diff --git "a/108243/metadata.json" "b/108243/metadata.json" new file mode 100644--- /dev/null +++ "b/108243/metadata.json" @@ -0,0 +1,54047 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "108243", + "quality_score": 0.8782, + "per_segment_quality_scores": [ + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.0, + "end": 285.0, + "probability": 0.0 + }, + { + "start": 285.57, + "end": 289.34, + "probability": 0.0103 + }, + { + "start": 291.66, + "end": 294.09, + "probability": 0.02 + }, + { + "start": 299.42, + "end": 300.02, + "probability": 0.0108 + }, + { + "start": 301.16, + "end": 302.68, + "probability": 0.0276 + }, + { + "start": 302.68, + "end": 302.68, + "probability": 0.2051 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.0, + "end": 436.0, + "probability": 0.0 + }, + { + "start": 436.28, + "end": 438.24, + "probability": 0.0901 + }, + { + "start": 439.42, + "end": 440.84, + "probability": 0.0359 + }, + { + "start": 441.63, + "end": 442.4, + "probability": 0.0437 + }, + { + "start": 445.2, + "end": 450.29, + "probability": 0.0767 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 565.0, + "end": 565.0, + "probability": 0.0 + }, + { + "start": 567.6, + "end": 567.7, + "probability": 0.2334 + }, + { + "start": 568.84, + "end": 569.63, + "probability": 0.7583 + }, + { + "start": 570.46, + "end": 572.6, + "probability": 0.7878 + }, + { + "start": 573.26, + "end": 578.04, + "probability": 0.9139 + }, + { + "start": 578.22, + "end": 578.32, + "probability": 0.6536 + }, + { + "start": 579.88, + "end": 585.24, + "probability": 0.8743 + }, + { + "start": 586.06, + "end": 587.32, + "probability": 0.9122 + }, + { + "start": 588.68, + "end": 590.44, + "probability": 0.9982 + }, + { + "start": 590.54, + "end": 592.14, + "probability": 0.8141 + }, + { + "start": 593.38, + "end": 593.82, + "probability": 0.8804 + }, + { + "start": 593.9, + "end": 594.52, + "probability": 0.6449 + }, + { + "start": 594.66, + "end": 595.02, + "probability": 0.8346 + }, + { + "start": 595.2, + "end": 595.62, + "probability": 0.8707 + }, + { + "start": 595.68, + "end": 596.6, + "probability": 0.8619 + }, + { + "start": 596.7, + "end": 596.9, + "probability": 0.7494 + }, + { + "start": 597.12, + "end": 597.56, + "probability": 0.7075 + }, + { + "start": 597.94, + "end": 598.06, + "probability": 0.7043 + }, + { + "start": 598.76, + "end": 600.68, + "probability": 0.8839 + }, + { + "start": 601.58, + "end": 606.06, + "probability": 0.9492 + }, + { + "start": 606.22, + "end": 609.16, + "probability": 0.8049 + }, + { + "start": 609.58, + "end": 610.7, + "probability": 0.6282 + }, + { + "start": 611.2, + "end": 612.62, + "probability": 0.9532 + }, + { + "start": 613.0, + "end": 616.06, + "probability": 0.7016 + }, + { + "start": 616.9, + "end": 617.82, + "probability": 0.8683 + }, + { + "start": 618.16, + "end": 618.38, + "probability": 0.6939 + }, + { + "start": 618.64, + "end": 621.78, + "probability": 0.9498 + }, + { + "start": 622.42, + "end": 622.66, + "probability": 0.9912 + }, + { + "start": 622.74, + "end": 623.16, + "probability": 0.813 + }, + { + "start": 623.26, + "end": 623.6, + "probability": 0.8265 + }, + { + "start": 623.76, + "end": 626.92, + "probability": 0.9927 + }, + { + "start": 628.22, + "end": 629.94, + "probability": 0.9961 + }, + { + "start": 630.3, + "end": 631.82, + "probability": 0.9839 + }, + { + "start": 632.62, + "end": 634.06, + "probability": 0.8542 + }, + { + "start": 634.98, + "end": 636.2, + "probability": 0.9023 + }, + { + "start": 637.62, + "end": 640.68, + "probability": 0.9822 + }, + { + "start": 642.26, + "end": 645.74, + "probability": 0.9703 + }, + { + "start": 646.34, + "end": 648.96, + "probability": 0.9924 + }, + { + "start": 649.2, + "end": 649.88, + "probability": 0.8103 + }, + { + "start": 649.96, + "end": 650.82, + "probability": 0.8755 + }, + { + "start": 651.76, + "end": 655.34, + "probability": 0.9924 + }, + { + "start": 656.26, + "end": 658.32, + "probability": 0.3748 + }, + { + "start": 659.1, + "end": 659.84, + "probability": 0.6762 + }, + { + "start": 660.5, + "end": 662.86, + "probability": 0.9348 + }, + { + "start": 663.22, + "end": 666.04, + "probability": 0.897 + }, + { + "start": 666.68, + "end": 668.06, + "probability": 0.9844 + }, + { + "start": 668.26, + "end": 670.78, + "probability": 0.9971 + }, + { + "start": 671.34, + "end": 671.94, + "probability": 0.9026 + }, + { + "start": 672.68, + "end": 672.88, + "probability": 0.6603 + }, + { + "start": 673.0, + "end": 673.16, + "probability": 0.8239 + }, + { + "start": 673.22, + "end": 673.88, + "probability": 0.7292 + }, + { + "start": 673.98, + "end": 675.3, + "probability": 0.9565 + }, + { + "start": 675.4, + "end": 677.24, + "probability": 0.8611 + }, + { + "start": 677.3, + "end": 678.82, + "probability": 0.9846 + }, + { + "start": 680.02, + "end": 681.7, + "probability": 0.8936 + }, + { + "start": 682.0, + "end": 683.92, + "probability": 0.9452 + }, + { + "start": 685.76, + "end": 688.06, + "probability": 0.8044 + }, + { + "start": 689.64, + "end": 691.12, + "probability": 0.9456 + }, + { + "start": 691.38, + "end": 692.94, + "probability": 0.7807 + }, + { + "start": 694.46, + "end": 696.78, + "probability": 0.8063 + }, + { + "start": 697.58, + "end": 701.22, + "probability": 0.9683 + }, + { + "start": 701.42, + "end": 704.54, + "probability": 0.9303 + }, + { + "start": 705.14, + "end": 705.8, + "probability": 0.9203 + }, + { + "start": 706.46, + "end": 708.98, + "probability": 0.9781 + }, + { + "start": 711.06, + "end": 712.9, + "probability": 0.8531 + }, + { + "start": 713.9, + "end": 714.94, + "probability": 0.776 + }, + { + "start": 715.08, + "end": 715.34, + "probability": 0.8982 + }, + { + "start": 715.4, + "end": 718.2, + "probability": 0.9956 + }, + { + "start": 719.82, + "end": 722.88, + "probability": 0.9649 + }, + { + "start": 728.1, + "end": 728.44, + "probability": 0.6009 + }, + { + "start": 728.54, + "end": 729.48, + "probability": 0.5665 + }, + { + "start": 729.68, + "end": 730.94, + "probability": 0.9632 + }, + { + "start": 731.26, + "end": 731.78, + "probability": 0.5194 + }, + { + "start": 732.3, + "end": 732.8, + "probability": 0.8112 + }, + { + "start": 733.72, + "end": 734.58, + "probability": 0.7673 + }, + { + "start": 734.6, + "end": 735.36, + "probability": 0.6589 + }, + { + "start": 735.6, + "end": 736.26, + "probability": 0.5449 + }, + { + "start": 736.4, + "end": 736.62, + "probability": 0.7374 + }, + { + "start": 737.16, + "end": 737.42, + "probability": 0.6388 + }, + { + "start": 738.04, + "end": 739.96, + "probability": 0.8017 + }, + { + "start": 741.1, + "end": 742.0, + "probability": 0.9695 + }, + { + "start": 743.44, + "end": 743.94, + "probability": 0.8975 + }, + { + "start": 745.26, + "end": 746.64, + "probability": 0.9674 + }, + { + "start": 746.82, + "end": 748.93, + "probability": 0.3007 + }, + { + "start": 750.12, + "end": 751.62, + "probability": 0.7978 + }, + { + "start": 751.76, + "end": 753.88, + "probability": 0.9854 + }, + { + "start": 755.04, + "end": 759.0, + "probability": 0.8474 + }, + { + "start": 759.94, + "end": 765.0, + "probability": 0.9688 + }, + { + "start": 765.62, + "end": 768.1, + "probability": 0.8574 + }, + { + "start": 770.2, + "end": 773.84, + "probability": 0.9715 + }, + { + "start": 774.78, + "end": 777.88, + "probability": 0.9242 + }, + { + "start": 778.74, + "end": 781.1, + "probability": 0.9928 + }, + { + "start": 781.1, + "end": 784.52, + "probability": 0.9855 + }, + { + "start": 785.6, + "end": 788.66, + "probability": 0.8723 + }, + { + "start": 789.64, + "end": 790.26, + "probability": 0.7434 + }, + { + "start": 790.76, + "end": 795.3, + "probability": 0.8911 + }, + { + "start": 795.84, + "end": 796.6, + "probability": 0.6004 + }, + { + "start": 797.64, + "end": 798.74, + "probability": 0.9629 + }, + { + "start": 799.34, + "end": 802.7, + "probability": 0.8213 + }, + { + "start": 803.56, + "end": 806.9, + "probability": 0.9795 + }, + { + "start": 807.64, + "end": 810.06, + "probability": 0.8899 + }, + { + "start": 810.62, + "end": 814.32, + "probability": 0.9773 + }, + { + "start": 814.76, + "end": 817.94, + "probability": 0.7334 + }, + { + "start": 820.64, + "end": 821.82, + "probability": 0.7843 + }, + { + "start": 822.06, + "end": 824.8, + "probability": 0.8685 + }, + { + "start": 825.48, + "end": 826.33, + "probability": 0.8411 + }, + { + "start": 826.66, + "end": 828.26, + "probability": 0.6355 + }, + { + "start": 828.32, + "end": 828.54, + "probability": 0.7485 + }, + { + "start": 829.78, + "end": 830.3, + "probability": 0.7747 + }, + { + "start": 830.92, + "end": 831.67, + "probability": 0.9561 + }, + { + "start": 833.0, + "end": 836.3, + "probability": 0.9607 + }, + { + "start": 837.12, + "end": 838.6, + "probability": 0.9945 + }, + { + "start": 840.16, + "end": 841.1, + "probability": 0.6129 + }, + { + "start": 842.6, + "end": 843.72, + "probability": 0.6702 + }, + { + "start": 845.32, + "end": 848.62, + "probability": 0.9002 + }, + { + "start": 849.66, + "end": 852.03, + "probability": 0.8832 + }, + { + "start": 853.76, + "end": 855.02, + "probability": 0.8175 + }, + { + "start": 856.24, + "end": 857.56, + "probability": 0.9618 + }, + { + "start": 858.96, + "end": 862.22, + "probability": 0.7098 + }, + { + "start": 863.62, + "end": 864.76, + "probability": 0.4973 + }, + { + "start": 864.94, + "end": 866.54, + "probability": 0.3421 + }, + { + "start": 867.14, + "end": 869.82, + "probability": 0.9844 + }, + { + "start": 870.5, + "end": 874.26, + "probability": 0.9231 + }, + { + "start": 875.22, + "end": 878.14, + "probability": 0.9223 + }, + { + "start": 878.84, + "end": 882.24, + "probability": 0.9512 + }, + { + "start": 883.0, + "end": 886.4, + "probability": 0.9236 + }, + { + "start": 886.92, + "end": 888.0, + "probability": 0.9935 + }, + { + "start": 888.4, + "end": 889.76, + "probability": 0.9871 + }, + { + "start": 890.16, + "end": 891.06, + "probability": 0.8931 + }, + { + "start": 891.44, + "end": 892.24, + "probability": 0.9336 + }, + { + "start": 892.56, + "end": 892.86, + "probability": 0.7309 + }, + { + "start": 893.16, + "end": 895.44, + "probability": 0.9201 + }, + { + "start": 895.76, + "end": 899.52, + "probability": 0.9889 + }, + { + "start": 899.64, + "end": 901.5, + "probability": 0.919 + }, + { + "start": 902.6, + "end": 903.78, + "probability": 0.9514 + }, + { + "start": 904.52, + "end": 906.4, + "probability": 0.7674 + }, + { + "start": 907.46, + "end": 909.48, + "probability": 0.9862 + }, + { + "start": 910.56, + "end": 912.1, + "probability": 0.9907 + }, + { + "start": 912.84, + "end": 913.85, + "probability": 0.9606 + }, + { + "start": 914.64, + "end": 917.22, + "probability": 0.9921 + }, + { + "start": 919.1, + "end": 919.52, + "probability": 0.9595 + }, + { + "start": 920.5, + "end": 922.22, + "probability": 0.9094 + }, + { + "start": 923.28, + "end": 924.06, + "probability": 0.9902 + }, + { + "start": 925.12, + "end": 926.0, + "probability": 0.7772 + }, + { + "start": 928.16, + "end": 933.24, + "probability": 0.9865 + }, + { + "start": 934.12, + "end": 936.06, + "probability": 0.9987 + }, + { + "start": 937.22, + "end": 943.18, + "probability": 0.946 + }, + { + "start": 944.06, + "end": 946.54, + "probability": 0.987 + }, + { + "start": 947.72, + "end": 949.64, + "probability": 0.7388 + }, + { + "start": 950.16, + "end": 955.08, + "probability": 0.9438 + }, + { + "start": 955.62, + "end": 956.5, + "probability": 0.7667 + }, + { + "start": 958.44, + "end": 959.26, + "probability": 0.6795 + }, + { + "start": 960.84, + "end": 963.2, + "probability": 0.8174 + }, + { + "start": 965.0, + "end": 967.32, + "probability": 0.9973 + }, + { + "start": 968.6, + "end": 970.68, + "probability": 0.8814 + }, + { + "start": 971.04, + "end": 972.76, + "probability": 0.9426 + }, + { + "start": 973.2, + "end": 975.37, + "probability": 0.9954 + }, + { + "start": 976.5, + "end": 982.56, + "probability": 0.9973 + }, + { + "start": 983.1, + "end": 985.44, + "probability": 0.9673 + }, + { + "start": 986.0, + "end": 987.36, + "probability": 0.8616 + }, + { + "start": 988.02, + "end": 989.26, + "probability": 0.6575 + }, + { + "start": 990.08, + "end": 991.06, + "probability": 0.855 + }, + { + "start": 991.54, + "end": 992.54, + "probability": 0.7631 + }, + { + "start": 992.54, + "end": 992.98, + "probability": 0.9101 + }, + { + "start": 993.52, + "end": 994.2, + "probability": 0.7116 + }, + { + "start": 994.7, + "end": 995.22, + "probability": 0.99 + }, + { + "start": 996.46, + "end": 999.35, + "probability": 0.9885 + }, + { + "start": 1000.24, + "end": 1000.86, + "probability": 0.9201 + }, + { + "start": 1001.4, + "end": 1003.38, + "probability": 0.9707 + }, + { + "start": 1003.48, + "end": 1005.7, + "probability": 0.9523 + }, + { + "start": 1005.96, + "end": 1006.48, + "probability": 0.8859 + }, + { + "start": 1006.74, + "end": 1006.96, + "probability": 0.8359 + }, + { + "start": 1007.5, + "end": 1008.58, + "probability": 0.9832 + }, + { + "start": 1009.12, + "end": 1012.22, + "probability": 0.9941 + }, + { + "start": 1012.8, + "end": 1014.62, + "probability": 0.9681 + }, + { + "start": 1014.96, + "end": 1015.58, + "probability": 0.998 + }, + { + "start": 1016.48, + "end": 1018.26, + "probability": 0.9899 + }, + { + "start": 1019.14, + "end": 1022.48, + "probability": 0.9983 + }, + { + "start": 1023.3, + "end": 1025.08, + "probability": 0.9972 + }, + { + "start": 1025.96, + "end": 1028.1, + "probability": 0.9111 + }, + { + "start": 1029.34, + "end": 1030.38, + "probability": 0.9761 + }, + { + "start": 1031.42, + "end": 1034.58, + "probability": 0.929 + }, + { + "start": 1035.3, + "end": 1036.6, + "probability": 0.9655 + }, + { + "start": 1037.32, + "end": 1037.94, + "probability": 0.7266 + }, + { + "start": 1038.82, + "end": 1040.5, + "probability": 0.9094 + }, + { + "start": 1041.24, + "end": 1043.16, + "probability": 0.9635 + }, + { + "start": 1043.78, + "end": 1044.04, + "probability": 0.8338 + }, + { + "start": 1044.68, + "end": 1045.36, + "probability": 0.6011 + }, + { + "start": 1045.6, + "end": 1047.66, + "probability": 0.7629 + }, + { + "start": 1063.72, + "end": 1064.6, + "probability": 0.6791 + }, + { + "start": 1066.0, + "end": 1067.6, + "probability": 0.7977 + }, + { + "start": 1068.96, + "end": 1071.14, + "probability": 0.8141 + }, + { + "start": 1072.74, + "end": 1076.42, + "probability": 0.9958 + }, + { + "start": 1079.9, + "end": 1083.52, + "probability": 0.9058 + }, + { + "start": 1084.8, + "end": 1085.56, + "probability": 0.8072 + }, + { + "start": 1086.94, + "end": 1089.26, + "probability": 0.5557 + }, + { + "start": 1090.44, + "end": 1091.84, + "probability": 0.9858 + }, + { + "start": 1093.06, + "end": 1096.42, + "probability": 0.9443 + }, + { + "start": 1097.04, + "end": 1098.2, + "probability": 0.9208 + }, + { + "start": 1098.9, + "end": 1101.52, + "probability": 0.9803 + }, + { + "start": 1102.15, + "end": 1106.06, + "probability": 0.9775 + }, + { + "start": 1107.62, + "end": 1108.1, + "probability": 0.8872 + }, + { + "start": 1110.06, + "end": 1110.28, + "probability": 0.7537 + }, + { + "start": 1114.06, + "end": 1114.06, + "probability": 0.3981 + }, + { + "start": 1117.72, + "end": 1119.18, + "probability": 0.8761 + }, + { + "start": 1119.86, + "end": 1121.56, + "probability": 0.9912 + }, + { + "start": 1122.42, + "end": 1125.04, + "probability": 0.9956 + }, + { + "start": 1125.86, + "end": 1128.08, + "probability": 0.9165 + }, + { + "start": 1130.46, + "end": 1131.44, + "probability": 0.8057 + }, + { + "start": 1132.38, + "end": 1134.18, + "probability": 0.9994 + }, + { + "start": 1135.12, + "end": 1136.98, + "probability": 0.9962 + }, + { + "start": 1139.42, + "end": 1139.94, + "probability": 0.8587 + }, + { + "start": 1140.78, + "end": 1144.44, + "probability": 0.7849 + }, + { + "start": 1147.46, + "end": 1148.06, + "probability": 0.8302 + }, + { + "start": 1149.14, + "end": 1151.22, + "probability": 0.9927 + }, + { + "start": 1152.12, + "end": 1153.56, + "probability": 0.3922 + }, + { + "start": 1154.58, + "end": 1158.84, + "probability": 0.995 + }, + { + "start": 1158.92, + "end": 1164.18, + "probability": 0.9149 + }, + { + "start": 1165.2, + "end": 1166.9, + "probability": 0.2444 + }, + { + "start": 1167.46, + "end": 1168.56, + "probability": 0.684 + }, + { + "start": 1168.58, + "end": 1169.64, + "probability": 0.9806 + }, + { + "start": 1169.66, + "end": 1172.84, + "probability": 0.9443 + }, + { + "start": 1173.36, + "end": 1173.36, + "probability": 0.0526 + }, + { + "start": 1173.36, + "end": 1175.2, + "probability": 0.8351 + }, + { + "start": 1175.88, + "end": 1176.74, + "probability": 0.7988 + }, + { + "start": 1177.28, + "end": 1179.9, + "probability": 0.9368 + }, + { + "start": 1181.16, + "end": 1181.98, + "probability": 0.5 + }, + { + "start": 1182.54, + "end": 1186.54, + "probability": 0.9882 + }, + { + "start": 1187.22, + "end": 1190.7, + "probability": 0.9934 + }, + { + "start": 1191.3, + "end": 1196.2, + "probability": 0.9172 + }, + { + "start": 1197.18, + "end": 1198.06, + "probability": 0.5622 + }, + { + "start": 1198.6, + "end": 1203.14, + "probability": 0.1502 + }, + { + "start": 1204.74, + "end": 1206.78, + "probability": 0.0604 + }, + { + "start": 1206.78, + "end": 1207.58, + "probability": 0.9054 + }, + { + "start": 1207.78, + "end": 1208.22, + "probability": 0.3253 + }, + { + "start": 1208.3, + "end": 1209.84, + "probability": 0.8143 + }, + { + "start": 1210.4, + "end": 1211.54, + "probability": 0.9735 + }, + { + "start": 1212.4, + "end": 1214.28, + "probability": 0.6761 + }, + { + "start": 1215.12, + "end": 1215.42, + "probability": 0.9268 + }, + { + "start": 1216.08, + "end": 1217.8, + "probability": 0.793 + }, + { + "start": 1217.86, + "end": 1222.87, + "probability": 0.6643 + }, + { + "start": 1223.22, + "end": 1223.96, + "probability": 0.7957 + }, + { + "start": 1224.6, + "end": 1227.64, + "probability": 0.9956 + }, + { + "start": 1227.94, + "end": 1229.84, + "probability": 0.9947 + }, + { + "start": 1230.34, + "end": 1232.2, + "probability": 0.7909 + }, + { + "start": 1232.42, + "end": 1236.06, + "probability": 0.9827 + }, + { + "start": 1236.5, + "end": 1240.24, + "probability": 0.9072 + }, + { + "start": 1240.38, + "end": 1241.04, + "probability": 0.9445 + }, + { + "start": 1242.84, + "end": 1245.62, + "probability": 0.948 + }, + { + "start": 1245.62, + "end": 1249.06, + "probability": 0.9877 + }, + { + "start": 1249.4, + "end": 1250.4, + "probability": 0.4968 + }, + { + "start": 1250.7, + "end": 1251.18, + "probability": 0.372 + }, + { + "start": 1251.24, + "end": 1255.62, + "probability": 0.7972 + }, + { + "start": 1255.62, + "end": 1260.38, + "probability": 0.9019 + }, + { + "start": 1260.54, + "end": 1260.78, + "probability": 0.3919 + }, + { + "start": 1262.2, + "end": 1263.7, + "probability": 0.674 + }, + { + "start": 1263.82, + "end": 1265.22, + "probability": 0.9022 + }, + { + "start": 1265.62, + "end": 1267.5, + "probability": 0.9876 + }, + { + "start": 1267.84, + "end": 1268.86, + "probability": 0.9731 + }, + { + "start": 1269.24, + "end": 1269.24, + "probability": 0.0056 + }, + { + "start": 1269.56, + "end": 1270.7, + "probability": 0.1644 + }, + { + "start": 1270.7, + "end": 1271.44, + "probability": 0.5118 + }, + { + "start": 1272.02, + "end": 1275.7, + "probability": 0.8282 + }, + { + "start": 1276.52, + "end": 1278.96, + "probability": 0.8703 + }, + { + "start": 1279.88, + "end": 1282.33, + "probability": 0.8907 + }, + { + "start": 1283.16, + "end": 1283.84, + "probability": 0.6387 + }, + { + "start": 1284.12, + "end": 1287.84, + "probability": 0.5989 + }, + { + "start": 1287.9, + "end": 1290.46, + "probability": 0.5533 + }, + { + "start": 1290.9, + "end": 1294.42, + "probability": 0.7391 + }, + { + "start": 1294.94, + "end": 1296.18, + "probability": 0.8562 + }, + { + "start": 1296.32, + "end": 1297.88, + "probability": 0.9589 + }, + { + "start": 1298.24, + "end": 1298.98, + "probability": 0.7509 + }, + { + "start": 1299.16, + "end": 1301.5, + "probability": 0.8186 + }, + { + "start": 1301.64, + "end": 1302.66, + "probability": 0.9707 + }, + { + "start": 1303.0, + "end": 1305.36, + "probability": 0.8911 + }, + { + "start": 1305.9, + "end": 1308.4, + "probability": 0.9346 + }, + { + "start": 1308.7, + "end": 1309.7, + "probability": 0.9854 + }, + { + "start": 1309.7, + "end": 1310.78, + "probability": 0.5163 + }, + { + "start": 1310.82, + "end": 1312.06, + "probability": 0.8348 + }, + { + "start": 1312.28, + "end": 1313.6, + "probability": 0.9474 + }, + { + "start": 1313.62, + "end": 1316.18, + "probability": 0.6365 + }, + { + "start": 1316.5, + "end": 1318.26, + "probability": 0.7354 + }, + { + "start": 1319.0, + "end": 1319.74, + "probability": 0.6543 + }, + { + "start": 1320.76, + "end": 1321.96, + "probability": 0.6302 + }, + { + "start": 1322.54, + "end": 1323.28, + "probability": 0.8722 + }, + { + "start": 1323.82, + "end": 1324.52, + "probability": 0.6836 + }, + { + "start": 1324.64, + "end": 1325.98, + "probability": 0.9211 + }, + { + "start": 1326.82, + "end": 1329.18, + "probability": 0.8223 + }, + { + "start": 1330.38, + "end": 1332.04, + "probability": 0.9816 + }, + { + "start": 1332.86, + "end": 1334.18, + "probability": 0.9448 + }, + { + "start": 1335.0, + "end": 1336.26, + "probability": 0.9832 + }, + { + "start": 1338.18, + "end": 1344.4, + "probability": 0.9678 + }, + { + "start": 1345.52, + "end": 1347.72, + "probability": 0.7478 + }, + { + "start": 1348.02, + "end": 1349.06, + "probability": 0.9009 + }, + { + "start": 1349.6, + "end": 1350.43, + "probability": 0.9133 + }, + { + "start": 1351.12, + "end": 1352.94, + "probability": 0.9702 + }, + { + "start": 1353.48, + "end": 1355.96, + "probability": 0.8361 + }, + { + "start": 1356.6, + "end": 1358.2, + "probability": 0.999 + }, + { + "start": 1358.26, + "end": 1361.2, + "probability": 0.9241 + }, + { + "start": 1361.34, + "end": 1363.42, + "probability": 0.998 + }, + { + "start": 1364.18, + "end": 1365.58, + "probability": 0.8585 + }, + { + "start": 1366.24, + "end": 1369.74, + "probability": 0.1421 + }, + { + "start": 1370.26, + "end": 1370.32, + "probability": 0.0457 + }, + { + "start": 1370.32, + "end": 1370.74, + "probability": 0.4007 + }, + { + "start": 1370.74, + "end": 1370.82, + "probability": 0.2983 + }, + { + "start": 1371.22, + "end": 1372.64, + "probability": 0.934 + }, + { + "start": 1373.1, + "end": 1373.1, + "probability": 0.1645 + }, + { + "start": 1373.1, + "end": 1373.1, + "probability": 0.2708 + }, + { + "start": 1373.1, + "end": 1373.1, + "probability": 0.1696 + }, + { + "start": 1373.1, + "end": 1374.02, + "probability": 0.9664 + }, + { + "start": 1374.22, + "end": 1375.72, + "probability": 0.9296 + }, + { + "start": 1375.92, + "end": 1376.52, + "probability": 0.9384 + }, + { + "start": 1376.92, + "end": 1380.12, + "probability": 0.9153 + }, + { + "start": 1380.38, + "end": 1381.22, + "probability": 0.4349 + }, + { + "start": 1381.22, + "end": 1381.22, + "probability": 0.2454 + }, + { + "start": 1381.62, + "end": 1381.68, + "probability": 0.0026 + }, + { + "start": 1381.68, + "end": 1385.5, + "probability": 0.6783 + }, + { + "start": 1386.12, + "end": 1386.46, + "probability": 0.6634 + }, + { + "start": 1387.16, + "end": 1390.26, + "probability": 0.6131 + }, + { + "start": 1390.92, + "end": 1391.78, + "probability": 0.9417 + }, + { + "start": 1392.36, + "end": 1393.54, + "probability": 0.8994 + }, + { + "start": 1393.58, + "end": 1395.06, + "probability": 0.4064 + }, + { + "start": 1395.16, + "end": 1395.37, + "probability": 0.1064 + }, + { + "start": 1395.78, + "end": 1398.0, + "probability": 0.3767 + }, + { + "start": 1398.0, + "end": 1398.5, + "probability": 0.4503 + }, + { + "start": 1398.56, + "end": 1398.93, + "probability": 0.8201 + }, + { + "start": 1399.24, + "end": 1401.04, + "probability": 0.6511 + }, + { + "start": 1401.08, + "end": 1403.62, + "probability": 0.974 + }, + { + "start": 1404.46, + "end": 1404.76, + "probability": 0.0404 + }, + { + "start": 1404.76, + "end": 1407.78, + "probability": 0.8709 + }, + { + "start": 1408.54, + "end": 1411.84, + "probability": 0.9833 + }, + { + "start": 1412.6, + "end": 1414.44, + "probability": 0.535 + }, + { + "start": 1414.6, + "end": 1415.64, + "probability": 0.4086 + }, + { + "start": 1416.18, + "end": 1417.92, + "probability": 0.5065 + }, + { + "start": 1418.6, + "end": 1419.98, + "probability": 0.1566 + }, + { + "start": 1420.08, + "end": 1420.64, + "probability": 0.4205 + }, + { + "start": 1420.86, + "end": 1421.5, + "probability": 0.5421 + }, + { + "start": 1421.9, + "end": 1423.86, + "probability": 0.6084 + }, + { + "start": 1424.46, + "end": 1425.38, + "probability": 0.3209 + }, + { + "start": 1428.84, + "end": 1429.36, + "probability": 0.0525 + }, + { + "start": 1429.36, + "end": 1429.36, + "probability": 0.1835 + }, + { + "start": 1429.36, + "end": 1429.36, + "probability": 0.0259 + }, + { + "start": 1429.36, + "end": 1429.36, + "probability": 0.2185 + }, + { + "start": 1429.36, + "end": 1429.68, + "probability": 0.1753 + }, + { + "start": 1429.84, + "end": 1431.2, + "probability": 0.463 + }, + { + "start": 1431.64, + "end": 1431.9, + "probability": 0.3872 + }, + { + "start": 1431.9, + "end": 1433.0, + "probability": 0.2553 + }, + { + "start": 1433.5, + "end": 1435.1, + "probability": 0.5259 + }, + { + "start": 1435.2, + "end": 1435.44, + "probability": 0.0846 + }, + { + "start": 1435.44, + "end": 1436.02, + "probability": 0.7551 + }, + { + "start": 1436.34, + "end": 1437.48, + "probability": 0.8826 + }, + { + "start": 1437.88, + "end": 1439.38, + "probability": 0.6889 + }, + { + "start": 1439.6, + "end": 1440.86, + "probability": 0.792 + }, + { + "start": 1441.18, + "end": 1441.18, + "probability": 0.687 + }, + { + "start": 1441.18, + "end": 1442.76, + "probability": 0.3345 + }, + { + "start": 1442.76, + "end": 1443.82, + "probability": 0.722 + }, + { + "start": 1444.1, + "end": 1444.4, + "probability": 0.5303 + }, + { + "start": 1444.56, + "end": 1447.44, + "probability": 0.8064 + }, + { + "start": 1447.58, + "end": 1448.8, + "probability": 0.9268 + }, + { + "start": 1449.15, + "end": 1449.22, + "probability": 0.7257 + }, + { + "start": 1449.3, + "end": 1452.54, + "probability": 0.5976 + }, + { + "start": 1452.72, + "end": 1453.72, + "probability": 0.4883 + }, + { + "start": 1453.82, + "end": 1454.62, + "probability": 0.4201 + }, + { + "start": 1456.03, + "end": 1457.58, + "probability": 0.0103 + }, + { + "start": 1457.58, + "end": 1460.21, + "probability": 0.3326 + }, + { + "start": 1460.64, + "end": 1461.78, + "probability": 0.197 + }, + { + "start": 1461.84, + "end": 1463.04, + "probability": 0.6919 + }, + { + "start": 1463.18, + "end": 1464.32, + "probability": 0.0312 + }, + { + "start": 1464.92, + "end": 1465.58, + "probability": 0.4039 + }, + { + "start": 1465.58, + "end": 1466.1, + "probability": 0.0044 + }, + { + "start": 1466.44, + "end": 1469.54, + "probability": 0.8293 + }, + { + "start": 1471.04, + "end": 1471.92, + "probability": 0.3306 + }, + { + "start": 1472.0, + "end": 1472.46, + "probability": 0.2342 + }, + { + "start": 1472.56, + "end": 1474.52, + "probability": 0.6485 + }, + { + "start": 1475.14, + "end": 1477.08, + "probability": 0.8469 + }, + { + "start": 1477.82, + "end": 1478.7, + "probability": 0.9631 + }, + { + "start": 1479.76, + "end": 1481.12, + "probability": 0.98 + }, + { + "start": 1481.76, + "end": 1484.98, + "probability": 0.9973 + }, + { + "start": 1485.72, + "end": 1487.92, + "probability": 0.8776 + }, + { + "start": 1488.44, + "end": 1490.28, + "probability": 0.4829 + }, + { + "start": 1490.48, + "end": 1491.7, + "probability": 0.2335 + }, + { + "start": 1492.5, + "end": 1496.22, + "probability": 0.2821 + }, + { + "start": 1496.84, + "end": 1499.52, + "probability": 0.0258 + }, + { + "start": 1500.74, + "end": 1501.1, + "probability": 0.0502 + }, + { + "start": 1501.1, + "end": 1503.38, + "probability": 0.0124 + }, + { + "start": 1503.54, + "end": 1504.44, + "probability": 0.1377 + }, + { + "start": 1504.58, + "end": 1505.32, + "probability": 0.3131 + }, + { + "start": 1505.5, + "end": 1506.38, + "probability": 0.0431 + }, + { + "start": 1506.38, + "end": 1508.04, + "probability": 0.7655 + }, + { + "start": 1509.1, + "end": 1509.92, + "probability": 0.9376 + }, + { + "start": 1510.72, + "end": 1511.12, + "probability": 0.9784 + }, + { + "start": 1512.38, + "end": 1513.32, + "probability": 0.8787 + }, + { + "start": 1514.04, + "end": 1514.04, + "probability": 0.0717 + }, + { + "start": 1514.04, + "end": 1515.78, + "probability": 0.5493 + }, + { + "start": 1517.18, + "end": 1518.34, + "probability": 0.6653 + }, + { + "start": 1518.62, + "end": 1521.94, + "probability": 0.8239 + }, + { + "start": 1522.2, + "end": 1523.78, + "probability": 0.9424 + }, + { + "start": 1525.46, + "end": 1530.82, + "probability": 0.8978 + }, + { + "start": 1531.6, + "end": 1534.12, + "probability": 0.9262 + }, + { + "start": 1534.44, + "end": 1535.56, + "probability": 0.8772 + }, + { + "start": 1536.22, + "end": 1537.06, + "probability": 0.9157 + }, + { + "start": 1541.44, + "end": 1541.44, + "probability": 0.6011 + }, + { + "start": 1541.44, + "end": 1545.0, + "probability": 0.909 + }, + { + "start": 1545.12, + "end": 1546.7, + "probability": 0.8887 + }, + { + "start": 1547.22, + "end": 1548.02, + "probability": 0.9298 + }, + { + "start": 1548.96, + "end": 1552.52, + "probability": 0.8828 + }, + { + "start": 1553.72, + "end": 1555.3, + "probability": 0.0013 + }, + { + "start": 1555.3, + "end": 1555.74, + "probability": 0.3096 + }, + { + "start": 1557.6, + "end": 1560.28, + "probability": 0.2456 + }, + { + "start": 1560.58, + "end": 1562.9, + "probability": 0.3487 + }, + { + "start": 1562.9, + "end": 1565.0, + "probability": 0.1349 + }, + { + "start": 1565.64, + "end": 1566.14, + "probability": 0.5987 + }, + { + "start": 1566.16, + "end": 1567.76, + "probability": 0.8983 + }, + { + "start": 1568.08, + "end": 1569.42, + "probability": 0.5551 + }, + { + "start": 1570.88, + "end": 1573.4, + "probability": 0.8511 + }, + { + "start": 1574.58, + "end": 1578.92, + "probability": 0.8999 + }, + { + "start": 1579.6, + "end": 1579.86, + "probability": 0.6632 + }, + { + "start": 1581.94, + "end": 1583.56, + "probability": 0.9209 + }, + { + "start": 1584.42, + "end": 1589.18, + "probability": 0.918 + }, + { + "start": 1590.66, + "end": 1592.08, + "probability": 0.8018 + }, + { + "start": 1592.28, + "end": 1593.52, + "probability": 0.9675 + }, + { + "start": 1594.88, + "end": 1595.23, + "probability": 0.8736 + }, + { + "start": 1595.98, + "end": 1597.98, + "probability": 0.8825 + }, + { + "start": 1597.98, + "end": 1601.4, + "probability": 0.8956 + }, + { + "start": 1602.18, + "end": 1606.14, + "probability": 0.9937 + }, + { + "start": 1606.26, + "end": 1608.6, + "probability": 0.5759 + }, + { + "start": 1609.24, + "end": 1610.6, + "probability": 0.9691 + }, + { + "start": 1610.64, + "end": 1611.42, + "probability": 0.9551 + }, + { + "start": 1612.28, + "end": 1612.86, + "probability": 0.8228 + }, + { + "start": 1613.4, + "end": 1614.2, + "probability": 0.9766 + }, + { + "start": 1615.36, + "end": 1616.64, + "probability": 0.689 + }, + { + "start": 1616.98, + "end": 1619.74, + "probability": 0.9702 + }, + { + "start": 1620.32, + "end": 1620.7, + "probability": 0.9922 + }, + { + "start": 1621.34, + "end": 1623.48, + "probability": 0.9749 + }, + { + "start": 1623.48, + "end": 1626.32, + "probability": 0.939 + }, + { + "start": 1626.88, + "end": 1630.71, + "probability": 0.8455 + }, + { + "start": 1631.04, + "end": 1634.06, + "probability": 0.9909 + }, + { + "start": 1634.1, + "end": 1636.26, + "probability": 0.9272 + }, + { + "start": 1637.02, + "end": 1639.54, + "probability": 0.9453 + }, + { + "start": 1640.24, + "end": 1646.24, + "probability": 0.9939 + }, + { + "start": 1646.34, + "end": 1648.49, + "probability": 0.8534 + }, + { + "start": 1648.94, + "end": 1649.52, + "probability": 0.2031 + }, + { + "start": 1650.56, + "end": 1651.54, + "probability": 0.7655 + }, + { + "start": 1652.28, + "end": 1653.2, + "probability": 0.882 + }, + { + "start": 1654.52, + "end": 1656.8, + "probability": 0.8818 + }, + { + "start": 1657.04, + "end": 1660.78, + "probability": 0.9229 + }, + { + "start": 1661.68, + "end": 1667.14, + "probability": 0.9631 + }, + { + "start": 1668.3, + "end": 1670.71, + "probability": 0.947 + }, + { + "start": 1672.44, + "end": 1673.1, + "probability": 0.8586 + }, + { + "start": 1673.28, + "end": 1675.1, + "probability": 0.9622 + }, + { + "start": 1676.0, + "end": 1679.3, + "probability": 0.9253 + }, + { + "start": 1680.12, + "end": 1680.96, + "probability": 0.4974 + }, + { + "start": 1681.56, + "end": 1682.3, + "probability": 0.6224 + }, + { + "start": 1683.0, + "end": 1685.54, + "probability": 0.8524 + }, + { + "start": 1686.62, + "end": 1691.0, + "probability": 0.9893 + }, + { + "start": 1691.58, + "end": 1692.16, + "probability": 0.8579 + }, + { + "start": 1692.26, + "end": 1692.76, + "probability": 0.9223 + }, + { + "start": 1692.76, + "end": 1693.42, + "probability": 0.9707 + }, + { + "start": 1693.54, + "end": 1694.08, + "probability": 0.9498 + }, + { + "start": 1694.18, + "end": 1694.72, + "probability": 0.9541 + }, + { + "start": 1695.86, + "end": 1696.44, + "probability": 0.8153 + }, + { + "start": 1697.28, + "end": 1697.84, + "probability": 0.5755 + }, + { + "start": 1698.74, + "end": 1700.24, + "probability": 0.7805 + }, + { + "start": 1700.86, + "end": 1701.04, + "probability": 0.8296 + }, + { + "start": 1702.12, + "end": 1703.7, + "probability": 0.9416 + }, + { + "start": 1704.5, + "end": 1708.6, + "probability": 0.9217 + }, + { + "start": 1709.2, + "end": 1713.06, + "probability": 0.9788 + }, + { + "start": 1713.48, + "end": 1714.12, + "probability": 0.7208 + }, + { + "start": 1714.12, + "end": 1716.45, + "probability": 0.8954 + }, + { + "start": 1718.1, + "end": 1718.84, + "probability": 0.9941 + }, + { + "start": 1719.58, + "end": 1720.84, + "probability": 0.8497 + }, + { + "start": 1722.88, + "end": 1724.32, + "probability": 0.841 + }, + { + "start": 1725.4, + "end": 1730.16, + "probability": 0.9794 + }, + { + "start": 1731.16, + "end": 1734.44, + "probability": 0.698 + }, + { + "start": 1734.56, + "end": 1735.32, + "probability": 0.8762 + }, + { + "start": 1735.42, + "end": 1736.74, + "probability": 0.9854 + }, + { + "start": 1736.86, + "end": 1737.16, + "probability": 0.5119 + }, + { + "start": 1737.22, + "end": 1737.8, + "probability": 0.8852 + }, + { + "start": 1738.62, + "end": 1742.06, + "probability": 0.9777 + }, + { + "start": 1742.32, + "end": 1743.97, + "probability": 0.7665 + }, + { + "start": 1744.5, + "end": 1748.98, + "probability": 0.9954 + }, + { + "start": 1749.68, + "end": 1750.65, + "probability": 0.9993 + }, + { + "start": 1751.2, + "end": 1752.8, + "probability": 0.742 + }, + { + "start": 1752.82, + "end": 1753.26, + "probability": 0.7644 + }, + { + "start": 1753.96, + "end": 1754.74, + "probability": 0.9702 + }, + { + "start": 1755.02, + "end": 1757.74, + "probability": 0.9578 + }, + { + "start": 1758.0, + "end": 1759.06, + "probability": 0.7063 + }, + { + "start": 1760.14, + "end": 1761.48, + "probability": 0.9214 + }, + { + "start": 1762.72, + "end": 1763.24, + "probability": 0.5324 + }, + { + "start": 1763.82, + "end": 1764.34, + "probability": 0.5375 + }, + { + "start": 1764.34, + "end": 1764.44, + "probability": 0.6307 + }, + { + "start": 1765.36, + "end": 1766.96, + "probability": 0.9104 + }, + { + "start": 1767.62, + "end": 1770.1, + "probability": 0.9758 + }, + { + "start": 1770.88, + "end": 1771.92, + "probability": 0.9226 + }, + { + "start": 1773.86, + "end": 1775.58, + "probability": 0.3812 + }, + { + "start": 1775.58, + "end": 1776.06, + "probability": 0.4449 + }, + { + "start": 1776.1, + "end": 1776.24, + "probability": 0.3826 + }, + { + "start": 1776.6, + "end": 1776.9, + "probability": 0.8262 + }, + { + "start": 1778.17, + "end": 1781.78, + "probability": 0.995 + }, + { + "start": 1782.64, + "end": 1783.82, + "probability": 0.9239 + }, + { + "start": 1784.48, + "end": 1785.6, + "probability": 0.9299 + }, + { + "start": 1786.14, + "end": 1786.77, + "probability": 0.8535 + }, + { + "start": 1788.46, + "end": 1789.26, + "probability": 0.964 + }, + { + "start": 1791.42, + "end": 1793.96, + "probability": 0.7201 + }, + { + "start": 1794.04, + "end": 1794.4, + "probability": 0.5036 + }, + { + "start": 1794.52, + "end": 1796.94, + "probability": 0.4215 + }, + { + "start": 1797.26, + "end": 1797.56, + "probability": 0.2586 + }, + { + "start": 1797.66, + "end": 1798.9, + "probability": 0.7342 + }, + { + "start": 1799.34, + "end": 1800.0, + "probability": 0.3399 + }, + { + "start": 1800.12, + "end": 1800.64, + "probability": 0.8238 + }, + { + "start": 1801.16, + "end": 1801.16, + "probability": 0.768 + }, + { + "start": 1801.28, + "end": 1806.66, + "probability": 0.9492 + }, + { + "start": 1807.54, + "end": 1808.66, + "probability": 0.9136 + }, + { + "start": 1809.62, + "end": 1809.7, + "probability": 0.0311 + }, + { + "start": 1809.7, + "end": 1810.63, + "probability": 0.7411 + }, + { + "start": 1811.76, + "end": 1813.28, + "probability": 0.7853 + }, + { + "start": 1814.69, + "end": 1815.82, + "probability": 0.7841 + }, + { + "start": 1817.76, + "end": 1821.56, + "probability": 0.8545 + }, + { + "start": 1822.48, + "end": 1827.26, + "probability": 0.7559 + }, + { + "start": 1827.88, + "end": 1828.76, + "probability": 0.91 + }, + { + "start": 1830.94, + "end": 1832.68, + "probability": 0.7499 + }, + { + "start": 1832.78, + "end": 1833.44, + "probability": 0.6616 + }, + { + "start": 1833.54, + "end": 1836.28, + "probability": 0.9896 + }, + { + "start": 1836.28, + "end": 1840.68, + "probability": 0.9539 + }, + { + "start": 1840.9, + "end": 1841.29, + "probability": 0.7514 + }, + { + "start": 1841.98, + "end": 1844.34, + "probability": 0.6795 + }, + { + "start": 1845.48, + "end": 1851.08, + "probability": 0.9618 + }, + { + "start": 1851.08, + "end": 1854.28, + "probability": 0.9856 + }, + { + "start": 1854.54, + "end": 1855.76, + "probability": 0.8872 + }, + { + "start": 1856.3, + "end": 1859.14, + "probability": 0.9709 + }, + { + "start": 1860.36, + "end": 1860.84, + "probability": 0.3728 + }, + { + "start": 1860.92, + "end": 1863.44, + "probability": 0.9499 + }, + { + "start": 1863.6, + "end": 1865.18, + "probability": 0.6215 + }, + { + "start": 1865.22, + "end": 1866.06, + "probability": 0.9331 + }, + { + "start": 1866.84, + "end": 1867.82, + "probability": 0.9806 + }, + { + "start": 1868.86, + "end": 1870.68, + "probability": 0.9753 + }, + { + "start": 1871.36, + "end": 1874.04, + "probability": 0.9653 + }, + { + "start": 1875.78, + "end": 1877.94, + "probability": 0.9136 + }, + { + "start": 1878.38, + "end": 1882.63, + "probability": 0.9905 + }, + { + "start": 1882.96, + "end": 1883.78, + "probability": 0.9005 + }, + { + "start": 1884.16, + "end": 1886.6, + "probability": 0.9683 + }, + { + "start": 1887.24, + "end": 1888.34, + "probability": 0.9351 + }, + { + "start": 1888.86, + "end": 1889.78, + "probability": 0.951 + }, + { + "start": 1890.54, + "end": 1891.76, + "probability": 0.9775 + }, + { + "start": 1891.98, + "end": 1893.32, + "probability": 0.9961 + }, + { + "start": 1893.9, + "end": 1897.22, + "probability": 0.9481 + }, + { + "start": 1897.62, + "end": 1898.3, + "probability": 0.9925 + }, + { + "start": 1898.62, + "end": 1899.48, + "probability": 0.994 + }, + { + "start": 1899.8, + "end": 1900.54, + "probability": 0.9928 + }, + { + "start": 1900.64, + "end": 1902.06, + "probability": 0.9858 + }, + { + "start": 1902.28, + "end": 1903.1, + "probability": 0.7582 + }, + { + "start": 1903.36, + "end": 1904.36, + "probability": 0.9064 + }, + { + "start": 1904.46, + "end": 1908.08, + "probability": 0.939 + }, + { + "start": 1908.98, + "end": 1911.96, + "probability": 0.9987 + }, + { + "start": 1912.28, + "end": 1913.27, + "probability": 0.999 + }, + { + "start": 1913.54, + "end": 1915.42, + "probability": 0.9958 + }, + { + "start": 1916.54, + "end": 1919.46, + "probability": 0.5486 + }, + { + "start": 1919.46, + "end": 1921.1, + "probability": 0.5451 + }, + { + "start": 1922.0, + "end": 1924.8, + "probability": 0.9077 + }, + { + "start": 1924.98, + "end": 1926.04, + "probability": 0.9824 + }, + { + "start": 1926.44, + "end": 1929.52, + "probability": 0.9712 + }, + { + "start": 1930.74, + "end": 1931.47, + "probability": 0.9793 + }, + { + "start": 1931.68, + "end": 1932.11, + "probability": 0.8097 + }, + { + "start": 1932.78, + "end": 1933.52, + "probability": 0.7588 + }, + { + "start": 1934.02, + "end": 1935.54, + "probability": 0.8843 + }, + { + "start": 1936.34, + "end": 1938.62, + "probability": 0.8521 + }, + { + "start": 1938.7, + "end": 1939.24, + "probability": 0.7207 + }, + { + "start": 1939.74, + "end": 1941.74, + "probability": 0.8998 + }, + { + "start": 1942.74, + "end": 1944.62, + "probability": 0.9907 + }, + { + "start": 1945.8, + "end": 1950.9, + "probability": 0.8057 + }, + { + "start": 1951.82, + "end": 1953.66, + "probability": 0.9973 + }, + { + "start": 1954.2, + "end": 1957.12, + "probability": 0.978 + }, + { + "start": 1957.12, + "end": 1960.1, + "probability": 0.9542 + }, + { + "start": 1960.56, + "end": 1962.97, + "probability": 0.9951 + }, + { + "start": 1963.6, + "end": 1966.0, + "probability": 0.9689 + }, + { + "start": 1966.52, + "end": 1968.7, + "probability": 0.8474 + }, + { + "start": 1969.16, + "end": 1969.58, + "probability": 0.8779 + }, + { + "start": 1970.52, + "end": 1971.2, + "probability": 0.4891 + }, + { + "start": 1971.34, + "end": 1973.76, + "probability": 0.9671 + }, + { + "start": 1973.76, + "end": 1975.54, + "probability": 0.9787 + }, + { + "start": 1975.6, + "end": 1976.28, + "probability": 0.7377 + }, + { + "start": 1976.64, + "end": 1978.86, + "probability": 0.9729 + }, + { + "start": 1979.66, + "end": 1982.52, + "probability": 0.9758 + }, + { + "start": 1982.9, + "end": 1984.34, + "probability": 0.8438 + }, + { + "start": 1984.68, + "end": 1986.46, + "probability": 0.9506 + }, + { + "start": 1986.82, + "end": 1987.8, + "probability": 0.7147 + }, + { + "start": 1987.88, + "end": 1988.42, + "probability": 0.9107 + }, + { + "start": 1988.5, + "end": 1990.24, + "probability": 0.877 + }, + { + "start": 1991.08, + "end": 1992.18, + "probability": 0.9927 + }, + { + "start": 1993.08, + "end": 1999.24, + "probability": 0.9644 + }, + { + "start": 1999.66, + "end": 2001.4, + "probability": 0.9872 + }, + { + "start": 2001.86, + "end": 2002.74, + "probability": 0.9956 + }, + { + "start": 2002.98, + "end": 2005.12, + "probability": 0.9622 + }, + { + "start": 2005.86, + "end": 2007.78, + "probability": 0.9869 + }, + { + "start": 2008.5, + "end": 2009.28, + "probability": 0.5748 + }, + { + "start": 2011.74, + "end": 2013.5, + "probability": 0.8779 + }, + { + "start": 2014.94, + "end": 2016.62, + "probability": 0.9977 + }, + { + "start": 2016.62, + "end": 2019.88, + "probability": 0.9047 + }, + { + "start": 2020.98, + "end": 2021.78, + "probability": 0.827 + }, + { + "start": 2022.36, + "end": 2023.03, + "probability": 0.9873 + }, + { + "start": 2023.78, + "end": 2028.64, + "probability": 0.9894 + }, + { + "start": 2029.5, + "end": 2031.82, + "probability": 0.9956 + }, + { + "start": 2032.3, + "end": 2033.04, + "probability": 0.9282 + }, + { + "start": 2033.34, + "end": 2033.88, + "probability": 0.6243 + }, + { + "start": 2033.9, + "end": 2035.06, + "probability": 0.9302 + }, + { + "start": 2036.58, + "end": 2036.92, + "probability": 0.4371 + }, + { + "start": 2037.08, + "end": 2037.81, + "probability": 0.9326 + }, + { + "start": 2037.92, + "end": 2039.68, + "probability": 0.8965 + }, + { + "start": 2040.46, + "end": 2041.4, + "probability": 0.9684 + }, + { + "start": 2042.28, + "end": 2044.2, + "probability": 0.7276 + }, + { + "start": 2044.42, + "end": 2045.86, + "probability": 0.9051 + }, + { + "start": 2045.96, + "end": 2047.82, + "probability": 0.6303 + }, + { + "start": 2048.18, + "end": 2051.2, + "probability": 0.9866 + }, + { + "start": 2051.3, + "end": 2053.38, + "probability": 0.9883 + }, + { + "start": 2053.56, + "end": 2055.23, + "probability": 0.6709 + }, + { + "start": 2056.78, + "end": 2057.57, + "probability": 0.8201 + }, + { + "start": 2058.14, + "end": 2061.72, + "probability": 0.9578 + }, + { + "start": 2062.74, + "end": 2065.92, + "probability": 0.9542 + }, + { + "start": 2066.02, + "end": 2067.56, + "probability": 0.6726 + }, + { + "start": 2068.06, + "end": 2069.5, + "probability": 0.9447 + }, + { + "start": 2069.84, + "end": 2071.44, + "probability": 0.8999 + }, + { + "start": 2071.6, + "end": 2074.71, + "probability": 0.761 + }, + { + "start": 2075.08, + "end": 2076.28, + "probability": 0.9907 + }, + { + "start": 2079.42, + "end": 2082.32, + "probability": 0.7447 + }, + { + "start": 2082.7, + "end": 2084.15, + "probability": 0.9723 + }, + { + "start": 2084.66, + "end": 2085.72, + "probability": 0.9829 + }, + { + "start": 2085.76, + "end": 2088.0, + "probability": 0.965 + }, + { + "start": 2088.94, + "end": 2091.14, + "probability": 0.8915 + }, + { + "start": 2092.08, + "end": 2093.88, + "probability": 0.9471 + }, + { + "start": 2093.94, + "end": 2099.74, + "probability": 0.9874 + }, + { + "start": 2101.0, + "end": 2103.52, + "probability": 0.6503 + }, + { + "start": 2104.56, + "end": 2106.94, + "probability": 0.9937 + }, + { + "start": 2106.94, + "end": 2111.14, + "probability": 0.9312 + }, + { + "start": 2111.22, + "end": 2113.64, + "probability": 0.9976 + }, + { + "start": 2114.0, + "end": 2115.46, + "probability": 0.9973 + }, + { + "start": 2115.56, + "end": 2118.52, + "probability": 0.8267 + }, + { + "start": 2118.52, + "end": 2119.06, + "probability": 0.6381 + }, + { + "start": 2119.52, + "end": 2121.66, + "probability": 0.5628 + }, + { + "start": 2121.76, + "end": 2122.44, + "probability": 0.9568 + }, + { + "start": 2122.56, + "end": 2123.41, + "probability": 0.9551 + }, + { + "start": 2124.22, + "end": 2124.68, + "probability": 0.6649 + }, + { + "start": 2125.42, + "end": 2127.82, + "probability": 0.9918 + }, + { + "start": 2128.68, + "end": 2132.28, + "probability": 0.8975 + }, + { + "start": 2132.9, + "end": 2134.46, + "probability": 0.808 + }, + { + "start": 2134.8, + "end": 2135.78, + "probability": 0.8706 + }, + { + "start": 2136.62, + "end": 2137.18, + "probability": 0.912 + }, + { + "start": 2138.22, + "end": 2139.76, + "probability": 0.7924 + }, + { + "start": 2140.54, + "end": 2141.8, + "probability": 0.6812 + }, + { + "start": 2141.98, + "end": 2143.3, + "probability": 0.7489 + }, + { + "start": 2143.68, + "end": 2146.98, + "probability": 0.9384 + }, + { + "start": 2147.04, + "end": 2148.34, + "probability": 0.6694 + }, + { + "start": 2149.92, + "end": 2152.12, + "probability": 0.9231 + }, + { + "start": 2153.02, + "end": 2153.4, + "probability": 0.5732 + }, + { + "start": 2153.92, + "end": 2155.62, + "probability": 0.8831 + }, + { + "start": 2156.24, + "end": 2158.6, + "probability": 0.8972 + }, + { + "start": 2159.36, + "end": 2161.38, + "probability": 0.6851 + }, + { + "start": 2161.38, + "end": 2161.86, + "probability": 0.5744 + }, + { + "start": 2161.96, + "end": 2163.6, + "probability": 0.9852 + }, + { + "start": 2163.66, + "end": 2164.88, + "probability": 0.5716 + }, + { + "start": 2165.58, + "end": 2171.24, + "probability": 0.9822 + }, + { + "start": 2171.48, + "end": 2172.98, + "probability": 0.8104 + }, + { + "start": 2174.22, + "end": 2175.82, + "probability": 0.8215 + }, + { + "start": 2177.0, + "end": 2179.06, + "probability": 0.8438 + }, + { + "start": 2180.9, + "end": 2182.6, + "probability": 0.972 + }, + { + "start": 2183.28, + "end": 2185.82, + "probability": 0.847 + }, + { + "start": 2186.58, + "end": 2188.12, + "probability": 0.8872 + }, + { + "start": 2188.54, + "end": 2192.3, + "probability": 0.9618 + }, + { + "start": 2192.36, + "end": 2193.22, + "probability": 0.5176 + }, + { + "start": 2193.44, + "end": 2194.78, + "probability": 0.9316 + }, + { + "start": 2195.44, + "end": 2198.36, + "probability": 0.8999 + }, + { + "start": 2198.93, + "end": 2202.68, + "probability": 0.8194 + }, + { + "start": 2204.9, + "end": 2205.04, + "probability": 0.8026 + }, + { + "start": 2205.74, + "end": 2206.2, + "probability": 0.2932 + }, + { + "start": 2206.2, + "end": 2210.96, + "probability": 0.9974 + }, + { + "start": 2211.1, + "end": 2215.1, + "probability": 0.9322 + }, + { + "start": 2216.54, + "end": 2217.12, + "probability": 0.5372 + }, + { + "start": 2217.36, + "end": 2222.56, + "probability": 0.7101 + }, + { + "start": 2223.16, + "end": 2225.24, + "probability": 0.9576 + }, + { + "start": 2225.92, + "end": 2227.88, + "probability": 0.4973 + }, + { + "start": 2228.08, + "end": 2230.12, + "probability": 0.8802 + }, + { + "start": 2231.12, + "end": 2232.8, + "probability": 0.9502 + }, + { + "start": 2233.46, + "end": 2238.64, + "probability": 0.9625 + }, + { + "start": 2239.86, + "end": 2241.2, + "probability": 0.9333 + }, + { + "start": 2241.94, + "end": 2242.94, + "probability": 0.9449 + }, + { + "start": 2243.46, + "end": 2244.68, + "probability": 0.9698 + }, + { + "start": 2244.9, + "end": 2246.02, + "probability": 0.9443 + }, + { + "start": 2246.38, + "end": 2247.78, + "probability": 0.9746 + }, + { + "start": 2248.04, + "end": 2248.38, + "probability": 0.7853 + }, + { + "start": 2251.28, + "end": 2251.96, + "probability": 0.747 + }, + { + "start": 2252.78, + "end": 2253.74, + "probability": 0.7422 + }, + { + "start": 2254.08, + "end": 2256.78, + "probability": 0.8232 + }, + { + "start": 2256.96, + "end": 2258.54, + "probability": 0.9473 + }, + { + "start": 2258.68, + "end": 2259.5, + "probability": 0.8327 + }, + { + "start": 2263.48, + "end": 2264.06, + "probability": 0.5134 + }, + { + "start": 2264.18, + "end": 2264.98, + "probability": 0.6955 + }, + { + "start": 2265.08, + "end": 2268.04, + "probability": 0.98 + }, + { + "start": 2268.16, + "end": 2268.68, + "probability": 0.6456 + }, + { + "start": 2269.24, + "end": 2273.4, + "probability": 0.9321 + }, + { + "start": 2273.46, + "end": 2273.86, + "probability": 0.6682 + }, + { + "start": 2274.86, + "end": 2275.56, + "probability": 0.8381 + }, + { + "start": 2277.0, + "end": 2277.71, + "probability": 0.5459 + }, + { + "start": 2277.9, + "end": 2280.24, + "probability": 0.9625 + }, + { + "start": 2281.77, + "end": 2286.52, + "probability": 0.9154 + }, + { + "start": 2286.84, + "end": 2292.54, + "probability": 0.9524 + }, + { + "start": 2293.64, + "end": 2297.12, + "probability": 0.8911 + }, + { + "start": 2300.48, + "end": 2301.36, + "probability": 0.8136 + }, + { + "start": 2303.09, + "end": 2309.24, + "probability": 0.7455 + }, + { + "start": 2309.4, + "end": 2310.27, + "probability": 0.999 + }, + { + "start": 2310.66, + "end": 2313.9, + "probability": 0.9105 + }, + { + "start": 2322.6, + "end": 2324.92, + "probability": 0.7667 + }, + { + "start": 2326.8, + "end": 2329.54, + "probability": 0.644 + }, + { + "start": 2330.34, + "end": 2331.72, + "probability": 0.9858 + }, + { + "start": 2332.78, + "end": 2334.74, + "probability": 0.9568 + }, + { + "start": 2335.74, + "end": 2337.24, + "probability": 0.804 + }, + { + "start": 2339.3, + "end": 2344.78, + "probability": 0.9752 + }, + { + "start": 2345.72, + "end": 2347.62, + "probability": 0.9995 + }, + { + "start": 2348.74, + "end": 2349.3, + "probability": 0.8813 + }, + { + "start": 2350.38, + "end": 2352.4, + "probability": 0.9477 + }, + { + "start": 2353.56, + "end": 2356.58, + "probability": 0.9863 + }, + { + "start": 2356.72, + "end": 2358.64, + "probability": 0.9448 + }, + { + "start": 2358.84, + "end": 2359.62, + "probability": 0.9475 + }, + { + "start": 2360.32, + "end": 2361.2, + "probability": 0.8802 + }, + { + "start": 2362.12, + "end": 2363.22, + "probability": 0.988 + }, + { + "start": 2365.3, + "end": 2366.1, + "probability": 0.9093 + }, + { + "start": 2366.82, + "end": 2369.98, + "probability": 0.9871 + }, + { + "start": 2371.54, + "end": 2372.92, + "probability": 0.9976 + }, + { + "start": 2374.26, + "end": 2374.9, + "probability": 0.8481 + }, + { + "start": 2375.42, + "end": 2376.54, + "probability": 0.8636 + }, + { + "start": 2378.06, + "end": 2380.82, + "probability": 0.9392 + }, + { + "start": 2382.06, + "end": 2383.14, + "probability": 0.9482 + }, + { + "start": 2384.46, + "end": 2386.96, + "probability": 0.7663 + }, + { + "start": 2388.94, + "end": 2390.26, + "probability": 0.916 + }, + { + "start": 2391.38, + "end": 2394.24, + "probability": 0.9927 + }, + { + "start": 2395.62, + "end": 2398.06, + "probability": 0.8921 + }, + { + "start": 2399.2, + "end": 2400.1, + "probability": 0.9774 + }, + { + "start": 2400.64, + "end": 2405.88, + "probability": 0.9595 + }, + { + "start": 2406.68, + "end": 2407.94, + "probability": 0.9968 + }, + { + "start": 2409.88, + "end": 2414.92, + "probability": 0.9409 + }, + { + "start": 2415.3, + "end": 2416.06, + "probability": 0.7953 + }, + { + "start": 2417.32, + "end": 2419.54, + "probability": 0.9986 + }, + { + "start": 2420.48, + "end": 2422.36, + "probability": 0.9669 + }, + { + "start": 2423.44, + "end": 2425.34, + "probability": 0.9539 + }, + { + "start": 2426.56, + "end": 2427.84, + "probability": 0.9946 + }, + { + "start": 2429.48, + "end": 2431.1, + "probability": 0.9829 + }, + { + "start": 2431.28, + "end": 2435.9, + "probability": 0.9629 + }, + { + "start": 2435.9, + "end": 2438.94, + "probability": 0.9914 + }, + { + "start": 2440.06, + "end": 2445.1, + "probability": 0.991 + }, + { + "start": 2446.12, + "end": 2446.74, + "probability": 0.7586 + }, + { + "start": 2447.56, + "end": 2448.16, + "probability": 0.9919 + }, + { + "start": 2448.86, + "end": 2450.18, + "probability": 0.9412 + }, + { + "start": 2451.04, + "end": 2457.62, + "probability": 0.9976 + }, + { + "start": 2458.56, + "end": 2461.88, + "probability": 0.8811 + }, + { + "start": 2462.68, + "end": 2467.46, + "probability": 0.9736 + }, + { + "start": 2468.12, + "end": 2469.64, + "probability": 0.9948 + }, + { + "start": 2470.62, + "end": 2476.88, + "probability": 0.9971 + }, + { + "start": 2478.46, + "end": 2481.28, + "probability": 0.9963 + }, + { + "start": 2482.04, + "end": 2486.32, + "probability": 0.998 + }, + { + "start": 2487.1, + "end": 2490.0, + "probability": 0.9917 + }, + { + "start": 2491.88, + "end": 2492.86, + "probability": 0.7607 + }, + { + "start": 2494.2, + "end": 2495.92, + "probability": 0.7854 + }, + { + "start": 2497.12, + "end": 2499.56, + "probability": 0.8575 + }, + { + "start": 2500.32, + "end": 2501.38, + "probability": 0.897 + }, + { + "start": 2502.92, + "end": 2506.22, + "probability": 0.8922 + }, + { + "start": 2507.78, + "end": 2514.86, + "probability": 0.9951 + }, + { + "start": 2516.18, + "end": 2518.36, + "probability": 0.9827 + }, + { + "start": 2519.72, + "end": 2525.46, + "probability": 0.9976 + }, + { + "start": 2526.38, + "end": 2529.8, + "probability": 0.995 + }, + { + "start": 2532.12, + "end": 2535.08, + "probability": 0.9829 + }, + { + "start": 2535.44, + "end": 2536.84, + "probability": 0.9487 + }, + { + "start": 2538.34, + "end": 2539.84, + "probability": 0.9426 + }, + { + "start": 2540.38, + "end": 2541.42, + "probability": 0.4995 + }, + { + "start": 2542.74, + "end": 2543.84, + "probability": 0.6261 + }, + { + "start": 2544.88, + "end": 2547.32, + "probability": 0.8816 + }, + { + "start": 2547.94, + "end": 2548.68, + "probability": 0.9469 + }, + { + "start": 2550.28, + "end": 2552.88, + "probability": 0.7324 + }, + { + "start": 2554.24, + "end": 2557.34, + "probability": 0.9535 + }, + { + "start": 2558.84, + "end": 2563.32, + "probability": 0.986 + }, + { + "start": 2563.98, + "end": 2565.92, + "probability": 0.9329 + }, + { + "start": 2566.02, + "end": 2567.24, + "probability": 0.8059 + }, + { + "start": 2567.3, + "end": 2570.4, + "probability": 0.9174 + }, + { + "start": 2570.86, + "end": 2576.16, + "probability": 0.9066 + }, + { + "start": 2576.76, + "end": 2578.74, + "probability": 0.6494 + }, + { + "start": 2578.88, + "end": 2581.86, + "probability": 0.6529 + }, + { + "start": 2583.64, + "end": 2585.2, + "probability": 0.9276 + }, + { + "start": 2586.08, + "end": 2589.0, + "probability": 0.9905 + }, + { + "start": 2589.78, + "end": 2592.2, + "probability": 0.978 + }, + { + "start": 2592.86, + "end": 2594.96, + "probability": 0.8706 + }, + { + "start": 2596.22, + "end": 2597.44, + "probability": 0.8975 + }, + { + "start": 2597.98, + "end": 2598.78, + "probability": 0.8175 + }, + { + "start": 2599.72, + "end": 2601.52, + "probability": 0.9527 + }, + { + "start": 2602.88, + "end": 2604.04, + "probability": 0.8127 + }, + { + "start": 2604.16, + "end": 2608.72, + "probability": 0.9833 + }, + { + "start": 2609.76, + "end": 2611.18, + "probability": 0.28 + }, + { + "start": 2611.74, + "end": 2614.06, + "probability": 0.9875 + }, + { + "start": 2615.0, + "end": 2616.8, + "probability": 0.9911 + }, + { + "start": 2617.54, + "end": 2618.76, + "probability": 0.9658 + }, + { + "start": 2619.46, + "end": 2620.44, + "probability": 0.7518 + }, + { + "start": 2620.56, + "end": 2621.46, + "probability": 0.8374 + }, + { + "start": 2622.52, + "end": 2625.22, + "probability": 0.9921 + }, + { + "start": 2625.22, + "end": 2629.78, + "probability": 0.9968 + }, + { + "start": 2630.94, + "end": 2633.68, + "probability": 0.9969 + }, + { + "start": 2634.68, + "end": 2638.38, + "probability": 0.9985 + }, + { + "start": 2638.6, + "end": 2643.96, + "probability": 0.9847 + }, + { + "start": 2644.1, + "end": 2647.8, + "probability": 0.9832 + }, + { + "start": 2648.9, + "end": 2650.64, + "probability": 0.9897 + }, + { + "start": 2651.78, + "end": 2654.2, + "probability": 0.9993 + }, + { + "start": 2655.42, + "end": 2656.86, + "probability": 0.9421 + }, + { + "start": 2657.86, + "end": 2660.5, + "probability": 0.9879 + }, + { + "start": 2661.76, + "end": 2662.22, + "probability": 0.6859 + }, + { + "start": 2662.36, + "end": 2663.92, + "probability": 0.9478 + }, + { + "start": 2664.0, + "end": 2666.24, + "probability": 0.915 + }, + { + "start": 2667.02, + "end": 2669.74, + "probability": 0.9722 + }, + { + "start": 2671.12, + "end": 2672.12, + "probability": 0.9766 + }, + { + "start": 2672.88, + "end": 2675.86, + "probability": 0.9848 + }, + { + "start": 2676.7, + "end": 2678.9, + "probability": 0.8847 + }, + { + "start": 2680.22, + "end": 2682.38, + "probability": 0.9976 + }, + { + "start": 2683.26, + "end": 2686.2, + "probability": 0.9968 + }, + { + "start": 2686.28, + "end": 2687.78, + "probability": 0.9585 + }, + { + "start": 2689.76, + "end": 2691.08, + "probability": 0.5236 + }, + { + "start": 2691.18, + "end": 2692.3, + "probability": 0.9125 + }, + { + "start": 2692.34, + "end": 2693.52, + "probability": 0.8506 + }, + { + "start": 2694.91, + "end": 2695.82, + "probability": 0.9792 + }, + { + "start": 2696.41, + "end": 2697.62, + "probability": 0.9912 + }, + { + "start": 2697.68, + "end": 2704.86, + "probability": 0.9614 + }, + { + "start": 2704.86, + "end": 2704.86, + "probability": 0.0693 + }, + { + "start": 2704.86, + "end": 2707.17, + "probability": 0.9917 + }, + { + "start": 2708.44, + "end": 2710.54, + "probability": 0.9651 + }, + { + "start": 2711.44, + "end": 2715.34, + "probability": 0.9807 + }, + { + "start": 2715.42, + "end": 2719.06, + "probability": 0.9772 + }, + { + "start": 2720.2, + "end": 2721.72, + "probability": 0.804 + }, + { + "start": 2722.98, + "end": 2724.88, + "probability": 0.9365 + }, + { + "start": 2725.78, + "end": 2727.34, + "probability": 0.9972 + }, + { + "start": 2728.04, + "end": 2730.78, + "probability": 0.9658 + }, + { + "start": 2731.58, + "end": 2736.46, + "probability": 0.9956 + }, + { + "start": 2737.16, + "end": 2741.62, + "probability": 0.9991 + }, + { + "start": 2742.4, + "end": 2743.84, + "probability": 0.9833 + }, + { + "start": 2746.52, + "end": 2746.86, + "probability": 0.7092 + }, + { + "start": 2747.4, + "end": 2747.98, + "probability": 0.6453 + }, + { + "start": 2748.08, + "end": 2749.86, + "probability": 0.8916 + }, + { + "start": 2750.04, + "end": 2752.06, + "probability": 0.9966 + }, + { + "start": 2752.86, + "end": 2753.44, + "probability": 0.7105 + }, + { + "start": 2753.56, + "end": 2755.44, + "probability": 0.9898 + }, + { + "start": 2755.74, + "end": 2757.64, + "probability": 0.7248 + }, + { + "start": 2759.88, + "end": 2760.52, + "probability": 0.9575 + }, + { + "start": 2761.38, + "end": 2762.28, + "probability": 0.8153 + }, + { + "start": 2763.1, + "end": 2767.42, + "probability": 0.9768 + }, + { + "start": 2768.32, + "end": 2770.66, + "probability": 0.9966 + }, + { + "start": 2773.2, + "end": 2775.78, + "probability": 0.9927 + }, + { + "start": 2775.92, + "end": 2779.36, + "probability": 0.8459 + }, + { + "start": 2779.48, + "end": 2780.62, + "probability": 0.9782 + }, + { + "start": 2780.72, + "end": 2783.72, + "probability": 0.9927 + }, + { + "start": 2784.0, + "end": 2785.2, + "probability": 0.5156 + }, + { + "start": 2786.12, + "end": 2788.34, + "probability": 0.9728 + }, + { + "start": 2788.5, + "end": 2790.64, + "probability": 0.9821 + }, + { + "start": 2791.34, + "end": 2792.92, + "probability": 0.8851 + }, + { + "start": 2793.64, + "end": 2794.92, + "probability": 0.9608 + }, + { + "start": 2796.54, + "end": 2799.42, + "probability": 0.7738 + }, + { + "start": 2800.28, + "end": 2803.3, + "probability": 0.9824 + }, + { + "start": 2804.14, + "end": 2806.98, + "probability": 0.9991 + }, + { + "start": 2807.4, + "end": 2810.3, + "probability": 0.9736 + }, + { + "start": 2810.94, + "end": 2812.08, + "probability": 0.5205 + }, + { + "start": 2812.68, + "end": 2813.36, + "probability": 0.9217 + }, + { + "start": 2814.88, + "end": 2817.64, + "probability": 0.9736 + }, + { + "start": 2817.64, + "end": 2820.98, + "probability": 0.8415 + }, + { + "start": 2821.7, + "end": 2822.4, + "probability": 0.9495 + }, + { + "start": 2823.26, + "end": 2824.1, + "probability": 0.9216 + }, + { + "start": 2824.84, + "end": 2825.12, + "probability": 0.9492 + }, + { + "start": 2827.26, + "end": 2831.38, + "probability": 0.9709 + }, + { + "start": 2832.58, + "end": 2835.1, + "probability": 0.9547 + }, + { + "start": 2836.02, + "end": 2837.04, + "probability": 0.8144 + }, + { + "start": 2838.1, + "end": 2839.9, + "probability": 0.9639 + }, + { + "start": 2841.7, + "end": 2845.64, + "probability": 0.9799 + }, + { + "start": 2845.98, + "end": 2849.14, + "probability": 0.9971 + }, + { + "start": 2850.5, + "end": 2851.66, + "probability": 0.6669 + }, + { + "start": 2851.86, + "end": 2856.72, + "probability": 0.9475 + }, + { + "start": 2856.88, + "end": 2857.84, + "probability": 0.6128 + }, + { + "start": 2858.64, + "end": 2859.1, + "probability": 0.8343 + }, + { + "start": 2859.26, + "end": 2862.66, + "probability": 0.9883 + }, + { + "start": 2863.48, + "end": 2864.24, + "probability": 0.9663 + }, + { + "start": 2864.8, + "end": 2867.68, + "probability": 0.9967 + }, + { + "start": 2868.48, + "end": 2869.39, + "probability": 0.9951 + }, + { + "start": 2869.88, + "end": 2875.64, + "probability": 0.983 + }, + { + "start": 2876.78, + "end": 2880.86, + "probability": 0.8257 + }, + { + "start": 2881.46, + "end": 2882.47, + "probability": 0.2761 + }, + { + "start": 2882.82, + "end": 2884.52, + "probability": 0.8923 + }, + { + "start": 2884.62, + "end": 2885.7, + "probability": 0.843 + }, + { + "start": 2886.68, + "end": 2888.52, + "probability": 0.9302 + }, + { + "start": 2888.66, + "end": 2890.24, + "probability": 0.8828 + }, + { + "start": 2891.08, + "end": 2892.72, + "probability": 0.7946 + }, + { + "start": 2892.84, + "end": 2895.96, + "probability": 0.9568 + }, + { + "start": 2896.06, + "end": 2896.32, + "probability": 0.7173 + }, + { + "start": 2898.06, + "end": 2899.78, + "probability": 0.9938 + }, + { + "start": 2900.84, + "end": 2901.42, + "probability": 0.9803 + }, + { + "start": 2902.28, + "end": 2902.98, + "probability": 0.7582 + }, + { + "start": 2903.82, + "end": 2907.36, + "probability": 0.9988 + }, + { + "start": 2908.04, + "end": 2909.32, + "probability": 0.9755 + }, + { + "start": 2911.14, + "end": 2914.28, + "probability": 0.9524 + }, + { + "start": 2914.66, + "end": 2915.1, + "probability": 0.7001 + }, + { + "start": 2918.84, + "end": 2919.52, + "probability": 0.5225 + }, + { + "start": 2919.72, + "end": 2920.26, + "probability": 0.4859 + }, + { + "start": 2921.76, + "end": 2922.25, + "probability": 0.769 + }, + { + "start": 2924.48, + "end": 2926.9, + "probability": 0.903 + }, + { + "start": 2927.44, + "end": 2928.56, + "probability": 0.9279 + }, + { + "start": 2929.74, + "end": 2931.1, + "probability": 0.9077 + }, + { + "start": 2931.86, + "end": 2934.5, + "probability": 0.9088 + }, + { + "start": 2935.48, + "end": 2940.34, + "probability": 0.9402 + }, + { + "start": 2941.22, + "end": 2942.66, + "probability": 0.9768 + }, + { + "start": 2943.36, + "end": 2946.08, + "probability": 0.8785 + }, + { + "start": 2946.66, + "end": 2947.46, + "probability": 0.7789 + }, + { + "start": 2947.96, + "end": 2951.22, + "probability": 0.9985 + }, + { + "start": 2951.6, + "end": 2952.7, + "probability": 0.7452 + }, + { + "start": 2952.72, + "end": 2953.62, + "probability": 0.9873 + }, + { + "start": 2954.76, + "end": 2958.06, + "probability": 0.975 + }, + { + "start": 2958.58, + "end": 2960.83, + "probability": 0.9695 + }, + { + "start": 2962.22, + "end": 2963.51, + "probability": 0.7631 + }, + { + "start": 2964.44, + "end": 2967.45, + "probability": 0.9712 + }, + { + "start": 2968.52, + "end": 2969.96, + "probability": 0.9089 + }, + { + "start": 2970.42, + "end": 2975.54, + "probability": 0.9875 + }, + { + "start": 2976.32, + "end": 2977.32, + "probability": 0.6896 + }, + { + "start": 2977.44, + "end": 2979.84, + "probability": 0.9937 + }, + { + "start": 2980.86, + "end": 2985.02, + "probability": 0.9368 + }, + { + "start": 2985.12, + "end": 2986.2, + "probability": 0.8958 + }, + { + "start": 2986.94, + "end": 2987.44, + "probability": 0.5511 + }, + { + "start": 2988.18, + "end": 2990.92, + "probability": 0.992 + }, + { + "start": 2991.7, + "end": 2993.28, + "probability": 0.9921 + }, + { + "start": 2994.48, + "end": 2996.24, + "probability": 0.9797 + }, + { + "start": 2997.14, + "end": 2998.22, + "probability": 0.6808 + }, + { + "start": 2999.48, + "end": 3000.05, + "probability": 0.2725 + }, + { + "start": 3000.6, + "end": 3001.76, + "probability": 0.5385 + }, + { + "start": 3002.34, + "end": 3003.02, + "probability": 0.8505 + }, + { + "start": 3003.12, + "end": 3004.08, + "probability": 0.7213 + }, + { + "start": 3004.24, + "end": 3008.72, + "probability": 0.9852 + }, + { + "start": 3009.38, + "end": 3009.78, + "probability": 0.3368 + }, + { + "start": 3009.78, + "end": 3010.3, + "probability": 0.5055 + }, + { + "start": 3010.54, + "end": 3013.58, + "probability": 0.8328 + }, + { + "start": 3014.84, + "end": 3016.02, + "probability": 0.1552 + }, + { + "start": 3017.64, + "end": 3019.14, + "probability": 0.2598 + }, + { + "start": 3044.98, + "end": 3047.38, + "probability": 0.8894 + }, + { + "start": 3048.18, + "end": 3048.28, + "probability": 0.581 + }, + { + "start": 3049.34, + "end": 3052.74, + "probability": 0.9802 + }, + { + "start": 3053.16, + "end": 3055.0, + "probability": 0.9885 + }, + { + "start": 3055.78, + "end": 3056.3, + "probability": 0.8818 + }, + { + "start": 3056.6, + "end": 3057.42, + "probability": 0.9995 + }, + { + "start": 3057.46, + "end": 3058.38, + "probability": 0.9536 + }, + { + "start": 3059.38, + "end": 3062.34, + "probability": 0.9286 + }, + { + "start": 3062.34, + "end": 3067.44, + "probability": 0.9716 + }, + { + "start": 3068.18, + "end": 3070.4, + "probability": 0.9969 + }, + { + "start": 3070.4, + "end": 3074.1, + "probability": 0.9583 + }, + { + "start": 3074.44, + "end": 3077.96, + "probability": 0.8228 + }, + { + "start": 3078.56, + "end": 3082.28, + "probability": 0.9821 + }, + { + "start": 3085.98, + "end": 3089.34, + "probability": 0.8273 + }, + { + "start": 3090.56, + "end": 3092.78, + "probability": 0.9771 + }, + { + "start": 3093.4, + "end": 3094.4, + "probability": 0.9537 + }, + { + "start": 3095.44, + "end": 3095.98, + "probability": 0.7921 + }, + { + "start": 3097.66, + "end": 3098.28, + "probability": 0.8428 + }, + { + "start": 3098.36, + "end": 3103.16, + "probability": 0.9747 + }, + { + "start": 3103.18, + "end": 3105.2, + "probability": 0.4964 + }, + { + "start": 3105.28, + "end": 3107.78, + "probability": 0.4407 + }, + { + "start": 3107.88, + "end": 3110.16, + "probability": 0.7799 + }, + { + "start": 3110.66, + "end": 3111.08, + "probability": 0.4948 + }, + { + "start": 3111.42, + "end": 3111.78, + "probability": 0.8806 + }, + { + "start": 3111.92, + "end": 3113.48, + "probability": 0.6953 + }, + { + "start": 3113.56, + "end": 3114.84, + "probability": 0.8302 + }, + { + "start": 3114.9, + "end": 3115.52, + "probability": 0.9353 + }, + { + "start": 3115.6, + "end": 3116.36, + "probability": 0.9751 + }, + { + "start": 3116.76, + "end": 3117.32, + "probability": 0.9461 + }, + { + "start": 3117.38, + "end": 3118.56, + "probability": 0.784 + }, + { + "start": 3118.64, + "end": 3118.96, + "probability": 0.4682 + }, + { + "start": 3119.04, + "end": 3119.94, + "probability": 0.6044 + }, + { + "start": 3120.08, + "end": 3120.52, + "probability": 0.7396 + }, + { + "start": 3120.58, + "end": 3121.38, + "probability": 0.9297 + }, + { + "start": 3122.16, + "end": 3123.28, + "probability": 0.9827 + }, + { + "start": 3123.8, + "end": 3125.52, + "probability": 0.8229 + }, + { + "start": 3125.78, + "end": 3130.08, + "probability": 0.7874 + }, + { + "start": 3130.7, + "end": 3133.14, + "probability": 0.9973 + }, + { + "start": 3133.74, + "end": 3137.02, + "probability": 0.9633 + }, + { + "start": 3137.62, + "end": 3139.26, + "probability": 0.9875 + }, + { + "start": 3140.48, + "end": 3142.08, + "probability": 0.9956 + }, + { + "start": 3144.18, + "end": 3147.28, + "probability": 0.9971 + }, + { + "start": 3147.48, + "end": 3148.12, + "probability": 0.9097 + }, + { + "start": 3148.96, + "end": 3153.6, + "probability": 0.983 + }, + { + "start": 3153.72, + "end": 3154.66, + "probability": 0.8567 + }, + { + "start": 3155.28, + "end": 3158.14, + "probability": 0.8878 + }, + { + "start": 3158.7, + "end": 3160.62, + "probability": 0.9937 + }, + { + "start": 3162.14, + "end": 3162.62, + "probability": 0.0031 + }, + { + "start": 3163.42, + "end": 3164.0, + "probability": 0.6392 + }, + { + "start": 3165.02, + "end": 3166.8, + "probability": 0.9596 + }, + { + "start": 3166.86, + "end": 3169.38, + "probability": 0.9878 + }, + { + "start": 3170.04, + "end": 3171.84, + "probability": 0.6462 + }, + { + "start": 3172.08, + "end": 3176.18, + "probability": 0.9272 + }, + { + "start": 3176.26, + "end": 3181.74, + "probability": 0.9897 + }, + { + "start": 3181.88, + "end": 3183.24, + "probability": 0.5055 + }, + { + "start": 3183.42, + "end": 3183.88, + "probability": 0.9747 + }, + { + "start": 3184.16, + "end": 3184.88, + "probability": 0.9294 + }, + { + "start": 3185.3, + "end": 3186.4, + "probability": 0.9675 + }, + { + "start": 3186.8, + "end": 3191.1, + "probability": 0.3354 + }, + { + "start": 3191.4, + "end": 3193.32, + "probability": 0.1375 + }, + { + "start": 3194.6, + "end": 3194.64, + "probability": 0.4271 + }, + { + "start": 3194.86, + "end": 3195.42, + "probability": 0.6376 + }, + { + "start": 3195.42, + "end": 3198.84, + "probability": 0.2822 + }, + { + "start": 3198.84, + "end": 3198.84, + "probability": 0.2169 + }, + { + "start": 3199.94, + "end": 3200.36, + "probability": 0.0885 + }, + { + "start": 3200.36, + "end": 3202.18, + "probability": 0.6715 + }, + { + "start": 3204.34, + "end": 3204.34, + "probability": 0.0155 + }, + { + "start": 3204.34, + "end": 3204.34, + "probability": 0.2272 + }, + { + "start": 3204.34, + "end": 3204.34, + "probability": 0.0392 + }, + { + "start": 3204.34, + "end": 3206.67, + "probability": 0.3227 + }, + { + "start": 3208.58, + "end": 3210.9, + "probability": 0.9818 + }, + { + "start": 3211.08, + "end": 3213.28, + "probability": 0.9535 + }, + { + "start": 3213.83, + "end": 3215.63, + "probability": 0.9852 + }, + { + "start": 3216.26, + "end": 3218.1, + "probability": 0.9717 + }, + { + "start": 3218.52, + "end": 3219.92, + "probability": 0.9505 + }, + { + "start": 3220.64, + "end": 3222.54, + "probability": 0.8512 + }, + { + "start": 3223.06, + "end": 3224.84, + "probability": 0.6979 + }, + { + "start": 3225.14, + "end": 3226.16, + "probability": 0.812 + }, + { + "start": 3226.52, + "end": 3229.9, + "probability": 0.9639 + }, + { + "start": 3230.0, + "end": 3232.28, + "probability": 0.9851 + }, + { + "start": 3232.54, + "end": 3233.64, + "probability": 0.752 + }, + { + "start": 3233.98, + "end": 3234.92, + "probability": 0.8649 + }, + { + "start": 3235.0, + "end": 3237.3, + "probability": 0.9661 + }, + { + "start": 3237.78, + "end": 3238.66, + "probability": 0.8249 + }, + { + "start": 3238.92, + "end": 3240.06, + "probability": 0.7627 + }, + { + "start": 3240.12, + "end": 3241.57, + "probability": 0.7914 + }, + { + "start": 3241.7, + "end": 3243.22, + "probability": 0.918 + }, + { + "start": 3244.24, + "end": 3245.0, + "probability": 0.9148 + }, + { + "start": 3245.24, + "end": 3248.62, + "probability": 0.909 + }, + { + "start": 3248.62, + "end": 3251.3, + "probability": 0.9993 + }, + { + "start": 3251.9, + "end": 3253.86, + "probability": 0.996 + }, + { + "start": 3254.36, + "end": 3256.94, + "probability": 0.9698 + }, + { + "start": 3256.94, + "end": 3260.04, + "probability": 0.9937 + }, + { + "start": 3260.54, + "end": 3264.65, + "probability": 0.9923 + }, + { + "start": 3265.46, + "end": 3266.72, + "probability": 0.6799 + }, + { + "start": 3266.78, + "end": 3268.32, + "probability": 0.6284 + }, + { + "start": 3268.78, + "end": 3268.8, + "probability": 0.0479 + }, + { + "start": 3268.8, + "end": 3273.06, + "probability": 0.8982 + }, + { + "start": 3273.06, + "end": 3276.12, + "probability": 0.9585 + }, + { + "start": 3276.64, + "end": 3278.04, + "probability": 0.4835 + }, + { + "start": 3278.22, + "end": 3278.22, + "probability": 0.4867 + }, + { + "start": 3278.22, + "end": 3280.06, + "probability": 0.2771 + }, + { + "start": 3280.54, + "end": 3281.58, + "probability": 0.5917 + }, + { + "start": 3281.62, + "end": 3284.3, + "probability": 0.9717 + }, + { + "start": 3284.72, + "end": 3287.5, + "probability": 0.8454 + }, + { + "start": 3288.62, + "end": 3293.44, + "probability": 0.9849 + }, + { + "start": 3293.62, + "end": 3294.94, + "probability": 0.6718 + }, + { + "start": 3295.04, + "end": 3295.56, + "probability": 0.7405 + }, + { + "start": 3295.62, + "end": 3300.72, + "probability": 0.9927 + }, + { + "start": 3300.84, + "end": 3305.4, + "probability": 0.9962 + }, + { + "start": 3305.96, + "end": 3307.2, + "probability": 0.9827 + }, + { + "start": 3307.6, + "end": 3310.6, + "probability": 0.9804 + }, + { + "start": 3311.3, + "end": 3311.56, + "probability": 0.8912 + }, + { + "start": 3311.72, + "end": 3312.2, + "probability": 0.9708 + }, + { + "start": 3312.3, + "end": 3317.04, + "probability": 0.8672 + }, + { + "start": 3317.04, + "end": 3321.46, + "probability": 0.9868 + }, + { + "start": 3321.86, + "end": 3324.18, + "probability": 0.7501 + }, + { + "start": 3324.34, + "end": 3324.8, + "probability": 0.6812 + }, + { + "start": 3325.2, + "end": 3326.18, + "probability": 0.8978 + }, + { + "start": 3327.38, + "end": 3328.72, + "probability": 0.7181 + }, + { + "start": 3328.74, + "end": 3329.0, + "probability": 0.0077 + }, + { + "start": 3329.0, + "end": 3330.68, + "probability": 0.738 + }, + { + "start": 3330.86, + "end": 3332.56, + "probability": 0.8054 + }, + { + "start": 3332.74, + "end": 3333.62, + "probability": 0.529 + }, + { + "start": 3334.06, + "end": 3335.02, + "probability": 0.9195 + }, + { + "start": 3335.1, + "end": 3335.88, + "probability": 0.8431 + }, + { + "start": 3336.4, + "end": 3339.2, + "probability": 0.6569 + }, + { + "start": 3339.46, + "end": 3340.4, + "probability": 0.9946 + }, + { + "start": 3340.42, + "end": 3341.48, + "probability": 0.6768 + }, + { + "start": 3341.92, + "end": 3343.19, + "probability": 0.0253 + }, + { + "start": 3344.68, + "end": 3344.8, + "probability": 0.034 + }, + { + "start": 3344.8, + "end": 3344.8, + "probability": 0.1592 + }, + { + "start": 3344.8, + "end": 3346.44, + "probability": 0.8295 + }, + { + "start": 3347.66, + "end": 3352.98, + "probability": 0.5806 + }, + { + "start": 3352.98, + "end": 3355.78, + "probability": 0.549 + }, + { + "start": 3356.28, + "end": 3358.78, + "probability": 0.8307 + }, + { + "start": 3362.5, + "end": 3364.12, + "probability": 0.6958 + }, + { + "start": 3364.93, + "end": 3366.34, + "probability": 0.4769 + }, + { + "start": 3366.56, + "end": 3367.36, + "probability": 0.7423 + }, + { + "start": 3368.1, + "end": 3368.84, + "probability": 0.7047 + }, + { + "start": 3371.44, + "end": 3375.8, + "probability": 0.9895 + }, + { + "start": 3377.5, + "end": 3378.18, + "probability": 0.744 + }, + { + "start": 3378.76, + "end": 3380.86, + "probability": 0.9966 + }, + { + "start": 3382.8, + "end": 3387.66, + "probability": 0.9974 + }, + { + "start": 3389.1, + "end": 3390.82, + "probability": 0.9884 + }, + { + "start": 3390.82, + "end": 3394.14, + "probability": 0.999 + }, + { + "start": 3395.5, + "end": 3397.2, + "probability": 0.9773 + }, + { + "start": 3399.2, + "end": 3402.1, + "probability": 0.9962 + }, + { + "start": 3402.1, + "end": 3406.46, + "probability": 0.998 + }, + { + "start": 3408.34, + "end": 3411.38, + "probability": 0.9504 + }, + { + "start": 3411.98, + "end": 3413.02, + "probability": 0.9257 + }, + { + "start": 3414.16, + "end": 3416.86, + "probability": 0.9297 + }, + { + "start": 3418.66, + "end": 3420.38, + "probability": 0.9829 + }, + { + "start": 3420.62, + "end": 3421.32, + "probability": 0.7297 + }, + { + "start": 3421.72, + "end": 3423.38, + "probability": 0.9479 + }, + { + "start": 3423.86, + "end": 3425.22, + "probability": 0.9304 + }, + { + "start": 3425.6, + "end": 3426.2, + "probability": 0.5466 + }, + { + "start": 3426.22, + "end": 3428.34, + "probability": 0.9591 + }, + { + "start": 3429.3, + "end": 3429.56, + "probability": 0.6358 + }, + { + "start": 3429.64, + "end": 3432.86, + "probability": 0.9763 + }, + { + "start": 3434.34, + "end": 3437.26, + "probability": 0.9817 + }, + { + "start": 3437.26, + "end": 3440.4, + "probability": 0.9904 + }, + { + "start": 3442.18, + "end": 3442.72, + "probability": 0.8574 + }, + { + "start": 3442.96, + "end": 3443.46, + "probability": 0.5933 + }, + { + "start": 3443.54, + "end": 3444.9, + "probability": 0.8648 + }, + { + "start": 3444.94, + "end": 3447.74, + "probability": 0.9836 + }, + { + "start": 3447.8, + "end": 3451.2, + "probability": 0.9781 + }, + { + "start": 3453.96, + "end": 3455.42, + "probability": 0.8438 + }, + { + "start": 3455.64, + "end": 3456.76, + "probability": 0.8723 + }, + { + "start": 3458.56, + "end": 3463.94, + "probability": 0.8746 + }, + { + "start": 3464.14, + "end": 3464.68, + "probability": 0.6839 + }, + { + "start": 3465.3, + "end": 3466.92, + "probability": 0.9685 + }, + { + "start": 3467.48, + "end": 3467.96, + "probability": 0.9226 + }, + { + "start": 3468.62, + "end": 3469.46, + "probability": 0.9417 + }, + { + "start": 3470.9, + "end": 3473.29, + "probability": 0.5327 + }, + { + "start": 3474.56, + "end": 3475.0, + "probability": 0.8915 + }, + { + "start": 3475.12, + "end": 3476.52, + "probability": 0.8466 + }, + { + "start": 3476.8, + "end": 3478.54, + "probability": 0.9463 + }, + { + "start": 3479.8, + "end": 3482.96, + "probability": 0.9856 + }, + { + "start": 3484.0, + "end": 3485.26, + "probability": 0.9697 + }, + { + "start": 3485.38, + "end": 3485.84, + "probability": 0.4333 + }, + { + "start": 3485.92, + "end": 3487.95, + "probability": 0.9697 + }, + { + "start": 3489.14, + "end": 3490.08, + "probability": 0.987 + }, + { + "start": 3492.08, + "end": 3494.18, + "probability": 0.9868 + }, + { + "start": 3495.08, + "end": 3497.66, + "probability": 0.9744 + }, + { + "start": 3497.66, + "end": 3501.28, + "probability": 0.9937 + }, + { + "start": 3503.14, + "end": 3509.68, + "probability": 0.9973 + }, + { + "start": 3509.78, + "end": 3511.34, + "probability": 0.9368 + }, + { + "start": 3512.16, + "end": 3514.52, + "probability": 0.5105 + }, + { + "start": 3514.52, + "end": 3515.86, + "probability": 0.0079 + }, + { + "start": 3516.04, + "end": 3518.16, + "probability": 0.7526 + }, + { + "start": 3518.22, + "end": 3521.06, + "probability": 0.959 + }, + { + "start": 3521.42, + "end": 3522.3, + "probability": 0.8655 + }, + { + "start": 3522.38, + "end": 3522.4, + "probability": 0.4175 + }, + { + "start": 3522.58, + "end": 3523.94, + "probability": 0.9982 + }, + { + "start": 3523.96, + "end": 3526.72, + "probability": 0.1665 + }, + { + "start": 3526.72, + "end": 3530.12, + "probability": 0.635 + }, + { + "start": 3530.54, + "end": 3530.82, + "probability": 0.6998 + }, + { + "start": 3530.88, + "end": 3533.54, + "probability": 0.7206 + }, + { + "start": 3533.66, + "end": 3534.08, + "probability": 0.2589 + }, + { + "start": 3534.13, + "end": 3536.38, + "probability": 0.2649 + }, + { + "start": 3536.42, + "end": 3539.54, + "probability": 0.994 + }, + { + "start": 3541.1, + "end": 3545.8, + "probability": 0.9893 + }, + { + "start": 3546.66, + "end": 3549.28, + "probability": 0.9526 + }, + { + "start": 3550.44, + "end": 3552.26, + "probability": 0.9767 + }, + { + "start": 3552.66, + "end": 3553.16, + "probability": 0.9229 + }, + { + "start": 3554.36, + "end": 3555.02, + "probability": 0.7434 + }, + { + "start": 3555.08, + "end": 3556.38, + "probability": 0.6813 + }, + { + "start": 3556.54, + "end": 3557.92, + "probability": 0.9316 + }, + { + "start": 3558.14, + "end": 3559.86, + "probability": 0.9904 + }, + { + "start": 3559.96, + "end": 3560.16, + "probability": 0.6089 + }, + { + "start": 3560.39, + "end": 3560.82, + "probability": 0.9722 + }, + { + "start": 3562.78, + "end": 3566.0, + "probability": 0.9917 + }, + { + "start": 3566.0, + "end": 3569.6, + "probability": 0.9934 + }, + { + "start": 3570.32, + "end": 3573.98, + "probability": 0.9971 + }, + { + "start": 3574.6, + "end": 3577.66, + "probability": 0.9858 + }, + { + "start": 3578.54, + "end": 3582.2, + "probability": 0.9651 + }, + { + "start": 3583.6, + "end": 3585.76, + "probability": 0.8787 + }, + { + "start": 3585.8, + "end": 3588.34, + "probability": 0.9966 + }, + { + "start": 3588.46, + "end": 3588.8, + "probability": 0.4926 + }, + { + "start": 3588.96, + "end": 3589.64, + "probability": 0.8243 + }, + { + "start": 3590.12, + "end": 3594.12, + "probability": 0.9653 + }, + { + "start": 3594.66, + "end": 3595.5, + "probability": 0.9932 + }, + { + "start": 3600.42, + "end": 3602.86, + "probability": 0.9746 + }, + { + "start": 3602.96, + "end": 3603.85, + "probability": 0.9088 + }, + { + "start": 3603.98, + "end": 3605.74, + "probability": 0.9952 + }, + { + "start": 3605.78, + "end": 3609.16, + "probability": 0.9606 + }, + { + "start": 3609.26, + "end": 3610.64, + "probability": 0.5897 + }, + { + "start": 3610.7, + "end": 3611.06, + "probability": 0.5021 + }, + { + "start": 3611.22, + "end": 3612.5, + "probability": 0.9932 + }, + { + "start": 3612.6, + "end": 3614.78, + "probability": 0.9577 + }, + { + "start": 3614.9, + "end": 3616.14, + "probability": 0.9574 + }, + { + "start": 3618.16, + "end": 3619.54, + "probability": 0.808 + }, + { + "start": 3619.64, + "end": 3621.16, + "probability": 0.9835 + }, + { + "start": 3621.32, + "end": 3621.34, + "probability": 0.0016 + }, + { + "start": 3621.34, + "end": 3621.34, + "probability": 0.0468 + }, + { + "start": 3621.44, + "end": 3621.92, + "probability": 0.4463 + }, + { + "start": 3622.0, + "end": 3622.6, + "probability": 0.7382 + }, + { + "start": 3623.44, + "end": 3625.55, + "probability": 0.8888 + }, + { + "start": 3626.42, + "end": 3628.26, + "probability": 0.9824 + }, + { + "start": 3631.7, + "end": 3634.98, + "probability": 0.9863 + }, + { + "start": 3635.06, + "end": 3639.39, + "probability": 0.9972 + }, + { + "start": 3640.24, + "end": 3641.18, + "probability": 0.1627 + }, + { + "start": 3641.24, + "end": 3641.76, + "probability": 0.3771 + }, + { + "start": 3641.98, + "end": 3643.4, + "probability": 0.1329 + }, + { + "start": 3643.42, + "end": 3644.88, + "probability": 0.8285 + }, + { + "start": 3645.08, + "end": 3648.1, + "probability": 0.7589 + }, + { + "start": 3648.56, + "end": 3649.82, + "probability": 0.0981 + }, + { + "start": 3649.82, + "end": 3650.62, + "probability": 0.2491 + }, + { + "start": 3650.62, + "end": 3650.86, + "probability": 0.2022 + }, + { + "start": 3652.23, + "end": 3652.3, + "probability": 0.0401 + }, + { + "start": 3652.94, + "end": 3653.54, + "probability": 0.0817 + }, + { + "start": 3653.54, + "end": 3655.5, + "probability": 0.209 + }, + { + "start": 3655.56, + "end": 3661.02, + "probability": 0.1824 + }, + { + "start": 3664.28, + "end": 3666.64, + "probability": 0.3512 + }, + { + "start": 3667.4, + "end": 3667.96, + "probability": 0.0428 + }, + { + "start": 3667.96, + "end": 3668.56, + "probability": 0.0164 + }, + { + "start": 3668.94, + "end": 3671.58, + "probability": 0.2681 + }, + { + "start": 3671.7, + "end": 3675.46, + "probability": 0.1834 + }, + { + "start": 3677.28, + "end": 3677.5, + "probability": 0.5164 + }, + { + "start": 3707.52, + "end": 3708.62, + "probability": 0.0832 + }, + { + "start": 3708.62, + "end": 3708.9, + "probability": 0.1667 + }, + { + "start": 3709.0, + "end": 3710.02, + "probability": 0.0461 + }, + { + "start": 3710.56, + "end": 3711.46, + "probability": 0.1191 + }, + { + "start": 3711.96, + "end": 3712.68, + "probability": 0.0902 + }, + { + "start": 3715.79, + "end": 3718.33, + "probability": 0.0856 + }, + { + "start": 3722.36, + "end": 3722.36, + "probability": 0.0594 + }, + { + "start": 3723.66, + "end": 3723.82, + "probability": 0.0913 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3738.0, + "end": 3738.0, + "probability": 0.0 + }, + { + "start": 3765.05, + "end": 3765.2, + "probability": 0.0399 + }, + { + "start": 3767.79, + "end": 3770.86, + "probability": 0.0384 + }, + { + "start": 3772.99, + "end": 3773.67, + "probability": 0.037 + }, + { + "start": 3774.06, + "end": 3774.64, + "probability": 0.1206 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.0, + "end": 3865.0, + "probability": 0.0 + }, + { + "start": 3865.12, + "end": 3865.2, + "probability": 0.1685 + }, + { + "start": 3865.2, + "end": 3865.98, + "probability": 0.099 + }, + { + "start": 3866.32, + "end": 3868.22, + "probability": 0.6338 + }, + { + "start": 3868.36, + "end": 3869.38, + "probability": 0.9944 + }, + { + "start": 3870.0, + "end": 3872.2, + "probability": 0.8271 + }, + { + "start": 3873.0, + "end": 3874.88, + "probability": 0.9829 + }, + { + "start": 3875.0, + "end": 3879.28, + "probability": 0.9928 + }, + { + "start": 3880.24, + "end": 3883.48, + "probability": 0.9858 + }, + { + "start": 3884.62, + "end": 3888.14, + "probability": 0.981 + }, + { + "start": 3888.48, + "end": 3889.88, + "probability": 0.9702 + }, + { + "start": 3889.96, + "end": 3891.02, + "probability": 0.7078 + }, + { + "start": 3891.6, + "end": 3894.2, + "probability": 0.9873 + }, + { + "start": 3894.2, + "end": 3897.12, + "probability": 0.9481 + }, + { + "start": 3897.18, + "end": 3898.04, + "probability": 0.9785 + }, + { + "start": 3898.12, + "end": 3898.6, + "probability": 0.9843 + }, + { + "start": 3900.9, + "end": 3901.5, + "probability": 0.5883 + }, + { + "start": 3902.48, + "end": 3908.9, + "probability": 0.9735 + }, + { + "start": 3909.68, + "end": 3910.68, + "probability": 0.988 + }, + { + "start": 3910.76, + "end": 3911.64, + "probability": 0.9929 + }, + { + "start": 3911.7, + "end": 3912.86, + "probability": 0.9828 + }, + { + "start": 3912.92, + "end": 3915.14, + "probability": 0.9956 + }, + { + "start": 3915.14, + "end": 3917.18, + "probability": 0.4762 + }, + { + "start": 3917.76, + "end": 3919.9, + "probability": 0.9655 + }, + { + "start": 3919.94, + "end": 3923.3, + "probability": 0.5885 + }, + { + "start": 3925.04, + "end": 3928.06, + "probability": 0.9947 + }, + { + "start": 3928.06, + "end": 3931.54, + "probability": 0.9985 + }, + { + "start": 3931.68, + "end": 3932.04, + "probability": 0.4888 + }, + { + "start": 3932.24, + "end": 3933.56, + "probability": 0.9391 + }, + { + "start": 3933.66, + "end": 3934.5, + "probability": 0.994 + }, + { + "start": 3935.12, + "end": 3937.66, + "probability": 0.9954 + }, + { + "start": 3937.86, + "end": 3938.86, + "probability": 0.9837 + }, + { + "start": 3940.06, + "end": 3942.84, + "probability": 0.9314 + }, + { + "start": 3943.1, + "end": 3944.8, + "probability": 0.8456 + }, + { + "start": 3945.84, + "end": 3946.52, + "probability": 0.8322 + }, + { + "start": 3947.0, + "end": 3947.8, + "probability": 0.7668 + }, + { + "start": 3947.88, + "end": 3948.32, + "probability": 0.5223 + }, + { + "start": 3948.56, + "end": 3949.02, + "probability": 0.451 + }, + { + "start": 3949.26, + "end": 3950.44, + "probability": 0.8345 + }, + { + "start": 3950.54, + "end": 3951.14, + "probability": 0.881 + }, + { + "start": 3951.46, + "end": 3952.3, + "probability": 0.8985 + }, + { + "start": 3952.52, + "end": 3954.92, + "probability": 0.7918 + }, + { + "start": 3954.92, + "end": 3956.49, + "probability": 0.9884 + }, + { + "start": 3958.46, + "end": 3960.84, + "probability": 0.9939 + }, + { + "start": 3960.92, + "end": 3962.72, + "probability": 0.9294 + }, + { + "start": 3962.86, + "end": 3964.48, + "probability": 0.9875 + }, + { + "start": 3964.54, + "end": 3967.22, + "probability": 0.9921 + }, + { + "start": 3967.58, + "end": 3970.72, + "probability": 0.6683 + }, + { + "start": 3971.02, + "end": 3972.36, + "probability": 0.9696 + }, + { + "start": 3972.44, + "end": 3974.06, + "probability": 0.9635 + }, + { + "start": 3974.12, + "end": 3974.52, + "probability": 0.6407 + }, + { + "start": 3974.54, + "end": 3975.53, + "probability": 0.4604 + }, + { + "start": 3975.64, + "end": 3977.34, + "probability": 0.9958 + }, + { + "start": 3977.42, + "end": 3978.92, + "probability": 0.9768 + }, + { + "start": 3980.02, + "end": 3981.3, + "probability": 0.915 + }, + { + "start": 3981.6, + "end": 3983.66, + "probability": 0.9951 + }, + { + "start": 3983.74, + "end": 3986.42, + "probability": 0.906 + }, + { + "start": 3986.62, + "end": 3986.74, + "probability": 0.6369 + }, + { + "start": 3986.88, + "end": 3988.78, + "probability": 0.9817 + }, + { + "start": 3988.9, + "end": 3990.65, + "probability": 0.9962 + }, + { + "start": 3990.86, + "end": 3993.98, + "probability": 0.9928 + }, + { + "start": 3994.42, + "end": 3996.14, + "probability": 0.6304 + }, + { + "start": 3996.14, + "end": 3996.76, + "probability": 0.8488 + }, + { + "start": 3996.82, + "end": 3998.3, + "probability": 0.8222 + }, + { + "start": 3998.76, + "end": 3999.98, + "probability": 0.9634 + }, + { + "start": 3999.98, + "end": 4000.2, + "probability": 0.3473 + }, + { + "start": 4000.2, + "end": 4000.3, + "probability": 0.7294 + }, + { + "start": 4003.3, + "end": 4004.86, + "probability": 0.4301 + }, + { + "start": 4005.68, + "end": 4006.5, + "probability": 0.8193 + }, + { + "start": 4006.82, + "end": 4012.7, + "probability": 0.9698 + }, + { + "start": 4013.28, + "end": 4013.48, + "probability": 0.2763 + }, + { + "start": 4014.06, + "end": 4015.42, + "probability": 0.9591 + }, + { + "start": 4015.48, + "end": 4015.72, + "probability": 0.151 + }, + { + "start": 4015.76, + "end": 4018.08, + "probability": 0.7832 + }, + { + "start": 4018.34, + "end": 4019.03, + "probability": 0.3997 + }, + { + "start": 4019.22, + "end": 4021.14, + "probability": 0.8735 + }, + { + "start": 4021.66, + "end": 4022.58, + "probability": 0.1996 + }, + { + "start": 4022.6, + "end": 4022.6, + "probability": 0.2893 + }, + { + "start": 4022.6, + "end": 4022.6, + "probability": 0.1483 + }, + { + "start": 4022.6, + "end": 4022.6, + "probability": 0.282 + }, + { + "start": 4022.76, + "end": 4023.96, + "probability": 0.8047 + }, + { + "start": 4024.36, + "end": 4028.18, + "probability": 0.5931 + }, + { + "start": 4030.04, + "end": 4032.0, + "probability": 0.231 + }, + { + "start": 4032.3, + "end": 4032.9, + "probability": 0.3274 + }, + { + "start": 4034.52, + "end": 4034.78, + "probability": 0.1793 + }, + { + "start": 4034.78, + "end": 4034.78, + "probability": 0.0091 + }, + { + "start": 4034.78, + "end": 4037.48, + "probability": 0.1587 + }, + { + "start": 4037.58, + "end": 4039.14, + "probability": 0.8442 + }, + { + "start": 4039.76, + "end": 4040.08, + "probability": 0.6685 + }, + { + "start": 4042.24, + "end": 4045.46, + "probability": 0.6857 + }, + { + "start": 4052.82, + "end": 4055.2, + "probability": 0.5773 + }, + { + "start": 4057.24, + "end": 4058.2, + "probability": 0.9334 + }, + { + "start": 4058.72, + "end": 4060.12, + "probability": 0.9884 + }, + { + "start": 4060.72, + "end": 4061.1, + "probability": 0.0854 + }, + { + "start": 4061.1, + "end": 4061.52, + "probability": 0.1225 + }, + { + "start": 4061.9, + "end": 4065.99, + "probability": 0.5981 + }, + { + "start": 4067.58, + "end": 4068.68, + "probability": 0.7523 + }, + { + "start": 4068.76, + "end": 4069.42, + "probability": 0.415 + }, + { + "start": 4069.46, + "end": 4071.11, + "probability": 0.2357 + }, + { + "start": 4071.82, + "end": 4073.58, + "probability": 0.8928 + }, + { + "start": 4073.86, + "end": 4075.35, + "probability": 0.9178 + }, + { + "start": 4075.48, + "end": 4076.3, + "probability": 0.0008 + }, + { + "start": 4077.26, + "end": 4079.33, + "probability": 0.0225 + }, + { + "start": 4083.38, + "end": 4086.88, + "probability": 0.1231 + }, + { + "start": 4086.88, + "end": 4090.8, + "probability": 0.0326 + }, + { + "start": 4093.92, + "end": 4097.64, + "probability": 0.388 + }, + { + "start": 4101.02, + "end": 4101.62, + "probability": 0.0079 + }, + { + "start": 4101.78, + "end": 4101.88, + "probability": 0.182 + }, + { + "start": 4101.88, + "end": 4101.88, + "probability": 0.3144 + }, + { + "start": 4101.88, + "end": 4101.88, + "probability": 0.1922 + }, + { + "start": 4102.6, + "end": 4102.7, + "probability": 0.1937 + }, + { + "start": 4102.7, + "end": 4102.88, + "probability": 0.0792 + }, + { + "start": 4102.88, + "end": 4105.18, + "probability": 0.0153 + }, + { + "start": 4106.38, + "end": 4106.94, + "probability": 0.0312 + }, + { + "start": 4110.74, + "end": 4110.74, + "probability": 0.0695 + }, + { + "start": 4111.1, + "end": 4112.92, + "probability": 0.3364 + }, + { + "start": 4113.88, + "end": 4113.88, + "probability": 0.5329 + }, + { + "start": 4128.06, + "end": 4129.68, + "probability": 0.0171 + }, + { + "start": 4131.07, + "end": 4132.92, + "probability": 0.0606 + }, + { + "start": 4134.26, + "end": 4135.98, + "probability": 0.0548 + }, + { + "start": 4136.74, + "end": 4137.66, + "probability": 0.3342 + }, + { + "start": 4137.66, + "end": 4137.66, + "probability": 0.244 + }, + { + "start": 4137.66, + "end": 4137.66, + "probability": 0.2711 + }, + { + "start": 4137.66, + "end": 4137.72, + "probability": 0.0243 + }, + { + "start": 4137.72, + "end": 4137.98, + "probability": 0.1221 + }, + { + "start": 4138.0, + "end": 4138.0, + "probability": 0.0 + }, + { + "start": 4138.0, + "end": 4138.0, + "probability": 0.0 + }, + { + "start": 4138.0, + "end": 4138.0, + "probability": 0.0 + }, + { + "start": 4138.0, + "end": 4138.0, + "probability": 0.0 + }, + { + "start": 4138.0, + "end": 4138.0, + "probability": 0.0 + }, + { + "start": 4138.0, + "end": 4138.0, + "probability": 0.0 + }, + { + "start": 4138.0, + "end": 4138.0, + "probability": 0.0 + }, + { + "start": 4138.0, + "end": 4138.0, + "probability": 0.0 + }, + { + "start": 4138.0, + "end": 4138.0, + "probability": 0.0 + }, + { + "start": 4138.08, + "end": 4138.08, + "probability": 0.1783 + }, + { + "start": 4138.08, + "end": 4138.78, + "probability": 0.0486 + }, + { + "start": 4139.24, + "end": 4141.68, + "probability": 0.9674 + }, + { + "start": 4141.76, + "end": 4143.4, + "probability": 0.9611 + }, + { + "start": 4143.6, + "end": 4147.2, + "probability": 0.9881 + }, + { + "start": 4147.34, + "end": 4149.26, + "probability": 0.9448 + }, + { + "start": 4149.42, + "end": 4150.96, + "probability": 0.8974 + }, + { + "start": 4151.58, + "end": 4152.5, + "probability": 0.9512 + }, + { + "start": 4152.62, + "end": 4154.76, + "probability": 0.9837 + }, + { + "start": 4155.66, + "end": 4159.18, + "probability": 0.9954 + }, + { + "start": 4159.44, + "end": 4160.96, + "probability": 0.9883 + }, + { + "start": 4162.22, + "end": 4162.94, + "probability": 0.915 + }, + { + "start": 4163.34, + "end": 4164.15, + "probability": 0.6657 + }, + { + "start": 4164.3, + "end": 4168.72, + "probability": 0.8602 + }, + { + "start": 4168.86, + "end": 4171.74, + "probability": 0.9958 + }, + { + "start": 4172.52, + "end": 4173.28, + "probability": 0.7243 + }, + { + "start": 4173.86, + "end": 4175.08, + "probability": 0.9556 + }, + { + "start": 4175.54, + "end": 4176.96, + "probability": 0.9858 + }, + { + "start": 4177.4, + "end": 4180.12, + "probability": 0.9968 + }, + { + "start": 4181.18, + "end": 4181.18, + "probability": 0.0335 + }, + { + "start": 4181.18, + "end": 4186.96, + "probability": 0.9431 + }, + { + "start": 4187.68, + "end": 4188.88, + "probability": 0.9294 + }, + { + "start": 4189.86, + "end": 4192.34, + "probability": 0.9922 + }, + { + "start": 4192.34, + "end": 4195.16, + "probability": 0.9922 + }, + { + "start": 4196.72, + "end": 4197.36, + "probability": 0.7792 + }, + { + "start": 4197.96, + "end": 4198.74, + "probability": 0.7351 + }, + { + "start": 4199.1, + "end": 4201.06, + "probability": 0.9426 + }, + { + "start": 4201.06, + "end": 4204.02, + "probability": 0.9562 + }, + { + "start": 4204.62, + "end": 4207.3, + "probability": 0.5637 + }, + { + "start": 4208.4, + "end": 4209.14, + "probability": 0.0586 + }, + { + "start": 4209.14, + "end": 4209.14, + "probability": 0.404 + }, + { + "start": 4209.14, + "end": 4209.14, + "probability": 0.0278 + }, + { + "start": 4209.14, + "end": 4210.76, + "probability": 0.1365 + }, + { + "start": 4210.86, + "end": 4213.3, + "probability": 0.7606 + }, + { + "start": 4216.9, + "end": 4217.18, + "probability": 0.1261 + }, + { + "start": 4217.18, + "end": 4219.78, + "probability": 0.5322 + }, + { + "start": 4220.72, + "end": 4226.8, + "probability": 0.9956 + }, + { + "start": 4228.48, + "end": 4233.9, + "probability": 0.984 + }, + { + "start": 4234.7, + "end": 4235.16, + "probability": 0.2638 + }, + { + "start": 4235.68, + "end": 4236.38, + "probability": 0.989 + }, + { + "start": 4237.54, + "end": 4240.36, + "probability": 0.8457 + }, + { + "start": 4244.84, + "end": 4246.56, + "probability": 0.0341 + }, + { + "start": 4246.58, + "end": 4247.21, + "probability": 0.0863 + }, + { + "start": 4248.62, + "end": 4249.68, + "probability": 0.0625 + }, + { + "start": 4249.84, + "end": 4250.14, + "probability": 0.2722 + }, + { + "start": 4250.14, + "end": 4250.94, + "probability": 0.0373 + }, + { + "start": 4250.94, + "end": 4250.94, + "probability": 0.1319 + }, + { + "start": 4250.94, + "end": 4251.74, + "probability": 0.1797 + }, + { + "start": 4251.74, + "end": 4254.02, + "probability": 0.9819 + }, + { + "start": 4254.84, + "end": 4255.22, + "probability": 0.7322 + }, + { + "start": 4255.78, + "end": 4257.28, + "probability": 0.9897 + }, + { + "start": 4257.82, + "end": 4263.3, + "probability": 0.9447 + }, + { + "start": 4263.92, + "end": 4265.76, + "probability": 0.9569 + }, + { + "start": 4266.72, + "end": 4266.8, + "probability": 0.0359 + }, + { + "start": 4266.8, + "end": 4269.9, + "probability": 0.9854 + }, + { + "start": 4270.32, + "end": 4272.0, + "probability": 0.8609 + }, + { + "start": 4272.1, + "end": 4274.24, + "probability": 0.9987 + }, + { + "start": 4274.8, + "end": 4277.02, + "probability": 0.9893 + }, + { + "start": 4277.24, + "end": 4279.66, + "probability": 0.8828 + }, + { + "start": 4280.36, + "end": 4283.7, + "probability": 0.0314 + }, + { + "start": 4283.7, + "end": 4284.44, + "probability": 0.9213 + }, + { + "start": 4286.78, + "end": 4288.44, + "probability": 0.0732 + }, + { + "start": 4288.44, + "end": 4288.44, + "probability": 0.0485 + }, + { + "start": 4288.44, + "end": 4291.8, + "probability": 0.4451 + }, + { + "start": 4292.6, + "end": 4294.32, + "probability": 0.9568 + }, + { + "start": 4295.2, + "end": 4297.56, + "probability": 0.9834 + }, + { + "start": 4298.12, + "end": 4299.72, + "probability": 0.9972 + }, + { + "start": 4299.88, + "end": 4304.94, + "probability": 0.9932 + }, + { + "start": 4305.4, + "end": 4305.92, + "probability": 0.8134 + }, + { + "start": 4306.32, + "end": 4309.42, + "probability": 0.9788 + }, + { + "start": 4309.54, + "end": 4312.02, + "probability": 0.9927 + }, + { + "start": 4312.44, + "end": 4315.3, + "probability": 0.8365 + }, + { + "start": 4315.3, + "end": 4316.42, + "probability": 0.0029 + }, + { + "start": 4316.42, + "end": 4316.42, + "probability": 0.0408 + }, + { + "start": 4316.42, + "end": 4316.42, + "probability": 0.0277 + }, + { + "start": 4316.42, + "end": 4316.42, + "probability": 0.0581 + }, + { + "start": 4316.42, + "end": 4320.6, + "probability": 0.4254 + }, + { + "start": 4320.8, + "end": 4321.24, + "probability": 0.0747 + }, + { + "start": 4321.24, + "end": 4323.98, + "probability": 0.8719 + }, + { + "start": 4324.1, + "end": 4324.58, + "probability": 0.7197 + }, + { + "start": 4324.64, + "end": 4324.7, + "probability": 0.4611 + }, + { + "start": 4324.7, + "end": 4330.86, + "probability": 0.9026 + }, + { + "start": 4331.6, + "end": 4335.18, + "probability": 0.9417 + }, + { + "start": 4335.76, + "end": 4341.88, + "probability": 0.76 + }, + { + "start": 4341.9, + "end": 4342.5, + "probability": 0.187 + }, + { + "start": 4342.66, + "end": 4349.84, + "probability": 0.5727 + }, + { + "start": 4350.45, + "end": 4350.98, + "probability": 0.0571 + }, + { + "start": 4351.0, + "end": 4352.78, + "probability": 0.608 + }, + { + "start": 4352.88, + "end": 4353.16, + "probability": 0.2399 + }, + { + "start": 4353.16, + "end": 4354.28, + "probability": 0.3992 + }, + { + "start": 4354.56, + "end": 4360.1, + "probability": 0.2258 + }, + { + "start": 4363.18, + "end": 4365.08, + "probability": 0.2771 + }, + { + "start": 4365.08, + "end": 4365.08, + "probability": 0.0898 + }, + { + "start": 4365.08, + "end": 4365.42, + "probability": 0.3587 + }, + { + "start": 4366.04, + "end": 4366.86, + "probability": 0.7986 + }, + { + "start": 4367.02, + "end": 4374.62, + "probability": 0.9088 + }, + { + "start": 4375.4, + "end": 4380.06, + "probability": 0.9761 + }, + { + "start": 4380.74, + "end": 4383.5, + "probability": 0.9907 + }, + { + "start": 4383.68, + "end": 4384.7, + "probability": 0.7744 + }, + { + "start": 4385.3, + "end": 4386.24, + "probability": 0.8181 + }, + { + "start": 4387.34, + "end": 4388.54, + "probability": 0.5054 + }, + { + "start": 4388.82, + "end": 4392.54, + "probability": 0.9429 + }, + { + "start": 4392.86, + "end": 4394.64, + "probability": 0.9957 + }, + { + "start": 4395.28, + "end": 4397.92, + "probability": 0.9755 + }, + { + "start": 4398.5, + "end": 4398.9, + "probability": 0.5048 + }, + { + "start": 4399.72, + "end": 4400.35, + "probability": 0.7734 + }, + { + "start": 4401.0, + "end": 4401.46, + "probability": 0.2162 + }, + { + "start": 4402.26, + "end": 4404.28, + "probability": 0.6216 + }, + { + "start": 4405.7, + "end": 4407.24, + "probability": 0.832 + }, + { + "start": 4407.78, + "end": 4408.04, + "probability": 0.0054 + }, + { + "start": 4408.04, + "end": 4408.04, + "probability": 0.2964 + }, + { + "start": 4408.04, + "end": 4408.04, + "probability": 0.0843 + }, + { + "start": 4408.04, + "end": 4409.14, + "probability": 0.5676 + }, + { + "start": 4409.72, + "end": 4417.16, + "probability": 0.8785 + }, + { + "start": 4418.14, + "end": 4418.14, + "probability": 0.0159 + }, + { + "start": 4418.14, + "end": 4418.14, + "probability": 0.0814 + }, + { + "start": 4418.14, + "end": 4418.14, + "probability": 0.2898 + }, + { + "start": 4418.14, + "end": 4418.78, + "probability": 0.453 + }, + { + "start": 4418.98, + "end": 4420.64, + "probability": 0.0429 + }, + { + "start": 4420.64, + "end": 4421.16, + "probability": 0.0826 + }, + { + "start": 4421.54, + "end": 4421.9, + "probability": 0.1221 + }, + { + "start": 4421.9, + "end": 4423.92, + "probability": 0.7125 + }, + { + "start": 4424.28, + "end": 4428.16, + "probability": 0.9941 + }, + { + "start": 4428.72, + "end": 4431.78, + "probability": 0.9969 + }, + { + "start": 4432.64, + "end": 4433.58, + "probability": 0.3317 + }, + { + "start": 4433.7, + "end": 4436.98, + "probability": 0.9924 + }, + { + "start": 4438.0, + "end": 4438.1, + "probability": 0.2279 + }, + { + "start": 4438.1, + "end": 4439.52, + "probability": 0.9945 + }, + { + "start": 4441.0, + "end": 4443.66, + "probability": 0.9958 + }, + { + "start": 4444.72, + "end": 4447.46, + "probability": 0.9926 + }, + { + "start": 4447.96, + "end": 4450.62, + "probability": 0.9989 + }, + { + "start": 4452.14, + "end": 4452.76, + "probability": 0.5579 + }, + { + "start": 4452.84, + "end": 4455.18, + "probability": 0.9529 + }, + { + "start": 4455.28, + "end": 4457.54, + "probability": 0.8421 + }, + { + "start": 4458.36, + "end": 4462.96, + "probability": 0.8864 + }, + { + "start": 4463.58, + "end": 4465.38, + "probability": 0.9678 + }, + { + "start": 4467.4, + "end": 4467.42, + "probability": 0.0259 + }, + { + "start": 4467.42, + "end": 4472.34, + "probability": 0.9863 + }, + { + "start": 4472.44, + "end": 4473.5, + "probability": 0.1672 + }, + { + "start": 4473.5, + "end": 4474.66, + "probability": 0.3441 + }, + { + "start": 4475.78, + "end": 4476.44, + "probability": 0.1294 + }, + { + "start": 4476.44, + "end": 4476.44, + "probability": 0.1009 + }, + { + "start": 4476.44, + "end": 4476.44, + "probability": 0.0958 + }, + { + "start": 4476.44, + "end": 4479.04, + "probability": 0.7913 + }, + { + "start": 4479.06, + "end": 4483.2, + "probability": 0.9305 + }, + { + "start": 4484.0, + "end": 4486.02, + "probability": 0.9856 + }, + { + "start": 4486.32, + "end": 4487.1, + "probability": 0.7894 + }, + { + "start": 4487.22, + "end": 4487.84, + "probability": 0.8478 + }, + { + "start": 4488.7, + "end": 4491.77, + "probability": 0.9897 + }, + { + "start": 4492.7, + "end": 4496.02, + "probability": 0.9836 + }, + { + "start": 4496.46, + "end": 4499.62, + "probability": 0.0301 + }, + { + "start": 4499.84, + "end": 4504.02, + "probability": 0.067 + }, + { + "start": 4504.72, + "end": 4504.72, + "probability": 0.0678 + }, + { + "start": 4504.72, + "end": 4504.72, + "probability": 0.0351 + }, + { + "start": 4504.72, + "end": 4506.1, + "probability": 0.4016 + }, + { + "start": 4506.52, + "end": 4508.0, + "probability": 0.852 + }, + { + "start": 4508.58, + "end": 4513.72, + "probability": 0.9773 + }, + { + "start": 4514.38, + "end": 4515.32, + "probability": 0.1602 + }, + { + "start": 4515.32, + "end": 4519.54, + "probability": 0.7772 + }, + { + "start": 4520.18, + "end": 4522.26, + "probability": 0.9878 + }, + { + "start": 4522.46, + "end": 4524.36, + "probability": 0.3373 + }, + { + "start": 4524.36, + "end": 4530.18, + "probability": 0.8126 + }, + { + "start": 4530.18, + "end": 4530.24, + "probability": 0.3003 + }, + { + "start": 4530.32, + "end": 4531.24, + "probability": 0.1029 + }, + { + "start": 4531.24, + "end": 4534.94, + "probability": 0.9728 + }, + { + "start": 4535.28, + "end": 4535.68, + "probability": 0.3357 + }, + { + "start": 4535.82, + "end": 4540.72, + "probability": 0.9976 + }, + { + "start": 4541.42, + "end": 4543.52, + "probability": 0.998 + }, + { + "start": 4543.98, + "end": 4546.23, + "probability": 0.9685 + }, + { + "start": 4546.78, + "end": 4550.81, + "probability": 0.9526 + }, + { + "start": 4551.6, + "end": 4551.7, + "probability": 0.4363 + }, + { + "start": 4552.17, + "end": 4553.32, + "probability": 0.2689 + }, + { + "start": 4553.32, + "end": 4553.64, + "probability": 0.2455 + }, + { + "start": 4553.88, + "end": 4555.58, + "probability": 0.2333 + }, + { + "start": 4555.86, + "end": 4556.49, + "probability": 0.355 + }, + { + "start": 4558.88, + "end": 4559.12, + "probability": 0.0538 + }, + { + "start": 4559.12, + "end": 4559.12, + "probability": 0.1556 + }, + { + "start": 4559.12, + "end": 4561.12, + "probability": 0.8101 + }, + { + "start": 4561.76, + "end": 4564.94, + "probability": 0.9747 + }, + { + "start": 4565.14, + "end": 4565.62, + "probability": 0.434 + }, + { + "start": 4566.2, + "end": 4569.1, + "probability": 0.6095 + }, + { + "start": 4569.1, + "end": 4569.92, + "probability": 0.0647 + }, + { + "start": 4569.92, + "end": 4569.92, + "probability": 0.0289 + }, + { + "start": 4569.92, + "end": 4570.6, + "probability": 0.0282 + }, + { + "start": 4570.64, + "end": 4572.12, + "probability": 0.5038 + }, + { + "start": 4572.12, + "end": 4573.43, + "probability": 0.5349 + }, + { + "start": 4574.88, + "end": 4576.48, + "probability": 0.0255 + }, + { + "start": 4578.74, + "end": 4580.1, + "probability": 0.5779 + }, + { + "start": 4580.12, + "end": 4581.28, + "probability": 0.4392 + }, + { + "start": 4581.3, + "end": 4581.82, + "probability": 0.066 + }, + { + "start": 4581.88, + "end": 4584.02, + "probability": 0.3461 + }, + { + "start": 4584.28, + "end": 4584.36, + "probability": 0.1425 + }, + { + "start": 4584.56, + "end": 4589.16, + "probability": 0.6119 + }, + { + "start": 4589.6, + "end": 4590.0, + "probability": 0.2082 + }, + { + "start": 4590.58, + "end": 4593.28, + "probability": 0.063 + }, + { + "start": 4593.28, + "end": 4595.2, + "probability": 0.0426 + }, + { + "start": 4605.5, + "end": 4608.02, + "probability": 0.0279 + }, + { + "start": 4608.02, + "end": 4610.54, + "probability": 0.3669 + }, + { + "start": 4611.48, + "end": 4613.86, + "probability": 0.5649 + }, + { + "start": 4620.3, + "end": 4620.4, + "probability": 0.0627 + }, + { + "start": 4620.46, + "end": 4620.46, + "probability": 0.0433 + }, + { + "start": 4620.46, + "end": 4620.46, + "probability": 0.2305 + }, + { + "start": 4620.46, + "end": 4620.46, + "probability": 0.1451 + }, + { + "start": 4620.46, + "end": 4621.46, + "probability": 0.0579 + }, + { + "start": 4621.74, + "end": 4622.66, + "probability": 0.1021 + }, + { + "start": 4622.66, + "end": 4622.98, + "probability": 0.4876 + }, + { + "start": 4624.22, + "end": 4624.32, + "probability": 0.0329 + }, + { + "start": 4631.4, + "end": 4632.42, + "probability": 0.0333 + }, + { + "start": 4632.48, + "end": 4635.2, + "probability": 0.0543 + }, + { + "start": 4635.3, + "end": 4635.86, + "probability": 0.0685 + }, + { + "start": 4635.86, + "end": 4635.86, + "probability": 0.2675 + }, + { + "start": 4635.86, + "end": 4637.64, + "probability": 0.0395 + }, + { + "start": 4637.64, + "end": 4637.92, + "probability": 0.0402 + }, + { + "start": 4638.84, + "end": 4644.8, + "probability": 0.0221 + }, + { + "start": 4645.0, + "end": 4649.52, + "probability": 0.0093 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.0, + "end": 4651.0, + "probability": 0.0 + }, + { + "start": 4651.76, + "end": 4652.08, + "probability": 0.0709 + }, + { + "start": 4652.08, + "end": 4652.08, + "probability": 0.1025 + }, + { + "start": 4652.08, + "end": 4652.08, + "probability": 0.0484 + }, + { + "start": 4652.08, + "end": 4654.3, + "probability": 0.7808 + }, + { + "start": 4654.32, + "end": 4654.94, + "probability": 0.1843 + }, + { + "start": 4655.55, + "end": 4660.14, + "probability": 0.3641 + }, + { + "start": 4660.25, + "end": 4662.44, + "probability": 0.4028 + }, + { + "start": 4662.5, + "end": 4663.78, + "probability": 0.3618 + }, + { + "start": 4664.12, + "end": 4664.36, + "probability": 0.0754 + }, + { + "start": 4664.36, + "end": 4664.38, + "probability": 0.0788 + }, + { + "start": 4664.38, + "end": 4666.68, + "probability": 0.7138 + }, + { + "start": 4666.68, + "end": 4667.76, + "probability": 0.189 + }, + { + "start": 4667.86, + "end": 4669.42, + "probability": 0.5407 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.0, + "probability": 0.0 + }, + { + "start": 4771.0, + "end": 4771.34, + "probability": 0.0059 + }, + { + "start": 4771.34, + "end": 4771.34, + "probability": 0.4037 + }, + { + "start": 4771.34, + "end": 4771.34, + "probability": 0.094 + }, + { + "start": 4771.34, + "end": 4771.84, + "probability": 0.0448 + }, + { + "start": 4771.84, + "end": 4772.65, + "probability": 0.5319 + }, + { + "start": 4774.02, + "end": 4777.18, + "probability": 0.9449 + }, + { + "start": 4777.66, + "end": 4779.44, + "probability": 0.8729 + }, + { + "start": 4779.96, + "end": 4783.38, + "probability": 0.9753 + }, + { + "start": 4783.54, + "end": 4784.18, + "probability": 0.724 + }, + { + "start": 4784.58, + "end": 4784.88, + "probability": 0.4648 + }, + { + "start": 4785.1, + "end": 4785.44, + "probability": 0.2882 + }, + { + "start": 4785.44, + "end": 4786.96, + "probability": 0.6464 + }, + { + "start": 4788.02, + "end": 4793.8, + "probability": 0.8513 + }, + { + "start": 4794.26, + "end": 4795.18, + "probability": 0.7427 + }, + { + "start": 4796.38, + "end": 4801.52, + "probability": 0.7085 + }, + { + "start": 4802.6, + "end": 4807.4, + "probability": 0.7404 + }, + { + "start": 4807.42, + "end": 4808.86, + "probability": 0.8157 + }, + { + "start": 4809.14, + "end": 4812.7, + "probability": 0.9663 + }, + { + "start": 4812.86, + "end": 4814.36, + "probability": 0.6262 + }, + { + "start": 4814.38, + "end": 4814.88, + "probability": 0.8217 + }, + { + "start": 4815.22, + "end": 4818.04, + "probability": 0.848 + }, + { + "start": 4818.12, + "end": 4819.56, + "probability": 0.9723 + }, + { + "start": 4820.64, + "end": 4821.98, + "probability": 0.7306 + }, + { + "start": 4822.06, + "end": 4823.85, + "probability": 0.3473 + }, + { + "start": 4825.42, + "end": 4827.0, + "probability": 0.8329 + }, + { + "start": 4827.08, + "end": 4828.92, + "probability": 0.9933 + }, + { + "start": 4829.16, + "end": 4832.34, + "probability": 0.9875 + }, + { + "start": 4833.24, + "end": 4838.06, + "probability": 0.7345 + }, + { + "start": 4838.54, + "end": 4838.76, + "probability": 0.467 + }, + { + "start": 4838.76, + "end": 4839.8, + "probability": 0.9954 + }, + { + "start": 4840.48, + "end": 4843.38, + "probability": 0.7905 + }, + { + "start": 4843.96, + "end": 4848.26, + "probability": 0.9736 + }, + { + "start": 4848.38, + "end": 4850.7, + "probability": 0.9814 + }, + { + "start": 4850.96, + "end": 4851.72, + "probability": 0.7738 + }, + { + "start": 4852.3, + "end": 4853.48, + "probability": 0.9902 + }, + { + "start": 4854.24, + "end": 4854.44, + "probability": 0.8194 + }, + { + "start": 4855.48, + "end": 4860.34, + "probability": 0.9978 + }, + { + "start": 4860.94, + "end": 4864.14, + "probability": 0.9932 + }, + { + "start": 4864.66, + "end": 4868.02, + "probability": 0.9941 + }, + { + "start": 4869.7, + "end": 4869.78, + "probability": 0.0216 + }, + { + "start": 4869.78, + "end": 4869.78, + "probability": 0.5354 + }, + { + "start": 4869.78, + "end": 4869.85, + "probability": 0.5522 + }, + { + "start": 4871.12, + "end": 4873.18, + "probability": 0.9904 + }, + { + "start": 4873.34, + "end": 4873.66, + "probability": 0.2551 + }, + { + "start": 4874.1, + "end": 4876.54, + "probability": 0.8867 + }, + { + "start": 4876.7, + "end": 4879.42, + "probability": 0.8613 + }, + { + "start": 4879.58, + "end": 4880.72, + "probability": 0.9304 + }, + { + "start": 4881.16, + "end": 4883.36, + "probability": 0.8362 + }, + { + "start": 4883.82, + "end": 4886.93, + "probability": 0.9683 + }, + { + "start": 4887.32, + "end": 4889.4, + "probability": 0.8958 + }, + { + "start": 4889.62, + "end": 4891.32, + "probability": 0.9844 + }, + { + "start": 4891.7, + "end": 4893.52, + "probability": 0.998 + }, + { + "start": 4894.0, + "end": 4899.88, + "probability": 0.9865 + }, + { + "start": 4900.26, + "end": 4901.52, + "probability": 0.7179 + }, + { + "start": 4902.12, + "end": 4904.25, + "probability": 0.9207 + }, + { + "start": 4905.1, + "end": 4911.82, + "probability": 0.9868 + }, + { + "start": 4912.36, + "end": 4916.28, + "probability": 0.8754 + }, + { + "start": 4916.28, + "end": 4916.74, + "probability": 0.6639 + }, + { + "start": 4917.24, + "end": 4924.88, + "probability": 0.9179 + }, + { + "start": 4925.36, + "end": 4926.8, + "probability": 0.8229 + }, + { + "start": 4927.26, + "end": 4934.86, + "probability": 0.9721 + }, + { + "start": 4935.08, + "end": 4935.72, + "probability": 0.5652 + }, + { + "start": 4936.38, + "end": 4937.08, + "probability": 0.8071 + }, + { + "start": 4938.22, + "end": 4939.52, + "probability": 0.7656 + }, + { + "start": 4940.84, + "end": 4942.54, + "probability": 0.8229 + }, + { + "start": 4943.14, + "end": 4947.5, + "probability": 0.9804 + }, + { + "start": 4948.2, + "end": 4949.02, + "probability": 0.6974 + }, + { + "start": 4949.84, + "end": 4955.64, + "probability": 0.9937 + }, + { + "start": 4955.74, + "end": 4959.92, + "probability": 0.8413 + }, + { + "start": 4960.66, + "end": 4962.4, + "probability": 0.9725 + }, + { + "start": 4963.36, + "end": 4965.42, + "probability": 0.9363 + }, + { + "start": 4966.44, + "end": 4969.72, + "probability": 0.8983 + }, + { + "start": 4970.26, + "end": 4970.46, + "probability": 0.7864 + }, + { + "start": 4971.22, + "end": 4971.76, + "probability": 0.5076 + }, + { + "start": 4972.6, + "end": 4976.02, + "probability": 0.6383 + }, + { + "start": 4976.86, + "end": 4979.58, + "probability": 0.9731 + }, + { + "start": 4980.22, + "end": 4980.92, + "probability": 0.9409 + }, + { + "start": 4981.24, + "end": 4982.14, + "probability": 0.758 + }, + { + "start": 4982.88, + "end": 4983.78, + "probability": 0.979 + }, + { + "start": 4985.28, + "end": 4986.84, + "probability": 0.876 + }, + { + "start": 4988.18, + "end": 4989.56, + "probability": 0.8297 + }, + { + "start": 4990.18, + "end": 4990.36, + "probability": 0.4901 + }, + { + "start": 4990.46, + "end": 4991.82, + "probability": 0.8863 + }, + { + "start": 4992.22, + "end": 4993.18, + "probability": 0.9655 + }, + { + "start": 4993.6, + "end": 4994.62, + "probability": 0.9875 + }, + { + "start": 4994.94, + "end": 4996.0, + "probability": 0.9523 + }, + { + "start": 4996.36, + "end": 4998.38, + "probability": 0.7633 + }, + { + "start": 4998.84, + "end": 5000.08, + "probability": 0.9595 + }, + { + "start": 5000.7, + "end": 5005.66, + "probability": 0.9865 + }, + { + "start": 5006.04, + "end": 5007.9, + "probability": 0.7671 + }, + { + "start": 5008.64, + "end": 5010.72, + "probability": 0.8069 + }, + { + "start": 5011.28, + "end": 5017.12, + "probability": 0.9925 + }, + { + "start": 5018.08, + "end": 5019.5, + "probability": 0.9608 + }, + { + "start": 5020.04, + "end": 5021.46, + "probability": 0.9858 + }, + { + "start": 5021.6, + "end": 5022.94, + "probability": 0.9449 + }, + { + "start": 5023.42, + "end": 5024.32, + "probability": 0.8625 + }, + { + "start": 5025.08, + "end": 5025.86, + "probability": 0.9521 + }, + { + "start": 5026.38, + "end": 5031.76, + "probability": 0.9893 + }, + { + "start": 5032.08, + "end": 5032.69, + "probability": 0.9421 + }, + { + "start": 5033.94, + "end": 5034.76, + "probability": 0.98 + }, + { + "start": 5035.68, + "end": 5036.8, + "probability": 0.168 + }, + { + "start": 5036.8, + "end": 5037.66, + "probability": 0.2607 + }, + { + "start": 5038.16, + "end": 5039.3, + "probability": 0.579 + }, + { + "start": 5039.76, + "end": 5041.7, + "probability": 0.9167 + }, + { + "start": 5042.06, + "end": 5044.4, + "probability": 0.9409 + }, + { + "start": 5044.68, + "end": 5046.94, + "probability": 0.8427 + }, + { + "start": 5047.36, + "end": 5050.09, + "probability": 0.9848 + }, + { + "start": 5050.24, + "end": 5051.0, + "probability": 0.7603 + }, + { + "start": 5051.88, + "end": 5052.34, + "probability": 0.5287 + }, + { + "start": 5054.58, + "end": 5055.12, + "probability": 0.5155 + }, + { + "start": 5055.22, + "end": 5057.02, + "probability": 0.9452 + }, + { + "start": 5069.14, + "end": 5069.76, + "probability": 0.5539 + }, + { + "start": 5071.24, + "end": 5075.34, + "probability": 0.8208 + }, + { + "start": 5076.42, + "end": 5082.28, + "probability": 0.9448 + }, + { + "start": 5083.12, + "end": 5084.2, + "probability": 0.821 + }, + { + "start": 5085.42, + "end": 5087.94, + "probability": 0.9958 + }, + { + "start": 5088.76, + "end": 5090.18, + "probability": 0.9887 + }, + { + "start": 5091.38, + "end": 5098.26, + "probability": 0.9991 + }, + { + "start": 5099.06, + "end": 5099.78, + "probability": 0.9854 + }, + { + "start": 5101.76, + "end": 5102.56, + "probability": 0.9712 + }, + { + "start": 5104.16, + "end": 5109.04, + "probability": 0.9839 + }, + { + "start": 5109.98, + "end": 5112.04, + "probability": 0.949 + }, + { + "start": 5113.12, + "end": 5115.36, + "probability": 0.999 + }, + { + "start": 5116.42, + "end": 5120.16, + "probability": 0.9947 + }, + { + "start": 5120.22, + "end": 5120.52, + "probability": 0.2355 + }, + { + "start": 5120.58, + "end": 5121.4, + "probability": 0.7468 + }, + { + "start": 5121.54, + "end": 5122.87, + "probability": 0.7747 + }, + { + "start": 5124.36, + "end": 5124.46, + "probability": 0.0687 + }, + { + "start": 5124.46, + "end": 5125.0, + "probability": 0.4155 + }, + { + "start": 5125.24, + "end": 5126.7, + "probability": 0.9026 + }, + { + "start": 5127.6, + "end": 5133.4, + "probability": 0.9818 + }, + { + "start": 5134.7, + "end": 5136.2, + "probability": 0.9147 + }, + { + "start": 5136.28, + "end": 5138.1, + "probability": 0.9355 + }, + { + "start": 5139.16, + "end": 5141.98, + "probability": 0.9366 + }, + { + "start": 5142.94, + "end": 5149.62, + "probability": 0.9868 + }, + { + "start": 5151.0, + "end": 5153.38, + "probability": 0.8649 + }, + { + "start": 5153.6, + "end": 5154.26, + "probability": 0.4216 + }, + { + "start": 5154.48, + "end": 5154.92, + "probability": 0.6568 + }, + { + "start": 5156.18, + "end": 5157.68, + "probability": 0.9237 + }, + { + "start": 5158.44, + "end": 5159.22, + "probability": 0.9971 + }, + { + "start": 5160.02, + "end": 5163.4, + "probability": 0.9236 + }, + { + "start": 5163.4, + "end": 5169.36, + "probability": 0.8354 + }, + { + "start": 5170.1, + "end": 5170.14, + "probability": 0.035 + }, + { + "start": 5170.14, + "end": 5170.14, + "probability": 0.0225 + }, + { + "start": 5170.14, + "end": 5172.22, + "probability": 0.7866 + }, + { + "start": 5173.38, + "end": 5176.44, + "probability": 0.7959 + }, + { + "start": 5177.14, + "end": 5182.58, + "probability": 0.993 + }, + { + "start": 5183.46, + "end": 5185.64, + "probability": 0.9995 + }, + { + "start": 5186.5, + "end": 5188.92, + "probability": 0.9967 + }, + { + "start": 5189.62, + "end": 5193.8, + "probability": 0.7852 + }, + { + "start": 5193.98, + "end": 5199.5, + "probability": 0.9883 + }, + { + "start": 5199.98, + "end": 5202.94, + "probability": 0.9988 + }, + { + "start": 5203.2, + "end": 5204.22, + "probability": 0.8859 + }, + { + "start": 5204.68, + "end": 5206.46, + "probability": 0.9131 + }, + { + "start": 5207.47, + "end": 5207.98, + "probability": 0.0608 + }, + { + "start": 5207.98, + "end": 5212.3, + "probability": 0.9493 + }, + { + "start": 5212.94, + "end": 5216.68, + "probability": 0.8454 + }, + { + "start": 5217.18, + "end": 5219.08, + "probability": 0.7295 + }, + { + "start": 5219.14, + "end": 5220.94, + "probability": 0.1064 + }, + { + "start": 5222.02, + "end": 5223.4, + "probability": 0.6808 + }, + { + "start": 5223.84, + "end": 5224.44, + "probability": 0.2169 + }, + { + "start": 5224.54, + "end": 5224.68, + "probability": 0.0004 + }, + { + "start": 5224.68, + "end": 5231.08, + "probability": 0.9583 + }, + { + "start": 5231.28, + "end": 5232.8, + "probability": 0.6707 + }, + { + "start": 5233.34, + "end": 5234.86, + "probability": 0.8194 + }, + { + "start": 5235.02, + "end": 5236.52, + "probability": 0.9884 + }, + { + "start": 5236.52, + "end": 5236.77, + "probability": 0.4007 + }, + { + "start": 5237.24, + "end": 5237.34, + "probability": 0.3767 + }, + { + "start": 5237.34, + "end": 5237.96, + "probability": 0.8443 + }, + { + "start": 5238.16, + "end": 5241.66, + "probability": 0.9896 + }, + { + "start": 5241.94, + "end": 5245.58, + "probability": 0.6236 + }, + { + "start": 5245.91, + "end": 5246.22, + "probability": 0.2282 + }, + { + "start": 5246.22, + "end": 5251.14, + "probability": 0.9783 + }, + { + "start": 5251.4, + "end": 5253.64, + "probability": 0.9719 + }, + { + "start": 5254.4, + "end": 5254.4, + "probability": 0.0443 + }, + { + "start": 5254.4, + "end": 5257.74, + "probability": 0.978 + }, + { + "start": 5258.52, + "end": 5263.98, + "probability": 0.9935 + }, + { + "start": 5264.0, + "end": 5268.56, + "probability": 0.9863 + }, + { + "start": 5268.7, + "end": 5271.58, + "probability": 0.5386 + }, + { + "start": 5271.58, + "end": 5271.58, + "probability": 0.3375 + }, + { + "start": 5271.58, + "end": 5272.09, + "probability": 0.4814 + }, + { + "start": 5273.46, + "end": 5275.54, + "probability": 0.4934 + }, + { + "start": 5275.6, + "end": 5277.84, + "probability": 0.2567 + }, + { + "start": 5277.84, + "end": 5278.42, + "probability": 0.728 + }, + { + "start": 5278.6, + "end": 5281.0, + "probability": 0.4879 + }, + { + "start": 5281.4, + "end": 5283.24, + "probability": 0.0913 + }, + { + "start": 5283.26, + "end": 5283.9, + "probability": 0.686 + }, + { + "start": 5283.98, + "end": 5289.68, + "probability": 0.0811 + }, + { + "start": 5294.88, + "end": 5295.7, + "probability": 0.4532 + }, + { + "start": 5295.86, + "end": 5296.02, + "probability": 0.4705 + }, + { + "start": 5296.02, + "end": 5297.52, + "probability": 0.3398 + }, + { + "start": 5297.52, + "end": 5300.38, + "probability": 0.8417 + }, + { + "start": 5300.74, + "end": 5305.32, + "probability": 0.834 + }, + { + "start": 5305.38, + "end": 5305.74, + "probability": 0.3998 + }, + { + "start": 5305.74, + "end": 5306.46, + "probability": 0.7199 + }, + { + "start": 5306.64, + "end": 5308.32, + "probability": 0.1472 + }, + { + "start": 5308.74, + "end": 5310.76, + "probability": 0.2361 + }, + { + "start": 5312.06, + "end": 5313.0, + "probability": 0.0766 + }, + { + "start": 5313.12, + "end": 5313.12, + "probability": 0.6573 + }, + { + "start": 5313.12, + "end": 5314.26, + "probability": 0.0148 + }, + { + "start": 5314.46, + "end": 5316.44, + "probability": 0.344 + }, + { + "start": 5316.66, + "end": 5317.8, + "probability": 0.7659 + }, + { + "start": 5317.98, + "end": 5320.76, + "probability": 0.2959 + }, + { + "start": 5320.78, + "end": 5322.95, + "probability": 0.29 + }, + { + "start": 5324.05, + "end": 5326.5, + "probability": 0.8229 + }, + { + "start": 5326.54, + "end": 5328.3, + "probability": 0.7471 + }, + { + "start": 5328.61, + "end": 5330.64, + "probability": 0.8344 + }, + { + "start": 5331.54, + "end": 5333.64, + "probability": 0.7278 + }, + { + "start": 5334.26, + "end": 5335.0, + "probability": 0.7649 + }, + { + "start": 5336.3, + "end": 5338.1, + "probability": 0.7443 + }, + { + "start": 5338.64, + "end": 5339.7, + "probability": 0.7617 + }, + { + "start": 5340.38, + "end": 5341.86, + "probability": 0.8545 + }, + { + "start": 5343.02, + "end": 5346.4, + "probability": 0.9871 + }, + { + "start": 5347.08, + "end": 5350.4, + "probability": 0.9811 + }, + { + "start": 5351.08, + "end": 5352.72, + "probability": 0.8181 + }, + { + "start": 5352.84, + "end": 5353.86, + "probability": 0.8516 + }, + { + "start": 5354.08, + "end": 5355.26, + "probability": 0.7699 + }, + { + "start": 5356.72, + "end": 5361.8, + "probability": 0.9948 + }, + { + "start": 5363.22, + "end": 5364.04, + "probability": 0.896 + }, + { + "start": 5364.6, + "end": 5366.96, + "probability": 0.9731 + }, + { + "start": 5368.16, + "end": 5370.84, + "probability": 0.9798 + }, + { + "start": 5370.94, + "end": 5374.64, + "probability": 0.9784 + }, + { + "start": 5375.62, + "end": 5378.04, + "probability": 0.8924 + }, + { + "start": 5378.04, + "end": 5382.56, + "probability": 0.8829 + }, + { + "start": 5384.0, + "end": 5387.16, + "probability": 0.9623 + }, + { + "start": 5387.78, + "end": 5391.52, + "probability": 0.8556 + }, + { + "start": 5392.3, + "end": 5395.56, + "probability": 0.9909 + }, + { + "start": 5397.04, + "end": 5400.28, + "probability": 0.988 + }, + { + "start": 5400.84, + "end": 5404.74, + "probability": 0.9364 + }, + { + "start": 5405.74, + "end": 5408.98, + "probability": 0.9866 + }, + { + "start": 5409.6, + "end": 5413.32, + "probability": 0.8201 + }, + { + "start": 5414.06, + "end": 5416.44, + "probability": 0.8594 + }, + { + "start": 5417.4, + "end": 5423.52, + "probability": 0.9445 + }, + { + "start": 5423.52, + "end": 5427.8, + "probability": 0.9964 + }, + { + "start": 5428.38, + "end": 5430.48, + "probability": 0.9236 + }, + { + "start": 5431.82, + "end": 5433.14, + "probability": 0.8387 + }, + { + "start": 5433.86, + "end": 5435.06, + "probability": 0.9876 + }, + { + "start": 5435.9, + "end": 5438.56, + "probability": 0.8292 + }, + { + "start": 5438.98, + "end": 5444.82, + "probability": 0.8478 + }, + { + "start": 5446.06, + "end": 5448.82, + "probability": 0.9761 + }, + { + "start": 5449.3, + "end": 5451.26, + "probability": 0.9481 + }, + { + "start": 5452.32, + "end": 5454.64, + "probability": 0.6664 + }, + { + "start": 5454.66, + "end": 5457.1, + "probability": 0.9217 + }, + { + "start": 5457.38, + "end": 5457.84, + "probability": 0.8323 + }, + { + "start": 5458.04, + "end": 5458.64, + "probability": 0.8304 + }, + { + "start": 5459.22, + "end": 5461.48, + "probability": 0.9729 + }, + { + "start": 5462.46, + "end": 5463.22, + "probability": 0.9003 + }, + { + "start": 5463.86, + "end": 5464.48, + "probability": 0.9848 + }, + { + "start": 5465.14, + "end": 5470.38, + "probability": 0.9611 + }, + { + "start": 5471.2, + "end": 5474.28, + "probability": 0.8874 + }, + { + "start": 5475.78, + "end": 5479.58, + "probability": 0.9588 + }, + { + "start": 5479.58, + "end": 5482.1, + "probability": 0.9724 + }, + { + "start": 5482.18, + "end": 5483.1, + "probability": 0.826 + }, + { + "start": 5483.74, + "end": 5484.88, + "probability": 0.9402 + }, + { + "start": 5485.46, + "end": 5490.36, + "probability": 0.9891 + }, + { + "start": 5490.52, + "end": 5491.38, + "probability": 0.7128 + }, + { + "start": 5492.1, + "end": 5496.02, + "probability": 0.9094 + }, + { + "start": 5496.72, + "end": 5498.5, + "probability": 0.9689 + }, + { + "start": 5500.32, + "end": 5503.68, + "probability": 0.8794 + }, + { + "start": 5504.26, + "end": 5509.86, + "probability": 0.9849 + }, + { + "start": 5510.34, + "end": 5514.22, + "probability": 0.9692 + }, + { + "start": 5515.02, + "end": 5519.18, + "probability": 0.9885 + }, + { + "start": 5520.52, + "end": 5526.54, + "probability": 0.9771 + }, + { + "start": 5527.5, + "end": 5529.64, + "probability": 0.7213 + }, + { + "start": 5530.5, + "end": 5532.9, + "probability": 0.9378 + }, + { + "start": 5532.9, + "end": 5533.34, + "probability": 0.6526 + }, + { + "start": 5533.4, + "end": 5533.98, + "probability": 0.4738 + }, + { + "start": 5534.4, + "end": 5536.58, + "probability": 0.9321 + }, + { + "start": 5537.18, + "end": 5537.8, + "probability": 0.8724 + }, + { + "start": 5538.32, + "end": 5539.84, + "probability": 0.7982 + }, + { + "start": 5540.22, + "end": 5541.52, + "probability": 0.9431 + }, + { + "start": 5541.9, + "end": 5542.48, + "probability": 0.7869 + }, + { + "start": 5542.78, + "end": 5543.3, + "probability": 0.6596 + }, + { + "start": 5543.54, + "end": 5544.38, + "probability": 0.7599 + }, + { + "start": 5544.92, + "end": 5549.1, + "probability": 0.9426 + }, + { + "start": 5549.68, + "end": 5551.68, + "probability": 0.7906 + }, + { + "start": 5552.06, + "end": 5554.02, + "probability": 0.9801 + }, + { + "start": 5554.54, + "end": 5558.74, + "probability": 0.9993 + }, + { + "start": 5559.4, + "end": 5561.68, + "probability": 0.8921 + }, + { + "start": 5562.14, + "end": 5563.0, + "probability": 0.7788 + }, + { + "start": 5564.6, + "end": 5565.78, + "probability": 0.8818 + }, + { + "start": 5566.26, + "end": 5567.4, + "probability": 0.9851 + }, + { + "start": 5567.98, + "end": 5568.78, + "probability": 0.9301 + }, + { + "start": 5594.02, + "end": 5594.64, + "probability": 0.6845 + }, + { + "start": 5597.24, + "end": 5598.59, + "probability": 0.8799 + }, + { + "start": 5599.18, + "end": 5599.56, + "probability": 0.7094 + }, + { + "start": 5600.82, + "end": 5601.4, + "probability": 0.509 + }, + { + "start": 5602.56, + "end": 5603.16, + "probability": 0.9151 + }, + { + "start": 5604.38, + "end": 5605.86, + "probability": 0.9905 + }, + { + "start": 5606.82, + "end": 5608.18, + "probability": 0.9927 + }, + { + "start": 5608.74, + "end": 5609.65, + "probability": 0.9657 + }, + { + "start": 5611.24, + "end": 5612.98, + "probability": 0.5223 + }, + { + "start": 5614.2, + "end": 5615.27, + "probability": 0.5501 + }, + { + "start": 5616.36, + "end": 5617.8, + "probability": 0.8779 + }, + { + "start": 5618.54, + "end": 5624.54, + "probability": 0.9787 + }, + { + "start": 5625.26, + "end": 5629.74, + "probability": 0.9957 + }, + { + "start": 5629.88, + "end": 5632.12, + "probability": 0.9779 + }, + { + "start": 5634.74, + "end": 5637.38, + "probability": 0.9677 + }, + { + "start": 5637.92, + "end": 5639.94, + "probability": 0.9874 + }, + { + "start": 5641.56, + "end": 5643.83, + "probability": 0.5249 + }, + { + "start": 5645.2, + "end": 5647.4, + "probability": 0.8606 + }, + { + "start": 5648.88, + "end": 5651.57, + "probability": 0.5041 + }, + { + "start": 5654.42, + "end": 5655.4, + "probability": 0.7212 + }, + { + "start": 5655.98, + "end": 5656.43, + "probability": 0.5048 + }, + { + "start": 5658.78, + "end": 5659.86, + "probability": 0.9766 + }, + { + "start": 5661.18, + "end": 5662.48, + "probability": 0.8573 + }, + { + "start": 5662.96, + "end": 5663.36, + "probability": 0.9534 + }, + { + "start": 5664.1, + "end": 5666.28, + "probability": 0.8762 + }, + { + "start": 5666.46, + "end": 5667.9, + "probability": 0.9167 + }, + { + "start": 5667.96, + "end": 5670.28, + "probability": 0.9031 + }, + { + "start": 5670.38, + "end": 5670.78, + "probability": 0.9355 + }, + { + "start": 5671.6, + "end": 5673.22, + "probability": 0.6527 + }, + { + "start": 5674.0, + "end": 5678.61, + "probability": 0.6179 + }, + { + "start": 5679.18, + "end": 5680.17, + "probability": 0.928 + }, + { + "start": 5681.16, + "end": 5682.22, + "probability": 0.9758 + }, + { + "start": 5682.68, + "end": 5684.66, + "probability": 0.8936 + }, + { + "start": 5684.94, + "end": 5690.04, + "probability": 0.9477 + }, + { + "start": 5690.6, + "end": 5691.26, + "probability": 0.2904 + }, + { + "start": 5691.26, + "end": 5691.8, + "probability": 0.4329 + }, + { + "start": 5691.86, + "end": 5692.44, + "probability": 0.6228 + }, + { + "start": 5692.86, + "end": 5695.46, + "probability": 0.9575 + }, + { + "start": 5695.88, + "end": 5697.52, + "probability": 0.9922 + }, + { + "start": 5697.88, + "end": 5699.16, + "probability": 0.9454 + }, + { + "start": 5699.26, + "end": 5700.54, + "probability": 0.8633 + }, + { + "start": 5700.92, + "end": 5701.52, + "probability": 0.7918 + }, + { + "start": 5701.6, + "end": 5702.56, + "probability": 0.8265 + }, + { + "start": 5703.08, + "end": 5705.32, + "probability": 0.9567 + }, + { + "start": 5705.6, + "end": 5710.48, + "probability": 0.9916 + }, + { + "start": 5710.7, + "end": 5711.4, + "probability": 0.7609 + }, + { + "start": 5711.5, + "end": 5714.64, + "probability": 0.984 + }, + { + "start": 5714.72, + "end": 5715.72, + "probability": 0.7062 + }, + { + "start": 5715.9, + "end": 5716.24, + "probability": 0.2221 + }, + { + "start": 5717.14, + "end": 5717.98, + "probability": 0.5708 + }, + { + "start": 5718.04, + "end": 5720.73, + "probability": 0.6417 + }, + { + "start": 5720.98, + "end": 5721.94, + "probability": 0.7512 + }, + { + "start": 5722.78, + "end": 5724.95, + "probability": 0.6314 + }, + { + "start": 5724.98, + "end": 5725.54, + "probability": 0.873 + }, + { + "start": 5725.9, + "end": 5728.6, + "probability": 0.7038 + }, + { + "start": 5729.11, + "end": 5730.6, + "probability": 0.9126 + }, + { + "start": 5730.72, + "end": 5734.05, + "probability": 0.9585 + }, + { + "start": 5734.28, + "end": 5737.76, + "probability": 0.9563 + }, + { + "start": 5738.32, + "end": 5740.5, + "probability": 0.8527 + }, + { + "start": 5741.06, + "end": 5742.25, + "probability": 0.3739 + }, + { + "start": 5743.02, + "end": 5744.1, + "probability": 0.8439 + }, + { + "start": 5744.62, + "end": 5747.94, + "probability": 0.8832 + }, + { + "start": 5748.68, + "end": 5752.74, + "probability": 0.7802 + }, + { + "start": 5753.24, + "end": 5753.72, + "probability": 0.1982 + }, + { + "start": 5753.8, + "end": 5755.2, + "probability": 0.5048 + }, + { + "start": 5755.56, + "end": 5756.56, + "probability": 0.8673 + }, + { + "start": 5756.62, + "end": 5759.14, + "probability": 0.9967 + }, + { + "start": 5759.41, + "end": 5761.78, + "probability": 0.9967 + }, + { + "start": 5761.92, + "end": 5764.45, + "probability": 0.8516 + }, + { + "start": 5764.86, + "end": 5765.74, + "probability": 0.9536 + }, + { + "start": 5766.08, + "end": 5766.51, + "probability": 0.8774 + }, + { + "start": 5766.88, + "end": 5768.26, + "probability": 0.7294 + }, + { + "start": 5768.28, + "end": 5770.88, + "probability": 0.9463 + }, + { + "start": 5771.02, + "end": 5771.62, + "probability": 0.7955 + }, + { + "start": 5771.88, + "end": 5774.26, + "probability": 0.9276 + }, + { + "start": 5774.68, + "end": 5775.24, + "probability": 0.6316 + }, + { + "start": 5775.3, + "end": 5775.7, + "probability": 0.7788 + }, + { + "start": 5775.7, + "end": 5779.14, + "probability": 0.7797 + }, + { + "start": 5779.26, + "end": 5781.12, + "probability": 0.5746 + }, + { + "start": 5781.32, + "end": 5783.38, + "probability": 0.8144 + }, + { + "start": 5783.98, + "end": 5784.36, + "probability": 0.7129 + }, + { + "start": 5785.82, + "end": 5787.0, + "probability": 0.8025 + }, + { + "start": 5787.14, + "end": 5790.22, + "probability": 0.917 + }, + { + "start": 5790.28, + "end": 5790.98, + "probability": 0.7451 + }, + { + "start": 5791.2, + "end": 5793.26, + "probability": 0.6138 + }, + { + "start": 5793.9, + "end": 5794.67, + "probability": 0.4798 + }, + { + "start": 5794.86, + "end": 5795.24, + "probability": 0.6331 + }, + { + "start": 5795.26, + "end": 5795.98, + "probability": 0.7774 + }, + { + "start": 5796.3, + "end": 5798.36, + "probability": 0.9612 + }, + { + "start": 5798.74, + "end": 5799.74, + "probability": 0.8966 + }, + { + "start": 5800.36, + "end": 5802.02, + "probability": 0.8304 + }, + { + "start": 5802.66, + "end": 5803.76, + "probability": 0.7858 + }, + { + "start": 5804.52, + "end": 5807.2, + "probability": 0.8669 + }, + { + "start": 5807.32, + "end": 5807.9, + "probability": 0.9121 + }, + { + "start": 5808.02, + "end": 5810.92, + "probability": 0.9714 + }, + { + "start": 5811.2, + "end": 5812.25, + "probability": 0.9956 + }, + { + "start": 5813.18, + "end": 5815.18, + "probability": 0.9607 + }, + { + "start": 5815.26, + "end": 5816.34, + "probability": 0.8638 + }, + { + "start": 5816.54, + "end": 5820.68, + "probability": 0.9375 + }, + { + "start": 5821.08, + "end": 5822.84, + "probability": 0.7765 + }, + { + "start": 5823.14, + "end": 5824.22, + "probability": 0.6915 + }, + { + "start": 5824.36, + "end": 5825.58, + "probability": 0.6299 + }, + { + "start": 5825.74, + "end": 5827.42, + "probability": 0.9683 + }, + { + "start": 5827.62, + "end": 5829.24, + "probability": 0.9616 + }, + { + "start": 5829.84, + "end": 5830.3, + "probability": 0.7223 + }, + { + "start": 5830.34, + "end": 5832.14, + "probability": 0.6965 + }, + { + "start": 5832.34, + "end": 5832.88, + "probability": 0.7809 + }, + { + "start": 5833.0, + "end": 5833.56, + "probability": 0.7007 + }, + { + "start": 5833.9, + "end": 5834.87, + "probability": 0.8973 + }, + { + "start": 5835.0, + "end": 5835.66, + "probability": 0.4323 + }, + { + "start": 5835.66, + "end": 5836.84, + "probability": 0.6482 + }, + { + "start": 5837.26, + "end": 5837.74, + "probability": 0.6931 + }, + { + "start": 5837.88, + "end": 5838.28, + "probability": 0.805 + }, + { + "start": 5838.94, + "end": 5840.78, + "probability": 0.95 + }, + { + "start": 5841.08, + "end": 5841.49, + "probability": 0.9497 + }, + { + "start": 5841.74, + "end": 5842.08, + "probability": 0.6182 + }, + { + "start": 5843.02, + "end": 5844.12, + "probability": 0.9346 + }, + { + "start": 5844.54, + "end": 5848.42, + "probability": 0.79 + }, + { + "start": 5848.5, + "end": 5851.64, + "probability": 0.7427 + }, + { + "start": 5852.26, + "end": 5853.12, + "probability": 0.8847 + }, + { + "start": 5853.52, + "end": 5854.38, + "probability": 0.5064 + }, + { + "start": 5854.58, + "end": 5859.18, + "probability": 0.9727 + }, + { + "start": 5859.5, + "end": 5861.26, + "probability": 0.6042 + }, + { + "start": 5861.5, + "end": 5862.56, + "probability": 0.6073 + }, + { + "start": 5862.72, + "end": 5863.26, + "probability": 0.5811 + }, + { + "start": 5864.04, + "end": 5865.86, + "probability": 0.9494 + }, + { + "start": 5865.96, + "end": 5868.08, + "probability": 0.9509 + }, + { + "start": 5868.24, + "end": 5868.84, + "probability": 0.6362 + }, + { + "start": 5869.76, + "end": 5870.24, + "probability": 0.7799 + }, + { + "start": 5871.58, + "end": 5874.86, + "probability": 0.9176 + }, + { + "start": 5874.96, + "end": 5876.18, + "probability": 0.9699 + }, + { + "start": 5876.24, + "end": 5877.18, + "probability": 0.802 + }, + { + "start": 5877.36, + "end": 5879.7, + "probability": 0.8427 + }, + { + "start": 5879.96, + "end": 5881.52, + "probability": 0.782 + }, + { + "start": 5882.8, + "end": 5883.46, + "probability": 0.0228 + }, + { + "start": 5883.46, + "end": 5886.12, + "probability": 0.712 + }, + { + "start": 5886.22, + "end": 5890.4, + "probability": 0.7735 + }, + { + "start": 5891.08, + "end": 5893.79, + "probability": 0.9666 + }, + { + "start": 5894.22, + "end": 5896.46, + "probability": 0.7422 + }, + { + "start": 5896.88, + "end": 5898.6, + "probability": 0.8695 + }, + { + "start": 5898.7, + "end": 5900.28, + "probability": 0.7361 + }, + { + "start": 5900.84, + "end": 5903.5, + "probability": 0.7091 + }, + { + "start": 5904.94, + "end": 5905.74, + "probability": 0.6609 + }, + { + "start": 5906.56, + "end": 5908.68, + "probability": 0.9472 + }, + { + "start": 5942.44, + "end": 5944.34, + "probability": 0.7334 + }, + { + "start": 5945.0, + "end": 5945.96, + "probability": 0.8285 + }, + { + "start": 5945.98, + "end": 5948.94, + "probability": 0.9429 + }, + { + "start": 5949.86, + "end": 5951.72, + "probability": 0.9456 + }, + { + "start": 5952.38, + "end": 5956.4, + "probability": 0.9692 + }, + { + "start": 5957.02, + "end": 5959.68, + "probability": 0.9919 + }, + { + "start": 5960.32, + "end": 5961.64, + "probability": 0.8538 + }, + { + "start": 5961.76, + "end": 5963.25, + "probability": 0.7916 + }, + { + "start": 5964.06, + "end": 5965.5, + "probability": 0.9732 + }, + { + "start": 5966.64, + "end": 5966.82, + "probability": 0.7668 + }, + { + "start": 5966.96, + "end": 5971.04, + "probability": 0.9694 + }, + { + "start": 5972.28, + "end": 5974.76, + "probability": 0.9844 + }, + { + "start": 5974.9, + "end": 5976.94, + "probability": 0.7891 + }, + { + "start": 5977.8, + "end": 5980.24, + "probability": 0.9807 + }, + { + "start": 5981.34, + "end": 5984.02, + "probability": 0.9435 + }, + { + "start": 5984.02, + "end": 5987.1, + "probability": 0.9946 + }, + { + "start": 5987.64, + "end": 5990.92, + "probability": 0.9479 + }, + { + "start": 5992.02, + "end": 5994.14, + "probability": 0.9945 + }, + { + "start": 5994.14, + "end": 5996.78, + "probability": 0.9918 + }, + { + "start": 5997.78, + "end": 6001.1, + "probability": 0.9668 + }, + { + "start": 6001.1, + "end": 6005.38, + "probability": 0.991 + }, + { + "start": 6006.0, + "end": 6008.02, + "probability": 0.9968 + }, + { + "start": 6009.08, + "end": 6011.88, + "probability": 0.9218 + }, + { + "start": 6012.72, + "end": 6012.88, + "probability": 0.6058 + }, + { + "start": 6013.44, + "end": 6018.58, + "probability": 0.9891 + }, + { + "start": 6019.6, + "end": 6023.4, + "probability": 0.9805 + }, + { + "start": 6023.46, + "end": 6026.08, + "probability": 0.8353 + }, + { + "start": 6027.46, + "end": 6030.64, + "probability": 0.7977 + }, + { + "start": 6031.08, + "end": 6034.4, + "probability": 0.9656 + }, + { + "start": 6035.14, + "end": 6036.08, + "probability": 0.9893 + }, + { + "start": 6037.44, + "end": 6038.58, + "probability": 0.8647 + }, + { + "start": 6038.7, + "end": 6042.56, + "probability": 0.9648 + }, + { + "start": 6043.28, + "end": 6045.3, + "probability": 0.9886 + }, + { + "start": 6046.14, + "end": 6048.9, + "probability": 0.8776 + }, + { + "start": 6050.36, + "end": 6050.86, + "probability": 0.7129 + }, + { + "start": 6050.86, + "end": 6051.72, + "probability": 0.8793 + }, + { + "start": 6051.84, + "end": 6053.72, + "probability": 0.8595 + }, + { + "start": 6054.02, + "end": 6056.58, + "probability": 0.7787 + }, + { + "start": 6056.58, + "end": 6059.8, + "probability": 0.9728 + }, + { + "start": 6060.46, + "end": 6063.14, + "probability": 0.9935 + }, + { + "start": 6064.22, + "end": 6064.44, + "probability": 0.4234 + }, + { + "start": 6064.6, + "end": 6068.0, + "probability": 0.8513 + }, + { + "start": 6068.36, + "end": 6070.58, + "probability": 0.9968 + }, + { + "start": 6071.06, + "end": 6075.7, + "probability": 0.9091 + }, + { + "start": 6076.12, + "end": 6079.96, + "probability": 0.9872 + }, + { + "start": 6081.28, + "end": 6081.94, + "probability": 0.8032 + }, + { + "start": 6082.18, + "end": 6083.94, + "probability": 0.9565 + }, + { + "start": 6084.44, + "end": 6087.24, + "probability": 0.9761 + }, + { + "start": 6088.24, + "end": 6088.74, + "probability": 0.6431 + }, + { + "start": 6088.9, + "end": 6091.22, + "probability": 0.9927 + }, + { + "start": 6091.22, + "end": 6094.46, + "probability": 0.989 + }, + { + "start": 6095.12, + "end": 6095.98, + "probability": 0.903 + }, + { + "start": 6097.46, + "end": 6101.38, + "probability": 0.958 + }, + { + "start": 6102.4, + "end": 6103.4, + "probability": 0.973 + }, + { + "start": 6104.46, + "end": 6108.41, + "probability": 0.9746 + }, + { + "start": 6110.7, + "end": 6113.64, + "probability": 0.9458 + }, + { + "start": 6114.38, + "end": 6116.82, + "probability": 0.998 + }, + { + "start": 6117.08, + "end": 6117.26, + "probability": 0.6024 + }, + { + "start": 6119.72, + "end": 6120.86, + "probability": 0.6278 + }, + { + "start": 6121.06, + "end": 6122.6, + "probability": 0.8785 + }, + { + "start": 6142.68, + "end": 6145.48, + "probability": 0.6887 + }, + { + "start": 6146.76, + "end": 6151.4, + "probability": 0.9868 + }, + { + "start": 6153.62, + "end": 6155.78, + "probability": 0.6137 + }, + { + "start": 6155.96, + "end": 6163.22, + "probability": 0.9417 + }, + { + "start": 6163.22, + "end": 6172.08, + "probability": 0.9982 + }, + { + "start": 6172.98, + "end": 6175.32, + "probability": 0.9964 + }, + { + "start": 6176.46, + "end": 6178.64, + "probability": 0.9809 + }, + { + "start": 6179.5, + "end": 6180.34, + "probability": 0.8844 + }, + { + "start": 6181.7, + "end": 6186.64, + "probability": 0.9615 + }, + { + "start": 6187.36, + "end": 6188.56, + "probability": 0.785 + }, + { + "start": 6189.36, + "end": 6190.32, + "probability": 0.8056 + }, + { + "start": 6191.72, + "end": 6196.28, + "probability": 0.9604 + }, + { + "start": 6196.38, + "end": 6197.76, + "probability": 0.9752 + }, + { + "start": 6198.6, + "end": 6201.22, + "probability": 0.8091 + }, + { + "start": 6201.98, + "end": 6203.96, + "probability": 0.728 + }, + { + "start": 6204.92, + "end": 6207.38, + "probability": 0.9219 + }, + { + "start": 6208.04, + "end": 6211.52, + "probability": 0.7421 + }, + { + "start": 6212.28, + "end": 6214.38, + "probability": 0.9527 + }, + { + "start": 6215.62, + "end": 6216.18, + "probability": 0.8009 + }, + { + "start": 6216.7, + "end": 6219.56, + "probability": 0.9469 + }, + { + "start": 6219.7, + "end": 6223.36, + "probability": 0.9851 + }, + { + "start": 6223.76, + "end": 6224.98, + "probability": 0.9509 + }, + { + "start": 6225.78, + "end": 6228.3, + "probability": 0.9997 + }, + { + "start": 6229.34, + "end": 6237.38, + "probability": 0.915 + }, + { + "start": 6238.28, + "end": 6240.64, + "probability": 0.803 + }, + { + "start": 6240.7, + "end": 6244.46, + "probability": 0.9955 + }, + { + "start": 6245.56, + "end": 6246.46, + "probability": 0.9666 + }, + { + "start": 6246.94, + "end": 6247.14, + "probability": 0.2748 + }, + { + "start": 6247.32, + "end": 6248.26, + "probability": 0.7502 + }, + { + "start": 6249.76, + "end": 6250.88, + "probability": 0.9182 + }, + { + "start": 6250.96, + "end": 6254.79, + "probability": 0.8024 + }, + { + "start": 6255.7, + "end": 6256.4, + "probability": 0.8996 + }, + { + "start": 6256.56, + "end": 6257.44, + "probability": 0.9553 + }, + { + "start": 6257.68, + "end": 6258.86, + "probability": 0.879 + }, + { + "start": 6259.2, + "end": 6259.52, + "probability": 0.4866 + }, + { + "start": 6260.5, + "end": 6262.61, + "probability": 0.9893 + }, + { + "start": 6263.72, + "end": 6264.7, + "probability": 0.9641 + }, + { + "start": 6264.86, + "end": 6266.8, + "probability": 0.9629 + }, + { + "start": 6266.88, + "end": 6268.42, + "probability": 0.8892 + }, + { + "start": 6268.9, + "end": 6271.54, + "probability": 0.9491 + }, + { + "start": 6272.6, + "end": 6277.44, + "probability": 0.9973 + }, + { + "start": 6277.52, + "end": 6278.22, + "probability": 0.7403 + }, + { + "start": 6278.58, + "end": 6278.88, + "probability": 0.6866 + }, + { + "start": 6279.66, + "end": 6281.34, + "probability": 0.9992 + }, + { + "start": 6282.0, + "end": 6291.4, + "probability": 0.9907 + }, + { + "start": 6291.72, + "end": 6293.2, + "probability": 0.6092 + }, + { + "start": 6293.54, + "end": 6295.06, + "probability": 0.7694 + }, + { + "start": 6295.24, + "end": 6296.12, + "probability": 0.0125 + }, + { + "start": 6296.12, + "end": 6299.74, + "probability": 0.8938 + }, + { + "start": 6300.36, + "end": 6300.66, + "probability": 0.0159 + }, + { + "start": 6300.8, + "end": 6301.14, + "probability": 0.056 + }, + { + "start": 6301.14, + "end": 6301.14, + "probability": 0.0359 + }, + { + "start": 6301.14, + "end": 6302.32, + "probability": 0.541 + }, + { + "start": 6302.52, + "end": 6305.12, + "probability": 0.9985 + }, + { + "start": 6305.24, + "end": 6306.46, + "probability": 0.9561 + }, + { + "start": 6307.14, + "end": 6309.46, + "probability": 0.8125 + }, + { + "start": 6309.98, + "end": 6310.04, + "probability": 0.1021 + }, + { + "start": 6310.04, + "end": 6311.38, + "probability": 0.636 + }, + { + "start": 6311.76, + "end": 6311.8, + "probability": 0.2047 + }, + { + "start": 6311.8, + "end": 6319.72, + "probability": 0.8026 + }, + { + "start": 6319.92, + "end": 6320.96, + "probability": 0.9443 + }, + { + "start": 6321.52, + "end": 6323.5, + "probability": 0.9902 + }, + { + "start": 6324.12, + "end": 6325.86, + "probability": 0.2153 + }, + { + "start": 6325.86, + "end": 6327.46, + "probability": 0.0897 + }, + { + "start": 6327.92, + "end": 6329.34, + "probability": 0.476 + }, + { + "start": 6329.62, + "end": 6330.94, + "probability": 0.9653 + }, + { + "start": 6331.74, + "end": 6333.8, + "probability": 0.5487 + }, + { + "start": 6334.24, + "end": 6334.48, + "probability": 0.0663 + }, + { + "start": 6336.28, + "end": 6336.58, + "probability": 0.045 + }, + { + "start": 6336.58, + "end": 6337.18, + "probability": 0.0649 + }, + { + "start": 6337.82, + "end": 6341.72, + "probability": 0.9851 + }, + { + "start": 6342.28, + "end": 6346.54, + "probability": 0.98 + }, + { + "start": 6346.66, + "end": 6346.94, + "probability": 0.02 + }, + { + "start": 6347.74, + "end": 6349.68, + "probability": 0.4404 + }, + { + "start": 6349.68, + "end": 6351.02, + "probability": 0.6526 + }, + { + "start": 6351.02, + "end": 6354.06, + "probability": 0.7279 + }, + { + "start": 6354.06, + "end": 6356.36, + "probability": 0.2609 + }, + { + "start": 6356.36, + "end": 6359.44, + "probability": 0.8427 + }, + { + "start": 6359.8, + "end": 6361.2, + "probability": 0.9334 + }, + { + "start": 6361.38, + "end": 6366.18, + "probability": 0.9867 + }, + { + "start": 6366.66, + "end": 6367.74, + "probability": 0.7584 + }, + { + "start": 6368.24, + "end": 6374.28, + "probability": 0.9868 + }, + { + "start": 6374.58, + "end": 6379.98, + "probability": 0.9777 + }, + { + "start": 6380.02, + "end": 6380.94, + "probability": 0.7678 + }, + { + "start": 6381.4, + "end": 6382.8, + "probability": 0.8077 + }, + { + "start": 6382.92, + "end": 6387.98, + "probability": 0.7263 + }, + { + "start": 6388.02, + "end": 6388.46, + "probability": 0.2551 + }, + { + "start": 6388.46, + "end": 6388.66, + "probability": 0.6546 + }, + { + "start": 6388.82, + "end": 6392.88, + "probability": 0.8472 + }, + { + "start": 6393.1, + "end": 6395.14, + "probability": 0.6077 + }, + { + "start": 6395.4, + "end": 6396.26, + "probability": 0.0303 + }, + { + "start": 6396.26, + "end": 6396.66, + "probability": 0.547 + }, + { + "start": 6396.66, + "end": 6399.04, + "probability": 0.613 + }, + { + "start": 6399.42, + "end": 6400.04, + "probability": 0.7217 + }, + { + "start": 6401.14, + "end": 6402.42, + "probability": 0.894 + }, + { + "start": 6405.1, + "end": 6405.84, + "probability": 0.0985 + }, + { + "start": 6407.68, + "end": 6412.18, + "probability": 0.0746 + }, + { + "start": 6429.82, + "end": 6430.74, + "probability": 0.1521 + }, + { + "start": 6432.0, + "end": 6435.36, + "probability": 0.9355 + }, + { + "start": 6435.68, + "end": 6438.58, + "probability": 0.9974 + }, + { + "start": 6440.02, + "end": 6444.06, + "probability": 0.9729 + }, + { + "start": 6444.94, + "end": 6450.24, + "probability": 0.9218 + }, + { + "start": 6451.62, + "end": 6455.64, + "probability": 0.9534 + }, + { + "start": 6455.72, + "end": 6456.86, + "probability": 0.8011 + }, + { + "start": 6457.98, + "end": 6459.42, + "probability": 0.985 + }, + { + "start": 6460.62, + "end": 6462.44, + "probability": 0.9984 + }, + { + "start": 6463.42, + "end": 6464.66, + "probability": 0.6343 + }, + { + "start": 6464.78, + "end": 6468.38, + "probability": 0.9152 + }, + { + "start": 6469.08, + "end": 6472.86, + "probability": 0.9803 + }, + { + "start": 6474.8, + "end": 6477.56, + "probability": 0.9926 + }, + { + "start": 6478.08, + "end": 6478.72, + "probability": 0.719 + }, + { + "start": 6479.56, + "end": 6484.28, + "probability": 0.9976 + }, + { + "start": 6485.02, + "end": 6486.56, + "probability": 0.6216 + }, + { + "start": 6486.8, + "end": 6487.46, + "probability": 0.7015 + }, + { + "start": 6487.86, + "end": 6491.7, + "probability": 0.9807 + }, + { + "start": 6495.42, + "end": 6495.76, + "probability": 0.7062 + }, + { + "start": 6497.34, + "end": 6498.48, + "probability": 0.7011 + }, + { + "start": 6500.66, + "end": 6502.82, + "probability": 0.9974 + }, + { + "start": 6504.96, + "end": 6508.82, + "probability": 0.7742 + }, + { + "start": 6510.14, + "end": 6511.82, + "probability": 0.9949 + }, + { + "start": 6513.14, + "end": 6513.62, + "probability": 0.9792 + }, + { + "start": 6514.7, + "end": 6515.22, + "probability": 0.8779 + }, + { + "start": 6516.42, + "end": 6517.36, + "probability": 0.8852 + }, + { + "start": 6518.14, + "end": 6519.54, + "probability": 0.8875 + }, + { + "start": 6520.46, + "end": 6524.72, + "probability": 0.9643 + }, + { + "start": 6524.72, + "end": 6528.8, + "probability": 0.999 + }, + { + "start": 6529.48, + "end": 6530.66, + "probability": 0.8173 + }, + { + "start": 6531.44, + "end": 6537.4, + "probability": 0.994 + }, + { + "start": 6539.4, + "end": 6542.54, + "probability": 0.6413 + }, + { + "start": 6543.92, + "end": 6545.62, + "probability": 0.968 + }, + { + "start": 6547.9, + "end": 6549.72, + "probability": 0.9918 + }, + { + "start": 6551.46, + "end": 6552.56, + "probability": 0.6718 + }, + { + "start": 6553.4, + "end": 6555.46, + "probability": 0.9968 + }, + { + "start": 6556.48, + "end": 6557.94, + "probability": 0.8463 + }, + { + "start": 6558.5, + "end": 6559.52, + "probability": 0.4743 + }, + { + "start": 6560.14, + "end": 6563.38, + "probability": 0.9398 + }, + { + "start": 6564.4, + "end": 6566.47, + "probability": 0.9985 + }, + { + "start": 6567.46, + "end": 6569.4, + "probability": 0.9855 + }, + { + "start": 6569.98, + "end": 6575.72, + "probability": 0.9968 + }, + { + "start": 6577.3, + "end": 6581.18, + "probability": 0.9504 + }, + { + "start": 6582.78, + "end": 6582.78, + "probability": 0.5586 + }, + { + "start": 6584.26, + "end": 6587.7, + "probability": 0.9937 + }, + { + "start": 6587.82, + "end": 6591.28, + "probability": 0.9644 + }, + { + "start": 6592.02, + "end": 6594.16, + "probability": 0.9175 + }, + { + "start": 6594.6, + "end": 6598.22, + "probability": 0.9905 + }, + { + "start": 6598.46, + "end": 6598.86, + "probability": 0.7597 + }, + { + "start": 6601.0, + "end": 6601.8, + "probability": 0.8033 + }, + { + "start": 6602.4, + "end": 6603.72, + "probability": 0.9586 + }, + { + "start": 6606.42, + "end": 6608.58, + "probability": 0.157 + }, + { + "start": 6613.08, + "end": 6613.38, + "probability": 0.1998 + }, + { + "start": 6618.5, + "end": 6619.66, + "probability": 0.0219 + }, + { + "start": 6619.66, + "end": 6622.05, + "probability": 0.1116 + }, + { + "start": 6625.58, + "end": 6631.74, + "probability": 0.0582 + }, + { + "start": 6632.2, + "end": 6632.94, + "probability": 0.0031 + }, + { + "start": 6654.34, + "end": 6662.02, + "probability": 0.9971 + }, + { + "start": 6662.58, + "end": 6666.04, + "probability": 0.9767 + }, + { + "start": 6667.1, + "end": 6667.62, + "probability": 0.6565 + }, + { + "start": 6668.28, + "end": 6669.04, + "probability": 0.8892 + }, + { + "start": 6669.74, + "end": 6671.78, + "probability": 0.9915 + }, + { + "start": 6673.28, + "end": 6676.0, + "probability": 0.9878 + }, + { + "start": 6677.2, + "end": 6677.81, + "probability": 0.9944 + }, + { + "start": 6678.9, + "end": 6679.8, + "probability": 0.9807 + }, + { + "start": 6680.46, + "end": 6683.07, + "probability": 0.9951 + }, + { + "start": 6684.68, + "end": 6686.52, + "probability": 0.9513 + }, + { + "start": 6687.32, + "end": 6691.64, + "probability": 0.9938 + }, + { + "start": 6692.98, + "end": 6697.1, + "probability": 0.9973 + }, + { + "start": 6697.1, + "end": 6701.64, + "probability": 0.991 + }, + { + "start": 6702.4, + "end": 6704.28, + "probability": 0.6174 + }, + { + "start": 6705.7, + "end": 6708.4, + "probability": 0.8967 + }, + { + "start": 6709.64, + "end": 6712.02, + "probability": 0.9599 + }, + { + "start": 6712.64, + "end": 6716.36, + "probability": 0.8453 + }, + { + "start": 6717.68, + "end": 6719.82, + "probability": 0.6886 + }, + { + "start": 6720.42, + "end": 6724.76, + "probability": 0.98 + }, + { + "start": 6725.66, + "end": 6729.7, + "probability": 0.9902 + }, + { + "start": 6730.84, + "end": 6734.06, + "probability": 0.9604 + }, + { + "start": 6735.18, + "end": 6736.92, + "probability": 0.986 + }, + { + "start": 6737.5, + "end": 6738.92, + "probability": 0.8401 + }, + { + "start": 6739.9, + "end": 6742.04, + "probability": 0.9537 + }, + { + "start": 6742.26, + "end": 6743.74, + "probability": 0.9139 + }, + { + "start": 6744.36, + "end": 6747.04, + "probability": 0.9813 + }, + { + "start": 6748.12, + "end": 6750.8, + "probability": 0.9474 + }, + { + "start": 6751.28, + "end": 6755.56, + "probability": 0.9939 + }, + { + "start": 6756.18, + "end": 6757.82, + "probability": 0.9679 + }, + { + "start": 6758.9, + "end": 6759.4, + "probability": 0.8989 + }, + { + "start": 6760.4, + "end": 6763.44, + "probability": 0.9847 + }, + { + "start": 6764.22, + "end": 6767.92, + "probability": 0.9935 + }, + { + "start": 6768.82, + "end": 6769.7, + "probability": 0.6513 + }, + { + "start": 6770.56, + "end": 6773.46, + "probability": 0.9446 + }, + { + "start": 6774.0, + "end": 6775.12, + "probability": 0.8896 + }, + { + "start": 6775.58, + "end": 6776.46, + "probability": 0.7869 + }, + { + "start": 6776.54, + "end": 6778.78, + "probability": 0.9687 + }, + { + "start": 6779.9, + "end": 6783.06, + "probability": 0.9912 + }, + { + "start": 6783.32, + "end": 6785.34, + "probability": 0.9593 + }, + { + "start": 6786.78, + "end": 6787.92, + "probability": 0.9169 + }, + { + "start": 6788.46, + "end": 6790.54, + "probability": 0.9766 + }, + { + "start": 6791.12, + "end": 6793.25, + "probability": 0.9451 + }, + { + "start": 6793.46, + "end": 6795.9, + "probability": 0.9854 + }, + { + "start": 6796.3, + "end": 6800.44, + "probability": 0.9149 + }, + { + "start": 6800.9, + "end": 6802.46, + "probability": 0.9011 + }, + { + "start": 6803.08, + "end": 6805.98, + "probability": 0.987 + }, + { + "start": 6806.5, + "end": 6808.3, + "probability": 0.5351 + }, + { + "start": 6809.38, + "end": 6810.47, + "probability": 0.9143 + }, + { + "start": 6811.16, + "end": 6812.8, + "probability": 0.7875 + }, + { + "start": 6813.82, + "end": 6814.44, + "probability": 0.5063 + }, + { + "start": 6815.36, + "end": 6818.22, + "probability": 0.9733 + }, + { + "start": 6818.8, + "end": 6820.72, + "probability": 0.9775 + }, + { + "start": 6821.14, + "end": 6824.42, + "probability": 0.895 + }, + { + "start": 6825.18, + "end": 6825.32, + "probability": 0.7926 + }, + { + "start": 6825.48, + "end": 6828.68, + "probability": 0.9941 + }, + { + "start": 6829.68, + "end": 6837.0, + "probability": 0.9913 + }, + { + "start": 6837.84, + "end": 6843.76, + "probability": 0.9943 + }, + { + "start": 6845.16, + "end": 6845.7, + "probability": 0.7489 + }, + { + "start": 6846.64, + "end": 6852.48, + "probability": 0.9641 + }, + { + "start": 6852.92, + "end": 6853.96, + "probability": 0.9225 + }, + { + "start": 6854.6, + "end": 6857.12, + "probability": 0.986 + }, + { + "start": 6857.62, + "end": 6859.18, + "probability": 0.9784 + }, + { + "start": 6859.6, + "end": 6860.42, + "probability": 0.8807 + }, + { + "start": 6860.72, + "end": 6861.8, + "probability": 0.9788 + }, + { + "start": 6862.06, + "end": 6863.28, + "probability": 0.9669 + }, + { + "start": 6863.28, + "end": 6865.86, + "probability": 0.9926 + }, + { + "start": 6866.22, + "end": 6867.3, + "probability": 0.5024 + }, + { + "start": 6868.42, + "end": 6871.86, + "probability": 0.8794 + }, + { + "start": 6872.9, + "end": 6875.44, + "probability": 0.9928 + }, + { + "start": 6875.78, + "end": 6878.94, + "probability": 0.9873 + }, + { + "start": 6880.06, + "end": 6881.24, + "probability": 0.998 + }, + { + "start": 6882.7, + "end": 6886.42, + "probability": 0.9933 + }, + { + "start": 6886.94, + "end": 6889.12, + "probability": 0.8055 + }, + { + "start": 6889.64, + "end": 6890.16, + "probability": 0.7744 + }, + { + "start": 6893.68, + "end": 6894.48, + "probability": 0.5913 + }, + { + "start": 6894.72, + "end": 6897.92, + "probability": 0.9151 + }, + { + "start": 6926.72, + "end": 6927.22, + "probability": 0.3734 + }, + { + "start": 6927.9, + "end": 6928.8, + "probability": 0.5882 + }, + { + "start": 6930.92, + "end": 6931.56, + "probability": 0.6527 + }, + { + "start": 6932.58, + "end": 6934.76, + "probability": 0.9866 + }, + { + "start": 6936.28, + "end": 6939.48, + "probability": 0.9911 + }, + { + "start": 6939.96, + "end": 6945.54, + "probability": 0.9779 + }, + { + "start": 6946.14, + "end": 6946.84, + "probability": 0.9742 + }, + { + "start": 6948.78, + "end": 6949.66, + "probability": 0.5696 + }, + { + "start": 6950.6, + "end": 6957.18, + "probability": 0.9438 + }, + { + "start": 6958.22, + "end": 6959.37, + "probability": 0.9858 + }, + { + "start": 6960.04, + "end": 6961.3, + "probability": 0.7533 + }, + { + "start": 6962.04, + "end": 6966.84, + "probability": 0.8118 + }, + { + "start": 6966.88, + "end": 6972.02, + "probability": 0.9776 + }, + { + "start": 6973.26, + "end": 6977.1, + "probability": 0.7926 + }, + { + "start": 6977.1, + "end": 6980.82, + "probability": 0.914 + }, + { + "start": 6981.44, + "end": 6985.12, + "probability": 0.8758 + }, + { + "start": 6986.1, + "end": 6993.52, + "probability": 0.9811 + }, + { + "start": 6993.8, + "end": 6999.0, + "probability": 0.996 + }, + { + "start": 6999.46, + "end": 7001.64, + "probability": 0.9127 + }, + { + "start": 7001.76, + "end": 7006.12, + "probability": 0.8694 + }, + { + "start": 7007.64, + "end": 7009.2, + "probability": 0.8724 + }, + { + "start": 7009.84, + "end": 7011.36, + "probability": 0.6853 + }, + { + "start": 7012.28, + "end": 7013.24, + "probability": 0.7447 + }, + { + "start": 7013.86, + "end": 7019.46, + "probability": 0.926 + }, + { + "start": 7020.3, + "end": 7025.36, + "probability": 0.9761 + }, + { + "start": 7026.02, + "end": 7027.8, + "probability": 0.9795 + }, + { + "start": 7028.66, + "end": 7031.96, + "probability": 0.9683 + }, + { + "start": 7033.18, + "end": 7033.88, + "probability": 0.8501 + }, + { + "start": 7034.78, + "end": 7037.64, + "probability": 0.9802 + }, + { + "start": 7037.9, + "end": 7040.58, + "probability": 0.999 + }, + { + "start": 7041.6, + "end": 7045.04, + "probability": 0.9878 + }, + { + "start": 7045.54, + "end": 7050.08, + "probability": 0.9907 + }, + { + "start": 7050.5, + "end": 7054.12, + "probability": 0.9819 + }, + { + "start": 7054.52, + "end": 7055.86, + "probability": 0.7555 + }, + { + "start": 7056.9, + "end": 7058.8, + "probability": 0.8471 + }, + { + "start": 7059.38, + "end": 7062.54, + "probability": 0.8242 + }, + { + "start": 7063.44, + "end": 7065.44, + "probability": 0.9197 + }, + { + "start": 7066.3, + "end": 7070.28, + "probability": 0.99 + }, + { + "start": 7071.12, + "end": 7074.78, + "probability": 0.9404 + }, + { + "start": 7075.44, + "end": 7080.18, + "probability": 0.9705 + }, + { + "start": 7080.62, + "end": 7086.36, + "probability": 0.8724 + }, + { + "start": 7086.9, + "end": 7090.88, + "probability": 0.9861 + }, + { + "start": 7091.22, + "end": 7092.22, + "probability": 0.8514 + }, + { + "start": 7092.3, + "end": 7092.96, + "probability": 0.838 + }, + { + "start": 7093.48, + "end": 7097.38, + "probability": 0.9841 + }, + { + "start": 7097.94, + "end": 7101.17, + "probability": 0.9684 + }, + { + "start": 7101.96, + "end": 7104.7, + "probability": 0.9932 + }, + { + "start": 7105.08, + "end": 7106.98, + "probability": 0.9508 + }, + { + "start": 7107.38, + "end": 7111.96, + "probability": 0.992 + }, + { + "start": 7112.5, + "end": 7113.0, + "probability": 0.789 + }, + { + "start": 7113.76, + "end": 7116.52, + "probability": 0.9315 + }, + { + "start": 7117.1, + "end": 7122.34, + "probability": 0.9909 + }, + { + "start": 7123.2, + "end": 7130.62, + "probability": 0.9964 + }, + { + "start": 7130.62, + "end": 7139.92, + "probability": 0.9976 + }, + { + "start": 7140.04, + "end": 7140.36, + "probability": 0.797 + }, + { + "start": 7141.66, + "end": 7142.34, + "probability": 0.6014 + }, + { + "start": 7142.34, + "end": 7143.58, + "probability": 0.9741 + }, + { + "start": 7145.54, + "end": 7146.38, + "probability": 0.1408 + }, + { + "start": 7147.72, + "end": 7149.04, + "probability": 0.5675 + }, + { + "start": 7150.04, + "end": 7151.52, + "probability": 0.6466 + }, + { + "start": 7151.82, + "end": 7152.26, + "probability": 0.6261 + }, + { + "start": 7158.76, + "end": 7159.94, + "probability": 0.9802 + }, + { + "start": 7160.62, + "end": 7162.36, + "probability": 0.6426 + }, + { + "start": 7163.04, + "end": 7166.72, + "probability": 0.795 + }, + { + "start": 7203.42, + "end": 7205.5, + "probability": 0.7671 + }, + { + "start": 7208.52, + "end": 7209.32, + "probability": 0.8423 + }, + { + "start": 7218.18, + "end": 7227.88, + "probability": 0.932 + }, + { + "start": 7229.34, + "end": 7232.48, + "probability": 0.9025 + }, + { + "start": 7235.0, + "end": 7240.04, + "probability": 0.9849 + }, + { + "start": 7240.96, + "end": 7243.96, + "probability": 0.7924 + }, + { + "start": 7245.7, + "end": 7250.82, + "probability": 0.9604 + }, + { + "start": 7251.96, + "end": 7254.54, + "probability": 0.994 + }, + { + "start": 7256.32, + "end": 7257.32, + "probability": 0.2922 + }, + { + "start": 7257.6, + "end": 7258.04, + "probability": 0.4952 + }, + { + "start": 7260.84, + "end": 7263.7, + "probability": 0.0299 + }, + { + "start": 7265.76, + "end": 7268.22, + "probability": 0.0676 + }, + { + "start": 7268.58, + "end": 7268.58, + "probability": 0.0081 + }, + { + "start": 7268.7, + "end": 7269.32, + "probability": 0.1223 + }, + { + "start": 7270.18, + "end": 7273.26, + "probability": 0.0664 + }, + { + "start": 7273.56, + "end": 7275.46, + "probability": 0.0137 + }, + { + "start": 7277.06, + "end": 7277.38, + "probability": 0.2804 + }, + { + "start": 7277.38, + "end": 7283.5, + "probability": 0.1296 + }, + { + "start": 7283.6, + "end": 7284.46, + "probability": 0.7935 + }, + { + "start": 7293.1, + "end": 7294.54, + "probability": 0.04 + }, + { + "start": 7295.92, + "end": 7298.22, + "probability": 0.0168 + }, + { + "start": 7299.54, + "end": 7302.27, + "probability": 0.1314 + }, + { + "start": 7304.18, + "end": 7307.96, + "probability": 0.1794 + }, + { + "start": 7309.94, + "end": 7310.76, + "probability": 0.2784 + }, + { + "start": 7311.56, + "end": 7311.56, + "probability": 0.0327 + }, + { + "start": 7311.56, + "end": 7311.56, + "probability": 0.1359 + }, + { + "start": 7311.56, + "end": 7315.06, + "probability": 0.17 + }, + { + "start": 7315.96, + "end": 7316.48, + "probability": 0.0266 + }, + { + "start": 7317.0, + "end": 7317.54, + "probability": 0.1142 + }, + { + "start": 7317.84, + "end": 7323.82, + "probability": 0.9428 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.0, + "end": 7413.0, + "probability": 0.0 + }, + { + "start": 7413.08, + "end": 7413.36, + "probability": 0.3818 + }, + { + "start": 7414.72, + "end": 7415.62, + "probability": 0.8558 + }, + { + "start": 7416.46, + "end": 7417.46, + "probability": 0.7453 + }, + { + "start": 7418.64, + "end": 7421.34, + "probability": 0.9927 + }, + { + "start": 7423.04, + "end": 7423.9, + "probability": 0.8882 + }, + { + "start": 7424.48, + "end": 7425.84, + "probability": 0.0773 + }, + { + "start": 7426.0, + "end": 7426.42, + "probability": 0.1852 + }, + { + "start": 7426.68, + "end": 7430.78, + "probability": 0.993 + }, + { + "start": 7432.08, + "end": 7433.54, + "probability": 0.6973 + }, + { + "start": 7439.48, + "end": 7440.58, + "probability": 0.9892 + }, + { + "start": 7441.1, + "end": 7442.08, + "probability": 0.9016 + }, + { + "start": 7442.9, + "end": 7446.04, + "probability": 0.9962 + }, + { + "start": 7446.2, + "end": 7447.5, + "probability": 0.9684 + }, + { + "start": 7448.36, + "end": 7448.72, + "probability": 0.0326 + }, + { + "start": 7448.94, + "end": 7453.34, + "probability": 0.9863 + }, + { + "start": 7456.2, + "end": 7456.78, + "probability": 0.532 + }, + { + "start": 7457.42, + "end": 7457.63, + "probability": 0.0327 + }, + { + "start": 7459.22, + "end": 7460.28, + "probability": 0.8796 + }, + { + "start": 7461.08, + "end": 7461.08, + "probability": 0.0215 + }, + { + "start": 7461.4, + "end": 7463.5, + "probability": 0.4624 + }, + { + "start": 7463.5, + "end": 7465.44, + "probability": 0.0334 + }, + { + "start": 7465.54, + "end": 7465.54, + "probability": 0.1037 + }, + { + "start": 7466.26, + "end": 7466.9, + "probability": 0.2438 + }, + { + "start": 7466.9, + "end": 7468.46, + "probability": 0.2562 + }, + { + "start": 7468.46, + "end": 7471.14, + "probability": 0.3003 + }, + { + "start": 7471.14, + "end": 7471.72, + "probability": 0.4694 + }, + { + "start": 7472.54, + "end": 7474.28, + "probability": 0.7056 + }, + { + "start": 7474.82, + "end": 7476.64, + "probability": 0.4697 + }, + { + "start": 7477.06, + "end": 7477.9, + "probability": 0.0724 + }, + { + "start": 7478.86, + "end": 7481.52, + "probability": 0.2069 + }, + { + "start": 7483.1, + "end": 7484.32, + "probability": 0.0117 + }, + { + "start": 7484.42, + "end": 7485.28, + "probability": 0.0275 + }, + { + "start": 7485.28, + "end": 7485.62, + "probability": 0.091 + }, + { + "start": 7486.48, + "end": 7488.42, + "probability": 0.2446 + }, + { + "start": 7488.62, + "end": 7492.88, + "probability": 0.7565 + }, + { + "start": 7495.0, + "end": 7496.0, + "probability": 0.9844 + }, + { + "start": 7496.1, + "end": 7497.2, + "probability": 0.9479 + }, + { + "start": 7497.38, + "end": 7498.3, + "probability": 0.3974 + }, + { + "start": 7498.66, + "end": 7499.26, + "probability": 0.8228 + }, + { + "start": 7500.02, + "end": 7502.8, + "probability": 0.9576 + }, + { + "start": 7504.3, + "end": 7505.1, + "probability": 0.9691 + }, + { + "start": 7506.5, + "end": 7507.68, + "probability": 0.9851 + }, + { + "start": 7508.36, + "end": 7510.68, + "probability": 0.9404 + }, + { + "start": 7512.26, + "end": 7515.42, + "probability": 0.9738 + }, + { + "start": 7516.5, + "end": 7520.16, + "probability": 0.9884 + }, + { + "start": 7521.12, + "end": 7522.72, + "probability": 0.9978 + }, + { + "start": 7523.34, + "end": 7526.42, + "probability": 0.7964 + }, + { + "start": 7526.92, + "end": 7528.96, + "probability": 0.9442 + }, + { + "start": 7529.24, + "end": 7529.76, + "probability": 0.9709 + }, + { + "start": 7529.8, + "end": 7531.59, + "probability": 0.9863 + }, + { + "start": 7532.32, + "end": 7533.82, + "probability": 0.9878 + }, + { + "start": 7534.4, + "end": 7537.4, + "probability": 0.9442 + }, + { + "start": 7538.28, + "end": 7539.62, + "probability": 0.9874 + }, + { + "start": 7539.96, + "end": 7542.78, + "probability": 0.9005 + }, + { + "start": 7543.18, + "end": 7544.12, + "probability": 0.9773 + }, + { + "start": 7545.0, + "end": 7546.06, + "probability": 0.96 + }, + { + "start": 7546.96, + "end": 7549.2, + "probability": 0.9974 + }, + { + "start": 7549.36, + "end": 7551.16, + "probability": 0.6705 + }, + { + "start": 7551.24, + "end": 7555.4, + "probability": 0.9228 + }, + { + "start": 7555.62, + "end": 7557.16, + "probability": 0.9772 + }, + { + "start": 7557.28, + "end": 7560.46, + "probability": 0.4821 + }, + { + "start": 7561.04, + "end": 7562.24, + "probability": 0.6353 + }, + { + "start": 7562.3, + "end": 7565.54, + "probability": 0.9985 + }, + { + "start": 7565.54, + "end": 7568.34, + "probability": 0.9875 + }, + { + "start": 7568.55, + "end": 7573.38, + "probability": 0.5457 + }, + { + "start": 7573.44, + "end": 7573.62, + "probability": 0.2296 + }, + { + "start": 7573.78, + "end": 7575.98, + "probability": 0.9937 + }, + { + "start": 7576.82, + "end": 7579.16, + "probability": 0.9671 + }, + { + "start": 7579.26, + "end": 7580.74, + "probability": 0.9866 + }, + { + "start": 7581.6, + "end": 7582.08, + "probability": 0.5915 + }, + { + "start": 7582.58, + "end": 7587.12, + "probability": 0.8025 + }, + { + "start": 7587.22, + "end": 7587.7, + "probability": 0.5628 + }, + { + "start": 7588.3, + "end": 7592.1, + "probability": 0.995 + }, + { + "start": 7592.26, + "end": 7593.36, + "probability": 0.8609 + }, + { + "start": 7594.42, + "end": 7596.78, + "probability": 0.9119 + }, + { + "start": 7597.5, + "end": 7600.0, + "probability": 0.9746 + }, + { + "start": 7601.28, + "end": 7602.3, + "probability": 0.6484 + }, + { + "start": 7602.84, + "end": 7607.76, + "probability": 0.9941 + }, + { + "start": 7608.12, + "end": 7609.08, + "probability": 0.998 + }, + { + "start": 7610.2, + "end": 7612.7, + "probability": 0.8571 + }, + { + "start": 7613.08, + "end": 7613.48, + "probability": 0.5803 + }, + { + "start": 7613.54, + "end": 7614.18, + "probability": 0.4666 + }, + { + "start": 7614.3, + "end": 7614.42, + "probability": 0.5933 + }, + { + "start": 7615.4, + "end": 7615.5, + "probability": 0.7563 + }, + { + "start": 7623.7, + "end": 7627.32, + "probability": 0.7014 + }, + { + "start": 7627.34, + "end": 7629.26, + "probability": 0.8334 + }, + { + "start": 7632.62, + "end": 7634.88, + "probability": 0.9849 + }, + { + "start": 7634.98, + "end": 7635.18, + "probability": 0.8939 + }, + { + "start": 7636.72, + "end": 7637.4, + "probability": 0.7175 + }, + { + "start": 7637.52, + "end": 7638.2, + "probability": 0.6639 + }, + { + "start": 7639.88, + "end": 7642.46, + "probability": 0.7765 + }, + { + "start": 7645.52, + "end": 7648.44, + "probability": 0.725 + }, + { + "start": 7648.6, + "end": 7649.66, + "probability": 0.8905 + }, + { + "start": 7650.6, + "end": 7651.78, + "probability": 0.8318 + }, + { + "start": 7651.98, + "end": 7653.02, + "probability": 0.4617 + }, + { + "start": 7653.2, + "end": 7657.78, + "probability": 0.9878 + }, + { + "start": 7657.84, + "end": 7658.62, + "probability": 0.8281 + }, + { + "start": 7659.2, + "end": 7659.58, + "probability": 0.8455 + }, + { + "start": 7660.3, + "end": 7661.46, + "probability": 0.7702 + }, + { + "start": 7671.84, + "end": 7677.16, + "probability": 0.9753 + }, + { + "start": 7704.58, + "end": 7704.8, + "probability": 0.308 + }, + { + "start": 7705.32, + "end": 7706.14, + "probability": 0.245 + }, + { + "start": 7713.88, + "end": 7715.14, + "probability": 0.8231 + }, + { + "start": 7715.66, + "end": 7717.24, + "probability": 0.7125 + }, + { + "start": 7719.3, + "end": 7722.04, + "probability": 0.8149 + }, + { + "start": 7723.34, + "end": 7730.16, + "probability": 0.9902 + }, + { + "start": 7730.54, + "end": 7731.86, + "probability": 0.9234 + }, + { + "start": 7733.04, + "end": 7733.38, + "probability": 0.5114 + }, + { + "start": 7733.7, + "end": 7737.74, + "probability": 0.9967 + }, + { + "start": 7738.4, + "end": 7742.92, + "probability": 0.9989 + }, + { + "start": 7743.56, + "end": 7745.46, + "probability": 0.991 + }, + { + "start": 7746.26, + "end": 7748.94, + "probability": 0.9554 + }, + { + "start": 7749.58, + "end": 7752.16, + "probability": 0.9961 + }, + { + "start": 7752.16, + "end": 7756.04, + "probability": 0.9981 + }, + { + "start": 7757.14, + "end": 7763.72, + "probability": 0.9736 + }, + { + "start": 7764.72, + "end": 7771.44, + "probability": 0.9948 + }, + { + "start": 7772.3, + "end": 7773.9, + "probability": 0.9205 + }, + { + "start": 7774.64, + "end": 7776.88, + "probability": 0.4365 + }, + { + "start": 7777.72, + "end": 7777.72, + "probability": 0.3088 + }, + { + "start": 7777.72, + "end": 7781.48, + "probability": 0.9638 + }, + { + "start": 7782.3, + "end": 7784.74, + "probability": 0.7666 + }, + { + "start": 7786.26, + "end": 7793.06, + "probability": 0.9841 + }, + { + "start": 7793.64, + "end": 7799.04, + "probability": 0.9953 + }, + { + "start": 7799.58, + "end": 7801.62, + "probability": 0.9046 + }, + { + "start": 7802.52, + "end": 7807.84, + "probability": 0.8406 + }, + { + "start": 7808.8, + "end": 7811.3, + "probability": 0.972 + }, + { + "start": 7812.18, + "end": 7816.58, + "probability": 0.8861 + }, + { + "start": 7817.46, + "end": 7820.48, + "probability": 0.9439 + }, + { + "start": 7821.34, + "end": 7821.94, + "probability": 0.7585 + }, + { + "start": 7822.56, + "end": 7826.22, + "probability": 0.9781 + }, + { + "start": 7826.82, + "end": 7828.58, + "probability": 0.9311 + }, + { + "start": 7829.06, + "end": 7837.96, + "probability": 0.9894 + }, + { + "start": 7838.9, + "end": 7840.24, + "probability": 0.5793 + }, + { + "start": 7860.9, + "end": 7866.0, + "probability": 0.6664 + }, + { + "start": 7866.18, + "end": 7867.0, + "probability": 0.7467 + }, + { + "start": 7867.34, + "end": 7868.56, + "probability": 0.9451 + }, + { + "start": 7873.04, + "end": 7874.53, + "probability": 0.8315 + }, + { + "start": 7875.06, + "end": 7875.58, + "probability": 0.7843 + }, + { + "start": 7875.64, + "end": 7877.2, + "probability": 0.7668 + }, + { + "start": 7878.32, + "end": 7881.48, + "probability": 0.6469 + }, + { + "start": 7881.82, + "end": 7883.7, + "probability": 0.9068 + }, + { + "start": 7884.86, + "end": 7889.88, + "probability": 0.9899 + }, + { + "start": 7890.92, + "end": 7897.06, + "probability": 0.9947 + }, + { + "start": 7898.3, + "end": 7900.62, + "probability": 0.9656 + }, + { + "start": 7900.96, + "end": 7902.76, + "probability": 0.9408 + }, + { + "start": 7903.1, + "end": 7904.1, + "probability": 0.8707 + }, + { + "start": 7904.62, + "end": 7907.98, + "probability": 0.9283 + }, + { + "start": 7908.94, + "end": 7912.32, + "probability": 0.9944 + }, + { + "start": 7912.32, + "end": 7919.3, + "probability": 0.9988 + }, + { + "start": 7920.64, + "end": 7921.78, + "probability": 0.7668 + }, + { + "start": 7923.34, + "end": 7926.24, + "probability": 0.9671 + }, + { + "start": 7927.74, + "end": 7929.54, + "probability": 0.8269 + }, + { + "start": 7929.62, + "end": 7932.5, + "probability": 0.9757 + }, + { + "start": 7933.2, + "end": 7934.96, + "probability": 0.9716 + }, + { + "start": 7935.74, + "end": 7939.52, + "probability": 0.9866 + }, + { + "start": 7940.4, + "end": 7943.24, + "probability": 0.9868 + }, + { + "start": 7945.28, + "end": 7948.38, + "probability": 0.9989 + }, + { + "start": 7948.38, + "end": 7951.3, + "probability": 0.9991 + }, + { + "start": 7952.36, + "end": 7953.0, + "probability": 0.7082 + }, + { + "start": 7954.12, + "end": 7958.06, + "probability": 0.9788 + }, + { + "start": 7958.06, + "end": 7960.88, + "probability": 0.9723 + }, + { + "start": 7961.66, + "end": 7962.6, + "probability": 0.8852 + }, + { + "start": 7963.2, + "end": 7964.36, + "probability": 0.9927 + }, + { + "start": 7964.9, + "end": 7967.92, + "probability": 0.9945 + }, + { + "start": 7970.64, + "end": 7972.2, + "probability": 0.8942 + }, + { + "start": 7973.76, + "end": 7974.88, + "probability": 0.754 + }, + { + "start": 7975.72, + "end": 7976.64, + "probability": 0.8588 + }, + { + "start": 7977.04, + "end": 7979.28, + "probability": 0.9873 + }, + { + "start": 7979.36, + "end": 7982.56, + "probability": 0.988 + }, + { + "start": 7983.76, + "end": 7986.08, + "probability": 0.9724 + }, + { + "start": 7987.08, + "end": 7987.64, + "probability": 0.4996 + }, + { + "start": 7988.66, + "end": 7989.84, + "probability": 0.8802 + }, + { + "start": 7989.92, + "end": 7990.54, + "probability": 0.638 + }, + { + "start": 7990.64, + "end": 7993.66, + "probability": 0.8682 + }, + { + "start": 7994.28, + "end": 7994.98, + "probability": 0.9266 + }, + { + "start": 7995.58, + "end": 7996.24, + "probability": 0.9731 + }, + { + "start": 7996.66, + "end": 8000.52, + "probability": 0.9514 + }, + { + "start": 8000.68, + "end": 8002.8, + "probability": 0.9427 + }, + { + "start": 8005.04, + "end": 8009.14, + "probability": 0.9948 + }, + { + "start": 8009.76, + "end": 8012.86, + "probability": 0.9287 + }, + { + "start": 8013.28, + "end": 8015.92, + "probability": 0.9926 + }, + { + "start": 8017.68, + "end": 8019.1, + "probability": 0.8387 + }, + { + "start": 8019.72, + "end": 8020.48, + "probability": 0.9626 + }, + { + "start": 8021.72, + "end": 8022.34, + "probability": 0.9307 + }, + { + "start": 8022.54, + "end": 8024.36, + "probability": 0.6371 + }, + { + "start": 8024.44, + "end": 8027.54, + "probability": 0.9703 + }, + { + "start": 8028.34, + "end": 8029.5, + "probability": 0.9957 + }, + { + "start": 8030.22, + "end": 8033.98, + "probability": 0.9983 + }, + { + "start": 8033.98, + "end": 8039.02, + "probability": 0.999 + }, + { + "start": 8042.48, + "end": 8043.9, + "probability": 0.999 + }, + { + "start": 8044.42, + "end": 8045.7, + "probability": 0.9106 + }, + { + "start": 8046.28, + "end": 8048.68, + "probability": 0.9688 + }, + { + "start": 8049.52, + "end": 8053.62, + "probability": 0.9834 + }, + { + "start": 8054.28, + "end": 8056.04, + "probability": 0.9849 + }, + { + "start": 8056.62, + "end": 8059.3, + "probability": 0.9868 + }, + { + "start": 8060.52, + "end": 8062.96, + "probability": 0.9965 + }, + { + "start": 8063.22, + "end": 8066.12, + "probability": 0.995 + }, + { + "start": 8066.96, + "end": 8068.74, + "probability": 0.9448 + }, + { + "start": 8070.28, + "end": 8072.6, + "probability": 0.7825 + }, + { + "start": 8073.72, + "end": 8077.08, + "probability": 0.994 + }, + { + "start": 8077.08, + "end": 8080.18, + "probability": 0.9824 + }, + { + "start": 8081.78, + "end": 8084.6, + "probability": 0.7668 + }, + { + "start": 8085.64, + "end": 8092.58, + "probability": 0.979 + }, + { + "start": 8093.6, + "end": 8097.67, + "probability": 0.9868 + }, + { + "start": 8098.04, + "end": 8101.18, + "probability": 0.9978 + }, + { + "start": 8103.18, + "end": 8105.58, + "probability": 0.9989 + }, + { + "start": 8106.48, + "end": 8107.58, + "probability": 0.9998 + }, + { + "start": 8108.12, + "end": 8109.44, + "probability": 0.9926 + }, + { + "start": 8110.22, + "end": 8111.8, + "probability": 0.9973 + }, + { + "start": 8113.02, + "end": 8117.24, + "probability": 0.9819 + }, + { + "start": 8117.34, + "end": 8124.56, + "probability": 0.9979 + }, + { + "start": 8125.1, + "end": 8127.42, + "probability": 0.9748 + }, + { + "start": 8128.4, + "end": 8131.42, + "probability": 0.9326 + }, + { + "start": 8131.9, + "end": 8134.72, + "probability": 0.9836 + }, + { + "start": 8137.44, + "end": 8139.64, + "probability": 0.906 + }, + { + "start": 8140.22, + "end": 8141.28, + "probability": 0.8097 + }, + { + "start": 8141.32, + "end": 8142.12, + "probability": 0.8499 + }, + { + "start": 8142.18, + "end": 8145.32, + "probability": 0.9792 + }, + { + "start": 8146.24, + "end": 8146.92, + "probability": 0.9806 + }, + { + "start": 8147.54, + "end": 8147.92, + "probability": 0.8118 + }, + { + "start": 8148.24, + "end": 8149.66, + "probability": 0.7964 + }, + { + "start": 8149.92, + "end": 8152.29, + "probability": 0.9604 + }, + { + "start": 8152.88, + "end": 8153.48, + "probability": 0.984 + }, + { + "start": 8153.96, + "end": 8154.64, + "probability": 0.9718 + }, + { + "start": 8154.96, + "end": 8155.4, + "probability": 0.8519 + }, + { + "start": 8155.52, + "end": 8158.52, + "probability": 0.6641 + }, + { + "start": 8158.54, + "end": 8161.98, + "probability": 0.8657 + }, + { + "start": 8162.62, + "end": 8164.16, + "probability": 0.6694 + }, + { + "start": 8166.62, + "end": 8169.28, + "probability": 0.6974 + }, + { + "start": 8169.32, + "end": 8170.46, + "probability": 0.922 + }, + { + "start": 8171.98, + "end": 8172.5, + "probability": 0.0915 + }, + { + "start": 8175.6, + "end": 8176.38, + "probability": 0.31 + }, + { + "start": 8177.68, + "end": 8178.3, + "probability": 0.9539 + }, + { + "start": 8178.92, + "end": 8179.9, + "probability": 0.6639 + }, + { + "start": 8184.92, + "end": 8186.6, + "probability": 0.7766 + }, + { + "start": 8187.56, + "end": 8187.84, + "probability": 0.9038 + }, + { + "start": 8189.44, + "end": 8190.48, + "probability": 0.7445 + }, + { + "start": 8191.18, + "end": 8191.62, + "probability": 0.8894 + }, + { + "start": 8192.72, + "end": 8193.46, + "probability": 0.884 + }, + { + "start": 8194.28, + "end": 8196.14, + "probability": 0.9504 + }, + { + "start": 8200.94, + "end": 8203.22, + "probability": 0.6082 + }, + { + "start": 8205.36, + "end": 8208.32, + "probability": 0.9926 + }, + { + "start": 8208.88, + "end": 8209.92, + "probability": 0.7905 + }, + { + "start": 8213.08, + "end": 8213.76, + "probability": 0.8517 + }, + { + "start": 8214.56, + "end": 8215.48, + "probability": 0.6659 + }, + { + "start": 8217.62, + "end": 8218.06, + "probability": 0.8325 + }, + { + "start": 8219.68, + "end": 8220.56, + "probability": 0.7521 + }, + { + "start": 8225.16, + "end": 8225.96, + "probability": 0.7398 + }, + { + "start": 8226.68, + "end": 8227.44, + "probability": 0.8919 + }, + { + "start": 8230.99, + "end": 8234.18, + "probability": 0.9285 + }, + { + "start": 8238.66, + "end": 8239.8, + "probability": 0.6616 + }, + { + "start": 8247.26, + "end": 8248.1, + "probability": 0.6675 + }, + { + "start": 8248.78, + "end": 8249.2, + "probability": 0.5504 + }, + { + "start": 8251.0, + "end": 8251.74, + "probability": 0.8299 + }, + { + "start": 8252.68, + "end": 8252.98, + "probability": 0.7565 + }, + { + "start": 8254.5, + "end": 8255.26, + "probability": 0.9623 + }, + { + "start": 8257.21, + "end": 8259.18, + "probability": 0.8943 + }, + { + "start": 8260.04, + "end": 8261.28, + "probability": 0.9367 + }, + { + "start": 8262.24, + "end": 8263.02, + "probability": 0.9524 + }, + { + "start": 8264.31, + "end": 8266.5, + "probability": 0.9583 + }, + { + "start": 8268.62, + "end": 8269.34, + "probability": 0.0664 + }, + { + "start": 8277.26, + "end": 8278.0, + "probability": 0.5411 + }, + { + "start": 8278.82, + "end": 8279.1, + "probability": 0.71 + }, + { + "start": 8281.08, + "end": 8282.06, + "probability": 0.9836 + }, + { + "start": 8283.14, + "end": 8284.24, + "probability": 0.6677 + }, + { + "start": 8285.12, + "end": 8285.98, + "probability": 0.9435 + }, + { + "start": 8291.04, + "end": 8291.76, + "probability": 0.8516 + }, + { + "start": 8293.52, + "end": 8294.34, + "probability": 0.8693 + }, + { + "start": 8296.54, + "end": 8297.22, + "probability": 0.994 + }, + { + "start": 8298.44, + "end": 8299.6, + "probability": 0.8143 + }, + { + "start": 8300.6, + "end": 8300.84, + "probability": 0.7086 + }, + { + "start": 8302.74, + "end": 8303.44, + "probability": 0.7002 + }, + { + "start": 8304.46, + "end": 8304.8, + "probability": 0.8049 + }, + { + "start": 8307.44, + "end": 8308.08, + "probability": 0.9147 + }, + { + "start": 8310.68, + "end": 8312.84, + "probability": 0.9811 + }, + { + "start": 8313.86, + "end": 8314.34, + "probability": 0.842 + }, + { + "start": 8315.58, + "end": 8316.14, + "probability": 0.9393 + }, + { + "start": 8317.34, + "end": 8317.74, + "probability": 0.9922 + }, + { + "start": 8319.2, + "end": 8319.98, + "probability": 0.9485 + }, + { + "start": 8322.02, + "end": 8322.4, + "probability": 0.9764 + }, + { + "start": 8324.08, + "end": 8324.8, + "probability": 0.9818 + }, + { + "start": 8326.3, + "end": 8326.78, + "probability": 0.9924 + }, + { + "start": 8328.26, + "end": 8329.04, + "probability": 0.9473 + }, + { + "start": 8332.64, + "end": 8334.22, + "probability": 0.512 + }, + { + "start": 8335.88, + "end": 8336.22, + "probability": 0.6682 + }, + { + "start": 8339.04, + "end": 8340.18, + "probability": 0.1008 + }, + { + "start": 8342.0, + "end": 8342.8, + "probability": 0.8316 + }, + { + "start": 8344.28, + "end": 8345.0, + "probability": 0.8526 + }, + { + "start": 8348.62, + "end": 8350.62, + "probability": 0.8436 + }, + { + "start": 8351.82, + "end": 8352.2, + "probability": 0.918 + }, + { + "start": 8354.4, + "end": 8355.3, + "probability": 0.8858 + }, + { + "start": 8355.96, + "end": 8356.38, + "probability": 0.9715 + }, + { + "start": 8357.68, + "end": 8358.48, + "probability": 0.9468 + }, + { + "start": 8359.26, + "end": 8360.44, + "probability": 0.9646 + }, + { + "start": 8361.22, + "end": 8362.42, + "probability": 0.6949 + }, + { + "start": 8364.54, + "end": 8364.9, + "probability": 0.9919 + }, + { + "start": 8366.32, + "end": 8366.86, + "probability": 0.7276 + }, + { + "start": 8368.42, + "end": 8368.86, + "probability": 0.7427 + }, + { + "start": 8370.44, + "end": 8371.2, + "probability": 0.8296 + }, + { + "start": 8372.2, + "end": 8372.64, + "probability": 0.8911 + }, + { + "start": 8374.48, + "end": 8375.38, + "probability": 0.5893 + }, + { + "start": 8379.48, + "end": 8379.98, + "probability": 0.8651 + }, + { + "start": 8381.64, + "end": 8382.56, + "probability": 0.9241 + }, + { + "start": 8384.25, + "end": 8386.56, + "probability": 0.9155 + }, + { + "start": 8387.46, + "end": 8387.88, + "probability": 0.9889 + }, + { + "start": 8389.46, + "end": 8390.46, + "probability": 0.9954 + }, + { + "start": 8391.7, + "end": 8392.1, + "probability": 0.9827 + }, + { + "start": 8393.74, + "end": 8394.84, + "probability": 0.7375 + }, + { + "start": 8397.44, + "end": 8397.68, + "probability": 0.7792 + }, + { + "start": 8399.74, + "end": 8400.2, + "probability": 0.193 + }, + { + "start": 8403.7, + "end": 8405.24, + "probability": 0.9087 + }, + { + "start": 8407.22, + "end": 8408.32, + "probability": 0.8472 + }, + { + "start": 8410.04, + "end": 8410.36, + "probability": 0.9604 + }, + { + "start": 8411.84, + "end": 8412.7, + "probability": 0.7737 + }, + { + "start": 8413.42, + "end": 8414.24, + "probability": 0.9827 + }, + { + "start": 8415.16, + "end": 8415.88, + "probability": 0.9152 + }, + { + "start": 8417.68, + "end": 8419.96, + "probability": 0.9587 + }, + { + "start": 8420.7, + "end": 8421.54, + "probability": 0.936 + }, + { + "start": 8422.4, + "end": 8422.7, + "probability": 0.8684 + }, + { + "start": 8424.78, + "end": 8425.48, + "probability": 0.4929 + }, + { + "start": 8428.16, + "end": 8428.94, + "probability": 0.7509 + }, + { + "start": 8430.1, + "end": 8431.22, + "probability": 0.756 + }, + { + "start": 8431.76, + "end": 8432.18, + "probability": 0.7634 + }, + { + "start": 8434.02, + "end": 8435.1, + "probability": 0.9197 + }, + { + "start": 8436.06, + "end": 8436.42, + "probability": 0.9878 + }, + { + "start": 8437.86, + "end": 8438.54, + "probability": 0.9566 + }, + { + "start": 8443.32, + "end": 8444.04, + "probability": 0.9686 + }, + { + "start": 8446.32, + "end": 8447.02, + "probability": 0.9816 + }, + { + "start": 8448.52, + "end": 8449.0, + "probability": 0.9919 + }, + { + "start": 8450.84, + "end": 8452.52, + "probability": 0.9714 + }, + { + "start": 8453.76, + "end": 8454.46, + "probability": 0.9388 + }, + { + "start": 8455.94, + "end": 8458.48, + "probability": 0.5506 + }, + { + "start": 8459.44, + "end": 8460.28, + "probability": 0.7707 + }, + { + "start": 8461.08, + "end": 8461.94, + "probability": 0.6406 + }, + { + "start": 8462.7, + "end": 8463.2, + "probability": 0.8176 + }, + { + "start": 8467.6, + "end": 8469.62, + "probability": 0.9641 + }, + { + "start": 8470.84, + "end": 8472.6, + "probability": 0.9651 + }, + { + "start": 8473.7, + "end": 8474.16, + "probability": 0.991 + }, + { + "start": 8475.62, + "end": 8476.68, + "probability": 0.734 + }, + { + "start": 8477.2, + "end": 8477.68, + "probability": 0.9915 + }, + { + "start": 8479.18, + "end": 8479.74, + "probability": 0.9772 + }, + { + "start": 8480.36, + "end": 8480.78, + "probability": 0.987 + }, + { + "start": 8482.3, + "end": 8483.52, + "probability": 0.8233 + }, + { + "start": 8484.7, + "end": 8484.94, + "probability": 0.0693 + }, + { + "start": 8494.62, + "end": 8495.16, + "probability": 0.3658 + }, + { + "start": 8497.12, + "end": 8497.94, + "probability": 0.6485 + }, + { + "start": 8499.34, + "end": 8500.1, + "probability": 0.4992 + }, + { + "start": 8500.96, + "end": 8501.64, + "probability": 0.8892 + }, + { + "start": 8503.45, + "end": 8505.42, + "probability": 0.9416 + }, + { + "start": 8510.2, + "end": 8510.94, + "probability": 0.873 + }, + { + "start": 8512.2, + "end": 8513.32, + "probability": 0.9788 + }, + { + "start": 8514.3, + "end": 8514.64, + "probability": 0.993 + }, + { + "start": 8516.54, + "end": 8517.36, + "probability": 0.4443 + }, + { + "start": 8518.68, + "end": 8518.94, + "probability": 0.8233 + }, + { + "start": 8520.42, + "end": 8521.08, + "probability": 0.6554 + }, + { + "start": 8523.68, + "end": 8524.1, + "probability": 0.9465 + }, + { + "start": 8525.54, + "end": 8526.42, + "probability": 0.9119 + }, + { + "start": 8527.38, + "end": 8527.78, + "probability": 0.8685 + }, + { + "start": 8529.18, + "end": 8530.04, + "probability": 0.78 + }, + { + "start": 8531.38, + "end": 8531.76, + "probability": 0.9622 + }, + { + "start": 8533.78, + "end": 8534.74, + "probability": 0.9313 + }, + { + "start": 8538.88, + "end": 8539.74, + "probability": 0.951 + }, + { + "start": 8541.44, + "end": 8542.44, + "probability": 0.9235 + }, + { + "start": 8544.44, + "end": 8544.68, + "probability": 0.4516 + }, + { + "start": 8551.8, + "end": 8552.42, + "probability": 0.6182 + }, + { + "start": 8553.82, + "end": 8554.06, + "probability": 0.5034 + }, + { + "start": 8555.7, + "end": 8556.36, + "probability": 0.8387 + }, + { + "start": 8557.56, + "end": 8558.74, + "probability": 0.7445 + }, + { + "start": 8559.46, + "end": 8560.44, + "probability": 0.4529 + }, + { + "start": 8562.48, + "end": 8562.82, + "probability": 0.9701 + }, + { + "start": 8564.78, + "end": 8565.6, + "probability": 0.9885 + }, + { + "start": 8566.64, + "end": 8567.8, + "probability": 0.9116 + }, + { + "start": 8568.72, + "end": 8569.32, + "probability": 0.8903 + }, + { + "start": 8570.06, + "end": 8570.42, + "probability": 0.7582 + }, + { + "start": 8572.16, + "end": 8573.2, + "probability": 0.9934 + }, + { + "start": 8574.5, + "end": 8574.76, + "probability": 0.9905 + }, + { + "start": 8578.74, + "end": 8579.02, + "probability": 0.6348 + }, + { + "start": 8580.26, + "end": 8580.52, + "probability": 0.8968 + }, + { + "start": 8581.84, + "end": 8582.6, + "probability": 0.558 + }, + { + "start": 8583.42, + "end": 8583.72, + "probability": 0.988 + }, + { + "start": 8584.88, + "end": 8585.74, + "probability": 0.7626 + }, + { + "start": 8588.32, + "end": 8588.76, + "probability": 0.9778 + }, + { + "start": 8590.64, + "end": 8591.24, + "probability": 0.821 + }, + { + "start": 8592.93, + "end": 8595.04, + "probability": 0.8101 + }, + { + "start": 8598.66, + "end": 8599.46, + "probability": 0.9519 + }, + { + "start": 8600.12, + "end": 8600.8, + "probability": 0.4108 + }, + { + "start": 8602.02, + "end": 8602.46, + "probability": 0.937 + }, + { + "start": 8604.46, + "end": 8605.36, + "probability": 0.9042 + }, + { + "start": 8606.26, + "end": 8606.62, + "probability": 0.9797 + }, + { + "start": 8608.46, + "end": 8609.16, + "probability": 0.4428 + }, + { + "start": 8613.92, + "end": 8614.66, + "probability": 0.873 + }, + { + "start": 8615.56, + "end": 8616.44, + "probability": 0.747 + }, + { + "start": 8621.06, + "end": 8621.56, + "probability": 0.9097 + }, + { + "start": 8623.7, + "end": 8624.42, + "probability": 0.8696 + }, + { + "start": 8627.16, + "end": 8630.98, + "probability": 0.4991 + }, + { + "start": 8633.3, + "end": 8633.78, + "probability": 0.2789 + }, + { + "start": 8638.24, + "end": 8639.02, + "probability": 0.2678 + }, + { + "start": 8641.22, + "end": 8641.66, + "probability": 0.585 + }, + { + "start": 8643.68, + "end": 8644.78, + "probability": 0.8854 + }, + { + "start": 8645.5, + "end": 8645.78, + "probability": 0.8512 + }, + { + "start": 8647.22, + "end": 8647.84, + "probability": 0.7265 + }, + { + "start": 8649.4, + "end": 8651.7, + "probability": 0.9469 + }, + { + "start": 8653.54, + "end": 8654.02, + "probability": 0.9603 + }, + { + "start": 8655.48, + "end": 8656.18, + "probability": 0.9138 + }, + { + "start": 8660.74, + "end": 8661.24, + "probability": 0.8428 + }, + { + "start": 8662.8, + "end": 8663.24, + "probability": 0.7866 + }, + { + "start": 8668.02, + "end": 8668.46, + "probability": 0.9451 + }, + { + "start": 8670.0, + "end": 8670.66, + "probability": 0.8494 + }, + { + "start": 8675.62, + "end": 8676.0, + "probability": 0.8604 + }, + { + "start": 8677.72, + "end": 8678.4, + "probability": 0.8493 + }, + { + "start": 8679.28, + "end": 8679.7, + "probability": 0.9665 + }, + { + "start": 8681.26, + "end": 8681.88, + "probability": 0.8492 + }, + { + "start": 8682.88, + "end": 8683.78, + "probability": 0.8206 + }, + { + "start": 8684.88, + "end": 8685.54, + "probability": 0.9212 + }, + { + "start": 8686.7, + "end": 8686.92, + "probability": 0.5613 + }, + { + "start": 8688.52, + "end": 8689.32, + "probability": 0.7448 + }, + { + "start": 8690.68, + "end": 8691.0, + "probability": 0.9644 + }, + { + "start": 8693.24, + "end": 8694.0, + "probability": 0.8525 + }, + { + "start": 8695.6, + "end": 8696.5, + "probability": 0.9744 + }, + { + "start": 8697.66, + "end": 8698.62, + "probability": 0.8866 + }, + { + "start": 8705.26, + "end": 8707.18, + "probability": 0.7533 + }, + { + "start": 8708.14, + "end": 8708.46, + "probability": 0.9504 + }, + { + "start": 8710.52, + "end": 8711.42, + "probability": 0.9477 + }, + { + "start": 8712.16, + "end": 8712.98, + "probability": 0.891 + }, + { + "start": 8714.04, + "end": 8715.08, + "probability": 0.6686 + }, + { + "start": 8717.5, + "end": 8720.5, + "probability": 0.9176 + }, + { + "start": 8722.5, + "end": 8723.45, + "probability": 0.7786 + }, + { + "start": 8728.52, + "end": 8729.4, + "probability": 0.8332 + }, + { + "start": 8731.44, + "end": 8732.32, + "probability": 0.6567 + }, + { + "start": 8735.74, + "end": 8736.24, + "probability": 0.7603 + }, + { + "start": 8737.96, + "end": 8738.72, + "probability": 0.8189 + }, + { + "start": 8743.2, + "end": 8743.88, + "probability": 0.9414 + }, + { + "start": 8745.22, + "end": 8745.94, + "probability": 0.7314 + }, + { + "start": 8747.46, + "end": 8747.94, + "probability": 0.8435 + }, + { + "start": 8749.4, + "end": 8750.24, + "probability": 0.9441 + }, + { + "start": 8751.14, + "end": 8751.54, + "probability": 0.98 + }, + { + "start": 8753.02, + "end": 8753.6, + "probability": 0.4523 + }, + { + "start": 8754.92, + "end": 8755.24, + "probability": 0.7558 + }, + { + "start": 8756.78, + "end": 8757.68, + "probability": 0.8624 + }, + { + "start": 8758.78, + "end": 8759.24, + "probability": 0.9106 + }, + { + "start": 8760.88, + "end": 8762.0, + "probability": 0.8971 + }, + { + "start": 8769.02, + "end": 8770.84, + "probability": 0.7274 + }, + { + "start": 8771.46, + "end": 8772.06, + "probability": 0.5449 + }, + { + "start": 8773.62, + "end": 8774.06, + "probability": 0.8494 + }, + { + "start": 8775.56, + "end": 8776.12, + "probability": 0.6784 + }, + { + "start": 8777.58, + "end": 8778.94, + "probability": 0.9938 + }, + { + "start": 8779.64, + "end": 8780.86, + "probability": 0.6249 + }, + { + "start": 8784.02, + "end": 8784.74, + "probability": 0.9818 + }, + { + "start": 8785.52, + "end": 8789.92, + "probability": 0.9972 + }, + { + "start": 8790.94, + "end": 8793.82, + "probability": 0.0467 + }, + { + "start": 8795.76, + "end": 8796.52, + "probability": 0.6397 + }, + { + "start": 8798.82, + "end": 8799.56, + "probability": 0.8588 + }, + { + "start": 8801.18, + "end": 8801.72, + "probability": 0.411 + }, + { + "start": 8806.76, + "end": 8808.6, + "probability": 0.637 + }, + { + "start": 8809.88, + "end": 8810.42, + "probability": 0.9814 + }, + { + "start": 8812.28, + "end": 8813.2, + "probability": 0.7585 + }, + { + "start": 8813.84, + "end": 8814.3, + "probability": 0.9783 + }, + { + "start": 8816.68, + "end": 8817.42, + "probability": 0.9 + }, + { + "start": 8818.48, + "end": 8818.74, + "probability": 0.9775 + }, + { + "start": 8820.68, + "end": 8821.48, + "probability": 0.9653 + }, + { + "start": 8822.1, + "end": 8822.58, + "probability": 0.98 + }, + { + "start": 8824.16, + "end": 8824.44, + "probability": 0.76 + }, + { + "start": 8827.8, + "end": 8829.62, + "probability": 0.6123 + }, + { + "start": 8831.32, + "end": 8832.32, + "probability": 0.7556 + }, + { + "start": 8833.42, + "end": 8833.76, + "probability": 0.7697 + }, + { + "start": 8837.04, + "end": 8837.74, + "probability": 0.6661 + }, + { + "start": 8842.56, + "end": 8844.78, + "probability": 0.7485 + }, + { + "start": 8849.46, + "end": 8849.92, + "probability": 0.603 + }, + { + "start": 8852.8, + "end": 8853.28, + "probability": 0.7713 + }, + { + "start": 8859.34, + "end": 8860.04, + "probability": 0.6572 + }, + { + "start": 8861.12, + "end": 8861.68, + "probability": 0.9435 + }, + { + "start": 8864.68, + "end": 8865.32, + "probability": 0.7096 + }, + { + "start": 8866.06, + "end": 8868.48, + "probability": 0.8729 + }, + { + "start": 8869.2, + "end": 8869.8, + "probability": 0.7593 + }, + { + "start": 8871.52, + "end": 8873.7, + "probability": 0.9617 + }, + { + "start": 8875.42, + "end": 8876.08, + "probability": 0.8596 + }, + { + "start": 8881.38, + "end": 8883.26, + "probability": 0.9841 + }, + { + "start": 8885.36, + "end": 8888.4, + "probability": 0.9918 + }, + { + "start": 8891.38, + "end": 8892.06, + "probability": 0.628 + }, + { + "start": 8894.06, + "end": 8897.98, + "probability": 0.877 + }, + { + "start": 8902.66, + "end": 8903.54, + "probability": 0.7349 + }, + { + "start": 8904.16, + "end": 8904.8, + "probability": 0.7609 + }, + { + "start": 8906.16, + "end": 8906.52, + "probability": 0.9225 + }, + { + "start": 8910.84, + "end": 8911.52, + "probability": 0.4854 + }, + { + "start": 8912.7, + "end": 8913.14, + "probability": 0.7406 + }, + { + "start": 8917.58, + "end": 8918.2, + "probability": 0.5402 + }, + { + "start": 8921.88, + "end": 8922.7, + "probability": 0.8596 + }, + { + "start": 8923.44, + "end": 8924.2, + "probability": 0.5904 + }, + { + "start": 8925.8, + "end": 8927.04, + "probability": 0.9167 + }, + { + "start": 8928.0, + "end": 8928.56, + "probability": 0.656 + }, + { + "start": 8930.04, + "end": 8931.98, + "probability": 0.9336 + }, + { + "start": 8932.88, + "end": 8933.86, + "probability": 0.8489 + }, + { + "start": 8935.06, + "end": 8935.46, + "probability": 0.9806 + }, + { + "start": 8938.0, + "end": 8939.1, + "probability": 0.8763 + }, + { + "start": 8940.0, + "end": 8940.46, + "probability": 0.9845 + }, + { + "start": 8944.44, + "end": 8945.2, + "probability": 0.7799 + }, + { + "start": 8946.44, + "end": 8946.82, + "probability": 0.7986 + }, + { + "start": 8949.48, + "end": 8950.24, + "probability": 0.6914 + }, + { + "start": 8955.44, + "end": 8956.34, + "probability": 0.6683 + }, + { + "start": 8959.04, + "end": 8960.18, + "probability": 0.5454 + }, + { + "start": 8962.42, + "end": 8966.68, + "probability": 0.7283 + }, + { + "start": 8970.88, + "end": 8973.7, + "probability": 0.7357 + }, + { + "start": 8975.04, + "end": 8976.22, + "probability": 0.0477 + }, + { + "start": 8978.88, + "end": 8979.32, + "probability": 0.8135 + }, + { + "start": 8979.96, + "end": 8982.0, + "probability": 0.7158 + }, + { + "start": 8982.0, + "end": 8984.84, + "probability": 0.96 + }, + { + "start": 8985.62, + "end": 8986.62, + "probability": 0.6554 + }, + { + "start": 8986.66, + "end": 8987.92, + "probability": 0.8771 + }, + { + "start": 8998.3, + "end": 8998.3, + "probability": 0.0277 + }, + { + "start": 9001.44, + "end": 9005.54, + "probability": 0.1167 + }, + { + "start": 9021.62, + "end": 9023.52, + "probability": 0.0792 + }, + { + "start": 9024.46, + "end": 9024.92, + "probability": 0.0199 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.14, + "end": 9187.5, + "probability": 0.0468 + }, + { + "start": 9188.6, + "end": 9191.46, + "probability": 0.8302 + }, + { + "start": 9191.5, + "end": 9192.96, + "probability": 0.8644 + }, + { + "start": 9205.04, + "end": 9209.34, + "probability": 0.9312 + }, + { + "start": 9210.78, + "end": 9213.56, + "probability": 0.5575 + }, + { + "start": 9214.96, + "end": 9215.84, + "probability": 0.9757 + }, + { + "start": 9217.74, + "end": 9220.32, + "probability": 0.6889 + }, + { + "start": 9220.94, + "end": 9221.78, + "probability": 0.8752 + }, + { + "start": 9223.28, + "end": 9224.46, + "probability": 0.6622 + }, + { + "start": 9225.14, + "end": 9225.44, + "probability": 0.7766 + }, + { + "start": 9226.76, + "end": 9227.48, + "probability": 0.8991 + }, + { + "start": 9228.28, + "end": 9230.54, + "probability": 0.941 + }, + { + "start": 9232.32, + "end": 9234.42, + "probability": 0.9458 + }, + { + "start": 9235.16, + "end": 9237.82, + "probability": 0.9792 + }, + { + "start": 9238.54, + "end": 9241.08, + "probability": 0.9549 + }, + { + "start": 9243.02, + "end": 9243.46, + "probability": 0.5288 + }, + { + "start": 9245.04, + "end": 9245.9, + "probability": 0.6741 + }, + { + "start": 9246.48, + "end": 9246.96, + "probability": 0.8586 + }, + { + "start": 9247.96, + "end": 9248.7, + "probability": 0.9114 + }, + { + "start": 9249.87, + "end": 9252.06, + "probability": 0.9727 + }, + { + "start": 9255.0, + "end": 9255.72, + "probability": 0.7509 + }, + { + "start": 9256.76, + "end": 9257.9, + "probability": 0.9507 + }, + { + "start": 9263.6, + "end": 9264.32, + "probability": 0.8953 + }, + { + "start": 9265.28, + "end": 9266.04, + "probability": 0.9876 + }, + { + "start": 9267.14, + "end": 9268.7, + "probability": 0.9932 + }, + { + "start": 9269.46, + "end": 9270.14, + "probability": 0.9421 + }, + { + "start": 9271.24, + "end": 9271.48, + "probability": 0.698 + }, + { + "start": 9273.08, + "end": 9273.66, + "probability": 0.5343 + }, + { + "start": 9275.82, + "end": 9279.6, + "probability": 0.7021 + }, + { + "start": 9281.9, + "end": 9282.68, + "probability": 0.6805 + }, + { + "start": 9283.74, + "end": 9284.06, + "probability": 0.8791 + }, + { + "start": 9285.84, + "end": 9286.58, + "probability": 0.8423 + }, + { + "start": 9287.68, + "end": 9288.06, + "probability": 0.9209 + }, + { + "start": 9289.88, + "end": 9290.72, + "probability": 0.9441 + }, + { + "start": 9292.32, + "end": 9292.74, + "probability": 0.9666 + }, + { + "start": 9294.84, + "end": 9295.58, + "probability": 0.9787 + }, + { + "start": 9297.34, + "end": 9299.24, + "probability": 0.9304 + }, + { + "start": 9300.28, + "end": 9300.96, + "probability": 0.9902 + }, + { + "start": 9301.96, + "end": 9302.22, + "probability": 0.9648 + }, + { + "start": 9304.26, + "end": 9304.88, + "probability": 0.9951 + }, + { + "start": 9307.72, + "end": 9308.56, + "probability": 0.269 + }, + { + "start": 9309.7, + "end": 9310.4, + "probability": 0.8054 + }, + { + "start": 9311.28, + "end": 9311.94, + "probability": 0.6792 + }, + { + "start": 9312.78, + "end": 9314.18, + "probability": 0.6956 + }, + { + "start": 9315.5, + "end": 9316.0, + "probability": 0.9547 + }, + { + "start": 9317.1, + "end": 9317.38, + "probability": 0.9258 + }, + { + "start": 9319.12, + "end": 9320.14, + "probability": 0.8053 + }, + { + "start": 9321.34, + "end": 9321.76, + "probability": 0.9767 + }, + { + "start": 9323.32, + "end": 9323.92, + "probability": 0.9869 + }, + { + "start": 9324.82, + "end": 9326.48, + "probability": 0.9668 + }, + { + "start": 9328.28, + "end": 9328.92, + "probability": 0.9832 + }, + { + "start": 9330.26, + "end": 9331.48, + "probability": 0.9875 + }, + { + "start": 9332.8, + "end": 9333.42, + "probability": 0.9914 + }, + { + "start": 9334.64, + "end": 9335.04, + "probability": 0.9884 + }, + { + "start": 9336.44, + "end": 9337.06, + "probability": 0.7372 + }, + { + "start": 9343.54, + "end": 9344.36, + "probability": 0.8752 + }, + { + "start": 9345.22, + "end": 9345.96, + "probability": 0.714 + }, + { + "start": 9348.38, + "end": 9348.74, + "probability": 0.9261 + }, + { + "start": 9350.7, + "end": 9351.4, + "probability": 0.8788 + }, + { + "start": 9353.0, + "end": 9353.4, + "probability": 0.8965 + }, + { + "start": 9354.98, + "end": 9355.76, + "probability": 0.8776 + }, + { + "start": 9359.91, + "end": 9363.36, + "probability": 0.7885 + }, + { + "start": 9368.54, + "end": 9369.18, + "probability": 0.9176 + }, + { + "start": 9370.22, + "end": 9371.06, + "probability": 0.7322 + }, + { + "start": 9371.76, + "end": 9372.02, + "probability": 0.8318 + }, + { + "start": 9373.7, + "end": 9374.46, + "probability": 0.768 + }, + { + "start": 9377.6, + "end": 9377.98, + "probability": 0.9419 + }, + { + "start": 9379.66, + "end": 9380.52, + "probability": 0.8991 + }, + { + "start": 9382.64, + "end": 9383.14, + "probability": 0.9927 + }, + { + "start": 9384.94, + "end": 9385.7, + "probability": 0.9528 + }, + { + "start": 9386.3, + "end": 9388.12, + "probability": 0.8213 + }, + { + "start": 9388.98, + "end": 9390.22, + "probability": 0.8264 + }, + { + "start": 9390.84, + "end": 9391.28, + "probability": 0.9812 + }, + { + "start": 9392.8, + "end": 9393.48, + "probability": 0.9223 + }, + { + "start": 9395.88, + "end": 9396.6, + "probability": 0.0071 + }, + { + "start": 9401.06, + "end": 9401.98, + "probability": 0.2926 + }, + { + "start": 9402.66, + "end": 9403.08, + "probability": 0.5319 + }, + { + "start": 9404.94, + "end": 9405.62, + "probability": 0.2344 + }, + { + "start": 9406.76, + "end": 9407.02, + "probability": 0.7039 + }, + { + "start": 9408.66, + "end": 9409.7, + "probability": 0.8001 + }, + { + "start": 9412.86, + "end": 9415.32, + "probability": 0.9137 + }, + { + "start": 9416.38, + "end": 9416.68, + "probability": 0.8947 + }, + { + "start": 9418.48, + "end": 9419.54, + "probability": 0.996 + }, + { + "start": 9420.48, + "end": 9420.84, + "probability": 0.9534 + }, + { + "start": 9422.52, + "end": 9423.62, + "probability": 0.6547 + }, + { + "start": 9428.28, + "end": 9428.98, + "probability": 0.7667 + }, + { + "start": 9432.78, + "end": 9433.5, + "probability": 0.2805 + }, + { + "start": 9435.4, + "end": 9436.16, + "probability": 0.778 + }, + { + "start": 9437.02, + "end": 9438.1, + "probability": 0.6647 + }, + { + "start": 9439.66, + "end": 9439.94, + "probability": 0.9575 + }, + { + "start": 9442.0, + "end": 9442.78, + "probability": 0.8035 + }, + { + "start": 9443.98, + "end": 9446.02, + "probability": 0.9362 + }, + { + "start": 9449.38, + "end": 9450.1, + "probability": 0.9895 + }, + { + "start": 9451.24, + "end": 9452.02, + "probability": 0.9529 + }, + { + "start": 9452.98, + "end": 9453.36, + "probability": 0.9292 + }, + { + "start": 9455.06, + "end": 9455.74, + "probability": 0.7928 + }, + { + "start": 9458.52, + "end": 9461.48, + "probability": 0.4441 + }, + { + "start": 9463.34, + "end": 9464.24, + "probability": 0.6765 + }, + { + "start": 9465.96, + "end": 9467.02, + "probability": 0.956 + }, + { + "start": 9468.0, + "end": 9468.3, + "probability": 0.959 + }, + { + "start": 9470.34, + "end": 9470.98, + "probability": 0.8505 + }, + { + "start": 9473.0, + "end": 9473.66, + "probability": 0.9615 + }, + { + "start": 9476.2, + "end": 9476.82, + "probability": 0.9725 + }, + { + "start": 9478.08, + "end": 9478.56, + "probability": 0.9844 + }, + { + "start": 9480.1, + "end": 9480.9, + "probability": 0.9638 + }, + { + "start": 9481.66, + "end": 9482.18, + "probability": 0.9797 + }, + { + "start": 9483.22, + "end": 9483.84, + "probability": 0.9155 + }, + { + "start": 9486.44, + "end": 9487.1, + "probability": 0.9265 + }, + { + "start": 9487.94, + "end": 9488.68, + "probability": 0.9468 + }, + { + "start": 9489.5, + "end": 9489.88, + "probability": 0.1578 + }, + { + "start": 9491.66, + "end": 9492.72, + "probability": 0.1268 + }, + { + "start": 9494.24, + "end": 9494.64, + "probability": 0.5044 + }, + { + "start": 9496.04, + "end": 9496.86, + "probability": 0.7439 + }, + { + "start": 9498.41, + "end": 9499.46, + "probability": 0.8618 + }, + { + "start": 9505.36, + "end": 9507.56, + "probability": 0.7461 + }, + { + "start": 9508.5, + "end": 9508.86, + "probability": 0.9847 + }, + { + "start": 9510.34, + "end": 9510.98, + "probability": 0.8857 + }, + { + "start": 9511.84, + "end": 9512.34, + "probability": 0.9756 + }, + { + "start": 9513.64, + "end": 9514.86, + "probability": 0.9704 + }, + { + "start": 9516.92, + "end": 9519.98, + "probability": 0.742 + }, + { + "start": 9522.22, + "end": 9523.04, + "probability": 0.3845 + }, + { + "start": 9524.14, + "end": 9524.6, + "probability": 0.8623 + }, + { + "start": 9525.98, + "end": 9526.86, + "probability": 0.8732 + }, + { + "start": 9528.6, + "end": 9529.0, + "probability": 0.7047 + }, + { + "start": 9530.88, + "end": 9531.32, + "probability": 0.9669 + }, + { + "start": 9532.7, + "end": 9533.3, + "probability": 0.964 + }, + { + "start": 9534.44, + "end": 9535.08, + "probability": 0.9553 + }, + { + "start": 9538.16, + "end": 9539.32, + "probability": 0.9972 + }, + { + "start": 9540.42, + "end": 9541.42, + "probability": 0.9427 + }, + { + "start": 9542.16, + "end": 9543.06, + "probability": 0.9759 + }, + { + "start": 9543.98, + "end": 9544.78, + "probability": 0.8227 + }, + { + "start": 9546.76, + "end": 9547.2, + "probability": 0.9899 + }, + { + "start": 9549.02, + "end": 9549.64, + "probability": 0.7917 + }, + { + "start": 9553.52, + "end": 9554.24, + "probability": 0.8043 + }, + { + "start": 9555.28, + "end": 9556.0, + "probability": 0.6991 + }, + { + "start": 9557.16, + "end": 9557.44, + "probability": 0.9456 + }, + { + "start": 9559.26, + "end": 9560.12, + "probability": 0.769 + }, + { + "start": 9561.56, + "end": 9562.88, + "probability": 0.9749 + }, + { + "start": 9563.78, + "end": 9564.7, + "probability": 0.9416 + }, + { + "start": 9565.58, + "end": 9565.96, + "probability": 0.9924 + }, + { + "start": 9567.92, + "end": 9568.86, + "probability": 0.953 + }, + { + "start": 9571.14, + "end": 9571.54, + "probability": 0.9734 + }, + { + "start": 9573.68, + "end": 9574.26, + "probability": 0.9321 + }, + { + "start": 9575.32, + "end": 9576.6, + "probability": 0.9895 + }, + { + "start": 9577.14, + "end": 9577.72, + "probability": 0.8062 + }, + { + "start": 9582.96, + "end": 9583.34, + "probability": 0.5527 + }, + { + "start": 9584.98, + "end": 9585.72, + "probability": 0.3237 + }, + { + "start": 9586.54, + "end": 9586.8, + "probability": 0.9243 + }, + { + "start": 9588.36, + "end": 9589.14, + "probability": 0.9596 + }, + { + "start": 9590.48, + "end": 9590.86, + "probability": 0.9724 + }, + { + "start": 9592.72, + "end": 9593.44, + "probability": 0.7721 + }, + { + "start": 9597.76, + "end": 9598.16, + "probability": 0.9525 + }, + { + "start": 9599.94, + "end": 9600.88, + "probability": 0.9912 + }, + { + "start": 9601.84, + "end": 9603.26, + "probability": 0.9873 + }, + { + "start": 9605.24, + "end": 9605.48, + "probability": 0.9858 + }, + { + "start": 9607.92, + "end": 9608.88, + "probability": 0.5663 + }, + { + "start": 9610.08, + "end": 9610.54, + "probability": 0.8007 + }, + { + "start": 9611.62, + "end": 9612.4, + "probability": 0.5762 + }, + { + "start": 9613.46, + "end": 9613.94, + "probability": 0.987 + }, + { + "start": 9615.46, + "end": 9616.18, + "probability": 0.7379 + }, + { + "start": 9622.64, + "end": 9623.36, + "probability": 0.8698 + }, + { + "start": 9624.32, + "end": 9624.96, + "probability": 0.6786 + }, + { + "start": 9626.26, + "end": 9626.68, + "probability": 0.656 + }, + { + "start": 9628.04, + "end": 9628.76, + "probability": 0.7359 + }, + { + "start": 9632.12, + "end": 9633.84, + "probability": 0.7739 + }, + { + "start": 9635.54, + "end": 9636.02, + "probability": 0.9806 + }, + { + "start": 9637.76, + "end": 9638.8, + "probability": 0.7847 + }, + { + "start": 9639.54, + "end": 9639.96, + "probability": 0.9485 + }, + { + "start": 9641.5, + "end": 9642.4, + "probability": 0.7163 + }, + { + "start": 9645.0, + "end": 9645.74, + "probability": 0.8502 + }, + { + "start": 9646.5, + "end": 9647.28, + "probability": 0.8148 + }, + { + "start": 9648.74, + "end": 9649.26, + "probability": 0.8503 + }, + { + "start": 9651.14, + "end": 9651.84, + "probability": 0.8403 + }, + { + "start": 9652.98, + "end": 9655.32, + "probability": 0.8883 + }, + { + "start": 9656.72, + "end": 9657.6, + "probability": 0.5707 + }, + { + "start": 9658.96, + "end": 9659.5, + "probability": 0.7152 + }, + { + "start": 9661.0, + "end": 9661.6, + "probability": 0.978 + }, + { + "start": 9662.86, + "end": 9663.32, + "probability": 0.9854 + }, + { + "start": 9664.9, + "end": 9665.84, + "probability": 0.9256 + }, + { + "start": 9669.5, + "end": 9669.96, + "probability": 0.9919 + }, + { + "start": 9672.34, + "end": 9673.1, + "probability": 0.8175 + }, + { + "start": 9674.1, + "end": 9675.5, + "probability": 0.3345 + }, + { + "start": 9679.28, + "end": 9679.68, + "probability": 0.733 + }, + { + "start": 9681.5, + "end": 9682.18, + "probability": 0.5462 + }, + { + "start": 9683.32, + "end": 9683.78, + "probability": 0.9587 + }, + { + "start": 9685.4, + "end": 9686.22, + "probability": 0.8452 + }, + { + "start": 9687.96, + "end": 9688.42, + "probability": 0.9891 + }, + { + "start": 9689.74, + "end": 9690.42, + "probability": 0.9632 + }, + { + "start": 9691.76, + "end": 9692.06, + "probability": 0.7827 + }, + { + "start": 9693.6, + "end": 9694.26, + "probability": 0.9748 + }, + { + "start": 9695.88, + "end": 9696.28, + "probability": 0.9849 + }, + { + "start": 9698.06, + "end": 9698.76, + "probability": 0.8784 + }, + { + "start": 9699.52, + "end": 9700.58, + "probability": 0.9619 + }, + { + "start": 9701.38, + "end": 9702.06, + "probability": 0.9759 + }, + { + "start": 9703.28, + "end": 9703.62, + "probability": 0.989 + }, + { + "start": 9705.58, + "end": 9706.42, + "probability": 0.8827 + }, + { + "start": 9707.43, + "end": 9707.82, + "probability": 0.3202 + }, + { + "start": 9714.92, + "end": 9715.3, + "probability": 0.5482 + }, + { + "start": 9716.98, + "end": 9717.88, + "probability": 0.7883 + }, + { + "start": 9718.5, + "end": 9718.76, + "probability": 0.9556 + }, + { + "start": 9720.34, + "end": 9721.0, + "probability": 0.9098 + }, + { + "start": 9721.94, + "end": 9722.38, + "probability": 0.9867 + }, + { + "start": 9723.76, + "end": 9724.68, + "probability": 0.91 + }, + { + "start": 9725.58, + "end": 9726.26, + "probability": 0.9946 + }, + { + "start": 9727.54, + "end": 9728.62, + "probability": 0.6352 + }, + { + "start": 9730.6, + "end": 9735.04, + "probability": 0.9004 + }, + { + "start": 9737.7, + "end": 9738.7, + "probability": 0.9238 + }, + { + "start": 9742.72, + "end": 9743.0, + "probability": 0.5952 + }, + { + "start": 9744.04, + "end": 9744.4, + "probability": 0.8713 + }, + { + "start": 9745.64, + "end": 9746.36, + "probability": 0.9333 + }, + { + "start": 9747.54, + "end": 9747.94, + "probability": 0.8198 + }, + { + "start": 9749.3, + "end": 9751.27, + "probability": 0.7072 + }, + { + "start": 9754.04, + "end": 9756.24, + "probability": 0.9724 + }, + { + "start": 9757.56, + "end": 9757.98, + "probability": 0.9909 + }, + { + "start": 9760.0, + "end": 9760.64, + "probability": 0.7803 + }, + { + "start": 9761.84, + "end": 9762.84, + "probability": 0.9927 + }, + { + "start": 9764.16, + "end": 9765.0, + "probability": 0.9679 + }, + { + "start": 9766.26, + "end": 9766.68, + "probability": 0.9507 + }, + { + "start": 9768.24, + "end": 9768.96, + "probability": 0.8747 + }, + { + "start": 9769.92, + "end": 9770.32, + "probability": 0.9951 + }, + { + "start": 9772.26, + "end": 9772.84, + "probability": 0.4402 + }, + { + "start": 9775.17, + "end": 9777.12, + "probability": 0.7774 + }, + { + "start": 9778.09, + "end": 9780.74, + "probability": 0.8151 + }, + { + "start": 9782.72, + "end": 9784.36, + "probability": 0.9186 + }, + { + "start": 9788.18, + "end": 9790.98, + "probability": 0.9924 + }, + { + "start": 9791.5, + "end": 9791.62, + "probability": 0.2062 + }, + { + "start": 9792.38, + "end": 9793.16, + "probability": 0.7031 + }, + { + "start": 9794.72, + "end": 9796.78, + "probability": 0.7885 + }, + { + "start": 9797.62, + "end": 9798.42, + "probability": 0.9811 + }, + { + "start": 9798.98, + "end": 9799.84, + "probability": 0.9199 + }, + { + "start": 9802.04, + "end": 9804.54, + "probability": 0.9535 + }, + { + "start": 9806.08, + "end": 9809.16, + "probability": 0.649 + }, + { + "start": 9810.88, + "end": 9811.7, + "probability": 0.8392 + }, + { + "start": 9813.06, + "end": 9816.16, + "probability": 0.9226 + }, + { + "start": 9822.66, + "end": 9823.1, + "probability": 0.5 + }, + { + "start": 9824.66, + "end": 9824.88, + "probability": 0.5374 + }, + { + "start": 9827.48, + "end": 9828.16, + "probability": 0.6604 + }, + { + "start": 9834.14, + "end": 9834.52, + "probability": 0.6565 + }, + { + "start": 9838.06, + "end": 9838.72, + "probability": 0.5024 + }, + { + "start": 9840.0, + "end": 9840.3, + "probability": 0.9272 + }, + { + "start": 9842.68, + "end": 9843.22, + "probability": 0.8117 + }, + { + "start": 9844.14, + "end": 9846.1, + "probability": 0.9922 + }, + { + "start": 9848.06, + "end": 9849.08, + "probability": 0.7334 + }, + { + "start": 9849.88, + "end": 9851.62, + "probability": 0.9715 + }, + { + "start": 9852.74, + "end": 9853.2, + "probability": 0.4163 + }, + { + "start": 9855.32, + "end": 9855.72, + "probability": 0.9961 + }, + { + "start": 9857.96, + "end": 9858.6, + "probability": 0.9466 + }, + { + "start": 9860.24, + "end": 9861.5, + "probability": 0.8698 + }, + { + "start": 9862.3, + "end": 9862.92, + "probability": 0.6944 + }, + { + "start": 9865.4, + "end": 9865.56, + "probability": 0.2668 + }, + { + "start": 9868.64, + "end": 9869.94, + "probability": 0.2443 + }, + { + "start": 9871.88, + "end": 9874.64, + "probability": 0.5406 + }, + { + "start": 9876.58, + "end": 9877.32, + "probability": 0.7881 + }, + { + "start": 9879.46, + "end": 9880.26, + "probability": 0.5807 + }, + { + "start": 9881.18, + "end": 9881.96, + "probability": 0.94 + }, + { + "start": 9882.94, + "end": 9883.42, + "probability": 0.6925 + }, + { + "start": 9885.66, + "end": 9886.86, + "probability": 0.7417 + }, + { + "start": 9888.28, + "end": 9891.28, + "probability": 0.7391 + }, + { + "start": 9892.52, + "end": 9893.18, + "probability": 0.7487 + }, + { + "start": 9895.4, + "end": 9895.82, + "probability": 0.9419 + }, + { + "start": 9900.58, + "end": 9901.48, + "probability": 0.8015 + }, + { + "start": 9902.86, + "end": 9903.32, + "probability": 0.5534 + }, + { + "start": 9905.68, + "end": 9906.42, + "probability": 0.6384 + }, + { + "start": 9907.96, + "end": 9909.88, + "probability": 0.9072 + }, + { + "start": 9911.54, + "end": 9912.38, + "probability": 0.6306 + }, + { + "start": 9914.84, + "end": 9916.3, + "probability": 0.8711 + }, + { + "start": 9917.42, + "end": 9919.84, + "probability": 0.9279 + }, + { + "start": 9924.32, + "end": 9925.48, + "probability": 0.5897 + }, + { + "start": 9926.9, + "end": 9928.64, + "probability": 0.8281 + }, + { + "start": 9931.22, + "end": 9931.92, + "probability": 0.0398 + }, + { + "start": 9933.44, + "end": 9936.78, + "probability": 0.9733 + }, + { + "start": 9937.54, + "end": 9939.54, + "probability": 0.958 + }, + { + "start": 9939.6, + "end": 9941.74, + "probability": 0.8304 + }, + { + "start": 9941.82, + "end": 9943.86, + "probability": 0.72 + }, + { + "start": 9944.44, + "end": 9945.06, + "probability": 0.0864 + }, + { + "start": 9946.42, + "end": 9947.6, + "probability": 0.2156 + }, + { + "start": 9948.9, + "end": 9951.84, + "probability": 0.7139 + }, + { + "start": 9954.08, + "end": 9956.62, + "probability": 0.7514 + }, + { + "start": 9958.64, + "end": 9963.1, + "probability": 0.0609 + }, + { + "start": 9964.02, + "end": 9964.96, + "probability": 0.0961 + }, + { + "start": 9971.66, + "end": 9987.08, + "probability": 0.0229 + }, + { + "start": 9995.18, + "end": 9996.32, + "probability": 0.0146 + }, + { + "start": 9997.22, + "end": 9999.38, + "probability": 0.0093 + }, + { + "start": 10056.36, + "end": 10059.72, + "probability": 0.0125 + }, + { + "start": 10130.92, + "end": 10131.32, + "probability": 0.501 + }, + { + "start": 10132.1, + "end": 10134.42, + "probability": 0.6939 + }, + { + "start": 10135.16, + "end": 10140.58, + "probability": 0.7693 + }, + { + "start": 10141.32, + "end": 10143.1, + "probability": 0.7646 + }, + { + "start": 10143.56, + "end": 10146.26, + "probability": 0.8841 + }, + { + "start": 10147.26, + "end": 10147.84, + "probability": 0.2561 + }, + { + "start": 10148.92, + "end": 10149.4, + "probability": 0.9338 + }, + { + "start": 10150.76, + "end": 10154.5, + "probability": 0.6626 + }, + { + "start": 10155.02, + "end": 10156.84, + "probability": 0.7712 + }, + { + "start": 10157.92, + "end": 10158.26, + "probability": 0.7863 + }, + { + "start": 10160.02, + "end": 10161.04, + "probability": 0.7186 + }, + { + "start": 10161.64, + "end": 10162.04, + "probability": 0.8782 + }, + { + "start": 10164.32, + "end": 10168.3, + "probability": 0.9609 + }, + { + "start": 10169.88, + "end": 10171.46, + "probability": 0.786 + }, + { + "start": 10172.0, + "end": 10172.78, + "probability": 0.6653 + }, + { + "start": 10174.3, + "end": 10176.04, + "probability": 0.9915 + }, + { + "start": 10177.14, + "end": 10178.02, + "probability": 0.9504 + }, + { + "start": 10180.96, + "end": 10181.4, + "probability": 0.9917 + }, + { + "start": 10183.12, + "end": 10183.98, + "probability": 0.916 + }, + { + "start": 10187.76, + "end": 10188.64, + "probability": 0.8067 + }, + { + "start": 10189.34, + "end": 10189.8, + "probability": 0.8533 + }, + { + "start": 10191.3, + "end": 10192.04, + "probability": 0.8542 + }, + { + "start": 10196.44, + "end": 10196.78, + "probability": 0.629 + }, + { + "start": 10198.5, + "end": 10199.3, + "probability": 0.7536 + }, + { + "start": 10200.88, + "end": 10201.54, + "probability": 0.8024 + }, + { + "start": 10202.36, + "end": 10203.52, + "probability": 0.965 + }, + { + "start": 10204.24, + "end": 10204.62, + "probability": 0.8131 + }, + { + "start": 10206.34, + "end": 10207.04, + "probability": 0.9872 + }, + { + "start": 10208.7, + "end": 10210.36, + "probability": 0.9198 + }, + { + "start": 10211.26, + "end": 10211.7, + "probability": 0.9587 + }, + { + "start": 10213.34, + "end": 10215.42, + "probability": 0.9937 + }, + { + "start": 10217.06, + "end": 10218.97, + "probability": 0.9458 + }, + { + "start": 10220.48, + "end": 10221.24, + "probability": 0.9733 + }, + { + "start": 10223.46, + "end": 10223.88, + "probability": 0.5498 + }, + { + "start": 10225.68, + "end": 10226.18, + "probability": 0.8024 + }, + { + "start": 10228.64, + "end": 10229.6, + "probability": 0.3351 + }, + { + "start": 10231.26, + "end": 10232.04, + "probability": 0.8052 + }, + { + "start": 10233.8, + "end": 10234.64, + "probability": 0.7441 + }, + { + "start": 10236.26, + "end": 10237.82, + "probability": 0.7106 + }, + { + "start": 10238.68, + "end": 10239.44, + "probability": 0.965 + }, + { + "start": 10240.62, + "end": 10240.98, + "probability": 0.8022 + }, + { + "start": 10242.94, + "end": 10243.84, + "probability": 0.988 + }, + { + "start": 10244.78, + "end": 10245.16, + "probability": 0.823 + }, + { + "start": 10246.68, + "end": 10247.46, + "probability": 0.8887 + }, + { + "start": 10250.56, + "end": 10251.04, + "probability": 0.9858 + }, + { + "start": 10252.6, + "end": 10253.28, + "probability": 0.8056 + }, + { + "start": 10255.64, + "end": 10257.06, + "probability": 0.6845 + }, + { + "start": 10258.54, + "end": 10259.52, + "probability": 0.5032 + }, + { + "start": 10260.6, + "end": 10260.84, + "probability": 0.9388 + }, + { + "start": 10262.68, + "end": 10263.3, + "probability": 0.7024 + }, + { + "start": 10269.06, + "end": 10270.46, + "probability": 0.6517 + }, + { + "start": 10272.1, + "end": 10272.74, + "probability": 0.6998 + }, + { + "start": 10273.56, + "end": 10274.52, + "probability": 0.548 + }, + { + "start": 10275.66, + "end": 10276.34, + "probability": 0.9157 + }, + { + "start": 10277.6, + "end": 10278.0, + "probability": 0.9053 + }, + { + "start": 10279.42, + "end": 10279.96, + "probability": 0.8754 + }, + { + "start": 10280.76, + "end": 10282.44, + "probability": 0.9678 + }, + { + "start": 10283.0, + "end": 10283.74, + "probability": 0.9381 + }, + { + "start": 10285.46, + "end": 10285.86, + "probability": 0.9676 + }, + { + "start": 10287.6, + "end": 10288.26, + "probability": 0.8283 + }, + { + "start": 10290.68, + "end": 10291.42, + "probability": 0.1186 + }, + { + "start": 10292.02, + "end": 10293.46, + "probability": 0.3664 + }, + { + "start": 10300.0, + "end": 10301.2, + "probability": 0.0515 + }, + { + "start": 10302.48, + "end": 10302.94, + "probability": 0.7307 + }, + { + "start": 10304.48, + "end": 10305.22, + "probability": 0.8631 + }, + { + "start": 10306.9, + "end": 10308.96, + "probability": 0.8426 + }, + { + "start": 10310.26, + "end": 10310.72, + "probability": 0.7041 + }, + { + "start": 10312.56, + "end": 10313.34, + "probability": 0.9109 + }, + { + "start": 10316.68, + "end": 10317.16, + "probability": 0.9372 + }, + { + "start": 10318.74, + "end": 10319.46, + "probability": 0.9606 + }, + { + "start": 10320.12, + "end": 10321.04, + "probability": 0.9165 + }, + { + "start": 10322.3, + "end": 10323.56, + "probability": 0.6104 + }, + { + "start": 10330.34, + "end": 10330.96, + "probability": 0.8027 + }, + { + "start": 10332.72, + "end": 10333.06, + "probability": 0.9751 + }, + { + "start": 10335.2, + "end": 10335.94, + "probability": 0.7801 + }, + { + "start": 10341.16, + "end": 10341.92, + "probability": 0.9609 + }, + { + "start": 10342.72, + "end": 10343.54, + "probability": 0.5568 + }, + { + "start": 10346.04, + "end": 10346.52, + "probability": 0.9372 + }, + { + "start": 10348.44, + "end": 10349.36, + "probability": 0.8745 + }, + { + "start": 10351.76, + "end": 10351.92, + "probability": 0.0799 + }, + { + "start": 10354.0, + "end": 10355.54, + "probability": 0.4109 + }, + { + "start": 10365.98, + "end": 10367.08, + "probability": 0.5738 + }, + { + "start": 10367.94, + "end": 10368.3, + "probability": 0.9183 + }, + { + "start": 10370.14, + "end": 10370.54, + "probability": 0.3821 + }, + { + "start": 10372.0, + "end": 10372.42, + "probability": 0.9644 + }, + { + "start": 10374.54, + "end": 10375.36, + "probability": 0.9579 + }, + { + "start": 10376.5, + "end": 10377.9, + "probability": 0.979 + }, + { + "start": 10378.6, + "end": 10379.36, + "probability": 0.947 + }, + { + "start": 10380.62, + "end": 10381.4, + "probability": 0.9972 + }, + { + "start": 10383.02, + "end": 10383.7, + "probability": 0.9174 + }, + { + "start": 10384.92, + "end": 10386.42, + "probability": 0.9765 + }, + { + "start": 10387.42, + "end": 10387.86, + "probability": 0.932 + }, + { + "start": 10388.88, + "end": 10389.96, + "probability": 0.9368 + }, + { + "start": 10391.02, + "end": 10391.76, + "probability": 0.8883 + }, + { + "start": 10392.6, + "end": 10392.85, + "probability": 0.0431 + }, + { + "start": 10395.54, + "end": 10396.4, + "probability": 0.2316 + }, + { + "start": 10399.74, + "end": 10400.18, + "probability": 0.5361 + }, + { + "start": 10401.96, + "end": 10402.98, + "probability": 0.9346 + }, + { + "start": 10403.84, + "end": 10404.12, + "probability": 0.848 + }, + { + "start": 10405.84, + "end": 10406.4, + "probability": 0.8262 + }, + { + "start": 10407.74, + "end": 10408.48, + "probability": 0.5385 + }, + { + "start": 10410.92, + "end": 10411.44, + "probability": 0.8934 + }, + { + "start": 10413.02, + "end": 10413.58, + "probability": 0.9723 + }, + { + "start": 10415.18, + "end": 10415.96, + "probability": 0.8836 + }, + { + "start": 10419.24, + "end": 10419.7, + "probability": 0.95 + }, + { + "start": 10421.26, + "end": 10421.96, + "probability": 0.9374 + }, + { + "start": 10422.7, + "end": 10422.8, + "probability": 0.1538 + }, + { + "start": 10426.0, + "end": 10427.16, + "probability": 0.5115 + }, + { + "start": 10428.44, + "end": 10428.84, + "probability": 0.5635 + }, + { + "start": 10432.35, + "end": 10433.82, + "probability": 0.9607 + }, + { + "start": 10435.46, + "end": 10436.54, + "probability": 0.9478 + }, + { + "start": 10437.88, + "end": 10438.3, + "probability": 0.9723 + }, + { + "start": 10439.82, + "end": 10440.82, + "probability": 0.808 + }, + { + "start": 10441.44, + "end": 10441.8, + "probability": 0.9775 + }, + { + "start": 10443.34, + "end": 10443.9, + "probability": 0.9477 + }, + { + "start": 10444.54, + "end": 10445.02, + "probability": 0.9688 + }, + { + "start": 10446.76, + "end": 10447.76, + "probability": 0.9438 + }, + { + "start": 10448.94, + "end": 10450.7, + "probability": 0.9037 + }, + { + "start": 10451.76, + "end": 10453.2, + "probability": 0.9761 + }, + { + "start": 10454.02, + "end": 10454.74, + "probability": 0.8574 + }, + { + "start": 10456.34, + "end": 10456.58, + "probability": 0.7104 + }, + { + "start": 10457.96, + "end": 10458.74, + "probability": 0.6869 + }, + { + "start": 10459.98, + "end": 10460.34, + "probability": 0.8535 + }, + { + "start": 10461.52, + "end": 10462.2, + "probability": 0.8788 + }, + { + "start": 10463.3, + "end": 10463.78, + "probability": 0.9884 + }, + { + "start": 10465.5, + "end": 10466.2, + "probability": 0.9134 + }, + { + "start": 10470.34, + "end": 10472.12, + "probability": 0.9354 + }, + { + "start": 10472.86, + "end": 10473.28, + "probability": 0.9886 + }, + { + "start": 10475.16, + "end": 10476.82, + "probability": 0.6368 + }, + { + "start": 10481.28, + "end": 10482.24, + "probability": 0.8402 + }, + { + "start": 10483.42, + "end": 10484.06, + "probability": 0.5211 + }, + { + "start": 10489.84, + "end": 10491.16, + "probability": 0.7853 + }, + { + "start": 10492.16, + "end": 10492.96, + "probability": 0.8086 + }, + { + "start": 10493.88, + "end": 10494.18, + "probability": 0.7943 + }, + { + "start": 10495.86, + "end": 10496.68, + "probability": 0.7483 + }, + { + "start": 10499.42, + "end": 10501.34, + "probability": 0.9207 + }, + { + "start": 10502.36, + "end": 10502.68, + "probability": 0.8582 + }, + { + "start": 10504.54, + "end": 10505.48, + "probability": 0.9416 + }, + { + "start": 10506.18, + "end": 10506.58, + "probability": 0.947 + }, + { + "start": 10508.02, + "end": 10508.7, + "probability": 0.9697 + }, + { + "start": 10510.27, + "end": 10512.4, + "probability": 0.9626 + }, + { + "start": 10514.8, + "end": 10515.02, + "probability": 0.5389 + }, + { + "start": 10516.52, + "end": 10517.42, + "probability": 0.2796 + }, + { + "start": 10518.38, + "end": 10518.66, + "probability": 0.8337 + }, + { + "start": 10520.38, + "end": 10521.18, + "probability": 0.9774 + }, + { + "start": 10522.16, + "end": 10522.6, + "probability": 0.9651 + }, + { + "start": 10524.64, + "end": 10525.16, + "probability": 0.7912 + }, + { + "start": 10526.68, + "end": 10527.16, + "probability": 0.9202 + }, + { + "start": 10528.36, + "end": 10529.36, + "probability": 0.9891 + }, + { + "start": 10531.58, + "end": 10531.98, + "probability": 0.9919 + }, + { + "start": 10535.66, + "end": 10536.02, + "probability": 0.8608 + }, + { + "start": 10537.32, + "end": 10537.66, + "probability": 0.8589 + }, + { + "start": 10538.76, + "end": 10539.54, + "probability": 0.5201 + }, + { + "start": 10541.22, + "end": 10541.62, + "probability": 0.9868 + }, + { + "start": 10542.96, + "end": 10543.86, + "probability": 0.9156 + }, + { + "start": 10545.95, + "end": 10547.42, + "probability": 0.8708 + }, + { + "start": 10549.62, + "end": 10550.74, + "probability": 0.9924 + }, + { + "start": 10551.4, + "end": 10552.12, + "probability": 0.8302 + }, + { + "start": 10554.18, + "end": 10554.96, + "probability": 0.9504 + }, + { + "start": 10555.64, + "end": 10556.26, + "probability": 0.5197 + }, + { + "start": 10557.56, + "end": 10557.96, + "probability": 0.9805 + }, + { + "start": 10560.34, + "end": 10561.18, + "probability": 0.9083 + }, + { + "start": 10562.0, + "end": 10562.38, + "probability": 0.9741 + }, + { + "start": 10563.82, + "end": 10564.5, + "probability": 0.511 + }, + { + "start": 10566.02, + "end": 10568.0, + "probability": 0.805 + }, + { + "start": 10571.58, + "end": 10572.02, + "probability": 0.9281 + }, + { + "start": 10574.68, + "end": 10575.34, + "probability": 0.8691 + }, + { + "start": 10576.82, + "end": 10577.62, + "probability": 0.9404 + }, + { + "start": 10578.26, + "end": 10579.18, + "probability": 0.5716 + }, + { + "start": 10581.42, + "end": 10581.86, + "probability": 0.9824 + }, + { + "start": 10583.66, + "end": 10584.24, + "probability": 0.9371 + }, + { + "start": 10585.16, + "end": 10585.54, + "probability": 0.9644 + }, + { + "start": 10587.26, + "end": 10588.24, + "probability": 0.953 + }, + { + "start": 10589.28, + "end": 10589.74, + "probability": 0.9751 + }, + { + "start": 10591.24, + "end": 10591.86, + "probability": 0.7546 + }, + { + "start": 10593.7, + "end": 10594.1, + "probability": 0.5424 + }, + { + "start": 10595.44, + "end": 10596.22, + "probability": 0.6708 + }, + { + "start": 10597.44, + "end": 10597.72, + "probability": 0.9124 + }, + { + "start": 10599.54, + "end": 10600.24, + "probability": 0.8237 + }, + { + "start": 10602.3, + "end": 10605.12, + "probability": 0.8947 + }, + { + "start": 10606.26, + "end": 10606.7, + "probability": 0.8326 + }, + { + "start": 10608.58, + "end": 10609.02, + "probability": 0.9715 + }, + { + "start": 10610.58, + "end": 10611.1, + "probability": 0.9688 + }, + { + "start": 10612.5, + "end": 10612.88, + "probability": 0.9695 + }, + { + "start": 10614.44, + "end": 10615.18, + "probability": 0.9644 + }, + { + "start": 10616.2, + "end": 10616.66, + "probability": 0.9832 + }, + { + "start": 10618.48, + "end": 10619.18, + "probability": 0.8838 + }, + { + "start": 10619.88, + "end": 10620.16, + "probability": 0.988 + }, + { + "start": 10621.98, + "end": 10622.6, + "probability": 0.5475 + }, + { + "start": 10623.84, + "end": 10624.24, + "probability": 0.5565 + }, + { + "start": 10625.8, + "end": 10626.7, + "probability": 0.7492 + }, + { + "start": 10628.72, + "end": 10629.18, + "probability": 0.9466 + }, + { + "start": 10631.02, + "end": 10631.76, + "probability": 0.6894 + }, + { + "start": 10637.28, + "end": 10639.84, + "probability": 0.4667 + }, + { + "start": 10640.92, + "end": 10642.38, + "probability": 0.128 + }, + { + "start": 10643.24, + "end": 10643.48, + "probability": 0.0143 + }, + { + "start": 10651.2, + "end": 10651.96, + "probability": 0.0111 + }, + { + "start": 10663.74, + "end": 10665.54, + "probability": 0.6817 + }, + { + "start": 10667.28, + "end": 10668.14, + "probability": 0.5203 + }, + { + "start": 10668.88, + "end": 10669.58, + "probability": 0.9248 + }, + { + "start": 10672.28, + "end": 10673.0, + "probability": 0.9094 + }, + { + "start": 10674.88, + "end": 10676.92, + "probability": 0.9503 + }, + { + "start": 10679.54, + "end": 10679.92, + "probability": 0.9458 + }, + { + "start": 10681.36, + "end": 10682.06, + "probability": 0.7524 + }, + { + "start": 10684.12, + "end": 10684.54, + "probability": 0.99 + }, + { + "start": 10685.96, + "end": 10686.78, + "probability": 0.9665 + }, + { + "start": 10688.18, + "end": 10688.56, + "probability": 0.9925 + }, + { + "start": 10690.18, + "end": 10690.9, + "probability": 0.7426 + }, + { + "start": 10692.4, + "end": 10693.46, + "probability": 0.5038 + }, + { + "start": 10694.86, + "end": 10695.84, + "probability": 0.4587 + }, + { + "start": 10696.8, + "end": 10697.2, + "probability": 0.6338 + }, + { + "start": 10699.78, + "end": 10700.56, + "probability": 0.6675 + }, + { + "start": 10701.8, + "end": 10702.12, + "probability": 0.8242 + }, + { + "start": 10703.46, + "end": 10704.1, + "probability": 0.6266 + }, + { + "start": 10705.28, + "end": 10706.36, + "probability": 0.986 + }, + { + "start": 10707.2, + "end": 10707.8, + "probability": 0.7057 + }, + { + "start": 10709.04, + "end": 10709.54, + "probability": 0.9665 + }, + { + "start": 10710.98, + "end": 10712.12, + "probability": 0.744 + }, + { + "start": 10713.5, + "end": 10714.32, + "probability": 0.9423 + }, + { + "start": 10720.9, + "end": 10721.68, + "probability": 0.6136 + }, + { + "start": 10722.04, + "end": 10724.81, + "probability": 0.9518 + }, + { + "start": 10725.54, + "end": 10726.31, + "probability": 0.4846 + }, + { + "start": 10727.86, + "end": 10729.28, + "probability": 0.885 + }, + { + "start": 10731.12, + "end": 10732.76, + "probability": 0.9332 + }, + { + "start": 10734.72, + "end": 10735.5, + "probability": 0.9438 + }, + { + "start": 10737.68, + "end": 10738.56, + "probability": 0.6624 + }, + { + "start": 10740.84, + "end": 10741.32, + "probability": 0.7958 + }, + { + "start": 10743.5, + "end": 10744.34, + "probability": 0.903 + }, + { + "start": 10752.28, + "end": 10753.6, + "probability": 0.657 + }, + { + "start": 10755.06, + "end": 10755.7, + "probability": 0.6445 + }, + { + "start": 10757.42, + "end": 10757.94, + "probability": 0.7651 + }, + { + "start": 10762.18, + "end": 10762.76, + "probability": 0.6972 + }, + { + "start": 10763.8, + "end": 10765.06, + "probability": 0.9307 + }, + { + "start": 10766.64, + "end": 10767.36, + "probability": 0.7448 + }, + { + "start": 10770.68, + "end": 10770.96, + "probability": 0.5811 + }, + { + "start": 10773.26, + "end": 10773.96, + "probability": 0.6194 + }, + { + "start": 10777.36, + "end": 10778.62, + "probability": 0.7726 + }, + { + "start": 10780.54, + "end": 10781.08, + "probability": 0.7613 + }, + { + "start": 10783.4, + "end": 10784.24, + "probability": 0.9937 + }, + { + "start": 10785.02, + "end": 10785.62, + "probability": 0.8985 + }, + { + "start": 10786.72, + "end": 10787.48, + "probability": 0.9902 + }, + { + "start": 10788.58, + "end": 10789.3, + "probability": 0.8363 + }, + { + "start": 10791.22, + "end": 10792.02, + "probability": 0.9926 + }, + { + "start": 10792.84, + "end": 10793.98, + "probability": 0.6932 + }, + { + "start": 10795.98, + "end": 10797.72, + "probability": 0.892 + }, + { + "start": 10800.26, + "end": 10801.36, + "probability": 0.5556 + }, + { + "start": 10807.78, + "end": 10808.8, + "probability": 0.2819 + }, + { + "start": 10810.26, + "end": 10812.04, + "probability": 0.5566 + }, + { + "start": 10815.26, + "end": 10815.98, + "probability": 0.5181 + }, + { + "start": 10819.66, + "end": 10820.2, + "probability": 0.5692 + }, + { + "start": 10821.92, + "end": 10822.78, + "probability": 0.9294 + }, + { + "start": 10823.44, + "end": 10824.16, + "probability": 0.691 + }, + { + "start": 10828.34, + "end": 10829.1, + "probability": 0.8254 + }, + { + "start": 10830.86, + "end": 10831.58, + "probability": 0.9131 + }, + { + "start": 10836.72, + "end": 10837.46, + "probability": 0.9126 + }, + { + "start": 10840.3, + "end": 10841.27, + "probability": 0.4871 + }, + { + "start": 10843.78, + "end": 10844.58, + "probability": 0.842 + }, + { + "start": 10848.96, + "end": 10853.98, + "probability": 0.9082 + }, + { + "start": 10854.58, + "end": 10855.32, + "probability": 0.5539 + }, + { + "start": 10857.26, + "end": 10857.9, + "probability": 0.3238 + }, + { + "start": 10858.9, + "end": 10859.0, + "probability": 0.9831 + }, + { + "start": 10862.14, + "end": 10862.44, + "probability": 0.3553 + }, + { + "start": 10868.16, + "end": 10869.32, + "probability": 0.4769 + }, + { + "start": 10871.72, + "end": 10876.02, + "probability": 0.8798 + }, + { + "start": 10876.92, + "end": 10878.38, + "probability": 0.6423 + }, + { + "start": 10878.46, + "end": 10879.7, + "probability": 0.7742 + }, + { + "start": 10879.76, + "end": 10880.2, + "probability": 0.6903 + }, + { + "start": 10881.52, + "end": 10891.96, + "probability": 0.0505 + }, + { + "start": 10892.3, + "end": 10892.5, + "probability": 0.0313 + }, + { + "start": 10902.48, + "end": 10903.58, + "probability": 0.0234 + }, + { + "start": 11023.14, + "end": 11025.08, + "probability": 0.6879 + }, + { + "start": 11025.24, + "end": 11027.9, + "probability": 0.8424 + }, + { + "start": 11028.56, + "end": 11030.7, + "probability": 0.6527 + }, + { + "start": 11031.5, + "end": 11036.3, + "probability": 0.7907 + }, + { + "start": 11036.88, + "end": 11038.48, + "probability": 0.9149 + }, + { + "start": 11040.5, + "end": 11041.04, + "probability": 0.0298 + }, + { + "start": 11042.0, + "end": 11042.24, + "probability": 0.2707 + }, + { + "start": 11043.36, + "end": 11044.14, + "probability": 0.5617 + }, + { + "start": 11045.06, + "end": 11046.66, + "probability": 0.8511 + }, + { + "start": 11047.52, + "end": 11048.06, + "probability": 0.8105 + }, + { + "start": 11049.08, + "end": 11049.82, + "probability": 0.696 + }, + { + "start": 11051.06, + "end": 11051.36, + "probability": 0.9429 + }, + { + "start": 11053.74, + "end": 11054.94, + "probability": 0.7667 + }, + { + "start": 11057.44, + "end": 11059.2, + "probability": 0.8796 + }, + { + "start": 11062.28, + "end": 11064.6, + "probability": 0.8679 + }, + { + "start": 11065.96, + "end": 11066.66, + "probability": 0.8885 + }, + { + "start": 11067.18, + "end": 11068.08, + "probability": 0.5525 + }, + { + "start": 11069.58, + "end": 11070.38, + "probability": 0.9277 + }, + { + "start": 11071.74, + "end": 11072.7, + "probability": 0.6801 + }, + { + "start": 11075.26, + "end": 11079.58, + "probability": 0.6281 + }, + { + "start": 11080.5, + "end": 11081.24, + "probability": 0.5417 + }, + { + "start": 11082.74, + "end": 11083.64, + "probability": 0.7186 + }, + { + "start": 11085.98, + "end": 11088.46, + "probability": 0.8559 + }, + { + "start": 11091.32, + "end": 11092.04, + "probability": 0.8893 + }, + { + "start": 11092.8, + "end": 11093.68, + "probability": 0.9335 + }, + { + "start": 11094.78, + "end": 11095.52, + "probability": 0.9918 + }, + { + "start": 11096.38, + "end": 11097.34, + "probability": 0.7663 + }, + { + "start": 11098.42, + "end": 11098.9, + "probability": 0.8517 + }, + { + "start": 11100.56, + "end": 11101.24, + "probability": 0.8195 + }, + { + "start": 11103.36, + "end": 11105.54, + "probability": 0.9288 + }, + { + "start": 11106.48, + "end": 11106.94, + "probability": 0.993 + }, + { + "start": 11108.48, + "end": 11109.2, + "probability": 0.9795 + }, + { + "start": 11110.62, + "end": 11111.36, + "probability": 0.8977 + }, + { + "start": 11112.4, + "end": 11114.6, + "probability": 0.9339 + }, + { + "start": 11115.74, + "end": 11116.5, + "probability": 0.981 + }, + { + "start": 11117.68, + "end": 11118.44, + "probability": 0.9803 + }, + { + "start": 11119.18, + "end": 11120.18, + "probability": 0.9583 + }, + { + "start": 11121.46, + "end": 11121.92, + "probability": 0.9938 + }, + { + "start": 11123.32, + "end": 11124.1, + "probability": 0.9951 + }, + { + "start": 11125.9, + "end": 11126.74, + "probability": 0.8743 + }, + { + "start": 11127.96, + "end": 11128.68, + "probability": 0.6793 + }, + { + "start": 11131.94, + "end": 11133.72, + "probability": 0.867 + }, + { + "start": 11134.62, + "end": 11135.6, + "probability": 0.9928 + }, + { + "start": 11137.52, + "end": 11138.2, + "probability": 0.9864 + }, + { + "start": 11138.74, + "end": 11139.58, + "probability": 0.946 + }, + { + "start": 11140.6, + "end": 11141.36, + "probability": 0.9827 + }, + { + "start": 11141.92, + "end": 11142.62, + "probability": 0.9802 + }, + { + "start": 11143.72, + "end": 11144.14, + "probability": 0.9901 + }, + { + "start": 11146.34, + "end": 11147.48, + "probability": 0.7934 + }, + { + "start": 11148.56, + "end": 11149.0, + "probability": 0.9964 + }, + { + "start": 11150.42, + "end": 11151.06, + "probability": 0.9543 + }, + { + "start": 11152.68, + "end": 11153.46, + "probability": 0.7513 + }, + { + "start": 11156.02, + "end": 11156.66, + "probability": 0.5306 + }, + { + "start": 11158.1, + "end": 11158.76, + "probability": 0.9731 + }, + { + "start": 11159.48, + "end": 11160.18, + "probability": 0.8707 + }, + { + "start": 11167.16, + "end": 11167.62, + "probability": 0.7078 + }, + { + "start": 11169.54, + "end": 11170.18, + "probability": 0.6559 + }, + { + "start": 11172.02, + "end": 11172.82, + "probability": 0.6802 + }, + { + "start": 11173.36, + "end": 11174.14, + "probability": 0.7764 + }, + { + "start": 11176.59, + "end": 11178.14, + "probability": 0.9149 + }, + { + "start": 11180.4, + "end": 11182.12, + "probability": 0.8752 + }, + { + "start": 11183.3, + "end": 11185.46, + "probability": 0.875 + }, + { + "start": 11187.96, + "end": 11188.74, + "probability": 0.8964 + }, + { + "start": 11189.78, + "end": 11190.52, + "probability": 0.9706 + }, + { + "start": 11191.92, + "end": 11192.26, + "probability": 0.9935 + }, + { + "start": 11194.2, + "end": 11194.78, + "probability": 0.5445 + }, + { + "start": 11197.1, + "end": 11197.76, + "probability": 0.8628 + }, + { + "start": 11199.42, + "end": 11200.02, + "probability": 0.7742 + }, + { + "start": 11201.02, + "end": 11201.5, + "probability": 0.9865 + }, + { + "start": 11203.14, + "end": 11203.86, + "probability": 0.8916 + }, + { + "start": 11205.48, + "end": 11206.18, + "probability": 0.9752 + }, + { + "start": 11206.92, + "end": 11208.14, + "probability": 0.7822 + }, + { + "start": 11209.18, + "end": 11209.98, + "probability": 0.9931 + }, + { + "start": 11210.66, + "end": 11211.26, + "probability": 0.8989 + }, + { + "start": 11216.06, + "end": 11217.92, + "probability": 0.8207 + }, + { + "start": 11220.18, + "end": 11220.86, + "probability": 0.9538 + }, + { + "start": 11221.4, + "end": 11227.62, + "probability": 0.5896 + }, + { + "start": 11229.98, + "end": 11232.18, + "probability": 0.7251 + }, + { + "start": 11233.38, + "end": 11233.8, + "probability": 0.9645 + }, + { + "start": 11236.32, + "end": 11237.3, + "probability": 0.9365 + }, + { + "start": 11238.8, + "end": 11239.46, + "probability": 0.9762 + }, + { + "start": 11240.38, + "end": 11241.48, + "probability": 0.7054 + }, + { + "start": 11242.72, + "end": 11243.16, + "probability": 0.9889 + }, + { + "start": 11245.34, + "end": 11245.98, + "probability": 0.3794 + }, + { + "start": 11247.74, + "end": 11248.12, + "probability": 0.9886 + }, + { + "start": 11249.72, + "end": 11249.94, + "probability": 0.9233 + }, + { + "start": 11252.94, + "end": 11253.44, + "probability": 0.4805 + }, + { + "start": 11255.76, + "end": 11256.46, + "probability": 0.7998 + }, + { + "start": 11257.22, + "end": 11258.0, + "probability": 0.69 + }, + { + "start": 11259.52, + "end": 11259.78, + "probability": 0.9736 + }, + { + "start": 11261.8, + "end": 11262.48, + "probability": 0.9566 + }, + { + "start": 11263.54, + "end": 11263.94, + "probability": 0.8455 + }, + { + "start": 11265.96, + "end": 11266.56, + "probability": 0.9383 + }, + { + "start": 11267.72, + "end": 11269.04, + "probability": 0.9547 + }, + { + "start": 11270.82, + "end": 11272.96, + "probability": 0.7842 + }, + { + "start": 11274.44, + "end": 11275.2, + "probability": 0.9612 + }, + { + "start": 11275.86, + "end": 11276.8, + "probability": 0.8948 + }, + { + "start": 11277.5, + "end": 11277.84, + "probability": 0.9884 + }, + { + "start": 11279.4, + "end": 11280.04, + "probability": 0.9634 + }, + { + "start": 11281.24, + "end": 11282.46, + "probability": 0.651 + }, + { + "start": 11285.06, + "end": 11285.52, + "probability": 0.9549 + }, + { + "start": 11287.22, + "end": 11288.02, + "probability": 0.8315 + }, + { + "start": 11289.22, + "end": 11290.1, + "probability": 0.9881 + }, + { + "start": 11291.12, + "end": 11291.72, + "probability": 0.945 + }, + { + "start": 11292.74, + "end": 11293.18, + "probability": 0.8813 + }, + { + "start": 11294.72, + "end": 11295.18, + "probability": 0.9295 + }, + { + "start": 11297.0, + "end": 11298.56, + "probability": 0.9695 + }, + { + "start": 11299.94, + "end": 11301.64, + "probability": 0.9794 + }, + { + "start": 11303.08, + "end": 11304.54, + "probability": 0.9514 + }, + { + "start": 11305.78, + "end": 11306.24, + "probability": 0.9961 + }, + { + "start": 11308.58, + "end": 11309.6, + "probability": 0.6225 + }, + { + "start": 11310.12, + "end": 11310.14, + "probability": 0.7535 + }, + { + "start": 11312.7, + "end": 11313.3, + "probability": 0.6741 + }, + { + "start": 11313.92, + "end": 11314.38, + "probability": 0.9549 + }, + { + "start": 11315.74, + "end": 11316.9, + "probability": 0.831 + }, + { + "start": 11318.46, + "end": 11320.02, + "probability": 0.8898 + }, + { + "start": 11320.96, + "end": 11322.48, + "probability": 0.8733 + }, + { + "start": 11323.56, + "end": 11323.9, + "probability": 0.9443 + }, + { + "start": 11325.26, + "end": 11326.04, + "probability": 0.9792 + }, + { + "start": 11327.76, + "end": 11328.48, + "probability": 0.9259 + }, + { + "start": 11329.78, + "end": 11330.44, + "probability": 0.9693 + }, + { + "start": 11331.38, + "end": 11331.82, + "probability": 0.9779 + }, + { + "start": 11333.16, + "end": 11333.74, + "probability": 0.941 + }, + { + "start": 11337.18, + "end": 11337.44, + "probability": 0.7114 + }, + { + "start": 11338.18, + "end": 11338.86, + "probability": 0.9943 + }, + { + "start": 11339.56, + "end": 11340.5, + "probability": 0.932 + }, + { + "start": 11341.34, + "end": 11341.82, + "probability": 0.8097 + }, + { + "start": 11343.24, + "end": 11343.84, + "probability": 0.7247 + }, + { + "start": 11345.2, + "end": 11345.76, + "probability": 0.9902 + }, + { + "start": 11347.2, + "end": 11347.8, + "probability": 0.7243 + }, + { + "start": 11350.3, + "end": 11351.04, + "probability": 0.9189 + }, + { + "start": 11351.8, + "end": 11352.54, + "probability": 0.891 + }, + { + "start": 11354.92, + "end": 11355.4, + "probability": 0.9979 + }, + { + "start": 11356.8, + "end": 11357.7, + "probability": 0.7455 + }, + { + "start": 11361.72, + "end": 11361.98, + "probability": 0.6813 + }, + { + "start": 11363.18, + "end": 11364.12, + "probability": 0.7104 + }, + { + "start": 11364.8, + "end": 11365.16, + "probability": 0.987 + }, + { + "start": 11366.88, + "end": 11367.72, + "probability": 0.9077 + }, + { + "start": 11368.98, + "end": 11370.28, + "probability": 0.8664 + }, + { + "start": 11372.24, + "end": 11373.68, + "probability": 0.965 + }, + { + "start": 11375.64, + "end": 11376.4, + "probability": 0.9859 + }, + { + "start": 11377.3, + "end": 11378.12, + "probability": 0.4462 + }, + { + "start": 11379.04, + "end": 11379.5, + "probability": 0.9915 + }, + { + "start": 11380.96, + "end": 11381.76, + "probability": 0.9831 + }, + { + "start": 11383.9, + "end": 11385.42, + "probability": 0.9165 + }, + { + "start": 11386.8, + "end": 11387.24, + "probability": 0.7546 + }, + { + "start": 11388.4, + "end": 11389.36, + "probability": 0.8485 + }, + { + "start": 11391.1, + "end": 11391.72, + "probability": 0.8203 + }, + { + "start": 11394.26, + "end": 11395.14, + "probability": 0.8045 + }, + { + "start": 11401.74, + "end": 11402.14, + "probability": 0.7752 + }, + { + "start": 11403.5, + "end": 11404.38, + "probability": 0.5725 + }, + { + "start": 11405.26, + "end": 11407.66, + "probability": 0.8955 + }, + { + "start": 11409.1, + "end": 11410.66, + "probability": 0.8178 + }, + { + "start": 11412.36, + "end": 11413.28, + "probability": 0.4021 + }, + { + "start": 11415.14, + "end": 11415.94, + "probability": 0.5236 + }, + { + "start": 11417.9, + "end": 11419.92, + "probability": 0.7841 + }, + { + "start": 11420.7, + "end": 11421.16, + "probability": 0.9562 + }, + { + "start": 11422.76, + "end": 11423.66, + "probability": 0.8834 + }, + { + "start": 11424.26, + "end": 11425.78, + "probability": 0.5068 + }, + { + "start": 11426.84, + "end": 11427.68, + "probability": 0.5137 + }, + { + "start": 11435.14, + "end": 11436.14, + "probability": 0.5129 + }, + { + "start": 11436.78, + "end": 11437.6, + "probability": 0.6348 + }, + { + "start": 11439.32, + "end": 11439.92, + "probability": 0.8597 + }, + { + "start": 11441.94, + "end": 11442.58, + "probability": 0.8568 + }, + { + "start": 11443.92, + "end": 11444.82, + "probability": 0.9436 + }, + { + "start": 11446.1, + "end": 11446.55, + "probability": 0.4932 + }, + { + "start": 11448.32, + "end": 11449.86, + "probability": 0.8937 + }, + { + "start": 11452.02, + "end": 11452.78, + "probability": 0.8492 + }, + { + "start": 11458.16, + "end": 11460.2, + "probability": 0.3778 + }, + { + "start": 11461.1, + "end": 11461.6, + "probability": 0.7479 + }, + { + "start": 11463.32, + "end": 11463.92, + "probability": 0.7058 + }, + { + "start": 11464.76, + "end": 11468.48, + "probability": 0.6941 + }, + { + "start": 11471.2, + "end": 11471.64, + "probability": 0.9938 + }, + { + "start": 11473.62, + "end": 11474.36, + "probability": 0.7562 + }, + { + "start": 11475.82, + "end": 11478.68, + "probability": 0.9287 + }, + { + "start": 11479.3, + "end": 11480.16, + "probability": 0.8602 + }, + { + "start": 11481.02, + "end": 11482.64, + "probability": 0.0659 + }, + { + "start": 11486.16, + "end": 11486.82, + "probability": 0.5995 + }, + { + "start": 11488.62, + "end": 11489.04, + "probability": 0.8035 + }, + { + "start": 11490.28, + "end": 11490.96, + "probability": 0.6418 + }, + { + "start": 11492.36, + "end": 11493.06, + "probability": 0.3891 + }, + { + "start": 11494.52, + "end": 11495.12, + "probability": 0.4155 + }, + { + "start": 11496.76, + "end": 11498.16, + "probability": 0.8578 + }, + { + "start": 11499.7, + "end": 11500.16, + "probability": 0.9836 + }, + { + "start": 11501.58, + "end": 11502.44, + "probability": 0.979 + }, + { + "start": 11503.5, + "end": 11505.16, + "probability": 0.9442 + }, + { + "start": 11506.32, + "end": 11506.7, + "probability": 0.9919 + }, + { + "start": 11509.38, + "end": 11509.94, + "probability": 0.9668 + }, + { + "start": 11510.84, + "end": 11511.08, + "probability": 0.9932 + }, + { + "start": 11513.24, + "end": 11514.12, + "probability": 0.643 + }, + { + "start": 11514.8, + "end": 11515.14, + "probability": 0.9194 + }, + { + "start": 11516.5, + "end": 11517.56, + "probability": 0.5468 + }, + { + "start": 11519.6, + "end": 11522.62, + "probability": 0.8817 + }, + { + "start": 11523.2, + "end": 11524.08, + "probability": 0.687 + }, + { + "start": 11527.28, + "end": 11528.1, + "probability": 0.9968 + }, + { + "start": 11530.08, + "end": 11530.82, + "probability": 0.9173 + }, + { + "start": 11531.56, + "end": 11531.98, + "probability": 0.9847 + }, + { + "start": 11533.6, + "end": 11534.32, + "probability": 0.9183 + }, + { + "start": 11535.82, + "end": 11536.02, + "probability": 0.9507 + }, + { + "start": 11542.86, + "end": 11545.48, + "probability": 0.2504 + }, + { + "start": 11546.98, + "end": 11547.86, + "probability": 0.7139 + }, + { + "start": 11548.66, + "end": 11549.48, + "probability": 0.8158 + }, + { + "start": 11550.5, + "end": 11550.98, + "probability": 0.9564 + }, + { + "start": 11552.96, + "end": 11553.62, + "probability": 0.7295 + }, + { + "start": 11554.94, + "end": 11555.4, + "probability": 0.9855 + }, + { + "start": 11557.38, + "end": 11558.24, + "probability": 0.8676 + }, + { + "start": 11560.24, + "end": 11561.0, + "probability": 0.9395 + }, + { + "start": 11561.76, + "end": 11562.82, + "probability": 0.9295 + }, + { + "start": 11564.0, + "end": 11564.5, + "probability": 0.9756 + }, + { + "start": 11566.06, + "end": 11566.58, + "probability": 0.3077 + }, + { + "start": 11568.1, + "end": 11568.5, + "probability": 0.6817 + }, + { + "start": 11569.94, + "end": 11570.46, + "probability": 0.4422 + }, + { + "start": 11573.48, + "end": 11574.48, + "probability": 0.8768 + }, + { + "start": 11575.06, + "end": 11576.28, + "probability": 0.8341 + }, + { + "start": 11577.72, + "end": 11578.18, + "probability": 0.9158 + }, + { + "start": 11578.96, + "end": 11582.8, + "probability": 0.9959 + }, + { + "start": 11589.46, + "end": 11590.16, + "probability": 0.137 + }, + { + "start": 11591.08, + "end": 11592.9, + "probability": 0.6695 + }, + { + "start": 11593.14, + "end": 11594.46, + "probability": 0.9442 + }, + { + "start": 11595.24, + "end": 11599.06, + "probability": 0.7964 + }, + { + "start": 11602.28, + "end": 11603.04, + "probability": 0.9845 + }, + { + "start": 11604.26, + "end": 11604.84, + "probability": 0.704 + }, + { + "start": 11605.72, + "end": 11606.4, + "probability": 0.745 + }, + { + "start": 11607.26, + "end": 11609.82, + "probability": 0.9712 + }, + { + "start": 11610.7, + "end": 11611.38, + "probability": 0.9756 + }, + { + "start": 11612.54, + "end": 11615.8, + "probability": 0.992 + }, + { + "start": 11616.48, + "end": 11618.42, + "probability": 0.9742 + }, + { + "start": 11619.14, + "end": 11619.78, + "probability": 0.9573 + }, + { + "start": 11620.54, + "end": 11621.28, + "probability": 0.9873 + }, + { + "start": 11622.8, + "end": 11623.6, + "probability": 0.9902 + }, + { + "start": 11624.22, + "end": 11624.9, + "probability": 0.6997 + }, + { + "start": 11626.88, + "end": 11627.6, + "probability": 0.7575 + }, + { + "start": 11628.14, + "end": 11628.9, + "probability": 0.9841 + }, + { + "start": 11629.96, + "end": 11630.66, + "probability": 0.9351 + }, + { + "start": 11631.18, + "end": 11631.86, + "probability": 0.941 + }, + { + "start": 11632.82, + "end": 11633.5, + "probability": 0.9408 + }, + { + "start": 11634.3, + "end": 11634.82, + "probability": 0.9918 + }, + { + "start": 11636.54, + "end": 11637.22, + "probability": 0.9816 + }, + { + "start": 11638.18, + "end": 11638.8, + "probability": 0.7808 + }, + { + "start": 11639.94, + "end": 11640.66, + "probability": 0.9834 + }, + { + "start": 11641.4, + "end": 11642.0, + "probability": 0.9222 + }, + { + "start": 11642.84, + "end": 11644.28, + "probability": 0.9908 + }, + { + "start": 11647.74, + "end": 11648.42, + "probability": 0.9858 + }, + { + "start": 11648.98, + "end": 11649.64, + "probability": 0.3631 + }, + { + "start": 11651.28, + "end": 11652.0, + "probability": 0.8037 + }, + { + "start": 11653.18, + "end": 11653.88, + "probability": 0.7976 + }, + { + "start": 11655.2, + "end": 11656.84, + "probability": 0.9573 + }, + { + "start": 11657.98, + "end": 11659.84, + "probability": 0.7896 + }, + { + "start": 11660.7, + "end": 11662.08, + "probability": 0.964 + }, + { + "start": 11664.02, + "end": 11665.42, + "probability": 0.7826 + }, + { + "start": 11667.2, + "end": 11668.6, + "probability": 0.8566 + }, + { + "start": 11669.68, + "end": 11670.06, + "probability": 0.9845 + }, + { + "start": 11672.46, + "end": 11673.22, + "probability": 0.7879 + }, + { + "start": 11675.08, + "end": 11677.38, + "probability": 0.9657 + }, + { + "start": 11678.44, + "end": 11679.26, + "probability": 0.9515 + }, + { + "start": 11680.38, + "end": 11681.14, + "probability": 0.8596 + }, + { + "start": 11681.74, + "end": 11682.08, + "probability": 0.9355 + }, + { + "start": 11683.66, + "end": 11684.14, + "probability": 0.9915 + }, + { + "start": 11687.6, + "end": 11687.84, + "probability": 0.5009 + }, + { + "start": 11689.72, + "end": 11690.44, + "probability": 0.8196 + }, + { + "start": 11691.08, + "end": 11691.68, + "probability": 0.915 + }, + { + "start": 11692.78, + "end": 11693.5, + "probability": 0.9061 + }, + { + "start": 11694.04, + "end": 11695.08, + "probability": 0.564 + }, + { + "start": 11696.66, + "end": 11697.44, + "probability": 0.9966 + }, + { + "start": 11700.1, + "end": 11700.76, + "probability": 0.9741 + }, + { + "start": 11702.08, + "end": 11703.18, + "probability": 0.9969 + }, + { + "start": 11704.12, + "end": 11705.42, + "probability": 0.9921 + }, + { + "start": 11706.4, + "end": 11708.46, + "probability": 0.9897 + }, + { + "start": 11709.34, + "end": 11710.62, + "probability": 0.993 + }, + { + "start": 11711.76, + "end": 11713.16, + "probability": 0.8965 + }, + { + "start": 11714.3, + "end": 11714.96, + "probability": 0.8969 + }, + { + "start": 11715.64, + "end": 11716.2, + "probability": 0.8947 + }, + { + "start": 11717.9, + "end": 11718.62, + "probability": 0.9688 + }, + { + "start": 11720.92, + "end": 11721.5, + "probability": 0.7282 + }, + { + "start": 11722.48, + "end": 11723.16, + "probability": 0.9222 + }, + { + "start": 11724.62, + "end": 11725.5, + "probability": 0.8943 + }, + { + "start": 11726.7, + "end": 11727.94, + "probability": 0.9715 + }, + { + "start": 11728.7, + "end": 11730.46, + "probability": 0.9269 + }, + { + "start": 11731.92, + "end": 11732.62, + "probability": 0.9856 + }, + { + "start": 11733.46, + "end": 11733.86, + "probability": 0.988 + }, + { + "start": 11734.64, + "end": 11736.1, + "probability": 0.7532 + }, + { + "start": 11736.9, + "end": 11737.58, + "probability": 0.9879 + }, + { + "start": 11738.84, + "end": 11739.42, + "probability": 0.8851 + }, + { + "start": 11740.72, + "end": 11744.56, + "probability": 0.955 + }, + { + "start": 11745.66, + "end": 11747.56, + "probability": 0.5128 + }, + { + "start": 11748.68, + "end": 11749.5, + "probability": 0.9473 + }, + { + "start": 11750.06, + "end": 11750.7, + "probability": 0.8205 + }, + { + "start": 11751.88, + "end": 11752.48, + "probability": 0.9724 + }, + { + "start": 11753.46, + "end": 11754.18, + "probability": 0.8159 + }, + { + "start": 11755.04, + "end": 11756.8, + "probability": 0.8823 + }, + { + "start": 11757.4, + "end": 11759.34, + "probability": 0.9611 + }, + { + "start": 11760.36, + "end": 11761.06, + "probability": 0.9708 + }, + { + "start": 11762.04, + "end": 11763.18, + "probability": 0.8707 + }, + { + "start": 11764.96, + "end": 11765.84, + "probability": 0.9807 + }, + { + "start": 11766.66, + "end": 11767.54, + "probability": 0.5855 + }, + { + "start": 11769.48, + "end": 11770.28, + "probability": 0.7405 + }, + { + "start": 11771.48, + "end": 11772.1, + "probability": 0.5687 + }, + { + "start": 11773.08, + "end": 11775.2, + "probability": 0.9293 + }, + { + "start": 11776.08, + "end": 11776.8, + "probability": 0.9781 + }, + { + "start": 11777.36, + "end": 11777.92, + "probability": 0.6165 + }, + { + "start": 11779.46, + "end": 11780.4, + "probability": 0.9948 + }, + { + "start": 11782.82, + "end": 11785.5, + "probability": 0.9799 + }, + { + "start": 11786.04, + "end": 11789.06, + "probability": 0.9902 + }, + { + "start": 11789.76, + "end": 11790.18, + "probability": 0.0283 + }, + { + "start": 11790.18, + "end": 11790.32, + "probability": 0.8619 + }, + { + "start": 11791.44, + "end": 11792.19, + "probability": 0.3809 + }, + { + "start": 11793.16, + "end": 11795.04, + "probability": 0.9066 + }, + { + "start": 11795.22, + "end": 11796.86, + "probability": 0.6719 + }, + { + "start": 11796.86, + "end": 11798.14, + "probability": 0.9053 + }, + { + "start": 11807.64, + "end": 11807.88, + "probability": 0.1382 + }, + { + "start": 11810.36, + "end": 11812.6, + "probability": 0.033 + }, + { + "start": 11814.06, + "end": 11814.2, + "probability": 0.2068 + }, + { + "start": 11844.72, + "end": 11845.58, + "probability": 0.0052 + }, + { + "start": 11847.36, + "end": 11849.14, + "probability": 0.024 + }, + { + "start": 11860.86, + "end": 11860.88, + "probability": 0.0461 + }, + { + "start": 11918.36, + "end": 11918.7, + "probability": 0.0715 + }, + { + "start": 11918.7, + "end": 11918.7, + "probability": 0.0136 + }, + { + "start": 11918.7, + "end": 11919.84, + "probability": 0.7501 + }, + { + "start": 11920.02, + "end": 11920.74, + "probability": 0.6765 + }, + { + "start": 11920.74, + "end": 11921.8, + "probability": 0.4633 + }, + { + "start": 11922.32, + "end": 11923.7, + "probability": 0.9573 + }, + { + "start": 11923.84, + "end": 11925.32, + "probability": 0.9722 + }, + { + "start": 11925.8, + "end": 11927.4, + "probability": 0.9313 + }, + { + "start": 11928.14, + "end": 11932.96, + "probability": 0.9769 + }, + { + "start": 11933.32, + "end": 11934.04, + "probability": 0.8846 + }, + { + "start": 11934.56, + "end": 11936.04, + "probability": 0.9307 + }, + { + "start": 11945.46, + "end": 11946.28, + "probability": 0.4905 + }, + { + "start": 11946.38, + "end": 11947.12, + "probability": 0.837 + }, + { + "start": 11947.34, + "end": 11949.88, + "probability": 0.9328 + }, + { + "start": 11949.94, + "end": 11950.68, + "probability": 0.9191 + }, + { + "start": 11951.44, + "end": 11953.6, + "probability": 0.8013 + }, + { + "start": 11954.68, + "end": 11957.1, + "probability": 0.9302 + }, + { + "start": 11959.66, + "end": 11963.5, + "probability": 0.9135 + }, + { + "start": 11964.32, + "end": 11965.28, + "probability": 0.6791 + }, + { + "start": 11966.96, + "end": 11968.14, + "probability": 0.7395 + }, + { + "start": 11968.92, + "end": 11977.06, + "probability": 0.9917 + }, + { + "start": 11978.42, + "end": 11981.96, + "probability": 0.7182 + }, + { + "start": 11982.12, + "end": 11984.21, + "probability": 0.9429 + }, + { + "start": 11987.33, + "end": 11989.42, + "probability": 0.9938 + }, + { + "start": 11989.7, + "end": 11991.14, + "probability": 0.8992 + }, + { + "start": 11991.44, + "end": 11995.74, + "probability": 0.9691 + }, + { + "start": 11995.82, + "end": 11999.7, + "probability": 0.9702 + }, + { + "start": 12000.62, + "end": 12001.18, + "probability": 0.748 + }, + { + "start": 12004.04, + "end": 12007.02, + "probability": 0.4795 + }, + { + "start": 12007.56, + "end": 12009.76, + "probability": 0.9299 + }, + { + "start": 12010.5, + "end": 12012.84, + "probability": 0.9964 + }, + { + "start": 12013.46, + "end": 12015.48, + "probability": 0.9941 + }, + { + "start": 12017.22, + "end": 12020.86, + "probability": 0.9976 + }, + { + "start": 12021.16, + "end": 12024.6, + "probability": 0.9548 + }, + { + "start": 12025.6, + "end": 12026.92, + "probability": 0.9451 + }, + { + "start": 12028.1, + "end": 12030.78, + "probability": 0.9665 + }, + { + "start": 12031.16, + "end": 12032.04, + "probability": 0.9831 + }, + { + "start": 12032.38, + "end": 12032.96, + "probability": 0.95 + }, + { + "start": 12033.88, + "end": 12034.78, + "probability": 0.4152 + }, + { + "start": 12035.7, + "end": 12036.76, + "probability": 0.9783 + }, + { + "start": 12038.14, + "end": 12039.92, + "probability": 0.8729 + }, + { + "start": 12041.42, + "end": 12042.36, + "probability": 0.9238 + }, + { + "start": 12044.06, + "end": 12046.62, + "probability": 0.8838 + }, + { + "start": 12047.14, + "end": 12047.84, + "probability": 0.8848 + }, + { + "start": 12048.94, + "end": 12052.17, + "probability": 0.9304 + }, + { + "start": 12053.06, + "end": 12057.86, + "probability": 0.9523 + }, + { + "start": 12058.96, + "end": 12061.0, + "probability": 0.9802 + }, + { + "start": 12061.88, + "end": 12063.16, + "probability": 0.9624 + }, + { + "start": 12064.2, + "end": 12067.14, + "probability": 0.9967 + }, + { + "start": 12067.5, + "end": 12068.67, + "probability": 0.7257 + }, + { + "start": 12069.16, + "end": 12070.46, + "probability": 0.8285 + }, + { + "start": 12070.9, + "end": 12074.08, + "probability": 0.7248 + }, + { + "start": 12076.26, + "end": 12078.5, + "probability": 0.9363 + }, + { + "start": 12078.6, + "end": 12080.7, + "probability": 0.9948 + }, + { + "start": 12081.14, + "end": 12084.78, + "probability": 0.8725 + }, + { + "start": 12085.3, + "end": 12086.12, + "probability": 0.7253 + }, + { + "start": 12087.64, + "end": 12090.4, + "probability": 0.9846 + }, + { + "start": 12090.78, + "end": 12092.97, + "probability": 0.9941 + }, + { + "start": 12094.54, + "end": 12098.14, + "probability": 0.9925 + }, + { + "start": 12098.14, + "end": 12101.42, + "probability": 0.9941 + }, + { + "start": 12102.14, + "end": 12106.79, + "probability": 0.9905 + }, + { + "start": 12107.46, + "end": 12109.0, + "probability": 0.8164 + }, + { + "start": 12110.34, + "end": 12111.42, + "probability": 0.7486 + }, + { + "start": 12113.26, + "end": 12116.03, + "probability": 0.9434 + }, + { + "start": 12118.42, + "end": 12123.37, + "probability": 0.9854 + }, + { + "start": 12124.94, + "end": 12126.22, + "probability": 0.9532 + }, + { + "start": 12127.18, + "end": 12131.22, + "probability": 0.7807 + }, + { + "start": 12131.66, + "end": 12135.6, + "probability": 0.9492 + }, + { + "start": 12137.08, + "end": 12137.7, + "probability": 0.7084 + }, + { + "start": 12138.78, + "end": 12142.28, + "probability": 0.9882 + }, + { + "start": 12142.84, + "end": 12144.9, + "probability": 0.983 + }, + { + "start": 12145.98, + "end": 12150.22, + "probability": 0.9868 + }, + { + "start": 12150.94, + "end": 12152.12, + "probability": 0.9742 + }, + { + "start": 12153.12, + "end": 12154.97, + "probability": 0.989 + }, + { + "start": 12155.38, + "end": 12158.74, + "probability": 0.9111 + }, + { + "start": 12159.36, + "end": 12160.19, + "probability": 0.8163 + }, + { + "start": 12162.28, + "end": 12163.0, + "probability": 0.9215 + }, + { + "start": 12163.34, + "end": 12168.64, + "probability": 0.9557 + }, + { + "start": 12170.5, + "end": 12173.28, + "probability": 0.9851 + }, + { + "start": 12173.34, + "end": 12173.82, + "probability": 0.8159 + }, + { + "start": 12173.9, + "end": 12175.84, + "probability": 0.8027 + }, + { + "start": 12176.86, + "end": 12179.64, + "probability": 0.9628 + }, + { + "start": 12181.08, + "end": 12182.9, + "probability": 0.9873 + }, + { + "start": 12184.0, + "end": 12185.94, + "probability": 0.9482 + }, + { + "start": 12187.1, + "end": 12189.02, + "probability": 0.9839 + }, + { + "start": 12190.02, + "end": 12191.0, + "probability": 0.988 + }, + { + "start": 12192.26, + "end": 12193.04, + "probability": 0.9937 + }, + { + "start": 12194.26, + "end": 12197.84, + "probability": 0.9985 + }, + { + "start": 12199.02, + "end": 12204.48, + "probability": 0.9995 + }, + { + "start": 12205.44, + "end": 12206.12, + "probability": 0.8894 + }, + { + "start": 12206.9, + "end": 12208.44, + "probability": 0.8056 + }, + { + "start": 12210.82, + "end": 12212.66, + "probability": 0.8577 + }, + { + "start": 12213.96, + "end": 12214.79, + "probability": 0.968 + }, + { + "start": 12216.08, + "end": 12217.04, + "probability": 0.9472 + }, + { + "start": 12218.46, + "end": 12219.98, + "probability": 0.9878 + }, + { + "start": 12220.36, + "end": 12222.26, + "probability": 0.9749 + }, + { + "start": 12222.64, + "end": 12223.94, + "probability": 0.989 + }, + { + "start": 12224.4, + "end": 12225.95, + "probability": 0.8765 + }, + { + "start": 12226.56, + "end": 12227.5, + "probability": 0.7801 + }, + { + "start": 12228.3, + "end": 12229.86, + "probability": 0.998 + }, + { + "start": 12231.02, + "end": 12231.82, + "probability": 0.9879 + }, + { + "start": 12232.4, + "end": 12234.28, + "probability": 0.7398 + }, + { + "start": 12234.9, + "end": 12238.0, + "probability": 0.9377 + }, + { + "start": 12238.96, + "end": 12239.63, + "probability": 0.9512 + }, + { + "start": 12239.76, + "end": 12241.14, + "probability": 0.9665 + }, + { + "start": 12241.58, + "end": 12243.14, + "probability": 0.9531 + }, + { + "start": 12243.56, + "end": 12245.3, + "probability": 0.9644 + }, + { + "start": 12245.58, + "end": 12249.46, + "probability": 0.9773 + }, + { + "start": 12249.46, + "end": 12253.2, + "probability": 0.998 + }, + { + "start": 12253.9, + "end": 12254.76, + "probability": 0.5126 + }, + { + "start": 12255.24, + "end": 12257.34, + "probability": 0.997 + }, + { + "start": 12257.42, + "end": 12257.9, + "probability": 0.6338 + }, + { + "start": 12258.12, + "end": 12263.7, + "probability": 0.9968 + }, + { + "start": 12264.32, + "end": 12268.1, + "probability": 0.9987 + }, + { + "start": 12268.76, + "end": 12269.78, + "probability": 0.6396 + }, + { + "start": 12270.08, + "end": 12270.64, + "probability": 0.8044 + }, + { + "start": 12278.0, + "end": 12279.14, + "probability": 0.6144 + }, + { + "start": 12280.02, + "end": 12281.36, + "probability": 0.9138 + }, + { + "start": 12282.94, + "end": 12284.38, + "probability": 0.7704 + }, + { + "start": 12285.22, + "end": 12286.16, + "probability": 0.923 + }, + { + "start": 12287.32, + "end": 12295.2, + "probability": 0.9911 + }, + { + "start": 12295.6, + "end": 12297.2, + "probability": 0.9766 + }, + { + "start": 12300.86, + "end": 12304.86, + "probability": 0.9879 + }, + { + "start": 12305.5, + "end": 12306.18, + "probability": 0.9866 + }, + { + "start": 12308.26, + "end": 12311.6, + "probability": 0.9056 + }, + { + "start": 12314.92, + "end": 12317.68, + "probability": 0.95 + }, + { + "start": 12318.3, + "end": 12322.02, + "probability": 0.9905 + }, + { + "start": 12323.7, + "end": 12328.66, + "probability": 0.2898 + }, + { + "start": 12329.46, + "end": 12332.6, + "probability": 0.9619 + }, + { + "start": 12333.5, + "end": 12336.5, + "probability": 0.9312 + }, + { + "start": 12337.36, + "end": 12340.36, + "probability": 0.9965 + }, + { + "start": 12341.44, + "end": 12342.1, + "probability": 0.9559 + }, + { + "start": 12342.66, + "end": 12343.38, + "probability": 0.9734 + }, + { + "start": 12344.14, + "end": 12345.0, + "probability": 0.8539 + }, + { + "start": 12345.7, + "end": 12347.07, + "probability": 0.9312 + }, + { + "start": 12347.72, + "end": 12347.96, + "probability": 0.9812 + }, + { + "start": 12349.3, + "end": 12352.74, + "probability": 0.9388 + }, + { + "start": 12356.12, + "end": 12356.22, + "probability": 0.6371 + }, + { + "start": 12359.3, + "end": 12361.58, + "probability": 0.7235 + }, + { + "start": 12361.8, + "end": 12362.54, + "probability": 0.6221 + }, + { + "start": 12362.72, + "end": 12364.4, + "probability": 0.5209 + }, + { + "start": 12364.9, + "end": 12365.96, + "probability": 0.9215 + }, + { + "start": 12366.02, + "end": 12367.56, + "probability": 0.8851 + }, + { + "start": 12368.18, + "end": 12368.94, + "probability": 0.7691 + }, + { + "start": 12369.44, + "end": 12369.7, + "probability": 0.5478 + }, + { + "start": 12370.28, + "end": 12371.08, + "probability": 0.5992 + }, + { + "start": 12371.8, + "end": 12371.98, + "probability": 0.9941 + }, + { + "start": 12375.2, + "end": 12377.42, + "probability": 0.9333 + }, + { + "start": 12378.06, + "end": 12380.88, + "probability": 0.9556 + }, + { + "start": 12381.82, + "end": 12384.54, + "probability": 0.9943 + }, + { + "start": 12385.36, + "end": 12388.34, + "probability": 0.9626 + }, + { + "start": 12389.02, + "end": 12389.18, + "probability": 0.0359 + }, + { + "start": 12390.14, + "end": 12391.46, + "probability": 0.901 + }, + { + "start": 12392.34, + "end": 12394.14, + "probability": 0.4741 + }, + { + "start": 12395.68, + "end": 12397.76, + "probability": 0.0374 + }, + { + "start": 12399.02, + "end": 12403.4, + "probability": 0.9574 + }, + { + "start": 12403.62, + "end": 12404.3, + "probability": 0.8611 + }, + { + "start": 12404.6, + "end": 12405.02, + "probability": 0.6002 + }, + { + "start": 12405.84, + "end": 12407.57, + "probability": 0.7015 + }, + { + "start": 12408.44, + "end": 12410.82, + "probability": 0.9815 + }, + { + "start": 12411.4, + "end": 12412.78, + "probability": 0.9375 + }, + { + "start": 12412.86, + "end": 12414.34, + "probability": 0.0441 + }, + { + "start": 12415.16, + "end": 12419.94, + "probability": 0.8431 + }, + { + "start": 12420.8, + "end": 12422.6, + "probability": 0.5028 + }, + { + "start": 12423.98, + "end": 12426.32, + "probability": 0.9104 + }, + { + "start": 12427.42, + "end": 12429.92, + "probability": 0.937 + }, + { + "start": 12431.22, + "end": 12432.04, + "probability": 0.8246 + }, + { + "start": 12433.64, + "end": 12434.48, + "probability": 0.8227 + }, + { + "start": 12435.28, + "end": 12436.06, + "probability": 0.938 + }, + { + "start": 12437.02, + "end": 12437.88, + "probability": 0.8533 + }, + { + "start": 12438.56, + "end": 12439.66, + "probability": 0.5348 + }, + { + "start": 12440.22, + "end": 12441.56, + "probability": 0.7091 + }, + { + "start": 12442.9, + "end": 12444.62, + "probability": 0.8807 + }, + { + "start": 12446.96, + "end": 12448.48, + "probability": 0.1747 + }, + { + "start": 12448.5, + "end": 12448.72, + "probability": 0.3614 + }, + { + "start": 12449.48, + "end": 12454.26, + "probability": 0.936 + }, + { + "start": 12454.94, + "end": 12455.54, + "probability": 0.8898 + }, + { + "start": 12456.4, + "end": 12456.86, + "probability": 0.4403 + }, + { + "start": 12457.26, + "end": 12458.54, + "probability": 0.9976 + }, + { + "start": 12459.28, + "end": 12460.2, + "probability": 0.8967 + }, + { + "start": 12461.08, + "end": 12461.54, + "probability": 0.0167 + }, + { + "start": 12463.28, + "end": 12468.0, + "probability": 0.153 + }, + { + "start": 12469.2, + "end": 12471.6, + "probability": 0.9773 + }, + { + "start": 12472.36, + "end": 12473.58, + "probability": 0.998 + }, + { + "start": 12476.48, + "end": 12476.92, + "probability": 0.5888 + }, + { + "start": 12477.52, + "end": 12478.86, + "probability": 0.7914 + }, + { + "start": 12479.17, + "end": 12481.8, + "probability": 0.7314 + }, + { + "start": 12482.98, + "end": 12484.5, + "probability": 0.9313 + }, + { + "start": 12486.18, + "end": 12488.8, + "probability": 0.907 + }, + { + "start": 12489.4, + "end": 12489.72, + "probability": 0.5238 + }, + { + "start": 12490.92, + "end": 12494.72, + "probability": 0.8183 + }, + { + "start": 12495.38, + "end": 12496.94, + "probability": 0.6101 + }, + { + "start": 12499.56, + "end": 12502.16, + "probability": 0.9745 + }, + { + "start": 12502.7, + "end": 12503.22, + "probability": 0.9412 + }, + { + "start": 12506.06, + "end": 12509.14, + "probability": 0.2026 + }, + { + "start": 12509.14, + "end": 12510.28, + "probability": 0.7191 + }, + { + "start": 12511.38, + "end": 12513.51, + "probability": 0.0378 + }, + { + "start": 12514.5, + "end": 12516.2, + "probability": 0.7406 + }, + { + "start": 12516.26, + "end": 12517.4, + "probability": 0.8121 + }, + { + "start": 12517.46, + "end": 12521.3, + "probability": 0.9872 + }, + { + "start": 12522.24, + "end": 12524.2, + "probability": 0.8024 + }, + { + "start": 12525.16, + "end": 12526.68, + "probability": 0.4717 + }, + { + "start": 12528.34, + "end": 12531.9, + "probability": 0.8501 + }, + { + "start": 12532.34, + "end": 12534.64, + "probability": 0.9102 + }, + { + "start": 12535.42, + "end": 12536.02, + "probability": 0.9547 + }, + { + "start": 12536.62, + "end": 12537.46, + "probability": 0.7916 + }, + { + "start": 12538.28, + "end": 12541.4, + "probability": 0.7977 + }, + { + "start": 12541.58, + "end": 12542.4, + "probability": 0.5852 + }, + { + "start": 12542.68, + "end": 12543.6, + "probability": 0.7782 + }, + { + "start": 12543.62, + "end": 12545.34, + "probability": 0.8745 + }, + { + "start": 12545.48, + "end": 12546.46, + "probability": 0.9543 + }, + { + "start": 12547.48, + "end": 12550.3, + "probability": 0.9837 + }, + { + "start": 12550.48, + "end": 12553.84, + "probability": 0.8353 + }, + { + "start": 12555.06, + "end": 12555.48, + "probability": 0.7881 + }, + { + "start": 12555.74, + "end": 12560.9, + "probability": 0.9249 + }, + { + "start": 12561.86, + "end": 12562.18, + "probability": 0.5014 + }, + { + "start": 12563.04, + "end": 12564.14, + "probability": 0.5693 + }, + { + "start": 12564.3, + "end": 12564.6, + "probability": 0.4594 + }, + { + "start": 12565.48, + "end": 12567.0, + "probability": 0.8132 + }, + { + "start": 12568.2, + "end": 12569.02, + "probability": 0.546 + }, + { + "start": 12569.12, + "end": 12573.6, + "probability": 0.484 + }, + { + "start": 12574.26, + "end": 12578.78, + "probability": 0.9958 + }, + { + "start": 12579.46, + "end": 12583.26, + "probability": 0.8882 + }, + { + "start": 12583.84, + "end": 12585.62, + "probability": 0.8406 + }, + { + "start": 12587.48, + "end": 12591.38, + "probability": 0.8285 + }, + { + "start": 12592.04, + "end": 12593.46, + "probability": 0.8569 + }, + { + "start": 12593.68, + "end": 12593.78, + "probability": 0.5767 + }, + { + "start": 12596.04, + "end": 12605.06, + "probability": 0.9617 + }, + { + "start": 12605.96, + "end": 12606.88, + "probability": 0.7677 + }, + { + "start": 12607.44, + "end": 12610.78, + "probability": 0.8582 + }, + { + "start": 12612.58, + "end": 12613.98, + "probability": 0.994 + }, + { + "start": 12614.98, + "end": 12616.38, + "probability": 0.8767 + }, + { + "start": 12617.2, + "end": 12618.98, + "probability": 0.5215 + }, + { + "start": 12618.98, + "end": 12624.7, + "probability": 0.9683 + }, + { + "start": 12625.76, + "end": 12627.32, + "probability": 0.0381 + }, + { + "start": 12627.92, + "end": 12630.4, + "probability": 0.2338 + }, + { + "start": 12631.6, + "end": 12633.62, + "probability": 0.6428 + }, + { + "start": 12634.16, + "end": 12638.5, + "probability": 0.9891 + }, + { + "start": 12638.74, + "end": 12643.73, + "probability": 0.9839 + }, + { + "start": 12645.22, + "end": 12646.84, + "probability": 0.0121 + }, + { + "start": 12648.12, + "end": 12649.16, + "probability": 0.0506 + }, + { + "start": 12660.88, + "end": 12661.74, + "probability": 0.0791 + }, + { + "start": 12663.4, + "end": 12665.88, + "probability": 0.1966 + }, + { + "start": 12677.94, + "end": 12682.0, + "probability": 0.1505 + }, + { + "start": 12686.47, + "end": 12686.74, + "probability": 0.0174 + }, + { + "start": 12686.74, + "end": 12687.92, + "probability": 0.0684 + }, + { + "start": 12688.38, + "end": 12688.38, + "probability": 0.3108 + }, + { + "start": 12688.38, + "end": 12688.38, + "probability": 0.3632 + }, + { + "start": 12688.38, + "end": 12688.38, + "probability": 0.3378 + }, + { + "start": 12688.38, + "end": 12688.38, + "probability": 0.3616 + }, + { + "start": 12688.38, + "end": 12688.38, + "probability": 0.2972 + }, + { + "start": 12688.88, + "end": 12688.88, + "probability": 0.0229 + }, + { + "start": 12710.56, + "end": 12711.68, + "probability": 0.1515 + }, + { + "start": 12712.34, + "end": 12713.49, + "probability": 0.1495 + }, + { + "start": 12716.2, + "end": 12716.2, + "probability": 0.2389 + }, + { + "start": 12716.2, + "end": 12718.64, + "probability": 0.2515 + }, + { + "start": 12719.36, + "end": 12720.32, + "probability": 0.1247 + }, + { + "start": 12720.32, + "end": 12724.06, + "probability": 0.0044 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.0, + "end": 12753.0, + "probability": 0.0 + }, + { + "start": 12753.3, + "end": 12753.52, + "probability": 0.1033 + }, + { + "start": 12754.24, + "end": 12758.7, + "probability": 0.9868 + }, + { + "start": 12758.7, + "end": 12763.4, + "probability": 0.9973 + }, + { + "start": 12764.5, + "end": 12766.08, + "probability": 0.7484 + }, + { + "start": 12766.98, + "end": 12767.66, + "probability": 0.8745 + }, + { + "start": 12767.84, + "end": 12769.42, + "probability": 0.991 + }, + { + "start": 12769.82, + "end": 12772.74, + "probability": 0.9922 + }, + { + "start": 12773.62, + "end": 12775.78, + "probability": 0.9898 + }, + { + "start": 12776.62, + "end": 12778.06, + "probability": 0.9035 + }, + { + "start": 12779.18, + "end": 12779.92, + "probability": 0.7721 + }, + { + "start": 12780.66, + "end": 12782.12, + "probability": 0.9491 + }, + { + "start": 12783.0, + "end": 12785.08, + "probability": 0.9763 + }, + { + "start": 12785.7, + "end": 12787.38, + "probability": 0.9783 + }, + { + "start": 12787.96, + "end": 12791.52, + "probability": 0.9885 + }, + { + "start": 12791.52, + "end": 12795.58, + "probability": 0.9727 + }, + { + "start": 12796.4, + "end": 12799.76, + "probability": 0.9832 + }, + { + "start": 12800.62, + "end": 12801.74, + "probability": 0.7743 + }, + { + "start": 12801.98, + "end": 12808.24, + "probability": 0.9882 + }, + { + "start": 12809.22, + "end": 12814.56, + "probability": 0.9888 + }, + { + "start": 12815.54, + "end": 12816.38, + "probability": 0.8721 + }, + { + "start": 12816.92, + "end": 12823.66, + "probability": 0.9922 + }, + { + "start": 12823.66, + "end": 12831.22, + "probability": 0.9993 + }, + { + "start": 12832.16, + "end": 12837.3, + "probability": 0.8882 + }, + { + "start": 12837.3, + "end": 12844.18, + "probability": 0.9832 + }, + { + "start": 12845.7, + "end": 12847.48, + "probability": 0.678 + }, + { + "start": 12848.4, + "end": 12850.14, + "probability": 0.9203 + }, + { + "start": 12850.74, + "end": 12857.0, + "probability": 0.9818 + }, + { + "start": 12857.92, + "end": 12864.76, + "probability": 0.9888 + }, + { + "start": 12865.32, + "end": 12866.98, + "probability": 0.9992 + }, + { + "start": 12867.74, + "end": 12871.88, + "probability": 0.9908 + }, + { + "start": 12872.5, + "end": 12879.9, + "probability": 0.9976 + }, + { + "start": 12880.56, + "end": 12886.42, + "probability": 0.7599 + }, + { + "start": 12886.96, + "end": 12892.28, + "probability": 0.9937 + }, + { + "start": 12892.94, + "end": 12893.7, + "probability": 0.8295 + }, + { + "start": 12894.68, + "end": 12895.96, + "probability": 0.8984 + }, + { + "start": 12896.52, + "end": 12901.16, + "probability": 0.9958 + }, + { + "start": 12901.16, + "end": 12907.92, + "probability": 0.9387 + }, + { + "start": 12909.38, + "end": 12912.92, + "probability": 0.9619 + }, + { + "start": 12913.66, + "end": 12917.88, + "probability": 0.995 + }, + { + "start": 12918.76, + "end": 12924.6, + "probability": 0.9941 + }, + { + "start": 12925.6, + "end": 12927.16, + "probability": 0.9815 + }, + { + "start": 12927.76, + "end": 12932.62, + "probability": 0.9987 + }, + { + "start": 12933.56, + "end": 12936.12, + "probability": 0.9927 + }, + { + "start": 12936.12, + "end": 12940.12, + "probability": 0.9849 + }, + { + "start": 12940.74, + "end": 12943.48, + "probability": 0.9496 + }, + { + "start": 12944.18, + "end": 12947.7, + "probability": 0.9881 + }, + { + "start": 12948.64, + "end": 12951.9, + "probability": 0.7505 + }, + { + "start": 12952.68, + "end": 12955.82, + "probability": 0.9882 + }, + { + "start": 12956.4, + "end": 12961.66, + "probability": 0.9715 + }, + { + "start": 12962.52, + "end": 12964.5, + "probability": 0.9978 + }, + { + "start": 12965.12, + "end": 12966.7, + "probability": 0.8618 + }, + { + "start": 12967.38, + "end": 12972.6, + "probability": 0.9803 + }, + { + "start": 12973.2, + "end": 12974.26, + "probability": 0.8962 + }, + { + "start": 12975.98, + "end": 12977.1, + "probability": 0.8307 + }, + { + "start": 12977.9, + "end": 12981.44, + "probability": 0.9215 + }, + { + "start": 12982.04, + "end": 12982.66, + "probability": 0.9465 + }, + { + "start": 12985.54, + "end": 12985.84, + "probability": 0.2823 + }, + { + "start": 12998.72, + "end": 12999.84, + "probability": 0.7371 + }, + { + "start": 13000.64, + "end": 13002.54, + "probability": 0.8465 + }, + { + "start": 13004.08, + "end": 13009.74, + "probability": 0.9878 + }, + { + "start": 13010.24, + "end": 13014.4, + "probability": 0.9653 + }, + { + "start": 13015.02, + "end": 13017.7, + "probability": 0.9976 + }, + { + "start": 13017.7, + "end": 13020.72, + "probability": 0.9775 + }, + { + "start": 13021.56, + "end": 13022.1, + "probability": 0.6782 + }, + { + "start": 13023.08, + "end": 13023.44, + "probability": 0.8892 + }, + { + "start": 13024.38, + "end": 13030.48, + "probability": 0.9851 + }, + { + "start": 13030.78, + "end": 13037.64, + "probability": 0.9659 + }, + { + "start": 13037.64, + "end": 13041.08, + "probability": 0.9849 + }, + { + "start": 13041.92, + "end": 13043.88, + "probability": 0.8334 + }, + { + "start": 13044.86, + "end": 13047.4, + "probability": 0.9603 + }, + { + "start": 13048.72, + "end": 13049.48, + "probability": 0.9404 + }, + { + "start": 13049.64, + "end": 13053.7, + "probability": 0.9954 + }, + { + "start": 13054.48, + "end": 13056.06, + "probability": 0.9977 + }, + { + "start": 13056.58, + "end": 13057.64, + "probability": 0.9847 + }, + { + "start": 13057.94, + "end": 13062.74, + "probability": 0.9951 + }, + { + "start": 13063.64, + "end": 13069.58, + "probability": 0.9965 + }, + { + "start": 13069.58, + "end": 13075.2, + "probability": 0.99 + }, + { + "start": 13075.34, + "end": 13076.65, + "probability": 0.7103 + }, + { + "start": 13077.77, + "end": 13078.4, + "probability": 0.9623 + }, + { + "start": 13079.14, + "end": 13082.38, + "probability": 0.7546 + }, + { + "start": 13083.5, + "end": 13090.48, + "probability": 0.9771 + }, + { + "start": 13091.16, + "end": 13096.88, + "probability": 0.9614 + }, + { + "start": 13097.04, + "end": 13098.04, + "probability": 0.9849 + }, + { + "start": 13098.74, + "end": 13099.68, + "probability": 0.6804 + }, + { + "start": 13100.04, + "end": 13105.5, + "probability": 0.9847 + }, + { + "start": 13107.42, + "end": 13109.04, + "probability": 0.9809 + }, + { + "start": 13109.68, + "end": 13113.26, + "probability": 0.9786 + }, + { + "start": 13113.8, + "end": 13118.48, + "probability": 0.9682 + }, + { + "start": 13118.48, + "end": 13123.34, + "probability": 0.9314 + }, + { + "start": 13124.64, + "end": 13125.76, + "probability": 0.5322 + }, + { + "start": 13125.92, + "end": 13128.96, + "probability": 0.9907 + }, + { + "start": 13130.12, + "end": 13132.32, + "probability": 0.9948 + }, + { + "start": 13132.84, + "end": 13133.54, + "probability": 0.6406 + }, + { + "start": 13134.26, + "end": 13135.16, + "probability": 0.8382 + }, + { + "start": 13136.2, + "end": 13141.16, + "probability": 0.9964 + }, + { + "start": 13141.16, + "end": 13146.88, + "probability": 0.9987 + }, + { + "start": 13148.08, + "end": 13148.68, + "probability": 0.5076 + }, + { + "start": 13148.84, + "end": 13149.36, + "probability": 0.9474 + }, + { + "start": 13149.7, + "end": 13154.36, + "probability": 0.9989 + }, + { + "start": 13154.9, + "end": 13156.04, + "probability": 0.9879 + }, + { + "start": 13157.3, + "end": 13159.58, + "probability": 0.9951 + }, + { + "start": 13160.18, + "end": 13163.92, + "probability": 0.9912 + }, + { + "start": 13164.9, + "end": 13169.62, + "probability": 0.9769 + }, + { + "start": 13170.3, + "end": 13173.62, + "probability": 0.502 + }, + { + "start": 13174.2, + "end": 13177.74, + "probability": 0.9209 + }, + { + "start": 13178.34, + "end": 13179.74, + "probability": 0.7265 + }, + { + "start": 13179.92, + "end": 13186.16, + "probability": 0.9863 + }, + { + "start": 13186.7, + "end": 13191.06, + "probability": 0.9978 + }, + { + "start": 13191.24, + "end": 13195.46, + "probability": 0.9617 + }, + { + "start": 13195.68, + "end": 13197.32, + "probability": 0.8271 + }, + { + "start": 13197.74, + "end": 13198.8, + "probability": 0.8473 + }, + { + "start": 13198.92, + "end": 13200.68, + "probability": 0.918 + }, + { + "start": 13201.22, + "end": 13204.62, + "probability": 0.9756 + }, + { + "start": 13204.76, + "end": 13207.08, + "probability": 0.981 + }, + { + "start": 13207.54, + "end": 13208.54, + "probability": 0.9073 + }, + { + "start": 13209.18, + "end": 13210.22, + "probability": 0.7872 + }, + { + "start": 13210.4, + "end": 13211.35, + "probability": 0.986 + }, + { + "start": 13212.18, + "end": 13215.0, + "probability": 0.97 + }, + { + "start": 13215.96, + "end": 13218.64, + "probability": 0.9638 + }, + { + "start": 13219.28, + "end": 13223.66, + "probability": 0.9347 + }, + { + "start": 13223.68, + "end": 13227.62, + "probability": 0.9805 + }, + { + "start": 13228.58, + "end": 13230.66, + "probability": 0.9555 + }, + { + "start": 13230.84, + "end": 13233.86, + "probability": 0.9779 + }, + { + "start": 13234.3, + "end": 13237.12, + "probability": 0.9575 + }, + { + "start": 13237.66, + "end": 13241.14, + "probability": 0.9745 + }, + { + "start": 13241.7, + "end": 13242.08, + "probability": 0.5983 + }, + { + "start": 13242.22, + "end": 13243.3, + "probability": 0.633 + }, + { + "start": 13243.78, + "end": 13245.18, + "probability": 0.5884 + }, + { + "start": 13245.26, + "end": 13249.62, + "probability": 0.995 + }, + { + "start": 13250.4, + "end": 13251.26, + "probability": 0.98 + }, + { + "start": 13251.78, + "end": 13258.28, + "probability": 0.9923 + }, + { + "start": 13258.7, + "end": 13262.74, + "probability": 0.9311 + }, + { + "start": 13263.46, + "end": 13265.7, + "probability": 0.9975 + }, + { + "start": 13266.26, + "end": 13268.78, + "probability": 0.9824 + }, + { + "start": 13269.9, + "end": 13270.9, + "probability": 0.6602 + }, + { + "start": 13271.38, + "end": 13272.86, + "probability": 0.7925 + }, + { + "start": 13273.06, + "end": 13273.74, + "probability": 0.6386 + }, + { + "start": 13274.1, + "end": 13276.32, + "probability": 0.8791 + }, + { + "start": 13276.46, + "end": 13278.92, + "probability": 0.8845 + }, + { + "start": 13279.56, + "end": 13282.96, + "probability": 0.9459 + }, + { + "start": 13283.04, + "end": 13286.52, + "probability": 0.9801 + }, + { + "start": 13286.52, + "end": 13289.52, + "probability": 0.6488 + }, + { + "start": 13289.94, + "end": 13291.6, + "probability": 0.9917 + }, + { + "start": 13291.76, + "end": 13292.56, + "probability": 0.727 + }, + { + "start": 13293.5, + "end": 13297.36, + "probability": 0.8815 + }, + { + "start": 13297.9, + "end": 13300.78, + "probability": 0.9215 + }, + { + "start": 13301.72, + "end": 13305.5, + "probability": 0.8737 + }, + { + "start": 13306.14, + "end": 13306.82, + "probability": 0.9469 + }, + { + "start": 13307.0, + "end": 13310.62, + "probability": 0.9074 + }, + { + "start": 13311.76, + "end": 13314.08, + "probability": 0.9805 + }, + { + "start": 13314.68, + "end": 13317.46, + "probability": 0.9684 + }, + { + "start": 13317.46, + "end": 13320.84, + "probability": 0.8957 + }, + { + "start": 13321.8, + "end": 13325.96, + "probability": 0.795 + }, + { + "start": 13326.06, + "end": 13327.72, + "probability": 0.9945 + }, + { + "start": 13328.28, + "end": 13333.96, + "probability": 0.9925 + }, + { + "start": 13334.14, + "end": 13339.04, + "probability": 0.9617 + }, + { + "start": 13339.9, + "end": 13341.62, + "probability": 0.8988 + }, + { + "start": 13341.86, + "end": 13343.84, + "probability": 0.9524 + }, + { + "start": 13344.06, + "end": 13349.66, + "probability": 0.9763 + }, + { + "start": 13349.9, + "end": 13353.94, + "probability": 0.9815 + }, + { + "start": 13354.76, + "end": 13359.62, + "probability": 0.9027 + }, + { + "start": 13359.76, + "end": 13362.04, + "probability": 0.981 + }, + { + "start": 13362.9, + "end": 13363.89, + "probability": 0.6703 + }, + { + "start": 13364.8, + "end": 13368.8, + "probability": 0.9827 + }, + { + "start": 13369.14, + "end": 13372.06, + "probability": 0.937 + }, + { + "start": 13372.1, + "end": 13373.32, + "probability": 0.9839 + }, + { + "start": 13374.96, + "end": 13379.94, + "probability": 0.9907 + }, + { + "start": 13380.76, + "end": 13383.52, + "probability": 0.9961 + }, + { + "start": 13383.94, + "end": 13387.02, + "probability": 0.457 + }, + { + "start": 13387.26, + "end": 13391.38, + "probability": 0.9425 + }, + { + "start": 13391.6, + "end": 13395.18, + "probability": 0.9937 + }, + { + "start": 13395.94, + "end": 13403.08, + "probability": 0.9931 + }, + { + "start": 13403.08, + "end": 13408.92, + "probability": 0.9972 + }, + { + "start": 13409.38, + "end": 13414.52, + "probability": 0.9939 + }, + { + "start": 13414.8, + "end": 13417.96, + "probability": 0.9289 + }, + { + "start": 13418.32, + "end": 13421.28, + "probability": 0.9913 + }, + { + "start": 13421.28, + "end": 13424.44, + "probability": 0.9906 + }, + { + "start": 13425.5, + "end": 13427.6, + "probability": 0.9568 + }, + { + "start": 13427.78, + "end": 13429.12, + "probability": 0.6397 + }, + { + "start": 13429.44, + "end": 13431.1, + "probability": 0.9532 + }, + { + "start": 13431.16, + "end": 13434.2, + "probability": 0.8917 + }, + { + "start": 13434.74, + "end": 13437.3, + "probability": 0.6743 + }, + { + "start": 13437.9, + "end": 13439.12, + "probability": 0.8769 + }, + { + "start": 13439.52, + "end": 13440.52, + "probability": 0.9722 + }, + { + "start": 13440.6, + "end": 13441.78, + "probability": 0.9759 + }, + { + "start": 13442.18, + "end": 13445.82, + "probability": 0.9446 + }, + { + "start": 13446.28, + "end": 13450.24, + "probability": 0.9795 + }, + { + "start": 13450.96, + "end": 13453.54, + "probability": 0.7191 + }, + { + "start": 13453.96, + "end": 13459.04, + "probability": 0.9943 + }, + { + "start": 13459.64, + "end": 13461.54, + "probability": 0.9373 + }, + { + "start": 13461.72, + "end": 13466.34, + "probability": 0.952 + }, + { + "start": 13466.94, + "end": 13470.3, + "probability": 0.9796 + }, + { + "start": 13470.58, + "end": 13474.13, + "probability": 0.9891 + }, + { + "start": 13474.34, + "end": 13477.56, + "probability": 0.9966 + }, + { + "start": 13478.18, + "end": 13479.58, + "probability": 0.8015 + }, + { + "start": 13479.66, + "end": 13480.0, + "probability": 0.5584 + }, + { + "start": 13480.08, + "end": 13481.54, + "probability": 0.9798 + }, + { + "start": 13482.28, + "end": 13483.7, + "probability": 0.9785 + }, + { + "start": 13484.32, + "end": 13487.58, + "probability": 0.9602 + }, + { + "start": 13488.18, + "end": 13494.14, + "probability": 0.9905 + }, + { + "start": 13494.56, + "end": 13497.62, + "probability": 0.9924 + }, + { + "start": 13498.06, + "end": 13502.72, + "probability": 0.9827 + }, + { + "start": 13503.28, + "end": 13505.18, + "probability": 0.9622 + }, + { + "start": 13506.2, + "end": 13507.66, + "probability": 0.9541 + }, + { + "start": 13508.22, + "end": 13509.94, + "probability": 0.97 + }, + { + "start": 13510.54, + "end": 13513.82, + "probability": 0.9788 + }, + { + "start": 13513.82, + "end": 13516.86, + "probability": 0.9981 + }, + { + "start": 13517.26, + "end": 13518.92, + "probability": 0.7454 + }, + { + "start": 13519.2, + "end": 13521.6, + "probability": 0.9783 + }, + { + "start": 13522.14, + "end": 13526.08, + "probability": 0.9753 + }, + { + "start": 13526.46, + "end": 13529.06, + "probability": 0.9813 + }, + { + "start": 13529.06, + "end": 13532.78, + "probability": 0.9855 + }, + { + "start": 13533.78, + "end": 13536.12, + "probability": 0.9924 + }, + { + "start": 13536.36, + "end": 13543.08, + "probability": 0.9678 + }, + { + "start": 13543.18, + "end": 13544.72, + "probability": 0.9766 + }, + { + "start": 13545.32, + "end": 13547.44, + "probability": 0.9954 + }, + { + "start": 13547.5, + "end": 13553.22, + "probability": 0.9897 + }, + { + "start": 13553.28, + "end": 13554.12, + "probability": 0.7835 + }, + { + "start": 13554.2, + "end": 13559.16, + "probability": 0.9991 + }, + { + "start": 13559.16, + "end": 13563.7, + "probability": 0.9954 + }, + { + "start": 13564.94, + "end": 13567.46, + "probability": 0.9975 + }, + { + "start": 13568.34, + "end": 13572.18, + "probability": 0.9949 + }, + { + "start": 13572.72, + "end": 13573.4, + "probability": 0.9933 + }, + { + "start": 13573.76, + "end": 13578.92, + "probability": 0.9944 + }, + { + "start": 13579.02, + "end": 13583.04, + "probability": 0.958 + }, + { + "start": 13583.58, + "end": 13586.52, + "probability": 0.937 + }, + { + "start": 13586.76, + "end": 13588.16, + "probability": 0.9336 + }, + { + "start": 13588.24, + "end": 13590.1, + "probability": 0.8811 + }, + { + "start": 13590.3, + "end": 13593.7, + "probability": 0.9966 + }, + { + "start": 13594.34, + "end": 13596.98, + "probability": 0.9736 + }, + { + "start": 13597.26, + "end": 13601.08, + "probability": 0.9853 + }, + { + "start": 13601.62, + "end": 13602.48, + "probability": 0.7267 + }, + { + "start": 13602.62, + "end": 13608.62, + "probability": 0.9868 + }, + { + "start": 13609.1, + "end": 13614.44, + "probability": 0.9761 + }, + { + "start": 13615.46, + "end": 13618.94, + "probability": 0.9028 + }, + { + "start": 13618.94, + "end": 13622.64, + "probability": 0.9031 + }, + { + "start": 13622.72, + "end": 13625.14, + "probability": 0.7912 + }, + { + "start": 13625.68, + "end": 13630.46, + "probability": 0.9707 + }, + { + "start": 13631.2, + "end": 13636.66, + "probability": 0.9873 + }, + { + "start": 13637.4, + "end": 13644.58, + "probability": 0.9117 + }, + { + "start": 13646.34, + "end": 13650.44, + "probability": 0.9549 + }, + { + "start": 13650.98, + "end": 13652.66, + "probability": 0.9979 + }, + { + "start": 13653.98, + "end": 13656.38, + "probability": 0.9653 + }, + { + "start": 13657.44, + "end": 13660.18, + "probability": 0.9953 + }, + { + "start": 13660.48, + "end": 13662.66, + "probability": 0.9985 + }, + { + "start": 13663.56, + "end": 13667.26, + "probability": 0.8951 + }, + { + "start": 13667.76, + "end": 13673.58, + "probability": 0.9963 + }, + { + "start": 13673.66, + "end": 13677.56, + "probability": 0.9993 + }, + { + "start": 13678.08, + "end": 13681.58, + "probability": 0.9984 + }, + { + "start": 13681.86, + "end": 13684.4, + "probability": 0.9888 + }, + { + "start": 13685.04, + "end": 13686.96, + "probability": 0.9968 + }, + { + "start": 13688.0, + "end": 13688.96, + "probability": 0.8445 + }, + { + "start": 13689.21, + "end": 13696.62, + "probability": 0.9984 + }, + { + "start": 13697.08, + "end": 13699.9, + "probability": 0.9849 + }, + { + "start": 13700.6, + "end": 13704.24, + "probability": 0.999 + }, + { + "start": 13704.24, + "end": 13708.76, + "probability": 0.9946 + }, + { + "start": 13708.9, + "end": 13716.76, + "probability": 0.9948 + }, + { + "start": 13717.2, + "end": 13719.28, + "probability": 0.8709 + }, + { + "start": 13719.46, + "end": 13722.56, + "probability": 0.9979 + }, + { + "start": 13722.66, + "end": 13726.24, + "probability": 0.9814 + }, + { + "start": 13726.52, + "end": 13728.16, + "probability": 0.9678 + }, + { + "start": 13729.04, + "end": 13729.42, + "probability": 0.289 + }, + { + "start": 13729.44, + "end": 13732.1, + "probability": 0.9277 + }, + { + "start": 13732.2, + "end": 13733.52, + "probability": 0.7933 + }, + { + "start": 13734.0, + "end": 13735.34, + "probability": 0.969 + }, + { + "start": 13735.38, + "end": 13738.76, + "probability": 0.9983 + }, + { + "start": 13739.38, + "end": 13740.7, + "probability": 0.9644 + }, + { + "start": 13741.48, + "end": 13744.62, + "probability": 0.9952 + }, + { + "start": 13745.14, + "end": 13747.86, + "probability": 0.8688 + }, + { + "start": 13748.46, + "end": 13749.54, + "probability": 0.9514 + }, + { + "start": 13749.66, + "end": 13750.28, + "probability": 0.538 + }, + { + "start": 13750.28, + "end": 13750.64, + "probability": 0.8715 + }, + { + "start": 13750.76, + "end": 13752.54, + "probability": 0.8733 + }, + { + "start": 13753.36, + "end": 13755.64, + "probability": 0.9937 + }, + { + "start": 13755.98, + "end": 13757.46, + "probability": 0.8045 + }, + { + "start": 13757.86, + "end": 13763.24, + "probability": 0.8574 + }, + { + "start": 13763.24, + "end": 13766.66, + "probability": 0.9357 + }, + { + "start": 13766.78, + "end": 13769.4, + "probability": 0.9878 + }, + { + "start": 13769.62, + "end": 13772.32, + "probability": 0.9946 + }, + { + "start": 13772.42, + "end": 13774.56, + "probability": 0.9757 + }, + { + "start": 13774.62, + "end": 13775.92, + "probability": 0.853 + }, + { + "start": 13776.14, + "end": 13777.44, + "probability": 0.9324 + }, + { + "start": 13778.84, + "end": 13779.34, + "probability": 0.9061 + }, + { + "start": 13779.6, + "end": 13781.36, + "probability": 0.8787 + }, + { + "start": 13781.58, + "end": 13783.4, + "probability": 0.9987 + }, + { + "start": 13784.04, + "end": 13785.74, + "probability": 0.9516 + }, + { + "start": 13786.3, + "end": 13787.38, + "probability": 0.8774 + }, + { + "start": 13787.46, + "end": 13790.4, + "probability": 0.9993 + }, + { + "start": 13790.94, + "end": 13795.38, + "probability": 0.999 + }, + { + "start": 13795.88, + "end": 13798.5, + "probability": 0.9984 + }, + { + "start": 13798.5, + "end": 13803.52, + "probability": 0.9939 + }, + { + "start": 13803.96, + "end": 13805.96, + "probability": 0.9951 + }, + { + "start": 13806.46, + "end": 13810.06, + "probability": 0.9502 + }, + { + "start": 13810.44, + "end": 13814.18, + "probability": 0.8558 + }, + { + "start": 13814.18, + "end": 13818.56, + "probability": 0.9953 + }, + { + "start": 13818.64, + "end": 13819.12, + "probability": 0.6997 + }, + { + "start": 13819.24, + "end": 13821.1, + "probability": 0.9028 + }, + { + "start": 13821.54, + "end": 13822.08, + "probability": 0.8952 + }, + { + "start": 13822.78, + "end": 13825.61, + "probability": 0.9945 + }, + { + "start": 13826.28, + "end": 13829.6, + "probability": 0.8964 + }, + { + "start": 13829.74, + "end": 13832.76, + "probability": 0.9098 + }, + { + "start": 13833.56, + "end": 13839.22, + "probability": 0.9047 + }, + { + "start": 13840.1, + "end": 13844.44, + "probability": 0.9966 + }, + { + "start": 13844.44, + "end": 13848.26, + "probability": 0.8965 + }, + { + "start": 13848.98, + "end": 13853.8, + "probability": 0.9929 + }, + { + "start": 13854.6, + "end": 13858.28, + "probability": 0.7912 + }, + { + "start": 13858.8, + "end": 13861.1, + "probability": 0.9746 + }, + { + "start": 13861.62, + "end": 13866.22, + "probability": 0.9957 + }, + { + "start": 13866.22, + "end": 13870.44, + "probability": 0.9988 + }, + { + "start": 13870.44, + "end": 13875.34, + "probability": 0.9977 + }, + { + "start": 13875.94, + "end": 13876.84, + "probability": 0.9643 + }, + { + "start": 13877.38, + "end": 13878.02, + "probability": 0.9827 + }, + { + "start": 13878.62, + "end": 13882.5, + "probability": 0.998 + }, + { + "start": 13884.64, + "end": 13887.86, + "probability": 0.3787 + }, + { + "start": 13890.38, + "end": 13890.64, + "probability": 0.1742 + }, + { + "start": 13890.78, + "end": 13891.06, + "probability": 0.494 + }, + { + "start": 13891.38, + "end": 13893.08, + "probability": 0.211 + }, + { + "start": 13893.66, + "end": 13896.74, + "probability": 0.8882 + }, + { + "start": 13896.74, + "end": 13896.84, + "probability": 0.0444 + }, + { + "start": 13897.1, + "end": 13899.61, + "probability": 0.6614 + }, + { + "start": 13900.38, + "end": 13903.1, + "probability": 0.981 + }, + { + "start": 13903.1, + "end": 13906.56, + "probability": 0.9984 + }, + { + "start": 13906.66, + "end": 13912.94, + "probability": 0.9912 + }, + { + "start": 13912.94, + "end": 13919.04, + "probability": 0.9912 + }, + { + "start": 13919.66, + "end": 13924.56, + "probability": 0.9919 + }, + { + "start": 13925.22, + "end": 13926.2, + "probability": 0.9151 + }, + { + "start": 13926.92, + "end": 13929.86, + "probability": 0.9419 + }, + { + "start": 13930.12, + "end": 13932.88, + "probability": 0.8901 + }, + { + "start": 13933.58, + "end": 13941.4, + "probability": 0.9873 + }, + { + "start": 13942.0, + "end": 13943.8, + "probability": 0.9946 + }, + { + "start": 13943.9, + "end": 13947.92, + "probability": 0.9974 + }, + { + "start": 13948.16, + "end": 13952.94, + "probability": 0.9986 + }, + { + "start": 13953.46, + "end": 13960.72, + "probability": 0.9783 + }, + { + "start": 13960.84, + "end": 13962.52, + "probability": 0.8457 + }, + { + "start": 13962.9, + "end": 13966.68, + "probability": 0.9971 + }, + { + "start": 13967.22, + "end": 13968.32, + "probability": 0.978 + }, + { + "start": 13968.94, + "end": 13970.42, + "probability": 0.8239 + }, + { + "start": 13970.96, + "end": 13973.44, + "probability": 0.7983 + }, + { + "start": 13974.04, + "end": 13976.58, + "probability": 0.9786 + }, + { + "start": 13977.12, + "end": 13979.14, + "probability": 0.9611 + }, + { + "start": 13979.34, + "end": 13979.7, + "probability": 0.7518 + }, + { + "start": 13979.86, + "end": 13982.36, + "probability": 0.7903 + }, + { + "start": 13983.38, + "end": 13984.42, + "probability": 0.8108 + }, + { + "start": 13985.98, + "end": 13986.74, + "probability": 0.814 + }, + { + "start": 13987.36, + "end": 13989.16, + "probability": 0.7605 + }, + { + "start": 14009.1, + "end": 14009.12, + "probability": 0.4154 + }, + { + "start": 14016.02, + "end": 14018.0, + "probability": 0.7219 + }, + { + "start": 14019.08, + "end": 14020.62, + "probability": 0.6096 + }, + { + "start": 14025.34, + "end": 14029.34, + "probability": 0.9663 + }, + { + "start": 14031.68, + "end": 14035.06, + "probability": 0.8394 + }, + { + "start": 14036.2, + "end": 14037.26, + "probability": 0.9744 + }, + { + "start": 14037.98, + "end": 14040.6, + "probability": 0.9692 + }, + { + "start": 14042.4, + "end": 14050.54, + "probability": 0.9848 + }, + { + "start": 14051.1, + "end": 14054.02, + "probability": 0.9196 + }, + { + "start": 14054.6, + "end": 14055.34, + "probability": 0.8033 + }, + { + "start": 14056.38, + "end": 14061.28, + "probability": 0.8883 + }, + { + "start": 14062.56, + "end": 14063.16, + "probability": 0.7561 + }, + { + "start": 14064.24, + "end": 14068.4, + "probability": 0.7037 + }, + { + "start": 14069.18, + "end": 14070.18, + "probability": 0.608 + }, + { + "start": 14070.7, + "end": 14072.31, + "probability": 0.9751 + }, + { + "start": 14073.2, + "end": 14075.88, + "probability": 0.7267 + }, + { + "start": 14076.5, + "end": 14077.92, + "probability": 0.8036 + }, + { + "start": 14078.76, + "end": 14080.8, + "probability": 0.9682 + }, + { + "start": 14081.32, + "end": 14083.8, + "probability": 0.9338 + }, + { + "start": 14085.96, + "end": 14086.66, + "probability": 0.902 + }, + { + "start": 14086.78, + "end": 14089.68, + "probability": 0.9489 + }, + { + "start": 14089.82, + "end": 14090.16, + "probability": 0.3668 + }, + { + "start": 14090.28, + "end": 14091.2, + "probability": 0.8609 + }, + { + "start": 14091.28, + "end": 14092.44, + "probability": 0.7612 + }, + { + "start": 14092.52, + "end": 14095.43, + "probability": 0.771 + }, + { + "start": 14096.68, + "end": 14097.1, + "probability": 0.931 + }, + { + "start": 14097.38, + "end": 14098.28, + "probability": 0.8979 + }, + { + "start": 14098.38, + "end": 14105.04, + "probability": 0.9923 + }, + { + "start": 14105.6, + "end": 14108.12, + "probability": 0.9771 + }, + { + "start": 14108.82, + "end": 14113.08, + "probability": 0.9116 + }, + { + "start": 14114.34, + "end": 14116.54, + "probability": 0.9911 + }, + { + "start": 14117.14, + "end": 14118.02, + "probability": 0.0155 + }, + { + "start": 14120.92, + "end": 14121.74, + "probability": 0.5976 + }, + { + "start": 14122.06, + "end": 14123.48, + "probability": 0.7845 + }, + { + "start": 14123.86, + "end": 14128.62, + "probability": 0.9815 + }, + { + "start": 14129.6, + "end": 14132.4, + "probability": 0.9785 + }, + { + "start": 14133.74, + "end": 14136.58, + "probability": 0.9867 + }, + { + "start": 14137.12, + "end": 14139.66, + "probability": 0.8077 + }, + { + "start": 14140.54, + "end": 14143.78, + "probability": 0.977 + }, + { + "start": 14143.78, + "end": 14147.19, + "probability": 0.998 + }, + { + "start": 14147.96, + "end": 14149.44, + "probability": 0.9678 + }, + { + "start": 14150.5, + "end": 14151.84, + "probability": 0.9127 + }, + { + "start": 14151.94, + "end": 14155.26, + "probability": 0.9628 + }, + { + "start": 14155.3, + "end": 14158.06, + "probability": 0.9962 + }, + { + "start": 14158.1, + "end": 14159.14, + "probability": 0.9766 + }, + { + "start": 14160.32, + "end": 14164.82, + "probability": 0.8802 + }, + { + "start": 14165.42, + "end": 14167.62, + "probability": 0.6205 + }, + { + "start": 14169.58, + "end": 14170.56, + "probability": 0.5674 + }, + { + "start": 14171.7, + "end": 14173.92, + "probability": 0.7898 + }, + { + "start": 14174.06, + "end": 14175.58, + "probability": 0.3033 + }, + { + "start": 14176.84, + "end": 14179.96, + "probability": 0.9929 + }, + { + "start": 14181.14, + "end": 14182.0, + "probability": 0.9109 + }, + { + "start": 14183.68, + "end": 14185.96, + "probability": 0.9965 + }, + { + "start": 14186.06, + "end": 14186.8, + "probability": 0.7884 + }, + { + "start": 14186.9, + "end": 14189.14, + "probability": 0.6623 + }, + { + "start": 14190.16, + "end": 14192.66, + "probability": 0.8133 + }, + { + "start": 14193.18, + "end": 14194.66, + "probability": 0.918 + }, + { + "start": 14194.88, + "end": 14199.82, + "probability": 0.928 + }, + { + "start": 14199.9, + "end": 14200.28, + "probability": 0.6471 + }, + { + "start": 14200.36, + "end": 14201.64, + "probability": 0.6494 + }, + { + "start": 14202.0, + "end": 14202.5, + "probability": 0.8125 + }, + { + "start": 14203.73, + "end": 14206.68, + "probability": 0.5273 + }, + { + "start": 14207.22, + "end": 14209.76, + "probability": 0.849 + }, + { + "start": 14210.82, + "end": 14212.74, + "probability": 0.9891 + }, + { + "start": 14213.96, + "end": 14215.54, + "probability": 0.8997 + }, + { + "start": 14216.48, + "end": 14216.98, + "probability": 0.9466 + }, + { + "start": 14217.66, + "end": 14218.28, + "probability": 0.8834 + }, + { + "start": 14219.46, + "end": 14221.22, + "probability": 0.4278 + }, + { + "start": 14221.4, + "end": 14222.86, + "probability": 0.4991 + }, + { + "start": 14223.02, + "end": 14226.36, + "probability": 0.9806 + }, + { + "start": 14226.36, + "end": 14230.0, + "probability": 0.9861 + }, + { + "start": 14231.0, + "end": 14233.22, + "probability": 0.991 + }, + { + "start": 14233.42, + "end": 14235.36, + "probability": 0.9816 + }, + { + "start": 14235.46, + "end": 14241.46, + "probability": 0.7905 + }, + { + "start": 14242.14, + "end": 14243.26, + "probability": 0.8344 + }, + { + "start": 14244.57, + "end": 14247.8, + "probability": 0.9351 + }, + { + "start": 14248.46, + "end": 14249.6, + "probability": 0.8197 + }, + { + "start": 14250.04, + "end": 14250.44, + "probability": 0.8408 + }, + { + "start": 14250.54, + "end": 14252.03, + "probability": 0.923 + }, + { + "start": 14252.56, + "end": 14254.2, + "probability": 0.9867 + }, + { + "start": 14255.08, + "end": 14256.78, + "probability": 0.9221 + }, + { + "start": 14257.04, + "end": 14257.26, + "probability": 0.6282 + }, + { + "start": 14257.56, + "end": 14259.22, + "probability": 0.9929 + }, + { + "start": 14260.14, + "end": 14265.9, + "probability": 0.9735 + }, + { + "start": 14266.56, + "end": 14268.0, + "probability": 0.4102 + }, + { + "start": 14268.24, + "end": 14268.38, + "probability": 0.6354 + }, + { + "start": 14268.5, + "end": 14269.0, + "probability": 0.7061 + }, + { + "start": 14269.68, + "end": 14270.68, + "probability": 0.7151 + }, + { + "start": 14272.1, + "end": 14273.32, + "probability": 0.9401 + }, + { + "start": 14273.36, + "end": 14275.94, + "probability": 0.9811 + }, + { + "start": 14276.44, + "end": 14280.48, + "probability": 0.9423 + }, + { + "start": 14281.26, + "end": 14284.42, + "probability": 0.9951 + }, + { + "start": 14287.0, + "end": 14292.58, + "probability": 0.9849 + }, + { + "start": 14293.32, + "end": 14296.04, + "probability": 0.9014 + }, + { + "start": 14297.12, + "end": 14299.48, + "probability": 0.8972 + }, + { + "start": 14300.1, + "end": 14300.38, + "probability": 0.425 + }, + { + "start": 14300.38, + "end": 14302.76, + "probability": 0.8777 + }, + { + "start": 14303.1, + "end": 14303.48, + "probability": 0.8745 + }, + { + "start": 14304.0, + "end": 14304.58, + "probability": 0.9361 + }, + { + "start": 14306.06, + "end": 14308.78, + "probability": 0.6806 + }, + { + "start": 14309.72, + "end": 14313.62, + "probability": 0.8928 + }, + { + "start": 14314.22, + "end": 14319.36, + "probability": 0.8489 + }, + { + "start": 14321.88, + "end": 14325.88, + "probability": 0.9948 + }, + { + "start": 14328.31, + "end": 14331.42, + "probability": 0.8979 + }, + { + "start": 14332.18, + "end": 14333.6, + "probability": 0.7509 + }, + { + "start": 14333.64, + "end": 14336.34, + "probability": 0.9749 + }, + { + "start": 14337.26, + "end": 14340.9, + "probability": 0.8518 + }, + { + "start": 14341.0, + "end": 14343.92, + "probability": 0.9092 + }, + { + "start": 14344.62, + "end": 14346.54, + "probability": 0.5869 + }, + { + "start": 14346.72, + "end": 14350.42, + "probability": 0.9697 + }, + { + "start": 14351.62, + "end": 14352.32, + "probability": 0.8706 + }, + { + "start": 14353.02, + "end": 14355.06, + "probability": 0.9961 + }, + { + "start": 14355.14, + "end": 14359.74, + "probability": 0.9954 + }, + { + "start": 14361.4, + "end": 14366.16, + "probability": 0.9851 + }, + { + "start": 14366.34, + "end": 14369.61, + "probability": 0.705 + }, + { + "start": 14370.24, + "end": 14371.44, + "probability": 0.8013 + }, + { + "start": 14372.2, + "end": 14373.48, + "probability": 0.0459 + }, + { + "start": 14373.48, + "end": 14375.42, + "probability": 0.6252 + }, + { + "start": 14375.72, + "end": 14378.22, + "probability": 0.804 + }, + { + "start": 14378.44, + "end": 14380.94, + "probability": 0.7348 + }, + { + "start": 14381.5, + "end": 14383.18, + "probability": 0.7792 + }, + { + "start": 14383.42, + "end": 14384.2, + "probability": 0.7561 + }, + { + "start": 14384.8, + "end": 14385.86, + "probability": 0.7106 + }, + { + "start": 14386.52, + "end": 14388.06, + "probability": 0.9133 + }, + { + "start": 14388.96, + "end": 14392.48, + "probability": 0.9668 + }, + { + "start": 14393.56, + "end": 14399.64, + "probability": 0.9839 + }, + { + "start": 14400.54, + "end": 14401.84, + "probability": 0.5798 + }, + { + "start": 14401.96, + "end": 14404.18, + "probability": 0.7825 + }, + { + "start": 14404.8, + "end": 14409.21, + "probability": 0.8973 + }, + { + "start": 14409.74, + "end": 14413.0, + "probability": 0.9643 + }, + { + "start": 14413.44, + "end": 14414.5, + "probability": 0.9458 + }, + { + "start": 14414.82, + "end": 14415.97, + "probability": 0.8208 + }, + { + "start": 14416.54, + "end": 14419.52, + "probability": 0.9846 + }, + { + "start": 14419.6, + "end": 14422.0, + "probability": 0.9939 + }, + { + "start": 14422.56, + "end": 14423.62, + "probability": 0.8117 + }, + { + "start": 14423.8, + "end": 14424.88, + "probability": 0.4219 + }, + { + "start": 14424.92, + "end": 14425.84, + "probability": 0.9341 + }, + { + "start": 14426.2, + "end": 14429.4, + "probability": 0.9767 + }, + { + "start": 14430.98, + "end": 14433.08, + "probability": 0.7705 + }, + { + "start": 14433.18, + "end": 14434.12, + "probability": 0.3987 + }, + { + "start": 14434.24, + "end": 14435.1, + "probability": 0.6819 + }, + { + "start": 14436.1, + "end": 14437.88, + "probability": 0.8219 + }, + { + "start": 14438.4, + "end": 14442.82, + "probability": 0.8398 + }, + { + "start": 14443.32, + "end": 14447.18, + "probability": 0.874 + }, + { + "start": 14447.36, + "end": 14448.42, + "probability": 0.8673 + }, + { + "start": 14448.52, + "end": 14448.82, + "probability": 0.7325 + }, + { + "start": 14449.22, + "end": 14451.62, + "probability": 0.8874 + }, + { + "start": 14451.98, + "end": 14452.64, + "probability": 0.7527 + }, + { + "start": 14452.7, + "end": 14453.02, + "probability": 0.7157 + }, + { + "start": 14453.7, + "end": 14456.98, + "probability": 0.9896 + }, + { + "start": 14457.08, + "end": 14457.3, + "probability": 0.1525 + }, + { + "start": 14457.52, + "end": 14458.26, + "probability": 0.6283 + }, + { + "start": 14458.7, + "end": 14459.66, + "probability": 0.9786 + }, + { + "start": 14460.04, + "end": 14460.49, + "probability": 0.9814 + }, + { + "start": 14460.96, + "end": 14462.06, + "probability": 0.9565 + }, + { + "start": 14462.5, + "end": 14464.62, + "probability": 0.9983 + }, + { + "start": 14464.62, + "end": 14467.84, + "probability": 0.9319 + }, + { + "start": 14467.88, + "end": 14467.98, + "probability": 0.2881 + }, + { + "start": 14467.98, + "end": 14468.58, + "probability": 0.8587 + }, + { + "start": 14468.86, + "end": 14472.38, + "probability": 0.9794 + }, + { + "start": 14472.48, + "end": 14473.16, + "probability": 0.9698 + }, + { + "start": 14473.68, + "end": 14473.84, + "probability": 0.6862 + }, + { + "start": 14473.9, + "end": 14476.36, + "probability": 0.9205 + }, + { + "start": 14476.36, + "end": 14479.58, + "probability": 0.9924 + }, + { + "start": 14480.04, + "end": 14480.78, + "probability": 0.6806 + }, + { + "start": 14480.92, + "end": 14482.04, + "probability": 0.6494 + }, + { + "start": 14482.04, + "end": 14482.08, + "probability": 0.033 + }, + { + "start": 14482.08, + "end": 14482.46, + "probability": 0.3027 + }, + { + "start": 14482.54, + "end": 14483.2, + "probability": 0.4219 + }, + { + "start": 14483.3, + "end": 14483.84, + "probability": 0.0901 + }, + { + "start": 14483.84, + "end": 14484.04, + "probability": 0.3812 + }, + { + "start": 14484.1, + "end": 14486.1, + "probability": 0.9771 + }, + { + "start": 14486.58, + "end": 14487.46, + "probability": 0.8979 + }, + { + "start": 14487.8, + "end": 14490.32, + "probability": 0.9237 + }, + { + "start": 14490.38, + "end": 14495.5, + "probability": 0.9662 + }, + { + "start": 14495.7, + "end": 14499.22, + "probability": 0.8626 + }, + { + "start": 14499.48, + "end": 14499.58, + "probability": 0.6532 + }, + { + "start": 14499.92, + "end": 14499.92, + "probability": 0.6679 + }, + { + "start": 14499.92, + "end": 14500.2, + "probability": 0.3898 + }, + { + "start": 14500.26, + "end": 14502.36, + "probability": 0.7491 + }, + { + "start": 14503.36, + "end": 14504.5, + "probability": 0.7707 + }, + { + "start": 14510.0, + "end": 14512.16, + "probability": 0.5351 + }, + { + "start": 14512.56, + "end": 14515.36, + "probability": 0.8327 + }, + { + "start": 14517.3, + "end": 14518.3, + "probability": 0.6397 + }, + { + "start": 14519.04, + "end": 14524.94, + "probability": 0.9183 + }, + { + "start": 14532.48, + "end": 14533.08, + "probability": 0.557 + }, + { + "start": 14534.62, + "end": 14536.88, + "probability": 0.8636 + }, + { + "start": 14537.98, + "end": 14539.2, + "probability": 0.8352 + }, + { + "start": 14541.34, + "end": 14545.48, + "probability": 0.8993 + }, + { + "start": 14546.32, + "end": 14548.04, + "probability": 0.7309 + }, + { + "start": 14549.48, + "end": 14550.96, + "probability": 0.6105 + }, + { + "start": 14552.46, + "end": 14555.0, + "probability": 0.8242 + }, + { + "start": 14555.42, + "end": 14557.98, + "probability": 0.9481 + }, + { + "start": 14558.54, + "end": 14559.82, + "probability": 0.9968 + }, + { + "start": 14562.42, + "end": 14565.72, + "probability": 0.9945 + }, + { + "start": 14566.72, + "end": 14570.0, + "probability": 0.8855 + }, + { + "start": 14570.84, + "end": 14571.54, + "probability": 0.3059 + }, + { + "start": 14572.28, + "end": 14574.5, + "probability": 0.8488 + }, + { + "start": 14574.88, + "end": 14577.76, + "probability": 0.5208 + }, + { + "start": 14577.76, + "end": 14579.02, + "probability": 0.8504 + }, + { + "start": 14579.04, + "end": 14579.48, + "probability": 0.794 + }, + { + "start": 14580.56, + "end": 14581.78, + "probability": 0.9634 + }, + { + "start": 14582.58, + "end": 14585.58, + "probability": 0.9752 + }, + { + "start": 14585.66, + "end": 14586.42, + "probability": 0.3236 + }, + { + "start": 14587.82, + "end": 14591.92, + "probability": 0.9634 + }, + { + "start": 14592.04, + "end": 14593.52, + "probability": 0.8577 + }, + { + "start": 14594.4, + "end": 14598.12, + "probability": 0.98 + }, + { + "start": 14598.12, + "end": 14602.28, + "probability": 0.9255 + }, + { + "start": 14602.82, + "end": 14604.42, + "probability": 0.8923 + }, + { + "start": 14605.52, + "end": 14606.18, + "probability": 0.5939 + }, + { + "start": 14606.3, + "end": 14609.24, + "probability": 0.8166 + }, + { + "start": 14609.4, + "end": 14610.36, + "probability": 0.8781 + }, + { + "start": 14612.06, + "end": 14617.5, + "probability": 0.908 + }, + { + "start": 14618.34, + "end": 14621.22, + "probability": 0.7324 + }, + { + "start": 14622.66, + "end": 14625.16, + "probability": 0.9265 + }, + { + "start": 14626.7, + "end": 14629.92, + "probability": 0.9536 + }, + { + "start": 14630.46, + "end": 14632.46, + "probability": 0.8806 + }, + { + "start": 14633.08, + "end": 14634.2, + "probability": 0.8337 + }, + { + "start": 14635.72, + "end": 14637.49, + "probability": 0.9906 + }, + { + "start": 14638.25, + "end": 14641.64, + "probability": 0.9719 + }, + { + "start": 14644.94, + "end": 14645.46, + "probability": 0.6507 + }, + { + "start": 14646.84, + "end": 14649.5, + "probability": 0.9971 + }, + { + "start": 14650.04, + "end": 14651.4, + "probability": 0.684 + }, + { + "start": 14652.68, + "end": 14653.76, + "probability": 0.7491 + }, + { + "start": 14654.68, + "end": 14655.52, + "probability": 0.9011 + }, + { + "start": 14655.52, + "end": 14656.04, + "probability": 0.8929 + }, + { + "start": 14656.3, + "end": 14656.78, + "probability": 0.8467 + }, + { + "start": 14657.02, + "end": 14660.36, + "probability": 0.7188 + }, + { + "start": 14661.64, + "end": 14665.56, + "probability": 0.9941 + }, + { + "start": 14665.56, + "end": 14671.54, + "probability": 0.9751 + }, + { + "start": 14673.14, + "end": 14675.64, + "probability": 0.8564 + }, + { + "start": 14676.68, + "end": 14678.1, + "probability": 0.9269 + }, + { + "start": 14680.7, + "end": 14682.86, + "probability": 0.7496 + }, + { + "start": 14683.72, + "end": 14685.5, + "probability": 0.701 + }, + { + "start": 14685.86, + "end": 14686.48, + "probability": 0.5162 + }, + { + "start": 14686.52, + "end": 14686.98, + "probability": 0.625 + }, + { + "start": 14687.74, + "end": 14693.26, + "probability": 0.9877 + }, + { + "start": 14695.14, + "end": 14696.52, + "probability": 0.276 + }, + { + "start": 14696.74, + "end": 14697.43, + "probability": 0.6396 + }, + { + "start": 14697.48, + "end": 14697.58, + "probability": 0.4132 + }, + { + "start": 14697.9, + "end": 14698.4, + "probability": 0.3179 + }, + { + "start": 14698.48, + "end": 14700.36, + "probability": 0.8929 + }, + { + "start": 14700.58, + "end": 14703.32, + "probability": 0.5694 + }, + { + "start": 14705.3, + "end": 14708.42, + "probability": 0.9811 + }, + { + "start": 14710.22, + "end": 14713.9, + "probability": 0.9585 + }, + { + "start": 14715.18, + "end": 14716.04, + "probability": 0.7845 + }, + { + "start": 14716.22, + "end": 14716.36, + "probability": 0.7074 + }, + { + "start": 14716.5, + "end": 14720.94, + "probability": 0.8558 + }, + { + "start": 14723.78, + "end": 14726.2, + "probability": 0.922 + }, + { + "start": 14727.2, + "end": 14728.88, + "probability": 0.6134 + }, + { + "start": 14730.04, + "end": 14733.04, + "probability": 0.5659 + }, + { + "start": 14733.12, + "end": 14734.92, + "probability": 0.9215 + }, + { + "start": 14735.46, + "end": 14740.56, + "probability": 0.9914 + }, + { + "start": 14741.74, + "end": 14746.98, + "probability": 0.9338 + }, + { + "start": 14747.32, + "end": 14748.88, + "probability": 0.9059 + }, + { + "start": 14749.3, + "end": 14749.96, + "probability": 0.7471 + }, + { + "start": 14750.06, + "end": 14751.1, + "probability": 0.8086 + }, + { + "start": 14754.4, + "end": 14755.02, + "probability": 0.8925 + }, + { + "start": 14755.1, + "end": 14756.6, + "probability": 0.9523 + }, + { + "start": 14756.94, + "end": 14759.28, + "probability": 0.9932 + }, + { + "start": 14759.28, + "end": 14761.78, + "probability": 0.9032 + }, + { + "start": 14765.2, + "end": 14768.2, + "probability": 0.9451 + }, + { + "start": 14769.08, + "end": 14769.58, + "probability": 0.7652 + }, + { + "start": 14770.14, + "end": 14770.82, + "probability": 0.813 + }, + { + "start": 14771.18, + "end": 14771.8, + "probability": 0.3782 + }, + { + "start": 14772.34, + "end": 14775.24, + "probability": 0.9139 + }, + { + "start": 14776.4, + "end": 14778.22, + "probability": 0.918 + }, + { + "start": 14778.32, + "end": 14779.54, + "probability": 0.9608 + }, + { + "start": 14780.66, + "end": 14781.04, + "probability": 0.4367 + }, + { + "start": 14782.12, + "end": 14783.62, + "probability": 0.9507 + }, + { + "start": 14784.02, + "end": 14785.24, + "probability": 0.6261 + }, + { + "start": 14787.34, + "end": 14788.88, + "probability": 0.6847 + }, + { + "start": 14788.96, + "end": 14790.24, + "probability": 0.8194 + }, + { + "start": 14790.28, + "end": 14791.26, + "probability": 0.5738 + }, + { + "start": 14792.48, + "end": 14793.54, + "probability": 0.9565 + }, + { + "start": 14794.7, + "end": 14796.92, + "probability": 0.8693 + }, + { + "start": 14797.98, + "end": 14800.3, + "probability": 0.8422 + }, + { + "start": 14801.52, + "end": 14802.0, + "probability": 0.6419 + }, + { + "start": 14803.5, + "end": 14805.04, + "probability": 0.6209 + }, + { + "start": 14806.36, + "end": 14809.64, + "probability": 0.9606 + }, + { + "start": 14809.84, + "end": 14810.1, + "probability": 0.713 + }, + { + "start": 14811.68, + "end": 14817.48, + "probability": 0.9775 + }, + { + "start": 14819.76, + "end": 14822.3, + "probability": 0.9941 + }, + { + "start": 14824.74, + "end": 14828.0, + "probability": 0.7137 + }, + { + "start": 14828.62, + "end": 14831.52, + "probability": 0.9767 + }, + { + "start": 14833.18, + "end": 14835.68, + "probability": 0.8892 + }, + { + "start": 14836.34, + "end": 14838.02, + "probability": 0.7977 + }, + { + "start": 14838.88, + "end": 14840.58, + "probability": 0.3787 + }, + { + "start": 14840.58, + "end": 14841.66, + "probability": 0.2578 + }, + { + "start": 14842.1, + "end": 14842.12, + "probability": 0.4298 + }, + { + "start": 14842.12, + "end": 14846.76, + "probability": 0.9282 + }, + { + "start": 14848.1, + "end": 14849.28, + "probability": 0.9646 + }, + { + "start": 14850.58, + "end": 14852.22, + "probability": 0.9907 + }, + { + "start": 14853.08, + "end": 14854.78, + "probability": 0.5613 + }, + { + "start": 14855.46, + "end": 14857.06, + "probability": 0.7185 + }, + { + "start": 14858.04, + "end": 14859.64, + "probability": 0.9536 + }, + { + "start": 14860.94, + "end": 14863.92, + "probability": 0.9741 + }, + { + "start": 14864.4, + "end": 14868.42, + "probability": 0.9629 + }, + { + "start": 14868.82, + "end": 14870.26, + "probability": 0.8224 + }, + { + "start": 14870.94, + "end": 14873.94, + "probability": 0.9836 + }, + { + "start": 14873.94, + "end": 14874.18, + "probability": 0.7924 + }, + { + "start": 14874.26, + "end": 14875.2, + "probability": 0.9458 + }, + { + "start": 14876.56, + "end": 14877.86, + "probability": 0.9633 + }, + { + "start": 14877.94, + "end": 14878.64, + "probability": 0.9735 + }, + { + "start": 14878.84, + "end": 14879.65, + "probability": 0.9189 + }, + { + "start": 14879.84, + "end": 14880.42, + "probability": 0.6985 + }, + { + "start": 14880.52, + "end": 14880.96, + "probability": 0.575 + }, + { + "start": 14881.06, + "end": 14882.72, + "probability": 0.5001 + }, + { + "start": 14884.56, + "end": 14885.48, + "probability": 0.9256 + }, + { + "start": 14886.56, + "end": 14887.04, + "probability": 0.9583 + }, + { + "start": 14888.28, + "end": 14889.12, + "probability": 0.874 + }, + { + "start": 14889.96, + "end": 14890.56, + "probability": 0.5404 + }, + { + "start": 14890.82, + "end": 14892.3, + "probability": 0.6313 + }, + { + "start": 14892.38, + "end": 14893.0, + "probability": 0.6912 + }, + { + "start": 14893.0, + "end": 14895.54, + "probability": 0.969 + }, + { + "start": 14895.7, + "end": 14898.4, + "probability": 0.9799 + }, + { + "start": 14899.88, + "end": 14902.78, + "probability": 0.99 + }, + { + "start": 14904.2, + "end": 14904.46, + "probability": 0.4485 + }, + { + "start": 14905.18, + "end": 14910.18, + "probability": 0.9515 + }, + { + "start": 14910.92, + "end": 14911.56, + "probability": 0.6688 + }, + { + "start": 14912.56, + "end": 14914.84, + "probability": 0.3865 + }, + { + "start": 14915.94, + "end": 14917.52, + "probability": 0.9466 + }, + { + "start": 14917.66, + "end": 14920.28, + "probability": 0.9916 + }, + { + "start": 14920.52, + "end": 14920.72, + "probability": 0.7429 + }, + { + "start": 14922.88, + "end": 14924.7, + "probability": 0.8955 + }, + { + "start": 14928.44, + "end": 14929.94, + "probability": 0.9943 + }, + { + "start": 14930.96, + "end": 14934.28, + "probability": 0.9724 + }, + { + "start": 14934.94, + "end": 14936.84, + "probability": 0.8192 + }, + { + "start": 14938.36, + "end": 14939.0, + "probability": 0.8345 + }, + { + "start": 14939.92, + "end": 14940.56, + "probability": 0.863 + }, + { + "start": 14941.26, + "end": 14941.82, + "probability": 0.5577 + }, + { + "start": 14942.38, + "end": 14943.26, + "probability": 0.9004 + }, + { + "start": 14943.68, + "end": 14946.02, + "probability": 0.9146 + }, + { + "start": 14946.12, + "end": 14946.98, + "probability": 0.9045 + }, + { + "start": 14948.78, + "end": 14949.04, + "probability": 0.7694 + }, + { + "start": 14950.04, + "end": 14953.12, + "probability": 0.6063 + }, + { + "start": 14965.58, + "end": 14965.62, + "probability": 0.1686 + }, + { + "start": 14965.62, + "end": 14967.2, + "probability": 0.517 + }, + { + "start": 14969.82, + "end": 14971.38, + "probability": 0.9841 + }, + { + "start": 14972.6, + "end": 14974.92, + "probability": 0.8167 + }, + { + "start": 14976.04, + "end": 14978.36, + "probability": 0.7962 + }, + { + "start": 14979.72, + "end": 14982.16, + "probability": 0.9878 + }, + { + "start": 14983.04, + "end": 14984.78, + "probability": 0.8978 + }, + { + "start": 14985.78, + "end": 14987.22, + "probability": 0.8892 + }, + { + "start": 14988.32, + "end": 14991.7, + "probability": 0.9314 + }, + { + "start": 14992.46, + "end": 14993.56, + "probability": 0.9284 + }, + { + "start": 14994.96, + "end": 14996.06, + "probability": 0.272 + }, + { + "start": 14996.16, + "end": 14997.02, + "probability": 0.6115 + }, + { + "start": 14998.2, + "end": 15001.02, + "probability": 0.9287 + }, + { + "start": 15001.76, + "end": 15002.86, + "probability": 0.7915 + }, + { + "start": 15003.2, + "end": 15003.2, + "probability": 0.0001 + }, + { + "start": 15003.8, + "end": 15004.3, + "probability": 0.7204 + }, + { + "start": 15005.06, + "end": 15005.78, + "probability": 0.8326 + }, + { + "start": 15006.56, + "end": 15008.12, + "probability": 0.9938 + }, + { + "start": 15008.66, + "end": 15011.92, + "probability": 0.991 + }, + { + "start": 15013.6, + "end": 15013.76, + "probability": 0.4783 + }, + { + "start": 15014.36, + "end": 15014.82, + "probability": 0.867 + }, + { + "start": 15016.84, + "end": 15017.5, + "probability": 0.6805 + }, + { + "start": 15018.44, + "end": 15019.26, + "probability": 0.9085 + }, + { + "start": 15020.04, + "end": 15021.0, + "probability": 0.711 + }, + { + "start": 15021.96, + "end": 15023.36, + "probability": 0.9974 + }, + { + "start": 15024.04, + "end": 15025.22, + "probability": 0.9916 + }, + { + "start": 15026.02, + "end": 15027.69, + "probability": 0.8103 + }, + { + "start": 15028.38, + "end": 15029.22, + "probability": 0.9277 + }, + { + "start": 15029.9, + "end": 15030.59, + "probability": 0.7589 + }, + { + "start": 15031.6, + "end": 15032.78, + "probability": 0.9568 + }, + { + "start": 15034.52, + "end": 15037.52, + "probability": 0.9487 + }, + { + "start": 15038.36, + "end": 15041.52, + "probability": 0.9709 + }, + { + "start": 15042.96, + "end": 15044.5, + "probability": 0.89 + }, + { + "start": 15045.62, + "end": 15048.72, + "probability": 0.9945 + }, + { + "start": 15049.4, + "end": 15050.72, + "probability": 0.9694 + }, + { + "start": 15051.68, + "end": 15054.28, + "probability": 0.7628 + }, + { + "start": 15055.0, + "end": 15057.8, + "probability": 0.9727 + }, + { + "start": 15059.04, + "end": 15061.48, + "probability": 0.9731 + }, + { + "start": 15062.12, + "end": 15064.44, + "probability": 0.941 + }, + { + "start": 15065.28, + "end": 15067.52, + "probability": 0.9614 + }, + { + "start": 15068.06, + "end": 15069.84, + "probability": 0.9453 + }, + { + "start": 15070.8, + "end": 15074.46, + "probability": 0.8914 + }, + { + "start": 15075.1, + "end": 15079.02, + "probability": 0.9078 + }, + { + "start": 15081.28, + "end": 15083.18, + "probability": 0.9962 + }, + { + "start": 15084.02, + "end": 15088.0, + "probability": 0.932 + }, + { + "start": 15088.78, + "end": 15092.06, + "probability": 0.9908 + }, + { + "start": 15093.06, + "end": 15095.74, + "probability": 0.9883 + }, + { + "start": 15096.4, + "end": 15098.38, + "probability": 0.9941 + }, + { + "start": 15098.88, + "end": 15099.0, + "probability": 0.2543 + }, + { + "start": 15099.1, + "end": 15100.62, + "probability": 0.8751 + }, + { + "start": 15101.12, + "end": 15102.16, + "probability": 0.6919 + }, + { + "start": 15103.26, + "end": 15104.96, + "probability": 0.953 + }, + { + "start": 15106.06, + "end": 15109.58, + "probability": 0.9946 + }, + { + "start": 15110.36, + "end": 15113.7, + "probability": 0.9381 + }, + { + "start": 15114.54, + "end": 15116.28, + "probability": 0.8934 + }, + { + "start": 15116.98, + "end": 15119.32, + "probability": 0.9753 + }, + { + "start": 15119.84, + "end": 15121.12, + "probability": 0.9886 + }, + { + "start": 15121.62, + "end": 15124.36, + "probability": 0.9946 + }, + { + "start": 15124.36, + "end": 15127.8, + "probability": 0.993 + }, + { + "start": 15128.34, + "end": 15129.9, + "probability": 0.7114 + }, + { + "start": 15129.9, + "end": 15130.42, + "probability": 0.5958 + }, + { + "start": 15131.34, + "end": 15132.92, + "probability": 0.9844 + }, + { + "start": 15133.54, + "end": 15134.36, + "probability": 0.9238 + }, + { + "start": 15134.56, + "end": 15135.58, + "probability": 0.5044 + }, + { + "start": 15135.62, + "end": 15137.78, + "probability": 0.9793 + }, + { + "start": 15138.38, + "end": 15140.4, + "probability": 0.9759 + }, + { + "start": 15140.52, + "end": 15143.18, + "probability": 0.9933 + }, + { + "start": 15144.28, + "end": 15148.86, + "probability": 0.9805 + }, + { + "start": 15149.02, + "end": 15150.56, + "probability": 0.9802 + }, + { + "start": 15151.4, + "end": 15153.48, + "probability": 0.9778 + }, + { + "start": 15154.0, + "end": 15158.96, + "probability": 0.9449 + }, + { + "start": 15159.68, + "end": 15163.28, + "probability": 0.9619 + }, + { + "start": 15163.4, + "end": 15165.84, + "probability": 0.9429 + }, + { + "start": 15166.78, + "end": 15167.92, + "probability": 0.8489 + }, + { + "start": 15169.36, + "end": 15171.32, + "probability": 0.9964 + }, + { + "start": 15171.32, + "end": 15174.28, + "probability": 0.9969 + }, + { + "start": 15175.18, + "end": 15179.34, + "probability": 0.9825 + }, + { + "start": 15181.04, + "end": 15183.98, + "probability": 0.9987 + }, + { + "start": 15184.7, + "end": 15187.04, + "probability": 0.9981 + }, + { + "start": 15188.12, + "end": 15190.04, + "probability": 0.9797 + }, + { + "start": 15190.76, + "end": 15193.22, + "probability": 0.993 + }, + { + "start": 15194.04, + "end": 15198.02, + "probability": 0.979 + }, + { + "start": 15198.62, + "end": 15207.34, + "probability": 0.9848 + }, + { + "start": 15207.88, + "end": 15211.96, + "probability": 0.9883 + }, + { + "start": 15212.66, + "end": 15216.12, + "probability": 0.9872 + }, + { + "start": 15217.1, + "end": 15221.66, + "probability": 0.9904 + }, + { + "start": 15222.24, + "end": 15225.14, + "probability": 0.998 + }, + { + "start": 15225.14, + "end": 15228.82, + "probability": 0.9993 + }, + { + "start": 15229.48, + "end": 15231.3, + "probability": 0.9949 + }, + { + "start": 15232.0, + "end": 15232.26, + "probability": 0.7852 + }, + { + "start": 15232.94, + "end": 15237.24, + "probability": 0.9883 + }, + { + "start": 15238.22, + "end": 15242.76, + "probability": 0.9922 + }, + { + "start": 15243.3, + "end": 15245.52, + "probability": 0.7556 + }, + { + "start": 15246.18, + "end": 15249.16, + "probability": 0.9476 + }, + { + "start": 15249.16, + "end": 15253.02, + "probability": 0.9903 + }, + { + "start": 15254.24, + "end": 15255.7, + "probability": 0.9976 + }, + { + "start": 15256.54, + "end": 15261.04, + "probability": 0.9955 + }, + { + "start": 15262.04, + "end": 15263.6, + "probability": 0.8272 + }, + { + "start": 15264.34, + "end": 15267.14, + "probability": 0.9966 + }, + { + "start": 15267.14, + "end": 15270.7, + "probability": 0.9879 + }, + { + "start": 15271.16, + "end": 15275.46, + "probability": 0.9818 + }, + { + "start": 15276.36, + "end": 15280.4, + "probability": 0.984 + }, + { + "start": 15281.36, + "end": 15285.38, + "probability": 0.9954 + }, + { + "start": 15285.74, + "end": 15286.28, + "probability": 0.8929 + }, + { + "start": 15287.4, + "end": 15288.12, + "probability": 0.8289 + }, + { + "start": 15289.0, + "end": 15293.22, + "probability": 0.9915 + }, + { + "start": 15294.1, + "end": 15295.86, + "probability": 0.8076 + }, + { + "start": 15296.78, + "end": 15301.78, + "probability": 0.9943 + }, + { + "start": 15302.46, + "end": 15304.24, + "probability": 0.9971 + }, + { + "start": 15305.24, + "end": 15306.42, + "probability": 0.9189 + }, + { + "start": 15306.58, + "end": 15310.7, + "probability": 0.9979 + }, + { + "start": 15311.22, + "end": 15314.06, + "probability": 0.9677 + }, + { + "start": 15314.58, + "end": 15316.58, + "probability": 0.9385 + }, + { + "start": 15317.64, + "end": 15318.6, + "probability": 0.9674 + }, + { + "start": 15319.32, + "end": 15320.38, + "probability": 0.7216 + }, + { + "start": 15320.72, + "end": 15321.62, + "probability": 0.8693 + }, + { + "start": 15321.72, + "end": 15322.1, + "probability": 0.8551 + }, + { + "start": 15322.16, + "end": 15323.0, + "probability": 0.6602 + }, + { + "start": 15325.54, + "end": 15327.92, + "probability": 0.9474 + }, + { + "start": 15329.02, + "end": 15334.08, + "probability": 0.9762 + }, + { + "start": 15334.44, + "end": 15337.92, + "probability": 0.9528 + }, + { + "start": 15338.7, + "end": 15340.6, + "probability": 0.4575 + }, + { + "start": 15340.8, + "end": 15342.38, + "probability": 0.9385 + }, + { + "start": 15343.02, + "end": 15347.64, + "probability": 0.9921 + }, + { + "start": 15348.0, + "end": 15349.06, + "probability": 0.9937 + }, + { + "start": 15349.68, + "end": 15351.14, + "probability": 0.9985 + }, + { + "start": 15351.72, + "end": 15354.26, + "probability": 0.997 + }, + { + "start": 15354.72, + "end": 15356.56, + "probability": 0.9383 + }, + { + "start": 15356.62, + "end": 15356.86, + "probability": 0.7104 + }, + { + "start": 15357.76, + "end": 15360.26, + "probability": 0.948 + }, + { + "start": 15361.08, + "end": 15361.56, + "probability": 0.9589 + }, + { + "start": 15362.18, + "end": 15362.76, + "probability": 0.819 + }, + { + "start": 15363.44, + "end": 15364.46, + "probability": 0.9754 + }, + { + "start": 15365.1, + "end": 15367.1, + "probability": 0.984 + }, + { + "start": 15367.78, + "end": 15369.02, + "probability": 0.9235 + }, + { + "start": 15369.66, + "end": 15370.43, + "probability": 0.9253 + }, + { + "start": 15370.84, + "end": 15371.9, + "probability": 0.9934 + }, + { + "start": 15373.12, + "end": 15375.1, + "probability": 0.886 + }, + { + "start": 15375.94, + "end": 15379.82, + "probability": 0.6842 + }, + { + "start": 15385.96, + "end": 15386.82, + "probability": 0.071 + }, + { + "start": 15388.06, + "end": 15388.06, + "probability": 0.0941 + }, + { + "start": 15388.42, + "end": 15388.46, + "probability": 0.2068 + }, + { + "start": 15412.14, + "end": 15412.68, + "probability": 0.1878 + }, + { + "start": 15413.86, + "end": 15417.16, + "probability": 0.6891 + }, + { + "start": 15417.74, + "end": 15419.06, + "probability": 0.8241 + }, + { + "start": 15419.58, + "end": 15420.8, + "probability": 0.9775 + }, + { + "start": 15420.9, + "end": 15422.9, + "probability": 0.7431 + }, + { + "start": 15423.2, + "end": 15423.82, + "probability": 0.8301 + }, + { + "start": 15424.88, + "end": 15428.66, + "probability": 0.9951 + }, + { + "start": 15428.82, + "end": 15430.68, + "probability": 0.7766 + }, + { + "start": 15431.34, + "end": 15434.36, + "probability": 0.9623 + }, + { + "start": 15435.0, + "end": 15438.94, + "probability": 0.988 + }, + { + "start": 15439.62, + "end": 15444.08, + "probability": 0.9805 + }, + { + "start": 15445.56, + "end": 15447.86, + "probability": 0.8878 + }, + { + "start": 15448.86, + "end": 15454.18, + "probability": 0.9971 + }, + { + "start": 15454.86, + "end": 15458.3, + "probability": 0.9993 + }, + { + "start": 15458.3, + "end": 15462.16, + "probability": 0.9898 + }, + { + "start": 15462.76, + "end": 15464.96, + "probability": 0.9807 + }, + { + "start": 15465.44, + "end": 15469.4, + "probability": 0.9436 + }, + { + "start": 15469.88, + "end": 15471.26, + "probability": 0.7832 + }, + { + "start": 15471.9, + "end": 15477.72, + "probability": 0.9944 + }, + { + "start": 15478.72, + "end": 15481.08, + "probability": 0.9763 + }, + { + "start": 15481.68, + "end": 15483.82, + "probability": 0.9966 + }, + { + "start": 15484.42, + "end": 15485.4, + "probability": 0.916 + }, + { + "start": 15485.82, + "end": 15492.2, + "probability": 0.9902 + }, + { + "start": 15492.7, + "end": 15494.82, + "probability": 0.9965 + }, + { + "start": 15495.2, + "end": 15497.92, + "probability": 0.9483 + }, + { + "start": 15498.38, + "end": 15501.26, + "probability": 0.8914 + }, + { + "start": 15501.56, + "end": 15506.94, + "probability": 0.9395 + }, + { + "start": 15507.4, + "end": 15508.0, + "probability": 0.7327 + }, + { + "start": 15508.38, + "end": 15509.22, + "probability": 0.9706 + }, + { + "start": 15509.28, + "end": 15509.78, + "probability": 0.8034 + }, + { + "start": 15510.82, + "end": 15514.2, + "probability": 0.9508 + }, + { + "start": 15514.74, + "end": 15515.9, + "probability": 0.8119 + }, + { + "start": 15516.42, + "end": 15517.34, + "probability": 0.6124 + }, + { + "start": 15517.84, + "end": 15522.2, + "probability": 0.9583 + }, + { + "start": 15523.58, + "end": 15525.36, + "probability": 0.9014 + }, + { + "start": 15526.44, + "end": 15528.86, + "probability": 0.9902 + }, + { + "start": 15529.7, + "end": 15532.44, + "probability": 0.9861 + }, + { + "start": 15533.28, + "end": 15536.74, + "probability": 0.8293 + }, + { + "start": 15537.38, + "end": 15539.08, + "probability": 0.9507 + }, + { + "start": 15539.46, + "end": 15541.12, + "probability": 0.9736 + }, + { + "start": 15541.48, + "end": 15542.42, + "probability": 0.8334 + }, + { + "start": 15542.56, + "end": 15544.8, + "probability": 0.9568 + }, + { + "start": 15545.56, + "end": 15548.26, + "probability": 0.9805 + }, + { + "start": 15548.28, + "end": 15552.14, + "probability": 0.9185 + }, + { + "start": 15552.58, + "end": 15553.32, + "probability": 0.4353 + }, + { + "start": 15553.9, + "end": 15557.66, + "probability": 0.7891 + }, + { + "start": 15557.66, + "end": 15561.26, + "probability": 0.9923 + }, + { + "start": 15561.78, + "end": 15565.24, + "probability": 0.9929 + }, + { + "start": 15565.3, + "end": 15565.94, + "probability": 0.8768 + }, + { + "start": 15566.24, + "end": 15567.42, + "probability": 0.7426 + }, + { + "start": 15568.42, + "end": 15570.12, + "probability": 0.5443 + }, + { + "start": 15571.1, + "end": 15572.64, + "probability": 0.7619 + }, + { + "start": 15572.94, + "end": 15576.02, + "probability": 0.9726 + }, + { + "start": 15576.4, + "end": 15579.22, + "probability": 0.9888 + }, + { + "start": 15579.62, + "end": 15585.12, + "probability": 0.9954 + }, + { + "start": 15585.8, + "end": 15591.32, + "probability": 0.998 + }, + { + "start": 15591.84, + "end": 15594.44, + "probability": 0.9595 + }, + { + "start": 15595.26, + "end": 15598.0, + "probability": 0.972 + }, + { + "start": 15598.0, + "end": 15601.44, + "probability": 0.9985 + }, + { + "start": 15601.78, + "end": 15603.42, + "probability": 0.9927 + }, + { + "start": 15603.92, + "end": 15606.04, + "probability": 0.9487 + }, + { + "start": 15607.44, + "end": 15608.2, + "probability": 0.8716 + }, + { + "start": 15609.36, + "end": 15610.98, + "probability": 0.9915 + }, + { + "start": 15611.7, + "end": 15615.18, + "probability": 0.9757 + }, + { + "start": 15616.2, + "end": 15617.76, + "probability": 0.9144 + }, + { + "start": 15619.2, + "end": 15620.48, + "probability": 0.9463 + }, + { + "start": 15621.36, + "end": 15622.62, + "probability": 0.9788 + }, + { + "start": 15623.56, + "end": 15624.58, + "probability": 0.9581 + }, + { + "start": 15625.32, + "end": 15626.38, + "probability": 0.9924 + }, + { + "start": 15627.04, + "end": 15627.9, + "probability": 0.9708 + }, + { + "start": 15628.42, + "end": 15633.6, + "probability": 0.9645 + }, + { + "start": 15634.24, + "end": 15634.44, + "probability": 0.5984 + }, + { + "start": 15636.88, + "end": 15638.76, + "probability": 0.81 + }, + { + "start": 15639.3, + "end": 15641.86, + "probability": 0.7871 + }, + { + "start": 15642.66, + "end": 15643.64, + "probability": 0.5726 + }, + { + "start": 15644.76, + "end": 15645.36, + "probability": 0.5121 + }, + { + "start": 15646.02, + "end": 15647.08, + "probability": 0.9406 + }, + { + "start": 15666.5, + "end": 15668.18, + "probability": 0.8032 + }, + { + "start": 15668.86, + "end": 15669.98, + "probability": 0.7343 + }, + { + "start": 15670.06, + "end": 15671.8, + "probability": 0.8341 + }, + { + "start": 15672.94, + "end": 15676.28, + "probability": 0.9575 + }, + { + "start": 15677.42, + "end": 15678.06, + "probability": 0.8738 + }, + { + "start": 15678.62, + "end": 15681.52, + "probability": 0.9847 + }, + { + "start": 15681.7, + "end": 15685.8, + "probability": 0.7751 + }, + { + "start": 15687.5, + "end": 15690.08, + "probability": 0.9085 + }, + { + "start": 15690.78, + "end": 15691.42, + "probability": 0.9919 + }, + { + "start": 15692.6, + "end": 15693.7, + "probability": 0.9885 + }, + { + "start": 15694.9, + "end": 15696.58, + "probability": 0.8953 + }, + { + "start": 15697.52, + "end": 15698.94, + "probability": 0.8278 + }, + { + "start": 15699.8, + "end": 15701.24, + "probability": 0.9917 + }, + { + "start": 15701.98, + "end": 15702.68, + "probability": 0.7622 + }, + { + "start": 15702.82, + "end": 15704.62, + "probability": 0.9155 + }, + { + "start": 15704.82, + "end": 15705.5, + "probability": 0.9399 + }, + { + "start": 15706.46, + "end": 15708.78, + "probability": 0.8814 + }, + { + "start": 15709.14, + "end": 15711.38, + "probability": 0.8182 + }, + { + "start": 15711.88, + "end": 15714.66, + "probability": 0.98 + }, + { + "start": 15715.52, + "end": 15717.64, + "probability": 0.9757 + }, + { + "start": 15718.56, + "end": 15723.74, + "probability": 0.8849 + }, + { + "start": 15724.28, + "end": 15726.68, + "probability": 0.9935 + }, + { + "start": 15727.36, + "end": 15729.62, + "probability": 0.9011 + }, + { + "start": 15730.14, + "end": 15731.4, + "probability": 0.9654 + }, + { + "start": 15732.24, + "end": 15732.68, + "probability": 0.9105 + }, + { + "start": 15732.76, + "end": 15736.74, + "probability": 0.7998 + }, + { + "start": 15736.88, + "end": 15738.64, + "probability": 0.9126 + }, + { + "start": 15739.12, + "end": 15739.62, + "probability": 0.9259 + }, + { + "start": 15740.04, + "end": 15742.72, + "probability": 0.9019 + }, + { + "start": 15742.94, + "end": 15742.94, + "probability": 0.2169 + }, + { + "start": 15742.94, + "end": 15744.7, + "probability": 0.6796 + }, + { + "start": 15745.18, + "end": 15746.02, + "probability": 0.3024 + }, + { + "start": 15746.06, + "end": 15748.86, + "probability": 0.873 + }, + { + "start": 15749.36, + "end": 15750.44, + "probability": 0.7659 + }, + { + "start": 15750.68, + "end": 15755.12, + "probability": 0.9275 + }, + { + "start": 15755.96, + "end": 15761.36, + "probability": 0.9971 + }, + { + "start": 15762.1, + "end": 15764.52, + "probability": 0.9854 + }, + { + "start": 15764.52, + "end": 15767.88, + "probability": 0.9878 + }, + { + "start": 15768.22, + "end": 15768.94, + "probability": 0.9761 + }, + { + "start": 15769.32, + "end": 15770.3, + "probability": 0.9378 + }, + { + "start": 15770.74, + "end": 15773.9, + "probability": 0.9952 + }, + { + "start": 15774.48, + "end": 15775.54, + "probability": 0.8818 + }, + { + "start": 15776.04, + "end": 15780.04, + "probability": 0.9906 + }, + { + "start": 15780.72, + "end": 15781.58, + "probability": 0.9854 + }, + { + "start": 15782.02, + "end": 15783.71, + "probability": 0.991 + }, + { + "start": 15784.42, + "end": 15790.3, + "probability": 0.9885 + }, + { + "start": 15790.78, + "end": 15793.92, + "probability": 0.9138 + }, + { + "start": 15794.4, + "end": 15795.56, + "probability": 0.9786 + }, + { + "start": 15796.04, + "end": 15798.78, + "probability": 0.9909 + }, + { + "start": 15799.28, + "end": 15801.13, + "probability": 0.7967 + }, + { + "start": 15801.68, + "end": 15802.54, + "probability": 0.4974 + }, + { + "start": 15802.58, + "end": 15806.18, + "probability": 0.957 + }, + { + "start": 15806.4, + "end": 15808.12, + "probability": 0.9102 + }, + { + "start": 15808.46, + "end": 15808.94, + "probability": 0.9453 + }, + { + "start": 15809.42, + "end": 15810.36, + "probability": 0.9449 + }, + { + "start": 15811.04, + "end": 15813.08, + "probability": 0.9722 + }, + { + "start": 15813.72, + "end": 15816.4, + "probability": 0.942 + }, + { + "start": 15816.98, + "end": 15817.92, + "probability": 0.9835 + }, + { + "start": 15818.02, + "end": 15820.34, + "probability": 0.9751 + }, + { + "start": 15820.96, + "end": 15823.54, + "probability": 0.9031 + }, + { + "start": 15823.54, + "end": 15827.96, + "probability": 0.95 + }, + { + "start": 15830.85, + "end": 15831.28, + "probability": 0.1155 + }, + { + "start": 15831.28, + "end": 15831.28, + "probability": 0.0671 + }, + { + "start": 15831.28, + "end": 15833.72, + "probability": 0.9814 + }, + { + "start": 15834.48, + "end": 15836.02, + "probability": 0.9289 + }, + { + "start": 15837.08, + "end": 15837.96, + "probability": 0.7448 + }, + { + "start": 15838.6, + "end": 15840.86, + "probability": 0.9912 + }, + { + "start": 15841.4, + "end": 15845.9, + "probability": 0.9712 + }, + { + "start": 15846.4, + "end": 15848.9, + "probability": 0.9976 + }, + { + "start": 15849.42, + "end": 15851.42, + "probability": 0.9995 + }, + { + "start": 15851.44, + "end": 15855.26, + "probability": 0.9985 + }, + { + "start": 15855.82, + "end": 15858.78, + "probability": 0.9966 + }, + { + "start": 15858.9, + "end": 15859.94, + "probability": 0.6278 + }, + { + "start": 15860.3, + "end": 15861.56, + "probability": 0.959 + }, + { + "start": 15862.78, + "end": 15863.1, + "probability": 0.7663 + }, + { + "start": 15864.04, + "end": 15864.44, + "probability": 0.7676 + }, + { + "start": 15865.96, + "end": 15867.82, + "probability": 0.8979 + }, + { + "start": 15868.34, + "end": 15869.18, + "probability": 0.9891 + }, + { + "start": 15869.8, + "end": 15870.28, + "probability": 0.9261 + }, + { + "start": 15870.98, + "end": 15874.04, + "probability": 0.8641 + }, + { + "start": 15875.54, + "end": 15876.08, + "probability": 0.4936 + }, + { + "start": 15877.84, + "end": 15880.72, + "probability": 0.7892 + }, + { + "start": 15881.42, + "end": 15882.88, + "probability": 0.9297 + }, + { + "start": 15883.76, + "end": 15885.06, + "probability": 0.9016 + }, + { + "start": 15885.06, + "end": 15888.9, + "probability": 0.8779 + }, + { + "start": 15889.74, + "end": 15893.4, + "probability": 0.8923 + }, + { + "start": 15893.4, + "end": 15897.42, + "probability": 0.9738 + }, + { + "start": 15897.64, + "end": 15900.88, + "probability": 0.8102 + }, + { + "start": 15901.32, + "end": 15905.62, + "probability": 0.9194 + }, + { + "start": 15907.4, + "end": 15911.6, + "probability": 0.9355 + }, + { + "start": 15912.14, + "end": 15913.96, + "probability": 0.9929 + }, + { + "start": 15914.12, + "end": 15916.02, + "probability": 0.9881 + }, + { + "start": 15916.4, + "end": 15919.34, + "probability": 0.9717 + }, + { + "start": 15920.02, + "end": 15923.7, + "probability": 0.9878 + }, + { + "start": 15924.26, + "end": 15926.5, + "probability": 0.9871 + }, + { + "start": 15927.18, + "end": 15929.58, + "probability": 0.9577 + }, + { + "start": 15930.06, + "end": 15931.16, + "probability": 0.9836 + }, + { + "start": 15931.3, + "end": 15932.16, + "probability": 0.8789 + }, + { + "start": 15932.74, + "end": 15935.06, + "probability": 0.9956 + }, + { + "start": 15935.76, + "end": 15940.54, + "probability": 0.8394 + }, + { + "start": 15942.0, + "end": 15943.18, + "probability": 0.9824 + }, + { + "start": 15943.7, + "end": 15944.76, + "probability": 0.7721 + }, + { + "start": 15945.46, + "end": 15948.84, + "probability": 0.9569 + }, + { + "start": 15949.76, + "end": 15950.82, + "probability": 0.8849 + }, + { + "start": 15951.38, + "end": 15952.66, + "probability": 0.7541 + }, + { + "start": 15953.0, + "end": 15956.24, + "probability": 0.998 + }, + { + "start": 15956.62, + "end": 15957.84, + "probability": 0.9548 + }, + { + "start": 15958.34, + "end": 15959.72, + "probability": 0.9436 + }, + { + "start": 15960.44, + "end": 15962.66, + "probability": 0.9892 + }, + { + "start": 15963.14, + "end": 15963.88, + "probability": 0.6392 + }, + { + "start": 15964.48, + "end": 15968.58, + "probability": 0.8101 + }, + { + "start": 15969.0, + "end": 15969.54, + "probability": 0.9482 + }, + { + "start": 15969.94, + "end": 15971.58, + "probability": 0.9663 + }, + { + "start": 15972.26, + "end": 15973.1, + "probability": 0.9509 + }, + { + "start": 15973.26, + "end": 15976.1, + "probability": 0.9923 + }, + { + "start": 15976.34, + "end": 15976.84, + "probability": 0.9915 + }, + { + "start": 15978.1, + "end": 15980.64, + "probability": 0.9024 + }, + { + "start": 15980.64, + "end": 15980.96, + "probability": 0.1989 + }, + { + "start": 15980.96, + "end": 15981.22, + "probability": 0.4981 + }, + { + "start": 15981.56, + "end": 15983.16, + "probability": 0.9868 + }, + { + "start": 15983.32, + "end": 15986.58, + "probability": 0.9677 + }, + { + "start": 15987.16, + "end": 15988.12, + "probability": 0.9897 + }, + { + "start": 15988.4, + "end": 15989.24, + "probability": 0.9024 + }, + { + "start": 15989.7, + "end": 15991.42, + "probability": 0.9596 + }, + { + "start": 15991.88, + "end": 15995.52, + "probability": 0.9623 + }, + { + "start": 15995.74, + "end": 15996.64, + "probability": 0.8999 + }, + { + "start": 15997.1, + "end": 15998.74, + "probability": 0.7556 + }, + { + "start": 15999.1, + "end": 15999.76, + "probability": 0.4989 + }, + { + "start": 16000.02, + "end": 16000.58, + "probability": 0.8435 + }, + { + "start": 16000.78, + "end": 16003.08, + "probability": 0.7083 + }, + { + "start": 16003.24, + "end": 16004.58, + "probability": 0.6493 + }, + { + "start": 16007.51, + "end": 16008.84, + "probability": 0.6995 + }, + { + "start": 16022.12, + "end": 16022.7, + "probability": 0.2968 + }, + { + "start": 16024.58, + "end": 16025.7, + "probability": 0.7694 + }, + { + "start": 16026.72, + "end": 16028.62, + "probability": 0.71 + }, + { + "start": 16029.82, + "end": 16030.86, + "probability": 0.8668 + }, + { + "start": 16032.78, + "end": 16035.64, + "probability": 0.8649 + }, + { + "start": 16037.02, + "end": 16037.62, + "probability": 0.9913 + }, + { + "start": 16038.5, + "end": 16040.26, + "probability": 0.9943 + }, + { + "start": 16041.44, + "end": 16043.96, + "probability": 0.976 + }, + { + "start": 16046.16, + "end": 16049.94, + "probability": 0.998 + }, + { + "start": 16050.56, + "end": 16052.98, + "probability": 0.993 + }, + { + "start": 16054.44, + "end": 16056.44, + "probability": 0.9972 + }, + { + "start": 16056.7, + "end": 16059.74, + "probability": 0.9858 + }, + { + "start": 16061.22, + "end": 16064.28, + "probability": 0.9203 + }, + { + "start": 16065.3, + "end": 16067.18, + "probability": 0.9361 + }, + { + "start": 16067.88, + "end": 16073.02, + "probability": 0.9824 + }, + { + "start": 16073.9, + "end": 16075.9, + "probability": 0.9288 + }, + { + "start": 16076.02, + "end": 16078.4, + "probability": 0.9581 + }, + { + "start": 16079.24, + "end": 16082.78, + "probability": 0.9876 + }, + { + "start": 16084.08, + "end": 16087.16, + "probability": 0.953 + }, + { + "start": 16087.16, + "end": 16092.74, + "probability": 0.9117 + }, + { + "start": 16093.6, + "end": 16095.96, + "probability": 0.9756 + }, + { + "start": 16095.96, + "end": 16099.62, + "probability": 0.9796 + }, + { + "start": 16100.68, + "end": 16100.9, + "probability": 0.7082 + }, + { + "start": 16101.06, + "end": 16105.0, + "probability": 0.9668 + }, + { + "start": 16106.02, + "end": 16110.48, + "probability": 0.9971 + }, + { + "start": 16110.86, + "end": 16112.32, + "probability": 0.8293 + }, + { + "start": 16113.72, + "end": 16115.2, + "probability": 0.9913 + }, + { + "start": 16116.8, + "end": 16117.34, + "probability": 0.888 + }, + { + "start": 16117.8, + "end": 16119.12, + "probability": 0.9518 + }, + { + "start": 16119.3, + "end": 16123.26, + "probability": 0.9701 + }, + { + "start": 16124.1, + "end": 16127.62, + "probability": 0.9791 + }, + { + "start": 16128.68, + "end": 16131.76, + "probability": 0.6963 + }, + { + "start": 16132.64, + "end": 16133.45, + "probability": 0.9741 + }, + { + "start": 16134.18, + "end": 16138.8, + "probability": 0.9683 + }, + { + "start": 16138.8, + "end": 16143.84, + "probability": 0.9969 + }, + { + "start": 16144.84, + "end": 16147.46, + "probability": 0.9976 + }, + { + "start": 16148.12, + "end": 16150.34, + "probability": 0.9714 + }, + { + "start": 16151.08, + "end": 16151.74, + "probability": 0.7261 + }, + { + "start": 16152.88, + "end": 16154.16, + "probability": 0.9692 + }, + { + "start": 16154.34, + "end": 16157.22, + "probability": 0.906 + }, + { + "start": 16157.9, + "end": 16161.44, + "probability": 0.9885 + }, + { + "start": 16162.06, + "end": 16168.24, + "probability": 0.9995 + }, + { + "start": 16169.38, + "end": 16170.82, + "probability": 0.8792 + }, + { + "start": 16172.24, + "end": 16173.44, + "probability": 0.7234 + }, + { + "start": 16173.76, + "end": 16177.78, + "probability": 0.9928 + }, + { + "start": 16177.78, + "end": 16182.22, + "probability": 0.9951 + }, + { + "start": 16182.86, + "end": 16185.62, + "probability": 0.7745 + }, + { + "start": 16186.18, + "end": 16187.3, + "probability": 0.9238 + }, + { + "start": 16187.68, + "end": 16188.38, + "probability": 0.9409 + }, + { + "start": 16188.6, + "end": 16189.64, + "probability": 0.7929 + }, + { + "start": 16189.72, + "end": 16192.34, + "probability": 0.9914 + }, + { + "start": 16192.8, + "end": 16193.34, + "probability": 0.7365 + }, + { + "start": 16193.46, + "end": 16194.18, + "probability": 0.7643 + }, + { + "start": 16194.66, + "end": 16195.42, + "probability": 0.8012 + }, + { + "start": 16196.34, + "end": 16197.1, + "probability": 0.7818 + }, + { + "start": 16198.3, + "end": 16203.34, + "probability": 0.9951 + }, + { + "start": 16204.1, + "end": 16206.4, + "probability": 0.9919 + }, + { + "start": 16207.24, + "end": 16211.4, + "probability": 0.9165 + }, + { + "start": 16212.46, + "end": 16214.36, + "probability": 0.8153 + }, + { + "start": 16214.42, + "end": 16217.08, + "probability": 0.9924 + }, + { + "start": 16217.76, + "end": 16219.7, + "probability": 0.8975 + }, + { + "start": 16220.68, + "end": 16221.38, + "probability": 0.8177 + }, + { + "start": 16221.92, + "end": 16222.9, + "probability": 0.7504 + }, + { + "start": 16223.0, + "end": 16224.12, + "probability": 0.9864 + }, + { + "start": 16224.2, + "end": 16227.38, + "probability": 0.9863 + }, + { + "start": 16227.92, + "end": 16229.28, + "probability": 0.9767 + }, + { + "start": 16229.96, + "end": 16233.6, + "probability": 0.9958 + }, + { + "start": 16234.1, + "end": 16235.4, + "probability": 0.7273 + }, + { + "start": 16235.84, + "end": 16238.14, + "probability": 0.9961 + }, + { + "start": 16238.78, + "end": 16241.78, + "probability": 0.8772 + }, + { + "start": 16242.68, + "end": 16244.94, + "probability": 0.9979 + }, + { + "start": 16245.48, + "end": 16247.6, + "probability": 0.9944 + }, + { + "start": 16248.18, + "end": 16251.12, + "probability": 0.9819 + }, + { + "start": 16251.12, + "end": 16255.22, + "probability": 0.9956 + }, + { + "start": 16255.98, + "end": 16256.96, + "probability": 0.9626 + }, + { + "start": 16257.6, + "end": 16259.04, + "probability": 0.9696 + }, + { + "start": 16259.64, + "end": 16264.16, + "probability": 0.974 + }, + { + "start": 16264.16, + "end": 16267.74, + "probability": 0.9922 + }, + { + "start": 16267.82, + "end": 16270.58, + "probability": 0.9966 + }, + { + "start": 16271.26, + "end": 16274.78, + "probability": 0.9355 + }, + { + "start": 16275.46, + "end": 16279.24, + "probability": 0.9893 + }, + { + "start": 16279.96, + "end": 16282.0, + "probability": 0.8022 + }, + { + "start": 16282.72, + "end": 16283.72, + "probability": 0.7505 + }, + { + "start": 16284.3, + "end": 16287.62, + "probability": 0.9468 + }, + { + "start": 16288.4, + "end": 16290.88, + "probability": 0.9331 + }, + { + "start": 16291.38, + "end": 16294.08, + "probability": 0.9983 + }, + { + "start": 16294.7, + "end": 16296.62, + "probability": 0.9843 + }, + { + "start": 16297.14, + "end": 16298.62, + "probability": 0.979 + }, + { + "start": 16299.84, + "end": 16301.92, + "probability": 0.6558 + }, + { + "start": 16302.6, + "end": 16306.38, + "probability": 0.6189 + }, + { + "start": 16306.98, + "end": 16310.92, + "probability": 0.7123 + }, + { + "start": 16311.34, + "end": 16315.24, + "probability": 0.7978 + }, + { + "start": 16316.04, + "end": 16317.62, + "probability": 0.9473 + }, + { + "start": 16318.26, + "end": 16321.78, + "probability": 0.9879 + }, + { + "start": 16322.66, + "end": 16325.81, + "probability": 0.9238 + }, + { + "start": 16326.38, + "end": 16328.72, + "probability": 0.9279 + }, + { + "start": 16329.56, + "end": 16333.46, + "probability": 0.9956 + }, + { + "start": 16334.3, + "end": 16335.86, + "probability": 0.9509 + }, + { + "start": 16336.6, + "end": 16338.42, + "probability": 0.9951 + }, + { + "start": 16339.32, + "end": 16344.08, + "probability": 0.7992 + }, + { + "start": 16344.68, + "end": 16346.84, + "probability": 0.9961 + }, + { + "start": 16347.5, + "end": 16348.12, + "probability": 0.9729 + }, + { + "start": 16348.54, + "end": 16348.98, + "probability": 0.9054 + }, + { + "start": 16349.9, + "end": 16353.14, + "probability": 0.5612 + }, + { + "start": 16353.14, + "end": 16355.0, + "probability": 0.81 + }, + { + "start": 16356.0, + "end": 16357.5, + "probability": 0.6637 + }, + { + "start": 16362.1, + "end": 16365.34, + "probability": 0.9769 + }, + { + "start": 16366.92, + "end": 16367.52, + "probability": 0.9142 + }, + { + "start": 16373.38, + "end": 16374.96, + "probability": 0.5827 + }, + { + "start": 16376.5, + "end": 16382.78, + "probability": 0.894 + }, + { + "start": 16383.94, + "end": 16384.6, + "probability": 0.7454 + }, + { + "start": 16386.44, + "end": 16388.2, + "probability": 0.986 + }, + { + "start": 16390.01, + "end": 16392.06, + "probability": 0.9868 + }, + { + "start": 16393.26, + "end": 16397.54, + "probability": 0.9933 + }, + { + "start": 16399.5, + "end": 16399.68, + "probability": 0.733 + }, + { + "start": 16399.74, + "end": 16399.94, + "probability": 0.777 + }, + { + "start": 16400.08, + "end": 16402.88, + "probability": 0.9845 + }, + { + "start": 16403.06, + "end": 16403.9, + "probability": 0.9694 + }, + { + "start": 16404.38, + "end": 16405.68, + "probability": 0.8926 + }, + { + "start": 16406.18, + "end": 16408.76, + "probability": 0.9386 + }, + { + "start": 16410.12, + "end": 16410.5, + "probability": 0.7474 + }, + { + "start": 16411.38, + "end": 16413.36, + "probability": 0.9614 + }, + { + "start": 16413.58, + "end": 16414.06, + "probability": 0.6603 + }, + { + "start": 16414.18, + "end": 16416.48, + "probability": 0.9489 + }, + { + "start": 16416.88, + "end": 16418.52, + "probability": 0.9442 + }, + { + "start": 16420.42, + "end": 16422.1, + "probability": 0.9412 + }, + { + "start": 16422.98, + "end": 16423.7, + "probability": 0.9774 + }, + { + "start": 16424.22, + "end": 16426.2, + "probability": 0.9803 + }, + { + "start": 16427.18, + "end": 16428.84, + "probability": 0.9883 + }, + { + "start": 16428.96, + "end": 16430.2, + "probability": 0.6619 + }, + { + "start": 16431.8, + "end": 16433.58, + "probability": 0.9827 + }, + { + "start": 16433.58, + "end": 16435.36, + "probability": 0.6093 + }, + { + "start": 16435.44, + "end": 16436.1, + "probability": 0.5578 + }, + { + "start": 16436.38, + "end": 16439.06, + "probability": 0.912 + }, + { + "start": 16439.86, + "end": 16443.52, + "probability": 0.9967 + }, + { + "start": 16443.52, + "end": 16446.7, + "probability": 0.9431 + }, + { + "start": 16447.96, + "end": 16449.72, + "probability": 0.9915 + }, + { + "start": 16450.84, + "end": 16455.88, + "probability": 0.9857 + }, + { + "start": 16456.42, + "end": 16456.72, + "probability": 0.9094 + }, + { + "start": 16458.52, + "end": 16460.7, + "probability": 0.9187 + }, + { + "start": 16461.46, + "end": 16464.04, + "probability": 0.9991 + }, + { + "start": 16465.62, + "end": 16465.74, + "probability": 0.6254 + }, + { + "start": 16465.94, + "end": 16466.52, + "probability": 0.7203 + }, + { + "start": 16466.6, + "end": 16468.99, + "probability": 0.9929 + }, + { + "start": 16469.62, + "end": 16472.0, + "probability": 0.9933 + }, + { + "start": 16474.06, + "end": 16474.86, + "probability": 0.9564 + }, + { + "start": 16475.72, + "end": 16478.28, + "probability": 0.9784 + }, + { + "start": 16478.98, + "end": 16479.5, + "probability": 0.9795 + }, + { + "start": 16480.42, + "end": 16480.82, + "probability": 0.9845 + }, + { + "start": 16482.36, + "end": 16483.46, + "probability": 0.8422 + }, + { + "start": 16484.12, + "end": 16487.04, + "probability": 0.9517 + }, + { + "start": 16488.8, + "end": 16492.48, + "probability": 0.9884 + }, + { + "start": 16493.74, + "end": 16494.48, + "probability": 0.9922 + }, + { + "start": 16495.06, + "end": 16495.78, + "probability": 0.9902 + }, + { + "start": 16496.48, + "end": 16497.34, + "probability": 0.9949 + }, + { + "start": 16497.92, + "end": 16499.98, + "probability": 0.9591 + }, + { + "start": 16500.92, + "end": 16503.14, + "probability": 0.9873 + }, + { + "start": 16506.0, + "end": 16509.8, + "probability": 0.9949 + }, + { + "start": 16510.96, + "end": 16511.7, + "probability": 0.793 + }, + { + "start": 16512.92, + "end": 16516.44, + "probability": 0.999 + }, + { + "start": 16516.66, + "end": 16518.92, + "probability": 0.9772 + }, + { + "start": 16519.6, + "end": 16521.2, + "probability": 0.9969 + }, + { + "start": 16522.58, + "end": 16525.08, + "probability": 0.9703 + }, + { + "start": 16526.12, + "end": 16527.54, + "probability": 0.9713 + }, + { + "start": 16528.34, + "end": 16530.32, + "probability": 0.963 + }, + { + "start": 16531.44, + "end": 16534.6, + "probability": 0.9402 + }, + { + "start": 16535.32, + "end": 16536.4, + "probability": 0.9923 + }, + { + "start": 16537.2, + "end": 16539.12, + "probability": 0.9033 + }, + { + "start": 16539.9, + "end": 16540.26, + "probability": 0.9728 + }, + { + "start": 16541.64, + "end": 16545.38, + "probability": 0.9927 + }, + { + "start": 16546.1, + "end": 16548.74, + "probability": 0.9969 + }, + { + "start": 16549.12, + "end": 16549.36, + "probability": 0.7785 + }, + { + "start": 16549.8, + "end": 16551.96, + "probability": 0.8201 + }, + { + "start": 16552.58, + "end": 16553.98, + "probability": 0.7836 + }, + { + "start": 16554.54, + "end": 16557.68, + "probability": 0.6398 + }, + { + "start": 16561.04, + "end": 16561.38, + "probability": 0.2983 + }, + { + "start": 16562.8, + "end": 16565.5, + "probability": 0.1576 + }, + { + "start": 16566.86, + "end": 16567.78, + "probability": 0.172 + }, + { + "start": 16582.32, + "end": 16583.48, + "probability": 0.2315 + }, + { + "start": 16584.04, + "end": 16584.74, + "probability": 0.5939 + }, + { + "start": 16587.74, + "end": 16591.06, + "probability": 0.9258 + }, + { + "start": 16591.92, + "end": 16594.04, + "probability": 0.9932 + }, + { + "start": 16595.28, + "end": 16596.54, + "probability": 0.9271 + }, + { + "start": 16597.5, + "end": 16598.48, + "probability": 0.5176 + }, + { + "start": 16599.64, + "end": 16600.78, + "probability": 0.6305 + }, + { + "start": 16600.98, + "end": 16601.96, + "probability": 0.8433 + }, + { + "start": 16602.26, + "end": 16604.5, + "probability": 0.594 + }, + { + "start": 16605.14, + "end": 16606.62, + "probability": 0.7325 + }, + { + "start": 16607.24, + "end": 16608.8, + "probability": 0.9883 + }, + { + "start": 16609.42, + "end": 16610.46, + "probability": 0.7724 + }, + { + "start": 16611.26, + "end": 16616.38, + "probability": 0.7861 + }, + { + "start": 16617.14, + "end": 16617.7, + "probability": 0.3627 + }, + { + "start": 16618.82, + "end": 16621.88, + "probability": 0.9846 + }, + { + "start": 16622.5, + "end": 16627.94, + "probability": 0.9591 + }, + { + "start": 16629.24, + "end": 16630.22, + "probability": 0.9087 + }, + { + "start": 16631.2, + "end": 16631.54, + "probability": 0.9324 + }, + { + "start": 16633.1, + "end": 16638.32, + "probability": 0.9381 + }, + { + "start": 16638.92, + "end": 16642.08, + "probability": 0.8924 + }, + { + "start": 16642.62, + "end": 16645.6, + "probability": 0.998 + }, + { + "start": 16646.8, + "end": 16653.16, + "probability": 0.8904 + }, + { + "start": 16654.1, + "end": 16657.3, + "probability": 0.9668 + }, + { + "start": 16657.9, + "end": 16660.72, + "probability": 0.9722 + }, + { + "start": 16661.26, + "end": 16662.8, + "probability": 0.8356 + }, + { + "start": 16663.22, + "end": 16667.56, + "probability": 0.9423 + }, + { + "start": 16668.28, + "end": 16668.92, + "probability": 0.7284 + }, + { + "start": 16669.6, + "end": 16671.76, + "probability": 0.9867 + }, + { + "start": 16671.8, + "end": 16675.52, + "probability": 0.9883 + }, + { + "start": 16676.06, + "end": 16676.64, + "probability": 0.9199 + }, + { + "start": 16677.44, + "end": 16681.88, + "probability": 0.846 + }, + { + "start": 16681.96, + "end": 16683.74, + "probability": 0.925 + }, + { + "start": 16684.64, + "end": 16685.22, + "probability": 0.835 + }, + { + "start": 16685.96, + "end": 16688.32, + "probability": 0.9943 + }, + { + "start": 16689.0, + "end": 16690.34, + "probability": 0.7994 + }, + { + "start": 16691.06, + "end": 16691.74, + "probability": 0.9338 + }, + { + "start": 16692.5, + "end": 16700.36, + "probability": 0.8798 + }, + { + "start": 16701.68, + "end": 16703.28, + "probability": 0.9693 + }, + { + "start": 16703.98, + "end": 16707.24, + "probability": 0.9858 + }, + { + "start": 16707.94, + "end": 16710.56, + "probability": 0.8985 + }, + { + "start": 16711.16, + "end": 16711.72, + "probability": 0.7396 + }, + { + "start": 16713.02, + "end": 16715.94, + "probability": 0.9557 + }, + { + "start": 16717.54, + "end": 16720.7, + "probability": 0.8349 + }, + { + "start": 16721.68, + "end": 16722.66, + "probability": 0.7442 + }, + { + "start": 16723.18, + "end": 16729.28, + "probability": 0.8062 + }, + { + "start": 16730.24, + "end": 16733.12, + "probability": 0.8915 + }, + { + "start": 16733.7, + "end": 16735.32, + "probability": 0.9349 + }, + { + "start": 16735.48, + "end": 16736.82, + "probability": 0.7034 + }, + { + "start": 16737.32, + "end": 16740.9, + "probability": 0.4982 + }, + { + "start": 16740.98, + "end": 16741.84, + "probability": 0.8067 + }, + { + "start": 16742.26, + "end": 16744.56, + "probability": 0.9403 + }, + { + "start": 16745.32, + "end": 16746.94, + "probability": 0.572 + }, + { + "start": 16747.58, + "end": 16749.74, + "probability": 0.9112 + }, + { + "start": 16750.32, + "end": 16752.38, + "probability": 0.9889 + }, + { + "start": 16752.94, + "end": 16755.2, + "probability": 0.9889 + }, + { + "start": 16756.38, + "end": 16757.14, + "probability": 0.6425 + }, + { + "start": 16759.2, + "end": 16761.66, + "probability": 0.9929 + }, + { + "start": 16762.04, + "end": 16764.64, + "probability": 0.9979 + }, + { + "start": 16765.44, + "end": 16770.82, + "probability": 0.9666 + }, + { + "start": 16771.44, + "end": 16772.4, + "probability": 0.7324 + }, + { + "start": 16772.94, + "end": 16775.16, + "probability": 0.8604 + }, + { + "start": 16775.96, + "end": 16777.92, + "probability": 0.9979 + }, + { + "start": 16778.5, + "end": 16780.58, + "probability": 0.939 + }, + { + "start": 16781.9, + "end": 16784.9, + "probability": 0.9947 + }, + { + "start": 16786.1, + "end": 16789.0, + "probability": 0.9418 + }, + { + "start": 16790.24, + "end": 16791.62, + "probability": 0.8867 + }, + { + "start": 16792.78, + "end": 16793.58, + "probability": 0.936 + }, + { + "start": 16794.96, + "end": 16797.02, + "probability": 0.995 + }, + { + "start": 16798.96, + "end": 16801.24, + "probability": 0.8926 + }, + { + "start": 16802.3, + "end": 16804.16, + "probability": 0.8057 + }, + { + "start": 16805.32, + "end": 16810.5, + "probability": 0.9405 + }, + { + "start": 16811.34, + "end": 16816.36, + "probability": 0.9439 + }, + { + "start": 16816.92, + "end": 16819.5, + "probability": 0.9644 + }, + { + "start": 16819.5, + "end": 16823.32, + "probability": 0.9602 + }, + { + "start": 16824.0, + "end": 16825.0, + "probability": 0.7264 + }, + { + "start": 16825.28, + "end": 16826.82, + "probability": 0.9972 + }, + { + "start": 16827.64, + "end": 16829.78, + "probability": 0.9849 + }, + { + "start": 16830.52, + "end": 16831.18, + "probability": 0.8598 + }, + { + "start": 16831.8, + "end": 16833.98, + "probability": 0.9933 + }, + { + "start": 16834.6, + "end": 16836.98, + "probability": 0.9863 + }, + { + "start": 16838.8, + "end": 16839.8, + "probability": 0.9502 + }, + { + "start": 16840.4, + "end": 16842.5, + "probability": 0.9912 + }, + { + "start": 16843.26, + "end": 16846.68, + "probability": 0.9861 + }, + { + "start": 16847.82, + "end": 16850.78, + "probability": 0.9141 + }, + { + "start": 16852.4, + "end": 16857.32, + "probability": 0.9912 + }, + { + "start": 16859.46, + "end": 16860.9, + "probability": 0.9194 + }, + { + "start": 16862.02, + "end": 16863.76, + "probability": 0.9855 + }, + { + "start": 16864.48, + "end": 16865.12, + "probability": 0.7411 + }, + { + "start": 16865.92, + "end": 16866.86, + "probability": 0.938 + }, + { + "start": 16868.12, + "end": 16869.64, + "probability": 0.7891 + }, + { + "start": 16870.34, + "end": 16871.18, + "probability": 0.8137 + }, + { + "start": 16872.02, + "end": 16873.84, + "probability": 0.8922 + }, + { + "start": 16874.62, + "end": 16875.68, + "probability": 0.7421 + }, + { + "start": 16876.46, + "end": 16877.42, + "probability": 0.592 + }, + { + "start": 16878.26, + "end": 16880.34, + "probability": 0.9405 + }, + { + "start": 16880.96, + "end": 16883.66, + "probability": 0.9785 + }, + { + "start": 16883.98, + "end": 16884.7, + "probability": 0.7698 + }, + { + "start": 16885.42, + "end": 16886.42, + "probability": 0.8976 + }, + { + "start": 16887.08, + "end": 16888.74, + "probability": 0.9521 + }, + { + "start": 16889.56, + "end": 16891.4, + "probability": 0.8529 + }, + { + "start": 16893.98, + "end": 16894.92, + "probability": 0.4366 + }, + { + "start": 16896.0, + "end": 16899.3, + "probability": 0.7661 + }, + { + "start": 16899.6, + "end": 16903.26, + "probability": 0.9863 + }, + { + "start": 16905.74, + "end": 16907.24, + "probability": 0.7567 + }, + { + "start": 16908.24, + "end": 16908.84, + "probability": 0.9979 + }, + { + "start": 16909.96, + "end": 16911.14, + "probability": 0.7565 + }, + { + "start": 16912.42, + "end": 16913.58, + "probability": 0.7606 + }, + { + "start": 16915.56, + "end": 16917.06, + "probability": 0.9971 + }, + { + "start": 16917.32, + "end": 16919.76, + "probability": 0.1085 + }, + { + "start": 16919.84, + "end": 16922.4, + "probability": 0.8152 + }, + { + "start": 16922.56, + "end": 16923.74, + "probability": 0.6543 + }, + { + "start": 16927.76, + "end": 16927.78, + "probability": 0.0007 + }, + { + "start": 16943.18, + "end": 16943.18, + "probability": 0.0323 + }, + { + "start": 16943.18, + "end": 16943.2, + "probability": 0.216 + }, + { + "start": 16953.18, + "end": 16954.58, + "probability": 0.1823 + }, + { + "start": 16956.5, + "end": 16958.58, + "probability": 0.934 + }, + { + "start": 16958.92, + "end": 16959.85, + "probability": 0.8119 + }, + { + "start": 16961.68, + "end": 16965.04, + "probability": 0.9928 + }, + { + "start": 16966.44, + "end": 16970.54, + "probability": 0.9844 + }, + { + "start": 16971.88, + "end": 16975.54, + "probability": 0.9808 + }, + { + "start": 16976.14, + "end": 16978.72, + "probability": 0.9824 + }, + { + "start": 16980.38, + "end": 16983.88, + "probability": 0.9978 + }, + { + "start": 16983.88, + "end": 16987.88, + "probability": 0.9989 + }, + { + "start": 16988.72, + "end": 16990.4, + "probability": 0.7533 + }, + { + "start": 16990.66, + "end": 16993.52, + "probability": 0.6693 + }, + { + "start": 16995.72, + "end": 16995.94, + "probability": 0.8234 + }, + { + "start": 16998.84, + "end": 17004.84, + "probability": 0.9965 + }, + { + "start": 17006.2, + "end": 17007.88, + "probability": 0.7891 + }, + { + "start": 17009.62, + "end": 17012.94, + "probability": 0.9834 + }, + { + "start": 17013.98, + "end": 17019.34, + "probability": 0.9471 + }, + { + "start": 17020.72, + "end": 17021.36, + "probability": 0.8812 + }, + { + "start": 17022.96, + "end": 17026.34, + "probability": 0.9407 + }, + { + "start": 17029.22, + "end": 17035.48, + "probability": 0.7927 + }, + { + "start": 17036.58, + "end": 17038.06, + "probability": 0.9679 + }, + { + "start": 17039.16, + "end": 17040.06, + "probability": 0.8788 + }, + { + "start": 17042.1, + "end": 17043.48, + "probability": 0.9022 + }, + { + "start": 17044.92, + "end": 17048.34, + "probability": 0.9867 + }, + { + "start": 17050.58, + "end": 17050.94, + "probability": 0.968 + }, + { + "start": 17051.7, + "end": 17053.54, + "probability": 0.9979 + }, + { + "start": 17054.68, + "end": 17058.44, + "probability": 0.9803 + }, + { + "start": 17061.34, + "end": 17065.02, + "probability": 0.9969 + }, + { + "start": 17068.46, + "end": 17073.14, + "probability": 0.9991 + }, + { + "start": 17074.56, + "end": 17077.58, + "probability": 0.9804 + }, + { + "start": 17078.14, + "end": 17082.96, + "probability": 0.9988 + }, + { + "start": 17084.24, + "end": 17085.74, + "probability": 0.9987 + }, + { + "start": 17088.22, + "end": 17092.74, + "probability": 0.9915 + }, + { + "start": 17094.06, + "end": 17096.56, + "probability": 0.9709 + }, + { + "start": 17097.62, + "end": 17098.42, + "probability": 0.7606 + }, + { + "start": 17099.74, + "end": 17102.7, + "probability": 0.9963 + }, + { + "start": 17104.84, + "end": 17108.56, + "probability": 0.9653 + }, + { + "start": 17109.64, + "end": 17110.8, + "probability": 0.768 + }, + { + "start": 17112.78, + "end": 17113.34, + "probability": 0.7972 + }, + { + "start": 17114.66, + "end": 17122.32, + "probability": 0.9883 + }, + { + "start": 17125.82, + "end": 17127.24, + "probability": 0.8153 + }, + { + "start": 17128.24, + "end": 17132.14, + "probability": 0.9728 + }, + { + "start": 17134.32, + "end": 17137.94, + "probability": 0.8625 + }, + { + "start": 17138.0, + "end": 17141.0, + "probability": 0.9826 + }, + { + "start": 17141.84, + "end": 17142.5, + "probability": 0.9359 + }, + { + "start": 17143.6, + "end": 17145.08, + "probability": 0.796 + }, + { + "start": 17147.06, + "end": 17148.0, + "probability": 0.702 + }, + { + "start": 17149.08, + "end": 17150.52, + "probability": 0.9603 + }, + { + "start": 17152.04, + "end": 17152.88, + "probability": 0.6933 + }, + { + "start": 17153.0, + "end": 17155.04, + "probability": 0.9688 + }, + { + "start": 17155.2, + "end": 17156.16, + "probability": 0.6367 + }, + { + "start": 17157.22, + "end": 17159.36, + "probability": 0.9979 + }, + { + "start": 17160.42, + "end": 17166.32, + "probability": 0.9865 + }, + { + "start": 17167.88, + "end": 17169.78, + "probability": 0.9869 + }, + { + "start": 17170.66, + "end": 17171.9, + "probability": 0.8294 + }, + { + "start": 17172.72, + "end": 17174.36, + "probability": 0.9847 + }, + { + "start": 17175.22, + "end": 17176.54, + "probability": 0.9378 + }, + { + "start": 17177.64, + "end": 17181.32, + "probability": 0.9516 + }, + { + "start": 17182.52, + "end": 17183.82, + "probability": 0.9962 + }, + { + "start": 17184.7, + "end": 17185.96, + "probability": 0.7208 + }, + { + "start": 17187.54, + "end": 17188.8, + "probability": 0.9991 + }, + { + "start": 17190.32, + "end": 17191.36, + "probability": 0.9625 + }, + { + "start": 17192.06, + "end": 17194.86, + "probability": 0.9456 + }, + { + "start": 17197.06, + "end": 17198.8, + "probability": 0.9375 + }, + { + "start": 17199.6, + "end": 17200.52, + "probability": 0.7668 + }, + { + "start": 17200.6, + "end": 17204.24, + "probability": 0.9322 + }, + { + "start": 17204.24, + "end": 17208.12, + "probability": 0.9978 + }, + { + "start": 17209.22, + "end": 17211.16, + "probability": 0.9984 + }, + { + "start": 17212.34, + "end": 17215.48, + "probability": 0.8167 + }, + { + "start": 17217.04, + "end": 17217.42, + "probability": 0.6483 + }, + { + "start": 17218.88, + "end": 17222.06, + "probability": 0.9864 + }, + { + "start": 17223.72, + "end": 17225.4, + "probability": 0.9809 + }, + { + "start": 17226.42, + "end": 17229.52, + "probability": 0.9842 + }, + { + "start": 17231.52, + "end": 17236.14, + "probability": 0.9988 + }, + { + "start": 17238.12, + "end": 17238.94, + "probability": 0.9012 + }, + { + "start": 17240.48, + "end": 17241.9, + "probability": 0.9973 + }, + { + "start": 17242.84, + "end": 17243.32, + "probability": 0.8501 + }, + { + "start": 17245.3, + "end": 17251.18, + "probability": 0.9869 + }, + { + "start": 17254.12, + "end": 17258.92, + "probability": 0.9268 + }, + { + "start": 17260.7, + "end": 17264.64, + "probability": 0.8305 + }, + { + "start": 17266.4, + "end": 17267.66, + "probability": 0.8924 + }, + { + "start": 17268.78, + "end": 17270.08, + "probability": 0.9272 + }, + { + "start": 17271.36, + "end": 17274.28, + "probability": 0.9907 + }, + { + "start": 17275.7, + "end": 17276.9, + "probability": 0.8949 + }, + { + "start": 17277.96, + "end": 17280.02, + "probability": 0.9108 + }, + { + "start": 17281.06, + "end": 17282.02, + "probability": 0.616 + }, + { + "start": 17282.94, + "end": 17283.98, + "probability": 0.9302 + }, + { + "start": 17285.14, + "end": 17287.28, + "probability": 0.9194 + }, + { + "start": 17288.4, + "end": 17289.92, + "probability": 0.957 + }, + { + "start": 17290.88, + "end": 17295.62, + "probability": 0.9932 + }, + { + "start": 17297.1, + "end": 17299.88, + "probability": 0.9819 + }, + { + "start": 17301.92, + "end": 17305.34, + "probability": 0.9192 + }, + { + "start": 17308.7, + "end": 17312.22, + "probability": 0.7698 + }, + { + "start": 17313.96, + "end": 17316.14, + "probability": 0.9857 + }, + { + "start": 17316.14, + "end": 17319.72, + "probability": 0.9965 + }, + { + "start": 17322.86, + "end": 17326.98, + "probability": 0.9994 + }, + { + "start": 17327.82, + "end": 17329.98, + "probability": 0.7679 + }, + { + "start": 17330.2, + "end": 17335.7, + "probability": 0.9849 + }, + { + "start": 17337.54, + "end": 17339.78, + "probability": 0.9648 + }, + { + "start": 17341.48, + "end": 17343.98, + "probability": 0.9925 + }, + { + "start": 17345.48, + "end": 17346.54, + "probability": 0.8604 + }, + { + "start": 17347.96, + "end": 17348.94, + "probability": 0.9265 + }, + { + "start": 17349.74, + "end": 17351.0, + "probability": 0.9896 + }, + { + "start": 17352.46, + "end": 17353.14, + "probability": 0.7828 + }, + { + "start": 17354.12, + "end": 17358.9, + "probability": 0.9927 + }, + { + "start": 17360.14, + "end": 17367.0, + "probability": 0.998 + }, + { + "start": 17368.3, + "end": 17370.96, + "probability": 0.9316 + }, + { + "start": 17372.3, + "end": 17375.66, + "probability": 0.9569 + }, + { + "start": 17377.82, + "end": 17379.84, + "probability": 0.8548 + }, + { + "start": 17381.04, + "end": 17384.32, + "probability": 0.9885 + }, + { + "start": 17384.32, + "end": 17387.04, + "probability": 0.9858 + }, + { + "start": 17388.34, + "end": 17389.62, + "probability": 0.7875 + }, + { + "start": 17389.9, + "end": 17391.9, + "probability": 0.9632 + }, + { + "start": 17392.16, + "end": 17393.46, + "probability": 0.7788 + }, + { + "start": 17394.76, + "end": 17397.74, + "probability": 0.9897 + }, + { + "start": 17398.74, + "end": 17400.62, + "probability": 0.9607 + }, + { + "start": 17401.68, + "end": 17404.3, + "probability": 0.9611 + }, + { + "start": 17405.8, + "end": 17412.86, + "probability": 0.9587 + }, + { + "start": 17413.8, + "end": 17415.14, + "probability": 0.9717 + }, + { + "start": 17417.48, + "end": 17418.16, + "probability": 0.7827 + }, + { + "start": 17419.38, + "end": 17420.74, + "probability": 0.9886 + }, + { + "start": 17422.06, + "end": 17425.44, + "probability": 0.9964 + }, + { + "start": 17426.98, + "end": 17429.58, + "probability": 0.9796 + }, + { + "start": 17430.5, + "end": 17433.04, + "probability": 0.9731 + }, + { + "start": 17434.84, + "end": 17437.06, + "probability": 0.8216 + }, + { + "start": 17438.72, + "end": 17440.76, + "probability": 0.9984 + }, + { + "start": 17441.76, + "end": 17443.26, + "probability": 0.8581 + }, + { + "start": 17444.96, + "end": 17448.0, + "probability": 0.9974 + }, + { + "start": 17449.24, + "end": 17455.28, + "probability": 0.998 + }, + { + "start": 17455.28, + "end": 17461.7, + "probability": 0.9989 + }, + { + "start": 17463.5, + "end": 17466.54, + "probability": 0.9551 + }, + { + "start": 17467.9, + "end": 17471.14, + "probability": 0.987 + }, + { + "start": 17471.9, + "end": 17473.84, + "probability": 0.9156 + }, + { + "start": 17474.76, + "end": 17478.41, + "probability": 0.9978 + }, + { + "start": 17481.76, + "end": 17482.24, + "probability": 0.8291 + }, + { + "start": 17483.5, + "end": 17485.0, + "probability": 0.8517 + }, + { + "start": 17485.98, + "end": 17487.52, + "probability": 0.8693 + }, + { + "start": 17488.86, + "end": 17491.62, + "probability": 0.9948 + }, + { + "start": 17492.58, + "end": 17494.32, + "probability": 0.9175 + }, + { + "start": 17496.46, + "end": 17503.96, + "probability": 0.9971 + }, + { + "start": 17504.78, + "end": 17507.44, + "probability": 0.9582 + }, + { + "start": 17509.2, + "end": 17510.9, + "probability": 0.9479 + }, + { + "start": 17512.42, + "end": 17517.68, + "probability": 0.9998 + }, + { + "start": 17519.06, + "end": 17520.02, + "probability": 0.9949 + }, + { + "start": 17520.92, + "end": 17522.32, + "probability": 0.9957 + }, + { + "start": 17523.5, + "end": 17525.24, + "probability": 0.9922 + }, + { + "start": 17526.26, + "end": 17527.96, + "probability": 0.7278 + }, + { + "start": 17529.12, + "end": 17533.1, + "probability": 0.9707 + }, + { + "start": 17535.38, + "end": 17537.22, + "probability": 0.8261 + }, + { + "start": 17538.82, + "end": 17540.58, + "probability": 0.995 + }, + { + "start": 17541.42, + "end": 17543.38, + "probability": 0.9967 + }, + { + "start": 17544.42, + "end": 17545.76, + "probability": 0.9993 + }, + { + "start": 17546.86, + "end": 17549.9, + "probability": 0.9994 + }, + { + "start": 17550.96, + "end": 17552.98, + "probability": 0.9957 + }, + { + "start": 17553.9, + "end": 17557.24, + "probability": 0.9988 + }, + { + "start": 17558.22, + "end": 17559.32, + "probability": 0.7843 + }, + { + "start": 17560.02, + "end": 17563.46, + "probability": 0.9937 + }, + { + "start": 17564.52, + "end": 17566.26, + "probability": 0.9975 + }, + { + "start": 17567.32, + "end": 17569.2, + "probability": 0.9977 + }, + { + "start": 17571.08, + "end": 17572.82, + "probability": 0.9896 + }, + { + "start": 17573.86, + "end": 17575.78, + "probability": 0.9915 + }, + { + "start": 17576.8, + "end": 17578.3, + "probability": 0.9806 + }, + { + "start": 17580.26, + "end": 17581.6, + "probability": 0.9977 + }, + { + "start": 17582.8, + "end": 17584.1, + "probability": 0.825 + }, + { + "start": 17585.26, + "end": 17590.5, + "probability": 0.7226 + }, + { + "start": 17590.68, + "end": 17591.8, + "probability": 0.8781 + }, + { + "start": 17593.78, + "end": 17594.15, + "probability": 0.5574 + }, + { + "start": 17595.14, + "end": 17596.26, + "probability": 0.8994 + }, + { + "start": 17597.64, + "end": 17598.54, + "probability": 0.3885 + }, + { + "start": 17598.92, + "end": 17599.2, + "probability": 0.5793 + }, + { + "start": 17603.84, + "end": 17603.88, + "probability": 0.2935 + }, + { + "start": 17603.88, + "end": 17606.54, + "probability": 0.8431 + }, + { + "start": 17607.8, + "end": 17608.58, + "probability": 0.7927 + }, + { + "start": 17609.1, + "end": 17611.2, + "probability": 0.7179 + }, + { + "start": 17612.04, + "end": 17613.4, + "probability": 0.8044 + }, + { + "start": 17613.9, + "end": 17617.22, + "probability": 0.9382 + }, + { + "start": 17617.88, + "end": 17621.26, + "probability": 0.3806 + }, + { + "start": 17621.52, + "end": 17623.18, + "probability": 0.2647 + }, + { + "start": 17623.34, + "end": 17626.85, + "probability": 0.9845 + }, + { + "start": 17626.96, + "end": 17630.22, + "probability": 0.9954 + }, + { + "start": 17630.9, + "end": 17633.5, + "probability": 0.9506 + }, + { + "start": 17634.06, + "end": 17636.6, + "probability": 0.9939 + }, + { + "start": 17636.68, + "end": 17640.62, + "probability": 0.9971 + }, + { + "start": 17641.66, + "end": 17644.44, + "probability": 0.995 + }, + { + "start": 17644.44, + "end": 17647.2, + "probability": 0.9963 + }, + { + "start": 17647.96, + "end": 17650.86, + "probability": 0.9963 + }, + { + "start": 17651.74, + "end": 17657.46, + "probability": 0.8619 + }, + { + "start": 17658.16, + "end": 17661.4, + "probability": 0.9027 + }, + { + "start": 17661.46, + "end": 17664.52, + "probability": 0.9344 + }, + { + "start": 17664.62, + "end": 17665.68, + "probability": 0.63 + }, + { + "start": 17666.32, + "end": 17670.62, + "probability": 0.9699 + }, + { + "start": 17671.06, + "end": 17675.46, + "probability": 0.9792 + }, + { + "start": 17677.28, + "end": 17679.54, + "probability": 0.993 + }, + { + "start": 17679.54, + "end": 17682.14, + "probability": 0.9973 + }, + { + "start": 17682.88, + "end": 17686.18, + "probability": 0.9153 + }, + { + "start": 17686.48, + "end": 17689.18, + "probability": 0.7498 + }, + { + "start": 17689.72, + "end": 17693.42, + "probability": 0.8371 + }, + { + "start": 17694.3, + "end": 17694.76, + "probability": 0.855 + }, + { + "start": 17694.84, + "end": 17697.4, + "probability": 0.9366 + }, + { + "start": 17697.4, + "end": 17700.1, + "probability": 0.9963 + }, + { + "start": 17700.62, + "end": 17702.74, + "probability": 0.9884 + }, + { + "start": 17704.36, + "end": 17707.46, + "probability": 0.8077 + }, + { + "start": 17707.6, + "end": 17709.52, + "probability": 0.9653 + }, + { + "start": 17709.66, + "end": 17710.7, + "probability": 0.7348 + }, + { + "start": 17711.52, + "end": 17716.76, + "probability": 0.9637 + }, + { + "start": 17717.64, + "end": 17721.84, + "probability": 0.8378 + }, + { + "start": 17721.84, + "end": 17726.4, + "probability": 0.9793 + }, + { + "start": 17727.32, + "end": 17727.6, + "probability": 0.8686 + }, + { + "start": 17728.38, + "end": 17731.9, + "probability": 0.9895 + }, + { + "start": 17732.5, + "end": 17736.22, + "probability": 0.9717 + }, + { + "start": 17736.28, + "end": 17738.54, + "probability": 0.9365 + }, + { + "start": 17739.28, + "end": 17741.36, + "probability": 0.6157 + }, + { + "start": 17741.75, + "end": 17744.2, + "probability": 0.7389 + }, + { + "start": 17744.84, + "end": 17745.7, + "probability": 0.9665 + }, + { + "start": 17747.02, + "end": 17748.28, + "probability": 0.4265 + }, + { + "start": 17748.72, + "end": 17749.76, + "probability": 0.6992 + }, + { + "start": 17750.3, + "end": 17752.66, + "probability": 0.9417 + }, + { + "start": 17752.82, + "end": 17755.15, + "probability": 0.8601 + }, + { + "start": 17756.6, + "end": 17762.48, + "probability": 0.9951 + }, + { + "start": 17762.66, + "end": 17764.32, + "probability": 0.789 + }, + { + "start": 17765.14, + "end": 17769.04, + "probability": 0.9876 + }, + { + "start": 17769.18, + "end": 17770.2, + "probability": 0.9851 + }, + { + "start": 17770.5, + "end": 17773.5, + "probability": 0.9917 + }, + { + "start": 17774.24, + "end": 17777.06, + "probability": 0.9906 + }, + { + "start": 17777.9, + "end": 17781.38, + "probability": 0.9006 + }, + { + "start": 17781.38, + "end": 17783.9, + "probability": 0.9863 + }, + { + "start": 17784.72, + "end": 17788.38, + "probability": 0.9459 + }, + { + "start": 17789.04, + "end": 17791.7, + "probability": 0.9713 + }, + { + "start": 17791.74, + "end": 17794.6, + "probability": 0.9916 + }, + { + "start": 17795.88, + "end": 17798.8, + "probability": 0.9972 + }, + { + "start": 17798.8, + "end": 17802.04, + "probability": 0.8173 + }, + { + "start": 17802.58, + "end": 17805.18, + "probability": 0.9963 + }, + { + "start": 17805.18, + "end": 17807.64, + "probability": 0.9967 + }, + { + "start": 17808.5, + "end": 17812.3, + "probability": 0.9931 + }, + { + "start": 17813.4, + "end": 17816.92, + "probability": 0.9062 + }, + { + "start": 17817.12, + "end": 17820.88, + "probability": 0.9882 + }, + { + "start": 17820.88, + "end": 17825.02, + "probability": 0.9913 + }, + { + "start": 17825.74, + "end": 17826.98, + "probability": 0.5854 + }, + { + "start": 17827.64, + "end": 17829.0, + "probability": 0.6034 + }, + { + "start": 17829.52, + "end": 17830.44, + "probability": 0.6905 + }, + { + "start": 17831.24, + "end": 17835.3, + "probability": 0.9827 + }, + { + "start": 17835.3, + "end": 17838.5, + "probability": 0.9851 + }, + { + "start": 17838.8, + "end": 17839.7, + "probability": 0.667 + }, + { + "start": 17839.8, + "end": 17841.88, + "probability": 0.8273 + }, + { + "start": 17842.38, + "end": 17845.18, + "probability": 0.9795 + }, + { + "start": 17845.78, + "end": 17848.66, + "probability": 0.9824 + }, + { + "start": 17849.22, + "end": 17852.56, + "probability": 0.9326 + }, + { + "start": 17853.08, + "end": 17857.08, + "probability": 0.9397 + }, + { + "start": 17857.64, + "end": 17859.8, + "probability": 0.9849 + }, + { + "start": 17859.8, + "end": 17862.3, + "probability": 0.9994 + }, + { + "start": 17863.16, + "end": 17865.5, + "probability": 0.9006 + }, + { + "start": 17866.34, + "end": 17869.62, + "probability": 0.9532 + }, + { + "start": 17870.04, + "end": 17873.22, + "probability": 0.9937 + }, + { + "start": 17873.4, + "end": 17876.52, + "probability": 0.8473 + }, + { + "start": 17877.16, + "end": 17880.8, + "probability": 0.9348 + }, + { + "start": 17881.34, + "end": 17886.94, + "probability": 0.9342 + }, + { + "start": 17887.62, + "end": 17889.64, + "probability": 0.9144 + }, + { + "start": 17889.7, + "end": 17891.0, + "probability": 0.8567 + }, + { + "start": 17891.06, + "end": 17891.3, + "probability": 0.8165 + }, + { + "start": 17891.76, + "end": 17896.28, + "probability": 0.7317 + }, + { + "start": 17896.48, + "end": 17900.46, + "probability": 0.992 + }, + { + "start": 17900.46, + "end": 17903.58, + "probability": 0.9829 + }, + { + "start": 17904.74, + "end": 17905.38, + "probability": 0.7074 + }, + { + "start": 17905.44, + "end": 17908.0, + "probability": 0.9917 + }, + { + "start": 17908.0, + "end": 17911.2, + "probability": 0.9597 + }, + { + "start": 17911.28, + "end": 17914.32, + "probability": 0.9196 + }, + { + "start": 17914.52, + "end": 17917.98, + "probability": 0.9798 + }, + { + "start": 17918.52, + "end": 17920.38, + "probability": 0.9271 + }, + { + "start": 17920.54, + "end": 17923.72, + "probability": 0.949 + }, + { + "start": 17924.24, + "end": 17925.28, + "probability": 0.7787 + }, + { + "start": 17925.4, + "end": 17929.88, + "probability": 0.9911 + }, + { + "start": 17930.58, + "end": 17936.18, + "probability": 0.9387 + }, + { + "start": 17936.38, + "end": 17940.87, + "probability": 0.9935 + }, + { + "start": 17941.56, + "end": 17944.08, + "probability": 0.9886 + }, + { + "start": 17944.74, + "end": 17946.48, + "probability": 0.708 + }, + { + "start": 17946.48, + "end": 17948.76, + "probability": 0.9438 + }, + { + "start": 17949.38, + "end": 17951.42, + "probability": 0.9803 + }, + { + "start": 17951.42, + "end": 17956.46, + "probability": 0.9569 + }, + { + "start": 17956.54, + "end": 17959.48, + "probability": 0.89 + }, + { + "start": 17960.04, + "end": 17961.68, + "probability": 0.9722 + }, + { + "start": 17961.94, + "end": 17967.62, + "probability": 0.8645 + }, + { + "start": 17967.7, + "end": 17973.58, + "probability": 0.8402 + }, + { + "start": 17974.64, + "end": 17979.58, + "probability": 0.9851 + }, + { + "start": 17979.68, + "end": 17981.76, + "probability": 0.7406 + }, + { + "start": 17982.66, + "end": 17986.14, + "probability": 0.9805 + }, + { + "start": 17986.92, + "end": 17989.04, + "probability": 0.9583 + }, + { + "start": 17990.7, + "end": 17995.58, + "probability": 0.9624 + }, + { + "start": 17996.76, + "end": 18001.5, + "probability": 0.9968 + }, + { + "start": 18001.92, + "end": 18003.48, + "probability": 0.9658 + }, + { + "start": 18003.66, + "end": 18009.1, + "probability": 0.9341 + }, + { + "start": 18009.28, + "end": 18013.64, + "probability": 0.9141 + }, + { + "start": 18014.04, + "end": 18014.48, + "probability": 0.7532 + }, + { + "start": 18015.14, + "end": 18017.22, + "probability": 0.564 + }, + { + "start": 18018.14, + "end": 18018.78, + "probability": 0.5003 + }, + { + "start": 18019.6, + "end": 18021.94, + "probability": 0.9478 + }, + { + "start": 18022.44, + "end": 18024.48, + "probability": 0.8794 + }, + { + "start": 18026.04, + "end": 18026.56, + "probability": 0.6666 + }, + { + "start": 18029.54, + "end": 18031.1, + "probability": 0.6743 + }, + { + "start": 18032.46, + "end": 18033.1, + "probability": 0.5233 + }, + { + "start": 18033.86, + "end": 18034.06, + "probability": 0.8781 + }, + { + "start": 18040.59, + "end": 18041.1, + "probability": 0.4113 + }, + { + "start": 18041.1, + "end": 18041.36, + "probability": 0.4799 + }, + { + "start": 18041.94, + "end": 18043.02, + "probability": 0.4781 + }, + { + "start": 18044.26, + "end": 18045.02, + "probability": 0.6583 + }, + { + "start": 18046.52, + "end": 18046.54, + "probability": 0.6807 + }, + { + "start": 18047.52, + "end": 18049.08, + "probability": 0.9953 + }, + { + "start": 18050.38, + "end": 18053.44, + "probability": 0.723 + }, + { + "start": 18054.04, + "end": 18054.66, + "probability": 0.9818 + }, + { + "start": 18054.68, + "end": 18055.82, + "probability": 0.7326 + }, + { + "start": 18056.44, + "end": 18057.92, + "probability": 0.7317 + }, + { + "start": 18058.4, + "end": 18058.56, + "probability": 0.477 + }, + { + "start": 18058.9, + "end": 18059.14, + "probability": 0.823 + }, + { + "start": 18059.46, + "end": 18062.08, + "probability": 0.9907 + }, + { + "start": 18062.32, + "end": 18063.26, + "probability": 0.8857 + }, + { + "start": 18063.96, + "end": 18066.23, + "probability": 0.896 + }, + { + "start": 18069.12, + "end": 18070.04, + "probability": 0.9492 + }, + { + "start": 18070.7, + "end": 18071.32, + "probability": 0.6414 + }, + { + "start": 18071.76, + "end": 18076.84, + "probability": 0.9595 + }, + { + "start": 18077.36, + "end": 18083.84, + "probability": 0.9581 + }, + { + "start": 18084.7, + "end": 18085.86, + "probability": 0.9976 + }, + { + "start": 18086.0, + "end": 18087.0, + "probability": 0.6919 + }, + { + "start": 18087.54, + "end": 18090.36, + "probability": 0.8169 + }, + { + "start": 18091.9, + "end": 18093.74, + "probability": 0.0854 + }, + { + "start": 18094.5, + "end": 18098.2, + "probability": 0.0417 + }, + { + "start": 18098.36, + "end": 18098.48, + "probability": 0.0733 + }, + { + "start": 18098.48, + "end": 18103.22, + "probability": 0.463 + }, + { + "start": 18103.62, + "end": 18103.94, + "probability": 0.5154 + }, + { + "start": 18104.06, + "end": 18105.26, + "probability": 0.6492 + }, + { + "start": 18106.04, + "end": 18106.94, + "probability": 0.935 + }, + { + "start": 18107.66, + "end": 18108.62, + "probability": 0.4597 + }, + { + "start": 18108.98, + "end": 18110.04, + "probability": 0.815 + }, + { + "start": 18110.5, + "end": 18111.5, + "probability": 0.4273 + }, + { + "start": 18111.5, + "end": 18113.2, + "probability": 0.8836 + }, + { + "start": 18113.54, + "end": 18113.88, + "probability": 0.6156 + }, + { + "start": 18114.68, + "end": 18115.04, + "probability": 0.7041 + }, + { + "start": 18115.22, + "end": 18116.7, + "probability": 0.9712 + }, + { + "start": 18117.02, + "end": 18118.62, + "probability": 0.9893 + }, + { + "start": 18119.08, + "end": 18121.64, + "probability": 0.449 + }, + { + "start": 18121.64, + "end": 18123.8, + "probability": 0.9878 + }, + { + "start": 18124.4, + "end": 18125.38, + "probability": 0.8252 + }, + { + "start": 18126.04, + "end": 18131.4, + "probability": 0.7793 + }, + { + "start": 18131.52, + "end": 18131.8, + "probability": 0.2774 + }, + { + "start": 18131.82, + "end": 18132.64, + "probability": 0.917 + }, + { + "start": 18132.68, + "end": 18133.64, + "probability": 0.622 + }, + { + "start": 18133.76, + "end": 18136.44, + "probability": 0.8692 + }, + { + "start": 18137.04, + "end": 18138.78, + "probability": 0.9317 + }, + { + "start": 18139.64, + "end": 18140.04, + "probability": 0.9438 + }, + { + "start": 18140.92, + "end": 18142.76, + "probability": 0.7824 + }, + { + "start": 18143.4, + "end": 18143.92, + "probability": 0.9578 + }, + { + "start": 18144.58, + "end": 18147.58, + "probability": 0.9468 + }, + { + "start": 18147.66, + "end": 18148.92, + "probability": 0.9637 + }, + { + "start": 18150.38, + "end": 18151.34, + "probability": 0.4594 + }, + { + "start": 18151.34, + "end": 18154.3, + "probability": 0.6812 + }, + { + "start": 18154.46, + "end": 18156.58, + "probability": 0.7524 + }, + { + "start": 18157.36, + "end": 18163.28, + "probability": 0.9683 + }, + { + "start": 18163.36, + "end": 18165.04, + "probability": 0.9549 + }, + { + "start": 18166.06, + "end": 18170.26, + "probability": 0.9668 + }, + { + "start": 18170.98, + "end": 18172.48, + "probability": 0.8575 + }, + { + "start": 18173.0, + "end": 18173.74, + "probability": 0.5061 + }, + { + "start": 18174.0, + "end": 18174.66, + "probability": 0.9342 + }, + { + "start": 18175.3, + "end": 18175.92, + "probability": 0.8113 + }, + { + "start": 18176.06, + "end": 18180.72, + "probability": 0.9855 + }, + { + "start": 18180.9, + "end": 18181.42, + "probability": 0.7476 + }, + { + "start": 18181.54, + "end": 18181.8, + "probability": 0.4876 + }, + { + "start": 18181.82, + "end": 18185.68, + "probability": 0.9189 + }, + { + "start": 18186.56, + "end": 18189.42, + "probability": 0.8168 + }, + { + "start": 18189.92, + "end": 18191.84, + "probability": 0.8592 + }, + { + "start": 18192.12, + "end": 18194.32, + "probability": 0.97 + }, + { + "start": 18194.66, + "end": 18194.76, + "probability": 0.009 + }, + { + "start": 18195.58, + "end": 18197.25, + "probability": 0.4917 + }, + { + "start": 18197.48, + "end": 18198.16, + "probability": 0.8675 + }, + { + "start": 18198.2, + "end": 18200.3, + "probability": 0.8601 + }, + { + "start": 18200.3, + "end": 18200.86, + "probability": 0.7172 + }, + { + "start": 18201.18, + "end": 18202.7, + "probability": 0.8031 + }, + { + "start": 18202.7, + "end": 18203.88, + "probability": 0.4939 + }, + { + "start": 18204.22, + "end": 18207.14, + "probability": 0.4827 + }, + { + "start": 18207.26, + "end": 18209.24, + "probability": 0.4407 + }, + { + "start": 18209.34, + "end": 18210.8, + "probability": 0.9969 + }, + { + "start": 18210.96, + "end": 18211.9, + "probability": 0.1384 + }, + { + "start": 18212.1, + "end": 18214.16, + "probability": 0.7467 + }, + { + "start": 18214.34, + "end": 18214.72, + "probability": 0.2107 + }, + { + "start": 18215.02, + "end": 18215.84, + "probability": 0.0964 + }, + { + "start": 18215.84, + "end": 18217.06, + "probability": 0.2707 + }, + { + "start": 18217.48, + "end": 18221.38, + "probability": 0.9458 + }, + { + "start": 18221.68, + "end": 18224.16, + "probability": 0.9864 + }, + { + "start": 18224.46, + "end": 18225.32, + "probability": 0.9253 + }, + { + "start": 18226.56, + "end": 18230.12, + "probability": 0.9917 + }, + { + "start": 18230.78, + "end": 18232.4, + "probability": 0.9678 + }, + { + "start": 18232.98, + "end": 18233.66, + "probability": 0.6173 + }, + { + "start": 18234.14, + "end": 18237.02, + "probability": 0.8812 + }, + { + "start": 18237.24, + "end": 18238.54, + "probability": 0.9646 + }, + { + "start": 18240.54, + "end": 18241.8, + "probability": 0.8936 + }, + { + "start": 18242.02, + "end": 18243.58, + "probability": 0.9307 + }, + { + "start": 18244.86, + "end": 18245.52, + "probability": 0.3543 + }, + { + "start": 18245.86, + "end": 18246.86, + "probability": 0.9881 + }, + { + "start": 18247.42, + "end": 18247.66, + "probability": 0.3925 + }, + { + "start": 18253.24, + "end": 18253.24, + "probability": 0.275 + }, + { + "start": 18253.24, + "end": 18254.12, + "probability": 0.5413 + }, + { + "start": 18271.28, + "end": 18271.72, + "probability": 0.6125 + }, + { + "start": 18275.5, + "end": 18277.4, + "probability": 0.7157 + }, + { + "start": 18278.3, + "end": 18281.12, + "probability": 0.9956 + }, + { + "start": 18282.06, + "end": 18284.18, + "probability": 0.8232 + }, + { + "start": 18285.1, + "end": 18286.0, + "probability": 0.9073 + }, + { + "start": 18286.78, + "end": 18287.54, + "probability": 0.9189 + }, + { + "start": 18288.68, + "end": 18292.82, + "probability": 0.9941 + }, + { + "start": 18293.34, + "end": 18296.54, + "probability": 0.999 + }, + { + "start": 18297.66, + "end": 18300.38, + "probability": 0.9061 + }, + { + "start": 18301.2, + "end": 18305.08, + "probability": 0.9981 + }, + { + "start": 18305.78, + "end": 18308.9, + "probability": 0.9896 + }, + { + "start": 18309.46, + "end": 18312.76, + "probability": 0.9926 + }, + { + "start": 18313.9, + "end": 18317.72, + "probability": 0.9966 + }, + { + "start": 18318.42, + "end": 18320.94, + "probability": 0.9453 + }, + { + "start": 18321.5, + "end": 18323.86, + "probability": 0.9801 + }, + { + "start": 18324.94, + "end": 18330.58, + "probability": 0.9838 + }, + { + "start": 18330.8, + "end": 18332.9, + "probability": 0.9674 + }, + { + "start": 18333.46, + "end": 18335.48, + "probability": 0.9954 + }, + { + "start": 18336.7, + "end": 18337.96, + "probability": 0.995 + }, + { + "start": 18338.78, + "end": 18340.34, + "probability": 0.9985 + }, + { + "start": 18341.26, + "end": 18344.14, + "probability": 0.9752 + }, + { + "start": 18344.78, + "end": 18346.5, + "probability": 0.9887 + }, + { + "start": 18347.32, + "end": 18352.36, + "probability": 0.9955 + }, + { + "start": 18353.28, + "end": 18353.9, + "probability": 0.9927 + }, + { + "start": 18354.46, + "end": 18355.4, + "probability": 0.9243 + }, + { + "start": 18356.34, + "end": 18358.38, + "probability": 0.9437 + }, + { + "start": 18359.3, + "end": 18361.84, + "probability": 0.869 + }, + { + "start": 18362.42, + "end": 18364.39, + "probability": 0.9954 + }, + { + "start": 18365.06, + "end": 18368.2, + "probability": 0.9971 + }, + { + "start": 18368.2, + "end": 18370.94, + "probability": 0.9803 + }, + { + "start": 18371.68, + "end": 18373.3, + "probability": 0.9367 + }, + { + "start": 18373.46, + "end": 18376.76, + "probability": 0.9885 + }, + { + "start": 18377.44, + "end": 18380.22, + "probability": 0.9984 + }, + { + "start": 18381.72, + "end": 18385.1, + "probability": 0.9985 + }, + { + "start": 18385.72, + "end": 18389.28, + "probability": 0.9969 + }, + { + "start": 18389.28, + "end": 18391.78, + "probability": 0.9988 + }, + { + "start": 18392.32, + "end": 18393.68, + "probability": 0.9949 + }, + { + "start": 18393.76, + "end": 18397.76, + "probability": 0.9929 + }, + { + "start": 18398.56, + "end": 18399.16, + "probability": 0.9943 + }, + { + "start": 18399.94, + "end": 18402.24, + "probability": 0.9941 + }, + { + "start": 18402.24, + "end": 18406.22, + "probability": 0.9845 + }, + { + "start": 18407.38, + "end": 18408.7, + "probability": 0.9097 + }, + { + "start": 18409.44, + "end": 18410.38, + "probability": 0.5182 + }, + { + "start": 18410.5, + "end": 18413.62, + "probability": 0.9839 + }, + { + "start": 18414.54, + "end": 18415.76, + "probability": 0.9391 + }, + { + "start": 18416.48, + "end": 18418.64, + "probability": 0.9536 + }, + { + "start": 18419.38, + "end": 18420.12, + "probability": 0.8882 + }, + { + "start": 18420.8, + "end": 18423.1, + "probability": 0.8882 + }, + { + "start": 18423.6, + "end": 18427.12, + "probability": 0.9982 + }, + { + "start": 18427.32, + "end": 18427.58, + "probability": 0.7188 + }, + { + "start": 18429.12, + "end": 18430.54, + "probability": 0.8635 + }, + { + "start": 18430.62, + "end": 18432.4, + "probability": 0.7184 + }, + { + "start": 18434.38, + "end": 18435.2, + "probability": 0.957 + }, + { + "start": 18438.3, + "end": 18439.32, + "probability": 0.0868 + }, + { + "start": 18443.36, + "end": 18444.0, + "probability": 0.4374 + }, + { + "start": 18444.0, + "end": 18444.38, + "probability": 0.532 + }, + { + "start": 18444.46, + "end": 18445.94, + "probability": 0.8682 + }, + { + "start": 18446.38, + "end": 18448.7, + "probability": 0.8111 + }, + { + "start": 18448.81, + "end": 18449.6, + "probability": 0.8615 + }, + { + "start": 18449.66, + "end": 18451.1, + "probability": 0.8429 + }, + { + "start": 18459.58, + "end": 18461.72, + "probability": 0.7555 + }, + { + "start": 18466.38, + "end": 18469.12, + "probability": 0.895 + }, + { + "start": 18470.7, + "end": 18473.22, + "probability": 0.795 + }, + { + "start": 18473.32, + "end": 18474.78, + "probability": 0.9062 + }, + { + "start": 18475.64, + "end": 18476.38, + "probability": 0.5238 + }, + { + "start": 18476.9, + "end": 18477.62, + "probability": 0.9133 + }, + { + "start": 18479.56, + "end": 18479.94, + "probability": 0.97 + }, + { + "start": 18481.4, + "end": 18482.42, + "probability": 0.7418 + }, + { + "start": 18483.92, + "end": 18485.34, + "probability": 0.6864 + }, + { + "start": 18485.44, + "end": 18488.21, + "probability": 0.983 + }, + { + "start": 18489.22, + "end": 18490.07, + "probability": 0.8195 + }, + { + "start": 18491.3, + "end": 18493.46, + "probability": 0.9194 + }, + { + "start": 18494.26, + "end": 18497.5, + "probability": 0.9834 + }, + { + "start": 18498.2, + "end": 18500.6, + "probability": 0.8242 + }, + { + "start": 18501.72, + "end": 18503.82, + "probability": 0.9224 + }, + { + "start": 18505.12, + "end": 18509.22, + "probability": 0.9819 + }, + { + "start": 18511.8, + "end": 18516.28, + "probability": 0.914 + }, + { + "start": 18516.4, + "end": 18516.94, + "probability": 0.5636 + }, + { + "start": 18517.76, + "end": 18521.08, + "probability": 0.9535 + }, + { + "start": 18522.36, + "end": 18525.88, + "probability": 0.5824 + }, + { + "start": 18526.04, + "end": 18530.78, + "probability": 0.8546 + }, + { + "start": 18532.22, + "end": 18532.32, + "probability": 0.1496 + }, + { + "start": 18532.32, + "end": 18534.5, + "probability": 0.8174 + }, + { + "start": 18535.28, + "end": 18536.12, + "probability": 0.6161 + }, + { + "start": 18537.46, + "end": 18538.94, + "probability": 0.7771 + }, + { + "start": 18540.16, + "end": 18541.16, + "probability": 0.9599 + }, + { + "start": 18541.18, + "end": 18541.9, + "probability": 0.4498 + }, + { + "start": 18541.98, + "end": 18543.0, + "probability": 0.813 + }, + { + "start": 18543.1, + "end": 18543.66, + "probability": 0.715 + }, + { + "start": 18544.46, + "end": 18546.66, + "probability": 0.7428 + }, + { + "start": 18546.8, + "end": 18549.14, + "probability": 0.8711 + }, + { + "start": 18550.56, + "end": 18553.74, + "probability": 0.9921 + }, + { + "start": 18553.84, + "end": 18555.15, + "probability": 0.6117 + }, + { + "start": 18555.28, + "end": 18556.66, + "probability": 0.8352 + }, + { + "start": 18556.86, + "end": 18557.2, + "probability": 0.728 + }, + { + "start": 18558.34, + "end": 18559.22, + "probability": 0.9749 + }, + { + "start": 18559.78, + "end": 18562.34, + "probability": 0.9855 + }, + { + "start": 18563.22, + "end": 18566.6, + "probability": 0.9893 + }, + { + "start": 18566.6, + "end": 18570.46, + "probability": 0.9985 + }, + { + "start": 18570.96, + "end": 18571.96, + "probability": 0.7589 + }, + { + "start": 18572.42, + "end": 18573.86, + "probability": 0.8778 + }, + { + "start": 18574.38, + "end": 18576.01, + "probability": 0.6351 + }, + { + "start": 18576.16, + "end": 18577.66, + "probability": 0.7153 + }, + { + "start": 18578.24, + "end": 18580.0, + "probability": 0.9211 + }, + { + "start": 18580.76, + "end": 18581.51, + "probability": 0.8783 + }, + { + "start": 18581.86, + "end": 18582.1, + "probability": 0.9126 + }, + { + "start": 18582.14, + "end": 18583.3, + "probability": 0.9944 + }, + { + "start": 18584.9, + "end": 18586.64, + "probability": 0.994 + }, + { + "start": 18587.28, + "end": 18591.44, + "probability": 0.9808 + }, + { + "start": 18592.22, + "end": 18592.76, + "probability": 0.7829 + }, + { + "start": 18592.9, + "end": 18593.56, + "probability": 0.7224 + }, + { + "start": 18593.72, + "end": 18598.64, + "probability": 0.8784 + }, + { + "start": 18599.18, + "end": 18600.8, + "probability": 0.9736 + }, + { + "start": 18601.66, + "end": 18603.66, + "probability": 0.9977 + }, + { + "start": 18603.74, + "end": 18604.78, + "probability": 0.8794 + }, + { + "start": 18604.84, + "end": 18608.22, + "probability": 0.9573 + }, + { + "start": 18608.36, + "end": 18608.86, + "probability": 0.4445 + }, + { + "start": 18609.08, + "end": 18609.54, + "probability": 0.5157 + }, + { + "start": 18611.06, + "end": 18611.46, + "probability": 0.5145 + }, + { + "start": 18612.1, + "end": 18616.38, + "probability": 0.9797 + }, + { + "start": 18617.0, + "end": 18621.68, + "probability": 0.9783 + }, + { + "start": 18621.82, + "end": 18622.31, + "probability": 0.9676 + }, + { + "start": 18622.96, + "end": 18624.12, + "probability": 0.9255 + }, + { + "start": 18625.9, + "end": 18629.08, + "probability": 0.062 + }, + { + "start": 18629.1, + "end": 18629.1, + "probability": 0.1783 + }, + { + "start": 18629.1, + "end": 18631.02, + "probability": 0.8422 + }, + { + "start": 18631.48, + "end": 18633.04, + "probability": 0.9432 + }, + { + "start": 18633.6, + "end": 18635.54, + "probability": 0.9789 + }, + { + "start": 18636.44, + "end": 18637.06, + "probability": 0.7915 + }, + { + "start": 18637.2, + "end": 18639.32, + "probability": 0.7191 + }, + { + "start": 18639.48, + "end": 18640.08, + "probability": 0.5303 + }, + { + "start": 18640.7, + "end": 18642.98, + "probability": 0.7146 + }, + { + "start": 18643.62, + "end": 18645.52, + "probability": 0.949 + }, + { + "start": 18645.6, + "end": 18646.36, + "probability": 0.9174 + }, + { + "start": 18646.38, + "end": 18647.94, + "probability": 0.969 + }, + { + "start": 18648.0, + "end": 18649.65, + "probability": 0.9751 + }, + { + "start": 18650.6, + "end": 18651.76, + "probability": 0.1174 + }, + { + "start": 18651.76, + "end": 18654.04, + "probability": 0.1544 + }, + { + "start": 18656.54, + "end": 18657.82, + "probability": 0.8302 + }, + { + "start": 18657.94, + "end": 18660.02, + "probability": 0.5907 + }, + { + "start": 18660.44, + "end": 18662.26, + "probability": 0.9253 + }, + { + "start": 18664.97, + "end": 18666.58, + "probability": 0.9558 + }, + { + "start": 18669.31, + "end": 18671.78, + "probability": 0.4532 + }, + { + "start": 18677.84, + "end": 18678.94, + "probability": 0.3004 + }, + { + "start": 18682.22, + "end": 18683.86, + "probability": 0.8548 + }, + { + "start": 18684.82, + "end": 18687.16, + "probability": 0.9709 + }, + { + "start": 18688.28, + "end": 18689.94, + "probability": 0.9803 + }, + { + "start": 18691.02, + "end": 18693.4, + "probability": 0.9956 + }, + { + "start": 18694.64, + "end": 18695.82, + "probability": 0.9939 + }, + { + "start": 18696.42, + "end": 18698.52, + "probability": 0.999 + }, + { + "start": 18698.54, + "end": 18701.06, + "probability": 0.9907 + }, + { + "start": 18701.9, + "end": 18702.62, + "probability": 0.7343 + }, + { + "start": 18705.34, + "end": 18707.0, + "probability": 0.8736 + }, + { + "start": 18708.9, + "end": 18710.41, + "probability": 0.9919 + }, + { + "start": 18712.56, + "end": 18714.76, + "probability": 0.9888 + }, + { + "start": 18715.78, + "end": 18720.7, + "probability": 0.5005 + }, + { + "start": 18721.44, + "end": 18722.3, + "probability": 0.8 + }, + { + "start": 18723.22, + "end": 18725.72, + "probability": 0.8498 + }, + { + "start": 18726.17, + "end": 18729.84, + "probability": 0.5139 + }, + { + "start": 18731.18, + "end": 18732.62, + "probability": 0.9854 + }, + { + "start": 18735.24, + "end": 18736.78, + "probability": 0.6638 + }, + { + "start": 18738.46, + "end": 18742.06, + "probability": 0.9948 + }, + { + "start": 18742.72, + "end": 18743.82, + "probability": 0.9862 + }, + { + "start": 18745.02, + "end": 18747.84, + "probability": 0.922 + }, + { + "start": 18747.94, + "end": 18748.86, + "probability": 0.9352 + }, + { + "start": 18749.5, + "end": 18751.19, + "probability": 0.8217 + }, + { + "start": 18755.16, + "end": 18756.39, + "probability": 0.9895 + }, + { + "start": 18757.24, + "end": 18759.44, + "probability": 0.9229 + }, + { + "start": 18760.8, + "end": 18762.06, + "probability": 0.9496 + }, + { + "start": 18762.16, + "end": 18768.22, + "probability": 0.9856 + }, + { + "start": 18769.8, + "end": 18771.96, + "probability": 0.9984 + }, + { + "start": 18773.1, + "end": 18775.42, + "probability": 0.9958 + }, + { + "start": 18776.74, + "end": 18779.54, + "probability": 0.8899 + }, + { + "start": 18780.16, + "end": 18782.26, + "probability": 0.7381 + }, + { + "start": 18782.34, + "end": 18782.36, + "probability": 0.5107 + }, + { + "start": 18782.44, + "end": 18784.5, + "probability": 0.8082 + }, + { + "start": 18784.68, + "end": 18785.52, + "probability": 0.9699 + }, + { + "start": 18785.56, + "end": 18786.08, + "probability": 0.7863 + }, + { + "start": 18786.64, + "end": 18786.94, + "probability": 0.4291 + }, + { + "start": 18786.94, + "end": 18788.64, + "probability": 0.9364 + }, + { + "start": 18789.18, + "end": 18792.56, + "probability": 0.9917 + }, + { + "start": 18794.74, + "end": 18795.76, + "probability": 0.8932 + }, + { + "start": 18796.64, + "end": 18802.02, + "probability": 0.9397 + }, + { + "start": 18803.3, + "end": 18808.44, + "probability": 0.996 + }, + { + "start": 18809.24, + "end": 18810.2, + "probability": 0.9851 + }, + { + "start": 18811.32, + "end": 18812.12, + "probability": 0.9924 + }, + { + "start": 18812.8, + "end": 18813.78, + "probability": 0.8941 + }, + { + "start": 18814.52, + "end": 18819.74, + "probability": 0.6968 + }, + { + "start": 18820.06, + "end": 18821.44, + "probability": 0.939 + }, + { + "start": 18822.56, + "end": 18824.34, + "probability": 0.9961 + }, + { + "start": 18825.5, + "end": 18828.61, + "probability": 0.9463 + }, + { + "start": 18830.06, + "end": 18831.96, + "probability": 0.9604 + }, + { + "start": 18832.8, + "end": 18833.2, + "probability": 0.5095 + }, + { + "start": 18834.08, + "end": 18834.28, + "probability": 0.7565 + }, + { + "start": 18835.24, + "end": 18837.18, + "probability": 0.5654 + }, + { + "start": 18837.42, + "end": 18837.54, + "probability": 0.0499 + }, + { + "start": 18837.92, + "end": 18838.2, + "probability": 0.7022 + }, + { + "start": 18839.44, + "end": 18840.96, + "probability": 0.9011 + }, + { + "start": 18842.36, + "end": 18843.48, + "probability": 0.6904 + }, + { + "start": 18844.38, + "end": 18845.06, + "probability": 0.7916 + }, + { + "start": 18845.86, + "end": 18848.7, + "probability": 0.6692 + }, + { + "start": 18849.7, + "end": 18850.7, + "probability": 0.799 + }, + { + "start": 18851.24, + "end": 18852.24, + "probability": 0.7784 + }, + { + "start": 18853.18, + "end": 18854.0, + "probability": 0.8636 + }, + { + "start": 18854.44, + "end": 18856.54, + "probability": 0.2765 + }, + { + "start": 18856.62, + "end": 18861.46, + "probability": 0.6308 + }, + { + "start": 18861.76, + "end": 18864.82, + "probability": 0.7394 + }, + { + "start": 18866.06, + "end": 18867.14, + "probability": 0.6007 + }, + { + "start": 18868.28, + "end": 18871.3, + "probability": 0.9005 + }, + { + "start": 18872.04, + "end": 18873.46, + "probability": 0.931 + }, + { + "start": 18874.8, + "end": 18876.82, + "probability": 0.9867 + }, + { + "start": 18876.92, + "end": 18877.62, + "probability": 0.0208 + }, + { + "start": 18878.06, + "end": 18878.46, + "probability": 0.023 + }, + { + "start": 18878.46, + "end": 18878.54, + "probability": 0.6174 + }, + { + "start": 18878.68, + "end": 18878.68, + "probability": 0.4884 + }, + { + "start": 18878.82, + "end": 18879.56, + "probability": 0.2038 + }, + { + "start": 18880.62, + "end": 18881.0, + "probability": 0.0438 + }, + { + "start": 18881.0, + "end": 18882.96, + "probability": 0.2419 + }, + { + "start": 18883.0, + "end": 18883.06, + "probability": 0.3174 + }, + { + "start": 18883.06, + "end": 18885.22, + "probability": 0.8374 + }, + { + "start": 18885.3, + "end": 18886.72, + "probability": 0.9399 + }, + { + "start": 18886.72, + "end": 18888.64, + "probability": 0.5987 + }, + { + "start": 18889.66, + "end": 18890.42, + "probability": 0.0505 + }, + { + "start": 18890.42, + "end": 18891.68, + "probability": 0.7172 + }, + { + "start": 18891.72, + "end": 18892.6, + "probability": 0.9166 + }, + { + "start": 18893.06, + "end": 18893.66, + "probability": 0.6039 + }, + { + "start": 18893.66, + "end": 18894.76, + "probability": 0.7251 + }, + { + "start": 18894.84, + "end": 18897.66, + "probability": 0.6892 + }, + { + "start": 18899.12, + "end": 18900.68, + "probability": 0.6805 + }, + { + "start": 18901.16, + "end": 18905.82, + "probability": 0.8301 + }, + { + "start": 18906.2, + "end": 18906.4, + "probability": 0.3407 + }, + { + "start": 18906.46, + "end": 18906.56, + "probability": 0.6083 + }, + { + "start": 18907.2, + "end": 18908.54, + "probability": 0.929 + }, + { + "start": 18908.64, + "end": 18910.76, + "probability": 0.9005 + }, + { + "start": 18932.4, + "end": 18932.64, + "probability": 0.3006 + }, + { + "start": 18932.64, + "end": 18933.36, + "probability": 0.9202 + }, + { + "start": 18938.56, + "end": 18940.44, + "probability": 0.4881 + }, + { + "start": 18941.38, + "end": 18942.36, + "probability": 0.9856 + }, + { + "start": 18947.16, + "end": 18947.46, + "probability": 0.7747 + }, + { + "start": 18948.36, + "end": 18951.18, + "probability": 0.9844 + }, + { + "start": 18952.28, + "end": 18952.86, + "probability": 0.9609 + }, + { + "start": 18953.78, + "end": 18956.28, + "probability": 0.9546 + }, + { + "start": 18956.52, + "end": 18960.42, + "probability": 0.9971 + }, + { + "start": 18961.36, + "end": 18964.3, + "probability": 0.8354 + }, + { + "start": 18964.3, + "end": 18967.48, + "probability": 0.9762 + }, + { + "start": 18969.0, + "end": 18971.57, + "probability": 0.9995 + }, + { + "start": 18972.1, + "end": 18974.68, + "probability": 0.9333 + }, + { + "start": 18974.72, + "end": 18977.34, + "probability": 0.9313 + }, + { + "start": 18978.62, + "end": 18979.84, + "probability": 0.6494 + }, + { + "start": 18980.48, + "end": 18981.0, + "probability": 0.6834 + }, + { + "start": 18981.38, + "end": 18985.48, + "probability": 0.9714 + }, + { + "start": 18986.0, + "end": 18987.91, + "probability": 0.7891 + }, + { + "start": 18989.54, + "end": 18994.44, + "probability": 0.9972 + }, + { + "start": 18994.64, + "end": 18995.4, + "probability": 0.9727 + }, + { + "start": 18995.46, + "end": 18996.2, + "probability": 0.7518 + }, + { + "start": 18997.38, + "end": 18998.74, + "probability": 0.7979 + }, + { + "start": 19001.96, + "end": 19004.2, + "probability": 0.9441 + }, + { + "start": 19004.3, + "end": 19005.52, + "probability": 0.9126 + }, + { + "start": 19005.82, + "end": 19007.32, + "probability": 0.8149 + }, + { + "start": 19007.38, + "end": 19011.02, + "probability": 0.9929 + }, + { + "start": 19011.2, + "end": 19012.46, + "probability": 0.6776 + }, + { + "start": 19013.5, + "end": 19018.32, + "probability": 0.9773 + }, + { + "start": 19018.82, + "end": 19019.56, + "probability": 0.8705 + }, + { + "start": 19019.68, + "end": 19020.62, + "probability": 0.9824 + }, + { + "start": 19020.72, + "end": 19021.84, + "probability": 0.8312 + }, + { + "start": 19022.76, + "end": 19025.58, + "probability": 0.9743 + }, + { + "start": 19026.94, + "end": 19029.68, + "probability": 0.6663 + }, + { + "start": 19029.74, + "end": 19030.74, + "probability": 0.5874 + }, + { + "start": 19031.12, + "end": 19034.26, + "probability": 0.936 + }, + { + "start": 19035.42, + "end": 19036.1, + "probability": 0.6203 + }, + { + "start": 19036.64, + "end": 19038.06, + "probability": 0.8612 + }, + { + "start": 19038.6, + "end": 19039.56, + "probability": 0.9301 + }, + { + "start": 19039.68, + "end": 19041.06, + "probability": 0.9946 + }, + { + "start": 19041.38, + "end": 19041.62, + "probability": 0.6416 + }, + { + "start": 19042.1, + "end": 19042.66, + "probability": 0.9331 + }, + { + "start": 19042.76, + "end": 19045.94, + "probability": 0.9515 + }, + { + "start": 19046.0, + "end": 19049.16, + "probability": 0.7971 + }, + { + "start": 19049.36, + "end": 19050.66, + "probability": 0.8689 + }, + { + "start": 19051.0, + "end": 19052.78, + "probability": 0.9312 + }, + { + "start": 19054.26, + "end": 19056.14, + "probability": 0.7477 + }, + { + "start": 19056.14, + "end": 19060.32, + "probability": 0.5857 + }, + { + "start": 19061.22, + "end": 19061.22, + "probability": 0.0126 + }, + { + "start": 19061.22, + "end": 19061.22, + "probability": 0.5264 + }, + { + "start": 19061.22, + "end": 19061.72, + "probability": 0.4234 + }, + { + "start": 19062.04, + "end": 19063.6, + "probability": 0.7283 + }, + { + "start": 19063.68, + "end": 19064.66, + "probability": 0.8323 + }, + { + "start": 19064.78, + "end": 19064.82, + "probability": 0.7085 + }, + { + "start": 19065.5, + "end": 19066.46, + "probability": 0.8369 + }, + { + "start": 19066.54, + "end": 19066.68, + "probability": 0.1696 + }, + { + "start": 19066.74, + "end": 19067.12, + "probability": 0.5053 + }, + { + "start": 19067.74, + "end": 19069.02, + "probability": 0.8394 + }, + { + "start": 19069.04, + "end": 19069.23, + "probability": 0.4119 + }, + { + "start": 19069.9, + "end": 19072.32, + "probability": 0.1886 + }, + { + "start": 19076.02, + "end": 19077.66, + "probability": 0.8479 + }, + { + "start": 19078.24, + "end": 19082.12, + "probability": 0.9832 + }, + { + "start": 19082.96, + "end": 19084.74, + "probability": 0.9779 + }, + { + "start": 19085.82, + "end": 19088.12, + "probability": 0.9953 + }, + { + "start": 19088.74, + "end": 19090.82, + "probability": 0.5156 + }, + { + "start": 19091.58, + "end": 19097.44, + "probability": 0.9825 + }, + { + "start": 19098.1, + "end": 19101.1, + "probability": 0.9983 + }, + { + "start": 19101.38, + "end": 19101.64, + "probability": 0.8018 + }, + { + "start": 19101.78, + "end": 19107.62, + "probability": 0.9539 + }, + { + "start": 19107.62, + "end": 19112.52, + "probability": 0.9721 + }, + { + "start": 19112.72, + "end": 19113.02, + "probability": 0.155 + }, + { + "start": 19113.52, + "end": 19114.74, + "probability": 0.9873 + }, + { + "start": 19115.68, + "end": 19116.86, + "probability": 0.8983 + }, + { + "start": 19118.7, + "end": 19120.74, + "probability": 0.7107 + }, + { + "start": 19122.22, + "end": 19123.6, + "probability": 0.9422 + }, + { + "start": 19124.12, + "end": 19127.68, + "probability": 0.9843 + }, + { + "start": 19128.22, + "end": 19131.44, + "probability": 0.9907 + }, + { + "start": 19131.88, + "end": 19136.42, + "probability": 0.9854 + }, + { + "start": 19136.76, + "end": 19140.22, + "probability": 0.9264 + }, + { + "start": 19140.8, + "end": 19141.46, + "probability": 0.9519 + }, + { + "start": 19141.98, + "end": 19145.58, + "probability": 0.983 + }, + { + "start": 19146.06, + "end": 19150.0, + "probability": 0.9637 + }, + { + "start": 19150.1, + "end": 19150.9, + "probability": 0.7764 + }, + { + "start": 19151.64, + "end": 19153.32, + "probability": 0.9354 + }, + { + "start": 19153.32, + "end": 19156.02, + "probability": 0.7429 + }, + { + "start": 19166.22, + "end": 19168.02, + "probability": 0.5671 + }, + { + "start": 19173.86, + "end": 19174.46, + "probability": 0.7251 + }, + { + "start": 19175.08, + "end": 19176.4, + "probability": 0.8184 + }, + { + "start": 19178.44, + "end": 19181.6, + "probability": 0.9985 + }, + { + "start": 19183.86, + "end": 19184.86, + "probability": 0.9894 + }, + { + "start": 19186.62, + "end": 19187.6, + "probability": 0.9933 + }, + { + "start": 19188.68, + "end": 19189.86, + "probability": 0.9282 + }, + { + "start": 19191.98, + "end": 19193.54, + "probability": 0.901 + }, + { + "start": 19195.2, + "end": 19197.92, + "probability": 0.7462 + }, + { + "start": 19198.74, + "end": 19202.18, + "probability": 0.8206 + }, + { + "start": 19204.92, + "end": 19208.0, + "probability": 0.9019 + }, + { + "start": 19209.48, + "end": 19211.3, + "probability": 0.9815 + }, + { + "start": 19211.54, + "end": 19214.84, + "probability": 0.6607 + }, + { + "start": 19214.84, + "end": 19215.46, + "probability": 0.6632 + }, + { + "start": 19216.94, + "end": 19218.31, + "probability": 0.6896 + }, + { + "start": 19218.42, + "end": 19218.98, + "probability": 0.9626 + }, + { + "start": 19219.4, + "end": 19219.76, + "probability": 0.842 + }, + { + "start": 19219.8, + "end": 19220.04, + "probability": 0.8964 + }, + { + "start": 19220.14, + "end": 19221.1, + "probability": 0.9329 + }, + { + "start": 19222.08, + "end": 19226.08, + "probability": 0.9513 + }, + { + "start": 19226.14, + "end": 19227.86, + "probability": 0.9871 + }, + { + "start": 19227.94, + "end": 19230.1, + "probability": 0.9916 + }, + { + "start": 19230.24, + "end": 19232.18, + "probability": 0.995 + }, + { + "start": 19232.3, + "end": 19233.14, + "probability": 0.6509 + }, + { + "start": 19233.24, + "end": 19233.48, + "probability": 0.4127 + }, + { + "start": 19233.56, + "end": 19234.18, + "probability": 0.7059 + }, + { + "start": 19234.5, + "end": 19236.32, + "probability": 0.9849 + }, + { + "start": 19237.8, + "end": 19239.53, + "probability": 0.3363 + }, + { + "start": 19240.6, + "end": 19242.56, + "probability": 0.8337 + }, + { + "start": 19242.78, + "end": 19243.76, + "probability": 0.9468 + }, + { + "start": 19243.84, + "end": 19244.06, + "probability": 0.623 + }, + { + "start": 19244.66, + "end": 19245.44, + "probability": 0.9777 + }, + { + "start": 19245.58, + "end": 19247.0, + "probability": 0.9903 + }, + { + "start": 19247.04, + "end": 19247.72, + "probability": 0.8055 + }, + { + "start": 19248.24, + "end": 19248.54, + "probability": 0.8322 + }, + { + "start": 19250.2, + "end": 19251.34, + "probability": 0.6781 + }, + { + "start": 19251.56, + "end": 19252.84, + "probability": 0.7608 + }, + { + "start": 19252.88, + "end": 19253.16, + "probability": 0.5305 + }, + { + "start": 19253.24, + "end": 19254.56, + "probability": 0.9694 + }, + { + "start": 19256.54, + "end": 19257.16, + "probability": 0.9467 + }, + { + "start": 19258.66, + "end": 19260.16, + "probability": 0.9647 + }, + { + "start": 19260.28, + "end": 19260.48, + "probability": 0.9673 + }, + { + "start": 19260.54, + "end": 19262.28, + "probability": 0.9541 + }, + { + "start": 19262.44, + "end": 19264.2, + "probability": 0.7987 + }, + { + "start": 19264.36, + "end": 19264.78, + "probability": 0.978 + }, + { + "start": 19265.22, + "end": 19267.8, + "probability": 0.7962 + }, + { + "start": 19268.8, + "end": 19271.84, + "probability": 0.8193 + }, + { + "start": 19272.54, + "end": 19273.5, + "probability": 0.9798 + }, + { + "start": 19274.22, + "end": 19275.02, + "probability": 0.9756 + }, + { + "start": 19275.94, + "end": 19277.38, + "probability": 0.7859 + }, + { + "start": 19278.64, + "end": 19283.42, + "probability": 0.9985 + }, + { + "start": 19285.18, + "end": 19288.0, + "probability": 0.6499 + }, + { + "start": 19288.0, + "end": 19288.34, + "probability": 0.6279 + }, + { + "start": 19288.48, + "end": 19289.43, + "probability": 0.6134 + }, + { + "start": 19289.98, + "end": 19290.52, + "probability": 0.7362 + }, + { + "start": 19292.24, + "end": 19292.34, + "probability": 0.5245 + }, + { + "start": 19293.02, + "end": 19294.46, + "probability": 0.8077 + }, + { + "start": 19294.9, + "end": 19295.76, + "probability": 0.6709 + }, + { + "start": 19296.82, + "end": 19298.38, + "probability": 0.8151 + }, + { + "start": 19299.14, + "end": 19299.87, + "probability": 0.9202 + }, + { + "start": 19300.4, + "end": 19301.5, + "probability": 0.7889 + }, + { + "start": 19301.84, + "end": 19303.36, + "probability": 0.4557 + }, + { + "start": 19303.48, + "end": 19304.14, + "probability": 0.8971 + }, + { + "start": 19304.18, + "end": 19304.88, + "probability": 0.371 + }, + { + "start": 19305.9, + "end": 19307.94, + "probability": 0.6677 + }, + { + "start": 19308.64, + "end": 19312.4, + "probability": 0.9749 + }, + { + "start": 19312.48, + "end": 19313.76, + "probability": 0.9707 + }, + { + "start": 19314.3, + "end": 19315.92, + "probability": 0.996 + }, + { + "start": 19316.02, + "end": 19319.76, + "probability": 0.9953 + }, + { + "start": 19320.34, + "end": 19321.12, + "probability": 0.9241 + }, + { + "start": 19321.3, + "end": 19323.38, + "probability": 0.9989 + }, + { + "start": 19323.38, + "end": 19325.51, + "probability": 0.9844 + }, + { + "start": 19326.38, + "end": 19327.3, + "probability": 0.8218 + }, + { + "start": 19328.28, + "end": 19328.98, + "probability": 0.9697 + }, + { + "start": 19329.88, + "end": 19330.8, + "probability": 0.7913 + }, + { + "start": 19331.34, + "end": 19332.82, + "probability": 0.8403 + }, + { + "start": 19334.38, + "end": 19335.94, + "probability": 0.9927 + }, + { + "start": 19336.66, + "end": 19338.79, + "probability": 0.9873 + }, + { + "start": 19340.3, + "end": 19342.44, + "probability": 0.9935 + }, + { + "start": 19342.92, + "end": 19344.18, + "probability": 0.9736 + }, + { + "start": 19344.28, + "end": 19345.18, + "probability": 0.6831 + }, + { + "start": 19345.32, + "end": 19346.22, + "probability": 0.5937 + }, + { + "start": 19347.14, + "end": 19347.9, + "probability": 0.9517 + }, + { + "start": 19348.92, + "end": 19350.3, + "probability": 0.9569 + }, + { + "start": 19350.38, + "end": 19352.62, + "probability": 0.8991 + }, + { + "start": 19352.66, + "end": 19353.84, + "probability": 0.9736 + }, + { + "start": 19356.0, + "end": 19357.1, + "probability": 0.9414 + }, + { + "start": 19357.88, + "end": 19357.98, + "probability": 0.1544 + }, + { + "start": 19360.06, + "end": 19361.28, + "probability": 0.7025 + }, + { + "start": 19361.8, + "end": 19362.5, + "probability": 0.6576 + }, + { + "start": 19364.12, + "end": 19364.54, + "probability": 0.834 + }, + { + "start": 19366.04, + "end": 19368.42, + "probability": 0.9702 + }, + { + "start": 19368.68, + "end": 19372.84, + "probability": 0.9774 + }, + { + "start": 19372.98, + "end": 19373.2, + "probability": 0.834 + }, + { + "start": 19373.92, + "end": 19375.58, + "probability": 0.8854 + }, + { + "start": 19375.62, + "end": 19377.01, + "probability": 0.9255 + }, + { + "start": 19377.86, + "end": 19378.44, + "probability": 0.8391 + }, + { + "start": 19404.08, + "end": 19405.82, + "probability": 0.6616 + }, + { + "start": 19408.36, + "end": 19410.86, + "probability": 0.6723 + }, + { + "start": 19411.84, + "end": 19414.82, + "probability": 0.7824 + }, + { + "start": 19416.82, + "end": 19419.32, + "probability": 0.567 + }, + { + "start": 19421.25, + "end": 19422.88, + "probability": 0.7789 + }, + { + "start": 19423.96, + "end": 19424.52, + "probability": 0.5019 + }, + { + "start": 19428.1, + "end": 19431.44, + "probability": 0.8849 + }, + { + "start": 19432.88, + "end": 19435.42, + "probability": 0.7577 + }, + { + "start": 19435.42, + "end": 19438.62, + "probability": 0.9642 + }, + { + "start": 19439.8, + "end": 19441.0, + "probability": 0.9001 + }, + { + "start": 19442.08, + "end": 19442.74, + "probability": 0.4369 + }, + { + "start": 19443.36, + "end": 19444.28, + "probability": 0.8137 + }, + { + "start": 19445.22, + "end": 19446.14, + "probability": 0.5887 + }, + { + "start": 19447.42, + "end": 19448.82, + "probability": 0.6063 + }, + { + "start": 19450.26, + "end": 19454.9, + "probability": 0.9167 + }, + { + "start": 19456.06, + "end": 19458.48, + "probability": 0.9661 + }, + { + "start": 19459.26, + "end": 19461.06, + "probability": 0.7229 + }, + { + "start": 19461.98, + "end": 19464.0, + "probability": 0.4782 + }, + { + "start": 19465.1, + "end": 19469.46, + "probability": 0.9888 + }, + { + "start": 19470.84, + "end": 19473.66, + "probability": 0.8765 + }, + { + "start": 19474.72, + "end": 19478.32, + "probability": 0.9448 + }, + { + "start": 19479.82, + "end": 19480.36, + "probability": 0.842 + }, + { + "start": 19481.44, + "end": 19482.54, + "probability": 0.398 + }, + { + "start": 19483.0, + "end": 19484.7, + "probability": 0.5913 + }, + { + "start": 19485.08, + "end": 19489.36, + "probability": 0.7568 + }, + { + "start": 19489.5, + "end": 19492.14, + "probability": 0.9689 + }, + { + "start": 19493.2, + "end": 19494.32, + "probability": 0.9068 + }, + { + "start": 19495.2, + "end": 19496.5, + "probability": 0.862 + }, + { + "start": 19496.58, + "end": 19500.4, + "probability": 0.8628 + }, + { + "start": 19501.16, + "end": 19504.56, + "probability": 0.8241 + }, + { + "start": 19505.42, + "end": 19509.06, + "probability": 0.8116 + }, + { + "start": 19509.58, + "end": 19510.8, + "probability": 0.9585 + }, + { + "start": 19513.98, + "end": 19514.66, + "probability": 0.1099 + }, + { + "start": 19514.66, + "end": 19515.48, + "probability": 0.089 + }, + { + "start": 19516.36, + "end": 19517.82, + "probability": 0.8036 + }, + { + "start": 19518.92, + "end": 19520.08, + "probability": 0.7529 + }, + { + "start": 19521.1, + "end": 19522.7, + "probability": 0.5444 + }, + { + "start": 19523.88, + "end": 19525.38, + "probability": 0.5273 + }, + { + "start": 19525.68, + "end": 19526.38, + "probability": 0.9639 + }, + { + "start": 19527.16, + "end": 19528.02, + "probability": 0.9476 + }, + { + "start": 19528.98, + "end": 19529.92, + "probability": 0.4964 + }, + { + "start": 19530.66, + "end": 19532.34, + "probability": 0.6348 + }, + { + "start": 19532.42, + "end": 19534.44, + "probability": 0.7617 + }, + { + "start": 19535.0, + "end": 19536.3, + "probability": 0.6523 + }, + { + "start": 19537.26, + "end": 19538.93, + "probability": 0.9395 + }, + { + "start": 19540.0, + "end": 19540.94, + "probability": 0.7217 + }, + { + "start": 19541.92, + "end": 19543.56, + "probability": 0.7201 + }, + { + "start": 19544.52, + "end": 19547.72, + "probability": 0.5887 + }, + { + "start": 19549.26, + "end": 19552.18, + "probability": 0.8984 + }, + { + "start": 19553.24, + "end": 19554.64, + "probability": 0.6913 + }, + { + "start": 19554.72, + "end": 19555.94, + "probability": 0.9014 + }, + { + "start": 19557.0, + "end": 19557.92, + "probability": 0.8533 + }, + { + "start": 19558.58, + "end": 19559.64, + "probability": 0.6775 + }, + { + "start": 19559.76, + "end": 19561.0, + "probability": 0.9922 + }, + { + "start": 19561.5, + "end": 19562.66, + "probability": 0.4981 + }, + { + "start": 19562.68, + "end": 19564.94, + "probability": 0.8711 + }, + { + "start": 19566.1, + "end": 19567.46, + "probability": 0.9818 + }, + { + "start": 19569.62, + "end": 19572.78, + "probability": 0.482 + }, + { + "start": 19573.72, + "end": 19575.1, + "probability": 0.9497 + }, + { + "start": 19575.18, + "end": 19576.4, + "probability": 0.5768 + }, + { + "start": 19576.4, + "end": 19578.76, + "probability": 0.8376 + }, + { + "start": 19579.04, + "end": 19580.18, + "probability": 0.8553 + }, + { + "start": 19580.6, + "end": 19582.08, + "probability": 0.7721 + }, + { + "start": 19583.82, + "end": 19585.78, + "probability": 0.7777 + }, + { + "start": 19586.24, + "end": 19588.58, + "probability": 0.8358 + }, + { + "start": 19607.78, + "end": 19609.26, + "probability": 0.7239 + }, + { + "start": 19612.3, + "end": 19613.68, + "probability": 0.6722 + }, + { + "start": 19616.08, + "end": 19619.66, + "probability": 0.9557 + }, + { + "start": 19620.22, + "end": 19622.28, + "probability": 0.9609 + }, + { + "start": 19623.7, + "end": 19628.42, + "probability": 0.8873 + }, + { + "start": 19629.68, + "end": 19630.42, + "probability": 0.2972 + }, + { + "start": 19631.04, + "end": 19633.56, + "probability": 0.9013 + }, + { + "start": 19634.86, + "end": 19638.26, + "probability": 0.9904 + }, + { + "start": 19639.36, + "end": 19640.52, + "probability": 0.254 + }, + { + "start": 19641.96, + "end": 19642.74, + "probability": 0.7048 + }, + { + "start": 19643.58, + "end": 19645.58, + "probability": 0.79 + }, + { + "start": 19647.34, + "end": 19648.07, + "probability": 0.9668 + }, + { + "start": 19648.54, + "end": 19648.96, + "probability": 0.875 + }, + { + "start": 19649.94, + "end": 19651.2, + "probability": 0.7412 + }, + { + "start": 19652.32, + "end": 19656.08, + "probability": 0.964 + }, + { + "start": 19657.84, + "end": 19661.62, + "probability": 0.9927 + }, + { + "start": 19662.1, + "end": 19663.3, + "probability": 0.7945 + }, + { + "start": 19663.78, + "end": 19664.64, + "probability": 0.7966 + }, + { + "start": 19664.78, + "end": 19665.74, + "probability": 0.7878 + }, + { + "start": 19665.8, + "end": 19667.33, + "probability": 0.9966 + }, + { + "start": 19668.78, + "end": 19670.16, + "probability": 0.6606 + }, + { + "start": 19672.7, + "end": 19673.92, + "probability": 0.9205 + }, + { + "start": 19675.54, + "end": 19679.64, + "probability": 0.9908 + }, + { + "start": 19679.78, + "end": 19681.32, + "probability": 0.993 + }, + { + "start": 19681.7, + "end": 19682.78, + "probability": 0.8499 + }, + { + "start": 19682.9, + "end": 19684.04, + "probability": 0.9907 + }, + { + "start": 19684.1, + "end": 19684.58, + "probability": 0.5461 + }, + { + "start": 19685.41, + "end": 19689.4, + "probability": 0.9824 + }, + { + "start": 19690.9, + "end": 19692.02, + "probability": 0.7246 + }, + { + "start": 19692.02, + "end": 19694.12, + "probability": 0.6345 + }, + { + "start": 19695.08, + "end": 19697.14, + "probability": 0.3149 + }, + { + "start": 19697.4, + "end": 19698.26, + "probability": 0.9865 + }, + { + "start": 19698.54, + "end": 19699.12, + "probability": 0.859 + }, + { + "start": 19699.18, + "end": 19700.5, + "probability": 0.9614 + }, + { + "start": 19701.06, + "end": 19701.54, + "probability": 0.9702 + }, + { + "start": 19702.16, + "end": 19703.84, + "probability": 0.6449 + }, + { + "start": 19705.2, + "end": 19706.18, + "probability": 0.7083 + }, + { + "start": 19706.28, + "end": 19710.4, + "probability": 0.7628 + }, + { + "start": 19711.12, + "end": 19712.2, + "probability": 0.9404 + }, + { + "start": 19713.52, + "end": 19714.94, + "probability": 0.9082 + }, + { + "start": 19715.74, + "end": 19717.41, + "probability": 0.9048 + }, + { + "start": 19718.02, + "end": 19719.36, + "probability": 0.9523 + }, + { + "start": 19720.08, + "end": 19720.36, + "probability": 0.5781 + }, + { + "start": 19720.48, + "end": 19722.1, + "probability": 0.8967 + }, + { + "start": 19722.18, + "end": 19724.5, + "probability": 0.6609 + }, + { + "start": 19724.58, + "end": 19725.1, + "probability": 0.9812 + }, + { + "start": 19727.66, + "end": 19728.9, + "probability": 0.9093 + }, + { + "start": 19731.48, + "end": 19732.04, + "probability": 0.6059 + }, + { + "start": 19732.96, + "end": 19734.7, + "probability": 0.8153 + }, + { + "start": 19736.24, + "end": 19737.62, + "probability": 0.8982 + }, + { + "start": 19738.46, + "end": 19739.78, + "probability": 0.9575 + }, + { + "start": 19741.58, + "end": 19744.78, + "probability": 0.9165 + }, + { + "start": 19745.34, + "end": 19746.56, + "probability": 0.9531 + }, + { + "start": 19746.62, + "end": 19747.28, + "probability": 0.7194 + }, + { + "start": 19748.64, + "end": 19749.6, + "probability": 0.9631 + }, + { + "start": 19749.96, + "end": 19751.38, + "probability": 0.6962 + }, + { + "start": 19751.78, + "end": 19753.78, + "probability": 0.9019 + }, + { + "start": 19754.88, + "end": 19756.02, + "probability": 0.985 + }, + { + "start": 19757.58, + "end": 19758.28, + "probability": 0.7818 + }, + { + "start": 19759.18, + "end": 19760.48, + "probability": 0.9684 + }, + { + "start": 19761.2, + "end": 19761.9, + "probability": 0.6663 + }, + { + "start": 19762.68, + "end": 19764.4, + "probability": 0.8599 + }, + { + "start": 19766.18, + "end": 19767.54, + "probability": 0.9945 + }, + { + "start": 19768.3, + "end": 19768.74, + "probability": 0.9233 + }, + { + "start": 19770.38, + "end": 19771.24, + "probability": 0.7608 + }, + { + "start": 19771.64, + "end": 19772.26, + "probability": 0.8677 + }, + { + "start": 19772.8, + "end": 19775.28, + "probability": 0.9971 + }, + { + "start": 19776.6, + "end": 19778.34, + "probability": 0.9182 + }, + { + "start": 19779.28, + "end": 19784.18, + "probability": 0.9366 + }, + { + "start": 19785.82, + "end": 19790.52, + "probability": 0.7955 + }, + { + "start": 19792.42, + "end": 19795.48, + "probability": 0.7658 + }, + { + "start": 19795.48, + "end": 19796.0, + "probability": 0.5917 + }, + { + "start": 19796.0, + "end": 19796.88, + "probability": 0.8203 + }, + { + "start": 19797.26, + "end": 19797.8, + "probability": 0.9646 + }, + { + "start": 19798.44, + "end": 19800.96, + "probability": 0.9777 + }, + { + "start": 19801.08, + "end": 19803.9, + "probability": 0.9057 + }, + { + "start": 19803.98, + "end": 19806.58, + "probability": 0.9907 + }, + { + "start": 19806.72, + "end": 19807.26, + "probability": 0.8438 + }, + { + "start": 19808.62, + "end": 19810.22, + "probability": 0.9688 + }, + { + "start": 19810.32, + "end": 19812.22, + "probability": 0.9733 + }, + { + "start": 19812.58, + "end": 19813.28, + "probability": 0.8721 + }, + { + "start": 19814.48, + "end": 19814.74, + "probability": 0.3878 + }, + { + "start": 19814.74, + "end": 19816.06, + "probability": 0.7751 + }, + { + "start": 19816.18, + "end": 19817.58, + "probability": 0.579 + }, + { + "start": 19828.68, + "end": 19829.28, + "probability": 0.5451 + }, + { + "start": 19847.52, + "end": 19848.62, + "probability": 0.6155 + }, + { + "start": 19851.46, + "end": 19852.88, + "probability": 0.9525 + }, + { + "start": 19854.98, + "end": 19856.1, + "probability": 0.868 + }, + { + "start": 19856.8, + "end": 19857.1, + "probability": 0.9839 + }, + { + "start": 19858.52, + "end": 19859.16, + "probability": 0.7003 + }, + { + "start": 19860.66, + "end": 19865.28, + "probability": 0.9878 + }, + { + "start": 19866.2, + "end": 19867.62, + "probability": 0.9783 + }, + { + "start": 19868.88, + "end": 19871.16, + "probability": 0.9854 + }, + { + "start": 19872.06, + "end": 19873.2, + "probability": 0.8529 + }, + { + "start": 19874.1, + "end": 19875.76, + "probability": 0.9984 + }, + { + "start": 19876.68, + "end": 19878.13, + "probability": 0.7592 + }, + { + "start": 19879.52, + "end": 19881.24, + "probability": 0.9048 + }, + { + "start": 19881.28, + "end": 19884.54, + "probability": 0.8929 + }, + { + "start": 19885.76, + "end": 19886.22, + "probability": 0.86 + }, + { + "start": 19886.92, + "end": 19888.0, + "probability": 0.9324 + }, + { + "start": 19888.82, + "end": 19889.06, + "probability": 0.8882 + }, + { + "start": 19889.92, + "end": 19890.65, + "probability": 0.9292 + }, + { + "start": 19891.74, + "end": 19896.38, + "probability": 0.8992 + }, + { + "start": 19898.1, + "end": 19899.26, + "probability": 0.9913 + }, + { + "start": 19900.32, + "end": 19901.36, + "probability": 0.9992 + }, + { + "start": 19902.74, + "end": 19905.42, + "probability": 0.9658 + }, + { + "start": 19906.7, + "end": 19907.7, + "probability": 0.9739 + }, + { + "start": 19908.66, + "end": 19913.64, + "probability": 0.8174 + }, + { + "start": 19914.52, + "end": 19915.56, + "probability": 0.8838 + }, + { + "start": 19916.94, + "end": 19917.66, + "probability": 0.9149 + }, + { + "start": 19918.62, + "end": 19919.42, + "probability": 0.9953 + }, + { + "start": 19920.58, + "end": 19921.28, + "probability": 0.7064 + }, + { + "start": 19922.28, + "end": 19925.16, + "probability": 0.97 + }, + { + "start": 19927.0, + "end": 19929.26, + "probability": 0.9449 + }, + { + "start": 19930.06, + "end": 19931.24, + "probability": 0.8902 + }, + { + "start": 19932.04, + "end": 19933.62, + "probability": 0.9254 + }, + { + "start": 19934.38, + "end": 19937.72, + "probability": 0.964 + }, + { + "start": 19939.06, + "end": 19942.72, + "probability": 0.9301 + }, + { + "start": 19943.44, + "end": 19944.1, + "probability": 0.9723 + }, + { + "start": 19945.38, + "end": 19946.69, + "probability": 0.8584 + }, + { + "start": 19947.58, + "end": 19948.0, + "probability": 0.4823 + }, + { + "start": 19948.1, + "end": 19949.68, + "probability": 0.9868 + }, + { + "start": 19950.66, + "end": 19952.04, + "probability": 0.9062 + }, + { + "start": 19953.86, + "end": 19956.26, + "probability": 0.948 + }, + { + "start": 19957.16, + "end": 19959.76, + "probability": 0.9565 + }, + { + "start": 19961.0, + "end": 19961.7, + "probability": 0.9724 + }, + { + "start": 19963.12, + "end": 19964.24, + "probability": 0.9701 + }, + { + "start": 19965.42, + "end": 19966.72, + "probability": 0.8347 + }, + { + "start": 19967.34, + "end": 19970.1, + "probability": 0.9639 + }, + { + "start": 19971.5, + "end": 19972.96, + "probability": 0.725 + }, + { + "start": 19973.74, + "end": 19976.02, + "probability": 0.9087 + }, + { + "start": 19977.36, + "end": 19978.8, + "probability": 0.8509 + }, + { + "start": 19979.48, + "end": 19980.32, + "probability": 0.9262 + }, + { + "start": 19980.96, + "end": 19982.02, + "probability": 0.9792 + }, + { + "start": 19983.3, + "end": 19987.88, + "probability": 0.9655 + }, + { + "start": 19988.98, + "end": 19991.14, + "probability": 0.9929 + }, + { + "start": 19991.9, + "end": 19993.74, + "probability": 0.9956 + }, + { + "start": 19994.8, + "end": 19997.46, + "probability": 0.7339 + }, + { + "start": 19998.24, + "end": 20001.7, + "probability": 0.7429 + }, + { + "start": 20002.58, + "end": 20004.36, + "probability": 0.8647 + }, + { + "start": 20005.2, + "end": 20006.38, + "probability": 0.8948 + }, + { + "start": 20007.08, + "end": 20007.82, + "probability": 0.9411 + }, + { + "start": 20008.42, + "end": 20009.04, + "probability": 0.8662 + }, + { + "start": 20009.24, + "end": 20010.24, + "probability": 0.9329 + }, + { + "start": 20010.82, + "end": 20011.38, + "probability": 0.9478 + }, + { + "start": 20012.06, + "end": 20014.86, + "probability": 0.8361 + }, + { + "start": 20015.6, + "end": 20016.64, + "probability": 0.9426 + }, + { + "start": 20017.18, + "end": 20018.54, + "probability": 0.9443 + }, + { + "start": 20019.16, + "end": 20020.52, + "probability": 0.9839 + }, + { + "start": 20021.44, + "end": 20022.03, + "probability": 0.9666 + }, + { + "start": 20022.7, + "end": 20023.38, + "probability": 0.6638 + }, + { + "start": 20024.72, + "end": 20026.7, + "probability": 0.8139 + }, + { + "start": 20027.34, + "end": 20028.22, + "probability": 0.9531 + }, + { + "start": 20028.84, + "end": 20030.16, + "probability": 0.9751 + }, + { + "start": 20030.28, + "end": 20032.24, + "probability": 0.9122 + }, + { + "start": 20032.98, + "end": 20033.98, + "probability": 0.9982 + }, + { + "start": 20034.5, + "end": 20036.38, + "probability": 0.9992 + }, + { + "start": 20036.44, + "end": 20037.1, + "probability": 0.8338 + }, + { + "start": 20037.22, + "end": 20038.04, + "probability": 0.7779 + }, + { + "start": 20038.34, + "end": 20038.42, + "probability": 0.2094 + }, + { + "start": 20038.48, + "end": 20039.4, + "probability": 0.6415 + }, + { + "start": 20040.3, + "end": 20040.82, + "probability": 0.9272 + }, + { + "start": 20041.56, + "end": 20042.61, + "probability": 0.9797 + }, + { + "start": 20043.54, + "end": 20044.74, + "probability": 0.8809 + }, + { + "start": 20046.16, + "end": 20047.78, + "probability": 0.9359 + }, + { + "start": 20048.74, + "end": 20052.54, + "probability": 0.8814 + }, + { + "start": 20053.8, + "end": 20055.44, + "probability": 0.6599 + }, + { + "start": 20056.02, + "end": 20057.44, + "probability": 0.7672 + }, + { + "start": 20057.84, + "end": 20059.8, + "probability": 0.9282 + }, + { + "start": 20060.46, + "end": 20061.18, + "probability": 0.8858 + }, + { + "start": 20061.72, + "end": 20063.14, + "probability": 0.9931 + }, + { + "start": 20064.14, + "end": 20065.44, + "probability": 0.8675 + }, + { + "start": 20065.54, + "end": 20067.54, + "probability": 0.64 + }, + { + "start": 20068.18, + "end": 20069.2, + "probability": 0.9443 + }, + { + "start": 20071.16, + "end": 20088.44, + "probability": 0.6662 + }, + { + "start": 20089.16, + "end": 20089.16, + "probability": 0.245 + }, + { + "start": 20089.16, + "end": 20092.14, + "probability": 0.7591 + }, + { + "start": 20094.18, + "end": 20094.52, + "probability": 0.9845 + }, + { + "start": 20096.2, + "end": 20101.12, + "probability": 0.9983 + }, + { + "start": 20102.7, + "end": 20103.46, + "probability": 0.8573 + }, + { + "start": 20104.22, + "end": 20105.36, + "probability": 0.4971 + }, + { + "start": 20106.12, + "end": 20107.96, + "probability": 0.9294 + }, + { + "start": 20110.1, + "end": 20110.82, + "probability": 0.9883 + }, + { + "start": 20112.06, + "end": 20114.52, + "probability": 0.9663 + }, + { + "start": 20116.38, + "end": 20117.9, + "probability": 0.7554 + }, + { + "start": 20118.8, + "end": 20120.62, + "probability": 0.8908 + }, + { + "start": 20121.96, + "end": 20127.16, + "probability": 0.9902 + }, + { + "start": 20128.96, + "end": 20131.4, + "probability": 0.7147 + }, + { + "start": 20133.1, + "end": 20137.28, + "probability": 0.9851 + }, + { + "start": 20138.92, + "end": 20140.02, + "probability": 0.7821 + }, + { + "start": 20140.34, + "end": 20141.48, + "probability": 0.7239 + }, + { + "start": 20141.74, + "end": 20142.62, + "probability": 0.6423 + }, + { + "start": 20142.62, + "end": 20145.34, + "probability": 0.7469 + }, + { + "start": 20146.78, + "end": 20148.64, + "probability": 0.7653 + }, + { + "start": 20152.38, + "end": 20154.76, + "probability": 0.9814 + }, + { + "start": 20157.18, + "end": 20157.18, + "probability": 0.487 + }, + { + "start": 20157.18, + "end": 20157.66, + "probability": 0.5515 + }, + { + "start": 20159.78, + "end": 20159.78, + "probability": 0.0177 + }, + { + "start": 20159.78, + "end": 20160.12, + "probability": 0.3778 + }, + { + "start": 20161.48, + "end": 20163.7, + "probability": 0.7405 + }, + { + "start": 20164.84, + "end": 20165.44, + "probability": 0.6401 + }, + { + "start": 20166.92, + "end": 20167.98, + "probability": 0.966 + }, + { + "start": 20168.6, + "end": 20170.44, + "probability": 0.9807 + }, + { + "start": 20171.24, + "end": 20174.28, + "probability": 0.9834 + }, + { + "start": 20175.0, + "end": 20176.04, + "probability": 0.9549 + }, + { + "start": 20176.68, + "end": 20182.94, + "probability": 0.9658 + }, + { + "start": 20183.52, + "end": 20185.32, + "probability": 0.0917 + }, + { + "start": 20185.66, + "end": 20185.98, + "probability": 0.6523 + }, + { + "start": 20186.94, + "end": 20196.14, + "probability": 0.9901 + }, + { + "start": 20196.46, + "end": 20199.06, + "probability": 0.7172 + }, + { + "start": 20199.24, + "end": 20200.44, + "probability": 0.8938 + }, + { + "start": 20201.1, + "end": 20202.88, + "probability": 0.9866 + }, + { + "start": 20204.64, + "end": 20208.06, + "probability": 0.7835 + }, + { + "start": 20209.46, + "end": 20211.72, + "probability": 0.9933 + }, + { + "start": 20212.76, + "end": 20214.96, + "probability": 0.0986 + }, + { + "start": 20214.96, + "end": 20214.96, + "probability": 0.0365 + }, + { + "start": 20214.96, + "end": 20218.86, + "probability": 0.6037 + }, + { + "start": 20218.9, + "end": 20223.82, + "probability": 0.9331 + }, + { + "start": 20224.96, + "end": 20225.06, + "probability": 0.0158 + }, + { + "start": 20225.06, + "end": 20225.06, + "probability": 0.5393 + }, + { + "start": 20225.06, + "end": 20229.46, + "probability": 0.9861 + }, + { + "start": 20230.14, + "end": 20231.82, + "probability": 0.6085 + }, + { + "start": 20233.04, + "end": 20239.46, + "probability": 0.939 + }, + { + "start": 20240.9, + "end": 20242.6, + "probability": 0.9563 + }, + { + "start": 20244.14, + "end": 20245.74, + "probability": 0.8138 + }, + { + "start": 20246.4, + "end": 20247.5, + "probability": 0.9915 + }, + { + "start": 20249.32, + "end": 20251.04, + "probability": 0.8289 + }, + { + "start": 20252.04, + "end": 20255.52, + "probability": 0.8967 + }, + { + "start": 20255.98, + "end": 20260.76, + "probability": 0.9763 + }, + { + "start": 20261.18, + "end": 20261.82, + "probability": 0.4496 + }, + { + "start": 20262.5, + "end": 20264.16, + "probability": 0.9836 + }, + { + "start": 20264.78, + "end": 20266.84, + "probability": 0.6664 + }, + { + "start": 20267.36, + "end": 20271.98, + "probability": 0.7949 + }, + { + "start": 20273.78, + "end": 20276.18, + "probability": 0.728 + }, + { + "start": 20276.36, + "end": 20278.3, + "probability": 0.9016 + }, + { + "start": 20279.02, + "end": 20280.0, + "probability": 0.2302 + }, + { + "start": 20280.14, + "end": 20281.94, + "probability": 0.7123 + }, + { + "start": 20283.82, + "end": 20295.3, + "probability": 0.9824 + }, + { + "start": 20297.0, + "end": 20297.0, + "probability": 0.2142 + }, + { + "start": 20297.0, + "end": 20298.54, + "probability": 0.6686 + }, + { + "start": 20299.9, + "end": 20302.58, + "probability": 0.9139 + }, + { + "start": 20303.6, + "end": 20307.78, + "probability": 0.918 + }, + { + "start": 20307.78, + "end": 20312.44, + "probability": 0.9617 + }, + { + "start": 20313.64, + "end": 20315.52, + "probability": 0.9615 + }, + { + "start": 20316.64, + "end": 20318.74, + "probability": 0.9922 + }, + { + "start": 20320.06, + "end": 20322.92, + "probability": 0.9827 + }, + { + "start": 20323.84, + "end": 20324.28, + "probability": 0.0069 + }, + { + "start": 20324.6, + "end": 20327.36, + "probability": 0.9573 + }, + { + "start": 20327.5, + "end": 20328.86, + "probability": 0.8703 + }, + { + "start": 20328.98, + "end": 20330.37, + "probability": 0.9836 + }, + { + "start": 20330.56, + "end": 20332.68, + "probability": 0.8804 + }, + { + "start": 20333.81, + "end": 20335.39, + "probability": 0.7485 + }, + { + "start": 20336.14, + "end": 20338.28, + "probability": 0.0973 + }, + { + "start": 20338.82, + "end": 20340.85, + "probability": 0.4897 + }, + { + "start": 20341.82, + "end": 20342.62, + "probability": 0.1393 + }, + { + "start": 20342.7, + "end": 20342.7, + "probability": 0.1908 + }, + { + "start": 20342.7, + "end": 20343.2, + "probability": 0.7772 + }, + { + "start": 20343.2, + "end": 20343.3, + "probability": 0.8389 + }, + { + "start": 20343.92, + "end": 20345.38, + "probability": 0.9639 + }, + { + "start": 20345.38, + "end": 20350.04, + "probability": 0.9903 + }, + { + "start": 20351.04, + "end": 20351.76, + "probability": 0.9728 + }, + { + "start": 20352.46, + "end": 20356.12, + "probability": 0.9971 + }, + { + "start": 20357.0, + "end": 20357.92, + "probability": 0.5842 + }, + { + "start": 20359.34, + "end": 20360.78, + "probability": 0.9932 + }, + { + "start": 20361.46, + "end": 20363.18, + "probability": 0.9984 + }, + { + "start": 20363.74, + "end": 20366.22, + "probability": 0.9655 + }, + { + "start": 20366.82, + "end": 20372.32, + "probability": 0.9952 + }, + { + "start": 20372.5, + "end": 20372.94, + "probability": 0.7917 + }, + { + "start": 20374.52, + "end": 20378.28, + "probability": 0.9976 + }, + { + "start": 20379.08, + "end": 20379.46, + "probability": 0.4352 + }, + { + "start": 20380.22, + "end": 20381.48, + "probability": 0.7296 + }, + { + "start": 20382.16, + "end": 20387.74, + "probability": 0.9954 + }, + { + "start": 20387.88, + "end": 20389.32, + "probability": 0.9728 + }, + { + "start": 20390.26, + "end": 20391.72, + "probability": 0.9781 + }, + { + "start": 20392.34, + "end": 20393.74, + "probability": 0.9355 + }, + { + "start": 20394.28, + "end": 20394.88, + "probability": 0.9836 + }, + { + "start": 20396.14, + "end": 20398.72, + "probability": 0.9963 + }, + { + "start": 20399.64, + "end": 20402.36, + "probability": 0.9966 + }, + { + "start": 20403.4, + "end": 20404.7, + "probability": 0.978 + }, + { + "start": 20405.24, + "end": 20408.0, + "probability": 0.952 + }, + { + "start": 20408.66, + "end": 20411.46, + "probability": 0.9961 + }, + { + "start": 20411.68, + "end": 20412.61, + "probability": 0.7808 + }, + { + "start": 20413.46, + "end": 20416.31, + "probability": 0.9716 + }, + { + "start": 20417.16, + "end": 20420.1, + "probability": 0.8005 + }, + { + "start": 20421.3, + "end": 20421.8, + "probability": 0.811 + }, + { + "start": 20422.7, + "end": 20424.48, + "probability": 0.9946 + }, + { + "start": 20425.32, + "end": 20426.76, + "probability": 0.8592 + }, + { + "start": 20427.84, + "end": 20431.34, + "probability": 0.7691 + }, + { + "start": 20431.34, + "end": 20434.58, + "probability": 0.9984 + }, + { + "start": 20434.78, + "end": 20435.42, + "probability": 0.9585 + }, + { + "start": 20435.94, + "end": 20436.86, + "probability": 0.8225 + }, + { + "start": 20437.72, + "end": 20441.2, + "probability": 0.9983 + }, + { + "start": 20441.76, + "end": 20443.7, + "probability": 0.9988 + }, + { + "start": 20444.32, + "end": 20445.18, + "probability": 0.6752 + }, + { + "start": 20445.3, + "end": 20447.44, + "probability": 0.9917 + }, + { + "start": 20447.44, + "end": 20450.96, + "probability": 0.9976 + }, + { + "start": 20451.52, + "end": 20452.98, + "probability": 0.9802 + }, + { + "start": 20453.88, + "end": 20455.96, + "probability": 0.9346 + }, + { + "start": 20457.04, + "end": 20457.9, + "probability": 0.8958 + }, + { + "start": 20458.66, + "end": 20459.2, + "probability": 0.962 + }, + { + "start": 20459.72, + "end": 20464.02, + "probability": 0.9915 + }, + { + "start": 20464.94, + "end": 20466.56, + "probability": 0.9966 + }, + { + "start": 20468.18, + "end": 20470.24, + "probability": 0.9507 + }, + { + "start": 20470.92, + "end": 20471.4, + "probability": 0.7393 + }, + { + "start": 20472.44, + "end": 20476.6, + "probability": 0.9525 + }, + { + "start": 20477.16, + "end": 20478.34, + "probability": 0.9949 + }, + { + "start": 20478.46, + "end": 20479.76, + "probability": 0.735 + }, + { + "start": 20480.98, + "end": 20482.6, + "probability": 0.9776 + }, + { + "start": 20483.28, + "end": 20484.04, + "probability": 0.792 + }, + { + "start": 20485.5, + "end": 20486.38, + "probability": 0.9493 + }, + { + "start": 20487.04, + "end": 20487.7, + "probability": 0.9995 + }, + { + "start": 20488.4, + "end": 20490.18, + "probability": 0.9969 + }, + { + "start": 20490.88, + "end": 20491.2, + "probability": 0.7728 + }, + { + "start": 20492.48, + "end": 20493.46, + "probability": 0.8383 + }, + { + "start": 20494.08, + "end": 20494.98, + "probability": 0.9235 + }, + { + "start": 20495.98, + "end": 20496.74, + "probability": 0.9145 + }, + { + "start": 20497.3, + "end": 20500.18, + "probability": 0.9792 + }, + { + "start": 20500.46, + "end": 20500.64, + "probability": 0.7727 + }, + { + "start": 20501.3, + "end": 20502.6, + "probability": 0.9169 + }, + { + "start": 20502.7, + "end": 20503.9, + "probability": 0.8193 + }, + { + "start": 20528.16, + "end": 20529.31, + "probability": 0.7117 + }, + { + "start": 20533.16, + "end": 20533.96, + "probability": 0.5488 + }, + { + "start": 20533.96, + "end": 20534.8, + "probability": 0.8136 + }, + { + "start": 20534.92, + "end": 20538.74, + "probability": 0.8926 + }, + { + "start": 20539.44, + "end": 20541.6, + "probability": 0.9683 + }, + { + "start": 20542.76, + "end": 20549.22, + "probability": 0.9624 + }, + { + "start": 20549.78, + "end": 20553.56, + "probability": 0.9217 + }, + { + "start": 20554.24, + "end": 20558.74, + "probability": 0.9978 + }, + { + "start": 20559.36, + "end": 20562.16, + "probability": 0.9897 + }, + { + "start": 20562.86, + "end": 20563.96, + "probability": 0.9678 + }, + { + "start": 20564.7, + "end": 20569.3, + "probability": 0.9987 + }, + { + "start": 20569.3, + "end": 20574.7, + "probability": 0.9991 + }, + { + "start": 20575.52, + "end": 20578.34, + "probability": 0.8615 + }, + { + "start": 20578.98, + "end": 20580.14, + "probability": 0.7941 + }, + { + "start": 20580.6, + "end": 20584.54, + "probability": 0.9967 + }, + { + "start": 20585.44, + "end": 20585.96, + "probability": 0.8708 + }, + { + "start": 20586.06, + "end": 20586.86, + "probability": 0.8317 + }, + { + "start": 20587.04, + "end": 20589.62, + "probability": 0.9905 + }, + { + "start": 20590.2, + "end": 20591.08, + "probability": 0.8819 + }, + { + "start": 20591.64, + "end": 20593.74, + "probability": 0.944 + }, + { + "start": 20594.34, + "end": 20597.32, + "probability": 0.9808 + }, + { + "start": 20597.82, + "end": 20599.32, + "probability": 0.9907 + }, + { + "start": 20599.88, + "end": 20602.46, + "probability": 0.9702 + }, + { + "start": 20602.5, + "end": 20603.92, + "probability": 0.6959 + }, + { + "start": 20604.66, + "end": 20606.14, + "probability": 0.7962 + }, + { + "start": 20606.54, + "end": 20607.7, + "probability": 0.6615 + }, + { + "start": 20608.26, + "end": 20610.98, + "probability": 0.9759 + }, + { + "start": 20611.36, + "end": 20613.2, + "probability": 0.8941 + }, + { + "start": 20614.44, + "end": 20617.46, + "probability": 0.9854 + }, + { + "start": 20618.54, + "end": 20620.04, + "probability": 0.8198 + }, + { + "start": 20620.22, + "end": 20622.04, + "probability": 0.9304 + }, + { + "start": 20622.26, + "end": 20623.24, + "probability": 0.7084 + }, + { + "start": 20623.68, + "end": 20626.46, + "probability": 0.9905 + }, + { + "start": 20626.58, + "end": 20627.18, + "probability": 0.8075 + }, + { + "start": 20627.32, + "end": 20627.58, + "probability": 0.5551 + }, + { + "start": 20628.5, + "end": 20629.58, + "probability": 0.8636 + }, + { + "start": 20630.16, + "end": 20630.64, + "probability": 0.7847 + }, + { + "start": 20631.0, + "end": 20634.5, + "probability": 0.9434 + }, + { + "start": 20635.0, + "end": 20638.2, + "probability": 0.9923 + }, + { + "start": 20639.02, + "end": 20642.64, + "probability": 0.9253 + }, + { + "start": 20643.18, + "end": 20645.08, + "probability": 0.8011 + }, + { + "start": 20645.28, + "end": 20647.4, + "probability": 0.9784 + }, + { + "start": 20648.22, + "end": 20648.9, + "probability": 0.9875 + }, + { + "start": 20649.58, + "end": 20652.62, + "probability": 0.9786 + }, + { + "start": 20653.52, + "end": 20654.7, + "probability": 0.9779 + }, + { + "start": 20655.22, + "end": 20660.04, + "probability": 0.995 + }, + { + "start": 20660.46, + "end": 20662.9, + "probability": 0.9788 + }, + { + "start": 20663.28, + "end": 20663.86, + "probability": 0.6269 + }, + { + "start": 20663.92, + "end": 20668.24, + "probability": 0.9468 + }, + { + "start": 20668.38, + "end": 20670.64, + "probability": 0.683 + }, + { + "start": 20671.4, + "end": 20676.22, + "probability": 0.9619 + }, + { + "start": 20676.22, + "end": 20683.26, + "probability": 0.9775 + }, + { + "start": 20683.36, + "end": 20684.36, + "probability": 0.6757 + }, + { + "start": 20684.46, + "end": 20685.4, + "probability": 0.9453 + }, + { + "start": 20686.02, + "end": 20689.7, + "probability": 0.9615 + }, + { + "start": 20690.34, + "end": 20695.98, + "probability": 0.9811 + }, + { + "start": 20696.16, + "end": 20697.76, + "probability": 0.859 + }, + { + "start": 20698.14, + "end": 20699.54, + "probability": 0.9739 + }, + { + "start": 20700.06, + "end": 20703.24, + "probability": 0.992 + }, + { + "start": 20703.42, + "end": 20705.86, + "probability": 0.9019 + }, + { + "start": 20705.94, + "end": 20706.9, + "probability": 0.7939 + }, + { + "start": 20706.94, + "end": 20709.84, + "probability": 0.7489 + }, + { + "start": 20710.42, + "end": 20712.26, + "probability": 0.9754 + }, + { + "start": 20712.66, + "end": 20715.06, + "probability": 0.9951 + }, + { + "start": 20715.54, + "end": 20716.66, + "probability": 0.8967 + }, + { + "start": 20718.54, + "end": 20719.92, + "probability": 0.9692 + }, + { + "start": 20720.24, + "end": 20721.8, + "probability": 0.6329 + }, + { + "start": 20723.5, + "end": 20723.96, + "probability": 0.2012 + }, + { + "start": 20724.14, + "end": 20725.64, + "probability": 0.8525 + }, + { + "start": 20738.84, + "end": 20739.66, + "probability": 0.9269 + }, + { + "start": 20743.1, + "end": 20743.82, + "probability": 0.7385 + }, + { + "start": 20744.84, + "end": 20746.12, + "probability": 0.8285 + }, + { + "start": 20748.5, + "end": 20751.12, + "probability": 0.9825 + }, + { + "start": 20752.14, + "end": 20754.42, + "probability": 0.7972 + }, + { + "start": 20754.86, + "end": 20756.28, + "probability": 0.8101 + }, + { + "start": 20756.9, + "end": 20757.94, + "probability": 0.702 + }, + { + "start": 20758.88, + "end": 20759.84, + "probability": 0.5727 + }, + { + "start": 20761.06, + "end": 20763.43, + "probability": 0.7635 + }, + { + "start": 20763.56, + "end": 20764.42, + "probability": 0.8701 + }, + { + "start": 20764.68, + "end": 20765.72, + "probability": 0.8947 + }, + { + "start": 20766.54, + "end": 20768.28, + "probability": 0.7859 + }, + { + "start": 20768.5, + "end": 20771.12, + "probability": 0.9304 + }, + { + "start": 20771.94, + "end": 20772.63, + "probability": 0.5909 + }, + { + "start": 20773.36, + "end": 20774.86, + "probability": 0.9077 + }, + { + "start": 20775.6, + "end": 20777.68, + "probability": 0.9752 + }, + { + "start": 20778.58, + "end": 20780.54, + "probability": 0.9919 + }, + { + "start": 20781.1, + "end": 20782.4, + "probability": 0.9535 + }, + { + "start": 20783.06, + "end": 20786.42, + "probability": 0.954 + }, + { + "start": 20787.56, + "end": 20791.68, + "probability": 0.6771 + }, + { + "start": 20792.26, + "end": 20794.84, + "probability": 0.9193 + }, + { + "start": 20795.56, + "end": 20797.0, + "probability": 0.9836 + }, + { + "start": 20799.1, + "end": 20800.84, + "probability": 0.54 + }, + { + "start": 20802.47, + "end": 20806.7, + "probability": 0.7677 + }, + { + "start": 20807.64, + "end": 20810.48, + "probability": 0.8856 + }, + { + "start": 20811.28, + "end": 20812.36, + "probability": 0.8163 + }, + { + "start": 20813.0, + "end": 20816.4, + "probability": 0.9825 + }, + { + "start": 20816.72, + "end": 20821.52, + "probability": 0.9979 + }, + { + "start": 20821.52, + "end": 20825.66, + "probability": 0.9934 + }, + { + "start": 20826.92, + "end": 20829.32, + "probability": 0.9685 + }, + { + "start": 20830.28, + "end": 20831.86, + "probability": 0.8224 + }, + { + "start": 20832.22, + "end": 20834.72, + "probability": 0.968 + }, + { + "start": 20835.32, + "end": 20835.56, + "probability": 0.7298 + }, + { + "start": 20836.2, + "end": 20837.7, + "probability": 0.8275 + }, + { + "start": 20838.38, + "end": 20842.34, + "probability": 0.8906 + }, + { + "start": 20842.4, + "end": 20844.4, + "probability": 0.8575 + }, + { + "start": 20844.5, + "end": 20844.8, + "probability": 0.3982 + }, + { + "start": 20846.08, + "end": 20850.46, + "probability": 0.8132 + }, + { + "start": 20850.8, + "end": 20852.24, + "probability": 0.8489 + }, + { + "start": 20852.52, + "end": 20856.32, + "probability": 0.9883 + }, + { + "start": 20857.42, + "end": 20858.92, + "probability": 0.627 + }, + { + "start": 20859.54, + "end": 20861.68, + "probability": 0.8018 + }, + { + "start": 20862.64, + "end": 20863.68, + "probability": 0.7954 + }, + { + "start": 20864.28, + "end": 20866.84, + "probability": 0.9493 + }, + { + "start": 20867.56, + "end": 20872.06, + "probability": 0.9326 + }, + { + "start": 20873.0, + "end": 20874.04, + "probability": 0.7626 + }, + { + "start": 20874.92, + "end": 20876.74, + "probability": 0.5919 + }, + { + "start": 20876.74, + "end": 20878.98, + "probability": 0.9253 + }, + { + "start": 20879.02, + "end": 20879.72, + "probability": 0.8324 + }, + { + "start": 20880.02, + "end": 20880.18, + "probability": 0.062 + }, + { + "start": 20880.62, + "end": 20882.62, + "probability": 0.3387 + }, + { + "start": 20882.62, + "end": 20884.31, + "probability": 0.1958 + }, + { + "start": 20884.96, + "end": 20887.18, + "probability": 0.8149 + }, + { + "start": 20888.12, + "end": 20889.14, + "probability": 0.9802 + }, + { + "start": 20890.0, + "end": 20891.56, + "probability": 0.7455 + }, + { + "start": 20891.94, + "end": 20894.0, + "probability": 0.7746 + }, + { + "start": 20894.18, + "end": 20894.6, + "probability": 0.77 + }, + { + "start": 20894.76, + "end": 20895.62, + "probability": 0.6356 + }, + { + "start": 20895.64, + "end": 20897.3, + "probability": 0.9897 + }, + { + "start": 20897.78, + "end": 20899.22, + "probability": 0.9556 + }, + { + "start": 20899.48, + "end": 20902.34, + "probability": 0.8871 + }, + { + "start": 20902.62, + "end": 20906.32, + "probability": 0.5098 + }, + { + "start": 20906.46, + "end": 20906.46, + "probability": 0.5067 + }, + { + "start": 20906.56, + "end": 20908.56, + "probability": 0.6794 + }, + { + "start": 20908.62, + "end": 20910.32, + "probability": 0.957 + }, + { + "start": 20911.5, + "end": 20913.94, + "probability": 0.7044 + }, + { + "start": 20914.46, + "end": 20915.62, + "probability": 0.9961 + }, + { + "start": 20916.18, + "end": 20916.5, + "probability": 0.9839 + }, + { + "start": 20917.62, + "end": 20920.82, + "probability": 0.7866 + }, + { + "start": 20920.98, + "end": 20921.54, + "probability": 0.8958 + }, + { + "start": 20921.64, + "end": 20923.84, + "probability": 0.9695 + }, + { + "start": 20924.54, + "end": 20925.08, + "probability": 0.958 + }, + { + "start": 20925.84, + "end": 20926.9, + "probability": 0.9424 + }, + { + "start": 20927.28, + "end": 20931.18, + "probability": 0.9893 + }, + { + "start": 20931.4, + "end": 20933.9, + "probability": 0.9541 + }, + { + "start": 20934.12, + "end": 20934.5, + "probability": 0.9109 + }, + { + "start": 20934.64, + "end": 20935.1, + "probability": 0.8599 + }, + { + "start": 20935.46, + "end": 20935.8, + "probability": 0.0757 + }, + { + "start": 20937.04, + "end": 20937.08, + "probability": 0.3753 + }, + { + "start": 20937.12, + "end": 20938.96, + "probability": 0.7152 + }, + { + "start": 20939.5, + "end": 20941.2, + "probability": 0.4313 + }, + { + "start": 20941.9, + "end": 20942.16, + "probability": 0.8636 + }, + { + "start": 20946.16, + "end": 20951.08, + "probability": 0.0718 + }, + { + "start": 20952.38, + "end": 20953.84, + "probability": 0.3242 + }, + { + "start": 20955.42, + "end": 20955.8, + "probability": 0.1875 + }, + { + "start": 20960.92, + "end": 20962.52, + "probability": 0.7213 + }, + { + "start": 20963.08, + "end": 20964.58, + "probability": 0.5423 + }, + { + "start": 20964.6, + "end": 20966.22, + "probability": 0.8574 + }, + { + "start": 20966.58, + "end": 20968.2, + "probability": 0.4676 + }, + { + "start": 20968.48, + "end": 20968.9, + "probability": 0.3396 + }, + { + "start": 20969.0, + "end": 20969.58, + "probability": 0.7639 + }, + { + "start": 20969.62, + "end": 20972.26, + "probability": 0.8568 + }, + { + "start": 20972.72, + "end": 20972.94, + "probability": 0.879 + }, + { + "start": 20973.2, + "end": 20973.34, + "probability": 0.368 + }, + { + "start": 20974.82, + "end": 20976.88, + "probability": 0.7268 + }, + { + "start": 20978.91, + "end": 20981.48, + "probability": 0.7722 + }, + { + "start": 20981.6, + "end": 20983.32, + "probability": 0.9438 + }, + { + "start": 20984.04, + "end": 20986.84, + "probability": 0.9163 + }, + { + "start": 20987.66, + "end": 20989.46, + "probability": 0.6389 + }, + { + "start": 20990.96, + "end": 20994.22, + "probability": 0.9785 + }, + { + "start": 20994.78, + "end": 20996.44, + "probability": 0.9956 + }, + { + "start": 20996.96, + "end": 20999.72, + "probability": 0.9607 + }, + { + "start": 21001.06, + "end": 21003.48, + "probability": 0.9941 + }, + { + "start": 21004.26, + "end": 21006.32, + "probability": 0.6105 + }, + { + "start": 21006.9, + "end": 21008.9, + "probability": 0.8674 + }, + { + "start": 21009.48, + "end": 21012.36, + "probability": 0.9971 + }, + { + "start": 21013.06, + "end": 21015.71, + "probability": 0.9546 + }, + { + "start": 21016.96, + "end": 21020.34, + "probability": 0.8676 + }, + { + "start": 21020.98, + "end": 21023.88, + "probability": 0.8597 + }, + { + "start": 21024.56, + "end": 21026.08, + "probability": 0.9941 + }, + { + "start": 21026.9, + "end": 21028.65, + "probability": 0.8107 + }, + { + "start": 21029.71, + "end": 21033.2, + "probability": 0.9349 + }, + { + "start": 21033.26, + "end": 21034.62, + "probability": 0.9407 + }, + { + "start": 21035.22, + "end": 21038.48, + "probability": 0.9823 + }, + { + "start": 21039.36, + "end": 21040.98, + "probability": 0.9706 + }, + { + "start": 21041.06, + "end": 21042.22, + "probability": 0.9336 + }, + { + "start": 21042.7, + "end": 21043.84, + "probability": 0.9922 + }, + { + "start": 21044.36, + "end": 21049.08, + "probability": 0.9961 + }, + { + "start": 21049.08, + "end": 21053.8, + "probability": 0.9813 + }, + { + "start": 21054.56, + "end": 21060.34, + "probability": 0.989 + }, + { + "start": 21060.68, + "end": 21061.32, + "probability": 0.5048 + }, + { + "start": 21061.46, + "end": 21063.04, + "probability": 0.851 + }, + { + "start": 21063.7, + "end": 21064.68, + "probability": 0.825 + }, + { + "start": 21066.38, + "end": 21068.06, + "probability": 0.7645 + }, + { + "start": 21068.42, + "end": 21071.86, + "probability": 0.8585 + }, + { + "start": 21072.8, + "end": 21074.6, + "probability": 0.9905 + }, + { + "start": 21075.12, + "end": 21076.62, + "probability": 0.7661 + }, + { + "start": 21076.9, + "end": 21083.02, + "probability": 0.992 + }, + { + "start": 21083.56, + "end": 21084.74, + "probability": 0.8101 + }, + { + "start": 21085.5, + "end": 21088.68, + "probability": 0.9979 + }, + { + "start": 21088.68, + "end": 21093.98, + "probability": 0.9963 + }, + { + "start": 21094.8, + "end": 21098.22, + "probability": 0.9937 + }, + { + "start": 21098.96, + "end": 21101.96, + "probability": 0.915 + }, + { + "start": 21102.76, + "end": 21103.56, + "probability": 0.831 + }, + { + "start": 21104.2, + "end": 21107.54, + "probability": 0.9143 + }, + { + "start": 21108.38, + "end": 21109.84, + "probability": 0.6927 + }, + { + "start": 21110.9, + "end": 21114.88, + "probability": 0.989 + }, + { + "start": 21115.38, + "end": 21116.26, + "probability": 0.9439 + }, + { + "start": 21116.6, + "end": 21117.32, + "probability": 0.8957 + }, + { + "start": 21118.1, + "end": 21118.84, + "probability": 0.9541 + }, + { + "start": 21118.94, + "end": 21121.34, + "probability": 0.8826 + }, + { + "start": 21121.84, + "end": 21124.52, + "probability": 0.9855 + }, + { + "start": 21125.08, + "end": 21126.48, + "probability": 0.998 + }, + { + "start": 21127.36, + "end": 21132.18, + "probability": 0.9978 + }, + { + "start": 21132.82, + "end": 21133.4, + "probability": 0.9441 + }, + { + "start": 21133.64, + "end": 21136.76, + "probability": 0.9307 + }, + { + "start": 21137.04, + "end": 21137.82, + "probability": 0.7468 + }, + { + "start": 21138.38, + "end": 21139.38, + "probability": 0.9573 + }, + { + "start": 21140.12, + "end": 21142.16, + "probability": 0.9964 + }, + { + "start": 21142.82, + "end": 21146.24, + "probability": 0.902 + }, + { + "start": 21146.88, + "end": 21152.47, + "probability": 0.9876 + }, + { + "start": 21153.1, + "end": 21156.04, + "probability": 0.9883 + }, + { + "start": 21156.34, + "end": 21156.64, + "probability": 0.704 + }, + { + "start": 21158.18, + "end": 21159.64, + "probability": 0.947 + }, + { + "start": 21159.72, + "end": 21161.38, + "probability": 0.7318 + }, + { + "start": 21176.78, + "end": 21177.8, + "probability": 0.2849 + }, + { + "start": 21179.18, + "end": 21181.22, + "probability": 0.6517 + }, + { + "start": 21182.44, + "end": 21187.08, + "probability": 0.8411 + }, + { + "start": 21187.92, + "end": 21191.49, + "probability": 0.875 + }, + { + "start": 21193.48, + "end": 21193.82, + "probability": 0.7194 + }, + { + "start": 21194.7, + "end": 21195.72, + "probability": 0.0519 + }, + { + "start": 21195.72, + "end": 21197.08, + "probability": 0.5922 + }, + { + "start": 21198.1, + "end": 21198.6, + "probability": 0.6593 + }, + { + "start": 21201.04, + "end": 21203.48, + "probability": 0.029 + }, + { + "start": 21204.38, + "end": 21206.6, + "probability": 0.9666 + }, + { + "start": 21207.3, + "end": 21208.36, + "probability": 0.8643 + }, + { + "start": 21208.4, + "end": 21210.33, + "probability": 0.4097 + }, + { + "start": 21210.9, + "end": 21214.1, + "probability": 0.9868 + }, + { + "start": 21214.8, + "end": 21219.26, + "probability": 0.9869 + }, + { + "start": 21221.08, + "end": 21221.84, + "probability": 0.4108 + }, + { + "start": 21222.76, + "end": 21227.2, + "probability": 0.8326 + }, + { + "start": 21227.8, + "end": 21228.3, + "probability": 0.6937 + }, + { + "start": 21229.2, + "end": 21230.26, + "probability": 0.9501 + }, + { + "start": 21231.04, + "end": 21236.06, + "probability": 0.9985 + }, + { + "start": 21237.04, + "end": 21239.6, + "probability": 0.9918 + }, + { + "start": 21240.24, + "end": 21243.58, + "probability": 0.9836 + }, + { + "start": 21244.6, + "end": 21246.42, + "probability": 0.7344 + }, + { + "start": 21247.26, + "end": 21253.6, + "probability": 0.9795 + }, + { + "start": 21253.6, + "end": 21258.78, + "probability": 0.9958 + }, + { + "start": 21260.18, + "end": 21264.74, + "probability": 0.9606 + }, + { + "start": 21264.74, + "end": 21267.26, + "probability": 0.9976 + }, + { + "start": 21268.22, + "end": 21268.54, + "probability": 0.3097 + }, + { + "start": 21268.88, + "end": 21274.56, + "probability": 0.9706 + }, + { + "start": 21274.64, + "end": 21279.16, + "probability": 0.9829 + }, + { + "start": 21279.84, + "end": 21281.92, + "probability": 0.917 + }, + { + "start": 21283.08, + "end": 21286.32, + "probability": 0.9721 + }, + { + "start": 21287.1, + "end": 21287.78, + "probability": 0.4897 + }, + { + "start": 21287.88, + "end": 21291.88, + "probability": 0.9757 + }, + { + "start": 21292.88, + "end": 21297.98, + "probability": 0.9003 + }, + { + "start": 21298.56, + "end": 21298.96, + "probability": 0.8433 + }, + { + "start": 21299.68, + "end": 21303.08, + "probability": 0.8857 + }, + { + "start": 21303.64, + "end": 21303.98, + "probability": 0.7087 + }, + { + "start": 21305.28, + "end": 21306.36, + "probability": 0.7403 + }, + { + "start": 21307.2, + "end": 21308.44, + "probability": 0.9674 + }, + { + "start": 21309.26, + "end": 21311.12, + "probability": 0.9816 + }, + { + "start": 21311.16, + "end": 21314.36, + "probability": 0.9813 + }, + { + "start": 21315.72, + "end": 21319.76, + "probability": 0.9805 + }, + { + "start": 21320.24, + "end": 21322.3, + "probability": 0.8212 + }, + { + "start": 21323.2, + "end": 21324.38, + "probability": 0.8705 + }, + { + "start": 21325.22, + "end": 21328.58, + "probability": 0.9961 + }, + { + "start": 21329.16, + "end": 21329.9, + "probability": 0.9788 + }, + { + "start": 21330.34, + "end": 21331.66, + "probability": 0.9752 + }, + { + "start": 21332.14, + "end": 21333.42, + "probability": 0.842 + }, + { + "start": 21333.9, + "end": 21334.46, + "probability": 0.9388 + }, + { + "start": 21334.82, + "end": 21335.46, + "probability": 0.5398 + }, + { + "start": 21335.98, + "end": 21340.62, + "probability": 0.9865 + }, + { + "start": 21341.26, + "end": 21346.14, + "probability": 0.9719 + }, + { + "start": 21346.7, + "end": 21349.44, + "probability": 0.9901 + }, + { + "start": 21350.1, + "end": 21351.1, + "probability": 0.9956 + }, + { + "start": 21351.84, + "end": 21354.48, + "probability": 0.9547 + }, + { + "start": 21355.14, + "end": 21358.04, + "probability": 0.9778 + }, + { + "start": 21358.68, + "end": 21361.2, + "probability": 0.9978 + }, + { + "start": 21361.2, + "end": 21365.0, + "probability": 0.8344 + }, + { + "start": 21365.58, + "end": 21369.0, + "probability": 0.8682 + }, + { + "start": 21369.08, + "end": 21369.84, + "probability": 0.5593 + }, + { + "start": 21370.54, + "end": 21372.2, + "probability": 0.9364 + }, + { + "start": 21373.1, + "end": 21376.42, + "probability": 0.9852 + }, + { + "start": 21379.35, + "end": 21380.82, + "probability": 0.6477 + }, + { + "start": 21380.82, + "end": 21380.82, + "probability": 0.0341 + }, + { + "start": 21380.82, + "end": 21381.98, + "probability": 0.347 + }, + { + "start": 21382.34, + "end": 21387.36, + "probability": 0.9933 + }, + { + "start": 21387.36, + "end": 21391.18, + "probability": 0.9971 + }, + { + "start": 21392.38, + "end": 21392.5, + "probability": 0.5247 + }, + { + "start": 21392.64, + "end": 21392.78, + "probability": 0.4536 + }, + { + "start": 21392.84, + "end": 21396.32, + "probability": 0.9753 + }, + { + "start": 21396.8, + "end": 21398.22, + "probability": 0.9767 + }, + { + "start": 21399.22, + "end": 21399.98, + "probability": 0.6442 + }, + { + "start": 21400.52, + "end": 21401.92, + "probability": 0.9496 + }, + { + "start": 21402.34, + "end": 21407.78, + "probability": 0.9551 + }, + { + "start": 21408.54, + "end": 21410.06, + "probability": 0.8479 + }, + { + "start": 21411.26, + "end": 21414.74, + "probability": 0.9927 + }, + { + "start": 21415.34, + "end": 21417.68, + "probability": 0.9825 + }, + { + "start": 21417.78, + "end": 21418.28, + "probability": 0.5308 + }, + { + "start": 21418.36, + "end": 21419.9, + "probability": 0.9661 + }, + { + "start": 21420.54, + "end": 21422.16, + "probability": 0.6627 + }, + { + "start": 21422.88, + "end": 21422.96, + "probability": 0.0699 + }, + { + "start": 21422.96, + "end": 21424.84, + "probability": 0.9956 + }, + { + "start": 21426.18, + "end": 21430.4, + "probability": 0.7927 + }, + { + "start": 21430.9, + "end": 21433.7, + "probability": 0.9874 + }, + { + "start": 21433.74, + "end": 21435.82, + "probability": 0.9906 + }, + { + "start": 21436.6, + "end": 21440.14, + "probability": 0.8584 + }, + { + "start": 21440.62, + "end": 21441.94, + "probability": 0.7311 + }, + { + "start": 21443.52, + "end": 21445.44, + "probability": 0.8369 + }, + { + "start": 21445.54, + "end": 21448.84, + "probability": 0.8096 + }, + { + "start": 21449.46, + "end": 21453.5, + "probability": 0.1717 + }, + { + "start": 21456.16, + "end": 21459.48, + "probability": 0.8682 + }, + { + "start": 21459.6, + "end": 21460.42, + "probability": 0.4114 + }, + { + "start": 21460.96, + "end": 21461.94, + "probability": 0.0816 + }, + { + "start": 21464.1, + "end": 21465.02, + "probability": 0.3108 + }, + { + "start": 21465.08, + "end": 21465.64, + "probability": 0.4058 + }, + { + "start": 21465.86, + "end": 21466.38, + "probability": 0.7458 + }, + { + "start": 21466.82, + "end": 21468.48, + "probability": 0.9759 + }, + { + "start": 21469.42, + "end": 21470.38, + "probability": 0.8697 + }, + { + "start": 21470.58, + "end": 21470.9, + "probability": 0.6292 + }, + { + "start": 21471.04, + "end": 21472.04, + "probability": 0.9631 + }, + { + "start": 21472.1, + "end": 21473.74, + "probability": 0.8184 + }, + { + "start": 21473.92, + "end": 21474.56, + "probability": 0.1229 + }, + { + "start": 21474.58, + "end": 21475.2, + "probability": 0.2283 + }, + { + "start": 21475.34, + "end": 21476.52, + "probability": 0.0911 + }, + { + "start": 21476.78, + "end": 21477.3, + "probability": 0.9274 + }, + { + "start": 21477.46, + "end": 21478.18, + "probability": 0.4009 + }, + { + "start": 21478.18, + "end": 21480.0, + "probability": 0.8407 + }, + { + "start": 21481.64, + "end": 21482.38, + "probability": 0.0811 + }, + { + "start": 21484.18, + "end": 21488.42, + "probability": 0.4946 + }, + { + "start": 21488.52, + "end": 21489.74, + "probability": 0.9075 + }, + { + "start": 21489.88, + "end": 21490.86, + "probability": 0.9682 + }, + { + "start": 21492.17, + "end": 21494.52, + "probability": 0.8118 + }, + { + "start": 21494.52, + "end": 21495.42, + "probability": 0.7216 + }, + { + "start": 21495.82, + "end": 21497.78, + "probability": 0.9231 + }, + { + "start": 21497.9, + "end": 21498.12, + "probability": 0.262 + }, + { + "start": 21499.72, + "end": 21500.74, + "probability": 0.7487 + }, + { + "start": 21501.64, + "end": 21505.72, + "probability": 0.9831 + }, + { + "start": 21506.74, + "end": 21507.48, + "probability": 0.9019 + }, + { + "start": 21508.0, + "end": 21508.18, + "probability": 0.5145 + }, + { + "start": 21508.98, + "end": 21512.28, + "probability": 0.9956 + }, + { + "start": 21512.8, + "end": 21514.9, + "probability": 0.9469 + }, + { + "start": 21515.02, + "end": 21515.22, + "probability": 0.5077 + }, + { + "start": 21515.26, + "end": 21515.84, + "probability": 0.862 + }, + { + "start": 21515.96, + "end": 21516.2, + "probability": 0.2827 + }, + { + "start": 21516.3, + "end": 21516.44, + "probability": 0.7525 + }, + { + "start": 21517.76, + "end": 21519.6, + "probability": 0.9113 + }, + { + "start": 21520.56, + "end": 21522.08, + "probability": 0.9399 + }, + { + "start": 21522.78, + "end": 21524.64, + "probability": 0.9844 + }, + { + "start": 21524.72, + "end": 21525.24, + "probability": 0.5972 + }, + { + "start": 21525.94, + "end": 21526.24, + "probability": 0.8981 + }, + { + "start": 21526.94, + "end": 21527.62, + "probability": 0.9893 + }, + { + "start": 21528.1, + "end": 21528.9, + "probability": 0.7749 + }, + { + "start": 21529.46, + "end": 21530.28, + "probability": 0.9297 + }, + { + "start": 21530.56, + "end": 21531.6, + "probability": 0.6719 + }, + { + "start": 21533.16, + "end": 21534.96, + "probability": 0.9762 + }, + { + "start": 21535.58, + "end": 21536.2, + "probability": 0.7928 + }, + { + "start": 21537.3, + "end": 21538.69, + "probability": 0.9536 + }, + { + "start": 21539.06, + "end": 21539.82, + "probability": 0.4982 + }, + { + "start": 21540.84, + "end": 21542.55, + "probability": 0.9951 + }, + { + "start": 21542.84, + "end": 21544.1, + "probability": 0.7858 + }, + { + "start": 21544.14, + "end": 21544.92, + "probability": 0.9163 + }, + { + "start": 21545.1, + "end": 21546.27, + "probability": 0.9781 + }, + { + "start": 21546.82, + "end": 21547.5, + "probability": 0.9002 + }, + { + "start": 21548.18, + "end": 21548.92, + "probability": 0.9369 + }, + { + "start": 21548.98, + "end": 21550.9, + "probability": 0.7239 + }, + { + "start": 21552.76, + "end": 21553.58, + "probability": 0.6857 + }, + { + "start": 21554.34, + "end": 21554.48, + "probability": 0.0596 + }, + { + "start": 21554.48, + "end": 21555.42, + "probability": 0.8684 + }, + { + "start": 21555.86, + "end": 21558.04, + "probability": 0.8792 + }, + { + "start": 21559.92, + "end": 21561.29, + "probability": 0.1603 + }, + { + "start": 21561.66, + "end": 21566.62, + "probability": 0.1881 + }, + { + "start": 21567.52, + "end": 21568.83, + "probability": 0.2814 + }, + { + "start": 21569.44, + "end": 21569.54, + "probability": 0.902 + }, + { + "start": 21570.84, + "end": 21572.38, + "probability": 0.7733 + }, + { + "start": 21572.66, + "end": 21573.32, + "probability": 0.8193 + }, + { + "start": 21574.18, + "end": 21574.18, + "probability": 0.1117 + }, + { + "start": 21574.18, + "end": 21576.66, + "probability": 0.8771 + }, + { + "start": 21577.08, + "end": 21578.22, + "probability": 0.7655 + }, + { + "start": 21578.48, + "end": 21579.62, + "probability": 0.1499 + }, + { + "start": 21579.68, + "end": 21583.72, + "probability": 0.3689 + }, + { + "start": 21584.22, + "end": 21585.34, + "probability": 0.9397 + }, + { + "start": 21585.46, + "end": 21587.32, + "probability": 0.8992 + }, + { + "start": 21587.68, + "end": 21588.26, + "probability": 0.5879 + }, + { + "start": 21589.22, + "end": 21593.0, + "probability": 0.5568 + }, + { + "start": 21593.64, + "end": 21595.24, + "probability": 0.7175 + }, + { + "start": 21595.44, + "end": 21596.52, + "probability": 0.7395 + }, + { + "start": 21596.74, + "end": 21600.16, + "probability": 0.9351 + }, + { + "start": 21600.24, + "end": 21601.4, + "probability": 0.631 + }, + { + "start": 21601.46, + "end": 21601.62, + "probability": 0.1589 + }, + { + "start": 21601.62, + "end": 21601.62, + "probability": 0.0278 + }, + { + "start": 21601.62, + "end": 21602.18, + "probability": 0.8235 + }, + { + "start": 21602.9, + "end": 21605.24, + "probability": 0.5336 + }, + { + "start": 21605.98, + "end": 21610.32, + "probability": 0.3174 + }, + { + "start": 21611.38, + "end": 21614.02, + "probability": 0.0715 + }, + { + "start": 21614.36, + "end": 21615.58, + "probability": 0.1016 + }, + { + "start": 21616.2, + "end": 21617.04, + "probability": 0.1203 + }, + { + "start": 21617.34, + "end": 21617.44, + "probability": 0.0728 + }, + { + "start": 21617.44, + "end": 21617.78, + "probability": 0.0283 + }, + { + "start": 21617.84, + "end": 21619.89, + "probability": 0.0476 + }, + { + "start": 21619.9, + "end": 21620.66, + "probability": 0.3019 + }, + { + "start": 21620.84, + "end": 21621.1, + "probability": 0.008 + }, + { + "start": 21621.1, + "end": 21623.28, + "probability": 0.7148 + }, + { + "start": 21623.4, + "end": 21626.94, + "probability": 0.9381 + }, + { + "start": 21627.12, + "end": 21629.58, + "probability": 0.5254 + }, + { + "start": 21630.15, + "end": 21632.0, + "probability": 0.613 + }, + { + "start": 21632.0, + "end": 21632.46, + "probability": 0.9344 + }, + { + "start": 21632.9, + "end": 21636.98, + "probability": 0.7798 + }, + { + "start": 21638.16, + "end": 21640.3, + "probability": 0.9709 + }, + { + "start": 21641.0, + "end": 21644.2, + "probability": 0.971 + }, + { + "start": 21645.44, + "end": 21646.86, + "probability": 0.9988 + }, + { + "start": 21647.4, + "end": 21650.94, + "probability": 0.9915 + }, + { + "start": 21650.94, + "end": 21655.76, + "probability": 0.9977 + }, + { + "start": 21656.48, + "end": 21659.64, + "probability": 0.9964 + }, + { + "start": 21659.8, + "end": 21662.84, + "probability": 0.979 + }, + { + "start": 21663.54, + "end": 21665.62, + "probability": 0.9319 + }, + { + "start": 21666.24, + "end": 21668.08, + "probability": 0.926 + }, + { + "start": 21668.82, + "end": 21673.04, + "probability": 0.9945 + }, + { + "start": 21673.7, + "end": 21677.44, + "probability": 0.9973 + }, + { + "start": 21678.18, + "end": 21680.92, + "probability": 0.5634 + }, + { + "start": 21681.58, + "end": 21683.7, + "probability": 0.8985 + }, + { + "start": 21683.76, + "end": 21686.66, + "probability": 0.9313 + }, + { + "start": 21687.76, + "end": 21690.14, + "probability": 0.9822 + }, + { + "start": 21690.26, + "end": 21691.02, + "probability": 0.546 + }, + { + "start": 21692.46, + "end": 21693.82, + "probability": 0.2615 + }, + { + "start": 21695.26, + "end": 21697.31, + "probability": 0.7909 + }, + { + "start": 21697.78, + "end": 21700.4, + "probability": 0.8955 + }, + { + "start": 21701.14, + "end": 21701.68, + "probability": 0.4097 + }, + { + "start": 21702.42, + "end": 21703.18, + "probability": 0.8608 + }, + { + "start": 21703.32, + "end": 21705.48, + "probability": 0.9331 + }, + { + "start": 21708.2, + "end": 21711.86, + "probability": 0.6941 + }, + { + "start": 21712.56, + "end": 21713.68, + "probability": 0.8585 + }, + { + "start": 21713.76, + "end": 21716.5, + "probability": 0.9949 + }, + { + "start": 21716.62, + "end": 21717.4, + "probability": 0.9982 + }, + { + "start": 21717.94, + "end": 21718.96, + "probability": 0.8115 + }, + { + "start": 21719.12, + "end": 21722.16, + "probability": 0.9945 + }, + { + "start": 21722.22, + "end": 21724.24, + "probability": 0.9141 + }, + { + "start": 21724.7, + "end": 21726.26, + "probability": 0.9982 + }, + { + "start": 21727.0, + "end": 21729.92, + "probability": 0.8843 + }, + { + "start": 21730.14, + "end": 21732.44, + "probability": 0.8322 + }, + { + "start": 21732.86, + "end": 21734.04, + "probability": 0.8845 + }, + { + "start": 21734.68, + "end": 21737.26, + "probability": 0.6366 + }, + { + "start": 21738.64, + "end": 21740.94, + "probability": 0.734 + }, + { + "start": 21741.12, + "end": 21742.0, + "probability": 0.9347 + }, + { + "start": 21742.88, + "end": 21744.42, + "probability": 0.7822 + }, + { + "start": 21745.34, + "end": 21750.12, + "probability": 0.9849 + }, + { + "start": 21750.32, + "end": 21753.56, + "probability": 0.9948 + }, + { + "start": 21753.64, + "end": 21754.74, + "probability": 0.9636 + }, + { + "start": 21755.48, + "end": 21759.1, + "probability": 0.9338 + }, + { + "start": 21759.6, + "end": 21760.7, + "probability": 0.6776 + }, + { + "start": 21761.22, + "end": 21763.36, + "probability": 0.9534 + }, + { + "start": 21764.32, + "end": 21766.46, + "probability": 0.8632 + }, + { + "start": 21766.52, + "end": 21767.74, + "probability": 0.9615 + }, + { + "start": 21768.22, + "end": 21768.76, + "probability": 0.9349 + }, + { + "start": 21769.34, + "end": 21770.26, + "probability": 0.9819 + }, + { + "start": 21770.66, + "end": 21774.36, + "probability": 0.9233 + }, + { + "start": 21774.76, + "end": 21778.58, + "probability": 0.8405 + }, + { + "start": 21779.3, + "end": 21783.58, + "probability": 0.9751 + }, + { + "start": 21783.76, + "end": 21784.18, + "probability": 0.76 + }, + { + "start": 21784.91, + "end": 21787.28, + "probability": 0.7993 + }, + { + "start": 21787.78, + "end": 21788.88, + "probability": 0.8672 + }, + { + "start": 21788.96, + "end": 21789.42, + "probability": 0.5608 + }, + { + "start": 21790.02, + "end": 21791.51, + "probability": 0.8472 + }, + { + "start": 21792.6, + "end": 21794.5, + "probability": 0.817 + }, + { + "start": 21795.16, + "end": 21797.8, + "probability": 0.8052 + }, + { + "start": 21802.62, + "end": 21804.26, + "probability": 0.8906 + }, + { + "start": 21804.92, + "end": 21806.74, + "probability": 0.9336 + }, + { + "start": 21807.0, + "end": 21807.5, + "probability": 0.5505 + }, + { + "start": 21808.24, + "end": 21809.85, + "probability": 0.1056 + }, + { + "start": 21810.8, + "end": 21813.74, + "probability": 0.4216 + }, + { + "start": 21814.06, + "end": 21816.0, + "probability": 0.3876 + }, + { + "start": 21816.06, + "end": 21817.0, + "probability": 0.4744 + }, + { + "start": 21817.9, + "end": 21818.32, + "probability": 0.0338 + }, + { + "start": 21818.5, + "end": 21819.76, + "probability": 0.6504 + }, + { + "start": 21819.82, + "end": 21820.16, + "probability": 0.8547 + }, + { + "start": 21820.68, + "end": 21822.92, + "probability": 0.7112 + }, + { + "start": 21824.06, + "end": 21829.34, + "probability": 0.9033 + }, + { + "start": 21830.66, + "end": 21834.94, + "probability": 0.9768 + }, + { + "start": 21835.6, + "end": 21839.6, + "probability": 0.9696 + }, + { + "start": 21840.6, + "end": 21842.5, + "probability": 0.8658 + }, + { + "start": 21843.9, + "end": 21847.38, + "probability": 0.9644 + }, + { + "start": 21848.14, + "end": 21851.22, + "probability": 0.9932 + }, + { + "start": 21852.02, + "end": 21854.64, + "probability": 0.9985 + }, + { + "start": 21854.64, + "end": 21859.24, + "probability": 0.7127 + }, + { + "start": 21859.96, + "end": 21860.54, + "probability": 0.7183 + }, + { + "start": 21861.24, + "end": 21862.88, + "probability": 0.7131 + }, + { + "start": 21863.66, + "end": 21865.8, + "probability": 0.6741 + }, + { + "start": 21866.46, + "end": 21871.76, + "probability": 0.9904 + }, + { + "start": 21871.84, + "end": 21877.68, + "probability": 0.9493 + }, + { + "start": 21880.12, + "end": 21881.9, + "probability": 0.341 + }, + { + "start": 21882.46, + "end": 21884.82, + "probability": 0.5225 + }, + { + "start": 21885.76, + "end": 21886.68, + "probability": 0.8552 + }, + { + "start": 21886.78, + "end": 21887.91, + "probability": 0.998 + }, + { + "start": 21888.18, + "end": 21888.72, + "probability": 0.7709 + }, + { + "start": 21888.88, + "end": 21892.88, + "probability": 0.9236 + }, + { + "start": 21894.18, + "end": 21897.86, + "probability": 0.9956 + }, + { + "start": 21898.14, + "end": 21904.08, + "probability": 0.9832 + }, + { + "start": 21904.8, + "end": 21907.24, + "probability": 0.9034 + }, + { + "start": 21907.98, + "end": 21909.2, + "probability": 0.8845 + }, + { + "start": 21910.06, + "end": 21912.18, + "probability": 0.9224 + }, + { + "start": 21912.78, + "end": 21913.76, + "probability": 0.8278 + }, + { + "start": 21914.28, + "end": 21914.78, + "probability": 0.998 + }, + { + "start": 21915.42, + "end": 21919.42, + "probability": 0.9539 + }, + { + "start": 21920.76, + "end": 21923.04, + "probability": 0.9824 + }, + { + "start": 21924.16, + "end": 21928.22, + "probability": 0.9961 + }, + { + "start": 21928.96, + "end": 21929.87, + "probability": 0.9471 + }, + { + "start": 21929.96, + "end": 21932.24, + "probability": 0.9288 + }, + { + "start": 21932.74, + "end": 21935.68, + "probability": 0.9382 + }, + { + "start": 21936.18, + "end": 21936.82, + "probability": 0.8811 + }, + { + "start": 21937.2, + "end": 21937.6, + "probability": 0.9073 + }, + { + "start": 21938.08, + "end": 21943.78, + "probability": 0.9094 + }, + { + "start": 21946.54, + "end": 21948.4, + "probability": 0.8086 + }, + { + "start": 21949.42, + "end": 21951.48, + "probability": 0.9539 + }, + { + "start": 21952.84, + "end": 21953.9, + "probability": 0.8256 + }, + { + "start": 21955.02, + "end": 21957.24, + "probability": 0.9937 + }, + { + "start": 21958.08, + "end": 21960.34, + "probability": 0.9475 + }, + { + "start": 21960.96, + "end": 21962.72, + "probability": 0.7909 + }, + { + "start": 21965.18, + "end": 21967.0, + "probability": 0.9656 + }, + { + "start": 21967.76, + "end": 21970.22, + "probability": 0.9457 + }, + { + "start": 21970.96, + "end": 21971.55, + "probability": 0.7252 + }, + { + "start": 21972.52, + "end": 21973.16, + "probability": 0.9753 + }, + { + "start": 21973.88, + "end": 21978.0, + "probability": 0.9963 + }, + { + "start": 21978.0, + "end": 21980.6, + "probability": 0.9121 + }, + { + "start": 21981.4, + "end": 21982.61, + "probability": 0.7788 + }, + { + "start": 21983.52, + "end": 21989.02, + "probability": 0.8688 + }, + { + "start": 21989.9, + "end": 21991.52, + "probability": 0.9329 + }, + { + "start": 21992.32, + "end": 21993.84, + "probability": 0.9152 + }, + { + "start": 21994.4, + "end": 21998.39, + "probability": 0.9053 + }, + { + "start": 21999.12, + "end": 22001.12, + "probability": 0.867 + }, + { + "start": 22001.92, + "end": 22004.58, + "probability": 0.9132 + }, + { + "start": 22005.28, + "end": 22007.34, + "probability": 0.6968 + }, + { + "start": 22008.3, + "end": 22010.68, + "probability": 0.9362 + }, + { + "start": 22010.84, + "end": 22012.26, + "probability": 0.5669 + }, + { + "start": 22013.24, + "end": 22013.78, + "probability": 0.7631 + }, + { + "start": 22014.7, + "end": 22016.38, + "probability": 0.999 + }, + { + "start": 22016.92, + "end": 22018.78, + "probability": 0.985 + }, + { + "start": 22019.44, + "end": 22022.22, + "probability": 0.9785 + }, + { + "start": 22022.92, + "end": 22028.9, + "probability": 0.9924 + }, + { + "start": 22029.06, + "end": 22029.72, + "probability": 0.5874 + }, + { + "start": 22030.34, + "end": 22031.08, + "probability": 0.5593 + }, + { + "start": 22031.1, + "end": 22032.46, + "probability": 0.9408 + }, + { + "start": 22032.94, + "end": 22033.7, + "probability": 0.8106 + }, + { + "start": 22033.76, + "end": 22035.28, + "probability": 0.5635 + }, + { + "start": 22035.8, + "end": 22040.61, + "probability": 0.993 + }, + { + "start": 22040.76, + "end": 22041.18, + "probability": 0.7412 + }, + { + "start": 22041.66, + "end": 22045.1, + "probability": 0.6659 + }, + { + "start": 22045.98, + "end": 22048.7, + "probability": 0.9137 + }, + { + "start": 22049.4, + "end": 22049.96, + "probability": 0.795 + }, + { + "start": 22050.38, + "end": 22054.54, + "probability": 0.9833 + }, + { + "start": 22054.54, + "end": 22057.82, + "probability": 0.9813 + }, + { + "start": 22058.38, + "end": 22059.06, + "probability": 0.9423 + }, + { + "start": 22059.06, + "end": 22065.84, + "probability": 0.9964 + }, + { + "start": 22065.94, + "end": 22067.34, + "probability": 0.8434 + }, + { + "start": 22068.14, + "end": 22072.48, + "probability": 0.9665 + }, + { + "start": 22073.22, + "end": 22079.32, + "probability": 0.9932 + }, + { + "start": 22079.46, + "end": 22079.9, + "probability": 0.7838 + }, + { + "start": 22080.46, + "end": 22082.78, + "probability": 0.9524 + }, + { + "start": 22082.84, + "end": 22084.18, + "probability": 0.8223 + }, + { + "start": 22085.66, + "end": 22089.26, + "probability": 0.7248 + }, + { + "start": 22090.76, + "end": 22093.74, + "probability": 0.633 + }, + { + "start": 22095.4, + "end": 22100.98, + "probability": 0.9487 + }, + { + "start": 22101.62, + "end": 22104.16, + "probability": 0.9124 + }, + { + "start": 22104.2, + "end": 22105.98, + "probability": 0.9335 + }, + { + "start": 22106.04, + "end": 22108.82, + "probability": 0.9927 + }, + { + "start": 22108.88, + "end": 22112.02, + "probability": 0.9617 + }, + { + "start": 22112.44, + "end": 22116.42, + "probability": 0.832 + }, + { + "start": 22116.62, + "end": 22116.72, + "probability": 0.7348 + }, + { + "start": 22118.44, + "end": 22120.6, + "probability": 0.5856 + }, + { + "start": 22120.98, + "end": 22121.5, + "probability": 0.7932 + }, + { + "start": 22121.56, + "end": 22122.04, + "probability": 0.7845 + }, + { + "start": 22122.06, + "end": 22124.64, + "probability": 0.6763 + }, + { + "start": 22125.16, + "end": 22128.14, + "probability": 0.8887 + }, + { + "start": 22128.32, + "end": 22131.14, + "probability": 0.58 + }, + { + "start": 22131.5, + "end": 22133.1, + "probability": 0.7768 + }, + { + "start": 22133.22, + "end": 22133.6, + "probability": 0.4753 + }, + { + "start": 22134.18, + "end": 22134.84, + "probability": 0.841 + }, + { + "start": 22134.86, + "end": 22135.48, + "probability": 0.9026 + }, + { + "start": 22135.78, + "end": 22136.72, + "probability": 0.8547 + }, + { + "start": 22136.86, + "end": 22137.7, + "probability": 0.8994 + }, + { + "start": 22137.78, + "end": 22138.48, + "probability": 0.8077 + }, + { + "start": 22138.5, + "end": 22140.36, + "probability": 0.9729 + }, + { + "start": 22140.9, + "end": 22142.6, + "probability": 0.0995 + }, + { + "start": 22142.68, + "end": 22143.96, + "probability": 0.768 + }, + { + "start": 22144.14, + "end": 22145.06, + "probability": 0.9292 + }, + { + "start": 22145.78, + "end": 22146.58, + "probability": 0.8335 + }, + { + "start": 22146.62, + "end": 22148.94, + "probability": 0.9274 + }, + { + "start": 22149.0, + "end": 22149.48, + "probability": 0.501 + }, + { + "start": 22150.27, + "end": 22151.76, + "probability": 0.6161 + }, + { + "start": 22152.02, + "end": 22152.6, + "probability": 0.7397 + }, + { + "start": 22153.05, + "end": 22153.96, + "probability": 0.3338 + }, + { + "start": 22154.0, + "end": 22155.66, + "probability": 0.7036 + }, + { + "start": 22155.7, + "end": 22155.94, + "probability": 0.611 + }, + { + "start": 22156.06, + "end": 22156.76, + "probability": 0.8742 + }, + { + "start": 22157.32, + "end": 22158.14, + "probability": 0.8746 + }, + { + "start": 22160.3, + "end": 22164.2, + "probability": 0.8563 + }, + { + "start": 22164.66, + "end": 22166.38, + "probability": 0.8394 + }, + { + "start": 22168.24, + "end": 22172.12, + "probability": 0.9435 + }, + { + "start": 22174.06, + "end": 22174.38, + "probability": 0.6505 + }, + { + "start": 22175.38, + "end": 22175.78, + "probability": 0.481 + }, + { + "start": 22177.5, + "end": 22181.78, + "probability": 0.9407 + }, + { + "start": 22182.62, + "end": 22184.72, + "probability": 0.0999 + }, + { + "start": 22184.72, + "end": 22184.82, + "probability": 0.6002 + }, + { + "start": 22186.96, + "end": 22186.96, + "probability": 0.6092 + }, + { + "start": 22187.04, + "end": 22187.2, + "probability": 0.4671 + }, + { + "start": 22187.2, + "end": 22187.42, + "probability": 0.1776 + }, + { + "start": 22188.96, + "end": 22188.96, + "probability": 0.3153 + }, + { + "start": 22188.96, + "end": 22188.96, + "probability": 0.5106 + }, + { + "start": 22189.02, + "end": 22191.46, + "probability": 0.9885 + }, + { + "start": 22192.38, + "end": 22192.88, + "probability": 0.9215 + }, + { + "start": 22194.22, + "end": 22195.16, + "probability": 0.9505 + }, + { + "start": 22195.38, + "end": 22196.48, + "probability": 0.9838 + }, + { + "start": 22196.72, + "end": 22198.32, + "probability": 0.9423 + }, + { + "start": 22199.32, + "end": 22202.34, + "probability": 0.9951 + }, + { + "start": 22203.46, + "end": 22206.98, + "probability": 0.8775 + }, + { + "start": 22208.16, + "end": 22208.84, + "probability": 0.931 + }, + { + "start": 22209.52, + "end": 22212.98, + "probability": 0.865 + }, + { + "start": 22213.64, + "end": 22214.92, + "probability": 0.7451 + }, + { + "start": 22215.94, + "end": 22217.8, + "probability": 0.9075 + }, + { + "start": 22219.8, + "end": 22220.2, + "probability": 0.4595 + }, + { + "start": 22220.52, + "end": 22223.22, + "probability": 0.984 + }, + { + "start": 22224.5, + "end": 22226.14, + "probability": 0.9842 + }, + { + "start": 22227.78, + "end": 22235.74, + "probability": 0.9586 + }, + { + "start": 22237.36, + "end": 22238.88, + "probability": 0.0427 + }, + { + "start": 22239.9, + "end": 22240.3, + "probability": 0.2987 + }, + { + "start": 22241.52, + "end": 22244.06, + "probability": 0.9038 + }, + { + "start": 22245.22, + "end": 22247.3, + "probability": 0.9866 + }, + { + "start": 22248.14, + "end": 22249.44, + "probability": 0.7264 + }, + { + "start": 22251.08, + "end": 22255.32, + "probability": 0.814 + }, + { + "start": 22256.62, + "end": 22258.34, + "probability": 0.9878 + }, + { + "start": 22259.12, + "end": 22261.0, + "probability": 0.5883 + }, + { + "start": 22261.9, + "end": 22262.9, + "probability": 0.4091 + }, + { + "start": 22264.14, + "end": 22264.82, + "probability": 0.767 + }, + { + "start": 22265.26, + "end": 22267.2, + "probability": 0.8273 + }, + { + "start": 22268.83, + "end": 22272.54, + "probability": 0.6978 + }, + { + "start": 22274.28, + "end": 22275.04, + "probability": 0.886 + }, + { + "start": 22276.5, + "end": 22277.82, + "probability": 0.9186 + }, + { + "start": 22278.62, + "end": 22280.72, + "probability": 0.8539 + }, + { + "start": 22281.34, + "end": 22281.62, + "probability": 0.4646 + }, + { + "start": 22282.44, + "end": 22284.42, + "probability": 0.8277 + }, + { + "start": 22285.44, + "end": 22287.4, + "probability": 0.6262 + }, + { + "start": 22287.5, + "end": 22290.54, + "probability": 0.979 + }, + { + "start": 22290.62, + "end": 22291.36, + "probability": 0.7765 + }, + { + "start": 22293.94, + "end": 22299.18, + "probability": 0.966 + }, + { + "start": 22300.5, + "end": 22303.1, + "probability": 0.9521 + }, + { + "start": 22304.26, + "end": 22306.9, + "probability": 0.6934 + }, + { + "start": 22307.8, + "end": 22308.5, + "probability": 0.976 + }, + { + "start": 22309.48, + "end": 22310.64, + "probability": 0.676 + }, + { + "start": 22310.72, + "end": 22312.44, + "probability": 0.9771 + }, + { + "start": 22313.64, + "end": 22317.34, + "probability": 0.8708 + }, + { + "start": 22320.14, + "end": 22320.5, + "probability": 0.709 + }, + { + "start": 22321.56, + "end": 22325.4, + "probability": 0.9818 + }, + { + "start": 22326.34, + "end": 22327.18, + "probability": 0.8777 + }, + { + "start": 22328.0, + "end": 22330.7, + "probability": 0.9644 + }, + { + "start": 22331.96, + "end": 22335.06, + "probability": 0.9935 + }, + { + "start": 22335.8, + "end": 22338.04, + "probability": 0.9305 + }, + { + "start": 22338.72, + "end": 22344.9, + "probability": 0.9155 + }, + { + "start": 22345.78, + "end": 22346.84, + "probability": 0.3891 + }, + { + "start": 22349.65, + "end": 22352.42, + "probability": 0.6801 + }, + { + "start": 22353.3, + "end": 22353.82, + "probability": 0.6739 + }, + { + "start": 22354.78, + "end": 22359.18, + "probability": 0.9238 + }, + { + "start": 22360.04, + "end": 22363.18, + "probability": 0.941 + }, + { + "start": 22364.68, + "end": 22367.68, + "probability": 0.7948 + }, + { + "start": 22368.84, + "end": 22371.62, + "probability": 0.8331 + }, + { + "start": 22372.8, + "end": 22375.96, + "probability": 0.9787 + }, + { + "start": 22377.16, + "end": 22377.4, + "probability": 0.8571 + }, + { + "start": 22379.16, + "end": 22381.28, + "probability": 0.8155 + }, + { + "start": 22381.64, + "end": 22384.1, + "probability": 0.6818 + }, + { + "start": 22385.84, + "end": 22386.92, + "probability": 0.7457 + }, + { + "start": 22395.36, + "end": 22396.5, + "probability": 0.343 + }, + { + "start": 22396.52, + "end": 22397.64, + "probability": 0.7682 + }, + { + "start": 22397.72, + "end": 22398.12, + "probability": 0.8184 + }, + { + "start": 22399.18, + "end": 22399.8, + "probability": 0.832 + }, + { + "start": 22399.92, + "end": 22400.36, + "probability": 0.896 + }, + { + "start": 22400.48, + "end": 22401.54, + "probability": 0.7624 + }, + { + "start": 22401.66, + "end": 22402.34, + "probability": 0.5125 + }, + { + "start": 22403.26, + "end": 22403.96, + "probability": 0.6861 + }, + { + "start": 22404.02, + "end": 22404.83, + "probability": 0.7777 + }, + { + "start": 22405.1, + "end": 22405.4, + "probability": 0.948 + }, + { + "start": 22406.02, + "end": 22406.24, + "probability": 0.8264 + }, + { + "start": 22406.28, + "end": 22407.64, + "probability": 0.5974 + }, + { + "start": 22407.78, + "end": 22407.92, + "probability": 0.309 + }, + { + "start": 22409.18, + "end": 22410.46, + "probability": 0.5506 + }, + { + "start": 22410.74, + "end": 22411.86, + "probability": 0.7286 + }, + { + "start": 22412.1, + "end": 22412.98, + "probability": 0.7212 + }, + { + "start": 22413.86, + "end": 22416.76, + "probability": 0.9811 + }, + { + "start": 22417.56, + "end": 22419.74, + "probability": 0.997 + }, + { + "start": 22420.36, + "end": 22423.58, + "probability": 0.9112 + }, + { + "start": 22424.76, + "end": 22431.22, + "probability": 0.9956 + }, + { + "start": 22431.88, + "end": 22435.36, + "probability": 0.9617 + }, + { + "start": 22435.92, + "end": 22442.92, + "probability": 0.923 + }, + { + "start": 22443.6, + "end": 22444.22, + "probability": 0.9004 + }, + { + "start": 22445.08, + "end": 22448.74, + "probability": 0.9626 + }, + { + "start": 22449.46, + "end": 22454.52, + "probability": 0.9735 + }, + { + "start": 22455.04, + "end": 22456.6, + "probability": 0.9205 + }, + { + "start": 22457.16, + "end": 22460.88, + "probability": 0.9985 + }, + { + "start": 22461.54, + "end": 22465.1, + "probability": 0.9957 + }, + { + "start": 22465.68, + "end": 22471.92, + "probability": 0.9711 + }, + { + "start": 22472.62, + "end": 22476.44, + "probability": 0.9261 + }, + { + "start": 22477.0, + "end": 22477.44, + "probability": 0.6955 + }, + { + "start": 22477.96, + "end": 22479.02, + "probability": 0.7051 + }, + { + "start": 22479.46, + "end": 22482.12, + "probability": 0.9971 + }, + { + "start": 22482.56, + "end": 22485.04, + "probability": 0.9946 + }, + { + "start": 22485.76, + "end": 22492.92, + "probability": 0.9943 + }, + { + "start": 22493.5, + "end": 22494.3, + "probability": 0.536 + }, + { + "start": 22494.82, + "end": 22499.56, + "probability": 0.9951 + }, + { + "start": 22500.34, + "end": 22501.52, + "probability": 0.9665 + }, + { + "start": 22502.08, + "end": 22503.28, + "probability": 0.9067 + }, + { + "start": 22503.9, + "end": 22505.8, + "probability": 0.934 + }, + { + "start": 22506.36, + "end": 22509.82, + "probability": 0.9965 + }, + { + "start": 22509.92, + "end": 22514.6, + "probability": 0.9986 + }, + { + "start": 22515.26, + "end": 22520.98, + "probability": 0.9948 + }, + { + "start": 22521.9, + "end": 22523.9, + "probability": 0.9436 + }, + { + "start": 22524.54, + "end": 22526.34, + "probability": 0.9779 + }, + { + "start": 22527.0, + "end": 22528.46, + "probability": 0.6074 + }, + { + "start": 22529.0, + "end": 22533.16, + "probability": 0.9921 + }, + { + "start": 22533.16, + "end": 22537.0, + "probability": 0.9915 + }, + { + "start": 22537.74, + "end": 22539.58, + "probability": 0.9294 + }, + { + "start": 22540.04, + "end": 22544.2, + "probability": 0.9482 + }, + { + "start": 22544.34, + "end": 22546.98, + "probability": 0.9973 + }, + { + "start": 22547.5, + "end": 22548.68, + "probability": 0.9971 + }, + { + "start": 22549.26, + "end": 22549.96, + "probability": 0.7969 + }, + { + "start": 22550.5, + "end": 22551.5, + "probability": 0.6692 + }, + { + "start": 22552.42, + "end": 22556.93, + "probability": 0.923 + }, + { + "start": 22557.5, + "end": 22562.56, + "probability": 0.9776 + }, + { + "start": 22563.24, + "end": 22565.36, + "probability": 0.9803 + }, + { + "start": 22565.88, + "end": 22571.66, + "probability": 0.9664 + }, + { + "start": 22572.6, + "end": 22573.16, + "probability": 0.9545 + }, + { + "start": 22573.78, + "end": 22578.3, + "probability": 0.935 + }, + { + "start": 22579.1, + "end": 22580.2, + "probability": 0.9249 + }, + { + "start": 22580.84, + "end": 22582.06, + "probability": 0.8596 + }, + { + "start": 22583.38, + "end": 22586.3, + "probability": 0.9604 + }, + { + "start": 22586.96, + "end": 22589.82, + "probability": 0.8673 + }, + { + "start": 22590.76, + "end": 22592.07, + "probability": 0.7686 + }, + { + "start": 22592.76, + "end": 22595.04, + "probability": 0.9858 + }, + { + "start": 22595.8, + "end": 22601.7, + "probability": 0.8993 + }, + { + "start": 22602.48, + "end": 22609.28, + "probability": 0.9519 + }, + { + "start": 22609.98, + "end": 22609.98, + "probability": 0.3336 + }, + { + "start": 22609.98, + "end": 22611.18, + "probability": 0.5266 + }, + { + "start": 22611.9, + "end": 22617.64, + "probability": 0.9355 + }, + { + "start": 22618.22, + "end": 22620.9, + "probability": 0.8343 + }, + { + "start": 22621.52, + "end": 22622.71, + "probability": 0.9278 + }, + { + "start": 22623.78, + "end": 22624.78, + "probability": 0.948 + }, + { + "start": 22625.36, + "end": 22628.34, + "probability": 0.9432 + }, + { + "start": 22628.76, + "end": 22629.18, + "probability": 0.7081 + }, + { + "start": 22629.18, + "end": 22629.66, + "probability": 0.6949 + }, + { + "start": 22629.86, + "end": 22631.28, + "probability": 0.9803 + }, + { + "start": 22631.66, + "end": 22634.0, + "probability": 0.9305 + }, + { + "start": 22634.54, + "end": 22637.96, + "probability": 0.9389 + }, + { + "start": 22638.54, + "end": 22640.76, + "probability": 0.9964 + }, + { + "start": 22641.34, + "end": 22642.8, + "probability": 0.6982 + }, + { + "start": 22643.2, + "end": 22644.07, + "probability": 0.9685 + }, + { + "start": 22644.88, + "end": 22645.7, + "probability": 0.9408 + }, + { + "start": 22645.88, + "end": 22646.24, + "probability": 0.5733 + }, + { + "start": 22646.28, + "end": 22648.58, + "probability": 0.7447 + }, + { + "start": 22648.92, + "end": 22653.1, + "probability": 0.8569 + }, + { + "start": 22653.46, + "end": 22657.02, + "probability": 0.9795 + }, + { + "start": 22657.62, + "end": 22659.44, + "probability": 0.6136 + }, + { + "start": 22659.66, + "end": 22661.66, + "probability": 0.7692 + }, + { + "start": 22668.64, + "end": 22669.02, + "probability": 0.7694 + }, + { + "start": 22674.9, + "end": 22678.02, + "probability": 0.6782 + }, + { + "start": 22678.56, + "end": 22680.08, + "probability": 0.9937 + }, + { + "start": 22681.7, + "end": 22683.04, + "probability": 0.3815 + }, + { + "start": 22684.1, + "end": 22685.72, + "probability": 0.9976 + }, + { + "start": 22685.86, + "end": 22686.52, + "probability": 0.8691 + }, + { + "start": 22687.36, + "end": 22688.82, + "probability": 0.9951 + }, + { + "start": 22689.44, + "end": 22690.08, + "probability": 0.8575 + }, + { + "start": 22697.88, + "end": 22698.1, + "probability": 0.6569 + }, + { + "start": 22699.93, + "end": 22701.14, + "probability": 0.422 + }, + { + "start": 22701.2, + "end": 22702.62, + "probability": 0.841 + }, + { + "start": 22702.82, + "end": 22704.08, + "probability": 0.9718 + }, + { + "start": 22706.9, + "end": 22707.9, + "probability": 0.9458 + }, + { + "start": 22709.0, + "end": 22710.88, + "probability": 0.8838 + }, + { + "start": 22713.44, + "end": 22714.48, + "probability": 0.9266 + }, + { + "start": 22716.32, + "end": 22720.98, + "probability": 0.856 + }, + { + "start": 22721.0, + "end": 22722.98, + "probability": 0.8068 + }, + { + "start": 22723.74, + "end": 22724.76, + "probability": 0.8596 + }, + { + "start": 22725.38, + "end": 22726.48, + "probability": 0.9406 + }, + { + "start": 22727.58, + "end": 22729.0, + "probability": 0.8843 + }, + { + "start": 22730.14, + "end": 22732.2, + "probability": 0.9386 + }, + { + "start": 22732.2, + "end": 22734.98, + "probability": 0.991 + }, + { + "start": 22735.76, + "end": 22737.9, + "probability": 0.9833 + }, + { + "start": 22738.04, + "end": 22740.02, + "probability": 0.9579 + }, + { + "start": 22741.14, + "end": 22744.94, + "probability": 0.8974 + }, + { + "start": 22745.54, + "end": 22745.86, + "probability": 0.4661 + }, + { + "start": 22746.12, + "end": 22746.56, + "probability": 0.8657 + }, + { + "start": 22747.2, + "end": 22747.38, + "probability": 0.9924 + }, + { + "start": 22747.9, + "end": 22751.6, + "probability": 0.8916 + }, + { + "start": 22753.4, + "end": 22754.01, + "probability": 0.9406 + }, + { + "start": 22755.02, + "end": 22757.44, + "probability": 0.9581 + }, + { + "start": 22758.34, + "end": 22760.6, + "probability": 0.9672 + }, + { + "start": 22762.04, + "end": 22763.86, + "probability": 0.9931 + }, + { + "start": 22764.66, + "end": 22767.48, + "probability": 0.9956 + }, + { + "start": 22768.4, + "end": 22770.38, + "probability": 0.889 + }, + { + "start": 22772.5, + "end": 22775.34, + "probability": 0.9964 + }, + { + "start": 22775.54, + "end": 22778.4, + "probability": 0.6119 + }, + { + "start": 22779.48, + "end": 22780.57, + "probability": 0.9796 + }, + { + "start": 22780.72, + "end": 22782.34, + "probability": 0.8586 + }, + { + "start": 22782.4, + "end": 22785.02, + "probability": 0.9885 + }, + { + "start": 22785.36, + "end": 22786.46, + "probability": 0.97 + }, + { + "start": 22787.64, + "end": 22789.56, + "probability": 0.9873 + }, + { + "start": 22790.02, + "end": 22790.94, + "probability": 0.9958 + }, + { + "start": 22791.88, + "end": 22793.96, + "probability": 0.7881 + }, + { + "start": 22795.46, + "end": 22802.48, + "probability": 0.8813 + }, + { + "start": 22803.14, + "end": 22805.26, + "probability": 0.8769 + }, + { + "start": 22808.84, + "end": 22810.38, + "probability": 0.8463 + }, + { + "start": 22810.4, + "end": 22812.27, + "probability": 0.9221 + }, + { + "start": 22812.42, + "end": 22813.94, + "probability": 0.9278 + }, + { + "start": 22814.0, + "end": 22819.78, + "probability": 0.9879 + }, + { + "start": 22820.52, + "end": 22821.62, + "probability": 0.8943 + }, + { + "start": 22822.82, + "end": 22823.24, + "probability": 0.593 + }, + { + "start": 22823.44, + "end": 22824.48, + "probability": 0.983 + }, + { + "start": 22824.74, + "end": 22825.66, + "probability": 0.9919 + }, + { + "start": 22825.92, + "end": 22827.26, + "probability": 0.8822 + }, + { + "start": 22828.96, + "end": 22831.36, + "probability": 0.9742 + }, + { + "start": 22833.2, + "end": 22835.22, + "probability": 0.9757 + }, + { + "start": 22835.34, + "end": 22837.74, + "probability": 0.8704 + }, + { + "start": 22839.54, + "end": 22842.26, + "probability": 0.9974 + }, + { + "start": 22842.26, + "end": 22845.72, + "probability": 0.9978 + }, + { + "start": 22845.82, + "end": 22846.14, + "probability": 0.8996 + }, + { + "start": 22847.16, + "end": 22850.24, + "probability": 0.9801 + }, + { + "start": 22850.48, + "end": 22851.44, + "probability": 0.979 + }, + { + "start": 22851.5, + "end": 22852.42, + "probability": 0.9868 + }, + { + "start": 22852.52, + "end": 22853.54, + "probability": 0.8516 + }, + { + "start": 22854.12, + "end": 22856.96, + "probability": 0.9707 + }, + { + "start": 22857.06, + "end": 22857.32, + "probability": 0.9203 + }, + { + "start": 22857.68, + "end": 22861.8, + "probability": 0.9953 + }, + { + "start": 22862.78, + "end": 22865.5, + "probability": 0.8381 + }, + { + "start": 22866.04, + "end": 22867.58, + "probability": 0.9695 + }, + { + "start": 22867.74, + "end": 22870.4, + "probability": 0.912 + }, + { + "start": 22871.46, + "end": 22872.32, + "probability": 0.9741 + }, + { + "start": 22872.42, + "end": 22874.44, + "probability": 0.9667 + }, + { + "start": 22875.26, + "end": 22877.52, + "probability": 0.9017 + }, + { + "start": 22878.04, + "end": 22879.9, + "probability": 0.9729 + }, + { + "start": 22880.66, + "end": 22881.66, + "probability": 0.7647 + }, + { + "start": 22882.24, + "end": 22883.8, + "probability": 0.915 + }, + { + "start": 22884.5, + "end": 22886.22, + "probability": 0.6712 + }, + { + "start": 22886.38, + "end": 22886.7, + "probability": 0.7727 + }, + { + "start": 22886.84, + "end": 22889.44, + "probability": 0.987 + }, + { + "start": 22889.78, + "end": 22892.34, + "probability": 0.999 + }, + { + "start": 22892.34, + "end": 22893.72, + "probability": 0.894 + }, + { + "start": 22894.02, + "end": 22896.02, + "probability": 0.6632 + }, + { + "start": 22897.16, + "end": 22898.72, + "probability": 0.9905 + }, + { + "start": 22899.1, + "end": 22903.86, + "probability": 0.9941 + }, + { + "start": 22904.54, + "end": 22905.68, + "probability": 0.481 + }, + { + "start": 22905.68, + "end": 22906.6, + "probability": 0.5011 + }, + { + "start": 22906.72, + "end": 22909.04, + "probability": 0.5617 + }, + { + "start": 22909.94, + "end": 22910.42, + "probability": 0.8756 + }, + { + "start": 22926.48, + "end": 22927.1, + "probability": 0.8857 + }, + { + "start": 22927.82, + "end": 22928.9, + "probability": 0.8443 + }, + { + "start": 22930.2, + "end": 22932.26, + "probability": 0.5808 + }, + { + "start": 22933.4, + "end": 22936.24, + "probability": 0.9856 + }, + { + "start": 22937.84, + "end": 22939.76, + "probability": 0.7672 + }, + { + "start": 22939.76, + "end": 22939.92, + "probability": 0.005 + }, + { + "start": 22939.92, + "end": 22940.65, + "probability": 0.8163 + }, + { + "start": 22942.26, + "end": 22944.98, + "probability": 0.3056 + }, + { + "start": 22945.64, + "end": 22946.44, + "probability": 0.6643 + }, + { + "start": 22946.56, + "end": 22948.74, + "probability": 0.9922 + }, + { + "start": 22949.28, + "end": 22951.06, + "probability": 0.9623 + }, + { + "start": 22951.18, + "end": 22951.58, + "probability": 0.894 + }, + { + "start": 22952.04, + "end": 22956.92, + "probability": 0.9896 + }, + { + "start": 22958.04, + "end": 22960.09, + "probability": 0.604 + }, + { + "start": 22960.38, + "end": 22961.52, + "probability": 0.9526 + }, + { + "start": 22962.7, + "end": 22965.58, + "probability": 0.8511 + }, + { + "start": 22966.44, + "end": 22970.6, + "probability": 0.7412 + }, + { + "start": 22971.22, + "end": 22972.72, + "probability": 0.9433 + }, + { + "start": 22973.38, + "end": 22975.54, + "probability": 0.882 + }, + { + "start": 22976.8, + "end": 22979.1, + "probability": 0.8921 + }, + { + "start": 22979.86, + "end": 22982.08, + "probability": 0.8219 + }, + { + "start": 22983.44, + "end": 22985.86, + "probability": 0.9508 + }, + { + "start": 22986.38, + "end": 22988.12, + "probability": 0.9737 + }, + { + "start": 22988.14, + "end": 22990.94, + "probability": 0.8909 + }, + { + "start": 22991.1, + "end": 22991.56, + "probability": 0.7979 + }, + { + "start": 22992.04, + "end": 22994.96, + "probability": 0.9745 + }, + { + "start": 22995.1, + "end": 22996.08, + "probability": 0.9901 + }, + { + "start": 22996.16, + "end": 22997.14, + "probability": 0.932 + }, + { + "start": 22997.76, + "end": 22998.76, + "probability": 0.6629 + }, + { + "start": 22998.86, + "end": 23001.08, + "probability": 0.9744 + }, + { + "start": 23002.22, + "end": 23004.34, + "probability": 0.9814 + }, + { + "start": 23005.4, + "end": 23009.88, + "probability": 0.9795 + }, + { + "start": 23010.42, + "end": 23011.42, + "probability": 0.8449 + }, + { + "start": 23012.2, + "end": 23012.94, + "probability": 0.8341 + }, + { + "start": 23013.46, + "end": 23015.42, + "probability": 0.7997 + }, + { + "start": 23015.98, + "end": 23018.9, + "probability": 0.9961 + }, + { + "start": 23019.78, + "end": 23022.46, + "probability": 0.9058 + }, + { + "start": 23023.18, + "end": 23023.7, + "probability": 0.7902 + }, + { + "start": 23023.98, + "end": 23025.27, + "probability": 0.9676 + }, + { + "start": 23025.64, + "end": 23032.58, + "probability": 0.9182 + }, + { + "start": 23032.84, + "end": 23035.96, + "probability": 0.8061 + }, + { + "start": 23037.88, + "end": 23042.16, + "probability": 0.9928 + }, + { + "start": 23042.5, + "end": 23046.88, + "probability": 0.9603 + }, + { + "start": 23047.5, + "end": 23050.6, + "probability": 0.8995 + }, + { + "start": 23051.14, + "end": 23054.68, + "probability": 0.9972 + }, + { + "start": 23054.94, + "end": 23058.04, + "probability": 0.9596 + }, + { + "start": 23059.7, + "end": 23062.6, + "probability": 0.9932 + }, + { + "start": 23063.12, + "end": 23064.8, + "probability": 0.9976 + }, + { + "start": 23065.44, + "end": 23069.56, + "probability": 0.9741 + }, + { + "start": 23069.72, + "end": 23071.72, + "probability": 0.8589 + }, + { + "start": 23072.24, + "end": 23077.36, + "probability": 0.9973 + }, + { + "start": 23078.22, + "end": 23082.14, + "probability": 0.9302 + }, + { + "start": 23083.48, + "end": 23083.48, + "probability": 0.2254 + }, + { + "start": 23083.48, + "end": 23086.48, + "probability": 0.8744 + }, + { + "start": 23086.96, + "end": 23092.52, + "probability": 0.9934 + }, + { + "start": 23093.06, + "end": 23100.24, + "probability": 0.981 + }, + { + "start": 23100.92, + "end": 23102.0, + "probability": 0.8648 + }, + { + "start": 23103.4, + "end": 23106.48, + "probability": 0.9666 + }, + { + "start": 23106.96, + "end": 23107.86, + "probability": 0.9033 + }, + { + "start": 23108.2, + "end": 23108.76, + "probability": 0.9391 + }, + { + "start": 23108.86, + "end": 23109.58, + "probability": 0.833 + }, + { + "start": 23110.08, + "end": 23113.3, + "probability": 0.9971 + }, + { + "start": 23113.3, + "end": 23118.56, + "probability": 0.8682 + }, + { + "start": 23119.48, + "end": 23123.16, + "probability": 0.9951 + }, + { + "start": 23124.18, + "end": 23125.24, + "probability": 0.9356 + }, + { + "start": 23125.82, + "end": 23132.1, + "probability": 0.8876 + }, + { + "start": 23132.52, + "end": 23136.15, + "probability": 0.9948 + }, + { + "start": 23137.26, + "end": 23137.26, + "probability": 0.0548 + }, + { + "start": 23137.26, + "end": 23138.03, + "probability": 0.4361 + }, + { + "start": 23138.24, + "end": 23140.94, + "probability": 0.9759 + }, + { + "start": 23141.54, + "end": 23146.4, + "probability": 0.9049 + }, + { + "start": 23146.82, + "end": 23151.2, + "probability": 0.9482 + }, + { + "start": 23151.62, + "end": 23153.74, + "probability": 0.9978 + }, + { + "start": 23154.34, + "end": 23154.34, + "probability": 0.3448 + }, + { + "start": 23154.34, + "end": 23158.36, + "probability": 0.993 + }, + { + "start": 23158.7, + "end": 23160.0, + "probability": 0.9473 + }, + { + "start": 23160.76, + "end": 23162.06, + "probability": 0.9782 + }, + { + "start": 23162.06, + "end": 23166.0, + "probability": 0.671 + }, + { + "start": 23166.74, + "end": 23166.92, + "probability": 0.7171 + }, + { + "start": 23166.98, + "end": 23168.7, + "probability": 0.6089 + }, + { + "start": 23169.02, + "end": 23173.56, + "probability": 0.8896 + }, + { + "start": 23174.24, + "end": 23174.52, + "probability": 0.7939 + }, + { + "start": 23175.32, + "end": 23178.8, + "probability": 0.9946 + }, + { + "start": 23179.18, + "end": 23182.18, + "probability": 0.986 + }, + { + "start": 23182.24, + "end": 23184.14, + "probability": 0.6509 + }, + { + "start": 23184.24, + "end": 23186.5, + "probability": 0.8164 + }, + { + "start": 23210.04, + "end": 23210.18, + "probability": 0.6471 + }, + { + "start": 23216.14, + "end": 23216.24, + "probability": 0.239 + }, + { + "start": 23216.24, + "end": 23218.68, + "probability": 0.8638 + }, + { + "start": 23220.54, + "end": 23223.22, + "probability": 0.9622 + }, + { + "start": 23224.86, + "end": 23227.04, + "probability": 0.9818 + }, + { + "start": 23227.54, + "end": 23228.4, + "probability": 0.5677 + }, + { + "start": 23229.16, + "end": 23230.44, + "probability": 0.672 + }, + { + "start": 23230.78, + "end": 23234.08, + "probability": 0.6603 + }, + { + "start": 23234.2, + "end": 23234.77, + "probability": 0.8093 + }, + { + "start": 23238.14, + "end": 23239.3, + "probability": 0.9358 + }, + { + "start": 23241.24, + "end": 23244.02, + "probability": 0.2838 + }, + { + "start": 23245.57, + "end": 23248.82, + "probability": 0.7433 + }, + { + "start": 23250.54, + "end": 23250.78, + "probability": 0.4873 + }, + { + "start": 23252.47, + "end": 23255.62, + "probability": 0.9843 + }, + { + "start": 23256.16, + "end": 23256.64, + "probability": 0.5976 + }, + { + "start": 23257.42, + "end": 23260.5, + "probability": 0.8534 + }, + { + "start": 23262.0, + "end": 23264.7, + "probability": 0.7491 + }, + { + "start": 23264.86, + "end": 23265.12, + "probability": 0.5979 + }, + { + "start": 23266.38, + "end": 23267.18, + "probability": 0.4328 + }, + { + "start": 23267.58, + "end": 23268.24, + "probability": 0.5602 + }, + { + "start": 23268.38, + "end": 23269.52, + "probability": 0.8792 + }, + { + "start": 23269.56, + "end": 23270.98, + "probability": 0.9191 + }, + { + "start": 23271.94, + "end": 23273.52, + "probability": 0.9497 + }, + { + "start": 23275.18, + "end": 23281.56, + "probability": 0.9962 + }, + { + "start": 23283.64, + "end": 23287.72, + "probability": 0.991 + }, + { + "start": 23288.48, + "end": 23289.54, + "probability": 0.9529 + }, + { + "start": 23290.76, + "end": 23292.4, + "probability": 0.9237 + }, + { + "start": 23293.4, + "end": 23294.82, + "probability": 0.8821 + }, + { + "start": 23295.56, + "end": 23299.12, + "probability": 0.9933 + }, + { + "start": 23299.66, + "end": 23304.66, + "probability": 0.9861 + }, + { + "start": 23304.66, + "end": 23305.36, + "probability": 0.7518 + }, + { + "start": 23306.16, + "end": 23310.28, + "probability": 0.9871 + }, + { + "start": 23310.28, + "end": 23313.44, + "probability": 0.9971 + }, + { + "start": 23314.0, + "end": 23314.56, + "probability": 0.532 + }, + { + "start": 23314.58, + "end": 23315.26, + "probability": 0.4054 + }, + { + "start": 23315.46, + "end": 23319.54, + "probability": 0.9922 + }, + { + "start": 23320.86, + "end": 23323.12, + "probability": 0.9915 + }, + { + "start": 23324.4, + "end": 23327.02, + "probability": 0.9933 + }, + { + "start": 23328.64, + "end": 23333.46, + "probability": 0.993 + }, + { + "start": 23335.93, + "end": 23338.92, + "probability": 0.9989 + }, + { + "start": 23339.26, + "end": 23340.0, + "probability": 0.7413 + }, + { + "start": 23341.64, + "end": 23345.0, + "probability": 0.8173 + }, + { + "start": 23346.16, + "end": 23348.0, + "probability": 0.9305 + }, + { + "start": 23349.2, + "end": 23352.52, + "probability": 0.8659 + }, + { + "start": 23354.36, + "end": 23356.82, + "probability": 0.9827 + }, + { + "start": 23357.62, + "end": 23360.44, + "probability": 0.9392 + }, + { + "start": 23361.32, + "end": 23365.5, + "probability": 0.9263 + }, + { + "start": 23366.08, + "end": 23369.08, + "probability": 0.9276 + }, + { + "start": 23371.16, + "end": 23373.04, + "probability": 0.9678 + }, + { + "start": 23375.04, + "end": 23376.1, + "probability": 0.9329 + }, + { + "start": 23376.82, + "end": 23377.6, + "probability": 0.7486 + }, + { + "start": 23378.58, + "end": 23379.18, + "probability": 0.5487 + }, + { + "start": 23380.14, + "end": 23381.54, + "probability": 0.9788 + }, + { + "start": 23383.04, + "end": 23387.94, + "probability": 0.9117 + }, + { + "start": 23389.92, + "end": 23392.58, + "probability": 0.9911 + }, + { + "start": 23392.68, + "end": 23395.0, + "probability": 0.9932 + }, + { + "start": 23396.48, + "end": 23398.0, + "probability": 0.9907 + }, + { + "start": 23398.78, + "end": 23400.2, + "probability": 0.986 + }, + { + "start": 23401.84, + "end": 23402.66, + "probability": 0.921 + }, + { + "start": 23403.58, + "end": 23406.44, + "probability": 0.7997 + }, + { + "start": 23408.3, + "end": 23409.92, + "probability": 0.9829 + }, + { + "start": 23410.68, + "end": 23411.44, + "probability": 0.7581 + }, + { + "start": 23412.78, + "end": 23413.68, + "probability": 0.9473 + }, + { + "start": 23414.24, + "end": 23415.8, + "probability": 0.9779 + }, + { + "start": 23416.32, + "end": 23420.36, + "probability": 0.9353 + }, + { + "start": 23422.32, + "end": 23424.3, + "probability": 0.9886 + }, + { + "start": 23425.6, + "end": 23428.1, + "probability": 0.9966 + }, + { + "start": 23428.38, + "end": 23429.34, + "probability": 0.6817 + }, + { + "start": 23429.48, + "end": 23430.38, + "probability": 0.7915 + }, + { + "start": 23431.36, + "end": 23433.12, + "probability": 0.9556 + }, + { + "start": 23433.38, + "end": 23437.76, + "probability": 0.9379 + }, + { + "start": 23438.58, + "end": 23440.08, + "probability": 0.8739 + }, + { + "start": 23440.3, + "end": 23442.2, + "probability": 0.9578 + }, + { + "start": 23443.48, + "end": 23446.2, + "probability": 0.8096 + }, + { + "start": 23446.64, + "end": 23450.2, + "probability": 0.9668 + }, + { + "start": 23450.34, + "end": 23451.06, + "probability": 0.9987 + }, + { + "start": 23451.74, + "end": 23453.08, + "probability": 0.9971 + }, + { + "start": 23453.72, + "end": 23456.36, + "probability": 0.9706 + }, + { + "start": 23456.78, + "end": 23458.44, + "probability": 0.8792 + }, + { + "start": 23458.5, + "end": 23462.58, + "probability": 0.9868 + }, + { + "start": 23463.36, + "end": 23465.2, + "probability": 0.9987 + }, + { + "start": 23465.98, + "end": 23466.56, + "probability": 0.7841 + }, + { + "start": 23468.68, + "end": 23470.82, + "probability": 0.9123 + }, + { + "start": 23470.94, + "end": 23471.5, + "probability": 0.723 + }, + { + "start": 23471.5, + "end": 23473.26, + "probability": 0.8236 + }, + { + "start": 23473.7, + "end": 23474.94, + "probability": 0.1846 + }, + { + "start": 23475.06, + "end": 23476.28, + "probability": 0.9475 + }, + { + "start": 23476.72, + "end": 23477.64, + "probability": 0.5918 + }, + { + "start": 23477.66, + "end": 23478.88, + "probability": 0.7817 + }, + { + "start": 23505.42, + "end": 23505.42, + "probability": 0.6874 + }, + { + "start": 23505.42, + "end": 23506.69, + "probability": 0.7021 + }, + { + "start": 23507.16, + "end": 23508.91, + "probability": 0.9499 + }, + { + "start": 23511.14, + "end": 23513.32, + "probability": 0.9606 + }, + { + "start": 23514.38, + "end": 23518.88, + "probability": 0.9957 + }, + { + "start": 23519.66, + "end": 23521.02, + "probability": 0.8239 + }, + { + "start": 23522.52, + "end": 23524.52, + "probability": 0.9128 + }, + { + "start": 23525.88, + "end": 23528.62, + "probability": 0.9825 + }, + { + "start": 23529.5, + "end": 23531.28, + "probability": 0.9741 + }, + { + "start": 23532.0, + "end": 23533.84, + "probability": 0.9853 + }, + { + "start": 23534.66, + "end": 23536.52, + "probability": 0.9868 + }, + { + "start": 23537.42, + "end": 23540.3, + "probability": 0.9572 + }, + { + "start": 23540.86, + "end": 23542.5, + "probability": 0.9106 + }, + { + "start": 23543.22, + "end": 23547.3, + "probability": 0.9943 + }, + { + "start": 23547.88, + "end": 23550.86, + "probability": 0.8868 + }, + { + "start": 23551.82, + "end": 23557.52, + "probability": 0.9985 + }, + { + "start": 23558.38, + "end": 23560.18, + "probability": 0.9663 + }, + { + "start": 23560.76, + "end": 23561.88, + "probability": 0.8042 + }, + { + "start": 23563.56, + "end": 23566.22, + "probability": 0.9312 + }, + { + "start": 23567.28, + "end": 23569.88, + "probability": 0.8151 + }, + { + "start": 23570.9, + "end": 23575.16, + "probability": 0.7101 + }, + { + "start": 23575.26, + "end": 23575.98, + "probability": 0.7393 + }, + { + "start": 23576.32, + "end": 23580.12, + "probability": 0.7631 + }, + { + "start": 23580.12, + "end": 23581.08, + "probability": 0.6587 + }, + { + "start": 23581.62, + "end": 23582.58, + "probability": 0.5957 + }, + { + "start": 23583.5, + "end": 23586.18, + "probability": 0.9717 + }, + { + "start": 23586.76, + "end": 23588.72, + "probability": 0.9898 + }, + { + "start": 23589.4, + "end": 23591.9, + "probability": 0.9743 + }, + { + "start": 23593.12, + "end": 23595.38, + "probability": 0.989 + }, + { + "start": 23595.84, + "end": 23598.04, + "probability": 0.9951 + }, + { + "start": 23598.98, + "end": 23603.62, + "probability": 0.9736 + }, + { + "start": 23604.72, + "end": 23606.78, + "probability": 0.7435 + }, + { + "start": 23607.26, + "end": 23609.18, + "probability": 0.988 + }, + { + "start": 23609.8, + "end": 23612.4, + "probability": 0.9685 + }, + { + "start": 23613.54, + "end": 23613.82, + "probability": 0.1224 + }, + { + "start": 23613.82, + "end": 23614.4, + "probability": 0.6559 + }, + { + "start": 23616.06, + "end": 23617.64, + "probability": 0.6654 + }, + { + "start": 23617.88, + "end": 23621.46, + "probability": 0.9073 + }, + { + "start": 23622.62, + "end": 23626.32, + "probability": 0.8953 + }, + { + "start": 23627.06, + "end": 23628.76, + "probability": 0.9646 + }, + { + "start": 23629.58, + "end": 23632.32, + "probability": 0.5269 + }, + { + "start": 23632.72, + "end": 23633.58, + "probability": 0.9512 + }, + { + "start": 23633.72, + "end": 23634.44, + "probability": 0.988 + }, + { + "start": 23634.7, + "end": 23635.36, + "probability": 0.9797 + }, + { + "start": 23635.48, + "end": 23636.34, + "probability": 0.7685 + }, + { + "start": 23637.4, + "end": 23639.7, + "probability": 0.8739 + }, + { + "start": 23640.24, + "end": 23640.72, + "probability": 0.9683 + }, + { + "start": 23641.16, + "end": 23644.56, + "probability": 0.9698 + }, + { + "start": 23645.46, + "end": 23647.46, + "probability": 0.9777 + }, + { + "start": 23647.78, + "end": 23648.36, + "probability": 0.4994 + }, + { + "start": 23648.92, + "end": 23653.26, + "probability": 0.7909 + }, + { + "start": 23654.24, + "end": 23655.62, + "probability": 0.809 + }, + { + "start": 23656.16, + "end": 23658.46, + "probability": 0.9112 + }, + { + "start": 23659.74, + "end": 23661.18, + "probability": 0.3669 + }, + { + "start": 23661.98, + "end": 23665.48, + "probability": 0.9731 + }, + { + "start": 23666.58, + "end": 23669.08, + "probability": 0.7528 + }, + { + "start": 23669.68, + "end": 23670.2, + "probability": 0.3921 + }, + { + "start": 23670.9, + "end": 23673.74, + "probability": 0.7859 + }, + { + "start": 23673.74, + "end": 23676.42, + "probability": 0.9601 + }, + { + "start": 23677.34, + "end": 23678.16, + "probability": 0.8595 + }, + { + "start": 23678.74, + "end": 23683.14, + "probability": 0.9671 + }, + { + "start": 23683.26, + "end": 23683.42, + "probability": 0.5243 + }, + { + "start": 23684.62, + "end": 23686.28, + "probability": 0.6749 + }, + { + "start": 23686.88, + "end": 23688.16, + "probability": 0.7879 + }, + { + "start": 23688.68, + "end": 23690.72, + "probability": 0.9111 + }, + { + "start": 23691.36, + "end": 23694.1, + "probability": 0.9667 + }, + { + "start": 23694.5, + "end": 23697.58, + "probability": 0.9539 + }, + { + "start": 23698.16, + "end": 23700.68, + "probability": 0.9979 + }, + { + "start": 23701.3, + "end": 23703.18, + "probability": 0.998 + }, + { + "start": 23703.64, + "end": 23705.48, + "probability": 0.99 + }, + { + "start": 23706.02, + "end": 23708.56, + "probability": 0.9924 + }, + { + "start": 23709.0, + "end": 23709.78, + "probability": 0.8787 + }, + { + "start": 23710.86, + "end": 23710.86, + "probability": 0.0914 + }, + { + "start": 23710.86, + "end": 23711.32, + "probability": 0.1765 + }, + { + "start": 23711.56, + "end": 23712.4, + "probability": 0.7333 + }, + { + "start": 23713.76, + "end": 23718.36, + "probability": 0.959 + }, + { + "start": 23719.08, + "end": 23721.78, + "probability": 0.9814 + }, + { + "start": 23722.64, + "end": 23726.04, + "probability": 0.8875 + }, + { + "start": 23726.6, + "end": 23730.62, + "probability": 0.9203 + }, + { + "start": 23731.08, + "end": 23733.18, + "probability": 0.9827 + }, + { + "start": 23733.66, + "end": 23736.32, + "probability": 0.9208 + }, + { + "start": 23737.84, + "end": 23739.82, + "probability": 0.5404 + }, + { + "start": 23740.1, + "end": 23741.76, + "probability": 0.8609 + }, + { + "start": 23742.06, + "end": 23744.88, + "probability": 0.6407 + }, + { + "start": 23745.42, + "end": 23747.82, + "probability": 0.892 + }, + { + "start": 23748.74, + "end": 23750.86, + "probability": 0.9272 + }, + { + "start": 23751.54, + "end": 23754.24, + "probability": 0.6937 + }, + { + "start": 23766.92, + "end": 23769.36, + "probability": 0.2729 + }, + { + "start": 23770.56, + "end": 23772.02, + "probability": 0.1802 + }, + { + "start": 23773.24, + "end": 23773.92, + "probability": 0.2534 + }, + { + "start": 23774.72, + "end": 23775.32, + "probability": 0.6355 + }, + { + "start": 23783.9, + "end": 23783.92, + "probability": 0.0321 + }, + { + "start": 23783.92, + "end": 23783.92, + "probability": 0.02 + }, + { + "start": 23783.92, + "end": 23783.94, + "probability": 0.1247 + }, + { + "start": 23783.94, + "end": 23783.96, + "probability": 0.2303 + }, + { + "start": 23783.96, + "end": 23783.96, + "probability": 0.1485 + }, + { + "start": 23783.96, + "end": 23783.96, + "probability": 0.2454 + }, + { + "start": 23783.96, + "end": 23783.96, + "probability": 0.1907 + }, + { + "start": 23783.96, + "end": 23783.96, + "probability": 0.2269 + }, + { + "start": 23783.96, + "end": 23784.0, + "probability": 0.2501 + }, + { + "start": 23784.14, + "end": 23785.05, + "probability": 0.6261 + }, + { + "start": 23790.3, + "end": 23792.52, + "probability": 0.7416 + }, + { + "start": 23794.12, + "end": 23795.74, + "probability": 0.9714 + }, + { + "start": 23796.82, + "end": 23799.32, + "probability": 0.9832 + }, + { + "start": 23800.34, + "end": 23801.72, + "probability": 0.9956 + }, + { + "start": 23802.26, + "end": 23809.62, + "probability": 0.9648 + }, + { + "start": 23810.5, + "end": 23812.8, + "probability": 0.756 + }, + { + "start": 23813.34, + "end": 23817.55, + "probability": 0.9644 + }, + { + "start": 23819.34, + "end": 23820.98, + "probability": 0.9333 + }, + { + "start": 23821.52, + "end": 23828.32, + "probability": 0.9661 + }, + { + "start": 23829.18, + "end": 23833.64, + "probability": 0.9858 + }, + { + "start": 23834.6, + "end": 23837.62, + "probability": 0.9961 + }, + { + "start": 23837.7, + "end": 23838.54, + "probability": 0.5143 + }, + { + "start": 23838.96, + "end": 23839.68, + "probability": 0.9045 + }, + { + "start": 23840.5, + "end": 23846.2, + "probability": 0.9947 + }, + { + "start": 23847.66, + "end": 23855.74, + "probability": 0.9572 + }, + { + "start": 23856.88, + "end": 23862.16, + "probability": 0.9967 + }, + { + "start": 23863.12, + "end": 23868.6, + "probability": 0.9339 + }, + { + "start": 23869.96, + "end": 23875.54, + "probability": 0.9567 + }, + { + "start": 23876.34, + "end": 23877.3, + "probability": 0.7047 + }, + { + "start": 23877.88, + "end": 23881.14, + "probability": 0.8331 + }, + { + "start": 23881.34, + "end": 23884.8, + "probability": 0.8553 + }, + { + "start": 23885.54, + "end": 23886.96, + "probability": 0.9198 + }, + { + "start": 23887.92, + "end": 23890.48, + "probability": 0.9721 + }, + { + "start": 23890.92, + "end": 23893.16, + "probability": 0.9965 + }, + { + "start": 23894.16, + "end": 23898.06, + "probability": 0.9889 + }, + { + "start": 23898.54, + "end": 23899.76, + "probability": 0.7349 + }, + { + "start": 23900.26, + "end": 23901.54, + "probability": 0.7541 + }, + { + "start": 23901.78, + "end": 23902.64, + "probability": 0.5518 + }, + { + "start": 23903.1, + "end": 23910.02, + "probability": 0.9868 + }, + { + "start": 23911.74, + "end": 23914.6, + "probability": 0.9668 + }, + { + "start": 23915.16, + "end": 23917.5, + "probability": 0.9038 + }, + { + "start": 23917.98, + "end": 23920.0, + "probability": 0.9161 + }, + { + "start": 23920.78, + "end": 23920.88, + "probability": 0.892 + }, + { + "start": 23921.42, + "end": 23923.42, + "probability": 0.9963 + }, + { + "start": 23923.88, + "end": 23924.66, + "probability": 0.6378 + }, + { + "start": 23925.0, + "end": 23925.78, + "probability": 0.9327 + }, + { + "start": 23926.2, + "end": 23927.06, + "probability": 0.9631 + }, + { + "start": 23927.6, + "end": 23929.52, + "probability": 0.9576 + }, + { + "start": 23930.82, + "end": 23934.36, + "probability": 0.965 + }, + { + "start": 23934.8, + "end": 23937.62, + "probability": 0.9781 + }, + { + "start": 23938.18, + "end": 23941.36, + "probability": 0.9256 + }, + { + "start": 23941.9, + "end": 23946.64, + "probability": 0.8352 + }, + { + "start": 23946.96, + "end": 23948.26, + "probability": 0.8534 + }, + { + "start": 23949.28, + "end": 23953.24, + "probability": 0.9968 + }, + { + "start": 23953.72, + "end": 23954.66, + "probability": 0.8522 + }, + { + "start": 23954.82, + "end": 23956.0, + "probability": 0.8817 + }, + { + "start": 23956.54, + "end": 23957.68, + "probability": 0.7545 + }, + { + "start": 23958.14, + "end": 23959.76, + "probability": 0.9104 + }, + { + "start": 23960.38, + "end": 23962.44, + "probability": 0.999 + }, + { + "start": 23962.8, + "end": 23969.58, + "probability": 0.9938 + }, + { + "start": 23969.6, + "end": 23973.86, + "probability": 0.9578 + }, + { + "start": 23974.3, + "end": 23976.88, + "probability": 0.9945 + }, + { + "start": 23977.36, + "end": 23980.3, + "probability": 0.9434 + }, + { + "start": 23980.64, + "end": 23981.68, + "probability": 0.9723 + }, + { + "start": 23981.96, + "end": 23983.38, + "probability": 0.6108 + }, + { + "start": 23983.4, + "end": 23984.4, + "probability": 0.8947 + }, + { + "start": 24001.0, + "end": 24001.08, + "probability": 0.7949 + }, + { + "start": 24001.14, + "end": 24001.78, + "probability": 0.6975 + }, + { + "start": 24016.18, + "end": 24017.78, + "probability": 0.6608 + }, + { + "start": 24018.96, + "end": 24020.92, + "probability": 0.7678 + }, + { + "start": 24021.26, + "end": 24021.64, + "probability": 0.7395 + }, + { + "start": 24023.5, + "end": 24028.8, + "probability": 0.9119 + }, + { + "start": 24031.14, + "end": 24033.96, + "probability": 0.7575 + }, + { + "start": 24034.46, + "end": 24036.7, + "probability": 0.9956 + }, + { + "start": 24037.22, + "end": 24038.32, + "probability": 0.9875 + }, + { + "start": 24041.68, + "end": 24042.6, + "probability": 0.7644 + }, + { + "start": 24043.56, + "end": 24045.94, + "probability": 0.9689 + }, + { + "start": 24046.74, + "end": 24047.62, + "probability": 0.9839 + }, + { + "start": 24049.54, + "end": 24051.86, + "probability": 0.8997 + }, + { + "start": 24052.6, + "end": 24053.38, + "probability": 0.9992 + }, + { + "start": 24056.58, + "end": 24059.72, + "probability": 0.999 + }, + { + "start": 24060.28, + "end": 24063.12, + "probability": 0.8453 + }, + { + "start": 24064.4, + "end": 24067.68, + "probability": 0.9958 + }, + { + "start": 24068.8, + "end": 24070.19, + "probability": 0.998 + }, + { + "start": 24073.82, + "end": 24074.62, + "probability": 0.4815 + }, + { + "start": 24075.48, + "end": 24078.06, + "probability": 0.9668 + }, + { + "start": 24078.96, + "end": 24080.52, + "probability": 0.993 + }, + { + "start": 24083.88, + "end": 24084.74, + "probability": 0.8918 + }, + { + "start": 24085.76, + "end": 24086.26, + "probability": 0.9625 + }, + { + "start": 24089.9, + "end": 24090.6, + "probability": 0.6514 + }, + { + "start": 24091.44, + "end": 24096.18, + "probability": 0.8654 + }, + { + "start": 24096.6, + "end": 24097.48, + "probability": 0.9018 + }, + { + "start": 24098.1, + "end": 24098.94, + "probability": 0.9771 + }, + { + "start": 24101.54, + "end": 24104.88, + "probability": 0.951 + }, + { + "start": 24105.72, + "end": 24108.94, + "probability": 0.9597 + }, + { + "start": 24110.52, + "end": 24113.56, + "probability": 0.9889 + }, + { + "start": 24114.86, + "end": 24117.54, + "probability": 0.9797 + }, + { + "start": 24118.1, + "end": 24120.44, + "probability": 0.9941 + }, + { + "start": 24123.04, + "end": 24125.62, + "probability": 0.9321 + }, + { + "start": 24126.26, + "end": 24127.6, + "probability": 0.9902 + }, + { + "start": 24128.36, + "end": 24131.68, + "probability": 0.9632 + }, + { + "start": 24132.28, + "end": 24133.3, + "probability": 0.9835 + }, + { + "start": 24134.18, + "end": 24135.06, + "probability": 0.9709 + }, + { + "start": 24135.9, + "end": 24137.96, + "probability": 0.9202 + }, + { + "start": 24140.2, + "end": 24142.79, + "probability": 0.9427 + }, + { + "start": 24143.94, + "end": 24145.88, + "probability": 0.9701 + }, + { + "start": 24146.82, + "end": 24149.64, + "probability": 0.981 + }, + { + "start": 24150.66, + "end": 24153.08, + "probability": 0.9121 + }, + { + "start": 24153.7, + "end": 24155.76, + "probability": 0.9703 + }, + { + "start": 24160.68, + "end": 24162.32, + "probability": 0.9648 + }, + { + "start": 24163.44, + "end": 24169.02, + "probability": 0.9826 + }, + { + "start": 24169.98, + "end": 24171.68, + "probability": 0.9932 + }, + { + "start": 24172.48, + "end": 24174.66, + "probability": 0.9587 + }, + { + "start": 24176.64, + "end": 24179.36, + "probability": 0.9546 + }, + { + "start": 24179.46, + "end": 24180.18, + "probability": 0.7573 + }, + { + "start": 24181.0, + "end": 24181.22, + "probability": 0.8612 + }, + { + "start": 24181.28, + "end": 24182.44, + "probability": 0.973 + }, + { + "start": 24182.66, + "end": 24183.98, + "probability": 0.7516 + }, + { + "start": 24184.06, + "end": 24184.48, + "probability": 0.6235 + }, + { + "start": 24185.46, + "end": 24187.64, + "probability": 0.9819 + }, + { + "start": 24187.72, + "end": 24189.76, + "probability": 0.8196 + }, + { + "start": 24191.34, + "end": 24192.78, + "probability": 0.9527 + }, + { + "start": 24194.42, + "end": 24194.9, + "probability": 0.4966 + }, + { + "start": 24194.98, + "end": 24195.74, + "probability": 0.7914 + }, + { + "start": 24196.72, + "end": 24199.42, + "probability": 0.9857 + }, + { + "start": 24200.08, + "end": 24200.98, + "probability": 0.8471 + }, + { + "start": 24201.9, + "end": 24202.49, + "probability": 0.792 + }, + { + "start": 24203.3, + "end": 24205.04, + "probability": 0.9968 + }, + { + "start": 24206.4, + "end": 24209.7, + "probability": 0.9089 + }, + { + "start": 24210.24, + "end": 24210.9, + "probability": 0.9834 + }, + { + "start": 24213.9, + "end": 24215.94, + "probability": 0.7999 + }, + { + "start": 24216.32, + "end": 24217.5, + "probability": 0.3784 + }, + { + "start": 24217.5, + "end": 24218.3, + "probability": 0.5616 + }, + { + "start": 24218.5, + "end": 24219.28, + "probability": 0.6041 + }, + { + "start": 24219.5, + "end": 24221.84, + "probability": 0.5431 + }, + { + "start": 24222.04, + "end": 24222.68, + "probability": 0.2525 + }, + { + "start": 24223.26, + "end": 24225.8, + "probability": 0.4551 + }, + { + "start": 24229.14, + "end": 24230.56, + "probability": 0.6532 + }, + { + "start": 24231.68, + "end": 24232.43, + "probability": 0.736 + }, + { + "start": 24233.44, + "end": 24234.06, + "probability": 0.4141 + }, + { + "start": 24235.04, + "end": 24236.44, + "probability": 0.9869 + }, + { + "start": 24236.88, + "end": 24237.5, + "probability": 0.7611 + }, + { + "start": 24237.64, + "end": 24238.72, + "probability": 0.8843 + }, + { + "start": 24239.68, + "end": 24240.34, + "probability": 0.9246 + }, + { + "start": 24240.94, + "end": 24244.1, + "probability": 0.7168 + }, + { + "start": 24245.08, + "end": 24246.98, + "probability": 0.8721 + }, + { + "start": 24247.06, + "end": 24247.66, + "probability": 0.9162 + }, + { + "start": 24247.92, + "end": 24249.28, + "probability": 0.7914 + }, + { + "start": 24251.16, + "end": 24251.84, + "probability": 0.7432 + }, + { + "start": 24251.92, + "end": 24252.44, + "probability": 0.933 + }, + { + "start": 24253.64, + "end": 24255.78, + "probability": 0.7385 + }, + { + "start": 24255.82, + "end": 24257.14, + "probability": 0.6265 + }, + { + "start": 24257.22, + "end": 24258.1, + "probability": 0.4906 + }, + { + "start": 24259.42, + "end": 24260.92, + "probability": 0.6744 + }, + { + "start": 24261.52, + "end": 24263.36, + "probability": 0.756 + }, + { + "start": 24264.54, + "end": 24264.76, + "probability": 0.7234 + }, + { + "start": 24266.0, + "end": 24266.85, + "probability": 0.5042 + }, + { + "start": 24267.2, + "end": 24268.26, + "probability": 0.7061 + }, + { + "start": 24269.44, + "end": 24271.02, + "probability": 0.2633 + }, + { + "start": 24271.02, + "end": 24272.64, + "probability": 0.5915 + }, + { + "start": 24272.74, + "end": 24273.56, + "probability": 0.4617 + }, + { + "start": 24273.68, + "end": 24274.53, + "probability": 0.5114 + }, + { + "start": 24274.54, + "end": 24276.5, + "probability": 0.0654 + }, + { + "start": 24276.5, + "end": 24277.68, + "probability": 0.5276 + }, + { + "start": 24278.13, + "end": 24280.16, + "probability": 0.7083 + }, + { + "start": 24280.36, + "end": 24280.76, + "probability": 0.7559 + }, + { + "start": 24282.12, + "end": 24284.33, + "probability": 0.8513 + }, + { + "start": 24284.6, + "end": 24285.68, + "probability": 0.927 + }, + { + "start": 24286.48, + "end": 24287.16, + "probability": 0.8975 + }, + { + "start": 24287.48, + "end": 24287.72, + "probability": 0.9374 + }, + { + "start": 24289.98, + "end": 24290.42, + "probability": 0.2504 + }, + { + "start": 24290.42, + "end": 24290.67, + "probability": 0.6919 + }, + { + "start": 24291.34, + "end": 24291.56, + "probability": 0.5285 + }, + { + "start": 24292.4, + "end": 24293.24, + "probability": 0.9223 + }, + { + "start": 24294.16, + "end": 24295.86, + "probability": 0.9196 + }, + { + "start": 24295.9, + "end": 24296.62, + "probability": 0.4897 + }, + { + "start": 24296.7, + "end": 24297.74, + "probability": 0.6021 + }, + { + "start": 24298.56, + "end": 24301.76, + "probability": 0.9424 + }, + { + "start": 24303.24, + "end": 24303.56, + "probability": 0.2075 + }, + { + "start": 24303.56, + "end": 24304.12, + "probability": 0.4183 + }, + { + "start": 24304.6, + "end": 24309.04, + "probability": 0.9816 + }, + { + "start": 24310.16, + "end": 24313.36, + "probability": 0.5968 + }, + { + "start": 24313.5, + "end": 24315.98, + "probability": 0.8792 + }, + { + "start": 24316.46, + "end": 24317.92, + "probability": 0.9943 + }, + { + "start": 24318.48, + "end": 24321.2, + "probability": 0.824 + }, + { + "start": 24321.38, + "end": 24323.12, + "probability": 0.9602 + }, + { + "start": 24323.18, + "end": 24325.58, + "probability": 0.7667 + }, + { + "start": 24326.0, + "end": 24327.18, + "probability": 0.9092 + }, + { + "start": 24327.62, + "end": 24329.78, + "probability": 0.9761 + }, + { + "start": 24329.9, + "end": 24331.1, + "probability": 0.9406 + }, + { + "start": 24331.98, + "end": 24334.02, + "probability": 0.9195 + }, + { + "start": 24334.82, + "end": 24337.54, + "probability": 0.9542 + }, + { + "start": 24337.68, + "end": 24338.28, + "probability": 0.7732 + }, + { + "start": 24338.82, + "end": 24343.08, + "probability": 0.8625 + }, + { + "start": 24343.66, + "end": 24344.86, + "probability": 0.8582 + }, + { + "start": 24345.2, + "end": 24347.4, + "probability": 0.9834 + }, + { + "start": 24348.0, + "end": 24350.62, + "probability": 0.6659 + }, + { + "start": 24350.82, + "end": 24351.36, + "probability": 0.4902 + }, + { + "start": 24351.46, + "end": 24352.04, + "probability": 0.3423 + }, + { + "start": 24352.12, + "end": 24356.48, + "probability": 0.8094 + }, + { + "start": 24357.24, + "end": 24362.38, + "probability": 0.6381 + }, + { + "start": 24362.66, + "end": 24367.76, + "probability": 0.8688 + }, + { + "start": 24368.06, + "end": 24368.84, + "probability": 0.9517 + }, + { + "start": 24369.32, + "end": 24372.04, + "probability": 0.7071 + }, + { + "start": 24372.64, + "end": 24373.66, + "probability": 0.64 + }, + { + "start": 24374.2, + "end": 24378.54, + "probability": 0.7448 + }, + { + "start": 24379.16, + "end": 24381.46, + "probability": 0.9616 + }, + { + "start": 24382.2, + "end": 24383.78, + "probability": 0.9258 + }, + { + "start": 24383.9, + "end": 24386.24, + "probability": 0.6399 + }, + { + "start": 24386.62, + "end": 24387.96, + "probability": 0.8312 + }, + { + "start": 24388.0, + "end": 24389.36, + "probability": 0.8724 + }, + { + "start": 24390.15, + "end": 24392.59, + "probability": 0.958 + }, + { + "start": 24393.0, + "end": 24399.02, + "probability": 0.7374 + }, + { + "start": 24399.18, + "end": 24402.04, + "probability": 0.6745 + }, + { + "start": 24402.66, + "end": 24404.64, + "probability": 0.6679 + }, + { + "start": 24404.76, + "end": 24405.44, + "probability": 0.9912 + }, + { + "start": 24405.52, + "end": 24406.38, + "probability": 0.6746 + }, + { + "start": 24406.5, + "end": 24410.48, + "probability": 0.9891 + }, + { + "start": 24410.76, + "end": 24413.66, + "probability": 0.9624 + }, + { + "start": 24413.94, + "end": 24415.31, + "probability": 0.6243 + }, + { + "start": 24415.82, + "end": 24416.26, + "probability": 0.814 + }, + { + "start": 24416.3, + "end": 24417.34, + "probability": 0.8622 + }, + { + "start": 24417.72, + "end": 24418.76, + "probability": 0.8114 + }, + { + "start": 24418.9, + "end": 24420.38, + "probability": 0.9337 + }, + { + "start": 24421.04, + "end": 24423.74, + "probability": 0.7083 + }, + { + "start": 24424.5, + "end": 24432.34, + "probability": 0.538 + }, + { + "start": 24432.78, + "end": 24438.24, + "probability": 0.6942 + }, + { + "start": 24438.5, + "end": 24439.26, + "probability": 0.9813 + }, + { + "start": 24439.5, + "end": 24440.96, + "probability": 0.9211 + }, + { + "start": 24441.0, + "end": 24442.28, + "probability": 0.8932 + }, + { + "start": 24442.36, + "end": 24445.12, + "probability": 0.7347 + }, + { + "start": 24445.26, + "end": 24446.02, + "probability": 0.5268 + }, + { + "start": 24446.06, + "end": 24446.72, + "probability": 0.6529 + }, + { + "start": 24447.48, + "end": 24451.76, + "probability": 0.9282 + }, + { + "start": 24455.36, + "end": 24456.04, + "probability": 0.6692 + }, + { + "start": 24456.62, + "end": 24458.04, + "probability": 0.7942 + }, + { + "start": 24458.3, + "end": 24459.86, + "probability": 0.8489 + }, + { + "start": 24459.96, + "end": 24460.32, + "probability": 0.6766 + }, + { + "start": 24460.4, + "end": 24460.76, + "probability": 0.3934 + }, + { + "start": 24460.8, + "end": 24461.74, + "probability": 0.9131 + }, + { + "start": 24462.5, + "end": 24464.24, + "probability": 0.2702 + }, + { + "start": 24464.38, + "end": 24465.2, + "probability": 0.7026 + }, + { + "start": 24465.38, + "end": 24466.88, + "probability": 0.9301 + }, + { + "start": 24467.02, + "end": 24467.8, + "probability": 0.8856 + }, + { + "start": 24467.9, + "end": 24469.36, + "probability": 0.8855 + }, + { + "start": 24469.88, + "end": 24470.32, + "probability": 0.8331 + }, + { + "start": 24470.38, + "end": 24473.74, + "probability": 0.4899 + }, + { + "start": 24474.0, + "end": 24474.58, + "probability": 0.6289 + }, + { + "start": 24474.58, + "end": 24475.48, + "probability": 0.5535 + }, + { + "start": 24475.78, + "end": 24477.3, + "probability": 0.8596 + }, + { + "start": 24477.34, + "end": 24477.66, + "probability": 0.5664 + }, + { + "start": 24477.86, + "end": 24478.36, + "probability": 0.7769 + }, + { + "start": 24478.4, + "end": 24478.94, + "probability": 0.7317 + }, + { + "start": 24479.42, + "end": 24480.18, + "probability": 0.8353 + }, + { + "start": 24480.22, + "end": 24480.48, + "probability": 0.737 + }, + { + "start": 24480.94, + "end": 24483.68, + "probability": 0.9795 + }, + { + "start": 24483.68, + "end": 24486.92, + "probability": 0.8906 + }, + { + "start": 24488.4, + "end": 24489.2, + "probability": 0.7059 + }, + { + "start": 24489.48, + "end": 24491.66, + "probability": 0.8454 + }, + { + "start": 24492.06, + "end": 24494.1, + "probability": 0.4404 + }, + { + "start": 24494.1, + "end": 24494.6, + "probability": 0.8199 + }, + { + "start": 24495.02, + "end": 24495.62, + "probability": 0.8759 + }, + { + "start": 24495.76, + "end": 24499.6, + "probability": 0.9915 + }, + { + "start": 24499.98, + "end": 24500.18, + "probability": 0.9047 + }, + { + "start": 24500.96, + "end": 24502.64, + "probability": 0.8228 + }, + { + "start": 24503.14, + "end": 24505.04, + "probability": 0.6519 + }, + { + "start": 24506.52, + "end": 24509.52, + "probability": 0.7192 + }, + { + "start": 24511.06, + "end": 24513.08, + "probability": 0.9717 + }, + { + "start": 24516.62, + "end": 24517.41, + "probability": 0.916 + }, + { + "start": 24518.46, + "end": 24521.15, + "probability": 0.8594 + }, + { + "start": 24523.5, + "end": 24526.1, + "probability": 0.8788 + }, + { + "start": 24528.72, + "end": 24531.86, + "probability": 0.9956 + }, + { + "start": 24532.52, + "end": 24532.92, + "probability": 0.9775 + }, + { + "start": 24534.84, + "end": 24539.44, + "probability": 0.9934 + }, + { + "start": 24541.24, + "end": 24543.52, + "probability": 0.9436 + }, + { + "start": 24543.7, + "end": 24544.86, + "probability": 0.9932 + }, + { + "start": 24545.84, + "end": 24547.28, + "probability": 0.9741 + }, + { + "start": 24549.2, + "end": 24551.06, + "probability": 0.9907 + }, + { + "start": 24551.74, + "end": 24554.52, + "probability": 0.9212 + }, + { + "start": 24556.14, + "end": 24559.8, + "probability": 0.9993 + }, + { + "start": 24561.06, + "end": 24563.64, + "probability": 0.7357 + }, + { + "start": 24565.08, + "end": 24566.92, + "probability": 0.7729 + }, + { + "start": 24567.3, + "end": 24568.42, + "probability": 0.8934 + }, + { + "start": 24568.84, + "end": 24570.62, + "probability": 0.9061 + }, + { + "start": 24573.14, + "end": 24575.93, + "probability": 0.9893 + }, + { + "start": 24577.48, + "end": 24580.34, + "probability": 0.9724 + }, + { + "start": 24582.2, + "end": 24587.04, + "probability": 0.9893 + }, + { + "start": 24589.32, + "end": 24590.88, + "probability": 0.8026 + }, + { + "start": 24591.08, + "end": 24594.88, + "probability": 0.9755 + }, + { + "start": 24598.18, + "end": 24601.1, + "probability": 0.9616 + }, + { + "start": 24601.82, + "end": 24601.98, + "probability": 0.9245 + }, + { + "start": 24602.22, + "end": 24605.38, + "probability": 0.9924 + }, + { + "start": 24605.38, + "end": 24608.28, + "probability": 0.9956 + }, + { + "start": 24609.28, + "end": 24610.7, + "probability": 0.953 + }, + { + "start": 24610.76, + "end": 24613.38, + "probability": 0.9856 + }, + { + "start": 24613.56, + "end": 24614.02, + "probability": 0.8623 + }, + { + "start": 24614.12, + "end": 24614.3, + "probability": 0.9383 + }, + { + "start": 24614.74, + "end": 24615.88, + "probability": 0.8291 + }, + { + "start": 24616.68, + "end": 24620.58, + "probability": 0.9707 + }, + { + "start": 24621.98, + "end": 24624.48, + "probability": 0.9974 + }, + { + "start": 24624.74, + "end": 24627.56, + "probability": 0.9927 + }, + { + "start": 24629.48, + "end": 24632.46, + "probability": 0.6662 + }, + { + "start": 24632.46, + "end": 24632.46, + "probability": 0.0656 + }, + { + "start": 24632.46, + "end": 24633.62, + "probability": 0.8642 + }, + { + "start": 24634.96, + "end": 24637.74, + "probability": 0.6123 + }, + { + "start": 24638.84, + "end": 24641.38, + "probability": 0.9741 + }, + { + "start": 24642.42, + "end": 24645.6, + "probability": 0.7921 + }, + { + "start": 24646.02, + "end": 24650.5, + "probability": 0.9915 + }, + { + "start": 24650.6, + "end": 24652.12, + "probability": 0.9935 + }, + { + "start": 24652.16, + "end": 24652.72, + "probability": 0.7882 + }, + { + "start": 24652.8, + "end": 24653.5, + "probability": 0.9919 + }, + { + "start": 24653.56, + "end": 24653.92, + "probability": 0.8542 + }, + { + "start": 24655.3, + "end": 24657.26, + "probability": 0.9966 + }, + { + "start": 24657.28, + "end": 24659.02, + "probability": 0.9938 + }, + { + "start": 24660.34, + "end": 24661.84, + "probability": 0.8686 + }, + { + "start": 24662.26, + "end": 24665.34, + "probability": 0.8193 + }, + { + "start": 24665.42, + "end": 24665.86, + "probability": 0.8922 + }, + { + "start": 24666.28, + "end": 24667.9, + "probability": 0.9318 + }, + { + "start": 24669.64, + "end": 24674.32, + "probability": 0.9944 + }, + { + "start": 24674.94, + "end": 24675.55, + "probability": 0.6347 + }, + { + "start": 24677.02, + "end": 24678.58, + "probability": 0.9398 + }, + { + "start": 24678.7, + "end": 24679.74, + "probability": 0.7709 + }, + { + "start": 24679.8, + "end": 24682.56, + "probability": 0.998 + }, + { + "start": 24683.2, + "end": 24685.36, + "probability": 0.9977 + }, + { + "start": 24685.44, + "end": 24687.32, + "probability": 0.9805 + }, + { + "start": 24687.58, + "end": 24689.92, + "probability": 0.9985 + }, + { + "start": 24691.24, + "end": 24693.5, + "probability": 0.9961 + }, + { + "start": 24695.46, + "end": 24696.72, + "probability": 0.9235 + }, + { + "start": 24696.88, + "end": 24699.56, + "probability": 0.9877 + }, + { + "start": 24699.72, + "end": 24701.78, + "probability": 0.9959 + }, + { + "start": 24701.8, + "end": 24703.52, + "probability": 0.9958 + }, + { + "start": 24704.92, + "end": 24706.86, + "probability": 0.9718 + }, + { + "start": 24706.96, + "end": 24709.08, + "probability": 0.9365 + }, + { + "start": 24710.02, + "end": 24715.12, + "probability": 0.9932 + }, + { + "start": 24715.32, + "end": 24721.14, + "probability": 0.9888 + }, + { + "start": 24722.0, + "end": 24722.98, + "probability": 0.9838 + }, + { + "start": 24723.26, + "end": 24725.58, + "probability": 0.998 + }, + { + "start": 24725.58, + "end": 24729.42, + "probability": 0.9884 + }, + { + "start": 24730.48, + "end": 24731.68, + "probability": 0.7779 + }, + { + "start": 24731.76, + "end": 24733.1, + "probability": 0.6489 + }, + { + "start": 24733.56, + "end": 24736.8, + "probability": 0.7194 + }, + { + "start": 24738.02, + "end": 24739.2, + "probability": 0.8862 + }, + { + "start": 24739.62, + "end": 24741.7, + "probability": 0.947 + }, + { + "start": 24742.22, + "end": 24745.98, + "probability": 0.9934 + }, + { + "start": 24745.98, + "end": 24749.74, + "probability": 0.6643 + }, + { + "start": 24751.06, + "end": 24753.4, + "probability": 0.7516 + }, + { + "start": 24754.62, + "end": 24755.74, + "probability": 0.6244 + }, + { + "start": 24755.74, + "end": 24756.8, + "probability": 0.4594 + }, + { + "start": 24756.8, + "end": 24757.82, + "probability": 0.7165 + }, + { + "start": 24758.06, + "end": 24758.2, + "probability": 0.8278 + }, + { + "start": 24758.3, + "end": 24758.64, + "probability": 0.9214 + }, + { + "start": 24758.68, + "end": 24759.06, + "probability": 0.2485 + }, + { + "start": 24759.06, + "end": 24759.32, + "probability": 0.4543 + }, + { + "start": 24759.36, + "end": 24760.14, + "probability": 0.5707 + }, + { + "start": 24760.24, + "end": 24760.34, + "probability": 0.5135 + }, + { + "start": 24760.34, + "end": 24764.16, + "probability": 0.9248 + }, + { + "start": 24764.28, + "end": 24767.9, + "probability": 0.7459 + }, + { + "start": 24768.04, + "end": 24768.06, + "probability": 0.2434 + }, + { + "start": 24768.06, + "end": 24768.2, + "probability": 0.5507 + }, + { + "start": 24768.44, + "end": 24768.44, + "probability": 0.2721 + }, + { + "start": 24768.44, + "end": 24768.46, + "probability": 0.5255 + }, + { + "start": 24768.48, + "end": 24769.18, + "probability": 0.5919 + }, + { + "start": 24769.32, + "end": 24772.82, + "probability": 0.9622 + }, + { + "start": 24772.88, + "end": 24773.64, + "probability": 0.6304 + }, + { + "start": 24773.96, + "end": 24774.38, + "probability": 0.775 + }, + { + "start": 24774.4, + "end": 24774.76, + "probability": 0.5814 + }, + { + "start": 24774.76, + "end": 24775.02, + "probability": 0.5343 + }, + { + "start": 24775.24, + "end": 24778.28, + "probability": 0.8757 + }, + { + "start": 24778.28, + "end": 24778.28, + "probability": 0.3429 + }, + { + "start": 24778.3, + "end": 24778.3, + "probability": 0.2773 + }, + { + "start": 24778.3, + "end": 24778.3, + "probability": 0.8498 + }, + { + "start": 24778.38, + "end": 24778.84, + "probability": 0.7443 + }, + { + "start": 24779.7, + "end": 24780.2, + "probability": 0.1536 + }, + { + "start": 24780.2, + "end": 24780.82, + "probability": 0.5601 + }, + { + "start": 24780.82, + "end": 24780.82, + "probability": 0.0039 + }, + { + "start": 24780.82, + "end": 24781.24, + "probability": 0.5148 + }, + { + "start": 24781.4, + "end": 24782.32, + "probability": 0.7694 + }, + { + "start": 24782.46, + "end": 24787.02, + "probability": 0.9596 + }, + { + "start": 24787.22, + "end": 24787.64, + "probability": 0.0508 + }, + { + "start": 24787.64, + "end": 24787.64, + "probability": 0.2955 + }, + { + "start": 24787.88, + "end": 24789.04, + "probability": 0.6438 + }, + { + "start": 24789.04, + "end": 24789.67, + "probability": 0.5072 + }, + { + "start": 24790.18, + "end": 24792.24, + "probability": 0.7677 + }, + { + "start": 24792.94, + "end": 24794.17, + "probability": 0.9316 + }, + { + "start": 24794.4, + "end": 24794.4, + "probability": 0.3157 + }, + { + "start": 24794.4, + "end": 24794.76, + "probability": 0.6689 + }, + { + "start": 24794.82, + "end": 24794.82, + "probability": 0.6208 + }, + { + "start": 24794.96, + "end": 24797.3, + "probability": 0.9483 + }, + { + "start": 24797.38, + "end": 24799.8, + "probability": 0.7281 + }, + { + "start": 24799.8, + "end": 24799.9, + "probability": 0.2727 + }, + { + "start": 24799.9, + "end": 24800.28, + "probability": 0.3831 + }, + { + "start": 24800.38, + "end": 24802.88, + "probability": 0.7324 + }, + { + "start": 24802.88, + "end": 24802.88, + "probability": 0.7551 + }, + { + "start": 24802.92, + "end": 24803.34, + "probability": 0.9829 + }, + { + "start": 24803.42, + "end": 24807.46, + "probability": 0.5003 + }, + { + "start": 24807.54, + "end": 24807.54, + "probability": 0.0275 + }, + { + "start": 24807.54, + "end": 24807.54, + "probability": 0.1746 + }, + { + "start": 24807.54, + "end": 24807.54, + "probability": 0.4891 + }, + { + "start": 24807.54, + "end": 24807.54, + "probability": 0.3004 + }, + { + "start": 24807.54, + "end": 24808.24, + "probability": 0.6111 + }, + { + "start": 24808.36, + "end": 24808.48, + "probability": 0.1514 + }, + { + "start": 24808.54, + "end": 24808.84, + "probability": 0.8169 + }, + { + "start": 24808.88, + "end": 24811.76, + "probability": 0.8864 + }, + { + "start": 24811.86, + "end": 24815.08, + "probability": 0.9802 + }, + { + "start": 24816.0, + "end": 24816.84, + "probability": 0.4627 + }, + { + "start": 24816.94, + "end": 24816.96, + "probability": 0.3394 + }, + { + "start": 24816.96, + "end": 24816.98, + "probability": 0.1212 + }, + { + "start": 24817.0, + "end": 24817.02, + "probability": 0.6697 + }, + { + "start": 24817.16, + "end": 24817.38, + "probability": 0.3894 + }, + { + "start": 24817.54, + "end": 24817.62, + "probability": 0.8955 + }, + { + "start": 24817.72, + "end": 24819.48, + "probability": 0.9609 + }, + { + "start": 24819.48, + "end": 24821.52, + "probability": 0.9871 + }, + { + "start": 24821.62, + "end": 24824.24, + "probability": 0.9895 + }, + { + "start": 24824.3, + "end": 24825.54, + "probability": 0.9961 + }, + { + "start": 24826.14, + "end": 24827.42, + "probability": 0.8882 + }, + { + "start": 24827.62, + "end": 24829.81, + "probability": 0.8034 + }, + { + "start": 24830.08, + "end": 24830.58, + "probability": 0.5741 + }, + { + "start": 24830.92, + "end": 24832.62, + "probability": 0.981 + }, + { + "start": 24833.12, + "end": 24834.22, + "probability": 0.7906 + }, + { + "start": 24834.6, + "end": 24835.2, + "probability": 0.8965 + }, + { + "start": 24835.32, + "end": 24839.16, + "probability": 0.9946 + }, + { + "start": 24839.48, + "end": 24843.2, + "probability": 0.9963 + }, + { + "start": 24843.88, + "end": 24844.28, + "probability": 0.4501 + }, + { + "start": 24844.68, + "end": 24845.26, + "probability": 0.7294 + }, + { + "start": 24845.38, + "end": 24845.78, + "probability": 0.4211 + }, + { + "start": 24845.88, + "end": 24846.62, + "probability": 0.86 + }, + { + "start": 24847.1, + "end": 24848.3, + "probability": 0.8214 + }, + { + "start": 24848.4, + "end": 24849.32, + "probability": 0.8682 + }, + { + "start": 24849.52, + "end": 24850.02, + "probability": 0.8704 + }, + { + "start": 24850.08, + "end": 24850.93, + "probability": 0.044 + }, + { + "start": 24852.56, + "end": 24853.32, + "probability": 0.517 + }, + { + "start": 24853.38, + "end": 24854.12, + "probability": 0.896 + }, + { + "start": 24855.24, + "end": 24857.9, + "probability": 0.9023 + }, + { + "start": 24859.62, + "end": 24861.54, + "probability": 0.8426 + }, + { + "start": 24862.14, + "end": 24864.26, + "probability": 0.7651 + }, + { + "start": 24865.16, + "end": 24866.86, + "probability": 0.884 + }, + { + "start": 24869.88, + "end": 24872.18, + "probability": 0.6739 + }, + { + "start": 24874.12, + "end": 24876.54, + "probability": 0.9497 + }, + { + "start": 24877.78, + "end": 24878.74, + "probability": 0.9955 + }, + { + "start": 24879.72, + "end": 24883.04, + "probability": 0.9217 + }, + { + "start": 24883.66, + "end": 24885.78, + "probability": 0.9517 + }, + { + "start": 24887.02, + "end": 24888.46, + "probability": 0.8965 + }, + { + "start": 24889.18, + "end": 24889.92, + "probability": 0.8104 + }, + { + "start": 24889.96, + "end": 24890.6, + "probability": 0.9575 + }, + { + "start": 24891.02, + "end": 24891.68, + "probability": 0.9342 + }, + { + "start": 24892.22, + "end": 24893.4, + "probability": 0.9949 + }, + { + "start": 24894.38, + "end": 24894.66, + "probability": 0.8029 + }, + { + "start": 24896.0, + "end": 24897.24, + "probability": 0.973 + }, + { + "start": 24897.86, + "end": 24899.92, + "probability": 0.9546 + }, + { + "start": 24900.76, + "end": 24902.46, + "probability": 0.8567 + }, + { + "start": 24903.1, + "end": 24904.58, + "probability": 0.9587 + }, + { + "start": 24905.46, + "end": 24907.96, + "probability": 0.9854 + }, + { + "start": 24908.44, + "end": 24912.36, + "probability": 0.8999 + }, + { + "start": 24912.84, + "end": 24914.84, + "probability": 0.9304 + }, + { + "start": 24914.98, + "end": 24916.52, + "probability": 0.9739 + }, + { + "start": 24917.26, + "end": 24920.36, + "probability": 0.9493 + }, + { + "start": 24920.46, + "end": 24920.68, + "probability": 0.9379 + }, + { + "start": 24920.84, + "end": 24921.56, + "probability": 0.7027 + }, + { + "start": 24921.94, + "end": 24923.04, + "probability": 0.6692 + }, + { + "start": 24923.62, + "end": 24925.1, + "probability": 0.9958 + }, + { + "start": 24926.06, + "end": 24927.46, + "probability": 0.9922 + }, + { + "start": 24927.92, + "end": 24929.72, + "probability": 0.8197 + }, + { + "start": 24930.24, + "end": 24930.92, + "probability": 0.6657 + }, + { + "start": 24932.14, + "end": 24932.71, + "probability": 0.9419 + }, + { + "start": 24934.18, + "end": 24934.76, + "probability": 0.8068 + }, + { + "start": 24935.64, + "end": 24937.84, + "probability": 0.9633 + }, + { + "start": 24938.54, + "end": 24939.74, + "probability": 0.9473 + }, + { + "start": 24940.68, + "end": 24942.34, + "probability": 0.9581 + }, + { + "start": 24943.08, + "end": 24945.34, + "probability": 0.9415 + }, + { + "start": 24946.14, + "end": 24946.88, + "probability": 0.8221 + }, + { + "start": 24947.44, + "end": 24948.66, + "probability": 0.9881 + }, + { + "start": 24949.06, + "end": 24950.98, + "probability": 0.9719 + }, + { + "start": 24951.34, + "end": 24952.14, + "probability": 0.9725 + }, + { + "start": 24952.3, + "end": 24953.16, + "probability": 0.8143 + }, + { + "start": 24954.3, + "end": 24955.34, + "probability": 0.7748 + }, + { + "start": 24956.1, + "end": 24956.94, + "probability": 0.9832 + }, + { + "start": 24957.9, + "end": 24959.2, + "probability": 0.9336 + }, + { + "start": 24960.0, + "end": 24961.94, + "probability": 0.9899 + }, + { + "start": 24963.14, + "end": 24965.14, + "probability": 0.8164 + }, + { + "start": 24966.1, + "end": 24969.38, + "probability": 0.9858 + }, + { + "start": 24970.54, + "end": 24971.5, + "probability": 0.6627 + }, + { + "start": 24972.26, + "end": 24974.04, + "probability": 0.9907 + }, + { + "start": 24975.1, + "end": 24977.76, + "probability": 0.9821 + }, + { + "start": 24978.42, + "end": 24982.62, + "probability": 0.9984 + }, + { + "start": 24983.1, + "end": 24988.56, + "probability": 0.9987 + }, + { + "start": 24989.6, + "end": 24991.18, + "probability": 0.7435 + }, + { + "start": 24992.02, + "end": 24993.56, + "probability": 0.7004 + }, + { + "start": 24994.52, + "end": 24995.54, + "probability": 0.8033 + }, + { + "start": 24996.16, + "end": 24997.86, + "probability": 0.9429 + }, + { + "start": 24998.7, + "end": 24999.94, + "probability": 0.9814 + }, + { + "start": 25000.78, + "end": 25001.24, + "probability": 0.5241 + }, + { + "start": 25002.3, + "end": 25008.54, + "probability": 0.9873 + }, + { + "start": 25008.64, + "end": 25009.56, + "probability": 0.7784 + }, + { + "start": 25010.02, + "end": 25012.88, + "probability": 0.9854 + }, + { + "start": 25013.72, + "end": 25015.08, + "probability": 0.94 + }, + { + "start": 25015.8, + "end": 25018.34, + "probability": 0.83 + }, + { + "start": 25018.94, + "end": 25020.52, + "probability": 0.888 + }, + { + "start": 25020.84, + "end": 25022.56, + "probability": 0.9405 + }, + { + "start": 25023.36, + "end": 25025.26, + "probability": 0.9861 + }, + { + "start": 25025.86, + "end": 25028.4, + "probability": 0.8746 + }, + { + "start": 25030.42, + "end": 25032.5, + "probability": 0.8729 + }, + { + "start": 25033.36, + "end": 25035.9, + "probability": 0.9976 + }, + { + "start": 25036.42, + "end": 25037.93, + "probability": 0.8111 + }, + { + "start": 25039.1, + "end": 25039.98, + "probability": 0.7778 + }, + { + "start": 25040.9, + "end": 25041.72, + "probability": 0.8044 + }, + { + "start": 25042.6, + "end": 25043.4, + "probability": 0.5039 + }, + { + "start": 25044.28, + "end": 25044.68, + "probability": 0.9488 + }, + { + "start": 25047.08, + "end": 25049.6, + "probability": 0.8789 + }, + { + "start": 25049.66, + "end": 25050.62, + "probability": 0.7242 + }, + { + "start": 25051.4, + "end": 25051.98, + "probability": 0.9836 + }, + { + "start": 25053.28, + "end": 25054.92, + "probability": 0.6782 + }, + { + "start": 25059.0, + "end": 25059.68, + "probability": 0.7847 + }, + { + "start": 25077.92, + "end": 25078.82, + "probability": 0.7066 + }, + { + "start": 25079.6, + "end": 25081.28, + "probability": 0.8283 + }, + { + "start": 25082.68, + "end": 25087.66, + "probability": 0.9409 + }, + { + "start": 25088.94, + "end": 25091.14, + "probability": 0.9856 + }, + { + "start": 25093.08, + "end": 25098.17, + "probability": 0.9798 + }, + { + "start": 25099.24, + "end": 25101.86, + "probability": 0.9995 + }, + { + "start": 25104.1, + "end": 25105.22, + "probability": 0.6012 + }, + { + "start": 25106.52, + "end": 25109.84, + "probability": 0.9801 + }, + { + "start": 25111.14, + "end": 25114.22, + "probability": 0.9944 + }, + { + "start": 25115.6, + "end": 25115.96, + "probability": 0.8625 + }, + { + "start": 25116.06, + "end": 25117.22, + "probability": 0.7703 + }, + { + "start": 25117.32, + "end": 25118.1, + "probability": 0.8506 + }, + { + "start": 25118.36, + "end": 25121.06, + "probability": 0.9534 + }, + { + "start": 25121.26, + "end": 25121.9, + "probability": 0.5367 + }, + { + "start": 25122.78, + "end": 25125.3, + "probability": 0.9985 + }, + { + "start": 25126.1, + "end": 25130.62, + "probability": 0.9197 + }, + { + "start": 25131.4, + "end": 25133.96, + "probability": 0.9916 + }, + { + "start": 25134.02, + "end": 25134.68, + "probability": 0.8944 + }, + { + "start": 25138.12, + "end": 25138.24, + "probability": 0.0258 + }, + { + "start": 25138.24, + "end": 25141.08, + "probability": 0.7056 + }, + { + "start": 25141.3, + "end": 25141.3, + "probability": 0.185 + }, + { + "start": 25142.02, + "end": 25143.8, + "probability": 0.5431 + }, + { + "start": 25143.8, + "end": 25144.0, + "probability": 0.4415 + }, + { + "start": 25144.12, + "end": 25144.67, + "probability": 0.3615 + }, + { + "start": 25145.16, + "end": 25147.92, + "probability": 0.9683 + }, + { + "start": 25148.64, + "end": 25150.52, + "probability": 0.0846 + }, + { + "start": 25150.96, + "end": 25151.48, + "probability": 0.151 + }, + { + "start": 25151.48, + "end": 25151.87, + "probability": 0.5873 + }, + { + "start": 25152.48, + "end": 25154.8, + "probability": 0.8919 + }, + { + "start": 25157.6, + "end": 25160.56, + "probability": 0.2104 + }, + { + "start": 25161.22, + "end": 25163.12, + "probability": 0.8226 + }, + { + "start": 25164.46, + "end": 25167.84, + "probability": 0.9907 + }, + { + "start": 25167.89, + "end": 25169.9, + "probability": 0.6437 + }, + { + "start": 25170.4, + "end": 25175.04, + "probability": 0.9948 + }, + { + "start": 25175.44, + "end": 25177.14, + "probability": 0.9735 + }, + { + "start": 25177.66, + "end": 25182.06, + "probability": 0.952 + }, + { + "start": 25182.26, + "end": 25183.2, + "probability": 0.9061 + }, + { + "start": 25183.26, + "end": 25185.32, + "probability": 0.7989 + }, + { + "start": 25185.42, + "end": 25190.4, + "probability": 0.9962 + }, + { + "start": 25191.42, + "end": 25197.74, + "probability": 0.9993 + }, + { + "start": 25199.58, + "end": 25202.4, + "probability": 0.9955 + }, + { + "start": 25203.12, + "end": 25205.38, + "probability": 0.8428 + }, + { + "start": 25206.72, + "end": 25209.78, + "probability": 0.6953 + }, + { + "start": 25210.5, + "end": 25212.8, + "probability": 0.9497 + }, + { + "start": 25214.28, + "end": 25218.06, + "probability": 0.9723 + }, + { + "start": 25220.5, + "end": 25221.62, + "probability": 0.9962 + }, + { + "start": 25222.96, + "end": 25226.2, + "probability": 0.998 + }, + { + "start": 25226.9, + "end": 25231.58, + "probability": 0.6166 + }, + { + "start": 25232.66, + "end": 25233.52, + "probability": 0.3017 + }, + { + "start": 25237.4, + "end": 25238.12, + "probability": 0.1273 + }, + { + "start": 25238.36, + "end": 25241.68, + "probability": 0.957 + }, + { + "start": 25242.38, + "end": 25246.4, + "probability": 0.9976 + }, + { + "start": 25247.66, + "end": 25253.9, + "probability": 0.9966 + }, + { + "start": 25258.7, + "end": 25259.32, + "probability": 0.7017 + }, + { + "start": 25259.84, + "end": 25264.04, + "probability": 0.9987 + }, + { + "start": 25264.04, + "end": 25267.68, + "probability": 0.9985 + }, + { + "start": 25267.84, + "end": 25268.28, + "probability": 0.4659 + }, + { + "start": 25268.38, + "end": 25269.28, + "probability": 0.8997 + }, + { + "start": 25270.24, + "end": 25270.44, + "probability": 0.8384 + }, + { + "start": 25270.98, + "end": 25274.54, + "probability": 0.9683 + }, + { + "start": 25274.54, + "end": 25279.12, + "probability": 0.9686 + }, + { + "start": 25279.12, + "end": 25282.16, + "probability": 0.978 + }, + { + "start": 25283.16, + "end": 25283.44, + "probability": 0.7283 + }, + { + "start": 25283.52, + "end": 25286.3, + "probability": 0.9941 + }, + { + "start": 25286.3, + "end": 25288.98, + "probability": 0.9819 + }, + { + "start": 25289.3, + "end": 25292.84, + "probability": 0.8106 + }, + { + "start": 25294.28, + "end": 25295.32, + "probability": 0.862 + }, + { + "start": 25296.4, + "end": 25301.98, + "probability": 0.971 + }, + { + "start": 25302.17, + "end": 25306.98, + "probability": 0.9619 + }, + { + "start": 25308.56, + "end": 25310.02, + "probability": 0.6632 + }, + { + "start": 25310.06, + "end": 25313.34, + "probability": 0.9759 + }, + { + "start": 25313.5, + "end": 25316.4, + "probability": 0.9742 + }, + { + "start": 25316.86, + "end": 25317.86, + "probability": 0.9146 + }, + { + "start": 25318.64, + "end": 25318.86, + "probability": 0.0572 + }, + { + "start": 25319.68, + "end": 25321.6, + "probability": 0.9897 + }, + { + "start": 25322.12, + "end": 25322.28, + "probability": 0.0622 + }, + { + "start": 25322.62, + "end": 25326.34, + "probability": 0.9969 + }, + { + "start": 25326.42, + "end": 25327.78, + "probability": 0.8831 + }, + { + "start": 25327.96, + "end": 25329.56, + "probability": 0.9367 + }, + { + "start": 25330.14, + "end": 25332.64, + "probability": 0.9951 + }, + { + "start": 25333.36, + "end": 25333.72, + "probability": 0.2343 + }, + { + "start": 25334.26, + "end": 25338.38, + "probability": 0.9946 + }, + { + "start": 25339.26, + "end": 25344.5, + "probability": 0.9982 + }, + { + "start": 25344.96, + "end": 25345.34, + "probability": 0.8266 + }, + { + "start": 25345.42, + "end": 25348.9, + "probability": 0.9962 + }, + { + "start": 25349.03, + "end": 25352.68, + "probability": 0.9995 + }, + { + "start": 25353.28, + "end": 25357.22, + "probability": 0.9992 + }, + { + "start": 25357.32, + "end": 25362.8, + "probability": 0.9955 + }, + { + "start": 25363.38, + "end": 25363.76, + "probability": 0.4258 + }, + { + "start": 25363.84, + "end": 25367.98, + "probability": 0.9372 + }, + { + "start": 25368.26, + "end": 25371.04, + "probability": 0.423 + }, + { + "start": 25371.9, + "end": 25372.72, + "probability": 0.6777 + }, + { + "start": 25373.42, + "end": 25374.4, + "probability": 0.96 + }, + { + "start": 25374.5, + "end": 25377.23, + "probability": 0.9073 + }, + { + "start": 25377.58, + "end": 25382.34, + "probability": 0.9773 + }, + { + "start": 25382.86, + "end": 25386.2, + "probability": 0.9811 + }, + { + "start": 25387.38, + "end": 25392.36, + "probability": 0.9858 + }, + { + "start": 25393.28, + "end": 25400.22, + "probability": 0.9814 + }, + { + "start": 25400.42, + "end": 25406.3, + "probability": 0.9708 + }, + { + "start": 25416.04, + "end": 25420.88, + "probability": 0.9691 + }, + { + "start": 25421.26, + "end": 25421.5, + "probability": 0.6374 + }, + { + "start": 25421.7, + "end": 25425.74, + "probability": 0.9907 + }, + { + "start": 25426.2, + "end": 25429.2, + "probability": 0.9675 + }, + { + "start": 25429.8, + "end": 25431.84, + "probability": 0.9362 + }, + { + "start": 25434.54, + "end": 25439.64, + "probability": 0.2383 + }, + { + "start": 25440.72, + "end": 25446.94, + "probability": 0.9988 + }, + { + "start": 25447.96, + "end": 25450.94, + "probability": 0.9946 + }, + { + "start": 25454.92, + "end": 25456.54, + "probability": 0.7962 + }, + { + "start": 25456.62, + "end": 25459.22, + "probability": 0.7489 + }, + { + "start": 25459.58, + "end": 25460.88, + "probability": 0.9983 + }, + { + "start": 25461.9, + "end": 25464.26, + "probability": 0.9168 + }, + { + "start": 25465.24, + "end": 25466.72, + "probability": 0.9834 + }, + { + "start": 25468.42, + "end": 25473.54, + "probability": 0.9956 + }, + { + "start": 25474.52, + "end": 25476.7, + "probability": 0.9589 + }, + { + "start": 25477.18, + "end": 25478.55, + "probability": 0.4682 + }, + { + "start": 25480.6, + "end": 25481.46, + "probability": 0.586 + }, + { + "start": 25482.36, + "end": 25482.78, + "probability": 0.593 + }, + { + "start": 25482.8, + "end": 25486.48, + "probability": 0.9629 + }, + { + "start": 25487.06, + "end": 25488.34, + "probability": 0.9927 + }, + { + "start": 25489.04, + "end": 25491.24, + "probability": 0.9335 + }, + { + "start": 25491.3, + "end": 25493.54, + "probability": 0.9902 + }, + { + "start": 25494.08, + "end": 25495.96, + "probability": 0.9946 + }, + { + "start": 25497.4, + "end": 25502.28, + "probability": 0.9263 + }, + { + "start": 25502.8, + "end": 25504.08, + "probability": 0.7065 + }, + { + "start": 25504.22, + "end": 25504.82, + "probability": 0.6392 + }, + { + "start": 25504.88, + "end": 25505.06, + "probability": 0.8203 + }, + { + "start": 25505.2, + "end": 25505.38, + "probability": 0.933 + }, + { + "start": 25505.52, + "end": 25506.44, + "probability": 0.775 + }, + { + "start": 25506.92, + "end": 25510.04, + "probability": 0.8937 + }, + { + "start": 25511.08, + "end": 25517.16, + "probability": 0.9738 + }, + { + "start": 25518.04, + "end": 25520.08, + "probability": 0.8524 + }, + { + "start": 25521.48, + "end": 25522.28, + "probability": 0.7527 + }, + { + "start": 25523.54, + "end": 25527.56, + "probability": 0.9899 + }, + { + "start": 25527.56, + "end": 25530.32, + "probability": 0.9969 + }, + { + "start": 25530.32, + "end": 25533.44, + "probability": 0.9974 + }, + { + "start": 25533.68, + "end": 25535.52, + "probability": 0.8265 + }, + { + "start": 25535.54, + "end": 25536.0, + "probability": 0.699 + }, + { + "start": 25536.1, + "end": 25539.06, + "probability": 0.9354 + }, + { + "start": 25539.2, + "end": 25541.74, + "probability": 0.8005 + }, + { + "start": 25541.88, + "end": 25542.88, + "probability": 0.9273 + }, + { + "start": 25543.0, + "end": 25545.92, + "probability": 0.99 + }, + { + "start": 25546.1, + "end": 25546.42, + "probability": 0.5511 + }, + { + "start": 25546.44, + "end": 25547.87, + "probability": 0.9802 + }, + { + "start": 25548.1, + "end": 25549.88, + "probability": 0.9419 + }, + { + "start": 25550.26, + "end": 25551.68, + "probability": 0.9739 + }, + { + "start": 25551.98, + "end": 25552.36, + "probability": 0.7471 + }, + { + "start": 25552.76, + "end": 25553.22, + "probability": 0.7896 + }, + { + "start": 25553.5, + "end": 25554.8, + "probability": 0.9639 + }, + { + "start": 25554.92, + "end": 25556.78, + "probability": 0.9744 + }, + { + "start": 25557.44, + "end": 25558.74, + "probability": 0.9994 + }, + { + "start": 25559.3, + "end": 25561.4, + "probability": 0.7363 + }, + { + "start": 25561.94, + "end": 25563.16, + "probability": 0.8748 + }, + { + "start": 25563.5, + "end": 25565.6, + "probability": 0.9855 + }, + { + "start": 25565.6, + "end": 25567.82, + "probability": 0.9568 + }, + { + "start": 25568.7, + "end": 25572.96, + "probability": 0.9927 + }, + { + "start": 25573.98, + "end": 25575.28, + "probability": 0.2173 + }, + { + "start": 25576.1, + "end": 25577.52, + "probability": 0.7564 + }, + { + "start": 25577.89, + "end": 25579.5, + "probability": 0.9233 + }, + { + "start": 25580.44, + "end": 25582.22, + "probability": 0.995 + }, + { + "start": 25582.88, + "end": 25584.14, + "probability": 0.9575 + }, + { + "start": 25584.22, + "end": 25586.38, + "probability": 0.9958 + }, + { + "start": 25590.76, + "end": 25591.68, + "probability": 0.6774 + }, + { + "start": 25592.88, + "end": 25599.3, + "probability": 0.9953 + }, + { + "start": 25599.94, + "end": 25602.98, + "probability": 0.9984 + }, + { + "start": 25604.14, + "end": 25609.3, + "probability": 0.9589 + }, + { + "start": 25609.3, + "end": 25612.08, + "probability": 0.9895 + }, + { + "start": 25613.57, + "end": 25619.8, + "probability": 0.9956 + }, + { + "start": 25620.14, + "end": 25625.18, + "probability": 0.9808 + }, + { + "start": 25625.68, + "end": 25628.76, + "probability": 0.3446 + }, + { + "start": 25629.24, + "end": 25629.62, + "probability": 0.6875 + }, + { + "start": 25630.48, + "end": 25631.14, + "probability": 0.7485 + }, + { + "start": 25632.8, + "end": 25633.64, + "probability": 0.3262 + }, + { + "start": 25633.74, + "end": 25633.76, + "probability": 0.1566 + }, + { + "start": 25633.76, + "end": 25635.22, + "probability": 0.8748 + }, + { + "start": 25636.54, + "end": 25638.85, + "probability": 0.9854 + }, + { + "start": 25639.0, + "end": 25640.92, + "probability": 0.6786 + }, + { + "start": 25643.3, + "end": 25644.0, + "probability": 0.0396 + }, + { + "start": 25645.02, + "end": 25645.3, + "probability": 0.0071 + }, + { + "start": 25661.94, + "end": 25662.8, + "probability": 0.3818 + }, + { + "start": 25664.91, + "end": 25667.81, + "probability": 0.7279 + }, + { + "start": 25668.12, + "end": 25668.6, + "probability": 0.6287 + }, + { + "start": 25668.72, + "end": 25669.32, + "probability": 0.8369 + }, + { + "start": 25670.26, + "end": 25671.56, + "probability": 0.702 + }, + { + "start": 25676.68, + "end": 25681.68, + "probability": 0.7354 + }, + { + "start": 25682.02, + "end": 25683.86, + "probability": 0.9575 + }, + { + "start": 25684.1, + "end": 25685.49, + "probability": 0.6079 + }, + { + "start": 25685.52, + "end": 25686.47, + "probability": 0.7568 + }, + { + "start": 25687.52, + "end": 25691.8, + "probability": 0.5491 + }, + { + "start": 25692.26, + "end": 25693.76, + "probability": 0.7478 + }, + { + "start": 25694.08, + "end": 25694.8, + "probability": 0.6931 + }, + { + "start": 25695.26, + "end": 25695.36, + "probability": 0.4736 + }, + { + "start": 25697.48, + "end": 25698.4, + "probability": 0.1264 + }, + { + "start": 25699.4, + "end": 25704.58, + "probability": 0.163 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25806.0, + "end": 25806.0, + "probability": 0.0 + }, + { + "start": 25817.04, + "end": 25820.62, + "probability": 0.1492 + }, + { + "start": 25821.1, + "end": 25822.24, + "probability": 0.0372 + }, + { + "start": 25822.24, + "end": 25825.86, + "probability": 0.0841 + }, + { + "start": 25825.86, + "end": 25827.16, + "probability": 0.1238 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.0, + "end": 25935.0, + "probability": 0.0 + }, + { + "start": 25935.24, + "end": 25937.38, + "probability": 0.2152 + }, + { + "start": 25937.66, + "end": 25945.06, + "probability": 0.9927 + }, + { + "start": 25945.5, + "end": 25951.72, + "probability": 0.9987 + }, + { + "start": 25952.34, + "end": 25955.98, + "probability": 0.6765 + }, + { + "start": 25956.72, + "end": 25960.38, + "probability": 0.9979 + }, + { + "start": 25960.38, + "end": 25965.9, + "probability": 0.9854 + }, + { + "start": 25966.9, + "end": 25972.06, + "probability": 0.9717 + }, + { + "start": 25972.88, + "end": 25979.96, + "probability": 0.9935 + }, + { + "start": 25980.34, + "end": 25984.06, + "probability": 0.9931 + }, + { + "start": 25984.54, + "end": 25986.22, + "probability": 0.7235 + }, + { + "start": 25986.36, + "end": 25987.88, + "probability": 0.8953 + }, + { + "start": 25989.68, + "end": 25994.14, + "probability": 0.708 + }, + { + "start": 25994.14, + "end": 25998.22, + "probability": 0.9979 + }, + { + "start": 25998.82, + "end": 26004.22, + "probability": 0.9928 + }, + { + "start": 26005.32, + "end": 26007.22, + "probability": 0.8307 + }, + { + "start": 26007.34, + "end": 26008.74, + "probability": 0.8989 + }, + { + "start": 26009.22, + "end": 26011.74, + "probability": 0.9165 + }, + { + "start": 26012.2, + "end": 26016.4, + "probability": 0.9927 + }, + { + "start": 26017.62, + "end": 26022.94, + "probability": 0.9955 + }, + { + "start": 26022.94, + "end": 26027.54, + "probability": 0.9986 + }, + { + "start": 26028.46, + "end": 26032.26, + "probability": 0.9938 + }, + { + "start": 26032.26, + "end": 26037.34, + "probability": 0.9987 + }, + { + "start": 26037.34, + "end": 26042.24, + "probability": 0.8095 + }, + { + "start": 26043.28, + "end": 26043.8, + "probability": 0.5837 + }, + { + "start": 26044.4, + "end": 26049.8, + "probability": 0.9971 + }, + { + "start": 26050.42, + "end": 26055.52, + "probability": 0.9972 + }, + { + "start": 26056.24, + "end": 26060.22, + "probability": 0.9838 + }, + { + "start": 26060.98, + "end": 26065.1, + "probability": 0.9141 + }, + { + "start": 26065.1, + "end": 26068.78, + "probability": 0.9985 + }, + { + "start": 26069.46, + "end": 26072.88, + "probability": 0.9995 + }, + { + "start": 26073.46, + "end": 26077.38, + "probability": 0.9963 + }, + { + "start": 26077.38, + "end": 26081.6, + "probability": 0.9954 + }, + { + "start": 26082.72, + "end": 26085.68, + "probability": 0.949 + }, + { + "start": 26085.82, + "end": 26086.97, + "probability": 0.7122 + }, + { + "start": 26087.84, + "end": 26092.26, + "probability": 0.9902 + }, + { + "start": 26092.8, + "end": 26095.48, + "probability": 0.9962 + }, + { + "start": 26096.14, + "end": 26100.6, + "probability": 0.9988 + }, + { + "start": 26100.6, + "end": 26105.5, + "probability": 0.9998 + }, + { + "start": 26106.02, + "end": 26110.68, + "probability": 0.8913 + }, + { + "start": 26111.48, + "end": 26116.88, + "probability": 0.994 + }, + { + "start": 26116.88, + "end": 26121.7, + "probability": 0.9974 + }, + { + "start": 26122.7, + "end": 26125.96, + "probability": 0.9598 + }, + { + "start": 26126.22, + "end": 26128.49, + "probability": 0.9408 + }, + { + "start": 26129.06, + "end": 26132.3, + "probability": 0.9585 + }, + { + "start": 26133.0, + "end": 26136.96, + "probability": 0.9909 + }, + { + "start": 26137.6, + "end": 26143.72, + "probability": 0.9951 + }, + { + "start": 26144.4, + "end": 26147.94, + "probability": 0.9979 + }, + { + "start": 26147.94, + "end": 26151.88, + "probability": 0.9972 + }, + { + "start": 26153.04, + "end": 26156.36, + "probability": 0.5156 + }, + { + "start": 26159.32, + "end": 26164.04, + "probability": 0.9971 + }, + { + "start": 26164.96, + "end": 26170.44, + "probability": 0.9693 + }, + { + "start": 26170.44, + "end": 26174.14, + "probability": 0.9994 + }, + { + "start": 26174.2, + "end": 26179.7, + "probability": 0.9967 + }, + { + "start": 26180.96, + "end": 26185.12, + "probability": 0.9915 + }, + { + "start": 26185.63, + "end": 26187.5, + "probability": 0.9625 + }, + { + "start": 26188.4, + "end": 26194.1, + "probability": 0.9979 + }, + { + "start": 26194.1, + "end": 26200.82, + "probability": 0.9939 + }, + { + "start": 26201.74, + "end": 26207.02, + "probability": 0.9972 + }, + { + "start": 26207.86, + "end": 26213.42, + "probability": 0.9799 + }, + { + "start": 26213.42, + "end": 26218.28, + "probability": 0.9935 + }, + { + "start": 26218.92, + "end": 26219.98, + "probability": 0.5491 + }, + { + "start": 26220.56, + "end": 26221.94, + "probability": 0.944 + }, + { + "start": 26222.42, + "end": 26227.08, + "probability": 0.9925 + }, + { + "start": 26227.08, + "end": 26231.88, + "probability": 0.9964 + }, + { + "start": 26232.74, + "end": 26235.4, + "probability": 0.9913 + }, + { + "start": 26236.34, + "end": 26240.54, + "probability": 0.9934 + }, + { + "start": 26240.54, + "end": 26245.12, + "probability": 0.9973 + }, + { + "start": 26245.82, + "end": 26248.94, + "probability": 0.8604 + }, + { + "start": 26248.94, + "end": 26253.78, + "probability": 0.9907 + }, + { + "start": 26254.22, + "end": 26258.36, + "probability": 0.9907 + }, + { + "start": 26260.32, + "end": 26265.3, + "probability": 0.6057 + }, + { + "start": 26265.3, + "end": 26271.92, + "probability": 0.9886 + }, + { + "start": 26271.96, + "end": 26277.6, + "probability": 0.9905 + }, + { + "start": 26278.7, + "end": 26283.78, + "probability": 0.9932 + }, + { + "start": 26284.54, + "end": 26287.94, + "probability": 0.998 + }, + { + "start": 26287.94, + "end": 26292.26, + "probability": 0.9868 + }, + { + "start": 26292.56, + "end": 26295.46, + "probability": 0.855 + }, + { + "start": 26296.06, + "end": 26302.7, + "probability": 0.9875 + }, + { + "start": 26303.38, + "end": 26306.5, + "probability": 0.9922 + }, + { + "start": 26307.06, + "end": 26309.66, + "probability": 0.8949 + }, + { + "start": 26310.18, + "end": 26312.4, + "probability": 0.9763 + }, + { + "start": 26312.52, + "end": 26313.9, + "probability": 0.6626 + }, + { + "start": 26313.96, + "end": 26317.56, + "probability": 0.9985 + }, + { + "start": 26317.56, + "end": 26321.26, + "probability": 0.9945 + }, + { + "start": 26322.22, + "end": 26324.64, + "probability": 0.8409 + }, + { + "start": 26324.82, + "end": 26328.6, + "probability": 0.9943 + }, + { + "start": 26328.6, + "end": 26332.7, + "probability": 0.9979 + }, + { + "start": 26333.32, + "end": 26336.84, + "probability": 0.997 + }, + { + "start": 26337.64, + "end": 26341.68, + "probability": 0.999 + }, + { + "start": 26342.82, + "end": 26346.52, + "probability": 0.8625 + }, + { + "start": 26347.06, + "end": 26351.3, + "probability": 0.9966 + }, + { + "start": 26351.34, + "end": 26356.3, + "probability": 0.9977 + }, + { + "start": 26356.96, + "end": 26360.08, + "probability": 0.9961 + }, + { + "start": 26360.08, + "end": 26364.14, + "probability": 0.9966 + }, + { + "start": 26364.7, + "end": 26371.06, + "probability": 0.9899 + }, + { + "start": 26371.78, + "end": 26372.74, + "probability": 0.8283 + }, + { + "start": 26372.96, + "end": 26376.6, + "probability": 0.9949 + }, + { + "start": 26377.3, + "end": 26380.4, + "probability": 0.9868 + }, + { + "start": 26380.4, + "end": 26384.4, + "probability": 0.9871 + }, + { + "start": 26384.98, + "end": 26387.44, + "probability": 0.8867 + }, + { + "start": 26387.96, + "end": 26389.18, + "probability": 0.9822 + }, + { + "start": 26390.34, + "end": 26391.16, + "probability": 0.8727 + }, + { + "start": 26392.7, + "end": 26396.28, + "probability": 0.9421 + }, + { + "start": 26396.28, + "end": 26399.36, + "probability": 0.9965 + }, + { + "start": 26399.78, + "end": 26401.1, + "probability": 0.6022 + }, + { + "start": 26401.72, + "end": 26402.88, + "probability": 0.6194 + }, + { + "start": 26403.3, + "end": 26406.52, + "probability": 0.9941 + }, + { + "start": 26406.94, + "end": 26409.52, + "probability": 0.9964 + }, + { + "start": 26409.68, + "end": 26409.94, + "probability": 0.7414 + }, + { + "start": 26410.6, + "end": 26411.2, + "probability": 0.8244 + }, + { + "start": 26412.18, + "end": 26414.88, + "probability": 0.6442 + }, + { + "start": 26415.5, + "end": 26416.83, + "probability": 0.9663 + }, + { + "start": 26417.64, + "end": 26418.36, + "probability": 0.9974 + }, + { + "start": 26421.3, + "end": 26423.7, + "probability": 0.7282 + }, + { + "start": 26423.96, + "end": 26425.96, + "probability": 0.9915 + }, + { + "start": 26426.6, + "end": 26426.82, + "probability": 0.7509 + }, + { + "start": 26426.94, + "end": 26428.68, + "probability": 0.8459 + }, + { + "start": 26428.74, + "end": 26431.12, + "probability": 0.8491 + }, + { + "start": 26432.16, + "end": 26432.96, + "probability": 0.4895 + }, + { + "start": 26434.22, + "end": 26435.34, + "probability": 0.7674 + }, + { + "start": 26436.2, + "end": 26437.36, + "probability": 0.8611 + }, + { + "start": 26438.24, + "end": 26439.9, + "probability": 0.9562 + }, + { + "start": 26440.46, + "end": 26441.64, + "probability": 0.9751 + }, + { + "start": 26442.72, + "end": 26444.34, + "probability": 0.4734 + }, + { + "start": 26445.46, + "end": 26446.14, + "probability": 0.6707 + }, + { + "start": 26447.44, + "end": 26448.76, + "probability": 0.9272 + }, + { + "start": 26449.48, + "end": 26450.16, + "probability": 0.8438 + }, + { + "start": 26450.74, + "end": 26452.18, + "probability": 0.8835 + }, + { + "start": 26452.76, + "end": 26454.78, + "probability": 0.9805 + }, + { + "start": 26455.38, + "end": 26456.4, + "probability": 0.9971 + }, + { + "start": 26456.46, + "end": 26457.1, + "probability": 0.7441 + }, + { + "start": 26458.75, + "end": 26459.6, + "probability": 0.9469 + }, + { + "start": 26459.74, + "end": 26460.42, + "probability": 0.3649 + }, + { + "start": 26460.66, + "end": 26461.12, + "probability": 0.5897 + }, + { + "start": 26461.12, + "end": 26461.12, + "probability": 0.6399 + }, + { + "start": 26461.12, + "end": 26461.44, + "probability": 0.5869 + }, + { + "start": 26462.4, + "end": 26462.94, + "probability": 0.3899 + }, + { + "start": 26464.08, + "end": 26464.58, + "probability": 0.9315 + }, + { + "start": 26464.94, + "end": 26466.26, + "probability": 0.2265 + }, + { + "start": 26466.86, + "end": 26467.42, + "probability": 0.4987 + }, + { + "start": 26467.92, + "end": 26469.3, + "probability": 0.9287 + }, + { + "start": 26470.62, + "end": 26471.06, + "probability": 0.9708 + }, + { + "start": 26471.14, + "end": 26471.72, + "probability": 0.7681 + }, + { + "start": 26475.82, + "end": 26477.22, + "probability": 0.929 + }, + { + "start": 26478.24, + "end": 26478.84, + "probability": 0.9368 + }, + { + "start": 26478.84, + "end": 26479.98, + "probability": 0.9562 + }, + { + "start": 26480.82, + "end": 26483.43, + "probability": 0.9777 + }, + { + "start": 26483.74, + "end": 26483.74, + "probability": 0.0015 + }, + { + "start": 26487.92, + "end": 26489.72, + "probability": 0.606 + }, + { + "start": 26491.83, + "end": 26492.62, + "probability": 0.9863 + }, + { + "start": 26493.76, + "end": 26494.46, + "probability": 0.5433 + }, + { + "start": 26494.62, + "end": 26495.64, + "probability": 0.6219 + }, + { + "start": 26496.68, + "end": 26497.26, + "probability": 0.831 + }, + { + "start": 26498.18, + "end": 26500.3, + "probability": 0.822 + }, + { + "start": 26501.32, + "end": 26509.76, + "probability": 0.9719 + }, + { + "start": 26510.94, + "end": 26513.68, + "probability": 0.9756 + }, + { + "start": 26514.56, + "end": 26519.76, + "probability": 0.8717 + }, + { + "start": 26519.92, + "end": 26520.3, + "probability": 0.7583 + }, + { + "start": 26521.0, + "end": 26522.08, + "probability": 0.7136 + }, + { + "start": 26522.2, + "end": 26522.76, + "probability": 0.7738 + }, + { + "start": 26523.24, + "end": 26527.42, + "probability": 0.9775 + }, + { + "start": 26528.7, + "end": 26530.26, + "probability": 0.7487 + }, + { + "start": 26531.3, + "end": 26531.56, + "probability": 0.537 + }, + { + "start": 26532.84, + "end": 26539.1, + "probability": 0.9368 + }, + { + "start": 26539.66, + "end": 26547.74, + "probability": 0.988 + }, + { + "start": 26548.28, + "end": 26548.6, + "probability": 0.755 + }, + { + "start": 26549.58, + "end": 26553.62, + "probability": 0.9038 + }, + { + "start": 26553.74, + "end": 26554.34, + "probability": 0.7404 + }, + { + "start": 26555.14, + "end": 26559.64, + "probability": 0.9873 + }, + { + "start": 26560.18, + "end": 26565.82, + "probability": 0.9895 + }, + { + "start": 26566.4, + "end": 26568.72, + "probability": 0.9731 + }, + { + "start": 26569.7, + "end": 26571.4, + "probability": 0.7513 + }, + { + "start": 26572.14, + "end": 26573.44, + "probability": 0.918 + }, + { + "start": 26573.84, + "end": 26574.54, + "probability": 0.7878 + }, + { + "start": 26574.84, + "end": 26579.04, + "probability": 0.9623 + }, + { + "start": 26579.2, + "end": 26582.54, + "probability": 0.9863 + }, + { + "start": 26582.58, + "end": 26584.82, + "probability": 0.9868 + }, + { + "start": 26585.24, + "end": 26587.7, + "probability": 0.9856 + }, + { + "start": 26588.28, + "end": 26591.22, + "probability": 0.9758 + }, + { + "start": 26591.82, + "end": 26593.1, + "probability": 0.7502 + }, + { + "start": 26593.12, + "end": 26595.84, + "probability": 0.788 + }, + { + "start": 26595.88, + "end": 26598.72, + "probability": 0.9915 + }, + { + "start": 26600.19, + "end": 26606.16, + "probability": 0.9649 + }, + { + "start": 26606.62, + "end": 26609.46, + "probability": 0.6886 + }, + { + "start": 26610.32, + "end": 26614.3, + "probability": 0.9956 + }, + { + "start": 26614.46, + "end": 26617.12, + "probability": 0.9223 + }, + { + "start": 26617.62, + "end": 26618.84, + "probability": 0.4272 + }, + { + "start": 26619.04, + "end": 26619.58, + "probability": 0.9786 + }, + { + "start": 26619.62, + "end": 26622.24, + "probability": 0.6943 + }, + { + "start": 26622.92, + "end": 26624.2, + "probability": 0.9927 + }, + { + "start": 26625.86, + "end": 26625.98, + "probability": 0.5048 + }, + { + "start": 26626.86, + "end": 26628.06, + "probability": 0.468 + }, + { + "start": 26628.12, + "end": 26629.06, + "probability": 0.7852 + }, + { + "start": 26631.44, + "end": 26632.6, + "probability": 0.8438 + }, + { + "start": 26633.66, + "end": 26634.84, + "probability": 0.7597 + }, + { + "start": 26635.48, + "end": 26635.68, + "probability": 0.6267 + }, + { + "start": 26636.42, + "end": 26638.0, + "probability": 0.9389 + }, + { + "start": 26638.62, + "end": 26639.32, + "probability": 0.8834 + }, + { + "start": 26639.62, + "end": 26641.4, + "probability": 0.7012 + }, + { + "start": 26641.52, + "end": 26642.3, + "probability": 0.8618 + }, + { + "start": 26642.32, + "end": 26642.84, + "probability": 0.4741 + }, + { + "start": 26643.4, + "end": 26644.94, + "probability": 0.9329 + }, + { + "start": 26645.64, + "end": 26646.48, + "probability": 0.9938 + }, + { + "start": 26646.54, + "end": 26647.0, + "probability": 0.9818 + }, + { + "start": 26647.1, + "end": 26647.66, + "probability": 0.9224 + }, + { + "start": 26648.0, + "end": 26649.28, + "probability": 0.8847 + }, + { + "start": 26649.74, + "end": 26651.88, + "probability": 0.8727 + }, + { + "start": 26652.34, + "end": 26653.02, + "probability": 0.9961 + }, + { + "start": 26653.6, + "end": 26656.2, + "probability": 0.2687 + }, + { + "start": 26656.68, + "end": 26657.12, + "probability": 0.5147 + }, + { + "start": 26657.74, + "end": 26658.86, + "probability": 0.7248 + }, + { + "start": 26659.88, + "end": 26660.82, + "probability": 0.8288 + }, + { + "start": 26661.22, + "end": 26662.3, + "probability": 0.7661 + }, + { + "start": 26662.38, + "end": 26663.08, + "probability": 0.7019 + }, + { + "start": 26663.2, + "end": 26664.16, + "probability": 0.9799 + }, + { + "start": 26665.06, + "end": 26667.24, + "probability": 0.837 + }, + { + "start": 26669.02, + "end": 26673.02, + "probability": 0.9733 + }, + { + "start": 26673.64, + "end": 26675.0, + "probability": 0.7869 + }, + { + "start": 26675.08, + "end": 26675.68, + "probability": 0.8702 + }, + { + "start": 26676.0, + "end": 26677.14, + "probability": 0.9904 + }, + { + "start": 26677.36, + "end": 26677.94, + "probability": 0.9795 + }, + { + "start": 26678.68, + "end": 26679.62, + "probability": 0.9929 + }, + { + "start": 26680.32, + "end": 26680.96, + "probability": 0.5006 + }, + { + "start": 26681.36, + "end": 26682.54, + "probability": 0.675 + }, + { + "start": 26683.38, + "end": 26684.8, + "probability": 0.7961 + }, + { + "start": 26698.66, + "end": 26700.26, + "probability": 0.8365 + }, + { + "start": 26701.29, + "end": 26704.54, + "probability": 0.7473 + }, + { + "start": 26706.26, + "end": 26708.76, + "probability": 0.655 + }, + { + "start": 26709.04, + "end": 26713.4, + "probability": 0.934 + }, + { + "start": 26713.4, + "end": 26716.42, + "probability": 0.9795 + }, + { + "start": 26716.52, + "end": 26718.44, + "probability": 0.9088 + }, + { + "start": 26719.38, + "end": 26720.02, + "probability": 0.8616 + }, + { + "start": 26720.54, + "end": 26723.68, + "probability": 0.6087 + }, + { + "start": 26724.98, + "end": 26732.82, + "probability": 0.9873 + }, + { + "start": 26732.92, + "end": 26740.62, + "probability": 0.9674 + }, + { + "start": 26741.4, + "end": 26746.0, + "probability": 0.984 + }, + { + "start": 26746.12, + "end": 26746.82, + "probability": 0.7293 + }, + { + "start": 26747.38, + "end": 26749.94, + "probability": 0.8937 + }, + { + "start": 26750.08, + "end": 26754.78, + "probability": 0.9644 + }, + { + "start": 26755.04, + "end": 26757.94, + "probability": 0.9937 + }, + { + "start": 26757.94, + "end": 26762.08, + "probability": 0.9959 + }, + { + "start": 26762.2, + "end": 26767.0, + "probability": 0.9959 + }, + { + "start": 26767.62, + "end": 26771.46, + "probability": 0.9965 + }, + { + "start": 26771.74, + "end": 26776.32, + "probability": 0.9937 + }, + { + "start": 26776.58, + "end": 26784.98, + "probability": 0.9836 + }, + { + "start": 26785.6, + "end": 26792.6, + "probability": 0.9982 + }, + { + "start": 26793.54, + "end": 26800.78, + "probability": 0.9868 + }, + { + "start": 26800.78, + "end": 26805.46, + "probability": 0.9995 + }, + { + "start": 26805.88, + "end": 26809.26, + "probability": 0.9652 + }, + { + "start": 26809.38, + "end": 26810.32, + "probability": 0.7152 + }, + { + "start": 26810.84, + "end": 26816.72, + "probability": 0.9671 + }, + { + "start": 26817.24, + "end": 26818.58, + "probability": 0.9178 + }, + { + "start": 26819.02, + "end": 26822.68, + "probability": 0.9895 + }, + { + "start": 26823.14, + "end": 26825.38, + "probability": 0.9808 + }, + { + "start": 26825.9, + "end": 26829.22, + "probability": 0.9924 + }, + { + "start": 26829.48, + "end": 26832.4, + "probability": 0.89 + }, + { + "start": 26832.82, + "end": 26838.0, + "probability": 0.9902 + }, + { + "start": 26838.0, + "end": 26843.14, + "probability": 0.9883 + }, + { + "start": 26843.14, + "end": 26849.22, + "probability": 0.9974 + }, + { + "start": 26849.74, + "end": 26850.76, + "probability": 0.4026 + }, + { + "start": 26850.86, + "end": 26856.04, + "probability": 0.9806 + }, + { + "start": 26856.24, + "end": 26861.22, + "probability": 0.9961 + }, + { + "start": 26862.14, + "end": 26863.24, + "probability": 0.9772 + }, + { + "start": 26863.84, + "end": 26864.32, + "probability": 0.6886 + }, + { + "start": 26865.28, + "end": 26866.44, + "probability": 0.9787 + }, + { + "start": 26867.1, + "end": 26867.58, + "probability": 0.8452 + }, + { + "start": 26870.1, + "end": 26870.7, + "probability": 0.666 + }, + { + "start": 26870.7, + "end": 26870.7, + "probability": 0.4829 + }, + { + "start": 26870.7, + "end": 26870.94, + "probability": 0.5312 + }, + { + "start": 26871.12, + "end": 26871.52, + "probability": 0.5683 + }, + { + "start": 26872.22, + "end": 26873.58, + "probability": 0.7745 + }, + { + "start": 26874.18, + "end": 26874.54, + "probability": 0.944 + }, + { + "start": 26875.08, + "end": 26875.98, + "probability": 0.7568 + }, + { + "start": 26876.74, + "end": 26877.72, + "probability": 0.94 + }, + { + "start": 26878.36, + "end": 26879.22, + "probability": 0.9697 + }, + { + "start": 26879.88, + "end": 26880.68, + "probability": 0.9331 + }, + { + "start": 26883.98, + "end": 26884.86, + "probability": 0.9692 + }, + { + "start": 26885.98, + "end": 26885.98, + "probability": 0.2997 + }, + { + "start": 26885.98, + "end": 26886.66, + "probability": 0.4438 + }, + { + "start": 26887.04, + "end": 26887.06, + "probability": 0.4232 + }, + { + "start": 26887.06, + "end": 26887.06, + "probability": 0.4216 + }, + { + "start": 26887.06, + "end": 26887.06, + "probability": 0.555 + }, + { + "start": 26887.06, + "end": 26887.14, + "probability": 0.4924 + }, + { + "start": 26887.14, + "end": 26887.49, + "probability": 0.7711 + }, + { + "start": 26888.84, + "end": 26889.42, + "probability": 0.5295 + }, + { + "start": 26889.88, + "end": 26890.78, + "probability": 0.6891 + }, + { + "start": 26901.4, + "end": 26903.92, + "probability": 0.2012 + }, + { + "start": 26921.3, + "end": 26921.56, + "probability": 0.0978 + }, + { + "start": 26928.9, + "end": 26930.0, + "probability": 0.5004 + }, + { + "start": 26930.54, + "end": 26932.72, + "probability": 0.7704 + }, + { + "start": 26933.42, + "end": 26934.34, + "probability": 0.7086 + }, + { + "start": 26935.37, + "end": 26936.72, + "probability": 0.3683 + }, + { + "start": 26937.12, + "end": 26938.36, + "probability": 0.7526 + }, + { + "start": 26941.22, + "end": 26941.82, + "probability": 0.7302 + }, + { + "start": 26942.76, + "end": 26950.22, + "probability": 0.9939 + }, + { + "start": 26950.96, + "end": 26952.84, + "probability": 0.5519 + }, + { + "start": 26953.78, + "end": 26960.62, + "probability": 0.9924 + }, + { + "start": 26963.14, + "end": 26967.22, + "probability": 0.988 + }, + { + "start": 26967.42, + "end": 26971.28, + "probability": 0.9123 + }, + { + "start": 26971.54, + "end": 26972.38, + "probability": 0.7182 + }, + { + "start": 26972.96, + "end": 26975.88, + "probability": 0.9468 + }, + { + "start": 26977.2, + "end": 26979.98, + "probability": 0.9806 + }, + { + "start": 26981.2, + "end": 26984.44, + "probability": 0.9533 + }, + { + "start": 26985.74, + "end": 26988.62, + "probability": 0.9988 + }, + { + "start": 26989.3, + "end": 26990.88, + "probability": 0.7058 + }, + { + "start": 26991.42, + "end": 26992.28, + "probability": 0.7141 + }, + { + "start": 26993.18, + "end": 26996.08, + "probability": 0.8009 + }, + { + "start": 26996.72, + "end": 26998.26, + "probability": 0.9542 + }, + { + "start": 26999.1, + "end": 26999.76, + "probability": 0.954 + }, + { + "start": 27000.74, + "end": 27003.6, + "probability": 0.9907 + }, + { + "start": 27004.5, + "end": 27005.58, + "probability": 0.9476 + }, + { + "start": 27006.1, + "end": 27007.94, + "probability": 0.8413 + }, + { + "start": 27008.68, + "end": 27011.44, + "probability": 0.81 + }, + { + "start": 27012.0, + "end": 27013.18, + "probability": 0.8802 + }, + { + "start": 27013.78, + "end": 27015.76, + "probability": 0.9973 + }, + { + "start": 27016.48, + "end": 27019.72, + "probability": 0.9633 + }, + { + "start": 27020.54, + "end": 27021.0, + "probability": 0.7064 + }, + { + "start": 27022.04, + "end": 27024.6, + "probability": 0.9784 + }, + { + "start": 27025.34, + "end": 27029.52, + "probability": 0.8093 + }, + { + "start": 27030.22, + "end": 27031.54, + "probability": 0.9203 + }, + { + "start": 27032.84, + "end": 27035.58, + "probability": 0.991 + }, + { + "start": 27036.16, + "end": 27039.66, + "probability": 0.9552 + }, + { + "start": 27040.88, + "end": 27045.52, + "probability": 0.9419 + }, + { + "start": 27046.46, + "end": 27046.62, + "probability": 0.3948 + }, + { + "start": 27047.16, + "end": 27048.88, + "probability": 0.9258 + }, + { + "start": 27049.34, + "end": 27055.14, + "probability": 0.9913 + }, + { + "start": 27055.68, + "end": 27057.1, + "probability": 0.542 + }, + { + "start": 27057.72, + "end": 27061.96, + "probability": 0.9919 + }, + { + "start": 27062.46, + "end": 27062.81, + "probability": 0.9268 + }, + { + "start": 27063.74, + "end": 27065.8, + "probability": 0.9826 + }, + { + "start": 27066.66, + "end": 27072.56, + "probability": 0.9952 + }, + { + "start": 27072.56, + "end": 27077.9, + "probability": 0.9966 + }, + { + "start": 27078.9, + "end": 27084.54, + "probability": 0.9847 + }, + { + "start": 27085.04, + "end": 27086.06, + "probability": 0.9963 + }, + { + "start": 27086.94, + "end": 27091.52, + "probability": 0.9834 + }, + { + "start": 27091.52, + "end": 27096.0, + "probability": 0.9971 + }, + { + "start": 27096.58, + "end": 27098.06, + "probability": 0.9798 + }, + { + "start": 27098.42, + "end": 27101.36, + "probability": 0.9921 + }, + { + "start": 27102.52, + "end": 27104.26, + "probability": 0.9953 + }, + { + "start": 27104.56, + "end": 27106.52, + "probability": 0.9694 + }, + { + "start": 27107.12, + "end": 27109.51, + "probability": 0.999 + }, + { + "start": 27110.3, + "end": 27111.54, + "probability": 0.9432 + }, + { + "start": 27112.2, + "end": 27113.86, + "probability": 0.808 + }, + { + "start": 27113.86, + "end": 27114.76, + "probability": 0.4238 + }, + { + "start": 27115.2, + "end": 27119.98, + "probability": 0.9622 + }, + { + "start": 27120.92, + "end": 27123.54, + "probability": 0.9858 + }, + { + "start": 27124.26, + "end": 27124.85, + "probability": 0.8729 + }, + { + "start": 27125.66, + "end": 27128.62, + "probability": 0.9973 + }, + { + "start": 27129.38, + "end": 27132.2, + "probability": 0.9542 + }, + { + "start": 27132.7, + "end": 27133.12, + "probability": 0.5062 + }, + { + "start": 27133.64, + "end": 27137.22, + "probability": 0.9896 + }, + { + "start": 27137.88, + "end": 27138.18, + "probability": 0.4571 + }, + { + "start": 27138.6, + "end": 27140.5, + "probability": 0.9973 + }, + { + "start": 27141.12, + "end": 27143.6, + "probability": 0.4833 + }, + { + "start": 27144.06, + "end": 27146.54, + "probability": 0.9049 + }, + { + "start": 27146.54, + "end": 27150.54, + "probability": 0.9806 + }, + { + "start": 27150.92, + "end": 27151.26, + "probability": 0.902 + }, + { + "start": 27154.32, + "end": 27156.16, + "probability": 0.8042 + }, + { + "start": 27157.66, + "end": 27158.8, + "probability": 0.6116 + }, + { + "start": 27159.96, + "end": 27160.86, + "probability": 0.9286 + }, + { + "start": 27162.66, + "end": 27163.66, + "probability": 0.8867 + }, + { + "start": 27164.7, + "end": 27166.56, + "probability": 0.5946 + }, + { + "start": 27167.94, + "end": 27170.08, + "probability": 0.8314 + }, + { + "start": 27170.34, + "end": 27172.7, + "probability": 0.8118 + }, + { + "start": 27173.52, + "end": 27174.16, + "probability": 0.5844 + }, + { + "start": 27175.14, + "end": 27175.74, + "probability": 0.1181 + }, + { + "start": 27175.74, + "end": 27175.74, + "probability": 0.5027 + }, + { + "start": 27175.74, + "end": 27175.74, + "probability": 0.157 + }, + { + "start": 27175.74, + "end": 27178.02, + "probability": 0.721 + }, + { + "start": 27178.54, + "end": 27185.4, + "probability": 0.9561 + }, + { + "start": 27186.08, + "end": 27186.84, + "probability": 0.3499 + }, + { + "start": 27187.16, + "end": 27188.18, + "probability": 0.5962 + }, + { + "start": 27189.14, + "end": 27189.62, + "probability": 0.6843 + }, + { + "start": 27190.48, + "end": 27191.68, + "probability": 0.9833 + }, + { + "start": 27192.22, + "end": 27192.86, + "probability": 0.9047 + }, + { + "start": 27193.66, + "end": 27194.68, + "probability": 0.9893 + }, + { + "start": 27195.24, + "end": 27198.24, + "probability": 0.9015 + }, + { + "start": 27198.86, + "end": 27201.16, + "probability": 0.9456 + }, + { + "start": 27201.86, + "end": 27202.52, + "probability": 0.7567 + }, + { + "start": 27202.92, + "end": 27204.22, + "probability": 0.5971 + }, + { + "start": 27205.32, + "end": 27207.1, + "probability": 0.7822 + }, + { + "start": 27207.1, + "end": 27207.76, + "probability": 0.7421 + }, + { + "start": 27209.44, + "end": 27210.96, + "probability": 0.5712 + }, + { + "start": 27210.96, + "end": 27211.56, + "probability": 0.5527 + }, + { + "start": 27229.7, + "end": 27231.12, + "probability": 0.2588 + }, + { + "start": 27231.86, + "end": 27232.54, + "probability": 0.1471 + }, + { + "start": 27234.1, + "end": 27235.04, + "probability": 0.0303 + }, + { + "start": 27238.22, + "end": 27241.56, + "probability": 0.7748 + }, + { + "start": 27249.38, + "end": 27255.4, + "probability": 0.9657 + }, + { + "start": 27255.66, + "end": 27255.66, + "probability": 0.2887 + }, + { + "start": 27255.86, + "end": 27259.02, + "probability": 0.861 + }, + { + "start": 27259.1, + "end": 27260.38, + "probability": 0.2754 + }, + { + "start": 27260.9, + "end": 27264.12, + "probability": 0.7447 + }, + { + "start": 27264.9, + "end": 27265.95, + "probability": 0.8887 + }, + { + "start": 27266.4, + "end": 27273.76, + "probability": 0.991 + }, + { + "start": 27274.74, + "end": 27281.8, + "probability": 0.9657 + }, + { + "start": 27282.62, + "end": 27284.7, + "probability": 0.7249 + }, + { + "start": 27286.72, + "end": 27292.94, + "probability": 0.9958 + }, + { + "start": 27293.82, + "end": 27296.92, + "probability": 0.8468 + }, + { + "start": 27297.92, + "end": 27302.7, + "probability": 0.9883 + }, + { + "start": 27302.7, + "end": 27309.42, + "probability": 0.9941 + }, + { + "start": 27310.32, + "end": 27315.32, + "probability": 0.9938 + }, + { + "start": 27315.32, + "end": 27319.7, + "probability": 0.9984 + }, + { + "start": 27320.42, + "end": 27322.14, + "probability": 0.492 + }, + { + "start": 27322.44, + "end": 27325.82, + "probability": 0.9086 + }, + { + "start": 27326.48, + "end": 27328.14, + "probability": 0.943 + }, + { + "start": 27329.26, + "end": 27331.92, + "probability": 0.9424 + }, + { + "start": 27333.21, + "end": 27333.58, + "probability": 0.3028 + }, + { + "start": 27334.24, + "end": 27335.34, + "probability": 0.1343 + }, + { + "start": 27335.34, + "end": 27336.04, + "probability": 0.2727 + }, + { + "start": 27336.12, + "end": 27336.36, + "probability": 0.0049 + }, + { + "start": 27336.56, + "end": 27338.76, + "probability": 0.9624 + }, + { + "start": 27339.64, + "end": 27342.36, + "probability": 0.9839 + }, + { + "start": 27342.52, + "end": 27343.48, + "probability": 0.9076 + }, + { + "start": 27343.96, + "end": 27344.6, + "probability": 0.46 + }, + { + "start": 27345.4, + "end": 27350.58, + "probability": 0.9932 + }, + { + "start": 27350.58, + "end": 27354.2, + "probability": 0.9945 + }, + { + "start": 27354.62, + "end": 27355.64, + "probability": 0.8919 + }, + { + "start": 27356.88, + "end": 27358.78, + "probability": 0.8595 + }, + { + "start": 27358.9, + "end": 27359.38, + "probability": 0.8881 + }, + { + "start": 27359.58, + "end": 27361.8, + "probability": 0.8344 + }, + { + "start": 27362.62, + "end": 27369.4, + "probability": 0.9948 + }, + { + "start": 27369.9, + "end": 27376.97, + "probability": 0.8791 + }, + { + "start": 27378.6, + "end": 27381.96, + "probability": 0.9968 + }, + { + "start": 27381.96, + "end": 27386.6, + "probability": 0.9981 + }, + { + "start": 27387.18, + "end": 27392.58, + "probability": 0.9538 + }, + { + "start": 27393.26, + "end": 27395.32, + "probability": 0.9988 + }, + { + "start": 27396.0, + "end": 27401.18, + "probability": 0.9978 + }, + { + "start": 27401.54, + "end": 27405.15, + "probability": 0.9708 + }, + { + "start": 27405.38, + "end": 27407.4, + "probability": 0.9254 + }, + { + "start": 27408.34, + "end": 27410.92, + "probability": 0.8226 + }, + { + "start": 27411.16, + "end": 27412.74, + "probability": 0.9959 + }, + { + "start": 27413.68, + "end": 27415.06, + "probability": 0.8739 + }, + { + "start": 27415.66, + "end": 27416.4, + "probability": 0.9662 + }, + { + "start": 27416.88, + "end": 27420.02, + "probability": 0.8356 + }, + { + "start": 27420.9, + "end": 27427.08, + "probability": 0.9971 + }, + { + "start": 27428.18, + "end": 27432.6, + "probability": 0.9883 + }, + { + "start": 27433.06, + "end": 27437.74, + "probability": 0.9832 + }, + { + "start": 27437.82, + "end": 27438.56, + "probability": 0.5969 + }, + { + "start": 27438.64, + "end": 27440.38, + "probability": 0.9799 + }, + { + "start": 27441.02, + "end": 27443.88, + "probability": 0.9958 + }, + { + "start": 27444.18, + "end": 27448.04, + "probability": 0.9922 + }, + { + "start": 27448.04, + "end": 27452.38, + "probability": 0.8659 + }, + { + "start": 27452.5, + "end": 27456.46, + "probability": 0.9987 + }, + { + "start": 27456.46, + "end": 27461.26, + "probability": 0.9963 + }, + { + "start": 27461.64, + "end": 27462.58, + "probability": 0.7415 + }, + { + "start": 27463.02, + "end": 27468.26, + "probability": 0.927 + }, + { + "start": 27469.3, + "end": 27472.46, + "probability": 0.8561 + }, + { + "start": 27473.68, + "end": 27476.26, + "probability": 0.9787 + }, + { + "start": 27476.98, + "end": 27479.84, + "probability": 0.9192 + }, + { + "start": 27481.54, + "end": 27482.44, + "probability": 0.7069 + }, + { + "start": 27482.48, + "end": 27486.24, + "probability": 0.9823 + }, + { + "start": 27486.96, + "end": 27494.46, + "probability": 0.9837 + }, + { + "start": 27495.14, + "end": 27497.94, + "probability": 0.9712 + }, + { + "start": 27498.7, + "end": 27501.96, + "probability": 0.9113 + }, + { + "start": 27502.92, + "end": 27507.76, + "probability": 0.9924 + }, + { + "start": 27508.18, + "end": 27512.74, + "probability": 0.9524 + }, + { + "start": 27513.32, + "end": 27515.12, + "probability": 0.9932 + }, + { + "start": 27515.92, + "end": 27517.98, + "probability": 0.8657 + }, + { + "start": 27518.72, + "end": 27520.64, + "probability": 0.8342 + }, + { + "start": 27520.92, + "end": 27521.34, + "probability": 0.8411 + }, + { + "start": 27522.06, + "end": 27526.4, + "probability": 0.9944 + }, + { + "start": 27526.86, + "end": 27528.58, + "probability": 0.8645 + }, + { + "start": 27528.94, + "end": 27534.24, + "probability": 0.998 + }, + { + "start": 27534.24, + "end": 27538.9, + "probability": 0.9986 + }, + { + "start": 27539.54, + "end": 27544.28, + "probability": 0.9788 + }, + { + "start": 27545.24, + "end": 27549.66, + "probability": 0.8761 + }, + { + "start": 27550.54, + "end": 27554.94, + "probability": 0.8618 + }, + { + "start": 27555.12, + "end": 27557.76, + "probability": 0.9932 + }, + { + "start": 27557.76, + "end": 27561.44, + "probability": 0.961 + }, + { + "start": 27562.32, + "end": 27566.04, + "probability": 0.9856 + }, + { + "start": 27566.04, + "end": 27569.86, + "probability": 0.9956 + }, + { + "start": 27570.64, + "end": 27574.36, + "probability": 0.9987 + }, + { + "start": 27574.46, + "end": 27575.0, + "probability": 0.7443 + }, + { + "start": 27576.58, + "end": 27578.84, + "probability": 0.6544 + }, + { + "start": 27578.86, + "end": 27579.9, + "probability": 0.4719 + }, + { + "start": 27580.78, + "end": 27586.22, + "probability": 0.9664 + }, + { + "start": 27586.3, + "end": 27587.28, + "probability": 0.7254 + }, + { + "start": 27587.78, + "end": 27590.32, + "probability": 0.7802 + }, + { + "start": 27590.32, + "end": 27593.92, + "probability": 0.9565 + }, + { + "start": 27595.58, + "end": 27596.42, + "probability": 0.6965 + }, + { + "start": 27597.8, + "end": 27598.18, + "probability": 0.3616 + }, + { + "start": 27598.28, + "end": 27600.68, + "probability": 0.3695 + }, + { + "start": 27600.78, + "end": 27602.5, + "probability": 0.7959 + }, + { + "start": 27603.32, + "end": 27609.84, + "probability": 0.1372 + }, + { + "start": 27616.89, + "end": 27619.12, + "probability": 0.0344 + }, + { + "start": 27619.12, + "end": 27619.12, + "probability": 0.0431 + }, + { + "start": 27619.12, + "end": 27619.12, + "probability": 0.0706 + }, + { + "start": 27619.12, + "end": 27621.78, + "probability": 0.4456 + }, + { + "start": 27621.9, + "end": 27626.36, + "probability": 0.7798 + }, + { + "start": 27626.36, + "end": 27628.56, + "probability": 0.855 + }, + { + "start": 27629.74, + "end": 27632.28, + "probability": 0.4865 + }, + { + "start": 27632.28, + "end": 27632.28, + "probability": 0.1788 + }, + { + "start": 27632.28, + "end": 27636.3, + "probability": 0.2771 + }, + { + "start": 27638.46, + "end": 27638.67, + "probability": 0.4991 + }, + { + "start": 27640.06, + "end": 27640.18, + "probability": 0.0018 + }, + { + "start": 27642.18, + "end": 27642.88, + "probability": 0.0607 + }, + { + "start": 27642.94, + "end": 27642.94, + "probability": 0.0901 + }, + { + "start": 27642.94, + "end": 27642.94, + "probability": 0.0631 + }, + { + "start": 27642.94, + "end": 27643.98, + "probability": 0.0278 + }, + { + "start": 27644.12, + "end": 27644.52, + "probability": 0.305 + }, + { + "start": 27645.1, + "end": 27645.1, + "probability": 0.2699 + }, + { + "start": 27645.1, + "end": 27645.52, + "probability": 0.6946 + }, + { + "start": 27646.34, + "end": 27646.86, + "probability": 0.9236 + }, + { + "start": 27647.66, + "end": 27648.72, + "probability": 0.8072 + }, + { + "start": 27650.68, + "end": 27654.98, + "probability": 0.5777 + }, + { + "start": 27655.12, + "end": 27656.38, + "probability": 0.1168 + }, + { + "start": 27656.78, + "end": 27656.98, + "probability": 0.7129 + }, + { + "start": 27658.08, + "end": 27658.46, + "probability": 0.5477 + }, + { + "start": 27658.78, + "end": 27658.82, + "probability": 0.7358 + }, + { + "start": 27659.34, + "end": 27662.2, + "probability": 0.7495 + }, + { + "start": 27663.0, + "end": 27664.76, + "probability": 0.9578 + }, + { + "start": 27665.28, + "end": 27665.98, + "probability": 0.8237 + }, + { + "start": 27666.12, + "end": 27670.52, + "probability": 0.9871 + }, + { + "start": 27671.52, + "end": 27673.4, + "probability": 0.7648 + }, + { + "start": 27673.44, + "end": 27674.7, + "probability": 0.8144 + }, + { + "start": 27687.08, + "end": 27687.78, + "probability": 0.6976 + }, + { + "start": 27687.88, + "end": 27688.92, + "probability": 0.8349 + }, + { + "start": 27688.98, + "end": 27690.2, + "probability": 0.9912 + }, + { + "start": 27690.72, + "end": 27693.86, + "probability": 0.9902 + }, + { + "start": 27694.48, + "end": 27696.48, + "probability": 0.9374 + }, + { + "start": 27697.7, + "end": 27701.22, + "probability": 0.9655 + }, + { + "start": 27701.94, + "end": 27703.84, + "probability": 0.4959 + }, + { + "start": 27705.04, + "end": 27707.34, + "probability": 0.1245 + }, + { + "start": 27708.08, + "end": 27710.0, + "probability": 0.9142 + }, + { + "start": 27710.7, + "end": 27712.68, + "probability": 0.656 + }, + { + "start": 27712.78, + "end": 27714.26, + "probability": 0.8783 + }, + { + "start": 27715.04, + "end": 27716.06, + "probability": 0.8746 + }, + { + "start": 27716.08, + "end": 27719.58, + "probability": 0.6799 + }, + { + "start": 27719.68, + "end": 27722.86, + "probability": 0.9832 + }, + { + "start": 27723.76, + "end": 27726.42, + "probability": 0.9888 + }, + { + "start": 27726.42, + "end": 27728.7, + "probability": 0.5434 + }, + { + "start": 27728.98, + "end": 27729.92, + "probability": 0.7517 + }, + { + "start": 27732.94, + "end": 27735.38, + "probability": 0.8418 + }, + { + "start": 27736.1, + "end": 27739.8, + "probability": 0.9583 + }, + { + "start": 27740.06, + "end": 27741.66, + "probability": 0.5901 + }, + { + "start": 27741.98, + "end": 27747.28, + "probability": 0.8167 + }, + { + "start": 27748.08, + "end": 27749.9, + "probability": 0.849 + }, + { + "start": 27750.0, + "end": 27751.66, + "probability": 0.7953 + }, + { + "start": 27752.04, + "end": 27753.8, + "probability": 0.481 + }, + { + "start": 27754.1, + "end": 27757.06, + "probability": 0.3709 + }, + { + "start": 27757.06, + "end": 27759.32, + "probability": 0.967 + }, + { + "start": 27760.7, + "end": 27762.58, + "probability": 0.9203 + }, + { + "start": 27762.84, + "end": 27763.4, + "probability": 0.5561 + }, + { + "start": 27763.72, + "end": 27764.82, + "probability": 0.5128 + }, + { + "start": 27765.38, + "end": 27767.8, + "probability": 0.1592 + }, + { + "start": 27768.4, + "end": 27770.72, + "probability": 0.9331 + }, + { + "start": 27771.36, + "end": 27771.9, + "probability": 0.8952 + }, + { + "start": 27772.02, + "end": 27775.92, + "probability": 0.9125 + }, + { + "start": 27776.52, + "end": 27778.0, + "probability": 0.5992 + }, + { + "start": 27778.86, + "end": 27779.68, + "probability": 0.113 + }, + { + "start": 27779.92, + "end": 27782.16, + "probability": 0.9115 + }, + { + "start": 27782.38, + "end": 27785.18, + "probability": 0.9973 + }, + { + "start": 27785.38, + "end": 27786.58, + "probability": 0.9119 + }, + { + "start": 27787.16, + "end": 27789.22, + "probability": 0.5493 + }, + { + "start": 27789.32, + "end": 27790.98, + "probability": 0.847 + }, + { + "start": 27791.21, + "end": 27793.86, + "probability": 0.986 + }, + { + "start": 27794.08, + "end": 27795.14, + "probability": 0.6515 + }, + { + "start": 27796.0, + "end": 27798.92, + "probability": 0.9714 + }, + { + "start": 27799.6, + "end": 27800.76, + "probability": 0.9553 + }, + { + "start": 27801.3, + "end": 27803.82, + "probability": 0.9493 + }, + { + "start": 27804.1, + "end": 27806.26, + "probability": 0.6461 + }, + { + "start": 27806.96, + "end": 27809.58, + "probability": 0.112 + }, + { + "start": 27810.66, + "end": 27813.16, + "probability": 0.6915 + }, + { + "start": 27813.4, + "end": 27815.12, + "probability": 0.8668 + }, + { + "start": 27815.84, + "end": 27819.18, + "probability": 0.682 + }, + { + "start": 27819.84, + "end": 27822.96, + "probability": 0.6703 + }, + { + "start": 27824.02, + "end": 27826.04, + "probability": 0.9912 + }, + { + "start": 27826.04, + "end": 27829.16, + "probability": 0.563 + }, + { + "start": 27829.7, + "end": 27832.5, + "probability": 0.5442 + }, + { + "start": 27833.3, + "end": 27837.2, + "probability": 0.7837 + }, + { + "start": 27837.38, + "end": 27838.78, + "probability": 0.9634 + }, + { + "start": 27839.08, + "end": 27840.22, + "probability": 0.8627 + }, + { + "start": 27840.94, + "end": 27841.9, + "probability": 0.2507 + }, + { + "start": 27842.08, + "end": 27850.02, + "probability": 0.8962 + }, + { + "start": 27850.92, + "end": 27852.26, + "probability": 0.96 + }, + { + "start": 27852.58, + "end": 27854.96, + "probability": 0.5379 + }, + { + "start": 27855.06, + "end": 27855.94, + "probability": 0.443 + }, + { + "start": 27856.02, + "end": 27859.74, + "probability": 0.9914 + }, + { + "start": 27861.04, + "end": 27862.36, + "probability": 0.9941 + }, + { + "start": 27863.62, + "end": 27865.9, + "probability": 0.984 + }, + { + "start": 27866.12, + "end": 27868.4, + "probability": 0.9023 + }, + { + "start": 27868.68, + "end": 27870.46, + "probability": 0.9639 + }, + { + "start": 27871.1, + "end": 27873.7, + "probability": 0.5897 + }, + { + "start": 27874.52, + "end": 27878.9, + "probability": 0.9084 + }, + { + "start": 27878.9, + "end": 27882.74, + "probability": 0.9755 + }, + { + "start": 27882.84, + "end": 27883.62, + "probability": 0.5345 + }, + { + "start": 27883.84, + "end": 27884.56, + "probability": 0.4982 + }, + { + "start": 27885.87, + "end": 27888.76, + "probability": 0.985 + }, + { + "start": 27889.94, + "end": 27891.76, + "probability": 0.928 + }, + { + "start": 27891.76, + "end": 27893.86, + "probability": 0.7781 + }, + { + "start": 27894.4, + "end": 27896.5, + "probability": 0.7996 + }, + { + "start": 27898.0, + "end": 27900.8, + "probability": 0.1567 + }, + { + "start": 27901.44, + "end": 27904.8, + "probability": 0.6989 + }, + { + "start": 27905.08, + "end": 27906.86, + "probability": 0.8435 + }, + { + "start": 27907.54, + "end": 27911.51, + "probability": 0.918 + }, + { + "start": 27915.5, + "end": 27916.68, + "probability": 0.0128 + }, + { + "start": 27916.78, + "end": 27919.6, + "probability": 0.8122 + }, + { + "start": 27919.98, + "end": 27922.26, + "probability": 0.9561 + }, + { + "start": 27922.38, + "end": 27922.88, + "probability": 0.7503 + }, + { + "start": 27922.96, + "end": 27924.22, + "probability": 0.8955 + }, + { + "start": 27924.54, + "end": 27924.82, + "probability": 0.8395 + }, + { + "start": 27925.8, + "end": 27927.52, + "probability": 0.025 + }, + { + "start": 27928.43, + "end": 27930.94, + "probability": 0.8936 + }, + { + "start": 27931.52, + "end": 27932.42, + "probability": 0.8954 + }, + { + "start": 27933.1, + "end": 27935.36, + "probability": 0.9799 + }, + { + "start": 27935.36, + "end": 27938.22, + "probability": 0.7066 + }, + { + "start": 27938.22, + "end": 27939.0, + "probability": 0.5873 + }, + { + "start": 27939.6, + "end": 27941.64, + "probability": 0.1863 + }, + { + "start": 27942.41, + "end": 27944.68, + "probability": 0.9883 + }, + { + "start": 27945.5, + "end": 27946.3, + "probability": 0.8433 + }, + { + "start": 27946.52, + "end": 27947.72, + "probability": 0.8167 + }, + { + "start": 27947.98, + "end": 27949.84, + "probability": 0.8794 + }, + { + "start": 27950.9, + "end": 27952.32, + "probability": 0.5725 + }, + { + "start": 27953.38, + "end": 27954.68, + "probability": 0.7839 + }, + { + "start": 27954.76, + "end": 27959.54, + "probability": 0.9114 + }, + { + "start": 27959.76, + "end": 27960.0, + "probability": 0.9856 + }, + { + "start": 27961.02, + "end": 27962.18, + "probability": 0.6803 + }, + { + "start": 27962.34, + "end": 27963.2, + "probability": 0.8221 + }, + { + "start": 27963.58, + "end": 27964.46, + "probability": 0.7742 + }, + { + "start": 27964.66, + "end": 27965.3, + "probability": 0.7886 + }, + { + "start": 27976.82, + "end": 27977.5, + "probability": 0.4975 + }, + { + "start": 27977.58, + "end": 27979.14, + "probability": 0.6215 + }, + { + "start": 27979.38, + "end": 27981.32, + "probability": 0.8433 + }, + { + "start": 27981.88, + "end": 27982.16, + "probability": 0.6521 + }, + { + "start": 27982.86, + "end": 27983.76, + "probability": 0.6037 + }, + { + "start": 27984.08, + "end": 27987.76, + "probability": 0.8688 + }, + { + "start": 27987.98, + "end": 27988.76, + "probability": 0.8557 + }, + { + "start": 27990.34, + "end": 27993.35, + "probability": 0.8618 + }, + { + "start": 27994.58, + "end": 27996.16, + "probability": 0.8942 + }, + { + "start": 27996.9, + "end": 27999.64, + "probability": 0.7873 + }, + { + "start": 27999.78, + "end": 28003.04, + "probability": 0.8469 + }, + { + "start": 28003.9, + "end": 28004.34, + "probability": 0.6881 + }, + { + "start": 28005.1, + "end": 28006.44, + "probability": 0.6798 + }, + { + "start": 28006.54, + "end": 28009.2, + "probability": 0.8758 + }, + { + "start": 28010.92, + "end": 28014.44, + "probability": 0.887 + }, + { + "start": 28015.7, + "end": 28016.48, + "probability": 0.6518 + }, + { + "start": 28017.32, + "end": 28018.68, + "probability": 0.9932 + }, + { + "start": 28020.31, + "end": 28023.37, + "probability": 0.3435 + }, + { + "start": 28025.16, + "end": 28026.31, + "probability": 0.6918 + }, + { + "start": 28026.98, + "end": 28028.14, + "probability": 0.7937 + }, + { + "start": 28028.68, + "end": 28029.3, + "probability": 0.5877 + }, + { + "start": 28029.86, + "end": 28032.52, + "probability": 0.9054 + }, + { + "start": 28033.16, + "end": 28033.16, + "probability": 0.4818 + }, + { + "start": 28033.16, + "end": 28033.16, + "probability": 0.3024 + }, + { + "start": 28033.16, + "end": 28033.16, + "probability": 0.6976 + }, + { + "start": 28033.16, + "end": 28033.16, + "probability": 0.7496 + }, + { + "start": 28033.16, + "end": 28033.74, + "probability": 0.3979 + }, + { + "start": 28033.86, + "end": 28034.36, + "probability": 0.7892 + }, + { + "start": 28034.5, + "end": 28034.88, + "probability": 0.4235 + }, + { + "start": 28035.08, + "end": 28035.46, + "probability": 0.91 + }, + { + "start": 28035.62, + "end": 28035.9, + "probability": 0.6667 + }, + { + "start": 28036.06, + "end": 28036.54, + "probability": 0.9026 + }, + { + "start": 28037.26, + "end": 28038.52, + "probability": 0.6293 + }, + { + "start": 28039.12, + "end": 28040.76, + "probability": 0.6923 + }, + { + "start": 28041.96, + "end": 28042.68, + "probability": 0.8357 + }, + { + "start": 28043.58, + "end": 28044.26, + "probability": 0.6665 + }, + { + "start": 28044.3, + "end": 28044.66, + "probability": 0.544 + }, + { + "start": 28044.96, + "end": 28045.18, + "probability": 0.6758 + }, + { + "start": 28045.28, + "end": 28045.74, + "probability": 0.9007 + }, + { + "start": 28045.86, + "end": 28046.1, + "probability": 0.4282 + }, + { + "start": 28046.18, + "end": 28046.6, + "probability": 0.7479 + }, + { + "start": 28048.48, + "end": 28049.58, + "probability": 0.9482 + }, + { + "start": 28050.48, + "end": 28051.84, + "probability": 0.4436 + }, + { + "start": 28055.44, + "end": 28057.34, + "probability": 0.6589 + }, + { + "start": 28057.4, + "end": 28057.88, + "probability": 0.3967 + }, + { + "start": 28058.22, + "end": 28058.52, + "probability": 0.7465 + }, + { + "start": 28059.58, + "end": 28060.96, + "probability": 0.9639 + }, + { + "start": 28060.98, + "end": 28061.48, + "probability": 0.8306 + }, + { + "start": 28061.78, + "end": 28063.32, + "probability": 0.9 + }, + { + "start": 28063.94, + "end": 28064.68, + "probability": 0.7952 + }, + { + "start": 28064.88, + "end": 28065.88, + "probability": 0.5172 + }, + { + "start": 28066.0, + "end": 28066.44, + "probability": 0.6186 + }, + { + "start": 28066.76, + "end": 28067.82, + "probability": 0.9358 + }, + { + "start": 28068.48, + "end": 28069.02, + "probability": 0.4101 + }, + { + "start": 28069.2, + "end": 28070.58, + "probability": 0.8789 + }, + { + "start": 28071.02, + "end": 28072.78, + "probability": 0.6533 + }, + { + "start": 28073.64, + "end": 28074.5, + "probability": 0.8459 + }, + { + "start": 28075.04, + "end": 28076.24, + "probability": 0.9753 + }, + { + "start": 28076.88, + "end": 28079.64, + "probability": 0.9868 + }, + { + "start": 28080.68, + "end": 28081.58, + "probability": 0.9733 + }, + { + "start": 28093.4, + "end": 28094.82, + "probability": 0.99 + }, + { + "start": 28095.66, + "end": 28096.44, + "probability": 0.9714 + }, + { + "start": 28096.96, + "end": 28097.9, + "probability": 0.7792 + }, + { + "start": 28097.9, + "end": 28098.46, + "probability": 0.4275 + }, + { + "start": 28098.74, + "end": 28099.82, + "probability": 0.4107 + }, + { + "start": 28099.82, + "end": 28100.26, + "probability": 0.5849 + }, + { + "start": 28103.64, + "end": 28106.45, + "probability": 0.6463 + }, + { + "start": 28116.46, + "end": 28117.34, + "probability": 0.5405 + }, + { + "start": 28117.78, + "end": 28119.04, + "probability": 0.6989 + }, + { + "start": 28119.04, + "end": 28119.48, + "probability": 0.5788 + }, + { + "start": 28119.56, + "end": 28120.42, + "probability": 0.6426 + }, + { + "start": 28120.44, + "end": 28121.02, + "probability": 0.6615 + }, + { + "start": 28121.7, + "end": 28122.35, + "probability": 0.248 + }, + { + "start": 28134.92, + "end": 28135.44, + "probability": 0.04 + }, + { + "start": 28135.44, + "end": 28136.28, + "probability": 0.352 + }, + { + "start": 28136.64, + "end": 28137.38, + "probability": 0.5744 + }, + { + "start": 28137.54, + "end": 28137.58, + "probability": 0.4635 + }, + { + "start": 28137.58, + "end": 28137.7, + "probability": 0.3873 + }, + { + "start": 28137.7, + "end": 28138.18, + "probability": 0.5912 + }, + { + "start": 28138.8, + "end": 28140.44, + "probability": 0.4753 + }, + { + "start": 28143.16, + "end": 28144.86, + "probability": 0.7798 + }, + { + "start": 28145.4, + "end": 28148.4, + "probability": 0.5925 + }, + { + "start": 28148.98, + "end": 28149.58, + "probability": 0.7712 + }, + { + "start": 28150.1, + "end": 28151.22, + "probability": 0.4526 + }, + { + "start": 28152.08, + "end": 28152.48, + "probability": 0.2489 + }, + { + "start": 28152.48, + "end": 28155.2, + "probability": 0.4221 + }, + { + "start": 28155.66, + "end": 28155.86, + "probability": 0.4103 + }, + { + "start": 28155.88, + "end": 28157.72, + "probability": 0.4808 + }, + { + "start": 28163.82, + "end": 28164.1, + "probability": 0.0292 + }, + { + "start": 28164.96, + "end": 28165.78, + "probability": 0.1981 + }, + { + "start": 28166.22, + "end": 28167.02, + "probability": 0.216 + }, + { + "start": 28167.36, + "end": 28167.74, + "probability": 0.0139 + }, + { + "start": 28168.08, + "end": 28168.64, + "probability": 0.2015 + }, + { + "start": 28168.74, + "end": 28168.8, + "probability": 0.0844 + }, + { + "start": 28175.52, + "end": 28176.76, + "probability": 0.5235 + }, + { + "start": 28185.0, + "end": 28185.52, + "probability": 0.0367 + }, + { + "start": 28185.86, + "end": 28185.86, + "probability": 0.0182 + }, + { + "start": 28185.86, + "end": 28188.2, + "probability": 0.2881 + }, + { + "start": 28188.2, + "end": 28188.36, + "probability": 0.2223 + }, + { + "start": 28188.36, + "end": 28188.36, + "probability": 0.2114 + }, + { + "start": 28188.36, + "end": 28188.36, + "probability": 0.252 + }, + { + "start": 28188.36, + "end": 28188.36, + "probability": 0.1444 + }, + { + "start": 28188.36, + "end": 28188.36, + "probability": 0.2274 + }, + { + "start": 28188.36, + "end": 28188.36, + "probability": 0.3369 + }, + { + "start": 28188.36, + "end": 28188.72, + "probability": 0.3403 + }, + { + "start": 28190.08, + "end": 28190.98, + "probability": 0.207 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.0, + "end": 28191.0, + "probability": 0.0 + }, + { + "start": 28191.22, + "end": 28192.04, + "probability": 0.5864 + }, + { + "start": 28192.92, + "end": 28194.08, + "probability": 0.5701 + }, + { + "start": 28195.42, + "end": 28196.54, + "probability": 0.936 + }, + { + "start": 28198.44, + "end": 28199.42, + "probability": 0.9766 + }, + { + "start": 28200.12, + "end": 28200.86, + "probability": 0.6178 + }, + { + "start": 28203.12, + "end": 28206.6, + "probability": 0.977 + }, + { + "start": 28207.18, + "end": 28210.52, + "probability": 0.9949 + }, + { + "start": 28210.52, + "end": 28213.68, + "probability": 0.9879 + }, + { + "start": 28215.76, + "end": 28217.44, + "probability": 0.7628 + }, + { + "start": 28218.62, + "end": 28220.66, + "probability": 0.9915 + }, + { + "start": 28220.76, + "end": 28221.44, + "probability": 0.5278 + }, + { + "start": 28221.82, + "end": 28224.0, + "probability": 0.9965 + }, + { + "start": 28224.08, + "end": 28225.18, + "probability": 0.756 + }, + { + "start": 28226.12, + "end": 28227.6, + "probability": 0.9816 + }, + { + "start": 28228.4, + "end": 28232.56, + "probability": 0.7932 + }, + { + "start": 28233.66, + "end": 28235.12, + "probability": 0.9912 + }, + { + "start": 28235.74, + "end": 28237.8, + "probability": 0.877 + }, + { + "start": 28239.3, + "end": 28241.56, + "probability": 0.5629 + }, + { + "start": 28241.82, + "end": 28245.86, + "probability": 0.9526 + }, + { + "start": 28246.68, + "end": 28247.28, + "probability": 0.9744 + }, + { + "start": 28250.7, + "end": 28251.45, + "probability": 0.999 + }, + { + "start": 28252.48, + "end": 28253.74, + "probability": 0.9997 + }, + { + "start": 28255.34, + "end": 28258.16, + "probability": 0.9984 + }, + { + "start": 28259.06, + "end": 28261.56, + "probability": 0.8432 + }, + { + "start": 28262.58, + "end": 28263.76, + "probability": 0.9248 + }, + { + "start": 28264.48, + "end": 28265.52, + "probability": 0.9675 + }, + { + "start": 28266.48, + "end": 28267.72, + "probability": 0.7567 + }, + { + "start": 28267.9, + "end": 28268.64, + "probability": 0.9163 + }, + { + "start": 28268.72, + "end": 28269.72, + "probability": 0.8611 + }, + { + "start": 28270.18, + "end": 28271.08, + "probability": 0.9857 + }, + { + "start": 28271.16, + "end": 28273.14, + "probability": 0.8169 + }, + { + "start": 28274.3, + "end": 28274.88, + "probability": 0.76 + }, + { + "start": 28276.48, + "end": 28278.56, + "probability": 0.9788 + }, + { + "start": 28280.58, + "end": 28281.42, + "probability": 0.8813 + }, + { + "start": 28282.22, + "end": 28287.32, + "probability": 0.9844 + }, + { + "start": 28289.1, + "end": 28291.04, + "probability": 0.9291 + }, + { + "start": 28291.84, + "end": 28295.0, + "probability": 0.9981 + }, + { + "start": 28295.66, + "end": 28296.9, + "probability": 0.9961 + }, + { + "start": 28298.0, + "end": 28298.74, + "probability": 0.9586 + }, + { + "start": 28299.44, + "end": 28300.48, + "probability": 0.9712 + }, + { + "start": 28301.14, + "end": 28303.16, + "probability": 0.7999 + }, + { + "start": 28303.7, + "end": 28305.6, + "probability": 0.8604 + }, + { + "start": 28307.42, + "end": 28308.43, + "probability": 0.8687 + }, + { + "start": 28309.22, + "end": 28313.84, + "probability": 0.9836 + }, + { + "start": 28313.88, + "end": 28314.58, + "probability": 0.7358 + }, + { + "start": 28315.18, + "end": 28316.82, + "probability": 0.7929 + }, + { + "start": 28317.7, + "end": 28319.08, + "probability": 0.9546 + }, + { + "start": 28319.78, + "end": 28320.14, + "probability": 0.85 + }, + { + "start": 28320.3, + "end": 28322.6, + "probability": 0.9742 + }, + { + "start": 28327.42, + "end": 28328.04, + "probability": 0.8172 + }, + { + "start": 28328.62, + "end": 28329.64, + "probability": 0.9307 + }, + { + "start": 28330.68, + "end": 28332.62, + "probability": 0.9669 + }, + { + "start": 28333.26, + "end": 28333.6, + "probability": 0.8447 + }, + { + "start": 28334.86, + "end": 28337.08, + "probability": 0.9924 + }, + { + "start": 28337.84, + "end": 28339.32, + "probability": 0.9519 + }, + { + "start": 28340.58, + "end": 28341.32, + "probability": 0.9894 + }, + { + "start": 28342.54, + "end": 28343.57, + "probability": 0.9961 + }, + { + "start": 28344.69, + "end": 28346.93, + "probability": 0.9207 + }, + { + "start": 28347.77, + "end": 28348.23, + "probability": 0.7584 + }, + { + "start": 28358.31, + "end": 28361.08, + "probability": 0.8987 + }, + { + "start": 28362.4, + "end": 28363.46, + "probability": 0.5562 + }, + { + "start": 28364.42, + "end": 28367.52, + "probability": 0.6668 + }, + { + "start": 28368.04, + "end": 28370.64, + "probability": 0.9627 + }, + { + "start": 28372.46, + "end": 28373.42, + "probability": 0.9255 + }, + { + "start": 28374.08, + "end": 28375.14, + "probability": 0.8951 + }, + { + "start": 28375.3, + "end": 28375.54, + "probability": 0.1914 + }, + { + "start": 28375.68, + "end": 28377.96, + "probability": 0.4335 + }, + { + "start": 28378.74, + "end": 28379.54, + "probability": 0.7815 + }, + { + "start": 28380.96, + "end": 28382.72, + "probability": 0.8536 + }, + { + "start": 28383.34, + "end": 28384.72, + "probability": 0.9122 + }, + { + "start": 28385.06, + "end": 28387.46, + "probability": 0.8555 + }, + { + "start": 28388.1, + "end": 28389.7, + "probability": 0.4049 + }, + { + "start": 28390.68, + "end": 28391.2, + "probability": 0.5017 + }, + { + "start": 28409.92, + "end": 28411.54, + "probability": 0.6778 + }, + { + "start": 28412.64, + "end": 28414.32, + "probability": 0.2887 + }, + { + "start": 28415.02, + "end": 28415.6, + "probability": 0.5451 + }, + { + "start": 28415.72, + "end": 28418.0, + "probability": 0.9004 + }, + { + "start": 28418.32, + "end": 28420.22, + "probability": 0.7975 + }, + { + "start": 28420.98, + "end": 28421.7, + "probability": 0.5482 + }, + { + "start": 28421.88, + "end": 28422.5, + "probability": 0.3857 + }, + { + "start": 28422.5, + "end": 28423.68, + "probability": 0.5891 + }, + { + "start": 28423.72, + "end": 28427.6, + "probability": 0.6651 + }, + { + "start": 28427.68, + "end": 28428.2, + "probability": 0.0304 + }, + { + "start": 28428.24, + "end": 28429.1, + "probability": 0.4148 + }, + { + "start": 28430.92, + "end": 28431.38, + "probability": 0.3496 + }, + { + "start": 28431.5, + "end": 28432.26, + "probability": 0.082 + }, + { + "start": 28447.11, + "end": 28448.94, + "probability": 0.4395 + }, + { + "start": 28449.0, + "end": 28451.46, + "probability": 0.3604 + }, + { + "start": 28452.48, + "end": 28457.18, + "probability": 0.1623 + }, + { + "start": 28463.58, + "end": 28464.34, + "probability": 0.0228 + }, + { + "start": 28464.34, + "end": 28465.48, + "probability": 0.1608 + }, + { + "start": 28466.76, + "end": 28470.72, + "probability": 0.0746 + }, + { + "start": 28471.4, + "end": 28473.78, + "probability": 0.072 + }, + { + "start": 28474.32, + "end": 28474.78, + "probability": 0.0397 + }, + { + "start": 28474.98, + "end": 28475.34, + "probability": 0.0164 + }, + { + "start": 28475.34, + "end": 28475.34, + "probability": 0.0472 + }, + { + "start": 28475.34, + "end": 28476.04, + "probability": 0.2507 + }, + { + "start": 28482.56, + "end": 28485.7, + "probability": 0.0598 + }, + { + "start": 28486.84, + "end": 28487.0, + "probability": 0.0668 + }, + { + "start": 28487.0, + "end": 28487.0, + "probability": 0.0 + }, + { + "start": 28487.0, + "end": 28487.0, + "probability": 0.0 + }, + { + "start": 28487.0, + "end": 28487.0, + "probability": 0.0 + }, + { + "start": 28487.0, + "end": 28487.0, + "probability": 0.0 + }, + { + "start": 28487.0, + "end": 28487.0, + "probability": 0.0 + }, + { + "start": 28487.0, + "end": 28487.0, + "probability": 0.0 + }, + { + "start": 28487.0, + "end": 28487.0, + "probability": 0.0 + }, + { + "start": 28487.0, + "end": 28487.0, + "probability": 0.0 + }, + { + "start": 28487.14, + "end": 28489.1, + "probability": 0.9299 + }, + { + "start": 28496.92, + "end": 28497.64, + "probability": 0.6192 + }, + { + "start": 28498.92, + "end": 28502.42, + "probability": 0.7746 + }, + { + "start": 28505.95, + "end": 28506.51, + "probability": 0.5878 + }, + { + "start": 28507.07, + "end": 28511.3, + "probability": 0.5634 + }, + { + "start": 28512.1, + "end": 28514.48, + "probability": 0.844 + }, + { + "start": 28515.49, + "end": 28517.4, + "probability": 0.8906 + }, + { + "start": 28518.39, + "end": 28520.57, + "probability": 0.9055 + }, + { + "start": 28520.75, + "end": 28522.47, + "probability": 0.7024 + }, + { + "start": 28522.85, + "end": 28523.53, + "probability": 0.8044 + }, + { + "start": 28524.08, + "end": 28529.07, + "probability": 0.7378 + }, + { + "start": 28530.01, + "end": 28531.12, + "probability": 0.9359 + }, + { + "start": 28531.85, + "end": 28535.05, + "probability": 0.9921 + }, + { + "start": 28536.83, + "end": 28544.31, + "probability": 0.8734 + }, + { + "start": 28546.65, + "end": 28547.65, + "probability": 0.8918 + }, + { + "start": 28548.29, + "end": 28549.71, + "probability": 0.9808 + }, + { + "start": 28549.77, + "end": 28551.97, + "probability": 0.5138 + }, + { + "start": 28552.13, + "end": 28553.93, + "probability": 0.7727 + }, + { + "start": 28554.09, + "end": 28555.73, + "probability": 0.9445 + }, + { + "start": 28556.13, + "end": 28556.59, + "probability": 0.9216 + }, + { + "start": 28556.81, + "end": 28559.91, + "probability": 0.9896 + }, + { + "start": 28561.05, + "end": 28562.75, + "probability": 0.8617 + }, + { + "start": 28564.37, + "end": 28565.3, + "probability": 0.9971 + }, + { + "start": 28565.71, + "end": 28566.41, + "probability": 0.5378 + }, + { + "start": 28566.75, + "end": 28567.57, + "probability": 0.5751 + }, + { + "start": 28567.59, + "end": 28569.41, + "probability": 0.9695 + }, + { + "start": 28569.93, + "end": 28571.17, + "probability": 0.8998 + }, + { + "start": 28572.33, + "end": 28574.19, + "probability": 0.6727 + }, + { + "start": 28575.11, + "end": 28578.33, + "probability": 0.7231 + }, + { + "start": 28578.43, + "end": 28579.37, + "probability": 0.8999 + }, + { + "start": 28580.07, + "end": 28581.37, + "probability": 0.9774 + }, + { + "start": 28583.21, + "end": 28585.33, + "probability": 0.6991 + }, + { + "start": 28588.81, + "end": 28589.17, + "probability": 0.3514 + }, + { + "start": 28589.57, + "end": 28592.09, + "probability": 0.8359 + }, + { + "start": 28592.43, + "end": 28593.75, + "probability": 0.9005 + }, + { + "start": 28593.83, + "end": 28595.53, + "probability": 0.9248 + }, + { + "start": 28596.43, + "end": 28599.31, + "probability": 0.8467 + }, + { + "start": 28599.71, + "end": 28600.25, + "probability": 0.9371 + }, + { + "start": 28600.75, + "end": 28603.97, + "probability": 0.9105 + }, + { + "start": 28605.19, + "end": 28609.39, + "probability": 0.995 + }, + { + "start": 28610.33, + "end": 28611.76, + "probability": 0.6776 + }, + { + "start": 28612.43, + "end": 28614.43, + "probability": 0.9947 + }, + { + "start": 28615.61, + "end": 28618.91, + "probability": 0.8055 + }, + { + "start": 28622.07, + "end": 28625.01, + "probability": 0.8719 + }, + { + "start": 28626.15, + "end": 28627.43, + "probability": 0.7065 + }, + { + "start": 28628.35, + "end": 28629.5, + "probability": 0.8207 + }, + { + "start": 28630.11, + "end": 28630.71, + "probability": 0.9377 + }, + { + "start": 28631.81, + "end": 28634.85, + "probability": 0.9738 + }, + { + "start": 28635.51, + "end": 28636.83, + "probability": 0.9429 + }, + { + "start": 28638.61, + "end": 28639.07, + "probability": 0.7379 + }, + { + "start": 28639.95, + "end": 28642.39, + "probability": 0.8754 + }, + { + "start": 28643.23, + "end": 28644.55, + "probability": 0.929 + }, + { + "start": 28645.87, + "end": 28647.09, + "probability": 0.9617 + }, + { + "start": 28647.41, + "end": 28650.07, + "probability": 0.9055 + }, + { + "start": 28650.67, + "end": 28651.99, + "probability": 0.6624 + }, + { + "start": 28652.65, + "end": 28654.85, + "probability": 0.7445 + }, + { + "start": 28655.63, + "end": 28656.67, + "probability": 0.8774 + }, + { + "start": 28656.87, + "end": 28658.57, + "probability": 0.6126 + }, + { + "start": 28658.63, + "end": 28659.35, + "probability": 0.9619 + }, + { + "start": 28659.45, + "end": 28659.77, + "probability": 0.7862 + }, + { + "start": 28663.31, + "end": 28664.51, + "probability": 0.9593 + }, + { + "start": 28665.37, + "end": 28667.85, + "probability": 0.982 + }, + { + "start": 28668.45, + "end": 28669.55, + "probability": 0.9847 + }, + { + "start": 28670.47, + "end": 28671.95, + "probability": 0.6788 + }, + { + "start": 28672.05, + "end": 28673.43, + "probability": 0.9902 + }, + { + "start": 28674.63, + "end": 28680.05, + "probability": 0.9152 + }, + { + "start": 28681.09, + "end": 28681.49, + "probability": 0.6818 + }, + { + "start": 28681.83, + "end": 28683.63, + "probability": 0.9834 + }, + { + "start": 28683.73, + "end": 28684.81, + "probability": 0.3175 + }, + { + "start": 28686.07, + "end": 28686.21, + "probability": 0.5192 + }, + { + "start": 28686.47, + "end": 28687.25, + "probability": 0.8068 + }, + { + "start": 28687.61, + "end": 28688.57, + "probability": 0.8376 + }, + { + "start": 28690.99, + "end": 28692.43, + "probability": 0.9708 + }, + { + "start": 28692.65, + "end": 28695.79, + "probability": 0.87 + }, + { + "start": 28697.41, + "end": 28697.89, + "probability": 0.7959 + }, + { + "start": 28698.09, + "end": 28702.19, + "probability": 0.8507 + }, + { + "start": 28702.65, + "end": 28704.53, + "probability": 0.9824 + }, + { + "start": 28705.97, + "end": 28707.41, + "probability": 0.9785 + }, + { + "start": 28709.97, + "end": 28712.65, + "probability": 0.891 + }, + { + "start": 28713.87, + "end": 28714.97, + "probability": 0.9454 + }, + { + "start": 28715.83, + "end": 28718.21, + "probability": 0.9303 + }, + { + "start": 28718.91, + "end": 28719.51, + "probability": 0.9344 + }, + { + "start": 28720.45, + "end": 28721.05, + "probability": 0.8032 + }, + { + "start": 28723.13, + "end": 28724.25, + "probability": 0.9481 + }, + { + "start": 28724.35, + "end": 28724.99, + "probability": 0.7233 + }, + { + "start": 28725.11, + "end": 28725.71, + "probability": 0.8788 + }, + { + "start": 28726.23, + "end": 28727.07, + "probability": 0.4722 + }, + { + "start": 28727.77, + "end": 28730.93, + "probability": 0.9542 + }, + { + "start": 28732.01, + "end": 28732.64, + "probability": 0.5918 + }, + { + "start": 28734.07, + "end": 28736.0, + "probability": 0.99 + }, + { + "start": 28736.93, + "end": 28737.47, + "probability": 0.7179 + }, + { + "start": 28738.29, + "end": 28741.95, + "probability": 0.9702 + }, + { + "start": 28742.57, + "end": 28743.47, + "probability": 0.9629 + }, + { + "start": 28745.41, + "end": 28747.41, + "probability": 0.8128 + }, + { + "start": 28747.55, + "end": 28748.93, + "probability": 0.6671 + }, + { + "start": 28749.11, + "end": 28753.25, + "probability": 0.9871 + }, + { + "start": 28755.01, + "end": 28760.69, + "probability": 0.7129 + }, + { + "start": 28760.71, + "end": 28761.09, + "probability": 0.6422 + }, + { + "start": 28761.15, + "end": 28762.93, + "probability": 0.9597 + }, + { + "start": 28763.37, + "end": 28764.71, + "probability": 0.8403 + }, + { + "start": 28765.47, + "end": 28766.47, + "probability": 0.9309 + }, + { + "start": 28767.01, + "end": 28767.99, + "probability": 0.9458 + }, + { + "start": 28770.01, + "end": 28771.41, + "probability": 0.9636 + }, + { + "start": 28772.13, + "end": 28773.77, + "probability": 0.9871 + }, + { + "start": 28774.57, + "end": 28775.01, + "probability": 0.0421 + }, + { + "start": 28775.07, + "end": 28776.49, + "probability": 0.0547 + }, + { + "start": 28776.51, + "end": 28778.25, + "probability": 0.6765 + }, + { + "start": 28778.27, + "end": 28780.61, + "probability": 0.9018 + }, + { + "start": 28780.69, + "end": 28783.47, + "probability": 0.9944 + }, + { + "start": 28784.23, + "end": 28787.05, + "probability": 0.9437 + }, + { + "start": 28788.19, + "end": 28791.63, + "probability": 0.9748 + }, + { + "start": 28792.37, + "end": 28795.91, + "probability": 0.9736 + }, + { + "start": 28797.23, + "end": 28798.05, + "probability": 0.8994 + }, + { + "start": 28798.51, + "end": 28800.07, + "probability": 0.9655 + }, + { + "start": 28800.87, + "end": 28801.75, + "probability": 0.8246 + }, + { + "start": 28803.33, + "end": 28803.73, + "probability": 0.977 + }, + { + "start": 28806.11, + "end": 28806.77, + "probability": 0.9873 + }, + { + "start": 28808.91, + "end": 28809.65, + "probability": 0.7907 + }, + { + "start": 28810.13, + "end": 28811.95, + "probability": 0.9814 + }, + { + "start": 28812.29, + "end": 28813.19, + "probability": 0.2754 + }, + { + "start": 28813.39, + "end": 28814.51, + "probability": 0.9737 + }, + { + "start": 28814.85, + "end": 28815.81, + "probability": 0.9152 + }, + { + "start": 28816.31, + "end": 28817.61, + "probability": 0.9941 + }, + { + "start": 28817.73, + "end": 28818.69, + "probability": 0.5703 + }, + { + "start": 28818.75, + "end": 28821.97, + "probability": 0.9797 + }, + { + "start": 28823.43, + "end": 28824.68, + "probability": 0.9355 + }, + { + "start": 28826.53, + "end": 28827.31, + "probability": 0.8136 + }, + { + "start": 28827.85, + "end": 28828.49, + "probability": 0.5654 + }, + { + "start": 28828.63, + "end": 28829.42, + "probability": 0.8457 + }, + { + "start": 28830.57, + "end": 28831.45, + "probability": 0.9917 + }, + { + "start": 28832.83, + "end": 28833.55, + "probability": 0.9832 + }, + { + "start": 28835.81, + "end": 28837.93, + "probability": 0.9871 + }, + { + "start": 28839.23, + "end": 28840.03, + "probability": 0.9255 + }, + { + "start": 28840.19, + "end": 28842.79, + "probability": 0.9912 + }, + { + "start": 28842.83, + "end": 28844.03, + "probability": 0.995 + }, + { + "start": 28845.39, + "end": 28846.31, + "probability": 0.8699 + }, + { + "start": 28846.79, + "end": 28847.57, + "probability": 0.7764 + }, + { + "start": 28847.59, + "end": 28848.31, + "probability": 0.7207 + }, + { + "start": 28848.35, + "end": 28849.23, + "probability": 0.9627 + }, + { + "start": 28849.61, + "end": 28854.19, + "probability": 0.9683 + }, + { + "start": 28856.19, + "end": 28857.71, + "probability": 0.9624 + }, + { + "start": 28857.81, + "end": 28858.19, + "probability": 0.9415 + }, + { + "start": 28859.81, + "end": 28861.41, + "probability": 0.826 + }, + { + "start": 28861.73, + "end": 28864.87, + "probability": 0.9314 + }, + { + "start": 28865.99, + "end": 28868.27, + "probability": 0.9697 + }, + { + "start": 28868.69, + "end": 28869.31, + "probability": 0.8627 + }, + { + "start": 28869.83, + "end": 28870.63, + "probability": 0.9282 + }, + { + "start": 28873.19, + "end": 28878.79, + "probability": 0.9863 + }, + { + "start": 28879.27, + "end": 28879.88, + "probability": 0.6627 + }, + { + "start": 28879.99, + "end": 28881.71, + "probability": 0.7968 + }, + { + "start": 28883.11, + "end": 28885.79, + "probability": 0.9453 + }, + { + "start": 28887.09, + "end": 28888.15, + "probability": 0.8517 + }, + { + "start": 28888.29, + "end": 28888.73, + "probability": 0.701 + }, + { + "start": 28888.77, + "end": 28889.35, + "probability": 0.8575 + }, + { + "start": 28889.81, + "end": 28894.37, + "probability": 0.9066 + }, + { + "start": 28895.13, + "end": 28896.29, + "probability": 0.7129 + }, + { + "start": 28897.49, + "end": 28900.33, + "probability": 0.9868 + }, + { + "start": 28900.73, + "end": 28905.71, + "probability": 0.7809 + }, + { + "start": 28906.17, + "end": 28906.59, + "probability": 0.0343 + }, + { + "start": 28907.41, + "end": 28908.77, + "probability": 0.9878 + }, + { + "start": 28909.31, + "end": 28916.11, + "probability": 0.9797 + }, + { + "start": 28917.33, + "end": 28920.51, + "probability": 0.5408 + }, + { + "start": 28921.07, + "end": 28922.59, + "probability": 0.9474 + }, + { + "start": 28923.43, + "end": 28923.63, + "probability": 0.7187 + }, + { + "start": 28923.79, + "end": 28930.53, + "probability": 0.9117 + }, + { + "start": 28930.91, + "end": 28931.67, + "probability": 0.8687 + }, + { + "start": 28932.85, + "end": 28935.31, + "probability": 0.7101 + }, + { + "start": 28936.21, + "end": 28939.03, + "probability": 0.899 + }, + { + "start": 28940.15, + "end": 28945.31, + "probability": 0.9929 + }, + { + "start": 28945.65, + "end": 28948.34, + "probability": 0.9578 + }, + { + "start": 28948.95, + "end": 28949.55, + "probability": 0.9465 + }, + { + "start": 28949.97, + "end": 28950.89, + "probability": 0.8884 + }, + { + "start": 28951.89, + "end": 28953.71, + "probability": 0.9377 + }, + { + "start": 28954.33, + "end": 28958.23, + "probability": 0.7379 + }, + { + "start": 28959.97, + "end": 28962.83, + "probability": 0.9829 + }, + { + "start": 28963.45, + "end": 28965.37, + "probability": 0.7989 + }, + { + "start": 28965.75, + "end": 28967.73, + "probability": 0.6233 + }, + { + "start": 28967.87, + "end": 28969.25, + "probability": 0.9766 + }, + { + "start": 28969.47, + "end": 28970.15, + "probability": 0.9604 + }, + { + "start": 28970.57, + "end": 28972.12, + "probability": 0.9668 + }, + { + "start": 28973.67, + "end": 28974.23, + "probability": 0.3267 + }, + { + "start": 28974.87, + "end": 28977.59, + "probability": 0.9017 + }, + { + "start": 28977.97, + "end": 28979.07, + "probability": 0.8851 + }, + { + "start": 28979.69, + "end": 28981.03, + "probability": 0.9376 + }, + { + "start": 28981.09, + "end": 28983.41, + "probability": 0.7814 + }, + { + "start": 28983.65, + "end": 28984.71, + "probability": 0.6748 + }, + { + "start": 28984.77, + "end": 28985.21, + "probability": 0.8403 + }, + { + "start": 28985.49, + "end": 28986.4, + "probability": 0.8518 + }, + { + "start": 28986.61, + "end": 28989.39, + "probability": 0.891 + }, + { + "start": 28990.77, + "end": 28992.35, + "probability": 0.5343 + }, + { + "start": 28993.87, + "end": 28994.66, + "probability": 0.688 + }, + { + "start": 28996.45, + "end": 28997.11, + "probability": 0.8213 + }, + { + "start": 28997.69, + "end": 28998.37, + "probability": 0.5316 + }, + { + "start": 28998.49, + "end": 28999.83, + "probability": 0.8918 + }, + { + "start": 29000.65, + "end": 29005.87, + "probability": 0.9644 + }, + { + "start": 29005.87, + "end": 29010.73, + "probability": 0.9023 + }, + { + "start": 29011.15, + "end": 29012.37, + "probability": 0.5337 + }, + { + "start": 29013.67, + "end": 29017.11, + "probability": 0.9434 + }, + { + "start": 29020.37, + "end": 29020.91, + "probability": 0.4148 + }, + { + "start": 29020.97, + "end": 29022.31, + "probability": 0.9756 + }, + { + "start": 29022.45, + "end": 29023.1, + "probability": 0.663 + }, + { + "start": 29023.47, + "end": 29023.79, + "probability": 0.5785 + }, + { + "start": 29023.89, + "end": 29024.61, + "probability": 0.9715 + }, + { + "start": 29024.65, + "end": 29025.47, + "probability": 0.6693 + }, + { + "start": 29027.09, + "end": 29028.28, + "probability": 0.9863 + }, + { + "start": 29029.47, + "end": 29030.73, + "probability": 0.7259 + }, + { + "start": 29031.57, + "end": 29032.57, + "probability": 0.06 + }, + { + "start": 29032.61, + "end": 29035.39, + "probability": 0.5634 + }, + { + "start": 29037.32, + "end": 29040.53, + "probability": 0.9487 + }, + { + "start": 29041.17, + "end": 29043.31, + "probability": 0.7498 + }, + { + "start": 29045.83, + "end": 29048.63, + "probability": 0.9832 + }, + { + "start": 29050.01, + "end": 29052.73, + "probability": 0.9508 + }, + { + "start": 29053.15, + "end": 29056.18, + "probability": 0.9822 + }, + { + "start": 29056.47, + "end": 29056.81, + "probability": 0.7938 + }, + { + "start": 29057.25, + "end": 29057.97, + "probability": 0.7338 + }, + { + "start": 29057.97, + "end": 29058.79, + "probability": 0.4816 + }, + { + "start": 29059.29, + "end": 29065.21, + "probability": 0.8688 + }, + { + "start": 29065.69, + "end": 29066.99, + "probability": 0.503 + }, + { + "start": 29067.21, + "end": 29069.21, + "probability": 0.0737 + }, + { + "start": 29069.69, + "end": 29071.54, + "probability": 0.662 + }, + { + "start": 29072.37, + "end": 29076.93, + "probability": 0.8528 + }, + { + "start": 29077.65, + "end": 29078.99, + "probability": 0.8119 + }, + { + "start": 29080.19, + "end": 29081.09, + "probability": 0.7765 + }, + { + "start": 29081.85, + "end": 29084.29, + "probability": 0.9381 + }, + { + "start": 29085.25, + "end": 29085.92, + "probability": 0.7695 + }, + { + "start": 29087.29, + "end": 29087.79, + "probability": 0.9941 + }, + { + "start": 29088.87, + "end": 29090.19, + "probability": 0.8488 + }, + { + "start": 29091.23, + "end": 29093.63, + "probability": 0.4497 + }, + { + "start": 29094.23, + "end": 29095.77, + "probability": 0.6516 + }, + { + "start": 29095.85, + "end": 29098.77, + "probability": 0.9426 + }, + { + "start": 29098.85, + "end": 29101.13, + "probability": 0.6491 + }, + { + "start": 29101.73, + "end": 29102.57, + "probability": 0.5223 + }, + { + "start": 29102.73, + "end": 29105.07, + "probability": 0.9396 + }, + { + "start": 29105.13, + "end": 29106.51, + "probability": 0.8691 + }, + { + "start": 29106.99, + "end": 29108.73, + "probability": 0.5955 + }, + { + "start": 29109.69, + "end": 29113.05, + "probability": 0.9526 + }, + { + "start": 29114.09, + "end": 29115.21, + "probability": 0.9285 + }, + { + "start": 29117.03, + "end": 29117.47, + "probability": 0.4472 + }, + { + "start": 29118.61, + "end": 29119.73, + "probability": 0.9922 + }, + { + "start": 29120.55, + "end": 29123.69, + "probability": 0.7943 + }, + { + "start": 29124.15, + "end": 29128.63, + "probability": 0.9453 + }, + { + "start": 29130.61, + "end": 29131.95, + "probability": 0.8276 + }, + { + "start": 29132.97, + "end": 29133.77, + "probability": 0.9656 + }, + { + "start": 29134.73, + "end": 29135.71, + "probability": 0.5244 + }, + { + "start": 29135.89, + "end": 29136.15, + "probability": 0.5467 + }, + { + "start": 29136.27, + "end": 29141.21, + "probability": 0.9821 + }, + { + "start": 29142.27, + "end": 29149.51, + "probability": 0.9817 + }, + { + "start": 29150.19, + "end": 29155.96, + "probability": 0.9981 + }, + { + "start": 29157.15, + "end": 29158.79, + "probability": 0.5027 + }, + { + "start": 29159.67, + "end": 29161.61, + "probability": 0.9858 + }, + { + "start": 29162.37, + "end": 29163.65, + "probability": 0.7088 + }, + { + "start": 29164.29, + "end": 29165.27, + "probability": 0.6096 + }, + { + "start": 29165.97, + "end": 29167.27, + "probability": 0.7173 + }, + { + "start": 29168.81, + "end": 29170.69, + "probability": 0.9952 + }, + { + "start": 29171.09, + "end": 29173.39, + "probability": 0.9877 + }, + { + "start": 29173.57, + "end": 29173.95, + "probability": 0.3591 + }, + { + "start": 29174.43, + "end": 29177.09, + "probability": 0.9645 + }, + { + "start": 29177.19, + "end": 29178.15, + "probability": 0.8593 + }, + { + "start": 29178.27, + "end": 29179.07, + "probability": 0.7535 + }, + { + "start": 29179.87, + "end": 29180.15, + "probability": 0.6466 + }, + { + "start": 29180.79, + "end": 29184.53, + "probability": 0.8478 + }, + { + "start": 29184.53, + "end": 29189.77, + "probability": 0.7528 + }, + { + "start": 29190.13, + "end": 29192.21, + "probability": 0.0774 + }, + { + "start": 29192.21, + "end": 29195.37, + "probability": 0.6633 + }, + { + "start": 29195.61, + "end": 29196.31, + "probability": 0.4066 + }, + { + "start": 29196.31, + "end": 29197.15, + "probability": 0.7153 + }, + { + "start": 29197.75, + "end": 29198.23, + "probability": 0.7223 + }, + { + "start": 29198.79, + "end": 29199.93, + "probability": 0.8748 + }, + { + "start": 29200.17, + "end": 29201.91, + "probability": 0.9606 + }, + { + "start": 29202.33, + "end": 29205.33, + "probability": 0.9331 + }, + { + "start": 29205.99, + "end": 29207.53, + "probability": 0.7777 + }, + { + "start": 29208.49, + "end": 29210.89, + "probability": 0.7816 + }, + { + "start": 29211.99, + "end": 29213.31, + "probability": 0.8359 + }, + { + "start": 29213.93, + "end": 29215.77, + "probability": 0.9854 + }, + { + "start": 29216.09, + "end": 29216.97, + "probability": 0.8576 + }, + { + "start": 29217.93, + "end": 29220.19, + "probability": 0.9656 + }, + { + "start": 29222.21, + "end": 29223.55, + "probability": 0.9722 + }, + { + "start": 29224.13, + "end": 29231.21, + "probability": 0.9797 + }, + { + "start": 29232.29, + "end": 29236.87, + "probability": 0.9961 + }, + { + "start": 29237.57, + "end": 29241.47, + "probability": 0.9689 + }, + { + "start": 29242.11, + "end": 29242.95, + "probability": 0.7397 + }, + { + "start": 29243.09, + "end": 29245.59, + "probability": 0.9746 + }, + { + "start": 29246.05, + "end": 29246.59, + "probability": 0.4562 + }, + { + "start": 29246.73, + "end": 29247.51, + "probability": 0.858 + }, + { + "start": 29247.87, + "end": 29247.89, + "probability": 0.7137 + }, + { + "start": 29248.07, + "end": 29250.61, + "probability": 0.9336 + }, + { + "start": 29252.77, + "end": 29253.47, + "probability": 0.9634 + }, + { + "start": 29255.59, + "end": 29256.77, + "probability": 0.9285 + }, + { + "start": 29256.83, + "end": 29259.29, + "probability": 0.8508 + }, + { + "start": 29259.87, + "end": 29260.49, + "probability": 0.9146 + }, + { + "start": 29260.59, + "end": 29261.67, + "probability": 0.9603 + }, + { + "start": 29262.07, + "end": 29262.63, + "probability": 0.7009 + }, + { + "start": 29262.69, + "end": 29263.75, + "probability": 0.98 + }, + { + "start": 29264.27, + "end": 29265.15, + "probability": 0.4758 + }, + { + "start": 29265.33, + "end": 29266.29, + "probability": 0.9211 + }, + { + "start": 29266.75, + "end": 29269.03, + "probability": 0.7607 + }, + { + "start": 29269.73, + "end": 29273.79, + "probability": 0.8076 + }, + { + "start": 29274.51, + "end": 29277.31, + "probability": 0.9824 + }, + { + "start": 29278.05, + "end": 29278.17, + "probability": 0.0003 + }, + { + "start": 29278.69, + "end": 29282.89, + "probability": 0.9889 + }, + { + "start": 29282.98, + "end": 29286.01, + "probability": 0.9586 + }, + { + "start": 29286.99, + "end": 29287.49, + "probability": 0.5622 + }, + { + "start": 29287.51, + "end": 29289.33, + "probability": 0.6858 + }, + { + "start": 29290.99, + "end": 29292.11, + "probability": 0.7659 + }, + { + "start": 29292.17, + "end": 29292.89, + "probability": 0.8228 + }, + { + "start": 29293.33, + "end": 29295.13, + "probability": 0.8398 + }, + { + "start": 29295.97, + "end": 29297.89, + "probability": 0.9052 + }, + { + "start": 29298.29, + "end": 29302.93, + "probability": 0.9355 + }, + { + "start": 29303.71, + "end": 29306.47, + "probability": 0.7633 + }, + { + "start": 29307.09, + "end": 29308.63, + "probability": 0.7347 + }, + { + "start": 29311.81, + "end": 29313.87, + "probability": 0.9906 + }, + { + "start": 29324.43, + "end": 29325.11, + "probability": 0.368 + }, + { + "start": 29326.29, + "end": 29326.45, + "probability": 0.4213 + }, + { + "start": 29326.97, + "end": 29329.05, + "probability": 0.3175 + }, + { + "start": 29329.23, + "end": 29329.87, + "probability": 0.521 + }, + { + "start": 29329.91, + "end": 29330.13, + "probability": 0.2408 + }, + { + "start": 29331.61, + "end": 29337.37, + "probability": 0.3761 + }, + { + "start": 29337.75, + "end": 29339.47, + "probability": 0.2669 + }, + { + "start": 29340.15, + "end": 29342.65, + "probability": 0.1151 + }, + { + "start": 29343.23, + "end": 29343.93, + "probability": 0.4071 + }, + { + "start": 29345.1, + "end": 29348.2, + "probability": 0.111 + }, + { + "start": 29349.87, + "end": 29350.39, + "probability": 0.2761 + }, + { + "start": 29350.57, + "end": 29352.03, + "probability": 0.3674 + }, + { + "start": 29352.43, + "end": 29353.23, + "probability": 0.104 + }, + { + "start": 29354.19, + "end": 29354.45, + "probability": 0.0745 + }, + { + "start": 29355.19, + "end": 29358.91, + "probability": 0.2891 + }, + { + "start": 29359.17, + "end": 29361.59, + "probability": 0.353 + }, + { + "start": 29361.59, + "end": 29361.59, + "probability": 0.3633 + }, + { + "start": 29361.81, + "end": 29362.19, + "probability": 0.4244 + }, + { + "start": 29362.81, + "end": 29364.59, + "probability": 0.4348 + }, + { + "start": 29364.81, + "end": 29366.21, + "probability": 0.6475 + }, + { + "start": 29373.77, + "end": 29375.65, + "probability": 0.766 + }, + { + "start": 29376.23, + "end": 29377.45, + "probability": 0.7139 + }, + { + "start": 29377.61, + "end": 29379.77, + "probability": 0.9581 + }, + { + "start": 29380.17, + "end": 29381.71, + "probability": 0.9422 + }, + { + "start": 29382.21, + "end": 29383.69, + "probability": 0.9845 + }, + { + "start": 29384.35, + "end": 29385.49, + "probability": 0.9861 + }, + { + "start": 29386.41, + "end": 29390.31, + "probability": 0.9912 + }, + { + "start": 29390.31, + "end": 29393.05, + "probability": 0.9817 + }, + { + "start": 29393.65, + "end": 29395.17, + "probability": 0.9905 + }, + { + "start": 29396.11, + "end": 29398.05, + "probability": 0.9949 + }, + { + "start": 29398.61, + "end": 29400.25, + "probability": 0.8953 + }, + { + "start": 29400.91, + "end": 29404.07, + "probability": 0.9951 + }, + { + "start": 29404.65, + "end": 29407.37, + "probability": 0.999 + }, + { + "start": 29407.97, + "end": 29411.99, + "probability": 0.9917 + }, + { + "start": 29413.25, + "end": 29416.95, + "probability": 0.9937 + }, + { + "start": 29417.59, + "end": 29420.43, + "probability": 0.9979 + }, + { + "start": 29421.39, + "end": 29424.62, + "probability": 0.7816 + }, + { + "start": 29424.99, + "end": 29428.47, + "probability": 0.976 + }, + { + "start": 29430.01, + "end": 29433.33, + "probability": 0.9902 + }, + { + "start": 29433.33, + "end": 29437.17, + "probability": 0.9939 + }, + { + "start": 29437.17, + "end": 29441.73, + "probability": 0.9761 + }, + { + "start": 29442.29, + "end": 29444.85, + "probability": 0.9086 + }, + { + "start": 29445.57, + "end": 29449.95, + "probability": 0.9814 + }, + { + "start": 29450.19, + "end": 29452.83, + "probability": 0.9303 + }, + { + "start": 29453.25, + "end": 29457.41, + "probability": 0.7515 + }, + { + "start": 29457.89, + "end": 29460.85, + "probability": 0.9597 + }, + { + "start": 29461.41, + "end": 29464.27, + "probability": 0.9863 + }, + { + "start": 29464.91, + "end": 29465.47, + "probability": 0.8597 + }, + { + "start": 29466.31, + "end": 29469.97, + "probability": 0.8261 + }, + { + "start": 29470.61, + "end": 29471.55, + "probability": 0.9017 + }, + { + "start": 29472.17, + "end": 29475.75, + "probability": 0.9127 + }, + { + "start": 29476.35, + "end": 29478.23, + "probability": 0.9727 + }, + { + "start": 29479.63, + "end": 29484.23, + "probability": 0.8255 + }, + { + "start": 29484.93, + "end": 29488.99, + "probability": 0.9973 + }, + { + "start": 29489.73, + "end": 29496.09, + "probability": 0.9854 + }, + { + "start": 29497.13, + "end": 29498.95, + "probability": 0.9937 + }, + { + "start": 29499.65, + "end": 29502.29, + "probability": 0.9939 + }, + { + "start": 29502.73, + "end": 29508.15, + "probability": 0.9821 + }, + { + "start": 29508.19, + "end": 29512.81, + "probability": 0.9937 + }, + { + "start": 29513.35, + "end": 29515.95, + "probability": 0.9693 + }, + { + "start": 29516.95, + "end": 29520.21, + "probability": 0.9596 + }, + { + "start": 29520.67, + "end": 29521.15, + "probability": 0.7694 + }, + { + "start": 29522.09, + "end": 29524.89, + "probability": 0.7084 + }, + { + "start": 29525.67, + "end": 29526.43, + "probability": 0.8481 + }, + { + "start": 29528.25, + "end": 29532.15, + "probability": 0.8899 + }, + { + "start": 29532.97, + "end": 29534.31, + "probability": 0.7174 + }, + { + "start": 29551.79, + "end": 29552.51, + "probability": 0.5351 + }, + { + "start": 29552.97, + "end": 29554.37, + "probability": 0.6575 + }, + { + "start": 29554.79, + "end": 29555.31, + "probability": 0.6015 + }, + { + "start": 29555.57, + "end": 29555.75, + "probability": 0.598 + }, + { + "start": 29555.83, + "end": 29556.17, + "probability": 0.9032 + }, + { + "start": 29556.89, + "end": 29559.9, + "probability": 0.9937 + }, + { + "start": 29560.81, + "end": 29561.21, + "probability": 0.8609 + }, + { + "start": 29562.31, + "end": 29565.04, + "probability": 0.7688 + }, + { + "start": 29567.51, + "end": 29568.49, + "probability": 0.2048 + }, + { + "start": 29568.79, + "end": 29569.09, + "probability": 0.0828 + }, + { + "start": 29569.41, + "end": 29571.19, + "probability": 0.8827 + }, + { + "start": 29571.43, + "end": 29571.89, + "probability": 0.2569 + }, + { + "start": 29573.03, + "end": 29573.03, + "probability": 0.1633 + }, + { + "start": 29573.03, + "end": 29573.03, + "probability": 0.1836 + }, + { + "start": 29573.03, + "end": 29574.09, + "probability": 0.8008 + }, + { + "start": 29574.11, + "end": 29575.87, + "probability": 0.8425 + }, + { + "start": 29575.89, + "end": 29576.97, + "probability": 0.9415 + }, + { + "start": 29577.74, + "end": 29579.83, + "probability": 0.7858 + }, + { + "start": 29580.05, + "end": 29581.31, + "probability": 0.8098 + }, + { + "start": 29581.45, + "end": 29581.77, + "probability": 0.7447 + }, + { + "start": 29581.77, + "end": 29582.25, + "probability": 0.6776 + }, + { + "start": 29582.91, + "end": 29583.93, + "probability": 0.8407 + }, + { + "start": 29584.23, + "end": 29585.55, + "probability": 0.7307 + }, + { + "start": 29585.67, + "end": 29587.79, + "probability": 0.9295 + }, + { + "start": 29587.89, + "end": 29588.19, + "probability": 0.8889 + }, + { + "start": 29588.25, + "end": 29588.69, + "probability": 0.6641 + }, + { + "start": 29588.77, + "end": 29589.37, + "probability": 0.907 + }, + { + "start": 29589.49, + "end": 29590.77, + "probability": 0.9493 + }, + { + "start": 29590.95, + "end": 29595.45, + "probability": 0.9925 + }, + { + "start": 29596.45, + "end": 29599.21, + "probability": 0.8182 + }, + { + "start": 29600.03, + "end": 29605.93, + "probability": 0.9675 + }, + { + "start": 29606.61, + "end": 29608.39, + "probability": 0.915 + }, + { + "start": 29609.19, + "end": 29611.82, + "probability": 0.9908 + }, + { + "start": 29613.01, + "end": 29613.69, + "probability": 0.5865 + }, + { + "start": 29613.81, + "end": 29614.17, + "probability": 0.0659 + }, + { + "start": 29614.19, + "end": 29615.31, + "probability": 0.1547 + }, + { + "start": 29616.15, + "end": 29618.45, + "probability": 0.2352 + }, + { + "start": 29618.55, + "end": 29619.93, + "probability": 0.4263 + }, + { + "start": 29620.67, + "end": 29621.97, + "probability": 0.1458 + }, + { + "start": 29621.97, + "end": 29622.45, + "probability": 0.5576 + }, + { + "start": 29622.51, + "end": 29625.21, + "probability": 0.3784 + }, + { + "start": 29625.41, + "end": 29627.27, + "probability": 0.8696 + }, + { + "start": 29627.63, + "end": 29630.17, + "probability": 0.9143 + }, + { + "start": 29630.21, + "end": 29631.61, + "probability": 0.5404 + }, + { + "start": 29632.41, + "end": 29632.41, + "probability": 0.0169 + }, + { + "start": 29632.41, + "end": 29633.61, + "probability": 0.895 + }, + { + "start": 29633.73, + "end": 29634.33, + "probability": 0.5043 + }, + { + "start": 29634.41, + "end": 29635.65, + "probability": 0.5005 + }, + { + "start": 29635.65, + "end": 29636.01, + "probability": 0.4984 + }, + { + "start": 29636.69, + "end": 29639.47, + "probability": 0.8174 + }, + { + "start": 29640.15, + "end": 29640.63, + "probability": 0.8664 + }, + { + "start": 29641.57, + "end": 29643.37, + "probability": 0.7744 + }, + { + "start": 29643.61, + "end": 29644.69, + "probability": 0.8383 + }, + { + "start": 29645.27, + "end": 29645.63, + "probability": 0.7348 + }, + { + "start": 29646.41, + "end": 29649.75, + "probability": 0.9829 + }, + { + "start": 29650.59, + "end": 29653.95, + "probability": 0.991 + }, + { + "start": 29654.07, + "end": 29655.01, + "probability": 0.9896 + }, + { + "start": 29656.15, + "end": 29658.01, + "probability": 0.9724 + }, + { + "start": 29659.19, + "end": 29660.24, + "probability": 0.9695 + }, + { + "start": 29660.47, + "end": 29661.91, + "probability": 0.9103 + }, + { + "start": 29662.79, + "end": 29665.83, + "probability": 0.9515 + }, + { + "start": 29666.85, + "end": 29667.83, + "probability": 0.9951 + }, + { + "start": 29670.59, + "end": 29671.21, + "probability": 0.8232 + }, + { + "start": 29671.49, + "end": 29673.51, + "probability": 0.9585 + }, + { + "start": 29673.89, + "end": 29674.47, + "probability": 0.8572 + }, + { + "start": 29674.51, + "end": 29675.87, + "probability": 0.9282 + }, + { + "start": 29675.95, + "end": 29676.49, + "probability": 0.5501 + }, + { + "start": 29676.55, + "end": 29678.03, + "probability": 0.6423 + }, + { + "start": 29678.78, + "end": 29680.85, + "probability": 0.9423 + }, + { + "start": 29681.55, + "end": 29684.77, + "probability": 0.9966 + }, + { + "start": 29685.43, + "end": 29685.63, + "probability": 0.0345 + }, + { + "start": 29685.63, + "end": 29686.09, + "probability": 0.8622 + }, + { + "start": 29686.83, + "end": 29689.17, + "probability": 0.9604 + }, + { + "start": 29690.13, + "end": 29691.83, + "probability": 0.9671 + }, + { + "start": 29692.47, + "end": 29693.01, + "probability": 0.6604 + }, + { + "start": 29693.23, + "end": 29694.62, + "probability": 0.6855 + }, + { + "start": 29694.83, + "end": 29695.79, + "probability": 0.9124 + }, + { + "start": 29696.49, + "end": 29699.19, + "probability": 0.9785 + }, + { + "start": 29699.89, + "end": 29701.11, + "probability": 0.7825 + }, + { + "start": 29701.27, + "end": 29703.09, + "probability": 0.9074 + }, + { + "start": 29704.47, + "end": 29705.03, + "probability": 0.8239 + }, + { + "start": 29705.31, + "end": 29706.81, + "probability": 0.767 + }, + { + "start": 29707.25, + "end": 29708.03, + "probability": 0.858 + }, + { + "start": 29710.09, + "end": 29714.25, + "probability": 0.7648 + }, + { + "start": 29715.71, + "end": 29717.31, + "probability": 0.5094 + }, + { + "start": 29718.01, + "end": 29719.85, + "probability": 0.9427 + }, + { + "start": 29721.53, + "end": 29721.65, + "probability": 0.0094 + }, + { + "start": 29722.69, + "end": 29723.73, + "probability": 0.3942 + }, + { + "start": 29724.73, + "end": 29725.53, + "probability": 0.6428 + }, + { + "start": 29726.27, + "end": 29727.19, + "probability": 0.6097 + }, + { + "start": 29729.17, + "end": 29730.63, + "probability": 0.1501 + }, + { + "start": 29730.85, + "end": 29732.17, + "probability": 0.8205 + }, + { + "start": 29732.87, + "end": 29733.71, + "probability": 0.9919 + }, + { + "start": 29733.93, + "end": 29734.71, + "probability": 0.2276 + }, + { + "start": 29734.96, + "end": 29735.38, + "probability": 0.1808 + }, + { + "start": 29737.97, + "end": 29738.47, + "probability": 0.8466 + }, + { + "start": 29738.57, + "end": 29740.64, + "probability": 0.5299 + }, + { + "start": 29741.23, + "end": 29742.31, + "probability": 0.8574 + }, + { + "start": 29742.87, + "end": 29745.47, + "probability": 0.975 + }, + { + "start": 29746.07, + "end": 29747.07, + "probability": 0.9146 + }, + { + "start": 29748.41, + "end": 29750.73, + "probability": 0.7701 + }, + { + "start": 29750.83, + "end": 29751.45, + "probability": 0.4388 + }, + { + "start": 29751.59, + "end": 29752.39, + "probability": 0.8291 + }, + { + "start": 29752.81, + "end": 29753.23, + "probability": 0.749 + }, + { + "start": 29753.97, + "end": 29754.69, + "probability": 0.0161 + }, + { + "start": 29755.91, + "end": 29757.59, + "probability": 0.5379 + }, + { + "start": 29758.35, + "end": 29759.73, + "probability": 0.56 + }, + { + "start": 29759.81, + "end": 29760.53, + "probability": 0.7126 + }, + { + "start": 29760.63, + "end": 29761.14, + "probability": 0.6929 + }, + { + "start": 29762.21, + "end": 29764.08, + "probability": 0.9404 + }, + { + "start": 29765.07, + "end": 29766.05, + "probability": 0.8917 + }, + { + "start": 29766.81, + "end": 29769.77, + "probability": 0.701 + }, + { + "start": 29770.41, + "end": 29771.37, + "probability": 0.8584 + }, + { + "start": 29771.37, + "end": 29774.43, + "probability": 0.8335 + }, + { + "start": 29774.97, + "end": 29775.57, + "probability": 0.7893 + }, + { + "start": 29776.37, + "end": 29779.13, + "probability": 0.8964 + }, + { + "start": 29780.26, + "end": 29783.49, + "probability": 0.6056 + }, + { + "start": 29784.09, + "end": 29785.13, + "probability": 0.8921 + }, + { + "start": 29786.33, + "end": 29788.61, + "probability": 0.8336 + }, + { + "start": 29789.95, + "end": 29791.95, + "probability": 0.6543 + }, + { + "start": 29793.23, + "end": 29793.71, + "probability": 0.6307 + }, + { + "start": 29794.65, + "end": 29796.19, + "probability": 0.1199 + }, + { + "start": 29797.75, + "end": 29798.57, + "probability": 0.5877 + }, + { + "start": 29798.67, + "end": 29800.51, + "probability": 0.9637 + }, + { + "start": 29802.05, + "end": 29805.23, + "probability": 0.6148 + }, + { + "start": 29805.59, + "end": 29806.49, + "probability": 0.998 + }, + { + "start": 29807.27, + "end": 29809.13, + "probability": 0.9854 + }, + { + "start": 29809.21, + "end": 29811.39, + "probability": 0.9871 + }, + { + "start": 29811.55, + "end": 29815.49, + "probability": 0.9451 + }, + { + "start": 29816.97, + "end": 29819.63, + "probability": 0.9136 + }, + { + "start": 29820.67, + "end": 29821.67, + "probability": 0.9984 + }, + { + "start": 29822.33, + "end": 29824.61, + "probability": 0.9878 + }, + { + "start": 29825.13, + "end": 29826.29, + "probability": 0.9779 + }, + { + "start": 29826.93, + "end": 29828.22, + "probability": 0.9917 + }, + { + "start": 29828.27, + "end": 29828.59, + "probability": 0.8073 + }, + { + "start": 29829.19, + "end": 29830.61, + "probability": 0.9676 + }, + { + "start": 29830.93, + "end": 29832.74, + "probability": 0.9288 + }, + { + "start": 29833.51, + "end": 29836.07, + "probability": 0.67 + }, + { + "start": 29836.35, + "end": 29841.39, + "probability": 0.84 + }, + { + "start": 29842.15, + "end": 29842.83, + "probability": 0.6384 + }, + { + "start": 29842.91, + "end": 29843.53, + "probability": 0.5927 + }, + { + "start": 29844.45, + "end": 29844.85, + "probability": 0.3642 + }, + { + "start": 29861.13, + "end": 29865.17, + "probability": 0.1939 + }, + { + "start": 29865.79, + "end": 29867.03, + "probability": 0.0469 + }, + { + "start": 29867.81, + "end": 29868.89, + "probability": 0.0384 + }, + { + "start": 29868.97, + "end": 29869.15, + "probability": 0.0244 + }, + { + "start": 29869.15, + "end": 29870.47, + "probability": 0.2857 + }, + { + "start": 29872.25, + "end": 29873.71, + "probability": 0.497 + }, + { + "start": 29878.91, + "end": 29882.61, + "probability": 0.1428 + }, + { + "start": 29885.45, + "end": 29888.83, + "probability": 0.158 + }, + { + "start": 29889.55, + "end": 29893.05, + "probability": 0.0515 + }, + { + "start": 29900.57, + "end": 29900.89, + "probability": 0.1039 + }, + { + "start": 29902.61, + "end": 29906.17, + "probability": 0.0269 + }, + { + "start": 29908.17, + "end": 29911.21, + "probability": 0.0156 + }, + { + "start": 29914.12, + "end": 29915.67, + "probability": 0.1312 + }, + { + "start": 29917.31, + "end": 29918.63, + "probability": 0.0685 + }, + { + "start": 29920.19, + "end": 29922.57, + "probability": 0.1906 + }, + { + "start": 29923.39, + "end": 29925.03, + "probability": 0.1063 + }, + { + "start": 29925.13, + "end": 29925.57, + "probability": 0.2889 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + }, + { + "start": 29930.673, + "end": 29930.673, + "probability": 0.0 + } + ], + "segments_count": 10806, + "words_count": 50689, + "avg_words_per_segment": 4.6908, + "avg_segment_duration": 1.7471, + "avg_words_per_minute": 101.6128, + "plenum_id": "108243", + "duration": 29930.67, + "title": null, + "plenum_date": "2022-05-30" +} \ No newline at end of file