start": 2755.4, + "end": 2755.72, + "probability": 0.8039 + }, + { + "start": 2762.32, + "end": 2762.42, + "probability": 0.4756 + }, + { + "start": 2762.52, + "end": 2765.92, + "probability": 0.6816 + }, + { + "start": 2767.6, + "end": 2774.06, + "probability": 0.9876 + }, + { + "start": 2774.32, + "end": 2777.2, + "probability": 0.9165 + }, + { + "start": 2777.94, + "end": 2781.94, + "probability": 0.9965 + }, + { + "start": 2782.02, + "end": 2787.06, + "probability": 0.9968 + }, + { + "start": 2787.56, + "end": 2790.24, + "probability": 0.9967 + }, + { + "start": 2790.26, + "end": 2793.02, + "probability": 0.9717 + }, + { + "start": 2793.24, + "end": 2794.02, + "probability": 0.9285 + }, + { + "start": 2795.2, + "end": 2798.02, + "probability": 0.763 + }, + { + "start": 2798.46, + "end": 2800.72, + "probability": 0.9769 + }, + { + "start": 2801.06, + "end": 2806.32, + "probability": 0.9573 + }, + { + "start": 2807.06, + "end": 2812.82, + "probability": 0.9644 + }, + { + "start": 2812.92, + "end": 2814.3, + "probability": 0.5847 + }, + { + "start": 2814.78, + "end": 2817.64, + "probability": 0.9842 + }, + { + "start": 2818.18, + "end": 2820.66, + "probability": 0.9852 + }, + { + "start": 2820.7, + "end": 2823.3, + "probability": 0.7127 + }, + { + "start": 2823.36, + "end": 2824.94, + "probability": 0.985 + }, + { + "start": 2825.48, + "end": 2827.4, + "probability": 0.9602 + }, + { + "start": 2829.3, + "end": 2831.04, + "probability": 0.9805 + }, + { + "start": 2831.66, + "end": 2837.6, + "probability": 0.9009 + }, + { + "start": 2838.18, + "end": 2842.78, + "probability": 0.9964 + }, + { + "start": 2843.22, + "end": 2846.38, + "probability": 0.9985 + }, + { + "start": 2846.38, + "end": 2849.12, + "probability": 0.8836 + }, + { + "start": 2849.22, + "end": 2849.38, + "probability": 0.7469 + }, + { + "start": 2849.44, + "end": 2852.12, + "probability": 0.9727 + }, + { + "start": 2852.26, + "end": 2852.86, + "probability": 0.638 + }, + { + "start": 2854.0, + "end": 2862.84, + "probability": 0.9478 + }, + { + "start": 2863.8, + "end": 2866.48, + "probability": 0.9909 + }, + { + "start": 2866.92, + "end": 2870.3, + "probability": 0.8714 + }, + { + "start": 2870.76, + "end": 2872.8, + "probability": 0.8168 + }, + { + "start": 2873.24, + "end": 2877.4, + "probability": 0.9951 + }, + { + "start": 2877.4, + "end": 2882.52, + "probability": 0.9949 + }, + { + "start": 2882.52, + "end": 2886.54, + "probability": 0.998 + }, + { + "start": 2886.62, + "end": 2892.1, + "probability": 0.9982 + }, + { + "start": 2892.72, + "end": 2895.96, + "probability": 0.9957 + }, + { + "start": 2895.96, + "end": 2899.36, + "probability": 0.9661 + }, + { + "start": 2899.68, + "end": 2901.9, + "probability": 0.9941 + }, + { + "start": 2902.28, + "end": 2906.8, + "probability": 0.9732 + }, + { + "start": 2907.38, + "end": 2909.3, + "probability": 0.8391 + }, + { + "start": 2909.74, + "end": 2915.94, + "probability": 0.9489 + }, + { + "start": 2916.56, + "end": 2919.18, + "probability": 0.9248 + }, + { + "start": 2919.18, + "end": 2921.53, + "probability": 0.9993 + }, + { + "start": 2922.14, + "end": 2922.56, + "probability": 0.7716 + }, + { + "start": 2922.74, + "end": 2923.04, + "probability": 0.7739 + }, + { + "start": 2923.34, + "end": 2927.67, + "probability": 0.9885 + }, + { + "start": 2927.9, + "end": 2928.54, + "probability": 0.835 + }, + { + "start": 2929.04, + "end": 2931.88, + "probability": 0.9061 + }, + { + "start": 2931.94, + "end": 2933.72, + "probability": 0.8661 + }, + { + "start": 2934.12, + "end": 2935.14, + "probability": 0.7241 + }, + { + "start": 2935.34, + "end": 2937.72, + "probability": 0.9647 + }, + { + "start": 2938.26, + "end": 2940.04, + "probability": 0.9958 + }, + { + "start": 2940.86, + "end": 2941.46, + "probability": 0.7975 + }, + { + "start": 2943.14, + "end": 2945.32, + "probability": 0.8365 + }, + { + "start": 2948.44, + "end": 2954.24, + "probability": 0.9882 + }, + { + "start": 2954.24, + "end": 2957.92, + "probability": 0.9962 + }, + { + "start": 2959.22, + "end": 2959.85, + "probability": 0.3207 + }, + { + "start": 2960.0, + "end": 2961.64, + "probability": 0.9224 + }, + { + "start": 2962.4, + "end": 2963.1, + "probability": 0.0127 + }, + { + "start": 2964.6, + "end": 2965.47, + "probability": 0.8673 + }, + { + "start": 2967.82, + "end": 2970.82, + "probability": 0.9762 + }, + { + "start": 2971.86, + "end": 2972.84, + "probability": 0.8101 + }, + { + "start": 2974.23, + "end": 2979.48, + "probability": 0.7866 + }, + { + "start": 2980.56, + "end": 2982.06, + "probability": 0.8515 + }, + { + "start": 2983.62, + "end": 2989.14, + "probability": 0.9946 + }, + { + "start": 2989.35, + "end": 2993.38, + "probability": 0.9145 + }, + { + "start": 2994.48, + "end": 2996.58, + "probability": 0.8481 + }, + { + "start": 2997.7, + "end": 3001.06, + "probability": 0.5801 + }, + { + "start": 3001.98, + "end": 3005.98, + "probability": 0.7722 + }, + { + "start": 3006.12, + "end": 3007.1, + "probability": 0.7179 + }, + { + "start": 3007.24, + "end": 3008.22, + "probability": 0.851 + }, + { + "start": 3010.78, + "end": 3012.86, + "probability": 0.7938 + }, + { + "start": 3014.1, + "end": 3018.06, + "probability": 0.5452 + }, + { + "start": 3018.8, + "end": 3019.74, + "probability": 0.8429 + }, + { + "start": 3020.3, + "end": 3023.06, + "probability": 0.7448 + }, + { + "start": 3023.66, + "end": 3026.28, + "probability": 0.7768 + }, + { + "start": 3026.98, + "end": 3032.64, + "probability": 0.5845 + }, + { + "start": 3033.22, + "end": 3034.18, + "probability": 0.9856 + }, + { + "start": 3038.56, + "end": 3039.8, + "probability": 0.3269 + }, + { + "start": 3040.82, + "end": 3044.04, + "probability": 0.9872 + }, + { + "start": 3044.22, + "end": 3046.9, + "probability": 0.9379 + }, + { + "start": 3048.08, + "end": 3053.32, + "probability": 0.9993 + }, + { + "start": 3053.6, + "end": 3054.7, + "probability": 0.7449 + }, + { + "start": 3055.34, + "end": 3058.1, + "probability": 0.8022 + }, + { + "start": 3058.58, + "end": 3060.74, + "probability": 0.5454 + }, + { + "start": 3061.98, + "end": 3065.58, + "probability": 0.9878 + }, + { + "start": 3065.74, + "end": 3067.0, + "probability": 0.5993 + }, + { + "start": 3068.06, + "end": 3070.36, + "probability": 0.9131 + }, + { + "start": 3071.28, + "end": 3075.34, + "probability": 0.9292 + }, + { + "start": 3075.4, + "end": 3079.72, + "probability": 0.9352 + }, + { + "start": 3079.8, + "end": 3080.44, + "probability": 0.5952 + }, + { + "start": 3081.24, + "end": 3081.7, + "probability": 0.5658 + }, + { + "start": 3081.92, + "end": 3084.74, + "probability": 0.972 + }, + { + "start": 3085.0, + "end": 3085.73, + "probability": 0.7441 + }, + { + "start": 3086.48, + "end": 3088.24, + "probability": 0.8316 + }, + { + "start": 3088.76, + "end": 3089.66, + "probability": 0.9106 + }, + { + "start": 3090.32, + "end": 3094.08, + "probability": 0.958 + }, + { + "start": 3094.22, + "end": 3096.64, + "probability": 0.6642 + }, + { + "start": 3096.88, + "end": 3097.9, + "probability": 0.9649 + }, + { + "start": 3098.3, + "end": 3099.6, + "probability": 0.7451 + }, + { + "start": 3100.04, + "end": 3101.68, + "probability": 0.9717 + }, + { + "start": 3101.84, + "end": 3102.6, + "probability": 0.6945 + }, + { + "start": 3103.14, + "end": 3105.36, + "probability": 0.9926 + }, + { + "start": 3106.04, + "end": 3108.04, + "probability": 0.9825 + }, + { + "start": 3108.56, + "end": 3109.0, + "probability": 0.9373 + }, + { + "start": 3109.85, + "end": 3112.82, + "probability": 0.886 + }, + { + "start": 3112.92, + "end": 3115.32, + "probability": 0.7976 + }, + { + "start": 3115.98, + "end": 3119.84, + "probability": 0.7481 + }, + { + "start": 3119.88, + "end": 3121.87, + "probability": 0.9761 + }, + { + "start": 3123.16, + "end": 3125.98, + "probability": 0.6789 + }, + { + "start": 3126.58, + "end": 3127.9, + "probability": 0.8921 + }, + { + "start": 3129.3, + "end": 3133.4, + "probability": 0.7466 + }, + { + "start": 3134.08, + "end": 3134.64, + "probability": 0.6547 + }, + { + "start": 3134.72, + "end": 3135.08, + "probability": 0.3911 + }, + { + "start": 3135.4, + "end": 3135.84, + "probability": 0.2512 + }, + { + "start": 3135.84, + "end": 3138.52, + "probability": 0.9092 + }, + { + "start": 3138.86, + "end": 3145.8, + "probability": 0.7943 + }, + { + "start": 3146.36, + "end": 3150.4, + "probability": 0.6644 + }, + { + "start": 3151.08, + "end": 3152.48, + "probability": 0.5548 + }, + { + "start": 3152.54, + "end": 3153.16, + "probability": 0.6461 + }, + { + "start": 3153.28, + "end": 3154.18, + "probability": 0.5754 + }, + { + "start": 3154.84, + "end": 3157.42, + "probability": 0.9868 + }, + { + "start": 3157.96, + "end": 3160.34, + "probability": 0.8595 + }, + { + "start": 3160.42, + "end": 3161.84, + "probability": 0.5412 + }, + { + "start": 3163.12, + "end": 3165.16, + "probability": 0.5987 + }, + { + "start": 3165.38, + "end": 3166.38, + "probability": 0.8405 + }, + { + "start": 3167.08, + "end": 3171.62, + "probability": 0.8345 + }, + { + "start": 3172.08, + "end": 3173.62, + "probability": 0.6694 + }, + { + "start": 3177.28, + "end": 3178.72, + "probability": 0.0412 + }, + { + "start": 3178.72, + "end": 3182.48, + "probability": 0.0728 + }, + { + "start": 3182.71, + "end": 3188.16, + "probability": 0.2432 + }, + { + "start": 3189.06, + "end": 3192.15, + "probability": 0.3065 + }, + { + "start": 3195.74, + "end": 3197.56, + "probability": 0.2381 + }, + { + "start": 3200.49, + "end": 3202.22, + "probability": 0.0748 + }, + { + "start": 3202.72, + "end": 3208.72, + "probability": 0.0856 + }, + { + "start": 3210.61, + "end": 3212.34, + "probability": 0.1259 + }, + { + "start": 3214.44, + "end": 3215.4, + "probability": 0.1326 + }, + { + "start": 3215.4, + "end": 3218.3, + "probability": 0.0655 + }, + { + "start": 3218.88, + "end": 3222.26, + "probability": 0.2831 + }, + { + "start": 3222.52, + "end": 3222.98, + "probability": 0.047 + }, + { + "start": 3223.72, + "end": 3227.58, + "probability": 0.11 + }, + { + "start": 3228.36, + "end": 3231.5, + "probability": 0.1796 + }, + { + "start": 3231.5, + "end": 3234.78, + "probability": 0.1859 + }, + { + "start": 3235.26, + "end": 3239.52, + "probability": 0.0881 + }, + { + "start": 3241.32, + "end": 3242.24, + "probability": 0.0821 + }, + { + "start": 3253.0, + "end": 3253.0, + "probability": 0.0 + }, + { + "start": 3253.0, + "end": 3253.0, + "probability": 0.0 + }, + { + "start": 3253.0, + "end": 3253.0, + "probability": 0.0 + }, + { + "start": 3253.0, + "end": 3253.0, + "probability": 0.0 + }, + { + "start": 3253.0, + "end": 3253.0, + "probability": 0.0 + }, + { + "start": 3253.3, + "end": 3253.98, + "probability": 0.0371 + }, + { + "start": 3254.84, + "end": 3256.94, + "probability": 0.8652 + }, + { + "start": 3257.6, + "end": 3260.76, + "probability": 0.4993 + }, + { + "start": 3260.86, + "end": 3264.62, + "probability": 0.8716 + }, + { + "start": 3264.76, + "end": 3266.28, + "probability": 0.9742 + }, + { + "start": 3266.74, + "end": 3267.46, + "probability": 0.7873 + }, + { + "start": 3270.75, + "end": 3271.1, + "probability": 0.0677 + }, + { + "start": 3272.12, + "end": 3272.52, + "probability": 0.2841 + }, + { + "start": 3273.97, + "end": 3274.32, + "probability": 0.0536 + }, + { + "start": 3274.32, + "end": 3274.53, + "probability": 0.0826 + }, + { + "start": 3276.78, + "end": 3279.0, + "probability": 0.078 + }, + { + "start": 3279.0, + "end": 3280.36, + "probability": 0.2442 + }, + { + "start": 3280.4, + "end": 3282.98, + "probability": 0.0846 + }, + { + "start": 3283.06, + "end": 3283.98, + "probability": 0.2504 + }, + { + "start": 3285.66, + "end": 3287.6, + "probability": 0.4041 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.0, + "end": 3385.0, + "probability": 0.0 + }, + { + "start": 3385.24, + "end": 3385.38, + "probability": 0.098 + }, + { + "start": 3385.38, + "end": 3385.38, + "probability": 0.0379 + }, + { + "start": 3385.38, + "end": 3388.98, + "probability": 0.9919 + }, + { + "start": 3389.8, + "end": 3393.66, + "probability": 0.9932 + }, + { + "start": 3395.32, + "end": 3400.22, + "probability": 0.9856 + }, + { + "start": 3400.58, + "end": 3402.2, + "probability": 0.9976 + }, + { + "start": 3403.64, + "end": 3409.46, + "probability": 0.9839 + }, + { + "start": 3410.0, + "end": 3411.96, + "probability": 0.9857 + }, + { + "start": 3412.38, + "end": 3416.62, + "probability": 0.9952 + }, + { + "start": 3417.24, + "end": 3419.4, + "probability": 0.9843 + }, + { + "start": 3420.33, + "end": 3422.72, + "probability": 0.998 + }, + { + "start": 3424.08, + "end": 3424.56, + "probability": 0.9307 + }, + { + "start": 3425.54, + "end": 3426.22, + "probability": 0.9875 + }, + { + "start": 3427.94, + "end": 3429.44, + "probability": 0.9981 + }, + { + "start": 3429.98, + "end": 3433.94, + "probability": 0.6657 + }, + { + "start": 3434.92, + "end": 3441.74, + "probability": 0.9924 + }, + { + "start": 3441.74, + "end": 3447.5, + "probability": 0.9958 + }, + { + "start": 3447.72, + "end": 3454.16, + "probability": 0.991 + }, + { + "start": 3455.36, + "end": 3458.21, + "probability": 0.9951 + }, + { + "start": 3458.58, + "end": 3461.64, + "probability": 0.9967 + }, + { + "start": 3461.78, + "end": 3462.94, + "probability": 0.938 + }, + { + "start": 3463.38, + "end": 3465.6, + "probability": 0.9569 + }, + { + "start": 3465.94, + "end": 3470.02, + "probability": 0.9902 + }, + { + "start": 3470.87, + "end": 3475.04, + "probability": 0.9956 + }, + { + "start": 3475.46, + "end": 3476.86, + "probability": 0.6795 + }, + { + "start": 3477.78, + "end": 3479.14, + "probability": 0.6235 + }, + { + "start": 3479.62, + "end": 3482.9, + "probability": 0.9242 + }, + { + "start": 3483.24, + "end": 3483.68, + "probability": 0.5962 + }, + { + "start": 3484.0, + "end": 3485.54, + "probability": 0.8125 + }, + { + "start": 3485.84, + "end": 3489.4, + "probability": 0.9967 + }, + { + "start": 3490.08, + "end": 3496.7, + "probability": 0.9932 + }, + { + "start": 3497.22, + "end": 3497.6, + "probability": 0.3418 + }, + { + "start": 3497.86, + "end": 3498.6, + "probability": 0.9883 + }, + { + "start": 3499.32, + "end": 3506.52, + "probability": 0.8451 + }, + { + "start": 3507.46, + "end": 3508.86, + "probability": 0.7756 + }, + { + "start": 3508.92, + "end": 3512.98, + "probability": 0.9067 + }, + { + "start": 3513.72, + "end": 3518.22, + "probability": 0.8914 + }, + { + "start": 3521.52, + "end": 3522.56, + "probability": 0.7449 + }, + { + "start": 3523.94, + "end": 3524.8, + "probability": 0.902 + }, + { + "start": 3525.92, + "end": 3526.16, + "probability": 0.8079 + }, + { + "start": 3527.28, + "end": 3528.04, + "probability": 0.9419 + }, + { + "start": 3530.16, + "end": 3532.1, + "probability": 0.7587 + }, + { + "start": 3537.42, + "end": 3538.82, + "probability": 0.4432 + }, + { + "start": 3539.64, + "end": 3540.76, + "probability": 0.6285 + }, + { + "start": 3542.98, + "end": 3543.48, + "probability": 0.7264 + }, + { + "start": 3543.9, + "end": 3544.64, + "probability": 0.8793 + }, + { + "start": 3545.45, + "end": 3549.14, + "probability": 0.9819 + }, + { + "start": 3549.28, + "end": 3553.24, + "probability": 0.931 + }, + { + "start": 3554.86, + "end": 3558.52, + "probability": 0.786 + }, + { + "start": 3559.4, + "end": 3562.3, + "probability": 0.9717 + }, + { + "start": 3563.36, + "end": 3564.1, + "probability": 0.7745 + }, + { + "start": 3564.4, + "end": 3570.32, + "probability": 0.4762 + }, + { + "start": 3570.32, + "end": 3572.5, + "probability": 0.9023 + }, + { + "start": 3573.37, + "end": 3573.74, + "probability": 0.8057 + }, + { + "start": 3573.74, + "end": 3575.34, + "probability": 0.8605 + }, + { + "start": 3575.36, + "end": 3576.12, + "probability": 0.9383 + }, + { + "start": 3576.44, + "end": 3577.96, + "probability": 0.5531 + }, + { + "start": 3580.41, + "end": 3582.42, + "probability": 0.9473 + }, + { + "start": 3582.48, + "end": 3582.68, + "probability": 0.5442 + }, + { + "start": 3582.68, + "end": 3582.68, + "probability": 0.6204 + }, + { + "start": 3582.68, + "end": 3586.34, + "probability": 0.8026 + }, + { + "start": 3586.42, + "end": 3587.88, + "probability": 0.6963 + }, + { + "start": 3588.38, + "end": 3588.68, + "probability": 0.4359 + }, + { + "start": 3589.0, + "end": 3590.5, + "probability": 0.69 + }, + { + "start": 3591.22, + "end": 3594.28, + "probability": 0.9561 + }, + { + "start": 3594.46, + "end": 3594.7, + "probability": 0.5068 + }, + { + "start": 3594.94, + "end": 3598.0, + "probability": 0.9863 + }, + { + "start": 3598.88, + "end": 3602.3, + "probability": 0.749 + }, + { + "start": 3603.24, + "end": 3609.08, + "probability": 0.94 + }, + { + "start": 3610.92, + "end": 3616.38, + "probability": 0.9875 + }, + { + "start": 3617.7, + "end": 3624.02, + "probability": 0.9376 + }, + { + "start": 3624.82, + "end": 3627.74, + "probability": 0.8184 + }, + { + "start": 3628.58, + "end": 3629.24, + "probability": 0.8117 + }, + { + "start": 3629.38, + "end": 3630.99, + "probability": 0.9282 + }, + { + "start": 3632.37, + "end": 3637.6, + "probability": 0.5745 + }, + { + "start": 3638.46, + "end": 3639.68, + "probability": 0.4919 + }, + { + "start": 3640.28, + "end": 3642.4, + "probability": 0.8564 + }, + { + "start": 3643.16, + "end": 3647.3, + "probability": 0.5459 + }, + { + "start": 3649.04, + "end": 3651.42, + "probability": 0.0646 + }, + { + "start": 3651.94, + "end": 3653.7, + "probability": 0.833 + }, + { + "start": 3654.22, + "end": 3656.3, + "probability": 0.9034 + }, + { + "start": 3656.64, + "end": 3657.88, + "probability": 0.6663 + }, + { + "start": 3659.06, + "end": 3661.84, + "probability": 0.6972 + }, + { + "start": 3661.88, + "end": 3670.72, + "probability": 0.8879 + }, + { + "start": 3671.36, + "end": 3673.14, + "probability": 0.5817 + }, + { + "start": 3675.22, + "end": 3676.78, + "probability": 0.5513 + }, + { + "start": 3677.16, + "end": 3681.84, + "probability": 0.7249 + }, + { + "start": 3682.5, + "end": 3683.88, + "probability": 0.7448 + }, + { + "start": 3687.14, + "end": 3689.34, + "probability": 0.676 + }, + { + "start": 3690.22, + "end": 3692.7, + "probability": 0.5493 + }, + { + "start": 3693.96, + "end": 3694.84, + "probability": 0.741 + }, + { + "start": 3695.24, + "end": 3698.14, + "probability": 0.8136 + }, + { + "start": 3699.28, + "end": 3701.6, + "probability": 0.3634 + }, + { + "start": 3701.6, + "end": 3702.24, + "probability": 0.555 + }, + { + "start": 3702.28, + "end": 3703.78, + "probability": 0.8344 + }, + { + "start": 3703.9, + "end": 3704.7, + "probability": 0.8036 + }, + { + "start": 3705.36, + "end": 3705.98, + "probability": 0.8564 + }, + { + "start": 3706.58, + "end": 3710.32, + "probability": 0.8579 + }, + { + "start": 3711.06, + "end": 3716.5, + "probability": 0.4548 + }, + { + "start": 3717.26, + "end": 3718.12, + "probability": 0.5038 + }, + { + "start": 3718.64, + "end": 3728.62, + "probability": 0.8101 + }, + { + "start": 3729.08, + "end": 3729.9, + "probability": 0.868 + }, + { + "start": 3730.5, + "end": 3733.64, + "probability": 0.9125 + }, + { + "start": 3734.32, + "end": 3737.8, + "probability": 0.468 + }, + { + "start": 3737.98, + "end": 3739.82, + "probability": 0.9229 + }, + { + "start": 3740.2, + "end": 3741.74, + "probability": 0.8798 + }, + { + "start": 3742.02, + "end": 3745.62, + "probability": 0.7917 + }, + { + "start": 3746.47, + "end": 3749.78, + "probability": 0.8569 + }, + { + "start": 3751.12, + "end": 3752.48, + "probability": 0.7165 + }, + { + "start": 3754.34, + "end": 3756.52, + "probability": 0.9179 + }, + { + "start": 3757.6, + "end": 3758.46, + "probability": 0.3567 + }, + { + "start": 3758.52, + "end": 3759.52, + "probability": 0.866 + }, + { + "start": 3760.98, + "end": 3762.6, + "probability": 0.6402 + }, + { + "start": 3766.22, + "end": 3767.6, + "probability": 0.0316 + }, + { + "start": 3768.02, + "end": 3769.96, + "probability": 0.09 + }, + { + "start": 3771.2, + "end": 3771.3, + "probability": 0.102 + }, + { + "start": 3772.76, + "end": 3773.18, + "probability": 0.0068 + }, + { + "start": 3775.76, + "end": 3778.58, + "probability": 0.1869 + }, + { + "start": 3779.06, + "end": 3780.76, + "probability": 0.7213 + }, + { + "start": 3780.96, + "end": 3781.7, + "probability": 0.991 + }, + { + "start": 3785.08, + "end": 3788.16, + "probability": 0.9357 + }, + { + "start": 3789.12, + "end": 3789.46, + "probability": 0.9752 + }, + { + "start": 3790.04, + "end": 3792.34, + "probability": 0.544 + }, + { + "start": 3793.1, + "end": 3795.44, + "probability": 0.962 + }, + { + "start": 3796.34, + "end": 3797.62, + "probability": 0.9959 + }, + { + "start": 3798.6, + "end": 3799.54, + "probability": 0.9257 + }, + { + "start": 3800.28, + "end": 3802.72, + "probability": 0.8839 + }, + { + "start": 3803.56, + "end": 3804.1, + "probability": 0.9761 + }, + { + "start": 3805.2, + "end": 3807.56, + "probability": 0.6024 + }, + { + "start": 3808.24, + "end": 3812.82, + "probability": 0.9889 + }, + { + "start": 3813.78, + "end": 3815.56, + "probability": 0.8867 + }, + { + "start": 3816.2, + "end": 3819.54, + "probability": 0.9887 + }, + { + "start": 3820.26, + "end": 3822.76, + "probability": 0.9868 + }, + { + "start": 3822.78, + "end": 3825.0, + "probability": 0.9821 + }, + { + "start": 3826.18, + "end": 3827.44, + "probability": 0.8862 + }, + { + "start": 3827.62, + "end": 3828.9, + "probability": 0.9678 + }, + { + "start": 3829.02, + "end": 3829.69, + "probability": 0.9829 + }, + { + "start": 3830.34, + "end": 3830.96, + "probability": 0.4781 + }, + { + "start": 3831.04, + "end": 3831.94, + "probability": 0.7284 + }, + { + "start": 3832.78, + "end": 3836.08, + "probability": 0.9927 + }, + { + "start": 3836.8, + "end": 3839.98, + "probability": 0.9655 + }, + { + "start": 3840.08, + "end": 3840.88, + "probability": 0.8356 + }, + { + "start": 3840.94, + "end": 3844.15, + "probability": 0.9587 + }, + { + "start": 3844.86, + "end": 3847.38, + "probability": 0.9642 + }, + { + "start": 3848.12, + "end": 3849.1, + "probability": 0.5935 + }, + { + "start": 3851.06, + "end": 3853.52, + "probability": 0.9771 + }, + { + "start": 3854.32, + "end": 3856.84, + "probability": 0.9958 + }, + { + "start": 3857.4, + "end": 3861.2, + "probability": 0.9983 + }, + { + "start": 3862.02, + "end": 3865.26, + "probability": 0.9964 + }, + { + "start": 3866.02, + "end": 3867.84, + "probability": 0.9388 + }, + { + "start": 3867.96, + "end": 3868.8, + "probability": 0.9905 + }, + { + "start": 3869.32, + "end": 3872.04, + "probability": 0.9211 + }, + { + "start": 3872.08, + "end": 3873.18, + "probability": 0.9759 + }, + { + "start": 3873.6, + "end": 3874.6, + "probability": 0.8257 + }, + { + "start": 3877.28, + "end": 3877.28, + "probability": 0.2277 + }, + { + "start": 3877.28, + "end": 3879.18, + "probability": 0.5271 + }, + { + "start": 3879.7, + "end": 3879.92, + "probability": 0.8446 + }, + { + "start": 3880.98, + "end": 3882.14, + "probability": 0.8918 + }, + { + "start": 3882.62, + "end": 3883.0, + "probability": 0.2164 + }, + { + "start": 3883.4, + "end": 3885.04, + "probability": 0.8632 + }, + { + "start": 3888.26, + "end": 3888.52, + "probability": 0.4426 + }, + { + "start": 3889.72, + "end": 3889.86, + "probability": 0.0772 + }, + { + "start": 3889.86, + "end": 3889.86, + "probability": 0.4595 + }, + { + "start": 3889.86, + "end": 3890.14, + "probability": 0.4798 + }, + { + "start": 3891.24, + "end": 3891.44, + "probability": 0.7496 + }, + { + "start": 3891.98, + "end": 3892.98, + "probability": 0.7664 + }, + { + "start": 3893.5, + "end": 3893.66, + "probability": 0.8184 + }, + { + "start": 3894.6, + "end": 3895.46, + "probability": 0.7653 + }, + { + "start": 3896.98, + "end": 3898.06, + "probability": 0.608 + }, + { + "start": 3899.26, + "end": 3900.1, + "probability": 0.4339 + }, + { + "start": 3900.66, + "end": 3900.84, + "probability": 0.4124 + }, + { + "start": 3901.68, + "end": 3902.52, + "probability": 0.8385 + }, + { + "start": 3903.52, + "end": 3903.72, + "probability": 0.3154 + }, + { + "start": 3904.64, + "end": 3904.9, + "probability": 0.9527 + }, + { + "start": 3906.12, + "end": 3906.42, + "probability": 0.843 + }, + { + "start": 3907.24, + "end": 3908.76, + "probability": 0.9662 + }, + { + "start": 3909.8, + "end": 3911.2, + "probability": 0.7799 + }, + { + "start": 3911.8, + "end": 3912.82, + "probability": 0.5228 + }, + { + "start": 3913.38, + "end": 3914.46, + "probability": 0.6698 + }, + { + "start": 3937.32, + "end": 3938.4, + "probability": 0.4887 + }, + { + "start": 3939.7, + "end": 3944.42, + "probability": 0.9733 + }, + { + "start": 3944.76, + "end": 3948.7, + "probability": 0.8532 + }, + { + "start": 3948.78, + "end": 3950.22, + "probability": 0.9109 + }, + { + "start": 3950.28, + "end": 3950.82, + "probability": 0.6691 + }, + { + "start": 3951.32, + "end": 3952.08, + "probability": 0.9622 + }, + { + "start": 3952.36, + "end": 3952.96, + "probability": 0.9912 + }, + { + "start": 3953.52, + "end": 3957.61, + "probability": 0.9565 + }, + { + "start": 3958.66, + "end": 3967.1, + "probability": 0.9637 + }, + { + "start": 3967.16, + "end": 3970.12, + "probability": 0.9497 + }, + { + "start": 3970.12, + "end": 3975.76, + "probability": 0.9803 + }, + { + "start": 3975.76, + "end": 3979.68, + "probability": 0.9943 + }, + { + "start": 3980.16, + "end": 3981.88, + "probability": 0.8962 + }, + { + "start": 3985.08, + "end": 3986.7, + "probability": 0.4348 + }, + { + "start": 3987.48, + "end": 3989.5, + "probability": 0.9926 + }, + { + "start": 3989.8, + "end": 3994.5, + "probability": 0.9852 + }, + { + "start": 3994.62, + "end": 3999.9, + "probability": 0.4583 + }, + { + "start": 3999.9, + "end": 4004.16, + "probability": 0.9844 + }, + { + "start": 4004.66, + "end": 4004.9, + "probability": 0.745 + }, + { + "start": 4005.24, + "end": 4005.76, + "probability": 0.7323 + }, + { + "start": 4007.05, + "end": 4008.8, + "probability": 0.1317 + }, + { + "start": 4008.8, + "end": 4010.25, + "probability": 0.344 + }, + { + "start": 4010.52, + "end": 4012.76, + "probability": 0.9702 + }, + { + "start": 4013.28, + "end": 4019.1, + "probability": 0.9626 + }, + { + "start": 4019.16, + "end": 4024.4, + "probability": 0.9922 + }, + { + "start": 4025.06, + "end": 4031.26, + "probability": 0.9816 + }, + { + "start": 4031.26, + "end": 4037.0, + "probability": 0.9921 + }, + { + "start": 4037.2, + "end": 4039.06, + "probability": 0.8667 + }, + { + "start": 4039.62, + "end": 4047.58, + "probability": 0.9751 + }, + { + "start": 4048.04, + "end": 4050.72, + "probability": 0.9876 + }, + { + "start": 4051.16, + "end": 4057.42, + "probability": 0.9813 + }, + { + "start": 4058.0, + "end": 4063.28, + "probability": 0.9843 + }, + { + "start": 4063.35, + "end": 4066.54, + "probability": 0.9927 + }, + { + "start": 4067.08, + "end": 4068.22, + "probability": 0.9351 + }, + { + "start": 4068.92, + "end": 4071.73, + "probability": 0.7219 + }, + { + "start": 4071.92, + "end": 4077.94, + "probability": 0.9821 + }, + { + "start": 4078.54, + "end": 4079.06, + "probability": 0.723 + }, + { + "start": 4080.82, + "end": 4081.86, + "probability": 0.7867 + }, + { + "start": 4083.06, + "end": 4083.26, + "probability": 0.6724 + }, + { + "start": 4084.02, + "end": 4084.54, + "probability": 0.8229 + }, + { + "start": 4085.6, + "end": 4086.14, + "probability": 0.9331 + }, + { + "start": 4086.66, + "end": 4087.36, + "probability": 0.8609 + }, + { + "start": 4087.9, + "end": 4088.42, + "probability": 0.9765 + }, + { + "start": 4089.84, + "end": 4090.3, + "probability": 0.8141 + }, + { + "start": 4090.86, + "end": 4091.46, + "probability": 0.5266 + }, + { + "start": 4092.32, + "end": 4094.24, + "probability": 0.8411 + }, + { + "start": 4094.84, + "end": 4095.4, + "probability": 0.5267 + }, + { + "start": 4096.02, + "end": 4096.94, + "probability": 0.9575 + }, + { + "start": 4097.64, + "end": 4100.24, + "probability": 0.9431 + }, + { + "start": 4100.66, + "end": 4101.38, + "probability": 0.8421 + }, + { + "start": 4102.18, + "end": 4102.3, + "probability": 0.4831 + }, + { + "start": 4104.94, + "end": 4106.66, + "probability": 0.1728 + }, + { + "start": 4107.2, + "end": 4108.64, + "probability": 0.0956 + }, + { + "start": 4140.76, + "end": 4145.2, + "probability": 0.4947 + }, + { + "start": 4145.8, + "end": 4147.02, + "probability": 0.5896 + }, + { + "start": 4147.16, + "end": 4148.24, + "probability": 0.8195 + }, + { + "start": 4148.56, + "end": 4150.03, + "probability": 0.8667 + }, + { + "start": 4151.46, + "end": 4152.06, + "probability": 0.6353 + }, + { + "start": 4152.06, + "end": 4153.58, + "probability": 0.9563 + }, + { + "start": 4153.66, + "end": 4154.12, + "probability": 0.77 + }, + { + "start": 4154.58, + "end": 4156.95, + "probability": 0.8349 + }, + { + "start": 4157.62, + "end": 4158.5, + "probability": 0.0221 + }, + { + "start": 4159.7, + "end": 4160.18, + "probability": 0.7397 + }, + { + "start": 4161.24, + "end": 4164.7, + "probability": 0.6335 + }, + { + "start": 4165.44, + "end": 4166.84, + "probability": 0.786 + }, + { + "start": 4167.36, + "end": 4172.72, + "probability": 0.9869 + }, + { + "start": 4173.34, + "end": 4177.72, + "probability": 0.9749 + }, + { + "start": 4178.96, + "end": 4180.18, + "probability": 0.6923 + }, + { + "start": 4180.54, + "end": 4184.5, + "probability": 0.6727 + }, + { + "start": 4184.66, + "end": 4185.06, + "probability": 0.4591 + }, + { + "start": 4185.06, + "end": 4187.86, + "probability": 0.8681 + }, + { + "start": 4187.9, + "end": 4188.46, + "probability": 0.7987 + }, + { + "start": 4188.5, + "end": 4190.18, + "probability": 0.9917 + }, + { + "start": 4190.52, + "end": 4197.26, + "probability": 0.913 + }, + { + "start": 4198.1, + "end": 4204.05, + "probability": 0.9052 + }, + { + "start": 4204.8, + "end": 4209.85, + "probability": 0.9257 + }, + { + "start": 4210.0, + "end": 4212.1, + "probability": 0.6653 + }, + { + "start": 4212.86, + "end": 4216.12, + "probability": 0.9881 + }, + { + "start": 4216.6, + "end": 4218.12, + "probability": 0.9907 + }, + { + "start": 4218.26, + "end": 4222.24, + "probability": 0.9264 + }, + { + "start": 4222.56, + "end": 4225.96, + "probability": 0.9875 + }, + { + "start": 4226.16, + "end": 4228.38, + "probability": 0.8696 + }, + { + "start": 4228.4, + "end": 4232.54, + "probability": 0.9818 + }, + { + "start": 4233.06, + "end": 4236.96, + "probability": 0.8898 + }, + { + "start": 4237.36, + "end": 4238.68, + "probability": 0.8044 + }, + { + "start": 4239.18, + "end": 4239.86, + "probability": 0.848 + }, + { + "start": 4240.44, + "end": 4243.21, + "probability": 0.7609 + }, + { + "start": 4243.82, + "end": 4245.52, + "probability": 0.8933 + }, + { + "start": 4246.08, + "end": 4247.76, + "probability": 0.5 + }, + { + "start": 4247.88, + "end": 4249.48, + "probability": 0.8758 + }, + { + "start": 4250.04, + "end": 4251.66, + "probability": 0.9832 + }, + { + "start": 4251.78, + "end": 4255.14, + "probability": 0.8314 + }, + { + "start": 4255.78, + "end": 4257.12, + "probability": 0.7433 + }, + { + "start": 4257.36, + "end": 4259.78, + "probability": 0.9466 + }, + { + "start": 4260.44, + "end": 4262.74, + "probability": 0.8897 + }, + { + "start": 4263.72, + "end": 4264.82, + "probability": 0.8801 + }, + { + "start": 4265.22, + "end": 4266.78, + "probability": 0.9841 + }, + { + "start": 4267.16, + "end": 4269.26, + "probability": 0.888 + }, + { + "start": 4269.86, + "end": 4271.04, + "probability": 0.8997 + }, + { + "start": 4271.52, + "end": 4277.48, + "probability": 0.9851 + }, + { + "start": 4277.56, + "end": 4278.37, + "probability": 0.7583 + }, + { + "start": 4278.54, + "end": 4280.46, + "probability": 0.8395 + }, + { + "start": 4280.56, + "end": 4282.25, + "probability": 0.8167 + }, + { + "start": 4283.02, + "end": 4284.86, + "probability": 0.7442 + }, + { + "start": 4285.62, + "end": 4287.58, + "probability": 0.9821 + }, + { + "start": 4287.76, + "end": 4288.92, + "probability": 0.5417 + }, + { + "start": 4289.79, + "end": 4296.5, + "probability": 0.8606 + }, + { + "start": 4297.06, + "end": 4297.48, + "probability": 0.8342 + }, + { + "start": 4297.54, + "end": 4299.46, + "probability": 0.9749 + }, + { + "start": 4300.02, + "end": 4301.92, + "probability": 0.9556 + }, + { + "start": 4302.44, + "end": 4305.5, + "probability": 0.8459 + }, + { + "start": 4305.98, + "end": 4306.84, + "probability": 0.7073 + }, + { + "start": 4307.56, + "end": 4311.14, + "probability": 0.988 + }, + { + "start": 4311.64, + "end": 4312.22, + "probability": 0.5523 + }, + { + "start": 4312.32, + "end": 4314.0, + "probability": 0.9081 + }, + { + "start": 4314.58, + "end": 4316.72, + "probability": 0.8881 + }, + { + "start": 4316.88, + "end": 4319.82, + "probability": 0.7048 + }, + { + "start": 4320.24, + "end": 4323.2, + "probability": 0.6245 + }, + { + "start": 4323.32, + "end": 4326.48, + "probability": 0.5215 + }, + { + "start": 4327.32, + "end": 4327.88, + "probability": 0.5795 + }, + { + "start": 4328.28, + "end": 4328.9, + "probability": 0.6017 + }, + { + "start": 4329.12, + "end": 4329.9, + "probability": 0.7676 + }, + { + "start": 4330.22, + "end": 4332.76, + "probability": 0.9735 + }, + { + "start": 4333.04, + "end": 4333.92, + "probability": 0.8566 + }, + { + "start": 4334.44, + "end": 4335.5, + "probability": 0.3936 + }, + { + "start": 4335.68, + "end": 4336.1, + "probability": 0.3999 + }, + { + "start": 4336.14, + "end": 4338.62, + "probability": 0.545 + }, + { + "start": 4338.68, + "end": 4341.22, + "probability": 0.963 + }, + { + "start": 4341.38, + "end": 4342.48, + "probability": 0.9651 + }, + { + "start": 4343.24, + "end": 4345.46, + "probability": 0.9922 + }, + { + "start": 4345.54, + "end": 4346.28, + "probability": 0.9283 + }, + { + "start": 4346.44, + "end": 4347.22, + "probability": 0.6814 + }, + { + "start": 4347.24, + "end": 4348.04, + "probability": 0.9015 + }, + { + "start": 4348.52, + "end": 4349.84, + "probability": 0.6681 + }, + { + "start": 4350.24, + "end": 4353.4, + "probability": 0.9961 + }, + { + "start": 4353.82, + "end": 4356.66, + "probability": 0.9507 + }, + { + "start": 4356.94, + "end": 4361.42, + "probability": 0.7005 + }, + { + "start": 4361.82, + "end": 4361.82, + "probability": 0.7069 + }, + { + "start": 4361.82, + "end": 4363.48, + "probability": 0.7413 + }, + { + "start": 4363.84, + "end": 4365.2, + "probability": 0.9519 + }, + { + "start": 4365.9, + "end": 4366.78, + "probability": 0.5404 + }, + { + "start": 4366.88, + "end": 4366.98, + "probability": 0.4049 + }, + { + "start": 4367.5, + "end": 4368.2, + "probability": 0.5106 + }, + { + "start": 4368.22, + "end": 4368.46, + "probability": 0.4403 + }, + { + "start": 4368.66, + "end": 4372.09, + "probability": 0.9441 + }, + { + "start": 4372.64, + "end": 4377.07, + "probability": 0.7231 + }, + { + "start": 4377.26, + "end": 4378.14, + "probability": 0.7352 + }, + { + "start": 4378.42, + "end": 4378.66, + "probability": 0.7822 + }, + { + "start": 4380.1, + "end": 4380.96, + "probability": 0.7314 + }, + { + "start": 4381.62, + "end": 4382.4, + "probability": 0.6289 + }, + { + "start": 4383.38, + "end": 4384.04, + "probability": 0.6193 + }, + { + "start": 4384.86, + "end": 4386.76, + "probability": 0.9519 + }, + { + "start": 4387.64, + "end": 4390.54, + "probability": 0.9638 + }, + { + "start": 4391.18, + "end": 4392.36, + "probability": 0.7278 + }, + { + "start": 4393.76, + "end": 4394.04, + "probability": 0.9721 + }, + { + "start": 4394.72, + "end": 4395.32, + "probability": 0.9622 + }, + { + "start": 4395.98, + "end": 4396.68, + "probability": 0.994 + }, + { + "start": 4397.26, + "end": 4399.04, + "probability": 0.9615 + }, + { + "start": 4399.6, + "end": 4401.18, + "probability": 0.7531 + }, + { + "start": 4401.66, + "end": 4402.44, + "probability": 0.9005 + }, + { + "start": 4403.66, + "end": 4404.2, + "probability": 0.9589 + }, + { + "start": 4414.44, + "end": 4414.62, + "probability": 0.4988 + }, + { + "start": 4415.34, + "end": 4416.52, + "probability": 0.3171 + }, + { + "start": 4416.62, + "end": 4418.85, + "probability": 0.7507 + }, + { + "start": 4419.02, + "end": 4420.12, + "probability": 0.2915 + }, + { + "start": 4420.32, + "end": 4421.42, + "probability": 0.8653 + }, + { + "start": 4422.7, + "end": 4423.3, + "probability": 0.3559 + }, + { + "start": 4423.88, + "end": 4425.27, + "probability": 0.4498 + }, + { + "start": 4425.36, + "end": 4425.86, + "probability": 0.6702 + }, + { + "start": 4425.86, + "end": 4427.7, + "probability": 0.9383 + }, + { + "start": 4427.86, + "end": 4429.94, + "probability": 0.7863 + }, + { + "start": 4430.04, + "end": 4430.9, + "probability": 0.9352 + }, + { + "start": 4430.98, + "end": 4433.52, + "probability": 0.6423 + }, + { + "start": 4434.18, + "end": 4434.64, + "probability": 0.865 + }, + { + "start": 4436.38, + "end": 4438.74, + "probability": 0.8486 + }, + { + "start": 4440.12, + "end": 4442.16, + "probability": 0.6645 + }, + { + "start": 4443.14, + "end": 4447.16, + "probability": 0.7263 + }, + { + "start": 4447.88, + "end": 4450.14, + "probability": 0.9692 + }, + { + "start": 4451.2, + "end": 4453.44, + "probability": 0.9829 + }, + { + "start": 4453.54, + "end": 4454.12, + "probability": 0.3321 + }, + { + "start": 4455.08, + "end": 4457.72, + "probability": 0.9834 + }, + { + "start": 4458.96, + "end": 4459.12, + "probability": 0.56 + }, + { + "start": 4459.16, + "end": 4460.02, + "probability": 0.9477 + }, + { + "start": 4460.48, + "end": 4465.1, + "probability": 0.9602 + }, + { + "start": 4466.18, + "end": 4470.12, + "probability": 0.9701 + }, + { + "start": 4471.02, + "end": 4474.04, + "probability": 0.7759 + }, + { + "start": 4475.74, + "end": 4477.0, + "probability": 0.8486 + }, + { + "start": 4478.18, + "end": 4479.78, + "probability": 0.9012 + }, + { + "start": 4481.12, + "end": 4483.08, + "probability": 0.9872 + }, + { + "start": 4484.9, + "end": 4486.02, + "probability": 0.823 + }, + { + "start": 4487.0, + "end": 4488.38, + "probability": 0.6704 + }, + { + "start": 4489.24, + "end": 4492.84, + "probability": 0.9709 + }, + { + "start": 4493.8, + "end": 4495.38, + "probability": 0.9119 + }, + { + "start": 4495.52, + "end": 4500.3, + "probability": 0.9918 + }, + { + "start": 4501.28, + "end": 4503.46, + "probability": 0.9713 + }, + { + "start": 4504.02, + "end": 4507.94, + "probability": 0.9979 + }, + { + "start": 4508.96, + "end": 4512.7, + "probability": 0.7323 + }, + { + "start": 4513.7, + "end": 4516.34, + "probability": 0.7738 + }, + { + "start": 4516.4, + "end": 4517.34, + "probability": 0.827 + }, + { + "start": 4517.96, + "end": 4519.32, + "probability": 0.9666 + }, + { + "start": 4519.36, + "end": 4523.84, + "probability": 0.8785 + }, + { + "start": 4525.7, + "end": 4528.44, + "probability": 0.9797 + }, + { + "start": 4528.44, + "end": 4531.66, + "probability": 0.903 + }, + { + "start": 4531.9, + "end": 4532.0, + "probability": 0.5227 + }, + { + "start": 4533.34, + "end": 4535.58, + "probability": 0.9976 + }, + { + "start": 4535.74, + "end": 4537.2, + "probability": 0.9679 + }, + { + "start": 4537.72, + "end": 4541.18, + "probability": 0.8032 + }, + { + "start": 4542.0, + "end": 4545.78, + "probability": 0.9523 + }, + { + "start": 4546.52, + "end": 4548.64, + "probability": 0.9727 + }, + { + "start": 4549.3, + "end": 4552.12, + "probability": 0.9591 + }, + { + "start": 4552.96, + "end": 4556.64, + "probability": 0.9875 + }, + { + "start": 4557.34, + "end": 4561.64, + "probability": 0.9925 + }, + { + "start": 4561.76, + "end": 4566.12, + "probability": 0.9978 + }, + { + "start": 4566.86, + "end": 4569.12, + "probability": 0.895 + }, + { + "start": 4569.64, + "end": 4572.62, + "probability": 0.967 + }, + { + "start": 4573.2, + "end": 4573.38, + "probability": 0.3647 + }, + { + "start": 4573.6, + "end": 4578.76, + "probability": 0.9966 + }, + { + "start": 4579.4, + "end": 4585.88, + "probability": 0.9855 + }, + { + "start": 4586.38, + "end": 4587.74, + "probability": 0.8927 + }, + { + "start": 4588.2, + "end": 4591.42, + "probability": 0.9022 + }, + { + "start": 4591.96, + "end": 4597.46, + "probability": 0.9908 + }, + { + "start": 4598.18, + "end": 4601.42, + "probability": 0.9848 + }, + { + "start": 4602.32, + "end": 4603.68, + "probability": 0.9956 + }, + { + "start": 4604.64, + "end": 4605.96, + "probability": 0.9737 + }, + { + "start": 4606.54, + "end": 4609.82, + "probability": 0.9904 + }, + { + "start": 4609.82, + "end": 4613.16, + "probability": 0.9972 + }, + { + "start": 4613.3, + "end": 4614.04, + "probability": 0.5609 + }, + { + "start": 4614.26, + "end": 4615.4, + "probability": 0.9099 + }, + { + "start": 4615.92, + "end": 4618.4, + "probability": 0.9971 + }, + { + "start": 4619.18, + "end": 4622.82, + "probability": 0.9327 + }, + { + "start": 4623.46, + "end": 4628.4, + "probability": 0.9229 + }, + { + "start": 4628.4, + "end": 4631.46, + "probability": 0.9961 + }, + { + "start": 4632.04, + "end": 4634.56, + "probability": 0.955 + }, + { + "start": 4635.26, + "end": 4636.64, + "probability": 0.728 + }, + { + "start": 4636.72, + "end": 4638.54, + "probability": 0.0218 + }, + { + "start": 4638.84, + "end": 4639.42, + "probability": 0.9212 + }, + { + "start": 4640.0, + "end": 4640.46, + "probability": 0.5134 + }, + { + "start": 4640.5, + "end": 4642.48, + "probability": 0.9076 + }, + { + "start": 4661.54, + "end": 4663.88, + "probability": 0.8116 + }, + { + "start": 4665.86, + "end": 4669.3, + "probability": 0.9259 + }, + { + "start": 4670.68, + "end": 4673.66, + "probability": 0.9594 + }, + { + "start": 4675.1, + "end": 4675.54, + "probability": 0.9473 + }, + { + "start": 4677.34, + "end": 4677.9, + "probability": 0.9354 + }, + { + "start": 4679.38, + "end": 4679.62, + "probability": 0.6595 + }, + { + "start": 4680.52, + "end": 4681.8, + "probability": 0.8401 + }, + { + "start": 4682.56, + "end": 4685.34, + "probability": 0.9666 + }, + { + "start": 4687.34, + "end": 4690.74, + "probability": 0.6805 + }, + { + "start": 4693.74, + "end": 4696.52, + "probability": 0.7606 + }, + { + "start": 4698.28, + "end": 4700.04, + "probability": 0.9142 + }, + { + "start": 4701.02, + "end": 4703.72, + "probability": 0.902 + }, + { + "start": 4705.94, + "end": 4708.28, + "probability": 0.9909 + }, + { + "start": 4709.02, + "end": 4710.2, + "probability": 0.9628 + }, + { + "start": 4711.4, + "end": 4712.0, + "probability": 0.8479 + }, + { + "start": 4712.06, + "end": 4712.94, + "probability": 0.8666 + }, + { + "start": 4713.34, + "end": 4714.48, + "probability": 0.8928 + }, + { + "start": 4715.18, + "end": 4716.1, + "probability": 0.9907 + }, + { + "start": 4716.78, + "end": 4719.12, + "probability": 0.8511 + }, + { + "start": 4719.96, + "end": 4721.36, + "probability": 0.8353 + }, + { + "start": 4722.62, + "end": 4723.0, + "probability": 0.8595 + }, + { + "start": 4723.5, + "end": 4726.22, + "probability": 0.6181 + }, + { + "start": 4726.98, + "end": 4727.3, + "probability": 0.8477 + }, + { + "start": 4728.4, + "end": 4730.16, + "probability": 0.9574 + }, + { + "start": 4731.22, + "end": 4733.16, + "probability": 0.9048 + }, + { + "start": 4734.5, + "end": 4736.24, + "probability": 0.8416 + }, + { + "start": 4737.2, + "end": 4738.29, + "probability": 0.7019 + }, + { + "start": 4739.08, + "end": 4741.26, + "probability": 0.8758 + }, + { + "start": 4742.12, + "end": 4742.94, + "probability": 0.9596 + }, + { + "start": 4743.98, + "end": 4745.88, + "probability": 0.9712 + }, + { + "start": 4746.52, + "end": 4747.04, + "probability": 0.9889 + }, + { + "start": 4748.18, + "end": 4748.68, + "probability": 0.8127 + }, + { + "start": 4749.44, + "end": 4751.99, + "probability": 0.8789 + }, + { + "start": 4753.32, + "end": 4755.3, + "probability": 0.9083 + }, + { + "start": 4756.5, + "end": 4759.14, + "probability": 0.8386 + }, + { + "start": 4760.48, + "end": 4762.06, + "probability": 0.787 + }, + { + "start": 4762.54, + "end": 4765.6, + "probability": 0.9943 + }, + { + "start": 4767.48, + "end": 4767.84, + "probability": 0.899 + }, + { + "start": 4768.46, + "end": 4771.19, + "probability": 0.9692 + }, + { + "start": 4771.3, + "end": 4772.34, + "probability": 0.8485 + }, + { + "start": 4772.54, + "end": 4773.08, + "probability": 0.3195 + }, + { + "start": 4773.92, + "end": 4775.46, + "probability": 0.9905 + }, + { + "start": 4776.22, + "end": 4780.58, + "probability": 0.994 + }, + { + "start": 4781.14, + "end": 4781.68, + "probability": 0.557 + }, + { + "start": 4782.66, + "end": 4784.82, + "probability": 0.8466 + }, + { + "start": 4785.2, + "end": 4786.52, + "probability": 0.9803 + }, + { + "start": 4787.04, + "end": 4787.7, + "probability": 0.9036 + }, + { + "start": 4789.72, + "end": 4790.34, + "probability": 0.6015 + }, + { + "start": 4792.3, + "end": 4794.0, + "probability": 0.8962 + }, + { + "start": 4794.78, + "end": 4796.94, + "probability": 0.704 + }, + { + "start": 4797.82, + "end": 4799.08, + "probability": 0.8438 + }, + { + "start": 4799.6, + "end": 4799.78, + "probability": 0.8553 + }, + { + "start": 4799.94, + "end": 4800.84, + "probability": 0.9983 + }, + { + "start": 4800.88, + "end": 4801.06, + "probability": 0.8051 + }, + { + "start": 4801.38, + "end": 4803.0, + "probability": 0.8406 + }, + { + "start": 4803.62, + "end": 4805.18, + "probability": 0.9679 + }, + { + "start": 4806.5, + "end": 4807.9, + "probability": 0.9469 + }, + { + "start": 4808.28, + "end": 4808.3, + "probability": 0.4265 + }, + { + "start": 4808.56, + "end": 4808.8, + "probability": 0.7189 + }, + { + "start": 4808.8, + "end": 4808.8, + "probability": 0.6855 + }, + { + "start": 4808.8, + "end": 4809.52, + "probability": 0.5935 + }, + { + "start": 4810.48, + "end": 4815.16, + "probability": 0.9767 + }, + { + "start": 4816.0, + "end": 4817.06, + "probability": 0.9963 + }, + { + "start": 4818.48, + "end": 4820.48, + "probability": 0.8951 + }, + { + "start": 4826.56, + "end": 4827.5, + "probability": 0.4482 + }, + { + "start": 4827.54, + "end": 4828.56, + "probability": 0.9568 + }, + { + "start": 4829.26, + "end": 4829.26, + "probability": 0.9415 + }, + { + "start": 4829.26, + "end": 4829.26, + "probability": 0.1621 + }, + { + "start": 4829.26, + "end": 4830.12, + "probability": 0.4091 + }, + { + "start": 4830.34, + "end": 4831.04, + "probability": 0.3161 + }, + { + "start": 4831.18, + "end": 4831.36, + "probability": 0.0243 + }, + { + "start": 4831.36, + "end": 4831.36, + "probability": 0.0453 + }, + { + "start": 4841.52, + "end": 4842.7, + "probability": 0.1409 + }, + { + "start": 4842.76, + "end": 4842.76, + "probability": 0.0229 + }, + { + "start": 4842.8, + "end": 4842.9, + "probability": 0.1274 + }, + { + "start": 4842.9, + "end": 4844.28, + "probability": 0.0351 + }, + { + "start": 4885.62, + "end": 4886.28, + "probability": 0.4914 + }, + { + "start": 4886.54, + "end": 4887.52, + "probability": 0.8545 + }, + { + "start": 4887.58, + "end": 4888.05, + "probability": 0.889 + }, + { + "start": 4888.38, + "end": 4889.53, + "probability": 0.8918 + }, + { + "start": 4891.44, + "end": 4893.66, + "probability": 0.9844 + }, + { + "start": 4894.18, + "end": 4895.83, + "probability": 0.9541 + }, + { + "start": 4896.76, + "end": 4900.64, + "probability": 0.9738 + }, + { + "start": 4901.4, + "end": 4901.94, + "probability": 0.7881 + }, + { + "start": 4903.34, + "end": 4905.58, + "probability": 0.9769 + }, + { + "start": 4906.32, + "end": 4910.08, + "probability": 0.9227 + }, + { + "start": 4911.58, + "end": 4912.0, + "probability": 0.7699 + }, + { + "start": 4912.64, + "end": 4918.58, + "probability": 0.9453 + }, + { + "start": 4918.64, + "end": 4927.36, + "probability": 0.9359 + }, + { + "start": 4927.56, + "end": 4928.8, + "probability": 0.7952 + }, + { + "start": 4929.14, + "end": 4930.7, + "probability": 0.9971 + }, + { + "start": 4931.48, + "end": 4932.32, + "probability": 0.8851 + }, + { + "start": 4933.36, + "end": 4936.88, + "probability": 0.9935 + }, + { + "start": 4936.94, + "end": 4937.58, + "probability": 0.5719 + }, + { + "start": 4937.62, + "end": 4942.0, + "probability": 0.9867 + }, + { + "start": 4943.5, + "end": 4946.7, + "probability": 0.9771 + }, + { + "start": 4947.56, + "end": 4953.72, + "probability": 0.9347 + }, + { + "start": 4953.72, + "end": 4960.28, + "probability": 0.8128 + }, + { + "start": 4961.16, + "end": 4964.26, + "probability": 0.9907 + }, + { + "start": 4965.18, + "end": 4968.7, + "probability": 0.9986 + }, + { + "start": 4968.7, + "end": 4973.18, + "probability": 0.9617 + }, + { + "start": 4973.98, + "end": 4980.88, + "probability": 0.9197 + }, + { + "start": 4981.28, + "end": 4984.4, + "probability": 0.9974 + }, + { + "start": 4985.2, + "end": 4987.28, + "probability": 0.8022 + }, + { + "start": 4988.18, + "end": 4989.4, + "probability": 0.8846 + }, + { + "start": 4989.5, + "end": 4990.4, + "probability": 0.9971 + }, + { + "start": 4990.48, + "end": 4990.86, + "probability": 0.8483 + }, + { + "start": 4990.94, + "end": 4991.82, + "probability": 0.7343 + }, + { + "start": 4992.54, + "end": 4994.38, + "probability": 0.9832 + }, + { + "start": 4994.48, + "end": 4995.42, + "probability": 0.9722 + }, + { + "start": 4996.16, + "end": 4998.86, + "probability": 0.9881 + }, + { + "start": 4999.1, + "end": 4999.71, + "probability": 0.9731 + }, + { + "start": 5000.58, + "end": 5001.54, + "probability": 0.895 + }, + { + "start": 5002.91, + "end": 5006.08, + "probability": 0.9934 + }, + { + "start": 5006.16, + "end": 5006.4, + "probability": 0.7093 + }, + { + "start": 5006.66, + "end": 5007.66, + "probability": 0.7257 + }, + { + "start": 5022.82, + "end": 5024.2, + "probability": 0.6021 + }, + { + "start": 5050.12, + "end": 5053.72, + "probability": 0.6119 + }, + { + "start": 5057.52, + "end": 5061.38, + "probability": 0.9965 + }, + { + "start": 5062.92, + "end": 5064.0, + "probability": 0.9731 + }, + { + "start": 5064.62, + "end": 5065.34, + "probability": 0.9478 + }, + { + "start": 5065.5, + "end": 5073.96, + "probability": 0.9147 + }, + { + "start": 5074.56, + "end": 5075.54, + "probability": 0.9971 + }, + { + "start": 5077.06, + "end": 5077.49, + "probability": 0.9895 + }, + { + "start": 5078.3, + "end": 5079.76, + "probability": 0.9351 + }, + { + "start": 5080.18, + "end": 5081.76, + "probability": 0.8723 + }, + { + "start": 5083.04, + "end": 5086.06, + "probability": 0.9845 + }, + { + "start": 5087.78, + "end": 5091.78, + "probability": 0.8865 + }, + { + "start": 5092.68, + "end": 5094.5, + "probability": 0.7215 + }, + { + "start": 5095.06, + "end": 5096.38, + "probability": 0.9339 + }, + { + "start": 5096.9, + "end": 5098.0, + "probability": 0.9071 + }, + { + "start": 5099.39, + "end": 5100.18, + "probability": 0.9976 + }, + { + "start": 5100.86, + "end": 5104.28, + "probability": 0.9948 + }, + { + "start": 5105.02, + "end": 5105.52, + "probability": 0.9751 + }, + { + "start": 5108.02, + "end": 5110.82, + "probability": 0.8959 + }, + { + "start": 5111.48, + "end": 5112.83, + "probability": 0.999 + }, + { + "start": 5114.0, + "end": 5114.52, + "probability": 0.8918 + }, + { + "start": 5115.88, + "end": 5119.34, + "probability": 0.9891 + }, + { + "start": 5119.48, + "end": 5120.16, + "probability": 0.7108 + }, + { + "start": 5121.0, + "end": 5125.72, + "probability": 0.9863 + }, + { + "start": 5126.3, + "end": 5130.3, + "probability": 0.9272 + }, + { + "start": 5131.14, + "end": 5132.18, + "probability": 0.6667 + }, + { + "start": 5132.34, + "end": 5133.18, + "probability": 0.6896 + }, + { + "start": 5133.52, + "end": 5135.42, + "probability": 0.7205 + }, + { + "start": 5135.88, + "end": 5137.44, + "probability": 0.6551 + }, + { + "start": 5139.58, + "end": 5143.46, + "probability": 0.9854 + }, + { + "start": 5143.78, + "end": 5144.06, + "probability": 0.6008 + }, + { + "start": 5144.18, + "end": 5145.74, + "probability": 0.9954 + }, + { + "start": 5146.82, + "end": 5149.1, + "probability": 0.7036 + }, + { + "start": 5150.4, + "end": 5151.5, + "probability": 0.7217 + }, + { + "start": 5152.06, + "end": 5154.58, + "probability": 0.8942 + }, + { + "start": 5155.06, + "end": 5157.8, + "probability": 0.9884 + }, + { + "start": 5158.38, + "end": 5159.72, + "probability": 0.8133 + }, + { + "start": 5160.42, + "end": 5162.42, + "probability": 0.9907 + }, + { + "start": 5163.32, + "end": 5165.6, + "probability": 0.9066 + }, + { + "start": 5165.8, + "end": 5166.92, + "probability": 0.9971 + }, + { + "start": 5167.24, + "end": 5168.68, + "probability": 0.9946 + }, + { + "start": 5169.26, + "end": 5172.54, + "probability": 0.9832 + }, + { + "start": 5173.34, + "end": 5176.0, + "probability": 0.9861 + }, + { + "start": 5177.76, + "end": 5178.48, + "probability": 0.4648 + }, + { + "start": 5179.64, + "end": 5180.58, + "probability": 0.9775 + }, + { + "start": 5181.46, + "end": 5184.02, + "probability": 0.9316 + }, + { + "start": 5184.72, + "end": 5185.86, + "probability": 0.9741 + }, + { + "start": 5186.72, + "end": 5187.72, + "probability": 0.9658 + }, + { + "start": 5188.18, + "end": 5192.62, + "probability": 0.9858 + }, + { + "start": 5192.62, + "end": 5198.18, + "probability": 0.9897 + }, + { + "start": 5199.26, + "end": 5202.82, + "probability": 0.9971 + }, + { + "start": 5203.6, + "end": 5205.12, + "probability": 0.6707 + }, + { + "start": 5205.74, + "end": 5207.96, + "probability": 0.8984 + }, + { + "start": 5208.04, + "end": 5209.34, + "probability": 0.7507 + }, + { + "start": 5209.46, + "end": 5210.88, + "probability": 0.6735 + }, + { + "start": 5211.0, + "end": 5211.94, + "probability": 0.8203 + }, + { + "start": 5212.28, + "end": 5213.14, + "probability": 0.9247 + }, + { + "start": 5213.28, + "end": 5213.98, + "probability": 0.6063 + }, + { + "start": 5214.36, + "end": 5216.12, + "probability": 0.8667 + }, + { + "start": 5217.02, + "end": 5219.38, + "probability": 0.1592 + }, + { + "start": 5220.16, + "end": 5220.7, + "probability": 0.4697 + }, + { + "start": 5220.7, + "end": 5221.99, + "probability": 0.8957 + }, + { + "start": 5222.6, + "end": 5223.36, + "probability": 0.606 + }, + { + "start": 5223.46, + "end": 5225.78, + "probability": 0.9353 + }, + { + "start": 5225.9, + "end": 5226.95, + "probability": 0.9412 + }, + { + "start": 5227.54, + "end": 5231.56, + "probability": 0.8279 + }, + { + "start": 5232.0, + "end": 5233.7, + "probability": 0.98 + }, + { + "start": 5233.82, + "end": 5234.78, + "probability": 0.8564 + }, + { + "start": 5234.96, + "end": 5236.88, + "probability": 0.2443 + }, + { + "start": 5236.88, + "end": 5237.06, + "probability": 0.0004 + }, + { + "start": 5246.36, + "end": 5246.48, + "probability": 0.0338 + }, + { + "start": 5246.48, + "end": 5246.56, + "probability": 0.4249 + }, + { + "start": 5246.64, + "end": 5249.76, + "probability": 0.9731 + }, + { + "start": 5250.18, + "end": 5251.84, + "probability": 0.9231 + }, + { + "start": 5252.58, + "end": 5254.06, + "probability": 0.9291 + }, + { + "start": 5255.06, + "end": 5257.02, + "probability": 0.931 + }, + { + "start": 5257.26, + "end": 5259.8, + "probability": 0.9699 + }, + { + "start": 5259.8, + "end": 5263.38, + "probability": 0.992 + }, + { + "start": 5264.04, + "end": 5265.68, + "probability": 0.7854 + }, + { + "start": 5266.38, + "end": 5271.44, + "probability": 0.9734 + }, + { + "start": 5271.44, + "end": 5273.56, + "probability": 0.9887 + }, + { + "start": 5274.7, + "end": 5276.88, + "probability": 0.9236 + }, + { + "start": 5277.12, + "end": 5278.14, + "probability": 0.649 + }, + { + "start": 5278.24, + "end": 5278.68, + "probability": 0.6924 + }, + { + "start": 5279.76, + "end": 5280.4, + "probability": 0.6718 + }, + { + "start": 5281.08, + "end": 5284.64, + "probability": 0.9961 + }, + { + "start": 5284.64, + "end": 5288.4, + "probability": 0.9855 + }, + { + "start": 5289.28, + "end": 5293.94, + "probability": 0.971 + }, + { + "start": 5293.94, + "end": 5297.2, + "probability": 0.9639 + }, + { + "start": 5298.06, + "end": 5302.29, + "probability": 0.998 + }, + { + "start": 5302.52, + "end": 5303.8, + "probability": 0.9879 + }, + { + "start": 5304.68, + "end": 5306.02, + "probability": 0.8652 + }, + { + "start": 5306.74, + "end": 5308.52, + "probability": 0.9389 + }, + { + "start": 5309.22, + "end": 5312.4, + "probability": 0.9961 + }, + { + "start": 5312.54, + "end": 5312.74, + "probability": 0.5865 + }, + { + "start": 5313.02, + "end": 5315.12, + "probability": 0.9829 + }, + { + "start": 5315.26, + "end": 5315.5, + "probability": 0.2668 + }, + { + "start": 5316.14, + "end": 5316.82, + "probability": 0.8358 + }, + { + "start": 5317.38, + "end": 5319.98, + "probability": 0.9217 + }, + { + "start": 5323.58, + "end": 5328.52, + "probability": 0.8729 + }, + { + "start": 5332.06, + "end": 5333.32, + "probability": 0.9784 + }, + { + "start": 5334.9, + "end": 5338.14, + "probability": 0.9085 + }, + { + "start": 5338.36, + "end": 5340.72, + "probability": 0.8657 + }, + { + "start": 5356.88, + "end": 5356.88, + "probability": 0.5172 + }, + { + "start": 5357.0, + "end": 5358.58, + "probability": 0.176 + }, + { + "start": 5358.58, + "end": 5358.58, + "probability": 0.025 + }, + { + "start": 5358.58, + "end": 5358.58, + "probability": 0.0396 + }, + { + "start": 5358.58, + "end": 5359.52, + "probability": 0.3955 + }, + { + "start": 5359.52, + "end": 5362.4, + "probability": 0.2137 + }, + { + "start": 5364.86, + "end": 5365.1, + "probability": 0.2126 + }, + { + "start": 5366.96, + "end": 5367.24, + "probability": 0.0775 + }, + { + "start": 5367.24, + "end": 5367.24, + "probability": 0.0939 + }, + { + "start": 5367.24, + "end": 5367.24, + "probability": 0.0522 + }, + { + "start": 5367.24, + "end": 5367.68, + "probability": 0.0298 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.0, + "end": 5452.0, + "probability": 0.0 + }, + { + "start": 5452.98, + "end": 5455.1, + "probability": 0.1937 + }, + { + "start": 5468.58, + "end": 5468.68, + "probability": 0.005 + }, + { + "start": 5471.16, + "end": 5473.3, + "probability": 0.6945 + }, + { + "start": 5475.5, + "end": 5476.02, + "probability": 0.0163 + }, + { + "start": 5478.62, + "end": 5480.82, + "probability": 0.0633 + }, + { + "start": 5481.18, + "end": 5483.28, + "probability": 0.091 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5604.0, + "end": 5604.0, + "probability": 0.0 + }, + { + "start": 5618.42, + "end": 5622.78, + "probability": 0.4808 + }, + { + "start": 5635.82, + "end": 5639.5, + "probability": 0.0658 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5728.0, + "end": 5728.0, + "probability": 0.0 + }, + { + "start": 5730.9, + "end": 5731.5, + "probability": 0.0717 + }, + { + "start": 5731.5, + "end": 5731.5, + "probability": 0.0586 + }, + { + "start": 5731.5, + "end": 5731.92, + "probability": 0.216 + }, + { + "start": 5732.04, + "end": 5732.46, + "probability": 0.6966 + }, + { + "start": 5732.54, + "end": 5733.04, + "probability": 0.3794 + }, + { + "start": 5733.26, + "end": 5734.04, + "probability": 0.621 + }, + { + "start": 5737.5, + "end": 5737.5, + "probability": 0.0338 + }, + { + "start": 5739.64, + "end": 5744.46, + "probability": 0.4409 + }, + { + "start": 5753.44, + "end": 5755.2, + "probability": 0.6755 + }, + { + "start": 5756.48, + "end": 5758.66, + "probability": 0.9725 + }, + { + "start": 5759.38, + "end": 5762.72, + "probability": 0.995 + }, + { + "start": 5764.12, + "end": 5764.84, + "probability": 0.927 + }, + { + "start": 5764.9, + "end": 5767.64, + "probability": 0.9995 + }, + { + "start": 5767.68, + "end": 5771.22, + "probability": 0.9878 + }, + { + "start": 5772.08, + "end": 5773.68, + "probability": 0.9481 + }, + { + "start": 5774.22, + "end": 5776.68, + "probability": 0.9969 + }, + { + "start": 5777.44, + "end": 5780.5, + "probability": 0.9893 + }, + { + "start": 5781.24, + "end": 5782.46, + "probability": 0.9709 + }, + { + "start": 5783.78, + "end": 5786.96, + "probability": 0.8888 + }, + { + "start": 5787.6, + "end": 5789.8, + "probability": 0.9656 + }, + { + "start": 5789.92, + "end": 5793.94, + "probability": 0.909 + }, + { + "start": 5794.56, + "end": 5800.04, + "probability": 0.9967 + }, + { + "start": 5800.56, + "end": 5804.28, + "probability": 0.9941 + }, + { + "start": 5804.28, + "end": 5808.48, + "probability": 0.9429 + }, + { + "start": 5809.18, + "end": 5812.8, + "probability": 0.8521 + }, + { + "start": 5813.82, + "end": 5815.16, + "probability": 0.9595 + }, + { + "start": 5816.88, + "end": 5819.22, + "probability": 0.777 + }, + { + "start": 5819.22, + "end": 5821.96, + "probability": 0.9811 + }, + { + "start": 5822.64, + "end": 5824.24, + "probability": 0.9683 + }, + { + "start": 5824.94, + "end": 5827.62, + "probability": 0.7826 + }, + { + "start": 5828.3, + "end": 5832.14, + "probability": 0.9815 + }, + { + "start": 5832.92, + "end": 5835.6, + "probability": 0.9893 + }, + { + "start": 5836.22, + "end": 5838.56, + "probability": 0.9892 + }, + { + "start": 5839.58, + "end": 5842.32, + "probability": 0.9932 + }, + { + "start": 5842.32, + "end": 5846.2, + "probability": 0.9915 + }, + { + "start": 5846.62, + "end": 5851.16, + "probability": 0.9933 + }, + { + "start": 5851.82, + "end": 5853.38, + "probability": 0.8669 + }, + { + "start": 5854.12, + "end": 5857.38, + "probability": 0.9941 + }, + { + "start": 5858.0, + "end": 5860.74, + "probability": 0.9823 + }, + { + "start": 5861.36, + "end": 5866.62, + "probability": 0.9927 + }, + { + "start": 5867.42, + "end": 5870.94, + "probability": 0.9412 + }, + { + "start": 5871.74, + "end": 5875.02, + "probability": 0.8967 + }, + { + "start": 5875.02, + "end": 5878.54, + "probability": 0.9973 + }, + { + "start": 5879.22, + "end": 5880.43, + "probability": 0.9014 + }, + { + "start": 5881.64, + "end": 5882.66, + "probability": 0.9682 + }, + { + "start": 5882.78, + "end": 5888.58, + "probability": 0.9817 + }, + { + "start": 5890.38, + "end": 5891.34, + "probability": 0.8076 + }, + { + "start": 5891.42, + "end": 5894.18, + "probability": 0.9955 + }, + { + "start": 5894.18, + "end": 5897.76, + "probability": 0.9974 + }, + { + "start": 5898.36, + "end": 5900.42, + "probability": 0.9719 + }, + { + "start": 5901.04, + "end": 5904.58, + "probability": 0.9969 + }, + { + "start": 5905.1, + "end": 5911.38, + "probability": 0.9946 + }, + { + "start": 5911.5, + "end": 5911.78, + "probability": 0.6515 + }, + { + "start": 5912.86, + "end": 5913.4, + "probability": 0.7715 + }, + { + "start": 5915.56, + "end": 5916.46, + "probability": 0.9074 + }, + { + "start": 5918.52, + "end": 5919.22, + "probability": 0.8008 + }, + { + "start": 5920.3, + "end": 5921.2, + "probability": 0.6542 + }, + { + "start": 5922.16, + "end": 5922.78, + "probability": 0.7925 + }, + { + "start": 5923.32, + "end": 5923.82, + "probability": 0.6994 + }, + { + "start": 5951.62, + "end": 5953.4, + "probability": 0.7181 + }, + { + "start": 5954.44, + "end": 5958.16, + "probability": 0.9136 + }, + { + "start": 5959.08, + "end": 5964.26, + "probability": 0.9803 + }, + { + "start": 5964.26, + "end": 5968.7, + "probability": 0.9946 + }, + { + "start": 5969.78, + "end": 5975.82, + "probability": 0.9553 + }, + { + "start": 5975.82, + "end": 5978.68, + "probability": 0.996 + }, + { + "start": 5979.6, + "end": 5982.54, + "probability": 0.9979 + }, + { + "start": 5982.54, + "end": 5986.34, + "probability": 0.9989 + }, + { + "start": 5987.28, + "end": 5991.18, + "probability": 0.991 + }, + { + "start": 5992.3, + "end": 5994.48, + "probability": 0.5115 + }, + { + "start": 5995.76, + "end": 5999.62, + "probability": 0.9445 + }, + { + "start": 6000.42, + "end": 6003.62, + "probability": 0.7961 + }, + { + "start": 6004.98, + "end": 6007.08, + "probability": 0.9749 + }, + { + "start": 6007.82, + "end": 6010.98, + "probability": 0.9972 + }, + { + "start": 6011.98, + "end": 6012.78, + "probability": 0.8845 + }, + { + "start": 6014.12, + "end": 6016.26, + "probability": 0.974 + }, + { + "start": 6016.92, + "end": 6022.2, + "probability": 0.9926 + }, + { + "start": 6022.84, + "end": 6024.06, + "probability": 0.9348 + }, + { + "start": 6025.08, + "end": 6026.78, + "probability": 0.9944 + }, + { + "start": 6027.52, + "end": 6028.84, + "probability": 0.9501 + }, + { + "start": 6029.8, + "end": 6034.29, + "probability": 0.8622 + }, + { + "start": 6035.02, + "end": 6038.18, + "probability": 0.9513 + }, + { + "start": 6038.82, + "end": 6042.68, + "probability": 0.9296 + }, + { + "start": 6043.63, + "end": 6048.14, + "probability": 0.995 + }, + { + "start": 6049.2, + "end": 6050.18, + "probability": 0.6561 + }, + { + "start": 6050.78, + "end": 6053.32, + "probability": 0.8509 + }, + { + "start": 6054.38, + "end": 6057.42, + "probability": 0.9929 + }, + { + "start": 6058.8, + "end": 6061.34, + "probability": 0.9832 + }, + { + "start": 6062.18, + "end": 6066.6, + "probability": 0.7762 + }, + { + "start": 6067.26, + "end": 6070.14, + "probability": 0.9779 + }, + { + "start": 6070.14, + "end": 6074.94, + "probability": 0.9968 + }, + { + "start": 6075.76, + "end": 6077.14, + "probability": 0.999 + }, + { + "start": 6077.84, + "end": 6081.1, + "probability": 0.9689 + }, + { + "start": 6081.66, + "end": 6082.82, + "probability": 0.9445 + }, + { + "start": 6083.6, + "end": 6088.98, + "probability": 0.9856 + }, + { + "start": 6088.98, + "end": 6093.44, + "probability": 0.9956 + }, + { + "start": 6094.0, + "end": 6095.62, + "probability": 0.758 + }, + { + "start": 6096.64, + "end": 6097.32, + "probability": 0.9858 + }, + { + "start": 6097.98, + "end": 6098.62, + "probability": 0.7363 + }, + { + "start": 6099.84, + "end": 6101.98, + "probability": 0.9996 + }, + { + "start": 6102.9, + "end": 6106.52, + "probability": 0.9989 + }, + { + "start": 6107.54, + "end": 6112.8, + "probability": 0.9492 + }, + { + "start": 6113.24, + "end": 6116.2, + "probability": 0.9985 + }, + { + "start": 6116.74, + "end": 6120.48, + "probability": 0.9949 + }, + { + "start": 6120.9, + "end": 6123.44, + "probability": 0.9401 + }, + { + "start": 6124.74, + "end": 6127.68, + "probability": 0.9912 + }, + { + "start": 6128.44, + "end": 6130.84, + "probability": 0.9905 + }, + { + "start": 6131.62, + "end": 6135.94, + "probability": 0.9692 + }, + { + "start": 6135.94, + "end": 6140.86, + "probability": 0.9641 + }, + { + "start": 6141.6, + "end": 6145.08, + "probability": 0.7033 + }, + { + "start": 6146.02, + "end": 6147.0, + "probability": 0.6177 + }, + { + "start": 6147.14, + "end": 6148.24, + "probability": 0.6217 + }, + { + "start": 6148.24, + "end": 6151.16, + "probability": 0.7991 + }, + { + "start": 6151.78, + "end": 6152.5, + "probability": 0.2421 + }, + { + "start": 6152.5, + "end": 6157.76, + "probability": 0.8479 + }, + { + "start": 6158.18, + "end": 6158.78, + "probability": 0.5047 + }, + { + "start": 6158.78, + "end": 6159.22, + "probability": 0.8031 + }, + { + "start": 6160.66, + "end": 6162.28, + "probability": 0.8097 + }, + { + "start": 6163.14, + "end": 6164.34, + "probability": 0.4682 + }, + { + "start": 6165.08, + "end": 6166.06, + "probability": 0.5354 + }, + { + "start": 6166.62, + "end": 6167.26, + "probability": 0.8438 + }, + { + "start": 6167.7, + "end": 6168.26, + "probability": 0.753 + }, + { + "start": 6168.76, + "end": 6169.16, + "probability": 0.8954 + }, + { + "start": 6169.52, + "end": 6170.64, + "probability": 0.3769 + }, + { + "start": 6171.1, + "end": 6171.48, + "probability": 0.4251 + }, + { + "start": 6172.22, + "end": 6173.26, + "probability": 0.8389 + }, + { + "start": 6174.0, + "end": 6177.92, + "probability": 0.9254 + }, + { + "start": 6178.54, + "end": 6179.82, + "probability": 0.9375 + }, + { + "start": 6180.64, + "end": 6184.22, + "probability": 0.9275 + }, + { + "start": 6185.36, + "end": 6185.78, + "probability": 0.2669 + }, + { + "start": 6187.02, + "end": 6189.5, + "probability": 0.0542 + }, + { + "start": 6189.66, + "end": 6190.68, + "probability": 0.6906 + }, + { + "start": 6191.2, + "end": 6191.68, + "probability": 0.4632 + }, + { + "start": 6192.3, + "end": 6192.58, + "probability": 0.8314 + }, + { + "start": 6193.54, + "end": 6194.78, + "probability": 0.645 + }, + { + "start": 6195.8, + "end": 6196.14, + "probability": 0.0505 + }, + { + "start": 6196.74, + "end": 6202.46, + "probability": 0.8711 + }, + { + "start": 6203.24, + "end": 6203.66, + "probability": 0.2351 + }, + { + "start": 6204.4, + "end": 6205.74, + "probability": 0.7077 + }, + { + "start": 6206.62, + "end": 6210.36, + "probability": 0.8805 + }, + { + "start": 6210.94, + "end": 6212.38, + "probability": 0.8905 + }, + { + "start": 6213.04, + "end": 6214.3, + "probability": 0.947 + }, + { + "start": 6215.1, + "end": 6215.96, + "probability": 0.6032 + }, + { + "start": 6216.74, + "end": 6217.36, + "probability": 0.6719 + }, + { + "start": 6217.94, + "end": 6218.68, + "probability": 0.8447 + }, + { + "start": 6219.24, + "end": 6219.64, + "probability": 0.3222 + }, + { + "start": 6219.9, + "end": 6220.68, + "probability": 0.7078 + }, + { + "start": 6221.08, + "end": 6221.46, + "probability": 0.8599 + }, + { + "start": 6221.98, + "end": 6224.0, + "probability": 0.7561 + }, + { + "start": 6224.76, + "end": 6225.14, + "probability": 0.8873 + }, + { + "start": 6225.72, + "end": 6228.78, + "probability": 0.9604 + }, + { + "start": 6229.52, + "end": 6232.68, + "probability": 0.9857 + }, + { + "start": 6233.2, + "end": 6235.54, + "probability": 0.9265 + }, + { + "start": 6236.22, + "end": 6238.92, + "probability": 0.7424 + }, + { + "start": 6240.16, + "end": 6240.7, + "probability": 0.8628 + }, + { + "start": 6241.42, + "end": 6242.02, + "probability": 0.8052 + }, + { + "start": 6242.66, + "end": 6243.7, + "probability": 0.843 + }, + { + "start": 6244.34, + "end": 6244.78, + "probability": 0.7948 + }, + { + "start": 6246.44, + "end": 6247.02, + "probability": 0.8016 + }, + { + "start": 6247.56, + "end": 6249.74, + "probability": 0.8898 + }, + { + "start": 6250.3, + "end": 6253.22, + "probability": 0.8497 + }, + { + "start": 6254.12, + "end": 6256.04, + "probability": 0.3127 + }, + { + "start": 6256.72, + "end": 6257.0, + "probability": 0.3809 + }, + { + "start": 6258.86, + "end": 6259.88, + "probability": 0.4812 + }, + { + "start": 6261.16, + "end": 6262.7, + "probability": 0.9489 + }, + { + "start": 6263.8, + "end": 6265.32, + "probability": 0.9378 + }, + { + "start": 6266.3, + "end": 6268.42, + "probability": 0.7404 + }, + { + "start": 6269.1, + "end": 6269.68, + "probability": 0.6741 + }, + { + "start": 6270.94, + "end": 6273.0, + "probability": 0.6615 + }, + { + "start": 6273.62, + "end": 6274.51, + "probability": 0.1868 + }, + { + "start": 6274.68, + "end": 6280.94, + "probability": 0.589 + }, + { + "start": 6284.44, + "end": 6288.3, + "probability": 0.5521 + }, + { + "start": 6288.92, + "end": 6291.28, + "probability": 0.8788 + }, + { + "start": 6292.32, + "end": 6293.74, + "probability": 0.0749 + }, + { + "start": 6293.84, + "end": 6294.32, + "probability": 0.0355 + }, + { + "start": 6294.5, + "end": 6295.14, + "probability": 0.7709 + }, + { + "start": 6296.38, + "end": 6298.26, + "probability": 0.1461 + }, + { + "start": 6310.52, + "end": 6314.18, + "probability": 0.1528 + }, + { + "start": 6320.03, + "end": 6321.04, + "probability": 0.0939 + }, + { + "start": 6321.04, + "end": 6321.44, + "probability": 0.0434 + }, + { + "start": 6324.14, + "end": 6329.18, + "probability": 0.024 + }, + { + "start": 6330.84, + "end": 6333.1, + "probability": 0.0459 + }, + { + "start": 6334.4, + "end": 6334.7, + "probability": 0.4481 + }, + { + "start": 6339.82, + "end": 6340.9, + "probability": 0.1683 + }, + { + "start": 6340.98, + "end": 6343.0, + "probability": 0.2694 + }, + { + "start": 6343.3, + "end": 6345.7, + "probability": 0.1632 + }, + { + "start": 6345.7, + "end": 6346.28, + "probability": 0.0049 + }, + { + "start": 6346.28, + "end": 6346.52, + "probability": 0.0568 + }, + { + "start": 6346.52, + "end": 6346.78, + "probability": 0.132 + }, + { + "start": 6347.62, + "end": 6347.98, + "probability": 0.0396 + }, + { + "start": 6348.0, + "end": 6348.0, + "probability": 0.0 + }, + { + "start": 6348.0, + "end": 6348.0, + "probability": 0.0 + }, + { + "start": 6348.0, + "end": 6348.0, + "probability": 0.0 + }, + { + "start": 6348.0, + "end": 6348.0, + "probability": 0.0 + }, + { + "start": 6348.0, + "end": 6348.0, + "probability": 0.0 + }, + { + "start": 6348.0, + "end": 6348.0, + "probability": 0.0 + }, + { + "start": 6348.0, + "end": 6348.0, + "probability": 0.0 + }, + { + "start": 6348.0, + "end": 6348.0, + "probability": 0.0 + }, + { + "start": 6348.0, + "end": 6348.0, + "probability": 0.0 + }, + { + "start": 6348.91, + "end": 6349.62, + "probability": 0.574 + }, + { + "start": 6349.62, + "end": 6351.22, + "probability": 0.7273 + }, + { + "start": 6351.44, + "end": 6354.29, + "probability": 0.9021 + }, + { + "start": 6356.82, + "end": 6361.96, + "probability": 0.7231 + }, + { + "start": 6363.56, + "end": 6365.48, + "probability": 0.9824 + }, + { + "start": 6366.04, + "end": 6370.26, + "probability": 0.9493 + }, + { + "start": 6370.86, + "end": 6373.34, + "probability": 0.9737 + }, + { + "start": 6373.96, + "end": 6374.76, + "probability": 0.6436 + }, + { + "start": 6374.9, + "end": 6376.86, + "probability": 0.9095 + }, + { + "start": 6384.92, + "end": 6385.34, + "probability": 0.5609 + }, + { + "start": 6385.92, + "end": 6387.12, + "probability": 0.8381 + }, + { + "start": 6387.94, + "end": 6388.3, + "probability": 0.9686 + }, + { + "start": 6389.18, + "end": 6389.74, + "probability": 0.9722 + }, + { + "start": 6391.14, + "end": 6393.02, + "probability": 0.8578 + }, + { + "start": 6393.14, + "end": 6394.44, + "probability": 0.0382 + }, + { + "start": 6395.44, + "end": 6396.22, + "probability": 0.8171 + }, + { + "start": 6396.76, + "end": 6397.38, + "probability": 0.6096 + }, + { + "start": 6397.62, + "end": 6402.02, + "probability": 0.6741 + }, + { + "start": 6402.3, + "end": 6406.08, + "probability": 0.6948 + }, + { + "start": 6406.2, + "end": 6407.98, + "probability": 0.9885 + }, + { + "start": 6408.62, + "end": 6409.54, + "probability": 0.9303 + }, + { + "start": 6411.44, + "end": 6412.48, + "probability": 0.9429 + }, + { + "start": 6413.44, + "end": 6416.2, + "probability": 0.9572 + }, + { + "start": 6417.04, + "end": 6421.94, + "probability": 0.854 + }, + { + "start": 6422.7, + "end": 6424.2, + "probability": 0.4893 + }, + { + "start": 6424.82, + "end": 6428.8, + "probability": 0.9584 + }, + { + "start": 6428.92, + "end": 6430.8, + "probability": 0.9468 + }, + { + "start": 6430.88, + "end": 6433.36, + "probability": 0.7954 + }, + { + "start": 6434.64, + "end": 6435.14, + "probability": 0.8918 + }, + { + "start": 6435.62, + "end": 6437.58, + "probability": 0.8194 + }, + { + "start": 6437.86, + "end": 6439.46, + "probability": 0.9625 + }, + { + "start": 6440.08, + "end": 6442.04, + "probability": 0.7505 + }, + { + "start": 6445.1, + "end": 6446.06, + "probability": 0.859 + }, + { + "start": 6448.68, + "end": 6450.9, + "probability": 0.9967 + }, + { + "start": 6452.46, + "end": 6456.14, + "probability": 0.9083 + }, + { + "start": 6456.76, + "end": 6458.8, + "probability": 0.9905 + }, + { + "start": 6461.02, + "end": 6462.06, + "probability": 0.9982 + }, + { + "start": 6463.38, + "end": 6467.96, + "probability": 0.6246 + }, + { + "start": 6468.08, + "end": 6469.71, + "probability": 0.518 + }, + { + "start": 6471.1, + "end": 6472.96, + "probability": 0.1271 + }, + { + "start": 6472.96, + "end": 6475.76, + "probability": 0.5844 + }, + { + "start": 6476.38, + "end": 6478.24, + "probability": 0.9287 + }, + { + "start": 6479.06, + "end": 6480.38, + "probability": 0.7487 + }, + { + "start": 6480.98, + "end": 6482.46, + "probability": 0.9766 + }, + { + "start": 6483.08, + "end": 6485.74, + "probability": 0.9523 + }, + { + "start": 6486.74, + "end": 6487.9, + "probability": 0.8494 + }, + { + "start": 6488.06, + "end": 6488.58, + "probability": 0.9013 + }, + { + "start": 6489.02, + "end": 6489.36, + "probability": 0.8514 + }, + { + "start": 6489.6, + "end": 6490.7, + "probability": 0.9941 + }, + { + "start": 6491.64, + "end": 6495.58, + "probability": 0.952 + }, + { + "start": 6496.32, + "end": 6497.72, + "probability": 0.9476 + }, + { + "start": 6498.42, + "end": 6500.7, + "probability": 0.9909 + }, + { + "start": 6502.12, + "end": 6502.94, + "probability": 0.8074 + }, + { + "start": 6503.48, + "end": 6503.66, + "probability": 0.0173 + }, + { + "start": 6505.6, + "end": 6506.48, + "probability": 0.9719 + }, + { + "start": 6506.68, + "end": 6509.04, + "probability": 0.9412 + }, + { + "start": 6509.44, + "end": 6510.61, + "probability": 0.9049 + }, + { + "start": 6511.36, + "end": 6513.5, + "probability": 0.9326 + }, + { + "start": 6513.62, + "end": 6517.22, + "probability": 0.9701 + }, + { + "start": 6518.04, + "end": 6520.64, + "probability": 0.9773 + }, + { + "start": 6521.62, + "end": 6522.48, + "probability": 0.8588 + }, + { + "start": 6523.12, + "end": 6524.28, + "probability": 0.8916 + }, + { + "start": 6524.82, + "end": 6526.64, + "probability": 0.7968 + }, + { + "start": 6527.02, + "end": 6528.98, + "probability": 0.9043 + }, + { + "start": 6529.52, + "end": 6529.86, + "probability": 0.8002 + }, + { + "start": 6533.09, + "end": 6534.3, + "probability": 0.8639 + }, + { + "start": 6534.32, + "end": 6535.6, + "probability": 0.7514 + }, + { + "start": 6535.98, + "end": 6538.98, + "probability": 0.8906 + }, + { + "start": 6539.7, + "end": 6540.9, + "probability": 0.9264 + }, + { + "start": 6541.64, + "end": 6542.6, + "probability": 0.8959 + }, + { + "start": 6542.6, + "end": 6544.1, + "probability": 0.88 + }, + { + "start": 6557.1, + "end": 6557.24, + "probability": 0.0041 + }, + { + "start": 6557.26, + "end": 6560.58, + "probability": 0.0771 + }, + { + "start": 6560.58, + "end": 6562.94, + "probability": 0.5578 + }, + { + "start": 6563.72, + "end": 6566.4, + "probability": 0.3405 + }, + { + "start": 6566.76, + "end": 6569.46, + "probability": 0.0558 + }, + { + "start": 6580.1, + "end": 6580.76, + "probability": 0.3681 + }, + { + "start": 6580.82, + "end": 6580.82, + "probability": 0.4151 + }, + { + "start": 6583.44, + "end": 6583.86, + "probability": 0.0415 + }, + { + "start": 6584.48, + "end": 6585.2, + "probability": 0.2072 + }, + { + "start": 6585.28, + "end": 6590.96, + "probability": 0.0235 + }, + { + "start": 6591.06, + "end": 6594.44, + "probability": 0.0164 + }, + { + "start": 6595.05, + "end": 6595.88, + "probability": 0.2013 + }, + { + "start": 6595.88, + "end": 6595.88, + "probability": 0.0314 + }, + { + "start": 6595.88, + "end": 6595.96, + "probability": 0.024 + }, + { + "start": 6595.96, + "end": 6601.02, + "probability": 0.7079 + }, + { + "start": 6601.86, + "end": 6605.14, + "probability": 0.8773 + }, + { + "start": 6605.28, + "end": 6608.72, + "probability": 0.9969 + }, + { + "start": 6609.4, + "end": 6611.42, + "probability": 0.9432 + }, + { + "start": 6611.62, + "end": 6615.32, + "probability": 0.9975 + }, + { + "start": 6615.94, + "end": 6621.64, + "probability": 0.9805 + }, + { + "start": 6622.28, + "end": 6625.9, + "probability": 0.9116 + }, + { + "start": 6626.34, + "end": 6629.56, + "probability": 0.9185 + }, + { + "start": 6629.8, + "end": 6630.0, + "probability": 0.6619 + }, + { + "start": 6630.28, + "end": 6631.68, + "probability": 0.6481 + }, + { + "start": 6632.44, + "end": 6633.34, + "probability": 0.877 + }, + { + "start": 6634.6, + "end": 6635.5, + "probability": 0.5915 + }, + { + "start": 6637.16, + "end": 6639.7, + "probability": 0.923 + }, + { + "start": 6643.32, + "end": 6646.82, + "probability": 0.9738 + }, + { + "start": 6647.08, + "end": 6649.38, + "probability": 0.7367 + }, + { + "start": 6649.98, + "end": 6653.48, + "probability": 0.3231 + }, + { + "start": 6659.76, + "end": 6661.7, + "probability": 0.661 + }, + { + "start": 6662.64, + "end": 6662.78, + "probability": 0.3823 + }, + { + "start": 6663.18, + "end": 6666.02, + "probability": 0.8563 + }, + { + "start": 6666.86, + "end": 6672.54, + "probability": 0.9893 + }, + { + "start": 6673.08, + "end": 6675.6, + "probability": 0.8659 + }, + { + "start": 6676.7, + "end": 6680.28, + "probability": 0.9803 + }, + { + "start": 6680.7, + "end": 6686.06, + "probability": 0.9961 + }, + { + "start": 6686.06, + "end": 6692.1, + "probability": 0.9855 + }, + { + "start": 6692.1, + "end": 6696.04, + "probability": 0.8101 + }, + { + "start": 6697.02, + "end": 6702.72, + "probability": 0.9878 + }, + { + "start": 6703.22, + "end": 6706.82, + "probability": 0.9761 + }, + { + "start": 6706.82, + "end": 6710.66, + "probability": 0.9989 + }, + { + "start": 6711.7, + "end": 6716.68, + "probability": 0.9971 + }, + { + "start": 6717.22, + "end": 6722.04, + "probability": 0.9474 + }, + { + "start": 6722.84, + "end": 6725.2, + "probability": 0.9545 + }, + { + "start": 6725.2, + "end": 6729.22, + "probability": 0.983 + }, + { + "start": 6729.74, + "end": 6733.04, + "probability": 0.9818 + }, + { + "start": 6733.58, + "end": 6737.1, + "probability": 0.9603 + }, + { + "start": 6737.76, + "end": 6739.04, + "probability": 0.7012 + }, + { + "start": 6739.14, + "end": 6740.94, + "probability": 0.803 + }, + { + "start": 6741.38, + "end": 6743.96, + "probability": 0.9272 + }, + { + "start": 6744.42, + "end": 6748.1, + "probability": 0.9779 + }, + { + "start": 6748.8, + "end": 6749.04, + "probability": 0.506 + }, + { + "start": 6749.04, + "end": 6749.64, + "probability": 0.744 + }, + { + "start": 6750.66, + "end": 6752.22, + "probability": 0.937 + }, + { + "start": 6752.48, + "end": 6753.36, + "probability": 0.7061 + }, + { + "start": 6755.22, + "end": 6756.58, + "probability": 0.9249 + }, + { + "start": 6758.18, + "end": 6758.8, + "probability": 0.9403 + }, + { + "start": 6759.36, + "end": 6760.36, + "probability": 0.9026 + }, + { + "start": 6760.62, + "end": 6761.06, + "probability": 0.975 + }, + { + "start": 6761.48, + "end": 6763.28, + "probability": 0.9678 + }, + { + "start": 6763.76, + "end": 6765.38, + "probability": 0.5771 + }, + { + "start": 6766.0, + "end": 6767.1, + "probability": 0.9417 + }, + { + "start": 6771.18, + "end": 6773.88, + "probability": 0.2574 + }, + { + "start": 6775.1, + "end": 6777.32, + "probability": 0.721 + }, + { + "start": 6778.42, + "end": 6781.7, + "probability": 0.8275 + }, + { + "start": 6783.36, + "end": 6783.46, + "probability": 0.6034 + }, + { + "start": 6783.46, + "end": 6783.86, + "probability": 0.4789 + }, + { + "start": 6784.94, + "end": 6785.72, + "probability": 0.7261 + }, + { + "start": 6787.1, + "end": 6788.02, + "probability": 0.6418 + }, + { + "start": 6789.62, + "end": 6791.24, + "probability": 0.0044 + }, + { + "start": 6792.6, + "end": 6795.9, + "probability": 0.9648 + }, + { + "start": 6796.58, + "end": 6797.66, + "probability": 0.9787 + }, + { + "start": 6798.82, + "end": 6800.08, + "probability": 0.9505 + }, + { + "start": 6801.06, + "end": 6803.04, + "probability": 0.8986 + }, + { + "start": 6803.82, + "end": 6805.48, + "probability": 0.9985 + }, + { + "start": 6806.42, + "end": 6807.4, + "probability": 0.9613 + }, + { + "start": 6808.14, + "end": 6809.54, + "probability": 0.9873 + }, + { + "start": 6810.92, + "end": 6811.64, + "probability": 0.9814 + }, + { + "start": 6813.95, + "end": 6815.92, + "probability": 0.5953 + }, + { + "start": 6817.06, + "end": 6818.86, + "probability": 0.7279 + }, + { + "start": 6819.88, + "end": 6821.64, + "probability": 0.9564 + }, + { + "start": 6822.82, + "end": 6825.48, + "probability": 0.9426 + }, + { + "start": 6826.42, + "end": 6829.6, + "probability": 0.9534 + }, + { + "start": 6831.16, + "end": 6833.36, + "probability": 0.6983 + }, + { + "start": 6834.34, + "end": 6836.42, + "probability": 0.9968 + }, + { + "start": 6837.06, + "end": 6839.96, + "probability": 0.9788 + }, + { + "start": 6840.7, + "end": 6842.04, + "probability": 0.9826 + }, + { + "start": 6842.58, + "end": 6845.52, + "probability": 0.8818 + }, + { + "start": 6846.16, + "end": 6849.34, + "probability": 0.9933 + }, + { + "start": 6849.96, + "end": 6852.9, + "probability": 0.9967 + }, + { + "start": 6854.74, + "end": 6855.2, + "probability": 0.5597 + }, + { + "start": 6855.38, + "end": 6857.24, + "probability": 0.9358 + }, + { + "start": 6857.46, + "end": 6858.26, + "probability": 0.5343 + }, + { + "start": 6858.32, + "end": 6859.2, + "probability": 0.6824 + }, + { + "start": 6859.88, + "end": 6863.28, + "probability": 0.9412 + }, + { + "start": 6863.94, + "end": 6865.84, + "probability": 0.9649 + }, + { + "start": 6866.42, + "end": 6869.62, + "probability": 0.9564 + }, + { + "start": 6870.82, + "end": 6872.2, + "probability": 0.9196 + }, + { + "start": 6873.04, + "end": 6875.38, + "probability": 0.9927 + }, + { + "start": 6875.98, + "end": 6879.66, + "probability": 0.9858 + }, + { + "start": 6879.66, + "end": 6883.78, + "probability": 0.9963 + }, + { + "start": 6884.82, + "end": 6886.54, + "probability": 0.9972 + }, + { + "start": 6887.08, + "end": 6889.8, + "probability": 0.9966 + }, + { + "start": 6891.3, + "end": 6894.98, + "probability": 0.9704 + }, + { + "start": 6895.8, + "end": 6899.44, + "probability": 0.9839 + }, + { + "start": 6899.44, + "end": 6902.52, + "probability": 0.9968 + }, + { + "start": 6903.4, + "end": 6905.66, + "probability": 0.997 + }, + { + "start": 6906.28, + "end": 6909.7, + "probability": 0.9989 + }, + { + "start": 6910.3, + "end": 6911.76, + "probability": 0.7468 + }, + { + "start": 6912.94, + "end": 6914.84, + "probability": 0.9856 + }, + { + "start": 6915.28, + "end": 6918.56, + "probability": 0.9553 + }, + { + "start": 6918.7, + "end": 6919.34, + "probability": 0.73 + }, + { + "start": 6919.68, + "end": 6921.02, + "probability": 0.9774 + }, + { + "start": 6921.76, + "end": 6925.22, + "probability": 0.9969 + }, + { + "start": 6925.22, + "end": 6927.68, + "probability": 0.9966 + }, + { + "start": 6928.6, + "end": 6930.18, + "probability": 0.7364 + }, + { + "start": 6930.94, + "end": 6931.7, + "probability": 0.9911 + }, + { + "start": 6932.5, + "end": 6933.05, + "probability": 0.6958 + }, + { + "start": 6933.78, + "end": 6935.36, + "probability": 0.9751 + }, + { + "start": 6935.7, + "end": 6937.08, + "probability": 0.9617 + }, + { + "start": 6937.18, + "end": 6939.4, + "probability": 0.9974 + }, + { + "start": 6940.06, + "end": 6942.96, + "probability": 0.9976 + }, + { + "start": 6943.4, + "end": 6946.14, + "probability": 0.9873 + }, + { + "start": 6946.42, + "end": 6946.92, + "probability": 0.8514 + }, + { + "start": 6947.44, + "end": 6949.82, + "probability": 0.8127 + }, + { + "start": 6957.0, + "end": 6959.2, + "probability": 0.8488 + }, + { + "start": 6960.04, + "end": 6964.42, + "probability": 0.9707 + }, + { + "start": 6965.84, + "end": 6967.02, + "probability": 0.9132 + }, + { + "start": 6970.36, + "end": 6975.5, + "probability": 0.9561 + }, + { + "start": 6977.66, + "end": 6978.36, + "probability": 0.015 + }, + { + "start": 6978.44, + "end": 6978.9, + "probability": 0.3128 + }, + { + "start": 6979.18, + "end": 6980.34, + "probability": 0.6085 + }, + { + "start": 6980.62, + "end": 6981.25, + "probability": 0.9277 + }, + { + "start": 6981.94, + "end": 6982.78, + "probability": 0.7705 + }, + { + "start": 6983.82, + "end": 6984.24, + "probability": 0.0343 + }, + { + "start": 6984.76, + "end": 6985.16, + "probability": 0.7513 + }, + { + "start": 6985.96, + "end": 6986.28, + "probability": 0.7753 + }, + { + "start": 6986.38, + "end": 6986.7, + "probability": 0.9389 + }, + { + "start": 6988.18, + "end": 6990.22, + "probability": 0.8076 + }, + { + "start": 6992.34, + "end": 6995.2, + "probability": 0.9579 + }, + { + "start": 6995.24, + "end": 6996.3, + "probability": 0.9829 + }, + { + "start": 6997.7, + "end": 6999.92, + "probability": 0.9915 + }, + { + "start": 6999.92, + "end": 7002.78, + "probability": 0.9979 + }, + { + "start": 7003.88, + "end": 7008.74, + "probability": 0.9967 + }, + { + "start": 7009.52, + "end": 7011.82, + "probability": 0.9139 + }, + { + "start": 7011.88, + "end": 7016.5, + "probability": 0.9955 + }, + { + "start": 7017.02, + "end": 7020.96, + "probability": 0.9943 + }, + { + "start": 7020.96, + "end": 7021.06, + "probability": 0.1529 + }, + { + "start": 7021.1, + "end": 7021.84, + "probability": 0.4839 + }, + { + "start": 7022.39, + "end": 7023.96, + "probability": 0.5997 + }, + { + "start": 7023.96, + "end": 7029.06, + "probability": 0.9546 + }, + { + "start": 7029.12, + "end": 7029.84, + "probability": 0.6481 + }, + { + "start": 7029.98, + "end": 7030.12, + "probability": 0.8306 + }, + { + "start": 7030.48, + "end": 7031.36, + "probability": 0.8575 + }, + { + "start": 7031.66, + "end": 7032.42, + "probability": 0.9686 + }, + { + "start": 7033.4, + "end": 7036.48, + "probability": 0.9893 + }, + { + "start": 7036.48, + "end": 7039.24, + "probability": 0.9968 + }, + { + "start": 7039.82, + "end": 7042.68, + "probability": 0.9874 + }, + { + "start": 7043.54, + "end": 7047.52, + "probability": 0.9928 + }, + { + "start": 7048.18, + "end": 7051.88, + "probability": 0.9843 + }, + { + "start": 7052.96, + "end": 7055.42, + "probability": 0.999 + }, + { + "start": 7055.5, + "end": 7059.86, + "probability": 0.9749 + }, + { + "start": 7059.86, + "end": 7062.56, + "probability": 0.9966 + }, + { + "start": 7063.38, + "end": 7067.3, + "probability": 0.9902 + }, + { + "start": 7068.04, + "end": 7071.58, + "probability": 0.9505 + }, + { + "start": 7071.58, + "end": 7076.48, + "probability": 0.9897 + }, + { + "start": 7078.3, + "end": 7082.0, + "probability": 0.987 + }, + { + "start": 7082.0, + "end": 7086.44, + "probability": 0.9935 + }, + { + "start": 7086.5, + "end": 7087.08, + "probability": 0.6786 + }, + { + "start": 7087.96, + "end": 7089.14, + "probability": 0.9388 + }, + { + "start": 7089.24, + "end": 7092.46, + "probability": 0.9688 + }, + { + "start": 7093.24, + "end": 7096.62, + "probability": 0.9883 + }, + { + "start": 7097.38, + "end": 7102.82, + "probability": 0.996 + }, + { + "start": 7103.64, + "end": 7106.48, + "probability": 0.8452 + }, + { + "start": 7106.8, + "end": 7109.92, + "probability": 0.9948 + }, + { + "start": 7109.92, + "end": 7112.68, + "probability": 0.9985 + }, + { + "start": 7113.9, + "end": 7116.22, + "probability": 0.9976 + }, + { + "start": 7117.06, + "end": 7120.72, + "probability": 0.9985 + }, + { + "start": 7121.76, + "end": 7125.06, + "probability": 0.998 + }, + { + "start": 7126.56, + "end": 7127.42, + "probability": 0.6981 + }, + { + "start": 7127.74, + "end": 7132.12, + "probability": 0.9966 + }, + { + "start": 7132.82, + "end": 7135.96, + "probability": 0.9951 + }, + { + "start": 7137.02, + "end": 7142.52, + "probability": 0.9954 + }, + { + "start": 7143.16, + "end": 7146.58, + "probability": 0.9883 + }, + { + "start": 7148.0, + "end": 7154.58, + "probability": 0.9709 + }, + { + "start": 7154.58, + "end": 7160.98, + "probability": 0.9983 + }, + { + "start": 7161.5, + "end": 7164.6, + "probability": 0.9992 + }, + { + "start": 7165.22, + "end": 7165.7, + "probability": 0.7333 + }, + { + "start": 7166.48, + "end": 7168.26, + "probability": 0.4902 + }, + { + "start": 7168.96, + "end": 7170.08, + "probability": 0.9712 + }, + { + "start": 7170.64, + "end": 7170.98, + "probability": 0.4219 + }, + { + "start": 7171.9, + "end": 7172.72, + "probability": 0.7373 + }, + { + "start": 7174.23, + "end": 7176.5, + "probability": 0.967 + }, + { + "start": 7177.72, + "end": 7178.18, + "probability": 0.9031 + }, + { + "start": 7178.7, + "end": 7180.87, + "probability": 0.9377 + }, + { + "start": 7181.5, + "end": 7182.46, + "probability": 0.9716 + }, + { + "start": 7183.3, + "end": 7183.48, + "probability": 0.9191 + }, + { + "start": 7184.46, + "end": 7185.96, + "probability": 0.802 + }, + { + "start": 7186.64, + "end": 7186.94, + "probability": 0.6162 + }, + { + "start": 7187.84, + "end": 7188.48, + "probability": 0.2446 + }, + { + "start": 7189.12, + "end": 7189.88, + "probability": 0.6553 + }, + { + "start": 7190.34, + "end": 7190.68, + "probability": 0.867 + }, + { + "start": 7191.28, + "end": 7192.9, + "probability": 0.7633 + }, + { + "start": 7193.66, + "end": 7194.04, + "probability": 0.8247 + }, + { + "start": 7194.44, + "end": 7196.22, + "probability": 0.9512 + }, + { + "start": 7197.1, + "end": 7198.44, + "probability": 0.2299 + }, + { + "start": 7198.44, + "end": 7200.19, + "probability": 0.7375 + }, + { + "start": 7224.16, + "end": 7226.06, + "probability": 0.5983 + }, + { + "start": 7226.9, + "end": 7228.19, + "probability": 0.7032 + }, + { + "start": 7228.72, + "end": 7229.54, + "probability": 0.6706 + }, + { + "start": 7231.08, + "end": 7234.08, + "probability": 0.9856 + }, + { + "start": 7234.62, + "end": 7236.62, + "probability": 0.9881 + }, + { + "start": 7238.74, + "end": 7242.64, + "probability": 0.9544 + }, + { + "start": 7242.72, + "end": 7244.08, + "probability": 0.738 + }, + { + "start": 7244.74, + "end": 7247.28, + "probability": 0.9862 + }, + { + "start": 7247.92, + "end": 7249.75, + "probability": 0.9309 + }, + { + "start": 7250.12, + "end": 7252.32, + "probability": 0.9887 + }, + { + "start": 7253.3, + "end": 7255.56, + "probability": 0.9775 + }, + { + "start": 7255.56, + "end": 7255.94, + "probability": 0.8244 + }, + { + "start": 7256.36, + "end": 7258.04, + "probability": 0.9243 + }, + { + "start": 7259.58, + "end": 7261.76, + "probability": 0.9207 + }, + { + "start": 7262.28, + "end": 7266.14, + "probability": 0.9089 + }, + { + "start": 7267.18, + "end": 7270.04, + "probability": 0.8604 + }, + { + "start": 7271.22, + "end": 7272.0, + "probability": 0.9175 + }, + { + "start": 7272.58, + "end": 7273.52, + "probability": 0.529 + }, + { + "start": 7274.52, + "end": 7276.96, + "probability": 0.8033 + }, + { + "start": 7278.12, + "end": 7279.2, + "probability": 0.7343 + }, + { + "start": 7280.88, + "end": 7281.52, + "probability": 0.6999 + }, + { + "start": 7282.44, + "end": 7283.42, + "probability": 0.4902 + }, + { + "start": 7284.26, + "end": 7286.26, + "probability": 0.9466 + }, + { + "start": 7287.86, + "end": 7288.08, + "probability": 0.6149 + }, + { + "start": 7289.76, + "end": 7291.46, + "probability": 0.7292 + }, + { + "start": 7291.76, + "end": 7293.06, + "probability": 0.9703 + }, + { + "start": 7293.22, + "end": 7295.58, + "probability": 0.8326 + }, + { + "start": 7296.12, + "end": 7296.6, + "probability": 0.934 + }, + { + "start": 7296.98, + "end": 7297.7, + "probability": 0.7254 + }, + { + "start": 7298.48, + "end": 7299.56, + "probability": 0.9844 + }, + { + "start": 7301.82, + "end": 7304.6, + "probability": 0.6938 + }, + { + "start": 7305.96, + "end": 7308.34, + "probability": 0.5439 + }, + { + "start": 7309.44, + "end": 7310.39, + "probability": 0.9418 + }, + { + "start": 7311.26, + "end": 7312.08, + "probability": 0.9686 + }, + { + "start": 7313.38, + "end": 7316.84, + "probability": 0.9972 + }, + { + "start": 7317.36, + "end": 7318.6, + "probability": 0.9697 + }, + { + "start": 7319.64, + "end": 7321.78, + "probability": 0.9788 + }, + { + "start": 7323.98, + "end": 7324.08, + "probability": 0.8515 + }, + { + "start": 7325.22, + "end": 7326.24, + "probability": 0.9517 + }, + { + "start": 7327.72, + "end": 7330.2, + "probability": 0.9716 + }, + { + "start": 7330.34, + "end": 7332.74, + "probability": 0.9977 + }, + { + "start": 7333.48, + "end": 7335.14, + "probability": 0.7482 + }, + { + "start": 7335.9, + "end": 7338.44, + "probability": 0.9977 + }, + { + "start": 7340.36, + "end": 7342.52, + "probability": 0.9946 + }, + { + "start": 7342.62, + "end": 7344.96, + "probability": 0.9552 + }, + { + "start": 7345.38, + "end": 7345.64, + "probability": 0.9291 + }, + { + "start": 7346.42, + "end": 7347.12, + "probability": 0.8551 + }, + { + "start": 7348.02, + "end": 7352.23, + "probability": 0.9646 + }, + { + "start": 7353.12, + "end": 7357.32, + "probability": 0.9777 + }, + { + "start": 7359.42, + "end": 7361.28, + "probability": 0.9748 + }, + { + "start": 7361.94, + "end": 7362.5, + "probability": 0.9434 + }, + { + "start": 7363.16, + "end": 7364.62, + "probability": 0.9985 + }, + { + "start": 7364.94, + "end": 7366.4, + "probability": 0.917 + }, + { + "start": 7367.2, + "end": 7368.28, + "probability": 0.8531 + }, + { + "start": 7368.36, + "end": 7370.58, + "probability": 0.9963 + }, + { + "start": 7372.22, + "end": 7375.42, + "probability": 0.9972 + }, + { + "start": 7376.16, + "end": 7376.88, + "probability": 0.8873 + }, + { + "start": 7377.74, + "end": 7378.8, + "probability": 0.7463 + }, + { + "start": 7379.6, + "end": 7380.78, + "probability": 0.7445 + }, + { + "start": 7381.3, + "end": 7383.96, + "probability": 0.9951 + }, + { + "start": 7384.82, + "end": 7385.16, + "probability": 0.896 + }, + { + "start": 7385.86, + "end": 7386.78, + "probability": 0.9203 + }, + { + "start": 7387.24, + "end": 7387.6, + "probability": 0.8646 + }, + { + "start": 7388.16, + "end": 7388.74, + "probability": 0.6469 + }, + { + "start": 7389.04, + "end": 7390.24, + "probability": 0.7473 + }, + { + "start": 7392.1, + "end": 7392.44, + "probability": 0.8202 + }, + { + "start": 7400.58, + "end": 7402.56, + "probability": 0.1707 + }, + { + "start": 7402.56, + "end": 7402.56, + "probability": 0.1981 + }, + { + "start": 7402.59, + "end": 7402.94, + "probability": 0.1324 + }, + { + "start": 7403.02, + "end": 7403.02, + "probability": 0.0487 + }, + { + "start": 7403.16, + "end": 7403.26, + "probability": 0.4144 + }, + { + "start": 7420.3, + "end": 7422.8, + "probability": 0.6448 + }, + { + "start": 7424.06, + "end": 7429.54, + "probability": 0.9595 + }, + { + "start": 7431.08, + "end": 7432.14, + "probability": 0.8168 + }, + { + "start": 7432.26, + "end": 7433.0, + "probability": 0.7038 + }, + { + "start": 7433.28, + "end": 7435.52, + "probability": 0.9847 + }, + { + "start": 7436.26, + "end": 7439.1, + "probability": 0.9702 + }, + { + "start": 7440.1, + "end": 7443.8, + "probability": 0.5801 + }, + { + "start": 7444.16, + "end": 7447.28, + "probability": 0.2639 + }, + { + "start": 7447.28, + "end": 7448.92, + "probability": 0.5351 + }, + { + "start": 7450.3, + "end": 7454.56, + "probability": 0.7261 + }, + { + "start": 7455.38, + "end": 7460.34, + "probability": 0.9472 + }, + { + "start": 7460.38, + "end": 7461.68, + "probability": 0.7226 + }, + { + "start": 7462.46, + "end": 7465.92, + "probability": 0.8037 + }, + { + "start": 7465.98, + "end": 7468.68, + "probability": 0.7728 + }, + { + "start": 7468.74, + "end": 7469.8, + "probability": 0.9036 + }, + { + "start": 7469.9, + "end": 7474.22, + "probability": 0.6362 + }, + { + "start": 7474.22, + "end": 7476.6, + "probability": 0.6652 + }, + { + "start": 7476.6, + "end": 7479.98, + "probability": 0.7525 + }, + { + "start": 7480.1, + "end": 7484.02, + "probability": 0.9662 + }, + { + "start": 7485.14, + "end": 7486.88, + "probability": 0.942 + }, + { + "start": 7487.4, + "end": 7489.9, + "probability": 0.9904 + }, + { + "start": 7491.18, + "end": 7493.68, + "probability": 0.8105 + }, + { + "start": 7494.7, + "end": 7496.9, + "probability": 0.7644 + }, + { + "start": 7496.96, + "end": 7499.92, + "probability": 0.6821 + }, + { + "start": 7499.98, + "end": 7500.58, + "probability": 0.4368 + }, + { + "start": 7501.78, + "end": 7505.82, + "probability": 0.8557 + }, + { + "start": 7506.44, + "end": 7508.32, + "probability": 0.6114 + }, + { + "start": 7509.76, + "end": 7510.1, + "probability": 0.4838 + }, + { + "start": 7510.26, + "end": 7511.06, + "probability": 0.7159 + }, + { + "start": 7511.38, + "end": 7511.68, + "probability": 0.8276 + }, + { + "start": 7511.72, + "end": 7516.04, + "probability": 0.9498 + }, + { + "start": 7516.48, + "end": 7517.92, + "probability": 0.9035 + }, + { + "start": 7518.32, + "end": 7519.41, + "probability": 0.7362 + }, + { + "start": 7519.88, + "end": 7522.04, + "probability": 0.9094 + }, + { + "start": 7522.12, + "end": 7523.74, + "probability": 0.986 + }, + { + "start": 7524.58, + "end": 7527.28, + "probability": 0.9387 + }, + { + "start": 7527.36, + "end": 7527.84, + "probability": 0.9572 + }, + { + "start": 7528.7, + "end": 7532.24, + "probability": 0.9924 + }, + { + "start": 7533.26, + "end": 7533.7, + "probability": 0.5959 + }, + { + "start": 7534.96, + "end": 7537.26, + "probability": 0.9359 + }, + { + "start": 7537.8, + "end": 7539.76, + "probability": 0.6411 + }, + { + "start": 7540.72, + "end": 7544.64, + "probability": 0.7637 + }, + { + "start": 7544.76, + "end": 7547.16, + "probability": 0.7909 + }, + { + "start": 7548.06, + "end": 7549.32, + "probability": 0.9733 + }, + { + "start": 7549.74, + "end": 7550.28, + "probability": 0.8539 + }, + { + "start": 7551.56, + "end": 7554.12, + "probability": 0.2105 + }, + { + "start": 7557.28, + "end": 7559.26, + "probability": 0.1233 + }, + { + "start": 7559.48, + "end": 7562.26, + "probability": 0.4161 + }, + { + "start": 7562.26, + "end": 7563.02, + "probability": 0.408 + }, + { + "start": 7563.28, + "end": 7565.92, + "probability": 0.7649 + }, + { + "start": 7566.0, + "end": 7569.66, + "probability": 0.9143 + }, + { + "start": 7570.16, + "end": 7574.3, + "probability": 0.9985 + }, + { + "start": 7574.4, + "end": 7575.74, + "probability": 0.7469 + }, + { + "start": 7576.22, + "end": 7577.74, + "probability": 0.9956 + }, + { + "start": 7578.18, + "end": 7579.22, + "probability": 0.4955 + }, + { + "start": 7579.78, + "end": 7580.88, + "probability": 0.8121 + }, + { + "start": 7581.54, + "end": 7582.58, + "probability": 0.9746 + }, + { + "start": 7586.26, + "end": 7588.32, + "probability": 0.9579 + }, + { + "start": 7590.26, + "end": 7590.86, + "probability": 0.5701 + }, + { + "start": 7592.72, + "end": 7595.26, + "probability": 0.5512 + }, + { + "start": 7595.9, + "end": 7599.48, + "probability": 0.4783 + }, + { + "start": 7601.96, + "end": 7604.06, + "probability": 0.8828 + }, + { + "start": 7606.86, + "end": 7608.68, + "probability": 0.6662 + }, + { + "start": 7610.0, + "end": 7615.08, + "probability": 0.6137 + }, + { + "start": 7615.68, + "end": 7617.2, + "probability": 0.2197 + }, + { + "start": 7619.56, + "end": 7621.14, + "probability": 0.3614 + }, + { + "start": 7622.5, + "end": 7624.36, + "probability": 0.0793 + }, + { + "start": 7625.08, + "end": 7627.46, + "probability": 0.0148 + }, + { + "start": 7631.16, + "end": 7631.54, + "probability": 0.0056 + }, + { + "start": 7633.94, + "end": 7634.78, + "probability": 0.0159 + }, + { + "start": 7634.78, + "end": 7635.5, + "probability": 0.1465 + }, + { + "start": 7647.38, + "end": 7653.62, + "probability": 0.0665 + }, + { + "start": 7658.06, + "end": 7659.2, + "probability": 0.6743 + }, + { + "start": 7667.5, + "end": 7674.64, + "probability": 0.1757 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.16, + "end": 7733.78, + "probability": 0.7594 + }, + { + "start": 7734.48, + "end": 7736.46, + "probability": 0.6967 + }, + { + "start": 7737.32, + "end": 7740.78, + "probability": 0.3423 + }, + { + "start": 7741.8, + "end": 7744.96, + "probability": 0.9204 + }, + { + "start": 7745.16, + "end": 7745.64, + "probability": 0.1468 + }, + { + "start": 7747.64, + "end": 7748.14, + "probability": 0.2086 + }, + { + "start": 7749.76, + "end": 7753.02, + "probability": 0.0194 + }, + { + "start": 7753.11, + "end": 7757.44, + "probability": 0.0351 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + }, + { + "start": 7911.08, + "end": 7911.08, + "probability": 0.0 + } + ], + "segments_count": 2418, + "words_count": 11887, + "avg_words_per_segment": 4.916, + "avg_segment_duration": 2.0154, + "avg_words_per_minute": 90.1546, + "plenum_id": "102267", + "duration": 7911.08, + "title": null, + "plenum_date": "2021-12-07" +} \ No newline at end of file