diff --git "a/27867/metadata.json" "b/27867/metadata.json" new file mode 100644--- /dev/null +++ "b/27867/metadata.json" @@ -0,0 +1,8992 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "27867", + "quality_score": 0.9214, + "per_segment_quality_scores": [ + { + "start": 52.18, + "end": 52.74, + "probability": 0.2314 + }, + { + "start": 54.06, + "end": 58.8, + "probability": 0.6776 + }, + { + "start": 58.88, + "end": 61.04, + "probability": 0.9414 + }, + { + "start": 62.92, + "end": 67.54, + "probability": 0.9363 + }, + { + "start": 75.76, + "end": 76.78, + "probability": 0.6262 + }, + { + "start": 76.94, + "end": 79.32, + "probability": 0.9045 + }, + { + "start": 79.44, + "end": 80.7, + "probability": 0.8803 + }, + { + "start": 80.86, + "end": 82.66, + "probability": 0.3633 + }, + { + "start": 82.82, + "end": 84.12, + "probability": 0.7859 + }, + { + "start": 84.16, + "end": 85.66, + "probability": 0.7558 + }, + { + "start": 86.06, + "end": 87.6, + "probability": 0.9194 + }, + { + "start": 87.76, + "end": 89.38, + "probability": 0.8999 + }, + { + "start": 89.98, + "end": 92.62, + "probability": 0.9925 + }, + { + "start": 92.62, + "end": 96.56, + "probability": 0.7099 + }, + { + "start": 96.7, + "end": 98.18, + "probability": 0.6847 + }, + { + "start": 98.58, + "end": 99.68, + "probability": 0.896 + }, + { + "start": 99.78, + "end": 100.42, + "probability": 0.9143 + }, + { + "start": 101.99, + "end": 107.36, + "probability": 0.9861 + }, + { + "start": 107.7, + "end": 109.14, + "probability": 0.8311 + }, + { + "start": 109.22, + "end": 113.24, + "probability": 0.8069 + }, + { + "start": 113.54, + "end": 116.48, + "probability": 0.9976 + }, + { + "start": 116.48, + "end": 120.86, + "probability": 0.895 + }, + { + "start": 121.34, + "end": 121.72, + "probability": 0.0073 + }, + { + "start": 130.81, + "end": 134.34, + "probability": 0.9901 + }, + { + "start": 134.66, + "end": 134.88, + "probability": 0.0229 + }, + { + "start": 134.88, + "end": 136.4, + "probability": 0.0325 + }, + { + "start": 136.4, + "end": 136.4, + "probability": 0.1399 + }, + { + "start": 136.4, + "end": 137.04, + "probability": 0.0323 + }, + { + "start": 137.08, + "end": 137.34, + "probability": 0.4571 + }, + { + "start": 138.46, + "end": 139.94, + "probability": 0.6341 + }, + { + "start": 139.94, + "end": 141.6, + "probability": 0.7118 + }, + { + "start": 142.36, + "end": 144.48, + "probability": 0.7536 + }, + { + "start": 144.6, + "end": 145.04, + "probability": 0.4673 + }, + { + "start": 145.08, + "end": 146.7, + "probability": 0.8117 + }, + { + "start": 152.54, + "end": 153.54, + "probability": 0.6251 + }, + { + "start": 153.7, + "end": 156.24, + "probability": 0.6522 + }, + { + "start": 157.02, + "end": 161.38, + "probability": 0.9845 + }, + { + "start": 162.0, + "end": 164.74, + "probability": 0.861 + }, + { + "start": 165.36, + "end": 168.36, + "probability": 0.9715 + }, + { + "start": 169.26, + "end": 172.02, + "probability": 0.9279 + }, + { + "start": 172.02, + "end": 177.28, + "probability": 0.9618 + }, + { + "start": 178.02, + "end": 181.96, + "probability": 0.9862 + }, + { + "start": 182.92, + "end": 185.44, + "probability": 0.8088 + }, + { + "start": 185.44, + "end": 189.64, + "probability": 0.9059 + }, + { + "start": 190.08, + "end": 191.56, + "probability": 0.5751 + }, + { + "start": 191.64, + "end": 194.0, + "probability": 0.7959 + }, + { + "start": 194.82, + "end": 194.84, + "probability": 0.1368 + }, + { + "start": 194.84, + "end": 195.3, + "probability": 0.5111 + }, + { + "start": 195.42, + "end": 198.16, + "probability": 0.9541 + }, + { + "start": 198.16, + "end": 200.72, + "probability": 0.8676 + }, + { + "start": 201.12, + "end": 202.34, + "probability": 0.686 + }, + { + "start": 203.18, + "end": 205.24, + "probability": 0.9231 + }, + { + "start": 205.86, + "end": 209.48, + "probability": 0.9576 + }, + { + "start": 209.96, + "end": 212.56, + "probability": 0.9808 + }, + { + "start": 213.26, + "end": 218.92, + "probability": 0.7179 + }, + { + "start": 219.32, + "end": 221.84, + "probability": 0.9257 + }, + { + "start": 222.1, + "end": 225.9, + "probability": 0.9937 + }, + { + "start": 226.68, + "end": 231.5, + "probability": 0.9517 + }, + { + "start": 231.9, + "end": 236.6, + "probability": 0.9897 + }, + { + "start": 236.6, + "end": 240.86, + "probability": 0.8862 + }, + { + "start": 241.52, + "end": 246.3, + "probability": 0.7283 + }, + { + "start": 246.72, + "end": 249.88, + "probability": 0.7803 + }, + { + "start": 250.26, + "end": 251.16, + "probability": 0.7488 + }, + { + "start": 251.26, + "end": 255.76, + "probability": 0.9627 + }, + { + "start": 256.08, + "end": 256.58, + "probability": 0.6455 + }, + { + "start": 256.96, + "end": 258.4, + "probability": 0.782 + }, + { + "start": 258.56, + "end": 260.18, + "probability": 0.7379 + }, + { + "start": 260.28, + "end": 260.72, + "probability": 0.6149 + }, + { + "start": 260.9, + "end": 262.18, + "probability": 0.9269 + }, + { + "start": 264.74, + "end": 269.28, + "probability": 0.6045 + }, + { + "start": 269.3, + "end": 271.64, + "probability": 0.5221 + }, + { + "start": 271.7, + "end": 274.44, + "probability": 0.9688 + }, + { + "start": 274.68, + "end": 279.66, + "probability": 0.998 + }, + { + "start": 280.54, + "end": 283.62, + "probability": 0.9976 + }, + { + "start": 284.12, + "end": 289.0, + "probability": 0.9954 + }, + { + "start": 290.08, + "end": 293.42, + "probability": 0.981 + }, + { + "start": 293.42, + "end": 296.84, + "probability": 0.9972 + }, + { + "start": 297.22, + "end": 297.9, + "probability": 0.7928 + }, + { + "start": 298.98, + "end": 302.66, + "probability": 0.9769 + }, + { + "start": 303.64, + "end": 305.97, + "probability": 0.9937 + }, + { + "start": 306.42, + "end": 307.88, + "probability": 0.969 + }, + { + "start": 308.58, + "end": 312.08, + "probability": 0.8623 + }, + { + "start": 312.14, + "end": 312.56, + "probability": 0.8656 + }, + { + "start": 312.74, + "end": 313.54, + "probability": 0.7353 + }, + { + "start": 313.64, + "end": 316.26, + "probability": 0.9243 + }, + { + "start": 316.46, + "end": 320.44, + "probability": 0.9545 + }, + { + "start": 321.06, + "end": 324.4, + "probability": 0.9997 + }, + { + "start": 325.6, + "end": 331.24, + "probability": 0.9866 + }, + { + "start": 332.58, + "end": 333.24, + "probability": 0.8222 + }, + { + "start": 334.06, + "end": 340.8, + "probability": 0.9931 + }, + { + "start": 341.88, + "end": 342.72, + "probability": 0.5982 + }, + { + "start": 343.32, + "end": 344.14, + "probability": 0.921 + }, + { + "start": 344.22, + "end": 345.86, + "probability": 0.9762 + }, + { + "start": 345.88, + "end": 346.5, + "probability": 0.9077 + }, + { + "start": 346.58, + "end": 347.0, + "probability": 0.9213 + }, + { + "start": 347.06, + "end": 347.7, + "probability": 0.6816 + }, + { + "start": 348.84, + "end": 352.06, + "probability": 0.9951 + }, + { + "start": 352.18, + "end": 353.22, + "probability": 0.9314 + }, + { + "start": 353.92, + "end": 358.0, + "probability": 0.9611 + }, + { + "start": 358.98, + "end": 361.44, + "probability": 0.9966 + }, + { + "start": 361.44, + "end": 364.24, + "probability": 0.9992 + }, + { + "start": 364.32, + "end": 366.74, + "probability": 0.9178 + }, + { + "start": 367.4, + "end": 369.84, + "probability": 0.998 + }, + { + "start": 370.9, + "end": 372.26, + "probability": 0.8783 + }, + { + "start": 372.42, + "end": 372.56, + "probability": 0.0188 + }, + { + "start": 372.62, + "end": 373.4, + "probability": 0.813 + }, + { + "start": 373.5, + "end": 375.6, + "probability": 0.9879 + }, + { + "start": 376.28, + "end": 380.2, + "probability": 0.9967 + }, + { + "start": 380.76, + "end": 382.2, + "probability": 0.9984 + }, + { + "start": 383.08, + "end": 383.54, + "probability": 0.8501 + }, + { + "start": 383.7, + "end": 384.58, + "probability": 0.8016 + }, + { + "start": 384.68, + "end": 385.38, + "probability": 0.8392 + }, + { + "start": 385.82, + "end": 388.58, + "probability": 0.9897 + }, + { + "start": 388.58, + "end": 392.74, + "probability": 0.986 + }, + { + "start": 393.82, + "end": 398.54, + "probability": 0.9731 + }, + { + "start": 399.66, + "end": 401.36, + "probability": 0.8012 + }, + { + "start": 402.33, + "end": 404.74, + "probability": 0.8979 + }, + { + "start": 404.74, + "end": 404.74, + "probability": 0.1472 + }, + { + "start": 404.74, + "end": 405.23, + "probability": 0.3943 + }, + { + "start": 408.68, + "end": 412.56, + "probability": 0.9336 + }, + { + "start": 413.48, + "end": 416.84, + "probability": 0.9321 + }, + { + "start": 417.28, + "end": 418.84, + "probability": 0.6691 + }, + { + "start": 419.9, + "end": 421.96, + "probability": 0.8041 + }, + { + "start": 422.08, + "end": 423.08, + "probability": 0.6252 + }, + { + "start": 424.78, + "end": 428.56, + "probability": 0.9105 + }, + { + "start": 429.68, + "end": 434.33, + "probability": 0.8488 + }, + { + "start": 435.28, + "end": 438.06, + "probability": 0.9827 + }, + { + "start": 438.26, + "end": 441.58, + "probability": 0.9101 + }, + { + "start": 442.74, + "end": 445.02, + "probability": 0.5183 + }, + { + "start": 445.38, + "end": 445.92, + "probability": 0.5259 + }, + { + "start": 446.38, + "end": 448.62, + "probability": 0.9756 + }, + { + "start": 450.82, + "end": 454.78, + "probability": 0.6897 + }, + { + "start": 455.88, + "end": 460.48, + "probability": 0.9489 + }, + { + "start": 461.54, + "end": 467.4, + "probability": 0.964 + }, + { + "start": 468.64, + "end": 473.41, + "probability": 0.9762 + }, + { + "start": 473.96, + "end": 476.04, + "probability": 0.775 + }, + { + "start": 477.12, + "end": 479.8, + "probability": 0.9443 + }, + { + "start": 480.12, + "end": 481.08, + "probability": 0.66 + }, + { + "start": 481.28, + "end": 482.06, + "probability": 0.6563 + }, + { + "start": 482.52, + "end": 487.1, + "probability": 0.7837 + }, + { + "start": 488.38, + "end": 491.26, + "probability": 0.9492 + }, + { + "start": 491.36, + "end": 492.74, + "probability": 0.7865 + }, + { + "start": 492.76, + "end": 493.2, + "probability": 0.5125 + }, + { + "start": 493.24, + "end": 494.68, + "probability": 0.96 + }, + { + "start": 500.7, + "end": 502.44, + "probability": 0.6837 + }, + { + "start": 503.2, + "end": 503.58, + "probability": 0.6012 + }, + { + "start": 503.74, + "end": 506.86, + "probability": 0.9764 + }, + { + "start": 507.86, + "end": 510.84, + "probability": 0.9215 + }, + { + "start": 511.76, + "end": 513.62, + "probability": 0.9695 + }, + { + "start": 513.7, + "end": 514.52, + "probability": 0.467 + }, + { + "start": 514.66, + "end": 515.2, + "probability": 0.3277 + }, + { + "start": 515.92, + "end": 517.04, + "probability": 0.4486 + }, + { + "start": 517.76, + "end": 518.78, + "probability": 0.9573 + }, + { + "start": 519.7, + "end": 521.28, + "probability": 0.8975 + }, + { + "start": 523.02, + "end": 524.08, + "probability": 0.7523 + }, + { + "start": 524.54, + "end": 526.2, + "probability": 0.992 + }, + { + "start": 526.4, + "end": 527.92, + "probability": 0.9521 + }, + { + "start": 529.02, + "end": 534.56, + "probability": 0.9703 + }, + { + "start": 535.08, + "end": 537.92, + "probability": 0.7961 + }, + { + "start": 538.32, + "end": 539.0, + "probability": 0.6082 + }, + { + "start": 540.08, + "end": 546.64, + "probability": 0.9795 + }, + { + "start": 547.42, + "end": 552.72, + "probability": 0.9736 + }, + { + "start": 553.28, + "end": 562.32, + "probability": 0.9753 + }, + { + "start": 562.72, + "end": 562.96, + "probability": 0.7203 + }, + { + "start": 563.68, + "end": 565.76, + "probability": 0.6396 + }, + { + "start": 565.98, + "end": 568.96, + "probability": 0.9173 + }, + { + "start": 569.58, + "end": 570.14, + "probability": 0.5253 + }, + { + "start": 570.18, + "end": 571.6, + "probability": 0.6572 + }, + { + "start": 571.74, + "end": 573.18, + "probability": 0.8419 + }, + { + "start": 573.84, + "end": 579.7, + "probability": 0.934 + }, + { + "start": 580.04, + "end": 583.4, + "probability": 0.9138 + }, + { + "start": 583.4, + "end": 586.64, + "probability": 0.9372 + }, + { + "start": 586.98, + "end": 588.24, + "probability": 0.0716 + }, + { + "start": 588.36, + "end": 589.36, + "probability": 0.7942 + }, + { + "start": 589.54, + "end": 592.7, + "probability": 0.973 + }, + { + "start": 592.96, + "end": 593.32, + "probability": 0.8351 + }, + { + "start": 593.4, + "end": 594.94, + "probability": 0.933 + }, + { + "start": 595.26, + "end": 596.08, + "probability": 0.6713 + }, + { + "start": 596.12, + "end": 597.54, + "probability": 0.9501 + }, + { + "start": 598.66, + "end": 600.76, + "probability": 0.6678 + }, + { + "start": 601.54, + "end": 605.36, + "probability": 0.9709 + }, + { + "start": 605.82, + "end": 609.36, + "probability": 0.8834 + }, + { + "start": 609.46, + "end": 610.14, + "probability": 0.6553 + }, + { + "start": 610.42, + "end": 614.88, + "probability": 0.9568 + }, + { + "start": 615.94, + "end": 617.46, + "probability": 0.8304 + }, + { + "start": 617.78, + "end": 619.88, + "probability": 0.9712 + }, + { + "start": 620.24, + "end": 621.32, + "probability": 0.9126 + }, + { + "start": 621.8, + "end": 622.86, + "probability": 0.7589 + }, + { + "start": 622.92, + "end": 625.18, + "probability": 0.6175 + }, + { + "start": 626.1, + "end": 630.3, + "probability": 0.8821 + }, + { + "start": 630.44, + "end": 634.16, + "probability": 0.8477 + }, + { + "start": 635.58, + "end": 638.78, + "probability": 0.9685 + }, + { + "start": 639.92, + "end": 642.4, + "probability": 0.6619 + }, + { + "start": 642.6, + "end": 646.04, + "probability": 0.9827 + }, + { + "start": 646.2, + "end": 649.18, + "probability": 0.9121 + }, + { + "start": 649.64, + "end": 654.58, + "probability": 0.9158 + }, + { + "start": 656.64, + "end": 661.34, + "probability": 0.6289 + }, + { + "start": 661.98, + "end": 671.62, + "probability": 0.8512 + }, + { + "start": 671.96, + "end": 676.08, + "probability": 0.9189 + }, + { + "start": 676.86, + "end": 680.96, + "probability": 0.6533 + }, + { + "start": 682.12, + "end": 686.02, + "probability": 0.5418 + }, + { + "start": 686.58, + "end": 689.12, + "probability": 0.9855 + }, + { + "start": 689.84, + "end": 692.52, + "probability": 0.9632 + }, + { + "start": 693.28, + "end": 696.86, + "probability": 0.9862 + }, + { + "start": 697.92, + "end": 699.36, + "probability": 0.5539 + }, + { + "start": 700.0, + "end": 707.34, + "probability": 0.9604 + }, + { + "start": 711.6, + "end": 713.8, + "probability": 0.9652 + }, + { + "start": 713.96, + "end": 718.18, + "probability": 0.8913 + }, + { + "start": 726.04, + "end": 728.94, + "probability": 0.8756 + }, + { + "start": 729.62, + "end": 733.68, + "probability": 0.993 + }, + { + "start": 734.7, + "end": 736.68, + "probability": 0.9438 + }, + { + "start": 737.44, + "end": 739.86, + "probability": 0.9869 + }, + { + "start": 740.5, + "end": 742.96, + "probability": 0.9605 + }, + { + "start": 743.44, + "end": 747.5, + "probability": 0.9963 + }, + { + "start": 747.5, + "end": 751.02, + "probability": 0.9808 + }, + { + "start": 751.44, + "end": 755.24, + "probability": 0.9466 + }, + { + "start": 755.92, + "end": 758.26, + "probability": 0.9965 + }, + { + "start": 758.88, + "end": 762.48, + "probability": 0.6717 + }, + { + "start": 763.02, + "end": 765.0, + "probability": 0.7053 + }, + { + "start": 765.82, + "end": 769.02, + "probability": 0.9807 + }, + { + "start": 769.5, + "end": 771.06, + "probability": 0.9464 + }, + { + "start": 771.1, + "end": 775.7, + "probability": 0.9924 + }, + { + "start": 776.24, + "end": 778.14, + "probability": 0.6315 + }, + { + "start": 778.48, + "end": 779.52, + "probability": 0.878 + }, + { + "start": 780.22, + "end": 781.06, + "probability": 0.9685 + }, + { + "start": 781.46, + "end": 786.6, + "probability": 0.9631 + }, + { + "start": 787.2, + "end": 788.36, + "probability": 0.7842 + }, + { + "start": 789.3, + "end": 793.98, + "probability": 0.7573 + }, + { + "start": 794.74, + "end": 795.7, + "probability": 0.8342 + }, + { + "start": 796.32, + "end": 798.37, + "probability": 0.8963 + }, + { + "start": 799.18, + "end": 801.02, + "probability": 0.9159 + }, + { + "start": 801.46, + "end": 802.42, + "probability": 0.7254 + }, + { + "start": 802.48, + "end": 805.86, + "probability": 0.979 + }, + { + "start": 806.44, + "end": 809.32, + "probability": 0.9492 + }, + { + "start": 809.44, + "end": 809.74, + "probability": 0.6797 + }, + { + "start": 810.7, + "end": 812.12, + "probability": 0.7358 + }, + { + "start": 812.58, + "end": 817.54, + "probability": 0.8377 + }, + { + "start": 822.64, + "end": 824.5, + "probability": 0.7587 + }, + { + "start": 825.56, + "end": 829.12, + "probability": 0.9609 + }, + { + "start": 830.08, + "end": 833.94, + "probability": 0.7883 + }, + { + "start": 834.54, + "end": 838.94, + "probability": 0.9805 + }, + { + "start": 839.92, + "end": 841.78, + "probability": 0.9575 + }, + { + "start": 843.06, + "end": 844.54, + "probability": 0.7353 + }, + { + "start": 845.52, + "end": 850.08, + "probability": 0.9224 + }, + { + "start": 850.08, + "end": 852.24, + "probability": 0.9539 + }, + { + "start": 853.32, + "end": 858.04, + "probability": 0.9972 + }, + { + "start": 858.04, + "end": 864.14, + "probability": 0.6421 + }, + { + "start": 865.24, + "end": 865.9, + "probability": 0.5609 + }, + { + "start": 865.9, + "end": 868.56, + "probability": 0.8082 + }, + { + "start": 868.84, + "end": 873.38, + "probability": 0.7572 + }, + { + "start": 873.94, + "end": 874.68, + "probability": 0.6928 + }, + { + "start": 874.74, + "end": 875.38, + "probability": 0.6185 + }, + { + "start": 875.5, + "end": 878.76, + "probability": 0.9829 + }, + { + "start": 880.14, + "end": 884.58, + "probability": 0.7188 + }, + { + "start": 884.76, + "end": 888.14, + "probability": 0.9391 + }, + { + "start": 888.52, + "end": 890.42, + "probability": 0.8698 + }, + { + "start": 890.6, + "end": 895.78, + "probability": 0.9902 + }, + { + "start": 896.1, + "end": 898.88, + "probability": 0.9873 + }, + { + "start": 899.34, + "end": 900.59, + "probability": 0.9015 + }, + { + "start": 900.82, + "end": 903.86, + "probability": 0.9671 + }, + { + "start": 903.86, + "end": 904.32, + "probability": 0.8428 + }, + { + "start": 904.56, + "end": 905.94, + "probability": 0.7642 + }, + { + "start": 905.98, + "end": 909.5, + "probability": 0.7075 + }, + { + "start": 917.3, + "end": 919.52, + "probability": 0.5359 + }, + { + "start": 920.92, + "end": 923.6, + "probability": 0.9552 + }, + { + "start": 924.28, + "end": 927.12, + "probability": 0.8092 + }, + { + "start": 928.18, + "end": 930.66, + "probability": 0.863 + }, + { + "start": 931.84, + "end": 934.86, + "probability": 0.557 + }, + { + "start": 935.5, + "end": 939.48, + "probability": 0.819 + }, + { + "start": 940.86, + "end": 943.82, + "probability": 0.8738 + }, + { + "start": 944.8, + "end": 949.2, + "probability": 0.7819 + }, + { + "start": 950.44, + "end": 956.32, + "probability": 0.7932 + }, + { + "start": 957.18, + "end": 963.04, + "probability": 0.985 + }, + { + "start": 963.98, + "end": 965.9, + "probability": 0.664 + }, + { + "start": 966.38, + "end": 968.56, + "probability": 0.9272 + }, + { + "start": 969.78, + "end": 975.96, + "probability": 0.6593 + }, + { + "start": 976.78, + "end": 979.58, + "probability": 0.3308 + }, + { + "start": 980.46, + "end": 987.62, + "probability": 0.9025 + }, + { + "start": 988.8, + "end": 989.88, + "probability": 0.715 + }, + { + "start": 990.62, + "end": 992.04, + "probability": 0.9247 + }, + { + "start": 992.28, + "end": 994.86, + "probability": 0.8934 + }, + { + "start": 996.66, + "end": 997.36, + "probability": 0.7626 + }, + { + "start": 997.98, + "end": 1003.08, + "probability": 0.8105 + }, + { + "start": 1003.08, + "end": 1009.24, + "probability": 0.9641 + }, + { + "start": 1009.6, + "end": 1009.96, + "probability": 0.6585 + }, + { + "start": 1011.86, + "end": 1013.16, + "probability": 0.8572 + }, + { + "start": 1014.94, + "end": 1015.64, + "probability": 0.3017 + }, + { + "start": 1015.64, + "end": 1015.64, + "probability": 0.1424 + }, + { + "start": 1015.64, + "end": 1015.99, + "probability": 0.7329 + }, + { + "start": 1018.5, + "end": 1020.14, + "probability": 0.7999 + }, + { + "start": 1021.22, + "end": 1025.56, + "probability": 0.9622 + }, + { + "start": 1026.18, + "end": 1027.13, + "probability": 0.9618 + }, + { + "start": 1027.4, + "end": 1029.16, + "probability": 0.7202 + }, + { + "start": 1029.18, + "end": 1030.66, + "probability": 0.75 + }, + { + "start": 1030.86, + "end": 1031.02, + "probability": 0.494 + }, + { + "start": 1031.02, + "end": 1032.02, + "probability": 0.6847 + }, + { + "start": 1033.52, + "end": 1036.3, + "probability": 0.5899 + }, + { + "start": 1037.5, + "end": 1041.6, + "probability": 0.9663 + }, + { + "start": 1041.6, + "end": 1045.72, + "probability": 0.9695 + }, + { + "start": 1045.82, + "end": 1046.82, + "probability": 0.5959 + }, + { + "start": 1046.92, + "end": 1050.4, + "probability": 0.9644 + }, + { + "start": 1051.64, + "end": 1053.04, + "probability": 0.9449 + }, + { + "start": 1053.34, + "end": 1056.07, + "probability": 0.9956 + }, + { + "start": 1056.38, + "end": 1057.52, + "probability": 0.9816 + }, + { + "start": 1057.52, + "end": 1058.14, + "probability": 0.6108 + }, + { + "start": 1059.06, + "end": 1064.8, + "probability": 0.9675 + }, + { + "start": 1065.18, + "end": 1069.56, + "probability": 0.8611 + }, + { + "start": 1069.74, + "end": 1071.24, + "probability": 0.98 + }, + { + "start": 1071.8, + "end": 1073.42, + "probability": 0.9807 + }, + { + "start": 1073.46, + "end": 1075.24, + "probability": 0.8618 + }, + { + "start": 1075.9, + "end": 1079.33, + "probability": 0.9668 + }, + { + "start": 1080.8, + "end": 1085.16, + "probability": 0.9592 + }, + { + "start": 1085.76, + "end": 1088.44, + "probability": 0.9896 + }, + { + "start": 1088.9, + "end": 1091.54, + "probability": 0.9895 + }, + { + "start": 1091.66, + "end": 1092.42, + "probability": 0.9178 + }, + { + "start": 1093.5, + "end": 1096.48, + "probability": 0.9821 + }, + { + "start": 1096.64, + "end": 1100.28, + "probability": 0.7719 + }, + { + "start": 1100.74, + "end": 1103.38, + "probability": 0.9631 + }, + { + "start": 1103.88, + "end": 1105.42, + "probability": 0.7158 + }, + { + "start": 1105.5, + "end": 1107.02, + "probability": 0.8473 + }, + { + "start": 1107.8, + "end": 1111.06, + "probability": 0.6972 + }, + { + "start": 1119.52, + "end": 1121.02, + "probability": 0.6361 + }, + { + "start": 1121.16, + "end": 1121.3, + "probability": 0.3369 + }, + { + "start": 1121.3, + "end": 1126.8, + "probability": 0.6619 + }, + { + "start": 1127.28, + "end": 1128.76, + "probability": 0.9198 + }, + { + "start": 1130.14, + "end": 1135.12, + "probability": 0.9189 + }, + { + "start": 1135.38, + "end": 1139.24, + "probability": 0.8469 + }, + { + "start": 1139.81, + "end": 1141.66, + "probability": 0.9554 + }, + { + "start": 1142.54, + "end": 1143.38, + "probability": 0.6158 + }, + { + "start": 1143.62, + "end": 1144.76, + "probability": 0.9411 + }, + { + "start": 1144.86, + "end": 1148.18, + "probability": 0.9331 + }, + { + "start": 1148.18, + "end": 1152.72, + "probability": 0.9978 + }, + { + "start": 1153.1, + "end": 1157.96, + "probability": 0.9896 + }, + { + "start": 1159.14, + "end": 1161.1, + "probability": 0.9417 + }, + { + "start": 1161.28, + "end": 1165.96, + "probability": 0.9674 + }, + { + "start": 1165.96, + "end": 1169.86, + "probability": 0.9912 + }, + { + "start": 1170.4, + "end": 1174.14, + "probability": 0.8653 + }, + { + "start": 1174.24, + "end": 1175.06, + "probability": 0.9591 + }, + { + "start": 1175.2, + "end": 1177.1, + "probability": 0.9953 + }, + { + "start": 1177.92, + "end": 1180.38, + "probability": 0.9192 + }, + { + "start": 1181.1, + "end": 1182.85, + "probability": 0.9439 + }, + { + "start": 1182.98, + "end": 1184.88, + "probability": 0.849 + }, + { + "start": 1185.1, + "end": 1186.5, + "probability": 0.9917 + }, + { + "start": 1187.24, + "end": 1190.06, + "probability": 0.9937 + }, + { + "start": 1190.06, + "end": 1193.98, + "probability": 0.9928 + }, + { + "start": 1194.5, + "end": 1196.13, + "probability": 0.6981 + }, + { + "start": 1196.54, + "end": 1197.32, + "probability": 0.8936 + }, + { + "start": 1197.44, + "end": 1198.44, + "probability": 0.6255 + }, + { + "start": 1198.78, + "end": 1200.41, + "probability": 0.2325 + }, + { + "start": 1200.94, + "end": 1201.14, + "probability": 0.7642 + }, + { + "start": 1201.58, + "end": 1202.76, + "probability": 0.7263 + }, + { + "start": 1202.9, + "end": 1206.2, + "probability": 0.7021 + }, + { + "start": 1216.1, + "end": 1217.64, + "probability": 0.7818 + }, + { + "start": 1217.74, + "end": 1219.08, + "probability": 0.819 + }, + { + "start": 1219.42, + "end": 1227.34, + "probability": 0.9686 + }, + { + "start": 1227.5, + "end": 1228.82, + "probability": 0.7524 + }, + { + "start": 1228.92, + "end": 1230.06, + "probability": 0.8285 + }, + { + "start": 1231.06, + "end": 1234.22, + "probability": 0.9218 + }, + { + "start": 1235.68, + "end": 1245.1, + "probability": 0.995 + }, + { + "start": 1245.36, + "end": 1245.76, + "probability": 0.3199 + }, + { + "start": 1245.9, + "end": 1246.9, + "probability": 0.962 + }, + { + "start": 1248.02, + "end": 1252.24, + "probability": 0.975 + }, + { + "start": 1252.24, + "end": 1256.76, + "probability": 0.9819 + }, + { + "start": 1257.38, + "end": 1260.56, + "probability": 0.9514 + }, + { + "start": 1261.32, + "end": 1263.76, + "probability": 0.9391 + }, + { + "start": 1264.44, + "end": 1267.4, + "probability": 0.8072 + }, + { + "start": 1267.8, + "end": 1274.88, + "probability": 0.9556 + }, + { + "start": 1275.5, + "end": 1276.8, + "probability": 0.7633 + }, + { + "start": 1277.42, + "end": 1279.02, + "probability": 0.9336 + }, + { + "start": 1279.32, + "end": 1280.42, + "probability": 0.9764 + }, + { + "start": 1280.92, + "end": 1282.68, + "probability": 0.98 + }, + { + "start": 1282.76, + "end": 1285.64, + "probability": 0.9861 + }, + { + "start": 1286.42, + "end": 1291.42, + "probability": 0.994 + }, + { + "start": 1291.42, + "end": 1295.76, + "probability": 0.9945 + }, + { + "start": 1296.12, + "end": 1296.9, + "probability": 0.8535 + }, + { + "start": 1297.46, + "end": 1301.84, + "probability": 0.9968 + }, + { + "start": 1302.32, + "end": 1303.88, + "probability": 0.7556 + }, + { + "start": 1303.98, + "end": 1305.42, + "probability": 0.8366 + }, + { + "start": 1305.54, + "end": 1306.0, + "probability": 0.4881 + }, + { + "start": 1306.04, + "end": 1308.12, + "probability": 0.9476 + }, + { + "start": 1322.48, + "end": 1323.36, + "probability": 0.6194 + }, + { + "start": 1323.72, + "end": 1324.7, + "probability": 0.9624 + }, + { + "start": 1324.92, + "end": 1328.32, + "probability": 0.9534 + }, + { + "start": 1328.9, + "end": 1330.42, + "probability": 0.8782 + }, + { + "start": 1330.5, + "end": 1332.34, + "probability": 0.9788 + }, + { + "start": 1332.42, + "end": 1335.08, + "probability": 0.9987 + }, + { + "start": 1335.08, + "end": 1338.48, + "probability": 0.9902 + }, + { + "start": 1339.6, + "end": 1342.42, + "probability": 0.9355 + }, + { + "start": 1342.5, + "end": 1343.4, + "probability": 0.432 + }, + { + "start": 1343.52, + "end": 1345.32, + "probability": 0.9072 + }, + { + "start": 1346.4, + "end": 1347.14, + "probability": 0.7721 + }, + { + "start": 1347.5, + "end": 1348.04, + "probability": 0.9312 + }, + { + "start": 1348.16, + "end": 1352.78, + "probability": 0.9825 + }, + { + "start": 1352.78, + "end": 1357.02, + "probability": 0.8799 + }, + { + "start": 1357.08, + "end": 1359.23, + "probability": 0.896 + }, + { + "start": 1359.98, + "end": 1360.54, + "probability": 0.7783 + }, + { + "start": 1360.68, + "end": 1362.5, + "probability": 0.9907 + }, + { + "start": 1362.64, + "end": 1364.37, + "probability": 0.989 + }, + { + "start": 1364.62, + "end": 1366.22, + "probability": 0.999 + }, + { + "start": 1366.58, + "end": 1369.56, + "probability": 0.9852 + }, + { + "start": 1370.18, + "end": 1372.18, + "probability": 0.8556 + }, + { + "start": 1372.34, + "end": 1374.6, + "probability": 0.8379 + }, + { + "start": 1374.7, + "end": 1376.38, + "probability": 0.9434 + }, + { + "start": 1377.14, + "end": 1380.76, + "probability": 0.8733 + }, + { + "start": 1381.18, + "end": 1384.12, + "probability": 0.7177 + }, + { + "start": 1384.18, + "end": 1387.68, + "probability": 0.984 + }, + { + "start": 1387.78, + "end": 1388.76, + "probability": 0.9346 + }, + { + "start": 1388.9, + "end": 1389.54, + "probability": 0.6697 + }, + { + "start": 1389.58, + "end": 1390.1, + "probability": 0.6507 + }, + { + "start": 1390.52, + "end": 1394.86, + "probability": 0.9893 + }, + { + "start": 1395.28, + "end": 1396.52, + "probability": 0.985 + }, + { + "start": 1396.72, + "end": 1397.92, + "probability": 0.854 + }, + { + "start": 1398.14, + "end": 1399.6, + "probability": 0.9689 + }, + { + "start": 1399.7, + "end": 1402.52, + "probability": 0.9851 + }, + { + "start": 1402.58, + "end": 1403.38, + "probability": 0.698 + }, + { + "start": 1403.5, + "end": 1405.32, + "probability": 0.8262 + }, + { + "start": 1405.48, + "end": 1408.28, + "probability": 0.9882 + }, + { + "start": 1408.32, + "end": 1409.3, + "probability": 0.9846 + }, + { + "start": 1409.44, + "end": 1410.0, + "probability": 0.9744 + }, + { + "start": 1410.18, + "end": 1411.44, + "probability": 0.9071 + }, + { + "start": 1411.5, + "end": 1417.04, + "probability": 0.8475 + }, + { + "start": 1417.32, + "end": 1419.6, + "probability": 0.9425 + }, + { + "start": 1420.58, + "end": 1422.94, + "probability": 0.9562 + }, + { + "start": 1423.88, + "end": 1425.74, + "probability": 0.6817 + }, + { + "start": 1425.88, + "end": 1426.34, + "probability": 0.4328 + }, + { + "start": 1426.4, + "end": 1427.46, + "probability": 0.6836 + }, + { + "start": 1435.1, + "end": 1436.38, + "probability": 0.6723 + }, + { + "start": 1436.62, + "end": 1444.63, + "probability": 0.9814 + }, + { + "start": 1446.42, + "end": 1452.8, + "probability": 0.9843 + }, + { + "start": 1452.92, + "end": 1454.26, + "probability": 0.9873 + }, + { + "start": 1454.46, + "end": 1455.16, + "probability": 0.3476 + }, + { + "start": 1455.76, + "end": 1457.34, + "probability": 0.919 + }, + { + "start": 1458.18, + "end": 1466.1, + "probability": 0.9627 + }, + { + "start": 1466.28, + "end": 1474.86, + "probability": 0.9658 + }, + { + "start": 1475.66, + "end": 1478.04, + "probability": 0.8691 + }, + { + "start": 1478.66, + "end": 1481.42, + "probability": 0.8364 + }, + { + "start": 1482.0, + "end": 1485.46, + "probability": 0.8807 + }, + { + "start": 1485.72, + "end": 1490.66, + "probability": 0.9919 + }, + { + "start": 1491.38, + "end": 1493.66, + "probability": 0.8522 + }, + { + "start": 1494.34, + "end": 1494.6, + "probability": 0.6224 + }, + { + "start": 1494.7, + "end": 1495.84, + "probability": 0.7794 + }, + { + "start": 1495.98, + "end": 1498.4, + "probability": 0.9568 + }, + { + "start": 1498.98, + "end": 1500.8, + "probability": 0.9632 + }, + { + "start": 1500.92, + "end": 1503.88, + "probability": 0.9629 + }, + { + "start": 1504.24, + "end": 1505.44, + "probability": 0.6331 + }, + { + "start": 1505.88, + "end": 1508.4, + "probability": 0.8839 + }, + { + "start": 1508.8, + "end": 1510.1, + "probability": 0.8104 + }, + { + "start": 1510.18, + "end": 1511.52, + "probability": 0.8772 + }, + { + "start": 1512.46, + "end": 1513.18, + "probability": 0.8594 + }, + { + "start": 1513.3, + "end": 1517.82, + "probability": 0.9849 + }, + { + "start": 1518.06, + "end": 1518.46, + "probability": 0.8989 + }, + { + "start": 1519.2, + "end": 1521.02, + "probability": 0.8804 + }, + { + "start": 1521.52, + "end": 1522.74, + "probability": 0.8262 + }, + { + "start": 1522.82, + "end": 1523.26, + "probability": 0.6514 + }, + { + "start": 1523.32, + "end": 1523.64, + "probability": 0.7168 + }, + { + "start": 1523.72, + "end": 1524.28, + "probability": 0.7938 + }, + { + "start": 1524.32, + "end": 1526.22, + "probability": 0.981 + }, + { + "start": 1528.66, + "end": 1529.4, + "probability": 0.7865 + }, + { + "start": 1529.48, + "end": 1532.54, + "probability": 0.9694 + }, + { + "start": 1532.54, + "end": 1536.14, + "probability": 0.835 + }, + { + "start": 1536.76, + "end": 1540.0, + "probability": 0.9841 + }, + { + "start": 1540.6, + "end": 1541.88, + "probability": 0.9458 + }, + { + "start": 1542.04, + "end": 1544.38, + "probability": 0.997 + }, + { + "start": 1544.78, + "end": 1547.8, + "probability": 0.9929 + }, + { + "start": 1547.98, + "end": 1550.98, + "probability": 0.9828 + }, + { + "start": 1551.28, + "end": 1552.94, + "probability": 0.8642 + }, + { + "start": 1553.08, + "end": 1556.96, + "probability": 0.9613 + }, + { + "start": 1557.08, + "end": 1559.86, + "probability": 0.9657 + }, + { + "start": 1560.18, + "end": 1562.38, + "probability": 0.9221 + }, + { + "start": 1562.46, + "end": 1564.84, + "probability": 0.9924 + }, + { + "start": 1564.84, + "end": 1569.22, + "probability": 0.8448 + }, + { + "start": 1569.58, + "end": 1571.07, + "probability": 0.826 + }, + { + "start": 1571.68, + "end": 1575.46, + "probability": 0.9626 + }, + { + "start": 1575.58, + "end": 1577.94, + "probability": 0.9651 + }, + { + "start": 1577.98, + "end": 1582.76, + "probability": 0.9228 + }, + { + "start": 1583.1, + "end": 1585.38, + "probability": 0.9976 + }, + { + "start": 1585.54, + "end": 1586.9, + "probability": 0.7963 + }, + { + "start": 1587.02, + "end": 1587.74, + "probability": 0.7481 + }, + { + "start": 1587.74, + "end": 1588.46, + "probability": 0.8909 + }, + { + "start": 1588.88, + "end": 1591.64, + "probability": 0.9888 + }, + { + "start": 1591.64, + "end": 1594.28, + "probability": 0.9926 + }, + { + "start": 1594.58, + "end": 1597.54, + "probability": 0.9804 + }, + { + "start": 1597.84, + "end": 1598.98, + "probability": 0.8449 + }, + { + "start": 1599.28, + "end": 1600.62, + "probability": 0.8932 + }, + { + "start": 1600.68, + "end": 1602.02, + "probability": 0.863 + }, + { + "start": 1602.36, + "end": 1604.44, + "probability": 0.8759 + }, + { + "start": 1604.74, + "end": 1607.34, + "probability": 0.8252 + }, + { + "start": 1607.4, + "end": 1608.88, + "probability": 0.8924 + }, + { + "start": 1609.26, + "end": 1610.96, + "probability": 0.9833 + }, + { + "start": 1611.16, + "end": 1611.54, + "probability": 0.7065 + }, + { + "start": 1612.04, + "end": 1613.96, + "probability": 0.7859 + }, + { + "start": 1614.14, + "end": 1615.68, + "probability": 0.881 + }, + { + "start": 1615.72, + "end": 1616.2, + "probability": 0.5514 + }, + { + "start": 1616.24, + "end": 1617.48, + "probability": 0.9607 + }, + { + "start": 1622.92, + "end": 1625.88, + "probability": 0.8027 + }, + { + "start": 1627.28, + "end": 1628.22, + "probability": 0.9512 + }, + { + "start": 1630.4, + "end": 1637.14, + "probability": 0.7522 + }, + { + "start": 1637.82, + "end": 1645.66, + "probability": 0.8894 + }, + { + "start": 1646.7, + "end": 1651.94, + "probability": 0.9858 + }, + { + "start": 1651.99, + "end": 1658.28, + "probability": 0.9935 + }, + { + "start": 1659.48, + "end": 1660.14, + "probability": 0.5462 + }, + { + "start": 1660.4, + "end": 1663.96, + "probability": 0.9962 + }, + { + "start": 1667.06, + "end": 1668.98, + "probability": 0.981 + }, + { + "start": 1670.38, + "end": 1677.52, + "probability": 0.9818 + }, + { + "start": 1678.52, + "end": 1681.78, + "probability": 0.9984 + }, + { + "start": 1682.64, + "end": 1684.64, + "probability": 0.8221 + }, + { + "start": 1685.98, + "end": 1688.66, + "probability": 0.936 + }, + { + "start": 1689.56, + "end": 1693.5, + "probability": 0.9939 + }, + { + "start": 1693.5, + "end": 1697.76, + "probability": 0.9955 + }, + { + "start": 1698.92, + "end": 1701.04, + "probability": 0.8677 + }, + { + "start": 1701.6, + "end": 1705.12, + "probability": 0.9918 + }, + { + "start": 1705.12, + "end": 1710.68, + "probability": 0.9971 + }, + { + "start": 1711.0, + "end": 1715.06, + "probability": 0.9896 + }, + { + "start": 1715.23, + "end": 1718.62, + "probability": 0.9961 + }, + { + "start": 1718.72, + "end": 1719.66, + "probability": 0.8472 + }, + { + "start": 1719.74, + "end": 1720.96, + "probability": 0.8539 + }, + { + "start": 1721.18, + "end": 1722.75, + "probability": 0.5581 + }, + { + "start": 1722.8, + "end": 1728.26, + "probability": 0.6665 + }, + { + "start": 1728.3, + "end": 1730.58, + "probability": 0.9159 + }, + { + "start": 1730.66, + "end": 1730.92, + "probability": 0.8231 + }, + { + "start": 1732.2, + "end": 1733.56, + "probability": 0.6047 + }, + { + "start": 1733.72, + "end": 1734.94, + "probability": 0.3711 + }, + { + "start": 1735.06, + "end": 1738.02, + "probability": 0.8234 + }, + { + "start": 1738.1, + "end": 1740.12, + "probability": 0.9419 + }, + { + "start": 1740.88, + "end": 1742.54, + "probability": 0.9372 + }, + { + "start": 1742.88, + "end": 1743.42, + "probability": 0.5426 + }, + { + "start": 1743.44, + "end": 1744.74, + "probability": 0.9577 + }, + { + "start": 1753.16, + "end": 1754.92, + "probability": 0.7569 + }, + { + "start": 1756.04, + "end": 1762.36, + "probability": 0.973 + }, + { + "start": 1762.66, + "end": 1763.3, + "probability": 0.7959 + }, + { + "start": 1763.36, + "end": 1769.98, + "probability": 0.9727 + }, + { + "start": 1770.04, + "end": 1770.58, + "probability": 0.7601 + }, + { + "start": 1771.24, + "end": 1772.92, + "probability": 0.5597 + }, + { + "start": 1773.72, + "end": 1777.02, + "probability": 0.8899 + }, + { + "start": 1777.62, + "end": 1780.42, + "probability": 0.9262 + }, + { + "start": 1780.96, + "end": 1784.0, + "probability": 0.7235 + }, + { + "start": 1784.06, + "end": 1790.06, + "probability": 0.9362 + }, + { + "start": 1790.18, + "end": 1790.46, + "probability": 0.6131 + }, + { + "start": 1790.56, + "end": 1790.92, + "probability": 0.8329 + }, + { + "start": 1791.0, + "end": 1791.74, + "probability": 0.6611 + }, + { + "start": 1792.4, + "end": 1795.98, + "probability": 0.803 + }, + { + "start": 1796.36, + "end": 1796.64, + "probability": 0.8272 + }, + { + "start": 1796.66, + "end": 1804.96, + "probability": 0.8052 + }, + { + "start": 1805.4, + "end": 1806.02, + "probability": 0.9302 + }, + { + "start": 1807.38, + "end": 1808.12, + "probability": 0.5346 + }, + { + "start": 1809.12, + "end": 1811.68, + "probability": 0.8982 + }, + { + "start": 1811.74, + "end": 1815.24, + "probability": 0.4952 + }, + { + "start": 1815.24, + "end": 1815.86, + "probability": 0.7221 + }, + { + "start": 1816.76, + "end": 1817.62, + "probability": 0.844 + }, + { + "start": 1818.54, + "end": 1822.4, + "probability": 0.9875 + }, + { + "start": 1823.26, + "end": 1824.72, + "probability": 0.8339 + }, + { + "start": 1825.38, + "end": 1829.48, + "probability": 0.8358 + }, + { + "start": 1829.66, + "end": 1832.54, + "probability": 0.973 + }, + { + "start": 1832.9, + "end": 1833.42, + "probability": 0.7377 + }, + { + "start": 1833.68, + "end": 1836.54, + "probability": 0.7883 + }, + { + "start": 1836.64, + "end": 1838.62, + "probability": 0.9766 + }, + { + "start": 1839.06, + "end": 1839.72, + "probability": 0.5015 + }, + { + "start": 1839.76, + "end": 1841.2, + "probability": 0.9005 + }, + { + "start": 1842.0, + "end": 1842.86, + "probability": 0.5849 + }, + { + "start": 1843.0, + "end": 1845.94, + "probability": 0.9955 + }, + { + "start": 1845.94, + "end": 1850.2, + "probability": 0.978 + }, + { + "start": 1851.22, + "end": 1855.9, + "probability": 0.9334 + }, + { + "start": 1856.44, + "end": 1856.9, + "probability": 0.5137 + }, + { + "start": 1857.48, + "end": 1859.8, + "probability": 0.9961 + }, + { + "start": 1860.44, + "end": 1865.18, + "probability": 0.9958 + }, + { + "start": 1865.68, + "end": 1866.6, + "probability": 0.968 + }, + { + "start": 1866.74, + "end": 1867.26, + "probability": 0.9286 + }, + { + "start": 1867.34, + "end": 1868.6, + "probability": 0.8693 + }, + { + "start": 1868.7, + "end": 1869.32, + "probability": 0.8964 + }, + { + "start": 1870.1, + "end": 1872.86, + "probability": 0.9819 + }, + { + "start": 1872.92, + "end": 1873.48, + "probability": 0.8285 + }, + { + "start": 1874.28, + "end": 1876.13, + "probability": 0.9795 + }, + { + "start": 1876.22, + "end": 1878.56, + "probability": 0.9932 + }, + { + "start": 1879.16, + "end": 1881.24, + "probability": 0.5998 + }, + { + "start": 1881.4, + "end": 1882.36, + "probability": 0.6467 + }, + { + "start": 1883.28, + "end": 1885.44, + "probability": 0.9935 + }, + { + "start": 1885.48, + "end": 1886.94, + "probability": 0.5905 + }, + { + "start": 1887.66, + "end": 1890.02, + "probability": 0.8584 + }, + { + "start": 1890.9, + "end": 1895.0, + "probability": 0.9867 + }, + { + "start": 1895.8, + "end": 1897.36, + "probability": 0.6394 + }, + { + "start": 1897.92, + "end": 1898.26, + "probability": 0.6995 + }, + { + "start": 1899.0, + "end": 1901.58, + "probability": 0.9563 + }, + { + "start": 1902.16, + "end": 1904.98, + "probability": 0.9777 + }, + { + "start": 1905.3, + "end": 1905.44, + "probability": 0.615 + }, + { + "start": 1905.5, + "end": 1906.06, + "probability": 0.6558 + }, + { + "start": 1906.2, + "end": 1907.14, + "probability": 0.9641 + }, + { + "start": 1907.58, + "end": 1908.58, + "probability": 0.5442 + }, + { + "start": 1908.58, + "end": 1909.56, + "probability": 0.7207 + }, + { + "start": 1910.1, + "end": 1914.62, + "probability": 0.9908 + }, + { + "start": 1915.28, + "end": 1919.12, + "probability": 0.9937 + }, + { + "start": 1919.12, + "end": 1924.56, + "probability": 0.978 + }, + { + "start": 1924.7, + "end": 1926.06, + "probability": 0.5601 + }, + { + "start": 1926.58, + "end": 1927.38, + "probability": 0.9365 + }, + { + "start": 1928.92, + "end": 1930.36, + "probability": 0.7745 + }, + { + "start": 1930.5, + "end": 1932.0, + "probability": 0.9052 + }, + { + "start": 1932.06, + "end": 1932.52, + "probability": 0.5961 + }, + { + "start": 1932.74, + "end": 1934.1, + "probability": 0.9748 + }, + { + "start": 1939.66, + "end": 1940.42, + "probability": 0.8363 + }, + { + "start": 1940.58, + "end": 1945.73, + "probability": 0.986 + }, + { + "start": 1946.08, + "end": 1950.62, + "probability": 0.9941 + }, + { + "start": 1950.88, + "end": 1952.62, + "probability": 0.9902 + }, + { + "start": 1953.24, + "end": 1955.82, + "probability": 0.9424 + }, + { + "start": 1956.0, + "end": 1959.68, + "probability": 0.9922 + }, + { + "start": 1960.28, + "end": 1961.92, + "probability": 0.7939 + }, + { + "start": 1962.08, + "end": 1962.76, + "probability": 0.5881 + }, + { + "start": 1962.8, + "end": 1963.46, + "probability": 0.7178 + }, + { + "start": 1963.62, + "end": 1964.72, + "probability": 0.9941 + }, + { + "start": 1965.82, + "end": 1966.84, + "probability": 0.8552 + }, + { + "start": 1967.0, + "end": 1967.88, + "probability": 0.8343 + }, + { + "start": 1968.06, + "end": 1970.02, + "probability": 0.8795 + }, + { + "start": 1970.56, + "end": 1971.62, + "probability": 0.3032 + }, + { + "start": 1971.8, + "end": 1973.88, + "probability": 0.9014 + }, + { + "start": 1974.06, + "end": 1977.36, + "probability": 0.8129 + }, + { + "start": 1977.62, + "end": 1979.78, + "probability": 0.7861 + }, + { + "start": 1980.16, + "end": 1985.12, + "probability": 0.9334 + }, + { + "start": 1985.74, + "end": 1990.0, + "probability": 0.9382 + }, + { + "start": 1990.32, + "end": 1998.02, + "probability": 0.5692 + }, + { + "start": 1998.6, + "end": 2003.06, + "probability": 0.907 + }, + { + "start": 2003.78, + "end": 2009.4, + "probability": 0.9836 + }, + { + "start": 2009.72, + "end": 2015.12, + "probability": 0.9263 + }, + { + "start": 2016.24, + "end": 2020.12, + "probability": 0.9727 + }, + { + "start": 2020.68, + "end": 2027.04, + "probability": 0.9933 + }, + { + "start": 2027.9, + "end": 2035.16, + "probability": 0.9979 + }, + { + "start": 2035.3, + "end": 2037.14, + "probability": 0.9976 + }, + { + "start": 2037.76, + "end": 2039.34, + "probability": 0.753 + }, + { + "start": 2039.42, + "end": 2040.9, + "probability": 0.7598 + }, + { + "start": 2041.08, + "end": 2041.5, + "probability": 0.4499 + }, + { + "start": 2041.68, + "end": 2043.78, + "probability": 0.6741 + }, + { + "start": 2046.34, + "end": 2046.6, + "probability": 0.5205 + }, + { + "start": 2046.82, + "end": 2047.5, + "probability": 0.6183 + }, + { + "start": 2048.18, + "end": 2052.16, + "probability": 0.6845 + }, + { + "start": 2052.82, + "end": 2058.42, + "probability": 0.9841 + }, + { + "start": 2059.18, + "end": 2061.75, + "probability": 0.85 + }, + { + "start": 2061.78, + "end": 2064.78, + "probability": 0.9672 + }, + { + "start": 2065.4, + "end": 2069.45, + "probability": 0.9893 + }, + { + "start": 2070.4, + "end": 2071.42, + "probability": 0.8628 + }, + { + "start": 2071.76, + "end": 2075.5, + "probability": 0.9844 + }, + { + "start": 2076.1, + "end": 2080.37, + "probability": 0.7419 + }, + { + "start": 2081.42, + "end": 2085.08, + "probability": 0.9842 + }, + { + "start": 2085.36, + "end": 2087.6, + "probability": 0.7999 + }, + { + "start": 2087.6, + "end": 2089.42, + "probability": 0.9993 + }, + { + "start": 2089.48, + "end": 2092.06, + "probability": 0.8424 + }, + { + "start": 2092.4, + "end": 2093.84, + "probability": 0.7559 + }, + { + "start": 2093.96, + "end": 2095.09, + "probability": 0.1963 + }, + { + "start": 2095.6, + "end": 2099.22, + "probability": 0.9674 + }, + { + "start": 2099.22, + "end": 2104.34, + "probability": 0.949 + }, + { + "start": 2104.64, + "end": 2105.94, + "probability": 0.9856 + }, + { + "start": 2106.02, + "end": 2108.08, + "probability": 0.9431 + }, + { + "start": 2108.42, + "end": 2108.68, + "probability": 0.5093 + }, + { + "start": 2108.76, + "end": 2110.56, + "probability": 0.969 + }, + { + "start": 2110.62, + "end": 2112.29, + "probability": 0.8901 + }, + { + "start": 2112.58, + "end": 2117.6, + "probability": 0.826 + }, + { + "start": 2117.82, + "end": 2118.22, + "probability": 0.6424 + }, + { + "start": 2118.54, + "end": 2120.54, + "probability": 0.8084 + }, + { + "start": 2121.78, + "end": 2123.36, + "probability": 0.8145 + }, + { + "start": 2123.48, + "end": 2123.84, + "probability": 0.411 + }, + { + "start": 2124.02, + "end": 2125.12, + "probability": 0.9571 + }, + { + "start": 2133.0, + "end": 2136.02, + "probability": 0.8264 + }, + { + "start": 2136.72, + "end": 2140.46, + "probability": 0.9758 + }, + { + "start": 2141.62, + "end": 2145.74, + "probability": 0.8742 + }, + { + "start": 2147.5, + "end": 2150.08, + "probability": 0.8356 + }, + { + "start": 2151.36, + "end": 2153.72, + "probability": 0.7336 + }, + { + "start": 2154.54, + "end": 2156.64, + "probability": 0.8048 + }, + { + "start": 2157.22, + "end": 2161.38, + "probability": 0.9876 + }, + { + "start": 2162.84, + "end": 2168.86, + "probability": 0.9893 + }, + { + "start": 2169.72, + "end": 2173.78, + "probability": 0.9046 + }, + { + "start": 2173.8, + "end": 2175.14, + "probability": 0.5204 + }, + { + "start": 2176.5, + "end": 2179.74, + "probability": 0.876 + }, + { + "start": 2179.94, + "end": 2183.84, + "probability": 0.9586 + }, + { + "start": 2184.18, + "end": 2186.8, + "probability": 0.9971 + }, + { + "start": 2186.8, + "end": 2190.46, + "probability": 0.9853 + }, + { + "start": 2190.62, + "end": 2194.14, + "probability": 0.6864 + }, + { + "start": 2194.3, + "end": 2195.44, + "probability": 0.5427 + }, + { + "start": 2195.52, + "end": 2199.04, + "probability": 0.7884 + }, + { + "start": 2199.58, + "end": 2204.47, + "probability": 0.7506 + }, + { + "start": 2206.12, + "end": 2210.74, + "probability": 0.9789 + }, + { + "start": 2211.2, + "end": 2214.1, + "probability": 0.7717 + }, + { + "start": 2214.36, + "end": 2215.08, + "probability": 0.9807 + }, + { + "start": 2215.72, + "end": 2218.24, + "probability": 0.9784 + }, + { + "start": 2218.38, + "end": 2219.0, + "probability": 0.4292 + }, + { + "start": 2219.12, + "end": 2220.8, + "probability": 0.8904 + }, + { + "start": 2221.06, + "end": 2221.16, + "probability": 0.7681 + }, + { + "start": 2221.58, + "end": 2223.02, + "probability": 0.4274 + }, + { + "start": 2223.14, + "end": 2227.24, + "probability": 0.9416 + }, + { + "start": 2228.98, + "end": 2229.74, + "probability": 0.5214 + }, + { + "start": 2232.32, + "end": 2234.66, + "probability": 0.8635 + }, + { + "start": 2235.16, + "end": 2236.42, + "probability": 0.9849 + }, + { + "start": 2236.58, + "end": 2240.86, + "probability": 0.9608 + }, + { + "start": 2242.52, + "end": 2243.44, + "probability": 0.7765 + }, + { + "start": 2244.28, + "end": 2247.78, + "probability": 0.9873 + }, + { + "start": 2248.3, + "end": 2249.48, + "probability": 0.5367 + }, + { + "start": 2250.3, + "end": 2251.9, + "probability": 0.7278 + }, + { + "start": 2252.76, + "end": 2254.7, + "probability": 0.9263 + }, + { + "start": 2255.3, + "end": 2257.5, + "probability": 0.9958 + }, + { + "start": 2258.36, + "end": 2260.16, + "probability": 0.942 + }, + { + "start": 2260.58, + "end": 2263.06, + "probability": 0.9795 + }, + { + "start": 2263.9, + "end": 2265.66, + "probability": 0.9673 + }, + { + "start": 2266.18, + "end": 2270.46, + "probability": 0.9819 + }, + { + "start": 2271.36, + "end": 2276.22, + "probability": 0.9961 + }, + { + "start": 2276.22, + "end": 2281.6, + "probability": 0.9974 + }, + { + "start": 2282.6, + "end": 2286.02, + "probability": 0.989 + }, + { + "start": 2287.18, + "end": 2291.24, + "probability": 0.9071 + }, + { + "start": 2291.8, + "end": 2295.12, + "probability": 0.9723 + }, + { + "start": 2295.86, + "end": 2298.08, + "probability": 0.986 + }, + { + "start": 2299.38, + "end": 2302.78, + "probability": 0.9953 + }, + { + "start": 2303.42, + "end": 2304.98, + "probability": 0.9368 + }, + { + "start": 2305.66, + "end": 2306.82, + "probability": 0.9632 + }, + { + "start": 2307.36, + "end": 2309.54, + "probability": 0.8904 + }, + { + "start": 2310.44, + "end": 2312.92, + "probability": 0.9497 + }, + { + "start": 2313.54, + "end": 2314.44, + "probability": 0.9833 + }, + { + "start": 2314.56, + "end": 2319.24, + "probability": 0.9919 + }, + { + "start": 2320.34, + "end": 2322.38, + "probability": 0.9697 + }, + { + "start": 2323.16, + "end": 2324.62, + "probability": 0.6875 + }, + { + "start": 2325.3, + "end": 2326.84, + "probability": 0.9448 + }, + { + "start": 2327.46, + "end": 2327.68, + "probability": 0.755 + }, + { + "start": 2328.2, + "end": 2329.68, + "probability": 0.7849 + }, + { + "start": 2329.84, + "end": 2331.4, + "probability": 0.8912 + }, + { + "start": 2331.5, + "end": 2332.04, + "probability": 0.4988 + }, + { + "start": 2332.3, + "end": 2333.36, + "probability": 0.6942 + }, + { + "start": 2338.92, + "end": 2340.92, + "probability": 0.753 + }, + { + "start": 2343.4, + "end": 2345.42, + "probability": 0.9954 + }, + { + "start": 2346.74, + "end": 2354.58, + "probability": 0.8246 + }, + { + "start": 2356.34, + "end": 2360.68, + "probability": 0.9729 + }, + { + "start": 2362.62, + "end": 2363.6, + "probability": 0.6998 + }, + { + "start": 2364.96, + "end": 2370.04, + "probability": 0.9939 + }, + { + "start": 2370.86, + "end": 2373.1, + "probability": 0.7017 + }, + { + "start": 2373.86, + "end": 2375.06, + "probability": 0.9521 + }, + { + "start": 2376.0, + "end": 2380.4, + "probability": 0.9644 + }, + { + "start": 2381.98, + "end": 2386.28, + "probability": 0.8953 + }, + { + "start": 2387.34, + "end": 2391.21, + "probability": 0.9186 + }, + { + "start": 2392.64, + "end": 2393.84, + "probability": 0.9486 + }, + { + "start": 2394.5, + "end": 2395.4, + "probability": 0.9644 + }, + { + "start": 2396.76, + "end": 2397.92, + "probability": 0.7554 + }, + { + "start": 2398.9, + "end": 2402.18, + "probability": 0.8805 + }, + { + "start": 2402.96, + "end": 2408.62, + "probability": 0.9921 + }, + { + "start": 2408.62, + "end": 2415.1, + "probability": 0.9982 + }, + { + "start": 2415.5, + "end": 2419.06, + "probability": 0.9775 + }, + { + "start": 2420.34, + "end": 2421.64, + "probability": 0.8688 + }, + { + "start": 2422.58, + "end": 2425.88, + "probability": 0.9866 + }, + { + "start": 2426.86, + "end": 2430.16, + "probability": 0.952 + }, + { + "start": 2430.8, + "end": 2433.4, + "probability": 0.9028 + }, + { + "start": 2433.96, + "end": 2438.46, + "probability": 0.9807 + }, + { + "start": 2438.78, + "end": 2444.76, + "probability": 0.9354 + }, + { + "start": 2445.04, + "end": 2445.32, + "probability": 0.8235 + }, + { + "start": 2445.88, + "end": 2447.54, + "probability": 0.8112 + }, + { + "start": 2447.7, + "end": 2450.7, + "probability": 0.5858 + }, + { + "start": 2450.7, + "end": 2450.7, + "probability": 0.1461 + }, + { + "start": 2450.7, + "end": 2451.05, + "probability": 0.2204 + }, + { + "start": 2460.12, + "end": 2460.88, + "probability": 0.4952 + }, + { + "start": 2460.9, + "end": 2462.8, + "probability": 0.6753 + }, + { + "start": 2462.88, + "end": 2469.38, + "probability": 0.9946 + }, + { + "start": 2471.08, + "end": 2472.76, + "probability": 0.9834 + }, + { + "start": 2472.82, + "end": 2473.74, + "probability": 0.9727 + }, + { + "start": 2473.86, + "end": 2483.04, + "probability": 0.968 + }, + { + "start": 2483.3, + "end": 2486.9, + "probability": 0.967 + }, + { + "start": 2487.28, + "end": 2490.02, + "probability": 0.9822 + }, + { + "start": 2490.16, + "end": 2495.34, + "probability": 0.9288 + }, + { + "start": 2496.22, + "end": 2498.81, + "probability": 0.9557 + }, + { + "start": 2499.84, + "end": 2502.87, + "probability": 0.9551 + }, + { + "start": 2503.0, + "end": 2506.7, + "probability": 0.7946 + }, + { + "start": 2506.82, + "end": 2512.16, + "probability": 0.8499 + }, + { + "start": 2512.26, + "end": 2514.8, + "probability": 0.9927 + }, + { + "start": 2514.86, + "end": 2516.78, + "probability": 0.9739 + }, + { + "start": 2517.84, + "end": 2526.86, + "probability": 0.9997 + }, + { + "start": 2527.58, + "end": 2530.12, + "probability": 0.9034 + }, + { + "start": 2531.2, + "end": 2537.4, + "probability": 0.9951 + }, + { + "start": 2538.86, + "end": 2539.68, + "probability": 0.4626 + }, + { + "start": 2540.24, + "end": 2541.74, + "probability": 0.7585 + }, + { + "start": 2542.0, + "end": 2543.9, + "probability": 0.8778 + }, + { + "start": 2544.98, + "end": 2546.38, + "probability": 0.9519 + }, + { + "start": 2546.56, + "end": 2547.48, + "probability": 0.8565 + }, + { + "start": 2547.58, + "end": 2553.32, + "probability": 0.9819 + }, + { + "start": 2553.78, + "end": 2555.54, + "probability": 0.6092 + }, + { + "start": 2556.06, + "end": 2558.68, + "probability": 0.9664 + }, + { + "start": 2559.3, + "end": 2560.68, + "probability": 0.978 + }, + { + "start": 2560.74, + "end": 2564.56, + "probability": 0.98 + }, + { + "start": 2564.56, + "end": 2568.9, + "probability": 0.9257 + }, + { + "start": 2569.12, + "end": 2571.22, + "probability": 0.9722 + }, + { + "start": 2571.22, + "end": 2575.04, + "probability": 0.9338 + }, + { + "start": 2575.3, + "end": 2575.6, + "probability": 0.6253 + }, + { + "start": 2575.96, + "end": 2577.7, + "probability": 0.5234 + }, + { + "start": 2578.06, + "end": 2579.42, + "probability": 0.6581 + }, + { + "start": 2579.46, + "end": 2579.88, + "probability": 0.5281 + }, + { + "start": 2579.9, + "end": 2581.38, + "probability": 0.8969 + }, + { + "start": 2585.5, + "end": 2586.36, + "probability": 0.6989 + }, + { + "start": 2586.62, + "end": 2590.12, + "probability": 0.6804 + }, + { + "start": 2590.86, + "end": 2592.76, + "probability": 0.8318 + }, + { + "start": 2593.52, + "end": 2596.62, + "probability": 0.9941 + }, + { + "start": 2597.68, + "end": 2601.82, + "probability": 0.8445 + }, + { + "start": 2601.82, + "end": 2607.04, + "probability": 0.9567 + }, + { + "start": 2607.24, + "end": 2613.5, + "probability": 0.9727 + }, + { + "start": 2614.3, + "end": 2614.92, + "probability": 0.6791 + }, + { + "start": 2615.1, + "end": 2620.7, + "probability": 0.8641 + }, + { + "start": 2621.16, + "end": 2623.26, + "probability": 0.9593 + }, + { + "start": 2624.12, + "end": 2628.85, + "probability": 0.6681 + }, + { + "start": 2629.24, + "end": 2634.52, + "probability": 0.9881 + }, + { + "start": 2634.92, + "end": 2636.96, + "probability": 0.837 + }, + { + "start": 2637.46, + "end": 2643.88, + "probability": 0.9348 + }, + { + "start": 2644.68, + "end": 2645.82, + "probability": 0.5687 + }, + { + "start": 2645.96, + "end": 2646.3, + "probability": 0.7479 + }, + { + "start": 2647.12, + "end": 2648.74, + "probability": 0.7161 + }, + { + "start": 2648.82, + "end": 2650.12, + "probability": 0.7406 + }, + { + "start": 2650.72, + "end": 2653.14, + "probability": 0.9639 + }, + { + "start": 2654.94, + "end": 2656.94, + "probability": 0.7524 + }, + { + "start": 2656.98, + "end": 2660.07, + "probability": 0.9797 + }, + { + "start": 2660.56, + "end": 2663.36, + "probability": 0.7317 + }, + { + "start": 2663.44, + "end": 2664.14, + "probability": 0.4982 + }, + { + "start": 2665.14, + "end": 2669.72, + "probability": 0.8993 + }, + { + "start": 2670.02, + "end": 2673.06, + "probability": 0.9794 + }, + { + "start": 2673.86, + "end": 2674.1, + "probability": 0.4878 + }, + { + "start": 2674.34, + "end": 2676.44, + "probability": 0.9642 + }, + { + "start": 2676.86, + "end": 2677.9, + "probability": 0.8734 + }, + { + "start": 2678.16, + "end": 2683.74, + "probability": 0.9654 + }, + { + "start": 2684.12, + "end": 2687.78, + "probability": 0.9937 + }, + { + "start": 2687.92, + "end": 2689.04, + "probability": 0.8422 + }, + { + "start": 2689.58, + "end": 2692.02, + "probability": 0.9763 + }, + { + "start": 2692.86, + "end": 2694.98, + "probability": 0.9799 + }, + { + "start": 2694.98, + "end": 2697.76, + "probability": 0.7149 + }, + { + "start": 2698.22, + "end": 2700.94, + "probability": 0.9741 + }, + { + "start": 2701.26, + "end": 2702.1, + "probability": 0.7428 + }, + { + "start": 2702.38, + "end": 2703.22, + "probability": 0.9418 + }, + { + "start": 2703.4, + "end": 2707.38, + "probability": 0.9633 + }, + { + "start": 2707.58, + "end": 2709.8, + "probability": 0.7862 + }, + { + "start": 2710.08, + "end": 2710.76, + "probability": 0.9364 + }, + { + "start": 2710.94, + "end": 2714.3, + "probability": 0.9418 + }, + { + "start": 2714.3, + "end": 2717.7, + "probability": 0.9874 + }, + { + "start": 2718.02, + "end": 2718.84, + "probability": 0.6354 + }, + { + "start": 2718.96, + "end": 2720.78, + "probability": 0.5315 + }, + { + "start": 2721.12, + "end": 2722.56, + "probability": 0.9246 + }, + { + "start": 2723.24, + "end": 2725.14, + "probability": 0.951 + }, + { + "start": 2725.28, + "end": 2727.44, + "probability": 0.8804 + }, + { + "start": 2727.8, + "end": 2731.36, + "probability": 0.8952 + }, + { + "start": 2731.74, + "end": 2736.4, + "probability": 0.9117 + }, + { + "start": 2736.5, + "end": 2738.16, + "probability": 0.9088 + }, + { + "start": 2739.4, + "end": 2740.9, + "probability": 0.6837 + }, + { + "start": 2741.02, + "end": 2743.26, + "probability": 0.9092 + }, + { + "start": 2752.68, + "end": 2752.94, + "probability": 0.278 + }, + { + "start": 2752.96, + "end": 2753.36, + "probability": 0.5763 + }, + { + "start": 2753.5, + "end": 2755.46, + "probability": 0.9199 + }, + { + "start": 2755.54, + "end": 2756.66, + "probability": 0.9744 + }, + { + "start": 2757.32, + "end": 2762.9, + "probability": 0.8389 + }, + { + "start": 2763.02, + "end": 2763.88, + "probability": 0.906 + }, + { + "start": 2764.18, + "end": 2764.8, + "probability": 0.9443 + }, + { + "start": 2765.0, + "end": 2766.38, + "probability": 0.7715 + }, + { + "start": 2766.76, + "end": 2768.72, + "probability": 0.9731 + }, + { + "start": 2769.44, + "end": 2772.28, + "probability": 0.8651 + }, + { + "start": 2772.72, + "end": 2774.88, + "probability": 0.9552 + }, + { + "start": 2774.96, + "end": 2778.04, + "probability": 0.9088 + }, + { + "start": 2778.04, + "end": 2779.05, + "probability": 0.9795 + }, + { + "start": 2779.5, + "end": 2781.37, + "probability": 0.688 + }, + { + "start": 2782.8, + "end": 2787.0, + "probability": 0.9939 + }, + { + "start": 2787.5, + "end": 2791.58, + "probability": 0.9681 + }, + { + "start": 2792.0, + "end": 2794.07, + "probability": 0.9683 + }, + { + "start": 2795.02, + "end": 2795.88, + "probability": 0.6177 + }, + { + "start": 2796.4, + "end": 2798.28, + "probability": 0.9511 + }, + { + "start": 2798.52, + "end": 2802.12, + "probability": 0.7744 + }, + { + "start": 2802.76, + "end": 2804.46, + "probability": 0.9875 + }, + { + "start": 2805.04, + "end": 2809.16, + "probability": 0.9539 + }, + { + "start": 2809.84, + "end": 2810.16, + "probability": 0.6043 + }, + { + "start": 2810.24, + "end": 2813.88, + "probability": 0.8728 + }, + { + "start": 2814.2, + "end": 2815.59, + "probability": 0.9222 + }, + { + "start": 2816.56, + "end": 2818.32, + "probability": 0.9902 + }, + { + "start": 2818.62, + "end": 2820.2, + "probability": 0.9354 + }, + { + "start": 2820.34, + "end": 2825.44, + "probability": 0.9919 + }, + { + "start": 2825.74, + "end": 2828.86, + "probability": 0.967 + }, + { + "start": 2828.94, + "end": 2834.2, + "probability": 0.9475 + }, + { + "start": 2834.36, + "end": 2835.92, + "probability": 0.789 + }, + { + "start": 2836.32, + "end": 2844.32, + "probability": 0.9583 + }, + { + "start": 2844.6, + "end": 2846.96, + "probability": 0.0538 + }, + { + "start": 2847.02, + "end": 2848.44, + "probability": 0.0484 + }, + { + "start": 2848.62, + "end": 2850.14, + "probability": 0.0637 + }, + { + "start": 2850.14, + "end": 2851.8, + "probability": 0.1717 + }, + { + "start": 2854.22, + "end": 2854.28, + "probability": 0.0044 + }, + { + "start": 2855.16, + "end": 2855.6, + "probability": 0.0009 + }, + { + "start": 2855.6, + "end": 2855.66, + "probability": 0.0443 + }, + { + "start": 2855.66, + "end": 2855.72, + "probability": 0.0596 + }, + { + "start": 2856.44, + "end": 2860.22, + "probability": 0.9111 + }, + { + "start": 2860.44, + "end": 2861.78, + "probability": 0.6167 + }, + { + "start": 2861.92, + "end": 2865.28, + "probability": 0.9429 + }, + { + "start": 2866.42, + "end": 2867.12, + "probability": 0.1722 + }, + { + "start": 2867.84, + "end": 2869.8, + "probability": 0.0693 + }, + { + "start": 2869.98, + "end": 2871.32, + "probability": 0.9613 + }, + { + "start": 2871.42, + "end": 2871.56, + "probability": 0.2569 + }, + { + "start": 2871.86, + "end": 2874.73, + "probability": 0.7785 + }, + { + "start": 2876.64, + "end": 2877.08, + "probability": 0.1925 + }, + { + "start": 2877.72, + "end": 2881.86, + "probability": 0.73 + }, + { + "start": 2883.51, + "end": 2886.2, + "probability": 0.6839 + }, + { + "start": 2886.52, + "end": 2887.32, + "probability": 0.7406 + }, + { + "start": 2887.62, + "end": 2888.36, + "probability": 0.7782 + }, + { + "start": 2888.52, + "end": 2889.48, + "probability": 0.8821 + }, + { + "start": 2889.6, + "end": 2893.2, + "probability": 0.9678 + }, + { + "start": 2893.86, + "end": 2896.12, + "probability": 0.7852 + }, + { + "start": 2897.3, + "end": 2899.66, + "probability": 0.4878 + }, + { + "start": 2899.66, + "end": 2903.32, + "probability": 0.9446 + }, + { + "start": 2904.06, + "end": 2906.7, + "probability": 0.7496 + }, + { + "start": 2907.04, + "end": 2908.06, + "probability": 0.9644 + }, + { + "start": 2909.86, + "end": 2912.58, + "probability": 0.4726 + }, + { + "start": 2912.88, + "end": 2913.52, + "probability": 0.0678 + }, + { + "start": 2913.52, + "end": 2913.52, + "probability": 0.2098 + }, + { + "start": 2913.52, + "end": 2913.52, + "probability": 0.3621 + }, + { + "start": 2913.52, + "end": 2913.52, + "probability": 0.1365 + }, + { + "start": 2913.52, + "end": 2914.02, + "probability": 0.1275 + }, + { + "start": 2914.02, + "end": 2916.78, + "probability": 0.937 + }, + { + "start": 2917.6, + "end": 2917.88, + "probability": 0.3334 + }, + { + "start": 2918.82, + "end": 2922.02, + "probability": 0.9751 + }, + { + "start": 2922.04, + "end": 2923.7, + "probability": 0.972 + }, + { + "start": 2924.68, + "end": 2925.46, + "probability": 0.6135 + }, + { + "start": 2926.94, + "end": 2927.7, + "probability": 0.7424 + }, + { + "start": 2927.84, + "end": 2928.84, + "probability": 0.978 + }, + { + "start": 2928.86, + "end": 2930.34, + "probability": 0.839 + }, + { + "start": 2930.34, + "end": 2932.76, + "probability": 0.7838 + }, + { + "start": 2933.68, + "end": 2935.1, + "probability": 0.9569 + }, + { + "start": 2935.14, + "end": 2936.04, + "probability": 0.8779 + }, + { + "start": 2937.66, + "end": 2938.68, + "probability": 0.7208 + }, + { + "start": 2939.24, + "end": 2941.72, + "probability": 0.2701 + }, + { + "start": 2942.16, + "end": 2943.62, + "probability": 0.2468 + }, + { + "start": 2944.12, + "end": 2944.48, + "probability": 0.149 + }, + { + "start": 2944.58, + "end": 2945.16, + "probability": 0.1642 + }, + { + "start": 2945.6, + "end": 2949.34, + "probability": 0.1394 + }, + { + "start": 2949.74, + "end": 2949.88, + "probability": 0.2563 + }, + { + "start": 2949.88, + "end": 2950.6, + "probability": 0.3698 + }, + { + "start": 2951.48, + "end": 2951.48, + "probability": 0.4752 + }, + { + "start": 2951.48, + "end": 2952.92, + "probability": 0.6399 + }, + { + "start": 2953.12, + "end": 2953.96, + "probability": 0.5135 + }, + { + "start": 2954.18, + "end": 2956.72, + "probability": 0.4881 + }, + { + "start": 2957.13, + "end": 2961.38, + "probability": 0.4148 + }, + { + "start": 2961.82, + "end": 2965.1, + "probability": 0.406 + }, + { + "start": 2965.68, + "end": 2968.38, + "probability": 0.4298 + }, + { + "start": 2968.54, + "end": 2975.2, + "probability": 0.3698 + }, + { + "start": 2975.92, + "end": 2976.62, + "probability": 0.322 + }, + { + "start": 2978.88, + "end": 2979.06, + "probability": 0.066 + }, + { + "start": 2979.06, + "end": 2979.18, + "probability": 0.0513 + }, + { + "start": 2979.18, + "end": 2980.02, + "probability": 0.0753 + }, + { + "start": 2982.56, + "end": 2985.09, + "probability": 0.945 + }, + { + "start": 2987.18, + "end": 2987.34, + "probability": 0.037 + }, + { + "start": 2987.34, + "end": 2990.66, + "probability": 0.7586 + }, + { + "start": 2991.24, + "end": 2993.94, + "probability": 0.6037 + }, + { + "start": 2994.52, + "end": 2997.12, + "probability": 0.9539 + }, + { + "start": 2997.5, + "end": 2999.04, + "probability": 0.884 + }, + { + "start": 3000.68, + "end": 3001.84, + "probability": 0.7701 + }, + { + "start": 3002.42, + "end": 3002.62, + "probability": 0.5806 + }, + { + "start": 3002.7, + "end": 3003.54, + "probability": 0.751 + }, + { + "start": 3003.72, + "end": 3004.74, + "probability": 0.9434 + }, + { + "start": 3004.82, + "end": 3005.18, + "probability": 0.9011 + }, + { + "start": 3005.2, + "end": 3006.14, + "probability": 0.9225 + }, + { + "start": 3006.46, + "end": 3008.04, + "probability": 0.946 + }, + { + "start": 3009.6, + "end": 3013.98, + "probability": 0.9955 + }, + { + "start": 3014.24, + "end": 3015.46, + "probability": 0.8276 + }, + { + "start": 3015.96, + "end": 3017.52, + "probability": 0.4799 + }, + { + "start": 3018.34, + "end": 3019.77, + "probability": 0.8277 + }, + { + "start": 3019.94, + "end": 3020.74, + "probability": 0.3021 + }, + { + "start": 3021.14, + "end": 3022.44, + "probability": 0.798 + }, + { + "start": 3022.52, + "end": 3023.46, + "probability": 0.8662 + }, + { + "start": 3023.48, + "end": 3023.84, + "probability": 0.0188 + }, + { + "start": 3023.84, + "end": 3024.54, + "probability": 0.8973 + }, + { + "start": 3024.78, + "end": 3026.02, + "probability": 0.928 + }, + { + "start": 3027.02, + "end": 3030.92, + "probability": 0.5574 + }, + { + "start": 3031.97, + "end": 3034.4, + "probability": 0.8585 + }, + { + "start": 3034.4, + "end": 3037.06, + "probability": 0.8514 + }, + { + "start": 3037.16, + "end": 3038.42, + "probability": 0.735 + }, + { + "start": 3038.56, + "end": 3039.52, + "probability": 0.5489 + }, + { + "start": 3039.56, + "end": 3039.92, + "probability": 0.6793 + }, + { + "start": 3040.06, + "end": 3044.79, + "probability": 0.9844 + }, + { + "start": 3045.28, + "end": 3048.95, + "probability": 0.9866 + }, + { + "start": 3049.38, + "end": 3051.42, + "probability": 0.8148 + }, + { + "start": 3051.56, + "end": 3053.36, + "probability": 0.9391 + }, + { + "start": 3053.46, + "end": 3054.34, + "probability": 0.6187 + }, + { + "start": 3055.27, + "end": 3057.73, + "probability": 0.7275 + }, + { + "start": 3058.88, + "end": 3063.4, + "probability": 0.9417 + }, + { + "start": 3064.26, + "end": 3067.72, + "probability": 0.896 + }, + { + "start": 3068.6, + "end": 3071.08, + "probability": 0.9798 + }, + { + "start": 3072.2, + "end": 3073.82, + "probability": 0.9414 + }, + { + "start": 3075.38, + "end": 3076.22, + "probability": 0.7564 + }, + { + "start": 3076.5, + "end": 3083.42, + "probability": 0.984 + }, + { + "start": 3084.76, + "end": 3086.33, + "probability": 0.9009 + }, + { + "start": 3087.16, + "end": 3090.86, + "probability": 0.9982 + }, + { + "start": 3091.48, + "end": 3095.1, + "probability": 0.9458 + }, + { + "start": 3095.9, + "end": 3097.1, + "probability": 0.7774 + }, + { + "start": 3097.98, + "end": 3098.42, + "probability": 0.8715 + }, + { + "start": 3098.5, + "end": 3100.54, + "probability": 0.9438 + }, + { + "start": 3100.54, + "end": 3103.72, + "probability": 0.8703 + }, + { + "start": 3104.58, + "end": 3106.31, + "probability": 0.9954 + }, + { + "start": 3107.92, + "end": 3111.4, + "probability": 0.9862 + }, + { + "start": 3112.3, + "end": 3113.2, + "probability": 0.8897 + }, + { + "start": 3113.36, + "end": 3113.66, + "probability": 0.8703 + }, + { + "start": 3113.66, + "end": 3120.88, + "probability": 0.9948 + }, + { + "start": 3122.0, + "end": 3123.14, + "probability": 0.959 + }, + { + "start": 3123.86, + "end": 3128.3, + "probability": 0.7281 + }, + { + "start": 3128.98, + "end": 3133.26, + "probability": 0.9201 + }, + { + "start": 3134.2, + "end": 3134.36, + "probability": 0.3607 + }, + { + "start": 3134.48, + "end": 3135.66, + "probability": 0.7975 + }, + { + "start": 3136.1, + "end": 3142.5, + "probability": 0.9731 + }, + { + "start": 3142.5, + "end": 3148.04, + "probability": 0.9331 + }, + { + "start": 3149.44, + "end": 3151.14, + "probability": 0.9048 + }, + { + "start": 3151.42, + "end": 3155.48, + "probability": 0.915 + }, + { + "start": 3155.82, + "end": 3156.98, + "probability": 0.9798 + }, + { + "start": 3157.3, + "end": 3161.4, + "probability": 0.7945 + }, + { + "start": 3161.82, + "end": 3162.7, + "probability": 0.6943 + }, + { + "start": 3163.54, + "end": 3164.54, + "probability": 0.5961 + }, + { + "start": 3164.98, + "end": 3167.06, + "probability": 0.9583 + }, + { + "start": 3167.2, + "end": 3170.32, + "probability": 0.9015 + }, + { + "start": 3172.2, + "end": 3174.18, + "probability": 0.8325 + }, + { + "start": 3191.74, + "end": 3194.28, + "probability": 0.7362 + }, + { + "start": 3194.38, + "end": 3196.76, + "probability": 0.7594 + }, + { + "start": 3197.46, + "end": 3198.7, + "probability": 0.813 + }, + { + "start": 3199.56, + "end": 3202.02, + "probability": 0.9141 + }, + { + "start": 3203.04, + "end": 3204.74, + "probability": 0.7308 + }, + { + "start": 3204.74, + "end": 3207.64, + "probability": 0.5613 + }, + { + "start": 3207.74, + "end": 3209.06, + "probability": 0.8671 + }, + { + "start": 3209.12, + "end": 3210.16, + "probability": 0.425 + }, + { + "start": 3211.24, + "end": 3212.64, + "probability": 0.9922 + }, + { + "start": 3212.82, + "end": 3214.64, + "probability": 0.9951 + }, + { + "start": 3214.92, + "end": 3217.96, + "probability": 0.9961 + }, + { + "start": 3219.1, + "end": 3221.86, + "probability": 0.9429 + }, + { + "start": 3223.44, + "end": 3224.58, + "probability": 0.9019 + }, + { + "start": 3224.74, + "end": 3227.72, + "probability": 0.9819 + }, + { + "start": 3227.88, + "end": 3230.21, + "probability": 0.7107 + }, + { + "start": 3231.82, + "end": 3238.98, + "probability": 0.9512 + }, + { + "start": 3239.9, + "end": 3241.23, + "probability": 0.943 + }, + { + "start": 3241.78, + "end": 3242.55, + "probability": 0.9457 + }, + { + "start": 3243.42, + "end": 3244.3, + "probability": 0.5324 + }, + { + "start": 3245.26, + "end": 3245.46, + "probability": 0.8374 + }, + { + "start": 3245.58, + "end": 3248.78, + "probability": 0.9653 + }, + { + "start": 3248.78, + "end": 3250.94, + "probability": 0.8241 + }, + { + "start": 3251.1, + "end": 3251.73, + "probability": 0.9664 + }, + { + "start": 3252.14, + "end": 3253.74, + "probability": 0.6807 + }, + { + "start": 3253.8, + "end": 3254.26, + "probability": 0.637 + }, + { + "start": 3255.08, + "end": 3256.66, + "probability": 0.4926 + }, + { + "start": 3257.9, + "end": 3261.2, + "probability": 0.6257 + }, + { + "start": 3262.5, + "end": 3264.3, + "probability": 0.9702 + }, + { + "start": 3264.32, + "end": 3264.72, + "probability": 0.7482 + }, + { + "start": 3264.86, + "end": 3268.12, + "probability": 0.7897 + }, + { + "start": 3269.34, + "end": 3273.0, + "probability": 0.9723 + }, + { + "start": 3273.0, + "end": 3277.0, + "probability": 0.938 + }, + { + "start": 3277.86, + "end": 3279.42, + "probability": 0.7385 + }, + { + "start": 3279.5, + "end": 3282.12, + "probability": 0.5088 + }, + { + "start": 3282.2, + "end": 3283.04, + "probability": 0.7924 + }, + { + "start": 3283.5, + "end": 3285.38, + "probability": 0.9575 + }, + { + "start": 3285.88, + "end": 3286.96, + "probability": 0.8459 + }, + { + "start": 3287.48, + "end": 3291.02, + "probability": 0.9946 + }, + { + "start": 3291.02, + "end": 3292.16, + "probability": 0.0384 + }, + { + "start": 3292.16, + "end": 3293.52, + "probability": 0.981 + }, + { + "start": 3294.46, + "end": 3297.02, + "probability": 0.79 + }, + { + "start": 3297.08, + "end": 3300.16, + "probability": 0.8119 + }, + { + "start": 3300.34, + "end": 3302.32, + "probability": 0.7913 + }, + { + "start": 3302.74, + "end": 3307.46, + "probability": 0.9912 + }, + { + "start": 3307.92, + "end": 3309.3, + "probability": 0.979 + }, + { + "start": 3309.32, + "end": 3309.48, + "probability": 0.6829 + }, + { + "start": 3310.14, + "end": 3313.38, + "probability": 0.802 + }, + { + "start": 3314.11, + "end": 3315.4, + "probability": 0.979 + }, + { + "start": 3315.86, + "end": 3317.9, + "probability": 0.9355 + }, + { + "start": 3318.38, + "end": 3320.0, + "probability": 0.9653 + }, + { + "start": 3320.88, + "end": 3321.02, + "probability": 0.4947 + }, + { + "start": 3321.1, + "end": 3324.92, + "probability": 0.7934 + }, + { + "start": 3325.0, + "end": 3327.04, + "probability": 0.9247 + }, + { + "start": 3327.54, + "end": 3327.7, + "probability": 0.5549 + }, + { + "start": 3327.96, + "end": 3329.66, + "probability": 0.5779 + }, + { + "start": 3333.94, + "end": 3338.72, + "probability": 0.9009 + }, + { + "start": 3339.3, + "end": 3341.46, + "probability": 0.8754 + }, + { + "start": 3341.46, + "end": 3343.82, + "probability": 0.9136 + }, + { + "start": 3344.1, + "end": 3348.32, + "probability": 0.9254 + }, + { + "start": 3348.32, + "end": 3352.1, + "probability": 0.9414 + }, + { + "start": 3352.2, + "end": 3352.62, + "probability": 0.5978 + }, + { + "start": 3352.66, + "end": 3353.58, + "probability": 0.8577 + }, + { + "start": 3354.0, + "end": 3356.18, + "probability": 0.82 + }, + { + "start": 3357.1, + "end": 3360.76, + "probability": 0.9638 + }, + { + "start": 3361.72, + "end": 3365.0, + "probability": 0.8785 + }, + { + "start": 3365.1, + "end": 3368.26, + "probability": 0.9003 + }, + { + "start": 3368.8, + "end": 3371.88, + "probability": 0.9727 + }, + { + "start": 3372.66, + "end": 3375.42, + "probability": 0.7876 + }, + { + "start": 3376.9, + "end": 3378.58, + "probability": 0.7902 + }, + { + "start": 3379.5, + "end": 3384.44, + "probability": 0.77 + }, + { + "start": 3385.24, + "end": 3387.44, + "probability": 0.6968 + }, + { + "start": 3388.1, + "end": 3391.0, + "probability": 0.497 + }, + { + "start": 3391.1, + "end": 3391.78, + "probability": 0.5568 + }, + { + "start": 3395.16, + "end": 3395.6, + "probability": 0.0174 + }, + { + "start": 3407.54, + "end": 3407.64, + "probability": 0.5257 + }, + { + "start": 3409.4, + "end": 3411.7, + "probability": 0.9601 + }, + { + "start": 3412.68, + "end": 3418.71, + "probability": 0.9907 + }, + { + "start": 3419.41, + "end": 3422.24, + "probability": 0.7296 + }, + { + "start": 3424.78, + "end": 3426.92, + "probability": 0.9341 + }, + { + "start": 3427.44, + "end": 3432.1, + "probability": 0.9731 + }, + { + "start": 3432.1, + "end": 3436.56, + "probability": 0.9115 + }, + { + "start": 3437.24, + "end": 3440.92, + "probability": 0.9648 + }, + { + "start": 3442.9, + "end": 3445.24, + "probability": 0.9338 + }, + { + "start": 3445.34, + "end": 3446.54, + "probability": 0.5507 + }, + { + "start": 3447.96, + "end": 3452.24, + "probability": 0.2472 + }, + { + "start": 3452.9, + "end": 3453.79, + "probability": 0.9545 + }, + { + "start": 3453.96, + "end": 3459.46, + "probability": 0.9907 + }, + { + "start": 3461.24, + "end": 3466.08, + "probability": 0.9417 + }, + { + "start": 3466.48, + "end": 3470.36, + "probability": 0.9534 + }, + { + "start": 3471.28, + "end": 3472.2, + "probability": 0.4503 + }, + { + "start": 3474.98, + "end": 3480.52, + "probability": 0.9515 + }, + { + "start": 3481.12, + "end": 3483.74, + "probability": 0.9966 + }, + { + "start": 3483.96, + "end": 3488.28, + "probability": 0.883 + }, + { + "start": 3488.42, + "end": 3492.72, + "probability": 0.8609 + }, + { + "start": 3492.86, + "end": 3496.7, + "probability": 0.2606 + }, + { + "start": 3496.7, + "end": 3500.08, + "probability": 0.5125 + }, + { + "start": 3500.3, + "end": 3501.33, + "probability": 0.6003 + }, + { + "start": 3501.92, + "end": 3507.38, + "probability": 0.8339 + }, + { + "start": 3507.82, + "end": 3509.04, + "probability": 0.8438 + }, + { + "start": 3509.12, + "end": 3511.56, + "probability": 0.9528 + }, + { + "start": 3512.22, + "end": 3515.64, + "probability": 0.943 + }, + { + "start": 3515.98, + "end": 3518.38, + "probability": 0.981 + }, + { + "start": 3518.96, + "end": 3524.42, + "probability": 0.9875 + }, + { + "start": 3524.86, + "end": 3526.96, + "probability": 0.9023 + }, + { + "start": 3527.24, + "end": 3531.42, + "probability": 0.3437 + }, + { + "start": 3531.42, + "end": 3535.88, + "probability": 0.9085 + }, + { + "start": 3536.36, + "end": 3538.04, + "probability": 0.9971 + }, + { + "start": 3538.66, + "end": 3538.68, + "probability": 0.2248 + }, + { + "start": 3538.74, + "end": 3539.06, + "probability": 0.7319 + }, + { + "start": 3539.12, + "end": 3542.66, + "probability": 0.9692 + }, + { + "start": 3542.66, + "end": 3546.3, + "probability": 0.9977 + }, + { + "start": 3546.7, + "end": 3547.82, + "probability": 0.7704 + }, + { + "start": 3548.44, + "end": 3552.24, + "probability": 0.8229 + }, + { + "start": 3552.42, + "end": 3560.7, + "probability": 0.9186 + }, + { + "start": 3561.06, + "end": 3568.04, + "probability": 0.8882 + }, + { + "start": 3568.16, + "end": 3571.52, + "probability": 0.9223 + }, + { + "start": 3572.76, + "end": 3578.16, + "probability": 0.8403 + }, + { + "start": 3578.34, + "end": 3579.84, + "probability": 0.9922 + }, + { + "start": 3580.96, + "end": 3583.38, + "probability": 0.7642 + }, + { + "start": 3584.12, + "end": 3587.34, + "probability": 0.9625 + }, + { + "start": 3588.18, + "end": 3588.92, + "probability": 0.3844 + }, + { + "start": 3589.46, + "end": 3593.6, + "probability": 0.9677 + }, + { + "start": 3594.3, + "end": 3596.58, + "probability": 0.6085 + }, + { + "start": 3597.3, + "end": 3604.12, + "probability": 0.9522 + }, + { + "start": 3604.12, + "end": 3611.58, + "probability": 0.9941 + }, + { + "start": 3612.42, + "end": 3615.34, + "probability": 0.9961 + }, + { + "start": 3615.84, + "end": 3617.54, + "probability": 0.9224 + }, + { + "start": 3617.62, + "end": 3621.04, + "probability": 0.9688 + }, + { + "start": 3621.22, + "end": 3626.08, + "probability": 0.9946 + }, + { + "start": 3626.08, + "end": 3630.38, + "probability": 0.9771 + }, + { + "start": 3631.7, + "end": 3633.26, + "probability": 0.809 + }, + { + "start": 3633.26, + "end": 3634.4, + "probability": 0.6851 + }, + { + "start": 3634.44, + "end": 3638.64, + "probability": 0.989 + }, + { + "start": 3638.64, + "end": 3642.86, + "probability": 0.9977 + }, + { + "start": 3643.07, + "end": 3644.98, + "probability": 0.8309 + }, + { + "start": 3645.06, + "end": 3646.6, + "probability": 0.8024 + }, + { + "start": 3647.36, + "end": 3650.42, + "probability": 0.837 + }, + { + "start": 3652.02, + "end": 3653.5, + "probability": 0.8312 + }, + { + "start": 3653.6, + "end": 3654.62, + "probability": 0.8325 + }, + { + "start": 3654.88, + "end": 3659.08, + "probability": 0.9872 + }, + { + "start": 3659.18, + "end": 3662.04, + "probability": 0.8827 + }, + { + "start": 3662.36, + "end": 3666.54, + "probability": 0.979 + }, + { + "start": 3666.72, + "end": 3668.2, + "probability": 0.9648 + }, + { + "start": 3668.28, + "end": 3668.98, + "probability": 0.9097 + }, + { + "start": 3669.48, + "end": 3669.8, + "probability": 0.8564 + }, + { + "start": 3670.28, + "end": 3672.06, + "probability": 0.6929 + }, + { + "start": 3673.2, + "end": 3673.2, + "probability": 0.2948 + }, + { + "start": 3673.32, + "end": 3674.22, + "probability": 0.7436 + }, + { + "start": 3674.34, + "end": 3678.92, + "probability": 0.8266 + }, + { + "start": 3679.78, + "end": 3680.32, + "probability": 0.7136 + }, + { + "start": 3680.4, + "end": 3684.26, + "probability": 0.7382 + }, + { + "start": 3684.44, + "end": 3686.48, + "probability": 0.985 + }, + { + "start": 3686.54, + "end": 3688.06, + "probability": 0.9843 + }, + { + "start": 3688.16, + "end": 3689.34, + "probability": 0.7448 + }, + { + "start": 3689.8, + "end": 3696.1, + "probability": 0.9866 + }, + { + "start": 3696.5, + "end": 3702.34, + "probability": 0.9912 + }, + { + "start": 3702.98, + "end": 3703.5, + "probability": 0.7432 + }, + { + "start": 3703.58, + "end": 3704.64, + "probability": 0.9289 + }, + { + "start": 3704.66, + "end": 3708.08, + "probability": 0.754 + }, + { + "start": 3708.24, + "end": 3708.64, + "probability": 0.5384 + }, + { + "start": 3708.74, + "end": 3709.68, + "probability": 0.8136 + }, + { + "start": 3710.06, + "end": 3711.47, + "probability": 0.7312 + }, + { + "start": 3712.04, + "end": 3714.75, + "probability": 0.9264 + }, + { + "start": 3715.54, + "end": 3716.18, + "probability": 0.6685 + }, + { + "start": 3716.38, + "end": 3717.22, + "probability": 0.8873 + }, + { + "start": 3717.4, + "end": 3720.86, + "probability": 0.9277 + }, + { + "start": 3720.96, + "end": 3725.08, + "probability": 0.9616 + }, + { + "start": 3725.74, + "end": 3727.66, + "probability": 0.8937 + }, + { + "start": 3727.76, + "end": 3730.26, + "probability": 0.9343 + }, + { + "start": 3730.64, + "end": 3732.22, + "probability": 0.8394 + }, + { + "start": 3732.42, + "end": 3736.8, + "probability": 0.9727 + }, + { + "start": 3737.16, + "end": 3739.02, + "probability": 0.9581 + }, + { + "start": 3739.3, + "end": 3740.72, + "probability": 0.9418 + }, + { + "start": 3740.92, + "end": 3745.36, + "probability": 0.9893 + }, + { + "start": 3745.38, + "end": 3745.58, + "probability": 0.6236 + }, + { + "start": 3747.16, + "end": 3749.3, + "probability": 0.5459 + }, + { + "start": 3750.18, + "end": 3754.26, + "probability": 0.9507 + }, + { + "start": 3754.9, + "end": 3756.44, + "probability": 0.9631 + }, + { + "start": 3762.8, + "end": 3764.68, + "probability": 0.3784 + }, + { + "start": 3765.6, + "end": 3769.18, + "probability": 0.3532 + }, + { + "start": 3771.12, + "end": 3772.28, + "probability": 0.0235 + }, + { + "start": 3773.02, + "end": 3774.36, + "probability": 0.5002 + }, + { + "start": 3775.54, + "end": 3776.92, + "probability": 0.8603 + }, + { + "start": 3777.16, + "end": 3778.24, + "probability": 0.3597 + }, + { + "start": 3778.7, + "end": 3784.96, + "probability": 0.349 + }, + { + "start": 3785.6, + "end": 3788.14, + "probability": 0.9493 + }, + { + "start": 3788.14, + "end": 3790.68, + "probability": 0.39 + }, + { + "start": 3791.36, + "end": 3794.06, + "probability": 0.2429 + }, + { + "start": 3794.16, + "end": 3795.16, + "probability": 0.264 + }, + { + "start": 3795.16, + "end": 3797.02, + "probability": 0.4351 + }, + { + "start": 3797.64, + "end": 3798.56, + "probability": 0.093 + }, + { + "start": 3804.58, + "end": 3806.98, + "probability": 0.9025 + }, + { + "start": 3809.42, + "end": 3813.02, + "probability": 0.7168 + }, + { + "start": 3814.0, + "end": 3818.2, + "probability": 0.8797 + }, + { + "start": 3818.74, + "end": 3822.24, + "probability": 0.9827 + }, + { + "start": 3822.38, + "end": 3825.24, + "probability": 0.9924 + }, + { + "start": 3825.24, + "end": 3828.24, + "probability": 0.9777 + }, + { + "start": 3830.24, + "end": 3831.16, + "probability": 0.7862 + }, + { + "start": 3831.58, + "end": 3832.58, + "probability": 0.706 + }, + { + "start": 3832.72, + "end": 3834.8, + "probability": 0.9573 + }, + { + "start": 3835.82, + "end": 3837.98, + "probability": 0.9137 + }, + { + "start": 3838.4, + "end": 3845.46, + "probability": 0.9377 + }, + { + "start": 3846.24, + "end": 3847.88, + "probability": 0.952 + }, + { + "start": 3849.78, + "end": 3852.9, + "probability": 0.9495 + }, + { + "start": 3853.72, + "end": 3857.34, + "probability": 0.8687 + }, + { + "start": 3858.18, + "end": 3862.12, + "probability": 0.9453 + }, + { + "start": 3862.2, + "end": 3865.76, + "probability": 0.9972 + }, + { + "start": 3865.76, + "end": 3870.1, + "probability": 0.9949 + }, + { + "start": 3870.72, + "end": 3873.22, + "probability": 0.8391 + }, + { + "start": 3873.56, + "end": 3873.98, + "probability": 0.3604 + }, + { + "start": 3874.16, + "end": 3875.46, + "probability": 0.5571 + }, + { + "start": 3875.46, + "end": 3878.38, + "probability": 0.5815 + }, + { + "start": 3878.62, + "end": 3879.32, + "probability": 0.4322 + }, + { + "start": 3879.38, + "end": 3881.18, + "probability": 0.908 + }, + { + "start": 3881.42, + "end": 3882.46, + "probability": 0.5019 + }, + { + "start": 3882.66, + "end": 3883.14, + "probability": 0.1438 + }, + { + "start": 3883.18, + "end": 3884.9, + "probability": 0.9454 + }, + { + "start": 3884.94, + "end": 3886.74, + "probability": 0.4399 + }, + { + "start": 3886.8, + "end": 3890.62, + "probability": 0.8181 + }, + { + "start": 3891.52, + "end": 3895.82, + "probability": 0.9912 + }, + { + "start": 3897.14, + "end": 3898.22, + "probability": 0.7975 + }, + { + "start": 3898.34, + "end": 3901.7, + "probability": 0.7749 + }, + { + "start": 3901.94, + "end": 3902.53, + "probability": 0.0467 + }, + { + "start": 3902.68, + "end": 3903.94, + "probability": 0.7786 + }, + { + "start": 3904.7, + "end": 3905.56, + "probability": 0.5278 + }, + { + "start": 3905.58, + "end": 3905.82, + "probability": 0.7686 + }, + { + "start": 3905.94, + "end": 3906.86, + "probability": 0.3579 + }, + { + "start": 3907.36, + "end": 3909.56, + "probability": 0.8408 + }, + { + "start": 3909.92, + "end": 3910.18, + "probability": 0.0407 + }, + { + "start": 3910.44, + "end": 3910.94, + "probability": 0.5896 + }, + { + "start": 3911.16, + "end": 3915.88, + "probability": 0.9806 + }, + { + "start": 3916.92, + "end": 3918.01, + "probability": 0.4415 + }, + { + "start": 3919.06, + "end": 3920.3, + "probability": 0.8062 + }, + { + "start": 3920.3, + "end": 3921.74, + "probability": 0.3886 + }, + { + "start": 3922.2, + "end": 3924.3, + "probability": 0.3874 + }, + { + "start": 3924.48, + "end": 3929.28, + "probability": 0.6227 + }, + { + "start": 3929.5, + "end": 3932.08, + "probability": 0.9824 + }, + { + "start": 3932.08, + "end": 3935.5, + "probability": 0.9909 + }, + { + "start": 3935.62, + "end": 3937.9, + "probability": 0.8316 + }, + { + "start": 3938.1, + "end": 3940.86, + "probability": 0.7729 + }, + { + "start": 3940.96, + "end": 3943.24, + "probability": 0.9336 + }, + { + "start": 3943.3, + "end": 3946.34, + "probability": 0.8432 + }, + { + "start": 3946.92, + "end": 3950.38, + "probability": 0.0638 + }, + { + "start": 3950.56, + "end": 3951.16, + "probability": 0.0796 + }, + { + "start": 3951.66, + "end": 3953.28, + "probability": 0.2795 + }, + { + "start": 3953.4, + "end": 3954.74, + "probability": 0.889 + }, + { + "start": 3954.82, + "end": 3955.76, + "probability": 0.4554 + }, + { + "start": 3956.0, + "end": 3959.88, + "probability": 0.9813 + }, + { + "start": 3959.88, + "end": 3965.84, + "probability": 0.726 + }, + { + "start": 3965.84, + "end": 3968.38, + "probability": 0.8752 + }, + { + "start": 3968.38, + "end": 3968.38, + "probability": 0.5556 + }, + { + "start": 3968.5, + "end": 3970.7, + "probability": 0.7491 + }, + { + "start": 3970.74, + "end": 3972.12, + "probability": 0.9767 + }, + { + "start": 3972.34, + "end": 3975.47, + "probability": 0.828 + }, + { + "start": 3975.8, + "end": 3976.38, + "probability": 0.1362 + }, + { + "start": 3976.88, + "end": 3977.38, + "probability": 0.5458 + }, + { + "start": 3977.56, + "end": 3978.26, + "probability": 0.4192 + }, + { + "start": 3978.52, + "end": 3983.38, + "probability": 0.8099 + }, + { + "start": 3983.44, + "end": 3985.4, + "probability": 0.7575 + }, + { + "start": 3986.02, + "end": 3990.22, + "probability": 0.938 + }, + { + "start": 3990.22, + "end": 3995.2, + "probability": 0.9303 + }, + { + "start": 3995.68, + "end": 4000.52, + "probability": 0.9576 + }, + { + "start": 4000.54, + "end": 4001.78, + "probability": 0.7637 + }, + { + "start": 4002.12, + "end": 4002.84, + "probability": 0.8721 + }, + { + "start": 4002.94, + "end": 4008.38, + "probability": 0.9902 + }, + { + "start": 4009.0, + "end": 4010.66, + "probability": 0.8801 + }, + { + "start": 4011.32, + "end": 4012.5, + "probability": 0.7447 + }, + { + "start": 4012.56, + "end": 4016.02, + "probability": 0.9728 + }, + { + "start": 4016.02, + "end": 4022.18, + "probability": 0.9896 + }, + { + "start": 4023.0, + "end": 4027.4, + "probability": 0.7124 + }, + { + "start": 4028.04, + "end": 4028.76, + "probability": 0.9352 + }, + { + "start": 4028.78, + "end": 4034.64, + "probability": 0.9791 + }, + { + "start": 4035.46, + "end": 4039.58, + "probability": 0.9478 + }, + { + "start": 4039.62, + "end": 4040.58, + "probability": 0.7012 + }, + { + "start": 4040.96, + "end": 4042.96, + "probability": 0.9951 + }, + { + "start": 4043.0, + "end": 4045.12, + "probability": 0.9941 + }, + { + "start": 4045.32, + "end": 4046.66, + "probability": 0.6215 + }, + { + "start": 4047.88, + "end": 4049.54, + "probability": 0.9683 + }, + { + "start": 4049.94, + "end": 4051.28, + "probability": 0.4531 + }, + { + "start": 4051.36, + "end": 4052.04, + "probability": 0.6613 + }, + { + "start": 4052.24, + "end": 4052.86, + "probability": 0.6004 + }, + { + "start": 4052.96, + "end": 4053.9, + "probability": 0.4581 + }, + { + "start": 4054.5, + "end": 4058.18, + "probability": 0.4555 + }, + { + "start": 4058.32, + "end": 4062.46, + "probability": 0.625 + }, + { + "start": 4063.18, + "end": 4063.9, + "probability": 0.4919 + }, + { + "start": 4065.73, + "end": 4070.68, + "probability": 0.981 + }, + { + "start": 4070.82, + "end": 4072.4, + "probability": 0.0449 + }, + { + "start": 4072.4, + "end": 4073.18, + "probability": 0.8301 + }, + { + "start": 4073.26, + "end": 4073.88, + "probability": 0.4051 + }, + { + "start": 4073.88, + "end": 4074.95, + "probability": 0.3219 + }, + { + "start": 4075.4, + "end": 4079.18, + "probability": 0.9158 + }, + { + "start": 4080.58, + "end": 4083.06, + "probability": 0.9469 + }, + { + "start": 4086.96, + "end": 4088.2, + "probability": 0.7104 + }, + { + "start": 4090.14, + "end": 4091.46, + "probability": 0.886 + }, + { + "start": 4091.62, + "end": 4095.16, + "probability": 0.7127 + }, + { + "start": 4098.84, + "end": 4101.52, + "probability": 0.9872 + }, + { + "start": 4101.98, + "end": 4103.72, + "probability": 0.446 + }, + { + "start": 4103.76, + "end": 4106.3, + "probability": 0.9795 + }, + { + "start": 4106.82, + "end": 4107.8, + "probability": 0.7615 + }, + { + "start": 4112.48, + "end": 4118.46, + "probability": 0.4009 + }, + { + "start": 4120.36, + "end": 4121.46, + "probability": 0.353 + }, + { + "start": 4135.88, + "end": 4137.76, + "probability": 0.3309 + }, + { + "start": 4137.78, + "end": 4140.64, + "probability": 0.9757 + }, + { + "start": 4140.67, + "end": 4144.92, + "probability": 0.9907 + }, + { + "start": 4145.8, + "end": 4146.62, + "probability": 0.7864 + }, + { + "start": 4147.2, + "end": 4151.26, + "probability": 0.9634 + }, + { + "start": 4151.84, + "end": 4153.72, + "probability": 0.9941 + }, + { + "start": 4154.62, + "end": 4157.54, + "probability": 0.9985 + }, + { + "start": 4158.6, + "end": 4163.52, + "probability": 0.8667 + }, + { + "start": 4164.3, + "end": 4165.5, + "probability": 0.7172 + }, + { + "start": 4166.06, + "end": 4166.26, + "probability": 0.5491 + }, + { + "start": 4173.96, + "end": 4175.66, + "probability": 0.8849 + }, + { + "start": 4177.1, + "end": 4182.9, + "probability": 0.8792 + }, + { + "start": 4183.04, + "end": 4183.72, + "probability": 0.9908 + }, + { + "start": 4183.84, + "end": 4184.84, + "probability": 0.894 + }, + { + "start": 4185.62, + "end": 4188.22, + "probability": 0.9172 + }, + { + "start": 4189.44, + "end": 4197.68, + "probability": 0.9849 + }, + { + "start": 4198.02, + "end": 4207.04, + "probability": 0.9989 + }, + { + "start": 4207.9, + "end": 4214.64, + "probability": 0.9484 + }, + { + "start": 4216.0, + "end": 4217.56, + "probability": 0.9254 + }, + { + "start": 4218.12, + "end": 4219.76, + "probability": 0.6837 + }, + { + "start": 4219.9, + "end": 4220.5, + "probability": 0.6071 + }, + { + "start": 4220.56, + "end": 4220.96, + "probability": 0.4138 + }, + { + "start": 4221.04, + "end": 4221.56, + "probability": 0.6612 + }, + { + "start": 4221.6, + "end": 4224.2, + "probability": 0.979 + }, + { + "start": 4224.96, + "end": 4228.96, + "probability": 0.9694 + }, + { + "start": 4230.0, + "end": 4238.98, + "probability": 0.9834 + }, + { + "start": 4240.0, + "end": 4243.14, + "probability": 0.9731 + }, + { + "start": 4243.8, + "end": 4248.94, + "probability": 0.9925 + }, + { + "start": 4249.9, + "end": 4252.74, + "probability": 0.9888 + }, + { + "start": 4253.4, + "end": 4256.96, + "probability": 0.9996 + }, + { + "start": 4256.96, + "end": 4260.56, + "probability": 0.8574 + }, + { + "start": 4261.98, + "end": 4265.34, + "probability": 0.9712 + }, + { + "start": 4266.26, + "end": 4274.46, + "probability": 0.9654 + }, + { + "start": 4275.12, + "end": 4279.0, + "probability": 0.9928 + }, + { + "start": 4279.0, + "end": 4281.78, + "probability": 0.9986 + }, + { + "start": 4283.48, + "end": 4285.86, + "probability": 0.8885 + }, + { + "start": 4287.14, + "end": 4290.18, + "probability": 0.8885 + }, + { + "start": 4290.92, + "end": 4292.96, + "probability": 0.9988 + }, + { + "start": 4293.84, + "end": 4295.72, + "probability": 0.9267 + }, + { + "start": 4296.74, + "end": 4302.38, + "probability": 0.9927 + }, + { + "start": 4303.6, + "end": 4308.16, + "probability": 0.9917 + }, + { + "start": 4308.38, + "end": 4309.14, + "probability": 0.9741 + }, + { + "start": 4309.88, + "end": 4312.21, + "probability": 0.9873 + }, + { + "start": 4315.13, + "end": 4318.24, + "probability": 0.8146 + }, + { + "start": 4318.94, + "end": 4324.12, + "probability": 0.893 + }, + { + "start": 4324.12, + "end": 4329.68, + "probability": 0.9967 + }, + { + "start": 4330.4, + "end": 4334.12, + "probability": 0.9777 + }, + { + "start": 4334.12, + "end": 4338.78, + "probability": 0.9972 + }, + { + "start": 4339.8, + "end": 4343.61, + "probability": 0.9873 + }, + { + "start": 4343.88, + "end": 4348.62, + "probability": 0.9946 + }, + { + "start": 4349.3, + "end": 4353.52, + "probability": 0.9977 + }, + { + "start": 4353.52, + "end": 4356.94, + "probability": 0.9912 + }, + { + "start": 4357.64, + "end": 4360.87, + "probability": 0.9905 + }, + { + "start": 4362.26, + "end": 4366.48, + "probability": 0.9964 + }, + { + "start": 4367.28, + "end": 4371.26, + "probability": 0.697 + }, + { + "start": 4372.02, + "end": 4378.02, + "probability": 0.9956 + }, + { + "start": 4378.02, + "end": 4383.62, + "probability": 0.9998 + }, + { + "start": 4384.46, + "end": 4384.74, + "probability": 0.6705 + }, + { + "start": 4385.06, + "end": 4391.72, + "probability": 0.9976 + }, + { + "start": 4391.72, + "end": 4397.3, + "probability": 0.9993 + }, + { + "start": 4398.98, + "end": 4405.64, + "probability": 0.9478 + }, + { + "start": 4405.84, + "end": 4406.64, + "probability": 0.7073 + }, + { + "start": 4407.82, + "end": 4417.24, + "probability": 0.9963 + }, + { + "start": 4418.44, + "end": 4419.62, + "probability": 0.9463 + }, + { + "start": 4419.82, + "end": 4424.18, + "probability": 0.9954 + }, + { + "start": 4424.98, + "end": 4429.88, + "probability": 0.9678 + }, + { + "start": 4430.82, + "end": 4432.36, + "probability": 0.9739 + }, + { + "start": 4433.68, + "end": 4435.72, + "probability": 0.991 + }, + { + "start": 4438.98, + "end": 4440.28, + "probability": 0.8813 + }, + { + "start": 4441.04, + "end": 4444.74, + "probability": 0.995 + }, + { + "start": 4445.64, + "end": 4450.66, + "probability": 0.9462 + }, + { + "start": 4451.42, + "end": 4452.91, + "probability": 0.6068 + }, + { + "start": 4453.18, + "end": 4454.48, + "probability": 0.8228 + }, + { + "start": 4455.18, + "end": 4456.16, + "probability": 0.5273 + }, + { + "start": 4457.04, + "end": 4458.42, + "probability": 0.7403 + }, + { + "start": 4459.36, + "end": 4460.74, + "probability": 0.8636 + }, + { + "start": 4461.26, + "end": 4463.04, + "probability": 0.9899 + }, + { + "start": 4463.66, + "end": 4465.54, + "probability": 0.8786 + }, + { + "start": 4466.3, + "end": 4467.1, + "probability": 0.9771 + }, + { + "start": 4467.62, + "end": 4470.5, + "probability": 0.8329 + }, + { + "start": 4470.86, + "end": 4471.4, + "probability": 0.8831 + }, + { + "start": 4471.46, + "end": 4472.2, + "probability": 0.98 + }, + { + "start": 4473.02, + "end": 4474.7, + "probability": 0.949 + }, + { + "start": 4476.32, + "end": 4479.84, + "probability": 0.8323 + }, + { + "start": 4480.62, + "end": 4483.8, + "probability": 0.9937 + }, + { + "start": 4484.06, + "end": 4485.41, + "probability": 0.9763 + }, + { + "start": 4485.76, + "end": 4487.4, + "probability": 0.9979 + }, + { + "start": 4488.22, + "end": 4490.38, + "probability": 0.9946 + }, + { + "start": 4490.6, + "end": 4491.26, + "probability": 0.5057 + }, + { + "start": 4491.46, + "end": 4493.89, + "probability": 0.9053 + }, + { + "start": 4494.82, + "end": 4497.53, + "probability": 0.8263 + }, + { + "start": 4498.22, + "end": 4500.46, + "probability": 0.9508 + }, + { + "start": 4501.04, + "end": 4504.0, + "probability": 0.9932 + }, + { + "start": 4505.08, + "end": 4508.44, + "probability": 0.9866 + }, + { + "start": 4508.84, + "end": 4509.54, + "probability": 0.7718 + }, + { + "start": 4509.86, + "end": 4511.48, + "probability": 0.9097 + }, + { + "start": 4511.94, + "end": 4513.18, + "probability": 0.848 + }, + { + "start": 4513.86, + "end": 4514.86, + "probability": 0.7832 + }, + { + "start": 4515.8, + "end": 4517.46, + "probability": 0.915 + }, + { + "start": 4518.36, + "end": 4521.08, + "probability": 0.9033 + }, + { + "start": 4522.04, + "end": 4523.32, + "probability": 0.9868 + }, + { + "start": 4524.34, + "end": 4526.42, + "probability": 0.9921 + }, + { + "start": 4526.48, + "end": 4527.59, + "probability": 0.9598 + }, + { + "start": 4528.68, + "end": 4533.12, + "probability": 0.981 + }, + { + "start": 4533.54, + "end": 4535.02, + "probability": 0.9985 + }, + { + "start": 4536.98, + "end": 4537.74, + "probability": 0.6174 + }, + { + "start": 4538.76, + "end": 4542.36, + "probability": 0.928 + }, + { + "start": 4542.82, + "end": 4546.3, + "probability": 0.9541 + }, + { + "start": 4546.6, + "end": 4548.3, + "probability": 0.7248 + }, + { + "start": 4549.12, + "end": 4551.56, + "probability": 0.7987 + }, + { + "start": 4552.12, + "end": 4555.94, + "probability": 0.9824 + }, + { + "start": 4556.26, + "end": 4558.13, + "probability": 0.9956 + }, + { + "start": 4558.3, + "end": 4558.98, + "probability": 0.8217 + }, + { + "start": 4559.12, + "end": 4559.78, + "probability": 0.7592 + }, + { + "start": 4560.38, + "end": 4565.9, + "probability": 0.9597 + }, + { + "start": 4566.5, + "end": 4568.6, + "probability": 0.8242 + }, + { + "start": 4568.7, + "end": 4569.98, + "probability": 0.9274 + }, + { + "start": 4570.14, + "end": 4572.94, + "probability": 0.7813 + }, + { + "start": 4573.16, + "end": 4580.1, + "probability": 0.9659 + }, + { + "start": 4580.64, + "end": 4582.06, + "probability": 0.9723 + }, + { + "start": 4582.36, + "end": 4583.97, + "probability": 0.9954 + }, + { + "start": 4584.4, + "end": 4587.52, + "probability": 0.918 + }, + { + "start": 4587.56, + "end": 4588.04, + "probability": 0.8116 + }, + { + "start": 4588.68, + "end": 4591.28, + "probability": 0.6532 + }, + { + "start": 4591.5, + "end": 4593.78, + "probability": 0.9199 + }, + { + "start": 4596.86, + "end": 4600.58, + "probability": 0.9569 + }, + { + "start": 4601.42, + "end": 4602.96, + "probability": 0.6316 + }, + { + "start": 4603.28, + "end": 4606.02, + "probability": 0.9742 + }, + { + "start": 4606.86, + "end": 4608.78, + "probability": 0.939 + }, + { + "start": 4609.8, + "end": 4610.16, + "probability": 0.9204 + }, + { + "start": 4611.42, + "end": 4613.04, + "probability": 0.9784 + }, + { + "start": 4614.96, + "end": 4615.86, + "probability": 0.9736 + }, + { + "start": 4625.46, + "end": 4626.36, + "probability": 0.6475 + }, + { + "start": 4626.46, + "end": 4627.54, + "probability": 0.7588 + }, + { + "start": 4627.66, + "end": 4629.58, + "probability": 0.6191 + }, + { + "start": 4630.32, + "end": 4633.8, + "probability": 0.9559 + }, + { + "start": 4635.16, + "end": 4640.76, + "probability": 0.9822 + }, + { + "start": 4641.26, + "end": 4647.78, + "probability": 0.9702 + }, + { + "start": 4648.02, + "end": 4649.46, + "probability": 0.5873 + }, + { + "start": 4649.48, + "end": 4653.92, + "probability": 0.6624 + }, + { + "start": 4654.0, + "end": 4660.3, + "probability": 0.958 + }, + { + "start": 4660.48, + "end": 4662.86, + "probability": 0.9858 + }, + { + "start": 4663.54, + "end": 4664.91, + "probability": 0.8892 + }, + { + "start": 4666.08, + "end": 4667.5, + "probability": 0.8392 + }, + { + "start": 4667.72, + "end": 4672.05, + "probability": 0.992 + }, + { + "start": 4673.36, + "end": 4676.36, + "probability": 0.7686 + }, + { + "start": 4677.52, + "end": 4678.06, + "probability": 0.8745 + }, + { + "start": 4678.24, + "end": 4683.38, + "probability": 0.9801 + }, + { + "start": 4684.02, + "end": 4688.12, + "probability": 0.9954 + }, + { + "start": 4689.0, + "end": 4691.48, + "probability": 0.968 + }, + { + "start": 4692.96, + "end": 4699.82, + "probability": 0.9989 + }, + { + "start": 4700.82, + "end": 4704.98, + "probability": 0.9507 + }, + { + "start": 4705.4, + "end": 4709.3, + "probability": 0.9977 + }, + { + "start": 4710.66, + "end": 4712.04, + "probability": 0.8449 + }, + { + "start": 4712.04, + "end": 4714.18, + "probability": 0.9213 + }, + { + "start": 4714.38, + "end": 4716.8, + "probability": 0.6774 + }, + { + "start": 4717.44, + "end": 4723.24, + "probability": 0.9662 + }, + { + "start": 4723.31, + "end": 4729.1, + "probability": 0.9946 + }, + { + "start": 4730.1, + "end": 4733.62, + "probability": 0.9432 + }, + { + "start": 4733.68, + "end": 4736.6, + "probability": 0.9837 + }, + { + "start": 4736.6, + "end": 4738.52, + "probability": 0.812 + }, + { + "start": 4739.44, + "end": 4742.26, + "probability": 0.6792 + }, + { + "start": 4742.46, + "end": 4743.48, + "probability": 0.7325 + }, + { + "start": 4743.64, + "end": 4744.9, + "probability": 0.7383 + }, + { + "start": 4745.9, + "end": 4752.69, + "probability": 0.934 + }, + { + "start": 4753.7, + "end": 4761.68, + "probability": 0.9492 + }, + { + "start": 4761.8, + "end": 4765.66, + "probability": 0.9792 + }, + { + "start": 4766.5, + "end": 4771.38, + "probability": 0.9923 + }, + { + "start": 4771.92, + "end": 4776.92, + "probability": 0.9201 + }, + { + "start": 4777.86, + "end": 4783.5, + "probability": 0.9961 + }, + { + "start": 4785.26, + "end": 4788.86, + "probability": 0.9812 + }, + { + "start": 4789.02, + "end": 4789.68, + "probability": 0.6712 + }, + { + "start": 4789.74, + "end": 4790.66, + "probability": 0.7597 + }, + { + "start": 4790.82, + "end": 4793.78, + "probability": 0.8302 + }, + { + "start": 4793.88, + "end": 4795.68, + "probability": 0.8589 + }, + { + "start": 4796.14, + "end": 4797.18, + "probability": 0.762 + }, + { + "start": 4797.5, + "end": 4799.78, + "probability": 0.7418 + }, + { + "start": 4799.9, + "end": 4802.54, + "probability": 0.955 + }, + { + "start": 4802.96, + "end": 4804.84, + "probability": 0.8116 + }, + { + "start": 4804.88, + "end": 4807.32, + "probability": 0.9628 + }, + { + "start": 4809.14, + "end": 4814.1, + "probability": 0.8924 + }, + { + "start": 4814.44, + "end": 4819.32, + "probability": 0.9857 + }, + { + "start": 4819.84, + "end": 4824.0, + "probability": 0.9954 + }, + { + "start": 4824.94, + "end": 4832.46, + "probability": 0.9803 + }, + { + "start": 4832.6, + "end": 4833.82, + "probability": 0.6451 + }, + { + "start": 4834.68, + "end": 4835.7, + "probability": 0.8799 + }, + { + "start": 4835.76, + "end": 4839.52, + "probability": 0.8253 + }, + { + "start": 4840.18, + "end": 4848.58, + "probability": 0.978 + }, + { + "start": 4849.06, + "end": 4849.98, + "probability": 0.7404 + }, + { + "start": 4850.26, + "end": 4851.8, + "probability": 0.7302 + }, + { + "start": 4851.88, + "end": 4859.52, + "probability": 0.9618 + }, + { + "start": 4859.96, + "end": 4863.32, + "probability": 0.8561 + }, + { + "start": 4863.92, + "end": 4867.1, + "probability": 0.9912 + }, + { + "start": 4867.54, + "end": 4871.26, + "probability": 0.9829 + }, + { + "start": 4871.62, + "end": 4872.4, + "probability": 0.4155 + }, + { + "start": 4873.58, + "end": 4876.92, + "probability": 0.9761 + }, + { + "start": 4879.56, + "end": 4879.56, + "probability": 0.1092 + }, + { + "start": 4879.56, + "end": 4883.82, + "probability": 0.6896 + }, + { + "start": 4884.36, + "end": 4887.2, + "probability": 0.9973 + }, + { + "start": 4888.38, + "end": 4890.56, + "probability": 0.9922 + }, + { + "start": 4891.48, + "end": 4892.12, + "probability": 0.4575 + }, + { + "start": 4892.24, + "end": 4894.54, + "probability": 0.965 + }, + { + "start": 4894.76, + "end": 4897.86, + "probability": 0.9667 + }, + { + "start": 4898.76, + "end": 4902.26, + "probability": 0.9863 + }, + { + "start": 4902.46, + "end": 4904.66, + "probability": 0.8994 + }, + { + "start": 4905.32, + "end": 4905.68, + "probability": 0.7064 + }, + { + "start": 4905.82, + "end": 4912.3, + "probability": 0.965 + }, + { + "start": 4912.38, + "end": 4913.68, + "probability": 0.968 + }, + { + "start": 4915.96, + "end": 4915.96, + "probability": 0.2938 + }, + { + "start": 4915.96, + "end": 4919.64, + "probability": 0.1979 + }, + { + "start": 4919.72, + "end": 4925.0, + "probability": 0.891 + }, + { + "start": 4925.1, + "end": 4925.88, + "probability": 0.5008 + }, + { + "start": 4925.94, + "end": 4926.82, + "probability": 0.5883 + }, + { + "start": 4926.86, + "end": 4928.28, + "probability": 0.0601 + }, + { + "start": 4928.8, + "end": 4928.94, + "probability": 0.6045 + }, + { + "start": 4929.68, + "end": 4932.72, + "probability": 0.8086 + }, + { + "start": 4933.18, + "end": 4934.8, + "probability": 0.986 + }, + { + "start": 4934.98, + "end": 4935.6, + "probability": 0.806 + }, + { + "start": 4935.66, + "end": 4936.42, + "probability": 0.9779 + }, + { + "start": 4936.46, + "end": 4938.73, + "probability": 0.9771 + }, + { + "start": 4939.48, + "end": 4941.06, + "probability": 0.9674 + }, + { + "start": 4944.94, + "end": 4948.72, + "probability": 0.994 + }, + { + "start": 4950.54, + "end": 4953.48, + "probability": 0.9941 + }, + { + "start": 4954.54, + "end": 4958.74, + "probability": 0.9839 + }, + { + "start": 4959.58, + "end": 4961.22, + "probability": 0.7696 + }, + { + "start": 4961.4, + "end": 4964.85, + "probability": 0.9912 + }, + { + "start": 4965.22, + "end": 4970.32, + "probability": 0.9956 + }, + { + "start": 4970.52, + "end": 4971.66, + "probability": 0.6073 + }, + { + "start": 4972.18, + "end": 4973.0, + "probability": 0.7327 + }, + { + "start": 4973.26, + "end": 4974.4, + "probability": 0.5774 + }, + { + "start": 4974.9, + "end": 4975.84, + "probability": 0.7309 + }, + { + "start": 4976.18, + "end": 4977.34, + "probability": 0.9426 + }, + { + "start": 4977.34, + "end": 4977.9, + "probability": 0.9007 + }, + { + "start": 4978.12, + "end": 4980.76, + "probability": 0.8494 + }, + { + "start": 4982.46, + "end": 4983.22, + "probability": 0.5699 + }, + { + "start": 4983.36, + "end": 4984.41, + "probability": 0.657 + }, + { + "start": 4984.9, + "end": 4988.04, + "probability": 0.9489 + }, + { + "start": 4988.12, + "end": 4988.86, + "probability": 0.8837 + }, + { + "start": 4989.2, + "end": 4990.78, + "probability": 0.4864 + }, + { + "start": 4990.84, + "end": 4992.72, + "probability": 0.563 + }, + { + "start": 4992.84, + "end": 4996.24, + "probability": 0.6862 + }, + { + "start": 4996.58, + "end": 4999.82, + "probability": 0.5139 + }, + { + "start": 5000.5, + "end": 5001.24, + "probability": 0.1705 + }, + { + "start": 5001.36, + "end": 5003.0, + "probability": 0.5039 + }, + { + "start": 5003.08, + "end": 5004.76, + "probability": 0.9538 + }, + { + "start": 5004.94, + "end": 5007.2, + "probability": 0.8409 + }, + { + "start": 5007.24, + "end": 5008.58, + "probability": 0.7381 + }, + { + "start": 5008.88, + "end": 5011.06, + "probability": 0.8908 + }, + { + "start": 5011.24, + "end": 5014.52, + "probability": 0.8896 + }, + { + "start": 5015.16, + "end": 5016.22, + "probability": 0.798 + }, + { + "start": 5016.74, + "end": 5017.36, + "probability": 0.8285 + }, + { + "start": 5023.88, + "end": 5028.32, + "probability": 0.7222 + }, + { + "start": 5029.16, + "end": 5034.82, + "probability": 0.8 + }, + { + "start": 5035.2, + "end": 5036.58, + "probability": 0.8325 + }, + { + "start": 5043.02, + "end": 5043.62, + "probability": 0.5778 + }, + { + "start": 5045.08, + "end": 5045.08, + "probability": 0.5785 + }, + { + "start": 5045.08, + "end": 5053.68, + "probability": 0.9838 + }, + { + "start": 5054.28, + "end": 5055.08, + "probability": 0.6254 + }, + { + "start": 5055.5, + "end": 5057.58, + "probability": 0.9411 + }, + { + "start": 5058.36, + "end": 5061.22, + "probability": 0.2603 + }, + { + "start": 5062.04, + "end": 5063.12, + "probability": 0.4352 + }, + { + "start": 5063.66, + "end": 5067.52, + "probability": 0.7178 + }, + { + "start": 5068.18, + "end": 5069.04, + "probability": 0.8284 + }, + { + "start": 5069.46, + "end": 5073.9, + "probability": 0.5205 + }, + { + "start": 5074.04, + "end": 5075.32, + "probability": 0.9102 + }, + { + "start": 5076.1, + "end": 5076.98, + "probability": 0.8826 + }, + { + "start": 5078.88, + "end": 5081.74, + "probability": 0.7346 + }, + { + "start": 5082.38, + "end": 5085.9, + "probability": 0.7884 + }, + { + "start": 5086.96, + "end": 5090.88, + "probability": 0.8949 + }, + { + "start": 5091.86, + "end": 5096.68, + "probability": 0.9727 + }, + { + "start": 5096.68, + "end": 5098.76, + "probability": 0.9153 + }, + { + "start": 5099.6, + "end": 5101.76, + "probability": 0.7246 + }, + { + "start": 5101.84, + "end": 5105.76, + "probability": 0.9509 + }, + { + "start": 5106.32, + "end": 5107.14, + "probability": 0.6584 + }, + { + "start": 5107.5, + "end": 5108.7, + "probability": 0.8054 + }, + { + "start": 5108.76, + "end": 5109.7, + "probability": 0.469 + }, + { + "start": 5110.2, + "end": 5111.94, + "probability": 0.7178 + }, + { + "start": 5112.02, + "end": 5114.86, + "probability": 0.8743 + }, + { + "start": 5115.24, + "end": 5118.06, + "probability": 0.9565 + }, + { + "start": 5118.76, + "end": 5122.96, + "probability": 0.9141 + }, + { + "start": 5123.22, + "end": 5128.0, + "probability": 0.8638 + }, + { + "start": 5128.54, + "end": 5129.42, + "probability": 0.327 + }, + { + "start": 5130.96, + "end": 5132.2, + "probability": 0.5324 + }, + { + "start": 5133.08, + "end": 5136.96, + "probability": 0.8198 + }, + { + "start": 5138.04, + "end": 5142.96, + "probability": 0.9896 + }, + { + "start": 5142.96, + "end": 5148.16, + "probability": 0.7795 + }, + { + "start": 5148.4, + "end": 5152.54, + "probability": 0.7927 + }, + { + "start": 5153.2, + "end": 5154.2, + "probability": 0.7552 + }, + { + "start": 5154.48, + "end": 5157.16, + "probability": 0.8196 + }, + { + "start": 5157.76, + "end": 5161.52, + "probability": 0.6043 + }, + { + "start": 5162.56, + "end": 5167.56, + "probability": 0.8829 + }, + { + "start": 5168.0, + "end": 5170.86, + "probability": 0.916 + }, + { + "start": 5171.52, + "end": 5175.64, + "probability": 0.8406 + }, + { + "start": 5175.76, + "end": 5176.84, + "probability": 0.9683 + }, + { + "start": 5177.16, + "end": 5179.24, + "probability": 0.8342 + }, + { + "start": 5179.86, + "end": 5181.52, + "probability": 0.8691 + }, + { + "start": 5181.92, + "end": 5187.28, + "probability": 0.9674 + }, + { + "start": 5187.28, + "end": 5191.64, + "probability": 0.988 + }, + { + "start": 5192.2, + "end": 5193.14, + "probability": 0.3659 + }, + { + "start": 5193.48, + "end": 5195.24, + "probability": 0.9609 + }, + { + "start": 5195.66, + "end": 5198.38, + "probability": 0.804 + }, + { + "start": 5198.72, + "end": 5202.04, + "probability": 0.897 + }, + { + "start": 5203.22, + "end": 5207.18, + "probability": 0.9744 + }, + { + "start": 5207.56, + "end": 5213.04, + "probability": 0.9406 + }, + { + "start": 5213.98, + "end": 5215.7, + "probability": 0.6915 + }, + { + "start": 5216.18, + "end": 5216.88, + "probability": 0.5494 + }, + { + "start": 5217.1, + "end": 5218.62, + "probability": 0.8938 + }, + { + "start": 5218.72, + "end": 5219.64, + "probability": 0.8018 + }, + { + "start": 5219.72, + "end": 5221.9, + "probability": 0.7571 + }, + { + "start": 5222.1, + "end": 5223.08, + "probability": 0.3276 + }, + { + "start": 5223.12, + "end": 5225.7, + "probability": 0.5982 + }, + { + "start": 5225.7, + "end": 5225.78, + "probability": 0.0292 + }, + { + "start": 5225.78, + "end": 5226.1, + "probability": 0.0771 + }, + { + "start": 5226.1, + "end": 5227.43, + "probability": 0.3571 + }, + { + "start": 5227.66, + "end": 5229.94, + "probability": 0.1592 + }, + { + "start": 5230.22, + "end": 5233.44, + "probability": 0.2845 + }, + { + "start": 5233.64, + "end": 5235.48, + "probability": 0.7787 + }, + { + "start": 5235.76, + "end": 5237.8, + "probability": 0.3178 + }, + { + "start": 5237.8, + "end": 5238.88, + "probability": 0.07 + }, + { + "start": 5242.06, + "end": 5243.28, + "probability": 0.2675 + }, + { + "start": 5243.36, + "end": 5243.88, + "probability": 0.6432 + }, + { + "start": 5244.18, + "end": 5246.44, + "probability": 0.2864 + }, + { + "start": 5246.56, + "end": 5248.78, + "probability": 0.9081 + }, + { + "start": 5248.9, + "end": 5250.94, + "probability": 0.5829 + }, + { + "start": 5251.16, + "end": 5253.16, + "probability": 0.8977 + }, + { + "start": 5253.62, + "end": 5255.3, + "probability": 0.7769 + }, + { + "start": 5255.44, + "end": 5256.34, + "probability": 0.7954 + }, + { + "start": 5256.8, + "end": 5258.55, + "probability": 0.5937 + }, + { + "start": 5259.26, + "end": 5260.66, + "probability": 0.3149 + }, + { + "start": 5261.16, + "end": 5263.42, + "probability": 0.9818 + }, + { + "start": 5263.5, + "end": 5264.4, + "probability": 0.888 + }, + { + "start": 5264.58, + "end": 5266.62, + "probability": 0.8472 + }, + { + "start": 5266.84, + "end": 5268.6, + "probability": 0.9587 + }, + { + "start": 5269.02, + "end": 5270.36, + "probability": 0.853 + }, + { + "start": 5270.92, + "end": 5273.58, + "probability": 0.9052 + }, + { + "start": 5273.82, + "end": 5274.33, + "probability": 0.5336 + }, + { + "start": 5275.1, + "end": 5278.32, + "probability": 0.8284 + }, + { + "start": 5278.44, + "end": 5278.8, + "probability": 0.614 + }, + { + "start": 5278.8, + "end": 5281.06, + "probability": 0.6702 + }, + { + "start": 5281.28, + "end": 5284.28, + "probability": 0.7378 + }, + { + "start": 5285.0, + "end": 5289.74, + "probability": 0.9781 + }, + { + "start": 5290.15, + "end": 5293.52, + "probability": 0.5514 + }, + { + "start": 5293.72, + "end": 5295.08, + "probability": 0.4037 + }, + { + "start": 5295.3, + "end": 5298.02, + "probability": 0.8825 + }, + { + "start": 5298.28, + "end": 5300.94, + "probability": 0.9114 + }, + { + "start": 5301.2, + "end": 5302.96, + "probability": 0.9377 + }, + { + "start": 5305.82, + "end": 5306.88, + "probability": 0.7513 + }, + { + "start": 5307.72, + "end": 5310.14, + "probability": 0.7536 + }, + { + "start": 5310.8, + "end": 5311.52, + "probability": 0.7518 + }, + { + "start": 5313.26, + "end": 5316.64, + "probability": 0.8709 + }, + { + "start": 5316.72, + "end": 5317.46, + "probability": 0.8193 + }, + { + "start": 5318.26, + "end": 5323.44, + "probability": 0.9969 + }, + { + "start": 5323.44, + "end": 5328.42, + "probability": 0.898 + }, + { + "start": 5328.42, + "end": 5332.72, + "probability": 0.9912 + }, + { + "start": 5334.36, + "end": 5337.44, + "probability": 0.9902 + }, + { + "start": 5338.46, + "end": 5339.52, + "probability": 0.7572 + }, + { + "start": 5340.92, + "end": 5343.12, + "probability": 0.9188 + }, + { + "start": 5344.26, + "end": 5347.94, + "probability": 0.6712 + }, + { + "start": 5348.76, + "end": 5358.68, + "probability": 0.8513 + }, + { + "start": 5358.68, + "end": 5361.72, + "probability": 0.8672 + }, + { + "start": 5365.7, + "end": 5367.5, + "probability": 0.7387 + }, + { + "start": 5367.74, + "end": 5369.74, + "probability": 0.9987 + }, + { + "start": 5369.9, + "end": 5371.54, + "probability": 0.0722 + }, + { + "start": 5374.24, + "end": 5377.52, + "probability": 0.7525 + }, + { + "start": 5377.54, + "end": 5381.13, + "probability": 0.8105 + }, + { + "start": 5382.5, + "end": 5387.8, + "probability": 0.988 + }, + { + "start": 5388.24, + "end": 5389.66, + "probability": 0.8752 + }, + { + "start": 5390.34, + "end": 5393.18, + "probability": 0.9742 + }, + { + "start": 5393.18, + "end": 5397.38, + "probability": 0.9762 + }, + { + "start": 5397.44, + "end": 5400.04, + "probability": 0.9707 + }, + { + "start": 5400.04, + "end": 5403.56, + "probability": 0.9962 + }, + { + "start": 5403.7, + "end": 5405.94, + "probability": 0.7178 + }, + { + "start": 5406.5, + "end": 5408.89, + "probability": 0.8574 + }, + { + "start": 5410.02, + "end": 5413.82, + "probability": 0.8673 + }, + { + "start": 5414.16, + "end": 5416.66, + "probability": 0.9164 + }, + { + "start": 5416.72, + "end": 5419.32, + "probability": 0.8662 + }, + { + "start": 5419.32, + "end": 5422.42, + "probability": 0.9849 + }, + { + "start": 5423.48, + "end": 5426.2, + "probability": 0.9811 + }, + { + "start": 5426.42, + "end": 5427.88, + "probability": 0.9316 + }, + { + "start": 5428.74, + "end": 5431.42, + "probability": 0.9703 + }, + { + "start": 5432.62, + "end": 5438.46, + "probability": 0.9962 + }, + { + "start": 5438.88, + "end": 5442.2, + "probability": 0.953 + }, + { + "start": 5443.12, + "end": 5443.94, + "probability": 0.7918 + }, + { + "start": 5444.04, + "end": 5448.64, + "probability": 0.9867 + }, + { + "start": 5449.28, + "end": 5452.7, + "probability": 0.9962 + }, + { + "start": 5454.38, + "end": 5458.6, + "probability": 0.9932 + }, + { + "start": 5459.66, + "end": 5463.66, + "probability": 0.8511 + }, + { + "start": 5463.66, + "end": 5467.74, + "probability": 0.8677 + }, + { + "start": 5468.05, + "end": 5472.2, + "probability": 0.7766 + }, + { + "start": 5473.38, + "end": 5478.76, + "probability": 0.8692 + }, + { + "start": 5480.88, + "end": 5484.06, + "probability": 0.9615 + }, + { + "start": 5484.06, + "end": 5488.14, + "probability": 0.995 + }, + { + "start": 5489.26, + "end": 5492.98, + "probability": 0.988 + }, + { + "start": 5493.96, + "end": 5494.3, + "probability": 0.2844 + }, + { + "start": 5494.4, + "end": 5497.1, + "probability": 0.9099 + }, + { + "start": 5497.2, + "end": 5500.56, + "probability": 0.8949 + }, + { + "start": 5500.94, + "end": 5503.56, + "probability": 0.9692 + }, + { + "start": 5503.56, + "end": 5507.22, + "probability": 0.9829 + }, + { + "start": 5507.44, + "end": 5510.7, + "probability": 0.9412 + }, + { + "start": 5510.7, + "end": 5513.6, + "probability": 0.9891 + }, + { + "start": 5515.58, + "end": 5515.98, + "probability": 0.2997 + }, + { + "start": 5516.1, + "end": 5517.12, + "probability": 0.9594 + }, + { + "start": 5517.18, + "end": 5521.82, + "probability": 0.9429 + }, + { + "start": 5522.5, + "end": 5523.36, + "probability": 0.5451 + }, + { + "start": 5523.66, + "end": 5525.54, + "probability": 0.9888 + }, + { + "start": 5526.02, + "end": 5527.32, + "probability": 0.9219 + }, + { + "start": 5527.5, + "end": 5529.54, + "probability": 0.9416 + }, + { + "start": 5529.58, + "end": 5532.78, + "probability": 0.9487 + }, + { + "start": 5533.22, + "end": 5537.12, + "probability": 0.963 + }, + { + "start": 5538.28, + "end": 5542.74, + "probability": 0.8814 + }, + { + "start": 5543.28, + "end": 5547.42, + "probability": 0.9971 + }, + { + "start": 5547.47, + "end": 5551.86, + "probability": 0.1932 + }, + { + "start": 5552.48, + "end": 5553.02, + "probability": 0.7611 + }, + { + "start": 5553.78, + "end": 5557.06, + "probability": 0.8229 + }, + { + "start": 5557.32, + "end": 5557.72, + "probability": 0.4023 + }, + { + "start": 5557.8, + "end": 5561.64, + "probability": 0.9178 + }, + { + "start": 5561.78, + "end": 5566.04, + "probability": 0.8783 + }, + { + "start": 5567.02, + "end": 5569.76, + "probability": 0.9221 + }, + { + "start": 5585.92, + "end": 5587.24, + "probability": 0.8181 + }, + { + "start": 5588.08, + "end": 5590.0, + "probability": 0.6093 + }, + { + "start": 5590.78, + "end": 5594.37, + "probability": 0.8707 + }, + { + "start": 5594.42, + "end": 5597.54, + "probability": 0.9906 + }, + { + "start": 5598.28, + "end": 5599.96, + "probability": 0.9819 + }, + { + "start": 5600.94, + "end": 5605.84, + "probability": 0.9919 + }, + { + "start": 5606.6, + "end": 5609.4, + "probability": 0.6401 + }, + { + "start": 5610.04, + "end": 5615.68, + "probability": 0.7754 + }, + { + "start": 5616.3, + "end": 5617.58, + "probability": 0.5512 + }, + { + "start": 5618.28, + "end": 5620.1, + "probability": 0.8418 + }, + { + "start": 5620.86, + "end": 5622.48, + "probability": 0.8061 + }, + { + "start": 5626.34, + "end": 5628.3, + "probability": 0.4315 + }, + { + "start": 5629.42, + "end": 5629.94, + "probability": 0.4412 + }, + { + "start": 5630.66, + "end": 5631.44, + "probability": 0.56 + }, + { + "start": 5631.54, + "end": 5633.18, + "probability": 0.8232 + }, + { + "start": 5633.32, + "end": 5635.16, + "probability": 0.9698 + }, + { + "start": 5635.36, + "end": 5635.98, + "probability": 0.7739 + }, + { + "start": 5636.46, + "end": 5637.76, + "probability": 0.5973 + }, + { + "start": 5638.02, + "end": 5639.1, + "probability": 0.8306 + }, + { + "start": 5639.6, + "end": 5640.14, + "probability": 0.0996 + }, + { + "start": 5640.38, + "end": 5640.46, + "probability": 0.0179 + }, + { + "start": 5640.64, + "end": 5640.94, + "probability": 0.5471 + }, + { + "start": 5641.02, + "end": 5641.78, + "probability": 0.8102 + }, + { + "start": 5642.88, + "end": 5644.89, + "probability": 0.7656 + }, + { + "start": 5645.32, + "end": 5645.68, + "probability": 0.6072 + }, + { + "start": 5645.8, + "end": 5651.64, + "probability": 0.8268 + }, + { + "start": 5655.22, + "end": 5655.28, + "probability": 0.0216 + }, + { + "start": 5655.28, + "end": 5656.08, + "probability": 0.0571 + }, + { + "start": 5656.76, + "end": 5661.22, + "probability": 0.9691 + }, + { + "start": 5661.8, + "end": 5662.72, + "probability": 0.5065 + }, + { + "start": 5662.82, + "end": 5665.92, + "probability": 0.9411 + }, + { + "start": 5665.92, + "end": 5670.28, + "probability": 0.9593 + }, + { + "start": 5670.42, + "end": 5672.24, + "probability": 0.998 + }, + { + "start": 5672.4, + "end": 5676.36, + "probability": 0.998 + }, + { + "start": 5677.56, + "end": 5683.12, + "probability": 0.986 + }, + { + "start": 5683.12, + "end": 5686.72, + "probability": 0.9632 + }, + { + "start": 5686.86, + "end": 5689.28, + "probability": 0.9873 + }, + { + "start": 5689.34, + "end": 5690.96, + "probability": 0.947 + }, + { + "start": 5693.46, + "end": 5696.5, + "probability": 0.9717 + }, + { + "start": 5696.5, + "end": 5702.36, + "probability": 0.9858 + }, + { + "start": 5703.08, + "end": 5705.02, + "probability": 0.6075 + }, + { + "start": 5705.14, + "end": 5706.42, + "probability": 0.5652 + }, + { + "start": 5706.42, + "end": 5707.35, + "probability": 0.9805 + }, + { + "start": 5707.68, + "end": 5709.92, + "probability": 0.9684 + }, + { + "start": 5710.1, + "end": 5713.44, + "probability": 0.8282 + }, + { + "start": 5713.6, + "end": 5716.8, + "probability": 0.7959 + }, + { + "start": 5716.8, + "end": 5720.1, + "probability": 0.4531 + }, + { + "start": 5720.5, + "end": 5722.24, + "probability": 0.5048 + }, + { + "start": 5722.36, + "end": 5722.88, + "probability": 0.7237 + }, + { + "start": 5723.0, + "end": 5723.82, + "probability": 0.7259 + }, + { + "start": 5723.84, + "end": 5725.02, + "probability": 0.8245 + }, + { + "start": 5742.16, + "end": 5742.8, + "probability": 0.0229 + }, + { + "start": 5742.8, + "end": 5745.34, + "probability": 0.4623 + }, + { + "start": 5745.36, + "end": 5747.78, + "probability": 0.6633 + }, + { + "start": 5747.82, + "end": 5750.08, + "probability": 0.9012 + }, + { + "start": 5750.8, + "end": 5752.85, + "probability": 0.6222 + }, + { + "start": 5753.24, + "end": 5754.02, + "probability": 0.6458 + }, + { + "start": 5754.66, + "end": 5755.7, + "probability": 0.5546 + }, + { + "start": 5762.14, + "end": 5763.76, + "probability": 0.0575 + }, + { + "start": 5763.76, + "end": 5765.02, + "probability": 0.0606 + }, + { + "start": 5772.94, + "end": 5773.7, + "probability": 0.0414 + }, + { + "start": 5773.7, + "end": 5775.92, + "probability": 0.6199 + }, + { + "start": 5775.92, + "end": 5776.3, + "probability": 0.2055 + }, + { + "start": 5776.32, + "end": 5776.82, + "probability": 0.7666 + }, + { + "start": 5777.02, + "end": 5783.24, + "probability": 0.9684 + }, + { + "start": 5783.96, + "end": 5784.28, + "probability": 0.6913 + }, + { + "start": 5784.28, + "end": 5784.56, + "probability": 0.9166 + }, + { + "start": 5784.62, + "end": 5786.44, + "probability": 0.9154 + }, + { + "start": 5786.62, + "end": 5788.14, + "probability": 0.852 + }, + { + "start": 5788.72, + "end": 5790.23, + "probability": 0.6705 + }, + { + "start": 5790.88, + "end": 5792.56, + "probability": 0.9708 + }, + { + "start": 5792.64, + "end": 5793.14, + "probability": 0.5832 + }, + { + "start": 5793.18, + "end": 5796.52, + "probability": 0.4752 + }, + { + "start": 5797.08, + "end": 5804.36, + "probability": 0.7456 + } + ], + "segments_count": 1795, + "words_count": 9351, + "avg_words_per_segment": 5.2095, + "avg_segment_duration": 2.5223, + "avg_words_per_minute": 96.172, + "plenum_id": "27867", + "duration": 5833.92, + "title": null, + "plenum_date": "2013-04-30" +} \ No newline at end of file