diff --git "a/104108/metadata.json" "b/104108/metadata.json" new file mode 100644--- /dev/null +++ "b/104108/metadata.json" @@ -0,0 +1,23112 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "104108", + "quality_score": 0.8762, + "per_segment_quality_scores": [ + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.0, + "end": 82.0, + "probability": 0.0 + }, + { + "start": 82.3, + "end": 83.36, + "probability": 0.1397 + }, + { + "start": 83.88, + "end": 88.34, + "probability": 0.7278 + }, + { + "start": 88.76, + "end": 89.34, + "probability": 0.7737 + }, + { + "start": 90.2, + "end": 92.26, + "probability": 0.8421 + }, + { + "start": 92.88, + "end": 94.18, + "probability": 0.8487 + }, + { + "start": 95.0, + "end": 95.8, + "probability": 0.6869 + }, + { + "start": 95.84, + "end": 99.3, + "probability": 0.9171 + }, + { + "start": 99.88, + "end": 100.76, + "probability": 0.6997 + }, + { + "start": 101.7, + "end": 103.66, + "probability": 0.8251 + }, + { + "start": 104.48, + "end": 106.42, + "probability": 0.2862 + }, + { + "start": 106.98, + "end": 111.28, + "probability": 0.9953 + }, + { + "start": 111.48, + "end": 116.02, + "probability": 0.9973 + }, + { + "start": 116.86, + "end": 119.16, + "probability": 0.2024 + }, + { + "start": 119.68, + "end": 122.08, + "probability": 0.1351 + }, + { + "start": 122.62, + "end": 127.18, + "probability": 0.9541 + }, + { + "start": 127.88, + "end": 129.5, + "probability": 0.9987 + }, + { + "start": 130.38, + "end": 134.06, + "probability": 0.8429 + }, + { + "start": 134.68, + "end": 135.76, + "probability": 0.9368 + }, + { + "start": 138.78, + "end": 141.26, + "probability": 0.2321 + }, + { + "start": 142.0, + "end": 143.99, + "probability": 0.67 + }, + { + "start": 144.96, + "end": 145.86, + "probability": 0.5434 + }, + { + "start": 146.44, + "end": 146.76, + "probability": 0.8272 + }, + { + "start": 147.42, + "end": 149.74, + "probability": 0.3151 + }, + { + "start": 150.54, + "end": 150.78, + "probability": 0.5731 + }, + { + "start": 151.32, + "end": 152.3, + "probability": 0.8284 + }, + { + "start": 152.86, + "end": 153.66, + "probability": 0.9028 + }, + { + "start": 154.45, + "end": 157.24, + "probability": 0.8298 + }, + { + "start": 159.22, + "end": 163.06, + "probability": 0.2556 + }, + { + "start": 163.32, + "end": 165.18, + "probability": 0.0138 + }, + { + "start": 171.84, + "end": 173.02, + "probability": 0.023 + }, + { + "start": 174.2, + "end": 176.42, + "probability": 0.2004 + }, + { + "start": 177.18, + "end": 179.19, + "probability": 0.2789 + }, + { + "start": 180.68, + "end": 182.26, + "probability": 0.0261 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.0, + "end": 237.0, + "probability": 0.0 + }, + { + "start": 237.12, + "end": 237.68, + "probability": 0.0369 + }, + { + "start": 238.28, + "end": 239.3, + "probability": 0.5734 + }, + { + "start": 241.14, + "end": 245.46, + "probability": 0.8243 + }, + { + "start": 245.88, + "end": 248.1, + "probability": 0.8071 + }, + { + "start": 268.02, + "end": 269.6, + "probability": 0.6461 + }, + { + "start": 271.06, + "end": 272.28, + "probability": 0.7876 + }, + { + "start": 273.9, + "end": 277.77, + "probability": 0.991 + }, + { + "start": 278.04, + "end": 278.94, + "probability": 0.4719 + }, + { + "start": 279.24, + "end": 279.76, + "probability": 0.661 + }, + { + "start": 280.3, + "end": 281.21, + "probability": 0.9961 + }, + { + "start": 281.84, + "end": 282.9, + "probability": 0.9686 + }, + { + "start": 283.68, + "end": 287.7, + "probability": 0.9626 + }, + { + "start": 288.42, + "end": 290.46, + "probability": 0.6875 + }, + { + "start": 291.72, + "end": 293.38, + "probability": 0.9757 + }, + { + "start": 294.72, + "end": 295.72, + "probability": 0.6548 + }, + { + "start": 297.12, + "end": 298.1, + "probability": 0.7853 + }, + { + "start": 298.92, + "end": 300.28, + "probability": 0.947 + }, + { + "start": 300.44, + "end": 304.36, + "probability": 0.978 + }, + { + "start": 305.7, + "end": 306.12, + "probability": 0.9492 + }, + { + "start": 306.84, + "end": 310.58, + "probability": 0.9885 + }, + { + "start": 311.28, + "end": 312.52, + "probability": 0.709 + }, + { + "start": 313.06, + "end": 315.68, + "probability": 0.9617 + }, + { + "start": 315.76, + "end": 317.6, + "probability": 0.7964 + }, + { + "start": 318.4, + "end": 321.6, + "probability": 0.9238 + }, + { + "start": 322.36, + "end": 322.82, + "probability": 0.8581 + }, + { + "start": 323.54, + "end": 324.44, + "probability": 0.9248 + }, + { + "start": 324.58, + "end": 327.98, + "probability": 0.993 + }, + { + "start": 328.9, + "end": 329.46, + "probability": 0.7875 + }, + { + "start": 330.46, + "end": 331.24, + "probability": 0.6654 + }, + { + "start": 331.8, + "end": 333.64, + "probability": 0.9911 + }, + { + "start": 334.26, + "end": 336.14, + "probability": 0.9889 + }, + { + "start": 336.56, + "end": 338.83, + "probability": 0.9701 + }, + { + "start": 339.6, + "end": 340.34, + "probability": 0.6632 + }, + { + "start": 340.92, + "end": 342.38, + "probability": 0.8852 + }, + { + "start": 343.16, + "end": 346.16, + "probability": 0.9966 + }, + { + "start": 346.4, + "end": 349.76, + "probability": 0.8672 + }, + { + "start": 350.46, + "end": 352.17, + "probability": 0.7854 + }, + { + "start": 353.9, + "end": 356.96, + "probability": 0.9964 + }, + { + "start": 358.02, + "end": 359.54, + "probability": 0.9814 + }, + { + "start": 360.4, + "end": 362.64, + "probability": 0.6734 + }, + { + "start": 364.38, + "end": 365.1, + "probability": 0.8796 + }, + { + "start": 366.04, + "end": 367.68, + "probability": 0.9373 + }, + { + "start": 368.1, + "end": 369.26, + "probability": 0.8968 + }, + { + "start": 370.36, + "end": 371.6, + "probability": 0.9026 + }, + { + "start": 372.44, + "end": 374.76, + "probability": 0.9965 + }, + { + "start": 375.88, + "end": 379.02, + "probability": 0.9402 + }, + { + "start": 380.98, + "end": 382.7, + "probability": 0.6579 + }, + { + "start": 383.34, + "end": 386.02, + "probability": 0.9911 + }, + { + "start": 386.66, + "end": 387.68, + "probability": 0.4821 + }, + { + "start": 387.72, + "end": 389.94, + "probability": 0.8995 + }, + { + "start": 390.46, + "end": 391.74, + "probability": 0.9988 + }, + { + "start": 392.42, + "end": 393.06, + "probability": 0.7947 + }, + { + "start": 393.72, + "end": 395.8, + "probability": 0.9243 + }, + { + "start": 396.7, + "end": 396.96, + "probability": 0.6971 + }, + { + "start": 397.96, + "end": 399.24, + "probability": 0.8417 + }, + { + "start": 399.9, + "end": 400.38, + "probability": 0.7834 + }, + { + "start": 401.84, + "end": 402.66, + "probability": 0.9713 + }, + { + "start": 403.52, + "end": 405.8, + "probability": 0.9767 + }, + { + "start": 408.44, + "end": 408.96, + "probability": 0.7006 + }, + { + "start": 410.52, + "end": 411.12, + "probability": 0.8446 + }, + { + "start": 411.18, + "end": 411.82, + "probability": 0.9467 + }, + { + "start": 411.96, + "end": 412.22, + "probability": 0.8364 + }, + { + "start": 412.22, + "end": 413.38, + "probability": 0.7496 + }, + { + "start": 414.42, + "end": 418.68, + "probability": 0.865 + }, + { + "start": 420.28, + "end": 425.06, + "probability": 0.9901 + }, + { + "start": 425.94, + "end": 426.6, + "probability": 0.7692 + }, + { + "start": 427.32, + "end": 428.6, + "probability": 0.7921 + }, + { + "start": 429.22, + "end": 431.98, + "probability": 0.5951 + }, + { + "start": 432.94, + "end": 437.28, + "probability": 0.9932 + }, + { + "start": 439.04, + "end": 439.44, + "probability": 0.4538 + }, + { + "start": 440.36, + "end": 441.02, + "probability": 0.7521 + }, + { + "start": 443.68, + "end": 444.62, + "probability": 0.7133 + }, + { + "start": 445.78, + "end": 447.62, + "probability": 0.6006 + }, + { + "start": 448.84, + "end": 455.42, + "probability": 0.9059 + }, + { + "start": 456.56, + "end": 457.16, + "probability": 0.9561 + }, + { + "start": 458.48, + "end": 459.66, + "probability": 0.9029 + }, + { + "start": 460.22, + "end": 460.96, + "probability": 0.9431 + }, + { + "start": 461.7, + "end": 463.08, + "probability": 0.9268 + }, + { + "start": 464.4, + "end": 466.1, + "probability": 0.9915 + }, + { + "start": 466.94, + "end": 470.38, + "probability": 0.9956 + }, + { + "start": 471.34, + "end": 473.64, + "probability": 0.8572 + }, + { + "start": 475.16, + "end": 477.44, + "probability": 0.9961 + }, + { + "start": 479.42, + "end": 480.78, + "probability": 0.8675 + }, + { + "start": 481.16, + "end": 483.66, + "probability": 0.9613 + }, + { + "start": 484.88, + "end": 487.54, + "probability": 0.9655 + }, + { + "start": 488.52, + "end": 490.32, + "probability": 0.9892 + }, + { + "start": 490.98, + "end": 493.26, + "probability": 0.9315 + }, + { + "start": 495.06, + "end": 496.62, + "probability": 0.9968 + }, + { + "start": 498.2, + "end": 501.0, + "probability": 0.9829 + }, + { + "start": 501.8, + "end": 503.6, + "probability": 0.2585 + }, + { + "start": 504.72, + "end": 506.08, + "probability": 0.7401 + }, + { + "start": 507.34, + "end": 509.22, + "probability": 0.9028 + }, + { + "start": 509.98, + "end": 511.74, + "probability": 0.7445 + }, + { + "start": 512.26, + "end": 515.34, + "probability": 0.9529 + }, + { + "start": 515.88, + "end": 517.52, + "probability": 0.8899 + }, + { + "start": 518.3, + "end": 519.12, + "probability": 0.765 + }, + { + "start": 520.5, + "end": 521.16, + "probability": 0.7219 + }, + { + "start": 521.2, + "end": 522.38, + "probability": 0.9458 + }, + { + "start": 522.52, + "end": 522.91, + "probability": 0.933 + }, + { + "start": 523.68, + "end": 530.2, + "probability": 0.9696 + }, + { + "start": 530.84, + "end": 532.28, + "probability": 0.9415 + }, + { + "start": 532.82, + "end": 534.36, + "probability": 0.7649 + }, + { + "start": 535.14, + "end": 536.8, + "probability": 0.6035 + }, + { + "start": 538.26, + "end": 539.86, + "probability": 0.7694 + }, + { + "start": 540.66, + "end": 541.46, + "probability": 0.9268 + }, + { + "start": 542.1, + "end": 542.44, + "probability": 0.853 + }, + { + "start": 542.96, + "end": 543.66, + "probability": 0.8076 + }, + { + "start": 545.48, + "end": 547.1, + "probability": 0.8735 + }, + { + "start": 547.86, + "end": 549.92, + "probability": 0.9587 + }, + { + "start": 549.94, + "end": 550.63, + "probability": 0.5414 + }, + { + "start": 550.78, + "end": 551.36, + "probability": 0.9041 + }, + { + "start": 551.87, + "end": 552.78, + "probability": 0.9546 + }, + { + "start": 553.84, + "end": 555.16, + "probability": 0.8421 + }, + { + "start": 555.74, + "end": 556.96, + "probability": 0.9458 + }, + { + "start": 557.5, + "end": 562.02, + "probability": 0.9904 + }, + { + "start": 563.86, + "end": 564.56, + "probability": 0.7809 + }, + { + "start": 564.66, + "end": 568.82, + "probability": 0.9223 + }, + { + "start": 569.64, + "end": 571.42, + "probability": 0.9449 + }, + { + "start": 571.42, + "end": 572.75, + "probability": 0.8264 + }, + { + "start": 573.4, + "end": 575.74, + "probability": 0.9749 + }, + { + "start": 576.36, + "end": 579.04, + "probability": 0.9751 + }, + { + "start": 579.1, + "end": 579.82, + "probability": 0.8388 + }, + { + "start": 580.0, + "end": 580.42, + "probability": 0.6806 + }, + { + "start": 581.18, + "end": 582.26, + "probability": 0.735 + }, + { + "start": 583.14, + "end": 585.28, + "probability": 0.992 + }, + { + "start": 586.02, + "end": 586.72, + "probability": 0.7994 + }, + { + "start": 587.51, + "end": 589.92, + "probability": 0.9797 + }, + { + "start": 591.98, + "end": 593.14, + "probability": 0.9183 + }, + { + "start": 593.4, + "end": 594.68, + "probability": 0.5967 + }, + { + "start": 595.34, + "end": 601.2, + "probability": 0.9336 + }, + { + "start": 601.34, + "end": 603.34, + "probability": 0.8362 + }, + { + "start": 604.44, + "end": 605.78, + "probability": 0.8726 + }, + { + "start": 605.86, + "end": 607.16, + "probability": 0.9902 + }, + { + "start": 607.88, + "end": 608.6, + "probability": 0.6822 + }, + { + "start": 608.76, + "end": 610.06, + "probability": 0.637 + }, + { + "start": 610.74, + "end": 611.46, + "probability": 0.903 + }, + { + "start": 613.28, + "end": 615.26, + "probability": 0.9971 + }, + { + "start": 616.92, + "end": 617.48, + "probability": 0.9833 + }, + { + "start": 617.56, + "end": 618.38, + "probability": 0.7877 + }, + { + "start": 618.84, + "end": 619.74, + "probability": 0.9692 + }, + { + "start": 619.88, + "end": 620.54, + "probability": 0.9644 + }, + { + "start": 620.68, + "end": 621.18, + "probability": 0.9262 + }, + { + "start": 621.52, + "end": 622.58, + "probability": 0.7565 + }, + { + "start": 623.06, + "end": 624.78, + "probability": 0.9843 + }, + { + "start": 625.7, + "end": 630.0, + "probability": 0.9915 + }, + { + "start": 632.16, + "end": 635.9, + "probability": 0.9656 + }, + { + "start": 636.12, + "end": 636.68, + "probability": 0.4967 + }, + { + "start": 638.26, + "end": 641.46, + "probability": 0.9988 + }, + { + "start": 642.22, + "end": 643.48, + "probability": 0.9425 + }, + { + "start": 644.4, + "end": 646.46, + "probability": 0.8442 + }, + { + "start": 647.8, + "end": 649.54, + "probability": 0.9178 + }, + { + "start": 649.64, + "end": 650.7, + "probability": 0.8461 + }, + { + "start": 651.04, + "end": 651.76, + "probability": 0.7594 + }, + { + "start": 651.84, + "end": 653.8, + "probability": 0.7432 + }, + { + "start": 653.86, + "end": 654.64, + "probability": 0.5622 + }, + { + "start": 656.6, + "end": 656.98, + "probability": 0.4746 + }, + { + "start": 657.0, + "end": 658.34, + "probability": 0.9146 + }, + { + "start": 658.42, + "end": 659.92, + "probability": 0.9582 + }, + { + "start": 662.58, + "end": 663.4, + "probability": 0.9761 + }, + { + "start": 664.98, + "end": 668.22, + "probability": 0.9126 + }, + { + "start": 668.78, + "end": 669.26, + "probability": 0.7219 + }, + { + "start": 671.14, + "end": 674.62, + "probability": 0.896 + }, + { + "start": 675.32, + "end": 675.8, + "probability": 0.3939 + }, + { + "start": 676.38, + "end": 678.06, + "probability": 0.3582 + }, + { + "start": 679.2, + "end": 679.8, + "probability": 0.7935 + }, + { + "start": 680.82, + "end": 683.46, + "probability": 0.8298 + }, + { + "start": 685.72, + "end": 686.32, + "probability": 0.4712 + }, + { + "start": 686.72, + "end": 687.7, + "probability": 0.985 + }, + { + "start": 688.94, + "end": 690.82, + "probability": 0.9158 + }, + { + "start": 691.56, + "end": 694.7, + "probability": 0.9956 + }, + { + "start": 695.44, + "end": 695.92, + "probability": 0.8241 + }, + { + "start": 696.04, + "end": 697.88, + "probability": 0.9117 + }, + { + "start": 698.24, + "end": 699.4, + "probability": 0.9182 + }, + { + "start": 699.76, + "end": 701.32, + "probability": 0.8541 + }, + { + "start": 701.4, + "end": 702.42, + "probability": 0.5033 + }, + { + "start": 702.52, + "end": 703.58, + "probability": 0.7974 + }, + { + "start": 703.7, + "end": 704.96, + "probability": 0.9862 + }, + { + "start": 705.6, + "end": 706.62, + "probability": 0.9561 + }, + { + "start": 707.22, + "end": 708.0, + "probability": 0.891 + }, + { + "start": 710.24, + "end": 710.54, + "probability": 0.6371 + }, + { + "start": 711.2, + "end": 713.82, + "probability": 0.8471 + }, + { + "start": 714.86, + "end": 716.64, + "probability": 0.9944 + }, + { + "start": 717.2, + "end": 718.84, + "probability": 0.9768 + }, + { + "start": 719.3, + "end": 719.8, + "probability": 0.9644 + }, + { + "start": 720.7, + "end": 721.12, + "probability": 0.7525 + }, + { + "start": 721.46, + "end": 722.92, + "probability": 0.9736 + }, + { + "start": 723.28, + "end": 725.04, + "probability": 0.9946 + }, + { + "start": 725.64, + "end": 727.7, + "probability": 0.9926 + }, + { + "start": 728.16, + "end": 730.68, + "probability": 0.9985 + }, + { + "start": 730.88, + "end": 732.45, + "probability": 0.95 + }, + { + "start": 733.94, + "end": 737.58, + "probability": 0.8303 + }, + { + "start": 737.76, + "end": 738.9, + "probability": 0.9473 + }, + { + "start": 738.98, + "end": 739.22, + "probability": 0.3534 + }, + { + "start": 739.26, + "end": 739.72, + "probability": 0.635 + }, + { + "start": 740.66, + "end": 741.46, + "probability": 0.7429 + }, + { + "start": 742.32, + "end": 744.99, + "probability": 0.9852 + }, + { + "start": 745.16, + "end": 746.32, + "probability": 0.9868 + }, + { + "start": 747.9, + "end": 748.36, + "probability": 0.4919 + }, + { + "start": 748.64, + "end": 751.06, + "probability": 0.8192 + }, + { + "start": 751.18, + "end": 752.76, + "probability": 0.6444 + }, + { + "start": 752.88, + "end": 753.25, + "probability": 0.4235 + }, + { + "start": 754.12, + "end": 755.06, + "probability": 0.861 + }, + { + "start": 755.24, + "end": 759.34, + "probability": 0.9004 + }, + { + "start": 759.46, + "end": 759.92, + "probability": 0.7456 + }, + { + "start": 760.68, + "end": 761.88, + "probability": 0.5474 + }, + { + "start": 762.46, + "end": 767.14, + "probability": 0.9518 + }, + { + "start": 767.8, + "end": 769.18, + "probability": 0.6986 + }, + { + "start": 770.2, + "end": 771.38, + "probability": 0.4276 + }, + { + "start": 771.58, + "end": 772.0, + "probability": 0.3354 + }, + { + "start": 772.04, + "end": 773.54, + "probability": 0.6596 + }, + { + "start": 773.78, + "end": 774.82, + "probability": 0.7864 + }, + { + "start": 775.36, + "end": 776.6, + "probability": 0.8541 + }, + { + "start": 777.02, + "end": 778.44, + "probability": 0.9729 + }, + { + "start": 778.54, + "end": 779.16, + "probability": 0.3535 + }, + { + "start": 779.6, + "end": 780.84, + "probability": 0.5547 + }, + { + "start": 781.56, + "end": 782.38, + "probability": 0.7932 + }, + { + "start": 783.0, + "end": 784.8, + "probability": 0.9976 + }, + { + "start": 786.34, + "end": 789.32, + "probability": 0.9702 + }, + { + "start": 789.56, + "end": 790.46, + "probability": 0.8332 + }, + { + "start": 790.74, + "end": 792.6, + "probability": 0.9476 + }, + { + "start": 793.94, + "end": 795.78, + "probability": 0.7495 + }, + { + "start": 797.14, + "end": 798.42, + "probability": 0.7781 + }, + { + "start": 799.0, + "end": 801.02, + "probability": 0.9836 + }, + { + "start": 802.34, + "end": 804.14, + "probability": 0.6937 + }, + { + "start": 805.4, + "end": 809.0, + "probability": 0.9971 + }, + { + "start": 809.42, + "end": 812.5, + "probability": 0.908 + }, + { + "start": 813.6, + "end": 818.42, + "probability": 0.8867 + }, + { + "start": 819.92, + "end": 820.78, + "probability": 0.9776 + }, + { + "start": 822.74, + "end": 824.16, + "probability": 0.9443 + }, + { + "start": 824.82, + "end": 826.94, + "probability": 0.8813 + }, + { + "start": 828.54, + "end": 829.38, + "probability": 0.7616 + }, + { + "start": 830.4, + "end": 831.54, + "probability": 0.9747 + }, + { + "start": 832.28, + "end": 833.42, + "probability": 0.8044 + }, + { + "start": 834.0, + "end": 838.4, + "probability": 0.7725 + }, + { + "start": 839.02, + "end": 839.02, + "probability": 0.3997 + }, + { + "start": 839.56, + "end": 840.3, + "probability": 0.9917 + }, + { + "start": 840.6, + "end": 843.46, + "probability": 0.9312 + }, + { + "start": 843.86, + "end": 844.72, + "probability": 0.8099 + }, + { + "start": 845.88, + "end": 846.88, + "probability": 0.9543 + }, + { + "start": 847.4, + "end": 850.9, + "probability": 0.9826 + }, + { + "start": 852.1, + "end": 853.14, + "probability": 0.9081 + }, + { + "start": 853.94, + "end": 855.38, + "probability": 0.9564 + }, + { + "start": 856.32, + "end": 857.4, + "probability": 0.9912 + }, + { + "start": 858.6, + "end": 860.92, + "probability": 0.9645 + }, + { + "start": 861.28, + "end": 863.68, + "probability": 0.9703 + }, + { + "start": 864.26, + "end": 866.76, + "probability": 0.9799 + }, + { + "start": 867.76, + "end": 870.64, + "probability": 0.994 + }, + { + "start": 871.44, + "end": 872.46, + "probability": 0.8745 + }, + { + "start": 873.06, + "end": 876.48, + "probability": 0.9158 + }, + { + "start": 877.1, + "end": 880.52, + "probability": 0.8131 + }, + { + "start": 880.64, + "end": 881.71, + "probability": 0.3401 + }, + { + "start": 882.78, + "end": 884.44, + "probability": 0.7494 + }, + { + "start": 885.56, + "end": 887.72, + "probability": 0.9694 + }, + { + "start": 887.84, + "end": 889.3, + "probability": 0.8689 + }, + { + "start": 889.44, + "end": 890.8, + "probability": 0.8588 + }, + { + "start": 891.76, + "end": 892.58, + "probability": 0.5152 + }, + { + "start": 893.66, + "end": 894.56, + "probability": 0.9722 + }, + { + "start": 895.48, + "end": 896.84, + "probability": 0.6502 + }, + { + "start": 896.86, + "end": 898.16, + "probability": 0.7934 + }, + { + "start": 898.76, + "end": 900.85, + "probability": 0.6426 + }, + { + "start": 901.96, + "end": 904.6, + "probability": 0.9744 + }, + { + "start": 904.6, + "end": 908.2, + "probability": 0.9836 + }, + { + "start": 909.3, + "end": 910.8, + "probability": 0.7727 + }, + { + "start": 911.16, + "end": 911.4, + "probability": 0.5087 + }, + { + "start": 912.1, + "end": 916.52, + "probability": 0.6533 + }, + { + "start": 925.92, + "end": 925.92, + "probability": 0.1634 + }, + { + "start": 925.92, + "end": 925.92, + "probability": 0.1322 + }, + { + "start": 925.92, + "end": 925.94, + "probability": 0.2619 + }, + { + "start": 925.94, + "end": 925.94, + "probability": 0.0614 + }, + { + "start": 925.94, + "end": 925.94, + "probability": 0.0296 + }, + { + "start": 938.9, + "end": 943.94, + "probability": 0.5144 + }, + { + "start": 959.06, + "end": 965.0, + "probability": 0.9913 + }, + { + "start": 966.7, + "end": 967.51, + "probability": 0.7324 + }, + { + "start": 968.7, + "end": 970.36, + "probability": 0.8773 + }, + { + "start": 971.06, + "end": 972.91, + "probability": 0.9971 + }, + { + "start": 974.86, + "end": 975.74, + "probability": 0.9412 + }, + { + "start": 976.02, + "end": 977.72, + "probability": 0.2124 + }, + { + "start": 977.72, + "end": 979.14, + "probability": 0.7119 + }, + { + "start": 979.98, + "end": 981.1, + "probability": 0.9906 + }, + { + "start": 982.38, + "end": 982.58, + "probability": 0.3671 + }, + { + "start": 982.82, + "end": 983.62, + "probability": 0.9042 + }, + { + "start": 984.24, + "end": 985.16, + "probability": 0.9993 + }, + { + "start": 986.04, + "end": 986.64, + "probability": 0.9996 + }, + { + "start": 987.82, + "end": 990.92, + "probability": 0.9792 + }, + { + "start": 992.2, + "end": 993.68, + "probability": 0.999 + }, + { + "start": 993.76, + "end": 994.84, + "probability": 0.8551 + }, + { + "start": 994.92, + "end": 995.84, + "probability": 0.9543 + }, + { + "start": 996.56, + "end": 997.84, + "probability": 0.9614 + }, + { + "start": 999.02, + "end": 999.64, + "probability": 0.6847 + }, + { + "start": 1000.54, + "end": 1003.68, + "probability": 0.9534 + }, + { + "start": 1004.58, + "end": 1004.58, + "probability": 0.0766 + }, + { + "start": 1004.58, + "end": 1004.58, + "probability": 0.4957 + }, + { + "start": 1004.58, + "end": 1006.06, + "probability": 0.2768 + }, + { + "start": 1007.12, + "end": 1008.1, + "probability": 0.8373 + }, + { + "start": 1008.76, + "end": 1012.0, + "probability": 0.5796 + }, + { + "start": 1023.34, + "end": 1025.92, + "probability": 0.7679 + }, + { + "start": 1034.9, + "end": 1042.46, + "probability": 0.0124 + }, + { + "start": 1052.56, + "end": 1053.44, + "probability": 0.0515 + }, + { + "start": 1053.74, + "end": 1054.68, + "probability": 0.3958 + }, + { + "start": 1054.84, + "end": 1060.06, + "probability": 0.06 + }, + { + "start": 1060.36, + "end": 1062.82, + "probability": 0.0944 + }, + { + "start": 1067.23, + "end": 1068.02, + "probability": 0.1171 + }, + { + "start": 1068.02, + "end": 1068.43, + "probability": 0.0348 + }, + { + "start": 1069.33, + "end": 1071.32, + "probability": 0.0187 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.0, + "end": 1100.0, + "probability": 0.0 + }, + { + "start": 1100.08, + "end": 1100.24, + "probability": 0.2183 + }, + { + "start": 1100.24, + "end": 1100.24, + "probability": 0.0208 + }, + { + "start": 1100.24, + "end": 1100.24, + "probability": 0.0485 + }, + { + "start": 1100.24, + "end": 1102.56, + "probability": 0.4585 + }, + { + "start": 1103.06, + "end": 1104.66, + "probability": 0.791 + }, + { + "start": 1105.12, + "end": 1110.08, + "probability": 0.8859 + }, + { + "start": 1110.55, + "end": 1113.86, + "probability": 0.9747 + }, + { + "start": 1113.94, + "end": 1114.46, + "probability": 0.7123 + }, + { + "start": 1115.02, + "end": 1115.52, + "probability": 0.9036 + }, + { + "start": 1116.86, + "end": 1118.04, + "probability": 0.787 + }, + { + "start": 1119.0, + "end": 1121.98, + "probability": 0.9965 + }, + { + "start": 1122.7, + "end": 1123.0, + "probability": 0.5949 + }, + { + "start": 1123.12, + "end": 1123.56, + "probability": 0.7301 + }, + { + "start": 1123.92, + "end": 1128.44, + "probability": 0.8579 + }, + { + "start": 1128.96, + "end": 1129.24, + "probability": 0.8705 + }, + { + "start": 1129.3, + "end": 1130.65, + "probability": 0.972 + }, + { + "start": 1131.16, + "end": 1134.64, + "probability": 0.9954 + }, + { + "start": 1135.62, + "end": 1136.08, + "probability": 0.4657 + }, + { + "start": 1136.54, + "end": 1138.42, + "probability": 0.9692 + }, + { + "start": 1138.44, + "end": 1139.26, + "probability": 0.9419 + }, + { + "start": 1139.84, + "end": 1142.24, + "probability": 0.9785 + }, + { + "start": 1142.34, + "end": 1146.52, + "probability": 0.9692 + }, + { + "start": 1147.12, + "end": 1149.3, + "probability": 0.9472 + }, + { + "start": 1149.9, + "end": 1150.68, + "probability": 0.8546 + }, + { + "start": 1151.22, + "end": 1153.74, + "probability": 0.9671 + }, + { + "start": 1154.22, + "end": 1156.26, + "probability": 0.9983 + }, + { + "start": 1157.12, + "end": 1158.52, + "probability": 0.9293 + }, + { + "start": 1158.72, + "end": 1161.4, + "probability": 0.9785 + }, + { + "start": 1161.94, + "end": 1163.2, + "probability": 0.9213 + }, + { + "start": 1163.56, + "end": 1164.68, + "probability": 0.7881 + }, + { + "start": 1165.46, + "end": 1166.5, + "probability": 0.8279 + }, + { + "start": 1166.68, + "end": 1167.46, + "probability": 0.6319 + }, + { + "start": 1168.92, + "end": 1171.96, + "probability": 0.646 + }, + { + "start": 1173.14, + "end": 1174.02, + "probability": 0.995 + }, + { + "start": 1174.84, + "end": 1181.02, + "probability": 0.989 + }, + { + "start": 1183.97, + "end": 1185.04, + "probability": 0.2252 + }, + { + "start": 1185.04, + "end": 1186.74, + "probability": 0.8444 + }, + { + "start": 1187.14, + "end": 1187.82, + "probability": 0.6799 + }, + { + "start": 1188.91, + "end": 1190.35, + "probability": 0.986 + }, + { + "start": 1190.97, + "end": 1194.62, + "probability": 0.8357 + }, + { + "start": 1195.42, + "end": 1198.14, + "probability": 0.9937 + }, + { + "start": 1198.28, + "end": 1200.48, + "probability": 0.9944 + }, + { + "start": 1200.58, + "end": 1201.84, + "probability": 0.7749 + }, + { + "start": 1202.88, + "end": 1205.8, + "probability": 0.8546 + }, + { + "start": 1205.9, + "end": 1210.2, + "probability": 0.9368 + }, + { + "start": 1211.52, + "end": 1214.82, + "probability": 0.9841 + }, + { + "start": 1215.24, + "end": 1215.95, + "probability": 0.8695 + }, + { + "start": 1216.8, + "end": 1216.84, + "probability": 0.8613 + }, + { + "start": 1217.48, + "end": 1222.02, + "probability": 0.9503 + }, + { + "start": 1222.96, + "end": 1223.56, + "probability": 0.7422 + }, + { + "start": 1224.18, + "end": 1225.34, + "probability": 0.9987 + }, + { + "start": 1225.76, + "end": 1226.92, + "probability": 0.9875 + }, + { + "start": 1227.54, + "end": 1228.06, + "probability": 0.7917 + }, + { + "start": 1228.68, + "end": 1229.56, + "probability": 0.9957 + }, + { + "start": 1229.72, + "end": 1230.2, + "probability": 0.9346 + }, + { + "start": 1230.36, + "end": 1231.78, + "probability": 0.9939 + }, + { + "start": 1232.08, + "end": 1233.5, + "probability": 0.993 + }, + { + "start": 1234.2, + "end": 1236.2, + "probability": 0.6904 + }, + { + "start": 1237.1, + "end": 1239.8, + "probability": 0.8962 + }, + { + "start": 1240.48, + "end": 1241.16, + "probability": 0.8035 + }, + { + "start": 1242.18, + "end": 1242.9, + "probability": 0.6768 + }, + { + "start": 1243.96, + "end": 1246.4, + "probability": 0.9834 + }, + { + "start": 1247.38, + "end": 1248.9, + "probability": 0.9718 + }, + { + "start": 1249.18, + "end": 1251.16, + "probability": 0.9937 + }, + { + "start": 1251.6, + "end": 1253.26, + "probability": 0.9238 + }, + { + "start": 1253.94, + "end": 1254.63, + "probability": 0.9268 + }, + { + "start": 1254.92, + "end": 1255.74, + "probability": 0.8742 + }, + { + "start": 1256.16, + "end": 1257.86, + "probability": 0.996 + }, + { + "start": 1258.5, + "end": 1261.26, + "probability": 0.432 + }, + { + "start": 1261.9, + "end": 1263.32, + "probability": 0.9983 + }, + { + "start": 1263.42, + "end": 1263.74, + "probability": 0.9275 + }, + { + "start": 1263.8, + "end": 1264.22, + "probability": 0.8101 + }, + { + "start": 1264.22, + "end": 1264.36, + "probability": 0.6367 + }, + { + "start": 1264.46, + "end": 1266.22, + "probability": 0.9688 + }, + { + "start": 1266.42, + "end": 1268.0, + "probability": 0.9504 + }, + { + "start": 1268.6, + "end": 1272.02, + "probability": 0.9857 + }, + { + "start": 1272.38, + "end": 1273.96, + "probability": 0.97 + }, + { + "start": 1274.48, + "end": 1277.9, + "probability": 0.9377 + }, + { + "start": 1278.4, + "end": 1280.72, + "probability": 0.959 + }, + { + "start": 1281.24, + "end": 1283.78, + "probability": 0.9937 + }, + { + "start": 1284.1, + "end": 1284.86, + "probability": 0.784 + }, + { + "start": 1285.58, + "end": 1286.42, + "probability": 0.9663 + }, + { + "start": 1287.14, + "end": 1291.1, + "probability": 0.9989 + }, + { + "start": 1291.6, + "end": 1292.7, + "probability": 0.6817 + }, + { + "start": 1294.0, + "end": 1294.63, + "probability": 0.9924 + }, + { + "start": 1295.7, + "end": 1297.19, + "probability": 0.9968 + }, + { + "start": 1297.24, + "end": 1298.08, + "probability": 0.7882 + }, + { + "start": 1298.14, + "end": 1299.86, + "probability": 0.8771 + }, + { + "start": 1301.3, + "end": 1303.86, + "probability": 0.5023 + }, + { + "start": 1304.02, + "end": 1306.24, + "probability": 0.9891 + }, + { + "start": 1306.64, + "end": 1309.14, + "probability": 0.9896 + }, + { + "start": 1309.8, + "end": 1310.86, + "probability": 0.6819 + }, + { + "start": 1311.58, + "end": 1312.08, + "probability": 0.8275 + }, + { + "start": 1312.72, + "end": 1315.24, + "probability": 0.9827 + }, + { + "start": 1316.5, + "end": 1317.9, + "probability": 0.9945 + }, + { + "start": 1318.02, + "end": 1318.92, + "probability": 0.7421 + }, + { + "start": 1319.96, + "end": 1321.32, + "probability": 0.5048 + }, + { + "start": 1321.82, + "end": 1322.74, + "probability": 0.7871 + }, + { + "start": 1323.36, + "end": 1323.92, + "probability": 0.2362 + }, + { + "start": 1323.92, + "end": 1328.34, + "probability": 0.2684 + }, + { + "start": 1330.32, + "end": 1330.98, + "probability": 0.2835 + }, + { + "start": 1330.98, + "end": 1330.98, + "probability": 0.0615 + }, + { + "start": 1330.98, + "end": 1332.32, + "probability": 0.3915 + }, + { + "start": 1332.82, + "end": 1334.44, + "probability": 0.8385 + }, + { + "start": 1335.04, + "end": 1337.2, + "probability": 0.5041 + }, + { + "start": 1337.28, + "end": 1337.62, + "probability": 0.6774 + }, + { + "start": 1338.06, + "end": 1339.71, + "probability": 0.6665 + }, + { + "start": 1339.94, + "end": 1340.37, + "probability": 0.217 + }, + { + "start": 1340.72, + "end": 1340.9, + "probability": 0.8866 + }, + { + "start": 1340.98, + "end": 1341.24, + "probability": 0.5907 + }, + { + "start": 1341.26, + "end": 1344.44, + "probability": 0.8585 + }, + { + "start": 1344.58, + "end": 1345.44, + "probability": 0.9264 + }, + { + "start": 1345.98, + "end": 1347.92, + "probability": 0.9508 + }, + { + "start": 1348.52, + "end": 1350.28, + "probability": 0.9678 + }, + { + "start": 1350.66, + "end": 1353.86, + "probability": 0.9432 + }, + { + "start": 1353.86, + "end": 1357.26, + "probability": 0.9758 + }, + { + "start": 1357.86, + "end": 1358.5, + "probability": 0.6225 + }, + { + "start": 1359.02, + "end": 1360.28, + "probability": 0.9049 + }, + { + "start": 1360.36, + "end": 1362.76, + "probability": 0.5983 + }, + { + "start": 1363.16, + "end": 1365.94, + "probability": 0.8973 + }, + { + "start": 1366.14, + "end": 1368.16, + "probability": 0.7428 + }, + { + "start": 1368.22, + "end": 1369.4, + "probability": 0.667 + }, + { + "start": 1369.74, + "end": 1371.99, + "probability": 0.9961 + }, + { + "start": 1372.58, + "end": 1374.14, + "probability": 0.9896 + }, + { + "start": 1374.44, + "end": 1377.1, + "probability": 0.9391 + }, + { + "start": 1377.84, + "end": 1381.36, + "probability": 0.9941 + }, + { + "start": 1381.36, + "end": 1383.68, + "probability": 0.9955 + }, + { + "start": 1384.38, + "end": 1386.04, + "probability": 0.9766 + }, + { + "start": 1386.2, + "end": 1388.26, + "probability": 0.8356 + }, + { + "start": 1388.82, + "end": 1392.34, + "probability": 0.9941 + }, + { + "start": 1392.88, + "end": 1393.54, + "probability": 0.8478 + }, + { + "start": 1393.64, + "end": 1394.1, + "probability": 0.8733 + }, + { + "start": 1394.58, + "end": 1396.38, + "probability": 0.9562 + }, + { + "start": 1396.54, + "end": 1396.88, + "probability": 0.6335 + }, + { + "start": 1397.0, + "end": 1397.76, + "probability": 0.497 + }, + { + "start": 1398.64, + "end": 1400.1, + "probability": 0.9928 + }, + { + "start": 1400.62, + "end": 1401.34, + "probability": 0.941 + }, + { + "start": 1402.0, + "end": 1402.98, + "probability": 0.9961 + }, + { + "start": 1403.48, + "end": 1405.06, + "probability": 0.7983 + }, + { + "start": 1405.86, + "end": 1407.62, + "probability": 0.9547 + }, + { + "start": 1408.08, + "end": 1409.58, + "probability": 0.8883 + }, + { + "start": 1410.46, + "end": 1412.56, + "probability": 0.8936 + }, + { + "start": 1412.7, + "end": 1414.29, + "probability": 0.7006 + }, + { + "start": 1415.32, + "end": 1416.95, + "probability": 0.9629 + }, + { + "start": 1417.12, + "end": 1417.94, + "probability": 0.7822 + }, + { + "start": 1418.48, + "end": 1419.34, + "probability": 0.6226 + }, + { + "start": 1420.12, + "end": 1422.22, + "probability": 0.8986 + }, + { + "start": 1422.56, + "end": 1424.22, + "probability": 0.9185 + }, + { + "start": 1424.52, + "end": 1425.88, + "probability": 0.8492 + }, + { + "start": 1427.1, + "end": 1429.4, + "probability": 0.9849 + }, + { + "start": 1430.16, + "end": 1431.22, + "probability": 0.9847 + }, + { + "start": 1431.38, + "end": 1433.78, + "probability": 0.9673 + }, + { + "start": 1434.44, + "end": 1437.38, + "probability": 0.2916 + }, + { + "start": 1437.38, + "end": 1437.38, + "probability": 0.0452 + }, + { + "start": 1437.38, + "end": 1439.28, + "probability": 0.4833 + }, + { + "start": 1440.46, + "end": 1441.3, + "probability": 0.7833 + }, + { + "start": 1442.06, + "end": 1443.58, + "probability": 0.6673 + }, + { + "start": 1443.68, + "end": 1444.94, + "probability": 0.989 + }, + { + "start": 1444.94, + "end": 1446.92, + "probability": 0.8969 + }, + { + "start": 1447.4, + "end": 1447.92, + "probability": 0.4187 + }, + { + "start": 1449.02, + "end": 1449.42, + "probability": 0.0181 + }, + { + "start": 1449.42, + "end": 1450.5, + "probability": 0.5563 + }, + { + "start": 1450.7, + "end": 1451.9, + "probability": 0.9785 + }, + { + "start": 1452.12, + "end": 1453.6, + "probability": 0.9533 + }, + { + "start": 1454.64, + "end": 1454.84, + "probability": 0.782 + }, + { + "start": 1454.86, + "end": 1456.54, + "probability": 0.9791 + }, + { + "start": 1456.68, + "end": 1460.78, + "probability": 0.9842 + }, + { + "start": 1460.88, + "end": 1461.29, + "probability": 0.887 + }, + { + "start": 1461.38, + "end": 1462.4, + "probability": 0.999 + }, + { + "start": 1463.64, + "end": 1466.06, + "probability": 0.6247 + }, + { + "start": 1466.72, + "end": 1467.69, + "probability": 0.7794 + }, + { + "start": 1468.14, + "end": 1469.26, + "probability": 0.4308 + }, + { + "start": 1469.3, + "end": 1470.42, + "probability": 0.7607 + }, + { + "start": 1470.84, + "end": 1474.14, + "probability": 0.9968 + }, + { + "start": 1474.68, + "end": 1475.6, + "probability": 0.9432 + }, + { + "start": 1476.36, + "end": 1476.76, + "probability": 0.6903 + }, + { + "start": 1476.9, + "end": 1477.7, + "probability": 0.8441 + }, + { + "start": 1477.78, + "end": 1481.06, + "probability": 0.9903 + }, + { + "start": 1481.26, + "end": 1481.76, + "probability": 0.7994 + }, + { + "start": 1482.64, + "end": 1483.24, + "probability": 0.7719 + }, + { + "start": 1483.64, + "end": 1487.0, + "probability": 0.7337 + }, + { + "start": 1487.56, + "end": 1492.56, + "probability": 0.9924 + }, + { + "start": 1493.08, + "end": 1494.04, + "probability": 0.9214 + }, + { + "start": 1495.76, + "end": 1498.24, + "probability": 0.7476 + }, + { + "start": 1498.64, + "end": 1500.86, + "probability": 0.9558 + }, + { + "start": 1501.18, + "end": 1502.08, + "probability": 0.891 + }, + { + "start": 1502.64, + "end": 1503.42, + "probability": 0.9795 + }, + { + "start": 1503.98, + "end": 1504.78, + "probability": 0.8304 + }, + { + "start": 1505.32, + "end": 1506.58, + "probability": 0.9298 + }, + { + "start": 1507.42, + "end": 1508.7, + "probability": 0.927 + }, + { + "start": 1508.88, + "end": 1510.22, + "probability": 0.7767 + }, + { + "start": 1510.24, + "end": 1512.14, + "probability": 0.9851 + }, + { + "start": 1512.24, + "end": 1512.5, + "probability": 0.7734 + }, + { + "start": 1513.04, + "end": 1513.56, + "probability": 0.9615 + }, + { + "start": 1515.28, + "end": 1518.18, + "probability": 0.8804 + }, + { + "start": 1518.76, + "end": 1520.36, + "probability": 0.9312 + }, + { + "start": 1520.8, + "end": 1524.2, + "probability": 0.9897 + }, + { + "start": 1524.54, + "end": 1527.34, + "probability": 0.9976 + }, + { + "start": 1527.94, + "end": 1529.22, + "probability": 0.9605 + }, + { + "start": 1529.74, + "end": 1530.44, + "probability": 0.729 + }, + { + "start": 1530.56, + "end": 1530.98, + "probability": 0.0085 + }, + { + "start": 1531.54, + "end": 1534.01, + "probability": 0.9521 + }, + { + "start": 1534.4, + "end": 1535.48, + "probability": 0.9874 + }, + { + "start": 1536.4, + "end": 1540.68, + "probability": 0.9196 + }, + { + "start": 1541.38, + "end": 1542.8, + "probability": 0.9632 + }, + { + "start": 1542.92, + "end": 1545.9, + "probability": 0.9596 + }, + { + "start": 1546.04, + "end": 1547.8, + "probability": 0.9951 + }, + { + "start": 1548.2, + "end": 1548.99, + "probability": 0.9311 + }, + { + "start": 1549.64, + "end": 1553.13, + "probability": 0.9689 + }, + { + "start": 1554.73, + "end": 1558.42, + "probability": 0.9789 + }, + { + "start": 1558.88, + "end": 1559.6, + "probability": 0.9683 + }, + { + "start": 1559.68, + "end": 1560.2, + "probability": 0.937 + }, + { + "start": 1560.28, + "end": 1560.62, + "probability": 0.7683 + }, + { + "start": 1565.56, + "end": 1568.02, + "probability": 0.7047 + }, + { + "start": 1569.43, + "end": 1571.14, + "probability": 0.7818 + }, + { + "start": 1571.86, + "end": 1572.78, + "probability": 0.9814 + }, + { + "start": 1573.06, + "end": 1574.7, + "probability": 0.9329 + }, + { + "start": 1575.04, + "end": 1576.32, + "probability": 0.9792 + }, + { + "start": 1576.54, + "end": 1577.16, + "probability": 0.9414 + }, + { + "start": 1579.06, + "end": 1580.19, + "probability": 0.9814 + }, + { + "start": 1581.34, + "end": 1582.86, + "probability": 0.9848 + }, + { + "start": 1584.7, + "end": 1585.36, + "probability": 0.4294 + }, + { + "start": 1586.26, + "end": 1586.82, + "probability": 0.6965 + }, + { + "start": 1586.9, + "end": 1587.64, + "probability": 0.9478 + }, + { + "start": 1587.96, + "end": 1589.34, + "probability": 0.9283 + }, + { + "start": 1589.36, + "end": 1590.4, + "probability": 0.8813 + }, + { + "start": 1590.42, + "end": 1592.82, + "probability": 0.9802 + }, + { + "start": 1592.82, + "end": 1594.84, + "probability": 0.9945 + }, + { + "start": 1595.78, + "end": 1596.66, + "probability": 0.8966 + }, + { + "start": 1597.22, + "end": 1599.94, + "probability": 0.9395 + }, + { + "start": 1599.98, + "end": 1601.86, + "probability": 0.882 + }, + { + "start": 1602.64, + "end": 1603.98, + "probability": 0.9606 + }, + { + "start": 1605.0, + "end": 1609.92, + "probability": 0.9878 + }, + { + "start": 1610.54, + "end": 1611.28, + "probability": 0.664 + }, + { + "start": 1612.02, + "end": 1614.1, + "probability": 0.9789 + }, + { + "start": 1614.18, + "end": 1614.4, + "probability": 0.5133 + }, + { + "start": 1614.88, + "end": 1618.28, + "probability": 0.9834 + }, + { + "start": 1619.24, + "end": 1619.9, + "probability": 0.7147 + }, + { + "start": 1620.44, + "end": 1620.78, + "probability": 0.9037 + }, + { + "start": 1621.38, + "end": 1623.3, + "probability": 0.8705 + }, + { + "start": 1623.8, + "end": 1624.66, + "probability": 0.9976 + }, + { + "start": 1624.76, + "end": 1628.02, + "probability": 0.9856 + }, + { + "start": 1628.16, + "end": 1629.0, + "probability": 0.5164 + }, + { + "start": 1629.68, + "end": 1633.48, + "probability": 0.9963 + }, + { + "start": 1634.08, + "end": 1637.3, + "probability": 0.9968 + }, + { + "start": 1637.66, + "end": 1640.38, + "probability": 0.9993 + }, + { + "start": 1641.48, + "end": 1642.8, + "probability": 0.9995 + }, + { + "start": 1643.34, + "end": 1645.84, + "probability": 0.5326 + }, + { + "start": 1645.94, + "end": 1649.6, + "probability": 0.9536 + }, + { + "start": 1649.6, + "end": 1650.9, + "probability": 0.6618 + }, + { + "start": 1652.39, + "end": 1654.4, + "probability": 0.9574 + }, + { + "start": 1655.87, + "end": 1658.4, + "probability": 0.8943 + }, + { + "start": 1659.36, + "end": 1661.46, + "probability": 0.6421 + }, + { + "start": 1661.84, + "end": 1662.54, + "probability": 0.9692 + }, + { + "start": 1662.7, + "end": 1664.48, + "probability": 0.9792 + }, + { + "start": 1664.94, + "end": 1665.18, + "probability": 0.8652 + }, + { + "start": 1665.72, + "end": 1668.02, + "probability": 0.9333 + }, + { + "start": 1668.96, + "end": 1671.82, + "probability": 0.6649 + }, + { + "start": 1672.5, + "end": 1673.64, + "probability": 0.9854 + }, + { + "start": 1673.78, + "end": 1676.82, + "probability": 0.9784 + }, + { + "start": 1677.3, + "end": 1677.58, + "probability": 0.4003 + }, + { + "start": 1677.94, + "end": 1678.82, + "probability": 0.8351 + }, + { + "start": 1679.38, + "end": 1679.76, + "probability": 0.6095 + }, + { + "start": 1680.2, + "end": 1680.9, + "probability": 0.8345 + }, + { + "start": 1681.24, + "end": 1682.98, + "probability": 0.9853 + }, + { + "start": 1683.7, + "end": 1684.96, + "probability": 0.6605 + }, + { + "start": 1685.06, + "end": 1686.04, + "probability": 0.5265 + }, + { + "start": 1686.8, + "end": 1690.52, + "probability": 0.7723 + }, + { + "start": 1690.92, + "end": 1693.18, + "probability": 0.9763 + }, + { + "start": 1693.68, + "end": 1694.56, + "probability": 0.9841 + }, + { + "start": 1695.22, + "end": 1700.36, + "probability": 0.9869 + }, + { + "start": 1703.12, + "end": 1704.44, + "probability": 0.8088 + }, + { + "start": 1704.48, + "end": 1704.48, + "probability": 0.8385 + }, + { + "start": 1704.5, + "end": 1704.88, + "probability": 0.4808 + }, + { + "start": 1704.98, + "end": 1706.04, + "probability": 0.9795 + }, + { + "start": 1706.68, + "end": 1707.6, + "probability": 0.9578 + }, + { + "start": 1707.62, + "end": 1710.22, + "probability": 0.3591 + }, + { + "start": 1710.42, + "end": 1711.3, + "probability": 0.1875 + }, + { + "start": 1711.32, + "end": 1712.58, + "probability": 0.2693 + }, + { + "start": 1712.88, + "end": 1713.12, + "probability": 0.3699 + }, + { + "start": 1713.36, + "end": 1714.08, + "probability": 0.6697 + }, + { + "start": 1714.12, + "end": 1714.72, + "probability": 0.894 + }, + { + "start": 1714.8, + "end": 1715.6, + "probability": 0.9908 + }, + { + "start": 1716.3, + "end": 1717.39, + "probability": 0.194 + }, + { + "start": 1719.47, + "end": 1720.42, + "probability": 0.3287 + }, + { + "start": 1720.74, + "end": 1721.1, + "probability": 0.0088 + }, + { + "start": 1721.54, + "end": 1722.48, + "probability": 0.4187 + }, + { + "start": 1722.54, + "end": 1723.38, + "probability": 0.772 + }, + { + "start": 1723.8, + "end": 1725.92, + "probability": 0.5731 + }, + { + "start": 1726.2, + "end": 1726.2, + "probability": 0.2766 + }, + { + "start": 1726.34, + "end": 1726.8, + "probability": 0.3475 + }, + { + "start": 1728.84, + "end": 1728.84, + "probability": 0.3582 + }, + { + "start": 1728.84, + "end": 1729.58, + "probability": 0.0948 + }, + { + "start": 1730.0, + "end": 1730.52, + "probability": 0.4561 + }, + { + "start": 1730.52, + "end": 1730.64, + "probability": 0.5107 + }, + { + "start": 1730.64, + "end": 1732.82, + "probability": 0.3906 + }, + { + "start": 1732.88, + "end": 1734.06, + "probability": 0.5418 + }, + { + "start": 1734.72, + "end": 1737.6, + "probability": 0.1842 + }, + { + "start": 1738.16, + "end": 1739.5, + "probability": 0.1635 + }, + { + "start": 1739.62, + "end": 1739.62, + "probability": 0.3048 + }, + { + "start": 1739.62, + "end": 1743.74, + "probability": 0.8461 + }, + { + "start": 1744.74, + "end": 1747.94, + "probability": 0.9872 + }, + { + "start": 1748.68, + "end": 1750.9, + "probability": 0.7564 + }, + { + "start": 1751.42, + "end": 1751.52, + "probability": 0.2916 + }, + { + "start": 1751.84, + "end": 1754.98, + "probability": 0.586 + }, + { + "start": 1756.91, + "end": 1758.15, + "probability": 0.4977 + }, + { + "start": 1758.42, + "end": 1758.42, + "probability": 0.1462 + }, + { + "start": 1758.48, + "end": 1759.2, + "probability": 0.4693 + }, + { + "start": 1759.22, + "end": 1761.92, + "probability": 0.9234 + }, + { + "start": 1762.2, + "end": 1763.7, + "probability": 0.2358 + }, + { + "start": 1763.82, + "end": 1763.89, + "probability": 0.3345 + }, + { + "start": 1764.12, + "end": 1765.22, + "probability": 0.9071 + }, + { + "start": 1766.08, + "end": 1767.23, + "probability": 0.635 + }, + { + "start": 1768.43, + "end": 1769.47, + "probability": 0.8784 + }, + { + "start": 1769.7, + "end": 1771.82, + "probability": 0.8211 + }, + { + "start": 1773.92, + "end": 1774.22, + "probability": 0.026 + }, + { + "start": 1774.22, + "end": 1774.36, + "probability": 0.1051 + }, + { + "start": 1774.36, + "end": 1774.72, + "probability": 0.1651 + }, + { + "start": 1776.48, + "end": 1777.44, + "probability": 0.8076 + }, + { + "start": 1778.0, + "end": 1778.58, + "probability": 0.7657 + }, + { + "start": 1778.58, + "end": 1780.0, + "probability": 0.939 + }, + { + "start": 1780.86, + "end": 1781.23, + "probability": 0.3841 + }, + { + "start": 1781.92, + "end": 1782.26, + "probability": 0.2298 + }, + { + "start": 1782.26, + "end": 1782.8, + "probability": 0.2671 + }, + { + "start": 1782.8, + "end": 1784.42, + "probability": 0.9165 + }, + { + "start": 1784.56, + "end": 1785.06, + "probability": 0.4956 + }, + { + "start": 1785.88, + "end": 1787.42, + "probability": 0.927 + }, + { + "start": 1787.48, + "end": 1788.1, + "probability": 0.751 + }, + { + "start": 1788.2, + "end": 1789.56, + "probability": 0.9221 + }, + { + "start": 1789.72, + "end": 1791.16, + "probability": 0.8652 + }, + { + "start": 1791.54, + "end": 1792.3, + "probability": 0.7606 + }, + { + "start": 1792.36, + "end": 1792.74, + "probability": 0.9137 + }, + { + "start": 1792.96, + "end": 1794.86, + "probability": 0.9628 + }, + { + "start": 1796.0, + "end": 1798.6, + "probability": 0.9839 + }, + { + "start": 1799.28, + "end": 1802.36, + "probability": 0.9997 + }, + { + "start": 1803.28, + "end": 1805.14, + "probability": 1.0 + }, + { + "start": 1805.82, + "end": 1807.92, + "probability": 0.8314 + }, + { + "start": 1808.14, + "end": 1808.54, + "probability": 0.7237 + }, + { + "start": 1810.38, + "end": 1812.98, + "probability": 0.6456 + }, + { + "start": 1813.74, + "end": 1815.44, + "probability": 0.9886 + }, + { + "start": 1819.56, + "end": 1826.32, + "probability": 0.776 + }, + { + "start": 1835.46, + "end": 1837.07, + "probability": 0.4503 + }, + { + "start": 1838.1, + "end": 1839.42, + "probability": 0.7668 + }, + { + "start": 1840.12, + "end": 1840.86, + "probability": 0.9137 + }, + { + "start": 1840.94, + "end": 1842.3, + "probability": 0.7474 + }, + { + "start": 1842.42, + "end": 1843.08, + "probability": 0.4925 + }, + { + "start": 1843.2, + "end": 1847.44, + "probability": 0.888 + }, + { + "start": 1847.8, + "end": 1848.34, + "probability": 0.9123 + }, + { + "start": 1849.06, + "end": 1852.86, + "probability": 0.9792 + }, + { + "start": 1853.12, + "end": 1856.38, + "probability": 0.679 + }, + { + "start": 1857.1, + "end": 1858.2, + "probability": 0.7381 + }, + { + "start": 1858.28, + "end": 1859.42, + "probability": 0.8665 + }, + { + "start": 1859.66, + "end": 1861.26, + "probability": 0.9937 + }, + { + "start": 1861.42, + "end": 1862.56, + "probability": 0.9912 + }, + { + "start": 1862.68, + "end": 1863.36, + "probability": 0.9366 + }, + { + "start": 1864.22, + "end": 1869.0, + "probability": 0.991 + }, + { + "start": 1869.04, + "end": 1869.6, + "probability": 0.3993 + }, + { + "start": 1870.14, + "end": 1871.4, + "probability": 0.9489 + }, + { + "start": 1872.03, + "end": 1876.94, + "probability": 0.9641 + }, + { + "start": 1877.6, + "end": 1879.58, + "probability": 0.9655 + }, + { + "start": 1880.62, + "end": 1884.14, + "probability": 0.7084 + }, + { + "start": 1885.0, + "end": 1890.14, + "probability": 0.9606 + }, + { + "start": 1890.24, + "end": 1894.96, + "probability": 0.646 + }, + { + "start": 1895.08, + "end": 1896.11, + "probability": 0.6858 + }, + { + "start": 1896.38, + "end": 1898.5, + "probability": 0.9795 + }, + { + "start": 1898.56, + "end": 1899.82, + "probability": 0.6651 + }, + { + "start": 1900.5, + "end": 1901.74, + "probability": 0.9902 + }, + { + "start": 1902.42, + "end": 1903.03, + "probability": 0.8389 + }, + { + "start": 1903.28, + "end": 1904.06, + "probability": 0.9618 + }, + { + "start": 1904.8, + "end": 1905.46, + "probability": 0.8417 + }, + { + "start": 1905.52, + "end": 1907.52, + "probability": 0.5902 + }, + { + "start": 1907.56, + "end": 1910.9, + "probability": 0.8311 + }, + { + "start": 1911.14, + "end": 1912.28, + "probability": 0.577 + }, + { + "start": 1912.28, + "end": 1912.56, + "probability": 0.2244 + }, + { + "start": 1912.78, + "end": 1916.48, + "probability": 0.7847 + }, + { + "start": 1917.26, + "end": 1920.1, + "probability": 0.9527 + }, + { + "start": 1920.76, + "end": 1921.3, + "probability": 0.5443 + }, + { + "start": 1921.4, + "end": 1923.09, + "probability": 0.7439 + }, + { + "start": 1923.34, + "end": 1925.5, + "probability": 0.9832 + }, + { + "start": 1926.24, + "end": 1927.08, + "probability": 0.6804 + }, + { + "start": 1927.28, + "end": 1930.18, + "probability": 0.7799 + }, + { + "start": 1930.4, + "end": 1932.88, + "probability": 0.9398 + }, + { + "start": 1933.68, + "end": 1936.86, + "probability": 0.3911 + }, + { + "start": 1936.94, + "end": 1938.2, + "probability": 0.737 + }, + { + "start": 1938.38, + "end": 1940.16, + "probability": 0.9768 + }, + { + "start": 1940.32, + "end": 1942.34, + "probability": 0.4436 + }, + { + "start": 1943.04, + "end": 1944.32, + "probability": 0.426 + }, + { + "start": 1944.66, + "end": 1945.6, + "probability": 0.7483 + }, + { + "start": 1945.64, + "end": 1946.24, + "probability": 0.8232 + }, + { + "start": 1946.36, + "end": 1947.2, + "probability": 0.881 + }, + { + "start": 1947.58, + "end": 1949.44, + "probability": 0.6902 + }, + { + "start": 1950.4, + "end": 1952.66, + "probability": 0.8763 + }, + { + "start": 1953.14, + "end": 1953.87, + "probability": 0.7202 + }, + { + "start": 1954.6, + "end": 1957.0, + "probability": 0.7303 + }, + { + "start": 1957.24, + "end": 1958.08, + "probability": 0.6478 + }, + { + "start": 1958.52, + "end": 1959.99, + "probability": 0.908 + }, + { + "start": 1960.4, + "end": 1960.88, + "probability": 0.3436 + }, + { + "start": 1961.28, + "end": 1961.72, + "probability": 0.8989 + }, + { + "start": 1961.94, + "end": 1965.32, + "probability": 0.9328 + }, + { + "start": 1965.32, + "end": 1966.14, + "probability": 0.6549 + }, + { + "start": 1966.24, + "end": 1968.72, + "probability": 0.7542 + }, + { + "start": 1968.76, + "end": 1971.64, + "probability": 0.9673 + }, + { + "start": 1972.4, + "end": 1974.84, + "probability": 0.578 + }, + { + "start": 1975.1, + "end": 1976.84, + "probability": 0.6218 + }, + { + "start": 1977.34, + "end": 1980.2, + "probability": 0.6559 + }, + { + "start": 1980.3, + "end": 1981.52, + "probability": 0.9397 + }, + { + "start": 1981.88, + "end": 1983.06, + "probability": 0.8607 + }, + { + "start": 1983.48, + "end": 1984.46, + "probability": 0.96 + }, + { + "start": 1984.6, + "end": 1986.48, + "probability": 0.8282 + }, + { + "start": 1986.52, + "end": 1989.2, + "probability": 0.84 + }, + { + "start": 1989.7, + "end": 1991.16, + "probability": 0.5561 + }, + { + "start": 1991.48, + "end": 1992.4, + "probability": 0.9529 + }, + { + "start": 1992.86, + "end": 1996.06, + "probability": 0.9679 + }, + { + "start": 1996.66, + "end": 1998.38, + "probability": 0.9253 + }, + { + "start": 1998.46, + "end": 1999.22, + "probability": 0.9244 + }, + { + "start": 1999.4, + "end": 2003.58, + "probability": 0.984 + }, + { + "start": 2004.04, + "end": 2005.4, + "probability": 0.5003 + }, + { + "start": 2005.58, + "end": 2008.46, + "probability": 0.6559 + }, + { + "start": 2009.04, + "end": 2010.94, + "probability": 0.7122 + }, + { + "start": 2011.02, + "end": 2014.72, + "probability": 0.5667 + }, + { + "start": 2014.8, + "end": 2016.82, + "probability": 0.8071 + }, + { + "start": 2017.4, + "end": 2018.76, + "probability": 0.6708 + }, + { + "start": 2018.92, + "end": 2020.64, + "probability": 0.8914 + }, + { + "start": 2020.72, + "end": 2022.04, + "probability": 0.4964 + }, + { + "start": 2022.14, + "end": 2022.62, + "probability": 0.3376 + }, + { + "start": 2022.92, + "end": 2025.72, + "probability": 0.6662 + }, + { + "start": 2025.84, + "end": 2029.74, + "probability": 0.8573 + }, + { + "start": 2029.86, + "end": 2030.9, + "probability": 0.9897 + }, + { + "start": 2031.18, + "end": 2034.0, + "probability": 0.9539 + }, + { + "start": 2034.44, + "end": 2035.62, + "probability": 0.652 + }, + { + "start": 2035.96, + "end": 2037.08, + "probability": 0.729 + }, + { + "start": 2037.34, + "end": 2040.98, + "probability": 0.9072 + }, + { + "start": 2041.4, + "end": 2043.66, + "probability": 0.9707 + }, + { + "start": 2043.72, + "end": 2045.0, + "probability": 0.4738 + }, + { + "start": 2045.04, + "end": 2045.4, + "probability": 0.6626 + }, + { + "start": 2046.1, + "end": 2047.54, + "probability": 0.9153 + }, + { + "start": 2047.58, + "end": 2050.54, + "probability": 0.9764 + }, + { + "start": 2050.84, + "end": 2052.64, + "probability": 0.6887 + }, + { + "start": 2052.68, + "end": 2053.58, + "probability": 0.755 + }, + { + "start": 2053.7, + "end": 2054.14, + "probability": 0.2057 + }, + { + "start": 2054.8, + "end": 2056.1, + "probability": 0.6685 + }, + { + "start": 2056.9, + "end": 2058.44, + "probability": 0.5182 + }, + { + "start": 2058.52, + "end": 2059.69, + "probability": 0.5086 + }, + { + "start": 2059.78, + "end": 2062.06, + "probability": 0.9642 + }, + { + "start": 2062.16, + "end": 2063.8, + "probability": 0.8525 + }, + { + "start": 2063.88, + "end": 2064.38, + "probability": 0.3598 + }, + { + "start": 2064.72, + "end": 2066.76, + "probability": 0.8018 + }, + { + "start": 2067.7, + "end": 2068.3, + "probability": 0.9517 + }, + { + "start": 2068.4, + "end": 2069.5, + "probability": 0.493 + }, + { + "start": 2069.68, + "end": 2071.44, + "probability": 0.9698 + }, + { + "start": 2071.52, + "end": 2072.27, + "probability": 0.9717 + }, + { + "start": 2072.5, + "end": 2073.75, + "probability": 0.842 + }, + { + "start": 2074.2, + "end": 2076.72, + "probability": 0.4155 + }, + { + "start": 2076.84, + "end": 2077.28, + "probability": 0.4092 + }, + { + "start": 2077.66, + "end": 2078.1, + "probability": 0.6832 + }, + { + "start": 2078.1, + "end": 2078.88, + "probability": 0.7705 + }, + { + "start": 2079.36, + "end": 2080.22, + "probability": 0.9482 + }, + { + "start": 2080.64, + "end": 2081.36, + "probability": 0.7767 + }, + { + "start": 2081.4, + "end": 2082.42, + "probability": 0.8882 + }, + { + "start": 2082.44, + "end": 2084.62, + "probability": 0.9651 + }, + { + "start": 2085.3, + "end": 2086.7, + "probability": 0.9927 + }, + { + "start": 2086.82, + "end": 2088.8, + "probability": 0.8957 + }, + { + "start": 2088.94, + "end": 2091.74, + "probability": 0.9746 + }, + { + "start": 2092.12, + "end": 2092.86, + "probability": 0.7141 + }, + { + "start": 2093.04, + "end": 2095.26, + "probability": 0.946 + }, + { + "start": 2095.66, + "end": 2097.34, + "probability": 0.7466 + }, + { + "start": 2097.56, + "end": 2099.06, + "probability": 0.6336 + }, + { + "start": 2099.18, + "end": 2103.74, + "probability": 0.9006 + }, + { + "start": 2104.1, + "end": 2104.74, + "probability": 0.7269 + }, + { + "start": 2104.9, + "end": 2105.86, + "probability": 0.8464 + }, + { + "start": 2106.28, + "end": 2109.7, + "probability": 0.9926 + }, + { + "start": 2109.7, + "end": 2112.74, + "probability": 0.9649 + }, + { + "start": 2113.0, + "end": 2113.74, + "probability": 0.9927 + }, + { + "start": 2114.52, + "end": 2115.72, + "probability": 0.8646 + }, + { + "start": 2116.38, + "end": 2117.48, + "probability": 0.9083 + }, + { + "start": 2117.54, + "end": 2118.06, + "probability": 0.6531 + }, + { + "start": 2118.4, + "end": 2119.14, + "probability": 0.5123 + }, + { + "start": 2119.44, + "end": 2123.32, + "probability": 0.967 + }, + { + "start": 2123.42, + "end": 2124.22, + "probability": 0.9042 + }, + { + "start": 2124.26, + "end": 2125.42, + "probability": 0.9136 + }, + { + "start": 2125.92, + "end": 2129.18, + "probability": 0.8508 + }, + { + "start": 2129.32, + "end": 2130.18, + "probability": 0.94 + }, + { + "start": 2130.28, + "end": 2133.26, + "probability": 0.9739 + }, + { + "start": 2133.36, + "end": 2136.32, + "probability": 0.9927 + }, + { + "start": 2136.82, + "end": 2138.54, + "probability": 0.9573 + }, + { + "start": 2138.62, + "end": 2140.73, + "probability": 0.9324 + }, + { + "start": 2140.98, + "end": 2142.64, + "probability": 0.7977 + }, + { + "start": 2142.7, + "end": 2143.66, + "probability": 0.8935 + }, + { + "start": 2144.1, + "end": 2144.68, + "probability": 0.6853 + }, + { + "start": 2144.84, + "end": 2149.04, + "probability": 0.6401 + }, + { + "start": 2149.38, + "end": 2149.74, + "probability": 0.181 + }, + { + "start": 2150.14, + "end": 2151.24, + "probability": 0.9138 + }, + { + "start": 2151.58, + "end": 2152.44, + "probability": 0.5197 + }, + { + "start": 2152.48, + "end": 2155.28, + "probability": 0.9861 + }, + { + "start": 2155.38, + "end": 2156.66, + "probability": 0.7034 + }, + { + "start": 2156.76, + "end": 2158.8, + "probability": 0.9425 + }, + { + "start": 2159.12, + "end": 2160.04, + "probability": 0.5756 + }, + { + "start": 2160.36, + "end": 2161.09, + "probability": 0.537 + }, + { + "start": 2161.3, + "end": 2163.22, + "probability": 0.7101 + }, + { + "start": 2163.22, + "end": 2164.72, + "probability": 0.7474 + }, + { + "start": 2165.02, + "end": 2166.26, + "probability": 0.9761 + }, + { + "start": 2166.36, + "end": 2168.02, + "probability": 0.9332 + }, + { + "start": 2168.18, + "end": 2169.84, + "probability": 0.8679 + }, + { + "start": 2170.81, + "end": 2175.0, + "probability": 0.7394 + }, + { + "start": 2175.58, + "end": 2176.74, + "probability": 0.8013 + }, + { + "start": 2177.18, + "end": 2180.98, + "probability": 0.9796 + }, + { + "start": 2181.34, + "end": 2181.7, + "probability": 0.1544 + }, + { + "start": 2181.78, + "end": 2183.46, + "probability": 0.9946 + }, + { + "start": 2183.86, + "end": 2186.74, + "probability": 0.9504 + }, + { + "start": 2187.3, + "end": 2190.68, + "probability": 0.9827 + }, + { + "start": 2190.82, + "end": 2191.76, + "probability": 0.7172 + }, + { + "start": 2192.08, + "end": 2192.44, + "probability": 0.8825 + }, + { + "start": 2192.76, + "end": 2194.02, + "probability": 0.9401 + }, + { + "start": 2194.46, + "end": 2195.64, + "probability": 0.957 + }, + { + "start": 2196.12, + "end": 2199.86, + "probability": 0.6775 + }, + { + "start": 2200.2, + "end": 2201.9, + "probability": 0.9912 + }, + { + "start": 2202.3, + "end": 2203.62, + "probability": 0.646 + }, + { + "start": 2204.98, + "end": 2206.18, + "probability": 0.9302 + }, + { + "start": 2206.46, + "end": 2210.06, + "probability": 0.989 + }, + { + "start": 2210.44, + "end": 2212.3, + "probability": 0.7561 + }, + { + "start": 2212.38, + "end": 2213.88, + "probability": 0.8701 + }, + { + "start": 2213.88, + "end": 2216.9, + "probability": 0.8316 + }, + { + "start": 2217.16, + "end": 2218.4, + "probability": 0.9779 + }, + { + "start": 2218.46, + "end": 2218.86, + "probability": 0.8189 + }, + { + "start": 2219.24, + "end": 2222.04, + "probability": 0.8131 + }, + { + "start": 2222.08, + "end": 2223.21, + "probability": 0.9897 + }, + { + "start": 2223.38, + "end": 2225.0, + "probability": 0.8184 + }, + { + "start": 2225.48, + "end": 2227.58, + "probability": 0.9863 + }, + { + "start": 2227.84, + "end": 2229.0, + "probability": 0.9834 + }, + { + "start": 2229.12, + "end": 2229.91, + "probability": 0.8824 + }, + { + "start": 2230.46, + "end": 2232.06, + "probability": 0.9341 + }, + { + "start": 2232.32, + "end": 2233.74, + "probability": 0.9688 + }, + { + "start": 2233.88, + "end": 2235.6, + "probability": 0.6726 + }, + { + "start": 2235.76, + "end": 2237.62, + "probability": 0.9137 + }, + { + "start": 2238.3, + "end": 2240.32, + "probability": 0.8555 + }, + { + "start": 2240.86, + "end": 2241.9, + "probability": 0.618 + }, + { + "start": 2242.02, + "end": 2242.72, + "probability": 0.1154 + }, + { + "start": 2242.98, + "end": 2243.8, + "probability": 0.8491 + }, + { + "start": 2243.92, + "end": 2245.57, + "probability": 0.9565 + }, + { + "start": 2246.28, + "end": 2247.6, + "probability": 0.8172 + }, + { + "start": 2247.82, + "end": 2248.66, + "probability": 0.9211 + }, + { + "start": 2248.92, + "end": 2251.18, + "probability": 0.8948 + }, + { + "start": 2251.52, + "end": 2252.26, + "probability": 0.8029 + }, + { + "start": 2252.36, + "end": 2253.54, + "probability": 0.9973 + }, + { + "start": 2254.18, + "end": 2255.7, + "probability": 0.9956 + }, + { + "start": 2255.8, + "end": 2256.96, + "probability": 0.9377 + }, + { + "start": 2257.24, + "end": 2258.58, + "probability": 0.9893 + }, + { + "start": 2259.16, + "end": 2261.62, + "probability": 0.9961 + }, + { + "start": 2262.06, + "end": 2262.78, + "probability": 0.6717 + }, + { + "start": 2263.5, + "end": 2267.2, + "probability": 0.6003 + }, + { + "start": 2267.72, + "end": 2268.86, + "probability": 0.96 + }, + { + "start": 2269.4, + "end": 2270.32, + "probability": 0.9639 + }, + { + "start": 2270.68, + "end": 2271.22, + "probability": 0.8763 + }, + { + "start": 2271.32, + "end": 2271.8, + "probability": 0.8284 + }, + { + "start": 2271.96, + "end": 2272.36, + "probability": 0.2143 + }, + { + "start": 2272.36, + "end": 2272.74, + "probability": 0.613 + }, + { + "start": 2273.12, + "end": 2273.86, + "probability": 0.8628 + }, + { + "start": 2274.24, + "end": 2275.07, + "probability": 0.9343 + }, + { + "start": 2275.4, + "end": 2275.9, + "probability": 0.7793 + }, + { + "start": 2276.76, + "end": 2278.06, + "probability": 0.8594 + }, + { + "start": 2278.2, + "end": 2278.99, + "probability": 0.9839 + }, + { + "start": 2279.82, + "end": 2282.28, + "probability": 0.535 + }, + { + "start": 2282.4, + "end": 2286.44, + "probability": 0.9917 + }, + { + "start": 2286.44, + "end": 2288.77, + "probability": 0.7617 + }, + { + "start": 2289.14, + "end": 2290.15, + "probability": 0.7453 + }, + { + "start": 2290.3, + "end": 2290.32, + "probability": 0.0129 + }, + { + "start": 2292.04, + "end": 2292.38, + "probability": 0.1628 + }, + { + "start": 2292.38, + "end": 2294.88, + "probability": 0.6509 + }, + { + "start": 2295.2, + "end": 2295.74, + "probability": 0.8635 + }, + { + "start": 2295.86, + "end": 2299.46, + "probability": 0.7347 + }, + { + "start": 2299.78, + "end": 2301.18, + "probability": 0.7905 + }, + { + "start": 2301.18, + "end": 2302.93, + "probability": 0.6543 + }, + { + "start": 2303.77, + "end": 2308.94, + "probability": 0.7784 + }, + { + "start": 2309.3, + "end": 2310.3, + "probability": 0.7345 + }, + { + "start": 2310.38, + "end": 2311.42, + "probability": 0.7922 + }, + { + "start": 2311.94, + "end": 2314.1, + "probability": 0.7386 + }, + { + "start": 2314.56, + "end": 2316.0, + "probability": 0.8563 + }, + { + "start": 2316.26, + "end": 2316.74, + "probability": 0.2876 + }, + { + "start": 2317.24, + "end": 2318.36, + "probability": 0.6081 + }, + { + "start": 2318.42, + "end": 2318.96, + "probability": 0.5977 + }, + { + "start": 2319.1, + "end": 2319.68, + "probability": 0.5991 + }, + { + "start": 2319.68, + "end": 2323.04, + "probability": 0.5582 + }, + { + "start": 2323.08, + "end": 2323.52, + "probability": 0.164 + }, + { + "start": 2323.58, + "end": 2324.74, + "probability": 0.8115 + }, + { + "start": 2324.76, + "end": 2325.4, + "probability": 0.3131 + }, + { + "start": 2325.42, + "end": 2327.64, + "probability": 0.9121 + }, + { + "start": 2327.96, + "end": 2331.22, + "probability": 0.4131 + }, + { + "start": 2331.34, + "end": 2337.46, + "probability": 0.8772 + }, + { + "start": 2337.48, + "end": 2338.38, + "probability": 0.9937 + }, + { + "start": 2338.82, + "end": 2339.62, + "probability": 0.8609 + }, + { + "start": 2340.19, + "end": 2341.68, + "probability": 0.8825 + }, + { + "start": 2341.82, + "end": 2342.46, + "probability": 0.9951 + }, + { + "start": 2342.54, + "end": 2344.6, + "probability": 0.5364 + }, + { + "start": 2345.0, + "end": 2345.58, + "probability": 0.9668 + }, + { + "start": 2346.2, + "end": 2346.2, + "probability": 0.1803 + }, + { + "start": 2346.2, + "end": 2347.01, + "probability": 0.5137 + }, + { + "start": 2347.18, + "end": 2348.38, + "probability": 0.2576 + }, + { + "start": 2348.52, + "end": 2349.96, + "probability": 0.9312 + }, + { + "start": 2349.96, + "end": 2350.59, + "probability": 0.6523 + }, + { + "start": 2351.0, + "end": 2353.92, + "probability": 0.6326 + }, + { + "start": 2354.16, + "end": 2354.94, + "probability": 0.6719 + }, + { + "start": 2355.08, + "end": 2355.12, + "probability": 0.1896 + }, + { + "start": 2355.12, + "end": 2355.47, + "probability": 0.0085 + }, + { + "start": 2356.16, + "end": 2356.6, + "probability": 0.0133 + }, + { + "start": 2356.6, + "end": 2356.6, + "probability": 0.0411 + }, + { + "start": 2357.02, + "end": 2357.58, + "probability": 0.481 + }, + { + "start": 2358.16, + "end": 2358.76, + "probability": 0.5235 + }, + { + "start": 2358.94, + "end": 2360.22, + "probability": 0.6838 + }, + { + "start": 2360.22, + "end": 2365.42, + "probability": 0.8604 + }, + { + "start": 2365.64, + "end": 2366.98, + "probability": 0.2703 + }, + { + "start": 2367.36, + "end": 2368.2, + "probability": 0.1383 + }, + { + "start": 2368.66, + "end": 2370.66, + "probability": 0.9697 + }, + { + "start": 2370.72, + "end": 2375.02, + "probability": 0.8207 + }, + { + "start": 2375.02, + "end": 2379.9, + "probability": 0.8796 + }, + { + "start": 2380.2, + "end": 2381.54, + "probability": 0.7927 + }, + { + "start": 2382.14, + "end": 2384.54, + "probability": 0.3888 + }, + { + "start": 2384.68, + "end": 2385.16, + "probability": 0.7622 + }, + { + "start": 2385.94, + "end": 2386.42, + "probability": 0.9149 + }, + { + "start": 2386.7, + "end": 2389.4, + "probability": 0.8382 + }, + { + "start": 2389.6, + "end": 2390.5, + "probability": 0.4971 + }, + { + "start": 2391.3, + "end": 2393.36, + "probability": 0.6221 + }, + { + "start": 2394.34, + "end": 2395.6, + "probability": 0.9252 + }, + { + "start": 2395.88, + "end": 2396.26, + "probability": 0.6813 + }, + { + "start": 2396.74, + "end": 2397.38, + "probability": 0.7894 + }, + { + "start": 2397.48, + "end": 2399.3, + "probability": 0.8467 + }, + { + "start": 2399.38, + "end": 2400.26, + "probability": 0.9121 + }, + { + "start": 2400.48, + "end": 2402.7, + "probability": 0.6933 + }, + { + "start": 2402.76, + "end": 2407.02, + "probability": 0.8408 + }, + { + "start": 2407.3, + "end": 2408.06, + "probability": 0.0928 + }, + { + "start": 2408.42, + "end": 2410.4, + "probability": 0.2674 + }, + { + "start": 2410.6, + "end": 2412.62, + "probability": 0.8922 + }, + { + "start": 2412.92, + "end": 2414.46, + "probability": 0.9707 + }, + { + "start": 2414.84, + "end": 2415.52, + "probability": 0.9373 + }, + { + "start": 2416.44, + "end": 2417.92, + "probability": 0.9055 + }, + { + "start": 2418.22, + "end": 2421.64, + "probability": 0.9266 + }, + { + "start": 2421.96, + "end": 2423.48, + "probability": 0.5691 + }, + { + "start": 2424.19, + "end": 2426.26, + "probability": 0.498 + }, + { + "start": 2426.28, + "end": 2429.52, + "probability": 0.9814 + }, + { + "start": 2430.06, + "end": 2430.82, + "probability": 0.8168 + }, + { + "start": 2430.88, + "end": 2432.11, + "probability": 0.5195 + }, + { + "start": 2432.66, + "end": 2435.88, + "probability": 0.9198 + }, + { + "start": 2435.88, + "end": 2436.7, + "probability": 0.4536 + }, + { + "start": 2436.9, + "end": 2439.46, + "probability": 0.668 + }, + { + "start": 2439.52, + "end": 2440.6, + "probability": 0.1787 + }, + { + "start": 2440.6, + "end": 2444.02, + "probability": 0.9651 + }, + { + "start": 2444.38, + "end": 2445.14, + "probability": 0.9398 + }, + { + "start": 2445.3, + "end": 2446.1, + "probability": 0.8688 + }, + { + "start": 2446.38, + "end": 2447.32, + "probability": 0.969 + }, + { + "start": 2447.7, + "end": 2448.4, + "probability": 0.4265 + }, + { + "start": 2448.48, + "end": 2449.4, + "probability": 0.5906 + }, + { + "start": 2449.44, + "end": 2450.71, + "probability": 0.826 + }, + { + "start": 2451.4, + "end": 2453.18, + "probability": 0.8418 + }, + { + "start": 2453.28, + "end": 2454.0, + "probability": 0.855 + }, + { + "start": 2454.38, + "end": 2459.46, + "probability": 0.9111 + }, + { + "start": 2459.54, + "end": 2462.08, + "probability": 0.8582 + }, + { + "start": 2462.2, + "end": 2464.02, + "probability": 0.9017 + }, + { + "start": 2466.07, + "end": 2467.22, + "probability": 0.4857 + }, + { + "start": 2467.22, + "end": 2471.16, + "probability": 0.9849 + }, + { + "start": 2471.7, + "end": 2473.46, + "probability": 0.9855 + }, + { + "start": 2473.78, + "end": 2474.46, + "probability": 0.7495 + }, + { + "start": 2474.54, + "end": 2476.24, + "probability": 0.6006 + }, + { + "start": 2476.72, + "end": 2480.44, + "probability": 0.8968 + }, + { + "start": 2481.06, + "end": 2484.16, + "probability": 0.751 + }, + { + "start": 2484.6, + "end": 2485.68, + "probability": 0.1949 + }, + { + "start": 2485.76, + "end": 2488.92, + "probability": 0.7279 + }, + { + "start": 2488.92, + "end": 2489.54, + "probability": 0.819 + }, + { + "start": 2489.84, + "end": 2492.9, + "probability": 0.7847 + }, + { + "start": 2493.32, + "end": 2494.1, + "probability": 0.7097 + }, + { + "start": 2494.2, + "end": 2497.52, + "probability": 0.8392 + }, + { + "start": 2498.0, + "end": 2502.02, + "probability": 0.6149 + }, + { + "start": 2502.22, + "end": 2504.74, + "probability": 0.2814 + }, + { + "start": 2504.74, + "end": 2508.54, + "probability": 0.9501 + }, + { + "start": 2508.6, + "end": 2512.0, + "probability": 0.5522 + }, + { + "start": 2512.5, + "end": 2514.46, + "probability": 0.8079 + }, + { + "start": 2514.7, + "end": 2516.28, + "probability": 0.919 + }, + { + "start": 2516.7, + "end": 2517.38, + "probability": 0.2499 + }, + { + "start": 2517.38, + "end": 2517.38, + "probability": 0.2842 + }, + { + "start": 2517.38, + "end": 2519.5, + "probability": 0.922 + }, + { + "start": 2519.88, + "end": 2520.47, + "probability": 0.6682 + }, + { + "start": 2520.72, + "end": 2522.89, + "probability": 0.6887 + }, + { + "start": 2523.16, + "end": 2524.6, + "probability": 0.9929 + }, + { + "start": 2524.72, + "end": 2524.72, + "probability": 0.5952 + }, + { + "start": 2524.76, + "end": 2527.28, + "probability": 0.8772 + }, + { + "start": 2527.48, + "end": 2527.64, + "probability": 0.4796 + }, + { + "start": 2527.64, + "end": 2530.14, + "probability": 0.8313 + }, + { + "start": 2530.42, + "end": 2532.12, + "probability": 0.5481 + }, + { + "start": 2532.78, + "end": 2534.44, + "probability": 0.6042 + }, + { + "start": 2543.4, + "end": 2545.72, + "probability": 0.8032 + }, + { + "start": 2548.14, + "end": 2548.14, + "probability": 0.0356 + }, + { + "start": 2548.14, + "end": 2548.46, + "probability": 0.8496 + }, + { + "start": 2557.98, + "end": 2560.3, + "probability": 0.7386 + }, + { + "start": 2561.5, + "end": 2562.42, + "probability": 0.616 + }, + { + "start": 2563.72, + "end": 2565.44, + "probability": 0.9448 + }, + { + "start": 2567.0, + "end": 2567.72, + "probability": 0.8408 + }, + { + "start": 2567.78, + "end": 2569.92, + "probability": 0.8552 + }, + { + "start": 2570.02, + "end": 2570.8, + "probability": 0.7409 + }, + { + "start": 2571.7, + "end": 2572.98, + "probability": 0.9304 + }, + { + "start": 2573.98, + "end": 2575.48, + "probability": 0.7167 + }, + { + "start": 2576.54, + "end": 2579.56, + "probability": 0.6829 + }, + { + "start": 2580.3, + "end": 2582.2, + "probability": 0.8926 + }, + { + "start": 2582.82, + "end": 2583.93, + "probability": 0.9939 + }, + { + "start": 2584.66, + "end": 2586.66, + "probability": 0.9669 + }, + { + "start": 2588.81, + "end": 2590.8, + "probability": 0.2015 + }, + { + "start": 2591.24, + "end": 2593.7, + "probability": 0.1255 + }, + { + "start": 2593.88, + "end": 2594.43, + "probability": 0.3721 + }, + { + "start": 2595.0, + "end": 2595.88, + "probability": 0.3873 + }, + { + "start": 2596.54, + "end": 2600.04, + "probability": 0.8106 + }, + { + "start": 2600.4, + "end": 2601.3, + "probability": 0.731 + }, + { + "start": 2602.74, + "end": 2605.02, + "probability": 0.4317 + }, + { + "start": 2605.12, + "end": 2605.4, + "probability": 0.6129 + }, + { + "start": 2605.42, + "end": 2607.36, + "probability": 0.9709 + }, + { + "start": 2607.8, + "end": 2609.47, + "probability": 0.7536 + }, + { + "start": 2609.7, + "end": 2610.44, + "probability": 0.6328 + }, + { + "start": 2611.18, + "end": 2613.19, + "probability": 0.9878 + }, + { + "start": 2613.94, + "end": 2615.92, + "probability": 0.6989 + }, + { + "start": 2616.22, + "end": 2617.4, + "probability": 0.5654 + }, + { + "start": 2617.56, + "end": 2618.56, + "probability": 0.7028 + }, + { + "start": 2618.58, + "end": 2621.92, + "probability": 0.7633 + }, + { + "start": 2622.6, + "end": 2623.92, + "probability": 0.7787 + }, + { + "start": 2624.82, + "end": 2626.4, + "probability": 0.9946 + }, + { + "start": 2627.3, + "end": 2629.18, + "probability": 0.7634 + }, + { + "start": 2629.34, + "end": 2629.98, + "probability": 0.6163 + }, + { + "start": 2630.34, + "end": 2631.58, + "probability": 0.8931 + }, + { + "start": 2631.68, + "end": 2633.2, + "probability": 0.7831 + }, + { + "start": 2633.2, + "end": 2635.62, + "probability": 0.9274 + }, + { + "start": 2636.36, + "end": 2636.66, + "probability": 0.285 + }, + { + "start": 2636.74, + "end": 2639.16, + "probability": 0.9215 + }, + { + "start": 2639.86, + "end": 2640.77, + "probability": 0.4048 + }, + { + "start": 2641.16, + "end": 2644.18, + "probability": 0.9375 + }, + { + "start": 2644.86, + "end": 2646.2, + "probability": 0.9612 + }, + { + "start": 2647.22, + "end": 2647.76, + "probability": 0.093 + }, + { + "start": 2647.76, + "end": 2651.53, + "probability": 0.4403 + }, + { + "start": 2651.74, + "end": 2653.08, + "probability": 0.6301 + }, + { + "start": 2653.08, + "end": 2653.4, + "probability": 0.4919 + }, + { + "start": 2653.5, + "end": 2656.4, + "probability": 0.9634 + }, + { + "start": 2656.58, + "end": 2659.04, + "probability": 0.9649 + }, + { + "start": 2659.26, + "end": 2659.98, + "probability": 0.8367 + }, + { + "start": 2661.64, + "end": 2664.24, + "probability": 0.5218 + }, + { + "start": 2664.29, + "end": 2664.5, + "probability": 0.3096 + }, + { + "start": 2664.5, + "end": 2667.06, + "probability": 0.4977 + }, + { + "start": 2667.26, + "end": 2668.58, + "probability": 0.3777 + }, + { + "start": 2668.82, + "end": 2671.28, + "probability": 0.837 + }, + { + "start": 2672.04, + "end": 2672.64, + "probability": 0.338 + }, + { + "start": 2673.1, + "end": 2673.7, + "probability": 0.0047 + }, + { + "start": 2673.7, + "end": 2674.0, + "probability": 0.3878 + }, + { + "start": 2674.24, + "end": 2677.0, + "probability": 0.7222 + }, + { + "start": 2677.42, + "end": 2678.24, + "probability": 0.801 + }, + { + "start": 2679.32, + "end": 2680.84, + "probability": 0.7087 + }, + { + "start": 2680.92, + "end": 2681.78, + "probability": 0.7422 + }, + { + "start": 2681.84, + "end": 2682.74, + "probability": 0.7351 + }, + { + "start": 2682.78, + "end": 2683.94, + "probability": 0.2847 + }, + { + "start": 2683.98, + "end": 2684.32, + "probability": 0.6749 + }, + { + "start": 2684.78, + "end": 2684.88, + "probability": 0.1023 + }, + { + "start": 2684.96, + "end": 2685.72, + "probability": 0.6667 + }, + { + "start": 2685.84, + "end": 2687.7, + "probability": 0.9932 + }, + { + "start": 2688.64, + "end": 2689.5, + "probability": 0.6643 + }, + { + "start": 2690.86, + "end": 2691.42, + "probability": 0.5137 + }, + { + "start": 2691.6, + "end": 2697.76, + "probability": 0.9961 + }, + { + "start": 2698.56, + "end": 2699.2, + "probability": 0.9687 + }, + { + "start": 2699.72, + "end": 2700.46, + "probability": 0.9479 + }, + { + "start": 2701.18, + "end": 2702.16, + "probability": 0.9451 + }, + { + "start": 2702.64, + "end": 2706.48, + "probability": 0.9907 + }, + { + "start": 2706.84, + "end": 2710.72, + "probability": 0.9524 + }, + { + "start": 2711.3, + "end": 2711.44, + "probability": 0.0289 + }, + { + "start": 2711.44, + "end": 2714.28, + "probability": 0.9561 + }, + { + "start": 2714.54, + "end": 2714.7, + "probability": 0.0365 + }, + { + "start": 2715.04, + "end": 2715.54, + "probability": 0.129 + }, + { + "start": 2715.54, + "end": 2715.75, + "probability": 0.113 + }, + { + "start": 2715.76, + "end": 2718.62, + "probability": 0.8307 + }, + { + "start": 2718.98, + "end": 2719.16, + "probability": 0.1616 + }, + { + "start": 2719.16, + "end": 2719.8, + "probability": 0.4992 + }, + { + "start": 2720.32, + "end": 2723.82, + "probability": 0.9456 + }, + { + "start": 2724.2, + "end": 2728.42, + "probability": 0.62 + }, + { + "start": 2728.6, + "end": 2729.34, + "probability": 0.6356 + }, + { + "start": 2729.46, + "end": 2732.56, + "probability": 0.8757 + }, + { + "start": 2733.18, + "end": 2737.32, + "probability": 0.8068 + }, + { + "start": 2737.9, + "end": 2739.14, + "probability": 0.9508 + }, + { + "start": 2739.28, + "end": 2744.22, + "probability": 0.2397 + }, + { + "start": 2744.22, + "end": 2745.02, + "probability": 0.9987 + }, + { + "start": 2745.22, + "end": 2748.28, + "probability": 0.5316 + }, + { + "start": 2748.66, + "end": 2752.0, + "probability": 0.9984 + }, + { + "start": 2754.28, + "end": 2757.42, + "probability": 0.9506 + }, + { + "start": 2757.98, + "end": 2760.08, + "probability": 0.6562 + }, + { + "start": 2760.28, + "end": 2764.8, + "probability": 0.7646 + }, + { + "start": 2765.5, + "end": 2766.74, + "probability": 0.3192 + }, + { + "start": 2766.84, + "end": 2768.92, + "probability": 0.7475 + }, + { + "start": 2769.38, + "end": 2770.92, + "probability": 0.4688 + }, + { + "start": 2771.02, + "end": 2772.48, + "probability": 0.9768 + }, + { + "start": 2772.74, + "end": 2775.54, + "probability": 0.9399 + }, + { + "start": 2775.54, + "end": 2781.12, + "probability": 0.9922 + }, + { + "start": 2781.3, + "end": 2783.58, + "probability": 0.8597 + }, + { + "start": 2783.82, + "end": 2786.2, + "probability": 0.8558 + }, + { + "start": 2786.84, + "end": 2790.02, + "probability": 0.9932 + }, + { + "start": 2790.28, + "end": 2793.54, + "probability": 0.9923 + }, + { + "start": 2793.54, + "end": 2797.48, + "probability": 0.84 + }, + { + "start": 2798.22, + "end": 2801.14, + "probability": 0.8647 + }, + { + "start": 2803.3, + "end": 2807.44, + "probability": 0.9446 + }, + { + "start": 2807.44, + "end": 2810.64, + "probability": 0.8841 + }, + { + "start": 2811.18, + "end": 2812.68, + "probability": 0.6374 + }, + { + "start": 2813.12, + "end": 2815.94, + "probability": 0.916 + }, + { + "start": 2815.94, + "end": 2819.04, + "probability": 0.975 + }, + { + "start": 2819.56, + "end": 2819.72, + "probability": 0.0988 + }, + { + "start": 2820.56, + "end": 2821.34, + "probability": 0.9866 + }, + { + "start": 2821.86, + "end": 2824.14, + "probability": 0.9952 + }, + { + "start": 2825.2, + "end": 2825.56, + "probability": 0.8616 + }, + { + "start": 2826.2, + "end": 2829.74, + "probability": 0.8849 + }, + { + "start": 2830.32, + "end": 2830.68, + "probability": 0.7121 + }, + { + "start": 2830.76, + "end": 2833.98, + "probability": 0.9069 + }, + { + "start": 2834.4, + "end": 2836.98, + "probability": 0.9014 + }, + { + "start": 2837.54, + "end": 2837.94, + "probability": 0.711 + }, + { + "start": 2853.12, + "end": 2854.5, + "probability": 0.8473 + }, + { + "start": 2854.78, + "end": 2856.8, + "probability": 0.7919 + }, + { + "start": 2857.78, + "end": 2862.44, + "probability": 0.9632 + }, + { + "start": 2862.44, + "end": 2866.94, + "probability": 0.9954 + }, + { + "start": 2867.6, + "end": 2870.16, + "probability": 0.9429 + }, + { + "start": 2870.26, + "end": 2875.8, + "probability": 0.8794 + }, + { + "start": 2876.2, + "end": 2878.44, + "probability": 0.981 + }, + { + "start": 2879.54, + "end": 2883.76, + "probability": 0.8672 + }, + { + "start": 2884.34, + "end": 2885.78, + "probability": 0.8053 + }, + { + "start": 2886.54, + "end": 2887.66, + "probability": 0.7829 + }, + { + "start": 2888.06, + "end": 2893.58, + "probability": 0.9709 + }, + { + "start": 2893.58, + "end": 2898.48, + "probability": 0.9978 + }, + { + "start": 2899.34, + "end": 2903.68, + "probability": 0.9961 + }, + { + "start": 2904.24, + "end": 2907.9, + "probability": 0.8722 + }, + { + "start": 2907.9, + "end": 2911.5, + "probability": 0.9963 + }, + { + "start": 2912.06, + "end": 2916.56, + "probability": 0.7664 + }, + { + "start": 2917.38, + "end": 2922.26, + "probability": 0.9963 + }, + { + "start": 2922.8, + "end": 2928.74, + "probability": 0.9973 + }, + { + "start": 2929.86, + "end": 2935.36, + "probability": 0.9888 + }, + { + "start": 2935.72, + "end": 2936.58, + "probability": 0.8643 + }, + { + "start": 2937.58, + "end": 2939.38, + "probability": 0.9985 + }, + { + "start": 2939.94, + "end": 2940.26, + "probability": 0.8264 + }, + { + "start": 2940.92, + "end": 2941.46, + "probability": 0.6992 + }, + { + "start": 2942.56, + "end": 2944.84, + "probability": 0.821 + }, + { + "start": 2945.72, + "end": 2949.8, + "probability": 0.9919 + }, + { + "start": 2950.48, + "end": 2953.84, + "probability": 0.9923 + }, + { + "start": 2953.84, + "end": 2958.3, + "probability": 0.9911 + }, + { + "start": 2969.7, + "end": 2970.08, + "probability": 0.0517 + }, + { + "start": 2970.08, + "end": 2970.08, + "probability": 0.0376 + }, + { + "start": 2970.08, + "end": 2970.24, + "probability": 0.0401 + }, + { + "start": 2970.24, + "end": 2974.4, + "probability": 0.9307 + }, + { + "start": 2974.4, + "end": 2979.82, + "probability": 0.9124 + }, + { + "start": 2980.78, + "end": 2984.74, + "probability": 0.9854 + }, + { + "start": 2984.74, + "end": 2988.98, + "probability": 0.9934 + }, + { + "start": 2989.52, + "end": 2990.88, + "probability": 0.9544 + }, + { + "start": 2991.9, + "end": 2994.5, + "probability": 0.7841 + }, + { + "start": 2995.48, + "end": 2996.14, + "probability": 0.8481 + }, + { + "start": 2996.24, + "end": 2997.08, + "probability": 0.7947 + }, + { + "start": 2997.56, + "end": 3001.58, + "probability": 0.9258 + }, + { + "start": 3001.58, + "end": 3005.6, + "probability": 0.9951 + }, + { + "start": 3005.98, + "end": 3010.3, + "probability": 0.9983 + }, + { + "start": 3010.72, + "end": 3014.46, + "probability": 0.9894 + }, + { + "start": 3015.02, + "end": 3020.5, + "probability": 0.9904 + }, + { + "start": 3020.86, + "end": 3022.78, + "probability": 0.8733 + }, + { + "start": 3023.26, + "end": 3025.32, + "probability": 0.9915 + }, + { + "start": 3025.66, + "end": 3027.35, + "probability": 0.9396 + }, + { + "start": 3028.16, + "end": 3029.26, + "probability": 0.9531 + }, + { + "start": 3029.72, + "end": 3032.3, + "probability": 0.9091 + }, + { + "start": 3033.04, + "end": 3033.3, + "probability": 0.7558 + }, + { + "start": 3034.74, + "end": 3037.5, + "probability": 0.8472 + }, + { + "start": 3038.46, + "end": 3040.14, + "probability": 0.9034 + }, + { + "start": 3056.82, + "end": 3057.26, + "probability": 0.4031 + }, + { + "start": 3057.26, + "end": 3057.4, + "probability": 0.3262 + }, + { + "start": 3057.54, + "end": 3058.18, + "probability": 0.6846 + }, + { + "start": 3058.74, + "end": 3059.14, + "probability": 0.6669 + }, + { + "start": 3060.02, + "end": 3061.1, + "probability": 0.6798 + }, + { + "start": 3062.78, + "end": 3067.28, + "probability": 0.9987 + }, + { + "start": 3068.1, + "end": 3073.58, + "probability": 0.937 + }, + { + "start": 3074.28, + "end": 3077.14, + "probability": 0.9044 + }, + { + "start": 3077.88, + "end": 3082.76, + "probability": 0.9656 + }, + { + "start": 3083.48, + "end": 3085.8, + "probability": 0.9332 + }, + { + "start": 3086.36, + "end": 3091.14, + "probability": 0.9954 + }, + { + "start": 3091.88, + "end": 3094.82, + "probability": 0.9963 + }, + { + "start": 3095.36, + "end": 3098.3, + "probability": 0.7931 + }, + { + "start": 3098.86, + "end": 3101.5, + "probability": 0.9383 + }, + { + "start": 3102.26, + "end": 3102.9, + "probability": 0.7929 + }, + { + "start": 3102.96, + "end": 3107.94, + "probability": 0.9844 + }, + { + "start": 3108.64, + "end": 3109.77, + "probability": 0.9644 + }, + { + "start": 3110.4, + "end": 3111.4, + "probability": 0.7467 + }, + { + "start": 3111.48, + "end": 3113.48, + "probability": 0.9247 + }, + { + "start": 3113.74, + "end": 3114.98, + "probability": 0.8251 + }, + { + "start": 3115.42, + "end": 3120.58, + "probability": 0.9873 + }, + { + "start": 3121.32, + "end": 3122.52, + "probability": 0.9978 + }, + { + "start": 3123.36, + "end": 3124.92, + "probability": 0.7009 + }, + { + "start": 3125.2, + "end": 3127.8, + "probability": 0.7536 + }, + { + "start": 3128.38, + "end": 3133.56, + "probability": 0.9278 + }, + { + "start": 3134.02, + "end": 3135.54, + "probability": 0.811 + }, + { + "start": 3135.62, + "end": 3135.96, + "probability": 0.5127 + }, + { + "start": 3136.46, + "end": 3137.58, + "probability": 0.8585 + }, + { + "start": 3138.24, + "end": 3144.44, + "probability": 0.991 + }, + { + "start": 3144.96, + "end": 3145.44, + "probability": 0.9023 + }, + { + "start": 3145.56, + "end": 3146.26, + "probability": 0.4907 + }, + { + "start": 3146.64, + "end": 3152.32, + "probability": 0.9926 + }, + { + "start": 3152.76, + "end": 3154.74, + "probability": 0.7406 + }, + { + "start": 3155.2, + "end": 3156.06, + "probability": 0.959 + }, + { + "start": 3156.08, + "end": 3157.1, + "probability": 0.7347 + }, + { + "start": 3157.42, + "end": 3158.4, + "probability": 0.9875 + }, + { + "start": 3158.48, + "end": 3159.18, + "probability": 0.9222 + }, + { + "start": 3159.52, + "end": 3160.8, + "probability": 0.9856 + }, + { + "start": 3161.34, + "end": 3163.34, + "probability": 0.9768 + }, + { + "start": 3163.98, + "end": 3164.98, + "probability": 0.7899 + }, + { + "start": 3165.48, + "end": 3168.66, + "probability": 0.9649 + }, + { + "start": 3168.92, + "end": 3170.68, + "probability": 0.9976 + }, + { + "start": 3171.02, + "end": 3172.15, + "probability": 0.9062 + }, + { + "start": 3172.54, + "end": 3175.68, + "probability": 0.9962 + }, + { + "start": 3177.0, + "end": 3177.84, + "probability": 0.8598 + }, + { + "start": 3178.86, + "end": 3184.52, + "probability": 0.6695 + }, + { + "start": 3185.22, + "end": 3190.24, + "probability": 0.796 + }, + { + "start": 3190.76, + "end": 3193.08, + "probability": 0.9473 + }, + { + "start": 3193.76, + "end": 3194.52, + "probability": 0.6949 + }, + { + "start": 3194.6, + "end": 3195.0, + "probability": 0.923 + }, + { + "start": 3195.06, + "end": 3196.4, + "probability": 0.626 + }, + { + "start": 3196.5, + "end": 3199.02, + "probability": 0.9028 + }, + { + "start": 3199.64, + "end": 3201.16, + "probability": 0.9708 + }, + { + "start": 3201.64, + "end": 3204.46, + "probability": 0.917 + }, + { + "start": 3205.26, + "end": 3206.04, + "probability": 0.8402 + }, + { + "start": 3206.86, + "end": 3209.36, + "probability": 0.8674 + }, + { + "start": 3210.32, + "end": 3212.8, + "probability": 0.7778 + }, + { + "start": 3213.66, + "end": 3214.14, + "probability": 0.989 + }, + { + "start": 3214.26, + "end": 3218.14, + "probability": 0.9784 + }, + { + "start": 3218.22, + "end": 3219.4, + "probability": 0.8508 + }, + { + "start": 3219.96, + "end": 3221.44, + "probability": 0.9969 + }, + { + "start": 3222.02, + "end": 3224.84, + "probability": 0.1296 + }, + { + "start": 3224.84, + "end": 3225.7, + "probability": 0.7197 + }, + { + "start": 3226.34, + "end": 3227.0, + "probability": 0.5958 + }, + { + "start": 3227.02, + "end": 3227.95, + "probability": 0.9159 + }, + { + "start": 3228.14, + "end": 3231.92, + "probability": 0.8169 + }, + { + "start": 3232.02, + "end": 3233.04, + "probability": 0.779 + }, + { + "start": 3233.34, + "end": 3233.44, + "probability": 0.2676 + }, + { + "start": 3233.48, + "end": 3237.58, + "probability": 0.9845 + }, + { + "start": 3238.2, + "end": 3239.2, + "probability": 0.9122 + }, + { + "start": 3239.58, + "end": 3242.46, + "probability": 0.9755 + }, + { + "start": 3242.88, + "end": 3243.69, + "probability": 0.9333 + }, + { + "start": 3244.2, + "end": 3246.98, + "probability": 0.647 + }, + { + "start": 3246.98, + "end": 3247.5, + "probability": 0.9409 + }, + { + "start": 3247.9, + "end": 3248.54, + "probability": 0.9167 + }, + { + "start": 3248.86, + "end": 3251.19, + "probability": 0.6343 + }, + { + "start": 3251.78, + "end": 3253.08, + "probability": 0.778 + }, + { + "start": 3253.42, + "end": 3256.62, + "probability": 0.9268 + }, + { + "start": 3256.68, + "end": 3259.18, + "probability": 0.9727 + }, + { + "start": 3259.52, + "end": 3260.9, + "probability": 0.9562 + }, + { + "start": 3260.9, + "end": 3261.1, + "probability": 0.8467 + }, + { + "start": 3261.54, + "end": 3263.22, + "probability": 0.7812 + }, + { + "start": 3263.22, + "end": 3266.08, + "probability": 0.9534 + }, + { + "start": 3266.08, + "end": 3266.08, + "probability": 0.5044 + }, + { + "start": 3266.08, + "end": 3266.94, + "probability": 0.9309 + }, + { + "start": 3267.28, + "end": 3268.92, + "probability": 0.6687 + }, + { + "start": 3269.3, + "end": 3270.66, + "probability": 0.5787 + }, + { + "start": 3271.02, + "end": 3272.32, + "probability": 0.6054 + }, + { + "start": 3272.46, + "end": 3273.6, + "probability": 0.8379 + }, + { + "start": 3273.7, + "end": 3274.18, + "probability": 0.7164 + }, + { + "start": 3274.18, + "end": 3274.66, + "probability": 0.9918 + }, + { + "start": 3275.36, + "end": 3277.92, + "probability": 0.8235 + }, + { + "start": 3278.24, + "end": 3279.34, + "probability": 0.9693 + }, + { + "start": 3279.62, + "end": 3280.34, + "probability": 0.9712 + }, + { + "start": 3280.4, + "end": 3280.66, + "probability": 0.861 + }, + { + "start": 3281.34, + "end": 3282.86, + "probability": 0.9463 + }, + { + "start": 3283.78, + "end": 3286.16, + "probability": 0.9695 + }, + { + "start": 3292.7, + "end": 3293.9, + "probability": 0.6716 + }, + { + "start": 3295.14, + "end": 3297.6, + "probability": 0.3066 + }, + { + "start": 3297.8, + "end": 3299.9, + "probability": 0.0563 + }, + { + "start": 3321.02, + "end": 3321.68, + "probability": 0.281 + }, + { + "start": 3323.24, + "end": 3325.5, + "probability": 0.7229 + }, + { + "start": 3325.88, + "end": 3326.38, + "probability": 0.7072 + }, + { + "start": 3326.38, + "end": 3327.12, + "probability": 0.6404 + }, + { + "start": 3327.12, + "end": 3328.44, + "probability": 0.6304 + }, + { + "start": 3330.2, + "end": 3334.22, + "probability": 0.8923 + }, + { + "start": 3335.5, + "end": 3338.56, + "probability": 0.8931 + }, + { + "start": 3339.58, + "end": 3343.3, + "probability": 0.9952 + }, + { + "start": 3343.72, + "end": 3344.28, + "probability": 0.7819 + }, + { + "start": 3344.32, + "end": 3344.7, + "probability": 0.6824 + }, + { + "start": 3347.06, + "end": 3348.3, + "probability": 0.8311 + }, + { + "start": 3349.78, + "end": 3354.98, + "probability": 0.8794 + }, + { + "start": 3355.2, + "end": 3356.26, + "probability": 0.9709 + }, + { + "start": 3357.52, + "end": 3358.0, + "probability": 0.5086 + }, + { + "start": 3359.7, + "end": 3363.12, + "probability": 0.583 + }, + { + "start": 3365.42, + "end": 3366.12, + "probability": 0.273 + }, + { + "start": 3366.76, + "end": 3367.08, + "probability": 0.1182 + }, + { + "start": 3368.58, + "end": 3369.6, + "probability": 0.8771 + }, + { + "start": 3372.36, + "end": 3373.64, + "probability": 0.1405 + }, + { + "start": 3373.72, + "end": 3375.32, + "probability": 0.6176 + }, + { + "start": 3375.94, + "end": 3376.4, + "probability": 0.1205 + }, + { + "start": 3378.04, + "end": 3379.82, + "probability": 0.8404 + }, + { + "start": 3380.44, + "end": 3382.5, + "probability": 0.9205 + }, + { + "start": 3383.36, + "end": 3385.68, + "probability": 0.9927 + }, + { + "start": 3387.88, + "end": 3390.02, + "probability": 0.9301 + }, + { + "start": 3390.94, + "end": 3392.08, + "probability": 0.9621 + }, + { + "start": 3392.98, + "end": 3395.22, + "probability": 0.9976 + }, + { + "start": 3395.8, + "end": 3397.98, + "probability": 0.9708 + }, + { + "start": 3399.12, + "end": 3403.54, + "probability": 0.9917 + }, + { + "start": 3404.4, + "end": 3407.94, + "probability": 0.9935 + }, + { + "start": 3408.82, + "end": 3411.96, + "probability": 0.821 + }, + { + "start": 3413.22, + "end": 3414.1, + "probability": 0.9888 + }, + { + "start": 3415.22, + "end": 3420.76, + "probability": 0.9087 + }, + { + "start": 3421.98, + "end": 3426.08, + "probability": 0.9717 + }, + { + "start": 3427.9, + "end": 3428.38, + "probability": 0.6981 + }, + { + "start": 3429.44, + "end": 3431.82, + "probability": 0.9934 + }, + { + "start": 3432.68, + "end": 3434.3, + "probability": 0.6255 + }, + { + "start": 3436.62, + "end": 3437.96, + "probability": 0.9111 + }, + { + "start": 3438.76, + "end": 3440.38, + "probability": 0.9788 + }, + { + "start": 3441.44, + "end": 3446.7, + "probability": 0.985 + }, + { + "start": 3446.98, + "end": 3448.78, + "probability": 0.2907 + }, + { + "start": 3449.48, + "end": 3450.92, + "probability": 0.75 + }, + { + "start": 3451.34, + "end": 3452.8, + "probability": 0.94 + }, + { + "start": 3453.26, + "end": 3454.84, + "probability": 0.9743 + }, + { + "start": 3455.86, + "end": 3459.74, + "probability": 0.9794 + }, + { + "start": 3460.7, + "end": 3465.44, + "probability": 0.8555 + }, + { + "start": 3466.12, + "end": 3467.54, + "probability": 0.5684 + }, + { + "start": 3468.68, + "end": 3470.46, + "probability": 0.9956 + }, + { + "start": 3471.04, + "end": 3472.88, + "probability": 0.9263 + }, + { + "start": 3473.48, + "end": 3474.98, + "probability": 0.9667 + }, + { + "start": 3475.5, + "end": 3482.68, + "probability": 0.9217 + }, + { + "start": 3483.26, + "end": 3483.92, + "probability": 0.9922 + }, + { + "start": 3484.06, + "end": 3485.5, + "probability": 0.9961 + }, + { + "start": 3485.58, + "end": 3485.78, + "probability": 0.3684 + }, + { + "start": 3485.82, + "end": 3486.34, + "probability": 0.8145 + }, + { + "start": 3486.82, + "end": 3488.48, + "probability": 0.7732 + }, + { + "start": 3490.38, + "end": 3490.72, + "probability": 0.6792 + }, + { + "start": 3491.1, + "end": 3491.56, + "probability": 0.4425 + }, + { + "start": 3493.22, + "end": 3495.18, + "probability": 0.9534 + }, + { + "start": 3497.42, + "end": 3498.14, + "probability": 0.6638 + }, + { + "start": 3498.32, + "end": 3504.82, + "probability": 0.936 + }, + { + "start": 3504.9, + "end": 3506.28, + "probability": 0.7341 + }, + { + "start": 3506.42, + "end": 3506.52, + "probability": 0.1987 + }, + { + "start": 3507.44, + "end": 3507.76, + "probability": 0.8677 + }, + { + "start": 3507.8, + "end": 3508.54, + "probability": 0.6721 + }, + { + "start": 3510.5, + "end": 3512.22, + "probability": 0.9713 + }, + { + "start": 3513.34, + "end": 3514.2, + "probability": 0.9526 + }, + { + "start": 3515.24, + "end": 3520.12, + "probability": 0.9787 + }, + { + "start": 3521.54, + "end": 3523.22, + "probability": 0.9946 + }, + { + "start": 3523.86, + "end": 3525.4, + "probability": 0.9786 + }, + { + "start": 3525.54, + "end": 3527.18, + "probability": 0.9313 + }, + { + "start": 3527.52, + "end": 3528.28, + "probability": 0.3416 + }, + { + "start": 3528.5, + "end": 3531.02, + "probability": 0.4268 + }, + { + "start": 3532.02, + "end": 3533.18, + "probability": 0.9182 + }, + { + "start": 3533.38, + "end": 3534.26, + "probability": 0.9045 + }, + { + "start": 3534.34, + "end": 3537.5, + "probability": 0.9969 + }, + { + "start": 3538.14, + "end": 3539.92, + "probability": 0.8484 + }, + { + "start": 3540.72, + "end": 3541.97, + "probability": 0.6871 + }, + { + "start": 3542.36, + "end": 3544.3, + "probability": 0.9278 + }, + { + "start": 3544.46, + "end": 3547.72, + "probability": 0.9859 + }, + { + "start": 3548.02, + "end": 3550.86, + "probability": 0.9736 + }, + { + "start": 3551.4, + "end": 3551.84, + "probability": 0.4519 + }, + { + "start": 3552.38, + "end": 3556.66, + "probability": 0.8076 + }, + { + "start": 3556.84, + "end": 3557.62, + "probability": 0.7518 + }, + { + "start": 3557.72, + "end": 3558.44, + "probability": 0.7479 + }, + { + "start": 3558.56, + "end": 3559.78, + "probability": 0.9563 + }, + { + "start": 3560.58, + "end": 3561.3, + "probability": 0.663 + }, + { + "start": 3561.4, + "end": 3561.96, + "probability": 0.4014 + }, + { + "start": 3563.3, + "end": 3565.12, + "probability": 0.7264 + }, + { + "start": 3565.48, + "end": 3568.8, + "probability": 0.7196 + }, + { + "start": 3568.86, + "end": 3569.56, + "probability": 0.8525 + }, + { + "start": 3569.58, + "end": 3570.46, + "probability": 0.9631 + }, + { + "start": 3570.82, + "end": 3571.34, + "probability": 0.5084 + }, + { + "start": 3571.4, + "end": 3572.36, + "probability": 0.3706 + }, + { + "start": 3573.06, + "end": 3575.1, + "probability": 0.984 + }, + { + "start": 3575.14, + "end": 3579.94, + "probability": 0.9639 + }, + { + "start": 3580.76, + "end": 3587.82, + "probability": 0.9928 + }, + { + "start": 3588.48, + "end": 3589.87, + "probability": 0.7876 + }, + { + "start": 3590.22, + "end": 3595.5, + "probability": 0.1583 + }, + { + "start": 3596.4, + "end": 3597.31, + "probability": 0.2059 + }, + { + "start": 3597.38, + "end": 3598.48, + "probability": 0.2999 + }, + { + "start": 3598.84, + "end": 3598.84, + "probability": 0.0966 + }, + { + "start": 3599.02, + "end": 3599.02, + "probability": 0.0681 + }, + { + "start": 3599.94, + "end": 3600.96, + "probability": 0.1474 + }, + { + "start": 3601.62, + "end": 3605.24, + "probability": 0.0403 + }, + { + "start": 3605.82, + "end": 3605.92, + "probability": 0.2341 + }, + { + "start": 3606.54, + "end": 3606.95, + "probability": 0.0761 + }, + { + "start": 3607.48, + "end": 3609.22, + "probability": 0.0873 + }, + { + "start": 3609.74, + "end": 3612.82, + "probability": 0.3907 + }, + { + "start": 3617.08, + "end": 3617.38, + "probability": 0.0969 + }, + { + "start": 3617.38, + "end": 3618.3, + "probability": 0.3543 + }, + { + "start": 3618.44, + "end": 3618.44, + "probability": 0.0313 + }, + { + "start": 3618.78, + "end": 3619.66, + "probability": 0.1671 + }, + { + "start": 3620.76, + "end": 3621.12, + "probability": 0.0696 + }, + { + "start": 3621.12, + "end": 3621.68, + "probability": 0.3306 + }, + { + "start": 3621.68, + "end": 3622.66, + "probability": 0.0747 + }, + { + "start": 3624.9, + "end": 3625.8, + "probability": 0.0686 + }, + { + "start": 3626.16, + "end": 3626.76, + "probability": 0.0784 + }, + { + "start": 3626.78, + "end": 3629.12, + "probability": 0.2225 + }, + { + "start": 3629.88, + "end": 3630.0, + "probability": 0.1139 + }, + { + "start": 3630.0, + "end": 3632.34, + "probability": 0.0595 + }, + { + "start": 3632.48, + "end": 3633.12, + "probability": 0.1037 + }, + { + "start": 3634.86, + "end": 3639.22, + "probability": 0.0116 + }, + { + "start": 3639.22, + "end": 3639.52, + "probability": 0.0251 + }, + { + "start": 3639.52, + "end": 3639.52, + "probability": 0.2365 + }, + { + "start": 3640.34, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3661.0, + "end": 3661.0, + "probability": 0.0 + }, + { + "start": 3670.74, + "end": 3670.84, + "probability": 0.0873 + }, + { + "start": 3670.84, + "end": 3672.18, + "probability": 0.7124 + }, + { + "start": 3677.68, + "end": 3678.64, + "probability": 0.7263 + }, + { + "start": 3678.8, + "end": 3679.64, + "probability": 0.6229 + }, + { + "start": 3679.76, + "end": 3680.96, + "probability": 0.7689 + }, + { + "start": 3681.34, + "end": 3681.82, + "probability": 0.6831 + }, + { + "start": 3682.64, + "end": 3684.94, + "probability": 0.9691 + }, + { + "start": 3684.98, + "end": 3687.14, + "probability": 0.9642 + }, + { + "start": 3687.74, + "end": 3688.5, + "probability": 0.9396 + }, + { + "start": 3689.3, + "end": 3689.38, + "probability": 0.0049 + }, + { + "start": 3690.02, + "end": 3690.02, + "probability": 0.0145 + }, + { + "start": 3690.02, + "end": 3690.02, + "probability": 0.0599 + }, + { + "start": 3690.02, + "end": 3690.51, + "probability": 0.5838 + }, + { + "start": 3690.86, + "end": 3692.08, + "probability": 0.839 + }, + { + "start": 3692.2, + "end": 3693.82, + "probability": 0.9884 + }, + { + "start": 3693.84, + "end": 3694.47, + "probability": 0.8883 + }, + { + "start": 3695.48, + "end": 3697.86, + "probability": 0.9562 + }, + { + "start": 3698.88, + "end": 3701.96, + "probability": 0.8168 + }, + { + "start": 3702.38, + "end": 3705.48, + "probability": 0.6885 + }, + { + "start": 3705.88, + "end": 3705.88, + "probability": 0.0954 + }, + { + "start": 3705.88, + "end": 3706.73, + "probability": 0.5371 + }, + { + "start": 3707.0, + "end": 3708.29, + "probability": 0.7761 + }, + { + "start": 3708.56, + "end": 3709.48, + "probability": 0.2917 + }, + { + "start": 3709.66, + "end": 3714.26, + "probability": 0.9463 + }, + { + "start": 3714.52, + "end": 3716.78, + "probability": 0.3763 + }, + { + "start": 3718.42, + "end": 3718.62, + "probability": 0.0123 + }, + { + "start": 3718.62, + "end": 3719.3, + "probability": 0.0212 + }, + { + "start": 3719.66, + "end": 3720.96, + "probability": 0.7056 + }, + { + "start": 3721.06, + "end": 3723.24, + "probability": 0.6352 + }, + { + "start": 3723.42, + "end": 3726.31, + "probability": 0.6377 + }, + { + "start": 3729.86, + "end": 3733.92, + "probability": 0.0681 + }, + { + "start": 3733.92, + "end": 3735.52, + "probability": 0.0799 + }, + { + "start": 3735.56, + "end": 3736.9, + "probability": 0.1191 + }, + { + "start": 3736.98, + "end": 3736.98, + "probability": 0.0584 + }, + { + "start": 3736.98, + "end": 3737.82, + "probability": 0.0634 + }, + { + "start": 3738.64, + "end": 3738.82, + "probability": 0.1446 + }, + { + "start": 3743.14, + "end": 3746.82, + "probability": 0.2173 + }, + { + "start": 3751.52, + "end": 3752.78, + "probability": 0.7057 + }, + { + "start": 3754.2, + "end": 3755.22, + "probability": 0.8132 + }, + { + "start": 3757.2, + "end": 3757.34, + "probability": 0.1646 + }, + { + "start": 3757.34, + "end": 3761.88, + "probability": 0.0606 + }, + { + "start": 3762.84, + "end": 3763.06, + "probability": 0.1009 + }, + { + "start": 3763.06, + "end": 3764.36, + "probability": 0.0854 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.0, + "end": 3787.0, + "probability": 0.0 + }, + { + "start": 3787.74, + "end": 3787.74, + "probability": 0.0319 + }, + { + "start": 3787.74, + "end": 3787.74, + "probability": 0.1002 + }, + { + "start": 3787.74, + "end": 3788.22, + "probability": 0.2597 + }, + { + "start": 3788.22, + "end": 3790.98, + "probability": 0.7622 + }, + { + "start": 3791.28, + "end": 3795.43, + "probability": 0.7869 + }, + { + "start": 3796.66, + "end": 3803.26, + "probability": 0.9932 + }, + { + "start": 3803.26, + "end": 3804.1, + "probability": 0.9258 + }, + { + "start": 3804.18, + "end": 3804.46, + "probability": 0.8907 + }, + { + "start": 3804.54, + "end": 3809.1, + "probability": 0.9767 + }, + { + "start": 3809.5, + "end": 3810.84, + "probability": 0.9846 + }, + { + "start": 3811.4, + "end": 3813.56, + "probability": 0.4981 + }, + { + "start": 3814.04, + "end": 3814.68, + "probability": 0.9572 + }, + { + "start": 3815.2, + "end": 3817.18, + "probability": 0.9831 + }, + { + "start": 3817.64, + "end": 3820.36, + "probability": 0.9951 + }, + { + "start": 3820.78, + "end": 3825.44, + "probability": 0.9939 + }, + { + "start": 3825.56, + "end": 3829.28, + "probability": 0.6176 + }, + { + "start": 3829.64, + "end": 3829.68, + "probability": 0.0314 + }, + { + "start": 3829.68, + "end": 3833.22, + "probability": 0.9929 + }, + { + "start": 3833.74, + "end": 3838.12, + "probability": 0.7988 + }, + { + "start": 3838.16, + "end": 3839.04, + "probability": 0.6815 + }, + { + "start": 3839.38, + "end": 3840.26, + "probability": 0.8886 + }, + { + "start": 3840.34, + "end": 3842.22, + "probability": 0.9349 + }, + { + "start": 3842.56, + "end": 3847.22, + "probability": 0.8974 + }, + { + "start": 3847.76, + "end": 3848.26, + "probability": 0.9591 + }, + { + "start": 3848.38, + "end": 3850.22, + "probability": 0.9861 + }, + { + "start": 3850.52, + "end": 3853.08, + "probability": 0.9932 + }, + { + "start": 3853.34, + "end": 3856.22, + "probability": 0.6632 + }, + { + "start": 3856.5, + "end": 3856.5, + "probability": 0.3671 + }, + { + "start": 3856.5, + "end": 3861.44, + "probability": 0.9863 + }, + { + "start": 3861.6, + "end": 3861.9, + "probability": 0.8607 + }, + { + "start": 3862.18, + "end": 3864.86, + "probability": 0.9806 + }, + { + "start": 3865.2, + "end": 3866.03, + "probability": 0.9861 + }, + { + "start": 3866.38, + "end": 3869.86, + "probability": 0.9774 + }, + { + "start": 3870.18, + "end": 3872.74, + "probability": 0.9275 + }, + { + "start": 3873.04, + "end": 3873.2, + "probability": 0.0257 + }, + { + "start": 3873.2, + "end": 3873.2, + "probability": 0.0828 + }, + { + "start": 3873.2, + "end": 3875.08, + "probability": 0.3364 + }, + { + "start": 3875.08, + "end": 3876.36, + "probability": 0.6148 + }, + { + "start": 3878.12, + "end": 3883.42, + "probability": 0.1159 + }, + { + "start": 3883.66, + "end": 3884.74, + "probability": 0.2477 + }, + { + "start": 3891.62, + "end": 3895.02, + "probability": 0.521 + }, + { + "start": 3895.72, + "end": 3897.94, + "probability": 0.1541 + }, + { + "start": 3898.08, + "end": 3903.0, + "probability": 0.5483 + }, + { + "start": 3903.0, + "end": 3906.22, + "probability": 0.0726 + }, + { + "start": 3908.72, + "end": 3909.4, + "probability": 0.4971 + }, + { + "start": 3909.9, + "end": 3910.08, + "probability": 0.0699 + }, + { + "start": 3910.36, + "end": 3910.43, + "probability": 0.4321 + }, + { + "start": 3910.64, + "end": 3913.43, + "probability": 0.054 + }, + { + "start": 3916.74, + "end": 3917.64, + "probability": 0.5775 + }, + { + "start": 3917.64, + "end": 3921.24, + "probability": 0.5138 + }, + { + "start": 3924.14, + "end": 3924.74, + "probability": 0.2045 + }, + { + "start": 3926.68, + "end": 3928.24, + "probability": 0.306 + }, + { + "start": 3928.5, + "end": 3929.16, + "probability": 0.3186 + }, + { + "start": 3929.79, + "end": 3931.0, + "probability": 0.1752 + }, + { + "start": 3931.22, + "end": 3931.22, + "probability": 0.3095 + }, + { + "start": 3932.56, + "end": 3935.66, + "probability": 0.3458 + }, + { + "start": 3937.32, + "end": 3938.42, + "probability": 0.0947 + }, + { + "start": 3942.06, + "end": 3944.8, + "probability": 0.1439 + }, + { + "start": 3946.8, + "end": 3947.48, + "probability": 0.1311 + }, + { + "start": 3947.68, + "end": 3947.68, + "probability": 0.1274 + }, + { + "start": 3947.84, + "end": 3947.84, + "probability": 0.0015 + }, + { + "start": 3947.88, + "end": 3949.44, + "probability": 0.1642 + }, + { + "start": 3949.56, + "end": 3950.24, + "probability": 0.0334 + }, + { + "start": 3951.73, + "end": 3952.16, + "probability": 0.1837 + }, + { + "start": 3952.42, + "end": 3952.42, + "probability": 0.2344 + }, + { + "start": 3953.1, + "end": 3953.88, + "probability": 0.1014 + }, + { + "start": 3953.88, + "end": 3954.98, + "probability": 0.5135 + }, + { + "start": 3955.0, + "end": 3955.0, + "probability": 0.0 + }, + { + "start": 3955.0, + "end": 3955.0, + "probability": 0.0 + }, + { + "start": 3955.0, + "end": 3955.0, + "probability": 0.0 + }, + { + "start": 3955.0, + "end": 3955.0, + "probability": 0.0 + }, + { + "start": 3955.0, + "end": 3955.0, + "probability": 0.0 + }, + { + "start": 3955.0, + "end": 3955.0, + "probability": 0.0 + }, + { + "start": 3955.0, + "end": 3955.0, + "probability": 0.0 + }, + { + "start": 3955.0, + "end": 3955.0, + "probability": 0.0 + }, + { + "start": 3955.16, + "end": 3955.42, + "probability": 0.0274 + }, + { + "start": 3955.52, + "end": 3956.28, + "probability": 0.6679 + }, + { + "start": 3956.38, + "end": 3958.42, + "probability": 0.9755 + }, + { + "start": 3958.52, + "end": 3958.96, + "probability": 0.9724 + }, + { + "start": 3959.08, + "end": 3959.64, + "probability": 0.9844 + }, + { + "start": 3959.7, + "end": 3960.54, + "probability": 0.9294 + }, + { + "start": 3963.56, + "end": 3966.5, + "probability": 0.9979 + }, + { + "start": 3967.18, + "end": 3967.98, + "probability": 0.8363 + }, + { + "start": 3968.72, + "end": 3970.98, + "probability": 0.9961 + }, + { + "start": 3972.26, + "end": 3972.34, + "probability": 0.7302 + }, + { + "start": 3972.4, + "end": 3977.06, + "probability": 0.9984 + }, + { + "start": 3977.06, + "end": 3979.96, + "probability": 0.9976 + }, + { + "start": 3980.06, + "end": 3981.48, + "probability": 0.9557 + }, + { + "start": 3981.6, + "end": 3982.24, + "probability": 0.7872 + }, + { + "start": 3982.82, + "end": 3984.6, + "probability": 0.916 + }, + { + "start": 3985.36, + "end": 3986.14, + "probability": 0.9913 + }, + { + "start": 3987.52, + "end": 3991.66, + "probability": 0.9867 + }, + { + "start": 3992.92, + "end": 3994.68, + "probability": 0.9971 + }, + { + "start": 3996.14, + "end": 3999.7, + "probability": 0.998 + }, + { + "start": 3999.98, + "end": 4000.92, + "probability": 0.8441 + }, + { + "start": 4002.34, + "end": 4002.54, + "probability": 0.9492 + }, + { + "start": 4002.72, + "end": 4002.76, + "probability": 0.276 + }, + { + "start": 4002.76, + "end": 4005.8, + "probability": 0.9175 + }, + { + "start": 4007.5, + "end": 4013.24, + "probability": 0.9871 + }, + { + "start": 4013.54, + "end": 4014.94, + "probability": 0.9313 + }, + { + "start": 4016.02, + "end": 4019.38, + "probability": 0.9939 + }, + { + "start": 4019.44, + "end": 4020.65, + "probability": 0.9991 + }, + { + "start": 4020.8, + "end": 4021.38, + "probability": 0.8828 + }, + { + "start": 4023.14, + "end": 4023.24, + "probability": 0.4535 + }, + { + "start": 4023.32, + "end": 4025.42, + "probability": 0.7673 + }, + { + "start": 4025.48, + "end": 4030.64, + "probability": 0.7808 + }, + { + "start": 4030.72, + "end": 4031.38, + "probability": 0.8297 + }, + { + "start": 4033.26, + "end": 4035.48, + "probability": 0.9956 + }, + { + "start": 4035.58, + "end": 4036.0, + "probability": 0.8897 + }, + { + "start": 4036.06, + "end": 4036.28, + "probability": 0.5241 + }, + { + "start": 4036.32, + "end": 4039.6, + "probability": 0.9868 + }, + { + "start": 4040.62, + "end": 4042.94, + "probability": 0.9769 + }, + { + "start": 4043.46, + "end": 4043.68, + "probability": 0.7852 + }, + { + "start": 4043.72, + "end": 4044.44, + "probability": 0.8633 + }, + { + "start": 4044.7, + "end": 4045.88, + "probability": 0.9778 + }, + { + "start": 4046.0, + "end": 4047.84, + "probability": 0.9637 + }, + { + "start": 4050.18, + "end": 4052.21, + "probability": 0.9968 + }, + { + "start": 4052.58, + "end": 4053.84, + "probability": 0.9443 + }, + { + "start": 4053.86, + "end": 4054.31, + "probability": 0.5355 + }, + { + "start": 4054.8, + "end": 4055.08, + "probability": 0.9126 + }, + { + "start": 4055.2, + "end": 4055.65, + "probability": 0.9616 + }, + { + "start": 4056.1, + "end": 4059.14, + "probability": 0.9927 + }, + { + "start": 4061.2, + "end": 4062.52, + "probability": 0.8915 + }, + { + "start": 4062.92, + "end": 4065.3, + "probability": 0.9969 + }, + { + "start": 4065.66, + "end": 4066.94, + "probability": 0.9757 + }, + { + "start": 4067.1, + "end": 4068.74, + "probability": 0.9229 + }, + { + "start": 4070.4, + "end": 4073.26, + "probability": 0.9702 + }, + { + "start": 4074.6, + "end": 4076.87, + "probability": 0.9514 + }, + { + "start": 4077.68, + "end": 4081.24, + "probability": 0.9378 + }, + { + "start": 4081.88, + "end": 4083.4, + "probability": 0.9738 + }, + { + "start": 4084.84, + "end": 4085.12, + "probability": 0.0518 + }, + { + "start": 4085.3, + "end": 4087.48, + "probability": 0.9128 + }, + { + "start": 4088.14, + "end": 4090.82, + "probability": 0.8564 + }, + { + "start": 4093.44, + "end": 4095.71, + "probability": 0.5354 + }, + { + "start": 4097.84, + "end": 4098.72, + "probability": 0.7125 + }, + { + "start": 4099.64, + "end": 4100.78, + "probability": 0.7236 + }, + { + "start": 4100.96, + "end": 4101.82, + "probability": 0.9711 + }, + { + "start": 4101.88, + "end": 4102.76, + "probability": 0.9779 + }, + { + "start": 4102.86, + "end": 4104.58, + "probability": 0.9597 + }, + { + "start": 4104.94, + "end": 4106.54, + "probability": 0.6786 + }, + { + "start": 4107.38, + "end": 4108.5, + "probability": 0.9369 + }, + { + "start": 4108.62, + "end": 4108.82, + "probability": 0.7188 + }, + { + "start": 4109.18, + "end": 4109.58, + "probability": 0.4685 + }, + { + "start": 4109.64, + "end": 4110.66, + "probability": 0.9262 + }, + { + "start": 4110.78, + "end": 4112.26, + "probability": 0.9966 + }, + { + "start": 4112.86, + "end": 4114.52, + "probability": 0.6684 + }, + { + "start": 4114.94, + "end": 4115.12, + "probability": 0.1794 + }, + { + "start": 4115.12, + "end": 4117.54, + "probability": 0.9576 + }, + { + "start": 4117.6, + "end": 4118.47, + "probability": 0.9924 + }, + { + "start": 4119.78, + "end": 4120.74, + "probability": 0.8207 + }, + { + "start": 4120.76, + "end": 4121.7, + "probability": 0.7654 + }, + { + "start": 4121.94, + "end": 4122.28, + "probability": 0.8821 + }, + { + "start": 4122.36, + "end": 4122.92, + "probability": 0.7515 + }, + { + "start": 4123.06, + "end": 4123.42, + "probability": 0.9019 + }, + { + "start": 4123.48, + "end": 4124.14, + "probability": 0.5036 + }, + { + "start": 4124.82, + "end": 4125.86, + "probability": 0.9424 + }, + { + "start": 4125.86, + "end": 4126.56, + "probability": 0.6001 + }, + { + "start": 4126.66, + "end": 4127.76, + "probability": 0.9163 + }, + { + "start": 4130.36, + "end": 4130.56, + "probability": 0.0174 + }, + { + "start": 4130.56, + "end": 4130.76, + "probability": 0.2751 + }, + { + "start": 4130.88, + "end": 4132.31, + "probability": 0.3634 + }, + { + "start": 4132.78, + "end": 4132.8, + "probability": 0.0852 + }, + { + "start": 4132.8, + "end": 4133.94, + "probability": 0.7017 + }, + { + "start": 4134.86, + "end": 4137.01, + "probability": 0.9291 + }, + { + "start": 4137.12, + "end": 4138.94, + "probability": 0.9961 + }, + { + "start": 4139.06, + "end": 4140.42, + "probability": 0.9956 + }, + { + "start": 4140.54, + "end": 4141.12, + "probability": 0.7967 + }, + { + "start": 4141.28, + "end": 4144.58, + "probability": 0.9807 + }, + { + "start": 4144.86, + "end": 4146.12, + "probability": 0.9946 + }, + { + "start": 4147.02, + "end": 4149.84, + "probability": 0.9841 + }, + { + "start": 4150.1, + "end": 4152.94, + "probability": 0.8339 + }, + { + "start": 4153.6, + "end": 4154.62, + "probability": 0.9024 + }, + { + "start": 4154.76, + "end": 4157.3, + "probability": 0.9811 + }, + { + "start": 4157.38, + "end": 4159.78, + "probability": 0.9576 + }, + { + "start": 4160.12, + "end": 4161.14, + "probability": 0.9784 + }, + { + "start": 4161.26, + "end": 4161.36, + "probability": 0.8464 + }, + { + "start": 4161.48, + "end": 4162.52, + "probability": 0.9636 + }, + { + "start": 4162.76, + "end": 4163.5, + "probability": 0.8101 + }, + { + "start": 4163.72, + "end": 4163.76, + "probability": 0.2894 + }, + { + "start": 4163.76, + "end": 4166.32, + "probability": 0.9888 + }, + { + "start": 4166.36, + "end": 4167.78, + "probability": 0.9458 + }, + { + "start": 4167.82, + "end": 4169.16, + "probability": 0.8087 + }, + { + "start": 4169.74, + "end": 4171.96, + "probability": 0.9942 + }, + { + "start": 4171.98, + "end": 4172.78, + "probability": 0.9385 + }, + { + "start": 4172.86, + "end": 4173.06, + "probability": 0.8447 + }, + { + "start": 4173.08, + "end": 4173.54, + "probability": 0.6713 + }, + { + "start": 4173.58, + "end": 4174.42, + "probability": 0.9341 + }, + { + "start": 4174.56, + "end": 4174.74, + "probability": 0.6783 + }, + { + "start": 4174.82, + "end": 4176.91, + "probability": 0.907 + }, + { + "start": 4177.5, + "end": 4180.6, + "probability": 0.9791 + }, + { + "start": 4180.6, + "end": 4181.9, + "probability": 0.7375 + }, + { + "start": 4182.0, + "end": 4182.6, + "probability": 0.8436 + }, + { + "start": 4182.6, + "end": 4183.64, + "probability": 0.4025 + }, + { + "start": 4183.64, + "end": 4185.84, + "probability": 0.866 + }, + { + "start": 4185.95, + "end": 4186.08, + "probability": 0.2549 + }, + { + "start": 4186.08, + "end": 4186.78, + "probability": 0.6328 + }, + { + "start": 4187.16, + "end": 4189.58, + "probability": 0.9738 + }, + { + "start": 4189.68, + "end": 4190.06, + "probability": 0.815 + }, + { + "start": 4190.12, + "end": 4190.34, + "probability": 0.8583 + }, + { + "start": 4190.44, + "end": 4191.36, + "probability": 0.7681 + }, + { + "start": 4191.4, + "end": 4191.52, + "probability": 0.5462 + }, + { + "start": 4191.7, + "end": 4193.56, + "probability": 0.968 + }, + { + "start": 4193.88, + "end": 4194.14, + "probability": 0.6046 + }, + { + "start": 4194.14, + "end": 4195.42, + "probability": 0.5709 + }, + { + "start": 4195.64, + "end": 4195.86, + "probability": 0.7486 + }, + { + "start": 4196.6, + "end": 4198.6, + "probability": 0.4246 + }, + { + "start": 4207.54, + "end": 4210.3, + "probability": 0.5848 + }, + { + "start": 4210.84, + "end": 4211.58, + "probability": 0.743 + }, + { + "start": 4211.96, + "end": 4213.5, + "probability": 0.21 + }, + { + "start": 4213.5, + "end": 4213.9, + "probability": 0.8765 + }, + { + "start": 4214.02, + "end": 4214.06, + "probability": 0.8423 + }, + { + "start": 4214.12, + "end": 4214.24, + "probability": 0.1531 + }, + { + "start": 4214.4, + "end": 4214.68, + "probability": 0.8165 + }, + { + "start": 4215.1, + "end": 4215.66, + "probability": 0.5801 + }, + { + "start": 4215.76, + "end": 4216.18, + "probability": 0.8398 + }, + { + "start": 4217.18, + "end": 4217.42, + "probability": 0.3728 + }, + { + "start": 4217.5, + "end": 4220.3, + "probability": 0.6998 + }, + { + "start": 4221.96, + "end": 4226.48, + "probability": 0.945 + }, + { + "start": 4227.76, + "end": 4231.54, + "probability": 0.9935 + }, + { + "start": 4233.24, + "end": 4234.0, + "probability": 0.968 + }, + { + "start": 4234.78, + "end": 4236.82, + "probability": 0.9453 + }, + { + "start": 4237.36, + "end": 4239.9, + "probability": 0.6659 + }, + { + "start": 4240.02, + "end": 4240.82, + "probability": 0.2388 + }, + { + "start": 4241.46, + "end": 4242.1, + "probability": 0.357 + }, + { + "start": 4242.18, + "end": 4243.42, + "probability": 0.9885 + }, + { + "start": 4243.44, + "end": 4243.79, + "probability": 0.5396 + }, + { + "start": 4244.16, + "end": 4245.2, + "probability": 0.8407 + }, + { + "start": 4245.32, + "end": 4245.46, + "probability": 0.4446 + }, + { + "start": 4245.62, + "end": 4246.53, + "probability": 0.8212 + }, + { + "start": 4248.68, + "end": 4251.2, + "probability": 0.0836 + }, + { + "start": 4251.54, + "end": 4252.11, + "probability": 0.1303 + }, + { + "start": 4253.16, + "end": 4253.16, + "probability": 0.2468 + }, + { + "start": 4253.16, + "end": 4254.3, + "probability": 0.9122 + }, + { + "start": 4254.96, + "end": 4258.66, + "probability": 0.7537 + }, + { + "start": 4259.74, + "end": 4263.18, + "probability": 0.9769 + }, + { + "start": 4263.86, + "end": 4265.06, + "probability": 0.9399 + }, + { + "start": 4265.6, + "end": 4265.8, + "probability": 0.6769 + }, + { + "start": 4267.28, + "end": 4267.8, + "probability": 0.3538 + }, + { + "start": 4268.84, + "end": 4273.8, + "probability": 0.7896 + }, + { + "start": 4274.42, + "end": 4276.9, + "probability": 0.9364 + }, + { + "start": 4277.22, + "end": 4282.06, + "probability": 0.7123 + }, + { + "start": 4283.0, + "end": 4285.2, + "probability": 0.5392 + }, + { + "start": 4285.22, + "end": 4288.28, + "probability": 0.8749 + }, + { + "start": 4288.68, + "end": 4289.6, + "probability": 0.6943 + }, + { + "start": 4289.72, + "end": 4295.04, + "probability": 0.9951 + }, + { + "start": 4295.82, + "end": 4296.55, + "probability": 0.8501 + }, + { + "start": 4297.14, + "end": 4298.0, + "probability": 0.8864 + }, + { + "start": 4298.92, + "end": 4299.84, + "probability": 0.8025 + }, + { + "start": 4299.98, + "end": 4300.36, + "probability": 0.4793 + }, + { + "start": 4300.5, + "end": 4304.88, + "probability": 0.9961 + }, + { + "start": 4305.28, + "end": 4308.02, + "probability": 0.0474 + }, + { + "start": 4308.16, + "end": 4308.16, + "probability": 0.0133 + }, + { + "start": 4308.16, + "end": 4308.16, + "probability": 0.1972 + }, + { + "start": 4308.16, + "end": 4308.44, + "probability": 0.2138 + }, + { + "start": 4308.8, + "end": 4311.26, + "probability": 0.2915 + }, + { + "start": 4311.26, + "end": 4311.56, + "probability": 0.0257 + }, + { + "start": 4313.24, + "end": 4315.08, + "probability": 0.6997 + }, + { + "start": 4315.88, + "end": 4316.92, + "probability": 0.4735 + }, + { + "start": 4317.2, + "end": 4318.04, + "probability": 0.4751 + }, + { + "start": 4318.04, + "end": 4319.48, + "probability": 0.2807 + }, + { + "start": 4320.27, + "end": 4322.38, + "probability": 0.2173 + }, + { + "start": 4322.38, + "end": 4322.75, + "probability": 0.7341 + }, + { + "start": 4324.23, + "end": 4325.74, + "probability": 0.4686 + }, + { + "start": 4325.76, + "end": 4326.66, + "probability": 0.7466 + }, + { + "start": 4326.82, + "end": 4328.02, + "probability": 0.6483 + }, + { + "start": 4328.02, + "end": 4328.28, + "probability": 0.04 + }, + { + "start": 4328.72, + "end": 4330.12, + "probability": 0.1683 + }, + { + "start": 4330.22, + "end": 4330.3, + "probability": 0.0151 + }, + { + "start": 4330.3, + "end": 4330.3, + "probability": 0.0733 + }, + { + "start": 4330.3, + "end": 4330.3, + "probability": 0.0896 + }, + { + "start": 4330.3, + "end": 4330.3, + "probability": 0.0453 + }, + { + "start": 4330.34, + "end": 4330.68, + "probability": 0.6179 + }, + { + "start": 4330.78, + "end": 4332.25, + "probability": 0.8074 + }, + { + "start": 4332.74, + "end": 4333.42, + "probability": 0.7872 + }, + { + "start": 4333.7, + "end": 4333.98, + "probability": 0.7722 + }, + { + "start": 4334.22, + "end": 4339.14, + "probability": 0.9797 + }, + { + "start": 4339.78, + "end": 4342.74, + "probability": 0.9917 + }, + { + "start": 4342.8, + "end": 4343.42, + "probability": 0.0202 + }, + { + "start": 4343.46, + "end": 4346.72, + "probability": 0.8949 + }, + { + "start": 4347.56, + "end": 4349.88, + "probability": 0.9325 + }, + { + "start": 4350.26, + "end": 4351.64, + "probability": 0.5068 + }, + { + "start": 4351.68, + "end": 4353.26, + "probability": 0.662 + }, + { + "start": 4354.81, + "end": 4356.66, + "probability": 0.1702 + }, + { + "start": 4357.32, + "end": 4358.5, + "probability": 0.186 + }, + { + "start": 4358.6, + "end": 4359.16, + "probability": 0.6519 + }, + { + "start": 4359.64, + "end": 4359.9, + "probability": 0.4298 + }, + { + "start": 4359.9, + "end": 4360.88, + "probability": 0.5899 + }, + { + "start": 4361.14, + "end": 4363.16, + "probability": 0.6152 + }, + { + "start": 4363.2, + "end": 4363.74, + "probability": 0.1328 + }, + { + "start": 4363.74, + "end": 4363.74, + "probability": 0.3029 + }, + { + "start": 4363.74, + "end": 4363.74, + "probability": 0.508 + }, + { + "start": 4363.74, + "end": 4364.48, + "probability": 0.1901 + }, + { + "start": 4365.78, + "end": 4366.64, + "probability": 0.4657 + }, + { + "start": 4367.3, + "end": 4368.42, + "probability": 0.8212 + }, + { + "start": 4368.52, + "end": 4368.78, + "probability": 0.2975 + }, + { + "start": 4368.86, + "end": 4368.98, + "probability": 0.4665 + }, + { + "start": 4368.98, + "end": 4369.47, + "probability": 0.9286 + }, + { + "start": 4370.98, + "end": 4372.96, + "probability": 0.1198 + }, + { + "start": 4373.04, + "end": 4373.18, + "probability": 0.3333 + }, + { + "start": 4373.3, + "end": 4377.16, + "probability": 0.9336 + }, + { + "start": 4377.26, + "end": 4378.08, + "probability": 0.9298 + }, + { + "start": 4378.22, + "end": 4379.02, + "probability": 0.6641 + }, + { + "start": 4379.12, + "end": 4379.84, + "probability": 0.7575 + }, + { + "start": 4380.52, + "end": 4384.08, + "probability": 0.4064 + }, + { + "start": 4384.74, + "end": 4386.32, + "probability": 0.4661 + }, + { + "start": 4386.46, + "end": 4387.39, + "probability": 0.4078 + }, + { + "start": 4387.94, + "end": 4389.68, + "probability": 0.9301 + }, + { + "start": 4390.04, + "end": 4392.0, + "probability": 0.8691 + }, + { + "start": 4392.4, + "end": 4393.17, + "probability": 0.1356 + }, + { + "start": 4394.0, + "end": 4394.16, + "probability": 0.0004 + }, + { + "start": 4395.86, + "end": 4395.88, + "probability": 0.1716 + }, + { + "start": 4395.88, + "end": 4397.22, + "probability": 0.1648 + }, + { + "start": 4397.46, + "end": 4398.18, + "probability": 0.1661 + }, + { + "start": 4398.28, + "end": 4400.16, + "probability": 0.6702 + }, + { + "start": 4401.32, + "end": 4401.44, + "probability": 0.0017 + }, + { + "start": 4401.44, + "end": 4401.44, + "probability": 0.2974 + }, + { + "start": 4401.44, + "end": 4401.44, + "probability": 0.1251 + }, + { + "start": 4401.44, + "end": 4401.44, + "probability": 0.4727 + }, + { + "start": 4401.44, + "end": 4403.21, + "probability": 0.2641 + }, + { + "start": 4406.18, + "end": 4408.44, + "probability": 0.9028 + }, + { + "start": 4408.44, + "end": 4409.92, + "probability": 0.5896 + }, + { + "start": 4410.0, + "end": 4414.82, + "probability": 0.986 + }, + { + "start": 4415.2, + "end": 4415.87, + "probability": 0.9053 + }, + { + "start": 4416.56, + "end": 4417.26, + "probability": 0.9585 + }, + { + "start": 4417.88, + "end": 4420.68, + "probability": 0.849 + }, + { + "start": 4421.0, + "end": 4421.72, + "probability": 0.9717 + }, + { + "start": 4421.9, + "end": 4422.53, + "probability": 0.8364 + }, + { + "start": 4423.24, + "end": 4425.0, + "probability": 0.7105 + }, + { + "start": 4426.02, + "end": 4427.98, + "probability": 0.8402 + }, + { + "start": 4428.06, + "end": 4429.1, + "probability": 0.964 + }, + { + "start": 4429.88, + "end": 4431.88, + "probability": 0.8397 + }, + { + "start": 4432.44, + "end": 4433.88, + "probability": 0.7473 + }, + { + "start": 4434.64, + "end": 4437.02, + "probability": 0.3592 + }, + { + "start": 4437.68, + "end": 4440.77, + "probability": 0.4683 + }, + { + "start": 4441.2, + "end": 4441.78, + "probability": 0.7737 + }, + { + "start": 4442.14, + "end": 4443.5, + "probability": 0.7069 + }, + { + "start": 4444.18, + "end": 4445.92, + "probability": 0.9702 + }, + { + "start": 4446.58, + "end": 4450.08, + "probability": 0.9946 + }, + { + "start": 4450.08, + "end": 4453.44, + "probability": 0.8666 + }, + { + "start": 4454.22, + "end": 4457.48, + "probability": 0.806 + }, + { + "start": 4458.29, + "end": 4461.04, + "probability": 0.0431 + }, + { + "start": 4461.04, + "end": 4461.6, + "probability": 0.0369 + }, + { + "start": 4461.84, + "end": 4467.62, + "probability": 0.0368 + }, + { + "start": 4468.32, + "end": 4471.4, + "probability": 0.1783 + }, + { + "start": 4506.62, + "end": 4506.72, + "probability": 0.4232 + }, + { + "start": 4510.84, + "end": 4516.47, + "probability": 0.9688 + }, + { + "start": 4517.46, + "end": 4517.78, + "probability": 0.8984 + }, + { + "start": 4519.08, + "end": 4519.72, + "probability": 0.6218 + }, + { + "start": 4519.86, + "end": 4523.37, + "probability": 0.9786 + }, + { + "start": 4524.7, + "end": 4525.28, + "probability": 0.7983 + }, + { + "start": 4526.68, + "end": 4528.0, + "probability": 0.6705 + }, + { + "start": 4528.78, + "end": 4529.79, + "probability": 0.9741 + }, + { + "start": 4530.58, + "end": 4536.62, + "probability": 0.965 + }, + { + "start": 4537.24, + "end": 4541.86, + "probability": 0.8797 + }, + { + "start": 4542.28, + "end": 4545.64, + "probability": 0.9497 + }, + { + "start": 4546.66, + "end": 4549.14, + "probability": 0.6005 + }, + { + "start": 4549.36, + "end": 4550.84, + "probability": 0.8402 + }, + { + "start": 4551.84, + "end": 4556.32, + "probability": 0.9838 + }, + { + "start": 4556.74, + "end": 4559.08, + "probability": 0.9224 + }, + { + "start": 4559.62, + "end": 4559.86, + "probability": 0.9681 + }, + { + "start": 4560.84, + "end": 4563.52, + "probability": 0.6812 + }, + { + "start": 4563.58, + "end": 4566.66, + "probability": 0.8973 + }, + { + "start": 4567.7, + "end": 4573.06, + "probability": 0.9512 + }, + { + "start": 4573.48, + "end": 4577.59, + "probability": 0.9794 + }, + { + "start": 4579.12, + "end": 4580.06, + "probability": 0.9253 + }, + { + "start": 4581.76, + "end": 4585.98, + "probability": 0.8553 + }, + { + "start": 4586.04, + "end": 4589.44, + "probability": 0.5366 + }, + { + "start": 4598.62, + "end": 4599.36, + "probability": 0.7503 + }, + { + "start": 4600.64, + "end": 4603.12, + "probability": 0.8428 + }, + { + "start": 4603.94, + "end": 4605.98, + "probability": 0.7888 + }, + { + "start": 4608.94, + "end": 4609.34, + "probability": 0.7385 + }, + { + "start": 4611.82, + "end": 4613.56, + "probability": 0.7705 + }, + { + "start": 4614.56, + "end": 4615.42, + "probability": 0.8213 + }, + { + "start": 4617.64, + "end": 4618.76, + "probability": 0.8993 + }, + { + "start": 4619.56, + "end": 4620.26, + "probability": 0.9725 + }, + { + "start": 4621.12, + "end": 4622.09, + "probability": 0.8556 + }, + { + "start": 4626.56, + "end": 4627.92, + "probability": 0.9956 + }, + { + "start": 4629.24, + "end": 4629.66, + "probability": 0.9173 + }, + { + "start": 4631.14, + "end": 4631.72, + "probability": 0.5568 + }, + { + "start": 4632.42, + "end": 4634.42, + "probability": 0.9971 + }, + { + "start": 4637.44, + "end": 4638.28, + "probability": 0.8529 + }, + { + "start": 4640.02, + "end": 4641.56, + "probability": 0.7642 + }, + { + "start": 4643.68, + "end": 4644.3, + "probability": 0.9199 + }, + { + "start": 4646.04, + "end": 4648.54, + "probability": 0.8108 + }, + { + "start": 4652.18, + "end": 4654.08, + "probability": 0.9811 + }, + { + "start": 4658.56, + "end": 4660.9, + "probability": 0.808 + }, + { + "start": 4662.54, + "end": 4663.68, + "probability": 0.9924 + }, + { + "start": 4664.56, + "end": 4667.3, + "probability": 0.9976 + }, + { + "start": 4668.02, + "end": 4669.16, + "probability": 0.9347 + }, + { + "start": 4670.98, + "end": 4671.84, + "probability": 0.8324 + }, + { + "start": 4672.38, + "end": 4673.16, + "probability": 0.9052 + }, + { + "start": 4674.96, + "end": 4678.08, + "probability": 0.6428 + }, + { + "start": 4679.64, + "end": 4682.58, + "probability": 0.9943 + }, + { + "start": 4683.36, + "end": 4685.22, + "probability": 0.8733 + }, + { + "start": 4685.98, + "end": 4690.22, + "probability": 0.9404 + }, + { + "start": 4690.66, + "end": 4691.84, + "probability": 0.9862 + }, + { + "start": 4691.92, + "end": 4692.74, + "probability": 0.983 + }, + { + "start": 4692.82, + "end": 4693.76, + "probability": 0.975 + }, + { + "start": 4693.8, + "end": 4695.04, + "probability": 0.9648 + }, + { + "start": 4696.32, + "end": 4697.6, + "probability": 0.9825 + }, + { + "start": 4698.14, + "end": 4698.36, + "probability": 0.1993 + }, + { + "start": 4698.36, + "end": 4700.42, + "probability": 0.6354 + }, + { + "start": 4700.9, + "end": 4702.04, + "probability": 0.732 + }, + { + "start": 4702.12, + "end": 4703.18, + "probability": 0.6132 + }, + { + "start": 4704.78, + "end": 4707.34, + "probability": 0.9906 + }, + { + "start": 4707.54, + "end": 4709.64, + "probability": 0.8319 + }, + { + "start": 4710.18, + "end": 4711.08, + "probability": 0.9426 + }, + { + "start": 4712.08, + "end": 4713.52, + "probability": 0.98 + }, + { + "start": 4713.9, + "end": 4715.4, + "probability": 0.9028 + }, + { + "start": 4715.58, + "end": 4716.2, + "probability": 0.5186 + }, + { + "start": 4716.48, + "end": 4718.86, + "probability": 0.9775 + }, + { + "start": 4719.54, + "end": 4722.96, + "probability": 0.9088 + }, + { + "start": 4725.38, + "end": 4728.04, + "probability": 0.952 + }, + { + "start": 4728.14, + "end": 4731.06, + "probability": 0.9905 + }, + { + "start": 4731.94, + "end": 4732.98, + "probability": 0.7322 + }, + { + "start": 4733.06, + "end": 4738.1, + "probability": 0.8785 + }, + { + "start": 4738.32, + "end": 4739.2, + "probability": 0.781 + }, + { + "start": 4739.92, + "end": 4744.66, + "probability": 0.9874 + }, + { + "start": 4745.68, + "end": 4748.28, + "probability": 0.8818 + }, + { + "start": 4749.64, + "end": 4753.52, + "probability": 0.9102 + }, + { + "start": 4754.68, + "end": 4756.22, + "probability": 0.9575 + }, + { + "start": 4757.86, + "end": 4759.22, + "probability": 0.9688 + }, + { + "start": 4759.32, + "end": 4761.06, + "probability": 0.684 + }, + { + "start": 4763.02, + "end": 4764.68, + "probability": 0.9206 + }, + { + "start": 4766.76, + "end": 4767.88, + "probability": 0.9667 + }, + { + "start": 4768.86, + "end": 4770.02, + "probability": 0.9971 + }, + { + "start": 4770.2, + "end": 4772.88, + "probability": 0.9971 + }, + { + "start": 4772.98, + "end": 4773.94, + "probability": 0.9927 + }, + { + "start": 4775.66, + "end": 4777.55, + "probability": 0.9241 + }, + { + "start": 4778.86, + "end": 4783.24, + "probability": 0.8381 + }, + { + "start": 4785.62, + "end": 4787.14, + "probability": 0.9925 + }, + { + "start": 4787.52, + "end": 4789.74, + "probability": 0.9863 + }, + { + "start": 4789.98, + "end": 4794.1, + "probability": 0.9666 + }, + { + "start": 4794.46, + "end": 4795.1, + "probability": 0.4107 + }, + { + "start": 4795.22, + "end": 4796.31, + "probability": 0.8008 + }, + { + "start": 4798.54, + "end": 4801.92, + "probability": 0.9755 + }, + { + "start": 4802.12, + "end": 4804.08, + "probability": 0.8661 + }, + { + "start": 4807.34, + "end": 4811.92, + "probability": 0.9609 + }, + { + "start": 4812.7, + "end": 4814.52, + "probability": 0.9125 + }, + { + "start": 4814.98, + "end": 4816.24, + "probability": 0.7224 + }, + { + "start": 4816.6, + "end": 4817.3, + "probability": 0.6336 + }, + { + "start": 4818.28, + "end": 4818.9, + "probability": 0.8413 + }, + { + "start": 4819.42, + "end": 4823.46, + "probability": 0.8298 + }, + { + "start": 4823.9, + "end": 4825.04, + "probability": 0.9741 + }, + { + "start": 4825.1, + "end": 4826.44, + "probability": 0.9136 + }, + { + "start": 4826.62, + "end": 4831.94, + "probability": 0.9602 + }, + { + "start": 4832.4, + "end": 4834.98, + "probability": 0.9425 + }, + { + "start": 4835.58, + "end": 4836.36, + "probability": 0.5249 + }, + { + "start": 4837.04, + "end": 4838.24, + "probability": 0.9697 + }, + { + "start": 4838.84, + "end": 4839.22, + "probability": 0.9178 + }, + { + "start": 4839.38, + "end": 4840.32, + "probability": 0.9323 + }, + { + "start": 4840.44, + "end": 4841.48, + "probability": 0.972 + }, + { + "start": 4842.36, + "end": 4844.04, + "probability": 0.9893 + }, + { + "start": 4844.66, + "end": 4846.06, + "probability": 0.9725 + }, + { + "start": 4846.22, + "end": 4847.52, + "probability": 0.8689 + }, + { + "start": 4848.18, + "end": 4850.42, + "probability": 0.9624 + }, + { + "start": 4850.54, + "end": 4852.0, + "probability": 0.9731 + }, + { + "start": 4852.06, + "end": 4853.92, + "probability": 0.9234 + }, + { + "start": 4854.48, + "end": 4856.4, + "probability": 0.7852 + }, + { + "start": 4856.92, + "end": 4858.42, + "probability": 0.7813 + }, + { + "start": 4858.7, + "end": 4863.54, + "probability": 0.8867 + }, + { + "start": 4863.7, + "end": 4865.64, + "probability": 0.9792 + }, + { + "start": 4865.98, + "end": 4866.86, + "probability": 0.8935 + }, + { + "start": 4867.1, + "end": 4867.96, + "probability": 0.9728 + }, + { + "start": 4868.98, + "end": 4869.76, + "probability": 0.797 + }, + { + "start": 4870.74, + "end": 4871.86, + "probability": 0.7234 + }, + { + "start": 4871.94, + "end": 4875.72, + "probability": 0.859 + }, + { + "start": 4876.28, + "end": 4879.62, + "probability": 0.9911 + }, + { + "start": 4879.82, + "end": 4884.04, + "probability": 0.9312 + }, + { + "start": 4886.67, + "end": 4890.46, + "probability": 0.9611 + }, + { + "start": 4890.76, + "end": 4892.06, + "probability": 0.7771 + }, + { + "start": 4892.32, + "end": 4893.72, + "probability": 0.9756 + }, + { + "start": 4894.76, + "end": 4896.9, + "probability": 0.9314 + }, + { + "start": 4897.8, + "end": 4899.8, + "probability": 0.8606 + }, + { + "start": 4901.0, + "end": 4903.02, + "probability": 0.8362 + }, + { + "start": 4904.38, + "end": 4906.46, + "probability": 0.8664 + }, + { + "start": 4906.98, + "end": 4909.44, + "probability": 0.9633 + }, + { + "start": 4910.47, + "end": 4912.3, + "probability": 0.981 + }, + { + "start": 4912.5, + "end": 4913.76, + "probability": 0.9733 + }, + { + "start": 4913.84, + "end": 4915.22, + "probability": 0.8376 + }, + { + "start": 4915.78, + "end": 4917.0, + "probability": 0.4782 + }, + { + "start": 4917.06, + "end": 4920.82, + "probability": 0.8137 + }, + { + "start": 4920.98, + "end": 4922.12, + "probability": 0.9857 + }, + { + "start": 4922.94, + "end": 4924.72, + "probability": 0.7503 + }, + { + "start": 4924.78, + "end": 4926.72, + "probability": 0.6289 + }, + { + "start": 4927.02, + "end": 4928.22, + "probability": 0.8557 + }, + { + "start": 4928.8, + "end": 4929.42, + "probability": 0.0943 + }, + { + "start": 4930.08, + "end": 4931.16, + "probability": 0.14 + }, + { + "start": 4931.98, + "end": 4932.48, + "probability": 0.3058 + }, + { + "start": 4933.12, + "end": 4938.52, + "probability": 0.7544 + }, + { + "start": 4939.38, + "end": 4939.9, + "probability": 0.8005 + }, + { + "start": 4941.19, + "end": 4943.38, + "probability": 0.6626 + }, + { + "start": 4946.48, + "end": 4947.0, + "probability": 0.7013 + }, + { + "start": 4948.84, + "end": 4949.78, + "probability": 0.9639 + }, + { + "start": 4950.54, + "end": 4951.96, + "probability": 0.9545 + }, + { + "start": 4952.1, + "end": 4954.26, + "probability": 0.6927 + }, + { + "start": 4954.56, + "end": 4956.12, + "probability": 0.9525 + }, + { + "start": 4957.36, + "end": 4961.48, + "probability": 0.9028 + }, + { + "start": 4962.36, + "end": 4964.3, + "probability": 0.9082 + }, + { + "start": 4964.38, + "end": 4964.9, + "probability": 0.7525 + }, + { + "start": 4965.3, + "end": 4968.04, + "probability": 0.7861 + }, + { + "start": 4968.18, + "end": 4969.38, + "probability": 0.9196 + }, + { + "start": 4969.5, + "end": 4970.38, + "probability": 0.8923 + }, + { + "start": 4970.64, + "end": 4971.52, + "probability": 0.9927 + }, + { + "start": 4971.6, + "end": 4972.38, + "probability": 0.7669 + }, + { + "start": 4972.96, + "end": 4977.22, + "probability": 0.9798 + }, + { + "start": 4977.22, + "end": 4980.1, + "probability": 0.9849 + }, + { + "start": 4980.62, + "end": 4985.1, + "probability": 0.7169 + }, + { + "start": 4985.1, + "end": 4989.0, + "probability": 0.7296 + }, + { + "start": 4989.64, + "end": 4994.52, + "probability": 0.7601 + }, + { + "start": 4995.02, + "end": 4996.06, + "probability": 0.7344 + }, + { + "start": 4996.2, + "end": 4998.42, + "probability": 0.8595 + }, + { + "start": 4998.48, + "end": 5000.9, + "probability": 0.9634 + }, + { + "start": 5001.52, + "end": 5002.4, + "probability": 0.5468 + }, + { + "start": 5002.86, + "end": 5003.88, + "probability": 0.8372 + }, + { + "start": 5004.26, + "end": 5005.56, + "probability": 0.9448 + }, + { + "start": 5006.26, + "end": 5009.16, + "probability": 0.7125 + }, + { + "start": 5009.68, + "end": 5011.32, + "probability": 0.7844 + }, + { + "start": 5012.34, + "end": 5013.36, + "probability": 0.88 + }, + { + "start": 5013.78, + "end": 5016.96, + "probability": 0.9232 + }, + { + "start": 5017.16, + "end": 5017.77, + "probability": 0.975 + }, + { + "start": 5018.5, + "end": 5018.64, + "probability": 0.4264 + }, + { + "start": 5018.76, + "end": 5019.28, + "probability": 0.83 + }, + { + "start": 5020.02, + "end": 5021.48, + "probability": 0.9613 + }, + { + "start": 5022.42, + "end": 5022.64, + "probability": 0.8014 + }, + { + "start": 5023.52, + "end": 5026.24, + "probability": 0.4932 + }, + { + "start": 5045.92, + "end": 5047.54, + "probability": 0.7576 + }, + { + "start": 5048.96, + "end": 5050.14, + "probability": 0.9113 + }, + { + "start": 5051.64, + "end": 5053.54, + "probability": 0.7289 + }, + { + "start": 5054.24, + "end": 5056.02, + "probability": 0.9886 + }, + { + "start": 5057.68, + "end": 5063.6, + "probability": 0.9829 + }, + { + "start": 5063.6, + "end": 5069.5, + "probability": 0.987 + }, + { + "start": 5070.62, + "end": 5074.3, + "probability": 0.9988 + }, + { + "start": 5074.86, + "end": 5079.96, + "probability": 0.9983 + }, + { + "start": 5081.12, + "end": 5082.48, + "probability": 0.9803 + }, + { + "start": 5083.44, + "end": 5085.98, + "probability": 0.9956 + }, + { + "start": 5086.9, + "end": 5088.96, + "probability": 0.9264 + }, + { + "start": 5088.96, + "end": 5093.74, + "probability": 0.9985 + }, + { + "start": 5094.68, + "end": 5100.64, + "probability": 0.6375 + }, + { + "start": 5101.18, + "end": 5103.82, + "probability": 0.7921 + }, + { + "start": 5104.92, + "end": 5108.1, + "probability": 0.7734 + }, + { + "start": 5108.2, + "end": 5111.7, + "probability": 0.8711 + }, + { + "start": 5112.06, + "end": 5114.04, + "probability": 0.8515 + }, + { + "start": 5114.16, + "end": 5116.36, + "probability": 0.6168 + }, + { + "start": 5117.22, + "end": 5120.14, + "probability": 0.9896 + }, + { + "start": 5120.22, + "end": 5120.74, + "probability": 0.561 + }, + { + "start": 5122.38, + "end": 5125.68, + "probability": 0.9712 + }, + { + "start": 5126.66, + "end": 5129.5, + "probability": 0.96 + }, + { + "start": 5130.34, + "end": 5133.48, + "probability": 0.9455 + }, + { + "start": 5134.72, + "end": 5136.78, + "probability": 0.9878 + }, + { + "start": 5137.5, + "end": 5139.8, + "probability": 0.9766 + }, + { + "start": 5140.76, + "end": 5142.93, + "probability": 0.9937 + }, + { + "start": 5144.3, + "end": 5148.44, + "probability": 0.9456 + }, + { + "start": 5149.0, + "end": 5150.5, + "probability": 0.844 + }, + { + "start": 5151.42, + "end": 5153.16, + "probability": 0.9675 + }, + { + "start": 5154.62, + "end": 5159.16, + "probability": 0.993 + }, + { + "start": 5160.14, + "end": 5161.94, + "probability": 0.979 + }, + { + "start": 5162.02, + "end": 5163.5, + "probability": 0.7776 + }, + { + "start": 5163.72, + "end": 5164.32, + "probability": 0.6474 + }, + { + "start": 5165.22, + "end": 5165.86, + "probability": 0.8485 + }, + { + "start": 5166.7, + "end": 5169.94, + "probability": 0.9827 + }, + { + "start": 5170.04, + "end": 5170.48, + "probability": 0.9142 + }, + { + "start": 5172.0, + "end": 5174.36, + "probability": 0.9751 + }, + { + "start": 5174.9, + "end": 5175.54, + "probability": 0.6653 + }, + { + "start": 5176.46, + "end": 5178.96, + "probability": 0.9709 + }, + { + "start": 5180.04, + "end": 5183.12, + "probability": 0.73 + }, + { + "start": 5183.78, + "end": 5185.92, + "probability": 0.5749 + }, + { + "start": 5186.74, + "end": 5188.76, + "probability": 0.8652 + }, + { + "start": 5189.44, + "end": 5190.9, + "probability": 0.9241 + }, + { + "start": 5191.24, + "end": 5194.02, + "probability": 0.9964 + }, + { + "start": 5195.1, + "end": 5198.22, + "probability": 0.9904 + }, + { + "start": 5199.52, + "end": 5202.13, + "probability": 0.8703 + }, + { + "start": 5203.34, + "end": 5210.24, + "probability": 0.9718 + }, + { + "start": 5211.4, + "end": 5213.16, + "probability": 0.7798 + }, + { + "start": 5213.6, + "end": 5214.84, + "probability": 0.8793 + }, + { + "start": 5215.42, + "end": 5217.38, + "probability": 0.7862 + }, + { + "start": 5218.74, + "end": 5222.98, + "probability": 0.7838 + }, + { + "start": 5224.28, + "end": 5229.0, + "probability": 0.9007 + }, + { + "start": 5229.16, + "end": 5229.64, + "probability": 0.9012 + }, + { + "start": 5229.74, + "end": 5230.32, + "probability": 0.98 + }, + { + "start": 5230.58, + "end": 5231.34, + "probability": 0.6818 + }, + { + "start": 5232.26, + "end": 5232.72, + "probability": 0.7576 + }, + { + "start": 5233.3, + "end": 5237.06, + "probability": 0.9632 + }, + { + "start": 5237.74, + "end": 5239.49, + "probability": 0.9849 + }, + { + "start": 5240.2, + "end": 5241.81, + "probability": 0.9326 + }, + { + "start": 5243.02, + "end": 5244.18, + "probability": 0.7719 + }, + { + "start": 5245.56, + "end": 5247.93, + "probability": 0.9969 + }, + { + "start": 5248.56, + "end": 5250.42, + "probability": 0.998 + }, + { + "start": 5251.4, + "end": 5252.72, + "probability": 0.7225 + }, + { + "start": 5252.88, + "end": 5254.06, + "probability": 0.7197 + }, + { + "start": 5254.48, + "end": 5256.58, + "probability": 0.9566 + }, + { + "start": 5256.58, + "end": 5258.88, + "probability": 0.9509 + }, + { + "start": 5259.44, + "end": 5259.7, + "probability": 0.7683 + }, + { + "start": 5261.0, + "end": 5261.38, + "probability": 0.8341 + }, + { + "start": 5262.32, + "end": 5264.92, + "probability": 0.9364 + }, + { + "start": 5265.06, + "end": 5266.98, + "probability": 0.9518 + }, + { + "start": 5267.48, + "end": 5269.8, + "probability": 0.9913 + }, + { + "start": 5271.26, + "end": 5273.5, + "probability": 0.8863 + }, + { + "start": 5274.68, + "end": 5279.68, + "probability": 0.9018 + }, + { + "start": 5279.82, + "end": 5281.52, + "probability": 0.7652 + }, + { + "start": 5281.98, + "end": 5284.38, + "probability": 0.8199 + }, + { + "start": 5285.7, + "end": 5289.22, + "probability": 0.7569 + }, + { + "start": 5290.84, + "end": 5293.52, + "probability": 0.9137 + }, + { + "start": 5294.42, + "end": 5295.16, + "probability": 0.5187 + }, + { + "start": 5295.24, + "end": 5298.26, + "probability": 0.7422 + }, + { + "start": 5298.98, + "end": 5300.08, + "probability": 0.9316 + }, + { + "start": 5300.54, + "end": 5303.32, + "probability": 0.9675 + }, + { + "start": 5303.96, + "end": 5305.84, + "probability": 0.992 + }, + { + "start": 5306.5, + "end": 5307.18, + "probability": 0.8615 + }, + { + "start": 5307.86, + "end": 5310.38, + "probability": 0.995 + }, + { + "start": 5311.02, + "end": 5312.42, + "probability": 0.9861 + }, + { + "start": 5313.04, + "end": 5315.0, + "probability": 0.9283 + }, + { + "start": 5315.74, + "end": 5319.22, + "probability": 0.9731 + }, + { + "start": 5319.82, + "end": 5321.5, + "probability": 0.7376 + }, + { + "start": 5322.22, + "end": 5328.32, + "probability": 0.844 + }, + { + "start": 5328.96, + "end": 5330.26, + "probability": 0.7194 + }, + { + "start": 5331.26, + "end": 5334.7, + "probability": 0.7731 + }, + { + "start": 5335.5, + "end": 5340.52, + "probability": 0.9574 + }, + { + "start": 5340.64, + "end": 5344.9, + "probability": 0.9506 + }, + { + "start": 5345.68, + "end": 5348.24, + "probability": 0.9939 + }, + { + "start": 5348.24, + "end": 5351.34, + "probability": 0.9877 + }, + { + "start": 5351.42, + "end": 5352.04, + "probability": 0.5932 + }, + { + "start": 5352.12, + "end": 5356.06, + "probability": 0.5697 + }, + { + "start": 5356.12, + "end": 5357.72, + "probability": 0.5454 + }, + { + "start": 5358.26, + "end": 5362.1, + "probability": 0.9914 + }, + { + "start": 5362.66, + "end": 5366.52, + "probability": 0.7527 + }, + { + "start": 5366.7, + "end": 5367.16, + "probability": 0.8837 + }, + { + "start": 5367.96, + "end": 5370.98, + "probability": 0.8022 + }, + { + "start": 5371.46, + "end": 5372.08, + "probability": 0.6586 + }, + { + "start": 5372.66, + "end": 5374.2, + "probability": 0.7178 + }, + { + "start": 5374.26, + "end": 5376.66, + "probability": 0.9221 + }, + { + "start": 5376.98, + "end": 5381.22, + "probability": 0.4162 + }, + { + "start": 5381.38, + "end": 5385.88, + "probability": 0.8447 + }, + { + "start": 5386.04, + "end": 5386.72, + "probability": 0.8683 + }, + { + "start": 5386.88, + "end": 5388.5, + "probability": 0.9575 + }, + { + "start": 5389.08, + "end": 5393.58, + "probability": 0.8586 + }, + { + "start": 5393.58, + "end": 5395.72, + "probability": 0.9029 + }, + { + "start": 5396.28, + "end": 5398.32, + "probability": 0.911 + }, + { + "start": 5398.7, + "end": 5400.56, + "probability": 0.9529 + }, + { + "start": 5401.28, + "end": 5405.0, + "probability": 0.96 + }, + { + "start": 5405.62, + "end": 5409.34, + "probability": 0.8381 + }, + { + "start": 5410.1, + "end": 5411.66, + "probability": 0.4094 + }, + { + "start": 5413.24, + "end": 5415.09, + "probability": 0.8408 + }, + { + "start": 5416.44, + "end": 5420.32, + "probability": 0.9193 + }, + { + "start": 5421.44, + "end": 5422.38, + "probability": 0.8823 + }, + { + "start": 5423.58, + "end": 5426.6, + "probability": 0.976 + }, + { + "start": 5427.32, + "end": 5428.64, + "probability": 0.4572 + }, + { + "start": 5428.72, + "end": 5429.64, + "probability": 0.8857 + }, + { + "start": 5430.26, + "end": 5432.26, + "probability": 0.6327 + }, + { + "start": 5432.96, + "end": 5434.6, + "probability": 0.9945 + }, + { + "start": 5434.78, + "end": 5435.04, + "probability": 0.8009 + }, + { + "start": 5435.9, + "end": 5439.74, + "probability": 0.7656 + }, + { + "start": 5440.16, + "end": 5442.1, + "probability": 0.9775 + }, + { + "start": 5443.96, + "end": 5444.56, + "probability": 0.9325 + }, + { + "start": 5446.12, + "end": 5449.3, + "probability": 0.8835 + }, + { + "start": 5449.94, + "end": 5452.34, + "probability": 0.9687 + }, + { + "start": 5453.04, + "end": 5454.28, + "probability": 0.6948 + }, + { + "start": 5454.9, + "end": 5455.54, + "probability": 0.8277 + }, + { + "start": 5456.54, + "end": 5458.14, + "probability": 0.7262 + }, + { + "start": 5458.3, + "end": 5459.56, + "probability": 0.7217 + }, + { + "start": 5459.56, + "end": 5460.26, + "probability": 0.6974 + }, + { + "start": 5460.84, + "end": 5464.04, + "probability": 0.9971 + }, + { + "start": 5464.04, + "end": 5467.02, + "probability": 0.9941 + }, + { + "start": 5467.84, + "end": 5468.3, + "probability": 0.6734 + }, + { + "start": 5468.98, + "end": 5473.1, + "probability": 0.9675 + }, + { + "start": 5473.66, + "end": 5476.38, + "probability": 0.8825 + }, + { + "start": 5477.04, + "end": 5479.52, + "probability": 0.6793 + }, + { + "start": 5481.36, + "end": 5483.42, + "probability": 0.8451 + }, + { + "start": 5483.44, + "end": 5485.78, + "probability": 0.9403 + }, + { + "start": 5497.5, + "end": 5497.82, + "probability": 0.1913 + }, + { + "start": 5514.0, + "end": 5515.36, + "probability": 0.7722 + }, + { + "start": 5516.52, + "end": 5517.22, + "probability": 0.5605 + }, + { + "start": 5519.08, + "end": 5522.04, + "probability": 0.9969 + }, + { + "start": 5522.88, + "end": 5523.94, + "probability": 0.5481 + }, + { + "start": 5525.42, + "end": 5525.42, + "probability": 0.8691 + }, + { + "start": 5526.3, + "end": 5530.74, + "probability": 0.9894 + }, + { + "start": 5531.46, + "end": 5532.66, + "probability": 0.7983 + }, + { + "start": 5534.14, + "end": 5535.22, + "probability": 0.8439 + }, + { + "start": 5535.82, + "end": 5537.9, + "probability": 0.6989 + }, + { + "start": 5538.52, + "end": 5538.94, + "probability": 0.6853 + }, + { + "start": 5539.74, + "end": 5541.73, + "probability": 0.793 + }, + { + "start": 5543.2, + "end": 5545.54, + "probability": 0.986 + }, + { + "start": 5547.21, + "end": 5550.52, + "probability": 0.9888 + }, + { + "start": 5552.72, + "end": 5553.74, + "probability": 0.5259 + }, + { + "start": 5553.8, + "end": 5554.56, + "probability": 0.8702 + }, + { + "start": 5554.72, + "end": 5556.64, + "probability": 0.8245 + }, + { + "start": 5556.72, + "end": 5557.78, + "probability": 0.9181 + }, + { + "start": 5558.36, + "end": 5559.14, + "probability": 0.6466 + }, + { + "start": 5559.7, + "end": 5561.4, + "probability": 0.9932 + }, + { + "start": 5562.08, + "end": 5563.52, + "probability": 0.9489 + }, + { + "start": 5565.42, + "end": 5571.12, + "probability": 0.9926 + }, + { + "start": 5572.16, + "end": 5572.64, + "probability": 0.7049 + }, + { + "start": 5573.24, + "end": 5574.32, + "probability": 0.8842 + }, + { + "start": 5575.24, + "end": 5577.8, + "probability": 0.8163 + }, + { + "start": 5578.42, + "end": 5579.34, + "probability": 0.9391 + }, + { + "start": 5579.92, + "end": 5581.38, + "probability": 0.9434 + }, + { + "start": 5581.96, + "end": 5582.87, + "probability": 0.8719 + }, + { + "start": 5583.48, + "end": 5584.6, + "probability": 0.6419 + }, + { + "start": 5585.24, + "end": 5588.0, + "probability": 0.6104 + }, + { + "start": 5588.56, + "end": 5589.62, + "probability": 0.687 + }, + { + "start": 5590.38, + "end": 5591.08, + "probability": 0.9058 + }, + { + "start": 5591.7, + "end": 5594.1, + "probability": 0.8631 + }, + { + "start": 5594.1, + "end": 5596.64, + "probability": 0.9971 + }, + { + "start": 5597.5, + "end": 5603.6, + "probability": 0.9805 + }, + { + "start": 5604.68, + "end": 5605.26, + "probability": 0.4906 + }, + { + "start": 5606.28, + "end": 5607.99, + "probability": 0.9681 + }, + { + "start": 5609.84, + "end": 5613.32, + "probability": 0.9902 + }, + { + "start": 5613.82, + "end": 5615.9, + "probability": 0.9216 + }, + { + "start": 5616.5, + "end": 5618.81, + "probability": 0.8896 + }, + { + "start": 5618.88, + "end": 5621.92, + "probability": 0.9371 + }, + { + "start": 5622.56, + "end": 5626.1, + "probability": 0.871 + }, + { + "start": 5626.66, + "end": 5629.12, + "probability": 0.9987 + }, + { + "start": 5630.2, + "end": 5633.96, + "probability": 0.9736 + }, + { + "start": 5634.54, + "end": 5635.24, + "probability": 0.8633 + }, + { + "start": 5636.46, + "end": 5638.38, + "probability": 0.9715 + }, + { + "start": 5638.64, + "end": 5644.42, + "probability": 0.9335 + }, + { + "start": 5645.04, + "end": 5647.4, + "probability": 0.9548 + }, + { + "start": 5648.1, + "end": 5649.66, + "probability": 0.8643 + }, + { + "start": 5650.72, + "end": 5653.78, + "probability": 0.9595 + }, + { + "start": 5653.96, + "end": 5656.74, + "probability": 0.9763 + }, + { + "start": 5657.42, + "end": 5661.28, + "probability": 0.98 + }, + { + "start": 5661.96, + "end": 5665.58, + "probability": 0.7945 + }, + { + "start": 5666.22, + "end": 5667.14, + "probability": 0.5347 + }, + { + "start": 5667.66, + "end": 5669.28, + "probability": 0.9435 + }, + { + "start": 5669.7, + "end": 5672.02, + "probability": 0.7383 + }, + { + "start": 5673.08, + "end": 5674.98, + "probability": 0.8555 + }, + { + "start": 5675.54, + "end": 5676.8, + "probability": 0.8439 + }, + { + "start": 5676.88, + "end": 5678.12, + "probability": 0.9644 + }, + { + "start": 5678.28, + "end": 5680.56, + "probability": 0.9844 + }, + { + "start": 5681.06, + "end": 5682.88, + "probability": 0.994 + }, + { + "start": 5683.44, + "end": 5685.06, + "probability": 0.9613 + }, + { + "start": 5685.56, + "end": 5691.26, + "probability": 0.9875 + }, + { + "start": 5691.82, + "end": 5692.66, + "probability": 0.6294 + }, + { + "start": 5693.46, + "end": 5694.04, + "probability": 0.8583 + }, + { + "start": 5695.34, + "end": 5696.86, + "probability": 0.9414 + }, + { + "start": 5697.48, + "end": 5699.56, + "probability": 0.9341 + }, + { + "start": 5707.92, + "end": 5708.2, + "probability": 0.4916 + }, + { + "start": 5708.96, + "end": 5709.16, + "probability": 0.159 + }, + { + "start": 5709.16, + "end": 5709.16, + "probability": 0.179 + }, + { + "start": 5709.16, + "end": 5709.16, + "probability": 0.2468 + }, + { + "start": 5709.16, + "end": 5709.28, + "probability": 0.0327 + }, + { + "start": 5734.8, + "end": 5736.86, + "probability": 0.5947 + }, + { + "start": 5737.46, + "end": 5738.27, + "probability": 0.6328 + }, + { + "start": 5739.34, + "end": 5741.0, + "probability": 0.9421 + }, + { + "start": 5741.1, + "end": 5741.7, + "probability": 0.5894 + }, + { + "start": 5741.78, + "end": 5743.66, + "probability": 0.7681 + }, + { + "start": 5744.56, + "end": 5747.48, + "probability": 0.7171 + }, + { + "start": 5748.62, + "end": 5751.26, + "probability": 0.9685 + }, + { + "start": 5752.42, + "end": 5753.4, + "probability": 0.9829 + }, + { + "start": 5754.2, + "end": 5756.08, + "probability": 0.7665 + }, + { + "start": 5756.88, + "end": 5759.0, + "probability": 0.9843 + }, + { + "start": 5760.36, + "end": 5763.52, + "probability": 0.7168 + }, + { + "start": 5764.1, + "end": 5767.96, + "probability": 0.8993 + }, + { + "start": 5768.17, + "end": 5770.84, + "probability": 0.9932 + }, + { + "start": 5772.9, + "end": 5777.3, + "probability": 0.9823 + }, + { + "start": 5778.1, + "end": 5778.54, + "probability": 0.8664 + }, + { + "start": 5779.16, + "end": 5782.38, + "probability": 0.9974 + }, + { + "start": 5783.42, + "end": 5786.7, + "probability": 0.9791 + }, + { + "start": 5786.7, + "end": 5789.04, + "probability": 0.9989 + }, + { + "start": 5790.2, + "end": 5792.78, + "probability": 0.9252 + }, + { + "start": 5793.52, + "end": 5796.56, + "probability": 0.9935 + }, + { + "start": 5797.22, + "end": 5798.76, + "probability": 0.9928 + }, + { + "start": 5800.12, + "end": 5801.36, + "probability": 0.9946 + }, + { + "start": 5802.7, + "end": 5804.2, + "probability": 0.6227 + }, + { + "start": 5804.22, + "end": 5805.42, + "probability": 0.6621 + }, + { + "start": 5806.69, + "end": 5812.18, + "probability": 0.9941 + }, + { + "start": 5812.9, + "end": 5814.32, + "probability": 0.8476 + }, + { + "start": 5815.58, + "end": 5818.84, + "probability": 0.9923 + }, + { + "start": 5819.62, + "end": 5822.6, + "probability": 0.989 + }, + { + "start": 5823.56, + "end": 5826.52, + "probability": 0.9219 + }, + { + "start": 5826.6, + "end": 5828.76, + "probability": 0.9744 + }, + { + "start": 5829.88, + "end": 5832.84, + "probability": 0.9897 + }, + { + "start": 5832.84, + "end": 5834.9, + "probability": 0.9297 + }, + { + "start": 5836.0, + "end": 5839.74, + "probability": 0.8621 + }, + { + "start": 5839.74, + "end": 5842.32, + "probability": 0.9932 + }, + { + "start": 5843.74, + "end": 5848.72, + "probability": 0.9706 + }, + { + "start": 5849.36, + "end": 5851.14, + "probability": 0.9102 + }, + { + "start": 5852.94, + "end": 5854.54, + "probability": 0.8652 + }, + { + "start": 5855.26, + "end": 5856.0, + "probability": 0.9373 + }, + { + "start": 5856.66, + "end": 5860.96, + "probability": 0.9714 + }, + { + "start": 5861.66, + "end": 5863.32, + "probability": 0.9961 + }, + { + "start": 5864.48, + "end": 5865.18, + "probability": 0.7892 + }, + { + "start": 5865.86, + "end": 5869.52, + "probability": 0.9979 + }, + { + "start": 5870.22, + "end": 5875.1, + "probability": 0.9927 + }, + { + "start": 5875.76, + "end": 5880.14, + "probability": 0.9689 + }, + { + "start": 5880.88, + "end": 5883.78, + "probability": 0.9766 + }, + { + "start": 5884.94, + "end": 5888.82, + "probability": 0.9908 + }, + { + "start": 5889.72, + "end": 5892.94, + "probability": 0.9878 + }, + { + "start": 5892.94, + "end": 5896.36, + "probability": 0.9934 + }, + { + "start": 5896.86, + "end": 5897.38, + "probability": 0.9159 + }, + { + "start": 5899.24, + "end": 5900.84, + "probability": 0.5583 + }, + { + "start": 5902.66, + "end": 5903.32, + "probability": 0.8324 + }, + { + "start": 5904.64, + "end": 5905.92, + "probability": 0.6835 + }, + { + "start": 5907.06, + "end": 5907.87, + "probability": 0.6619 + }, + { + "start": 5909.24, + "end": 5913.88, + "probability": 0.6362 + }, + { + "start": 5919.0, + "end": 5921.24, + "probability": 0.8523 + }, + { + "start": 5923.06, + "end": 5923.8, + "probability": 0.6522 + }, + { + "start": 5924.4, + "end": 5926.18, + "probability": 0.7371 + }, + { + "start": 5927.0, + "end": 5927.8, + "probability": 0.6067 + }, + { + "start": 5929.38, + "end": 5929.96, + "probability": 0.7737 + }, + { + "start": 5930.5, + "end": 5930.94, + "probability": 0.577 + }, + { + "start": 5931.16, + "end": 5931.5, + "probability": 0.5784 + }, + { + "start": 5931.98, + "end": 5932.36, + "probability": 0.8332 + }, + { + "start": 5951.56, + "end": 5951.88, + "probability": 0.0781 + }, + { + "start": 5951.88, + "end": 5954.86, + "probability": 0.4572 + }, + { + "start": 5955.02, + "end": 5957.36, + "probability": 0.9629 + }, + { + "start": 5958.18, + "end": 5964.98, + "probability": 0.9771 + }, + { + "start": 5965.94, + "end": 5966.6, + "probability": 0.514 + }, + { + "start": 5966.9, + "end": 5967.42, + "probability": 0.5144 + }, + { + "start": 5967.9, + "end": 5968.32, + "probability": 0.7182 + }, + { + "start": 5986.28, + "end": 5986.28, + "probability": 0.0178 + }, + { + "start": 5986.28, + "end": 5988.28, + "probability": 0.3313 + }, + { + "start": 5988.74, + "end": 5990.64, + "probability": 0.9692 + }, + { + "start": 5992.94, + "end": 5995.56, + "probability": 0.7466 + }, + { + "start": 5996.38, + "end": 6001.3, + "probability": 0.9842 + }, + { + "start": 6001.96, + "end": 6006.4, + "probability": 0.7326 + }, + { + "start": 6007.48, + "end": 6010.28, + "probability": 0.9771 + }, + { + "start": 6010.86, + "end": 6013.32, + "probability": 0.7683 + }, + { + "start": 6014.06, + "end": 6014.6, + "probability": 0.9469 + }, + { + "start": 6015.96, + "end": 6016.62, + "probability": 0.5887 + }, + { + "start": 6019.9, + "end": 6021.88, + "probability": 0.7963 + }, + { + "start": 6022.7, + "end": 6025.74, + "probability": 0.9887 + }, + { + "start": 6025.74, + "end": 6028.84, + "probability": 0.9968 + }, + { + "start": 6029.72, + "end": 6030.32, + "probability": 0.6571 + }, + { + "start": 6030.44, + "end": 6034.32, + "probability": 0.8039 + }, + { + "start": 6034.5, + "end": 6035.4, + "probability": 0.9577 + }, + { + "start": 6036.06, + "end": 6039.31, + "probability": 0.6388 + }, + { + "start": 6040.76, + "end": 6043.36, + "probability": 0.8304 + }, + { + "start": 6045.44, + "end": 6048.02, + "probability": 0.969 + }, + { + "start": 6048.5, + "end": 6049.92, + "probability": 0.9858 + }, + { + "start": 6050.06, + "end": 6051.08, + "probability": 0.7323 + }, + { + "start": 6051.46, + "end": 6053.96, + "probability": 0.2365 + }, + { + "start": 6054.54, + "end": 6058.2, + "probability": 0.9498 + }, + { + "start": 6059.72, + "end": 6062.7, + "probability": 0.9003 + }, + { + "start": 6062.7, + "end": 6065.32, + "probability": 0.9884 + }, + { + "start": 6065.48, + "end": 6067.08, + "probability": 0.954 + }, + { + "start": 6067.72, + "end": 6068.88, + "probability": 0.6775 + }, + { + "start": 6070.06, + "end": 6072.22, + "probability": 0.0617 + }, + { + "start": 6072.8, + "end": 6075.4, + "probability": 0.9297 + }, + { + "start": 6076.82, + "end": 6079.02, + "probability": 0.9871 + }, + { + "start": 6079.14, + "end": 6081.67, + "probability": 0.9072 + }, + { + "start": 6081.9, + "end": 6083.64, + "probability": 0.9827 + }, + { + "start": 6083.74, + "end": 6085.8, + "probability": 0.3088 + }, + { + "start": 6086.74, + "end": 6089.68, + "probability": 0.793 + }, + { + "start": 6090.2, + "end": 6091.26, + "probability": 0.6282 + }, + { + "start": 6091.92, + "end": 6093.62, + "probability": 0.9456 + }, + { + "start": 6093.74, + "end": 6096.46, + "probability": 0.9429 + }, + { + "start": 6096.46, + "end": 6098.28, + "probability": 0.894 + }, + { + "start": 6098.58, + "end": 6099.7, + "probability": 0.4802 + }, + { + "start": 6102.39, + "end": 6106.16, + "probability": 0.7954 + }, + { + "start": 6107.45, + "end": 6110.6, + "probability": 0.7987 + }, + { + "start": 6110.7, + "end": 6113.96, + "probability": 0.8641 + }, + { + "start": 6114.12, + "end": 6115.54, + "probability": 0.5644 + }, + { + "start": 6116.24, + "end": 6117.72, + "probability": 0.2895 + }, + { + "start": 6118.55, + "end": 6122.02, + "probability": 0.7753 + }, + { + "start": 6122.44, + "end": 6122.72, + "probability": 0.8419 + }, + { + "start": 6123.42, + "end": 6126.42, + "probability": 0.9431 + }, + { + "start": 6127.0, + "end": 6128.28, + "probability": 0.9742 + }, + { + "start": 6128.84, + "end": 6129.16, + "probability": 0.8943 + }, + { + "start": 6129.88, + "end": 6131.06, + "probability": 0.9073 + }, + { + "start": 6131.14, + "end": 6132.44, + "probability": 0.725 + }, + { + "start": 6132.5, + "end": 6134.04, + "probability": 0.9102 + }, + { + "start": 6134.34, + "end": 6136.62, + "probability": 0.9162 + }, + { + "start": 6137.26, + "end": 6139.9, + "probability": 0.7449 + }, + { + "start": 6140.46, + "end": 6142.06, + "probability": 0.599 + }, + { + "start": 6142.74, + "end": 6145.88, + "probability": 0.6971 + }, + { + "start": 6147.0, + "end": 6147.1, + "probability": 0.5177 + }, + { + "start": 6147.78, + "end": 6152.74, + "probability": 0.9972 + }, + { + "start": 6153.48, + "end": 6155.42, + "probability": 0.3025 + }, + { + "start": 6156.14, + "end": 6157.12, + "probability": 0.9713 + }, + { + "start": 6157.2, + "end": 6157.56, + "probability": 0.8574 + }, + { + "start": 6157.76, + "end": 6159.0, + "probability": 0.925 + }, + { + "start": 6159.96, + "end": 6160.42, + "probability": 0.7325 + }, + { + "start": 6160.48, + "end": 6161.98, + "probability": 0.9316 + }, + { + "start": 6162.02, + "end": 6166.74, + "probability": 0.6113 + }, + { + "start": 6166.94, + "end": 6168.94, + "probability": 0.7509 + }, + { + "start": 6169.48, + "end": 6174.72, + "probability": 0.8855 + }, + { + "start": 6174.82, + "end": 6175.24, + "probability": 0.4952 + }, + { + "start": 6195.6, + "end": 6196.08, + "probability": 0.4213 + }, + { + "start": 6196.48, + "end": 6197.24, + "probability": 0.6184 + }, + { + "start": 6198.08, + "end": 6200.46, + "probability": 0.7699 + }, + { + "start": 6202.52, + "end": 6208.36, + "probability": 0.9402 + }, + { + "start": 6208.92, + "end": 6210.14, + "probability": 0.7505 + }, + { + "start": 6210.78, + "end": 6214.36, + "probability": 0.7933 + }, + { + "start": 6215.94, + "end": 6215.98, + "probability": 0.188 + }, + { + "start": 6216.92, + "end": 6217.51, + "probability": 0.9699 + }, + { + "start": 6218.04, + "end": 6221.0, + "probability": 0.9902 + }, + { + "start": 6221.12, + "end": 6225.38, + "probability": 0.9546 + }, + { + "start": 6225.4, + "end": 6226.5, + "probability": 0.9631 + }, + { + "start": 6226.98, + "end": 6230.98, + "probability": 0.9809 + }, + { + "start": 6232.82, + "end": 6235.28, + "probability": 0.7988 + }, + { + "start": 6236.22, + "end": 6237.12, + "probability": 0.6664 + }, + { + "start": 6237.3, + "end": 6238.34, + "probability": 0.9511 + }, + { + "start": 6238.88, + "end": 6244.24, + "probability": 0.9915 + }, + { + "start": 6245.08, + "end": 6246.04, + "probability": 0.9756 + }, + { + "start": 6246.74, + "end": 6250.64, + "probability": 0.9839 + }, + { + "start": 6250.64, + "end": 6254.76, + "probability": 0.9849 + }, + { + "start": 6255.04, + "end": 6261.21, + "probability": 0.9406 + }, + { + "start": 6262.82, + "end": 6265.84, + "probability": 0.8807 + }, + { + "start": 6265.84, + "end": 6271.38, + "probability": 0.9937 + }, + { + "start": 6272.18, + "end": 6274.1, + "probability": 0.8684 + }, + { + "start": 6274.2, + "end": 6278.02, + "probability": 0.6911 + }, + { + "start": 6278.3, + "end": 6281.38, + "probability": 0.9053 + }, + { + "start": 6282.22, + "end": 6284.06, + "probability": 0.9775 + }, + { + "start": 6285.3, + "end": 6289.2, + "probability": 0.946 + }, + { + "start": 6289.38, + "end": 6290.24, + "probability": 0.4792 + }, + { + "start": 6290.34, + "end": 6293.94, + "probability": 0.9558 + }, + { + "start": 6294.42, + "end": 6295.7, + "probability": 0.9779 + }, + { + "start": 6296.26, + "end": 6298.4, + "probability": 0.9709 + }, + { + "start": 6299.14, + "end": 6302.79, + "probability": 0.8589 + }, + { + "start": 6303.24, + "end": 6304.19, + "probability": 0.7527 + }, + { + "start": 6305.02, + "end": 6308.56, + "probability": 0.9792 + }, + { + "start": 6309.1, + "end": 6312.48, + "probability": 0.9972 + }, + { + "start": 6313.22, + "end": 6314.66, + "probability": 0.695 + }, + { + "start": 6316.08, + "end": 6319.0, + "probability": 0.9946 + }, + { + "start": 6319.28, + "end": 6322.92, + "probability": 0.986 + }, + { + "start": 6322.92, + "end": 6326.16, + "probability": 0.9897 + }, + { + "start": 6326.7, + "end": 6330.52, + "probability": 0.9972 + }, + { + "start": 6331.3, + "end": 6332.1, + "probability": 0.7891 + }, + { + "start": 6332.32, + "end": 6332.64, + "probability": 0.7197 + }, + { + "start": 6333.1, + "end": 6335.88, + "probability": 0.9627 + }, + { + "start": 6335.88, + "end": 6339.4, + "probability": 0.9829 + }, + { + "start": 6339.78, + "end": 6342.54, + "probability": 0.7575 + }, + { + "start": 6342.9, + "end": 6343.64, + "probability": 0.9191 + }, + { + "start": 6344.1, + "end": 6344.68, + "probability": 0.7235 + }, + { + "start": 6345.46, + "end": 6347.3, + "probability": 0.7633 + }, + { + "start": 6348.28, + "end": 6350.22, + "probability": 0.9454 + }, + { + "start": 6350.34, + "end": 6353.3, + "probability": 0.8331 + }, + { + "start": 6353.9, + "end": 6356.0, + "probability": 0.9287 + }, + { + "start": 6356.52, + "end": 6361.76, + "probability": 0.9867 + }, + { + "start": 6362.2, + "end": 6364.6, + "probability": 0.9925 + }, + { + "start": 6364.6, + "end": 6368.26, + "probability": 0.9824 + }, + { + "start": 6368.86, + "end": 6371.42, + "probability": 0.7861 + }, + { + "start": 6371.42, + "end": 6375.24, + "probability": 0.939 + }, + { + "start": 6376.12, + "end": 6377.98, + "probability": 0.7222 + }, + { + "start": 6378.1, + "end": 6384.08, + "probability": 0.8795 + }, + { + "start": 6384.58, + "end": 6385.42, + "probability": 0.6968 + }, + { + "start": 6385.52, + "end": 6386.7, + "probability": 0.9875 + }, + { + "start": 6387.22, + "end": 6388.4, + "probability": 0.8953 + }, + { + "start": 6388.76, + "end": 6392.58, + "probability": 0.9937 + }, + { + "start": 6393.52, + "end": 6396.68, + "probability": 0.8265 + }, + { + "start": 6397.26, + "end": 6400.52, + "probability": 0.9905 + }, + { + "start": 6400.52, + "end": 6404.5, + "probability": 0.9927 + }, + { + "start": 6405.2, + "end": 6407.16, + "probability": 0.8943 + }, + { + "start": 6407.4, + "end": 6409.02, + "probability": 0.9963 + }, + { + "start": 6410.2, + "end": 6414.72, + "probability": 0.7621 + }, + { + "start": 6414.86, + "end": 6419.0, + "probability": 0.9939 + }, + { + "start": 6421.06, + "end": 6422.2, + "probability": 0.9355 + }, + { + "start": 6422.76, + "end": 6424.32, + "probability": 0.9686 + }, + { + "start": 6424.48, + "end": 6428.2, + "probability": 0.9559 + }, + { + "start": 6428.2, + "end": 6432.56, + "probability": 0.9943 + }, + { + "start": 6433.7, + "end": 6435.16, + "probability": 0.9782 + }, + { + "start": 6435.52, + "end": 6440.82, + "probability": 0.8527 + }, + { + "start": 6441.32, + "end": 6443.88, + "probability": 0.9596 + }, + { + "start": 6444.46, + "end": 6445.32, + "probability": 0.971 + }, + { + "start": 6446.34, + "end": 6450.6, + "probability": 0.9864 + }, + { + "start": 6451.14, + "end": 6454.5, + "probability": 0.9943 + }, + { + "start": 6455.72, + "end": 6457.98, + "probability": 0.9773 + }, + { + "start": 6458.74, + "end": 6464.54, + "probability": 0.9834 + }, + { + "start": 6465.36, + "end": 6468.12, + "probability": 0.9646 + }, + { + "start": 6468.12, + "end": 6472.18, + "probability": 0.8044 + }, + { + "start": 6472.9, + "end": 6477.06, + "probability": 0.9971 + }, + { + "start": 6477.6, + "end": 6485.1, + "probability": 0.995 + }, + { + "start": 6485.72, + "end": 6487.44, + "probability": 0.7696 + }, + { + "start": 6487.84, + "end": 6492.62, + "probability": 0.987 + }, + { + "start": 6493.14, + "end": 6495.62, + "probability": 0.9757 + }, + { + "start": 6497.12, + "end": 6498.18, + "probability": 0.9616 + }, + { + "start": 6499.28, + "end": 6501.24, + "probability": 0.9915 + }, + { + "start": 6502.84, + "end": 6508.12, + "probability": 0.9579 + }, + { + "start": 6508.66, + "end": 6511.42, + "probability": 0.6973 + }, + { + "start": 6512.2, + "end": 6512.9, + "probability": 0.8606 + }, + { + "start": 6513.68, + "end": 6515.48, + "probability": 0.5958 + }, + { + "start": 6516.52, + "end": 6517.54, + "probability": 0.9403 + }, + { + "start": 6517.68, + "end": 6519.06, + "probability": 0.9739 + }, + { + "start": 6519.16, + "end": 6522.58, + "probability": 0.9948 + }, + { + "start": 6522.58, + "end": 6526.18, + "probability": 0.983 + }, + { + "start": 6526.86, + "end": 6530.34, + "probability": 0.9961 + }, + { + "start": 6530.82, + "end": 6532.42, + "probability": 0.6401 + }, + { + "start": 6532.6, + "end": 6533.12, + "probability": 0.9487 + }, + { + "start": 6533.22, + "end": 6533.66, + "probability": 0.8804 + }, + { + "start": 6534.26, + "end": 6534.6, + "probability": 0.9058 + }, + { + "start": 6534.72, + "end": 6535.28, + "probability": 0.9867 + }, + { + "start": 6535.44, + "end": 6537.62, + "probability": 0.9725 + }, + { + "start": 6538.16, + "end": 6539.15, + "probability": 0.8503 + }, + { + "start": 6539.28, + "end": 6541.94, + "probability": 0.9965 + }, + { + "start": 6542.46, + "end": 6543.62, + "probability": 0.9538 + }, + { + "start": 6543.68, + "end": 6547.02, + "probability": 0.9456 + }, + { + "start": 6547.82, + "end": 6549.52, + "probability": 0.9007 + }, + { + "start": 6549.8, + "end": 6553.06, + "probability": 0.9302 + }, + { + "start": 6553.36, + "end": 6555.64, + "probability": 0.9304 + }, + { + "start": 6556.58, + "end": 6557.94, + "probability": 0.9578 + }, + { + "start": 6558.88, + "end": 6560.22, + "probability": 0.9963 + }, + { + "start": 6560.58, + "end": 6562.08, + "probability": 0.8469 + }, + { + "start": 6562.38, + "end": 6565.0, + "probability": 0.8628 + }, + { + "start": 6565.48, + "end": 6566.68, + "probability": 0.7448 + }, + { + "start": 6566.78, + "end": 6567.88, + "probability": 0.9246 + }, + { + "start": 6568.62, + "end": 6570.3, + "probability": 0.8722 + }, + { + "start": 6570.42, + "end": 6572.68, + "probability": 0.9965 + }, + { + "start": 6573.22, + "end": 6576.44, + "probability": 0.9966 + }, + { + "start": 6576.59, + "end": 6579.82, + "probability": 0.9974 + }, + { + "start": 6580.06, + "end": 6584.06, + "probability": 0.9944 + }, + { + "start": 6584.48, + "end": 6584.84, + "probability": 0.472 + }, + { + "start": 6584.92, + "end": 6588.56, + "probability": 0.9904 + }, + { + "start": 6589.04, + "end": 6590.96, + "probability": 0.9913 + }, + { + "start": 6591.06, + "end": 6593.22, + "probability": 0.9878 + }, + { + "start": 6593.76, + "end": 6595.2, + "probability": 0.788 + }, + { + "start": 6596.32, + "end": 6599.26, + "probability": 0.997 + }, + { + "start": 6599.48, + "end": 6600.76, + "probability": 0.4755 + }, + { + "start": 6600.92, + "end": 6601.38, + "probability": 0.8605 + }, + { + "start": 6601.48, + "end": 6601.74, + "probability": 0.976 + }, + { + "start": 6601.8, + "end": 6604.46, + "probability": 0.9813 + }, + { + "start": 6605.1, + "end": 6605.6, + "probability": 0.8115 + }, + { + "start": 6606.16, + "end": 6610.52, + "probability": 0.8546 + }, + { + "start": 6611.44, + "end": 6613.76, + "probability": 0.9159 + }, + { + "start": 6615.3, + "end": 6617.96, + "probability": 0.8237 + }, + { + "start": 6618.9, + "end": 6620.49, + "probability": 0.5125 + }, + { + "start": 6621.84, + "end": 6623.54, + "probability": 0.5054 + }, + { + "start": 6624.46, + "end": 6627.26, + "probability": 0.8703 + }, + { + "start": 6628.04, + "end": 6631.0, + "probability": 0.6918 + }, + { + "start": 6631.54, + "end": 6633.56, + "probability": 0.6634 + }, + { + "start": 6634.16, + "end": 6635.74, + "probability": 0.9485 + }, + { + "start": 6636.86, + "end": 6637.48, + "probability": 0.6144 + }, + { + "start": 6637.94, + "end": 6639.97, + "probability": 0.5805 + }, + { + "start": 6640.84, + "end": 6643.9, + "probability": 0.9551 + }, + { + "start": 6644.44, + "end": 6645.7, + "probability": 0.8131 + }, + { + "start": 6646.14, + "end": 6646.86, + "probability": 0.7457 + }, + { + "start": 6646.86, + "end": 6647.42, + "probability": 0.9404 + }, + { + "start": 6647.68, + "end": 6647.9, + "probability": 0.8434 + }, + { + "start": 6649.18, + "end": 6650.14, + "probability": 0.8586 + }, + { + "start": 6651.0, + "end": 6651.52, + "probability": 0.0001 + }, + { + "start": 6666.1, + "end": 6666.28, + "probability": 0.0931 + }, + { + "start": 6666.28, + "end": 6669.16, + "probability": 0.5864 + }, + { + "start": 6669.56, + "end": 6670.5, + "probability": 0.8882 + }, + { + "start": 6671.22, + "end": 6672.62, + "probability": 0.9492 + }, + { + "start": 6673.06, + "end": 6675.84, + "probability": 0.875 + }, + { + "start": 6675.88, + "end": 6676.42, + "probability": 0.5764 + }, + { + "start": 6676.52, + "end": 6677.08, + "probability": 0.7273 + }, + { + "start": 6677.38, + "end": 6677.64, + "probability": 0.9774 + }, + { + "start": 6699.6, + "end": 6702.82, + "probability": 0.4835 + }, + { + "start": 6703.34, + "end": 6704.58, + "probability": 0.1174 + }, + { + "start": 6705.16, + "end": 6705.26, + "probability": 0.1951 + }, + { + "start": 6705.72, + "end": 6710.02, + "probability": 0.0488 + }, + { + "start": 6711.92, + "end": 6713.92, + "probability": 0.0614 + }, + { + "start": 6715.32, + "end": 6719.48, + "probability": 0.043 + }, + { + "start": 6720.14, + "end": 6721.66, + "probability": 0.0189 + }, + { + "start": 6737.18, + "end": 6738.78, + "probability": 0.0033 + }, + { + "start": 6738.78, + "end": 6738.85, + "probability": 0.0542 + }, + { + "start": 6741.46, + "end": 6741.96, + "probability": 0.1392 + }, + { + "start": 6741.96, + "end": 6742.14, + "probability": 0.3644 + }, + { + "start": 6742.42, + "end": 6742.92, + "probability": 0.1209 + }, + { + "start": 6742.98, + "end": 6743.2, + "probability": 0.233 + }, + { + "start": 6745.98, + "end": 6749.68, + "probability": 0.109 + }, + { + "start": 6750.34, + "end": 6751.62, + "probability": 0.078 + }, + { + "start": 6755.22, + "end": 6755.72, + "probability": 0.0616 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.0, + "end": 6756.0, + "probability": 0.0 + }, + { + "start": 6756.1, + "end": 6756.62, + "probability": 0.2913 + }, + { + "start": 6765.42, + "end": 6768.26, + "probability": 0.7859 + }, + { + "start": 6769.1, + "end": 6771.7, + "probability": 0.9958 + }, + { + "start": 6771.7, + "end": 6774.66, + "probability": 0.9968 + }, + { + "start": 6775.4, + "end": 6776.56, + "probability": 0.1436 + }, + { + "start": 6776.86, + "end": 6782.16, + "probability": 0.9886 + }, + { + "start": 6782.24, + "end": 6784.96, + "probability": 0.9999 + }, + { + "start": 6785.72, + "end": 6790.74, + "probability": 0.9976 + }, + { + "start": 6791.26, + "end": 6796.6, + "probability": 0.9965 + }, + { + "start": 6797.4, + "end": 6801.28, + "probability": 0.9932 + }, + { + "start": 6801.28, + "end": 6805.5, + "probability": 0.9925 + }, + { + "start": 6805.96, + "end": 6809.62, + "probability": 0.999 + }, + { + "start": 6809.62, + "end": 6812.84, + "probability": 0.9977 + }, + { + "start": 6813.0, + "end": 6813.48, + "probability": 0.9551 + }, + { + "start": 6814.26, + "end": 6819.88, + "probability": 0.994 + }, + { + "start": 6820.5, + "end": 6827.38, + "probability": 0.9787 + }, + { + "start": 6827.92, + "end": 6832.0, + "probability": 0.9984 + }, + { + "start": 6832.0, + "end": 6836.74, + "probability": 0.9974 + }, + { + "start": 6837.3, + "end": 6840.84, + "probability": 0.9431 + }, + { + "start": 6840.84, + "end": 6844.3, + "probability": 0.9979 + }, + { + "start": 6845.28, + "end": 6850.6, + "probability": 0.9929 + }, + { + "start": 6850.76, + "end": 6854.32, + "probability": 0.9968 + }, + { + "start": 6854.8, + "end": 6860.22, + "probability": 0.998 + }, + { + "start": 6860.22, + "end": 6867.52, + "probability": 0.8601 + }, + { + "start": 6868.08, + "end": 6873.24, + "probability": 0.944 + }, + { + "start": 6873.48, + "end": 6875.02, + "probability": 0.951 + }, + { + "start": 6875.58, + "end": 6878.76, + "probability": 0.9941 + }, + { + "start": 6879.24, + "end": 6884.15, + "probability": 0.999 + }, + { + "start": 6884.22, + "end": 6888.88, + "probability": 0.9994 + }, + { + "start": 6889.58, + "end": 6893.26, + "probability": 0.9995 + }, + { + "start": 6893.26, + "end": 6898.26, + "probability": 0.9996 + }, + { + "start": 6899.26, + "end": 6904.38, + "probability": 0.9821 + }, + { + "start": 6904.88, + "end": 6908.38, + "probability": 0.9931 + }, + { + "start": 6908.38, + "end": 6911.94, + "probability": 0.9291 + }, + { + "start": 6912.42, + "end": 6914.08, + "probability": 0.5448 + }, + { + "start": 6915.02, + "end": 6919.0, + "probability": 0.9971 + }, + { + "start": 6919.0, + "end": 6924.68, + "probability": 0.9976 + }, + { + "start": 6924.68, + "end": 6928.98, + "probability": 0.9976 + }, + { + "start": 6929.68, + "end": 6934.84, + "probability": 0.9265 + }, + { + "start": 6934.84, + "end": 6939.84, + "probability": 0.9988 + }, + { + "start": 6941.2, + "end": 6943.82, + "probability": 0.9577 + }, + { + "start": 6944.24, + "end": 6945.62, + "probability": 0.9329 + }, + { + "start": 6946.02, + "end": 6952.04, + "probability": 0.9923 + }, + { + "start": 6952.2, + "end": 6955.0, + "probability": 0.8904 + }, + { + "start": 6955.56, + "end": 6958.74, + "probability": 0.9938 + }, + { + "start": 6958.74, + "end": 6962.3, + "probability": 0.9971 + }, + { + "start": 6962.5, + "end": 6964.26, + "probability": 0.944 + }, + { + "start": 6964.86, + "end": 6971.48, + "probability": 0.996 + }, + { + "start": 6972.4, + "end": 6973.48, + "probability": 0.7307 + }, + { + "start": 6973.7, + "end": 6978.38, + "probability": 0.991 + }, + { + "start": 6978.98, + "end": 6984.5, + "probability": 0.9861 + }, + { + "start": 6984.5, + "end": 6990.48, + "probability": 0.9941 + }, + { + "start": 6991.42, + "end": 6992.02, + "probability": 0.6641 + }, + { + "start": 6992.1, + "end": 6993.28, + "probability": 0.9049 + }, + { + "start": 6993.7, + "end": 6998.78, + "probability": 0.9984 + }, + { + "start": 6998.78, + "end": 7002.6, + "probability": 0.9986 + }, + { + "start": 7003.54, + "end": 7010.08, + "probability": 0.9953 + }, + { + "start": 7010.6, + "end": 7012.74, + "probability": 0.9995 + }, + { + "start": 7013.92, + "end": 7018.86, + "probability": 0.9951 + }, + { + "start": 7018.86, + "end": 7024.48, + "probability": 0.9994 + }, + { + "start": 7024.48, + "end": 7030.18, + "probability": 0.9969 + }, + { + "start": 7031.58, + "end": 7035.46, + "probability": 0.999 + }, + { + "start": 7035.46, + "end": 7039.98, + "probability": 0.9998 + }, + { + "start": 7039.98, + "end": 7045.14, + "probability": 0.9995 + }, + { + "start": 7045.96, + "end": 7047.72, + "probability": 0.787 + }, + { + "start": 7047.88, + "end": 7050.5, + "probability": 0.9923 + }, + { + "start": 7051.14, + "end": 7054.7, + "probability": 0.9889 + }, + { + "start": 7055.34, + "end": 7060.24, + "probability": 0.9933 + }, + { + "start": 7061.04, + "end": 7061.4, + "probability": 0.4384 + }, + { + "start": 7061.5, + "end": 7066.68, + "probability": 0.9969 + }, + { + "start": 7066.68, + "end": 7073.14, + "probability": 0.9967 + }, + { + "start": 7073.7, + "end": 7075.94, + "probability": 0.9882 + }, + { + "start": 7077.18, + "end": 7079.26, + "probability": 0.7501 + }, + { + "start": 7079.8, + "end": 7083.86, + "probability": 0.999 + }, + { + "start": 7084.52, + "end": 7088.72, + "probability": 0.9948 + }, + { + "start": 7089.42, + "end": 7094.84, + "probability": 0.9396 + }, + { + "start": 7096.06, + "end": 7099.9, + "probability": 0.9966 + }, + { + "start": 7099.95, + "end": 7105.24, + "probability": 0.9342 + }, + { + "start": 7106.14, + "end": 7108.28, + "probability": 0.9815 + }, + { + "start": 7109.42, + "end": 7114.3, + "probability": 0.9953 + }, + { + "start": 7114.32, + "end": 7117.3, + "probability": 0.9965 + }, + { + "start": 7118.14, + "end": 7119.12, + "probability": 0.7722 + }, + { + "start": 7120.22, + "end": 7124.92, + "probability": 0.9851 + }, + { + "start": 7125.6, + "end": 7128.82, + "probability": 0.9776 + }, + { + "start": 7129.56, + "end": 7132.32, + "probability": 0.9895 + }, + { + "start": 7133.2, + "end": 7136.86, + "probability": 0.9944 + }, + { + "start": 7137.4, + "end": 7139.36, + "probability": 0.9849 + }, + { + "start": 7139.88, + "end": 7144.24, + "probability": 0.9489 + }, + { + "start": 7144.66, + "end": 7148.6, + "probability": 0.9987 + }, + { + "start": 7149.5, + "end": 7152.78, + "probability": 0.9749 + }, + { + "start": 7152.78, + "end": 7156.46, + "probability": 0.9759 + }, + { + "start": 7156.96, + "end": 7161.0, + "probability": 0.9878 + }, + { + "start": 7161.92, + "end": 7164.74, + "probability": 0.988 + }, + { + "start": 7165.82, + "end": 7166.68, + "probability": 0.8232 + }, + { + "start": 7167.24, + "end": 7169.86, + "probability": 0.9653 + }, + { + "start": 7170.7, + "end": 7173.76, + "probability": 0.9603 + }, + { + "start": 7174.62, + "end": 7181.48, + "probability": 0.9919 + }, + { + "start": 7182.64, + "end": 7185.58, + "probability": 0.9626 + }, + { + "start": 7186.26, + "end": 7187.14, + "probability": 0.7088 + }, + { + "start": 7187.24, + "end": 7188.32, + "probability": 0.7514 + }, + { + "start": 7188.46, + "end": 7190.12, + "probability": 0.9587 + }, + { + "start": 7190.66, + "end": 7192.62, + "probability": 0.968 + }, + { + "start": 7193.1, + "end": 7195.56, + "probability": 0.9669 + }, + { + "start": 7196.2, + "end": 7197.08, + "probability": 0.7821 + }, + { + "start": 7197.12, + "end": 7199.6, + "probability": 0.9912 + }, + { + "start": 7200.1, + "end": 7205.14, + "probability": 0.9912 + }, + { + "start": 7205.98, + "end": 7207.36, + "probability": 0.8553 + }, + { + "start": 7208.22, + "end": 7210.14, + "probability": 0.9917 + }, + { + "start": 7210.68, + "end": 7212.46, + "probability": 0.9868 + }, + { + "start": 7213.48, + "end": 7215.78, + "probability": 0.9793 + }, + { + "start": 7216.46, + "end": 7218.72, + "probability": 0.9762 + }, + { + "start": 7219.4, + "end": 7222.38, + "probability": 0.9922 + }, + { + "start": 7222.98, + "end": 7225.44, + "probability": 0.924 + }, + { + "start": 7225.98, + "end": 7229.7, + "probability": 0.9966 + }, + { + "start": 7229.76, + "end": 7233.38, + "probability": 0.9912 + }, + { + "start": 7234.48, + "end": 7238.5, + "probability": 0.9663 + }, + { + "start": 7239.16, + "end": 7245.58, + "probability": 0.9812 + }, + { + "start": 7245.6, + "end": 7250.96, + "probability": 0.9935 + }, + { + "start": 7251.7, + "end": 7256.04, + "probability": 0.9845 + }, + { + "start": 7256.04, + "end": 7260.16, + "probability": 0.9961 + }, + { + "start": 7260.3, + "end": 7260.8, + "probability": 0.7964 + }, + { + "start": 7260.88, + "end": 7262.12, + "probability": 0.6686 + }, + { + "start": 7262.68, + "end": 7264.02, + "probability": 0.9834 + }, + { + "start": 7264.78, + "end": 7268.24, + "probability": 0.9233 + }, + { + "start": 7268.36, + "end": 7269.22, + "probability": 0.9303 + }, + { + "start": 7269.32, + "end": 7271.04, + "probability": 0.8664 + }, + { + "start": 7271.38, + "end": 7274.34, + "probability": 0.9883 + }, + { + "start": 7274.98, + "end": 7276.94, + "probability": 0.9554 + }, + { + "start": 7277.64, + "end": 7280.26, + "probability": 0.9009 + }, + { + "start": 7280.9, + "end": 7287.0, + "probability": 0.9429 + }, + { + "start": 7287.9, + "end": 7288.84, + "probability": 0.0396 + }, + { + "start": 7288.84, + "end": 7292.1, + "probability": 0.6345 + }, + { + "start": 7292.7, + "end": 7299.12, + "probability": 0.991 + }, + { + "start": 7299.86, + "end": 7300.36, + "probability": 0.3076 + }, + { + "start": 7301.12, + "end": 7301.12, + "probability": 0.0446 + }, + { + "start": 7301.12, + "end": 7301.12, + "probability": 0.0349 + }, + { + "start": 7301.12, + "end": 7301.12, + "probability": 0.2675 + }, + { + "start": 7301.12, + "end": 7301.12, + "probability": 0.3308 + }, + { + "start": 7301.12, + "end": 7302.84, + "probability": 0.1212 + }, + { + "start": 7302.84, + "end": 7306.88, + "probability": 0.86 + }, + { + "start": 7307.4, + "end": 7312.6, + "probability": 0.9301 + }, + { + "start": 7313.52, + "end": 7314.26, + "probability": 0.0514 + }, + { + "start": 7314.26, + "end": 7314.26, + "probability": 0.455 + }, + { + "start": 7314.26, + "end": 7314.26, + "probability": 0.1611 + }, + { + "start": 7314.26, + "end": 7314.26, + "probability": 0.0219 + }, + { + "start": 7314.26, + "end": 7320.88, + "probability": 0.9019 + }, + { + "start": 7321.1, + "end": 7321.1, + "probability": 0.0019 + }, + { + "start": 7321.1, + "end": 7321.52, + "probability": 0.1629 + }, + { + "start": 7321.8, + "end": 7326.24, + "probability": 0.9667 + }, + { + "start": 7326.7, + "end": 7330.26, + "probability": 0.9539 + }, + { + "start": 7331.06, + "end": 7332.82, + "probability": 0.9392 + }, + { + "start": 7333.48, + "end": 7336.78, + "probability": 0.9832 + }, + { + "start": 7337.48, + "end": 7339.28, + "probability": 0.8269 + }, + { + "start": 7339.82, + "end": 7341.62, + "probability": 0.9326 + }, + { + "start": 7342.34, + "end": 7342.36, + "probability": 0.0226 + }, + { + "start": 7342.36, + "end": 7342.38, + "probability": 0.0843 + }, + { + "start": 7342.38, + "end": 7343.54, + "probability": 0.6777 + }, + { + "start": 7344.16, + "end": 7351.8, + "probability": 0.9989 + }, + { + "start": 7351.8, + "end": 7357.84, + "probability": 0.999 + }, + { + "start": 7358.4, + "end": 7358.42, + "probability": 0.1641 + }, + { + "start": 7358.42, + "end": 7358.42, + "probability": 0.0393 + }, + { + "start": 7358.42, + "end": 7361.4, + "probability": 0.989 + }, + { + "start": 7362.16, + "end": 7362.16, + "probability": 0.1 + }, + { + "start": 7362.16, + "end": 7366.6, + "probability": 0.9966 + }, + { + "start": 7366.6, + "end": 7370.42, + "probability": 0.9984 + }, + { + "start": 7370.98, + "end": 7377.34, + "probability": 0.9985 + }, + { + "start": 7378.14, + "end": 7383.28, + "probability": 0.9961 + }, + { + "start": 7383.46, + "end": 7385.02, + "probability": 0.8085 + }, + { + "start": 7385.58, + "end": 7393.4, + "probability": 0.9947 + }, + { + "start": 7394.04, + "end": 7395.22, + "probability": 0.7948 + }, + { + "start": 7395.74, + "end": 7396.72, + "probability": 0.3199 + }, + { + "start": 7397.18, + "end": 7399.3, + "probability": 0.7595 + }, + { + "start": 7399.8, + "end": 7400.92, + "probability": 0.7536 + }, + { + "start": 7401.4, + "end": 7407.56, + "probability": 0.8885 + }, + { + "start": 7408.02, + "end": 7409.2, + "probability": 0.7669 + }, + { + "start": 7409.46, + "end": 7410.26, + "probability": 0.7853 + }, + { + "start": 7410.56, + "end": 7413.52, + "probability": 0.9875 + }, + { + "start": 7413.58, + "end": 7414.9, + "probability": 0.4119 + }, + { + "start": 7415.4, + "end": 7420.8, + "probability": 0.9945 + }, + { + "start": 7421.22, + "end": 7423.88, + "probability": 0.9493 + }, + { + "start": 7424.04, + "end": 7429.28, + "probability": 0.9951 + }, + { + "start": 7429.96, + "end": 7431.3, + "probability": 0.7573 + }, + { + "start": 7432.7, + "end": 7434.0, + "probability": 0.0134 + }, + { + "start": 7434.0, + "end": 7434.94, + "probability": 0.4717 + }, + { + "start": 7435.36, + "end": 7436.22, + "probability": 0.1292 + }, + { + "start": 7436.88, + "end": 7436.94, + "probability": 0.1165 + }, + { + "start": 7436.94, + "end": 7438.14, + "probability": 0.5108 + }, + { + "start": 7439.42, + "end": 7441.06, + "probability": 0.5049 + }, + { + "start": 7441.78, + "end": 7441.9, + "probability": 0.3908 + }, + { + "start": 7441.9, + "end": 7443.72, + "probability": 0.6403 + }, + { + "start": 7444.1, + "end": 7447.24, + "probability": 0.9208 + }, + { + "start": 7447.28, + "end": 7447.82, + "probability": 0.3928 + }, + { + "start": 7447.92, + "end": 7448.72, + "probability": 0.8859 + }, + { + "start": 7450.27, + "end": 7453.29, + "probability": 0.9243 + }, + { + "start": 7477.26, + "end": 7478.06, + "probability": 0.575 + }, + { + "start": 7478.1, + "end": 7478.66, + "probability": 0.6024 + }, + { + "start": 7478.82, + "end": 7480.8, + "probability": 0.9125 + }, + { + "start": 7480.86, + "end": 7482.2, + "probability": 0.7416 + }, + { + "start": 7482.76, + "end": 7486.62, + "probability": 0.9484 + }, + { + "start": 7487.72, + "end": 7491.44, + "probability": 0.8065 + }, + { + "start": 7491.54, + "end": 7492.52, + "probability": 0.5555 + }, + { + "start": 7492.66, + "end": 7493.1, + "probability": 0.4636 + }, + { + "start": 7494.68, + "end": 7498.9, + "probability": 0.9706 + }, + { + "start": 7500.4, + "end": 7502.84, + "probability": 0.0205 + }, + { + "start": 7505.62, + "end": 7505.7, + "probability": 0.0846 + }, + { + "start": 7505.7, + "end": 7505.7, + "probability": 0.2143 + }, + { + "start": 7505.7, + "end": 7505.7, + "probability": 0.365 + }, + { + "start": 7505.7, + "end": 7506.78, + "probability": 0.6805 + }, + { + "start": 7507.5, + "end": 7510.31, + "probability": 0.7093 + }, + { + "start": 7511.06, + "end": 7512.18, + "probability": 0.9568 + }, + { + "start": 7512.22, + "end": 7513.14, + "probability": 0.6234 + }, + { + "start": 7513.36, + "end": 7515.8, + "probability": 0.9453 + }, + { + "start": 7519.0, + "end": 7519.64, + "probability": 0.0202 + }, + { + "start": 7519.64, + "end": 7520.32, + "probability": 0.0372 + }, + { + "start": 7521.94, + "end": 7523.48, + "probability": 0.8825 + }, + { + "start": 7523.66, + "end": 7526.64, + "probability": 0.7352 + }, + { + "start": 7527.14, + "end": 7531.64, + "probability": 0.965 + }, + { + "start": 7532.32, + "end": 7534.96, + "probability": 0.9743 + }, + { + "start": 7535.58, + "end": 7538.94, + "probability": 0.7812 + }, + { + "start": 7539.0, + "end": 7539.68, + "probability": 0.8217 + }, + { + "start": 7540.16, + "end": 7541.68, + "probability": 0.7573 + }, + { + "start": 7541.76, + "end": 7543.8, + "probability": 0.783 + }, + { + "start": 7544.48, + "end": 7545.96, + "probability": 0.9126 + }, + { + "start": 7546.06, + "end": 7546.7, + "probability": 0.9047 + }, + { + "start": 7546.78, + "end": 7548.84, + "probability": 0.8857 + }, + { + "start": 7549.34, + "end": 7553.3, + "probability": 0.9972 + }, + { + "start": 7553.42, + "end": 7554.38, + "probability": 0.991 + }, + { + "start": 7555.08, + "end": 7558.28, + "probability": 0.9487 + }, + { + "start": 7558.82, + "end": 7560.74, + "probability": 0.7496 + }, + { + "start": 7561.88, + "end": 7562.98, + "probability": 0.9551 + }, + { + "start": 7563.62, + "end": 7566.57, + "probability": 0.9969 + }, + { + "start": 7568.2, + "end": 7571.02, + "probability": 0.9777 + }, + { + "start": 7571.7, + "end": 7574.8, + "probability": 0.9948 + }, + { + "start": 7576.4, + "end": 7577.14, + "probability": 0.9806 + }, + { + "start": 7578.44, + "end": 7580.48, + "probability": 0.9919 + }, + { + "start": 7581.58, + "end": 7584.34, + "probability": 0.9045 + }, + { + "start": 7585.64, + "end": 7586.44, + "probability": 0.9288 + }, + { + "start": 7587.16, + "end": 7588.48, + "probability": 0.9154 + }, + { + "start": 7589.1, + "end": 7592.22, + "probability": 0.4977 + }, + { + "start": 7592.4, + "end": 7594.18, + "probability": 0.7598 + }, + { + "start": 7595.12, + "end": 7596.62, + "probability": 0.778 + }, + { + "start": 7597.74, + "end": 7600.18, + "probability": 0.8339 + }, + { + "start": 7600.32, + "end": 7601.92, + "probability": 0.9078 + }, + { + "start": 7602.4, + "end": 7605.0, + "probability": 0.9595 + }, + { + "start": 7606.16, + "end": 7607.8, + "probability": 0.5403 + }, + { + "start": 7607.98, + "end": 7610.14, + "probability": 0.6885 + }, + { + "start": 7610.8, + "end": 7612.78, + "probability": 0.8257 + }, + { + "start": 7612.9, + "end": 7614.9, + "probability": 0.8348 + }, + { + "start": 7615.38, + "end": 7616.3, + "probability": 0.8047 + }, + { + "start": 7616.64, + "end": 7617.32, + "probability": 0.8859 + }, + { + "start": 7617.36, + "end": 7619.82, + "probability": 0.9976 + }, + { + "start": 7620.46, + "end": 7623.68, + "probability": 0.8298 + }, + { + "start": 7623.86, + "end": 7625.42, + "probability": 0.7795 + }, + { + "start": 7625.72, + "end": 7629.58, + "probability": 0.8887 + }, + { + "start": 7630.06, + "end": 7635.16, + "probability": 0.7952 + }, + { + "start": 7635.98, + "end": 7638.12, + "probability": 0.5179 + }, + { + "start": 7639.04, + "end": 7640.64, + "probability": 0.9918 + }, + { + "start": 7642.32, + "end": 7643.48, + "probability": 0.9781 + }, + { + "start": 7644.47, + "end": 7646.82, + "probability": 0.8955 + }, + { + "start": 7647.8, + "end": 7648.38, + "probability": 0.8816 + }, + { + "start": 7649.0, + "end": 7652.16, + "probability": 0.9698 + }, + { + "start": 7652.22, + "end": 7652.6, + "probability": 0.6656 + }, + { + "start": 7653.84, + "end": 7657.98, + "probability": 0.9452 + }, + { + "start": 7658.6, + "end": 7660.42, + "probability": 0.7304 + }, + { + "start": 7660.6, + "end": 7666.32, + "probability": 0.9854 + }, + { + "start": 7667.4, + "end": 7669.28, + "probability": 0.7616 + }, + { + "start": 7670.32, + "end": 7672.26, + "probability": 0.4206 + }, + { + "start": 7672.82, + "end": 7674.0, + "probability": 0.5553 + }, + { + "start": 7674.2, + "end": 7675.4, + "probability": 0.8738 + }, + { + "start": 7675.84, + "end": 7678.79, + "probability": 0.9413 + }, + { + "start": 7679.16, + "end": 7680.18, + "probability": 0.5168 + }, + { + "start": 7680.4, + "end": 7681.72, + "probability": 0.8997 + }, + { + "start": 7682.6, + "end": 7683.32, + "probability": 0.9711 + }, + { + "start": 7683.48, + "end": 7685.43, + "probability": 0.9867 + }, + { + "start": 7686.54, + "end": 7688.44, + "probability": 0.9128 + }, + { + "start": 7688.62, + "end": 7689.29, + "probability": 0.9888 + }, + { + "start": 7690.74, + "end": 7691.64, + "probability": 0.5264 + }, + { + "start": 7692.48, + "end": 7694.22, + "probability": 0.924 + }, + { + "start": 7694.84, + "end": 7697.4, + "probability": 0.8209 + }, + { + "start": 7697.78, + "end": 7698.95, + "probability": 0.971 + }, + { + "start": 7699.74, + "end": 7702.86, + "probability": 0.8911 + }, + { + "start": 7703.86, + "end": 7704.38, + "probability": 0.8948 + }, + { + "start": 7706.2, + "end": 7707.0, + "probability": 0.9702 + }, + { + "start": 7707.1, + "end": 7707.54, + "probability": 0.0132 + }, + { + "start": 7708.26, + "end": 7708.74, + "probability": 0.65 + }, + { + "start": 7708.86, + "end": 7710.44, + "probability": 0.7236 + }, + { + "start": 7710.68, + "end": 7712.93, + "probability": 0.9629 + }, + { + "start": 7713.42, + "end": 7715.46, + "probability": 0.6664 + }, + { + "start": 7715.82, + "end": 7718.06, + "probability": 0.9053 + }, + { + "start": 7718.52, + "end": 7719.44, + "probability": 0.8543 + }, + { + "start": 7719.58, + "end": 7721.9, + "probability": 0.9631 + }, + { + "start": 7722.42, + "end": 7722.48, + "probability": 0.1001 + }, + { + "start": 7722.48, + "end": 7723.22, + "probability": 0.5438 + }, + { + "start": 7723.46, + "end": 7724.86, + "probability": 0.8807 + }, + { + "start": 7725.38, + "end": 7727.96, + "probability": 0.9771 + }, + { + "start": 7728.7, + "end": 7732.61, + "probability": 0.7455 + }, + { + "start": 7733.26, + "end": 7737.0, + "probability": 0.9506 + }, + { + "start": 7737.28, + "end": 7739.26, + "probability": 0.864 + }, + { + "start": 7739.34, + "end": 7741.1, + "probability": 0.8962 + }, + { + "start": 7741.68, + "end": 7747.44, + "probability": 0.9553 + }, + { + "start": 7748.02, + "end": 7752.54, + "probability": 0.9381 + }, + { + "start": 7753.22, + "end": 7755.72, + "probability": 0.9835 + }, + { + "start": 7755.88, + "end": 7757.28, + "probability": 0.8844 + }, + { + "start": 7757.7, + "end": 7760.94, + "probability": 0.9945 + }, + { + "start": 7760.94, + "end": 7766.12, + "probability": 0.9815 + }, + { + "start": 7767.0, + "end": 7767.7, + "probability": 0.9819 + }, + { + "start": 7768.58, + "end": 7773.74, + "probability": 0.9248 + }, + { + "start": 7774.26, + "end": 7775.58, + "probability": 0.9937 + }, + { + "start": 7775.68, + "end": 7776.46, + "probability": 0.9868 + }, + { + "start": 7776.7, + "end": 7779.46, + "probability": 0.9718 + }, + { + "start": 7779.86, + "end": 7781.94, + "probability": 0.9413 + }, + { + "start": 7782.6, + "end": 7786.92, + "probability": 0.9729 + }, + { + "start": 7789.76, + "end": 7789.76, + "probability": 0.0301 + }, + { + "start": 7789.76, + "end": 7791.54, + "probability": 0.6787 + }, + { + "start": 7792.06, + "end": 7794.3, + "probability": 0.7766 + }, + { + "start": 7794.76, + "end": 7795.72, + "probability": 0.4944 + }, + { + "start": 7796.94, + "end": 7797.76, + "probability": 0.8972 + }, + { + "start": 7816.2, + "end": 7818.22, + "probability": 0.6792 + }, + { + "start": 7819.76, + "end": 7821.62, + "probability": 0.8176 + }, + { + "start": 7823.18, + "end": 7827.26, + "probability": 0.9009 + }, + { + "start": 7828.58, + "end": 7831.32, + "probability": 0.9033 + }, + { + "start": 7832.08, + "end": 7834.14, + "probability": 0.9984 + }, + { + "start": 7834.84, + "end": 7836.44, + "probability": 0.9681 + }, + { + "start": 7837.66, + "end": 7839.46, + "probability": 0.9959 + }, + { + "start": 7839.98, + "end": 7844.58, + "probability": 0.999 + }, + { + "start": 7845.02, + "end": 7846.49, + "probability": 0.9819 + }, + { + "start": 7847.16, + "end": 7853.8, + "probability": 0.9219 + }, + { + "start": 7855.3, + "end": 7856.14, + "probability": 0.6205 + }, + { + "start": 7856.14, + "end": 7859.66, + "probability": 0.9957 + }, + { + "start": 7860.8, + "end": 7863.18, + "probability": 0.99 + }, + { + "start": 7863.8, + "end": 7865.78, + "probability": 0.9618 + }, + { + "start": 7866.78, + "end": 7868.98, + "probability": 0.9346 + }, + { + "start": 7869.3, + "end": 7870.24, + "probability": 0.8718 + }, + { + "start": 7870.34, + "end": 7871.2, + "probability": 0.8816 + }, + { + "start": 7871.66, + "end": 7872.48, + "probability": 0.724 + }, + { + "start": 7872.56, + "end": 7873.68, + "probability": 0.7586 + }, + { + "start": 7873.98, + "end": 7875.16, + "probability": 0.9609 + }, + { + "start": 7875.2, + "end": 7875.98, + "probability": 0.7517 + }, + { + "start": 7877.28, + "end": 7879.8, + "probability": 0.9386 + }, + { + "start": 7880.64, + "end": 7883.08, + "probability": 0.9839 + }, + { + "start": 7883.62, + "end": 7885.54, + "probability": 0.9673 + }, + { + "start": 7887.0, + "end": 7888.44, + "probability": 0.7173 + }, + { + "start": 7889.0, + "end": 7889.38, + "probability": 0.8657 + }, + { + "start": 7890.48, + "end": 7893.4, + "probability": 0.9844 + }, + { + "start": 7894.12, + "end": 7895.5, + "probability": 0.9851 + }, + { + "start": 7896.38, + "end": 7900.56, + "probability": 0.9909 + }, + { + "start": 7900.9, + "end": 7904.66, + "probability": 0.5576 + }, + { + "start": 7905.24, + "end": 7906.18, + "probability": 0.544 + }, + { + "start": 7907.1, + "end": 7907.96, + "probability": 0.6456 + }, + { + "start": 7908.82, + "end": 7910.74, + "probability": 0.9902 + }, + { + "start": 7911.32, + "end": 7911.62, + "probability": 0.9003 + }, + { + "start": 7912.02, + "end": 7915.4, + "probability": 0.9417 + }, + { + "start": 7916.32, + "end": 7918.92, + "probability": 0.7572 + }, + { + "start": 7919.42, + "end": 7921.16, + "probability": 0.8278 + }, + { + "start": 7921.78, + "end": 7924.9, + "probability": 0.7542 + }, + { + "start": 7925.54, + "end": 7928.74, + "probability": 0.911 + }, + { + "start": 7929.74, + "end": 7931.52, + "probability": 0.6493 + }, + { + "start": 7931.88, + "end": 7933.92, + "probability": 0.0741 + }, + { + "start": 7933.92, + "end": 7937.86, + "probability": 0.9535 + }, + { + "start": 7938.88, + "end": 7940.78, + "probability": 0.97 + }, + { + "start": 7941.2, + "end": 7943.59, + "probability": 0.9892 + }, + { + "start": 7944.72, + "end": 7945.26, + "probability": 0.9332 + }, + { + "start": 7946.36, + "end": 7947.74, + "probability": 0.6672 + }, + { + "start": 7948.32, + "end": 7949.68, + "probability": 0.691 + }, + { + "start": 7949.8, + "end": 7950.76, + "probability": 0.8159 + }, + { + "start": 7951.18, + "end": 7953.54, + "probability": 0.895 + }, + { + "start": 7954.56, + "end": 7955.43, + "probability": 0.9763 + }, + { + "start": 7956.62, + "end": 7957.42, + "probability": 0.7972 + }, + { + "start": 7959.16, + "end": 7961.06, + "probability": 0.9836 + }, + { + "start": 7961.92, + "end": 7962.88, + "probability": 0.8885 + }, + { + "start": 7963.88, + "end": 7965.5, + "probability": 0.8757 + }, + { + "start": 7967.18, + "end": 7968.56, + "probability": 0.9948 + }, + { + "start": 7969.28, + "end": 7971.68, + "probability": 0.9985 + }, + { + "start": 7972.34, + "end": 7973.38, + "probability": 0.7802 + }, + { + "start": 7974.66, + "end": 7977.66, + "probability": 0.9137 + }, + { + "start": 7978.6, + "end": 7981.14, + "probability": 0.9472 + }, + { + "start": 7981.66, + "end": 7983.5, + "probability": 0.9812 + }, + { + "start": 7983.82, + "end": 7984.0, + "probability": 0.5776 + }, + { + "start": 7984.2, + "end": 7986.41, + "probability": 0.9934 + }, + { + "start": 7986.74, + "end": 7988.04, + "probability": 0.6729 + }, + { + "start": 7988.14, + "end": 7990.92, + "probability": 0.9043 + }, + { + "start": 7991.32, + "end": 7991.68, + "probability": 0.7637 + }, + { + "start": 7992.02, + "end": 7993.56, + "probability": 0.9786 + }, + { + "start": 7993.84, + "end": 7994.64, + "probability": 0.798 + }, + { + "start": 7995.04, + "end": 7995.7, + "probability": 0.6736 + }, + { + "start": 7996.2, + "end": 7997.86, + "probability": 0.9241 + }, + { + "start": 7998.24, + "end": 8000.0, + "probability": 0.6793 + }, + { + "start": 8000.38, + "end": 8001.16, + "probability": 0.8782 + }, + { + "start": 8001.98, + "end": 8003.36, + "probability": 0.8853 + }, + { + "start": 8004.2, + "end": 8005.04, + "probability": 0.9055 + }, + { + "start": 8005.12, + "end": 8005.86, + "probability": 0.9632 + }, + { + "start": 8006.22, + "end": 8007.16, + "probability": 0.9272 + }, + { + "start": 8007.88, + "end": 8010.72, + "probability": 0.9233 + }, + { + "start": 8011.7, + "end": 8013.4, + "probability": 0.908 + }, + { + "start": 8014.16, + "end": 8017.96, + "probability": 0.9604 + }, + { + "start": 8019.76, + "end": 8020.42, + "probability": 0.6455 + }, + { + "start": 8020.48, + "end": 8020.72, + "probability": 0.8549 + }, + { + "start": 8022.0, + "end": 8022.88, + "probability": 0.7223 + }, + { + "start": 8023.54, + "end": 8023.82, + "probability": 0.8733 + }, + { + "start": 8025.3, + "end": 8025.72, + "probability": 0.9224 + }, + { + "start": 8026.24, + "end": 8028.35, + "probability": 0.9907 + }, + { + "start": 8028.98, + "end": 8032.14, + "probability": 0.9639 + }, + { + "start": 8032.22, + "end": 8033.6, + "probability": 0.9249 + }, + { + "start": 8033.7, + "end": 8034.98, + "probability": 0.9974 + }, + { + "start": 8035.38, + "end": 8035.94, + "probability": 0.4911 + }, + { + "start": 8036.0, + "end": 8037.22, + "probability": 0.9078 + }, + { + "start": 8037.94, + "end": 8041.34, + "probability": 0.8657 + }, + { + "start": 8041.96, + "end": 8044.4, + "probability": 0.8975 + }, + { + "start": 8046.52, + "end": 8047.26, + "probability": 0.7458 + }, + { + "start": 8047.4, + "end": 8052.17, + "probability": 0.8705 + }, + { + "start": 8052.6, + "end": 8053.6, + "probability": 0.941 + }, + { + "start": 8053.8, + "end": 8054.76, + "probability": 0.7822 + }, + { + "start": 8055.56, + "end": 8059.06, + "probability": 0.6826 + }, + { + "start": 8059.86, + "end": 8060.72, + "probability": 0.7634 + }, + { + "start": 8060.8, + "end": 8062.28, + "probability": 0.9559 + }, + { + "start": 8062.88, + "end": 8064.58, + "probability": 0.8491 + }, + { + "start": 8065.96, + "end": 8066.62, + "probability": 0.9263 + }, + { + "start": 8067.32, + "end": 8069.92, + "probability": 0.968 + }, + { + "start": 8070.54, + "end": 8071.6, + "probability": 0.9265 + }, + { + "start": 8071.76, + "end": 8072.02, + "probability": 0.7055 + }, + { + "start": 8072.44, + "end": 8074.38, + "probability": 0.9858 + }, + { + "start": 8074.72, + "end": 8076.44, + "probability": 0.9144 + }, + { + "start": 8077.26, + "end": 8078.34, + "probability": 0.8872 + }, + { + "start": 8078.8, + "end": 8081.86, + "probability": 0.9834 + }, + { + "start": 8082.38, + "end": 8085.64, + "probability": 0.9522 + }, + { + "start": 8085.82, + "end": 8087.06, + "probability": 0.8884 + }, + { + "start": 8087.5, + "end": 8088.2, + "probability": 0.6753 + }, + { + "start": 8088.64, + "end": 8089.36, + "probability": 0.9807 + }, + { + "start": 8089.62, + "end": 8090.12, + "probability": 0.9293 + }, + { + "start": 8090.44, + "end": 8091.14, + "probability": 0.8132 + }, + { + "start": 8091.42, + "end": 8091.56, + "probability": 0.7106 + }, + { + "start": 8092.58, + "end": 8093.84, + "probability": 0.9724 + }, + { + "start": 8094.42, + "end": 8095.3, + "probability": 0.9154 + }, + { + "start": 8095.72, + "end": 8098.24, + "probability": 0.7252 + }, + { + "start": 8099.08, + "end": 8100.02, + "probability": 0.849 + }, + { + "start": 8100.6, + "end": 8101.76, + "probability": 0.9903 + }, + { + "start": 8102.42, + "end": 8103.86, + "probability": 0.9753 + }, + { + "start": 8104.44, + "end": 8105.38, + "probability": 0.9058 + }, + { + "start": 8105.96, + "end": 8107.46, + "probability": 0.9863 + }, + { + "start": 8107.88, + "end": 8109.26, + "probability": 0.9912 + }, + { + "start": 8109.62, + "end": 8111.8, + "probability": 0.962 + }, + { + "start": 8113.02, + "end": 8113.6, + "probability": 0.0872 + }, + { + "start": 8114.4, + "end": 8116.64, + "probability": 0.9987 + }, + { + "start": 8117.8, + "end": 8118.88, + "probability": 0.7697 + }, + { + "start": 8119.56, + "end": 8121.24, + "probability": 0.9766 + }, + { + "start": 8121.8, + "end": 8123.48, + "probability": 0.9054 + }, + { + "start": 8124.2, + "end": 8124.86, + "probability": 0.832 + }, + { + "start": 8125.68, + "end": 8126.84, + "probability": 0.4878 + }, + { + "start": 8127.48, + "end": 8128.34, + "probability": 0.3042 + }, + { + "start": 8128.54, + "end": 8130.3, + "probability": 0.4066 + }, + { + "start": 8130.3, + "end": 8130.96, + "probability": 0.2906 + }, + { + "start": 8131.67, + "end": 8137.36, + "probability": 0.9116 + }, + { + "start": 8137.42, + "end": 8139.74, + "probability": 0.9941 + }, + { + "start": 8140.52, + "end": 8141.28, + "probability": 0.5752 + }, + { + "start": 8142.14, + "end": 8143.06, + "probability": 0.477 + }, + { + "start": 8144.68, + "end": 8145.24, + "probability": 0.1715 + }, + { + "start": 8145.24, + "end": 8146.54, + "probability": 0.8952 + }, + { + "start": 8146.56, + "end": 8147.92, + "probability": 0.936 + }, + { + "start": 8148.26, + "end": 8150.66, + "probability": 0.6484 + }, + { + "start": 8150.72, + "end": 8152.78, + "probability": 0.9122 + }, + { + "start": 8153.02, + "end": 8153.96, + "probability": 0.9854 + }, + { + "start": 8154.56, + "end": 8156.04, + "probability": 0.8915 + }, + { + "start": 8156.52, + "end": 8157.94, + "probability": 0.9589 + }, + { + "start": 8158.28, + "end": 8159.16, + "probability": 0.9881 + }, + { + "start": 8159.52, + "end": 8160.44, + "probability": 0.9061 + }, + { + "start": 8160.74, + "end": 8161.5, + "probability": 0.9605 + }, + { + "start": 8161.76, + "end": 8162.66, + "probability": 0.9827 + }, + { + "start": 8162.94, + "end": 8163.74, + "probability": 0.9836 + }, + { + "start": 8163.98, + "end": 8165.32, + "probability": 0.8217 + }, + { + "start": 8165.74, + "end": 8166.28, + "probability": 0.8571 + }, + { + "start": 8166.58, + "end": 8167.2, + "probability": 0.8458 + }, + { + "start": 8167.7, + "end": 8169.22, + "probability": 0.7734 + }, + { + "start": 8170.2, + "end": 8170.6, + "probability": 0.0006 + }, + { + "start": 8170.6, + "end": 8170.6, + "probability": 0.0237 + }, + { + "start": 8170.6, + "end": 8171.16, + "probability": 0.4931 + }, + { + "start": 8172.32, + "end": 8172.98, + "probability": 0.473 + }, + { + "start": 8173.72, + "end": 8176.36, + "probability": 0.9477 + }, + { + "start": 8178.6, + "end": 8178.72, + "probability": 0.0916 + }, + { + "start": 8178.72, + "end": 8180.92, + "probability": 0.7393 + }, + { + "start": 8180.94, + "end": 8182.96, + "probability": 0.8304 + }, + { + "start": 8192.6, + "end": 8194.32, + "probability": 0.0 + }, + { + "start": 8207.08, + "end": 8207.26, + "probability": 0.0079 + }, + { + "start": 8207.26, + "end": 8207.5, + "probability": 0.137 + }, + { + "start": 8207.7, + "end": 8208.86, + "probability": 0.9683 + }, + { + "start": 8210.88, + "end": 8212.37, + "probability": 0.9329 + }, + { + "start": 8212.94, + "end": 8213.88, + "probability": 0.7669 + }, + { + "start": 8215.02, + "end": 8215.98, + "probability": 0.7958 + }, + { + "start": 8217.0, + "end": 8217.18, + "probability": 0.7108 + }, + { + "start": 8217.24, + "end": 8219.72, + "probability": 0.9915 + }, + { + "start": 8219.72, + "end": 8220.24, + "probability": 0.4137 + }, + { + "start": 8220.58, + "end": 8221.1, + "probability": 0.3961 + }, + { + "start": 8221.12, + "end": 8221.94, + "probability": 0.701 + }, + { + "start": 8222.42, + "end": 8226.18, + "probability": 0.8081 + }, + { + "start": 8226.3, + "end": 8229.22, + "probability": 0.9632 + }, + { + "start": 8229.4, + "end": 8229.95, + "probability": 0.4744 + }, + { + "start": 8230.12, + "end": 8230.58, + "probability": 0.8028 + }, + { + "start": 8231.54, + "end": 8232.12, + "probability": 0.6253 + }, + { + "start": 8232.12, + "end": 8232.56, + "probability": 0.8461 + }, + { + "start": 8234.36, + "end": 8235.06, + "probability": 0.649 + }, + { + "start": 8235.12, + "end": 8238.64, + "probability": 0.9712 + }, + { + "start": 8238.64, + "end": 8241.84, + "probability": 0.9435 + }, + { + "start": 8243.68, + "end": 8247.28, + "probability": 0.8894 + }, + { + "start": 8248.22, + "end": 8249.68, + "probability": 0.9904 + }, + { + "start": 8250.26, + "end": 8254.38, + "probability": 0.9785 + }, + { + "start": 8254.9, + "end": 8255.86, + "probability": 0.9969 + }, + { + "start": 8256.48, + "end": 8258.12, + "probability": 0.9246 + }, + { + "start": 8258.72, + "end": 8261.18, + "probability": 0.8358 + }, + { + "start": 8263.18, + "end": 8265.58, + "probability": 0.8117 + }, + { + "start": 8267.2, + "end": 8267.56, + "probability": 0.6287 + }, + { + "start": 8268.5, + "end": 8268.58, + "probability": 0.0469 + }, + { + "start": 8268.58, + "end": 8269.44, + "probability": 0.8483 + }, + { + "start": 8270.08, + "end": 8270.62, + "probability": 0.3387 + }, + { + "start": 8270.96, + "end": 8270.96, + "probability": 0.2616 + }, + { + "start": 8270.96, + "end": 8273.21, + "probability": 0.7537 + }, + { + "start": 8274.3, + "end": 8276.56, + "probability": 0.7869 + }, + { + "start": 8277.58, + "end": 8280.14, + "probability": 0.8941 + }, + { + "start": 8280.24, + "end": 8282.18, + "probability": 0.8055 + }, + { + "start": 8282.58, + "end": 8285.86, + "probability": 0.9578 + }, + { + "start": 8285.86, + "end": 8285.92, + "probability": 0.0155 + }, + { + "start": 8285.92, + "end": 8286.02, + "probability": 0.3649 + }, + { + "start": 8286.16, + "end": 8288.6, + "probability": 0.8387 + }, + { + "start": 8288.94, + "end": 8290.64, + "probability": 0.7938 + }, + { + "start": 8290.74, + "end": 8291.34, + "probability": 0.6341 + }, + { + "start": 8291.54, + "end": 8292.01, + "probability": 0.9731 + }, + { + "start": 8293.34, + "end": 8295.1, + "probability": 0.953 + }, + { + "start": 8296.43, + "end": 8297.58, + "probability": 0.9863 + }, + { + "start": 8298.12, + "end": 8299.98, + "probability": 0.5107 + }, + { + "start": 8300.12, + "end": 8301.84, + "probability": 0.1239 + }, + { + "start": 8302.02, + "end": 8303.62, + "probability": 0.51 + }, + { + "start": 8303.68, + "end": 8305.42, + "probability": 0.5024 + }, + { + "start": 8305.96, + "end": 8306.96, + "probability": 0.9181 + }, + { + "start": 8308.38, + "end": 8309.32, + "probability": 0.9521 + }, + { + "start": 8309.96, + "end": 8310.86, + "probability": 0.9678 + }, + { + "start": 8311.54, + "end": 8312.3, + "probability": 0.0423 + }, + { + "start": 8312.3, + "end": 8312.66, + "probability": 0.2663 + }, + { + "start": 8314.44, + "end": 8314.96, + "probability": 0.881 + }, + { + "start": 8315.48, + "end": 8317.8, + "probability": 0.8598 + }, + { + "start": 8318.32, + "end": 8321.42, + "probability": 0.9915 + }, + { + "start": 8323.18, + "end": 8323.92, + "probability": 0.8653 + }, + { + "start": 8324.58, + "end": 8328.52, + "probability": 0.9797 + }, + { + "start": 8329.08, + "end": 8330.5, + "probability": 0.6984 + }, + { + "start": 8330.86, + "end": 8331.94, + "probability": 0.8025 + }, + { + "start": 8332.04, + "end": 8333.2, + "probability": 0.7531 + }, + { + "start": 8333.94, + "end": 8334.22, + "probability": 0.3896 + }, + { + "start": 8334.72, + "end": 8341.46, + "probability": 0.9457 + }, + { + "start": 8341.88, + "end": 8342.64, + "probability": 0.6163 + }, + { + "start": 8344.42, + "end": 8345.16, + "probability": 0.0771 + }, + { + "start": 8345.38, + "end": 8345.56, + "probability": 0.4067 + }, + { + "start": 8345.64, + "end": 8346.28, + "probability": 0.7971 + }, + { + "start": 8346.42, + "end": 8347.58, + "probability": 0.9819 + }, + { + "start": 8348.44, + "end": 8351.64, + "probability": 0.9038 + }, + { + "start": 8352.66, + "end": 8356.44, + "probability": 0.9948 + }, + { + "start": 8358.24, + "end": 8361.62, + "probability": 0.9213 + }, + { + "start": 8362.44, + "end": 8366.9, + "probability": 0.9941 + }, + { + "start": 8368.08, + "end": 8370.68, + "probability": 0.9977 + }, + { + "start": 8371.44, + "end": 8376.08, + "probability": 0.9937 + }, + { + "start": 8376.72, + "end": 8378.48, + "probability": 0.9165 + }, + { + "start": 8379.1, + "end": 8381.78, + "probability": 0.9971 + }, + { + "start": 8382.56, + "end": 8383.96, + "probability": 0.9547 + }, + { + "start": 8384.4, + "end": 8387.76, + "probability": 0.987 + }, + { + "start": 8388.46, + "end": 8391.6, + "probability": 0.8786 + }, + { + "start": 8393.06, + "end": 8398.06, + "probability": 0.9778 + }, + { + "start": 8399.02, + "end": 8402.1, + "probability": 0.9655 + }, + { + "start": 8404.42, + "end": 8405.18, + "probability": 0.7543 + }, + { + "start": 8406.7, + "end": 8406.7, + "probability": 0.1301 + }, + { + "start": 8406.7, + "end": 8408.78, + "probability": 0.9561 + }, + { + "start": 8409.1, + "end": 8409.44, + "probability": 0.6602 + }, + { + "start": 8410.98, + "end": 8411.78, + "probability": 0.0156 + }, + { + "start": 8411.78, + "end": 8412.82, + "probability": 0.3989 + }, + { + "start": 8413.54, + "end": 8415.24, + "probability": 0.7059 + }, + { + "start": 8415.8, + "end": 8416.64, + "probability": 0.9688 + }, + { + "start": 8416.72, + "end": 8417.21, + "probability": 0.2655 + }, + { + "start": 8418.28, + "end": 8419.16, + "probability": 0.9388 + }, + { + "start": 8419.74, + "end": 8421.86, + "probability": 0.9131 + }, + { + "start": 8422.64, + "end": 8424.48, + "probability": 0.9724 + }, + { + "start": 8425.42, + "end": 8428.84, + "probability": 0.8568 + }, + { + "start": 8429.84, + "end": 8431.96, + "probability": 0.9793 + }, + { + "start": 8432.5, + "end": 8437.3, + "probability": 0.9575 + }, + { + "start": 8438.02, + "end": 8441.24, + "probability": 0.981 + }, + { + "start": 8442.18, + "end": 8442.54, + "probability": 0.9745 + }, + { + "start": 8443.2, + "end": 8446.96, + "probability": 0.9971 + }, + { + "start": 8447.14, + "end": 8450.88, + "probability": 0.9309 + }, + { + "start": 8452.46, + "end": 8454.42, + "probability": 0.9529 + }, + { + "start": 8456.0, + "end": 8457.34, + "probability": 0.9668 + }, + { + "start": 8457.54, + "end": 8458.52, + "probability": 0.9677 + }, + { + "start": 8458.96, + "end": 8461.04, + "probability": 0.8147 + }, + { + "start": 8462.3, + "end": 8465.14, + "probability": 0.9875 + }, + { + "start": 8465.18, + "end": 8470.9, + "probability": 0.9817 + }, + { + "start": 8471.4, + "end": 8474.26, + "probability": 0.9889 + }, + { + "start": 8474.88, + "end": 8477.0, + "probability": 0.9971 + }, + { + "start": 8477.06, + "end": 8479.68, + "probability": 0.9964 + }, + { + "start": 8480.86, + "end": 8482.72, + "probability": 0.9517 + }, + { + "start": 8483.24, + "end": 8484.52, + "probability": 0.8625 + }, + { + "start": 8485.04, + "end": 8487.58, + "probability": 0.9787 + }, + { + "start": 8488.52, + "end": 8490.56, + "probability": 0.9536 + }, + { + "start": 8491.12, + "end": 8493.16, + "probability": 0.9973 + }, + { + "start": 8493.64, + "end": 8496.24, + "probability": 0.9628 + }, + { + "start": 8496.7, + "end": 8497.58, + "probability": 0.7322 + }, + { + "start": 8498.08, + "end": 8499.24, + "probability": 0.6734 + }, + { + "start": 8499.5, + "end": 8501.04, + "probability": 0.9895 + }, + { + "start": 8501.38, + "end": 8504.3, + "probability": 0.9684 + }, + { + "start": 8504.88, + "end": 8508.24, + "probability": 0.5904 + }, + { + "start": 8508.38, + "end": 8508.68, + "probability": 0.6908 + }, + { + "start": 8508.8, + "end": 8510.14, + "probability": 0.9959 + }, + { + "start": 8510.18, + "end": 8510.84, + "probability": 0.5039 + }, + { + "start": 8511.22, + "end": 8514.0, + "probability": 0.9897 + }, + { + "start": 8514.62, + "end": 8515.54, + "probability": 0.79 + }, + { + "start": 8515.96, + "end": 8518.92, + "probability": 0.9395 + }, + { + "start": 8519.06, + "end": 8520.58, + "probability": 0.9764 + }, + { + "start": 8521.0, + "end": 8522.6, + "probability": 0.9238 + }, + { + "start": 8524.22, + "end": 8525.9, + "probability": 0.8745 + }, + { + "start": 8527.42, + "end": 8530.58, + "probability": 0.9555 + }, + { + "start": 8531.12, + "end": 8532.86, + "probability": 0.9876 + }, + { + "start": 8533.0, + "end": 8534.54, + "probability": 0.9976 + }, + { + "start": 8535.18, + "end": 8539.82, + "probability": 0.9963 + }, + { + "start": 8540.62, + "end": 8543.04, + "probability": 0.9976 + }, + { + "start": 8543.6, + "end": 8545.66, + "probability": 0.9531 + }, + { + "start": 8546.24, + "end": 8547.54, + "probability": 0.9589 + }, + { + "start": 8547.9, + "end": 8552.72, + "probability": 0.8994 + }, + { + "start": 8552.72, + "end": 8556.12, + "probability": 0.7871 + }, + { + "start": 8556.96, + "end": 8558.96, + "probability": 0.9976 + }, + { + "start": 8559.36, + "end": 8563.26, + "probability": 0.9693 + }, + { + "start": 8563.84, + "end": 8567.42, + "probability": 0.9294 + }, + { + "start": 8567.8, + "end": 8569.3, + "probability": 0.8729 + }, + { + "start": 8569.74, + "end": 8573.46, + "probability": 0.9536 + }, + { + "start": 8573.76, + "end": 8577.32, + "probability": 0.9119 + }, + { + "start": 8577.9, + "end": 8579.32, + "probability": 0.9067 + }, + { + "start": 8579.7, + "end": 8581.26, + "probability": 0.9923 + }, + { + "start": 8581.68, + "end": 8586.74, + "probability": 0.9853 + }, + { + "start": 8590.22, + "end": 8593.02, + "probability": 0.98 + }, + { + "start": 8594.16, + "end": 8594.48, + "probability": 0.8591 + }, + { + "start": 8595.1, + "end": 8596.04, + "probability": 0.9658 + }, + { + "start": 8596.72, + "end": 8597.76, + "probability": 0.8117 + }, + { + "start": 8598.44, + "end": 8605.9, + "probability": 0.9888 + }, + { + "start": 8607.18, + "end": 8607.96, + "probability": 0.9424 + }, + { + "start": 8608.64, + "end": 8610.39, + "probability": 0.9612 + }, + { + "start": 8611.18, + "end": 8612.34, + "probability": 0.7708 + }, + { + "start": 8612.46, + "end": 8613.64, + "probability": 0.5482 + }, + { + "start": 8613.92, + "end": 8616.18, + "probability": 0.8107 + }, + { + "start": 8616.64, + "end": 8617.74, + "probability": 0.7344 + }, + { + "start": 8617.74, + "end": 8618.82, + "probability": 0.975 + }, + { + "start": 8619.12, + "end": 8620.7, + "probability": 0.9873 + }, + { + "start": 8621.16, + "end": 8624.5, + "probability": 0.9961 + }, + { + "start": 8624.5, + "end": 8626.47, + "probability": 0.9956 + }, + { + "start": 8627.14, + "end": 8630.78, + "probability": 0.9934 + }, + { + "start": 8630.78, + "end": 8634.76, + "probability": 0.9961 + }, + { + "start": 8634.84, + "end": 8638.52, + "probability": 0.9824 + }, + { + "start": 8638.52, + "end": 8642.5, + "probability": 0.9734 + }, + { + "start": 8642.62, + "end": 8643.28, + "probability": 0.8845 + }, + { + "start": 8644.04, + "end": 8648.36, + "probability": 0.5 + }, + { + "start": 8648.82, + "end": 8652.24, + "probability": 0.9633 + }, + { + "start": 8652.86, + "end": 8654.2, + "probability": 0.9917 + }, + { + "start": 8654.5, + "end": 8656.92, + "probability": 0.9955 + }, + { + "start": 8657.22, + "end": 8658.16, + "probability": 0.6045 + }, + { + "start": 8658.22, + "end": 8658.72, + "probability": 0.3927 + }, + { + "start": 8659.56, + "end": 8661.78, + "probability": 0.9917 + }, + { + "start": 8662.38, + "end": 8662.62, + "probability": 0.8605 + }, + { + "start": 8662.68, + "end": 8665.42, + "probability": 0.9763 + }, + { + "start": 8665.66, + "end": 8666.12, + "probability": 0.5404 + }, + { + "start": 8666.9, + "end": 8668.52, + "probability": 0.8889 + }, + { + "start": 8668.74, + "end": 8670.56, + "probability": 0.6769 + }, + { + "start": 8670.56, + "end": 8670.56, + "probability": 0.2791 + }, + { + "start": 8670.56, + "end": 8674.68, + "probability": 0.9647 + }, + { + "start": 8674.68, + "end": 8676.9, + "probability": 0.9955 + }, + { + "start": 8677.12, + "end": 8677.2, + "probability": 0.3782 + }, + { + "start": 8677.2, + "end": 8679.12, + "probability": 0.7047 + }, + { + "start": 8679.52, + "end": 8684.33, + "probability": 0.9646 + }, + { + "start": 8684.64, + "end": 8685.86, + "probability": 0.8852 + }, + { + "start": 8685.92, + "end": 8686.42, + "probability": 0.8781 + }, + { + "start": 8686.46, + "end": 8687.08, + "probability": 0.8245 + }, + { + "start": 8687.56, + "end": 8690.08, + "probability": 0.9873 + }, + { + "start": 8690.74, + "end": 8690.74, + "probability": 0.0261 + }, + { + "start": 8690.74, + "end": 8690.74, + "probability": 0.0389 + }, + { + "start": 8690.74, + "end": 8692.96, + "probability": 0.6453 + }, + { + "start": 8693.78, + "end": 8694.46, + "probability": 0.3135 + }, + { + "start": 8694.46, + "end": 8696.26, + "probability": 0.8237 + }, + { + "start": 8696.6, + "end": 8697.36, + "probability": 0.0857 + }, + { + "start": 8697.66, + "end": 8698.82, + "probability": 0.9722 + }, + { + "start": 8699.68, + "end": 8699.86, + "probability": 0.521 + }, + { + "start": 8699.86, + "end": 8701.6, + "probability": 0.5052 + }, + { + "start": 8702.99, + "end": 8705.26, + "probability": 0.7391 + }, + { + "start": 8705.26, + "end": 8705.38, + "probability": 0.1997 + }, + { + "start": 8706.3, + "end": 8708.74, + "probability": 0.5558 + }, + { + "start": 8709.96, + "end": 8713.14, + "probability": 0.2473 + }, + { + "start": 8714.34, + "end": 8715.32, + "probability": 0.9702 + }, + { + "start": 8715.44, + "end": 8716.08, + "probability": 0.6221 + }, + { + "start": 8716.14, + "end": 8717.06, + "probability": 0.9976 + }, + { + "start": 8717.7, + "end": 8718.58, + "probability": 0.8567 + }, + { + "start": 8719.34, + "end": 8722.72, + "probability": 0.6297 + }, + { + "start": 8724.5, + "end": 8727.54, + "probability": 0.8086 + }, + { + "start": 8727.54, + "end": 8729.3, + "probability": 0.5386 + }, + { + "start": 8729.3, + "end": 8730.4, + "probability": 0.9208 + }, + { + "start": 8730.86, + "end": 8731.94, + "probability": 0.7965 + }, + { + "start": 8734.08, + "end": 8735.5, + "probability": 0.804 + }, + { + "start": 8735.72, + "end": 8738.38, + "probability": 0.9766 + }, + { + "start": 8738.46, + "end": 8739.3, + "probability": 0.7841 + }, + { + "start": 8739.8, + "end": 8741.5, + "probability": 0.8435 + }, + { + "start": 8742.04, + "end": 8743.12, + "probability": 0.969 + }, + { + "start": 8743.48, + "end": 8745.8, + "probability": 0.9985 + }, + { + "start": 8746.22, + "end": 8747.8, + "probability": 0.863 + }, + { + "start": 8748.16, + "end": 8750.8, + "probability": 0.7627 + }, + { + "start": 8751.18, + "end": 8754.1, + "probability": 0.8694 + }, + { + "start": 8754.14, + "end": 8757.14, + "probability": 0.9917 + }, + { + "start": 8757.6, + "end": 8761.1, + "probability": 0.915 + }, + { + "start": 8761.14, + "end": 8765.14, + "probability": 0.9713 + }, + { + "start": 8765.48, + "end": 8769.82, + "probability": 0.9756 + }, + { + "start": 8769.92, + "end": 8773.22, + "probability": 0.9827 + }, + { + "start": 8773.58, + "end": 8777.52, + "probability": 0.9941 + }, + { + "start": 8777.62, + "end": 8779.6, + "probability": 0.9963 + }, + { + "start": 8779.7, + "end": 8780.04, + "probability": 0.7015 + }, + { + "start": 8780.5, + "end": 8782.96, + "probability": 0.6472 + }, + { + "start": 8783.56, + "end": 8784.38, + "probability": 0.9372 + }, + { + "start": 8784.64, + "end": 8786.28, + "probability": 0.719 + }, + { + "start": 8786.68, + "end": 8790.68, + "probability": 0.8906 + }, + { + "start": 8791.06, + "end": 8793.38, + "probability": 0.9543 + }, + { + "start": 8793.66, + "end": 8794.76, + "probability": 0.6729 + }, + { + "start": 8794.9, + "end": 8796.74, + "probability": 0.9716 + }, + { + "start": 8797.2, + "end": 8798.42, + "probability": 0.7948 + }, + { + "start": 8798.86, + "end": 8801.0, + "probability": 0.8828 + }, + { + "start": 8801.22, + "end": 8805.14, + "probability": 0.9966 + }, + { + "start": 8805.48, + "end": 8806.8, + "probability": 0.9317 + }, + { + "start": 8806.88, + "end": 8807.66, + "probability": 0.8482 + }, + { + "start": 8808.88, + "end": 8809.9, + "probability": 0.5811 + }, + { + "start": 8810.88, + "end": 8813.6, + "probability": 0.9336 + }, + { + "start": 8815.25, + "end": 8817.1, + "probability": 0.9697 + }, + { + "start": 8824.5, + "end": 8825.62, + "probability": 0.119 + }, + { + "start": 8825.62, + "end": 8825.62, + "probability": 0.185 + }, + { + "start": 8825.62, + "end": 8825.62, + "probability": 0.0547 + }, + { + "start": 8841.86, + "end": 8844.58, + "probability": 0.994 + }, + { + "start": 8848.11, + "end": 8850.86, + "probability": 0.8589 + }, + { + "start": 8850.86, + "end": 8853.1, + "probability": 0.7951 + }, + { + "start": 8853.16, + "end": 8854.52, + "probability": 0.9377 + }, + { + "start": 8855.46, + "end": 8858.5, + "probability": 0.8878 + }, + { + "start": 8860.79, + "end": 8861.76, + "probability": 0.3859 + }, + { + "start": 8861.76, + "end": 8865.14, + "probability": 0.9824 + }, + { + "start": 8865.14, + "end": 8869.74, + "probability": 0.9961 + }, + { + "start": 8871.34, + "end": 8872.06, + "probability": 0.7287 + }, + { + "start": 8872.22, + "end": 8872.56, + "probability": 0.8149 + }, + { + "start": 8872.62, + "end": 8877.14, + "probability": 0.9954 + }, + { + "start": 8878.16, + "end": 8881.0, + "probability": 0.9478 + }, + { + "start": 8881.18, + "end": 8881.5, + "probability": 0.9292 + }, + { + "start": 8881.68, + "end": 8882.04, + "probability": 0.9419 + }, + { + "start": 8882.26, + "end": 8882.66, + "probability": 0.9839 + }, + { + "start": 8882.72, + "end": 8883.4, + "probability": 0.9713 + }, + { + "start": 8884.88, + "end": 8887.88, + "probability": 0.8476 + }, + { + "start": 8887.94, + "end": 8888.68, + "probability": 0.9808 + }, + { + "start": 8888.72, + "end": 8889.95, + "probability": 0.4835 + }, + { + "start": 8890.44, + "end": 8894.88, + "probability": 0.9722 + }, + { + "start": 8895.64, + "end": 8897.28, + "probability": 0.9647 + }, + { + "start": 8898.18, + "end": 8900.98, + "probability": 0.9976 + }, + { + "start": 8901.66, + "end": 8904.76, + "probability": 0.9547 + }, + { + "start": 8905.54, + "end": 8907.0, + "probability": 0.8296 + }, + { + "start": 8907.22, + "end": 8910.51, + "probability": 0.9922 + }, + { + "start": 8911.12, + "end": 8913.78, + "probability": 0.7505 + }, + { + "start": 8914.34, + "end": 8915.12, + "probability": 0.8514 + }, + { + "start": 8915.88, + "end": 8918.32, + "probability": 0.9952 + }, + { + "start": 8919.18, + "end": 8921.46, + "probability": 0.9956 + }, + { + "start": 8922.6, + "end": 8923.74, + "probability": 0.0269 + }, + { + "start": 8924.64, + "end": 8927.34, + "probability": 0.7441 + }, + { + "start": 8928.78, + "end": 8931.14, + "probability": 0.9406 + }, + { + "start": 8931.22, + "end": 8933.88, + "probability": 0.9445 + }, + { + "start": 8933.94, + "end": 8934.9, + "probability": 0.9743 + }, + { + "start": 8934.94, + "end": 8937.14, + "probability": 0.9698 + }, + { + "start": 8938.08, + "end": 8938.34, + "probability": 0.99 + }, + { + "start": 8939.1, + "end": 8942.48, + "probability": 0.548 + }, + { + "start": 8943.24, + "end": 8945.48, + "probability": 0.9745 + }, + { + "start": 8947.28, + "end": 8948.08, + "probability": 0.7734 + }, + { + "start": 8948.86, + "end": 8950.68, + "probability": 0.8906 + }, + { + "start": 8952.3, + "end": 8953.16, + "probability": 0.7492 + }, + { + "start": 8955.74, + "end": 8956.62, + "probability": 0.5308 + }, + { + "start": 8958.28, + "end": 8960.24, + "probability": 0.8125 + }, + { + "start": 8961.8, + "end": 8965.88, + "probability": 0.9521 + }, + { + "start": 8967.18, + "end": 8972.0, + "probability": 0.8988 + }, + { + "start": 8972.84, + "end": 8975.48, + "probability": 0.6904 + }, + { + "start": 8975.62, + "end": 8976.59, + "probability": 0.9783 + }, + { + "start": 8977.16, + "end": 8978.16, + "probability": 0.8989 + }, + { + "start": 8978.76, + "end": 8982.76, + "probability": 0.7869 + }, + { + "start": 8983.58, + "end": 8988.14, + "probability": 0.9844 + }, + { + "start": 8989.14, + "end": 8990.38, + "probability": 0.9359 + }, + { + "start": 8990.7, + "end": 8992.78, + "probability": 0.9515 + }, + { + "start": 8993.2, + "end": 8994.86, + "probability": 0.9863 + }, + { + "start": 8994.92, + "end": 8996.6, + "probability": 0.8953 + }, + { + "start": 8997.32, + "end": 8999.8, + "probability": 0.9863 + }, + { + "start": 9000.26, + "end": 9001.75, + "probability": 0.8714 + }, + { + "start": 9002.44, + "end": 9004.08, + "probability": 0.9784 + }, + { + "start": 9004.48, + "end": 9005.66, + "probability": 0.917 + }, + { + "start": 9006.4, + "end": 9007.18, + "probability": 0.9551 + }, + { + "start": 9008.06, + "end": 9009.48, + "probability": 0.9779 + }, + { + "start": 9010.12, + "end": 9011.4, + "probability": 0.8621 + }, + { + "start": 9012.1, + "end": 9014.64, + "probability": 0.9583 + }, + { + "start": 9015.92, + "end": 9016.88, + "probability": 0.8675 + }, + { + "start": 9017.42, + "end": 9019.2, + "probability": 0.8079 + }, + { + "start": 9020.02, + "end": 9022.02, + "probability": 0.9934 + }, + { + "start": 9022.54, + "end": 9027.38, + "probability": 0.9907 + }, + { + "start": 9028.56, + "end": 9032.18, + "probability": 0.9985 + }, + { + "start": 9032.62, + "end": 9035.16, + "probability": 0.9884 + }, + { + "start": 9036.68, + "end": 9036.98, + "probability": 0.7438 + }, + { + "start": 9037.68, + "end": 9038.24, + "probability": 0.9824 + }, + { + "start": 9038.4, + "end": 9039.38, + "probability": 0.9945 + }, + { + "start": 9040.58, + "end": 9045.7, + "probability": 0.813 + }, + { + "start": 9046.38, + "end": 9048.32, + "probability": 0.997 + }, + { + "start": 9049.24, + "end": 9052.0, + "probability": 0.9879 + }, + { + "start": 9052.78, + "end": 9055.98, + "probability": 0.9977 + }, + { + "start": 9056.42, + "end": 9057.8, + "probability": 0.9392 + }, + { + "start": 9058.44, + "end": 9061.18, + "probability": 0.9075 + }, + { + "start": 9062.96, + "end": 9064.98, + "probability": 0.9899 + }, + { + "start": 9065.72, + "end": 9067.88, + "probability": 0.9922 + }, + { + "start": 9068.62, + "end": 9069.62, + "probability": 0.7439 + }, + { + "start": 9070.02, + "end": 9074.44, + "probability": 0.9502 + }, + { + "start": 9074.56, + "end": 9075.1, + "probability": 0.4929 + }, + { + "start": 9075.14, + "end": 9076.94, + "probability": 0.9658 + }, + { + "start": 9077.94, + "end": 9079.12, + "probability": 0.8555 + }, + { + "start": 9079.92, + "end": 9082.44, + "probability": 0.8348 + }, + { + "start": 9083.28, + "end": 9083.54, + "probability": 0.2537 + }, + { + "start": 9083.58, + "end": 9084.32, + "probability": 0.2782 + }, + { + "start": 9084.56, + "end": 9085.42, + "probability": 0.3501 + }, + { + "start": 9086.08, + "end": 9086.72, + "probability": 0.7511 + }, + { + "start": 9086.86, + "end": 9088.7, + "probability": 0.7993 + }, + { + "start": 9088.86, + "end": 9089.66, + "probability": 0.1268 + }, + { + "start": 9089.8, + "end": 9091.74, + "probability": 0.9951 + }, + { + "start": 9092.24, + "end": 9095.02, + "probability": 0.7282 + }, + { + "start": 9095.4, + "end": 9095.46, + "probability": 0.067 + }, + { + "start": 9095.46, + "end": 9098.74, + "probability": 0.9897 + }, + { + "start": 9099.36, + "end": 9099.96, + "probability": 0.9004 + }, + { + "start": 9100.06, + "end": 9101.0, + "probability": 0.9787 + }, + { + "start": 9101.1, + "end": 9103.14, + "probability": 0.9805 + }, + { + "start": 9103.34, + "end": 9105.58, + "probability": 0.9945 + }, + { + "start": 9105.7, + "end": 9108.48, + "probability": 0.9902 + }, + { + "start": 9109.0, + "end": 9110.78, + "probability": 0.9906 + }, + { + "start": 9110.9, + "end": 9112.06, + "probability": 0.955 + }, + { + "start": 9112.78, + "end": 9116.6, + "probability": 0.9887 + }, + { + "start": 9117.72, + "end": 9121.08, + "probability": 0.9932 + }, + { + "start": 9121.72, + "end": 9123.02, + "probability": 0.9737 + }, + { + "start": 9123.38, + "end": 9123.98, + "probability": 0.9427 + }, + { + "start": 9124.26, + "end": 9125.12, + "probability": 0.9774 + }, + { + "start": 9125.36, + "end": 9126.34, + "probability": 0.9585 + }, + { + "start": 9126.68, + "end": 9129.04, + "probability": 0.9482 + }, + { + "start": 9129.72, + "end": 9132.16, + "probability": 0.9995 + }, + { + "start": 9132.16, + "end": 9134.18, + "probability": 0.9749 + }, + { + "start": 9135.26, + "end": 9136.28, + "probability": 0.992 + }, + { + "start": 9137.36, + "end": 9138.2, + "probability": 0.9521 + }, + { + "start": 9138.36, + "end": 9141.74, + "probability": 0.9885 + }, + { + "start": 9142.8, + "end": 9148.72, + "probability": 0.9807 + }, + { + "start": 9148.76, + "end": 9149.14, + "probability": 0.0086 + }, + { + "start": 9149.8, + "end": 9150.32, + "probability": 0.8191 + }, + { + "start": 9150.32, + "end": 9155.28, + "probability": 0.976 + }, + { + "start": 9155.82, + "end": 9158.72, + "probability": 0.952 + }, + { + "start": 9158.8, + "end": 9159.54, + "probability": 0.7531 + }, + { + "start": 9159.64, + "end": 9160.12, + "probability": 0.5404 + }, + { + "start": 9160.14, + "end": 9162.34, + "probability": 0.9872 + }, + { + "start": 9162.4, + "end": 9162.84, + "probability": 0.7552 + }, + { + "start": 9163.94, + "end": 9164.18, + "probability": 0.3485 + }, + { + "start": 9164.28, + "end": 9167.4, + "probability": 0.8365 + }, + { + "start": 9167.8, + "end": 9168.51, + "probability": 0.3542 + }, + { + "start": 9169.12, + "end": 9171.12, + "probability": 0.5854 + }, + { + "start": 9171.24, + "end": 9172.56, + "probability": 0.6275 + }, + { + "start": 9172.66, + "end": 9172.76, + "probability": 0.1597 + }, + { + "start": 9172.78, + "end": 9176.62, + "probability": 0.9235 + }, + { + "start": 9176.84, + "end": 9177.34, + "probability": 0.2271 + }, + { + "start": 9177.46, + "end": 9178.38, + "probability": 0.9798 + }, + { + "start": 9178.46, + "end": 9181.07, + "probability": 0.7458 + }, + { + "start": 9182.02, + "end": 9186.14, + "probability": 0.917 + }, + { + "start": 9186.9, + "end": 9189.48, + "probability": 0.5407 + }, + { + "start": 9189.9, + "end": 9192.3, + "probability": 0.9574 + }, + { + "start": 9192.8, + "end": 9193.17, + "probability": 0.0803 + }, + { + "start": 9193.48, + "end": 9193.68, + "probability": 0.9144 + }, + { + "start": 9193.68, + "end": 9193.88, + "probability": 0.1927 + }, + { + "start": 9194.16, + "end": 9195.2, + "probability": 0.7711 + }, + { + "start": 9195.22, + "end": 9196.84, + "probability": 0.4534 + }, + { + "start": 9197.5, + "end": 9197.6, + "probability": 0.009 + }, + { + "start": 9197.72, + "end": 9198.38, + "probability": 0.9384 + }, + { + "start": 9199.06, + "end": 9199.98, + "probability": 0.7239 + }, + { + "start": 9200.36, + "end": 9203.56, + "probability": 0.9874 + }, + { + "start": 9204.18, + "end": 9206.34, + "probability": 0.9977 + }, + { + "start": 9206.46, + "end": 9207.9, + "probability": 0.7201 + }, + { + "start": 9208.42, + "end": 9210.78, + "probability": 0.9806 + }, + { + "start": 9211.22, + "end": 9213.6, + "probability": 0.7034 + }, + { + "start": 9214.84, + "end": 9215.6, + "probability": 0.5428 + }, + { + "start": 9216.3, + "end": 9218.82, + "probability": 0.9342 + }, + { + "start": 9219.04, + "end": 9220.06, + "probability": 0.4998 + }, + { + "start": 9220.18, + "end": 9221.38, + "probability": 0.9397 + }, + { + "start": 9221.54, + "end": 9222.69, + "probability": 0.8694 + }, + { + "start": 9223.12, + "end": 9225.22, + "probability": 0.9969 + }, + { + "start": 9225.52, + "end": 9226.73, + "probability": 0.9062 + }, + { + "start": 9228.56, + "end": 9229.16, + "probability": 0.1006 + }, + { + "start": 9229.16, + "end": 9229.23, + "probability": 0.1131 + }, + { + "start": 9229.64, + "end": 9230.56, + "probability": 0.4795 + }, + { + "start": 9231.72, + "end": 9233.82, + "probability": 0.67 + }, + { + "start": 9234.16, + "end": 9235.74, + "probability": 0.9258 + }, + { + "start": 9235.82, + "end": 9238.86, + "probability": 0.9963 + }, + { + "start": 9239.0, + "end": 9239.24, + "probability": 0.5214 + }, + { + "start": 9239.5, + "end": 9239.74, + "probability": 0.6445 + }, + { + "start": 9239.78, + "end": 9243.48, + "probability": 0.9845 + }, + { + "start": 9244.16, + "end": 9244.76, + "probability": 0.9846 + }, + { + "start": 9244.86, + "end": 9252.26, + "probability": 0.9857 + }, + { + "start": 9252.94, + "end": 9256.02, + "probability": 0.9781 + }, + { + "start": 9256.18, + "end": 9256.7, + "probability": 0.7795 + }, + { + "start": 9257.38, + "end": 9257.66, + "probability": 0.7832 + }, + { + "start": 9257.76, + "end": 9258.18, + "probability": 0.9217 + }, + { + "start": 9258.2, + "end": 9262.18, + "probability": 0.9443 + }, + { + "start": 9262.8, + "end": 9265.3, + "probability": 0.9527 + }, + { + "start": 9265.78, + "end": 9267.6, + "probability": 0.9187 + }, + { + "start": 9267.8, + "end": 9269.0, + "probability": 0.9971 + }, + { + "start": 9269.58, + "end": 9273.16, + "probability": 0.9958 + }, + { + "start": 9273.16, + "end": 9276.64, + "probability": 0.9985 + }, + { + "start": 9277.16, + "end": 9279.36, + "probability": 0.996 + }, + { + "start": 9280.61, + "end": 9285.16, + "probability": 0.973 + }, + { + "start": 9285.32, + "end": 9288.16, + "probability": 0.9129 + }, + { + "start": 9288.7, + "end": 9289.82, + "probability": 0.911 + }, + { + "start": 9290.42, + "end": 9292.8, + "probability": 0.9319 + }, + { + "start": 9292.92, + "end": 9293.38, + "probability": 0.8109 + }, + { + "start": 9294.5, + "end": 9295.11, + "probability": 0.9307 + }, + { + "start": 9295.76, + "end": 9299.44, + "probability": 0.8483 + }, + { + "start": 9300.1, + "end": 9301.08, + "probability": 0.9712 + }, + { + "start": 9301.78, + "end": 9308.98, + "probability": 0.9936 + }, + { + "start": 9309.14, + "end": 9309.32, + "probability": 0.8169 + }, + { + "start": 9309.44, + "end": 9309.64, + "probability": 0.8747 + }, + { + "start": 9309.7, + "end": 9310.04, + "probability": 0.9528 + }, + { + "start": 9310.08, + "end": 9310.54, + "probability": 0.7661 + }, + { + "start": 9311.08, + "end": 9311.54, + "probability": 0.9922 + }, + { + "start": 9312.2, + "end": 9315.1, + "probability": 0.9978 + }, + { + "start": 9316.2, + "end": 9316.2, + "probability": 0.069 + }, + { + "start": 9316.2, + "end": 9317.68, + "probability": 0.9858 + }, + { + "start": 9319.04, + "end": 9320.02, + "probability": 0.7103 + }, + { + "start": 9320.54, + "end": 9323.36, + "probability": 0.9768 + }, + { + "start": 9323.52, + "end": 9324.76, + "probability": 0.9305 + }, + { + "start": 9324.82, + "end": 9327.54, + "probability": 0.9971 + }, + { + "start": 9328.32, + "end": 9329.98, + "probability": 0.9942 + }, + { + "start": 9330.02, + "end": 9330.92, + "probability": 0.6274 + }, + { + "start": 9331.14, + "end": 9331.5, + "probability": 0.6565 + }, + { + "start": 9332.0, + "end": 9332.96, + "probability": 0.9949 + }, + { + "start": 9334.3, + "end": 9340.54, + "probability": 0.993 + }, + { + "start": 9340.54, + "end": 9346.54, + "probability": 0.9367 + }, + { + "start": 9346.64, + "end": 9350.58, + "probability": 0.9916 + }, + { + "start": 9351.26, + "end": 9354.48, + "probability": 0.9968 + }, + { + "start": 9354.88, + "end": 9357.2, + "probability": 0.9994 + }, + { + "start": 9358.0, + "end": 9359.72, + "probability": 0.7479 + }, + { + "start": 9360.46, + "end": 9362.54, + "probability": 0.9873 + }, + { + "start": 9364.4, + "end": 9365.24, + "probability": 0.4964 + }, + { + "start": 9366.06, + "end": 9368.39, + "probability": 0.9661 + }, + { + "start": 9368.66, + "end": 9372.02, + "probability": 0.9114 + }, + { + "start": 9372.54, + "end": 9374.8, + "probability": 0.9839 + }, + { + "start": 9375.34, + "end": 9377.2, + "probability": 0.3099 + }, + { + "start": 9377.4, + "end": 9379.0, + "probability": 0.9782 + }, + { + "start": 9379.12, + "end": 9379.54, + "probability": 0.9565 + }, + { + "start": 9380.12, + "end": 9381.23, + "probability": 0.9844 + }, + { + "start": 9381.6, + "end": 9383.44, + "probability": 0.8612 + }, + { + "start": 9384.34, + "end": 9386.54, + "probability": 0.0743 + }, + { + "start": 9386.56, + "end": 9388.44, + "probability": 0.9088 + }, + { + "start": 9390.0, + "end": 9392.56, + "probability": 0.7812 + }, + { + "start": 9393.42, + "end": 9395.16, + "probability": 0.9534 + }, + { + "start": 9395.78, + "end": 9398.52, + "probability": 0.9057 + }, + { + "start": 9399.28, + "end": 9399.77, + "probability": 0.7554 + }, + { + "start": 9400.12, + "end": 9401.53, + "probability": 0.9753 + }, + { + "start": 9403.24, + "end": 9408.04, + "probability": 0.9106 + }, + { + "start": 9408.24, + "end": 9411.68, + "probability": 0.9849 + }, + { + "start": 9412.0, + "end": 9413.78, + "probability": 0.7257 + }, + { + "start": 9414.58, + "end": 9415.5, + "probability": 0.8856 + }, + { + "start": 9415.8, + "end": 9417.7, + "probability": 0.9882 + }, + { + "start": 9417.74, + "end": 9419.07, + "probability": 0.9648 + }, + { + "start": 9419.98, + "end": 9421.02, + "probability": 0.754 + }, + { + "start": 9421.82, + "end": 9422.62, + "probability": 0.6923 + }, + { + "start": 9423.72, + "end": 9427.88, + "probability": 0.9849 + }, + { + "start": 9435.9, + "end": 9436.22, + "probability": 0.1514 + }, + { + "start": 9436.26, + "end": 9436.8, + "probability": 0.1565 + }, + { + "start": 9436.8, + "end": 9437.1, + "probability": 0.1322 + }, + { + "start": 9437.1, + "end": 9437.12, + "probability": 0.1229 + }, + { + "start": 9461.66, + "end": 9463.68, + "probability": 0.6673 + }, + { + "start": 9465.78, + "end": 9469.82, + "probability": 0.6559 + }, + { + "start": 9470.08, + "end": 9473.58, + "probability": 0.969 + }, + { + "start": 9474.54, + "end": 9475.88, + "probability": 0.8702 + }, + { + "start": 9475.98, + "end": 9477.36, + "probability": 0.5915 + }, + { + "start": 9477.4, + "end": 9480.14, + "probability": 0.6549 + }, + { + "start": 9480.34, + "end": 9481.58, + "probability": 0.9212 + }, + { + "start": 9481.96, + "end": 9482.8, + "probability": 0.8375 + }, + { + "start": 9483.66, + "end": 9486.94, + "probability": 0.3005 + }, + { + "start": 9488.52, + "end": 9489.46, + "probability": 0.8453 + }, + { + "start": 9489.54, + "end": 9490.92, + "probability": 0.91 + }, + { + "start": 9491.36, + "end": 9494.04, + "probability": 0.8091 + }, + { + "start": 9494.82, + "end": 9495.76, + "probability": 0.8431 + }, + { + "start": 9495.98, + "end": 9496.56, + "probability": 0.4458 + }, + { + "start": 9497.66, + "end": 9500.52, + "probability": 0.7404 + }, + { + "start": 9501.36, + "end": 9502.0, + "probability": 0.8021 + }, + { + "start": 9502.2, + "end": 9504.94, + "probability": 0.6901 + }, + { + "start": 9505.18, + "end": 9505.48, + "probability": 0.7156 + }, + { + "start": 9505.6, + "end": 9506.16, + "probability": 0.6987 + }, + { + "start": 9506.94, + "end": 9507.28, + "probability": 0.5873 + }, + { + "start": 9507.56, + "end": 9508.62, + "probability": 0.7816 + }, + { + "start": 9509.74, + "end": 9510.42, + "probability": 0.9867 + }, + { + "start": 9510.6, + "end": 9511.74, + "probability": 0.6456 + }, + { + "start": 9511.86, + "end": 9515.26, + "probability": 0.8347 + }, + { + "start": 9515.26, + "end": 9519.9, + "probability": 0.9888 + }, + { + "start": 9520.38, + "end": 9520.8, + "probability": 0.5935 + }, + { + "start": 9521.52, + "end": 9523.34, + "probability": 0.8806 + }, + { + "start": 9523.76, + "end": 9524.7, + "probability": 0.8273 + }, + { + "start": 9524.96, + "end": 9526.91, + "probability": 0.8089 + }, + { + "start": 9527.46, + "end": 9528.66, + "probability": 0.992 + }, + { + "start": 9528.88, + "end": 9529.54, + "probability": 0.8784 + }, + { + "start": 9532.06, + "end": 9534.46, + "probability": 0.9434 + }, + { + "start": 9534.58, + "end": 9535.52, + "probability": 0.6748 + }, + { + "start": 9536.46, + "end": 9541.64, + "probability": 0.9548 + }, + { + "start": 9542.14, + "end": 9546.12, + "probability": 0.6988 + }, + { + "start": 9547.72, + "end": 9550.7, + "probability": 0.7347 + }, + { + "start": 9551.82, + "end": 9553.16, + "probability": 0.8135 + }, + { + "start": 9553.5, + "end": 9556.82, + "probability": 0.8316 + }, + { + "start": 9557.98, + "end": 9562.4, + "probability": 0.8794 + }, + { + "start": 9562.52, + "end": 9563.26, + "probability": 0.8293 + }, + { + "start": 9565.1, + "end": 9567.76, + "probability": 0.5909 + }, + { + "start": 9568.68, + "end": 9569.25, + "probability": 0.7454 + }, + { + "start": 9569.32, + "end": 9570.42, + "probability": 0.6678 + }, + { + "start": 9570.56, + "end": 9571.6, + "probability": 0.9596 + }, + { + "start": 9572.56, + "end": 9574.62, + "probability": 0.7775 + }, + { + "start": 9576.22, + "end": 9577.14, + "probability": 0.993 + }, + { + "start": 9577.82, + "end": 9579.38, + "probability": 0.8792 + }, + { + "start": 9580.78, + "end": 9581.4, + "probability": 0.7617 + }, + { + "start": 9582.08, + "end": 9582.62, + "probability": 0.4354 + }, + { + "start": 9584.02, + "end": 9585.02, + "probability": 0.9657 + }, + { + "start": 9587.1, + "end": 9590.82, + "probability": 0.9754 + }, + { + "start": 9591.92, + "end": 9593.08, + "probability": 0.9083 + }, + { + "start": 9593.2, + "end": 9595.7, + "probability": 0.8506 + }, + { + "start": 9595.76, + "end": 9597.16, + "probability": 0.9347 + }, + { + "start": 9597.62, + "end": 9599.18, + "probability": 0.9529 + }, + { + "start": 9600.38, + "end": 9601.86, + "probability": 0.9939 + }, + { + "start": 9603.04, + "end": 9606.38, + "probability": 0.7218 + }, + { + "start": 9607.2, + "end": 9609.08, + "probability": 0.8924 + }, + { + "start": 9609.84, + "end": 9612.65, + "probability": 0.9943 + }, + { + "start": 9613.54, + "end": 9614.88, + "probability": 0.9326 + }, + { + "start": 9615.0, + "end": 9620.98, + "probability": 0.9337 + }, + { + "start": 9622.96, + "end": 9623.84, + "probability": 0.9985 + }, + { + "start": 9625.86, + "end": 9633.28, + "probability": 0.988 + }, + { + "start": 9634.36, + "end": 9636.44, + "probability": 0.9435 + }, + { + "start": 9637.18, + "end": 9640.0, + "probability": 0.7456 + }, + { + "start": 9641.3, + "end": 9644.22, + "probability": 0.7577 + }, + { + "start": 9646.12, + "end": 9648.46, + "probability": 0.8621 + }, + { + "start": 9649.22, + "end": 9649.74, + "probability": 0.7244 + }, + { + "start": 9651.54, + "end": 9658.62, + "probability": 0.9855 + }, + { + "start": 9660.54, + "end": 9661.48, + "probability": 0.4938 + }, + { + "start": 9662.52, + "end": 9665.04, + "probability": 0.9204 + }, + { + "start": 9666.48, + "end": 9673.2, + "probability": 0.992 + }, + { + "start": 9674.04, + "end": 9679.3, + "probability": 0.9951 + }, + { + "start": 9680.36, + "end": 9681.52, + "probability": 0.7368 + }, + { + "start": 9682.4, + "end": 9684.02, + "probability": 0.1616 + }, + { + "start": 9684.26, + "end": 9684.72, + "probability": 0.6592 + }, + { + "start": 9687.82, + "end": 9688.54, + "probability": 0.5674 + }, + { + "start": 9688.78, + "end": 9692.12, + "probability": 0.7567 + }, + { + "start": 9692.3, + "end": 9693.26, + "probability": 0.6893 + }, + { + "start": 9693.34, + "end": 9694.22, + "probability": 0.853 + }, + { + "start": 9694.3, + "end": 9696.0, + "probability": 0.7333 + }, + { + "start": 9696.1, + "end": 9697.44, + "probability": 0.9148 + }, + { + "start": 9698.02, + "end": 9699.9, + "probability": 0.9846 + }, + { + "start": 9701.14, + "end": 9702.06, + "probability": 0.3438 + }, + { + "start": 9703.56, + "end": 9707.48, + "probability": 0.9621 + }, + { + "start": 9707.68, + "end": 9710.58, + "probability": 0.9569 + }, + { + "start": 9711.5, + "end": 9713.7, + "probability": 0.8931 + }, + { + "start": 9714.62, + "end": 9717.14, + "probability": 0.7989 + }, + { + "start": 9717.66, + "end": 9720.7, + "probability": 0.9285 + }, + { + "start": 9721.28, + "end": 9722.02, + "probability": 0.457 + }, + { + "start": 9722.04, + "end": 9726.04, + "probability": 0.688 + }, + { + "start": 9726.12, + "end": 9727.34, + "probability": 0.9585 + }, + { + "start": 9728.38, + "end": 9729.92, + "probability": 0.8048 + }, + { + "start": 9730.04, + "end": 9730.74, + "probability": 0.8242 + }, + { + "start": 9731.82, + "end": 9735.28, + "probability": 0.9827 + }, + { + "start": 9736.06, + "end": 9736.42, + "probability": 0.7497 + }, + { + "start": 9736.58, + "end": 9738.36, + "probability": 0.778 + }, + { + "start": 9738.36, + "end": 9739.48, + "probability": 0.5057 + }, + { + "start": 9740.08, + "end": 9745.54, + "probability": 0.9489 + }, + { + "start": 9746.62, + "end": 9748.0, + "probability": 0.8562 + }, + { + "start": 9748.24, + "end": 9750.22, + "probability": 0.8523 + }, + { + "start": 9751.28, + "end": 9752.3, + "probability": 0.9966 + }, + { + "start": 9752.78, + "end": 9757.31, + "probability": 0.979 + }, + { + "start": 9758.02, + "end": 9759.4, + "probability": 0.9409 + }, + { + "start": 9760.86, + "end": 9762.86, + "probability": 0.9685 + }, + { + "start": 9762.94, + "end": 9763.71, + "probability": 0.9725 + }, + { + "start": 9764.36, + "end": 9768.94, + "probability": 0.9941 + }, + { + "start": 9768.94, + "end": 9774.94, + "probability": 0.9092 + }, + { + "start": 9775.7, + "end": 9777.04, + "probability": 0.7378 + }, + { + "start": 9777.18, + "end": 9783.18, + "probability": 0.9378 + }, + { + "start": 9783.32, + "end": 9784.46, + "probability": 0.9047 + }, + { + "start": 9784.56, + "end": 9785.22, + "probability": 0.8366 + }, + { + "start": 9785.36, + "end": 9786.98, + "probability": 0.8577 + }, + { + "start": 9787.22, + "end": 9787.74, + "probability": 0.9971 + }, + { + "start": 9788.34, + "end": 9794.74, + "probability": 0.975 + }, + { + "start": 9796.66, + "end": 9799.28, + "probability": 0.5971 + }, + { + "start": 9799.54, + "end": 9801.56, + "probability": 0.9728 + }, + { + "start": 9801.6, + "end": 9803.06, + "probability": 0.9077 + }, + { + "start": 9803.74, + "end": 9804.28, + "probability": 0.974 + }, + { + "start": 9806.08, + "end": 9807.22, + "probability": 0.9912 + }, + { + "start": 9808.88, + "end": 9809.42, + "probability": 0.8404 + }, + { + "start": 9812.04, + "end": 9813.14, + "probability": 0.9846 + }, + { + "start": 9814.76, + "end": 9816.58, + "probability": 0.7516 + }, + { + "start": 9818.7, + "end": 9821.02, + "probability": 0.9695 + }, + { + "start": 9821.62, + "end": 9825.04, + "probability": 0.998 + }, + { + "start": 9826.92, + "end": 9830.78, + "probability": 0.6738 + }, + { + "start": 9831.9, + "end": 9832.74, + "probability": 0.9341 + }, + { + "start": 9833.46, + "end": 9836.24, + "probability": 0.9461 + }, + { + "start": 9837.3, + "end": 9840.76, + "probability": 0.8085 + }, + { + "start": 9841.54, + "end": 9846.76, + "probability": 0.9799 + }, + { + "start": 9847.2, + "end": 9847.56, + "probability": 0.9217 + }, + { + "start": 9848.38, + "end": 9852.14, + "probability": 0.9849 + }, + { + "start": 9852.98, + "end": 9856.24, + "probability": 0.5492 + }, + { + "start": 9856.44, + "end": 9856.9, + "probability": 0.6416 + }, + { + "start": 9857.78, + "end": 9859.34, + "probability": 0.8854 + }, + { + "start": 9860.92, + "end": 9866.06, + "probability": 0.9008 + }, + { + "start": 9867.12, + "end": 9868.86, + "probability": 0.8277 + }, + { + "start": 9869.26, + "end": 9872.32, + "probability": 0.8919 + }, + { + "start": 9872.51, + "end": 9876.02, + "probability": 0.992 + }, + { + "start": 9877.12, + "end": 9877.68, + "probability": 0.6761 + }, + { + "start": 9877.88, + "end": 9878.78, + "probability": 0.8071 + }, + { + "start": 9878.98, + "end": 9882.04, + "probability": 0.7938 + }, + { + "start": 9883.6, + "end": 9887.6, + "probability": 0.7164 + }, + { + "start": 9889.24, + "end": 9891.92, + "probability": 0.5772 + }, + { + "start": 9895.42, + "end": 9896.98, + "probability": 0.6231 + }, + { + "start": 9897.08, + "end": 9898.58, + "probability": 0.8684 + }, + { + "start": 9899.46, + "end": 9903.3, + "probability": 0.9517 + }, + { + "start": 9904.88, + "end": 9905.46, + "probability": 0.7793 + }, + { + "start": 9907.14, + "end": 9911.04, + "probability": 0.952 + }, + { + "start": 9911.18, + "end": 9914.12, + "probability": 0.8217 + }, + { + "start": 9915.64, + "end": 9918.22, + "probability": 0.7105 + }, + { + "start": 9918.86, + "end": 9920.84, + "probability": 0.933 + }, + { + "start": 9921.46, + "end": 9926.16, + "probability": 0.9095 + }, + { + "start": 9926.78, + "end": 9927.44, + "probability": 0.8954 + }, + { + "start": 9928.4, + "end": 9931.06, + "probability": 0.8084 + }, + { + "start": 9931.92, + "end": 9935.72, + "probability": 0.8988 + }, + { + "start": 9935.86, + "end": 9936.04, + "probability": 0.4693 + }, + { + "start": 9936.14, + "end": 9936.38, + "probability": 0.6973 + }, + { + "start": 9936.96, + "end": 9939.0, + "probability": 0.8547 + }, + { + "start": 9939.9, + "end": 9940.9, + "probability": 0.9756 + }, + { + "start": 9942.44, + "end": 9944.6, + "probability": 0.998 + }, + { + "start": 9945.7, + "end": 9946.66, + "probability": 0.8013 + }, + { + "start": 9947.4, + "end": 9949.8, + "probability": 0.8053 + }, + { + "start": 9950.58, + "end": 9951.37, + "probability": 0.8525 + }, + { + "start": 9951.6, + "end": 9954.2, + "probability": 0.6898 + }, + { + "start": 9954.8, + "end": 9958.9, + "probability": 0.9907 + }, + { + "start": 9959.84, + "end": 9964.9, + "probability": 0.979 + }, + { + "start": 9965.02, + "end": 9965.8, + "probability": 0.5849 + }, + { + "start": 9966.66, + "end": 9967.58, + "probability": 0.8972 + }, + { + "start": 9968.94, + "end": 9972.64, + "probability": 0.9495 + }, + { + "start": 9972.64, + "end": 9976.14, + "probability": 0.9829 + }, + { + "start": 9978.54, + "end": 9982.04, + "probability": 0.9804 + }, + { + "start": 9982.24, + "end": 9984.36, + "probability": 0.9572 + }, + { + "start": 9984.4, + "end": 9986.0, + "probability": 0.6945 + }, + { + "start": 9986.14, + "end": 9988.95, + "probability": 0.8949 + }, + { + "start": 9989.94, + "end": 9992.34, + "probability": 0.6646 + }, + { + "start": 9992.38, + "end": 9993.52, + "probability": 0.7834 + }, + { + "start": 9994.42, + "end": 9996.86, + "probability": 0.981 + }, + { + "start": 9997.0, + "end": 9998.78, + "probability": 0.9593 + }, + { + "start": 9999.64, + "end": 10001.26, + "probability": 0.9571 + }, + { + "start": 10001.42, + "end": 10008.7, + "probability": 0.9881 + }, + { + "start": 10010.4, + "end": 10012.4, + "probability": 0.7778 + }, + { + "start": 10014.08, + "end": 10017.16, + "probability": 0.9926 + }, + { + "start": 10018.22, + "end": 10019.78, + "probability": 0.976 + }, + { + "start": 10020.86, + "end": 10021.98, + "probability": 0.4972 + }, + { + "start": 10023.02, + "end": 10026.58, + "probability": 0.7547 + }, + { + "start": 10028.28, + "end": 10028.7, + "probability": 0.4929 + }, + { + "start": 10028.74, + "end": 10031.96, + "probability": 0.8706 + }, + { + "start": 10032.14, + "end": 10034.94, + "probability": 0.9663 + }, + { + "start": 10036.14, + "end": 10039.16, + "probability": 0.8859 + }, + { + "start": 10039.72, + "end": 10042.96, + "probability": 0.6677 + }, + { + "start": 10044.02, + "end": 10047.06, + "probability": 0.8601 + }, + { + "start": 10048.0, + "end": 10050.38, + "probability": 0.9966 + }, + { + "start": 10051.5, + "end": 10052.78, + "probability": 0.9268 + }, + { + "start": 10052.82, + "end": 10054.16, + "probability": 0.9553 + }, + { + "start": 10054.36, + "end": 10058.58, + "probability": 0.6719 + }, + { + "start": 10059.56, + "end": 10064.74, + "probability": 0.9915 + }, + { + "start": 10065.6, + "end": 10066.88, + "probability": 0.9507 + }, + { + "start": 10067.42, + "end": 10068.9, + "probability": 0.8927 + }, + { + "start": 10069.04, + "end": 10072.0, + "probability": 0.7304 + }, + { + "start": 10072.44, + "end": 10077.34, + "probability": 0.8545 + }, + { + "start": 10077.72, + "end": 10082.58, + "probability": 0.9218 + }, + { + "start": 10082.84, + "end": 10083.48, + "probability": 0.6941 + }, + { + "start": 10084.2, + "end": 10084.54, + "probability": 0.6949 + }, + { + "start": 10085.64, + "end": 10087.46, + "probability": 0.8978 + }, + { + "start": 10109.62, + "end": 10110.28, + "probability": 0.3737 + }, + { + "start": 10110.58, + "end": 10110.82, + "probability": 0.1879 + }, + { + "start": 10111.02, + "end": 10111.4, + "probability": 0.1921 + }, + { + "start": 10111.48, + "end": 10112.44, + "probability": 0.0386 + }, + { + "start": 10112.48, + "end": 10112.8, + "probability": 0.5814 + }, + { + "start": 10112.8, + "end": 10112.8, + "probability": 0.231 + }, + { + "start": 10112.8, + "end": 10112.8, + "probability": 0.1672 + }, + { + "start": 10134.74, + "end": 10136.8, + "probability": 0.3645 + }, + { + "start": 10141.26, + "end": 10148.16, + "probability": 0.9975 + }, + { + "start": 10148.16, + "end": 10154.04, + "probability": 0.9993 + }, + { + "start": 10155.3, + "end": 10158.34, + "probability": 0.9976 + }, + { + "start": 10159.04, + "end": 10161.22, + "probability": 0.7463 + }, + { + "start": 10161.96, + "end": 10164.36, + "probability": 0.9949 + }, + { + "start": 10165.08, + "end": 10170.34, + "probability": 0.997 + }, + { + "start": 10171.72, + "end": 10172.58, + "probability": 0.8856 + }, + { + "start": 10173.18, + "end": 10174.24, + "probability": 0.725 + }, + { + "start": 10175.06, + "end": 10177.4, + "probability": 0.9781 + }, + { + "start": 10178.98, + "end": 10180.78, + "probability": 0.9403 + }, + { + "start": 10181.4, + "end": 10184.1, + "probability": 0.9078 + }, + { + "start": 10184.84, + "end": 10186.82, + "probability": 0.979 + }, + { + "start": 10187.66, + "end": 10190.68, + "probability": 0.9543 + }, + { + "start": 10191.28, + "end": 10194.2, + "probability": 0.9699 + }, + { + "start": 10194.72, + "end": 10197.4, + "probability": 0.9985 + }, + { + "start": 10198.38, + "end": 10198.9, + "probability": 0.8771 + }, + { + "start": 10199.36, + "end": 10205.34, + "probability": 0.9927 + }, + { + "start": 10205.34, + "end": 10210.12, + "probability": 0.9647 + }, + { + "start": 10210.76, + "end": 10211.26, + "probability": 0.9762 + }, + { + "start": 10212.12, + "end": 10216.52, + "probability": 0.9944 + }, + { + "start": 10217.46, + "end": 10221.84, + "probability": 0.9948 + }, + { + "start": 10221.84, + "end": 10227.02, + "probability": 0.9963 + }, + { + "start": 10228.44, + "end": 10229.68, + "probability": 0.947 + }, + { + "start": 10230.92, + "end": 10232.38, + "probability": 0.9965 + }, + { + "start": 10233.34, + "end": 10234.86, + "probability": 0.6797 + }, + { + "start": 10236.1, + "end": 10238.56, + "probability": 0.8206 + }, + { + "start": 10239.02, + "end": 10242.08, + "probability": 0.9838 + }, + { + "start": 10242.74, + "end": 10243.36, + "probability": 0.7563 + }, + { + "start": 10243.42, + "end": 10243.94, + "probability": 0.9109 + }, + { + "start": 10243.96, + "end": 10247.86, + "probability": 0.985 + }, + { + "start": 10248.64, + "end": 10251.9, + "probability": 0.999 + }, + { + "start": 10251.9, + "end": 10257.66, + "probability": 0.9401 + }, + { + "start": 10259.14, + "end": 10262.41, + "probability": 0.7601 + }, + { + "start": 10263.48, + "end": 10266.22, + "probability": 0.9984 + }, + { + "start": 10267.08, + "end": 10270.58, + "probability": 0.9282 + }, + { + "start": 10271.38, + "end": 10272.3, + "probability": 0.4948 + }, + { + "start": 10273.0, + "end": 10276.94, + "probability": 0.9233 + }, + { + "start": 10277.74, + "end": 10278.84, + "probability": 0.9344 + }, + { + "start": 10279.56, + "end": 10282.74, + "probability": 0.9702 + }, + { + "start": 10284.7, + "end": 10286.46, + "probability": 0.9974 + }, + { + "start": 10286.54, + "end": 10290.8, + "probability": 0.9758 + }, + { + "start": 10291.08, + "end": 10293.66, + "probability": 0.9973 + }, + { + "start": 10294.36, + "end": 10296.58, + "probability": 0.7046 + }, + { + "start": 10297.4, + "end": 10301.32, + "probability": 0.9912 + }, + { + "start": 10302.08, + "end": 10304.06, + "probability": 0.998 + }, + { + "start": 10304.06, + "end": 10308.52, + "probability": 0.7371 + }, + { + "start": 10309.44, + "end": 10315.26, + "probability": 0.99 + }, + { + "start": 10315.44, + "end": 10316.24, + "probability": 0.5839 + }, + { + "start": 10316.82, + "end": 10318.68, + "probability": 0.9762 + }, + { + "start": 10318.76, + "end": 10320.86, + "probability": 0.7833 + }, + { + "start": 10321.42, + "end": 10323.08, + "probability": 0.7322 + }, + { + "start": 10323.82, + "end": 10327.56, + "probability": 0.989 + }, + { + "start": 10328.12, + "end": 10332.26, + "probability": 0.9972 + }, + { + "start": 10333.18, + "end": 10337.24, + "probability": 0.9761 + }, + { + "start": 10337.94, + "end": 10339.2, + "probability": 0.5353 + }, + { + "start": 10339.4, + "end": 10340.72, + "probability": 0.7409 + }, + { + "start": 10340.88, + "end": 10342.48, + "probability": 0.9825 + }, + { + "start": 10342.98, + "end": 10344.76, + "probability": 0.792 + }, + { + "start": 10345.42, + "end": 10349.14, + "probability": 0.9942 + }, + { + "start": 10349.19, + "end": 10353.26, + "probability": 0.999 + }, + { + "start": 10353.26, + "end": 10357.78, + "probability": 0.9964 + }, + { + "start": 10358.46, + "end": 10360.8, + "probability": 0.9849 + }, + { + "start": 10360.8, + "end": 10364.82, + "probability": 0.9956 + }, + { + "start": 10365.56, + "end": 10368.12, + "probability": 0.9412 + }, + { + "start": 10368.12, + "end": 10372.16, + "probability": 0.8713 + }, + { + "start": 10372.26, + "end": 10375.5, + "probability": 0.9772 + }, + { + "start": 10375.5, + "end": 10379.42, + "probability": 0.9819 + }, + { + "start": 10380.14, + "end": 10381.84, + "probability": 0.7565 + }, + { + "start": 10382.48, + "end": 10386.74, + "probability": 0.9932 + }, + { + "start": 10387.58, + "end": 10388.74, + "probability": 0.6559 + }, + { + "start": 10389.54, + "end": 10392.1, + "probability": 0.998 + }, + { + "start": 10392.62, + "end": 10397.08, + "probability": 0.9954 + }, + { + "start": 10397.76, + "end": 10398.44, + "probability": 0.8018 + }, + { + "start": 10398.98, + "end": 10402.26, + "probability": 0.9918 + }, + { + "start": 10403.44, + "end": 10405.48, + "probability": 0.981 + }, + { + "start": 10406.64, + "end": 10410.0, + "probability": 0.996 + }, + { + "start": 10410.76, + "end": 10414.78, + "probability": 0.9918 + }, + { + "start": 10415.32, + "end": 10417.86, + "probability": 0.8763 + }, + { + "start": 10418.38, + "end": 10420.72, + "probability": 0.9929 + }, + { + "start": 10421.74, + "end": 10425.56, + "probability": 0.9958 + }, + { + "start": 10425.56, + "end": 10429.86, + "probability": 0.9983 + }, + { + "start": 10430.42, + "end": 10434.02, + "probability": 0.9975 + }, + { + "start": 10434.6, + "end": 10438.38, + "probability": 0.9969 + }, + { + "start": 10438.38, + "end": 10443.76, + "probability": 0.9962 + }, + { + "start": 10445.24, + "end": 10447.56, + "probability": 0.9585 + }, + { + "start": 10447.64, + "end": 10451.5, + "probability": 0.9533 + }, + { + "start": 10452.1, + "end": 10453.8, + "probability": 0.7123 + }, + { + "start": 10454.62, + "end": 10459.6, + "probability": 0.9922 + }, + { + "start": 10460.44, + "end": 10464.6, + "probability": 0.9927 + }, + { + "start": 10465.18, + "end": 10470.0, + "probability": 0.9152 + }, + { + "start": 10470.74, + "end": 10473.44, + "probability": 0.9954 + }, + { + "start": 10474.58, + "end": 10475.38, + "probability": 0.7347 + }, + { + "start": 10476.06, + "end": 10480.44, + "probability": 0.9868 + }, + { + "start": 10480.5, + "end": 10481.32, + "probability": 0.5665 + }, + { + "start": 10481.96, + "end": 10486.38, + "probability": 0.9668 + }, + { + "start": 10487.18, + "end": 10489.96, + "probability": 0.9062 + }, + { + "start": 10490.56, + "end": 10494.7, + "probability": 0.9937 + }, + { + "start": 10498.46, + "end": 10498.88, + "probability": 0.9726 + }, + { + "start": 10498.88, + "end": 10502.42, + "probability": 0.745 + }, + { + "start": 10504.02, + "end": 10506.9, + "probability": 0.993 + }, + { + "start": 10507.38, + "end": 10512.42, + "probability": 0.9948 + }, + { + "start": 10513.06, + "end": 10515.94, + "probability": 0.9783 + }, + { + "start": 10516.46, + "end": 10520.04, + "probability": 0.9791 + }, + { + "start": 10520.58, + "end": 10522.22, + "probability": 0.9863 + }, + { + "start": 10522.38, + "end": 10525.72, + "probability": 0.9702 + }, + { + "start": 10526.58, + "end": 10527.3, + "probability": 0.949 + }, + { + "start": 10527.94, + "end": 10530.66, + "probability": 0.9926 + }, + { + "start": 10531.5, + "end": 10534.02, + "probability": 0.9974 + }, + { + "start": 10534.6, + "end": 10536.1, + "probability": 0.9956 + }, + { + "start": 10536.64, + "end": 10537.98, + "probability": 0.9961 + }, + { + "start": 10538.64, + "end": 10541.42, + "probability": 0.9663 + }, + { + "start": 10542.02, + "end": 10547.1, + "probability": 0.9924 + }, + { + "start": 10548.3, + "end": 10551.34, + "probability": 0.9926 + }, + { + "start": 10552.06, + "end": 10557.18, + "probability": 0.9965 + }, + { + "start": 10558.02, + "end": 10561.0, + "probability": 0.9553 + }, + { + "start": 10561.96, + "end": 10564.84, + "probability": 0.9876 + }, + { + "start": 10565.52, + "end": 10568.76, + "probability": 0.9995 + }, + { + "start": 10569.24, + "end": 10575.36, + "probability": 0.9984 + }, + { + "start": 10576.74, + "end": 10577.64, + "probability": 0.7077 + }, + { + "start": 10578.32, + "end": 10578.96, + "probability": 0.8257 + }, + { + "start": 10579.62, + "end": 10583.48, + "probability": 0.9958 + }, + { + "start": 10584.98, + "end": 10588.1, + "probability": 0.9752 + }, + { + "start": 10588.78, + "end": 10594.62, + "probability": 0.9928 + }, + { + "start": 10595.48, + "end": 10597.12, + "probability": 0.9425 + }, + { + "start": 10597.86, + "end": 10600.0, + "probability": 0.9961 + }, + { + "start": 10600.74, + "end": 10607.26, + "probability": 0.9871 + }, + { + "start": 10607.26, + "end": 10613.56, + "probability": 0.9982 + }, + { + "start": 10614.32, + "end": 10617.5, + "probability": 0.9983 + }, + { + "start": 10618.14, + "end": 10619.32, + "probability": 0.9898 + }, + { + "start": 10620.04, + "end": 10621.04, + "probability": 0.8834 + }, + { + "start": 10621.84, + "end": 10623.46, + "probability": 0.343 + }, + { + "start": 10624.2, + "end": 10624.78, + "probability": 0.8619 + }, + { + "start": 10625.42, + "end": 10627.4, + "probability": 0.9722 + }, + { + "start": 10628.42, + "end": 10629.5, + "probability": 0.926 + }, + { + "start": 10630.38, + "end": 10633.8, + "probability": 0.9493 + }, + { + "start": 10635.58, + "end": 10639.56, + "probability": 0.999 + }, + { + "start": 10639.56, + "end": 10644.9, + "probability": 0.9971 + }, + { + "start": 10645.66, + "end": 10651.68, + "probability": 0.9979 + }, + { + "start": 10652.62, + "end": 10654.9, + "probability": 0.738 + }, + { + "start": 10656.04, + "end": 10658.46, + "probability": 0.9849 + }, + { + "start": 10659.38, + "end": 10661.73, + "probability": 0.9891 + }, + { + "start": 10662.28, + "end": 10665.16, + "probability": 0.9928 + }, + { + "start": 10666.02, + "end": 10669.12, + "probability": 0.9209 + }, + { + "start": 10670.06, + "end": 10675.46, + "probability": 0.9868 + }, + { + "start": 10676.38, + "end": 10681.4, + "probability": 0.9759 + }, + { + "start": 10682.78, + "end": 10685.08, + "probability": 0.988 + }, + { + "start": 10685.8, + "end": 10689.3, + "probability": 0.9646 + }, + { + "start": 10689.84, + "end": 10692.56, + "probability": 0.9901 + }, + { + "start": 10693.34, + "end": 10697.26, + "probability": 0.7386 + }, + { + "start": 10697.42, + "end": 10699.12, + "probability": 0.8114 + }, + { + "start": 10704.92, + "end": 10705.64, + "probability": 0.5614 + }, + { + "start": 10706.02, + "end": 10708.2, + "probability": 0.8899 + }, + { + "start": 10708.7, + "end": 10709.98, + "probability": 0.8951 + }, + { + "start": 10710.84, + "end": 10712.44, + "probability": 0.7543 + }, + { + "start": 10712.72, + "end": 10715.22, + "probability": 0.9694 + }, + { + "start": 10716.6, + "end": 10717.68, + "probability": 0.0207 + }, + { + "start": 10737.38, + "end": 10737.96, + "probability": 0.5918 + }, + { + "start": 10739.12, + "end": 10739.52, + "probability": 0.9707 + }, + { + "start": 10742.24, + "end": 10743.52, + "probability": 0.9519 + }, + { + "start": 10744.16, + "end": 10744.7, + "probability": 0.8575 + }, + { + "start": 10745.52, + "end": 10747.3, + "probability": 0.9512 + }, + { + "start": 10748.68, + "end": 10749.6, + "probability": 0.7842 + }, + { + "start": 10750.08, + "end": 10753.46, + "probability": 0.8458 + }, + { + "start": 10758.32, + "end": 10761.66, + "probability": 0.8967 + }, + { + "start": 10764.08, + "end": 10764.62, + "probability": 0.5779 + }, + { + "start": 10765.36, + "end": 10765.74, + "probability": 0.713 + }, + { + "start": 10768.1, + "end": 10770.06, + "probability": 0.8923 + }, + { + "start": 10774.28, + "end": 10778.32, + "probability": 0.842 + }, + { + "start": 10783.38, + "end": 10787.52, + "probability": 0.5784 + }, + { + "start": 10788.22, + "end": 10790.88, + "probability": 0.984 + }, + { + "start": 10791.5, + "end": 10792.2, + "probability": 0.9173 + }, + { + "start": 10793.34, + "end": 10794.82, + "probability": 0.9209 + }, + { + "start": 10798.28, + "end": 10800.8, + "probability": 0.9841 + }, + { + "start": 10803.02, + "end": 10803.74, + "probability": 0.7457 + }, + { + "start": 10805.08, + "end": 10805.8, + "probability": 0.7718 + }, + { + "start": 10807.76, + "end": 10809.64, + "probability": 0.9014 + }, + { + "start": 10810.72, + "end": 10814.58, + "probability": 0.773 + }, + { + "start": 10816.26, + "end": 10817.26, + "probability": 0.9543 + }, + { + "start": 10818.94, + "end": 10819.8, + "probability": 0.986 + }, + { + "start": 10821.92, + "end": 10822.42, + "probability": 0.9196 + }, + { + "start": 10823.28, + "end": 10824.3, + "probability": 0.6001 + }, + { + "start": 10826.44, + "end": 10832.32, + "probability": 0.8596 + }, + { + "start": 10833.72, + "end": 10835.06, + "probability": 0.5485 + }, + { + "start": 10836.16, + "end": 10837.84, + "probability": 0.8599 + }, + { + "start": 10839.68, + "end": 10843.26, + "probability": 0.9443 + }, + { + "start": 10843.88, + "end": 10844.82, + "probability": 0.9985 + }, + { + "start": 10846.9, + "end": 10848.76, + "probability": 0.9867 + }, + { + "start": 10849.36, + "end": 10851.63, + "probability": 0.7989 + }, + { + "start": 10852.34, + "end": 10853.64, + "probability": 0.0105 + }, + { + "start": 10856.98, + "end": 10859.48, + "probability": 0.4114 + }, + { + "start": 10861.74, + "end": 10863.36, + "probability": 0.3244 + }, + { + "start": 10867.19, + "end": 10869.0, + "probability": 0.2767 + }, + { + "start": 10871.97, + "end": 10873.87, + "probability": 0.7873 + }, + { + "start": 10874.78, + "end": 10875.8, + "probability": 0.8844 + }, + { + "start": 10877.17, + "end": 10878.51, + "probability": 0.9941 + }, + { + "start": 10881.15, + "end": 10881.17, + "probability": 0.7461 + }, + { + "start": 10881.8, + "end": 10883.43, + "probability": 0.9074 + }, + { + "start": 10886.75, + "end": 10891.69, + "probability": 0.974 + }, + { + "start": 10892.23, + "end": 10894.03, + "probability": 0.8646 + }, + { + "start": 10899.43, + "end": 10901.67, + "probability": 0.9458 + }, + { + "start": 10902.19, + "end": 10902.69, + "probability": 0.5095 + }, + { + "start": 10904.45, + "end": 10904.71, + "probability": 0.9655 + }, + { + "start": 10904.77, + "end": 10908.29, + "probability": 0.957 + }, + { + "start": 10908.47, + "end": 10911.05, + "probability": 0.9115 + }, + { + "start": 10911.19, + "end": 10911.93, + "probability": 0.9783 + }, + { + "start": 10912.03, + "end": 10912.23, + "probability": 0.7959 + }, + { + "start": 10913.09, + "end": 10913.51, + "probability": 0.9801 + }, + { + "start": 10914.43, + "end": 10917.48, + "probability": 0.8853 + }, + { + "start": 10919.09, + "end": 10921.77, + "probability": 0.9187 + }, + { + "start": 10922.93, + "end": 10924.71, + "probability": 0.8364 + }, + { + "start": 10924.81, + "end": 10927.73, + "probability": 0.9376 + }, + { + "start": 10928.65, + "end": 10932.59, + "probability": 0.9951 + }, + { + "start": 10935.29, + "end": 10937.79, + "probability": 0.7222 + }, + { + "start": 10940.55, + "end": 10942.57, + "probability": 0.7257 + }, + { + "start": 10943.01, + "end": 10944.53, + "probability": 0.6886 + }, + { + "start": 10944.63, + "end": 10946.03, + "probability": 0.7021 + }, + { + "start": 10948.01, + "end": 10950.79, + "probability": 0.9497 + }, + { + "start": 10952.03, + "end": 10953.65, + "probability": 0.7686 + }, + { + "start": 10954.39, + "end": 10956.67, + "probability": 0.907 + }, + { + "start": 10958.99, + "end": 10959.61, + "probability": 0.8046 + }, + { + "start": 10960.21, + "end": 10962.47, + "probability": 0.9966 + }, + { + "start": 10964.63, + "end": 10967.83, + "probability": 0.83 + }, + { + "start": 10968.83, + "end": 10969.79, + "probability": 0.9092 + }, + { + "start": 10972.85, + "end": 10974.49, + "probability": 0.788 + }, + { + "start": 10975.13, + "end": 10977.51, + "probability": 0.9917 + }, + { + "start": 10981.09, + "end": 10983.29, + "probability": 0.9854 + }, + { + "start": 10983.57, + "end": 10984.73, + "probability": 0.8728 + }, + { + "start": 10985.55, + "end": 10988.93, + "probability": 0.9229 + }, + { + "start": 10991.43, + "end": 10993.67, + "probability": 0.5213 + }, + { + "start": 10994.69, + "end": 10996.71, + "probability": 0.9958 + }, + { + "start": 10997.33, + "end": 11004.09, + "probability": 0.7513 + }, + { + "start": 11004.09, + "end": 11008.17, + "probability": 0.9758 + }, + { + "start": 11008.97, + "end": 11011.43, + "probability": 0.9522 + }, + { + "start": 11013.29, + "end": 11014.11, + "probability": 0.3202 + }, + { + "start": 11015.11, + "end": 11016.27, + "probability": 0.6675 + }, + { + "start": 11017.07, + "end": 11020.47, + "probability": 0.967 + }, + { + "start": 11021.03, + "end": 11022.03, + "probability": 0.9466 + }, + { + "start": 11022.69, + "end": 11024.51, + "probability": 0.9284 + }, + { + "start": 11025.05, + "end": 11025.95, + "probability": 0.9593 + }, + { + "start": 11026.41, + "end": 11026.61, + "probability": 0.8669 + }, + { + "start": 11028.47, + "end": 11029.47, + "probability": 0.8394 + }, + { + "start": 11030.61, + "end": 11033.29, + "probability": 0.906 + }, + { + "start": 11033.95, + "end": 11035.8, + "probability": 0.6683 + }, + { + "start": 11036.85, + "end": 11037.77, + "probability": 0.738 + }, + { + "start": 11039.37, + "end": 11040.53, + "probability": 0.8156 + }, + { + "start": 11040.99, + "end": 11042.11, + "probability": 0.6685 + }, + { + "start": 11042.19, + "end": 11043.77, + "probability": 0.7201 + }, + { + "start": 11058.83, + "end": 11060.21, + "probability": 0.7012 + }, + { + "start": 11060.87, + "end": 11063.03, + "probability": 0.8042 + }, + { + "start": 11064.25, + "end": 11070.21, + "probability": 0.852 + }, + { + "start": 11071.27, + "end": 11072.39, + "probability": 0.8854 + }, + { + "start": 11072.85, + "end": 11073.65, + "probability": 0.8265 + }, + { + "start": 11074.05, + "end": 11075.93, + "probability": 0.9274 + }, + { + "start": 11077.17, + "end": 11081.57, + "probability": 0.9601 + }, + { + "start": 11082.71, + "end": 11085.29, + "probability": 0.5542 + }, + { + "start": 11085.93, + "end": 11087.51, + "probability": 0.9849 + }, + { + "start": 11088.85, + "end": 11089.17, + "probability": 0.009 + }, + { + "start": 11091.67, + "end": 11095.99, + "probability": 0.7691 + }, + { + "start": 11097.15, + "end": 11100.37, + "probability": 0.9907 + }, + { + "start": 11101.35, + "end": 11105.91, + "probability": 0.9729 + }, + { + "start": 11107.01, + "end": 11111.13, + "probability": 0.991 + }, + { + "start": 11111.95, + "end": 11113.97, + "probability": 0.8391 + }, + { + "start": 11115.27, + "end": 11118.97, + "probability": 0.9006 + }, + { + "start": 11119.21, + "end": 11123.37, + "probability": 0.7449 + }, + { + "start": 11123.47, + "end": 11125.95, + "probability": 0.9975 + }, + { + "start": 11126.91, + "end": 11129.51, + "probability": 0.8326 + }, + { + "start": 11129.79, + "end": 11138.71, + "probability": 0.9886 + }, + { + "start": 11139.65, + "end": 11141.53, + "probability": 0.9773 + }, + { + "start": 11143.01, + "end": 11144.86, + "probability": 0.9691 + }, + { + "start": 11145.67, + "end": 11147.43, + "probability": 0.925 + }, + { + "start": 11148.63, + "end": 11152.27, + "probability": 0.987 + }, + { + "start": 11153.59, + "end": 11157.67, + "probability": 0.9932 + }, + { + "start": 11159.05, + "end": 11165.41, + "probability": 0.8348 + }, + { + "start": 11166.37, + "end": 11167.45, + "probability": 0.7812 + }, + { + "start": 11169.13, + "end": 11173.95, + "probability": 0.9958 + }, + { + "start": 11174.29, + "end": 11174.85, + "probability": 0.532 + }, + { + "start": 11175.83, + "end": 11180.35, + "probability": 0.87 + }, + { + "start": 11182.59, + "end": 11192.55, + "probability": 0.9496 + }, + { + "start": 11192.73, + "end": 11198.99, + "probability": 0.9637 + }, + { + "start": 11199.57, + "end": 11204.11, + "probability": 0.8805 + }, + { + "start": 11204.81, + "end": 11207.37, + "probability": 0.9932 + }, + { + "start": 11208.25, + "end": 11213.03, + "probability": 0.6656 + }, + { + "start": 11214.03, + "end": 11215.67, + "probability": 0.6642 + }, + { + "start": 11216.23, + "end": 11219.15, + "probability": 0.8598 + }, + { + "start": 11220.21, + "end": 11221.31, + "probability": 0.9725 + }, + { + "start": 11222.17, + "end": 11223.61, + "probability": 0.8653 + }, + { + "start": 11224.39, + "end": 11227.63, + "probability": 0.6478 + }, + { + "start": 11228.49, + "end": 11234.71, + "probability": 0.9766 + }, + { + "start": 11235.93, + "end": 11236.49, + "probability": 0.9144 + }, + { + "start": 11237.29, + "end": 11240.35, + "probability": 0.9824 + }, + { + "start": 11241.53, + "end": 11243.83, + "probability": 0.0986 + }, + { + "start": 11245.75, + "end": 11251.73, + "probability": 0.8845 + }, + { + "start": 11252.79, + "end": 11253.93, + "probability": 0.9677 + }, + { + "start": 11254.67, + "end": 11259.07, + "probability": 0.9502 + }, + { + "start": 11259.07, + "end": 11264.71, + "probability": 0.9858 + }, + { + "start": 11265.83, + "end": 11272.83, + "probability": 0.8367 + }, + { + "start": 11274.43, + "end": 11277.77, + "probability": 0.9319 + }, + { + "start": 11278.01, + "end": 11285.99, + "probability": 0.9443 + }, + { + "start": 11286.85, + "end": 11290.03, + "probability": 0.9949 + }, + { + "start": 11290.44, + "end": 11295.31, + "probability": 0.8905 + }, + { + "start": 11295.45, + "end": 11295.45, + "probability": 0.1219 + }, + { + "start": 11296.09, + "end": 11300.65, + "probability": 0.9658 + }, + { + "start": 11301.45, + "end": 11305.51, + "probability": 0.9652 + }, + { + "start": 11306.89, + "end": 11308.25, + "probability": 0.9016 + }, + { + "start": 11310.77, + "end": 11313.53, + "probability": 0.9542 + }, + { + "start": 11314.07, + "end": 11317.07, + "probability": 0.9873 + }, + { + "start": 11318.03, + "end": 11323.77, + "probability": 0.9897 + }, + { + "start": 11324.69, + "end": 11326.55, + "probability": 0.9662 + }, + { + "start": 11327.21, + "end": 11328.07, + "probability": 0.9641 + }, + { + "start": 11328.23, + "end": 11332.65, + "probability": 0.7765 + }, + { + "start": 11333.77, + "end": 11337.39, + "probability": 0.8846 + }, + { + "start": 11338.17, + "end": 11340.81, + "probability": 0.9341 + }, + { + "start": 11340.99, + "end": 11342.35, + "probability": 0.9931 + }, + { + "start": 11343.07, + "end": 11348.75, + "probability": 0.8643 + }, + { + "start": 11349.53, + "end": 11350.67, + "probability": 0.9717 + }, + { + "start": 11351.25, + "end": 11352.05, + "probability": 0.6473 + }, + { + "start": 11352.99, + "end": 11357.77, + "probability": 0.9494 + }, + { + "start": 11358.13, + "end": 11360.29, + "probability": 0.9941 + }, + { + "start": 11360.29, + "end": 11366.21, + "probability": 0.5729 + }, + { + "start": 11366.69, + "end": 11368.24, + "probability": 0.8122 + }, + { + "start": 11369.47, + "end": 11370.95, + "probability": 0.9706 + }, + { + "start": 11371.69, + "end": 11372.71, + "probability": 0.8457 + }, + { + "start": 11377.07, + "end": 11378.33, + "probability": 0.6044 + }, + { + "start": 11378.51, + "end": 11382.21, + "probability": 0.7165 + }, + { + "start": 11382.45, + "end": 11383.11, + "probability": 0.6635 + }, + { + "start": 11383.17, + "end": 11384.21, + "probability": 0.8062 + }, + { + "start": 11384.69, + "end": 11385.59, + "probability": 0.5318 + }, + { + "start": 11385.75, + "end": 11386.49, + "probability": 0.4667 + }, + { + "start": 11386.85, + "end": 11388.59, + "probability": 0.9651 + }, + { + "start": 11389.35, + "end": 11390.45, + "probability": 0.8772 + }, + { + "start": 11391.31, + "end": 11394.21, + "probability": 0.9923 + }, + { + "start": 11394.87, + "end": 11395.39, + "probability": 0.6992 + }, + { + "start": 11395.47, + "end": 11398.65, + "probability": 0.9972 + }, + { + "start": 11399.51, + "end": 11402.21, + "probability": 0.8857 + }, + { + "start": 11402.33, + "end": 11403.26, + "probability": 0.7724 + }, + { + "start": 11403.49, + "end": 11404.01, + "probability": 0.7575 + }, + { + "start": 11404.19, + "end": 11404.81, + "probability": 0.7082 + }, + { + "start": 11404.89, + "end": 11405.41, + "probability": 0.8096 + }, + { + "start": 11406.29, + "end": 11406.91, + "probability": 0.7109 + }, + { + "start": 11407.61, + "end": 11412.39, + "probability": 0.988 + }, + { + "start": 11413.13, + "end": 11415.69, + "probability": 0.9925 + }, + { + "start": 11415.79, + "end": 11417.21, + "probability": 0.984 + }, + { + "start": 11417.69, + "end": 11421.09, + "probability": 0.8253 + }, + { + "start": 11421.53, + "end": 11423.07, + "probability": 0.9932 + }, + { + "start": 11423.15, + "end": 11423.49, + "probability": 0.9893 + }, + { + "start": 11424.07, + "end": 11425.31, + "probability": 0.6434 + }, + { + "start": 11425.45, + "end": 11427.23, + "probability": 0.9513 + }, + { + "start": 11428.47, + "end": 11429.87, + "probability": 0.9946 + }, + { + "start": 11430.77, + "end": 11434.49, + "probability": 0.979 + }, + { + "start": 11434.97, + "end": 11441.05, + "probability": 0.9802 + }, + { + "start": 11441.19, + "end": 11444.55, + "probability": 0.4592 + }, + { + "start": 11444.59, + "end": 11444.77, + "probability": 0.429 + }, + { + "start": 11444.99, + "end": 11449.55, + "probability": 0.9019 + }, + { + "start": 11450.17, + "end": 11451.01, + "probability": 0.4835 + }, + { + "start": 11451.85, + "end": 11455.01, + "probability": 0.9963 + }, + { + "start": 11455.53, + "end": 11456.65, + "probability": 0.666 + }, + { + "start": 11457.23, + "end": 11458.57, + "probability": 0.8613 + }, + { + "start": 11459.05, + "end": 11459.69, + "probability": 0.8761 + }, + { + "start": 11459.79, + "end": 11460.17, + "probability": 0.5165 + }, + { + "start": 11460.35, + "end": 11461.25, + "probability": 0.7989 + }, + { + "start": 11461.47, + "end": 11461.93, + "probability": 0.1826 + }, + { + "start": 11462.61, + "end": 11465.65, + "probability": 0.9393 + }, + { + "start": 11466.19, + "end": 11468.33, + "probability": 0.7524 + }, + { + "start": 11468.33, + "end": 11469.03, + "probability": 0.939 + }, + { + "start": 11469.47, + "end": 11472.45, + "probability": 0.9551 + }, + { + "start": 11472.83, + "end": 11474.19, + "probability": 0.9808 + }, + { + "start": 11474.71, + "end": 11476.95, + "probability": 0.5002 + }, + { + "start": 11476.99, + "end": 11480.71, + "probability": 0.8282 + }, + { + "start": 11480.83, + "end": 11481.05, + "probability": 0.7136 + }, + { + "start": 11482.37, + "end": 11483.13, + "probability": 0.6753 + }, + { + "start": 11485.05, + "end": 11486.95, + "probability": 0.3376 + }, + { + "start": 11487.37, + "end": 11488.33, + "probability": 0.6338 + }, + { + "start": 11488.33, + "end": 11489.11, + "probability": 0.8689 + }, + { + "start": 11489.25, + "end": 11491.73, + "probability": 0.1523 + }, + { + "start": 11491.73, + "end": 11492.75, + "probability": 0.9736 + }, + { + "start": 11493.85, + "end": 11495.31, + "probability": 0.7369 + }, + { + "start": 11495.89, + "end": 11499.13, + "probability": 0.9653 + }, + { + "start": 11499.31, + "end": 11501.67, + "probability": 0.978 + }, + { + "start": 11502.89, + "end": 11509.03, + "probability": 0.8604 + }, + { + "start": 11509.17, + "end": 11509.99, + "probability": 0.8102 + }, + { + "start": 11521.53, + "end": 11522.39, + "probability": 0.5225 + }, + { + "start": 11522.43, + "end": 11523.25, + "probability": 0.8494 + }, + { + "start": 11523.33, + "end": 11525.31, + "probability": 0.8715 + }, + { + "start": 11526.53, + "end": 11528.61, + "probability": 0.9447 + }, + { + "start": 11529.65, + "end": 11531.91, + "probability": 0.9932 + }, + { + "start": 11532.51, + "end": 11534.79, + "probability": 0.9955 + }, + { + "start": 11535.85, + "end": 11540.13, + "probability": 0.999 + }, + { + "start": 11541.05, + "end": 11542.75, + "probability": 0.8439 + }, + { + "start": 11543.61, + "end": 11544.09, + "probability": 0.7659 + }, + { + "start": 11544.53, + "end": 11551.89, + "probability": 0.9958 + }, + { + "start": 11552.49, + "end": 11555.79, + "probability": 0.7961 + }, + { + "start": 11556.69, + "end": 11558.97, + "probability": 0.9155 + }, + { + "start": 11559.35, + "end": 11560.09, + "probability": 0.711 + }, + { + "start": 11560.91, + "end": 11565.03, + "probability": 0.992 + }, + { + "start": 11565.07, + "end": 11566.21, + "probability": 0.9165 + }, + { + "start": 11566.67, + "end": 11571.19, + "probability": 0.9954 + }, + { + "start": 11571.71, + "end": 11574.01, + "probability": 0.9959 + }, + { + "start": 11574.31, + "end": 11575.65, + "probability": 0.4426 + }, + { + "start": 11577.69, + "end": 11580.51, + "probability": 0.9858 + }, + { + "start": 11581.19, + "end": 11581.81, + "probability": 0.9869 + }, + { + "start": 11582.79, + "end": 11587.95, + "probability": 0.9471 + }, + { + "start": 11587.95, + "end": 11593.87, + "probability": 0.9977 + }, + { + "start": 11594.41, + "end": 11595.93, + "probability": 0.7568 + }, + { + "start": 11596.81, + "end": 11596.81, + "probability": 0.3528 + }, + { + "start": 11598.05, + "end": 11601.25, + "probability": 0.6218 + }, + { + "start": 11602.11, + "end": 11604.65, + "probability": 0.991 + }, + { + "start": 11605.69, + "end": 11607.29, + "probability": 0.9246 + }, + { + "start": 11608.09, + "end": 11614.01, + "probability": 0.9755 + }, + { + "start": 11614.07, + "end": 11614.73, + "probability": 0.3323 + }, + { + "start": 11615.07, + "end": 11615.61, + "probability": 0.814 + }, + { + "start": 11616.21, + "end": 11619.48, + "probability": 0.9835 + }, + { + "start": 11620.01, + "end": 11621.03, + "probability": 0.8735 + }, + { + "start": 11621.69, + "end": 11624.69, + "probability": 0.8102 + }, + { + "start": 11625.53, + "end": 11628.41, + "probability": 0.9766 + }, + { + "start": 11628.41, + "end": 11630.39, + "probability": 0.992 + }, + { + "start": 11631.01, + "end": 11632.33, + "probability": 0.9317 + }, + { + "start": 11633.29, + "end": 11638.25, + "probability": 0.9996 + }, + { + "start": 11638.75, + "end": 11641.17, + "probability": 0.9989 + }, + { + "start": 11641.55, + "end": 11642.77, + "probability": 0.9628 + }, + { + "start": 11643.49, + "end": 11646.37, + "probability": 0.9974 + }, + { + "start": 11646.59, + "end": 11647.07, + "probability": 0.7775 + }, + { + "start": 11647.35, + "end": 11648.39, + "probability": 0.9112 + }, + { + "start": 11649.03, + "end": 11652.75, + "probability": 0.8965 + }, + { + "start": 11653.27, + "end": 11655.09, + "probability": 0.9357 + }, + { + "start": 11655.65, + "end": 11657.57, + "probability": 0.9403 + }, + { + "start": 11659.47, + "end": 11661.53, + "probability": 0.7258 + }, + { + "start": 11662.39, + "end": 11665.21, + "probability": 0.991 + }, + { + "start": 11665.79, + "end": 11669.55, + "probability": 0.9644 + }, + { + "start": 11671.77, + "end": 11673.65, + "probability": 0.7646 + }, + { + "start": 11674.47, + "end": 11678.95, + "probability": 0.9756 + }, + { + "start": 11679.29, + "end": 11682.03, + "probability": 0.9331 + }, + { + "start": 11684.18, + "end": 11689.45, + "probability": 0.9949 + }, + { + "start": 11689.97, + "end": 11690.81, + "probability": 0.965 + }, + { + "start": 11691.01, + "end": 11696.53, + "probability": 0.9969 + }, + { + "start": 11697.37, + "end": 11701.55, + "probability": 0.5987 + }, + { + "start": 11702.27, + "end": 11706.61, + "probability": 0.9992 + }, + { + "start": 11706.61, + "end": 11710.61, + "probability": 0.9778 + }, + { + "start": 11711.37, + "end": 11718.21, + "probability": 0.9948 + }, + { + "start": 11719.05, + "end": 11720.13, + "probability": 0.9048 + }, + { + "start": 11720.35, + "end": 11721.09, + "probability": 0.7097 + }, + { + "start": 11721.71, + "end": 11726.71, + "probability": 0.9769 + }, + { + "start": 11726.71, + "end": 11731.11, + "probability": 0.9996 + }, + { + "start": 11731.67, + "end": 11733.61, + "probability": 0.999 + }, + { + "start": 11733.71, + "end": 11736.83, + "probability": 0.8264 + }, + { + "start": 11736.93, + "end": 11740.37, + "probability": 0.9666 + }, + { + "start": 11743.13, + "end": 11744.01, + "probability": 0.6345 + }, + { + "start": 11744.91, + "end": 11747.12, + "probability": 0.9587 + }, + { + "start": 11747.35, + "end": 11748.11, + "probability": 0.8119 + }, + { + "start": 11748.25, + "end": 11749.23, + "probability": 0.942 + }, + { + "start": 11749.87, + "end": 11755.27, + "probability": 0.9368 + }, + { + "start": 11757.29, + "end": 11757.39, + "probability": 0.0296 + }, + { + "start": 11763.89, + "end": 11763.99, + "probability": 0.2729 + }, + { + "start": 11765.23, + "end": 11765.33, + "probability": 0.3754 + }, + { + "start": 11765.33, + "end": 11767.47, + "probability": 0.3101 + }, + { + "start": 11769.11, + "end": 11770.31, + "probability": 0.3237 + }, + { + "start": 11770.47, + "end": 11772.13, + "probability": 0.4858 + }, + { + "start": 11773.21, + "end": 11775.25, + "probability": 0.5392 + }, + { + "start": 11775.45, + "end": 11780.83, + "probability": 0.6352 + }, + { + "start": 11780.87, + "end": 11782.81, + "probability": 0.3497 + }, + { + "start": 11783.25, + "end": 11784.71, + "probability": 0.74 + }, + { + "start": 11784.73, + "end": 11788.01, + "probability": 0.9156 + }, + { + "start": 11788.81, + "end": 11790.39, + "probability": 0.674 + }, + { + "start": 11791.77, + "end": 11792.45, + "probability": 0.5129 + }, + { + "start": 11815.97, + "end": 11817.07, + "probability": 0.0014 + }, + { + "start": 11817.07, + "end": 11820.81, + "probability": 0.4673 + }, + { + "start": 11821.41, + "end": 11821.59, + "probability": 0.7427 + }, + { + "start": 11826.33, + "end": 11826.67, + "probability": 0.6003 + }, + { + "start": 11827.29, + "end": 11828.85, + "probability": 0.7018 + }, + { + "start": 11829.23, + "end": 11830.02, + "probability": 0.6415 + }, + { + "start": 11830.45, + "end": 11834.37, + "probability": 0.9398 + }, + { + "start": 11835.13, + "end": 11838.65, + "probability": 0.813 + }, + { + "start": 11839.01, + "end": 11839.77, + "probability": 0.5864 + }, + { + "start": 11840.37, + "end": 11841.37, + "probability": 0.5865 + }, + { + "start": 11841.83, + "end": 11842.23, + "probability": 0.7269 + }, + { + "start": 11844.91, + "end": 11845.41, + "probability": 0.0132 + }, + { + "start": 11849.07, + "end": 11850.19, + "probability": 0.0443 + }, + { + "start": 11858.45, + "end": 11858.95, + "probability": 0.0003 + }, + { + "start": 11859.83, + "end": 11859.83, + "probability": 0.0002 + }, + { + "start": 11868.73, + "end": 11868.85, + "probability": 0.1209 + }, + { + "start": 11868.85, + "end": 11869.37, + "probability": 0.2814 + }, + { + "start": 11869.71, + "end": 11873.97, + "probability": 0.5555 + }, + { + "start": 11874.15, + "end": 11876.69, + "probability": 0.8843 + }, + { + "start": 11878.09, + "end": 11879.17, + "probability": 0.8104 + }, + { + "start": 11880.87, + "end": 11884.23, + "probability": 0.6293 + }, + { + "start": 11884.29, + "end": 11886.51, + "probability": 0.9599 + }, + { + "start": 11886.65, + "end": 11887.55, + "probability": 0.5803 + }, + { + "start": 11887.91, + "end": 11890.03, + "probability": 0.5858 + }, + { + "start": 11890.11, + "end": 11893.33, + "probability": 0.5504 + }, + { + "start": 11894.01, + "end": 11895.21, + "probability": 0.1623 + } + ], + "segments_count": 4619, + "words_count": 22612, + "avg_words_per_segment": 4.8954, + "avg_segment_duration": 1.8158, + "avg_words_per_minute": 113.9975, + "plenum_id": "104108", + "duration": 11901.31, + "title": null, + "plenum_date": "2022-01-10" +} \ No newline at end of file