diff --git "a/13817/metadata.json" "b/13817/metadata.json" new file mode 100644--- /dev/null +++ "b/13817/metadata.json" @@ -0,0 +1,32387 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "13817", + "quality_score": 0.8672, + "per_segment_quality_scores": [ + { + "start": 49.0, + "end": 52.6, + "probability": 0.537 + }, + { + "start": 53.6, + "end": 56.64, + "probability": 0.8053 + }, + { + "start": 57.36, + "end": 59.54, + "probability": 0.9807 + }, + { + "start": 59.96, + "end": 61.7, + "probability": 0.8102 + }, + { + "start": 63.92, + "end": 64.78, + "probability": 0.7608 + }, + { + "start": 65.38, + "end": 66.8, + "probability": 0.7418 + }, + { + "start": 67.02, + "end": 68.7, + "probability": 0.9295 + }, + { + "start": 68.88, + "end": 69.62, + "probability": 0.6941 + }, + { + "start": 70.3, + "end": 71.3, + "probability": 0.8945 + }, + { + "start": 73.06, + "end": 75.6, + "probability": 0.3332 + }, + { + "start": 76.4, + "end": 76.5, + "probability": 0.7673 + }, + { + "start": 76.5, + "end": 78.96, + "probability": 0.6499 + }, + { + "start": 79.96, + "end": 81.82, + "probability": 0.1019 + }, + { + "start": 82.48, + "end": 84.11, + "probability": 0.5155 + }, + { + "start": 85.0, + "end": 86.14, + "probability": 0.6165 + }, + { + "start": 93.88, + "end": 96.36, + "probability": 0.1026 + }, + { + "start": 96.92, + "end": 98.98, + "probability": 0.054 + }, + { + "start": 99.44, + "end": 101.96, + "probability": 0.2273 + }, + { + "start": 102.14, + "end": 102.72, + "probability": 0.0759 + }, + { + "start": 104.06, + "end": 108.34, + "probability": 0.0312 + }, + { + "start": 108.6, + "end": 110.58, + "probability": 0.014 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.0, + "end": 131.0, + "probability": 0.0 + }, + { + "start": 131.24, + "end": 134.28, + "probability": 0.7487 + }, + { + "start": 135.08, + "end": 136.14, + "probability": 0.5198 + }, + { + "start": 136.84, + "end": 140.04, + "probability": 0.8422 + }, + { + "start": 141.3, + "end": 146.0, + "probability": 0.9971 + }, + { + "start": 146.0, + "end": 149.68, + "probability": 0.9978 + }, + { + "start": 150.77, + "end": 154.5, + "probability": 0.8998 + }, + { + "start": 165.4, + "end": 165.44, + "probability": 0.2634 + }, + { + "start": 165.44, + "end": 166.22, + "probability": 0.645 + }, + { + "start": 169.38, + "end": 170.44, + "probability": 0.8782 + }, + { + "start": 174.52, + "end": 179.02, + "probability": 0.9981 + }, + { + "start": 180.56, + "end": 181.32, + "probability": 0.7553 + }, + { + "start": 183.28, + "end": 186.56, + "probability": 0.8791 + }, + { + "start": 187.94, + "end": 192.43, + "probability": 0.9684 + }, + { + "start": 194.66, + "end": 196.76, + "probability": 0.8792 + }, + { + "start": 197.72, + "end": 198.64, + "probability": 0.9888 + }, + { + "start": 200.16, + "end": 203.04, + "probability": 0.9609 + }, + { + "start": 204.52, + "end": 205.6, + "probability": 0.6798 + }, + { + "start": 206.44, + "end": 209.94, + "probability": 0.9056 + }, + { + "start": 211.34, + "end": 217.06, + "probability": 0.6885 + }, + { + "start": 218.12, + "end": 219.38, + "probability": 0.4415 + }, + { + "start": 220.04, + "end": 221.0, + "probability": 0.7248 + }, + { + "start": 222.12, + "end": 224.64, + "probability": 0.9674 + }, + { + "start": 225.5, + "end": 227.92, + "probability": 0.9863 + }, + { + "start": 228.92, + "end": 231.9, + "probability": 0.9939 + }, + { + "start": 232.76, + "end": 236.5, + "probability": 0.8012 + }, + { + "start": 238.14, + "end": 238.94, + "probability": 0.5912 + }, + { + "start": 239.02, + "end": 245.88, + "probability": 0.9905 + }, + { + "start": 247.38, + "end": 249.84, + "probability": 0.9771 + }, + { + "start": 252.84, + "end": 256.64, + "probability": 0.9188 + }, + { + "start": 258.18, + "end": 260.3, + "probability": 0.9978 + }, + { + "start": 261.22, + "end": 264.18, + "probability": 0.9995 + }, + { + "start": 265.52, + "end": 269.06, + "probability": 0.9744 + }, + { + "start": 270.2, + "end": 273.08, + "probability": 0.9581 + }, + { + "start": 274.14, + "end": 277.38, + "probability": 0.9463 + }, + { + "start": 278.66, + "end": 280.66, + "probability": 0.9517 + }, + { + "start": 281.74, + "end": 284.78, + "probability": 0.8481 + }, + { + "start": 286.96, + "end": 289.6, + "probability": 0.6526 + }, + { + "start": 290.68, + "end": 291.54, + "probability": 0.9316 + }, + { + "start": 293.0, + "end": 293.4, + "probability": 0.7549 + }, + { + "start": 294.28, + "end": 296.06, + "probability": 0.7435 + }, + { + "start": 296.12, + "end": 297.68, + "probability": 0.5333 + }, + { + "start": 298.9, + "end": 300.48, + "probability": 0.8032 + }, + { + "start": 301.24, + "end": 302.5, + "probability": 0.66 + }, + { + "start": 302.54, + "end": 303.0, + "probability": 0.8407 + }, + { + "start": 304.02, + "end": 310.5, + "probability": 0.9739 + }, + { + "start": 310.66, + "end": 311.66, + "probability": 0.8719 + }, + { + "start": 311.78, + "end": 312.82, + "probability": 0.6707 + }, + { + "start": 313.78, + "end": 319.98, + "probability": 0.9033 + }, + { + "start": 322.34, + "end": 323.38, + "probability": 0.9058 + }, + { + "start": 324.74, + "end": 326.86, + "probability": 0.8304 + }, + { + "start": 327.84, + "end": 331.68, + "probability": 0.9578 + }, + { + "start": 332.46, + "end": 334.06, + "probability": 0.797 + }, + { + "start": 334.46, + "end": 336.36, + "probability": 0.7012 + }, + { + "start": 337.06, + "end": 338.38, + "probability": 0.622 + }, + { + "start": 338.62, + "end": 339.16, + "probability": 0.9704 + }, + { + "start": 340.04, + "end": 343.62, + "probability": 0.7934 + }, + { + "start": 344.32, + "end": 349.16, + "probability": 0.9049 + }, + { + "start": 349.64, + "end": 351.36, + "probability": 0.9363 + }, + { + "start": 353.0, + "end": 355.04, + "probability": 0.9839 + }, + { + "start": 355.88, + "end": 356.88, + "probability": 0.8937 + }, + { + "start": 357.7, + "end": 361.66, + "probability": 0.7867 + }, + { + "start": 362.22, + "end": 364.02, + "probability": 0.8841 + }, + { + "start": 364.74, + "end": 366.98, + "probability": 0.765 + }, + { + "start": 369.14, + "end": 371.44, + "probability": 0.8282 + }, + { + "start": 373.14, + "end": 374.4, + "probability": 0.9312 + }, + { + "start": 375.48, + "end": 376.66, + "probability": 0.8699 + }, + { + "start": 377.7, + "end": 379.0, + "probability": 0.6336 + }, + { + "start": 380.16, + "end": 381.88, + "probability": 0.941 + }, + { + "start": 382.68, + "end": 384.28, + "probability": 0.996 + }, + { + "start": 385.52, + "end": 385.82, + "probability": 0.5009 + }, + { + "start": 385.98, + "end": 389.16, + "probability": 0.98 + }, + { + "start": 389.24, + "end": 390.52, + "probability": 0.6898 + }, + { + "start": 390.78, + "end": 391.76, + "probability": 0.9583 + }, + { + "start": 392.46, + "end": 396.3, + "probability": 0.6028 + }, + { + "start": 397.12, + "end": 400.8, + "probability": 0.9859 + }, + { + "start": 401.4, + "end": 402.76, + "probability": 0.9976 + }, + { + "start": 404.02, + "end": 405.3, + "probability": 0.9014 + }, + { + "start": 406.1, + "end": 407.22, + "probability": 0.9435 + }, + { + "start": 408.1, + "end": 409.52, + "probability": 0.9429 + }, + { + "start": 409.54, + "end": 413.9, + "probability": 0.9627 + }, + { + "start": 414.42, + "end": 416.2, + "probability": 0.5023 + }, + { + "start": 417.06, + "end": 419.06, + "probability": 0.9292 + }, + { + "start": 419.74, + "end": 420.35, + "probability": 0.9243 + }, + { + "start": 421.44, + "end": 424.16, + "probability": 0.891 + }, + { + "start": 425.26, + "end": 426.22, + "probability": 0.6842 + }, + { + "start": 426.34, + "end": 426.96, + "probability": 0.7766 + }, + { + "start": 427.08, + "end": 428.0, + "probability": 0.7857 + }, + { + "start": 430.2, + "end": 435.34, + "probability": 0.5394 + }, + { + "start": 437.52, + "end": 440.18, + "probability": 0.8332 + }, + { + "start": 441.02, + "end": 443.48, + "probability": 0.9002 + }, + { + "start": 444.1, + "end": 446.68, + "probability": 0.9803 + }, + { + "start": 447.18, + "end": 448.56, + "probability": 0.6506 + }, + { + "start": 450.06, + "end": 453.82, + "probability": 0.8092 + }, + { + "start": 454.64, + "end": 454.96, + "probability": 0.7524 + }, + { + "start": 455.32, + "end": 457.06, + "probability": 0.9697 + }, + { + "start": 457.56, + "end": 460.34, + "probability": 0.647 + }, + { + "start": 460.72, + "end": 462.52, + "probability": 0.7951 + }, + { + "start": 462.6, + "end": 463.3, + "probability": 0.7174 + }, + { + "start": 463.93, + "end": 469.76, + "probability": 0.5406 + }, + { + "start": 471.02, + "end": 473.08, + "probability": 0.789 + }, + { + "start": 474.34, + "end": 475.3, + "probability": 0.6845 + }, + { + "start": 476.1, + "end": 477.1, + "probability": 0.7058 + }, + { + "start": 477.62, + "end": 480.0, + "probability": 0.926 + }, + { + "start": 480.64, + "end": 482.46, + "probability": 0.7491 + }, + { + "start": 482.46, + "end": 484.82, + "probability": 0.7186 + }, + { + "start": 485.72, + "end": 487.06, + "probability": 0.7691 + }, + { + "start": 487.86, + "end": 488.38, + "probability": 0.8627 + }, + { + "start": 489.04, + "end": 490.16, + "probability": 0.6248 + }, + { + "start": 490.7, + "end": 494.5, + "probability": 0.8207 + }, + { + "start": 494.94, + "end": 495.82, + "probability": 0.4224 + }, + { + "start": 496.72, + "end": 499.26, + "probability": 0.8398 + }, + { + "start": 499.66, + "end": 499.76, + "probability": 0.5179 + }, + { + "start": 499.88, + "end": 502.4, + "probability": 0.975 + }, + { + "start": 503.1, + "end": 507.04, + "probability": 0.8209 + }, + { + "start": 507.08, + "end": 512.56, + "probability": 0.907 + }, + { + "start": 512.68, + "end": 513.32, + "probability": 0.442 + }, + { + "start": 513.88, + "end": 516.06, + "probability": 0.9805 + }, + { + "start": 518.12, + "end": 519.94, + "probability": 0.9468 + }, + { + "start": 521.24, + "end": 521.8, + "probability": 0.7421 + }, + { + "start": 522.7, + "end": 525.06, + "probability": 0.7463 + }, + { + "start": 526.16, + "end": 528.04, + "probability": 0.5153 + }, + { + "start": 528.5, + "end": 530.06, + "probability": 0.5052 + }, + { + "start": 530.46, + "end": 531.37, + "probability": 0.8856 + }, + { + "start": 532.08, + "end": 536.07, + "probability": 0.8911 + }, + { + "start": 536.76, + "end": 537.7, + "probability": 0.8285 + }, + { + "start": 537.86, + "end": 541.44, + "probability": 0.7914 + }, + { + "start": 541.98, + "end": 543.32, + "probability": 0.8408 + }, + { + "start": 543.48, + "end": 544.56, + "probability": 0.7437 + }, + { + "start": 545.02, + "end": 546.8, + "probability": 0.7806 + }, + { + "start": 547.1, + "end": 547.75, + "probability": 0.4942 + }, + { + "start": 548.44, + "end": 550.0, + "probability": 0.9844 + }, + { + "start": 550.38, + "end": 552.0, + "probability": 0.9485 + }, + { + "start": 552.16, + "end": 552.98, + "probability": 0.6152 + }, + { + "start": 554.14, + "end": 556.26, + "probability": 0.6989 + }, + { + "start": 559.98, + "end": 564.66, + "probability": 0.6601 + }, + { + "start": 565.02, + "end": 566.9, + "probability": 0.9704 + }, + { + "start": 568.06, + "end": 571.9, + "probability": 0.6992 + }, + { + "start": 571.9, + "end": 575.22, + "probability": 0.9404 + }, + { + "start": 575.84, + "end": 577.12, + "probability": 0.7176 + }, + { + "start": 578.02, + "end": 579.98, + "probability": 0.7389 + }, + { + "start": 580.54, + "end": 584.86, + "probability": 0.9478 + }, + { + "start": 585.5, + "end": 586.0, + "probability": 0.631 + }, + { + "start": 586.12, + "end": 588.46, + "probability": 0.7424 + }, + { + "start": 589.0, + "end": 589.96, + "probability": 0.6931 + }, + { + "start": 590.76, + "end": 595.0, + "probability": 0.6457 + }, + { + "start": 595.52, + "end": 598.96, + "probability": 0.4809 + }, + { + "start": 598.96, + "end": 599.24, + "probability": 0.2539 + }, + { + "start": 600.44, + "end": 602.26, + "probability": 0.9373 + }, + { + "start": 602.32, + "end": 605.26, + "probability": 0.9016 + }, + { + "start": 605.86, + "end": 608.26, + "probability": 0.7459 + }, + { + "start": 608.72, + "end": 609.56, + "probability": 0.583 + }, + { + "start": 609.58, + "end": 610.44, + "probability": 0.3679 + }, + { + "start": 611.7, + "end": 615.96, + "probability": 0.8021 + }, + { + "start": 616.46, + "end": 618.3, + "probability": 0.9878 + }, + { + "start": 618.88, + "end": 619.8, + "probability": 0.8516 + }, + { + "start": 620.72, + "end": 621.36, + "probability": 0.6969 + }, + { + "start": 621.52, + "end": 627.49, + "probability": 0.7703 + }, + { + "start": 628.12, + "end": 630.24, + "probability": 0.9741 + }, + { + "start": 630.56, + "end": 632.56, + "probability": 0.9088 + }, + { + "start": 632.8, + "end": 634.4, + "probability": 0.9761 + }, + { + "start": 634.78, + "end": 635.94, + "probability": 0.9941 + }, + { + "start": 636.16, + "end": 640.54, + "probability": 0.9463 + }, + { + "start": 641.06, + "end": 642.04, + "probability": 0.7852 + }, + { + "start": 642.44, + "end": 644.96, + "probability": 0.7576 + }, + { + "start": 645.4, + "end": 646.17, + "probability": 0.9004 + }, + { + "start": 647.1, + "end": 650.32, + "probability": 0.9453 + }, + { + "start": 651.2, + "end": 652.46, + "probability": 0.7388 + }, + { + "start": 652.56, + "end": 656.56, + "probability": 0.973 + }, + { + "start": 657.56, + "end": 658.34, + "probability": 0.7137 + }, + { + "start": 659.25, + "end": 662.18, + "probability": 0.5812 + }, + { + "start": 662.72, + "end": 664.22, + "probability": 0.4832 + }, + { + "start": 666.66, + "end": 668.76, + "probability": 0.7992 + }, + { + "start": 669.3, + "end": 672.08, + "probability": 0.9536 + }, + { + "start": 674.65, + "end": 678.18, + "probability": 0.4203 + }, + { + "start": 679.22, + "end": 683.5, + "probability": 0.3137 + }, + { + "start": 683.5, + "end": 684.94, + "probability": 0.6145 + }, + { + "start": 685.64, + "end": 686.4, + "probability": 0.3382 + }, + { + "start": 687.38, + "end": 687.56, + "probability": 0.1259 + }, + { + "start": 687.72, + "end": 688.2, + "probability": 0.3017 + }, + { + "start": 688.26, + "end": 691.84, + "probability": 0.483 + }, + { + "start": 691.94, + "end": 692.48, + "probability": 0.4164 + }, + { + "start": 692.48, + "end": 692.5, + "probability": 0.4579 + }, + { + "start": 692.74, + "end": 692.76, + "probability": 0.6305 + }, + { + "start": 693.08, + "end": 695.58, + "probability": 0.757 + }, + { + "start": 695.58, + "end": 695.65, + "probability": 0.0934 + }, + { + "start": 697.0, + "end": 697.1, + "probability": 0.0219 + }, + { + "start": 697.22, + "end": 700.02, + "probability": 0.9294 + }, + { + "start": 700.26, + "end": 702.06, + "probability": 0.0819 + }, + { + "start": 702.72, + "end": 703.9, + "probability": 0.3439 + }, + { + "start": 705.5, + "end": 709.2, + "probability": 0.8037 + }, + { + "start": 709.3, + "end": 712.3, + "probability": 0.0537 + }, + { + "start": 712.3, + "end": 714.48, + "probability": 0.6747 + }, + { + "start": 715.06, + "end": 717.28, + "probability": 0.6677 + }, + { + "start": 717.92, + "end": 720.66, + "probability": 0.9575 + }, + { + "start": 721.78, + "end": 722.76, + "probability": 0.5293 + }, + { + "start": 723.54, + "end": 725.08, + "probability": 0.8447 + }, + { + "start": 725.9, + "end": 727.74, + "probability": 0.9843 + }, + { + "start": 728.4, + "end": 730.22, + "probability": 0.9897 + }, + { + "start": 731.12, + "end": 734.0, + "probability": 0.9839 + }, + { + "start": 734.66, + "end": 736.74, + "probability": 0.8294 + }, + { + "start": 737.3, + "end": 742.4, + "probability": 0.9821 + }, + { + "start": 743.58, + "end": 746.98, + "probability": 0.9829 + }, + { + "start": 747.84, + "end": 750.28, + "probability": 0.7249 + }, + { + "start": 751.08, + "end": 756.62, + "probability": 0.6465 + }, + { + "start": 758.98, + "end": 763.8, + "probability": 0.9353 + }, + { + "start": 764.16, + "end": 764.32, + "probability": 0.7094 + }, + { + "start": 765.16, + "end": 767.3, + "probability": 0.5086 + }, + { + "start": 768.0, + "end": 768.1, + "probability": 0.0591 + }, + { + "start": 768.1, + "end": 769.92, + "probability": 0.7268 + }, + { + "start": 771.22, + "end": 775.4, + "probability": 0.972 + }, + { + "start": 776.32, + "end": 778.82, + "probability": 0.9414 + }, + { + "start": 780.8, + "end": 783.52, + "probability": 0.9843 + }, + { + "start": 784.3, + "end": 787.7, + "probability": 0.986 + }, + { + "start": 788.62, + "end": 791.32, + "probability": 0.9961 + }, + { + "start": 791.42, + "end": 791.9, + "probability": 0.9851 + }, + { + "start": 792.54, + "end": 794.7, + "probability": 0.9624 + }, + { + "start": 795.06, + "end": 796.14, + "probability": 0.846 + }, + { + "start": 797.54, + "end": 800.48, + "probability": 0.4225 + }, + { + "start": 801.21, + "end": 803.08, + "probability": 0.7719 + }, + { + "start": 803.2, + "end": 803.44, + "probability": 0.3418 + }, + { + "start": 803.82, + "end": 804.77, + "probability": 0.3464 + }, + { + "start": 805.02, + "end": 806.56, + "probability": 0.4562 + }, + { + "start": 807.4, + "end": 808.98, + "probability": 0.8327 + }, + { + "start": 809.62, + "end": 809.82, + "probability": 0.4825 + }, + { + "start": 809.92, + "end": 812.98, + "probability": 0.7133 + }, + { + "start": 813.78, + "end": 814.6, + "probability": 0.9286 + }, + { + "start": 816.14, + "end": 818.94, + "probability": 0.9907 + }, + { + "start": 818.98, + "end": 822.73, + "probability": 0.9539 + }, + { + "start": 823.32, + "end": 825.04, + "probability": 0.9835 + }, + { + "start": 825.6, + "end": 826.42, + "probability": 0.5304 + }, + { + "start": 826.42, + "end": 830.22, + "probability": 0.9078 + }, + { + "start": 831.26, + "end": 832.28, + "probability": 0.9883 + }, + { + "start": 833.26, + "end": 835.98, + "probability": 0.9588 + }, + { + "start": 836.66, + "end": 838.42, + "probability": 0.9699 + }, + { + "start": 839.08, + "end": 844.32, + "probability": 0.9539 + }, + { + "start": 845.36, + "end": 848.76, + "probability": 0.9963 + }, + { + "start": 849.54, + "end": 850.48, + "probability": 0.7944 + }, + { + "start": 850.56, + "end": 856.44, + "probability": 0.9907 + }, + { + "start": 857.06, + "end": 859.18, + "probability": 0.9932 + }, + { + "start": 859.9, + "end": 864.96, + "probability": 0.9561 + }, + { + "start": 865.62, + "end": 866.04, + "probability": 0.719 + }, + { + "start": 866.2, + "end": 866.72, + "probability": 0.4364 + }, + { + "start": 866.78, + "end": 868.06, + "probability": 0.9243 + }, + { + "start": 868.24, + "end": 870.44, + "probability": 0.7159 + }, + { + "start": 871.52, + "end": 872.34, + "probability": 0.6576 + }, + { + "start": 872.52, + "end": 873.76, + "probability": 0.61 + }, + { + "start": 874.12, + "end": 880.76, + "probability": 0.9803 + }, + { + "start": 881.28, + "end": 883.64, + "probability": 0.6464 + }, + { + "start": 884.8, + "end": 885.88, + "probability": 0.5142 + }, + { + "start": 886.84, + "end": 888.31, + "probability": 0.8764 + }, + { + "start": 889.14, + "end": 895.4, + "probability": 0.8484 + }, + { + "start": 896.38, + "end": 897.19, + "probability": 0.821 + }, + { + "start": 898.24, + "end": 900.6, + "probability": 0.9509 + }, + { + "start": 901.22, + "end": 903.15, + "probability": 0.4226 + }, + { + "start": 904.08, + "end": 905.54, + "probability": 0.7922 + }, + { + "start": 906.02, + "end": 907.18, + "probability": 0.2543 + }, + { + "start": 909.92, + "end": 910.64, + "probability": 0.7597 + }, + { + "start": 910.68, + "end": 911.08, + "probability": 0.6108 + }, + { + "start": 911.16, + "end": 912.36, + "probability": 0.695 + }, + { + "start": 912.52, + "end": 913.24, + "probability": 0.7645 + }, + { + "start": 913.26, + "end": 913.94, + "probability": 0.795 + }, + { + "start": 914.4, + "end": 915.84, + "probability": 0.8594 + }, + { + "start": 916.9, + "end": 919.76, + "probability": 0.9873 + }, + { + "start": 920.38, + "end": 921.62, + "probability": 0.9963 + }, + { + "start": 922.38, + "end": 924.0, + "probability": 0.7983 + }, + { + "start": 924.38, + "end": 927.46, + "probability": 0.9902 + }, + { + "start": 928.58, + "end": 932.12, + "probability": 0.9975 + }, + { + "start": 932.68, + "end": 934.68, + "probability": 0.9435 + }, + { + "start": 935.3, + "end": 938.2, + "probability": 0.9915 + }, + { + "start": 939.22, + "end": 940.16, + "probability": 0.8337 + }, + { + "start": 940.86, + "end": 942.46, + "probability": 0.8526 + }, + { + "start": 943.2, + "end": 944.0, + "probability": 0.9327 + }, + { + "start": 944.92, + "end": 946.56, + "probability": 0.897 + }, + { + "start": 947.24, + "end": 949.92, + "probability": 0.8232 + }, + { + "start": 950.58, + "end": 954.58, + "probability": 0.9773 + }, + { + "start": 954.58, + "end": 959.42, + "probability": 0.9759 + }, + { + "start": 959.9, + "end": 961.46, + "probability": 0.6443 + }, + { + "start": 961.98, + "end": 964.84, + "probability": 0.9307 + }, + { + "start": 965.76, + "end": 966.34, + "probability": 0.687 + }, + { + "start": 966.92, + "end": 971.48, + "probability": 0.9883 + }, + { + "start": 972.26, + "end": 974.5, + "probability": 0.9691 + }, + { + "start": 975.26, + "end": 979.96, + "probability": 0.7674 + }, + { + "start": 980.92, + "end": 983.68, + "probability": 0.8188 + }, + { + "start": 984.62, + "end": 988.14, + "probability": 0.8394 + }, + { + "start": 988.86, + "end": 992.0, + "probability": 0.9886 + }, + { + "start": 993.24, + "end": 994.18, + "probability": 0.6469 + }, + { + "start": 994.7, + "end": 995.48, + "probability": 0.9821 + }, + { + "start": 996.0, + "end": 996.32, + "probability": 0.7495 + }, + { + "start": 997.5, + "end": 999.18, + "probability": 0.7683 + }, + { + "start": 999.32, + "end": 1003.28, + "probability": 0.323 + }, + { + "start": 1004.26, + "end": 1004.56, + "probability": 0.6362 + }, + { + "start": 1004.74, + "end": 1006.64, + "probability": 0.6706 + }, + { + "start": 1007.14, + "end": 1010.08, + "probability": 0.915 + }, + { + "start": 1010.08, + "end": 1012.48, + "probability": 0.8439 + }, + { + "start": 1012.94, + "end": 1015.08, + "probability": 0.9749 + }, + { + "start": 1015.62, + "end": 1019.88, + "probability": 0.9691 + }, + { + "start": 1020.8, + "end": 1021.66, + "probability": 0.5033 + }, + { + "start": 1022.3, + "end": 1026.32, + "probability": 0.9014 + }, + { + "start": 1027.06, + "end": 1031.86, + "probability": 0.8474 + }, + { + "start": 1032.48, + "end": 1033.42, + "probability": 0.7557 + }, + { + "start": 1033.66, + "end": 1034.24, + "probability": 0.0905 + }, + { + "start": 1034.24, + "end": 1035.04, + "probability": 0.716 + }, + { + "start": 1035.18, + "end": 1035.92, + "probability": 0.5504 + }, + { + "start": 1035.92, + "end": 1041.74, + "probability": 0.7876 + }, + { + "start": 1043.24, + "end": 1047.74, + "probability": 0.9402 + }, + { + "start": 1047.74, + "end": 1050.88, + "probability": 0.7811 + }, + { + "start": 1051.2, + "end": 1052.28, + "probability": 0.2243 + }, + { + "start": 1052.96, + "end": 1055.24, + "probability": 0.3265 + }, + { + "start": 1055.66, + "end": 1057.28, + "probability": 0.917 + }, + { + "start": 1062.74, + "end": 1063.74, + "probability": 0.0838 + }, + { + "start": 1064.36, + "end": 1066.02, + "probability": 0.5091 + }, + { + "start": 1066.16, + "end": 1067.68, + "probability": 0.853 + }, + { + "start": 1068.22, + "end": 1070.32, + "probability": 0.3137 + }, + { + "start": 1070.32, + "end": 1071.0, + "probability": 0.6648 + }, + { + "start": 1071.08, + "end": 1071.1, + "probability": 0.0179 + }, + { + "start": 1071.1, + "end": 1074.98, + "probability": 0.7766 + }, + { + "start": 1075.28, + "end": 1075.38, + "probability": 0.0042 + }, + { + "start": 1075.98, + "end": 1077.02, + "probability": 0.7854 + }, + { + "start": 1078.23, + "end": 1081.38, + "probability": 0.7598 + }, + { + "start": 1081.52, + "end": 1083.73, + "probability": 0.9919 + }, + { + "start": 1084.22, + "end": 1084.84, + "probability": 0.738 + }, + { + "start": 1085.04, + "end": 1085.66, + "probability": 0.7478 + }, + { + "start": 1086.96, + "end": 1091.44, + "probability": 0.7148 + }, + { + "start": 1091.44, + "end": 1097.66, + "probability": 0.9686 + }, + { + "start": 1098.22, + "end": 1103.08, + "probability": 0.9935 + }, + { + "start": 1103.08, + "end": 1106.76, + "probability": 0.998 + }, + { + "start": 1107.58, + "end": 1109.92, + "probability": 0.7964 + }, + { + "start": 1110.46, + "end": 1111.44, + "probability": 0.6763 + }, + { + "start": 1112.1, + "end": 1113.04, + "probability": 0.8232 + }, + { + "start": 1113.52, + "end": 1114.59, + "probability": 0.8577 + }, + { + "start": 1114.96, + "end": 1119.58, + "probability": 0.5818 + }, + { + "start": 1123.0, + "end": 1124.04, + "probability": 0.2016 + }, + { + "start": 1124.04, + "end": 1124.04, + "probability": 0.4184 + }, + { + "start": 1124.04, + "end": 1126.86, + "probability": 0.5526 + }, + { + "start": 1127.5, + "end": 1131.14, + "probability": 0.5898 + }, + { + "start": 1132.94, + "end": 1133.5, + "probability": 0.3349 + }, + { + "start": 1133.92, + "end": 1133.92, + "probability": 0.484 + }, + { + "start": 1133.92, + "end": 1133.92, + "probability": 0.3602 + }, + { + "start": 1133.92, + "end": 1133.92, + "probability": 0.4411 + }, + { + "start": 1133.92, + "end": 1136.86, + "probability": 0.6841 + }, + { + "start": 1136.9, + "end": 1137.36, + "probability": 0.5514 + }, + { + "start": 1137.52, + "end": 1140.62, + "probability": 0.9547 + }, + { + "start": 1140.7, + "end": 1140.78, + "probability": 0.4563 + }, + { + "start": 1140.86, + "end": 1141.94, + "probability": 0.9005 + }, + { + "start": 1142.06, + "end": 1144.62, + "probability": 0.8735 + }, + { + "start": 1145.0, + "end": 1146.18, + "probability": 0.612 + }, + { + "start": 1146.4, + "end": 1149.0, + "probability": 0.853 + }, + { + "start": 1149.24, + "end": 1153.78, + "probability": 0.9087 + }, + { + "start": 1154.5, + "end": 1157.18, + "probability": 0.8925 + }, + { + "start": 1157.58, + "end": 1159.58, + "probability": 0.9138 + }, + { + "start": 1160.24, + "end": 1162.0, + "probability": 0.6111 + }, + { + "start": 1162.2, + "end": 1165.6, + "probability": 0.5521 + }, + { + "start": 1166.2, + "end": 1168.04, + "probability": 0.7187 + }, + { + "start": 1168.66, + "end": 1170.88, + "probability": 0.9752 + }, + { + "start": 1172.3, + "end": 1174.44, + "probability": 0.8077 + }, + { + "start": 1175.16, + "end": 1177.4, + "probability": 0.7987 + }, + { + "start": 1178.3, + "end": 1180.88, + "probability": 0.8721 + }, + { + "start": 1180.96, + "end": 1182.24, + "probability": 0.9527 + }, + { + "start": 1182.6, + "end": 1187.38, + "probability": 0.9813 + }, + { + "start": 1189.26, + "end": 1189.5, + "probability": 0.4936 + }, + { + "start": 1189.5, + "end": 1193.04, + "probability": 0.9909 + }, + { + "start": 1193.2, + "end": 1197.08, + "probability": 0.9306 + }, + { + "start": 1197.72, + "end": 1197.96, + "probability": 0.7128 + }, + { + "start": 1197.98, + "end": 1201.78, + "probability": 0.9273 + }, + { + "start": 1202.3, + "end": 1204.32, + "probability": 0.983 + }, + { + "start": 1205.34, + "end": 1206.29, + "probability": 0.9617 + }, + { + "start": 1207.0, + "end": 1209.42, + "probability": 0.9841 + }, + { + "start": 1210.04, + "end": 1211.86, + "probability": 0.9766 + }, + { + "start": 1212.54, + "end": 1214.14, + "probability": 0.7981 + }, + { + "start": 1215.18, + "end": 1216.46, + "probability": 0.9854 + }, + { + "start": 1216.68, + "end": 1217.22, + "probability": 0.4689 + }, + { + "start": 1217.32, + "end": 1218.21, + "probability": 0.9766 + }, + { + "start": 1218.5, + "end": 1220.22, + "probability": 0.9834 + }, + { + "start": 1220.34, + "end": 1226.16, + "probability": 0.9951 + }, + { + "start": 1227.1, + "end": 1227.7, + "probability": 0.9525 + }, + { + "start": 1228.18, + "end": 1229.9, + "probability": 0.9951 + }, + { + "start": 1230.02, + "end": 1233.12, + "probability": 0.5908 + }, + { + "start": 1233.92, + "end": 1234.1, + "probability": 0.7182 + }, + { + "start": 1234.12, + "end": 1235.56, + "probability": 0.7349 + }, + { + "start": 1235.92, + "end": 1236.52, + "probability": 0.741 + }, + { + "start": 1236.64, + "end": 1236.84, + "probability": 0.5076 + }, + { + "start": 1236.86, + "end": 1239.22, + "probability": 0.5202 + }, + { + "start": 1239.22, + "end": 1239.42, + "probability": 0.4766 + }, + { + "start": 1239.76, + "end": 1241.76, + "probability": 0.7504 + }, + { + "start": 1242.36, + "end": 1245.18, + "probability": 0.5285 + }, + { + "start": 1245.36, + "end": 1245.36, + "probability": 0.6678 + }, + { + "start": 1245.4, + "end": 1246.02, + "probability": 0.9307 + }, + { + "start": 1246.04, + "end": 1246.96, + "probability": 0.7684 + }, + { + "start": 1247.42, + "end": 1249.34, + "probability": 0.9969 + }, + { + "start": 1250.28, + "end": 1251.6, + "probability": 0.9819 + }, + { + "start": 1252.54, + "end": 1256.28, + "probability": 0.9614 + }, + { + "start": 1256.28, + "end": 1260.58, + "probability": 0.9993 + }, + { + "start": 1261.56, + "end": 1263.24, + "probability": 0.7268 + }, + { + "start": 1264.68, + "end": 1268.22, + "probability": 0.8031 + }, + { + "start": 1271.2, + "end": 1271.22, + "probability": 0.0675 + }, + { + "start": 1271.22, + "end": 1271.22, + "probability": 0.1845 + }, + { + "start": 1271.22, + "end": 1274.58, + "probability": 0.9143 + }, + { + "start": 1274.58, + "end": 1279.72, + "probability": 0.9904 + }, + { + "start": 1280.04, + "end": 1281.26, + "probability": 0.53 + }, + { + "start": 1281.88, + "end": 1282.62, + "probability": 0.9017 + }, + { + "start": 1283.36, + "end": 1284.32, + "probability": 0.9058 + }, + { + "start": 1285.34, + "end": 1286.52, + "probability": 0.9661 + }, + { + "start": 1286.74, + "end": 1289.58, + "probability": 0.9897 + }, + { + "start": 1289.58, + "end": 1292.78, + "probability": 0.987 + }, + { + "start": 1293.78, + "end": 1295.42, + "probability": 0.9705 + }, + { + "start": 1295.96, + "end": 1296.28, + "probability": 0.8364 + }, + { + "start": 1297.38, + "end": 1299.82, + "probability": 0.9932 + }, + { + "start": 1300.44, + "end": 1303.7, + "probability": 0.9935 + }, + { + "start": 1304.52, + "end": 1308.44, + "probability": 0.9831 + }, + { + "start": 1308.8, + "end": 1310.4, + "probability": 0.9651 + }, + { + "start": 1310.86, + "end": 1311.64, + "probability": 0.6397 + }, + { + "start": 1312.3, + "end": 1313.16, + "probability": 0.9891 + }, + { + "start": 1314.08, + "end": 1316.86, + "probability": 0.8264 + }, + { + "start": 1317.48, + "end": 1318.36, + "probability": 0.0182 + }, + { + "start": 1319.82, + "end": 1321.97, + "probability": 0.5557 + }, + { + "start": 1323.54, + "end": 1325.82, + "probability": 0.3707 + }, + { + "start": 1326.46, + "end": 1327.56, + "probability": 0.6108 + }, + { + "start": 1327.78, + "end": 1331.3, + "probability": 0.8717 + }, + { + "start": 1332.28, + "end": 1334.38, + "probability": 0.8892 + }, + { + "start": 1338.35, + "end": 1341.32, + "probability": 0.9915 + }, + { + "start": 1342.02, + "end": 1343.38, + "probability": 0.9985 + }, + { + "start": 1344.0, + "end": 1350.16, + "probability": 0.9987 + }, + { + "start": 1350.68, + "end": 1353.2, + "probability": 0.929 + }, + { + "start": 1354.12, + "end": 1355.84, + "probability": 0.9117 + }, + { + "start": 1356.72, + "end": 1357.56, + "probability": 0.6586 + }, + { + "start": 1358.22, + "end": 1358.46, + "probability": 0.6228 + }, + { + "start": 1359.14, + "end": 1359.44, + "probability": 0.6799 + }, + { + "start": 1359.66, + "end": 1360.75, + "probability": 0.7344 + }, + { + "start": 1361.94, + "end": 1365.06, + "probability": 0.9431 + }, + { + "start": 1365.06, + "end": 1368.98, + "probability": 0.9969 + }, + { + "start": 1369.74, + "end": 1371.24, + "probability": 0.9524 + }, + { + "start": 1372.48, + "end": 1373.46, + "probability": 0.5291 + }, + { + "start": 1373.6, + "end": 1374.72, + "probability": 0.7019 + }, + { + "start": 1374.94, + "end": 1378.85, + "probability": 0.8627 + }, + { + "start": 1379.1, + "end": 1381.62, + "probability": 0.9541 + }, + { + "start": 1382.48, + "end": 1383.46, + "probability": 0.896 + }, + { + "start": 1383.58, + "end": 1386.18, + "probability": 0.9081 + }, + { + "start": 1386.66, + "end": 1391.68, + "probability": 0.9867 + }, + { + "start": 1392.08, + "end": 1396.18, + "probability": 0.9915 + }, + { + "start": 1397.14, + "end": 1400.46, + "probability": 0.9893 + }, + { + "start": 1400.9, + "end": 1402.1, + "probability": 0.9761 + }, + { + "start": 1402.56, + "end": 1403.78, + "probability": 0.9036 + }, + { + "start": 1404.06, + "end": 1404.84, + "probability": 0.8513 + }, + { + "start": 1405.42, + "end": 1407.18, + "probability": 0.9968 + }, + { + "start": 1407.7, + "end": 1409.04, + "probability": 0.9951 + }, + { + "start": 1409.52, + "end": 1413.9, + "probability": 0.9961 + }, + { + "start": 1414.0, + "end": 1414.78, + "probability": 0.6834 + }, + { + "start": 1415.52, + "end": 1416.38, + "probability": 0.7288 + }, + { + "start": 1417.34, + "end": 1421.2, + "probability": 0.9085 + }, + { + "start": 1422.64, + "end": 1425.46, + "probability": 0.8758 + }, + { + "start": 1426.06, + "end": 1426.72, + "probability": 0.1666 + }, + { + "start": 1427.6, + "end": 1427.86, + "probability": 0.6992 + }, + { + "start": 1427.9, + "end": 1428.54, + "probability": 0.9261 + }, + { + "start": 1430.08, + "end": 1432.3, + "probability": 0.8869 + }, + { + "start": 1432.96, + "end": 1433.8, + "probability": 0.81 + }, + { + "start": 1433.86, + "end": 1440.34, + "probability": 0.888 + }, + { + "start": 1440.96, + "end": 1444.1, + "probability": 0.9977 + }, + { + "start": 1444.4, + "end": 1445.54, + "probability": 0.785 + }, + { + "start": 1446.0, + "end": 1447.26, + "probability": 0.4968 + }, + { + "start": 1447.56, + "end": 1451.38, + "probability": 0.9587 + }, + { + "start": 1451.84, + "end": 1452.26, + "probability": 0.8182 + }, + { + "start": 1452.34, + "end": 1457.34, + "probability": 0.9746 + }, + { + "start": 1458.04, + "end": 1460.44, + "probability": 0.9974 + }, + { + "start": 1461.64, + "end": 1462.9, + "probability": 0.8971 + }, + { + "start": 1463.68, + "end": 1463.76, + "probability": 0.6445 + }, + { + "start": 1463.76, + "end": 1464.16, + "probability": 0.8665 + }, + { + "start": 1464.34, + "end": 1464.86, + "probability": 0.6975 + }, + { + "start": 1464.94, + "end": 1466.1, + "probability": 0.8271 + }, + { + "start": 1466.2, + "end": 1467.3, + "probability": 0.7227 + }, + { + "start": 1467.46, + "end": 1469.72, + "probability": 0.9976 + }, + { + "start": 1470.1, + "end": 1470.4, + "probability": 0.2442 + }, + { + "start": 1470.56, + "end": 1471.36, + "probability": 0.0458 + }, + { + "start": 1471.36, + "end": 1477.22, + "probability": 0.9543 + }, + { + "start": 1477.9, + "end": 1479.7, + "probability": 0.9813 + }, + { + "start": 1479.9, + "end": 1480.58, + "probability": 0.626 + }, + { + "start": 1480.62, + "end": 1484.64, + "probability": 0.6927 + }, + { + "start": 1484.8, + "end": 1485.34, + "probability": 0.2385 + }, + { + "start": 1485.34, + "end": 1485.34, + "probability": 0.004 + }, + { + "start": 1485.34, + "end": 1485.34, + "probability": 0.2672 + }, + { + "start": 1485.34, + "end": 1485.34, + "probability": 0.0205 + }, + { + "start": 1485.34, + "end": 1486.34, + "probability": 0.6586 + }, + { + "start": 1486.34, + "end": 1486.98, + "probability": 0.5474 + }, + { + "start": 1487.4, + "end": 1487.96, + "probability": 0.2083 + }, + { + "start": 1488.0, + "end": 1488.92, + "probability": 0.6926 + }, + { + "start": 1489.02, + "end": 1489.82, + "probability": 0.9067 + }, + { + "start": 1490.68, + "end": 1493.96, + "probability": 0.8967 + }, + { + "start": 1494.6, + "end": 1494.92, + "probability": 0.6243 + }, + { + "start": 1494.96, + "end": 1495.42, + "probability": 0.6875 + }, + { + "start": 1495.7, + "end": 1498.2, + "probability": 0.9449 + }, + { + "start": 1498.76, + "end": 1500.78, + "probability": 0.8204 + }, + { + "start": 1501.64, + "end": 1505.96, + "probability": 0.9846 + }, + { + "start": 1506.12, + "end": 1506.72, + "probability": 0.8999 + }, + { + "start": 1507.62, + "end": 1509.4, + "probability": 0.9912 + }, + { + "start": 1510.08, + "end": 1512.62, + "probability": 0.9883 + }, + { + "start": 1513.26, + "end": 1518.2, + "probability": 0.9826 + }, + { + "start": 1518.74, + "end": 1519.6, + "probability": 0.8809 + }, + { + "start": 1520.38, + "end": 1522.12, + "probability": 0.9215 + }, + { + "start": 1522.96, + "end": 1527.72, + "probability": 0.7129 + }, + { + "start": 1527.76, + "end": 1527.88, + "probability": 0.3329 + }, + { + "start": 1527.98, + "end": 1528.42, + "probability": 0.8525 + }, + { + "start": 1528.62, + "end": 1529.48, + "probability": 0.7901 + }, + { + "start": 1529.54, + "end": 1532.06, + "probability": 0.9783 + }, + { + "start": 1533.39, + "end": 1536.7, + "probability": 0.9618 + }, + { + "start": 1537.92, + "end": 1540.88, + "probability": 0.9842 + }, + { + "start": 1541.18, + "end": 1543.18, + "probability": 0.9725 + }, + { + "start": 1543.8, + "end": 1549.58, + "probability": 0.9527 + }, + { + "start": 1550.08, + "end": 1550.76, + "probability": 0.9131 + }, + { + "start": 1551.06, + "end": 1551.74, + "probability": 0.9521 + }, + { + "start": 1551.82, + "end": 1552.56, + "probability": 0.913 + }, + { + "start": 1552.86, + "end": 1556.72, + "probability": 0.8525 + }, + { + "start": 1557.28, + "end": 1559.68, + "probability": 0.9688 + }, + { + "start": 1560.42, + "end": 1563.78, + "probability": 0.9149 + }, + { + "start": 1563.9, + "end": 1565.18, + "probability": 0.7199 + }, + { + "start": 1565.5, + "end": 1566.33, + "probability": 0.7299 + }, + { + "start": 1566.52, + "end": 1569.66, + "probability": 0.84 + }, + { + "start": 1569.82, + "end": 1570.17, + "probability": 0.2842 + }, + { + "start": 1571.2, + "end": 1571.4, + "probability": 0.9473 + }, + { + "start": 1571.92, + "end": 1573.3, + "probability": 0.9119 + }, + { + "start": 1575.18, + "end": 1576.7, + "probability": 0.9341 + }, + { + "start": 1577.4, + "end": 1578.16, + "probability": 0.971 + }, + { + "start": 1579.38, + "end": 1581.12, + "probability": 0.9868 + }, + { + "start": 1582.0, + "end": 1584.46, + "probability": 0.9964 + }, + { + "start": 1585.82, + "end": 1587.72, + "probability": 0.9236 + }, + { + "start": 1587.86, + "end": 1588.66, + "probability": 0.7271 + }, + { + "start": 1588.7, + "end": 1592.5, + "probability": 0.9751 + }, + { + "start": 1593.08, + "end": 1594.26, + "probability": 0.9764 + }, + { + "start": 1595.28, + "end": 1596.84, + "probability": 0.9753 + }, + { + "start": 1597.36, + "end": 1600.57, + "probability": 0.9229 + }, + { + "start": 1601.12, + "end": 1601.74, + "probability": 0.9629 + }, + { + "start": 1602.14, + "end": 1604.58, + "probability": 0.9419 + }, + { + "start": 1605.6, + "end": 1607.44, + "probability": 0.2624 + }, + { + "start": 1607.76, + "end": 1609.02, + "probability": 0.3882 + }, + { + "start": 1609.08, + "end": 1609.7, + "probability": 0.9719 + }, + { + "start": 1610.9, + "end": 1613.42, + "probability": 0.89 + }, + { + "start": 1614.36, + "end": 1615.94, + "probability": 0.5003 + }, + { + "start": 1616.58, + "end": 1618.04, + "probability": 0.8818 + }, + { + "start": 1618.4, + "end": 1619.62, + "probability": 0.983 + }, + { + "start": 1619.96, + "end": 1621.04, + "probability": 0.894 + }, + { + "start": 1621.46, + "end": 1623.06, + "probability": 0.7382 + }, + { + "start": 1623.1, + "end": 1627.55, + "probability": 0.9963 + }, + { + "start": 1628.0, + "end": 1632.52, + "probability": 0.976 + }, + { + "start": 1633.2, + "end": 1635.2, + "probability": 0.9633 + }, + { + "start": 1636.22, + "end": 1636.88, + "probability": 0.8365 + }, + { + "start": 1637.18, + "end": 1637.86, + "probability": 0.8879 + }, + { + "start": 1639.04, + "end": 1640.2, + "probability": 0.9248 + }, + { + "start": 1640.96, + "end": 1643.14, + "probability": 0.976 + }, + { + "start": 1643.84, + "end": 1646.98, + "probability": 0.8735 + }, + { + "start": 1647.8, + "end": 1649.08, + "probability": 0.8606 + }, + { + "start": 1649.92, + "end": 1652.94, + "probability": 0.9087 + }, + { + "start": 1653.76, + "end": 1656.76, + "probability": 0.9713 + }, + { + "start": 1657.06, + "end": 1661.5, + "probability": 0.975 + }, + { + "start": 1661.94, + "end": 1662.38, + "probability": 0.6128 + }, + { + "start": 1663.06, + "end": 1663.7, + "probability": 0.7877 + }, + { + "start": 1664.36, + "end": 1666.72, + "probability": 0.9502 + }, + { + "start": 1666.94, + "end": 1667.26, + "probability": 0.6213 + }, + { + "start": 1667.5, + "end": 1668.18, + "probability": 0.8756 + }, + { + "start": 1668.4, + "end": 1668.78, + "probability": 0.7756 + }, + { + "start": 1668.86, + "end": 1670.11, + "probability": 0.9688 + }, + { + "start": 1672.66, + "end": 1675.28, + "probability": 0.999 + }, + { + "start": 1676.36, + "end": 1680.36, + "probability": 0.9681 + }, + { + "start": 1680.46, + "end": 1681.16, + "probability": 0.7338 + }, + { + "start": 1682.02, + "end": 1682.96, + "probability": 0.8686 + }, + { + "start": 1683.08, + "end": 1684.24, + "probability": 0.7694 + }, + { + "start": 1684.72, + "end": 1688.18, + "probability": 0.5012 + }, + { + "start": 1688.46, + "end": 1690.18, + "probability": 0.5479 + }, + { + "start": 1690.5, + "end": 1691.68, + "probability": 0.924 + }, + { + "start": 1692.71, + "end": 1695.83, + "probability": 0.9308 + }, + { + "start": 1697.06, + "end": 1697.86, + "probability": 0.8804 + }, + { + "start": 1698.54, + "end": 1700.0, + "probability": 0.9826 + }, + { + "start": 1700.3, + "end": 1701.04, + "probability": 0.9681 + }, + { + "start": 1701.64, + "end": 1702.16, + "probability": 0.9617 + }, + { + "start": 1702.56, + "end": 1704.46, + "probability": 0.8149 + }, + { + "start": 1704.62, + "end": 1707.7, + "probability": 0.2315 + }, + { + "start": 1709.38, + "end": 1709.44, + "probability": 0.4131 + }, + { + "start": 1709.44, + "end": 1711.82, + "probability": 0.7111 + }, + { + "start": 1712.0, + "end": 1714.86, + "probability": 0.9937 + }, + { + "start": 1715.12, + "end": 1716.64, + "probability": 0.7894 + }, + { + "start": 1717.3, + "end": 1717.84, + "probability": 0.8282 + }, + { + "start": 1717.88, + "end": 1718.28, + "probability": 0.9683 + }, + { + "start": 1718.48, + "end": 1719.75, + "probability": 0.854 + }, + { + "start": 1720.06, + "end": 1720.44, + "probability": 0.9362 + }, + { + "start": 1721.1, + "end": 1723.7, + "probability": 0.401 + }, + { + "start": 1724.04, + "end": 1725.92, + "probability": 0.4836 + }, + { + "start": 1726.04, + "end": 1726.8, + "probability": 0.9612 + }, + { + "start": 1726.98, + "end": 1730.54, + "probability": 0.9567 + }, + { + "start": 1730.54, + "end": 1731.46, + "probability": 0.5363 + }, + { + "start": 1731.5, + "end": 1733.04, + "probability": 0.9884 + }, + { + "start": 1734.0, + "end": 1736.22, + "probability": 0.9845 + }, + { + "start": 1736.6, + "end": 1738.24, + "probability": 0.9642 + }, + { + "start": 1738.62, + "end": 1739.2, + "probability": 0.9465 + }, + { + "start": 1739.62, + "end": 1739.84, + "probability": 0.7908 + }, + { + "start": 1739.96, + "end": 1741.0, + "probability": 0.72 + }, + { + "start": 1741.18, + "end": 1741.8, + "probability": 0.831 + }, + { + "start": 1742.16, + "end": 1742.96, + "probability": 0.526 + }, + { + "start": 1743.34, + "end": 1744.26, + "probability": 0.6145 + }, + { + "start": 1744.8, + "end": 1745.48, + "probability": 0.9557 + }, + { + "start": 1745.54, + "end": 1746.74, + "probability": 0.4185 + }, + { + "start": 1747.0, + "end": 1750.02, + "probability": 0.4018 + }, + { + "start": 1750.08, + "end": 1751.18, + "probability": 0.5555 + }, + { + "start": 1751.28, + "end": 1753.82, + "probability": 0.0559 + }, + { + "start": 1753.82, + "end": 1753.82, + "probability": 0.0296 + }, + { + "start": 1753.82, + "end": 1755.59, + "probability": 0.1344 + }, + { + "start": 1756.3, + "end": 1761.04, + "probability": 0.785 + }, + { + "start": 1763.38, + "end": 1765.02, + "probability": 0.0889 + }, + { + "start": 1765.02, + "end": 1768.24, + "probability": 0.9128 + }, + { + "start": 1768.28, + "end": 1771.08, + "probability": 0.8885 + }, + { + "start": 1771.2, + "end": 1772.44, + "probability": 0.9285 + }, + { + "start": 1772.84, + "end": 1775.48, + "probability": 0.9965 + }, + { + "start": 1776.2, + "end": 1777.56, + "probability": 0.9502 + }, + { + "start": 1778.18, + "end": 1778.96, + "probability": 0.6349 + }, + { + "start": 1779.3, + "end": 1782.46, + "probability": 0.9178 + }, + { + "start": 1782.9, + "end": 1783.62, + "probability": 0.9769 + }, + { + "start": 1783.7, + "end": 1784.4, + "probability": 0.767 + }, + { + "start": 1784.8, + "end": 1785.6, + "probability": 0.488 + }, + { + "start": 1785.8, + "end": 1787.66, + "probability": 0.8511 + }, + { + "start": 1788.9, + "end": 1789.12, + "probability": 0.7809 + }, + { + "start": 1790.54, + "end": 1791.28, + "probability": 0.5017 + }, + { + "start": 1792.54, + "end": 1793.1, + "probability": 0.4 + }, + { + "start": 1793.68, + "end": 1794.42, + "probability": 0.5617 + }, + { + "start": 1795.62, + "end": 1796.04, + "probability": 0.6851 + }, + { + "start": 1796.66, + "end": 1798.14, + "probability": 0.8508 + }, + { + "start": 1798.4, + "end": 1799.58, + "probability": 0.9004 + }, + { + "start": 1799.6, + "end": 1799.74, + "probability": 0.4375 + }, + { + "start": 1800.38, + "end": 1800.74, + "probability": 0.4548 + }, + { + "start": 1800.88, + "end": 1804.96, + "probability": 0.6815 + }, + { + "start": 1805.08, + "end": 1805.96, + "probability": 0.2189 + }, + { + "start": 1806.42, + "end": 1808.24, + "probability": 0.7766 + }, + { + "start": 1808.3, + "end": 1808.58, + "probability": 0.4202 + }, + { + "start": 1808.58, + "end": 1810.34, + "probability": 0.88 + }, + { + "start": 1811.08, + "end": 1816.04, + "probability": 0.7268 + }, + { + "start": 1816.86, + "end": 1817.94, + "probability": 0.9913 + }, + { + "start": 1819.0, + "end": 1820.24, + "probability": 0.5247 + }, + { + "start": 1820.38, + "end": 1824.04, + "probability": 0.7058 + }, + { + "start": 1824.44, + "end": 1825.88, + "probability": 0.9465 + }, + { + "start": 1826.36, + "end": 1826.68, + "probability": 0.9445 + }, + { + "start": 1827.1, + "end": 1827.63, + "probability": 0.8042 + }, + { + "start": 1828.26, + "end": 1828.56, + "probability": 0.3875 + }, + { + "start": 1829.06, + "end": 1829.42, + "probability": 0.5465 + }, + { + "start": 1829.42, + "end": 1829.42, + "probability": 0.0054 + }, + { + "start": 1829.42, + "end": 1830.12, + "probability": 0.0747 + }, + { + "start": 1830.12, + "end": 1832.2, + "probability": 0.8158 + }, + { + "start": 1833.24, + "end": 1833.34, + "probability": 0.3259 + }, + { + "start": 1833.34, + "end": 1833.84, + "probability": 0.3833 + }, + { + "start": 1833.96, + "end": 1835.9, + "probability": 0.5441 + }, + { + "start": 1835.96, + "end": 1839.84, + "probability": 0.9099 + }, + { + "start": 1840.0, + "end": 1841.7, + "probability": 0.9889 + }, + { + "start": 1842.34, + "end": 1846.54, + "probability": 0.973 + }, + { + "start": 1848.48, + "end": 1849.66, + "probability": 0.265 + }, + { + "start": 1850.74, + "end": 1852.12, + "probability": 0.7127 + }, + { + "start": 1853.5, + "end": 1858.04, + "probability": 0.9039 + }, + { + "start": 1861.34, + "end": 1863.5, + "probability": 0.8646 + }, + { + "start": 1864.72, + "end": 1865.9, + "probability": 0.9591 + }, + { + "start": 1867.48, + "end": 1868.62, + "probability": 0.3037 + }, + { + "start": 1869.46, + "end": 1870.56, + "probability": 0.481 + }, + { + "start": 1871.2, + "end": 1873.18, + "probability": 0.9487 + }, + { + "start": 1875.28, + "end": 1878.22, + "probability": 0.6883 + }, + { + "start": 1878.64, + "end": 1881.48, + "probability": 0.9468 + }, + { + "start": 1881.7, + "end": 1882.42, + "probability": 0.7998 + }, + { + "start": 1882.74, + "end": 1886.06, + "probability": 0.9691 + }, + { + "start": 1886.1, + "end": 1888.72, + "probability": 0.684 + }, + { + "start": 1888.76, + "end": 1889.8, + "probability": 0.5782 + }, + { + "start": 1889.88, + "end": 1894.96, + "probability": 0.6891 + }, + { + "start": 1895.56, + "end": 1899.4, + "probability": 0.8771 + }, + { + "start": 1900.5, + "end": 1902.66, + "probability": 0.7542 + }, + { + "start": 1903.18, + "end": 1903.84, + "probability": 0.7802 + }, + { + "start": 1903.92, + "end": 1905.74, + "probability": 0.8727 + }, + { + "start": 1906.12, + "end": 1908.98, + "probability": 0.8005 + }, + { + "start": 1909.08, + "end": 1911.24, + "probability": 0.9526 + }, + { + "start": 1911.74, + "end": 1912.62, + "probability": 0.544 + }, + { + "start": 1913.64, + "end": 1914.4, + "probability": 0.547 + }, + { + "start": 1916.68, + "end": 1917.92, + "probability": 0.8037 + }, + { + "start": 1919.34, + "end": 1922.11, + "probability": 0.8435 + }, + { + "start": 1924.42, + "end": 1927.06, + "probability": 0.9214 + }, + { + "start": 1928.28, + "end": 1930.94, + "probability": 0.9972 + }, + { + "start": 1930.94, + "end": 1938.96, + "probability": 0.7961 + }, + { + "start": 1939.58, + "end": 1940.72, + "probability": 0.3511 + }, + { + "start": 1943.13, + "end": 1946.92, + "probability": 0.4443 + }, + { + "start": 1947.68, + "end": 1950.82, + "probability": 0.5253 + }, + { + "start": 1951.62, + "end": 1952.1, + "probability": 0.5977 + }, + { + "start": 1952.16, + "end": 1956.72, + "probability": 0.9912 + }, + { + "start": 1957.36, + "end": 1959.44, + "probability": 0.9932 + }, + { + "start": 1960.78, + "end": 1961.71, + "probability": 0.9392 + }, + { + "start": 1962.74, + "end": 1967.08, + "probability": 0.9801 + }, + { + "start": 1967.58, + "end": 1968.68, + "probability": 0.4932 + }, + { + "start": 1968.72, + "end": 1971.0, + "probability": 0.7599 + }, + { + "start": 1972.16, + "end": 1975.96, + "probability": 0.9743 + }, + { + "start": 1976.58, + "end": 1978.88, + "probability": 0.9827 + }, + { + "start": 1980.8, + "end": 1985.34, + "probability": 0.9771 + }, + { + "start": 1986.98, + "end": 1988.16, + "probability": 0.8382 + }, + { + "start": 1989.02, + "end": 1990.32, + "probability": 0.9579 + }, + { + "start": 1992.96, + "end": 1995.6, + "probability": 0.9746 + }, + { + "start": 1996.86, + "end": 1998.58, + "probability": 0.8296 + }, + { + "start": 1999.38, + "end": 2000.64, + "probability": 0.9707 + }, + { + "start": 2001.48, + "end": 2002.41, + "probability": 0.8189 + }, + { + "start": 2004.47, + "end": 2006.22, + "probability": 0.9094 + }, + { + "start": 2007.16, + "end": 2010.26, + "probability": 0.9788 + }, + { + "start": 2011.1, + "end": 2016.44, + "probability": 0.4957 + }, + { + "start": 2017.96, + "end": 2018.32, + "probability": 0.3781 + }, + { + "start": 2018.6, + "end": 2019.54, + "probability": 0.9664 + }, + { + "start": 2019.7, + "end": 2020.54, + "probability": 0.9902 + }, + { + "start": 2020.98, + "end": 2021.96, + "probability": 0.8445 + }, + { + "start": 2022.68, + "end": 2023.5, + "probability": 0.7854 + }, + { + "start": 2024.76, + "end": 2026.04, + "probability": 0.9593 + }, + { + "start": 2026.82, + "end": 2028.24, + "probability": 0.8143 + }, + { + "start": 2029.26, + "end": 2031.4, + "probability": 0.9708 + }, + { + "start": 2031.96, + "end": 2032.84, + "probability": 0.5852 + }, + { + "start": 2033.58, + "end": 2036.72, + "probability": 0.9263 + }, + { + "start": 2036.94, + "end": 2039.42, + "probability": 0.7745 + }, + { + "start": 2041.82, + "end": 2043.86, + "probability": 0.9406 + }, + { + "start": 2044.46, + "end": 2045.96, + "probability": 0.9772 + }, + { + "start": 2046.78, + "end": 2047.44, + "probability": 0.7501 + }, + { + "start": 2048.36, + "end": 2056.62, + "probability": 0.7241 + }, + { + "start": 2057.56, + "end": 2058.16, + "probability": 0.7572 + }, + { + "start": 2059.12, + "end": 2060.04, + "probability": 0.7524 + }, + { + "start": 2060.78, + "end": 2062.64, + "probability": 0.7626 + }, + { + "start": 2065.06, + "end": 2066.04, + "probability": 0.3866 + }, + { + "start": 2066.65, + "end": 2070.6, + "probability": 0.9931 + }, + { + "start": 2071.12, + "end": 2074.56, + "probability": 0.9722 + }, + { + "start": 2075.76, + "end": 2077.8, + "probability": 0.9102 + }, + { + "start": 2078.02, + "end": 2080.36, + "probability": 0.8506 + }, + { + "start": 2081.02, + "end": 2084.02, + "probability": 0.7695 + }, + { + "start": 2084.46, + "end": 2087.14, + "probability": 0.6602 + }, + { + "start": 2087.84, + "end": 2088.38, + "probability": 0.8756 + }, + { + "start": 2088.82, + "end": 2089.52, + "probability": 0.7638 + }, + { + "start": 2091.35, + "end": 2095.13, + "probability": 0.9971 + }, + { + "start": 2096.26, + "end": 2100.04, + "probability": 0.75 + }, + { + "start": 2101.16, + "end": 2104.04, + "probability": 0.9238 + }, + { + "start": 2104.8, + "end": 2107.82, + "probability": 0.7251 + }, + { + "start": 2109.04, + "end": 2109.76, + "probability": 0.8419 + }, + { + "start": 2109.84, + "end": 2114.64, + "probability": 0.9755 + }, + { + "start": 2115.36, + "end": 2116.08, + "probability": 0.6994 + }, + { + "start": 2117.74, + "end": 2119.9, + "probability": 0.946 + }, + { + "start": 2120.64, + "end": 2122.1, + "probability": 0.9892 + }, + { + "start": 2123.64, + "end": 2125.86, + "probability": 0.5972 + }, + { + "start": 2126.76, + "end": 2128.7, + "probability": 0.8472 + }, + { + "start": 2128.86, + "end": 2130.54, + "probability": 0.6346 + }, + { + "start": 2130.76, + "end": 2133.47, + "probability": 0.9895 + }, + { + "start": 2134.16, + "end": 2138.28, + "probability": 0.9731 + }, + { + "start": 2139.76, + "end": 2139.9, + "probability": 0.0528 + }, + { + "start": 2139.92, + "end": 2140.44, + "probability": 0.8924 + }, + { + "start": 2140.52, + "end": 2143.94, + "probability": 0.9757 + }, + { + "start": 2145.5, + "end": 2148.04, + "probability": 0.9668 + }, + { + "start": 2148.04, + "end": 2151.06, + "probability": 0.8046 + }, + { + "start": 2151.62, + "end": 2152.52, + "probability": 0.8408 + }, + { + "start": 2153.72, + "end": 2159.86, + "probability": 0.7869 + }, + { + "start": 2160.64, + "end": 2161.9, + "probability": 0.6913 + }, + { + "start": 2162.9, + "end": 2164.64, + "probability": 0.6253 + }, + { + "start": 2166.08, + "end": 2169.86, + "probability": 0.8767 + }, + { + "start": 2170.8, + "end": 2173.2, + "probability": 0.8651 + }, + { + "start": 2173.9, + "end": 2175.46, + "probability": 0.9819 + }, + { + "start": 2176.82, + "end": 2181.0, + "probability": 0.6348 + }, + { + "start": 2181.0, + "end": 2181.14, + "probability": 0.2382 + }, + { + "start": 2181.3, + "end": 2181.68, + "probability": 0.9928 + }, + { + "start": 2183.38, + "end": 2185.94, + "probability": 0.9675 + }, + { + "start": 2186.52, + "end": 2188.54, + "probability": 0.6054 + }, + { + "start": 2188.68, + "end": 2193.26, + "probability": 0.9975 + }, + { + "start": 2193.68, + "end": 2194.62, + "probability": 0.9871 + }, + { + "start": 2195.28, + "end": 2198.96, + "probability": 0.9932 + }, + { + "start": 2199.56, + "end": 2203.14, + "probability": 0.9927 + }, + { + "start": 2203.3, + "end": 2203.92, + "probability": 0.7127 + }, + { + "start": 2203.98, + "end": 2204.91, + "probability": 0.8894 + }, + { + "start": 2206.12, + "end": 2208.3, + "probability": 0.9668 + }, + { + "start": 2209.72, + "end": 2215.3, + "probability": 0.8752 + }, + { + "start": 2215.3, + "end": 2218.08, + "probability": 0.9333 + }, + { + "start": 2218.64, + "end": 2219.05, + "probability": 0.5708 + }, + { + "start": 2219.14, + "end": 2220.92, + "probability": 0.9272 + }, + { + "start": 2221.0, + "end": 2221.28, + "probability": 0.7326 + }, + { + "start": 2222.6, + "end": 2227.2, + "probability": 0.207 + }, + { + "start": 2229.58, + "end": 2232.38, + "probability": 0.932 + }, + { + "start": 2232.42, + "end": 2235.66, + "probability": 0.9979 + }, + { + "start": 2236.46, + "end": 2237.46, + "probability": 0.9986 + }, + { + "start": 2238.1, + "end": 2241.66, + "probability": 0.9906 + }, + { + "start": 2241.74, + "end": 2242.16, + "probability": 0.3891 + }, + { + "start": 2242.36, + "end": 2242.86, + "probability": 0.5245 + }, + { + "start": 2243.04, + "end": 2244.22, + "probability": 0.9469 + }, + { + "start": 2244.84, + "end": 2247.7, + "probability": 0.8191 + }, + { + "start": 2248.1, + "end": 2248.76, + "probability": 0.8923 + }, + { + "start": 2248.86, + "end": 2251.0, + "probability": 0.9805 + }, + { + "start": 2251.06, + "end": 2251.64, + "probability": 0.8405 + }, + { + "start": 2252.0, + "end": 2255.3, + "probability": 0.8136 + }, + { + "start": 2255.96, + "end": 2256.08, + "probability": 0.1677 + }, + { + "start": 2256.2, + "end": 2258.14, + "probability": 0.7901 + }, + { + "start": 2258.22, + "end": 2259.48, + "probability": 0.969 + }, + { + "start": 2260.16, + "end": 2265.14, + "probability": 0.7765 + }, + { + "start": 2266.48, + "end": 2267.33, + "probability": 0.251 + }, + { + "start": 2268.12, + "end": 2268.24, + "probability": 0.0235 + }, + { + "start": 2270.18, + "end": 2271.56, + "probability": 0.667 + }, + { + "start": 2272.0, + "end": 2276.32, + "probability": 0.9443 + }, + { + "start": 2276.98, + "end": 2280.5, + "probability": 0.9824 + }, + { + "start": 2281.5, + "end": 2281.88, + "probability": 0.2956 + }, + { + "start": 2282.52, + "end": 2283.8, + "probability": 0.8936 + }, + { + "start": 2283.92, + "end": 2287.58, + "probability": 0.8541 + }, + { + "start": 2288.28, + "end": 2289.78, + "probability": 0.5421 + }, + { + "start": 2291.62, + "end": 2294.18, + "probability": 0.7306 + }, + { + "start": 2295.45, + "end": 2299.38, + "probability": 0.9193 + }, + { + "start": 2300.12, + "end": 2302.44, + "probability": 0.7568 + }, + { + "start": 2303.64, + "end": 2308.2, + "probability": 0.9714 + }, + { + "start": 2309.26, + "end": 2310.8, + "probability": 0.9812 + }, + { + "start": 2310.94, + "end": 2313.6, + "probability": 0.9909 + }, + { + "start": 2315.08, + "end": 2315.72, + "probability": 0.8068 + }, + { + "start": 2316.63, + "end": 2320.1, + "probability": 0.93 + }, + { + "start": 2320.26, + "end": 2323.28, + "probability": 0.9805 + }, + { + "start": 2323.36, + "end": 2325.4, + "probability": 0.6676 + }, + { + "start": 2325.72, + "end": 2327.42, + "probability": 0.8468 + }, + { + "start": 2327.96, + "end": 2331.24, + "probability": 0.9107 + }, + { + "start": 2331.76, + "end": 2333.82, + "probability": 0.8005 + }, + { + "start": 2334.34, + "end": 2336.12, + "probability": 0.5051 + }, + { + "start": 2336.26, + "end": 2336.82, + "probability": 0.9557 + }, + { + "start": 2337.14, + "end": 2338.62, + "probability": 0.9359 + }, + { + "start": 2339.1, + "end": 2339.48, + "probability": 0.7653 + }, + { + "start": 2339.66, + "end": 2340.56, + "probability": 0.9736 + }, + { + "start": 2342.24, + "end": 2345.6, + "probability": 0.8442 + }, + { + "start": 2346.2, + "end": 2348.88, + "probability": 0.9802 + }, + { + "start": 2349.82, + "end": 2352.24, + "probability": 0.9894 + }, + { + "start": 2352.36, + "end": 2355.54, + "probability": 0.9868 + }, + { + "start": 2356.48, + "end": 2357.98, + "probability": 0.8817 + }, + { + "start": 2359.22, + "end": 2361.32, + "probability": 0.6695 + }, + { + "start": 2362.86, + "end": 2366.0, + "probability": 0.7437 + }, + { + "start": 2366.9, + "end": 2369.52, + "probability": 0.9744 + }, + { + "start": 2370.12, + "end": 2372.68, + "probability": 0.9528 + }, + { + "start": 2373.34, + "end": 2376.04, + "probability": 0.8808 + }, + { + "start": 2376.96, + "end": 2378.98, + "probability": 0.7827 + }, + { + "start": 2379.66, + "end": 2384.36, + "probability": 0.4974 + }, + { + "start": 2385.06, + "end": 2386.44, + "probability": 0.7257 + }, + { + "start": 2387.62, + "end": 2389.0, + "probability": 0.8322 + }, + { + "start": 2389.6, + "end": 2390.76, + "probability": 0.7737 + }, + { + "start": 2391.64, + "end": 2393.88, + "probability": 0.8855 + }, + { + "start": 2394.56, + "end": 2397.26, + "probability": 0.9922 + }, + { + "start": 2397.36, + "end": 2398.5, + "probability": 0.7659 + }, + { + "start": 2399.36, + "end": 2400.15, + "probability": 0.9627 + }, + { + "start": 2401.02, + "end": 2402.14, + "probability": 0.1016 + }, + { + "start": 2402.24, + "end": 2403.96, + "probability": 0.5389 + }, + { + "start": 2404.3, + "end": 2404.54, + "probability": 0.3423 + }, + { + "start": 2404.8, + "end": 2404.9, + "probability": 0.2581 + }, + { + "start": 2404.94, + "end": 2407.98, + "probability": 0.9277 + }, + { + "start": 2408.82, + "end": 2411.04, + "probability": 0.8436 + }, + { + "start": 2411.7, + "end": 2412.7, + "probability": 0.7009 + }, + { + "start": 2413.38, + "end": 2414.12, + "probability": 0.5702 + }, + { + "start": 2414.26, + "end": 2414.4, + "probability": 0.8481 + }, + { + "start": 2414.54, + "end": 2417.88, + "probability": 0.9844 + }, + { + "start": 2418.52, + "end": 2419.62, + "probability": 0.558 + }, + { + "start": 2420.56, + "end": 2422.92, + "probability": 0.9698 + }, + { + "start": 2423.48, + "end": 2425.98, + "probability": 0.9834 + }, + { + "start": 2426.2, + "end": 2427.54, + "probability": 0.9868 + }, + { + "start": 2428.46, + "end": 2430.02, + "probability": 0.8191 + }, + { + "start": 2430.72, + "end": 2431.94, + "probability": 0.9854 + }, + { + "start": 2432.54, + "end": 2435.62, + "probability": 0.9684 + }, + { + "start": 2435.74, + "end": 2437.18, + "probability": 0.9994 + }, + { + "start": 2437.7, + "end": 2438.42, + "probability": 0.7578 + }, + { + "start": 2439.08, + "end": 2441.48, + "probability": 0.7823 + }, + { + "start": 2442.1, + "end": 2443.06, + "probability": 0.8189 + }, + { + "start": 2443.22, + "end": 2443.78, + "probability": 0.7494 + }, + { + "start": 2443.9, + "end": 2446.74, + "probability": 0.9855 + }, + { + "start": 2447.0, + "end": 2448.42, + "probability": 0.5235 + }, + { + "start": 2448.9, + "end": 2452.62, + "probability": 0.968 + }, + { + "start": 2454.06, + "end": 2455.28, + "probability": 0.8979 + }, + { + "start": 2456.6, + "end": 2458.34, + "probability": 0.5644 + }, + { + "start": 2459.12, + "end": 2462.5, + "probability": 0.9429 + }, + { + "start": 2463.56, + "end": 2465.94, + "probability": 0.8387 + }, + { + "start": 2466.58, + "end": 2469.52, + "probability": 0.8726 + }, + { + "start": 2470.71, + "end": 2475.72, + "probability": 0.9084 + }, + { + "start": 2476.72, + "end": 2481.4, + "probability": 0.8357 + }, + { + "start": 2481.46, + "end": 2481.92, + "probability": 0.5988 + }, + { + "start": 2482.04, + "end": 2483.46, + "probability": 0.9564 + }, + { + "start": 2483.9, + "end": 2486.68, + "probability": 0.7534 + }, + { + "start": 2487.32, + "end": 2490.22, + "probability": 0.6678 + }, + { + "start": 2490.92, + "end": 2492.42, + "probability": 0.621 + }, + { + "start": 2492.94, + "end": 2496.08, + "probability": 0.9412 + }, + { + "start": 2496.96, + "end": 2497.62, + "probability": 0.9835 + }, + { + "start": 2497.92, + "end": 2500.44, + "probability": 0.7828 + }, + { + "start": 2500.52, + "end": 2501.12, + "probability": 0.3445 + }, + { + "start": 2501.6, + "end": 2503.36, + "probability": 0.96 + }, + { + "start": 2504.4, + "end": 2506.38, + "probability": 0.9187 + }, + { + "start": 2506.44, + "end": 2507.24, + "probability": 0.8329 + }, + { + "start": 2507.56, + "end": 2509.54, + "probability": 0.816 + }, + { + "start": 2510.32, + "end": 2513.21, + "probability": 0.9373 + }, + { + "start": 2514.78, + "end": 2516.94, + "probability": 0.891 + }, + { + "start": 2517.92, + "end": 2520.42, + "probability": 0.9836 + }, + { + "start": 2522.14, + "end": 2527.14, + "probability": 0.9559 + }, + { + "start": 2527.7, + "end": 2529.18, + "probability": 0.9858 + }, + { + "start": 2530.02, + "end": 2530.86, + "probability": 0.7003 + }, + { + "start": 2531.92, + "end": 2532.55, + "probability": 0.9282 + }, + { + "start": 2533.03, + "end": 2536.16, + "probability": 0.9648 + }, + { + "start": 2536.64, + "end": 2538.3, + "probability": 0.9738 + }, + { + "start": 2538.68, + "end": 2540.64, + "probability": 0.8089 + }, + { + "start": 2541.46, + "end": 2543.38, + "probability": 0.9862 + }, + { + "start": 2543.62, + "end": 2545.06, + "probability": 0.5605 + }, + { + "start": 2545.78, + "end": 2546.5, + "probability": 0.8772 + }, + { + "start": 2547.76, + "end": 2549.84, + "probability": 0.8348 + }, + { + "start": 2550.38, + "end": 2551.2, + "probability": 0.826 + }, + { + "start": 2551.44, + "end": 2552.28, + "probability": 0.919 + }, + { + "start": 2552.68, + "end": 2554.18, + "probability": 0.8562 + }, + { + "start": 2554.46, + "end": 2556.72, + "probability": 0.8494 + }, + { + "start": 2556.72, + "end": 2560.04, + "probability": 0.8696 + }, + { + "start": 2560.74, + "end": 2561.56, + "probability": 0.6672 + }, + { + "start": 2561.92, + "end": 2562.3, + "probability": 0.6465 + }, + { + "start": 2562.7, + "end": 2564.84, + "probability": 0.9392 + }, + { + "start": 2565.0, + "end": 2565.62, + "probability": 0.8835 + }, + { + "start": 2566.84, + "end": 2567.96, + "probability": 0.8026 + }, + { + "start": 2568.74, + "end": 2571.62, + "probability": 0.8016 + }, + { + "start": 2573.38, + "end": 2577.08, + "probability": 0.9603 + }, + { + "start": 2577.24, + "end": 2579.0, + "probability": 0.6777 + }, + { + "start": 2580.02, + "end": 2580.9, + "probability": 0.8828 + }, + { + "start": 2581.06, + "end": 2581.89, + "probability": 0.9961 + }, + { + "start": 2582.36, + "end": 2584.68, + "probability": 0.8986 + }, + { + "start": 2585.58, + "end": 2587.2, + "probability": 0.9526 + }, + { + "start": 2587.28, + "end": 2588.0, + "probability": 0.7341 + }, + { + "start": 2588.18, + "end": 2589.04, + "probability": 0.9828 + }, + { + "start": 2589.66, + "end": 2594.6, + "probability": 0.9838 + }, + { + "start": 2595.06, + "end": 2597.52, + "probability": 0.9173 + }, + { + "start": 2598.08, + "end": 2599.54, + "probability": 0.9972 + }, + { + "start": 2599.7, + "end": 2600.84, + "probability": 0.9839 + }, + { + "start": 2601.02, + "end": 2601.82, + "probability": 0.649 + }, + { + "start": 2602.84, + "end": 2604.1, + "probability": 0.7053 + }, + { + "start": 2604.16, + "end": 2606.08, + "probability": 0.8767 + }, + { + "start": 2606.78, + "end": 2609.44, + "probability": 0.984 + }, + { + "start": 2609.8, + "end": 2610.74, + "probability": 0.9592 + }, + { + "start": 2611.66, + "end": 2613.08, + "probability": 0.4569 + }, + { + "start": 2614.16, + "end": 2617.96, + "probability": 0.6991 + }, + { + "start": 2618.78, + "end": 2620.27, + "probability": 0.9323 + }, + { + "start": 2620.4, + "end": 2621.11, + "probability": 0.9294 + }, + { + "start": 2622.16, + "end": 2623.64, + "probability": 0.9544 + }, + { + "start": 2624.18, + "end": 2626.4, + "probability": 0.9604 + }, + { + "start": 2627.12, + "end": 2629.18, + "probability": 0.64 + }, + { + "start": 2629.32, + "end": 2630.08, + "probability": 0.9834 + }, + { + "start": 2630.3, + "end": 2631.52, + "probability": 0.4519 + }, + { + "start": 2631.66, + "end": 2635.61, + "probability": 0.9902 + }, + { + "start": 2635.92, + "end": 2637.78, + "probability": 0.8831 + }, + { + "start": 2638.86, + "end": 2641.28, + "probability": 0.7972 + }, + { + "start": 2641.5, + "end": 2644.62, + "probability": 0.9816 + }, + { + "start": 2645.22, + "end": 2647.82, + "probability": 0.9897 + }, + { + "start": 2647.94, + "end": 2650.0, + "probability": 0.8687 + }, + { + "start": 2650.92, + "end": 2653.66, + "probability": 0.9314 + }, + { + "start": 2653.82, + "end": 2656.02, + "probability": 0.7746 + }, + { + "start": 2656.78, + "end": 2660.5, + "probability": 0.9494 + }, + { + "start": 2660.64, + "end": 2661.2, + "probability": 0.6528 + }, + { + "start": 2661.24, + "end": 2661.84, + "probability": 0.4983 + }, + { + "start": 2661.98, + "end": 2663.12, + "probability": 0.729 + }, + { + "start": 2663.16, + "end": 2664.06, + "probability": 0.8647 + }, + { + "start": 2664.12, + "end": 2664.52, + "probability": 0.549 + }, + { + "start": 2664.52, + "end": 2664.96, + "probability": 0.7292 + }, + { + "start": 2665.08, + "end": 2665.72, + "probability": 0.9374 + }, + { + "start": 2666.74, + "end": 2670.28, + "probability": 0.7514 + }, + { + "start": 2670.38, + "end": 2671.0, + "probability": 0.9097 + }, + { + "start": 2671.08, + "end": 2671.78, + "probability": 0.949 + }, + { + "start": 2671.88, + "end": 2672.46, + "probability": 0.9642 + }, + { + "start": 2672.52, + "end": 2673.32, + "probability": 0.7832 + }, + { + "start": 2673.8, + "end": 2674.2, + "probability": 0.6841 + }, + { + "start": 2674.24, + "end": 2674.74, + "probability": 0.5991 + }, + { + "start": 2674.9, + "end": 2675.93, + "probability": 0.5139 + }, + { + "start": 2676.74, + "end": 2678.74, + "probability": 0.9548 + }, + { + "start": 2679.16, + "end": 2681.18, + "probability": 0.8787 + }, + { + "start": 2681.58, + "end": 2683.04, + "probability": 0.7944 + }, + { + "start": 2683.78, + "end": 2686.94, + "probability": 0.9902 + }, + { + "start": 2687.52, + "end": 2688.38, + "probability": 0.8329 + }, + { + "start": 2689.18, + "end": 2690.68, + "probability": 0.7331 + }, + { + "start": 2690.96, + "end": 2694.9, + "probability": 0.8987 + }, + { + "start": 2696.0, + "end": 2697.58, + "probability": 0.6739 + }, + { + "start": 2697.96, + "end": 2700.71, + "probability": 0.599 + }, + { + "start": 2701.44, + "end": 2704.64, + "probability": 0.8699 + }, + { + "start": 2705.32, + "end": 2707.08, + "probability": 0.9559 + }, + { + "start": 2707.84, + "end": 2709.04, + "probability": 0.8457 + }, + { + "start": 2709.62, + "end": 2712.12, + "probability": 0.9829 + }, + { + "start": 2713.62, + "end": 2716.16, + "probability": 0.9868 + }, + { + "start": 2717.66, + "end": 2721.68, + "probability": 0.9878 + }, + { + "start": 2722.98, + "end": 2724.26, + "probability": 0.6418 + }, + { + "start": 2725.4, + "end": 2725.84, + "probability": 0.5367 + }, + { + "start": 2726.54, + "end": 2731.64, + "probability": 0.968 + }, + { + "start": 2732.28, + "end": 2734.06, + "probability": 0.9418 + }, + { + "start": 2734.88, + "end": 2737.12, + "probability": 0.991 + }, + { + "start": 2737.74, + "end": 2741.44, + "probability": 0.9549 + }, + { + "start": 2742.26, + "end": 2746.04, + "probability": 0.4936 + }, + { + "start": 2747.26, + "end": 2749.86, + "probability": 0.8786 + }, + { + "start": 2750.48, + "end": 2755.58, + "probability": 0.9655 + }, + { + "start": 2756.16, + "end": 2756.9, + "probability": 0.7345 + }, + { + "start": 2756.94, + "end": 2757.74, + "probability": 0.3201 + }, + { + "start": 2758.44, + "end": 2761.38, + "probability": 0.9121 + }, + { + "start": 2762.3, + "end": 2763.24, + "probability": 0.9094 + }, + { + "start": 2763.36, + "end": 2763.98, + "probability": 0.9379 + }, + { + "start": 2764.1, + "end": 2766.68, + "probability": 0.792 + }, + { + "start": 2770.54, + "end": 2772.04, + "probability": 0.7009 + }, + { + "start": 2772.66, + "end": 2774.88, + "probability": 0.8579 + }, + { + "start": 2776.8, + "end": 2785.12, + "probability": 0.9725 + }, + { + "start": 2785.56, + "end": 2787.62, + "probability": 0.8201 + }, + { + "start": 2788.56, + "end": 2789.14, + "probability": 0.6982 + }, + { + "start": 2790.32, + "end": 2794.6, + "probability": 0.9411 + }, + { + "start": 2794.6, + "end": 2799.72, + "probability": 0.9979 + }, + { + "start": 2802.54, + "end": 2808.74, + "probability": 0.9861 + }, + { + "start": 2809.98, + "end": 2813.86, + "probability": 0.867 + }, + { + "start": 2815.16, + "end": 2817.74, + "probability": 0.6488 + }, + { + "start": 2819.28, + "end": 2822.24, + "probability": 0.9961 + }, + { + "start": 2825.16, + "end": 2829.48, + "probability": 0.6905 + }, + { + "start": 2830.32, + "end": 2836.8, + "probability": 0.9478 + }, + { + "start": 2838.06, + "end": 2838.42, + "probability": 0.7637 + }, + { + "start": 2839.48, + "end": 2842.38, + "probability": 0.9401 + }, + { + "start": 2843.44, + "end": 2844.4, + "probability": 0.6947 + }, + { + "start": 2846.06, + "end": 2851.38, + "probability": 0.9524 + }, + { + "start": 2852.2, + "end": 2853.66, + "probability": 0.9951 + }, + { + "start": 2855.0, + "end": 2855.98, + "probability": 0.9995 + }, + { + "start": 2857.42, + "end": 2858.44, + "probability": 0.8418 + }, + { + "start": 2858.54, + "end": 2861.14, + "probability": 0.8133 + }, + { + "start": 2862.8, + "end": 2862.92, + "probability": 0.4675 + }, + { + "start": 2862.92, + "end": 2865.58, + "probability": 0.9202 + }, + { + "start": 2865.64, + "end": 2866.8, + "probability": 0.8757 + }, + { + "start": 2867.0, + "end": 2867.76, + "probability": 0.8772 + }, + { + "start": 2867.9, + "end": 2868.56, + "probability": 0.6903 + }, + { + "start": 2868.66, + "end": 2869.24, + "probability": 0.6905 + }, + { + "start": 2870.46, + "end": 2872.38, + "probability": 0.9972 + }, + { + "start": 2874.08, + "end": 2878.4, + "probability": 0.9777 + }, + { + "start": 2880.02, + "end": 2884.72, + "probability": 0.9968 + }, + { + "start": 2884.72, + "end": 2888.12, + "probability": 0.943 + }, + { + "start": 2888.9, + "end": 2889.0, + "probability": 0.4894 + }, + { + "start": 2890.5, + "end": 2894.92, + "probability": 0.5692 + }, + { + "start": 2895.12, + "end": 2895.12, + "probability": 0.1479 + }, + { + "start": 2895.12, + "end": 2895.12, + "probability": 0.4103 + }, + { + "start": 2895.12, + "end": 2895.48, + "probability": 0.2689 + }, + { + "start": 2896.42, + "end": 2897.3, + "probability": 0.6518 + }, + { + "start": 2897.76, + "end": 2898.66, + "probability": 0.2646 + }, + { + "start": 2898.95, + "end": 2904.68, + "probability": 0.6914 + }, + { + "start": 2905.28, + "end": 2909.12, + "probability": 0.9733 + }, + { + "start": 2909.4, + "end": 2909.83, + "probability": 0.5879 + }, + { + "start": 2910.58, + "end": 2913.64, + "probability": 0.1524 + }, + { + "start": 2913.92, + "end": 2915.32, + "probability": 0.5571 + }, + { + "start": 2915.4, + "end": 2917.92, + "probability": 0.2192 + }, + { + "start": 2918.02, + "end": 2923.6, + "probability": 0.9493 + }, + { + "start": 2926.2, + "end": 2928.64, + "probability": 0.4028 + }, + { + "start": 2930.56, + "end": 2930.56, + "probability": 0.0595 + }, + { + "start": 2930.76, + "end": 2932.48, + "probability": 0.8088 + }, + { + "start": 2933.38, + "end": 2935.18, + "probability": 0.4577 + }, + { + "start": 2936.26, + "end": 2938.44, + "probability": 0.657 + }, + { + "start": 2939.28, + "end": 2941.84, + "probability": 0.9487 + }, + { + "start": 2943.0, + "end": 2944.88, + "probability": 0.7427 + }, + { + "start": 2946.34, + "end": 2947.04, + "probability": 0.5028 + }, + { + "start": 2947.72, + "end": 2947.72, + "probability": 0.7048 + }, + { + "start": 2948.2, + "end": 2948.76, + "probability": 0.9317 + }, + { + "start": 2949.08, + "end": 2950.38, + "probability": 0.9274 + }, + { + "start": 2950.52, + "end": 2952.56, + "probability": 0.9716 + }, + { + "start": 2952.58, + "end": 2953.92, + "probability": 0.9008 + }, + { + "start": 2954.84, + "end": 2956.36, + "probability": 0.934 + }, + { + "start": 2956.54, + "end": 2957.38, + "probability": 0.8471 + }, + { + "start": 2957.5, + "end": 2959.88, + "probability": 0.6734 + }, + { + "start": 2960.46, + "end": 2962.76, + "probability": 0.8099 + }, + { + "start": 2963.96, + "end": 2967.24, + "probability": 0.9901 + }, + { + "start": 2968.3, + "end": 2970.54, + "probability": 0.707 + }, + { + "start": 2970.56, + "end": 2974.34, + "probability": 0.9832 + }, + { + "start": 2975.0, + "end": 2975.94, + "probability": 0.7423 + }, + { + "start": 2977.22, + "end": 2977.78, + "probability": 0.3763 + }, + { + "start": 2978.62, + "end": 2979.12, + "probability": 0.499 + }, + { + "start": 2980.66, + "end": 2984.74, + "probability": 0.9952 + }, + { + "start": 2986.37, + "end": 2987.68, + "probability": 0.9985 + }, + { + "start": 2991.56, + "end": 2992.16, + "probability": 0.3236 + }, + { + "start": 2997.3, + "end": 2997.62, + "probability": 0.6579 + }, + { + "start": 2998.3, + "end": 3000.0, + "probability": 0.7034 + }, + { + "start": 3000.18, + "end": 3002.04, + "probability": 0.6785 + }, + { + "start": 3002.14, + "end": 3002.76, + "probability": 0.4314 + }, + { + "start": 3003.18, + "end": 3007.82, + "probability": 0.7325 + }, + { + "start": 3010.6, + "end": 3010.9, + "probability": 0.1552 + }, + { + "start": 3012.0, + "end": 3012.1, + "probability": 0.1393 + }, + { + "start": 3012.16, + "end": 3012.16, + "probability": 0.0631 + }, + { + "start": 3012.84, + "end": 3013.2, + "probability": 0.0434 + }, + { + "start": 3013.2, + "end": 3013.8, + "probability": 0.3387 + }, + { + "start": 3015.09, + "end": 3016.37, + "probability": 0.0923 + }, + { + "start": 3017.4, + "end": 3018.68, + "probability": 0.8569 + }, + { + "start": 3018.94, + "end": 3020.06, + "probability": 0.9377 + }, + { + "start": 3020.82, + "end": 3023.02, + "probability": 0.5403 + }, + { + "start": 3023.16, + "end": 3026.02, + "probability": 0.8491 + }, + { + "start": 3026.54, + "end": 3027.26, + "probability": 0.8387 + }, + { + "start": 3028.92, + "end": 3033.58, + "probability": 0.9774 + }, + { + "start": 3034.62, + "end": 3035.14, + "probability": 0.633 + }, + { + "start": 3036.54, + "end": 3037.64, + "probability": 0.2806 + }, + { + "start": 3038.3, + "end": 3040.12, + "probability": 0.5376 + }, + { + "start": 3040.28, + "end": 3041.8, + "probability": 0.5684 + }, + { + "start": 3042.36, + "end": 3044.26, + "probability": 0.9131 + }, + { + "start": 3045.2, + "end": 3047.18, + "probability": 0.6643 + }, + { + "start": 3048.1, + "end": 3049.44, + "probability": 0.9929 + }, + { + "start": 3051.54, + "end": 3055.34, + "probability": 0.922 + }, + { + "start": 3055.92, + "end": 3059.94, + "probability": 0.9809 + }, + { + "start": 3060.58, + "end": 3061.08, + "probability": 0.6963 + }, + { + "start": 3069.0, + "end": 3073.36, + "probability": 0.9547 + }, + { + "start": 3075.06, + "end": 3079.18, + "probability": 0.9928 + }, + { + "start": 3081.64, + "end": 3082.16, + "probability": 0.8223 + }, + { + "start": 3083.2, + "end": 3084.3, + "probability": 0.7703 + }, + { + "start": 3087.64, + "end": 3089.12, + "probability": 0.7178 + }, + { + "start": 3091.2, + "end": 3091.8, + "probability": 0.896 + }, + { + "start": 3092.84, + "end": 3093.44, + "probability": 0.9505 + }, + { + "start": 3094.38, + "end": 3096.38, + "probability": 0.6263 + }, + { + "start": 3098.24, + "end": 3100.58, + "probability": 0.979 + }, + { + "start": 3102.24, + "end": 3103.76, + "probability": 0.9427 + }, + { + "start": 3104.62, + "end": 3106.05, + "probability": 0.748 + }, + { + "start": 3106.46, + "end": 3108.32, + "probability": 0.9587 + }, + { + "start": 3110.0, + "end": 3112.98, + "probability": 0.7252 + }, + { + "start": 3115.44, + "end": 3116.4, + "probability": 0.8553 + }, + { + "start": 3116.48, + "end": 3118.02, + "probability": 0.9888 + }, + { + "start": 3118.1, + "end": 3119.46, + "probability": 0.9576 + }, + { + "start": 3121.68, + "end": 3123.83, + "probability": 0.9586 + }, + { + "start": 3124.8, + "end": 3126.64, + "probability": 0.8476 + }, + { + "start": 3126.82, + "end": 3127.1, + "probability": 0.331 + }, + { + "start": 3127.1, + "end": 3127.82, + "probability": 0.9323 + }, + { + "start": 3127.92, + "end": 3129.12, + "probability": 0.8211 + }, + { + "start": 3129.62, + "end": 3131.9, + "probability": 0.9158 + }, + { + "start": 3132.52, + "end": 3134.24, + "probability": 0.814 + }, + { + "start": 3135.16, + "end": 3138.84, + "probability": 0.9321 + }, + { + "start": 3140.74, + "end": 3147.32, + "probability": 0.9663 + }, + { + "start": 3151.08, + "end": 3152.22, + "probability": 0.9395 + }, + { + "start": 3153.48, + "end": 3155.66, + "probability": 0.8324 + }, + { + "start": 3156.22, + "end": 3156.92, + "probability": 0.8316 + }, + { + "start": 3157.4, + "end": 3162.54, + "probability": 0.9463 + }, + { + "start": 3163.62, + "end": 3165.6, + "probability": 0.9896 + }, + { + "start": 3165.72, + "end": 3166.08, + "probability": 0.6673 + }, + { + "start": 3166.26, + "end": 3168.06, + "probability": 0.9393 + }, + { + "start": 3169.36, + "end": 3171.34, + "probability": 0.1223 + }, + { + "start": 3171.78, + "end": 3172.28, + "probability": 0.5982 + }, + { + "start": 3172.46, + "end": 3173.52, + "probability": 0.377 + }, + { + "start": 3174.62, + "end": 3176.48, + "probability": 0.7013 + }, + { + "start": 3177.26, + "end": 3178.16, + "probability": 0.2864 + }, + { + "start": 3179.64, + "end": 3181.96, + "probability": 0.9375 + }, + { + "start": 3183.18, + "end": 3184.04, + "probability": 0.728 + }, + { + "start": 3184.62, + "end": 3185.34, + "probability": 0.6735 + }, + { + "start": 3185.46, + "end": 3187.44, + "probability": 0.9455 + }, + { + "start": 3187.86, + "end": 3189.76, + "probability": 0.9888 + }, + { + "start": 3191.18, + "end": 3193.18, + "probability": 0.7403 + }, + { + "start": 3194.1, + "end": 3196.5, + "probability": 0.8955 + }, + { + "start": 3197.16, + "end": 3197.5, + "probability": 0.939 + }, + { + "start": 3197.6, + "end": 3199.04, + "probability": 0.9919 + }, + { + "start": 3199.94, + "end": 3206.72, + "probability": 0.9761 + }, + { + "start": 3206.94, + "end": 3207.36, + "probability": 0.7432 + }, + { + "start": 3208.14, + "end": 3208.48, + "probability": 0.6955 + }, + { + "start": 3213.72, + "end": 3214.58, + "probability": 0.6734 + }, + { + "start": 3216.16, + "end": 3218.82, + "probability": 0.9849 + }, + { + "start": 3220.88, + "end": 3223.82, + "probability": 0.8761 + }, + { + "start": 3224.58, + "end": 3225.32, + "probability": 0.5765 + }, + { + "start": 3230.84, + "end": 3231.08, + "probability": 0.2951 + }, + { + "start": 3235.34, + "end": 3241.82, + "probability": 0.9445 + }, + { + "start": 3243.12, + "end": 3243.9, + "probability": 0.9928 + }, + { + "start": 3245.58, + "end": 3246.44, + "probability": 0.9676 + }, + { + "start": 3247.5, + "end": 3248.52, + "probability": 0.9988 + }, + { + "start": 3250.0, + "end": 3251.22, + "probability": 0.8521 + }, + { + "start": 3251.84, + "end": 3253.76, + "probability": 0.9399 + }, + { + "start": 3256.94, + "end": 3261.26, + "probability": 0.9051 + }, + { + "start": 3263.1, + "end": 3265.44, + "probability": 0.9592 + }, + { + "start": 3266.66, + "end": 3269.22, + "probability": 0.9122 + }, + { + "start": 3270.52, + "end": 3272.58, + "probability": 0.9803 + }, + { + "start": 3277.02, + "end": 3278.86, + "probability": 0.5233 + }, + { + "start": 3282.06, + "end": 3283.96, + "probability": 0.9921 + }, + { + "start": 3284.08, + "end": 3285.74, + "probability": 0.9319 + }, + { + "start": 3286.28, + "end": 3291.88, + "probability": 0.9763 + }, + { + "start": 3294.7, + "end": 3294.98, + "probability": 0.277 + }, + { + "start": 3295.08, + "end": 3295.22, + "probability": 0.1574 + }, + { + "start": 3295.92, + "end": 3296.48, + "probability": 0.7121 + }, + { + "start": 3297.84, + "end": 3298.98, + "probability": 0.5611 + }, + { + "start": 3300.7, + "end": 3301.2, + "probability": 0.9138 + }, + { + "start": 3305.12, + "end": 3309.82, + "probability": 0.8633 + }, + { + "start": 3311.36, + "end": 3312.12, + "probability": 0.9907 + }, + { + "start": 3312.94, + "end": 3314.2, + "probability": 0.7171 + }, + { + "start": 3315.26, + "end": 3316.3, + "probability": 0.4372 + }, + { + "start": 3316.86, + "end": 3317.64, + "probability": 0.97 + }, + { + "start": 3318.16, + "end": 3319.74, + "probability": 0.7448 + }, + { + "start": 3323.22, + "end": 3324.14, + "probability": 0.97 + }, + { + "start": 3325.32, + "end": 3327.14, + "probability": 0.9694 + }, + { + "start": 3328.92, + "end": 3329.76, + "probability": 0.8146 + }, + { + "start": 3332.46, + "end": 3336.08, + "probability": 0.9509 + }, + { + "start": 3336.14, + "end": 3337.34, + "probability": 0.9021 + }, + { + "start": 3338.94, + "end": 3348.52, + "probability": 0.9058 + }, + { + "start": 3348.64, + "end": 3349.06, + "probability": 0.1684 + }, + { + "start": 3349.58, + "end": 3350.16, + "probability": 0.5265 + }, + { + "start": 3350.22, + "end": 3351.38, + "probability": 0.9075 + }, + { + "start": 3351.52, + "end": 3352.94, + "probability": 0.4918 + }, + { + "start": 3353.54, + "end": 3353.9, + "probability": 0.9004 + }, + { + "start": 3353.98, + "end": 3354.2, + "probability": 0.8097 + }, + { + "start": 3354.28, + "end": 3354.64, + "probability": 0.7789 + }, + { + "start": 3355.36, + "end": 3356.12, + "probability": 0.7693 + }, + { + "start": 3356.96, + "end": 3357.92, + "probability": 0.7738 + }, + { + "start": 3358.82, + "end": 3362.26, + "probability": 0.9631 + }, + { + "start": 3363.64, + "end": 3364.04, + "probability": 0.2358 + }, + { + "start": 3364.2, + "end": 3365.06, + "probability": 0.462 + }, + { + "start": 3365.36, + "end": 3368.7, + "probability": 0.7576 + }, + { + "start": 3369.16, + "end": 3370.28, + "probability": 0.9932 + }, + { + "start": 3370.51, + "end": 3373.26, + "probability": 0.8236 + }, + { + "start": 3373.64, + "end": 3374.96, + "probability": 0.2491 + }, + { + "start": 3375.04, + "end": 3375.82, + "probability": 0.2752 + }, + { + "start": 3376.6, + "end": 3378.36, + "probability": 0.3728 + }, + { + "start": 3378.48, + "end": 3380.1, + "probability": 0.7844 + }, + { + "start": 3380.5, + "end": 3380.5, + "probability": 0.0051 + }, + { + "start": 3380.8, + "end": 3384.4, + "probability": 0.7598 + }, + { + "start": 3384.76, + "end": 3388.48, + "probability": 0.9542 + }, + { + "start": 3390.04, + "end": 3392.94, + "probability": 0.8351 + }, + { + "start": 3393.44, + "end": 3394.46, + "probability": 0.8816 + }, + { + "start": 3394.82, + "end": 3394.98, + "probability": 0.8567 + }, + { + "start": 3395.1, + "end": 3395.32, + "probability": 0.7636 + }, + { + "start": 3395.48, + "end": 3395.58, + "probability": 0.7313 + }, + { + "start": 3397.1, + "end": 3399.1, + "probability": 0.8099 + }, + { + "start": 3399.46, + "end": 3400.38, + "probability": 0.8638 + }, + { + "start": 3402.14, + "end": 3406.32, + "probability": 0.8709 + }, + { + "start": 3406.58, + "end": 3407.12, + "probability": 0.7407 + }, + { + "start": 3409.16, + "end": 3411.11, + "probability": 0.6779 + }, + { + "start": 3412.1, + "end": 3412.48, + "probability": 0.8932 + }, + { + "start": 3414.58, + "end": 3415.02, + "probability": 0.9349 + }, + { + "start": 3417.6, + "end": 3418.2, + "probability": 0.9717 + }, + { + "start": 3419.94, + "end": 3420.62, + "probability": 0.8125 + }, + { + "start": 3421.42, + "end": 3424.46, + "probability": 0.9629 + }, + { + "start": 3425.0, + "end": 3426.26, + "probability": 0.8596 + }, + { + "start": 3428.34, + "end": 3429.99, + "probability": 0.1981 + }, + { + "start": 3430.74, + "end": 3431.48, + "probability": 0.4421 + }, + { + "start": 3431.76, + "end": 3433.36, + "probability": 0.955 + }, + { + "start": 3433.68, + "end": 3434.38, + "probability": 0.8977 + }, + { + "start": 3434.48, + "end": 3435.7, + "probability": 0.3076 + }, + { + "start": 3435.7, + "end": 3436.7, + "probability": 0.404 + }, + { + "start": 3436.72, + "end": 3437.22, + "probability": 0.3803 + }, + { + "start": 3437.58, + "end": 3437.66, + "probability": 0.2764 + }, + { + "start": 3437.76, + "end": 3440.74, + "probability": 0.5093 + }, + { + "start": 3440.86, + "end": 3442.54, + "probability": 0.2588 + }, + { + "start": 3442.6, + "end": 3443.4, + "probability": 0.1437 + }, + { + "start": 3443.82, + "end": 3444.88, + "probability": 0.0674 + }, + { + "start": 3447.2, + "end": 3447.3, + "probability": 0.1092 + }, + { + "start": 3447.3, + "end": 3447.3, + "probability": 0.2017 + }, + { + "start": 3447.3, + "end": 3447.94, + "probability": 0.3397 + }, + { + "start": 3448.38, + "end": 3451.28, + "probability": 0.3822 + }, + { + "start": 3451.48, + "end": 3453.1, + "probability": 0.8945 + }, + { + "start": 3453.48, + "end": 3456.28, + "probability": 0.9875 + }, + { + "start": 3456.6, + "end": 3458.52, + "probability": 0.689 + }, + { + "start": 3458.8, + "end": 3460.92, + "probability": 0.98 + }, + { + "start": 3461.64, + "end": 3464.94, + "probability": 0.9631 + }, + { + "start": 3465.3, + "end": 3468.1, + "probability": 0.853 + }, + { + "start": 3468.2, + "end": 3469.06, + "probability": 0.8939 + }, + { + "start": 3469.22, + "end": 3470.22, + "probability": 0.9665 + }, + { + "start": 3471.2, + "end": 3475.68, + "probability": 0.9274 + }, + { + "start": 3475.68, + "end": 3478.06, + "probability": 0.8455 + }, + { + "start": 3478.3, + "end": 3478.94, + "probability": 0.1255 + }, + { + "start": 3478.94, + "end": 3479.64, + "probability": 0.3528 + }, + { + "start": 3480.16, + "end": 3483.36, + "probability": 0.9116 + }, + { + "start": 3483.42, + "end": 3486.98, + "probability": 0.9521 + }, + { + "start": 3487.1, + "end": 3487.44, + "probability": 0.5231 + }, + { + "start": 3487.88, + "end": 3488.46, + "probability": 0.8285 + }, + { + "start": 3488.54, + "end": 3489.08, + "probability": 0.9558 + }, + { + "start": 3489.36, + "end": 3490.5, + "probability": 0.7546 + }, + { + "start": 3490.8, + "end": 3491.44, + "probability": 0.4846 + }, + { + "start": 3491.46, + "end": 3491.58, + "probability": 0.2321 + }, + { + "start": 3491.58, + "end": 3491.84, + "probability": 0.0655 + }, + { + "start": 3491.84, + "end": 3492.44, + "probability": 0.387 + }, + { + "start": 3492.6, + "end": 3498.84, + "probability": 0.8989 + }, + { + "start": 3498.94, + "end": 3501.2, + "probability": 0.8857 + }, + { + "start": 3501.46, + "end": 3502.08, + "probability": 0.6753 + }, + { + "start": 3502.82, + "end": 3504.37, + "probability": 0.9723 + }, + { + "start": 3504.56, + "end": 3506.26, + "probability": 0.9595 + }, + { + "start": 3506.54, + "end": 3506.78, + "probability": 0.3957 + }, + { + "start": 3506.98, + "end": 3507.64, + "probability": 0.7046 + }, + { + "start": 3508.02, + "end": 3509.3, + "probability": 0.7382 + }, + { + "start": 3509.78, + "end": 3511.34, + "probability": 0.797 + }, + { + "start": 3511.38, + "end": 3512.08, + "probability": 0.3169 + }, + { + "start": 3512.5, + "end": 3513.36, + "probability": 0.5008 + }, + { + "start": 3513.5, + "end": 3515.84, + "probability": 0.597 + }, + { + "start": 3516.0, + "end": 3517.38, + "probability": 0.3315 + }, + { + "start": 3517.54, + "end": 3520.72, + "probability": 0.7153 + }, + { + "start": 3521.06, + "end": 3522.18, + "probability": 0.8008 + }, + { + "start": 3522.18, + "end": 3523.04, + "probability": 0.0953 + }, + { + "start": 3524.36, + "end": 3528.16, + "probability": 0.7378 + }, + { + "start": 3528.4, + "end": 3529.86, + "probability": 0.9888 + }, + { + "start": 3529.9, + "end": 3530.46, + "probability": 0.5867 + }, + { + "start": 3530.66, + "end": 3533.32, + "probability": 0.7288 + }, + { + "start": 3533.6, + "end": 3534.18, + "probability": 0.7388 + }, + { + "start": 3534.28, + "end": 3535.94, + "probability": 0.9448 + }, + { + "start": 3536.3, + "end": 3537.3, + "probability": 0.0835 + }, + { + "start": 3537.76, + "end": 3538.84, + "probability": 0.2131 + }, + { + "start": 3538.86, + "end": 3539.8, + "probability": 0.8347 + }, + { + "start": 3543.44, + "end": 3547.22, + "probability": 0.406 + }, + { + "start": 3547.3, + "end": 3547.38, + "probability": 0.0229 + }, + { + "start": 3547.56, + "end": 3548.74, + "probability": 0.2886 + }, + { + "start": 3548.92, + "end": 3549.56, + "probability": 0.0253 + }, + { + "start": 3549.56, + "end": 3551.1, + "probability": 0.8148 + }, + { + "start": 3551.28, + "end": 3551.84, + "probability": 0.9491 + }, + { + "start": 3551.94, + "end": 3552.76, + "probability": 0.6886 + }, + { + "start": 3552.92, + "end": 3555.46, + "probability": 0.451 + }, + { + "start": 3555.52, + "end": 3556.46, + "probability": 0.7917 + }, + { + "start": 3556.94, + "end": 3557.84, + "probability": 0.5108 + }, + { + "start": 3559.79, + "end": 3563.14, + "probability": 0.4192 + }, + { + "start": 3563.4, + "end": 3566.74, + "probability": 0.6987 + }, + { + "start": 3566.82, + "end": 3567.94, + "probability": 0.6904 + }, + { + "start": 3567.94, + "end": 3568.9, + "probability": 0.1378 + }, + { + "start": 3569.12, + "end": 3570.64, + "probability": 0.3796 + }, + { + "start": 3571.8, + "end": 3572.18, + "probability": 0.618 + }, + { + "start": 3572.46, + "end": 3573.58, + "probability": 0.2901 + }, + { + "start": 3573.76, + "end": 3574.75, + "probability": 0.6097 + }, + { + "start": 3576.44, + "end": 3576.44, + "probability": 0.0164 + }, + { + "start": 3576.44, + "end": 3576.54, + "probability": 0.0442 + }, + { + "start": 3576.54, + "end": 3578.28, + "probability": 0.5605 + }, + { + "start": 3578.38, + "end": 3580.0, + "probability": 0.9854 + }, + { + "start": 3580.12, + "end": 3581.52, + "probability": 0.7778 + }, + { + "start": 3581.6, + "end": 3583.78, + "probability": 0.6942 + }, + { + "start": 3583.9, + "end": 3584.44, + "probability": 0.505 + }, + { + "start": 3584.52, + "end": 3585.02, + "probability": 0.5126 + }, + { + "start": 3585.18, + "end": 3587.02, + "probability": 0.969 + }, + { + "start": 3587.18, + "end": 3588.72, + "probability": 0.2979 + }, + { + "start": 3588.84, + "end": 3589.2, + "probability": 0.879 + }, + { + "start": 3589.26, + "end": 3589.78, + "probability": 0.818 + }, + { + "start": 3589.96, + "end": 3591.76, + "probability": 0.9844 + }, + { + "start": 3592.02, + "end": 3594.44, + "probability": 0.7336 + }, + { + "start": 3594.54, + "end": 3595.92, + "probability": 0.8047 + }, + { + "start": 3596.56, + "end": 3597.5, + "probability": 0.9332 + }, + { + "start": 3598.42, + "end": 3599.9, + "probability": 0.0588 + }, + { + "start": 3600.12, + "end": 3602.9, + "probability": 0.3937 + }, + { + "start": 3603.1, + "end": 3603.28, + "probability": 0.1398 + }, + { + "start": 3603.34, + "end": 3604.18, + "probability": 0.8242 + }, + { + "start": 3604.3, + "end": 3605.34, + "probability": 0.692 + }, + { + "start": 3605.6, + "end": 3606.92, + "probability": 0.9764 + }, + { + "start": 3607.32, + "end": 3612.26, + "probability": 0.9825 + }, + { + "start": 3613.22, + "end": 3615.78, + "probability": 0.9641 + }, + { + "start": 3615.78, + "end": 3616.0, + "probability": 0.3131 + }, + { + "start": 3617.1, + "end": 3619.29, + "probability": 0.9958 + }, + { + "start": 3620.04, + "end": 3624.84, + "probability": 0.9877 + }, + { + "start": 3625.14, + "end": 3625.84, + "probability": 0.4054 + }, + { + "start": 3626.0, + "end": 3628.28, + "probability": 0.9799 + }, + { + "start": 3629.06, + "end": 3631.5, + "probability": 0.952 + }, + { + "start": 3631.68, + "end": 3633.86, + "probability": 0.873 + }, + { + "start": 3634.14, + "end": 3636.34, + "probability": 0.9233 + }, + { + "start": 3636.54, + "end": 3638.82, + "probability": 0.8353 + }, + { + "start": 3639.24, + "end": 3640.6, + "probability": 0.6479 + }, + { + "start": 3641.06, + "end": 3643.0, + "probability": 0.8008 + }, + { + "start": 3643.1, + "end": 3643.64, + "probability": 0.4482 + }, + { + "start": 3643.74, + "end": 3645.92, + "probability": 0.5762 + }, + { + "start": 3646.1, + "end": 3646.52, + "probability": 0.4543 + }, + { + "start": 3646.52, + "end": 3649.71, + "probability": 0.8703 + }, + { + "start": 3649.88, + "end": 3652.06, + "probability": 0.8465 + }, + { + "start": 3652.36, + "end": 3653.54, + "probability": 0.9562 + }, + { + "start": 3653.94, + "end": 3654.9, + "probability": 0.7732 + }, + { + "start": 3656.06, + "end": 3656.4, + "probability": 0.6633 + }, + { + "start": 3656.44, + "end": 3660.12, + "probability": 0.9002 + }, + { + "start": 3660.58, + "end": 3661.42, + "probability": 0.854 + }, + { + "start": 3661.54, + "end": 3663.04, + "probability": 0.9074 + }, + { + "start": 3664.88, + "end": 3666.34, + "probability": 0.9702 + }, + { + "start": 3666.38, + "end": 3667.72, + "probability": 0.4893 + }, + { + "start": 3667.88, + "end": 3671.68, + "probability": 0.9927 + }, + { + "start": 3672.8, + "end": 3675.2, + "probability": 0.8995 + }, + { + "start": 3676.14, + "end": 3677.74, + "probability": 0.1605 + }, + { + "start": 3678.38, + "end": 3681.0, + "probability": 0.8871 + }, + { + "start": 3681.08, + "end": 3683.88, + "probability": 0.741 + }, + { + "start": 3684.24, + "end": 3686.98, + "probability": 0.9778 + }, + { + "start": 3687.7, + "end": 3690.36, + "probability": 0.8479 + }, + { + "start": 3691.28, + "end": 3692.24, + "probability": 0.8261 + }, + { + "start": 3693.18, + "end": 3698.0, + "probability": 0.7993 + }, + { + "start": 3704.82, + "end": 3707.48, + "probability": 0.7809 + }, + { + "start": 3708.18, + "end": 3708.68, + "probability": 0.7442 + }, + { + "start": 3709.92, + "end": 3710.44, + "probability": 0.7832 + }, + { + "start": 3711.26, + "end": 3711.96, + "probability": 0.6296 + }, + { + "start": 3713.56, + "end": 3714.86, + "probability": 0.7821 + }, + { + "start": 3716.36, + "end": 3718.82, + "probability": 0.9417 + }, + { + "start": 3721.5, + "end": 3722.28, + "probability": 0.8718 + }, + { + "start": 3724.52, + "end": 3729.12, + "probability": 0.9072 + }, + { + "start": 3730.5, + "end": 3730.72, + "probability": 0.9736 + }, + { + "start": 3733.38, + "end": 3737.12, + "probability": 0.9445 + }, + { + "start": 3738.18, + "end": 3740.12, + "probability": 0.9983 + }, + { + "start": 3741.14, + "end": 3743.28, + "probability": 0.8906 + }, + { + "start": 3744.78, + "end": 3746.3, + "probability": 0.7729 + }, + { + "start": 3747.5, + "end": 3749.28, + "probability": 0.8318 + }, + { + "start": 3750.8, + "end": 3752.98, + "probability": 0.9626 + }, + { + "start": 3754.44, + "end": 3757.36, + "probability": 0.9141 + }, + { + "start": 3759.14, + "end": 3761.26, + "probability": 0.7056 + }, + { + "start": 3762.74, + "end": 3765.8, + "probability": 0.9768 + }, + { + "start": 3768.52, + "end": 3772.4, + "probability": 0.9947 + }, + { + "start": 3772.86, + "end": 3774.18, + "probability": 0.5737 + }, + { + "start": 3775.06, + "end": 3776.28, + "probability": 0.8604 + }, + { + "start": 3777.2, + "end": 3779.42, + "probability": 0.7363 + }, + { + "start": 3782.2, + "end": 3786.24, + "probability": 0.9276 + }, + { + "start": 3787.54, + "end": 3790.96, + "probability": 0.6041 + }, + { + "start": 3792.28, + "end": 3794.5, + "probability": 0.8995 + }, + { + "start": 3795.16, + "end": 3795.82, + "probability": 0.4152 + }, + { + "start": 3796.72, + "end": 3798.86, + "probability": 0.6494 + }, + { + "start": 3799.08, + "end": 3799.9, + "probability": 0.169 + }, + { + "start": 3800.06, + "end": 3801.47, + "probability": 0.3836 + }, + { + "start": 3802.86, + "end": 3804.42, + "probability": 0.2856 + }, + { + "start": 3809.02, + "end": 3811.08, + "probability": 0.7552 + }, + { + "start": 3812.3, + "end": 3813.72, + "probability": 0.9736 + }, + { + "start": 3814.28, + "end": 3818.26, + "probability": 0.8059 + }, + { + "start": 3818.82, + "end": 3822.74, + "probability": 0.9501 + }, + { + "start": 3823.58, + "end": 3826.49, + "probability": 0.9511 + }, + { + "start": 3827.1, + "end": 3828.97, + "probability": 0.7071 + }, + { + "start": 3830.04, + "end": 3831.34, + "probability": 0.7864 + }, + { + "start": 3831.34, + "end": 3831.82, + "probability": 0.8024 + }, + { + "start": 3832.16, + "end": 3834.68, + "probability": 0.6359 + }, + { + "start": 3834.82, + "end": 3835.76, + "probability": 0.9676 + }, + { + "start": 3837.46, + "end": 3839.96, + "probability": 0.867 + }, + { + "start": 3840.46, + "end": 3841.48, + "probability": 0.7067 + }, + { + "start": 3841.62, + "end": 3842.54, + "probability": 0.5707 + }, + { + "start": 3843.9, + "end": 3848.52, + "probability": 0.8475 + }, + { + "start": 3849.4, + "end": 3850.56, + "probability": 0.0954 + }, + { + "start": 3850.56, + "end": 3851.48, + "probability": 0.3952 + }, + { + "start": 3852.22, + "end": 3853.46, + "probability": 0.699 + }, + { + "start": 3855.42, + "end": 3857.1, + "probability": 0.0297 + }, + { + "start": 3857.1, + "end": 3857.38, + "probability": 0.4454 + }, + { + "start": 3857.9, + "end": 3859.74, + "probability": 0.9939 + }, + { + "start": 3860.72, + "end": 3862.16, + "probability": 0.9818 + }, + { + "start": 3862.58, + "end": 3864.34, + "probability": 0.9741 + }, + { + "start": 3864.78, + "end": 3866.08, + "probability": 0.9634 + }, + { + "start": 3867.24, + "end": 3868.12, + "probability": 0.9521 + }, + { + "start": 3869.4, + "end": 3873.66, + "probability": 0.9844 + }, + { + "start": 3874.32, + "end": 3875.54, + "probability": 0.8281 + }, + { + "start": 3876.38, + "end": 3881.7, + "probability": 0.9905 + }, + { + "start": 3883.02, + "end": 3885.54, + "probability": 0.9141 + }, + { + "start": 3886.38, + "end": 3890.8, + "probability": 0.9639 + }, + { + "start": 3891.4, + "end": 3892.18, + "probability": 0.8057 + }, + { + "start": 3892.68, + "end": 3899.9, + "probability": 0.9893 + }, + { + "start": 3900.14, + "end": 3900.68, + "probability": 0.7421 + }, + { + "start": 3900.9, + "end": 3901.72, + "probability": 0.7402 + }, + { + "start": 3901.96, + "end": 3903.02, + "probability": 0.9097 + }, + { + "start": 3903.52, + "end": 3906.72, + "probability": 0.9536 + }, + { + "start": 3906.9, + "end": 3908.08, + "probability": 0.2834 + }, + { + "start": 3908.14, + "end": 3908.7, + "probability": 0.7463 + }, + { + "start": 3909.0, + "end": 3909.34, + "probability": 0.8419 + }, + { + "start": 3909.54, + "end": 3911.78, + "probability": 0.9575 + }, + { + "start": 3912.6, + "end": 3919.09, + "probability": 0.512 + }, + { + "start": 3919.28, + "end": 3924.62, + "probability": 0.9135 + }, + { + "start": 3927.4, + "end": 3928.36, + "probability": 0.7271 + }, + { + "start": 3930.34, + "end": 3931.54, + "probability": 0.5124 + }, + { + "start": 3932.18, + "end": 3932.32, + "probability": 0.0107 + }, + { + "start": 3933.52, + "end": 3935.68, + "probability": 0.8711 + }, + { + "start": 3936.36, + "end": 3938.18, + "probability": 0.9336 + }, + { + "start": 3938.3, + "end": 3939.42, + "probability": 0.8159 + }, + { + "start": 3939.6, + "end": 3943.12, + "probability": 0.841 + }, + { + "start": 3944.86, + "end": 3948.26, + "probability": 0.9702 + }, + { + "start": 3949.56, + "end": 3950.06, + "probability": 0.9456 + }, + { + "start": 3952.28, + "end": 3954.6, + "probability": 0.6912 + }, + { + "start": 3955.96, + "end": 3957.18, + "probability": 0.9361 + }, + { + "start": 3959.2, + "end": 3962.76, + "probability": 0.9898 + }, + { + "start": 3962.76, + "end": 3967.2, + "probability": 0.9982 + }, + { + "start": 3967.92, + "end": 3970.96, + "probability": 0.9915 + }, + { + "start": 3972.14, + "end": 3975.06, + "probability": 0.9854 + }, + { + "start": 3975.86, + "end": 3977.18, + "probability": 0.9879 + }, + { + "start": 3977.84, + "end": 3981.0, + "probability": 0.9958 + }, + { + "start": 3981.84, + "end": 3988.06, + "probability": 0.9785 + }, + { + "start": 3988.06, + "end": 3991.89, + "probability": 0.9926 + }, + { + "start": 3991.9, + "end": 3995.68, + "probability": 0.9973 + }, + { + "start": 3997.22, + "end": 4000.46, + "probability": 0.9461 + }, + { + "start": 4000.46, + "end": 4007.84, + "probability": 0.9285 + }, + { + "start": 4009.3, + "end": 4012.56, + "probability": 0.9634 + }, + { + "start": 4013.44, + "end": 4016.04, + "probability": 0.9877 + }, + { + "start": 4017.68, + "end": 4019.2, + "probability": 0.9438 + }, + { + "start": 4020.04, + "end": 4021.4, + "probability": 0.6656 + }, + { + "start": 4021.94, + "end": 4022.66, + "probability": 0.0642 + }, + { + "start": 4024.02, + "end": 4026.16, + "probability": 0.803 + }, + { + "start": 4026.94, + "end": 4028.2, + "probability": 0.7124 + }, + { + "start": 4030.36, + "end": 4030.68, + "probability": 0.571 + }, + { + "start": 4030.78, + "end": 4036.04, + "probability": 0.7802 + }, + { + "start": 4037.22, + "end": 4041.62, + "probability": 0.9806 + }, + { + "start": 4042.58, + "end": 4043.97, + "probability": 0.9959 + }, + { + "start": 4044.94, + "end": 4046.92, + "probability": 0.9941 + }, + { + "start": 4047.78, + "end": 4049.38, + "probability": 0.9194 + }, + { + "start": 4050.08, + "end": 4051.52, + "probability": 0.9878 + }, + { + "start": 4052.12, + "end": 4053.16, + "probability": 0.9797 + }, + { + "start": 4053.9, + "end": 4054.3, + "probability": 0.1042 + }, + { + "start": 4054.3, + "end": 4057.52, + "probability": 0.4487 + }, + { + "start": 4058.26, + "end": 4060.82, + "probability": 0.6597 + }, + { + "start": 4061.9, + "end": 4066.33, + "probability": 0.996 + }, + { + "start": 4069.22, + "end": 4071.18, + "probability": 0.9978 + }, + { + "start": 4071.9, + "end": 4073.55, + "probability": 0.9714 + }, + { + "start": 4075.18, + "end": 4077.82, + "probability": 0.9886 + }, + { + "start": 4079.56, + "end": 4084.28, + "probability": 0.9971 + }, + { + "start": 4085.06, + "end": 4089.54, + "probability": 0.9919 + }, + { + "start": 4090.36, + "end": 4093.04, + "probability": 0.98 + }, + { + "start": 4093.56, + "end": 4094.68, + "probability": 0.7502 + }, + { + "start": 4094.82, + "end": 4100.97, + "probability": 0.9565 + }, + { + "start": 4103.82, + "end": 4109.54, + "probability": 0.9938 + }, + { + "start": 4110.72, + "end": 4112.26, + "probability": 0.999 + }, + { + "start": 4112.92, + "end": 4114.7, + "probability": 0.9959 + }, + { + "start": 4115.34, + "end": 4120.22, + "probability": 0.9822 + }, + { + "start": 4120.22, + "end": 4125.2, + "probability": 0.9991 + }, + { + "start": 4126.14, + "end": 4127.68, + "probability": 0.981 + }, + { + "start": 4127.76, + "end": 4128.6, + "probability": 0.9043 + }, + { + "start": 4129.94, + "end": 4132.34, + "probability": 0.8918 + }, + { + "start": 4133.54, + "end": 4133.54, + "probability": 0.0124 + }, + { + "start": 4133.54, + "end": 4134.45, + "probability": 0.8916 + }, + { + "start": 4135.24, + "end": 4137.76, + "probability": 0.9971 + }, + { + "start": 4138.84, + "end": 4141.56, + "probability": 0.9957 + }, + { + "start": 4142.64, + "end": 4143.48, + "probability": 0.688 + }, + { + "start": 4144.38, + "end": 4146.9, + "probability": 0.9989 + }, + { + "start": 4148.36, + "end": 4150.96, + "probability": 0.9975 + }, + { + "start": 4151.68, + "end": 4152.56, + "probability": 0.9574 + }, + { + "start": 4154.44, + "end": 4161.26, + "probability": 0.9688 + }, + { + "start": 4161.34, + "end": 4164.12, + "probability": 0.9846 + }, + { + "start": 4165.4, + "end": 4167.44, + "probability": 0.9219 + }, + { + "start": 4168.6, + "end": 4171.08, + "probability": 0.9888 + }, + { + "start": 4171.08, + "end": 4173.94, + "probability": 0.9662 + }, + { + "start": 4175.46, + "end": 4176.56, + "probability": 0.8095 + }, + { + "start": 4177.84, + "end": 4178.64, + "probability": 0.8612 + }, + { + "start": 4179.26, + "end": 4180.76, + "probability": 0.9834 + }, + { + "start": 4181.7, + "end": 4183.78, + "probability": 0.8673 + }, + { + "start": 4184.4, + "end": 4185.88, + "probability": 0.9104 + }, + { + "start": 4186.46, + "end": 4190.46, + "probability": 0.9824 + }, + { + "start": 4191.08, + "end": 4191.72, + "probability": 0.8233 + }, + { + "start": 4191.76, + "end": 4193.14, + "probability": 0.963 + }, + { + "start": 4193.84, + "end": 4195.86, + "probability": 0.6787 + }, + { + "start": 4196.54, + "end": 4197.3, + "probability": 0.7302 + }, + { + "start": 4197.44, + "end": 4198.6, + "probability": 0.7967 + }, + { + "start": 4198.66, + "end": 4200.22, + "probability": 0.6053 + }, + { + "start": 4200.46, + "end": 4203.2, + "probability": 0.9705 + }, + { + "start": 4203.2, + "end": 4205.54, + "probability": 0.8555 + }, + { + "start": 4206.08, + "end": 4207.9, + "probability": 0.7707 + }, + { + "start": 4208.6, + "end": 4211.06, + "probability": 0.8937 + }, + { + "start": 4211.66, + "end": 4212.8, + "probability": 0.9357 + }, + { + "start": 4213.48, + "end": 4215.86, + "probability": 0.9963 + }, + { + "start": 4216.42, + "end": 4218.68, + "probability": 0.7163 + }, + { + "start": 4219.12, + "end": 4220.59, + "probability": 0.9133 + }, + { + "start": 4221.08, + "end": 4222.18, + "probability": 0.9776 + }, + { + "start": 4223.28, + "end": 4223.84, + "probability": 0.8608 + }, + { + "start": 4223.92, + "end": 4224.94, + "probability": 0.9913 + }, + { + "start": 4225.36, + "end": 4227.84, + "probability": 0.4602 + }, + { + "start": 4227.84, + "end": 4229.84, + "probability": 0.9771 + }, + { + "start": 4230.2, + "end": 4230.2, + "probability": 0.1524 + }, + { + "start": 4230.42, + "end": 4230.9, + "probability": 0.7295 + }, + { + "start": 4230.96, + "end": 4235.42, + "probability": 0.9927 + }, + { + "start": 4235.54, + "end": 4237.46, + "probability": 0.8328 + }, + { + "start": 4238.56, + "end": 4242.92, + "probability": 0.9263 + }, + { + "start": 4243.02, + "end": 4245.6, + "probability": 0.8535 + }, + { + "start": 4245.74, + "end": 4247.78, + "probability": 0.9529 + }, + { + "start": 4247.84, + "end": 4250.58, + "probability": 0.9894 + }, + { + "start": 4252.14, + "end": 4253.62, + "probability": 0.9969 + }, + { + "start": 4254.26, + "end": 4257.56, + "probability": 0.9751 + }, + { + "start": 4257.68, + "end": 4259.58, + "probability": 0.9693 + }, + { + "start": 4259.66, + "end": 4260.2, + "probability": 0.7724 + }, + { + "start": 4260.44, + "end": 4261.52, + "probability": 0.9113 + }, + { + "start": 4262.12, + "end": 4264.68, + "probability": 0.9938 + }, + { + "start": 4264.68, + "end": 4268.32, + "probability": 0.7029 + }, + { + "start": 4268.84, + "end": 4271.86, + "probability": 0.9992 + }, + { + "start": 4272.36, + "end": 4274.36, + "probability": 0.9964 + }, + { + "start": 4275.02, + "end": 4277.16, + "probability": 0.9945 + }, + { + "start": 4277.72, + "end": 4278.88, + "probability": 0.9695 + }, + { + "start": 4279.1, + "end": 4280.88, + "probability": 0.9925 + }, + { + "start": 4281.48, + "end": 4282.54, + "probability": 0.5822 + }, + { + "start": 4282.68, + "end": 4284.1, + "probability": 0.9662 + }, + { + "start": 4284.68, + "end": 4285.42, + "probability": 0.9238 + }, + { + "start": 4285.66, + "end": 4287.72, + "probability": 0.9852 + }, + { + "start": 4287.98, + "end": 4288.56, + "probability": 0.8084 + }, + { + "start": 4288.62, + "end": 4289.12, + "probability": 0.9077 + }, + { + "start": 4289.6, + "end": 4289.92, + "probability": 0.9565 + }, + { + "start": 4290.02, + "end": 4290.44, + "probability": 0.9403 + }, + { + "start": 4290.54, + "end": 4291.1, + "probability": 0.7451 + }, + { + "start": 4291.76, + "end": 4293.14, + "probability": 0.9904 + }, + { + "start": 4293.3, + "end": 4295.54, + "probability": 0.9869 + }, + { + "start": 4296.36, + "end": 4297.13, + "probability": 0.9086 + }, + { + "start": 4298.2, + "end": 4300.72, + "probability": 0.1575 + }, + { + "start": 4301.26, + "end": 4304.5, + "probability": 0.8508 + }, + { + "start": 4305.48, + "end": 4309.84, + "probability": 0.6552 + }, + { + "start": 4310.66, + "end": 4316.28, + "probability": 0.9604 + }, + { + "start": 4317.18, + "end": 4319.16, + "probability": 0.9912 + }, + { + "start": 4320.26, + "end": 4322.72, + "probability": 0.9588 + }, + { + "start": 4323.68, + "end": 4325.6, + "probability": 0.8208 + }, + { + "start": 4326.48, + "end": 4329.43, + "probability": 0.9741 + }, + { + "start": 4330.26, + "end": 4332.42, + "probability": 0.9611 + }, + { + "start": 4332.98, + "end": 4340.46, + "probability": 0.8337 + }, + { + "start": 4341.04, + "end": 4344.76, + "probability": 0.9792 + }, + { + "start": 4344.82, + "end": 4347.84, + "probability": 0.9957 + }, + { + "start": 4348.32, + "end": 4349.48, + "probability": 0.9557 + }, + { + "start": 4349.6, + "end": 4352.1, + "probability": 0.9979 + }, + { + "start": 4352.86, + "end": 4354.4, + "probability": 0.9888 + }, + { + "start": 4355.06, + "end": 4359.8, + "probability": 0.9326 + }, + { + "start": 4362.08, + "end": 4365.32, + "probability": 0.6883 + }, + { + "start": 4365.5, + "end": 4367.95, + "probability": 0.9982 + }, + { + "start": 4369.08, + "end": 4370.88, + "probability": 0.8305 + }, + { + "start": 4371.46, + "end": 4376.82, + "probability": 0.993 + }, + { + "start": 4378.38, + "end": 4380.42, + "probability": 0.9979 + }, + { + "start": 4381.18, + "end": 4384.86, + "probability": 0.9955 + }, + { + "start": 4385.46, + "end": 4388.18, + "probability": 0.7794 + }, + { + "start": 4388.9, + "end": 4393.52, + "probability": 0.9554 + }, + { + "start": 4393.68, + "end": 4394.86, + "probability": 0.9662 + }, + { + "start": 4398.3, + "end": 4401.5, + "probability": 0.4889 + }, + { + "start": 4402.12, + "end": 4406.28, + "probability": 0.9841 + }, + { + "start": 4407.8, + "end": 4411.76, + "probability": 0.567 + }, + { + "start": 4412.72, + "end": 4415.8, + "probability": 0.752 + }, + { + "start": 4416.92, + "end": 4420.9, + "probability": 0.6508 + }, + { + "start": 4421.48, + "end": 4424.26, + "probability": 0.9604 + }, + { + "start": 4425.26, + "end": 4429.28, + "probability": 0.9946 + }, + { + "start": 4429.8, + "end": 4432.64, + "probability": 0.9856 + }, + { + "start": 4432.8, + "end": 4435.08, + "probability": 0.9684 + }, + { + "start": 4435.6, + "end": 4437.8, + "probability": 0.6275 + }, + { + "start": 4438.86, + "end": 4439.94, + "probability": 0.5142 + }, + { + "start": 4440.4, + "end": 4444.18, + "probability": 0.9631 + }, + { + "start": 4444.9, + "end": 4450.16, + "probability": 0.9529 + }, + { + "start": 4450.28, + "end": 4455.14, + "probability": 0.8873 + }, + { + "start": 4455.22, + "end": 4455.76, + "probability": 0.5301 + }, + { + "start": 4456.68, + "end": 4459.0, + "probability": 0.8929 + }, + { + "start": 4459.78, + "end": 4464.7, + "probability": 0.9955 + }, + { + "start": 4465.16, + "end": 4467.48, + "probability": 0.6811 + }, + { + "start": 4467.94, + "end": 4472.0, + "probability": 0.9762 + }, + { + "start": 4472.92, + "end": 4479.06, + "probability": 0.9817 + }, + { + "start": 4479.06, + "end": 4483.1, + "probability": 0.9618 + }, + { + "start": 4483.74, + "end": 4486.06, + "probability": 0.9424 + }, + { + "start": 4487.0, + "end": 4489.9, + "probability": 0.968 + }, + { + "start": 4491.04, + "end": 4496.88, + "probability": 0.5628 + }, + { + "start": 4497.76, + "end": 4498.22, + "probability": 0.5706 + }, + { + "start": 4498.24, + "end": 4499.68, + "probability": 0.8803 + }, + { + "start": 4499.92, + "end": 4500.56, + "probability": 0.7791 + }, + { + "start": 4500.73, + "end": 4502.74, + "probability": 0.8411 + }, + { + "start": 4503.82, + "end": 4505.9, + "probability": 0.9779 + }, + { + "start": 4506.02, + "end": 4512.92, + "probability": 0.9079 + }, + { + "start": 4512.98, + "end": 4513.68, + "probability": 0.8867 + }, + { + "start": 4514.48, + "end": 4515.34, + "probability": 0.6756 + }, + { + "start": 4516.36, + "end": 4517.34, + "probability": 0.9126 + }, + { + "start": 4517.96, + "end": 4519.5, + "probability": 0.8991 + }, + { + "start": 4520.04, + "end": 4520.88, + "probability": 0.1999 + }, + { + "start": 4522.12, + "end": 4523.32, + "probability": 0.9171 + }, + { + "start": 4523.4, + "end": 4524.66, + "probability": 0.5264 + }, + { + "start": 4524.7, + "end": 4525.19, + "probability": 0.3828 + }, + { + "start": 4526.26, + "end": 4529.92, + "probability": 0.8979 + }, + { + "start": 4530.08, + "end": 4531.14, + "probability": 0.8612 + }, + { + "start": 4533.24, + "end": 4533.24, + "probability": 0.0418 + }, + { + "start": 4533.24, + "end": 4533.24, + "probability": 0.1245 + }, + { + "start": 4533.38, + "end": 4533.64, + "probability": 0.2366 + }, + { + "start": 4533.9, + "end": 4535.48, + "probability": 0.0498 + }, + { + "start": 4535.7, + "end": 4536.66, + "probability": 0.2939 + }, + { + "start": 4536.76, + "end": 4537.24, + "probability": 0.3448 + }, + { + "start": 4538.24, + "end": 4539.28, + "probability": 0.1786 + }, + { + "start": 4539.28, + "end": 4539.28, + "probability": 0.1559 + }, + { + "start": 4539.28, + "end": 4544.0, + "probability": 0.8204 + }, + { + "start": 4544.1, + "end": 4547.18, + "probability": 0.9956 + }, + { + "start": 4547.84, + "end": 4548.42, + "probability": 0.9171 + }, + { + "start": 4549.48, + "end": 4553.07, + "probability": 0.9961 + }, + { + "start": 4553.64, + "end": 4555.26, + "probability": 0.7438 + }, + { + "start": 4556.06, + "end": 4560.0, + "probability": 0.8894 + }, + { + "start": 4560.6, + "end": 4561.48, + "probability": 0.795 + }, + { + "start": 4561.9, + "end": 4565.0, + "probability": 0.9756 + }, + { + "start": 4566.44, + "end": 4570.0, + "probability": 0.9804 + }, + { + "start": 4570.14, + "end": 4571.0, + "probability": 0.875 + }, + { + "start": 4571.16, + "end": 4571.82, + "probability": 0.8898 + }, + { + "start": 4571.9, + "end": 4572.84, + "probability": 0.9857 + }, + { + "start": 4572.92, + "end": 4574.14, + "probability": 0.9764 + }, + { + "start": 4577.14, + "end": 4578.35, + "probability": 0.9337 + }, + { + "start": 4579.26, + "end": 4583.04, + "probability": 0.9877 + }, + { + "start": 4583.96, + "end": 4587.54, + "probability": 0.995 + }, + { + "start": 4587.54, + "end": 4591.52, + "probability": 0.9478 + }, + { + "start": 4592.44, + "end": 4594.24, + "probability": 0.8568 + }, + { + "start": 4594.5, + "end": 4596.66, + "probability": 0.9969 + }, + { + "start": 4597.82, + "end": 4600.0, + "probability": 0.8677 + }, + { + "start": 4604.44, + "end": 4605.68, + "probability": 0.9692 + }, + { + "start": 4606.38, + "end": 4608.22, + "probability": 0.9807 + }, + { + "start": 4608.24, + "end": 4611.62, + "probability": 0.7136 + }, + { + "start": 4611.78, + "end": 4612.22, + "probability": 0.6393 + }, + { + "start": 4612.5, + "end": 4613.3, + "probability": 0.9295 + }, + { + "start": 4613.42, + "end": 4614.0, + "probability": 0.93 + }, + { + "start": 4614.94, + "end": 4616.46, + "probability": 0.747 + }, + { + "start": 4616.58, + "end": 4619.6, + "probability": 0.8124 + }, + { + "start": 4619.92, + "end": 4621.36, + "probability": 0.793 + }, + { + "start": 4622.0, + "end": 4623.12, + "probability": 0.9377 + }, + { + "start": 4623.78, + "end": 4626.22, + "probability": 0.8566 + }, + { + "start": 4627.6, + "end": 4630.2, + "probability": 0.7286 + }, + { + "start": 4630.68, + "end": 4630.96, + "probability": 0.7779 + }, + { + "start": 4631.02, + "end": 4631.79, + "probability": 0.7993 + }, + { + "start": 4632.72, + "end": 4635.6, + "probability": 0.9932 + }, + { + "start": 4635.76, + "end": 4636.68, + "probability": 0.6664 + }, + { + "start": 4636.74, + "end": 4637.15, + "probability": 0.9534 + }, + { + "start": 4637.44, + "end": 4637.82, + "probability": 0.7067 + }, + { + "start": 4638.38, + "end": 4639.74, + "probability": 0.8951 + }, + { + "start": 4640.26, + "end": 4643.56, + "probability": 0.9575 + }, + { + "start": 4644.34, + "end": 4647.38, + "probability": 0.9888 + }, + { + "start": 4648.7, + "end": 4650.36, + "probability": 0.9891 + }, + { + "start": 4651.06, + "end": 4652.12, + "probability": 0.973 + }, + { + "start": 4652.74, + "end": 4656.68, + "probability": 0.9887 + }, + { + "start": 4657.18, + "end": 4659.38, + "probability": 0.9948 + }, + { + "start": 4659.64, + "end": 4661.44, + "probability": 0.808 + }, + { + "start": 4662.26, + "end": 4663.1, + "probability": 0.719 + }, + { + "start": 4663.24, + "end": 4663.86, + "probability": 0.8218 + }, + { + "start": 4664.0, + "end": 4665.62, + "probability": 0.8722 + }, + { + "start": 4665.74, + "end": 4666.94, + "probability": 0.8968 + }, + { + "start": 4667.58, + "end": 4669.5, + "probability": 0.9876 + }, + { + "start": 4670.36, + "end": 4670.66, + "probability": 0.7421 + }, + { + "start": 4671.5, + "end": 4673.62, + "probability": 0.9969 + }, + { + "start": 4674.28, + "end": 4675.1, + "probability": 0.8486 + }, + { + "start": 4675.92, + "end": 4677.0, + "probability": 0.9321 + }, + { + "start": 4677.78, + "end": 4680.84, + "probability": 0.9403 + }, + { + "start": 4680.9, + "end": 4682.2, + "probability": 0.7469 + }, + { + "start": 4682.72, + "end": 4684.9, + "probability": 0.9812 + }, + { + "start": 4685.96, + "end": 4687.04, + "probability": 0.912 + }, + { + "start": 4687.82, + "end": 4690.34, + "probability": 0.8556 + }, + { + "start": 4690.34, + "end": 4692.46, + "probability": 0.9927 + }, + { + "start": 4693.3, + "end": 4693.78, + "probability": 0.7438 + }, + { + "start": 4694.68, + "end": 4697.54, + "probability": 0.9818 + }, + { + "start": 4698.42, + "end": 4702.44, + "probability": 0.9976 + }, + { + "start": 4703.16, + "end": 4705.44, + "probability": 0.9557 + }, + { + "start": 4706.92, + "end": 4707.57, + "probability": 0.9529 + }, + { + "start": 4708.28, + "end": 4710.58, + "probability": 0.9078 + }, + { + "start": 4711.46, + "end": 4714.12, + "probability": 0.984 + }, + { + "start": 4714.7, + "end": 4719.1, + "probability": 0.9375 + }, + { + "start": 4719.42, + "end": 4719.96, + "probability": 0.4397 + }, + { + "start": 4720.44, + "end": 4723.02, + "probability": 0.9845 + }, + { + "start": 4723.6, + "end": 4724.58, + "probability": 0.8726 + }, + { + "start": 4725.28, + "end": 4728.04, + "probability": 0.9647 + }, + { + "start": 4729.54, + "end": 4730.48, + "probability": 0.4602 + }, + { + "start": 4730.48, + "end": 4731.36, + "probability": 0.7507 + }, + { + "start": 4731.54, + "end": 4733.0, + "probability": 0.8459 + }, + { + "start": 4733.38, + "end": 4734.74, + "probability": 0.9814 + }, + { + "start": 4734.96, + "end": 4735.66, + "probability": 0.5289 + }, + { + "start": 4736.3, + "end": 4739.7, + "probability": 0.9636 + }, + { + "start": 4740.38, + "end": 4742.08, + "probability": 0.8623 + }, + { + "start": 4742.64, + "end": 4745.64, + "probability": 0.9714 + }, + { + "start": 4746.28, + "end": 4749.04, + "probability": 0.9425 + }, + { + "start": 4749.04, + "end": 4750.94, + "probability": 0.8372 + }, + { + "start": 4751.3, + "end": 4751.64, + "probability": 0.7839 + }, + { + "start": 4752.7, + "end": 4756.69, + "probability": 0.6676 + }, + { + "start": 4757.38, + "end": 4759.18, + "probability": 0.9507 + }, + { + "start": 4760.36, + "end": 4762.06, + "probability": 0.4749 + }, + { + "start": 4763.97, + "end": 4767.06, + "probability": 0.5172 + }, + { + "start": 4769.96, + "end": 4773.2, + "probability": 0.8882 + }, + { + "start": 4774.84, + "end": 4777.92, + "probability": 0.2767 + }, + { + "start": 4777.98, + "end": 4779.88, + "probability": 0.2059 + }, + { + "start": 4780.32, + "end": 4781.72, + "probability": 0.9354 + }, + { + "start": 4781.82, + "end": 4785.4, + "probability": 0.9914 + }, + { + "start": 4789.38, + "end": 4789.86, + "probability": 0.7513 + }, + { + "start": 4790.38, + "end": 4791.56, + "probability": 0.884 + }, + { + "start": 4792.06, + "end": 4794.52, + "probability": 0.7196 + }, + { + "start": 4795.56, + "end": 4802.84, + "probability": 0.8931 + }, + { + "start": 4808.45, + "end": 4811.28, + "probability": 0.3983 + }, + { + "start": 4811.86, + "end": 4815.88, + "probability": 0.5759 + }, + { + "start": 4815.96, + "end": 4817.91, + "probability": 0.588 + }, + { + "start": 4818.32, + "end": 4820.9, + "probability": 0.4964 + }, + { + "start": 4820.94, + "end": 4823.96, + "probability": 0.8291 + }, + { + "start": 4824.12, + "end": 4825.12, + "probability": 0.8779 + }, + { + "start": 4826.08, + "end": 4827.26, + "probability": 0.0145 + }, + { + "start": 4827.26, + "end": 4827.26, + "probability": 0.283 + }, + { + "start": 4827.34, + "end": 4827.54, + "probability": 0.0039 + }, + { + "start": 4827.54, + "end": 4828.3, + "probability": 0.6 + }, + { + "start": 4828.4, + "end": 4830.43, + "probability": 0.9792 + }, + { + "start": 4830.96, + "end": 4834.2, + "probability": 0.9926 + }, + { + "start": 4834.56, + "end": 4837.02, + "probability": 0.6895 + }, + { + "start": 4837.1, + "end": 4840.13, + "probability": 0.9056 + }, + { + "start": 4841.2, + "end": 4842.36, + "probability": 0.9011 + }, + { + "start": 4842.98, + "end": 4848.0, + "probability": 0.9091 + }, + { + "start": 4848.04, + "end": 4849.04, + "probability": 0.8423 + }, + { + "start": 4849.56, + "end": 4850.9, + "probability": 0.988 + }, + { + "start": 4851.38, + "end": 4854.16, + "probability": 0.8926 + }, + { + "start": 4855.22, + "end": 4855.84, + "probability": 0.8394 + }, + { + "start": 4856.52, + "end": 4857.85, + "probability": 0.7095 + }, + { + "start": 4858.8, + "end": 4859.62, + "probability": 0.9124 + }, + { + "start": 4860.6, + "end": 4861.37, + "probability": 0.8707 + }, + { + "start": 4861.64, + "end": 4862.92, + "probability": 0.7387 + }, + { + "start": 4863.5, + "end": 4869.38, + "probability": 0.9731 + }, + { + "start": 4870.26, + "end": 4872.62, + "probability": 0.6857 + }, + { + "start": 4872.72, + "end": 4875.58, + "probability": 0.9913 + }, + { + "start": 4875.8, + "end": 4877.56, + "probability": 0.9731 + }, + { + "start": 4878.28, + "end": 4879.72, + "probability": 0.9591 + }, + { + "start": 4880.02, + "end": 4883.5, + "probability": 0.9835 + }, + { + "start": 4884.9, + "end": 4885.8, + "probability": 0.7325 + }, + { + "start": 4886.36, + "end": 4886.76, + "probability": 0.5306 + }, + { + "start": 4886.96, + "end": 4887.76, + "probability": 0.8018 + }, + { + "start": 4887.78, + "end": 4888.01, + "probability": 0.8765 + }, + { + "start": 4888.58, + "end": 4890.22, + "probability": 0.7676 + }, + { + "start": 4890.72, + "end": 4895.2, + "probability": 0.9664 + }, + { + "start": 4895.44, + "end": 4896.92, + "probability": 0.9779 + }, + { + "start": 4899.3, + "end": 4903.2, + "probability": 0.9839 + }, + { + "start": 4903.62, + "end": 4905.04, + "probability": 0.8766 + }, + { + "start": 4905.12, + "end": 4905.6, + "probability": 0.7905 + }, + { + "start": 4905.7, + "end": 4906.14, + "probability": 0.8437 + }, + { + "start": 4906.86, + "end": 4908.08, + "probability": 0.8527 + }, + { + "start": 4908.64, + "end": 4912.76, + "probability": 0.9761 + }, + { + "start": 4913.44, + "end": 4914.1, + "probability": 0.6444 + }, + { + "start": 4914.48, + "end": 4916.54, + "probability": 0.9765 + }, + { + "start": 4917.6, + "end": 4920.92, + "probability": 0.798 + }, + { + "start": 4921.34, + "end": 4925.0, + "probability": 0.9938 + }, + { + "start": 4925.0, + "end": 4929.54, + "probability": 0.926 + }, + { + "start": 4929.64, + "end": 4932.62, + "probability": 0.9944 + }, + { + "start": 4932.62, + "end": 4935.62, + "probability": 0.9739 + }, + { + "start": 4936.14, + "end": 4937.67, + "probability": 0.7855 + }, + { + "start": 4938.8, + "end": 4940.04, + "probability": 0.9694 + }, + { + "start": 4940.36, + "end": 4942.06, + "probability": 0.9735 + }, + { + "start": 4942.3, + "end": 4945.82, + "probability": 0.9931 + }, + { + "start": 4946.56, + "end": 4948.94, + "probability": 0.9874 + }, + { + "start": 4949.32, + "end": 4949.92, + "probability": 0.525 + }, + { + "start": 4950.32, + "end": 4951.04, + "probability": 0.7183 + }, + { + "start": 4952.28, + "end": 4954.4, + "probability": 0.8896 + }, + { + "start": 4955.18, + "end": 4956.43, + "probability": 0.9733 + }, + { + "start": 4956.86, + "end": 4962.36, + "probability": 0.9922 + }, + { + "start": 4963.38, + "end": 4965.94, + "probability": 0.9149 + }, + { + "start": 4966.76, + "end": 4967.7, + "probability": 0.8381 + }, + { + "start": 4970.58, + "end": 4975.46, + "probability": 0.7291 + }, + { + "start": 4975.5, + "end": 4977.3, + "probability": 0.9628 + }, + { + "start": 4977.34, + "end": 4978.08, + "probability": 0.7314 + }, + { + "start": 4978.4, + "end": 4979.3, + "probability": 0.9746 + }, + { + "start": 4979.96, + "end": 4983.43, + "probability": 0.9648 + }, + { + "start": 4984.48, + "end": 4986.28, + "probability": 0.9612 + }, + { + "start": 4986.74, + "end": 4987.74, + "probability": 0.9209 + }, + { + "start": 4987.82, + "end": 4989.12, + "probability": 0.8671 + }, + { + "start": 4989.4, + "end": 4990.44, + "probability": 0.892 + }, + { + "start": 4991.06, + "end": 4994.6, + "probability": 0.811 + }, + { + "start": 4995.24, + "end": 4999.0, + "probability": 0.9767 + }, + { + "start": 4999.94, + "end": 5003.12, + "probability": 0.8301 + }, + { + "start": 5003.76, + "end": 5005.0, + "probability": 0.9595 + }, + { + "start": 5005.6, + "end": 5007.62, + "probability": 0.8943 + }, + { + "start": 5008.5, + "end": 5010.32, + "probability": 0.9971 + }, + { + "start": 5010.66, + "end": 5012.38, + "probability": 0.9874 + }, + { + "start": 5013.08, + "end": 5015.36, + "probability": 0.9039 + }, + { + "start": 5016.02, + "end": 5016.74, + "probability": 0.6739 + }, + { + "start": 5016.9, + "end": 5018.28, + "probability": 0.9667 + }, + { + "start": 5018.58, + "end": 5020.56, + "probability": 0.9899 + }, + { + "start": 5021.08, + "end": 5023.52, + "probability": 0.8794 + }, + { + "start": 5023.82, + "end": 5025.2, + "probability": 0.6117 + }, + { + "start": 5026.18, + "end": 5030.46, + "probability": 0.9489 + }, + { + "start": 5030.72, + "end": 5033.86, + "probability": 0.9734 + }, + { + "start": 5034.0, + "end": 5034.77, + "probability": 0.9858 + }, + { + "start": 5036.07, + "end": 5039.4, + "probability": 0.9113 + }, + { + "start": 5039.46, + "end": 5040.52, + "probability": 0.9719 + }, + { + "start": 5041.72, + "end": 5041.9, + "probability": 0.5374 + }, + { + "start": 5041.94, + "end": 5043.72, + "probability": 0.7541 + }, + { + "start": 5043.8, + "end": 5047.86, + "probability": 0.9329 + }, + { + "start": 5048.0, + "end": 5050.36, + "probability": 0.7288 + }, + { + "start": 5050.64, + "end": 5053.22, + "probability": 0.7192 + }, + { + "start": 5053.6, + "end": 5055.08, + "probability": 0.9827 + }, + { + "start": 5055.42, + "end": 5056.63, + "probability": 0.9351 + }, + { + "start": 5056.96, + "end": 5058.03, + "probability": 0.9915 + }, + { + "start": 5058.1, + "end": 5059.44, + "probability": 0.1381 + }, + { + "start": 5059.68, + "end": 5060.76, + "probability": 0.6583 + }, + { + "start": 5060.98, + "end": 5062.24, + "probability": 0.5459 + }, + { + "start": 5062.32, + "end": 5063.62, + "probability": 0.8866 + }, + { + "start": 5063.96, + "end": 5065.62, + "probability": 0.985 + }, + { + "start": 5066.8, + "end": 5066.98, + "probability": 0.4738 + }, + { + "start": 5066.98, + "end": 5067.63, + "probability": 0.5297 + }, + { + "start": 5068.1, + "end": 5069.5, + "probability": 0.8464 + }, + { + "start": 5069.92, + "end": 5071.12, + "probability": 0.9947 + }, + { + "start": 5071.12, + "end": 5072.12, + "probability": 0.4006 + }, + { + "start": 5072.84, + "end": 5075.68, + "probability": 0.9525 + }, + { + "start": 5076.1, + "end": 5076.84, + "probability": 0.9703 + }, + { + "start": 5077.71, + "end": 5079.14, + "probability": 0.6871 + }, + { + "start": 5079.4, + "end": 5079.94, + "probability": 0.3336 + }, + { + "start": 5079.94, + "end": 5080.22, + "probability": 0.2875 + }, + { + "start": 5080.76, + "end": 5082.34, + "probability": 0.8854 + }, + { + "start": 5083.44, + "end": 5084.04, + "probability": 0.3629 + }, + { + "start": 5084.56, + "end": 5085.38, + "probability": 0.5541 + }, + { + "start": 5085.52, + "end": 5092.36, + "probability": 0.9119 + }, + { + "start": 5092.36, + "end": 5092.68, + "probability": 0.1337 + }, + { + "start": 5093.06, + "end": 5094.52, + "probability": 0.823 + }, + { + "start": 5094.7, + "end": 5097.36, + "probability": 0.9818 + }, + { + "start": 5097.74, + "end": 5100.88, + "probability": 0.9845 + }, + { + "start": 5101.36, + "end": 5103.68, + "probability": 0.9019 + }, + { + "start": 5103.76, + "end": 5105.32, + "probability": 0.9922 + }, + { + "start": 5106.04, + "end": 5107.16, + "probability": 0.9897 + }, + { + "start": 5107.2, + "end": 5110.0, + "probability": 0.9592 + }, + { + "start": 5110.36, + "end": 5111.66, + "probability": 0.9928 + }, + { + "start": 5111.7, + "end": 5113.9, + "probability": 0.917 + }, + { + "start": 5113.98, + "end": 5117.6, + "probability": 0.7958 + }, + { + "start": 5117.94, + "end": 5118.96, + "probability": 0.9156 + }, + { + "start": 5119.7, + "end": 5125.06, + "probability": 0.9883 + }, + { + "start": 5125.14, + "end": 5125.5, + "probability": 0.7754 + }, + { + "start": 5126.56, + "end": 5128.42, + "probability": 0.8322 + }, + { + "start": 5128.46, + "end": 5134.22, + "probability": 0.9638 + }, + { + "start": 5134.3, + "end": 5137.2, + "probability": 0.9801 + }, + { + "start": 5138.12, + "end": 5144.92, + "probability": 0.9139 + }, + { + "start": 5145.22, + "end": 5147.82, + "probability": 0.8838 + }, + { + "start": 5149.64, + "end": 5154.92, + "probability": 0.8385 + }, + { + "start": 5155.18, + "end": 5157.24, + "probability": 0.7928 + }, + { + "start": 5158.76, + "end": 5159.15, + "probability": 0.6177 + }, + { + "start": 5161.32, + "end": 5163.2, + "probability": 0.5778 + }, + { + "start": 5164.52, + "end": 5165.63, + "probability": 0.7764 + }, + { + "start": 5166.86, + "end": 5169.33, + "probability": 0.9878 + }, + { + "start": 5170.28, + "end": 5171.44, + "probability": 0.9814 + }, + { + "start": 5173.12, + "end": 5173.24, + "probability": 0.6404 + }, + { + "start": 5173.96, + "end": 5175.24, + "probability": 0.6749 + }, + { + "start": 5176.6, + "end": 5177.52, + "probability": 0.6553 + }, + { + "start": 5178.28, + "end": 5181.32, + "probability": 0.8628 + }, + { + "start": 5182.2, + "end": 5184.37, + "probability": 0.811 + }, + { + "start": 5184.92, + "end": 5186.8, + "probability": 0.1139 + }, + { + "start": 5187.32, + "end": 5190.64, + "probability": 0.8953 + }, + { + "start": 5191.8, + "end": 5193.6, + "probability": 0.6917 + }, + { + "start": 5194.58, + "end": 5195.8, + "probability": 0.5928 + }, + { + "start": 5196.62, + "end": 5197.84, + "probability": 0.9923 + }, + { + "start": 5198.7, + "end": 5200.84, + "probability": 0.9619 + }, + { + "start": 5203.2, + "end": 5207.56, + "probability": 0.8994 + }, + { + "start": 5208.46, + "end": 5210.26, + "probability": 0.7371 + }, + { + "start": 5211.16, + "end": 5213.54, + "probability": 0.9358 + }, + { + "start": 5214.54, + "end": 5218.56, + "probability": 0.9954 + }, + { + "start": 5220.26, + "end": 5223.74, + "probability": 0.9988 + }, + { + "start": 5224.44, + "end": 5227.26, + "probability": 0.9614 + }, + { + "start": 5227.78, + "end": 5231.9, + "probability": 0.9863 + }, + { + "start": 5233.4, + "end": 5235.88, + "probability": 0.5172 + }, + { + "start": 5236.66, + "end": 5238.94, + "probability": 0.7986 + }, + { + "start": 5239.6, + "end": 5240.54, + "probability": 0.7516 + }, + { + "start": 5241.49, + "end": 5245.17, + "probability": 0.9121 + }, + { + "start": 5246.78, + "end": 5247.08, + "probability": 0.5913 + }, + { + "start": 5248.36, + "end": 5249.77, + "probability": 0.9094 + }, + { + "start": 5251.8, + "end": 5253.74, + "probability": 0.6721 + }, + { + "start": 5254.7, + "end": 5256.75, + "probability": 0.9565 + }, + { + "start": 5257.98, + "end": 5260.14, + "probability": 0.9832 + }, + { + "start": 5261.04, + "end": 5261.7, + "probability": 0.951 + }, + { + "start": 5262.38, + "end": 5266.88, + "probability": 0.7502 + }, + { + "start": 5268.28, + "end": 5277.14, + "probability": 0.9714 + }, + { + "start": 5277.8, + "end": 5278.82, + "probability": 0.7011 + }, + { + "start": 5279.42, + "end": 5281.02, + "probability": 0.9712 + }, + { + "start": 5282.12, + "end": 5284.58, + "probability": 0.9618 + }, + { + "start": 5285.28, + "end": 5286.24, + "probability": 0.4596 + }, + { + "start": 5286.34, + "end": 5286.76, + "probability": 0.8165 + }, + { + "start": 5286.82, + "end": 5287.86, + "probability": 0.9448 + }, + { + "start": 5287.96, + "end": 5289.84, + "probability": 0.869 + }, + { + "start": 5291.24, + "end": 5291.86, + "probability": 0.2476 + }, + { + "start": 5291.98, + "end": 5291.98, + "probability": 0.5038 + }, + { + "start": 5292.36, + "end": 5294.38, + "probability": 0.9405 + }, + { + "start": 5294.88, + "end": 5296.46, + "probability": 0.993 + }, + { + "start": 5296.52, + "end": 5297.0, + "probability": 0.5426 + }, + { + "start": 5297.88, + "end": 5299.8, + "probability": 0.7725 + }, + { + "start": 5300.12, + "end": 5300.4, + "probability": 0.4979 + }, + { + "start": 5300.44, + "end": 5302.8, + "probability": 0.7468 + }, + { + "start": 5303.52, + "end": 5306.64, + "probability": 0.8147 + }, + { + "start": 5306.9, + "end": 5308.38, + "probability": 0.6633 + }, + { + "start": 5308.52, + "end": 5311.16, + "probability": 0.5105 + }, + { + "start": 5311.7, + "end": 5313.3, + "probability": 0.2013 + }, + { + "start": 5313.74, + "end": 5314.7, + "probability": 0.9483 + }, + { + "start": 5315.58, + "end": 5317.04, + "probability": 0.9538 + }, + { + "start": 5317.18, + "end": 5320.58, + "probability": 0.7933 + }, + { + "start": 5320.74, + "end": 5322.4, + "probability": 0.9595 + }, + { + "start": 5322.92, + "end": 5324.52, + "probability": 0.2712 + }, + { + "start": 5324.86, + "end": 5327.12, + "probability": 0.6807 + }, + { + "start": 5328.08, + "end": 5330.58, + "probability": 0.9917 + }, + { + "start": 5331.74, + "end": 5334.54, + "probability": 0.7404 + }, + { + "start": 5336.26, + "end": 5337.42, + "probability": 0.9588 + }, + { + "start": 5338.56, + "end": 5342.8, + "probability": 0.8002 + }, + { + "start": 5343.88, + "end": 5348.78, + "probability": 0.7979 + }, + { + "start": 5350.32, + "end": 5350.82, + "probability": 0.8986 + }, + { + "start": 5351.54, + "end": 5352.2, + "probability": 0.6021 + }, + { + "start": 5353.62, + "end": 5354.8, + "probability": 0.9229 + }, + { + "start": 5355.6, + "end": 5359.24, + "probability": 0.9419 + }, + { + "start": 5359.68, + "end": 5360.22, + "probability": 0.3963 + }, + { + "start": 5361.34, + "end": 5363.6, + "probability": 0.8584 + }, + { + "start": 5363.86, + "end": 5364.3, + "probability": 0.209 + }, + { + "start": 5364.56, + "end": 5365.32, + "probability": 0.7451 + }, + { + "start": 5365.86, + "end": 5367.44, + "probability": 0.8848 + }, + { + "start": 5368.12, + "end": 5370.1, + "probability": 0.9607 + }, + { + "start": 5371.06, + "end": 5373.66, + "probability": 0.9291 + }, + { + "start": 5374.08, + "end": 5375.26, + "probability": 0.2682 + }, + { + "start": 5388.04, + "end": 5388.6, + "probability": 0.1611 + }, + { + "start": 5388.68, + "end": 5388.68, + "probability": 0.1672 + }, + { + "start": 5388.68, + "end": 5388.7, + "probability": 0.3454 + }, + { + "start": 5388.7, + "end": 5388.7, + "probability": 0.0571 + }, + { + "start": 5388.7, + "end": 5388.7, + "probability": 0.1537 + }, + { + "start": 5388.7, + "end": 5388.7, + "probability": 0.0806 + }, + { + "start": 5388.7, + "end": 5388.84, + "probability": 0.1725 + }, + { + "start": 5389.36, + "end": 5393.18, + "probability": 0.5372 + }, + { + "start": 5393.18, + "end": 5396.72, + "probability": 0.5461 + }, + { + "start": 5397.8, + "end": 5402.42, + "probability": 0.9922 + }, + { + "start": 5402.72, + "end": 5404.6, + "probability": 0.4762 + }, + { + "start": 5405.12, + "end": 5407.56, + "probability": 0.9712 + }, + { + "start": 5408.12, + "end": 5412.06, + "probability": 0.9703 + }, + { + "start": 5412.44, + "end": 5414.48, + "probability": 0.8429 + }, + { + "start": 5415.22, + "end": 5418.62, + "probability": 0.9669 + }, + { + "start": 5419.0, + "end": 5420.42, + "probability": 0.9957 + }, + { + "start": 5421.6, + "end": 5422.62, + "probability": 0.968 + }, + { + "start": 5423.22, + "end": 5423.9, + "probability": 0.5978 + }, + { + "start": 5424.14, + "end": 5424.84, + "probability": 0.256 + }, + { + "start": 5424.96, + "end": 5426.74, + "probability": 0.8496 + }, + { + "start": 5427.5, + "end": 5431.48, + "probability": 0.9927 + }, + { + "start": 5432.6, + "end": 5434.36, + "probability": 0.6737 + }, + { + "start": 5434.84, + "end": 5438.64, + "probability": 0.9937 + }, + { + "start": 5438.64, + "end": 5443.44, + "probability": 0.9384 + }, + { + "start": 5444.36, + "end": 5446.4, + "probability": 0.8772 + }, + { + "start": 5447.08, + "end": 5448.0, + "probability": 0.8472 + }, + { + "start": 5448.38, + "end": 5449.12, + "probability": 0.9424 + }, + { + "start": 5449.6, + "end": 5449.96, + "probability": 0.4543 + }, + { + "start": 5450.08, + "end": 5451.46, + "probability": 0.9871 + }, + { + "start": 5452.02, + "end": 5455.4, + "probability": 0.768 + }, + { + "start": 5455.5, + "end": 5458.2, + "probability": 0.7405 + }, + { + "start": 5458.68, + "end": 5459.82, + "probability": 0.7679 + }, + { + "start": 5460.08, + "end": 5462.5, + "probability": 0.824 + }, + { + "start": 5463.44, + "end": 5466.92, + "probability": 0.7296 + }, + { + "start": 5468.08, + "end": 5470.62, + "probability": 0.9946 + }, + { + "start": 5472.14, + "end": 5473.46, + "probability": 0.5597 + }, + { + "start": 5473.96, + "end": 5476.48, + "probability": 0.9899 + }, + { + "start": 5476.62, + "end": 5477.39, + "probability": 0.8462 + }, + { + "start": 5478.18, + "end": 5479.42, + "probability": 0.7838 + }, + { + "start": 5479.76, + "end": 5481.77, + "probability": 0.8989 + }, + { + "start": 5483.42, + "end": 5486.38, + "probability": 0.9888 + }, + { + "start": 5486.86, + "end": 5487.14, + "probability": 0.7393 + }, + { + "start": 5488.08, + "end": 5490.14, + "probability": 0.8248 + }, + { + "start": 5490.62, + "end": 5491.4, + "probability": 0.91 + }, + { + "start": 5491.92, + "end": 5495.26, + "probability": 0.9705 + }, + { + "start": 5496.54, + "end": 5498.82, + "probability": 0.9124 + }, + { + "start": 5499.44, + "end": 5501.46, + "probability": 0.9811 + }, + { + "start": 5503.04, + "end": 5503.64, + "probability": 0.7103 + }, + { + "start": 5504.72, + "end": 5508.8, + "probability": 0.9299 + }, + { + "start": 5510.18, + "end": 5512.5, + "probability": 0.9109 + }, + { + "start": 5512.66, + "end": 5513.94, + "probability": 0.9946 + }, + { + "start": 5514.88, + "end": 5518.7, + "probability": 0.9897 + }, + { + "start": 5519.78, + "end": 5520.96, + "probability": 0.9025 + }, + { + "start": 5522.78, + "end": 5525.0, + "probability": 0.8386 + }, + { + "start": 5526.28, + "end": 5532.06, + "probability": 0.9764 + }, + { + "start": 5533.64, + "end": 5536.59, + "probability": 0.8322 + }, + { + "start": 5537.44, + "end": 5540.76, + "probability": 0.8145 + }, + { + "start": 5543.1, + "end": 5547.06, + "probability": 0.9631 + }, + { + "start": 5547.58, + "end": 5551.42, + "probability": 0.9587 + }, + { + "start": 5552.4, + "end": 5557.04, + "probability": 0.9864 + }, + { + "start": 5557.16, + "end": 5557.61, + "probability": 0.9943 + }, + { + "start": 5559.02, + "end": 5560.03, + "probability": 0.9453 + }, + { + "start": 5561.28, + "end": 5563.38, + "probability": 0.981 + }, + { + "start": 5564.08, + "end": 5567.32, + "probability": 0.9191 + }, + { + "start": 5568.58, + "end": 5571.36, + "probability": 0.8918 + }, + { + "start": 5572.28, + "end": 5574.22, + "probability": 0.8555 + }, + { + "start": 5574.46, + "end": 5575.48, + "probability": 0.6374 + }, + { + "start": 5575.98, + "end": 5577.9, + "probability": 0.9321 + }, + { + "start": 5578.0, + "end": 5584.18, + "probability": 0.9953 + }, + { + "start": 5585.74, + "end": 5593.14, + "probability": 0.9937 + }, + { + "start": 5593.3, + "end": 5594.02, + "probability": 0.9216 + }, + { + "start": 5594.2, + "end": 5595.14, + "probability": 0.67 + }, + { + "start": 5596.94, + "end": 5599.38, + "probability": 0.9949 + }, + { + "start": 5599.96, + "end": 5603.98, + "probability": 0.9971 + }, + { + "start": 5605.58, + "end": 5607.94, + "probability": 0.9888 + }, + { + "start": 5608.56, + "end": 5610.58, + "probability": 0.9607 + }, + { + "start": 5611.8, + "end": 5613.38, + "probability": 0.9679 + }, + { + "start": 5614.2, + "end": 5620.44, + "probability": 0.9875 + }, + { + "start": 5620.78, + "end": 5622.32, + "probability": 0.9294 + }, + { + "start": 5623.16, + "end": 5625.58, + "probability": 0.9957 + }, + { + "start": 5625.72, + "end": 5626.66, + "probability": 0.7238 + }, + { + "start": 5627.12, + "end": 5629.34, + "probability": 0.969 + }, + { + "start": 5629.9, + "end": 5631.96, + "probability": 0.9755 + }, + { + "start": 5632.72, + "end": 5635.78, + "probability": 0.8885 + }, + { + "start": 5636.36, + "end": 5637.12, + "probability": 0.9372 + }, + { + "start": 5637.14, + "end": 5637.72, + "probability": 0.8479 + }, + { + "start": 5637.76, + "end": 5639.42, + "probability": 0.8323 + }, + { + "start": 5639.88, + "end": 5641.92, + "probability": 0.9963 + }, + { + "start": 5642.56, + "end": 5643.78, + "probability": 0.8066 + }, + { + "start": 5644.5, + "end": 5647.08, + "probability": 0.9476 + }, + { + "start": 5647.18, + "end": 5649.2, + "probability": 0.8949 + }, + { + "start": 5649.36, + "end": 5651.8, + "probability": 0.976 + }, + { + "start": 5652.24, + "end": 5653.02, + "probability": 0.9867 + }, + { + "start": 5653.12, + "end": 5653.86, + "probability": 0.7969 + }, + { + "start": 5654.76, + "end": 5655.98, + "probability": 0.9775 + }, + { + "start": 5657.28, + "end": 5662.04, + "probability": 0.7167 + }, + { + "start": 5663.36, + "end": 5664.86, + "probability": 0.948 + }, + { + "start": 5665.6, + "end": 5667.56, + "probability": 0.9686 + }, + { + "start": 5667.76, + "end": 5669.66, + "probability": 0.8753 + }, + { + "start": 5670.3, + "end": 5672.62, + "probability": 0.7748 + }, + { + "start": 5673.58, + "end": 5676.36, + "probability": 0.92 + }, + { + "start": 5677.24, + "end": 5679.28, + "probability": 0.5365 + }, + { + "start": 5679.94, + "end": 5683.22, + "probability": 0.9671 + }, + { + "start": 5683.76, + "end": 5685.2, + "probability": 0.9918 + }, + { + "start": 5685.72, + "end": 5690.3, + "probability": 0.9356 + }, + { + "start": 5691.4, + "end": 5691.66, + "probability": 0.1246 + }, + { + "start": 5691.66, + "end": 5694.56, + "probability": 0.6001 + }, + { + "start": 5694.9, + "end": 5697.32, + "probability": 0.8477 + }, + { + "start": 5698.06, + "end": 5699.42, + "probability": 0.9394 + }, + { + "start": 5699.5, + "end": 5702.02, + "probability": 0.937 + }, + { + "start": 5702.62, + "end": 5703.52, + "probability": 0.6285 + }, + { + "start": 5704.12, + "end": 5705.52, + "probability": 0.8931 + }, + { + "start": 5706.04, + "end": 5708.36, + "probability": 0.9701 + }, + { + "start": 5709.16, + "end": 5710.56, + "probability": 0.8994 + }, + { + "start": 5711.18, + "end": 5713.18, + "probability": 0.9477 + }, + { + "start": 5713.82, + "end": 5716.5, + "probability": 0.9889 + }, + { + "start": 5717.16, + "end": 5720.04, + "probability": 0.994 + }, + { + "start": 5720.04, + "end": 5723.5, + "probability": 0.973 + }, + { + "start": 5723.62, + "end": 5724.78, + "probability": 0.6149 + }, + { + "start": 5725.88, + "end": 5727.22, + "probability": 0.9115 + }, + { + "start": 5727.34, + "end": 5731.98, + "probability": 0.9349 + }, + { + "start": 5732.82, + "end": 5733.92, + "probability": 0.7534 + }, + { + "start": 5733.98, + "end": 5739.4, + "probability": 0.9641 + }, + { + "start": 5739.4, + "end": 5743.18, + "probability": 0.9243 + }, + { + "start": 5743.62, + "end": 5747.54, + "probability": 0.9852 + }, + { + "start": 5748.3, + "end": 5750.64, + "probability": 0.7918 + }, + { + "start": 5751.02, + "end": 5752.8, + "probability": 0.9624 + }, + { + "start": 5752.8, + "end": 5754.28, + "probability": 0.7362 + }, + { + "start": 5755.14, + "end": 5759.02, + "probability": 0.7655 + }, + { + "start": 5760.36, + "end": 5762.88, + "probability": 0.9672 + }, + { + "start": 5764.5, + "end": 5765.18, + "probability": 0.8658 + }, + { + "start": 5766.52, + "end": 5769.74, + "probability": 0.7189 + }, + { + "start": 5771.62, + "end": 5776.5, + "probability": 0.5668 + }, + { + "start": 5777.04, + "end": 5778.02, + "probability": 0.4521 + }, + { + "start": 5778.4, + "end": 5782.52, + "probability": 0.8207 + }, + { + "start": 5783.52, + "end": 5785.72, + "probability": 0.5944 + }, + { + "start": 5787.64, + "end": 5789.48, + "probability": 0.9115 + }, + { + "start": 5791.8, + "end": 5794.96, + "probability": 0.937 + }, + { + "start": 5795.24, + "end": 5796.62, + "probability": 0.9263 + }, + { + "start": 5798.94, + "end": 5799.5, + "probability": 0.8135 + }, + { + "start": 5800.44, + "end": 5802.38, + "probability": 0.616 + }, + { + "start": 5803.08, + "end": 5804.8, + "probability": 0.9961 + }, + { + "start": 5806.6, + "end": 5808.22, + "probability": 0.982 + }, + { + "start": 5809.92, + "end": 5811.43, + "probability": 0.9846 + }, + { + "start": 5812.18, + "end": 5812.88, + "probability": 0.5499 + }, + { + "start": 5813.02, + "end": 5815.96, + "probability": 0.467 + }, + { + "start": 5817.02, + "end": 5817.92, + "probability": 0.4249 + }, + { + "start": 5818.04, + "end": 5819.64, + "probability": 0.8359 + }, + { + "start": 5819.74, + "end": 5821.9, + "probability": 0.7622 + }, + { + "start": 5822.6, + "end": 5823.64, + "probability": 0.6407 + }, + { + "start": 5824.78, + "end": 5825.88, + "probability": 0.9704 + }, + { + "start": 5827.54, + "end": 5832.02, + "probability": 0.9612 + }, + { + "start": 5832.44, + "end": 5832.96, + "probability": 0.5887 + }, + { + "start": 5833.0, + "end": 5836.12, + "probability": 0.9814 + }, + { + "start": 5836.6, + "end": 5838.24, + "probability": 0.5045 + }, + { + "start": 5838.32, + "end": 5838.72, + "probability": 0.4133 + }, + { + "start": 5839.22, + "end": 5841.9, + "probability": 0.985 + }, + { + "start": 5842.2, + "end": 5843.54, + "probability": 0.7135 + }, + { + "start": 5844.24, + "end": 5845.5, + "probability": 0.8795 + }, + { + "start": 5847.68, + "end": 5850.89, + "probability": 0.9697 + }, + { + "start": 5852.12, + "end": 5853.66, + "probability": 0.5288 + }, + { + "start": 5856.48, + "end": 5857.06, + "probability": 0.6859 + }, + { + "start": 5857.86, + "end": 5860.9, + "probability": 0.9886 + }, + { + "start": 5862.58, + "end": 5867.42, + "probability": 0.8795 + }, + { + "start": 5868.16, + "end": 5872.26, + "probability": 0.9502 + }, + { + "start": 5872.78, + "end": 5873.46, + "probability": 0.9598 + }, + { + "start": 5874.08, + "end": 5876.06, + "probability": 0.7523 + }, + { + "start": 5876.26, + "end": 5877.52, + "probability": 0.5681 + }, + { + "start": 5877.66, + "end": 5879.04, + "probability": 0.614 + }, + { + "start": 5879.8, + "end": 5880.38, + "probability": 0.6646 + }, + { + "start": 5880.54, + "end": 5881.24, + "probability": 0.6893 + }, + { + "start": 5881.32, + "end": 5885.58, + "probability": 0.7495 + }, + { + "start": 5885.64, + "end": 5886.3, + "probability": 0.8748 + }, + { + "start": 5886.42, + "end": 5887.72, + "probability": 0.9259 + }, + { + "start": 5889.0, + "end": 5889.84, + "probability": 0.7773 + }, + { + "start": 5890.78, + "end": 5894.64, + "probability": 0.9822 + }, + { + "start": 5895.86, + "end": 5899.04, + "probability": 0.9873 + }, + { + "start": 5899.04, + "end": 5903.32, + "probability": 0.8314 + }, + { + "start": 5904.26, + "end": 5908.34, + "probability": 0.9712 + }, + { + "start": 5908.58, + "end": 5911.94, + "probability": 0.9771 + }, + { + "start": 5912.28, + "end": 5913.84, + "probability": 0.3086 + }, + { + "start": 5914.74, + "end": 5917.02, + "probability": 0.5204 + }, + { + "start": 5917.16, + "end": 5918.88, + "probability": 0.8801 + }, + { + "start": 5919.6, + "end": 5921.08, + "probability": 0.8096 + }, + { + "start": 5921.62, + "end": 5924.8, + "probability": 0.6007 + }, + { + "start": 5924.98, + "end": 5927.02, + "probability": 0.8447 + }, + { + "start": 5927.96, + "end": 5930.02, + "probability": 0.6563 + }, + { + "start": 5930.72, + "end": 5931.84, + "probability": 0.9143 + }, + { + "start": 5932.1, + "end": 5935.8, + "probability": 0.9835 + }, + { + "start": 5936.76, + "end": 5937.93, + "probability": 0.6445 + }, + { + "start": 5938.88, + "end": 5939.43, + "probability": 0.8418 + }, + { + "start": 5939.98, + "end": 5940.8, + "probability": 0.9722 + }, + { + "start": 5941.0, + "end": 5944.58, + "probability": 0.7737 + }, + { + "start": 5945.96, + "end": 5945.96, + "probability": 0.0154 + }, + { + "start": 5945.96, + "end": 5949.66, + "probability": 0.8798 + }, + { + "start": 5949.92, + "end": 5950.7, + "probability": 0.664 + }, + { + "start": 5951.6, + "end": 5952.36, + "probability": 0.542 + }, + { + "start": 5953.34, + "end": 5953.86, + "probability": 0.5901 + }, + { + "start": 5954.12, + "end": 5955.08, + "probability": 0.8971 + }, + { + "start": 5955.08, + "end": 5957.48, + "probability": 0.9905 + }, + { + "start": 5957.56, + "end": 5957.92, + "probability": 0.3892 + }, + { + "start": 5958.04, + "end": 5960.06, + "probability": 0.9772 + }, + { + "start": 5960.22, + "end": 5967.04, + "probability": 0.9916 + }, + { + "start": 5967.16, + "end": 5971.42, + "probability": 0.9084 + }, + { + "start": 5971.44, + "end": 5976.36, + "probability": 0.6534 + }, + { + "start": 5976.66, + "end": 5977.6, + "probability": 0.2458 + }, + { + "start": 5978.78, + "end": 5982.28, + "probability": 0.6798 + }, + { + "start": 5982.34, + "end": 5983.64, + "probability": 0.949 + }, + { + "start": 5984.22, + "end": 5984.58, + "probability": 0.5159 + }, + { + "start": 5985.74, + "end": 5986.94, + "probability": 0.8145 + }, + { + "start": 5987.2, + "end": 5987.2, + "probability": 0.3511 + }, + { + "start": 5987.2, + "end": 5988.56, + "probability": 0.603 + }, + { + "start": 5988.74, + "end": 5989.52, + "probability": 0.5352 + }, + { + "start": 5989.6, + "end": 5989.76, + "probability": 0.6603 + }, + { + "start": 5990.12, + "end": 5990.98, + "probability": 0.9276 + }, + { + "start": 5991.12, + "end": 5992.96, + "probability": 0.9562 + }, + { + "start": 5993.1, + "end": 5993.88, + "probability": 0.8456 + }, + { + "start": 5994.76, + "end": 5995.84, + "probability": 0.9106 + }, + { + "start": 5995.98, + "end": 5996.81, + "probability": 0.6876 + }, + { + "start": 5996.94, + "end": 5997.9, + "probability": 0.7265 + }, + { + "start": 5998.02, + "end": 5998.24, + "probability": 0.9809 + }, + { + "start": 5999.4, + "end": 6001.6, + "probability": 0.9666 + }, + { + "start": 6001.68, + "end": 6003.08, + "probability": 0.6545 + }, + { + "start": 6003.72, + "end": 6004.68, + "probability": 0.8915 + }, + { + "start": 6004.98, + "end": 6008.1, + "probability": 0.8955 + }, + { + "start": 6008.48, + "end": 6008.92, + "probability": 0.9313 + }, + { + "start": 6009.56, + "end": 6011.68, + "probability": 0.1321 + }, + { + "start": 6011.68, + "end": 6014.9, + "probability": 0.7844 + }, + { + "start": 6014.98, + "end": 6017.8, + "probability": 0.9969 + }, + { + "start": 6018.18, + "end": 6021.54, + "probability": 0.9098 + }, + { + "start": 6021.62, + "end": 6022.42, + "probability": 0.7397 + }, + { + "start": 6022.54, + "end": 6023.06, + "probability": 0.8965 + }, + { + "start": 6025.18, + "end": 6028.84, + "probability": 0.8883 + }, + { + "start": 6029.8, + "end": 6030.92, + "probability": 0.8488 + }, + { + "start": 6030.98, + "end": 6034.28, + "probability": 0.9924 + }, + { + "start": 6034.98, + "end": 6036.1, + "probability": 0.9658 + }, + { + "start": 6036.22, + "end": 6037.64, + "probability": 0.9938 + }, + { + "start": 6037.76, + "end": 6041.14, + "probability": 0.3279 + }, + { + "start": 6041.34, + "end": 6042.42, + "probability": 0.8501 + }, + { + "start": 6043.4, + "end": 6045.02, + "probability": 0.8965 + }, + { + "start": 6045.14, + "end": 6047.58, + "probability": 0.9165 + }, + { + "start": 6047.6, + "end": 6049.5, + "probability": 0.7451 + }, + { + "start": 6050.0, + "end": 6053.1, + "probability": 0.9259 + }, + { + "start": 6053.54, + "end": 6055.02, + "probability": 0.9457 + }, + { + "start": 6063.5, + "end": 6065.72, + "probability": 0.7055 + }, + { + "start": 6066.2, + "end": 6067.46, + "probability": 0.9529 + }, + { + "start": 6068.24, + "end": 6068.86, + "probability": 0.6345 + }, + { + "start": 6069.04, + "end": 6070.28, + "probability": 0.7223 + }, + { + "start": 6071.22, + "end": 6073.98, + "probability": 0.9966 + }, + { + "start": 6075.24, + "end": 6076.76, + "probability": 0.8074 + }, + { + "start": 6078.82, + "end": 6081.52, + "probability": 0.8183 + }, + { + "start": 6083.62, + "end": 6084.02, + "probability": 0.7206 + }, + { + "start": 6085.42, + "end": 6087.86, + "probability": 0.964 + }, + { + "start": 6089.78, + "end": 6090.7, + "probability": 0.9239 + }, + { + "start": 6091.92, + "end": 6097.02, + "probability": 0.9875 + }, + { + "start": 6097.02, + "end": 6100.88, + "probability": 0.9934 + }, + { + "start": 6101.88, + "end": 6108.92, + "probability": 0.9352 + }, + { + "start": 6110.0, + "end": 6111.57, + "probability": 0.9971 + }, + { + "start": 6112.42, + "end": 6113.74, + "probability": 0.9307 + }, + { + "start": 6113.84, + "end": 6115.6, + "probability": 0.9618 + }, + { + "start": 6116.04, + "end": 6116.96, + "probability": 0.8191 + }, + { + "start": 6118.08, + "end": 6118.86, + "probability": 0.8436 + }, + { + "start": 6118.86, + "end": 6121.62, + "probability": 0.8251 + }, + { + "start": 6122.74, + "end": 6124.36, + "probability": 0.9583 + }, + { + "start": 6125.5, + "end": 6127.36, + "probability": 0.9697 + }, + { + "start": 6131.64, + "end": 6137.66, + "probability": 0.676 + }, + { + "start": 6139.46, + "end": 6141.05, + "probability": 0.764 + }, + { + "start": 6143.54, + "end": 6146.12, + "probability": 0.978 + }, + { + "start": 6146.74, + "end": 6147.58, + "probability": 0.8308 + }, + { + "start": 6148.46, + "end": 6150.1, + "probability": 0.9902 + }, + { + "start": 6152.24, + "end": 6155.94, + "probability": 0.9818 + }, + { + "start": 6156.02, + "end": 6158.74, + "probability": 0.9617 + }, + { + "start": 6159.58, + "end": 6161.5, + "probability": 0.9789 + }, + { + "start": 6162.72, + "end": 6165.34, + "probability": 0.9849 + }, + { + "start": 6167.08, + "end": 6167.9, + "probability": 0.9177 + }, + { + "start": 6168.96, + "end": 6171.47, + "probability": 0.9935 + }, + { + "start": 6172.72, + "end": 6175.62, + "probability": 0.8832 + }, + { + "start": 6176.54, + "end": 6177.94, + "probability": 0.9829 + }, + { + "start": 6178.64, + "end": 6183.22, + "probability": 0.9548 + }, + { + "start": 6184.66, + "end": 6186.56, + "probability": 0.9231 + }, + { + "start": 6187.32, + "end": 6188.3, + "probability": 0.8758 + }, + { + "start": 6188.9, + "end": 6193.16, + "probability": 0.9859 + }, + { + "start": 6194.64, + "end": 6198.3, + "probability": 0.9158 + }, + { + "start": 6199.46, + "end": 6202.68, + "probability": 0.9862 + }, + { + "start": 6203.96, + "end": 6206.36, + "probability": 0.8137 + }, + { + "start": 6208.18, + "end": 6210.3, + "probability": 0.9849 + }, + { + "start": 6211.58, + "end": 6215.84, + "probability": 0.9905 + }, + { + "start": 6217.12, + "end": 6217.96, + "probability": 0.9728 + }, + { + "start": 6220.08, + "end": 6222.74, + "probability": 0.9924 + }, + { + "start": 6224.4, + "end": 6225.34, + "probability": 0.7702 + }, + { + "start": 6226.54, + "end": 6228.2, + "probability": 0.9572 + }, + { + "start": 6228.56, + "end": 6229.34, + "probability": 0.5659 + }, + { + "start": 6230.22, + "end": 6232.12, + "probability": 0.9862 + }, + { + "start": 6233.18, + "end": 6238.4, + "probability": 0.9252 + }, + { + "start": 6238.5, + "end": 6239.68, + "probability": 0.994 + }, + { + "start": 6242.28, + "end": 6244.32, + "probability": 0.9333 + }, + { + "start": 6245.76, + "end": 6246.78, + "probability": 0.8052 + }, + { + "start": 6247.58, + "end": 6250.84, + "probability": 0.9448 + }, + { + "start": 6252.0, + "end": 6253.56, + "probability": 0.9468 + }, + { + "start": 6254.4, + "end": 6256.92, + "probability": 0.9956 + }, + { + "start": 6259.44, + "end": 6261.78, + "probability": 0.983 + }, + { + "start": 6262.54, + "end": 6265.4, + "probability": 0.9787 + }, + { + "start": 6265.52, + "end": 6266.94, + "probability": 0.9726 + }, + { + "start": 6267.16, + "end": 6268.46, + "probability": 0.8725 + }, + { + "start": 6269.72, + "end": 6270.35, + "probability": 0.9697 + }, + { + "start": 6271.4, + "end": 6272.6, + "probability": 0.9151 + }, + { + "start": 6275.46, + "end": 6278.08, + "probability": 0.9929 + }, + { + "start": 6279.2, + "end": 6282.35, + "probability": 0.999 + }, + { + "start": 6284.8, + "end": 6287.18, + "probability": 0.5822 + }, + { + "start": 6287.3, + "end": 6290.46, + "probability": 0.2346 + }, + { + "start": 6291.16, + "end": 6291.6, + "probability": 0.5218 + }, + { + "start": 6291.7, + "end": 6295.0, + "probability": 0.8453 + }, + { + "start": 6295.28, + "end": 6296.68, + "probability": 0.9443 + }, + { + "start": 6296.8, + "end": 6298.01, + "probability": 0.9785 + }, + { + "start": 6298.6, + "end": 6299.88, + "probability": 0.8961 + }, + { + "start": 6299.98, + "end": 6300.5, + "probability": 0.8028 + }, + { + "start": 6301.12, + "end": 6302.44, + "probability": 0.9731 + }, + { + "start": 6302.96, + "end": 6309.18, + "probability": 0.9777 + }, + { + "start": 6309.58, + "end": 6313.0, + "probability": 0.9576 + }, + { + "start": 6313.14, + "end": 6313.58, + "probability": 0.9133 + }, + { + "start": 6313.7, + "end": 6315.96, + "probability": 0.998 + }, + { + "start": 6316.32, + "end": 6317.56, + "probability": 0.9974 + }, + { + "start": 6317.9, + "end": 6318.9, + "probability": 0.7846 + }, + { + "start": 6319.0, + "end": 6321.0, + "probability": 0.8911 + }, + { + "start": 6321.18, + "end": 6323.8, + "probability": 0.986 + }, + { + "start": 6323.9, + "end": 6325.42, + "probability": 0.8751 + }, + { + "start": 6326.16, + "end": 6327.14, + "probability": 0.7867 + }, + { + "start": 6327.24, + "end": 6330.72, + "probability": 0.9839 + }, + { + "start": 6330.72, + "end": 6335.08, + "probability": 0.842 + }, + { + "start": 6335.64, + "end": 6336.46, + "probability": 0.9893 + }, + { + "start": 6337.0, + "end": 6339.7, + "probability": 0.7051 + }, + { + "start": 6340.32, + "end": 6340.32, + "probability": 0.2954 + }, + { + "start": 6340.32, + "end": 6340.32, + "probability": 0.3391 + }, + { + "start": 6340.32, + "end": 6341.32, + "probability": 0.7709 + }, + { + "start": 6341.48, + "end": 6342.97, + "probability": 0.8296 + }, + { + "start": 6343.38, + "end": 6344.29, + "probability": 0.7805 + }, + { + "start": 6348.88, + "end": 6353.0, + "probability": 0.7127 + }, + { + "start": 6353.82, + "end": 6362.14, + "probability": 0.9162 + }, + { + "start": 6362.28, + "end": 6362.7, + "probability": 0.4026 + }, + { + "start": 6362.85, + "end": 6365.04, + "probability": 0.4348 + }, + { + "start": 6365.14, + "end": 6369.24, + "probability": 0.9172 + }, + { + "start": 6369.58, + "end": 6372.16, + "probability": 0.8057 + }, + { + "start": 6372.18, + "end": 6373.2, + "probability": 0.9117 + }, + { + "start": 6373.58, + "end": 6374.02, + "probability": 0.7349 + }, + { + "start": 6374.06, + "end": 6378.74, + "probability": 0.8887 + }, + { + "start": 6379.1, + "end": 6380.54, + "probability": 0.9751 + }, + { + "start": 6380.9, + "end": 6380.96, + "probability": 0.1918 + }, + { + "start": 6381.02, + "end": 6381.5, + "probability": 0.8576 + }, + { + "start": 6381.6, + "end": 6383.28, + "probability": 0.928 + }, + { + "start": 6383.32, + "end": 6383.68, + "probability": 0.8206 + }, + { + "start": 6384.28, + "end": 6386.2, + "probability": 0.7495 + }, + { + "start": 6386.28, + "end": 6388.12, + "probability": 0.9585 + }, + { + "start": 6401.77, + "end": 6405.98, + "probability": 0.7797 + }, + { + "start": 6407.1, + "end": 6410.82, + "probability": 0.946 + }, + { + "start": 6412.2, + "end": 6415.43, + "probability": 0.957 + }, + { + "start": 6416.52, + "end": 6417.84, + "probability": 0.936 + }, + { + "start": 6418.86, + "end": 6422.14, + "probability": 0.9674 + }, + { + "start": 6423.46, + "end": 6429.89, + "probability": 0.9951 + }, + { + "start": 6430.78, + "end": 6433.46, + "probability": 0.9661 + }, + { + "start": 6434.18, + "end": 6438.46, + "probability": 0.9841 + }, + { + "start": 6439.12, + "end": 6439.7, + "probability": 0.9968 + }, + { + "start": 6440.38, + "end": 6444.18, + "probability": 0.9728 + }, + { + "start": 6444.88, + "end": 6448.1, + "probability": 0.9882 + }, + { + "start": 6449.64, + "end": 6452.48, + "probability": 0.9805 + }, + { + "start": 6453.5, + "end": 6458.52, + "probability": 0.9255 + }, + { + "start": 6459.4, + "end": 6459.96, + "probability": 0.5895 + }, + { + "start": 6460.1, + "end": 6460.78, + "probability": 0.8091 + }, + { + "start": 6461.02, + "end": 6463.26, + "probability": 0.8941 + }, + { + "start": 6463.46, + "end": 6467.54, + "probability": 0.6991 + }, + { + "start": 6467.66, + "end": 6468.68, + "probability": 0.6509 + }, + { + "start": 6469.34, + "end": 6470.48, + "probability": 0.8533 + }, + { + "start": 6471.06, + "end": 6472.0, + "probability": 0.9575 + }, + { + "start": 6472.42, + "end": 6477.98, + "probability": 0.97 + }, + { + "start": 6477.98, + "end": 6482.46, + "probability": 0.9868 + }, + { + "start": 6483.0, + "end": 6485.26, + "probability": 0.827 + }, + { + "start": 6486.08, + "end": 6490.66, + "probability": 0.9801 + }, + { + "start": 6491.48, + "end": 6495.96, + "probability": 0.9704 + }, + { + "start": 6496.38, + "end": 6497.12, + "probability": 0.974 + }, + { + "start": 6497.22, + "end": 6498.3, + "probability": 0.891 + }, + { + "start": 6498.76, + "end": 6504.68, + "probability": 0.986 + }, + { + "start": 6505.82, + "end": 6506.34, + "probability": 0.739 + }, + { + "start": 6506.52, + "end": 6507.78, + "probability": 0.7004 + }, + { + "start": 6507.92, + "end": 6512.8, + "probability": 0.7837 + }, + { + "start": 6513.2, + "end": 6516.58, + "probability": 0.9906 + }, + { + "start": 6516.62, + "end": 6519.02, + "probability": 0.9926 + }, + { + "start": 6519.52, + "end": 6520.6, + "probability": 0.6743 + }, + { + "start": 6520.66, + "end": 6521.4, + "probability": 0.4474 + }, + { + "start": 6521.74, + "end": 6525.02, + "probability": 0.9761 + }, + { + "start": 6525.02, + "end": 6528.6, + "probability": 0.9544 + }, + { + "start": 6528.76, + "end": 6530.3, + "probability": 0.9886 + }, + { + "start": 6530.8, + "end": 6532.78, + "probability": 0.3964 + }, + { + "start": 6533.4, + "end": 6536.5, + "probability": 0.6174 + }, + { + "start": 6536.62, + "end": 6536.62, + "probability": 0.2788 + }, + { + "start": 6536.62, + "end": 6540.76, + "probability": 0.6836 + }, + { + "start": 6540.8, + "end": 6544.56, + "probability": 0.933 + }, + { + "start": 6544.78, + "end": 6547.92, + "probability": 0.4099 + }, + { + "start": 6548.08, + "end": 6549.94, + "probability": 0.8544 + }, + { + "start": 6550.48, + "end": 6552.22, + "probability": 0.8583 + }, + { + "start": 6552.8, + "end": 6558.4, + "probability": 0.9907 + }, + { + "start": 6559.4, + "end": 6563.08, + "probability": 0.9894 + }, + { + "start": 6564.0, + "end": 6567.32, + "probability": 0.9272 + }, + { + "start": 6567.96, + "end": 6570.78, + "probability": 0.9487 + }, + { + "start": 6571.44, + "end": 6573.34, + "probability": 0.8789 + }, + { + "start": 6573.52, + "end": 6579.64, + "probability": 0.928 + }, + { + "start": 6580.42, + "end": 6582.19, + "probability": 0.5016 + }, + { + "start": 6582.74, + "end": 6583.54, + "probability": 0.7871 + }, + { + "start": 6584.02, + "end": 6585.09, + "probability": 0.9644 + }, + { + "start": 6585.92, + "end": 6588.5, + "probability": 0.9775 + }, + { + "start": 6589.64, + "end": 6592.32, + "probability": 0.9758 + }, + { + "start": 6592.94, + "end": 6596.12, + "probability": 0.9633 + }, + { + "start": 6596.76, + "end": 6605.76, + "probability": 0.5635 + }, + { + "start": 6605.92, + "end": 6606.76, + "probability": 0.8797 + }, + { + "start": 6607.76, + "end": 6611.64, + "probability": 0.9712 + }, + { + "start": 6612.58, + "end": 6616.02, + "probability": 0.9454 + }, + { + "start": 6616.1, + "end": 6617.06, + "probability": 0.9001 + }, + { + "start": 6617.46, + "end": 6620.02, + "probability": 0.9767 + }, + { + "start": 6620.16, + "end": 6622.31, + "probability": 0.9976 + }, + { + "start": 6623.26, + "end": 6623.94, + "probability": 0.4648 + }, + { + "start": 6624.32, + "end": 6626.08, + "probability": 0.947 + }, + { + "start": 6626.5, + "end": 6628.56, + "probability": 0.9649 + }, + { + "start": 6629.58, + "end": 6631.9, + "probability": 0.809 + }, + { + "start": 6632.72, + "end": 6632.88, + "probability": 0.6528 + }, + { + "start": 6633.06, + "end": 6634.84, + "probability": 0.6525 + }, + { + "start": 6635.24, + "end": 6637.08, + "probability": 0.893 + }, + { + "start": 6637.5, + "end": 6637.88, + "probability": 0.9318 + }, + { + "start": 6638.64, + "end": 6645.58, + "probability": 0.7343 + }, + { + "start": 6646.28, + "end": 6648.1, + "probability": 0.9706 + }, + { + "start": 6649.04, + "end": 6652.02, + "probability": 0.8821 + }, + { + "start": 6652.1, + "end": 6653.94, + "probability": 0.9904 + }, + { + "start": 6654.48, + "end": 6657.66, + "probability": 0.8463 + }, + { + "start": 6658.36, + "end": 6659.47, + "probability": 0.0716 + }, + { + "start": 6659.9, + "end": 6661.06, + "probability": 0.4082 + }, + { + "start": 6661.2, + "end": 6662.28, + "probability": 0.0381 + }, + { + "start": 6662.76, + "end": 6664.96, + "probability": 0.6867 + }, + { + "start": 6665.06, + "end": 6665.8, + "probability": 0.2416 + }, + { + "start": 6666.2, + "end": 6668.84, + "probability": 0.9846 + }, + { + "start": 6670.48, + "end": 6671.08, + "probability": 0.3742 + }, + { + "start": 6674.14, + "end": 6674.14, + "probability": 0.5035 + }, + { + "start": 6679.06, + "end": 6679.06, + "probability": 0.2227 + }, + { + "start": 6679.06, + "end": 6679.3, + "probability": 0.2632 + }, + { + "start": 6679.4, + "end": 6683.36, + "probability": 0.6798 + }, + { + "start": 6684.46, + "end": 6687.16, + "probability": 0.8841 + }, + { + "start": 6689.12, + "end": 6695.46, + "probability": 0.9199 + }, + { + "start": 6696.8, + "end": 6697.98, + "probability": 0.7901 + }, + { + "start": 6699.06, + "end": 6701.0, + "probability": 0.7372 + }, + { + "start": 6702.84, + "end": 6705.74, + "probability": 0.978 + }, + { + "start": 6706.94, + "end": 6709.58, + "probability": 0.9932 + }, + { + "start": 6710.26, + "end": 6711.84, + "probability": 0.5503 + }, + { + "start": 6712.5, + "end": 6720.81, + "probability": 0.9764 + }, + { + "start": 6722.96, + "end": 6723.86, + "probability": 0.6494 + }, + { + "start": 6724.82, + "end": 6726.66, + "probability": 0.5649 + }, + { + "start": 6727.38, + "end": 6729.12, + "probability": 0.7471 + }, + { + "start": 6730.92, + "end": 6735.66, + "probability": 0.3904 + }, + { + "start": 6736.54, + "end": 6737.34, + "probability": 0.7409 + }, + { + "start": 6737.86, + "end": 6739.36, + "probability": 0.8501 + }, + { + "start": 6740.1, + "end": 6741.82, + "probability": 0.957 + }, + { + "start": 6743.3, + "end": 6745.36, + "probability": 0.9979 + }, + { + "start": 6747.33, + "end": 6749.02, + "probability": 0.9478 + }, + { + "start": 6749.02, + "end": 6754.82, + "probability": 0.8839 + }, + { + "start": 6755.5, + "end": 6757.96, + "probability": 0.8261 + }, + { + "start": 6758.86, + "end": 6759.56, + "probability": 0.9148 + }, + { + "start": 6760.44, + "end": 6763.4, + "probability": 0.9675 + }, + { + "start": 6764.5, + "end": 6768.14, + "probability": 0.9619 + }, + { + "start": 6769.14, + "end": 6774.5, + "probability": 0.9717 + }, + { + "start": 6775.28, + "end": 6776.76, + "probability": 0.6002 + }, + { + "start": 6777.44, + "end": 6779.04, + "probability": 0.6788 + }, + { + "start": 6779.66, + "end": 6782.46, + "probability": 0.9453 + }, + { + "start": 6783.6, + "end": 6787.9, + "probability": 0.9863 + }, + { + "start": 6788.66, + "end": 6791.12, + "probability": 0.6633 + }, + { + "start": 6792.7, + "end": 6795.94, + "probability": 0.8467 + }, + { + "start": 6797.04, + "end": 6798.44, + "probability": 0.8695 + }, + { + "start": 6799.06, + "end": 6800.72, + "probability": 0.7484 + }, + { + "start": 6802.06, + "end": 6805.96, + "probability": 0.8187 + }, + { + "start": 6807.3, + "end": 6810.56, + "probability": 0.9668 + }, + { + "start": 6811.2, + "end": 6813.86, + "probability": 0.7766 + }, + { + "start": 6815.14, + "end": 6819.11, + "probability": 0.6734 + }, + { + "start": 6819.56, + "end": 6820.88, + "probability": 0.577 + }, + { + "start": 6821.06, + "end": 6823.0, + "probability": 0.8507 + }, + { + "start": 6823.94, + "end": 6824.43, + "probability": 0.6249 + }, + { + "start": 6824.64, + "end": 6825.56, + "probability": 0.9034 + }, + { + "start": 6825.84, + "end": 6826.41, + "probability": 0.9004 + }, + { + "start": 6827.0, + "end": 6828.98, + "probability": 0.7069 + }, + { + "start": 6830.39, + "end": 6835.58, + "probability": 0.9037 + }, + { + "start": 6835.84, + "end": 6836.64, + "probability": 0.6874 + }, + { + "start": 6836.84, + "end": 6840.32, + "probability": 0.9748 + }, + { + "start": 6840.54, + "end": 6840.75, + "probability": 0.1256 + }, + { + "start": 6841.78, + "end": 6846.7, + "probability": 0.965 + }, + { + "start": 6847.3, + "end": 6849.84, + "probability": 0.9871 + }, + { + "start": 6850.78, + "end": 6857.64, + "probability": 0.7989 + }, + { + "start": 6857.66, + "end": 6860.76, + "probability": 0.9847 + }, + { + "start": 6861.34, + "end": 6862.34, + "probability": 0.9805 + }, + { + "start": 6863.18, + "end": 6866.64, + "probability": 0.8428 + }, + { + "start": 6867.98, + "end": 6872.2, + "probability": 0.9342 + }, + { + "start": 6872.58, + "end": 6873.68, + "probability": 0.6726 + }, + { + "start": 6874.22, + "end": 6877.42, + "probability": 0.9402 + }, + { + "start": 6877.8, + "end": 6878.3, + "probability": 0.5001 + }, + { + "start": 6878.5, + "end": 6880.4, + "probability": 0.7371 + }, + { + "start": 6880.56, + "end": 6882.64, + "probability": 0.9447 + }, + { + "start": 6883.78, + "end": 6884.12, + "probability": 0.4156 + }, + { + "start": 6884.82, + "end": 6885.9, + "probability": 0.5933 + }, + { + "start": 6888.1, + "end": 6890.6, + "probability": 0.6818 + }, + { + "start": 6891.9, + "end": 6892.72, + "probability": 0.6935 + }, + { + "start": 6895.02, + "end": 6901.68, + "probability": 0.6888 + }, + { + "start": 6902.22, + "end": 6902.48, + "probability": 0.4535 + }, + { + "start": 6902.62, + "end": 6903.22, + "probability": 0.9221 + }, + { + "start": 6903.3, + "end": 6905.4, + "probability": 0.9368 + }, + { + "start": 6905.42, + "end": 6908.18, + "probability": 0.9946 + }, + { + "start": 6908.98, + "end": 6910.7, + "probability": 0.996 + }, + { + "start": 6911.38, + "end": 6914.78, + "probability": 0.9907 + }, + { + "start": 6914.82, + "end": 6915.3, + "probability": 0.9827 + }, + { + "start": 6916.52, + "end": 6919.42, + "probability": 0.9297 + }, + { + "start": 6919.42, + "end": 6923.44, + "probability": 0.9942 + }, + { + "start": 6925.62, + "end": 6927.24, + "probability": 0.9875 + }, + { + "start": 6928.32, + "end": 6929.49, + "probability": 0.9029 + }, + { + "start": 6929.96, + "end": 6933.44, + "probability": 0.9596 + }, + { + "start": 6933.76, + "end": 6936.84, + "probability": 0.9958 + }, + { + "start": 6937.44, + "end": 6941.82, + "probability": 0.9924 + }, + { + "start": 6941.98, + "end": 6943.68, + "probability": 0.993 + }, + { + "start": 6944.32, + "end": 6944.68, + "probability": 0.5901 + }, + { + "start": 6944.9, + "end": 6946.84, + "probability": 0.8059 + }, + { + "start": 6947.12, + "end": 6951.72, + "probability": 0.9927 + }, + { + "start": 6952.34, + "end": 6955.76, + "probability": 0.9956 + }, + { + "start": 6956.48, + "end": 6960.88, + "probability": 0.9687 + }, + { + "start": 6961.98, + "end": 6963.6, + "probability": 0.9581 + }, + { + "start": 6964.12, + "end": 6965.12, + "probability": 0.897 + }, + { + "start": 6965.24, + "end": 6968.48, + "probability": 0.9634 + }, + { + "start": 6969.06, + "end": 6971.48, + "probability": 0.9712 + }, + { + "start": 6972.03, + "end": 6974.03, + "probability": 0.9434 + }, + { + "start": 6974.62, + "end": 6976.5, + "probability": 0.9392 + }, + { + "start": 6977.42, + "end": 6978.44, + "probability": 0.8555 + }, + { + "start": 6978.6, + "end": 6979.92, + "probability": 0.979 + }, + { + "start": 6980.0, + "end": 6984.84, + "probability": 0.9829 + }, + { + "start": 6985.32, + "end": 6986.64, + "probability": 0.9604 + }, + { + "start": 6987.12, + "end": 6993.0, + "probability": 0.9832 + }, + { + "start": 6993.42, + "end": 6996.56, + "probability": 0.9963 + }, + { + "start": 6996.98, + "end": 7001.08, + "probability": 0.9572 + }, + { + "start": 7001.6, + "end": 7002.34, + "probability": 0.9725 + }, + { + "start": 7002.84, + "end": 7006.75, + "probability": 0.9912 + }, + { + "start": 7006.86, + "end": 7009.24, + "probability": 0.8952 + }, + { + "start": 7009.52, + "end": 7011.02, + "probability": 0.9422 + }, + { + "start": 7011.96, + "end": 7012.86, + "probability": 0.7635 + }, + { + "start": 7013.38, + "end": 7014.54, + "probability": 0.835 + }, + { + "start": 7014.94, + "end": 7015.62, + "probability": 0.6917 + }, + { + "start": 7015.89, + "end": 7018.96, + "probability": 0.9547 + }, + { + "start": 7019.58, + "end": 7022.84, + "probability": 0.9616 + }, + { + "start": 7022.88, + "end": 7025.84, + "probability": 0.9982 + }, + { + "start": 7026.8, + "end": 7028.62, + "probability": 0.5002 + }, + { + "start": 7028.72, + "end": 7029.88, + "probability": 0.7236 + }, + { + "start": 7030.14, + "end": 7033.94, + "probability": 0.9068 + }, + { + "start": 7034.08, + "end": 7037.9, + "probability": 0.9979 + }, + { + "start": 7038.36, + "end": 7040.56, + "probability": 0.8397 + }, + { + "start": 7041.02, + "end": 7041.72, + "probability": 0.9626 + }, + { + "start": 7041.88, + "end": 7043.26, + "probability": 0.9736 + }, + { + "start": 7043.88, + "end": 7049.12, + "probability": 0.9576 + }, + { + "start": 7049.16, + "end": 7052.46, + "probability": 0.998 + }, + { + "start": 7053.7, + "end": 7054.94, + "probability": 0.9142 + }, + { + "start": 7055.52, + "end": 7056.76, + "probability": 0.925 + }, + { + "start": 7057.68, + "end": 7061.1, + "probability": 0.9692 + }, + { + "start": 7061.64, + "end": 7064.94, + "probability": 0.9903 + }, + { + "start": 7065.46, + "end": 7067.3, + "probability": 0.8694 + }, + { + "start": 7067.9, + "end": 7072.0, + "probability": 0.9402 + }, + { + "start": 7072.4, + "end": 7072.82, + "probability": 0.7112 + }, + { + "start": 7072.86, + "end": 7073.58, + "probability": 0.8885 + }, + { + "start": 7074.18, + "end": 7077.32, + "probability": 0.8877 + }, + { + "start": 7077.64, + "end": 7079.0, + "probability": 0.9904 + }, + { + "start": 7079.52, + "end": 7083.84, + "probability": 0.9963 + }, + { + "start": 7084.6, + "end": 7085.74, + "probability": 0.8064 + }, + { + "start": 7085.84, + "end": 7088.32, + "probability": 0.8194 + }, + { + "start": 7088.78, + "end": 7089.68, + "probability": 0.9212 + }, + { + "start": 7090.06, + "end": 7090.74, + "probability": 0.761 + }, + { + "start": 7090.9, + "end": 7091.7, + "probability": 0.9409 + }, + { + "start": 7092.12, + "end": 7096.14, + "probability": 0.972 + }, + { + "start": 7096.72, + "end": 7100.92, + "probability": 0.9776 + }, + { + "start": 7101.32, + "end": 7101.74, + "probability": 0.7284 + }, + { + "start": 7102.04, + "end": 7103.94, + "probability": 0.8983 + }, + { + "start": 7104.08, + "end": 7106.04, + "probability": 0.9792 + }, + { + "start": 7106.76, + "end": 7109.34, + "probability": 0.9753 + }, + { + "start": 7110.42, + "end": 7113.22, + "probability": 0.9554 + }, + { + "start": 7128.24, + "end": 7129.14, + "probability": 0.4963 + }, + { + "start": 7129.38, + "end": 7132.0, + "probability": 0.6867 + }, + { + "start": 7132.38, + "end": 7133.64, + "probability": 0.7197 + }, + { + "start": 7134.66, + "end": 7135.02, + "probability": 0.4435 + }, + { + "start": 7135.04, + "end": 7136.86, + "probability": 0.9567 + }, + { + "start": 7137.04, + "end": 7140.36, + "probability": 0.9076 + }, + { + "start": 7141.48, + "end": 7145.7, + "probability": 0.8419 + }, + { + "start": 7146.9, + "end": 7148.82, + "probability": 0.9976 + }, + { + "start": 7149.7, + "end": 7152.54, + "probability": 0.9941 + }, + { + "start": 7152.84, + "end": 7153.84, + "probability": 0.976 + }, + { + "start": 7154.76, + "end": 7157.44, + "probability": 0.8445 + }, + { + "start": 7158.5, + "end": 7160.6, + "probability": 0.8322 + }, + { + "start": 7160.72, + "end": 7162.76, + "probability": 0.9858 + }, + { + "start": 7163.54, + "end": 7165.86, + "probability": 0.9233 + }, + { + "start": 7167.52, + "end": 7169.34, + "probability": 0.8765 + }, + { + "start": 7170.38, + "end": 7171.44, + "probability": 0.9807 + }, + { + "start": 7172.08, + "end": 7174.26, + "probability": 0.9004 + }, + { + "start": 7176.04, + "end": 7178.98, + "probability": 0.9235 + }, + { + "start": 7180.66, + "end": 7183.66, + "probability": 0.996 + }, + { + "start": 7184.72, + "end": 7186.74, + "probability": 0.7218 + }, + { + "start": 7187.16, + "end": 7187.72, + "probability": 0.437 + }, + { + "start": 7188.94, + "end": 7191.38, + "probability": 0.9497 + }, + { + "start": 7191.98, + "end": 7193.08, + "probability": 0.9707 + }, + { + "start": 7194.72, + "end": 7198.48, + "probability": 0.6334 + }, + { + "start": 7199.56, + "end": 7200.62, + "probability": 0.2746 + }, + { + "start": 7200.74, + "end": 7202.94, + "probability": 0.2797 + }, + { + "start": 7203.72, + "end": 7203.82, + "probability": 0.0632 + }, + { + "start": 7203.82, + "end": 7205.14, + "probability": 0.3635 + }, + { + "start": 7205.14, + "end": 7206.0, + "probability": 0.1601 + }, + { + "start": 7206.26, + "end": 7207.18, + "probability": 0.3601 + }, + { + "start": 7207.4, + "end": 7207.9, + "probability": 0.1783 + }, + { + "start": 7208.08, + "end": 7208.76, + "probability": 0.2924 + }, + { + "start": 7208.76, + "end": 7212.4, + "probability": 0.1695 + }, + { + "start": 7212.6, + "end": 7212.74, + "probability": 0.0968 + }, + { + "start": 7213.1, + "end": 7214.24, + "probability": 0.0511 + }, + { + "start": 7214.64, + "end": 7214.76, + "probability": 0.1912 + }, + { + "start": 7214.92, + "end": 7215.06, + "probability": 0.1662 + }, + { + "start": 7215.06, + "end": 7215.06, + "probability": 0.4214 + }, + { + "start": 7215.06, + "end": 7215.17, + "probability": 0.1149 + }, + { + "start": 7215.74, + "end": 7217.0, + "probability": 0.4125 + }, + { + "start": 7217.38, + "end": 7218.22, + "probability": 0.5903 + }, + { + "start": 7218.84, + "end": 7220.98, + "probability": 0.7964 + }, + { + "start": 7221.08, + "end": 7224.8, + "probability": 0.6968 + }, + { + "start": 7224.86, + "end": 7225.87, + "probability": 0.8887 + }, + { + "start": 7226.06, + "end": 7226.64, + "probability": 0.9104 + }, + { + "start": 7227.26, + "end": 7229.22, + "probability": 0.8025 + }, + { + "start": 7229.8, + "end": 7229.98, + "probability": 0.0171 + }, + { + "start": 7230.14, + "end": 7232.14, + "probability": 0.4238 + }, + { + "start": 7232.5, + "end": 7233.64, + "probability": 0.3403 + }, + { + "start": 7233.64, + "end": 7233.64, + "probability": 0.1562 + }, + { + "start": 7233.64, + "end": 7234.96, + "probability": 0.1151 + }, + { + "start": 7235.08, + "end": 7236.0, + "probability": 0.6673 + }, + { + "start": 7236.62, + "end": 7237.24, + "probability": 0.9221 + }, + { + "start": 7237.3, + "end": 7240.14, + "probability": 0.954 + }, + { + "start": 7241.86, + "end": 7243.18, + "probability": 0.9959 + }, + { + "start": 7243.3, + "end": 7245.46, + "probability": 0.9275 + }, + { + "start": 7245.52, + "end": 7247.16, + "probability": 0.9766 + }, + { + "start": 7248.66, + "end": 7249.7, + "probability": 0.9724 + }, + { + "start": 7249.82, + "end": 7250.6, + "probability": 0.8017 + }, + { + "start": 7250.76, + "end": 7256.84, + "probability": 0.9722 + }, + { + "start": 7256.88, + "end": 7258.06, + "probability": 0.5677 + }, + { + "start": 7258.54, + "end": 7259.52, + "probability": 0.5639 + }, + { + "start": 7260.12, + "end": 7263.3, + "probability": 0.8176 + }, + { + "start": 7263.46, + "end": 7264.1, + "probability": 0.8983 + }, + { + "start": 7264.68, + "end": 7266.68, + "probability": 0.9934 + }, + { + "start": 7268.52, + "end": 7270.38, + "probability": 0.9751 + }, + { + "start": 7270.88, + "end": 7274.6, + "probability": 0.9392 + }, + { + "start": 7275.26, + "end": 7277.04, + "probability": 0.9026 + }, + { + "start": 7277.46, + "end": 7279.28, + "probability": 0.9935 + }, + { + "start": 7279.4, + "end": 7279.68, + "probability": 0.6954 + }, + { + "start": 7280.76, + "end": 7282.46, + "probability": 0.9886 + }, + { + "start": 7282.68, + "end": 7284.24, + "probability": 0.8481 + }, + { + "start": 7284.66, + "end": 7287.88, + "probability": 0.9915 + }, + { + "start": 7288.4, + "end": 7290.42, + "probability": 0.6827 + }, + { + "start": 7290.46, + "end": 7291.24, + "probability": 0.8891 + }, + { + "start": 7291.7, + "end": 7293.2, + "probability": 0.8458 + }, + { + "start": 7293.58, + "end": 7297.44, + "probability": 0.8914 + }, + { + "start": 7298.92, + "end": 7301.5, + "probability": 0.9857 + }, + { + "start": 7301.6, + "end": 7304.66, + "probability": 0.95 + }, + { + "start": 7305.34, + "end": 7306.56, + "probability": 0.9966 + }, + { + "start": 7306.72, + "end": 7309.68, + "probability": 0.896 + }, + { + "start": 7311.1, + "end": 7313.64, + "probability": 0.7247 + }, + { + "start": 7313.8, + "end": 7316.72, + "probability": 0.8131 + }, + { + "start": 7317.6, + "end": 7318.85, + "probability": 0.8818 + }, + { + "start": 7319.42, + "end": 7320.84, + "probability": 0.8369 + }, + { + "start": 7321.5, + "end": 7321.78, + "probability": 0.5627 + }, + { + "start": 7321.84, + "end": 7323.16, + "probability": 0.895 + }, + { + "start": 7323.28, + "end": 7324.88, + "probability": 0.9355 + }, + { + "start": 7325.74, + "end": 7327.04, + "probability": 0.9876 + }, + { + "start": 7327.66, + "end": 7333.26, + "probability": 0.9175 + }, + { + "start": 7334.36, + "end": 7335.16, + "probability": 0.7329 + }, + { + "start": 7336.02, + "end": 7337.14, + "probability": 0.8013 + }, + { + "start": 7338.12, + "end": 7340.52, + "probability": 0.9557 + }, + { + "start": 7341.24, + "end": 7347.14, + "probability": 0.9769 + }, + { + "start": 7347.48, + "end": 7348.28, + "probability": 0.831 + }, + { + "start": 7349.7, + "end": 7351.3, + "probability": 0.6852 + }, + { + "start": 7351.74, + "end": 7354.88, + "probability": 0.9946 + }, + { + "start": 7355.74, + "end": 7357.42, + "probability": 0.987 + }, + { + "start": 7357.52, + "end": 7360.8, + "probability": 0.9895 + }, + { + "start": 7361.24, + "end": 7364.44, + "probability": 0.9934 + }, + { + "start": 7365.1, + "end": 7367.34, + "probability": 0.9977 + }, + { + "start": 7367.92, + "end": 7369.62, + "probability": 0.731 + }, + { + "start": 7370.1, + "end": 7370.48, + "probability": 0.4771 + }, + { + "start": 7370.54, + "end": 7372.88, + "probability": 0.9458 + }, + { + "start": 7373.68, + "end": 7375.06, + "probability": 0.9298 + }, + { + "start": 7376.38, + "end": 7377.1, + "probability": 0.7279 + }, + { + "start": 7377.4, + "end": 7379.34, + "probability": 0.9722 + }, + { + "start": 7379.74, + "end": 7381.99, + "probability": 0.91 + }, + { + "start": 7382.14, + "end": 7383.64, + "probability": 0.596 + }, + { + "start": 7383.66, + "end": 7385.6, + "probability": 0.9691 + }, + { + "start": 7406.14, + "end": 7409.5, + "probability": 0.6417 + }, + { + "start": 7413.64, + "end": 7418.86, + "probability": 0.9863 + }, + { + "start": 7421.26, + "end": 7423.36, + "probability": 0.8977 + }, + { + "start": 7426.18, + "end": 7430.46, + "probability": 0.9316 + }, + { + "start": 7431.68, + "end": 7432.54, + "probability": 0.8086 + }, + { + "start": 7433.88, + "end": 7439.62, + "probability": 0.9803 + }, + { + "start": 7441.76, + "end": 7444.64, + "probability": 0.9985 + }, + { + "start": 7447.4, + "end": 7448.12, + "probability": 0.9823 + }, + { + "start": 7449.32, + "end": 7452.52, + "probability": 0.9074 + }, + { + "start": 7453.9, + "end": 7455.38, + "probability": 0.9694 + }, + { + "start": 7457.36, + "end": 7460.88, + "probability": 0.9886 + }, + { + "start": 7462.78, + "end": 7468.26, + "probability": 0.8319 + }, + { + "start": 7470.24, + "end": 7470.68, + "probability": 0.9249 + }, + { + "start": 7474.12, + "end": 7476.56, + "probability": 0.8008 + }, + { + "start": 7478.08, + "end": 7478.94, + "probability": 0.3784 + }, + { + "start": 7481.5, + "end": 7482.02, + "probability": 0.4022 + }, + { + "start": 7482.16, + "end": 7489.24, + "probability": 0.9025 + }, + { + "start": 7490.78, + "end": 7491.26, + "probability": 0.922 + }, + { + "start": 7492.12, + "end": 7492.7, + "probability": 0.9325 + }, + { + "start": 7494.52, + "end": 7496.0, + "probability": 0.964 + }, + { + "start": 7497.76, + "end": 7500.44, + "probability": 0.9889 + }, + { + "start": 7500.92, + "end": 7504.52, + "probability": 0.9413 + }, + { + "start": 7505.54, + "end": 7508.0, + "probability": 0.9539 + }, + { + "start": 7510.54, + "end": 7511.04, + "probability": 0.9194 + }, + { + "start": 7512.68, + "end": 7514.92, + "probability": 0.9328 + }, + { + "start": 7517.22, + "end": 7520.52, + "probability": 0.9673 + }, + { + "start": 7522.24, + "end": 7525.06, + "probability": 0.9442 + }, + { + "start": 7526.38, + "end": 7528.0, + "probability": 0.8347 + }, + { + "start": 7529.2, + "end": 7531.48, + "probability": 0.9588 + }, + { + "start": 7532.66, + "end": 7534.66, + "probability": 0.9891 + }, + { + "start": 7536.96, + "end": 7543.8, + "probability": 0.9814 + }, + { + "start": 7545.1, + "end": 7548.2, + "probability": 0.7278 + }, + { + "start": 7549.1, + "end": 7550.74, + "probability": 0.9932 + }, + { + "start": 7551.82, + "end": 7554.54, + "probability": 0.8071 + }, + { + "start": 7555.26, + "end": 7556.6, + "probability": 0.671 + }, + { + "start": 7558.2, + "end": 7559.16, + "probability": 0.7318 + }, + { + "start": 7559.32, + "end": 7562.2, + "probability": 0.9646 + }, + { + "start": 7562.84, + "end": 7564.12, + "probability": 0.3369 + }, + { + "start": 7565.38, + "end": 7567.46, + "probability": 0.9434 + }, + { + "start": 7568.72, + "end": 7571.28, + "probability": 0.9894 + }, + { + "start": 7572.62, + "end": 7574.04, + "probability": 0.9263 + }, + { + "start": 7575.26, + "end": 7578.53, + "probability": 0.9837 + }, + { + "start": 7580.26, + "end": 7580.62, + "probability": 0.3391 + }, + { + "start": 7582.44, + "end": 7585.92, + "probability": 0.9614 + }, + { + "start": 7586.04, + "end": 7590.9, + "probability": 0.8971 + }, + { + "start": 7591.46, + "end": 7592.4, + "probability": 0.8107 + }, + { + "start": 7592.96, + "end": 7594.46, + "probability": 0.9019 + }, + { + "start": 7596.18, + "end": 7597.5, + "probability": 0.1829 + }, + { + "start": 7598.72, + "end": 7598.8, + "probability": 0.0629 + }, + { + "start": 7598.8, + "end": 7602.18, + "probability": 0.6432 + }, + { + "start": 7602.26, + "end": 7604.93, + "probability": 0.4304 + }, + { + "start": 7605.08, + "end": 7608.68, + "probability": 0.6918 + }, + { + "start": 7611.32, + "end": 7612.12, + "probability": 0.7657 + }, + { + "start": 7613.4, + "end": 7614.06, + "probability": 0.0997 + }, + { + "start": 7614.52, + "end": 7616.3, + "probability": 0.0191 + }, + { + "start": 7617.05, + "end": 7619.45, + "probability": 0.1338 + }, + { + "start": 7621.0, + "end": 7623.66, + "probability": 0.2195 + }, + { + "start": 7625.44, + "end": 7625.44, + "probability": 0.0794 + }, + { + "start": 7625.44, + "end": 7625.72, + "probability": 0.0417 + }, + { + "start": 7625.72, + "end": 7627.2, + "probability": 0.2787 + }, + { + "start": 7627.2, + "end": 7628.06, + "probability": 0.2384 + }, + { + "start": 7628.28, + "end": 7629.18, + "probability": 0.0159 + }, + { + "start": 7629.36, + "end": 7632.0, + "probability": 0.346 + }, + { + "start": 7632.38, + "end": 7633.02, + "probability": 0.1035 + }, + { + "start": 7638.54, + "end": 7640.15, + "probability": 0.0418 + }, + { + "start": 7642.0, + "end": 7642.76, + "probability": 0.0071 + }, + { + "start": 7646.44, + "end": 7646.6, + "probability": 0.0255 + }, + { + "start": 7646.6, + "end": 7647.34, + "probability": 0.1322 + }, + { + "start": 7647.34, + "end": 7648.9, + "probability": 0.0209 + }, + { + "start": 7648.9, + "end": 7649.24, + "probability": 0.0721 + }, + { + "start": 7649.76, + "end": 7652.28, + "probability": 0.0651 + }, + { + "start": 7652.28, + "end": 7652.28, + "probability": 0.0397 + }, + { + "start": 7652.28, + "end": 7652.4, + "probability": 0.1739 + }, + { + "start": 7652.4, + "end": 7653.72, + "probability": 0.064 + }, + { + "start": 7653.9, + "end": 7654.72, + "probability": 0.1622 + }, + { + "start": 7654.72, + "end": 7654.72, + "probability": 0.0393 + }, + { + "start": 7654.72, + "end": 7654.74, + "probability": 0.08 + }, + { + "start": 7654.74, + "end": 7654.74, + "probability": 0.0901 + }, + { + "start": 7654.78, + "end": 7654.96, + "probability": 0.1085 + }, + { + "start": 7655.0, + "end": 7655.0, + "probability": 0.0 + }, + { + "start": 7655.0, + "end": 7655.0, + "probability": 0.0 + }, + { + "start": 7655.0, + "end": 7655.0, + "probability": 0.0 + }, + { + "start": 7655.0, + "end": 7655.0, + "probability": 0.0 + }, + { + "start": 7655.0, + "end": 7655.0, + "probability": 0.0 + }, + { + "start": 7655.32, + "end": 7655.44, + "probability": 0.1206 + }, + { + "start": 7655.44, + "end": 7655.44, + "probability": 0.3928 + }, + { + "start": 7655.44, + "end": 7655.44, + "probability": 0.0304 + }, + { + "start": 7655.44, + "end": 7655.44, + "probability": 0.126 + }, + { + "start": 7655.44, + "end": 7655.76, + "probability": 0.0597 + }, + { + "start": 7657.18, + "end": 7659.7, + "probability": 0.4977 + }, + { + "start": 7661.82, + "end": 7662.18, + "probability": 0.2492 + }, + { + "start": 7662.18, + "end": 7663.16, + "probability": 0.6877 + }, + { + "start": 7663.28, + "end": 7664.58, + "probability": 0.8105 + }, + { + "start": 7664.74, + "end": 7666.32, + "probability": 0.9302 + }, + { + "start": 7666.66, + "end": 7669.38, + "probability": 0.7953 + }, + { + "start": 7669.56, + "end": 7672.4, + "probability": 0.8877 + }, + { + "start": 7672.9, + "end": 7675.94, + "probability": 0.609 + }, + { + "start": 7676.4, + "end": 7678.4, + "probability": 0.2442 + }, + { + "start": 7679.14, + "end": 7679.14, + "probability": 0.0161 + }, + { + "start": 7679.14, + "end": 7679.14, + "probability": 0.0413 + }, + { + "start": 7679.14, + "end": 7679.14, + "probability": 0.0243 + }, + { + "start": 7679.14, + "end": 7679.14, + "probability": 0.042 + }, + { + "start": 7679.14, + "end": 7685.22, + "probability": 0.7601 + }, + { + "start": 7685.32, + "end": 7685.58, + "probability": 0.3393 + }, + { + "start": 7702.34, + "end": 7704.64, + "probability": 0.124 + }, + { + "start": 7726.5, + "end": 7730.38, + "probability": 0.2589 + }, + { + "start": 7731.22, + "end": 7737.46, + "probability": 0.1542 + }, + { + "start": 7739.55, + "end": 7740.12, + "probability": 0.0306 + }, + { + "start": 7740.12, + "end": 7741.3, + "probability": 0.1726 + }, + { + "start": 7745.86, + "end": 7747.06, + "probability": 0.0233 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.0, + "end": 7786.0, + "probability": 0.0 + }, + { + "start": 7786.1, + "end": 7786.22, + "probability": 0.1182 + }, + { + "start": 7786.22, + "end": 7786.22, + "probability": 0.1169 + }, + { + "start": 7786.22, + "end": 7786.62, + "probability": 0.1727 + }, + { + "start": 7787.6, + "end": 7788.7, + "probability": 0.8297 + }, + { + "start": 7788.84, + "end": 7791.88, + "probability": 0.716 + }, + { + "start": 7791.88, + "end": 7796.4, + "probability": 0.995 + }, + { + "start": 7796.54, + "end": 7799.0, + "probability": 0.9067 + }, + { + "start": 7799.12, + "end": 7800.86, + "probability": 0.9969 + }, + { + "start": 7801.4, + "end": 7803.22, + "probability": 0.183 + }, + { + "start": 7803.4, + "end": 7805.79, + "probability": 0.9922 + }, + { + "start": 7806.24, + "end": 7808.8, + "probability": 0.967 + }, + { + "start": 7809.08, + "end": 7812.92, + "probability": 0.9961 + }, + { + "start": 7813.34, + "end": 7816.3, + "probability": 0.9795 + }, + { + "start": 7816.44, + "end": 7819.86, + "probability": 0.9305 + }, + { + "start": 7821.04, + "end": 7822.34, + "probability": 0.8398 + }, + { + "start": 7822.68, + "end": 7824.64, + "probability": 0.9773 + }, + { + "start": 7825.8, + "end": 7826.78, + "probability": 0.7212 + }, + { + "start": 7827.34, + "end": 7828.28, + "probability": 0.8872 + }, + { + "start": 7828.66, + "end": 7831.42, + "probability": 0.8436 + }, + { + "start": 7832.16, + "end": 7835.34, + "probability": 0.6296 + }, + { + "start": 7836.16, + "end": 7840.76, + "probability": 0.9976 + }, + { + "start": 7841.56, + "end": 7845.06, + "probability": 0.7794 + }, + { + "start": 7845.72, + "end": 7849.62, + "probability": 0.9565 + }, + { + "start": 7850.4, + "end": 7851.76, + "probability": 0.9899 + }, + { + "start": 7852.18, + "end": 7852.86, + "probability": 0.9474 + }, + { + "start": 7853.44, + "end": 7854.84, + "probability": 0.7627 + }, + { + "start": 7854.84, + "end": 7857.48, + "probability": 0.9971 + }, + { + "start": 7858.22, + "end": 7860.46, + "probability": 0.7935 + }, + { + "start": 7860.78, + "end": 7864.08, + "probability": 0.9965 + }, + { + "start": 7864.62, + "end": 7866.06, + "probability": 0.99 + }, + { + "start": 7866.64, + "end": 7867.66, + "probability": 0.6977 + }, + { + "start": 7868.2, + "end": 7871.68, + "probability": 0.9883 + }, + { + "start": 7872.3, + "end": 7876.54, + "probability": 0.9973 + }, + { + "start": 7877.34, + "end": 7878.66, + "probability": 0.9797 + }, + { + "start": 7879.62, + "end": 7880.68, + "probability": 0.7007 + }, + { + "start": 7881.46, + "end": 7884.02, + "probability": 0.9065 + }, + { + "start": 7884.72, + "end": 7888.6, + "probability": 0.9305 + }, + { + "start": 7889.2, + "end": 7891.92, + "probability": 0.8607 + }, + { + "start": 7893.02, + "end": 7896.12, + "probability": 0.8243 + }, + { + "start": 7896.84, + "end": 7900.76, + "probability": 0.9962 + }, + { + "start": 7901.32, + "end": 7904.36, + "probability": 0.9782 + }, + { + "start": 7904.96, + "end": 7905.84, + "probability": 0.8853 + }, + { + "start": 7906.58, + "end": 7910.08, + "probability": 0.9724 + }, + { + "start": 7910.76, + "end": 7911.38, + "probability": 0.2924 + }, + { + "start": 7912.34, + "end": 7913.02, + "probability": 0.9734 + }, + { + "start": 7913.6, + "end": 7916.32, + "probability": 0.9485 + }, + { + "start": 7916.96, + "end": 7920.96, + "probability": 0.9971 + }, + { + "start": 7921.52, + "end": 7923.6, + "probability": 0.6659 + }, + { + "start": 7923.72, + "end": 7925.71, + "probability": 0.5961 + }, + { + "start": 7928.28, + "end": 7928.38, + "probability": 0.1274 + }, + { + "start": 7928.38, + "end": 7930.18, + "probability": 0.6668 + }, + { + "start": 7930.45, + "end": 7933.44, + "probability": 0.8727 + }, + { + "start": 7934.12, + "end": 7935.24, + "probability": 0.9941 + }, + { + "start": 7935.8, + "end": 7937.18, + "probability": 0.9863 + }, + { + "start": 7937.74, + "end": 7941.2, + "probability": 0.9967 + }, + { + "start": 7943.1, + "end": 7943.96, + "probability": 0.8159 + }, + { + "start": 7944.6, + "end": 7946.92, + "probability": 0.9958 + }, + { + "start": 7946.92, + "end": 7949.58, + "probability": 0.999 + }, + { + "start": 7950.14, + "end": 7951.24, + "probability": 0.9309 + }, + { + "start": 7952.16, + "end": 7954.84, + "probability": 0.9554 + }, + { + "start": 7955.98, + "end": 7958.7, + "probability": 0.9564 + }, + { + "start": 7959.14, + "end": 7961.34, + "probability": 0.9437 + }, + { + "start": 7962.06, + "end": 7964.42, + "probability": 0.9688 + }, + { + "start": 7964.96, + "end": 7965.94, + "probability": 0.9896 + }, + { + "start": 7966.62, + "end": 7970.98, + "probability": 0.9896 + }, + { + "start": 7971.6, + "end": 7973.36, + "probability": 0.8792 + }, + { + "start": 7974.28, + "end": 7978.8, + "probability": 0.6326 + }, + { + "start": 7979.5, + "end": 7982.46, + "probability": 0.7467 + }, + { + "start": 7982.64, + "end": 7983.55, + "probability": 0.95 + }, + { + "start": 7985.28, + "end": 7989.8, + "probability": 0.9977 + }, + { + "start": 7990.4, + "end": 7991.12, + "probability": 0.7388 + }, + { + "start": 7992.18, + "end": 7993.06, + "probability": 0.8412 + }, + { + "start": 7993.6, + "end": 7995.36, + "probability": 0.9861 + }, + { + "start": 7995.98, + "end": 7996.6, + "probability": 0.8579 + }, + { + "start": 7996.7, + "end": 7997.28, + "probability": 0.7322 + }, + { + "start": 7997.34, + "end": 8002.18, + "probability": 0.9608 + }, + { + "start": 8002.96, + "end": 8004.04, + "probability": 0.723 + }, + { + "start": 8004.82, + "end": 8006.4, + "probability": 0.9947 + }, + { + "start": 8006.92, + "end": 8011.04, + "probability": 0.9885 + }, + { + "start": 8011.42, + "end": 8011.42, + "probability": 0.2468 + }, + { + "start": 8011.46, + "end": 8012.17, + "probability": 0.9355 + }, + { + "start": 8012.72, + "end": 8013.94, + "probability": 0.8742 + }, + { + "start": 8014.76, + "end": 8015.36, + "probability": 0.407 + }, + { + "start": 8015.68, + "end": 8017.28, + "probability": 0.8249 + }, + { + "start": 8017.5, + "end": 8018.2, + "probability": 0.8901 + }, + { + "start": 8018.26, + "end": 8019.02, + "probability": 0.9424 + }, + { + "start": 8019.24, + "end": 8019.48, + "probability": 0.0289 + }, + { + "start": 8019.6, + "end": 8022.54, + "probability": 0.7558 + }, + { + "start": 8022.58, + "end": 8025.28, + "probability": 0.9834 + }, + { + "start": 8025.28, + "end": 8025.76, + "probability": 0.6191 + }, + { + "start": 8026.62, + "end": 8027.04, + "probability": 0.633 + }, + { + "start": 8027.28, + "end": 8028.33, + "probability": 0.7973 + }, + { + "start": 8028.54, + "end": 8029.34, + "probability": 0.9031 + }, + { + "start": 8029.38, + "end": 8030.56, + "probability": 0.7508 + }, + { + "start": 8030.58, + "end": 8034.92, + "probability": 0.8463 + }, + { + "start": 8036.2, + "end": 8039.76, + "probability": 0.7401 + }, + { + "start": 8040.22, + "end": 8043.54, + "probability": 0.9841 + }, + { + "start": 8043.82, + "end": 8043.86, + "probability": 0.3425 + }, + { + "start": 8043.98, + "end": 8046.22, + "probability": 0.9058 + }, + { + "start": 8047.12, + "end": 8050.44, + "probability": 0.7614 + }, + { + "start": 8051.04, + "end": 8053.24, + "probability": 0.5845 + }, + { + "start": 8053.72, + "end": 8057.36, + "probability": 0.9235 + }, + { + "start": 8057.94, + "end": 8061.58, + "probability": 0.9642 + }, + { + "start": 8061.72, + "end": 8063.26, + "probability": 0.993 + }, + { + "start": 8063.9, + "end": 8065.58, + "probability": 0.8594 + }, + { + "start": 8066.1, + "end": 8066.32, + "probability": 0.026 + }, + { + "start": 8066.48, + "end": 8066.8, + "probability": 0.609 + }, + { + "start": 8067.12, + "end": 8070.26, + "probability": 0.9697 + }, + { + "start": 8070.26, + "end": 8073.38, + "probability": 0.9954 + }, + { + "start": 8075.78, + "end": 8077.66, + "probability": 0.9125 + }, + { + "start": 8078.46, + "end": 8081.12, + "probability": 0.8595 + }, + { + "start": 8081.64, + "end": 8084.84, + "probability": 0.9368 + }, + { + "start": 8089.9, + "end": 8092.9, + "probability": 0.6918 + }, + { + "start": 8094.38, + "end": 8095.42, + "probability": 0.7935 + }, + { + "start": 8098.84, + "end": 8100.88, + "probability": 0.9839 + }, + { + "start": 8103.4, + "end": 8104.18, + "probability": 0.6368 + }, + { + "start": 8104.28, + "end": 8104.8, + "probability": 0.6428 + }, + { + "start": 8104.94, + "end": 8105.64, + "probability": 0.2074 + }, + { + "start": 8105.7, + "end": 8107.02, + "probability": 0.6239 + }, + { + "start": 8107.56, + "end": 8108.92, + "probability": 0.867 + }, + { + "start": 8110.34, + "end": 8112.54, + "probability": 0.9252 + }, + { + "start": 8113.5, + "end": 8115.46, + "probability": 0.772 + }, + { + "start": 8118.16, + "end": 8119.14, + "probability": 0.5591 + }, + { + "start": 8119.45, + "end": 8124.78, + "probability": 0.978 + }, + { + "start": 8124.88, + "end": 8125.9, + "probability": 0.7509 + }, + { + "start": 8129.63, + "end": 8131.84, + "probability": 0.8646 + }, + { + "start": 8132.7, + "end": 8133.72, + "probability": 0.9159 + }, + { + "start": 8135.62, + "end": 8138.84, + "probability": 0.9807 + }, + { + "start": 8140.36, + "end": 8142.12, + "probability": 0.9489 + }, + { + "start": 8142.56, + "end": 8142.82, + "probability": 0.5173 + }, + { + "start": 8143.54, + "end": 8147.86, + "probability": 0.9948 + }, + { + "start": 8148.24, + "end": 8150.96, + "probability": 0.998 + }, + { + "start": 8152.32, + "end": 8154.16, + "probability": 0.8372 + }, + { + "start": 8155.38, + "end": 8159.92, + "probability": 0.8583 + }, + { + "start": 8160.62, + "end": 8166.8, + "probability": 0.5748 + }, + { + "start": 8168.72, + "end": 8169.66, + "probability": 0.9736 + }, + { + "start": 8170.64, + "end": 8174.58, + "probability": 0.7893 + }, + { + "start": 8175.56, + "end": 8176.08, + "probability": 0.7714 + }, + { + "start": 8176.14, + "end": 8182.86, + "probability": 0.9934 + }, + { + "start": 8183.72, + "end": 8185.49, + "probability": 0.9702 + }, + { + "start": 8185.96, + "end": 8187.7, + "probability": 0.9951 + }, + { + "start": 8188.94, + "end": 8191.52, + "probability": 0.998 + }, + { + "start": 8192.64, + "end": 8194.18, + "probability": 0.6794 + }, + { + "start": 8194.36, + "end": 8195.01, + "probability": 0.7627 + }, + { + "start": 8195.44, + "end": 8197.26, + "probability": 0.9802 + }, + { + "start": 8197.88, + "end": 8199.36, + "probability": 0.9551 + }, + { + "start": 8199.94, + "end": 8202.18, + "probability": 0.9905 + }, + { + "start": 8204.09, + "end": 8209.12, + "probability": 0.9974 + }, + { + "start": 8210.88, + "end": 8212.06, + "probability": 0.8564 + }, + { + "start": 8213.49, + "end": 8219.2, + "probability": 0.9609 + }, + { + "start": 8219.96, + "end": 8224.48, + "probability": 0.9824 + }, + { + "start": 8225.34, + "end": 8227.72, + "probability": 0.9987 + }, + { + "start": 8228.74, + "end": 8231.04, + "probability": 0.9958 + }, + { + "start": 8231.16, + "end": 8232.16, + "probability": 0.906 + }, + { + "start": 8232.48, + "end": 8233.34, + "probability": 0.733 + }, + { + "start": 8233.92, + "end": 8235.04, + "probability": 0.9819 + }, + { + "start": 8235.74, + "end": 8237.6, + "probability": 0.7904 + }, + { + "start": 8238.76, + "end": 8244.1, + "probability": 0.9857 + }, + { + "start": 8245.16, + "end": 8247.43, + "probability": 0.9907 + }, + { + "start": 8248.76, + "end": 8252.32, + "probability": 0.9465 + }, + { + "start": 8254.06, + "end": 8259.22, + "probability": 0.9816 + }, + { + "start": 8259.96, + "end": 8261.64, + "probability": 0.839 + }, + { + "start": 8262.28, + "end": 8263.86, + "probability": 0.9937 + }, + { + "start": 8265.32, + "end": 8268.0, + "probability": 0.9146 + }, + { + "start": 8268.88, + "end": 8270.78, + "probability": 0.9609 + }, + { + "start": 8271.88, + "end": 8273.22, + "probability": 0.9615 + }, + { + "start": 8273.94, + "end": 8274.26, + "probability": 0.5283 + }, + { + "start": 8274.36, + "end": 8279.34, + "probability": 0.9863 + }, + { + "start": 8281.08, + "end": 8283.48, + "probability": 0.7381 + }, + { + "start": 8283.82, + "end": 8287.24, + "probability": 0.937 + }, + { + "start": 8288.02, + "end": 8291.14, + "probability": 0.9355 + }, + { + "start": 8292.02, + "end": 8295.06, + "probability": 0.8259 + }, + { + "start": 8295.72, + "end": 8298.46, + "probability": 0.9604 + }, + { + "start": 8299.26, + "end": 8300.4, + "probability": 0.8193 + }, + { + "start": 8301.6, + "end": 8305.38, + "probability": 0.7626 + }, + { + "start": 8306.7, + "end": 8310.48, + "probability": 0.7581 + }, + { + "start": 8311.14, + "end": 8312.7, + "probability": 0.8669 + }, + { + "start": 8312.76, + "end": 8314.48, + "probability": 0.9541 + }, + { + "start": 8314.58, + "end": 8315.44, + "probability": 0.8667 + }, + { + "start": 8315.7, + "end": 8317.31, + "probability": 0.9795 + }, + { + "start": 8318.38, + "end": 8319.82, + "probability": 0.7751 + }, + { + "start": 8320.86, + "end": 8322.02, + "probability": 0.9885 + }, + { + "start": 8322.62, + "end": 8325.86, + "probability": 0.9237 + }, + { + "start": 8326.58, + "end": 8327.84, + "probability": 0.5082 + }, + { + "start": 8328.84, + "end": 8330.82, + "probability": 0.9879 + }, + { + "start": 8331.92, + "end": 8338.34, + "probability": 0.9885 + }, + { + "start": 8339.12, + "end": 8341.76, + "probability": 0.9941 + }, + { + "start": 8346.0, + "end": 8354.56, + "probability": 0.9902 + }, + { + "start": 8355.44, + "end": 8358.48, + "probability": 0.843 + }, + { + "start": 8359.14, + "end": 8360.72, + "probability": 0.3131 + }, + { + "start": 8362.09, + "end": 8367.82, + "probability": 0.9327 + }, + { + "start": 8368.34, + "end": 8371.94, + "probability": 0.7708 + }, + { + "start": 8372.78, + "end": 8375.0, + "probability": 0.4887 + }, + { + "start": 8376.49, + "end": 8378.26, + "probability": 0.3438 + }, + { + "start": 8378.3, + "end": 8378.96, + "probability": 0.6891 + }, + { + "start": 8379.04, + "end": 8380.46, + "probability": 0.8475 + }, + { + "start": 8381.38, + "end": 8382.71, + "probability": 0.9711 + }, + { + "start": 8383.2, + "end": 8388.26, + "probability": 0.878 + }, + { + "start": 8388.92, + "end": 8393.06, + "probability": 0.8853 + }, + { + "start": 8394.06, + "end": 8400.56, + "probability": 0.9012 + }, + { + "start": 8401.68, + "end": 8404.64, + "probability": 0.8685 + }, + { + "start": 8405.28, + "end": 8407.56, + "probability": 0.7705 + }, + { + "start": 8408.06, + "end": 8411.17, + "probability": 0.9774 + }, + { + "start": 8411.78, + "end": 8412.93, + "probability": 0.8799 + }, + { + "start": 8413.14, + "end": 8413.66, + "probability": 0.0481 + }, + { + "start": 8420.52, + "end": 8424.6, + "probability": 0.5317 + }, + { + "start": 8424.6, + "end": 8427.12, + "probability": 0.695 + }, + { + "start": 8427.26, + "end": 8431.4, + "probability": 0.7996 + }, + { + "start": 8431.6, + "end": 8433.3, + "probability": 0.8853 + }, + { + "start": 8433.74, + "end": 8434.98, + "probability": 0.9792 + }, + { + "start": 8435.26, + "end": 8436.88, + "probability": 0.0319 + }, + { + "start": 8437.16, + "end": 8439.91, + "probability": 0.1871 + }, + { + "start": 8441.26, + "end": 8443.54, + "probability": 0.5808 + }, + { + "start": 8443.66, + "end": 8446.82, + "probability": 0.8091 + }, + { + "start": 8446.82, + "end": 8446.9, + "probability": 0.7679 + }, + { + "start": 8446.92, + "end": 8451.54, + "probability": 0.7633 + }, + { + "start": 8451.7, + "end": 8455.26, + "probability": 0.9312 + }, + { + "start": 8456.04, + "end": 8463.58, + "probability": 0.8347 + }, + { + "start": 8464.5, + "end": 8468.42, + "probability": 0.9611 + }, + { + "start": 8469.52, + "end": 8470.02, + "probability": 0.7794 + }, + { + "start": 8470.66, + "end": 8473.24, + "probability": 0.7877 + }, + { + "start": 8474.66, + "end": 8475.56, + "probability": 0.6903 + }, + { + "start": 8475.76, + "end": 8476.18, + "probability": 0.8717 + }, + { + "start": 8476.2, + "end": 8480.56, + "probability": 0.853 + }, + { + "start": 8480.66, + "end": 8481.84, + "probability": 0.7952 + }, + { + "start": 8482.24, + "end": 8484.18, + "probability": 0.9237 + }, + { + "start": 8484.32, + "end": 8484.7, + "probability": 0.9443 + }, + { + "start": 8484.78, + "end": 8485.7, + "probability": 0.9094 + }, + { + "start": 8486.1, + "end": 8486.42, + "probability": 0.9279 + }, + { + "start": 8486.92, + "end": 8487.36, + "probability": 0.5575 + }, + { + "start": 8487.38, + "end": 8489.82, + "probability": 0.959 + }, + { + "start": 8490.26, + "end": 8491.23, + "probability": 0.6328 + }, + { + "start": 8492.91, + "end": 8496.36, + "probability": 0.8838 + }, + { + "start": 8498.58, + "end": 8500.9, + "probability": 0.8662 + }, + { + "start": 8502.1, + "end": 8503.17, + "probability": 0.8398 + }, + { + "start": 8503.92, + "end": 8507.26, + "probability": 0.949 + }, + { + "start": 8509.44, + "end": 8513.32, + "probability": 0.7677 + }, + { + "start": 8514.3, + "end": 8515.95, + "probability": 0.9933 + }, + { + "start": 8517.24, + "end": 8522.66, + "probability": 0.9288 + }, + { + "start": 8523.3, + "end": 8524.02, + "probability": 0.8008 + }, + { + "start": 8524.54, + "end": 8530.68, + "probability": 0.9981 + }, + { + "start": 8531.22, + "end": 8533.08, + "probability": 0.6851 + }, + { + "start": 8533.48, + "end": 8537.1, + "probability": 0.8282 + }, + { + "start": 8537.64, + "end": 8539.84, + "probability": 0.7855 + }, + { + "start": 8540.16, + "end": 8540.8, + "probability": 0.6282 + }, + { + "start": 8540.9, + "end": 8541.46, + "probability": 0.738 + }, + { + "start": 8541.46, + "end": 8542.36, + "probability": 0.8427 + }, + { + "start": 8555.64, + "end": 8557.84, + "probability": 0.6308 + }, + { + "start": 8557.84, + "end": 8558.38, + "probability": 0.2823 + }, + { + "start": 8558.38, + "end": 8560.75, + "probability": 0.4393 + }, + { + "start": 8561.22, + "end": 8565.26, + "probability": 0.9468 + }, + { + "start": 8566.98, + "end": 8573.0, + "probability": 0.8918 + }, + { + "start": 8573.68, + "end": 8575.28, + "probability": 0.3493 + }, + { + "start": 8576.04, + "end": 8579.72, + "probability": 0.9263 + }, + { + "start": 8579.84, + "end": 8583.11, + "probability": 0.6027 + }, + { + "start": 8584.26, + "end": 8585.22, + "probability": 0.5478 + }, + { + "start": 8585.6, + "end": 8585.74, + "probability": 0.0904 + }, + { + "start": 8585.74, + "end": 8586.12, + "probability": 0.2189 + }, + { + "start": 8586.12, + "end": 8586.92, + "probability": 0.2775 + }, + { + "start": 8589.5, + "end": 8590.16, + "probability": 0.2123 + }, + { + "start": 8591.32, + "end": 8594.46, + "probability": 0.0299 + }, + { + "start": 8595.64, + "end": 8597.16, + "probability": 0.1029 + }, + { + "start": 8600.54, + "end": 8606.28, + "probability": 0.6849 + }, + { + "start": 8606.46, + "end": 8607.8, + "probability": 0.5672 + }, + { + "start": 8608.08, + "end": 8609.2, + "probability": 0.5267 + }, + { + "start": 8609.56, + "end": 8611.98, + "probability": 0.732 + }, + { + "start": 8612.88, + "end": 8614.6, + "probability": 0.7961 + }, + { + "start": 8615.3, + "end": 8616.52, + "probability": 0.7872 + }, + { + "start": 8617.48, + "end": 8619.7, + "probability": 0.1068 + }, + { + "start": 8620.0, + "end": 8623.24, + "probability": 0.478 + }, + { + "start": 8623.4, + "end": 8626.72, + "probability": 0.8454 + }, + { + "start": 8626.72, + "end": 8631.8, + "probability": 0.9304 + }, + { + "start": 8631.88, + "end": 8632.92, + "probability": 0.8746 + }, + { + "start": 8633.38, + "end": 8637.56, + "probability": 0.8509 + }, + { + "start": 8638.02, + "end": 8640.37, + "probability": 0.8201 + }, + { + "start": 8640.62, + "end": 8642.12, + "probability": 0.0874 + }, + { + "start": 8642.12, + "end": 8642.52, + "probability": 0.1753 + }, + { + "start": 8642.52, + "end": 8643.36, + "probability": 0.2182 + }, + { + "start": 8643.36, + "end": 8644.38, + "probability": 0.3194 + }, + { + "start": 8657.08, + "end": 8661.4, + "probability": 0.0273 + }, + { + "start": 8661.44, + "end": 8664.24, + "probability": 0.1908 + }, + { + "start": 8664.26, + "end": 8666.76, + "probability": 0.378 + }, + { + "start": 8666.76, + "end": 8672.92, + "probability": 0.2827 + }, + { + "start": 8673.46, + "end": 8677.04, + "probability": 0.796 + }, + { + "start": 8678.0, + "end": 8680.88, + "probability": 0.9067 + }, + { + "start": 8681.44, + "end": 8685.64, + "probability": 0.9401 + }, + { + "start": 8685.68, + "end": 8689.82, + "probability": 0.879 + }, + { + "start": 8690.28, + "end": 8691.74, + "probability": 0.7146 + }, + { + "start": 8693.06, + "end": 8695.21, + "probability": 0.3811 + }, + { + "start": 8695.84, + "end": 8696.34, + "probability": 0.0342 + }, + { + "start": 8696.5, + "end": 8697.58, + "probability": 0.464 + }, + { + "start": 8697.8, + "end": 8698.74, + "probability": 0.5418 + }, + { + "start": 8698.88, + "end": 8701.88, + "probability": 0.3594 + }, + { + "start": 8702.36, + "end": 8706.08, + "probability": 0.2261 + }, + { + "start": 8706.08, + "end": 8711.38, + "probability": 0.9009 + }, + { + "start": 8712.28, + "end": 8713.8, + "probability": 0.0244 + }, + { + "start": 8714.5, + "end": 8716.2, + "probability": 0.0187 + }, + { + "start": 8716.42, + "end": 8717.46, + "probability": 0.0699 + }, + { + "start": 8717.46, + "end": 8717.95, + "probability": 0.0097 + }, + { + "start": 8718.02, + "end": 8718.02, + "probability": 0.4204 + }, + { + "start": 8718.02, + "end": 8720.44, + "probability": 0.3138 + }, + { + "start": 8723.12, + "end": 8723.3, + "probability": 0.011 + }, + { + "start": 8723.3, + "end": 8723.3, + "probability": 0.0805 + }, + { + "start": 8723.3, + "end": 8725.13, + "probability": 0.3129 + }, + { + "start": 8725.42, + "end": 8728.44, + "probability": 0.8787 + }, + { + "start": 8729.02, + "end": 8729.65, + "probability": 0.8944 + }, + { + "start": 8731.46, + "end": 8736.3, + "probability": 0.8398 + }, + { + "start": 8736.42, + "end": 8737.96, + "probability": 0.8844 + }, + { + "start": 8738.4, + "end": 8741.96, + "probability": 0.9508 + }, + { + "start": 8742.82, + "end": 8745.52, + "probability": 0.8079 + }, + { + "start": 8745.9, + "end": 8748.7, + "probability": 0.8498 + }, + { + "start": 8749.42, + "end": 8749.84, + "probability": 0.6064 + }, + { + "start": 8751.64, + "end": 8756.4, + "probability": 0.8604 + }, + { + "start": 8756.44, + "end": 8757.22, + "probability": 0.6711 + }, + { + "start": 8757.7, + "end": 8758.3, + "probability": 0.6617 + }, + { + "start": 8758.78, + "end": 8760.22, + "probability": 0.7553 + }, + { + "start": 8760.3, + "end": 8761.18, + "probability": 0.8518 + }, + { + "start": 8761.34, + "end": 8762.5, + "probability": 0.8049 + }, + { + "start": 8762.64, + "end": 8763.4, + "probability": 0.8606 + }, + { + "start": 8763.64, + "end": 8765.18, + "probability": 0.5808 + }, + { + "start": 8765.42, + "end": 8766.06, + "probability": 0.9273 + }, + { + "start": 8766.62, + "end": 8769.14, + "probability": 0.9154 + }, + { + "start": 8771.78, + "end": 8777.98, + "probability": 0.8374 + }, + { + "start": 8778.8, + "end": 8780.84, + "probability": 0.9249 + }, + { + "start": 8780.9, + "end": 8782.94, + "probability": 0.7376 + }, + { + "start": 8783.02, + "end": 8783.78, + "probability": 0.6813 + }, + { + "start": 8783.92, + "end": 8786.22, + "probability": 0.8496 + }, + { + "start": 8786.28, + "end": 8786.46, + "probability": 0.5152 + }, + { + "start": 8787.98, + "end": 8789.34, + "probability": 0.1779 + }, + { + "start": 8790.86, + "end": 8796.1, + "probability": 0.1984 + }, + { + "start": 8796.66, + "end": 8799.56, + "probability": 0.3959 + }, + { + "start": 8799.56, + "end": 8802.76, + "probability": 0.6968 + }, + { + "start": 8802.88, + "end": 8803.88, + "probability": 0.6694 + }, + { + "start": 8804.2, + "end": 8811.06, + "probability": 0.9902 + }, + { + "start": 8811.58, + "end": 8815.46, + "probability": 0.9956 + }, + { + "start": 8815.96, + "end": 8817.68, + "probability": 0.9359 + }, + { + "start": 8818.14, + "end": 8818.8, + "probability": 0.6608 + }, + { + "start": 8818.94, + "end": 8822.26, + "probability": 0.7961 + }, + { + "start": 8822.78, + "end": 8826.7, + "probability": 0.5668 + }, + { + "start": 8827.6, + "end": 8829.18, + "probability": 0.899 + }, + { + "start": 8829.98, + "end": 8831.6, + "probability": 0.7805 + }, + { + "start": 8832.22, + "end": 8834.34, + "probability": 0.975 + }, + { + "start": 8834.94, + "end": 8836.58, + "probability": 0.801 + }, + { + "start": 8837.66, + "end": 8842.86, + "probability": 0.8158 + }, + { + "start": 8843.78, + "end": 8845.44, + "probability": 0.9834 + }, + { + "start": 8847.28, + "end": 8853.4, + "probability": 0.9106 + }, + { + "start": 8853.68, + "end": 8856.8, + "probability": 0.3745 + }, + { + "start": 8856.98, + "end": 8857.24, + "probability": 0.0206 + }, + { + "start": 8857.24, + "end": 8860.88, + "probability": 0.8827 + }, + { + "start": 8861.04, + "end": 8862.78, + "probability": 0.6438 + }, + { + "start": 8863.18, + "end": 8864.76, + "probability": 0.9796 + }, + { + "start": 8866.94, + "end": 8868.58, + "probability": 0.2627 + }, + { + "start": 8868.58, + "end": 8868.58, + "probability": 0.5052 + }, + { + "start": 8868.62, + "end": 8871.14, + "probability": 0.8256 + }, + { + "start": 8871.52, + "end": 8872.92, + "probability": 0.9475 + }, + { + "start": 8872.96, + "end": 8874.2, + "probability": 0.6701 + }, + { + "start": 8875.16, + "end": 8879.0, + "probability": 0.9188 + }, + { + "start": 8879.76, + "end": 8882.61, + "probability": 0.97 + }, + { + "start": 8883.0, + "end": 8884.0, + "probability": 0.647 + }, + { + "start": 8886.66, + "end": 8887.26, + "probability": 0.8106 + }, + { + "start": 8889.96, + "end": 8890.82, + "probability": 0.3872 + }, + { + "start": 8891.68, + "end": 8892.18, + "probability": 0.5667 + }, + { + "start": 8892.36, + "end": 8896.0, + "probability": 0.9948 + }, + { + "start": 8896.0, + "end": 8896.92, + "probability": 0.8787 + }, + { + "start": 8897.5, + "end": 8898.76, + "probability": 0.9286 + }, + { + "start": 8899.7, + "end": 8900.86, + "probability": 0.897 + }, + { + "start": 8901.08, + "end": 8901.68, + "probability": 0.423 + }, + { + "start": 8902.68, + "end": 8903.16, + "probability": 0.87 + }, + { + "start": 8905.58, + "end": 8908.8, + "probability": 0.8306 + }, + { + "start": 8910.59, + "end": 8914.66, + "probability": 0.7821 + }, + { + "start": 8915.02, + "end": 8917.08, + "probability": 0.6789 + }, + { + "start": 8917.64, + "end": 8919.5, + "probability": 0.9814 + }, + { + "start": 8920.42, + "end": 8928.66, + "probability": 0.9777 + }, + { + "start": 8929.4, + "end": 8934.14, + "probability": 0.8057 + }, + { + "start": 8934.14, + "end": 8937.7, + "probability": 0.9982 + }, + { + "start": 8938.48, + "end": 8939.86, + "probability": 0.8983 + }, + { + "start": 8940.02, + "end": 8945.5, + "probability": 0.8549 + }, + { + "start": 8946.68, + "end": 8948.48, + "probability": 0.9352 + }, + { + "start": 8949.08, + "end": 8951.38, + "probability": 0.7684 + }, + { + "start": 8951.94, + "end": 8952.86, + "probability": 0.5672 + }, + { + "start": 8952.86, + "end": 8958.06, + "probability": 0.9319 + }, + { + "start": 8958.16, + "end": 8958.84, + "probability": 0.8853 + }, + { + "start": 8959.0, + "end": 8960.54, + "probability": 0.744 + }, + { + "start": 8961.22, + "end": 8964.22, + "probability": 0.958 + }, + { + "start": 8966.22, + "end": 8972.22, + "probability": 0.7986 + }, + { + "start": 8972.6, + "end": 8973.88, + "probability": 0.8115 + }, + { + "start": 8976.86, + "end": 8978.22, + "probability": 0.0942 + }, + { + "start": 8979.7, + "end": 8984.74, + "probability": 0.9142 + }, + { + "start": 8986.34, + "end": 8989.3, + "probability": 0.958 + }, + { + "start": 8991.18, + "end": 8991.9, + "probability": 0.686 + }, + { + "start": 8992.02, + "end": 8997.94, + "probability": 0.5386 + }, + { + "start": 8998.82, + "end": 9001.98, + "probability": 0.7438 + }, + { + "start": 9003.08, + "end": 9003.6, + "probability": 0.4008 + }, + { + "start": 9004.44, + "end": 9006.47, + "probability": 0.7494 + }, + { + "start": 9007.7, + "end": 9008.74, + "probability": 0.7328 + }, + { + "start": 9009.88, + "end": 9017.5, + "probability": 0.8523 + }, + { + "start": 9017.86, + "end": 9022.82, + "probability": 0.6524 + }, + { + "start": 9022.82, + "end": 9030.3, + "probability": 0.8328 + }, + { + "start": 9031.08, + "end": 9033.72, + "probability": 0.7845 + }, + { + "start": 9034.22, + "end": 9040.2, + "probability": 0.7211 + }, + { + "start": 9040.98, + "end": 9046.16, + "probability": 0.9934 + }, + { + "start": 9046.74, + "end": 9049.96, + "probability": 0.7798 + }, + { + "start": 9050.08, + "end": 9051.78, + "probability": 0.9431 + }, + { + "start": 9052.18, + "end": 9056.28, + "probability": 0.7841 + }, + { + "start": 9056.88, + "end": 9058.68, + "probability": 0.9805 + }, + { + "start": 9060.16, + "end": 9062.32, + "probability": 0.324 + }, + { + "start": 9069.3, + "end": 9071.32, + "probability": 0.5177 + }, + { + "start": 9071.9, + "end": 9075.46, + "probability": 0.8061 + }, + { + "start": 9076.0, + "end": 9080.44, + "probability": 0.8491 + }, + { + "start": 9081.66, + "end": 9083.84, + "probability": 0.7242 + }, + { + "start": 9083.98, + "end": 9084.44, + "probability": 0.5238 + }, + { + "start": 9084.48, + "end": 9089.12, + "probability": 0.885 + }, + { + "start": 9089.92, + "end": 9090.7, + "probability": 0.8711 + }, + { + "start": 9092.44, + "end": 9095.94, + "probability": 0.5977 + }, + { + "start": 9096.24, + "end": 9099.58, + "probability": 0.9927 + }, + { + "start": 9101.36, + "end": 9105.06, + "probability": 0.9961 + }, + { + "start": 9105.66, + "end": 9107.9, + "probability": 0.9196 + }, + { + "start": 9108.6, + "end": 9110.04, + "probability": 0.7126 + }, + { + "start": 9110.7, + "end": 9113.24, + "probability": 0.835 + }, + { + "start": 9114.52, + "end": 9119.98, + "probability": 0.9512 + }, + { + "start": 9120.14, + "end": 9120.46, + "probability": 0.5621 + }, + { + "start": 9120.64, + "end": 9121.2, + "probability": 0.6517 + }, + { + "start": 9121.72, + "end": 9125.84, + "probability": 0.7709 + }, + { + "start": 9126.88, + "end": 9127.98, + "probability": 0.6643 + }, + { + "start": 9128.04, + "end": 9131.02, + "probability": 0.9871 + }, + { + "start": 9132.16, + "end": 9135.28, + "probability": 0.8457 + }, + { + "start": 9136.54, + "end": 9138.58, + "probability": 0.8906 + }, + { + "start": 9139.26, + "end": 9142.5, + "probability": 0.8483 + }, + { + "start": 9143.16, + "end": 9146.12, + "probability": 0.7799 + }, + { + "start": 9146.76, + "end": 9148.26, + "probability": 0.9172 + }, + { + "start": 9148.6, + "end": 9148.94, + "probability": 0.766 + }, + { + "start": 9149.16, + "end": 9151.76, + "probability": 0.9749 + }, + { + "start": 9152.4, + "end": 9159.26, + "probability": 0.6539 + }, + { + "start": 9162.26, + "end": 9165.3, + "probability": 0.8188 + }, + { + "start": 9165.5, + "end": 9167.64, + "probability": 0.9893 + }, + { + "start": 9193.56, + "end": 9193.88, + "probability": 0.3806 + }, + { + "start": 9193.88, + "end": 9194.78, + "probability": 0.4834 + }, + { + "start": 9194.86, + "end": 9196.27, + "probability": 0.8855 + }, + { + "start": 9196.9, + "end": 9197.38, + "probability": 0.955 + }, + { + "start": 9199.54, + "end": 9200.38, + "probability": 0.4353 + }, + { + "start": 9201.41, + "end": 9205.7, + "probability": 0.7632 + }, + { + "start": 9208.06, + "end": 9213.2, + "probability": 0.8154 + }, + { + "start": 9213.94, + "end": 9216.28, + "probability": 0.9143 + }, + { + "start": 9217.38, + "end": 9219.06, + "probability": 0.9629 + }, + { + "start": 9219.8, + "end": 9222.52, + "probability": 0.9196 + }, + { + "start": 9223.88, + "end": 9226.46, + "probability": 0.8942 + }, + { + "start": 9227.42, + "end": 9231.02, + "probability": 0.933 + }, + { + "start": 9231.72, + "end": 9234.09, + "probability": 0.9958 + }, + { + "start": 9235.94, + "end": 9237.27, + "probability": 0.7591 + }, + { + "start": 9237.74, + "end": 9238.58, + "probability": 0.3337 + }, + { + "start": 9238.6, + "end": 9239.48, + "probability": 0.8778 + }, + { + "start": 9241.4, + "end": 9246.2, + "probability": 0.9888 + }, + { + "start": 9247.84, + "end": 9249.8, + "probability": 0.9011 + }, + { + "start": 9250.7, + "end": 9252.98, + "probability": 0.8423 + }, + { + "start": 9253.6, + "end": 9254.74, + "probability": 0.9783 + }, + { + "start": 9255.34, + "end": 9257.75, + "probability": 0.9927 + }, + { + "start": 9258.96, + "end": 9264.56, + "probability": 0.9915 + }, + { + "start": 9265.18, + "end": 9266.48, + "probability": 0.5054 + }, + { + "start": 9266.68, + "end": 9268.36, + "probability": 0.8143 + }, + { + "start": 9269.02, + "end": 9270.3, + "probability": 0.9849 + }, + { + "start": 9271.73, + "end": 9275.54, + "probability": 0.7914 + }, + { + "start": 9276.34, + "end": 9277.3, + "probability": 0.8627 + }, + { + "start": 9277.44, + "end": 9280.02, + "probability": 0.9819 + }, + { + "start": 9280.74, + "end": 9282.36, + "probability": 0.9871 + }, + { + "start": 9282.56, + "end": 9286.56, + "probability": 0.7526 + }, + { + "start": 9287.34, + "end": 9291.94, + "probability": 0.9974 + }, + { + "start": 9292.18, + "end": 9293.82, + "probability": 0.9817 + }, + { + "start": 9295.18, + "end": 9298.38, + "probability": 0.681 + }, + { + "start": 9300.42, + "end": 9303.68, + "probability": 0.6085 + }, + { + "start": 9305.42, + "end": 9307.4, + "probability": 0.093 + }, + { + "start": 9308.82, + "end": 9311.9, + "probability": 0.896 + }, + { + "start": 9312.88, + "end": 9316.3, + "probability": 0.8633 + }, + { + "start": 9316.94, + "end": 9319.2, + "probability": 0.9967 + }, + { + "start": 9319.78, + "end": 9320.24, + "probability": 0.4792 + }, + { + "start": 9320.82, + "end": 9321.82, + "probability": 0.8687 + }, + { + "start": 9322.94, + "end": 9325.1, + "probability": 0.9807 + }, + { + "start": 9325.24, + "end": 9326.48, + "probability": 0.7647 + }, + { + "start": 9326.58, + "end": 9328.62, + "probability": 0.8066 + }, + { + "start": 9328.94, + "end": 9330.9, + "probability": 0.7553 + }, + { + "start": 9331.6, + "end": 9336.5, + "probability": 0.9885 + }, + { + "start": 9337.44, + "end": 9340.1, + "probability": 0.7971 + }, + { + "start": 9341.66, + "end": 9344.82, + "probability": 0.6706 + }, + { + "start": 9344.88, + "end": 9345.95, + "probability": 0.8677 + }, + { + "start": 9346.5, + "end": 9347.44, + "probability": 0.9719 + }, + { + "start": 9348.82, + "end": 9351.62, + "probability": 0.7594 + }, + { + "start": 9351.7, + "end": 9354.82, + "probability": 0.9406 + }, + { + "start": 9356.14, + "end": 9357.04, + "probability": 0.7822 + }, + { + "start": 9358.9, + "end": 9360.2, + "probability": 0.8382 + }, + { + "start": 9361.28, + "end": 9362.72, + "probability": 0.7525 + }, + { + "start": 9362.8, + "end": 9364.28, + "probability": 0.9766 + }, + { + "start": 9366.14, + "end": 9366.72, + "probability": 0.4887 + }, + { + "start": 9367.7, + "end": 9371.64, + "probability": 0.9391 + }, + { + "start": 9371.8, + "end": 9372.72, + "probability": 0.7382 + }, + { + "start": 9372.78, + "end": 9375.5, + "probability": 0.939 + }, + { + "start": 9375.5, + "end": 9375.92, + "probability": 0.9105 + }, + { + "start": 9375.98, + "end": 9376.72, + "probability": 0.4823 + }, + { + "start": 9378.08, + "end": 9379.76, + "probability": 0.7349 + }, + { + "start": 9379.88, + "end": 9382.5, + "probability": 0.6626 + }, + { + "start": 9383.2, + "end": 9384.38, + "probability": 0.8018 + }, + { + "start": 9385.54, + "end": 9389.12, + "probability": 0.856 + }, + { + "start": 9389.2, + "end": 9389.76, + "probability": 0.9313 + }, + { + "start": 9389.82, + "end": 9392.7, + "probability": 0.9661 + }, + { + "start": 9393.8, + "end": 9396.94, + "probability": 0.7173 + }, + { + "start": 9398.74, + "end": 9401.81, + "probability": 0.9989 + }, + { + "start": 9402.76, + "end": 9404.06, + "probability": 0.9929 + }, + { + "start": 9404.18, + "end": 9406.36, + "probability": 0.9863 + }, + { + "start": 9406.56, + "end": 9407.52, + "probability": 0.7003 + }, + { + "start": 9407.68, + "end": 9408.32, + "probability": 0.7012 + }, + { + "start": 9408.48, + "end": 9409.74, + "probability": 0.5258 + }, + { + "start": 9410.44, + "end": 9412.17, + "probability": 0.9086 + }, + { + "start": 9413.0, + "end": 9416.1, + "probability": 0.9945 + }, + { + "start": 9416.88, + "end": 9418.01, + "probability": 0.9323 + }, + { + "start": 9419.34, + "end": 9421.2, + "probability": 0.9798 + }, + { + "start": 9422.62, + "end": 9425.18, + "probability": 0.9961 + }, + { + "start": 9426.64, + "end": 9428.06, + "probability": 0.988 + }, + { + "start": 9428.14, + "end": 9429.12, + "probability": 0.8007 + }, + { + "start": 9429.24, + "end": 9429.44, + "probability": 0.5812 + }, + { + "start": 9430.1, + "end": 9435.06, + "probability": 0.9939 + }, + { + "start": 9435.78, + "end": 9437.28, + "probability": 0.9678 + }, + { + "start": 9438.06, + "end": 9439.54, + "probability": 0.9926 + }, + { + "start": 9440.56, + "end": 9441.78, + "probability": 0.9912 + }, + { + "start": 9442.84, + "end": 9444.9, + "probability": 0.9988 + }, + { + "start": 9445.14, + "end": 9449.48, + "probability": 0.9134 + }, + { + "start": 9450.92, + "end": 9457.4, + "probability": 0.9961 + }, + { + "start": 9459.44, + "end": 9461.52, + "probability": 0.9347 + }, + { + "start": 9462.58, + "end": 9463.64, + "probability": 0.6797 + }, + { + "start": 9464.42, + "end": 9467.36, + "probability": 0.8836 + }, + { + "start": 9468.08, + "end": 9470.66, + "probability": 0.9146 + }, + { + "start": 9471.48, + "end": 9472.5, + "probability": 0.8761 + }, + { + "start": 9473.44, + "end": 9475.54, + "probability": 0.9868 + }, + { + "start": 9476.52, + "end": 9479.0, + "probability": 0.9592 + }, + { + "start": 9480.1, + "end": 9483.68, + "probability": 0.909 + }, + { + "start": 9484.18, + "end": 9485.96, + "probability": 0.9989 + }, + { + "start": 9487.06, + "end": 9489.04, + "probability": 0.986 + }, + { + "start": 9490.28, + "end": 9490.56, + "probability": 0.2909 + }, + { + "start": 9490.88, + "end": 9491.38, + "probability": 0.8569 + }, + { + "start": 9491.72, + "end": 9492.5, + "probability": 0.7754 + }, + { + "start": 9492.72, + "end": 9495.28, + "probability": 0.9795 + }, + { + "start": 9497.06, + "end": 9499.65, + "probability": 0.6972 + }, + { + "start": 9499.78, + "end": 9501.84, + "probability": 0.159 + }, + { + "start": 9501.84, + "end": 9504.82, + "probability": 0.8636 + }, + { + "start": 9505.62, + "end": 9506.84, + "probability": 0.98 + }, + { + "start": 9507.26, + "end": 9509.9, + "probability": 0.9255 + }, + { + "start": 9510.04, + "end": 9511.72, + "probability": 0.9695 + }, + { + "start": 9511.78, + "end": 9513.12, + "probability": 0.8503 + }, + { + "start": 9513.74, + "end": 9514.22, + "probability": 0.5451 + }, + { + "start": 9514.22, + "end": 9516.83, + "probability": 0.9358 + }, + { + "start": 9517.16, + "end": 9518.72, + "probability": 0.9672 + }, + { + "start": 9519.54, + "end": 9522.12, + "probability": 0.9962 + }, + { + "start": 9523.9, + "end": 9526.96, + "probability": 0.4991 + }, + { + "start": 9527.98, + "end": 9531.42, + "probability": 0.643 + }, + { + "start": 9531.74, + "end": 9532.4, + "probability": 0.8598 + }, + { + "start": 9532.94, + "end": 9535.64, + "probability": 0.7854 + }, + { + "start": 9537.7, + "end": 9538.61, + "probability": 0.8507 + }, + { + "start": 9542.76, + "end": 9544.86, + "probability": 0.7522 + }, + { + "start": 9547.02, + "end": 9550.04, + "probability": 0.9064 + }, + { + "start": 9551.46, + "end": 9555.36, + "probability": 0.629 + }, + { + "start": 9558.84, + "end": 9564.54, + "probability": 0.9765 + }, + { + "start": 9564.54, + "end": 9567.6, + "probability": 0.9973 + }, + { + "start": 9568.72, + "end": 9572.06, + "probability": 0.7589 + }, + { + "start": 9573.5, + "end": 9578.02, + "probability": 0.9257 + }, + { + "start": 9578.26, + "end": 9580.04, + "probability": 0.6275 + }, + { + "start": 9580.24, + "end": 9580.38, + "probability": 0.9463 + }, + { + "start": 9580.9, + "end": 9585.34, + "probability": 0.958 + }, + { + "start": 9585.96, + "end": 9586.9, + "probability": 0.917 + }, + { + "start": 9588.4, + "end": 9589.76, + "probability": 0.7269 + }, + { + "start": 9592.4, + "end": 9593.46, + "probability": 0.7232 + }, + { + "start": 9593.98, + "end": 9595.64, + "probability": 0.7316 + }, + { + "start": 9597.0, + "end": 9599.88, + "probability": 0.9675 + }, + { + "start": 9602.16, + "end": 9604.64, + "probability": 0.9184 + }, + { + "start": 9605.08, + "end": 9607.98, + "probability": 0.9815 + }, + { + "start": 9608.12, + "end": 9608.6, + "probability": 0.004 + }, + { + "start": 9609.14, + "end": 9611.6, + "probability": 0.7545 + }, + { + "start": 9611.72, + "end": 9613.24, + "probability": 0.8713 + }, + { + "start": 9614.88, + "end": 9618.92, + "probability": 0.8691 + }, + { + "start": 9619.54, + "end": 9622.44, + "probability": 0.4087 + }, + { + "start": 9625.32, + "end": 9626.88, + "probability": 0.7713 + }, + { + "start": 9626.94, + "end": 9628.46, + "probability": 0.9956 + }, + { + "start": 9629.86, + "end": 9631.52, + "probability": 0.991 + }, + { + "start": 9632.1, + "end": 9633.12, + "probability": 0.962 + }, + { + "start": 9635.46, + "end": 9639.7, + "probability": 0.9602 + }, + { + "start": 9641.12, + "end": 9645.9, + "probability": 0.7564 + }, + { + "start": 9646.94, + "end": 9649.7, + "probability": 0.8728 + }, + { + "start": 9649.84, + "end": 9651.38, + "probability": 0.8018 + }, + { + "start": 9651.8, + "end": 9654.88, + "probability": 0.9854 + }, + { + "start": 9654.88, + "end": 9657.8, + "probability": 0.8781 + }, + { + "start": 9658.02, + "end": 9660.54, + "probability": 0.9061 + }, + { + "start": 9661.52, + "end": 9665.01, + "probability": 0.862 + }, + { + "start": 9666.64, + "end": 9669.2, + "probability": 0.9859 + }, + { + "start": 9672.74, + "end": 9673.44, + "probability": 0.6505 + }, + { + "start": 9675.16, + "end": 9679.5, + "probability": 0.9403 + }, + { + "start": 9681.52, + "end": 9681.92, + "probability": 0.7982 + }, + { + "start": 9681.94, + "end": 9682.7, + "probability": 0.9258 + }, + { + "start": 9683.08, + "end": 9685.38, + "probability": 0.9519 + }, + { + "start": 9685.64, + "end": 9688.82, + "probability": 0.7627 + }, + { + "start": 9688.94, + "end": 9690.54, + "probability": 0.9011 + }, + { + "start": 9694.12, + "end": 9701.76, + "probability": 0.6663 + }, + { + "start": 9702.58, + "end": 9705.58, + "probability": 0.893 + }, + { + "start": 9706.6, + "end": 9708.88, + "probability": 0.8859 + }, + { + "start": 9708.94, + "end": 9711.68, + "probability": 0.7394 + }, + { + "start": 9712.06, + "end": 9714.18, + "probability": 0.9548 + }, + { + "start": 9715.9, + "end": 9717.66, + "probability": 0.5379 + }, + { + "start": 9717.7, + "end": 9719.64, + "probability": 0.8624 + }, + { + "start": 9719.66, + "end": 9723.82, + "probability": 0.799 + }, + { + "start": 9725.82, + "end": 9730.58, + "probability": 0.8626 + }, + { + "start": 9731.24, + "end": 9733.78, + "probability": 0.9839 + }, + { + "start": 9734.38, + "end": 9737.56, + "probability": 0.9845 + }, + { + "start": 9737.9, + "end": 9740.86, + "probability": 0.9403 + }, + { + "start": 9740.96, + "end": 9742.46, + "probability": 0.9124 + }, + { + "start": 9744.14, + "end": 9749.82, + "probability": 0.7179 + }, + { + "start": 9753.58, + "end": 9754.68, + "probability": 0.7682 + }, + { + "start": 9754.78, + "end": 9760.36, + "probability": 0.9494 + }, + { + "start": 9761.22, + "end": 9764.1, + "probability": 0.6028 + }, + { + "start": 9764.22, + "end": 9764.96, + "probability": 0.7356 + }, + { + "start": 9765.12, + "end": 9768.96, + "probability": 0.646 + }, + { + "start": 9769.66, + "end": 9775.18, + "probability": 0.9459 + }, + { + "start": 9775.18, + "end": 9780.14, + "probability": 0.9591 + }, + { + "start": 9781.18, + "end": 9783.48, + "probability": 0.9863 + }, + { + "start": 9784.84, + "end": 9785.46, + "probability": 0.6115 + }, + { + "start": 9788.02, + "end": 9791.54, + "probability": 0.928 + }, + { + "start": 9792.34, + "end": 9792.78, + "probability": 0.7927 + }, + { + "start": 9793.72, + "end": 9797.21, + "probability": 0.8552 + }, + { + "start": 9797.9, + "end": 9801.02, + "probability": 0.3083 + }, + { + "start": 9801.56, + "end": 9802.26, + "probability": 0.805 + }, + { + "start": 9803.12, + "end": 9804.26, + "probability": 0.6025 + }, + { + "start": 9804.42, + "end": 9806.4, + "probability": 0.4122 + }, + { + "start": 9806.46, + "end": 9806.88, + "probability": 0.2888 + }, + { + "start": 9807.5, + "end": 9807.88, + "probability": 0.9678 + }, + { + "start": 9808.74, + "end": 9811.74, + "probability": 0.5184 + }, + { + "start": 9812.54, + "end": 9815.46, + "probability": 0.6003 + }, + { + "start": 9816.06, + "end": 9820.24, + "probability": 0.371 + }, + { + "start": 9820.28, + "end": 9822.14, + "probability": 0.8528 + }, + { + "start": 9822.2, + "end": 9822.7, + "probability": 0.7071 + }, + { + "start": 9822.82, + "end": 9824.24, + "probability": 0.6069 + }, + { + "start": 9824.46, + "end": 9826.98, + "probability": 0.1899 + }, + { + "start": 9827.5, + "end": 9827.66, + "probability": 0.0315 + }, + { + "start": 9827.66, + "end": 9827.66, + "probability": 0.0107 + }, + { + "start": 9827.66, + "end": 9829.98, + "probability": 0.61 + }, + { + "start": 9830.12, + "end": 9830.6, + "probability": 0.5964 + }, + { + "start": 9830.76, + "end": 9832.98, + "probability": 0.5784 + }, + { + "start": 9833.86, + "end": 9840.72, + "probability": 0.5264 + }, + { + "start": 9841.6, + "end": 9843.42, + "probability": 0.9983 + }, + { + "start": 9843.8, + "end": 9848.0, + "probability": 0.9499 + }, + { + "start": 9848.64, + "end": 9849.9, + "probability": 0.6052 + }, + { + "start": 9850.04, + "end": 9851.06, + "probability": 0.8123 + }, + { + "start": 9851.8, + "end": 9852.1, + "probability": 0.8589 + }, + { + "start": 9852.98, + "end": 9859.04, + "probability": 0.981 + }, + { + "start": 9859.5, + "end": 9863.74, + "probability": 0.9742 + }, + { + "start": 9864.54, + "end": 9866.36, + "probability": 0.6704 + }, + { + "start": 9866.86, + "end": 9867.84, + "probability": 0.9637 + }, + { + "start": 9867.94, + "end": 9869.36, + "probability": 0.8879 + }, + { + "start": 9871.2, + "end": 9872.2, + "probability": 0.9846 + }, + { + "start": 9872.78, + "end": 9877.64, + "probability": 0.6899 + }, + { + "start": 9879.08, + "end": 9880.64, + "probability": 0.9819 + }, + { + "start": 9882.04, + "end": 9882.5, + "probability": 0.6093 + }, + { + "start": 9882.64, + "end": 9884.9, + "probability": 0.7746 + }, + { + "start": 9886.0, + "end": 9887.28, + "probability": 0.8938 + }, + { + "start": 9887.4, + "end": 9889.16, + "probability": 0.9827 + }, + { + "start": 9890.36, + "end": 9895.5, + "probability": 0.8581 + }, + { + "start": 9897.32, + "end": 9899.5, + "probability": 0.9922 + }, + { + "start": 9900.78, + "end": 9905.08, + "probability": 0.8472 + }, + { + "start": 9906.98, + "end": 9907.58, + "probability": 0.5792 + }, + { + "start": 9907.66, + "end": 9910.02, + "probability": 0.7341 + }, + { + "start": 9910.06, + "end": 9912.2, + "probability": 0.5979 + }, + { + "start": 9912.46, + "end": 9913.9, + "probability": 0.9595 + }, + { + "start": 9914.38, + "end": 9917.02, + "probability": 0.7622 + }, + { + "start": 9921.48, + "end": 9923.18, + "probability": 0.9504 + }, + { + "start": 9923.18, + "end": 9925.96, + "probability": 0.7176 + }, + { + "start": 9926.54, + "end": 9929.74, + "probability": 0.7759 + }, + { + "start": 9930.38, + "end": 9933.14, + "probability": 0.991 + }, + { + "start": 9933.82, + "end": 9938.16, + "probability": 0.8049 + }, + { + "start": 9940.38, + "end": 9941.94, + "probability": 0.8235 + }, + { + "start": 9942.82, + "end": 9945.96, + "probability": 0.9616 + }, + { + "start": 9947.74, + "end": 9949.38, + "probability": 0.8699 + }, + { + "start": 9950.52, + "end": 9951.76, + "probability": 0.7176 + }, + { + "start": 9951.9, + "end": 9953.9, + "probability": 0.9083 + }, + { + "start": 9957.18, + "end": 9958.34, + "probability": 0.9772 + }, + { + "start": 9963.0, + "end": 9964.46, + "probability": 0.6147 + }, + { + "start": 9965.14, + "end": 9966.7, + "probability": 0.9128 + }, + { + "start": 9969.06, + "end": 9970.96, + "probability": 0.9004 + }, + { + "start": 9973.6, + "end": 9975.74, + "probability": 0.9849 + }, + { + "start": 9975.94, + "end": 9977.5, + "probability": 0.9993 + }, + { + "start": 9978.42, + "end": 9980.94, + "probability": 0.7998 + }, + { + "start": 9981.62, + "end": 9982.63, + "probability": 0.7246 + }, + { + "start": 9984.2, + "end": 9990.84, + "probability": 0.7576 + }, + { + "start": 9990.84, + "end": 9995.72, + "probability": 0.9995 + }, + { + "start": 9997.66, + "end": 10001.86, + "probability": 0.9899 + }, + { + "start": 10002.46, + "end": 10004.04, + "probability": 0.9977 + }, + { + "start": 10004.86, + "end": 10006.78, + "probability": 0.9788 + }, + { + "start": 10007.84, + "end": 10012.6, + "probability": 0.9801 + }, + { + "start": 10013.72, + "end": 10015.1, + "probability": 0.7573 + }, + { + "start": 10017.2, + "end": 10021.3, + "probability": 0.9849 + }, + { + "start": 10024.6, + "end": 10026.48, + "probability": 0.9819 + }, + { + "start": 10028.2, + "end": 10029.24, + "probability": 0.6963 + }, + { + "start": 10029.28, + "end": 10029.74, + "probability": 0.7133 + }, + { + "start": 10029.78, + "end": 10032.04, + "probability": 0.639 + }, + { + "start": 10032.26, + "end": 10032.64, + "probability": 0.4943 + }, + { + "start": 10034.88, + "end": 10036.6, + "probability": 0.6811 + }, + { + "start": 10038.53, + "end": 10044.88, + "probability": 0.9967 + }, + { + "start": 10045.64, + "end": 10045.88, + "probability": 0.8578 + }, + { + "start": 10046.8, + "end": 10049.92, + "probability": 0.334 + }, + { + "start": 10051.67, + "end": 10055.48, + "probability": 0.7922 + }, + { + "start": 10055.48, + "end": 10058.58, + "probability": 0.8407 + }, + { + "start": 10060.48, + "end": 10062.06, + "probability": 0.6239 + }, + { + "start": 10062.16, + "end": 10063.48, + "probability": 0.7685 + }, + { + "start": 10065.7, + "end": 10070.0, + "probability": 0.9248 + }, + { + "start": 10070.72, + "end": 10073.45, + "probability": 0.9946 + }, + { + "start": 10073.64, + "end": 10077.94, + "probability": 0.9933 + }, + { + "start": 10080.38, + "end": 10083.16, + "probability": 0.9504 + }, + { + "start": 10084.12, + "end": 10087.04, + "probability": 0.9417 + }, + { + "start": 10087.44, + "end": 10088.7, + "probability": 0.8578 + }, + { + "start": 10088.9, + "end": 10090.0, + "probability": 0.9867 + }, + { + "start": 10091.14, + "end": 10093.58, + "probability": 0.7907 + }, + { + "start": 10094.32, + "end": 10095.32, + "probability": 0.6187 + }, + { + "start": 10096.16, + "end": 10099.56, + "probability": 0.6738 + }, + { + "start": 10100.24, + "end": 10100.9, + "probability": 0.8588 + }, + { + "start": 10101.82, + "end": 10102.78, + "probability": 0.6338 + }, + { + "start": 10104.34, + "end": 10111.38, + "probability": 0.9871 + }, + { + "start": 10111.5, + "end": 10114.32, + "probability": 0.979 + }, + { + "start": 10114.64, + "end": 10116.86, + "probability": 0.7852 + }, + { + "start": 10117.04, + "end": 10121.1, + "probability": 0.9832 + }, + { + "start": 10121.3, + "end": 10123.58, + "probability": 0.9141 + }, + { + "start": 10124.02, + "end": 10126.26, + "probability": 0.9512 + }, + { + "start": 10126.56, + "end": 10127.84, + "probability": 0.9671 + }, + { + "start": 10128.2, + "end": 10129.26, + "probability": 0.8054 + }, + { + "start": 10130.92, + "end": 10133.22, + "probability": 0.9991 + }, + { + "start": 10136.06, + "end": 10140.46, + "probability": 0.994 + }, + { + "start": 10140.54, + "end": 10145.42, + "probability": 0.9972 + }, + { + "start": 10146.36, + "end": 10150.36, + "probability": 0.9259 + }, + { + "start": 10151.26, + "end": 10152.86, + "probability": 0.9857 + }, + { + "start": 10153.58, + "end": 10160.3, + "probability": 0.8124 + }, + { + "start": 10161.08, + "end": 10162.26, + "probability": 0.8168 + }, + { + "start": 10163.0, + "end": 10164.02, + "probability": 0.4649 + }, + { + "start": 10164.48, + "end": 10164.48, + "probability": 0.707 + }, + { + "start": 10165.0, + "end": 10165.88, + "probability": 0.9591 + }, + { + "start": 10166.8, + "end": 10167.86, + "probability": 0.9979 + }, + { + "start": 10168.52, + "end": 10169.66, + "probability": 0.9492 + }, + { + "start": 10169.8, + "end": 10171.56, + "probability": 0.8357 + }, + { + "start": 10172.64, + "end": 10175.22, + "probability": 0.6946 + }, + { + "start": 10175.42, + "end": 10176.42, + "probability": 0.8857 + }, + { + "start": 10176.86, + "end": 10180.34, + "probability": 0.8542 + }, + { + "start": 10180.68, + "end": 10182.54, + "probability": 0.6927 + }, + { + "start": 10183.3, + "end": 10186.6, + "probability": 0.7317 + }, + { + "start": 10186.72, + "end": 10187.42, + "probability": 0.6983 + }, + { + "start": 10187.86, + "end": 10193.22, + "probability": 0.9812 + }, + { + "start": 10193.82, + "end": 10196.34, + "probability": 0.4597 + }, + { + "start": 10196.42, + "end": 10197.06, + "probability": 0.4009 + }, + { + "start": 10197.08, + "end": 10198.7, + "probability": 0.6705 + }, + { + "start": 10199.26, + "end": 10201.22, + "probability": 0.9126 + }, + { + "start": 10201.6, + "end": 10203.04, + "probability": 0.6578 + }, + { + "start": 10205.06, + "end": 10208.06, + "probability": 0.8882 + }, + { + "start": 10208.98, + "end": 10211.03, + "probability": 0.9001 + }, + { + "start": 10212.4, + "end": 10214.3, + "probability": 0.7878 + }, + { + "start": 10215.92, + "end": 10218.38, + "probability": 0.739 + }, + { + "start": 10219.92, + "end": 10227.84, + "probability": 0.8971 + }, + { + "start": 10230.14, + "end": 10231.34, + "probability": 0.9352 + }, + { + "start": 10232.0, + "end": 10236.48, + "probability": 0.9213 + }, + { + "start": 10238.46, + "end": 10239.66, + "probability": 0.8826 + }, + { + "start": 10240.26, + "end": 10241.88, + "probability": 0.9981 + }, + { + "start": 10242.56, + "end": 10246.06, + "probability": 0.9922 + }, + { + "start": 10246.16, + "end": 10249.88, + "probability": 0.8685 + }, + { + "start": 10250.94, + "end": 10252.2, + "probability": 0.689 + }, + { + "start": 10252.64, + "end": 10253.22, + "probability": 0.5628 + }, + { + "start": 10253.52, + "end": 10253.88, + "probability": 0.7012 + }, + { + "start": 10253.98, + "end": 10256.46, + "probability": 0.9072 + }, + { + "start": 10256.9, + "end": 10258.49, + "probability": 0.986 + }, + { + "start": 10259.56, + "end": 10262.22, + "probability": 0.9863 + }, + { + "start": 10263.18, + "end": 10264.76, + "probability": 0.9218 + }, + { + "start": 10266.0, + "end": 10274.2, + "probability": 0.9673 + }, + { + "start": 10274.9, + "end": 10275.84, + "probability": 0.4972 + }, + { + "start": 10276.44, + "end": 10278.48, + "probability": 0.7668 + }, + { + "start": 10279.18, + "end": 10282.1, + "probability": 0.8491 + }, + { + "start": 10282.66, + "end": 10285.9, + "probability": 0.9933 + }, + { + "start": 10286.04, + "end": 10290.66, + "probability": 0.9908 + }, + { + "start": 10291.04, + "end": 10294.26, + "probability": 0.9207 + }, + { + "start": 10295.5, + "end": 10301.34, + "probability": 0.9123 + }, + { + "start": 10302.1, + "end": 10306.66, + "probability": 0.9568 + }, + { + "start": 10307.66, + "end": 10310.14, + "probability": 0.8067 + }, + { + "start": 10310.78, + "end": 10316.62, + "probability": 0.9424 + }, + { + "start": 10316.62, + "end": 10317.56, + "probability": 0.7504 + }, + { + "start": 10317.8, + "end": 10319.66, + "probability": 0.9217 + }, + { + "start": 10320.32, + "end": 10321.7, + "probability": 0.8837 + }, + { + "start": 10322.1, + "end": 10326.94, + "probability": 0.9832 + }, + { + "start": 10327.5, + "end": 10332.48, + "probability": 0.9979 + }, + { + "start": 10333.06, + "end": 10335.22, + "probability": 0.974 + }, + { + "start": 10335.52, + "end": 10340.2, + "probability": 0.9653 + }, + { + "start": 10340.48, + "end": 10346.0, + "probability": 0.9493 + }, + { + "start": 10346.38, + "end": 10351.46, + "probability": 0.9986 + }, + { + "start": 10351.9, + "end": 10358.96, + "probability": 0.9964 + }, + { + "start": 10359.2, + "end": 10360.04, + "probability": 0.6221 + }, + { + "start": 10360.54, + "end": 10361.4, + "probability": 0.9987 + }, + { + "start": 10362.06, + "end": 10364.88, + "probability": 0.98 + }, + { + "start": 10365.32, + "end": 10370.9, + "probability": 0.9574 + }, + { + "start": 10371.58, + "end": 10382.04, + "probability": 0.9032 + }, + { + "start": 10382.66, + "end": 10389.46, + "probability": 0.7358 + }, + { + "start": 10390.06, + "end": 10395.46, + "probability": 0.9954 + }, + { + "start": 10396.3, + "end": 10398.42, + "probability": 0.9924 + }, + { + "start": 10399.12, + "end": 10403.12, + "probability": 0.9733 + }, + { + "start": 10403.44, + "end": 10406.14, + "probability": 0.972 + }, + { + "start": 10407.06, + "end": 10410.94, + "probability": 0.9977 + }, + { + "start": 10411.46, + "end": 10412.64, + "probability": 0.6752 + }, + { + "start": 10415.54, + "end": 10417.2, + "probability": 0.7397 + }, + { + "start": 10417.84, + "end": 10422.86, + "probability": 0.5642 + }, + { + "start": 10423.4, + "end": 10424.84, + "probability": 0.8223 + }, + { + "start": 10424.98, + "end": 10428.68, + "probability": 0.6865 + }, + { + "start": 10429.04, + "end": 10431.72, + "probability": 0.7175 + }, + { + "start": 10434.84, + "end": 10439.58, + "probability": 0.962 + }, + { + "start": 10440.06, + "end": 10446.92, + "probability": 0.9232 + }, + { + "start": 10447.14, + "end": 10448.18, + "probability": 0.8973 + }, + { + "start": 10448.38, + "end": 10456.16, + "probability": 0.9511 + }, + { + "start": 10456.42, + "end": 10458.58, + "probability": 0.8357 + }, + { + "start": 10459.12, + "end": 10461.88, + "probability": 0.959 + }, + { + "start": 10462.5, + "end": 10466.0, + "probability": 0.2358 + }, + { + "start": 10466.4, + "end": 10467.88, + "probability": 0.9552 + }, + { + "start": 10468.08, + "end": 10471.22, + "probability": 0.9722 + }, + { + "start": 10471.84, + "end": 10474.92, + "probability": 0.8671 + }, + { + "start": 10475.28, + "end": 10480.04, + "probability": 0.9863 + }, + { + "start": 10480.3, + "end": 10484.54, + "probability": 0.8604 + }, + { + "start": 10484.68, + "end": 10487.0, + "probability": 0.984 + }, + { + "start": 10487.2, + "end": 10493.78, + "probability": 0.8226 + }, + { + "start": 10493.78, + "end": 10498.42, + "probability": 0.9347 + }, + { + "start": 10498.48, + "end": 10504.08, + "probability": 0.9893 + }, + { + "start": 10504.44, + "end": 10508.94, + "probability": 0.9901 + }, + { + "start": 10509.48, + "end": 10512.94, + "probability": 0.8822 + }, + { + "start": 10513.5, + "end": 10517.36, + "probability": 0.9887 + }, + { + "start": 10517.56, + "end": 10519.44, + "probability": 0.6383 + }, + { + "start": 10519.88, + "end": 10525.54, + "probability": 0.9843 + }, + { + "start": 10526.04, + "end": 10531.76, + "probability": 0.9919 + }, + { + "start": 10531.9, + "end": 10532.14, + "probability": 0.8527 + }, + { + "start": 10532.38, + "end": 10532.66, + "probability": 0.5274 + }, + { + "start": 10532.72, + "end": 10535.1, + "probability": 0.7466 + }, + { + "start": 10536.76, + "end": 10538.58, + "probability": 0.5009 + }, + { + "start": 10546.58, + "end": 10546.72, + "probability": 0.0528 + }, + { + "start": 10546.72, + "end": 10546.84, + "probability": 0.0424 + }, + { + "start": 10567.86, + "end": 10569.16, + "probability": 0.376 + }, + { + "start": 10569.26, + "end": 10569.92, + "probability": 0.8771 + }, + { + "start": 10570.36, + "end": 10572.64, + "probability": 0.816 + }, + { + "start": 10573.74, + "end": 10578.28, + "probability": 0.9879 + }, + { + "start": 10578.86, + "end": 10587.64, + "probability": 0.8064 + }, + { + "start": 10588.88, + "end": 10590.2, + "probability": 0.9936 + }, + { + "start": 10590.82, + "end": 10594.12, + "probability": 0.9957 + }, + { + "start": 10594.12, + "end": 10596.09, + "probability": 0.7581 + }, + { + "start": 10596.9, + "end": 10598.16, + "probability": 0.423 + }, + { + "start": 10598.82, + "end": 10599.74, + "probability": 0.1724 + }, + { + "start": 10601.48, + "end": 10601.88, + "probability": 0.5318 + }, + { + "start": 10601.88, + "end": 10605.28, + "probability": 0.9482 + }, + { + "start": 10606.16, + "end": 10606.16, + "probability": 0.1835 + }, + { + "start": 10606.16, + "end": 10607.42, + "probability": 0.7899 + }, + { + "start": 10607.82, + "end": 10612.36, + "probability": 0.9882 + }, + { + "start": 10613.2, + "end": 10619.76, + "probability": 0.9821 + }, + { + "start": 10620.24, + "end": 10621.28, + "probability": 0.8719 + }, + { + "start": 10622.0, + "end": 10624.8, + "probability": 0.9531 + }, + { + "start": 10625.72, + "end": 10629.5, + "probability": 0.951 + }, + { + "start": 10629.98, + "end": 10631.32, + "probability": 0.6522 + }, + { + "start": 10632.14, + "end": 10638.06, + "probability": 0.9978 + }, + { + "start": 10638.06, + "end": 10645.42, + "probability": 0.9908 + }, + { + "start": 10646.2, + "end": 10648.5, + "probability": 0.9139 + }, + { + "start": 10649.14, + "end": 10652.66, + "probability": 0.9711 + }, + { + "start": 10654.52, + "end": 10655.4, + "probability": 0.8359 + }, + { + "start": 10656.34, + "end": 10660.86, + "probability": 0.9976 + }, + { + "start": 10661.38, + "end": 10662.14, + "probability": 0.6774 + }, + { + "start": 10663.3, + "end": 10668.2, + "probability": 0.9819 + }, + { + "start": 10669.2, + "end": 10672.54, + "probability": 0.9971 + }, + { + "start": 10672.54, + "end": 10675.78, + "probability": 0.9971 + }, + { + "start": 10676.52, + "end": 10677.78, + "probability": 0.9793 + }, + { + "start": 10679.04, + "end": 10679.78, + "probability": 0.4503 + }, + { + "start": 10680.46, + "end": 10682.08, + "probability": 0.9064 + }, + { + "start": 10682.62, + "end": 10683.86, + "probability": 0.8442 + }, + { + "start": 10685.42, + "end": 10686.74, + "probability": 0.6629 + }, + { + "start": 10687.42, + "end": 10695.84, + "probability": 0.9757 + }, + { + "start": 10696.8, + "end": 10700.44, + "probability": 0.9983 + }, + { + "start": 10700.44, + "end": 10704.7, + "probability": 0.9939 + }, + { + "start": 10705.6, + "end": 10717.58, + "probability": 0.9984 + }, + { + "start": 10718.32, + "end": 10720.18, + "probability": 0.9632 + }, + { + "start": 10722.44, + "end": 10723.8, + "probability": 0.8047 + }, + { + "start": 10725.38, + "end": 10731.46, + "probability": 0.9878 + }, + { + "start": 10732.64, + "end": 10735.3, + "probability": 0.7524 + }, + { + "start": 10735.9, + "end": 10739.06, + "probability": 0.9868 + }, + { + "start": 10740.32, + "end": 10742.44, + "probability": 0.8481 + }, + { + "start": 10743.44, + "end": 10750.31, + "probability": 0.9789 + }, + { + "start": 10750.82, + "end": 10756.06, + "probability": 0.9983 + }, + { + "start": 10756.2, + "end": 10758.92, + "probability": 0.9971 + }, + { + "start": 10758.92, + "end": 10762.8, + "probability": 0.9959 + }, + { + "start": 10764.02, + "end": 10767.02, + "probability": 0.9496 + }, + { + "start": 10768.18, + "end": 10769.28, + "probability": 0.6753 + }, + { + "start": 10769.36, + "end": 10772.9, + "probability": 0.9512 + }, + { + "start": 10772.9, + "end": 10777.88, + "probability": 0.9872 + }, + { + "start": 10778.76, + "end": 10781.08, + "probability": 0.8197 + }, + { + "start": 10782.3, + "end": 10786.5, + "probability": 0.9944 + }, + { + "start": 10787.38, + "end": 10789.1, + "probability": 0.8741 + }, + { + "start": 10790.02, + "end": 10794.98, + "probability": 0.973 + }, + { + "start": 10796.74, + "end": 10798.54, + "probability": 0.8928 + }, + { + "start": 10799.3, + "end": 10801.96, + "probability": 0.9838 + }, + { + "start": 10802.1, + "end": 10803.26, + "probability": 0.9827 + }, + { + "start": 10803.8, + "end": 10807.42, + "probability": 0.8806 + }, + { + "start": 10807.94, + "end": 10810.12, + "probability": 0.9966 + }, + { + "start": 10810.64, + "end": 10816.38, + "probability": 0.9895 + }, + { + "start": 10818.04, + "end": 10823.42, + "probability": 0.9969 + }, + { + "start": 10824.34, + "end": 10831.44, + "probability": 0.9947 + }, + { + "start": 10832.04, + "end": 10836.64, + "probability": 0.9984 + }, + { + "start": 10837.28, + "end": 10844.38, + "probability": 0.9956 + }, + { + "start": 10845.12, + "end": 10846.74, + "probability": 0.9503 + }, + { + "start": 10847.58, + "end": 10853.72, + "probability": 0.9961 + }, + { + "start": 10854.54, + "end": 10859.86, + "probability": 0.963 + }, + { + "start": 10860.54, + "end": 10861.28, + "probability": 0.6545 + }, + { + "start": 10861.88, + "end": 10864.42, + "probability": 0.9917 + }, + { + "start": 10864.42, + "end": 10869.4, + "probability": 0.8843 + }, + { + "start": 10870.14, + "end": 10874.36, + "probability": 0.9924 + }, + { + "start": 10875.62, + "end": 10878.64, + "probability": 0.9359 + }, + { + "start": 10879.42, + "end": 10880.06, + "probability": 0.7368 + }, + { + "start": 10880.86, + "end": 10883.86, + "probability": 0.9868 + }, + { + "start": 10884.36, + "end": 10885.41, + "probability": 0.9869 + }, + { + "start": 10886.06, + "end": 10886.94, + "probability": 0.9697 + }, + { + "start": 10887.82, + "end": 10889.27, + "probability": 0.9817 + }, + { + "start": 10890.1, + "end": 10892.28, + "probability": 0.9606 + }, + { + "start": 10892.72, + "end": 10893.94, + "probability": 0.7857 + }, + { + "start": 10894.9, + "end": 10897.95, + "probability": 0.9358 + }, + { + "start": 10898.2, + "end": 10898.66, + "probability": 0.8308 + }, + { + "start": 10899.66, + "end": 10902.22, + "probability": 0.6921 + }, + { + "start": 10902.78, + "end": 10905.14, + "probability": 0.9302 + }, + { + "start": 10905.28, + "end": 10906.74, + "probability": 0.6174 + }, + { + "start": 10907.48, + "end": 10910.0, + "probability": 0.9438 + }, + { + "start": 10928.64, + "end": 10928.64, + "probability": 0.6498 + }, + { + "start": 10928.68, + "end": 10931.18, + "probability": 0.5925 + }, + { + "start": 10934.9, + "end": 10937.66, + "probability": 0.9969 + }, + { + "start": 10937.88, + "end": 10944.2, + "probability": 0.998 + }, + { + "start": 10945.1, + "end": 10948.54, + "probability": 0.9602 + }, + { + "start": 10949.56, + "end": 10951.5, + "probability": 0.9902 + }, + { + "start": 10952.68, + "end": 10954.5, + "probability": 0.2435 + }, + { + "start": 10954.54, + "end": 10955.0, + "probability": 0.1486 + }, + { + "start": 10955.2, + "end": 10957.3, + "probability": 0.979 + }, + { + "start": 10957.82, + "end": 10958.94, + "probability": 0.8154 + }, + { + "start": 10959.66, + "end": 10963.83, + "probability": 0.6079 + }, + { + "start": 10964.32, + "end": 10969.5, + "probability": 0.7781 + }, + { + "start": 10970.24, + "end": 10972.66, + "probability": 0.9666 + }, + { + "start": 10973.66, + "end": 10974.82, + "probability": 0.8523 + }, + { + "start": 10975.06, + "end": 10980.04, + "probability": 0.9736 + }, + { + "start": 10980.7, + "end": 10983.08, + "probability": 0.7921 + }, + { + "start": 10984.02, + "end": 10989.62, + "probability": 0.9958 + }, + { + "start": 10990.26, + "end": 10992.6, + "probability": 0.991 + }, + { + "start": 10993.16, + "end": 10995.84, + "probability": 0.9988 + }, + { + "start": 10996.5, + "end": 10999.12, + "probability": 0.9988 + }, + { + "start": 11000.0, + "end": 11006.52, + "probability": 0.9911 + }, + { + "start": 11007.48, + "end": 11008.68, + "probability": 0.9035 + }, + { + "start": 11010.22, + "end": 11014.22, + "probability": 0.9897 + }, + { + "start": 11015.04, + "end": 11017.5, + "probability": 0.9033 + }, + { + "start": 11018.0, + "end": 11023.98, + "probability": 0.9972 + }, + { + "start": 11023.98, + "end": 11030.94, + "probability": 0.9971 + }, + { + "start": 11031.86, + "end": 11032.9, + "probability": 0.5885 + }, + { + "start": 11033.28, + "end": 11035.66, + "probability": 0.9746 + }, + { + "start": 11037.94, + "end": 11040.84, + "probability": 0.9971 + }, + { + "start": 11040.84, + "end": 11043.46, + "probability": 0.8166 + }, + { + "start": 11044.02, + "end": 11051.32, + "probability": 0.9419 + }, + { + "start": 11052.94, + "end": 11054.1, + "probability": 0.3831 + }, + { + "start": 11054.74, + "end": 11055.7, + "probability": 0.6456 + }, + { + "start": 11055.7, + "end": 11059.52, + "probability": 0.8695 + }, + { + "start": 11060.12, + "end": 11060.62, + "probability": 0.0631 + }, + { + "start": 11061.7, + "end": 11062.08, + "probability": 0.7593 + }, + { + "start": 11062.32, + "end": 11066.62, + "probability": 0.9927 + }, + { + "start": 11067.06, + "end": 11068.5, + "probability": 0.8619 + }, + { + "start": 11068.82, + "end": 11072.46, + "probability": 0.9633 + }, + { + "start": 11073.02, + "end": 11075.68, + "probability": 0.7388 + }, + { + "start": 11075.74, + "end": 11078.2, + "probability": 0.8785 + }, + { + "start": 11078.2, + "end": 11083.18, + "probability": 0.9963 + }, + { + "start": 11083.26, + "end": 11083.9, + "probability": 0.8226 + }, + { + "start": 11085.24, + "end": 11091.42, + "probability": 0.9881 + }, + { + "start": 11091.78, + "end": 11093.6, + "probability": 0.9846 + }, + { + "start": 11094.22, + "end": 11097.42, + "probability": 0.7548 + }, + { + "start": 11097.42, + "end": 11099.08, + "probability": 0.9365 + }, + { + "start": 11100.62, + "end": 11104.17, + "probability": 0.8709 + }, + { + "start": 11104.88, + "end": 11105.72, + "probability": 0.9835 + }, + { + "start": 11106.32, + "end": 11107.64, + "probability": 0.9646 + }, + { + "start": 11107.68, + "end": 11112.9, + "probability": 0.9551 + }, + { + "start": 11112.9, + "end": 11117.98, + "probability": 0.8545 + }, + { + "start": 11118.88, + "end": 11120.92, + "probability": 0.8855 + }, + { + "start": 11121.1, + "end": 11122.6, + "probability": 0.9623 + }, + { + "start": 11122.64, + "end": 11126.66, + "probability": 0.9535 + }, + { + "start": 11128.52, + "end": 11130.36, + "probability": 0.8221 + }, + { + "start": 11130.72, + "end": 11139.34, + "probability": 0.6473 + }, + { + "start": 11139.34, + "end": 11140.08, + "probability": 0.0281 + }, + { + "start": 11140.08, + "end": 11144.38, + "probability": 0.9941 + }, + { + "start": 11144.82, + "end": 11147.0, + "probability": 0.856 + }, + { + "start": 11148.0, + "end": 11152.82, + "probability": 0.922 + }, + { + "start": 11152.94, + "end": 11154.24, + "probability": 0.9985 + }, + { + "start": 11154.8, + "end": 11155.94, + "probability": 0.9152 + }, + { + "start": 11156.66, + "end": 11157.82, + "probability": 0.9204 + }, + { + "start": 11157.82, + "end": 11160.28, + "probability": 0.9816 + }, + { + "start": 11160.4, + "end": 11163.14, + "probability": 0.8976 + }, + { + "start": 11163.9, + "end": 11168.28, + "probability": 0.6967 + }, + { + "start": 11168.38, + "end": 11168.46, + "probability": 0.5113 + }, + { + "start": 11168.46, + "end": 11170.14, + "probability": 0.6942 + }, + { + "start": 11173.58, + "end": 11177.42, + "probability": 0.895 + }, + { + "start": 11178.94, + "end": 11181.78, + "probability": 0.7858 + }, + { + "start": 11181.9, + "end": 11184.56, + "probability": 0.6307 + }, + { + "start": 11184.56, + "end": 11186.18, + "probability": 0.6954 + }, + { + "start": 11186.28, + "end": 11186.88, + "probability": 0.1976 + }, + { + "start": 11188.42, + "end": 11189.54, + "probability": 0.792 + }, + { + "start": 11189.7, + "end": 11191.96, + "probability": 0.9507 + }, + { + "start": 11192.42, + "end": 11196.12, + "probability": 0.9656 + }, + { + "start": 11196.64, + "end": 11197.3, + "probability": 0.8255 + }, + { + "start": 11197.48, + "end": 11203.26, + "probability": 0.9914 + }, + { + "start": 11203.66, + "end": 11205.22, + "probability": 0.8472 + }, + { + "start": 11206.04, + "end": 11207.16, + "probability": 0.8119 + }, + { + "start": 11207.2, + "end": 11208.28, + "probability": 0.8784 + }, + { + "start": 11208.88, + "end": 11210.18, + "probability": 0.7588 + }, + { + "start": 11210.58, + "end": 11217.66, + "probability": 0.7273 + }, + { + "start": 11218.42, + "end": 11221.34, + "probability": 0.9402 + }, + { + "start": 11222.0, + "end": 11223.0, + "probability": 0.6114 + }, + { + "start": 11223.4, + "end": 11227.78, + "probability": 0.9425 + }, + { + "start": 11227.94, + "end": 11230.74, + "probability": 0.7914 + }, + { + "start": 11231.28, + "end": 11232.26, + "probability": 0.8038 + }, + { + "start": 11232.32, + "end": 11233.42, + "probability": 0.8782 + }, + { + "start": 11233.9, + "end": 11234.6, + "probability": 0.9594 + }, + { + "start": 11234.68, + "end": 11235.1, + "probability": 0.9244 + }, + { + "start": 11235.1, + "end": 11236.16, + "probability": 0.5759 + }, + { + "start": 11236.56, + "end": 11242.68, + "probability": 0.9355 + }, + { + "start": 11243.34, + "end": 11248.38, + "probability": 0.9669 + }, + { + "start": 11249.24, + "end": 11251.56, + "probability": 0.4524 + }, + { + "start": 11251.7, + "end": 11252.56, + "probability": 0.7517 + }, + { + "start": 11252.9, + "end": 11258.0, + "probability": 0.8901 + }, + { + "start": 11258.52, + "end": 11261.38, + "probability": 0.9868 + }, + { + "start": 11261.5, + "end": 11263.98, + "probability": 0.6594 + }, + { + "start": 11264.36, + "end": 11266.58, + "probability": 0.9338 + }, + { + "start": 11267.52, + "end": 11272.56, + "probability": 0.9951 + }, + { + "start": 11272.56, + "end": 11276.86, + "probability": 0.9951 + }, + { + "start": 11276.96, + "end": 11278.2, + "probability": 0.837 + }, + { + "start": 11278.56, + "end": 11279.74, + "probability": 0.9912 + }, + { + "start": 11280.08, + "end": 11284.6, + "probability": 0.9738 + }, + { + "start": 11285.46, + "end": 11287.5, + "probability": 0.5068 + }, + { + "start": 11287.7, + "end": 11290.1, + "probability": 0.9466 + }, + { + "start": 11290.88, + "end": 11292.14, + "probability": 0.9124 + }, + { + "start": 11292.58, + "end": 11294.57, + "probability": 0.9808 + }, + { + "start": 11295.6, + "end": 11299.48, + "probability": 0.9743 + }, + { + "start": 11307.5, + "end": 11308.02, + "probability": 0.4593 + }, + { + "start": 11308.14, + "end": 11309.46, + "probability": 0.6362 + }, + { + "start": 11310.49, + "end": 11314.84, + "probability": 0.9716 + }, + { + "start": 11315.92, + "end": 11319.86, + "probability": 0.9824 + }, + { + "start": 11320.68, + "end": 11321.74, + "probability": 0.7207 + }, + { + "start": 11324.36, + "end": 11326.78, + "probability": 0.9697 + }, + { + "start": 11328.64, + "end": 11332.34, + "probability": 0.8896 + }, + { + "start": 11333.2, + "end": 11336.54, + "probability": 0.9572 + }, + { + "start": 11338.02, + "end": 11340.4, + "probability": 0.9362 + }, + { + "start": 11342.24, + "end": 11343.62, + "probability": 0.901 + }, + { + "start": 11346.52, + "end": 11349.7, + "probability": 0.383 + }, + { + "start": 11351.18, + "end": 11351.74, + "probability": 0.7763 + }, + { + "start": 11353.78, + "end": 11356.26, + "probability": 0.74 + }, + { + "start": 11358.36, + "end": 11361.01, + "probability": 0.9868 + }, + { + "start": 11362.98, + "end": 11366.4, + "probability": 0.8932 + }, + { + "start": 11367.22, + "end": 11369.56, + "probability": 0.9858 + }, + { + "start": 11370.18, + "end": 11371.06, + "probability": 0.9985 + }, + { + "start": 11372.08, + "end": 11374.68, + "probability": 0.8198 + }, + { + "start": 11377.1, + "end": 11380.64, + "probability": 0.9354 + }, + { + "start": 11380.64, + "end": 11381.08, + "probability": 0.0482 + }, + { + "start": 11382.32, + "end": 11386.56, + "probability": 0.9938 + }, + { + "start": 11387.68, + "end": 11389.02, + "probability": 0.8614 + }, + { + "start": 11390.32, + "end": 11394.18, + "probability": 0.8772 + }, + { + "start": 11395.48, + "end": 11397.62, + "probability": 0.7566 + }, + { + "start": 11398.84, + "end": 11404.36, + "probability": 0.8949 + }, + { + "start": 11405.14, + "end": 11406.1, + "probability": 0.718 + }, + { + "start": 11406.16, + "end": 11408.48, + "probability": 0.957 + }, + { + "start": 11408.58, + "end": 11411.82, + "probability": 0.9297 + }, + { + "start": 11413.44, + "end": 11415.8, + "probability": 0.4975 + }, + { + "start": 11416.8, + "end": 11421.28, + "probability": 0.6898 + }, + { + "start": 11422.4, + "end": 11426.6, + "probability": 0.9895 + }, + { + "start": 11427.44, + "end": 11432.02, + "probability": 0.7796 + }, + { + "start": 11432.24, + "end": 11434.78, + "probability": 0.9878 + }, + { + "start": 11435.54, + "end": 11437.1, + "probability": 0.9651 + }, + { + "start": 11439.28, + "end": 11444.28, + "probability": 0.9772 + }, + { + "start": 11446.4, + "end": 11447.84, + "probability": 0.9133 + }, + { + "start": 11448.32, + "end": 11450.48, + "probability": 0.958 + }, + { + "start": 11452.9, + "end": 11453.56, + "probability": 0.7937 + }, + { + "start": 11453.58, + "end": 11455.64, + "probability": 0.9005 + }, + { + "start": 11455.76, + "end": 11456.64, + "probability": 0.9966 + }, + { + "start": 11457.22, + "end": 11458.54, + "probability": 0.9153 + }, + { + "start": 11459.84, + "end": 11462.3, + "probability": 0.9854 + }, + { + "start": 11462.68, + "end": 11463.34, + "probability": 0.8345 + }, + { + "start": 11463.82, + "end": 11465.56, + "probability": 0.7448 + }, + { + "start": 11466.98, + "end": 11468.32, + "probability": 0.4088 + }, + { + "start": 11468.64, + "end": 11471.12, + "probability": 0.6919 + }, + { + "start": 11471.28, + "end": 11474.64, + "probability": 0.9277 + }, + { + "start": 11475.5, + "end": 11477.7, + "probability": 0.9877 + }, + { + "start": 11478.72, + "end": 11479.5, + "probability": 0.8352 + }, + { + "start": 11479.86, + "end": 11485.54, + "probability": 0.9405 + }, + { + "start": 11485.94, + "end": 11486.48, + "probability": 0.2734 + }, + { + "start": 11487.52, + "end": 11491.47, + "probability": 0.5636 + }, + { + "start": 11493.14, + "end": 11494.88, + "probability": 0.879 + }, + { + "start": 11495.74, + "end": 11497.6, + "probability": 0.9531 + }, + { + "start": 11497.72, + "end": 11500.26, + "probability": 0.7982 + }, + { + "start": 11501.18, + "end": 11502.22, + "probability": 0.1489 + }, + { + "start": 11503.9, + "end": 11504.66, + "probability": 0.0116 + }, + { + "start": 11504.66, + "end": 11504.66, + "probability": 0.0397 + }, + { + "start": 11504.66, + "end": 11504.66, + "probability": 0.1091 + }, + { + "start": 11504.66, + "end": 11504.66, + "probability": 0.4944 + }, + { + "start": 11504.66, + "end": 11508.26, + "probability": 0.4119 + }, + { + "start": 11508.56, + "end": 11509.6, + "probability": 0.7898 + }, + { + "start": 11509.92, + "end": 11513.6, + "probability": 0.2768 + }, + { + "start": 11513.8, + "end": 11514.32, + "probability": 0.9421 + }, + { + "start": 11515.66, + "end": 11517.78, + "probability": 0.991 + }, + { + "start": 11519.88, + "end": 11522.8, + "probability": 0.0551 + }, + { + "start": 11526.36, + "end": 11526.54, + "probability": 0.0033 + }, + { + "start": 11537.22, + "end": 11538.04, + "probability": 0.4883 + }, + { + "start": 11538.18, + "end": 11539.0, + "probability": 0.1962 + }, + { + "start": 11539.44, + "end": 11539.78, + "probability": 0.4442 + }, + { + "start": 11539.82, + "end": 11541.42, + "probability": 0.5449 + }, + { + "start": 11541.56, + "end": 11544.06, + "probability": 0.9816 + }, + { + "start": 11544.88, + "end": 11547.04, + "probability": 0.7296 + }, + { + "start": 11550.08, + "end": 11553.14, + "probability": 0.8358 + }, + { + "start": 11554.14, + "end": 11556.76, + "probability": 0.7846 + }, + { + "start": 11571.24, + "end": 11572.5, + "probability": 0.2617 + }, + { + "start": 11573.12, + "end": 11574.14, + "probability": 0.102 + }, + { + "start": 11576.76, + "end": 11579.6, + "probability": 0.4756 + }, + { + "start": 11579.6, + "end": 11580.18, + "probability": 0.5107 + }, + { + "start": 11581.66, + "end": 11585.66, + "probability": 0.5397 + }, + { + "start": 11586.4, + "end": 11587.8, + "probability": 0.3026 + }, + { + "start": 11592.2, + "end": 11595.3, + "probability": 0.5937 + }, + { + "start": 11597.0, + "end": 11598.86, + "probability": 0.5757 + }, + { + "start": 11598.92, + "end": 11600.54, + "probability": 0.958 + }, + { + "start": 11600.94, + "end": 11602.68, + "probability": 0.5184 + }, + { + "start": 11602.74, + "end": 11605.06, + "probability": 0.9863 + }, + { + "start": 11605.9, + "end": 11609.84, + "probability": 0.798 + }, + { + "start": 11611.16, + "end": 11612.84, + "probability": 0.8716 + }, + { + "start": 11614.0, + "end": 11615.78, + "probability": 0.1647 + }, + { + "start": 11618.2, + "end": 11621.72, + "probability": 0.0256 + }, + { + "start": 11632.16, + "end": 11633.04, + "probability": 0.1459 + }, + { + "start": 11633.06, + "end": 11633.88, + "probability": 0.3365 + }, + { + "start": 11633.96, + "end": 11634.3, + "probability": 0.4674 + }, + { + "start": 11634.52, + "end": 11636.58, + "probability": 0.6431 + }, + { + "start": 11637.06, + "end": 11639.72, + "probability": 0.9849 + }, + { + "start": 11640.66, + "end": 11644.68, + "probability": 0.9334 + }, + { + "start": 11645.0, + "end": 11646.4, + "probability": 0.6948 + }, + { + "start": 11646.96, + "end": 11651.18, + "probability": 0.8333 + }, + { + "start": 11652.62, + "end": 11653.08, + "probability": 0.42 + }, + { + "start": 11654.12, + "end": 11654.38, + "probability": 0.0 + }, + { + "start": 11655.84, + "end": 11662.49, + "probability": 0.0274 + }, + { + "start": 11668.02, + "end": 11668.68, + "probability": 0.1419 + }, + { + "start": 11668.78, + "end": 11669.16, + "probability": 0.0104 + }, + { + "start": 11669.4, + "end": 11669.8, + "probability": 0.4002 + }, + { + "start": 11670.16, + "end": 11670.44, + "probability": 0.5303 + }, + { + "start": 11670.87, + "end": 11672.14, + "probability": 0.5383 + }, + { + "start": 11672.24, + "end": 11676.2, + "probability": 0.9118 + }, + { + "start": 11676.44, + "end": 11681.7, + "probability": 0.9837 + }, + { + "start": 11681.8, + "end": 11683.5, + "probability": 0.9827 + }, + { + "start": 11686.66, + "end": 11687.94, + "probability": 0.5966 + }, + { + "start": 11690.6, + "end": 11696.26, + "probability": 0.257 + }, + { + "start": 11696.26, + "end": 11696.92, + "probability": 0.275 + }, + { + "start": 11697.26, + "end": 11697.8, + "probability": 0.5555 + }, + { + "start": 11698.48, + "end": 11699.18, + "probability": 0.6093 + }, + { + "start": 11699.52, + "end": 11700.34, + "probability": 0.4746 + }, + { + "start": 11701.2, + "end": 11701.2, + "probability": 0.0025 + }, + { + "start": 11702.64, + "end": 11702.94, + "probability": 0.0207 + }, + { + "start": 11708.54, + "end": 11709.76, + "probability": 0.3602 + }, + { + "start": 11710.04, + "end": 11710.3, + "probability": 0.3712 + }, + { + "start": 11710.42, + "end": 11713.0, + "probability": 0.2428 + }, + { + "start": 11716.32, + "end": 11718.02, + "probability": 0.5663 + }, + { + "start": 11718.96, + "end": 11719.44, + "probability": 0.4004 + }, + { + "start": 11719.56, + "end": 11720.26, + "probability": 0.7609 + }, + { + "start": 11720.58, + "end": 11720.8, + "probability": 0.4318 + }, + { + "start": 11720.8, + "end": 11722.88, + "probability": 0.6524 + }, + { + "start": 11722.92, + "end": 11723.24, + "probability": 0.8338 + }, + { + "start": 11725.43, + "end": 11732.1, + "probability": 0.7531 + }, + { + "start": 11732.1, + "end": 11735.96, + "probability": 0.5876 + }, + { + "start": 11741.32, + "end": 11744.72, + "probability": 0.0411 + }, + { + "start": 11750.86, + "end": 11757.26, + "probability": 0.5884 + }, + { + "start": 11757.82, + "end": 11759.77, + "probability": 0.7847 + }, + { + "start": 11760.08, + "end": 11761.0, + "probability": 0.8034 + }, + { + "start": 11761.24, + "end": 11764.8, + "probability": 0.7645 + }, + { + "start": 11764.9, + "end": 11765.46, + "probability": 0.4934 + }, + { + "start": 11765.88, + "end": 11767.0, + "probability": 0.8788 + }, + { + "start": 11769.54, + "end": 11773.08, + "probability": 0.6697 + }, + { + "start": 11775.76, + "end": 11778.61, + "probability": 0.4951 + }, + { + "start": 11781.5, + "end": 11781.76, + "probability": 0.1337 + }, + { + "start": 11786.44, + "end": 11789.38, + "probability": 0.188 + }, + { + "start": 11789.38, + "end": 11789.78, + "probability": 0.1183 + }, + { + "start": 11790.82, + "end": 11794.16, + "probability": 0.2043 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.0, + "end": 11881.0, + "probability": 0.0 + }, + { + "start": 11881.68, + "end": 11885.36, + "probability": 0.5781 + }, + { + "start": 11885.72, + "end": 11890.36, + "probability": 0.8582 + }, + { + "start": 11890.9, + "end": 11892.28, + "probability": 0.7512 + }, + { + "start": 11892.84, + "end": 11893.58, + "probability": 0.7923 + }, + { + "start": 11893.92, + "end": 11894.82, + "probability": 0.2204 + }, + { + "start": 11895.09, + "end": 11896.74, + "probability": 0.7734 + }, + { + "start": 11900.2, + "end": 11902.56, + "probability": 0.0108 + }, + { + "start": 11905.98, + "end": 11910.06, + "probability": 0.2038 + }, + { + "start": 11910.14, + "end": 11910.88, + "probability": 0.4477 + }, + { + "start": 11910.88, + "end": 11911.18, + "probability": 0.0864 + }, + { + "start": 11912.2, + "end": 11913.98, + "probability": 0.1077 + }, + { + "start": 11914.46, + "end": 11917.42, + "probability": 0.4873 + }, + { + "start": 11917.58, + "end": 11920.2, + "probability": 0.6464 + }, + { + "start": 11921.22, + "end": 11925.02, + "probability": 0.9224 + }, + { + "start": 11925.1, + "end": 11925.62, + "probability": 0.3677 + }, + { + "start": 11925.64, + "end": 11926.46, + "probability": 0.1965 + }, + { + "start": 11926.62, + "end": 11928.36, + "probability": 0.774 + }, + { + "start": 11928.8, + "end": 11933.44, + "probability": 0.9918 + }, + { + "start": 11933.72, + "end": 11936.42, + "probability": 0.7798 + }, + { + "start": 11951.68, + "end": 11954.3, + "probability": 0.3338 + }, + { + "start": 11954.94, + "end": 11959.28, + "probability": 0.8033 + }, + { + "start": 11959.98, + "end": 11964.84, + "probability": 0.9272 + }, + { + "start": 11964.84, + "end": 11968.82, + "probability": 0.763 + }, + { + "start": 11968.96, + "end": 11969.38, + "probability": 0.7909 + }, + { + "start": 11969.44, + "end": 11969.82, + "probability": 0.9735 + }, + { + "start": 11970.0, + "end": 11971.22, + "probability": 0.9905 + }, + { + "start": 11971.74, + "end": 11974.04, + "probability": 0.9697 + }, + { + "start": 11974.48, + "end": 11976.74, + "probability": 0.212 + }, + { + "start": 11977.22, + "end": 11978.6, + "probability": 0.5463 + }, + { + "start": 11978.78, + "end": 11980.54, + "probability": 0.9323 + }, + { + "start": 11980.72, + "end": 11983.24, + "probability": 0.9511 + }, + { + "start": 11983.78, + "end": 11985.26, + "probability": 0.9624 + }, + { + "start": 11985.4, + "end": 11986.34, + "probability": 0.9178 + }, + { + "start": 11986.42, + "end": 11987.48, + "probability": 0.731 + }, + { + "start": 11988.06, + "end": 11988.8, + "probability": 0.8556 + }, + { + "start": 11989.0, + "end": 11991.54, + "probability": 0.8249 + }, + { + "start": 11991.64, + "end": 11993.12, + "probability": 0.5323 + }, + { + "start": 11993.66, + "end": 11996.66, + "probability": 0.7155 + }, + { + "start": 11996.74, + "end": 11998.68, + "probability": 0.7471 + }, + { + "start": 11999.12, + "end": 12001.8, + "probability": 0.9097 + }, + { + "start": 12003.1, + "end": 12006.9, + "probability": 0.7563 + }, + { + "start": 12007.26, + "end": 12008.8, + "probability": 0.1941 + }, + { + "start": 12010.12, + "end": 12013.38, + "probability": 0.9661 + }, + { + "start": 12013.66, + "end": 12017.0, + "probability": 0.8567 + }, + { + "start": 12017.71, + "end": 12019.7, + "probability": 0.2923 + }, + { + "start": 12020.28, + "end": 12022.76, + "probability": 0.3331 + }, + { + "start": 12023.4, + "end": 12024.88, + "probability": 0.9712 + }, + { + "start": 12026.02, + "end": 12030.02, + "probability": 0.995 + }, + { + "start": 12030.02, + "end": 12034.02, + "probability": 0.9977 + }, + { + "start": 12034.56, + "end": 12034.66, + "probability": 0.4736 + }, + { + "start": 12034.9, + "end": 12038.28, + "probability": 0.9736 + }, + { + "start": 12038.42, + "end": 12040.64, + "probability": 0.9664 + }, + { + "start": 12040.78, + "end": 12042.02, + "probability": 0.931 + }, + { + "start": 12042.86, + "end": 12047.26, + "probability": 0.9833 + }, + { + "start": 12047.48, + "end": 12047.66, + "probability": 0.674 + }, + { + "start": 12049.18, + "end": 12049.66, + "probability": 0.3497 + }, + { + "start": 12049.92, + "end": 12051.62, + "probability": 0.6812 + }, + { + "start": 12051.76, + "end": 12055.66, + "probability": 0.8395 + }, + { + "start": 12056.4, + "end": 12057.68, + "probability": 0.7979 + }, + { + "start": 12068.33, + "end": 12072.86, + "probability": 0.9651 + }, + { + "start": 12073.54, + "end": 12074.94, + "probability": 0.8532 + }, + { + "start": 12106.48, + "end": 12108.04, + "probability": 0.589 + }, + { + "start": 12109.16, + "end": 12109.74, + "probability": 0.1246 + }, + { + "start": 12112.28, + "end": 12113.53, + "probability": 0.0817 + }, + { + "start": 12118.74, + "end": 12121.66, + "probability": 0.1183 + }, + { + "start": 12123.38, + "end": 12126.01, + "probability": 0.0695 + }, + { + "start": 12127.06, + "end": 12131.08, + "probability": 0.0344 + }, + { + "start": 12131.2, + "end": 12134.1, + "probability": 0.0447 + }, + { + "start": 12135.38, + "end": 12136.34, + "probability": 0.0292 + }, + { + "start": 12139.96, + "end": 12142.46, + "probability": 0.0635 + }, + { + "start": 12142.94, + "end": 12145.08, + "probability": 0.0016 + }, + { + "start": 12148.0, + "end": 12148.0, + "probability": 0.0 + }, + { + "start": 12148.0, + "end": 12148.0, + "probability": 0.0 + }, + { + "start": 12148.0, + "end": 12148.0, + "probability": 0.0 + }, + { + "start": 12148.0, + "end": 12148.0, + "probability": 0.0 + }, + { + "start": 12148.0, + "end": 12148.0, + "probability": 0.0 + }, + { + "start": 12148.0, + "end": 12148.0, + "probability": 0.0 + }, + { + "start": 12148.0, + "end": 12148.0, + "probability": 0.0 + }, + { + "start": 12148.0, + "end": 12148.0, + "probability": 0.0 + }, + { + "start": 12148.0, + "end": 12148.0, + "probability": 0.0 + }, + { + "start": 12148.72, + "end": 12149.0, + "probability": 0.4264 + }, + { + "start": 12149.4, + "end": 12151.42, + "probability": 0.178 + }, + { + "start": 12152.12, + "end": 12152.96, + "probability": 0.2521 + }, + { + "start": 12155.46, + "end": 12156.52, + "probability": 0.0111 + }, + { + "start": 12158.04, + "end": 12159.48, + "probability": 0.0423 + }, + { + "start": 12159.7, + "end": 12161.1, + "probability": 0.1045 + }, + { + "start": 12163.12, + "end": 12166.18, + "probability": 0.3341 + }, + { + "start": 12167.0, + "end": 12172.16, + "probability": 0.5156 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.0, + "end": 12280.0, + "probability": 0.0 + }, + { + "start": 12280.22, + "end": 12280.22, + "probability": 0.0609 + }, + { + "start": 12280.22, + "end": 12280.22, + "probability": 0.1453 + }, + { + "start": 12280.22, + "end": 12280.72, + "probability": 0.0592 + }, + { + "start": 12280.8, + "end": 12283.0, + "probability": 0.8123 + }, + { + "start": 12283.8, + "end": 12288.16, + "probability": 0.9111 + }, + { + "start": 12288.76, + "end": 12290.9, + "probability": 0.8514 + }, + { + "start": 12291.5, + "end": 12296.76, + "probability": 0.8184 + }, + { + "start": 12296.86, + "end": 12299.28, + "probability": 0.7885 + }, + { + "start": 12299.72, + "end": 12301.28, + "probability": 0.7248 + }, + { + "start": 12301.74, + "end": 12302.86, + "probability": 0.7206 + }, + { + "start": 12302.88, + "end": 12307.18, + "probability": 0.9833 + }, + { + "start": 12307.86, + "end": 12310.28, + "probability": 0.863 + }, + { + "start": 12310.96, + "end": 12312.7, + "probability": 0.9716 + }, + { + "start": 12312.76, + "end": 12313.56, + "probability": 0.9382 + }, + { + "start": 12313.66, + "end": 12314.66, + "probability": 0.9216 + }, + { + "start": 12315.2, + "end": 12316.28, + "probability": 0.9061 + }, + { + "start": 12316.96, + "end": 12319.12, + "probability": 0.9817 + }, + { + "start": 12319.64, + "end": 12320.24, + "probability": 0.9982 + }, + { + "start": 12320.88, + "end": 12328.84, + "probability": 0.7918 + }, + { + "start": 12328.9, + "end": 12329.28, + "probability": 0.8059 + }, + { + "start": 12329.6, + "end": 12330.84, + "probability": 0.9149 + }, + { + "start": 12330.86, + "end": 12331.16, + "probability": 0.8223 + }, + { + "start": 12331.88, + "end": 12333.64, + "probability": 0.9777 + }, + { + "start": 12334.06, + "end": 12335.44, + "probability": 0.813 + }, + { + "start": 12336.02, + "end": 12338.56, + "probability": 0.9577 + }, + { + "start": 12339.62, + "end": 12345.1, + "probability": 0.8795 + }, + { + "start": 12345.32, + "end": 12347.08, + "probability": 0.7999 + }, + { + "start": 12347.18, + "end": 12348.58, + "probability": 0.6773 + }, + { + "start": 12348.7, + "end": 12350.78, + "probability": 0.8117 + }, + { + "start": 12351.5, + "end": 12352.4, + "probability": 0.6626 + }, + { + "start": 12352.58, + "end": 12354.5, + "probability": 0.7842 + }, + { + "start": 12369.14, + "end": 12372.78, + "probability": 0.7625 + }, + { + "start": 12373.9, + "end": 12379.16, + "probability": 0.9847 + }, + { + "start": 12379.72, + "end": 12382.47, + "probability": 0.9966 + }, + { + "start": 12382.72, + "end": 12383.76, + "probability": 0.8084 + }, + { + "start": 12384.82, + "end": 12386.82, + "probability": 0.8301 + }, + { + "start": 12387.28, + "end": 12389.36, + "probability": 0.9871 + }, + { + "start": 12390.06, + "end": 12390.8, + "probability": 0.7661 + }, + { + "start": 12390.86, + "end": 12391.94, + "probability": 0.9566 + }, + { + "start": 12392.26, + "end": 12396.42, + "probability": 0.8264 + }, + { + "start": 12396.7, + "end": 12398.88, + "probability": 0.9894 + }, + { + "start": 12399.82, + "end": 12402.2, + "probability": 0.6915 + }, + { + "start": 12403.3, + "end": 12406.78, + "probability": 0.9565 + }, + { + "start": 12407.36, + "end": 12411.14, + "probability": 0.9914 + }, + { + "start": 12411.68, + "end": 12413.32, + "probability": 0.8954 + }, + { + "start": 12413.9, + "end": 12415.74, + "probability": 0.5667 + }, + { + "start": 12416.44, + "end": 12418.08, + "probability": 0.9158 + }, + { + "start": 12418.82, + "end": 12419.74, + "probability": 0.8979 + }, + { + "start": 12420.2, + "end": 12422.76, + "probability": 0.9654 + }, + { + "start": 12423.22, + "end": 12426.0, + "probability": 0.9681 + }, + { + "start": 12426.96, + "end": 12428.06, + "probability": 0.949 + }, + { + "start": 12428.58, + "end": 12431.4, + "probability": 0.9898 + }, + { + "start": 12431.44, + "end": 12432.38, + "probability": 0.9447 + }, + { + "start": 12432.48, + "end": 12433.2, + "probability": 0.4725 + }, + { + "start": 12433.28, + "end": 12434.32, + "probability": 0.8867 + }, + { + "start": 12435.04, + "end": 12436.48, + "probability": 0.7963 + }, + { + "start": 12439.86, + "end": 12441.18, + "probability": 0.7519 + }, + { + "start": 12441.24, + "end": 12441.62, + "probability": 0.6946 + }, + { + "start": 12441.68, + "end": 12443.88, + "probability": 0.7817 + }, + { + "start": 12444.34, + "end": 12445.8, + "probability": 0.9613 + }, + { + "start": 12446.58, + "end": 12448.16, + "probability": 0.9258 + }, + { + "start": 12448.84, + "end": 12455.64, + "probability": 0.69 + }, + { + "start": 12455.8, + "end": 12456.36, + "probability": 0.696 + }, + { + "start": 12456.46, + "end": 12457.18, + "probability": 0.6994 + }, + { + "start": 12458.12, + "end": 12460.33, + "probability": 0.9923 + }, + { + "start": 12461.96, + "end": 12463.58, + "probability": 0.9462 + }, + { + "start": 12464.52, + "end": 12466.12, + "probability": 0.9985 + }, + { + "start": 12466.14, + "end": 12470.04, + "probability": 0.998 + }, + { + "start": 12470.36, + "end": 12470.72, + "probability": 0.582 + }, + { + "start": 12470.88, + "end": 12471.14, + "probability": 0.8924 + }, + { + "start": 12471.22, + "end": 12471.92, + "probability": 0.9837 + }, + { + "start": 12472.54, + "end": 12474.25, + "probability": 0.9697 + }, + { + "start": 12475.22, + "end": 12475.86, + "probability": 0.826 + }, + { + "start": 12476.32, + "end": 12478.8, + "probability": 0.9141 + }, + { + "start": 12479.9, + "end": 12483.82, + "probability": 0.9348 + }, + { + "start": 12484.5, + "end": 12486.38, + "probability": 0.903 + }, + { + "start": 12486.48, + "end": 12488.92, + "probability": 0.9923 + }, + { + "start": 12489.54, + "end": 12489.94, + "probability": 0.7632 + }, + { + "start": 12490.02, + "end": 12490.5, + "probability": 0.5565 + }, + { + "start": 12490.72, + "end": 12491.02, + "probability": 0.8998 + }, + { + "start": 12491.02, + "end": 12492.78, + "probability": 0.9338 + }, + { + "start": 12492.98, + "end": 12494.7, + "probability": 0.9588 + }, + { + "start": 12495.72, + "end": 12497.36, + "probability": 0.56 + }, + { + "start": 12498.0, + "end": 12500.68, + "probability": 0.7795 + }, + { + "start": 12501.04, + "end": 12502.72, + "probability": 0.8578 + }, + { + "start": 12503.2, + "end": 12508.12, + "probability": 0.9526 + }, + { + "start": 12509.24, + "end": 12510.56, + "probability": 0.9609 + }, + { + "start": 12510.6, + "end": 12511.32, + "probability": 0.7544 + }, + { + "start": 12512.92, + "end": 12515.04, + "probability": 0.8068 + }, + { + "start": 12516.52, + "end": 12517.2, + "probability": 0.6823 + }, + { + "start": 12518.3, + "end": 12521.38, + "probability": 0.6593 + }, + { + "start": 12522.42, + "end": 12523.34, + "probability": 0.7908 + }, + { + "start": 12524.32, + "end": 12526.36, + "probability": 0.8605 + }, + { + "start": 12527.28, + "end": 12527.28, + "probability": 0.0025 + }, + { + "start": 12529.02, + "end": 12530.5, + "probability": 0.1634 + }, + { + "start": 12530.84, + "end": 12532.28, + "probability": 0.4922 + }, + { + "start": 12532.88, + "end": 12533.86, + "probability": 0.6289 + }, + { + "start": 12534.46, + "end": 12538.74, + "probability": 0.5804 + }, + { + "start": 12539.9, + "end": 12541.6, + "probability": 0.6765 + }, + { + "start": 12542.98, + "end": 12547.18, + "probability": 0.9741 + }, + { + "start": 12547.92, + "end": 12551.14, + "probability": 0.9962 + }, + { + "start": 12552.23, + "end": 12554.1, + "probability": 0.9734 + }, + { + "start": 12555.64, + "end": 12556.22, + "probability": 0.8152 + }, + { + "start": 12556.44, + "end": 12557.74, + "probability": 0.9278 + }, + { + "start": 12558.22, + "end": 12559.22, + "probability": 0.7908 + }, + { + "start": 12559.3, + "end": 12560.96, + "probability": 0.6893 + }, + { + "start": 12563.45, + "end": 12566.26, + "probability": 0.9871 + }, + { + "start": 12566.74, + "end": 12568.78, + "probability": 0.8522 + }, + { + "start": 12569.38, + "end": 12569.9, + "probability": 0.8854 + }, + { + "start": 12570.72, + "end": 12574.54, + "probability": 0.6692 + }, + { + "start": 12574.58, + "end": 12578.16, + "probability": 0.9009 + }, + { + "start": 12578.4, + "end": 12579.31, + "probability": 0.8813 + }, + { + "start": 12579.46, + "end": 12580.82, + "probability": 0.9535 + }, + { + "start": 12581.6, + "end": 12583.42, + "probability": 0.7617 + }, + { + "start": 12584.36, + "end": 12585.72, + "probability": 0.6657 + }, + { + "start": 12586.82, + "end": 12587.88, + "probability": 0.9455 + }, + { + "start": 12588.08, + "end": 12588.72, + "probability": 0.6969 + }, + { + "start": 12591.9, + "end": 12593.12, + "probability": 0.7821 + }, + { + "start": 12594.12, + "end": 12595.66, + "probability": 0.7737 + }, + { + "start": 12596.36, + "end": 12597.06, + "probability": 0.7329 + }, + { + "start": 12597.54, + "end": 12598.0, + "probability": 0.7065 + }, + { + "start": 12598.12, + "end": 12598.62, + "probability": 0.9423 + }, + { + "start": 12598.72, + "end": 12599.4, + "probability": 0.8726 + }, + { + "start": 12600.22, + "end": 12600.98, + "probability": 0.7908 + }, + { + "start": 12602.1, + "end": 12607.54, + "probability": 0.9536 + }, + { + "start": 12607.54, + "end": 12608.26, + "probability": 0.1602 + }, + { + "start": 12608.58, + "end": 12609.12, + "probability": 0.4753 + }, + { + "start": 12609.16, + "end": 12609.74, + "probability": 0.7203 + }, + { + "start": 12610.76, + "end": 12612.06, + "probability": 0.5985 + }, + { + "start": 12612.18, + "end": 12614.64, + "probability": 0.9741 + }, + { + "start": 12614.74, + "end": 12616.28, + "probability": 0.6599 + }, + { + "start": 12616.9, + "end": 12619.32, + "probability": 0.5539 + }, + { + "start": 12620.48, + "end": 12623.3, + "probability": 0.6395 + }, + { + "start": 12623.7, + "end": 12625.52, + "probability": 0.9281 + }, + { + "start": 12625.74, + "end": 12629.04, + "probability": 0.9507 + }, + { + "start": 12629.56, + "end": 12631.98, + "probability": 0.7197 + }, + { + "start": 12632.92, + "end": 12635.1, + "probability": 0.9753 + }, + { + "start": 12635.92, + "end": 12639.7, + "probability": 0.7816 + }, + { + "start": 12640.58, + "end": 12642.5, + "probability": 0.853 + }, + { + "start": 12642.54, + "end": 12646.56, + "probability": 0.9915 + }, + { + "start": 12646.64, + "end": 12647.5, + "probability": 0.959 + }, + { + "start": 12648.36, + "end": 12652.54, + "probability": 0.978 + }, + { + "start": 12652.92, + "end": 12654.62, + "probability": 0.7913 + }, + { + "start": 12655.26, + "end": 12656.46, + "probability": 0.7439 + }, + { + "start": 12657.48, + "end": 12658.14, + "probability": 0.8762 + }, + { + "start": 12658.42, + "end": 12659.08, + "probability": 0.9651 + }, + { + "start": 12660.31, + "end": 12662.18, + "probability": 0.7275 + }, + { + "start": 12662.22, + "end": 12664.12, + "probability": 0.6046 + }, + { + "start": 12664.52, + "end": 12666.78, + "probability": 0.6029 + }, + { + "start": 12667.26, + "end": 12669.02, + "probability": 0.7574 + }, + { + "start": 12669.66, + "end": 12671.18, + "probability": 0.7729 + }, + { + "start": 12671.62, + "end": 12673.08, + "probability": 0.9925 + }, + { + "start": 12673.76, + "end": 12674.12, + "probability": 0.7871 + }, + { + "start": 12674.64, + "end": 12676.08, + "probability": 0.6122 + }, + { + "start": 12676.14, + "end": 12677.82, + "probability": 0.8516 + }, + { + "start": 12678.4, + "end": 12680.26, + "probability": 0.7756 + }, + { + "start": 12681.62, + "end": 12682.18, + "probability": 0.4856 + }, + { + "start": 12682.18, + "end": 12684.54, + "probability": 0.9404 + }, + { + "start": 12685.22, + "end": 12687.64, + "probability": 0.7785 + }, + { + "start": 12688.22, + "end": 12691.34, + "probability": 0.5974 + }, + { + "start": 12692.0, + "end": 12692.5, + "probability": 0.4265 + }, + { + "start": 12692.58, + "end": 12693.34, + "probability": 0.4762 + }, + { + "start": 12694.58, + "end": 12696.6, + "probability": 0.8505 + }, + { + "start": 12697.64, + "end": 12698.66, + "probability": 0.6221 + }, + { + "start": 12698.78, + "end": 12699.84, + "probability": 0.841 + }, + { + "start": 12699.94, + "end": 12700.78, + "probability": 0.6871 + }, + { + "start": 12700.84, + "end": 12702.2, + "probability": 0.9364 + }, + { + "start": 12702.3, + "end": 12702.78, + "probability": 0.1221 + }, + { + "start": 12703.72, + "end": 12704.68, + "probability": 0.9702 + }, + { + "start": 12707.82, + "end": 12708.44, + "probability": 0.1127 + }, + { + "start": 12709.18, + "end": 12712.76, + "probability": 0.6581 + }, + { + "start": 12712.88, + "end": 12713.46, + "probability": 0.6195 + }, + { + "start": 12714.12, + "end": 12714.62, + "probability": 0.7715 + }, + { + "start": 12714.68, + "end": 12715.4, + "probability": 0.4368 + }, + { + "start": 12715.48, + "end": 12718.58, + "probability": 0.9174 + }, + { + "start": 12719.26, + "end": 12721.4, + "probability": 0.8824 + }, + { + "start": 12722.14, + "end": 12724.66, + "probability": 0.9048 + }, + { + "start": 12725.94, + "end": 12726.98, + "probability": 0.644 + }, + { + "start": 12727.02, + "end": 12727.41, + "probability": 0.4805 + }, + { + "start": 12727.66, + "end": 12727.86, + "probability": 0.4901 + }, + { + "start": 12728.0, + "end": 12728.3, + "probability": 0.4959 + }, + { + "start": 12729.26, + "end": 12729.66, + "probability": 0.4336 + }, + { + "start": 12729.82, + "end": 12731.88, + "probability": 0.8994 + }, + { + "start": 12731.92, + "end": 12733.5, + "probability": 0.6995 + }, + { + "start": 12733.78, + "end": 12734.44, + "probability": 0.825 + }, + { + "start": 12734.88, + "end": 12736.46, + "probability": 0.9264 + }, + { + "start": 12737.58, + "end": 12739.14, + "probability": 0.6528 + }, + { + "start": 12740.44, + "end": 12747.6, + "probability": 0.821 + }, + { + "start": 12747.96, + "end": 12749.46, + "probability": 0.8074 + }, + { + "start": 12749.86, + "end": 12753.1, + "probability": 0.9364 + }, + { + "start": 12753.12, + "end": 12753.54, + "probability": 0.7676 + }, + { + "start": 12753.58, + "end": 12756.36, + "probability": 0.9071 + }, + { + "start": 12756.8, + "end": 12758.26, + "probability": 0.4612 + }, + { + "start": 12758.78, + "end": 12760.7, + "probability": 0.5779 + }, + { + "start": 12762.98, + "end": 12764.56, + "probability": 0.7362 + }, + { + "start": 12764.66, + "end": 12765.74, + "probability": 0.7062 + }, + { + "start": 12766.12, + "end": 12768.08, + "probability": 0.6583 + }, + { + "start": 12768.14, + "end": 12769.06, + "probability": 0.6965 + }, + { + "start": 12769.84, + "end": 12771.48, + "probability": 0.6388 + }, + { + "start": 12772.06, + "end": 12773.04, + "probability": 0.6422 + }, + { + "start": 12774.04, + "end": 12775.0, + "probability": 0.7759 + }, + { + "start": 12775.26, + "end": 12776.54, + "probability": 0.8107 + }, + { + "start": 12776.72, + "end": 12777.12, + "probability": 0.8062 + }, + { + "start": 12777.14, + "end": 12778.54, + "probability": 0.2162 + }, + { + "start": 12778.82, + "end": 12781.68, + "probability": 0.4217 + }, + { + "start": 12783.44, + "end": 12786.88, + "probability": 0.8636 + }, + { + "start": 12787.04, + "end": 12787.3, + "probability": 0.3952 + }, + { + "start": 12787.86, + "end": 12790.72, + "probability": 0.8529 + }, + { + "start": 12791.3, + "end": 12792.31, + "probability": 0.6967 + }, + { + "start": 12793.18, + "end": 12794.0, + "probability": 0.9626 + }, + { + "start": 12794.6, + "end": 12796.24, + "probability": 0.8923 + }, + { + "start": 12796.54, + "end": 12797.43, + "probability": 0.8752 + }, + { + "start": 12798.06, + "end": 12798.36, + "probability": 0.5633 + }, + { + "start": 12799.06, + "end": 12800.4, + "probability": 0.7991 + }, + { + "start": 12801.48, + "end": 12802.84, + "probability": 0.8029 + }, + { + "start": 12803.0, + "end": 12804.28, + "probability": 0.8841 + }, + { + "start": 12805.84, + "end": 12806.19, + "probability": 0.0018 + }, + { + "start": 12806.58, + "end": 12807.14, + "probability": 0.4229 + }, + { + "start": 12807.16, + "end": 12808.02, + "probability": 0.7605 + }, + { + "start": 12808.44, + "end": 12809.64, + "probability": 0.9851 + }, + { + "start": 12809.72, + "end": 12811.44, + "probability": 0.9814 + }, + { + "start": 12812.16, + "end": 12816.46, + "probability": 0.8187 + }, + { + "start": 12817.1, + "end": 12817.82, + "probability": 0.9137 + }, + { + "start": 12817.96, + "end": 12820.48, + "probability": 0.5465 + }, + { + "start": 12820.5, + "end": 12820.6, + "probability": 0.3978 + }, + { + "start": 12820.9, + "end": 12821.4, + "probability": 0.5419 + }, + { + "start": 12821.56, + "end": 12823.44, + "probability": 0.3441 + }, + { + "start": 12823.7, + "end": 12824.4, + "probability": 0.9503 + }, + { + "start": 12824.58, + "end": 12825.42, + "probability": 0.5696 + }, + { + "start": 12825.58, + "end": 12827.4, + "probability": 0.6008 + }, + { + "start": 12827.78, + "end": 12830.38, + "probability": 0.9359 + }, + { + "start": 12831.62, + "end": 12832.78, + "probability": 0.5416 + }, + { + "start": 12832.78, + "end": 12833.74, + "probability": 0.7881 + }, + { + "start": 12833.88, + "end": 12835.34, + "probability": 0.784 + }, + { + "start": 12835.48, + "end": 12837.08, + "probability": 0.7799 + }, + { + "start": 12837.66, + "end": 12838.86, + "probability": 0.614 + }, + { + "start": 12838.92, + "end": 12840.42, + "probability": 0.9061 + }, + { + "start": 12840.76, + "end": 12841.34, + "probability": 0.9 + }, + { + "start": 12843.04, + "end": 12844.34, + "probability": 0.99 + }, + { + "start": 12845.58, + "end": 12845.68, + "probability": 0.6293 + }, + { + "start": 12846.24, + "end": 12849.58, + "probability": 0.9924 + }, + { + "start": 12850.18, + "end": 12851.96, + "probability": 0.4956 + }, + { + "start": 12852.2, + "end": 12852.66, + "probability": 0.7359 + }, + { + "start": 12853.04, + "end": 12854.16, + "probability": 0.9216 + }, + { + "start": 12854.88, + "end": 12856.92, + "probability": 0.8732 + }, + { + "start": 12858.76, + "end": 12863.46, + "probability": 0.8012 + }, + { + "start": 12864.9, + "end": 12867.66, + "probability": 0.6695 + }, + { + "start": 12868.68, + "end": 12872.1, + "probability": 0.9471 + }, + { + "start": 12874.71, + "end": 12876.96, + "probability": 0.6995 + }, + { + "start": 12878.64, + "end": 12880.0, + "probability": 0.9839 + }, + { + "start": 12880.16, + "end": 12880.76, + "probability": 0.8523 + }, + { + "start": 12881.02, + "end": 12882.66, + "probability": 0.7913 + }, + { + "start": 12882.76, + "end": 12883.86, + "probability": 0.8975 + }, + { + "start": 12883.96, + "end": 12884.82, + "probability": 0.7383 + }, + { + "start": 12885.06, + "end": 12885.6, + "probability": 0.6345 + }, + { + "start": 12886.4, + "end": 12887.82, + "probability": 0.6137 + }, + { + "start": 12887.94, + "end": 12888.74, + "probability": 0.9432 + }, + { + "start": 12889.3, + "end": 12889.84, + "probability": 0.8467 + }, + { + "start": 12890.38, + "end": 12892.58, + "probability": 0.6348 + }, + { + "start": 12893.22, + "end": 12894.52, + "probability": 0.634 + }, + { + "start": 12894.84, + "end": 12895.3, + "probability": 0.5512 + }, + { + "start": 12898.68, + "end": 12899.62, + "probability": 0.7488 + }, + { + "start": 12900.84, + "end": 12902.92, + "probability": 0.6099 + }, + { + "start": 12903.64, + "end": 12908.84, + "probability": 0.8757 + }, + { + "start": 12909.54, + "end": 12912.58, + "probability": 0.7564 + }, + { + "start": 12912.66, + "end": 12913.74, + "probability": 0.738 + }, + { + "start": 12914.54, + "end": 12915.2, + "probability": 0.6831 + }, + { + "start": 12915.6, + "end": 12918.48, + "probability": 0.6015 + }, + { + "start": 12919.06, + "end": 12920.06, + "probability": 0.6824 + }, + { + "start": 12920.3, + "end": 12920.92, + "probability": 0.574 + }, + { + "start": 12921.22, + "end": 12925.24, + "probability": 0.7171 + }, + { + "start": 12925.32, + "end": 12926.23, + "probability": 0.8647 + }, + { + "start": 12926.78, + "end": 12928.36, + "probability": 0.7078 + }, + { + "start": 12929.96, + "end": 12931.62, + "probability": 0.2231 + }, + { + "start": 12931.62, + "end": 12932.02, + "probability": 0.1216 + }, + { + "start": 12932.02, + "end": 12932.3, + "probability": 0.5197 + }, + { + "start": 12932.38, + "end": 12935.56, + "probability": 0.8466 + }, + { + "start": 12935.74, + "end": 12936.08, + "probability": 0.4043 + }, + { + "start": 12936.98, + "end": 12939.66, + "probability": 0.5522 + }, + { + "start": 12940.24, + "end": 12940.92, + "probability": 0.5774 + }, + { + "start": 12941.48, + "end": 12943.84, + "probability": 0.7728 + }, + { + "start": 12944.74, + "end": 12946.98, + "probability": 0.6464 + }, + { + "start": 12947.02, + "end": 12947.6, + "probability": 0.5154 + }, + { + "start": 12948.04, + "end": 12948.34, + "probability": 0.1696 + }, + { + "start": 12948.4, + "end": 12949.18, + "probability": 0.5849 + }, + { + "start": 12949.98, + "end": 12949.98, + "probability": 0.183 + }, + { + "start": 12949.98, + "end": 12951.99, + "probability": 0.6467 + }, + { + "start": 12953.16, + "end": 12954.0, + "probability": 0.2103 + }, + { + "start": 12954.42, + "end": 12956.48, + "probability": 0.5128 + }, + { + "start": 12957.4, + "end": 12958.22, + "probability": 0.732 + }, + { + "start": 12958.42, + "end": 12959.98, + "probability": 0.5818 + }, + { + "start": 12960.0, + "end": 12960.66, + "probability": 0.8773 + }, + { + "start": 12961.04, + "end": 12962.0, + "probability": 0.5696 + }, + { + "start": 12962.24, + "end": 12965.36, + "probability": 0.7117 + }, + { + "start": 12965.84, + "end": 12966.78, + "probability": 0.656 + }, + { + "start": 12967.78, + "end": 12971.2, + "probability": 0.7566 + }, + { + "start": 12971.88, + "end": 12974.36, + "probability": 0.6133 + }, + { + "start": 12976.11, + "end": 12980.62, + "probability": 0.5997 + }, + { + "start": 12981.24, + "end": 12982.77, + "probability": 0.8339 + }, + { + "start": 12983.66, + "end": 12986.4, + "probability": 0.81 + }, + { + "start": 12986.4, + "end": 12989.9, + "probability": 0.9934 + }, + { + "start": 12990.08, + "end": 12992.04, + "probability": 0.9814 + }, + { + "start": 12992.8, + "end": 12994.02, + "probability": 0.6014 + }, + { + "start": 12994.66, + "end": 12995.48, + "probability": 0.7814 + }, + { + "start": 12995.6, + "end": 12998.94, + "probability": 0.5584 + }, + { + "start": 13000.06, + "end": 13001.4, + "probability": 0.4434 + }, + { + "start": 13002.04, + "end": 13004.08, + "probability": 0.5992 + }, + { + "start": 13004.66, + "end": 13006.26, + "probability": 0.4658 + }, + { + "start": 13006.76, + "end": 13009.16, + "probability": 0.9414 + }, + { + "start": 13009.66, + "end": 13010.94, + "probability": 0.7892 + }, + { + "start": 13011.32, + "end": 13015.08, + "probability": 0.5013 + }, + { + "start": 13015.16, + "end": 13016.88, + "probability": 0.9115 + }, + { + "start": 13017.22, + "end": 13018.5, + "probability": 0.9055 + }, + { + "start": 13018.8, + "end": 13020.28, + "probability": 0.625 + }, + { + "start": 13020.6, + "end": 13021.74, + "probability": 0.1881 + }, + { + "start": 13022.24, + "end": 13023.08, + "probability": 0.9822 + }, + { + "start": 13023.64, + "end": 13024.78, + "probability": 0.9309 + }, + { + "start": 13025.36, + "end": 13027.14, + "probability": 0.7901 + }, + { + "start": 13027.24, + "end": 13028.42, + "probability": 0.9221 + }, + { + "start": 13028.62, + "end": 13029.28, + "probability": 0.8418 + }, + { + "start": 13029.98, + "end": 13031.36, + "probability": 0.5487 + }, + { + "start": 13031.92, + "end": 13033.82, + "probability": 0.7827 + }, + { + "start": 13036.68, + "end": 13041.98, + "probability": 0.9097 + }, + { + "start": 13042.02, + "end": 13042.63, + "probability": 0.672 + }, + { + "start": 13043.3, + "end": 13045.0, + "probability": 0.716 + }, + { + "start": 13045.52, + "end": 13048.34, + "probability": 0.9506 + }, + { + "start": 13048.9, + "end": 13049.86, + "probability": 0.886 + }, + { + "start": 13050.18, + "end": 13050.97, + "probability": 0.789 + }, + { + "start": 13051.44, + "end": 13053.04, + "probability": 0.9279 + }, + { + "start": 13053.16, + "end": 13054.6, + "probability": 0.8094 + }, + { + "start": 13054.96, + "end": 13056.26, + "probability": 0.8642 + }, + { + "start": 13056.62, + "end": 13057.8, + "probability": 0.5467 + }, + { + "start": 13058.87, + "end": 13061.6, + "probability": 0.9324 + }, + { + "start": 13061.72, + "end": 13063.52, + "probability": 0.6546 + }, + { + "start": 13063.58, + "end": 13066.0, + "probability": 0.9304 + }, + { + "start": 13066.08, + "end": 13067.26, + "probability": 0.8244 + }, + { + "start": 13067.38, + "end": 13068.58, + "probability": 0.9111 + }, + { + "start": 13069.24, + "end": 13071.92, + "probability": 0.988 + }, + { + "start": 13072.1, + "end": 13075.94, + "probability": 0.9824 + }, + { + "start": 13076.04, + "end": 13076.14, + "probability": 0.6653 + }, + { + "start": 13076.78, + "end": 13079.18, + "probability": 0.8586 + }, + { + "start": 13079.52, + "end": 13081.76, + "probability": 0.9695 + }, + { + "start": 13081.84, + "end": 13083.58, + "probability": 0.8841 + }, + { + "start": 13083.94, + "end": 13085.74, + "probability": 0.887 + }, + { + "start": 13085.86, + "end": 13087.28, + "probability": 0.939 + }, + { + "start": 13097.64, + "end": 13098.9, + "probability": 0.6183 + }, + { + "start": 13099.22, + "end": 13101.16, + "probability": 0.6713 + }, + { + "start": 13101.52, + "end": 13103.08, + "probability": 0.9956 + }, + { + "start": 13103.14, + "end": 13106.54, + "probability": 0.9834 + }, + { + "start": 13107.26, + "end": 13110.5, + "probability": 0.9619 + }, + { + "start": 13110.7, + "end": 13116.18, + "probability": 0.0872 + }, + { + "start": 13116.56, + "end": 13119.1, + "probability": 0.7992 + }, + { + "start": 13119.3, + "end": 13120.86, + "probability": 0.7593 + }, + { + "start": 13121.52, + "end": 13121.84, + "probability": 0.5816 + }, + { + "start": 13121.92, + "end": 13124.88, + "probability": 0.7773 + }, + { + "start": 13125.04, + "end": 13126.9, + "probability": 0.9846 + }, + { + "start": 13126.92, + "end": 13128.24, + "probability": 0.5892 + }, + { + "start": 13128.28, + "end": 13130.0, + "probability": 0.7887 + }, + { + "start": 13130.12, + "end": 13130.5, + "probability": 0.7566 + }, + { + "start": 13130.62, + "end": 13131.5, + "probability": 0.7621 + }, + { + "start": 13131.56, + "end": 13132.48, + "probability": 0.8324 + }, + { + "start": 13133.57, + "end": 13134.95, + "probability": 0.9795 + }, + { + "start": 13135.58, + "end": 13136.36, + "probability": 0.9048 + }, + { + "start": 13136.46, + "end": 13137.04, + "probability": 0.8199 + }, + { + "start": 13137.2, + "end": 13139.5, + "probability": 0.8999 + }, + { + "start": 13139.6, + "end": 13139.92, + "probability": 0.1945 + }, + { + "start": 13140.52, + "end": 13141.25, + "probability": 0.9097 + }, + { + "start": 13141.82, + "end": 13142.7, + "probability": 0.7502 + }, + { + "start": 13142.72, + "end": 13143.48, + "probability": 0.9534 + }, + { + "start": 13143.56, + "end": 13144.65, + "probability": 0.7007 + }, + { + "start": 13145.2, + "end": 13145.82, + "probability": 0.6614 + }, + { + "start": 13145.88, + "end": 13146.32, + "probability": 0.9137 + }, + { + "start": 13146.44, + "end": 13149.16, + "probability": 0.9816 + }, + { + "start": 13149.74, + "end": 13152.36, + "probability": 0.9875 + }, + { + "start": 13152.42, + "end": 13154.04, + "probability": 0.6666 + }, + { + "start": 13154.24, + "end": 13155.93, + "probability": 0.6079 + }, + { + "start": 13157.44, + "end": 13157.98, + "probability": 0.349 + }, + { + "start": 13157.98, + "end": 13160.34, + "probability": 0.3012 + }, + { + "start": 13160.34, + "end": 13162.12, + "probability": 0.5809 + }, + { + "start": 13162.18, + "end": 13163.22, + "probability": 0.8733 + }, + { + "start": 13163.36, + "end": 13164.4, + "probability": 0.8694 + }, + { + "start": 13164.5, + "end": 13165.38, + "probability": 0.5599 + }, + { + "start": 13165.48, + "end": 13165.74, + "probability": 0.0638 + }, + { + "start": 13165.74, + "end": 13166.3, + "probability": 0.8434 + }, + { + "start": 13166.38, + "end": 13167.36, + "probability": 0.7068 + }, + { + "start": 13167.66, + "end": 13169.44, + "probability": 0.7053 + }, + { + "start": 13169.82, + "end": 13171.16, + "probability": 0.7175 + }, + { + "start": 13171.18, + "end": 13173.64, + "probability": 0.7473 + }, + { + "start": 13174.18, + "end": 13179.44, + "probability": 0.9104 + }, + { + "start": 13179.48, + "end": 13184.38, + "probability": 0.8827 + }, + { + "start": 13184.76, + "end": 13188.96, + "probability": 0.7828 + }, + { + "start": 13189.8, + "end": 13190.04, + "probability": 0.0908 + }, + { + "start": 13190.04, + "end": 13190.5, + "probability": 0.4475 + }, + { + "start": 13190.62, + "end": 13191.7, + "probability": 0.5879 + }, + { + "start": 13191.78, + "end": 13192.38, + "probability": 0.9132 + }, + { + "start": 13192.54, + "end": 13192.78, + "probability": 0.7209 + }, + { + "start": 13192.86, + "end": 13194.84, + "probability": 0.8508 + }, + { + "start": 13194.96, + "end": 13196.2, + "probability": 0.9834 + }, + { + "start": 13196.28, + "end": 13197.37, + "probability": 0.9961 + }, + { + "start": 13197.88, + "end": 13198.52, + "probability": 0.7938 + }, + { + "start": 13198.9, + "end": 13199.77, + "probability": 0.9362 + }, + { + "start": 13200.38, + "end": 13202.08, + "probability": 0.9546 + }, + { + "start": 13202.32, + "end": 13202.54, + "probability": 0.0857 + }, + { + "start": 13202.54, + "end": 13203.12, + "probability": 0.4028 + }, + { + "start": 13203.24, + "end": 13205.08, + "probability": 0.9263 + }, + { + "start": 13205.8, + "end": 13206.46, + "probability": 0.2108 + }, + { + "start": 13206.46, + "end": 13208.38, + "probability": 0.485 + }, + { + "start": 13208.4, + "end": 13210.22, + "probability": 0.9405 + }, + { + "start": 13210.26, + "end": 13211.07, + "probability": 0.7285 + }, + { + "start": 13214.26, + "end": 13214.4, + "probability": 0.3558 + }, + { + "start": 13214.4, + "end": 13216.81, + "probability": 0.9343 + }, + { + "start": 13217.32, + "end": 13220.36, + "probability": 0.9654 + }, + { + "start": 13220.48, + "end": 13223.48, + "probability": 0.9034 + }, + { + "start": 13223.64, + "end": 13226.06, + "probability": 0.9969 + }, + { + "start": 13226.34, + "end": 13231.26, + "probability": 0.9692 + }, + { + "start": 13231.34, + "end": 13232.74, + "probability": 0.9514 + }, + { + "start": 13232.88, + "end": 13234.46, + "probability": 0.9771 + }, + { + "start": 13234.5, + "end": 13235.8, + "probability": 0.8219 + }, + { + "start": 13235.9, + "end": 13237.52, + "probability": 0.9258 + }, + { + "start": 13238.18, + "end": 13239.68, + "probability": 0.4791 + }, + { + "start": 13239.78, + "end": 13240.8, + "probability": 0.5878 + }, + { + "start": 13241.42, + "end": 13242.12, + "probability": 0.8987 + }, + { + "start": 13242.26, + "end": 13242.98, + "probability": 0.6984 + }, + { + "start": 13243.06, + "end": 13245.36, + "probability": 0.9927 + }, + { + "start": 13245.42, + "end": 13248.54, + "probability": 0.9879 + }, + { + "start": 13249.12, + "end": 13250.08, + "probability": 0.0302 + }, + { + "start": 13250.08, + "end": 13250.08, + "probability": 0.3724 + }, + { + "start": 13250.08, + "end": 13251.17, + "probability": 0.3462 + }, + { + "start": 13251.32, + "end": 13252.16, + "probability": 0.7641 + }, + { + "start": 13252.52, + "end": 13254.3, + "probability": 0.9355 + }, + { + "start": 13254.52, + "end": 13256.08, + "probability": 0.9522 + }, + { + "start": 13256.24, + "end": 13258.39, + "probability": 0.9727 + }, + { + "start": 13258.62, + "end": 13259.96, + "probability": 0.7662 + }, + { + "start": 13260.16, + "end": 13260.92, + "probability": 0.7148 + }, + { + "start": 13261.02, + "end": 13262.43, + "probability": 0.8637 + }, + { + "start": 13263.0, + "end": 13266.68, + "probability": 0.6259 + }, + { + "start": 13266.68, + "end": 13270.22, + "probability": 0.9949 + }, + { + "start": 13270.64, + "end": 13273.12, + "probability": 0.9976 + }, + { + "start": 13273.5, + "end": 13275.42, + "probability": 0.9846 + }, + { + "start": 13275.48, + "end": 13277.45, + "probability": 0.7522 + }, + { + "start": 13278.2, + "end": 13279.88, + "probability": 0.9897 + }, + { + "start": 13280.04, + "end": 13282.22, + "probability": 0.9524 + }, + { + "start": 13282.58, + "end": 13283.22, + "probability": 0.4618 + }, + { + "start": 13283.32, + "end": 13286.46, + "probability": 0.7974 + }, + { + "start": 13286.56, + "end": 13287.76, + "probability": 0.9261 + }, + { + "start": 13288.47, + "end": 13288.54, + "probability": 0.9563 + }, + { + "start": 13288.64, + "end": 13289.42, + "probability": 0.5219 + }, + { + "start": 13290.26, + "end": 13291.62, + "probability": 0.9579 + }, + { + "start": 13291.72, + "end": 13292.14, + "probability": 0.5044 + }, + { + "start": 13292.48, + "end": 13296.86, + "probability": 0.7664 + }, + { + "start": 13297.4, + "end": 13299.13, + "probability": 0.8869 + }, + { + "start": 13299.82, + "end": 13301.6, + "probability": 0.9359 + }, + { + "start": 13302.28, + "end": 13306.12, + "probability": 0.9646 + }, + { + "start": 13306.56, + "end": 13306.56, + "probability": 0.0355 + }, + { + "start": 13306.58, + "end": 13307.4, + "probability": 0.6796 + }, + { + "start": 13307.52, + "end": 13308.26, + "probability": 0.508 + }, + { + "start": 13308.5, + "end": 13310.88, + "probability": 0.7301 + }, + { + "start": 13311.44, + "end": 13314.46, + "probability": 0.0281 + }, + { + "start": 13315.02, + "end": 13316.66, + "probability": 0.2519 + }, + { + "start": 13316.9, + "end": 13318.2, + "probability": 0.279 + }, + { + "start": 13318.2, + "end": 13319.32, + "probability": 0.1817 + }, + { + "start": 13320.3, + "end": 13322.58, + "probability": 0.503 + }, + { + "start": 13322.68, + "end": 13326.58, + "probability": 0.8815 + }, + { + "start": 13326.62, + "end": 13328.0, + "probability": 0.4603 + }, + { + "start": 13328.36, + "end": 13331.92, + "probability": 0.771 + }, + { + "start": 13332.2, + "end": 13332.34, + "probability": 0.8091 + }, + { + "start": 13332.42, + "end": 13334.0, + "probability": 0.8765 + }, + { + "start": 13334.08, + "end": 13335.35, + "probability": 0.5703 + }, + { + "start": 13335.74, + "end": 13340.32, + "probability": 0.9854 + }, + { + "start": 13341.12, + "end": 13343.1, + "probability": 0.9636 + }, + { + "start": 13343.88, + "end": 13346.96, + "probability": 0.8055 + }, + { + "start": 13346.98, + "end": 13349.53, + "probability": 0.9656 + }, + { + "start": 13350.44, + "end": 13351.42, + "probability": 0.4988 + }, + { + "start": 13351.44, + "end": 13353.44, + "probability": 0.2402 + }, + { + "start": 13353.52, + "end": 13354.4, + "probability": 0.2722 + }, + { + "start": 13354.48, + "end": 13355.68, + "probability": 0.5542 + }, + { + "start": 13355.84, + "end": 13357.31, + "probability": 0.5356 + }, + { + "start": 13357.98, + "end": 13359.24, + "probability": 0.0118 + }, + { + "start": 13359.24, + "end": 13360.96, + "probability": 0.1125 + }, + { + "start": 13361.18, + "end": 13361.96, + "probability": 0.7304 + }, + { + "start": 13362.14, + "end": 13364.43, + "probability": 0.9551 + }, + { + "start": 13365.22, + "end": 13367.54, + "probability": 0.99 + }, + { + "start": 13367.88, + "end": 13368.52, + "probability": 0.6299 + }, + { + "start": 13371.72, + "end": 13375.1, + "probability": 0.9941 + }, + { + "start": 13375.86, + "end": 13377.22, + "probability": 0.9139 + }, + { + "start": 13377.26, + "end": 13380.64, + "probability": 0.9431 + }, + { + "start": 13381.16, + "end": 13381.5, + "probability": 0.8601 + }, + { + "start": 13382.08, + "end": 13382.64, + "probability": 0.9482 + }, + { + "start": 13383.0, + "end": 13383.76, + "probability": 0.9457 + }, + { + "start": 13384.1, + "end": 13386.37, + "probability": 0.7532 + }, + { + "start": 13386.9, + "end": 13388.34, + "probability": 0.9197 + }, + { + "start": 13388.42, + "end": 13389.17, + "probability": 0.9458 + }, + { + "start": 13389.64, + "end": 13390.88, + "probability": 0.715 + }, + { + "start": 13390.88, + "end": 13390.88, + "probability": 0.2977 + }, + { + "start": 13390.9, + "end": 13392.02, + "probability": 0.8594 + }, + { + "start": 13392.12, + "end": 13393.54, + "probability": 0.726 + }, + { + "start": 13394.16, + "end": 13396.24, + "probability": 0.8351 + }, + { + "start": 13396.48, + "end": 13398.58, + "probability": 0.8223 + }, + { + "start": 13398.68, + "end": 13398.98, + "probability": 0.1788 + }, + { + "start": 13399.1, + "end": 13400.22, + "probability": 0.7137 + }, + { + "start": 13400.8, + "end": 13403.34, + "probability": 0.9857 + }, + { + "start": 13404.2, + "end": 13405.55, + "probability": 0.8613 + }, + { + "start": 13405.68, + "end": 13408.02, + "probability": 0.9026 + }, + { + "start": 13408.1, + "end": 13410.04, + "probability": 0.7806 + }, + { + "start": 13410.1, + "end": 13410.76, + "probability": 0.9314 + }, + { + "start": 13411.24, + "end": 13412.62, + "probability": 0.8193 + }, + { + "start": 13412.64, + "end": 13415.28, + "probability": 0.8804 + }, + { + "start": 13415.42, + "end": 13416.68, + "probability": 0.9036 + }, + { + "start": 13416.76, + "end": 13418.12, + "probability": 0.9394 + }, + { + "start": 13418.22, + "end": 13420.34, + "probability": 0.9001 + }, + { + "start": 13420.98, + "end": 13424.46, + "probability": 0.933 + }, + { + "start": 13424.76, + "end": 13426.78, + "probability": 0.915 + }, + { + "start": 13427.48, + "end": 13429.1, + "probability": 0.5947 + }, + { + "start": 13429.1, + "end": 13429.36, + "probability": 0.2231 + }, + { + "start": 13430.42, + "end": 13430.96, + "probability": 0.0667 + }, + { + "start": 13431.02, + "end": 13431.46, + "probability": 0.1465 + }, + { + "start": 13431.66, + "end": 13432.74, + "probability": 0.4249 + }, + { + "start": 13433.14, + "end": 13434.5, + "probability": 0.2973 + }, + { + "start": 13434.64, + "end": 13435.48, + "probability": 0.0246 + }, + { + "start": 13436.7, + "end": 13441.24, + "probability": 0.5584 + }, + { + "start": 13442.3, + "end": 13443.32, + "probability": 0.3121 + }, + { + "start": 13443.36, + "end": 13443.56, + "probability": 0.597 + }, + { + "start": 13446.08, + "end": 13446.92, + "probability": 0.0818 + }, + { + "start": 13446.92, + "end": 13446.92, + "probability": 0.0685 + }, + { + "start": 13446.92, + "end": 13446.92, + "probability": 0.0532 + }, + { + "start": 13446.92, + "end": 13450.06, + "probability": 0.191 + }, + { + "start": 13450.28, + "end": 13451.48, + "probability": 0.6866 + }, + { + "start": 13451.7, + "end": 13452.7, + "probability": 0.8508 + }, + { + "start": 13452.74, + "end": 13453.81, + "probability": 0.5918 + }, + { + "start": 13455.08, + "end": 13455.52, + "probability": 0.0407 + }, + { + "start": 13456.58, + "end": 13457.12, + "probability": 0.0509 + }, + { + "start": 13457.44, + "end": 13457.44, + "probability": 0.1687 + }, + { + "start": 13457.44, + "end": 13457.44, + "probability": 0.0715 + }, + { + "start": 13457.44, + "end": 13458.0, + "probability": 0.4565 + }, + { + "start": 13458.82, + "end": 13459.88, + "probability": 0.4122 + }, + { + "start": 13460.06, + "end": 13460.96, + "probability": 0.6029 + }, + { + "start": 13461.18, + "end": 13461.72, + "probability": 0.7363 + }, + { + "start": 13461.86, + "end": 13465.2, + "probability": 0.7749 + }, + { + "start": 13465.74, + "end": 13466.41, + "probability": 0.1646 + }, + { + "start": 13467.96, + "end": 13469.62, + "probability": 0.4954 + }, + { + "start": 13469.74, + "end": 13472.22, + "probability": 0.7692 + }, + { + "start": 13472.7, + "end": 13475.74, + "probability": 0.8913 + }, + { + "start": 13476.54, + "end": 13476.56, + "probability": 0.0735 + }, + { + "start": 13476.56, + "end": 13480.36, + "probability": 0.9739 + }, + { + "start": 13481.02, + "end": 13484.94, + "probability": 0.9737 + }, + { + "start": 13484.94, + "end": 13490.34, + "probability": 0.9709 + }, + { + "start": 13490.82, + "end": 13491.14, + "probability": 0.4489 + }, + { + "start": 13491.2, + "end": 13493.66, + "probability": 0.6486 + }, + { + "start": 13493.8, + "end": 13494.42, + "probability": 0.8951 + }, + { + "start": 13495.02, + "end": 13496.62, + "probability": 0.5967 + }, + { + "start": 13496.76, + "end": 13498.02, + "probability": 0.9332 + }, + { + "start": 13498.78, + "end": 13502.9, + "probability": 0.9135 + }, + { + "start": 13502.94, + "end": 13503.08, + "probability": 0.673 + }, + { + "start": 13503.16, + "end": 13504.98, + "probability": 0.362 + }, + { + "start": 13505.5, + "end": 13506.84, + "probability": 0.2897 + }, + { + "start": 13506.84, + "end": 13507.74, + "probability": 0.6259 + }, + { + "start": 13508.06, + "end": 13508.69, + "probability": 0.0329 + }, + { + "start": 13509.0, + "end": 13509.68, + "probability": 0.7358 + }, + { + "start": 13509.78, + "end": 13510.78, + "probability": 0.5871 + }, + { + "start": 13510.86, + "end": 13512.08, + "probability": 0.812 + }, + { + "start": 13512.28, + "end": 13513.22, + "probability": 0.3295 + }, + { + "start": 13513.4, + "end": 13515.18, + "probability": 0.3485 + }, + { + "start": 13515.26, + "end": 13515.56, + "probability": 0.6891 + }, + { + "start": 13515.74, + "end": 13518.6, + "probability": 0.8796 + }, + { + "start": 13518.82, + "end": 13519.64, + "probability": 0.9551 + }, + { + "start": 13520.58, + "end": 13523.52, + "probability": 0.9744 + }, + { + "start": 13523.8, + "end": 13525.0, + "probability": 0.9703 + }, + { + "start": 13525.72, + "end": 13526.64, + "probability": 0.1586 + }, + { + "start": 13526.64, + "end": 13528.24, + "probability": 0.1184 + }, + { + "start": 13528.8, + "end": 13533.52, + "probability": 0.8651 + }, + { + "start": 13533.94, + "end": 13534.2, + "probability": 0.0204 + }, + { + "start": 13534.22, + "end": 13534.58, + "probability": 0.6271 + }, + { + "start": 13534.7, + "end": 13536.96, + "probability": 0.967 + }, + { + "start": 13537.1, + "end": 13537.96, + "probability": 0.726 + }, + { + "start": 13538.68, + "end": 13540.52, + "probability": 0.8935 + }, + { + "start": 13541.32, + "end": 13542.84, + "probability": 0.9243 + }, + { + "start": 13543.36, + "end": 13544.44, + "probability": 0.8412 + }, + { + "start": 13544.88, + "end": 13549.48, + "probability": 0.9946 + }, + { + "start": 13550.0, + "end": 13551.5, + "probability": 0.9938 + }, + { + "start": 13551.58, + "end": 13552.66, + "probability": 0.925 + }, + { + "start": 13552.84, + "end": 13554.18, + "probability": 0.7459 + }, + { + "start": 13554.6, + "end": 13555.78, + "probability": 0.9089 + }, + { + "start": 13556.16, + "end": 13559.94, + "probability": 0.9874 + }, + { + "start": 13560.56, + "end": 13562.42, + "probability": 0.9935 + }, + { + "start": 13562.8, + "end": 13564.24, + "probability": 0.9351 + }, + { + "start": 13564.4, + "end": 13565.85, + "probability": 0.7629 + }, + { + "start": 13566.54, + "end": 13566.98, + "probability": 0.6085 + }, + { + "start": 13567.12, + "end": 13569.14, + "probability": 0.9609 + }, + { + "start": 13569.64, + "end": 13570.74, + "probability": 0.823 + }, + { + "start": 13571.94, + "end": 13573.3, + "probability": 0.0054 + }, + { + "start": 13573.77, + "end": 13578.8, + "probability": 0.9492 + }, + { + "start": 13578.9, + "end": 13579.52, + "probability": 0.8561 + }, + { + "start": 13580.06, + "end": 13584.63, + "probability": 0.9901 + }, + { + "start": 13585.1, + "end": 13587.06, + "probability": 0.9945 + }, + { + "start": 13587.28, + "end": 13588.99, + "probability": 0.9959 + }, + { + "start": 13589.76, + "end": 13591.46, + "probability": 0.9802 + }, + { + "start": 13591.56, + "end": 13595.84, + "probability": 0.9326 + }, + { + "start": 13596.72, + "end": 13600.44, + "probability": 0.7609 + }, + { + "start": 13601.0, + "end": 13604.08, + "probability": 0.9878 + }, + { + "start": 13604.08, + "end": 13607.44, + "probability": 0.9557 + }, + { + "start": 13607.44, + "end": 13611.26, + "probability": 0.7995 + }, + { + "start": 13612.0, + "end": 13616.32, + "probability": 0.7402 + }, + { + "start": 13616.38, + "end": 13617.79, + "probability": 0.9641 + }, + { + "start": 13618.48, + "end": 13619.9, + "probability": 0.7812 + }, + { + "start": 13620.58, + "end": 13620.9, + "probability": 0.0146 + }, + { + "start": 13620.9, + "end": 13621.36, + "probability": 0.5777 + }, + { + "start": 13621.56, + "end": 13623.88, + "probability": 0.7352 + }, + { + "start": 13624.0, + "end": 13625.92, + "probability": 0.5402 + }, + { + "start": 13626.14, + "end": 13626.86, + "probability": 0.2407 + }, + { + "start": 13627.58, + "end": 13628.22, + "probability": 0.1206 + }, + { + "start": 13628.22, + "end": 13629.83, + "probability": 0.2996 + }, + { + "start": 13630.06, + "end": 13630.79, + "probability": 0.9925 + }, + { + "start": 13631.56, + "end": 13635.8, + "probability": 0.9928 + }, + { + "start": 13635.88, + "end": 13636.72, + "probability": 0.8893 + }, + { + "start": 13636.82, + "end": 13638.12, + "probability": 0.9347 + }, + { + "start": 13638.44, + "end": 13639.06, + "probability": 0.5081 + }, + { + "start": 13639.06, + "end": 13640.64, + "probability": 0.7334 + }, + { + "start": 13640.64, + "end": 13644.78, + "probability": 0.9445 + }, + { + "start": 13645.12, + "end": 13647.24, + "probability": 0.9971 + }, + { + "start": 13647.6, + "end": 13649.88, + "probability": 0.5012 + }, + { + "start": 13650.6, + "end": 13657.78, + "probability": 0.9897 + }, + { + "start": 13657.86, + "end": 13659.22, + "probability": 0.7214 + }, + { + "start": 13660.08, + "end": 13660.78, + "probability": 0.8925 + }, + { + "start": 13660.86, + "end": 13661.8, + "probability": 0.964 + }, + { + "start": 13661.84, + "end": 13663.88, + "probability": 0.9731 + }, + { + "start": 13664.34, + "end": 13666.84, + "probability": 0.9636 + }, + { + "start": 13666.98, + "end": 13669.02, + "probability": 0.9218 + }, + { + "start": 13669.92, + "end": 13674.48, + "probability": 0.2208 + }, + { + "start": 13674.98, + "end": 13674.98, + "probability": 0.0576 + }, + { + "start": 13674.98, + "end": 13674.98, + "probability": 0.0227 + }, + { + "start": 13674.98, + "end": 13675.78, + "probability": 0.4829 + }, + { + "start": 13675.78, + "end": 13676.43, + "probability": 0.0904 + }, + { + "start": 13677.72, + "end": 13680.77, + "probability": 0.5453 + }, + { + "start": 13684.94, + "end": 13685.38, + "probability": 0.0061 + }, + { + "start": 13685.38, + "end": 13685.46, + "probability": 0.0374 + }, + { + "start": 13685.46, + "end": 13686.51, + "probability": 0.1442 + }, + { + "start": 13687.16, + "end": 13689.6, + "probability": 0.5123 + }, + { + "start": 13690.22, + "end": 13690.32, + "probability": 0.0749 + }, + { + "start": 13690.32, + "end": 13692.29, + "probability": 0.6917 + }, + { + "start": 13692.94, + "end": 13693.58, + "probability": 0.7671 + }, + { + "start": 13695.14, + "end": 13698.24, + "probability": 0.6339 + }, + { + "start": 13698.84, + "end": 13700.0, + "probability": 0.4476 + }, + { + "start": 13701.13, + "end": 13703.69, + "probability": 0.8481 + }, + { + "start": 13703.9, + "end": 13704.2, + "probability": 0.1895 + }, + { + "start": 13704.2, + "end": 13706.76, + "probability": 0.7879 + }, + { + "start": 13707.24, + "end": 13713.72, + "probability": 0.8071 + }, + { + "start": 13713.72, + "end": 13715.16, + "probability": 0.8244 + }, + { + "start": 13715.44, + "end": 13717.48, + "probability": 0.3293 + }, + { + "start": 13718.34, + "end": 13722.52, + "probability": 0.889 + }, + { + "start": 13722.88, + "end": 13724.86, + "probability": 0.7976 + }, + { + "start": 13737.44, + "end": 13742.58, + "probability": 0.0973 + }, + { + "start": 13742.68, + "end": 13745.77, + "probability": 0.0308 + }, + { + "start": 13747.04, + "end": 13747.04, + "probability": 0.0684 + }, + { + "start": 13747.1, + "end": 13748.26, + "probability": 0.1308 + }, + { + "start": 13748.4, + "end": 13749.7, + "probability": 0.1562 + }, + { + "start": 13750.52, + "end": 13751.24, + "probability": 0.478 + }, + { + "start": 13751.48, + "end": 13751.5, + "probability": 0.731 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.0, + "end": 13852.0, + "probability": 0.0 + }, + { + "start": 13852.16, + "end": 13853.66, + "probability": 0.2035 + }, + { + "start": 13853.8, + "end": 13856.7, + "probability": 0.9849 + }, + { + "start": 13857.48, + "end": 13860.3, + "probability": 0.7788 + }, + { + "start": 13860.3, + "end": 13861.24, + "probability": 0.5974 + }, + { + "start": 13861.44, + "end": 13863.52, + "probability": 0.1556 + }, + { + "start": 13863.7, + "end": 13866.02, + "probability": 0.9818 + }, + { + "start": 13866.02, + "end": 13869.62, + "probability": 0.9924 + }, + { + "start": 13870.08, + "end": 13872.82, + "probability": 0.6642 + }, + { + "start": 13873.56, + "end": 13876.38, + "probability": 0.9432 + }, + { + "start": 13877.04, + "end": 13878.6, + "probability": 0.1967 + }, + { + "start": 13880.56, + "end": 13882.22, + "probability": 0.9471 + }, + { + "start": 13882.4, + "end": 13887.98, + "probability": 0.9644 + }, + { + "start": 13888.64, + "end": 13891.26, + "probability": 0.9456 + }, + { + "start": 13892.96, + "end": 13894.82, + "probability": 0.9201 + }, + { + "start": 13894.9, + "end": 13901.28, + "probability": 0.6375 + }, + { + "start": 13901.28, + "end": 13903.88, + "probability": 0.7905 + }, + { + "start": 13904.62, + "end": 13905.24, + "probability": 0.8004 + }, + { + "start": 13910.88, + "end": 13913.08, + "probability": 0.6399 + }, + { + "start": 13913.68, + "end": 13916.58, + "probability": 0.8919 + }, + { + "start": 13919.16, + "end": 13920.06, + "probability": 0.6493 + }, + { + "start": 13921.62, + "end": 13922.7, + "probability": 0.8916 + }, + { + "start": 13922.78, + "end": 13925.0, + "probability": 0.9904 + }, + { + "start": 13925.0, + "end": 13928.54, + "probability": 0.7551 + }, + { + "start": 13928.7, + "end": 13931.0, + "probability": 0.1665 + }, + { + "start": 13931.38, + "end": 13932.38, + "probability": 0.9136 + }, + { + "start": 13932.92, + "end": 13935.34, + "probability": 0.8884 + }, + { + "start": 13936.12, + "end": 13938.74, + "probability": 0.9117 + }, + { + "start": 13938.9, + "end": 13944.44, + "probability": 0.8949 + }, + { + "start": 13944.44, + "end": 13947.18, + "probability": 0.9988 + }, + { + "start": 13947.36, + "end": 13947.78, + "probability": 0.487 + }, + { + "start": 13948.36, + "end": 13949.46, + "probability": 0.9405 + }, + { + "start": 13949.56, + "end": 13950.64, + "probability": 0.7408 + }, + { + "start": 13951.12, + "end": 13954.76, + "probability": 0.9279 + }, + { + "start": 13955.12, + "end": 13958.18, + "probability": 0.9672 + }, + { + "start": 13959.0, + "end": 13963.68, + "probability": 0.9436 + }, + { + "start": 13963.68, + "end": 13968.34, + "probability": 0.9932 + }, + { + "start": 13968.9, + "end": 13971.64, + "probability": 0.6417 + }, + { + "start": 13971.64, + "end": 13974.88, + "probability": 0.9977 + }, + { + "start": 13975.08, + "end": 13977.16, + "probability": 0.7345 + }, + { + "start": 13977.54, + "end": 13978.94, + "probability": 0.7788 + }, + { + "start": 13979.28, + "end": 13981.74, + "probability": 0.9926 + }, + { + "start": 13982.26, + "end": 13983.02, + "probability": 0.8667 + }, + { + "start": 13986.1, + "end": 13987.02, + "probability": 0.9056 + }, + { + "start": 13987.74, + "end": 13990.42, + "probability": 0.9707 + }, + { + "start": 13990.42, + "end": 13995.54, + "probability": 0.9983 + }, + { + "start": 13996.14, + "end": 13999.72, + "probability": 0.9911 + }, + { + "start": 14000.12, + "end": 14003.2, + "probability": 0.996 + }, + { + "start": 14003.74, + "end": 14004.98, + "probability": 0.8028 + }, + { + "start": 14005.46, + "end": 14007.88, + "probability": 0.9672 + }, + { + "start": 14008.34, + "end": 14011.14, + "probability": 0.9805 + }, + { + "start": 14011.62, + "end": 14011.92, + "probability": 0.2762 + }, + { + "start": 14012.06, + "end": 14016.94, + "probability": 0.9756 + }, + { + "start": 14017.52, + "end": 14018.22, + "probability": 0.6693 + }, + { + "start": 14018.56, + "end": 14021.66, + "probability": 0.8405 + }, + { + "start": 14023.38, + "end": 14025.52, + "probability": 0.8288 + }, + { + "start": 14025.88, + "end": 14031.24, + "probability": 0.6733 + }, + { + "start": 14031.9, + "end": 14032.4, + "probability": 0.8229 + }, + { + "start": 14033.12, + "end": 14037.06, + "probability": 0.9949 + }, + { + "start": 14037.36, + "end": 14039.3, + "probability": 0.9347 + }, + { + "start": 14039.86, + "end": 14040.72, + "probability": 0.9154 + }, + { + "start": 14040.8, + "end": 14041.56, + "probability": 0.6213 + }, + { + "start": 14041.62, + "end": 14042.4, + "probability": 0.6532 + }, + { + "start": 14042.66, + "end": 14043.59, + "probability": 0.4524 + }, + { + "start": 14043.98, + "end": 14048.7, + "probability": 0.9518 + }, + { + "start": 14050.3, + "end": 14055.0, + "probability": 0.9564 + }, + { + "start": 14055.5, + "end": 14057.24, + "probability": 0.692 + }, + { + "start": 14058.84, + "end": 14059.02, + "probability": 0.1408 + }, + { + "start": 14059.02, + "end": 14061.32, + "probability": 0.812 + }, + { + "start": 14062.14, + "end": 14063.16, + "probability": 0.4035 + }, + { + "start": 14063.4, + "end": 14063.86, + "probability": 0.4311 + }, + { + "start": 14063.9, + "end": 14064.82, + "probability": 0.7267 + }, + { + "start": 14065.0, + "end": 14066.3, + "probability": 0.8079 + }, + { + "start": 14066.86, + "end": 14067.56, + "probability": 0.7803 + }, + { + "start": 14068.02, + "end": 14070.82, + "probability": 0.9447 + }, + { + "start": 14071.74, + "end": 14072.52, + "probability": 0.2001 + }, + { + "start": 14072.78, + "end": 14074.78, + "probability": 0.9778 + }, + { + "start": 14075.12, + "end": 14076.18, + "probability": 0.7764 + }, + { + "start": 14076.32, + "end": 14077.14, + "probability": 0.877 + }, + { + "start": 14077.7, + "end": 14078.18, + "probability": 0.8438 + }, + { + "start": 14078.62, + "end": 14079.32, + "probability": 0.2324 + }, + { + "start": 14084.76, + "end": 14085.42, + "probability": 0.0 + }, + { + "start": 14097.3, + "end": 14097.46, + "probability": 0.0781 + }, + { + "start": 14100.66, + "end": 14103.0, + "probability": 0.5765 + }, + { + "start": 14103.1, + "end": 14109.72, + "probability": 0.9413 + }, + { + "start": 14109.86, + "end": 14112.1, + "probability": 0.8272 + }, + { + "start": 14112.72, + "end": 14114.89, + "probability": 0.9618 + }, + { + "start": 14115.88, + "end": 14116.82, + "probability": 0.8502 + }, + { + "start": 14122.54, + "end": 14123.08, + "probability": 0.0467 + }, + { + "start": 14130.02, + "end": 14133.04, + "probability": 0.23 + }, + { + "start": 14133.88, + "end": 14134.58, + "probability": 0.1159 + }, + { + "start": 14134.58, + "end": 14135.98, + "probability": 0.6 + }, + { + "start": 14136.1, + "end": 14139.7, + "probability": 0.8511 + }, + { + "start": 14140.06, + "end": 14141.78, + "probability": 0.5556 + }, + { + "start": 14142.4, + "end": 14144.74, + "probability": 0.8339 + }, + { + "start": 14145.42, + "end": 14146.66, + "probability": 0.9969 + }, + { + "start": 14148.44, + "end": 14148.98, + "probability": 0.711 + }, + { + "start": 14149.6, + "end": 14151.38, + "probability": 0.7231 + }, + { + "start": 14152.12, + "end": 14154.94, + "probability": 0.9833 + }, + { + "start": 14155.88, + "end": 14157.42, + "probability": 0.2355 + }, + { + "start": 14157.54, + "end": 14159.62, + "probability": 0.1882 + }, + { + "start": 14159.74, + "end": 14161.14, + "probability": 0.9611 + }, + { + "start": 14161.6, + "end": 14164.04, + "probability": 0.998 + }, + { + "start": 14164.04, + "end": 14167.98, + "probability": 0.6161 + }, + { + "start": 14168.04, + "end": 14168.96, + "probability": 0.44 + }, + { + "start": 14169.5, + "end": 14171.36, + "probability": 0.9761 + }, + { + "start": 14180.26, + "end": 14180.26, + "probability": 0.1583 + }, + { + "start": 14180.26, + "end": 14180.26, + "probability": 0.1622 + }, + { + "start": 14180.26, + "end": 14180.28, + "probability": 0.1202 + }, + { + "start": 14180.28, + "end": 14180.28, + "probability": 0.0348 + }, + { + "start": 14190.46, + "end": 14190.54, + "probability": 0.0017 + }, + { + "start": 14200.76, + "end": 14203.32, + "probability": 0.4395 + }, + { + "start": 14204.34, + "end": 14208.14, + "probability": 0.9929 + }, + { + "start": 14208.44, + "end": 14212.74, + "probability": 0.9924 + }, + { + "start": 14213.46, + "end": 14214.32, + "probability": 0.8031 + }, + { + "start": 14214.42, + "end": 14218.0, + "probability": 0.9685 + }, + { + "start": 14218.66, + "end": 14219.78, + "probability": 0.7535 + }, + { + "start": 14219.78, + "end": 14220.84, + "probability": 0.7968 + }, + { + "start": 14220.88, + "end": 14221.48, + "probability": 0.8949 + }, + { + "start": 14221.58, + "end": 14224.76, + "probability": 0.9751 + }, + { + "start": 14224.76, + "end": 14228.36, + "probability": 0.9722 + }, + { + "start": 14229.06, + "end": 14232.04, + "probability": 0.8329 + }, + { + "start": 14233.0, + "end": 14233.92, + "probability": 0.8846 + }, + { + "start": 14234.0, + "end": 14234.94, + "probability": 0.8587 + }, + { + "start": 14235.06, + "end": 14236.02, + "probability": 0.7841 + }, + { + "start": 14236.38, + "end": 14237.06, + "probability": 0.8028 + }, + { + "start": 14237.14, + "end": 14241.42, + "probability": 0.9891 + }, + { + "start": 14242.16, + "end": 14243.26, + "probability": 0.6671 + }, + { + "start": 14243.38, + "end": 14243.8, + "probability": 0.3827 + }, + { + "start": 14244.04, + "end": 14247.42, + "probability": 0.9656 + }, + { + "start": 14248.1, + "end": 14250.88, + "probability": 0.9666 + }, + { + "start": 14251.56, + "end": 14254.5, + "probability": 0.9896 + }, + { + "start": 14254.5, + "end": 14257.88, + "probability": 0.9912 + }, + { + "start": 14258.26, + "end": 14261.6, + "probability": 0.9644 + }, + { + "start": 14261.74, + "end": 14263.18, + "probability": 0.815 + }, + { + "start": 14263.66, + "end": 14266.68, + "probability": 0.9745 + }, + { + "start": 14267.26, + "end": 14268.18, + "probability": 0.7116 + }, + { + "start": 14268.32, + "end": 14269.38, + "probability": 0.7914 + }, + { + "start": 14269.4, + "end": 14271.58, + "probability": 0.9976 + }, + { + "start": 14271.96, + "end": 14273.24, + "probability": 0.8369 + }, + { + "start": 14273.96, + "end": 14277.14, + "probability": 0.9909 + }, + { + "start": 14277.14, + "end": 14280.68, + "probability": 0.9965 + }, + { + "start": 14280.68, + "end": 14284.0, + "probability": 0.9819 + }, + { + "start": 14284.46, + "end": 14287.3, + "probability": 0.9561 + }, + { + "start": 14288.2, + "end": 14289.1, + "probability": 0.4744 + }, + { + "start": 14289.24, + "end": 14290.02, + "probability": 0.7842 + }, + { + "start": 14290.14, + "end": 14292.6, + "probability": 0.9655 + }, + { + "start": 14293.58, + "end": 14297.68, + "probability": 0.986 + }, + { + "start": 14297.68, + "end": 14302.18, + "probability": 0.919 + }, + { + "start": 14302.56, + "end": 14305.04, + "probability": 0.9931 + }, + { + "start": 14305.64, + "end": 14308.82, + "probability": 0.9883 + }, + { + "start": 14308.96, + "end": 14309.64, + "probability": 0.6106 + }, + { + "start": 14310.14, + "end": 14315.1, + "probability": 0.9684 + }, + { + "start": 14316.4, + "end": 14320.36, + "probability": 0.9875 + }, + { + "start": 14320.42, + "end": 14323.46, + "probability": 0.9539 + }, + { + "start": 14324.62, + "end": 14327.2, + "probability": 0.98 + }, + { + "start": 14327.28, + "end": 14330.26, + "probability": 0.9792 + }, + { + "start": 14330.94, + "end": 14333.1, + "probability": 0.9204 + }, + { + "start": 14333.24, + "end": 14335.46, + "probability": 0.9889 + }, + { + "start": 14335.8, + "end": 14338.49, + "probability": 0.9858 + }, + { + "start": 14338.74, + "end": 14341.4, + "probability": 0.9636 + }, + { + "start": 14341.48, + "end": 14344.42, + "probability": 0.9694 + }, + { + "start": 14345.4, + "end": 14348.08, + "probability": 0.9868 + }, + { + "start": 14348.6, + "end": 14351.28, + "probability": 0.8626 + }, + { + "start": 14351.28, + "end": 14353.62, + "probability": 0.9108 + }, + { + "start": 14354.06, + "end": 14358.08, + "probability": 0.9961 + }, + { + "start": 14358.98, + "end": 14366.08, + "probability": 0.9693 + }, + { + "start": 14366.15, + "end": 14368.9, + "probability": 0.8639 + }, + { + "start": 14369.0, + "end": 14372.24, + "probability": 0.856 + }, + { + "start": 14372.24, + "end": 14375.32, + "probability": 0.9869 + }, + { + "start": 14376.06, + "end": 14379.7, + "probability": 0.9524 + }, + { + "start": 14380.24, + "end": 14383.62, + "probability": 0.967 + }, + { + "start": 14383.94, + "end": 14388.96, + "probability": 0.995 + }, + { + "start": 14389.5, + "end": 14391.42, + "probability": 0.9325 + }, + { + "start": 14391.52, + "end": 14393.14, + "probability": 0.8479 + }, + { + "start": 14393.68, + "end": 14395.2, + "probability": 0.9744 + }, + { + "start": 14395.34, + "end": 14397.54, + "probability": 0.9182 + }, + { + "start": 14398.02, + "end": 14398.4, + "probability": 0.4595 + }, + { + "start": 14398.54, + "end": 14399.44, + "probability": 0.9214 + }, + { + "start": 14399.94, + "end": 14402.36, + "probability": 0.93 + }, + { + "start": 14402.5, + "end": 14402.82, + "probability": 0.9197 + }, + { + "start": 14403.06, + "end": 14403.76, + "probability": 0.804 + }, + { + "start": 14404.38, + "end": 14407.46, + "probability": 0.9962 + }, + { + "start": 14407.94, + "end": 14412.56, + "probability": 0.9954 + }, + { + "start": 14412.96, + "end": 14416.64, + "probability": 0.9985 + }, + { + "start": 14416.64, + "end": 14421.42, + "probability": 0.9983 + }, + { + "start": 14421.42, + "end": 14425.12, + "probability": 0.9982 + }, + { + "start": 14425.62, + "end": 14430.94, + "probability": 0.997 + }, + { + "start": 14430.94, + "end": 14437.6, + "probability": 0.9978 + }, + { + "start": 14437.84, + "end": 14438.4, + "probability": 0.7932 + }, + { + "start": 14439.12, + "end": 14444.34, + "probability": 0.8522 + }, + { + "start": 14445.26, + "end": 14446.96, + "probability": 0.6987 + }, + { + "start": 14447.7, + "end": 14448.64, + "probability": 0.9219 + }, + { + "start": 14448.86, + "end": 14450.26, + "probability": 0.7542 + }, + { + "start": 14450.42, + "end": 14452.02, + "probability": 0.9945 + }, + { + "start": 14452.76, + "end": 14452.86, + "probability": 0.6782 + }, + { + "start": 14453.56, + "end": 14454.56, + "probability": 0.5866 + }, + { + "start": 14463.84, + "end": 14465.56, + "probability": 0.862 + }, + { + "start": 14465.94, + "end": 14468.4, + "probability": 0.9434 + }, + { + "start": 14470.04, + "end": 14472.46, + "probability": 0.823 + }, + { + "start": 14472.62, + "end": 14473.92, + "probability": 0.8392 + }, + { + "start": 14474.44, + "end": 14477.38, + "probability": 0.8823 + }, + { + "start": 14477.46, + "end": 14478.08, + "probability": 0.1331 + }, + { + "start": 14487.28, + "end": 14487.28, + "probability": 0.0173 + }, + { + "start": 14487.28, + "end": 14487.28, + "probability": 0.077 + }, + { + "start": 14487.28, + "end": 14487.3, + "probability": 0.0761 + }, + { + "start": 14487.3, + "end": 14487.3, + "probability": 0.0561 + }, + { + "start": 14503.82, + "end": 14507.84, + "probability": 0.4167 + }, + { + "start": 14508.46, + "end": 14509.52, + "probability": 0.7858 + }, + { + "start": 14510.78, + "end": 14511.22, + "probability": 0.5257 + }, + { + "start": 14512.74, + "end": 14513.59, + "probability": 0.0091 + }, + { + "start": 14515.7, + "end": 14516.42, + "probability": 0.22 + }, + { + "start": 14518.82, + "end": 14519.74, + "probability": 0.1765 + }, + { + "start": 14526.66, + "end": 14526.94, + "probability": 0.0858 + }, + { + "start": 14529.2, + "end": 14532.0, + "probability": 0.7626 + }, + { + "start": 14532.12, + "end": 14533.4, + "probability": 0.9889 + }, + { + "start": 14534.22, + "end": 14535.48, + "probability": 0.8071 + }, + { + "start": 14538.38, + "end": 14541.62, + "probability": 0.9663 + }, + { + "start": 14541.76, + "end": 14543.1, + "probability": 0.6827 + }, + { + "start": 14543.72, + "end": 14544.52, + "probability": 0.6361 + }, + { + "start": 14545.3, + "end": 14547.04, + "probability": 0.7572 + }, + { + "start": 14547.2, + "end": 14549.58, + "probability": 0.9825 + }, + { + "start": 14551.02, + "end": 14551.98, + "probability": 0.7931 + }, + { + "start": 14552.12, + "end": 14556.88, + "probability": 0.8783 + }, + { + "start": 14557.44, + "end": 14560.5, + "probability": 0.1327 + }, + { + "start": 14561.2, + "end": 14561.2, + "probability": 0.5656 + }, + { + "start": 14561.2, + "end": 14563.46, + "probability": 0.802 + }, + { + "start": 14563.56, + "end": 14564.28, + "probability": 0.7502 + }, + { + "start": 14565.02, + "end": 14565.9, + "probability": 0.5964 + }, + { + "start": 14566.04, + "end": 14566.54, + "probability": 0.9031 + }, + { + "start": 14570.12, + "end": 14572.6, + "probability": 0.6499 + }, + { + "start": 14573.3, + "end": 14575.46, + "probability": 0.9903 + }, + { + "start": 14575.46, + "end": 14578.44, + "probability": 0.4487 + }, + { + "start": 14579.26, + "end": 14585.34, + "probability": 0.9934 + }, + { + "start": 14585.34, + "end": 14589.52, + "probability": 0.9827 + }, + { + "start": 14591.02, + "end": 14597.36, + "probability": 0.6589 + }, + { + "start": 14599.22, + "end": 14600.58, + "probability": 0.8326 + }, + { + "start": 14600.7, + "end": 14601.52, + "probability": 0.7471 + }, + { + "start": 14601.92, + "end": 14602.82, + "probability": 0.7511 + }, + { + "start": 14602.98, + "end": 14604.3, + "probability": 0.1345 + }, + { + "start": 14604.84, + "end": 14606.92, + "probability": 0.9046 + }, + { + "start": 14607.72, + "end": 14609.88, + "probability": 0.8945 + }, + { + "start": 14609.98, + "end": 14612.12, + "probability": 0.9575 + }, + { + "start": 14613.64, + "end": 14613.9, + "probability": 0.5982 + }, + { + "start": 14614.0, + "end": 14615.08, + "probability": 0.9192 + }, + { + "start": 14615.14, + "end": 14617.34, + "probability": 0.9756 + }, + { + "start": 14617.66, + "end": 14618.76, + "probability": 0.8878 + }, + { + "start": 14619.52, + "end": 14621.44, + "probability": 0.9824 + }, + { + "start": 14621.44, + "end": 14623.96, + "probability": 0.9932 + }, + { + "start": 14624.7, + "end": 14625.54, + "probability": 0.9389 + }, + { + "start": 14625.66, + "end": 14626.18, + "probability": 0.4784 + }, + { + "start": 14626.74, + "end": 14628.2, + "probability": 0.7256 + }, + { + "start": 14628.58, + "end": 14630.48, + "probability": 0.2081 + }, + { + "start": 14630.66, + "end": 14632.68, + "probability": 0.9493 + }, + { + "start": 14632.68, + "end": 14634.6, + "probability": 0.9015 + }, + { + "start": 14635.22, + "end": 14637.94, + "probability": 0.9805 + }, + { + "start": 14638.56, + "end": 14642.0, + "probability": 0.9852 + }, + { + "start": 14642.42, + "end": 14644.52, + "probability": 0.8142 + }, + { + "start": 14645.3, + "end": 14648.9, + "probability": 0.7043 + }, + { + "start": 14649.34, + "end": 14651.14, + "probability": 0.9172 + }, + { + "start": 14651.62, + "end": 14653.76, + "probability": 0.8359 + }, + { + "start": 14654.48, + "end": 14656.46, + "probability": 0.9819 + }, + { + "start": 14656.64, + "end": 14658.27, + "probability": 0.9653 + }, + { + "start": 14658.84, + "end": 14660.84, + "probability": 0.9773 + }, + { + "start": 14660.9, + "end": 14661.74, + "probability": 0.9964 + }, + { + "start": 14662.52, + "end": 14665.18, + "probability": 0.9819 + }, + { + "start": 14665.94, + "end": 14667.18, + "probability": 0.5684 + }, + { + "start": 14667.34, + "end": 14668.33, + "probability": 0.6848 + }, + { + "start": 14669.52, + "end": 14670.4, + "probability": 0.9734 + }, + { + "start": 14670.46, + "end": 14671.84, + "probability": 0.9801 + }, + { + "start": 14673.82, + "end": 14677.98, + "probability": 0.9194 + }, + { + "start": 14678.88, + "end": 14680.92, + "probability": 0.8254 + }, + { + "start": 14681.82, + "end": 14682.75, + "probability": 0.9951 + }, + { + "start": 14682.82, + "end": 14685.82, + "probability": 0.8878 + }, + { + "start": 14687.62, + "end": 14692.48, + "probability": 0.9856 + }, + { + "start": 14693.65, + "end": 14696.98, + "probability": 0.9938 + }, + { + "start": 14696.98, + "end": 14700.32, + "probability": 0.9609 + }, + { + "start": 14701.1, + "end": 14703.4, + "probability": 0.951 + }, + { + "start": 14704.72, + "end": 14707.7, + "probability": 0.8578 + }, + { + "start": 14707.94, + "end": 14708.8, + "probability": 0.7135 + }, + { + "start": 14709.74, + "end": 14710.7, + "probability": 0.8874 + }, + { + "start": 14710.82, + "end": 14713.22, + "probability": 0.9707 + }, + { + "start": 14713.66, + "end": 14714.02, + "probability": 0.7806 + }, + { + "start": 14714.06, + "end": 14716.88, + "probability": 0.7812 + }, + { + "start": 14717.52, + "end": 14719.86, + "probability": 0.9968 + }, + { + "start": 14719.86, + "end": 14722.84, + "probability": 0.9704 + }, + { + "start": 14723.84, + "end": 14726.62, + "probability": 0.9434 + }, + { + "start": 14726.76, + "end": 14728.92, + "probability": 0.9957 + }, + { + "start": 14729.86, + "end": 14730.96, + "probability": 0.9312 + }, + { + "start": 14731.62, + "end": 14732.54, + "probability": 0.634 + }, + { + "start": 14733.5, + "end": 14735.64, + "probability": 0.9577 + }, + { + "start": 14736.68, + "end": 14737.5, + "probability": 0.9399 + }, + { + "start": 14737.62, + "end": 14738.6, + "probability": 0.9159 + }, + { + "start": 14738.8, + "end": 14739.6, + "probability": 0.9347 + }, + { + "start": 14739.78, + "end": 14741.97, + "probability": 0.9173 + }, + { + "start": 14742.3, + "end": 14743.6, + "probability": 0.8943 + }, + { + "start": 14744.36, + "end": 14747.74, + "probability": 0.9847 + }, + { + "start": 14747.84, + "end": 14749.28, + "probability": 0.4589 + }, + { + "start": 14749.28, + "end": 14751.5, + "probability": 0.9481 + }, + { + "start": 14752.08, + "end": 14752.84, + "probability": 0.78 + }, + { + "start": 14752.86, + "end": 14755.14, + "probability": 0.9958 + }, + { + "start": 14755.14, + "end": 14758.92, + "probability": 0.9967 + }, + { + "start": 14758.98, + "end": 14760.76, + "probability": 0.968 + }, + { + "start": 14760.86, + "end": 14762.16, + "probability": 0.6845 + }, + { + "start": 14762.88, + "end": 14764.82, + "probability": 0.975 + }, + { + "start": 14764.86, + "end": 14766.16, + "probability": 0.9197 + }, + { + "start": 14766.7, + "end": 14769.88, + "probability": 0.9861 + }, + { + "start": 14770.4, + "end": 14770.86, + "probability": 0.9291 + }, + { + "start": 14771.72, + "end": 14774.46, + "probability": 0.7921 + }, + { + "start": 14775.08, + "end": 14775.76, + "probability": 0.7596 + }, + { + "start": 14776.66, + "end": 14784.04, + "probability": 0.9964 + }, + { + "start": 14784.46, + "end": 14786.84, + "probability": 0.8867 + }, + { + "start": 14787.56, + "end": 14787.94, + "probability": 0.4942 + }, + { + "start": 14788.08, + "end": 14790.64, + "probability": 0.969 + }, + { + "start": 14790.7, + "end": 14793.6, + "probability": 0.1598 + }, + { + "start": 14793.9, + "end": 14794.7, + "probability": 0.8165 + }, + { + "start": 14795.6, + "end": 14796.52, + "probability": 0.7452 + }, + { + "start": 14797.88, + "end": 14800.16, + "probability": 0.0057 + }, + { + "start": 14810.96, + "end": 14811.68, + "probability": 0.0398 + }, + { + "start": 14816.68, + "end": 14819.28, + "probability": 0.3155 + }, + { + "start": 14820.22, + "end": 14820.52, + "probability": 0.0319 + }, + { + "start": 14820.52, + "end": 14823.76, + "probability": 0.9866 + }, + { + "start": 14824.28, + "end": 14826.24, + "probability": 0.9423 + }, + { + "start": 14826.44, + "end": 14827.42, + "probability": 0.1923 + }, + { + "start": 14827.78, + "end": 14832.78, + "probability": 0.7388 + }, + { + "start": 14833.16, + "end": 14836.08, + "probability": 0.0045 + }, + { + "start": 14836.72, + "end": 14837.24, + "probability": 0.0217 + }, + { + "start": 14848.24, + "end": 14848.66, + "probability": 0.1439 + }, + { + "start": 14850.98, + "end": 14852.34, + "probability": 0.2571 + }, + { + "start": 14853.02, + "end": 14853.2, + "probability": 0.7673 + }, + { + "start": 14854.26, + "end": 14854.84, + "probability": 0.5966 + }, + { + "start": 14855.02, + "end": 14856.9, + "probability": 0.6814 + }, + { + "start": 14857.92, + "end": 14860.98, + "probability": 0.0091 + }, + { + "start": 14861.7, + "end": 14865.42, + "probability": 0.9543 + }, + { + "start": 14866.3, + "end": 14866.9, + "probability": 0.8083 + }, + { + "start": 14867.26, + "end": 14868.06, + "probability": 0.6763 + }, + { + "start": 14868.2, + "end": 14869.36, + "probability": 0.9816 + }, + { + "start": 14869.76, + "end": 14872.72, + "probability": 0.8635 + }, + { + "start": 14873.32, + "end": 14877.28, + "probability": 0.8328 + }, + { + "start": 14878.36, + "end": 14880.62, + "probability": 0.833 + }, + { + "start": 14881.36, + "end": 14883.4, + "probability": 0.5178 + }, + { + "start": 14883.56, + "end": 14885.36, + "probability": 0.8665 + }, + { + "start": 14886.85, + "end": 14888.56, + "probability": 0.7604 + }, + { + "start": 14889.08, + "end": 14892.0, + "probability": 0.7201 + }, + { + "start": 14892.08, + "end": 14893.5, + "probability": 0.7555 + }, + { + "start": 14894.02, + "end": 14897.82, + "probability": 0.9135 + }, + { + "start": 14898.04, + "end": 14901.26, + "probability": 0.8325 + }, + { + "start": 14901.7, + "end": 14904.86, + "probability": 0.6746 + }, + { + "start": 14905.58, + "end": 14911.84, + "probability": 0.9751 + }, + { + "start": 14911.86, + "end": 14912.72, + "probability": 0.8205 + }, + { + "start": 14913.22, + "end": 14914.52, + "probability": 0.6127 + }, + { + "start": 14914.62, + "end": 14919.32, + "probability": 0.8726 + }, + { + "start": 14919.62, + "end": 14921.24, + "probability": 0.8435 + }, + { + "start": 14921.32, + "end": 14921.98, + "probability": 0.645 + }, + { + "start": 14922.52, + "end": 14923.46, + "probability": 0.8793 + }, + { + "start": 14923.58, + "end": 14924.04, + "probability": 0.8344 + }, + { + "start": 14924.14, + "end": 14925.85, + "probability": 0.9956 + }, + { + "start": 14926.5, + "end": 14929.92, + "probability": 0.9751 + }, + { + "start": 14930.56, + "end": 14934.6, + "probability": 0.9558 + }, + { + "start": 14934.74, + "end": 14935.54, + "probability": 0.7771 + }, + { + "start": 14936.08, + "end": 14938.16, + "probability": 0.7544 + }, + { + "start": 14938.28, + "end": 14939.1, + "probability": 0.7769 + }, + { + "start": 14939.2, + "end": 14940.66, + "probability": 0.825 + }, + { + "start": 14941.16, + "end": 14944.1, + "probability": 0.953 + }, + { + "start": 14944.12, + "end": 14947.58, + "probability": 0.973 + }, + { + "start": 14948.1, + "end": 14950.8, + "probability": 0.6778 + }, + { + "start": 14951.22, + "end": 14951.64, + "probability": 0.4014 + }, + { + "start": 14951.66, + "end": 14952.2, + "probability": 0.7622 + }, + { + "start": 14952.28, + "end": 14955.78, + "probability": 0.8199 + }, + { + "start": 14956.68, + "end": 14962.18, + "probability": 0.5852 + }, + { + "start": 14962.74, + "end": 14963.36, + "probability": 0.1142 + }, + { + "start": 14963.48, + "end": 14965.2, + "probability": 0.9386 + }, + { + "start": 14965.74, + "end": 14968.14, + "probability": 0.8159 + }, + { + "start": 14968.66, + "end": 14969.52, + "probability": 0.8678 + }, + { + "start": 14969.96, + "end": 14970.84, + "probability": 0.4239 + }, + { + "start": 14971.56, + "end": 14972.82, + "probability": 0.5691 + }, + { + "start": 14972.9, + "end": 14973.44, + "probability": 0.3797 + }, + { + "start": 14973.78, + "end": 14977.54, + "probability": 0.9932 + }, + { + "start": 14977.94, + "end": 14981.18, + "probability": 0.9861 + }, + { + "start": 14981.24, + "end": 14982.6, + "probability": 0.7424 + }, + { + "start": 14983.26, + "end": 14985.7, + "probability": 0.896 + }, + { + "start": 14985.78, + "end": 14986.26, + "probability": 0.8706 + }, + { + "start": 14986.82, + "end": 14986.98, + "probability": 0.441 + }, + { + "start": 14987.12, + "end": 14988.5, + "probability": 0.7953 + }, + { + "start": 14989.16, + "end": 14991.94, + "probability": 0.8992 + }, + { + "start": 14992.02, + "end": 14995.18, + "probability": 0.5609 + }, + { + "start": 14995.28, + "end": 14997.52, + "probability": 0.6393 + }, + { + "start": 14998.38, + "end": 15000.02, + "probability": 0.5722 + }, + { + "start": 15000.04, + "end": 15002.56, + "probability": 0.9785 + }, + { + "start": 15003.24, + "end": 15003.86, + "probability": 0.8441 + }, + { + "start": 15003.88, + "end": 15004.34, + "probability": 0.6755 + }, + { + "start": 15006.02, + "end": 15006.78, + "probability": 0.6698 + }, + { + "start": 15006.94, + "end": 15007.76, + "probability": 0.769 + }, + { + "start": 15007.78, + "end": 15009.0, + "probability": 0.6593 + }, + { + "start": 15010.72, + "end": 15012.48, + "probability": 0.7562 + }, + { + "start": 15013.92, + "end": 15015.36, + "probability": 0.5573 + }, + { + "start": 15016.28, + "end": 15016.84, + "probability": 0.591 + }, + { + "start": 15016.96, + "end": 15022.0, + "probability": 0.8197 + }, + { + "start": 15022.22, + "end": 15022.42, + "probability": 0.1165 + }, + { + "start": 15022.6, + "end": 15027.42, + "probability": 0.7397 + }, + { + "start": 15027.42, + "end": 15032.82, + "probability": 0.8109 + }, + { + "start": 15035.98, + "end": 15035.98, + "probability": 0.2435 + }, + { + "start": 15035.98, + "end": 15038.46, + "probability": 0.4711 + }, + { + "start": 15038.78, + "end": 15039.32, + "probability": 0.5392 + }, + { + "start": 15044.42, + "end": 15046.66, + "probability": 0.9717 + }, + { + "start": 15046.66, + "end": 15049.44, + "probability": 0.9916 + }, + { + "start": 15050.78, + "end": 15052.42, + "probability": 0.9688 + }, + { + "start": 15054.0, + "end": 15056.38, + "probability": 0.9968 + }, + { + "start": 15056.48, + "end": 15061.26, + "probability": 0.9537 + }, + { + "start": 15062.1, + "end": 15067.7, + "probability": 0.8945 + }, + { + "start": 15068.52, + "end": 15073.58, + "probability": 0.814 + }, + { + "start": 15073.74, + "end": 15076.72, + "probability": 0.8245 + }, + { + "start": 15077.98, + "end": 15079.94, + "probability": 0.9317 + }, + { + "start": 15080.94, + "end": 15085.64, + "probability": 0.8208 + }, + { + "start": 15085.64, + "end": 15087.94, + "probability": 0.8277 + }, + { + "start": 15087.94, + "end": 15092.24, + "probability": 0.6969 + }, + { + "start": 15092.78, + "end": 15093.88, + "probability": 0.2793 + }, + { + "start": 15094.44, + "end": 15095.82, + "probability": 0.7944 + }, + { + "start": 15096.28, + "end": 15098.2, + "probability": 0.7925 + }, + { + "start": 15098.2, + "end": 15101.26, + "probability": 0.8925 + }, + { + "start": 15101.98, + "end": 15106.2, + "probability": 0.5907 + }, + { + "start": 15106.2, + "end": 15108.73, + "probability": 0.9377 + }, + { + "start": 15109.54, + "end": 15112.0, + "probability": 0.8848 + }, + { + "start": 15113.14, + "end": 15116.6, + "probability": 0.8709 + }, + { + "start": 15117.5, + "end": 15120.38, + "probability": 0.8804 + }, + { + "start": 15120.44, + "end": 15123.3, + "probability": 0.9318 + }, + { + "start": 15123.82, + "end": 15126.92, + "probability": 0.1706 + }, + { + "start": 15127.96, + "end": 15131.18, + "probability": 0.8823 + }, + { + "start": 15131.2, + "end": 15134.2, + "probability": 0.9576 + }, + { + "start": 15135.46, + "end": 15135.76, + "probability": 0.407 + }, + { + "start": 15135.78, + "end": 15136.7, + "probability": 0.7356 + }, + { + "start": 15136.9, + "end": 15138.28, + "probability": 0.8501 + }, + { + "start": 15138.5, + "end": 15141.82, + "probability": 0.9056 + }, + { + "start": 15142.98, + "end": 15145.08, + "probability": 0.9624 + }, + { + "start": 15145.08, + "end": 15148.26, + "probability": 0.9706 + }, + { + "start": 15151.14, + "end": 15151.14, + "probability": 0.0227 + }, + { + "start": 15151.14, + "end": 15152.94, + "probability": 0.4785 + }, + { + "start": 15153.44, + "end": 15156.19, + "probability": 0.5013 + }, + { + "start": 15156.82, + "end": 15158.02, + "probability": 0.5018 + }, + { + "start": 15158.22, + "end": 15160.26, + "probability": 0.1627 + }, + { + "start": 15160.82, + "end": 15164.26, + "probability": 0.8524 + }, + { + "start": 15164.26, + "end": 15167.62, + "probability": 0.7075 + }, + { + "start": 15167.7, + "end": 15171.14, + "probability": 0.8354 + }, + { + "start": 15171.47, + "end": 15172.98, + "probability": 0.6635 + }, + { + "start": 15174.26, + "end": 15178.5, + "probability": 0.6735 + }, + { + "start": 15178.66, + "end": 15181.6, + "probability": 0.9531 + }, + { + "start": 15182.34, + "end": 15185.18, + "probability": 0.8717 + }, + { + "start": 15185.18, + "end": 15187.76, + "probability": 0.9656 + }, + { + "start": 15190.12, + "end": 15191.1, + "probability": 0.5817 + }, + { + "start": 15191.48, + "end": 15195.76, + "probability": 0.9427 + }, + { + "start": 15196.58, + "end": 15198.56, + "probability": 0.9766 + }, + { + "start": 15198.64, + "end": 15202.2, + "probability": 0.7823 + }, + { + "start": 15202.38, + "end": 15202.88, + "probability": 0.5358 + }, + { + "start": 15203.52, + "end": 15205.76, + "probability": 0.7928 + }, + { + "start": 15205.76, + "end": 15209.06, + "probability": 0.9155 + }, + { + "start": 15210.08, + "end": 15211.64, + "probability": 0.6169 + }, + { + "start": 15212.22, + "end": 15213.36, + "probability": 0.5748 + }, + { + "start": 15213.8, + "end": 15217.58, + "probability": 0.5849 + }, + { + "start": 15217.7, + "end": 15223.04, + "probability": 0.7555 + }, + { + "start": 15223.8, + "end": 15225.42, + "probability": 0.5642 + }, + { + "start": 15225.98, + "end": 15226.92, + "probability": 0.814 + }, + { + "start": 15227.7, + "end": 15229.68, + "probability": 0.6731 + }, + { + "start": 15229.68, + "end": 15232.5, + "probability": 0.8539 + }, + { + "start": 15232.72, + "end": 15233.14, + "probability": 0.8947 + }, + { + "start": 15233.94, + "end": 15234.12, + "probability": 0.258 + }, + { + "start": 15234.12, + "end": 15235.9, + "probability": 0.7761 + }, + { + "start": 15236.56, + "end": 15240.72, + "probability": 0.7974 + }, + { + "start": 15240.82, + "end": 15241.34, + "probability": 0.8794 + }, + { + "start": 15242.16, + "end": 15242.62, + "probability": 0.7357 + }, + { + "start": 15242.64, + "end": 15243.39, + "probability": 0.957 + }, + { + "start": 15244.96, + "end": 15245.92, + "probability": 0.8171 + }, + { + "start": 15263.52, + "end": 15268.0, + "probability": 0.5367 + }, + { + "start": 15268.0, + "end": 15272.96, + "probability": 0.4779 + }, + { + "start": 15273.42, + "end": 15276.32, + "probability": 0.1434 + }, + { + "start": 15277.02, + "end": 15278.6, + "probability": 0.4551 + }, + { + "start": 15279.28, + "end": 15280.12, + "probability": 0.041 + }, + { + "start": 15280.12, + "end": 15280.12, + "probability": 0.0776 + }, + { + "start": 15280.12, + "end": 15283.6, + "probability": 0.0393 + }, + { + "start": 15284.64, + "end": 15285.38, + "probability": 0.0033 + }, + { + "start": 15287.04, + "end": 15287.14, + "probability": 0.0204 + }, + { + "start": 15287.14, + "end": 15287.54, + "probability": 0.0283 + }, + { + "start": 15289.34, + "end": 15289.97, + "probability": 0.1578 + }, + { + "start": 15290.72, + "end": 15290.72, + "probability": 0.0299 + }, + { + "start": 15290.72, + "end": 15290.72, + "probability": 0.0482 + }, + { + "start": 15290.72, + "end": 15293.34, + "probability": 0.1671 + }, + { + "start": 15295.64, + "end": 15298.76, + "probability": 0.0405 + }, + { + "start": 15302.88, + "end": 15303.2, + "probability": 0.0162 + }, + { + "start": 15304.74, + "end": 15308.72, + "probability": 0.1314 + }, + { + "start": 15309.22, + "end": 15309.29, + "probability": 0.1119 + }, + { + "start": 15312.02, + "end": 15313.04, + "probability": 0.0549 + }, + { + "start": 15314.12, + "end": 15318.0, + "probability": 0.1339 + }, + { + "start": 15319.06, + "end": 15321.36, + "probability": 0.2588 + }, + { + "start": 15322.6, + "end": 15323.02, + "probability": 0.1075 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.0, + "end": 15333.0, + "probability": 0.0 + }, + { + "start": 15333.86, + "end": 15335.26, + "probability": 0.0262 + }, + { + "start": 15335.26, + "end": 15336.94, + "probability": 0.5737 + }, + { + "start": 15339.54, + "end": 15342.76, + "probability": 0.3658 + }, + { + "start": 15343.84, + "end": 15344.3, + "probability": 0.5657 + }, + { + "start": 15344.94, + "end": 15347.06, + "probability": 0.8857 + }, + { + "start": 15347.62, + "end": 15350.08, + "probability": 0.9302 + }, + { + "start": 15351.44, + "end": 15352.96, + "probability": 0.7078 + }, + { + "start": 15353.8, + "end": 15356.6, + "probability": 0.8112 + }, + { + "start": 15357.2, + "end": 15359.14, + "probability": 0.6718 + }, + { + "start": 15360.82, + "end": 15363.73, + "probability": 0.96 + }, + { + "start": 15364.5, + "end": 15365.68, + "probability": 0.9611 + }, + { + "start": 15366.0, + "end": 15367.36, + "probability": 0.4127 + }, + { + "start": 15367.88, + "end": 15368.04, + "probability": 0.4079 + }, + { + "start": 15369.64, + "end": 15372.34, + "probability": 0.4564 + }, + { + "start": 15372.38, + "end": 15372.38, + "probability": 0.5142 + }, + { + "start": 15372.38, + "end": 15373.39, + "probability": 0.0754 + }, + { + "start": 15374.7, + "end": 15375.26, + "probability": 0.0279 + }, + { + "start": 15379.0, + "end": 15379.44, + "probability": 0.0613 + }, + { + "start": 15379.54, + "end": 15380.48, + "probability": 0.5719 + }, + { + "start": 15380.96, + "end": 15382.28, + "probability": 0.5593 + }, + { + "start": 15382.28, + "end": 15383.1, + "probability": 0.3106 + }, + { + "start": 15383.72, + "end": 15384.26, + "probability": 0.7144 + }, + { + "start": 15384.42, + "end": 15387.5, + "probability": 0.1573 + }, + { + "start": 15389.16, + "end": 15389.16, + "probability": 0.1875 + }, + { + "start": 15390.36, + "end": 15392.28, + "probability": 0.2592 + }, + { + "start": 15392.64, + "end": 15392.64, + "probability": 0.1695 + }, + { + "start": 15392.96, + "end": 15393.64, + "probability": 0.7972 + }, + { + "start": 15393.7, + "end": 15398.84, + "probability": 0.7353 + }, + { + "start": 15400.04, + "end": 15401.54, + "probability": 0.8433 + }, + { + "start": 15402.12, + "end": 15403.36, + "probability": 0.7948 + }, + { + "start": 15403.46, + "end": 15404.68, + "probability": 0.729 + }, + { + "start": 15404.7, + "end": 15407.24, + "probability": 0.95 + }, + { + "start": 15407.68, + "end": 15410.84, + "probability": 0.8867 + }, + { + "start": 15410.98, + "end": 15412.24, + "probability": 0.8733 + }, + { + "start": 15412.44, + "end": 15413.6, + "probability": 0.7454 + }, + { + "start": 15413.92, + "end": 15414.86, + "probability": 0.1483 + }, + { + "start": 15414.88, + "end": 15418.26, + "probability": 0.4031 + }, + { + "start": 15418.36, + "end": 15418.66, + "probability": 0.2894 + }, + { + "start": 15419.56, + "end": 15420.68, + "probability": 0.6567 + }, + { + "start": 15421.02, + "end": 15423.82, + "probability": 0.9361 + }, + { + "start": 15425.51, + "end": 15426.84, + "probability": 0.6594 + }, + { + "start": 15427.36, + "end": 15428.74, + "probability": 0.9207 + }, + { + "start": 15430.2, + "end": 15434.74, + "probability": 0.9483 + }, + { + "start": 15436.41, + "end": 15440.3, + "probability": 0.9786 + }, + { + "start": 15441.04, + "end": 15443.69, + "probability": 0.88 + }, + { + "start": 15445.26, + "end": 15446.78, + "probability": 0.7518 + }, + { + "start": 15447.2, + "end": 15448.34, + "probability": 0.9678 + }, + { + "start": 15448.92, + "end": 15452.2, + "probability": 0.9053 + }, + { + "start": 15452.84, + "end": 15454.6, + "probability": 0.9888 + }, + { + "start": 15454.98, + "end": 15457.88, + "probability": 0.994 + }, + { + "start": 15458.4, + "end": 15459.44, + "probability": 0.7619 + }, + { + "start": 15460.44, + "end": 15461.1, + "probability": 0.309 + }, + { + "start": 15462.2, + "end": 15466.22, + "probability": 0.8491 + }, + { + "start": 15467.62, + "end": 15468.64, + "probability": 0.8528 + }, + { + "start": 15469.46, + "end": 15470.5, + "probability": 0.7499 + }, + { + "start": 15470.68, + "end": 15472.54, + "probability": 0.6664 + }, + { + "start": 15472.76, + "end": 15473.92, + "probability": 0.967 + }, + { + "start": 15474.9, + "end": 15477.0, + "probability": 0.8111 + }, + { + "start": 15478.92, + "end": 15481.22, + "probability": 0.8342 + }, + { + "start": 15482.3, + "end": 15486.12, + "probability": 0.7019 + }, + { + "start": 15489.02, + "end": 15490.28, + "probability": 0.9026 + }, + { + "start": 15490.4, + "end": 15491.96, + "probability": 0.9863 + }, + { + "start": 15492.68, + "end": 15493.96, + "probability": 0.7272 + }, + { + "start": 15495.1, + "end": 15498.64, + "probability": 0.8744 + }, + { + "start": 15499.76, + "end": 15507.46, + "probability": 0.8072 + }, + { + "start": 15508.16, + "end": 15508.64, + "probability": 0.5227 + }, + { + "start": 15508.74, + "end": 15511.28, + "probability": 0.6987 + }, + { + "start": 15511.34, + "end": 15513.08, + "probability": 0.9451 + }, + { + "start": 15514.04, + "end": 15515.84, + "probability": 0.9628 + }, + { + "start": 15515.98, + "end": 15518.12, + "probability": 0.9324 + }, + { + "start": 15518.8, + "end": 15520.12, + "probability": 0.9449 + }, + { + "start": 15520.92, + "end": 15522.42, + "probability": 0.9846 + }, + { + "start": 15523.08, + "end": 15523.34, + "probability": 0.7392 + }, + { + "start": 15523.98, + "end": 15525.88, + "probability": 0.9413 + }, + { + "start": 15526.76, + "end": 15531.56, + "probability": 0.8172 + }, + { + "start": 15532.4, + "end": 15534.14, + "probability": 0.8489 + }, + { + "start": 15534.78, + "end": 15536.76, + "probability": 0.8639 + }, + { + "start": 15537.32, + "end": 15538.39, + "probability": 0.9839 + }, + { + "start": 15539.04, + "end": 15541.42, + "probability": 0.9216 + }, + { + "start": 15541.94, + "end": 15542.84, + "probability": 0.9617 + }, + { + "start": 15543.66, + "end": 15545.64, + "probability": 0.6107 + }, + { + "start": 15546.3, + "end": 15548.16, + "probability": 0.877 + }, + { + "start": 15549.88, + "end": 15554.04, + "probability": 0.9688 + }, + { + "start": 15556.08, + "end": 15559.56, + "probability": 0.9536 + }, + { + "start": 15559.8, + "end": 15560.32, + "probability": 0.5592 + }, + { + "start": 15560.42, + "end": 15561.48, + "probability": 0.9095 + }, + { + "start": 15561.52, + "end": 15563.12, + "probability": 0.6878 + }, + { + "start": 15563.18, + "end": 15563.68, + "probability": 0.6895 + }, + { + "start": 15563.72, + "end": 15565.66, + "probability": 0.6398 + }, + { + "start": 15566.36, + "end": 15568.34, + "probability": 0.9084 + }, + { + "start": 15569.32, + "end": 15572.8, + "probability": 0.813 + }, + { + "start": 15572.94, + "end": 15573.4, + "probability": 0.413 + }, + { + "start": 15573.4, + "end": 15574.39, + "probability": 0.9409 + }, + { + "start": 15574.58, + "end": 15576.46, + "probability": 0.9968 + }, + { + "start": 15576.54, + "end": 15577.92, + "probability": 0.8013 + }, + { + "start": 15578.6, + "end": 15580.48, + "probability": 0.894 + }, + { + "start": 15581.42, + "end": 15585.58, + "probability": 0.9692 + }, + { + "start": 15586.36, + "end": 15587.54, + "probability": 0.8623 + }, + { + "start": 15587.6, + "end": 15590.46, + "probability": 0.1275 + }, + { + "start": 15590.46, + "end": 15590.88, + "probability": 0.1836 + }, + { + "start": 15591.28, + "end": 15592.42, + "probability": 0.5257 + }, + { + "start": 15592.84, + "end": 15597.82, + "probability": 0.9534 + }, + { + "start": 15598.58, + "end": 15600.2, + "probability": 0.9633 + }, + { + "start": 15600.34, + "end": 15603.46, + "probability": 0.9863 + }, + { + "start": 15604.48, + "end": 15609.72, + "probability": 0.9661 + }, + { + "start": 15610.14, + "end": 15611.71, + "probability": 0.706 + }, + { + "start": 15611.74, + "end": 15612.26, + "probability": 0.8129 + }, + { + "start": 15612.78, + "end": 15613.98, + "probability": 0.8748 + }, + { + "start": 15615.08, + "end": 15616.27, + "probability": 0.5784 + }, + { + "start": 15616.38, + "end": 15620.2, + "probability": 0.6541 + }, + { + "start": 15620.3, + "end": 15621.22, + "probability": 0.7638 + }, + { + "start": 15621.97, + "end": 15623.92, + "probability": 0.7232 + }, + { + "start": 15623.92, + "end": 15624.4, + "probability": 0.8172 + }, + { + "start": 15624.5, + "end": 15624.98, + "probability": 0.8539 + }, + { + "start": 15625.12, + "end": 15627.1, + "probability": 0.9962 + }, + { + "start": 15627.2, + "end": 15627.8, + "probability": 0.8997 + }, + { + "start": 15627.86, + "end": 15630.66, + "probability": 0.9686 + }, + { + "start": 15630.76, + "end": 15631.58, + "probability": 0.7882 + }, + { + "start": 15631.6, + "end": 15632.03, + "probability": 0.8094 + }, + { + "start": 15632.58, + "end": 15639.62, + "probability": 0.9819 + }, + { + "start": 15639.62, + "end": 15645.68, + "probability": 0.9526 + }, + { + "start": 15645.82, + "end": 15647.64, + "probability": 0.9768 + }, + { + "start": 15648.16, + "end": 15650.06, + "probability": 0.5799 + }, + { + "start": 15650.06, + "end": 15652.18, + "probability": 0.6821 + }, + { + "start": 15652.56, + "end": 15653.22, + "probability": 0.7204 + }, + { + "start": 15654.8, + "end": 15657.98, + "probability": 0.8126 + }, + { + "start": 15659.5, + "end": 15660.44, + "probability": 0.8315 + }, + { + "start": 15662.02, + "end": 15664.36, + "probability": 0.9868 + }, + { + "start": 15665.84, + "end": 15674.76, + "probability": 0.9896 + }, + { + "start": 15675.66, + "end": 15678.38, + "probability": 0.8995 + }, + { + "start": 15678.96, + "end": 15680.92, + "probability": 0.9575 + }, + { + "start": 15681.58, + "end": 15682.98, + "probability": 0.9907 + }, + { + "start": 15683.82, + "end": 15686.16, + "probability": 0.9907 + }, + { + "start": 15686.38, + "end": 15688.81, + "probability": 0.8852 + }, + { + "start": 15690.32, + "end": 15694.93, + "probability": 0.8159 + }, + { + "start": 15696.02, + "end": 15699.38, + "probability": 0.7801 + }, + { + "start": 15700.38, + "end": 15703.84, + "probability": 0.9736 + }, + { + "start": 15704.8, + "end": 15710.42, + "probability": 0.9851 + }, + { + "start": 15711.58, + "end": 15714.16, + "probability": 0.9302 + }, + { + "start": 15714.72, + "end": 15717.7, + "probability": 0.9835 + }, + { + "start": 15718.3, + "end": 15720.0, + "probability": 0.9531 + }, + { + "start": 15720.96, + "end": 15725.04, + "probability": 0.9889 + }, + { + "start": 15726.2, + "end": 15729.9, + "probability": 0.9977 + }, + { + "start": 15730.44, + "end": 15732.52, + "probability": 0.8218 + }, + { + "start": 15733.54, + "end": 15738.23, + "probability": 0.9966 + }, + { + "start": 15738.5, + "end": 15743.22, + "probability": 0.9575 + }, + { + "start": 15743.22, + "end": 15747.52, + "probability": 0.9277 + }, + { + "start": 15748.38, + "end": 15752.26, + "probability": 0.9263 + }, + { + "start": 15752.9, + "end": 15753.98, + "probability": 0.778 + }, + { + "start": 15754.96, + "end": 15757.26, + "probability": 0.877 + }, + { + "start": 15757.7, + "end": 15760.79, + "probability": 0.9932 + }, + { + "start": 15761.02, + "end": 15761.88, + "probability": 0.8628 + }, + { + "start": 15761.96, + "end": 15763.62, + "probability": 0.9775 + }, + { + "start": 15764.18, + "end": 15765.38, + "probability": 0.9502 + }, + { + "start": 15765.96, + "end": 15769.54, + "probability": 0.8294 + }, + { + "start": 15769.92, + "end": 15771.6, + "probability": 0.9868 + }, + { + "start": 15772.06, + "end": 15774.44, + "probability": 0.9577 + }, + { + "start": 15777.14, + "end": 15779.24, + "probability": 0.6664 + }, + { + "start": 15781.02, + "end": 15781.38, + "probability": 0.6967 + }, + { + "start": 15781.4, + "end": 15782.42, + "probability": 0.7756 + }, + { + "start": 15784.38, + "end": 15785.26, + "probability": 0.7703 + }, + { + "start": 15786.0, + "end": 15787.34, + "probability": 0.5577 + }, + { + "start": 15787.34, + "end": 15787.9, + "probability": 0.6583 + }, + { + "start": 15787.92, + "end": 15789.02, + "probability": 0.6431 + }, + { + "start": 15789.52, + "end": 15790.9, + "probability": 0.9897 + }, + { + "start": 15791.48, + "end": 15797.22, + "probability": 0.9899 + }, + { + "start": 15797.88, + "end": 15798.48, + "probability": 0.8269 + }, + { + "start": 15799.58, + "end": 15804.04, + "probability": 0.9964 + }, + { + "start": 15804.08, + "end": 15807.88, + "probability": 0.985 + }, + { + "start": 15808.5, + "end": 15812.42, + "probability": 0.991 + }, + { + "start": 15813.04, + "end": 15814.86, + "probability": 0.5495 + }, + { + "start": 15815.82, + "end": 15816.9, + "probability": 0.9574 + }, + { + "start": 15817.74, + "end": 15818.9, + "probability": 0.8486 + }, + { + "start": 15819.16, + "end": 15820.46, + "probability": 0.96 + }, + { + "start": 15820.52, + "end": 15825.42, + "probability": 0.8025 + }, + { + "start": 15825.88, + "end": 15826.74, + "probability": 0.7205 + }, + { + "start": 15826.74, + "end": 15828.08, + "probability": 0.6331 + }, + { + "start": 15828.2, + "end": 15828.72, + "probability": 0.0738 + }, + { + "start": 15829.44, + "end": 15829.72, + "probability": 0.4663 + }, + { + "start": 15829.72, + "end": 15830.58, + "probability": 0.5786 + }, + { + "start": 15831.2, + "end": 15833.16, + "probability": 0.725 + }, + { + "start": 15833.3, + "end": 15833.7, + "probability": 0.6721 + }, + { + "start": 15833.88, + "end": 15834.78, + "probability": 0.7638 + }, + { + "start": 15835.18, + "end": 15837.0, + "probability": 0.8693 + }, + { + "start": 15837.02, + "end": 15838.2, + "probability": 0.5449 + }, + { + "start": 15838.28, + "end": 15842.58, + "probability": 0.9614 + }, + { + "start": 15843.24, + "end": 15845.74, + "probability": 0.7852 + }, + { + "start": 15845.84, + "end": 15846.2, + "probability": 0.8361 + }, + { + "start": 15846.26, + "end": 15846.46, + "probability": 0.36 + }, + { + "start": 15846.5, + "end": 15847.5, + "probability": 0.6919 + }, + { + "start": 15849.06, + "end": 15849.98, + "probability": 0.8792 + }, + { + "start": 15850.4, + "end": 15851.92, + "probability": 0.6314 + }, + { + "start": 15851.92, + "end": 15851.92, + "probability": 0.6339 + }, + { + "start": 15851.92, + "end": 15852.76, + "probability": 0.5022 + }, + { + "start": 15852.88, + "end": 15853.88, + "probability": 0.9185 + }, + { + "start": 15854.32, + "end": 15857.32, + "probability": 0.5375 + }, + { + "start": 15857.86, + "end": 15861.84, + "probability": 0.8315 + }, + { + "start": 15861.96, + "end": 15863.24, + "probability": 0.8359 + }, + { + "start": 15863.74, + "end": 15865.86, + "probability": 0.6859 + }, + { + "start": 15865.94, + "end": 15870.34, + "probability": 0.9757 + }, + { + "start": 15871.56, + "end": 15871.78, + "probability": 0.0876 + }, + { + "start": 15871.78, + "end": 15873.18, + "probability": 0.7715 + }, + { + "start": 15873.38, + "end": 15874.88, + "probability": 0.0043 + }, + { + "start": 15877.86, + "end": 15879.18, + "probability": 0.0833 + }, + { + "start": 15881.74, + "end": 15883.36, + "probability": 0.5089 + }, + { + "start": 15883.36, + "end": 15884.6, + "probability": 0.6235 + }, + { + "start": 15885.12, + "end": 15886.48, + "probability": 0.2052 + }, + { + "start": 15886.56, + "end": 15887.96, + "probability": 0.8136 + }, + { + "start": 15893.8, + "end": 15893.92, + "probability": 0.4856 + }, + { + "start": 15899.44, + "end": 15901.8, + "probability": 0.5709 + }, + { + "start": 15901.8, + "end": 15905.32, + "probability": 0.5306 + }, + { + "start": 15906.24, + "end": 15906.78, + "probability": 0.3723 + }, + { + "start": 15906.78, + "end": 15906.96, + "probability": 0.1546 + }, + { + "start": 15906.96, + "end": 15907.32, + "probability": 0.0799 + }, + { + "start": 15908.02, + "end": 15909.28, + "probability": 0.9241 + }, + { + "start": 15909.38, + "end": 15910.58, + "probability": 0.9033 + }, + { + "start": 15910.68, + "end": 15911.0, + "probability": 0.7368 + }, + { + "start": 15911.7, + "end": 15911.82, + "probability": 0.4609 + }, + { + "start": 15912.06, + "end": 15912.34, + "probability": 0.5699 + }, + { + "start": 15912.4, + "end": 15914.24, + "probability": 0.9425 + }, + { + "start": 15914.38, + "end": 15915.04, + "probability": 0.8708 + }, + { + "start": 15915.06, + "end": 15915.82, + "probability": 0.9161 + }, + { + "start": 15916.26, + "end": 15918.28, + "probability": 0.9907 + }, + { + "start": 15918.34, + "end": 15922.58, + "probability": 0.9338 + }, + { + "start": 15934.7, + "end": 15938.62, + "probability": 0.1255 + }, + { + "start": 15939.06, + "end": 15940.12, + "probability": 0.0911 + }, + { + "start": 15940.12, + "end": 15940.4, + "probability": 0.2397 + }, + { + "start": 15941.72, + "end": 15941.98, + "probability": 0.0184 + }, + { + "start": 15941.98, + "end": 15941.98, + "probability": 0.0617 + }, + { + "start": 15941.98, + "end": 15941.98, + "probability": 0.0264 + }, + { + "start": 15941.98, + "end": 15942.24, + "probability": 0.0717 + }, + { + "start": 15942.98, + "end": 15944.94, + "probability": 0.2258 + }, + { + "start": 15945.0, + "end": 15946.08, + "probability": 0.3773 + }, + { + "start": 15946.22, + "end": 15946.98, + "probability": 0.6606 + }, + { + "start": 15947.12, + "end": 15947.48, + "probability": 0.8942 + }, + { + "start": 15947.54, + "end": 15948.9, + "probability": 0.9935 + }, + { + "start": 15949.68, + "end": 15951.48, + "probability": 0.8154 + }, + { + "start": 15952.24, + "end": 15953.0, + "probability": 0.9922 + }, + { + "start": 15953.5, + "end": 15954.94, + "probability": 0.8948 + }, + { + "start": 15955.0, + "end": 15956.56, + "probability": 0.9629 + }, + { + "start": 15956.98, + "end": 15958.72, + "probability": 0.9584 + }, + { + "start": 15958.84, + "end": 15959.5, + "probability": 0.7646 + }, + { + "start": 15959.64, + "end": 15961.38, + "probability": 0.6944 + }, + { + "start": 15962.16, + "end": 15963.22, + "probability": 0.9817 + }, + { + "start": 15963.32, + "end": 15965.88, + "probability": 0.9946 + }, + { + "start": 15966.26, + "end": 15969.88, + "probability": 0.9932 + }, + { + "start": 15970.32, + "end": 15971.12, + "probability": 0.8474 + }, + { + "start": 15971.26, + "end": 15971.96, + "probability": 0.5516 + }, + { + "start": 15972.02, + "end": 15973.67, + "probability": 0.571 + }, + { + "start": 15974.38, + "end": 15975.56, + "probability": 0.747 + }, + { + "start": 15976.12, + "end": 15977.58, + "probability": 0.9841 + }, + { + "start": 15977.68, + "end": 15978.08, + "probability": 0.6298 + }, + { + "start": 15978.2, + "end": 15980.38, + "probability": 0.7785 + }, + { + "start": 15980.46, + "end": 15982.06, + "probability": 0.8163 + }, + { + "start": 15982.22, + "end": 15982.8, + "probability": 0.7453 + }, + { + "start": 15982.88, + "end": 15983.3, + "probability": 0.6912 + }, + { + "start": 15983.8, + "end": 15984.8, + "probability": 0.7532 + }, + { + "start": 15984.96, + "end": 15986.4, + "probability": 0.8599 + }, + { + "start": 15986.72, + "end": 15987.48, + "probability": 0.9073 + }, + { + "start": 15987.54, + "end": 15990.1, + "probability": 0.9678 + }, + { + "start": 15990.86, + "end": 15991.46, + "probability": 0.6564 + }, + { + "start": 15992.46, + "end": 15994.34, + "probability": 0.8659 + }, + { + "start": 15994.38, + "end": 15995.08, + "probability": 0.9146 + }, + { + "start": 15995.12, + "end": 15997.1, + "probability": 0.776 + }, + { + "start": 15997.52, + "end": 15998.36, + "probability": 0.9286 + }, + { + "start": 15998.44, + "end": 16000.5, + "probability": 0.9473 + }, + { + "start": 16000.6, + "end": 16002.34, + "probability": 0.9935 + }, + { + "start": 16002.72, + "end": 16003.04, + "probability": 0.8321 + }, + { + "start": 16003.24, + "end": 16004.83, + "probability": 0.9657 + }, + { + "start": 16004.9, + "end": 16006.1, + "probability": 0.9167 + }, + { + "start": 16007.2, + "end": 16010.4, + "probability": 0.6963 + }, + { + "start": 16010.72, + "end": 16011.78, + "probability": 0.7551 + }, + { + "start": 16012.18, + "end": 16015.44, + "probability": 0.8641 + }, + { + "start": 16016.5, + "end": 16017.34, + "probability": 0.8177 + }, + { + "start": 16019.18, + "end": 16021.14, + "probability": 0.7835 + }, + { + "start": 16021.6, + "end": 16024.93, + "probability": 0.9986 + }, + { + "start": 16025.48, + "end": 16028.4, + "probability": 0.9698 + }, + { + "start": 16028.46, + "end": 16028.94, + "probability": 0.8379 + }, + { + "start": 16029.02, + "end": 16029.46, + "probability": 0.4965 + }, + { + "start": 16030.5, + "end": 16030.8, + "probability": 0.4774 + }, + { + "start": 16031.0, + "end": 16034.82, + "probability": 0.8298 + }, + { + "start": 16034.86, + "end": 16037.42, + "probability": 0.7905 + }, + { + "start": 16037.52, + "end": 16038.14, + "probability": 0.7555 + }, + { + "start": 16038.54, + "end": 16039.74, + "probability": 0.8081 + }, + { + "start": 16039.82, + "end": 16040.26, + "probability": 0.6206 + }, + { + "start": 16053.4, + "end": 16053.6, + "probability": 0.5638 + }, + { + "start": 16053.66, + "end": 16053.86, + "probability": 0.8711 + }, + { + "start": 16053.92, + "end": 16054.84, + "probability": 0.9299 + }, + { + "start": 16054.84, + "end": 16056.2, + "probability": 0.9534 + }, + { + "start": 16056.3, + "end": 16056.7, + "probability": 0.768 + }, + { + "start": 16057.18, + "end": 16063.28, + "probability": 0.9717 + }, + { + "start": 16063.44, + "end": 16063.92, + "probability": 0.843 + }, + { + "start": 16064.04, + "end": 16064.7, + "probability": 0.7941 + }, + { + "start": 16065.12, + "end": 16067.82, + "probability": 0.9761 + }, + { + "start": 16068.54, + "end": 16068.86, + "probability": 0.4518 + }, + { + "start": 16068.88, + "end": 16070.08, + "probability": 0.9537 + }, + { + "start": 16070.18, + "end": 16070.92, + "probability": 0.9359 + }, + { + "start": 16071.0, + "end": 16072.88, + "probability": 0.968 + }, + { + "start": 16073.0, + "end": 16073.9, + "probability": 0.938 + }, + { + "start": 16074.34, + "end": 16075.06, + "probability": 0.8283 + }, + { + "start": 16075.18, + "end": 16075.9, + "probability": 0.9966 + }, + { + "start": 16076.02, + "end": 16077.68, + "probability": 0.995 + }, + { + "start": 16079.78, + "end": 16080.86, + "probability": 0.8743 + }, + { + "start": 16080.92, + "end": 16081.9, + "probability": 0.9146 + }, + { + "start": 16082.2, + "end": 16084.98, + "probability": 0.9888 + }, + { + "start": 16085.32, + "end": 16088.92, + "probability": 0.9748 + }, + { + "start": 16089.5, + "end": 16091.24, + "probability": 0.4107 + }, + { + "start": 16091.36, + "end": 16091.68, + "probability": 0.9024 + }, + { + "start": 16091.72, + "end": 16095.75, + "probability": 0.9968 + }, + { + "start": 16097.44, + "end": 16099.46, + "probability": 0.8093 + }, + { + "start": 16099.96, + "end": 16101.16, + "probability": 0.9658 + }, + { + "start": 16101.24, + "end": 16103.32, + "probability": 0.9889 + }, + { + "start": 16103.7, + "end": 16106.02, + "probability": 0.7983 + }, + { + "start": 16106.16, + "end": 16107.98, + "probability": 0.6329 + }, + { + "start": 16108.26, + "end": 16109.32, + "probability": 0.9364 + }, + { + "start": 16109.92, + "end": 16113.16, + "probability": 0.995 + }, + { + "start": 16113.32, + "end": 16114.74, + "probability": 0.7677 + }, + { + "start": 16115.12, + "end": 16117.66, + "probability": 0.9595 + }, + { + "start": 16118.3, + "end": 16121.0, + "probability": 0.9058 + }, + { + "start": 16121.34, + "end": 16126.52, + "probability": 0.9985 + }, + { + "start": 16126.52, + "end": 16130.2, + "probability": 0.9971 + }, + { + "start": 16130.3, + "end": 16132.62, + "probability": 0.9634 + }, + { + "start": 16132.72, + "end": 16134.56, + "probability": 0.946 + }, + { + "start": 16134.94, + "end": 16136.54, + "probability": 0.9952 + }, + { + "start": 16136.54, + "end": 16139.02, + "probability": 0.999 + }, + { + "start": 16139.46, + "end": 16140.94, + "probability": 0.7518 + }, + { + "start": 16141.0, + "end": 16142.06, + "probability": 0.9069 + }, + { + "start": 16142.48, + "end": 16144.52, + "probability": 0.8385 + }, + { + "start": 16144.92, + "end": 16145.28, + "probability": 0.5006 + }, + { + "start": 16145.38, + "end": 16149.04, + "probability": 0.9961 + }, + { + "start": 16149.48, + "end": 16150.74, + "probability": 0.6292 + }, + { + "start": 16151.1, + "end": 16153.16, + "probability": 0.9917 + }, + { + "start": 16153.36, + "end": 16154.08, + "probability": 0.7556 + }, + { + "start": 16154.1, + "end": 16159.38, + "probability": 0.8375 + }, + { + "start": 16159.76, + "end": 16163.28, + "probability": 0.9948 + }, + { + "start": 16163.38, + "end": 16163.6, + "probability": 0.7638 + }, + { + "start": 16164.22, + "end": 16164.78, + "probability": 0.6231 + }, + { + "start": 16165.02, + "end": 16167.24, + "probability": 0.9653 + }, + { + "start": 16168.76, + "end": 16169.78, + "probability": 0.8046 + }, + { + "start": 16170.26, + "end": 16170.42, + "probability": 0.3082 + }, + { + "start": 16172.96, + "end": 16173.06, + "probability": 0.0412 + }, + { + "start": 16173.06, + "end": 16173.16, + "probability": 0.5529 + }, + { + "start": 16174.1, + "end": 16174.36, + "probability": 0.8372 + }, + { + "start": 16175.9, + "end": 16177.9, + "probability": 0.6407 + }, + { + "start": 16178.04, + "end": 16181.92, + "probability": 0.9678 + }, + { + "start": 16181.98, + "end": 16183.1, + "probability": 0.9473 + }, + { + "start": 16183.7, + "end": 16184.78, + "probability": 0.6303 + }, + { + "start": 16184.88, + "end": 16185.08, + "probability": 0.7425 + }, + { + "start": 16185.38, + "end": 16186.06, + "probability": 0.9319 + }, + { + "start": 16186.14, + "end": 16188.44, + "probability": 0.9595 + }, + { + "start": 16199.2, + "end": 16199.9, + "probability": 0.4806 + }, + { + "start": 16200.54, + "end": 16211.94, + "probability": 0.0517 + }, + { + "start": 16215.38, + "end": 16215.8, + "probability": 0.0057 + }, + { + "start": 16217.16, + "end": 16220.34, + "probability": 0.0337 + }, + { + "start": 16221.08, + "end": 16222.62, + "probability": 0.0128 + }, + { + "start": 16222.8, + "end": 16228.24, + "probability": 0.1479 + }, + { + "start": 16228.84, + "end": 16230.18, + "probability": 0.2811 + }, + { + "start": 16232.42, + "end": 16232.7, + "probability": 0.2632 + }, + { + "start": 16233.26, + "end": 16233.86, + "probability": 0.5869 + }, + { + "start": 16237.08, + "end": 16238.55, + "probability": 0.0267 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.0, + "end": 16276.0, + "probability": 0.0 + }, + { + "start": 16276.2, + "end": 16276.56, + "probability": 0.0697 + }, + { + "start": 16276.56, + "end": 16276.56, + "probability": 0.0078 + }, + { + "start": 16276.56, + "end": 16277.34, + "probability": 0.3473 + }, + { + "start": 16277.44, + "end": 16278.41, + "probability": 0.8715 + }, + { + "start": 16279.42, + "end": 16280.82, + "probability": 0.657 + }, + { + "start": 16281.36, + "end": 16281.38, + "probability": 0.1562 + }, + { + "start": 16281.38, + "end": 16281.92, + "probability": 0.5446 + }, + { + "start": 16283.32, + "end": 16284.82, + "probability": 0.4601 + }, + { + "start": 16284.88, + "end": 16289.44, + "probability": 0.8077 + }, + { + "start": 16290.38, + "end": 16291.6, + "probability": 0.4857 + }, + { + "start": 16291.62, + "end": 16292.26, + "probability": 0.2532 + }, + { + "start": 16292.48, + "end": 16295.18, + "probability": 0.7823 + }, + { + "start": 16295.3, + "end": 16295.6, + "probability": 0.6938 + }, + { + "start": 16296.34, + "end": 16297.78, + "probability": 0.4071 + }, + { + "start": 16298.86, + "end": 16301.7, + "probability": 0.8956 + }, + { + "start": 16301.84, + "end": 16302.14, + "probability": 0.8396 + }, + { + "start": 16303.34, + "end": 16304.18, + "probability": 0.2459 + }, + { + "start": 16304.74, + "end": 16306.12, + "probability": 0.3516 + }, + { + "start": 16306.2, + "end": 16308.08, + "probability": 0.6879 + }, + { + "start": 16308.14, + "end": 16309.04, + "probability": 0.8712 + }, + { + "start": 16309.2, + "end": 16311.15, + "probability": 0.7538 + }, + { + "start": 16312.68, + "end": 16314.8, + "probability": 0.8697 + }, + { + "start": 16315.86, + "end": 16316.5, + "probability": 0.007 + }, + { + "start": 16335.34, + "end": 16335.65, + "probability": 0.1897 + }, + { + "start": 16336.58, + "end": 16338.92, + "probability": 0.749 + }, + { + "start": 16339.2, + "end": 16344.36, + "probability": 0.7568 + }, + { + "start": 16344.86, + "end": 16344.86, + "probability": 0.2556 + }, + { + "start": 16344.86, + "end": 16344.86, + "probability": 0.1532 + }, + { + "start": 16344.86, + "end": 16344.86, + "probability": 0.07 + }, + { + "start": 16344.86, + "end": 16346.57, + "probability": 0.5634 + }, + { + "start": 16347.06, + "end": 16347.92, + "probability": 0.9011 + }, + { + "start": 16348.42, + "end": 16352.3, + "probability": 0.8679 + }, + { + "start": 16352.54, + "end": 16354.64, + "probability": 0.9563 + }, + { + "start": 16354.74, + "end": 16355.82, + "probability": 0.9592 + }, + { + "start": 16356.92, + "end": 16358.88, + "probability": 0.9707 + }, + { + "start": 16358.96, + "end": 16358.96, + "probability": 0.0128 + }, + { + "start": 16358.96, + "end": 16359.6, + "probability": 0.5927 + }, + { + "start": 16359.7, + "end": 16360.52, + "probability": 0.8795 + }, + { + "start": 16360.52, + "end": 16361.22, + "probability": 0.0122 + }, + { + "start": 16361.5, + "end": 16362.4, + "probability": 0.7783 + }, + { + "start": 16362.8, + "end": 16363.22, + "probability": 0.7582 + }, + { + "start": 16363.6, + "end": 16365.26, + "probability": 0.853 + }, + { + "start": 16366.52, + "end": 16367.02, + "probability": 0.7213 + }, + { + "start": 16367.46, + "end": 16367.86, + "probability": 0.7499 + }, + { + "start": 16368.26, + "end": 16371.46, + "probability": 0.8014 + }, + { + "start": 16371.46, + "end": 16371.56, + "probability": 0.0876 + }, + { + "start": 16372.12, + "end": 16372.64, + "probability": 0.0238 + }, + { + "start": 16372.64, + "end": 16373.18, + "probability": 0.0299 + }, + { + "start": 16373.56, + "end": 16374.48, + "probability": 0.7643 + }, + { + "start": 16374.58, + "end": 16375.56, + "probability": 0.8618 + }, + { + "start": 16375.72, + "end": 16378.3, + "probability": 0.984 + }, + { + "start": 16378.92, + "end": 16381.52, + "probability": 0.904 + }, + { + "start": 16381.56, + "end": 16383.78, + "probability": 0.4779 + }, + { + "start": 16384.68, + "end": 16389.9, + "probability": 0.7435 + }, + { + "start": 16390.02, + "end": 16393.0, + "probability": 0.9821 + }, + { + "start": 16393.22, + "end": 16394.09, + "probability": 0.9638 + }, + { + "start": 16394.36, + "end": 16398.74, + "probability": 0.9907 + }, + { + "start": 16399.22, + "end": 16402.0, + "probability": 0.9718 + }, + { + "start": 16402.7, + "end": 16406.22, + "probability": 0.8794 + }, + { + "start": 16406.78, + "end": 16408.58, + "probability": 0.9504 + }, + { + "start": 16408.9, + "end": 16411.3, + "probability": 0.9897 + }, + { + "start": 16411.3, + "end": 16413.58, + "probability": 0.8838 + }, + { + "start": 16413.7, + "end": 16414.54, + "probability": 0.7176 + }, + { + "start": 16415.5, + "end": 16416.5, + "probability": 0.8607 + }, + { + "start": 16416.8, + "end": 16417.44, + "probability": 0.5855 + }, + { + "start": 16417.48, + "end": 16421.22, + "probability": 0.9923 + }, + { + "start": 16425.54, + "end": 16429.72, + "probability": 0.9505 + }, + { + "start": 16430.38, + "end": 16433.56, + "probability": 0.8152 + }, + { + "start": 16433.72, + "end": 16434.78, + "probability": 0.6433 + }, + { + "start": 16435.6, + "end": 16437.86, + "probability": 0.9938 + }, + { + "start": 16439.06, + "end": 16439.98, + "probability": 0.7724 + }, + { + "start": 16440.12, + "end": 16440.84, + "probability": 0.9104 + }, + { + "start": 16441.14, + "end": 16442.98, + "probability": 0.9873 + }, + { + "start": 16444.32, + "end": 16448.9, + "probability": 0.6555 + }, + { + "start": 16449.68, + "end": 16454.48, + "probability": 0.9872 + }, + { + "start": 16455.4, + "end": 16456.76, + "probability": 0.2496 + }, + { + "start": 16457.36, + "end": 16461.14, + "probability": 0.9491 + }, + { + "start": 16461.84, + "end": 16464.22, + "probability": 0.959 + }, + { + "start": 16465.16, + "end": 16466.08, + "probability": 0.8003 + }, + { + "start": 16466.92, + "end": 16470.14, + "probability": 0.9905 + }, + { + "start": 16470.14, + "end": 16473.02, + "probability": 0.9438 + }, + { + "start": 16474.42, + "end": 16475.92, + "probability": 0.7257 + }, + { + "start": 16476.04, + "end": 16479.88, + "probability": 0.6611 + }, + { + "start": 16480.04, + "end": 16482.49, + "probability": 0.9767 + }, + { + "start": 16483.74, + "end": 16484.46, + "probability": 0.4207 + }, + { + "start": 16484.58, + "end": 16486.38, + "probability": 0.8392 + }, + { + "start": 16486.5, + "end": 16488.76, + "probability": 0.8626 + }, + { + "start": 16488.86, + "end": 16489.9, + "probability": 0.8799 + }, + { + "start": 16490.62, + "end": 16493.2, + "probability": 0.9883 + }, + { + "start": 16493.78, + "end": 16496.92, + "probability": 0.9053 + }, + { + "start": 16497.08, + "end": 16499.76, + "probability": 0.9772 + }, + { + "start": 16500.34, + "end": 16504.1, + "probability": 0.76 + }, + { + "start": 16504.17, + "end": 16508.88, + "probability": 0.9727 + }, + { + "start": 16509.44, + "end": 16513.22, + "probability": 0.9976 + }, + { + "start": 16513.22, + "end": 16515.68, + "probability": 0.9884 + }, + { + "start": 16516.28, + "end": 16517.78, + "probability": 0.8726 + }, + { + "start": 16517.94, + "end": 16520.12, + "probability": 0.9216 + }, + { + "start": 16520.14, + "end": 16520.42, + "probability": 0.6038 + }, + { + "start": 16520.52, + "end": 16524.12, + "probability": 0.9787 + }, + { + "start": 16524.64, + "end": 16525.58, + "probability": 0.965 + }, + { + "start": 16525.7, + "end": 16528.54, + "probability": 0.9515 + }, + { + "start": 16528.62, + "end": 16529.32, + "probability": 0.9495 + }, + { + "start": 16529.96, + "end": 16532.48, + "probability": 0.8701 + }, + { + "start": 16532.66, + "end": 16532.98, + "probability": 0.3989 + }, + { + "start": 16534.18, + "end": 16534.7, + "probability": 0.679 + }, + { + "start": 16534.82, + "end": 16537.8, + "probability": 0.9823 + }, + { + "start": 16539.16, + "end": 16540.6, + "probability": 0.7836 + }, + { + "start": 16543.88, + "end": 16546.54, + "probability": 0.1179 + }, + { + "start": 16558.24, + "end": 16563.86, + "probability": 0.3971 + }, + { + "start": 16564.62, + "end": 16571.58, + "probability": 0.4742 + }, + { + "start": 16572.56, + "end": 16572.8, + "probability": 0.0797 + }, + { + "start": 16575.88, + "end": 16577.52, + "probability": 0.0732 + }, + { + "start": 16577.62, + "end": 16581.82, + "probability": 0.0385 + }, + { + "start": 16583.14, + "end": 16586.02, + "probability": 0.0134 + }, + { + "start": 16586.66, + "end": 16586.68, + "probability": 0.0283 + }, + { + "start": 16586.68, + "end": 16587.52, + "probability": 0.1076 + }, + { + "start": 16587.58, + "end": 16588.54, + "probability": 0.0282 + }, + { + "start": 16591.14, + "end": 16591.22, + "probability": 0.0933 + }, + { + "start": 16591.22, + "end": 16594.28, + "probability": 0.0318 + }, + { + "start": 16595.88, + "end": 16596.98, + "probability": 0.0814 + }, + { + "start": 16596.98, + "end": 16598.02, + "probability": 0.0435 + }, + { + "start": 16598.5, + "end": 16599.48, + "probability": 0.1459 + }, + { + "start": 16609.88, + "end": 16613.06, + "probability": 0.0476 + }, + { + "start": 16613.06, + "end": 16613.16, + "probability": 0.2381 + }, + { + "start": 16613.16, + "end": 16613.44, + "probability": 0.3493 + }, + { + "start": 16613.44, + "end": 16613.44, + "probability": 0.191 + }, + { + "start": 16613.44, + "end": 16614.16, + "probability": 0.3454 + }, + { + "start": 16614.24, + "end": 16614.26, + "probability": 0.3763 + }, + { + "start": 16614.26, + "end": 16615.64, + "probability": 0.0577 + }, + { + "start": 16615.64, + "end": 16615.9, + "probability": 0.1162 + }, + { + "start": 16615.9, + "end": 16615.9, + "probability": 0.1437 + }, + { + "start": 16615.9, + "end": 16615.9, + "probability": 0.0121 + }, + { + "start": 16615.9, + "end": 16615.9, + "probability": 0.312 + }, + { + "start": 16615.9, + "end": 16615.9, + "probability": 0.1718 + }, + { + "start": 16615.9, + "end": 16615.9, + "probability": 0.3054 + }, + { + "start": 16615.9, + "end": 16615.96, + "probability": 0.3163 + }, + { + "start": 16615.96, + "end": 16615.96, + "probability": 0.0231 + }, + { + "start": 16616.0, + "end": 16616.0, + "probability": 0.0 + }, + { + "start": 16616.0, + "end": 16616.0, + "probability": 0.0 + }, + { + "start": 16616.08, + "end": 16616.38, + "probability": 0.2674 + }, + { + "start": 16616.62, + "end": 16616.62, + "probability": 0.0772 + }, + { + "start": 16616.62, + "end": 16616.62, + "probability": 0.1454 + }, + { + "start": 16616.62, + "end": 16616.62, + "probability": 0.1784 + }, + { + "start": 16616.62, + "end": 16617.38, + "probability": 0.814 + }, + { + "start": 16617.48, + "end": 16618.24, + "probability": 0.644 + }, + { + "start": 16618.3, + "end": 16619.5, + "probability": 0.4278 + }, + { + "start": 16619.88, + "end": 16620.34, + "probability": 0.3032 + }, + { + "start": 16621.14, + "end": 16624.12, + "probability": 0.7965 + }, + { + "start": 16624.3, + "end": 16624.82, + "probability": 0.6473 + }, + { + "start": 16626.54, + "end": 16628.88, + "probability": 0.6676 + }, + { + "start": 16629.11, + "end": 16630.92, + "probability": 0.9976 + }, + { + "start": 16630.92, + "end": 16634.56, + "probability": 0.8423 + }, + { + "start": 16634.6, + "end": 16635.6, + "probability": 0.3339 + }, + { + "start": 16635.6, + "end": 16636.34, + "probability": 0.865 + }, + { + "start": 16636.5, + "end": 16639.06, + "probability": 0.9956 + }, + { + "start": 16639.12, + "end": 16640.96, + "probability": 0.8278 + }, + { + "start": 16641.34, + "end": 16646.26, + "probability": 0.9968 + }, + { + "start": 16646.26, + "end": 16649.7, + "probability": 0.9904 + }, + { + "start": 16650.22, + "end": 16651.6, + "probability": 0.97 + }, + { + "start": 16651.7, + "end": 16655.04, + "probability": 0.9537 + }, + { + "start": 16655.12, + "end": 16655.12, + "probability": 0.3897 + }, + { + "start": 16655.14, + "end": 16656.58, + "probability": 0.8485 + }, + { + "start": 16656.82, + "end": 16657.72, + "probability": 0.6673 + }, + { + "start": 16658.26, + "end": 16659.5, + "probability": 0.7659 + }, + { + "start": 16661.48, + "end": 16663.58, + "probability": 0.7504 + }, + { + "start": 16663.78, + "end": 16666.44, + "probability": 0.6851 + }, + { + "start": 16667.36, + "end": 16667.88, + "probability": 0.5448 + }, + { + "start": 16668.0, + "end": 16668.88, + "probability": 0.7825 + }, + { + "start": 16669.44, + "end": 16672.3, + "probability": 0.9482 + }, + { + "start": 16672.51, + "end": 16674.56, + "probability": 0.9876 + }, + { + "start": 16675.0, + "end": 16675.46, + "probability": 0.7816 + }, + { + "start": 16676.62, + "end": 16677.7, + "probability": 0.9852 + }, + { + "start": 16678.22, + "end": 16679.16, + "probability": 0.6727 + }, + { + "start": 16681.58, + "end": 16683.52, + "probability": 0.9619 + }, + { + "start": 16685.22, + "end": 16688.22, + "probability": 0.7156 + }, + { + "start": 16688.28, + "end": 16689.2, + "probability": 0.7549 + }, + { + "start": 16689.92, + "end": 16696.06, + "probability": 0.637 + }, + { + "start": 16696.64, + "end": 16696.84, + "probability": 0.4178 + }, + { + "start": 16697.18, + "end": 16701.48, + "probability": 0.6234 + }, + { + "start": 16702.4, + "end": 16709.44, + "probability": 0.9945 + }, + { + "start": 16710.26, + "end": 16715.68, + "probability": 0.7842 + }, + { + "start": 16715.86, + "end": 16716.44, + "probability": 0.5305 + }, + { + "start": 16716.5, + "end": 16723.7, + "probability": 0.4944 + }, + { + "start": 16723.7, + "end": 16729.56, + "probability": 0.7159 + }, + { + "start": 16729.98, + "end": 16735.82, + "probability": 0.9841 + }, + { + "start": 16736.64, + "end": 16738.3, + "probability": 0.6178 + }, + { + "start": 16739.42, + "end": 16744.38, + "probability": 0.6152 + }, + { + "start": 16745.16, + "end": 16746.84, + "probability": 0.2848 + }, + { + "start": 16747.56, + "end": 16754.53, + "probability": 0.9674 + }, + { + "start": 16755.3, + "end": 16757.34, + "probability": 0.6785 + }, + { + "start": 16760.38, + "end": 16762.86, + "probability": 0.6751 + }, + { + "start": 16763.52, + "end": 16764.72, + "probability": 0.7192 + }, + { + "start": 16765.5, + "end": 16771.66, + "probability": 0.8965 + }, + { + "start": 16772.4, + "end": 16776.32, + "probability": 0.9707 + }, + { + "start": 16776.64, + "end": 16778.24, + "probability": 0.9898 + }, + { + "start": 16778.9, + "end": 16785.04, + "probability": 0.6399 + }, + { + "start": 16785.56, + "end": 16790.72, + "probability": 0.9487 + }, + { + "start": 16790.72, + "end": 16794.34, + "probability": 0.6323 + }, + { + "start": 16794.46, + "end": 16795.36, + "probability": 0.8234 + }, + { + "start": 16795.42, + "end": 16802.12, + "probability": 0.9803 + }, + { + "start": 16802.66, + "end": 16804.68, + "probability": 0.9681 + }, + { + "start": 16804.84, + "end": 16807.5, + "probability": 0.9766 + }, + { + "start": 16807.5, + "end": 16810.84, + "probability": 0.9883 + }, + { + "start": 16811.38, + "end": 16815.04, + "probability": 0.9992 + }, + { + "start": 16815.04, + "end": 16820.38, + "probability": 0.986 + }, + { + "start": 16821.1, + "end": 16823.0, + "probability": 0.8014 + }, + { + "start": 16823.96, + "end": 16827.12, + "probability": 0.8508 + }, + { + "start": 16827.32, + "end": 16829.14, + "probability": 0.8477 + }, + { + "start": 16829.44, + "end": 16833.14, + "probability": 0.9658 + }, + { + "start": 16833.66, + "end": 16834.06, + "probability": 0.8582 + }, + { + "start": 16834.68, + "end": 16835.26, + "probability": 0.9712 + }, + { + "start": 16835.86, + "end": 16838.74, + "probability": 0.9277 + }, + { + "start": 16839.42, + "end": 16841.7, + "probability": 0.8744 + }, + { + "start": 16842.1, + "end": 16845.82, + "probability": 0.9552 + }, + { + "start": 16846.3, + "end": 16847.4, + "probability": 0.8922 + }, + { + "start": 16848.3, + "end": 16854.02, + "probability": 0.9916 + }, + { + "start": 16854.56, + "end": 16856.5, + "probability": 0.9882 + }, + { + "start": 16856.6, + "end": 16857.48, + "probability": 0.8486 + }, + { + "start": 16857.82, + "end": 16859.5, + "probability": 0.7764 + }, + { + "start": 16860.38, + "end": 16865.91, + "probability": 0.9033 + }, + { + "start": 16866.48, + "end": 16871.46, + "probability": 0.9954 + }, + { + "start": 16871.62, + "end": 16876.24, + "probability": 0.894 + }, + { + "start": 16876.3, + "end": 16881.2, + "probability": 0.9182 + }, + { + "start": 16881.2, + "end": 16887.44, + "probability": 0.9451 + }, + { + "start": 16887.56, + "end": 16887.76, + "probability": 0.5666 + }, + { + "start": 16887.96, + "end": 16888.26, + "probability": 0.3782 + }, + { + "start": 16888.32, + "end": 16888.74, + "probability": 0.6932 + }, + { + "start": 16888.8, + "end": 16892.08, + "probability": 0.9926 + }, + { + "start": 16892.42, + "end": 16895.74, + "probability": 0.9912 + }, + { + "start": 16895.98, + "end": 16896.56, + "probability": 0.6492 + }, + { + "start": 16896.94, + "end": 16897.58, + "probability": 0.8267 + }, + { + "start": 16897.68, + "end": 16898.72, + "probability": 0.8203 + }, + { + "start": 16898.84, + "end": 16899.46, + "probability": 0.8427 + }, + { + "start": 16899.8, + "end": 16900.6, + "probability": 0.8197 + }, + { + "start": 16900.76, + "end": 16901.6, + "probability": 0.9312 + }, + { + "start": 16901.78, + "end": 16903.02, + "probability": 0.5675 + }, + { + "start": 16903.06, + "end": 16904.08, + "probability": 0.9858 + }, + { + "start": 16904.66, + "end": 16906.24, + "probability": 0.9659 + }, + { + "start": 16906.3, + "end": 16908.74, + "probability": 0.7211 + }, + { + "start": 16909.1, + "end": 16915.4, + "probability": 0.959 + }, + { + "start": 16915.6, + "end": 16917.9, + "probability": 0.8831 + }, + { + "start": 16918.4, + "end": 16919.06, + "probability": 0.5836 + }, + { + "start": 16919.72, + "end": 16922.22, + "probability": 0.2873 + }, + { + "start": 16922.22, + "end": 16922.68, + "probability": 0.5333 + }, + { + "start": 16922.92, + "end": 16923.68, + "probability": 0.6863 + }, + { + "start": 16923.8, + "end": 16924.81, + "probability": 0.6277 + }, + { + "start": 16926.02, + "end": 16929.72, + "probability": 0.9861 + }, + { + "start": 16931.06, + "end": 16935.14, + "probability": 0.9878 + }, + { + "start": 16936.02, + "end": 16936.66, + "probability": 0.9927 + }, + { + "start": 16938.14, + "end": 16939.38, + "probability": 0.8277 + }, + { + "start": 16940.56, + "end": 16941.04, + "probability": 0.5383 + }, + { + "start": 16941.66, + "end": 16943.66, + "probability": 0.9627 + }, + { + "start": 16944.82, + "end": 16947.72, + "probability": 0.8684 + }, + { + "start": 16948.26, + "end": 16948.8, + "probability": 0.8829 + }, + { + "start": 16950.28, + "end": 16952.3, + "probability": 0.989 + }, + { + "start": 16953.12, + "end": 16954.12, + "probability": 0.9072 + }, + { + "start": 16954.48, + "end": 16955.78, + "probability": 0.8056 + }, + { + "start": 16956.56, + "end": 16958.52, + "probability": 0.9409 + }, + { + "start": 16958.96, + "end": 16960.96, + "probability": 0.9907 + }, + { + "start": 16961.68, + "end": 16966.16, + "probability": 0.9982 + }, + { + "start": 16966.96, + "end": 16968.18, + "probability": 0.6935 + }, + { + "start": 16968.46, + "end": 16969.56, + "probability": 0.9974 + }, + { + "start": 16970.34, + "end": 16970.7, + "probability": 0.7924 + }, + { + "start": 16970.78, + "end": 16973.28, + "probability": 0.9957 + }, + { + "start": 16973.44, + "end": 16975.36, + "probability": 0.9572 + }, + { + "start": 16976.0, + "end": 16976.4, + "probability": 0.6643 + }, + { + "start": 16976.98, + "end": 16978.06, + "probability": 0.9917 + }, + { + "start": 16978.5, + "end": 16980.44, + "probability": 0.9792 + }, + { + "start": 16980.98, + "end": 16982.0, + "probability": 0.8315 + }, + { + "start": 16982.48, + "end": 16983.24, + "probability": 0.9733 + }, + { + "start": 16983.34, + "end": 16990.22, + "probability": 0.9761 + }, + { + "start": 16991.2, + "end": 16992.29, + "probability": 0.8892 + }, + { + "start": 16992.38, + "end": 16993.36, + "probability": 0.8913 + }, + { + "start": 16993.9, + "end": 16996.22, + "probability": 0.9823 + }, + { + "start": 16996.6, + "end": 17001.14, + "probability": 0.7203 + }, + { + "start": 17002.68, + "end": 17004.2, + "probability": 0.9811 + }, + { + "start": 17004.98, + "end": 17006.98, + "probability": 0.9159 + }, + { + "start": 17008.12, + "end": 17009.26, + "probability": 0.9801 + }, + { + "start": 17009.54, + "end": 17013.37, + "probability": 0.6445 + }, + { + "start": 17016.98, + "end": 17020.22, + "probability": 0.7948 + }, + { + "start": 17020.64, + "end": 17023.4, + "probability": 0.8839 + }, + { + "start": 17023.98, + "end": 17024.52, + "probability": 0.5405 + }, + { + "start": 17025.12, + "end": 17029.08, + "probability": 0.7349 + }, + { + "start": 17029.6, + "end": 17030.48, + "probability": 0.8762 + }, + { + "start": 17031.04, + "end": 17034.04, + "probability": 0.9976 + }, + { + "start": 17034.04, + "end": 17037.58, + "probability": 0.9837 + }, + { + "start": 17038.38, + "end": 17039.4, + "probability": 0.9975 + }, + { + "start": 17040.16, + "end": 17041.38, + "probability": 0.9974 + }, + { + "start": 17041.42, + "end": 17042.66, + "probability": 0.8218 + }, + { + "start": 17043.3, + "end": 17045.94, + "probability": 0.9868 + }, + { + "start": 17047.16, + "end": 17050.64, + "probability": 0.9546 + }, + { + "start": 17051.56, + "end": 17053.04, + "probability": 0.9978 + }, + { + "start": 17053.66, + "end": 17054.46, + "probability": 0.2243 + }, + { + "start": 17055.04, + "end": 17055.04, + "probability": 0.322 + }, + { + "start": 17055.04, + "end": 17055.62, + "probability": 0.6335 + }, + { + "start": 17055.96, + "end": 17056.82, + "probability": 0.9507 + }, + { + "start": 17057.38, + "end": 17061.98, + "probability": 0.9682 + }, + { + "start": 17062.44, + "end": 17064.1, + "probability": 0.998 + }, + { + "start": 17065.74, + "end": 17067.84, + "probability": 0.9988 + }, + { + "start": 17067.88, + "end": 17071.92, + "probability": 0.9706 + }, + { + "start": 17072.56, + "end": 17073.85, + "probability": 0.9207 + }, + { + "start": 17074.66, + "end": 17076.96, + "probability": 0.901 + }, + { + "start": 17077.16, + "end": 17078.9, + "probability": 0.9684 + }, + { + "start": 17079.02, + "end": 17080.72, + "probability": 0.9803 + }, + { + "start": 17080.82, + "end": 17083.4, + "probability": 0.7298 + }, + { + "start": 17084.12, + "end": 17087.3, + "probability": 0.8223 + }, + { + "start": 17087.42, + "end": 17091.46, + "probability": 0.9924 + }, + { + "start": 17091.52, + "end": 17093.54, + "probability": 0.9923 + }, + { + "start": 17094.28, + "end": 17096.44, + "probability": 0.9678 + }, + { + "start": 17097.04, + "end": 17100.42, + "probability": 0.9974 + }, + { + "start": 17100.96, + "end": 17105.26, + "probability": 0.9639 + }, + { + "start": 17105.66, + "end": 17108.25, + "probability": 0.9817 + }, + { + "start": 17108.84, + "end": 17111.38, + "probability": 0.6192 + }, + { + "start": 17111.38, + "end": 17111.44, + "probability": 0.294 + }, + { + "start": 17111.44, + "end": 17111.9, + "probability": 0.5709 + }, + { + "start": 17112.02, + "end": 17112.4, + "probability": 0.8009 + }, + { + "start": 17113.46, + "end": 17115.46, + "probability": 0.7532 + }, + { + "start": 17115.8, + "end": 17116.84, + "probability": 0.9248 + }, + { + "start": 17117.3, + "end": 17117.48, + "probability": 0.8695 + }, + { + "start": 17117.54, + "end": 17118.16, + "probability": 0.9111 + }, + { + "start": 17118.24, + "end": 17119.12, + "probability": 0.9543 + }, + { + "start": 17119.2, + "end": 17121.82, + "probability": 0.9741 + }, + { + "start": 17122.4, + "end": 17125.34, + "probability": 0.9941 + }, + { + "start": 17126.48, + "end": 17128.72, + "probability": 0.4998 + }, + { + "start": 17128.72, + "end": 17130.14, + "probability": 0.928 + }, + { + "start": 17130.16, + "end": 17131.62, + "probability": 0.7083 + }, + { + "start": 17132.04, + "end": 17134.5, + "probability": 0.8782 + }, + { + "start": 17134.92, + "end": 17134.92, + "probability": 0.028 + }, + { + "start": 17134.92, + "end": 17136.4, + "probability": 0.874 + }, + { + "start": 17136.48, + "end": 17138.64, + "probability": 0.6818 + }, + { + "start": 17139.1, + "end": 17142.32, + "probability": 0.9965 + }, + { + "start": 17142.46, + "end": 17144.66, + "probability": 0.9954 + }, + { + "start": 17144.86, + "end": 17147.62, + "probability": 0.8888 + }, + { + "start": 17148.0, + "end": 17149.2, + "probability": 0.8705 + }, + { + "start": 17150.46, + "end": 17151.12, + "probability": 0.6135 + }, + { + "start": 17151.24, + "end": 17151.24, + "probability": 0.2802 + }, + { + "start": 17151.24, + "end": 17152.46, + "probability": 0.5905 + }, + { + "start": 17152.78, + "end": 17153.82, + "probability": 0.6127 + }, + { + "start": 17153.84, + "end": 17154.08, + "probability": 0.3829 + }, + { + "start": 17154.48, + "end": 17157.34, + "probability": 0.9588 + }, + { + "start": 17159.68, + "end": 17160.32, + "probability": 0.9779 + }, + { + "start": 17163.76, + "end": 17165.84, + "probability": 0.9661 + }, + { + "start": 17166.67, + "end": 17168.68, + "probability": 0.853 + }, + { + "start": 17171.22, + "end": 17173.38, + "probability": 0.1845 + }, + { + "start": 17174.74, + "end": 17174.86, + "probability": 0.3275 + }, + { + "start": 17174.96, + "end": 17176.2, + "probability": 0.6554 + }, + { + "start": 17176.74, + "end": 17177.58, + "probability": 0.264 + }, + { + "start": 17178.62, + "end": 17180.22, + "probability": 0.766 + }, + { + "start": 17180.58, + "end": 17181.24, + "probability": 0.6783 + }, + { + "start": 17181.4, + "end": 17182.84, + "probability": 0.5126 + }, + { + "start": 17182.9, + "end": 17183.6, + "probability": 0.5658 + }, + { + "start": 17184.32, + "end": 17185.08, + "probability": 0.703 + }, + { + "start": 17185.5, + "end": 17188.02, + "probability": 0.9858 + }, + { + "start": 17188.88, + "end": 17189.86, + "probability": 0.863 + }, + { + "start": 17191.04, + "end": 17194.36, + "probability": 0.978 + }, + { + "start": 17195.44, + "end": 17198.74, + "probability": 0.9773 + }, + { + "start": 17199.24, + "end": 17201.24, + "probability": 0.9951 + }, + { + "start": 17202.78, + "end": 17207.04, + "probability": 0.8956 + }, + { + "start": 17208.14, + "end": 17211.5, + "probability": 0.5899 + }, + { + "start": 17212.22, + "end": 17216.36, + "probability": 0.8861 + }, + { + "start": 17218.08, + "end": 17224.1, + "probability": 0.9915 + }, + { + "start": 17224.88, + "end": 17227.14, + "probability": 0.9977 + }, + { + "start": 17227.68, + "end": 17231.24, + "probability": 0.9972 + }, + { + "start": 17231.24, + "end": 17236.04, + "probability": 0.9984 + }, + { + "start": 17236.8, + "end": 17239.91, + "probability": 0.999 + }, + { + "start": 17240.94, + "end": 17242.02, + "probability": 0.7121 + }, + { + "start": 17242.16, + "end": 17244.54, + "probability": 0.9829 + }, + { + "start": 17245.2, + "end": 17247.08, + "probability": 0.9514 + }, + { + "start": 17247.94, + "end": 17251.28, + "probability": 0.9494 + }, + { + "start": 17251.66, + "end": 17256.46, + "probability": 0.9057 + }, + { + "start": 17256.66, + "end": 17257.86, + "probability": 0.7235 + }, + { + "start": 17258.62, + "end": 17262.92, + "probability": 0.6902 + }, + { + "start": 17264.48, + "end": 17267.2, + "probability": 0.8853 + }, + { + "start": 17268.66, + "end": 17272.42, + "probability": 0.9709 + }, + { + "start": 17272.78, + "end": 17276.22, + "probability": 0.774 + }, + { + "start": 17276.38, + "end": 17277.28, + "probability": 0.8027 + }, + { + "start": 17277.86, + "end": 17278.98, + "probability": 0.9359 + }, + { + "start": 17279.8, + "end": 17283.58, + "probability": 0.8918 + }, + { + "start": 17284.24, + "end": 17286.88, + "probability": 0.9688 + }, + { + "start": 17287.58, + "end": 17289.56, + "probability": 0.7344 + }, + { + "start": 17289.62, + "end": 17290.28, + "probability": 0.6404 + }, + { + "start": 17290.32, + "end": 17295.5, + "probability": 0.8522 + }, + { + "start": 17296.26, + "end": 17299.72, + "probability": 0.9932 + }, + { + "start": 17300.0, + "end": 17303.48, + "probability": 0.653 + }, + { + "start": 17304.16, + "end": 17309.44, + "probability": 0.981 + }, + { + "start": 17310.76, + "end": 17313.06, + "probability": 0.9648 + }, + { + "start": 17313.22, + "end": 17317.62, + "probability": 0.9919 + }, + { + "start": 17317.78, + "end": 17319.32, + "probability": 0.9871 + }, + { + "start": 17320.14, + "end": 17321.78, + "probability": 0.7157 + }, + { + "start": 17322.16, + "end": 17322.84, + "probability": 0.258 + }, + { + "start": 17322.96, + "end": 17323.64, + "probability": 0.5216 + }, + { + "start": 17323.78, + "end": 17325.56, + "probability": 0.8948 + }, + { + "start": 17325.56, + "end": 17325.7, + "probability": 0.249 + }, + { + "start": 17326.76, + "end": 17328.76, + "probability": 0.1722 + }, + { + "start": 17329.02, + "end": 17332.62, + "probability": 0.7657 + }, + { + "start": 17332.84, + "end": 17332.88, + "probability": 0.4763 + }, + { + "start": 17333.42, + "end": 17334.64, + "probability": 0.0295 + }, + { + "start": 17334.64, + "end": 17335.27, + "probability": 0.0334 + }, + { + "start": 17335.36, + "end": 17335.52, + "probability": 0.1945 + }, + { + "start": 17335.64, + "end": 17339.28, + "probability": 0.6164 + }, + { + "start": 17339.28, + "end": 17343.2, + "probability": 0.7326 + }, + { + "start": 17343.76, + "end": 17344.66, + "probability": 0.9064 + }, + { + "start": 17344.74, + "end": 17347.44, + "probability": 0.9487 + }, + { + "start": 17347.66, + "end": 17349.32, + "probability": 0.6448 + }, + { + "start": 17350.24, + "end": 17351.16, + "probability": 0.7584 + }, + { + "start": 17351.76, + "end": 17352.7, + "probability": 0.7497 + }, + { + "start": 17353.88, + "end": 17356.46, + "probability": 0.9539 + }, + { + "start": 17356.64, + "end": 17359.94, + "probability": 0.9961 + }, + { + "start": 17360.44, + "end": 17364.9, + "probability": 0.9961 + }, + { + "start": 17365.48, + "end": 17369.3, + "probability": 0.9932 + }, + { + "start": 17369.78, + "end": 17375.1, + "probability": 0.9723 + }, + { + "start": 17375.52, + "end": 17378.44, + "probability": 0.8022 + }, + { + "start": 17378.44, + "end": 17380.94, + "probability": 0.9724 + }, + { + "start": 17382.08, + "end": 17384.56, + "probability": 0.9131 + }, + { + "start": 17384.56, + "end": 17388.08, + "probability": 0.9578 + }, + { + "start": 17388.42, + "end": 17393.3, + "probability": 0.9799 + }, + { + "start": 17394.28, + "end": 17397.04, + "probability": 0.9989 + }, + { + "start": 17397.16, + "end": 17399.28, + "probability": 0.9403 + }, + { + "start": 17400.0, + "end": 17402.42, + "probability": 0.8582 + }, + { + "start": 17402.92, + "end": 17408.84, + "probability": 0.9646 + }, + { + "start": 17409.1, + "end": 17410.42, + "probability": 0.5649 + }, + { + "start": 17410.46, + "end": 17412.62, + "probability": 0.8359 + }, + { + "start": 17413.18, + "end": 17414.72, + "probability": 0.6719 + }, + { + "start": 17415.28, + "end": 17420.0, + "probability": 0.8115 + }, + { + "start": 17420.26, + "end": 17423.7, + "probability": 0.8406 + }, + { + "start": 17424.24, + "end": 17429.72, + "probability": 0.9971 + }, + { + "start": 17430.48, + "end": 17434.68, + "probability": 0.9877 + }, + { + "start": 17435.2, + "end": 17439.2, + "probability": 0.9742 + }, + { + "start": 17440.4, + "end": 17441.65, + "probability": 0.5974 + }, + { + "start": 17442.4, + "end": 17447.46, + "probability": 0.9922 + }, + { + "start": 17448.42, + "end": 17449.16, + "probability": 0.8791 + }, + { + "start": 17449.24, + "end": 17451.54, + "probability": 0.9972 + }, + { + "start": 17451.64, + "end": 17457.48, + "probability": 0.9761 + }, + { + "start": 17457.54, + "end": 17459.38, + "probability": 0.9759 + }, + { + "start": 17459.54, + "end": 17462.74, + "probability": 0.9979 + }, + { + "start": 17463.44, + "end": 17464.38, + "probability": 0.8586 + }, + { + "start": 17465.06, + "end": 17466.22, + "probability": 0.981 + }, + { + "start": 17466.7, + "end": 17468.38, + "probability": 0.9112 + }, + { + "start": 17468.54, + "end": 17469.88, + "probability": 0.9858 + }, + { + "start": 17470.12, + "end": 17470.92, + "probability": 0.8574 + }, + { + "start": 17471.32, + "end": 17473.2, + "probability": 0.9458 + }, + { + "start": 17473.8, + "end": 17478.42, + "probability": 0.9795 + }, + { + "start": 17478.66, + "end": 17483.4, + "probability": 0.8766 + }, + { + "start": 17484.18, + "end": 17487.1, + "probability": 0.9828 + }, + { + "start": 17487.56, + "end": 17489.56, + "probability": 0.8845 + }, + { + "start": 17489.66, + "end": 17490.84, + "probability": 0.9368 + }, + { + "start": 17491.38, + "end": 17493.78, + "probability": 0.8009 + }, + { + "start": 17493.8, + "end": 17495.66, + "probability": 0.8973 + }, + { + "start": 17496.34, + "end": 17499.08, + "probability": 0.8398 + }, + { + "start": 17499.7, + "end": 17501.48, + "probability": 0.8501 + }, + { + "start": 17502.2, + "end": 17505.46, + "probability": 0.8766 + }, + { + "start": 17506.16, + "end": 17508.86, + "probability": 0.813 + }, + { + "start": 17508.9, + "end": 17510.02, + "probability": 0.979 + }, + { + "start": 17510.22, + "end": 17510.42, + "probability": 0.1568 + }, + { + "start": 17511.17, + "end": 17514.79, + "probability": 0.701 + }, + { + "start": 17516.18, + "end": 17520.94, + "probability": 0.0545 + }, + { + "start": 17521.04, + "end": 17521.88, + "probability": 0.6665 + }, + { + "start": 17522.38, + "end": 17524.74, + "probability": 0.8194 + }, + { + "start": 17524.9, + "end": 17528.0, + "probability": 0.3189 + }, + { + "start": 17528.02, + "end": 17528.95, + "probability": 0.5336 + }, + { + "start": 17529.58, + "end": 17532.5, + "probability": 0.965 + }, + { + "start": 17536.68, + "end": 17539.92, + "probability": 0.0652 + }, + { + "start": 17540.06, + "end": 17540.41, + "probability": 0.3267 + }, + { + "start": 17540.48, + "end": 17541.04, + "probability": 0.6811 + }, + { + "start": 17541.04, + "end": 17541.4, + "probability": 0.8967 + }, + { + "start": 17541.86, + "end": 17544.8, + "probability": 0.5811 + }, + { + "start": 17544.94, + "end": 17545.6, + "probability": 0.1267 + }, + { + "start": 17545.94, + "end": 17546.62, + "probability": 0.3575 + }, + { + "start": 17547.42, + "end": 17549.12, + "probability": 0.805 + }, + { + "start": 17549.12, + "end": 17549.12, + "probability": 0.3616 + }, + { + "start": 17550.5, + "end": 17551.18, + "probability": 0.0127 + }, + { + "start": 17552.44, + "end": 17555.0, + "probability": 0.6874 + }, + { + "start": 17556.66, + "end": 17558.76, + "probability": 0.4281 + }, + { + "start": 17559.66, + "end": 17560.16, + "probability": 0.6798 + }, + { + "start": 17560.36, + "end": 17561.76, + "probability": 0.8465 + }, + { + "start": 17562.46, + "end": 17563.46, + "probability": 0.9191 + }, + { + "start": 17564.16, + "end": 17567.86, + "probability": 0.9761 + }, + { + "start": 17568.38, + "end": 17570.04, + "probability": 0.6549 + }, + { + "start": 17570.22, + "end": 17576.16, + "probability": 0.8802 + }, + { + "start": 17576.96, + "end": 17582.2, + "probability": 0.9683 + }, + { + "start": 17582.84, + "end": 17583.82, + "probability": 0.7086 + }, + { + "start": 17583.98, + "end": 17588.82, + "probability": 0.8677 + }, + { + "start": 17589.26, + "end": 17595.7, + "probability": 0.8921 + }, + { + "start": 17598.56, + "end": 17600.34, + "probability": 0.3944 + }, + { + "start": 17601.68, + "end": 17602.84, + "probability": 0.891 + }, + { + "start": 17602.98, + "end": 17611.16, + "probability": 0.937 + }, + { + "start": 17612.08, + "end": 17614.08, + "probability": 0.9111 + }, + { + "start": 17615.2, + "end": 17615.6, + "probability": 0.77 + }, + { + "start": 17617.66, + "end": 17619.42, + "probability": 0.5362 + }, + { + "start": 17620.84, + "end": 17625.34, + "probability": 0.4255 + }, + { + "start": 17626.5, + "end": 17629.9, + "probability": 0.9353 + }, + { + "start": 17631.3, + "end": 17634.34, + "probability": 0.9387 + }, + { + "start": 17635.64, + "end": 17636.78, + "probability": 0.7458 + }, + { + "start": 17638.14, + "end": 17640.44, + "probability": 0.7587 + }, + { + "start": 17641.5, + "end": 17646.48, + "probability": 0.8392 + }, + { + "start": 17647.4, + "end": 17650.78, + "probability": 0.8921 + }, + { + "start": 17651.62, + "end": 17655.7, + "probability": 0.9739 + }, + { + "start": 17656.26, + "end": 17657.8, + "probability": 0.9098 + }, + { + "start": 17657.86, + "end": 17658.96, + "probability": 0.4333 + }, + { + "start": 17659.38, + "end": 17661.56, + "probability": 0.5669 + }, + { + "start": 17664.92, + "end": 17667.68, + "probability": 0.8696 + }, + { + "start": 17670.06, + "end": 17671.1, + "probability": 0.9401 + }, + { + "start": 17673.82, + "end": 17674.74, + "probability": 0.9507 + }, + { + "start": 17677.2, + "end": 17677.3, + "probability": 0.9342 + }, + { + "start": 17679.14, + "end": 17681.02, + "probability": 0.9403 + }, + { + "start": 17683.02, + "end": 17688.54, + "probability": 0.9823 + }, + { + "start": 17689.74, + "end": 17695.04, + "probability": 0.9654 + }, + { + "start": 17697.08, + "end": 17699.8, + "probability": 0.915 + }, + { + "start": 17702.26, + "end": 17703.04, + "probability": 0.6968 + }, + { + "start": 17707.88, + "end": 17710.8, + "probability": 0.9362 + }, + { + "start": 17712.22, + "end": 17714.74, + "probability": 0.9445 + }, + { + "start": 17716.8, + "end": 17718.12, + "probability": 0.981 + }, + { + "start": 17719.72, + "end": 17721.9, + "probability": 0.8677 + }, + { + "start": 17724.76, + "end": 17725.16, + "probability": 0.7617 + }, + { + "start": 17728.48, + "end": 17729.74, + "probability": 0.9985 + }, + { + "start": 17732.5, + "end": 17733.34, + "probability": 0.7126 + }, + { + "start": 17735.84, + "end": 17737.46, + "probability": 0.4399 + }, + { + "start": 17738.6, + "end": 17743.12, + "probability": 0.9268 + }, + { + "start": 17747.34, + "end": 17748.28, + "probability": 0.7868 + }, + { + "start": 17749.74, + "end": 17749.84, + "probability": 0.0031 + }, + { + "start": 17753.24, + "end": 17755.74, + "probability": 0.7109 + }, + { + "start": 17756.86, + "end": 17758.02, + "probability": 0.9521 + }, + { + "start": 17759.34, + "end": 17762.98, + "probability": 0.8217 + }, + { + "start": 17763.94, + "end": 17768.16, + "probability": 0.8845 + }, + { + "start": 17771.0, + "end": 17771.9, + "probability": 0.7646 + }, + { + "start": 17772.78, + "end": 17776.86, + "probability": 0.9346 + }, + { + "start": 17778.52, + "end": 17781.68, + "probability": 0.8826 + }, + { + "start": 17784.68, + "end": 17786.86, + "probability": 0.8634 + }, + { + "start": 17787.56, + "end": 17788.52, + "probability": 0.8257 + }, + { + "start": 17790.04, + "end": 17792.6, + "probability": 0.9536 + }, + { + "start": 17794.42, + "end": 17798.42, + "probability": 0.9813 + }, + { + "start": 17799.92, + "end": 17805.02, + "probability": 0.9121 + }, + { + "start": 17806.16, + "end": 17813.62, + "probability": 0.9037 + }, + { + "start": 17813.84, + "end": 17814.38, + "probability": 0.6068 + }, + { + "start": 17815.74, + "end": 17816.58, + "probability": 0.8089 + }, + { + "start": 17817.02, + "end": 17817.98, + "probability": 0.9277 + }, + { + "start": 17818.14, + "end": 17818.54, + "probability": 0.5779 + }, + { + "start": 17819.22, + "end": 17821.2, + "probability": 0.9674 + }, + { + "start": 17822.4, + "end": 17824.06, + "probability": 0.9372 + }, + { + "start": 17825.16, + "end": 17827.16, + "probability": 0.7721 + }, + { + "start": 17828.48, + "end": 17829.28, + "probability": 0.6967 + }, + { + "start": 17830.84, + "end": 17831.88, + "probability": 0.7877 + }, + { + "start": 17832.9, + "end": 17835.34, + "probability": 0.8727 + }, + { + "start": 17836.38, + "end": 17839.42, + "probability": 0.9508 + }, + { + "start": 17840.42, + "end": 17843.16, + "probability": 0.8792 + }, + { + "start": 17844.16, + "end": 17849.4, + "probability": 0.9893 + }, + { + "start": 17849.98, + "end": 17851.58, + "probability": 0.8687 + }, + { + "start": 17852.34, + "end": 17855.54, + "probability": 0.8827 + }, + { + "start": 17856.3, + "end": 17861.92, + "probability": 0.8085 + }, + { + "start": 17862.32, + "end": 17862.74, + "probability": 0.6508 + }, + { + "start": 17863.36, + "end": 17864.66, + "probability": 0.8944 + }, + { + "start": 17864.8, + "end": 17866.78, + "probability": 0.8333 + }, + { + "start": 17867.66, + "end": 17868.86, + "probability": 0.5442 + }, + { + "start": 17869.64, + "end": 17871.4, + "probability": 0.9246 + }, + { + "start": 17873.68, + "end": 17878.66, + "probability": 0.7742 + }, + { + "start": 17879.18, + "end": 17881.5, + "probability": 0.8087 + }, + { + "start": 17882.24, + "end": 17889.2, + "probability": 0.8516 + }, + { + "start": 17890.44, + "end": 17893.96, + "probability": 0.8029 + }, + { + "start": 17895.32, + "end": 17898.86, + "probability": 0.8887 + }, + { + "start": 17900.5, + "end": 17900.84, + "probability": 0.5529 + }, + { + "start": 17901.86, + "end": 17903.14, + "probability": 0.6731 + }, + { + "start": 17904.16, + "end": 17908.24, + "probability": 0.9678 + }, + { + "start": 17908.24, + "end": 17914.42, + "probability": 0.9778 + }, + { + "start": 17915.38, + "end": 17919.16, + "probability": 0.976 + }, + { + "start": 17921.12, + "end": 17921.88, + "probability": 0.6676 + }, + { + "start": 17923.28, + "end": 17926.26, + "probability": 0.9126 + }, + { + "start": 17927.0, + "end": 17928.82, + "probability": 0.8469 + }, + { + "start": 17930.2, + "end": 17932.96, + "probability": 0.9585 + }, + { + "start": 17934.28, + "end": 17941.58, + "probability": 0.9368 + }, + { + "start": 17942.66, + "end": 17943.52, + "probability": 0.9984 + }, + { + "start": 17944.66, + "end": 17947.9, + "probability": 0.9584 + }, + { + "start": 17948.72, + "end": 17956.54, + "probability": 0.8351 + }, + { + "start": 17957.24, + "end": 17958.04, + "probability": 0.6947 + }, + { + "start": 17959.02, + "end": 17964.64, + "probability": 0.9818 + }, + { + "start": 17965.9, + "end": 17967.54, + "probability": 0.9399 + }, + { + "start": 17968.62, + "end": 17972.82, + "probability": 0.8724 + }, + { + "start": 17973.92, + "end": 17975.7, + "probability": 0.7603 + }, + { + "start": 17976.4, + "end": 17978.58, + "probability": 0.9006 + }, + { + "start": 17978.98, + "end": 17979.38, + "probability": 0.6647 + }, + { + "start": 17979.88, + "end": 17985.74, + "probability": 0.9852 + }, + { + "start": 17986.34, + "end": 17989.52, + "probability": 0.9758 + }, + { + "start": 17989.92, + "end": 17990.98, + "probability": 0.8179 + }, + { + "start": 17991.72, + "end": 17993.84, + "probability": 0.9501 + }, + { + "start": 17994.56, + "end": 17997.86, + "probability": 0.9373 + }, + { + "start": 17998.52, + "end": 17999.58, + "probability": 0.5242 + }, + { + "start": 18000.8, + "end": 18001.52, + "probability": 0.9167 + }, + { + "start": 18004.92, + "end": 18005.44, + "probability": 0.9668 + }, + { + "start": 18007.14, + "end": 18008.28, + "probability": 0.905 + }, + { + "start": 18009.62, + "end": 18014.15, + "probability": 0.9888 + }, + { + "start": 18014.42, + "end": 18018.04, + "probability": 0.9995 + }, + { + "start": 18019.9, + "end": 18021.0, + "probability": 0.7841 + }, + { + "start": 18023.36, + "end": 18030.02, + "probability": 0.9956 + }, + { + "start": 18030.94, + "end": 18033.34, + "probability": 0.9098 + }, + { + "start": 18034.64, + "end": 18038.6, + "probability": 0.9033 + }, + { + "start": 18040.04, + "end": 18041.16, + "probability": 0.8284 + }, + { + "start": 18041.36, + "end": 18043.74, + "probability": 0.5366 + }, + { + "start": 18044.34, + "end": 18045.84, + "probability": 0.9907 + }, + { + "start": 18048.48, + "end": 18052.16, + "probability": 0.8986 + }, + { + "start": 18054.26, + "end": 18055.06, + "probability": 0.6749 + }, + { + "start": 18056.16, + "end": 18058.04, + "probability": 0.9391 + }, + { + "start": 18058.78, + "end": 18060.08, + "probability": 0.7553 + }, + { + "start": 18062.02, + "end": 18065.34, + "probability": 0.9138 + }, + { + "start": 18067.22, + "end": 18067.82, + "probability": 0.8781 + }, + { + "start": 18068.6, + "end": 18072.06, + "probability": 0.974 + }, + { + "start": 18073.5, + "end": 18078.2, + "probability": 0.9971 + }, + { + "start": 18080.46, + "end": 18081.1, + "probability": 0.5375 + }, + { + "start": 18081.96, + "end": 18082.86, + "probability": 0.9521 + }, + { + "start": 18087.18, + "end": 18090.36, + "probability": 0.9483 + }, + { + "start": 18091.12, + "end": 18095.28, + "probability": 0.9617 + }, + { + "start": 18098.68, + "end": 18103.2, + "probability": 0.8853 + }, + { + "start": 18103.88, + "end": 18104.76, + "probability": 0.9308 + }, + { + "start": 18105.52, + "end": 18107.2, + "probability": 0.9514 + }, + { + "start": 18108.6, + "end": 18110.0, + "probability": 0.4636 + }, + { + "start": 18110.58, + "end": 18111.78, + "probability": 0.9471 + }, + { + "start": 18113.34, + "end": 18119.36, + "probability": 0.876 + }, + { + "start": 18120.36, + "end": 18122.32, + "probability": 0.9405 + }, + { + "start": 18123.98, + "end": 18125.32, + "probability": 0.9596 + }, + { + "start": 18126.84, + "end": 18129.08, + "probability": 0.9799 + }, + { + "start": 18130.26, + "end": 18133.02, + "probability": 0.8849 + }, + { + "start": 18134.4, + "end": 18137.1, + "probability": 0.9233 + }, + { + "start": 18137.6, + "end": 18139.62, + "probability": 0.9074 + }, + { + "start": 18141.4, + "end": 18141.42, + "probability": 0.0781 + }, + { + "start": 18141.42, + "end": 18142.24, + "probability": 0.6489 + }, + { + "start": 18142.82, + "end": 18144.06, + "probability": 0.7943 + }, + { + "start": 18145.5, + "end": 18147.88, + "probability": 0.9908 + }, + { + "start": 18149.12, + "end": 18150.72, + "probability": 0.8717 + }, + { + "start": 18152.34, + "end": 18154.16, + "probability": 0.8159 + }, + { + "start": 18154.74, + "end": 18155.69, + "probability": 0.8226 + }, + { + "start": 18156.76, + "end": 18159.08, + "probability": 0.8921 + }, + { + "start": 18160.2, + "end": 18163.14, + "probability": 0.8826 + }, + { + "start": 18166.84, + "end": 18172.16, + "probability": 0.7485 + }, + { + "start": 18173.36, + "end": 18176.66, + "probability": 0.7794 + }, + { + "start": 18177.32, + "end": 18177.93, + "probability": 0.872 + }, + { + "start": 18178.66, + "end": 18181.0, + "probability": 0.6901 + }, + { + "start": 18182.38, + "end": 18183.26, + "probability": 0.613 + }, + { + "start": 18184.52, + "end": 18186.12, + "probability": 0.8311 + }, + { + "start": 18187.0, + "end": 18190.6, + "probability": 0.8213 + }, + { + "start": 18192.8, + "end": 18197.76, + "probability": 0.7556 + }, + { + "start": 18198.78, + "end": 18199.88, + "probability": 0.7031 + }, + { + "start": 18200.38, + "end": 18201.7, + "probability": 0.9641 + }, + { + "start": 18202.3, + "end": 18203.6, + "probability": 0.8425 + }, + { + "start": 18204.22, + "end": 18206.14, + "probability": 0.9765 + }, + { + "start": 18206.74, + "end": 18209.5, + "probability": 0.8701 + }, + { + "start": 18210.1, + "end": 18212.18, + "probability": 0.9256 + }, + { + "start": 18213.52, + "end": 18217.32, + "probability": 0.975 + }, + { + "start": 18218.22, + "end": 18220.88, + "probability": 0.8824 + }, + { + "start": 18222.72, + "end": 18223.64, + "probability": 0.6475 + }, + { + "start": 18224.8, + "end": 18226.34, + "probability": 0.8144 + }, + { + "start": 18227.06, + "end": 18227.62, + "probability": 0.7235 + }, + { + "start": 18228.6, + "end": 18229.4, + "probability": 0.9318 + }, + { + "start": 18230.4, + "end": 18230.97, + "probability": 0.6806 + }, + { + "start": 18233.24, + "end": 18239.28, + "probability": 0.8217 + }, + { + "start": 18239.32, + "end": 18240.46, + "probability": 0.6404 + }, + { + "start": 18241.9, + "end": 18247.98, + "probability": 0.796 + }, + { + "start": 18248.15, + "end": 18252.74, + "probability": 0.9906 + }, + { + "start": 18253.66, + "end": 18254.36, + "probability": 0.911 + }, + { + "start": 18256.42, + "end": 18257.66, + "probability": 0.7777 + }, + { + "start": 18259.46, + "end": 18262.86, + "probability": 0.995 + }, + { + "start": 18263.86, + "end": 18265.08, + "probability": 0.8087 + }, + { + "start": 18266.02, + "end": 18268.62, + "probability": 0.8068 + }, + { + "start": 18269.74, + "end": 18271.06, + "probability": 0.5151 + }, + { + "start": 18271.42, + "end": 18273.22, + "probability": 0.7284 + }, + { + "start": 18273.7, + "end": 18275.34, + "probability": 0.959 + }, + { + "start": 18276.1, + "end": 18277.92, + "probability": 0.9801 + }, + { + "start": 18279.32, + "end": 18281.56, + "probability": 0.9819 + }, + { + "start": 18282.46, + "end": 18286.64, + "probability": 0.9614 + }, + { + "start": 18286.64, + "end": 18287.06, + "probability": 0.1087 + }, + { + "start": 18287.34, + "end": 18288.44, + "probability": 0.5722 + }, + { + "start": 18289.3, + "end": 18290.28, + "probability": 0.6898 + }, + { + "start": 18291.76, + "end": 18295.88, + "probability": 0.9609 + }, + { + "start": 18296.72, + "end": 18297.06, + "probability": 0.5262 + }, + { + "start": 18297.74, + "end": 18298.64, + "probability": 0.9382 + }, + { + "start": 18299.52, + "end": 18302.94, + "probability": 0.9429 + }, + { + "start": 18304.54, + "end": 18305.08, + "probability": 0.9209 + }, + { + "start": 18307.0, + "end": 18309.84, + "probability": 0.7378 + }, + { + "start": 18310.38, + "end": 18319.18, + "probability": 0.973 + }, + { + "start": 18319.9, + "end": 18320.4, + "probability": 0.7233 + }, + { + "start": 18321.58, + "end": 18325.94, + "probability": 0.9925 + }, + { + "start": 18326.58, + "end": 18327.64, + "probability": 0.8416 + }, + { + "start": 18328.04, + "end": 18331.1, + "probability": 0.9712 + }, + { + "start": 18331.54, + "end": 18332.82, + "probability": 0.8803 + }, + { + "start": 18333.1, + "end": 18336.44, + "probability": 0.9707 + }, + { + "start": 18336.64, + "end": 18337.36, + "probability": 0.89 + }, + { + "start": 18337.68, + "end": 18338.52, + "probability": 0.9849 + }, + { + "start": 18340.42, + "end": 18341.42, + "probability": 0.8415 + }, + { + "start": 18342.22, + "end": 18343.04, + "probability": 0.9357 + }, + { + "start": 18343.76, + "end": 18344.42, + "probability": 0.9465 + }, + { + "start": 18346.06, + "end": 18346.68, + "probability": 0.5248 + }, + { + "start": 18347.8, + "end": 18350.16, + "probability": 0.7577 + }, + { + "start": 18351.34, + "end": 18352.06, + "probability": 0.9964 + }, + { + "start": 18353.46, + "end": 18354.56, + "probability": 0.717 + }, + { + "start": 18357.24, + "end": 18358.26, + "probability": 0.976 + }, + { + "start": 18359.32, + "end": 18359.84, + "probability": 0.5277 + }, + { + "start": 18361.34, + "end": 18362.04, + "probability": 0.8694 + }, + { + "start": 18363.24, + "end": 18363.86, + "probability": 0.6992 + }, + { + "start": 18364.6, + "end": 18366.16, + "probability": 0.6834 + }, + { + "start": 18367.94, + "end": 18369.36, + "probability": 0.5112 + }, + { + "start": 18370.08, + "end": 18370.86, + "probability": 0.7172 + }, + { + "start": 18371.46, + "end": 18372.66, + "probability": 0.9845 + }, + { + "start": 18373.76, + "end": 18374.92, + "probability": 0.8237 + }, + { + "start": 18374.92, + "end": 18375.64, + "probability": 0.6323 + }, + { + "start": 18375.82, + "end": 18376.54, + "probability": 0.9762 + }, + { + "start": 18377.34, + "end": 18379.31, + "probability": 0.6864 + }, + { + "start": 18382.18, + "end": 18383.44, + "probability": 0.2205 + }, + { + "start": 18383.72, + "end": 18384.82, + "probability": 0.2455 + }, + { + "start": 18384.82, + "end": 18384.82, + "probability": 0.4953 + }, + { + "start": 18384.82, + "end": 18384.82, + "probability": 0.2555 + }, + { + "start": 18384.82, + "end": 18385.26, + "probability": 0.1964 + }, + { + "start": 18389.24, + "end": 18389.98, + "probability": 0.0323 + }, + { + "start": 18390.38, + "end": 18393.14, + "probability": 0.8773 + }, + { + "start": 18393.6, + "end": 18394.36, + "probability": 0.6516 + }, + { + "start": 18394.48, + "end": 18395.82, + "probability": 0.7192 + }, + { + "start": 18396.22, + "end": 18397.78, + "probability": 0.3949 + }, + { + "start": 18400.12, + "end": 18400.78, + "probability": 0.0863 + }, + { + "start": 18401.92, + "end": 18402.74, + "probability": 0.9628 + }, + { + "start": 18405.18, + "end": 18405.76, + "probability": 0.9101 + }, + { + "start": 18406.28, + "end": 18408.44, + "probability": 0.9272 + }, + { + "start": 18409.62, + "end": 18410.62, + "probability": 0.3339 + }, + { + "start": 18410.96, + "end": 18413.72, + "probability": 0.3055 + }, + { + "start": 18414.32, + "end": 18416.94, + "probability": 0.9686 + }, + { + "start": 18417.02, + "end": 18418.58, + "probability": 0.8662 + }, + { + "start": 18418.66, + "end": 18420.12, + "probability": 0.9207 + }, + { + "start": 18420.46, + "end": 18421.6, + "probability": 0.8761 + }, + { + "start": 18422.14, + "end": 18422.68, + "probability": 0.9159 + }, + { + "start": 18422.68, + "end": 18423.2, + "probability": 0.4188 + }, + { + "start": 18423.22, + "end": 18429.8, + "probability": 0.7873 + }, + { + "start": 18429.96, + "end": 18433.14, + "probability": 0.1446 + }, + { + "start": 18433.8, + "end": 18434.56, + "probability": 0.2489 + }, + { + "start": 18435.0, + "end": 18436.6, + "probability": 0.2741 + }, + { + "start": 18437.04, + "end": 18440.16, + "probability": 0.6011 + }, + { + "start": 18440.32, + "end": 18441.98, + "probability": 0.4906 + }, + { + "start": 18444.18, + "end": 18444.78, + "probability": 0.1128 + }, + { + "start": 18444.78, + "end": 18444.78, + "probability": 0.0056 + }, + { + "start": 18444.78, + "end": 18447.23, + "probability": 0.9489 + }, + { + "start": 18448.38, + "end": 18450.92, + "probability": 0.2117 + }, + { + "start": 18451.14, + "end": 18452.2, + "probability": 0.1474 + }, + { + "start": 18452.3, + "end": 18453.5, + "probability": 0.5324 + }, + { + "start": 18454.36, + "end": 18455.34, + "probability": 0.7377 + }, + { + "start": 18456.44, + "end": 18456.8, + "probability": 0.3582 + }, + { + "start": 18456.84, + "end": 18457.74, + "probability": 0.2698 + }, + { + "start": 18458.64, + "end": 18459.14, + "probability": 0.4069 + }, + { + "start": 18460.06, + "end": 18460.68, + "probability": 0.4905 + }, + { + "start": 18461.2, + "end": 18465.48, + "probability": 0.6382 + }, + { + "start": 18466.38, + "end": 18468.26, + "probability": 0.6414 + }, + { + "start": 18485.58, + "end": 18489.42, + "probability": 0.4534 + }, + { + "start": 18490.14, + "end": 18492.54, + "probability": 0.3975 + }, + { + "start": 18493.04, + "end": 18495.2, + "probability": 0.601 + }, + { + "start": 18495.2, + "end": 18495.98, + "probability": 0.3193 + }, + { + "start": 18499.72, + "end": 18499.82, + "probability": 0.0283 + } + ], + "segments_count": 6474, + "words_count": 31391, + "avg_words_per_segment": 4.8488, + "avg_segment_duration": 2.033, + "avg_words_per_minute": 101.7459, + "plenum_id": "13817", + "duration": 18511.41, + "title": null, + "plenum_date": "2011-06-06" +} \ No newline at end of file