diff --git "a/12446/metadata.json" "b/12446/metadata.json" new file mode 100644--- /dev/null +++ "b/12446/metadata.json" @@ -0,0 +1,63122 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "12446", + "quality_score": 0.8347, + "per_segment_quality_scores": [ + { + "start": 75.08, + "end": 75.08, + "probability": 0.121 + }, + { + "start": 75.08, + "end": 75.5, + "probability": 0.6073 + }, + { + "start": 75.5, + "end": 78.34, + "probability": 0.8745 + }, + { + "start": 78.54, + "end": 81.42, + "probability": 0.4557 + }, + { + "start": 81.42, + "end": 85.14, + "probability": 0.9284 + }, + { + "start": 85.82, + "end": 87.22, + "probability": 0.7571 + }, + { + "start": 87.36, + "end": 89.26, + "probability": 0.0703 + }, + { + "start": 89.42, + "end": 92.54, + "probability": 0.7229 + }, + { + "start": 92.62, + "end": 92.94, + "probability": 0.8301 + }, + { + "start": 94.46, + "end": 97.38, + "probability": 0.9142 + }, + { + "start": 98.6, + "end": 100.2, + "probability": 0.7791 + }, + { + "start": 100.26, + "end": 102.42, + "probability": 0.988 + }, + { + "start": 102.48, + "end": 105.84, + "probability": 0.712 + }, + { + "start": 107.1, + "end": 108.22, + "probability": 0.0678 + }, + { + "start": 110.94, + "end": 114.16, + "probability": 0.7527 + }, + { + "start": 114.66, + "end": 118.66, + "probability": 0.8986 + }, + { + "start": 118.66, + "end": 124.86, + "probability": 0.8356 + }, + { + "start": 124.94, + "end": 126.22, + "probability": 0.8051 + }, + { + "start": 131.6, + "end": 133.06, + "probability": 0.0144 + }, + { + "start": 137.9, + "end": 137.92, + "probability": 0.0208 + }, + { + "start": 139.36, + "end": 143.1, + "probability": 0.0331 + }, + { + "start": 143.1, + "end": 144.38, + "probability": 0.5704 + }, + { + "start": 149.5, + "end": 150.28, + "probability": 0.0213 + }, + { + "start": 150.3, + "end": 152.0, + "probability": 0.0187 + }, + { + "start": 153.12, + "end": 153.32, + "probability": 0.2139 + }, + { + "start": 153.32, + "end": 153.32, + "probability": 0.1781 + }, + { + "start": 153.32, + "end": 153.32, + "probability": 0.3163 + }, + { + "start": 153.32, + "end": 153.32, + "probability": 0.1645 + }, + { + "start": 153.32, + "end": 153.8, + "probability": 0.0547 + }, + { + "start": 153.96, + "end": 155.52, + "probability": 0.6844 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.0, + "end": 354.0, + "probability": 0.0 + }, + { + "start": 354.12, + "end": 358.72, + "probability": 0.0737 + }, + { + "start": 359.66, + "end": 361.68, + "probability": 0.5441 + }, + { + "start": 361.68, + "end": 365.68, + "probability": 0.0661 + }, + { + "start": 367.28, + "end": 368.08, + "probability": 0.2775 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.0, + "end": 475.0, + "probability": 0.0 + }, + { + "start": 475.2, + "end": 477.07, + "probability": 0.3822 + }, + { + "start": 477.94, + "end": 478.78, + "probability": 0.4113 + }, + { + "start": 478.88, + "end": 480.64, + "probability": 0.6702 + }, + { + "start": 481.12, + "end": 482.26, + "probability": 0.8699 + }, + { + "start": 482.54, + "end": 483.48, + "probability": 0.3314 + }, + { + "start": 483.58, + "end": 484.34, + "probability": 0.7395 + }, + { + "start": 484.76, + "end": 487.28, + "probability": 0.9758 + }, + { + "start": 487.48, + "end": 489.96, + "probability": 0.974 + }, + { + "start": 490.22, + "end": 492.84, + "probability": 0.8174 + }, + { + "start": 493.2, + "end": 494.02, + "probability": 0.7668 + }, + { + "start": 494.28, + "end": 494.96, + "probability": 0.8594 + }, + { + "start": 495.22, + "end": 496.48, + "probability": 0.9184 + }, + { + "start": 497.22, + "end": 499.46, + "probability": 0.9453 + }, + { + "start": 499.58, + "end": 500.54, + "probability": 0.933 + }, + { + "start": 500.62, + "end": 500.86, + "probability": 0.8046 + }, + { + "start": 500.92, + "end": 503.35, + "probability": 0.9861 + }, + { + "start": 503.52, + "end": 505.8, + "probability": 0.8202 + }, + { + "start": 505.92, + "end": 507.82, + "probability": 0.7128 + }, + { + "start": 508.36, + "end": 509.56, + "probability": 0.8456 + }, + { + "start": 509.92, + "end": 514.16, + "probability": 0.9398 + }, + { + "start": 514.66, + "end": 517.36, + "probability": 0.9792 + }, + { + "start": 517.9, + "end": 520.08, + "probability": 0.9978 + }, + { + "start": 520.16, + "end": 521.48, + "probability": 0.9042 + }, + { + "start": 521.62, + "end": 521.96, + "probability": 0.8609 + }, + { + "start": 522.26, + "end": 524.76, + "probability": 0.9858 + }, + { + "start": 525.06, + "end": 525.24, + "probability": 0.3476 + }, + { + "start": 525.24, + "end": 525.36, + "probability": 0.4992 + }, + { + "start": 525.64, + "end": 526.78, + "probability": 0.8684 + }, + { + "start": 527.06, + "end": 528.5, + "probability": 0.8934 + }, + { + "start": 529.06, + "end": 529.72, + "probability": 0.9695 + }, + { + "start": 530.3, + "end": 531.41, + "probability": 0.7754 + }, + { + "start": 532.26, + "end": 535.34, + "probability": 0.6814 + }, + { + "start": 535.42, + "end": 537.78, + "probability": 0.6473 + }, + { + "start": 537.8, + "end": 538.62, + "probability": 0.7605 + }, + { + "start": 539.1, + "end": 543.5, + "probability": 0.9484 + }, + { + "start": 543.66, + "end": 548.46, + "probability": 0.9197 + }, + { + "start": 549.28, + "end": 549.74, + "probability": 0.4221 + }, + { + "start": 550.12, + "end": 550.8, + "probability": 0.6482 + }, + { + "start": 550.96, + "end": 553.04, + "probability": 0.9178 + }, + { + "start": 553.18, + "end": 559.1, + "probability": 0.9846 + }, + { + "start": 559.1, + "end": 561.76, + "probability": 0.9965 + }, + { + "start": 562.56, + "end": 568.32, + "probability": 0.9705 + }, + { + "start": 568.32, + "end": 572.0, + "probability": 0.9907 + }, + { + "start": 572.22, + "end": 574.9, + "probability": 0.9895 + }, + { + "start": 574.9, + "end": 578.38, + "probability": 0.9261 + }, + { + "start": 578.92, + "end": 583.64, + "probability": 0.9971 + }, + { + "start": 583.84, + "end": 584.74, + "probability": 0.808 + }, + { + "start": 584.94, + "end": 587.54, + "probability": 0.6649 + }, + { + "start": 587.76, + "end": 594.08, + "probability": 0.7905 + }, + { + "start": 594.2, + "end": 595.72, + "probability": 0.9773 + }, + { + "start": 595.96, + "end": 599.98, + "probability": 0.9826 + }, + { + "start": 600.5, + "end": 601.42, + "probability": 0.8486 + }, + { + "start": 601.78, + "end": 602.76, + "probability": 0.9395 + }, + { + "start": 602.86, + "end": 606.58, + "probability": 0.9775 + }, + { + "start": 606.72, + "end": 608.52, + "probability": 0.8269 + }, + { + "start": 608.64, + "end": 609.18, + "probability": 0.8779 + }, + { + "start": 609.26, + "end": 614.68, + "probability": 0.9861 + }, + { + "start": 614.84, + "end": 615.5, + "probability": 0.6523 + }, + { + "start": 615.9, + "end": 618.62, + "probability": 0.9974 + }, + { + "start": 618.72, + "end": 620.01, + "probability": 0.9897 + }, + { + "start": 620.2, + "end": 623.56, + "probability": 0.9207 + }, + { + "start": 623.86, + "end": 625.0, + "probability": 0.9739 + }, + { + "start": 625.18, + "end": 629.08, + "probability": 0.9869 + }, + { + "start": 629.08, + "end": 633.04, + "probability": 0.9979 + }, + { + "start": 633.66, + "end": 636.26, + "probability": 0.998 + }, + { + "start": 636.6, + "end": 636.88, + "probability": 0.7452 + }, + { + "start": 637.84, + "end": 638.76, + "probability": 0.8335 + }, + { + "start": 639.52, + "end": 640.52, + "probability": 0.5905 + }, + { + "start": 642.21, + "end": 647.1, + "probability": 0.6933 + }, + { + "start": 647.24, + "end": 647.98, + "probability": 0.5264 + }, + { + "start": 648.24, + "end": 651.22, + "probability": 0.9014 + }, + { + "start": 653.45, + "end": 657.88, + "probability": 0.9823 + }, + { + "start": 658.8, + "end": 660.58, + "probability": 0.8583 + }, + { + "start": 661.68, + "end": 662.8, + "probability": 0.9783 + }, + { + "start": 663.7, + "end": 667.58, + "probability": 0.9916 + }, + { + "start": 667.58, + "end": 670.74, + "probability": 0.9974 + }, + { + "start": 670.86, + "end": 675.04, + "probability": 0.5284 + }, + { + "start": 675.38, + "end": 676.36, + "probability": 0.3594 + }, + { + "start": 676.56, + "end": 678.99, + "probability": 0.5736 + }, + { + "start": 680.02, + "end": 682.52, + "probability": 0.6559 + }, + { + "start": 683.14, + "end": 683.82, + "probability": 0.4046 + }, + { + "start": 684.02, + "end": 684.76, + "probability": 0.6955 + }, + { + "start": 685.02, + "end": 686.73, + "probability": 0.8736 + }, + { + "start": 687.6, + "end": 688.86, + "probability": 0.9401 + }, + { + "start": 688.96, + "end": 693.62, + "probability": 0.9356 + }, + { + "start": 694.96, + "end": 696.62, + "probability": 0.9976 + }, + { + "start": 697.16, + "end": 698.57, + "probability": 0.763 + }, + { + "start": 699.36, + "end": 701.08, + "probability": 0.1625 + }, + { + "start": 701.08, + "end": 701.86, + "probability": 0.0635 + }, + { + "start": 702.6, + "end": 705.24, + "probability": 0.7207 + }, + { + "start": 705.34, + "end": 710.56, + "probability": 0.9753 + }, + { + "start": 711.04, + "end": 712.2, + "probability": 0.7481 + }, + { + "start": 712.32, + "end": 713.04, + "probability": 0.6192 + }, + { + "start": 713.12, + "end": 714.88, + "probability": 0.6175 + }, + { + "start": 714.98, + "end": 715.88, + "probability": 0.5432 + }, + { + "start": 715.96, + "end": 717.96, + "probability": 0.7484 + }, + { + "start": 718.02, + "end": 721.86, + "probability": 0.6814 + }, + { + "start": 722.4, + "end": 723.88, + "probability": 0.8582 + }, + { + "start": 723.96, + "end": 725.82, + "probability": 0.7169 + }, + { + "start": 725.88, + "end": 726.52, + "probability": 0.3825 + }, + { + "start": 726.56, + "end": 727.94, + "probability": 0.8018 + }, + { + "start": 728.16, + "end": 730.2, + "probability": 0.9736 + }, + { + "start": 730.36, + "end": 732.3, + "probability": 0.8553 + }, + { + "start": 732.44, + "end": 736.86, + "probability": 0.9795 + }, + { + "start": 736.9, + "end": 738.62, + "probability": 0.8715 + }, + { + "start": 738.66, + "end": 739.82, + "probability": 0.7201 + }, + { + "start": 740.16, + "end": 740.3, + "probability": 0.4575 + }, + { + "start": 740.46, + "end": 740.99, + "probability": 0.5156 + }, + { + "start": 741.4, + "end": 744.5, + "probability": 0.9478 + }, + { + "start": 744.54, + "end": 744.96, + "probability": 0.2525 + }, + { + "start": 745.24, + "end": 746.49, + "probability": 0.8503 + }, + { + "start": 746.96, + "end": 751.12, + "probability": 0.9209 + }, + { + "start": 751.2, + "end": 752.1, + "probability": 0.9382 + }, + { + "start": 752.94, + "end": 756.62, + "probability": 0.868 + }, + { + "start": 756.72, + "end": 757.84, + "probability": 0.8773 + }, + { + "start": 758.28, + "end": 759.84, + "probability": 0.8443 + }, + { + "start": 760.5, + "end": 763.02, + "probability": 0.8313 + }, + { + "start": 763.52, + "end": 767.54, + "probability": 0.9812 + }, + { + "start": 768.02, + "end": 769.76, + "probability": 0.8278 + }, + { + "start": 769.9, + "end": 770.72, + "probability": 0.9937 + }, + { + "start": 771.32, + "end": 775.94, + "probability": 0.9895 + }, + { + "start": 776.7, + "end": 778.6, + "probability": 0.9943 + }, + { + "start": 778.8, + "end": 779.98, + "probability": 0.8108 + }, + { + "start": 780.66, + "end": 786.94, + "probability": 0.9507 + }, + { + "start": 787.46, + "end": 791.52, + "probability": 0.8987 + }, + { + "start": 791.56, + "end": 792.17, + "probability": 0.9236 + }, + { + "start": 793.24, + "end": 794.22, + "probability": 0.9761 + }, + { + "start": 795.02, + "end": 795.7, + "probability": 0.6995 + }, + { + "start": 795.82, + "end": 799.84, + "probability": 0.9724 + }, + { + "start": 800.14, + "end": 802.32, + "probability": 0.9028 + }, + { + "start": 802.5, + "end": 803.29, + "probability": 0.9131 + }, + { + "start": 803.92, + "end": 805.98, + "probability": 0.9785 + }, + { + "start": 806.24, + "end": 809.14, + "probability": 0.7283 + }, + { + "start": 809.32, + "end": 810.12, + "probability": 0.7742 + }, + { + "start": 810.64, + "end": 814.64, + "probability": 0.9767 + }, + { + "start": 815.16, + "end": 816.49, + "probability": 0.9935 + }, + { + "start": 816.56, + "end": 819.02, + "probability": 0.5462 + }, + { + "start": 819.02, + "end": 821.82, + "probability": 0.6665 + }, + { + "start": 821.92, + "end": 822.44, + "probability": 0.4964 + }, + { + "start": 823.76, + "end": 824.95, + "probability": 0.9312 + }, + { + "start": 825.84, + "end": 826.22, + "probability": 0.7561 + }, + { + "start": 826.76, + "end": 830.0, + "probability": 0.7816 + }, + { + "start": 830.56, + "end": 833.26, + "probability": 0.9362 + }, + { + "start": 834.1, + "end": 836.06, + "probability": 0.7489 + }, + { + "start": 837.16, + "end": 841.04, + "probability": 0.7019 + }, + { + "start": 841.16, + "end": 842.8, + "probability": 0.6924 + }, + { + "start": 843.58, + "end": 849.3, + "probability": 0.8699 + }, + { + "start": 849.44, + "end": 853.08, + "probability": 0.7023 + }, + { + "start": 853.66, + "end": 855.4, + "probability": 0.7232 + }, + { + "start": 856.0, + "end": 857.37, + "probability": 0.7954 + }, + { + "start": 857.7, + "end": 861.16, + "probability": 0.958 + }, + { + "start": 861.96, + "end": 864.38, + "probability": 0.9731 + }, + { + "start": 864.98, + "end": 868.02, + "probability": 0.9372 + }, + { + "start": 868.68, + "end": 869.65, + "probability": 0.6672 + }, + { + "start": 869.76, + "end": 872.32, + "probability": 0.9919 + }, + { + "start": 872.86, + "end": 879.1, + "probability": 0.9606 + }, + { + "start": 879.56, + "end": 880.94, + "probability": 0.5495 + }, + { + "start": 881.46, + "end": 883.13, + "probability": 0.7874 + }, + { + "start": 883.84, + "end": 885.7, + "probability": 0.9883 + }, + { + "start": 886.48, + "end": 889.54, + "probability": 0.9915 + }, + { + "start": 889.6, + "end": 892.82, + "probability": 0.9123 + }, + { + "start": 893.74, + "end": 896.22, + "probability": 0.9856 + }, + { + "start": 896.74, + "end": 899.98, + "probability": 0.9871 + }, + { + "start": 900.06, + "end": 900.96, + "probability": 0.7304 + }, + { + "start": 901.58, + "end": 902.1, + "probability": 0.697 + }, + { + "start": 902.2, + "end": 903.32, + "probability": 0.9933 + }, + { + "start": 903.82, + "end": 905.46, + "probability": 0.8452 + }, + { + "start": 906.08, + "end": 907.84, + "probability": 0.9081 + }, + { + "start": 908.58, + "end": 909.88, + "probability": 0.6389 + }, + { + "start": 910.62, + "end": 914.72, + "probability": 0.9819 + }, + { + "start": 915.1, + "end": 919.52, + "probability": 0.9868 + }, + { + "start": 919.52, + "end": 922.82, + "probability": 0.9912 + }, + { + "start": 924.8, + "end": 927.48, + "probability": 0.6692 + }, + { + "start": 928.98, + "end": 931.3, + "probability": 0.8991 + }, + { + "start": 931.72, + "end": 934.64, + "probability": 0.6387 + }, + { + "start": 934.98, + "end": 936.31, + "probability": 0.9093 + }, + { + "start": 936.6, + "end": 937.54, + "probability": 0.5103 + }, + { + "start": 937.96, + "end": 938.66, + "probability": 0.5906 + }, + { + "start": 939.08, + "end": 942.96, + "probability": 0.9746 + }, + { + "start": 943.0, + "end": 945.42, + "probability": 0.8431 + }, + { + "start": 945.9, + "end": 947.98, + "probability": 0.8747 + }, + { + "start": 948.64, + "end": 950.78, + "probability": 0.9067 + }, + { + "start": 951.2, + "end": 953.48, + "probability": 0.9595 + }, + { + "start": 953.74, + "end": 956.2, + "probability": 0.9964 + }, + { + "start": 956.2, + "end": 959.18, + "probability": 0.98 + }, + { + "start": 959.32, + "end": 961.16, + "probability": 0.9839 + }, + { + "start": 961.28, + "end": 965.82, + "probability": 0.9849 + }, + { + "start": 966.46, + "end": 968.38, + "probability": 0.9555 + }, + { + "start": 968.96, + "end": 971.06, + "probability": 0.796 + }, + { + "start": 971.7, + "end": 974.68, + "probability": 0.9531 + }, + { + "start": 974.76, + "end": 976.36, + "probability": 0.7735 + }, + { + "start": 976.48, + "end": 978.58, + "probability": 0.9559 + }, + { + "start": 978.98, + "end": 981.8, + "probability": 0.8248 + }, + { + "start": 982.36, + "end": 983.4, + "probability": 0.5423 + }, + { + "start": 983.5, + "end": 989.96, + "probability": 0.9307 + }, + { + "start": 989.96, + "end": 995.86, + "probability": 0.9852 + }, + { + "start": 998.18, + "end": 1001.32, + "probability": 0.7051 + }, + { + "start": 1001.34, + "end": 1003.76, + "probability": 0.9974 + }, + { + "start": 1004.7, + "end": 1005.7, + "probability": 0.981 + }, + { + "start": 1006.02, + "end": 1006.04, + "probability": 0.0384 + }, + { + "start": 1006.04, + "end": 1006.54, + "probability": 0.5211 + }, + { + "start": 1006.66, + "end": 1013.24, + "probability": 0.8813 + }, + { + "start": 1013.46, + "end": 1015.57, + "probability": 0.9887 + }, + { + "start": 1017.64, + "end": 1018.3, + "probability": 0.2165 + }, + { + "start": 1018.42, + "end": 1021.96, + "probability": 0.8287 + }, + { + "start": 1022.6, + "end": 1023.88, + "probability": 0.8334 + }, + { + "start": 1024.08, + "end": 1027.4, + "probability": 0.856 + }, + { + "start": 1027.48, + "end": 1030.62, + "probability": 0.6138 + }, + { + "start": 1031.78, + "end": 1034.36, + "probability": 0.7455 + }, + { + "start": 1034.42, + "end": 1035.48, + "probability": 0.759 + }, + { + "start": 1035.68, + "end": 1039.7, + "probability": 0.7496 + }, + { + "start": 1040.72, + "end": 1044.54, + "probability": 0.9718 + }, + { + "start": 1045.5, + "end": 1046.06, + "probability": 0.5909 + }, + { + "start": 1046.06, + "end": 1047.02, + "probability": 0.8165 + }, + { + "start": 1047.08, + "end": 1047.78, + "probability": 0.8718 + }, + { + "start": 1047.88, + "end": 1048.66, + "probability": 0.6737 + }, + { + "start": 1049.0, + "end": 1049.0, + "probability": 0.4471 + }, + { + "start": 1049.0, + "end": 1053.0, + "probability": 0.7412 + }, + { + "start": 1053.52, + "end": 1056.22, + "probability": 0.039 + }, + { + "start": 1057.32, + "end": 1059.92, + "probability": 0.6799 + }, + { + "start": 1060.72, + "end": 1061.72, + "probability": 0.7737 + }, + { + "start": 1061.86, + "end": 1064.9, + "probability": 0.7443 + }, + { + "start": 1065.58, + "end": 1066.0, + "probability": 0.8623 + }, + { + "start": 1066.58, + "end": 1071.04, + "probability": 0.9399 + }, + { + "start": 1071.56, + "end": 1072.9, + "probability": 0.9447 + }, + { + "start": 1073.36, + "end": 1073.8, + "probability": 0.7572 + }, + { + "start": 1074.74, + "end": 1077.3, + "probability": 0.9722 + }, + { + "start": 1077.42, + "end": 1082.3, + "probability": 0.9829 + }, + { + "start": 1082.58, + "end": 1086.46, + "probability": 0.9671 + }, + { + "start": 1087.26, + "end": 1088.74, + "probability": 0.9119 + }, + { + "start": 1089.52, + "end": 1089.66, + "probability": 0.2872 + }, + { + "start": 1089.84, + "end": 1091.84, + "probability": 0.7353 + }, + { + "start": 1092.16, + "end": 1092.32, + "probability": 0.4863 + }, + { + "start": 1092.38, + "end": 1094.56, + "probability": 0.9308 + }, + { + "start": 1094.64, + "end": 1096.93, + "probability": 0.7704 + }, + { + "start": 1097.6, + "end": 1102.18, + "probability": 0.8596 + }, + { + "start": 1103.72, + "end": 1106.64, + "probability": 0.9419 + }, + { + "start": 1107.42, + "end": 1108.9, + "probability": 0.9956 + }, + { + "start": 1108.9, + "end": 1110.33, + "probability": 0.981 + }, + { + "start": 1111.3, + "end": 1111.94, + "probability": 0.9611 + }, + { + "start": 1112.02, + "end": 1113.34, + "probability": 0.8163 + }, + { + "start": 1113.6, + "end": 1116.94, + "probability": 0.9606 + }, + { + "start": 1117.66, + "end": 1122.86, + "probability": 0.9769 + }, + { + "start": 1123.54, + "end": 1126.5, + "probability": 0.9964 + }, + { + "start": 1127.18, + "end": 1128.68, + "probability": 0.7764 + }, + { + "start": 1128.76, + "end": 1133.28, + "probability": 0.7292 + }, + { + "start": 1133.88, + "end": 1135.88, + "probability": 0.9618 + }, + { + "start": 1135.92, + "end": 1139.04, + "probability": 0.9396 + }, + { + "start": 1139.52, + "end": 1140.86, + "probability": 0.9987 + }, + { + "start": 1141.62, + "end": 1143.88, + "probability": 0.9563 + }, + { + "start": 1144.4, + "end": 1150.28, + "probability": 0.9893 + }, + { + "start": 1150.48, + "end": 1151.98, + "probability": 0.7685 + }, + { + "start": 1152.04, + "end": 1157.15, + "probability": 0.8303 + }, + { + "start": 1157.48, + "end": 1162.62, + "probability": 0.9111 + }, + { + "start": 1164.2, + "end": 1167.33, + "probability": 0.7771 + }, + { + "start": 1168.16, + "end": 1170.36, + "probability": 0.8541 + }, + { + "start": 1171.0, + "end": 1171.35, + "probability": 0.6094 + }, + { + "start": 1172.54, + "end": 1173.94, + "probability": 0.9775 + }, + { + "start": 1174.18, + "end": 1174.72, + "probability": 0.7511 + }, + { + "start": 1175.46, + "end": 1179.28, + "probability": 0.9185 + }, + { + "start": 1179.98, + "end": 1181.08, + "probability": 0.9357 + }, + { + "start": 1182.78, + "end": 1190.82, + "probability": 0.9875 + }, + { + "start": 1190.92, + "end": 1191.64, + "probability": 0.6879 + }, + { + "start": 1192.48, + "end": 1196.34, + "probability": 0.963 + }, + { + "start": 1196.56, + "end": 1199.68, + "probability": 0.7761 + }, + { + "start": 1200.5, + "end": 1204.94, + "probability": 0.9799 + }, + { + "start": 1205.78, + "end": 1210.02, + "probability": 0.9728 + }, + { + "start": 1210.56, + "end": 1212.88, + "probability": 0.9893 + }, + { + "start": 1213.6, + "end": 1217.24, + "probability": 0.9494 + }, + { + "start": 1217.24, + "end": 1221.98, + "probability": 0.7415 + }, + { + "start": 1222.66, + "end": 1223.88, + "probability": 0.5571 + }, + { + "start": 1224.34, + "end": 1225.62, + "probability": 0.9519 + }, + { + "start": 1226.1, + "end": 1227.98, + "probability": 0.7756 + }, + { + "start": 1228.04, + "end": 1230.1, + "probability": 0.9347 + }, + { + "start": 1230.56, + "end": 1233.45, + "probability": 0.9397 + }, + { + "start": 1234.98, + "end": 1235.68, + "probability": 0.9739 + }, + { + "start": 1236.92, + "end": 1238.29, + "probability": 0.9603 + }, + { + "start": 1238.96, + "end": 1243.9, + "probability": 0.9283 + }, + { + "start": 1244.64, + "end": 1247.52, + "probability": 0.4099 + }, + { + "start": 1248.32, + "end": 1250.56, + "probability": 0.9619 + }, + { + "start": 1250.88, + "end": 1251.69, + "probability": 0.9863 + }, + { + "start": 1252.28, + "end": 1256.13, + "probability": 0.9845 + }, + { + "start": 1257.24, + "end": 1259.5, + "probability": 0.6245 + }, + { + "start": 1260.02, + "end": 1264.26, + "probability": 0.994 + }, + { + "start": 1264.42, + "end": 1264.8, + "probability": 0.6586 + }, + { + "start": 1265.32, + "end": 1268.32, + "probability": 0.2 + }, + { + "start": 1268.46, + "end": 1271.88, + "probability": 0.9634 + }, + { + "start": 1272.76, + "end": 1275.38, + "probability": 0.877 + }, + { + "start": 1275.72, + "end": 1278.58, + "probability": 0.9121 + }, + { + "start": 1278.96, + "end": 1280.38, + "probability": 0.9059 + }, + { + "start": 1280.96, + "end": 1288.44, + "probability": 0.8164 + }, + { + "start": 1288.88, + "end": 1296.02, + "probability": 0.9824 + }, + { + "start": 1296.64, + "end": 1298.68, + "probability": 0.8967 + }, + { + "start": 1298.84, + "end": 1303.66, + "probability": 0.9966 + }, + { + "start": 1303.82, + "end": 1309.24, + "probability": 0.927 + }, + { + "start": 1309.26, + "end": 1312.74, + "probability": 0.9045 + }, + { + "start": 1312.8, + "end": 1314.08, + "probability": 0.7254 + }, + { + "start": 1314.24, + "end": 1316.0, + "probability": 0.9301 + }, + { + "start": 1316.12, + "end": 1318.7, + "probability": 0.6938 + }, + { + "start": 1318.94, + "end": 1319.74, + "probability": 0.8372 + }, + { + "start": 1319.86, + "end": 1324.58, + "probability": 0.9769 + }, + { + "start": 1325.32, + "end": 1331.28, + "probability": 0.9417 + }, + { + "start": 1332.04, + "end": 1336.54, + "probability": 0.9734 + }, + { + "start": 1336.84, + "end": 1339.36, + "probability": 0.8838 + }, + { + "start": 1339.64, + "end": 1341.88, + "probability": 0.9966 + }, + { + "start": 1342.12, + "end": 1344.26, + "probability": 0.8127 + }, + { + "start": 1344.44, + "end": 1347.76, + "probability": 0.7664 + }, + { + "start": 1348.68, + "end": 1351.2, + "probability": 0.84 + }, + { + "start": 1351.54, + "end": 1357.82, + "probability": 0.9932 + }, + { + "start": 1359.56, + "end": 1360.44, + "probability": 0.9075 + }, + { + "start": 1361.0, + "end": 1363.8, + "probability": 0.8377 + }, + { + "start": 1366.64, + "end": 1369.28, + "probability": 0.778 + }, + { + "start": 1369.6, + "end": 1371.76, + "probability": 0.9827 + }, + { + "start": 1371.94, + "end": 1374.24, + "probability": 0.9864 + }, + { + "start": 1374.38, + "end": 1375.43, + "probability": 0.4396 + }, + { + "start": 1375.5, + "end": 1376.38, + "probability": 0.6817 + }, + { + "start": 1376.46, + "end": 1381.48, + "probability": 0.9461 + }, + { + "start": 1382.14, + "end": 1386.88, + "probability": 0.6804 + }, + { + "start": 1387.04, + "end": 1391.26, + "probability": 0.979 + }, + { + "start": 1392.68, + "end": 1395.18, + "probability": 0.8071 + }, + { + "start": 1395.88, + "end": 1396.54, + "probability": 0.9198 + }, + { + "start": 1396.58, + "end": 1399.02, + "probability": 0.9985 + }, + { + "start": 1399.66, + "end": 1403.6, + "probability": 0.9987 + }, + { + "start": 1404.78, + "end": 1408.52, + "probability": 0.8227 + }, + { + "start": 1408.72, + "end": 1412.3, + "probability": 0.9754 + }, + { + "start": 1412.36, + "end": 1413.22, + "probability": 0.9968 + }, + { + "start": 1414.02, + "end": 1415.06, + "probability": 0.819 + }, + { + "start": 1415.92, + "end": 1419.4, + "probability": 0.8093 + }, + { + "start": 1420.5, + "end": 1422.74, + "probability": 0.8789 + }, + { + "start": 1422.9, + "end": 1425.48, + "probability": 0.7849 + }, + { + "start": 1425.48, + "end": 1425.88, + "probability": 0.4869 + }, + { + "start": 1425.92, + "end": 1426.74, + "probability": 0.555 + }, + { + "start": 1427.28, + "end": 1429.24, + "probability": 0.6269 + }, + { + "start": 1429.7, + "end": 1432.78, + "probability": 0.9945 + }, + { + "start": 1433.72, + "end": 1440.08, + "probability": 0.9958 + }, + { + "start": 1440.46, + "end": 1445.74, + "probability": 0.8144 + }, + { + "start": 1445.74, + "end": 1450.18, + "probability": 0.9917 + }, + { + "start": 1450.54, + "end": 1451.62, + "probability": 0.681 + }, + { + "start": 1451.74, + "end": 1457.76, + "probability": 0.8171 + }, + { + "start": 1458.14, + "end": 1462.8, + "probability": 0.9293 + }, + { + "start": 1462.9, + "end": 1463.9, + "probability": 0.9109 + }, + { + "start": 1463.94, + "end": 1464.82, + "probability": 0.7258 + }, + { + "start": 1465.32, + "end": 1471.52, + "probability": 0.7702 + }, + { + "start": 1472.86, + "end": 1476.6, + "probability": 0.9597 + }, + { + "start": 1477.26, + "end": 1479.8, + "probability": 0.8075 + }, + { + "start": 1479.84, + "end": 1484.44, + "probability": 0.9905 + }, + { + "start": 1484.98, + "end": 1490.4, + "probability": 0.998 + }, + { + "start": 1493.2, + "end": 1493.86, + "probability": 0.5269 + }, + { + "start": 1494.3, + "end": 1496.22, + "probability": 0.411 + }, + { + "start": 1496.8, + "end": 1498.42, + "probability": 0.365 + }, + { + "start": 1498.42, + "end": 1499.74, + "probability": 0.7342 + }, + { + "start": 1500.34, + "end": 1506.24, + "probability": 0.8929 + }, + { + "start": 1506.24, + "end": 1510.08, + "probability": 0.889 + }, + { + "start": 1510.24, + "end": 1513.0, + "probability": 0.5089 + }, + { + "start": 1513.0, + "end": 1515.06, + "probability": 0.9965 + }, + { + "start": 1515.16, + "end": 1518.38, + "probability": 0.7246 + }, + { + "start": 1518.8, + "end": 1522.24, + "probability": 0.6282 + }, + { + "start": 1522.4, + "end": 1523.2, + "probability": 0.325 + }, + { + "start": 1523.54, + "end": 1528.22, + "probability": 0.9884 + }, + { + "start": 1529.85, + "end": 1533.18, + "probability": 0.6904 + }, + { + "start": 1533.24, + "end": 1535.12, + "probability": 0.5723 + }, + { + "start": 1535.8, + "end": 1537.52, + "probability": 0.9107 + }, + { + "start": 1537.76, + "end": 1539.74, + "probability": 0.5039 + }, + { + "start": 1540.14, + "end": 1544.88, + "probability": 0.55 + }, + { + "start": 1545.3, + "end": 1548.26, + "probability": 0.5912 + }, + { + "start": 1548.46, + "end": 1553.24, + "probability": 0.9707 + }, + { + "start": 1553.7, + "end": 1556.44, + "probability": 0.6552 + }, + { + "start": 1556.66, + "end": 1560.1, + "probability": 0.9592 + }, + { + "start": 1560.1, + "end": 1563.58, + "probability": 0.993 + }, + { + "start": 1563.8, + "end": 1569.02, + "probability": 0.6655 + }, + { + "start": 1569.72, + "end": 1570.12, + "probability": 0.7317 + }, + { + "start": 1570.92, + "end": 1574.44, + "probability": 0.6919 + }, + { + "start": 1574.86, + "end": 1575.56, + "probability": 0.9482 + }, + { + "start": 1575.62, + "end": 1582.42, + "probability": 0.7828 + }, + { + "start": 1583.45, + "end": 1586.98, + "probability": 0.7759 + }, + { + "start": 1586.98, + "end": 1590.4, + "probability": 0.6056 + }, + { + "start": 1590.5, + "end": 1591.74, + "probability": 0.7146 + }, + { + "start": 1592.3, + "end": 1595.06, + "probability": 0.9639 + }, + { + "start": 1595.06, + "end": 1599.3, + "probability": 0.9304 + }, + { + "start": 1599.78, + "end": 1600.83, + "probability": 0.745 + }, + { + "start": 1601.48, + "end": 1601.94, + "probability": 0.4589 + }, + { + "start": 1602.14, + "end": 1607.18, + "probability": 0.4995 + }, + { + "start": 1608.6, + "end": 1615.9, + "probability": 0.9727 + }, + { + "start": 1616.02, + "end": 1616.68, + "probability": 0.957 + }, + { + "start": 1616.78, + "end": 1618.67, + "probability": 0.5332 + }, + { + "start": 1619.04, + "end": 1620.1, + "probability": 0.5237 + }, + { + "start": 1621.16, + "end": 1625.52, + "probability": 0.9893 + }, + { + "start": 1625.52, + "end": 1630.74, + "probability": 0.9937 + }, + { + "start": 1631.74, + "end": 1633.82, + "probability": 0.6768 + }, + { + "start": 1633.84, + "end": 1638.34, + "probability": 0.4294 + }, + { + "start": 1638.34, + "end": 1638.98, + "probability": 0.6683 + }, + { + "start": 1639.14, + "end": 1640.14, + "probability": 0.8007 + }, + { + "start": 1641.1, + "end": 1641.66, + "probability": 0.3047 + }, + { + "start": 1642.16, + "end": 1643.54, + "probability": 0.9082 + }, + { + "start": 1643.54, + "end": 1646.48, + "probability": 0.9204 + }, + { + "start": 1647.54, + "end": 1649.7, + "probability": 0.958 + }, + { + "start": 1650.95, + "end": 1656.78, + "probability": 0.6408 + }, + { + "start": 1657.38, + "end": 1661.1, + "probability": 0.9258 + }, + { + "start": 1661.68, + "end": 1665.22, + "probability": 0.9697 + }, + { + "start": 1665.76, + "end": 1669.46, + "probability": 0.9863 + }, + { + "start": 1669.46, + "end": 1671.94, + "probability": 0.9883 + }, + { + "start": 1672.24, + "end": 1673.76, + "probability": 0.8231 + }, + { + "start": 1675.46, + "end": 1676.18, + "probability": 0.6221 + }, + { + "start": 1676.18, + "end": 1677.22, + "probability": 0.7747 + }, + { + "start": 1677.3, + "end": 1680.4, + "probability": 0.9897 + }, + { + "start": 1680.4, + "end": 1685.34, + "probability": 0.8231 + }, + { + "start": 1686.1, + "end": 1691.16, + "probability": 0.9923 + }, + { + "start": 1692.12, + "end": 1698.34, + "probability": 0.9736 + }, + { + "start": 1698.92, + "end": 1701.38, + "probability": 0.7823 + }, + { + "start": 1702.06, + "end": 1704.84, + "probability": 0.9717 + }, + { + "start": 1705.58, + "end": 1709.84, + "probability": 0.7972 + }, + { + "start": 1710.08, + "end": 1712.78, + "probability": 0.9812 + }, + { + "start": 1713.28, + "end": 1714.96, + "probability": 0.9863 + }, + { + "start": 1715.88, + "end": 1717.84, + "probability": 0.6105 + }, + { + "start": 1720.08, + "end": 1726.66, + "probability": 0.957 + }, + { + "start": 1727.24, + "end": 1731.25, + "probability": 0.9046 + }, + { + "start": 1732.12, + "end": 1734.76, + "probability": 0.9622 + }, + { + "start": 1735.66, + "end": 1738.28, + "probability": 0.5012 + }, + { + "start": 1738.32, + "end": 1740.52, + "probability": 0.7738 + }, + { + "start": 1741.08, + "end": 1746.14, + "probability": 0.9834 + }, + { + "start": 1747.0, + "end": 1749.24, + "probability": 0.9951 + }, + { + "start": 1749.24, + "end": 1752.9, + "probability": 0.9937 + }, + { + "start": 1753.32, + "end": 1754.6, + "probability": 0.9232 + }, + { + "start": 1755.1, + "end": 1755.58, + "probability": 0.4533 + }, + { + "start": 1756.52, + "end": 1757.42, + "probability": 0.9773 + }, + { + "start": 1757.54, + "end": 1758.42, + "probability": 0.766 + }, + { + "start": 1758.5, + "end": 1761.66, + "probability": 0.9963 + }, + { + "start": 1762.5, + "end": 1763.26, + "probability": 0.4478 + }, + { + "start": 1763.8, + "end": 1765.07, + "probability": 0.8312 + }, + { + "start": 1765.86, + "end": 1767.92, + "probability": 0.9438 + }, + { + "start": 1768.36, + "end": 1772.42, + "probability": 0.8326 + }, + { + "start": 1772.98, + "end": 1774.48, + "probability": 0.9607 + }, + { + "start": 1775.98, + "end": 1783.96, + "probability": 0.9541 + }, + { + "start": 1784.6, + "end": 1788.56, + "probability": 0.9922 + }, + { + "start": 1789.08, + "end": 1791.54, + "probability": 0.8561 + }, + { + "start": 1792.14, + "end": 1797.24, + "probability": 0.9247 + }, + { + "start": 1797.24, + "end": 1802.62, + "probability": 0.9468 + }, + { + "start": 1803.48, + "end": 1804.36, + "probability": 0.967 + }, + { + "start": 1805.12, + "end": 1808.74, + "probability": 0.877 + }, + { + "start": 1808.76, + "end": 1809.46, + "probability": 0.6805 + }, + { + "start": 1810.08, + "end": 1813.6, + "probability": 0.8793 + }, + { + "start": 1814.22, + "end": 1815.44, + "probability": 0.7549 + }, + { + "start": 1816.1, + "end": 1819.38, + "probability": 0.9446 + }, + { + "start": 1819.48, + "end": 1820.76, + "probability": 0.9007 + }, + { + "start": 1821.28, + "end": 1825.52, + "probability": 0.8742 + }, + { + "start": 1825.9, + "end": 1826.64, + "probability": 0.8287 + }, + { + "start": 1826.72, + "end": 1832.0, + "probability": 0.9795 + }, + { + "start": 1832.34, + "end": 1834.5, + "probability": 0.9693 + }, + { + "start": 1835.36, + "end": 1837.18, + "probability": 0.7551 + }, + { + "start": 1837.8, + "end": 1839.26, + "probability": 0.8642 + }, + { + "start": 1840.18, + "end": 1843.06, + "probability": 0.9828 + }, + { + "start": 1843.16, + "end": 1844.45, + "probability": 0.9668 + }, + { + "start": 1845.54, + "end": 1846.92, + "probability": 0.9838 + }, + { + "start": 1847.48, + "end": 1848.62, + "probability": 0.5062 + }, + { + "start": 1849.88, + "end": 1851.09, + "probability": 0.7497 + }, + { + "start": 1852.08, + "end": 1855.82, + "probability": 0.82 + }, + { + "start": 1856.4, + "end": 1857.78, + "probability": 0.9362 + }, + { + "start": 1857.86, + "end": 1860.82, + "probability": 0.9868 + }, + { + "start": 1861.28, + "end": 1864.86, + "probability": 0.8955 + }, + { + "start": 1865.5, + "end": 1869.7, + "probability": 0.8892 + }, + { + "start": 1870.36, + "end": 1875.66, + "probability": 0.9777 + }, + { + "start": 1875.66, + "end": 1878.34, + "probability": 0.991 + }, + { + "start": 1879.56, + "end": 1883.01, + "probability": 0.9369 + }, + { + "start": 1884.18, + "end": 1886.36, + "probability": 0.9879 + }, + { + "start": 1887.3, + "end": 1896.86, + "probability": 0.6362 + }, + { + "start": 1897.66, + "end": 1899.6, + "probability": 0.8482 + }, + { + "start": 1901.36, + "end": 1905.44, + "probability": 0.9357 + }, + { + "start": 1905.78, + "end": 1907.38, + "probability": 0.9644 + }, + { + "start": 1908.36, + "end": 1909.76, + "probability": 0.2695 + }, + { + "start": 1909.8, + "end": 1911.46, + "probability": 0.6278 + }, + { + "start": 1912.57, + "end": 1916.4, + "probability": 0.9775 + }, + { + "start": 1916.4, + "end": 1921.12, + "probability": 0.8008 + }, + { + "start": 1921.82, + "end": 1922.7, + "probability": 0.5403 + }, + { + "start": 1924.08, + "end": 1925.92, + "probability": 0.1696 + }, + { + "start": 1925.92, + "end": 1926.94, + "probability": 0.3469 + }, + { + "start": 1927.3, + "end": 1927.66, + "probability": 0.2244 + }, + { + "start": 1928.4, + "end": 1929.07, + "probability": 0.8345 + }, + { + "start": 1929.98, + "end": 1933.0, + "probability": 0.8456 + }, + { + "start": 1933.56, + "end": 1936.04, + "probability": 0.9813 + }, + { + "start": 1936.62, + "end": 1937.8, + "probability": 0.7383 + }, + { + "start": 1939.0, + "end": 1939.36, + "probability": 0.7407 + }, + { + "start": 1939.88, + "end": 1940.8, + "probability": 0.8242 + }, + { + "start": 1943.58, + "end": 1945.16, + "probability": 0.7397 + }, + { + "start": 1946.12, + "end": 1947.02, + "probability": 0.7616 + }, + { + "start": 1947.32, + "end": 1956.92, + "probability": 0.9393 + }, + { + "start": 1958.34, + "end": 1964.88, + "probability": 0.8036 + }, + { + "start": 1965.98, + "end": 1966.64, + "probability": 0.6607 + }, + { + "start": 1967.04, + "end": 1969.06, + "probability": 0.9502 + }, + { + "start": 1969.39, + "end": 1973.08, + "probability": 0.9404 + }, + { + "start": 1974.2, + "end": 1981.62, + "probability": 0.9648 + }, + { + "start": 1982.32, + "end": 1985.64, + "probability": 0.9252 + }, + { + "start": 1986.9, + "end": 1988.34, + "probability": 0.7653 + }, + { + "start": 1988.64, + "end": 1991.12, + "probability": 0.8184 + }, + { + "start": 1991.68, + "end": 1992.5, + "probability": 0.7474 + }, + { + "start": 1994.0, + "end": 1997.64, + "probability": 0.9611 + }, + { + "start": 1998.36, + "end": 2000.62, + "probability": 0.9425 + }, + { + "start": 2001.64, + "end": 2003.76, + "probability": 0.9728 + }, + { + "start": 2004.68, + "end": 2008.02, + "probability": 0.9971 + }, + { + "start": 2008.23, + "end": 2012.46, + "probability": 0.998 + }, + { + "start": 2014.88, + "end": 2018.94, + "probability": 0.8108 + }, + { + "start": 2020.12, + "end": 2021.18, + "probability": 0.942 + }, + { + "start": 2023.04, + "end": 2024.34, + "probability": 0.9961 + }, + { + "start": 2024.48, + "end": 2025.52, + "probability": 0.8154 + }, + { + "start": 2025.9, + "end": 2027.04, + "probability": 0.8094 + }, + { + "start": 2028.34, + "end": 2036.18, + "probability": 0.9784 + }, + { + "start": 2037.98, + "end": 2041.74, + "probability": 0.9943 + }, + { + "start": 2042.18, + "end": 2045.28, + "probability": 0.9515 + }, + { + "start": 2048.56, + "end": 2051.52, + "probability": 0.9866 + }, + { + "start": 2054.34, + "end": 2058.06, + "probability": 0.6438 + }, + { + "start": 2058.82, + "end": 2063.12, + "probability": 0.9829 + }, + { + "start": 2063.12, + "end": 2068.0, + "probability": 0.9644 + }, + { + "start": 2069.5, + "end": 2071.26, + "probability": 0.8872 + }, + { + "start": 2073.02, + "end": 2077.28, + "probability": 0.7266 + }, + { + "start": 2077.92, + "end": 2078.78, + "probability": 0.909 + }, + { + "start": 2078.86, + "end": 2085.12, + "probability": 0.9766 + }, + { + "start": 2085.36, + "end": 2086.32, + "probability": 0.6652 + }, + { + "start": 2086.9, + "end": 2088.4, + "probability": 0.6692 + }, + { + "start": 2088.54, + "end": 2093.7, + "probability": 0.99 + }, + { + "start": 2096.12, + "end": 2099.86, + "probability": 0.9654 + }, + { + "start": 2100.18, + "end": 2101.44, + "probability": 0.9803 + }, + { + "start": 2101.68, + "end": 2105.28, + "probability": 0.8835 + }, + { + "start": 2106.7, + "end": 2115.98, + "probability": 0.8842 + }, + { + "start": 2116.04, + "end": 2123.82, + "probability": 0.5616 + }, + { + "start": 2123.92, + "end": 2127.2, + "probability": 0.9591 + }, + { + "start": 2127.78, + "end": 2131.88, + "probability": 0.708 + }, + { + "start": 2132.5, + "end": 2135.36, + "probability": 0.9604 + }, + { + "start": 2136.88, + "end": 2142.14, + "probability": 0.6676 + }, + { + "start": 2142.8, + "end": 2146.06, + "probability": 0.9667 + }, + { + "start": 2146.82, + "end": 2148.56, + "probability": 0.7725 + }, + { + "start": 2148.72, + "end": 2149.48, + "probability": 0.6299 + }, + { + "start": 2149.62, + "end": 2153.52, + "probability": 0.8971 + }, + { + "start": 2153.66, + "end": 2155.6, + "probability": 0.9863 + }, + { + "start": 2155.76, + "end": 2157.54, + "probability": 0.9552 + }, + { + "start": 2158.38, + "end": 2162.56, + "probability": 0.9684 + }, + { + "start": 2163.32, + "end": 2163.8, + "probability": 0.748 + }, + { + "start": 2164.88, + "end": 2168.3, + "probability": 0.7795 + }, + { + "start": 2168.9, + "end": 2174.28, + "probability": 0.9022 + }, + { + "start": 2176.28, + "end": 2177.9, + "probability": 0.9529 + }, + { + "start": 2178.08, + "end": 2179.8, + "probability": 0.9768 + }, + { + "start": 2180.06, + "end": 2182.02, + "probability": 0.5022 + }, + { + "start": 2182.3, + "end": 2183.07, + "probability": 0.851 + }, + { + "start": 2185.4, + "end": 2189.0, + "probability": 0.8677 + }, + { + "start": 2189.88, + "end": 2198.84, + "probability": 0.9863 + }, + { + "start": 2199.34, + "end": 2202.1, + "probability": 0.9395 + }, + { + "start": 2205.56, + "end": 2206.44, + "probability": 0.3363 + }, + { + "start": 2206.52, + "end": 2211.88, + "probability": 0.2134 + }, + { + "start": 2211.88, + "end": 2214.64, + "probability": 0.6941 + }, + { + "start": 2214.9, + "end": 2215.88, + "probability": 0.9049 + }, + { + "start": 2216.08, + "end": 2217.15, + "probability": 0.9912 + }, + { + "start": 2217.4, + "end": 2219.06, + "probability": 0.7389 + }, + { + "start": 2219.84, + "end": 2224.44, + "probability": 0.4187 + }, + { + "start": 2227.14, + "end": 2229.36, + "probability": 0.35 + }, + { + "start": 2231.4, + "end": 2231.9, + "probability": 0.0664 + }, + { + "start": 2231.9, + "end": 2232.46, + "probability": 0.3951 + }, + { + "start": 2232.48, + "end": 2234.42, + "probability": 0.7192 + }, + { + "start": 2234.82, + "end": 2241.22, + "probability": 0.9969 + }, + { + "start": 2241.96, + "end": 2246.54, + "probability": 0.9896 + }, + { + "start": 2248.24, + "end": 2252.96, + "probability": 0.722 + }, + { + "start": 2253.64, + "end": 2258.22, + "probability": 0.8059 + }, + { + "start": 2260.48, + "end": 2263.0, + "probability": 0.8046 + }, + { + "start": 2264.48, + "end": 2270.04, + "probability": 0.8588 + }, + { + "start": 2270.04, + "end": 2276.8, + "probability": 0.8831 + }, + { + "start": 2277.04, + "end": 2280.2, + "probability": 0.9808 + }, + { + "start": 2280.88, + "end": 2282.24, + "probability": 0.3158 + }, + { + "start": 2282.28, + "end": 2287.32, + "probability": 0.9871 + }, + { + "start": 2287.76, + "end": 2291.42, + "probability": 0.8687 + }, + { + "start": 2291.98, + "end": 2292.74, + "probability": 0.8777 + }, + { + "start": 2293.26, + "end": 2296.86, + "probability": 0.9421 + }, + { + "start": 2297.02, + "end": 2301.08, + "probability": 0.9986 + }, + { + "start": 2301.08, + "end": 2304.06, + "probability": 0.9521 + }, + { + "start": 2306.04, + "end": 2307.02, + "probability": 0.6309 + }, + { + "start": 2308.96, + "end": 2309.5, + "probability": 0.8589 + }, + { + "start": 2310.73, + "end": 2319.14, + "probability": 0.9682 + }, + { + "start": 2319.86, + "end": 2321.14, + "probability": 0.8364 + }, + { + "start": 2322.32, + "end": 2327.16, + "probability": 0.9701 + }, + { + "start": 2328.06, + "end": 2328.06, + "probability": 0.445 + }, + { + "start": 2328.4, + "end": 2330.2, + "probability": 0.9016 + }, + { + "start": 2330.46, + "end": 2333.92, + "probability": 0.7523 + }, + { + "start": 2334.0, + "end": 2335.03, + "probability": 0.8347 + }, + { + "start": 2335.86, + "end": 2338.72, + "probability": 0.8008 + }, + { + "start": 2339.58, + "end": 2342.44, + "probability": 0.7059 + }, + { + "start": 2343.46, + "end": 2344.2, + "probability": 0.6853 + }, + { + "start": 2345.5, + "end": 2346.46, + "probability": 0.6203 + }, + { + "start": 2346.56, + "end": 2346.98, + "probability": 0.4999 + }, + { + "start": 2347.12, + "end": 2349.9, + "probability": 0.9485 + }, + { + "start": 2350.4, + "end": 2351.74, + "probability": 0.5264 + }, + { + "start": 2352.06, + "end": 2353.6, + "probability": 0.9721 + }, + { + "start": 2353.6, + "end": 2357.9, + "probability": 0.6541 + }, + { + "start": 2358.24, + "end": 2362.8, + "probability": 0.8905 + }, + { + "start": 2363.72, + "end": 2366.76, + "probability": 0.7136 + }, + { + "start": 2366.94, + "end": 2369.83, + "probability": 0.6119 + }, + { + "start": 2370.37, + "end": 2375.0, + "probability": 0.9457 + }, + { + "start": 2375.34, + "end": 2376.7, + "probability": 0.5803 + }, + { + "start": 2377.02, + "end": 2377.94, + "probability": 0.4933 + }, + { + "start": 2378.0, + "end": 2381.51, + "probability": 0.6391 + }, + { + "start": 2382.3, + "end": 2383.77, + "probability": 0.9893 + }, + { + "start": 2384.14, + "end": 2386.84, + "probability": 0.5707 + }, + { + "start": 2387.48, + "end": 2390.6, + "probability": 0.9383 + }, + { + "start": 2391.56, + "end": 2393.06, + "probability": 0.5221 + }, + { + "start": 2393.12, + "end": 2394.18, + "probability": 0.4721 + }, + { + "start": 2394.34, + "end": 2400.64, + "probability": 0.8926 + }, + { + "start": 2401.1, + "end": 2407.44, + "probability": 0.936 + }, + { + "start": 2407.76, + "end": 2409.56, + "probability": 0.8047 + }, + { + "start": 2410.26, + "end": 2415.24, + "probability": 0.9919 + }, + { + "start": 2415.98, + "end": 2416.64, + "probability": 0.8174 + }, + { + "start": 2417.14, + "end": 2418.32, + "probability": 0.6836 + }, + { + "start": 2418.34, + "end": 2420.5, + "probability": 0.8795 + }, + { + "start": 2421.58, + "end": 2421.7, + "probability": 0.0709 + }, + { + "start": 2421.7, + "end": 2422.38, + "probability": 0.5384 + }, + { + "start": 2422.74, + "end": 2424.84, + "probability": 0.8056 + }, + { + "start": 2425.2, + "end": 2429.36, + "probability": 0.9548 + }, + { + "start": 2430.98, + "end": 2434.86, + "probability": 0.7267 + }, + { + "start": 2435.02, + "end": 2435.9, + "probability": 0.8239 + }, + { + "start": 2436.2, + "end": 2438.5, + "probability": 0.9937 + }, + { + "start": 2439.7, + "end": 2441.04, + "probability": 0.9267 + }, + { + "start": 2441.32, + "end": 2442.48, + "probability": 0.9287 + }, + { + "start": 2442.8, + "end": 2445.14, + "probability": 0.9384 + }, + { + "start": 2445.52, + "end": 2446.6, + "probability": 0.5523 + }, + { + "start": 2446.62, + "end": 2447.05, + "probability": 0.79 + }, + { + "start": 2447.44, + "end": 2448.16, + "probability": 0.8776 + }, + { + "start": 2448.28, + "end": 2448.68, + "probability": 0.9084 + }, + { + "start": 2449.1, + "end": 2450.94, + "probability": 0.9274 + }, + { + "start": 2450.96, + "end": 2452.76, + "probability": 0.9768 + }, + { + "start": 2452.9, + "end": 2456.58, + "probability": 0.9924 + }, + { + "start": 2456.98, + "end": 2458.08, + "probability": 0.6662 + }, + { + "start": 2458.76, + "end": 2462.46, + "probability": 0.9312 + }, + { + "start": 2462.72, + "end": 2469.44, + "probability": 0.9766 + }, + { + "start": 2470.27, + "end": 2474.38, + "probability": 0.9638 + }, + { + "start": 2475.3, + "end": 2477.66, + "probability": 0.7508 + }, + { + "start": 2478.18, + "end": 2481.14, + "probability": 0.5816 + }, + { + "start": 2481.76, + "end": 2481.98, + "probability": 0.3906 + }, + { + "start": 2481.98, + "end": 2482.34, + "probability": 0.6104 + }, + { + "start": 2482.46, + "end": 2484.28, + "probability": 0.8727 + }, + { + "start": 2487.16, + "end": 2487.72, + "probability": 0.6701 + }, + { + "start": 2487.76, + "end": 2488.54, + "probability": 0.689 + }, + { + "start": 2488.72, + "end": 2489.6, + "probability": 0.8472 + }, + { + "start": 2489.68, + "end": 2495.06, + "probability": 0.8296 + }, + { + "start": 2495.12, + "end": 2496.16, + "probability": 0.327 + }, + { + "start": 2496.32, + "end": 2499.4, + "probability": 0.9008 + }, + { + "start": 2500.3, + "end": 2501.16, + "probability": 0.8274 + }, + { + "start": 2501.24, + "end": 2501.7, + "probability": 0.8638 + }, + { + "start": 2501.86, + "end": 2504.66, + "probability": 0.9092 + }, + { + "start": 2504.96, + "end": 2507.22, + "probability": 0.9669 + }, + { + "start": 2508.02, + "end": 2510.1, + "probability": 0.6035 + }, + { + "start": 2510.32, + "end": 2513.1, + "probability": 0.9583 + }, + { + "start": 2513.22, + "end": 2514.02, + "probability": 0.8942 + }, + { + "start": 2514.48, + "end": 2518.24, + "probability": 0.9799 + }, + { + "start": 2518.36, + "end": 2520.94, + "probability": 0.9658 + }, + { + "start": 2521.78, + "end": 2524.48, + "probability": 0.9849 + }, + { + "start": 2525.04, + "end": 2525.8, + "probability": 0.157 + }, + { + "start": 2525.8, + "end": 2528.12, + "probability": 0.9814 + }, + { + "start": 2528.12, + "end": 2532.32, + "probability": 0.991 + }, + { + "start": 2532.32, + "end": 2534.7, + "probability": 0.9976 + }, + { + "start": 2535.1, + "end": 2535.32, + "probability": 0.3572 + }, + { + "start": 2535.36, + "end": 2536.36, + "probability": 0.8123 + }, + { + "start": 2536.4, + "end": 2538.31, + "probability": 0.9907 + }, + { + "start": 2539.1, + "end": 2541.06, + "probability": 0.7985 + }, + { + "start": 2541.06, + "end": 2542.92, + "probability": 0.7427 + }, + { + "start": 2543.0, + "end": 2544.86, + "probability": 0.8101 + }, + { + "start": 2545.24, + "end": 2547.58, + "probability": 0.8595 + }, + { + "start": 2548.2, + "end": 2549.34, + "probability": 0.9746 + }, + { + "start": 2549.44, + "end": 2552.84, + "probability": 0.8809 + }, + { + "start": 2552.84, + "end": 2556.38, + "probability": 0.4875 + }, + { + "start": 2556.7, + "end": 2558.6, + "probability": 0.8754 + }, + { + "start": 2559.4, + "end": 2560.62, + "probability": 0.9502 + }, + { + "start": 2560.96, + "end": 2563.64, + "probability": 0.791 + }, + { + "start": 2563.66, + "end": 2567.26, + "probability": 0.5954 + }, + { + "start": 2567.26, + "end": 2567.26, + "probability": 0.1133 + }, + { + "start": 2567.26, + "end": 2569.24, + "probability": 0.9013 + }, + { + "start": 2570.14, + "end": 2575.0, + "probability": 0.8506 + }, + { + "start": 2575.44, + "end": 2576.36, + "probability": 0.8948 + }, + { + "start": 2576.5, + "end": 2578.37, + "probability": 0.9162 + }, + { + "start": 2578.62, + "end": 2579.1, + "probability": 0.7942 + }, + { + "start": 2579.1, + "end": 2579.6, + "probability": 0.3359 + }, + { + "start": 2581.3, + "end": 2583.26, + "probability": 0.7213 + }, + { + "start": 2583.44, + "end": 2585.71, + "probability": 0.949 + }, + { + "start": 2586.7, + "end": 2589.84, + "probability": 0.9613 + }, + { + "start": 2589.84, + "end": 2593.6, + "probability": 0.9746 + }, + { + "start": 2594.14, + "end": 2594.24, + "probability": 0.5461 + }, + { + "start": 2594.24, + "end": 2594.54, + "probability": 0.6684 + }, + { + "start": 2594.66, + "end": 2595.46, + "probability": 0.639 + }, + { + "start": 2595.92, + "end": 2597.76, + "probability": 0.9565 + }, + { + "start": 2597.82, + "end": 2598.56, + "probability": 0.8419 + }, + { + "start": 2599.02, + "end": 2601.76, + "probability": 0.9941 + }, + { + "start": 2602.06, + "end": 2604.72, + "probability": 0.7488 + }, + { + "start": 2605.42, + "end": 2609.04, + "probability": 0.9763 + }, + { + "start": 2609.12, + "end": 2611.2, + "probability": 0.9991 + }, + { + "start": 2611.5, + "end": 2615.28, + "probability": 0.9496 + }, + { + "start": 2615.62, + "end": 2616.22, + "probability": 0.5627 + }, + { + "start": 2616.36, + "end": 2616.36, + "probability": 0.4365 + }, + { + "start": 2616.46, + "end": 2616.86, + "probability": 0.7043 + }, + { + "start": 2617.08, + "end": 2617.46, + "probability": 0.6692 + }, + { + "start": 2617.46, + "end": 2620.74, + "probability": 0.7918 + }, + { + "start": 2620.9, + "end": 2625.38, + "probability": 0.9838 + }, + { + "start": 2626.16, + "end": 2627.7, + "probability": 0.9954 + }, + { + "start": 2628.22, + "end": 2630.98, + "probability": 0.98 + }, + { + "start": 2631.62, + "end": 2634.68, + "probability": 0.9546 + }, + { + "start": 2636.28, + "end": 2638.9, + "probability": 0.9979 + }, + { + "start": 2639.16, + "end": 2641.2, + "probability": 0.9945 + }, + { + "start": 2641.98, + "end": 2644.88, + "probability": 0.9619 + }, + { + "start": 2644.98, + "end": 2648.58, + "probability": 0.9365 + }, + { + "start": 2649.22, + "end": 2650.68, + "probability": 0.9946 + }, + { + "start": 2652.04, + "end": 2655.68, + "probability": 0.9692 + }, + { + "start": 2656.0, + "end": 2657.42, + "probability": 0.9775 + }, + { + "start": 2658.04, + "end": 2659.16, + "probability": 0.971 + }, + { + "start": 2659.92, + "end": 2662.0, + "probability": 0.9399 + }, + { + "start": 2663.42, + "end": 2666.8, + "probability": 0.9455 + }, + { + "start": 2667.04, + "end": 2667.3, + "probability": 0.771 + }, + { + "start": 2667.36, + "end": 2668.88, + "probability": 0.9897 + }, + { + "start": 2669.0, + "end": 2669.62, + "probability": 0.7163 + }, + { + "start": 2670.38, + "end": 2673.46, + "probability": 0.8278 + }, + { + "start": 2673.52, + "end": 2676.12, + "probability": 0.955 + }, + { + "start": 2676.68, + "end": 2680.18, + "probability": 0.9917 + }, + { + "start": 2680.3, + "end": 2682.3, + "probability": 0.8909 + }, + { + "start": 2682.4, + "end": 2684.3, + "probability": 0.9673 + }, + { + "start": 2684.78, + "end": 2686.12, + "probability": 0.92 + }, + { + "start": 2686.34, + "end": 2691.96, + "probability": 0.9669 + }, + { + "start": 2695.09, + "end": 2697.84, + "probability": 0.9761 + }, + { + "start": 2697.92, + "end": 2700.84, + "probability": 0.6478 + }, + { + "start": 2701.58, + "end": 2702.54, + "probability": 0.633 + }, + { + "start": 2702.74, + "end": 2706.9, + "probability": 0.9297 + }, + { + "start": 2711.38, + "end": 2714.46, + "probability": 0.7248 + }, + { + "start": 2714.94, + "end": 2716.54, + "probability": 0.991 + }, + { + "start": 2716.64, + "end": 2717.9, + "probability": 0.9772 + }, + { + "start": 2718.9, + "end": 2719.96, + "probability": 0.9122 + }, + { + "start": 2721.3, + "end": 2725.44, + "probability": 0.9299 + }, + { + "start": 2726.02, + "end": 2727.1, + "probability": 0.9873 + }, + { + "start": 2727.82, + "end": 2731.18, + "probability": 0.8212 + }, + { + "start": 2731.48, + "end": 2732.72, + "probability": 0.7852 + }, + { + "start": 2732.94, + "end": 2734.32, + "probability": 0.8505 + }, + { + "start": 2735.38, + "end": 2736.74, + "probability": 0.718 + }, + { + "start": 2737.36, + "end": 2740.56, + "probability": 0.9533 + }, + { + "start": 2741.24, + "end": 2744.98, + "probability": 0.9919 + }, + { + "start": 2746.44, + "end": 2749.92, + "probability": 0.882 + }, + { + "start": 2750.54, + "end": 2752.82, + "probability": 0.7083 + }, + { + "start": 2753.04, + "end": 2755.44, + "probability": 0.9797 + }, + { + "start": 2755.7, + "end": 2756.68, + "probability": 0.6248 + }, + { + "start": 2756.74, + "end": 2758.44, + "probability": 0.9636 + }, + { + "start": 2759.9, + "end": 2762.08, + "probability": 0.989 + }, + { + "start": 2762.22, + "end": 2763.37, + "probability": 0.891 + }, + { + "start": 2764.92, + "end": 2769.34, + "probability": 0.9858 + }, + { + "start": 2770.3, + "end": 2772.52, + "probability": 0.9956 + }, + { + "start": 2773.1, + "end": 2777.78, + "probability": 0.9892 + }, + { + "start": 2778.22, + "end": 2782.24, + "probability": 0.8715 + }, + { + "start": 2782.9, + "end": 2787.04, + "probability": 0.9866 + }, + { + "start": 2787.04, + "end": 2789.74, + "probability": 0.9913 + }, + { + "start": 2790.3, + "end": 2791.35, + "probability": 0.9502 + }, + { + "start": 2791.52, + "end": 2793.44, + "probability": 0.9974 + }, + { + "start": 2793.6, + "end": 2793.94, + "probability": 0.7094 + }, + { + "start": 2794.02, + "end": 2794.58, + "probability": 0.5572 + }, + { + "start": 2794.74, + "end": 2795.5, + "probability": 0.5569 + }, + { + "start": 2796.7, + "end": 2799.46, + "probability": 0.9426 + }, + { + "start": 2799.98, + "end": 2805.42, + "probability": 0.7616 + }, + { + "start": 2805.86, + "end": 2807.54, + "probability": 0.8307 + }, + { + "start": 2807.62, + "end": 2810.52, + "probability": 0.8215 + }, + { + "start": 2811.52, + "end": 2812.06, + "probability": 0.7244 + }, + { + "start": 2813.32, + "end": 2815.54, + "probability": 0.7843 + }, + { + "start": 2816.86, + "end": 2818.52, + "probability": 0.8834 + }, + { + "start": 2818.76, + "end": 2821.06, + "probability": 0.3548 + }, + { + "start": 2821.32, + "end": 2826.22, + "probability": 0.819 + }, + { + "start": 2827.36, + "end": 2829.02, + "probability": 0.3747 + }, + { + "start": 2829.34, + "end": 2831.56, + "probability": 0.5132 + }, + { + "start": 2831.98, + "end": 2834.26, + "probability": 0.9639 + }, + { + "start": 2834.3, + "end": 2838.58, + "probability": 0.9546 + }, + { + "start": 2838.92, + "end": 2840.96, + "probability": 0.9863 + }, + { + "start": 2842.48, + "end": 2844.56, + "probability": 0.9899 + }, + { + "start": 2844.58, + "end": 2848.24, + "probability": 0.7863 + }, + { + "start": 2848.46, + "end": 2848.72, + "probability": 0.8174 + }, + { + "start": 2849.02, + "end": 2853.06, + "probability": 0.6919 + }, + { + "start": 2853.72, + "end": 2856.54, + "probability": 0.9103 + }, + { + "start": 2857.66, + "end": 2857.96, + "probability": 0.7838 + }, + { + "start": 2858.26, + "end": 2860.88, + "probability": 0.6922 + }, + { + "start": 2861.0, + "end": 2865.26, + "probability": 0.865 + }, + { + "start": 2865.9, + "end": 2866.96, + "probability": 0.8312 + }, + { + "start": 2867.28, + "end": 2873.7, + "probability": 0.9839 + }, + { + "start": 2873.74, + "end": 2878.6, + "probability": 0.9196 + }, + { + "start": 2879.52, + "end": 2882.12, + "probability": 0.9911 + }, + { + "start": 2882.92, + "end": 2884.42, + "probability": 0.2482 + }, + { + "start": 2884.44, + "end": 2887.6, + "probability": 0.9021 + }, + { + "start": 2888.08, + "end": 2890.12, + "probability": 0.9969 + }, + { + "start": 2890.24, + "end": 2890.43, + "probability": 0.1506 + }, + { + "start": 2892.0, + "end": 2893.98, + "probability": 0.9042 + }, + { + "start": 2894.94, + "end": 2898.02, + "probability": 0.9467 + }, + { + "start": 2898.7, + "end": 2901.66, + "probability": 0.8363 + }, + { + "start": 2902.5, + "end": 2905.92, + "probability": 0.7292 + }, + { + "start": 2906.6, + "end": 2909.66, + "probability": 0.951 + }, + { + "start": 2909.66, + "end": 2912.46, + "probability": 0.9575 + }, + { + "start": 2912.6, + "end": 2916.92, + "probability": 0.9922 + }, + { + "start": 2917.24, + "end": 2920.62, + "probability": 0.9095 + }, + { + "start": 2921.78, + "end": 2924.28, + "probability": 0.51 + }, + { + "start": 2924.82, + "end": 2927.5, + "probability": 0.9533 + }, + { + "start": 2928.46, + "end": 2929.06, + "probability": 0.5762 + }, + { + "start": 2929.18, + "end": 2930.02, + "probability": 0.7959 + }, + { + "start": 2930.08, + "end": 2932.16, + "probability": 0.9844 + }, + { + "start": 2932.92, + "end": 2937.42, + "probability": 0.9106 + }, + { + "start": 2938.7, + "end": 2939.66, + "probability": 0.9261 + }, + { + "start": 2940.24, + "end": 2944.26, + "probability": 0.9928 + }, + { + "start": 2946.38, + "end": 2946.84, + "probability": 0.1763 + }, + { + "start": 2948.22, + "end": 2952.76, + "probability": 0.9871 + }, + { + "start": 2952.84, + "end": 2956.64, + "probability": 0.9883 + }, + { + "start": 2957.2, + "end": 2961.02, + "probability": 0.8923 + }, + { + "start": 2962.12, + "end": 2963.48, + "probability": 0.7406 + }, + { + "start": 2964.2, + "end": 2966.18, + "probability": 0.7097 + }, + { + "start": 2966.3, + "end": 2967.78, + "probability": 0.8015 + }, + { + "start": 2971.1, + "end": 2977.02, + "probability": 0.9871 + }, + { + "start": 2978.26, + "end": 2980.68, + "probability": 0.9395 + }, + { + "start": 2981.78, + "end": 2989.36, + "probability": 0.8926 + }, + { + "start": 2989.36, + "end": 2992.42, + "probability": 0.9995 + }, + { + "start": 2995.36, + "end": 3000.04, + "probability": 0.9412 + }, + { + "start": 3000.68, + "end": 3003.36, + "probability": 0.9971 + }, + { + "start": 3008.1, + "end": 3010.12, + "probability": 0.8159 + }, + { + "start": 3010.26, + "end": 3012.36, + "probability": 0.7742 + }, + { + "start": 3012.36, + "end": 3015.14, + "probability": 0.8351 + }, + { + "start": 3017.3, + "end": 3021.34, + "probability": 0.981 + }, + { + "start": 3022.72, + "end": 3026.48, + "probability": 0.8599 + }, + { + "start": 3026.94, + "end": 3028.74, + "probability": 0.9279 + }, + { + "start": 3029.12, + "end": 3033.46, + "probability": 0.9937 + }, + { + "start": 3033.46, + "end": 3037.36, + "probability": 0.9451 + }, + { + "start": 3038.5, + "end": 3040.06, + "probability": 0.7261 + }, + { + "start": 3040.28, + "end": 3041.3, + "probability": 0.6983 + }, + { + "start": 3042.56, + "end": 3045.64, + "probability": 0.9109 + }, + { + "start": 3046.06, + "end": 3048.92, + "probability": 0.9918 + }, + { + "start": 3048.97, + "end": 3052.2, + "probability": 0.999 + }, + { + "start": 3052.86, + "end": 3053.74, + "probability": 0.9168 + }, + { + "start": 3054.6, + "end": 3057.34, + "probability": 0.9975 + }, + { + "start": 3057.34, + "end": 3060.1, + "probability": 0.9907 + }, + { + "start": 3060.3, + "end": 3061.94, + "probability": 0.9091 + }, + { + "start": 3062.8, + "end": 3063.58, + "probability": 0.694 + }, + { + "start": 3063.84, + "end": 3066.78, + "probability": 0.7482 + }, + { + "start": 3068.36, + "end": 3070.54, + "probability": 0.9523 + }, + { + "start": 3070.96, + "end": 3073.82, + "probability": 0.9972 + }, + { + "start": 3074.48, + "end": 3076.7, + "probability": 0.9985 + }, + { + "start": 3077.84, + "end": 3080.44, + "probability": 0.8118 + }, + { + "start": 3081.32, + "end": 3084.56, + "probability": 0.8133 + }, + { + "start": 3085.52, + "end": 3090.66, + "probability": 0.9928 + }, + { + "start": 3091.46, + "end": 3096.4, + "probability": 0.8774 + }, + { + "start": 3096.52, + "end": 3098.36, + "probability": 0.999 + }, + { + "start": 3098.44, + "end": 3100.29, + "probability": 0.8608 + }, + { + "start": 3101.98, + "end": 3103.32, + "probability": 0.8396 + }, + { + "start": 3103.88, + "end": 3104.98, + "probability": 0.952 + }, + { + "start": 3105.8, + "end": 3109.52, + "probability": 0.7804 + }, + { + "start": 3109.88, + "end": 3111.7, + "probability": 0.6533 + }, + { + "start": 3111.8, + "end": 3116.75, + "probability": 0.9837 + }, + { + "start": 3118.54, + "end": 3121.58, + "probability": 0.9761 + }, + { + "start": 3123.35, + "end": 3126.58, + "probability": 0.9954 + }, + { + "start": 3127.0, + "end": 3128.32, + "probability": 0.7582 + }, + { + "start": 3128.42, + "end": 3128.68, + "probability": 0.8184 + }, + { + "start": 3128.72, + "end": 3132.02, + "probability": 0.7651 + }, + { + "start": 3132.66, + "end": 3135.2, + "probability": 0.8543 + }, + { + "start": 3135.53, + "end": 3141.7, + "probability": 0.9775 + }, + { + "start": 3142.06, + "end": 3142.66, + "probability": 0.702 + }, + { + "start": 3142.78, + "end": 3144.23, + "probability": 0.8131 + }, + { + "start": 3144.52, + "end": 3148.44, + "probability": 0.792 + }, + { + "start": 3148.72, + "end": 3150.24, + "probability": 0.8914 + }, + { + "start": 3150.4, + "end": 3154.9, + "probability": 0.9971 + }, + { + "start": 3156.3, + "end": 3156.89, + "probability": 0.9214 + }, + { + "start": 3156.96, + "end": 3158.03, + "probability": 0.4488 + }, + { + "start": 3158.18, + "end": 3158.76, + "probability": 0.3499 + }, + { + "start": 3159.02, + "end": 3159.88, + "probability": 0.7462 + }, + { + "start": 3159.92, + "end": 3160.78, + "probability": 0.9112 + }, + { + "start": 3161.08, + "end": 3164.66, + "probability": 0.1132 + }, + { + "start": 3164.66, + "end": 3167.12, + "probability": 0.6277 + }, + { + "start": 3167.3, + "end": 3167.8, + "probability": 0.4361 + }, + { + "start": 3167.94, + "end": 3168.78, + "probability": 0.9675 + }, + { + "start": 3168.86, + "end": 3170.73, + "probability": 0.8624 + }, + { + "start": 3171.46, + "end": 3173.66, + "probability": 0.7324 + }, + { + "start": 3175.0, + "end": 3180.18, + "probability": 0.8814 + }, + { + "start": 3180.36, + "end": 3183.12, + "probability": 0.7024 + }, + { + "start": 3183.44, + "end": 3185.39, + "probability": 0.9106 + }, + { + "start": 3186.18, + "end": 3188.78, + "probability": 0.9543 + }, + { + "start": 3189.56, + "end": 3191.24, + "probability": 0.9081 + }, + { + "start": 3191.76, + "end": 3192.68, + "probability": 0.889 + }, + { + "start": 3193.34, + "end": 3197.3, + "probability": 0.9582 + }, + { + "start": 3197.66, + "end": 3198.08, + "probability": 0.7402 + }, + { + "start": 3198.22, + "end": 3198.7, + "probability": 0.8554 + }, + { + "start": 3198.76, + "end": 3199.92, + "probability": 0.8014 + }, + { + "start": 3202.02, + "end": 3203.68, + "probability": 0.9926 + }, + { + "start": 3203.82, + "end": 3205.56, + "probability": 0.9198 + }, + { + "start": 3205.94, + "end": 3210.66, + "probability": 0.9215 + }, + { + "start": 3211.08, + "end": 3213.84, + "probability": 0.8807 + }, + { + "start": 3214.26, + "end": 3217.12, + "probability": 0.7821 + }, + { + "start": 3218.32, + "end": 3223.26, + "probability": 0.9469 + }, + { + "start": 3224.14, + "end": 3225.5, + "probability": 0.7439 + }, + { + "start": 3225.58, + "end": 3228.51, + "probability": 0.8086 + }, + { + "start": 3230.73, + "end": 3233.22, + "probability": 0.9132 + }, + { + "start": 3233.28, + "end": 3233.62, + "probability": 0.6293 + }, + { + "start": 3233.66, + "end": 3234.48, + "probability": 0.9395 + }, + { + "start": 3234.48, + "end": 3238.78, + "probability": 0.9121 + }, + { + "start": 3238.86, + "end": 3239.18, + "probability": 0.7339 + }, + { + "start": 3239.34, + "end": 3239.6, + "probability": 0.3568 + }, + { + "start": 3239.68, + "end": 3241.0, + "probability": 0.7287 + }, + { + "start": 3241.48, + "end": 3241.7, + "probability": 0.5061 + }, + { + "start": 3241.78, + "end": 3244.32, + "probability": 0.8444 + }, + { + "start": 3244.34, + "end": 3245.0, + "probability": 0.9039 + }, + { + "start": 3246.02, + "end": 3247.86, + "probability": 0.9031 + }, + { + "start": 3247.86, + "end": 3248.07, + "probability": 0.4494 + }, + { + "start": 3248.42, + "end": 3249.3, + "probability": 0.5488 + }, + { + "start": 3249.36, + "end": 3251.66, + "probability": 0.835 + }, + { + "start": 3251.92, + "end": 3253.64, + "probability": 0.6469 + }, + { + "start": 3253.86, + "end": 3256.26, + "probability": 0.96 + }, + { + "start": 3256.8, + "end": 3257.36, + "probability": 0.783 + }, + { + "start": 3258.12, + "end": 3262.06, + "probability": 0.9536 + }, + { + "start": 3262.44, + "end": 3262.5, + "probability": 0.1764 + }, + { + "start": 3262.5, + "end": 3263.12, + "probability": 0.3938 + }, + { + "start": 3263.12, + "end": 3265.67, + "probability": 0.8245 + }, + { + "start": 3266.78, + "end": 3268.88, + "probability": 0.994 + }, + { + "start": 3268.98, + "end": 3274.64, + "probability": 0.9889 + }, + { + "start": 3276.03, + "end": 3278.09, + "probability": 0.5779 + }, + { + "start": 3278.3, + "end": 3278.64, + "probability": 0.7952 + }, + { + "start": 3279.38, + "end": 3282.16, + "probability": 0.9588 + }, + { + "start": 3284.02, + "end": 3287.56, + "probability": 0.9683 + }, + { + "start": 3288.64, + "end": 3289.62, + "probability": 0.624 + }, + { + "start": 3289.66, + "end": 3290.06, + "probability": 0.9251 + }, + { + "start": 3290.28, + "end": 3292.7, + "probability": 0.737 + }, + { + "start": 3293.26, + "end": 3294.52, + "probability": 0.72 + }, + { + "start": 3295.2, + "end": 3297.3, + "probability": 0.7704 + }, + { + "start": 3297.82, + "end": 3300.18, + "probability": 0.8986 + }, + { + "start": 3301.0, + "end": 3302.02, + "probability": 0.8997 + }, + { + "start": 3302.1, + "end": 3304.08, + "probability": 0.7135 + }, + { + "start": 3304.16, + "end": 3304.68, + "probability": 0.9589 + }, + { + "start": 3304.8, + "end": 3306.24, + "probability": 0.1195 + }, + { + "start": 3306.24, + "end": 3306.72, + "probability": 0.3602 + }, + { + "start": 3307.14, + "end": 3308.54, + "probability": 0.7896 + }, + { + "start": 3309.44, + "end": 3312.56, + "probability": 0.876 + }, + { + "start": 3312.98, + "end": 3317.78, + "probability": 0.9161 + }, + { + "start": 3318.16, + "end": 3319.66, + "probability": 0.914 + }, + { + "start": 3320.32, + "end": 3322.52, + "probability": 0.8711 + }, + { + "start": 3322.58, + "end": 3326.72, + "probability": 0.9689 + }, + { + "start": 3326.72, + "end": 3330.16, + "probability": 0.9471 + }, + { + "start": 3330.22, + "end": 3330.86, + "probability": 0.6945 + }, + { + "start": 3331.4, + "end": 3333.58, + "probability": 0.9956 + }, + { + "start": 3333.58, + "end": 3338.0, + "probability": 0.9803 + }, + { + "start": 3338.14, + "end": 3343.2, + "probability": 0.9849 + }, + { + "start": 3343.3, + "end": 3344.48, + "probability": 0.96 + }, + { + "start": 3344.58, + "end": 3345.26, + "probability": 0.978 + }, + { + "start": 3345.6, + "end": 3346.49, + "probability": 0.9701 + }, + { + "start": 3346.9, + "end": 3347.22, + "probability": 0.3959 + }, + { + "start": 3347.24, + "end": 3348.1, + "probability": 0.8596 + }, + { + "start": 3348.6, + "end": 3349.82, + "probability": 0.9077 + }, + { + "start": 3349.92, + "end": 3350.6, + "probability": 0.8802 + }, + { + "start": 3351.48, + "end": 3352.04, + "probability": 0.8742 + }, + { + "start": 3352.16, + "end": 3352.78, + "probability": 0.9259 + }, + { + "start": 3353.0, + "end": 3354.32, + "probability": 0.7554 + }, + { + "start": 3354.48, + "end": 3357.58, + "probability": 0.9472 + }, + { + "start": 3357.66, + "end": 3357.86, + "probability": 0.675 + }, + { + "start": 3358.56, + "end": 3358.88, + "probability": 0.4989 + }, + { + "start": 3358.92, + "end": 3360.54, + "probability": 0.7671 + }, + { + "start": 3367.3, + "end": 3369.36, + "probability": 0.6159 + }, + { + "start": 3371.1, + "end": 3376.44, + "probability": 0.9059 + }, + { + "start": 3376.58, + "end": 3381.38, + "probability": 0.996 + }, + { + "start": 3382.06, + "end": 3387.14, + "probability": 0.6809 + }, + { + "start": 3387.36, + "end": 3389.96, + "probability": 0.9959 + }, + { + "start": 3390.48, + "end": 3395.12, + "probability": 0.8948 + }, + { + "start": 3395.28, + "end": 3397.88, + "probability": 0.9316 + }, + { + "start": 3398.0, + "end": 3398.56, + "probability": 0.9462 + }, + { + "start": 3399.32, + "end": 3404.06, + "probability": 0.9813 + }, + { + "start": 3404.24, + "end": 3405.01, + "probability": 0.7827 + }, + { + "start": 3406.1, + "end": 3409.5, + "probability": 0.7361 + }, + { + "start": 3410.56, + "end": 3412.94, + "probability": 0.9894 + }, + { + "start": 3413.0, + "end": 3414.32, + "probability": 0.7612 + }, + { + "start": 3414.6, + "end": 3417.96, + "probability": 0.868 + }, + { + "start": 3418.14, + "end": 3418.9, + "probability": 0.403 + }, + { + "start": 3418.98, + "end": 3420.16, + "probability": 0.8269 + }, + { + "start": 3420.22, + "end": 3421.53, + "probability": 0.9037 + }, + { + "start": 3422.36, + "end": 3428.94, + "probability": 0.9531 + }, + { + "start": 3429.18, + "end": 3430.74, + "probability": 0.6782 + }, + { + "start": 3430.88, + "end": 3432.74, + "probability": 0.7526 + }, + { + "start": 3432.78, + "end": 3436.32, + "probability": 0.9894 + }, + { + "start": 3436.32, + "end": 3439.26, + "probability": 0.9994 + }, + { + "start": 3439.54, + "end": 3441.4, + "probability": 0.3921 + }, + { + "start": 3441.52, + "end": 3445.58, + "probability": 0.9922 + }, + { + "start": 3445.66, + "end": 3450.08, + "probability": 0.98 + }, + { + "start": 3450.64, + "end": 3453.88, + "probability": 0.9919 + }, + { + "start": 3453.94, + "end": 3456.06, + "probability": 0.9779 + }, + { + "start": 3457.66, + "end": 3462.76, + "probability": 0.7449 + }, + { + "start": 3463.42, + "end": 3465.6, + "probability": 0.9788 + }, + { + "start": 3466.54, + "end": 3469.38, + "probability": 0.9754 + }, + { + "start": 3469.82, + "end": 3471.64, + "probability": 0.9747 + }, + { + "start": 3472.08, + "end": 3475.22, + "probability": 0.9777 + }, + { + "start": 3476.08, + "end": 3478.2, + "probability": 0.9102 + }, + { + "start": 3479.06, + "end": 3482.77, + "probability": 0.9832 + }, + { + "start": 3483.52, + "end": 3488.1, + "probability": 0.9985 + }, + { + "start": 3488.9, + "end": 3489.36, + "probability": 0.9237 + }, + { + "start": 3489.44, + "end": 3492.3, + "probability": 0.9937 + }, + { + "start": 3492.3, + "end": 3497.6, + "probability": 0.9968 + }, + { + "start": 3497.78, + "end": 3498.24, + "probability": 0.2845 + }, + { + "start": 3498.42, + "end": 3499.5, + "probability": 0.6604 + }, + { + "start": 3499.62, + "end": 3500.84, + "probability": 0.8662 + }, + { + "start": 3501.0, + "end": 3502.44, + "probability": 0.9101 + }, + { + "start": 3503.14, + "end": 3507.82, + "probability": 0.9443 + }, + { + "start": 3508.08, + "end": 3512.36, + "probability": 0.5882 + }, + { + "start": 3512.36, + "end": 3515.68, + "probability": 0.9987 + }, + { + "start": 3516.04, + "end": 3518.06, + "probability": 0.8867 + }, + { + "start": 3518.12, + "end": 3519.54, + "probability": 0.631 + }, + { + "start": 3519.58, + "end": 3520.96, + "probability": 0.5351 + }, + { + "start": 3521.98, + "end": 3523.58, + "probability": 0.1955 + }, + { + "start": 3523.8, + "end": 3525.86, + "probability": 0.1809 + }, + { + "start": 3526.52, + "end": 3527.8, + "probability": 0.5659 + }, + { + "start": 3527.84, + "end": 3528.54, + "probability": 0.6981 + }, + { + "start": 3528.98, + "end": 3535.5, + "probability": 0.8732 + }, + { + "start": 3536.14, + "end": 3537.5, + "probability": 0.8015 + }, + { + "start": 3538.58, + "end": 3540.16, + "probability": 0.9507 + }, + { + "start": 3541.52, + "end": 3544.19, + "probability": 0.9033 + }, + { + "start": 3545.12, + "end": 3546.33, + "probability": 0.8455 + }, + { + "start": 3546.92, + "end": 3550.97, + "probability": 0.8602 + }, + { + "start": 3551.1, + "end": 3554.4, + "probability": 0.34 + }, + { + "start": 3554.86, + "end": 3558.64, + "probability": 0.9941 + }, + { + "start": 3559.38, + "end": 3563.6, + "probability": 0.859 + }, + { + "start": 3564.06, + "end": 3565.78, + "probability": 0.9768 + }, + { + "start": 3566.94, + "end": 3570.68, + "probability": 0.3751 + }, + { + "start": 3571.12, + "end": 3573.26, + "probability": 0.7083 + }, + { + "start": 3573.52, + "end": 3575.84, + "probability": 0.9919 + }, + { + "start": 3576.16, + "end": 3576.9, + "probability": 0.7366 + }, + { + "start": 3577.2, + "end": 3578.94, + "probability": 0.8134 + }, + { + "start": 3579.0, + "end": 3580.52, + "probability": 0.8699 + }, + { + "start": 3583.28, + "end": 3584.1, + "probability": 0.5207 + }, + { + "start": 3584.14, + "end": 3587.46, + "probability": 0.7826 + }, + { + "start": 3587.74, + "end": 3592.02, + "probability": 0.9731 + }, + { + "start": 3593.53, + "end": 3598.77, + "probability": 0.9734 + }, + { + "start": 3599.64, + "end": 3602.12, + "probability": 0.8058 + }, + { + "start": 3603.86, + "end": 3609.54, + "probability": 0.9754 + }, + { + "start": 3611.48, + "end": 3616.86, + "probability": 0.9678 + }, + { + "start": 3616.94, + "end": 3618.64, + "probability": 0.8849 + }, + { + "start": 3619.12, + "end": 3622.92, + "probability": 0.9818 + }, + { + "start": 3623.46, + "end": 3625.58, + "probability": 0.6647 + }, + { + "start": 3626.32, + "end": 3627.94, + "probability": 0.9331 + }, + { + "start": 3630.84, + "end": 3631.64, + "probability": 0.6797 + }, + { + "start": 3633.5, + "end": 3640.52, + "probability": 0.972 + }, + { + "start": 3641.7, + "end": 3646.62, + "probability": 0.6534 + }, + { + "start": 3647.92, + "end": 3652.02, + "probability": 0.9976 + }, + { + "start": 3652.16, + "end": 3655.62, + "probability": 0.9951 + }, + { + "start": 3655.82, + "end": 3661.2, + "probability": 0.9749 + }, + { + "start": 3661.26, + "end": 3667.56, + "probability": 0.9069 + }, + { + "start": 3669.12, + "end": 3671.96, + "probability": 0.9989 + }, + { + "start": 3672.4, + "end": 3675.82, + "probability": 0.9978 + }, + { + "start": 3677.71, + "end": 3679.92, + "probability": 0.5209 + }, + { + "start": 3680.08, + "end": 3681.24, + "probability": 0.8554 + }, + { + "start": 3681.56, + "end": 3684.86, + "probability": 0.9783 + }, + { + "start": 3685.86, + "end": 3693.48, + "probability": 0.9916 + }, + { + "start": 3694.48, + "end": 3695.62, + "probability": 0.9755 + }, + { + "start": 3695.76, + "end": 3698.88, + "probability": 0.9714 + }, + { + "start": 3699.56, + "end": 3702.9, + "probability": 0.8339 + }, + { + "start": 3703.68, + "end": 3705.84, + "probability": 0.9463 + }, + { + "start": 3710.72, + "end": 3712.88, + "probability": 0.8614 + }, + { + "start": 3713.58, + "end": 3716.74, + "probability": 0.9968 + }, + { + "start": 3716.86, + "end": 3717.48, + "probability": 0.7832 + }, + { + "start": 3718.78, + "end": 3726.84, + "probability": 0.9891 + }, + { + "start": 3726.84, + "end": 3730.9, + "probability": 0.986 + }, + { + "start": 3731.14, + "end": 3731.82, + "probability": 0.6499 + }, + { + "start": 3732.98, + "end": 3737.96, + "probability": 0.9958 + }, + { + "start": 3737.98, + "end": 3738.53, + "probability": 0.6793 + }, + { + "start": 3738.82, + "end": 3739.82, + "probability": 0.9982 + }, + { + "start": 3740.74, + "end": 3744.14, + "probability": 0.8885 + }, + { + "start": 3744.3, + "end": 3745.92, + "probability": 0.9377 + }, + { + "start": 3746.8, + "end": 3748.28, + "probability": 0.9113 + }, + { + "start": 3748.28, + "end": 3750.76, + "probability": 0.9938 + }, + { + "start": 3751.26, + "end": 3755.62, + "probability": 0.9987 + }, + { + "start": 3756.32, + "end": 3761.8, + "probability": 0.9937 + }, + { + "start": 3761.8, + "end": 3767.34, + "probability": 0.9941 + }, + { + "start": 3768.46, + "end": 3770.48, + "probability": 0.9842 + }, + { + "start": 3770.58, + "end": 3771.74, + "probability": 0.765 + }, + { + "start": 3772.72, + "end": 3776.98, + "probability": 0.8455 + }, + { + "start": 3777.48, + "end": 3784.44, + "probability": 0.8931 + }, + { + "start": 3787.38, + "end": 3789.14, + "probability": 0.9753 + }, + { + "start": 3791.88, + "end": 3794.62, + "probability": 0.9458 + }, + { + "start": 3795.48, + "end": 3796.78, + "probability": 0.6465 + }, + { + "start": 3798.19, + "end": 3802.88, + "probability": 0.8214 + }, + { + "start": 3803.6, + "end": 3809.3, + "probability": 0.8569 + }, + { + "start": 3810.56, + "end": 3814.84, + "probability": 0.9131 + }, + { + "start": 3815.3, + "end": 3816.1, + "probability": 0.9548 + }, + { + "start": 3816.62, + "end": 3818.04, + "probability": 0.3716 + }, + { + "start": 3818.92, + "end": 3819.62, + "probability": 0.6852 + }, + { + "start": 3825.66, + "end": 3827.19, + "probability": 0.8123 + }, + { + "start": 3827.72, + "end": 3829.72, + "probability": 0.571 + }, + { + "start": 3830.64, + "end": 3831.12, + "probability": 0.4274 + }, + { + "start": 3831.18, + "end": 3831.92, + "probability": 0.6234 + }, + { + "start": 3831.96, + "end": 3832.62, + "probability": 0.8549 + }, + { + "start": 3832.68, + "end": 3834.18, + "probability": 0.9479 + }, + { + "start": 3834.66, + "end": 3837.28, + "probability": 0.9936 + }, + { + "start": 3837.28, + "end": 3840.1, + "probability": 0.9985 + }, + { + "start": 3840.16, + "end": 3844.3, + "probability": 0.9727 + }, + { + "start": 3844.3, + "end": 3848.52, + "probability": 0.9804 + }, + { + "start": 3849.22, + "end": 3852.82, + "probability": 0.892 + }, + { + "start": 3852.96, + "end": 3856.4, + "probability": 0.9694 + }, + { + "start": 3856.64, + "end": 3858.34, + "probability": 0.5133 + }, + { + "start": 3858.6, + "end": 3859.4, + "probability": 0.8565 + }, + { + "start": 3859.78, + "end": 3860.1, + "probability": 0.4805 + }, + { + "start": 3860.21, + "end": 3860.88, + "probability": 0.2804 + }, + { + "start": 3861.12, + "end": 3862.02, + "probability": 0.8898 + }, + { + "start": 3862.34, + "end": 3863.58, + "probability": 0.7952 + }, + { + "start": 3863.74, + "end": 3865.4, + "probability": 0.7973 + }, + { + "start": 3865.58, + "end": 3866.24, + "probability": 0.8191 + }, + { + "start": 3866.48, + "end": 3867.0, + "probability": 0.9368 + }, + { + "start": 3867.44, + "end": 3873.56, + "probability": 0.9702 + }, + { + "start": 3873.88, + "end": 3875.52, + "probability": 0.7789 + }, + { + "start": 3875.6, + "end": 3879.68, + "probability": 0.8444 + }, + { + "start": 3881.08, + "end": 3881.08, + "probability": 0.7452 + }, + { + "start": 3881.08, + "end": 3882.15, + "probability": 0.8265 + }, + { + "start": 3882.84, + "end": 3892.18, + "probability": 0.911 + }, + { + "start": 3893.14, + "end": 3894.5, + "probability": 0.9485 + }, + { + "start": 3894.9, + "end": 3896.14, + "probability": 0.9355 + }, + { + "start": 3897.36, + "end": 3900.58, + "probability": 0.8612 + }, + { + "start": 3900.68, + "end": 3902.9, + "probability": 0.9337 + }, + { + "start": 3903.06, + "end": 3903.8, + "probability": 0.7155 + }, + { + "start": 3903.84, + "end": 3904.38, + "probability": 0.7875 + }, + { + "start": 3904.48, + "end": 3905.32, + "probability": 0.9893 + }, + { + "start": 3905.46, + "end": 3906.24, + "probability": 0.5841 + }, + { + "start": 3906.98, + "end": 3911.56, + "probability": 0.9044 + }, + { + "start": 3911.94, + "end": 3912.32, + "probability": 0.515 + }, + { + "start": 3912.48, + "end": 3912.84, + "probability": 0.8606 + }, + { + "start": 3913.3, + "end": 3914.1, + "probability": 0.7056 + }, + { + "start": 3914.16, + "end": 3916.3, + "probability": 0.9696 + }, + { + "start": 3916.64, + "end": 3919.05, + "probability": 0.925 + }, + { + "start": 3919.98, + "end": 3920.6, + "probability": 0.6819 + }, + { + "start": 3921.22, + "end": 3925.86, + "probability": 0.6508 + }, + { + "start": 3926.58, + "end": 3927.78, + "probability": 0.9668 + }, + { + "start": 3928.76, + "end": 3929.12, + "probability": 0.6565 + }, + { + "start": 3929.66, + "end": 3931.63, + "probability": 0.9666 + }, + { + "start": 3933.46, + "end": 3934.62, + "probability": 0.9096 + }, + { + "start": 3934.68, + "end": 3935.84, + "probability": 0.977 + }, + { + "start": 3935.98, + "end": 3937.08, + "probability": 0.9141 + }, + { + "start": 3938.06, + "end": 3943.0, + "probability": 0.9653 + }, + { + "start": 3943.94, + "end": 3948.32, + "probability": 0.9688 + }, + { + "start": 3949.04, + "end": 3952.46, + "probability": 0.9863 + }, + { + "start": 3952.46, + "end": 3953.94, + "probability": 0.3614 + }, + { + "start": 3953.94, + "end": 3959.72, + "probability": 0.5547 + }, + { + "start": 3961.28, + "end": 3961.78, + "probability": 0.6582 + }, + { + "start": 3962.54, + "end": 3963.64, + "probability": 0.533 + }, + { + "start": 3963.76, + "end": 3964.34, + "probability": 0.8302 + }, + { + "start": 3964.5, + "end": 3964.94, + "probability": 0.552 + }, + { + "start": 3964.96, + "end": 3966.18, + "probability": 0.9467 + }, + { + "start": 3970.28, + "end": 3972.4, + "probability": 0.7088 + }, + { + "start": 3973.28, + "end": 3976.76, + "probability": 0.9874 + }, + { + "start": 3976.94, + "end": 3981.38, + "probability": 0.9984 + }, + { + "start": 3981.9, + "end": 3983.38, + "probability": 0.9951 + }, + { + "start": 3984.56, + "end": 3988.12, + "probability": 0.991 + }, + { + "start": 3988.12, + "end": 3992.14, + "probability": 0.9984 + }, + { + "start": 3992.32, + "end": 3993.4, + "probability": 0.8119 + }, + { + "start": 3993.6, + "end": 3993.74, + "probability": 0.4755 + }, + { + "start": 3993.82, + "end": 3996.21, + "probability": 0.9934 + }, + { + "start": 3996.54, + "end": 4002.82, + "probability": 0.9985 + }, + { + "start": 4002.94, + "end": 4011.14, + "probability": 0.9878 + }, + { + "start": 4011.14, + "end": 4015.92, + "probability": 0.994 + }, + { + "start": 4016.52, + "end": 4023.06, + "probability": 0.9974 + }, + { + "start": 4023.06, + "end": 4029.1, + "probability": 0.9986 + }, + { + "start": 4029.1, + "end": 4035.84, + "probability": 0.9924 + }, + { + "start": 4037.46, + "end": 4040.22, + "probability": 0.7526 + }, + { + "start": 4040.22, + "end": 4040.32, + "probability": 0.292 + }, + { + "start": 4042.8, + "end": 4043.52, + "probability": 0.7345 + }, + { + "start": 4043.74, + "end": 4044.9, + "probability": 0.7831 + }, + { + "start": 4044.98, + "end": 4046.9, + "probability": 0.9938 + }, + { + "start": 4047.08, + "end": 4050.0, + "probability": 0.9688 + }, + { + "start": 4050.24, + "end": 4051.96, + "probability": 0.344 + }, + { + "start": 4052.06, + "end": 4052.72, + "probability": 0.6126 + }, + { + "start": 4053.16, + "end": 4057.38, + "probability": 0.9855 + }, + { + "start": 4058.0, + "end": 4062.68, + "probability": 0.9876 + }, + { + "start": 4062.84, + "end": 4064.56, + "probability": 0.9562 + }, + { + "start": 4065.16, + "end": 4066.56, + "probability": 0.9215 + }, + { + "start": 4066.6, + "end": 4067.56, + "probability": 0.8717 + }, + { + "start": 4068.02, + "end": 4071.18, + "probability": 0.9519 + }, + { + "start": 4071.72, + "end": 4073.9, + "probability": 0.9398 + }, + { + "start": 4074.64, + "end": 4077.58, + "probability": 0.9844 + }, + { + "start": 4077.58, + "end": 4080.82, + "probability": 0.9856 + }, + { + "start": 4081.24, + "end": 4083.6, + "probability": 0.9984 + }, + { + "start": 4084.24, + "end": 4087.7, + "probability": 0.9396 + }, + { + "start": 4088.98, + "end": 4093.8, + "probability": 0.9788 + }, + { + "start": 4094.04, + "end": 4094.84, + "probability": 0.7008 + }, + { + "start": 4094.88, + "end": 4095.51, + "probability": 0.9336 + }, + { + "start": 4095.84, + "end": 4096.4, + "probability": 0.3023 + }, + { + "start": 4096.92, + "end": 4100.56, + "probability": 0.516 + }, + { + "start": 4100.64, + "end": 4101.74, + "probability": 0.5115 + }, + { + "start": 4102.48, + "end": 4103.8, + "probability": 0.9785 + }, + { + "start": 4104.44, + "end": 4107.14, + "probability": 0.9938 + }, + { + "start": 4107.28, + "end": 4109.7, + "probability": 0.9502 + }, + { + "start": 4109.96, + "end": 4111.88, + "probability": 0.8295 + }, + { + "start": 4112.46, + "end": 4114.04, + "probability": 0.9521 + }, + { + "start": 4114.1, + "end": 4116.04, + "probability": 0.9399 + }, + { + "start": 4116.1, + "end": 4116.8, + "probability": 0.7339 + }, + { + "start": 4116.92, + "end": 4118.48, + "probability": 0.9949 + }, + { + "start": 4119.48, + "end": 4120.04, + "probability": 0.6205 + }, + { + "start": 4120.26, + "end": 4123.6, + "probability": 0.9712 + }, + { + "start": 4123.94, + "end": 4124.08, + "probability": 0.0116 + }, + { + "start": 4124.62, + "end": 4125.18, + "probability": 0.7083 + }, + { + "start": 4125.3, + "end": 4125.74, + "probability": 0.22 + }, + { + "start": 4126.04, + "end": 4127.66, + "probability": 0.5362 + }, + { + "start": 4127.7, + "end": 4128.58, + "probability": 0.5052 + }, + { + "start": 4128.72, + "end": 4130.46, + "probability": 0.5531 + }, + { + "start": 4131.06, + "end": 4133.18, + "probability": 0.8727 + }, + { + "start": 4133.58, + "end": 4137.52, + "probability": 0.8823 + }, + { + "start": 4138.94, + "end": 4140.32, + "probability": 0.5042 + }, + { + "start": 4140.6, + "end": 4141.82, + "probability": 0.9351 + }, + { + "start": 4142.14, + "end": 4142.76, + "probability": 0.4908 + }, + { + "start": 4142.84, + "end": 4143.56, + "probability": 0.8619 + }, + { + "start": 4143.66, + "end": 4144.47, + "probability": 0.9351 + }, + { + "start": 4144.9, + "end": 4147.75, + "probability": 0.9812 + }, + { + "start": 4147.92, + "end": 4153.28, + "probability": 0.9767 + }, + { + "start": 4153.44, + "end": 4155.4, + "probability": 0.9945 + }, + { + "start": 4155.64, + "end": 4162.42, + "probability": 0.9875 + }, + { + "start": 4162.84, + "end": 4166.08, + "probability": 0.777 + }, + { + "start": 4166.1, + "end": 4167.18, + "probability": 0.9889 + }, + { + "start": 4170.1, + "end": 4172.98, + "probability": 0.8988 + }, + { + "start": 4173.76, + "end": 4176.62, + "probability": 0.9756 + }, + { + "start": 4176.84, + "end": 4177.96, + "probability": 0.8554 + }, + { + "start": 4177.98, + "end": 4178.68, + "probability": 0.469 + }, + { + "start": 4179.34, + "end": 4183.32, + "probability": 0.965 + }, + { + "start": 4183.38, + "end": 4187.76, + "probability": 0.9878 + }, + { + "start": 4188.46, + "end": 4191.76, + "probability": 0.91 + }, + { + "start": 4191.88, + "end": 4192.32, + "probability": 0.9742 + }, + { + "start": 4192.84, + "end": 4194.0, + "probability": 0.8864 + }, + { + "start": 4194.44, + "end": 4196.92, + "probability": 0.7576 + }, + { + "start": 4197.1, + "end": 4197.64, + "probability": 0.7041 + }, + { + "start": 4197.7, + "end": 4198.68, + "probability": 0.5963 + }, + { + "start": 4199.4, + "end": 4204.36, + "probability": 0.9224 + }, + { + "start": 4204.82, + "end": 4207.14, + "probability": 0.9768 + }, + { + "start": 4207.82, + "end": 4213.88, + "probability": 0.9764 + }, + { + "start": 4214.4, + "end": 4217.92, + "probability": 0.9328 + }, + { + "start": 4218.12, + "end": 4221.46, + "probability": 0.9977 + }, + { + "start": 4221.46, + "end": 4224.68, + "probability": 0.9956 + }, + { + "start": 4224.84, + "end": 4233.15, + "probability": 0.9855 + }, + { + "start": 4234.16, + "end": 4239.3, + "probability": 0.9979 + }, + { + "start": 4239.7, + "end": 4241.64, + "probability": 0.9886 + }, + { + "start": 4241.84, + "end": 4243.52, + "probability": 0.8699 + }, + { + "start": 4243.9, + "end": 4246.55, + "probability": 0.929 + }, + { + "start": 4247.48, + "end": 4249.48, + "probability": 0.993 + }, + { + "start": 4251.4, + "end": 4252.06, + "probability": 0.7232 + }, + { + "start": 4252.62, + "end": 4259.28, + "probability": 0.9906 + }, + { + "start": 4259.7, + "end": 4264.62, + "probability": 0.7738 + }, + { + "start": 4264.94, + "end": 4266.5, + "probability": 0.7496 + }, + { + "start": 4266.98, + "end": 4268.23, + "probability": 0.8279 + }, + { + "start": 4268.98, + "end": 4270.14, + "probability": 0.9068 + }, + { + "start": 4270.66, + "end": 4271.62, + "probability": 0.3961 + }, + { + "start": 4271.7, + "end": 4273.74, + "probability": 0.7262 + }, + { + "start": 4273.82, + "end": 4278.54, + "probability": 0.8691 + }, + { + "start": 4279.38, + "end": 4281.88, + "probability": 0.1185 + }, + { + "start": 4282.7, + "end": 4282.74, + "probability": 0.3087 + }, + { + "start": 4282.74, + "end": 4284.33, + "probability": 0.6418 + }, + { + "start": 4284.54, + "end": 4285.42, + "probability": 0.7052 + }, + { + "start": 4286.84, + "end": 4287.16, + "probability": 0.6845 + }, + { + "start": 4287.24, + "end": 4291.22, + "probability": 0.9769 + }, + { + "start": 4291.22, + "end": 4297.94, + "probability": 0.9072 + }, + { + "start": 4298.38, + "end": 4299.14, + "probability": 0.9586 + }, + { + "start": 4299.28, + "end": 4302.6, + "probability": 0.9631 + }, + { + "start": 4302.96, + "end": 4303.34, + "probability": 0.6175 + }, + { + "start": 4303.48, + "end": 4304.36, + "probability": 0.5711 + }, + { + "start": 4305.34, + "end": 4307.38, + "probability": 0.2842 + }, + { + "start": 4307.78, + "end": 4310.4, + "probability": 0.7046 + }, + { + "start": 4310.4, + "end": 4314.08, + "probability": 0.9802 + }, + { + "start": 4330.02, + "end": 4332.84, + "probability": 0.7644 + }, + { + "start": 4333.68, + "end": 4336.98, + "probability": 0.97 + }, + { + "start": 4337.0, + "end": 4338.38, + "probability": 0.7481 + }, + { + "start": 4338.58, + "end": 4339.98, + "probability": 0.4876 + }, + { + "start": 4340.44, + "end": 4342.44, + "probability": 0.9712 + }, + { + "start": 4342.56, + "end": 4343.72, + "probability": 0.809 + }, + { + "start": 4349.28, + "end": 4351.48, + "probability": 0.7244 + }, + { + "start": 4352.06, + "end": 4355.08, + "probability": 0.9808 + }, + { + "start": 4355.1, + "end": 4356.48, + "probability": 0.846 + }, + { + "start": 4359.0, + "end": 4363.62, + "probability": 0.9512 + }, + { + "start": 4363.72, + "end": 4366.56, + "probability": 0.9946 + }, + { + "start": 4366.56, + "end": 4369.38, + "probability": 0.9706 + }, + { + "start": 4369.94, + "end": 4375.44, + "probability": 0.9699 + }, + { + "start": 4375.44, + "end": 4381.1, + "probability": 0.8723 + }, + { + "start": 4382.02, + "end": 4384.22, + "probability": 0.8493 + }, + { + "start": 4384.72, + "end": 4387.42, + "probability": 0.9331 + }, + { + "start": 4387.68, + "end": 4390.54, + "probability": 0.8506 + }, + { + "start": 4390.88, + "end": 4392.94, + "probability": 0.9932 + }, + { + "start": 4393.58, + "end": 4397.1, + "probability": 0.99 + }, + { + "start": 4397.52, + "end": 4400.31, + "probability": 0.9636 + }, + { + "start": 4400.62, + "end": 4402.42, + "probability": 0.9501 + }, + { + "start": 4402.92, + "end": 4408.34, + "probability": 0.9915 + }, + { + "start": 4408.78, + "end": 4412.04, + "probability": 0.9922 + }, + { + "start": 4412.04, + "end": 4414.52, + "probability": 0.9928 + }, + { + "start": 4414.92, + "end": 4415.72, + "probability": 0.5811 + }, + { + "start": 4416.18, + "end": 4421.18, + "probability": 0.9739 + }, + { + "start": 4421.58, + "end": 4423.14, + "probability": 0.9639 + }, + { + "start": 4423.62, + "end": 4427.82, + "probability": 0.8917 + }, + { + "start": 4428.12, + "end": 4432.14, + "probability": 0.8633 + }, + { + "start": 4432.7, + "end": 4436.98, + "probability": 0.9325 + }, + { + "start": 4437.44, + "end": 4441.72, + "probability": 0.9385 + }, + { + "start": 4441.72, + "end": 4446.1, + "probability": 0.7135 + }, + { + "start": 4446.28, + "end": 4448.28, + "probability": 0.7772 + }, + { + "start": 4448.58, + "end": 4450.64, + "probability": 0.8979 + }, + { + "start": 4451.14, + "end": 4456.07, + "probability": 0.9766 + }, + { + "start": 4456.14, + "end": 4461.32, + "probability": 0.9991 + }, + { + "start": 4461.56, + "end": 4463.26, + "probability": 0.8906 + }, + { + "start": 4463.68, + "end": 4465.76, + "probability": 0.996 + }, + { + "start": 4466.18, + "end": 4469.46, + "probability": 0.9904 + }, + { + "start": 4469.46, + "end": 4472.78, + "probability": 0.9937 + }, + { + "start": 4473.12, + "end": 4475.66, + "probability": 0.9954 + }, + { + "start": 4476.16, + "end": 4479.62, + "probability": 0.8516 + }, + { + "start": 4479.9, + "end": 4480.28, + "probability": 0.6021 + }, + { + "start": 4480.9, + "end": 4483.64, + "probability": 0.656 + }, + { + "start": 4483.66, + "end": 4485.86, + "probability": 0.7814 + }, + { + "start": 4485.96, + "end": 4486.16, + "probability": 0.6472 + }, + { + "start": 4486.98, + "end": 4488.84, + "probability": 0.8054 + }, + { + "start": 4489.02, + "end": 4492.46, + "probability": 0.5917 + }, + { + "start": 4507.7, + "end": 4508.92, + "probability": 0.5153 + }, + { + "start": 4509.98, + "end": 4510.9, + "probability": 0.6869 + }, + { + "start": 4512.72, + "end": 4516.46, + "probability": 0.9349 + }, + { + "start": 4516.62, + "end": 4519.94, + "probability": 0.484 + }, + { + "start": 4520.32, + "end": 4526.36, + "probability": 0.9865 + }, + { + "start": 4527.08, + "end": 4532.86, + "probability": 0.9955 + }, + { + "start": 4533.24, + "end": 4538.52, + "probability": 0.9968 + }, + { + "start": 4539.12, + "end": 4539.54, + "probability": 0.6119 + }, + { + "start": 4539.76, + "end": 4544.94, + "probability": 0.8232 + }, + { + "start": 4546.14, + "end": 4548.96, + "probability": 0.9948 + }, + { + "start": 4549.22, + "end": 4553.78, + "probability": 0.9864 + }, + { + "start": 4554.48, + "end": 4561.78, + "probability": 0.874 + }, + { + "start": 4562.36, + "end": 4567.46, + "probability": 0.994 + }, + { + "start": 4567.92, + "end": 4570.24, + "probability": 0.9345 + }, + { + "start": 4570.54, + "end": 4575.8, + "probability": 0.9718 + }, + { + "start": 4576.5, + "end": 4582.72, + "probability": 0.927 + }, + { + "start": 4582.72, + "end": 4587.1, + "probability": 0.9802 + }, + { + "start": 4587.48, + "end": 4587.76, + "probability": 0.5909 + }, + { + "start": 4588.12, + "end": 4590.12, + "probability": 0.6699 + }, + { + "start": 4590.26, + "end": 4594.3, + "probability": 0.6205 + }, + { + "start": 4595.2, + "end": 4597.0, + "probability": 0.7361 + }, + { + "start": 4597.8, + "end": 4598.48, + "probability": 0.4677 + }, + { + "start": 4598.48, + "end": 4599.3, + "probability": 0.908 + }, + { + "start": 4599.88, + "end": 4600.74, + "probability": 0.9543 + }, + { + "start": 4602.4, + "end": 4604.72, + "probability": 0.0056 + }, + { + "start": 4605.74, + "end": 4608.44, + "probability": 0.144 + }, + { + "start": 4609.56, + "end": 4610.67, + "probability": 0.9487 + }, + { + "start": 4611.76, + "end": 4617.0, + "probability": 0.0457 + }, + { + "start": 4617.0, + "end": 4617.0, + "probability": 0.0254 + }, + { + "start": 4617.28, + "end": 4617.46, + "probability": 0.0422 + }, + { + "start": 4617.46, + "end": 4617.46, + "probability": 0.0839 + }, + { + "start": 4617.46, + "end": 4620.28, + "probability": 0.7896 + }, + { + "start": 4621.4, + "end": 4624.96, + "probability": 0.9946 + }, + { + "start": 4624.96, + "end": 4628.7, + "probability": 0.9875 + }, + { + "start": 4628.76, + "end": 4632.34, + "probability": 0.8669 + }, + { + "start": 4634.8, + "end": 4635.84, + "probability": 0.0541 + }, + { + "start": 4638.22, + "end": 4639.02, + "probability": 0.3741 + }, + { + "start": 4639.02, + "end": 4639.7, + "probability": 0.7527 + }, + { + "start": 4640.88, + "end": 4646.06, + "probability": 0.9297 + }, + { + "start": 4647.02, + "end": 4648.96, + "probability": 0.6882 + }, + { + "start": 4649.8, + "end": 4652.12, + "probability": 0.8923 + }, + { + "start": 4652.66, + "end": 4654.44, + "probability": 0.3698 + }, + { + "start": 4654.48, + "end": 4654.72, + "probability": 0.7353 + }, + { + "start": 4654.92, + "end": 4657.72, + "probability": 0.8619 + }, + { + "start": 4657.82, + "end": 4660.3, + "probability": 0.853 + }, + { + "start": 4660.4, + "end": 4662.06, + "probability": 0.3895 + }, + { + "start": 4662.18, + "end": 4665.76, + "probability": 0.9192 + }, + { + "start": 4666.52, + "end": 4669.76, + "probability": 0.8681 + }, + { + "start": 4678.78, + "end": 4680.08, + "probability": 0.77 + }, + { + "start": 4680.18, + "end": 4683.96, + "probability": 0.7899 + }, + { + "start": 4687.08, + "end": 4691.02, + "probability": 0.7394 + }, + { + "start": 4692.15, + "end": 4697.08, + "probability": 0.8334 + }, + { + "start": 4698.56, + "end": 4703.98, + "probability": 0.7813 + }, + { + "start": 4704.4, + "end": 4709.0, + "probability": 0.9954 + }, + { + "start": 4709.2, + "end": 4712.6, + "probability": 0.9941 + }, + { + "start": 4712.6, + "end": 4716.88, + "probability": 0.9876 + }, + { + "start": 4717.52, + "end": 4721.0, + "probability": 0.9784 + }, + { + "start": 4721.08, + "end": 4725.44, + "probability": 0.9885 + }, + { + "start": 4725.8, + "end": 4729.42, + "probability": 0.9947 + }, + { + "start": 4730.04, + "end": 4736.06, + "probability": 0.8304 + }, + { + "start": 4736.16, + "end": 4740.76, + "probability": 0.988 + }, + { + "start": 4740.94, + "end": 4746.66, + "probability": 0.9782 + }, + { + "start": 4746.8, + "end": 4751.96, + "probability": 0.9775 + }, + { + "start": 4752.5, + "end": 4754.76, + "probability": 0.4747 + }, + { + "start": 4754.88, + "end": 4754.96, + "probability": 0.0789 + }, + { + "start": 4754.96, + "end": 4756.28, + "probability": 0.8783 + }, + { + "start": 4756.38, + "end": 4757.64, + "probability": 0.7129 + }, + { + "start": 4757.8, + "end": 4764.76, + "probability": 0.8521 + }, + { + "start": 4765.52, + "end": 4766.48, + "probability": 0.9893 + }, + { + "start": 4766.52, + "end": 4768.98, + "probability": 0.7601 + }, + { + "start": 4769.17, + "end": 4773.0, + "probability": 0.5058 + }, + { + "start": 4773.38, + "end": 4776.02, + "probability": 0.9166 + }, + { + "start": 4776.02, + "end": 4780.22, + "probability": 0.992 + }, + { + "start": 4780.56, + "end": 4783.94, + "probability": 0.8995 + }, + { + "start": 4784.36, + "end": 4788.5, + "probability": 0.9585 + }, + { + "start": 4788.5, + "end": 4792.8, + "probability": 0.9974 + }, + { + "start": 4793.12, + "end": 4797.32, + "probability": 0.9792 + }, + { + "start": 4797.72, + "end": 4802.58, + "probability": 0.9895 + }, + { + "start": 4802.62, + "end": 4803.26, + "probability": 0.5694 + }, + { + "start": 4803.66, + "end": 4804.32, + "probability": 0.4816 + }, + { + "start": 4804.32, + "end": 4808.54, + "probability": 0.8325 + }, + { + "start": 4816.9, + "end": 4822.34, + "probability": 0.052 + }, + { + "start": 4822.34, + "end": 4822.72, + "probability": 0.0327 + }, + { + "start": 4823.52, + "end": 4826.08, + "probability": 0.3171 + }, + { + "start": 4826.08, + "end": 4827.54, + "probability": 0.2956 + }, + { + "start": 4830.62, + "end": 4833.76, + "probability": 0.017 + }, + { + "start": 4833.76, + "end": 4833.98, + "probability": 0.0409 + }, + { + "start": 4838.74, + "end": 4838.9, + "probability": 0.001 + }, + { + "start": 4841.46, + "end": 4843.0, + "probability": 0.0303 + }, + { + "start": 4843.0, + "end": 4843.62, + "probability": 0.1934 + }, + { + "start": 4843.78, + "end": 4844.26, + "probability": 0.1607 + }, + { + "start": 4847.52, + "end": 4854.71, + "probability": 0.0366 + }, + { + "start": 4858.68, + "end": 4862.92, + "probability": 0.1009 + }, + { + "start": 4865.4, + "end": 4869.7, + "probability": 0.0197 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.0, + "end": 5005.0, + "probability": 0.0 + }, + { + "start": 5005.34, + "end": 5005.68, + "probability": 0.0421 + }, + { + "start": 5005.68, + "end": 5005.68, + "probability": 0.0469 + }, + { + "start": 5005.68, + "end": 5005.68, + "probability": 0.0567 + }, + { + "start": 5005.68, + "end": 5010.17, + "probability": 0.7506 + }, + { + "start": 5014.67, + "end": 5020.22, + "probability": 0.8873 + }, + { + "start": 5020.28, + "end": 5024.88, + "probability": 0.9734 + }, + { + "start": 5025.66, + "end": 5027.56, + "probability": 0.8284 + }, + { + "start": 5028.62, + "end": 5031.36, + "probability": 0.7109 + }, + { + "start": 5031.52, + "end": 5034.64, + "probability": 0.9397 + }, + { + "start": 5034.82, + "end": 5037.12, + "probability": 0.6897 + }, + { + "start": 5038.0, + "end": 5041.26, + "probability": 0.6821 + }, + { + "start": 5041.7, + "end": 5044.56, + "probability": 0.9825 + }, + { + "start": 5044.64, + "end": 5046.6, + "probability": 0.9463 + }, + { + "start": 5047.48, + "end": 5048.16, + "probability": 0.5367 + }, + { + "start": 5048.16, + "end": 5048.82, + "probability": 0.6703 + }, + { + "start": 5049.02, + "end": 5050.48, + "probability": 0.6762 + }, + { + "start": 5050.56, + "end": 5053.08, + "probability": 0.9572 + }, + { + "start": 5053.44, + "end": 5057.76, + "probability": 0.8924 + }, + { + "start": 5057.96, + "end": 5062.74, + "probability": 0.9287 + }, + { + "start": 5062.92, + "end": 5063.48, + "probability": 0.958 + }, + { + "start": 5064.22, + "end": 5064.8, + "probability": 0.6021 + }, + { + "start": 5065.36, + "end": 5065.7, + "probability": 0.6143 + }, + { + "start": 5065.78, + "end": 5066.44, + "probability": 0.4947 + }, + { + "start": 5066.56, + "end": 5072.92, + "probability": 0.8781 + }, + { + "start": 5073.14, + "end": 5074.36, + "probability": 0.4164 + }, + { + "start": 5074.64, + "end": 5077.18, + "probability": 0.8551 + }, + { + "start": 5077.6, + "end": 5079.58, + "probability": 0.9586 + }, + { + "start": 5079.68, + "end": 5082.22, + "probability": 0.7881 + }, + { + "start": 5082.34, + "end": 5083.42, + "probability": 0.7057 + }, + { + "start": 5083.78, + "end": 5086.3, + "probability": 0.9219 + }, + { + "start": 5086.88, + "end": 5089.42, + "probability": 0.8036 + }, + { + "start": 5089.72, + "end": 5092.38, + "probability": 0.5891 + }, + { + "start": 5092.86, + "end": 5096.54, + "probability": 0.8999 + }, + { + "start": 5096.8, + "end": 5102.3, + "probability": 0.9893 + }, + { + "start": 5102.36, + "end": 5102.9, + "probability": 0.877 + }, + { + "start": 5103.74, + "end": 5105.64, + "probability": 0.7697 + }, + { + "start": 5107.66, + "end": 5109.56, + "probability": 0.9745 + }, + { + "start": 5109.56, + "end": 5112.02, + "probability": 0.7235 + }, + { + "start": 5112.26, + "end": 5113.22, + "probability": 0.2075 + }, + { + "start": 5113.92, + "end": 5116.12, + "probability": 0.5006 + }, + { + "start": 5118.44, + "end": 5122.6, + "probability": 0.7844 + }, + { + "start": 5132.1, + "end": 5133.38, + "probability": 0.7324 + }, + { + "start": 5134.72, + "end": 5137.08, + "probability": 0.7904 + }, + { + "start": 5138.84, + "end": 5142.9, + "probability": 0.9206 + }, + { + "start": 5143.04, + "end": 5143.58, + "probability": 0.284 + }, + { + "start": 5143.96, + "end": 5145.54, + "probability": 0.5147 + }, + { + "start": 5148.92, + "end": 5155.76, + "probability": 0.9794 + }, + { + "start": 5157.16, + "end": 5158.44, + "probability": 0.5116 + }, + { + "start": 5160.12, + "end": 5164.54, + "probability": 0.9927 + }, + { + "start": 5167.6, + "end": 5170.54, + "probability": 0.83 + }, + { + "start": 5172.06, + "end": 5175.76, + "probability": 0.6651 + }, + { + "start": 5177.8, + "end": 5179.12, + "probability": 0.8228 + }, + { + "start": 5179.72, + "end": 5184.1, + "probability": 0.8563 + }, + { + "start": 5185.36, + "end": 5185.38, + "probability": 0.5117 + }, + { + "start": 5187.76, + "end": 5191.26, + "probability": 0.9418 + }, + { + "start": 5192.4, + "end": 5200.24, + "probability": 0.7879 + }, + { + "start": 5203.06, + "end": 5206.1, + "probability": 0.9601 + }, + { + "start": 5206.38, + "end": 5208.1, + "probability": 0.7848 + }, + { + "start": 5210.22, + "end": 5215.5, + "probability": 0.9663 + }, + { + "start": 5217.0, + "end": 5219.06, + "probability": 0.8847 + }, + { + "start": 5219.8, + "end": 5222.52, + "probability": 0.7522 + }, + { + "start": 5223.54, + "end": 5224.18, + "probability": 0.8243 + }, + { + "start": 5224.28, + "end": 5228.68, + "probability": 0.9659 + }, + { + "start": 5230.62, + "end": 5233.94, + "probability": 0.9828 + }, + { + "start": 5235.66, + "end": 5240.92, + "probability": 0.9728 + }, + { + "start": 5242.34, + "end": 5245.0, + "probability": 0.9881 + }, + { + "start": 5245.32, + "end": 5254.84, + "probability": 0.9875 + }, + { + "start": 5255.48, + "end": 5257.26, + "probability": 0.7984 + }, + { + "start": 5257.62, + "end": 5262.28, + "probability": 0.7404 + }, + { + "start": 5263.5, + "end": 5268.18, + "probability": 0.9395 + }, + { + "start": 5268.7, + "end": 5272.0, + "probability": 0.7872 + }, + { + "start": 5274.74, + "end": 5278.44, + "probability": 0.9861 + }, + { + "start": 5280.58, + "end": 5283.28, + "probability": 0.9855 + }, + { + "start": 5284.66, + "end": 5288.87, + "probability": 0.7022 + }, + { + "start": 5291.46, + "end": 5294.46, + "probability": 0.9844 + }, + { + "start": 5295.42, + "end": 5300.04, + "probability": 0.9932 + }, + { + "start": 5300.04, + "end": 5308.78, + "probability": 0.9836 + }, + { + "start": 5309.92, + "end": 5314.8, + "probability": 0.987 + }, + { + "start": 5314.8, + "end": 5318.18, + "probability": 0.738 + }, + { + "start": 5321.68, + "end": 5324.36, + "probability": 0.995 + }, + { + "start": 5324.36, + "end": 5330.42, + "probability": 0.9789 + }, + { + "start": 5331.7, + "end": 5334.04, + "probability": 0.9353 + }, + { + "start": 5334.18, + "end": 5335.3, + "probability": 0.8836 + }, + { + "start": 5336.6, + "end": 5339.88, + "probability": 0.9922 + }, + { + "start": 5342.64, + "end": 5344.52, + "probability": 0.857 + }, + { + "start": 5346.0, + "end": 5353.68, + "probability": 0.7299 + }, + { + "start": 5353.68, + "end": 5361.4, + "probability": 0.974 + }, + { + "start": 5363.74, + "end": 5364.78, + "probability": 0.2766 + }, + { + "start": 5364.84, + "end": 5365.24, + "probability": 0.9883 + }, + { + "start": 5365.34, + "end": 5368.84, + "probability": 0.8945 + }, + { + "start": 5369.52, + "end": 5371.13, + "probability": 0.2686 + }, + { + "start": 5371.5, + "end": 5373.74, + "probability": 0.9603 + }, + { + "start": 5374.06, + "end": 5376.76, + "probability": 0.9644 + }, + { + "start": 5394.24, + "end": 5400.18, + "probability": 0.9524 + }, + { + "start": 5404.08, + "end": 5409.08, + "probability": 0.8719 + }, + { + "start": 5409.08, + "end": 5413.4, + "probability": 0.7216 + }, + { + "start": 5414.9, + "end": 5419.12, + "probability": 0.9854 + }, + { + "start": 5419.12, + "end": 5423.02, + "probability": 0.9297 + }, + { + "start": 5423.62, + "end": 5428.38, + "probability": 0.9745 + }, + { + "start": 5429.16, + "end": 5433.96, + "probability": 0.9727 + }, + { + "start": 5433.96, + "end": 5439.5, + "probability": 0.985 + }, + { + "start": 5439.5, + "end": 5445.26, + "probability": 0.9501 + }, + { + "start": 5447.76, + "end": 5452.42, + "probability": 0.8609 + }, + { + "start": 5453.04, + "end": 5460.88, + "probability": 0.9551 + }, + { + "start": 5461.22, + "end": 5463.2, + "probability": 0.8794 + }, + { + "start": 5463.58, + "end": 5466.12, + "probability": 0.9797 + }, + { + "start": 5466.48, + "end": 5473.46, + "probability": 0.9527 + }, + { + "start": 5473.74, + "end": 5475.16, + "probability": 0.8912 + }, + { + "start": 5475.26, + "end": 5477.42, + "probability": 0.8766 + }, + { + "start": 5477.84, + "end": 5479.68, + "probability": 0.5953 + }, + { + "start": 5480.68, + "end": 5481.58, + "probability": 0.5023 + }, + { + "start": 5483.62, + "end": 5484.04, + "probability": 0.3191 + }, + { + "start": 5484.58, + "end": 5485.36, + "probability": 0.8512 + }, + { + "start": 5486.3, + "end": 5490.98, + "probability": 0.9307 + }, + { + "start": 5491.28, + "end": 5497.46, + "probability": 0.9438 + }, + { + "start": 5497.46, + "end": 5503.32, + "probability": 0.9654 + }, + { + "start": 5504.06, + "end": 5507.06, + "probability": 0.933 + }, + { + "start": 5507.6, + "end": 5510.76, + "probability": 0.9932 + }, + { + "start": 5512.52, + "end": 5515.88, + "probability": 0.8702 + }, + { + "start": 5515.94, + "end": 5522.06, + "probability": 0.798 + }, + { + "start": 5522.6, + "end": 5523.66, + "probability": 0.9111 + }, + { + "start": 5524.7, + "end": 5526.15, + "probability": 0.9844 + }, + { + "start": 5526.38, + "end": 5527.28, + "probability": 0.6351 + }, + { + "start": 5527.34, + "end": 5531.96, + "probability": 0.9637 + }, + { + "start": 5533.6, + "end": 5536.32, + "probability": 0.9831 + }, + { + "start": 5537.52, + "end": 5538.32, + "probability": 0.8609 + }, + { + "start": 5538.38, + "end": 5539.12, + "probability": 0.9003 + }, + { + "start": 5539.26, + "end": 5541.7, + "probability": 0.9902 + }, + { + "start": 5542.16, + "end": 5544.54, + "probability": 0.9818 + }, + { + "start": 5547.28, + "end": 5554.66, + "probability": 0.9795 + }, + { + "start": 5555.74, + "end": 5558.92, + "probability": 0.7999 + }, + { + "start": 5558.92, + "end": 5562.8, + "probability": 0.9943 + }, + { + "start": 5563.44, + "end": 5567.44, + "probability": 0.9957 + }, + { + "start": 5567.84, + "end": 5568.98, + "probability": 0.7669 + }, + { + "start": 5570.86, + "end": 5577.66, + "probability": 0.8496 + }, + { + "start": 5578.32, + "end": 5580.96, + "probability": 0.9674 + }, + { + "start": 5580.96, + "end": 5585.04, + "probability": 0.9524 + }, + { + "start": 5585.52, + "end": 5588.76, + "probability": 0.9783 + }, + { + "start": 5590.14, + "end": 5593.54, + "probability": 0.7504 + }, + { + "start": 5594.2, + "end": 5600.25, + "probability": 0.9592 + }, + { + "start": 5601.98, + "end": 5603.14, + "probability": 0.8827 + }, + { + "start": 5603.2, + "end": 5603.7, + "probability": 0.5035 + }, + { + "start": 5603.76, + "end": 5606.9, + "probability": 0.4741 + }, + { + "start": 5607.56, + "end": 5611.84, + "probability": 0.9963 + }, + { + "start": 5612.44, + "end": 5613.46, + "probability": 0.5092 + }, + { + "start": 5614.16, + "end": 5615.0, + "probability": 0.3207 + }, + { + "start": 5615.08, + "end": 5616.84, + "probability": 0.5048 + }, + { + "start": 5617.08, + "end": 5621.44, + "probability": 0.8507 + }, + { + "start": 5621.94, + "end": 5623.2, + "probability": 0.743 + }, + { + "start": 5623.94, + "end": 5627.36, + "probability": 0.8907 + }, + { + "start": 5627.78, + "end": 5630.08, + "probability": 0.9634 + }, + { + "start": 5631.34, + "end": 5636.24, + "probability": 0.7937 + }, + { + "start": 5636.32, + "end": 5638.66, + "probability": 0.9665 + }, + { + "start": 5638.82, + "end": 5640.29, + "probability": 0.9951 + }, + { + "start": 5640.96, + "end": 5645.78, + "probability": 0.9579 + }, + { + "start": 5647.46, + "end": 5648.84, + "probability": 0.8311 + }, + { + "start": 5649.46, + "end": 5650.84, + "probability": 0.6265 + }, + { + "start": 5651.02, + "end": 5651.76, + "probability": 0.7179 + }, + { + "start": 5652.04, + "end": 5654.2, + "probability": 0.9595 + }, + { + "start": 5654.7, + "end": 5657.84, + "probability": 0.9859 + }, + { + "start": 5658.06, + "end": 5662.1, + "probability": 0.9895 + }, + { + "start": 5663.44, + "end": 5668.94, + "probability": 0.9854 + }, + { + "start": 5669.62, + "end": 5671.12, + "probability": 0.8917 + }, + { + "start": 5671.24, + "end": 5676.44, + "probability": 0.9102 + }, + { + "start": 5676.78, + "end": 5677.6, + "probability": 0.7342 + }, + { + "start": 5677.92, + "end": 5679.16, + "probability": 0.927 + }, + { + "start": 5679.48, + "end": 5679.76, + "probability": 0.2504 + }, + { + "start": 5679.78, + "end": 5682.04, + "probability": 0.9839 + }, + { + "start": 5682.14, + "end": 5685.78, + "probability": 0.8565 + }, + { + "start": 5686.16, + "end": 5691.84, + "probability": 0.8401 + }, + { + "start": 5692.28, + "end": 5696.6, + "probability": 0.8567 + }, + { + "start": 5696.6, + "end": 5697.8, + "probability": 0.2373 + }, + { + "start": 5698.68, + "end": 5702.7, + "probability": 0.9974 + }, + { + "start": 5703.12, + "end": 5704.88, + "probability": 0.8978 + }, + { + "start": 5705.44, + "end": 5706.44, + "probability": 0.7208 + }, + { + "start": 5706.86, + "end": 5707.68, + "probability": 0.9024 + }, + { + "start": 5708.34, + "end": 5711.26, + "probability": 0.4972 + }, + { + "start": 5711.58, + "end": 5714.34, + "probability": 0.7047 + }, + { + "start": 5715.3, + "end": 5720.0, + "probability": 0.8234 + }, + { + "start": 5720.12, + "end": 5721.3, + "probability": 0.8641 + }, + { + "start": 5722.48, + "end": 5723.38, + "probability": 0.4813 + }, + { + "start": 5723.42, + "end": 5726.86, + "probability": 0.9961 + }, + { + "start": 5726.86, + "end": 5731.68, + "probability": 0.9966 + }, + { + "start": 5732.02, + "end": 5734.24, + "probability": 0.9727 + }, + { + "start": 5734.88, + "end": 5735.38, + "probability": 0.7576 + }, + { + "start": 5735.62, + "end": 5736.64, + "probability": 0.9465 + }, + { + "start": 5736.72, + "end": 5739.38, + "probability": 0.8697 + }, + { + "start": 5739.78, + "end": 5741.22, + "probability": 0.4862 + }, + { + "start": 5741.6, + "end": 5742.76, + "probability": 0.743 + }, + { + "start": 5742.82, + "end": 5745.36, + "probability": 0.9793 + }, + { + "start": 5745.62, + "end": 5746.86, + "probability": 0.8722 + }, + { + "start": 5747.7, + "end": 5748.92, + "probability": 0.9282 + }, + { + "start": 5750.17, + "end": 5754.6, + "probability": 0.9848 + }, + { + "start": 5754.6, + "end": 5759.5, + "probability": 0.9824 + }, + { + "start": 5760.06, + "end": 5764.48, + "probability": 0.9929 + }, + { + "start": 5764.48, + "end": 5767.86, + "probability": 0.9461 + }, + { + "start": 5768.0, + "end": 5768.3, + "probability": 0.6276 + }, + { + "start": 5768.54, + "end": 5770.8, + "probability": 0.8644 + }, + { + "start": 5770.8, + "end": 5775.16, + "probability": 0.7196 + }, + { + "start": 5775.16, + "end": 5775.96, + "probability": 0.2442 + }, + { + "start": 5777.52, + "end": 5783.49, + "probability": 0.7035 + }, + { + "start": 5784.82, + "end": 5787.2, + "probability": 0.9545 + }, + { + "start": 5787.64, + "end": 5791.08, + "probability": 0.9776 + }, + { + "start": 5791.48, + "end": 5795.08, + "probability": 0.9277 + }, + { + "start": 5795.46, + "end": 5797.46, + "probability": 0.7251 + }, + { + "start": 5799.04, + "end": 5802.38, + "probability": 0.9794 + }, + { + "start": 5803.24, + "end": 5804.38, + "probability": 0.9126 + }, + { + "start": 5804.42, + "end": 5806.12, + "probability": 0.8249 + }, + { + "start": 5806.18, + "end": 5808.44, + "probability": 0.953 + }, + { + "start": 5809.38, + "end": 5811.18, + "probability": 0.7298 + }, + { + "start": 5811.66, + "end": 5816.64, + "probability": 0.9648 + }, + { + "start": 5817.2, + "end": 5820.74, + "probability": 0.8498 + }, + { + "start": 5821.44, + "end": 5823.54, + "probability": 0.9001 + }, + { + "start": 5825.58, + "end": 5826.49, + "probability": 0.4753 + }, + { + "start": 5826.72, + "end": 5828.82, + "probability": 0.7243 + }, + { + "start": 5828.9, + "end": 5830.08, + "probability": 0.7753 + }, + { + "start": 5830.52, + "end": 5831.74, + "probability": 0.9135 + }, + { + "start": 5831.94, + "end": 5833.44, + "probability": 0.4945 + }, + { + "start": 5833.48, + "end": 5836.48, + "probability": 0.8715 + }, + { + "start": 5837.08, + "end": 5838.88, + "probability": 0.8007 + }, + { + "start": 5838.98, + "end": 5840.28, + "probability": 0.8172 + }, + { + "start": 5841.18, + "end": 5844.14, + "probability": 0.9551 + }, + { + "start": 5844.14, + "end": 5848.58, + "probability": 0.9686 + }, + { + "start": 5848.62, + "end": 5849.84, + "probability": 0.8014 + }, + { + "start": 5850.78, + "end": 5853.4, + "probability": 0.5245 + }, + { + "start": 5853.92, + "end": 5855.7, + "probability": 0.7317 + }, + { + "start": 5856.42, + "end": 5860.16, + "probability": 0.995 + }, + { + "start": 5861.02, + "end": 5862.56, + "probability": 0.7609 + }, + { + "start": 5863.09, + "end": 5867.2, + "probability": 0.9624 + }, + { + "start": 5867.32, + "end": 5868.51, + "probability": 0.6959 + }, + { + "start": 5869.58, + "end": 5871.12, + "probability": 0.9575 + }, + { + "start": 5871.52, + "end": 5872.26, + "probability": 0.6704 + }, + { + "start": 5872.42, + "end": 5873.48, + "probability": 0.9025 + }, + { + "start": 5873.8, + "end": 5874.0, + "probability": 0.3713 + }, + { + "start": 5874.06, + "end": 5875.1, + "probability": 0.7292 + }, + { + "start": 5875.2, + "end": 5875.94, + "probability": 0.5356 + }, + { + "start": 5876.22, + "end": 5878.96, + "probability": 0.9102 + }, + { + "start": 5879.26, + "end": 5880.08, + "probability": 0.5232 + }, + { + "start": 5880.1, + "end": 5880.98, + "probability": 0.4816 + }, + { + "start": 5881.82, + "end": 5884.4, + "probability": 0.7005 + }, + { + "start": 5884.5, + "end": 5889.04, + "probability": 0.9946 + }, + { + "start": 5889.64, + "end": 5890.72, + "probability": 0.9324 + }, + { + "start": 5891.38, + "end": 5895.04, + "probability": 0.8605 + }, + { + "start": 5896.42, + "end": 5897.74, + "probability": 0.7029 + }, + { + "start": 5899.28, + "end": 5902.8, + "probability": 0.9896 + }, + { + "start": 5902.88, + "end": 5904.9, + "probability": 0.8628 + }, + { + "start": 5904.9, + "end": 5907.04, + "probability": 0.7874 + }, + { + "start": 5908.54, + "end": 5910.84, + "probability": 0.9893 + }, + { + "start": 5910.96, + "end": 5913.5, + "probability": 0.9845 + }, + { + "start": 5916.3, + "end": 5917.7, + "probability": 0.81 + }, + { + "start": 5918.72, + "end": 5920.66, + "probability": 0.8958 + }, + { + "start": 5921.34, + "end": 5922.0, + "probability": 0.7562 + }, + { + "start": 5922.9, + "end": 5928.89, + "probability": 0.6962 + }, + { + "start": 5929.14, + "end": 5933.06, + "probability": 0.9591 + }, + { + "start": 5933.48, + "end": 5936.86, + "probability": 0.9368 + }, + { + "start": 5937.08, + "end": 5941.62, + "probability": 0.9873 + }, + { + "start": 5941.62, + "end": 5944.5, + "probability": 0.98 + }, + { + "start": 5944.5, + "end": 5946.18, + "probability": 0.5147 + }, + { + "start": 5949.21, + "end": 5951.64, + "probability": 0.754 + }, + { + "start": 5951.7, + "end": 5953.5, + "probability": 0.9743 + }, + { + "start": 5953.78, + "end": 5954.16, + "probability": 0.77 + }, + { + "start": 5954.4, + "end": 5955.4, + "probability": 0.6979 + }, + { + "start": 5955.92, + "end": 5965.74, + "probability": 0.7195 + }, + { + "start": 5966.0, + "end": 5966.96, + "probability": 0.9636 + }, + { + "start": 5966.98, + "end": 5967.8, + "probability": 0.6693 + }, + { + "start": 5968.76, + "end": 5973.38, + "probability": 0.9917 + }, + { + "start": 5973.9, + "end": 5974.44, + "probability": 0.9799 + }, + { + "start": 5975.72, + "end": 5976.38, + "probability": 0.5122 + }, + { + "start": 5976.9, + "end": 5978.36, + "probability": 0.5677 + }, + { + "start": 5979.1, + "end": 5981.0, + "probability": 0.9879 + }, + { + "start": 5981.9, + "end": 5984.02, + "probability": 0.8826 + }, + { + "start": 5984.02, + "end": 5987.74, + "probability": 0.8889 + }, + { + "start": 5989.0, + "end": 5991.52, + "probability": 0.8809 + }, + { + "start": 5991.58, + "end": 5992.4, + "probability": 0.5322 + }, + { + "start": 5992.42, + "end": 5993.1, + "probability": 0.6981 + }, + { + "start": 5993.28, + "end": 5994.12, + "probability": 0.5732 + }, + { + "start": 5994.6, + "end": 5995.62, + "probability": 0.8656 + }, + { + "start": 5996.12, + "end": 5997.62, + "probability": 0.9531 + }, + { + "start": 5998.76, + "end": 6002.13, + "probability": 0.962 + }, + { + "start": 6002.56, + "end": 6005.99, + "probability": 0.8752 + }, + { + "start": 6007.28, + "end": 6009.86, + "probability": 0.9497 + }, + { + "start": 6011.5, + "end": 6015.12, + "probability": 0.9321 + }, + { + "start": 6015.72, + "end": 6016.06, + "probability": 0.1583 + }, + { + "start": 6017.78, + "end": 6023.72, + "probability": 0.8727 + }, + { + "start": 6023.72, + "end": 6025.96, + "probability": 0.9892 + }, + { + "start": 6026.0, + "end": 6026.46, + "probability": 0.8333 + }, + { + "start": 6027.24, + "end": 6029.81, + "probability": 0.9832 + }, + { + "start": 6030.94, + "end": 6032.02, + "probability": 0.8087 + }, + { + "start": 6032.72, + "end": 6035.24, + "probability": 0.9286 + }, + { + "start": 6035.9, + "end": 6037.96, + "probability": 0.6763 + }, + { + "start": 6037.98, + "end": 6042.34, + "probability": 0.8942 + }, + { + "start": 6042.48, + "end": 6043.24, + "probability": 0.7377 + }, + { + "start": 6044.84, + "end": 6047.4, + "probability": 0.9633 + }, + { + "start": 6047.86, + "end": 6049.26, + "probability": 0.7913 + }, + { + "start": 6050.8, + "end": 6052.58, + "probability": 0.9806 + }, + { + "start": 6053.08, + "end": 6054.18, + "probability": 0.7223 + }, + { + "start": 6054.54, + "end": 6055.26, + "probability": 0.8968 + }, + { + "start": 6055.6, + "end": 6056.48, + "probability": 0.9682 + }, + { + "start": 6056.76, + "end": 6057.98, + "probability": 0.9553 + }, + { + "start": 6058.08, + "end": 6058.5, + "probability": 0.6635 + }, + { + "start": 6059.62, + "end": 6061.42, + "probability": 0.9183 + }, + { + "start": 6061.96, + "end": 6067.38, + "probability": 0.9957 + }, + { + "start": 6067.38, + "end": 6071.42, + "probability": 0.9943 + }, + { + "start": 6071.5, + "end": 6072.12, + "probability": 0.9961 + }, + { + "start": 6072.66, + "end": 6073.18, + "probability": 0.1934 + }, + { + "start": 6073.26, + "end": 6073.9, + "probability": 0.6743 + }, + { + "start": 6074.34, + "end": 6076.12, + "probability": 0.9606 + }, + { + "start": 6076.64, + "end": 6078.26, + "probability": 0.9775 + }, + { + "start": 6078.3, + "end": 6079.58, + "probability": 0.7499 + }, + { + "start": 6079.72, + "end": 6081.92, + "probability": 0.923 + }, + { + "start": 6081.92, + "end": 6086.06, + "probability": 0.9512 + }, + { + "start": 6087.24, + "end": 6087.76, + "probability": 0.7788 + }, + { + "start": 6089.09, + "end": 6091.76, + "probability": 0.9113 + }, + { + "start": 6092.28, + "end": 6093.56, + "probability": 0.9314 + }, + { + "start": 6093.9, + "end": 6098.27, + "probability": 0.8592 + }, + { + "start": 6098.88, + "end": 6103.7, + "probability": 0.8436 + }, + { + "start": 6104.04, + "end": 6106.87, + "probability": 0.8618 + }, + { + "start": 6108.12, + "end": 6112.36, + "probability": 0.7029 + }, + { + "start": 6113.36, + "end": 6115.2, + "probability": 0.9205 + }, + { + "start": 6117.11, + "end": 6122.01, + "probability": 0.9844 + }, + { + "start": 6123.8, + "end": 6124.42, + "probability": 0.4361 + }, + { + "start": 6126.18, + "end": 6129.62, + "probability": 0.7371 + }, + { + "start": 6129.62, + "end": 6133.16, + "probability": 0.9949 + }, + { + "start": 6133.24, + "end": 6134.1, + "probability": 0.5453 + }, + { + "start": 6135.42, + "end": 6137.06, + "probability": 0.4537 + }, + { + "start": 6138.04, + "end": 6140.66, + "probability": 0.5627 + }, + { + "start": 6142.75, + "end": 6145.56, + "probability": 0.7343 + }, + { + "start": 6146.1, + "end": 6151.34, + "probability": 0.8241 + }, + { + "start": 6151.78, + "end": 6156.16, + "probability": 0.9751 + }, + { + "start": 6156.68, + "end": 6160.16, + "probability": 0.9123 + }, + { + "start": 6161.66, + "end": 6164.36, + "probability": 0.9507 + }, + { + "start": 6164.42, + "end": 6166.14, + "probability": 0.6037 + }, + { + "start": 6166.5, + "end": 6168.64, + "probability": 0.7648 + }, + { + "start": 6168.64, + "end": 6171.18, + "probability": 0.935 + }, + { + "start": 6171.3, + "end": 6174.46, + "probability": 0.828 + }, + { + "start": 6174.9, + "end": 6177.88, + "probability": 0.9075 + }, + { + "start": 6178.8, + "end": 6183.38, + "probability": 0.9972 + }, + { + "start": 6184.26, + "end": 6187.68, + "probability": 0.8978 + }, + { + "start": 6188.1, + "end": 6189.64, + "probability": 0.8364 + }, + { + "start": 6189.64, + "end": 6190.14, + "probability": 0.8135 + }, + { + "start": 6190.3, + "end": 6192.08, + "probability": 0.9888 + }, + { + "start": 6192.64, + "end": 6193.58, + "probability": 0.8606 + }, + { + "start": 6195.12, + "end": 6202.24, + "probability": 0.9593 + }, + { + "start": 6202.78, + "end": 6206.16, + "probability": 0.78 + }, + { + "start": 6206.58, + "end": 6211.14, + "probability": 0.9816 + }, + { + "start": 6211.88, + "end": 6215.04, + "probability": 0.948 + }, + { + "start": 6215.18, + "end": 6218.74, + "probability": 0.856 + }, + { + "start": 6219.06, + "end": 6220.02, + "probability": 0.5197 + }, + { + "start": 6220.08, + "end": 6223.44, + "probability": 0.9497 + }, + { + "start": 6223.72, + "end": 6226.06, + "probability": 0.6774 + }, + { + "start": 6228.58, + "end": 6229.84, + "probability": 0.8096 + }, + { + "start": 6230.3, + "end": 6231.8, + "probability": 0.9369 + }, + { + "start": 6231.8, + "end": 6232.76, + "probability": 0.7935 + }, + { + "start": 6234.22, + "end": 6236.72, + "probability": 0.9915 + }, + { + "start": 6237.92, + "end": 6240.2, + "probability": 0.9737 + }, + { + "start": 6240.26, + "end": 6243.4, + "probability": 0.9854 + }, + { + "start": 6243.92, + "end": 6244.78, + "probability": 0.9846 + }, + { + "start": 6245.28, + "end": 6246.0, + "probability": 0.9058 + }, + { + "start": 6246.12, + "end": 6247.47, + "probability": 0.9093 + }, + { + "start": 6247.8, + "end": 6249.4, + "probability": 0.9896 + }, + { + "start": 6249.8, + "end": 6251.91, + "probability": 0.9624 + }, + { + "start": 6252.34, + "end": 6255.36, + "probability": 0.9673 + }, + { + "start": 6255.36, + "end": 6260.34, + "probability": 0.9976 + }, + { + "start": 6260.38, + "end": 6266.42, + "probability": 0.8316 + }, + { + "start": 6266.58, + "end": 6268.32, + "probability": 0.7314 + }, + { + "start": 6268.96, + "end": 6269.68, + "probability": 0.5454 + }, + { + "start": 6270.46, + "end": 6271.36, + "probability": 0.6894 + }, + { + "start": 6271.88, + "end": 6273.28, + "probability": 0.9375 + }, + { + "start": 6273.54, + "end": 6275.44, + "probability": 0.9565 + }, + { + "start": 6278.42, + "end": 6279.78, + "probability": 0.7177 + }, + { + "start": 6279.94, + "end": 6286.44, + "probability": 0.9767 + }, + { + "start": 6286.48, + "end": 6288.1, + "probability": 0.7588 + }, + { + "start": 6288.1, + "end": 6290.26, + "probability": 0.8136 + }, + { + "start": 6290.78, + "end": 6291.8, + "probability": 0.8302 + }, + { + "start": 6291.84, + "end": 6294.42, + "probability": 0.9666 + }, + { + "start": 6294.42, + "end": 6297.38, + "probability": 0.9969 + }, + { + "start": 6297.46, + "end": 6300.1, + "probability": 0.9924 + }, + { + "start": 6300.28, + "end": 6301.76, + "probability": 0.9933 + }, + { + "start": 6301.82, + "end": 6303.46, + "probability": 0.9224 + }, + { + "start": 6303.56, + "end": 6303.96, + "probability": 0.7692 + }, + { + "start": 6304.5, + "end": 6305.53, + "probability": 0.9763 + }, + { + "start": 6306.24, + "end": 6307.24, + "probability": 0.8662 + }, + { + "start": 6307.48, + "end": 6310.96, + "probability": 0.9169 + }, + { + "start": 6311.34, + "end": 6312.86, + "probability": 0.9326 + }, + { + "start": 6313.53, + "end": 6317.53, + "probability": 0.8696 + }, + { + "start": 6317.98, + "end": 6321.14, + "probability": 0.9457 + }, + { + "start": 6321.58, + "end": 6326.54, + "probability": 0.6339 + }, + { + "start": 6326.72, + "end": 6328.36, + "probability": 0.6913 + }, + { + "start": 6328.48, + "end": 6331.98, + "probability": 0.9768 + }, + { + "start": 6332.04, + "end": 6333.04, + "probability": 0.9736 + }, + { + "start": 6335.94, + "end": 6338.75, + "probability": 0.7656 + }, + { + "start": 6340.64, + "end": 6345.22, + "probability": 0.9979 + }, + { + "start": 6346.14, + "end": 6350.75, + "probability": 0.9884 + }, + { + "start": 6351.86, + "end": 6353.72, + "probability": 0.9951 + }, + { + "start": 6354.4, + "end": 6356.64, + "probability": 0.9042 + }, + { + "start": 6357.16, + "end": 6357.58, + "probability": 0.658 + }, + { + "start": 6357.78, + "end": 6358.98, + "probability": 0.7248 + }, + { + "start": 6358.98, + "end": 6359.02, + "probability": 0.2563 + }, + { + "start": 6359.02, + "end": 6359.78, + "probability": 0.7896 + }, + { + "start": 6360.0, + "end": 6361.74, + "probability": 0.3341 + }, + { + "start": 6362.0, + "end": 6363.68, + "probability": 0.8374 + }, + { + "start": 6364.56, + "end": 6364.9, + "probability": 0.8956 + }, + { + "start": 6366.42, + "end": 6367.96, + "probability": 0.7048 + }, + { + "start": 6368.46, + "end": 6369.6, + "probability": 0.7147 + }, + { + "start": 6369.68, + "end": 6371.12, + "probability": 0.7882 + }, + { + "start": 6371.2, + "end": 6373.96, + "probability": 0.9167 + }, + { + "start": 6375.28, + "end": 6379.84, + "probability": 0.7765 + }, + { + "start": 6380.8, + "end": 6382.64, + "probability": 0.5704 + }, + { + "start": 6383.48, + "end": 6386.26, + "probability": 0.8349 + }, + { + "start": 6386.42, + "end": 6389.96, + "probability": 0.9244 + }, + { + "start": 6390.36, + "end": 6391.68, + "probability": 0.7947 + }, + { + "start": 6391.78, + "end": 6393.06, + "probability": 0.2491 + }, + { + "start": 6393.06, + "end": 6394.24, + "probability": 0.4483 + }, + { + "start": 6394.36, + "end": 6396.52, + "probability": 0.2565 + }, + { + "start": 6396.8, + "end": 6397.88, + "probability": 0.3635 + }, + { + "start": 6397.88, + "end": 6398.1, + "probability": 0.4146 + }, + { + "start": 6398.1, + "end": 6398.49, + "probability": 0.4044 + }, + { + "start": 6399.9, + "end": 6400.46, + "probability": 0.7864 + }, + { + "start": 6400.52, + "end": 6402.28, + "probability": 0.6902 + }, + { + "start": 6402.62, + "end": 6406.54, + "probability": 0.9917 + }, + { + "start": 6407.26, + "end": 6410.2, + "probability": 0.9644 + }, + { + "start": 6410.76, + "end": 6414.33, + "probability": 0.9445 + }, + { + "start": 6414.84, + "end": 6416.7, + "probability": 0.6913 + }, + { + "start": 6417.14, + "end": 6422.1, + "probability": 0.8647 + }, + { + "start": 6422.36, + "end": 6427.22, + "probability": 0.9918 + }, + { + "start": 6427.4, + "end": 6428.62, + "probability": 0.8897 + }, + { + "start": 6429.22, + "end": 6430.9, + "probability": 0.7716 + }, + { + "start": 6432.26, + "end": 6436.42, + "probability": 0.8343 + }, + { + "start": 6437.06, + "end": 6437.58, + "probability": 0.6716 + }, + { + "start": 6437.76, + "end": 6438.08, + "probability": 0.696 + }, + { + "start": 6438.3, + "end": 6440.28, + "probability": 0.9699 + }, + { + "start": 6440.8, + "end": 6445.54, + "probability": 0.9558 + }, + { + "start": 6445.84, + "end": 6448.54, + "probability": 0.995 + }, + { + "start": 6449.36, + "end": 6450.24, + "probability": 0.9751 + }, + { + "start": 6450.5, + "end": 6453.4, + "probability": 0.6703 + }, + { + "start": 6453.66, + "end": 6454.42, + "probability": 0.3865 + }, + { + "start": 6455.36, + "end": 6456.0, + "probability": 0.5595 + }, + { + "start": 6456.32, + "end": 6459.96, + "probability": 0.9613 + }, + { + "start": 6460.68, + "end": 6465.46, + "probability": 0.9794 + }, + { + "start": 6465.66, + "end": 6468.2, + "probability": 0.9753 + }, + { + "start": 6468.48, + "end": 6469.4, + "probability": 0.7107 + }, + { + "start": 6469.46, + "end": 6470.48, + "probability": 0.693 + }, + { + "start": 6471.06, + "end": 6473.08, + "probability": 0.8749 + }, + { + "start": 6473.52, + "end": 6477.22, + "probability": 0.9507 + }, + { + "start": 6477.86, + "end": 6480.68, + "probability": 0.9675 + }, + { + "start": 6480.86, + "end": 6483.92, + "probability": 0.9394 + }, + { + "start": 6483.98, + "end": 6485.18, + "probability": 0.9819 + }, + { + "start": 6485.8, + "end": 6488.0, + "probability": 0.7407 + }, + { + "start": 6488.22, + "end": 6491.24, + "probability": 0.8226 + }, + { + "start": 6491.54, + "end": 6493.36, + "probability": 0.959 + }, + { + "start": 6493.86, + "end": 6496.96, + "probability": 0.9832 + }, + { + "start": 6497.28, + "end": 6498.56, + "probability": 0.9704 + }, + { + "start": 6499.04, + "end": 6501.58, + "probability": 0.9077 + }, + { + "start": 6501.8, + "end": 6502.4, + "probability": 0.8481 + }, + { + "start": 6502.5, + "end": 6503.14, + "probability": 0.7225 + }, + { + "start": 6503.22, + "end": 6505.14, + "probability": 0.769 + }, + { + "start": 6505.44, + "end": 6506.28, + "probability": 0.6127 + }, + { + "start": 6506.42, + "end": 6507.86, + "probability": 0.6452 + }, + { + "start": 6508.8, + "end": 6510.26, + "probability": 0.9841 + }, + { + "start": 6510.26, + "end": 6511.46, + "probability": 0.9665 + }, + { + "start": 6511.62, + "end": 6514.86, + "probability": 0.9803 + }, + { + "start": 6514.92, + "end": 6516.2, + "probability": 0.9891 + }, + { + "start": 6516.5, + "end": 6517.54, + "probability": 0.7451 + }, + { + "start": 6517.8, + "end": 6518.72, + "probability": 0.67 + }, + { + "start": 6518.88, + "end": 6523.48, + "probability": 0.9919 + }, + { + "start": 6523.78, + "end": 6528.92, + "probability": 0.8681 + }, + { + "start": 6529.28, + "end": 6531.74, + "probability": 0.9536 + }, + { + "start": 6532.28, + "end": 6535.02, + "probability": 0.9794 + }, + { + "start": 6536.3, + "end": 6539.0, + "probability": 0.9961 + }, + { + "start": 6539.44, + "end": 6541.8, + "probability": 0.9931 + }, + { + "start": 6542.14, + "end": 6546.26, + "probability": 0.9005 + }, + { + "start": 6546.78, + "end": 6547.48, + "probability": 0.9211 + }, + { + "start": 6547.66, + "end": 6550.72, + "probability": 0.9759 + }, + { + "start": 6550.98, + "end": 6552.4, + "probability": 0.9744 + }, + { + "start": 6552.64, + "end": 6554.94, + "probability": 0.9881 + }, + { + "start": 6555.36, + "end": 6556.38, + "probability": 0.5885 + }, + { + "start": 6556.42, + "end": 6559.1, + "probability": 0.9873 + }, + { + "start": 6559.94, + "end": 6560.76, + "probability": 0.3747 + }, + { + "start": 6560.82, + "end": 6561.96, + "probability": 0.8927 + }, + { + "start": 6562.22, + "end": 6564.12, + "probability": 0.6147 + }, + { + "start": 6564.58, + "end": 6565.7, + "probability": 0.7399 + }, + { + "start": 6565.92, + "end": 6569.88, + "probability": 0.9508 + }, + { + "start": 6570.42, + "end": 6574.48, + "probability": 0.9136 + }, + { + "start": 6574.76, + "end": 6575.98, + "probability": 0.9149 + }, + { + "start": 6576.2, + "end": 6576.94, + "probability": 0.8306 + }, + { + "start": 6577.08, + "end": 6577.84, + "probability": 0.766 + }, + { + "start": 6577.96, + "end": 6581.14, + "probability": 0.6629 + }, + { + "start": 6582.84, + "end": 6582.84, + "probability": 0.2005 + }, + { + "start": 6582.84, + "end": 6583.54, + "probability": 0.6101 + }, + { + "start": 6588.0, + "end": 6590.74, + "probability": 0.0662 + }, + { + "start": 6590.74, + "end": 6591.74, + "probability": 0.0272 + }, + { + "start": 6594.3, + "end": 6595.22, + "probability": 0.0571 + }, + { + "start": 6595.56, + "end": 6601.96, + "probability": 0.2365 + }, + { + "start": 6602.3, + "end": 6603.14, + "probability": 0.3039 + }, + { + "start": 6604.2, + "end": 6605.66, + "probability": 0.4203 + }, + { + "start": 6605.72, + "end": 6606.86, + "probability": 0.7157 + }, + { + "start": 6606.86, + "end": 6607.5, + "probability": 0.3593 + }, + { + "start": 6608.15, + "end": 6613.28, + "probability": 0.8907 + }, + { + "start": 6613.42, + "end": 6614.06, + "probability": 0.7236 + }, + { + "start": 6614.18, + "end": 6615.34, + "probability": 0.8049 + }, + { + "start": 6615.7, + "end": 6617.16, + "probability": 0.9513 + }, + { + "start": 6617.52, + "end": 6620.1, + "probability": 0.8208 + }, + { + "start": 6620.26, + "end": 6622.02, + "probability": 0.9771 + }, + { + "start": 6622.28, + "end": 6625.68, + "probability": 0.9477 + }, + { + "start": 6625.9, + "end": 6626.32, + "probability": 0.8059 + }, + { + "start": 6626.46, + "end": 6631.34, + "probability": 0.9954 + }, + { + "start": 6632.86, + "end": 6636.3, + "probability": 0.0885 + }, + { + "start": 6636.82, + "end": 6637.14, + "probability": 0.1187 + }, + { + "start": 6637.34, + "end": 6639.0, + "probability": 0.1107 + }, + { + "start": 6639.02, + "end": 6639.14, + "probability": 0.1584 + }, + { + "start": 6639.14, + "end": 6639.72, + "probability": 0.1023 + }, + { + "start": 6640.12, + "end": 6642.84, + "probability": 0.2612 + }, + { + "start": 6643.7, + "end": 6646.32, + "probability": 0.1289 + }, + { + "start": 6646.52, + "end": 6648.22, + "probability": 0.019 + }, + { + "start": 6648.3, + "end": 6649.28, + "probability": 0.6616 + }, + { + "start": 6649.36, + "end": 6650.62, + "probability": 0.8683 + }, + { + "start": 6650.68, + "end": 6653.04, + "probability": 0.97 + }, + { + "start": 6653.32, + "end": 6654.86, + "probability": 0.9885 + }, + { + "start": 6655.06, + "end": 6657.56, + "probability": 0.6925 + }, + { + "start": 6657.92, + "end": 6659.44, + "probability": 0.2806 + }, + { + "start": 6659.48, + "end": 6660.58, + "probability": 0.6952 + }, + { + "start": 6660.7, + "end": 6662.02, + "probability": 0.7424 + }, + { + "start": 6662.6, + "end": 6663.0, + "probability": 0.7618 + }, + { + "start": 6663.08, + "end": 6664.25, + "probability": 0.6108 + }, + { + "start": 6664.44, + "end": 6665.07, + "probability": 0.918 + }, + { + "start": 6665.6, + "end": 6668.08, + "probability": 0.978 + }, + { + "start": 6668.22, + "end": 6669.14, + "probability": 0.8747 + }, + { + "start": 6669.7, + "end": 6672.32, + "probability": 0.9465 + }, + { + "start": 6672.42, + "end": 6674.34, + "probability": 0.9928 + }, + { + "start": 6674.82, + "end": 6677.36, + "probability": 0.9308 + }, + { + "start": 6677.52, + "end": 6677.9, + "probability": 0.6616 + }, + { + "start": 6677.98, + "end": 6679.08, + "probability": 0.8014 + }, + { + "start": 6679.14, + "end": 6681.86, + "probability": 0.6821 + }, + { + "start": 6682.24, + "end": 6685.72, + "probability": 0.9009 + }, + { + "start": 6685.72, + "end": 6689.18, + "probability": 0.7912 + }, + { + "start": 6689.2, + "end": 6691.0, + "probability": 0.7552 + }, + { + "start": 6691.52, + "end": 6692.86, + "probability": 0.7708 + }, + { + "start": 6692.92, + "end": 6693.6, + "probability": 0.8452 + }, + { + "start": 6694.34, + "end": 6695.12, + "probability": 0.6318 + }, + { + "start": 6696.86, + "end": 6699.82, + "probability": 0.3387 + }, + { + "start": 6700.06, + "end": 6705.14, + "probability": 0.3587 + }, + { + "start": 6706.68, + "end": 6710.1, + "probability": 0.0293 + }, + { + "start": 6710.68, + "end": 6712.3, + "probability": 0.2491 + }, + { + "start": 6712.36, + "end": 6713.26, + "probability": 0.7488 + }, + { + "start": 6713.64, + "end": 6714.22, + "probability": 0.6896 + }, + { + "start": 6714.24, + "end": 6714.44, + "probability": 0.316 + }, + { + "start": 6714.46, + "end": 6715.58, + "probability": 0.6808 + }, + { + "start": 6715.82, + "end": 6717.5, + "probability": 0.8774 + }, + { + "start": 6717.5, + "end": 6721.11, + "probability": 0.9777 + }, + { + "start": 6722.12, + "end": 6724.38, + "probability": 0.545 + }, + { + "start": 6724.58, + "end": 6728.96, + "probability": 0.9465 + }, + { + "start": 6729.02, + "end": 6731.8, + "probability": 0.8408 + }, + { + "start": 6732.28, + "end": 6734.2, + "probability": 0.2549 + }, + { + "start": 6734.56, + "end": 6737.56, + "probability": 0.9521 + }, + { + "start": 6739.42, + "end": 6743.62, + "probability": 0.9207 + }, + { + "start": 6745.82, + "end": 6747.02, + "probability": 0.5891 + }, + { + "start": 6747.08, + "end": 6748.54, + "probability": 0.7178 + }, + { + "start": 6748.9, + "end": 6753.96, + "probability": 0.8905 + }, + { + "start": 6754.48, + "end": 6757.56, + "probability": 0.7614 + }, + { + "start": 6758.22, + "end": 6761.5, + "probability": 0.0979 + }, + { + "start": 6762.2, + "end": 6765.0, + "probability": 0.7963 + }, + { + "start": 6765.8, + "end": 6772.74, + "probability": 0.7277 + }, + { + "start": 6773.1, + "end": 6775.3, + "probability": 0.985 + }, + { + "start": 6775.92, + "end": 6780.4, + "probability": 0.7862 + }, + { + "start": 6781.04, + "end": 6782.1, + "probability": 0.4901 + }, + { + "start": 6782.44, + "end": 6788.38, + "probability": 0.9065 + }, + { + "start": 6789.0, + "end": 6793.46, + "probability": 0.9146 + }, + { + "start": 6794.12, + "end": 6797.44, + "probability": 0.9543 + }, + { + "start": 6797.94, + "end": 6803.64, + "probability": 0.7468 + }, + { + "start": 6804.2, + "end": 6807.76, + "probability": 0.9966 + }, + { + "start": 6807.76, + "end": 6813.88, + "probability": 0.9844 + }, + { + "start": 6813.88, + "end": 6815.96, + "probability": 0.85 + }, + { + "start": 6816.32, + "end": 6817.79, + "probability": 0.7811 + }, + { + "start": 6818.48, + "end": 6822.6, + "probability": 0.9458 + }, + { + "start": 6822.96, + "end": 6824.2, + "probability": 0.8453 + }, + { + "start": 6824.34, + "end": 6828.34, + "probability": 0.7609 + }, + { + "start": 6828.7, + "end": 6836.92, + "probability": 0.891 + }, + { + "start": 6837.72, + "end": 6841.16, + "probability": 0.9136 + }, + { + "start": 6841.24, + "end": 6845.5, + "probability": 0.6586 + }, + { + "start": 6845.6, + "end": 6847.26, + "probability": 0.6716 + }, + { + "start": 6847.86, + "end": 6852.54, + "probability": 0.8629 + }, + { + "start": 6853.34, + "end": 6854.04, + "probability": 0.8763 + }, + { + "start": 6854.32, + "end": 6862.26, + "probability": 0.8605 + }, + { + "start": 6863.24, + "end": 6867.7, + "probability": 0.8609 + }, + { + "start": 6868.36, + "end": 6872.58, + "probability": 0.7939 + }, + { + "start": 6873.14, + "end": 6879.56, + "probability": 0.8824 + }, + { + "start": 6879.56, + "end": 6886.22, + "probability": 0.9275 + }, + { + "start": 6887.06, + "end": 6895.32, + "probability": 0.9209 + }, + { + "start": 6895.32, + "end": 6903.56, + "probability": 0.9606 + }, + { + "start": 6904.06, + "end": 6904.7, + "probability": 0.5203 + }, + { + "start": 6905.14, + "end": 6906.04, + "probability": 0.8279 + }, + { + "start": 6906.14, + "end": 6911.82, + "probability": 0.8545 + }, + { + "start": 6912.5, + "end": 6913.78, + "probability": 0.9085 + }, + { + "start": 6913.86, + "end": 6919.48, + "probability": 0.8109 + }, + { + "start": 6919.86, + "end": 6921.9, + "probability": 0.903 + }, + { + "start": 6922.34, + "end": 6925.04, + "probability": 0.6972 + }, + { + "start": 6925.44, + "end": 6929.86, + "probability": 0.9752 + }, + { + "start": 6930.62, + "end": 6933.08, + "probability": 0.5066 + }, + { + "start": 6933.32, + "end": 6937.88, + "probability": 0.8959 + }, + { + "start": 6937.88, + "end": 6943.96, + "probability": 0.9094 + }, + { + "start": 6944.36, + "end": 6950.16, + "probability": 0.7921 + }, + { + "start": 6950.66, + "end": 6953.86, + "probability": 0.9276 + }, + { + "start": 6953.86, + "end": 6959.48, + "probability": 0.9956 + }, + { + "start": 6959.84, + "end": 6966.16, + "probability": 0.743 + }, + { + "start": 6966.16, + "end": 6972.32, + "probability": 0.9882 + }, + { + "start": 6972.74, + "end": 6973.58, + "probability": 0.573 + }, + { + "start": 6974.0, + "end": 6979.7, + "probability": 0.9714 + }, + { + "start": 6979.7, + "end": 6986.8, + "probability": 0.998 + }, + { + "start": 6987.32, + "end": 6994.08, + "probability": 0.9875 + }, + { + "start": 6996.04, + "end": 6999.94, + "probability": 0.9757 + }, + { + "start": 7000.2, + "end": 7001.14, + "probability": 0.204 + }, + { + "start": 7001.6, + "end": 7003.14, + "probability": 0.8767 + }, + { + "start": 7003.78, + "end": 7006.24, + "probability": 0.768 + }, + { + "start": 7006.74, + "end": 7009.92, + "probability": 0.9468 + }, + { + "start": 7010.34, + "end": 7013.08, + "probability": 0.9762 + }, + { + "start": 7013.46, + "end": 7020.66, + "probability": 0.9932 + }, + { + "start": 7020.82, + "end": 7021.88, + "probability": 0.6412 + }, + { + "start": 7021.96, + "end": 7022.96, + "probability": 0.5778 + }, + { + "start": 7023.38, + "end": 7024.42, + "probability": 0.7608 + }, + { + "start": 7024.82, + "end": 7026.95, + "probability": 0.9548 + }, + { + "start": 7028.44, + "end": 7032.46, + "probability": 0.896 + }, + { + "start": 7032.46, + "end": 7037.0, + "probability": 0.8059 + }, + { + "start": 7037.44, + "end": 7039.68, + "probability": 0.7437 + }, + { + "start": 7040.8, + "end": 7044.04, + "probability": 0.6748 + }, + { + "start": 7044.04, + "end": 7048.72, + "probability": 0.9536 + }, + { + "start": 7049.16, + "end": 7051.5, + "probability": 0.6607 + }, + { + "start": 7052.08, + "end": 7057.2, + "probability": 0.987 + }, + { + "start": 7057.72, + "end": 7061.58, + "probability": 0.9653 + }, + { + "start": 7062.02, + "end": 7066.64, + "probability": 0.9814 + }, + { + "start": 7066.68, + "end": 7072.14, + "probability": 0.7863 + }, + { + "start": 7072.6, + "end": 7076.94, + "probability": 0.9615 + }, + { + "start": 7077.5, + "end": 7082.12, + "probability": 0.8849 + }, + { + "start": 7082.62, + "end": 7087.7, + "probability": 0.9244 + }, + { + "start": 7088.54, + "end": 7090.48, + "probability": 0.7889 + }, + { + "start": 7090.82, + "end": 7098.04, + "probability": 0.9012 + }, + { + "start": 7098.86, + "end": 7105.64, + "probability": 0.9735 + }, + { + "start": 7106.52, + "end": 7110.86, + "probability": 0.8081 + }, + { + "start": 7110.86, + "end": 7116.6, + "probability": 0.9897 + }, + { + "start": 7116.94, + "end": 7123.44, + "probability": 0.9929 + }, + { + "start": 7123.92, + "end": 7128.26, + "probability": 0.8364 + }, + { + "start": 7128.26, + "end": 7133.18, + "probability": 0.906 + }, + { + "start": 7133.34, + "end": 7138.0, + "probability": 0.6831 + }, + { + "start": 7138.64, + "end": 7146.98, + "probability": 0.9341 + }, + { + "start": 7147.06, + "end": 7149.48, + "probability": 0.8228 + }, + { + "start": 7149.98, + "end": 7152.24, + "probability": 0.7592 + }, + { + "start": 7152.36, + "end": 7155.18, + "probability": 0.9458 + }, + { + "start": 7155.52, + "end": 7159.0, + "probability": 0.6852 + }, + { + "start": 7159.32, + "end": 7165.02, + "probability": 0.6861 + }, + { + "start": 7165.52, + "end": 7170.16, + "probability": 0.9928 + }, + { + "start": 7170.16, + "end": 7173.7, + "probability": 0.9178 + }, + { + "start": 7174.64, + "end": 7176.1, + "probability": 0.7696 + }, + { + "start": 7176.6, + "end": 7178.66, + "probability": 0.7575 + }, + { + "start": 7178.72, + "end": 7182.32, + "probability": 0.9865 + }, + { + "start": 7182.66, + "end": 7186.72, + "probability": 0.9678 + }, + { + "start": 7186.72, + "end": 7191.3, + "probability": 0.9651 + }, + { + "start": 7191.72, + "end": 7195.7, + "probability": 0.9897 + }, + { + "start": 7195.7, + "end": 7199.6, + "probability": 0.9873 + }, + { + "start": 7200.14, + "end": 7206.6, + "probability": 0.9394 + }, + { + "start": 7206.82, + "end": 7214.16, + "probability": 0.8663 + }, + { + "start": 7214.92, + "end": 7218.22, + "probability": 0.9871 + }, + { + "start": 7220.13, + "end": 7223.06, + "probability": 0.7568 + }, + { + "start": 7223.2, + "end": 7225.1, + "probability": 0.8229 + }, + { + "start": 7225.54, + "end": 7228.88, + "probability": 0.8091 + }, + { + "start": 7228.98, + "end": 7229.74, + "probability": 0.8399 + }, + { + "start": 7230.12, + "end": 7233.08, + "probability": 0.7191 + }, + { + "start": 7233.3, + "end": 7236.46, + "probability": 0.5999 + }, + { + "start": 7257.16, + "end": 7257.8, + "probability": 0.5541 + }, + { + "start": 7257.9, + "end": 7259.18, + "probability": 0.6576 + }, + { + "start": 7259.34, + "end": 7264.1, + "probability": 0.8287 + }, + { + "start": 7264.86, + "end": 7267.95, + "probability": 0.9778 + }, + { + "start": 7269.08, + "end": 7274.44, + "probability": 0.985 + }, + { + "start": 7275.66, + "end": 7281.86, + "probability": 0.8121 + }, + { + "start": 7283.48, + "end": 7290.78, + "probability": 0.7621 + }, + { + "start": 7290.78, + "end": 7296.41, + "probability": 0.9812 + }, + { + "start": 7298.68, + "end": 7299.2, + "probability": 0.8775 + }, + { + "start": 7300.42, + "end": 7301.38, + "probability": 0.3346 + }, + { + "start": 7301.96, + "end": 7302.93, + "probability": 0.952 + }, + { + "start": 7304.18, + "end": 7307.86, + "probability": 0.8485 + }, + { + "start": 7308.4, + "end": 7310.76, + "probability": 0.8422 + }, + { + "start": 7311.34, + "end": 7315.3, + "probability": 0.8606 + }, + { + "start": 7316.14, + "end": 7320.64, + "probability": 0.9854 + }, + { + "start": 7321.3, + "end": 7323.82, + "probability": 0.6633 + }, + { + "start": 7325.12, + "end": 7328.64, + "probability": 0.9924 + }, + { + "start": 7329.64, + "end": 7332.58, + "probability": 0.803 + }, + { + "start": 7332.88, + "end": 7339.6, + "probability": 0.8894 + }, + { + "start": 7340.64, + "end": 7342.7, + "probability": 0.9053 + }, + { + "start": 7343.98, + "end": 7346.09, + "probability": 0.6594 + }, + { + "start": 7347.26, + "end": 7355.86, + "probability": 0.7598 + }, + { + "start": 7357.42, + "end": 7362.82, + "probability": 0.9743 + }, + { + "start": 7362.96, + "end": 7364.51, + "probability": 0.981 + }, + { + "start": 7365.3, + "end": 7366.94, + "probability": 0.9593 + }, + { + "start": 7368.3, + "end": 7369.64, + "probability": 0.7925 + }, + { + "start": 7369.82, + "end": 7372.59, + "probability": 0.9253 + }, + { + "start": 7373.06, + "end": 7373.58, + "probability": 0.9449 + }, + { + "start": 7375.74, + "end": 7378.12, + "probability": 0.9497 + }, + { + "start": 7378.58, + "end": 7383.28, + "probability": 0.9762 + }, + { + "start": 7383.52, + "end": 7385.68, + "probability": 0.9804 + }, + { + "start": 7386.34, + "end": 7387.82, + "probability": 0.9268 + }, + { + "start": 7388.24, + "end": 7391.5, + "probability": 0.9919 + }, + { + "start": 7391.78, + "end": 7392.92, + "probability": 0.8528 + }, + { + "start": 7393.0, + "end": 7394.1, + "probability": 0.8033 + }, + { + "start": 7394.46, + "end": 7399.26, + "probability": 0.971 + }, + { + "start": 7399.26, + "end": 7405.62, + "probability": 0.7339 + }, + { + "start": 7406.44, + "end": 7410.04, + "probability": 0.9862 + }, + { + "start": 7410.04, + "end": 7414.44, + "probability": 0.9915 + }, + { + "start": 7415.06, + "end": 7420.2, + "probability": 0.7552 + }, + { + "start": 7420.7, + "end": 7422.05, + "probability": 0.7075 + }, + { + "start": 7422.36, + "end": 7423.68, + "probability": 0.8525 + }, + { + "start": 7424.04, + "end": 7425.16, + "probability": 0.7665 + }, + { + "start": 7426.46, + "end": 7430.52, + "probability": 0.9658 + }, + { + "start": 7431.08, + "end": 7434.46, + "probability": 0.9896 + }, + { + "start": 7435.04, + "end": 7436.5, + "probability": 0.7876 + }, + { + "start": 7436.98, + "end": 7440.56, + "probability": 0.9593 + }, + { + "start": 7441.24, + "end": 7445.08, + "probability": 0.5697 + }, + { + "start": 7445.36, + "end": 7446.58, + "probability": 0.5892 + }, + { + "start": 7446.68, + "end": 7450.56, + "probability": 0.8749 + }, + { + "start": 7450.56, + "end": 7452.06, + "probability": 0.8369 + }, + { + "start": 7467.06, + "end": 7471.34, + "probability": 0.9927 + }, + { + "start": 7472.44, + "end": 7477.62, + "probability": 0.5642 + }, + { + "start": 7478.64, + "end": 7486.3, + "probability": 0.9304 + }, + { + "start": 7486.74, + "end": 7490.08, + "probability": 0.7684 + }, + { + "start": 7491.38, + "end": 7492.15, + "probability": 0.7716 + }, + { + "start": 7492.85, + "end": 7496.17, + "probability": 0.6635 + }, + { + "start": 7496.76, + "end": 7498.44, + "probability": 0.9375 + }, + { + "start": 7499.06, + "end": 7501.46, + "probability": 0.7044 + }, + { + "start": 7501.86, + "end": 7503.56, + "probability": 0.4434 + }, + { + "start": 7507.26, + "end": 7509.6, + "probability": 0.9912 + }, + { + "start": 7510.4, + "end": 7510.96, + "probability": 0.8758 + }, + { + "start": 7511.68, + "end": 7513.25, + "probability": 0.9482 + }, + { + "start": 7514.18, + "end": 7517.34, + "probability": 0.7967 + }, + { + "start": 7517.8, + "end": 7522.3, + "probability": 0.9747 + }, + { + "start": 7522.74, + "end": 7526.66, + "probability": 0.6223 + }, + { + "start": 7526.88, + "end": 7528.54, + "probability": 0.9297 + }, + { + "start": 7528.84, + "end": 7530.76, + "probability": 0.8002 + }, + { + "start": 7530.96, + "end": 7532.05, + "probability": 0.6557 + }, + { + "start": 7532.6, + "end": 7536.02, + "probability": 0.8931 + }, + { + "start": 7536.36, + "end": 7539.58, + "probability": 0.8925 + }, + { + "start": 7542.54, + "end": 7546.16, + "probability": 0.998 + }, + { + "start": 7546.7, + "end": 7547.28, + "probability": 0.5137 + }, + { + "start": 7548.04, + "end": 7550.86, + "probability": 0.5974 + }, + { + "start": 7550.92, + "end": 7553.88, + "probability": 0.7755 + }, + { + "start": 7555.32, + "end": 7555.74, + "probability": 0.8205 + }, + { + "start": 7555.82, + "end": 7559.92, + "probability": 0.9707 + }, + { + "start": 7559.92, + "end": 7562.86, + "probability": 0.7668 + }, + { + "start": 7563.06, + "end": 7565.44, + "probability": 0.1958 + }, + { + "start": 7565.6, + "end": 7566.72, + "probability": 0.6664 + }, + { + "start": 7567.06, + "end": 7568.54, + "probability": 0.8053 + }, + { + "start": 7573.84, + "end": 7573.84, + "probability": 0.2086 + }, + { + "start": 7577.58, + "end": 7581.78, + "probability": 0.1332 + }, + { + "start": 7582.28, + "end": 7584.88, + "probability": 0.1241 + }, + { + "start": 7586.44, + "end": 7586.84, + "probability": 0.1176 + }, + { + "start": 7586.84, + "end": 7589.02, + "probability": 0.392 + }, + { + "start": 7589.18, + "end": 7590.75, + "probability": 0.7112 + }, + { + "start": 7591.5, + "end": 7592.72, + "probability": 0.6251 + }, + { + "start": 7592.88, + "end": 7595.58, + "probability": 0.8936 + }, + { + "start": 7595.66, + "end": 7596.6, + "probability": 0.6589 + }, + { + "start": 7596.82, + "end": 7598.18, + "probability": 0.2093 + }, + { + "start": 7598.38, + "end": 7600.42, + "probability": 0.8098 + }, + { + "start": 7619.25, + "end": 7625.22, + "probability": 0.9932 + }, + { + "start": 7627.43, + "end": 7630.8, + "probability": 0.6542 + }, + { + "start": 7631.18, + "end": 7631.78, + "probability": 0.7894 + }, + { + "start": 7631.96, + "end": 7633.74, + "probability": 0.9196 + }, + { + "start": 7635.1, + "end": 7638.42, + "probability": 0.6846 + }, + { + "start": 7640.52, + "end": 7643.92, + "probability": 0.964 + }, + { + "start": 7644.78, + "end": 7647.26, + "probability": 0.9966 + }, + { + "start": 7647.96, + "end": 7649.48, + "probability": 0.9133 + }, + { + "start": 7650.4, + "end": 7657.74, + "probability": 0.9648 + }, + { + "start": 7658.98, + "end": 7670.38, + "probability": 0.9845 + }, + { + "start": 7670.38, + "end": 7677.43, + "probability": 0.8739 + }, + { + "start": 7677.44, + "end": 7677.84, + "probability": 0.3152 + }, + { + "start": 7677.92, + "end": 7682.34, + "probability": 0.8205 + }, + { + "start": 7683.12, + "end": 7684.74, + "probability": 0.686 + }, + { + "start": 7688.02, + "end": 7692.48, + "probability": 0.6877 + }, + { + "start": 7692.76, + "end": 7694.76, + "probability": 0.8811 + }, + { + "start": 7695.26, + "end": 7696.3, + "probability": 0.8838 + }, + { + "start": 7696.52, + "end": 7697.36, + "probability": 0.9867 + }, + { + "start": 7698.36, + "end": 7700.93, + "probability": 0.9366 + }, + { + "start": 7704.38, + "end": 7705.6, + "probability": 0.7451 + }, + { + "start": 7706.09, + "end": 7712.18, + "probability": 0.9537 + }, + { + "start": 7714.94, + "end": 7716.84, + "probability": 0.7592 + }, + { + "start": 7717.76, + "end": 7720.42, + "probability": 0.9852 + }, + { + "start": 7721.24, + "end": 7728.22, + "probability": 0.9925 + }, + { + "start": 7729.8, + "end": 7735.4, + "probability": 0.9995 + }, + { + "start": 7737.24, + "end": 7744.52, + "probability": 0.992 + }, + { + "start": 7746.42, + "end": 7749.06, + "probability": 0.9691 + }, + { + "start": 7750.48, + "end": 7756.34, + "probability": 0.433 + }, + { + "start": 7758.14, + "end": 7762.58, + "probability": 0.6359 + }, + { + "start": 7763.68, + "end": 7766.84, + "probability": 0.9426 + }, + { + "start": 7768.18, + "end": 7770.88, + "probability": 0.9503 + }, + { + "start": 7771.1, + "end": 7772.9, + "probability": 0.2361 + }, + { + "start": 7774.3, + "end": 7776.24, + "probability": 0.9834 + }, + { + "start": 7777.88, + "end": 7781.24, + "probability": 0.6374 + }, + { + "start": 7782.32, + "end": 7783.92, + "probability": 0.8871 + }, + { + "start": 7784.46, + "end": 7790.52, + "probability": 0.8386 + }, + { + "start": 7791.06, + "end": 7791.28, + "probability": 0.3502 + }, + { + "start": 7792.72, + "end": 7799.46, + "probability": 0.3254 + }, + { + "start": 7799.46, + "end": 7804.17, + "probability": 0.6514 + }, + { + "start": 7804.74, + "end": 7809.54, + "probability": 0.8134 + }, + { + "start": 7809.76, + "end": 7810.66, + "probability": 0.8713 + }, + { + "start": 7811.66, + "end": 7812.84, + "probability": 0.9727 + }, + { + "start": 7813.64, + "end": 7818.76, + "probability": 0.9574 + }, + { + "start": 7819.08, + "end": 7823.3, + "probability": 0.9936 + }, + { + "start": 7823.48, + "end": 7826.01, + "probability": 0.9915 + }, + { + "start": 7826.2, + "end": 7827.48, + "probability": 0.9208 + }, + { + "start": 7827.54, + "end": 7828.58, + "probability": 0.9857 + }, + { + "start": 7828.7, + "end": 7829.65, + "probability": 0.7339 + }, + { + "start": 7830.2, + "end": 7831.38, + "probability": 0.474 + }, + { + "start": 7831.68, + "end": 7835.88, + "probability": 0.6219 + }, + { + "start": 7837.54, + "end": 7837.78, + "probability": 0.0166 + }, + { + "start": 7838.14, + "end": 7840.84, + "probability": 0.1686 + }, + { + "start": 7840.94, + "end": 7841.32, + "probability": 0.4168 + }, + { + "start": 7841.4, + "end": 7842.62, + "probability": 0.0445 + }, + { + "start": 7842.62, + "end": 7843.46, + "probability": 0.1491 + }, + { + "start": 7843.58, + "end": 7843.94, + "probability": 0.5411 + }, + { + "start": 7843.94, + "end": 7843.98, + "probability": 0.4752 + }, + { + "start": 7844.08, + "end": 7848.54, + "probability": 0.7846 + }, + { + "start": 7849.18, + "end": 7851.52, + "probability": 0.9584 + }, + { + "start": 7852.54, + "end": 7853.02, + "probability": 0.7938 + }, + { + "start": 7853.08, + "end": 7853.56, + "probability": 0.7988 + }, + { + "start": 7853.62, + "end": 7855.98, + "probability": 0.9823 + }, + { + "start": 7856.32, + "end": 7857.36, + "probability": 0.9937 + }, + { + "start": 7857.46, + "end": 7857.89, + "probability": 0.7822 + }, + { + "start": 7858.3, + "end": 7859.76, + "probability": 0.9741 + }, + { + "start": 7860.38, + "end": 7863.44, + "probability": 0.9927 + }, + { + "start": 7863.54, + "end": 7864.44, + "probability": 0.8718 + }, + { + "start": 7864.82, + "end": 7866.12, + "probability": 0.7517 + }, + { + "start": 7866.9, + "end": 7870.46, + "probability": 0.7554 + }, + { + "start": 7871.08, + "end": 7873.66, + "probability": 0.9198 + }, + { + "start": 7874.42, + "end": 7877.52, + "probability": 0.7485 + }, + { + "start": 7877.58, + "end": 7882.22, + "probability": 0.8243 + }, + { + "start": 7882.5, + "end": 7884.24, + "probability": 0.981 + }, + { + "start": 7884.8, + "end": 7887.21, + "probability": 0.9273 + }, + { + "start": 7887.62, + "end": 7887.8, + "probability": 0.4337 + }, + { + "start": 7887.9, + "end": 7890.86, + "probability": 0.8915 + }, + { + "start": 7890.86, + "end": 7897.4, + "probability": 0.8188 + }, + { + "start": 7898.48, + "end": 7901.4, + "probability": 0.9061 + }, + { + "start": 7901.4, + "end": 7908.78, + "probability": 0.9763 + }, + { + "start": 7910.04, + "end": 7917.38, + "probability": 0.9893 + }, + { + "start": 7918.82, + "end": 7921.72, + "probability": 0.9749 + }, + { + "start": 7922.9, + "end": 7924.18, + "probability": 0.7834 + }, + { + "start": 7925.08, + "end": 7926.13, + "probability": 0.9541 + }, + { + "start": 7927.12, + "end": 7930.28, + "probability": 0.8905 + }, + { + "start": 7931.46, + "end": 7933.22, + "probability": 0.9915 + }, + { + "start": 7933.7, + "end": 7936.63, + "probability": 0.7268 + }, + { + "start": 7937.54, + "end": 7939.16, + "probability": 0.8005 + }, + { + "start": 7939.26, + "end": 7940.6, + "probability": 0.6764 + }, + { + "start": 7940.82, + "end": 7941.94, + "probability": 0.9282 + }, + { + "start": 7942.02, + "end": 7943.16, + "probability": 0.5862 + }, + { + "start": 7943.16, + "end": 7950.78, + "probability": 0.932 + }, + { + "start": 7951.68, + "end": 7954.94, + "probability": 0.9977 + }, + { + "start": 7955.56, + "end": 7958.02, + "probability": 0.9189 + }, + { + "start": 7958.58, + "end": 7959.96, + "probability": 0.6902 + }, + { + "start": 7960.72, + "end": 7961.58, + "probability": 0.9304 + }, + { + "start": 7963.29, + "end": 7970.84, + "probability": 0.8225 + }, + { + "start": 7974.12, + "end": 7979.88, + "probability": 0.9939 + }, + { + "start": 7980.72, + "end": 7981.9, + "probability": 0.7542 + }, + { + "start": 7982.18, + "end": 7989.04, + "probability": 0.8256 + }, + { + "start": 7989.2, + "end": 7991.54, + "probability": 0.9893 + }, + { + "start": 7991.8, + "end": 7993.08, + "probability": 0.6285 + }, + { + "start": 7993.5, + "end": 7995.48, + "probability": 0.9595 + }, + { + "start": 7999.38, + "end": 7999.66, + "probability": 0.0637 + }, + { + "start": 8000.92, + "end": 8002.44, + "probability": 0.0305 + }, + { + "start": 8005.26, + "end": 8005.32, + "probability": 0.1701 + }, + { + "start": 8006.36, + "end": 8006.76, + "probability": 0.1408 + }, + { + "start": 8007.6, + "end": 8010.48, + "probability": 0.6561 + }, + { + "start": 8011.04, + "end": 8019.46, + "probability": 0.9321 + }, + { + "start": 8020.66, + "end": 8023.02, + "probability": 0.9485 + }, + { + "start": 8023.14, + "end": 8024.1, + "probability": 0.857 + }, + { + "start": 8024.68, + "end": 8030.62, + "probability": 0.6669 + }, + { + "start": 8030.62, + "end": 8034.62, + "probability": 0.9964 + }, + { + "start": 8035.28, + "end": 8036.08, + "probability": 0.5844 + }, + { + "start": 8036.48, + "end": 8039.36, + "probability": 0.8088 + }, + { + "start": 8040.1, + "end": 8045.8, + "probability": 0.9813 + }, + { + "start": 8045.8, + "end": 8050.16, + "probability": 0.8758 + }, + { + "start": 8050.7, + "end": 8055.9, + "probability": 0.9728 + }, + { + "start": 8055.94, + "end": 8063.22, + "probability": 0.9832 + }, + { + "start": 8063.24, + "end": 8063.86, + "probability": 0.7928 + }, + { + "start": 8064.04, + "end": 8065.22, + "probability": 0.877 + }, + { + "start": 8065.6, + "end": 8066.44, + "probability": 0.7922 + }, + { + "start": 8067.22, + "end": 8069.29, + "probability": 0.9629 + }, + { + "start": 8069.88, + "end": 8072.48, + "probability": 0.8624 + }, + { + "start": 8072.68, + "end": 8074.36, + "probability": 0.9644 + }, + { + "start": 8075.3, + "end": 8076.66, + "probability": 0.5649 + }, + { + "start": 8076.78, + "end": 8080.4, + "probability": 0.783 + }, + { + "start": 8080.9, + "end": 8082.08, + "probability": 0.9873 + }, + { + "start": 8082.38, + "end": 8087.54, + "probability": 0.9883 + }, + { + "start": 8087.54, + "end": 8092.92, + "probability": 0.9933 + }, + { + "start": 8093.06, + "end": 8094.6, + "probability": 0.9841 + }, + { + "start": 8095.0, + "end": 8096.32, + "probability": 0.8133 + }, + { + "start": 8096.54, + "end": 8098.62, + "probability": 0.6771 + }, + { + "start": 8098.86, + "end": 8099.74, + "probability": 0.7978 + }, + { + "start": 8100.56, + "end": 8101.79, + "probability": 0.8416 + }, + { + "start": 8103.18, + "end": 8103.84, + "probability": 0.8458 + }, + { + "start": 8104.26, + "end": 8105.82, + "probability": 0.8846 + }, + { + "start": 8106.1, + "end": 8106.94, + "probability": 0.7915 + }, + { + "start": 8107.0, + "end": 8108.17, + "probability": 0.9785 + }, + { + "start": 8109.22, + "end": 8110.49, + "probability": 0.9617 + }, + { + "start": 8111.32, + "end": 8117.12, + "probability": 0.9701 + }, + { + "start": 8117.6, + "end": 8119.89, + "probability": 0.9961 + }, + { + "start": 8120.5, + "end": 8125.7, + "probability": 0.9977 + }, + { + "start": 8126.36, + "end": 8127.82, + "probability": 0.7651 + }, + { + "start": 8128.56, + "end": 8129.36, + "probability": 0.8922 + }, + { + "start": 8130.12, + "end": 8135.36, + "probability": 0.9834 + }, + { + "start": 8136.32, + "end": 8137.78, + "probability": 0.8579 + }, + { + "start": 8138.24, + "end": 8140.32, + "probability": 0.9754 + }, + { + "start": 8140.48, + "end": 8143.5, + "probability": 0.9872 + }, + { + "start": 8144.08, + "end": 8145.74, + "probability": 0.9925 + }, + { + "start": 8146.52, + "end": 8150.2, + "probability": 0.9517 + }, + { + "start": 8151.12, + "end": 8152.34, + "probability": 0.7157 + }, + { + "start": 8153.06, + "end": 8153.51, + "probability": 0.9385 + }, + { + "start": 8155.42, + "end": 8156.14, + "probability": 0.9399 + }, + { + "start": 8156.76, + "end": 8166.12, + "probability": 0.9852 + }, + { + "start": 8166.22, + "end": 8166.94, + "probability": 0.9763 + }, + { + "start": 8167.82, + "end": 8169.66, + "probability": 0.9732 + }, + { + "start": 8171.58, + "end": 8176.64, + "probability": 0.9768 + }, + { + "start": 8177.36, + "end": 8179.36, + "probability": 0.9929 + }, + { + "start": 8179.92, + "end": 8181.3, + "probability": 0.9369 + }, + { + "start": 8182.32, + "end": 8187.97, + "probability": 0.9984 + }, + { + "start": 8189.12, + "end": 8189.9, + "probability": 0.5433 + }, + { + "start": 8191.0, + "end": 8191.86, + "probability": 0.9546 + }, + { + "start": 8193.08, + "end": 8198.3, + "probability": 0.9756 + }, + { + "start": 8198.6, + "end": 8199.96, + "probability": 0.8644 + }, + { + "start": 8200.36, + "end": 8203.02, + "probability": 0.7252 + }, + { + "start": 8203.54, + "end": 8205.3, + "probability": 0.9957 + }, + { + "start": 8205.76, + "end": 8212.16, + "probability": 0.7055 + }, + { + "start": 8213.28, + "end": 8214.5, + "probability": 0.9109 + }, + { + "start": 8215.34, + "end": 8217.04, + "probability": 0.7226 + }, + { + "start": 8218.64, + "end": 8219.75, + "probability": 0.8257 + }, + { + "start": 8221.04, + "end": 8222.46, + "probability": 0.9969 + }, + { + "start": 8223.94, + "end": 8231.5, + "probability": 0.8739 + }, + { + "start": 8231.86, + "end": 8234.8, + "probability": 0.9253 + }, + { + "start": 8234.8, + "end": 8238.5, + "probability": 0.8044 + }, + { + "start": 8239.42, + "end": 8240.68, + "probability": 0.9346 + }, + { + "start": 8240.84, + "end": 8244.24, + "probability": 0.9707 + }, + { + "start": 8244.46, + "end": 8245.5, + "probability": 0.8966 + }, + { + "start": 8245.58, + "end": 8248.16, + "probability": 0.798 + }, + { + "start": 8248.64, + "end": 8252.1, + "probability": 0.9963 + }, + { + "start": 8252.16, + "end": 8252.76, + "probability": 0.8034 + }, + { + "start": 8252.96, + "end": 8255.26, + "probability": 0.9395 + }, + { + "start": 8255.7, + "end": 8260.12, + "probability": 0.5709 + }, + { + "start": 8281.72, + "end": 8282.3, + "probability": 0.3647 + }, + { + "start": 8282.38, + "end": 8283.64, + "probability": 0.3826 + }, + { + "start": 8284.48, + "end": 8285.72, + "probability": 0.9941 + }, + { + "start": 8288.44, + "end": 8289.86, + "probability": 0.2907 + }, + { + "start": 8290.08, + "end": 8290.6, + "probability": 0.6653 + }, + { + "start": 8290.72, + "end": 8293.24, + "probability": 0.3149 + }, + { + "start": 8293.24, + "end": 8293.58, + "probability": 0.5367 + }, + { + "start": 8293.78, + "end": 8302.4, + "probability": 0.9415 + }, + { + "start": 8303.86, + "end": 8309.44, + "probability": 0.9459 + }, + { + "start": 8309.52, + "end": 8310.13, + "probability": 0.3069 + }, + { + "start": 8310.42, + "end": 8313.83, + "probability": 0.9727 + }, + { + "start": 8316.38, + "end": 8320.42, + "probability": 0.9333 + }, + { + "start": 8320.56, + "end": 8322.13, + "probability": 0.9965 + }, + { + "start": 8323.02, + "end": 8325.56, + "probability": 0.868 + }, + { + "start": 8326.9, + "end": 8330.88, + "probability": 0.9509 + }, + { + "start": 8331.68, + "end": 8332.48, + "probability": 0.9866 + }, + { + "start": 8333.84, + "end": 8335.24, + "probability": 0.7875 + }, + { + "start": 8336.26, + "end": 8338.64, + "probability": 0.8298 + }, + { + "start": 8339.9, + "end": 8341.54, + "probability": 0.9863 + }, + { + "start": 8344.24, + "end": 8350.54, + "probability": 0.9769 + }, + { + "start": 8351.56, + "end": 8353.83, + "probability": 0.7032 + }, + { + "start": 8354.9, + "end": 8355.98, + "probability": 0.4927 + }, + { + "start": 8356.14, + "end": 8356.78, + "probability": 0.5142 + }, + { + "start": 8357.08, + "end": 8364.1, + "probability": 0.8635 + }, + { + "start": 8367.8, + "end": 8369.6, + "probability": 0.8349 + }, + { + "start": 8369.82, + "end": 8374.1, + "probability": 0.8999 + }, + { + "start": 8374.4, + "end": 8375.68, + "probability": 0.8431 + }, + { + "start": 8376.36, + "end": 8378.8, + "probability": 0.5211 + }, + { + "start": 8380.68, + "end": 8384.82, + "probability": 0.1193 + }, + { + "start": 8384.82, + "end": 8387.14, + "probability": 0.795 + }, + { + "start": 8387.14, + "end": 8393.26, + "probability": 0.9521 + }, + { + "start": 8397.75, + "end": 8400.26, + "probability": 0.9989 + }, + { + "start": 8401.04, + "end": 8407.64, + "probability": 0.9959 + }, + { + "start": 8410.14, + "end": 8422.38, + "probability": 0.9868 + }, + { + "start": 8423.26, + "end": 8425.38, + "probability": 0.7646 + }, + { + "start": 8426.28, + "end": 8428.98, + "probability": 0.9896 + }, + { + "start": 8429.54, + "end": 8431.94, + "probability": 0.9163 + }, + { + "start": 8432.08, + "end": 8432.78, + "probability": 0.8255 + }, + { + "start": 8433.24, + "end": 8435.52, + "probability": 0.609 + }, + { + "start": 8435.92, + "end": 8440.47, + "probability": 0.9902 + }, + { + "start": 8440.66, + "end": 8441.37, + "probability": 0.6052 + }, + { + "start": 8441.44, + "end": 8442.89, + "probability": 0.7358 + }, + { + "start": 8443.44, + "end": 8449.66, + "probability": 0.9764 + }, + { + "start": 8449.66, + "end": 8457.46, + "probability": 0.9667 + }, + { + "start": 8458.22, + "end": 8460.18, + "probability": 0.9025 + }, + { + "start": 8460.7, + "end": 8462.15, + "probability": 0.5393 + }, + { + "start": 8463.5, + "end": 8466.76, + "probability": 0.7846 + }, + { + "start": 8467.78, + "end": 8471.49, + "probability": 0.7301 + }, + { + "start": 8472.78, + "end": 8475.04, + "probability": 0.7563 + }, + { + "start": 8475.12, + "end": 8476.0, + "probability": 0.8092 + }, + { + "start": 8476.12, + "end": 8478.92, + "probability": 0.5357 + }, + { + "start": 8480.6, + "end": 8489.0, + "probability": 0.9219 + }, + { + "start": 8489.18, + "end": 8492.25, + "probability": 0.9888 + }, + { + "start": 8492.62, + "end": 8496.32, + "probability": 0.9534 + }, + { + "start": 8496.44, + "end": 8498.56, + "probability": 0.7783 + }, + { + "start": 8498.88, + "end": 8501.16, + "probability": 0.9945 + }, + { + "start": 8502.26, + "end": 8506.28, + "probability": 0.9784 + }, + { + "start": 8507.22, + "end": 8512.02, + "probability": 0.9285 + }, + { + "start": 8512.56, + "end": 8513.97, + "probability": 0.908 + }, + { + "start": 8515.02, + "end": 8516.98, + "probability": 0.9581 + }, + { + "start": 8516.98, + "end": 8519.4, + "probability": 0.9158 + }, + { + "start": 8519.9, + "end": 8521.16, + "probability": 0.9932 + }, + { + "start": 8521.82, + "end": 8523.14, + "probability": 0.6851 + }, + { + "start": 8523.24, + "end": 8524.08, + "probability": 0.8522 + }, + { + "start": 8524.6, + "end": 8526.86, + "probability": 0.74 + }, + { + "start": 8527.36, + "end": 8529.48, + "probability": 0.6466 + }, + { + "start": 8529.8, + "end": 8532.66, + "probability": 0.972 + }, + { + "start": 8532.68, + "end": 8534.22, + "probability": 0.668 + }, + { + "start": 8534.7, + "end": 8535.87, + "probability": 0.95 + }, + { + "start": 8536.14, + "end": 8537.28, + "probability": 0.3239 + }, + { + "start": 8537.4, + "end": 8538.14, + "probability": 0.5537 + }, + { + "start": 8538.2, + "end": 8539.28, + "probability": 0.614 + }, + { + "start": 8540.1, + "end": 8544.46, + "probability": 0.9471 + }, + { + "start": 8544.7, + "end": 8545.52, + "probability": 0.8281 + }, + { + "start": 8546.5, + "end": 8547.54, + "probability": 0.6903 + }, + { + "start": 8550.64, + "end": 8555.96, + "probability": 0.9523 + }, + { + "start": 8556.55, + "end": 8561.66, + "probability": 0.9993 + }, + { + "start": 8561.66, + "end": 8565.58, + "probability": 0.7469 + }, + { + "start": 8565.64, + "end": 8566.79, + "probability": 0.5 + }, + { + "start": 8568.4, + "end": 8571.46, + "probability": 0.8035 + }, + { + "start": 8572.7, + "end": 8577.32, + "probability": 0.76 + }, + { + "start": 8577.56, + "end": 8578.21, + "probability": 0.8601 + }, + { + "start": 8579.58, + "end": 8581.98, + "probability": 0.8906 + }, + { + "start": 8582.11, + "end": 8586.38, + "probability": 0.9636 + }, + { + "start": 8586.46, + "end": 8588.96, + "probability": 0.7133 + }, + { + "start": 8589.08, + "end": 8592.24, + "probability": 0.8888 + }, + { + "start": 8592.96, + "end": 8594.58, + "probability": 0.7367 + }, + { + "start": 8595.44, + "end": 8596.22, + "probability": 0.6484 + }, + { + "start": 8596.36, + "end": 8597.76, + "probability": 0.292 + }, + { + "start": 8597.82, + "end": 8598.58, + "probability": 0.3373 + }, + { + "start": 8598.68, + "end": 8599.78, + "probability": 0.522 + }, + { + "start": 8599.94, + "end": 8602.1, + "probability": 0.7286 + }, + { + "start": 8602.68, + "end": 8605.4, + "probability": 0.9414 + }, + { + "start": 8605.7, + "end": 8608.68, + "probability": 0.9458 + }, + { + "start": 8608.76, + "end": 8610.7, + "probability": 0.9848 + }, + { + "start": 8610.98, + "end": 8611.54, + "probability": 0.9932 + }, + { + "start": 8612.64, + "end": 8613.34, + "probability": 0.3698 + }, + { + "start": 8614.2, + "end": 8620.7, + "probability": 0.7469 + }, + { + "start": 8620.86, + "end": 8623.46, + "probability": 0.8815 + }, + { + "start": 8623.98, + "end": 8626.37, + "probability": 0.9129 + }, + { + "start": 8626.9, + "end": 8629.06, + "probability": 0.7825 + }, + { + "start": 8629.16, + "end": 8633.12, + "probability": 0.9533 + }, + { + "start": 8633.24, + "end": 8635.64, + "probability": 0.8537 + }, + { + "start": 8637.52, + "end": 8639.06, + "probability": 0.9243 + }, + { + "start": 8640.12, + "end": 8640.78, + "probability": 0.8412 + }, + { + "start": 8641.42, + "end": 8642.62, + "probability": 0.8844 + }, + { + "start": 8643.14, + "end": 8644.6, + "probability": 0.7357 + }, + { + "start": 8644.76, + "end": 8652.02, + "probability": 0.9651 + }, + { + "start": 8655.56, + "end": 8658.22, + "probability": 0.971 + }, + { + "start": 8658.42, + "end": 8666.34, + "probability": 0.9121 + }, + { + "start": 8667.66, + "end": 8669.28, + "probability": 0.7678 + }, + { + "start": 8669.76, + "end": 8672.32, + "probability": 0.9468 + }, + { + "start": 8673.1, + "end": 8675.46, + "probability": 0.7089 + }, + { + "start": 8675.82, + "end": 8677.14, + "probability": 0.6147 + }, + { + "start": 8677.5, + "end": 8678.59, + "probability": 0.9771 + }, + { + "start": 8679.18, + "end": 8681.96, + "probability": 0.995 + }, + { + "start": 8689.34, + "end": 8690.16, + "probability": 0.6199 + }, + { + "start": 8690.26, + "end": 8691.18, + "probability": 0.849 + }, + { + "start": 8691.44, + "end": 8693.86, + "probability": 0.9972 + }, + { + "start": 8695.32, + "end": 8697.2, + "probability": 0.9666 + }, + { + "start": 8698.14, + "end": 8702.28, + "probability": 0.9487 + }, + { + "start": 8706.22, + "end": 8707.2, + "probability": 0.5786 + }, + { + "start": 8708.92, + "end": 8710.96, + "probability": 0.9932 + }, + { + "start": 8711.14, + "end": 8712.22, + "probability": 0.8311 + }, + { + "start": 8712.3, + "end": 8713.44, + "probability": 0.7373 + }, + { + "start": 8714.35, + "end": 8717.64, + "probability": 0.8677 + }, + { + "start": 8718.42, + "end": 8720.36, + "probability": 0.9919 + }, + { + "start": 8721.7, + "end": 8725.86, + "probability": 0.9729 + }, + { + "start": 8726.62, + "end": 8728.08, + "probability": 0.9451 + }, + { + "start": 8729.48, + "end": 8739.88, + "probability": 0.9238 + }, + { + "start": 8740.32, + "end": 8743.02, + "probability": 0.832 + }, + { + "start": 8743.52, + "end": 8744.58, + "probability": 0.8684 + }, + { + "start": 8745.3, + "end": 8746.8, + "probability": 0.9644 + }, + { + "start": 8747.3, + "end": 8749.66, + "probability": 0.5318 + }, + { + "start": 8750.78, + "end": 8754.1, + "probability": 0.9907 + }, + { + "start": 8754.96, + "end": 8757.18, + "probability": 0.9235 + }, + { + "start": 8758.32, + "end": 8761.24, + "probability": 0.9183 + }, + { + "start": 8762.2, + "end": 8763.64, + "probability": 0.8908 + }, + { + "start": 8763.72, + "end": 8764.1, + "probability": 0.395 + }, + { + "start": 8764.16, + "end": 8765.22, + "probability": 0.9687 + }, + { + "start": 8765.62, + "end": 8766.4, + "probability": 0.9231 + }, + { + "start": 8766.76, + "end": 8768.96, + "probability": 0.4563 + }, + { + "start": 8769.36, + "end": 8773.58, + "probability": 0.9453 + }, + { + "start": 8774.12, + "end": 8774.44, + "probability": 0.5512 + }, + { + "start": 8774.56, + "end": 8775.76, + "probability": 0.6743 + }, + { + "start": 8776.12, + "end": 8777.52, + "probability": 0.7637 + }, + { + "start": 8778.82, + "end": 8779.68, + "probability": 0.8246 + }, + { + "start": 8779.74, + "end": 8781.0, + "probability": 0.8361 + }, + { + "start": 8781.02, + "end": 8786.58, + "probability": 0.9639 + }, + { + "start": 8786.94, + "end": 8792.68, + "probability": 0.7582 + }, + { + "start": 8793.06, + "end": 8794.65, + "probability": 0.6758 + }, + { + "start": 8795.48, + "end": 8797.0, + "probability": 0.9766 + }, + { + "start": 8797.18, + "end": 8798.32, + "probability": 0.8599 + }, + { + "start": 8799.1, + "end": 8800.78, + "probability": 0.8721 + }, + { + "start": 8802.64, + "end": 8803.76, + "probability": 0.5672 + }, + { + "start": 8803.88, + "end": 8805.38, + "probability": 0.5537 + }, + { + "start": 8805.48, + "end": 8806.54, + "probability": 0.913 + }, + { + "start": 8806.8, + "end": 8807.88, + "probability": 0.8847 + }, + { + "start": 8808.18, + "end": 8809.96, + "probability": 0.8012 + }, + { + "start": 8809.96, + "end": 8814.32, + "probability": 0.9554 + }, + { + "start": 8814.56, + "end": 8817.48, + "probability": 0.8935 + }, + { + "start": 8818.3, + "end": 8820.4, + "probability": 0.5476 + }, + { + "start": 8823.04, + "end": 8824.98, + "probability": 0.8764 + }, + { + "start": 8826.4, + "end": 8828.5, + "probability": 0.9784 + }, + { + "start": 8828.88, + "end": 8831.42, + "probability": 0.7642 + }, + { + "start": 8831.9, + "end": 8832.32, + "probability": 0.8228 + }, + { + "start": 8833.28, + "end": 8834.76, + "probability": 0.9771 + }, + { + "start": 8835.08, + "end": 8837.94, + "probability": 0.9932 + }, + { + "start": 8839.32, + "end": 8840.12, + "probability": 0.7292 + }, + { + "start": 8840.24, + "end": 8840.86, + "probability": 0.4382 + }, + { + "start": 8840.86, + "end": 8841.6, + "probability": 0.73 + }, + { + "start": 8842.52, + "end": 8844.27, + "probability": 0.7157 + }, + { + "start": 8844.46, + "end": 8844.9, + "probability": 0.0939 + }, + { + "start": 8845.0, + "end": 8845.12, + "probability": 0.4043 + }, + { + "start": 8845.12, + "end": 8845.6, + "probability": 0.4693 + }, + { + "start": 8845.6, + "end": 8845.86, + "probability": 0.8848 + }, + { + "start": 8845.92, + "end": 8846.08, + "probability": 0.8854 + }, + { + "start": 8846.18, + "end": 8846.5, + "probability": 0.821 + }, + { + "start": 8846.5, + "end": 8846.98, + "probability": 0.6129 + }, + { + "start": 8846.98, + "end": 8847.82, + "probability": 0.7689 + }, + { + "start": 8847.88, + "end": 8848.44, + "probability": 0.4124 + }, + { + "start": 8848.64, + "end": 8851.14, + "probability": 0.2504 + }, + { + "start": 8851.14, + "end": 8851.56, + "probability": 0.5541 + }, + { + "start": 8851.86, + "end": 8855.36, + "probability": 0.9939 + }, + { + "start": 8855.36, + "end": 8859.26, + "probability": 0.97 + }, + { + "start": 8859.94, + "end": 8863.74, + "probability": 0.9669 + }, + { + "start": 8864.6, + "end": 8868.54, + "probability": 0.9832 + }, + { + "start": 8868.94, + "end": 8870.5, + "probability": 0.8139 + }, + { + "start": 8871.44, + "end": 8872.12, + "probability": 0.7451 + }, + { + "start": 8872.32, + "end": 8873.5, + "probability": 0.7829 + }, + { + "start": 8873.68, + "end": 8875.03, + "probability": 0.8972 + }, + { + "start": 8875.2, + "end": 8876.74, + "probability": 0.708 + }, + { + "start": 8877.16, + "end": 8878.06, + "probability": 0.9886 + }, + { + "start": 8878.14, + "end": 8879.78, + "probability": 0.2763 + }, + { + "start": 8880.12, + "end": 8880.76, + "probability": 0.6066 + }, + { + "start": 8880.76, + "end": 8880.76, + "probability": 0.7498 + }, + { + "start": 8880.76, + "end": 8880.98, + "probability": 0.7818 + }, + { + "start": 8881.1, + "end": 8881.74, + "probability": 0.7172 + }, + { + "start": 8881.88, + "end": 8882.25, + "probability": 0.9185 + }, + { + "start": 8882.44, + "end": 8883.42, + "probability": 0.6986 + }, + { + "start": 8883.52, + "end": 8884.08, + "probability": 0.6349 + }, + { + "start": 8884.14, + "end": 8885.08, + "probability": 0.6133 + }, + { + "start": 8885.34, + "end": 8885.66, + "probability": 0.6182 + }, + { + "start": 8886.36, + "end": 8886.66, + "probability": 0.5702 + }, + { + "start": 8886.74, + "end": 8887.34, + "probability": 0.6237 + }, + { + "start": 8887.78, + "end": 8889.14, + "probability": 0.9575 + }, + { + "start": 8889.38, + "end": 8889.78, + "probability": 0.3107 + }, + { + "start": 8889.9, + "end": 8890.98, + "probability": 0.755 + }, + { + "start": 8891.1, + "end": 8891.8, + "probability": 0.9061 + }, + { + "start": 8891.94, + "end": 8893.08, + "probability": 0.5903 + }, + { + "start": 8893.32, + "end": 8897.12, + "probability": 0.9761 + }, + { + "start": 8897.18, + "end": 8897.5, + "probability": 0.7047 + }, + { + "start": 8897.54, + "end": 8899.35, + "probability": 0.3648 + }, + { + "start": 8900.76, + "end": 8905.16, + "probability": 0.8796 + }, + { + "start": 8905.56, + "end": 8906.22, + "probability": 0.7089 + }, + { + "start": 8907.3, + "end": 8908.08, + "probability": 0.7395 + }, + { + "start": 8909.06, + "end": 8911.56, + "probability": 0.9689 + }, + { + "start": 8913.46, + "end": 8914.09, + "probability": 0.9508 + }, + { + "start": 8915.08, + "end": 8915.3, + "probability": 0.4751 + }, + { + "start": 8915.3, + "end": 8915.98, + "probability": 0.8918 + }, + { + "start": 8916.28, + "end": 8919.42, + "probability": 0.8304 + }, + { + "start": 8919.58, + "end": 8922.28, + "probability": 0.9868 + }, + { + "start": 8922.66, + "end": 8923.36, + "probability": 0.5187 + }, + { + "start": 8923.56, + "end": 8927.77, + "probability": 0.503 + }, + { + "start": 8928.54, + "end": 8930.08, + "probability": 0.9168 + }, + { + "start": 8930.32, + "end": 8930.94, + "probability": 0.8642 + }, + { + "start": 8931.02, + "end": 8931.82, + "probability": 0.9674 + }, + { + "start": 8931.9, + "end": 8932.7, + "probability": 0.9534 + }, + { + "start": 8932.98, + "end": 8933.95, + "probability": 0.896 + }, + { + "start": 8934.86, + "end": 8937.56, + "probability": 0.7786 + }, + { + "start": 8938.32, + "end": 8939.32, + "probability": 0.7613 + }, + { + "start": 8939.44, + "end": 8941.88, + "probability": 0.6808 + }, + { + "start": 8941.94, + "end": 8943.42, + "probability": 0.9046 + }, + { + "start": 8943.6, + "end": 8944.5, + "probability": 0.7898 + }, + { + "start": 8944.68, + "end": 8945.78, + "probability": 0.5882 + }, + { + "start": 8946.66, + "end": 8947.84, + "probability": 0.9757 + }, + { + "start": 8949.62, + "end": 8951.38, + "probability": 0.8022 + }, + { + "start": 8951.64, + "end": 8952.74, + "probability": 0.6837 + }, + { + "start": 8952.74, + "end": 8952.82, + "probability": 0.2996 + }, + { + "start": 8952.82, + "end": 8952.82, + "probability": 0.3396 + }, + { + "start": 8952.82, + "end": 8953.9, + "probability": 0.5892 + }, + { + "start": 8954.2, + "end": 8955.51, + "probability": 0.6941 + }, + { + "start": 8955.8, + "end": 8956.58, + "probability": 0.988 + }, + { + "start": 8957.18, + "end": 8959.22, + "probability": 0.6888 + }, + { + "start": 8959.82, + "end": 8962.82, + "probability": 0.776 + }, + { + "start": 8963.42, + "end": 8964.4, + "probability": 0.9278 + }, + { + "start": 8964.62, + "end": 8967.16, + "probability": 0.9233 + }, + { + "start": 8967.38, + "end": 8967.92, + "probability": 0.4854 + }, + { + "start": 8968.08, + "end": 8969.9, + "probability": 0.4285 + }, + { + "start": 8970.04, + "end": 8970.86, + "probability": 0.5433 + }, + { + "start": 8971.06, + "end": 8973.16, + "probability": 0.782 + }, + { + "start": 8973.3, + "end": 8973.72, + "probability": 0.5427 + }, + { + "start": 8973.72, + "end": 8975.54, + "probability": 0.3696 + }, + { + "start": 8975.68, + "end": 8976.34, + "probability": 0.3137 + }, + { + "start": 8976.64, + "end": 8976.8, + "probability": 0.2439 + }, + { + "start": 8976.8, + "end": 8983.64, + "probability": 0.9854 + }, + { + "start": 8985.02, + "end": 8987.66, + "probability": 0.8447 + }, + { + "start": 8988.28, + "end": 8990.24, + "probability": 0.7051 + }, + { + "start": 8990.78, + "end": 8994.18, + "probability": 0.9941 + }, + { + "start": 8994.64, + "end": 8996.54, + "probability": 0.62 + }, + { + "start": 8997.28, + "end": 8999.12, + "probability": 0.8867 + }, + { + "start": 8999.52, + "end": 9000.86, + "probability": 0.8317 + }, + { + "start": 9001.54, + "end": 9005.3, + "probability": 0.9795 + }, + { + "start": 9005.74, + "end": 9008.42, + "probability": 0.9045 + }, + { + "start": 9008.56, + "end": 9010.98, + "probability": 0.7442 + }, + { + "start": 9011.88, + "end": 9014.04, + "probability": 0.9597 + }, + { + "start": 9014.58, + "end": 9017.72, + "probability": 0.9774 + }, + { + "start": 9018.7, + "end": 9022.46, + "probability": 0.5615 + }, + { + "start": 9023.02, + "end": 9026.03, + "probability": 0.6719 + }, + { + "start": 9026.52, + "end": 9027.3, + "probability": 0.3356 + }, + { + "start": 9027.7, + "end": 9029.36, + "probability": 0.2958 + }, + { + "start": 9029.46, + "end": 9029.7, + "probability": 0.2354 + }, + { + "start": 9029.7, + "end": 9030.98, + "probability": 0.1485 + }, + { + "start": 9031.18, + "end": 9034.18, + "probability": 0.985 + }, + { + "start": 9034.32, + "end": 9036.26, + "probability": 0.7556 + }, + { + "start": 9036.58, + "end": 9038.5, + "probability": 0.8154 + }, + { + "start": 9039.14, + "end": 9040.94, + "probability": 0.7821 + }, + { + "start": 9041.66, + "end": 9043.34, + "probability": 0.967 + }, + { + "start": 9043.8, + "end": 9045.22, + "probability": 0.7094 + }, + { + "start": 9045.8, + "end": 9046.98, + "probability": 0.9211 + }, + { + "start": 9046.98, + "end": 9047.44, + "probability": 0.6262 + }, + { + "start": 9047.94, + "end": 9047.94, + "probability": 0.4251 + }, + { + "start": 9048.72, + "end": 9049.72, + "probability": 0.8055 + }, + { + "start": 9050.36, + "end": 9051.27, + "probability": 0.5035 + }, + { + "start": 9051.78, + "end": 9053.78, + "probability": 0.7472 + }, + { + "start": 9053.78, + "end": 9054.96, + "probability": 0.6785 + }, + { + "start": 9055.32, + "end": 9058.04, + "probability": 0.2344 + }, + { + "start": 9058.16, + "end": 9058.62, + "probability": 0.5909 + }, + { + "start": 9058.62, + "end": 9059.16, + "probability": 0.5265 + }, + { + "start": 9059.24, + "end": 9059.98, + "probability": 0.6153 + }, + { + "start": 9060.2, + "end": 9061.02, + "probability": 0.8648 + }, + { + "start": 9064.9, + "end": 9065.14, + "probability": 0.2497 + }, + { + "start": 9069.34, + "end": 9072.3, + "probability": 0.0293 + }, + { + "start": 9073.04, + "end": 9077.26, + "probability": 0.0181 + }, + { + "start": 9078.02, + "end": 9079.32, + "probability": 0.0942 + }, + { + "start": 9082.0, + "end": 9082.12, + "probability": 0.1492 + }, + { + "start": 9082.12, + "end": 9084.12, + "probability": 0.3045 + }, + { + "start": 9084.72, + "end": 9085.48, + "probability": 0.658 + }, + { + "start": 9085.48, + "end": 9087.54, + "probability": 0.7403 + }, + { + "start": 9088.44, + "end": 9090.7, + "probability": 0.928 + }, + { + "start": 9091.02, + "end": 9092.3, + "probability": 0.8895 + }, + { + "start": 9092.46, + "end": 9094.18, + "probability": 0.209 + }, + { + "start": 9095.18, + "end": 9097.76, + "probability": 0.9132 + }, + { + "start": 9098.4, + "end": 9102.66, + "probability": 0.6176 + }, + { + "start": 9105.52, + "end": 9107.32, + "probability": 0.0322 + }, + { + "start": 9107.54, + "end": 9112.44, + "probability": 0.0579 + }, + { + "start": 9114.3, + "end": 9115.9, + "probability": 0.1304 + }, + { + "start": 9126.62, + "end": 9127.62, + "probability": 0.0013 + }, + { + "start": 9132.24, + "end": 9136.04, + "probability": 0.9804 + }, + { + "start": 9137.28, + "end": 9140.86, + "probability": 0.9905 + }, + { + "start": 9141.78, + "end": 9149.42, + "probability": 0.9934 + }, + { + "start": 9150.84, + "end": 9158.26, + "probability": 0.9536 + }, + { + "start": 9159.8, + "end": 9163.78, + "probability": 0.9966 + }, + { + "start": 9165.08, + "end": 9169.16, + "probability": 0.9535 + }, + { + "start": 9170.32, + "end": 9174.38, + "probability": 0.9757 + }, + { + "start": 9176.0, + "end": 9180.1, + "probability": 0.9784 + }, + { + "start": 9182.34, + "end": 9184.3, + "probability": 0.9731 + }, + { + "start": 9187.1, + "end": 9190.14, + "probability": 0.912 + }, + { + "start": 9191.56, + "end": 9197.46, + "probability": 0.7846 + }, + { + "start": 9199.28, + "end": 9206.58, + "probability": 0.9509 + }, + { + "start": 9208.26, + "end": 9211.72, + "probability": 0.9964 + }, + { + "start": 9212.32, + "end": 9216.12, + "probability": 0.9284 + }, + { + "start": 9218.54, + "end": 9221.62, + "probability": 0.6881 + }, + { + "start": 9222.48, + "end": 9224.97, + "probability": 0.8354 + }, + { + "start": 9226.88, + "end": 9228.66, + "probability": 0.9449 + }, + { + "start": 9228.82, + "end": 9229.94, + "probability": 0.6992 + }, + { + "start": 9230.54, + "end": 9234.18, + "probability": 0.9769 + }, + { + "start": 9235.14, + "end": 9239.78, + "probability": 0.9307 + }, + { + "start": 9239.78, + "end": 9248.56, + "probability": 0.9974 + }, + { + "start": 9248.66, + "end": 9251.24, + "probability": 0.8728 + }, + { + "start": 9253.36, + "end": 9256.86, + "probability": 0.991 + }, + { + "start": 9256.86, + "end": 9265.24, + "probability": 0.9948 + }, + { + "start": 9267.7, + "end": 9271.16, + "probability": 0.9981 + }, + { + "start": 9273.88, + "end": 9276.7, + "probability": 0.8682 + }, + { + "start": 9278.18, + "end": 9282.46, + "probability": 0.7903 + }, + { + "start": 9283.9, + "end": 9291.1, + "probability": 0.8318 + }, + { + "start": 9291.18, + "end": 9292.15, + "probability": 0.9119 + }, + { + "start": 9293.4, + "end": 9295.04, + "probability": 0.9237 + }, + { + "start": 9295.12, + "end": 9297.08, + "probability": 0.7498 + }, + { + "start": 9299.5, + "end": 9306.68, + "probability": 0.8319 + }, + { + "start": 9306.74, + "end": 9307.58, + "probability": 0.7116 + }, + { + "start": 9308.68, + "end": 9309.98, + "probability": 0.9248 + }, + { + "start": 9310.06, + "end": 9313.72, + "probability": 0.9136 + }, + { + "start": 9315.6, + "end": 9319.78, + "probability": 0.6537 + }, + { + "start": 9320.5, + "end": 9323.4, + "probability": 0.9692 + }, + { + "start": 9325.86, + "end": 9330.4, + "probability": 0.9978 + }, + { + "start": 9331.0, + "end": 9332.07, + "probability": 0.918 + }, + { + "start": 9333.26, + "end": 9338.46, + "probability": 0.9574 + }, + { + "start": 9338.94, + "end": 9342.1, + "probability": 0.9663 + }, + { + "start": 9342.2, + "end": 9343.06, + "probability": 0.8886 + }, + { + "start": 9343.18, + "end": 9346.72, + "probability": 0.9948 + }, + { + "start": 9348.22, + "end": 9350.06, + "probability": 0.8123 + }, + { + "start": 9350.94, + "end": 9356.32, + "probability": 0.9457 + }, + { + "start": 9357.44, + "end": 9362.38, + "probability": 0.8921 + }, + { + "start": 9362.5, + "end": 9364.02, + "probability": 0.7256 + }, + { + "start": 9364.22, + "end": 9365.8, + "probability": 0.9051 + }, + { + "start": 9366.6, + "end": 9367.04, + "probability": 0.9102 + }, + { + "start": 9367.12, + "end": 9370.5, + "probability": 0.8362 + }, + { + "start": 9371.12, + "end": 9372.58, + "probability": 0.8126 + }, + { + "start": 9372.64, + "end": 9376.52, + "probability": 0.9949 + }, + { + "start": 9376.68, + "end": 9378.74, + "probability": 0.9285 + }, + { + "start": 9378.9, + "end": 9382.74, + "probability": 0.9301 + }, + { + "start": 9383.24, + "end": 9386.54, + "probability": 0.9087 + }, + { + "start": 9386.58, + "end": 9392.5, + "probability": 0.9901 + }, + { + "start": 9392.9, + "end": 9396.04, + "probability": 0.8692 + }, + { + "start": 9396.72, + "end": 9402.42, + "probability": 0.9846 + }, + { + "start": 9402.42, + "end": 9408.88, + "probability": 0.9994 + }, + { + "start": 9409.7, + "end": 9412.44, + "probability": 0.9812 + }, + { + "start": 9414.02, + "end": 9421.56, + "probability": 0.9791 + }, + { + "start": 9422.28, + "end": 9427.86, + "probability": 0.9932 + }, + { + "start": 9427.94, + "end": 9433.32, + "probability": 0.9957 + }, + { + "start": 9433.66, + "end": 9436.52, + "probability": 0.7253 + }, + { + "start": 9437.34, + "end": 9443.46, + "probability": 0.9775 + }, + { + "start": 9443.52, + "end": 9444.0, + "probability": 0.743 + }, + { + "start": 9444.14, + "end": 9446.22, + "probability": 0.9436 + }, + { + "start": 9446.3, + "end": 9449.62, + "probability": 0.7503 + }, + { + "start": 9451.32, + "end": 9452.16, + "probability": 0.9008 + }, + { + "start": 9452.26, + "end": 9455.42, + "probability": 0.9863 + }, + { + "start": 9455.44, + "end": 9462.42, + "probability": 0.8419 + }, + { + "start": 9463.66, + "end": 9463.94, + "probability": 0.2644 + }, + { + "start": 9464.14, + "end": 9466.92, + "probability": 0.6779 + }, + { + "start": 9467.0, + "end": 9472.98, + "probability": 0.9739 + }, + { + "start": 9474.36, + "end": 9480.12, + "probability": 0.9627 + }, + { + "start": 9480.64, + "end": 9480.96, + "probability": 0.9333 + }, + { + "start": 9481.98, + "end": 9485.42, + "probability": 0.728 + }, + { + "start": 9485.64, + "end": 9488.9, + "probability": 0.7866 + }, + { + "start": 9488.98, + "end": 9489.9, + "probability": 0.7371 + }, + { + "start": 9490.84, + "end": 9492.1, + "probability": 0.9462 + }, + { + "start": 9492.44, + "end": 9492.88, + "probability": 0.6432 + }, + { + "start": 9493.42, + "end": 9498.0, + "probability": 0.9541 + }, + { + "start": 9498.0, + "end": 9499.0, + "probability": 0.7553 + }, + { + "start": 9499.08, + "end": 9500.02, + "probability": 0.2676 + }, + { + "start": 9500.78, + "end": 9500.78, + "probability": 0.1918 + }, + { + "start": 9500.78, + "end": 9501.32, + "probability": 0.383 + }, + { + "start": 9502.22, + "end": 9509.44, + "probability": 0.7301 + }, + { + "start": 9510.74, + "end": 9513.86, + "probability": 0.9302 + }, + { + "start": 9515.04, + "end": 9519.64, + "probability": 0.921 + }, + { + "start": 9519.7, + "end": 9520.88, + "probability": 0.9202 + }, + { + "start": 9521.08, + "end": 9522.5, + "probability": 0.8655 + }, + { + "start": 9524.22, + "end": 9528.88, + "probability": 0.9977 + }, + { + "start": 9529.12, + "end": 9530.84, + "probability": 0.981 + }, + { + "start": 9531.04, + "end": 9532.22, + "probability": 0.7171 + }, + { + "start": 9532.26, + "end": 9533.22, + "probability": 0.9541 + }, + { + "start": 9533.24, + "end": 9534.04, + "probability": 0.7562 + }, + { + "start": 9536.74, + "end": 9537.68, + "probability": 0.7742 + }, + { + "start": 9537.72, + "end": 9538.68, + "probability": 0.9071 + }, + { + "start": 9538.72, + "end": 9541.94, + "probability": 0.9104 + }, + { + "start": 9542.08, + "end": 9543.64, + "probability": 0.7613 + }, + { + "start": 9543.9, + "end": 9547.22, + "probability": 0.9901 + }, + { + "start": 9547.44, + "end": 9548.48, + "probability": 0.8124 + }, + { + "start": 9549.36, + "end": 9551.28, + "probability": 0.991 + }, + { + "start": 9551.96, + "end": 9553.85, + "probability": 0.9971 + }, + { + "start": 9554.62, + "end": 9555.68, + "probability": 0.9072 + }, + { + "start": 9556.26, + "end": 9559.8, + "probability": 0.9883 + }, + { + "start": 9559.8, + "end": 9565.76, + "probability": 0.9987 + }, + { + "start": 9565.84, + "end": 9566.86, + "probability": 0.4997 + }, + { + "start": 9566.86, + "end": 9568.98, + "probability": 0.9006 + }, + { + "start": 9569.56, + "end": 9573.7, + "probability": 0.8184 + }, + { + "start": 9584.22, + "end": 9584.96, + "probability": 0.5995 + }, + { + "start": 9585.06, + "end": 9586.1, + "probability": 0.7181 + }, + { + "start": 9586.32, + "end": 9587.73, + "probability": 0.5106 + }, + { + "start": 9589.26, + "end": 9591.72, + "probability": 0.9877 + }, + { + "start": 9591.84, + "end": 9593.88, + "probability": 0.9384 + }, + { + "start": 9596.29, + "end": 9602.7, + "probability": 0.9958 + }, + { + "start": 9602.7, + "end": 9606.98, + "probability": 0.9917 + }, + { + "start": 9608.3, + "end": 9613.62, + "probability": 0.9229 + }, + { + "start": 9614.36, + "end": 9615.67, + "probability": 0.95 + }, + { + "start": 9616.36, + "end": 9621.18, + "probability": 0.9619 + }, + { + "start": 9621.18, + "end": 9625.64, + "probability": 0.9102 + }, + { + "start": 9626.22, + "end": 9628.7, + "probability": 0.9951 + }, + { + "start": 9629.24, + "end": 9631.82, + "probability": 0.9862 + }, + { + "start": 9632.38, + "end": 9637.06, + "probability": 0.9344 + }, + { + "start": 9637.38, + "end": 9638.44, + "probability": 0.9885 + }, + { + "start": 9639.24, + "end": 9640.18, + "probability": 0.9827 + }, + { + "start": 9640.24, + "end": 9642.14, + "probability": 0.8636 + }, + { + "start": 9642.22, + "end": 9646.22, + "probability": 0.9801 + }, + { + "start": 9646.82, + "end": 9650.0, + "probability": 0.7721 + }, + { + "start": 9650.1, + "end": 9650.96, + "probability": 0.3738 + }, + { + "start": 9652.9, + "end": 9656.1, + "probability": 0.8814 + }, + { + "start": 9656.7, + "end": 9659.76, + "probability": 0.8781 + }, + { + "start": 9660.66, + "end": 9663.6, + "probability": 0.9456 + }, + { + "start": 9663.74, + "end": 9665.06, + "probability": 0.7237 + }, + { + "start": 9665.42, + "end": 9666.87, + "probability": 0.9484 + }, + { + "start": 9667.46, + "end": 9673.5, + "probability": 0.9255 + }, + { + "start": 9674.22, + "end": 9675.16, + "probability": 0.8117 + }, + { + "start": 9675.3, + "end": 9676.46, + "probability": 0.9888 + }, + { + "start": 9676.76, + "end": 9680.78, + "probability": 0.9813 + }, + { + "start": 9681.02, + "end": 9682.86, + "probability": 0.7174 + }, + { + "start": 9683.02, + "end": 9683.34, + "probability": 0.8841 + }, + { + "start": 9684.86, + "end": 9685.42, + "probability": 0.4025 + }, + { + "start": 9686.32, + "end": 9689.28, + "probability": 0.9434 + }, + { + "start": 9689.64, + "end": 9691.56, + "probability": 0.9612 + }, + { + "start": 9692.62, + "end": 9699.1, + "probability": 0.9917 + }, + { + "start": 9699.36, + "end": 9700.27, + "probability": 0.9516 + }, + { + "start": 9700.4, + "end": 9703.98, + "probability": 0.986 + }, + { + "start": 9704.2, + "end": 9710.06, + "probability": 0.9954 + }, + { + "start": 9711.62, + "end": 9715.92, + "probability": 0.9763 + }, + { + "start": 9716.32, + "end": 9719.2, + "probability": 0.9912 + }, + { + "start": 9719.78, + "end": 9724.94, + "probability": 0.9286 + }, + { + "start": 9725.6, + "end": 9726.72, + "probability": 0.9917 + }, + { + "start": 9727.24, + "end": 9732.3, + "probability": 0.9859 + }, + { + "start": 9732.84, + "end": 9734.1, + "probability": 0.9576 + }, + { + "start": 9734.54, + "end": 9737.24, + "probability": 0.9706 + }, + { + "start": 9737.8, + "end": 9741.68, + "probability": 0.9878 + }, + { + "start": 9741.82, + "end": 9744.18, + "probability": 0.9495 + }, + { + "start": 9744.62, + "end": 9745.6, + "probability": 0.6379 + }, + { + "start": 9745.76, + "end": 9748.18, + "probability": 0.9712 + }, + { + "start": 9748.24, + "end": 9750.04, + "probability": 0.9928 + }, + { + "start": 9760.88, + "end": 9761.44, + "probability": 0.673 + }, + { + "start": 9761.58, + "end": 9762.22, + "probability": 0.796 + }, + { + "start": 9762.28, + "end": 9763.22, + "probability": 0.8963 + }, + { + "start": 9763.34, + "end": 9768.66, + "probability": 0.9371 + }, + { + "start": 9769.82, + "end": 9772.0, + "probability": 0.9745 + }, + { + "start": 9772.9, + "end": 9777.64, + "probability": 0.9953 + }, + { + "start": 9778.32, + "end": 9783.76, + "probability": 0.8344 + }, + { + "start": 9783.76, + "end": 9786.4, + "probability": 0.9916 + }, + { + "start": 9786.46, + "end": 9787.28, + "probability": 0.6122 + }, + { + "start": 9787.28, + "end": 9788.1, + "probability": 0.4668 + }, + { + "start": 9788.14, + "end": 9788.92, + "probability": 0.903 + }, + { + "start": 9789.06, + "end": 9790.28, + "probability": 0.6981 + }, + { + "start": 9791.3, + "end": 9797.84, + "probability": 0.944 + }, + { + "start": 9798.72, + "end": 9800.82, + "probability": 0.7886 + }, + { + "start": 9800.94, + "end": 9801.5, + "probability": 0.7166 + }, + { + "start": 9801.58, + "end": 9802.5, + "probability": 0.9395 + }, + { + "start": 9802.8, + "end": 9809.28, + "probability": 0.9276 + }, + { + "start": 9810.48, + "end": 9812.38, + "probability": 0.9678 + }, + { + "start": 9812.46, + "end": 9815.2, + "probability": 0.9971 + }, + { + "start": 9815.26, + "end": 9817.2, + "probability": 0.9834 + }, + { + "start": 9820.16, + "end": 9823.36, + "probability": 0.8712 + }, + { + "start": 9824.18, + "end": 9827.44, + "probability": 0.9969 + }, + { + "start": 9827.7, + "end": 9831.86, + "probability": 0.7808 + }, + { + "start": 9832.0, + "end": 9833.2, + "probability": 0.974 + }, + { + "start": 9833.32, + "end": 9834.48, + "probability": 0.929 + }, + { + "start": 9834.88, + "end": 9836.34, + "probability": 0.7138 + }, + { + "start": 9837.14, + "end": 9838.6, + "probability": 0.7572 + }, + { + "start": 9838.74, + "end": 9845.04, + "probability": 0.7922 + }, + { + "start": 9845.52, + "end": 9846.76, + "probability": 0.9614 + }, + { + "start": 9846.98, + "end": 9847.56, + "probability": 0.7769 + }, + { + "start": 9847.7, + "end": 9851.6, + "probability": 0.9297 + }, + { + "start": 9851.72, + "end": 9852.62, + "probability": 0.8564 + }, + { + "start": 9853.56, + "end": 9859.4, + "probability": 0.984 + }, + { + "start": 9859.4, + "end": 9865.82, + "probability": 0.8688 + }, + { + "start": 9865.86, + "end": 9870.3, + "probability": 0.8971 + }, + { + "start": 9870.36, + "end": 9872.21, + "probability": 0.9985 + }, + { + "start": 9874.14, + "end": 9876.04, + "probability": 0.9817 + }, + { + "start": 9876.2, + "end": 9877.62, + "probability": 0.7148 + }, + { + "start": 9877.72, + "end": 9878.26, + "probability": 0.7206 + }, + { + "start": 9878.92, + "end": 9879.28, + "probability": 0.9531 + }, + { + "start": 9880.24, + "end": 9882.82, + "probability": 0.9811 + }, + { + "start": 9882.94, + "end": 9883.73, + "probability": 0.9636 + }, + { + "start": 9884.6, + "end": 9889.16, + "probability": 0.8701 + }, + { + "start": 9889.6, + "end": 9890.96, + "probability": 0.6459 + }, + { + "start": 9891.26, + "end": 9891.94, + "probability": 0.826 + }, + { + "start": 9891.98, + "end": 9898.02, + "probability": 0.9103 + }, + { + "start": 9898.66, + "end": 9900.36, + "probability": 0.8706 + }, + { + "start": 9901.12, + "end": 9905.46, + "probability": 0.987 + }, + { + "start": 9905.76, + "end": 9909.44, + "probability": 0.7372 + }, + { + "start": 9909.92, + "end": 9913.06, + "probability": 0.8119 + }, + { + "start": 9913.1, + "end": 9915.13, + "probability": 0.8458 + }, + { + "start": 9916.02, + "end": 9918.06, + "probability": 0.9954 + }, + { + "start": 9918.2, + "end": 9919.56, + "probability": 0.7012 + }, + { + "start": 9919.68, + "end": 9921.22, + "probability": 0.2649 + }, + { + "start": 9921.48, + "end": 9922.16, + "probability": 0.843 + }, + { + "start": 9922.42, + "end": 9924.64, + "probability": 0.6024 + }, + { + "start": 9924.64, + "end": 9925.26, + "probability": 0.4947 + }, + { + "start": 9927.82, + "end": 9934.86, + "probability": 0.0437 + }, + { + "start": 9936.14, + "end": 9938.22, + "probability": 0.0205 + }, + { + "start": 9939.13, + "end": 9939.48, + "probability": 0.1071 + }, + { + "start": 9939.48, + "end": 9942.72, + "probability": 0.3836 + }, + { + "start": 9942.76, + "end": 9945.62, + "probability": 0.6558 + }, + { + "start": 9946.54, + "end": 9948.38, + "probability": 0.1106 + }, + { + "start": 9948.6, + "end": 9950.72, + "probability": 0.894 + }, + { + "start": 9950.92, + "end": 9952.54, + "probability": 0.3502 + }, + { + "start": 9952.98, + "end": 9955.02, + "probability": 0.6772 + }, + { + "start": 9955.52, + "end": 9958.52, + "probability": 0.9389 + }, + { + "start": 9968.92, + "end": 9972.04, + "probability": 0.7516 + }, + { + "start": 9973.68, + "end": 9977.02, + "probability": 0.8385 + }, + { + "start": 9984.2, + "end": 9987.12, + "probability": 0.6806 + }, + { + "start": 9987.86, + "end": 9988.98, + "probability": 0.7528 + }, + { + "start": 9989.12, + "end": 9989.4, + "probability": 0.6202 + }, + { + "start": 9989.58, + "end": 9993.82, + "probability": 0.7056 + }, + { + "start": 9994.58, + "end": 9995.94, + "probability": 0.7337 + }, + { + "start": 9996.74, + "end": 9999.24, + "probability": 0.9336 + }, + { + "start": 9999.84, + "end": 10002.86, + "probability": 0.9644 + }, + { + "start": 10004.3, + "end": 10008.3, + "probability": 0.9449 + }, + { + "start": 10009.62, + "end": 10014.44, + "probability": 0.9886 + }, + { + "start": 10017.03, + "end": 10020.16, + "probability": 0.9973 + }, + { + "start": 10021.54, + "end": 10023.18, + "probability": 0.6992 + }, + { + "start": 10023.82, + "end": 10026.5, + "probability": 0.8584 + }, + { + "start": 10027.2, + "end": 10029.34, + "probability": 0.9526 + }, + { + "start": 10030.22, + "end": 10031.76, + "probability": 0.7439 + }, + { + "start": 10033.24, + "end": 10039.3, + "probability": 0.9231 + }, + { + "start": 10039.3, + "end": 10044.66, + "probability": 0.9857 + }, + { + "start": 10044.82, + "end": 10051.78, + "probability": 0.7739 + }, + { + "start": 10053.06, + "end": 10056.66, + "probability": 0.6771 + }, + { + "start": 10057.82, + "end": 10062.3, + "probability": 0.7732 + }, + { + "start": 10063.9, + "end": 10064.6, + "probability": 0.7502 + }, + { + "start": 10068.02, + "end": 10071.54, + "probability": 0.5353 + }, + { + "start": 10072.4, + "end": 10078.32, + "probability": 0.855 + }, + { + "start": 10078.6, + "end": 10079.84, + "probability": 0.8359 + }, + { + "start": 10079.92, + "end": 10080.86, + "probability": 0.9465 + }, + { + "start": 10081.48, + "end": 10085.64, + "probability": 0.9379 + }, + { + "start": 10085.98, + "end": 10087.2, + "probability": 0.2023 + }, + { + "start": 10087.34, + "end": 10089.54, + "probability": 0.7544 + }, + { + "start": 10089.76, + "end": 10092.62, + "probability": 0.6678 + }, + { + "start": 10092.68, + "end": 10093.14, + "probability": 0.6951 + }, + { + "start": 10093.32, + "end": 10093.84, + "probability": 0.599 + }, + { + "start": 10094.34, + "end": 10098.77, + "probability": 0.8966 + }, + { + "start": 10100.82, + "end": 10102.92, + "probability": 0.7918 + }, + { + "start": 10106.1, + "end": 10113.14, + "probability": 0.8765 + }, + { + "start": 10113.92, + "end": 10116.46, + "probability": 0.7122 + }, + { + "start": 10117.1, + "end": 10118.48, + "probability": 0.6888 + }, + { + "start": 10119.58, + "end": 10124.76, + "probability": 0.9362 + }, + { + "start": 10126.18, + "end": 10128.08, + "probability": 0.5463 + }, + { + "start": 10129.0, + "end": 10133.02, + "probability": 0.9908 + }, + { + "start": 10134.06, + "end": 10138.24, + "probability": 0.9666 + }, + { + "start": 10139.08, + "end": 10147.06, + "probability": 0.9626 + }, + { + "start": 10147.54, + "end": 10151.2, + "probability": 0.7357 + }, + { + "start": 10151.2, + "end": 10154.3, + "probability": 0.986 + }, + { + "start": 10154.86, + "end": 10155.86, + "probability": 0.8643 + }, + { + "start": 10156.66, + "end": 10157.64, + "probability": 0.7681 + }, + { + "start": 10158.02, + "end": 10159.5, + "probability": 0.9917 + }, + { + "start": 10159.66, + "end": 10163.64, + "probability": 0.8982 + }, + { + "start": 10164.14, + "end": 10168.06, + "probability": 0.9651 + }, + { + "start": 10169.04, + "end": 10173.12, + "probability": 0.9247 + }, + { + "start": 10173.12, + "end": 10176.3, + "probability": 0.9956 + }, + { + "start": 10177.48, + "end": 10179.02, + "probability": 0.614 + }, + { + "start": 10179.66, + "end": 10185.88, + "probability": 0.9363 + }, + { + "start": 10185.88, + "end": 10192.66, + "probability": 0.6808 + }, + { + "start": 10192.66, + "end": 10200.02, + "probability": 0.9552 + }, + { + "start": 10200.62, + "end": 10207.54, + "probability": 0.8677 + }, + { + "start": 10207.94, + "end": 10209.14, + "probability": 0.9204 + }, + { + "start": 10209.28, + "end": 10213.72, + "probability": 0.8585 + }, + { + "start": 10214.2, + "end": 10215.42, + "probability": 0.6123 + }, + { + "start": 10215.88, + "end": 10216.84, + "probability": 0.4988 + }, + { + "start": 10217.82, + "end": 10218.32, + "probability": 0.8837 + }, + { + "start": 10218.44, + "end": 10219.16, + "probability": 0.6945 + }, + { + "start": 10219.26, + "end": 10220.92, + "probability": 0.8111 + }, + { + "start": 10221.26, + "end": 10224.82, + "probability": 0.6578 + }, + { + "start": 10225.38, + "end": 10227.06, + "probability": 0.7797 + }, + { + "start": 10228.68, + "end": 10230.68, + "probability": 0.9486 + }, + { + "start": 10230.92, + "end": 10232.07, + "probability": 0.9946 + }, + { + "start": 10233.06, + "end": 10234.54, + "probability": 0.9766 + }, + { + "start": 10236.36, + "end": 10238.06, + "probability": 0.9707 + }, + { + "start": 10238.14, + "end": 10238.9, + "probability": 0.9469 + }, + { + "start": 10238.96, + "end": 10243.72, + "probability": 0.9851 + }, + { + "start": 10244.04, + "end": 10252.16, + "probability": 0.9777 + }, + { + "start": 10252.38, + "end": 10252.8, + "probability": 0.2158 + }, + { + "start": 10253.04, + "end": 10253.41, + "probability": 0.9044 + }, + { + "start": 10254.58, + "end": 10257.5, + "probability": 0.978 + }, + { + "start": 10258.22, + "end": 10262.28, + "probability": 0.7783 + }, + { + "start": 10262.28, + "end": 10266.18, + "probability": 0.9821 + }, + { + "start": 10266.98, + "end": 10270.02, + "probability": 0.7338 + }, + { + "start": 10270.24, + "end": 10272.44, + "probability": 0.973 + }, + { + "start": 10273.16, + "end": 10278.84, + "probability": 0.9893 + }, + { + "start": 10278.84, + "end": 10283.56, + "probability": 0.9751 + }, + { + "start": 10283.58, + "end": 10290.84, + "probability": 0.9234 + }, + { + "start": 10291.7, + "end": 10293.1, + "probability": 0.6442 + }, + { + "start": 10294.26, + "end": 10301.1, + "probability": 0.9878 + }, + { + "start": 10301.84, + "end": 10305.96, + "probability": 0.9764 + }, + { + "start": 10306.68, + "end": 10312.32, + "probability": 0.6957 + }, + { + "start": 10312.8, + "end": 10315.16, + "probability": 0.9456 + }, + { + "start": 10317.12, + "end": 10321.68, + "probability": 0.8247 + }, + { + "start": 10323.29, + "end": 10327.98, + "probability": 0.8656 + }, + { + "start": 10329.8, + "end": 10335.06, + "probability": 0.9808 + }, + { + "start": 10335.48, + "end": 10338.88, + "probability": 0.9926 + }, + { + "start": 10339.68, + "end": 10343.06, + "probability": 0.9814 + }, + { + "start": 10343.84, + "end": 10347.66, + "probability": 0.998 + }, + { + "start": 10348.14, + "end": 10349.74, + "probability": 0.6773 + }, + { + "start": 10350.3, + "end": 10356.06, + "probability": 0.9289 + }, + { + "start": 10356.66, + "end": 10362.4, + "probability": 0.9744 + }, + { + "start": 10362.4, + "end": 10368.72, + "probability": 0.9979 + }, + { + "start": 10368.75, + "end": 10376.7, + "probability": 0.998 + }, + { + "start": 10377.04, + "end": 10377.34, + "probability": 0.5893 + }, + { + "start": 10377.66, + "end": 10379.9, + "probability": 0.5403 + }, + { + "start": 10380.76, + "end": 10383.96, + "probability": 0.9619 + }, + { + "start": 10385.02, + "end": 10386.94, + "probability": 0.9722 + }, + { + "start": 10400.64, + "end": 10405.82, + "probability": 0.679 + }, + { + "start": 10407.58, + "end": 10411.46, + "probability": 0.9181 + }, + { + "start": 10411.88, + "end": 10413.38, + "probability": 0.9001 + }, + { + "start": 10413.54, + "end": 10414.6, + "probability": 0.5574 + }, + { + "start": 10416.54, + "end": 10418.14, + "probability": 0.4197 + }, + { + "start": 10418.66, + "end": 10423.08, + "probability": 0.4383 + }, + { + "start": 10423.08, + "end": 10423.72, + "probability": 0.9151 + }, + { + "start": 10424.52, + "end": 10425.6, + "probability": 0.1921 + }, + { + "start": 10426.44, + "end": 10428.08, + "probability": 0.8543 + }, + { + "start": 10429.52, + "end": 10430.16, + "probability": 0.5837 + }, + { + "start": 10431.98, + "end": 10434.9, + "probability": 0.1383 + }, + { + "start": 10434.9, + "end": 10436.24, + "probability": 0.5684 + }, + { + "start": 10436.34, + "end": 10437.52, + "probability": 0.8282 + }, + { + "start": 10440.74, + "end": 10442.72, + "probability": 0.3498 + }, + { + "start": 10443.06, + "end": 10444.34, + "probability": 0.2497 + }, + { + "start": 10444.5, + "end": 10444.84, + "probability": 0.3925 + }, + { + "start": 10444.84, + "end": 10448.1, + "probability": 0.7444 + }, + { + "start": 10448.1, + "end": 10449.38, + "probability": 0.5684 + }, + { + "start": 10451.36, + "end": 10452.62, + "probability": 0.6952 + }, + { + "start": 10452.98, + "end": 10454.08, + "probability": 0.7269 + }, + { + "start": 10454.2, + "end": 10456.72, + "probability": 0.5597 + }, + { + "start": 10457.78, + "end": 10459.22, + "probability": 0.9372 + }, + { + "start": 10460.12, + "end": 10460.5, + "probability": 0.6255 + }, + { + "start": 10460.52, + "end": 10463.58, + "probability": 0.957 + }, + { + "start": 10463.58, + "end": 10466.62, + "probability": 0.9135 + }, + { + "start": 10467.76, + "end": 10470.62, + "probability": 0.9863 + }, + { + "start": 10470.8, + "end": 10472.44, + "probability": 0.7207 + }, + { + "start": 10473.34, + "end": 10475.22, + "probability": 0.9228 + }, + { + "start": 10476.88, + "end": 10479.9, + "probability": 0.9531 + }, + { + "start": 10479.9, + "end": 10482.76, + "probability": 0.9461 + }, + { + "start": 10483.22, + "end": 10483.95, + "probability": 0.5091 + }, + { + "start": 10485.06, + "end": 10488.02, + "probability": 0.9944 + }, + { + "start": 10488.02, + "end": 10491.86, + "probability": 0.7417 + }, + { + "start": 10492.88, + "end": 10495.06, + "probability": 0.7642 + }, + { + "start": 10495.64, + "end": 10498.84, + "probability": 0.8014 + }, + { + "start": 10498.94, + "end": 10500.1, + "probability": 0.9678 + }, + { + "start": 10500.22, + "end": 10503.04, + "probability": 0.827 + }, + { + "start": 10503.84, + "end": 10506.58, + "probability": 0.9725 + }, + { + "start": 10507.54, + "end": 10509.44, + "probability": 0.9147 + }, + { + "start": 10510.87, + "end": 10514.96, + "probability": 0.9128 + }, + { + "start": 10514.96, + "end": 10518.8, + "probability": 0.9664 + }, + { + "start": 10519.64, + "end": 10521.76, + "probability": 0.932 + }, + { + "start": 10522.1, + "end": 10524.9, + "probability": 0.9987 + }, + { + "start": 10526.1, + "end": 10530.22, + "probability": 0.7487 + }, + { + "start": 10530.5, + "end": 10535.36, + "probability": 0.9718 + }, + { + "start": 10535.81, + "end": 10540.28, + "probability": 0.979 + }, + { + "start": 10540.28, + "end": 10544.78, + "probability": 0.8149 + }, + { + "start": 10545.52, + "end": 10548.22, + "probability": 0.8384 + }, + { + "start": 10551.1, + "end": 10555.36, + "probability": 0.8699 + }, + { + "start": 10555.56, + "end": 10557.72, + "probability": 0.9266 + }, + { + "start": 10558.28, + "end": 10561.16, + "probability": 0.9901 + }, + { + "start": 10562.08, + "end": 10564.6, + "probability": 0.9826 + }, + { + "start": 10564.6, + "end": 10567.1, + "probability": 0.9541 + }, + { + "start": 10567.9, + "end": 10570.5, + "probability": 0.9252 + }, + { + "start": 10570.5, + "end": 10573.38, + "probability": 0.9607 + }, + { + "start": 10574.14, + "end": 10576.84, + "probability": 0.9626 + }, + { + "start": 10578.1, + "end": 10578.8, + "probability": 0.6732 + }, + { + "start": 10578.82, + "end": 10579.36, + "probability": 0.8631 + }, + { + "start": 10579.62, + "end": 10583.91, + "probability": 0.9831 + }, + { + "start": 10585.1, + "end": 10588.4, + "probability": 0.9852 + }, + { + "start": 10588.96, + "end": 10589.52, + "probability": 0.4067 + }, + { + "start": 10590.0, + "end": 10593.18, + "probability": 0.9377 + }, + { + "start": 10594.3, + "end": 10599.08, + "probability": 0.8846 + }, + { + "start": 10599.08, + "end": 10602.7, + "probability": 0.8066 + }, + { + "start": 10602.76, + "end": 10605.08, + "probability": 0.6617 + }, + { + "start": 10605.08, + "end": 10608.5, + "probability": 0.9952 + }, + { + "start": 10609.18, + "end": 10610.48, + "probability": 0.7143 + }, + { + "start": 10611.2, + "end": 10612.9, + "probability": 0.9447 + }, + { + "start": 10613.5, + "end": 10614.44, + "probability": 0.8807 + }, + { + "start": 10614.56, + "end": 10614.94, + "probability": 0.982 + }, + { + "start": 10615.06, + "end": 10615.4, + "probability": 0.9862 + }, + { + "start": 10615.44, + "end": 10616.08, + "probability": 0.9442 + }, + { + "start": 10616.2, + "end": 10617.46, + "probability": 0.8213 + }, + { + "start": 10618.64, + "end": 10620.04, + "probability": 0.7466 + }, + { + "start": 10620.22, + "end": 10624.02, + "probability": 0.8171 + }, + { + "start": 10624.18, + "end": 10625.98, + "probability": 0.7259 + }, + { + "start": 10626.54, + "end": 10631.08, + "probability": 0.7414 + }, + { + "start": 10631.7, + "end": 10633.84, + "probability": 0.8385 + }, + { + "start": 10634.64, + "end": 10638.52, + "probability": 0.9077 + }, + { + "start": 10639.28, + "end": 10641.52, + "probability": 0.93 + }, + { + "start": 10642.16, + "end": 10646.72, + "probability": 0.9534 + }, + { + "start": 10646.72, + "end": 10650.14, + "probability": 0.9917 + }, + { + "start": 10651.5, + "end": 10652.1, + "probability": 0.106 + }, + { + "start": 10652.36, + "end": 10654.46, + "probability": 0.9932 + }, + { + "start": 10654.46, + "end": 10657.36, + "probability": 0.9103 + }, + { + "start": 10657.8, + "end": 10658.7, + "probability": 0.7322 + }, + { + "start": 10659.42, + "end": 10661.82, + "probability": 0.553 + }, + { + "start": 10661.96, + "end": 10663.64, + "probability": 0.9575 + }, + { + "start": 10664.08, + "end": 10664.7, + "probability": 0.5416 + }, + { + "start": 10664.7, + "end": 10669.5, + "probability": 0.913 + }, + { + "start": 10670.42, + "end": 10672.56, + "probability": 0.0874 + }, + { + "start": 10672.56, + "end": 10673.84, + "probability": 0.5597 + }, + { + "start": 10673.96, + "end": 10677.24, + "probability": 0.5843 + }, + { + "start": 10678.74, + "end": 10680.64, + "probability": 0.8735 + }, + { + "start": 10681.52, + "end": 10684.38, + "probability": 0.7335 + }, + { + "start": 10684.46, + "end": 10688.5, + "probability": 0.904 + }, + { + "start": 10689.06, + "end": 10691.74, + "probability": 0.8309 + }, + { + "start": 10692.2, + "end": 10694.6, + "probability": 0.9587 + }, + { + "start": 10695.54, + "end": 10699.02, + "probability": 0.2163 + }, + { + "start": 10699.8, + "end": 10700.76, + "probability": 0.3493 + }, + { + "start": 10705.08, + "end": 10706.16, + "probability": 0.7011 + }, + { + "start": 10706.36, + "end": 10707.16, + "probability": 0.6347 + }, + { + "start": 10708.35, + "end": 10710.64, + "probability": 0.4471 + }, + { + "start": 10710.92, + "end": 10712.74, + "probability": 0.9847 + }, + { + "start": 10713.22, + "end": 10718.36, + "probability": 0.922 + }, + { + "start": 10718.64, + "end": 10719.72, + "probability": 0.8972 + }, + { + "start": 10719.9, + "end": 10725.22, + "probability": 0.8728 + }, + { + "start": 10725.52, + "end": 10726.2, + "probability": 0.5598 + }, + { + "start": 10735.48, + "end": 10737.08, + "probability": 0.517 + }, + { + "start": 10737.26, + "end": 10742.2, + "probability": 0.7347 + }, + { + "start": 10742.94, + "end": 10745.12, + "probability": 0.4211 + }, + { + "start": 10745.34, + "end": 10750.52, + "probability": 0.5635 + }, + { + "start": 10751.1, + "end": 10754.26, + "probability": 0.7912 + }, + { + "start": 10754.38, + "end": 10756.58, + "probability": 0.8906 + }, + { + "start": 10756.88, + "end": 10759.52, + "probability": 0.6182 + }, + { + "start": 10759.88, + "end": 10760.48, + "probability": 0.5359 + }, + { + "start": 10760.62, + "end": 10761.08, + "probability": 0.3271 + }, + { + "start": 10761.18, + "end": 10761.6, + "probability": 0.5103 + }, + { + "start": 10761.62, + "end": 10762.22, + "probability": 0.7634 + }, + { + "start": 10762.76, + "end": 10768.14, + "probability": 0.988 + }, + { + "start": 10771.34, + "end": 10775.38, + "probability": 0.2617 + }, + { + "start": 10775.76, + "end": 10778.48, + "probability": 0.0902 + }, + { + "start": 10779.56, + "end": 10781.84, + "probability": 0.4798 + }, + { + "start": 10782.24, + "end": 10787.46, + "probability": 0.9092 + }, + { + "start": 10789.12, + "end": 10793.7, + "probability": 0.9843 + }, + { + "start": 10794.62, + "end": 10797.94, + "probability": 0.7971 + }, + { + "start": 10799.54, + "end": 10802.78, + "probability": 0.9945 + }, + { + "start": 10803.34, + "end": 10806.84, + "probability": 0.5857 + }, + { + "start": 10809.94, + "end": 10812.96, + "probability": 0.9847 + }, + { + "start": 10813.44, + "end": 10813.98, + "probability": 0.6563 + }, + { + "start": 10814.04, + "end": 10814.86, + "probability": 0.7756 + }, + { + "start": 10815.26, + "end": 10816.5, + "probability": 0.8403 + }, + { + "start": 10816.64, + "end": 10818.71, + "probability": 0.9316 + }, + { + "start": 10818.88, + "end": 10820.04, + "probability": 0.511 + }, + { + "start": 10820.18, + "end": 10821.32, + "probability": 0.9884 + }, + { + "start": 10821.54, + "end": 10827.42, + "probability": 0.9602 + }, + { + "start": 10827.8, + "end": 10829.68, + "probability": 0.951 + }, + { + "start": 10830.6, + "end": 10831.1, + "probability": 0.4448 + }, + { + "start": 10833.02, + "end": 10835.12, + "probability": 0.7115 + }, + { + "start": 10835.66, + "end": 10840.36, + "probability": 0.8969 + }, + { + "start": 10840.84, + "end": 10841.82, + "probability": 0.8564 + }, + { + "start": 10842.38, + "end": 10842.9, + "probability": 0.6296 + }, + { + "start": 10843.04, + "end": 10844.12, + "probability": 0.9138 + }, + { + "start": 10844.8, + "end": 10847.46, + "probability": 0.9483 + }, + { + "start": 10847.96, + "end": 10851.78, + "probability": 0.9456 + }, + { + "start": 10852.2, + "end": 10856.64, + "probability": 0.9473 + }, + { + "start": 10857.16, + "end": 10863.24, + "probability": 0.9008 + }, + { + "start": 10865.3, + "end": 10869.2, + "probability": 0.9731 + }, + { + "start": 10869.2, + "end": 10871.16, + "probability": 0.8395 + }, + { + "start": 10872.32, + "end": 10874.24, + "probability": 0.8511 + }, + { + "start": 10874.66, + "end": 10878.42, + "probability": 0.9785 + }, + { + "start": 10878.5, + "end": 10879.58, + "probability": 0.8967 + }, + { + "start": 10880.46, + "end": 10883.06, + "probability": 0.8822 + }, + { + "start": 10883.14, + "end": 10883.87, + "probability": 0.1366 + }, + { + "start": 10884.66, + "end": 10886.26, + "probability": 0.9389 + }, + { + "start": 10886.76, + "end": 10888.44, + "probability": 0.6593 + }, + { + "start": 10888.66, + "end": 10889.56, + "probability": 0.8964 + }, + { + "start": 10889.64, + "end": 10889.96, + "probability": 0.8128 + }, + { + "start": 10890.84, + "end": 10893.62, + "probability": 0.6572 + }, + { + "start": 10893.72, + "end": 10895.3, + "probability": 0.5582 + }, + { + "start": 10895.86, + "end": 10897.06, + "probability": 0.8394 + }, + { + "start": 10897.06, + "end": 10903.68, + "probability": 0.8993 + }, + { + "start": 10904.48, + "end": 10906.88, + "probability": 0.494 + }, + { + "start": 10906.96, + "end": 10911.9, + "probability": 0.9304 + }, + { + "start": 10912.84, + "end": 10914.62, + "probability": 0.9893 + }, + { + "start": 10915.2, + "end": 10916.16, + "probability": 0.9608 + }, + { + "start": 10916.34, + "end": 10918.05, + "probability": 0.9973 + }, + { + "start": 10919.14, + "end": 10923.34, + "probability": 0.8882 + }, + { + "start": 10924.14, + "end": 10927.34, + "probability": 0.8927 + }, + { + "start": 10928.04, + "end": 10931.7, + "probability": 0.8859 + }, + { + "start": 10932.1, + "end": 10933.3, + "probability": 0.8918 + }, + { + "start": 10933.6, + "end": 10934.7, + "probability": 0.9086 + }, + { + "start": 10935.0, + "end": 10935.72, + "probability": 0.9552 + }, + { + "start": 10936.38, + "end": 10940.5, + "probability": 0.8707 + }, + { + "start": 10940.58, + "end": 10941.36, + "probability": 0.8095 + }, + { + "start": 10941.56, + "end": 10946.72, + "probability": 0.629 + }, + { + "start": 10946.72, + "end": 10950.74, + "probability": 0.6878 + }, + { + "start": 10951.1, + "end": 10953.44, + "probability": 0.905 + }, + { + "start": 10959.3, + "end": 10959.62, + "probability": 0.1672 + }, + { + "start": 10960.3, + "end": 10964.32, + "probability": 0.1146 + }, + { + "start": 10981.5, + "end": 10982.88, + "probability": 0.6295 + }, + { + "start": 10983.86, + "end": 10985.98, + "probability": 0.7232 + }, + { + "start": 10986.98, + "end": 10987.86, + "probability": 0.8629 + }, + { + "start": 10988.12, + "end": 10991.62, + "probability": 0.8578 + }, + { + "start": 10991.8, + "end": 10994.98, + "probability": 0.9783 + }, + { + "start": 10995.04, + "end": 10995.58, + "probability": 0.4737 + }, + { + "start": 10996.8, + "end": 11000.76, + "probability": 0.9886 + }, + { + "start": 11001.76, + "end": 11006.64, + "probability": 0.8566 + }, + { + "start": 11007.26, + "end": 11010.98, + "probability": 0.9157 + }, + { + "start": 11011.84, + "end": 11014.48, + "probability": 0.9569 + }, + { + "start": 11014.48, + "end": 11014.54, + "probability": 0.8877 + }, + { + "start": 11014.64, + "end": 11015.04, + "probability": 0.5936 + }, + { + "start": 11015.04, + "end": 11016.18, + "probability": 0.7785 + }, + { + "start": 11016.64, + "end": 11019.44, + "probability": 0.8705 + }, + { + "start": 11020.12, + "end": 11023.2, + "probability": 0.8652 + }, + { + "start": 11023.9, + "end": 11026.94, + "probability": 0.8164 + }, + { + "start": 11027.68, + "end": 11031.85, + "probability": 0.7771 + }, + { + "start": 11032.22, + "end": 11034.66, + "probability": 0.8747 + }, + { + "start": 11034.82, + "end": 11036.62, + "probability": 0.7055 + }, + { + "start": 11037.58, + "end": 11041.48, + "probability": 0.8267 + }, + { + "start": 11041.56, + "end": 11041.56, + "probability": 0.1523 + }, + { + "start": 11041.72, + "end": 11042.15, + "probability": 0.569 + }, + { + "start": 11042.36, + "end": 11043.52, + "probability": 0.7102 + }, + { + "start": 11043.6, + "end": 11045.9, + "probability": 0.9524 + }, + { + "start": 11046.84, + "end": 11051.1, + "probability": 0.8117 + }, + { + "start": 11051.42, + "end": 11053.45, + "probability": 0.7769 + }, + { + "start": 11053.68, + "end": 11054.82, + "probability": 0.8813 + }, + { + "start": 11055.02, + "end": 11056.6, + "probability": 0.8384 + }, + { + "start": 11056.7, + "end": 11060.42, + "probability": 0.7001 + }, + { + "start": 11060.86, + "end": 11062.64, + "probability": 0.8177 + }, + { + "start": 11063.12, + "end": 11063.78, + "probability": 0.8615 + }, + { + "start": 11064.02, + "end": 11066.68, + "probability": 0.929 + }, + { + "start": 11067.12, + "end": 11070.58, + "probability": 0.9237 + }, + { + "start": 11070.64, + "end": 11076.66, + "probability": 0.9233 + }, + { + "start": 11076.98, + "end": 11079.68, + "probability": 0.9957 + }, + { + "start": 11080.06, + "end": 11081.08, + "probability": 0.9893 + }, + { + "start": 11081.28, + "end": 11083.42, + "probability": 0.7708 + }, + { + "start": 11083.54, + "end": 11085.04, + "probability": 0.9819 + }, + { + "start": 11085.92, + "end": 11089.18, + "probability": 0.5012 + }, + { + "start": 11089.38, + "end": 11094.08, + "probability": 0.9302 + }, + { + "start": 11095.5, + "end": 11096.02, + "probability": 0.0672 + }, + { + "start": 11096.92, + "end": 11099.5, + "probability": 0.8188 + }, + { + "start": 11100.28, + "end": 11101.86, + "probability": 0.5848 + }, + { + "start": 11102.02, + "end": 11104.78, + "probability": 0.9696 + }, + { + "start": 11105.4, + "end": 11111.26, + "probability": 0.9198 + }, + { + "start": 11111.9, + "end": 11114.4, + "probability": 0.959 + }, + { + "start": 11114.98, + "end": 11117.32, + "probability": 0.4224 + }, + { + "start": 11117.96, + "end": 11121.12, + "probability": 0.9426 + }, + { + "start": 11121.44, + "end": 11123.24, + "probability": 0.4034 + }, + { + "start": 11123.38, + "end": 11124.18, + "probability": 0.647 + }, + { + "start": 11124.2, + "end": 11125.64, + "probability": 0.9912 + }, + { + "start": 11125.74, + "end": 11128.26, + "probability": 0.9744 + }, + { + "start": 11128.4, + "end": 11130.36, + "probability": 0.9847 + }, + { + "start": 11130.54, + "end": 11131.52, + "probability": 0.6409 + }, + { + "start": 11132.02, + "end": 11132.96, + "probability": 0.9252 + }, + { + "start": 11133.06, + "end": 11133.54, + "probability": 0.7157 + }, + { + "start": 11133.88, + "end": 11134.28, + "probability": 0.407 + }, + { + "start": 11134.44, + "end": 11137.65, + "probability": 0.9563 + }, + { + "start": 11138.8, + "end": 11139.96, + "probability": 0.9023 + }, + { + "start": 11141.64, + "end": 11143.32, + "probability": 0.96 + }, + { + "start": 11144.48, + "end": 11147.45, + "probability": 0.9448 + }, + { + "start": 11148.98, + "end": 11153.24, + "probability": 0.9763 + }, + { + "start": 11154.18, + "end": 11155.74, + "probability": 0.8274 + }, + { + "start": 11157.22, + "end": 11160.2, + "probability": 0.6471 + }, + { + "start": 11160.42, + "end": 11163.28, + "probability": 0.8835 + }, + { + "start": 11164.0, + "end": 11165.24, + "probability": 0.882 + }, + { + "start": 11165.26, + "end": 11167.16, + "probability": 0.8935 + }, + { + "start": 11167.24, + "end": 11168.0, + "probability": 0.5584 + }, + { + "start": 11168.16, + "end": 11169.48, + "probability": 0.8882 + }, + { + "start": 11169.6, + "end": 11171.84, + "probability": 0.9814 + }, + { + "start": 11172.2, + "end": 11173.02, + "probability": 0.6883 + }, + { + "start": 11173.2, + "end": 11178.36, + "probability": 0.7681 + }, + { + "start": 11181.32, + "end": 11186.16, + "probability": 0.9451 + }, + { + "start": 11186.24, + "end": 11189.54, + "probability": 0.9858 + }, + { + "start": 11190.12, + "end": 11192.54, + "probability": 0.8297 + }, + { + "start": 11193.18, + "end": 11195.08, + "probability": 0.831 + }, + { + "start": 11197.44, + "end": 11199.9, + "probability": 0.9152 + }, + { + "start": 11199.96, + "end": 11200.54, + "probability": 0.4052 + }, + { + "start": 11200.58, + "end": 11201.28, + "probability": 0.45 + }, + { + "start": 11202.78, + "end": 11205.1, + "probability": 0.9331 + }, + { + "start": 11205.1, + "end": 11209.52, + "probability": 0.884 + }, + { + "start": 11209.82, + "end": 11211.62, + "probability": 0.954 + }, + { + "start": 11211.84, + "end": 11213.22, + "probability": 0.9829 + }, + { + "start": 11214.24, + "end": 11217.5, + "probability": 0.7532 + }, + { + "start": 11218.48, + "end": 11220.88, + "probability": 0.9486 + }, + { + "start": 11221.4, + "end": 11224.94, + "probability": 0.8752 + }, + { + "start": 11225.58, + "end": 11231.08, + "probability": 0.9736 + }, + { + "start": 11232.48, + "end": 11236.66, + "probability": 0.7001 + }, + { + "start": 11236.68, + "end": 11241.44, + "probability": 0.9576 + }, + { + "start": 11242.7, + "end": 11244.38, + "probability": 0.9063 + }, + { + "start": 11245.56, + "end": 11249.08, + "probability": 0.8489 + }, + { + "start": 11249.8, + "end": 11254.84, + "probability": 0.9254 + }, + { + "start": 11255.66, + "end": 11256.02, + "probability": 0.5021 + }, + { + "start": 11256.18, + "end": 11256.5, + "probability": 0.7931 + }, + { + "start": 11256.56, + "end": 11258.14, + "probability": 0.9594 + }, + { + "start": 11258.26, + "end": 11259.18, + "probability": 0.3779 + }, + { + "start": 11259.7, + "end": 11261.66, + "probability": 0.9644 + }, + { + "start": 11262.8, + "end": 11266.88, + "probability": 0.905 + }, + { + "start": 11266.88, + "end": 11271.48, + "probability": 0.7543 + }, + { + "start": 11273.76, + "end": 11277.72, + "probability": 0.9371 + }, + { + "start": 11277.72, + "end": 11281.68, + "probability": 0.9736 + }, + { + "start": 11282.62, + "end": 11284.54, + "probability": 0.9927 + }, + { + "start": 11284.58, + "end": 11287.64, + "probability": 0.6623 + }, + { + "start": 11287.74, + "end": 11289.1, + "probability": 0.7984 + }, + { + "start": 11289.68, + "end": 11294.08, + "probability": 0.9301 + }, + { + "start": 11295.38, + "end": 11298.86, + "probability": 0.7978 + }, + { + "start": 11298.86, + "end": 11300.12, + "probability": 0.7153 + }, + { + "start": 11301.08, + "end": 11302.68, + "probability": 0.1738 + }, + { + "start": 11302.76, + "end": 11306.22, + "probability": 0.7663 + }, + { + "start": 11309.3, + "end": 11313.66, + "probability": 0.9705 + }, + { + "start": 11313.66, + "end": 11320.56, + "probability": 0.9391 + }, + { + "start": 11321.46, + "end": 11326.26, + "probability": 0.951 + }, + { + "start": 11328.12, + "end": 11330.48, + "probability": 0.5022 + }, + { + "start": 11330.48, + "end": 11333.26, + "probability": 0.8094 + }, + { + "start": 11333.4, + "end": 11338.38, + "probability": 0.927 + }, + { + "start": 11338.38, + "end": 11343.38, + "probability": 0.8905 + }, + { + "start": 11344.62, + "end": 11350.57, + "probability": 0.7208 + }, + { + "start": 11351.38, + "end": 11353.26, + "probability": 0.896 + }, + { + "start": 11354.66, + "end": 11355.6, + "probability": 0.6665 + }, + { + "start": 11355.84, + "end": 11357.48, + "probability": 0.8828 + }, + { + "start": 11357.96, + "end": 11363.52, + "probability": 0.9541 + }, + { + "start": 11363.72, + "end": 11365.64, + "probability": 0.8109 + }, + { + "start": 11366.5, + "end": 11368.24, + "probability": 0.961 + }, + { + "start": 11368.78, + "end": 11369.98, + "probability": 0.7796 + }, + { + "start": 11370.54, + "end": 11372.88, + "probability": 0.9805 + }, + { + "start": 11372.98, + "end": 11373.7, + "probability": 0.7837 + }, + { + "start": 11374.14, + "end": 11374.84, + "probability": 0.8566 + }, + { + "start": 11375.34, + "end": 11377.22, + "probability": 0.7585 + }, + { + "start": 11377.3, + "end": 11379.9, + "probability": 0.9048 + }, + { + "start": 11380.5, + "end": 11383.72, + "probability": 0.7823 + }, + { + "start": 11385.58, + "end": 11387.22, + "probability": 0.7958 + }, + { + "start": 11388.04, + "end": 11392.84, + "probability": 0.974 + }, + { + "start": 11393.7, + "end": 11398.58, + "probability": 0.9912 + }, + { + "start": 11400.18, + "end": 11401.7, + "probability": 0.9993 + }, + { + "start": 11402.56, + "end": 11407.4, + "probability": 0.8009 + }, + { + "start": 11407.4, + "end": 11411.88, + "probability": 0.9994 + }, + { + "start": 11413.58, + "end": 11416.91, + "probability": 0.7798 + }, + { + "start": 11417.22, + "end": 11421.42, + "probability": 0.781 + }, + { + "start": 11422.68, + "end": 11423.22, + "probability": 0.75 + }, + { + "start": 11423.32, + "end": 11426.14, + "probability": 0.9525 + }, + { + "start": 11426.24, + "end": 11432.74, + "probability": 0.9734 + }, + { + "start": 11433.32, + "end": 11433.84, + "probability": 0.5272 + }, + { + "start": 11434.0, + "end": 11436.32, + "probability": 0.8922 + }, + { + "start": 11436.4, + "end": 11441.06, + "probability": 0.906 + }, + { + "start": 11442.28, + "end": 11445.96, + "probability": 0.9548 + }, + { + "start": 11449.38, + "end": 11451.06, + "probability": 0.9382 + }, + { + "start": 11451.48, + "end": 11455.22, + "probability": 0.7896 + }, + { + "start": 11455.4, + "end": 11457.08, + "probability": 0.9806 + }, + { + "start": 11457.7, + "end": 11466.04, + "probability": 0.9627 + }, + { + "start": 11466.04, + "end": 11470.3, + "probability": 0.8469 + }, + { + "start": 11471.4, + "end": 11474.8, + "probability": 0.8485 + }, + { + "start": 11474.98, + "end": 11475.64, + "probability": 0.5619 + }, + { + "start": 11476.14, + "end": 11477.54, + "probability": 0.8545 + }, + { + "start": 11478.7, + "end": 11482.9, + "probability": 0.7483 + }, + { + "start": 11483.7, + "end": 11487.08, + "probability": 0.9503 + }, + { + "start": 11487.8, + "end": 11490.18, + "probability": 0.8954 + }, + { + "start": 11490.32, + "end": 11491.68, + "probability": 0.9849 + }, + { + "start": 11491.92, + "end": 11495.12, + "probability": 0.7733 + }, + { + "start": 11495.26, + "end": 11497.32, + "probability": 0.8355 + }, + { + "start": 11497.84, + "end": 11498.56, + "probability": 0.7215 + }, + { + "start": 11499.14, + "end": 11499.8, + "probability": 0.0045 + }, + { + "start": 11500.28, + "end": 11504.34, + "probability": 0.7727 + }, + { + "start": 11504.34, + "end": 11505.84, + "probability": 0.5029 + }, + { + "start": 11506.08, + "end": 11507.74, + "probability": 0.8398 + }, + { + "start": 11507.9, + "end": 11513.64, + "probability": 0.8465 + }, + { + "start": 11514.12, + "end": 11514.84, + "probability": 0.5119 + }, + { + "start": 11515.04, + "end": 11516.08, + "probability": 0.9095 + }, + { + "start": 11516.22, + "end": 11518.52, + "probability": 0.7498 + }, + { + "start": 11518.72, + "end": 11519.32, + "probability": 0.5168 + }, + { + "start": 11519.54, + "end": 11521.06, + "probability": 0.6795 + }, + { + "start": 11521.36, + "end": 11524.28, + "probability": 0.9837 + }, + { + "start": 11524.32, + "end": 11525.04, + "probability": 0.8164 + }, + { + "start": 11525.26, + "end": 11526.62, + "probability": 0.6295 + }, + { + "start": 11526.8, + "end": 11528.78, + "probability": 0.6956 + }, + { + "start": 11530.12, + "end": 11532.98, + "probability": 0.5527 + }, + { + "start": 11533.82, + "end": 11537.52, + "probability": 0.6701 + }, + { + "start": 11537.7, + "end": 11538.44, + "probability": 0.5959 + }, + { + "start": 11538.54, + "end": 11541.85, + "probability": 0.8571 + }, + { + "start": 11542.78, + "end": 11548.76, + "probability": 0.9724 + }, + { + "start": 11549.08, + "end": 11550.74, + "probability": 0.9634 + }, + { + "start": 11551.52, + "end": 11552.34, + "probability": 0.4519 + }, + { + "start": 11552.36, + "end": 11554.88, + "probability": 0.9829 + }, + { + "start": 11555.78, + "end": 11556.3, + "probability": 0.528 + }, + { + "start": 11556.64, + "end": 11557.48, + "probability": 0.7332 + }, + { + "start": 11557.56, + "end": 11559.9, + "probability": 0.9485 + }, + { + "start": 11560.34, + "end": 11561.52, + "probability": 0.9393 + }, + { + "start": 11561.62, + "end": 11563.44, + "probability": 0.969 + }, + { + "start": 11563.46, + "end": 11564.4, + "probability": 0.6687 + }, + { + "start": 11566.48, + "end": 11569.42, + "probability": 0.9633 + }, + { + "start": 11570.02, + "end": 11573.15, + "probability": 0.9927 + }, + { + "start": 11574.24, + "end": 11578.92, + "probability": 0.9686 + }, + { + "start": 11579.9, + "end": 11581.82, + "probability": 0.9697 + }, + { + "start": 11581.92, + "end": 11582.96, + "probability": 0.9791 + }, + { + "start": 11585.02, + "end": 11588.68, + "probability": 0.4942 + }, + { + "start": 11589.74, + "end": 11591.2, + "probability": 0.9839 + }, + { + "start": 11592.08, + "end": 11595.76, + "probability": 0.8351 + }, + { + "start": 11596.76, + "end": 11598.58, + "probability": 0.9781 + }, + { + "start": 11598.66, + "end": 11600.96, + "probability": 0.9627 + }, + { + "start": 11600.96, + "end": 11602.98, + "probability": 0.9914 + }, + { + "start": 11603.08, + "end": 11604.74, + "probability": 0.9867 + }, + { + "start": 11606.1, + "end": 11609.86, + "probability": 0.8175 + }, + { + "start": 11610.9, + "end": 11613.68, + "probability": 0.9665 + }, + { + "start": 11614.62, + "end": 11616.18, + "probability": 0.0303 + }, + { + "start": 11616.18, + "end": 11616.54, + "probability": 0.4424 + }, + { + "start": 11617.04, + "end": 11618.08, + "probability": 0.6472 + }, + { + "start": 11619.15, + "end": 11624.88, + "probability": 0.3591 + }, + { + "start": 11626.52, + "end": 11626.7, + "probability": 0.384 + }, + { + "start": 11626.8, + "end": 11630.62, + "probability": 0.3986 + }, + { + "start": 11630.8, + "end": 11631.88, + "probability": 0.569 + }, + { + "start": 11632.74, + "end": 11633.96, + "probability": 0.4939 + }, + { + "start": 11634.14, + "end": 11636.0, + "probability": 0.6343 + }, + { + "start": 11636.08, + "end": 11638.3, + "probability": 0.9482 + }, + { + "start": 11639.4, + "end": 11641.04, + "probability": 0.9119 + }, + { + "start": 11641.7, + "end": 11642.78, + "probability": 0.9137 + }, + { + "start": 11642.84, + "end": 11645.15, + "probability": 0.9521 + }, + { + "start": 11645.84, + "end": 11646.52, + "probability": 0.9277 + }, + { + "start": 11646.78, + "end": 11647.26, + "probability": 0.8151 + }, + { + "start": 11647.64, + "end": 11651.16, + "probability": 0.9813 + }, + { + "start": 11651.26, + "end": 11652.38, + "probability": 0.8915 + }, + { + "start": 11653.6, + "end": 11655.58, + "probability": 0.7058 + }, + { + "start": 11655.7, + "end": 11656.82, + "probability": 0.8546 + }, + { + "start": 11657.3, + "end": 11662.16, + "probability": 0.7916 + }, + { + "start": 11662.18, + "end": 11663.28, + "probability": 0.9155 + }, + { + "start": 11665.04, + "end": 11667.94, + "probability": 0.9148 + }, + { + "start": 11668.18, + "end": 11672.0, + "probability": 0.969 + }, + { + "start": 11672.0, + "end": 11676.1, + "probability": 0.8003 + }, + { + "start": 11676.28, + "end": 11677.52, + "probability": 0.6508 + }, + { + "start": 11678.04, + "end": 11679.02, + "probability": 0.92 + }, + { + "start": 11680.06, + "end": 11687.1, + "probability": 0.928 + }, + { + "start": 11687.46, + "end": 11688.88, + "probability": 0.929 + }, + { + "start": 11690.42, + "end": 11692.24, + "probability": 0.8574 + }, + { + "start": 11692.42, + "end": 11693.72, + "probability": 0.7524 + }, + { + "start": 11693.8, + "end": 11694.96, + "probability": 0.6477 + }, + { + "start": 11695.4, + "end": 11696.56, + "probability": 0.8269 + }, + { + "start": 11697.46, + "end": 11701.18, + "probability": 0.9965 + }, + { + "start": 11703.22, + "end": 11704.78, + "probability": 0.5698 + }, + { + "start": 11704.86, + "end": 11710.66, + "probability": 0.9775 + }, + { + "start": 11711.9, + "end": 11713.5, + "probability": 0.9873 + }, + { + "start": 11713.82, + "end": 11717.76, + "probability": 0.9238 + }, + { + "start": 11717.92, + "end": 11721.0, + "probability": 0.9961 + }, + { + "start": 11721.82, + "end": 11726.24, + "probability": 0.9127 + }, + { + "start": 11726.26, + "end": 11728.16, + "probability": 0.4146 + }, + { + "start": 11728.24, + "end": 11729.78, + "probability": 0.6369 + }, + { + "start": 11729.8, + "end": 11732.0, + "probability": 0.6332 + }, + { + "start": 11733.68, + "end": 11735.02, + "probability": 0.9114 + }, + { + "start": 11735.18, + "end": 11737.26, + "probability": 0.9849 + }, + { + "start": 11737.52, + "end": 11738.82, + "probability": 0.9436 + }, + { + "start": 11740.34, + "end": 11743.62, + "probability": 0.9972 + }, + { + "start": 11743.96, + "end": 11745.4, + "probability": 0.8191 + }, + { + "start": 11747.4, + "end": 11752.34, + "probability": 0.8975 + }, + { + "start": 11752.5, + "end": 11753.14, + "probability": 0.8383 + }, + { + "start": 11753.22, + "end": 11753.94, + "probability": 0.983 + }, + { + "start": 11754.4, + "end": 11755.22, + "probability": 0.9547 + }, + { + "start": 11756.42, + "end": 11761.16, + "probability": 0.9846 + }, + { + "start": 11762.18, + "end": 11765.08, + "probability": 0.8315 + }, + { + "start": 11766.66, + "end": 11769.94, + "probability": 0.9014 + }, + { + "start": 11770.26, + "end": 11772.36, + "probability": 0.9098 + }, + { + "start": 11772.52, + "end": 11776.84, + "probability": 0.9072 + }, + { + "start": 11777.52, + "end": 11779.0, + "probability": 0.7025 + }, + { + "start": 11779.68, + "end": 11781.4, + "probability": 0.9042 + }, + { + "start": 11781.5, + "end": 11782.34, + "probability": 0.5285 + }, + { + "start": 11782.44, + "end": 11783.14, + "probability": 0.1038 + }, + { + "start": 11783.14, + "end": 11783.64, + "probability": 0.311 + }, + { + "start": 11783.64, + "end": 11784.12, + "probability": 0.4795 + }, + { + "start": 11784.56, + "end": 11786.96, + "probability": 0.8289 + }, + { + "start": 11787.22, + "end": 11788.88, + "probability": 0.9567 + }, + { + "start": 11788.98, + "end": 11789.49, + "probability": 0.7447 + }, + { + "start": 11790.18, + "end": 11790.4, + "probability": 0.7723 + }, + { + "start": 11790.84, + "end": 11791.28, + "probability": 0.8315 + }, + { + "start": 11791.38, + "end": 11792.16, + "probability": 0.8901 + }, + { + "start": 11792.16, + "end": 11794.2, + "probability": 0.8625 + }, + { + "start": 11794.56, + "end": 11795.58, + "probability": 0.7744 + }, + { + "start": 11795.8, + "end": 11798.46, + "probability": 0.2067 + }, + { + "start": 11798.5, + "end": 11798.5, + "probability": 0.2477 + }, + { + "start": 11798.5, + "end": 11798.74, + "probability": 0.8154 + }, + { + "start": 11798.82, + "end": 11801.72, + "probability": 0.9925 + }, + { + "start": 11802.46, + "end": 11805.22, + "probability": 0.8015 + }, + { + "start": 11805.46, + "end": 11807.28, + "probability": 0.9754 + }, + { + "start": 11808.5, + "end": 11809.56, + "probability": 0.6573 + }, + { + "start": 11809.58, + "end": 11817.16, + "probability": 0.9665 + }, + { + "start": 11817.24, + "end": 11818.68, + "probability": 0.8735 + }, + { + "start": 11818.88, + "end": 11822.74, + "probability": 0.9945 + }, + { + "start": 11823.48, + "end": 11827.06, + "probability": 0.9946 + }, + { + "start": 11828.02, + "end": 11829.04, + "probability": 0.9692 + }, + { + "start": 11829.12, + "end": 11829.72, + "probability": 0.8878 + }, + { + "start": 11829.88, + "end": 11830.68, + "probability": 0.6678 + }, + { + "start": 11830.8, + "end": 11832.26, + "probability": 0.642 + }, + { + "start": 11832.69, + "end": 11833.42, + "probability": 0.0305 + }, + { + "start": 11833.56, + "end": 11834.12, + "probability": 0.4307 + }, + { + "start": 11834.26, + "end": 11836.88, + "probability": 0.6655 + }, + { + "start": 11837.66, + "end": 11838.44, + "probability": 0.9729 + }, + { + "start": 11838.66, + "end": 11848.78, + "probability": 0.9898 + }, + { + "start": 11850.5, + "end": 11851.48, + "probability": 0.76 + }, + { + "start": 11853.1, + "end": 11854.2, + "probability": 0.9122 + }, + { + "start": 11854.28, + "end": 11854.7, + "probability": 0.7422 + }, + { + "start": 11854.78, + "end": 11855.82, + "probability": 0.7007 + }, + { + "start": 11856.02, + "end": 11857.24, + "probability": 0.8518 + }, + { + "start": 11859.14, + "end": 11864.58, + "probability": 0.9844 + }, + { + "start": 11864.58, + "end": 11870.6, + "probability": 0.9819 + }, + { + "start": 11870.66, + "end": 11873.31, + "probability": 0.897 + }, + { + "start": 11874.24, + "end": 11877.0, + "probability": 0.9517 + }, + { + "start": 11877.1, + "end": 11879.2, + "probability": 0.9047 + }, + { + "start": 11880.02, + "end": 11887.8, + "probability": 0.8779 + }, + { + "start": 11887.8, + "end": 11892.42, + "probability": 0.9989 + }, + { + "start": 11893.38, + "end": 11898.48, + "probability": 0.7634 + }, + { + "start": 11899.46, + "end": 11902.24, + "probability": 0.9864 + }, + { + "start": 11902.3, + "end": 11907.32, + "probability": 0.986 + }, + { + "start": 11908.08, + "end": 11909.92, + "probability": 0.9933 + }, + { + "start": 11910.82, + "end": 11913.34, + "probability": 0.9343 + }, + { + "start": 11914.1, + "end": 11916.26, + "probability": 0.9547 + }, + { + "start": 11916.38, + "end": 11917.22, + "probability": 0.8896 + }, + { + "start": 11917.34, + "end": 11918.9, + "probability": 0.9744 + }, + { + "start": 11919.7, + "end": 11921.04, + "probability": 0.7113 + }, + { + "start": 11921.1, + "end": 11921.92, + "probability": 0.9108 + }, + { + "start": 11922.04, + "end": 11924.52, + "probability": 0.9835 + }, + { + "start": 11926.06, + "end": 11930.18, + "probability": 0.9979 + }, + { + "start": 11930.18, + "end": 11934.66, + "probability": 0.9989 + }, + { + "start": 11934.72, + "end": 11934.94, + "probability": 0.6694 + }, + { + "start": 11935.28, + "end": 11935.68, + "probability": 0.5212 + }, + { + "start": 11935.76, + "end": 11936.8, + "probability": 0.95 + }, + { + "start": 11937.04, + "end": 11938.52, + "probability": 0.9802 + }, + { + "start": 11938.92, + "end": 11939.84, + "probability": 0.8593 + }, + { + "start": 11940.34, + "end": 11941.26, + "probability": 0.5692 + }, + { + "start": 11942.54, + "end": 11943.08, + "probability": 0.5319 + }, + { + "start": 11943.14, + "end": 11943.68, + "probability": 0.4942 + }, + { + "start": 11944.16, + "end": 11945.02, + "probability": 0.7056 + }, + { + "start": 11945.54, + "end": 11945.74, + "probability": 0.7069 + }, + { + "start": 11950.34, + "end": 11953.62, + "probability": 0.3413 + }, + { + "start": 11953.62, + "end": 11956.36, + "probability": 0.7471 + }, + { + "start": 11956.8, + "end": 11960.18, + "probability": 0.8485 + }, + { + "start": 11960.98, + "end": 11961.48, + "probability": 0.3214 + }, + { + "start": 11968.88, + "end": 11970.72, + "probability": 0.7687 + }, + { + "start": 11971.02, + "end": 11972.6, + "probability": 0.6305 + }, + { + "start": 11972.84, + "end": 11974.62, + "probability": 0.4847 + }, + { + "start": 11976.7, + "end": 11978.8, + "probability": 0.8105 + }, + { + "start": 11980.18, + "end": 11980.84, + "probability": 0.8748 + }, + { + "start": 11981.7, + "end": 11985.88, + "probability": 0.8721 + }, + { + "start": 11987.46, + "end": 11991.06, + "probability": 0.9984 + }, + { + "start": 11992.78, + "end": 11998.24, + "probability": 0.9474 + }, + { + "start": 11999.76, + "end": 12003.2, + "probability": 0.9919 + }, + { + "start": 12003.9, + "end": 12004.84, + "probability": 0.8289 + }, + { + "start": 12005.66, + "end": 12006.88, + "probability": 0.635 + }, + { + "start": 12008.34, + "end": 12009.94, + "probability": 0.8584 + }, + { + "start": 12011.62, + "end": 12013.4, + "probability": 0.929 + }, + { + "start": 12015.0, + "end": 12019.7, + "probability": 0.9426 + }, + { + "start": 12020.32, + "end": 12021.1, + "probability": 0.9146 + }, + { + "start": 12022.74, + "end": 12024.86, + "probability": 0.9082 + }, + { + "start": 12026.24, + "end": 12029.12, + "probability": 0.8573 + }, + { + "start": 12029.98, + "end": 12032.0, + "probability": 0.9924 + }, + { + "start": 12032.72, + "end": 12035.4, + "probability": 0.8852 + }, + { + "start": 12036.54, + "end": 12038.98, + "probability": 0.795 + }, + { + "start": 12040.18, + "end": 12040.42, + "probability": 0.6936 + }, + { + "start": 12040.48, + "end": 12047.2, + "probability": 0.9874 + }, + { + "start": 12048.3, + "end": 12049.72, + "probability": 0.7236 + }, + { + "start": 12049.84, + "end": 12050.22, + "probability": 0.7493 + }, + { + "start": 12050.32, + "end": 12055.16, + "probability": 0.9364 + }, + { + "start": 12056.4, + "end": 12063.38, + "probability": 0.9447 + }, + { + "start": 12063.5, + "end": 12066.26, + "probability": 0.9893 + }, + { + "start": 12066.34, + "end": 12071.4, + "probability": 0.9847 + }, + { + "start": 12071.77, + "end": 12075.48, + "probability": 0.9893 + }, + { + "start": 12075.92, + "end": 12078.46, + "probability": 0.9196 + }, + { + "start": 12082.86, + "end": 12083.85, + "probability": 0.9832 + }, + { + "start": 12087.96, + "end": 12092.44, + "probability": 0.8826 + }, + { + "start": 12094.94, + "end": 12099.58, + "probability": 0.919 + }, + { + "start": 12100.52, + "end": 12101.76, + "probability": 0.6849 + }, + { + "start": 12102.78, + "end": 12105.96, + "probability": 0.7392 + }, + { + "start": 12106.0, + "end": 12107.6, + "probability": 0.9219 + }, + { + "start": 12108.74, + "end": 12111.32, + "probability": 0.9578 + }, + { + "start": 12112.8, + "end": 12117.18, + "probability": 0.9575 + }, + { + "start": 12117.84, + "end": 12120.42, + "probability": 0.9901 + }, + { + "start": 12121.42, + "end": 12123.28, + "probability": 0.9727 + }, + { + "start": 12124.38, + "end": 12130.9, + "probability": 0.9836 + }, + { + "start": 12131.12, + "end": 12132.0, + "probability": 0.5598 + }, + { + "start": 12132.88, + "end": 12133.26, + "probability": 0.4705 + }, + { + "start": 12133.78, + "end": 12141.44, + "probability": 0.9232 + }, + { + "start": 12141.52, + "end": 12143.25, + "probability": 0.9976 + }, + { + "start": 12143.92, + "end": 12149.3, + "probability": 0.9547 + }, + { + "start": 12149.64, + "end": 12156.52, + "probability": 0.9281 + }, + { + "start": 12156.74, + "end": 12157.12, + "probability": 0.3786 + }, + { + "start": 12157.14, + "end": 12159.56, + "probability": 0.8307 + }, + { + "start": 12160.0, + "end": 12161.54, + "probability": 0.8744 + }, + { + "start": 12162.04, + "end": 12165.34, + "probability": 0.9654 + }, + { + "start": 12165.46, + "end": 12169.52, + "probability": 0.7251 + }, + { + "start": 12169.52, + "end": 12175.58, + "probability": 0.9683 + }, + { + "start": 12178.6, + "end": 12179.53, + "probability": 0.8802 + }, + { + "start": 12180.32, + "end": 12183.2, + "probability": 0.7979 + }, + { + "start": 12184.54, + "end": 12189.14, + "probability": 0.9892 + }, + { + "start": 12190.14, + "end": 12190.98, + "probability": 0.715 + }, + { + "start": 12192.28, + "end": 12193.98, + "probability": 0.8501 + }, + { + "start": 12194.1, + "end": 12194.74, + "probability": 0.8361 + }, + { + "start": 12194.94, + "end": 12196.8, + "probability": 0.8862 + }, + { + "start": 12198.84, + "end": 12199.66, + "probability": 0.7861 + }, + { + "start": 12200.84, + "end": 12205.74, + "probability": 0.9291 + }, + { + "start": 12206.6, + "end": 12207.56, + "probability": 0.8014 + }, + { + "start": 12208.88, + "end": 12214.34, + "probability": 0.927 + }, + { + "start": 12215.3, + "end": 12217.02, + "probability": 0.7359 + }, + { + "start": 12217.92, + "end": 12219.66, + "probability": 0.884 + }, + { + "start": 12220.4, + "end": 12224.34, + "probability": 0.8112 + }, + { + "start": 12225.62, + "end": 12228.72, + "probability": 0.8379 + }, + { + "start": 12229.32, + "end": 12230.0, + "probability": 0.9753 + }, + { + "start": 12233.37, + "end": 12236.65, + "probability": 0.4759 + }, + { + "start": 12238.34, + "end": 12242.12, + "probability": 0.9935 + }, + { + "start": 12242.82, + "end": 12246.64, + "probability": 0.885 + }, + { + "start": 12248.16, + "end": 12249.8, + "probability": 0.984 + }, + { + "start": 12251.54, + "end": 12253.0, + "probability": 0.9125 + }, + { + "start": 12254.52, + "end": 12256.08, + "probability": 0.8804 + }, + { + "start": 12267.4, + "end": 12272.38, + "probability": 0.7823 + }, + { + "start": 12274.36, + "end": 12277.36, + "probability": 0.952 + }, + { + "start": 12278.62, + "end": 12280.12, + "probability": 0.5599 + }, + { + "start": 12280.16, + "end": 12281.46, + "probability": 0.6458 + }, + { + "start": 12281.6, + "end": 12281.6, + "probability": 0.2626 + }, + { + "start": 12281.6, + "end": 12282.7, + "probability": 0.1157 + }, + { + "start": 12283.02, + "end": 12284.44, + "probability": 0.4637 + }, + { + "start": 12285.82, + "end": 12287.84, + "probability": 0.0769 + }, + { + "start": 12287.84, + "end": 12288.58, + "probability": 0.0466 + }, + { + "start": 12288.8, + "end": 12291.38, + "probability": 0.1528 + }, + { + "start": 12291.58, + "end": 12292.88, + "probability": 0.1273 + }, + { + "start": 12293.02, + "end": 12293.56, + "probability": 0.1813 + }, + { + "start": 12294.36, + "end": 12296.44, + "probability": 0.0785 + }, + { + "start": 12298.6, + "end": 12299.34, + "probability": 0.0921 + }, + { + "start": 12299.34, + "end": 12300.74, + "probability": 0.3327 + }, + { + "start": 12301.04, + "end": 12301.5, + "probability": 0.1426 + }, + { + "start": 12302.3, + "end": 12304.19, + "probability": 0.5116 + }, + { + "start": 12304.52, + "end": 12304.84, + "probability": 0.1415 + }, + { + "start": 12304.84, + "end": 12307.72, + "probability": 0.5687 + }, + { + "start": 12309.28, + "end": 12312.77, + "probability": 0.768 + }, + { + "start": 12313.52, + "end": 12316.82, + "probability": 0.9845 + }, + { + "start": 12317.5, + "end": 12319.74, + "probability": 0.7972 + }, + { + "start": 12321.82, + "end": 12322.94, + "probability": 0.7682 + }, + { + "start": 12324.1, + "end": 12325.82, + "probability": 0.8589 + }, + { + "start": 12326.64, + "end": 12327.74, + "probability": 0.9787 + }, + { + "start": 12328.64, + "end": 12330.58, + "probability": 0.9197 + }, + { + "start": 12332.58, + "end": 12333.36, + "probability": 0.9609 + }, + { + "start": 12333.48, + "end": 12334.22, + "probability": 0.601 + }, + { + "start": 12334.4, + "end": 12341.38, + "probability": 0.9773 + }, + { + "start": 12342.02, + "end": 12347.66, + "probability": 0.9863 + }, + { + "start": 12347.66, + "end": 12354.0, + "probability": 0.9439 + }, + { + "start": 12354.08, + "end": 12359.04, + "probability": 0.9609 + }, + { + "start": 12359.92, + "end": 12361.32, + "probability": 0.7765 + }, + { + "start": 12361.38, + "end": 12364.06, + "probability": 0.9736 + }, + { + "start": 12364.3, + "end": 12368.64, + "probability": 0.9941 + }, + { + "start": 12369.46, + "end": 12372.16, + "probability": 0.9517 + }, + { + "start": 12374.6, + "end": 12374.94, + "probability": 0.1253 + }, + { + "start": 12375.58, + "end": 12375.7, + "probability": 0.092 + }, + { + "start": 12375.7, + "end": 12377.88, + "probability": 0.0769 + }, + { + "start": 12378.32, + "end": 12379.4, + "probability": 0.4302 + }, + { + "start": 12380.08, + "end": 12382.62, + "probability": 0.6486 + }, + { + "start": 12382.98, + "end": 12384.6, + "probability": 0.133 + }, + { + "start": 12384.6, + "end": 12385.88, + "probability": 0.4553 + }, + { + "start": 12386.08, + "end": 12388.24, + "probability": 0.963 + }, + { + "start": 12389.42, + "end": 12391.41, + "probability": 0.0251 + }, + { + "start": 12392.28, + "end": 12395.68, + "probability": 0.8708 + }, + { + "start": 12395.68, + "end": 12399.34, + "probability": 0.9968 + }, + { + "start": 12401.82, + "end": 12404.12, + "probability": 0.9547 + }, + { + "start": 12404.96, + "end": 12406.12, + "probability": 0.6699 + }, + { + "start": 12406.32, + "end": 12412.94, + "probability": 0.9232 + }, + { + "start": 12413.96, + "end": 12417.92, + "probability": 0.9466 + }, + { + "start": 12418.24, + "end": 12418.94, + "probability": 0.6085 + }, + { + "start": 12419.44, + "end": 12423.1, + "probability": 0.8643 + }, + { + "start": 12424.58, + "end": 12428.36, + "probability": 0.9727 + }, + { + "start": 12428.88, + "end": 12432.0, + "probability": 0.9963 + }, + { + "start": 12432.54, + "end": 12432.88, + "probability": 0.6031 + }, + { + "start": 12432.98, + "end": 12435.06, + "probability": 0.9438 + }, + { + "start": 12435.16, + "end": 12436.42, + "probability": 0.9958 + }, + { + "start": 12436.82, + "end": 12439.46, + "probability": 0.9905 + }, + { + "start": 12440.0, + "end": 12446.32, + "probability": 0.9273 + }, + { + "start": 12446.34, + "end": 12449.23, + "probability": 0.8163 + }, + { + "start": 12449.84, + "end": 12455.42, + "probability": 0.9922 + }, + { + "start": 12455.86, + "end": 12456.74, + "probability": 0.7303 + }, + { + "start": 12456.84, + "end": 12457.36, + "probability": 0.5293 + }, + { + "start": 12457.5, + "end": 12458.3, + "probability": 0.9095 + }, + { + "start": 12458.44, + "end": 12459.54, + "probability": 0.9282 + }, + { + "start": 12461.02, + "end": 12461.74, + "probability": 0.4336 + }, + { + "start": 12461.8, + "end": 12463.96, + "probability": 0.7729 + }, + { + "start": 12464.26, + "end": 12468.32, + "probability": 0.9678 + }, + { + "start": 12468.34, + "end": 12470.8, + "probability": 0.6841 + }, + { + "start": 12470.88, + "end": 12471.98, + "probability": 0.9551 + }, + { + "start": 12472.46, + "end": 12473.24, + "probability": 0.9055 + }, + { + "start": 12473.54, + "end": 12474.62, + "probability": 0.9449 + }, + { + "start": 12475.32, + "end": 12477.94, + "probability": 0.9771 + }, + { + "start": 12478.68, + "end": 12480.74, + "probability": 0.9774 + }, + { + "start": 12480.82, + "end": 12484.45, + "probability": 0.9704 + }, + { + "start": 12490.96, + "end": 12496.66, + "probability": 0.7734 + }, + { + "start": 12497.48, + "end": 12501.48, + "probability": 0.2487 + }, + { + "start": 12502.49, + "end": 12502.94, + "probability": 0.5623 + }, + { + "start": 12503.06, + "end": 12503.78, + "probability": 0.5421 + }, + { + "start": 12503.98, + "end": 12504.74, + "probability": 0.4113 + }, + { + "start": 12505.47, + "end": 12511.84, + "probability": 0.9303 + }, + { + "start": 12511.84, + "end": 12516.12, + "probability": 0.9399 + }, + { + "start": 12516.48, + "end": 12521.46, + "probability": 0.9738 + }, + { + "start": 12521.72, + "end": 12521.98, + "probability": 0.7886 + }, + { + "start": 12522.14, + "end": 12522.48, + "probability": 0.6791 + }, + { + "start": 12523.18, + "end": 12529.62, + "probability": 0.7573 + }, + { + "start": 12531.44, + "end": 12531.6, + "probability": 0.0881 + }, + { + "start": 12531.6, + "end": 12531.6, + "probability": 0.0253 + }, + { + "start": 12531.6, + "end": 12531.94, + "probability": 0.4139 + }, + { + "start": 12532.16, + "end": 12532.16, + "probability": 0.7288 + }, + { + "start": 12532.18, + "end": 12533.14, + "probability": 0.3554 + }, + { + "start": 12534.4, + "end": 12537.42, + "probability": 0.2945 + }, + { + "start": 12538.04, + "end": 12539.66, + "probability": 0.4477 + }, + { + "start": 12539.8, + "end": 12540.96, + "probability": 0.0518 + }, + { + "start": 12544.16, + "end": 12546.5, + "probability": 0.0529 + }, + { + "start": 12554.02, + "end": 12558.04, + "probability": 0.0992 + }, + { + "start": 12559.02, + "end": 12568.82, + "probability": 0.4833 + }, + { + "start": 12569.56, + "end": 12572.56, + "probability": 0.9349 + }, + { + "start": 12572.6, + "end": 12573.88, + "probability": 0.9148 + }, + { + "start": 12574.22, + "end": 12576.14, + "probability": 0.9845 + }, + { + "start": 12576.44, + "end": 12580.96, + "probability": 0.9976 + }, + { + "start": 12581.36, + "end": 12583.3, + "probability": 0.9448 + }, + { + "start": 12583.66, + "end": 12585.74, + "probability": 0.9556 + }, + { + "start": 12586.06, + "end": 12589.26, + "probability": 0.9574 + }, + { + "start": 12589.84, + "end": 12591.66, + "probability": 0.9941 + }, + { + "start": 12591.78, + "end": 12593.74, + "probability": 0.518 + }, + { + "start": 12594.14, + "end": 12594.52, + "probability": 0.5725 + }, + { + "start": 12594.66, + "end": 12594.92, + "probability": 0.5989 + }, + { + "start": 12595.06, + "end": 12596.22, + "probability": 0.7696 + }, + { + "start": 12596.36, + "end": 12600.2, + "probability": 0.9812 + }, + { + "start": 12600.26, + "end": 12602.08, + "probability": 0.6979 + }, + { + "start": 12602.36, + "end": 12604.24, + "probability": 0.4072 + }, + { + "start": 12604.24, + "end": 12604.24, + "probability": 0.0461 + }, + { + "start": 12604.24, + "end": 12605.54, + "probability": 0.1411 + }, + { + "start": 12607.29, + "end": 12609.8, + "probability": 0.7217 + }, + { + "start": 12609.92, + "end": 12611.97, + "probability": 0.9817 + }, + { + "start": 12612.08, + "end": 12613.92, + "probability": 0.7542 + }, + { + "start": 12616.46, + "end": 12620.44, + "probability": 0.8662 + }, + { + "start": 12620.84, + "end": 12625.4, + "probability": 0.9765 + }, + { + "start": 12626.4, + "end": 12627.2, + "probability": 0.5475 + }, + { + "start": 12628.2, + "end": 12629.82, + "probability": 0.6216 + }, + { + "start": 12630.46, + "end": 12632.21, + "probability": 0.7847 + }, + { + "start": 12633.04, + "end": 12634.52, + "probability": 0.5017 + }, + { + "start": 12635.08, + "end": 12637.62, + "probability": 0.9863 + }, + { + "start": 12638.6, + "end": 12643.38, + "probability": 0.9249 + }, + { + "start": 12644.34, + "end": 12647.1, + "probability": 0.9131 + }, + { + "start": 12647.32, + "end": 12648.3, + "probability": 0.9574 + }, + { + "start": 12648.62, + "end": 12650.94, + "probability": 0.8352 + }, + { + "start": 12651.5, + "end": 12654.46, + "probability": 0.9556 + }, + { + "start": 12655.38, + "end": 12660.4, + "probability": 0.608 + }, + { + "start": 12660.92, + "end": 12664.28, + "probability": 0.943 + }, + { + "start": 12664.66, + "end": 12667.72, + "probability": 0.8937 + }, + { + "start": 12667.72, + "end": 12668.26, + "probability": 0.096 + }, + { + "start": 12668.26, + "end": 12668.78, + "probability": 0.1319 + }, + { + "start": 12670.0, + "end": 12674.2, + "probability": 0.7065 + }, + { + "start": 12675.44, + "end": 12678.38, + "probability": 0.6151 + }, + { + "start": 12678.56, + "end": 12683.28, + "probability": 0.9673 + }, + { + "start": 12683.28, + "end": 12690.42, + "probability": 0.8146 + }, + { + "start": 12690.98, + "end": 12696.24, + "probability": 0.9242 + }, + { + "start": 12699.68, + "end": 12700.82, + "probability": 0.9779 + }, + { + "start": 12700.96, + "end": 12706.01, + "probability": 0.9861 + }, + { + "start": 12706.14, + "end": 12712.42, + "probability": 0.9961 + }, + { + "start": 12713.08, + "end": 12720.96, + "probability": 0.9876 + }, + { + "start": 12722.22, + "end": 12726.16, + "probability": 0.9666 + }, + { + "start": 12726.2, + "end": 12728.72, + "probability": 0.9917 + }, + { + "start": 12729.28, + "end": 12734.22, + "probability": 0.8853 + }, + { + "start": 12734.26, + "end": 12735.1, + "probability": 0.8554 + }, + { + "start": 12735.14, + "end": 12738.18, + "probability": 0.9551 + }, + { + "start": 12738.58, + "end": 12740.54, + "probability": 0.9291 + }, + { + "start": 12742.12, + "end": 12744.94, + "probability": 0.7141 + }, + { + "start": 12746.04, + "end": 12748.94, + "probability": 0.9583 + }, + { + "start": 12750.26, + "end": 12751.95, + "probability": 0.8615 + }, + { + "start": 12752.84, + "end": 12753.66, + "probability": 0.6629 + }, + { + "start": 12754.2, + "end": 12756.98, + "probability": 0.6951 + }, + { + "start": 12757.3, + "end": 12759.82, + "probability": 0.8647 + }, + { + "start": 12761.5, + "end": 12764.98, + "probability": 0.368 + }, + { + "start": 12765.62, + "end": 12768.76, + "probability": 0.6845 + }, + { + "start": 12768.9, + "end": 12770.26, + "probability": 0.655 + }, + { + "start": 12770.5, + "end": 12771.2, + "probability": 0.1304 + }, + { + "start": 12771.48, + "end": 12777.74, + "probability": 0.4591 + }, + { + "start": 12777.9, + "end": 12779.2, + "probability": 0.9822 + }, + { + "start": 12779.66, + "end": 12785.12, + "probability": 0.9845 + }, + { + "start": 12785.54, + "end": 12787.26, + "probability": 0.7529 + }, + { + "start": 12788.1, + "end": 12793.58, + "probability": 0.8665 + }, + { + "start": 12793.96, + "end": 12795.38, + "probability": 0.4776 + }, + { + "start": 12795.88, + "end": 12796.24, + "probability": 0.3276 + }, + { + "start": 12796.3, + "end": 12797.1, + "probability": 0.6857 + }, + { + "start": 12797.24, + "end": 12799.38, + "probability": 0.8295 + }, + { + "start": 12799.72, + "end": 12801.08, + "probability": 0.8341 + }, + { + "start": 12801.6, + "end": 12803.36, + "probability": 0.4443 + }, + { + "start": 12804.08, + "end": 12807.14, + "probability": 0.8685 + }, + { + "start": 12808.5, + "end": 12812.62, + "probability": 0.8445 + }, + { + "start": 12812.82, + "end": 12815.94, + "probability": 0.8398 + }, + { + "start": 12815.94, + "end": 12820.66, + "probability": 0.9941 + }, + { + "start": 12821.02, + "end": 12823.16, + "probability": 0.9611 + }, + { + "start": 12823.68, + "end": 12825.91, + "probability": 0.9814 + }, + { + "start": 12826.88, + "end": 12828.48, + "probability": 0.9871 + }, + { + "start": 12829.1, + "end": 12830.86, + "probability": 0.7996 + }, + { + "start": 12831.42, + "end": 12833.48, + "probability": 0.8236 + }, + { + "start": 12834.38, + "end": 12835.94, + "probability": 0.9632 + }, + { + "start": 12836.64, + "end": 12842.72, + "probability": 0.9218 + }, + { + "start": 12843.02, + "end": 12845.08, + "probability": 0.9124 + }, + { + "start": 12845.5, + "end": 12848.18, + "probability": 0.9896 + }, + { + "start": 12848.3, + "end": 12850.06, + "probability": 0.9415 + }, + { + "start": 12850.64, + "end": 12852.64, + "probability": 0.8735 + }, + { + "start": 12853.08, + "end": 12855.65, + "probability": 0.9618 + }, + { + "start": 12857.0, + "end": 12859.78, + "probability": 0.9985 + }, + { + "start": 12860.88, + "end": 12865.98, + "probability": 0.9142 + }, + { + "start": 12866.44, + "end": 12867.67, + "probability": 0.4774 + }, + { + "start": 12868.6, + "end": 12869.58, + "probability": 0.7451 + }, + { + "start": 12869.76, + "end": 12871.96, + "probability": 0.6998 + }, + { + "start": 12872.04, + "end": 12875.38, + "probability": 0.9556 + }, + { + "start": 12875.5, + "end": 12876.78, + "probability": 0.9683 + }, + { + "start": 12877.32, + "end": 12877.46, + "probability": 0.7411 + }, + { + "start": 12877.5, + "end": 12879.06, + "probability": 0.5653 + }, + { + "start": 12879.36, + "end": 12882.0, + "probability": 0.8688 + }, + { + "start": 12882.34, + "end": 12884.54, + "probability": 0.8766 + }, + { + "start": 12885.88, + "end": 12888.08, + "probability": 0.2883 + }, + { + "start": 12888.42, + "end": 12888.91, + "probability": 0.3866 + }, + { + "start": 12889.14, + "end": 12890.18, + "probability": 0.3646 + }, + { + "start": 12890.24, + "end": 12892.68, + "probability": 0.2182 + }, + { + "start": 12893.18, + "end": 12894.8, + "probability": 0.1242 + }, + { + "start": 12895.48, + "end": 12897.38, + "probability": 0.5046 + }, + { + "start": 12897.72, + "end": 12898.37, + "probability": 0.0958 + }, + { + "start": 12899.58, + "end": 12900.24, + "probability": 0.0645 + }, + { + "start": 12900.24, + "end": 12900.24, + "probability": 0.0627 + }, + { + "start": 12900.24, + "end": 12901.14, + "probability": 0.2409 + }, + { + "start": 12901.82, + "end": 12902.52, + "probability": 0.0082 + }, + { + "start": 12902.52, + "end": 12904.12, + "probability": 0.1617 + }, + { + "start": 12904.6, + "end": 12905.04, + "probability": 0.0191 + }, + { + "start": 12905.16, + "end": 12905.2, + "probability": 0.2466 + }, + { + "start": 12905.2, + "end": 12906.77, + "probability": 0.0295 + }, + { + "start": 12907.08, + "end": 12909.84, + "probability": 0.4586 + }, + { + "start": 12910.18, + "end": 12911.13, + "probability": 0.3164 + }, + { + "start": 12912.54, + "end": 12913.69, + "probability": 0.0639 + }, + { + "start": 12914.96, + "end": 12915.08, + "probability": 0.1139 + }, + { + "start": 12915.26, + "end": 12915.64, + "probability": 0.2105 + }, + { + "start": 12917.0, + "end": 12917.36, + "probability": 0.198 + }, + { + "start": 12920.22, + "end": 12920.8, + "probability": 0.0031 + }, + { + "start": 12922.18, + "end": 12924.94, + "probability": 0.4849 + }, + { + "start": 12925.64, + "end": 12929.5, + "probability": 0.9902 + }, + { + "start": 12929.76, + "end": 12931.44, + "probability": 0.3732 + }, + { + "start": 12931.5, + "end": 12931.94, + "probability": 0.1017 + }, + { + "start": 12932.14, + "end": 12936.18, + "probability": 0.023 + }, + { + "start": 12937.52, + "end": 12941.32, + "probability": 0.0114 + }, + { + "start": 12941.4, + "end": 12941.4, + "probability": 0.1242 + }, + { + "start": 12942.16, + "end": 12943.34, + "probability": 0.0222 + }, + { + "start": 12943.34, + "end": 12943.38, + "probability": 0.1527 + }, + { + "start": 12943.38, + "end": 12945.38, + "probability": 0.0248 + }, + { + "start": 12947.7, + "end": 12947.86, + "probability": 0.0047 + }, + { + "start": 12947.86, + "end": 12947.86, + "probability": 0.1427 + }, + { + "start": 12947.86, + "end": 12947.86, + "probability": 0.0854 + }, + { + "start": 12947.86, + "end": 12948.12, + "probability": 0.1183 + }, + { + "start": 12948.12, + "end": 12948.12, + "probability": 0.0817 + }, + { + "start": 12948.12, + "end": 12953.36, + "probability": 0.9666 + }, + { + "start": 12964.38, + "end": 12966.52, + "probability": 0.5131 + }, + { + "start": 12966.74, + "end": 12967.0, + "probability": 0.038 + }, + { + "start": 12967.0, + "end": 12967.0, + "probability": 0.0964 + }, + { + "start": 12967.0, + "end": 12967.0, + "probability": 0.0755 + }, + { + "start": 12967.0, + "end": 12967.0, + "probability": 0.0481 + }, + { + "start": 12967.0, + "end": 12967.0, + "probability": 0.1115 + }, + { + "start": 12967.0, + "end": 12967.0, + "probability": 0.2226 + }, + { + "start": 12967.0, + "end": 12967.0, + "probability": 0.1785 + }, + { + "start": 12967.0, + "end": 12969.66, + "probability": 0.7284 + }, + { + "start": 12969.94, + "end": 12971.08, + "probability": 0.5025 + }, + { + "start": 12971.88, + "end": 12972.37, + "probability": 0.733 + }, + { + "start": 12973.04, + "end": 12974.54, + "probability": 0.9813 + }, + { + "start": 12974.86, + "end": 12977.18, + "probability": 0.964 + }, + { + "start": 12978.57, + "end": 12980.5, + "probability": 0.8044 + }, + { + "start": 12981.04, + "end": 12986.0, + "probability": 0.9913 + }, + { + "start": 12986.88, + "end": 12988.67, + "probability": 0.8797 + }, + { + "start": 12990.24, + "end": 12991.54, + "probability": 0.8089 + }, + { + "start": 12991.62, + "end": 12993.21, + "probability": 0.9661 + }, + { + "start": 12994.1, + "end": 12994.86, + "probability": 0.7292 + }, + { + "start": 12994.94, + "end": 12995.44, + "probability": 0.8418 + }, + { + "start": 12995.48, + "end": 12996.64, + "probability": 0.421 + }, + { + "start": 12997.08, + "end": 12999.51, + "probability": 0.9165 + }, + { + "start": 12999.76, + "end": 13001.44, + "probability": 0.4799 + }, + { + "start": 13001.74, + "end": 13003.28, + "probability": 0.6806 + }, + { + "start": 13003.42, + "end": 13004.74, + "probability": 0.8264 + }, + { + "start": 13004.84, + "end": 13004.92, + "probability": 0.8818 + }, + { + "start": 13005.06, + "end": 13005.16, + "probability": 0.3743 + }, + { + "start": 13005.28, + "end": 13006.58, + "probability": 0.8667 + }, + { + "start": 13006.58, + "end": 13008.84, + "probability": 0.6412 + }, + { + "start": 13009.28, + "end": 13010.1, + "probability": 0.5855 + }, + { + "start": 13010.2, + "end": 13010.76, + "probability": 0.7416 + }, + { + "start": 13010.82, + "end": 13010.82, + "probability": 0.6621 + }, + { + "start": 13010.9, + "end": 13011.7, + "probability": 0.3884 + }, + { + "start": 13011.82, + "end": 13013.7, + "probability": 0.8486 + }, + { + "start": 13014.38, + "end": 13017.12, + "probability": 0.5892 + }, + { + "start": 13018.02, + "end": 13020.92, + "probability": 0.8282 + }, + { + "start": 13022.9, + "end": 13028.32, + "probability": 0.0771 + }, + { + "start": 13028.32, + "end": 13030.63, + "probability": 0.163 + }, + { + "start": 13031.06, + "end": 13033.38, + "probability": 0.3387 + }, + { + "start": 13033.54, + "end": 13035.06, + "probability": 0.4915 + }, + { + "start": 13035.36, + "end": 13035.98, + "probability": 0.1137 + }, + { + "start": 13036.86, + "end": 13037.77, + "probability": 0.0719 + }, + { + "start": 13038.14, + "end": 13038.14, + "probability": 0.1325 + }, + { + "start": 13038.8, + "end": 13039.34, + "probability": 0.0022 + }, + { + "start": 13039.86, + "end": 13041.66, + "probability": 0.5132 + }, + { + "start": 13042.1, + "end": 13043.9, + "probability": 0.5444 + }, + { + "start": 13043.9, + "end": 13044.74, + "probability": 0.0976 + }, + { + "start": 13044.74, + "end": 13045.29, + "probability": 0.1975 + }, + { + "start": 13045.4, + "end": 13047.66, + "probability": 0.0897 + }, + { + "start": 13047.88, + "end": 13051.9, + "probability": 0.1482 + }, + { + "start": 13053.88, + "end": 13054.52, + "probability": 0.0041 + }, + { + "start": 13055.14, + "end": 13057.33, + "probability": 0.0114 + }, + { + "start": 13058.84, + "end": 13059.64, + "probability": 0.0719 + }, + { + "start": 13060.1, + "end": 13060.48, + "probability": 0.0508 + }, + { + "start": 13060.86, + "end": 13066.52, + "probability": 0.0528 + }, + { + "start": 13067.24, + "end": 13069.38, + "probability": 0.2514 + }, + { + "start": 13070.42, + "end": 13072.43, + "probability": 0.5783 + }, + { + "start": 13073.04, + "end": 13074.16, + "probability": 0.133 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.0, + "end": 13100.0, + "probability": 0.0 + }, + { + "start": 13100.08, + "end": 13100.6, + "probability": 0.0568 + }, + { + "start": 13100.6, + "end": 13100.6, + "probability": 0.12 + }, + { + "start": 13100.6, + "end": 13102.8, + "probability": 0.1369 + }, + { + "start": 13103.24, + "end": 13105.25, + "probability": 0.8911 + }, + { + "start": 13105.6, + "end": 13106.12, + "probability": 0.9121 + }, + { + "start": 13106.34, + "end": 13107.1, + "probability": 0.4767 + }, + { + "start": 13107.2, + "end": 13110.68, + "probability": 0.7325 + }, + { + "start": 13111.38, + "end": 13114.42, + "probability": 0.9844 + }, + { + "start": 13114.42, + "end": 13115.34, + "probability": 0.6703 + }, + { + "start": 13116.74, + "end": 13118.1, + "probability": 0.854 + }, + { + "start": 13118.5, + "end": 13120.03, + "probability": 0.7866 + }, + { + "start": 13120.42, + "end": 13130.52, + "probability": 0.971 + }, + { + "start": 13130.56, + "end": 13133.14, + "probability": 0.5645 + }, + { + "start": 13134.38, + "end": 13137.38, + "probability": 0.9817 + }, + { + "start": 13137.84, + "end": 13140.34, + "probability": 0.059 + }, + { + "start": 13141.16, + "end": 13141.24, + "probability": 0.0805 + }, + { + "start": 13141.42, + "end": 13142.64, + "probability": 0.2536 + }, + { + "start": 13143.04, + "end": 13145.34, + "probability": 0.215 + }, + { + "start": 13145.44, + "end": 13147.7, + "probability": 0.9227 + }, + { + "start": 13148.04, + "end": 13149.54, + "probability": 0.0797 + }, + { + "start": 13149.54, + "end": 13151.46, + "probability": 0.1968 + }, + { + "start": 13151.46, + "end": 13153.17, + "probability": 0.1048 + }, + { + "start": 13153.58, + "end": 13155.08, + "probability": 0.5346 + }, + { + "start": 13155.18, + "end": 13159.6, + "probability": 0.9146 + }, + { + "start": 13159.76, + "end": 13161.42, + "probability": 0.7538 + }, + { + "start": 13162.18, + "end": 13163.9, + "probability": 0.9946 + }, + { + "start": 13163.98, + "end": 13168.56, + "probability": 0.9526 + }, + { + "start": 13168.64, + "end": 13169.2, + "probability": 0.9869 + }, + { + "start": 13169.78, + "end": 13170.45, + "probability": 0.8848 + }, + { + "start": 13171.46, + "end": 13177.92, + "probability": 0.9646 + }, + { + "start": 13178.82, + "end": 13182.94, + "probability": 0.9985 + }, + { + "start": 13183.22, + "end": 13184.06, + "probability": 0.6834 + }, + { + "start": 13184.26, + "end": 13185.92, + "probability": 0.9246 + }, + { + "start": 13186.0, + "end": 13189.92, + "probability": 0.9935 + }, + { + "start": 13190.44, + "end": 13191.7, + "probability": 0.9465 + }, + { + "start": 13191.9, + "end": 13194.1, + "probability": 0.9546 + }, + { + "start": 13194.22, + "end": 13196.08, + "probability": 0.9883 + }, + { + "start": 13196.64, + "end": 13198.22, + "probability": 0.952 + }, + { + "start": 13198.46, + "end": 13200.41, + "probability": 0.9187 + }, + { + "start": 13201.36, + "end": 13202.9, + "probability": 0.6361 + }, + { + "start": 13203.7, + "end": 13205.25, + "probability": 0.7578 + }, + { + "start": 13205.7, + "end": 13207.26, + "probability": 0.286 + }, + { + "start": 13207.3, + "end": 13207.34, + "probability": 0.2504 + }, + { + "start": 13207.34, + "end": 13211.7, + "probability": 0.8694 + }, + { + "start": 13212.16, + "end": 13215.64, + "probability": 0.7583 + }, + { + "start": 13216.1, + "end": 13220.2, + "probability": 0.9418 + }, + { + "start": 13221.26, + "end": 13222.0, + "probability": 0.4699 + }, + { + "start": 13222.08, + "end": 13223.06, + "probability": 0.6037 + }, + { + "start": 13223.4, + "end": 13229.54, + "probability": 0.6902 + }, + { + "start": 13229.8, + "end": 13232.3, + "probability": 0.9363 + }, + { + "start": 13233.04, + "end": 13235.22, + "probability": 0.936 + }, + { + "start": 13235.92, + "end": 13239.34, + "probability": 0.8151 + }, + { + "start": 13240.06, + "end": 13240.55, + "probability": 0.9033 + }, + { + "start": 13240.96, + "end": 13241.98, + "probability": 0.8821 + }, + { + "start": 13241.98, + "end": 13242.72, + "probability": 0.624 + }, + { + "start": 13242.76, + "end": 13244.54, + "probability": 0.912 + }, + { + "start": 13245.86, + "end": 13249.84, + "probability": 0.9415 + }, + { + "start": 13250.16, + "end": 13250.58, + "probability": 0.4592 + }, + { + "start": 13251.0, + "end": 13252.24, + "probability": 0.8432 + }, + { + "start": 13252.6, + "end": 13253.46, + "probability": 0.9739 + }, + { + "start": 13254.02, + "end": 13255.98, + "probability": 0.9377 + }, + { + "start": 13257.5, + "end": 13262.74, + "probability": 0.9343 + }, + { + "start": 13263.76, + "end": 13265.6, + "probability": 0.948 + }, + { + "start": 13265.74, + "end": 13266.44, + "probability": 0.9619 + }, + { + "start": 13266.9, + "end": 13267.4, + "probability": 0.8741 + }, + { + "start": 13267.7, + "end": 13268.34, + "probability": 0.4858 + }, + { + "start": 13268.5, + "end": 13269.56, + "probability": 0.5078 + }, + { + "start": 13269.56, + "end": 13271.94, + "probability": 0.5688 + }, + { + "start": 13272.02, + "end": 13272.84, + "probability": 0.6406 + }, + { + "start": 13273.1, + "end": 13273.85, + "probability": 0.7993 + }, + { + "start": 13275.04, + "end": 13278.36, + "probability": 0.8431 + }, + { + "start": 13279.08, + "end": 13282.32, + "probability": 0.9009 + }, + { + "start": 13283.18, + "end": 13285.28, + "probability": 0.892 + }, + { + "start": 13286.5, + "end": 13288.1, + "probability": 0.7424 + }, + { + "start": 13288.44, + "end": 13290.46, + "probability": 0.6822 + }, + { + "start": 13290.96, + "end": 13291.62, + "probability": 0.8719 + }, + { + "start": 13292.14, + "end": 13295.24, + "probability": 0.9338 + }, + { + "start": 13295.98, + "end": 13297.12, + "probability": 0.7205 + }, + { + "start": 13298.24, + "end": 13298.98, + "probability": 0.9258 + }, + { + "start": 13299.38, + "end": 13300.36, + "probability": 0.9607 + }, + { + "start": 13300.46, + "end": 13301.25, + "probability": 0.9712 + }, + { + "start": 13301.4, + "end": 13302.2, + "probability": 0.7954 + }, + { + "start": 13302.32, + "end": 13303.64, + "probability": 0.9608 + }, + { + "start": 13304.38, + "end": 13305.74, + "probability": 0.981 + }, + { + "start": 13306.72, + "end": 13310.72, + "probability": 0.9162 + }, + { + "start": 13311.02, + "end": 13311.96, + "probability": 0.7082 + }, + { + "start": 13311.96, + "end": 13315.12, + "probability": 0.9908 + }, + { + "start": 13315.2, + "end": 13317.7, + "probability": 0.6119 + }, + { + "start": 13318.5, + "end": 13320.64, + "probability": 0.9501 + }, + { + "start": 13321.02, + "end": 13325.98, + "probability": 0.9006 + }, + { + "start": 13325.98, + "end": 13326.4, + "probability": 0.7048 + }, + { + "start": 13326.5, + "end": 13327.82, + "probability": 0.9907 + }, + { + "start": 13327.94, + "end": 13329.63, + "probability": 0.9969 + }, + { + "start": 13330.48, + "end": 13332.4, + "probability": 0.9707 + }, + { + "start": 13334.18, + "end": 13335.74, + "probability": 0.9354 + }, + { + "start": 13336.6, + "end": 13337.93, + "probability": 0.9985 + }, + { + "start": 13338.7, + "end": 13340.12, + "probability": 0.9591 + }, + { + "start": 13340.46, + "end": 13341.64, + "probability": 0.561 + }, + { + "start": 13342.08, + "end": 13343.36, + "probability": 0.987 + }, + { + "start": 13343.5, + "end": 13345.66, + "probability": 0.997 + }, + { + "start": 13346.28, + "end": 13348.12, + "probability": 0.968 + }, + { + "start": 13348.96, + "end": 13350.64, + "probability": 0.969 + }, + { + "start": 13351.26, + "end": 13351.4, + "probability": 0.1252 + }, + { + "start": 13351.4, + "end": 13352.62, + "probability": 0.9048 + }, + { + "start": 13353.72, + "end": 13355.76, + "probability": 0.9824 + }, + { + "start": 13356.34, + "end": 13358.48, + "probability": 0.9898 + }, + { + "start": 13358.67, + "end": 13361.27, + "probability": 0.9893 + }, + { + "start": 13362.56, + "end": 13365.46, + "probability": 0.7858 + }, + { + "start": 13365.98, + "end": 13366.92, + "probability": 0.9169 + }, + { + "start": 13367.02, + "end": 13372.3, + "probability": 0.9482 + }, + { + "start": 13372.87, + "end": 13377.5, + "probability": 0.9968 + }, + { + "start": 13378.16, + "end": 13380.3, + "probability": 0.9479 + }, + { + "start": 13381.42, + "end": 13383.02, + "probability": 0.8814 + }, + { + "start": 13384.32, + "end": 13386.92, + "probability": 0.9919 + }, + { + "start": 13386.94, + "end": 13389.58, + "probability": 0.9224 + }, + { + "start": 13389.64, + "end": 13396.08, + "probability": 0.9749 + }, + { + "start": 13396.38, + "end": 13400.64, + "probability": 0.9958 + }, + { + "start": 13400.68, + "end": 13401.76, + "probability": 0.7467 + }, + { + "start": 13401.92, + "end": 13404.0, + "probability": 0.6804 + }, + { + "start": 13404.22, + "end": 13409.32, + "probability": 0.9705 + }, + { + "start": 13409.56, + "end": 13412.48, + "probability": 0.9782 + }, + { + "start": 13412.78, + "end": 13414.19, + "probability": 0.9976 + }, + { + "start": 13414.32, + "end": 13414.86, + "probability": 0.3754 + }, + { + "start": 13414.92, + "end": 13416.64, + "probability": 0.9665 + }, + { + "start": 13416.8, + "end": 13417.98, + "probability": 0.9335 + }, + { + "start": 13417.98, + "end": 13420.58, + "probability": 0.9062 + }, + { + "start": 13420.88, + "end": 13421.84, + "probability": 0.5937 + }, + { + "start": 13421.88, + "end": 13422.26, + "probability": 0.729 + }, + { + "start": 13422.66, + "end": 13423.22, + "probability": 0.0437 + }, + { + "start": 13423.24, + "end": 13423.94, + "probability": 0.5093 + }, + { + "start": 13423.98, + "end": 13424.52, + "probability": 0.4407 + }, + { + "start": 13425.48, + "end": 13426.64, + "probability": 0.3944 + }, + { + "start": 13426.76, + "end": 13427.58, + "probability": 0.4849 + }, + { + "start": 13427.68, + "end": 13430.21, + "probability": 0.6777 + }, + { + "start": 13430.9, + "end": 13432.22, + "probability": 0.091 + }, + { + "start": 13432.22, + "end": 13432.95, + "probability": 0.6638 + }, + { + "start": 13434.62, + "end": 13438.56, + "probability": 0.8409 + }, + { + "start": 13438.92, + "end": 13439.44, + "probability": 0.0309 + }, + { + "start": 13439.44, + "end": 13439.78, + "probability": 0.6715 + }, + { + "start": 13440.96, + "end": 13441.02, + "probability": 0.006 + }, + { + "start": 13441.02, + "end": 13441.5, + "probability": 0.2879 + }, + { + "start": 13441.82, + "end": 13443.12, + "probability": 0.7712 + }, + { + "start": 13443.68, + "end": 13444.55, + "probability": 0.7291 + }, + { + "start": 13444.72, + "end": 13446.32, + "probability": 0.737 + }, + { + "start": 13446.44, + "end": 13450.94, + "probability": 0.6064 + }, + { + "start": 13452.92, + "end": 13457.46, + "probability": 0.938 + }, + { + "start": 13457.46, + "end": 13460.68, + "probability": 0.9972 + }, + { + "start": 13461.02, + "end": 13463.96, + "probability": 0.5503 + }, + { + "start": 13464.1, + "end": 13465.78, + "probability": 0.7812 + }, + { + "start": 13466.24, + "end": 13471.54, + "probability": 0.9485 + }, + { + "start": 13471.72, + "end": 13475.9, + "probability": 0.6321 + }, + { + "start": 13478.82, + "end": 13482.94, + "probability": 0.8859 + }, + { + "start": 13482.94, + "end": 13483.4, + "probability": 0.7532 + }, + { + "start": 13483.52, + "end": 13484.63, + "probability": 0.1443 + }, + { + "start": 13486.12, + "end": 13490.1, + "probability": 0.7229 + }, + { + "start": 13490.14, + "end": 13495.76, + "probability": 0.268 + }, + { + "start": 13496.84, + "end": 13499.08, + "probability": 0.3461 + }, + { + "start": 13499.36, + "end": 13500.4, + "probability": 0.5566 + }, + { + "start": 13501.16, + "end": 13503.14, + "probability": 0.6094 + }, + { + "start": 13503.24, + "end": 13503.68, + "probability": 0.7501 + }, + { + "start": 13504.66, + "end": 13507.22, + "probability": 0.4872 + }, + { + "start": 13507.22, + "end": 13509.5, + "probability": 0.2496 + }, + { + "start": 13510.14, + "end": 13510.58, + "probability": 0.7503 + }, + { + "start": 13510.86, + "end": 13510.98, + "probability": 0.0485 + }, + { + "start": 13510.98, + "end": 13511.26, + "probability": 0.5059 + }, + { + "start": 13511.64, + "end": 13513.68, + "probability": 0.5371 + }, + { + "start": 13513.74, + "end": 13516.04, + "probability": 0.8341 + }, + { + "start": 13516.3, + "end": 13518.44, + "probability": 0.6508 + }, + { + "start": 13518.66, + "end": 13519.97, + "probability": 0.1073 + }, + { + "start": 13521.8, + "end": 13523.74, + "probability": 0.5277 + }, + { + "start": 13525.32, + "end": 13528.54, + "probability": 0.6766 + }, + { + "start": 13531.5, + "end": 13535.16, + "probability": 0.8092 + }, + { + "start": 13535.16, + "end": 13539.96, + "probability": 0.8055 + }, + { + "start": 13540.12, + "end": 13543.4, + "probability": 0.8802 + }, + { + "start": 13544.12, + "end": 13547.04, + "probability": 0.9043 + }, + { + "start": 13548.98, + "end": 13549.84, + "probability": 0.5493 + }, + { + "start": 13550.84, + "end": 13553.72, + "probability": 0.3662 + }, + { + "start": 13554.5, + "end": 13557.76, + "probability": 0.8047 + }, + { + "start": 13558.7, + "end": 13562.7, + "probability": 0.9729 + }, + { + "start": 13563.36, + "end": 13566.42, + "probability": 0.9136 + }, + { + "start": 13572.68, + "end": 13575.36, + "probability": 0.673 + }, + { + "start": 13575.98, + "end": 13579.0, + "probability": 0.6213 + }, + { + "start": 13581.28, + "end": 13588.02, + "probability": 0.7319 + }, + { + "start": 13590.14, + "end": 13593.28, + "probability": 0.672 + }, + { + "start": 13595.42, + "end": 13595.7, + "probability": 0.1185 + }, + { + "start": 13597.66, + "end": 13601.48, + "probability": 0.488 + }, + { + "start": 13602.56, + "end": 13608.22, + "probability": 0.5686 + }, + { + "start": 13609.64, + "end": 13614.9, + "probability": 0.8319 + }, + { + "start": 13616.7, + "end": 13619.4, + "probability": 0.5519 + }, + { + "start": 13619.4, + "end": 13620.28, + "probability": 0.1863 + }, + { + "start": 13621.0, + "end": 13622.62, + "probability": 0.8705 + }, + { + "start": 13622.62, + "end": 13623.6, + "probability": 0.6332 + }, + { + "start": 13624.2, + "end": 13624.6, + "probability": 0.6066 + }, + { + "start": 13624.8, + "end": 13625.84, + "probability": 0.8472 + }, + { + "start": 13625.88, + "end": 13627.12, + "probability": 0.6465 + }, + { + "start": 13627.32, + "end": 13629.46, + "probability": 0.9264 + }, + { + "start": 13629.84, + "end": 13630.34, + "probability": 0.9241 + }, + { + "start": 13630.4, + "end": 13631.12, + "probability": 0.1871 + }, + { + "start": 13632.12, + "end": 13634.92, + "probability": 0.5745 + }, + { + "start": 13635.71, + "end": 13638.96, + "probability": 0.6995 + }, + { + "start": 13640.58, + "end": 13642.06, + "probability": 0.6475 + }, + { + "start": 13642.68, + "end": 13645.12, + "probability": 0.7829 + }, + { + "start": 13645.72, + "end": 13648.44, + "probability": 0.8228 + }, + { + "start": 13648.92, + "end": 13651.16, + "probability": 0.8707 + }, + { + "start": 13651.66, + "end": 13655.56, + "probability": 0.8868 + }, + { + "start": 13657.36, + "end": 13659.27, + "probability": 0.4697 + }, + { + "start": 13659.38, + "end": 13662.3, + "probability": 0.7331 + }, + { + "start": 13662.34, + "end": 13665.98, + "probability": 0.9662 + }, + { + "start": 13666.02, + "end": 13672.16, + "probability": 0.2295 + }, + { + "start": 13672.16, + "end": 13673.26, + "probability": 0.265 + }, + { + "start": 13673.34, + "end": 13675.04, + "probability": 0.2983 + }, + { + "start": 13675.44, + "end": 13676.0, + "probability": 0.4241 + }, + { + "start": 13676.56, + "end": 13678.5, + "probability": 0.5106 + }, + { + "start": 13678.76, + "end": 13678.92, + "probability": 0.2355 + }, + { + "start": 13678.92, + "end": 13679.68, + "probability": 0.7574 + }, + { + "start": 13680.6, + "end": 13683.86, + "probability": 0.6142 + }, + { + "start": 13684.9, + "end": 13689.24, + "probability": 0.7614 + }, + { + "start": 13690.74, + "end": 13696.56, + "probability": 0.8096 + }, + { + "start": 13697.68, + "end": 13700.72, + "probability": 0.4649 + }, + { + "start": 13701.54, + "end": 13708.04, + "probability": 0.9137 + }, + { + "start": 13709.46, + "end": 13711.78, + "probability": 0.9805 + }, + { + "start": 13712.32, + "end": 13715.98, + "probability": 0.9412 + }, + { + "start": 13715.98, + "end": 13718.32, + "probability": 0.58 + }, + { + "start": 13718.44, + "end": 13721.72, + "probability": 0.9042 + }, + { + "start": 13723.2, + "end": 13726.56, + "probability": 0.6536 + }, + { + "start": 13727.42, + "end": 13729.42, + "probability": 0.8063 + }, + { + "start": 13730.38, + "end": 13733.66, + "probability": 0.7491 + }, + { + "start": 13735.58, + "end": 13740.0, + "probability": 0.2621 + }, + { + "start": 13740.58, + "end": 13744.52, + "probability": 0.8357 + }, + { + "start": 13745.04, + "end": 13748.22, + "probability": 0.7554 + }, + { + "start": 13748.6, + "end": 13751.76, + "probability": 0.8494 + }, + { + "start": 13751.92, + "end": 13755.76, + "probability": 0.5232 + }, + { + "start": 13756.58, + "end": 13759.32, + "probability": 0.7968 + }, + { + "start": 13760.54, + "end": 13762.98, + "probability": 0.8973 + }, + { + "start": 13763.62, + "end": 13767.2, + "probability": 0.5572 + }, + { + "start": 13772.16, + "end": 13774.84, + "probability": 0.4766 + }, + { + "start": 13775.92, + "end": 13777.6, + "probability": 0.1856 + }, + { + "start": 13781.76, + "end": 13785.08, + "probability": 0.1939 + }, + { + "start": 13785.68, + "end": 13789.14, + "probability": 0.2654 + }, + { + "start": 13790.48, + "end": 13792.66, + "probability": 0.6931 + }, + { + "start": 13793.78, + "end": 13795.44, + "probability": 0.4142 + }, + { + "start": 13796.02, + "end": 13799.14, + "probability": 0.8065 + }, + { + "start": 13800.58, + "end": 13803.14, + "probability": 0.8824 + }, + { + "start": 13803.94, + "end": 13806.42, + "probability": 0.9476 + }, + { + "start": 13807.48, + "end": 13808.04, + "probability": 0.9385 + }, + { + "start": 13809.1, + "end": 13809.74, + "probability": 0.5387 + }, + { + "start": 13811.14, + "end": 13813.8, + "probability": 0.64 + }, + { + "start": 13814.6, + "end": 13818.02, + "probability": 0.5159 + }, + { + "start": 13818.96, + "end": 13819.18, + "probability": 0.4181 + }, + { + "start": 13827.58, + "end": 13830.64, + "probability": 0.5288 + }, + { + "start": 13830.82, + "end": 13835.7, + "probability": 0.6921 + }, + { + "start": 13835.76, + "end": 13838.9, + "probability": 0.5849 + }, + { + "start": 13839.8, + "end": 13843.48, + "probability": 0.4242 + }, + { + "start": 13844.4, + "end": 13846.72, + "probability": 0.7522 + }, + { + "start": 13848.12, + "end": 13849.94, + "probability": 0.7698 + }, + { + "start": 13853.1, + "end": 13854.08, + "probability": 0.4908 + }, + { + "start": 13854.16, + "end": 13857.02, + "probability": 0.7872 + }, + { + "start": 13857.4, + "end": 13862.04, + "probability": 0.7243 + }, + { + "start": 13862.98, + "end": 13865.46, + "probability": 0.5113 + }, + { + "start": 13866.42, + "end": 13870.1, + "probability": 0.4803 + }, + { + "start": 13871.46, + "end": 13874.34, + "probability": 0.8233 + }, + { + "start": 13874.38, + "end": 13877.4, + "probability": 0.9355 + }, + { + "start": 13877.64, + "end": 13880.74, + "probability": 0.9489 + }, + { + "start": 13880.76, + "end": 13884.54, + "probability": 0.8612 + }, + { + "start": 13885.02, + "end": 13887.8, + "probability": 0.7755 + }, + { + "start": 13888.84, + "end": 13894.06, + "probability": 0.9698 + }, + { + "start": 13897.0, + "end": 13898.64, + "probability": 0.601 + }, + { + "start": 13899.92, + "end": 13902.55, + "probability": 0.5822 + }, + { + "start": 13903.64, + "end": 13906.78, + "probability": 0.9102 + }, + { + "start": 13908.76, + "end": 13913.68, + "probability": 0.7894 + }, + { + "start": 13914.38, + "end": 13916.86, + "probability": 0.6435 + }, + { + "start": 13917.62, + "end": 13921.34, + "probability": 0.8886 + }, + { + "start": 13922.15, + "end": 13923.3, + "probability": 0.01 + }, + { + "start": 13924.52, + "end": 13932.68, + "probability": 0.595 + }, + { + "start": 13933.62, + "end": 13936.52, + "probability": 0.5764 + }, + { + "start": 13937.26, + "end": 13940.36, + "probability": 0.7992 + }, + { + "start": 13940.9, + "end": 13944.2, + "probability": 0.8988 + }, + { + "start": 13945.66, + "end": 13950.74, + "probability": 0.9189 + }, + { + "start": 13951.64, + "end": 13954.9, + "probability": 0.4689 + }, + { + "start": 13955.8, + "end": 13958.24, + "probability": 0.8392 + }, + { + "start": 13961.34, + "end": 13961.68, + "probability": 0.614 + }, + { + "start": 13963.24, + "end": 13970.94, + "probability": 0.609 + }, + { + "start": 13971.46, + "end": 13973.92, + "probability": 0.8201 + }, + { + "start": 13975.04, + "end": 13983.3, + "probability": 0.6396 + }, + { + "start": 13983.86, + "end": 13987.96, + "probability": 0.8464 + }, + { + "start": 13988.6, + "end": 13990.22, + "probability": 0.9486 + }, + { + "start": 13990.92, + "end": 13999.4, + "probability": 0.8079 + }, + { + "start": 13999.94, + "end": 14003.36, + "probability": 0.8764 + }, + { + "start": 14005.2, + "end": 14007.34, + "probability": 0.8606 + }, + { + "start": 14009.26, + "end": 14012.7, + "probability": 0.9543 + }, + { + "start": 14013.42, + "end": 14017.32, + "probability": 0.9511 + }, + { + "start": 14018.88, + "end": 14019.48, + "probability": 0.9895 + }, + { + "start": 14020.8, + "end": 14026.56, + "probability": 0.5914 + }, + { + "start": 14027.64, + "end": 14028.72, + "probability": 0.9276 + }, + { + "start": 14030.92, + "end": 14037.72, + "probability": 0.432 + }, + { + "start": 14038.34, + "end": 14041.46, + "probability": 0.6792 + }, + { + "start": 14042.34, + "end": 14043.1, + "probability": 0.9312 + }, + { + "start": 14046.12, + "end": 14049.32, + "probability": 0.8043 + }, + { + "start": 14049.84, + "end": 14050.72, + "probability": 0.4051 + }, + { + "start": 14050.72, + "end": 14052.8, + "probability": 0.4853 + }, + { + "start": 14053.34, + "end": 14056.16, + "probability": 0.0349 + }, + { + "start": 14062.12, + "end": 14063.66, + "probability": 0.057 + }, + { + "start": 14066.68, + "end": 14067.76, + "probability": 0.1259 + }, + { + "start": 14068.36, + "end": 14072.57, + "probability": 0.6856 + }, + { + "start": 14072.62, + "end": 14076.42, + "probability": 0.2604 + }, + { + "start": 14077.44, + "end": 14078.06, + "probability": 0.9178 + }, + { + "start": 14081.62, + "end": 14082.82, + "probability": 0.5851 + }, + { + "start": 14084.58, + "end": 14088.96, + "probability": 0.7663 + }, + { + "start": 14090.02, + "end": 14095.12, + "probability": 0.7938 + }, + { + "start": 14097.0, + "end": 14100.5, + "probability": 0.4041 + }, + { + "start": 14100.56, + "end": 14103.66, + "probability": 0.6448 + }, + { + "start": 14103.66, + "end": 14108.22, + "probability": 0.7276 + }, + { + "start": 14108.62, + "end": 14110.3, + "probability": 0.7829 + }, + { + "start": 14111.06, + "end": 14111.8, + "probability": 0.99 + }, + { + "start": 14118.42, + "end": 14120.14, + "probability": 0.4713 + }, + { + "start": 14121.76, + "end": 14125.48, + "probability": 0.6675 + }, + { + "start": 14127.32, + "end": 14127.64, + "probability": 0.4176 + }, + { + "start": 14130.42, + "end": 14137.36, + "probability": 0.5163 + }, + { + "start": 14138.36, + "end": 14141.02, + "probability": 0.5448 + }, + { + "start": 14143.06, + "end": 14145.17, + "probability": 0.8098 + }, + { + "start": 14146.52, + "end": 14148.44, + "probability": 0.7641 + }, + { + "start": 14148.7, + "end": 14152.14, + "probability": 0.9753 + }, + { + "start": 14152.4, + "end": 14155.38, + "probability": 0.8623 + }, + { + "start": 14156.06, + "end": 14157.36, + "probability": 0.8975 + }, + { + "start": 14159.22, + "end": 14162.14, + "probability": 0.3556 + }, + { + "start": 14163.3, + "end": 14165.58, + "probability": 0.6491 + }, + { + "start": 14165.64, + "end": 14167.76, + "probability": 0.7863 + }, + { + "start": 14168.08, + "end": 14170.98, + "probability": 0.6512 + }, + { + "start": 14172.52, + "end": 14176.36, + "probability": 0.6664 + }, + { + "start": 14177.54, + "end": 14182.44, + "probability": 0.8992 + }, + { + "start": 14185.3, + "end": 14186.19, + "probability": 0.3262 + }, + { + "start": 14187.52, + "end": 14189.14, + "probability": 0.1733 + }, + { + "start": 14189.62, + "end": 14191.48, + "probability": 0.5381 + }, + { + "start": 14192.48, + "end": 14195.92, + "probability": 0.7052 + }, + { + "start": 14196.04, + "end": 14197.28, + "probability": 0.3129 + }, + { + "start": 14197.6, + "end": 14200.3, + "probability": 0.9071 + }, + { + "start": 14200.36, + "end": 14201.1, + "probability": 0.4135 + }, + { + "start": 14201.2, + "end": 14204.88, + "probability": 0.8901 + }, + { + "start": 14205.34, + "end": 14206.11, + "probability": 0.689 + }, + { + "start": 14206.26, + "end": 14208.84, + "probability": 0.6904 + }, + { + "start": 14209.28, + "end": 14210.24, + "probability": 0.88 + }, + { + "start": 14211.26, + "end": 14212.9, + "probability": 0.3232 + }, + { + "start": 14213.54, + "end": 14214.12, + "probability": 0.7071 + }, + { + "start": 14217.26, + "end": 14218.9, + "probability": 0.4759 + }, + { + "start": 14219.92, + "end": 14228.66, + "probability": 0.7855 + }, + { + "start": 14229.38, + "end": 14231.28, + "probability": 0.5112 + }, + { + "start": 14231.28, + "end": 14233.26, + "probability": 0.5308 + }, + { + "start": 14233.46, + "end": 14234.98, + "probability": 0.8218 + }, + { + "start": 14235.48, + "end": 14236.48, + "probability": 0.0108 + }, + { + "start": 14238.72, + "end": 14241.92, + "probability": 0.2312 + }, + { + "start": 14243.24, + "end": 14243.96, + "probability": 0.0247 + }, + { + "start": 14246.98, + "end": 14249.4, + "probability": 0.6542 + }, + { + "start": 14249.54, + "end": 14251.22, + "probability": 0.6889 + }, + { + "start": 14251.9, + "end": 14252.86, + "probability": 0.7507 + }, + { + "start": 14252.98, + "end": 14254.08, + "probability": 0.2075 + }, + { + "start": 14255.3, + "end": 14260.08, + "probability": 0.7402 + }, + { + "start": 14260.28, + "end": 14262.28, + "probability": 0.7032 + }, + { + "start": 14262.52, + "end": 14265.84, + "probability": 0.8035 + }, + { + "start": 14266.52, + "end": 14268.78, + "probability": 0.7419 + }, + { + "start": 14269.88, + "end": 14273.48, + "probability": 0.7118 + }, + { + "start": 14274.94, + "end": 14277.78, + "probability": 0.506 + }, + { + "start": 14279.44, + "end": 14285.8, + "probability": 0.4871 + }, + { + "start": 14286.72, + "end": 14290.74, + "probability": 0.9076 + }, + { + "start": 14292.34, + "end": 14293.6, + "probability": 0.7568 + }, + { + "start": 14293.6, + "end": 14296.3, + "probability": 0.0308 + }, + { + "start": 14296.38, + "end": 14297.42, + "probability": 0.2522 + }, + { + "start": 14302.14, + "end": 14302.78, + "probability": 0.1809 + }, + { + "start": 14303.42, + "end": 14306.22, + "probability": 0.2581 + }, + { + "start": 14306.8, + "end": 14310.02, + "probability": 0.6443 + }, + { + "start": 14310.16, + "end": 14312.58, + "probability": 0.8166 + }, + { + "start": 14312.7, + "end": 14314.05, + "probability": 0.5815 + }, + { + "start": 14314.52, + "end": 14315.06, + "probability": 0.4121 + }, + { + "start": 14315.98, + "end": 14317.84, + "probability": 0.6829 + }, + { + "start": 14317.92, + "end": 14320.2, + "probability": 0.0818 + }, + { + "start": 14320.28, + "end": 14322.14, + "probability": 0.9377 + }, + { + "start": 14322.14, + "end": 14325.02, + "probability": 0.7014 + }, + { + "start": 14325.22, + "end": 14325.58, + "probability": 0.4615 + }, + { + "start": 14325.74, + "end": 14326.1, + "probability": 0.8046 + }, + { + "start": 14326.16, + "end": 14326.92, + "probability": 0.5709 + }, + { + "start": 14327.2, + "end": 14327.96, + "probability": 0.4357 + }, + { + "start": 14328.04, + "end": 14331.74, + "probability": 0.2236 + }, + { + "start": 14332.14, + "end": 14336.04, + "probability": 0.7221 + }, + { + "start": 14337.48, + "end": 14338.32, + "probability": 0.0872 + }, + { + "start": 14338.4, + "end": 14339.5, + "probability": 0.8862 + }, + { + "start": 14339.72, + "end": 14340.36, + "probability": 0.4584 + }, + { + "start": 14340.6, + "end": 14344.58, + "probability": 0.9856 + }, + { + "start": 14344.74, + "end": 14345.24, + "probability": 0.116 + }, + { + "start": 14345.42, + "end": 14346.8, + "probability": 0.743 + }, + { + "start": 14346.84, + "end": 14348.82, + "probability": 0.9433 + }, + { + "start": 14349.14, + "end": 14350.56, + "probability": 0.9814 + }, + { + "start": 14350.68, + "end": 14352.76, + "probability": 0.6901 + }, + { + "start": 14353.08, + "end": 14354.64, + "probability": 0.0686 + }, + { + "start": 14356.3, + "end": 14360.66, + "probability": 0.7416 + }, + { + "start": 14360.78, + "end": 14361.07, + "probability": 0.2043 + }, + { + "start": 14361.94, + "end": 14365.34, + "probability": 0.6621 + }, + { + "start": 14365.6, + "end": 14367.54, + "probability": 0.8019 + }, + { + "start": 14368.08, + "end": 14370.22, + "probability": 0.5713 + }, + { + "start": 14370.66, + "end": 14372.8, + "probability": 0.8452 + }, + { + "start": 14372.94, + "end": 14376.14, + "probability": 0.8586 + }, + { + "start": 14377.22, + "end": 14379.9, + "probability": 0.8737 + }, + { + "start": 14380.76, + "end": 14382.54, + "probability": 0.8854 + }, + { + "start": 14384.5, + "end": 14388.34, + "probability": 0.6005 + }, + { + "start": 14388.94, + "end": 14393.6, + "probability": 0.6166 + }, + { + "start": 14394.22, + "end": 14396.5, + "probability": 0.9212 + }, + { + "start": 14396.62, + "end": 14397.75, + "probability": 0.4716 + }, + { + "start": 14397.92, + "end": 14399.7, + "probability": 0.6585 + }, + { + "start": 14399.84, + "end": 14402.6, + "probability": 0.7934 + }, + { + "start": 14403.66, + "end": 14405.5, + "probability": 0.8628 + }, + { + "start": 14406.24, + "end": 14407.84, + "probability": 0.0853 + }, + { + "start": 14408.6, + "end": 14411.12, + "probability": 0.6199 + }, + { + "start": 14412.22, + "end": 14413.76, + "probability": 0.6597 + }, + { + "start": 14414.72, + "end": 14419.26, + "probability": 0.6389 + }, + { + "start": 14419.5, + "end": 14420.52, + "probability": 0.833 + }, + { + "start": 14421.4, + "end": 14423.14, + "probability": 0.1892 + }, + { + "start": 14423.94, + "end": 14426.3, + "probability": 0.5724 + }, + { + "start": 14426.48, + "end": 14428.82, + "probability": 0.4747 + }, + { + "start": 14428.84, + "end": 14433.9, + "probability": 0.4747 + }, + { + "start": 14434.5, + "end": 14439.56, + "probability": 0.8611 + }, + { + "start": 14440.5, + "end": 14443.26, + "probability": 0.9138 + }, + { + "start": 14443.86, + "end": 14447.2, + "probability": 0.8568 + }, + { + "start": 14447.3, + "end": 14449.38, + "probability": 0.9539 + }, + { + "start": 14449.82, + "end": 14451.94, + "probability": 0.8198 + }, + { + "start": 14452.32, + "end": 14455.7, + "probability": 0.9458 + }, + { + "start": 14456.12, + "end": 14458.3, + "probability": 0.753 + }, + { + "start": 14458.48, + "end": 14460.92, + "probability": 0.9454 + }, + { + "start": 14461.4, + "end": 14464.62, + "probability": 0.9754 + }, + { + "start": 14464.82, + "end": 14468.08, + "probability": 0.6715 + }, + { + "start": 14468.16, + "end": 14471.54, + "probability": 0.854 + }, + { + "start": 14471.6, + "end": 14473.84, + "probability": 0.3841 + }, + { + "start": 14474.38, + "end": 14480.9, + "probability": 0.666 + }, + { + "start": 14483.08, + "end": 14487.1, + "probability": 0.8204 + }, + { + "start": 14488.66, + "end": 14491.8, + "probability": 0.7002 + }, + { + "start": 14491.98, + "end": 14494.52, + "probability": 0.854 + }, + { + "start": 14494.54, + "end": 14498.24, + "probability": 0.897 + }, + { + "start": 14498.58, + "end": 14498.84, + "probability": 0.821 + }, + { + "start": 14499.42, + "end": 14504.98, + "probability": 0.6399 + }, + { + "start": 14505.72, + "end": 14508.34, + "probability": 0.8972 + }, + { + "start": 14508.74, + "end": 14511.16, + "probability": 0.4718 + }, + { + "start": 14511.4, + "end": 14513.86, + "probability": 0.9137 + }, + { + "start": 14514.12, + "end": 14516.5, + "probability": 0.7204 + }, + { + "start": 14516.98, + "end": 14519.14, + "probability": 0.8641 + }, + { + "start": 14519.44, + "end": 14522.62, + "probability": 0.6 + }, + { + "start": 14522.68, + "end": 14525.92, + "probability": 0.7994 + }, + { + "start": 14526.26, + "end": 14530.22, + "probability": 0.9149 + }, + { + "start": 14530.4, + "end": 14533.36, + "probability": 0.5708 + }, + { + "start": 14533.74, + "end": 14537.22, + "probability": 0.6366 + }, + { + "start": 14537.88, + "end": 14541.48, + "probability": 0.7491 + }, + { + "start": 14547.3, + "end": 14557.42, + "probability": 0.4848 + }, + { + "start": 14557.42, + "end": 14558.98, + "probability": 0.4184 + }, + { + "start": 14559.5, + "end": 14560.91, + "probability": 0.9862 + }, + { + "start": 14561.86, + "end": 14562.24, + "probability": 0.124 + }, + { + "start": 14562.24, + "end": 14563.98, + "probability": 0.3216 + }, + { + "start": 14564.46, + "end": 14569.06, + "probability": 0.9658 + }, + { + "start": 14569.38, + "end": 14570.22, + "probability": 0.4308 + }, + { + "start": 14570.7, + "end": 14570.94, + "probability": 0.2006 + }, + { + "start": 14572.4, + "end": 14573.66, + "probability": 0.6035 + }, + { + "start": 14573.74, + "end": 14573.84, + "probability": 0.3284 + }, + { + "start": 14574.0, + "end": 14576.78, + "probability": 0.5558 + }, + { + "start": 14576.98, + "end": 14577.44, + "probability": 0.926 + }, + { + "start": 14577.54, + "end": 14578.86, + "probability": 0.9719 + }, + { + "start": 14580.14, + "end": 14581.34, + "probability": 0.4425 + }, + { + "start": 14581.52, + "end": 14582.3, + "probability": 0.0375 + }, + { + "start": 14582.3, + "end": 14583.24, + "probability": 0.4986 + }, + { + "start": 14583.48, + "end": 14585.54, + "probability": 0.7295 + }, + { + "start": 14586.12, + "end": 14587.88, + "probability": 0.5274 + }, + { + "start": 14587.88, + "end": 14588.96, + "probability": 0.7306 + }, + { + "start": 14590.16, + "end": 14590.72, + "probability": 0.081 + }, + { + "start": 14591.06, + "end": 14592.74, + "probability": 0.6672 + }, + { + "start": 14592.74, + "end": 14598.6, + "probability": 0.0458 + }, + { + "start": 14599.2, + "end": 14601.22, + "probability": 0.9272 + }, + { + "start": 14601.5, + "end": 14604.74, + "probability": 0.6586 + }, + { + "start": 14606.62, + "end": 14607.18, + "probability": 0.0134 + }, + { + "start": 14607.34, + "end": 14607.72, + "probability": 0.1084 + }, + { + "start": 14607.84, + "end": 14609.02, + "probability": 0.0317 + }, + { + "start": 14609.58, + "end": 14610.42, + "probability": 0.0128 + }, + { + "start": 14613.18, + "end": 14616.76, + "probability": 0.1007 + }, + { + "start": 14621.14, + "end": 14623.9, + "probability": 0.3022 + }, + { + "start": 14627.4, + "end": 14631.84, + "probability": 0.2926 + }, + { + "start": 14631.84, + "end": 14632.72, + "probability": 0.1103 + }, + { + "start": 14635.63, + "end": 14636.83, + "probability": 0.0706 + }, + { + "start": 14639.92, + "end": 14643.58, + "probability": 0.157 + }, + { + "start": 14643.8, + "end": 14647.26, + "probability": 0.092 + }, + { + "start": 14648.28, + "end": 14649.7, + "probability": 0.0626 + }, + { + "start": 14649.86, + "end": 14651.07, + "probability": 0.0401 + }, + { + "start": 14651.22, + "end": 14652.22, + "probability": 0.147 + }, + { + "start": 14652.3, + "end": 14652.76, + "probability": 0.1551 + }, + { + "start": 14652.76, + "end": 14652.96, + "probability": 0.068 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.0, + "end": 14653.0, + "probability": 0.0 + }, + { + "start": 14653.22, + "end": 14656.46, + "probability": 0.0358 + }, + { + "start": 14658.06, + "end": 14661.56, + "probability": 0.1635 + }, + { + "start": 14663.96, + "end": 14666.5, + "probability": 0.712 + }, + { + "start": 14667.16, + "end": 14667.28, + "probability": 0.6763 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.0, + "end": 14781.0, + "probability": 0.0 + }, + { + "start": 14781.2, + "end": 14783.44, + "probability": 0.3876 + }, + { + "start": 14784.28, + "end": 14787.34, + "probability": 0.7946 + }, + { + "start": 14787.44, + "end": 14788.64, + "probability": 0.9285 + }, + { + "start": 14789.52, + "end": 14791.75, + "probability": 0.7783 + }, + { + "start": 14793.28, + "end": 14795.33, + "probability": 0.9631 + }, + { + "start": 14796.58, + "end": 14800.52, + "probability": 0.9855 + }, + { + "start": 14800.52, + "end": 14805.5, + "probability": 0.9839 + }, + { + "start": 14805.54, + "end": 14807.42, + "probability": 0.8503 + }, + { + "start": 14807.42, + "end": 14812.82, + "probability": 0.9634 + }, + { + "start": 14813.74, + "end": 14822.26, + "probability": 0.9325 + }, + { + "start": 14823.58, + "end": 14829.44, + "probability": 0.98 + }, + { + "start": 14829.44, + "end": 14833.56, + "probability": 0.9934 + }, + { + "start": 14835.56, + "end": 14841.06, + "probability": 0.718 + }, + { + "start": 14841.92, + "end": 14846.22, + "probability": 0.8741 + }, + { + "start": 14847.04, + "end": 14847.68, + "probability": 0.7082 + }, + { + "start": 14847.7, + "end": 14848.14, + "probability": 0.9235 + }, + { + "start": 14848.28, + "end": 14855.18, + "probability": 0.95 + }, + { + "start": 14856.18, + "end": 14859.12, + "probability": 0.8437 + }, + { + "start": 14859.72, + "end": 14864.88, + "probability": 0.9583 + }, + { + "start": 14865.58, + "end": 14870.72, + "probability": 0.937 + }, + { + "start": 14871.3, + "end": 14874.6, + "probability": 0.9697 + }, + { + "start": 14876.4, + "end": 14881.44, + "probability": 0.9978 + }, + { + "start": 14882.26, + "end": 14886.76, + "probability": 0.9915 + }, + { + "start": 14886.86, + "end": 14887.46, + "probability": 0.9037 + }, + { + "start": 14887.92, + "end": 14889.34, + "probability": 0.8436 + }, + { + "start": 14890.02, + "end": 14891.98, + "probability": 0.9634 + }, + { + "start": 14892.6, + "end": 14897.32, + "probability": 0.5913 + }, + { + "start": 14897.42, + "end": 14899.72, + "probability": 0.6234 + }, + { + "start": 14900.28, + "end": 14901.92, + "probability": 0.3336 + }, + { + "start": 14901.92, + "end": 14902.44, + "probability": 0.7058 + }, + { + "start": 14902.44, + "end": 14902.72, + "probability": 0.9528 + }, + { + "start": 14905.13, + "end": 14906.58, + "probability": 0.8584 + }, + { + "start": 14907.42, + "end": 14911.26, + "probability": 0.9769 + }, + { + "start": 14912.43, + "end": 14916.26, + "probability": 0.9102 + }, + { + "start": 14917.1, + "end": 14918.82, + "probability": 0.6322 + }, + { + "start": 14920.02, + "end": 14929.32, + "probability": 0.9512 + }, + { + "start": 14930.18, + "end": 14932.8, + "probability": 0.9274 + }, + { + "start": 14933.58, + "end": 14941.18, + "probability": 0.8056 + }, + { + "start": 14941.78, + "end": 14946.62, + "probability": 0.8192 + }, + { + "start": 14947.16, + "end": 14949.74, + "probability": 0.9971 + }, + { + "start": 14951.02, + "end": 14956.1, + "probability": 0.9822 + }, + { + "start": 14956.4, + "end": 14957.4, + "probability": 0.5575 + }, + { + "start": 14957.66, + "end": 14959.78, + "probability": 0.8059 + }, + { + "start": 14960.54, + "end": 14965.0, + "probability": 0.9544 + }, + { + "start": 14966.02, + "end": 14969.18, + "probability": 0.8874 + }, + { + "start": 14970.06, + "end": 14973.36, + "probability": 0.6254 + }, + { + "start": 14973.84, + "end": 14975.7, + "probability": 0.7363 + }, + { + "start": 14976.24, + "end": 14977.88, + "probability": 0.7466 + }, + { + "start": 14979.42, + "end": 14982.8, + "probability": 0.9892 + }, + { + "start": 14982.8, + "end": 14987.68, + "probability": 0.7492 + }, + { + "start": 14988.3, + "end": 14991.74, + "probability": 0.8986 + }, + { + "start": 14992.24, + "end": 14995.06, + "probability": 0.9107 + }, + { + "start": 14995.18, + "end": 14996.16, + "probability": 0.7892 + }, + { + "start": 14996.56, + "end": 14998.72, + "probability": 0.9917 + }, + { + "start": 14998.98, + "end": 14999.62, + "probability": 0.7854 + }, + { + "start": 15000.08, + "end": 15002.98, + "probability": 0.893 + }, + { + "start": 15003.36, + "end": 15007.96, + "probability": 0.9932 + }, + { + "start": 15008.56, + "end": 15010.32, + "probability": 0.8651 + }, + { + "start": 15011.24, + "end": 15014.48, + "probability": 0.8828 + }, + { + "start": 15015.24, + "end": 15020.44, + "probability": 0.9897 + }, + { + "start": 15021.26, + "end": 15026.74, + "probability": 0.9932 + }, + { + "start": 15027.24, + "end": 15029.92, + "probability": 0.9315 + }, + { + "start": 15030.76, + "end": 15037.56, + "probability": 0.9868 + }, + { + "start": 15038.3, + "end": 15039.1, + "probability": 0.8815 + }, + { + "start": 15039.2, + "end": 15039.76, + "probability": 0.9562 + }, + { + "start": 15039.86, + "end": 15043.3, + "probability": 0.7743 + }, + { + "start": 15043.78, + "end": 15046.62, + "probability": 0.916 + }, + { + "start": 15047.2, + "end": 15050.74, + "probability": 0.7781 + }, + { + "start": 15051.52, + "end": 15054.47, + "probability": 0.9111 + }, + { + "start": 15055.56, + "end": 15056.82, + "probability": 0.6384 + }, + { + "start": 15057.34, + "end": 15062.22, + "probability": 0.9027 + }, + { + "start": 15062.7, + "end": 15070.72, + "probability": 0.9461 + }, + { + "start": 15071.44, + "end": 15074.72, + "probability": 0.895 + }, + { + "start": 15075.4, + "end": 15075.44, + "probability": 0.6392 + }, + { + "start": 15078.58, + "end": 15086.78, + "probability": 0.5554 + }, + { + "start": 15087.56, + "end": 15088.77, + "probability": 0.7898 + }, + { + "start": 15089.64, + "end": 15094.26, + "probability": 0.967 + }, + { + "start": 15094.26, + "end": 15096.86, + "probability": 0.9129 + }, + { + "start": 15098.66, + "end": 15104.34, + "probability": 0.9872 + }, + { + "start": 15105.68, + "end": 15109.92, + "probability": 0.6232 + }, + { + "start": 15110.7, + "end": 15114.56, + "probability": 0.9283 + }, + { + "start": 15115.06, + "end": 15118.67, + "probability": 0.9126 + }, + { + "start": 15119.48, + "end": 15122.04, + "probability": 0.6019 + }, + { + "start": 15122.38, + "end": 15122.72, + "probability": 0.7375 + }, + { + "start": 15123.38, + "end": 15125.82, + "probability": 0.7439 + }, + { + "start": 15125.94, + "end": 15128.88, + "probability": 0.9497 + }, + { + "start": 15129.54, + "end": 15132.04, + "probability": 0.9032 + }, + { + "start": 15132.94, + "end": 15134.92, + "probability": 0.8638 + }, + { + "start": 15135.42, + "end": 15139.94, + "probability": 0.9158 + }, + { + "start": 15140.34, + "end": 15142.5, + "probability": 0.9193 + }, + { + "start": 15143.04, + "end": 15147.28, + "probability": 0.9121 + }, + { + "start": 15147.98, + "end": 15151.6, + "probability": 0.9416 + }, + { + "start": 15152.08, + "end": 15157.36, + "probability": 0.9373 + }, + { + "start": 15157.74, + "end": 15161.04, + "probability": 0.9924 + }, + { + "start": 15161.4, + "end": 15162.97, + "probability": 0.9568 + }, + { + "start": 15164.04, + "end": 15169.14, + "probability": 0.9932 + }, + { + "start": 15169.66, + "end": 15173.38, + "probability": 0.6497 + }, + { + "start": 15174.8, + "end": 15178.14, + "probability": 0.9897 + }, + { + "start": 15178.72, + "end": 15179.35, + "probability": 0.9485 + }, + { + "start": 15179.58, + "end": 15184.98, + "probability": 0.9659 + }, + { + "start": 15185.2, + "end": 15188.32, + "probability": 0.8876 + }, + { + "start": 15188.42, + "end": 15190.38, + "probability": 0.4847 + }, + { + "start": 15190.9, + "end": 15192.34, + "probability": 0.7379 + }, + { + "start": 15192.78, + "end": 15199.6, + "probability": 0.6507 + }, + { + "start": 15200.24, + "end": 15203.74, + "probability": 0.9795 + }, + { + "start": 15204.18, + "end": 15205.91, + "probability": 0.9956 + }, + { + "start": 15206.8, + "end": 15209.02, + "probability": 0.8133 + }, + { + "start": 15210.02, + "end": 15214.5, + "probability": 0.8516 + }, + { + "start": 15216.1, + "end": 15218.58, + "probability": 0.4159 + }, + { + "start": 15220.86, + "end": 15223.16, + "probability": 0.6293 + }, + { + "start": 15225.5, + "end": 15229.5, + "probability": 0.9791 + }, + { + "start": 15230.18, + "end": 15231.06, + "probability": 0.8156 + }, + { + "start": 15231.16, + "end": 15231.82, + "probability": 0.6656 + }, + { + "start": 15231.96, + "end": 15235.62, + "probability": 0.9757 + }, + { + "start": 15236.78, + "end": 15240.22, + "probability": 0.9845 + }, + { + "start": 15241.04, + "end": 15244.81, + "probability": 0.9854 + }, + { + "start": 15245.94, + "end": 15247.3, + "probability": 0.7486 + }, + { + "start": 15247.66, + "end": 15253.42, + "probability": 0.9279 + }, + { + "start": 15254.0, + "end": 15259.2, + "probability": 0.7991 + }, + { + "start": 15259.72, + "end": 15263.2, + "probability": 0.8979 + }, + { + "start": 15263.74, + "end": 15267.92, + "probability": 0.7841 + }, + { + "start": 15268.34, + "end": 15274.28, + "probability": 0.9473 + }, + { + "start": 15274.28, + "end": 15279.72, + "probability": 0.9776 + }, + { + "start": 15280.0, + "end": 15280.34, + "probability": 0.8267 + }, + { + "start": 15280.4, + "end": 15282.12, + "probability": 0.7795 + }, + { + "start": 15283.44, + "end": 15284.32, + "probability": 0.9031 + }, + { + "start": 15284.5, + "end": 15285.82, + "probability": 0.6614 + }, + { + "start": 15286.2, + "end": 15288.5, + "probability": 0.9896 + }, + { + "start": 15289.2, + "end": 15292.48, + "probability": 0.3527 + }, + { + "start": 15292.92, + "end": 15296.76, + "probability": 0.975 + }, + { + "start": 15297.0, + "end": 15300.8, + "probability": 0.9798 + }, + { + "start": 15301.28, + "end": 15305.86, + "probability": 0.9575 + }, + { + "start": 15306.24, + "end": 15307.44, + "probability": 0.8225 + }, + { + "start": 15307.8, + "end": 15312.42, + "probability": 0.9707 + }, + { + "start": 15313.1, + "end": 15315.12, + "probability": 0.7925 + }, + { + "start": 15315.64, + "end": 15316.92, + "probability": 0.6524 + }, + { + "start": 15317.6, + "end": 15322.62, + "probability": 0.9595 + }, + { + "start": 15323.06, + "end": 15328.82, + "probability": 0.9202 + }, + { + "start": 15330.05, + "end": 15336.18, + "probability": 0.816 + }, + { + "start": 15336.92, + "end": 15339.36, + "probability": 0.7523 + }, + { + "start": 15339.76, + "end": 15341.58, + "probability": 0.717 + }, + { + "start": 15341.7, + "end": 15342.62, + "probability": 0.9593 + }, + { + "start": 15342.94, + "end": 15346.16, + "probability": 0.8188 + }, + { + "start": 15346.58, + "end": 15346.94, + "probability": 0.4167 + }, + { + "start": 15346.96, + "end": 15349.36, + "probability": 0.5157 + }, + { + "start": 15350.28, + "end": 15351.16, + "probability": 0.5671 + }, + { + "start": 15351.6, + "end": 15353.76, + "probability": 0.8176 + }, + { + "start": 15354.24, + "end": 15358.8, + "probability": 0.9738 + }, + { + "start": 15359.36, + "end": 15360.14, + "probability": 0.7384 + }, + { + "start": 15360.2, + "end": 15364.36, + "probability": 0.9929 + }, + { + "start": 15364.44, + "end": 15365.42, + "probability": 0.4991 + }, + { + "start": 15365.7, + "end": 15366.86, + "probability": 0.9705 + }, + { + "start": 15366.98, + "end": 15372.14, + "probability": 0.944 + }, + { + "start": 15373.04, + "end": 15376.06, + "probability": 0.9329 + }, + { + "start": 15376.12, + "end": 15381.6, + "probability": 0.9902 + }, + { + "start": 15382.4, + "end": 15384.3, + "probability": 0.978 + }, + { + "start": 15384.32, + "end": 15386.06, + "probability": 0.979 + }, + { + "start": 15386.8, + "end": 15387.56, + "probability": 0.3779 + }, + { + "start": 15388.02, + "end": 15388.28, + "probability": 0.4149 + }, + { + "start": 15388.52, + "end": 15390.16, + "probability": 0.4011 + }, + { + "start": 15390.36, + "end": 15390.36, + "probability": 0.3926 + }, + { + "start": 15390.36, + "end": 15391.56, + "probability": 0.9615 + }, + { + "start": 15392.24, + "end": 15394.95, + "probability": 0.8835 + }, + { + "start": 15395.56, + "end": 15400.68, + "probability": 0.9496 + }, + { + "start": 15400.68, + "end": 15404.92, + "probability": 0.9609 + }, + { + "start": 15405.3, + "end": 15407.9, + "probability": 0.6762 + }, + { + "start": 15408.32, + "end": 15410.28, + "probability": 0.9622 + }, + { + "start": 15410.7, + "end": 15415.72, + "probability": 0.9769 + }, + { + "start": 15415.8, + "end": 15419.46, + "probability": 0.9918 + }, + { + "start": 15420.0, + "end": 15422.66, + "probability": 0.8638 + }, + { + "start": 15422.68, + "end": 15423.26, + "probability": 0.3867 + }, + { + "start": 15423.4, + "end": 15423.54, + "probability": 0.3241 + }, + { + "start": 15423.84, + "end": 15425.8, + "probability": 0.7141 + }, + { + "start": 15426.14, + "end": 15433.06, + "probability": 0.9891 + }, + { + "start": 15433.36, + "end": 15434.7, + "probability": 0.988 + }, + { + "start": 15435.08, + "end": 15439.16, + "probability": 0.9517 + }, + { + "start": 15439.68, + "end": 15440.43, + "probability": 0.9775 + }, + { + "start": 15441.26, + "end": 15445.16, + "probability": 0.9944 + }, + { + "start": 15445.16, + "end": 15450.14, + "probability": 0.9768 + }, + { + "start": 15450.62, + "end": 15452.5, + "probability": 0.6599 + }, + { + "start": 15452.66, + "end": 15455.78, + "probability": 0.9595 + }, + { + "start": 15455.8, + "end": 15456.44, + "probability": 0.8876 + }, + { + "start": 15457.26, + "end": 15458.88, + "probability": 0.0167 + }, + { + "start": 15472.02, + "end": 15473.54, + "probability": 0.7175 + }, + { + "start": 15474.5, + "end": 15478.82, + "probability": 0.587 + }, + { + "start": 15481.46, + "end": 15484.73, + "probability": 0.8914 + }, + { + "start": 15485.98, + "end": 15490.38, + "probability": 0.8939 + }, + { + "start": 15491.0, + "end": 15497.1, + "probability": 0.9963 + }, + { + "start": 15497.14, + "end": 15497.44, + "probability": 0.3311 + }, + { + "start": 15497.64, + "end": 15498.22, + "probability": 0.5122 + }, + { + "start": 15498.8, + "end": 15499.52, + "probability": 0.5963 + }, + { + "start": 15500.24, + "end": 15502.78, + "probability": 0.7566 + }, + { + "start": 15503.3, + "end": 15504.8, + "probability": 0.9036 + }, + { + "start": 15505.36, + "end": 15510.26, + "probability": 0.8883 + }, + { + "start": 15512.96, + "end": 15516.72, + "probability": 0.7769 + }, + { + "start": 15516.84, + "end": 15517.98, + "probability": 0.3533 + }, + { + "start": 15517.98, + "end": 15519.62, + "probability": 0.6377 + }, + { + "start": 15519.9, + "end": 15522.28, + "probability": 0.9224 + }, + { + "start": 15522.32, + "end": 15527.06, + "probability": 0.8696 + }, + { + "start": 15527.5, + "end": 15530.84, + "probability": 0.9742 + }, + { + "start": 15530.96, + "end": 15535.04, + "probability": 0.8376 + }, + { + "start": 15535.04, + "end": 15540.34, + "probability": 0.9651 + }, + { + "start": 15540.82, + "end": 15541.16, + "probability": 0.7043 + }, + { + "start": 15541.72, + "end": 15542.82, + "probability": 0.9597 + }, + { + "start": 15543.22, + "end": 15549.06, + "probability": 0.9951 + }, + { + "start": 15549.16, + "end": 15554.5, + "probability": 0.9919 + }, + { + "start": 15554.5, + "end": 15559.66, + "probability": 0.8917 + }, + { + "start": 15560.08, + "end": 15562.0, + "probability": 0.9711 + }, + { + "start": 15562.8, + "end": 15568.8, + "probability": 0.8616 + }, + { + "start": 15569.48, + "end": 15572.08, + "probability": 0.9513 + }, + { + "start": 15572.6, + "end": 15574.44, + "probability": 0.7164 + }, + { + "start": 15575.9, + "end": 15581.2, + "probability": 0.9569 + }, + { + "start": 15581.48, + "end": 15584.47, + "probability": 0.808 + }, + { + "start": 15584.82, + "end": 15588.24, + "probability": 0.7915 + }, + { + "start": 15588.3, + "end": 15590.02, + "probability": 0.9643 + }, + { + "start": 15590.46, + "end": 15592.16, + "probability": 0.9092 + }, + { + "start": 15592.6, + "end": 15593.64, + "probability": 0.4981 + }, + { + "start": 15594.1, + "end": 15598.76, + "probability": 0.8896 + }, + { + "start": 15599.5, + "end": 15599.96, + "probability": 0.6209 + }, + { + "start": 15600.08, + "end": 15604.14, + "probability": 0.9262 + }, + { + "start": 15604.84, + "end": 15608.58, + "probability": 0.944 + }, + { + "start": 15608.92, + "end": 15612.6, + "probability": 0.9401 + }, + { + "start": 15613.18, + "end": 15615.46, + "probability": 0.9927 + }, + { + "start": 15615.46, + "end": 15619.0, + "probability": 0.7938 + }, + { + "start": 15620.94, + "end": 15627.16, + "probability": 0.9863 + }, + { + "start": 15627.66, + "end": 15628.28, + "probability": 0.5206 + }, + { + "start": 15628.32, + "end": 15631.14, + "probability": 0.886 + }, + { + "start": 15631.28, + "end": 15633.92, + "probability": 0.9297 + }, + { + "start": 15633.95, + "end": 15636.24, + "probability": 0.4691 + }, + { + "start": 15636.68, + "end": 15637.31, + "probability": 0.8945 + }, + { + "start": 15637.62, + "end": 15637.94, + "probability": 0.8713 + }, + { + "start": 15638.86, + "end": 15641.74, + "probability": 0.5706 + }, + { + "start": 15641.88, + "end": 15643.06, + "probability": 0.8109 + }, + { + "start": 15643.44, + "end": 15644.58, + "probability": 0.8559 + }, + { + "start": 15644.86, + "end": 15647.42, + "probability": 0.9893 + }, + { + "start": 15647.62, + "end": 15651.28, + "probability": 0.7764 + }, + { + "start": 15652.06, + "end": 15657.04, + "probability": 0.9135 + }, + { + "start": 15657.56, + "end": 15663.38, + "probability": 0.7173 + }, + { + "start": 15663.42, + "end": 15666.86, + "probability": 0.9052 + }, + { + "start": 15666.96, + "end": 15669.38, + "probability": 0.7772 + }, + { + "start": 15669.96, + "end": 15675.2, + "probability": 0.9903 + }, + { + "start": 15675.74, + "end": 15677.1, + "probability": 0.5376 + }, + { + "start": 15677.3, + "end": 15682.7, + "probability": 0.9064 + }, + { + "start": 15683.18, + "end": 15683.58, + "probability": 0.6393 + }, + { + "start": 15683.68, + "end": 15689.5, + "probability": 0.9885 + }, + { + "start": 15689.8, + "end": 15691.32, + "probability": 0.7776 + }, + { + "start": 15691.74, + "end": 15695.42, + "probability": 0.8635 + }, + { + "start": 15695.6, + "end": 15697.76, + "probability": 0.3993 + }, + { + "start": 15697.78, + "end": 15699.72, + "probability": 0.6791 + }, + { + "start": 15700.12, + "end": 15704.28, + "probability": 0.8959 + }, + { + "start": 15704.46, + "end": 15704.76, + "probability": 0.0253 + }, + { + "start": 15704.76, + "end": 15705.18, + "probability": 0.2723 + }, + { + "start": 15705.3, + "end": 15705.88, + "probability": 0.9195 + }, + { + "start": 15706.04, + "end": 15707.86, + "probability": 0.7533 + }, + { + "start": 15708.86, + "end": 15710.32, + "probability": 0.3769 + }, + { + "start": 15710.32, + "end": 15710.32, + "probability": 0.0593 + }, + { + "start": 15710.32, + "end": 15711.98, + "probability": 0.2395 + }, + { + "start": 15711.98, + "end": 15712.19, + "probability": 0.157 + }, + { + "start": 15712.68, + "end": 15713.12, + "probability": 0.1922 + }, + { + "start": 15714.12, + "end": 15716.56, + "probability": 0.8364 + }, + { + "start": 15716.7, + "end": 15717.84, + "probability": 0.9873 + }, + { + "start": 15717.9, + "end": 15720.28, + "probability": 0.9978 + }, + { + "start": 15720.82, + "end": 15721.08, + "probability": 0.455 + }, + { + "start": 15721.16, + "end": 15722.0, + "probability": 0.7861 + }, + { + "start": 15722.1, + "end": 15723.73, + "probability": 0.8196 + }, + { + "start": 15724.8, + "end": 15727.3, + "probability": 0.9692 + }, + { + "start": 15727.34, + "end": 15730.92, + "probability": 0.9504 + }, + { + "start": 15731.44, + "end": 15732.18, + "probability": 0.7292 + }, + { + "start": 15736.34, + "end": 15737.18, + "probability": 0.1607 + }, + { + "start": 15737.18, + "end": 15738.96, + "probability": 0.5219 + }, + { + "start": 15739.02, + "end": 15740.54, + "probability": 0.8256 + }, + { + "start": 15740.68, + "end": 15741.26, + "probability": 0.5442 + }, + { + "start": 15741.3, + "end": 15742.6, + "probability": 0.8449 + }, + { + "start": 15742.66, + "end": 15743.56, + "probability": 0.787 + }, + { + "start": 15744.76, + "end": 15750.24, + "probability": 0.1254 + }, + { + "start": 15753.14, + "end": 15753.46, + "probability": 0.5779 + }, + { + "start": 15753.52, + "end": 15755.08, + "probability": 0.8002 + }, + { + "start": 15755.12, + "end": 15756.84, + "probability": 0.7826 + }, + { + "start": 15756.98, + "end": 15757.56, + "probability": 0.5229 + }, + { + "start": 15757.68, + "end": 15762.38, + "probability": 0.9584 + }, + { + "start": 15764.94, + "end": 15765.04, + "probability": 0.0406 + }, + { + "start": 15765.04, + "end": 15765.06, + "probability": 0.1848 + }, + { + "start": 15765.06, + "end": 15766.86, + "probability": 0.4814 + }, + { + "start": 15768.58, + "end": 15770.12, + "probability": 0.5234 + }, + { + "start": 15770.24, + "end": 15771.9, + "probability": 0.6217 + }, + { + "start": 15772.0, + "end": 15774.64, + "probability": 0.6355 + }, + { + "start": 15777.36, + "end": 15781.88, + "probability": 0.9854 + }, + { + "start": 15781.92, + "end": 15783.0, + "probability": 0.5362 + }, + { + "start": 15784.08, + "end": 15784.62, + "probability": 0.2619 + }, + { + "start": 15784.76, + "end": 15787.92, + "probability": 0.9326 + }, + { + "start": 15788.08, + "end": 15791.18, + "probability": 0.3677 + }, + { + "start": 15791.69, + "end": 15793.22, + "probability": 0.3046 + }, + { + "start": 15793.38, + "end": 15795.32, + "probability": 0.5493 + }, + { + "start": 15795.66, + "end": 15800.08, + "probability": 0.4763 + }, + { + "start": 15800.14, + "end": 15807.0, + "probability": 0.9471 + }, + { + "start": 15807.2, + "end": 15808.3, + "probability": 0.725 + }, + { + "start": 15808.98, + "end": 15812.24, + "probability": 0.543 + }, + { + "start": 15813.56, + "end": 15815.24, + "probability": 0.4102 + }, + { + "start": 15815.24, + "end": 15816.44, + "probability": 0.7506 + }, + { + "start": 15816.46, + "end": 15817.08, + "probability": 0.9063 + }, + { + "start": 15817.08, + "end": 15817.72, + "probability": 0.3039 + }, + { + "start": 15818.18, + "end": 15819.3, + "probability": 0.09 + }, + { + "start": 15819.44, + "end": 15819.85, + "probability": 0.5378 + }, + { + "start": 15820.18, + "end": 15821.66, + "probability": 0.6607 + }, + { + "start": 15821.74, + "end": 15823.6, + "probability": 0.9033 + }, + { + "start": 15823.68, + "end": 15825.0, + "probability": 0.9839 + }, + { + "start": 15825.12, + "end": 15826.9, + "probability": 0.4175 + }, + { + "start": 15828.0, + "end": 15830.92, + "probability": 0.494 + }, + { + "start": 15831.38, + "end": 15835.36, + "probability": 0.9598 + }, + { + "start": 15835.48, + "end": 15837.14, + "probability": 0.8912 + }, + { + "start": 15837.64, + "end": 15839.7, + "probability": 0.9202 + }, + { + "start": 15839.86, + "end": 15840.68, + "probability": 0.964 + }, + { + "start": 15842.3, + "end": 15844.32, + "probability": 0.9972 + }, + { + "start": 15847.01, + "end": 15848.98, + "probability": 0.5339 + }, + { + "start": 15848.98, + "end": 15848.98, + "probability": 0.4965 + }, + { + "start": 15848.98, + "end": 15850.39, + "probability": 0.5004 + }, + { + "start": 15850.72, + "end": 15855.06, + "probability": 0.9594 + }, + { + "start": 15855.2, + "end": 15859.1, + "probability": 0.9655 + }, + { + "start": 15859.28, + "end": 15860.34, + "probability": 0.1263 + }, + { + "start": 15860.34, + "end": 15864.28, + "probability": 0.9595 + }, + { + "start": 15864.4, + "end": 15865.7, + "probability": 0.9483 + }, + { + "start": 15865.74, + "end": 15867.5, + "probability": 0.8968 + }, + { + "start": 15869.26, + "end": 15871.86, + "probability": 0.0481 + }, + { + "start": 15872.16, + "end": 15872.3, + "probability": 0.0119 + }, + { + "start": 15872.3, + "end": 15872.3, + "probability": 0.8643 + }, + { + "start": 15872.3, + "end": 15873.04, + "probability": 0.5496 + }, + { + "start": 15875.21, + "end": 15878.16, + "probability": 0.6631 + }, + { + "start": 15878.84, + "end": 15878.96, + "probability": 0.1315 + }, + { + "start": 15878.96, + "end": 15881.56, + "probability": 0.9937 + }, + { + "start": 15881.68, + "end": 15884.2, + "probability": 0.9796 + }, + { + "start": 15884.28, + "end": 15885.76, + "probability": 0.6161 + }, + { + "start": 15885.84, + "end": 15888.46, + "probability": 0.9292 + }, + { + "start": 15888.46, + "end": 15888.58, + "probability": 0.1421 + }, + { + "start": 15890.22, + "end": 15894.06, + "probability": 0.8955 + }, + { + "start": 15894.06, + "end": 15894.58, + "probability": 0.0942 + }, + { + "start": 15894.58, + "end": 15894.8, + "probability": 0.2303 + }, + { + "start": 15896.34, + "end": 15899.18, + "probability": 0.4181 + }, + { + "start": 15900.84, + "end": 15903.6, + "probability": 0.9852 + }, + { + "start": 15903.8, + "end": 15905.24, + "probability": 0.9814 + }, + { + "start": 15905.4, + "end": 15907.7, + "probability": 0.9727 + }, + { + "start": 15907.72, + "end": 15908.12, + "probability": 0.2112 + }, + { + "start": 15908.12, + "end": 15909.18, + "probability": 0.8461 + }, + { + "start": 15909.18, + "end": 15909.54, + "probability": 0.1947 + }, + { + "start": 15909.6, + "end": 15909.82, + "probability": 0.4924 + }, + { + "start": 15909.82, + "end": 15911.6, + "probability": 0.963 + }, + { + "start": 15911.62, + "end": 15912.38, + "probability": 0.489 + }, + { + "start": 15912.78, + "end": 15914.38, + "probability": 0.7425 + }, + { + "start": 15919.0, + "end": 15921.8, + "probability": 0.3912 + }, + { + "start": 15922.34, + "end": 15923.36, + "probability": 0.9464 + }, + { + "start": 15924.82, + "end": 15925.68, + "probability": 0.9607 + }, + { + "start": 15928.08, + "end": 15933.04, + "probability": 0.8351 + }, + { + "start": 15933.3, + "end": 15936.78, + "probability": 0.8945 + }, + { + "start": 15937.27, + "end": 15941.64, + "probability": 0.9971 + }, + { + "start": 15942.4, + "end": 15948.63, + "probability": 0.9866 + }, + { + "start": 15949.66, + "end": 15950.78, + "probability": 0.8538 + }, + { + "start": 15950.92, + "end": 15951.6, + "probability": 0.9452 + }, + { + "start": 15951.76, + "end": 15953.76, + "probability": 0.8591 + }, + { + "start": 15955.0, + "end": 15959.26, + "probability": 0.9956 + }, + { + "start": 15960.12, + "end": 15967.12, + "probability": 0.9973 + }, + { + "start": 15967.62, + "end": 15969.6, + "probability": 0.7245 + }, + { + "start": 15970.36, + "end": 15974.06, + "probability": 0.9242 + }, + { + "start": 15974.3, + "end": 15978.7, + "probability": 0.9885 + }, + { + "start": 15978.78, + "end": 15981.06, + "probability": 0.9609 + }, + { + "start": 15981.32, + "end": 15982.3, + "probability": 0.6011 + }, + { + "start": 15983.16, + "end": 15983.16, + "probability": 0.1926 + }, + { + "start": 15983.16, + "end": 15984.44, + "probability": 0.8887 + }, + { + "start": 15984.96, + "end": 15985.52, + "probability": 0.7162 + }, + { + "start": 15986.08, + "end": 15987.0, + "probability": 0.9547 + }, + { + "start": 15987.3, + "end": 15988.05, + "probability": 0.9263 + }, + { + "start": 15988.14, + "end": 15990.94, + "probability": 0.6826 + }, + { + "start": 15990.94, + "end": 15997.64, + "probability": 0.9883 + }, + { + "start": 15997.64, + "end": 16002.02, + "probability": 0.9998 + }, + { + "start": 16002.72, + "end": 16006.68, + "probability": 0.9578 + }, + { + "start": 16007.86, + "end": 16012.1, + "probability": 0.9969 + }, + { + "start": 16012.56, + "end": 16017.2, + "probability": 0.9806 + }, + { + "start": 16017.64, + "end": 16023.14, + "probability": 0.9932 + }, + { + "start": 16023.46, + "end": 16024.9, + "probability": 0.9415 + }, + { + "start": 16025.62, + "end": 16030.66, + "probability": 0.9954 + }, + { + "start": 16031.28, + "end": 16034.26, + "probability": 0.9769 + }, + { + "start": 16034.26, + "end": 16037.7, + "probability": 0.8507 + }, + { + "start": 16038.02, + "end": 16039.66, + "probability": 0.8806 + }, + { + "start": 16039.9, + "end": 16048.26, + "probability": 0.9822 + }, + { + "start": 16049.3, + "end": 16052.22, + "probability": 0.9974 + }, + { + "start": 16052.92, + "end": 16053.46, + "probability": 0.1525 + }, + { + "start": 16053.46, + "end": 16053.9, + "probability": 0.6107 + }, + { + "start": 16053.98, + "end": 16058.22, + "probability": 0.7192 + }, + { + "start": 16058.3, + "end": 16059.22, + "probability": 0.8982 + }, + { + "start": 16059.24, + "end": 16059.72, + "probability": 0.4698 + }, + { + "start": 16060.02, + "end": 16060.98, + "probability": 0.9677 + }, + { + "start": 16061.16, + "end": 16064.26, + "probability": 0.991 + }, + { + "start": 16065.22, + "end": 16067.4, + "probability": 0.983 + }, + { + "start": 16067.5, + "end": 16074.14, + "probability": 0.9761 + }, + { + "start": 16074.22, + "end": 16074.84, + "probability": 0.9879 + }, + { + "start": 16074.88, + "end": 16075.44, + "probability": 0.8264 + }, + { + "start": 16075.68, + "end": 16076.11, + "probability": 0.9771 + }, + { + "start": 16076.94, + "end": 16080.4, + "probability": 0.9912 + }, + { + "start": 16080.96, + "end": 16082.62, + "probability": 0.9847 + }, + { + "start": 16083.52, + "end": 16085.54, + "probability": 0.8857 + }, + { + "start": 16086.06, + "end": 16086.98, + "probability": 0.9263 + }, + { + "start": 16087.08, + "end": 16091.38, + "probability": 0.9465 + }, + { + "start": 16091.38, + "end": 16094.48, + "probability": 0.9828 + }, + { + "start": 16094.88, + "end": 16095.08, + "probability": 0.5307 + }, + { + "start": 16095.08, + "end": 16095.7, + "probability": 0.858 + }, + { + "start": 16096.68, + "end": 16097.5, + "probability": 0.95 + }, + { + "start": 16097.58, + "end": 16099.88, + "probability": 0.9359 + }, + { + "start": 16100.8, + "end": 16103.5, + "probability": 0.8653 + }, + { + "start": 16104.18, + "end": 16105.02, + "probability": 0.7769 + }, + { + "start": 16105.58, + "end": 16105.76, + "probability": 0.1273 + }, + { + "start": 16106.6, + "end": 16106.92, + "probability": 0.3385 + }, + { + "start": 16107.2, + "end": 16108.34, + "probability": 0.3166 + }, + { + "start": 16108.38, + "end": 16110.3, + "probability": 0.2144 + }, + { + "start": 16110.66, + "end": 16112.82, + "probability": 0.887 + }, + { + "start": 16113.34, + "end": 16115.45, + "probability": 0.9503 + }, + { + "start": 16115.88, + "end": 16117.12, + "probability": 0.9446 + }, + { + "start": 16117.62, + "end": 16118.11, + "probability": 0.6213 + }, + { + "start": 16118.7, + "end": 16119.76, + "probability": 0.9652 + }, + { + "start": 16120.14, + "end": 16120.89, + "probability": 0.7972 + }, + { + "start": 16121.16, + "end": 16124.44, + "probability": 0.8774 + }, + { + "start": 16124.48, + "end": 16128.04, + "probability": 0.974 + }, + { + "start": 16129.0, + "end": 16132.28, + "probability": 0.9648 + }, + { + "start": 16132.6, + "end": 16135.02, + "probability": 0.9861 + }, + { + "start": 16135.28, + "end": 16139.65, + "probability": 0.9451 + }, + { + "start": 16139.92, + "end": 16143.18, + "probability": 0.9489 + }, + { + "start": 16143.48, + "end": 16145.02, + "probability": 0.9012 + }, + { + "start": 16145.2, + "end": 16149.18, + "probability": 0.7385 + }, + { + "start": 16149.5, + "end": 16155.76, + "probability": 0.9111 + }, + { + "start": 16156.56, + "end": 16160.97, + "probability": 0.951 + }, + { + "start": 16161.18, + "end": 16162.16, + "probability": 0.6834 + }, + { + "start": 16162.64, + "end": 16162.66, + "probability": 0.3208 + }, + { + "start": 16162.82, + "end": 16163.47, + "probability": 0.5484 + }, + { + "start": 16164.23, + "end": 16166.98, + "probability": 0.964 + }, + { + "start": 16166.98, + "end": 16167.46, + "probability": 0.3238 + }, + { + "start": 16167.56, + "end": 16168.2, + "probability": 0.3125 + }, + { + "start": 16168.44, + "end": 16169.24, + "probability": 0.6001 + }, + { + "start": 16172.02, + "end": 16173.02, + "probability": 0.2341 + }, + { + "start": 16173.42, + "end": 16173.42, + "probability": 0.1818 + }, + { + "start": 16173.42, + "end": 16173.42, + "probability": 0.3103 + }, + { + "start": 16173.42, + "end": 16175.17, + "probability": 0.0665 + }, + { + "start": 16177.84, + "end": 16179.24, + "probability": 0.5236 + }, + { + "start": 16179.54, + "end": 16179.64, + "probability": 0.2453 + }, + { + "start": 16179.96, + "end": 16180.12, + "probability": 0.231 + }, + { + "start": 16180.32, + "end": 16180.81, + "probability": 0.4029 + }, + { + "start": 16181.92, + "end": 16182.34, + "probability": 0.018 + }, + { + "start": 16182.76, + "end": 16183.14, + "probability": 0.0079 + }, + { + "start": 16183.14, + "end": 16183.66, + "probability": 0.2418 + }, + { + "start": 16183.66, + "end": 16184.5, + "probability": 0.3414 + }, + { + "start": 16185.12, + "end": 16186.02, + "probability": 0.1907 + }, + { + "start": 16186.46, + "end": 16187.26, + "probability": 0.4968 + }, + { + "start": 16187.3, + "end": 16187.62, + "probability": 0.4851 + }, + { + "start": 16188.36, + "end": 16189.43, + "probability": 0.9912 + }, + { + "start": 16190.72, + "end": 16191.38, + "probability": 0.8875 + }, + { + "start": 16192.1, + "end": 16193.45, + "probability": 0.7495 + }, + { + "start": 16193.82, + "end": 16195.38, + "probability": 0.9433 + }, + { + "start": 16196.02, + "end": 16197.92, + "probability": 0.9922 + }, + { + "start": 16198.14, + "end": 16198.92, + "probability": 0.9573 + }, + { + "start": 16199.0, + "end": 16200.4, + "probability": 0.973 + }, + { + "start": 16200.44, + "end": 16203.12, + "probability": 0.9625 + }, + { + "start": 16203.46, + "end": 16205.94, + "probability": 0.8643 + }, + { + "start": 16206.18, + "end": 16206.86, + "probability": 0.7655 + }, + { + "start": 16207.26, + "end": 16211.06, + "probability": 0.7576 + }, + { + "start": 16211.8, + "end": 16212.77, + "probability": 0.9495 + }, + { + "start": 16213.42, + "end": 16213.88, + "probability": 0.769 + }, + { + "start": 16213.96, + "end": 16217.86, + "probability": 0.9949 + }, + { + "start": 16218.4, + "end": 16220.84, + "probability": 0.9232 + }, + { + "start": 16220.9, + "end": 16226.64, + "probability": 0.9946 + }, + { + "start": 16227.12, + "end": 16227.66, + "probability": 0.9412 + }, + { + "start": 16227.74, + "end": 16228.3, + "probability": 0.8387 + }, + { + "start": 16228.4, + "end": 16229.64, + "probability": 0.7374 + }, + { + "start": 16229.98, + "end": 16231.24, + "probability": 0.9971 + }, + { + "start": 16232.58, + "end": 16236.22, + "probability": 0.9912 + }, + { + "start": 16237.28, + "end": 16238.84, + "probability": 0.873 + }, + { + "start": 16239.14, + "end": 16240.58, + "probability": 0.8263 + }, + { + "start": 16240.72, + "end": 16245.82, + "probability": 0.9277 + }, + { + "start": 16245.94, + "end": 16247.43, + "probability": 0.9745 + }, + { + "start": 16247.82, + "end": 16250.16, + "probability": 0.8959 + }, + { + "start": 16250.54, + "end": 16252.44, + "probability": 0.983 + }, + { + "start": 16252.64, + "end": 16253.56, + "probability": 0.8989 + }, + { + "start": 16253.9, + "end": 16258.5, + "probability": 0.986 + }, + { + "start": 16259.38, + "end": 16261.4, + "probability": 0.9535 + }, + { + "start": 16261.46, + "end": 16262.49, + "probability": 0.658 + }, + { + "start": 16263.8, + "end": 16265.88, + "probability": 0.8637 + }, + { + "start": 16266.26, + "end": 16267.52, + "probability": 0.9064 + }, + { + "start": 16267.62, + "end": 16270.02, + "probability": 0.9874 + }, + { + "start": 16270.3, + "end": 16271.6, + "probability": 0.9819 + }, + { + "start": 16272.38, + "end": 16275.24, + "probability": 0.9847 + }, + { + "start": 16276.0, + "end": 16278.08, + "probability": 0.6636 + }, + { + "start": 16278.66, + "end": 16281.02, + "probability": 0.8229 + }, + { + "start": 16281.44, + "end": 16282.78, + "probability": 0.9564 + }, + { + "start": 16282.86, + "end": 16284.44, + "probability": 0.5611 + }, + { + "start": 16284.48, + "end": 16285.28, + "probability": 0.9302 + }, + { + "start": 16285.52, + "end": 16286.42, + "probability": 0.7422 + }, + { + "start": 16286.66, + "end": 16287.45, + "probability": 0.7862 + }, + { + "start": 16287.96, + "end": 16290.12, + "probability": 0.9576 + }, + { + "start": 16290.78, + "end": 16292.0, + "probability": 0.7001 + }, + { + "start": 16292.34, + "end": 16293.96, + "probability": 0.7264 + }, + { + "start": 16294.24, + "end": 16295.88, + "probability": 0.9062 + }, + { + "start": 16296.36, + "end": 16297.82, + "probability": 0.7616 + }, + { + "start": 16299.56, + "end": 16303.08, + "probability": 0.7518 + }, + { + "start": 16303.18, + "end": 16303.64, + "probability": 0.9424 + }, + { + "start": 16303.72, + "end": 16304.82, + "probability": 0.8018 + }, + { + "start": 16305.22, + "end": 16307.0, + "probability": 0.7487 + }, + { + "start": 16307.32, + "end": 16307.58, + "probability": 0.0227 + }, + { + "start": 16307.58, + "end": 16311.08, + "probability": 0.3348 + }, + { + "start": 16311.08, + "end": 16311.91, + "probability": 0.631 + }, + { + "start": 16312.24, + "end": 16314.64, + "probability": 0.2179 + }, + { + "start": 16315.02, + "end": 16316.74, + "probability": 0.134 + }, + { + "start": 16316.74, + "end": 16318.06, + "probability": 0.6025 + }, + { + "start": 16318.88, + "end": 16319.2, + "probability": 0.1559 + }, + { + "start": 16320.16, + "end": 16320.7, + "probability": 0.0443 + }, + { + "start": 16320.86, + "end": 16324.06, + "probability": 0.0287 + }, + { + "start": 16324.58, + "end": 16325.88, + "probability": 0.1379 + }, + { + "start": 16327.14, + "end": 16328.54, + "probability": 0.944 + }, + { + "start": 16328.7, + "end": 16329.14, + "probability": 0.7201 + }, + { + "start": 16329.14, + "end": 16329.76, + "probability": 0.3347 + }, + { + "start": 16329.78, + "end": 16331.46, + "probability": 0.382 + }, + { + "start": 16331.64, + "end": 16334.4, + "probability": 0.6781 + }, + { + "start": 16335.16, + "end": 16337.42, + "probability": 0.9961 + }, + { + "start": 16338.24, + "end": 16341.84, + "probability": 0.9728 + }, + { + "start": 16343.6, + "end": 16345.62, + "probability": 0.7844 + }, + { + "start": 16345.98, + "end": 16347.98, + "probability": 0.9623 + }, + { + "start": 16348.44, + "end": 16348.98, + "probability": 0.9252 + }, + { + "start": 16349.12, + "end": 16351.14, + "probability": 0.7941 + }, + { + "start": 16351.34, + "end": 16352.94, + "probability": 0.7947 + }, + { + "start": 16355.06, + "end": 16356.7, + "probability": 0.9165 + }, + { + "start": 16356.8, + "end": 16358.5, + "probability": 0.9434 + }, + { + "start": 16359.42, + "end": 16359.56, + "probability": 0.5104 + }, + { + "start": 16359.6, + "end": 16360.1, + "probability": 0.7846 + }, + { + "start": 16360.16, + "end": 16361.54, + "probability": 0.8796 + }, + { + "start": 16361.62, + "end": 16362.66, + "probability": 0.9434 + }, + { + "start": 16362.78, + "end": 16364.3, + "probability": 0.9839 + }, + { + "start": 16365.3, + "end": 16369.74, + "probability": 0.8093 + }, + { + "start": 16369.78, + "end": 16370.62, + "probability": 0.645 + }, + { + "start": 16370.84, + "end": 16375.12, + "probability": 0.8533 + }, + { + "start": 16375.18, + "end": 16378.6, + "probability": 0.9697 + }, + { + "start": 16378.7, + "end": 16380.7, + "probability": 0.9724 + }, + { + "start": 16381.78, + "end": 16382.48, + "probability": 0.6746 + }, + { + "start": 16382.6, + "end": 16384.82, + "probability": 0.9093 + }, + { + "start": 16385.34, + "end": 16386.26, + "probability": 0.9482 + }, + { + "start": 16386.4, + "end": 16388.76, + "probability": 0.9644 + }, + { + "start": 16389.97, + "end": 16391.06, + "probability": 0.9575 + }, + { + "start": 16391.2, + "end": 16392.4, + "probability": 0.5457 + }, + { + "start": 16392.52, + "end": 16395.52, + "probability": 0.9935 + }, + { + "start": 16395.62, + "end": 16398.7, + "probability": 0.9929 + }, + { + "start": 16399.06, + "end": 16400.54, + "probability": 0.9568 + }, + { + "start": 16401.54, + "end": 16402.41, + "probability": 0.9355 + }, + { + "start": 16404.29, + "end": 16405.9, + "probability": 0.7844 + }, + { + "start": 16405.98, + "end": 16406.6, + "probability": 0.8994 + }, + { + "start": 16407.42, + "end": 16409.12, + "probability": 0.9914 + }, + { + "start": 16411.68, + "end": 16413.66, + "probability": 0.9378 + }, + { + "start": 16413.66, + "end": 16413.96, + "probability": 0.0548 + }, + { + "start": 16414.04, + "end": 16415.08, + "probability": 0.8623 + }, + { + "start": 16416.52, + "end": 16418.2, + "probability": 0.9949 + }, + { + "start": 16419.86, + "end": 16421.0, + "probability": 0.707 + }, + { + "start": 16421.42, + "end": 16422.02, + "probability": 0.919 + }, + { + "start": 16422.1, + "end": 16423.1, + "probability": 0.9844 + }, + { + "start": 16423.46, + "end": 16424.04, + "probability": 0.9736 + }, + { + "start": 16425.24, + "end": 16427.5, + "probability": 0.676 + }, + { + "start": 16427.88, + "end": 16429.28, + "probability": 0.8709 + }, + { + "start": 16429.82, + "end": 16430.36, + "probability": 0.5996 + }, + { + "start": 16432.42, + "end": 16432.6, + "probability": 0.6422 + }, + { + "start": 16432.66, + "end": 16433.23, + "probability": 0.9668 + }, + { + "start": 16433.36, + "end": 16433.7, + "probability": 0.8076 + }, + { + "start": 16433.76, + "end": 16433.76, + "probability": 0.3204 + }, + { + "start": 16433.76, + "end": 16439.26, + "probability": 0.7838 + }, + { + "start": 16439.36, + "end": 16440.02, + "probability": 0.5058 + }, + { + "start": 16440.18, + "end": 16440.96, + "probability": 0.7333 + }, + { + "start": 16441.02, + "end": 16441.72, + "probability": 0.5925 + }, + { + "start": 16442.16, + "end": 16443.34, + "probability": 0.9862 + }, + { + "start": 16444.6, + "end": 16447.08, + "probability": 0.9775 + }, + { + "start": 16447.18, + "end": 16448.21, + "probability": 0.9641 + }, + { + "start": 16449.6, + "end": 16450.54, + "probability": 0.9813 + }, + { + "start": 16450.62, + "end": 16451.04, + "probability": 0.974 + }, + { + "start": 16451.08, + "end": 16451.8, + "probability": 0.948 + }, + { + "start": 16452.04, + "end": 16452.52, + "probability": 0.7697 + }, + { + "start": 16452.84, + "end": 16453.6, + "probability": 0.834 + }, + { + "start": 16454.16, + "end": 16455.78, + "probability": 0.9512 + }, + { + "start": 16456.7, + "end": 16460.34, + "probability": 0.9501 + }, + { + "start": 16460.96, + "end": 16462.24, + "probability": 0.9885 + }, + { + "start": 16462.42, + "end": 16465.55, + "probability": 0.9609 + }, + { + "start": 16465.78, + "end": 16466.34, + "probability": 0.8981 + }, + { + "start": 16466.36, + "end": 16466.92, + "probability": 0.9768 + }, + { + "start": 16468.12, + "end": 16469.56, + "probability": 0.9921 + }, + { + "start": 16470.72, + "end": 16473.32, + "probability": 0.9877 + }, + { + "start": 16473.7, + "end": 16475.1, + "probability": 0.9153 + }, + { + "start": 16475.62, + "end": 16475.84, + "probability": 0.3545 + }, + { + "start": 16475.86, + "end": 16476.56, + "probability": 0.7824 + }, + { + "start": 16477.0, + "end": 16477.66, + "probability": 0.8988 + }, + { + "start": 16477.72, + "end": 16478.62, + "probability": 0.6237 + }, + { + "start": 16478.68, + "end": 16479.74, + "probability": 0.9695 + }, + { + "start": 16479.8, + "end": 16480.56, + "probability": 0.9267 + }, + { + "start": 16480.8, + "end": 16483.02, + "probability": 0.8662 + }, + { + "start": 16483.12, + "end": 16484.72, + "probability": 0.938 + }, + { + "start": 16485.88, + "end": 16486.72, + "probability": 0.8695 + }, + { + "start": 16487.36, + "end": 16488.3, + "probability": 0.7288 + }, + { + "start": 16489.88, + "end": 16493.26, + "probability": 0.9038 + }, + { + "start": 16494.03, + "end": 16495.46, + "probability": 0.6425 + }, + { + "start": 16495.98, + "end": 16496.48, + "probability": 0.6893 + }, + { + "start": 16497.38, + "end": 16500.72, + "probability": 0.9772 + }, + { + "start": 16501.02, + "end": 16501.68, + "probability": 0.9516 + }, + { + "start": 16501.88, + "end": 16502.68, + "probability": 0.8247 + }, + { + "start": 16502.74, + "end": 16505.1, + "probability": 0.9739 + }, + { + "start": 16505.2, + "end": 16505.56, + "probability": 0.9673 + }, + { + "start": 16506.52, + "end": 16508.81, + "probability": 0.9015 + }, + { + "start": 16509.44, + "end": 16511.12, + "probability": 0.9502 + }, + { + "start": 16511.52, + "end": 16514.22, + "probability": 0.7964 + }, + { + "start": 16536.2, + "end": 16537.18, + "probability": 0.1623 + }, + { + "start": 16537.26, + "end": 16538.68, + "probability": 0.8587 + }, + { + "start": 16539.41, + "end": 16541.08, + "probability": 0.9166 + }, + { + "start": 16541.22, + "end": 16543.08, + "probability": 0.6775 + }, + { + "start": 16543.1, + "end": 16547.58, + "probability": 0.9682 + }, + { + "start": 16547.98, + "end": 16551.16, + "probability": 0.7172 + }, + { + "start": 16551.22, + "end": 16552.1, + "probability": 0.9468 + }, + { + "start": 16552.16, + "end": 16555.04, + "probability": 0.8995 + }, + { + "start": 16556.02, + "end": 16560.13, + "probability": 0.9729 + }, + { + "start": 16560.86, + "end": 16564.54, + "probability": 0.8522 + }, + { + "start": 16565.24, + "end": 16568.14, + "probability": 0.8698 + }, + { + "start": 16568.92, + "end": 16570.52, + "probability": 0.7753 + }, + { + "start": 16572.08, + "end": 16574.06, + "probability": 0.9117 + }, + { + "start": 16575.28, + "end": 16577.13, + "probability": 0.8196 + }, + { + "start": 16579.42, + "end": 16579.76, + "probability": 0.939 + }, + { + "start": 16579.86, + "end": 16580.74, + "probability": 0.922 + }, + { + "start": 16581.02, + "end": 16581.53, + "probability": 0.9186 + }, + { + "start": 16581.82, + "end": 16583.5, + "probability": 0.9836 + }, + { + "start": 16584.1, + "end": 16589.3, + "probability": 0.8615 + }, + { + "start": 16592.52, + "end": 16593.3, + "probability": 0.6246 + }, + { + "start": 16593.32, + "end": 16594.18, + "probability": 0.9377 + }, + { + "start": 16594.36, + "end": 16602.74, + "probability": 0.799 + }, + { + "start": 16604.14, + "end": 16605.58, + "probability": 0.9323 + }, + { + "start": 16606.3, + "end": 16608.32, + "probability": 0.9945 + }, + { + "start": 16609.18, + "end": 16614.54, + "probability": 0.9966 + }, + { + "start": 16615.3, + "end": 16616.0, + "probability": 0.7236 + }, + { + "start": 16616.02, + "end": 16617.22, + "probability": 0.3644 + }, + { + "start": 16617.24, + "end": 16621.9, + "probability": 0.9893 + }, + { + "start": 16622.64, + "end": 16624.11, + "probability": 0.9345 + }, + { + "start": 16624.84, + "end": 16626.1, + "probability": 0.95 + }, + { + "start": 16627.4, + "end": 16630.04, + "probability": 0.9963 + }, + { + "start": 16630.04, + "end": 16633.76, + "probability": 0.9622 + }, + { + "start": 16635.6, + "end": 16636.68, + "probability": 0.9126 + }, + { + "start": 16636.82, + "end": 16637.66, + "probability": 0.95 + }, + { + "start": 16637.74, + "end": 16641.42, + "probability": 0.9634 + }, + { + "start": 16641.5, + "end": 16643.04, + "probability": 0.9683 + }, + { + "start": 16643.5, + "end": 16644.54, + "probability": 0.4979 + }, + { + "start": 16644.76, + "end": 16645.12, + "probability": 0.7698 + }, + { + "start": 16645.2, + "end": 16645.94, + "probability": 0.7275 + }, + { + "start": 16646.82, + "end": 16647.47, + "probability": 0.7954 + }, + { + "start": 16648.74, + "end": 16651.3, + "probability": 0.9492 + }, + { + "start": 16651.5, + "end": 16653.34, + "probability": 0.9786 + }, + { + "start": 16653.56, + "end": 16654.9, + "probability": 0.9689 + }, + { + "start": 16655.06, + "end": 16655.32, + "probability": 0.3022 + }, + { + "start": 16655.4, + "end": 16656.46, + "probability": 0.8608 + }, + { + "start": 16657.5, + "end": 16663.76, + "probability": 0.996 + }, + { + "start": 16664.44, + "end": 16665.48, + "probability": 0.5368 + }, + { + "start": 16666.1, + "end": 16667.24, + "probability": 0.8923 + }, + { + "start": 16667.36, + "end": 16672.98, + "probability": 0.9855 + }, + { + "start": 16674.76, + "end": 16676.96, + "probability": 0.9939 + }, + { + "start": 16677.92, + "end": 16679.6, + "probability": 0.9673 + }, + { + "start": 16680.48, + "end": 16683.72, + "probability": 0.9863 + }, + { + "start": 16683.82, + "end": 16685.76, + "probability": 0.9956 + }, + { + "start": 16687.84, + "end": 16689.36, + "probability": 0.9661 + }, + { + "start": 16689.6, + "end": 16690.52, + "probability": 0.9683 + }, + { + "start": 16690.8, + "end": 16691.7, + "probability": 0.943 + }, + { + "start": 16691.74, + "end": 16693.34, + "probability": 0.9451 + }, + { + "start": 16694.0, + "end": 16696.44, + "probability": 0.9938 + }, + { + "start": 16696.88, + "end": 16703.04, + "probability": 0.9897 + }, + { + "start": 16703.66, + "end": 16705.22, + "probability": 0.8576 + }, + { + "start": 16707.58, + "end": 16710.74, + "probability": 0.9858 + }, + { + "start": 16711.12, + "end": 16711.8, + "probability": 0.4816 + }, + { + "start": 16711.9, + "end": 16714.31, + "probability": 0.9438 + }, + { + "start": 16714.86, + "end": 16716.74, + "probability": 0.8599 + }, + { + "start": 16716.84, + "end": 16717.26, + "probability": 0.7751 + }, + { + "start": 16717.26, + "end": 16717.8, + "probability": 0.6926 + }, + { + "start": 16720.14, + "end": 16722.38, + "probability": 0.9137 + }, + { + "start": 16724.68, + "end": 16729.06, + "probability": 0.9297 + }, + { + "start": 16729.22, + "end": 16730.68, + "probability": 0.8465 + }, + { + "start": 16730.8, + "end": 16731.04, + "probability": 0.4143 + }, + { + "start": 16731.14, + "end": 16732.1, + "probability": 0.5722 + }, + { + "start": 16733.36, + "end": 16735.44, + "probability": 0.86 + }, + { + "start": 16735.66, + "end": 16737.66, + "probability": 0.9406 + }, + { + "start": 16737.78, + "end": 16738.78, + "probability": 0.9657 + }, + { + "start": 16739.04, + "end": 16741.04, + "probability": 0.8254 + }, + { + "start": 16741.16, + "end": 16742.52, + "probability": 0.9441 + }, + { + "start": 16742.78, + "end": 16744.9, + "probability": 0.9779 + }, + { + "start": 16745.06, + "end": 16745.92, + "probability": 0.9867 + }, + { + "start": 16746.66, + "end": 16748.64, + "probability": 0.6324 + }, + { + "start": 16749.5, + "end": 16753.74, + "probability": 0.9797 + }, + { + "start": 16754.06, + "end": 16756.46, + "probability": 0.9058 + }, + { + "start": 16757.2, + "end": 16759.6, + "probability": 0.9866 + }, + { + "start": 16760.24, + "end": 16761.88, + "probability": 0.9844 + }, + { + "start": 16762.72, + "end": 16763.8, + "probability": 0.8284 + }, + { + "start": 16764.04, + "end": 16765.12, + "probability": 0.9766 + }, + { + "start": 16766.08, + "end": 16767.12, + "probability": 0.9357 + }, + { + "start": 16768.06, + "end": 16770.86, + "probability": 0.9456 + }, + { + "start": 16771.48, + "end": 16774.42, + "probability": 0.937 + }, + { + "start": 16774.74, + "end": 16775.7, + "probability": 0.407 + }, + { + "start": 16775.74, + "end": 16776.54, + "probability": 0.9055 + }, + { + "start": 16776.98, + "end": 16778.18, + "probability": 0.8539 + }, + { + "start": 16778.42, + "end": 16780.02, + "probability": 0.664 + }, + { + "start": 16780.3, + "end": 16781.86, + "probability": 0.7701 + }, + { + "start": 16781.9, + "end": 16782.48, + "probability": 0.6186 + }, + { + "start": 16782.7, + "end": 16784.11, + "probability": 0.9491 + }, + { + "start": 16786.92, + "end": 16787.08, + "probability": 0.7991 + }, + { + "start": 16787.1, + "end": 16789.96, + "probability": 0.986 + }, + { + "start": 16791.08, + "end": 16792.37, + "probability": 0.9893 + }, + { + "start": 16792.48, + "end": 16793.22, + "probability": 0.8805 + }, + { + "start": 16793.36, + "end": 16793.88, + "probability": 0.8461 + }, + { + "start": 16794.24, + "end": 16795.94, + "probability": 0.9836 + }, + { + "start": 16796.6, + "end": 16798.96, + "probability": 0.9759 + }, + { + "start": 16799.16, + "end": 16799.7, + "probability": 0.6529 + }, + { + "start": 16799.76, + "end": 16800.94, + "probability": 0.9221 + }, + { + "start": 16801.1, + "end": 16802.68, + "probability": 0.9768 + }, + { + "start": 16802.94, + "end": 16803.98, + "probability": 0.6229 + }, + { + "start": 16804.26, + "end": 16805.16, + "probability": 0.9648 + }, + { + "start": 16805.2, + "end": 16805.9, + "probability": 0.8232 + }, + { + "start": 16805.98, + "end": 16807.28, + "probability": 0.9941 + }, + { + "start": 16810.1, + "end": 16814.0, + "probability": 0.9836 + }, + { + "start": 16814.1, + "end": 16815.3, + "probability": 0.9714 + }, + { + "start": 16816.2, + "end": 16817.56, + "probability": 0.9944 + }, + { + "start": 16817.6, + "end": 16823.0, + "probability": 0.9775 + }, + { + "start": 16823.7, + "end": 16829.7, + "probability": 0.9957 + }, + { + "start": 16829.7, + "end": 16835.33, + "probability": 0.9327 + }, + { + "start": 16836.28, + "end": 16842.14, + "probability": 0.9843 + }, + { + "start": 16843.32, + "end": 16844.7, + "probability": 0.8493 + }, + { + "start": 16845.3, + "end": 16846.6, + "probability": 0.9195 + }, + { + "start": 16846.74, + "end": 16847.7, + "probability": 0.8818 + }, + { + "start": 16848.1, + "end": 16849.5, + "probability": 0.8978 + }, + { + "start": 16849.74, + "end": 16851.77, + "probability": 0.7451 + }, + { + "start": 16855.0, + "end": 16858.04, + "probability": 0.927 + }, + { + "start": 16859.16, + "end": 16860.46, + "probability": 0.8844 + }, + { + "start": 16861.88, + "end": 16864.34, + "probability": 0.9846 + }, + { + "start": 16864.78, + "end": 16865.8, + "probability": 0.9853 + }, + { + "start": 16865.9, + "end": 16867.14, + "probability": 0.9865 + }, + { + "start": 16867.16, + "end": 16868.48, + "probability": 0.9562 + }, + { + "start": 16868.5, + "end": 16869.74, + "probability": 0.5365 + }, + { + "start": 16870.12, + "end": 16872.96, + "probability": 0.9893 + }, + { + "start": 16873.64, + "end": 16874.02, + "probability": 0.6531 + }, + { + "start": 16874.12, + "end": 16875.35, + "probability": 0.9939 + }, + { + "start": 16876.0, + "end": 16877.67, + "probability": 0.847 + }, + { + "start": 16877.94, + "end": 16878.94, + "probability": 0.9632 + }, + { + "start": 16879.34, + "end": 16882.1, + "probability": 0.9844 + }, + { + "start": 16883.54, + "end": 16885.62, + "probability": 0.9404 + }, + { + "start": 16886.0, + "end": 16886.51, + "probability": 0.9629 + }, + { + "start": 16887.0, + "end": 16888.04, + "probability": 0.7607 + }, + { + "start": 16888.16, + "end": 16888.9, + "probability": 0.8473 + }, + { + "start": 16889.0, + "end": 16890.04, + "probability": 0.986 + }, + { + "start": 16890.14, + "end": 16891.53, + "probability": 0.7354 + }, + { + "start": 16891.94, + "end": 16892.72, + "probability": 0.5508 + }, + { + "start": 16892.76, + "end": 16894.14, + "probability": 0.8214 + }, + { + "start": 16894.22, + "end": 16895.32, + "probability": 0.6739 + }, + { + "start": 16896.0, + "end": 16897.43, + "probability": 0.1936 + }, + { + "start": 16898.36, + "end": 16899.24, + "probability": 0.2607 + }, + { + "start": 16900.46, + "end": 16902.21, + "probability": 0.8513 + }, + { + "start": 16902.76, + "end": 16905.02, + "probability": 0.957 + }, + { + "start": 16905.18, + "end": 16906.16, + "probability": 0.5216 + }, + { + "start": 16906.46, + "end": 16908.26, + "probability": 0.4825 + }, + { + "start": 16908.4, + "end": 16909.92, + "probability": 0.7525 + }, + { + "start": 16910.18, + "end": 16912.96, + "probability": 0.7803 + }, + { + "start": 16913.3, + "end": 16914.04, + "probability": 0.8433 + }, + { + "start": 16914.08, + "end": 16915.4, + "probability": 0.6322 + }, + { + "start": 16915.82, + "end": 16916.1, + "probability": 0.3277 + }, + { + "start": 16916.18, + "end": 16917.22, + "probability": 0.9719 + }, + { + "start": 16917.5, + "end": 16918.29, + "probability": 0.5176 + }, + { + "start": 16919.02, + "end": 16920.54, + "probability": 0.7848 + }, + { + "start": 16920.56, + "end": 16921.14, + "probability": 0.7646 + }, + { + "start": 16921.18, + "end": 16921.81, + "probability": 0.6571 + }, + { + "start": 16922.58, + "end": 16923.61, + "probability": 0.7271 + }, + { + "start": 16924.82, + "end": 16926.58, + "probability": 0.8824 + }, + { + "start": 16926.72, + "end": 16928.74, + "probability": 0.9829 + }, + { + "start": 16928.84, + "end": 16930.16, + "probability": 0.7502 + }, + { + "start": 16930.5, + "end": 16931.98, + "probability": 0.7587 + }, + { + "start": 16932.06, + "end": 16933.18, + "probability": 0.9692 + }, + { + "start": 16933.26, + "end": 16934.33, + "probability": 0.7684 + }, + { + "start": 16934.9, + "end": 16935.94, + "probability": 0.491 + }, + { + "start": 16936.0, + "end": 16936.54, + "probability": 0.9557 + }, + { + "start": 16936.62, + "end": 16937.36, + "probability": 0.4815 + }, + { + "start": 16937.52, + "end": 16938.32, + "probability": 0.5344 + }, + { + "start": 16940.02, + "end": 16940.46, + "probability": 0.7207 + }, + { + "start": 16940.6, + "end": 16945.68, + "probability": 0.7852 + }, + { + "start": 16946.2, + "end": 16947.22, + "probability": 0.5223 + }, + { + "start": 16948.58, + "end": 16949.34, + "probability": 0.8086 + }, + { + "start": 16951.5, + "end": 16953.54, + "probability": 0.7783 + }, + { + "start": 16954.62, + "end": 16956.42, + "probability": 0.9012 + }, + { + "start": 16956.54, + "end": 16959.2, + "probability": 0.9602 + }, + { + "start": 16961.41, + "end": 16961.96, + "probability": 0.5171 + }, + { + "start": 16961.96, + "end": 16962.82, + "probability": 0.9688 + }, + { + "start": 16965.14, + "end": 16966.43, + "probability": 0.9976 + }, + { + "start": 16969.32, + "end": 16971.16, + "probability": 0.9686 + }, + { + "start": 16971.32, + "end": 16973.41, + "probability": 0.9173 + }, + { + "start": 16974.92, + "end": 16977.42, + "probability": 0.9961 + }, + { + "start": 16978.36, + "end": 16979.13, + "probability": 0.9291 + }, + { + "start": 16982.66, + "end": 16982.74, + "probability": 0.4575 + }, + { + "start": 16982.86, + "end": 16987.1, + "probability": 0.9282 + }, + { + "start": 16987.26, + "end": 16987.74, + "probability": 0.3727 + }, + { + "start": 16989.1, + "end": 16989.52, + "probability": 0.5842 + }, + { + "start": 16989.8, + "end": 16992.68, + "probability": 0.9314 + }, + { + "start": 16992.8, + "end": 16993.56, + "probability": 0.9814 + }, + { + "start": 16993.94, + "end": 16995.48, + "probability": 0.9827 + }, + { + "start": 16995.94, + "end": 16997.43, + "probability": 0.8633 + }, + { + "start": 16997.66, + "end": 16998.4, + "probability": 0.6972 + }, + { + "start": 16999.53, + "end": 17002.42, + "probability": 0.7131 + }, + { + "start": 17002.88, + "end": 17003.96, + "probability": 0.9126 + }, + { + "start": 17006.12, + "end": 17007.74, + "probability": 0.5028 + }, + { + "start": 17009.0, + "end": 17009.16, + "probability": 0.7115 + }, + { + "start": 17009.3, + "end": 17009.72, + "probability": 0.9326 + }, + { + "start": 17009.9, + "end": 17011.08, + "probability": 0.4916 + }, + { + "start": 17011.36, + "end": 17012.54, + "probability": 0.9707 + }, + { + "start": 17014.92, + "end": 17016.04, + "probability": 0.9006 + }, + { + "start": 17016.22, + "end": 17019.84, + "probability": 0.8621 + }, + { + "start": 17019.98, + "end": 17020.74, + "probability": 0.9615 + }, + { + "start": 17021.46, + "end": 17024.7, + "probability": 0.8805 + }, + { + "start": 17025.76, + "end": 17031.28, + "probability": 0.9582 + }, + { + "start": 17032.52, + "end": 17035.56, + "probability": 0.6721 + }, + { + "start": 17035.94, + "end": 17036.6, + "probability": 0.6275 + }, + { + "start": 17037.78, + "end": 17042.94, + "probability": 0.9572 + }, + { + "start": 17043.34, + "end": 17046.5, + "probability": 0.9669 + }, + { + "start": 17046.78, + "end": 17047.22, + "probability": 0.5657 + }, + { + "start": 17047.34, + "end": 17048.04, + "probability": 0.6736 + }, + { + "start": 17048.98, + "end": 17050.68, + "probability": 0.8111 + }, + { + "start": 17051.42, + "end": 17055.94, + "probability": 0.9956 + }, + { + "start": 17055.94, + "end": 17062.3, + "probability": 0.9914 + }, + { + "start": 17062.5, + "end": 17064.28, + "probability": 0.9067 + }, + { + "start": 17064.68, + "end": 17067.26, + "probability": 0.4999 + }, + { + "start": 17067.72, + "end": 17068.4, + "probability": 0.5927 + }, + { + "start": 17068.46, + "end": 17070.36, + "probability": 0.9105 + }, + { + "start": 17070.74, + "end": 17071.06, + "probability": 0.5493 + }, + { + "start": 17071.38, + "end": 17072.56, + "probability": 0.9431 + }, + { + "start": 17072.94, + "end": 17077.46, + "probability": 0.9867 + }, + { + "start": 17078.04, + "end": 17081.18, + "probability": 0.886 + }, + { + "start": 17081.24, + "end": 17082.14, + "probability": 0.6997 + }, + { + "start": 17082.52, + "end": 17084.86, + "probability": 0.8219 + }, + { + "start": 17085.66, + "end": 17087.7, + "probability": 0.9473 + }, + { + "start": 17089.2, + "end": 17089.92, + "probability": 0.9474 + }, + { + "start": 17090.02, + "end": 17091.88, + "probability": 0.744 + }, + { + "start": 17092.52, + "end": 17093.6, + "probability": 0.224 + }, + { + "start": 17094.24, + "end": 17095.9, + "probability": 0.917 + }, + { + "start": 17096.02, + "end": 17097.68, + "probability": 0.8338 + }, + { + "start": 17097.94, + "end": 17100.48, + "probability": 0.9658 + }, + { + "start": 17101.18, + "end": 17102.22, + "probability": 0.9937 + }, + { + "start": 17102.38, + "end": 17103.32, + "probability": 0.8169 + }, + { + "start": 17103.56, + "end": 17106.74, + "probability": 0.9795 + }, + { + "start": 17106.82, + "end": 17107.42, + "probability": 0.8932 + }, + { + "start": 17107.9, + "end": 17109.14, + "probability": 0.9499 + }, + { + "start": 17109.34, + "end": 17110.57, + "probability": 0.9043 + }, + { + "start": 17110.84, + "end": 17111.88, + "probability": 0.7212 + }, + { + "start": 17113.2, + "end": 17116.62, + "probability": 0.9551 + }, + { + "start": 17120.12, + "end": 17121.38, + "probability": 0.9804 + }, + { + "start": 17121.54, + "end": 17123.48, + "probability": 0.7832 + }, + { + "start": 17125.3, + "end": 17128.56, + "probability": 0.9171 + }, + { + "start": 17130.24, + "end": 17132.6, + "probability": 0.9637 + }, + { + "start": 17132.62, + "end": 17135.0, + "probability": 0.9209 + }, + { + "start": 17137.75, + "end": 17139.14, + "probability": 0.5647 + }, + { + "start": 17139.2, + "end": 17142.6, + "probability": 0.9395 + }, + { + "start": 17142.72, + "end": 17144.04, + "probability": 0.9764 + }, + { + "start": 17146.72, + "end": 17152.36, + "probability": 0.9934 + }, + { + "start": 17153.18, + "end": 17154.82, + "probability": 0.9949 + }, + { + "start": 17154.94, + "end": 17155.22, + "probability": 0.7354 + }, + { + "start": 17155.3, + "end": 17157.66, + "probability": 0.6375 + }, + { + "start": 17157.7, + "end": 17158.92, + "probability": 0.5678 + }, + { + "start": 17159.1, + "end": 17161.76, + "probability": 0.8939 + }, + { + "start": 17162.38, + "end": 17164.54, + "probability": 0.9625 + }, + { + "start": 17164.82, + "end": 17166.48, + "probability": 0.9669 + }, + { + "start": 17169.94, + "end": 17171.4, + "probability": 0.0962 + }, + { + "start": 17171.4, + "end": 17171.5, + "probability": 0.2958 + }, + { + "start": 17171.5, + "end": 17173.76, + "probability": 0.564 + }, + { + "start": 17174.08, + "end": 17175.14, + "probability": 0.7475 + }, + { + "start": 17175.24, + "end": 17175.76, + "probability": 0.7699 + }, + { + "start": 17175.94, + "end": 17176.86, + "probability": 0.5349 + }, + { + "start": 17177.26, + "end": 17178.65, + "probability": 0.8989 + }, + { + "start": 17178.84, + "end": 17179.96, + "probability": 0.9365 + }, + { + "start": 17180.6, + "end": 17183.92, + "probability": 0.8608 + }, + { + "start": 17184.52, + "end": 17185.52, + "probability": 0.8025 + }, + { + "start": 17185.68, + "end": 17187.3, + "probability": 0.9936 + }, + { + "start": 17188.06, + "end": 17188.34, + "probability": 0.8018 + }, + { + "start": 17188.96, + "end": 17190.1, + "probability": 0.7204 + }, + { + "start": 17190.44, + "end": 17192.28, + "probability": 0.9482 + }, + { + "start": 17205.36, + "end": 17205.46, + "probability": 0.389 + }, + { + "start": 17205.46, + "end": 17207.01, + "probability": 0.1977 + }, + { + "start": 17207.16, + "end": 17208.94, + "probability": 0.6692 + }, + { + "start": 17209.12, + "end": 17209.88, + "probability": 0.8343 + }, + { + "start": 17210.1, + "end": 17210.96, + "probability": 0.7475 + }, + { + "start": 17211.02, + "end": 17211.8, + "probability": 0.8878 + }, + { + "start": 17211.88, + "end": 17213.88, + "probability": 0.3709 + }, + { + "start": 17213.88, + "end": 17216.26, + "probability": 0.6163 + }, + { + "start": 17216.34, + "end": 17218.38, + "probability": 0.9281 + }, + { + "start": 17218.82, + "end": 17220.86, + "probability": 0.298 + }, + { + "start": 17220.98, + "end": 17222.1, + "probability": 0.0288 + }, + { + "start": 17222.2, + "end": 17223.36, + "probability": 0.5283 + }, + { + "start": 17223.42, + "end": 17225.36, + "probability": 0.819 + }, + { + "start": 17227.38, + "end": 17230.84, + "probability": 0.9344 + }, + { + "start": 17232.12, + "end": 17233.88, + "probability": 0.9978 + }, + { + "start": 17234.62, + "end": 17239.18, + "probability": 0.9937 + }, + { + "start": 17239.2, + "end": 17240.59, + "probability": 0.0401 + }, + { + "start": 17240.86, + "end": 17243.0, + "probability": 0.3713 + }, + { + "start": 17243.16, + "end": 17245.24, + "probability": 0.6654 + }, + { + "start": 17245.28, + "end": 17248.54, + "probability": 0.8379 + }, + { + "start": 17248.56, + "end": 17250.9, + "probability": 0.1877 + }, + { + "start": 17251.39, + "end": 17252.72, + "probability": 0.4438 + }, + { + "start": 17252.72, + "end": 17252.72, + "probability": 0.0366 + }, + { + "start": 17252.72, + "end": 17253.68, + "probability": 0.0172 + }, + { + "start": 17253.94, + "end": 17254.76, + "probability": 0.5664 + }, + { + "start": 17255.58, + "end": 17260.52, + "probability": 0.991 + }, + { + "start": 17260.76, + "end": 17263.5, + "probability": 0.8294 + }, + { + "start": 17264.32, + "end": 17267.38, + "probability": 0.9119 + }, + { + "start": 17267.96, + "end": 17268.78, + "probability": 0.8464 + }, + { + "start": 17269.02, + "end": 17269.28, + "probability": 0.567 + }, + { + "start": 17269.34, + "end": 17270.89, + "probability": 0.8765 + }, + { + "start": 17270.98, + "end": 17272.67, + "probability": 0.9231 + }, + { + "start": 17273.19, + "end": 17273.4, + "probability": 0.061 + }, + { + "start": 17273.42, + "end": 17274.61, + "probability": 0.5161 + }, + { + "start": 17274.66, + "end": 17275.8, + "probability": 0.631 + }, + { + "start": 17277.86, + "end": 17284.38, + "probability": 0.9741 + }, + { + "start": 17287.12, + "end": 17288.03, + "probability": 0.3488 + }, + { + "start": 17288.6, + "end": 17291.13, + "probability": 0.7602 + }, + { + "start": 17292.2, + "end": 17296.14, + "probability": 0.9995 + }, + { + "start": 17296.32, + "end": 17296.7, + "probability": 0.4257 + }, + { + "start": 17297.36, + "end": 17298.18, + "probability": 0.7056 + }, + { + "start": 17298.36, + "end": 17301.04, + "probability": 0.9867 + }, + { + "start": 17301.06, + "end": 17302.4, + "probability": 0.6312 + }, + { + "start": 17302.58, + "end": 17305.12, + "probability": 0.3518 + }, + { + "start": 17305.8, + "end": 17305.8, + "probability": 0.4762 + }, + { + "start": 17305.8, + "end": 17305.8, + "probability": 0.1681 + }, + { + "start": 17305.8, + "end": 17308.34, + "probability": 0.9087 + }, + { + "start": 17308.48, + "end": 17309.02, + "probability": 0.8676 + }, + { + "start": 17309.12, + "end": 17309.56, + "probability": 0.9042 + }, + { + "start": 17310.26, + "end": 17313.08, + "probability": 0.897 + }, + { + "start": 17313.16, + "end": 17314.54, + "probability": 0.7301 + }, + { + "start": 17315.43, + "end": 17316.78, + "probability": 0.9805 + }, + { + "start": 17316.78, + "end": 17317.42, + "probability": 0.663 + }, + { + "start": 17317.62, + "end": 17319.28, + "probability": 0.5783 + }, + { + "start": 17319.72, + "end": 17320.18, + "probability": 0.4828 + }, + { + "start": 17320.18, + "end": 17321.5, + "probability": 0.6596 + }, + { + "start": 17321.54, + "end": 17324.2, + "probability": 0.819 + }, + { + "start": 17324.34, + "end": 17327.44, + "probability": 0.9811 + }, + { + "start": 17327.52, + "end": 17329.8, + "probability": 0.8578 + }, + { + "start": 17330.02, + "end": 17331.86, + "probability": 0.1753 + }, + { + "start": 17331.96, + "end": 17333.8, + "probability": 0.7138 + }, + { + "start": 17334.0, + "end": 17335.68, + "probability": 0.9797 + }, + { + "start": 17335.74, + "end": 17339.72, + "probability": 0.3231 + }, + { + "start": 17339.72, + "end": 17341.38, + "probability": 0.402 + }, + { + "start": 17341.94, + "end": 17344.6, + "probability": 0.9915 + }, + { + "start": 17345.04, + "end": 17345.86, + "probability": 0.8892 + }, + { + "start": 17345.94, + "end": 17347.62, + "probability": 0.9918 + }, + { + "start": 17347.9, + "end": 17354.92, + "probability": 0.9878 + }, + { + "start": 17355.34, + "end": 17355.78, + "probability": 0.015 + }, + { + "start": 17355.78, + "end": 17355.78, + "probability": 0.5007 + }, + { + "start": 17355.78, + "end": 17359.58, + "probability": 0.9575 + }, + { + "start": 17359.58, + "end": 17363.94, + "probability": 0.9775 + }, + { + "start": 17364.86, + "end": 17366.12, + "probability": 0.7449 + }, + { + "start": 17366.2, + "end": 17368.68, + "probability": 0.9989 + }, + { + "start": 17369.0, + "end": 17372.54, + "probability": 0.9271 + }, + { + "start": 17372.66, + "end": 17375.92, + "probability": 0.8513 + }, + { + "start": 17376.68, + "end": 17377.48, + "probability": 0.3186 + }, + { + "start": 17379.24, + "end": 17381.1, + "probability": 0.5211 + }, + { + "start": 17381.2, + "end": 17381.54, + "probability": 0.688 + }, + { + "start": 17382.08, + "end": 17383.13, + "probability": 0.8817 + }, + { + "start": 17383.8, + "end": 17383.84, + "probability": 0.0304 + }, + { + "start": 17383.84, + "end": 17386.98, + "probability": 0.6389 + }, + { + "start": 17387.08, + "end": 17387.22, + "probability": 0.0184 + }, + { + "start": 17387.22, + "end": 17388.7, + "probability": 0.8167 + }, + { + "start": 17388.86, + "end": 17391.7, + "probability": 0.8947 + }, + { + "start": 17392.08, + "end": 17392.08, + "probability": 0.2815 + }, + { + "start": 17392.08, + "end": 17392.76, + "probability": 0.7659 + }, + { + "start": 17392.86, + "end": 17394.52, + "probability": 0.6569 + }, + { + "start": 17395.38, + "end": 17396.15, + "probability": 0.6683 + }, + { + "start": 17396.38, + "end": 17397.23, + "probability": 0.1984 + }, + { + "start": 17397.28, + "end": 17398.63, + "probability": 0.9822 + }, + { + "start": 17399.24, + "end": 17400.74, + "probability": 0.9404 + }, + { + "start": 17400.8, + "end": 17403.71, + "probability": 0.8267 + }, + { + "start": 17403.88, + "end": 17407.26, + "probability": 0.96 + }, + { + "start": 17407.46, + "end": 17409.58, + "probability": 0.9441 + }, + { + "start": 17410.86, + "end": 17412.16, + "probability": 0.1591 + }, + { + "start": 17412.22, + "end": 17413.58, + "probability": 0.7421 + }, + { + "start": 17413.72, + "end": 17414.74, + "probability": 0.5377 + }, + { + "start": 17414.74, + "end": 17416.26, + "probability": 0.3715 + }, + { + "start": 17416.7, + "end": 17416.78, + "probability": 0.207 + }, + { + "start": 17416.78, + "end": 17419.08, + "probability": 0.9365 + }, + { + "start": 17419.38, + "end": 17420.98, + "probability": 0.897 + }, + { + "start": 17421.18, + "end": 17422.32, + "probability": 0.678 + }, + { + "start": 17422.44, + "end": 17424.64, + "probability": 0.9817 + }, + { + "start": 17424.72, + "end": 17425.86, + "probability": 0.8348 + }, + { + "start": 17426.1, + "end": 17427.1, + "probability": 0.9563 + }, + { + "start": 17427.44, + "end": 17429.56, + "probability": 0.9929 + }, + { + "start": 17429.88, + "end": 17432.06, + "probability": 0.9518 + }, + { + "start": 17432.06, + "end": 17434.56, + "probability": 0.9188 + }, + { + "start": 17435.02, + "end": 17435.65, + "probability": 0.7856 + }, + { + "start": 17436.28, + "end": 17437.74, + "probability": 0.5661 + }, + { + "start": 17438.18, + "end": 17439.72, + "probability": 0.8193 + }, + { + "start": 17439.8, + "end": 17440.43, + "probability": 0.9707 + }, + { + "start": 17440.7, + "end": 17442.62, + "probability": 0.9721 + }, + { + "start": 17443.06, + "end": 17446.52, + "probability": 0.9828 + }, + { + "start": 17447.1, + "end": 17451.12, + "probability": 0.8375 + }, + { + "start": 17451.3, + "end": 17451.94, + "probability": 0.8512 + }, + { + "start": 17451.98, + "end": 17456.46, + "probability": 0.9846 + }, + { + "start": 17457.38, + "end": 17464.0, + "probability": 0.9353 + }, + { + "start": 17464.06, + "end": 17465.3, + "probability": 0.5829 + }, + { + "start": 17465.34, + "end": 17468.32, + "probability": 0.3357 + }, + { + "start": 17469.34, + "end": 17471.42, + "probability": 0.802 + }, + { + "start": 17471.52, + "end": 17471.92, + "probability": 0.2937 + }, + { + "start": 17471.92, + "end": 17477.44, + "probability": 0.889 + }, + { + "start": 17477.48, + "end": 17479.8, + "probability": 0.9871 + }, + { + "start": 17480.34, + "end": 17485.38, + "probability": 0.9911 + }, + { + "start": 17485.44, + "end": 17487.82, + "probability": 0.7994 + }, + { + "start": 17487.82, + "end": 17488.8, + "probability": 0.9537 + }, + { + "start": 17489.18, + "end": 17492.42, + "probability": 0.9825 + }, + { + "start": 17492.42, + "end": 17495.34, + "probability": 0.9993 + }, + { + "start": 17495.62, + "end": 17497.0, + "probability": 0.0757 + }, + { + "start": 17497.6, + "end": 17499.79, + "probability": 0.4534 + }, + { + "start": 17500.22, + "end": 17500.78, + "probability": 0.1405 + }, + { + "start": 17501.42, + "end": 17503.24, + "probability": 0.3397 + }, + { + "start": 17503.32, + "end": 17503.44, + "probability": 0.0879 + }, + { + "start": 17503.44, + "end": 17505.3, + "probability": 0.1262 + }, + { + "start": 17505.68, + "end": 17506.52, + "probability": 0.1275 + }, + { + "start": 17506.78, + "end": 17507.98, + "probability": 0.077 + }, + { + "start": 17509.26, + "end": 17512.08, + "probability": 0.139 + }, + { + "start": 17512.14, + "end": 17512.8, + "probability": 0.5753 + }, + { + "start": 17513.97, + "end": 17518.11, + "probability": 0.9696 + }, + { + "start": 17520.5, + "end": 17520.72, + "probability": 0.0429 + }, + { + "start": 17520.72, + "end": 17521.94, + "probability": 0.4027 + }, + { + "start": 17522.04, + "end": 17522.2, + "probability": 0.0895 + }, + { + "start": 17522.2, + "end": 17522.86, + "probability": 0.7909 + }, + { + "start": 17523.0, + "end": 17526.0, + "probability": 0.9709 + }, + { + "start": 17526.0, + "end": 17528.42, + "probability": 0.7461 + }, + { + "start": 17528.54, + "end": 17528.64, + "probability": 0.33 + }, + { + "start": 17528.68, + "end": 17529.32, + "probability": 0.7908 + }, + { + "start": 17529.44, + "end": 17531.8, + "probability": 0.7264 + }, + { + "start": 17531.96, + "end": 17534.98, + "probability": 0.9292 + }, + { + "start": 17535.4, + "end": 17536.74, + "probability": 0.0811 + }, + { + "start": 17536.76, + "end": 17537.8, + "probability": 0.8652 + }, + { + "start": 17538.38, + "end": 17541.44, + "probability": 0.7563 + }, + { + "start": 17541.72, + "end": 17545.58, + "probability": 0.5182 + }, + { + "start": 17545.72, + "end": 17549.76, + "probability": 0.9459 + }, + { + "start": 17549.84, + "end": 17551.2, + "probability": 0.8726 + }, + { + "start": 17551.62, + "end": 17552.24, + "probability": 0.9487 + }, + { + "start": 17552.42, + "end": 17557.52, + "probability": 0.9825 + }, + { + "start": 17557.52, + "end": 17561.08, + "probability": 0.9315 + }, + { + "start": 17561.12, + "end": 17563.62, + "probability": 0.6991 + }, + { + "start": 17564.76, + "end": 17568.62, + "probability": 0.8217 + }, + { + "start": 17568.84, + "end": 17569.24, + "probability": 0.7369 + }, + { + "start": 17569.38, + "end": 17570.74, + "probability": 0.7767 + }, + { + "start": 17570.78, + "end": 17571.2, + "probability": 0.6519 + }, + { + "start": 17571.4, + "end": 17572.62, + "probability": 0.7939 + }, + { + "start": 17572.62, + "end": 17573.97, + "probability": 0.9832 + }, + { + "start": 17574.7, + "end": 17577.64, + "probability": 0.9038 + }, + { + "start": 17577.64, + "end": 17580.2, + "probability": 0.6028 + }, + { + "start": 17580.36, + "end": 17580.6, + "probability": 0.613 + }, + { + "start": 17580.6, + "end": 17582.9, + "probability": 0.9639 + }, + { + "start": 17583.02, + "end": 17585.54, + "probability": 0.9272 + }, + { + "start": 17585.68, + "end": 17586.94, + "probability": 0.5445 + }, + { + "start": 17587.38, + "end": 17589.48, + "probability": 0.8241 + }, + { + "start": 17589.56, + "end": 17590.94, + "probability": 0.8367 + }, + { + "start": 17591.44, + "end": 17592.74, + "probability": 0.9169 + }, + { + "start": 17592.76, + "end": 17593.29, + "probability": 0.4821 + }, + { + "start": 17593.56, + "end": 17595.6, + "probability": 0.7505 + }, + { + "start": 17595.64, + "end": 17596.92, + "probability": 0.5146 + }, + { + "start": 17596.92, + "end": 17599.1, + "probability": 0.863 + }, + { + "start": 17599.4, + "end": 17600.36, + "probability": 0.6934 + }, + { + "start": 17600.4, + "end": 17604.8, + "probability": 0.9943 + }, + { + "start": 17605.44, + "end": 17607.26, + "probability": 0.9903 + }, + { + "start": 17607.38, + "end": 17608.5, + "probability": 0.6819 + }, + { + "start": 17608.6, + "end": 17610.12, + "probability": 0.9976 + }, + { + "start": 17610.26, + "end": 17612.28, + "probability": 0.9954 + }, + { + "start": 17612.66, + "end": 17614.06, + "probability": 0.8925 + }, + { + "start": 17615.14, + "end": 17618.86, + "probability": 0.8671 + }, + { + "start": 17619.74, + "end": 17624.84, + "probability": 0.9457 + }, + { + "start": 17625.44, + "end": 17626.16, + "probability": 0.9107 + }, + { + "start": 17626.18, + "end": 17628.94, + "probability": 0.8387 + }, + { + "start": 17629.12, + "end": 17634.38, + "probability": 0.9894 + }, + { + "start": 17634.42, + "end": 17635.08, + "probability": 0.5515 + }, + { + "start": 17635.76, + "end": 17637.06, + "probability": 0.0652 + }, + { + "start": 17637.06, + "end": 17639.66, + "probability": 0.6818 + }, + { + "start": 17640.0, + "end": 17643.14, + "probability": 0.3758 + }, + { + "start": 17643.2, + "end": 17648.58, + "probability": 0.1954 + }, + { + "start": 17648.68, + "end": 17649.58, + "probability": 0.8247 + }, + { + "start": 17649.9, + "end": 17651.7, + "probability": 0.7025 + }, + { + "start": 17652.18, + "end": 17654.06, + "probability": 0.7335 + }, + { + "start": 17655.22, + "end": 17660.62, + "probability": 0.5908 + }, + { + "start": 17661.06, + "end": 17663.24, + "probability": 0.9844 + }, + { + "start": 17663.38, + "end": 17665.88, + "probability": 0.9939 + }, + { + "start": 17666.08, + "end": 17670.38, + "probability": 0.8045 + }, + { + "start": 17670.82, + "end": 17675.76, + "probability": 0.9194 + }, + { + "start": 17675.8, + "end": 17676.92, + "probability": 0.9644 + }, + { + "start": 17677.1, + "end": 17678.34, + "probability": 0.9854 + }, + { + "start": 17678.62, + "end": 17680.49, + "probability": 0.9238 + }, + { + "start": 17681.0, + "end": 17682.83, + "probability": 0.9967 + }, + { + "start": 17683.14, + "end": 17686.44, + "probability": 0.7992 + }, + { + "start": 17687.08, + "end": 17690.1, + "probability": 0.9609 + }, + { + "start": 17690.14, + "end": 17691.08, + "probability": 0.8276 + }, + { + "start": 17692.02, + "end": 17695.7, + "probability": 0.8416 + }, + { + "start": 17696.62, + "end": 17697.78, + "probability": 0.9346 + }, + { + "start": 17698.08, + "end": 17702.1, + "probability": 0.9912 + }, + { + "start": 17702.12, + "end": 17702.82, + "probability": 0.9194 + }, + { + "start": 17702.96, + "end": 17704.04, + "probability": 0.8331 + }, + { + "start": 17704.22, + "end": 17709.64, + "probability": 0.8657 + }, + { + "start": 17710.16, + "end": 17713.64, + "probability": 0.8218 + }, + { + "start": 17713.8, + "end": 17714.82, + "probability": 0.4237 + }, + { + "start": 17714.84, + "end": 17716.5, + "probability": 0.3778 + }, + { + "start": 17717.02, + "end": 17717.26, + "probability": 0.0233 + }, + { + "start": 17717.26, + "end": 17717.26, + "probability": 0.1509 + }, + { + "start": 17717.26, + "end": 17720.88, + "probability": 0.7837 + }, + { + "start": 17721.6, + "end": 17725.62, + "probability": 0.1393 + }, + { + "start": 17726.28, + "end": 17729.4, + "probability": 0.3586 + }, + { + "start": 17730.48, + "end": 17731.8, + "probability": 0.5235 + }, + { + "start": 17737.46, + "end": 17738.32, + "probability": 0.0392 + }, + { + "start": 17738.88, + "end": 17741.02, + "probability": 0.4324 + }, + { + "start": 17741.08, + "end": 17742.28, + "probability": 0.751 + }, + { + "start": 17747.4, + "end": 17751.88, + "probability": 0.8288 + }, + { + "start": 17752.56, + "end": 17755.08, + "probability": 0.8387 + }, + { + "start": 17756.52, + "end": 17759.12, + "probability": 0.8892 + }, + { + "start": 17759.12, + "end": 17763.44, + "probability": 0.8679 + }, + { + "start": 17764.04, + "end": 17769.44, + "probability": 0.7753 + }, + { + "start": 17771.0, + "end": 17773.64, + "probability": 0.9332 + }, + { + "start": 17776.3, + "end": 17778.14, + "probability": 0.9601 + }, + { + "start": 17778.98, + "end": 17781.88, + "probability": 0.9655 + }, + { + "start": 17783.08, + "end": 17787.22, + "probability": 0.9492 + }, + { + "start": 17787.22, + "end": 17792.24, + "probability": 0.913 + }, + { + "start": 17793.48, + "end": 17800.76, + "probability": 0.8626 + }, + { + "start": 17800.76, + "end": 17804.67, + "probability": 0.9965 + }, + { + "start": 17805.52, + "end": 17811.88, + "probability": 0.8618 + }, + { + "start": 17812.66, + "end": 17813.32, + "probability": 0.6782 + }, + { + "start": 17814.86, + "end": 17815.56, + "probability": 0.6367 + }, + { + "start": 17815.98, + "end": 17819.66, + "probability": 0.201 + }, + { + "start": 17820.46, + "end": 17820.92, + "probability": 0.7575 + }, + { + "start": 17821.02, + "end": 17822.7, + "probability": 0.8657 + }, + { + "start": 17822.9, + "end": 17824.44, + "probability": 0.9104 + }, + { + "start": 17824.56, + "end": 17826.88, + "probability": 0.8413 + }, + { + "start": 17827.06, + "end": 17828.88, + "probability": 0.8202 + }, + { + "start": 17829.38, + "end": 17829.84, + "probability": 0.5063 + }, + { + "start": 17830.02, + "end": 17832.14, + "probability": 0.5457 + }, + { + "start": 17832.14, + "end": 17833.7, + "probability": 0.8853 + }, + { + "start": 17834.1, + "end": 17836.86, + "probability": 0.8799 + }, + { + "start": 17836.9, + "end": 17837.97, + "probability": 0.9175 + }, + { + "start": 17838.62, + "end": 17840.98, + "probability": 0.9255 + }, + { + "start": 17841.36, + "end": 17844.38, + "probability": 0.9318 + }, + { + "start": 17845.76, + "end": 17849.2, + "probability": 0.9939 + }, + { + "start": 17849.2, + "end": 17851.78, + "probability": 0.9893 + }, + { + "start": 17852.2, + "end": 17858.22, + "probability": 0.9492 + }, + { + "start": 17858.38, + "end": 17859.8, + "probability": 0.9808 + }, + { + "start": 17859.92, + "end": 17860.64, + "probability": 0.9152 + }, + { + "start": 17861.86, + "end": 17863.04, + "probability": 0.9756 + }, + { + "start": 17863.58, + "end": 17867.36, + "probability": 0.8442 + }, + { + "start": 17867.92, + "end": 17869.34, + "probability": 0.8982 + }, + { + "start": 17870.54, + "end": 17870.74, + "probability": 0.5051 + }, + { + "start": 17871.5, + "end": 17873.78, + "probability": 0.738 + }, + { + "start": 17874.8, + "end": 17878.46, + "probability": 0.9607 + }, + { + "start": 17879.36, + "end": 17885.76, + "probability": 0.7752 + }, + { + "start": 17886.52, + "end": 17888.7, + "probability": 0.6498 + }, + { + "start": 17888.82, + "end": 17889.7, + "probability": 0.9292 + }, + { + "start": 17889.8, + "end": 17890.82, + "probability": 0.917 + }, + { + "start": 17890.9, + "end": 17896.18, + "probability": 0.8525 + }, + { + "start": 17896.94, + "end": 17901.06, + "probability": 0.9939 + }, + { + "start": 17901.66, + "end": 17904.06, + "probability": 0.9597 + }, + { + "start": 17906.03, + "end": 17911.38, + "probability": 0.8505 + }, + { + "start": 17912.56, + "end": 17917.36, + "probability": 0.9908 + }, + { + "start": 17918.06, + "end": 17922.48, + "probability": 0.9666 + }, + { + "start": 17922.84, + "end": 17923.64, + "probability": 0.9192 + }, + { + "start": 17924.0, + "end": 17926.94, + "probability": 0.6551 + }, + { + "start": 17928.3, + "end": 17931.94, + "probability": 0.6813 + }, + { + "start": 17932.86, + "end": 17937.26, + "probability": 0.9863 + }, + { + "start": 17937.78, + "end": 17941.84, + "probability": 0.8321 + }, + { + "start": 17943.16, + "end": 17946.12, + "probability": 0.6388 + }, + { + "start": 17946.82, + "end": 17951.82, + "probability": 0.9531 + }, + { + "start": 17952.16, + "end": 17954.02, + "probability": 0.8654 + }, + { + "start": 17954.22, + "end": 17955.86, + "probability": 0.7479 + }, + { + "start": 17956.42, + "end": 17957.76, + "probability": 0.7943 + }, + { + "start": 17958.16, + "end": 17959.96, + "probability": 0.6066 + }, + { + "start": 17960.08, + "end": 17962.92, + "probability": 0.9229 + }, + { + "start": 17964.0, + "end": 17965.66, + "probability": 0.8959 + }, + { + "start": 17966.46, + "end": 17970.54, + "probability": 0.8411 + }, + { + "start": 17971.56, + "end": 17972.98, + "probability": 0.7732 + }, + { + "start": 17973.0, + "end": 17973.7, + "probability": 0.7143 + }, + { + "start": 17973.78, + "end": 17974.36, + "probability": 0.6439 + }, + { + "start": 17974.62, + "end": 17975.46, + "probability": 0.4892 + }, + { + "start": 17975.8, + "end": 17976.71, + "probability": 0.4026 + }, + { + "start": 17977.3, + "end": 17977.86, + "probability": 0.4353 + }, + { + "start": 17978.26, + "end": 17979.28, + "probability": 0.7575 + }, + { + "start": 17979.38, + "end": 17980.34, + "probability": 0.1837 + }, + { + "start": 17980.66, + "end": 17981.46, + "probability": 0.3108 + }, + { + "start": 17981.5, + "end": 17983.58, + "probability": 0.4279 + }, + { + "start": 17983.64, + "end": 17985.5, + "probability": 0.7593 + }, + { + "start": 17985.56, + "end": 17986.22, + "probability": 0.8549 + }, + { + "start": 17988.02, + "end": 17990.22, + "probability": 0.6672 + }, + { + "start": 17991.92, + "end": 17997.64, + "probability": 0.9072 + }, + { + "start": 17997.7, + "end": 18000.38, + "probability": 0.979 + }, + { + "start": 18000.72, + "end": 18001.04, + "probability": 0.4578 + }, + { + "start": 18001.1, + "end": 18004.46, + "probability": 0.9446 + }, + { + "start": 18004.46, + "end": 18009.94, + "probability": 0.9995 + }, + { + "start": 18010.04, + "end": 18014.72, + "probability": 0.9277 + }, + { + "start": 18015.31, + "end": 18020.52, + "probability": 0.9773 + }, + { + "start": 18021.3, + "end": 18021.88, + "probability": 0.5024 + }, + { + "start": 18022.02, + "end": 18022.6, + "probability": 0.3497 + }, + { + "start": 18022.76, + "end": 18025.5, + "probability": 0.7995 + }, + { + "start": 18025.5, + "end": 18030.0, + "probability": 0.9468 + }, + { + "start": 18030.4, + "end": 18034.76, + "probability": 0.9687 + }, + { + "start": 18035.42, + "end": 18038.38, + "probability": 0.9808 + }, + { + "start": 18038.78, + "end": 18042.4, + "probability": 0.8067 + }, + { + "start": 18043.52, + "end": 18045.11, + "probability": 0.9904 + }, + { + "start": 18045.6, + "end": 18049.58, + "probability": 0.8644 + }, + { + "start": 18049.9, + "end": 18051.72, + "probability": 0.9209 + }, + { + "start": 18052.04, + "end": 18056.38, + "probability": 0.9731 + }, + { + "start": 18057.08, + "end": 18060.74, + "probability": 0.9954 + }, + { + "start": 18061.5, + "end": 18067.16, + "probability": 0.9976 + }, + { + "start": 18069.44, + "end": 18075.95, + "probability": 0.9956 + }, + { + "start": 18076.02, + "end": 18084.6, + "probability": 0.9672 + }, + { + "start": 18085.34, + "end": 18094.9, + "probability": 0.9038 + }, + { + "start": 18095.7, + "end": 18096.82, + "probability": 0.7202 + }, + { + "start": 18096.84, + "end": 18096.84, + "probability": 0.1917 + }, + { + "start": 18096.96, + "end": 18098.28, + "probability": 0.4075 + }, + { + "start": 18098.28, + "end": 18105.66, + "probability": 0.4399 + }, + { + "start": 18106.0, + "end": 18107.31, + "probability": 0.3904 + }, + { + "start": 18108.0, + "end": 18109.6, + "probability": 0.9245 + }, + { + "start": 18109.92, + "end": 18113.26, + "probability": 0.7928 + }, + { + "start": 18113.26, + "end": 18113.72, + "probability": 0.7424 + }, + { + "start": 18114.34, + "end": 18120.44, + "probability": 0.9625 + }, + { + "start": 18120.58, + "end": 18122.7, + "probability": 0.3338 + }, + { + "start": 18123.02, + "end": 18130.38, + "probability": 0.9263 + }, + { + "start": 18130.44, + "end": 18131.28, + "probability": 0.6676 + }, + { + "start": 18131.36, + "end": 18132.28, + "probability": 0.9647 + }, + { + "start": 18132.46, + "end": 18136.27, + "probability": 0.9434 + }, + { + "start": 18136.62, + "end": 18141.62, + "probability": 0.8911 + }, + { + "start": 18141.86, + "end": 18143.74, + "probability": 0.6239 + }, + { + "start": 18143.94, + "end": 18150.52, + "probability": 0.9874 + }, + { + "start": 18150.52, + "end": 18154.72, + "probability": 0.9885 + }, + { + "start": 18154.8, + "end": 18155.18, + "probability": 0.4713 + }, + { + "start": 18155.28, + "end": 18158.94, + "probability": 0.9988 + }, + { + "start": 18159.42, + "end": 18159.94, + "probability": 0.7644 + }, + { + "start": 18160.68, + "end": 18161.76, + "probability": 0.6743 + }, + { + "start": 18161.8, + "end": 18164.76, + "probability": 0.9041 + }, + { + "start": 18180.68, + "end": 18182.58, + "probability": 0.7393 + }, + { + "start": 18182.58, + "end": 18182.98, + "probability": 0.9068 + }, + { + "start": 18183.18, + "end": 18183.34, + "probability": 0.5589 + }, + { + "start": 18185.32, + "end": 18186.68, + "probability": 0.6686 + }, + { + "start": 18186.74, + "end": 18187.6, + "probability": 0.9657 + }, + { + "start": 18187.84, + "end": 18189.31, + "probability": 0.7246 + }, + { + "start": 18190.1, + "end": 18191.82, + "probability": 0.7083 + }, + { + "start": 18191.98, + "end": 18193.16, + "probability": 0.9773 + }, + { + "start": 18193.24, + "end": 18198.44, + "probability": 0.9834 + }, + { + "start": 18198.44, + "end": 18202.6, + "probability": 0.9994 + }, + { + "start": 18204.04, + "end": 18205.04, + "probability": 0.9127 + }, + { + "start": 18206.84, + "end": 18213.1, + "probability": 0.7968 + }, + { + "start": 18214.16, + "end": 18215.68, + "probability": 0.9971 + }, + { + "start": 18217.16, + "end": 18221.72, + "probability": 0.9326 + }, + { + "start": 18222.76, + "end": 18224.16, + "probability": 0.6371 + }, + { + "start": 18225.34, + "end": 18227.96, + "probability": 0.9876 + }, + { + "start": 18228.44, + "end": 18230.4, + "probability": 0.7464 + }, + { + "start": 18230.52, + "end": 18230.74, + "probability": 0.6748 + }, + { + "start": 18233.38, + "end": 18237.46, + "probability": 0.9091 + }, + { + "start": 18238.46, + "end": 18242.3, + "probability": 0.9536 + }, + { + "start": 18242.34, + "end": 18244.94, + "probability": 0.9367 + }, + { + "start": 18245.04, + "end": 18247.08, + "probability": 0.7331 + }, + { + "start": 18248.26, + "end": 18249.9, + "probability": 0.9383 + }, + { + "start": 18250.68, + "end": 18256.16, + "probability": 0.9517 + }, + { + "start": 18256.7, + "end": 18261.69, + "probability": 0.8359 + }, + { + "start": 18263.58, + "end": 18266.54, + "probability": 0.9969 + }, + { + "start": 18266.74, + "end": 18267.35, + "probability": 0.7356 + }, + { + "start": 18267.6, + "end": 18268.14, + "probability": 0.4017 + }, + { + "start": 18268.38, + "end": 18269.44, + "probability": 0.5235 + }, + { + "start": 18269.52, + "end": 18271.16, + "probability": 0.9868 + }, + { + "start": 18271.74, + "end": 18273.58, + "probability": 0.715 + }, + { + "start": 18274.8, + "end": 18276.32, + "probability": 0.9521 + }, + { + "start": 18277.56, + "end": 18279.14, + "probability": 0.8519 + }, + { + "start": 18279.32, + "end": 18282.82, + "probability": 0.9744 + }, + { + "start": 18283.28, + "end": 18287.5, + "probability": 0.9305 + }, + { + "start": 18288.48, + "end": 18296.4, + "probability": 0.9849 + }, + { + "start": 18296.4, + "end": 18302.38, + "probability": 0.9929 + }, + { + "start": 18302.62, + "end": 18309.84, + "probability": 0.9625 + }, + { + "start": 18309.98, + "end": 18311.5, + "probability": 0.8774 + }, + { + "start": 18312.64, + "end": 18319.18, + "probability": 0.9761 + }, + { + "start": 18320.0, + "end": 18320.63, + "probability": 0.7148 + }, + { + "start": 18321.56, + "end": 18323.62, + "probability": 0.9477 + }, + { + "start": 18324.6, + "end": 18328.86, + "probability": 0.9457 + }, + { + "start": 18329.3, + "end": 18330.8, + "probability": 0.9592 + }, + { + "start": 18331.02, + "end": 18331.52, + "probability": 0.8476 + }, + { + "start": 18331.62, + "end": 18332.2, + "probability": 0.9095 + }, + { + "start": 18332.34, + "end": 18333.08, + "probability": 0.8682 + }, + { + "start": 18333.74, + "end": 18335.02, + "probability": 0.9614 + }, + { + "start": 18335.34, + "end": 18336.7, + "probability": 0.9721 + }, + { + "start": 18337.02, + "end": 18339.46, + "probability": 0.8325 + }, + { + "start": 18339.56, + "end": 18341.74, + "probability": 0.9524 + }, + { + "start": 18344.08, + "end": 18345.94, + "probability": 0.8344 + }, + { + "start": 18346.58, + "end": 18348.32, + "probability": 0.8163 + }, + { + "start": 18348.56, + "end": 18353.16, + "probability": 0.9869 + }, + { + "start": 18353.68, + "end": 18355.94, + "probability": 0.9572 + }, + { + "start": 18356.7, + "end": 18357.68, + "probability": 0.9565 + }, + { + "start": 18359.12, + "end": 18360.34, + "probability": 0.9859 + }, + { + "start": 18360.92, + "end": 18363.96, + "probability": 0.9653 + }, + { + "start": 18364.28, + "end": 18365.16, + "probability": 0.5604 + }, + { + "start": 18365.86, + "end": 18369.16, + "probability": 0.9514 + }, + { + "start": 18369.88, + "end": 18370.85, + "probability": 0.9026 + }, + { + "start": 18371.6, + "end": 18374.52, + "probability": 0.9584 + }, + { + "start": 18375.76, + "end": 18378.3, + "probability": 0.6992 + }, + { + "start": 18382.58, + "end": 18384.64, + "probability": 0.0414 + }, + { + "start": 18384.9, + "end": 18389.32, + "probability": 0.5182 + }, + { + "start": 18390.04, + "end": 18390.52, + "probability": 0.4913 + }, + { + "start": 18390.52, + "end": 18392.4, + "probability": 0.7609 + }, + { + "start": 18392.9, + "end": 18398.64, + "probability": 0.9496 + }, + { + "start": 18399.62, + "end": 18403.86, + "probability": 0.7839 + }, + { + "start": 18404.44, + "end": 18405.56, + "probability": 0.0926 + }, + { + "start": 18406.22, + "end": 18412.1, + "probability": 0.9338 + }, + { + "start": 18413.14, + "end": 18416.62, + "probability": 0.8041 + }, + { + "start": 18417.28, + "end": 18418.56, + "probability": 0.528 + }, + { + "start": 18419.38, + "end": 18423.82, + "probability": 0.9299 + }, + { + "start": 18424.14, + "end": 18424.95, + "probability": 0.7902 + }, + { + "start": 18425.12, + "end": 18426.03, + "probability": 0.8589 + }, + { + "start": 18426.38, + "end": 18427.29, + "probability": 0.9347 + }, + { + "start": 18427.48, + "end": 18431.2, + "probability": 0.9752 + }, + { + "start": 18431.48, + "end": 18433.08, + "probability": 0.871 + }, + { + "start": 18433.12, + "end": 18433.12, + "probability": 0.665 + }, + { + "start": 18433.3, + "end": 18434.22, + "probability": 0.7445 + }, + { + "start": 18434.34, + "end": 18436.66, + "probability": 0.9054 + }, + { + "start": 18449.0, + "end": 18450.38, + "probability": 0.8059 + }, + { + "start": 18450.9, + "end": 18454.38, + "probability": 0.8642 + }, + { + "start": 18455.04, + "end": 18456.7, + "probability": 0.9958 + }, + { + "start": 18456.8, + "end": 18457.6, + "probability": 0.9951 + }, + { + "start": 18458.36, + "end": 18459.11, + "probability": 0.9817 + }, + { + "start": 18460.5, + "end": 18461.6, + "probability": 0.9944 + }, + { + "start": 18461.72, + "end": 18463.92, + "probability": 0.9799 + }, + { + "start": 18464.86, + "end": 18467.18, + "probability": 0.9667 + }, + { + "start": 18467.7, + "end": 18470.9, + "probability": 0.5793 + }, + { + "start": 18472.64, + "end": 18474.18, + "probability": 0.9946 + }, + { + "start": 18474.28, + "end": 18476.14, + "probability": 0.8232 + }, + { + "start": 18476.22, + "end": 18478.26, + "probability": 0.9515 + }, + { + "start": 18479.16, + "end": 18480.98, + "probability": 0.7025 + }, + { + "start": 18481.16, + "end": 18484.22, + "probability": 0.9919 + }, + { + "start": 18485.12, + "end": 18487.64, + "probability": 0.9716 + }, + { + "start": 18488.74, + "end": 18492.12, + "probability": 0.979 + }, + { + "start": 18492.42, + "end": 18493.02, + "probability": 0.8075 + }, + { + "start": 18493.12, + "end": 18494.09, + "probability": 0.969 + }, + { + "start": 18494.36, + "end": 18495.12, + "probability": 0.7829 + }, + { + "start": 18495.3, + "end": 18497.56, + "probability": 0.9321 + }, + { + "start": 18499.78, + "end": 18507.24, + "probability": 0.998 + }, + { + "start": 18509.34, + "end": 18511.34, + "probability": 0.6459 + }, + { + "start": 18513.26, + "end": 18515.2, + "probability": 0.994 + }, + { + "start": 18515.94, + "end": 18521.98, + "probability": 0.9802 + }, + { + "start": 18523.14, + "end": 18525.94, + "probability": 0.9068 + }, + { + "start": 18528.18, + "end": 18529.38, + "probability": 0.9416 + }, + { + "start": 18530.4, + "end": 18531.56, + "probability": 0.9639 + }, + { + "start": 18532.68, + "end": 18534.38, + "probability": 0.9719 + }, + { + "start": 18535.22, + "end": 18537.56, + "probability": 0.9969 + }, + { + "start": 18537.94, + "end": 18539.08, + "probability": 0.9516 + }, + { + "start": 18539.22, + "end": 18540.08, + "probability": 0.9272 + }, + { + "start": 18542.76, + "end": 18544.16, + "probability": 0.9802 + }, + { + "start": 18545.68, + "end": 18550.04, + "probability": 0.9985 + }, + { + "start": 18551.24, + "end": 18554.44, + "probability": 0.9956 + }, + { + "start": 18555.4, + "end": 18557.28, + "probability": 0.8819 + }, + { + "start": 18559.94, + "end": 18560.92, + "probability": 0.9736 + }, + { + "start": 18561.86, + "end": 18564.52, + "probability": 0.8698 + }, + { + "start": 18565.68, + "end": 18569.6, + "probability": 0.9888 + }, + { + "start": 18570.62, + "end": 18577.58, + "probability": 0.9956 + }, + { + "start": 18579.04, + "end": 18582.2, + "probability": 0.9924 + }, + { + "start": 18584.94, + "end": 18586.23, + "probability": 0.9082 + }, + { + "start": 18586.86, + "end": 18589.46, + "probability": 0.9941 + }, + { + "start": 18589.78, + "end": 18590.32, + "probability": 0.4526 + }, + { + "start": 18592.26, + "end": 18599.7, + "probability": 0.9977 + }, + { + "start": 18601.16, + "end": 18603.54, + "probability": 0.9846 + }, + { + "start": 18604.54, + "end": 18607.18, + "probability": 0.9978 + }, + { + "start": 18608.64, + "end": 18611.62, + "probability": 0.9985 + }, + { + "start": 18613.58, + "end": 18615.16, + "probability": 0.8642 + }, + { + "start": 18616.5, + "end": 18619.54, + "probability": 0.9825 + }, + { + "start": 18619.6, + "end": 18620.18, + "probability": 0.648 + }, + { + "start": 18621.0, + "end": 18622.34, + "probability": 0.7388 + }, + { + "start": 18622.98, + "end": 18625.36, + "probability": 0.9306 + }, + { + "start": 18626.18, + "end": 18627.22, + "probability": 0.9897 + }, + { + "start": 18629.12, + "end": 18631.4, + "probability": 0.9873 + }, + { + "start": 18634.16, + "end": 18636.38, + "probability": 0.9952 + }, + { + "start": 18639.32, + "end": 18641.51, + "probability": 0.9973 + }, + { + "start": 18641.78, + "end": 18643.48, + "probability": 0.9855 + }, + { + "start": 18643.56, + "end": 18644.53, + "probability": 0.831 + }, + { + "start": 18646.92, + "end": 18649.2, + "probability": 0.9304 + }, + { + "start": 18651.36, + "end": 18653.58, + "probability": 0.9928 + }, + { + "start": 18653.68, + "end": 18655.4, + "probability": 0.9739 + }, + { + "start": 18655.92, + "end": 18658.3, + "probability": 0.9819 + }, + { + "start": 18660.65, + "end": 18661.56, + "probability": 0.1335 + }, + { + "start": 18661.92, + "end": 18663.12, + "probability": 0.2174 + }, + { + "start": 18663.44, + "end": 18664.04, + "probability": 0.9521 + }, + { + "start": 18664.2, + "end": 18665.8, + "probability": 0.7149 + }, + { + "start": 18665.84, + "end": 18666.82, + "probability": 0.7863 + }, + { + "start": 18667.66, + "end": 18668.72, + "probability": 0.9373 + }, + { + "start": 18668.76, + "end": 18670.8, + "probability": 0.9686 + }, + { + "start": 18670.92, + "end": 18671.32, + "probability": 0.9268 + }, + { + "start": 18671.4, + "end": 18674.55, + "probability": 0.9656 + }, + { + "start": 18675.88, + "end": 18682.42, + "probability": 0.5964 + }, + { + "start": 18682.58, + "end": 18685.16, + "probability": 0.8816 + }, + { + "start": 18685.54, + "end": 18689.18, + "probability": 0.9866 + }, + { + "start": 18689.18, + "end": 18691.64, + "probability": 0.981 + }, + { + "start": 18693.8, + "end": 18694.8, + "probability": 0.8765 + }, + { + "start": 18694.86, + "end": 18696.28, + "probability": 0.8694 + }, + { + "start": 18698.14, + "end": 18699.2, + "probability": 0.3558 + }, + { + "start": 18699.3, + "end": 18700.28, + "probability": 0.4732 + }, + { + "start": 18700.76, + "end": 18701.46, + "probability": 0.9801 + }, + { + "start": 18701.54, + "end": 18702.22, + "probability": 0.9666 + }, + { + "start": 18702.28, + "end": 18702.84, + "probability": 0.6432 + }, + { + "start": 18703.04, + "end": 18705.9, + "probability": 0.9482 + }, + { + "start": 18707.72, + "end": 18712.14, + "probability": 0.985 + }, + { + "start": 18712.86, + "end": 18714.03, + "probability": 0.9746 + }, + { + "start": 18714.58, + "end": 18715.73, + "probability": 0.9487 + }, + { + "start": 18716.12, + "end": 18717.68, + "probability": 0.908 + }, + { + "start": 18718.76, + "end": 18719.78, + "probability": 0.6768 + }, + { + "start": 18720.48, + "end": 18721.54, + "probability": 0.8458 + }, + { + "start": 18722.64, + "end": 18723.68, + "probability": 0.9448 + }, + { + "start": 18723.76, + "end": 18725.3, + "probability": 0.9666 + }, + { + "start": 18725.78, + "end": 18731.38, + "probability": 0.9875 + }, + { + "start": 18731.8, + "end": 18732.08, + "probability": 0.8383 + }, + { + "start": 18732.48, + "end": 18734.0, + "probability": 0.9141 + }, + { + "start": 18734.0, + "end": 18736.58, + "probability": 0.7995 + }, + { + "start": 18737.22, + "end": 18738.78, + "probability": 0.6609 + }, + { + "start": 18742.28, + "end": 18743.62, + "probability": 0.8509 + }, + { + "start": 18743.66, + "end": 18743.93, + "probability": 0.5485 + }, + { + "start": 18749.7, + "end": 18752.15, + "probability": 0.8564 + }, + { + "start": 18752.92, + "end": 18754.94, + "probability": 0.761 + }, + { + "start": 18755.14, + "end": 18756.66, + "probability": 0.8143 + }, + { + "start": 18756.66, + "end": 18757.02, + "probability": 0.1726 + }, + { + "start": 18757.3, + "end": 18758.78, + "probability": 0.2618 + }, + { + "start": 18758.98, + "end": 18760.96, + "probability": 0.7326 + }, + { + "start": 18761.24, + "end": 18763.06, + "probability": 0.1961 + }, + { + "start": 18763.06, + "end": 18765.42, + "probability": 0.9495 + }, + { + "start": 18765.92, + "end": 18766.72, + "probability": 0.7271 + }, + { + "start": 18766.78, + "end": 18767.46, + "probability": 0.8183 + }, + { + "start": 18768.26, + "end": 18770.32, + "probability": 0.8789 + }, + { + "start": 18770.48, + "end": 18773.62, + "probability": 0.9235 + }, + { + "start": 18773.7, + "end": 18774.78, + "probability": 0.9776 + }, + { + "start": 18774.82, + "end": 18776.54, + "probability": 0.9961 + }, + { + "start": 18777.72, + "end": 18779.32, + "probability": 0.808 + }, + { + "start": 18779.76, + "end": 18780.4, + "probability": 0.2562 + }, + { + "start": 18782.32, + "end": 18784.5, + "probability": 0.678 + }, + { + "start": 18784.58, + "end": 18786.18, + "probability": 0.9921 + }, + { + "start": 18786.92, + "end": 18790.2, + "probability": 0.9104 + }, + { + "start": 18790.66, + "end": 18794.12, + "probability": 0.871 + }, + { + "start": 18794.96, + "end": 18796.52, + "probability": 0.9647 + }, + { + "start": 18797.54, + "end": 18800.6, + "probability": 0.9893 + }, + { + "start": 18800.76, + "end": 18804.84, + "probability": 0.9943 + }, + { + "start": 18804.96, + "end": 18805.84, + "probability": 0.613 + }, + { + "start": 18806.32, + "end": 18807.86, + "probability": 0.8335 + }, + { + "start": 18807.9, + "end": 18809.46, + "probability": 0.741 + }, + { + "start": 18809.56, + "end": 18810.46, + "probability": 0.6832 + }, + { + "start": 18810.7, + "end": 18811.9, + "probability": 0.8389 + }, + { + "start": 18811.92, + "end": 18813.08, + "probability": 0.4592 + }, + { + "start": 18813.14, + "end": 18814.48, + "probability": 0.1107 + }, + { + "start": 18814.8, + "end": 18815.4, + "probability": 0.4366 + }, + { + "start": 18816.55, + "end": 18820.06, + "probability": 0.4794 + }, + { + "start": 18820.1, + "end": 18820.22, + "probability": 0.0605 + }, + { + "start": 18820.22, + "end": 18823.22, + "probability": 0.576 + }, + { + "start": 18823.3, + "end": 18823.9, + "probability": 0.7374 + }, + { + "start": 18824.39, + "end": 18826.06, + "probability": 0.787 + }, + { + "start": 18826.14, + "end": 18827.82, + "probability": 0.8856 + }, + { + "start": 18828.24, + "end": 18832.56, + "probability": 0.5017 + }, + { + "start": 18832.66, + "end": 18833.6, + "probability": 0.5434 + }, + { + "start": 18834.38, + "end": 18836.64, + "probability": 0.4996 + }, + { + "start": 18836.74, + "end": 18841.32, + "probability": 0.9917 + }, + { + "start": 18841.42, + "end": 18841.92, + "probability": 0.8705 + }, + { + "start": 18842.02, + "end": 18842.58, + "probability": 0.9432 + }, + { + "start": 18843.46, + "end": 18847.34, + "probability": 0.9399 + }, + { + "start": 18848.5, + "end": 18851.14, + "probability": 0.8101 + }, + { + "start": 18851.96, + "end": 18853.2, + "probability": 0.7903 + }, + { + "start": 18853.3, + "end": 18857.4, + "probability": 0.9962 + }, + { + "start": 18857.98, + "end": 18859.42, + "probability": 0.9433 + }, + { + "start": 18860.02, + "end": 18862.5, + "probability": 0.9987 + }, + { + "start": 18862.78, + "end": 18864.32, + "probability": 0.4968 + }, + { + "start": 18865.66, + "end": 18865.88, + "probability": 0.2674 + }, + { + "start": 18865.88, + "end": 18865.88, + "probability": 0.098 + }, + { + "start": 18865.88, + "end": 18868.36, + "probability": 0.8947 + }, + { + "start": 18868.62, + "end": 18871.03, + "probability": 0.9128 + }, + { + "start": 18871.54, + "end": 18872.56, + "probability": 0.3703 + }, + { + "start": 18873.16, + "end": 18873.52, + "probability": 0.0013 + }, + { + "start": 18875.02, + "end": 18879.65, + "probability": 0.9282 + }, + { + "start": 18879.76, + "end": 18880.4, + "probability": 0.8164 + }, + { + "start": 18880.52, + "end": 18880.96, + "probability": 0.738 + }, + { + "start": 18881.96, + "end": 18883.21, + "probability": 0.8016 + }, + { + "start": 18883.49, + "end": 18883.72, + "probability": 0.0501 + }, + { + "start": 18883.72, + "end": 18884.82, + "probability": 0.6904 + }, + { + "start": 18884.82, + "end": 18885.12, + "probability": 0.9026 + }, + { + "start": 18885.36, + "end": 18887.46, + "probability": 0.8149 + }, + { + "start": 18888.34, + "end": 18889.66, + "probability": 0.9897 + }, + { + "start": 18890.24, + "end": 18891.78, + "probability": 0.9944 + }, + { + "start": 18892.74, + "end": 18897.22, + "probability": 0.9795 + }, + { + "start": 18897.42, + "end": 18899.22, + "probability": 0.719 + }, + { + "start": 18900.2, + "end": 18902.79, + "probability": 0.9579 + }, + { + "start": 18903.88, + "end": 18904.78, + "probability": 0.9956 + }, + { + "start": 18906.62, + "end": 18907.72, + "probability": 0.8391 + }, + { + "start": 18908.1, + "end": 18910.1, + "probability": 0.9365 + }, + { + "start": 18910.58, + "end": 18912.24, + "probability": 0.9749 + }, + { + "start": 18913.78, + "end": 18916.76, + "probability": 0.9278 + }, + { + "start": 18917.44, + "end": 18921.13, + "probability": 0.9074 + }, + { + "start": 18921.78, + "end": 18922.58, + "probability": 0.5375 + }, + { + "start": 18923.42, + "end": 18924.41, + "probability": 0.8268 + }, + { + "start": 18925.04, + "end": 18927.02, + "probability": 0.4542 + }, + { + "start": 18927.08, + "end": 18927.38, + "probability": 0.2728 + }, + { + "start": 18927.38, + "end": 18928.52, + "probability": 0.489 + }, + { + "start": 18928.62, + "end": 18929.06, + "probability": 0.8867 + }, + { + "start": 18929.72, + "end": 18930.4, + "probability": 0.6722 + }, + { + "start": 18930.5, + "end": 18933.94, + "probability": 0.9845 + }, + { + "start": 18934.64, + "end": 18936.84, + "probability": 0.9777 + }, + { + "start": 18937.36, + "end": 18939.76, + "probability": 0.8554 + }, + { + "start": 18940.3, + "end": 18942.12, + "probability": 0.9692 + }, + { + "start": 18942.64, + "end": 18943.66, + "probability": 0.9968 + }, + { + "start": 18945.2, + "end": 18949.26, + "probability": 0.9575 + }, + { + "start": 18950.51, + "end": 18953.86, + "probability": 0.6465 + }, + { + "start": 18954.72, + "end": 18958.6, + "probability": 0.8638 + }, + { + "start": 18960.32, + "end": 18963.84, + "probability": 0.9606 + }, + { + "start": 18964.52, + "end": 18966.66, + "probability": 0.4701 + }, + { + "start": 18966.72, + "end": 18968.06, + "probability": 0.9629 + }, + { + "start": 18968.2, + "end": 18970.48, + "probability": 0.9324 + }, + { + "start": 18970.48, + "end": 18972.02, + "probability": 0.0749 + }, + { + "start": 18972.02, + "end": 18972.9, + "probability": 0.6161 + }, + { + "start": 18973.3, + "end": 18973.9, + "probability": 0.5044 + }, + { + "start": 18974.6, + "end": 18975.8, + "probability": 0.9585 + }, + { + "start": 18975.86, + "end": 18976.81, + "probability": 0.8204 + }, + { + "start": 18976.98, + "end": 18978.12, + "probability": 0.1852 + }, + { + "start": 18978.46, + "end": 18979.88, + "probability": 0.5336 + }, + { + "start": 18979.88, + "end": 18982.59, + "probability": 0.4683 + }, + { + "start": 18984.12, + "end": 18984.88, + "probability": 0.7808 + }, + { + "start": 18984.92, + "end": 18985.64, + "probability": 0.9744 + }, + { + "start": 18985.68, + "end": 18986.38, + "probability": 0.7684 + }, + { + "start": 18986.56, + "end": 18988.46, + "probability": 0.9955 + }, + { + "start": 18989.16, + "end": 18990.62, + "probability": 0.7978 + }, + { + "start": 18991.28, + "end": 18994.42, + "probability": 0.9973 + }, + { + "start": 18995.18, + "end": 18997.66, + "probability": 0.9951 + }, + { + "start": 18998.42, + "end": 18999.86, + "probability": 0.9468 + }, + { + "start": 19000.9, + "end": 19005.78, + "probability": 0.9667 + }, + { + "start": 19006.18, + "end": 19008.18, + "probability": 0.9836 + }, + { + "start": 19008.58, + "end": 19009.06, + "probability": 0.6409 + }, + { + "start": 19009.12, + "end": 19010.76, + "probability": 0.6944 + }, + { + "start": 19012.88, + "end": 19014.42, + "probability": 0.9497 + }, + { + "start": 19015.04, + "end": 19015.9, + "probability": 0.9542 + }, + { + "start": 19015.98, + "end": 19017.19, + "probability": 0.9101 + }, + { + "start": 19017.34, + "end": 19018.1, + "probability": 0.8425 + }, + { + "start": 19018.84, + "end": 19019.97, + "probability": 0.9784 + }, + { + "start": 19020.24, + "end": 19020.58, + "probability": 0.8813 + }, + { + "start": 19020.62, + "end": 19021.0, + "probability": 0.8529 + }, + { + "start": 19021.74, + "end": 19023.64, + "probability": 0.9963 + }, + { + "start": 19024.58, + "end": 19026.2, + "probability": 0.8569 + }, + { + "start": 19027.6, + "end": 19027.6, + "probability": 0.2479 + }, + { + "start": 19027.6, + "end": 19027.9, + "probability": 0.2615 + }, + { + "start": 19028.68, + "end": 19030.62, + "probability": 0.4486 + }, + { + "start": 19030.94, + "end": 19032.19, + "probability": 0.7789 + }, + { + "start": 19032.76, + "end": 19033.18, + "probability": 0.1935 + }, + { + "start": 19033.82, + "end": 19034.74, + "probability": 0.6847 + }, + { + "start": 19034.9, + "end": 19035.24, + "probability": 0.552 + }, + { + "start": 19035.78, + "end": 19037.33, + "probability": 0.1572 + }, + { + "start": 19037.62, + "end": 19041.64, + "probability": 0.8933 + }, + { + "start": 19042.4, + "end": 19042.66, + "probability": 0.0724 + }, + { + "start": 19042.82, + "end": 19044.24, + "probability": 0.7736 + }, + { + "start": 19044.24, + "end": 19046.34, + "probability": 0.6237 + }, + { + "start": 19046.48, + "end": 19047.1, + "probability": 0.583 + }, + { + "start": 19047.14, + "end": 19050.44, + "probability": 0.8916 + }, + { + "start": 19050.68, + "end": 19051.08, + "probability": 0.4495 + }, + { + "start": 19051.2, + "end": 19053.66, + "probability": 0.6868 + }, + { + "start": 19054.05, + "end": 19058.12, + "probability": 0.9504 + }, + { + "start": 19058.66, + "end": 19059.2, + "probability": 0.8357 + }, + { + "start": 19059.2, + "end": 19062.84, + "probability": 0.7137 + }, + { + "start": 19062.84, + "end": 19063.6, + "probability": 0.1954 + }, + { + "start": 19064.52, + "end": 19066.84, + "probability": 0.9945 + }, + { + "start": 19066.96, + "end": 19068.02, + "probability": 0.9747 + }, + { + "start": 19068.32, + "end": 19073.3, + "probability": 0.9906 + }, + { + "start": 19073.46, + "end": 19075.78, + "probability": 0.9939 + }, + { + "start": 19075.88, + "end": 19077.06, + "probability": 0.7926 + }, + { + "start": 19078.66, + "end": 19080.74, + "probability": 0.1445 + }, + { + "start": 19080.74, + "end": 19081.86, + "probability": 0.728 + }, + { + "start": 19083.36, + "end": 19089.48, + "probability": 0.455 + }, + { + "start": 19089.96, + "end": 19090.96, + "probability": 0.1453 + }, + { + "start": 19097.9, + "end": 19098.64, + "probability": 0.0231 + }, + { + "start": 19100.92, + "end": 19103.22, + "probability": 0.2426 + }, + { + "start": 19103.24, + "end": 19104.46, + "probability": 0.8676 + }, + { + "start": 19105.54, + "end": 19106.54, + "probability": 0.4444 + }, + { + "start": 19106.54, + "end": 19107.96, + "probability": 0.6031 + }, + { + "start": 19108.04, + "end": 19109.8, + "probability": 0.7088 + }, + { + "start": 19109.94, + "end": 19110.42, + "probability": 0.7927 + }, + { + "start": 19110.64, + "end": 19111.92, + "probability": 0.7089 + }, + { + "start": 19113.08, + "end": 19117.12, + "probability": 0.986 + }, + { + "start": 19118.06, + "end": 19121.2, + "probability": 0.9792 + }, + { + "start": 19121.3, + "end": 19122.16, + "probability": 0.8121 + }, + { + "start": 19123.28, + "end": 19126.4, + "probability": 0.9759 + }, + { + "start": 19127.84, + "end": 19130.04, + "probability": 0.9987 + }, + { + "start": 19130.04, + "end": 19133.1, + "probability": 0.9773 + }, + { + "start": 19134.12, + "end": 19137.38, + "probability": 0.9144 + }, + { + "start": 19140.12, + "end": 19143.86, + "probability": 0.9172 + }, + { + "start": 19143.86, + "end": 19148.56, + "probability": 0.9989 + }, + { + "start": 19149.76, + "end": 19154.76, + "probability": 0.9796 + }, + { + "start": 19156.64, + "end": 19158.5, + "probability": 0.7951 + }, + { + "start": 19159.18, + "end": 19160.47, + "probability": 0.9102 + }, + { + "start": 19161.48, + "end": 19163.32, + "probability": 0.9937 + }, + { + "start": 19164.74, + "end": 19170.37, + "probability": 0.8476 + }, + { + "start": 19171.42, + "end": 19174.18, + "probability": 0.9858 + }, + { + "start": 19175.82, + "end": 19178.02, + "probability": 0.9911 + }, + { + "start": 19178.12, + "end": 19179.64, + "probability": 0.9518 + }, + { + "start": 19180.06, + "end": 19183.32, + "probability": 0.9955 + }, + { + "start": 19184.0, + "end": 19187.6, + "probability": 0.981 + }, + { + "start": 19188.98, + "end": 19190.28, + "probability": 0.9717 + }, + { + "start": 19190.52, + "end": 19192.98, + "probability": 0.9983 + }, + { + "start": 19195.16, + "end": 19198.12, + "probability": 0.9976 + }, + { + "start": 19198.22, + "end": 19199.3, + "probability": 0.9637 + }, + { + "start": 19199.54, + "end": 19200.16, + "probability": 0.9823 + }, + { + "start": 19200.28, + "end": 19200.92, + "probability": 0.9926 + }, + { + "start": 19201.1, + "end": 19201.68, + "probability": 0.55 + }, + { + "start": 19202.2, + "end": 19203.3, + "probability": 0.9851 + }, + { + "start": 19205.56, + "end": 19209.6, + "probability": 0.9016 + }, + { + "start": 19210.6, + "end": 19212.12, + "probability": 0.788 + }, + { + "start": 19212.62, + "end": 19215.56, + "probability": 0.9966 + }, + { + "start": 19216.4, + "end": 19218.8, + "probability": 0.9941 + }, + { + "start": 19218.8, + "end": 19223.06, + "probability": 0.9901 + }, + { + "start": 19223.16, + "end": 19224.78, + "probability": 0.9965 + }, + { + "start": 19226.14, + "end": 19230.22, + "probability": 0.9862 + }, + { + "start": 19230.7, + "end": 19231.32, + "probability": 0.3022 + }, + { + "start": 19232.3, + "end": 19235.86, + "probability": 0.9837 + }, + { + "start": 19236.06, + "end": 19238.44, + "probability": 0.9575 + }, + { + "start": 19240.3, + "end": 19240.8, + "probability": 0.509 + }, + { + "start": 19240.9, + "end": 19245.24, + "probability": 0.9964 + }, + { + "start": 19246.22, + "end": 19248.28, + "probability": 0.9269 + }, + { + "start": 19248.96, + "end": 19251.3, + "probability": 0.9379 + }, + { + "start": 19251.64, + "end": 19252.76, + "probability": 0.9895 + }, + { + "start": 19252.84, + "end": 19253.34, + "probability": 0.9475 + }, + { + "start": 19253.42, + "end": 19257.96, + "probability": 0.9902 + }, + { + "start": 19258.38, + "end": 19263.7, + "probability": 0.9834 + }, + { + "start": 19265.04, + "end": 19268.76, + "probability": 0.9746 + }, + { + "start": 19269.5, + "end": 19270.65, + "probability": 0.8784 + }, + { + "start": 19271.42, + "end": 19273.18, + "probability": 0.9266 + }, + { + "start": 19273.36, + "end": 19274.64, + "probability": 0.9932 + }, + { + "start": 19275.1, + "end": 19276.32, + "probability": 0.9754 + }, + { + "start": 19276.62, + "end": 19277.36, + "probability": 0.4539 + }, + { + "start": 19277.8, + "end": 19279.76, + "probability": 0.7383 + }, + { + "start": 19279.96, + "end": 19282.92, + "probability": 0.9703 + }, + { + "start": 19283.0, + "end": 19283.36, + "probability": 0.5366 + }, + { + "start": 19283.38, + "end": 19284.3, + "probability": 0.7783 + }, + { + "start": 19285.14, + "end": 19287.16, + "probability": 0.9941 + }, + { + "start": 19287.16, + "end": 19287.98, + "probability": 0.9298 + }, + { + "start": 19288.04, + "end": 19290.88, + "probability": 0.9875 + }, + { + "start": 19291.8, + "end": 19295.76, + "probability": 0.9917 + }, + { + "start": 19295.76, + "end": 19297.66, + "probability": 0.9943 + }, + { + "start": 19298.52, + "end": 19303.7, + "probability": 0.9989 + }, + { + "start": 19304.08, + "end": 19305.3, + "probability": 0.9569 + }, + { + "start": 19306.22, + "end": 19310.18, + "probability": 0.9961 + }, + { + "start": 19311.16, + "end": 19314.4, + "probability": 0.9554 + }, + { + "start": 19315.22, + "end": 19317.62, + "probability": 0.8669 + }, + { + "start": 19317.62, + "end": 19321.08, + "probability": 0.7771 + }, + { + "start": 19321.14, + "end": 19322.1, + "probability": 0.8604 + }, + { + "start": 19322.88, + "end": 19325.16, + "probability": 0.9967 + }, + { + "start": 19325.16, + "end": 19328.46, + "probability": 0.9503 + }, + { + "start": 19329.0, + "end": 19329.94, + "probability": 0.6184 + }, + { + "start": 19330.1, + "end": 19331.22, + "probability": 0.8615 + }, + { + "start": 19331.86, + "end": 19334.1, + "probability": 0.9587 + }, + { + "start": 19334.98, + "end": 19338.2, + "probability": 0.9855 + }, + { + "start": 19339.04, + "end": 19343.28, + "probability": 0.9966 + }, + { + "start": 19343.78, + "end": 19344.42, + "probability": 0.6123 + }, + { + "start": 19344.96, + "end": 19348.32, + "probability": 0.9978 + }, + { + "start": 19348.88, + "end": 19349.8, + "probability": 0.6197 + }, + { + "start": 19350.04, + "end": 19350.58, + "probability": 0.7508 + }, + { + "start": 19350.76, + "end": 19351.62, + "probability": 0.6483 + }, + { + "start": 19351.66, + "end": 19355.54, + "probability": 0.7588 + }, + { + "start": 19370.82, + "end": 19373.34, + "probability": 0.7022 + }, + { + "start": 19373.88, + "end": 19374.42, + "probability": 0.8683 + }, + { + "start": 19377.12, + "end": 19379.56, + "probability": 0.5077 + }, + { + "start": 19381.08, + "end": 19385.04, + "probability": 0.829 + }, + { + "start": 19385.48, + "end": 19386.68, + "probability": 0.2502 + }, + { + "start": 19386.7, + "end": 19388.64, + "probability": 0.8693 + }, + { + "start": 19389.3, + "end": 19392.1, + "probability": 0.9421 + }, + { + "start": 19394.64, + "end": 19397.6, + "probability": 0.8774 + }, + { + "start": 19398.24, + "end": 19400.74, + "probability": 0.9686 + }, + { + "start": 19400.94, + "end": 19402.04, + "probability": 0.7288 + }, + { + "start": 19402.24, + "end": 19403.6, + "probability": 0.4516 + }, + { + "start": 19403.6, + "end": 19405.12, + "probability": 0.2216 + }, + { + "start": 19407.0, + "end": 19407.5, + "probability": 0.564 + }, + { + "start": 19407.62, + "end": 19408.16, + "probability": 0.5819 + }, + { + "start": 19408.22, + "end": 19411.72, + "probability": 0.5915 + }, + { + "start": 19413.05, + "end": 19416.01, + "probability": 0.9766 + }, + { + "start": 19417.4, + "end": 19417.7, + "probability": 0.1053 + }, + { + "start": 19417.7, + "end": 19418.05, + "probability": 0.2342 + }, + { + "start": 19420.14, + "end": 19421.14, + "probability": 0.9021 + }, + { + "start": 19421.18, + "end": 19429.38, + "probability": 0.9919 + }, + { + "start": 19431.94, + "end": 19434.28, + "probability": 0.9041 + }, + { + "start": 19437.65, + "end": 19438.28, + "probability": 0.8262 + }, + { + "start": 19438.54, + "end": 19438.7, + "probability": 0.1281 + }, + { + "start": 19438.7, + "end": 19438.7, + "probability": 0.0728 + }, + { + "start": 19438.7, + "end": 19439.54, + "probability": 0.3113 + }, + { + "start": 19441.22, + "end": 19446.84, + "probability": 0.7938 + }, + { + "start": 19447.96, + "end": 19449.56, + "probability": 0.8633 + }, + { + "start": 19450.68, + "end": 19450.8, + "probability": 0.4517 + }, + { + "start": 19451.92, + "end": 19453.34, + "probability": 0.0241 + }, + { + "start": 19453.36, + "end": 19454.02, + "probability": 0.671 + }, + { + "start": 19455.58, + "end": 19455.64, + "probability": 0.0149 + }, + { + "start": 19455.64, + "end": 19456.58, + "probability": 0.3518 + }, + { + "start": 19459.0, + "end": 19461.59, + "probability": 0.9741 + }, + { + "start": 19463.86, + "end": 19467.02, + "probability": 0.9705 + }, + { + "start": 19467.9, + "end": 19467.9, + "probability": 0.0454 + }, + { + "start": 19467.9, + "end": 19472.64, + "probability": 0.9199 + }, + { + "start": 19473.54, + "end": 19478.34, + "probability": 0.7696 + }, + { + "start": 19479.18, + "end": 19480.68, + "probability": 0.4064 + }, + { + "start": 19481.64, + "end": 19487.2, + "probability": 0.9761 + }, + { + "start": 19487.72, + "end": 19488.35, + "probability": 0.9185 + }, + { + "start": 19489.28, + "end": 19490.7, + "probability": 0.9749 + }, + { + "start": 19490.92, + "end": 19492.7, + "probability": 0.8135 + }, + { + "start": 19493.52, + "end": 19495.66, + "probability": 0.8774 + }, + { + "start": 19497.32, + "end": 19499.57, + "probability": 0.9945 + }, + { + "start": 19500.1, + "end": 19507.12, + "probability": 0.9948 + }, + { + "start": 19507.7, + "end": 19512.68, + "probability": 0.976 + }, + { + "start": 19512.86, + "end": 19516.62, + "probability": 0.9897 + }, + { + "start": 19516.94, + "end": 19519.38, + "probability": 0.5002 + }, + { + "start": 19519.42, + "end": 19524.64, + "probability": 0.9819 + }, + { + "start": 19525.84, + "end": 19527.38, + "probability": 0.7314 + }, + { + "start": 19527.52, + "end": 19530.42, + "probability": 0.8875 + }, + { + "start": 19530.94, + "end": 19532.5, + "probability": 0.7061 + }, + { + "start": 19533.78, + "end": 19539.46, + "probability": 0.7848 + }, + { + "start": 19540.24, + "end": 19541.88, + "probability": 0.9387 + }, + { + "start": 19542.02, + "end": 19542.12, + "probability": 0.0038 + }, + { + "start": 19542.22, + "end": 19542.52, + "probability": 0.1862 + }, + { + "start": 19542.8, + "end": 19547.58, + "probability": 0.8022 + }, + { + "start": 19549.91, + "end": 19553.86, + "probability": 0.7651 + }, + { + "start": 19554.94, + "end": 19561.18, + "probability": 0.9451 + }, + { + "start": 19562.0, + "end": 19564.12, + "probability": 0.7321 + }, + { + "start": 19564.9, + "end": 19568.24, + "probability": 0.5988 + }, + { + "start": 19568.32, + "end": 19569.08, + "probability": 0.4759 + }, + { + "start": 19569.1, + "end": 19570.5, + "probability": 0.9193 + }, + { + "start": 19571.38, + "end": 19575.58, + "probability": 0.9958 + }, + { + "start": 19575.58, + "end": 19580.7, + "probability": 0.9819 + }, + { + "start": 19580.94, + "end": 19581.52, + "probability": 0.6643 + }, + { + "start": 19582.76, + "end": 19585.0, + "probability": 0.6504 + }, + { + "start": 19586.14, + "end": 19588.82, + "probability": 0.8549 + }, + { + "start": 19588.94, + "end": 19589.74, + "probability": 0.9275 + }, + { + "start": 19589.76, + "end": 19590.22, + "probability": 0.7823 + }, + { + "start": 19590.26, + "end": 19592.84, + "probability": 0.9346 + }, + { + "start": 19593.62, + "end": 19594.66, + "probability": 0.9294 + }, + { + "start": 19594.78, + "end": 19598.78, + "probability": 0.9705 + }, + { + "start": 19599.06, + "end": 19600.74, + "probability": 0.8186 + }, + { + "start": 19601.2, + "end": 19602.81, + "probability": 0.5302 + }, + { + "start": 19604.38, + "end": 19607.2, + "probability": 0.8571 + }, + { + "start": 19607.58, + "end": 19610.74, + "probability": 0.9113 + }, + { + "start": 19610.78, + "end": 19612.0, + "probability": 0.9813 + }, + { + "start": 19612.74, + "end": 19615.08, + "probability": 0.9502 + }, + { + "start": 19619.52, + "end": 19620.16, + "probability": 0.9933 + }, + { + "start": 19622.16, + "end": 19624.24, + "probability": 0.8097 + }, + { + "start": 19625.7, + "end": 19628.82, + "probability": 0.9813 + }, + { + "start": 19628.82, + "end": 19634.0, + "probability": 0.8354 + }, + { + "start": 19635.46, + "end": 19638.9, + "probability": 0.9868 + }, + { + "start": 19639.5, + "end": 19642.16, + "probability": 0.9777 + }, + { + "start": 19642.76, + "end": 19645.98, + "probability": 0.5477 + }, + { + "start": 19646.74, + "end": 19648.37, + "probability": 0.6984 + }, + { + "start": 19649.84, + "end": 19651.72, + "probability": 0.887 + }, + { + "start": 19654.08, + "end": 19661.74, + "probability": 0.9873 + }, + { + "start": 19662.5, + "end": 19665.28, + "probability": 0.5907 + }, + { + "start": 19665.9, + "end": 19670.28, + "probability": 0.744 + }, + { + "start": 19670.28, + "end": 19677.08, + "probability": 0.905 + }, + { + "start": 19677.7, + "end": 19682.0, + "probability": 0.9825 + }, + { + "start": 19682.9, + "end": 19686.0, + "probability": 0.9495 + }, + { + "start": 19686.58, + "end": 19687.2, + "probability": 0.9042 + }, + { + "start": 19687.9, + "end": 19690.36, + "probability": 0.9619 + }, + { + "start": 19691.08, + "end": 19692.24, + "probability": 0.6089 + }, + { + "start": 19693.06, + "end": 19699.0, + "probability": 0.9748 + }, + { + "start": 19700.48, + "end": 19708.14, + "probability": 0.978 + }, + { + "start": 19708.72, + "end": 19710.4, + "probability": 0.7655 + }, + { + "start": 19711.1, + "end": 19712.44, + "probability": 0.7078 + }, + { + "start": 19713.56, + "end": 19717.62, + "probability": 0.97 + }, + { + "start": 19717.7, + "end": 19721.4, + "probability": 0.6695 + }, + { + "start": 19721.88, + "end": 19723.5, + "probability": 0.9894 + }, + { + "start": 19723.92, + "end": 19728.78, + "probability": 0.9438 + }, + { + "start": 19728.94, + "end": 19731.44, + "probability": 0.8519 + }, + { + "start": 19732.0, + "end": 19735.22, + "probability": 0.9932 + }, + { + "start": 19735.22, + "end": 19738.88, + "probability": 0.6406 + }, + { + "start": 19739.4, + "end": 19743.18, + "probability": 0.9531 + }, + { + "start": 19743.58, + "end": 19744.46, + "probability": 0.9392 + }, + { + "start": 19744.72, + "end": 19746.36, + "probability": 0.9539 + }, + { + "start": 19746.94, + "end": 19747.62, + "probability": 0.2733 + }, + { + "start": 19748.44, + "end": 19749.72, + "probability": 0.6342 + }, + { + "start": 19749.84, + "end": 19752.26, + "probability": 0.9153 + }, + { + "start": 19769.68, + "end": 19771.12, + "probability": 0.7563 + }, + { + "start": 19771.18, + "end": 19772.5, + "probability": 0.9338 + }, + { + "start": 19774.5, + "end": 19775.66, + "probability": 0.9713 + }, + { + "start": 19776.26, + "end": 19778.41, + "probability": 0.0479 + }, + { + "start": 19778.74, + "end": 19779.98, + "probability": 0.3407 + }, + { + "start": 19780.22, + "end": 19782.66, + "probability": 0.8195 + }, + { + "start": 19783.68, + "end": 19785.64, + "probability": 0.8466 + }, + { + "start": 19786.22, + "end": 19787.6, + "probability": 0.6978 + }, + { + "start": 19790.66, + "end": 19790.66, + "probability": 0.8125 + }, + { + "start": 19798.7, + "end": 19800.96, + "probability": 0.9175 + }, + { + "start": 19801.46, + "end": 19802.55, + "probability": 0.9964 + }, + { + "start": 19803.12, + "end": 19806.84, + "probability": 0.9856 + }, + { + "start": 19808.44, + "end": 19811.2, + "probability": 0.9875 + }, + { + "start": 19812.82, + "end": 19818.12, + "probability": 0.9967 + }, + { + "start": 19819.58, + "end": 19821.0, + "probability": 0.9279 + }, + { + "start": 19822.36, + "end": 19825.78, + "probability": 0.9336 + }, + { + "start": 19826.32, + "end": 19827.14, + "probability": 0.8405 + }, + { + "start": 19828.54, + "end": 19829.72, + "probability": 0.688 + }, + { + "start": 19830.3, + "end": 19832.08, + "probability": 0.9578 + }, + { + "start": 19833.66, + "end": 19837.98, + "probability": 0.8975 + }, + { + "start": 19840.4, + "end": 19840.8, + "probability": 0.6305 + }, + { + "start": 19842.28, + "end": 19843.32, + "probability": 0.9174 + }, + { + "start": 19843.44, + "end": 19850.24, + "probability": 0.7643 + }, + { + "start": 19852.68, + "end": 19856.36, + "probability": 0.9537 + }, + { + "start": 19857.3, + "end": 19859.48, + "probability": 0.7253 + }, + { + "start": 19860.24, + "end": 19862.26, + "probability": 0.9824 + }, + { + "start": 19863.46, + "end": 19865.48, + "probability": 0.9906 + }, + { + "start": 19867.68, + "end": 19868.94, + "probability": 0.9946 + }, + { + "start": 19869.42, + "end": 19869.98, + "probability": 0.9484 + }, + { + "start": 19870.12, + "end": 19871.19, + "probability": 0.8832 + }, + { + "start": 19871.64, + "end": 19875.78, + "probability": 0.8441 + }, + { + "start": 19876.8, + "end": 19878.86, + "probability": 0.9711 + }, + { + "start": 19879.5, + "end": 19879.84, + "probability": 0.1611 + }, + { + "start": 19881.02, + "end": 19883.28, + "probability": 0.7616 + }, + { + "start": 19884.1, + "end": 19884.5, + "probability": 0.3922 + }, + { + "start": 19884.5, + "end": 19886.44, + "probability": 0.6804 + }, + { + "start": 19887.08, + "end": 19890.11, + "probability": 0.4594 + }, + { + "start": 19891.26, + "end": 19891.52, + "probability": 0.4312 + }, + { + "start": 19891.62, + "end": 19892.57, + "probability": 0.7759 + }, + { + "start": 19892.86, + "end": 19894.06, + "probability": 0.5315 + }, + { + "start": 19894.56, + "end": 19896.62, + "probability": 0.9641 + }, + { + "start": 19896.76, + "end": 19897.37, + "probability": 0.6443 + }, + { + "start": 19899.24, + "end": 19901.22, + "probability": 0.9822 + }, + { + "start": 19901.9, + "end": 19907.32, + "probability": 0.9914 + }, + { + "start": 19907.72, + "end": 19909.06, + "probability": 0.7609 + }, + { + "start": 19909.26, + "end": 19920.1, + "probability": 0.8725 + }, + { + "start": 19920.22, + "end": 19922.7, + "probability": 0.9771 + }, + { + "start": 19924.72, + "end": 19927.54, + "probability": 0.9558 + }, + { + "start": 19930.18, + "end": 19933.98, + "probability": 0.9952 + }, + { + "start": 19935.94, + "end": 19936.54, + "probability": 0.7381 + }, + { + "start": 19936.66, + "end": 19937.68, + "probability": 0.8896 + }, + { + "start": 19937.78, + "end": 19938.72, + "probability": 0.8915 + }, + { + "start": 19938.9, + "end": 19940.08, + "probability": 0.9262 + }, + { + "start": 19940.84, + "end": 19944.44, + "probability": 0.9715 + }, + { + "start": 19945.36, + "end": 19946.84, + "probability": 0.8875 + }, + { + "start": 19947.78, + "end": 19949.42, + "probability": 0.9587 + }, + { + "start": 19949.74, + "end": 19954.76, + "probability": 0.7843 + }, + { + "start": 19954.96, + "end": 19956.42, + "probability": 0.9657 + }, + { + "start": 19956.54, + "end": 19957.94, + "probability": 0.9724 + }, + { + "start": 19958.0, + "end": 19959.58, + "probability": 0.8179 + }, + { + "start": 19960.38, + "end": 19962.72, + "probability": 0.9365 + }, + { + "start": 19964.52, + "end": 19968.52, + "probability": 0.7859 + }, + { + "start": 19970.72, + "end": 19972.08, + "probability": 0.5986 + }, + { + "start": 19973.38, + "end": 19976.36, + "probability": 0.827 + }, + { + "start": 19977.3, + "end": 19978.5, + "probability": 0.9513 + }, + { + "start": 19978.56, + "end": 19980.98, + "probability": 0.9436 + }, + { + "start": 19981.12, + "end": 19982.46, + "probability": 0.765 + }, + { + "start": 19983.46, + "end": 19984.34, + "probability": 0.7379 + }, + { + "start": 19984.54, + "end": 19986.28, + "probability": 0.7304 + }, + { + "start": 19988.42, + "end": 19988.96, + "probability": 0.4509 + }, + { + "start": 19989.42, + "end": 19992.4, + "probability": 0.8716 + }, + { + "start": 19992.6, + "end": 19995.68, + "probability": 0.6936 + }, + { + "start": 19996.24, + "end": 19999.94, + "probability": 0.8911 + }, + { + "start": 20001.32, + "end": 20005.78, + "probability": 0.8626 + }, + { + "start": 20006.38, + "end": 20007.68, + "probability": 0.8214 + }, + { + "start": 20007.68, + "end": 20008.78, + "probability": 0.5224 + }, + { + "start": 20008.92, + "end": 20013.06, + "probability": 0.8216 + }, + { + "start": 20013.06, + "end": 20015.38, + "probability": 0.7957 + }, + { + "start": 20015.54, + "end": 20017.24, + "probability": 0.9658 + }, + { + "start": 20018.18, + "end": 20019.22, + "probability": 0.4867 + }, + { + "start": 20020.72, + "end": 20020.98, + "probability": 0.5346 + }, + { + "start": 20020.98, + "end": 20022.66, + "probability": 0.7815 + }, + { + "start": 20022.72, + "end": 20023.42, + "probability": 0.9529 + }, + { + "start": 20023.6, + "end": 20029.32, + "probability": 0.9922 + }, + { + "start": 20031.58, + "end": 20032.84, + "probability": 0.3754 + }, + { + "start": 20033.42, + "end": 20035.3, + "probability": 0.9899 + }, + { + "start": 20035.46, + "end": 20036.68, + "probability": 0.9915 + }, + { + "start": 20036.72, + "end": 20037.71, + "probability": 0.85 + }, + { + "start": 20038.36, + "end": 20039.66, + "probability": 0.9956 + }, + { + "start": 20039.68, + "end": 20040.72, + "probability": 0.9431 + }, + { + "start": 20041.54, + "end": 20043.28, + "probability": 0.9301 + }, + { + "start": 20043.34, + "end": 20046.92, + "probability": 0.9116 + }, + { + "start": 20047.0, + "end": 20047.28, + "probability": 0.8023 + }, + { + "start": 20047.62, + "end": 20049.14, + "probability": 0.8021 + }, + { + "start": 20049.2, + "end": 20051.28, + "probability": 0.7946 + }, + { + "start": 20064.16, + "end": 20065.92, + "probability": 0.6016 + }, + { + "start": 20065.92, + "end": 20067.24, + "probability": 0.6668 + }, + { + "start": 20067.26, + "end": 20067.76, + "probability": 0.8766 + }, + { + "start": 20067.88, + "end": 20069.3, + "probability": 0.5359 + }, + { + "start": 20069.64, + "end": 20071.94, + "probability": 0.8455 + }, + { + "start": 20072.02, + "end": 20073.17, + "probability": 0.7854 + }, + { + "start": 20073.92, + "end": 20080.94, + "probability": 0.9918 + }, + { + "start": 20081.08, + "end": 20082.06, + "probability": 0.2208 + }, + { + "start": 20082.08, + "end": 20083.1, + "probability": 0.4323 + }, + { + "start": 20083.92, + "end": 20088.88, + "probability": 0.9721 + }, + { + "start": 20089.5, + "end": 20093.38, + "probability": 0.9897 + }, + { + "start": 20094.12, + "end": 20101.38, + "probability": 0.9701 + }, + { + "start": 20101.62, + "end": 20106.06, + "probability": 0.7586 + }, + { + "start": 20106.38, + "end": 20107.4, + "probability": 0.6607 + }, + { + "start": 20108.86, + "end": 20114.58, + "probability": 0.9678 + }, + { + "start": 20114.58, + "end": 20121.26, + "probability": 0.9932 + }, + { + "start": 20121.66, + "end": 20128.14, + "probability": 0.9941 + }, + { + "start": 20128.14, + "end": 20133.06, + "probability": 0.9974 + }, + { + "start": 20133.26, + "end": 20134.0, + "probability": 0.4078 + }, + { + "start": 20134.32, + "end": 20135.3, + "probability": 0.8063 + }, + { + "start": 20135.46, + "end": 20136.12, + "probability": 0.8964 + }, + { + "start": 20136.2, + "end": 20137.26, + "probability": 0.9146 + }, + { + "start": 20137.5, + "end": 20139.62, + "probability": 0.9777 + }, + { + "start": 20140.0, + "end": 20145.12, + "probability": 0.9878 + }, + { + "start": 20145.12, + "end": 20149.16, + "probability": 0.9832 + }, + { + "start": 20149.38, + "end": 20149.94, + "probability": 0.6005 + }, + { + "start": 20150.04, + "end": 20151.52, + "probability": 0.8677 + }, + { + "start": 20152.42, + "end": 20156.94, + "probability": 0.9729 + }, + { + "start": 20157.36, + "end": 20157.74, + "probability": 0.9468 + }, + { + "start": 20157.88, + "end": 20163.38, + "probability": 0.9929 + }, + { + "start": 20163.38, + "end": 20167.08, + "probability": 0.9257 + }, + { + "start": 20167.86, + "end": 20169.5, + "probability": 0.9871 + }, + { + "start": 20169.6, + "end": 20170.9, + "probability": 0.719 + }, + { + "start": 20171.1, + "end": 20174.62, + "probability": 0.6957 + }, + { + "start": 20175.04, + "end": 20180.7, + "probability": 0.9525 + }, + { + "start": 20180.88, + "end": 20186.06, + "probability": 0.8807 + }, + { + "start": 20186.14, + "end": 20188.64, + "probability": 0.9564 + }, + { + "start": 20188.74, + "end": 20195.3, + "probability": 0.8243 + }, + { + "start": 20195.62, + "end": 20199.53, + "probability": 0.9881 + }, + { + "start": 20200.8, + "end": 20206.66, + "probability": 0.9965 + }, + { + "start": 20206.82, + "end": 20208.86, + "probability": 0.8713 + }, + { + "start": 20209.16, + "end": 20212.3, + "probability": 0.9797 + }, + { + "start": 20212.98, + "end": 20215.54, + "probability": 0.9844 + }, + { + "start": 20215.98, + "end": 20223.84, + "probability": 0.9934 + }, + { + "start": 20225.18, + "end": 20232.54, + "probability": 0.9893 + }, + { + "start": 20232.76, + "end": 20235.36, + "probability": 0.9805 + }, + { + "start": 20235.78, + "end": 20239.04, + "probability": 0.9966 + }, + { + "start": 20239.5, + "end": 20245.82, + "probability": 0.8439 + }, + { + "start": 20248.54, + "end": 20254.24, + "probability": 0.9626 + }, + { + "start": 20254.24, + "end": 20254.64, + "probability": 0.7045 + }, + { + "start": 20255.14, + "end": 20256.28, + "probability": 0.6204 + }, + { + "start": 20256.38, + "end": 20257.94, + "probability": 0.8242 + }, + { + "start": 20257.98, + "end": 20258.64, + "probability": 0.8743 + }, + { + "start": 20274.24, + "end": 20276.5, + "probability": 0.6506 + }, + { + "start": 20276.5, + "end": 20276.7, + "probability": 0.6689 + }, + { + "start": 20276.82, + "end": 20278.3, + "probability": 0.4296 + }, + { + "start": 20278.96, + "end": 20279.98, + "probability": 0.9236 + }, + { + "start": 20281.5, + "end": 20282.42, + "probability": 0.9071 + }, + { + "start": 20283.0, + "end": 20285.84, + "probability": 0.9789 + }, + { + "start": 20286.32, + "end": 20289.9, + "probability": 0.9925 + }, + { + "start": 20290.98, + "end": 20297.28, + "probability": 0.9652 + }, + { + "start": 20298.98, + "end": 20301.87, + "probability": 0.9812 + }, + { + "start": 20303.02, + "end": 20304.28, + "probability": 0.8926 + }, + { + "start": 20305.78, + "end": 20310.62, + "probability": 0.986 + }, + { + "start": 20310.74, + "end": 20311.78, + "probability": 0.7166 + }, + { + "start": 20312.26, + "end": 20313.8, + "probability": 0.9475 + }, + { + "start": 20313.96, + "end": 20314.92, + "probability": 0.8123 + }, + { + "start": 20315.04, + "end": 20317.54, + "probability": 0.5831 + }, + { + "start": 20317.64, + "end": 20319.2, + "probability": 0.9808 + }, + { + "start": 20319.38, + "end": 20322.98, + "probability": 0.8945 + }, + { + "start": 20323.64, + "end": 20325.56, + "probability": 0.9474 + }, + { + "start": 20326.18, + "end": 20326.88, + "probability": 0.7577 + }, + { + "start": 20328.32, + "end": 20331.58, + "probability": 0.9707 + }, + { + "start": 20331.98, + "end": 20333.22, + "probability": 0.8493 + }, + { + "start": 20333.62, + "end": 20334.28, + "probability": 0.5449 + }, + { + "start": 20334.38, + "end": 20337.3, + "probability": 0.8994 + }, + { + "start": 20339.06, + "end": 20346.26, + "probability": 0.9607 + }, + { + "start": 20347.76, + "end": 20355.7, + "probability": 0.9825 + }, + { + "start": 20356.62, + "end": 20358.19, + "probability": 0.889 + }, + { + "start": 20359.94, + "end": 20359.94, + "probability": 0.1545 + }, + { + "start": 20359.94, + "end": 20360.44, + "probability": 0.3816 + }, + { + "start": 20360.56, + "end": 20361.67, + "probability": 0.9331 + }, + { + "start": 20361.82, + "end": 20363.26, + "probability": 0.6675 + }, + { + "start": 20363.34, + "end": 20364.28, + "probability": 0.3733 + }, + { + "start": 20364.28, + "end": 20366.84, + "probability": 0.2675 + }, + { + "start": 20367.3, + "end": 20368.66, + "probability": 0.5884 + }, + { + "start": 20368.72, + "end": 20369.52, + "probability": 0.1416 + }, + { + "start": 20370.84, + "end": 20372.62, + "probability": 0.5895 + }, + { + "start": 20372.68, + "end": 20374.46, + "probability": 0.8657 + }, + { + "start": 20374.72, + "end": 20376.52, + "probability": 0.936 + }, + { + "start": 20376.66, + "end": 20377.38, + "probability": 0.3274 + }, + { + "start": 20377.64, + "end": 20379.5, + "probability": 0.8072 + }, + { + "start": 20379.86, + "end": 20380.72, + "probability": 0.9497 + }, + { + "start": 20380.78, + "end": 20381.93, + "probability": 0.7864 + }, + { + "start": 20382.88, + "end": 20387.44, + "probability": 0.9032 + }, + { + "start": 20388.18, + "end": 20390.72, + "probability": 0.9683 + }, + { + "start": 20391.06, + "end": 20391.44, + "probability": 0.5221 + }, + { + "start": 20391.64, + "end": 20394.57, + "probability": 0.7499 + }, + { + "start": 20395.12, + "end": 20395.7, + "probability": 0.6985 + }, + { + "start": 20395.7, + "end": 20397.56, + "probability": 0.7054 + }, + { + "start": 20397.64, + "end": 20399.14, + "probability": 0.9567 + }, + { + "start": 20399.44, + "end": 20400.94, + "probability": 0.9862 + }, + { + "start": 20401.68, + "end": 20402.64, + "probability": 0.9518 + }, + { + "start": 20402.7, + "end": 20403.72, + "probability": 0.9885 + }, + { + "start": 20404.48, + "end": 20405.92, + "probability": 0.0301 + }, + { + "start": 20406.1, + "end": 20406.88, + "probability": 0.0145 + }, + { + "start": 20406.94, + "end": 20408.34, + "probability": 0.759 + }, + { + "start": 20408.48, + "end": 20411.56, + "probability": 0.8445 + }, + { + "start": 20411.66, + "end": 20415.4, + "probability": 0.9473 + }, + { + "start": 20415.82, + "end": 20417.94, + "probability": 0.8584 + }, + { + "start": 20418.58, + "end": 20422.16, + "probability": 0.5502 + }, + { + "start": 20422.86, + "end": 20425.7, + "probability": 0.7421 + }, + { + "start": 20426.44, + "end": 20429.34, + "probability": 0.842 + }, + { + "start": 20429.34, + "end": 20430.18, + "probability": 0.9183 + }, + { + "start": 20430.26, + "end": 20434.44, + "probability": 0.9847 + }, + { + "start": 20434.76, + "end": 20439.18, + "probability": 0.9956 + }, + { + "start": 20439.76, + "end": 20440.92, + "probability": 0.6793 + }, + { + "start": 20443.06, + "end": 20443.6, + "probability": 0.8859 + }, + { + "start": 20451.3, + "end": 20451.88, + "probability": 0.0874 + }, + { + "start": 20455.7, + "end": 20458.16, + "probability": 0.6112 + }, + { + "start": 20458.94, + "end": 20460.24, + "probability": 0.4987 + }, + { + "start": 20460.26, + "end": 20462.22, + "probability": 0.6442 + }, + { + "start": 20462.36, + "end": 20462.58, + "probability": 0.7299 + }, + { + "start": 20462.62, + "end": 20463.98, + "probability": 0.9807 + }, + { + "start": 20464.0, + "end": 20464.82, + "probability": 0.5458 + }, + { + "start": 20465.38, + "end": 20466.36, + "probability": 0.9185 + }, + { + "start": 20466.92, + "end": 20468.5, + "probability": 0.9326 + }, + { + "start": 20468.58, + "end": 20470.06, + "probability": 0.9739 + }, + { + "start": 20470.36, + "end": 20472.28, + "probability": 0.9785 + }, + { + "start": 20473.14, + "end": 20473.26, + "probability": 0.1984 + }, + { + "start": 20473.38, + "end": 20476.22, + "probability": 0.3418 + }, + { + "start": 20476.34, + "end": 20478.62, + "probability": 0.9289 + }, + { + "start": 20478.74, + "end": 20479.56, + "probability": 0.8722 + }, + { + "start": 20479.72, + "end": 20480.58, + "probability": 0.7352 + }, + { + "start": 20481.74, + "end": 20482.8, + "probability": 0.6614 + }, + { + "start": 20483.4, + "end": 20484.74, + "probability": 0.9436 + }, + { + "start": 20486.02, + "end": 20487.98, + "probability": 0.9769 + }, + { + "start": 20488.7, + "end": 20490.58, + "probability": 0.9827 + }, + { + "start": 20491.26, + "end": 20491.44, + "probability": 0.0071 + }, + { + "start": 20491.48, + "end": 20493.0, + "probability": 0.4928 + }, + { + "start": 20493.46, + "end": 20496.24, + "probability": 0.9354 + }, + { + "start": 20496.5, + "end": 20497.72, + "probability": 0.8445 + }, + { + "start": 20499.76, + "end": 20500.82, + "probability": 0.9837 + }, + { + "start": 20500.94, + "end": 20506.22, + "probability": 0.998 + }, + { + "start": 20506.22, + "end": 20509.94, + "probability": 0.9567 + }, + { + "start": 20510.46, + "end": 20512.22, + "probability": 0.9956 + }, + { + "start": 20513.5, + "end": 20514.6, + "probability": 0.6641 + }, + { + "start": 20514.74, + "end": 20516.36, + "probability": 0.9566 + }, + { + "start": 20517.84, + "end": 20519.2, + "probability": 0.965 + }, + { + "start": 20520.1, + "end": 20523.54, + "probability": 0.9727 + }, + { + "start": 20524.12, + "end": 20526.46, + "probability": 0.9882 + }, + { + "start": 20527.34, + "end": 20530.06, + "probability": 0.9143 + }, + { + "start": 20530.72, + "end": 20534.34, + "probability": 0.9595 + }, + { + "start": 20534.42, + "end": 20535.45, + "probability": 0.9209 + }, + { + "start": 20536.36, + "end": 20541.58, + "probability": 0.63 + }, + { + "start": 20542.32, + "end": 20546.36, + "probability": 0.4144 + }, + { + "start": 20546.8, + "end": 20546.92, + "probability": 0.5861 + }, + { + "start": 20546.92, + "end": 20549.44, + "probability": 0.6251 + }, + { + "start": 20549.76, + "end": 20551.76, + "probability": 0.2222 + }, + { + "start": 20551.76, + "end": 20553.82, + "probability": 0.9842 + }, + { + "start": 20554.42, + "end": 20555.68, + "probability": 0.3478 + }, + { + "start": 20555.72, + "end": 20557.06, + "probability": 0.868 + }, + { + "start": 20557.84, + "end": 20565.6, + "probability": 0.7452 + }, + { + "start": 20566.2, + "end": 20568.99, + "probability": 0.5269 + }, + { + "start": 20569.64, + "end": 20571.26, + "probability": 0.4837 + }, + { + "start": 20571.74, + "end": 20574.08, + "probability": 0.8655 + }, + { + "start": 20574.58, + "end": 20576.1, + "probability": 0.8077 + }, + { + "start": 20576.45, + "end": 20577.88, + "probability": 0.0954 + }, + { + "start": 20579.04, + "end": 20582.0, + "probability": 0.1895 + }, + { + "start": 20582.55, + "end": 20586.66, + "probability": 0.778 + }, + { + "start": 20586.72, + "end": 20589.17, + "probability": 0.4684 + }, + { + "start": 20589.66, + "end": 20591.18, + "probability": 0.4155 + }, + { + "start": 20591.96, + "end": 20593.4, + "probability": 0.0394 + }, + { + "start": 20594.76, + "end": 20596.3, + "probability": 0.7997 + }, + { + "start": 20596.98, + "end": 20601.12, + "probability": 0.5348 + }, + { + "start": 20601.76, + "end": 20602.98, + "probability": 0.8525 + }, + { + "start": 20603.12, + "end": 20610.26, + "probability": 0.9584 + }, + { + "start": 20610.44, + "end": 20613.38, + "probability": 0.9619 + }, + { + "start": 20613.72, + "end": 20615.9, + "probability": 0.6509 + }, + { + "start": 20616.32, + "end": 20617.74, + "probability": 0.6226 + }, + { + "start": 20617.82, + "end": 20618.26, + "probability": 0.8215 + }, + { + "start": 20618.34, + "end": 20619.06, + "probability": 0.8678 + }, + { + "start": 20619.28, + "end": 20620.6, + "probability": 0.9948 + }, + { + "start": 20620.9, + "end": 20625.1, + "probability": 0.8 + }, + { + "start": 20625.32, + "end": 20626.57, + "probability": 0.9758 + }, + { + "start": 20627.2, + "end": 20628.72, + "probability": 0.8351 + }, + { + "start": 20629.08, + "end": 20630.39, + "probability": 0.8269 + }, + { + "start": 20630.68, + "end": 20633.96, + "probability": 0.9313 + }, + { + "start": 20634.28, + "end": 20636.0, + "probability": 0.8409 + }, + { + "start": 20636.42, + "end": 20637.16, + "probability": 0.9489 + }, + { + "start": 20637.22, + "end": 20638.34, + "probability": 0.929 + }, + { + "start": 20638.4, + "end": 20642.56, + "probability": 0.9639 + }, + { + "start": 20642.56, + "end": 20646.5, + "probability": 0.9933 + }, + { + "start": 20646.92, + "end": 20648.44, + "probability": 0.9369 + }, + { + "start": 20649.24, + "end": 20650.9, + "probability": 0.5545 + }, + { + "start": 20652.45, + "end": 20656.71, + "probability": 0.8654 + }, + { + "start": 20667.12, + "end": 20668.7, + "probability": 0.6542 + }, + { + "start": 20670.34, + "end": 20673.2, + "probability": 0.7106 + }, + { + "start": 20673.99, + "end": 20678.6, + "probability": 0.7317 + }, + { + "start": 20680.84, + "end": 20683.14, + "probability": 0.9762 + }, + { + "start": 20683.52, + "end": 20684.65, + "probability": 0.1177 + }, + { + "start": 20687.14, + "end": 20687.78, + "probability": 0.61 + }, + { + "start": 20688.72, + "end": 20693.0, + "probability": 0.9864 + }, + { + "start": 20695.06, + "end": 20699.62, + "probability": 0.9708 + }, + { + "start": 20701.3, + "end": 20701.74, + "probability": 0.8613 + }, + { + "start": 20701.86, + "end": 20705.86, + "probability": 0.99 + }, + { + "start": 20706.48, + "end": 20707.42, + "probability": 0.9091 + }, + { + "start": 20707.88, + "end": 20710.38, + "probability": 0.9841 + }, + { + "start": 20710.76, + "end": 20713.02, + "probability": 0.9113 + }, + { + "start": 20714.36, + "end": 20719.64, + "probability": 0.9806 + }, + { + "start": 20720.96, + "end": 20722.16, + "probability": 0.1963 + }, + { + "start": 20724.28, + "end": 20725.71, + "probability": 0.9976 + }, + { + "start": 20727.12, + "end": 20728.32, + "probability": 0.548 + }, + { + "start": 20728.56, + "end": 20732.82, + "probability": 0.9912 + }, + { + "start": 20737.46, + "end": 20738.65, + "probability": 0.7163 + }, + { + "start": 20740.02, + "end": 20742.16, + "probability": 0.9971 + }, + { + "start": 20743.68, + "end": 20745.82, + "probability": 0.9965 + }, + { + "start": 20746.86, + "end": 20750.1, + "probability": 0.9758 + }, + { + "start": 20750.9, + "end": 20754.44, + "probability": 0.8367 + }, + { + "start": 20755.7, + "end": 20757.54, + "probability": 0.9245 + }, + { + "start": 20758.2, + "end": 20761.24, + "probability": 0.3163 + }, + { + "start": 20763.2, + "end": 20765.48, + "probability": 0.7508 + }, + { + "start": 20766.42, + "end": 20767.89, + "probability": 0.7357 + }, + { + "start": 20768.68, + "end": 20773.64, + "probability": 0.9567 + }, + { + "start": 20774.0, + "end": 20777.6, + "probability": 0.9562 + }, + { + "start": 20777.98, + "end": 20778.36, + "probability": 0.5538 + }, + { + "start": 20778.42, + "end": 20779.78, + "probability": 0.7792 + }, + { + "start": 20779.88, + "end": 20781.28, + "probability": 0.8273 + }, + { + "start": 20781.5, + "end": 20784.1, + "probability": 0.8346 + }, + { + "start": 20784.1, + "end": 20785.22, + "probability": 0.1454 + }, + { + "start": 20785.82, + "end": 20788.63, + "probability": 0.9515 + }, + { + "start": 20790.53, + "end": 20792.74, + "probability": 0.9529 + }, + { + "start": 20792.82, + "end": 20794.12, + "probability": 0.9878 + }, + { + "start": 20795.14, + "end": 20800.48, + "probability": 0.8561 + }, + { + "start": 20801.9, + "end": 20805.86, + "probability": 0.9355 + }, + { + "start": 20806.38, + "end": 20807.2, + "probability": 0.8201 + }, + { + "start": 20807.5, + "end": 20807.68, + "probability": 0.7061 + }, + { + "start": 20807.8, + "end": 20809.48, + "probability": 0.998 + }, + { + "start": 20809.62, + "end": 20811.18, + "probability": 0.8875 + }, + { + "start": 20812.14, + "end": 20814.48, + "probability": 0.9378 + }, + { + "start": 20814.64, + "end": 20815.96, + "probability": 0.8138 + }, + { + "start": 20816.12, + "end": 20817.3, + "probability": 0.8469 + }, + { + "start": 20819.34, + "end": 20820.04, + "probability": 0.0978 + }, + { + "start": 20820.04, + "end": 20820.32, + "probability": 0.5465 + }, + { + "start": 20820.56, + "end": 20822.58, + "probability": 0.9537 + }, + { + "start": 20822.72, + "end": 20826.44, + "probability": 0.9811 + }, + { + "start": 20826.52, + "end": 20828.52, + "probability": 0.7772 + }, + { + "start": 20828.62, + "end": 20831.2, + "probability": 0.9312 + }, + { + "start": 20832.3, + "end": 20837.06, + "probability": 0.9824 + }, + { + "start": 20837.46, + "end": 20839.03, + "probability": 0.7751 + }, + { + "start": 20839.5, + "end": 20839.6, + "probability": 0.492 + }, + { + "start": 20839.8, + "end": 20840.66, + "probability": 0.9277 + }, + { + "start": 20840.68, + "end": 20842.92, + "probability": 0.9767 + }, + { + "start": 20843.26, + "end": 20844.64, + "probability": 0.8191 + }, + { + "start": 20845.38, + "end": 20846.38, + "probability": 0.6916 + }, + { + "start": 20847.0, + "end": 20851.24, + "probability": 0.8862 + }, + { + "start": 20851.4, + "end": 20852.14, + "probability": 0.8229 + }, + { + "start": 20852.28, + "end": 20852.96, + "probability": 0.8126 + }, + { + "start": 20853.38, + "end": 20855.48, + "probability": 0.9714 + }, + { + "start": 20855.54, + "end": 20859.54, + "probability": 0.8759 + }, + { + "start": 20859.98, + "end": 20861.7, + "probability": 0.9926 + }, + { + "start": 20861.94, + "end": 20862.5, + "probability": 0.7431 + }, + { + "start": 20862.58, + "end": 20863.34, + "probability": 0.9146 + }, + { + "start": 20863.44, + "end": 20864.56, + "probability": 0.9382 + }, + { + "start": 20864.92, + "end": 20865.72, + "probability": 0.6921 + }, + { + "start": 20866.02, + "end": 20871.0, + "probability": 0.9333 + }, + { + "start": 20871.4, + "end": 20874.84, + "probability": 0.7216 + }, + { + "start": 20875.2, + "end": 20878.44, + "probability": 0.9023 + }, + { + "start": 20879.1, + "end": 20880.22, + "probability": 0.7691 + }, + { + "start": 20880.72, + "end": 20882.57, + "probability": 0.9688 + }, + { + "start": 20882.98, + "end": 20884.4, + "probability": 0.9251 + }, + { + "start": 20884.64, + "end": 20886.16, + "probability": 0.9824 + }, + { + "start": 20886.44, + "end": 20887.44, + "probability": 0.8845 + }, + { + "start": 20887.62, + "end": 20888.6, + "probability": 0.9883 + }, + { + "start": 20888.9, + "end": 20889.41, + "probability": 0.7087 + }, + { + "start": 20890.7, + "end": 20894.18, + "probability": 0.978 + }, + { + "start": 20894.18, + "end": 20896.98, + "probability": 0.9028 + }, + { + "start": 20897.08, + "end": 20897.59, + "probability": 0.9238 + }, + { + "start": 20898.46, + "end": 20900.7, + "probability": 0.9974 + }, + { + "start": 20902.18, + "end": 20908.48, + "probability": 0.9398 + }, + { + "start": 20908.96, + "end": 20912.1, + "probability": 0.9971 + }, + { + "start": 20912.1, + "end": 20916.28, + "probability": 0.9878 + }, + { + "start": 20916.62, + "end": 20919.32, + "probability": 0.9907 + }, + { + "start": 20920.16, + "end": 20921.5, + "probability": 0.9198 + }, + { + "start": 20921.68, + "end": 20922.86, + "probability": 0.6448 + }, + { + "start": 20923.38, + "end": 20926.09, + "probability": 0.993 + }, + { + "start": 20926.6, + "end": 20932.24, + "probability": 0.947 + }, + { + "start": 20932.28, + "end": 20937.66, + "probability": 0.9836 + }, + { + "start": 20937.68, + "end": 20940.9, + "probability": 0.9839 + }, + { + "start": 20941.58, + "end": 20942.18, + "probability": 0.5695 + }, + { + "start": 20942.32, + "end": 20943.16, + "probability": 0.6492 + }, + { + "start": 20943.94, + "end": 20949.1, + "probability": 0.1757 + }, + { + "start": 20949.12, + "end": 20950.32, + "probability": 0.2879 + }, + { + "start": 20950.46, + "end": 20952.34, + "probability": 0.769 + }, + { + "start": 20952.52, + "end": 20952.94, + "probability": 0.838 + }, + { + "start": 20953.06, + "end": 20954.14, + "probability": 0.714 + }, + { + "start": 20954.46, + "end": 20958.0, + "probability": 0.6437 + }, + { + "start": 20958.08, + "end": 20960.22, + "probability": 0.6772 + }, + { + "start": 20960.7, + "end": 20961.86, + "probability": 0.4728 + }, + { + "start": 20961.86, + "end": 20963.68, + "probability": 0.5002 + }, + { + "start": 20965.07, + "end": 20968.54, + "probability": 0.6676 + }, + { + "start": 20969.06, + "end": 20969.69, + "probability": 0.4942 + }, + { + "start": 20970.82, + "end": 20973.32, + "probability": 0.6902 + }, + { + "start": 20973.32, + "end": 20975.54, + "probability": 0.6315 + }, + { + "start": 20976.0, + "end": 20980.36, + "probability": 0.7492 + }, + { + "start": 20982.12, + "end": 20983.26, + "probability": 0.597 + }, + { + "start": 20984.0, + "end": 20987.76, + "probability": 0.8646 + }, + { + "start": 20987.82, + "end": 20989.18, + "probability": 0.8666 + }, + { + "start": 20989.42, + "end": 20990.7, + "probability": 0.3074 + }, + { + "start": 20991.32, + "end": 20992.08, + "probability": 0.8484 + }, + { + "start": 20992.18, + "end": 20994.74, + "probability": 0.9288 + }, + { + "start": 20995.0, + "end": 20996.32, + "probability": 0.8933 + }, + { + "start": 20996.4, + "end": 20997.68, + "probability": 0.9661 + }, + { + "start": 20998.02, + "end": 20999.84, + "probability": 0.9878 + }, + { + "start": 20999.88, + "end": 21003.24, + "probability": 0.937 + }, + { + "start": 21003.86, + "end": 21006.56, + "probability": 0.7307 + }, + { + "start": 21006.72, + "end": 21008.84, + "probability": 0.7594 + }, + { + "start": 21009.42, + "end": 21010.88, + "probability": 0.8547 + }, + { + "start": 21011.14, + "end": 21012.1, + "probability": 0.9753 + }, + { + "start": 21012.2, + "end": 21016.28, + "probability": 0.9824 + }, + { + "start": 21016.4, + "end": 21018.24, + "probability": 0.5598 + }, + { + "start": 21018.34, + "end": 21019.98, + "probability": 0.4967 + }, + { + "start": 21022.42, + "end": 21024.8, + "probability": 0.3388 + }, + { + "start": 21024.9, + "end": 21027.56, + "probability": 0.7968 + }, + { + "start": 21028.08, + "end": 21030.76, + "probability": 0.2335 + }, + { + "start": 21034.35, + "end": 21037.26, + "probability": 0.0301 + }, + { + "start": 21037.26, + "end": 21038.38, + "probability": 0.6661 + }, + { + "start": 21038.66, + "end": 21040.86, + "probability": 0.2142 + }, + { + "start": 21041.14, + "end": 21044.46, + "probability": 0.8217 + }, + { + "start": 21046.16, + "end": 21051.08, + "probability": 0.0222 + }, + { + "start": 21052.72, + "end": 21054.08, + "probability": 0.0007 + }, + { + "start": 21056.62, + "end": 21065.02, + "probability": 0.5259 + }, + { + "start": 21068.78, + "end": 21077.02, + "probability": 0.7905 + }, + { + "start": 21079.84, + "end": 21079.84, + "probability": 0.0177 + }, + { + "start": 21079.84, + "end": 21079.84, + "probability": 0.0434 + }, + { + "start": 21079.84, + "end": 21080.2, + "probability": 0.3311 + }, + { + "start": 21081.72, + "end": 21082.16, + "probability": 0.6113 + }, + { + "start": 21085.76, + "end": 21088.62, + "probability": 0.8884 + }, + { + "start": 21092.02, + "end": 21096.58, + "probability": 0.8604 + }, + { + "start": 21099.32, + "end": 21105.5, + "probability": 0.9772 + }, + { + "start": 21106.58, + "end": 21107.98, + "probability": 0.8348 + }, + { + "start": 21112.18, + "end": 21113.1, + "probability": 0.502 + }, + { + "start": 21113.12, + "end": 21114.02, + "probability": 0.9165 + }, + { + "start": 21114.18, + "end": 21116.66, + "probability": 0.6644 + }, + { + "start": 21116.8, + "end": 21118.08, + "probability": 0.569 + }, + { + "start": 21118.24, + "end": 21119.8, + "probability": 0.9604 + }, + { + "start": 21122.34, + "end": 21127.9, + "probability": 0.9767 + }, + { + "start": 21130.02, + "end": 21140.34, + "probability": 0.9631 + }, + { + "start": 21140.74, + "end": 21147.84, + "probability": 0.9673 + }, + { + "start": 21149.64, + "end": 21157.04, + "probability": 0.9943 + }, + { + "start": 21159.74, + "end": 21161.02, + "probability": 0.6151 + }, + { + "start": 21162.88, + "end": 21165.1, + "probability": 0.9057 + }, + { + "start": 21165.16, + "end": 21170.26, + "probability": 0.991 + }, + { + "start": 21172.74, + "end": 21182.8, + "probability": 0.7969 + }, + { + "start": 21183.48, + "end": 21191.02, + "probability": 0.8973 + }, + { + "start": 21193.36, + "end": 21194.72, + "probability": 0.854 + }, + { + "start": 21199.55, + "end": 21200.25, + "probability": 0.4097 + }, + { + "start": 21200.63, + "end": 21202.97, + "probability": 0.8105 + }, + { + "start": 21202.97, + "end": 21205.81, + "probability": 0.9894 + }, + { + "start": 21209.33, + "end": 21212.73, + "probability": 0.49 + }, + { + "start": 21216.05, + "end": 21217.25, + "probability": 0.9383 + }, + { + "start": 21218.87, + "end": 21221.89, + "probability": 0.8465 + }, + { + "start": 21222.95, + "end": 21224.08, + "probability": 0.9792 + }, + { + "start": 21226.71, + "end": 21229.85, + "probability": 0.8965 + }, + { + "start": 21231.45, + "end": 21232.51, + "probability": 0.2951 + }, + { + "start": 21233.33, + "end": 21234.71, + "probability": 0.9764 + }, + { + "start": 21235.41, + "end": 21235.95, + "probability": 0.5713 + }, + { + "start": 21236.47, + "end": 21239.89, + "probability": 0.7339 + }, + { + "start": 21242.71, + "end": 21250.19, + "probability": 0.9769 + }, + { + "start": 21251.27, + "end": 21252.43, + "probability": 0.9839 + }, + { + "start": 21255.19, + "end": 21256.13, + "probability": 0.768 + }, + { + "start": 21257.33, + "end": 21258.29, + "probability": 0.6144 + }, + { + "start": 21260.69, + "end": 21269.65, + "probability": 0.9778 + }, + { + "start": 21269.65, + "end": 21277.47, + "probability": 0.998 + }, + { + "start": 21277.47, + "end": 21283.35, + "probability": 0.9896 + }, + { + "start": 21286.31, + "end": 21286.85, + "probability": 0.0218 + }, + { + "start": 21286.95, + "end": 21294.81, + "probability": 0.8472 + }, + { + "start": 21298.27, + "end": 21300.37, + "probability": 0.92 + }, + { + "start": 21301.34, + "end": 21303.68, + "probability": 0.0477 + }, + { + "start": 21304.17, + "end": 21305.3, + "probability": 0.1273 + }, + { + "start": 21306.33, + "end": 21310.55, + "probability": 0.3336 + }, + { + "start": 21311.51, + "end": 21312.59, + "probability": 0.5532 + }, + { + "start": 21315.0, + "end": 21317.07, + "probability": 0.5214 + }, + { + "start": 21317.17, + "end": 21318.93, + "probability": 0.9204 + }, + { + "start": 21319.01, + "end": 21319.69, + "probability": 0.1379 + }, + { + "start": 21319.71, + "end": 21320.21, + "probability": 0.3414 + }, + { + "start": 21320.35, + "end": 21320.99, + "probability": 0.5212 + }, + { + "start": 21321.55, + "end": 21326.42, + "probability": 0.5482 + }, + { + "start": 21329.95, + "end": 21330.99, + "probability": 0.0049 + }, + { + "start": 21330.99, + "end": 21330.99, + "probability": 0.0421 + }, + { + "start": 21330.99, + "end": 21339.35, + "probability": 0.9182 + }, + { + "start": 21343.39, + "end": 21347.89, + "probability": 0.9279 + }, + { + "start": 21347.97, + "end": 21348.91, + "probability": 0.8312 + }, + { + "start": 21349.01, + "end": 21350.03, + "probability": 0.9544 + }, + { + "start": 21350.11, + "end": 21351.05, + "probability": 0.745 + }, + { + "start": 21351.19, + "end": 21351.99, + "probability": 0.9574 + }, + { + "start": 21352.05, + "end": 21353.33, + "probability": 0.9731 + }, + { + "start": 21353.37, + "end": 21354.69, + "probability": 0.8893 + }, + { + "start": 21354.97, + "end": 21355.69, + "probability": 0.9972 + }, + { + "start": 21359.77, + "end": 21368.13, + "probability": 0.7079 + }, + { + "start": 21369.99, + "end": 21371.05, + "probability": 0.8932 + }, + { + "start": 21372.39, + "end": 21373.49, + "probability": 0.6918 + }, + { + "start": 21375.52, + "end": 21379.23, + "probability": 0.6538 + }, + { + "start": 21380.03, + "end": 21383.29, + "probability": 0.9516 + }, + { + "start": 21389.03, + "end": 21393.17, + "probability": 0.8967 + }, + { + "start": 21394.71, + "end": 21400.25, + "probability": 0.9972 + }, + { + "start": 21401.35, + "end": 21405.59, + "probability": 0.9645 + }, + { + "start": 21406.59, + "end": 21407.05, + "probability": 0.7055 + }, + { + "start": 21407.13, + "end": 21408.11, + "probability": 0.6983 + }, + { + "start": 21408.11, + "end": 21410.35, + "probability": 0.9444 + }, + { + "start": 21410.35, + "end": 21416.51, + "probability": 0.996 + }, + { + "start": 21416.95, + "end": 21417.63, + "probability": 0.5253 + }, + { + "start": 21418.73, + "end": 21420.03, + "probability": 0.9377 + }, + { + "start": 21420.61, + "end": 21423.57, + "probability": 0.9807 + }, + { + "start": 21424.13, + "end": 21425.65, + "probability": 0.9083 + }, + { + "start": 21426.07, + "end": 21429.15, + "probability": 0.8982 + }, + { + "start": 21429.29, + "end": 21434.29, + "probability": 0.9387 + }, + { + "start": 21434.35, + "end": 21436.19, + "probability": 0.9224 + }, + { + "start": 21436.33, + "end": 21437.31, + "probability": 0.7119 + }, + { + "start": 21438.61, + "end": 21441.33, + "probability": 0.8662 + }, + { + "start": 21441.71, + "end": 21444.59, + "probability": 0.8469 + }, + { + "start": 21447.57, + "end": 21452.17, + "probability": 0.9505 + }, + { + "start": 21453.85, + "end": 21456.87, + "probability": 0.7945 + }, + { + "start": 21456.89, + "end": 21458.31, + "probability": 0.782 + }, + { + "start": 21458.31, + "end": 21460.25, + "probability": 0.8999 + }, + { + "start": 21461.43, + "end": 21463.95, + "probability": 0.6449 + }, + { + "start": 21464.93, + "end": 21469.19, + "probability": 0.8794 + }, + { + "start": 21470.11, + "end": 21472.87, + "probability": 0.909 + }, + { + "start": 21477.29, + "end": 21481.67, + "probability": 0.8142 + }, + { + "start": 21481.95, + "end": 21486.51, + "probability": 0.0298 + }, + { + "start": 21487.77, + "end": 21490.67, + "probability": 0.5415 + }, + { + "start": 21490.81, + "end": 21493.95, + "probability": 0.7769 + }, + { + "start": 21494.11, + "end": 21494.45, + "probability": 0.0918 + }, + { + "start": 21494.45, + "end": 21495.75, + "probability": 0.5095 + }, + { + "start": 21496.23, + "end": 21496.73, + "probability": 0.1276 + }, + { + "start": 21496.87, + "end": 21500.01, + "probability": 0.8245 + }, + { + "start": 21500.43, + "end": 21504.49, + "probability": 0.9823 + }, + { + "start": 21505.27, + "end": 21507.09, + "probability": 0.1995 + }, + { + "start": 21507.09, + "end": 21508.41, + "probability": 0.5482 + }, + { + "start": 21508.41, + "end": 21510.61, + "probability": 0.1841 + }, + { + "start": 21514.23, + "end": 21516.03, + "probability": 0.019 + }, + { + "start": 21516.23, + "end": 21516.23, + "probability": 0.2865 + }, + { + "start": 21516.23, + "end": 21519.75, + "probability": 0.7504 + }, + { + "start": 21519.87, + "end": 21525.69, + "probability": 0.9336 + }, + { + "start": 21525.89, + "end": 21527.13, + "probability": 0.868 + }, + { + "start": 21527.31, + "end": 21528.17, + "probability": 0.5497 + }, + { + "start": 21528.27, + "end": 21529.45, + "probability": 0.8109 + }, + { + "start": 21529.87, + "end": 21529.89, + "probability": 0.0883 + }, + { + "start": 21529.89, + "end": 21533.71, + "probability": 0.9233 + }, + { + "start": 21533.71, + "end": 21538.23, + "probability": 0.7427 + }, + { + "start": 21539.85, + "end": 21544.03, + "probability": 0.946 + }, + { + "start": 21544.27, + "end": 21547.79, + "probability": 0.445 + }, + { + "start": 21548.31, + "end": 21550.19, + "probability": 0.5142 + }, + { + "start": 21550.19, + "end": 21551.31, + "probability": 0.3125 + }, + { + "start": 21551.31, + "end": 21551.69, + "probability": 0.1307 + }, + { + "start": 21552.59, + "end": 21554.15, + "probability": 0.0221 + }, + { + "start": 21554.59, + "end": 21556.49, + "probability": 0.3307 + }, + { + "start": 21557.03, + "end": 21560.99, + "probability": 0.6183 + }, + { + "start": 21561.05, + "end": 21562.99, + "probability": 0.7065 + }, + { + "start": 21564.92, + "end": 21564.99, + "probability": 0.0124 + }, + { + "start": 21564.99, + "end": 21568.77, + "probability": 0.1654 + }, + { + "start": 21568.79, + "end": 21574.39, + "probability": 0.7905 + }, + { + "start": 21574.43, + "end": 21577.25, + "probability": 0.0601 + }, + { + "start": 21578.19, + "end": 21582.33, + "probability": 0.0387 + }, + { + "start": 21582.33, + "end": 21586.23, + "probability": 0.3165 + }, + { + "start": 21586.73, + "end": 21588.19, + "probability": 0.5057 + }, + { + "start": 21588.23, + "end": 21588.99, + "probability": 0.2956 + }, + { + "start": 21589.39, + "end": 21590.59, + "probability": 0.7173 + }, + { + "start": 21591.01, + "end": 21591.55, + "probability": 0.8997 + }, + { + "start": 21591.95, + "end": 21592.81, + "probability": 0.9684 + }, + { + "start": 21593.81, + "end": 21595.53, + "probability": 0.8993 + }, + { + "start": 21596.55, + "end": 21600.59, + "probability": 0.643 + }, + { + "start": 21600.73, + "end": 21602.55, + "probability": 0.7797 + }, + { + "start": 21602.69, + "end": 21604.83, + "probability": 0.7912 + }, + { + "start": 21608.85, + "end": 21608.85, + "probability": 0.05 + }, + { + "start": 21608.85, + "end": 21610.45, + "probability": 0.0986 + }, + { + "start": 21610.45, + "end": 21612.07, + "probability": 0.2103 + }, + { + "start": 21612.97, + "end": 21614.19, + "probability": 0.049 + }, + { + "start": 21614.35, + "end": 21617.57, + "probability": 0.2064 + }, + { + "start": 21618.37, + "end": 21619.21, + "probability": 0.2108 + }, + { + "start": 21619.53, + "end": 21624.49, + "probability": 0.2826 + }, + { + "start": 21624.49, + "end": 21625.19, + "probability": 0.0395 + }, + { + "start": 21625.93, + "end": 21626.73, + "probability": 0.0348 + }, + { + "start": 21629.81, + "end": 21631.37, + "probability": 0.4001 + }, + { + "start": 21631.37, + "end": 21632.98, + "probability": 0.0932 + }, + { + "start": 21633.67, + "end": 21633.67, + "probability": 0.1685 + }, + { + "start": 21633.67, + "end": 21633.67, + "probability": 0.0992 + }, + { + "start": 21633.67, + "end": 21633.67, + "probability": 0.1802 + }, + { + "start": 21633.67, + "end": 21633.67, + "probability": 0.1001 + }, + { + "start": 21633.67, + "end": 21633.67, + "probability": 0.713 + }, + { + "start": 21633.67, + "end": 21633.67, + "probability": 0.0043 + }, + { + "start": 21633.67, + "end": 21633.67, + "probability": 0.2281 + }, + { + "start": 21633.67, + "end": 21633.67, + "probability": 0.0293 + }, + { + "start": 21633.67, + "end": 21635.81, + "probability": 0.6822 + }, + { + "start": 21636.31, + "end": 21638.23, + "probability": 0.6367 + }, + { + "start": 21638.35, + "end": 21639.79, + "probability": 0.8319 + }, + { + "start": 21640.31, + "end": 21641.13, + "probability": 0.6652 + }, + { + "start": 21641.45, + "end": 21641.87, + "probability": 0.8354 + }, + { + "start": 21641.97, + "end": 21644.91, + "probability": 0.6652 + }, + { + "start": 21645.33, + "end": 21647.77, + "probability": 0.7374 + }, + { + "start": 21648.09, + "end": 21649.65, + "probability": 0.8127 + }, + { + "start": 21649.81, + "end": 21651.37, + "probability": 0.9111 + }, + { + "start": 21651.63, + "end": 21653.41, + "probability": 0.8594 + }, + { + "start": 21653.55, + "end": 21655.29, + "probability": 0.9055 + }, + { + "start": 21655.39, + "end": 21656.41, + "probability": 0.2985 + }, + { + "start": 21656.57, + "end": 21657.61, + "probability": 0.7499 + }, + { + "start": 21657.61, + "end": 21658.79, + "probability": 0.9164 + }, + { + "start": 21660.01, + "end": 21662.71, + "probability": 0.9176 + }, + { + "start": 21663.27, + "end": 21665.57, + "probability": 0.3244 + }, + { + "start": 21665.79, + "end": 21666.65, + "probability": 0.2604 + }, + { + "start": 21666.91, + "end": 21667.77, + "probability": 0.2267 + }, + { + "start": 21668.09, + "end": 21668.57, + "probability": 0.083 + }, + { + "start": 21668.57, + "end": 21669.34, + "probability": 0.2798 + }, + { + "start": 21669.77, + "end": 21670.49, + "probability": 0.1842 + }, + { + "start": 21670.55, + "end": 21673.23, + "probability": 0.4225 + }, + { + "start": 21673.23, + "end": 21674.11, + "probability": 0.8323 + }, + { + "start": 21674.93, + "end": 21677.33, + "probability": 0.3085 + }, + { + "start": 21677.55, + "end": 21677.55, + "probability": 0.3358 + }, + { + "start": 21677.55, + "end": 21678.55, + "probability": 0.9094 + }, + { + "start": 21678.97, + "end": 21679.75, + "probability": 0.7358 + }, + { + "start": 21679.97, + "end": 21680.99, + "probability": 0.6635 + }, + { + "start": 21681.85, + "end": 21682.25, + "probability": 0.863 + }, + { + "start": 21682.31, + "end": 21684.09, + "probability": 0.9736 + }, + { + "start": 21684.29, + "end": 21685.43, + "probability": 0.9718 + }, + { + "start": 21685.55, + "end": 21686.69, + "probability": 0.9323 + }, + { + "start": 21687.05, + "end": 21688.65, + "probability": 0.9587 + }, + { + "start": 21689.27, + "end": 21694.27, + "probability": 0.9927 + }, + { + "start": 21694.93, + "end": 21697.17, + "probability": 0.9966 + }, + { + "start": 21697.79, + "end": 21701.08, + "probability": 0.9324 + }, + { + "start": 21701.61, + "end": 21704.47, + "probability": 0.9609 + }, + { + "start": 21704.89, + "end": 21708.61, + "probability": 0.9564 + }, + { + "start": 21709.23, + "end": 21710.41, + "probability": 0.5619 + }, + { + "start": 21710.61, + "end": 21712.15, + "probability": 0.9628 + }, + { + "start": 21712.35, + "end": 21715.17, + "probability": 0.9829 + }, + { + "start": 21715.43, + "end": 21719.37, + "probability": 0.9858 + }, + { + "start": 21719.47, + "end": 21720.43, + "probability": 0.8435 + }, + { + "start": 21720.81, + "end": 21722.51, + "probability": 0.6028 + }, + { + "start": 21722.93, + "end": 21724.53, + "probability": 0.7525 + }, + { + "start": 21724.89, + "end": 21726.77, + "probability": 0.8909 + }, + { + "start": 21727.09, + "end": 21727.9, + "probability": 0.8916 + }, + { + "start": 21728.69, + "end": 21729.36, + "probability": 0.9093 + }, + { + "start": 21730.37, + "end": 21733.33, + "probability": 0.9961 + }, + { + "start": 21733.77, + "end": 21735.03, + "probability": 0.969 + }, + { + "start": 21735.35, + "end": 21736.76, + "probability": 0.6967 + }, + { + "start": 21737.67, + "end": 21740.37, + "probability": 0.9917 + }, + { + "start": 21740.45, + "end": 21741.79, + "probability": 0.7875 + }, + { + "start": 21742.03, + "end": 21743.97, + "probability": 0.9326 + }, + { + "start": 21744.23, + "end": 21745.49, + "probability": 0.4954 + }, + { + "start": 21746.13, + "end": 21750.31, + "probability": 0.8088 + }, + { + "start": 21751.31, + "end": 21753.29, + "probability": 0.8159 + }, + { + "start": 21753.29, + "end": 21753.69, + "probability": 0.8371 + }, + { + "start": 21753.69, + "end": 21755.51, + "probability": 0.9847 + }, + { + "start": 21755.99, + "end": 21756.95, + "probability": 0.1302 + }, + { + "start": 21757.09, + "end": 21760.63, + "probability": 0.6947 + }, + { + "start": 21760.75, + "end": 21762.21, + "probability": 0.9017 + }, + { + "start": 21762.75, + "end": 21764.23, + "probability": 0.7929 + }, + { + "start": 21764.63, + "end": 21765.57, + "probability": 0.8527 + }, + { + "start": 21765.83, + "end": 21766.73, + "probability": 0.9847 + }, + { + "start": 21766.81, + "end": 21768.35, + "probability": 0.9847 + }, + { + "start": 21768.73, + "end": 21769.54, + "probability": 0.999 + }, + { + "start": 21770.45, + "end": 21771.33, + "probability": 0.998 + }, + { + "start": 21772.37, + "end": 21774.59, + "probability": 0.9707 + }, + { + "start": 21774.91, + "end": 21777.03, + "probability": 0.9692 + }, + { + "start": 21777.37, + "end": 21781.79, + "probability": 0.9637 + }, + { + "start": 21782.63, + "end": 21785.63, + "probability": 0.8207 + }, + { + "start": 21785.77, + "end": 21787.01, + "probability": 0.9017 + }, + { + "start": 21787.21, + "end": 21789.35, + "probability": 0.96 + }, + { + "start": 21789.57, + "end": 21789.73, + "probability": 0.1152 + }, + { + "start": 21789.75, + "end": 21790.83, + "probability": 0.441 + }, + { + "start": 21791.11, + "end": 21792.65, + "probability": 0.7471 + }, + { + "start": 21792.99, + "end": 21794.39, + "probability": 0.9852 + }, + { + "start": 21794.39, + "end": 21795.27, + "probability": 0.6683 + }, + { + "start": 21795.45, + "end": 21795.97, + "probability": 0.7965 + }, + { + "start": 21796.09, + "end": 21798.77, + "probability": 0.978 + }, + { + "start": 21798.92, + "end": 21799.33, + "probability": 0.0025 + }, + { + "start": 21799.33, + "end": 21799.41, + "probability": 0.1249 + }, + { + "start": 21799.63, + "end": 21801.75, + "probability": 0.5382 + }, + { + "start": 21802.31, + "end": 21803.81, + "probability": 0.6498 + }, + { + "start": 21803.85, + "end": 21807.18, + "probability": 0.9639 + }, + { + "start": 21808.09, + "end": 21808.79, + "probability": 0.7124 + }, + { + "start": 21808.87, + "end": 21810.83, + "probability": 0.9897 + }, + { + "start": 21811.69, + "end": 21813.11, + "probability": 0.8491 + }, + { + "start": 21813.17, + "end": 21814.65, + "probability": 0.8233 + }, + { + "start": 21814.85, + "end": 21818.23, + "probability": 0.9219 + }, + { + "start": 21818.25, + "end": 21819.47, + "probability": 0.6702 + }, + { + "start": 21819.83, + "end": 21820.39, + "probability": 0.6781 + }, + { + "start": 21820.45, + "end": 21821.47, + "probability": 0.6529 + }, + { + "start": 21821.69, + "end": 21826.47, + "probability": 0.9832 + }, + { + "start": 21826.79, + "end": 21828.47, + "probability": 0.8979 + }, + { + "start": 21828.51, + "end": 21829.13, + "probability": 0.0011 + }, + { + "start": 21829.67, + "end": 21830.15, + "probability": 0.0246 + }, + { + "start": 21830.15, + "end": 21830.57, + "probability": 0.1711 + }, + { + "start": 21831.19, + "end": 21831.69, + "probability": 0.4982 + }, + { + "start": 21831.69, + "end": 21834.45, + "probability": 0.6376 + }, + { + "start": 21834.59, + "end": 21835.88, + "probability": 0.8216 + }, + { + "start": 21836.37, + "end": 21838.15, + "probability": 0.9021 + }, + { + "start": 21838.43, + "end": 21839.75, + "probability": 0.6177 + }, + { + "start": 21839.93, + "end": 21842.19, + "probability": 0.853 + }, + { + "start": 21842.97, + "end": 21844.95, + "probability": 0.1777 + }, + { + "start": 21845.01, + "end": 21846.43, + "probability": 0.6317 + }, + { + "start": 21846.65, + "end": 21848.02, + "probability": 0.9893 + }, + { + "start": 21848.61, + "end": 21849.83, + "probability": 0.9937 + }, + { + "start": 21850.57, + "end": 21851.07, + "probability": 0.7848 + }, + { + "start": 21851.21, + "end": 21851.77, + "probability": 0.9196 + }, + { + "start": 21852.03, + "end": 21854.33, + "probability": 0.734 + }, + { + "start": 21855.07, + "end": 21856.95, + "probability": 0.8895 + }, + { + "start": 21857.23, + "end": 21859.65, + "probability": 0.9409 + }, + { + "start": 21860.21, + "end": 21863.61, + "probability": 0.906 + }, + { + "start": 21863.75, + "end": 21866.45, + "probability": 0.9819 + }, + { + "start": 21867.03, + "end": 21868.65, + "probability": 0.7942 + }, + { + "start": 21869.47, + "end": 21870.47, + "probability": 0.9658 + }, + { + "start": 21870.61, + "end": 21872.07, + "probability": 0.8888 + }, + { + "start": 21872.45, + "end": 21875.63, + "probability": 0.9938 + }, + { + "start": 21876.13, + "end": 21877.61, + "probability": 0.9601 + }, + { + "start": 21877.83, + "end": 21880.55, + "probability": 0.911 + }, + { + "start": 21880.97, + "end": 21882.89, + "probability": 0.9927 + }, + { + "start": 21883.43, + "end": 21883.99, + "probability": 0.5064 + }, + { + "start": 21884.13, + "end": 21884.93, + "probability": 0.8113 + }, + { + "start": 21885.03, + "end": 21885.75, + "probability": 0.8672 + }, + { + "start": 21886.27, + "end": 21889.89, + "probability": 0.9628 + }, + { + "start": 21890.29, + "end": 21892.31, + "probability": 0.7212 + }, + { + "start": 21892.57, + "end": 21894.17, + "probability": 0.9794 + }, + { + "start": 21894.29, + "end": 21895.17, + "probability": 0.957 + }, + { + "start": 21895.53, + "end": 21897.05, + "probability": 0.9692 + }, + { + "start": 21897.17, + "end": 21897.91, + "probability": 0.9101 + }, + { + "start": 21898.35, + "end": 21899.81, + "probability": 0.8027 + }, + { + "start": 21900.37, + "end": 21902.45, + "probability": 0.837 + }, + { + "start": 21902.77, + "end": 21904.07, + "probability": 0.8572 + }, + { + "start": 21904.51, + "end": 21906.25, + "probability": 0.9705 + }, + { + "start": 21906.31, + "end": 21908.33, + "probability": 0.8636 + }, + { + "start": 21908.59, + "end": 21910.17, + "probability": 0.8687 + }, + { + "start": 21910.49, + "end": 21910.51, + "probability": 0.4177 + }, + { + "start": 21910.75, + "end": 21912.54, + "probability": 0.884 + }, + { + "start": 21912.87, + "end": 21915.45, + "probability": 0.7962 + }, + { + "start": 21915.91, + "end": 21918.95, + "probability": 0.9294 + }, + { + "start": 21919.33, + "end": 21922.01, + "probability": 0.9924 + }, + { + "start": 21922.01, + "end": 21924.63, + "probability": 0.9525 + }, + { + "start": 21924.91, + "end": 21927.47, + "probability": 0.9894 + }, + { + "start": 21927.95, + "end": 21930.11, + "probability": 0.9165 + }, + { + "start": 21930.51, + "end": 21931.29, + "probability": 0.4801 + }, + { + "start": 21931.43, + "end": 21932.81, + "probability": 0.9418 + }, + { + "start": 21932.97, + "end": 21934.91, + "probability": 0.9944 + }, + { + "start": 21935.29, + "end": 21936.99, + "probability": 0.9946 + }, + { + "start": 21937.35, + "end": 21938.55, + "probability": 0.999 + }, + { + "start": 21938.89, + "end": 21942.63, + "probability": 0.9967 + }, + { + "start": 21943.31, + "end": 21943.85, + "probability": 0.9381 + }, + { + "start": 21943.87, + "end": 21945.31, + "probability": 0.8301 + }, + { + "start": 21945.53, + "end": 21949.23, + "probability": 0.9849 + }, + { + "start": 21949.55, + "end": 21951.05, + "probability": 0.8343 + }, + { + "start": 21951.43, + "end": 21955.53, + "probability": 0.9746 + }, + { + "start": 21955.91, + "end": 21956.87, + "probability": 0.8316 + }, + { + "start": 21957.13, + "end": 21958.05, + "probability": 0.7919 + }, + { + "start": 21958.17, + "end": 21960.06, + "probability": 0.9356 + }, + { + "start": 21960.65, + "end": 21962.69, + "probability": 0.746 + }, + { + "start": 21962.85, + "end": 21964.63, + "probability": 0.9964 + }, + { + "start": 21964.85, + "end": 21967.89, + "probability": 0.9279 + }, + { + "start": 21968.29, + "end": 21971.55, + "probability": 0.9877 + }, + { + "start": 21971.93, + "end": 21976.77, + "probability": 0.9957 + }, + { + "start": 21976.81, + "end": 21978.03, + "probability": 0.8892 + }, + { + "start": 21978.35, + "end": 21979.29, + "probability": 0.8447 + }, + { + "start": 21979.73, + "end": 21981.69, + "probability": 0.972 + }, + { + "start": 21982.07, + "end": 21984.73, + "probability": 0.9971 + }, + { + "start": 21985.15, + "end": 21987.83, + "probability": 0.5547 + }, + { + "start": 21988.61, + "end": 21989.27, + "probability": 0.8242 + }, + { + "start": 21989.31, + "end": 21990.1, + "probability": 0.9568 + }, + { + "start": 21990.67, + "end": 21993.91, + "probability": 0.9566 + }, + { + "start": 21995.19, + "end": 21997.69, + "probability": 0.9965 + }, + { + "start": 21997.73, + "end": 21997.97, + "probability": 0.2514 + }, + { + "start": 21998.05, + "end": 21998.29, + "probability": 0.3764 + }, + { + "start": 21998.47, + "end": 22000.03, + "probability": 0.9134 + }, + { + "start": 22001.21, + "end": 22001.28, + "probability": 0.0753 + }, + { + "start": 22001.47, + "end": 22001.47, + "probability": 0.1376 + }, + { + "start": 22001.47, + "end": 22003.86, + "probability": 0.7455 + }, + { + "start": 22005.33, + "end": 22006.23, + "probability": 0.6512 + }, + { + "start": 22006.23, + "end": 22006.23, + "probability": 0.318 + }, + { + "start": 22006.39, + "end": 22006.87, + "probability": 0.689 + }, + { + "start": 22006.97, + "end": 22007.57, + "probability": 0.7664 + }, + { + "start": 22007.91, + "end": 22010.13, + "probability": 0.9873 + }, + { + "start": 22010.31, + "end": 22011.33, + "probability": 0.9474 + }, + { + "start": 22011.53, + "end": 22012.13, + "probability": 0.7346 + }, + { + "start": 22012.13, + "end": 22012.83, + "probability": 0.5404 + }, + { + "start": 22012.95, + "end": 22014.83, + "probability": 0.8651 + }, + { + "start": 22014.95, + "end": 22017.81, + "probability": 0.7014 + }, + { + "start": 22017.91, + "end": 22018.77, + "probability": 0.732 + }, + { + "start": 22018.79, + "end": 22020.09, + "probability": 0.7264 + }, + { + "start": 22020.25, + "end": 22022.75, + "probability": 0.481 + }, + { + "start": 22022.75, + "end": 22027.31, + "probability": 0.9807 + }, + { + "start": 22027.61, + "end": 22029.48, + "probability": 0.7751 + }, + { + "start": 22030.39, + "end": 22033.47, + "probability": 0.9992 + }, + { + "start": 22033.47, + "end": 22036.31, + "probability": 0.9995 + }, + { + "start": 22036.69, + "end": 22039.59, + "probability": 0.9941 + }, + { + "start": 22039.87, + "end": 22041.31, + "probability": 0.9592 + }, + { + "start": 22041.41, + "end": 22043.03, + "probability": 0.9969 + }, + { + "start": 22043.35, + "end": 22044.42, + "probability": 0.9976 + }, + { + "start": 22045.32, + "end": 22050.35, + "probability": 0.9958 + }, + { + "start": 22050.35, + "end": 22053.53, + "probability": 0.9907 + }, + { + "start": 22053.91, + "end": 22055.99, + "probability": 0.9913 + }, + { + "start": 22056.36, + "end": 22059.82, + "probability": 0.9927 + }, + { + "start": 22060.39, + "end": 22064.79, + "probability": 0.9534 + }, + { + "start": 22065.11, + "end": 22068.27, + "probability": 0.9459 + }, + { + "start": 22068.29, + "end": 22072.05, + "probability": 0.9923 + }, + { + "start": 22072.27, + "end": 22075.59, + "probability": 0.9303 + }, + { + "start": 22075.83, + "end": 22075.97, + "probability": 0.591 + }, + { + "start": 22075.97, + "end": 22078.05, + "probability": 0.6952 + }, + { + "start": 22078.13, + "end": 22078.77, + "probability": 0.9255 + }, + { + "start": 22078.85, + "end": 22079.6, + "probability": 0.9796 + }, + { + "start": 22080.07, + "end": 22081.03, + "probability": 0.7964 + }, + { + "start": 22081.37, + "end": 22082.61, + "probability": 0.8985 + }, + { + "start": 22082.85, + "end": 22086.71, + "probability": 0.9929 + }, + { + "start": 22087.05, + "end": 22087.69, + "probability": 0.7726 + }, + { + "start": 22087.75, + "end": 22088.52, + "probability": 0.7615 + }, + { + "start": 22088.85, + "end": 22091.03, + "probability": 0.9461 + }, + { + "start": 22091.37, + "end": 22094.51, + "probability": 0.8926 + }, + { + "start": 22095.07, + "end": 22096.43, + "probability": 0.9653 + }, + { + "start": 22096.87, + "end": 22098.61, + "probability": 0.7112 + }, + { + "start": 22098.83, + "end": 22100.87, + "probability": 0.876 + }, + { + "start": 22101.03, + "end": 22102.89, + "probability": 0.7978 + }, + { + "start": 22103.05, + "end": 22104.41, + "probability": 0.7193 + }, + { + "start": 22104.55, + "end": 22105.21, + "probability": 0.8012 + }, + { + "start": 22105.35, + "end": 22106.83, + "probability": 0.9004 + }, + { + "start": 22107.19, + "end": 22110.27, + "probability": 0.9657 + }, + { + "start": 22110.43, + "end": 22114.17, + "probability": 0.9834 + }, + { + "start": 22114.17, + "end": 22117.11, + "probability": 0.9958 + }, + { + "start": 22117.57, + "end": 22118.21, + "probability": 0.6941 + }, + { + "start": 22118.59, + "end": 22119.81, + "probability": 0.6846 + }, + { + "start": 22119.83, + "end": 22121.45, + "probability": 0.799 + }, + { + "start": 22122.54, + "end": 22127.73, + "probability": 0.9796 + }, + { + "start": 22128.65, + "end": 22129.45, + "probability": 0.5308 + }, + { + "start": 22129.67, + "end": 22133.95, + "probability": 0.9932 + }, + { + "start": 22134.07, + "end": 22134.77, + "probability": 0.4335 + }, + { + "start": 22135.31, + "end": 22137.09, + "probability": 0.9412 + }, + { + "start": 22137.19, + "end": 22137.85, + "probability": 0.5734 + }, + { + "start": 22138.25, + "end": 22139.07, + "probability": 0.8438 + }, + { + "start": 22139.15, + "end": 22140.21, + "probability": 0.8628 + }, + { + "start": 22140.49, + "end": 22145.63, + "probability": 0.9744 + }, + { + "start": 22146.09, + "end": 22147.11, + "probability": 0.9497 + }, + { + "start": 22147.15, + "end": 22147.91, + "probability": 0.9829 + }, + { + "start": 22147.99, + "end": 22153.99, + "probability": 0.9087 + }, + { + "start": 22154.55, + "end": 22159.19, + "probability": 0.8865 + }, + { + "start": 22159.35, + "end": 22164.33, + "probability": 0.9053 + }, + { + "start": 22164.83, + "end": 22170.85, + "probability": 0.9409 + }, + { + "start": 22171.23, + "end": 22175.11, + "probability": 0.7377 + }, + { + "start": 22175.77, + "end": 22178.89, + "probability": 0.6164 + }, + { + "start": 22179.37, + "end": 22182.09, + "probability": 0.979 + }, + { + "start": 22182.09, + "end": 22185.67, + "probability": 0.9744 + }, + { + "start": 22186.45, + "end": 22187.93, + "probability": 0.7301 + }, + { + "start": 22188.47, + "end": 22189.33, + "probability": 0.7708 + }, + { + "start": 22189.67, + "end": 22191.26, + "probability": 0.6496 + }, + { + "start": 22191.33, + "end": 22194.73, + "probability": 0.9688 + }, + { + "start": 22195.31, + "end": 22201.23, + "probability": 0.9956 + }, + { + "start": 22201.77, + "end": 22204.97, + "probability": 0.9927 + }, + { + "start": 22205.39, + "end": 22208.09, + "probability": 0.9945 + }, + { + "start": 22208.37, + "end": 22212.11, + "probability": 0.958 + }, + { + "start": 22212.45, + "end": 22214.43, + "probability": 0.9823 + }, + { + "start": 22214.73, + "end": 22216.29, + "probability": 0.6129 + }, + { + "start": 22216.43, + "end": 22216.89, + "probability": 0.8694 + }, + { + "start": 22217.25, + "end": 22218.55, + "probability": 0.9196 + }, + { + "start": 22218.65, + "end": 22219.47, + "probability": 0.8353 + }, + { + "start": 22219.71, + "end": 22220.99, + "probability": 0.9265 + }, + { + "start": 22221.55, + "end": 22221.75, + "probability": 0.0785 + }, + { + "start": 22222.77, + "end": 22223.35, + "probability": 0.9624 + }, + { + "start": 22223.47, + "end": 22227.99, + "probability": 0.8578 + }, + { + "start": 22228.83, + "end": 22230.15, + "probability": 0.8585 + }, + { + "start": 22231.45, + "end": 22232.01, + "probability": 0.752 + }, + { + "start": 22232.15, + "end": 22236.41, + "probability": 0.9961 + }, + { + "start": 22236.93, + "end": 22240.37, + "probability": 0.9745 + }, + { + "start": 22240.69, + "end": 22241.35, + "probability": 0.7475 + }, + { + "start": 22241.61, + "end": 22243.59, + "probability": 0.9787 + }, + { + "start": 22243.81, + "end": 22245.03, + "probability": 0.9317 + }, + { + "start": 22245.15, + "end": 22245.55, + "probability": 0.4989 + }, + { + "start": 22247.13, + "end": 22247.13, + "probability": 0.1085 + }, + { + "start": 22247.13, + "end": 22248.17, + "probability": 0.7202 + }, + { + "start": 22248.79, + "end": 22250.35, + "probability": 0.6536 + }, + { + "start": 22251.49, + "end": 22252.01, + "probability": 0.4635 + }, + { + "start": 22252.01, + "end": 22254.39, + "probability": 0.5307 + }, + { + "start": 22254.61, + "end": 22256.25, + "probability": 0.6777 + }, + { + "start": 22256.57, + "end": 22258.73, + "probability": 0.9207 + }, + { + "start": 22258.75, + "end": 22263.47, + "probability": 0.954 + }, + { + "start": 22263.67, + "end": 22265.49, + "probability": 0.7413 + }, + { + "start": 22265.85, + "end": 22266.93, + "probability": 0.7794 + }, + { + "start": 22267.01, + "end": 22267.87, + "probability": 0.9873 + }, + { + "start": 22268.65, + "end": 22269.13, + "probability": 0.0567 + }, + { + "start": 22269.49, + "end": 22270.69, + "probability": 0.5919 + }, + { + "start": 22270.69, + "end": 22271.59, + "probability": 0.3599 + }, + { + "start": 22271.79, + "end": 22271.79, + "probability": 0.619 + }, + { + "start": 22271.91, + "end": 22272.47, + "probability": 0.8801 + }, + { + "start": 22273.03, + "end": 22276.31, + "probability": 0.8897 + }, + { + "start": 22276.99, + "end": 22283.31, + "probability": 0.9763 + }, + { + "start": 22284.19, + "end": 22287.99, + "probability": 0.9688 + }, + { + "start": 22289.09, + "end": 22292.85, + "probability": 0.9741 + }, + { + "start": 22294.21, + "end": 22294.95, + "probability": 0.9148 + }, + { + "start": 22295.05, + "end": 22295.25, + "probability": 0.8516 + }, + { + "start": 22295.29, + "end": 22296.37, + "probability": 0.7783 + }, + { + "start": 22296.49, + "end": 22298.39, + "probability": 0.7252 + }, + { + "start": 22298.71, + "end": 22300.65, + "probability": 0.0562 + }, + { + "start": 22300.65, + "end": 22301.49, + "probability": 0.0556 + }, + { + "start": 22301.49, + "end": 22303.03, + "probability": 0.4536 + }, + { + "start": 22303.03, + "end": 22304.81, + "probability": 0.6166 + }, + { + "start": 22304.81, + "end": 22304.89, + "probability": 0.5457 + }, + { + "start": 22305.37, + "end": 22305.37, + "probability": 0.2715 + }, + { + "start": 22305.37, + "end": 22305.91, + "probability": 0.6998 + }, + { + "start": 22306.11, + "end": 22307.15, + "probability": 0.9137 + }, + { + "start": 22307.15, + "end": 22308.43, + "probability": 0.8092 + }, + { + "start": 22308.73, + "end": 22310.57, + "probability": 0.9474 + }, + { + "start": 22310.91, + "end": 22312.27, + "probability": 0.3304 + }, + { + "start": 22312.27, + "end": 22313.47, + "probability": 0.6272 + }, + { + "start": 22313.73, + "end": 22315.2, + "probability": 0.9515 + }, + { + "start": 22315.69, + "end": 22316.75, + "probability": 0.5574 + }, + { + "start": 22316.93, + "end": 22319.63, + "probability": 0.4389 + }, + { + "start": 22320.29, + "end": 22320.89, + "probability": 0.2317 + }, + { + "start": 22321.15, + "end": 22322.05, + "probability": 0.2289 + }, + { + "start": 22322.31, + "end": 22326.1, + "probability": 0.2294 + }, + { + "start": 22326.29, + "end": 22327.97, + "probability": 0.1042 + }, + { + "start": 22328.37, + "end": 22328.77, + "probability": 0.5861 + }, + { + "start": 22328.91, + "end": 22329.45, + "probability": 0.7151 + }, + { + "start": 22329.63, + "end": 22331.85, + "probability": 0.7122 + }, + { + "start": 22332.09, + "end": 22333.85, + "probability": 0.0743 + }, + { + "start": 22333.85, + "end": 22336.67, + "probability": 0.0708 + }, + { + "start": 22336.67, + "end": 22336.67, + "probability": 0.2304 + }, + { + "start": 22336.67, + "end": 22338.17, + "probability": 0.9276 + }, + { + "start": 22339.37, + "end": 22340.65, + "probability": 0.9819 + }, + { + "start": 22340.81, + "end": 22344.43, + "probability": 0.4875 + }, + { + "start": 22344.53, + "end": 22345.35, + "probability": 0.4578 + }, + { + "start": 22345.57, + "end": 22345.57, + "probability": 0.5569 + }, + { + "start": 22345.61, + "end": 22346.49, + "probability": 0.9618 + }, + { + "start": 22346.55, + "end": 22348.78, + "probability": 0.3201 + }, + { + "start": 22348.99, + "end": 22353.65, + "probability": 0.4395 + }, + { + "start": 22356.89, + "end": 22357.33, + "probability": 0.0865 + }, + { + "start": 22357.33, + "end": 22359.07, + "probability": 0.5788 + }, + { + "start": 22362.51, + "end": 22363.35, + "probability": 0.0866 + }, + { + "start": 22363.75, + "end": 22363.79, + "probability": 0.1845 + }, + { + "start": 22363.79, + "end": 22363.79, + "probability": 0.4617 + }, + { + "start": 22363.79, + "end": 22364.73, + "probability": 0.1378 + }, + { + "start": 22366.69, + "end": 22368.05, + "probability": 0.5651 + }, + { + "start": 22368.05, + "end": 22369.77, + "probability": 0.5859 + }, + { + "start": 22370.93, + "end": 22372.51, + "probability": 0.3426 + }, + { + "start": 22378.31, + "end": 22380.63, + "probability": 0.4237 + }, + { + "start": 22380.63, + "end": 22381.23, + "probability": 0.2566 + }, + { + "start": 22382.17, + "end": 22383.53, + "probability": 0.4222 + }, + { + "start": 22386.77, + "end": 22387.55, + "probability": 0.5736 + }, + { + "start": 22387.61, + "end": 22389.31, + "probability": 0.2174 + }, + { + "start": 22389.33, + "end": 22392.97, + "probability": 0.011 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.0, + "end": 22393.0, + "probability": 0.0 + }, + { + "start": 22393.14, + "end": 22395.66, + "probability": 0.2336 + }, + { + "start": 22395.96, + "end": 22395.96, + "probability": 0.0296 + }, + { + "start": 22395.96, + "end": 22397.26, + "probability": 0.489 + }, + { + "start": 22397.4, + "end": 22400.34, + "probability": 0.5539 + }, + { + "start": 22400.48, + "end": 22401.46, + "probability": 0.3367 + }, + { + "start": 22401.46, + "end": 22401.64, + "probability": 0.1021 + }, + { + "start": 22401.66, + "end": 22402.1, + "probability": 0.1782 + }, + { + "start": 22402.2, + "end": 22402.82, + "probability": 0.7732 + }, + { + "start": 22403.04, + "end": 22403.68, + "probability": 0.6639 + }, + { + "start": 22404.26, + "end": 22405.3, + "probability": 0.0547 + }, + { + "start": 22405.3, + "end": 22406.42, + "probability": 0.4861 + }, + { + "start": 22406.72, + "end": 22407.08, + "probability": 0.1235 + }, + { + "start": 22407.08, + "end": 22408.06, + "probability": 0.1377 + }, + { + "start": 22408.1, + "end": 22409.76, + "probability": 0.7841 + }, + { + "start": 22415.84, + "end": 22417.68, + "probability": 0.6331 + }, + { + "start": 22418.92, + "end": 22418.94, + "probability": 0.2457 + }, + { + "start": 22418.94, + "end": 22418.94, + "probability": 0.0385 + }, + { + "start": 22418.94, + "end": 22418.94, + "probability": 0.0273 + }, + { + "start": 22418.94, + "end": 22418.94, + "probability": 0.198 + }, + { + "start": 22418.94, + "end": 22421.07, + "probability": 0.8586 + }, + { + "start": 22421.82, + "end": 22422.1, + "probability": 0.1559 + }, + { + "start": 22422.98, + "end": 22424.66, + "probability": 0.4123 + }, + { + "start": 22424.82, + "end": 22425.4, + "probability": 0.5153 + }, + { + "start": 22425.96, + "end": 22427.5, + "probability": 0.7361 + }, + { + "start": 22427.84, + "end": 22431.0, + "probability": 0.0499 + }, + { + "start": 22431.0, + "end": 22431.0, + "probability": 0.0551 + }, + { + "start": 22431.0, + "end": 22431.5, + "probability": 0.3241 + }, + { + "start": 22432.06, + "end": 22433.6, + "probability": 0.651 + }, + { + "start": 22434.18, + "end": 22435.42, + "probability": 0.4533 + }, + { + "start": 22435.98, + "end": 22438.43, + "probability": 0.6619 + }, + { + "start": 22439.12, + "end": 22440.74, + "probability": 0.5724 + }, + { + "start": 22441.38, + "end": 22442.72, + "probability": 0.3802 + }, + { + "start": 22442.72, + "end": 22443.43, + "probability": 0.4884 + }, + { + "start": 22444.5, + "end": 22448.28, + "probability": 0.5045 + }, + { + "start": 22448.28, + "end": 22450.74, + "probability": 0.2388 + }, + { + "start": 22450.82, + "end": 22452.72, + "probability": 0.7036 + }, + { + "start": 22454.76, + "end": 22457.0, + "probability": 0.1325 + }, + { + "start": 22457.54, + "end": 22457.66, + "probability": 0.4792 + }, + { + "start": 22457.66, + "end": 22458.76, + "probability": 0.5757 + }, + { + "start": 22459.32, + "end": 22459.34, + "probability": 0.7011 + }, + { + "start": 22459.34, + "end": 22459.52, + "probability": 0.1329 + }, + { + "start": 22459.52, + "end": 22459.52, + "probability": 0.739 + }, + { + "start": 22459.52, + "end": 22460.84, + "probability": 0.0882 + }, + { + "start": 22462.12, + "end": 22462.18, + "probability": 0.1485 + }, + { + "start": 22462.18, + "end": 22462.78, + "probability": 0.0685 + }, + { + "start": 22463.2, + "end": 22463.2, + "probability": 0.1581 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.0, + "end": 22524.0, + "probability": 0.0 + }, + { + "start": 22524.56, + "end": 22524.9, + "probability": 0.0305 + }, + { + "start": 22524.9, + "end": 22524.9, + "probability": 0.2252 + }, + { + "start": 22524.9, + "end": 22524.9, + "probability": 0.0673 + }, + { + "start": 22524.9, + "end": 22524.9, + "probability": 0.0797 + }, + { + "start": 22524.9, + "end": 22526.58, + "probability": 0.5752 + }, + { + "start": 22526.98, + "end": 22529.82, + "probability": 0.4183 + }, + { + "start": 22530.66, + "end": 22531.24, + "probability": 0.1931 + }, + { + "start": 22531.3, + "end": 22532.61, + "probability": 0.1194 + }, + { + "start": 22534.19, + "end": 22535.94, + "probability": 0.0268 + }, + { + "start": 22536.46, + "end": 22537.48, + "probability": 0.2615 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.0, + "end": 22645.0, + "probability": 0.0 + }, + { + "start": 22645.94, + "end": 22647.76, + "probability": 0.5041 + }, + { + "start": 22648.74, + "end": 22653.02, + "probability": 0.9149 + }, + { + "start": 22653.74, + "end": 22654.44, + "probability": 0.6907 + }, + { + "start": 22654.46, + "end": 22657.74, + "probability": 0.8691 + }, + { + "start": 22657.84, + "end": 22658.96, + "probability": 0.8698 + }, + { + "start": 22659.54, + "end": 22662.96, + "probability": 0.9902 + }, + { + "start": 22663.52, + "end": 22668.1, + "probability": 0.9189 + }, + { + "start": 22668.1, + "end": 22672.48, + "probability": 0.9967 + }, + { + "start": 22673.36, + "end": 22675.74, + "probability": 0.9919 + }, + { + "start": 22675.84, + "end": 22677.82, + "probability": 0.9078 + }, + { + "start": 22678.88, + "end": 22679.66, + "probability": 0.9115 + }, + { + "start": 22680.54, + "end": 22680.82, + "probability": 0.6843 + }, + { + "start": 22680.86, + "end": 22686.72, + "probability": 0.9731 + }, + { + "start": 22687.1, + "end": 22688.3, + "probability": 0.9817 + }, + { + "start": 22688.6, + "end": 22690.34, + "probability": 0.9563 + }, + { + "start": 22691.96, + "end": 22694.72, + "probability": 0.7815 + }, + { + "start": 22695.38, + "end": 22697.62, + "probability": 0.9201 + }, + { + "start": 22698.04, + "end": 22701.06, + "probability": 0.9832 + }, + { + "start": 22701.06, + "end": 22701.56, + "probability": 0.7803 + }, + { + "start": 22701.85, + "end": 22702.06, + "probability": 0.0318 + }, + { + "start": 22702.06, + "end": 22702.06, + "probability": 0.1596 + }, + { + "start": 22702.06, + "end": 22702.06, + "probability": 0.1369 + }, + { + "start": 22702.06, + "end": 22706.96, + "probability": 0.8577 + }, + { + "start": 22708.34, + "end": 22710.0, + "probability": 0.8579 + }, + { + "start": 22710.94, + "end": 22713.34, + "probability": 0.9907 + }, + { + "start": 22713.44, + "end": 22714.38, + "probability": 0.7812 + }, + { + "start": 22714.76, + "end": 22715.96, + "probability": 0.9753 + }, + { + "start": 22716.0, + "end": 22717.14, + "probability": 0.8948 + }, + { + "start": 22717.14, + "end": 22720.42, + "probability": 0.9355 + }, + { + "start": 22721.22, + "end": 22722.2, + "probability": 0.578 + }, + { + "start": 22723.96, + "end": 22728.14, + "probability": 0.9747 + }, + { + "start": 22728.56, + "end": 22729.68, + "probability": 0.9576 + }, + { + "start": 22730.9, + "end": 22734.12, + "probability": 0.9795 + }, + { + "start": 22735.82, + "end": 22737.44, + "probability": 0.8917 + }, + { + "start": 22737.54, + "end": 22738.4, + "probability": 0.8452 + }, + { + "start": 22738.6, + "end": 22738.92, + "probability": 0.6619 + }, + { + "start": 22739.44, + "end": 22742.3, + "probability": 0.9753 + }, + { + "start": 22742.4, + "end": 22746.06, + "probability": 0.967 + }, + { + "start": 22747.16, + "end": 22748.88, + "probability": 0.9681 + }, + { + "start": 22749.58, + "end": 22751.28, + "probability": 0.8854 + }, + { + "start": 22752.0, + "end": 22755.7, + "probability": 0.9051 + }, + { + "start": 22756.34, + "end": 22759.1, + "probability": 0.9823 + }, + { + "start": 22760.28, + "end": 22762.38, + "probability": 0.9987 + }, + { + "start": 22762.42, + "end": 22764.08, + "probability": 0.8798 + }, + { + "start": 22764.18, + "end": 22764.7, + "probability": 0.8408 + }, + { + "start": 22764.76, + "end": 22765.98, + "probability": 0.7682 + }, + { + "start": 22767.84, + "end": 22768.92, + "probability": 0.9107 + }, + { + "start": 22770.66, + "end": 22775.12, + "probability": 0.9781 + }, + { + "start": 22775.18, + "end": 22776.4, + "probability": 0.6687 + }, + { + "start": 22776.64, + "end": 22778.62, + "probability": 0.999 + }, + { + "start": 22779.6, + "end": 22783.22, + "probability": 0.7774 + }, + { + "start": 22783.92, + "end": 22785.28, + "probability": 0.9653 + }, + { + "start": 22785.82, + "end": 22788.5, + "probability": 0.9583 + }, + { + "start": 22788.92, + "end": 22792.44, + "probability": 0.9862 + }, + { + "start": 22793.56, + "end": 22794.54, + "probability": 0.8032 + }, + { + "start": 22795.72, + "end": 22796.7, + "probability": 0.623 + }, + { + "start": 22797.28, + "end": 22797.8, + "probability": 0.7604 + }, + { + "start": 22797.9, + "end": 22800.7, + "probability": 0.9662 + }, + { + "start": 22800.92, + "end": 22801.16, + "probability": 0.6866 + }, + { + "start": 22801.24, + "end": 22805.24, + "probability": 0.9802 + }, + { + "start": 22805.24, + "end": 22808.8, + "probability": 0.8362 + }, + { + "start": 22808.88, + "end": 22809.68, + "probability": 0.7422 + }, + { + "start": 22810.1, + "end": 22811.48, + "probability": 0.7362 + }, + { + "start": 22811.86, + "end": 22812.68, + "probability": 0.8417 + }, + { + "start": 22813.86, + "end": 22818.78, + "probability": 0.938 + }, + { + "start": 22819.52, + "end": 22819.74, + "probability": 0.4769 + }, + { + "start": 22819.82, + "end": 22820.08, + "probability": 0.3012 + }, + { + "start": 22820.14, + "end": 22824.18, + "probability": 0.8663 + }, + { + "start": 22824.18, + "end": 22828.18, + "probability": 0.9188 + }, + { + "start": 22828.4, + "end": 22835.16, + "probability": 0.8562 + }, + { + "start": 22836.62, + "end": 22838.21, + "probability": 0.6958 + }, + { + "start": 22839.84, + "end": 22842.44, + "probability": 0.9636 + }, + { + "start": 22844.34, + "end": 22845.56, + "probability": 0.5662 + }, + { + "start": 22846.6, + "end": 22850.84, + "probability": 0.0962 + }, + { + "start": 22851.14, + "end": 22852.38, + "probability": 0.4332 + }, + { + "start": 22852.54, + "end": 22854.06, + "probability": 0.684 + }, + { + "start": 22854.36, + "end": 22855.27, + "probability": 0.3017 + }, + { + "start": 22856.48, + "end": 22859.0, + "probability": 0.3776 + }, + { + "start": 22860.86, + "end": 22863.08, + "probability": 0.6668 + }, + { + "start": 22868.36, + "end": 22871.26, + "probability": 0.2629 + }, + { + "start": 22871.42, + "end": 22873.78, + "probability": 0.508 + }, + { + "start": 22874.02, + "end": 22874.16, + "probability": 0.3039 + }, + { + "start": 22874.9, + "end": 22875.72, + "probability": 0.6929 + }, + { + "start": 22875.74, + "end": 22877.98, + "probability": 0.8373 + }, + { + "start": 22878.18, + "end": 22879.27, + "probability": 0.9365 + }, + { + "start": 22879.86, + "end": 22882.04, + "probability": 0.8664 + }, + { + "start": 22882.18, + "end": 22882.66, + "probability": 0.9305 + }, + { + "start": 22882.72, + "end": 22883.48, + "probability": 0.9731 + }, + { + "start": 22883.82, + "end": 22885.96, + "probability": 0.5028 + }, + { + "start": 22886.3, + "end": 22887.1, + "probability": 0.0188 + }, + { + "start": 22887.43, + "end": 22889.72, + "probability": 0.7657 + }, + { + "start": 22889.98, + "end": 22895.52, + "probability": 0.958 + }, + { + "start": 22895.7, + "end": 22898.76, + "probability": 0.9985 + }, + { + "start": 22899.56, + "end": 22902.52, + "probability": 0.8516 + }, + { + "start": 22902.6, + "end": 22903.0, + "probability": 0.8483 + }, + { + "start": 22903.12, + "end": 22909.8, + "probability": 0.8003 + }, + { + "start": 22910.36, + "end": 22911.36, + "probability": 0.6951 + }, + { + "start": 22912.16, + "end": 22915.22, + "probability": 0.9547 + }, + { + "start": 22916.2, + "end": 22918.7, + "probability": 0.8348 + }, + { + "start": 22918.96, + "end": 22919.94, + "probability": 0.7126 + }, + { + "start": 22920.22, + "end": 22921.88, + "probability": 0.3769 + }, + { + "start": 22921.98, + "end": 22922.6, + "probability": 0.6726 + }, + { + "start": 22922.8, + "end": 22924.09, + "probability": 0.9332 + }, + { + "start": 22924.34, + "end": 22925.8, + "probability": 0.7907 + }, + { + "start": 22925.84, + "end": 22927.58, + "probability": 0.9299 + }, + { + "start": 22927.6, + "end": 22928.4, + "probability": 0.7321 + }, + { + "start": 22928.78, + "end": 22930.6, + "probability": 0.9516 + }, + { + "start": 22930.98, + "end": 22932.72, + "probability": 0.0579 + }, + { + "start": 22933.1, + "end": 22934.2, + "probability": 0.5289 + }, + { + "start": 22934.34, + "end": 22936.0, + "probability": 0.9878 + }, + { + "start": 22936.38, + "end": 22937.04, + "probability": 0.1613 + }, + { + "start": 22937.42, + "end": 22939.72, + "probability": 0.2716 + }, + { + "start": 22939.9, + "end": 22940.98, + "probability": 0.4111 + }, + { + "start": 22941.36, + "end": 22944.16, + "probability": 0.9937 + }, + { + "start": 22944.5, + "end": 22947.44, + "probability": 0.936 + }, + { + "start": 22948.16, + "end": 22952.92, + "probability": 0.8638 + }, + { + "start": 22953.32, + "end": 22955.22, + "probability": 0.7752 + }, + { + "start": 22969.66, + "end": 22971.76, + "probability": 0.7849 + }, + { + "start": 22971.9, + "end": 22973.5, + "probability": 0.6534 + }, + { + "start": 22973.78, + "end": 22974.58, + "probability": 0.7195 + }, + { + "start": 22974.82, + "end": 22975.5, + "probability": 0.9663 + }, + { + "start": 22975.72, + "end": 22976.02, + "probability": 0.6143 + }, + { + "start": 22976.16, + "end": 22977.54, + "probability": 0.9456 + }, + { + "start": 22977.9, + "end": 22979.72, + "probability": 0.967 + }, + { + "start": 22979.72, + "end": 22980.8, + "probability": 0.8926 + }, + { + "start": 22980.8, + "end": 22981.2, + "probability": 0.8718 + }, + { + "start": 22982.32, + "end": 22986.34, + "probability": 0.9635 + }, + { + "start": 22986.88, + "end": 22989.52, + "probability": 0.814 + }, + { + "start": 22993.58, + "end": 22994.71, + "probability": 0.1309 + }, + { + "start": 22996.14, + "end": 22996.64, + "probability": 0.012 + }, + { + "start": 22997.62, + "end": 23005.38, + "probability": 0.8151 + }, + { + "start": 23005.82, + "end": 23007.24, + "probability": 0.6978 + }, + { + "start": 23007.34, + "end": 23010.16, + "probability": 0.6482 + }, + { + "start": 23010.28, + "end": 23013.32, + "probability": 0.5025 + }, + { + "start": 23013.7, + "end": 23013.7, + "probability": 0.6529 + }, + { + "start": 23013.7, + "end": 23014.72, + "probability": 0.8818 + }, + { + "start": 23014.88, + "end": 23016.86, + "probability": 0.84 + }, + { + "start": 23018.32, + "end": 23020.7, + "probability": 0.9865 + }, + { + "start": 23022.94, + "end": 23025.42, + "probability": 0.8853 + }, + { + "start": 23025.46, + "end": 23026.43, + "probability": 0.8936 + }, + { + "start": 23028.0, + "end": 23029.42, + "probability": 0.8889 + }, + { + "start": 23030.1, + "end": 23031.22, + "probability": 0.9751 + }, + { + "start": 23032.42, + "end": 23035.02, + "probability": 0.8711 + }, + { + "start": 23036.84, + "end": 23040.62, + "probability": 0.5858 + }, + { + "start": 23042.72, + "end": 23046.84, + "probability": 0.966 + }, + { + "start": 23046.96, + "end": 23049.48, + "probability": 0.8176 + }, + { + "start": 23050.98, + "end": 23052.18, + "probability": 0.3991 + }, + { + "start": 23053.46, + "end": 23053.76, + "probability": 0.9211 + }, + { + "start": 23053.92, + "end": 23054.87, + "probability": 0.9285 + }, + { + "start": 23054.98, + "end": 23055.92, + "probability": 0.9575 + }, + { + "start": 23056.02, + "end": 23056.52, + "probability": 0.2805 + }, + { + "start": 23056.62, + "end": 23057.82, + "probability": 0.9663 + }, + { + "start": 23060.04, + "end": 23061.94, + "probability": 0.9735 + }, + { + "start": 23062.5, + "end": 23065.24, + "probability": 0.9027 + }, + { + "start": 23065.36, + "end": 23066.26, + "probability": 0.6184 + }, + { + "start": 23066.38, + "end": 23066.92, + "probability": 0.3315 + }, + { + "start": 23067.54, + "end": 23067.94, + "probability": 0.5198 + }, + { + "start": 23067.94, + "end": 23069.96, + "probability": 0.5273 + }, + { + "start": 23070.49, + "end": 23071.12, + "probability": 0.0862 + }, + { + "start": 23071.22, + "end": 23071.64, + "probability": 0.216 + }, + { + "start": 23072.02, + "end": 23072.66, + "probability": 0.7597 + }, + { + "start": 23072.78, + "end": 23073.22, + "probability": 0.8677 + }, + { + "start": 23073.32, + "end": 23073.82, + "probability": 0.843 + }, + { + "start": 23074.32, + "end": 23081.1, + "probability": 0.9189 + }, + { + "start": 23081.22, + "end": 23082.46, + "probability": 0.9093 + }, + { + "start": 23084.22, + "end": 23085.46, + "probability": 0.7716 + }, + { + "start": 23085.86, + "end": 23087.96, + "probability": 0.3368 + }, + { + "start": 23087.96, + "end": 23090.04, + "probability": 0.7838 + }, + { + "start": 23090.68, + "end": 23092.78, + "probability": 0.531 + }, + { + "start": 23092.88, + "end": 23100.59, + "probability": 0.9875 + }, + { + "start": 23101.94, + "end": 23104.58, + "probability": 0.4756 + }, + { + "start": 23104.8, + "end": 23104.94, + "probability": 0.5473 + }, + { + "start": 23107.09, + "end": 23111.5, + "probability": 0.97 + }, + { + "start": 23112.08, + "end": 23119.44, + "probability": 0.9644 + }, + { + "start": 23120.2, + "end": 23123.88, + "probability": 0.9789 + }, + { + "start": 23123.9, + "end": 23125.08, + "probability": 0.9313 + }, + { + "start": 23125.18, + "end": 23129.86, + "probability": 0.8927 + }, + { + "start": 23129.96, + "end": 23130.92, + "probability": 0.9645 + }, + { + "start": 23131.12, + "end": 23131.76, + "probability": 0.9009 + }, + { + "start": 23131.84, + "end": 23132.48, + "probability": 0.7452 + }, + { + "start": 23132.64, + "end": 23135.8, + "probability": 0.7261 + }, + { + "start": 23135.94, + "end": 23142.22, + "probability": 0.9874 + }, + { + "start": 23142.96, + "end": 23144.84, + "probability": 0.9362 + }, + { + "start": 23146.18, + "end": 23147.96, + "probability": 0.7799 + }, + { + "start": 23148.28, + "end": 23153.46, + "probability": 0.9948 + }, + { + "start": 23153.6, + "end": 23155.91, + "probability": 0.991 + }, + { + "start": 23157.32, + "end": 23160.34, + "probability": 0.9502 + }, + { + "start": 23160.84, + "end": 23161.56, + "probability": 0.6367 + }, + { + "start": 23163.52, + "end": 23167.26, + "probability": 0.8499 + }, + { + "start": 23167.38, + "end": 23167.96, + "probability": 0.7283 + }, + { + "start": 23168.82, + "end": 23169.56, + "probability": 0.6735 + }, + { + "start": 23170.32, + "end": 23171.86, + "probability": 0.7456 + }, + { + "start": 23172.08, + "end": 23174.78, + "probability": 0.9717 + }, + { + "start": 23175.16, + "end": 23175.86, + "probability": 0.8506 + }, + { + "start": 23175.94, + "end": 23177.22, + "probability": 0.998 + }, + { + "start": 23179.36, + "end": 23184.96, + "probability": 0.938 + }, + { + "start": 23186.1, + "end": 23186.8, + "probability": 0.748 + }, + { + "start": 23187.66, + "end": 23190.1, + "probability": 0.9046 + }, + { + "start": 23191.48, + "end": 23191.88, + "probability": 0.7703 + }, + { + "start": 23191.92, + "end": 23192.54, + "probability": 0.4595 + }, + { + "start": 23192.6, + "end": 23193.78, + "probability": 0.9344 + }, + { + "start": 23193.82, + "end": 23195.04, + "probability": 0.7852 + }, + { + "start": 23195.1, + "end": 23195.38, + "probability": 0.7525 + }, + { + "start": 23195.48, + "end": 23195.82, + "probability": 0.9264 + }, + { + "start": 23195.88, + "end": 23200.1, + "probability": 0.6003 + }, + { + "start": 23200.6, + "end": 23201.36, + "probability": 0.9644 + }, + { + "start": 23203.0, + "end": 23205.48, + "probability": 0.892 + }, + { + "start": 23207.26, + "end": 23212.09, + "probability": 0.9891 + }, + { + "start": 23213.1, + "end": 23214.4, + "probability": 0.886 + }, + { + "start": 23214.86, + "end": 23216.12, + "probability": 0.9563 + }, + { + "start": 23216.12, + "end": 23222.96, + "probability": 0.0932 + }, + { + "start": 23223.2, + "end": 23224.0, + "probability": 0.0122 + }, + { + "start": 23224.26, + "end": 23224.26, + "probability": 0.1457 + }, + { + "start": 23224.26, + "end": 23224.26, + "probability": 0.3716 + }, + { + "start": 23224.26, + "end": 23226.2, + "probability": 0.4971 + }, + { + "start": 23226.28, + "end": 23227.96, + "probability": 0.89 + }, + { + "start": 23228.38, + "end": 23230.56, + "probability": 0.7693 + }, + { + "start": 23232.02, + "end": 23241.74, + "probability": 0.9877 + }, + { + "start": 23243.1, + "end": 23244.58, + "probability": 0.7398 + }, + { + "start": 23246.08, + "end": 23248.76, + "probability": 0.7461 + }, + { + "start": 23250.04, + "end": 23251.84, + "probability": 0.8415 + }, + { + "start": 23252.12, + "end": 23252.86, + "probability": 0.1401 + }, + { + "start": 23253.09, + "end": 23256.02, + "probability": 0.4585 + }, + { + "start": 23256.76, + "end": 23259.09, + "probability": 0.7817 + }, + { + "start": 23259.86, + "end": 23260.96, + "probability": 0.3424 + }, + { + "start": 23261.1, + "end": 23263.44, + "probability": 0.9818 + }, + { + "start": 23265.88, + "end": 23274.86, + "probability": 0.9871 + }, + { + "start": 23276.0, + "end": 23277.4, + "probability": 0.8959 + }, + { + "start": 23277.9, + "end": 23278.44, + "probability": 0.8606 + }, + { + "start": 23278.54, + "end": 23278.66, + "probability": 0.7682 + }, + { + "start": 23278.82, + "end": 23279.34, + "probability": 0.9309 + }, + { + "start": 23279.46, + "end": 23280.16, + "probability": 0.9976 + }, + { + "start": 23280.78, + "end": 23284.54, + "probability": 0.9839 + }, + { + "start": 23284.58, + "end": 23286.18, + "probability": 0.9419 + }, + { + "start": 23286.46, + "end": 23287.32, + "probability": 0.8126 + }, + { + "start": 23288.16, + "end": 23291.76, + "probability": 0.9717 + }, + { + "start": 23291.82, + "end": 23292.25, + "probability": 0.9762 + }, + { + "start": 23292.6, + "end": 23293.77, + "probability": 0.9978 + }, + { + "start": 23295.42, + "end": 23298.94, + "probability": 0.9401 + }, + { + "start": 23299.7, + "end": 23300.96, + "probability": 0.9689 + }, + { + "start": 23301.04, + "end": 23302.26, + "probability": 0.9959 + }, + { + "start": 23302.74, + "end": 23303.36, + "probability": 0.9389 + }, + { + "start": 23303.5, + "end": 23305.04, + "probability": 0.9945 + }, + { + "start": 23305.72, + "end": 23311.9, + "probability": 0.8853 + }, + { + "start": 23313.08, + "end": 23314.28, + "probability": 0.991 + }, + { + "start": 23314.54, + "end": 23315.72, + "probability": 0.9052 + }, + { + "start": 23315.8, + "end": 23318.6, + "probability": 0.8948 + }, + { + "start": 23320.26, + "end": 23326.56, + "probability": 0.9737 + }, + { + "start": 23326.56, + "end": 23328.88, + "probability": 0.8743 + }, + { + "start": 23330.64, + "end": 23333.28, + "probability": 0.9853 + }, + { + "start": 23334.34, + "end": 23337.6, + "probability": 0.9984 + }, + { + "start": 23337.6, + "end": 23341.94, + "probability": 0.9863 + }, + { + "start": 23342.92, + "end": 23344.0, + "probability": 0.6823 + }, + { + "start": 23344.6, + "end": 23346.6, + "probability": 0.8759 + }, + { + "start": 23346.68, + "end": 23347.5, + "probability": 0.8774 + }, + { + "start": 23347.98, + "end": 23349.76, + "probability": 0.8762 + }, + { + "start": 23352.04, + "end": 23357.12, + "probability": 0.9903 + }, + { + "start": 23358.24, + "end": 23359.76, + "probability": 0.9048 + }, + { + "start": 23359.84, + "end": 23359.92, + "probability": 0.0155 + }, + { + "start": 23359.92, + "end": 23364.66, + "probability": 0.9603 + }, + { + "start": 23364.96, + "end": 23366.36, + "probability": 0.9858 + }, + { + "start": 23368.14, + "end": 23369.84, + "probability": 0.7303 + }, + { + "start": 23370.88, + "end": 23371.58, + "probability": 0.7987 + }, + { + "start": 23371.66, + "end": 23375.94, + "probability": 0.9287 + }, + { + "start": 23378.5, + "end": 23380.44, + "probability": 0.9539 + }, + { + "start": 23381.74, + "end": 23384.5, + "probability": 0.9542 + }, + { + "start": 23385.36, + "end": 23386.06, + "probability": 0.4092 + }, + { + "start": 23387.76, + "end": 23389.17, + "probability": 0.9582 + }, + { + "start": 23390.24, + "end": 23391.33, + "probability": 0.9599 + }, + { + "start": 23392.5, + "end": 23395.02, + "probability": 0.9465 + }, + { + "start": 23396.02, + "end": 23396.76, + "probability": 0.993 + }, + { + "start": 23399.38, + "end": 23400.02, + "probability": 0.4072 + }, + { + "start": 23401.24, + "end": 23401.4, + "probability": 0.6735 + }, + { + "start": 23401.4, + "end": 23402.3, + "probability": 0.118 + }, + { + "start": 23402.6, + "end": 23402.84, + "probability": 0.3454 + }, + { + "start": 23402.86, + "end": 23403.84, + "probability": 0.7796 + }, + { + "start": 23403.98, + "end": 23404.78, + "probability": 0.5794 + }, + { + "start": 23405.7, + "end": 23406.67, + "probability": 0.7708 + }, + { + "start": 23407.76, + "end": 23408.98, + "probability": 0.7912 + }, + { + "start": 23409.72, + "end": 23412.62, + "probability": 0.9409 + }, + { + "start": 23413.38, + "end": 23415.32, + "probability": 0.6514 + }, + { + "start": 23416.36, + "end": 23417.7, + "probability": 0.9521 + }, + { + "start": 23418.36, + "end": 23419.84, + "probability": 0.9945 + }, + { + "start": 23419.92, + "end": 23425.56, + "probability": 0.9794 + }, + { + "start": 23425.56, + "end": 23428.14, + "probability": 0.9942 + }, + { + "start": 23428.58, + "end": 23428.9, + "probability": 0.7787 + }, + { + "start": 23429.08, + "end": 23431.14, + "probability": 0.7385 + }, + { + "start": 23431.42, + "end": 23433.4, + "probability": 0.3509 + }, + { + "start": 23433.4, + "end": 23435.1, + "probability": 0.8174 + }, + { + "start": 23436.0, + "end": 23436.32, + "probability": 0.0515 + }, + { + "start": 23436.32, + "end": 23436.72, + "probability": 0.1676 + }, + { + "start": 23436.82, + "end": 23440.42, + "probability": 0.7324 + }, + { + "start": 23440.52, + "end": 23441.28, + "probability": 0.8817 + }, + { + "start": 23441.44, + "end": 23441.72, + "probability": 0.602 + }, + { + "start": 23442.34, + "end": 23442.34, + "probability": 0.4622 + }, + { + "start": 23442.34, + "end": 23443.48, + "probability": 0.4962 + }, + { + "start": 23443.68, + "end": 23444.78, + "probability": 0.8824 + }, + { + "start": 23445.04, + "end": 23446.22, + "probability": 0.8007 + }, + { + "start": 23446.66, + "end": 23447.4, + "probability": 0.6649 + }, + { + "start": 23447.4, + "end": 23448.96, + "probability": 0.7876 + }, + { + "start": 23449.04, + "end": 23450.6, + "probability": 0.6032 + }, + { + "start": 23450.72, + "end": 23451.14, + "probability": 0.6007 + }, + { + "start": 23451.3, + "end": 23451.62, + "probability": 0.2882 + }, + { + "start": 23451.82, + "end": 23454.13, + "probability": 0.0946 + }, + { + "start": 23454.86, + "end": 23456.4, + "probability": 0.9803 + }, + { + "start": 23456.48, + "end": 23457.22, + "probability": 0.554 + }, + { + "start": 23457.74, + "end": 23459.48, + "probability": 0.7339 + }, + { + "start": 23460.0, + "end": 23460.36, + "probability": 0.844 + }, + { + "start": 23460.54, + "end": 23461.5, + "probability": 0.9021 + }, + { + "start": 23461.97, + "end": 23463.28, + "probability": 0.7349 + }, + { + "start": 23463.44, + "end": 23467.5, + "probability": 0.986 + }, + { + "start": 23467.76, + "end": 23471.16, + "probability": 0.9259 + }, + { + "start": 23471.28, + "end": 23472.22, + "probability": 0.7163 + }, + { + "start": 23473.14, + "end": 23478.88, + "probability": 0.9128 + }, + { + "start": 23483.18, + "end": 23484.92, + "probability": 0.6217 + }, + { + "start": 23485.64, + "end": 23486.86, + "probability": 0.7515 + }, + { + "start": 23488.2, + "end": 23488.84, + "probability": 0.5039 + }, + { + "start": 23491.94, + "end": 23493.85, + "probability": 0.9638 + }, + { + "start": 23496.1, + "end": 23497.8, + "probability": 0.9176 + }, + { + "start": 23500.1, + "end": 23504.54, + "probability": 0.9724 + }, + { + "start": 23506.76, + "end": 23507.44, + "probability": 0.9985 + }, + { + "start": 23510.5, + "end": 23511.78, + "probability": 0.9285 + }, + { + "start": 23515.3, + "end": 23515.88, + "probability": 0.9938 + }, + { + "start": 23518.18, + "end": 23522.32, + "probability": 0.9476 + }, + { + "start": 23523.44, + "end": 23525.58, + "probability": 0.9034 + }, + { + "start": 23525.98, + "end": 23527.28, + "probability": 0.0801 + }, + { + "start": 23531.86, + "end": 23532.54, + "probability": 0.8109 + }, + { + "start": 23535.96, + "end": 23538.16, + "probability": 0.913 + }, + { + "start": 23540.36, + "end": 23540.98, + "probability": 0.4745 + }, + { + "start": 23543.86, + "end": 23544.82, + "probability": 0.7888 + }, + { + "start": 23546.86, + "end": 23552.54, + "probability": 0.9813 + }, + { + "start": 23553.36, + "end": 23555.86, + "probability": 0.8706 + }, + { + "start": 23556.34, + "end": 23557.97, + "probability": 0.9766 + }, + { + "start": 23558.76, + "end": 23560.28, + "probability": 0.5951 + }, + { + "start": 23560.3, + "end": 23560.44, + "probability": 0.5465 + }, + { + "start": 23560.44, + "end": 23562.22, + "probability": 0.7085 + }, + { + "start": 23562.52, + "end": 23567.76, + "probability": 0.8806 + }, + { + "start": 23570.64, + "end": 23576.98, + "probability": 0.9937 + }, + { + "start": 23579.36, + "end": 23582.04, + "probability": 0.9321 + }, + { + "start": 23584.74, + "end": 23588.06, + "probability": 0.9977 + }, + { + "start": 23592.2, + "end": 23594.78, + "probability": 0.7937 + }, + { + "start": 23597.14, + "end": 23600.92, + "probability": 0.8352 + }, + { + "start": 23605.6, + "end": 23607.92, + "probability": 0.9917 + }, + { + "start": 23608.7, + "end": 23610.96, + "probability": 0.9062 + }, + { + "start": 23613.86, + "end": 23615.4, + "probability": 0.9705 + }, + { + "start": 23615.48, + "end": 23616.18, + "probability": 0.9355 + }, + { + "start": 23617.76, + "end": 23620.1, + "probability": 0.96 + }, + { + "start": 23620.76, + "end": 23621.46, + "probability": 0.6873 + }, + { + "start": 23622.02, + "end": 23622.68, + "probability": 0.8344 + }, + { + "start": 23624.14, + "end": 23626.4, + "probability": 0.9645 + }, + { + "start": 23627.94, + "end": 23630.22, + "probability": 0.6831 + }, + { + "start": 23632.64, + "end": 23634.22, + "probability": 0.9839 + }, + { + "start": 23638.82, + "end": 23639.52, + "probability": 0.7112 + }, + { + "start": 23641.4, + "end": 23644.68, + "probability": 0.9822 + }, + { + "start": 23647.18, + "end": 23648.84, + "probability": 0.9656 + }, + { + "start": 23650.56, + "end": 23651.94, + "probability": 0.9972 + }, + { + "start": 23653.06, + "end": 23656.8, + "probability": 0.9487 + }, + { + "start": 23658.88, + "end": 23661.1, + "probability": 0.991 + }, + { + "start": 23662.68, + "end": 23667.9, + "probability": 0.9943 + }, + { + "start": 23667.9, + "end": 23672.22, + "probability": 0.9988 + }, + { + "start": 23673.9, + "end": 23679.44, + "probability": 0.99 + }, + { + "start": 23680.08, + "end": 23680.76, + "probability": 0.8922 + }, + { + "start": 23681.06, + "end": 23684.72, + "probability": 0.9878 + }, + { + "start": 23685.1, + "end": 23687.3, + "probability": 0.9927 + }, + { + "start": 23688.16, + "end": 23688.98, + "probability": 0.8911 + }, + { + "start": 23692.14, + "end": 23693.46, + "probability": 0.9943 + }, + { + "start": 23695.46, + "end": 23696.26, + "probability": 0.501 + }, + { + "start": 23699.34, + "end": 23701.08, + "probability": 0.9758 + }, + { + "start": 23703.84, + "end": 23709.16, + "probability": 0.9941 + }, + { + "start": 23711.46, + "end": 23713.62, + "probability": 0.9968 + }, + { + "start": 23714.3, + "end": 23718.04, + "probability": 0.9984 + }, + { + "start": 23718.5, + "end": 23720.04, + "probability": 0.3172 + }, + { + "start": 23720.36, + "end": 23722.98, + "probability": 0.9473 + }, + { + "start": 23723.58, + "end": 23723.68, + "probability": 0.5663 + }, + { + "start": 23723.68, + "end": 23726.86, + "probability": 0.9917 + }, + { + "start": 23729.24, + "end": 23734.56, + "probability": 0.7489 + }, + { + "start": 23734.84, + "end": 23735.96, + "probability": 0.7546 + }, + { + "start": 23736.64, + "end": 23741.3, + "probability": 0.9287 + }, + { + "start": 23741.8, + "end": 23744.0, + "probability": 0.9454 + }, + { + "start": 23744.2, + "end": 23745.12, + "probability": 0.281 + }, + { + "start": 23745.18, + "end": 23747.4, + "probability": 0.4734 + }, + { + "start": 23747.4, + "end": 23751.0, + "probability": 0.9918 + }, + { + "start": 23751.0, + "end": 23755.44, + "probability": 0.989 + }, + { + "start": 23755.54, + "end": 23755.66, + "probability": 0.2347 + }, + { + "start": 23755.7, + "end": 23756.0, + "probability": 0.6422 + }, + { + "start": 23756.08, + "end": 23756.73, + "probability": 0.8206 + }, + { + "start": 23756.88, + "end": 23757.99, + "probability": 0.8608 + }, + { + "start": 23758.74, + "end": 23759.29, + "probability": 0.8364 + }, + { + "start": 23760.02, + "end": 23761.62, + "probability": 0.81 + }, + { + "start": 23764.96, + "end": 23765.18, + "probability": 0.074 + }, + { + "start": 23765.18, + "end": 23765.18, + "probability": 0.054 + }, + { + "start": 23765.18, + "end": 23766.72, + "probability": 0.5563 + }, + { + "start": 23766.92, + "end": 23770.54, + "probability": 0.8333 + }, + { + "start": 23771.48, + "end": 23775.3, + "probability": 0.9474 + }, + { + "start": 23780.4, + "end": 23782.9, + "probability": 0.6236 + }, + { + "start": 23786.24, + "end": 23788.4, + "probability": 0.9945 + }, + { + "start": 23791.02, + "end": 23792.04, + "probability": 0.958 + }, + { + "start": 23795.22, + "end": 23796.14, + "probability": 0.9283 + }, + { + "start": 23799.42, + "end": 23802.5, + "probability": 0.9035 + }, + { + "start": 23805.34, + "end": 23807.82, + "probability": 0.5336 + }, + { + "start": 23811.72, + "end": 23812.88, + "probability": 0.9305 + }, + { + "start": 23814.04, + "end": 23815.96, + "probability": 0.9957 + }, + { + "start": 23818.1, + "end": 23818.18, + "probability": 0.2738 + }, + { + "start": 23818.22, + "end": 23818.84, + "probability": 0.8556 + }, + { + "start": 23818.9, + "end": 23819.14, + "probability": 0.8181 + }, + { + "start": 23819.2, + "end": 23821.06, + "probability": 0.9943 + }, + { + "start": 23823.04, + "end": 23825.64, + "probability": 0.9978 + }, + { + "start": 23827.36, + "end": 23829.36, + "probability": 0.9979 + }, + { + "start": 23831.64, + "end": 23833.16, + "probability": 0.9375 + }, + { + "start": 23836.2, + "end": 23840.76, + "probability": 0.6827 + }, + { + "start": 23840.94, + "end": 23842.94, + "probability": 0.802 + }, + { + "start": 23843.36, + "end": 23845.3, + "probability": 0.5231 + }, + { + "start": 23845.48, + "end": 23846.28, + "probability": 0.7322 + }, + { + "start": 23846.48, + "end": 23854.16, + "probability": 0.9427 + }, + { + "start": 23855.94, + "end": 23857.54, + "probability": 0.7586 + }, + { + "start": 23857.68, + "end": 23858.0, + "probability": 0.8677 + }, + { + "start": 23858.08, + "end": 23860.48, + "probability": 0.9953 + }, + { + "start": 23861.66, + "end": 23866.78, + "probability": 0.9606 + }, + { + "start": 23868.5, + "end": 23872.06, + "probability": 0.9945 + }, + { + "start": 23873.14, + "end": 23875.75, + "probability": 0.983 + }, + { + "start": 23877.74, + "end": 23879.58, + "probability": 0.5465 + }, + { + "start": 23882.54, + "end": 23883.66, + "probability": 0.6625 + }, + { + "start": 23885.24, + "end": 23886.24, + "probability": 0.4885 + }, + { + "start": 23887.16, + "end": 23890.68, + "probability": 0.7879 + }, + { + "start": 23893.2, + "end": 23898.1, + "probability": 0.9567 + }, + { + "start": 23898.18, + "end": 23900.98, + "probability": 0.9562 + }, + { + "start": 23904.24, + "end": 23905.86, + "probability": 0.7518 + }, + { + "start": 23906.58, + "end": 23907.3, + "probability": 0.7038 + }, + { + "start": 23909.28, + "end": 23909.88, + "probability": 0.8038 + }, + { + "start": 23914.92, + "end": 23915.9, + "probability": 0.927 + }, + { + "start": 23916.02, + "end": 23916.53, + "probability": 0.9724 + }, + { + "start": 23916.74, + "end": 23917.82, + "probability": 0.9541 + }, + { + "start": 23919.06, + "end": 23921.44, + "probability": 0.9825 + }, + { + "start": 23921.5, + "end": 23924.42, + "probability": 0.9766 + }, + { + "start": 23926.0, + "end": 23927.56, + "probability": 0.8438 + }, + { + "start": 23927.64, + "end": 23928.96, + "probability": 0.6172 + }, + { + "start": 23931.02, + "end": 23932.06, + "probability": 0.8873 + }, + { + "start": 23932.2, + "end": 23935.82, + "probability": 0.8664 + }, + { + "start": 23937.16, + "end": 23939.88, + "probability": 0.9793 + }, + { + "start": 23940.42, + "end": 23941.74, + "probability": 0.8535 + }, + { + "start": 23941.82, + "end": 23942.66, + "probability": 0.936 + }, + { + "start": 23943.84, + "end": 23944.6, + "probability": 0.9751 + }, + { + "start": 23946.68, + "end": 23948.24, + "probability": 0.9633 + }, + { + "start": 23949.92, + "end": 23950.84, + "probability": 0.8262 + }, + { + "start": 23953.44, + "end": 23955.0, + "probability": 0.7512 + }, + { + "start": 23956.14, + "end": 23957.14, + "probability": 0.4769 + }, + { + "start": 23958.3, + "end": 23958.34, + "probability": 0.2108 + }, + { + "start": 23958.34, + "end": 23959.36, + "probability": 0.6875 + }, + { + "start": 23960.1, + "end": 23961.68, + "probability": 0.916 + }, + { + "start": 23961.92, + "end": 23963.44, + "probability": 0.7116 + }, + { + "start": 23963.44, + "end": 23965.64, + "probability": 0.6802 + }, + { + "start": 23965.66, + "end": 23966.52, + "probability": 0.4863 + }, + { + "start": 23966.58, + "end": 23969.84, + "probability": 0.7972 + }, + { + "start": 23969.9, + "end": 23975.32, + "probability": 0.6584 + }, + { + "start": 23975.88, + "end": 23977.08, + "probability": 0.1749 + }, + { + "start": 23977.08, + "end": 23977.08, + "probability": 0.1744 + }, + { + "start": 23977.08, + "end": 23977.08, + "probability": 0.0215 + }, + { + "start": 23977.08, + "end": 23977.08, + "probability": 0.0493 + }, + { + "start": 23977.08, + "end": 23977.28, + "probability": 0.1503 + }, + { + "start": 23977.28, + "end": 23978.44, + "probability": 0.4081 + }, + { + "start": 23978.92, + "end": 23980.44, + "probability": 0.582 + }, + { + "start": 23980.46, + "end": 23981.94, + "probability": 0.9596 + }, + { + "start": 23982.46, + "end": 23983.24, + "probability": 0.6092 + }, + { + "start": 23983.24, + "end": 23983.31, + "probability": 0.0255 + }, + { + "start": 23983.84, + "end": 23985.64, + "probability": 0.9857 + }, + { + "start": 23986.5, + "end": 23987.8, + "probability": 0.9406 + }, + { + "start": 23987.94, + "end": 23989.92, + "probability": 0.9752 + }, + { + "start": 23990.32, + "end": 23991.36, + "probability": 0.7308 + }, + { + "start": 23991.48, + "end": 23993.24, + "probability": 0.8929 + }, + { + "start": 23993.82, + "end": 23995.26, + "probability": 0.8867 + }, + { + "start": 23997.22, + "end": 24004.08, + "probability": 0.9729 + }, + { + "start": 24006.94, + "end": 24008.56, + "probability": 0.9116 + }, + { + "start": 24009.64, + "end": 24010.64, + "probability": 0.7439 + }, + { + "start": 24012.3, + "end": 24013.6, + "probability": 0.8457 + }, + { + "start": 24014.96, + "end": 24016.44, + "probability": 0.925 + }, + { + "start": 24018.64, + "end": 24021.1, + "probability": 0.9912 + }, + { + "start": 24023.7, + "end": 24024.57, + "probability": 0.9276 + }, + { + "start": 24026.14, + "end": 24026.91, + "probability": 0.9838 + }, + { + "start": 24029.24, + "end": 24032.52, + "probability": 0.9878 + }, + { + "start": 24033.72, + "end": 24034.72, + "probability": 0.7228 + }, + { + "start": 24035.46, + "end": 24037.18, + "probability": 0.9165 + }, + { + "start": 24038.38, + "end": 24042.56, + "probability": 0.6617 + }, + { + "start": 24042.68, + "end": 24045.12, + "probability": 0.4938 + }, + { + "start": 24046.56, + "end": 24047.92, + "probability": 0.5215 + }, + { + "start": 24049.08, + "end": 24051.4, + "probability": 0.8197 + }, + { + "start": 24052.02, + "end": 24054.74, + "probability": 0.8755 + }, + { + "start": 24056.2, + "end": 24057.6, + "probability": 0.9747 + }, + { + "start": 24059.24, + "end": 24060.74, + "probability": 0.8767 + }, + { + "start": 24062.04, + "end": 24064.68, + "probability": 0.8554 + }, + { + "start": 24066.84, + "end": 24068.15, + "probability": 0.997 + }, + { + "start": 24071.72, + "end": 24074.52, + "probability": 0.9952 + }, + { + "start": 24076.98, + "end": 24084.14, + "probability": 0.9513 + }, + { + "start": 24085.02, + "end": 24089.48, + "probability": 0.9496 + }, + { + "start": 24092.18, + "end": 24094.12, + "probability": 0.9935 + }, + { + "start": 24096.06, + "end": 24097.54, + "probability": 0.9814 + }, + { + "start": 24099.06, + "end": 24100.74, + "probability": 0.9874 + }, + { + "start": 24101.48, + "end": 24102.2, + "probability": 0.915 + }, + { + "start": 24103.02, + "end": 24106.3, + "probability": 0.9425 + }, + { + "start": 24106.9, + "end": 24109.82, + "probability": 0.9121 + }, + { + "start": 24110.74, + "end": 24113.24, + "probability": 0.9785 + }, + { + "start": 24114.08, + "end": 24114.7, + "probability": 0.0465 + }, + { + "start": 24115.62, + "end": 24116.14, + "probability": 0.3236 + }, + { + "start": 24116.14, + "end": 24116.14, + "probability": 0.0176 + }, + { + "start": 24116.14, + "end": 24117.56, + "probability": 0.5394 + }, + { + "start": 24117.56, + "end": 24118.54, + "probability": 0.1879 + }, + { + "start": 24118.64, + "end": 24119.2, + "probability": 0.1422 + }, + { + "start": 24120.32, + "end": 24123.3, + "probability": 0.8594 + }, + { + "start": 24123.56, + "end": 24126.8, + "probability": 0.8623 + }, + { + "start": 24127.84, + "end": 24128.72, + "probability": 0.3912 + }, + { + "start": 24128.8, + "end": 24130.24, + "probability": 0.9685 + }, + { + "start": 24130.42, + "end": 24130.92, + "probability": 0.0976 + }, + { + "start": 24130.92, + "end": 24131.28, + "probability": 0.228 + }, + { + "start": 24131.28, + "end": 24131.88, + "probability": 0.2652 + }, + { + "start": 24131.88, + "end": 24132.28, + "probability": 0.1934 + }, + { + "start": 24132.3, + "end": 24133.38, + "probability": 0.6738 + }, + { + "start": 24133.42, + "end": 24134.62, + "probability": 0.487 + }, + { + "start": 24134.88, + "end": 24136.34, + "probability": 0.8997 + }, + { + "start": 24136.79, + "end": 24138.81, + "probability": 0.7884 + }, + { + "start": 24139.02, + "end": 24141.48, + "probability": 0.3326 + }, + { + "start": 24141.48, + "end": 24142.38, + "probability": 0.7854 + }, + { + "start": 24143.86, + "end": 24149.02, + "probability": 0.8501 + }, + { + "start": 24150.64, + "end": 24151.82, + "probability": 0.9165 + }, + { + "start": 24152.6, + "end": 24156.49, + "probability": 0.9629 + }, + { + "start": 24158.12, + "end": 24159.32, + "probability": 0.8389 + }, + { + "start": 24159.32, + "end": 24160.8, + "probability": 0.0827 + }, + { + "start": 24160.8, + "end": 24161.22, + "probability": 0.1341 + }, + { + "start": 24161.36, + "end": 24161.94, + "probability": 0.3225 + }, + { + "start": 24163.17, + "end": 24165.32, + "probability": 0.4656 + }, + { + "start": 24165.74, + "end": 24166.54, + "probability": 0.0184 + }, + { + "start": 24166.54, + "end": 24167.56, + "probability": 0.5659 + }, + { + "start": 24167.56, + "end": 24170.2, + "probability": 0.6884 + }, + { + "start": 24170.44, + "end": 24170.94, + "probability": 0.0078 + }, + { + "start": 24171.96, + "end": 24174.58, + "probability": 0.6743 + }, + { + "start": 24174.6, + "end": 24176.06, + "probability": 0.821 + }, + { + "start": 24176.7, + "end": 24177.58, + "probability": 0.5683 + }, + { + "start": 24177.6, + "end": 24179.32, + "probability": 0.7134 + }, + { + "start": 24179.34, + "end": 24180.34, + "probability": 0.659 + }, + { + "start": 24180.48, + "end": 24181.39, + "probability": 0.9712 + }, + { + "start": 24181.52, + "end": 24182.9, + "probability": 0.978 + }, + { + "start": 24183.08, + "end": 24185.54, + "probability": 0.9746 + }, + { + "start": 24186.0, + "end": 24187.64, + "probability": 0.8304 + }, + { + "start": 24188.06, + "end": 24190.18, + "probability": 0.707 + }, + { + "start": 24190.34, + "end": 24191.12, + "probability": 0.6621 + }, + { + "start": 24191.56, + "end": 24196.66, + "probability": 0.7782 + }, + { + "start": 24197.32, + "end": 24198.32, + "probability": 0.715 + }, + { + "start": 24199.42, + "end": 24202.46, + "probability": 0.811 + }, + { + "start": 24203.6, + "end": 24204.9, + "probability": 0.9454 + }, + { + "start": 24204.92, + "end": 24207.38, + "probability": 0.0944 + }, + { + "start": 24208.08, + "end": 24208.99, + "probability": 0.6782 + }, + { + "start": 24210.36, + "end": 24211.34, + "probability": 0.9389 + }, + { + "start": 24212.94, + "end": 24213.7, + "probability": 0.4761 + }, + { + "start": 24214.42, + "end": 24217.48, + "probability": 0.9741 + }, + { + "start": 24218.02, + "end": 24218.88, + "probability": 0.8338 + }, + { + "start": 24219.66, + "end": 24222.06, + "probability": 0.3496 + }, + { + "start": 24223.56, + "end": 24224.34, + "probability": 0.9963 + }, + { + "start": 24225.32, + "end": 24226.34, + "probability": 0.8378 + }, + { + "start": 24228.12, + "end": 24233.64, + "probability": 0.8492 + }, + { + "start": 24234.58, + "end": 24236.74, + "probability": 0.9704 + }, + { + "start": 24237.78, + "end": 24237.84, + "probability": 0.1508 + }, + { + "start": 24237.84, + "end": 24239.92, + "probability": 0.5051 + }, + { + "start": 24239.92, + "end": 24243.32, + "probability": 0.8023 + }, + { + "start": 24243.82, + "end": 24244.64, + "probability": 0.8409 + }, + { + "start": 24244.82, + "end": 24246.72, + "probability": 0.9774 + }, + { + "start": 24246.9, + "end": 24247.4, + "probability": 0.5258 + }, + { + "start": 24247.46, + "end": 24248.34, + "probability": 0.4566 + }, + { + "start": 24248.6, + "end": 24248.6, + "probability": 0.0038 + }, + { + "start": 24248.6, + "end": 24251.1, + "probability": 0.9373 + }, + { + "start": 24251.92, + "end": 24256.18, + "probability": 0.7508 + }, + { + "start": 24256.18, + "end": 24259.3, + "probability": 0.0113 + }, + { + "start": 24259.38, + "end": 24259.6, + "probability": 0.0941 + }, + { + "start": 24259.6, + "end": 24259.78, + "probability": 0.239 + }, + { + "start": 24259.88, + "end": 24260.76, + "probability": 0.3475 + }, + { + "start": 24261.64, + "end": 24263.5, + "probability": 0.9917 + }, + { + "start": 24263.78, + "end": 24265.06, + "probability": 0.7109 + }, + { + "start": 24265.9, + "end": 24267.72, + "probability": 0.9902 + }, + { + "start": 24269.92, + "end": 24270.44, + "probability": 0.9606 + }, + { + "start": 24270.52, + "end": 24275.12, + "probability": 0.9875 + }, + { + "start": 24277.7, + "end": 24281.02, + "probability": 0.9973 + }, + { + "start": 24281.62, + "end": 24283.28, + "probability": 0.9373 + }, + { + "start": 24283.9, + "end": 24284.18, + "probability": 0.0631 + }, + { + "start": 24284.34, + "end": 24287.32, + "probability": 0.9344 + }, + { + "start": 24287.44, + "end": 24287.6, + "probability": 0.1684 + }, + { + "start": 24287.6, + "end": 24289.04, + "probability": 0.946 + }, + { + "start": 24289.36, + "end": 24290.34, + "probability": 0.5433 + }, + { + "start": 24290.46, + "end": 24290.83, + "probability": 0.9047 + }, + { + "start": 24291.36, + "end": 24293.36, + "probability": 0.9804 + }, + { + "start": 24293.48, + "end": 24294.3, + "probability": 0.7376 + }, + { + "start": 24294.38, + "end": 24295.38, + "probability": 0.717 + }, + { + "start": 24298.82, + "end": 24300.04, + "probability": 0.7888 + }, + { + "start": 24301.26, + "end": 24302.56, + "probability": 0.5472 + }, + { + "start": 24304.14, + "end": 24304.76, + "probability": 0.6142 + }, + { + "start": 24308.44, + "end": 24310.28, + "probability": 0.9718 + }, + { + "start": 24311.58, + "end": 24313.28, + "probability": 0.6414 + }, + { + "start": 24313.36, + "end": 24314.06, + "probability": 0.2456 + }, + { + "start": 24314.12, + "end": 24315.1, + "probability": 0.4672 + }, + { + "start": 24315.1, + "end": 24316.5, + "probability": 0.1914 + }, + { + "start": 24316.54, + "end": 24319.04, + "probability": 0.7826 + }, + { + "start": 24319.04, + "end": 24320.34, + "probability": 0.7678 + }, + { + "start": 24320.36, + "end": 24321.26, + "probability": 0.9294 + }, + { + "start": 24322.76, + "end": 24323.26, + "probability": 0.3988 + }, + { + "start": 24323.5, + "end": 24327.36, + "probability": 0.3744 + }, + { + "start": 24327.49, + "end": 24328.88, + "probability": 0.1125 + }, + { + "start": 24328.96, + "end": 24330.74, + "probability": 0.8563 + }, + { + "start": 24330.86, + "end": 24332.16, + "probability": 0.2479 + }, + { + "start": 24332.64, + "end": 24333.88, + "probability": 0.6244 + }, + { + "start": 24334.06, + "end": 24335.58, + "probability": 0.655 + }, + { + "start": 24335.86, + "end": 24336.98, + "probability": 0.96 + }, + { + "start": 24337.08, + "end": 24337.9, + "probability": 0.9744 + }, + { + "start": 24338.66, + "end": 24339.82, + "probability": 0.6929 + }, + { + "start": 24339.98, + "end": 24342.78, + "probability": 0.9615 + }, + { + "start": 24342.94, + "end": 24344.14, + "probability": 0.9479 + }, + { + "start": 24344.32, + "end": 24345.14, + "probability": 0.9329 + }, + { + "start": 24345.46, + "end": 24347.9, + "probability": 0.9888 + }, + { + "start": 24348.21, + "end": 24351.66, + "probability": 0.9951 + }, + { + "start": 24352.08, + "end": 24353.2, + "probability": 0.9136 + }, + { + "start": 24353.6, + "end": 24354.74, + "probability": 0.6468 + }, + { + "start": 24355.04, + "end": 24355.38, + "probability": 0.4776 + }, + { + "start": 24355.48, + "end": 24356.4, + "probability": 0.6666 + }, + { + "start": 24356.44, + "end": 24356.78, + "probability": 0.6378 + }, + { + "start": 24357.5, + "end": 24359.32, + "probability": 0.3199 + }, + { + "start": 24359.38, + "end": 24361.22, + "probability": 0.4392 + }, + { + "start": 24361.26, + "end": 24365.42, + "probability": 0.8276 + }, + { + "start": 24365.62, + "end": 24367.44, + "probability": 0.0745 + }, + { + "start": 24367.48, + "end": 24369.28, + "probability": 0.1669 + }, + { + "start": 24369.42, + "end": 24372.34, + "probability": 0.7489 + }, + { + "start": 24372.34, + "end": 24373.14, + "probability": 0.6096 + }, + { + "start": 24373.6, + "end": 24378.46, + "probability": 0.9353 + }, + { + "start": 24378.62, + "end": 24379.9, + "probability": 0.6259 + }, + { + "start": 24380.24, + "end": 24381.68, + "probability": 0.8955 + }, + { + "start": 24381.78, + "end": 24384.42, + "probability": 0.5459 + }, + { + "start": 24384.68, + "end": 24385.34, + "probability": 0.8013 + }, + { + "start": 24385.36, + "end": 24386.28, + "probability": 0.98 + }, + { + "start": 24386.78, + "end": 24388.88, + "probability": 0.9906 + }, + { + "start": 24388.96, + "end": 24390.26, + "probability": 0.6341 + }, + { + "start": 24390.48, + "end": 24393.36, + "probability": 0.7935 + }, + { + "start": 24393.88, + "end": 24394.5, + "probability": 0.7843 + }, + { + "start": 24394.5, + "end": 24394.5, + "probability": 0.6859 + }, + { + "start": 24394.5, + "end": 24395.34, + "probability": 0.8557 + }, + { + "start": 24395.58, + "end": 24396.86, + "probability": 0.7505 + }, + { + "start": 24396.96, + "end": 24399.86, + "probability": 0.9771 + }, + { + "start": 24400.26, + "end": 24402.5, + "probability": 0.9886 + }, + { + "start": 24402.82, + "end": 24404.44, + "probability": 0.8366 + }, + { + "start": 24405.08, + "end": 24407.5, + "probability": 0.8405 + }, + { + "start": 24407.72, + "end": 24408.0, + "probability": 0.4624 + }, + { + "start": 24408.04, + "end": 24408.7, + "probability": 0.7184 + }, + { + "start": 24409.28, + "end": 24411.62, + "probability": 0.8386 + }, + { + "start": 24412.52, + "end": 24414.22, + "probability": 0.2171 + }, + { + "start": 24415.72, + "end": 24418.88, + "probability": 0.5237 + }, + { + "start": 24418.88, + "end": 24421.82, + "probability": 0.4866 + }, + { + "start": 24421.96, + "end": 24426.2, + "probability": 0.7992 + }, + { + "start": 24426.38, + "end": 24430.14, + "probability": 0.5318 + }, + { + "start": 24430.26, + "end": 24430.68, + "probability": 0.1871 + }, + { + "start": 24431.72, + "end": 24434.16, + "probability": 0.5885 + }, + { + "start": 24434.18, + "end": 24435.22, + "probability": 0.4384 + }, + { + "start": 24435.48, + "end": 24442.14, + "probability": 0.4736 + }, + { + "start": 24442.92, + "end": 24448.98, + "probability": 0.9951 + }, + { + "start": 24450.42, + "end": 24454.42, + "probability": 0.9674 + }, + { + "start": 24455.18, + "end": 24460.04, + "probability": 0.9352 + }, + { + "start": 24461.4, + "end": 24468.7, + "probability": 0.9585 + }, + { + "start": 24470.18, + "end": 24470.38, + "probability": 0.0395 + }, + { + "start": 24471.2, + "end": 24471.22, + "probability": 0.0653 + }, + { + "start": 24471.42, + "end": 24473.26, + "probability": 0.4171 + }, + { + "start": 24473.34, + "end": 24475.28, + "probability": 0.6834 + }, + { + "start": 24475.38, + "end": 24480.42, + "probability": 0.981 + }, + { + "start": 24480.52, + "end": 24482.24, + "probability": 0.9014 + }, + { + "start": 24483.0, + "end": 24484.32, + "probability": 0.4785 + }, + { + "start": 24485.96, + "end": 24489.52, + "probability": 0.797 + }, + { + "start": 24490.34, + "end": 24495.18, + "probability": 0.8588 + }, + { + "start": 24497.14, + "end": 24498.0, + "probability": 0.7773 + }, + { + "start": 24498.04, + "end": 24503.14, + "probability": 0.9644 + }, + { + "start": 24504.0, + "end": 24505.62, + "probability": 0.763 + }, + { + "start": 24506.32, + "end": 24506.86, + "probability": 0.7038 + }, + { + "start": 24508.84, + "end": 24510.04, + "probability": 0.8315 + }, + { + "start": 24510.74, + "end": 24515.18, + "probability": 0.961 + }, + { + "start": 24515.32, + "end": 24518.9, + "probability": 0.9987 + }, + { + "start": 24519.28, + "end": 24520.3, + "probability": 0.9983 + }, + { + "start": 24520.44, + "end": 24520.92, + "probability": 0.8613 + }, + { + "start": 24522.8, + "end": 24527.12, + "probability": 0.9943 + }, + { + "start": 24529.06, + "end": 24529.69, + "probability": 0.9321 + }, + { + "start": 24532.14, + "end": 24534.03, + "probability": 0.985 + }, + { + "start": 24534.82, + "end": 24537.22, + "probability": 0.9971 + }, + { + "start": 24538.2, + "end": 24539.12, + "probability": 0.7765 + }, + { + "start": 24539.32, + "end": 24541.86, + "probability": 0.9817 + }, + { + "start": 24542.04, + "end": 24545.78, + "probability": 0.8525 + }, + { + "start": 24545.78, + "end": 24549.84, + "probability": 0.7502 + }, + { + "start": 24550.34, + "end": 24552.76, + "probability": 0.2344 + }, + { + "start": 24553.12, + "end": 24554.66, + "probability": 0.6018 + }, + { + "start": 24555.32, + "end": 24559.5, + "probability": 0.9155 + }, + { + "start": 24560.1, + "end": 24563.08, + "probability": 0.5329 + }, + { + "start": 24563.52, + "end": 24564.94, + "probability": 0.8106 + }, + { + "start": 24564.98, + "end": 24565.96, + "probability": 0.5169 + }, + { + "start": 24565.96, + "end": 24569.25, + "probability": 0.959 + }, + { + "start": 24571.18, + "end": 24573.54, + "probability": 0.9165 + }, + { + "start": 24573.96, + "end": 24574.88, + "probability": 0.6103 + }, + { + "start": 24575.0, + "end": 24575.02, + "probability": 0.7139 + }, + { + "start": 24575.2, + "end": 24576.48, + "probability": 0.9216 + }, + { + "start": 24576.98, + "end": 24578.16, + "probability": 0.9813 + }, + { + "start": 24578.38, + "end": 24579.34, + "probability": 0.9777 + }, + { + "start": 24579.72, + "end": 24581.28, + "probability": 0.9934 + }, + { + "start": 24581.74, + "end": 24583.04, + "probability": 0.7049 + }, + { + "start": 24583.34, + "end": 24584.2, + "probability": 0.6034 + }, + { + "start": 24584.24, + "end": 24585.32, + "probability": 0.9365 + }, + { + "start": 24585.5, + "end": 24586.19, + "probability": 0.978 + }, + { + "start": 24587.22, + "end": 24588.36, + "probability": 0.9825 + }, + { + "start": 24588.72, + "end": 24590.0, + "probability": 0.9362 + }, + { + "start": 24590.78, + "end": 24594.06, + "probability": 0.9956 + }, + { + "start": 24594.06, + "end": 24597.78, + "probability": 0.9743 + }, + { + "start": 24598.74, + "end": 24599.64, + "probability": 0.7356 + }, + { + "start": 24600.02, + "end": 24602.1, + "probability": 0.9656 + }, + { + "start": 24602.28, + "end": 24603.44, + "probability": 0.6401 + }, + { + "start": 24603.8, + "end": 24605.82, + "probability": 0.9812 + }, + { + "start": 24605.92, + "end": 24607.16, + "probability": 0.8347 + }, + { + "start": 24607.36, + "end": 24609.76, + "probability": 0.9938 + }, + { + "start": 24611.34, + "end": 24615.38, + "probability": 0.6517 + }, + { + "start": 24616.12, + "end": 24617.3, + "probability": 0.7254 + }, + { + "start": 24619.18, + "end": 24621.68, + "probability": 0.9963 + }, + { + "start": 24621.76, + "end": 24623.24, + "probability": 0.5107 + }, + { + "start": 24623.98, + "end": 24628.7, + "probability": 0.9261 + }, + { + "start": 24629.4, + "end": 24629.88, + "probability": 0.8012 + }, + { + "start": 24632.48, + "end": 24633.3, + "probability": 0.9969 + }, + { + "start": 24633.38, + "end": 24634.08, + "probability": 0.792 + }, + { + "start": 24634.14, + "end": 24635.1, + "probability": 0.8591 + }, + { + "start": 24635.18, + "end": 24637.19, + "probability": 0.9824 + }, + { + "start": 24638.22, + "end": 24640.84, + "probability": 0.9141 + }, + { + "start": 24640.98, + "end": 24643.88, + "probability": 0.9688 + }, + { + "start": 24644.02, + "end": 24645.32, + "probability": 0.7541 + }, + { + "start": 24647.06, + "end": 24647.98, + "probability": 0.4256 + }, + { + "start": 24649.86, + "end": 24651.86, + "probability": 0.9675 + }, + { + "start": 24651.94, + "end": 24652.62, + "probability": 0.946 + }, + { + "start": 24654.34, + "end": 24656.55, + "probability": 0.9673 + }, + { + "start": 24659.5, + "end": 24660.66, + "probability": 0.8424 + }, + { + "start": 24661.52, + "end": 24662.64, + "probability": 0.9474 + }, + { + "start": 24664.0, + "end": 24665.1, + "probability": 0.8211 + }, + { + "start": 24666.82, + "end": 24667.46, + "probability": 0.4505 + }, + { + "start": 24668.64, + "end": 24672.92, + "probability": 0.9924 + }, + { + "start": 24673.1, + "end": 24673.24, + "probability": 0.3704 + }, + { + "start": 24673.28, + "end": 24673.84, + "probability": 0.9167 + }, + { + "start": 24673.9, + "end": 24675.74, + "probability": 0.5908 + }, + { + "start": 24676.85, + "end": 24680.86, + "probability": 0.9959 + }, + { + "start": 24681.28, + "end": 24684.2, + "probability": 0.9992 + }, + { + "start": 24685.46, + "end": 24686.38, + "probability": 0.8541 + }, + { + "start": 24686.62, + "end": 24688.34, + "probability": 0.7051 + }, + { + "start": 24688.54, + "end": 24689.96, + "probability": 0.9827 + }, + { + "start": 24691.8, + "end": 24693.1, + "probability": 0.8392 + }, + { + "start": 24693.14, + "end": 24694.14, + "probability": 0.9893 + }, + { + "start": 24696.1, + "end": 24699.18, + "probability": 0.92 + }, + { + "start": 24700.68, + "end": 24701.7, + "probability": 0.9565 + }, + { + "start": 24703.64, + "end": 24707.46, + "probability": 0.8831 + }, + { + "start": 24707.58, + "end": 24710.24, + "probability": 0.663 + }, + { + "start": 24711.56, + "end": 24713.52, + "probability": 0.9984 + }, + { + "start": 24716.0, + "end": 24719.34, + "probability": 0.767 + }, + { + "start": 24720.06, + "end": 24721.36, + "probability": 0.1026 + }, + { + "start": 24722.37, + "end": 24727.35, + "probability": 0.9958 + }, + { + "start": 24727.76, + "end": 24728.36, + "probability": 0.6455 + }, + { + "start": 24728.44, + "end": 24730.82, + "probability": 0.7415 + }, + { + "start": 24731.44, + "end": 24735.72, + "probability": 0.9358 + }, + { + "start": 24735.96, + "end": 24737.41, + "probability": 0.9297 + }, + { + "start": 24739.38, + "end": 24740.74, + "probability": 0.9778 + }, + { + "start": 24740.74, + "end": 24742.88, + "probability": 0.9766 + }, + { + "start": 24742.9, + "end": 24744.04, + "probability": 0.8729 + }, + { + "start": 24744.1, + "end": 24745.1, + "probability": 0.8945 + }, + { + "start": 24746.0, + "end": 24750.84, + "probability": 0.9512 + }, + { + "start": 24751.53, + "end": 24759.5, + "probability": 0.8733 + }, + { + "start": 24761.76, + "end": 24762.56, + "probability": 0.998 + }, + { + "start": 24766.66, + "end": 24768.02, + "probability": 0.8513 + }, + { + "start": 24769.32, + "end": 24770.24, + "probability": 0.5097 + }, + { + "start": 24771.6, + "end": 24775.76, + "probability": 0.9557 + }, + { + "start": 24777.88, + "end": 24778.52, + "probability": 0.8738 + }, + { + "start": 24781.68, + "end": 24782.46, + "probability": 0.6995 + }, + { + "start": 24786.64, + "end": 24788.52, + "probability": 0.7308 + }, + { + "start": 24791.28, + "end": 24793.68, + "probability": 0.937 + }, + { + "start": 24796.42, + "end": 24797.62, + "probability": 0.6704 + }, + { + "start": 24798.66, + "end": 24799.12, + "probability": 0.2156 + }, + { + "start": 24799.16, + "end": 24799.74, + "probability": 0.8995 + }, + { + "start": 24800.14, + "end": 24801.7, + "probability": 0.9098 + }, + { + "start": 24801.88, + "end": 24802.66, + "probability": 0.5864 + }, + { + "start": 24802.74, + "end": 24803.26, + "probability": 0.6392 + }, + { + "start": 24805.22, + "end": 24806.26, + "probability": 0.9037 + }, + { + "start": 24807.9, + "end": 24808.78, + "probability": 0.7891 + }, + { + "start": 24809.5, + "end": 24812.68, + "probability": 0.9937 + }, + { + "start": 24817.7, + "end": 24818.84, + "probability": 0.9902 + }, + { + "start": 24821.52, + "end": 24825.28, + "probability": 0.9949 + }, + { + "start": 24826.92, + "end": 24828.44, + "probability": 0.7806 + }, + { + "start": 24831.36, + "end": 24831.7, + "probability": 0.6324 + }, + { + "start": 24831.74, + "end": 24837.16, + "probability": 0.9946 + }, + { + "start": 24840.12, + "end": 24842.7, + "probability": 0.9834 + }, + { + "start": 24845.32, + "end": 24846.14, + "probability": 0.9068 + }, + { + "start": 24848.9, + "end": 24849.48, + "probability": 0.6187 + }, + { + "start": 24850.26, + "end": 24851.14, + "probability": 0.8969 + }, + { + "start": 24852.34, + "end": 24853.96, + "probability": 0.6528 + }, + { + "start": 24854.5, + "end": 24855.18, + "probability": 0.1833 + }, + { + "start": 24856.72, + "end": 24857.72, + "probability": 0.5906 + }, + { + "start": 24860.24, + "end": 24862.74, + "probability": 0.8168 + }, + { + "start": 24864.7, + "end": 24865.77, + "probability": 0.7999 + }, + { + "start": 24868.08, + "end": 24869.28, + "probability": 0.8296 + }, + { + "start": 24869.5, + "end": 24871.14, + "probability": 0.6531 + }, + { + "start": 24871.4, + "end": 24872.9, + "probability": 0.8198 + }, + { + "start": 24877.48, + "end": 24878.44, + "probability": 0.2499 + }, + { + "start": 24879.0, + "end": 24880.46, + "probability": 0.6339 + }, + { + "start": 24880.58, + "end": 24882.06, + "probability": 0.7052 + }, + { + "start": 24883.18, + "end": 24883.72, + "probability": 0.3964 + }, + { + "start": 24883.72, + "end": 24884.84, + "probability": 0.3389 + }, + { + "start": 24885.38, + "end": 24891.94, + "probability": 0.0542 + }, + { + "start": 24892.1, + "end": 24892.1, + "probability": 0.1871 + }, + { + "start": 24892.1, + "end": 24892.74, + "probability": 0.6224 + }, + { + "start": 24892.76, + "end": 24897.94, + "probability": 0.7711 + }, + { + "start": 24898.08, + "end": 24900.94, + "probability": 0.8284 + }, + { + "start": 24901.08, + "end": 24901.8, + "probability": 0.0903 + }, + { + "start": 24903.0, + "end": 24906.36, + "probability": 0.0299 + }, + { + "start": 24906.36, + "end": 24908.04, + "probability": 0.196 + }, + { + "start": 24908.08, + "end": 24908.7, + "probability": 0.0727 + }, + { + "start": 24909.04, + "end": 24912.7, + "probability": 0.0935 + }, + { + "start": 24913.44, + "end": 24917.26, + "probability": 0.3906 + }, + { + "start": 24919.2, + "end": 24920.08, + "probability": 0.1331 + }, + { + "start": 24922.42, + "end": 24922.42, + "probability": 0.2732 + }, + { + "start": 24922.42, + "end": 24922.42, + "probability": 0.1152 + }, + { + "start": 24922.42, + "end": 24922.44, + "probability": 0.253 + }, + { + "start": 24922.44, + "end": 24924.1, + "probability": 0.8283 + }, + { + "start": 24925.14, + "end": 24926.27, + "probability": 0.7683 + }, + { + "start": 24927.54, + "end": 24930.64, + "probability": 0.8009 + }, + { + "start": 24930.66, + "end": 24931.86, + "probability": 0.6684 + }, + { + "start": 24932.0, + "end": 24936.48, + "probability": 0.9108 + }, + { + "start": 24937.42, + "end": 24939.42, + "probability": 0.1189 + }, + { + "start": 24939.42, + "end": 24940.58, + "probability": 0.5856 + }, + { + "start": 24941.08, + "end": 24943.44, + "probability": 0.7432 + }, + { + "start": 24944.4, + "end": 24946.3, + "probability": 0.1565 + }, + { + "start": 24947.46, + "end": 24947.62, + "probability": 0.1642 + }, + { + "start": 24947.62, + "end": 24951.29, + "probability": 0.9829 + }, + { + "start": 24951.92, + "end": 24953.12, + "probability": 0.3089 + }, + { + "start": 24953.72, + "end": 24954.4, + "probability": 0.053 + }, + { + "start": 24956.17, + "end": 24961.4, + "probability": 0.7781 + }, + { + "start": 24961.4, + "end": 24961.82, + "probability": 0.1364 + }, + { + "start": 24961.82, + "end": 24962.38, + "probability": 0.0502 + }, + { + "start": 24963.62, + "end": 24965.68, + "probability": 0.6027 + }, + { + "start": 24969.76, + "end": 24972.32, + "probability": 0.3758 + }, + { + "start": 24974.64, + "end": 24976.41, + "probability": 0.3034 + }, + { + "start": 24977.38, + "end": 24977.38, + "probability": 0.1848 + }, + { + "start": 24977.38, + "end": 24977.38, + "probability": 0.084 + }, + { + "start": 24977.38, + "end": 24977.38, + "probability": 0.1134 + }, + { + "start": 24977.38, + "end": 24980.6, + "probability": 0.684 + }, + { + "start": 24981.12, + "end": 24983.84, + "probability": 0.9904 + }, + { + "start": 24984.62, + "end": 24988.1, + "probability": 0.9714 + }, + { + "start": 24989.22, + "end": 24989.22, + "probability": 0.1745 + }, + { + "start": 24989.22, + "end": 24992.7, + "probability": 0.983 + }, + { + "start": 24992.98, + "end": 24994.16, + "probability": 0.7719 + }, + { + "start": 24994.76, + "end": 24995.84, + "probability": 0.597 + }, + { + "start": 24996.02, + "end": 25002.1, + "probability": 0.964 + }, + { + "start": 25002.1, + "end": 25006.7, + "probability": 0.7208 + }, + { + "start": 25007.06, + "end": 25008.08, + "probability": 0.7507 + }, + { + "start": 25008.08, + "end": 25010.64, + "probability": 0.7725 + }, + { + "start": 25010.88, + "end": 25012.54, + "probability": 0.5713 + }, + { + "start": 25012.8, + "end": 25014.4, + "probability": 0.6865 + }, + { + "start": 25014.78, + "end": 25015.1, + "probability": 0.0696 + }, + { + "start": 25015.1, + "end": 25016.56, + "probability": 0.6709 + }, + { + "start": 25017.08, + "end": 25018.6, + "probability": 0.643 + }, + { + "start": 25018.6, + "end": 25022.24, + "probability": 0.8923 + }, + { + "start": 25022.24, + "end": 25024.38, + "probability": 0.8399 + }, + { + "start": 25024.8, + "end": 25026.04, + "probability": 0.9474 + }, + { + "start": 25026.5, + "end": 25026.96, + "probability": 0.2677 + }, + { + "start": 25027.12, + "end": 25029.36, + "probability": 0.8745 + }, + { + "start": 25029.6, + "end": 25032.22, + "probability": 0.8601 + }, + { + "start": 25032.58, + "end": 25035.68, + "probability": 0.7513 + }, + { + "start": 25035.94, + "end": 25037.7, + "probability": 0.7808 + }, + { + "start": 25037.94, + "end": 25038.64, + "probability": 0.741 + }, + { + "start": 25038.74, + "end": 25040.48, + "probability": 0.9738 + }, + { + "start": 25040.7, + "end": 25043.22, + "probability": 0.8491 + }, + { + "start": 25043.48, + "end": 25044.18, + "probability": 0.6294 + }, + { + "start": 25044.32, + "end": 25048.98, + "probability": 0.8701 + }, + { + "start": 25049.06, + "end": 25049.5, + "probability": 0.8566 + }, + { + "start": 25049.68, + "end": 25050.7, + "probability": 0.6015 + }, + { + "start": 25050.72, + "end": 25051.72, + "probability": 0.7373 + }, + { + "start": 25051.9, + "end": 25055.6, + "probability": 0.978 + }, + { + "start": 25055.86, + "end": 25058.31, + "probability": 0.6109 + }, + { + "start": 25059.0, + "end": 25060.92, + "probability": 0.9659 + }, + { + "start": 25061.24, + "end": 25062.78, + "probability": 0.4007 + }, + { + "start": 25063.02, + "end": 25065.56, + "probability": 0.9054 + }, + { + "start": 25066.06, + "end": 25067.78, + "probability": 0.6814 + }, + { + "start": 25067.94, + "end": 25069.94, + "probability": 0.5678 + }, + { + "start": 25071.6, + "end": 25074.06, + "probability": 0.9927 + }, + { + "start": 25074.76, + "end": 25076.84, + "probability": 0.988 + }, + { + "start": 25078.14, + "end": 25081.06, + "probability": 0.908 + }, + { + "start": 25081.2, + "end": 25082.8, + "probability": 0.9525 + }, + { + "start": 25082.96, + "end": 25084.32, + "probability": 0.9674 + }, + { + "start": 25085.64, + "end": 25086.5, + "probability": 0.8307 + }, + { + "start": 25086.6, + "end": 25087.3, + "probability": 0.9382 + }, + { + "start": 25087.84, + "end": 25091.28, + "probability": 0.9971 + }, + { + "start": 25093.82, + "end": 25095.66, + "probability": 0.9925 + }, + { + "start": 25096.7, + "end": 25098.16, + "probability": 0.8972 + }, + { + "start": 25098.28, + "end": 25098.66, + "probability": 0.917 + }, + { + "start": 25098.76, + "end": 25099.26, + "probability": 0.965 + }, + { + "start": 25099.5, + "end": 25100.48, + "probability": 0.8968 + }, + { + "start": 25101.18, + "end": 25104.81, + "probability": 0.9562 + }, + { + "start": 25105.78, + "end": 25108.24, + "probability": 0.9882 + }, + { + "start": 25108.28, + "end": 25110.52, + "probability": 0.9337 + }, + { + "start": 25110.72, + "end": 25111.7, + "probability": 0.6172 + }, + { + "start": 25112.56, + "end": 25117.16, + "probability": 0.9829 + }, + { + "start": 25118.28, + "end": 25121.15, + "probability": 0.9365 + }, + { + "start": 25121.42, + "end": 25121.92, + "probability": 0.5087 + }, + { + "start": 25121.98, + "end": 25125.86, + "probability": 0.9435 + }, + { + "start": 25126.38, + "end": 25129.0, + "probability": 0.9964 + }, + { + "start": 25129.06, + "end": 25130.86, + "probability": 0.8977 + }, + { + "start": 25131.86, + "end": 25134.78, + "probability": 0.9933 + }, + { + "start": 25134.86, + "end": 25136.16, + "probability": 0.971 + }, + { + "start": 25136.36, + "end": 25137.92, + "probability": 0.6187 + }, + { + "start": 25138.3, + "end": 25139.76, + "probability": 0.9858 + }, + { + "start": 25140.12, + "end": 25142.16, + "probability": 0.9971 + }, + { + "start": 25142.64, + "end": 25149.02, + "probability": 0.9839 + }, + { + "start": 25150.04, + "end": 25153.16, + "probability": 0.9851 + }, + { + "start": 25153.42, + "end": 25155.28, + "probability": 0.9932 + }, + { + "start": 25155.86, + "end": 25157.08, + "probability": 0.9214 + }, + { + "start": 25157.3, + "end": 25160.28, + "probability": 0.9971 + }, + { + "start": 25160.28, + "end": 25163.3, + "probability": 0.9708 + }, + { + "start": 25163.88, + "end": 25167.62, + "probability": 0.991 + }, + { + "start": 25167.94, + "end": 25170.7, + "probability": 0.99 + }, + { + "start": 25170.7, + "end": 25175.4, + "probability": 0.7082 + }, + { + "start": 25175.7, + "end": 25176.64, + "probability": 0.9795 + }, + { + "start": 25176.76, + "end": 25177.64, + "probability": 0.8315 + }, + { + "start": 25178.4, + "end": 25181.38, + "probability": 0.9897 + }, + { + "start": 25181.42, + "end": 25183.56, + "probability": 0.8061 + }, + { + "start": 25183.58, + "end": 25184.5, + "probability": 0.296 + }, + { + "start": 25184.54, + "end": 25184.6, + "probability": 0.188 + }, + { + "start": 25184.6, + "end": 25185.94, + "probability": 0.6964 + }, + { + "start": 25185.96, + "end": 25188.64, + "probability": 0.9883 + }, + { + "start": 25188.86, + "end": 25192.58, + "probability": 0.8799 + }, + { + "start": 25192.84, + "end": 25195.3, + "probability": 0.9929 + }, + { + "start": 25195.7, + "end": 25198.54, + "probability": 0.9976 + }, + { + "start": 25198.84, + "end": 25200.54, + "probability": 0.9061 + }, + { + "start": 25201.66, + "end": 25202.36, + "probability": 0.9128 + }, + { + "start": 25202.42, + "end": 25203.38, + "probability": 0.9774 + }, + { + "start": 25203.42, + "end": 25204.14, + "probability": 0.7281 + }, + { + "start": 25204.22, + "end": 25204.76, + "probability": 0.6488 + }, + { + "start": 25204.78, + "end": 25208.6, + "probability": 0.9927 + }, + { + "start": 25209.06, + "end": 25212.14, + "probability": 0.9143 + }, + { + "start": 25212.3, + "end": 25213.46, + "probability": 0.7945 + }, + { + "start": 25214.14, + "end": 25216.06, + "probability": 0.9238 + }, + { + "start": 25216.22, + "end": 25217.26, + "probability": 0.8383 + }, + { + "start": 25218.44, + "end": 25220.94, + "probability": 0.9609 + }, + { + "start": 25221.28, + "end": 25222.22, + "probability": 0.7366 + }, + { + "start": 25222.54, + "end": 25225.58, + "probability": 0.9332 + }, + { + "start": 25226.66, + "end": 25228.16, + "probability": 0.5138 + }, + { + "start": 25228.56, + "end": 25231.02, + "probability": 0.9827 + }, + { + "start": 25231.1, + "end": 25232.26, + "probability": 0.811 + }, + { + "start": 25233.16, + "end": 25234.4, + "probability": 0.3209 + }, + { + "start": 25234.94, + "end": 25235.77, + "probability": 0.3696 + }, + { + "start": 25235.94, + "end": 25237.47, + "probability": 0.2069 + }, + { + "start": 25238.84, + "end": 25241.08, + "probability": 0.9965 + }, + { + "start": 25241.08, + "end": 25243.48, + "probability": 0.9881 + }, + { + "start": 25245.18, + "end": 25245.74, + "probability": 0.8651 + }, + { + "start": 25246.35, + "end": 25249.92, + "probability": 0.9922 + }, + { + "start": 25250.0, + "end": 25255.28, + "probability": 0.9947 + }, + { + "start": 25255.6, + "end": 25258.28, + "probability": 0.9841 + }, + { + "start": 25258.34, + "end": 25259.68, + "probability": 0.9493 + }, + { + "start": 25260.1, + "end": 25264.8, + "probability": 0.9942 + }, + { + "start": 25265.0, + "end": 25265.8, + "probability": 0.3518 + }, + { + "start": 25266.36, + "end": 25268.3, + "probability": 0.9927 + }, + { + "start": 25268.66, + "end": 25271.25, + "probability": 0.9949 + }, + { + "start": 25272.24, + "end": 25276.62, + "probability": 0.865 + }, + { + "start": 25277.34, + "end": 25280.8, + "probability": 0.9844 + }, + { + "start": 25281.58, + "end": 25286.66, + "probability": 0.9971 + }, + { + "start": 25287.38, + "end": 25290.7, + "probability": 0.9886 + }, + { + "start": 25291.52, + "end": 25293.28, + "probability": 0.912 + }, + { + "start": 25294.18, + "end": 25294.8, + "probability": 0.8159 + }, + { + "start": 25295.0, + "end": 25298.12, + "probability": 0.9971 + }, + { + "start": 25298.44, + "end": 25302.12, + "probability": 0.995 + }, + { + "start": 25302.4, + "end": 25302.48, + "probability": 0.0877 + }, + { + "start": 25302.98, + "end": 25304.36, + "probability": 0.7412 + }, + { + "start": 25305.14, + "end": 25308.24, + "probability": 0.9775 + }, + { + "start": 25309.06, + "end": 25310.46, + "probability": 0.9749 + }, + { + "start": 25310.66, + "end": 25314.94, + "probability": 0.9385 + }, + { + "start": 25315.54, + "end": 25317.9, + "probability": 0.9839 + }, + { + "start": 25318.82, + "end": 25321.94, + "probability": 0.8164 + }, + { + "start": 25322.68, + "end": 25323.54, + "probability": 0.7243 + }, + { + "start": 25323.66, + "end": 25327.4, + "probability": 0.8081 + }, + { + "start": 25328.02, + "end": 25331.56, + "probability": 0.9942 + }, + { + "start": 25331.92, + "end": 25334.24, + "probability": 0.9956 + }, + { + "start": 25334.36, + "end": 25336.44, + "probability": 0.9924 + }, + { + "start": 25336.86, + "end": 25338.92, + "probability": 0.9945 + }, + { + "start": 25339.32, + "end": 25345.3, + "probability": 0.9189 + }, + { + "start": 25345.3, + "end": 25348.8, + "probability": 0.9949 + }, + { + "start": 25349.04, + "end": 25349.78, + "probability": 0.8911 + }, + { + "start": 25349.96, + "end": 25351.3, + "probability": 0.7812 + }, + { + "start": 25351.7, + "end": 25355.65, + "probability": 0.9878 + }, + { + "start": 25355.66, + "end": 25358.1, + "probability": 0.824 + }, + { + "start": 25358.32, + "end": 25360.74, + "probability": 0.9891 + }, + { + "start": 25361.68, + "end": 25361.9, + "probability": 0.4727 + }, + { + "start": 25362.06, + "end": 25365.78, + "probability": 0.8321 + }, + { + "start": 25366.17, + "end": 25369.0, + "probability": 0.7806 + }, + { + "start": 25369.32, + "end": 25373.0, + "probability": 0.979 + }, + { + "start": 25373.0, + "end": 25376.52, + "probability": 0.9185 + }, + { + "start": 25377.56, + "end": 25379.74, + "probability": 0.8974 + }, + { + "start": 25380.46, + "end": 25382.22, + "probability": 0.7236 + }, + { + "start": 25383.04, + "end": 25385.02, + "probability": 0.9941 + }, + { + "start": 25385.32, + "end": 25389.64, + "probability": 0.9951 + }, + { + "start": 25390.2, + "end": 25393.82, + "probability": 0.9953 + }, + { + "start": 25394.52, + "end": 25395.58, + "probability": 0.847 + }, + { + "start": 25395.72, + "end": 25396.82, + "probability": 0.9385 + }, + { + "start": 25396.94, + "end": 25400.86, + "probability": 0.9922 + }, + { + "start": 25401.36, + "end": 25401.8, + "probability": 0.8435 + }, + { + "start": 25402.87, + "end": 25405.46, + "probability": 0.8398 + }, + { + "start": 25405.64, + "end": 25406.38, + "probability": 0.7286 + }, + { + "start": 25406.4, + "end": 25407.02, + "probability": 0.8652 + }, + { + "start": 25407.52, + "end": 25408.86, + "probability": 0.9822 + }, + { + "start": 25408.92, + "end": 25410.5, + "probability": 0.9189 + }, + { + "start": 25410.88, + "end": 25414.16, + "probability": 0.9977 + }, + { + "start": 25414.64, + "end": 25417.6, + "probability": 0.9946 + }, + { + "start": 25417.78, + "end": 25422.86, + "probability": 0.9712 + }, + { + "start": 25422.86, + "end": 25426.78, + "probability": 0.9991 + }, + { + "start": 25427.3, + "end": 25429.6, + "probability": 0.9284 + }, + { + "start": 25429.92, + "end": 25431.5, + "probability": 0.9716 + }, + { + "start": 25431.54, + "end": 25432.36, + "probability": 0.7853 + }, + { + "start": 25432.7, + "end": 25433.38, + "probability": 0.9579 + }, + { + "start": 25435.94, + "end": 25439.18, + "probability": 0.9951 + }, + { + "start": 25439.18, + "end": 25442.74, + "probability": 0.9692 + }, + { + "start": 25442.84, + "end": 25443.9, + "probability": 0.8232 + }, + { + "start": 25444.04, + "end": 25444.84, + "probability": 0.5723 + }, + { + "start": 25446.32, + "end": 25448.39, + "probability": 0.8824 + }, + { + "start": 25449.1, + "end": 25453.63, + "probability": 0.9244 + }, + { + "start": 25454.14, + "end": 25458.32, + "probability": 0.9907 + }, + { + "start": 25458.82, + "end": 25459.94, + "probability": 0.988 + }, + { + "start": 25460.0, + "end": 25461.32, + "probability": 0.7649 + }, + { + "start": 25462.2, + "end": 25463.42, + "probability": 0.7434 + }, + { + "start": 25463.52, + "end": 25465.58, + "probability": 0.994 + }, + { + "start": 25466.98, + "end": 25468.94, + "probability": 0.907 + }, + { + "start": 25469.9, + "end": 25476.16, + "probability": 0.9792 + }, + { + "start": 25477.78, + "end": 25481.86, + "probability": 0.9945 + }, + { + "start": 25482.28, + "end": 25487.44, + "probability": 0.9854 + }, + { + "start": 25487.8, + "end": 25489.42, + "probability": 0.936 + }, + { + "start": 25489.88, + "end": 25492.58, + "probability": 0.9442 + }, + { + "start": 25493.56, + "end": 25497.3, + "probability": 0.8815 + }, + { + "start": 25498.6, + "end": 25500.38, + "probability": 0.9553 + }, + { + "start": 25501.02, + "end": 25501.44, + "probability": 0.5159 + }, + { + "start": 25501.78, + "end": 25505.24, + "probability": 0.6495 + }, + { + "start": 25505.32, + "end": 25509.37, + "probability": 0.8831 + }, + { + "start": 25511.42, + "end": 25513.68, + "probability": 0.8134 + }, + { + "start": 25513.82, + "end": 25515.84, + "probability": 0.9868 + }, + { + "start": 25516.62, + "end": 25518.6, + "probability": 0.9329 + }, + { + "start": 25519.02, + "end": 25521.64, + "probability": 0.9973 + }, + { + "start": 25522.6, + "end": 25524.84, + "probability": 0.9821 + }, + { + "start": 25524.84, + "end": 25528.26, + "probability": 0.9907 + }, + { + "start": 25528.72, + "end": 25530.78, + "probability": 0.9111 + }, + { + "start": 25532.1, + "end": 25534.28, + "probability": 0.9839 + }, + { + "start": 25534.6, + "end": 25537.56, + "probability": 0.8914 + }, + { + "start": 25538.12, + "end": 25543.66, + "probability": 0.9435 + }, + { + "start": 25543.74, + "end": 25547.8, + "probability": 0.6413 + }, + { + "start": 25548.14, + "end": 25550.66, + "probability": 0.8065 + }, + { + "start": 25550.88, + "end": 25552.7, + "probability": 0.9949 + }, + { + "start": 25553.0, + "end": 25554.41, + "probability": 0.8137 + }, + { + "start": 25554.58, + "end": 25556.68, + "probability": 0.9156 + }, + { + "start": 25556.98, + "end": 25561.06, + "probability": 0.9568 + }, + { + "start": 25561.14, + "end": 25566.3, + "probability": 0.9801 + }, + { + "start": 25566.88, + "end": 25570.32, + "probability": 0.991 + }, + { + "start": 25570.54, + "end": 25573.12, + "probability": 0.9868 + }, + { + "start": 25573.42, + "end": 25574.65, + "probability": 0.6577 + }, + { + "start": 25575.76, + "end": 25579.59, + "probability": 0.7212 + }, + { + "start": 25580.44, + "end": 25582.63, + "probability": 0.8565 + }, + { + "start": 25582.9, + "end": 25583.82, + "probability": 0.3329 + }, + { + "start": 25583.84, + "end": 25585.32, + "probability": 0.8349 + }, + { + "start": 25585.48, + "end": 25587.02, + "probability": 0.9524 + }, + { + "start": 25587.84, + "end": 25589.94, + "probability": 0.9922 + }, + { + "start": 25590.08, + "end": 25592.74, + "probability": 0.566 + }, + { + "start": 25592.98, + "end": 25593.82, + "probability": 0.3095 + }, + { + "start": 25594.2, + "end": 25594.2, + "probability": 0.5804 + }, + { + "start": 25594.26, + "end": 25595.74, + "probability": 0.7556 + }, + { + "start": 25595.82, + "end": 25597.04, + "probability": 0.9748 + }, + { + "start": 25597.42, + "end": 25601.2, + "probability": 0.9224 + }, + { + "start": 25601.5, + "end": 25601.94, + "probability": 0.7419 + }, + { + "start": 25602.2, + "end": 25603.34, + "probability": 0.9692 + }, + { + "start": 25603.56, + "end": 25605.44, + "probability": 0.8177 + }, + { + "start": 25605.66, + "end": 25606.36, + "probability": 0.1669 + }, + { + "start": 25607.35, + "end": 25609.82, + "probability": 0.3988 + }, + { + "start": 25610.64, + "end": 25613.35, + "probability": 0.7103 + }, + { + "start": 25613.86, + "end": 25615.04, + "probability": 0.8938 + }, + { + "start": 25618.3, + "end": 25620.94, + "probability": 0.7444 + }, + { + "start": 25621.06, + "end": 25624.65, + "probability": 0.96 + }, + { + "start": 25625.06, + "end": 25629.02, + "probability": 0.7825 + }, + { + "start": 25629.48, + "end": 25630.84, + "probability": 0.9293 + }, + { + "start": 25631.88, + "end": 25632.42, + "probability": 0.9413 + }, + { + "start": 25632.52, + "end": 25633.84, + "probability": 0.7872 + }, + { + "start": 25633.96, + "end": 25634.68, + "probability": 0.671 + }, + { + "start": 25635.01, + "end": 25638.4, + "probability": 0.8265 + }, + { + "start": 25638.54, + "end": 25639.46, + "probability": 0.9891 + }, + { + "start": 25639.64, + "end": 25640.2, + "probability": 0.5617 + }, + { + "start": 25640.2, + "end": 25643.04, + "probability": 0.7896 + }, + { + "start": 25643.08, + "end": 25643.49, + "probability": 0.8018 + }, + { + "start": 25644.06, + "end": 25645.02, + "probability": 0.2778 + }, + { + "start": 25645.24, + "end": 25646.88, + "probability": 0.118 + }, + { + "start": 25646.98, + "end": 25656.3, + "probability": 0.9604 + }, + { + "start": 25656.52, + "end": 25661.32, + "probability": 0.9988 + }, + { + "start": 25661.32, + "end": 25665.46, + "probability": 0.9999 + }, + { + "start": 25667.08, + "end": 25669.38, + "probability": 0.7799 + }, + { + "start": 25669.5, + "end": 25671.26, + "probability": 0.8615 + }, + { + "start": 25671.42, + "end": 25673.52, + "probability": 0.9301 + }, + { + "start": 25674.26, + "end": 25678.58, + "probability": 0.8574 + }, + { + "start": 25679.26, + "end": 25683.76, + "probability": 0.9871 + }, + { + "start": 25684.58, + "end": 25688.38, + "probability": 0.9762 + }, + { + "start": 25689.12, + "end": 25689.68, + "probability": 0.0335 + }, + { + "start": 25693.5, + "end": 25694.82, + "probability": 0.6472 + }, + { + "start": 25697.14, + "end": 25697.74, + "probability": 0.0088 + }, + { + "start": 25698.02, + "end": 25699.02, + "probability": 0.1377 + }, + { + "start": 25699.02, + "end": 25699.02, + "probability": 0.0786 + }, + { + "start": 25699.02, + "end": 25700.3, + "probability": 0.6409 + }, + { + "start": 25700.59, + "end": 25702.5, + "probability": 0.5447 + }, + { + "start": 25702.5, + "end": 25705.26, + "probability": 0.6277 + }, + { + "start": 25705.72, + "end": 25707.94, + "probability": 0.5872 + }, + { + "start": 25708.48, + "end": 25709.98, + "probability": 0.0311 + }, + { + "start": 25712.77, + "end": 25715.68, + "probability": 0.1168 + }, + { + "start": 25715.68, + "end": 25715.68, + "probability": 0.1128 + }, + { + "start": 25715.68, + "end": 25718.0, + "probability": 0.6556 + }, + { + "start": 25718.46, + "end": 25718.52, + "probability": 0.0833 + }, + { + "start": 25718.52, + "end": 25719.22, + "probability": 0.6396 + }, + { + "start": 25720.22, + "end": 25721.81, + "probability": 0.3858 + }, + { + "start": 25722.27, + "end": 25723.6, + "probability": 0.6613 + }, + { + "start": 25723.72, + "end": 25724.78, + "probability": 0.4672 + }, + { + "start": 25725.2, + "end": 25727.8, + "probability": 0.7879 + }, + { + "start": 25727.8, + "end": 25731.82, + "probability": 0.9048 + }, + { + "start": 25732.1, + "end": 25732.18, + "probability": 0.5251 + }, + { + "start": 25732.22, + "end": 25738.54, + "probability": 0.9588 + }, + { + "start": 25739.08, + "end": 25740.96, + "probability": 0.8576 + }, + { + "start": 25741.06, + "end": 25742.96, + "probability": 0.7958 + }, + { + "start": 25743.22, + "end": 25743.66, + "probability": 0.809 + }, + { + "start": 25744.68, + "end": 25747.78, + "probability": 0.998 + }, + { + "start": 25748.62, + "end": 25750.18, + "probability": 0.8638 + }, + { + "start": 25751.24, + "end": 25753.98, + "probability": 0.9899 + }, + { + "start": 25754.3, + "end": 25756.02, + "probability": 0.7001 + }, + { + "start": 25756.94, + "end": 25760.92, + "probability": 0.9194 + }, + { + "start": 25760.98, + "end": 25766.1, + "probability": 0.9966 + }, + { + "start": 25766.48, + "end": 25767.52, + "probability": 0.7532 + }, + { + "start": 25767.56, + "end": 25768.32, + "probability": 0.8755 + }, + { + "start": 25768.82, + "end": 25772.24, + "probability": 0.9895 + }, + { + "start": 25772.24, + "end": 25775.48, + "probability": 0.9944 + }, + { + "start": 25776.12, + "end": 25777.42, + "probability": 0.8295 + }, + { + "start": 25778.12, + "end": 25782.38, + "probability": 0.9778 + }, + { + "start": 25782.8, + "end": 25786.13, + "probability": 0.9889 + }, + { + "start": 25786.92, + "end": 25787.06, + "probability": 0.0715 + }, + { + "start": 25787.06, + "end": 25787.06, + "probability": 0.2885 + }, + { + "start": 25787.06, + "end": 25790.88, + "probability": 0.5784 + }, + { + "start": 25791.06, + "end": 25791.7, + "probability": 0.1735 + }, + { + "start": 25791.8, + "end": 25793.42, + "probability": 0.672 + }, + { + "start": 25793.72, + "end": 25795.4, + "probability": 0.5854 + }, + { + "start": 25795.84, + "end": 25797.64, + "probability": 0.6213 + }, + { + "start": 25797.8, + "end": 25798.76, + "probability": 0.641 + }, + { + "start": 25799.68, + "end": 25801.52, + "probability": 0.9377 + }, + { + "start": 25802.34, + "end": 25805.14, + "probability": 0.9822 + }, + { + "start": 25805.14, + "end": 25808.78, + "probability": 0.9857 + }, + { + "start": 25809.54, + "end": 25811.8, + "probability": 0.8221 + }, + { + "start": 25811.8, + "end": 25814.92, + "probability": 0.9985 + }, + { + "start": 25816.76, + "end": 25820.03, + "probability": 0.9954 + }, + { + "start": 25820.84, + "end": 25822.44, + "probability": 0.8591 + }, + { + "start": 25824.06, + "end": 25826.92, + "probability": 0.9868 + }, + { + "start": 25827.06, + "end": 25829.04, + "probability": 0.9659 + }, + { + "start": 25829.1, + "end": 25831.9, + "probability": 0.9928 + }, + { + "start": 25831.9, + "end": 25835.4, + "probability": 0.9031 + }, + { + "start": 25835.52, + "end": 25836.9, + "probability": 0.985 + }, + { + "start": 25838.38, + "end": 25843.56, + "probability": 0.9932 + }, + { + "start": 25844.66, + "end": 25849.6, + "probability": 0.9282 + }, + { + "start": 25850.16, + "end": 25850.93, + "probability": 0.917 + }, + { + "start": 25851.72, + "end": 25856.18, + "probability": 0.8857 + }, + { + "start": 25856.78, + "end": 25858.46, + "probability": 0.7402 + }, + { + "start": 25861.07, + "end": 25862.47, + "probability": 0.021 + }, + { + "start": 25862.64, + "end": 25863.39, + "probability": 0.4041 + }, + { + "start": 25863.74, + "end": 25864.52, + "probability": 0.1566 + }, + { + "start": 25864.64, + "end": 25865.24, + "probability": 0.0956 + }, + { + "start": 25865.24, + "end": 25865.36, + "probability": 0.0141 + }, + { + "start": 25865.7, + "end": 25866.74, + "probability": 0.6171 + }, + { + "start": 25866.78, + "end": 25867.32, + "probability": 0.3477 + }, + { + "start": 25867.92, + "end": 25867.92, + "probability": 0.033 + }, + { + "start": 25867.92, + "end": 25869.25, + "probability": 0.1085 + }, + { + "start": 25870.6, + "end": 25873.34, + "probability": 0.8199 + }, + { + "start": 25873.64, + "end": 25875.1, + "probability": 0.5854 + }, + { + "start": 25875.2, + "end": 25878.14, + "probability": 0.9623 + }, + { + "start": 25878.82, + "end": 25880.78, + "probability": 0.9727 + }, + { + "start": 25881.56, + "end": 25883.18, + "probability": 0.9814 + }, + { + "start": 25883.42, + "end": 25883.56, + "probability": 0.7287 + }, + { + "start": 25883.68, + "end": 25884.44, + "probability": 0.7573 + }, + { + "start": 25884.5, + "end": 25888.46, + "probability": 0.8278 + }, + { + "start": 25888.7, + "end": 25891.12, + "probability": 0.8912 + }, + { + "start": 25891.6, + "end": 25894.3, + "probability": 0.8798 + }, + { + "start": 25894.62, + "end": 25895.72, + "probability": 0.9025 + }, + { + "start": 25896.4, + "end": 25897.82, + "probability": 0.9697 + }, + { + "start": 25897.9, + "end": 25899.52, + "probability": 0.9954 + }, + { + "start": 25899.54, + "end": 25900.45, + "probability": 0.8962 + }, + { + "start": 25901.36, + "end": 25903.16, + "probability": 0.9688 + }, + { + "start": 25903.62, + "end": 25905.18, + "probability": 0.9289 + }, + { + "start": 25905.3, + "end": 25906.16, + "probability": 0.7296 + }, + { + "start": 25906.22, + "end": 25907.35, + "probability": 0.9344 + }, + { + "start": 25907.7, + "end": 25913.22, + "probability": 0.9812 + }, + { + "start": 25913.4, + "end": 25916.54, + "probability": 0.9846 + }, + { + "start": 25916.66, + "end": 25919.22, + "probability": 0.2528 + }, + { + "start": 25921.16, + "end": 25921.86, + "probability": 0.0334 + }, + { + "start": 25921.86, + "end": 25921.86, + "probability": 0.2783 + }, + { + "start": 25921.86, + "end": 25923.6, + "probability": 0.3356 + }, + { + "start": 25923.76, + "end": 25924.52, + "probability": 0.4789 + }, + { + "start": 25925.2, + "end": 25926.75, + "probability": 0.0718 + }, + { + "start": 25928.34, + "end": 25928.82, + "probability": 0.0674 + }, + { + "start": 25929.06, + "end": 25929.24, + "probability": 0.1228 + }, + { + "start": 25929.24, + "end": 25929.24, + "probability": 0.2611 + }, + { + "start": 25929.24, + "end": 25930.94, + "probability": 0.7638 + }, + { + "start": 25931.58, + "end": 25932.72, + "probability": 0.2988 + }, + { + "start": 25934.94, + "end": 25936.08, + "probability": 0.6345 + }, + { + "start": 25936.08, + "end": 25936.94, + "probability": 0.0638 + }, + { + "start": 25937.52, + "end": 25937.52, + "probability": 0.0128 + }, + { + "start": 25937.56, + "end": 25939.02, + "probability": 0.9491 + }, + { + "start": 25939.08, + "end": 25941.88, + "probability": 0.5613 + }, + { + "start": 25942.4, + "end": 25944.12, + "probability": 0.0922 + }, + { + "start": 25944.42, + "end": 25944.88, + "probability": 0.3503 + }, + { + "start": 25945.16, + "end": 25946.7, + "probability": 0.4163 + }, + { + "start": 25946.92, + "end": 25949.08, + "probability": 0.8134 + }, + { + "start": 25949.18, + "end": 25950.0, + "probability": 0.9399 + }, + { + "start": 25950.34, + "end": 25951.29, + "probability": 0.9666 + }, + { + "start": 25951.42, + "end": 25952.4, + "probability": 0.639 + }, + { + "start": 25953.34, + "end": 25955.85, + "probability": 0.298 + }, + { + "start": 25956.36, + "end": 25957.84, + "probability": 0.3372 + }, + { + "start": 25958.12, + "end": 25960.02, + "probability": 0.6117 + }, + { + "start": 25960.36, + "end": 25961.7, + "probability": 0.9502 + }, + { + "start": 25961.92, + "end": 25962.98, + "probability": 0.6144 + }, + { + "start": 25963.22, + "end": 25964.32, + "probability": 0.0575 + }, + { + "start": 25964.54, + "end": 25967.12, + "probability": 0.9955 + }, + { + "start": 25967.2, + "end": 25968.05, + "probability": 0.9094 + }, + { + "start": 25968.56, + "end": 25969.36, + "probability": 0.8033 + }, + { + "start": 25969.48, + "end": 25972.68, + "probability": 0.0835 + }, + { + "start": 25973.16, + "end": 25973.2, + "probability": 0.1256 + }, + { + "start": 25973.2, + "end": 25973.2, + "probability": 0.0673 + }, + { + "start": 25973.2, + "end": 25976.48, + "probability": 0.8225 + }, + { + "start": 25977.28, + "end": 25979.8, + "probability": 0.6502 + }, + { + "start": 25980.82, + "end": 25985.44, + "probability": 0.9779 + }, + { + "start": 25987.62, + "end": 25989.12, + "probability": 0.9545 + }, + { + "start": 25989.4, + "end": 25990.46, + "probability": 0.9613 + }, + { + "start": 25990.68, + "end": 25990.68, + "probability": 0.3126 + }, + { + "start": 25990.68, + "end": 25994.44, + "probability": 0.9674 + }, + { + "start": 25994.94, + "end": 25995.8, + "probability": 0.6723 + }, + { + "start": 25995.86, + "end": 25996.72, + "probability": 0.6954 + }, + { + "start": 25997.24, + "end": 26002.28, + "probability": 0.9028 + }, + { + "start": 26002.98, + "end": 26007.32, + "probability": 0.8543 + }, + { + "start": 26008.02, + "end": 26010.98, + "probability": 0.8414 + }, + { + "start": 26011.6, + "end": 26012.44, + "probability": 0.8037 + }, + { + "start": 26012.46, + "end": 26015.02, + "probability": 0.9152 + }, + { + "start": 26015.06, + "end": 26017.98, + "probability": 0.954 + }, + { + "start": 26018.88, + "end": 26022.66, + "probability": 0.9598 + }, + { + "start": 26023.14, + "end": 26024.35, + "probability": 0.9814 + }, + { + "start": 26025.56, + "end": 26029.16, + "probability": 0.9178 + }, + { + "start": 26029.58, + "end": 26029.94, + "probability": 0.749 + }, + { + "start": 26030.1, + "end": 26031.32, + "probability": 0.6212 + }, + { + "start": 26031.38, + "end": 26032.18, + "probability": 0.887 + }, + { + "start": 26032.54, + "end": 26036.06, + "probability": 0.9597 + }, + { + "start": 26036.52, + "end": 26042.42, + "probability": 0.9757 + }, + { + "start": 26042.52, + "end": 26045.82, + "probability": 0.9841 + }, + { + "start": 26047.02, + "end": 26048.78, + "probability": 0.8179 + }, + { + "start": 26049.48, + "end": 26050.42, + "probability": 0.8171 + }, + { + "start": 26050.52, + "end": 26053.52, + "probability": 0.9784 + }, + { + "start": 26054.6, + "end": 26055.14, + "probability": 0.5403 + }, + { + "start": 26055.44, + "end": 26058.12, + "probability": 0.9425 + }, + { + "start": 26058.2, + "end": 26059.36, + "probability": 0.9793 + }, + { + "start": 26060.38, + "end": 26062.26, + "probability": 0.9956 + }, + { + "start": 26063.28, + "end": 26064.24, + "probability": 0.8032 + }, + { + "start": 26064.44, + "end": 26066.12, + "probability": 0.9706 + }, + { + "start": 26066.46, + "end": 26067.36, + "probability": 0.9554 + }, + { + "start": 26067.76, + "end": 26069.6, + "probability": 0.9871 + }, + { + "start": 26070.26, + "end": 26071.58, + "probability": 0.9946 + }, + { + "start": 26072.48, + "end": 26073.92, + "probability": 0.9736 + }, + { + "start": 26074.14, + "end": 26074.8, + "probability": 0.8018 + }, + { + "start": 26074.92, + "end": 26076.78, + "probability": 0.8787 + }, + { + "start": 26077.54, + "end": 26077.6, + "probability": 0.2997 + }, + { + "start": 26077.6, + "end": 26080.0, + "probability": 0.7712 + }, + { + "start": 26080.2, + "end": 26081.46, + "probability": 0.8373 + }, + { + "start": 26081.56, + "end": 26084.2, + "probability": 0.0628 + }, + { + "start": 26086.18, + "end": 26088.02, + "probability": 0.03 + }, + { + "start": 26092.93, + "end": 26096.96, + "probability": 0.9563 + }, + { + "start": 26097.06, + "end": 26098.4, + "probability": 0.8672 + }, + { + "start": 26098.76, + "end": 26099.76, + "probability": 0.7142 + }, + { + "start": 26100.84, + "end": 26105.42, + "probability": 0.8385 + }, + { + "start": 26106.44, + "end": 26108.44, + "probability": 0.9884 + }, + { + "start": 26108.44, + "end": 26111.12, + "probability": 0.994 + }, + { + "start": 26111.66, + "end": 26116.34, + "probability": 0.9881 + }, + { + "start": 26117.22, + "end": 26118.38, + "probability": 0.4969 + }, + { + "start": 26119.06, + "end": 26120.62, + "probability": 0.834 + }, + { + "start": 26120.72, + "end": 26122.0, + "probability": 0.7037 + }, + { + "start": 26122.22, + "end": 26125.1, + "probability": 0.9701 + }, + { + "start": 26125.6, + "end": 26128.36, + "probability": 0.9358 + }, + { + "start": 26128.94, + "end": 26134.0, + "probability": 0.9463 + }, + { + "start": 26134.76, + "end": 26137.8, + "probability": 0.955 + }, + { + "start": 26138.46, + "end": 26141.08, + "probability": 0.8799 + }, + { + "start": 26141.34, + "end": 26142.56, + "probability": 0.9983 + }, + { + "start": 26142.58, + "end": 26144.1, + "probability": 0.9575 + }, + { + "start": 26144.5, + "end": 26147.18, + "probability": 0.9873 + }, + { + "start": 26147.3, + "end": 26149.9, + "probability": 0.8291 + }, + { + "start": 26150.3, + "end": 26155.64, + "probability": 0.9816 + }, + { + "start": 26156.0, + "end": 26157.75, + "probability": 0.9878 + }, + { + "start": 26158.42, + "end": 26159.88, + "probability": 0.9302 + }, + { + "start": 26160.06, + "end": 26161.32, + "probability": 0.8845 + }, + { + "start": 26161.42, + "end": 26161.98, + "probability": 0.5688 + }, + { + "start": 26162.5, + "end": 26165.84, + "probability": 0.7603 + }, + { + "start": 26165.84, + "end": 26165.84, + "probability": 0.0572 + }, + { + "start": 26165.84, + "end": 26165.84, + "probability": 0.411 + }, + { + "start": 26166.2, + "end": 26167.54, + "probability": 0.8901 + }, + { + "start": 26168.02, + "end": 26168.68, + "probability": 0.263 + }, + { + "start": 26168.68, + "end": 26174.74, + "probability": 0.9341 + }, + { + "start": 26174.92, + "end": 26176.25, + "probability": 0.9517 + }, + { + "start": 26177.12, + "end": 26180.64, + "probability": 0.9602 + }, + { + "start": 26180.86, + "end": 26182.82, + "probability": 0.7787 + }, + { + "start": 26183.04, + "end": 26184.12, + "probability": 0.55 + }, + { + "start": 26184.22, + "end": 26185.5, + "probability": 0.6418 + }, + { + "start": 26185.58, + "end": 26186.78, + "probability": 0.8687 + }, + { + "start": 26186.88, + "end": 26189.18, + "probability": 0.4439 + }, + { + "start": 26189.22, + "end": 26193.16, + "probability": 0.9923 + }, + { + "start": 26193.3, + "end": 26194.74, + "probability": 0.6033 + }, + { + "start": 26194.86, + "end": 26196.74, + "probability": 0.806 + }, + { + "start": 26197.16, + "end": 26198.2, + "probability": 0.8999 + }, + { + "start": 26198.42, + "end": 26201.66, + "probability": 0.929 + }, + { + "start": 26201.66, + "end": 26204.1, + "probability": 0.9785 + }, + { + "start": 26204.76, + "end": 26207.9, + "probability": 0.9448 + }, + { + "start": 26208.26, + "end": 26209.12, + "probability": 0.5449 + }, + { + "start": 26209.26, + "end": 26213.0, + "probability": 0.7991 + }, + { + "start": 26213.26, + "end": 26214.66, + "probability": 0.8473 + }, + { + "start": 26215.52, + "end": 26217.0, + "probability": 0.5403 + }, + { + "start": 26217.1, + "end": 26217.1, + "probability": 0.479 + }, + { + "start": 26217.1, + "end": 26217.71, + "probability": 0.9658 + }, + { + "start": 26218.4, + "end": 26224.86, + "probability": 0.9803 + }, + { + "start": 26225.18, + "end": 26226.16, + "probability": 0.0579 + }, + { + "start": 26226.16, + "end": 26226.86, + "probability": 0.2113 + }, + { + "start": 26227.88, + "end": 26232.1, + "probability": 0.877 + }, + { + "start": 26232.58, + "end": 26233.38, + "probability": 0.7469 + }, + { + "start": 26234.06, + "end": 26235.54, + "probability": 0.8621 + }, + { + "start": 26235.86, + "end": 26236.66, + "probability": 0.6432 + }, + { + "start": 26236.7, + "end": 26239.08, + "probability": 0.9956 + }, + { + "start": 26239.3, + "end": 26242.18, + "probability": 0.6625 + }, + { + "start": 26242.28, + "end": 26243.64, + "probability": 0.9757 + }, + { + "start": 26244.14, + "end": 26246.04, + "probability": 0.8965 + }, + { + "start": 26246.46, + "end": 26249.18, + "probability": 0.8413 + }, + { + "start": 26249.84, + "end": 26254.28, + "probability": 0.9302 + }, + { + "start": 26254.62, + "end": 26255.48, + "probability": 0.9712 + }, + { + "start": 26255.62, + "end": 26256.55, + "probability": 0.9985 + }, + { + "start": 26257.24, + "end": 26258.14, + "probability": 0.9148 + }, + { + "start": 26258.38, + "end": 26263.74, + "probability": 0.9949 + }, + { + "start": 26264.38, + "end": 26267.0, + "probability": 0.1907 + }, + { + "start": 26267.12, + "end": 26268.86, + "probability": 0.6144 + }, + { + "start": 26269.46, + "end": 26272.26, + "probability": 0.7632 + }, + { + "start": 26272.42, + "end": 26272.8, + "probability": 0.4888 + }, + { + "start": 26273.92, + "end": 26276.72, + "probability": 0.6732 + }, + { + "start": 26276.88, + "end": 26278.46, + "probability": 0.6936 + }, + { + "start": 26278.6, + "end": 26279.32, + "probability": 0.6761 + }, + { + "start": 26279.82, + "end": 26281.5, + "probability": 0.7634 + }, + { + "start": 26281.86, + "end": 26283.66, + "probability": 0.73 + }, + { + "start": 26283.78, + "end": 26286.3, + "probability": 0.959 + }, + { + "start": 26286.76, + "end": 26290.6, + "probability": 0.0399 + }, + { + "start": 26291.42, + "end": 26293.14, + "probability": 0.0585 + }, + { + "start": 26293.22, + "end": 26293.3, + "probability": 0.4152 + }, + { + "start": 26293.3, + "end": 26293.3, + "probability": 0.0713 + }, + { + "start": 26293.3, + "end": 26293.65, + "probability": 0.2861 + }, + { + "start": 26294.36, + "end": 26296.94, + "probability": 0.6193 + }, + { + "start": 26301.06, + "end": 26301.6, + "probability": 0.3821 + }, + { + "start": 26304.86, + "end": 26306.04, + "probability": 0.053 + }, + { + "start": 26307.86, + "end": 26311.74, + "probability": 0.5673 + }, + { + "start": 26313.26, + "end": 26314.94, + "probability": 0.194 + }, + { + "start": 26314.94, + "end": 26315.94, + "probability": 0.3482 + }, + { + "start": 26317.1, + "end": 26326.7, + "probability": 0.2795 + }, + { + "start": 26326.8, + "end": 26327.76, + "probability": 0.5057 + }, + { + "start": 26328.3, + "end": 26331.68, + "probability": 0.232 + }, + { + "start": 26339.5, + "end": 26341.08, + "probability": 0.0537 + }, + { + "start": 26341.68, + "end": 26343.52, + "probability": 0.0175 + }, + { + "start": 26343.66, + "end": 26346.34, + "probability": 0.0348 + }, + { + "start": 26347.44, + "end": 26348.22, + "probability": 0.0112 + }, + { + "start": 26348.8, + "end": 26351.84, + "probability": 0.0252 + }, + { + "start": 26352.78, + "end": 26353.94, + "probability": 0.0887 + }, + { + "start": 26353.96, + "end": 26354.08, + "probability": 0.0258 + }, + { + "start": 26354.08, + "end": 26355.48, + "probability": 0.2294 + }, + { + "start": 26356.92, + "end": 26358.92, + "probability": 0.0389 + }, + { + "start": 26360.18, + "end": 26363.04, + "probability": 0.2815 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.0, + "end": 26364.0, + "probability": 0.0 + }, + { + "start": 26364.18, + "end": 26366.74, + "probability": 0.5721 + }, + { + "start": 26367.79, + "end": 26369.86, + "probability": 0.8374 + }, + { + "start": 26370.38, + "end": 26371.14, + "probability": 0.6768 + }, + { + "start": 26371.5, + "end": 26374.78, + "probability": 0.6707 + }, + { + "start": 26376.02, + "end": 26378.02, + "probability": 0.5868 + }, + { + "start": 26378.56, + "end": 26379.5, + "probability": 0.7236 + }, + { + "start": 26380.72, + "end": 26383.74, + "probability": 0.9226 + }, + { + "start": 26385.08, + "end": 26387.02, + "probability": 0.9258 + }, + { + "start": 26387.38, + "end": 26388.8, + "probability": 0.8649 + }, + { + "start": 26388.82, + "end": 26391.04, + "probability": 0.9256 + }, + { + "start": 26391.34, + "end": 26393.64, + "probability": 0.8884 + }, + { + "start": 26394.08, + "end": 26394.72, + "probability": 0.9229 + }, + { + "start": 26395.44, + "end": 26397.08, + "probability": 0.8713 + }, + { + "start": 26397.18, + "end": 26398.68, + "probability": 0.8368 + }, + { + "start": 26398.96, + "end": 26407.52, + "probability": 0.9667 + }, + { + "start": 26407.52, + "end": 26414.88, + "probability": 0.8862 + }, + { + "start": 26415.22, + "end": 26417.2, + "probability": 0.8934 + }, + { + "start": 26417.3, + "end": 26418.58, + "probability": 0.7507 + }, + { + "start": 26419.36, + "end": 26422.14, + "probability": 0.9341 + }, + { + "start": 26422.62, + "end": 26426.44, + "probability": 0.9891 + }, + { + "start": 26426.44, + "end": 26432.22, + "probability": 0.9904 + }, + { + "start": 26432.66, + "end": 26435.38, + "probability": 0.9971 + }, + { + "start": 26436.32, + "end": 26438.34, + "probability": 0.7958 + }, + { + "start": 26439.2, + "end": 26442.78, + "probability": 0.9149 + }, + { + "start": 26443.36, + "end": 26444.72, + "probability": 0.9475 + }, + { + "start": 26445.5, + "end": 26448.34, + "probability": 0.9945 + }, + { + "start": 26449.28, + "end": 26452.62, + "probability": 0.9382 + }, + { + "start": 26453.46, + "end": 26453.88, + "probability": 0.5831 + }, + { + "start": 26453.96, + "end": 26456.1, + "probability": 0.9761 + }, + { + "start": 26456.36, + "end": 26460.56, + "probability": 0.8699 + }, + { + "start": 26461.3, + "end": 26461.3, + "probability": 0.0876 + }, + { + "start": 26461.3, + "end": 26464.64, + "probability": 0.8228 + }, + { + "start": 26465.06, + "end": 26467.42, + "probability": 0.9688 + }, + { + "start": 26468.08, + "end": 26469.68, + "probability": 0.9736 + }, + { + "start": 26469.86, + "end": 26471.74, + "probability": 0.9897 + }, + { + "start": 26472.06, + "end": 26473.2, + "probability": 0.8405 + }, + { + "start": 26473.6, + "end": 26474.12, + "probability": 0.5356 + }, + { + "start": 26474.48, + "end": 26476.32, + "probability": 0.9855 + }, + { + "start": 26476.82, + "end": 26478.66, + "probability": 0.9653 + }, + { + "start": 26479.34, + "end": 26482.64, + "probability": 0.9965 + }, + { + "start": 26483.04, + "end": 26484.64, + "probability": 0.8166 + }, + { + "start": 26485.06, + "end": 26488.32, + "probability": 0.97 + }, + { + "start": 26488.76, + "end": 26490.5, + "probability": 0.9128 + }, + { + "start": 26491.0, + "end": 26492.9, + "probability": 0.7518 + }, + { + "start": 26493.4, + "end": 26494.3, + "probability": 0.7567 + }, + { + "start": 26494.82, + "end": 26500.7, + "probability": 0.991 + }, + { + "start": 26501.24, + "end": 26501.84, + "probability": 0.4322 + }, + { + "start": 26502.36, + "end": 26504.5, + "probability": 0.9166 + }, + { + "start": 26505.22, + "end": 26513.48, + "probability": 0.9572 + }, + { + "start": 26514.22, + "end": 26518.06, + "probability": 0.958 + }, + { + "start": 26518.6, + "end": 26521.18, + "probability": 0.207 + }, + { + "start": 26523.72, + "end": 26524.84, + "probability": 0.1692 + }, + { + "start": 26524.84, + "end": 26525.28, + "probability": 0.0484 + }, + { + "start": 26526.04, + "end": 26527.82, + "probability": 0.0718 + }, + { + "start": 26528.6, + "end": 26529.44, + "probability": 0.2045 + }, + { + "start": 26529.48, + "end": 26530.5, + "probability": 0.5189 + }, + { + "start": 26531.14, + "end": 26532.94, + "probability": 0.1491 + }, + { + "start": 26533.46, + "end": 26537.16, + "probability": 0.0104 + }, + { + "start": 26537.68, + "end": 26539.28, + "probability": 0.067 + }, + { + "start": 26540.06, + "end": 26540.06, + "probability": 0.1084 + }, + { + "start": 26540.06, + "end": 26540.62, + "probability": 0.4236 + }, + { + "start": 26540.62, + "end": 26540.74, + "probability": 0.4515 + }, + { + "start": 26541.48, + "end": 26542.0, + "probability": 0.1718 + }, + { + "start": 26542.1, + "end": 26545.26, + "probability": 0.0528 + }, + { + "start": 26546.94, + "end": 26549.82, + "probability": 0.0616 + }, + { + "start": 26551.14, + "end": 26552.02, + "probability": 0.4385 + }, + { + "start": 26553.1, + "end": 26553.84, + "probability": 0.0972 + }, + { + "start": 26554.9, + "end": 26559.1, + "probability": 0.0575 + }, + { + "start": 26559.12, + "end": 26561.18, + "probability": 0.0243 + }, + { + "start": 26561.7, + "end": 26562.2, + "probability": 0.1222 + }, + { + "start": 26562.58, + "end": 26562.64, + "probability": 0.0234 + }, + { + "start": 26562.64, + "end": 26562.96, + "probability": 0.1536 + }, + { + "start": 26562.96, + "end": 26563.0, + "probability": 0.0133 + }, + { + "start": 26563.42, + "end": 26564.56, + "probability": 0.6313 + }, + { + "start": 26564.9, + "end": 26567.0, + "probability": 0.2047 + }, + { + "start": 26567.5, + "end": 26571.96, + "probability": 0.9783 + }, + { + "start": 26571.96, + "end": 26574.08, + "probability": 0.6816 + }, + { + "start": 26574.16, + "end": 26574.92, + "probability": 0.0277 + }, + { + "start": 26574.92, + "end": 26574.92, + "probability": 0.5646 + }, + { + "start": 26574.92, + "end": 26574.92, + "probability": 0.0434 + }, + { + "start": 26574.92, + "end": 26577.74, + "probability": 0.1158 + }, + { + "start": 26578.28, + "end": 26579.36, + "probability": 0.6192 + }, + { + "start": 26579.7, + "end": 26582.04, + "probability": 0.7759 + }, + { + "start": 26582.04, + "end": 26582.16, + "probability": 0.1546 + }, + { + "start": 26583.18, + "end": 26584.96, + "probability": 0.4551 + }, + { + "start": 26585.02, + "end": 26586.98, + "probability": 0.3486 + }, + { + "start": 26587.2, + "end": 26587.74, + "probability": 0.3827 + }, + { + "start": 26587.88, + "end": 26589.86, + "probability": 0.6985 + }, + { + "start": 26590.36, + "end": 26590.52, + "probability": 0.3089 + }, + { + "start": 26590.52, + "end": 26591.4, + "probability": 0.564 + }, + { + "start": 26591.94, + "end": 26595.26, + "probability": 0.5336 + }, + { + "start": 26595.28, + "end": 26598.58, + "probability": 0.8433 + }, + { + "start": 26599.16, + "end": 26601.92, + "probability": 0.9983 + }, + { + "start": 26602.56, + "end": 26604.12, + "probability": 0.8987 + }, + { + "start": 26604.74, + "end": 26607.34, + "probability": 0.8975 + }, + { + "start": 26607.48, + "end": 26608.1, + "probability": 0.6717 + }, + { + "start": 26608.82, + "end": 26611.48, + "probability": 0.7367 + }, + { + "start": 26611.66, + "end": 26614.82, + "probability": 0.9832 + }, + { + "start": 26615.1, + "end": 26617.98, + "probability": 0.8687 + }, + { + "start": 26618.62, + "end": 26620.96, + "probability": 0.9386 + }, + { + "start": 26621.26, + "end": 26623.18, + "probability": 0.6683 + }, + { + "start": 26623.5, + "end": 26623.78, + "probability": 0.4769 + }, + { + "start": 26623.8, + "end": 26625.08, + "probability": 0.9118 + }, + { + "start": 26625.42, + "end": 26627.54, + "probability": 0.9075 + }, + { + "start": 26627.74, + "end": 26628.96, + "probability": 0.9508 + }, + { + "start": 26629.06, + "end": 26631.34, + "probability": 0.8101 + }, + { + "start": 26631.64, + "end": 26634.0, + "probability": 0.98 + }, + { + "start": 26634.28, + "end": 26637.14, + "probability": 0.938 + }, + { + "start": 26637.26, + "end": 26638.6, + "probability": 0.7391 + }, + { + "start": 26638.88, + "end": 26641.02, + "probability": 0.8313 + }, + { + "start": 26641.28, + "end": 26642.54, + "probability": 0.7547 + }, + { + "start": 26651.44, + "end": 26653.68, + "probability": 0.719 + }, + { + "start": 26653.98, + "end": 26655.04, + "probability": 0.9408 + }, + { + "start": 26655.12, + "end": 26656.58, + "probability": 0.7976 + }, + { + "start": 26657.36, + "end": 26659.54, + "probability": 0.979 + }, + { + "start": 26659.68, + "end": 26661.54, + "probability": 0.9168 + }, + { + "start": 26662.0, + "end": 26662.0, + "probability": 0.4963 + }, + { + "start": 26662.0, + "end": 26662.52, + "probability": 0.2573 + }, + { + "start": 26662.52, + "end": 26663.68, + "probability": 0.6925 + }, + { + "start": 26664.18, + "end": 26665.58, + "probability": 0.5839 + }, + { + "start": 26666.12, + "end": 26671.94, + "probability": 0.7471 + }, + { + "start": 26672.92, + "end": 26673.72, + "probability": 0.58 + }, + { + "start": 26674.14, + "end": 26677.82, + "probability": 0.8862 + }, + { + "start": 26678.46, + "end": 26679.84, + "probability": 0.3662 + }, + { + "start": 26680.28, + "end": 26682.54, + "probability": 0.6414 + }, + { + "start": 26682.9, + "end": 26683.72, + "probability": 0.8242 + }, + { + "start": 26684.06, + "end": 26685.44, + "probability": 0.8136 + }, + { + "start": 26685.78, + "end": 26689.26, + "probability": 0.9659 + }, + { + "start": 26690.28, + "end": 26693.63, + "probability": 0.0549 + }, + { + "start": 26696.74, + "end": 26698.74, + "probability": 0.1977 + }, + { + "start": 26699.33, + "end": 26701.22, + "probability": 0.1945 + }, + { + "start": 26702.76, + "end": 26703.8, + "probability": 0.0993 + }, + { + "start": 26704.86, + "end": 26707.0, + "probability": 0.0651 + }, + { + "start": 26709.32, + "end": 26712.94, + "probability": 0.2097 + }, + { + "start": 26714.26, + "end": 26714.26, + "probability": 0.2885 + }, + { + "start": 26715.2, + "end": 26715.38, + "probability": 0.0213 + }, + { + "start": 26721.24, + "end": 26722.48, + "probability": 0.3454 + }, + { + "start": 26722.78, + "end": 26723.16, + "probability": 0.4381 + }, + { + "start": 26725.32, + "end": 26727.66, + "probability": 0.0936 + }, + { + "start": 26728.64, + "end": 26731.42, + "probability": 0.6321 + }, + { + "start": 26732.18, + "end": 26732.18, + "probability": 0.6331 + }, + { + "start": 26732.18, + "end": 26733.54, + "probability": 0.9177 + }, + { + "start": 26733.9, + "end": 26734.74, + "probability": 0.8637 + }, + { + "start": 26734.8, + "end": 26736.49, + "probability": 0.6349 + }, + { + "start": 26737.34, + "end": 26738.2, + "probability": 0.8173 + }, + { + "start": 26738.58, + "end": 26741.08, + "probability": 0.8813 + }, + { + "start": 26741.18, + "end": 26745.52, + "probability": 0.8879 + }, + { + "start": 26745.8, + "end": 26754.94, + "probability": 0.9969 + }, + { + "start": 26756.24, + "end": 26759.44, + "probability": 0.9539 + }, + { + "start": 26759.62, + "end": 26761.26, + "probability": 0.973 + }, + { + "start": 26762.16, + "end": 26763.8, + "probability": 0.9608 + }, + { + "start": 26764.36, + "end": 26765.7, + "probability": 0.8011 + }, + { + "start": 26765.78, + "end": 26769.24, + "probability": 0.973 + }, + { + "start": 26770.24, + "end": 26780.42, + "probability": 0.957 + }, + { + "start": 26781.46, + "end": 26783.42, + "probability": 0.9026 + }, + { + "start": 26785.28, + "end": 26787.96, + "probability": 0.9951 + }, + { + "start": 26788.1, + "end": 26789.04, + "probability": 0.6973 + }, + { + "start": 26790.58, + "end": 26792.72, + "probability": 0.9523 + }, + { + "start": 26792.94, + "end": 26795.74, + "probability": 0.8498 + }, + { + "start": 26797.08, + "end": 26799.06, + "probability": 0.9673 + }, + { + "start": 26801.02, + "end": 26805.64, + "probability": 0.7866 + }, + { + "start": 26806.18, + "end": 26807.71, + "probability": 0.9613 + }, + { + "start": 26808.99, + "end": 26811.56, + "probability": 0.9985 + }, + { + "start": 26812.77, + "end": 26816.37, + "probability": 0.8925 + }, + { + "start": 26817.17, + "end": 26819.15, + "probability": 0.9167 + }, + { + "start": 26820.51, + "end": 26825.95, + "probability": 0.9906 + }, + { + "start": 26826.47, + "end": 26828.97, + "probability": 0.9899 + }, + { + "start": 26828.97, + "end": 26834.77, + "probability": 0.9976 + }, + { + "start": 26836.17, + "end": 26839.91, + "probability": 0.7685 + }, + { + "start": 26840.65, + "end": 26844.89, + "probability": 0.9937 + }, + { + "start": 26845.95, + "end": 26845.95, + "probability": 0.4367 + }, + { + "start": 26846.09, + "end": 26847.65, + "probability": 0.773 + }, + { + "start": 26847.85, + "end": 26855.07, + "probability": 0.8136 + }, + { + "start": 26855.83, + "end": 26857.85, + "probability": 0.864 + }, + { + "start": 26858.73, + "end": 26859.19, + "probability": 0.052 + }, + { + "start": 26860.21, + "end": 26865.29, + "probability": 0.0188 + }, + { + "start": 26865.91, + "end": 26867.97, + "probability": 0.1237 + }, + { + "start": 26870.23, + "end": 26871.21, + "probability": 0.0432 + }, + { + "start": 26871.55, + "end": 26871.63, + "probability": 0.0343 + }, + { + "start": 26871.63, + "end": 26872.31, + "probability": 0.0793 + }, + { + "start": 26873.01, + "end": 26875.91, + "probability": 0.0192 + }, + { + "start": 26876.97, + "end": 26878.43, + "probability": 0.016 + }, + { + "start": 26879.51, + "end": 26880.49, + "probability": 0.0047 + }, + { + "start": 26887.77, + "end": 26888.29, + "probability": 0.0012 + }, + { + "start": 26890.85, + "end": 26891.69, + "probability": 0.0016 + }, + { + "start": 26891.87, + "end": 26893.81, + "probability": 0.0705 + }, + { + "start": 26893.85, + "end": 26895.95, + "probability": 0.0145 + }, + { + "start": 26896.65, + "end": 26898.05, + "probability": 0.0169 + }, + { + "start": 26898.69, + "end": 26900.51, + "probability": 0.0117 + }, + { + "start": 26900.51, + "end": 26900.97, + "probability": 0.0539 + }, + { + "start": 26906.01, + "end": 26906.93, + "probability": 0.0399 + }, + { + "start": 26909.89, + "end": 26915.39, + "probability": 0.0176 + }, + { + "start": 26915.61, + "end": 26915.65, + "probability": 0.0552 + }, + { + "start": 26915.65, + "end": 26916.19, + "probability": 0.148 + }, + { + "start": 26916.3, + "end": 26917.33, + "probability": 0.0682 + }, + { + "start": 26918.61, + "end": 26920.39, + "probability": 0.2845 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.0, + "end": 26936.0, + "probability": 0.0 + }, + { + "start": 26936.86, + "end": 26937.36, + "probability": 0.051 + }, + { + "start": 26937.36, + "end": 26937.36, + "probability": 0.0618 + }, + { + "start": 26937.36, + "end": 26937.36, + "probability": 0.0714 + }, + { + "start": 26937.36, + "end": 26939.6, + "probability": 0.7017 + }, + { + "start": 26939.84, + "end": 26941.04, + "probability": 0.9643 + }, + { + "start": 26941.18, + "end": 26942.6, + "probability": 0.8733 + }, + { + "start": 26942.84, + "end": 26943.9, + "probability": 0.8456 + }, + { + "start": 26945.14, + "end": 26950.14, + "probability": 0.8988 + }, + { + "start": 26950.62, + "end": 26953.28, + "probability": 0.9973 + }, + { + "start": 26953.66, + "end": 26954.26, + "probability": 0.539 + }, + { + "start": 26954.34, + "end": 26955.74, + "probability": 0.8936 + }, + { + "start": 26955.8, + "end": 26958.8, + "probability": 0.9636 + }, + { + "start": 26958.92, + "end": 26959.7, + "probability": 0.8766 + }, + { + "start": 26959.94, + "end": 26964.4, + "probability": 0.9929 + }, + { + "start": 26964.74, + "end": 26968.96, + "probability": 0.9952 + }, + { + "start": 26969.1, + "end": 26969.8, + "probability": 0.61 + }, + { + "start": 26969.88, + "end": 26970.98, + "probability": 0.9114 + }, + { + "start": 26971.12, + "end": 26972.48, + "probability": 0.9801 + }, + { + "start": 26972.8, + "end": 26974.0, + "probability": 0.9104 + }, + { + "start": 26974.48, + "end": 26977.68, + "probability": 0.9604 + }, + { + "start": 26977.88, + "end": 26979.5, + "probability": 0.9663 + }, + { + "start": 26980.24, + "end": 26982.62, + "probability": 0.9937 + }, + { + "start": 26982.78, + "end": 26983.34, + "probability": 0.7143 + }, + { + "start": 26983.44, + "end": 26983.98, + "probability": 0.8454 + }, + { + "start": 26984.06, + "end": 26985.42, + "probability": 0.8889 + }, + { + "start": 26985.7, + "end": 26988.62, + "probability": 0.7653 + }, + { + "start": 26988.68, + "end": 26988.94, + "probability": 0.2833 + }, + { + "start": 26989.0, + "end": 26991.22, + "probability": 0.9348 + }, + { + "start": 26991.32, + "end": 26995.96, + "probability": 0.9238 + }, + { + "start": 26996.46, + "end": 27002.54, + "probability": 0.9928 + }, + { + "start": 27002.92, + "end": 27003.38, + "probability": 0.7089 + }, + { + "start": 27003.54, + "end": 27008.42, + "probability": 0.9886 + }, + { + "start": 27008.84, + "end": 27009.56, + "probability": 0.0239 + }, + { + "start": 27010.76, + "end": 27011.64, + "probability": 0.0485 + }, + { + "start": 27014.46, + "end": 27024.1, + "probability": 0.999 + }, + { + "start": 27024.58, + "end": 27027.92, + "probability": 0.9971 + }, + { + "start": 27028.16, + "end": 27029.94, + "probability": 0.6838 + }, + { + "start": 27030.0, + "end": 27034.9, + "probability": 0.9846 + }, + { + "start": 27035.1, + "end": 27036.76, + "probability": 0.9185 + }, + { + "start": 27038.24, + "end": 27043.4, + "probability": 0.9957 + }, + { + "start": 27043.44, + "end": 27043.72, + "probability": 0.2915 + }, + { + "start": 27043.72, + "end": 27044.62, + "probability": 0.6316 + }, + { + "start": 27044.8, + "end": 27048.24, + "probability": 0.8435 + }, + { + "start": 27048.62, + "end": 27050.3, + "probability": 0.98 + }, + { + "start": 27051.1, + "end": 27054.12, + "probability": 0.9023 + }, + { + "start": 27056.44, + "end": 27056.98, + "probability": 0.6867 + }, + { + "start": 27057.38, + "end": 27060.46, + "probability": 0.2436 + }, + { + "start": 27060.48, + "end": 27060.82, + "probability": 0.3989 + }, + { + "start": 27061.02, + "end": 27061.32, + "probability": 0.0467 + }, + { + "start": 27063.02, + "end": 27064.46, + "probability": 0.0549 + }, + { + "start": 27065.42, + "end": 27066.12, + "probability": 0.0427 + }, + { + "start": 27066.54, + "end": 27066.94, + "probability": 0.0263 + }, + { + "start": 27066.94, + "end": 27067.24, + "probability": 0.0071 + }, + { + "start": 27097.98, + "end": 27101.7, + "probability": 0.7458 + }, + { + "start": 27103.24, + "end": 27105.2, + "probability": 0.5806 + }, + { + "start": 27106.12, + "end": 27107.88, + "probability": 0.7739 + }, + { + "start": 27108.48, + "end": 27109.74, + "probability": 0.757 + }, + { + "start": 27110.34, + "end": 27113.84, + "probability": 0.9627 + }, + { + "start": 27115.1, + "end": 27115.59, + "probability": 0.9297 + }, + { + "start": 27116.72, + "end": 27118.06, + "probability": 0.8325 + }, + { + "start": 27119.02, + "end": 27120.79, + "probability": 0.9854 + }, + { + "start": 27122.04, + "end": 27124.1, + "probability": 0.7327 + }, + { + "start": 27124.68, + "end": 27126.72, + "probability": 0.9403 + }, + { + "start": 27126.76, + "end": 27127.68, + "probability": 0.7003 + }, + { + "start": 27127.98, + "end": 27132.46, + "probability": 0.9168 + }, + { + "start": 27134.58, + "end": 27139.04, + "probability": 0.9905 + }, + { + "start": 27140.14, + "end": 27141.4, + "probability": 0.6928 + }, + { + "start": 27142.56, + "end": 27144.2, + "probability": 0.875 + }, + { + "start": 27144.52, + "end": 27145.8, + "probability": 0.9204 + }, + { + "start": 27147.53, + "end": 27150.89, + "probability": 0.8799 + }, + { + "start": 27152.74, + "end": 27154.93, + "probability": 0.7641 + }, + { + "start": 27157.72, + "end": 27161.0, + "probability": 0.887 + }, + { + "start": 27161.6, + "end": 27166.4, + "probability": 0.96 + }, + { + "start": 27167.82, + "end": 27169.28, + "probability": 0.7707 + }, + { + "start": 27169.92, + "end": 27175.7, + "probability": 0.7973 + }, + { + "start": 27176.58, + "end": 27177.98, + "probability": 0.8528 + }, + { + "start": 27178.54, + "end": 27181.4, + "probability": 0.9455 + }, + { + "start": 27181.46, + "end": 27182.6, + "probability": 0.8786 + }, + { + "start": 27182.88, + "end": 27185.09, + "probability": 0.9298 + }, + { + "start": 27185.5, + "end": 27187.18, + "probability": 0.8353 + }, + { + "start": 27187.62, + "end": 27188.84, + "probability": 0.9277 + }, + { + "start": 27188.98, + "end": 27190.38, + "probability": 0.842 + }, + { + "start": 27190.5, + "end": 27192.26, + "probability": 0.5332 + }, + { + "start": 27192.26, + "end": 27193.36, + "probability": 0.6159 + }, + { + "start": 27194.36, + "end": 27198.34, + "probability": 0.972 + }, + { + "start": 27199.68, + "end": 27201.36, + "probability": 0.8896 + }, + { + "start": 27201.72, + "end": 27202.78, + "probability": 0.9724 + }, + { + "start": 27202.86, + "end": 27204.12, + "probability": 0.9863 + }, + { + "start": 27204.3, + "end": 27205.74, + "probability": 0.8477 + }, + { + "start": 27206.88, + "end": 27207.7, + "probability": 0.9487 + }, + { + "start": 27207.78, + "end": 27209.2, + "probability": 0.7002 + }, + { + "start": 27209.48, + "end": 27211.02, + "probability": 0.7833 + }, + { + "start": 27211.32, + "end": 27214.6, + "probability": 0.8842 + }, + { + "start": 27215.74, + "end": 27220.12, + "probability": 0.9114 + }, + { + "start": 27220.5, + "end": 27224.32, + "probability": 0.9268 + }, + { + "start": 27224.76, + "end": 27227.98, + "probability": 0.5003 + }, + { + "start": 27228.66, + "end": 27229.44, + "probability": 0.7422 + }, + { + "start": 27231.08, + "end": 27235.44, + "probability": 0.9069 + }, + { + "start": 27236.12, + "end": 27237.79, + "probability": 0.9292 + }, + { + "start": 27238.9, + "end": 27246.78, + "probability": 0.991 + }, + { + "start": 27247.44, + "end": 27254.18, + "probability": 0.907 + }, + { + "start": 27254.42, + "end": 27257.4, + "probability": 0.7252 + }, + { + "start": 27257.44, + "end": 27260.74, + "probability": 0.7606 + }, + { + "start": 27261.34, + "end": 27263.07, + "probability": 0.8212 + }, + { + "start": 27264.04, + "end": 27267.34, + "probability": 0.9922 + }, + { + "start": 27268.86, + "end": 27273.36, + "probability": 0.6109 + }, + { + "start": 27274.14, + "end": 27276.82, + "probability": 0.8269 + }, + { + "start": 27277.7, + "end": 27282.02, + "probability": 0.7495 + }, + { + "start": 27282.54, + "end": 27288.0, + "probability": 0.8073 + }, + { + "start": 27288.62, + "end": 27292.26, + "probability": 0.6677 + }, + { + "start": 27292.36, + "end": 27295.5, + "probability": 0.9348 + }, + { + "start": 27296.26, + "end": 27297.41, + "probability": 0.8222 + }, + { + "start": 27297.72, + "end": 27301.98, + "probability": 0.7743 + }, + { + "start": 27301.98, + "end": 27308.86, + "probability": 0.9541 + }, + { + "start": 27309.22, + "end": 27312.5, + "probability": 0.9629 + }, + { + "start": 27312.58, + "end": 27313.36, + "probability": 0.7626 + }, + { + "start": 27313.48, + "end": 27314.14, + "probability": 0.5475 + }, + { + "start": 27314.34, + "end": 27315.78, + "probability": 0.8916 + }, + { + "start": 27329.56, + "end": 27331.75, + "probability": 0.7877 + }, + { + "start": 27333.62, + "end": 27337.88, + "probability": 0.9768 + }, + { + "start": 27339.82, + "end": 27343.68, + "probability": 0.7539 + }, + { + "start": 27343.78, + "end": 27344.62, + "probability": 0.756 + }, + { + "start": 27344.7, + "end": 27345.72, + "probability": 0.5239 + }, + { + "start": 27346.38, + "end": 27348.62, + "probability": 0.9939 + }, + { + "start": 27350.4, + "end": 27355.82, + "probability": 0.8088 + }, + { + "start": 27357.9, + "end": 27359.36, + "probability": 0.9158 + }, + { + "start": 27359.48, + "end": 27360.94, + "probability": 0.753 + }, + { + "start": 27361.06, + "end": 27362.58, + "probability": 0.864 + }, + { + "start": 27362.6, + "end": 27364.1, + "probability": 0.9856 + }, + { + "start": 27364.76, + "end": 27366.45, + "probability": 0.8024 + }, + { + "start": 27367.22, + "end": 27370.08, + "probability": 0.8602 + }, + { + "start": 27370.18, + "end": 27374.48, + "probability": 0.9548 + }, + { + "start": 27375.52, + "end": 27376.85, + "probability": 0.8682 + }, + { + "start": 27378.08, + "end": 27380.18, + "probability": 0.9819 + }, + { + "start": 27381.42, + "end": 27383.3, + "probability": 0.9849 + }, + { + "start": 27383.4, + "end": 27383.96, + "probability": 0.6472 + }, + { + "start": 27384.0, + "end": 27396.8, + "probability": 0.3679 + }, + { + "start": 27396.8, + "end": 27396.8, + "probability": 0.0964 + }, + { + "start": 27396.8, + "end": 27396.8, + "probability": 0.0934 + }, + { + "start": 27396.8, + "end": 27396.8, + "probability": 0.1498 + }, + { + "start": 27396.8, + "end": 27397.91, + "probability": 0.4124 + }, + { + "start": 27399.84, + "end": 27401.17, + "probability": 0.647 + }, + { + "start": 27402.54, + "end": 27404.74, + "probability": 0.5712 + }, + { + "start": 27407.76, + "end": 27409.66, + "probability": 0.9608 + }, + { + "start": 27409.84, + "end": 27411.56, + "probability": 0.9045 + }, + { + "start": 27411.68, + "end": 27412.3, + "probability": 0.8997 + }, + { + "start": 27412.32, + "end": 27415.02, + "probability": 0.9938 + }, + { + "start": 27415.66, + "end": 27420.02, + "probability": 0.9709 + }, + { + "start": 27420.08, + "end": 27420.46, + "probability": 0.4353 + }, + { + "start": 27420.62, + "end": 27421.02, + "probability": 0.3922 + }, + { + "start": 27421.14, + "end": 27422.8, + "probability": 0.7122 + }, + { + "start": 27422.84, + "end": 27423.32, + "probability": 0.4197 + }, + { + "start": 27423.9, + "end": 27426.02, + "probability": 0.926 + }, + { + "start": 27426.08, + "end": 27427.1, + "probability": 0.7748 + }, + { + "start": 27427.2, + "end": 27429.36, + "probability": 0.9778 + }, + { + "start": 27429.48, + "end": 27430.38, + "probability": 0.7377 + }, + { + "start": 27430.42, + "end": 27431.6, + "probability": 0.9346 + }, + { + "start": 27432.7, + "end": 27434.88, + "probability": 0.7121 + }, + { + "start": 27435.38, + "end": 27436.31, + "probability": 0.717 + }, + { + "start": 27436.54, + "end": 27437.84, + "probability": 0.9359 + }, + { + "start": 27437.9, + "end": 27438.78, + "probability": 0.9199 + }, + { + "start": 27438.9, + "end": 27440.94, + "probability": 0.9932 + }, + { + "start": 27441.6, + "end": 27445.24, + "probability": 0.8101 + }, + { + "start": 27445.28, + "end": 27447.03, + "probability": 0.6336 + }, + { + "start": 27447.34, + "end": 27447.66, + "probability": 0.2742 + }, + { + "start": 27447.66, + "end": 27448.96, + "probability": 0.7913 + }, + { + "start": 27449.3, + "end": 27450.12, + "probability": 0.8369 + }, + { + "start": 27450.16, + "end": 27452.84, + "probability": 0.9564 + }, + { + "start": 27453.2, + "end": 27456.42, + "probability": 0.975 + }, + { + "start": 27456.7, + "end": 27457.5, + "probability": 0.9653 + }, + { + "start": 27457.6, + "end": 27459.66, + "probability": 0.8929 + }, + { + "start": 27459.9, + "end": 27460.66, + "probability": 0.6614 + }, + { + "start": 27461.14, + "end": 27462.04, + "probability": 0.7684 + }, + { + "start": 27463.49, + "end": 27467.28, + "probability": 0.1326 + }, + { + "start": 27489.32, + "end": 27490.4, + "probability": 0.6755 + }, + { + "start": 27491.48, + "end": 27493.54, + "probability": 0.8508 + }, + { + "start": 27494.74, + "end": 27497.22, + "probability": 0.9986 + }, + { + "start": 27498.06, + "end": 27500.84, + "probability": 0.8599 + }, + { + "start": 27502.3, + "end": 27503.54, + "probability": 0.4798 + }, + { + "start": 27504.06, + "end": 27506.34, + "probability": 0.8223 + }, + { + "start": 27507.44, + "end": 27509.46, + "probability": 0.3701 + }, + { + "start": 27509.54, + "end": 27512.38, + "probability": 0.9378 + }, + { + "start": 27512.38, + "end": 27513.12, + "probability": 0.6894 + }, + { + "start": 27515.02, + "end": 27515.96, + "probability": 0.6407 + }, + { + "start": 27516.7, + "end": 27520.26, + "probability": 0.9012 + }, + { + "start": 27520.82, + "end": 27523.52, + "probability": 0.9767 + }, + { + "start": 27523.64, + "end": 27525.13, + "probability": 0.701 + }, + { + "start": 27526.18, + "end": 27528.35, + "probability": 0.9731 + }, + { + "start": 27529.38, + "end": 27531.0, + "probability": 0.6966 + }, + { + "start": 27532.98, + "end": 27538.54, + "probability": 0.4352 + }, + { + "start": 27539.62, + "end": 27543.24, + "probability": 0.7756 + }, + { + "start": 27544.28, + "end": 27545.72, + "probability": 0.6621 + }, + { + "start": 27545.82, + "end": 27547.82, + "probability": 0.6012 + }, + { + "start": 27548.18, + "end": 27549.28, + "probability": 0.8228 + }, + { + "start": 27549.32, + "end": 27550.06, + "probability": 0.6809 + }, + { + "start": 27550.46, + "end": 27555.16, + "probability": 0.8695 + }, + { + "start": 27555.62, + "end": 27557.84, + "probability": 0.9757 + }, + { + "start": 27557.94, + "end": 27562.24, + "probability": 0.7449 + }, + { + "start": 27563.4, + "end": 27567.16, + "probability": 0.7677 + }, + { + "start": 27567.28, + "end": 27568.26, + "probability": 0.8212 + }, + { + "start": 27568.32, + "end": 27568.83, + "probability": 0.8064 + }, + { + "start": 27569.48, + "end": 27570.28, + "probability": 0.522 + }, + { + "start": 27570.78, + "end": 27571.69, + "probability": 0.8796 + }, + { + "start": 27573.92, + "end": 27575.48, + "probability": 0.9456 + }, + { + "start": 27575.52, + "end": 27576.74, + "probability": 0.9081 + }, + { + "start": 27577.18, + "end": 27582.8, + "probability": 0.9732 + }, + { + "start": 27583.94, + "end": 27585.17, + "probability": 0.5509 + }, + { + "start": 27586.0, + "end": 27591.46, + "probability": 0.8358 + }, + { + "start": 27591.46, + "end": 27593.54, + "probability": 0.9792 + }, + { + "start": 27594.42, + "end": 27595.36, + "probability": 0.9636 + }, + { + "start": 27595.42, + "end": 27600.42, + "probability": 0.9946 + }, + { + "start": 27602.28, + "end": 27606.2, + "probability": 0.9929 + }, + { + "start": 27608.28, + "end": 27609.36, + "probability": 0.9792 + }, + { + "start": 27609.42, + "end": 27614.88, + "probability": 0.8781 + }, + { + "start": 27616.54, + "end": 27619.2, + "probability": 0.7241 + }, + { + "start": 27619.22, + "end": 27620.36, + "probability": 0.8717 + }, + { + "start": 27621.24, + "end": 27629.42, + "probability": 0.8302 + }, + { + "start": 27629.84, + "end": 27633.38, + "probability": 0.9775 + }, + { + "start": 27634.58, + "end": 27636.26, + "probability": 0.6238 + }, + { + "start": 27636.38, + "end": 27636.8, + "probability": 0.6145 + }, + { + "start": 27636.96, + "end": 27637.46, + "probability": 0.3722 + }, + { + "start": 27637.48, + "end": 27638.36, + "probability": 0.7394 + }, + { + "start": 27638.6, + "end": 27640.2, + "probability": 0.6655 + }, + { + "start": 27640.34, + "end": 27641.1, + "probability": 0.692 + }, + { + "start": 27641.3, + "end": 27642.92, + "probability": 0.9492 + }, + { + "start": 27643.54, + "end": 27645.0, + "probability": 0.7982 + }, + { + "start": 27645.14, + "end": 27647.42, + "probability": 0.9941 + }, + { + "start": 27647.5, + "end": 27648.46, + "probability": 0.9115 + }, + { + "start": 27648.5, + "end": 27649.58, + "probability": 0.9464 + }, + { + "start": 27650.86, + "end": 27651.68, + "probability": 0.9624 + }, + { + "start": 27653.84, + "end": 27655.18, + "probability": 0.9586 + }, + { + "start": 27656.46, + "end": 27657.22, + "probability": 0.3149 + }, + { + "start": 27657.3, + "end": 27658.88, + "probability": 0.7228 + }, + { + "start": 27658.92, + "end": 27664.2, + "probability": 0.8892 + }, + { + "start": 27664.32, + "end": 27665.54, + "probability": 0.9022 + }, + { + "start": 27666.58, + "end": 27667.46, + "probability": 0.7302 + }, + { + "start": 27668.28, + "end": 27674.2, + "probability": 0.9673 + }, + { + "start": 27676.38, + "end": 27680.46, + "probability": 0.8535 + }, + { + "start": 27680.86, + "end": 27682.12, + "probability": 0.6974 + }, + { + "start": 27682.28, + "end": 27686.6, + "probability": 0.9681 + }, + { + "start": 27686.68, + "end": 27688.88, + "probability": 0.5115 + }, + { + "start": 27689.06, + "end": 27694.02, + "probability": 0.8674 + }, + { + "start": 27697.42, + "end": 27703.18, + "probability": 0.632 + }, + { + "start": 27704.84, + "end": 27708.9, + "probability": 0.9543 + }, + { + "start": 27709.7, + "end": 27714.02, + "probability": 0.929 + }, + { + "start": 27714.3, + "end": 27715.32, + "probability": 0.8036 + }, + { + "start": 27715.82, + "end": 27717.62, + "probability": 0.7236 + }, + { + "start": 27718.72, + "end": 27720.98, + "probability": 0.8692 + }, + { + "start": 27721.46, + "end": 27726.74, + "probability": 0.9224 + }, + { + "start": 27729.98, + "end": 27731.16, + "probability": 0.4409 + }, + { + "start": 27731.28, + "end": 27732.62, + "probability": 0.8397 + }, + { + "start": 27732.8, + "end": 27734.8, + "probability": 0.9219 + }, + { + "start": 27735.08, + "end": 27738.54, + "probability": 0.9847 + }, + { + "start": 27738.72, + "end": 27742.1, + "probability": 0.968 + }, + { + "start": 27743.08, + "end": 27744.26, + "probability": 0.9591 + }, + { + "start": 27745.78, + "end": 27747.44, + "probability": 0.777 + }, + { + "start": 27749.62, + "end": 27751.12, + "probability": 0.9985 + }, + { + "start": 27751.62, + "end": 27756.32, + "probability": 0.9879 + }, + { + "start": 27756.32, + "end": 27758.76, + "probability": 0.9465 + }, + { + "start": 27758.86, + "end": 27759.1, + "probability": 0.4624 + }, + { + "start": 27759.22, + "end": 27760.76, + "probability": 0.9707 + }, + { + "start": 27760.84, + "end": 27762.7, + "probability": 0.916 + }, + { + "start": 27762.86, + "end": 27763.3, + "probability": 0.713 + }, + { + "start": 27763.5, + "end": 27764.98, + "probability": 0.4844 + }, + { + "start": 27765.2, + "end": 27766.02, + "probability": 0.6568 + }, + { + "start": 27767.68, + "end": 27769.14, + "probability": 0.4411 + }, + { + "start": 27776.02, + "end": 27776.2, + "probability": 0.2541 + }, + { + "start": 27776.2, + "end": 27776.22, + "probability": 0.3236 + }, + { + "start": 27776.22, + "end": 27776.5, + "probability": 0.1964 + }, + { + "start": 27776.5, + "end": 27777.38, + "probability": 0.0438 + }, + { + "start": 27777.58, + "end": 27778.02, + "probability": 0.0321 + }, + { + "start": 27790.52, + "end": 27791.46, + "probability": 0.6299 + }, + { + "start": 27805.28, + "end": 27809.54, + "probability": 0.6623 + }, + { + "start": 27809.58, + "end": 27811.05, + "probability": 0.9918 + }, + { + "start": 27814.02, + "end": 27814.28, + "probability": 0.6978 + }, + { + "start": 27818.38, + "end": 27818.78, + "probability": 0.5001 + }, + { + "start": 27821.48, + "end": 27822.3, + "probability": 0.9093 + }, + { + "start": 27825.04, + "end": 27828.92, + "probability": 0.9583 + }, + { + "start": 27830.7, + "end": 27831.94, + "probability": 0.9517 + }, + { + "start": 27834.36, + "end": 27836.38, + "probability": 0.9562 + }, + { + "start": 27838.2, + "end": 27838.94, + "probability": 0.7035 + }, + { + "start": 27841.62, + "end": 27843.58, + "probability": 0.3864 + }, + { + "start": 27845.36, + "end": 27846.74, + "probability": 0.4801 + }, + { + "start": 27846.92, + "end": 27848.48, + "probability": 0.6408 + }, + { + "start": 27848.6, + "end": 27849.76, + "probability": 0.9865 + }, + { + "start": 27850.84, + "end": 27858.66, + "probability": 0.9849 + }, + { + "start": 27859.1, + "end": 27861.04, + "probability": 0.2743 + }, + { + "start": 27861.04, + "end": 27864.72, + "probability": 0.8044 + }, + { + "start": 27865.42, + "end": 27869.32, + "probability": 0.9248 + }, + { + "start": 27869.32, + "end": 27870.24, + "probability": 0.3038 + }, + { + "start": 27871.02, + "end": 27873.9, + "probability": 0.9292 + }, + { + "start": 27874.64, + "end": 27878.24, + "probability": 0.7882 + }, + { + "start": 27879.12, + "end": 27882.02, + "probability": 0.9656 + }, + { + "start": 27882.02, + "end": 27884.94, + "probability": 0.8001 + }, + { + "start": 27885.18, + "end": 27886.21, + "probability": 0.2502 + }, + { + "start": 27886.9, + "end": 27890.06, + "probability": 0.9546 + }, + { + "start": 27890.06, + "end": 27896.24, + "probability": 0.985 + }, + { + "start": 27898.44, + "end": 27902.9, + "probability": 0.9771 + }, + { + "start": 27904.0, + "end": 27904.82, + "probability": 0.9055 + }, + { + "start": 27905.74, + "end": 27909.84, + "probability": 0.8918 + }, + { + "start": 27910.4, + "end": 27917.78, + "probability": 0.998 + }, + { + "start": 27919.8, + "end": 27922.34, + "probability": 0.9944 + }, + { + "start": 27924.02, + "end": 27926.94, + "probability": 0.669 + }, + { + "start": 27927.74, + "end": 27930.0, + "probability": 0.8402 + }, + { + "start": 27931.94, + "end": 27932.62, + "probability": 0.9302 + }, + { + "start": 27933.64, + "end": 27936.02, + "probability": 0.9916 + }, + { + "start": 27936.54, + "end": 27938.04, + "probability": 0.8687 + }, + { + "start": 27938.24, + "end": 27942.88, + "probability": 0.9935 + }, + { + "start": 27942.98, + "end": 27944.18, + "probability": 0.4553 + }, + { + "start": 27944.32, + "end": 27947.18, + "probability": 0.4684 + }, + { + "start": 27947.8, + "end": 27948.89, + "probability": 0.9863 + }, + { + "start": 27949.94, + "end": 27950.52, + "probability": 0.9484 + }, + { + "start": 27950.78, + "end": 27954.32, + "probability": 0.7838 + }, + { + "start": 27954.32, + "end": 27959.34, + "probability": 0.8935 + }, + { + "start": 27959.48, + "end": 27963.02, + "probability": 0.7127 + }, + { + "start": 27963.66, + "end": 27965.36, + "probability": 0.5139 + }, + { + "start": 27967.22, + "end": 27974.77, + "probability": 0.9963 + }, + { + "start": 27976.04, + "end": 27978.76, + "probability": 0.9002 + }, + { + "start": 27979.46, + "end": 27981.5, + "probability": 0.9977 + }, + { + "start": 27989.94, + "end": 27990.64, + "probability": 0.7132 + }, + { + "start": 27993.62, + "end": 27997.94, + "probability": 0.9958 + }, + { + "start": 27998.72, + "end": 27999.36, + "probability": 0.6646 + }, + { + "start": 28000.2, + "end": 28001.37, + "probability": 0.8755 + }, + { + "start": 28004.44, + "end": 28009.38, + "probability": 0.9407 + }, + { + "start": 28009.52, + "end": 28010.96, + "probability": 0.9058 + }, + { + "start": 28011.02, + "end": 28012.1, + "probability": 0.6513 + }, + { + "start": 28015.48, + "end": 28022.46, + "probability": 0.9284 + }, + { + "start": 28022.62, + "end": 28023.78, + "probability": 0.8804 + }, + { + "start": 28024.02, + "end": 28030.14, + "probability": 0.9924 + }, + { + "start": 28030.14, + "end": 28033.02, + "probability": 0.8419 + }, + { + "start": 28035.86, + "end": 28044.04, + "probability": 0.9863 + }, + { + "start": 28048.44, + "end": 28049.62, + "probability": 0.5718 + }, + { + "start": 28051.7, + "end": 28055.21, + "probability": 0.6289 + }, + { + "start": 28058.14, + "end": 28062.72, + "probability": 0.979 + }, + { + "start": 28064.06, + "end": 28065.18, + "probability": 0.8287 + }, + { + "start": 28066.48, + "end": 28068.42, + "probability": 0.9894 + }, + { + "start": 28070.04, + "end": 28070.65, + "probability": 0.8955 + }, + { + "start": 28072.86, + "end": 28077.11, + "probability": 0.7414 + }, + { + "start": 28079.94, + "end": 28084.72, + "probability": 0.7974 + }, + { + "start": 28091.64, + "end": 28099.82, + "probability": 0.9818 + }, + { + "start": 28099.82, + "end": 28103.54, + "probability": 0.9514 + }, + { + "start": 28103.68, + "end": 28105.15, + "probability": 0.8254 + }, + { + "start": 28106.54, + "end": 28108.78, + "probability": 0.8722 + }, + { + "start": 28109.46, + "end": 28113.06, + "probability": 0.9954 + }, + { + "start": 28113.06, + "end": 28117.16, + "probability": 0.6355 + }, + { + "start": 28119.44, + "end": 28120.28, + "probability": 0.8817 + }, + { + "start": 28123.36, + "end": 28124.18, + "probability": 0.6999 + }, + { + "start": 28124.9, + "end": 28127.28, + "probability": 0.7239 + }, + { + "start": 28128.88, + "end": 28134.44, + "probability": 0.9861 + }, + { + "start": 28134.66, + "end": 28135.64, + "probability": 0.8207 + }, + { + "start": 28136.36, + "end": 28137.79, + "probability": 0.9543 + }, + { + "start": 28139.46, + "end": 28141.06, + "probability": 0.9308 + }, + { + "start": 28143.32, + "end": 28144.96, + "probability": 0.7417 + }, + { + "start": 28148.76, + "end": 28150.96, + "probability": 0.9964 + }, + { + "start": 28155.58, + "end": 28156.86, + "probability": 0.6523 + }, + { + "start": 28156.86, + "end": 28157.88, + "probability": 0.8428 + }, + { + "start": 28159.26, + "end": 28161.92, + "probability": 0.8884 + }, + { + "start": 28164.02, + "end": 28166.58, + "probability": 0.9956 + }, + { + "start": 28167.16, + "end": 28171.5, + "probability": 0.9429 + }, + { + "start": 28172.1, + "end": 28174.8, + "probability": 0.9239 + }, + { + "start": 28176.34, + "end": 28178.74, + "probability": 0.8784 + }, + { + "start": 28179.36, + "end": 28180.58, + "probability": 0.5423 + }, + { + "start": 28181.96, + "end": 28185.04, + "probability": 0.9832 + }, + { + "start": 28185.54, + "end": 28186.66, + "probability": 0.9836 + }, + { + "start": 28189.72, + "end": 28190.28, + "probability": 0.4912 + }, + { + "start": 28191.44, + "end": 28191.79, + "probability": 0.3418 + }, + { + "start": 28192.98, + "end": 28193.55, + "probability": 0.749 + }, + { + "start": 28198.84, + "end": 28199.5, + "probability": 0.9211 + }, + { + "start": 28205.52, + "end": 28206.44, + "probability": 0.7552 + }, + { + "start": 28207.32, + "end": 28208.04, + "probability": 0.7841 + }, + { + "start": 28209.64, + "end": 28211.22, + "probability": 0.9757 + }, + { + "start": 28211.82, + "end": 28212.68, + "probability": 0.5716 + }, + { + "start": 28212.86, + "end": 28214.36, + "probability": 0.7094 + }, + { + "start": 28214.6, + "end": 28216.48, + "probability": 0.7208 + }, + { + "start": 28217.06, + "end": 28218.02, + "probability": 0.9512 + }, + { + "start": 28218.82, + "end": 28221.08, + "probability": 0.9752 + }, + { + "start": 28223.54, + "end": 28231.24, + "probability": 0.9843 + }, + { + "start": 28231.24, + "end": 28234.54, + "probability": 0.999 + }, + { + "start": 28234.8, + "end": 28236.64, + "probability": 0.9618 + }, + { + "start": 28239.3, + "end": 28243.14, + "probability": 0.8825 + }, + { + "start": 28245.16, + "end": 28248.6, + "probability": 0.9969 + }, + { + "start": 28249.66, + "end": 28252.92, + "probability": 0.999 + }, + { + "start": 28253.04, + "end": 28253.7, + "probability": 0.8465 + }, + { + "start": 28256.4, + "end": 28260.82, + "probability": 0.989 + }, + { + "start": 28263.78, + "end": 28269.72, + "probability": 0.9919 + }, + { + "start": 28269.82, + "end": 28273.92, + "probability": 0.875 + }, + { + "start": 28274.0, + "end": 28278.81, + "probability": 0.9236 + }, + { + "start": 28279.44, + "end": 28280.46, + "probability": 0.8377 + }, + { + "start": 28280.68, + "end": 28281.62, + "probability": 0.9691 + }, + { + "start": 28281.74, + "end": 28282.44, + "probability": 0.7867 + }, + { + "start": 28286.44, + "end": 28288.1, + "probability": 0.8268 + }, + { + "start": 28288.2, + "end": 28288.48, + "probability": 0.8187 + }, + { + "start": 28288.54, + "end": 28289.94, + "probability": 0.8964 + }, + { + "start": 28290.42, + "end": 28291.6, + "probability": 0.9585 + }, + { + "start": 28292.54, + "end": 28293.82, + "probability": 0.7054 + }, + { + "start": 28293.92, + "end": 28294.72, + "probability": 0.812 + }, + { + "start": 28295.1, + "end": 28295.8, + "probability": 0.9189 + }, + { + "start": 28296.66, + "end": 28296.66, + "probability": 0.437 + }, + { + "start": 28296.66, + "end": 28297.52, + "probability": 0.2071 + }, + { + "start": 28300.3, + "end": 28302.84, + "probability": 0.8187 + }, + { + "start": 28302.96, + "end": 28304.24, + "probability": 0.6134 + }, + { + "start": 28304.26, + "end": 28307.1, + "probability": 0.9211 + }, + { + "start": 28307.4, + "end": 28309.24, + "probability": 0.3042 + }, + { + "start": 28309.5, + "end": 28309.96, + "probability": 0.4126 + }, + { + "start": 28310.29, + "end": 28314.56, + "probability": 0.9204 + }, + { + "start": 28315.1, + "end": 28316.08, + "probability": 0.5195 + }, + { + "start": 28316.32, + "end": 28318.32, + "probability": 0.9666 + }, + { + "start": 28320.04, + "end": 28322.44, + "probability": 0.9233 + }, + { + "start": 28324.68, + "end": 28327.0, + "probability": 0.7725 + }, + { + "start": 28327.22, + "end": 28329.14, + "probability": 0.9854 + }, + { + "start": 28329.16, + "end": 28330.25, + "probability": 0.502 + }, + { + "start": 28332.24, + "end": 28336.44, + "probability": 0.5383 + }, + { + "start": 28337.84, + "end": 28340.52, + "probability": 0.7303 + }, + { + "start": 28341.2, + "end": 28343.86, + "probability": 0.727 + }, + { + "start": 28344.28, + "end": 28345.48, + "probability": 0.7764 + }, + { + "start": 28345.76, + "end": 28350.14, + "probability": 0.7614 + }, + { + "start": 28354.02, + "end": 28355.82, + "probability": 0.9663 + }, + { + "start": 28356.6, + "end": 28358.8, + "probability": 0.995 + }, + { + "start": 28358.96, + "end": 28361.36, + "probability": 0.9695 + }, + { + "start": 28361.48, + "end": 28362.36, + "probability": 0.9278 + }, + { + "start": 28364.72, + "end": 28365.63, + "probability": 0.691 + }, + { + "start": 28367.18, + "end": 28370.14, + "probability": 0.8937 + }, + { + "start": 28370.32, + "end": 28374.44, + "probability": 0.9141 + }, + { + "start": 28375.04, + "end": 28377.88, + "probability": 0.9277 + }, + { + "start": 28379.48, + "end": 28381.78, + "probability": 0.9227 + }, + { + "start": 28382.02, + "end": 28384.12, + "probability": 0.89 + }, + { + "start": 28384.16, + "end": 28385.4, + "probability": 0.9027 + }, + { + "start": 28386.42, + "end": 28391.48, + "probability": 0.9766 + }, + { + "start": 28391.48, + "end": 28396.84, + "probability": 0.9604 + }, + { + "start": 28397.54, + "end": 28399.94, + "probability": 0.9255 + }, + { + "start": 28400.1, + "end": 28404.64, + "probability": 0.9888 + }, + { + "start": 28407.28, + "end": 28408.14, + "probability": 0.4855 + }, + { + "start": 28411.68, + "end": 28414.14, + "probability": 0.9854 + }, + { + "start": 28420.16, + "end": 28420.86, + "probability": 0.7439 + }, + { + "start": 28421.36, + "end": 28421.74, + "probability": 0.3481 + }, + { + "start": 28421.82, + "end": 28427.9, + "probability": 0.9565 + }, + { + "start": 28428.64, + "end": 28431.36, + "probability": 0.8663 + }, + { + "start": 28432.2, + "end": 28436.48, + "probability": 0.9707 + }, + { + "start": 28437.56, + "end": 28439.5, + "probability": 0.9661 + }, + { + "start": 28440.16, + "end": 28443.1, + "probability": 0.9754 + }, + { + "start": 28443.7, + "end": 28449.16, + "probability": 0.9854 + }, + { + "start": 28450.54, + "end": 28454.46, + "probability": 0.5463 + }, + { + "start": 28455.08, + "end": 28455.66, + "probability": 0.5635 + }, + { + "start": 28455.88, + "end": 28457.1, + "probability": 0.6806 + }, + { + "start": 28457.2, + "end": 28463.44, + "probability": 0.9873 + }, + { + "start": 28463.5, + "end": 28467.08, + "probability": 0.9956 + }, + { + "start": 28467.12, + "end": 28468.68, + "probability": 0.9746 + }, + { + "start": 28468.84, + "end": 28472.32, + "probability": 0.9435 + }, + { + "start": 28472.68, + "end": 28475.56, + "probability": 0.9966 + }, + { + "start": 28476.16, + "end": 28479.1, + "probability": 0.7008 + }, + { + "start": 28481.26, + "end": 28483.66, + "probability": 0.9952 + }, + { + "start": 28483.68, + "end": 28487.65, + "probability": 0.9897 + }, + { + "start": 28488.1, + "end": 28489.96, + "probability": 0.9672 + }, + { + "start": 28490.26, + "end": 28496.66, + "probability": 0.9959 + }, + { + "start": 28497.06, + "end": 28501.54, + "probability": 0.9587 + }, + { + "start": 28501.56, + "end": 28501.76, + "probability": 0.7168 + }, + { + "start": 28501.88, + "end": 28502.62, + "probability": 0.9579 + }, + { + "start": 28505.86, + "end": 28508.36, + "probability": 0.7462 + }, + { + "start": 28509.32, + "end": 28510.12, + "probability": 0.8977 + }, + { + "start": 28510.82, + "end": 28511.56, + "probability": 0.6445 + }, + { + "start": 28511.82, + "end": 28512.34, + "probability": 0.5015 + }, + { + "start": 28513.68, + "end": 28514.24, + "probability": 0.4556 + }, + { + "start": 28514.46, + "end": 28514.84, + "probability": 0.73 + }, + { + "start": 28515.48, + "end": 28516.24, + "probability": 0.8164 + }, + { + "start": 28517.9, + "end": 28518.76, + "probability": 0.8623 + }, + { + "start": 28519.12, + "end": 28519.82, + "probability": 0.8547 + }, + { + "start": 28519.94, + "end": 28520.68, + "probability": 0.8402 + }, + { + "start": 28520.86, + "end": 28521.66, + "probability": 0.9358 + }, + { + "start": 28521.92, + "end": 28522.98, + "probability": 0.9765 + }, + { + "start": 28523.08, + "end": 28523.22, + "probability": 0.3528 + }, + { + "start": 28523.32, + "end": 28524.08, + "probability": 0.3495 + }, + { + "start": 28524.56, + "end": 28525.64, + "probability": 0.7769 + }, + { + "start": 28525.82, + "end": 28527.7, + "probability": 0.7671 + }, + { + "start": 28532.22, + "end": 28533.6, + "probability": 0.0751 + }, + { + "start": 28534.26, + "end": 28535.64, + "probability": 0.3312 + }, + { + "start": 28538.6, + "end": 28542.8, + "probability": 0.6924 + }, + { + "start": 28543.08, + "end": 28544.78, + "probability": 0.8809 + }, + { + "start": 28547.22, + "end": 28548.86, + "probability": 0.0466 + }, + { + "start": 28549.38, + "end": 28550.64, + "probability": 0.1282 + }, + { + "start": 28554.04, + "end": 28554.4, + "probability": 0.4106 + }, + { + "start": 28564.66, + "end": 28566.68, + "probability": 0.3558 + }, + { + "start": 28569.92, + "end": 28572.04, + "probability": 0.6556 + }, + { + "start": 28573.22, + "end": 28575.14, + "probability": 0.0958 + }, + { + "start": 28576.46, + "end": 28579.02, + "probability": 0.6046 + }, + { + "start": 28588.96, + "end": 28589.06, + "probability": 0.0354 + }, + { + "start": 28591.88, + "end": 28592.8, + "probability": 0.2736 + }, + { + "start": 28594.88, + "end": 28596.14, + "probability": 0.2177 + }, + { + "start": 28596.38, + "end": 28597.0, + "probability": 0.0988 + }, + { + "start": 28597.72, + "end": 28599.6, + "probability": 0.0693 + }, + { + "start": 28600.56, + "end": 28601.84, + "probability": 0.7759 + }, + { + "start": 28603.3, + "end": 28606.13, + "probability": 0.9092 + }, + { + "start": 28608.5, + "end": 28611.78, + "probability": 0.7794 + }, + { + "start": 28612.54, + "end": 28613.58, + "probability": 0.867 + }, + { + "start": 28613.78, + "end": 28622.1, + "probability": 0.8412 + }, + { + "start": 28623.44, + "end": 28628.0, + "probability": 0.9961 + }, + { + "start": 28628.0, + "end": 28635.95, + "probability": 0.9983 + }, + { + "start": 28636.76, + "end": 28637.28, + "probability": 0.8741 + }, + { + "start": 28637.38, + "end": 28640.02, + "probability": 0.7923 + }, + { + "start": 28641.56, + "end": 28643.0, + "probability": 0.6873 + }, + { + "start": 28643.96, + "end": 28647.52, + "probability": 0.9806 + }, + { + "start": 28649.04, + "end": 28649.04, + "probability": 0.0683 + }, + { + "start": 28649.28, + "end": 28651.34, + "probability": 0.9352 + }, + { + "start": 28651.54, + "end": 28654.26, + "probability": 0.9773 + }, + { + "start": 28655.68, + "end": 28659.9, + "probability": 0.7173 + }, + { + "start": 28661.28, + "end": 28661.28, + "probability": 0.0282 + }, + { + "start": 28661.28, + "end": 28664.6, + "probability": 0.4618 + }, + { + "start": 28664.6, + "end": 28671.28, + "probability": 0.4927 + }, + { + "start": 28671.96, + "end": 28676.72, + "probability": 0.8861 + }, + { + "start": 28676.84, + "end": 28678.46, + "probability": 0.8669 + }, + { + "start": 28679.14, + "end": 28679.16, + "probability": 0.0733 + }, + { + "start": 28679.16, + "end": 28679.98, + "probability": 0.617 + }, + { + "start": 28680.78, + "end": 28682.88, + "probability": 0.8442 + }, + { + "start": 28683.9, + "end": 28686.88, + "probability": 0.7548 + }, + { + "start": 28686.88, + "end": 28689.64, + "probability": 0.9997 + }, + { + "start": 28691.32, + "end": 28693.96, + "probability": 0.9946 + }, + { + "start": 28695.62, + "end": 28701.98, + "probability": 0.9922 + }, + { + "start": 28703.44, + "end": 28705.96, + "probability": 0.9897 + }, + { + "start": 28706.88, + "end": 28708.58, + "probability": 0.7695 + }, + { + "start": 28710.0, + "end": 28712.36, + "probability": 0.9107 + }, + { + "start": 28713.08, + "end": 28718.94, + "probability": 0.9775 + }, + { + "start": 28719.7, + "end": 28726.33, + "probability": 0.9629 + }, + { + "start": 28726.88, + "end": 28727.56, + "probability": 0.8819 + }, + { + "start": 28727.72, + "end": 28728.63, + "probability": 0.528 + }, + { + "start": 28729.66, + "end": 28733.18, + "probability": 0.5695 + }, + { + "start": 28735.24, + "end": 28738.54, + "probability": 0.9586 + }, + { + "start": 28740.0, + "end": 28741.96, + "probability": 0.9488 + }, + { + "start": 28742.1, + "end": 28743.0, + "probability": 0.9709 + }, + { + "start": 28743.16, + "end": 28743.84, + "probability": 0.9526 + }, + { + "start": 28744.7, + "end": 28745.98, + "probability": 0.9408 + }, + { + "start": 28746.24, + "end": 28747.32, + "probability": 0.8154 + }, + { + "start": 28749.02, + "end": 28752.44, + "probability": 0.7984 + }, + { + "start": 28753.02, + "end": 28758.78, + "probability": 0.8964 + }, + { + "start": 28759.32, + "end": 28766.84, + "probability": 0.9846 + }, + { + "start": 28767.94, + "end": 28768.74, + "probability": 0.5591 + }, + { + "start": 28769.52, + "end": 28771.81, + "probability": 0.7405 + }, + { + "start": 28773.86, + "end": 28776.64, + "probability": 0.978 + }, + { + "start": 28777.24, + "end": 28778.56, + "probability": 0.5897 + }, + { + "start": 28779.0, + "end": 28782.94, + "probability": 0.9822 + }, + { + "start": 28783.94, + "end": 28789.06, + "probability": 0.977 + }, + { + "start": 28790.02, + "end": 28795.12, + "probability": 0.9889 + }, + { + "start": 28795.18, + "end": 28797.32, + "probability": 0.5389 + }, + { + "start": 28798.14, + "end": 28801.86, + "probability": 0.8833 + }, + { + "start": 28802.52, + "end": 28804.36, + "probability": 0.7014 + }, + { + "start": 28804.36, + "end": 28804.88, + "probability": 0.4343 + }, + { + "start": 28805.24, + "end": 28806.54, + "probability": 0.7832 + }, + { + "start": 28806.54, + "end": 28807.58, + "probability": 0.7516 + }, + { + "start": 28807.68, + "end": 28809.82, + "probability": 0.958 + }, + { + "start": 28811.63, + "end": 28814.7, + "probability": 0.8371 + }, + { + "start": 28815.28, + "end": 28818.56, + "probability": 0.743 + }, + { + "start": 28818.84, + "end": 28822.06, + "probability": 0.9719 + }, + { + "start": 28822.62, + "end": 28825.78, + "probability": 0.8067 + }, + { + "start": 28826.34, + "end": 28827.5, + "probability": 0.9011 + }, + { + "start": 28827.98, + "end": 28829.32, + "probability": 0.8932 + }, + { + "start": 28829.78, + "end": 28831.18, + "probability": 0.9224 + }, + { + "start": 28831.6, + "end": 28836.12, + "probability": 0.9972 + }, + { + "start": 28836.8, + "end": 28839.16, + "probability": 0.7836 + }, + { + "start": 28839.46, + "end": 28842.62, + "probability": 0.9262 + }, + { + "start": 28843.04, + "end": 28844.62, + "probability": 0.6973 + }, + { + "start": 28845.22, + "end": 28848.14, + "probability": 0.9871 + }, + { + "start": 28848.66, + "end": 28848.82, + "probability": 0.9219 + }, + { + "start": 28849.42, + "end": 28849.56, + "probability": 0.2582 + }, + { + "start": 28849.56, + "end": 28852.96, + "probability": 0.7535 + }, + { + "start": 28852.96, + "end": 28857.0, + "probability": 0.7736 + }, + { + "start": 28857.52, + "end": 28859.26, + "probability": 0.9101 + }, + { + "start": 28859.96, + "end": 28861.1, + "probability": 0.9663 + }, + { + "start": 28861.26, + "end": 28862.0, + "probability": 0.7607 + }, + { + "start": 28862.02, + "end": 28863.22, + "probability": 0.7669 + }, + { + "start": 28863.38, + "end": 28868.2, + "probability": 0.8766 + }, + { + "start": 28868.54, + "end": 28871.84, + "probability": 0.5431 + }, + { + "start": 28872.1, + "end": 28872.75, + "probability": 0.9633 + }, + { + "start": 28873.3, + "end": 28873.95, + "probability": 0.9648 + }, + { + "start": 28875.2, + "end": 28879.76, + "probability": 0.7856 + }, + { + "start": 28880.3, + "end": 28884.6, + "probability": 0.9035 + }, + { + "start": 28884.6, + "end": 28890.22, + "probability": 0.7637 + }, + { + "start": 28890.44, + "end": 28891.2, + "probability": 0.3584 + }, + { + "start": 28891.28, + "end": 28893.12, + "probability": 0.3474 + }, + { + "start": 28893.26, + "end": 28894.48, + "probability": 0.2696 + }, + { + "start": 28896.08, + "end": 28897.86, + "probability": 0.6008 + }, + { + "start": 28913.4, + "end": 28917.92, + "probability": 0.8437 + }, + { + "start": 28918.56, + "end": 28919.18, + "probability": 0.7909 + }, + { + "start": 28920.36, + "end": 28927.48, + "probability": 0.9236 + }, + { + "start": 28927.62, + "end": 28933.32, + "probability": 0.8252 + }, + { + "start": 28934.0, + "end": 28935.56, + "probability": 0.9471 + }, + { + "start": 28938.75, + "end": 28939.3, + "probability": 0.0149 + }, + { + "start": 28939.3, + "end": 28941.19, + "probability": 0.4684 + }, + { + "start": 28943.3, + "end": 28944.88, + "probability": 0.4272 + }, + { + "start": 28945.44, + "end": 28949.98, + "probability": 0.8892 + }, + { + "start": 28950.5, + "end": 28953.16, + "probability": 0.8572 + }, + { + "start": 28953.86, + "end": 28956.46, + "probability": 0.8472 + }, + { + "start": 28956.86, + "end": 28957.07, + "probability": 0.7022 + }, + { + "start": 28957.76, + "end": 28958.43, + "probability": 0.8472 + }, + { + "start": 28958.92, + "end": 28964.1, + "probability": 0.9732 + }, + { + "start": 28964.24, + "end": 28964.52, + "probability": 0.4097 + }, + { + "start": 28964.58, + "end": 28965.64, + "probability": 0.6136 + }, + { + "start": 28966.46, + "end": 28970.26, + "probability": 0.8885 + }, + { + "start": 28970.44, + "end": 28973.12, + "probability": 0.4381 + }, + { + "start": 28973.42, + "end": 28976.96, + "probability": 0.9536 + }, + { + "start": 28977.42, + "end": 28977.99, + "probability": 0.6055 + }, + { + "start": 28978.28, + "end": 28978.5, + "probability": 0.0236 + }, + { + "start": 28978.5, + "end": 28980.98, + "probability": 0.1806 + }, + { + "start": 28981.52, + "end": 28983.28, + "probability": 0.8052 + }, + { + "start": 28983.8, + "end": 28985.22, + "probability": 0.7579 + }, + { + "start": 28985.5, + "end": 28988.02, + "probability": 0.8857 + }, + { + "start": 28988.72, + "end": 28989.28, + "probability": 0.56 + }, + { + "start": 28990.24, + "end": 28990.4, + "probability": 0.2889 + }, + { + "start": 28990.54, + "end": 28993.16, + "probability": 0.9093 + }, + { + "start": 28993.34, + "end": 28994.7, + "probability": 0.4534 + }, + { + "start": 28994.92, + "end": 28996.1, + "probability": 0.521 + }, + { + "start": 28996.1, + "end": 28996.26, + "probability": 0.3455 + }, + { + "start": 28996.26, + "end": 28996.86, + "probability": 0.1637 + }, + { + "start": 28996.86, + "end": 28998.22, + "probability": 0.2585 + }, + { + "start": 28998.26, + "end": 28999.69, + "probability": 0.7719 + }, + { + "start": 28999.88, + "end": 29002.94, + "probability": 0.7306 + }, + { + "start": 29003.06, + "end": 29003.62, + "probability": 0.8799 + }, + { + "start": 29003.68, + "end": 29004.48, + "probability": 0.9275 + }, + { + "start": 29005.16, + "end": 29008.34, + "probability": 0.9834 + }, + { + "start": 29008.88, + "end": 29010.35, + "probability": 0.6219 + }, + { + "start": 29011.78, + "end": 29014.44, + "probability": 0.8152 + }, + { + "start": 29015.36, + "end": 29019.78, + "probability": 0.9892 + }, + { + "start": 29019.78, + "end": 29023.66, + "probability": 0.9966 + }, + { + "start": 29024.5, + "end": 29026.4, + "probability": 0.5125 + }, + { + "start": 29026.5, + "end": 29033.42, + "probability": 0.9894 + }, + { + "start": 29034.1, + "end": 29037.66, + "probability": 0.9422 + }, + { + "start": 29038.44, + "end": 29044.98, + "probability": 0.9928 + }, + { + "start": 29045.06, + "end": 29052.58, + "probability": 0.5195 + }, + { + "start": 29053.64, + "end": 29054.3, + "probability": 0.0027 + }, + { + "start": 29054.3, + "end": 29055.26, + "probability": 0.2708 + }, + { + "start": 29055.42, + "end": 29059.56, + "probability": 0.9229 + }, + { + "start": 29059.88, + "end": 29062.78, + "probability": 0.9731 + }, + { + "start": 29063.24, + "end": 29064.16, + "probability": 0.7158 + }, + { + "start": 29064.44, + "end": 29067.24, + "probability": 0.8444 + }, + { + "start": 29067.84, + "end": 29070.32, + "probability": 0.9529 + }, + { + "start": 29071.3, + "end": 29076.78, + "probability": 0.9658 + }, + { + "start": 29076.9, + "end": 29079.16, + "probability": 0.9408 + }, + { + "start": 29079.58, + "end": 29081.94, + "probability": 0.9595 + }, + { + "start": 29082.14, + "end": 29082.92, + "probability": 0.7779 + }, + { + "start": 29083.04, + "end": 29085.66, + "probability": 0.6165 + }, + { + "start": 29085.66, + "end": 29086.3, + "probability": 0.2434 + }, + { + "start": 29086.48, + "end": 29088.66, + "probability": 0.6182 + }, + { + "start": 29090.04, + "end": 29092.32, + "probability": 0.7997 + }, + { + "start": 29092.48, + "end": 29095.06, + "probability": 0.9129 + }, + { + "start": 29095.42, + "end": 29096.4, + "probability": 0.799 + }, + { + "start": 29096.78, + "end": 29099.84, + "probability": 0.9409 + }, + { + "start": 29100.42, + "end": 29101.47, + "probability": 0.5646 + }, + { + "start": 29102.72, + "end": 29108.74, + "probability": 0.8366 + }, + { + "start": 29108.98, + "end": 29111.88, + "probability": 0.8094 + }, + { + "start": 29111.98, + "end": 29113.28, + "probability": 0.964 + }, + { + "start": 29113.64, + "end": 29116.04, + "probability": 0.9768 + }, + { + "start": 29116.52, + "end": 29121.38, + "probability": 0.9863 + }, + { + "start": 29122.24, + "end": 29124.32, + "probability": 0.7998 + }, + { + "start": 29124.38, + "end": 29125.76, + "probability": 0.7695 + }, + { + "start": 29125.9, + "end": 29134.08, + "probability": 0.9145 + }, + { + "start": 29135.7, + "end": 29138.82, + "probability": 0.3909 + }, + { + "start": 29138.98, + "end": 29143.8, + "probability": 0.9832 + }, + { + "start": 29144.4, + "end": 29149.12, + "probability": 0.9858 + }, + { + "start": 29149.12, + "end": 29152.2, + "probability": 0.9963 + }, + { + "start": 29152.7, + "end": 29156.88, + "probability": 0.9811 + }, + { + "start": 29156.88, + "end": 29161.08, + "probability": 0.9623 + }, + { + "start": 29161.34, + "end": 29167.44, + "probability": 0.9613 + }, + { + "start": 29167.68, + "end": 29168.72, + "probability": 0.9329 + }, + { + "start": 29168.84, + "end": 29169.6, + "probability": 0.8948 + }, + { + "start": 29169.76, + "end": 29171.42, + "probability": 0.9941 + }, + { + "start": 29171.56, + "end": 29174.64, + "probability": 0.8896 + }, + { + "start": 29174.78, + "end": 29178.06, + "probability": 0.9347 + }, + { + "start": 29178.06, + "end": 29182.16, + "probability": 0.9275 + }, + { + "start": 29182.7, + "end": 29187.18, + "probability": 0.9919 + }, + { + "start": 29188.58, + "end": 29192.44, + "probability": 0.9907 + }, + { + "start": 29192.64, + "end": 29196.66, + "probability": 0.6354 + }, + { + "start": 29196.96, + "end": 29201.98, + "probability": 0.916 + }, + { + "start": 29202.68, + "end": 29204.5, + "probability": 0.7735 + }, + { + "start": 29205.04, + "end": 29205.22, + "probability": 0.7575 + }, + { + "start": 29205.96, + "end": 29207.1, + "probability": 0.672 + }, + { + "start": 29207.18, + "end": 29208.14, + "probability": 0.665 + }, + { + "start": 29209.14, + "end": 29210.48, + "probability": 0.943 + }, + { + "start": 29216.54, + "end": 29217.96, + "probability": 0.1111 + }, + { + "start": 29218.72, + "end": 29220.8, + "probability": 0.7546 + }, + { + "start": 29221.6, + "end": 29222.58, + "probability": 0.6359 + }, + { + "start": 29223.83, + "end": 29225.66, + "probability": 0.8061 + }, + { + "start": 29227.38, + "end": 29228.78, + "probability": 0.2677 + }, + { + "start": 29228.88, + "end": 29230.24, + "probability": 0.8481 + }, + { + "start": 29231.34, + "end": 29234.1, + "probability": 0.9427 + }, + { + "start": 29235.8, + "end": 29237.3, + "probability": 0.9956 + }, + { + "start": 29239.14, + "end": 29246.7, + "probability": 0.96 + }, + { + "start": 29249.84, + "end": 29252.35, + "probability": 0.6586 + }, + { + "start": 29253.32, + "end": 29256.88, + "probability": 0.799 + }, + { + "start": 29258.0, + "end": 29260.4, + "probability": 0.9398 + }, + { + "start": 29261.36, + "end": 29264.94, + "probability": 0.6645 + }, + { + "start": 29266.38, + "end": 29270.18, + "probability": 0.991 + }, + { + "start": 29271.08, + "end": 29277.79, + "probability": 0.8641 + }, + { + "start": 29279.2, + "end": 29282.66, + "probability": 0.9808 + }, + { + "start": 29284.52, + "end": 29286.96, + "probability": 0.5835 + }, + { + "start": 29287.8, + "end": 29287.8, + "probability": 0.1704 + }, + { + "start": 29289.88, + "end": 29291.52, + "probability": 0.0902 + }, + { + "start": 29292.32, + "end": 29293.7, + "probability": 0.9915 + }, + { + "start": 29296.16, + "end": 29300.9, + "probability": 0.9575 + }, + { + "start": 29301.54, + "end": 29302.3, + "probability": 0.7963 + }, + { + "start": 29302.38, + "end": 29303.24, + "probability": 0.9749 + }, + { + "start": 29303.66, + "end": 29304.66, + "probability": 0.6703 + }, + { + "start": 29305.24, + "end": 29306.97, + "probability": 0.9539 + }, + { + "start": 29307.46, + "end": 29309.46, + "probability": 0.8126 + }, + { + "start": 29309.46, + "end": 29312.58, + "probability": 0.9745 + }, + { + "start": 29312.73, + "end": 29315.98, + "probability": 0.6675 + }, + { + "start": 29317.46, + "end": 29317.9, + "probability": 0.7542 + }, + { + "start": 29318.44, + "end": 29319.1, + "probability": 0.4768 + }, + { + "start": 29320.2, + "end": 29320.44, + "probability": 0.5249 + }, + { + "start": 29320.56, + "end": 29321.19, + "probability": 0.9679 + }, + { + "start": 29321.36, + "end": 29323.9, + "probability": 0.9781 + }, + { + "start": 29325.34, + "end": 29328.32, + "probability": 0.9176 + }, + { + "start": 29328.44, + "end": 29328.82, + "probability": 0.9845 + }, + { + "start": 29329.58, + "end": 29337.06, + "probability": 0.9601 + }, + { + "start": 29337.12, + "end": 29338.34, + "probability": 0.8848 + }, + { + "start": 29339.08, + "end": 29342.88, + "probability": 0.8559 + }, + { + "start": 29344.02, + "end": 29346.58, + "probability": 0.6694 + }, + { + "start": 29348.2, + "end": 29349.26, + "probability": 0.9818 + }, + { + "start": 29351.44, + "end": 29351.44, + "probability": 0.0015 + }, + { + "start": 29351.46, + "end": 29353.48, + "probability": 0.4765 + }, + { + "start": 29355.72, + "end": 29355.98, + "probability": 0.5497 + }, + { + "start": 29356.9, + "end": 29359.24, + "probability": 0.9339 + }, + { + "start": 29359.26, + "end": 29359.96, + "probability": 0.7435 + }, + { + "start": 29359.98, + "end": 29360.91, + "probability": 0.9678 + }, + { + "start": 29361.8, + "end": 29364.64, + "probability": 0.6674 + }, + { + "start": 29364.76, + "end": 29366.21, + "probability": 0.9819 + }, + { + "start": 29367.24, + "end": 29370.24, + "probability": 0.9972 + }, + { + "start": 29370.98, + "end": 29374.36, + "probability": 0.8767 + }, + { + "start": 29375.44, + "end": 29379.98, + "probability": 0.9324 + }, + { + "start": 29381.78, + "end": 29384.12, + "probability": 0.8856 + }, + { + "start": 29385.04, + "end": 29388.18, + "probability": 0.8221 + }, + { + "start": 29388.98, + "end": 29391.12, + "probability": 0.7324 + }, + { + "start": 29391.34, + "end": 29392.08, + "probability": 0.2372 + }, + { + "start": 29393.98, + "end": 29396.64, + "probability": 0.8784 + }, + { + "start": 29397.36, + "end": 29400.8, + "probability": 0.7991 + }, + { + "start": 29401.34, + "end": 29402.46, + "probability": 0.9797 + }, + { + "start": 29403.12, + "end": 29406.88, + "probability": 0.9873 + }, + { + "start": 29407.96, + "end": 29411.52, + "probability": 0.8406 + }, + { + "start": 29412.52, + "end": 29414.54, + "probability": 0.9102 + }, + { + "start": 29415.58, + "end": 29417.96, + "probability": 0.9424 + }, + { + "start": 29419.54, + "end": 29421.72, + "probability": 0.9799 + }, + { + "start": 29422.26, + "end": 29425.79, + "probability": 0.9061 + }, + { + "start": 29426.08, + "end": 29429.46, + "probability": 0.9921 + }, + { + "start": 29429.7, + "end": 29431.22, + "probability": 0.8458 + }, + { + "start": 29431.38, + "end": 29435.58, + "probability": 0.8785 + }, + { + "start": 29435.68, + "end": 29436.9, + "probability": 0.6348 + }, + { + "start": 29437.74, + "end": 29440.16, + "probability": 0.8927 + }, + { + "start": 29441.42, + "end": 29443.24, + "probability": 0.891 + }, + { + "start": 29444.16, + "end": 29447.66, + "probability": 0.9604 + }, + { + "start": 29448.46, + "end": 29450.16, + "probability": 0.9207 + }, + { + "start": 29451.14, + "end": 29452.74, + "probability": 0.9814 + }, + { + "start": 29453.78, + "end": 29455.18, + "probability": 0.9959 + }, + { + "start": 29456.2, + "end": 29458.73, + "probability": 0.7229 + }, + { + "start": 29460.84, + "end": 29462.76, + "probability": 0.9587 + }, + { + "start": 29463.06, + "end": 29466.56, + "probability": 0.939 + }, + { + "start": 29469.66, + "end": 29470.34, + "probability": 0.8409 + }, + { + "start": 29471.04, + "end": 29475.84, + "probability": 0.7496 + }, + { + "start": 29475.96, + "end": 29477.12, + "probability": 0.7607 + }, + { + "start": 29477.68, + "end": 29479.16, + "probability": 0.8116 + }, + { + "start": 29480.08, + "end": 29483.54, + "probability": 0.8828 + }, + { + "start": 29483.64, + "end": 29484.58, + "probability": 0.8892 + }, + { + "start": 29484.76, + "end": 29485.5, + "probability": 0.0797 + }, + { + "start": 29485.62, + "end": 29486.12, + "probability": 0.8376 + }, + { + "start": 29486.16, + "end": 29488.84, + "probability": 0.9521 + }, + { + "start": 29489.32, + "end": 29491.76, + "probability": 0.9955 + }, + { + "start": 29491.82, + "end": 29492.82, + "probability": 0.8526 + }, + { + "start": 29493.18, + "end": 29496.38, + "probability": 0.8924 + }, + { + "start": 29496.38, + "end": 29501.22, + "probability": 0.9722 + }, + { + "start": 29501.68, + "end": 29504.58, + "probability": 0.8468 + }, + { + "start": 29505.76, + "end": 29506.76, + "probability": 0.6454 + }, + { + "start": 29507.44, + "end": 29508.7, + "probability": 0.4132 + }, + { + "start": 29509.28, + "end": 29510.64, + "probability": 0.6442 + }, + { + "start": 29511.28, + "end": 29514.18, + "probability": 0.6252 + }, + { + "start": 29514.52, + "end": 29519.93, + "probability": 0.9885 + }, + { + "start": 29520.9, + "end": 29522.14, + "probability": 0.7976 + }, + { + "start": 29524.06, + "end": 29525.68, + "probability": 0.8028 + }, + { + "start": 29526.4, + "end": 29528.8, + "probability": 0.6948 + }, + { + "start": 29529.46, + "end": 29531.04, + "probability": 0.8098 + }, + { + "start": 29531.6, + "end": 29532.64, + "probability": 0.9597 + }, + { + "start": 29533.4, + "end": 29534.1, + "probability": 0.4903 + }, + { + "start": 29534.18, + "end": 29535.32, + "probability": 0.4487 + }, + { + "start": 29541.96, + "end": 29545.44, + "probability": 0.9252 + }, + { + "start": 29545.96, + "end": 29548.72, + "probability": 0.3559 + }, + { + "start": 29549.08, + "end": 29550.44, + "probability": 0.3506 + }, + { + "start": 29550.72, + "end": 29554.48, + "probability": 0.9131 + }, + { + "start": 29554.64, + "end": 29555.54, + "probability": 0.5102 + }, + { + "start": 29556.44, + "end": 29559.1, + "probability": 0.9181 + }, + { + "start": 29559.14, + "end": 29561.86, + "probability": 0.8838 + }, + { + "start": 29561.86, + "end": 29564.22, + "probability": 0.6688 + }, + { + "start": 29564.4, + "end": 29565.92, + "probability": 0.2813 + }, + { + "start": 29566.44, + "end": 29568.64, + "probability": 0.9297 + }, + { + "start": 29569.84, + "end": 29573.51, + "probability": 0.9883 + }, + { + "start": 29573.68, + "end": 29574.8, + "probability": 0.9349 + }, + { + "start": 29574.94, + "end": 29577.28, + "probability": 0.9637 + }, + { + "start": 29577.98, + "end": 29581.46, + "probability": 0.9966 + }, + { + "start": 29581.46, + "end": 29584.72, + "probability": 0.9157 + }, + { + "start": 29585.66, + "end": 29588.29, + "probability": 0.9968 + }, + { + "start": 29589.32, + "end": 29591.58, + "probability": 0.8677 + }, + { + "start": 29592.38, + "end": 29594.55, + "probability": 0.7246 + }, + { + "start": 29595.32, + "end": 29597.24, + "probability": 0.9927 + }, + { + "start": 29597.9, + "end": 29598.84, + "probability": 0.8566 + }, + { + "start": 29598.92, + "end": 29601.82, + "probability": 0.8977 + }, + { + "start": 29602.7, + "end": 29607.88, + "probability": 0.9929 + }, + { + "start": 29608.3, + "end": 29610.74, + "probability": 0.9954 + }, + { + "start": 29610.74, + "end": 29613.66, + "probability": 0.9792 + }, + { + "start": 29615.08, + "end": 29619.28, + "probability": 0.9333 + }, + { + "start": 29619.92, + "end": 29622.7, + "probability": 0.9689 + }, + { + "start": 29623.0, + "end": 29624.84, + "probability": 0.4863 + }, + { + "start": 29625.4, + "end": 29630.02, + "probability": 0.9334 + }, + { + "start": 29630.2, + "end": 29630.9, + "probability": 0.7588 + }, + { + "start": 29631.36, + "end": 29633.06, + "probability": 0.9401 + }, + { + "start": 29634.74, + "end": 29635.78, + "probability": 0.6866 + }, + { + "start": 29635.98, + "end": 29639.76, + "probability": 0.9946 + }, + { + "start": 29639.76, + "end": 29646.26, + "probability": 0.9688 + }, + { + "start": 29646.26, + "end": 29652.4, + "probability": 0.9973 + }, + { + "start": 29652.62, + "end": 29655.22, + "probability": 0.6711 + }, + { + "start": 29655.76, + "end": 29659.18, + "probability": 0.9904 + }, + { + "start": 29659.24, + "end": 29662.34, + "probability": 0.8987 + }, + { + "start": 29662.98, + "end": 29666.6, + "probability": 0.9858 + }, + { + "start": 29667.18, + "end": 29670.96, + "probability": 0.9521 + }, + { + "start": 29670.96, + "end": 29674.64, + "probability": 0.9355 + }, + { + "start": 29674.64, + "end": 29679.7, + "probability": 0.988 + }, + { + "start": 29679.96, + "end": 29682.36, + "probability": 0.9979 + }, + { + "start": 29682.48, + "end": 29686.3, + "probability": 0.979 + }, + { + "start": 29686.98, + "end": 29689.36, + "probability": 0.9303 + }, + { + "start": 29689.66, + "end": 29691.36, + "probability": 0.9084 + }, + { + "start": 29691.78, + "end": 29692.22, + "probability": 0.4892 + }, + { + "start": 29692.3, + "end": 29693.56, + "probability": 0.7104 + }, + { + "start": 29694.0, + "end": 29695.62, + "probability": 0.8721 + }, + { + "start": 29696.12, + "end": 29699.58, + "probability": 0.9937 + }, + { + "start": 29699.8, + "end": 29703.22, + "probability": 0.8638 + }, + { + "start": 29703.22, + "end": 29703.5, + "probability": 0.5477 + }, + { + "start": 29704.08, + "end": 29709.32, + "probability": 0.976 + }, + { + "start": 29709.32, + "end": 29713.16, + "probability": 0.9927 + }, + { + "start": 29713.2, + "end": 29713.72, + "probability": 0.7715 + }, + { + "start": 29713.84, + "end": 29714.47, + "probability": 0.5003 + }, + { + "start": 29715.3, + "end": 29716.16, + "probability": 0.8271 + }, + { + "start": 29717.02, + "end": 29718.9, + "probability": 0.5476 + }, + { + "start": 29735.14, + "end": 29738.0, + "probability": 0.7312 + }, + { + "start": 29741.44, + "end": 29745.96, + "probability": 0.8241 + }, + { + "start": 29747.38, + "end": 29749.82, + "probability": 0.7403 + }, + { + "start": 29752.24, + "end": 29756.5, + "probability": 0.7788 + }, + { + "start": 29758.26, + "end": 29760.12, + "probability": 0.7334 + }, + { + "start": 29761.82, + "end": 29764.68, + "probability": 0.9402 + }, + { + "start": 29764.86, + "end": 29767.06, + "probability": 0.8092 + }, + { + "start": 29767.74, + "end": 29770.04, + "probability": 0.9784 + }, + { + "start": 29770.7, + "end": 29772.92, + "probability": 0.9856 + }, + { + "start": 29773.0, + "end": 29777.88, + "probability": 0.9919 + }, + { + "start": 29777.96, + "end": 29778.56, + "probability": 0.5185 + }, + { + "start": 29778.66, + "end": 29779.28, + "probability": 0.963 + }, + { + "start": 29779.98, + "end": 29780.66, + "probability": 0.7555 + }, + { + "start": 29783.04, + "end": 29788.0, + "probability": 0.9935 + }, + { + "start": 29789.16, + "end": 29791.1, + "probability": 0.897 + }, + { + "start": 29793.76, + "end": 29796.12, + "probability": 0.9884 + }, + { + "start": 29797.7, + "end": 29800.04, + "probability": 0.9944 + }, + { + "start": 29803.52, + "end": 29805.44, + "probability": 0.9949 + }, + { + "start": 29806.62, + "end": 29810.02, + "probability": 0.6654 + }, + { + "start": 29810.08, + "end": 29812.02, + "probability": 0.814 + }, + { + "start": 29812.38, + "end": 29813.16, + "probability": 0.1125 + }, + { + "start": 29813.16, + "end": 29813.6, + "probability": 0.4285 + }, + { + "start": 29813.76, + "end": 29815.26, + "probability": 0.9702 + }, + { + "start": 29816.32, + "end": 29820.26, + "probability": 0.7203 + }, + { + "start": 29820.52, + "end": 29827.74, + "probability": 0.9544 + }, + { + "start": 29827.78, + "end": 29828.56, + "probability": 0.6464 + }, + { + "start": 29831.32, + "end": 29832.66, + "probability": 0.942 + }, + { + "start": 29833.46, + "end": 29835.44, + "probability": 0.9766 + }, + { + "start": 29837.84, + "end": 29840.82, + "probability": 0.8141 + }, + { + "start": 29840.9, + "end": 29841.5, + "probability": 0.7601 + }, + { + "start": 29841.6, + "end": 29845.68, + "probability": 0.8158 + }, + { + "start": 29845.76, + "end": 29846.62, + "probability": 0.771 + }, + { + "start": 29847.32, + "end": 29848.76, + "probability": 0.8625 + }, + { + "start": 29848.96, + "end": 29850.54, + "probability": 0.9554 + }, + { + "start": 29851.52, + "end": 29853.94, + "probability": 0.9742 + }, + { + "start": 29854.72, + "end": 29857.58, + "probability": 0.9972 + }, + { + "start": 29859.56, + "end": 29861.64, + "probability": 0.8445 + }, + { + "start": 29861.72, + "end": 29864.6, + "probability": 0.9042 + }, + { + "start": 29864.94, + "end": 29868.66, + "probability": 0.9906 + }, + { + "start": 29868.84, + "end": 29869.78, + "probability": 0.7034 + }, + { + "start": 29871.08, + "end": 29874.66, + "probability": 0.9725 + }, + { + "start": 29874.68, + "end": 29875.86, + "probability": 0.5941 + }, + { + "start": 29875.94, + "end": 29876.58, + "probability": 0.6051 + }, + { + "start": 29877.02, + "end": 29878.02, + "probability": 0.5204 + }, + { + "start": 29879.36, + "end": 29885.2, + "probability": 0.8978 + }, + { + "start": 29886.0, + "end": 29887.22, + "probability": 0.7918 + }, + { + "start": 29887.74, + "end": 29888.82, + "probability": 0.4508 + }, + { + "start": 29889.22, + "end": 29892.14, + "probability": 0.9414 + }, + { + "start": 29892.28, + "end": 29893.74, + "probability": 0.6661 + }, + { + "start": 29895.26, + "end": 29896.66, + "probability": 0.7272 + }, + { + "start": 29897.64, + "end": 29899.7, + "probability": 0.9951 + }, + { + "start": 29900.1, + "end": 29900.92, + "probability": 0.0686 + }, + { + "start": 29901.22, + "end": 29901.46, + "probability": 0.0273 + }, + { + "start": 29901.46, + "end": 29905.46, + "probability": 0.8142 + }, + { + "start": 29907.14, + "end": 29908.52, + "probability": 0.9612 + }, + { + "start": 29909.1, + "end": 29910.66, + "probability": 0.9814 + }, + { + "start": 29912.5, + "end": 29915.68, + "probability": 0.7235 + }, + { + "start": 29916.74, + "end": 29919.4, + "probability": 0.9175 + }, + { + "start": 29920.52, + "end": 29923.8, + "probability": 0.8497 + }, + { + "start": 29923.82, + "end": 29925.16, + "probability": 0.7192 + }, + { + "start": 29926.14, + "end": 29930.14, + "probability": 0.4389 + }, + { + "start": 29930.72, + "end": 29931.8, + "probability": 0.1613 + }, + { + "start": 29931.8, + "end": 29931.8, + "probability": 0.2088 + }, + { + "start": 29931.8, + "end": 29932.46, + "probability": 0.4615 + }, + { + "start": 29932.5, + "end": 29932.8, + "probability": 0.2853 + }, + { + "start": 29932.82, + "end": 29933.62, + "probability": 0.5117 + }, + { + "start": 29933.92, + "end": 29934.16, + "probability": 0.7311 + }, + { + "start": 29934.28, + "end": 29935.2, + "probability": 0.8802 + }, + { + "start": 29935.28, + "end": 29935.58, + "probability": 0.4063 + }, + { + "start": 29935.58, + "end": 29936.64, + "probability": 0.5992 + }, + { + "start": 29938.78, + "end": 29942.68, + "probability": 0.8723 + }, + { + "start": 29943.96, + "end": 29948.18, + "probability": 0.9837 + }, + { + "start": 29948.26, + "end": 29950.22, + "probability": 0.9055 + }, + { + "start": 29950.48, + "end": 29953.44, + "probability": 0.9511 + }, + { + "start": 29954.32, + "end": 29955.85, + "probability": 0.998 + }, + { + "start": 29958.14, + "end": 29959.48, + "probability": 0.5136 + }, + { + "start": 29959.56, + "end": 29960.0, + "probability": 0.687 + }, + { + "start": 29960.14, + "end": 29960.56, + "probability": 0.7365 + }, + { + "start": 29960.58, + "end": 29960.82, + "probability": 0.8287 + }, + { + "start": 29960.92, + "end": 29961.5, + "probability": 0.6561 + }, + { + "start": 29961.64, + "end": 29962.02, + "probability": 0.6901 + }, + { + "start": 29962.08, + "end": 29962.16, + "probability": 0.716 + }, + { + "start": 29962.16, + "end": 29962.58, + "probability": 0.7246 + }, + { + "start": 29962.74, + "end": 29964.02, + "probability": 0.9113 + }, + { + "start": 29964.2, + "end": 29964.84, + "probability": 0.8368 + }, + { + "start": 29964.94, + "end": 29968.02, + "probability": 0.8178 + }, + { + "start": 29968.1, + "end": 29970.22, + "probability": 0.757 + }, + { + "start": 29970.68, + "end": 29971.62, + "probability": 0.8267 + }, + { + "start": 29971.78, + "end": 29973.1, + "probability": 0.9785 + }, + { + "start": 29974.0, + "end": 29974.9, + "probability": 0.8643 + }, + { + "start": 29976.34, + "end": 29976.92, + "probability": 0.7648 + }, + { + "start": 29977.58, + "end": 29979.92, + "probability": 0.7995 + }, + { + "start": 29981.2, + "end": 29982.44, + "probability": 0.7295 + }, + { + "start": 29983.62, + "end": 29984.66, + "probability": 0.9299 + }, + { + "start": 29985.44, + "end": 29985.82, + "probability": 0.075 + }, + { + "start": 29986.48, + "end": 29986.82, + "probability": 0.3563 + }, + { + "start": 29986.98, + "end": 29988.7, + "probability": 0.9642 + }, + { + "start": 29988.82, + "end": 29989.4, + "probability": 0.5348 + }, + { + "start": 29989.48, + "end": 29990.39, + "probability": 0.9353 + }, + { + "start": 29992.44, + "end": 29994.4, + "probability": 0.8193 + }, + { + "start": 29996.38, + "end": 29997.28, + "probability": 0.7625 + }, + { + "start": 29998.54, + "end": 30003.56, + "probability": 0.9371 + }, + { + "start": 30004.44, + "end": 30004.98, + "probability": 0.735 + }, + { + "start": 30004.98, + "end": 30005.74, + "probability": 0.8447 + }, + { + "start": 30005.76, + "end": 30009.4, + "probability": 0.9862 + }, + { + "start": 30012.8, + "end": 30015.68, + "probability": 0.9991 + }, + { + "start": 30016.7, + "end": 30017.92, + "probability": 0.9392 + }, + { + "start": 30019.14, + "end": 30020.68, + "probability": 0.9976 + }, + { + "start": 30020.78, + "end": 30022.56, + "probability": 0.978 + }, + { + "start": 30023.66, + "end": 30027.9, + "probability": 0.9974 + }, + { + "start": 30029.62, + "end": 30030.38, + "probability": 0.9348 + }, + { + "start": 30031.14, + "end": 30035.02, + "probability": 0.9303 + }, + { + "start": 30036.32, + "end": 30037.84, + "probability": 0.9841 + }, + { + "start": 30038.72, + "end": 30042.42, + "probability": 0.996 + }, + { + "start": 30042.9, + "end": 30046.88, + "probability": 0.8784 + }, + { + "start": 30048.28, + "end": 30050.42, + "probability": 0.501 + }, + { + "start": 30054.14, + "end": 30056.72, + "probability": 0.8582 + }, + { + "start": 30056.72, + "end": 30059.14, + "probability": 0.7571 + }, + { + "start": 30062.26, + "end": 30063.38, + "probability": 0.9688 + }, + { + "start": 30063.4, + "end": 30064.0, + "probability": 0.9131 + }, + { + "start": 30064.16, + "end": 30064.98, + "probability": 0.8605 + }, + { + "start": 30065.44, + "end": 30067.04, + "probability": 0.848 + }, + { + "start": 30067.94, + "end": 30069.72, + "probability": 0.9414 + }, + { + "start": 30069.8, + "end": 30071.88, + "probability": 0.9771 + }, + { + "start": 30072.0, + "end": 30072.9, + "probability": 0.8456 + }, + { + "start": 30073.72, + "end": 30079.16, + "probability": 0.9051 + }, + { + "start": 30081.32, + "end": 30083.6, + "probability": 0.9053 + }, + { + "start": 30084.9, + "end": 30086.56, + "probability": 0.9966 + }, + { + "start": 30087.16, + "end": 30093.0, + "probability": 0.9772 + }, + { + "start": 30093.56, + "end": 30095.6, + "probability": 0.989 + }, + { + "start": 30095.62, + "end": 30096.46, + "probability": 0.8784 + }, + { + "start": 30096.56, + "end": 30097.55, + "probability": 0.6086 + }, + { + "start": 30098.56, + "end": 30100.92, + "probability": 0.7161 + }, + { + "start": 30101.0, + "end": 30102.77, + "probability": 0.8441 + }, + { + "start": 30103.6, + "end": 30108.02, + "probability": 0.9979 + }, + { + "start": 30108.1, + "end": 30109.14, + "probability": 0.9966 + }, + { + "start": 30111.4, + "end": 30114.36, + "probability": 0.9911 + }, + { + "start": 30114.92, + "end": 30115.92, + "probability": 0.9932 + }, + { + "start": 30116.58, + "end": 30117.24, + "probability": 0.0934 + }, + { + "start": 30117.98, + "end": 30118.22, + "probability": 0.2358 + }, + { + "start": 30118.4, + "end": 30121.48, + "probability": 0.9774 + }, + { + "start": 30121.56, + "end": 30122.57, + "probability": 0.9735 + }, + { + "start": 30123.32, + "end": 30125.34, + "probability": 0.3317 + }, + { + "start": 30125.86, + "end": 30126.94, + "probability": 0.8229 + }, + { + "start": 30129.64, + "end": 30136.74, + "probability": 0.792 + }, + { + "start": 30136.74, + "end": 30137.8, + "probability": 0.2546 + }, + { + "start": 30137.88, + "end": 30138.28, + "probability": 0.2013 + }, + { + "start": 30138.48, + "end": 30139.2, + "probability": 0.6414 + }, + { + "start": 30139.26, + "end": 30142.01, + "probability": 0.998 + }, + { + "start": 30143.0, + "end": 30143.96, + "probability": 0.9353 + }, + { + "start": 30145.78, + "end": 30147.32, + "probability": 0.9441 + }, + { + "start": 30147.4, + "end": 30148.1, + "probability": 0.9834 + }, + { + "start": 30148.54, + "end": 30149.44, + "probability": 0.5038 + }, + { + "start": 30149.44, + "end": 30150.55, + "probability": 0.802 + }, + { + "start": 30152.08, + "end": 30153.3, + "probability": 0.8014 + }, + { + "start": 30153.78, + "end": 30156.6, + "probability": 0.5618 + }, + { + "start": 30156.6, + "end": 30156.86, + "probability": 0.1672 + }, + { + "start": 30156.94, + "end": 30160.24, + "probability": 0.5041 + }, + { + "start": 30160.24, + "end": 30163.54, + "probability": 0.5045 + }, + { + "start": 30163.64, + "end": 30163.64, + "probability": 0.4477 + }, + { + "start": 30163.64, + "end": 30165.0, + "probability": 0.899 + }, + { + "start": 30165.9, + "end": 30170.58, + "probability": 0.9897 + }, + { + "start": 30173.14, + "end": 30174.8, + "probability": 0.9908 + }, + { + "start": 30174.86, + "end": 30177.3, + "probability": 0.9762 + }, + { + "start": 30177.4, + "end": 30182.46, + "probability": 0.9805 + }, + { + "start": 30183.8, + "end": 30190.66, + "probability": 0.9688 + }, + { + "start": 30190.82, + "end": 30191.47, + "probability": 0.9196 + }, + { + "start": 30193.3, + "end": 30196.12, + "probability": 0.9979 + }, + { + "start": 30199.16, + "end": 30206.84, + "probability": 0.9937 + }, + { + "start": 30209.02, + "end": 30212.78, + "probability": 0.9201 + }, + { + "start": 30212.94, + "end": 30213.92, + "probability": 0.9196 + }, + { + "start": 30214.7, + "end": 30217.66, + "probability": 0.9424 + }, + { + "start": 30219.5, + "end": 30221.12, + "probability": 0.9937 + }, + { + "start": 30221.42, + "end": 30225.38, + "probability": 0.9729 + }, + { + "start": 30226.44, + "end": 30229.48, + "probability": 0.522 + }, + { + "start": 30230.34, + "end": 30237.3, + "probability": 0.9902 + }, + { + "start": 30238.82, + "end": 30244.34, + "probability": 0.9793 + }, + { + "start": 30244.68, + "end": 30245.92, + "probability": 0.6905 + }, + { + "start": 30246.16, + "end": 30246.16, + "probability": 0.2598 + }, + { + "start": 30246.16, + "end": 30248.1, + "probability": 0.7754 + }, + { + "start": 30248.12, + "end": 30249.54, + "probability": 0.5477 + }, + { + "start": 30251.62, + "end": 30253.14, + "probability": 0.6493 + }, + { + "start": 30254.18, + "end": 30255.86, + "probability": 0.1768 + }, + { + "start": 30257.16, + "end": 30258.92, + "probability": 0.8774 + }, + { + "start": 30260.06, + "end": 30260.72, + "probability": 0.8402 + }, + { + "start": 30261.86, + "end": 30265.4, + "probability": 0.9093 + }, + { + "start": 30266.14, + "end": 30266.52, + "probability": 0.3121 + }, + { + "start": 30266.72, + "end": 30266.72, + "probability": 0.4819 + }, + { + "start": 30266.72, + "end": 30272.24, + "probability": 0.7536 + }, + { + "start": 30272.24, + "end": 30274.12, + "probability": 0.9872 + }, + { + "start": 30274.24, + "end": 30274.7, + "probability": 0.7999 + }, + { + "start": 30274.72, + "end": 30275.34, + "probability": 0.5847 + }, + { + "start": 30276.06, + "end": 30282.84, + "probability": 0.9987 + }, + { + "start": 30284.28, + "end": 30286.94, + "probability": 0.998 + }, + { + "start": 30288.68, + "end": 30293.02, + "probability": 0.8475 + }, + { + "start": 30293.36, + "end": 30296.58, + "probability": 0.9957 + }, + { + "start": 30300.06, + "end": 30301.37, + "probability": 0.9839 + }, + { + "start": 30302.1, + "end": 30303.92, + "probability": 0.7832 + }, + { + "start": 30304.66, + "end": 30305.88, + "probability": 0.9364 + }, + { + "start": 30306.76, + "end": 30308.94, + "probability": 0.9568 + }, + { + "start": 30309.1, + "end": 30311.58, + "probability": 0.9721 + }, + { + "start": 30311.78, + "end": 30314.54, + "probability": 0.9507 + }, + { + "start": 30314.62, + "end": 30315.2, + "probability": 0.7294 + }, + { + "start": 30315.5, + "end": 30316.34, + "probability": 0.6267 + }, + { + "start": 30317.34, + "end": 30321.84, + "probability": 0.8828 + }, + { + "start": 30321.98, + "end": 30324.72, + "probability": 0.6478 + }, + { + "start": 30324.86, + "end": 30326.54, + "probability": 0.6681 + }, + { + "start": 30327.04, + "end": 30329.66, + "probability": 0.9875 + }, + { + "start": 30329.66, + "end": 30336.42, + "probability": 0.8181 + }, + { + "start": 30336.84, + "end": 30342.44, + "probability": 0.9841 + }, + { + "start": 30342.44, + "end": 30347.38, + "probability": 0.9925 + }, + { + "start": 30348.3, + "end": 30349.47, + "probability": 0.9648 + }, + { + "start": 30351.12, + "end": 30352.0, + "probability": 0.8638 + }, + { + "start": 30352.76, + "end": 30353.81, + "probability": 0.9568 + }, + { + "start": 30355.24, + "end": 30359.26, + "probability": 0.9966 + }, + { + "start": 30360.56, + "end": 30361.26, + "probability": 0.8749 + }, + { + "start": 30361.32, + "end": 30362.72, + "probability": 0.9675 + }, + { + "start": 30362.76, + "end": 30363.78, + "probability": 0.6514 + }, + { + "start": 30363.8, + "end": 30365.54, + "probability": 0.967 + }, + { + "start": 30367.08, + "end": 30368.86, + "probability": 0.9087 + }, + { + "start": 30371.48, + "end": 30372.06, + "probability": 0.9698 + }, + { + "start": 30374.42, + "end": 30377.64, + "probability": 0.9014 + }, + { + "start": 30378.38, + "end": 30379.28, + "probability": 0.9939 + }, + { + "start": 30380.16, + "end": 30381.34, + "probability": 0.9246 + }, + { + "start": 30381.92, + "end": 30383.88, + "probability": 0.975 + }, + { + "start": 30385.12, + "end": 30386.82, + "probability": 0.9858 + }, + { + "start": 30386.88, + "end": 30389.14, + "probability": 0.9603 + }, + { + "start": 30389.54, + "end": 30391.4, + "probability": 0.9563 + }, + { + "start": 30391.56, + "end": 30392.49, + "probability": 0.272 + }, + { + "start": 30393.5, + "end": 30395.8, + "probability": 0.5812 + }, + { + "start": 30395.98, + "end": 30399.36, + "probability": 0.9176 + }, + { + "start": 30399.5, + "end": 30402.92, + "probability": 0.9315 + }, + { + "start": 30403.88, + "end": 30404.8, + "probability": 0.9274 + }, + { + "start": 30406.52, + "end": 30407.66, + "probability": 0.6356 + }, + { + "start": 30408.08, + "end": 30411.48, + "probability": 0.7821 + }, + { + "start": 30412.9, + "end": 30414.84, + "probability": 0.9351 + }, + { + "start": 30417.64, + "end": 30421.98, + "probability": 0.9326 + }, + { + "start": 30422.2, + "end": 30424.92, + "probability": 0.9557 + }, + { + "start": 30425.64, + "end": 30427.48, + "probability": 0.953 + }, + { + "start": 30429.0, + "end": 30431.38, + "probability": 0.9905 + }, + { + "start": 30432.2, + "end": 30435.28, + "probability": 0.4559 + }, + { + "start": 30435.28, + "end": 30436.64, + "probability": 0.4259 + }, + { + "start": 30436.82, + "end": 30441.12, + "probability": 0.873 + }, + { + "start": 30441.3, + "end": 30442.86, + "probability": 0.6461 + }, + { + "start": 30443.57, + "end": 30448.08, + "probability": 0.9623 + }, + { + "start": 30452.32, + "end": 30454.0, + "probability": 0.9854 + }, + { + "start": 30456.28, + "end": 30458.26, + "probability": 0.9951 + }, + { + "start": 30458.36, + "end": 30458.78, + "probability": 0.723 + }, + { + "start": 30458.82, + "end": 30460.98, + "probability": 0.8965 + }, + { + "start": 30462.6, + "end": 30467.34, + "probability": 0.999 + }, + { + "start": 30467.44, + "end": 30468.24, + "probability": 0.9796 + }, + { + "start": 30469.78, + "end": 30472.2, + "probability": 0.9918 + }, + { + "start": 30474.18, + "end": 30476.82, + "probability": 0.999 + }, + { + "start": 30478.1, + "end": 30480.34, + "probability": 0.9881 + }, + { + "start": 30482.42, + "end": 30483.74, + "probability": 0.7754 + }, + { + "start": 30483.8, + "end": 30483.98, + "probability": 0.6513 + }, + { + "start": 30484.28, + "end": 30485.52, + "probability": 0.7153 + }, + { + "start": 30485.52, + "end": 30486.5, + "probability": 0.9016 + }, + { + "start": 30489.8, + "end": 30493.08, + "probability": 0.2756 + }, + { + "start": 30493.16, + "end": 30493.23, + "probability": 0.0512 + }, + { + "start": 30493.78, + "end": 30494.54, + "probability": 0.7339 + }, + { + "start": 30495.2, + "end": 30499.24, + "probability": 0.812 + }, + { + "start": 30499.4, + "end": 30499.9, + "probability": 0.2167 + }, + { + "start": 30499.9, + "end": 30500.64, + "probability": 0.5616 + }, + { + "start": 30500.68, + "end": 30501.8, + "probability": 0.7065 + }, + { + "start": 30502.22, + "end": 30506.31, + "probability": 0.3263 + }, + { + "start": 30509.12, + "end": 30509.74, + "probability": 0.072 + }, + { + "start": 30513.06, + "end": 30513.9, + "probability": 0.0486 + }, + { + "start": 30514.66, + "end": 30516.42, + "probability": 0.0499 + }, + { + "start": 30516.74, + "end": 30517.76, + "probability": 0.0552 + }, + { + "start": 30517.76, + "end": 30518.52, + "probability": 0.0656 + }, + { + "start": 30518.76, + "end": 30521.52, + "probability": 0.8184 + }, + { + "start": 30522.38, + "end": 30524.34, + "probability": 0.6481 + }, + { + "start": 30525.92, + "end": 30526.36, + "probability": 0.0306 + }, + { + "start": 30526.58, + "end": 30529.42, + "probability": 0.771 + }, + { + "start": 30529.44, + "end": 30532.14, + "probability": 0.6369 + }, + { + "start": 30532.14, + "end": 30532.93, + "probability": 0.9722 + }, + { + "start": 30534.4, + "end": 30536.5, + "probability": 0.9487 + }, + { + "start": 30540.06, + "end": 30542.62, + "probability": 0.9827 + }, + { + "start": 30543.1, + "end": 30545.94, + "probability": 0.7543 + }, + { + "start": 30547.5, + "end": 30550.32, + "probability": 0.9968 + }, + { + "start": 30552.28, + "end": 30554.0, + "probability": 0.9683 + }, + { + "start": 30554.78, + "end": 30555.68, + "probability": 0.9183 + }, + { + "start": 30557.78, + "end": 30559.14, + "probability": 0.9092 + }, + { + "start": 30559.16, + "end": 30561.56, + "probability": 0.7141 + }, + { + "start": 30561.62, + "end": 30565.46, + "probability": 0.7407 + }, + { + "start": 30565.7, + "end": 30566.49, + "probability": 0.3245 + }, + { + "start": 30566.88, + "end": 30567.4, + "probability": 0.7601 + }, + { + "start": 30567.74, + "end": 30574.88, + "probability": 0.9889 + }, + { + "start": 30574.94, + "end": 30576.52, + "probability": 0.5194 + }, + { + "start": 30576.6, + "end": 30577.54, + "probability": 0.9181 + }, + { + "start": 30579.52, + "end": 30583.44, + "probability": 0.9912 + }, + { + "start": 30583.56, + "end": 30584.14, + "probability": 0.8599 + }, + { + "start": 30584.26, + "end": 30585.44, + "probability": 0.9854 + }, + { + "start": 30588.18, + "end": 30589.5, + "probability": 0.7311 + }, + { + "start": 30589.58, + "end": 30590.06, + "probability": 0.5666 + }, + { + "start": 30590.24, + "end": 30593.6, + "probability": 0.6792 + }, + { + "start": 30595.22, + "end": 30596.66, + "probability": 0.9272 + }, + { + "start": 30598.0, + "end": 30599.44, + "probability": 0.9378 + }, + { + "start": 30599.94, + "end": 30604.34, + "probability": 0.8293 + }, + { + "start": 30604.46, + "end": 30605.0, + "probability": 0.414 + }, + { + "start": 30605.58, + "end": 30606.38, + "probability": 0.3368 + }, + { + "start": 30607.6, + "end": 30611.1, + "probability": 0.9907 + }, + { + "start": 30611.1, + "end": 30615.2, + "probability": 0.9958 + }, + { + "start": 30618.52, + "end": 30620.3, + "probability": 0.9936 + }, + { + "start": 30622.16, + "end": 30624.14, + "probability": 0.9561 + }, + { + "start": 30624.88, + "end": 30625.82, + "probability": 0.8001 + }, + { + "start": 30625.86, + "end": 30627.96, + "probability": 0.9821 + }, + { + "start": 30628.02, + "end": 30630.44, + "probability": 0.9932 + }, + { + "start": 30630.44, + "end": 30632.62, + "probability": 0.9845 + }, + { + "start": 30633.68, + "end": 30636.28, + "probability": 0.9903 + }, + { + "start": 30637.84, + "end": 30640.76, + "probability": 0.1335 + }, + { + "start": 30641.86, + "end": 30646.02, + "probability": 0.7944 + }, + { + "start": 30646.38, + "end": 30648.1, + "probability": 0.6644 + }, + { + "start": 30649.16, + "end": 30650.82, + "probability": 0.0488 + }, + { + "start": 30650.94, + "end": 30654.18, + "probability": 0.938 + }, + { + "start": 30654.74, + "end": 30656.38, + "probability": 0.9979 + }, + { + "start": 30657.82, + "end": 30659.06, + "probability": 0.9369 + }, + { + "start": 30659.78, + "end": 30663.4, + "probability": 0.974 + }, + { + "start": 30663.48, + "end": 30664.86, + "probability": 0.9595 + }, + { + "start": 30665.08, + "end": 30666.44, + "probability": 0.6505 + }, + { + "start": 30666.6, + "end": 30667.72, + "probability": 0.9227 + }, + { + "start": 30674.62, + "end": 30676.26, + "probability": 0.9751 + }, + { + "start": 30677.34, + "end": 30679.56, + "probability": 0.8715 + }, + { + "start": 30679.72, + "end": 30681.98, + "probability": 0.792 + }, + { + "start": 30683.12, + "end": 30685.12, + "probability": 0.861 + }, + { + "start": 30685.26, + "end": 30686.4, + "probability": 0.9395 + }, + { + "start": 30687.66, + "end": 30690.02, + "probability": 0.8862 + }, + { + "start": 30690.92, + "end": 30695.78, + "probability": 0.8707 + }, + { + "start": 30696.84, + "end": 30698.72, + "probability": 0.9104 + }, + { + "start": 30699.2, + "end": 30702.2, + "probability": 0.4774 + }, + { + "start": 30702.2, + "end": 30702.5, + "probability": 0.6517 + }, + { + "start": 30702.68, + "end": 30705.68, + "probability": 0.8511 + }, + { + "start": 30705.84, + "end": 30706.24, + "probability": 0.5624 + }, + { + "start": 30707.0, + "end": 30709.12, + "probability": 0.7153 + }, + { + "start": 30709.34, + "end": 30709.84, + "probability": 0.9372 + }, + { + "start": 30710.3, + "end": 30712.62, + "probability": 0.907 + }, + { + "start": 30714.04, + "end": 30723.88, + "probability": 0.7706 + }, + { + "start": 30723.96, + "end": 30726.96, + "probability": 0.9973 + }, + { + "start": 30727.04, + "end": 30730.94, + "probability": 0.7787 + }, + { + "start": 30731.4, + "end": 30732.72, + "probability": 0.8521 + }, + { + "start": 30733.54, + "end": 30734.6, + "probability": 0.9655 + }, + { + "start": 30734.72, + "end": 30737.62, + "probability": 0.7988 + }, + { + "start": 30740.64, + "end": 30741.52, + "probability": 0.4861 + }, + { + "start": 30741.86, + "end": 30742.22, + "probability": 0.7308 + }, + { + "start": 30742.34, + "end": 30743.38, + "probability": 0.9046 + }, + { + "start": 30743.44, + "end": 30746.84, + "probability": 0.8237 + }, + { + "start": 30746.96, + "end": 30747.8, + "probability": 0.6713 + }, + { + "start": 30749.82, + "end": 30752.9, + "probability": 0.9918 + }, + { + "start": 30754.45, + "end": 30759.22, + "probability": 0.5809 + }, + { + "start": 30760.22, + "end": 30760.84, + "probability": 0.0892 + }, + { + "start": 30762.62, + "end": 30765.4, + "probability": 0.6165 + }, + { + "start": 30766.16, + "end": 30767.84, + "probability": 0.6957 + }, + { + "start": 30771.54, + "end": 30775.28, + "probability": 0.9489 + }, + { + "start": 30777.18, + "end": 30779.48, + "probability": 0.9973 + }, + { + "start": 30781.86, + "end": 30785.08, + "probability": 0.8792 + }, + { + "start": 30787.28, + "end": 30788.28, + "probability": 0.9453 + }, + { + "start": 30790.26, + "end": 30791.24, + "probability": 0.8474 + }, + { + "start": 30792.42, + "end": 30793.94, + "probability": 0.8887 + }, + { + "start": 30794.28, + "end": 30796.14, + "probability": 0.9989 + }, + { + "start": 30797.38, + "end": 30802.48, + "probability": 0.9893 + }, + { + "start": 30802.48, + "end": 30804.58, + "probability": 0.9996 + }, + { + "start": 30807.0, + "end": 30808.34, + "probability": 0.9346 + }, + { + "start": 30809.42, + "end": 30813.16, + "probability": 0.7726 + }, + { + "start": 30813.82, + "end": 30816.08, + "probability": 0.996 + }, + { + "start": 30817.02, + "end": 30818.06, + "probability": 0.6922 + }, + { + "start": 30819.72, + "end": 30822.38, + "probability": 0.8823 + }, + { + "start": 30822.9, + "end": 30825.38, + "probability": 0.9096 + }, + { + "start": 30825.44, + "end": 30827.18, + "probability": 0.6573 + }, + { + "start": 30827.64, + "end": 30829.6, + "probability": 0.4495 + }, + { + "start": 30829.62, + "end": 30835.66, + "probability": 0.9597 + }, + { + "start": 30837.6, + "end": 30839.58, + "probability": 0.97 + }, + { + "start": 30839.58, + "end": 30840.36, + "probability": 0.7255 + }, + { + "start": 30841.16, + "end": 30846.1, + "probability": 0.9744 + }, + { + "start": 30849.02, + "end": 30852.56, + "probability": 0.9984 + }, + { + "start": 30855.04, + "end": 30855.47, + "probability": 0.8691 + }, + { + "start": 30857.36, + "end": 30858.62, + "probability": 0.9917 + }, + { + "start": 30859.84, + "end": 30862.12, + "probability": 0.9284 + }, + { + "start": 30863.58, + "end": 30865.88, + "probability": 0.831 + }, + { + "start": 30865.88, + "end": 30868.76, + "probability": 0.9827 + }, + { + "start": 30869.76, + "end": 30875.26, + "probability": 0.9948 + }, + { + "start": 30875.46, + "end": 30877.24, + "probability": 0.9068 + }, + { + "start": 30880.14, + "end": 30881.84, + "probability": 0.8948 + }, + { + "start": 30883.06, + "end": 30885.8, + "probability": 0.9116 + }, + { + "start": 30886.48, + "end": 30887.58, + "probability": 0.8976 + }, + { + "start": 30888.1, + "end": 30890.54, + "probability": 0.9954 + }, + { + "start": 30890.54, + "end": 30894.1, + "probability": 0.9975 + }, + { + "start": 30894.74, + "end": 30896.42, + "probability": 0.7866 + }, + { + "start": 30897.52, + "end": 30898.9, + "probability": 0.6989 + }, + { + "start": 30900.5, + "end": 30901.56, + "probability": 0.7656 + }, + { + "start": 30901.64, + "end": 30902.2, + "probability": 0.6173 + }, + { + "start": 30902.26, + "end": 30904.02, + "probability": 0.9628 + }, + { + "start": 30904.68, + "end": 30905.62, + "probability": 0.7996 + }, + { + "start": 30907.54, + "end": 30908.86, + "probability": 0.8584 + }, + { + "start": 30909.14, + "end": 30911.02, + "probability": 0.8517 + }, + { + "start": 30911.1, + "end": 30912.34, + "probability": 0.7867 + }, + { + "start": 30912.68, + "end": 30914.48, + "probability": 0.9954 + }, + { + "start": 30915.14, + "end": 30915.94, + "probability": 0.9407 + }, + { + "start": 30919.3, + "end": 30919.66, + "probability": 0.8883 + }, + { + "start": 30920.86, + "end": 30920.98, + "probability": 0.9772 + }, + { + "start": 30922.46, + "end": 30924.4, + "probability": 0.7682 + }, + { + "start": 30924.5, + "end": 30924.7, + "probability": 0.1897 + }, + { + "start": 30924.78, + "end": 30925.72, + "probability": 0.7795 + }, + { + "start": 30929.06, + "end": 30931.8, + "probability": 0.9648 + }, + { + "start": 30932.46, + "end": 30936.62, + "probability": 0.7153 + }, + { + "start": 30937.84, + "end": 30940.8, + "probability": 0.991 + }, + { + "start": 30942.74, + "end": 30944.21, + "probability": 0.7538 + }, + { + "start": 30946.98, + "end": 30948.26, + "probability": 0.9034 + }, + { + "start": 30949.62, + "end": 30956.88, + "probability": 0.9599 + }, + { + "start": 30956.88, + "end": 30959.74, + "probability": 0.6715 + }, + { + "start": 30961.58, + "end": 30962.8, + "probability": 0.3258 + }, + { + "start": 30964.82, + "end": 30966.62, + "probability": 0.9982 + }, + { + "start": 30968.78, + "end": 30971.9, + "probability": 0.8849 + }, + { + "start": 30972.56, + "end": 30974.68, + "probability": 0.7694 + }, + { + "start": 30975.42, + "end": 30976.56, + "probability": 0.9749 + }, + { + "start": 30976.94, + "end": 30978.04, + "probability": 0.9182 + }, + { + "start": 30978.5, + "end": 30979.38, + "probability": 0.9829 + }, + { + "start": 30979.48, + "end": 30980.36, + "probability": 0.9921 + }, + { + "start": 30980.4, + "end": 30981.34, + "probability": 0.9844 + }, + { + "start": 30981.46, + "end": 30982.04, + "probability": 0.9807 + }, + { + "start": 30982.36, + "end": 30982.94, + "probability": 0.5004 + }, + { + "start": 30983.24, + "end": 30983.8, + "probability": 0.5584 + }, + { + "start": 30984.62, + "end": 30987.4, + "probability": 0.9974 + }, + { + "start": 30989.92, + "end": 30991.32, + "probability": 0.998 + }, + { + "start": 30992.74, + "end": 30993.94, + "probability": 0.8679 + }, + { + "start": 30995.8, + "end": 30997.38, + "probability": 0.7155 + }, + { + "start": 30999.0, + "end": 31000.6, + "probability": 0.9963 + }, + { + "start": 31002.7, + "end": 31007.54, + "probability": 0.9483 + }, + { + "start": 31009.94, + "end": 31014.74, + "probability": 0.9893 + }, + { + "start": 31016.38, + "end": 31017.5, + "probability": 0.9319 + }, + { + "start": 31017.64, + "end": 31022.68, + "probability": 0.9978 + }, + { + "start": 31023.7, + "end": 31026.1, + "probability": 0.9854 + }, + { + "start": 31026.54, + "end": 31028.26, + "probability": 0.9948 + }, + { + "start": 31028.38, + "end": 31029.62, + "probability": 0.9988 + }, + { + "start": 31031.1, + "end": 31032.5, + "probability": 0.9328 + }, + { + "start": 31035.42, + "end": 31039.72, + "probability": 0.9955 + }, + { + "start": 31040.34, + "end": 31041.56, + "probability": 0.9985 + }, + { + "start": 31041.62, + "end": 31047.02, + "probability": 0.9954 + }, + { + "start": 31047.62, + "end": 31047.62, + "probability": 0.512 + }, + { + "start": 31047.62, + "end": 31050.96, + "probability": 0.9737 + }, + { + "start": 31051.56, + "end": 31056.23, + "probability": 0.8498 + }, + { + "start": 31056.66, + "end": 31057.58, + "probability": 0.979 + }, + { + "start": 31058.18, + "end": 31060.44, + "probability": 0.8857 + }, + { + "start": 31061.14, + "end": 31062.74, + "probability": 0.9835 + }, + { + "start": 31062.84, + "end": 31063.7, + "probability": 0.7543 + }, + { + "start": 31063.78, + "end": 31064.12, + "probability": 0.4639 + }, + { + "start": 31064.36, + "end": 31065.24, + "probability": 0.9592 + }, + { + "start": 31066.86, + "end": 31068.26, + "probability": 0.9688 + }, + { + "start": 31069.74, + "end": 31069.96, + "probability": 0.2739 + }, + { + "start": 31071.4, + "end": 31073.62, + "probability": 0.9869 + }, + { + "start": 31075.3, + "end": 31076.64, + "probability": 0.8134 + }, + { + "start": 31077.24, + "end": 31079.2, + "probability": 0.4827 + }, + { + "start": 31079.3, + "end": 31083.12, + "probability": 0.759 + }, + { + "start": 31083.26, + "end": 31084.96, + "probability": 0.981 + }, + { + "start": 31085.14, + "end": 31086.22, + "probability": 0.7173 + }, + { + "start": 31086.48, + "end": 31088.0, + "probability": 0.8771 + }, + { + "start": 31088.14, + "end": 31088.74, + "probability": 0.636 + }, + { + "start": 31089.6, + "end": 31091.04, + "probability": 0.8823 + }, + { + "start": 31091.12, + "end": 31092.68, + "probability": 0.9098 + }, + { + "start": 31092.74, + "end": 31093.76, + "probability": 0.5137 + }, + { + "start": 31094.14, + "end": 31094.14, + "probability": 0.6128 + }, + { + "start": 31094.14, + "end": 31094.59, + "probability": 0.7213 + }, + { + "start": 31098.08, + "end": 31099.52, + "probability": 0.8626 + }, + { + "start": 31099.58, + "end": 31102.3, + "probability": 0.7906 + }, + { + "start": 31103.5, + "end": 31104.04, + "probability": 0.6524 + }, + { + "start": 31104.06, + "end": 31106.16, + "probability": 0.7781 + }, + { + "start": 31107.0, + "end": 31108.14, + "probability": 0.6456 + }, + { + "start": 31108.28, + "end": 31110.9, + "probability": 0.3087 + }, + { + "start": 31111.14, + "end": 31115.02, + "probability": 0.3133 + }, + { + "start": 31118.06, + "end": 31118.86, + "probability": 0.3231 + }, + { + "start": 31119.54, + "end": 31121.56, + "probability": 0.4403 + }, + { + "start": 31121.64, + "end": 31122.48, + "probability": 0.5597 + }, + { + "start": 31123.82, + "end": 31124.88, + "probability": 0.545 + }, + { + "start": 31125.36, + "end": 31127.54, + "probability": 0.6269 + }, + { + "start": 31127.54, + "end": 31132.96, + "probability": 0.8172 + }, + { + "start": 31133.48, + "end": 31136.68, + "probability": 0.8017 + }, + { + "start": 31137.12, + "end": 31138.42, + "probability": 0.7454 + }, + { + "start": 31138.42, + "end": 31139.38, + "probability": 0.5076 + }, + { + "start": 31139.42, + "end": 31141.3, + "probability": 0.7971 + }, + { + "start": 31141.4, + "end": 31143.04, + "probability": 0.9448 + }, + { + "start": 31143.1, + "end": 31146.51, + "probability": 0.9347 + }, + { + "start": 31147.68, + "end": 31149.28, + "probability": 0.1879 + }, + { + "start": 31149.6, + "end": 31150.76, + "probability": 0.5586 + }, + { + "start": 31150.86, + "end": 31151.82, + "probability": 0.7363 + }, + { + "start": 31151.86, + "end": 31152.26, + "probability": 0.8417 + }, + { + "start": 31153.5, + "end": 31157.08, + "probability": 0.69 + }, + { + "start": 31178.84, + "end": 31179.2, + "probability": 0.2505 + }, + { + "start": 31179.22, + "end": 31180.06, + "probability": 0.7516 + }, + { + "start": 31180.1, + "end": 31180.56, + "probability": 0.6348 + }, + { + "start": 31180.62, + "end": 31181.48, + "probability": 0.9068 + }, + { + "start": 31181.58, + "end": 31183.04, + "probability": 0.8583 + }, + { + "start": 31183.6, + "end": 31185.48, + "probability": 0.7366 + }, + { + "start": 31186.4, + "end": 31190.28, + "probability": 0.3787 + }, + { + "start": 31190.46, + "end": 31192.56, + "probability": 0.2201 + }, + { + "start": 31193.04, + "end": 31196.26, + "probability": 0.6843 + }, + { + "start": 31196.94, + "end": 31199.02, + "probability": 0.767 + }, + { + "start": 31199.24, + "end": 31201.28, + "probability": 0.9878 + }, + { + "start": 31201.28, + "end": 31204.46, + "probability": 0.9718 + }, + { + "start": 31205.82, + "end": 31206.82, + "probability": 0.4673 + }, + { + "start": 31208.22, + "end": 31208.78, + "probability": 0.6468 + }, + { + "start": 31208.92, + "end": 31209.86, + "probability": 0.6024 + }, + { + "start": 31209.88, + "end": 31211.04, + "probability": 0.8529 + }, + { + "start": 31211.14, + "end": 31212.34, + "probability": 0.9087 + }, + { + "start": 31212.38, + "end": 31214.72, + "probability": 0.7505 + }, + { + "start": 31214.82, + "end": 31215.7, + "probability": 0.9852 + }, + { + "start": 31215.82, + "end": 31216.66, + "probability": 0.9757 + }, + { + "start": 31216.74, + "end": 31218.3, + "probability": 0.815 + }, + { + "start": 31218.78, + "end": 31220.22, + "probability": 0.6314 + }, + { + "start": 31220.34, + "end": 31220.66, + "probability": 0.6424 + }, + { + "start": 31221.52, + "end": 31222.64, + "probability": 0.9509 + }, + { + "start": 31222.74, + "end": 31223.74, + "probability": 0.94 + }, + { + "start": 31223.82, + "end": 31225.2, + "probability": 0.8314 + }, + { + "start": 31225.24, + "end": 31226.58, + "probability": 0.8654 + }, + { + "start": 31229.62, + "end": 31230.14, + "probability": 0.59 + }, + { + "start": 31230.14, + "end": 31230.62, + "probability": 0.2911 + }, + { + "start": 31230.9, + "end": 31231.24, + "probability": 0.7277 + }, + { + "start": 31231.24, + "end": 31231.62, + "probability": 0.5204 + }, + { + "start": 31232.12, + "end": 31233.88, + "probability": 0.9479 + }, + { + "start": 31233.98, + "end": 31235.02, + "probability": 0.8953 + }, + { + "start": 31235.12, + "end": 31236.86, + "probability": 0.9534 + }, + { + "start": 31237.04, + "end": 31237.66, + "probability": 0.6586 + }, + { + "start": 31237.76, + "end": 31238.46, + "probability": 0.7475 + }, + { + "start": 31238.48, + "end": 31239.4, + "probability": 0.7126 + }, + { + "start": 31239.48, + "end": 31241.24, + "probability": 0.9185 + }, + { + "start": 31242.1, + "end": 31244.5, + "probability": 0.9731 + }, + { + "start": 31244.6, + "end": 31245.96, + "probability": 0.9246 + }, + { + "start": 31246.04, + "end": 31247.22, + "probability": 0.7939 + }, + { + "start": 31247.22, + "end": 31248.04, + "probability": 0.4883 + }, + { + "start": 31248.38, + "end": 31249.36, + "probability": 0.7444 + }, + { + "start": 31249.42, + "end": 31250.52, + "probability": 0.8342 + }, + { + "start": 31250.56, + "end": 31251.74, + "probability": 0.7971 + }, + { + "start": 31251.88, + "end": 31253.68, + "probability": 0.8669 + }, + { + "start": 31253.84, + "end": 31255.54, + "probability": 0.981 + }, + { + "start": 31255.6, + "end": 31257.02, + "probability": 0.9443 + }, + { + "start": 31257.04, + "end": 31257.74, + "probability": 0.8093 + }, + { + "start": 31258.08, + "end": 31259.6, + "probability": 0.8947 + }, + { + "start": 31259.7, + "end": 31260.84, + "probability": 0.6944 + }, + { + "start": 31260.92, + "end": 31262.68, + "probability": 0.8757 + }, + { + "start": 31262.76, + "end": 31264.29, + "probability": 0.9572 + }, + { + "start": 31264.62, + "end": 31265.4, + "probability": 0.981 + }, + { + "start": 31265.9, + "end": 31267.46, + "probability": 0.9669 + }, + { + "start": 31267.82, + "end": 31269.8, + "probability": 0.6669 + }, + { + "start": 31269.82, + "end": 31270.56, + "probability": 0.4564 + }, + { + "start": 31272.52, + "end": 31274.82, + "probability": 0.0072 + }, + { + "start": 31274.9, + "end": 31278.14, + "probability": 0.1905 + }, + { + "start": 31279.44, + "end": 31280.12, + "probability": 0.7368 + }, + { + "start": 31280.2, + "end": 31281.48, + "probability": 0.6993 + }, + { + "start": 31281.48, + "end": 31281.88, + "probability": 0.5448 + }, + { + "start": 31281.92, + "end": 31284.82, + "probability": 0.8578 + }, + { + "start": 31284.86, + "end": 31287.7, + "probability": 0.7363 + }, + { + "start": 31287.76, + "end": 31289.48, + "probability": 0.7241 + }, + { + "start": 31289.54, + "end": 31290.36, + "probability": 0.3735 + }, + { + "start": 31291.06, + "end": 31292.06, + "probability": 0.7858 + }, + { + "start": 31292.14, + "end": 31292.86, + "probability": 0.7398 + }, + { + "start": 31292.9, + "end": 31294.38, + "probability": 0.9353 + }, + { + "start": 31294.48, + "end": 31295.24, + "probability": 0.9723 + }, + { + "start": 31295.36, + "end": 31296.84, + "probability": 0.7313 + }, + { + "start": 31297.18, + "end": 31298.08, + "probability": 0.7943 + }, + { + "start": 31298.16, + "end": 31299.6, + "probability": 0.966 + }, + { + "start": 31299.64, + "end": 31300.78, + "probability": 0.9368 + }, + { + "start": 31300.9, + "end": 31302.58, + "probability": 0.9149 + }, + { + "start": 31302.88, + "end": 31303.52, + "probability": 0.8766 + }, + { + "start": 31303.66, + "end": 31304.22, + "probability": 0.9063 + }, + { + "start": 31304.28, + "end": 31306.1, + "probability": 0.9388 + }, + { + "start": 31306.3, + "end": 31307.66, + "probability": 0.8537 + }, + { + "start": 31307.88, + "end": 31308.62, + "probability": 0.7701 + }, + { + "start": 31308.66, + "end": 31310.0, + "probability": 0.9897 + }, + { + "start": 31310.16, + "end": 31310.48, + "probability": 0.4667 + }, + { + "start": 31310.64, + "end": 31312.9, + "probability": 0.7525 + }, + { + "start": 31313.04, + "end": 31314.68, + "probability": 0.9359 + }, + { + "start": 31314.88, + "end": 31318.72, + "probability": 0.9805 + }, + { + "start": 31318.9, + "end": 31320.18, + "probability": 0.9402 + }, + { + "start": 31320.24, + "end": 31320.84, + "probability": 0.7763 + }, + { + "start": 31321.0, + "end": 31321.74, + "probability": 0.9055 + }, + { + "start": 31321.8, + "end": 31323.28, + "probability": 0.9685 + }, + { + "start": 31323.48, + "end": 31324.38, + "probability": 0.8505 + }, + { + "start": 31324.44, + "end": 31326.22, + "probability": 0.8822 + }, + { + "start": 31326.94, + "end": 31331.66, + "probability": 0.7795 + }, + { + "start": 31331.72, + "end": 31334.18, + "probability": 0.8613 + }, + { + "start": 31334.28, + "end": 31336.04, + "probability": 0.7322 + }, + { + "start": 31336.5, + "end": 31337.54, + "probability": 0.9735 + }, + { + "start": 31337.58, + "end": 31338.5, + "probability": 0.939 + }, + { + "start": 31338.6, + "end": 31340.32, + "probability": 0.9349 + }, + { + "start": 31340.88, + "end": 31343.0, + "probability": 0.9705 + }, + { + "start": 31343.06, + "end": 31344.86, + "probability": 0.7534 + }, + { + "start": 31345.02, + "end": 31346.04, + "probability": 0.2959 + }, + { + "start": 31346.04, + "end": 31354.24, + "probability": 0.7885 + }, + { + "start": 31354.64, + "end": 31356.38, + "probability": 0.9833 + }, + { + "start": 31356.52, + "end": 31357.54, + "probability": 0.658 + }, + { + "start": 31357.6, + "end": 31358.3, + "probability": 0.7467 + }, + { + "start": 31358.36, + "end": 31358.92, + "probability": 0.8647 + }, + { + "start": 31359.08, + "end": 31364.34, + "probability": 0.8844 + }, + { + "start": 31364.78, + "end": 31367.14, + "probability": 0.9584 + }, + { + "start": 31368.24, + "end": 31370.2, + "probability": 0.9041 + }, + { + "start": 31370.28, + "end": 31371.36, + "probability": 0.7967 + }, + { + "start": 31372.14, + "end": 31372.74, + "probability": 0.9395 + }, + { + "start": 31375.34, + "end": 31381.46, + "probability": 0.664 + }, + { + "start": 31384.96, + "end": 31386.98, + "probability": 0.4711 + }, + { + "start": 31387.72, + "end": 31388.82, + "probability": 0.8409 + }, + { + "start": 31389.76, + "end": 31393.36, + "probability": 0.8827 + }, + { + "start": 31393.86, + "end": 31395.8, + "probability": 0.1841 + }, + { + "start": 31395.9, + "end": 31396.12, + "probability": 0.4169 + }, + { + "start": 31400.9, + "end": 31403.84, + "probability": 0.9289 + }, + { + "start": 31403.92, + "end": 31404.7, + "probability": 0.4942 + }, + { + "start": 31405.4, + "end": 31407.46, + "probability": 0.071 + }, + { + "start": 31411.38, + "end": 31412.64, + "probability": 0.0251 + }, + { + "start": 31425.2, + "end": 31426.16, + "probability": 0.6573 + }, + { + "start": 31426.78, + "end": 31429.3, + "probability": 0.2433 + }, + { + "start": 31429.78, + "end": 31430.4, + "probability": 0.1366 + }, + { + "start": 31430.4, + "end": 31432.02, + "probability": 0.8425 + }, + { + "start": 31432.28, + "end": 31438.44, + "probability": 0.8096 + }, + { + "start": 31438.58, + "end": 31439.76, + "probability": 0.6874 + }, + { + "start": 31439.78, + "end": 31440.68, + "probability": 0.942 + }, + { + "start": 31440.74, + "end": 31441.3, + "probability": 0.3109 + }, + { + "start": 31441.48, + "end": 31442.29, + "probability": 0.745 + }, + { + "start": 31442.68, + "end": 31443.64, + "probability": 0.1564 + }, + { + "start": 31444.06, + "end": 31447.34, + "probability": 0.6194 + }, + { + "start": 31449.36, + "end": 31451.54, + "probability": 0.0133 + }, + { + "start": 31453.52, + "end": 31453.9, + "probability": 0.2225 + }, + { + "start": 31470.0, + "end": 31472.44, + "probability": 0.3632 + }, + { + "start": 31472.51, + "end": 31472.86, + "probability": 0.113 + }, + { + "start": 31472.86, + "end": 31472.86, + "probability": 0.0672 + }, + { + "start": 31472.86, + "end": 31472.86, + "probability": 0.3345 + }, + { + "start": 31472.86, + "end": 31472.86, + "probability": 0.424 + }, + { + "start": 31472.86, + "end": 31472.86, + "probability": 0.4542 + }, + { + "start": 31472.86, + "end": 31472.86, + "probability": 0.0988 + }, + { + "start": 31472.86, + "end": 31473.32, + "probability": 0.3424 + }, + { + "start": 31482.14, + "end": 31483.22, + "probability": 0.3499 + }, + { + "start": 31483.24, + "end": 31487.2, + "probability": 0.6195 + }, + { + "start": 31487.5, + "end": 31488.28, + "probability": 0.8156 + }, + { + "start": 31488.36, + "end": 31489.54, + "probability": 0.7395 + }, + { + "start": 31491.04, + "end": 31496.02, + "probability": 0.9904 + }, + { + "start": 31496.56, + "end": 31497.76, + "probability": 0.9449 + }, + { + "start": 31497.86, + "end": 31504.86, + "probability": 0.978 + }, + { + "start": 31507.28, + "end": 31507.82, + "probability": 0.6642 + }, + { + "start": 31508.41, + "end": 31517.3, + "probability": 0.9982 + }, + { + "start": 31517.52, + "end": 31519.88, + "probability": 0.9777 + }, + { + "start": 31521.5, + "end": 31524.48, + "probability": 0.9277 + }, + { + "start": 31525.2, + "end": 31531.02, + "probability": 0.9087 + }, + { + "start": 31531.02, + "end": 31531.74, + "probability": 0.7214 + }, + { + "start": 31533.04, + "end": 31539.82, + "probability": 0.9137 + }, + { + "start": 31543.16, + "end": 31544.94, + "probability": 0.9242 + }, + { + "start": 31545.18, + "end": 31547.94, + "probability": 0.8107 + }, + { + "start": 31549.2, + "end": 31554.82, + "probability": 0.9453 + }, + { + "start": 31554.82, + "end": 31559.42, + "probability": 0.9568 + }, + { + "start": 31562.1, + "end": 31565.24, + "probability": 0.9715 + }, + { + "start": 31565.32, + "end": 31566.72, + "probability": 0.7959 + }, + { + "start": 31567.88, + "end": 31569.74, + "probability": 0.7334 + }, + { + "start": 31569.88, + "end": 31576.82, + "probability": 0.9806 + }, + { + "start": 31578.52, + "end": 31585.7, + "probability": 0.9606 + }, + { + "start": 31587.52, + "end": 31592.46, + "probability": 0.9917 + }, + { + "start": 31592.46, + "end": 31595.06, + "probability": 0.9982 + }, + { + "start": 31595.2, + "end": 31596.1, + "probability": 0.6132 + }, + { + "start": 31596.18, + "end": 31599.56, + "probability": 0.9531 + }, + { + "start": 31600.16, + "end": 31605.28, + "probability": 0.9982 + }, + { + "start": 31607.44, + "end": 31610.84, + "probability": 0.6143 + }, + { + "start": 31612.44, + "end": 31614.88, + "probability": 0.9381 + }, + { + "start": 31616.76, + "end": 31619.02, + "probability": 0.9955 + }, + { + "start": 31619.14, + "end": 31621.74, + "probability": 0.932 + }, + { + "start": 31621.94, + "end": 31623.58, + "probability": 0.675 + }, + { + "start": 31624.7, + "end": 31627.96, + "probability": 0.9222 + }, + { + "start": 31627.96, + "end": 31631.92, + "probability": 0.9967 + }, + { + "start": 31632.12, + "end": 31632.64, + "probability": 0.7978 + }, + { + "start": 31633.6, + "end": 31634.9, + "probability": 0.9624 + }, + { + "start": 31635.0, + "end": 31635.76, + "probability": 0.915 + }, + { + "start": 31635.84, + "end": 31635.96, + "probability": 0.5124 + }, + { + "start": 31636.1, + "end": 31636.36, + "probability": 0.3614 + }, + { + "start": 31636.82, + "end": 31639.06, + "probability": 0.9014 + }, + { + "start": 31639.18, + "end": 31647.14, + "probability": 0.9945 + }, + { + "start": 31647.6, + "end": 31649.98, + "probability": 0.9902 + }, + { + "start": 31650.02, + "end": 31650.48, + "probability": 0.603 + }, + { + "start": 31650.58, + "end": 31651.92, + "probability": 0.9971 + }, + { + "start": 31653.38, + "end": 31659.72, + "probability": 0.8037 + }, + { + "start": 31660.36, + "end": 31665.6, + "probability": 0.8688 + }, + { + "start": 31666.4, + "end": 31673.56, + "probability": 0.9728 + }, + { + "start": 31673.56, + "end": 31678.04, + "probability": 0.9906 + }, + { + "start": 31679.48, + "end": 31684.68, + "probability": 0.9424 + }, + { + "start": 31684.68, + "end": 31689.1, + "probability": 0.9481 + }, + { + "start": 31691.1, + "end": 31696.2, + "probability": 0.9922 + }, + { + "start": 31696.62, + "end": 31698.42, + "probability": 0.893 + }, + { + "start": 31699.62, + "end": 31702.24, + "probability": 0.7406 + }, + { + "start": 31702.84, + "end": 31707.08, + "probability": 0.937 + }, + { + "start": 31707.38, + "end": 31707.64, + "probability": 0.6474 + }, + { + "start": 31707.92, + "end": 31708.42, + "probability": 0.5291 + }, + { + "start": 31708.5, + "end": 31709.2, + "probability": 0.5437 + }, + { + "start": 31740.14, + "end": 31742.54, + "probability": 0.6653 + }, + { + "start": 31745.56, + "end": 31752.02, + "probability": 0.7744 + }, + { + "start": 31753.54, + "end": 31755.78, + "probability": 0.9951 + }, + { + "start": 31758.04, + "end": 31768.86, + "probability": 0.8743 + }, + { + "start": 31770.92, + "end": 31772.64, + "probability": 0.814 + }, + { + "start": 31775.18, + "end": 31776.7, + "probability": 0.9927 + }, + { + "start": 31779.52, + "end": 31782.36, + "probability": 0.9009 + }, + { + "start": 31784.1, + "end": 31788.44, + "probability": 0.9865 + }, + { + "start": 31789.44, + "end": 31790.7, + "probability": 0.7456 + }, + { + "start": 31792.02, + "end": 31792.93, + "probability": 0.9046 + }, + { + "start": 31793.66, + "end": 31795.98, + "probability": 0.8514 + }, + { + "start": 31798.02, + "end": 31798.4, + "probability": 0.0049 + }, + { + "start": 31798.4, + "end": 31801.42, + "probability": 0.7871 + }, + { + "start": 31802.02, + "end": 31807.46, + "probability": 0.9105 + }, + { + "start": 31807.58, + "end": 31808.02, + "probability": 0.604 + }, + { + "start": 31808.04, + "end": 31808.94, + "probability": 0.684 + }, + { + "start": 31809.16, + "end": 31810.16, + "probability": 0.9222 + }, + { + "start": 31811.5, + "end": 31819.42, + "probability": 0.9464 + }, + { + "start": 31820.12, + "end": 31821.52, + "probability": 0.8565 + }, + { + "start": 31823.94, + "end": 31825.68, + "probability": 0.9478 + }, + { + "start": 31826.88, + "end": 31829.06, + "probability": 0.9142 + }, + { + "start": 31829.7, + "end": 31833.5, + "probability": 0.839 + }, + { + "start": 31836.26, + "end": 31837.84, + "probability": 0.5665 + }, + { + "start": 31840.34, + "end": 31842.44, + "probability": 0.9096 + }, + { + "start": 31844.38, + "end": 31846.58, + "probability": 0.9251 + }, + { + "start": 31847.24, + "end": 31849.06, + "probability": 0.8394 + }, + { + "start": 31849.74, + "end": 31850.84, + "probability": 0.9321 + }, + { + "start": 31852.0, + "end": 31852.78, + "probability": 0.667 + }, + { + "start": 31854.18, + "end": 31854.87, + "probability": 0.9004 + }, + { + "start": 31855.68, + "end": 31857.44, + "probability": 0.9526 + }, + { + "start": 31858.78, + "end": 31866.58, + "probability": 0.9491 + }, + { + "start": 31867.0, + "end": 31869.28, + "probability": 0.6605 + }, + { + "start": 31869.4, + "end": 31871.9, + "probability": 0.8658 + }, + { + "start": 31872.54, + "end": 31873.82, + "probability": 0.987 + }, + { + "start": 31874.4, + "end": 31875.82, + "probability": 0.9331 + }, + { + "start": 31876.36, + "end": 31877.36, + "probability": 0.9796 + }, + { + "start": 31877.78, + "end": 31880.56, + "probability": 0.9902 + }, + { + "start": 31881.26, + "end": 31881.98, + "probability": 0.4794 + }, + { + "start": 31884.9, + "end": 31888.4, + "probability": 0.9812 + }, + { + "start": 31889.58, + "end": 31892.46, + "probability": 0.995 + }, + { + "start": 31893.74, + "end": 31897.64, + "probability": 0.7081 + }, + { + "start": 31898.18, + "end": 31901.34, + "probability": 0.9954 + }, + { + "start": 31902.96, + "end": 31906.34, + "probability": 0.7954 + }, + { + "start": 31908.04, + "end": 31910.83, + "probability": 0.9779 + }, + { + "start": 31911.88, + "end": 31914.1, + "probability": 0.891 + }, + { + "start": 31914.62, + "end": 31914.84, + "probability": 0.2947 + }, + { + "start": 31915.06, + "end": 31917.32, + "probability": 0.6537 + }, + { + "start": 31917.48, + "end": 31918.86, + "probability": 0.9604 + }, + { + "start": 31918.88, + "end": 31923.96, + "probability": 0.7875 + }, + { + "start": 31924.52, + "end": 31927.54, + "probability": 0.9847 + }, + { + "start": 31927.62, + "end": 31933.88, + "probability": 0.9688 + }, + { + "start": 31934.2, + "end": 31937.62, + "probability": 0.8982 + }, + { + "start": 31938.4, + "end": 31940.56, + "probability": 0.958 + }, + { + "start": 31940.84, + "end": 31941.7, + "probability": 0.5537 + }, + { + "start": 31942.06, + "end": 31942.98, + "probability": 0.4764 + }, + { + "start": 31943.08, + "end": 31944.26, + "probability": 0.9109 + }, + { + "start": 31944.88, + "end": 31949.08, + "probability": 0.9639 + }, + { + "start": 31949.38, + "end": 31950.44, + "probability": 0.9415 + }, + { + "start": 31950.76, + "end": 31953.18, + "probability": 0.9204 + }, + { + "start": 31953.38, + "end": 31956.96, + "probability": 0.9906 + }, + { + "start": 31957.02, + "end": 31957.72, + "probability": 0.7538 + }, + { + "start": 31957.82, + "end": 31959.1, + "probability": 0.7429 + }, + { + "start": 31959.48, + "end": 31962.34, + "probability": 0.9665 + }, + { + "start": 31962.48, + "end": 31963.08, + "probability": 0.8585 + }, + { + "start": 31964.14, + "end": 31965.6, + "probability": 0.9094 + }, + { + "start": 31966.38, + "end": 31966.78, + "probability": 0.4952 + }, + { + "start": 31967.78, + "end": 31969.0, + "probability": 0.7659 + }, + { + "start": 31978.34, + "end": 31978.42, + "probability": 0.2525 + }, + { + "start": 31978.46, + "end": 31981.46, + "probability": 0.5616 + }, + { + "start": 31982.3, + "end": 31985.46, + "probability": 0.9933 + }, + { + "start": 31986.22, + "end": 31988.84, + "probability": 0.9784 + }, + { + "start": 31989.88, + "end": 31991.7, + "probability": 0.997 + }, + { + "start": 31995.16, + "end": 31998.43, + "probability": 0.5257 + }, + { + "start": 31999.64, + "end": 32004.71, + "probability": 0.9628 + }, + { + "start": 32005.88, + "end": 32007.7, + "probability": 0.9658 + }, + { + "start": 32008.36, + "end": 32013.28, + "probability": 0.6356 + }, + { + "start": 32014.06, + "end": 32015.92, + "probability": 0.9951 + }, + { + "start": 32016.06, + "end": 32020.18, + "probability": 0.9863 + }, + { + "start": 32020.26, + "end": 32024.14, + "probability": 0.9732 + }, + { + "start": 32024.2, + "end": 32028.18, + "probability": 0.8937 + }, + { + "start": 32028.68, + "end": 32032.62, + "probability": 0.9984 + }, + { + "start": 32033.4, + "end": 32038.3, + "probability": 0.9961 + }, + { + "start": 32038.72, + "end": 32039.66, + "probability": 0.9735 + }, + { + "start": 32040.2, + "end": 32044.42, + "probability": 0.9731 + }, + { + "start": 32044.42, + "end": 32048.18, + "probability": 0.995 + }, + { + "start": 32048.28, + "end": 32053.9, + "probability": 0.9751 + }, + { + "start": 32054.08, + "end": 32055.34, + "probability": 0.9952 + }, + { + "start": 32055.4, + "end": 32056.6, + "probability": 0.9229 + }, + { + "start": 32056.78, + "end": 32059.44, + "probability": 0.9927 + }, + { + "start": 32059.9, + "end": 32061.14, + "probability": 0.9364 + }, + { + "start": 32061.3, + "end": 32062.22, + "probability": 0.9092 + }, + { + "start": 32062.26, + "end": 32063.46, + "probability": 0.6987 + }, + { + "start": 32063.48, + "end": 32064.26, + "probability": 0.6142 + }, + { + "start": 32064.94, + "end": 32068.16, + "probability": 0.9809 + }, + { + "start": 32068.16, + "end": 32072.1, + "probability": 0.8826 + }, + { + "start": 32072.14, + "end": 32074.76, + "probability": 0.8094 + }, + { + "start": 32074.82, + "end": 32076.12, + "probability": 0.6798 + }, + { + "start": 32076.6, + "end": 32079.75, + "probability": 0.9924 + }, + { + "start": 32080.4, + "end": 32082.72, + "probability": 0.9745 + }, + { + "start": 32083.26, + "end": 32083.38, + "probability": 0.0078 + }, + { + "start": 32084.32, + "end": 32087.12, + "probability": 0.9959 + }, + { + "start": 32087.7, + "end": 32089.0, + "probability": 0.8664 + }, + { + "start": 32089.18, + "end": 32090.02, + "probability": 0.5615 + }, + { + "start": 32090.12, + "end": 32090.94, + "probability": 0.9272 + }, + { + "start": 32091.26, + "end": 32093.06, + "probability": 0.8683 + }, + { + "start": 32093.9, + "end": 32099.16, + "probability": 0.9928 + }, + { + "start": 32099.46, + "end": 32101.24, + "probability": 0.9963 + }, + { + "start": 32101.7, + "end": 32102.28, + "probability": 0.8739 + }, + { + "start": 32102.36, + "end": 32104.56, + "probability": 0.994 + }, + { + "start": 32104.96, + "end": 32106.62, + "probability": 0.961 + }, + { + "start": 32106.82, + "end": 32107.48, + "probability": 0.8046 + }, + { + "start": 32107.48, + "end": 32108.3, + "probability": 0.8998 + }, + { + "start": 32108.52, + "end": 32110.44, + "probability": 0.8917 + }, + { + "start": 32110.94, + "end": 32111.64, + "probability": 0.8165 + }, + { + "start": 32112.02, + "end": 32115.68, + "probability": 0.9922 + }, + { + "start": 32116.26, + "end": 32117.74, + "probability": 0.9856 + }, + { + "start": 32118.18, + "end": 32120.48, + "probability": 0.7759 + }, + { + "start": 32120.66, + "end": 32122.78, + "probability": 0.7968 + }, + { + "start": 32122.84, + "end": 32124.06, + "probability": 0.8109 + }, + { + "start": 32124.46, + "end": 32125.86, + "probability": 0.9591 + }, + { + "start": 32126.06, + "end": 32127.86, + "probability": 0.9824 + }, + { + "start": 32128.26, + "end": 32128.98, + "probability": 0.7943 + }, + { + "start": 32129.06, + "end": 32134.26, + "probability": 0.9953 + }, + { + "start": 32134.5, + "end": 32136.4, + "probability": 0.9858 + }, + { + "start": 32137.02, + "end": 32139.14, + "probability": 0.9974 + }, + { + "start": 32139.5, + "end": 32140.72, + "probability": 0.9896 + }, + { + "start": 32141.24, + "end": 32142.64, + "probability": 0.9998 + }, + { + "start": 32143.04, + "end": 32144.04, + "probability": 0.7729 + }, + { + "start": 32144.48, + "end": 32145.08, + "probability": 0.901 + }, + { + "start": 32145.42, + "end": 32145.92, + "probability": 0.9654 + }, + { + "start": 32146.28, + "end": 32146.92, + "probability": 0.8888 + }, + { + "start": 32147.18, + "end": 32148.16, + "probability": 0.9831 + }, + { + "start": 32148.32, + "end": 32149.04, + "probability": 0.9802 + }, + { + "start": 32149.08, + "end": 32149.86, + "probability": 0.8145 + }, + { + "start": 32150.04, + "end": 32150.98, + "probability": 0.95 + }, + { + "start": 32151.3, + "end": 32151.82, + "probability": 0.885 + }, + { + "start": 32152.36, + "end": 32153.0, + "probability": 0.7772 + }, + { + "start": 32153.26, + "end": 32154.09, + "probability": 0.9779 + }, + { + "start": 32154.32, + "end": 32156.7, + "probability": 0.9819 + }, + { + "start": 32156.7, + "end": 32159.22, + "probability": 0.9888 + }, + { + "start": 32159.36, + "end": 32160.18, + "probability": 0.3116 + }, + { + "start": 32160.56, + "end": 32161.08, + "probability": 0.7825 + }, + { + "start": 32161.2, + "end": 32166.5, + "probability": 0.9814 + }, + { + "start": 32166.86, + "end": 32172.6, + "probability": 0.9575 + }, + { + "start": 32173.12, + "end": 32174.06, + "probability": 0.5676 + }, + { + "start": 32174.26, + "end": 32176.9, + "probability": 0.8606 + }, + { + "start": 32176.98, + "end": 32179.36, + "probability": 0.979 + }, + { + "start": 32179.7, + "end": 32181.76, + "probability": 0.9734 + }, + { + "start": 32183.44, + "end": 32183.44, + "probability": 0.1177 + }, + { + "start": 32183.44, + "end": 32185.28, + "probability": 0.5619 + }, + { + "start": 32185.54, + "end": 32186.6, + "probability": 0.6681 + }, + { + "start": 32186.88, + "end": 32187.8, + "probability": 0.5217 + }, + { + "start": 32187.88, + "end": 32189.0, + "probability": 0.6708 + }, + { + "start": 32192.12, + "end": 32192.88, + "probability": 0.7573 + }, + { + "start": 32196.49, + "end": 32199.72, + "probability": 0.4862 + }, + { + "start": 32202.52, + "end": 32209.62, + "probability": 0.7781 + }, + { + "start": 32209.72, + "end": 32210.48, + "probability": 0.6926 + }, + { + "start": 32210.76, + "end": 32212.16, + "probability": 0.8521 + }, + { + "start": 32213.46, + "end": 32215.72, + "probability": 0.8636 + }, + { + "start": 32217.6, + "end": 32218.88, + "probability": 0.8893 + }, + { + "start": 32220.76, + "end": 32224.36, + "probability": 0.901 + }, + { + "start": 32225.98, + "end": 32228.72, + "probability": 0.788 + }, + { + "start": 32230.04, + "end": 32232.88, + "probability": 0.8778 + }, + { + "start": 32233.12, + "end": 32234.4, + "probability": 0.9665 + }, + { + "start": 32235.24, + "end": 32239.32, + "probability": 0.9062 + }, + { + "start": 32239.8, + "end": 32241.78, + "probability": 0.9614 + }, + { + "start": 32241.84, + "end": 32243.02, + "probability": 0.6141 + }, + { + "start": 32245.1, + "end": 32249.46, + "probability": 0.9634 + }, + { + "start": 32250.22, + "end": 32255.04, + "probability": 0.8838 + }, + { + "start": 32255.2, + "end": 32261.22, + "probability": 0.8822 + }, + { + "start": 32263.2, + "end": 32265.76, + "probability": 0.6445 + }, + { + "start": 32267.86, + "end": 32269.18, + "probability": 0.9648 + }, + { + "start": 32270.02, + "end": 32272.66, + "probability": 0.9153 + }, + { + "start": 32273.2, + "end": 32277.32, + "probability": 0.9406 + }, + { + "start": 32277.58, + "end": 32281.8, + "probability": 0.9688 + }, + { + "start": 32283.42, + "end": 32289.12, + "probability": 0.9766 + }, + { + "start": 32289.12, + "end": 32294.68, + "probability": 0.9829 + }, + { + "start": 32295.46, + "end": 32295.8, + "probability": 0.4395 + }, + { + "start": 32295.86, + "end": 32298.76, + "probability": 0.6923 + }, + { + "start": 32298.94, + "end": 32303.76, + "probability": 0.9849 + }, + { + "start": 32304.84, + "end": 32310.84, + "probability": 0.9891 + }, + { + "start": 32310.84, + "end": 32314.0, + "probability": 0.8849 + }, + { + "start": 32316.06, + "end": 32319.64, + "probability": 0.9834 + }, + { + "start": 32320.42, + "end": 32323.44, + "probability": 0.9509 + }, + { + "start": 32324.02, + "end": 32328.5, + "probability": 0.9742 + }, + { + "start": 32328.54, + "end": 32329.32, + "probability": 0.6914 + }, + { + "start": 32330.62, + "end": 32331.76, + "probability": 0.9648 + }, + { + "start": 32331.92, + "end": 32334.24, + "probability": 0.9404 + }, + { + "start": 32334.42, + "end": 32335.2, + "probability": 0.822 + }, + { + "start": 32335.54, + "end": 32337.07, + "probability": 0.7957 + }, + { + "start": 32337.92, + "end": 32340.46, + "probability": 0.5371 + }, + { + "start": 32340.98, + "end": 32341.0, + "probability": 0.2543 + }, + { + "start": 32341.0, + "end": 32341.68, + "probability": 0.5771 + }, + { + "start": 32342.1, + "end": 32342.6, + "probability": 0.8307 + }, + { + "start": 32342.64, + "end": 32347.16, + "probability": 0.8887 + }, + { + "start": 32347.24, + "end": 32347.88, + "probability": 0.9561 + }, + { + "start": 32347.98, + "end": 32348.58, + "probability": 0.8942 + }, + { + "start": 32350.04, + "end": 32355.48, + "probability": 0.9646 + }, + { + "start": 32355.48, + "end": 32361.02, + "probability": 0.8926 + }, + { + "start": 32363.5, + "end": 32365.34, + "probability": 0.8821 + }, + { + "start": 32366.12, + "end": 32367.66, + "probability": 0.384 + }, + { + "start": 32368.4, + "end": 32371.32, + "probability": 0.9095 + }, + { + "start": 32371.44, + "end": 32372.28, + "probability": 0.7651 + }, + { + "start": 32373.54, + "end": 32373.8, + "probability": 0.7695 + }, + { + "start": 32374.68, + "end": 32375.78, + "probability": 0.7927 + }, + { + "start": 32376.04, + "end": 32381.28, + "probability": 0.9399 + }, + { + "start": 32382.98, + "end": 32384.02, + "probability": 0.8235 + }, + { + "start": 32384.1, + "end": 32388.17, + "probability": 0.9709 + }, + { + "start": 32388.98, + "end": 32390.08, + "probability": 0.9366 + }, + { + "start": 32391.6, + "end": 32394.78, + "probability": 0.975 + }, + { + "start": 32394.84, + "end": 32397.5, + "probability": 0.7106 + }, + { + "start": 32398.94, + "end": 32402.9, + "probability": 0.9944 + }, + { + "start": 32402.9, + "end": 32409.66, + "probability": 0.9334 + }, + { + "start": 32409.82, + "end": 32412.12, + "probability": 0.8885 + }, + { + "start": 32412.84, + "end": 32415.8, + "probability": 0.5597 + }, + { + "start": 32416.1, + "end": 32422.06, + "probability": 0.9639 + }, + { + "start": 32422.52, + "end": 32423.28, + "probability": 0.1621 + }, + { + "start": 32424.0, + "end": 32424.92, + "probability": 0.8171 + }, + { + "start": 32424.96, + "end": 32428.78, + "probability": 0.9505 + }, + { + "start": 32429.48, + "end": 32430.28, + "probability": 0.8934 + }, + { + "start": 32430.44, + "end": 32436.36, + "probability": 0.7028 + }, + { + "start": 32436.68, + "end": 32437.22, + "probability": 0.4337 + }, + { + "start": 32438.22, + "end": 32439.28, + "probability": 0.6179 + }, + { + "start": 32439.38, + "end": 32443.58, + "probability": 0.9035 + }, + { + "start": 32443.8, + "end": 32445.08, + "probability": 0.7591 + }, + { + "start": 32446.0, + "end": 32446.94, + "probability": 0.9431 + }, + { + "start": 32447.58, + "end": 32449.6, + "probability": 0.6794 + }, + { + "start": 32449.94, + "end": 32451.8, + "probability": 0.9284 + }, + { + "start": 32452.5, + "end": 32454.62, + "probability": 0.9944 + }, + { + "start": 32455.38, + "end": 32456.3, + "probability": 0.8346 + }, + { + "start": 32456.98, + "end": 32463.08, + "probability": 0.9465 + }, + { + "start": 32463.16, + "end": 32464.6, + "probability": 0.5658 + }, + { + "start": 32465.14, + "end": 32466.02, + "probability": 0.8158 + }, + { + "start": 32466.64, + "end": 32472.84, + "probability": 0.7207 + }, + { + "start": 32473.38, + "end": 32476.09, + "probability": 0.7241 + }, + { + "start": 32476.66, + "end": 32479.24, + "probability": 0.9601 + }, + { + "start": 32480.04, + "end": 32482.32, + "probability": 0.218 + }, + { + "start": 32482.9, + "end": 32488.62, + "probability": 0.9164 + }, + { + "start": 32488.98, + "end": 32494.16, + "probability": 0.8579 + }, + { + "start": 32494.22, + "end": 32494.58, + "probability": 0.6402 + }, + { + "start": 32496.26, + "end": 32500.16, + "probability": 0.9778 + }, + { + "start": 32500.18, + "end": 32502.26, + "probability": 0.9528 + }, + { + "start": 32502.36, + "end": 32503.12, + "probability": 0.5825 + }, + { + "start": 32503.28, + "end": 32503.84, + "probability": 0.6556 + }, + { + "start": 32504.64, + "end": 32506.9, + "probability": 0.8118 + }, + { + "start": 32507.38, + "end": 32508.5, + "probability": 0.7047 + }, + { + "start": 32508.82, + "end": 32510.36, + "probability": 0.7017 + }, + { + "start": 32510.58, + "end": 32514.42, + "probability": 0.96 + }, + { + "start": 32515.24, + "end": 32518.0, + "probability": 0.7411 + }, + { + "start": 32519.4, + "end": 32522.12, + "probability": 0.9443 + }, + { + "start": 32523.8, + "end": 32526.52, + "probability": 0.9221 + }, + { + "start": 32527.88, + "end": 32528.5, + "probability": 0.5526 + }, + { + "start": 32529.48, + "end": 32534.56, + "probability": 0.994 + }, + { + "start": 32534.7, + "end": 32537.82, + "probability": 0.9786 + }, + { + "start": 32540.78, + "end": 32542.36, + "probability": 0.5991 + }, + { + "start": 32543.16, + "end": 32544.52, + "probability": 0.5789 + }, + { + "start": 32546.2, + "end": 32547.84, + "probability": 0.9824 + }, + { + "start": 32548.72, + "end": 32560.68, + "probability": 0.9338 + }, + { + "start": 32561.64, + "end": 32562.23, + "probability": 0.0888 + }, + { + "start": 32564.16, + "end": 32565.1, + "probability": 0.6436 + }, + { + "start": 32565.1, + "end": 32566.48, + "probability": 0.1616 + }, + { + "start": 32566.68, + "end": 32567.16, + "probability": 0.0774 + }, + { + "start": 32568.84, + "end": 32571.28, + "probability": 0.1909 + }, + { + "start": 32571.38, + "end": 32572.42, + "probability": 0.2898 + }, + { + "start": 32572.5, + "end": 32575.48, + "probability": 0.7866 + }, + { + "start": 32575.9, + "end": 32577.42, + "probability": 0.3833 + }, + { + "start": 32577.94, + "end": 32578.64, + "probability": 0.5323 + }, + { + "start": 32578.7, + "end": 32579.68, + "probability": 0.6805 + }, + { + "start": 32579.78, + "end": 32581.02, + "probability": 0.8457 + }, + { + "start": 32581.16, + "end": 32581.64, + "probability": 0.4837 + }, + { + "start": 32583.18, + "end": 32586.76, + "probability": 0.5506 + }, + { + "start": 32587.78, + "end": 32592.04, + "probability": 0.7679 + }, + { + "start": 32592.18, + "end": 32592.88, + "probability": 0.8941 + }, + { + "start": 32593.22, + "end": 32594.6, + "probability": 0.8963 + }, + { + "start": 32594.76, + "end": 32595.9, + "probability": 0.8849 + }, + { + "start": 32596.3, + "end": 32597.34, + "probability": 0.9845 + }, + { + "start": 32597.5, + "end": 32598.54, + "probability": 0.9606 + }, + { + "start": 32598.9, + "end": 32600.52, + "probability": 0.9739 + }, + { + "start": 32602.64, + "end": 32605.38, + "probability": 0.869 + }, + { + "start": 32606.84, + "end": 32609.5, + "probability": 0.8518 + }, + { + "start": 32609.56, + "end": 32610.04, + "probability": 0.6635 + }, + { + "start": 32610.1, + "end": 32610.72, + "probability": 0.5613 + }, + { + "start": 32610.84, + "end": 32611.36, + "probability": 0.8555 + }, + { + "start": 32611.52, + "end": 32612.12, + "probability": 0.4593 + }, + { + "start": 32612.56, + "end": 32614.92, + "probability": 0.4924 + }, + { + "start": 32615.0, + "end": 32615.54, + "probability": 0.3517 + }, + { + "start": 32615.62, + "end": 32617.12, + "probability": 0.5439 + }, + { + "start": 32617.22, + "end": 32619.62, + "probability": 0.3687 + }, + { + "start": 32619.62, + "end": 32621.24, + "probability": 0.0635 + }, + { + "start": 32622.4, + "end": 32622.5, + "probability": 0.0165 + }, + { + "start": 32622.5, + "end": 32622.5, + "probability": 0.0597 + }, + { + "start": 32622.5, + "end": 32622.5, + "probability": 0.0601 + }, + { + "start": 32622.5, + "end": 32622.88, + "probability": 0.3614 + }, + { + "start": 32623.58, + "end": 32624.56, + "probability": 0.5661 + }, + { + "start": 32624.56, + "end": 32626.01, + "probability": 0.6567 + }, + { + "start": 32626.68, + "end": 32627.24, + "probability": 0.7687 + }, + { + "start": 32628.8, + "end": 32629.9, + "probability": 0.5237 + }, + { + "start": 32630.32, + "end": 32631.18, + "probability": 0.8018 + }, + { + "start": 32631.7, + "end": 32633.34, + "probability": 0.8125 + }, + { + "start": 32633.42, + "end": 32634.36, + "probability": 0.9792 + }, + { + "start": 32634.5, + "end": 32635.42, + "probability": 0.6047 + }, + { + "start": 32635.48, + "end": 32638.42, + "probability": 0.7166 + }, + { + "start": 32639.72, + "end": 32645.58, + "probability": 0.8909 + }, + { + "start": 32645.74, + "end": 32646.7, + "probability": 0.7495 + }, + { + "start": 32647.8, + "end": 32650.42, + "probability": 0.9089 + }, + { + "start": 32650.54, + "end": 32652.26, + "probability": 0.9218 + }, + { + "start": 32652.32, + "end": 32656.44, + "probability": 0.8408 + }, + { + "start": 32656.74, + "end": 32657.98, + "probability": 0.8919 + }, + { + "start": 32659.16, + "end": 32662.3, + "probability": 0.9681 + }, + { + "start": 32662.4, + "end": 32663.32, + "probability": 0.9552 + }, + { + "start": 32665.0, + "end": 32667.94, + "probability": 0.7935 + }, + { + "start": 32668.08, + "end": 32669.58, + "probability": 0.8853 + }, + { + "start": 32669.98, + "end": 32672.74, + "probability": 0.8887 + }, + { + "start": 32673.52, + "end": 32679.58, + "probability": 0.9344 + }, + { + "start": 32680.18, + "end": 32680.84, + "probability": 0.9156 + }, + { + "start": 32681.0, + "end": 32686.24, + "probability": 0.9926 + }, + { + "start": 32686.32, + "end": 32687.16, + "probability": 0.3173 + }, + { + "start": 32687.42, + "end": 32688.36, + "probability": 0.4039 + }, + { + "start": 32688.74, + "end": 32691.9, + "probability": 0.9886 + }, + { + "start": 32692.32, + "end": 32697.42, + "probability": 0.9913 + }, + { + "start": 32697.74, + "end": 32701.76, + "probability": 0.949 + }, + { + "start": 32701.9, + "end": 32703.8, + "probability": 0.9194 + }, + { + "start": 32703.86, + "end": 32704.94, + "probability": 0.8419 + }, + { + "start": 32705.1, + "end": 32705.92, + "probability": 0.431 + }, + { + "start": 32706.04, + "end": 32707.16, + "probability": 0.9307 + }, + { + "start": 32707.34, + "end": 32710.28, + "probability": 0.9457 + }, + { + "start": 32710.64, + "end": 32712.98, + "probability": 0.9747 + }, + { + "start": 32713.0, + "end": 32713.68, + "probability": 0.7007 + }, + { + "start": 32713.86, + "end": 32717.98, + "probability": 0.7421 + }, + { + "start": 32718.1, + "end": 32718.2, + "probability": 0.0083 + }, + { + "start": 32718.2, + "end": 32718.48, + "probability": 0.3306 + }, + { + "start": 32718.48, + "end": 32719.08, + "probability": 0.6212 + }, + { + "start": 32719.24, + "end": 32720.46, + "probability": 0.418 + }, + { + "start": 32720.58, + "end": 32721.28, + "probability": 0.6471 + }, + { + "start": 32721.38, + "end": 32723.08, + "probability": 0.8522 + }, + { + "start": 32733.62, + "end": 32733.68, + "probability": 0.2544 + }, + { + "start": 32740.82, + "end": 32742.9, + "probability": 0.7455 + }, + { + "start": 32743.54, + "end": 32744.54, + "probability": 0.8933 + }, + { + "start": 32744.6, + "end": 32747.47, + "probability": 0.9871 + }, + { + "start": 32748.16, + "end": 32752.56, + "probability": 0.7436 + }, + { + "start": 32752.7, + "end": 32754.26, + "probability": 0.9354 + }, + { + "start": 32755.11, + "end": 32757.67, + "probability": 0.2638 + }, + { + "start": 32758.06, + "end": 32758.76, + "probability": 0.6071 + }, + { + "start": 32759.24, + "end": 32761.94, + "probability": 0.767 + }, + { + "start": 32762.16, + "end": 32763.62, + "probability": 0.9847 + }, + { + "start": 32764.64, + "end": 32766.4, + "probability": 0.9736 + }, + { + "start": 32766.58, + "end": 32767.88, + "probability": 0.8439 + }, + { + "start": 32768.14, + "end": 32769.6, + "probability": 0.7482 + }, + { + "start": 32769.7, + "end": 32771.06, + "probability": 0.6968 + }, + { + "start": 32771.96, + "end": 32776.52, + "probability": 0.9715 + }, + { + "start": 32777.48, + "end": 32782.16, + "probability": 0.9598 + }, + { + "start": 32783.02, + "end": 32785.54, + "probability": 0.9982 + }, + { + "start": 32786.84, + "end": 32787.72, + "probability": 0.6787 + }, + { + "start": 32789.0, + "end": 32790.68, + "probability": 0.9063 + }, + { + "start": 32792.06, + "end": 32795.86, + "probability": 0.9873 + }, + { + "start": 32796.68, + "end": 32800.52, + "probability": 0.991 + }, + { + "start": 32801.44, + "end": 32803.88, + "probability": 0.984 + }, + { + "start": 32804.08, + "end": 32805.73, + "probability": 0.795 + }, + { + "start": 32806.52, + "end": 32812.28, + "probability": 0.9961 + }, + { + "start": 32812.28, + "end": 32816.78, + "probability": 0.8721 + }, + { + "start": 32816.78, + "end": 32821.0, + "probability": 0.9099 + }, + { + "start": 32821.4, + "end": 32822.05, + "probability": 0.8921 + }, + { + "start": 32822.92, + "end": 32823.52, + "probability": 0.3767 + }, + { + "start": 32823.58, + "end": 32827.88, + "probability": 0.9331 + }, + { + "start": 32828.54, + "end": 32832.36, + "probability": 0.8799 + }, + { + "start": 32832.9, + "end": 32836.88, + "probability": 0.9775 + }, + { + "start": 32836.98, + "end": 32840.8, + "probability": 0.9285 + }, + { + "start": 32841.14, + "end": 32841.78, + "probability": 0.9023 + }, + { + "start": 32842.82, + "end": 32845.72, + "probability": 0.7037 + }, + { + "start": 32846.32, + "end": 32847.02, + "probability": 0.5348 + }, + { + "start": 32847.96, + "end": 32853.0, + "probability": 0.9854 + }, + { + "start": 32853.16, + "end": 32854.52, + "probability": 0.5079 + }, + { + "start": 32855.78, + "end": 32858.42, + "probability": 0.8897 + }, + { + "start": 32859.18, + "end": 32861.92, + "probability": 0.9355 + }, + { + "start": 32862.72, + "end": 32866.22, + "probability": 0.8217 + }, + { + "start": 32866.3, + "end": 32867.72, + "probability": 0.9893 + }, + { + "start": 32868.54, + "end": 32869.24, + "probability": 0.6112 + }, + { + "start": 32869.98, + "end": 32873.58, + "probability": 0.9561 + }, + { + "start": 32873.98, + "end": 32874.88, + "probability": 0.9913 + }, + { + "start": 32876.2, + "end": 32877.24, + "probability": 0.7877 + }, + { + "start": 32878.06, + "end": 32879.2, + "probability": 0.7731 + }, + { + "start": 32879.78, + "end": 32881.62, + "probability": 0.6411 + }, + { + "start": 32882.38, + "end": 32883.48, + "probability": 0.9115 + }, + { + "start": 32883.94, + "end": 32884.98, + "probability": 0.916 + }, + { + "start": 32885.06, + "end": 32885.64, + "probability": 0.7425 + }, + { + "start": 32885.7, + "end": 32886.44, + "probability": 0.6388 + }, + { + "start": 32886.52, + "end": 32887.18, + "probability": 0.2374 + }, + { + "start": 32887.34, + "end": 32889.3, + "probability": 0.9789 + }, + { + "start": 32889.92, + "end": 32890.4, + "probability": 0.7086 + }, + { + "start": 32890.48, + "end": 32892.9, + "probability": 0.8406 + }, + { + "start": 32893.06, + "end": 32894.46, + "probability": 0.9189 + }, + { + "start": 32894.62, + "end": 32896.68, + "probability": 0.9147 + }, + { + "start": 32897.02, + "end": 32899.22, + "probability": 0.9791 + }, + { + "start": 32899.52, + "end": 32903.82, + "probability": 0.9981 + }, + { + "start": 32904.08, + "end": 32905.32, + "probability": 0.9956 + }, + { + "start": 32905.72, + "end": 32908.48, + "probability": 0.983 + }, + { + "start": 32908.72, + "end": 32911.12, + "probability": 0.7746 + }, + { + "start": 32911.48, + "end": 32916.86, + "probability": 0.8378 + }, + { + "start": 32917.64, + "end": 32924.12, + "probability": 0.9744 + }, + { + "start": 32924.66, + "end": 32926.84, + "probability": 0.9927 + }, + { + "start": 32927.82, + "end": 32930.0, + "probability": 0.8237 + }, + { + "start": 32930.2, + "end": 32931.72, + "probability": 0.8545 + }, + { + "start": 32931.86, + "end": 32932.86, + "probability": 0.9814 + }, + { + "start": 32933.98, + "end": 32935.58, + "probability": 0.6365 + }, + { + "start": 32935.72, + "end": 32939.46, + "probability": 0.7957 + }, + { + "start": 32940.18, + "end": 32942.98, + "probability": 0.8693 + }, + { + "start": 32943.54, + "end": 32944.58, + "probability": 0.9624 + }, + { + "start": 32944.84, + "end": 32946.06, + "probability": 0.9627 + }, + { + "start": 32946.08, + "end": 32947.44, + "probability": 0.8789 + }, + { + "start": 32947.8, + "end": 32948.99, + "probability": 0.9932 + }, + { + "start": 32950.02, + "end": 32950.98, + "probability": 0.8758 + }, + { + "start": 32951.94, + "end": 32952.86, + "probability": 0.9508 + }, + { + "start": 32952.94, + "end": 32954.24, + "probability": 0.8277 + }, + { + "start": 32954.32, + "end": 32954.92, + "probability": 0.5048 + }, + { + "start": 32955.0, + "end": 32955.68, + "probability": 0.817 + }, + { + "start": 32956.12, + "end": 32957.68, + "probability": 0.9114 + }, + { + "start": 32957.78, + "end": 32959.2, + "probability": 0.7657 + }, + { + "start": 32959.52, + "end": 32961.44, + "probability": 0.9951 + }, + { + "start": 32961.8, + "end": 32962.52, + "probability": 0.8961 + }, + { + "start": 32962.56, + "end": 32963.62, + "probability": 0.849 + }, + { + "start": 32963.66, + "end": 32964.84, + "probability": 0.8799 + }, + { + "start": 32965.22, + "end": 32966.74, + "probability": 0.9131 + }, + { + "start": 32967.8, + "end": 32969.34, + "probability": 0.9775 + }, + { + "start": 32969.54, + "end": 32970.94, + "probability": 0.8219 + }, + { + "start": 32973.42, + "end": 32976.7, + "probability": 0.9034 + }, + { + "start": 32976.78, + "end": 32977.71, + "probability": 0.1048 + }, + { + "start": 32977.94, + "end": 32977.94, + "probability": 0.4741 + }, + { + "start": 32977.94, + "end": 32979.68, + "probability": 0.5671 + }, + { + "start": 32979.68, + "end": 32981.06, + "probability": 0.7761 + }, + { + "start": 32981.83, + "end": 32984.14, + "probability": 0.9136 + }, + { + "start": 32984.32, + "end": 32986.04, + "probability": 0.4157 + }, + { + "start": 32986.48, + "end": 32987.32, + "probability": 0.3406 + }, + { + "start": 32987.32, + "end": 32987.7, + "probability": 0.1762 + }, + { + "start": 32987.78, + "end": 32989.05, + "probability": 0.9565 + }, + { + "start": 32989.3, + "end": 32992.03, + "probability": 0.875 + }, + { + "start": 32992.26, + "end": 32993.68, + "probability": 0.5864 + }, + { + "start": 32993.9, + "end": 32994.92, + "probability": 0.7973 + }, + { + "start": 32995.0, + "end": 32995.56, + "probability": 0.4032 + }, + { + "start": 32996.06, + "end": 32996.68, + "probability": 0.9537 + }, + { + "start": 32997.28, + "end": 32998.16, + "probability": 0.8046 + }, + { + "start": 32998.38, + "end": 32999.52, + "probability": 0.4128 + }, + { + "start": 32999.64, + "end": 33001.44, + "probability": 0.4908 + }, + { + "start": 33001.44, + "end": 33003.28, + "probability": 0.1865 + }, + { + "start": 33003.42, + "end": 33003.46, + "probability": 0.0022 + }, + { + "start": 33003.46, + "end": 33003.46, + "probability": 0.023 + }, + { + "start": 33003.46, + "end": 33003.92, + "probability": 0.3295 + }, + { + "start": 33003.92, + "end": 33004.02, + "probability": 0.4458 + }, + { + "start": 33004.08, + "end": 33005.32, + "probability": 0.3165 + }, + { + "start": 33006.88, + "end": 33006.88, + "probability": 0.0516 + }, + { + "start": 33006.88, + "end": 33008.92, + "probability": 0.9507 + }, + { + "start": 33009.88, + "end": 33012.72, + "probability": 0.9128 + }, + { + "start": 33012.82, + "end": 33013.64, + "probability": 0.2897 + }, + { + "start": 33013.78, + "end": 33014.84, + "probability": 0.2903 + }, + { + "start": 33014.9, + "end": 33017.26, + "probability": 0.3476 + }, + { + "start": 33017.26, + "end": 33017.32, + "probability": 0.2497 + }, + { + "start": 33017.32, + "end": 33019.09, + "probability": 0.1322 + }, + { + "start": 33020.52, + "end": 33020.52, + "probability": 0.0301 + }, + { + "start": 33020.52, + "end": 33020.96, + "probability": 0.1902 + }, + { + "start": 33020.96, + "end": 33022.42, + "probability": 0.4856 + }, + { + "start": 33022.78, + "end": 33025.44, + "probability": 0.4502 + }, + { + "start": 33025.88, + "end": 33027.72, + "probability": 0.0223 + }, + { + "start": 33045.22, + "end": 33049.56, + "probability": 0.0347 + }, + { + "start": 33049.68, + "end": 33050.78, + "probability": 0.1673 + }, + { + "start": 33052.8, + "end": 33055.44, + "probability": 0.2278 + }, + { + "start": 33056.86, + "end": 33057.56, + "probability": 0.1076 + }, + { + "start": 33059.32, + "end": 33060.86, + "probability": 0.1788 + }, + { + "start": 33070.88, + "end": 33072.04, + "probability": 0.1832 + }, + { + "start": 33074.2, + "end": 33076.28, + "probability": 0.0217 + }, + { + "start": 33077.73, + "end": 33078.37, + "probability": 0.0535 + }, + { + "start": 33079.85, + "end": 33082.38, + "probability": 0.0484 + }, + { + "start": 33082.38, + "end": 33084.74, + "probability": 0.1077 + }, + { + "start": 33084.74, + "end": 33085.42, + "probability": 0.1279 + }, + { + "start": 33086.3, + "end": 33090.9, + "probability": 0.0867 + }, + { + "start": 33098.0, + "end": 33098.0, + "probability": 0.0 + }, + { + "start": 33098.0, + "end": 33098.0, + "probability": 0.0 + }, + { + "start": 33098.0, + "end": 33098.0, + "probability": 0.0 + }, + { + "start": 33098.0, + "end": 33098.0, + "probability": 0.0 + }, + { + "start": 33110.97, + "end": 33111.34, + "probability": 0.0965 + }, + { + "start": 33111.78, + "end": 33114.04, + "probability": 0.0236 + }, + { + "start": 33114.04, + "end": 33114.16, + "probability": 0.0876 + }, + { + "start": 33114.86, + "end": 33116.44, + "probability": 0.3354 + }, + { + "start": 33118.64, + "end": 33118.74, + "probability": 0.0254 + }, + { + "start": 33128.68, + "end": 33129.62, + "probability": 0.0284 + }, + { + "start": 33130.02, + "end": 33131.49, + "probability": 0.0797 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.0, + "end": 33220.0, + "probability": 0.0 + }, + { + "start": 33220.2, + "end": 33221.83, + "probability": 0.1715 + }, + { + "start": 33222.46, + "end": 33223.56, + "probability": 0.9499 + }, + { + "start": 33224.02, + "end": 33228.53, + "probability": 0.9605 + }, + { + "start": 33229.04, + "end": 33231.64, + "probability": 0.9808 + }, + { + "start": 33232.0, + "end": 33236.14, + "probability": 0.9772 + }, + { + "start": 33236.98, + "end": 33239.82, + "probability": 0.9939 + }, + { + "start": 33240.68, + "end": 33245.32, + "probability": 0.9924 + }, + { + "start": 33245.72, + "end": 33252.84, + "probability": 0.9541 + }, + { + "start": 33253.24, + "end": 33254.0, + "probability": 0.7784 + }, + { + "start": 33254.2, + "end": 33254.94, + "probability": 0.9897 + }, + { + "start": 33255.06, + "end": 33255.96, + "probability": 0.5495 + }, + { + "start": 33257.72, + "end": 33258.24, + "probability": 0.6738 + }, + { + "start": 33258.26, + "end": 33259.65, + "probability": 0.6731 + }, + { + "start": 33261.12, + "end": 33263.4, + "probability": 0.8992 + }, + { + "start": 33263.74, + "end": 33265.58, + "probability": 0.6807 + }, + { + "start": 33267.7, + "end": 33267.9, + "probability": 0.1297 + }, + { + "start": 33267.9, + "end": 33268.7, + "probability": 0.8807 + }, + { + "start": 33269.44, + "end": 33270.0, + "probability": 0.9684 + }, + { + "start": 33270.08, + "end": 33270.16, + "probability": 0.6621 + }, + { + "start": 33270.16, + "end": 33270.9, + "probability": 0.9204 + }, + { + "start": 33277.2, + "end": 33277.84, + "probability": 0.292 + }, + { + "start": 33277.86, + "end": 33277.98, + "probability": 0.0962 + }, + { + "start": 33278.44, + "end": 33279.52, + "probability": 0.6586 + }, + { + "start": 33280.34, + "end": 33281.12, + "probability": 0.1741 + }, + { + "start": 33281.62, + "end": 33284.58, + "probability": 0.5067 + }, + { + "start": 33284.7, + "end": 33285.42, + "probability": 0.3794 + }, + { + "start": 33285.6, + "end": 33288.86, + "probability": 0.9344 + }, + { + "start": 33292.08, + "end": 33293.16, + "probability": 0.3067 + }, + { + "start": 33293.4, + "end": 33293.4, + "probability": 0.0425 + }, + { + "start": 33293.4, + "end": 33294.3, + "probability": 0.485 + }, + { + "start": 33294.6, + "end": 33295.8, + "probability": 0.1869 + }, + { + "start": 33296.16, + "end": 33298.4, + "probability": 0.5579 + }, + { + "start": 33298.92, + "end": 33300.28, + "probability": 0.8203 + }, + { + "start": 33300.82, + "end": 33302.22, + "probability": 0.4839 + }, + { + "start": 33302.56, + "end": 33303.96, + "probability": 0.8445 + }, + { + "start": 33305.23, + "end": 33311.64, + "probability": 0.9345 + }, + { + "start": 33314.06, + "end": 33318.9, + "probability": 0.9765 + }, + { + "start": 33319.18, + "end": 33320.8, + "probability": 0.8968 + }, + { + "start": 33321.16, + "end": 33322.02, + "probability": 0.8215 + }, + { + "start": 33323.48, + "end": 33327.46, + "probability": 0.8181 + }, + { + "start": 33328.48, + "end": 33329.68, + "probability": 0.9308 + }, + { + "start": 33329.96, + "end": 33333.32, + "probability": 0.9831 + }, + { + "start": 33334.36, + "end": 33336.88, + "probability": 0.764 + }, + { + "start": 33339.28, + "end": 33342.74, + "probability": 0.9591 + }, + { + "start": 33344.54, + "end": 33345.12, + "probability": 0.6656 + }, + { + "start": 33348.5, + "end": 33351.08, + "probability": 0.8556 + }, + { + "start": 33351.32, + "end": 33352.2, + "probability": 0.831 + }, + { + "start": 33352.52, + "end": 33353.26, + "probability": 0.7889 + }, + { + "start": 33355.08, + "end": 33356.18, + "probability": 0.9865 + }, + { + "start": 33358.24, + "end": 33359.76, + "probability": 0.8724 + }, + { + "start": 33361.5, + "end": 33365.24, + "probability": 0.9811 + }, + { + "start": 33366.16, + "end": 33370.26, + "probability": 0.9919 + }, + { + "start": 33371.48, + "end": 33372.67, + "probability": 0.907 + }, + { + "start": 33374.48, + "end": 33377.96, + "probability": 0.8578 + }, + { + "start": 33378.54, + "end": 33381.56, + "probability": 0.9288 + }, + { + "start": 33384.16, + "end": 33389.48, + "probability": 0.981 + }, + { + "start": 33392.26, + "end": 33397.1, + "probability": 0.8796 + }, + { + "start": 33398.28, + "end": 33399.8, + "probability": 0.9976 + }, + { + "start": 33402.53, + "end": 33405.64, + "probability": 0.9292 + }, + { + "start": 33407.28, + "end": 33408.32, + "probability": 0.8028 + }, + { + "start": 33408.9, + "end": 33411.04, + "probability": 0.9954 + }, + { + "start": 33411.42, + "end": 33414.48, + "probability": 0.9792 + }, + { + "start": 33415.48, + "end": 33416.36, + "probability": 0.6962 + }, + { + "start": 33416.46, + "end": 33420.42, + "probability": 0.7012 + }, + { + "start": 33421.22, + "end": 33425.14, + "probability": 0.9845 + }, + { + "start": 33425.8, + "end": 33427.56, + "probability": 0.8432 + }, + { + "start": 33427.94, + "end": 33430.0, + "probability": 0.9919 + }, + { + "start": 33432.0, + "end": 33434.3, + "probability": 0.9916 + }, + { + "start": 33435.66, + "end": 33437.78, + "probability": 0.9984 + }, + { + "start": 33438.36, + "end": 33439.88, + "probability": 0.985 + }, + { + "start": 33441.22, + "end": 33442.48, + "probability": 0.9502 + }, + { + "start": 33444.14, + "end": 33446.94, + "probability": 0.9357 + }, + { + "start": 33448.26, + "end": 33450.24, + "probability": 0.9981 + }, + { + "start": 33454.06, + "end": 33458.24, + "probability": 0.7016 + }, + { + "start": 33460.72, + "end": 33461.68, + "probability": 0.951 + }, + { + "start": 33464.52, + "end": 33465.24, + "probability": 0.9061 + }, + { + "start": 33467.04, + "end": 33467.78, + "probability": 0.7961 + }, + { + "start": 33468.6, + "end": 33470.14, + "probability": 0.8095 + }, + { + "start": 33470.88, + "end": 33474.58, + "probability": 0.9941 + }, + { + "start": 33476.94, + "end": 33480.26, + "probability": 0.992 + }, + { + "start": 33480.36, + "end": 33481.38, + "probability": 0.9954 + }, + { + "start": 33482.52, + "end": 33485.68, + "probability": 0.9554 + }, + { + "start": 33485.82, + "end": 33486.76, + "probability": 0.9098 + }, + { + "start": 33487.44, + "end": 33489.3, + "probability": 0.9911 + }, + { + "start": 33491.6, + "end": 33493.04, + "probability": 0.9712 + }, + { + "start": 33496.18, + "end": 33497.32, + "probability": 0.9845 + }, + { + "start": 33498.12, + "end": 33502.48, + "probability": 0.9854 + }, + { + "start": 33503.18, + "end": 33506.31, + "probability": 0.9209 + }, + { + "start": 33508.96, + "end": 33510.34, + "probability": 0.2688 + }, + { + "start": 33510.58, + "end": 33511.3, + "probability": 0.756 + }, + { + "start": 33511.38, + "end": 33514.12, + "probability": 0.9907 + }, + { + "start": 33514.26, + "end": 33515.32, + "probability": 0.8768 + }, + { + "start": 33515.98, + "end": 33518.32, + "probability": 0.926 + }, + { + "start": 33519.68, + "end": 33519.68, + "probability": 0.0293 + }, + { + "start": 33519.68, + "end": 33521.92, + "probability": 0.9914 + }, + { + "start": 33522.0, + "end": 33523.06, + "probability": 0.7316 + }, + { + "start": 33523.14, + "end": 33523.54, + "probability": 0.4944 + }, + { + "start": 33524.64, + "end": 33525.18, + "probability": 0.4934 + }, + { + "start": 33525.22, + "end": 33525.96, + "probability": 0.4446 + }, + { + "start": 33526.04, + "end": 33526.82, + "probability": 0.7056 + }, + { + "start": 33527.34, + "end": 33529.8, + "probability": 0.6704 + }, + { + "start": 33529.8, + "end": 33530.58, + "probability": 0.7349 + }, + { + "start": 33530.64, + "end": 33530.88, + "probability": 0.153 + }, + { + "start": 33530.9, + "end": 33531.2, + "probability": 0.1898 + }, + { + "start": 33531.64, + "end": 33536.22, + "probability": 0.6782 + }, + { + "start": 33536.4, + "end": 33537.7, + "probability": 0.783 + }, + { + "start": 33537.94, + "end": 33540.88, + "probability": 0.4309 + }, + { + "start": 33540.94, + "end": 33541.92, + "probability": 0.378 + }, + { + "start": 33542.0, + "end": 33542.02, + "probability": 0.4642 + }, + { + "start": 33542.02, + "end": 33543.52, + "probability": 0.7076 + }, + { + "start": 33544.44, + "end": 33545.66, + "probability": 0.2295 + }, + { + "start": 33545.82, + "end": 33546.82, + "probability": 0.1452 + }, + { + "start": 33546.82, + "end": 33547.22, + "probability": 0.2343 + }, + { + "start": 33547.3, + "end": 33549.48, + "probability": 0.3395 + }, + { + "start": 33549.48, + "end": 33551.32, + "probability": 0.4348 + }, + { + "start": 33551.48, + "end": 33553.2, + "probability": 0.6405 + }, + { + "start": 33553.38, + "end": 33553.56, + "probability": 0.7876 + }, + { + "start": 33555.8, + "end": 33556.4, + "probability": 0.7858 + }, + { + "start": 33556.42, + "end": 33559.7, + "probability": 0.9953 + }, + { + "start": 33561.22, + "end": 33563.26, + "probability": 0.9783 + }, + { + "start": 33563.28, + "end": 33563.72, + "probability": 0.9799 + }, + { + "start": 33563.74, + "end": 33565.28, + "probability": 0.9956 + }, + { + "start": 33566.74, + "end": 33569.24, + "probability": 0.9932 + }, + { + "start": 33570.72, + "end": 33572.76, + "probability": 0.9859 + }, + { + "start": 33572.88, + "end": 33577.34, + "probability": 0.9819 + }, + { + "start": 33578.62, + "end": 33583.7, + "probability": 0.9874 + }, + { + "start": 33584.8, + "end": 33585.94, + "probability": 0.8683 + }, + { + "start": 33587.52, + "end": 33589.14, + "probability": 0.7586 + }, + { + "start": 33590.78, + "end": 33591.58, + "probability": 0.4289 + }, + { + "start": 33593.14, + "end": 33593.96, + "probability": 0.9922 + }, + { + "start": 33595.18, + "end": 33598.96, + "probability": 0.9707 + }, + { + "start": 33599.02, + "end": 33600.1, + "probability": 0.8918 + }, + { + "start": 33600.84, + "end": 33602.6, + "probability": 0.8284 + }, + { + "start": 33604.3, + "end": 33606.38, + "probability": 0.9961 + }, + { + "start": 33606.48, + "end": 33608.7, + "probability": 0.9833 + }, + { + "start": 33609.84, + "end": 33616.74, + "probability": 0.9902 + }, + { + "start": 33619.24, + "end": 33619.86, + "probability": 0.9281 + }, + { + "start": 33621.94, + "end": 33622.34, + "probability": 0.7839 + }, + { + "start": 33624.7, + "end": 33625.48, + "probability": 0.8914 + }, + { + "start": 33626.96, + "end": 33628.15, + "probability": 0.5672 + }, + { + "start": 33628.48, + "end": 33629.68, + "probability": 0.917 + }, + { + "start": 33629.92, + "end": 33632.22, + "probability": 0.9907 + }, + { + "start": 33635.76, + "end": 33637.37, + "probability": 0.9739 + }, + { + "start": 33637.52, + "end": 33644.04, + "probability": 0.9935 + }, + { + "start": 33648.04, + "end": 33650.02, + "probability": 0.6734 + }, + { + "start": 33650.86, + "end": 33652.74, + "probability": 0.9795 + }, + { + "start": 33652.82, + "end": 33653.98, + "probability": 0.976 + }, + { + "start": 33655.88, + "end": 33656.52, + "probability": 0.6821 + }, + { + "start": 33659.5, + "end": 33663.4, + "probability": 0.5568 + }, + { + "start": 33663.48, + "end": 33665.26, + "probability": 0.9953 + }, + { + "start": 33665.84, + "end": 33668.48, + "probability": 0.9866 + }, + { + "start": 33670.46, + "end": 33670.84, + "probability": 0.8946 + }, + { + "start": 33671.06, + "end": 33672.24, + "probability": 0.744 + }, + { + "start": 33673.42, + "end": 33674.48, + "probability": 0.873 + }, + { + "start": 33676.16, + "end": 33676.96, + "probability": 0.5706 + }, + { + "start": 33677.18, + "end": 33678.64, + "probability": 0.8249 + }, + { + "start": 33679.14, + "end": 33680.28, + "probability": 0.9901 + }, + { + "start": 33681.44, + "end": 33684.96, + "probability": 0.6906 + }, + { + "start": 33685.8, + "end": 33690.68, + "probability": 0.9772 + }, + { + "start": 33691.36, + "end": 33696.5, + "probability": 0.8524 + }, + { + "start": 33697.64, + "end": 33698.62, + "probability": 0.5513 + }, + { + "start": 33700.7, + "end": 33702.94, + "probability": 0.9862 + }, + { + "start": 33704.44, + "end": 33707.91, + "probability": 0.9038 + }, + { + "start": 33709.06, + "end": 33710.98, + "probability": 0.9048 + }, + { + "start": 33711.1, + "end": 33712.38, + "probability": 0.98 + }, + { + "start": 33712.5, + "end": 33714.48, + "probability": 0.4346 + }, + { + "start": 33714.48, + "end": 33714.55, + "probability": 0.2899 + }, + { + "start": 33715.02, + "end": 33717.34, + "probability": 0.9957 + }, + { + "start": 33718.14, + "end": 33719.56, + "probability": 0.9965 + }, + { + "start": 33721.16, + "end": 33724.64, + "probability": 0.8525 + }, + { + "start": 33726.68, + "end": 33727.8, + "probability": 0.9756 + }, + { + "start": 33729.14, + "end": 33731.54, + "probability": 0.9985 + }, + { + "start": 33731.68, + "end": 33734.66, + "probability": 0.6333 + }, + { + "start": 33734.72, + "end": 33737.9, + "probability": 0.9315 + }, + { + "start": 33738.32, + "end": 33742.76, + "probability": 0.983 + }, + { + "start": 33744.2, + "end": 33748.5, + "probability": 0.867 + }, + { + "start": 33749.56, + "end": 33753.66, + "probability": 0.9419 + }, + { + "start": 33756.32, + "end": 33756.7, + "probability": 0.7592 + }, + { + "start": 33757.4, + "end": 33758.9, + "probability": 0.9836 + }, + { + "start": 33759.68, + "end": 33760.84, + "probability": 0.7582 + }, + { + "start": 33760.92, + "end": 33762.14, + "probability": 0.758 + }, + { + "start": 33762.4, + "end": 33763.56, + "probability": 0.8663 + }, + { + "start": 33763.72, + "end": 33767.12, + "probability": 0.9912 + }, + { + "start": 33767.22, + "end": 33768.36, + "probability": 0.9104 + }, + { + "start": 33768.94, + "end": 33770.16, + "probability": 0.9839 + }, + { + "start": 33770.26, + "end": 33771.2, + "probability": 0.9778 + }, + { + "start": 33771.3, + "end": 33772.28, + "probability": 0.7666 + }, + { + "start": 33772.46, + "end": 33777.9, + "probability": 0.894 + }, + { + "start": 33779.47, + "end": 33783.82, + "probability": 0.6682 + }, + { + "start": 33783.86, + "end": 33784.28, + "probability": 0.6084 + }, + { + "start": 33785.58, + "end": 33788.44, + "probability": 0.5525 + }, + { + "start": 33789.36, + "end": 33790.96, + "probability": 0.2645 + }, + { + "start": 33791.1, + "end": 33791.96, + "probability": 0.7847 + }, + { + "start": 33793.26, + "end": 33797.82, + "probability": 0.5272 + }, + { + "start": 33798.7, + "end": 33801.36, + "probability": 0.9814 + }, + { + "start": 33803.88, + "end": 33805.42, + "probability": 0.7183 + }, + { + "start": 33805.46, + "end": 33806.23, + "probability": 0.9468 + }, + { + "start": 33807.12, + "end": 33807.54, + "probability": 0.8267 + }, + { + "start": 33807.56, + "end": 33809.36, + "probability": 0.9614 + }, + { + "start": 33809.94, + "end": 33810.78, + "probability": 0.9866 + }, + { + "start": 33810.84, + "end": 33812.28, + "probability": 0.8387 + }, + { + "start": 33812.28, + "end": 33814.06, + "probability": 0.9824 + }, + { + "start": 33815.94, + "end": 33819.46, + "probability": 0.906 + }, + { + "start": 33819.82, + "end": 33822.42, + "probability": 0.5734 + }, + { + "start": 33822.46, + "end": 33825.62, + "probability": 0.6165 + }, + { + "start": 33826.1, + "end": 33826.74, + "probability": 0.1845 + }, + { + "start": 33827.02, + "end": 33830.52, + "probability": 0.9128 + }, + { + "start": 33831.48, + "end": 33835.02, + "probability": 0.7943 + }, + { + "start": 33835.62, + "end": 33837.12, + "probability": 0.7717 + }, + { + "start": 33837.72, + "end": 33841.36, + "probability": 0.8752 + }, + { + "start": 33843.08, + "end": 33847.52, + "probability": 0.8518 + }, + { + "start": 33847.7, + "end": 33849.08, + "probability": 0.6585 + }, + { + "start": 33849.9, + "end": 33851.8, + "probability": 0.9741 + }, + { + "start": 33851.92, + "end": 33855.94, + "probability": 0.9969 + }, + { + "start": 33857.4, + "end": 33858.1, + "probability": 0.9243 + }, + { + "start": 33858.92, + "end": 33862.68, + "probability": 0.9839 + }, + { + "start": 33862.98, + "end": 33868.6, + "probability": 0.8939 + }, + { + "start": 33868.64, + "end": 33872.66, + "probability": 0.9952 + }, + { + "start": 33873.86, + "end": 33874.5, + "probability": 0.569 + }, + { + "start": 33878.54, + "end": 33881.4, + "probability": 0.9917 + }, + { + "start": 33882.86, + "end": 33883.7, + "probability": 0.8197 + }, + { + "start": 33883.72, + "end": 33885.1, + "probability": 0.9626 + }, + { + "start": 33885.38, + "end": 33887.02, + "probability": 0.9937 + }, + { + "start": 33887.9, + "end": 33891.16, + "probability": 0.9955 + }, + { + "start": 33891.64, + "end": 33892.56, + "probability": 0.869 + }, + { + "start": 33893.92, + "end": 33895.6, + "probability": 0.9503 + }, + { + "start": 33896.34, + "end": 33899.62, + "probability": 0.9976 + }, + { + "start": 33899.62, + "end": 33905.16, + "probability": 0.9725 + }, + { + "start": 33906.5, + "end": 33906.5, + "probability": 0.0095 + }, + { + "start": 33906.5, + "end": 33908.24, + "probability": 0.3874 + }, + { + "start": 33908.62, + "end": 33909.86, + "probability": 0.3646 + }, + { + "start": 33910.7, + "end": 33913.5, + "probability": 0.0383 + }, + { + "start": 33913.6, + "end": 33922.1, + "probability": 0.6853 + }, + { + "start": 33922.1, + "end": 33927.96, + "probability": 0.9852 + }, + { + "start": 33928.84, + "end": 33931.99, + "probability": 0.9483 + }, + { + "start": 33932.42, + "end": 33933.74, + "probability": 0.8242 + }, + { + "start": 33933.98, + "end": 33937.26, + "probability": 0.5787 + }, + { + "start": 33937.42, + "end": 33942.24, + "probability": 0.8715 + }, + { + "start": 33942.24, + "end": 33946.52, + "probability": 0.9871 + }, + { + "start": 33946.56, + "end": 33947.38, + "probability": 0.5328 + }, + { + "start": 33947.74, + "end": 33949.24, + "probability": 0.8453 + }, + { + "start": 33949.3, + "end": 33950.2, + "probability": 0.8921 + }, + { + "start": 33950.56, + "end": 33952.04, + "probability": 0.9111 + }, + { + "start": 33952.06, + "end": 33953.62, + "probability": 0.9766 + }, + { + "start": 33954.07, + "end": 33958.48, + "probability": 0.9041 + }, + { + "start": 33959.42, + "end": 33959.94, + "probability": 0.8384 + }, + { + "start": 33960.6, + "end": 33962.06, + "probability": 0.8027 + }, + { + "start": 33962.68, + "end": 33964.08, + "probability": 0.9941 + }, + { + "start": 33964.18, + "end": 33965.88, + "probability": 0.8133 + }, + { + "start": 33965.98, + "end": 33966.2, + "probability": 0.3413 + }, + { + "start": 33966.22, + "end": 33967.11, + "probability": 0.9824 + }, + { + "start": 33967.24, + "end": 33968.38, + "probability": 0.6133 + }, + { + "start": 33968.96, + "end": 33970.76, + "probability": 0.8533 + }, + { + "start": 33970.86, + "end": 33971.62, + "probability": 0.4347 + }, + { + "start": 33972.62, + "end": 33973.66, + "probability": 0.9154 + }, + { + "start": 33974.04, + "end": 33975.06, + "probability": 0.8063 + }, + { + "start": 33975.46, + "end": 33978.4, + "probability": 0.8884 + }, + { + "start": 33978.58, + "end": 33982.86, + "probability": 0.9568 + }, + { + "start": 33983.48, + "end": 33984.64, + "probability": 0.8623 + }, + { + "start": 33985.48, + "end": 33987.7, + "probability": 0.9873 + }, + { + "start": 33988.2, + "end": 33990.58, + "probability": 0.9778 + }, + { + "start": 33991.12, + "end": 33992.8, + "probability": 0.7169 + }, + { + "start": 33994.66, + "end": 33995.52, + "probability": 0.9951 + }, + { + "start": 33996.92, + "end": 33998.42, + "probability": 0.8212 + }, + { + "start": 33999.26, + "end": 34002.28, + "probability": 0.9506 + }, + { + "start": 34003.76, + "end": 34007.54, + "probability": 0.6911 + }, + { + "start": 34007.54, + "end": 34014.6, + "probability": 0.7611 + }, + { + "start": 34014.98, + "end": 34017.86, + "probability": 0.9368 + }, + { + "start": 34018.02, + "end": 34020.32, + "probability": 0.6249 + }, + { + "start": 34020.5, + "end": 34021.8, + "probability": 0.5533 + }, + { + "start": 34021.98, + "end": 34027.48, + "probability": 0.4706 + }, + { + "start": 34027.66, + "end": 34031.96, + "probability": 0.6673 + }, + { + "start": 34032.12, + "end": 34035.76, + "probability": 0.5051 + }, + { + "start": 34035.76, + "end": 34039.14, + "probability": 0.6678 + }, + { + "start": 34040.97, + "end": 34044.28, + "probability": 0.8781 + }, + { + "start": 34045.24, + "end": 34046.71, + "probability": 0.9951 + }, + { + "start": 34048.08, + "end": 34049.76, + "probability": 0.9691 + }, + { + "start": 34049.86, + "end": 34053.3, + "probability": 0.9378 + }, + { + "start": 34053.64, + "end": 34054.62, + "probability": 0.8672 + }, + { + "start": 34054.76, + "end": 34057.2, + "probability": 0.9764 + }, + { + "start": 34058.68, + "end": 34060.0, + "probability": 0.8906 + }, + { + "start": 34060.9, + "end": 34062.24, + "probability": 0.6695 + }, + { + "start": 34062.24, + "end": 34062.64, + "probability": 0.594 + }, + { + "start": 34063.22, + "end": 34065.24, + "probability": 0.7717 + }, + { + "start": 34066.5, + "end": 34073.46, + "probability": 0.9893 + }, + { + "start": 34074.56, + "end": 34075.58, + "probability": 0.5344 + }, + { + "start": 34076.92, + "end": 34079.38, + "probability": 0.9963 + }, + { + "start": 34080.4, + "end": 34082.08, + "probability": 0.8491 + }, + { + "start": 34083.98, + "end": 34085.72, + "probability": 0.9001 + }, + { + "start": 34088.7, + "end": 34091.7, + "probability": 0.948 + }, + { + "start": 34091.96, + "end": 34092.5, + "probability": 0.8816 + }, + { + "start": 34093.24, + "end": 34097.28, + "probability": 0.6009 + }, + { + "start": 34097.72, + "end": 34100.56, + "probability": 0.6301 + }, + { + "start": 34102.94, + "end": 34103.44, + "probability": 0.3853 + }, + { + "start": 34104.18, + "end": 34107.4, + "probability": 0.7038 + }, + { + "start": 34120.18, + "end": 34121.48, + "probability": 0.1865 + }, + { + "start": 34121.48, + "end": 34123.8, + "probability": 0.0598 + }, + { + "start": 34123.98, + "end": 34126.32, + "probability": 0.4695 + }, + { + "start": 34127.46, + "end": 34128.91, + "probability": 0.9634 + }, + { + "start": 34134.3, + "end": 34134.96, + "probability": 0.1382 + }, + { + "start": 34134.96, + "end": 34135.62, + "probability": 0.459 + }, + { + "start": 34141.36, + "end": 34145.38, + "probability": 0.6738 + }, + { + "start": 34149.38, + "end": 34150.74, + "probability": 0.1323 + }, + { + "start": 34152.92, + "end": 34156.24, + "probability": 0.5805 + }, + { + "start": 34156.32, + "end": 34158.84, + "probability": 0.7753 + }, + { + "start": 34159.58, + "end": 34160.6, + "probability": 0.5959 + }, + { + "start": 34160.62, + "end": 34161.26, + "probability": 0.5264 + }, + { + "start": 34161.36, + "end": 34161.92, + "probability": 0.724 + }, + { + "start": 34161.92, + "end": 34163.44, + "probability": 0.3742 + }, + { + "start": 34167.86, + "end": 34167.86, + "probability": 0.0751 + }, + { + "start": 34167.86, + "end": 34168.06, + "probability": 0.2176 + }, + { + "start": 34168.18, + "end": 34168.18, + "probability": 0.0047 + }, + { + "start": 34173.72, + "end": 34174.98, + "probability": 0.3442 + }, + { + "start": 34175.56, + "end": 34178.54, + "probability": 0.5118 + }, + { + "start": 34182.54, + "end": 34188.0, + "probability": 0.0851 + }, + { + "start": 34189.12, + "end": 34193.5, + "probability": 0.6454 + }, + { + "start": 34193.94, + "end": 34194.4, + "probability": 0.05 + }, + { + "start": 34194.62, + "end": 34196.54, + "probability": 0.7718 + }, + { + "start": 34196.66, + "end": 34198.03, + "probability": 0.8025 + }, + { + "start": 34198.52, + "end": 34199.12, + "probability": 0.268 + }, + { + "start": 34199.44, + "end": 34200.52, + "probability": 0.6644 + }, + { + "start": 34200.62, + "end": 34202.9, + "probability": 0.8251 + }, + { + "start": 34203.04, + "end": 34205.08, + "probability": 0.9278 + }, + { + "start": 34205.46, + "end": 34206.94, + "probability": 0.9878 + }, + { + "start": 34207.02, + "end": 34207.6, + "probability": 0.9556 + }, + { + "start": 34208.05, + "end": 34210.96, + "probability": 0.7503 + }, + { + "start": 34212.16, + "end": 34214.72, + "probability": 0.025 + }, + { + "start": 34215.25, + "end": 34218.48, + "probability": 0.9054 + }, + { + "start": 34218.5, + "end": 34219.96, + "probability": 0.4597 + }, + { + "start": 34220.16, + "end": 34222.04, + "probability": 0.7607 + }, + { + "start": 34222.66, + "end": 34224.0, + "probability": 0.9308 + }, + { + "start": 34224.86, + "end": 34225.94, + "probability": 0.7489 + }, + { + "start": 34226.0, + "end": 34227.02, + "probability": 0.918 + }, + { + "start": 34232.01, + "end": 34233.66, + "probability": 0.5658 + }, + { + "start": 34233.9, + "end": 34235.96, + "probability": 0.6589 + }, + { + "start": 34236.0, + "end": 34237.06, + "probability": 0.0198 + }, + { + "start": 34237.36, + "end": 34238.52, + "probability": 0.0595 + }, + { + "start": 34240.36, + "end": 34240.7, + "probability": 0.2795 + }, + { + "start": 34242.18, + "end": 34242.9, + "probability": 0.6362 + }, + { + "start": 34244.18, + "end": 34245.0, + "probability": 0.2712 + }, + { + "start": 34245.58, + "end": 34246.9, + "probability": 0.7188 + }, + { + "start": 34247.42, + "end": 34248.46, + "probability": 0.3757 + }, + { + "start": 34249.44, + "end": 34250.61, + "probability": 0.9051 + }, + { + "start": 34250.88, + "end": 34251.12, + "probability": 0.7166 + }, + { + "start": 34256.52, + "end": 34259.78, + "probability": 0.6848 + }, + { + "start": 34260.0, + "end": 34264.79, + "probability": 0.8555 + }, + { + "start": 34265.0, + "end": 34268.24, + "probability": 0.9421 + }, + { + "start": 34268.76, + "end": 34269.93, + "probability": 0.9869 + }, + { + "start": 34274.94, + "end": 34279.06, + "probability": 0.7873 + }, + { + "start": 34281.46, + "end": 34283.18, + "probability": 0.8229 + }, + { + "start": 34288.74, + "end": 34292.26, + "probability": 0.9977 + }, + { + "start": 34292.26, + "end": 34294.8, + "probability": 0.9464 + }, + { + "start": 34295.52, + "end": 34295.84, + "probability": 0.8368 + }, + { + "start": 34295.96, + "end": 34298.58, + "probability": 0.9934 + }, + { + "start": 34298.64, + "end": 34301.62, + "probability": 0.9209 + }, + { + "start": 34302.36, + "end": 34305.16, + "probability": 0.8383 + }, + { + "start": 34305.26, + "end": 34308.4, + "probability": 0.9484 + }, + { + "start": 34308.66, + "end": 34309.04, + "probability": 0.6243 + }, + { + "start": 34310.0, + "end": 34311.74, + "probability": 0.4077 + }, + { + "start": 34312.04, + "end": 34312.36, + "probability": 0.4447 + }, + { + "start": 34312.54, + "end": 34314.26, + "probability": 0.83 + }, + { + "start": 34314.44, + "end": 34316.81, + "probability": 0.8551 + }, + { + "start": 34317.72, + "end": 34318.06, + "probability": 0.0173 + }, + { + "start": 34318.78, + "end": 34320.98, + "probability": 0.6383 + }, + { + "start": 34321.06, + "end": 34321.42, + "probability": 0.6737 + }, + { + "start": 34321.72, + "end": 34322.8, + "probability": 0.7732 + }, + { + "start": 34323.04, + "end": 34324.18, + "probability": 0.7851 + }, + { + "start": 34324.36, + "end": 34324.86, + "probability": 0.4055 + }, + { + "start": 34324.92, + "end": 34325.82, + "probability": 0.7591 + }, + { + "start": 34325.9, + "end": 34326.78, + "probability": 0.7886 + }, + { + "start": 34327.2, + "end": 34328.42, + "probability": 0.9749 + }, + { + "start": 34328.68, + "end": 34329.54, + "probability": 0.8215 + }, + { + "start": 34330.82, + "end": 34331.36, + "probability": 0.6453 + }, + { + "start": 34331.74, + "end": 34332.72, + "probability": 0.5795 + }, + { + "start": 34332.76, + "end": 34333.6, + "probability": 0.7511 + }, + { + "start": 34333.82, + "end": 34335.18, + "probability": 0.7207 + }, + { + "start": 34335.44, + "end": 34337.06, + "probability": 0.9176 + }, + { + "start": 34337.1, + "end": 34337.4, + "probability": 0.2573 + }, + { + "start": 34337.4, + "end": 34339.2, + "probability": 0.9417 + }, + { + "start": 34339.32, + "end": 34339.48, + "probability": 0.8562 + }, + { + "start": 34340.48, + "end": 34344.2, + "probability": 0.9175 + }, + { + "start": 34356.64, + "end": 34358.98, + "probability": 0.2188 + }, + { + "start": 34359.06, + "end": 34359.54, + "probability": 0.0304 + }, + { + "start": 34359.56, + "end": 34361.68, + "probability": 0.0265 + }, + { + "start": 34362.3, + "end": 34365.0, + "probability": 0.1215 + }, + { + "start": 34365.58, + "end": 34367.14, + "probability": 0.0606 + }, + { + "start": 34371.06, + "end": 34371.2, + "probability": 0.097 + }, + { + "start": 34372.68, + "end": 34374.34, + "probability": 0.049 + }, + { + "start": 34374.34, + "end": 34374.48, + "probability": 0.2125 + }, + { + "start": 34374.48, + "end": 34375.34, + "probability": 0.0385 + }, + { + "start": 34376.3, + "end": 34378.12, + "probability": 0.0045 + }, + { + "start": 34379.7, + "end": 34379.8, + "probability": 0.0 + }, + { + "start": 34392.66, + "end": 34393.56, + "probability": 0.0753 + }, + { + "start": 34402.86, + "end": 34403.76, + "probability": 0.0443 + }, + { + "start": 34404.82, + "end": 34407.0, + "probability": 0.0191 + }, + { + "start": 34407.86, + "end": 34408.34, + "probability": 0.0441 + }, + { + "start": 34408.86, + "end": 34409.52, + "probability": 0.1009 + }, + { + "start": 34409.98, + "end": 34412.4, + "probability": 0.0557 + }, + { + "start": 34412.4, + "end": 34412.68, + "probability": 0.1662 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.0, + "end": 34424.0, + "probability": 0.0 + }, + { + "start": 34424.14, + "end": 34424.2, + "probability": 0.0367 + }, + { + "start": 34424.2, + "end": 34424.2, + "probability": 0.1565 + }, + { + "start": 34424.2, + "end": 34424.76, + "probability": 0.4084 + }, + { + "start": 34424.88, + "end": 34426.26, + "probability": 0.6341 + }, + { + "start": 34426.42, + "end": 34427.16, + "probability": 0.677 + }, + { + "start": 34427.16, + "end": 34427.93, + "probability": 0.1209 + }, + { + "start": 34428.8, + "end": 34429.84, + "probability": 0.8627 + }, + { + "start": 34429.9, + "end": 34432.34, + "probability": 0.8083 + }, + { + "start": 34432.56, + "end": 34432.8, + "probability": 0.9378 + }, + { + "start": 34433.36, + "end": 34434.7, + "probability": 0.6378 + }, + { + "start": 34436.12, + "end": 34436.96, + "probability": 0.4365 + }, + { + "start": 34438.14, + "end": 34439.14, + "probability": 0.9803 + }, + { + "start": 34439.44, + "end": 34439.76, + "probability": 0.6768 + }, + { + "start": 34441.18, + "end": 34442.36, + "probability": 0.5261 + }, + { + "start": 34443.84, + "end": 34444.34, + "probability": 0.8592 + }, + { + "start": 34445.28, + "end": 34445.86, + "probability": 0.9812 + }, + { + "start": 34446.44, + "end": 34447.04, + "probability": 0.5059 + }, + { + "start": 34448.78, + "end": 34448.78, + "probability": 0.1189 + }, + { + "start": 34448.78, + "end": 34449.84, + "probability": 0.6925 + }, + { + "start": 34449.86, + "end": 34450.78, + "probability": 0.8356 + }, + { + "start": 34452.22, + "end": 34452.94, + "probability": 0.7837 + }, + { + "start": 34453.02, + "end": 34454.92, + "probability": 0.7231 + }, + { + "start": 34455.2, + "end": 34455.82, + "probability": 0.9134 + }, + { + "start": 34455.94, + "end": 34457.56, + "probability": 0.981 + }, + { + "start": 34457.6, + "end": 34460.66, + "probability": 0.8963 + }, + { + "start": 34461.58, + "end": 34461.94, + "probability": 0.6201 + }, + { + "start": 34461.94, + "end": 34463.59, + "probability": 0.7266 + }, + { + "start": 34464.26, + "end": 34467.32, + "probability": 0.9869 + }, + { + "start": 34467.38, + "end": 34469.86, + "probability": 0.5543 + }, + { + "start": 34470.44, + "end": 34470.96, + "probability": 0.7392 + }, + { + "start": 34471.08, + "end": 34472.42, + "probability": 0.7857 + }, + { + "start": 34472.56, + "end": 34475.84, + "probability": 0.9704 + }, + { + "start": 34476.06, + "end": 34477.92, + "probability": 0.824 + }, + { + "start": 34478.86, + "end": 34481.84, + "probability": 0.8287 + }, + { + "start": 34482.14, + "end": 34482.48, + "probability": 0.9388 + }, + { + "start": 34483.88, + "end": 34484.64, + "probability": 0.9809 + }, + { + "start": 34484.74, + "end": 34490.56, + "probability": 0.9937 + }, + { + "start": 34491.72, + "end": 34492.64, + "probability": 0.7812 + }, + { + "start": 34495.08, + "end": 34495.98, + "probability": 0.7783 + }, + { + "start": 34496.54, + "end": 34498.24, + "probability": 0.9796 + }, + { + "start": 34498.36, + "end": 34499.08, + "probability": 0.7199 + }, + { + "start": 34499.12, + "end": 34501.16, + "probability": 0.952 + }, + { + "start": 34501.78, + "end": 34502.92, + "probability": 0.5814 + }, + { + "start": 34503.64, + "end": 34510.12, + "probability": 0.9868 + }, + { + "start": 34510.94, + "end": 34511.56, + "probability": 0.8856 + }, + { + "start": 34512.08, + "end": 34515.1, + "probability": 0.9652 + }, + { + "start": 34516.14, + "end": 34517.4, + "probability": 0.9899 + }, + { + "start": 34517.5, + "end": 34518.46, + "probability": 0.9938 + }, + { + "start": 34518.56, + "end": 34520.06, + "probability": 0.9201 + }, + { + "start": 34521.54, + "end": 34522.28, + "probability": 0.8166 + }, + { + "start": 34522.66, + "end": 34524.28, + "probability": 0.9824 + }, + { + "start": 34524.4, + "end": 34526.46, + "probability": 0.9618 + }, + { + "start": 34526.5, + "end": 34527.74, + "probability": 0.9688 + }, + { + "start": 34528.22, + "end": 34528.38, + "probability": 0.2717 + }, + { + "start": 34528.38, + "end": 34532.74, + "probability": 0.8389 + }, + { + "start": 34533.18, + "end": 34535.28, + "probability": 0.7166 + }, + { + "start": 34535.56, + "end": 34537.66, + "probability": 0.5806 + }, + { + "start": 34537.92, + "end": 34538.68, + "probability": 0.8834 + }, + { + "start": 34538.72, + "end": 34538.78, + "probability": 0.3969 + }, + { + "start": 34538.78, + "end": 34540.36, + "probability": 0.7433 + }, + { + "start": 34540.92, + "end": 34542.98, + "probability": 0.7151 + }, + { + "start": 34543.38, + "end": 34545.12, + "probability": 0.9688 + }, + { + "start": 34545.74, + "end": 34547.02, + "probability": 0.9995 + }, + { + "start": 34547.22, + "end": 34552.14, + "probability": 0.9817 + }, + { + "start": 34552.3, + "end": 34553.56, + "probability": 0.9983 + }, + { + "start": 34553.66, + "end": 34554.26, + "probability": 0.7761 + }, + { + "start": 34554.36, + "end": 34554.7, + "probability": 0.9513 + }, + { + "start": 34554.7, + "end": 34558.2, + "probability": 0.9902 + }, + { + "start": 34558.68, + "end": 34564.34, + "probability": 0.999 + }, + { + "start": 34564.86, + "end": 34565.7, + "probability": 0.8655 + }, + { + "start": 34566.86, + "end": 34567.5, + "probability": 0.8709 + }, + { + "start": 34568.06, + "end": 34568.62, + "probability": 0.8637 + }, + { + "start": 34569.46, + "end": 34572.08, + "probability": 0.9438 + }, + { + "start": 34572.52, + "end": 34574.5, + "probability": 0.9114 + }, + { + "start": 34575.08, + "end": 34580.62, + "probability": 0.9858 + }, + { + "start": 34581.3, + "end": 34584.84, + "probability": 0.9437 + }, + { + "start": 34585.6, + "end": 34588.02, + "probability": 0.9905 + }, + { + "start": 34588.16, + "end": 34589.63, + "probability": 0.8526 + }, + { + "start": 34590.42, + "end": 34594.52, + "probability": 0.9609 + }, + { + "start": 34594.7, + "end": 34596.86, + "probability": 0.957 + }, + { + "start": 34597.44, + "end": 34599.78, + "probability": 0.9605 + }, + { + "start": 34600.12, + "end": 34602.12, + "probability": 0.6955 + }, + { + "start": 34602.38, + "end": 34603.72, + "probability": 0.7972 + }, + { + "start": 34603.76, + "end": 34611.16, + "probability": 0.9614 + }, + { + "start": 34611.16, + "end": 34612.0, + "probability": 0.745 + }, + { + "start": 34612.06, + "end": 34612.46, + "probability": 0.5215 + }, + { + "start": 34612.54, + "end": 34613.04, + "probability": 0.5405 + }, + { + "start": 34613.2, + "end": 34614.3, + "probability": 0.7553 + }, + { + "start": 34614.44, + "end": 34615.2, + "probability": 0.9625 + }, + { + "start": 34615.6, + "end": 34617.42, + "probability": 0.9592 + }, + { + "start": 34617.44, + "end": 34618.1, + "probability": 0.5894 + }, + { + "start": 34618.18, + "end": 34618.74, + "probability": 0.9443 + }, + { + "start": 34618.82, + "end": 34619.86, + "probability": 0.8992 + }, + { + "start": 34619.98, + "end": 34622.4, + "probability": 0.9979 + }, + { + "start": 34622.52, + "end": 34623.44, + "probability": 0.3356 + }, + { + "start": 34624.04, + "end": 34625.02, + "probability": 0.4063 + }, + { + "start": 34625.64, + "end": 34629.9, + "probability": 0.9636 + }, + { + "start": 34629.96, + "end": 34630.58, + "probability": 0.5656 + }, + { + "start": 34630.7, + "end": 34634.26, + "probability": 0.9899 + }, + { + "start": 34634.44, + "end": 34635.09, + "probability": 0.9146 + }, + { + "start": 34636.04, + "end": 34640.74, + "probability": 0.9255 + }, + { + "start": 34640.78, + "end": 34641.26, + "probability": 0.594 + }, + { + "start": 34641.36, + "end": 34642.18, + "probability": 0.8484 + }, + { + "start": 34642.26, + "end": 34644.07, + "probability": 0.9971 + }, + { + "start": 34644.28, + "end": 34644.94, + "probability": 0.8096 + }, + { + "start": 34645.14, + "end": 34645.9, + "probability": 0.4307 + }, + { + "start": 34645.94, + "end": 34647.72, + "probability": 0.6482 + }, + { + "start": 34647.78, + "end": 34650.48, + "probability": 0.8756 + }, + { + "start": 34651.02, + "end": 34656.5, + "probability": 0.96 + }, + { + "start": 34656.88, + "end": 34658.96, + "probability": 0.079 + }, + { + "start": 34658.96, + "end": 34658.96, + "probability": 0.3078 + }, + { + "start": 34658.96, + "end": 34660.36, + "probability": 0.2341 + }, + { + "start": 34660.46, + "end": 34661.44, + "probability": 0.7781 + }, + { + "start": 34661.62, + "end": 34662.66, + "probability": 0.3773 + }, + { + "start": 34663.24, + "end": 34663.32, + "probability": 0.2044 + }, + { + "start": 34663.32, + "end": 34665.52, + "probability": 0.7416 + }, + { + "start": 34665.52, + "end": 34666.92, + "probability": 0.4209 + }, + { + "start": 34667.18, + "end": 34667.86, + "probability": 0.6681 + }, + { + "start": 34667.98, + "end": 34668.28, + "probability": 0.9188 + }, + { + "start": 34668.34, + "end": 34669.14, + "probability": 0.918 + }, + { + "start": 34669.36, + "end": 34670.15, + "probability": 0.8153 + }, + { + "start": 34670.24, + "end": 34673.14, + "probability": 0.9988 + }, + { + "start": 34673.74, + "end": 34675.82, + "probability": 0.7717 + }, + { + "start": 34675.88, + "end": 34678.06, + "probability": 0.7215 + }, + { + "start": 34678.42, + "end": 34678.5, + "probability": 0.9844 + }, + { + "start": 34678.5, + "end": 34679.18, + "probability": 0.6713 + }, + { + "start": 34679.58, + "end": 34680.49, + "probability": 0.9956 + }, + { + "start": 34681.2, + "end": 34681.97, + "probability": 0.9901 + }, + { + "start": 34682.82, + "end": 34683.46, + "probability": 0.5784 + }, + { + "start": 34683.56, + "end": 34689.22, + "probability": 0.9968 + }, + { + "start": 34689.34, + "end": 34689.42, + "probability": 0.2857 + }, + { + "start": 34689.42, + "end": 34691.24, + "probability": 0.6099 + }, + { + "start": 34691.34, + "end": 34692.93, + "probability": 0.8579 + }, + { + "start": 34693.0, + "end": 34697.66, + "probability": 0.7846 + }, + { + "start": 34698.56, + "end": 34700.94, + "probability": 0.9936 + }, + { + "start": 34701.12, + "end": 34705.4, + "probability": 0.988 + }, + { + "start": 34706.12, + "end": 34710.02, + "probability": 0.8871 + }, + { + "start": 34710.82, + "end": 34711.74, + "probability": 0.524 + }, + { + "start": 34712.2, + "end": 34715.43, + "probability": 0.9797 + }, + { + "start": 34715.58, + "end": 34716.54, + "probability": 0.8702 + }, + { + "start": 34716.68, + "end": 34717.92, + "probability": 0.7687 + }, + { + "start": 34718.56, + "end": 34719.68, + "probability": 0.756 + }, + { + "start": 34720.26, + "end": 34721.33, + "probability": 0.9953 + }, + { + "start": 34722.14, + "end": 34729.1, + "probability": 0.9803 + }, + { + "start": 34731.46, + "end": 34732.4, + "probability": 0.6802 + }, + { + "start": 34732.56, + "end": 34733.38, + "probability": 0.9767 + }, + { + "start": 34733.88, + "end": 34738.18, + "probability": 0.7699 + }, + { + "start": 34738.94, + "end": 34740.32, + "probability": 0.985 + }, + { + "start": 34741.7, + "end": 34743.02, + "probability": 0.7742 + }, + { + "start": 34744.08, + "end": 34748.58, + "probability": 0.9916 + }, + { + "start": 34749.26, + "end": 34749.87, + "probability": 0.7251 + }, + { + "start": 34750.84, + "end": 34750.84, + "probability": 0.0398 + }, + { + "start": 34750.84, + "end": 34755.36, + "probability": 0.9978 + }, + { + "start": 34756.06, + "end": 34759.0, + "probability": 0.9939 + }, + { + "start": 34759.28, + "end": 34760.7, + "probability": 0.9938 + }, + { + "start": 34761.88, + "end": 34763.66, + "probability": 0.7556 + }, + { + "start": 34763.84, + "end": 34765.48, + "probability": 0.8076 + }, + { + "start": 34765.58, + "end": 34766.34, + "probability": 0.9615 + }, + { + "start": 34766.62, + "end": 34768.34, + "probability": 0.951 + }, + { + "start": 34768.44, + "end": 34769.34, + "probability": 0.7774 + }, + { + "start": 34769.94, + "end": 34772.26, + "probability": 0.8535 + }, + { + "start": 34772.9, + "end": 34775.27, + "probability": 0.9902 + }, + { + "start": 34775.65, + "end": 34778.76, + "probability": 0.9064 + }, + { + "start": 34779.12, + "end": 34780.0, + "probability": 0.7524 + }, + { + "start": 34780.88, + "end": 34783.16, + "probability": 0.8129 + }, + { + "start": 34783.82, + "end": 34786.26, + "probability": 0.7933 + }, + { + "start": 34786.32, + "end": 34788.02, + "probability": 0.9053 + }, + { + "start": 34789.4, + "end": 34790.24, + "probability": 0.9282 + }, + { + "start": 34790.48, + "end": 34795.56, + "probability": 0.9651 + }, + { + "start": 34795.66, + "end": 34796.56, + "probability": 0.5146 + }, + { + "start": 34797.54, + "end": 34800.3, + "probability": 0.6847 + }, + { + "start": 34801.1, + "end": 34801.9, + "probability": 0.9031 + }, + { + "start": 34802.16, + "end": 34804.18, + "probability": 0.9787 + }, + { + "start": 34804.26, + "end": 34804.86, + "probability": 0.8938 + }, + { + "start": 34804.92, + "end": 34807.3, + "probability": 0.949 + }, + { + "start": 34807.3, + "end": 34809.66, + "probability": 0.9932 + }, + { + "start": 34812.38, + "end": 34815.46, + "probability": 0.0054 + }, + { + "start": 34815.46, + "end": 34816.58, + "probability": 0.3324 + }, + { + "start": 34817.32, + "end": 34822.1, + "probability": 0.8393 + }, + { + "start": 34824.1, + "end": 34827.3, + "probability": 0.8071 + }, + { + "start": 34827.44, + "end": 34828.88, + "probability": 0.9757 + }, + { + "start": 34830.04, + "end": 34834.3, + "probability": 0.7128 + }, + { + "start": 34835.3, + "end": 34840.14, + "probability": 0.921 + }, + { + "start": 34840.88, + "end": 34843.12, + "probability": 0.9972 + }, + { + "start": 34843.96, + "end": 34846.31, + "probability": 0.9475 + }, + { + "start": 34847.6, + "end": 34849.2, + "probability": 0.9752 + }, + { + "start": 34850.48, + "end": 34852.1, + "probability": 0.887 + }, + { + "start": 34852.16, + "end": 34852.52, + "probability": 0.8918 + }, + { + "start": 34852.66, + "end": 34858.04, + "probability": 0.992 + }, + { + "start": 34859.26, + "end": 34860.08, + "probability": 0.6362 + }, + { + "start": 34860.16, + "end": 34862.5, + "probability": 0.8936 + }, + { + "start": 34862.96, + "end": 34867.58, + "probability": 0.9826 + }, + { + "start": 34870.3, + "end": 34872.45, + "probability": 0.4714 + }, + { + "start": 34872.86, + "end": 34875.96, + "probability": 0.6422 + }, + { + "start": 34876.3, + "end": 34878.84, + "probability": 0.9209 + }, + { + "start": 34879.2, + "end": 34879.22, + "probability": 0.0504 + }, + { + "start": 34879.22, + "end": 34879.22, + "probability": 0.1184 + }, + { + "start": 34879.22, + "end": 34879.71, + "probability": 0.3125 + }, + { + "start": 34880.42, + "end": 34880.94, + "probability": 0.7037 + }, + { + "start": 34881.08, + "end": 34881.62, + "probability": 0.5938 + }, + { + "start": 34882.0, + "end": 34882.8, + "probability": 0.8838 + }, + { + "start": 34882.92, + "end": 34883.48, + "probability": 0.4602 + }, + { + "start": 34883.48, + "end": 34884.5, + "probability": 0.8994 + }, + { + "start": 34884.84, + "end": 34889.08, + "probability": 0.9588 + }, + { + "start": 34889.12, + "end": 34890.21, + "probability": 0.7045 + }, + { + "start": 34891.2, + "end": 34891.86, + "probability": 0.748 + }, + { + "start": 34892.0, + "end": 34892.54, + "probability": 0.6453 + }, + { + "start": 34892.64, + "end": 34894.7, + "probability": 0.9435 + }, + { + "start": 34894.8, + "end": 34896.36, + "probability": 0.9973 + }, + { + "start": 34898.12, + "end": 34899.72, + "probability": 0.9721 + }, + { + "start": 34899.84, + "end": 34901.38, + "probability": 0.9424 + }, + { + "start": 34901.44, + "end": 34902.18, + "probability": 0.8553 + }, + { + "start": 34902.96, + "end": 34904.16, + "probability": 0.4477 + }, + { + "start": 34904.7, + "end": 34905.46, + "probability": 0.7016 + }, + { + "start": 34906.06, + "end": 34910.12, + "probability": 0.9736 + }, + { + "start": 34910.8, + "end": 34912.52, + "probability": 0.8407 + }, + { + "start": 34912.62, + "end": 34914.44, + "probability": 0.8341 + }, + { + "start": 34914.56, + "end": 34914.9, + "probability": 0.9646 + }, + { + "start": 34914.98, + "end": 34917.12, + "probability": 0.977 + }, + { + "start": 34918.42, + "end": 34919.76, + "probability": 0.796 + }, + { + "start": 34920.04, + "end": 34923.56, + "probability": 0.9894 + }, + { + "start": 34924.06, + "end": 34924.8, + "probability": 0.6461 + }, + { + "start": 34924.9, + "end": 34925.92, + "probability": 0.9233 + }, + { + "start": 34925.94, + "end": 34927.32, + "probability": 0.9136 + }, + { + "start": 34927.42, + "end": 34928.02, + "probability": 0.8654 + }, + { + "start": 34928.08, + "end": 34928.8, + "probability": 0.9384 + }, + { + "start": 34928.9, + "end": 34929.78, + "probability": 0.8745 + }, + { + "start": 34929.96, + "end": 34931.26, + "probability": 0.6251 + }, + { + "start": 34931.64, + "end": 34931.64, + "probability": 0.3076 + }, + { + "start": 34931.64, + "end": 34934.4, + "probability": 0.9705 + }, + { + "start": 34934.68, + "end": 34938.67, + "probability": 0.8244 + }, + { + "start": 34940.18, + "end": 34942.48, + "probability": 0.9404 + }, + { + "start": 34943.22, + "end": 34947.42, + "probability": 0.9879 + }, + { + "start": 34947.56, + "end": 34950.18, + "probability": 0.9114 + }, + { + "start": 34950.22, + "end": 34951.29, + "probability": 0.9349 + }, + { + "start": 34951.58, + "end": 34952.92, + "probability": 0.9454 + }, + { + "start": 34953.28, + "end": 34954.48, + "probability": 0.66 + }, + { + "start": 34955.24, + "end": 34960.44, + "probability": 0.9868 + }, + { + "start": 34960.64, + "end": 34963.18, + "probability": 0.9032 + }, + { + "start": 34964.12, + "end": 34966.86, + "probability": 0.9139 + }, + { + "start": 34966.9, + "end": 34972.16, + "probability": 0.9667 + }, + { + "start": 34972.3, + "end": 34977.6, + "probability": 0.9927 + }, + { + "start": 34978.62, + "end": 34979.08, + "probability": 0.5183 + }, + { + "start": 34979.12, + "end": 34980.22, + "probability": 0.6379 + }, + { + "start": 34980.74, + "end": 34981.32, + "probability": 0.9388 + }, + { + "start": 34991.8, + "end": 34992.3, + "probability": 0.0834 + }, + { + "start": 34992.78, + "end": 34999.4, + "probability": 0.9834 + }, + { + "start": 34999.5, + "end": 35000.5, + "probability": 0.8283 + }, + { + "start": 35000.6, + "end": 35001.06, + "probability": 0.6664 + }, + { + "start": 35001.52, + "end": 35001.66, + "probability": 0.0141 + }, + { + "start": 35001.78, + "end": 35004.8, + "probability": 0.7275 + }, + { + "start": 35004.86, + "end": 35005.98, + "probability": 0.6491 + }, + { + "start": 35007.28, + "end": 35008.0, + "probability": 0.0139 + }, + { + "start": 35008.0, + "end": 35009.66, + "probability": 0.2442 + }, + { + "start": 35012.9, + "end": 35015.72, + "probability": 0.9512 + }, + { + "start": 35016.08, + "end": 35017.42, + "probability": 0.6657 + }, + { + "start": 35017.98, + "end": 35018.98, + "probability": 0.5057 + }, + { + "start": 35019.12, + "end": 35020.26, + "probability": 0.9623 + }, + { + "start": 35020.4, + "end": 35022.7, + "probability": 0.9946 + }, + { + "start": 35023.06, + "end": 35027.74, + "probability": 0.9639 + }, + { + "start": 35028.92, + "end": 35030.9, + "probability": 0.6746 + }, + { + "start": 35031.62, + "end": 35036.02, + "probability": 0.0979 + }, + { + "start": 35039.06, + "end": 35041.2, + "probability": 0.6828 + }, + { + "start": 35041.74, + "end": 35043.92, + "probability": 0.7457 + }, + { + "start": 35049.6, + "end": 35050.12, + "probability": 0.2611 + }, + { + "start": 35050.12, + "end": 35057.5, + "probability": 0.8103 + }, + { + "start": 35058.2, + "end": 35058.6, + "probability": 0.8651 + }, + { + "start": 35058.84, + "end": 35062.27, + "probability": 0.7814 + }, + { + "start": 35063.54, + "end": 35064.62, + "probability": 0.7646 + }, + { + "start": 35065.58, + "end": 35067.92, + "probability": 0.5751 + }, + { + "start": 35068.26, + "end": 35069.98, + "probability": 0.6054 + }, + { + "start": 35070.22, + "end": 35072.82, + "probability": 0.7485 + }, + { + "start": 35073.68, + "end": 35076.28, + "probability": 0.756 + }, + { + "start": 35076.88, + "end": 35080.15, + "probability": 0.8176 + }, + { + "start": 35080.28, + "end": 35081.12, + "probability": 0.6123 + }, + { + "start": 35081.56, + "end": 35083.14, + "probability": 0.9549 + }, + { + "start": 35083.28, + "end": 35086.24, + "probability": 0.8308 + }, + { + "start": 35086.72, + "end": 35090.36, + "probability": 0.9858 + }, + { + "start": 35090.36, + "end": 35094.5, + "probability": 0.9923 + }, + { + "start": 35094.88, + "end": 35096.94, + "probability": 0.9871 + }, + { + "start": 35097.0, + "end": 35101.9, + "probability": 0.8173 + }, + { + "start": 35101.96, + "end": 35103.32, + "probability": 0.5453 + }, + { + "start": 35103.32, + "end": 35105.14, + "probability": 0.6813 + }, + { + "start": 35105.22, + "end": 35107.56, + "probability": 0.5395 + }, + { + "start": 35107.86, + "end": 35108.43, + "probability": 0.6497 + }, + { + "start": 35108.72, + "end": 35113.95, + "probability": 0.8499 + }, + { + "start": 35114.58, + "end": 35114.76, + "probability": 0.5278 + }, + { + "start": 35115.12, + "end": 35119.52, + "probability": 0.7804 + }, + { + "start": 35120.24, + "end": 35122.12, + "probability": 0.745 + }, + { + "start": 35122.42, + "end": 35129.58, + "probability": 0.8167 + }, + { + "start": 35130.24, + "end": 35134.18, + "probability": 0.9845 + }, + { + "start": 35134.18, + "end": 35137.62, + "probability": 0.3343 + }, + { + "start": 35137.62, + "end": 35142.62, + "probability": 0.9746 + }, + { + "start": 35143.0, + "end": 35144.53, + "probability": 0.0756 + }, + { + "start": 35145.08, + "end": 35145.42, + "probability": 0.7465 + }, + { + "start": 35145.62, + "end": 35146.24, + "probability": 0.8151 + }, + { + "start": 35147.38, + "end": 35147.88, + "probability": 0.9062 + }, + { + "start": 35148.16, + "end": 35149.24, + "probability": 0.6477 + }, + { + "start": 35149.42, + "end": 35151.52, + "probability": 0.903 + }, + { + "start": 35151.64, + "end": 35153.72, + "probability": 0.7163 + }, + { + "start": 35153.82, + "end": 35154.89, + "probability": 0.9912 + }, + { + "start": 35155.88, + "end": 35161.06, + "probability": 0.9268 + }, + { + "start": 35161.8, + "end": 35164.78, + "probability": 0.9946 + }, + { + "start": 35164.96, + "end": 35166.64, + "probability": 0.9866 + }, + { + "start": 35167.32, + "end": 35169.1, + "probability": 0.7309 + }, + { + "start": 35171.08, + "end": 35174.82, + "probability": 0.9971 + }, + { + "start": 35175.62, + "end": 35176.74, + "probability": 0.6866 + }, + { + "start": 35177.26, + "end": 35180.8, + "probability": 0.9971 + }, + { + "start": 35181.28, + "end": 35181.38, + "probability": 0.4775 + }, + { + "start": 35181.9, + "end": 35185.9, + "probability": 0.8322 + }, + { + "start": 35185.96, + "end": 35186.66, + "probability": 0.9004 + }, + { + "start": 35187.02, + "end": 35188.52, + "probability": 0.9093 + }, + { + "start": 35189.02, + "end": 35189.84, + "probability": 0.582 + }, + { + "start": 35191.04, + "end": 35193.36, + "probability": 0.9932 + }, + { + "start": 35194.48, + "end": 35200.3, + "probability": 0.9836 + }, + { + "start": 35201.46, + "end": 35203.36, + "probability": 0.9861 + }, + { + "start": 35203.54, + "end": 35204.03, + "probability": 0.3092 + }, + { + "start": 35205.94, + "end": 35210.68, + "probability": 0.9534 + }, + { + "start": 35212.8, + "end": 35215.82, + "probability": 0.9967 + }, + { + "start": 35216.52, + "end": 35217.12, + "probability": 0.9823 + }, + { + "start": 35220.74, + "end": 35224.06, + "probability": 0.941 + }, + { + "start": 35224.72, + "end": 35227.32, + "probability": 0.9762 + }, + { + "start": 35227.88, + "end": 35230.09, + "probability": 0.9907 + }, + { + "start": 35230.32, + "end": 35231.28, + "probability": 0.8066 + }, + { + "start": 35231.38, + "end": 35235.86, + "probability": 0.8483 + }, + { + "start": 35236.5, + "end": 35238.74, + "probability": 0.9792 + }, + { + "start": 35240.16, + "end": 35245.16, + "probability": 0.8126 + }, + { + "start": 35246.08, + "end": 35246.58, + "probability": 0.6587 + }, + { + "start": 35248.56, + "end": 35249.22, + "probability": 0.9023 + }, + { + "start": 35250.44, + "end": 35253.26, + "probability": 0.9604 + }, + { + "start": 35253.88, + "end": 35255.2, + "probability": 0.937 + }, + { + "start": 35257.1, + "end": 35258.7, + "probability": 0.9787 + }, + { + "start": 35258.94, + "end": 35261.46, + "probability": 0.8609 + }, + { + "start": 35262.32, + "end": 35266.86, + "probability": 0.9941 + }, + { + "start": 35267.56, + "end": 35271.56, + "probability": 0.9419 + }, + { + "start": 35271.92, + "end": 35273.46, + "probability": 0.9771 + }, + { + "start": 35274.24, + "end": 35277.64, + "probability": 0.9824 + }, + { + "start": 35279.52, + "end": 35282.46, + "probability": 0.9382 + }, + { + "start": 35283.04, + "end": 35284.84, + "probability": 0.8646 + }, + { + "start": 35284.92, + "end": 35285.4, + "probability": 0.9282 + }, + { + "start": 35285.5, + "end": 35289.56, + "probability": 0.9119 + }, + { + "start": 35290.14, + "end": 35298.98, + "probability": 0.7988 + }, + { + "start": 35299.12, + "end": 35301.26, + "probability": 0.7675 + }, + { + "start": 35301.38, + "end": 35301.76, + "probability": 0.5582 + }, + { + "start": 35301.94, + "end": 35305.63, + "probability": 0.7458 + }, + { + "start": 35306.44, + "end": 35307.46, + "probability": 0.9971 + }, + { + "start": 35309.08, + "end": 35312.34, + "probability": 0.9303 + }, + { + "start": 35314.32, + "end": 35314.68, + "probability": 0.8654 + }, + { + "start": 35315.42, + "end": 35317.4, + "probability": 0.9609 + }, + { + "start": 35318.06, + "end": 35318.76, + "probability": 0.9645 + }, + { + "start": 35320.08, + "end": 35320.66, + "probability": 0.855 + }, + { + "start": 35323.42, + "end": 35325.3, + "probability": 0.8446 + }, + { + "start": 35325.92, + "end": 35327.96, + "probability": 0.8384 + }, + { + "start": 35329.94, + "end": 35331.86, + "probability": 0.9684 + }, + { + "start": 35334.19, + "end": 35341.7, + "probability": 0.9697 + }, + { + "start": 35343.02, + "end": 35345.06, + "probability": 0.7202 + }, + { + "start": 35346.02, + "end": 35347.16, + "probability": 0.8474 + }, + { + "start": 35347.76, + "end": 35348.42, + "probability": 0.9829 + }, + { + "start": 35350.68, + "end": 35352.5, + "probability": 0.8225 + }, + { + "start": 35353.54, + "end": 35356.16, + "probability": 0.9841 + }, + { + "start": 35357.3, + "end": 35360.48, + "probability": 0.9803 + }, + { + "start": 35360.66, + "end": 35364.0, + "probability": 0.9469 + }, + { + "start": 35364.76, + "end": 35366.04, + "probability": 0.765 + }, + { + "start": 35366.56, + "end": 35370.56, + "probability": 0.9209 + }, + { + "start": 35371.32, + "end": 35375.08, + "probability": 0.9295 + }, + { + "start": 35375.82, + "end": 35377.4, + "probability": 0.9854 + }, + { + "start": 35378.64, + "end": 35383.15, + "probability": 0.9899 + }, + { + "start": 35383.74, + "end": 35385.56, + "probability": 0.9968 + }, + { + "start": 35385.6, + "end": 35390.28, + "probability": 0.9861 + }, + { + "start": 35393.24, + "end": 35395.92, + "probability": 0.9978 + }, + { + "start": 35396.74, + "end": 35398.04, + "probability": 0.8024 + }, + { + "start": 35399.0, + "end": 35402.72, + "probability": 0.9817 + }, + { + "start": 35403.68, + "end": 35407.38, + "probability": 0.9502 + }, + { + "start": 35408.34, + "end": 35414.28, + "probability": 0.9995 + }, + { + "start": 35414.4, + "end": 35414.9, + "probability": 0.7057 + }, + { + "start": 35414.9, + "end": 35417.38, + "probability": 0.97 + }, + { + "start": 35417.48, + "end": 35421.16, + "probability": 0.9937 + }, + { + "start": 35421.2, + "end": 35422.55, + "probability": 0.9791 + }, + { + "start": 35423.68, + "end": 35424.62, + "probability": 0.7667 + }, + { + "start": 35425.12, + "end": 35428.3, + "probability": 0.9498 + }, + { + "start": 35428.4, + "end": 35428.9, + "probability": 0.859 + }, + { + "start": 35428.96, + "end": 35429.52, + "probability": 0.8459 + }, + { + "start": 35429.66, + "end": 35430.82, + "probability": 0.7577 + }, + { + "start": 35438.92, + "end": 35440.76, + "probability": 0.6731 + }, + { + "start": 35441.98, + "end": 35443.1, + "probability": 0.7597 + }, + { + "start": 35443.22, + "end": 35444.22, + "probability": 0.554 + }, + { + "start": 35444.32, + "end": 35446.14, + "probability": 0.8793 + }, + { + "start": 35446.26, + "end": 35447.94, + "probability": 0.9627 + }, + { + "start": 35448.16, + "end": 35450.54, + "probability": 0.8471 + }, + { + "start": 35451.04, + "end": 35452.58, + "probability": 0.246 + }, + { + "start": 35452.66, + "end": 35453.62, + "probability": 0.3983 + }, + { + "start": 35453.74, + "end": 35454.68, + "probability": 0.4399 + }, + { + "start": 35455.1, + "end": 35455.54, + "probability": 0.4368 + }, + { + "start": 35455.68, + "end": 35458.54, + "probability": 0.8814 + }, + { + "start": 35458.54, + "end": 35462.4, + "probability": 0.9542 + }, + { + "start": 35463.02, + "end": 35464.24, + "probability": 0.5825 + }, + { + "start": 35467.22, + "end": 35468.26, + "probability": 0.0555 + }, + { + "start": 35468.5, + "end": 35468.72, + "probability": 0.6291 + }, + { + "start": 35469.36, + "end": 35470.26, + "probability": 0.7797 + }, + { + "start": 35470.94, + "end": 35472.6, + "probability": 0.731 + }, + { + "start": 35472.82, + "end": 35475.36, + "probability": 0.9672 + }, + { + "start": 35475.48, + "end": 35479.74, + "probability": 0.471 + }, + { + "start": 35480.42, + "end": 35485.62, + "probability": 0.9437 + }, + { + "start": 35486.2, + "end": 35486.86, + "probability": 0.0841 + } + ], + "segments_count": 12621, + "words_count": 62117, + "avg_words_per_segment": 4.9217, + "avg_segment_duration": 2.0836, + "avg_words_per_minute": 104.9939, + "plenum_id": "12446", + "duration": 35497.5, + "title": null, + "plenum_date": "2011-02-23" +} \ No newline at end of file