diff --git "a/121885/metadata.json" "b/121885/metadata.json" new file mode 100644--- /dev/null +++ "b/121885/metadata.json" @@ -0,0 +1,7897 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "121885", + "quality_score": 0.8718, + "per_segment_quality_scores": [ + { + "start": 80.32, + "end": 86.48, + "probability": 0.592 + }, + { + "start": 86.54, + "end": 88.74, + "probability": 0.5824 + }, + { + "start": 88.88, + "end": 89.92, + "probability": 0.8193 + }, + { + "start": 90.08, + "end": 91.3, + "probability": 0.958 + }, + { + "start": 91.44, + "end": 93.26, + "probability": 0.9885 + }, + { + "start": 95.51, + "end": 99.39, + "probability": 0.4586 + }, + { + "start": 103.49, + "end": 106.33, + "probability": 0.6639 + }, + { + "start": 106.44, + "end": 106.51, + "probability": 0.0246 + }, + { + "start": 106.51, + "end": 107.66, + "probability": 0.1374 + }, + { + "start": 110.77, + "end": 114.73, + "probability": 0.0402 + }, + { + "start": 118.35, + "end": 120.53, + "probability": 0.3837 + }, + { + "start": 121.06, + "end": 122.51, + "probability": 0.0241 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.16, + "end": 124.84, + "probability": 0.0223 + }, + { + "start": 124.84, + "end": 128.46, + "probability": 0.6609 + }, + { + "start": 128.56, + "end": 130.78, + "probability": 0.9328 + }, + { + "start": 135.1, + "end": 137.26, + "probability": 0.2153 + }, + { + "start": 137.42, + "end": 138.1, + "probability": 0.5318 + }, + { + "start": 138.26, + "end": 139.48, + "probability": 0.8671 + }, + { + "start": 140.3, + "end": 140.4, + "probability": 0.0256 + }, + { + "start": 140.4, + "end": 140.4, + "probability": 0.0855 + }, + { + "start": 140.4, + "end": 141.46, + "probability": 0.6189 + }, + { + "start": 141.58, + "end": 143.24, + "probability": 0.9806 + }, + { + "start": 146.85, + "end": 150.36, + "probability": 0.4133 + }, + { + "start": 150.98, + "end": 153.24, + "probability": 0.7355 + }, + { + "start": 155.12, + "end": 159.8, + "probability": 0.9662 + }, + { + "start": 160.3, + "end": 160.5, + "probability": 0.1564 + }, + { + "start": 160.5, + "end": 160.58, + "probability": 0.0391 + }, + { + "start": 160.58, + "end": 160.62, + "probability": 0.1315 + }, + { + "start": 160.62, + "end": 161.81, + "probability": 0.2388 + }, + { + "start": 161.96, + "end": 164.76, + "probability": 0.8237 + }, + { + "start": 165.42, + "end": 165.92, + "probability": 0.9214 + }, + { + "start": 179.25, + "end": 182.44, + "probability": 0.1631 + }, + { + "start": 182.44, + "end": 182.6, + "probability": 0.0116 + }, + { + "start": 182.6, + "end": 182.6, + "probability": 0.0125 + }, + { + "start": 182.6, + "end": 182.6, + "probability": 0.1001 + }, + { + "start": 182.6, + "end": 182.6, + "probability": 0.0286 + }, + { + "start": 182.6, + "end": 184.1, + "probability": 0.0095 + }, + { + "start": 184.1, + "end": 189.22, + "probability": 0.17 + }, + { + "start": 189.22, + "end": 193.62, + "probability": 0.5294 + }, + { + "start": 194.12, + "end": 194.86, + "probability": 0.36 + }, + { + "start": 195.52, + "end": 197.08, + "probability": 0.2491 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 251.0, + "end": 251.0, + "probability": 0.0 + }, + { + "start": 256.78, + "end": 257.98, + "probability": 0.3262 + }, + { + "start": 258.86, + "end": 261.7, + "probability": 0.8344 + }, + { + "start": 273.22, + "end": 275.12, + "probability": 0.9795 + }, + { + "start": 275.44, + "end": 276.2, + "probability": 0.932 + }, + { + "start": 276.84, + "end": 279.26, + "probability": 0.9386 + }, + { + "start": 280.18, + "end": 283.06, + "probability": 0.9646 + }, + { + "start": 287.6, + "end": 288.5, + "probability": 0.3338 + }, + { + "start": 288.62, + "end": 289.46, + "probability": 0.6041 + }, + { + "start": 300.74, + "end": 304.32, + "probability": 0.8481 + }, + { + "start": 304.42, + "end": 304.98, + "probability": 0.8273 + }, + { + "start": 319.5, + "end": 321.98, + "probability": 0.5316 + }, + { + "start": 322.08, + "end": 323.12, + "probability": 0.8033 + }, + { + "start": 323.73, + "end": 330.06, + "probability": 0.9435 + }, + { + "start": 331.18, + "end": 333.72, + "probability": 0.9937 + }, + { + "start": 334.7, + "end": 338.64, + "probability": 0.9954 + }, + { + "start": 338.64, + "end": 342.8, + "probability": 0.9816 + }, + { + "start": 344.02, + "end": 345.13, + "probability": 0.7777 + }, + { + "start": 345.94, + "end": 351.8, + "probability": 0.995 + }, + { + "start": 352.3, + "end": 353.5, + "probability": 0.7524 + }, + { + "start": 353.9, + "end": 355.8, + "probability": 0.9795 + }, + { + "start": 357.32, + "end": 360.12, + "probability": 0.986 + }, + { + "start": 360.34, + "end": 363.74, + "probability": 0.9831 + }, + { + "start": 363.88, + "end": 365.28, + "probability": 0.6641 + }, + { + "start": 366.06, + "end": 369.88, + "probability": 0.8336 + }, + { + "start": 370.0, + "end": 374.48, + "probability": 0.9939 + }, + { + "start": 375.18, + "end": 375.44, + "probability": 0.8342 + }, + { + "start": 375.88, + "end": 377.36, + "probability": 0.7423 + }, + { + "start": 377.6, + "end": 379.06, + "probability": 0.8824 + }, + { + "start": 379.14, + "end": 379.64, + "probability": 0.5283 + }, + { + "start": 379.7, + "end": 381.1, + "probability": 0.9675 + }, + { + "start": 382.24, + "end": 386.2, + "probability": 0.7334 + }, + { + "start": 387.32, + "end": 390.94, + "probability": 0.9423 + }, + { + "start": 391.76, + "end": 393.68, + "probability": 0.9793 + }, + { + "start": 394.38, + "end": 396.66, + "probability": 0.979 + }, + { + "start": 396.96, + "end": 398.82, + "probability": 0.9832 + }, + { + "start": 399.54, + "end": 405.64, + "probability": 0.9739 + }, + { + "start": 406.4, + "end": 406.9, + "probability": 0.7238 + }, + { + "start": 406.96, + "end": 410.54, + "probability": 0.9302 + }, + { + "start": 411.0, + "end": 413.86, + "probability": 0.9933 + }, + { + "start": 413.86, + "end": 418.72, + "probability": 0.9825 + }, + { + "start": 419.64, + "end": 420.95, + "probability": 0.8774 + }, + { + "start": 421.28, + "end": 423.26, + "probability": 0.7484 + }, + { + "start": 423.34, + "end": 426.2, + "probability": 0.8899 + }, + { + "start": 426.26, + "end": 427.84, + "probability": 0.9309 + }, + { + "start": 427.9, + "end": 428.16, + "probability": 0.5668 + }, + { + "start": 428.68, + "end": 429.9, + "probability": 0.6848 + }, + { + "start": 430.02, + "end": 431.46, + "probability": 0.9839 + }, + { + "start": 431.52, + "end": 432.08, + "probability": 0.6107 + }, + { + "start": 432.12, + "end": 433.58, + "probability": 0.963 + }, + { + "start": 434.04, + "end": 436.96, + "probability": 0.7185 + }, + { + "start": 437.16, + "end": 439.66, + "probability": 0.9517 + }, + { + "start": 440.84, + "end": 443.04, + "probability": 0.9779 + }, + { + "start": 443.1, + "end": 444.58, + "probability": 0.9824 + }, + { + "start": 445.3, + "end": 449.52, + "probability": 0.9884 + }, + { + "start": 450.18, + "end": 455.33, + "probability": 0.8838 + }, + { + "start": 456.64, + "end": 457.92, + "probability": 0.9977 + }, + { + "start": 458.08, + "end": 460.37, + "probability": 0.7495 + }, + { + "start": 460.94, + "end": 464.98, + "probability": 0.933 + }, + { + "start": 465.58, + "end": 470.36, + "probability": 0.9749 + }, + { + "start": 471.18, + "end": 472.44, + "probability": 0.9625 + }, + { + "start": 472.98, + "end": 474.22, + "probability": 0.9333 + }, + { + "start": 474.36, + "end": 476.16, + "probability": 0.798 + }, + { + "start": 477.02, + "end": 479.72, + "probability": 0.8223 + }, + { + "start": 480.3, + "end": 480.94, + "probability": 0.8501 + }, + { + "start": 481.06, + "end": 481.72, + "probability": 0.8188 + }, + { + "start": 481.86, + "end": 482.36, + "probability": 0.6009 + }, + { + "start": 482.42, + "end": 485.72, + "probability": 0.7091 + }, + { + "start": 486.2, + "end": 487.64, + "probability": 0.9782 + }, + { + "start": 487.9, + "end": 488.26, + "probability": 0.6454 + }, + { + "start": 488.44, + "end": 489.76, + "probability": 0.7554 + }, + { + "start": 490.06, + "end": 490.06, + "probability": 0.1277 + }, + { + "start": 490.06, + "end": 492.7, + "probability": 0.7865 + }, + { + "start": 492.92, + "end": 495.08, + "probability": 0.969 + }, + { + "start": 495.62, + "end": 497.3, + "probability": 0.9881 + }, + { + "start": 497.76, + "end": 498.8, + "probability": 0.9844 + }, + { + "start": 499.18, + "end": 500.22, + "probability": 0.9331 + }, + { + "start": 500.72, + "end": 502.56, + "probability": 0.9849 + }, + { + "start": 503.18, + "end": 505.76, + "probability": 0.7579 + }, + { + "start": 506.32, + "end": 507.26, + "probability": 0.94 + }, + { + "start": 507.42, + "end": 510.3, + "probability": 0.9181 + }, + { + "start": 510.66, + "end": 511.7, + "probability": 0.8053 + }, + { + "start": 512.22, + "end": 516.18, + "probability": 0.9893 + }, + { + "start": 516.18, + "end": 521.5, + "probability": 0.9706 + }, + { + "start": 522.22, + "end": 526.96, + "probability": 0.9855 + }, + { + "start": 527.12, + "end": 532.2, + "probability": 0.987 + }, + { + "start": 532.74, + "end": 536.08, + "probability": 0.8676 + }, + { + "start": 536.22, + "end": 536.92, + "probability": 0.7345 + }, + { + "start": 537.38, + "end": 538.32, + "probability": 0.8845 + }, + { + "start": 538.48, + "end": 539.6, + "probability": 0.8581 + }, + { + "start": 539.74, + "end": 543.34, + "probability": 0.9458 + }, + { + "start": 543.5, + "end": 544.08, + "probability": 0.8556 + }, + { + "start": 544.6, + "end": 545.42, + "probability": 0.9687 + }, + { + "start": 545.54, + "end": 546.41, + "probability": 0.9326 + }, + { + "start": 547.02, + "end": 549.0, + "probability": 0.9774 + }, + { + "start": 549.36, + "end": 550.9, + "probability": 0.936 + }, + { + "start": 551.02, + "end": 555.5, + "probability": 0.7852 + }, + { + "start": 555.96, + "end": 556.62, + "probability": 0.7946 + }, + { + "start": 556.96, + "end": 560.1, + "probability": 0.9976 + }, + { + "start": 560.2, + "end": 560.78, + "probability": 0.8877 + }, + { + "start": 561.36, + "end": 561.7, + "probability": 0.4014 + }, + { + "start": 561.74, + "end": 563.24, + "probability": 0.9711 + }, + { + "start": 563.32, + "end": 563.86, + "probability": 0.4803 + }, + { + "start": 563.94, + "end": 565.42, + "probability": 0.9335 + }, + { + "start": 569.46, + "end": 570.24, + "probability": 0.6476 + }, + { + "start": 571.48, + "end": 574.18, + "probability": 0.9538 + }, + { + "start": 575.06, + "end": 576.59, + "probability": 0.9821 + }, + { + "start": 577.54, + "end": 580.22, + "probability": 0.9805 + }, + { + "start": 581.9, + "end": 583.22, + "probability": 0.994 + }, + { + "start": 584.26, + "end": 588.08, + "probability": 0.9941 + }, + { + "start": 589.22, + "end": 592.28, + "probability": 0.998 + }, + { + "start": 592.28, + "end": 595.22, + "probability": 0.9988 + }, + { + "start": 596.5, + "end": 598.78, + "probability": 0.9995 + }, + { + "start": 599.7, + "end": 602.0, + "probability": 0.9541 + }, + { + "start": 602.9, + "end": 607.2, + "probability": 0.8021 + }, + { + "start": 608.08, + "end": 613.98, + "probability": 0.9486 + }, + { + "start": 615.5, + "end": 618.4, + "probability": 0.9512 + }, + { + "start": 619.02, + "end": 623.56, + "probability": 0.5978 + }, + { + "start": 624.12, + "end": 624.9, + "probability": 0.0118 + }, + { + "start": 625.54, + "end": 626.16, + "probability": 0.7025 + }, + { + "start": 627.06, + "end": 630.64, + "probability": 0.9275 + }, + { + "start": 631.12, + "end": 633.36, + "probability": 0.8934 + }, + { + "start": 633.44, + "end": 635.18, + "probability": 0.9137 + }, + { + "start": 636.21, + "end": 641.62, + "probability": 0.8711 + }, + { + "start": 642.2, + "end": 644.46, + "probability": 0.8395 + }, + { + "start": 644.88, + "end": 645.16, + "probability": 0.8926 + }, + { + "start": 645.56, + "end": 645.94, + "probability": 0.9129 + }, + { + "start": 646.52, + "end": 646.94, + "probability": 0.6871 + }, + { + "start": 647.06, + "end": 648.38, + "probability": 0.5323 + }, + { + "start": 648.46, + "end": 648.96, + "probability": 0.3068 + }, + { + "start": 648.98, + "end": 650.6, + "probability": 0.9606 + }, + { + "start": 651.02, + "end": 653.4, + "probability": 0.8839 + }, + { + "start": 654.32, + "end": 655.7, + "probability": 0.9176 + }, + { + "start": 655.7, + "end": 657.48, + "probability": 0.9913 + }, + { + "start": 657.54, + "end": 660.42, + "probability": 0.8364 + }, + { + "start": 660.68, + "end": 662.06, + "probability": 0.9178 + }, + { + "start": 662.24, + "end": 662.84, + "probability": 0.7694 + }, + { + "start": 663.28, + "end": 664.0, + "probability": 0.9003 + }, + { + "start": 664.24, + "end": 665.12, + "probability": 0.9548 + }, + { + "start": 665.54, + "end": 667.14, + "probability": 0.6156 + }, + { + "start": 667.34, + "end": 667.92, + "probability": 0.7141 + }, + { + "start": 667.94, + "end": 669.24, + "probability": 0.9938 + }, + { + "start": 670.04, + "end": 672.86, + "probability": 0.8479 + }, + { + "start": 673.62, + "end": 675.63, + "probability": 0.9966 + }, + { + "start": 676.14, + "end": 678.2, + "probability": 0.9673 + }, + { + "start": 678.74, + "end": 681.09, + "probability": 0.97 + }, + { + "start": 681.76, + "end": 684.74, + "probability": 0.9924 + }, + { + "start": 684.74, + "end": 689.76, + "probability": 0.6598 + }, + { + "start": 690.1, + "end": 691.75, + "probability": 0.7621 + }, + { + "start": 692.54, + "end": 696.42, + "probability": 0.9905 + }, + { + "start": 696.84, + "end": 701.54, + "probability": 0.9312 + }, + { + "start": 702.08, + "end": 705.38, + "probability": 0.9951 + }, + { + "start": 705.8, + "end": 706.62, + "probability": 0.4047 + }, + { + "start": 706.78, + "end": 707.38, + "probability": 0.8198 + }, + { + "start": 707.44, + "end": 708.52, + "probability": 0.8513 + }, + { + "start": 708.7, + "end": 709.12, + "probability": 0.723 + }, + { + "start": 709.2, + "end": 710.41, + "probability": 0.9346 + }, + { + "start": 710.86, + "end": 714.66, + "probability": 0.9827 + }, + { + "start": 714.92, + "end": 715.96, + "probability": 0.948 + }, + { + "start": 716.14, + "end": 719.0, + "probability": 0.9977 + }, + { + "start": 719.4, + "end": 721.46, + "probability": 0.9927 + }, + { + "start": 721.72, + "end": 724.11, + "probability": 0.9837 + }, + { + "start": 724.42, + "end": 728.04, + "probability": 0.7155 + }, + { + "start": 728.04, + "end": 733.64, + "probability": 0.9839 + }, + { + "start": 733.88, + "end": 738.66, + "probability": 0.9736 + }, + { + "start": 738.94, + "end": 742.88, + "probability": 0.9945 + }, + { + "start": 743.36, + "end": 744.46, + "probability": 0.7952 + }, + { + "start": 744.92, + "end": 746.84, + "probability": 0.9951 + }, + { + "start": 747.48, + "end": 749.6, + "probability": 0.9802 + }, + { + "start": 750.06, + "end": 750.8, + "probability": 0.5683 + }, + { + "start": 750.86, + "end": 756.4, + "probability": 0.9934 + }, + { + "start": 756.76, + "end": 758.28, + "probability": 0.9632 + }, + { + "start": 758.62, + "end": 760.88, + "probability": 0.9111 + }, + { + "start": 761.0, + "end": 762.02, + "probability": 0.9273 + }, + { + "start": 762.52, + "end": 764.62, + "probability": 0.9879 + }, + { + "start": 765.06, + "end": 766.88, + "probability": 0.9988 + }, + { + "start": 767.38, + "end": 770.16, + "probability": 0.9285 + }, + { + "start": 770.3, + "end": 771.72, + "probability": 0.9063 + }, + { + "start": 771.76, + "end": 772.72, + "probability": 0.8495 + }, + { + "start": 773.5, + "end": 774.04, + "probability": 0.624 + }, + { + "start": 774.18, + "end": 775.8, + "probability": 0.9745 + }, + { + "start": 775.86, + "end": 776.46, + "probability": 0.6361 + }, + { + "start": 776.52, + "end": 777.94, + "probability": 0.9642 + }, + { + "start": 790.47, + "end": 793.12, + "probability": 0.6128 + }, + { + "start": 795.46, + "end": 802.06, + "probability": 0.9946 + }, + { + "start": 803.98, + "end": 806.28, + "probability": 0.8267 + }, + { + "start": 806.48, + "end": 809.03, + "probability": 0.9361 + }, + { + "start": 810.38, + "end": 812.41, + "probability": 0.9859 + }, + { + "start": 813.58, + "end": 816.48, + "probability": 0.8156 + }, + { + "start": 817.72, + "end": 820.76, + "probability": 0.9676 + }, + { + "start": 820.76, + "end": 825.1, + "probability": 0.985 + }, + { + "start": 827.48, + "end": 830.48, + "probability": 0.9952 + }, + { + "start": 831.94, + "end": 834.26, + "probability": 0.9958 + }, + { + "start": 835.72, + "end": 838.38, + "probability": 0.989 + }, + { + "start": 839.58, + "end": 842.52, + "probability": 0.9846 + }, + { + "start": 843.1, + "end": 845.42, + "probability": 0.9956 + }, + { + "start": 846.28, + "end": 850.06, + "probability": 0.9954 + }, + { + "start": 851.04, + "end": 856.46, + "probability": 0.9941 + }, + { + "start": 856.46, + "end": 862.22, + "probability": 0.9998 + }, + { + "start": 862.92, + "end": 864.48, + "probability": 0.6051 + }, + { + "start": 865.14, + "end": 868.62, + "probability": 0.9987 + }, + { + "start": 869.7, + "end": 873.8, + "probability": 0.9823 + }, + { + "start": 873.8, + "end": 878.58, + "probability": 0.9973 + }, + { + "start": 878.7, + "end": 879.16, + "probability": 0.7228 + }, + { + "start": 879.84, + "end": 880.42, + "probability": 0.6346 + }, + { + "start": 880.62, + "end": 882.3, + "probability": 0.8685 + }, + { + "start": 882.34, + "end": 882.9, + "probability": 0.6744 + }, + { + "start": 882.92, + "end": 884.36, + "probability": 0.9642 + }, + { + "start": 889.12, + "end": 890.26, + "probability": 0.7454 + }, + { + "start": 890.42, + "end": 891.38, + "probability": 0.8996 + }, + { + "start": 891.78, + "end": 895.14, + "probability": 0.9847 + }, + { + "start": 895.96, + "end": 899.82, + "probability": 0.9974 + }, + { + "start": 900.6, + "end": 901.98, + "probability": 0.8043 + }, + { + "start": 902.52, + "end": 904.66, + "probability": 0.816 + }, + { + "start": 905.08, + "end": 906.56, + "probability": 0.8186 + }, + { + "start": 907.42, + "end": 910.76, + "probability": 0.927 + }, + { + "start": 910.76, + "end": 915.4, + "probability": 0.9761 + }, + { + "start": 916.06, + "end": 920.0, + "probability": 0.9823 + }, + { + "start": 920.1, + "end": 920.32, + "probability": 0.8044 + }, + { + "start": 922.04, + "end": 922.52, + "probability": 0.511 + }, + { + "start": 923.46, + "end": 924.7, + "probability": 0.6756 + }, + { + "start": 925.8, + "end": 926.28, + "probability": 0.3466 + }, + { + "start": 926.32, + "end": 927.92, + "probability": 0.7929 + }, + { + "start": 928.68, + "end": 929.8, + "probability": 0.5968 + }, + { + "start": 929.98, + "end": 931.26, + "probability": 0.8595 + }, + { + "start": 932.04, + "end": 934.12, + "probability": 0.9454 + }, + { + "start": 934.64, + "end": 935.52, + "probability": 0.9068 + }, + { + "start": 935.54, + "end": 936.72, + "probability": 0.9486 + }, + { + "start": 936.82, + "end": 937.98, + "probability": 0.604 + }, + { + "start": 938.4, + "end": 941.88, + "probability": 0.9984 + }, + { + "start": 942.62, + "end": 945.94, + "probability": 0.9968 + }, + { + "start": 946.26, + "end": 950.16, + "probability": 0.9253 + }, + { + "start": 950.89, + "end": 955.14, + "probability": 0.8501 + }, + { + "start": 955.74, + "end": 956.58, + "probability": 0.5394 + }, + { + "start": 956.96, + "end": 960.5, + "probability": 0.9234 + }, + { + "start": 961.06, + "end": 964.32, + "probability": 0.9939 + }, + { + "start": 964.36, + "end": 964.6, + "probability": 0.9387 + }, + { + "start": 965.18, + "end": 967.48, + "probability": 0.8313 + }, + { + "start": 968.22, + "end": 971.8, + "probability": 0.9796 + }, + { + "start": 972.26, + "end": 974.44, + "probability": 0.9656 + }, + { + "start": 975.46, + "end": 979.14, + "probability": 0.9736 + }, + { + "start": 979.14, + "end": 983.0, + "probability": 0.9859 + }, + { + "start": 983.44, + "end": 985.18, + "probability": 0.7494 + }, + { + "start": 985.76, + "end": 989.86, + "probability": 0.9736 + }, + { + "start": 990.12, + "end": 990.62, + "probability": 0.7941 + }, + { + "start": 990.88, + "end": 991.28, + "probability": 0.6714 + }, + { + "start": 992.1, + "end": 993.48, + "probability": 0.8777 + }, + { + "start": 993.6, + "end": 994.86, + "probability": 0.5746 + }, + { + "start": 995.34, + "end": 996.26, + "probability": 0.6459 + }, + { + "start": 996.98, + "end": 997.7, + "probability": 0.7962 + }, + { + "start": 998.22, + "end": 998.46, + "probability": 0.5845 + }, + { + "start": 998.46, + "end": 1004.24, + "probability": 0.9587 + }, + { + "start": 1006.3, + "end": 1014.5, + "probability": 0.9704 + }, + { + "start": 1016.31, + "end": 1021.94, + "probability": 0.4898 + }, + { + "start": 1022.82, + "end": 1025.3, + "probability": 0.981 + }, + { + "start": 1025.58, + "end": 1030.1, + "probability": 0.7488 + }, + { + "start": 1030.82, + "end": 1036.1, + "probability": 0.9594 + }, + { + "start": 1036.2, + "end": 1037.44, + "probability": 0.9148 + }, + { + "start": 1038.52, + "end": 1047.06, + "probability": 0.9962 + }, + { + "start": 1047.06, + "end": 1052.76, + "probability": 0.9992 + }, + { + "start": 1054.98, + "end": 1055.4, + "probability": 0.4582 + }, + { + "start": 1055.66, + "end": 1057.06, + "probability": 0.5407 + }, + { + "start": 1057.18, + "end": 1057.6, + "probability": 0.3605 + }, + { + "start": 1057.64, + "end": 1060.12, + "probability": 0.7812 + }, + { + "start": 1061.94, + "end": 1064.94, + "probability": 0.864 + }, + { + "start": 1065.9, + "end": 1069.36, + "probability": 0.8737 + }, + { + "start": 1069.94, + "end": 1072.78, + "probability": 0.9886 + }, + { + "start": 1073.92, + "end": 1077.1, + "probability": 0.8324 + }, + { + "start": 1077.86, + "end": 1081.34, + "probability": 0.9072 + }, + { + "start": 1082.06, + "end": 1085.3, + "probability": 0.7485 + }, + { + "start": 1086.34, + "end": 1088.54, + "probability": 0.4794 + }, + { + "start": 1089.48, + "end": 1090.24, + "probability": 0.7627 + }, + { + "start": 1090.72, + "end": 1092.42, + "probability": 0.9521 + }, + { + "start": 1094.14, + "end": 1094.94, + "probability": 0.7857 + }, + { + "start": 1095.16, + "end": 1099.52, + "probability": 0.7673 + }, + { + "start": 1100.02, + "end": 1103.5, + "probability": 0.9766 + }, + { + "start": 1104.32, + "end": 1106.92, + "probability": 0.8949 + }, + { + "start": 1107.6, + "end": 1108.88, + "probability": 0.9461 + }, + { + "start": 1109.86, + "end": 1112.82, + "probability": 0.8404 + }, + { + "start": 1113.22, + "end": 1115.88, + "probability": 0.9478 + }, + { + "start": 1116.42, + "end": 1119.7, + "probability": 0.9761 + }, + { + "start": 1119.78, + "end": 1120.82, + "probability": 0.5683 + }, + { + "start": 1121.86, + "end": 1124.67, + "probability": 0.8664 + }, + { + "start": 1124.78, + "end": 1127.36, + "probability": 0.8707 + }, + { + "start": 1128.16, + "end": 1130.98, + "probability": 0.8152 + }, + { + "start": 1131.66, + "end": 1132.94, + "probability": 0.9481 + }, + { + "start": 1136.54, + "end": 1137.58, + "probability": 0.4772 + }, + { + "start": 1137.68, + "end": 1140.0, + "probability": 0.8474 + }, + { + "start": 1141.91, + "end": 1144.3, + "probability": 0.834 + }, + { + "start": 1147.5, + "end": 1148.16, + "probability": 0.5981 + }, + { + "start": 1148.4, + "end": 1150.67, + "probability": 0.8851 + }, + { + "start": 1151.14, + "end": 1151.84, + "probability": 0.9458 + }, + { + "start": 1152.28, + "end": 1155.54, + "probability": 0.8336 + }, + { + "start": 1155.54, + "end": 1159.48, + "probability": 0.9353 + }, + { + "start": 1159.54, + "end": 1161.72, + "probability": 0.9969 + }, + { + "start": 1162.28, + "end": 1162.56, + "probability": 0.5363 + }, + { + "start": 1162.6, + "end": 1163.38, + "probability": 0.6589 + }, + { + "start": 1163.44, + "end": 1166.9, + "probability": 0.4047 + }, + { + "start": 1166.9, + "end": 1167.28, + "probability": 0.6217 + }, + { + "start": 1167.4, + "end": 1168.1, + "probability": 0.8107 + }, + { + "start": 1168.32, + "end": 1169.51, + "probability": 0.9976 + }, + { + "start": 1170.18, + "end": 1170.72, + "probability": 0.4569 + }, + { + "start": 1170.74, + "end": 1173.86, + "probability": 0.9941 + }, + { + "start": 1174.28, + "end": 1175.06, + "probability": 0.9194 + }, + { + "start": 1175.2, + "end": 1175.73, + "probability": 0.5466 + }, + { + "start": 1176.38, + "end": 1178.18, + "probability": 0.7647 + }, + { + "start": 1178.26, + "end": 1179.44, + "probability": 0.9847 + }, + { + "start": 1179.52, + "end": 1183.94, + "probability": 0.9966 + }, + { + "start": 1184.08, + "end": 1184.48, + "probability": 0.7867 + }, + { + "start": 1185.86, + "end": 1186.18, + "probability": 0.4031 + }, + { + "start": 1186.32, + "end": 1187.68, + "probability": 0.8044 + }, + { + "start": 1187.68, + "end": 1188.32, + "probability": 0.7444 + }, + { + "start": 1188.99, + "end": 1191.58, + "probability": 0.1509 + }, + { + "start": 1192.34, + "end": 1195.98, + "probability": 0.6335 + }, + { + "start": 1196.38, + "end": 1199.24, + "probability": 0.9122 + }, + { + "start": 1199.28, + "end": 1203.68, + "probability": 0.8697 + }, + { + "start": 1204.18, + "end": 1206.96, + "probability": 0.7735 + }, + { + "start": 1207.06, + "end": 1210.66, + "probability": 0.7023 + }, + { + "start": 1211.58, + "end": 1220.78, + "probability": 0.8923 + }, + { + "start": 1222.28, + "end": 1225.04, + "probability": 0.8256 + }, + { + "start": 1225.04, + "end": 1231.48, + "probability": 0.9968 + }, + { + "start": 1232.02, + "end": 1234.18, + "probability": 0.8773 + }, + { + "start": 1234.28, + "end": 1235.7, + "probability": 0.9372 + }, + { + "start": 1236.08, + "end": 1240.94, + "probability": 0.9704 + }, + { + "start": 1241.76, + "end": 1241.98, + "probability": 0.3456 + }, + { + "start": 1242.06, + "end": 1243.78, + "probability": 0.9344 + }, + { + "start": 1243.92, + "end": 1251.16, + "probability": 0.9331 + }, + { + "start": 1251.2, + "end": 1253.76, + "probability": 0.7572 + }, + { + "start": 1254.14, + "end": 1256.63, + "probability": 0.5675 + }, + { + "start": 1257.78, + "end": 1264.94, + "probability": 0.9084 + }, + { + "start": 1265.48, + "end": 1269.17, + "probability": 0.8284 + }, + { + "start": 1270.18, + "end": 1274.4, + "probability": 0.8077 + }, + { + "start": 1274.4, + "end": 1278.08, + "probability": 0.9822 + }, + { + "start": 1278.58, + "end": 1282.04, + "probability": 0.9275 + }, + { + "start": 1282.56, + "end": 1286.08, + "probability": 0.9704 + }, + { + "start": 1286.08, + "end": 1289.72, + "probability": 0.9805 + }, + { + "start": 1289.76, + "end": 1294.38, + "probability": 0.9937 + }, + { + "start": 1294.6, + "end": 1297.2, + "probability": 0.7659 + }, + { + "start": 1297.64, + "end": 1298.48, + "probability": 0.7179 + }, + { + "start": 1298.76, + "end": 1300.06, + "probability": 0.9868 + }, + { + "start": 1300.42, + "end": 1302.28, + "probability": 0.7892 + }, + { + "start": 1302.32, + "end": 1303.14, + "probability": 0.961 + }, + { + "start": 1303.26, + "end": 1306.84, + "probability": 0.9829 + }, + { + "start": 1307.12, + "end": 1310.44, + "probability": 0.9721 + }, + { + "start": 1310.68, + "end": 1313.42, + "probability": 0.9894 + }, + { + "start": 1313.52, + "end": 1313.8, + "probability": 0.7784 + }, + { + "start": 1314.42, + "end": 1314.8, + "probability": 0.2907 + }, + { + "start": 1314.8, + "end": 1317.46, + "probability": 0.7001 + }, + { + "start": 1318.24, + "end": 1319.16, + "probability": 0.5309 + }, + { + "start": 1323.76, + "end": 1325.08, + "probability": 0.7612 + }, + { + "start": 1325.46, + "end": 1329.0, + "probability": 0.8748 + }, + { + "start": 1329.82, + "end": 1332.13, + "probability": 0.9966 + }, + { + "start": 1332.94, + "end": 1334.92, + "probability": 0.9847 + }, + { + "start": 1335.1, + "end": 1338.18, + "probability": 0.9953 + }, + { + "start": 1338.52, + "end": 1339.59, + "probability": 0.9062 + }, + { + "start": 1340.84, + "end": 1344.34, + "probability": 0.9049 + }, + { + "start": 1344.44, + "end": 1344.96, + "probability": 0.8506 + }, + { + "start": 1345.04, + "end": 1347.04, + "probability": 0.9181 + }, + { + "start": 1347.44, + "end": 1349.04, + "probability": 0.8542 + }, + { + "start": 1349.26, + "end": 1349.86, + "probability": 0.8771 + }, + { + "start": 1349.98, + "end": 1351.2, + "probability": 0.9701 + }, + { + "start": 1351.5, + "end": 1352.78, + "probability": 0.9724 + }, + { + "start": 1353.3, + "end": 1356.76, + "probability": 0.9717 + }, + { + "start": 1356.76, + "end": 1359.34, + "probability": 0.998 + }, + { + "start": 1359.88, + "end": 1361.8, + "probability": 0.8814 + }, + { + "start": 1361.8, + "end": 1364.82, + "probability": 0.9863 + }, + { + "start": 1365.9, + "end": 1367.44, + "probability": 0.7274 + }, + { + "start": 1367.62, + "end": 1371.02, + "probability": 0.9762 + }, + { + "start": 1371.76, + "end": 1375.22, + "probability": 0.9752 + }, + { + "start": 1375.8, + "end": 1379.86, + "probability": 0.917 + }, + { + "start": 1379.86, + "end": 1383.64, + "probability": 0.9891 + }, + { + "start": 1384.18, + "end": 1386.88, + "probability": 0.9728 + }, + { + "start": 1387.3, + "end": 1393.02, + "probability": 0.9905 + }, + { + "start": 1393.12, + "end": 1395.24, + "probability": 0.9636 + }, + { + "start": 1395.24, + "end": 1396.74, + "probability": 0.58 + }, + { + "start": 1397.6, + "end": 1401.42, + "probability": 0.8923 + }, + { + "start": 1401.74, + "end": 1403.26, + "probability": 0.9932 + }, + { + "start": 1403.64, + "end": 1407.14, + "probability": 0.9248 + }, + { + "start": 1407.54, + "end": 1408.7, + "probability": 0.9214 + }, + { + "start": 1409.12, + "end": 1409.46, + "probability": 0.8479 + }, + { + "start": 1410.02, + "end": 1411.1, + "probability": 0.7738 + }, + { + "start": 1411.44, + "end": 1413.14, + "probability": 0.9922 + }, + { + "start": 1413.46, + "end": 1414.6, + "probability": 0.9373 + }, + { + "start": 1414.94, + "end": 1415.54, + "probability": 0.6257 + }, + { + "start": 1415.6, + "end": 1419.42, + "probability": 0.9886 + }, + { + "start": 1420.44, + "end": 1420.84, + "probability": 0.3044 + }, + { + "start": 1420.9, + "end": 1422.0, + "probability": 0.8019 + }, + { + "start": 1422.02, + "end": 1422.48, + "probability": 0.7287 + }, + { + "start": 1422.6, + "end": 1425.34, + "probability": 0.4828 + }, + { + "start": 1425.34, + "end": 1427.76, + "probability": 0.6559 + }, + { + "start": 1427.82, + "end": 1428.6, + "probability": 0.2654 + }, + { + "start": 1429.76, + "end": 1431.12, + "probability": 0.2361 + }, + { + "start": 1436.2, + "end": 1437.96, + "probability": 0.7822 + }, + { + "start": 1438.7, + "end": 1440.44, + "probability": 0.9912 + }, + { + "start": 1440.52, + "end": 1443.71, + "probability": 0.8734 + }, + { + "start": 1443.84, + "end": 1444.8, + "probability": 0.5127 + }, + { + "start": 1445.86, + "end": 1447.08, + "probability": 0.9507 + }, + { + "start": 1447.64, + "end": 1450.02, + "probability": 0.9871 + }, + { + "start": 1450.06, + "end": 1454.5, + "probability": 0.9668 + }, + { + "start": 1455.52, + "end": 1460.34, + "probability": 0.9156 + }, + { + "start": 1460.64, + "end": 1461.96, + "probability": 0.9233 + }, + { + "start": 1462.64, + "end": 1469.42, + "probability": 0.9912 + }, + { + "start": 1469.86, + "end": 1470.66, + "probability": 0.5591 + }, + { + "start": 1471.22, + "end": 1473.48, + "probability": 0.9985 + }, + { + "start": 1473.66, + "end": 1475.5, + "probability": 0.5205 + }, + { + "start": 1475.58, + "end": 1480.66, + "probability": 0.9508 + }, + { + "start": 1480.72, + "end": 1482.52, + "probability": 0.9823 + }, + { + "start": 1482.66, + "end": 1483.42, + "probability": 0.757 + }, + { + "start": 1483.92, + "end": 1485.04, + "probability": 0.9783 + }, + { + "start": 1485.24, + "end": 1487.34, + "probability": 0.9639 + }, + { + "start": 1487.46, + "end": 1489.18, + "probability": 0.7773 + }, + { + "start": 1489.66, + "end": 1491.64, + "probability": 0.7085 + }, + { + "start": 1492.0, + "end": 1492.6, + "probability": 0.834 + }, + { + "start": 1492.62, + "end": 1493.08, + "probability": 0.3203 + }, + { + "start": 1493.26, + "end": 1494.06, + "probability": 0.4857 + }, + { + "start": 1494.18, + "end": 1494.22, + "probability": 0.6005 + }, + { + "start": 1494.44, + "end": 1494.96, + "probability": 0.8251 + }, + { + "start": 1495.68, + "end": 1496.34, + "probability": 0.6579 + }, + { + "start": 1496.58, + "end": 1498.52, + "probability": 0.9769 + }, + { + "start": 1498.52, + "end": 1498.86, + "probability": 0.5628 + }, + { + "start": 1498.94, + "end": 1499.8, + "probability": 0.8569 + }, + { + "start": 1501.66, + "end": 1503.0, + "probability": 0.8892 + }, + { + "start": 1504.7, + "end": 1508.28, + "probability": 0.9985 + }, + { + "start": 1508.36, + "end": 1509.4, + "probability": 0.8362 + }, + { + "start": 1509.46, + "end": 1510.54, + "probability": 0.8547 + }, + { + "start": 1510.72, + "end": 1513.64, + "probability": 0.9108 + }, + { + "start": 1514.74, + "end": 1517.68, + "probability": 0.989 + }, + { + "start": 1519.3, + "end": 1522.42, + "probability": 0.968 + }, + { + "start": 1523.74, + "end": 1525.56, + "probability": 0.8514 + }, + { + "start": 1526.22, + "end": 1531.68, + "probability": 0.9698 + }, + { + "start": 1532.6, + "end": 1535.08, + "probability": 0.9982 + }, + { + "start": 1535.82, + "end": 1539.56, + "probability": 0.9984 + }, + { + "start": 1539.56, + "end": 1542.12, + "probability": 0.9985 + }, + { + "start": 1542.78, + "end": 1544.02, + "probability": 0.9789 + }, + { + "start": 1544.22, + "end": 1546.26, + "probability": 0.9636 + }, + { + "start": 1547.08, + "end": 1548.72, + "probability": 0.6966 + }, + { + "start": 1549.8, + "end": 1550.5, + "probability": 0.836 + }, + { + "start": 1551.2, + "end": 1552.08, + "probability": 0.5965 + }, + { + "start": 1552.86, + "end": 1554.96, + "probability": 0.6669 + }, + { + "start": 1555.64, + "end": 1556.42, + "probability": 0.9441 + }, + { + "start": 1556.94, + "end": 1557.68, + "probability": 0.8952 + }, + { + "start": 1558.24, + "end": 1559.14, + "probability": 0.7638 + }, + { + "start": 1560.14, + "end": 1560.7, + "probability": 0.6696 + }, + { + "start": 1561.34, + "end": 1563.3, + "probability": 0.4398 + }, + { + "start": 1564.06, + "end": 1566.04, + "probability": 0.5555 + }, + { + "start": 1566.28, + "end": 1569.24, + "probability": 0.9504 + }, + { + "start": 1569.6, + "end": 1570.82, + "probability": 0.9881 + }, + { + "start": 1570.98, + "end": 1571.24, + "probability": 0.9409 + }, + { + "start": 1572.96, + "end": 1573.5, + "probability": 0.6705 + }, + { + "start": 1573.6, + "end": 1577.08, + "probability": 0.9373 + }, + { + "start": 1583.58, + "end": 1584.08, + "probability": 0.4999 + }, + { + "start": 1584.08, + "end": 1584.96, + "probability": 0.6203 + }, + { + "start": 1585.2, + "end": 1589.2, + "probability": 0.9875 + }, + { + "start": 1590.02, + "end": 1591.08, + "probability": 0.365 + }, + { + "start": 1591.72, + "end": 1594.96, + "probability": 0.8445 + }, + { + "start": 1595.2, + "end": 1598.42, + "probability": 0.8755 + }, + { + "start": 1599.39, + "end": 1602.9, + "probability": 0.9926 + }, + { + "start": 1603.38, + "end": 1606.12, + "probability": 0.9654 + }, + { + "start": 1606.36, + "end": 1609.46, + "probability": 0.9837 + }, + { + "start": 1610.08, + "end": 1613.6, + "probability": 0.9966 + }, + { + "start": 1614.22, + "end": 1615.26, + "probability": 0.9784 + }, + { + "start": 1615.98, + "end": 1620.8, + "probability": 0.9972 + }, + { + "start": 1621.22, + "end": 1624.14, + "probability": 0.0873 + }, + { + "start": 1624.86, + "end": 1625.1, + "probability": 0.0539 + }, + { + "start": 1625.1, + "end": 1625.1, + "probability": 0.0139 + }, + { + "start": 1625.1, + "end": 1625.1, + "probability": 0.0477 + }, + { + "start": 1625.1, + "end": 1625.8, + "probability": 0.7478 + }, + { + "start": 1625.8, + "end": 1627.42, + "probability": 0.5939 + }, + { + "start": 1627.56, + "end": 1629.26, + "probability": 0.5569 + }, + { + "start": 1629.36, + "end": 1629.52, + "probability": 0.5253 + }, + { + "start": 1629.52, + "end": 1630.42, + "probability": 0.6039 + }, + { + "start": 1630.78, + "end": 1631.86, + "probability": 0.0946 + }, + { + "start": 1634.06, + "end": 1635.66, + "probability": 0.1383 + }, + { + "start": 1635.66, + "end": 1635.66, + "probability": 0.0084 + }, + { + "start": 1635.72, + "end": 1637.66, + "probability": 0.3135 + }, + { + "start": 1638.76, + "end": 1641.52, + "probability": 0.2344 + }, + { + "start": 1643.44, + "end": 1648.28, + "probability": 0.6426 + }, + { + "start": 1648.28, + "end": 1648.78, + "probability": 0.8455 + }, + { + "start": 1649.82, + "end": 1652.64, + "probability": 0.7163 + }, + { + "start": 1652.64, + "end": 1653.08, + "probability": 0.0411 + }, + { + "start": 1654.1, + "end": 1655.06, + "probability": 0.1371 + }, + { + "start": 1656.84, + "end": 1657.52, + "probability": 0.1496 + }, + { + "start": 1657.52, + "end": 1658.4, + "probability": 0.101 + }, + { + "start": 1659.3, + "end": 1663.94, + "probability": 0.0479 + }, + { + "start": 1664.3, + "end": 1666.6, + "probability": 0.0891 + }, + { + "start": 1667.61, + "end": 1668.92, + "probability": 0.3638 + }, + { + "start": 1668.92, + "end": 1669.32, + "probability": 0.0664 + }, + { + "start": 1669.84, + "end": 1671.36, + "probability": 0.0857 + }, + { + "start": 1682.39, + "end": 1684.8, + "probability": 0.105 + }, + { + "start": 1684.8, + "end": 1684.8, + "probability": 0.0099 + }, + { + "start": 1684.8, + "end": 1685.01, + "probability": 0.0205 + }, + { + "start": 1687.15, + "end": 1688.91, + "probability": 0.0357 + }, + { + "start": 1689.46, + "end": 1689.94, + "probability": 0.0119 + }, + { + "start": 1690.62, + "end": 1691.68, + "probability": 0.0842 + }, + { + "start": 1693.8, + "end": 1695.88, + "probability": 0.0813 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.0, + "end": 1700.0, + "probability": 0.0 + }, + { + "start": 1700.08, + "end": 1702.94, + "probability": 0.9832 + }, + { + "start": 1703.02, + "end": 1703.6, + "probability": 0.5175 + }, + { + "start": 1704.28, + "end": 1704.66, + "probability": 0.5243 + }, + { + "start": 1704.84, + "end": 1706.24, + "probability": 0.9287 + }, + { + "start": 1706.76, + "end": 1706.76, + "probability": 0.2128 + }, + { + "start": 1706.94, + "end": 1708.14, + "probability": 0.4518 + }, + { + "start": 1708.38, + "end": 1709.92, + "probability": 0.7842 + }, + { + "start": 1710.06, + "end": 1710.92, + "probability": 0.6151 + }, + { + "start": 1711.28, + "end": 1714.76, + "probability": 0.9956 + }, + { + "start": 1715.14, + "end": 1717.92, + "probability": 0.9807 + }, + { + "start": 1717.92, + "end": 1721.2, + "probability": 0.9175 + }, + { + "start": 1722.06, + "end": 1724.3, + "probability": 0.9173 + }, + { + "start": 1725.7, + "end": 1726.8, + "probability": 0.7056 + }, + { + "start": 1727.38, + "end": 1729.54, + "probability": 0.7909 + }, + { + "start": 1729.62, + "end": 1730.59, + "probability": 0.9641 + }, + { + "start": 1731.04, + "end": 1731.5, + "probability": 0.844 + }, + { + "start": 1732.18, + "end": 1735.32, + "probability": 0.8668 + }, + { + "start": 1735.87, + "end": 1740.78, + "probability": 0.9896 + }, + { + "start": 1742.0, + "end": 1745.98, + "probability": 0.9897 + }, + { + "start": 1745.98, + "end": 1750.3, + "probability": 0.9953 + }, + { + "start": 1750.62, + "end": 1751.36, + "probability": 0.9613 + }, + { + "start": 1752.18, + "end": 1753.58, + "probability": 0.9674 + }, + { + "start": 1754.76, + "end": 1759.0, + "probability": 0.9946 + }, + { + "start": 1759.66, + "end": 1761.6, + "probability": 0.9735 + }, + { + "start": 1762.16, + "end": 1766.14, + "probability": 0.8866 + }, + { + "start": 1766.7, + "end": 1769.36, + "probability": 0.9812 + }, + { + "start": 1770.5, + "end": 1772.14, + "probability": 0.9876 + }, + { + "start": 1772.72, + "end": 1777.22, + "probability": 0.9979 + }, + { + "start": 1778.04, + "end": 1780.2, + "probability": 0.8399 + }, + { + "start": 1781.12, + "end": 1783.22, + "probability": 0.9966 + }, + { + "start": 1783.78, + "end": 1784.58, + "probability": 0.9709 + }, + { + "start": 1787.4, + "end": 1787.92, + "probability": 0.4746 + }, + { + "start": 1788.76, + "end": 1789.94, + "probability": 0.8298 + }, + { + "start": 1790.2, + "end": 1793.44, + "probability": 0.9526 + }, + { + "start": 1793.44, + "end": 1797.02, + "probability": 0.9641 + }, + { + "start": 1797.7, + "end": 1798.04, + "probability": 0.7567 + }, + { + "start": 1800.16, + "end": 1800.76, + "probability": 0.7853 + }, + { + "start": 1802.42, + "end": 1803.36, + "probability": 0.9265 + }, + { + "start": 1803.92, + "end": 1807.18, + "probability": 0.0884 + }, + { + "start": 1807.18, + "end": 1809.44, + "probability": 0.4132 + }, + { + "start": 1809.54, + "end": 1810.3, + "probability": 0.6052 + }, + { + "start": 1811.0, + "end": 1812.5, + "probability": 0.788 + }, + { + "start": 1813.12, + "end": 1814.74, + "probability": 0.6741 + }, + { + "start": 1815.26, + "end": 1816.46, + "probability": 0.748 + }, + { + "start": 1817.36, + "end": 1820.02, + "probability": 0.8822 + }, + { + "start": 1820.02, + "end": 1823.2, + "probability": 0.9937 + }, + { + "start": 1823.52, + "end": 1824.04, + "probability": 0.871 + }, + { + "start": 1841.18, + "end": 1841.92, + "probability": 0.6657 + }, + { + "start": 1842.62, + "end": 1843.32, + "probability": 0.7644 + }, + { + "start": 1844.7, + "end": 1847.52, + "probability": 0.9932 + }, + { + "start": 1847.78, + "end": 1851.7, + "probability": 0.8984 + }, + { + "start": 1852.56, + "end": 1855.82, + "probability": 0.8261 + }, + { + "start": 1856.42, + "end": 1863.71, + "probability": 0.9897 + }, + { + "start": 1863.78, + "end": 1869.66, + "probability": 0.9774 + }, + { + "start": 1871.12, + "end": 1872.38, + "probability": 0.9435 + }, + { + "start": 1872.46, + "end": 1875.64, + "probability": 0.9969 + }, + { + "start": 1875.7, + "end": 1879.92, + "probability": 0.9905 + }, + { + "start": 1881.08, + "end": 1881.78, + "probability": 0.7096 + }, + { + "start": 1882.68, + "end": 1885.96, + "probability": 0.9858 + }, + { + "start": 1886.16, + "end": 1892.26, + "probability": 0.8684 + }, + { + "start": 1892.26, + "end": 1896.2, + "probability": 0.9678 + }, + { + "start": 1897.0, + "end": 1899.94, + "probability": 0.5152 + }, + { + "start": 1900.4, + "end": 1903.88, + "probability": 0.9914 + }, + { + "start": 1903.98, + "end": 1908.92, + "probability": 0.9948 + }, + { + "start": 1908.96, + "end": 1914.46, + "probability": 0.5758 + }, + { + "start": 1914.46, + "end": 1917.22, + "probability": 0.7186 + }, + { + "start": 1917.38, + "end": 1918.48, + "probability": 0.8896 + }, + { + "start": 1919.46, + "end": 1919.88, + "probability": 0.7479 + }, + { + "start": 1919.92, + "end": 1920.46, + "probability": 0.8297 + }, + { + "start": 1920.48, + "end": 1922.12, + "probability": 0.8357 + }, + { + "start": 1922.48, + "end": 1922.84, + "probability": 0.3604 + }, + { + "start": 1923.98, + "end": 1924.24, + "probability": 0.1929 + }, + { + "start": 1924.24, + "end": 1924.36, + "probability": 0.3988 + }, + { + "start": 1924.36, + "end": 1926.54, + "probability": 0.6595 + }, + { + "start": 1926.56, + "end": 1927.42, + "probability": 0.7291 + }, + { + "start": 1927.52, + "end": 1928.8, + "probability": 0.9238 + }, + { + "start": 1928.86, + "end": 1931.06, + "probability": 0.8755 + }, + { + "start": 1932.14, + "end": 1932.56, + "probability": 0.5675 + }, + { + "start": 1932.8, + "end": 1938.42, + "probability": 0.96 + }, + { + "start": 1939.22, + "end": 1941.44, + "probability": 0.3394 + }, + { + "start": 1941.62, + "end": 1946.94, + "probability": 0.9236 + }, + { + "start": 1947.06, + "end": 1947.72, + "probability": 0.9146 + }, + { + "start": 1949.0, + "end": 1951.96, + "probability": 0.9277 + }, + { + "start": 1952.68, + "end": 1955.4, + "probability": 0.8673 + }, + { + "start": 1955.4, + "end": 1958.14, + "probability": 0.67 + }, + { + "start": 1958.94, + "end": 1960.94, + "probability": 0.5966 + }, + { + "start": 1961.04, + "end": 1965.98, + "probability": 0.8153 + }, + { + "start": 1966.14, + "end": 1966.86, + "probability": 0.6999 + }, + { + "start": 1967.88, + "end": 1968.28, + "probability": 0.6188 + }, + { + "start": 1968.32, + "end": 1968.54, + "probability": 0.5299 + }, + { + "start": 1968.54, + "end": 1969.94, + "probability": 0.9409 + }, + { + "start": 1971.45, + "end": 1977.22, + "probability": 0.8123 + }, + { + "start": 1978.24, + "end": 1983.32, + "probability": 0.9141 + }, + { + "start": 1984.6, + "end": 1988.38, + "probability": 0.9829 + }, + { + "start": 1988.58, + "end": 1989.0, + "probability": 0.7722 + }, + { + "start": 1989.92, + "end": 1993.54, + "probability": 0.9924 + }, + { + "start": 1993.64, + "end": 1995.62, + "probability": 0.9741 + }, + { + "start": 1995.74, + "end": 1999.5, + "probability": 0.7722 + }, + { + "start": 2000.1, + "end": 2001.98, + "probability": 0.9916 + }, + { + "start": 2002.04, + "end": 2007.32, + "probability": 0.9215 + }, + { + "start": 2008.16, + "end": 2010.56, + "probability": 0.9863 + }, + { + "start": 2010.58, + "end": 2012.6, + "probability": 0.9888 + }, + { + "start": 2013.14, + "end": 2016.66, + "probability": 0.3538 + }, + { + "start": 2016.66, + "end": 2018.94, + "probability": 0.8664 + }, + { + "start": 2018.96, + "end": 2019.5, + "probability": 0.8615 + }, + { + "start": 2020.38, + "end": 2023.48, + "probability": 0.511 + }, + { + "start": 2023.88, + "end": 2024.72, + "probability": 0.98 + }, + { + "start": 2025.22, + "end": 2027.46, + "probability": 0.9047 + }, + { + "start": 2027.58, + "end": 2032.47, + "probability": 0.9878 + }, + { + "start": 2033.36, + "end": 2035.1, + "probability": 0.8073 + }, + { + "start": 2035.14, + "end": 2036.22, + "probability": 0.5612 + }, + { + "start": 2036.24, + "end": 2036.72, + "probability": 0.5449 + }, + { + "start": 2036.74, + "end": 2038.58, + "probability": 0.8907 + }, + { + "start": 2038.72, + "end": 2040.92, + "probability": 0.7293 + }, + { + "start": 2041.02, + "end": 2048.54, + "probability": 0.9824 + }, + { + "start": 2049.34, + "end": 2056.3, + "probability": 0.9409 + }, + { + "start": 2056.94, + "end": 2058.72, + "probability": 0.7362 + }, + { + "start": 2059.42, + "end": 2062.84, + "probability": 0.9963 + }, + { + "start": 2062.96, + "end": 2065.52, + "probability": 0.9779 + }, + { + "start": 2066.22, + "end": 2070.2, + "probability": 0.9612 + }, + { + "start": 2071.1, + "end": 2071.1, + "probability": 0.0326 + }, + { + "start": 2071.1, + "end": 2074.83, + "probability": 0.9784 + }, + { + "start": 2075.16, + "end": 2077.24, + "probability": 0.8922 + }, + { + "start": 2077.24, + "end": 2080.14, + "probability": 0.7503 + }, + { + "start": 2080.26, + "end": 2083.98, + "probability": 0.6317 + }, + { + "start": 2083.98, + "end": 2087.79, + "probability": 0.9414 + }, + { + "start": 2088.62, + "end": 2090.08, + "probability": 0.7751 + }, + { + "start": 2091.94, + "end": 2093.4, + "probability": 0.9989 + }, + { + "start": 2094.1, + "end": 2094.82, + "probability": 0.7192 + }, + { + "start": 2094.96, + "end": 2096.58, + "probability": 0.9961 + }, + { + "start": 2097.04, + "end": 2097.99, + "probability": 0.9275 + }, + { + "start": 2098.66, + "end": 2099.56, + "probability": 0.7656 + }, + { + "start": 2100.32, + "end": 2104.12, + "probability": 0.9873 + }, + { + "start": 2104.6, + "end": 2106.57, + "probability": 0.978 + }, + { + "start": 2107.24, + "end": 2112.94, + "probability": 0.9409 + }, + { + "start": 2113.52, + "end": 2115.58, + "probability": 0.9629 + }, + { + "start": 2115.74, + "end": 2119.38, + "probability": 0.9865 + }, + { + "start": 2120.96, + "end": 2122.24, + "probability": 0.9934 + }, + { + "start": 2122.86, + "end": 2128.48, + "probability": 0.9934 + }, + { + "start": 2128.8, + "end": 2133.64, + "probability": 0.9967 + }, + { + "start": 2133.72, + "end": 2134.88, + "probability": 0.9673 + }, + { + "start": 2135.08, + "end": 2136.84, + "probability": 0.8354 + }, + { + "start": 2137.54, + "end": 2138.76, + "probability": 0.9883 + }, + { + "start": 2139.68, + "end": 2140.22, + "probability": 0.6073 + }, + { + "start": 2141.54, + "end": 2142.58, + "probability": 0.9907 + }, + { + "start": 2143.0, + "end": 2147.3, + "probability": 0.9673 + }, + { + "start": 2147.3, + "end": 2148.24, + "probability": 0.9424 + }, + { + "start": 2149.3, + "end": 2155.8, + "probability": 0.9779 + }, + { + "start": 2156.32, + "end": 2160.08, + "probability": 0.8912 + }, + { + "start": 2160.78, + "end": 2163.74, + "probability": 0.7778 + }, + { + "start": 2164.76, + "end": 2166.14, + "probability": 0.823 + }, + { + "start": 2167.44, + "end": 2171.24, + "probability": 0.9323 + }, + { + "start": 2171.68, + "end": 2175.94, + "probability": 0.9933 + }, + { + "start": 2176.96, + "end": 2180.54, + "probability": 0.7192 + }, + { + "start": 2181.38, + "end": 2184.3, + "probability": 0.9759 + }, + { + "start": 2184.88, + "end": 2187.58, + "probability": 0.9789 + }, + { + "start": 2189.92, + "end": 2191.04, + "probability": 0.3721 + }, + { + "start": 2191.04, + "end": 2191.96, + "probability": 0.4772 + }, + { + "start": 2192.74, + "end": 2193.12, + "probability": 0.4883 + }, + { + "start": 2193.78, + "end": 2196.9, + "probability": 0.9496 + }, + { + "start": 2197.8, + "end": 2199.9, + "probability": 0.708 + }, + { + "start": 2200.36, + "end": 2202.34, + "probability": 0.9387 + }, + { + "start": 2203.3, + "end": 2204.0, + "probability": 0.4467 + }, + { + "start": 2204.14, + "end": 2205.5, + "probability": 0.9297 + }, + { + "start": 2205.58, + "end": 2206.07, + "probability": 0.9155 + }, + { + "start": 2207.1, + "end": 2208.86, + "probability": 0.9917 + }, + { + "start": 2209.64, + "end": 2211.76, + "probability": 0.9932 + }, + { + "start": 2212.5, + "end": 2214.0, + "probability": 0.9382 + }, + { + "start": 2214.96, + "end": 2220.3, + "probability": 0.9344 + }, + { + "start": 2220.84, + "end": 2225.0, + "probability": 0.7313 + }, + { + "start": 2226.46, + "end": 2228.14, + "probability": 0.9964 + }, + { + "start": 2228.26, + "end": 2228.78, + "probability": 0.8281 + }, + { + "start": 2231.32, + "end": 2231.7, + "probability": 0.5844 + }, + { + "start": 2232.72, + "end": 2234.54, + "probability": 0.843 + }, + { + "start": 2234.74, + "end": 2238.88, + "probability": 0.5027 + }, + { + "start": 2238.88, + "end": 2239.48, + "probability": 0.4648 + }, + { + "start": 2239.6, + "end": 2239.7, + "probability": 0.5814 + }, + { + "start": 2239.88, + "end": 2240.4, + "probability": 0.7055 + }, + { + "start": 2250.1, + "end": 2251.64, + "probability": 0.9439 + }, + { + "start": 2252.7, + "end": 2253.42, + "probability": 0.8091 + }, + { + "start": 2253.56, + "end": 2256.04, + "probability": 0.9908 + }, + { + "start": 2256.04, + "end": 2259.36, + "probability": 0.7606 + }, + { + "start": 2259.5, + "end": 2262.6, + "probability": 0.7765 + }, + { + "start": 2262.74, + "end": 2265.14, + "probability": 0.6679 + }, + { + "start": 2265.56, + "end": 2266.76, + "probability": 0.6713 + }, + { + "start": 2267.38, + "end": 2268.96, + "probability": 0.5882 + }, + { + "start": 2279.14, + "end": 2280.9, + "probability": 0.9253 + }, + { + "start": 2281.74, + "end": 2284.04, + "probability": 0.7465 + }, + { + "start": 2292.06, + "end": 2293.78, + "probability": 0.7345 + }, + { + "start": 2294.04, + "end": 2294.98, + "probability": 0.0042 + }, + { + "start": 2296.16, + "end": 2298.06, + "probability": 0.0337 + }, + { + "start": 2305.02, + "end": 2306.32, + "probability": 0.6468 + }, + { + "start": 2307.14, + "end": 2308.66, + "probability": 0.9255 + }, + { + "start": 2309.7, + "end": 2310.08, + "probability": 0.3966 + }, + { + "start": 2310.76, + "end": 2310.76, + "probability": 0.6289 + }, + { + "start": 2312.16, + "end": 2314.32, + "probability": 0.9922 + }, + { + "start": 2314.48, + "end": 2319.5, + "probability": 0.9607 + }, + { + "start": 2320.12, + "end": 2320.88, + "probability": 0.5375 + }, + { + "start": 2321.06, + "end": 2322.28, + "probability": 0.9707 + }, + { + "start": 2322.44, + "end": 2324.04, + "probability": 0.8873 + }, + { + "start": 2325.8, + "end": 2329.3, + "probability": 0.9846 + }, + { + "start": 2329.6, + "end": 2332.88, + "probability": 0.9905 + }, + { + "start": 2332.88, + "end": 2335.6, + "probability": 0.659 + }, + { + "start": 2335.74, + "end": 2338.62, + "probability": 0.7435 + }, + { + "start": 2338.78, + "end": 2342.04, + "probability": 0.7527 + }, + { + "start": 2363.0, + "end": 2367.1, + "probability": 0.6066 + }, + { + "start": 2367.24, + "end": 2368.08, + "probability": 0.6989 + }, + { + "start": 2368.6, + "end": 2373.36, + "probability": 0.7598 + }, + { + "start": 2383.02, + "end": 2388.82, + "probability": 0.0826 + }, + { + "start": 2390.38, + "end": 2398.6, + "probability": 0.0469 + }, + { + "start": 2398.82, + "end": 2399.48, + "probability": 0.09 + }, + { + "start": 2399.48, + "end": 2400.44, + "probability": 0.4145 + }, + { + "start": 2400.54, + "end": 2401.44, + "probability": 0.1333 + }, + { + "start": 2403.84, + "end": 2406.11, + "probability": 0.0953 + }, + { + "start": 2406.14, + "end": 2410.24, + "probability": 0.0353 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2440.0, + "end": 2440.0, + "probability": 0.0 + }, + { + "start": 2463.16, + "end": 2463.24, + "probability": 0.026 + }, + { + "start": 2463.26, + "end": 2463.32, + "probability": 0.2284 + }, + { + "start": 2463.32, + "end": 2463.32, + "probability": 0.0638 + }, + { + "start": 2479.02, + "end": 2480.26, + "probability": 0.4672 + }, + { + "start": 2480.98, + "end": 2481.82, + "probability": 0.8155 + }, + { + "start": 2482.76, + "end": 2483.05, + "probability": 0.4425 + }, + { + "start": 2486.1, + "end": 2486.98, + "probability": 0.5829 + }, + { + "start": 2487.14, + "end": 2492.68, + "probability": 0.9746 + }, + { + "start": 2493.48, + "end": 2496.04, + "probability": 0.9897 + }, + { + "start": 2496.4, + "end": 2499.54, + "probability": 0.9565 + }, + { + "start": 2500.42, + "end": 2503.9, + "probability": 0.9913 + }, + { + "start": 2503.9, + "end": 2507.4, + "probability": 0.993 + }, + { + "start": 2508.12, + "end": 2509.48, + "probability": 0.7772 + }, + { + "start": 2509.68, + "end": 2510.24, + "probability": 0.7754 + }, + { + "start": 2511.0, + "end": 2513.54, + "probability": 0.5445 + }, + { + "start": 2514.38, + "end": 2514.94, + "probability": 0.9995 + }, + { + "start": 2516.3, + "end": 2518.14, + "probability": 0.3764 + }, + { + "start": 2518.24, + "end": 2520.1, + "probability": 0.9974 + }, + { + "start": 2520.72, + "end": 2524.0, + "probability": 0.9761 + }, + { + "start": 2524.6, + "end": 2526.26, + "probability": 0.9731 + }, + { + "start": 2526.28, + "end": 2527.54, + "probability": 0.5919 + }, + { + "start": 2528.1, + "end": 2532.8, + "probability": 0.6164 + }, + { + "start": 2534.08, + "end": 2535.14, + "probability": 0.8021 + }, + { + "start": 2535.96, + "end": 2537.82, + "probability": 0.8564 + }, + { + "start": 2538.34, + "end": 2538.82, + "probability": 0.8813 + }, + { + "start": 2539.26, + "end": 2539.52, + "probability": 0.8768 + }, + { + "start": 2541.04, + "end": 2542.53, + "probability": 0.9261 + }, + { + "start": 2543.88, + "end": 2546.51, + "probability": 0.973 + }, + { + "start": 2547.58, + "end": 2550.4, + "probability": 0.9952 + }, + { + "start": 2550.74, + "end": 2555.98, + "probability": 0.8221 + }, + { + "start": 2557.26, + "end": 2558.42, + "probability": 0.6097 + }, + { + "start": 2559.5, + "end": 2562.92, + "probability": 0.9242 + }, + { + "start": 2563.12, + "end": 2567.58, + "probability": 0.9856 + }, + { + "start": 2568.12, + "end": 2572.4, + "probability": 0.9225 + }, + { + "start": 2573.0, + "end": 2575.18, + "probability": 0.9463 + }, + { + "start": 2575.28, + "end": 2576.56, + "probability": 0.868 + }, + { + "start": 2576.66, + "end": 2577.4, + "probability": 0.8069 + }, + { + "start": 2577.48, + "end": 2581.46, + "probability": 0.9914 + }, + { + "start": 2581.46, + "end": 2585.14, + "probability": 0.9779 + }, + { + "start": 2586.32, + "end": 2586.96, + "probability": 0.5416 + }, + { + "start": 2586.96, + "end": 2589.1, + "probability": 0.8146 + }, + { + "start": 2589.96, + "end": 2591.84, + "probability": 0.546 + }, + { + "start": 2592.46, + "end": 2594.96, + "probability": 0.9734 + }, + { + "start": 2595.54, + "end": 2598.76, + "probability": 0.9729 + }, + { + "start": 2598.86, + "end": 2599.7, + "probability": 0.5795 + }, + { + "start": 2600.44, + "end": 2601.22, + "probability": 0.0017 + }, + { + "start": 2602.24, + "end": 2602.62, + "probability": 0.626 + }, + { + "start": 2603.06, + "end": 2606.44, + "probability": 0.992 + }, + { + "start": 2606.46, + "end": 2608.79, + "probability": 0.9888 + }, + { + "start": 2609.26, + "end": 2610.6, + "probability": 0.7911 + }, + { + "start": 2611.54, + "end": 2615.46, + "probability": 0.9445 + }, + { + "start": 2616.24, + "end": 2620.98, + "probability": 0.8065 + }, + { + "start": 2621.4, + "end": 2621.96, + "probability": 0.6635 + }, + { + "start": 2622.54, + "end": 2623.32, + "probability": 0.9683 + }, + { + "start": 2623.86, + "end": 2625.3, + "probability": 0.987 + }, + { + "start": 2625.88, + "end": 2628.82, + "probability": 0.9948 + }, + { + "start": 2629.52, + "end": 2631.34, + "probability": 0.992 + }, + { + "start": 2631.9, + "end": 2632.7, + "probability": 0.8838 + }, + { + "start": 2632.8, + "end": 2633.76, + "probability": 0.735 + }, + { + "start": 2633.86, + "end": 2635.74, + "probability": 0.9836 + }, + { + "start": 2636.12, + "end": 2637.28, + "probability": 0.9724 + }, + { + "start": 2637.72, + "end": 2640.12, + "probability": 0.9889 + }, + { + "start": 2640.12, + "end": 2642.5, + "probability": 0.9972 + }, + { + "start": 2643.02, + "end": 2647.0, + "probability": 0.9593 + }, + { + "start": 2647.52, + "end": 2648.54, + "probability": 0.9111 + }, + { + "start": 2648.8, + "end": 2649.59, + "probability": 0.9635 + }, + { + "start": 2649.82, + "end": 2651.42, + "probability": 0.5571 + }, + { + "start": 2651.56, + "end": 2653.4, + "probability": 0.6787 + }, + { + "start": 2654.04, + "end": 2657.55, + "probability": 0.8789 + }, + { + "start": 2658.42, + "end": 2659.92, + "probability": 0.5162 + }, + { + "start": 2660.04, + "end": 2660.51, + "probability": 0.8892 + }, + { + "start": 2660.9, + "end": 2663.38, + "probability": 0.9766 + }, + { + "start": 2663.38, + "end": 2666.22, + "probability": 0.9921 + }, + { + "start": 2667.12, + "end": 2670.4, + "probability": 0.9868 + }, + { + "start": 2671.0, + "end": 2671.06, + "probability": 0.3063 + }, + { + "start": 2671.06, + "end": 2676.46, + "probability": 0.9168 + }, + { + "start": 2677.04, + "end": 2679.4, + "probability": 0.7519 + }, + { + "start": 2679.76, + "end": 2685.26, + "probability": 0.9937 + }, + { + "start": 2685.72, + "end": 2688.82, + "probability": 0.9826 + }, + { + "start": 2689.74, + "end": 2697.46, + "probability": 0.9744 + }, + { + "start": 2698.04, + "end": 2701.3, + "probability": 0.7741 + }, + { + "start": 2701.72, + "end": 2702.66, + "probability": 0.8709 + }, + { + "start": 2703.36, + "end": 2706.42, + "probability": 0.9928 + }, + { + "start": 2706.42, + "end": 2709.4, + "probability": 0.9889 + }, + { + "start": 2710.5, + "end": 2714.02, + "probability": 0.9931 + }, + { + "start": 2714.08, + "end": 2716.84, + "probability": 0.9104 + }, + { + "start": 2718.0, + "end": 2720.08, + "probability": 0.5056 + }, + { + "start": 2720.78, + "end": 2724.14, + "probability": 0.9503 + }, + { + "start": 2726.1, + "end": 2727.1, + "probability": 0.6626 + }, + { + "start": 2728.54, + "end": 2730.36, + "probability": 0.9777 + }, + { + "start": 2731.3, + "end": 2735.6, + "probability": 0.9687 + }, + { + "start": 2736.04, + "end": 2742.48, + "probability": 0.3807 + }, + { + "start": 2743.02, + "end": 2745.84, + "probability": 0.7114 + }, + { + "start": 2745.96, + "end": 2747.4, + "probability": 0.6406 + }, + { + "start": 2747.82, + "end": 2749.64, + "probability": 0.9438 + }, + { + "start": 2751.56, + "end": 2753.76, + "probability": 0.978 + }, + { + "start": 2753.76, + "end": 2756.38, + "probability": 0.9741 + }, + { + "start": 2757.7, + "end": 2758.42, + "probability": 0.624 + }, + { + "start": 2758.7, + "end": 2761.44, + "probability": 0.9576 + }, + { + "start": 2761.44, + "end": 2764.24, + "probability": 0.8511 + }, + { + "start": 2764.74, + "end": 2767.22, + "probability": 0.9421 + }, + { + "start": 2767.84, + "end": 2771.54, + "probability": 0.3773 + }, + { + "start": 2772.28, + "end": 2776.24, + "probability": 0.9927 + }, + { + "start": 2776.36, + "end": 2782.0, + "probability": 0.9961 + }, + { + "start": 2782.12, + "end": 2782.7, + "probability": 0.7013 + }, + { + "start": 2783.08, + "end": 2784.22, + "probability": 0.9458 + }, + { + "start": 2785.14, + "end": 2787.2, + "probability": 0.7586 + }, + { + "start": 2788.1, + "end": 2788.3, + "probability": 0.6801 + }, + { + "start": 2788.86, + "end": 2791.18, + "probability": 0.957 + }, + { + "start": 2791.18, + "end": 2793.72, + "probability": 0.9834 + }, + { + "start": 2794.38, + "end": 2798.64, + "probability": 0.9854 + }, + { + "start": 2798.64, + "end": 2804.48, + "probability": 0.9923 + }, + { + "start": 2804.58, + "end": 2806.06, + "probability": 0.7155 + }, + { + "start": 2806.8, + "end": 2807.18, + "probability": 0.5665 + }, + { + "start": 2807.3, + "end": 2811.74, + "probability": 0.9108 + }, + { + "start": 2811.9, + "end": 2814.88, + "probability": 0.9916 + }, + { + "start": 2815.78, + "end": 2816.16, + "probability": 0.8693 + }, + { + "start": 2816.82, + "end": 2820.02, + "probability": 0.9569 + }, + { + "start": 2820.2, + "end": 2821.0, + "probability": 0.4659 + }, + { + "start": 2821.66, + "end": 2823.28, + "probability": 0.9888 + }, + { + "start": 2823.3, + "end": 2825.42, + "probability": 0.7769 + }, + { + "start": 2825.76, + "end": 2828.14, + "probability": 0.9912 + }, + { + "start": 2828.74, + "end": 2831.58, + "probability": 0.9686 + }, + { + "start": 2832.48, + "end": 2835.94, + "probability": 0.9803 + }, + { + "start": 2836.66, + "end": 2837.82, + "probability": 0.7728 + }, + { + "start": 2838.32, + "end": 2841.84, + "probability": 0.7405 + }, + { + "start": 2842.18, + "end": 2847.08, + "probability": 0.9741 + }, + { + "start": 2847.08, + "end": 2851.4, + "probability": 0.9813 + }, + { + "start": 2851.4, + "end": 2856.82, + "probability": 0.9486 + }, + { + "start": 2857.78, + "end": 2860.62, + "probability": 0.9885 + }, + { + "start": 2860.62, + "end": 2863.82, + "probability": 0.9938 + }, + { + "start": 2864.54, + "end": 2867.54, + "probability": 0.9799 + }, + { + "start": 2868.22, + "end": 2870.72, + "probability": 0.9257 + }, + { + "start": 2870.72, + "end": 2873.1, + "probability": 0.998 + }, + { + "start": 2873.68, + "end": 2874.12, + "probability": 0.7211 + }, + { + "start": 2874.92, + "end": 2877.34, + "probability": 0.9717 + }, + { + "start": 2877.34, + "end": 2883.7, + "probability": 0.9746 + }, + { + "start": 2884.0, + "end": 2888.96, + "probability": 0.9402 + }, + { + "start": 2889.66, + "end": 2892.52, + "probability": 0.9489 + }, + { + "start": 2892.52, + "end": 2897.38, + "probability": 0.8307 + }, + { + "start": 2898.06, + "end": 2901.4, + "probability": 0.9908 + }, + { + "start": 2901.86, + "end": 2902.4, + "probability": 0.7695 + }, + { + "start": 2902.96, + "end": 2906.38, + "probability": 0.9711 + }, + { + "start": 2906.38, + "end": 2909.68, + "probability": 0.9607 + }, + { + "start": 2909.68, + "end": 2913.28, + "probability": 0.8665 + }, + { + "start": 2913.36, + "end": 2917.1, + "probability": 0.9795 + }, + { + "start": 2917.78, + "end": 2920.1, + "probability": 0.9866 + }, + { + "start": 2921.0, + "end": 2925.02, + "probability": 0.9246 + }, + { + "start": 2925.02, + "end": 2929.48, + "probability": 0.9906 + }, + { + "start": 2930.1, + "end": 2931.48, + "probability": 0.9927 + }, + { + "start": 2931.66, + "end": 2932.12, + "probability": 0.7524 + }, + { + "start": 2932.58, + "end": 2937.34, + "probability": 0.9795 + }, + { + "start": 2937.7, + "end": 2940.9, + "probability": 0.9976 + }, + { + "start": 2941.58, + "end": 2944.12, + "probability": 0.9947 + }, + { + "start": 2944.12, + "end": 2946.42, + "probability": 0.9811 + }, + { + "start": 2947.0, + "end": 2950.62, + "probability": 0.8939 + }, + { + "start": 2951.24, + "end": 2953.6, + "probability": 0.9824 + }, + { + "start": 2955.16, + "end": 2956.56, + "probability": 0.489 + }, + { + "start": 2957.14, + "end": 2957.68, + "probability": 0.9325 + }, + { + "start": 2958.68, + "end": 2962.9, + "probability": 0.943 + }, + { + "start": 2963.64, + "end": 2966.38, + "probability": 0.8252 + }, + { + "start": 2967.1, + "end": 2971.48, + "probability": 0.9675 + }, + { + "start": 2972.34, + "end": 2974.34, + "probability": 0.5006 + }, + { + "start": 2974.4, + "end": 2977.28, + "probability": 0.8445 + }, + { + "start": 2977.36, + "end": 2979.26, + "probability": 0.9243 + }, + { + "start": 2979.56, + "end": 2982.34, + "probability": 0.987 + }, + { + "start": 2982.94, + "end": 2983.32, + "probability": 0.7847 + }, + { + "start": 2983.32, + "end": 2986.16, + "probability": 0.8304 + }, + { + "start": 2986.16, + "end": 2988.86, + "probability": 0.9939 + }, + { + "start": 2989.46, + "end": 2990.88, + "probability": 0.9906 + }, + { + "start": 2991.4, + "end": 2992.26, + "probability": 0.6795 + }, + { + "start": 2992.84, + "end": 2994.98, + "probability": 0.9788 + }, + { + "start": 2994.98, + "end": 2997.56, + "probability": 0.9939 + }, + { + "start": 2998.14, + "end": 3001.88, + "probability": 0.9877 + }, + { + "start": 3001.88, + "end": 3006.04, + "probability": 0.9929 + }, + { + "start": 3007.02, + "end": 3011.26, + "probability": 0.9714 + }, + { + "start": 3011.26, + "end": 3015.06, + "probability": 0.9296 + }, + { + "start": 3016.24, + "end": 3018.08, + "probability": 0.9064 + }, + { + "start": 3018.84, + "end": 3022.46, + "probability": 0.6592 + }, + { + "start": 3022.52, + "end": 3022.92, + "probability": 0.8695 + }, + { + "start": 3022.96, + "end": 3024.86, + "probability": 0.9869 + }, + { + "start": 3025.44, + "end": 3027.76, + "probability": 0.8987 + }, + { + "start": 3028.26, + "end": 3032.26, + "probability": 0.975 + }, + { + "start": 3032.82, + "end": 3038.52, + "probability": 0.9213 + }, + { + "start": 3039.04, + "end": 3042.4, + "probability": 0.9518 + }, + { + "start": 3042.4, + "end": 3045.06, + "probability": 0.9345 + }, + { + "start": 3045.32, + "end": 3045.78, + "probability": 0.7467 + }, + { + "start": 3046.98, + "end": 3048.1, + "probability": 0.7476 + }, + { + "start": 3049.06, + "end": 3050.73, + "probability": 0.9771 + }, + { + "start": 3050.88, + "end": 3052.52, + "probability": 0.9927 + }, + { + "start": 3053.12, + "end": 3056.0, + "probability": 0.9723 + }, + { + "start": 3056.68, + "end": 3058.64, + "probability": 0.833 + }, + { + "start": 3059.74, + "end": 3060.32, + "probability": 0.4318 + }, + { + "start": 3060.84, + "end": 3062.0, + "probability": 0.9888 + }, + { + "start": 3063.18, + "end": 3063.74, + "probability": 0.9819 + }, + { + "start": 3064.26, + "end": 3065.6, + "probability": 0.9811 + }, + { + "start": 3066.72, + "end": 3068.94, + "probability": 0.9745 + }, + { + "start": 3070.98, + "end": 3071.48, + "probability": 0.8362 + }, + { + "start": 3072.2, + "end": 3074.04, + "probability": 0.8289 + }, + { + "start": 3075.1, + "end": 3075.58, + "probability": 0.6371 + }, + { + "start": 3076.22, + "end": 3077.32, + "probability": 0.8438 + }, + { + "start": 3077.84, + "end": 3078.56, + "probability": 0.6865 + }, + { + "start": 3099.9, + "end": 3101.04, + "probability": 0.8694 + }, + { + "start": 3101.78, + "end": 3102.52, + "probability": 0.7842 + }, + { + "start": 3103.2, + "end": 3105.36, + "probability": 0.7238 + }, + { + "start": 3107.12, + "end": 3110.58, + "probability": 0.9904 + }, + { + "start": 3112.34, + "end": 3122.26, + "probability": 0.9866 + }, + { + "start": 3123.04, + "end": 3126.88, + "probability": 0.8739 + }, + { + "start": 3127.08, + "end": 3127.94, + "probability": 0.8139 + }, + { + "start": 3128.78, + "end": 3130.82, + "probability": 0.8632 + }, + { + "start": 3132.34, + "end": 3132.76, + "probability": 0.8753 + }, + { + "start": 3134.18, + "end": 3137.42, + "probability": 0.9836 + }, + { + "start": 3138.56, + "end": 3139.66, + "probability": 0.9304 + }, + { + "start": 3140.7, + "end": 3141.66, + "probability": 0.8617 + }, + { + "start": 3142.2, + "end": 3145.66, + "probability": 0.9771 + }, + { + "start": 3146.96, + "end": 3148.13, + "probability": 0.9937 + }, + { + "start": 3150.54, + "end": 3151.82, + "probability": 0.8505 + }, + { + "start": 3152.88, + "end": 3155.38, + "probability": 0.991 + }, + { + "start": 3156.48, + "end": 3157.26, + "probability": 0.9576 + }, + { + "start": 3159.6, + "end": 3162.94, + "probability": 0.9048 + }, + { + "start": 3164.58, + "end": 3166.26, + "probability": 0.9944 + }, + { + "start": 3168.08, + "end": 3175.78, + "probability": 0.9919 + }, + { + "start": 3176.98, + "end": 3177.98, + "probability": 0.8338 + }, + { + "start": 3178.82, + "end": 3179.96, + "probability": 0.9346 + }, + { + "start": 3181.32, + "end": 3185.66, + "probability": 0.9816 + }, + { + "start": 3186.32, + "end": 3188.54, + "probability": 0.9678 + }, + { + "start": 3189.62, + "end": 3193.02, + "probability": 0.9736 + }, + { + "start": 3193.72, + "end": 3197.46, + "probability": 0.9881 + }, + { + "start": 3197.86, + "end": 3198.66, + "probability": 0.8153 + }, + { + "start": 3200.84, + "end": 3202.24, + "probability": 0.6846 + }, + { + "start": 3203.22, + "end": 3205.16, + "probability": 0.9946 + }, + { + "start": 3206.28, + "end": 3206.96, + "probability": 0.74 + }, + { + "start": 3208.04, + "end": 3208.92, + "probability": 0.7925 + }, + { + "start": 3210.44, + "end": 3213.38, + "probability": 0.976 + }, + { + "start": 3214.36, + "end": 3215.7, + "probability": 0.998 + }, + { + "start": 3216.4, + "end": 3217.16, + "probability": 0.5241 + }, + { + "start": 3217.96, + "end": 3219.76, + "probability": 0.9786 + }, + { + "start": 3220.58, + "end": 3222.6, + "probability": 0.5428 + }, + { + "start": 3223.18, + "end": 3224.24, + "probability": 0.8841 + }, + { + "start": 3225.3, + "end": 3226.08, + "probability": 0.7257 + }, + { + "start": 3226.92, + "end": 3227.78, + "probability": 0.9675 + }, + { + "start": 3228.56, + "end": 3230.94, + "probability": 0.3473 + }, + { + "start": 3231.67, + "end": 3232.87, + "probability": 0.5206 + }, + { + "start": 3233.9, + "end": 3236.22, + "probability": 0.9536 + }, + { + "start": 3236.74, + "end": 3238.68, + "probability": 0.9941 + }, + { + "start": 3239.54, + "end": 3241.82, + "probability": 0.9481 + }, + { + "start": 3242.42, + "end": 3246.6, + "probability": 0.9799 + }, + { + "start": 3247.04, + "end": 3251.22, + "probability": 0.9852 + }, + { + "start": 3252.5, + "end": 3255.96, + "probability": 0.8356 + }, + { + "start": 3256.8, + "end": 3259.74, + "probability": 0.9613 + }, + { + "start": 3260.34, + "end": 3261.22, + "probability": 0.9508 + }, + { + "start": 3261.64, + "end": 3262.78, + "probability": 0.8368 + }, + { + "start": 3263.66, + "end": 3264.9, + "probability": 0.7339 + }, + { + "start": 3265.42, + "end": 3268.32, + "probability": 0.7389 + }, + { + "start": 3270.32, + "end": 3272.78, + "probability": 0.8049 + }, + { + "start": 3273.5, + "end": 3275.31, + "probability": 0.9712 + }, + { + "start": 3276.62, + "end": 3282.4, + "probability": 0.9812 + }, + { + "start": 3283.1, + "end": 3283.52, + "probability": 0.8413 + }, + { + "start": 3285.12, + "end": 3286.12, + "probability": 0.8023 + }, + { + "start": 3287.54, + "end": 3289.6, + "probability": 0.7908 + }, + { + "start": 3290.3, + "end": 3290.8, + "probability": 0.3258 + }, + { + "start": 3291.08, + "end": 3292.74, + "probability": 0.9181 + }, + { + "start": 3319.5, + "end": 3321.46, + "probability": 0.6721 + }, + { + "start": 3321.5, + "end": 3322.36, + "probability": 0.5738 + }, + { + "start": 3325.4, + "end": 3327.8, + "probability": 0.9968 + }, + { + "start": 3328.47, + "end": 3332.04, + "probability": 0.9354 + }, + { + "start": 3332.84, + "end": 3337.12, + "probability": 0.8349 + }, + { + "start": 3337.98, + "end": 3344.64, + "probability": 0.9963 + }, + { + "start": 3345.32, + "end": 3348.32, + "probability": 0.9907 + }, + { + "start": 3349.2, + "end": 3351.98, + "probability": 0.856 + }, + { + "start": 3352.44, + "end": 3353.34, + "probability": 0.9784 + }, + { + "start": 3353.58, + "end": 3361.32, + "probability": 0.9808 + }, + { + "start": 3362.62, + "end": 3365.34, + "probability": 0.9209 + }, + { + "start": 3365.94, + "end": 3371.54, + "probability": 0.9895 + }, + { + "start": 3372.34, + "end": 3376.9, + "probability": 0.9868 + }, + { + "start": 3377.5, + "end": 3380.02, + "probability": 0.987 + }, + { + "start": 3380.62, + "end": 3382.28, + "probability": 0.9126 + }, + { + "start": 3383.38, + "end": 3384.98, + "probability": 0.8871 + }, + { + "start": 3385.52, + "end": 3388.1, + "probability": 0.9349 + }, + { + "start": 3388.86, + "end": 3390.42, + "probability": 0.7035 + }, + { + "start": 3392.6, + "end": 3393.58, + "probability": 0.7705 + }, + { + "start": 3394.8, + "end": 3397.52, + "probability": 0.9922 + }, + { + "start": 3397.52, + "end": 3400.58, + "probability": 0.8876 + }, + { + "start": 3401.32, + "end": 3402.5, + "probability": 0.6739 + }, + { + "start": 3402.76, + "end": 3405.1, + "probability": 0.9751 + }, + { + "start": 3405.28, + "end": 3406.83, + "probability": 0.8341 + }, + { + "start": 3407.86, + "end": 3409.75, + "probability": 0.9995 + }, + { + "start": 3410.04, + "end": 3413.42, + "probability": 0.957 + }, + { + "start": 3414.0, + "end": 3416.72, + "probability": 0.9823 + }, + { + "start": 3417.5, + "end": 3419.52, + "probability": 0.9309 + }, + { + "start": 3420.82, + "end": 3423.07, + "probability": 0.9092 + }, + { + "start": 3424.26, + "end": 3425.98, + "probability": 0.9837 + }, + { + "start": 3426.54, + "end": 3428.8, + "probability": 0.9984 + }, + { + "start": 3429.54, + "end": 3430.86, + "probability": 0.9927 + }, + { + "start": 3431.6, + "end": 3432.78, + "probability": 0.9606 + }, + { + "start": 3433.16, + "end": 3434.44, + "probability": 0.9699 + }, + { + "start": 3434.9, + "end": 3435.68, + "probability": 0.9537 + }, + { + "start": 3436.2, + "end": 3439.62, + "probability": 0.9761 + }, + { + "start": 3439.62, + "end": 3443.42, + "probability": 0.9475 + }, + { + "start": 3444.74, + "end": 3448.66, + "probability": 0.9869 + }, + { + "start": 3449.16, + "end": 3452.0, + "probability": 0.6498 + }, + { + "start": 3452.22, + "end": 3457.26, + "probability": 0.9961 + }, + { + "start": 3458.08, + "end": 3460.84, + "probability": 0.9966 + }, + { + "start": 3461.96, + "end": 3465.02, + "probability": 0.9828 + }, + { + "start": 3465.56, + "end": 3468.96, + "probability": 0.9977 + }, + { + "start": 3469.02, + "end": 3471.65, + "probability": 0.9922 + }, + { + "start": 3471.98, + "end": 3472.62, + "probability": 0.743 + }, + { + "start": 3472.98, + "end": 3473.44, + "probability": 0.777 + }, + { + "start": 3473.74, + "end": 3474.46, + "probability": 0.8319 + }, + { + "start": 3474.76, + "end": 3477.34, + "probability": 0.7974 + }, + { + "start": 3477.44, + "end": 3480.18, + "probability": 0.9835 + }, + { + "start": 3481.9, + "end": 3483.2, + "probability": 0.985 + }, + { + "start": 3485.62, + "end": 3488.6, + "probability": 0.9917 + }, + { + "start": 3488.66, + "end": 3490.82, + "probability": 0.9971 + }, + { + "start": 3490.92, + "end": 3491.6, + "probability": 0.6634 + }, + { + "start": 3491.68, + "end": 3492.32, + "probability": 0.6915 + }, + { + "start": 3493.04, + "end": 3495.23, + "probability": 0.979 + }, + { + "start": 3496.06, + "end": 3498.3, + "probability": 0.9604 + }, + { + "start": 3500.02, + "end": 3505.58, + "probability": 0.9432 + }, + { + "start": 3506.22, + "end": 3507.18, + "probability": 0.7396 + }, + { + "start": 3507.74, + "end": 3514.0, + "probability": 0.9884 + }, + { + "start": 3514.0, + "end": 3518.52, + "probability": 0.9965 + }, + { + "start": 3519.16, + "end": 3521.8, + "probability": 0.939 + }, + { + "start": 3523.38, + "end": 3527.12, + "probability": 0.9906 + }, + { + "start": 3527.12, + "end": 3531.92, + "probability": 0.9985 + }, + { + "start": 3533.2, + "end": 3535.42, + "probability": 0.9971 + }, + { + "start": 3536.06, + "end": 3541.58, + "probability": 0.9873 + }, + { + "start": 3543.44, + "end": 3548.3, + "probability": 0.9915 + }, + { + "start": 3549.0, + "end": 3551.3, + "probability": 0.8807 + }, + { + "start": 3552.5, + "end": 3554.8, + "probability": 0.9819 + }, + { + "start": 3554.88, + "end": 3558.22, + "probability": 0.9909 + }, + { + "start": 3558.22, + "end": 3561.22, + "probability": 0.9837 + }, + { + "start": 3561.78, + "end": 3563.66, + "probability": 0.7982 + }, + { + "start": 3564.08, + "end": 3565.04, + "probability": 0.8547 + }, + { + "start": 3565.18, + "end": 3567.0, + "probability": 0.8806 + }, + { + "start": 3567.82, + "end": 3569.38, + "probability": 0.9961 + }, + { + "start": 3570.06, + "end": 3575.32, + "probability": 0.8782 + }, + { + "start": 3576.16, + "end": 3576.88, + "probability": 0.5995 + }, + { + "start": 3578.28, + "end": 3578.56, + "probability": 0.7522 + }, + { + "start": 3580.62, + "end": 3587.68, + "probability": 0.9976 + }, + { + "start": 3588.2, + "end": 3589.54, + "probability": 0.9982 + }, + { + "start": 3589.66, + "end": 3590.62, + "probability": 0.689 + }, + { + "start": 3591.32, + "end": 3592.38, + "probability": 0.999 + }, + { + "start": 3594.1, + "end": 3599.62, + "probability": 0.7749 + }, + { + "start": 3600.91, + "end": 3607.92, + "probability": 0.9655 + }, + { + "start": 3609.88, + "end": 3612.46, + "probability": 0.8214 + }, + { + "start": 3613.6, + "end": 3614.76, + "probability": 0.9954 + }, + { + "start": 3615.26, + "end": 3620.24, + "probability": 0.9613 + }, + { + "start": 3621.08, + "end": 3624.18, + "probability": 0.9357 + }, + { + "start": 3624.74, + "end": 3625.83, + "probability": 0.8875 + }, + { + "start": 3626.76, + "end": 3627.97, + "probability": 0.7595 + }, + { + "start": 3628.3, + "end": 3630.88, + "probability": 0.9961 + }, + { + "start": 3631.94, + "end": 3635.86, + "probability": 0.771 + }, + { + "start": 3637.25, + "end": 3639.34, + "probability": 0.9976 + }, + { + "start": 3640.92, + "end": 3643.9, + "probability": 0.9831 + }, + { + "start": 3644.5, + "end": 3645.78, + "probability": 0.9265 + }, + { + "start": 3646.4, + "end": 3647.36, + "probability": 0.8323 + }, + { + "start": 3649.56, + "end": 3651.96, + "probability": 0.9248 + }, + { + "start": 3655.44, + "end": 3655.5, + "probability": 0.0179 + }, + { + "start": 3655.5, + "end": 3658.28, + "probability": 0.7937 + }, + { + "start": 3659.28, + "end": 3661.72, + "probability": 0.892 + }, + { + "start": 3662.14, + "end": 3664.56, + "probability": 0.9937 + }, + { + "start": 3665.18, + "end": 3668.78, + "probability": 0.9026 + }, + { + "start": 3669.0, + "end": 3669.5, + "probability": 0.6911 + }, + { + "start": 3670.08, + "end": 3670.68, + "probability": 0.6405 + }, + { + "start": 3670.9, + "end": 3671.66, + "probability": 0.8141 + }, + { + "start": 3672.26, + "end": 3673.86, + "probability": 0.8633 + }, + { + "start": 3698.06, + "end": 3701.22, + "probability": 0.5894 + }, + { + "start": 3702.16, + "end": 3702.78, + "probability": 0.9381 + }, + { + "start": 3704.02, + "end": 3706.26, + "probability": 0.9486 + }, + { + "start": 3706.32, + "end": 3712.3, + "probability": 0.9889 + }, + { + "start": 3712.3, + "end": 3719.96, + "probability": 0.9947 + }, + { + "start": 3720.2, + "end": 3724.9, + "probability": 0.9388 + }, + { + "start": 3725.54, + "end": 3727.96, + "probability": 0.9761 + }, + { + "start": 3728.28, + "end": 3729.86, + "probability": 0.9627 + }, + { + "start": 3729.9, + "end": 3734.48, + "probability": 0.9984 + }, + { + "start": 3734.48, + "end": 3740.16, + "probability": 0.9423 + }, + { + "start": 3740.34, + "end": 3745.74, + "probability": 0.9953 + }, + { + "start": 3746.38, + "end": 3747.72, + "probability": 0.8305 + }, + { + "start": 3748.16, + "end": 3754.12, + "probability": 0.9117 + }, + { + "start": 3754.82, + "end": 3758.34, + "probability": 0.9717 + }, + { + "start": 3758.34, + "end": 3760.92, + "probability": 0.9941 + }, + { + "start": 3761.9, + "end": 3762.44, + "probability": 0.3354 + }, + { + "start": 3762.74, + "end": 3763.34, + "probability": 0.466 + }, + { + "start": 3763.38, + "end": 3768.38, + "probability": 0.9462 + }, + { + "start": 3769.26, + "end": 3775.48, + "probability": 0.9098 + }, + { + "start": 3776.28, + "end": 3776.52, + "probability": 0.7253 + }, + { + "start": 3776.6, + "end": 3782.0, + "probability": 0.9963 + }, + { + "start": 3782.96, + "end": 3787.5, + "probability": 0.9991 + }, + { + "start": 3788.44, + "end": 3791.12, + "probability": 0.9988 + }, + { + "start": 3791.12, + "end": 3794.94, + "probability": 0.9639 + }, + { + "start": 3795.22, + "end": 3798.64, + "probability": 0.9951 + }, + { + "start": 3798.88, + "end": 3800.12, + "probability": 0.608 + }, + { + "start": 3800.66, + "end": 3803.8, + "probability": 0.9913 + }, + { + "start": 3803.86, + "end": 3806.14, + "probability": 0.9287 + }, + { + "start": 3807.58, + "end": 3811.42, + "probability": 0.9899 + }, + { + "start": 3811.42, + "end": 3814.3, + "probability": 0.9938 + }, + { + "start": 3814.38, + "end": 3816.08, + "probability": 0.8346 + }, + { + "start": 3816.96, + "end": 3821.18, + "probability": 0.9982 + }, + { + "start": 3822.26, + "end": 3822.68, + "probability": 0.5544 + }, + { + "start": 3822.76, + "end": 3825.04, + "probability": 0.9989 + }, + { + "start": 3825.04, + "end": 3828.04, + "probability": 0.9893 + }, + { + "start": 3829.44, + "end": 3833.8, + "probability": 0.994 + }, + { + "start": 3833.8, + "end": 3837.38, + "probability": 0.9988 + }, + { + "start": 3837.82, + "end": 3841.54, + "probability": 0.9968 + }, + { + "start": 3841.54, + "end": 3844.84, + "probability": 0.9231 + }, + { + "start": 3844.92, + "end": 3847.64, + "probability": 0.9886 + }, + { + "start": 3847.82, + "end": 3849.68, + "probability": 0.854 + }, + { + "start": 3850.2, + "end": 3853.72, + "probability": 0.9633 + }, + { + "start": 3853.86, + "end": 3858.1, + "probability": 0.9968 + }, + { + "start": 3859.38, + "end": 3863.78, + "probability": 0.9974 + }, + { + "start": 3863.8, + "end": 3868.64, + "probability": 0.9976 + }, + { + "start": 3869.66, + "end": 3874.7, + "probability": 0.8115 + }, + { + "start": 3875.36, + "end": 3877.82, + "probability": 0.9937 + }, + { + "start": 3878.72, + "end": 3883.46, + "probability": 0.776 + }, + { + "start": 3883.62, + "end": 3884.84, + "probability": 0.8774 + }, + { + "start": 3885.7, + "end": 3887.28, + "probability": 0.9237 + }, + { + "start": 3888.22, + "end": 3893.84, + "probability": 0.9915 + }, + { + "start": 3893.84, + "end": 3897.58, + "probability": 0.8439 + }, + { + "start": 3898.56, + "end": 3901.06, + "probability": 0.9941 + }, + { + "start": 3901.78, + "end": 3907.68, + "probability": 0.9189 + }, + { + "start": 3908.02, + "end": 3908.86, + "probability": 0.9587 + }, + { + "start": 3910.38, + "end": 3913.36, + "probability": 0.9977 + }, + { + "start": 3913.36, + "end": 3916.58, + "probability": 0.9988 + }, + { + "start": 3917.32, + "end": 3922.44, + "probability": 0.942 + }, + { + "start": 3923.4, + "end": 3928.34, + "probability": 0.996 + }, + { + "start": 3928.72, + "end": 3929.14, + "probability": 0.8807 + }, + { + "start": 3929.26, + "end": 3929.64, + "probability": 0.9354 + }, + { + "start": 3929.76, + "end": 3930.16, + "probability": 0.9305 + }, + { + "start": 3930.24, + "end": 3931.22, + "probability": 0.8341 + }, + { + "start": 3931.6, + "end": 3935.98, + "probability": 0.9901 + }, + { + "start": 3935.98, + "end": 3939.86, + "probability": 0.9934 + }, + { + "start": 3940.86, + "end": 3941.86, + "probability": 0.994 + }, + { + "start": 3943.12, + "end": 3949.26, + "probability": 0.9542 + }, + { + "start": 3949.64, + "end": 3950.72, + "probability": 0.9434 + }, + { + "start": 3951.78, + "end": 3956.54, + "probability": 0.9898 + }, + { + "start": 3957.42, + "end": 3959.08, + "probability": 0.9897 + }, + { + "start": 3959.16, + "end": 3962.18, + "probability": 0.9774 + }, + { + "start": 3963.42, + "end": 3967.52, + "probability": 0.8539 + }, + { + "start": 3967.66, + "end": 3969.0, + "probability": 0.9615 + }, + { + "start": 3969.36, + "end": 3970.0, + "probability": 0.7627 + }, + { + "start": 3970.3, + "end": 3971.47, + "probability": 0.9445 + }, + { + "start": 3972.02, + "end": 3972.38, + "probability": 0.7414 + }, + { + "start": 3972.46, + "end": 3973.48, + "probability": 0.7987 + }, + { + "start": 3973.66, + "end": 3978.86, + "probability": 0.9583 + }, + { + "start": 3979.76, + "end": 3982.36, + "probability": 0.9974 + }, + { + "start": 3982.86, + "end": 3985.78, + "probability": 0.9961 + }, + { + "start": 3985.94, + "end": 3986.98, + "probability": 0.875 + }, + { + "start": 3987.62, + "end": 3989.72, + "probability": 0.9092 + }, + { + "start": 3990.1, + "end": 3991.76, + "probability": 0.9861 + }, + { + "start": 3993.1, + "end": 3994.32, + "probability": 0.8561 + }, + { + "start": 3994.64, + "end": 3994.98, + "probability": 0.7321 + }, + { + "start": 3995.12, + "end": 3998.68, + "probability": 0.992 + }, + { + "start": 3999.04, + "end": 4001.44, + "probability": 0.943 + }, + { + "start": 4001.88, + "end": 4002.14, + "probability": 0.8754 + }, + { + "start": 4003.2, + "end": 4003.96, + "probability": 0.9092 + }, + { + "start": 4004.7, + "end": 4006.52, + "probability": 0.9985 + }, + { + "start": 4006.62, + "end": 4008.74, + "probability": 0.9979 + }, + { + "start": 4009.16, + "end": 4013.62, + "probability": 0.9846 + }, + { + "start": 4013.72, + "end": 4015.17, + "probability": 0.9975 + }, + { + "start": 4015.84, + "end": 4019.26, + "probability": 0.9924 + }, + { + "start": 4019.5, + "end": 4022.48, + "probability": 0.9966 + }, + { + "start": 4023.14, + "end": 4024.7, + "probability": 0.759 + }, + { + "start": 4025.68, + "end": 4028.5, + "probability": 0.9987 + }, + { + "start": 4029.26, + "end": 4030.04, + "probability": 0.5553 + }, + { + "start": 4030.12, + "end": 4031.08, + "probability": 0.6144 + }, + { + "start": 4031.16, + "end": 4036.34, + "probability": 0.9932 + }, + { + "start": 4036.46, + "end": 4039.7, + "probability": 0.9959 + }, + { + "start": 4040.36, + "end": 4043.0, + "probability": 0.9961 + }, + { + "start": 4043.0, + "end": 4048.04, + "probability": 0.9878 + }, + { + "start": 4048.82, + "end": 4050.22, + "probability": 0.9556 + }, + { + "start": 4050.3, + "end": 4053.3, + "probability": 0.9523 + }, + { + "start": 4053.3, + "end": 4055.84, + "probability": 0.9997 + }, + { + "start": 4056.22, + "end": 4059.54, + "probability": 0.9985 + }, + { + "start": 4059.86, + "end": 4060.12, + "probability": 0.7622 + }, + { + "start": 4061.76, + "end": 4062.32, + "probability": 0.7979 + }, + { + "start": 4062.7, + "end": 4064.44, + "probability": 0.8926 + }, + { + "start": 4065.12, + "end": 4065.82, + "probability": 0.7712 + }, + { + "start": 4070.14, + "end": 4070.96, + "probability": 0.7581 + }, + { + "start": 4071.84, + "end": 4074.48, + "probability": 0.9829 + }, + { + "start": 4074.48, + "end": 4076.6, + "probability": 0.48 + }, + { + "start": 4077.04, + "end": 4077.98, + "probability": 0.8021 + }, + { + "start": 4078.18, + "end": 4080.08, + "probability": 0.6047 + }, + { + "start": 4080.18, + "end": 4081.14, + "probability": 0.8499 + }, + { + "start": 4081.8, + "end": 4083.11, + "probability": 0.8999 + }, + { + "start": 4084.3, + "end": 4085.9, + "probability": 0.8171 + }, + { + "start": 4102.12, + "end": 4102.2, + "probability": 0.0043 + }, + { + "start": 4102.2, + "end": 4104.94, + "probability": 0.8296 + }, + { + "start": 4105.74, + "end": 4108.72, + "probability": 0.9891 + }, + { + "start": 4110.14, + "end": 4113.24, + "probability": 0.9972 + }, + { + "start": 4113.24, + "end": 4116.34, + "probability": 0.671 + }, + { + "start": 4116.36, + "end": 4117.16, + "probability": 0.6967 + }, + { + "start": 4117.58, + "end": 4123.22, + "probability": 0.6685 + }, + { + "start": 4129.17, + "end": 4129.48, + "probability": 0.9332 + }, + { + "start": 4130.24, + "end": 4130.24, + "probability": 0.0043 + }, + { + "start": 4130.24, + "end": 4130.24, + "probability": 0.0244 + }, + { + "start": 4130.24, + "end": 4130.24, + "probability": 0.0556 + }, + { + "start": 4130.24, + "end": 4130.24, + "probability": 0.1363 + }, + { + "start": 4130.24, + "end": 4130.24, + "probability": 0.0942 + }, + { + "start": 4130.26, + "end": 4130.28, + "probability": 0.0067 + }, + { + "start": 4141.12, + "end": 4144.74, + "probability": 0.6963 + }, + { + "start": 4144.74, + "end": 4145.72, + "probability": 0.6953 + }, + { + "start": 4146.18, + "end": 4147.5, + "probability": 0.5938 + }, + { + "start": 4148.64, + "end": 4151.04, + "probability": 0.945 + }, + { + "start": 4151.12, + "end": 4153.08, + "probability": 0.9305 + }, + { + "start": 4154.14, + "end": 4155.84, + "probability": 0.5878 + }, + { + "start": 4156.04, + "end": 4159.58, + "probability": 0.8592 + }, + { + "start": 4160.2, + "end": 4162.48, + "probability": 0.5201 + } + ], + "segments_count": 1576, + "words_count": 7848, + "avg_words_per_segment": 4.9797, + "avg_segment_duration": 1.868, + "avg_words_per_minute": 100.9088, + "plenum_id": "121885", + "duration": 4666.39, + "title": null, + "plenum_date": "2023-11-27" +} \ No newline at end of file