diff --git "a/13983/metadata.json" "b/13983/metadata.json" new file mode 100644--- /dev/null +++ "b/13983/metadata.json" @@ -0,0 +1,56837 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "13983", + "quality_score": 0.8865, + "per_segment_quality_scores": [ + { + "start": 15.16, + "end": 18.64, + "probability": 0.0258 + }, + { + "start": 19.0, + "end": 19.82, + "probability": 0.055 + }, + { + "start": 83.82, + "end": 84.44, + "probability": 0.4963 + }, + { + "start": 85.42, + "end": 88.06, + "probability": 0.9729 + }, + { + "start": 88.88, + "end": 91.1, + "probability": 0.8014 + }, + { + "start": 92.3, + "end": 93.58, + "probability": 0.5136 + }, + { + "start": 93.58, + "end": 95.44, + "probability": 0.8254 + }, + { + "start": 96.42, + "end": 97.48, + "probability": 0.8127 + }, + { + "start": 98.48, + "end": 99.36, + "probability": 0.5213 + }, + { + "start": 100.48, + "end": 100.89, + "probability": 0.1194 + }, + { + "start": 101.5, + "end": 102.6, + "probability": 0.4875 + }, + { + "start": 102.72, + "end": 105.46, + "probability": 0.8984 + }, + { + "start": 106.84, + "end": 108.9, + "probability": 0.5276 + }, + { + "start": 109.78, + "end": 115.46, + "probability": 0.5924 + }, + { + "start": 116.08, + "end": 119.04, + "probability": 0.9951 + }, + { + "start": 119.7, + "end": 123.78, + "probability": 0.8206 + }, + { + "start": 124.32, + "end": 129.76, + "probability": 0.8908 + }, + { + "start": 130.08, + "end": 131.14, + "probability": 0.9731 + }, + { + "start": 132.1, + "end": 136.6, + "probability": 0.8851 + }, + { + "start": 137.32, + "end": 138.4, + "probability": 0.968 + }, + { + "start": 138.54, + "end": 141.52, + "probability": 0.9979 + }, + { + "start": 142.06, + "end": 144.58, + "probability": 0.9735 + }, + { + "start": 145.22, + "end": 145.77, + "probability": 0.4494 + }, + { + "start": 145.94, + "end": 147.38, + "probability": 0.9552 + }, + { + "start": 147.64, + "end": 148.64, + "probability": 0.9286 + }, + { + "start": 149.12, + "end": 154.0, + "probability": 0.893 + }, + { + "start": 154.02, + "end": 155.28, + "probability": 0.6312 + }, + { + "start": 155.82, + "end": 156.42, + "probability": 0.5237 + }, + { + "start": 156.52, + "end": 163.16, + "probability": 0.957 + }, + { + "start": 163.84, + "end": 165.2, + "probability": 0.9974 + }, + { + "start": 165.46, + "end": 166.32, + "probability": 0.7079 + }, + { + "start": 166.48, + "end": 167.4, + "probability": 0.6406 + }, + { + "start": 167.84, + "end": 169.18, + "probability": 0.8794 + }, + { + "start": 170.34, + "end": 174.9, + "probability": 0.7495 + }, + { + "start": 175.64, + "end": 176.4, + "probability": 0.447 + }, + { + "start": 176.48, + "end": 180.02, + "probability": 0.6314 + }, + { + "start": 181.32, + "end": 185.8, + "probability": 0.9534 + }, + { + "start": 185.9, + "end": 187.94, + "probability": 0.9783 + }, + { + "start": 189.0, + "end": 190.12, + "probability": 0.708 + }, + { + "start": 190.98, + "end": 192.12, + "probability": 0.7557 + }, + { + "start": 195.46, + "end": 198.1, + "probability": 0.5969 + }, + { + "start": 198.1, + "end": 202.94, + "probability": 0.9277 + }, + { + "start": 202.94, + "end": 206.58, + "probability": 0.9891 + }, + { + "start": 207.16, + "end": 208.52, + "probability": 0.8802 + }, + { + "start": 208.88, + "end": 211.25, + "probability": 0.9847 + }, + { + "start": 211.74, + "end": 213.96, + "probability": 0.9375 + }, + { + "start": 214.9, + "end": 219.1, + "probability": 0.9448 + }, + { + "start": 219.2, + "end": 220.48, + "probability": 0.998 + }, + { + "start": 221.08, + "end": 223.62, + "probability": 0.7408 + }, + { + "start": 224.74, + "end": 229.7, + "probability": 0.975 + }, + { + "start": 230.52, + "end": 235.58, + "probability": 0.9457 + }, + { + "start": 235.58, + "end": 241.86, + "probability": 0.7177 + }, + { + "start": 242.54, + "end": 243.82, + "probability": 0.6951 + }, + { + "start": 244.02, + "end": 250.3, + "probability": 0.3139 + }, + { + "start": 250.3, + "end": 250.34, + "probability": 0.03 + }, + { + "start": 250.46, + "end": 251.9, + "probability": 0.2754 + }, + { + "start": 252.02, + "end": 253.84, + "probability": 0.8708 + }, + { + "start": 254.08, + "end": 254.68, + "probability": 0.4429 + }, + { + "start": 254.8, + "end": 255.42, + "probability": 0.8065 + }, + { + "start": 255.48, + "end": 256.14, + "probability": 0.9572 + }, + { + "start": 256.7, + "end": 259.02, + "probability": 0.8013 + }, + { + "start": 259.6, + "end": 259.7, + "probability": 0.0649 + }, + { + "start": 260.96, + "end": 261.76, + "probability": 0.7116 + }, + { + "start": 261.86, + "end": 262.88, + "probability": 0.8477 + }, + { + "start": 263.02, + "end": 265.4, + "probability": 0.9896 + }, + { + "start": 266.56, + "end": 270.68, + "probability": 0.8034 + }, + { + "start": 271.14, + "end": 273.32, + "probability": 0.8681 + }, + { + "start": 274.62, + "end": 275.7, + "probability": 0.817 + }, + { + "start": 276.38, + "end": 278.2, + "probability": 0.774 + }, + { + "start": 278.77, + "end": 282.86, + "probability": 0.793 + }, + { + "start": 283.26, + "end": 284.72, + "probability": 0.929 + }, + { + "start": 285.46, + "end": 285.81, + "probability": 0.4829 + }, + { + "start": 286.08, + "end": 287.32, + "probability": 0.7634 + }, + { + "start": 288.06, + "end": 293.92, + "probability": 0.8455 + }, + { + "start": 294.82, + "end": 297.86, + "probability": 0.9905 + }, + { + "start": 298.62, + "end": 301.3, + "probability": 0.973 + }, + { + "start": 301.3, + "end": 304.34, + "probability": 0.9964 + }, + { + "start": 304.64, + "end": 305.18, + "probability": 0.8581 + }, + { + "start": 305.32, + "end": 305.94, + "probability": 0.9446 + }, + { + "start": 306.04, + "end": 306.82, + "probability": 0.5032 + }, + { + "start": 306.88, + "end": 311.62, + "probability": 0.9852 + }, + { + "start": 311.62, + "end": 316.14, + "probability": 0.9968 + }, + { + "start": 316.14, + "end": 320.64, + "probability": 0.9916 + }, + { + "start": 322.2, + "end": 324.84, + "probability": 0.9442 + }, + { + "start": 324.96, + "end": 327.52, + "probability": 0.9146 + }, + { + "start": 327.52, + "end": 328.5, + "probability": 0.7699 + }, + { + "start": 328.9, + "end": 329.0, + "probability": 0.3496 + }, + { + "start": 329.34, + "end": 331.16, + "probability": 0.4086 + }, + { + "start": 331.26, + "end": 334.08, + "probability": 0.9935 + }, + { + "start": 334.08, + "end": 334.4, + "probability": 0.2433 + }, + { + "start": 334.48, + "end": 337.34, + "probability": 0.8144 + }, + { + "start": 338.62, + "end": 342.26, + "probability": 0.8678 + }, + { + "start": 343.0, + "end": 345.02, + "probability": 0.825 + }, + { + "start": 346.2, + "end": 347.32, + "probability": 0.7153 + }, + { + "start": 348.2, + "end": 350.24, + "probability": 0.9728 + }, + { + "start": 350.76, + "end": 353.06, + "probability": 0.8687 + }, + { + "start": 353.56, + "end": 356.44, + "probability": 0.9414 + }, + { + "start": 357.14, + "end": 360.12, + "probability": 0.7516 + }, + { + "start": 360.12, + "end": 363.3, + "probability": 0.8441 + }, + { + "start": 363.98, + "end": 365.76, + "probability": 0.7642 + }, + { + "start": 366.34, + "end": 369.92, + "probability": 0.9717 + }, + { + "start": 371.16, + "end": 371.98, + "probability": 0.8628 + }, + { + "start": 373.92, + "end": 375.8, + "probability": 0.8002 + }, + { + "start": 376.34, + "end": 377.32, + "probability": 0.7381 + }, + { + "start": 377.46, + "end": 379.49, + "probability": 0.7351 + }, + { + "start": 379.54, + "end": 382.34, + "probability": 0.9803 + }, + { + "start": 382.9, + "end": 386.4, + "probability": 0.9812 + }, + { + "start": 386.98, + "end": 389.16, + "probability": 0.9914 + }, + { + "start": 389.98, + "end": 395.2, + "probability": 0.9443 + }, + { + "start": 395.8, + "end": 396.92, + "probability": 0.7286 + }, + { + "start": 397.5, + "end": 399.5, + "probability": 0.7955 + }, + { + "start": 400.34, + "end": 400.82, + "probability": 0.6958 + }, + { + "start": 401.46, + "end": 406.4, + "probability": 0.9434 + }, + { + "start": 407.86, + "end": 409.52, + "probability": 0.9018 + }, + { + "start": 410.68, + "end": 414.32, + "probability": 0.9546 + }, + { + "start": 415.54, + "end": 421.18, + "probability": 0.9462 + }, + { + "start": 422.06, + "end": 422.48, + "probability": 0.6759 + }, + { + "start": 422.76, + "end": 424.94, + "probability": 0.8948 + }, + { + "start": 425.16, + "end": 426.56, + "probability": 0.7846 + }, + { + "start": 426.74, + "end": 430.22, + "probability": 0.5424 + }, + { + "start": 430.4, + "end": 432.72, + "probability": 0.734 + }, + { + "start": 433.18, + "end": 437.46, + "probability": 0.9512 + }, + { + "start": 437.46, + "end": 437.46, + "probability": 0.6002 + }, + { + "start": 437.46, + "end": 440.42, + "probability": 0.609 + }, + { + "start": 442.01, + "end": 446.58, + "probability": 0.943 + }, + { + "start": 447.3, + "end": 447.78, + "probability": 0.8554 + }, + { + "start": 449.4, + "end": 450.34, + "probability": 0.9428 + }, + { + "start": 451.46, + "end": 452.48, + "probability": 0.8784 + }, + { + "start": 454.13, + "end": 459.56, + "probability": 0.9489 + }, + { + "start": 459.56, + "end": 462.2, + "probability": 0.9961 + }, + { + "start": 462.92, + "end": 467.15, + "probability": 0.984 + }, + { + "start": 468.46, + "end": 471.84, + "probability": 0.9976 + }, + { + "start": 471.84, + "end": 477.72, + "probability": 0.9978 + }, + { + "start": 477.72, + "end": 482.06, + "probability": 0.9859 + }, + { + "start": 482.34, + "end": 487.28, + "probability": 0.9934 + }, + { + "start": 487.74, + "end": 488.96, + "probability": 0.7882 + }, + { + "start": 489.14, + "end": 496.14, + "probability": 0.9664 + }, + { + "start": 496.58, + "end": 498.58, + "probability": 0.9741 + }, + { + "start": 498.66, + "end": 499.92, + "probability": 0.8375 + }, + { + "start": 500.42, + "end": 502.44, + "probability": 0.8027 + }, + { + "start": 502.6, + "end": 504.52, + "probability": 0.9648 + }, + { + "start": 504.52, + "end": 508.38, + "probability": 0.9833 + }, + { + "start": 509.02, + "end": 513.44, + "probability": 0.9209 + }, + { + "start": 513.8, + "end": 516.18, + "probability": 0.9976 + }, + { + "start": 516.18, + "end": 518.86, + "probability": 0.9904 + }, + { + "start": 518.92, + "end": 522.08, + "probability": 0.9512 + }, + { + "start": 522.14, + "end": 523.36, + "probability": 0.8732 + }, + { + "start": 523.48, + "end": 526.22, + "probability": 0.9351 + }, + { + "start": 526.86, + "end": 529.04, + "probability": 0.9653 + }, + { + "start": 529.8, + "end": 532.22, + "probability": 0.8666 + }, + { + "start": 532.88, + "end": 534.44, + "probability": 0.7351 + }, + { + "start": 538.08, + "end": 538.48, + "probability": 0.0573 + }, + { + "start": 539.22, + "end": 539.38, + "probability": 0.3989 + }, + { + "start": 540.88, + "end": 542.42, + "probability": 0.0281 + }, + { + "start": 542.8, + "end": 543.44, + "probability": 0.5774 + }, + { + "start": 543.62, + "end": 543.88, + "probability": 0.0029 + }, + { + "start": 546.74, + "end": 547.46, + "probability": 0.2886 + }, + { + "start": 547.46, + "end": 547.46, + "probability": 0.2494 + }, + { + "start": 547.46, + "end": 547.94, + "probability": 0.5758 + }, + { + "start": 547.94, + "end": 548.98, + "probability": 0.7876 + }, + { + "start": 549.38, + "end": 549.76, + "probability": 0.0858 + }, + { + "start": 549.88, + "end": 550.54, + "probability": 0.9695 + }, + { + "start": 550.7, + "end": 553.54, + "probability": 0.8743 + }, + { + "start": 553.88, + "end": 553.98, + "probability": 0.313 + }, + { + "start": 554.08, + "end": 556.42, + "probability": 0.9938 + }, + { + "start": 556.42, + "end": 560.26, + "probability": 0.6169 + }, + { + "start": 560.76, + "end": 562.18, + "probability": 0.547 + }, + { + "start": 562.18, + "end": 567.14, + "probability": 0.9675 + }, + { + "start": 567.56, + "end": 571.5, + "probability": 0.8279 + }, + { + "start": 571.92, + "end": 574.98, + "probability": 0.9907 + }, + { + "start": 574.98, + "end": 577.7, + "probability": 0.7444 + }, + { + "start": 578.12, + "end": 579.72, + "probability": 0.981 + }, + { + "start": 579.88, + "end": 581.04, + "probability": 0.9756 + }, + { + "start": 581.84, + "end": 581.84, + "probability": 0.0589 + }, + { + "start": 581.84, + "end": 584.22, + "probability": 0.6389 + }, + { + "start": 584.4, + "end": 586.76, + "probability": 0.6971 + }, + { + "start": 587.42, + "end": 588.14, + "probability": 0.6422 + }, + { + "start": 591.94, + "end": 594.6, + "probability": 0.6304 + }, + { + "start": 595.46, + "end": 601.94, + "probability": 0.9304 + }, + { + "start": 601.94, + "end": 607.36, + "probability": 0.9626 + }, + { + "start": 608.22, + "end": 610.06, + "probability": 0.9432 + }, + { + "start": 610.2, + "end": 613.92, + "probability": 0.9696 + }, + { + "start": 613.98, + "end": 616.18, + "probability": 0.9812 + }, + { + "start": 616.98, + "end": 617.96, + "probability": 0.6713 + }, + { + "start": 618.04, + "end": 618.64, + "probability": 0.4723 + }, + { + "start": 619.1, + "end": 620.24, + "probability": 0.9513 + }, + { + "start": 620.68, + "end": 622.6, + "probability": 0.9271 + }, + { + "start": 624.5, + "end": 626.18, + "probability": 0.999 + }, + { + "start": 626.26, + "end": 627.34, + "probability": 0.7306 + }, + { + "start": 627.6, + "end": 629.0, + "probability": 0.95 + }, + { + "start": 629.58, + "end": 633.26, + "probability": 0.916 + }, + { + "start": 634.12, + "end": 634.56, + "probability": 0.8769 + }, + { + "start": 635.58, + "end": 639.46, + "probability": 0.9324 + }, + { + "start": 640.54, + "end": 641.6, + "probability": 0.9731 + }, + { + "start": 641.72, + "end": 643.58, + "probability": 0.9943 + }, + { + "start": 643.64, + "end": 645.96, + "probability": 0.8682 + }, + { + "start": 646.64, + "end": 647.14, + "probability": 0.891 + }, + { + "start": 647.98, + "end": 652.22, + "probability": 0.9552 + }, + { + "start": 652.22, + "end": 657.78, + "probability": 0.859 + }, + { + "start": 658.56, + "end": 661.2, + "probability": 0.9685 + }, + { + "start": 662.36, + "end": 663.94, + "probability": 0.7342 + }, + { + "start": 664.2, + "end": 666.76, + "probability": 0.887 + }, + { + "start": 666.88, + "end": 669.32, + "probability": 0.8483 + }, + { + "start": 669.58, + "end": 671.3, + "probability": 0.9678 + }, + { + "start": 671.44, + "end": 673.62, + "probability": 0.9893 + }, + { + "start": 674.28, + "end": 675.5, + "probability": 0.9902 + }, + { + "start": 675.72, + "end": 676.82, + "probability": 0.5781 + }, + { + "start": 677.02, + "end": 678.1, + "probability": 0.916 + }, + { + "start": 678.64, + "end": 679.94, + "probability": 0.9884 + }, + { + "start": 680.24, + "end": 681.02, + "probability": 0.641 + }, + { + "start": 681.02, + "end": 682.72, + "probability": 0.4873 + }, + { + "start": 689.12, + "end": 689.3, + "probability": 0.1293 + }, + { + "start": 689.3, + "end": 689.74, + "probability": 0.4819 + }, + { + "start": 689.8, + "end": 690.34, + "probability": 0.706 + }, + { + "start": 690.7, + "end": 693.74, + "probability": 0.8987 + }, + { + "start": 693.74, + "end": 697.7, + "probability": 0.741 + }, + { + "start": 698.58, + "end": 700.32, + "probability": 0.9462 + }, + { + "start": 701.14, + "end": 706.46, + "probability": 0.9389 + }, + { + "start": 707.34, + "end": 710.3, + "probability": 0.8717 + }, + { + "start": 710.72, + "end": 715.28, + "probability": 0.9732 + }, + { + "start": 715.44, + "end": 715.66, + "probability": 0.8695 + }, + { + "start": 716.2, + "end": 716.62, + "probability": 0.689 + }, + { + "start": 717.06, + "end": 718.58, + "probability": 0.9973 + }, + { + "start": 719.18, + "end": 721.54, + "probability": 0.9384 + }, + { + "start": 722.34, + "end": 724.38, + "probability": 0.9882 + }, + { + "start": 724.38, + "end": 728.08, + "probability": 0.9703 + }, + { + "start": 728.84, + "end": 731.72, + "probability": 0.9839 + }, + { + "start": 732.3, + "end": 735.72, + "probability": 0.957 + }, + { + "start": 735.8, + "end": 736.94, + "probability": 0.8092 + }, + { + "start": 737.0, + "end": 738.08, + "probability": 0.3919 + }, + { + "start": 738.1, + "end": 739.42, + "probability": 0.4323 + }, + { + "start": 739.68, + "end": 741.56, + "probability": 0.8994 + }, + { + "start": 742.36, + "end": 744.08, + "probability": 0.9535 + }, + { + "start": 744.26, + "end": 745.38, + "probability": 0.5619 + }, + { + "start": 745.72, + "end": 750.9, + "probability": 0.9209 + }, + { + "start": 751.18, + "end": 752.56, + "probability": 0.4676 + }, + { + "start": 752.74, + "end": 756.34, + "probability": 0.9733 + }, + { + "start": 756.34, + "end": 761.58, + "probability": 0.9372 + }, + { + "start": 762.68, + "end": 767.14, + "probability": 0.695 + }, + { + "start": 768.8, + "end": 770.0, + "probability": 0.674 + }, + { + "start": 770.85, + "end": 774.46, + "probability": 0.6043 + }, + { + "start": 774.66, + "end": 775.5, + "probability": 0.8459 + }, + { + "start": 776.1, + "end": 777.8, + "probability": 0.7382 + }, + { + "start": 777.84, + "end": 778.9, + "probability": 0.9211 + }, + { + "start": 779.0, + "end": 781.62, + "probability": 0.9708 + }, + { + "start": 781.82, + "end": 782.98, + "probability": 0.1063 + }, + { + "start": 783.24, + "end": 786.28, + "probability": 0.8407 + }, + { + "start": 786.52, + "end": 787.78, + "probability": 0.9249 + }, + { + "start": 787.94, + "end": 792.68, + "probability": 0.9712 + }, + { + "start": 793.7, + "end": 801.4, + "probability": 0.7949 + }, + { + "start": 801.56, + "end": 807.42, + "probability": 0.8618 + }, + { + "start": 807.94, + "end": 811.56, + "probability": 0.792 + }, + { + "start": 812.28, + "end": 812.62, + "probability": 0.6303 + }, + { + "start": 812.82, + "end": 816.98, + "probability": 0.9122 + }, + { + "start": 817.42, + "end": 820.1, + "probability": 0.8511 + }, + { + "start": 820.14, + "end": 820.58, + "probability": 0.6073 + }, + { + "start": 820.7, + "end": 824.34, + "probability": 0.8859 + }, + { + "start": 824.74, + "end": 830.56, + "probability": 0.9541 + }, + { + "start": 830.99, + "end": 834.6, + "probability": 0.9979 + }, + { + "start": 835.08, + "end": 838.34, + "probability": 0.9084 + }, + { + "start": 839.02, + "end": 840.28, + "probability": 0.8658 + }, + { + "start": 841.06, + "end": 842.66, + "probability": 0.9912 + }, + { + "start": 844.18, + "end": 846.5, + "probability": 0.9217 + }, + { + "start": 846.62, + "end": 848.58, + "probability": 0.7929 + }, + { + "start": 848.68, + "end": 849.08, + "probability": 0.6174 + }, + { + "start": 849.54, + "end": 850.5, + "probability": 0.7216 + }, + { + "start": 850.52, + "end": 854.14, + "probability": 0.7909 + }, + { + "start": 854.86, + "end": 860.18, + "probability": 0.8644 + }, + { + "start": 860.42, + "end": 863.1, + "probability": 0.9375 + }, + { + "start": 863.22, + "end": 866.22, + "probability": 0.9847 + }, + { + "start": 867.04, + "end": 868.5, + "probability": 0.7037 + }, + { + "start": 868.72, + "end": 869.02, + "probability": 0.6649 + }, + { + "start": 869.12, + "end": 874.02, + "probability": 0.9592 + }, + { + "start": 874.94, + "end": 878.96, + "probability": 0.6324 + }, + { + "start": 879.42, + "end": 881.58, + "probability": 0.9992 + }, + { + "start": 881.58, + "end": 885.52, + "probability": 0.9962 + }, + { + "start": 885.9, + "end": 886.54, + "probability": 0.7319 + }, + { + "start": 889.06, + "end": 889.72, + "probability": 0.7018 + }, + { + "start": 890.32, + "end": 893.68, + "probability": 0.6973 + }, + { + "start": 894.02, + "end": 896.58, + "probability": 0.9788 + }, + { + "start": 897.18, + "end": 898.42, + "probability": 0.9927 + }, + { + "start": 898.76, + "end": 900.9, + "probability": 0.5748 + }, + { + "start": 901.0, + "end": 903.28, + "probability": 0.9893 + }, + { + "start": 904.78, + "end": 905.46, + "probability": 0.42 + }, + { + "start": 907.16, + "end": 909.99, + "probability": 0.995 + }, + { + "start": 910.68, + "end": 911.98, + "probability": 0.8355 + }, + { + "start": 913.7, + "end": 914.4, + "probability": 0.3376 + }, + { + "start": 916.17, + "end": 917.68, + "probability": 0.5106 + }, + { + "start": 918.36, + "end": 920.71, + "probability": 0.8962 + }, + { + "start": 921.74, + "end": 924.1, + "probability": 0.8495 + }, + { + "start": 925.76, + "end": 928.68, + "probability": 0.7729 + }, + { + "start": 928.8, + "end": 931.86, + "probability": 0.9874 + }, + { + "start": 932.5, + "end": 933.32, + "probability": 0.473 + }, + { + "start": 936.5, + "end": 937.38, + "probability": 0.4614 + }, + { + "start": 937.68, + "end": 939.4, + "probability": 0.7942 + }, + { + "start": 940.4, + "end": 940.88, + "probability": 0.5997 + }, + { + "start": 941.0, + "end": 946.32, + "probability": 0.6387 + }, + { + "start": 946.5, + "end": 948.02, + "probability": 0.8477 + }, + { + "start": 948.86, + "end": 951.64, + "probability": 0.7499 + }, + { + "start": 952.18, + "end": 953.3, + "probability": 0.7398 + }, + { + "start": 953.46, + "end": 954.7, + "probability": 0.4682 + }, + { + "start": 954.8, + "end": 956.02, + "probability": 0.6434 + }, + { + "start": 956.16, + "end": 957.54, + "probability": 0.8508 + }, + { + "start": 957.68, + "end": 958.88, + "probability": 0.6581 + }, + { + "start": 959.44, + "end": 962.06, + "probability": 0.9781 + }, + { + "start": 962.06, + "end": 964.76, + "probability": 0.9383 + }, + { + "start": 964.86, + "end": 967.4, + "probability": 0.9683 + }, + { + "start": 967.52, + "end": 969.74, + "probability": 0.6597 + }, + { + "start": 970.0, + "end": 970.58, + "probability": 0.8954 + }, + { + "start": 970.58, + "end": 975.96, + "probability": 0.9835 + }, + { + "start": 976.1, + "end": 976.48, + "probability": 0.7968 + }, + { + "start": 976.68, + "end": 976.92, + "probability": 0.4379 + }, + { + "start": 977.04, + "end": 978.12, + "probability": 0.704 + }, + { + "start": 979.72, + "end": 980.66, + "probability": 0.388 + }, + { + "start": 982.14, + "end": 985.28, + "probability": 0.9911 + }, + { + "start": 986.42, + "end": 989.6, + "probability": 0.808 + }, + { + "start": 990.2, + "end": 990.32, + "probability": 0.3961 + }, + { + "start": 990.38, + "end": 995.1, + "probability": 0.9856 + }, + { + "start": 996.28, + "end": 998.38, + "probability": 0.9854 + }, + { + "start": 998.96, + "end": 1001.3, + "probability": 0.8815 + }, + { + "start": 1002.7, + "end": 1004.2, + "probability": 0.9329 + }, + { + "start": 1004.2, + "end": 1006.88, + "probability": 0.9657 + }, + { + "start": 1006.98, + "end": 1007.9, + "probability": 0.9499 + }, + { + "start": 1008.0, + "end": 1008.72, + "probability": 0.6776 + }, + { + "start": 1008.8, + "end": 1010.88, + "probability": 0.4948 + }, + { + "start": 1011.04, + "end": 1014.92, + "probability": 0.7283 + }, + { + "start": 1015.71, + "end": 1019.3, + "probability": 0.988 + }, + { + "start": 1020.16, + "end": 1020.5, + "probability": 0.7894 + }, + { + "start": 1021.0, + "end": 1021.62, + "probability": 0.5036 + }, + { + "start": 1021.74, + "end": 1022.4, + "probability": 0.5654 + }, + { + "start": 1023.4, + "end": 1025.2, + "probability": 0.7196 + }, + { + "start": 1025.2, + "end": 1025.76, + "probability": 0.8324 + }, + { + "start": 1025.82, + "end": 1029.3, + "probability": 0.9788 + }, + { + "start": 1029.3, + "end": 1031.38, + "probability": 0.9966 + }, + { + "start": 1032.76, + "end": 1036.2, + "probability": 0.983 + }, + { + "start": 1036.58, + "end": 1037.76, + "probability": 0.8533 + }, + { + "start": 1037.92, + "end": 1038.7, + "probability": 0.6607 + }, + { + "start": 1038.86, + "end": 1039.36, + "probability": 0.6815 + }, + { + "start": 1039.48, + "end": 1042.16, + "probability": 0.9556 + }, + { + "start": 1042.16, + "end": 1045.54, + "probability": 0.938 + }, + { + "start": 1045.84, + "end": 1047.4, + "probability": 0.9116 + }, + { + "start": 1048.2, + "end": 1050.58, + "probability": 0.9956 + }, + { + "start": 1051.04, + "end": 1052.48, + "probability": 0.8246 + }, + { + "start": 1052.62, + "end": 1053.22, + "probability": 0.5931 + }, + { + "start": 1053.52, + "end": 1055.64, + "probability": 0.9977 + }, + { + "start": 1055.86, + "end": 1056.78, + "probability": 0.7615 + }, + { + "start": 1057.34, + "end": 1061.48, + "probability": 0.9351 + }, + { + "start": 1061.66, + "end": 1062.66, + "probability": 0.6071 + }, + { + "start": 1063.3, + "end": 1065.06, + "probability": 0.8411 + }, + { + "start": 1065.48, + "end": 1067.5, + "probability": 0.9697 + }, + { + "start": 1067.58, + "end": 1068.14, + "probability": 0.4996 + }, + { + "start": 1068.8, + "end": 1072.6, + "probability": 0.9146 + }, + { + "start": 1072.92, + "end": 1075.42, + "probability": 0.9932 + }, + { + "start": 1075.48, + "end": 1077.78, + "probability": 0.9739 + }, + { + "start": 1077.92, + "end": 1079.32, + "probability": 0.9905 + }, + { + "start": 1079.8, + "end": 1080.6, + "probability": 0.6357 + }, + { + "start": 1080.66, + "end": 1081.56, + "probability": 0.6462 + }, + { + "start": 1081.62, + "end": 1083.12, + "probability": 0.7972 + }, + { + "start": 1083.12, + "end": 1087.32, + "probability": 0.9805 + }, + { + "start": 1088.46, + "end": 1091.64, + "probability": 0.8752 + }, + { + "start": 1091.64, + "end": 1093.06, + "probability": 0.8563 + }, + { + "start": 1093.34, + "end": 1095.36, + "probability": 0.5843 + }, + { + "start": 1095.5, + "end": 1096.24, + "probability": 0.6767 + }, + { + "start": 1096.6, + "end": 1098.2, + "probability": 0.8944 + }, + { + "start": 1098.34, + "end": 1101.42, + "probability": 0.9558 + }, + { + "start": 1102.46, + "end": 1103.22, + "probability": 0.6963 + }, + { + "start": 1103.3, + "end": 1104.0, + "probability": 0.7109 + }, + { + "start": 1104.18, + "end": 1107.48, + "probability": 0.839 + }, + { + "start": 1107.54, + "end": 1111.66, + "probability": 0.8703 + }, + { + "start": 1112.58, + "end": 1114.36, + "probability": 0.9619 + }, + { + "start": 1114.7, + "end": 1115.72, + "probability": 0.819 + }, + { + "start": 1115.72, + "end": 1119.82, + "probability": 0.9473 + }, + { + "start": 1119.9, + "end": 1120.94, + "probability": 0.9199 + }, + { + "start": 1121.4, + "end": 1124.36, + "probability": 0.9061 + }, + { + "start": 1125.4, + "end": 1130.94, + "probability": 0.9919 + }, + { + "start": 1130.94, + "end": 1134.94, + "probability": 0.8358 + }, + { + "start": 1135.28, + "end": 1136.04, + "probability": 0.5516 + }, + { + "start": 1136.94, + "end": 1140.66, + "probability": 0.9304 + }, + { + "start": 1140.74, + "end": 1142.18, + "probability": 0.8923 + }, + { + "start": 1142.3, + "end": 1142.72, + "probability": 0.7106 + }, + { + "start": 1143.16, + "end": 1146.0, + "probability": 0.8614 + }, + { + "start": 1146.3, + "end": 1149.12, + "probability": 0.8737 + }, + { + "start": 1149.48, + "end": 1151.32, + "probability": 0.8857 + }, + { + "start": 1151.4, + "end": 1153.18, + "probability": 0.7963 + }, + { + "start": 1153.32, + "end": 1157.68, + "probability": 0.8361 + }, + { + "start": 1157.78, + "end": 1158.32, + "probability": 0.7945 + }, + { + "start": 1158.38, + "end": 1158.96, + "probability": 0.9402 + }, + { + "start": 1159.72, + "end": 1161.54, + "probability": 0.6783 + }, + { + "start": 1161.7, + "end": 1164.38, + "probability": 0.7111 + }, + { + "start": 1164.98, + "end": 1167.82, + "probability": 0.9707 + }, + { + "start": 1167.86, + "end": 1170.08, + "probability": 0.842 + }, + { + "start": 1170.8, + "end": 1171.62, + "probability": 0.3916 + }, + { + "start": 1171.88, + "end": 1172.54, + "probability": 0.9529 + }, + { + "start": 1172.92, + "end": 1173.44, + "probability": 0.4962 + }, + { + "start": 1173.56, + "end": 1177.6, + "probability": 0.9913 + }, + { + "start": 1178.34, + "end": 1181.34, + "probability": 0.9504 + }, + { + "start": 1181.34, + "end": 1184.94, + "probability": 0.9873 + }, + { + "start": 1185.08, + "end": 1185.74, + "probability": 0.8961 + }, + { + "start": 1185.84, + "end": 1191.32, + "probability": 0.9702 + }, + { + "start": 1191.8, + "end": 1193.48, + "probability": 0.6565 + }, + { + "start": 1193.66, + "end": 1194.58, + "probability": 0.9131 + }, + { + "start": 1194.62, + "end": 1196.96, + "probability": 0.8516 + }, + { + "start": 1197.02, + "end": 1197.5, + "probability": 0.8392 + }, + { + "start": 1197.62, + "end": 1198.76, + "probability": 0.7758 + }, + { + "start": 1199.14, + "end": 1201.52, + "probability": 0.9751 + }, + { + "start": 1201.52, + "end": 1204.76, + "probability": 0.991 + }, + { + "start": 1205.12, + "end": 1207.6, + "probability": 0.9984 + }, + { + "start": 1207.64, + "end": 1208.46, + "probability": 0.757 + }, + { + "start": 1208.7, + "end": 1209.36, + "probability": 0.8459 + }, + { + "start": 1209.54, + "end": 1210.56, + "probability": 0.8283 + }, + { + "start": 1210.64, + "end": 1211.0, + "probability": 0.7831 + }, + { + "start": 1211.19, + "end": 1213.36, + "probability": 0.8782 + }, + { + "start": 1213.64, + "end": 1215.0, + "probability": 0.516 + }, + { + "start": 1215.46, + "end": 1216.56, + "probability": 0.4309 + }, + { + "start": 1220.78, + "end": 1223.68, + "probability": 0.7076 + }, + { + "start": 1224.32, + "end": 1229.62, + "probability": 0.9777 + }, + { + "start": 1230.24, + "end": 1234.84, + "probability": 0.8872 + }, + { + "start": 1235.54, + "end": 1238.7, + "probability": 0.9617 + }, + { + "start": 1238.78, + "end": 1239.64, + "probability": 0.845 + }, + { + "start": 1240.38, + "end": 1241.34, + "probability": 0.8198 + }, + { + "start": 1241.92, + "end": 1242.84, + "probability": 0.7343 + }, + { + "start": 1243.42, + "end": 1244.76, + "probability": 0.9926 + }, + { + "start": 1245.2, + "end": 1247.52, + "probability": 0.9219 + }, + { + "start": 1247.9, + "end": 1249.28, + "probability": 0.9443 + }, + { + "start": 1250.16, + "end": 1251.76, + "probability": 0.8276 + }, + { + "start": 1252.32, + "end": 1254.44, + "probability": 0.8716 + }, + { + "start": 1255.94, + "end": 1258.1, + "probability": 0.9795 + }, + { + "start": 1258.46, + "end": 1259.94, + "probability": 0.8213 + }, + { + "start": 1260.08, + "end": 1261.36, + "probability": 0.7177 + }, + { + "start": 1261.78, + "end": 1262.58, + "probability": 0.7375 + }, + { + "start": 1262.6, + "end": 1264.74, + "probability": 0.9077 + }, + { + "start": 1264.84, + "end": 1265.66, + "probability": 0.6771 + }, + { + "start": 1265.74, + "end": 1266.32, + "probability": 0.5755 + }, + { + "start": 1266.74, + "end": 1268.1, + "probability": 0.8495 + }, + { + "start": 1268.16, + "end": 1270.7, + "probability": 0.7673 + }, + { + "start": 1271.32, + "end": 1273.44, + "probability": 0.9872 + }, + { + "start": 1273.44, + "end": 1279.42, + "probability": 0.6557 + }, + { + "start": 1279.86, + "end": 1284.93, + "probability": 0.9753 + }, + { + "start": 1284.94, + "end": 1287.4, + "probability": 0.9954 + }, + { + "start": 1287.56, + "end": 1288.46, + "probability": 0.8735 + }, + { + "start": 1288.6, + "end": 1289.65, + "probability": 0.9766 + }, + { + "start": 1289.82, + "end": 1290.7, + "probability": 0.9819 + }, + { + "start": 1290.86, + "end": 1294.8, + "probability": 0.9969 + }, + { + "start": 1294.8, + "end": 1298.02, + "probability": 0.9937 + }, + { + "start": 1299.2, + "end": 1301.14, + "probability": 0.9384 + }, + { + "start": 1301.38, + "end": 1301.76, + "probability": 0.8187 + }, + { + "start": 1302.32, + "end": 1302.86, + "probability": 0.6065 + }, + { + "start": 1303.0, + "end": 1305.0, + "probability": 0.8023 + }, + { + "start": 1305.28, + "end": 1311.0, + "probability": 0.821 + }, + { + "start": 1311.16, + "end": 1311.76, + "probability": 0.6045 + }, + { + "start": 1312.22, + "end": 1316.56, + "probability": 0.8921 + }, + { + "start": 1317.08, + "end": 1319.34, + "probability": 0.717 + }, + { + "start": 1320.14, + "end": 1320.58, + "probability": 0.9533 + }, + { + "start": 1320.92, + "end": 1322.36, + "probability": 0.7089 + }, + { + "start": 1322.66, + "end": 1324.82, + "probability": 0.0297 + }, + { + "start": 1325.08, + "end": 1326.04, + "probability": 0.6636 + }, + { + "start": 1326.22, + "end": 1327.58, + "probability": 0.8272 + }, + { + "start": 1328.04, + "end": 1331.86, + "probability": 0.3696 + }, + { + "start": 1332.12, + "end": 1337.26, + "probability": 0.9534 + }, + { + "start": 1337.26, + "end": 1341.52, + "probability": 0.9965 + }, + { + "start": 1342.0, + "end": 1343.2, + "probability": 0.9128 + }, + { + "start": 1343.3, + "end": 1343.76, + "probability": 0.7094 + }, + { + "start": 1343.84, + "end": 1345.54, + "probability": 0.8847 + }, + { + "start": 1346.84, + "end": 1350.08, + "probability": 0.9103 + }, + { + "start": 1351.2, + "end": 1352.02, + "probability": 0.6591 + }, + { + "start": 1352.52, + "end": 1354.02, + "probability": 0.951 + }, + { + "start": 1354.76, + "end": 1358.42, + "probability": 0.5444 + }, + { + "start": 1359.14, + "end": 1360.6, + "probability": 0.9188 + }, + { + "start": 1360.7, + "end": 1363.22, + "probability": 0.604 + }, + { + "start": 1363.9, + "end": 1366.82, + "probability": 0.9164 + }, + { + "start": 1367.5, + "end": 1373.62, + "probability": 0.8801 + }, + { + "start": 1373.64, + "end": 1376.26, + "probability": 0.8593 + }, + { + "start": 1376.36, + "end": 1377.58, + "probability": 0.9459 + }, + { + "start": 1378.2, + "end": 1383.32, + "probability": 0.9921 + }, + { + "start": 1383.4, + "end": 1384.54, + "probability": 0.9958 + }, + { + "start": 1385.5, + "end": 1385.92, + "probability": 0.6375 + }, + { + "start": 1386.55, + "end": 1390.56, + "probability": 0.9595 + }, + { + "start": 1390.56, + "end": 1394.14, + "probability": 0.9924 + }, + { + "start": 1394.6, + "end": 1396.44, + "probability": 0.9517 + }, + { + "start": 1396.96, + "end": 1401.74, + "probability": 0.9873 + }, + { + "start": 1403.62, + "end": 1405.17, + "probability": 0.7448 + }, + { + "start": 1405.7, + "end": 1407.48, + "probability": 0.9355 + }, + { + "start": 1407.6, + "end": 1412.25, + "probability": 0.6001 + }, + { + "start": 1414.22, + "end": 1416.92, + "probability": 0.9875 + }, + { + "start": 1417.36, + "end": 1421.18, + "probability": 0.885 + }, + { + "start": 1421.92, + "end": 1423.34, + "probability": 0.9816 + }, + { + "start": 1424.76, + "end": 1425.32, + "probability": 0.6904 + }, + { + "start": 1425.44, + "end": 1428.18, + "probability": 0.9897 + }, + { + "start": 1428.64, + "end": 1430.16, + "probability": 0.8589 + }, + { + "start": 1431.44, + "end": 1435.74, + "probability": 0.8828 + }, + { + "start": 1436.13, + "end": 1441.22, + "probability": 0.6633 + }, + { + "start": 1441.52, + "end": 1444.28, + "probability": 0.9468 + }, + { + "start": 1444.36, + "end": 1446.0, + "probability": 0.8442 + }, + { + "start": 1446.32, + "end": 1446.66, + "probability": 0.6362 + }, + { + "start": 1446.72, + "end": 1447.0, + "probability": 0.8079 + }, + { + "start": 1447.04, + "end": 1448.38, + "probability": 0.9749 + }, + { + "start": 1448.82, + "end": 1449.18, + "probability": 0.5067 + }, + { + "start": 1449.38, + "end": 1450.22, + "probability": 0.8696 + }, + { + "start": 1450.44, + "end": 1453.26, + "probability": 0.9343 + }, + { + "start": 1454.48, + "end": 1455.4, + "probability": 0.4736 + }, + { + "start": 1456.24, + "end": 1456.86, + "probability": 0.7707 + }, + { + "start": 1456.94, + "end": 1457.8, + "probability": 0.9486 + }, + { + "start": 1457.84, + "end": 1459.18, + "probability": 0.9621 + }, + { + "start": 1459.34, + "end": 1463.66, + "probability": 0.9897 + }, + { + "start": 1463.7, + "end": 1467.82, + "probability": 0.604 + }, + { + "start": 1468.3, + "end": 1469.04, + "probability": 0.6609 + }, + { + "start": 1469.16, + "end": 1471.56, + "probability": 0.9736 + }, + { + "start": 1471.9, + "end": 1474.4, + "probability": 0.7711 + }, + { + "start": 1474.46, + "end": 1475.92, + "probability": 0.8986 + }, + { + "start": 1476.56, + "end": 1479.68, + "probability": 0.9729 + }, + { + "start": 1480.88, + "end": 1481.42, + "probability": 0.5737 + }, + { + "start": 1481.88, + "end": 1482.8, + "probability": 0.4912 + }, + { + "start": 1483.44, + "end": 1484.44, + "probability": 0.7878 + }, + { + "start": 1484.86, + "end": 1485.34, + "probability": 0.6481 + }, + { + "start": 1486.2, + "end": 1488.72, + "probability": 0.567 + }, + { + "start": 1490.3, + "end": 1493.12, + "probability": 0.926 + }, + { + "start": 1493.3, + "end": 1494.1, + "probability": 0.6997 + }, + { + "start": 1494.32, + "end": 1496.44, + "probability": 0.9359 + }, + { + "start": 1496.56, + "end": 1501.08, + "probability": 0.9049 + }, + { + "start": 1501.26, + "end": 1503.2, + "probability": 0.7336 + }, + { + "start": 1503.2, + "end": 1507.8, + "probability": 0.7776 + }, + { + "start": 1508.0, + "end": 1512.36, + "probability": 0.5536 + }, + { + "start": 1512.9, + "end": 1513.46, + "probability": 0.5404 + }, + { + "start": 1514.14, + "end": 1518.34, + "probability": 0.9459 + }, + { + "start": 1519.46, + "end": 1522.12, + "probability": 0.9327 + }, + { + "start": 1522.18, + "end": 1522.78, + "probability": 0.5187 + }, + { + "start": 1522.86, + "end": 1524.34, + "probability": 0.8291 + }, + { + "start": 1524.46, + "end": 1526.46, + "probability": 0.891 + }, + { + "start": 1527.06, + "end": 1531.14, + "probability": 0.8528 + }, + { + "start": 1531.36, + "end": 1532.34, + "probability": 0.5797 + }, + { + "start": 1533.14, + "end": 1533.44, + "probability": 0.5739 + }, + { + "start": 1533.56, + "end": 1534.12, + "probability": 0.5068 + }, + { + "start": 1534.16, + "end": 1541.78, + "probability": 0.8427 + }, + { + "start": 1541.98, + "end": 1547.6, + "probability": 0.9053 + }, + { + "start": 1548.86, + "end": 1553.28, + "probability": 0.9377 + }, + { + "start": 1554.04, + "end": 1558.88, + "probability": 0.995 + }, + { + "start": 1558.88, + "end": 1563.86, + "probability": 0.9771 + }, + { + "start": 1564.66, + "end": 1567.18, + "probability": 0.9858 + }, + { + "start": 1568.02, + "end": 1572.5, + "probability": 0.9224 + }, + { + "start": 1572.62, + "end": 1574.6, + "probability": 0.8732 + }, + { + "start": 1575.48, + "end": 1576.34, + "probability": 0.826 + }, + { + "start": 1576.82, + "end": 1583.24, + "probability": 0.9813 + }, + { + "start": 1583.28, + "end": 1589.12, + "probability": 0.9328 + }, + { + "start": 1590.02, + "end": 1592.18, + "probability": 0.96 + }, + { + "start": 1592.32, + "end": 1596.06, + "probability": 0.7662 + }, + { + "start": 1596.16, + "end": 1598.38, + "probability": 0.9193 + }, + { + "start": 1598.5, + "end": 1599.58, + "probability": 0.8668 + }, + { + "start": 1600.44, + "end": 1603.66, + "probability": 0.8641 + }, + { + "start": 1604.14, + "end": 1607.88, + "probability": 0.7855 + }, + { + "start": 1608.78, + "end": 1608.96, + "probability": 0.3618 + }, + { + "start": 1609.04, + "end": 1612.58, + "probability": 0.9956 + }, + { + "start": 1613.16, + "end": 1614.96, + "probability": 0.9624 + }, + { + "start": 1615.8, + "end": 1618.96, + "probability": 0.6338 + }, + { + "start": 1619.7, + "end": 1620.9, + "probability": 0.8209 + }, + { + "start": 1621.1, + "end": 1623.88, + "probability": 0.8602 + }, + { + "start": 1625.82, + "end": 1631.94, + "probability": 0.959 + }, + { + "start": 1634.06, + "end": 1638.88, + "probability": 0.8608 + }, + { + "start": 1638.88, + "end": 1645.34, + "probability": 0.9879 + }, + { + "start": 1645.5, + "end": 1645.9, + "probability": 0.4062 + }, + { + "start": 1645.98, + "end": 1649.76, + "probability": 0.9875 + }, + { + "start": 1650.07, + "end": 1653.78, + "probability": 0.9979 + }, + { + "start": 1653.9, + "end": 1655.02, + "probability": 0.8207 + }, + { + "start": 1655.26, + "end": 1657.56, + "probability": 0.9456 + }, + { + "start": 1657.6, + "end": 1658.04, + "probability": 0.9316 + }, + { + "start": 1658.12, + "end": 1664.34, + "probability": 0.9256 + }, + { + "start": 1664.34, + "end": 1667.2, + "probability": 0.9681 + }, + { + "start": 1667.46, + "end": 1668.46, + "probability": 0.6735 + }, + { + "start": 1668.84, + "end": 1672.14, + "probability": 0.8154 + }, + { + "start": 1673.14, + "end": 1674.48, + "probability": 0.6431 + }, + { + "start": 1674.62, + "end": 1676.68, + "probability": 0.9821 + }, + { + "start": 1676.74, + "end": 1682.0, + "probability": 0.7788 + }, + { + "start": 1682.2, + "end": 1685.9, + "probability": 0.8793 + }, + { + "start": 1686.62, + "end": 1692.16, + "probability": 0.8882 + }, + { + "start": 1692.72, + "end": 1694.14, + "probability": 0.5154 + }, + { + "start": 1696.94, + "end": 1699.54, + "probability": 0.9823 + }, + { + "start": 1699.84, + "end": 1701.5, + "probability": 0.8816 + }, + { + "start": 1701.64, + "end": 1706.06, + "probability": 0.9875 + }, + { + "start": 1706.9, + "end": 1709.49, + "probability": 0.9915 + }, + { + "start": 1710.18, + "end": 1713.8, + "probability": 0.9343 + }, + { + "start": 1714.38, + "end": 1719.28, + "probability": 0.8261 + }, + { + "start": 1719.54, + "end": 1720.06, + "probability": 0.7965 + }, + { + "start": 1720.34, + "end": 1721.94, + "probability": 0.9525 + }, + { + "start": 1722.08, + "end": 1722.36, + "probability": 0.6477 + }, + { + "start": 1723.62, + "end": 1724.8, + "probability": 0.7688 + }, + { + "start": 1724.98, + "end": 1728.18, + "probability": 0.8923 + }, + { + "start": 1728.26, + "end": 1728.48, + "probability": 0.1865 + }, + { + "start": 1728.7, + "end": 1729.28, + "probability": 0.8165 + }, + { + "start": 1729.38, + "end": 1732.8, + "probability": 0.9914 + }, + { + "start": 1733.14, + "end": 1737.68, + "probability": 0.9958 + }, + { + "start": 1738.4, + "end": 1740.98, + "probability": 0.9753 + }, + { + "start": 1741.26, + "end": 1743.62, + "probability": 0.517 + }, + { + "start": 1743.98, + "end": 1747.77, + "probability": 0.9907 + }, + { + "start": 1747.84, + "end": 1751.26, + "probability": 0.9926 + }, + { + "start": 1752.08, + "end": 1755.18, + "probability": 0.951 + }, + { + "start": 1755.76, + "end": 1758.74, + "probability": 0.9949 + }, + { + "start": 1759.48, + "end": 1763.94, + "probability": 0.9787 + }, + { + "start": 1764.08, + "end": 1769.18, + "probability": 0.9298 + }, + { + "start": 1769.68, + "end": 1774.2, + "probability": 0.8996 + }, + { + "start": 1774.62, + "end": 1777.5, + "probability": 0.7998 + }, + { + "start": 1778.4, + "end": 1781.16, + "probability": 0.9885 + }, + { + "start": 1781.28, + "end": 1782.58, + "probability": 0.5526 + }, + { + "start": 1782.76, + "end": 1784.16, + "probability": 0.7429 + }, + { + "start": 1784.2, + "end": 1786.3, + "probability": 0.9775 + }, + { + "start": 1786.84, + "end": 1787.44, + "probability": 0.5925 + }, + { + "start": 1787.48, + "end": 1787.66, + "probability": 0.4984 + }, + { + "start": 1787.82, + "end": 1788.02, + "probability": 0.973 + }, + { + "start": 1788.18, + "end": 1791.48, + "probability": 0.6492 + }, + { + "start": 1791.54, + "end": 1796.14, + "probability": 0.978 + }, + { + "start": 1796.24, + "end": 1798.5, + "probability": 0.9956 + }, + { + "start": 1799.08, + "end": 1801.64, + "probability": 0.9434 + }, + { + "start": 1801.76, + "end": 1803.16, + "probability": 0.8041 + }, + { + "start": 1803.8, + "end": 1807.04, + "probability": 0.9965 + }, + { + "start": 1807.28, + "end": 1807.7, + "probability": 0.3973 + }, + { + "start": 1808.04, + "end": 1809.38, + "probability": 0.9305 + }, + { + "start": 1809.5, + "end": 1811.0, + "probability": 0.9613 + }, + { + "start": 1811.78, + "end": 1815.22, + "probability": 0.9883 + }, + { + "start": 1815.22, + "end": 1820.78, + "probability": 0.9987 + }, + { + "start": 1820.92, + "end": 1824.58, + "probability": 0.7344 + }, + { + "start": 1825.44, + "end": 1830.5, + "probability": 0.9963 + }, + { + "start": 1830.5, + "end": 1834.92, + "probability": 0.9853 + }, + { + "start": 1834.92, + "end": 1838.5, + "probability": 0.9994 + }, + { + "start": 1838.6, + "end": 1843.88, + "probability": 0.9881 + }, + { + "start": 1845.54, + "end": 1848.04, + "probability": 0.9819 + }, + { + "start": 1848.3, + "end": 1849.76, + "probability": 0.7143 + }, + { + "start": 1849.9, + "end": 1851.68, + "probability": 0.8939 + }, + { + "start": 1851.76, + "end": 1852.22, + "probability": 0.9082 + }, + { + "start": 1852.32, + "end": 1853.02, + "probability": 0.4559 + }, + { + "start": 1853.02, + "end": 1855.14, + "probability": 0.5808 + }, + { + "start": 1855.34, + "end": 1857.24, + "probability": 0.5444 + }, + { + "start": 1857.64, + "end": 1859.45, + "probability": 0.9347 + }, + { + "start": 1864.66, + "end": 1865.52, + "probability": 0.4027 + }, + { + "start": 1865.64, + "end": 1866.44, + "probability": 0.7079 + }, + { + "start": 1866.64, + "end": 1868.18, + "probability": 0.864 + }, + { + "start": 1868.26, + "end": 1870.36, + "probability": 0.9935 + }, + { + "start": 1871.08, + "end": 1875.54, + "probability": 0.9912 + }, + { + "start": 1876.6, + "end": 1880.88, + "probability": 0.9723 + }, + { + "start": 1881.12, + "end": 1882.68, + "probability": 0.8434 + }, + { + "start": 1882.8, + "end": 1883.38, + "probability": 0.7801 + }, + { + "start": 1883.86, + "end": 1884.76, + "probability": 0.6268 + }, + { + "start": 1884.84, + "end": 1885.5, + "probability": 0.6609 + }, + { + "start": 1886.0, + "end": 1890.98, + "probability": 0.9167 + }, + { + "start": 1891.5, + "end": 1892.48, + "probability": 0.6156 + }, + { + "start": 1892.48, + "end": 1892.76, + "probability": 0.6427 + }, + { + "start": 1894.02, + "end": 1896.42, + "probability": 0.9979 + }, + { + "start": 1896.8, + "end": 1897.54, + "probability": 0.814 + }, + { + "start": 1897.66, + "end": 1898.02, + "probability": 0.8683 + }, + { + "start": 1898.14, + "end": 1898.62, + "probability": 0.8894 + }, + { + "start": 1899.2, + "end": 1899.4, + "probability": 0.9759 + }, + { + "start": 1899.46, + "end": 1903.8, + "probability": 0.9862 + }, + { + "start": 1903.84, + "end": 1905.88, + "probability": 0.5662 + }, + { + "start": 1906.5, + "end": 1908.48, + "probability": 0.5141 + }, + { + "start": 1908.6, + "end": 1913.3, + "probability": 0.8696 + }, + { + "start": 1913.5, + "end": 1915.72, + "probability": 0.9926 + }, + { + "start": 1916.54, + "end": 1917.38, + "probability": 0.8001 + }, + { + "start": 1917.42, + "end": 1924.38, + "probability": 0.8945 + }, + { + "start": 1924.66, + "end": 1925.84, + "probability": 0.5202 + }, + { + "start": 1926.1, + "end": 1927.44, + "probability": 0.9277 + }, + { + "start": 1927.94, + "end": 1929.18, + "probability": 0.412 + }, + { + "start": 1930.06, + "end": 1930.98, + "probability": 0.3836 + }, + { + "start": 1931.26, + "end": 1933.34, + "probability": 0.6849 + }, + { + "start": 1933.66, + "end": 1934.96, + "probability": 0.8113 + }, + { + "start": 1935.06, + "end": 1935.57, + "probability": 0.8477 + }, + { + "start": 1936.16, + "end": 1936.64, + "probability": 0.6953 + }, + { + "start": 1936.74, + "end": 1938.7, + "probability": 0.8647 + }, + { + "start": 1940.12, + "end": 1942.21, + "probability": 0.9832 + }, + { + "start": 1943.28, + "end": 1944.44, + "probability": 0.3758 + }, + { + "start": 1944.56, + "end": 1945.14, + "probability": 0.2148 + }, + { + "start": 1945.36, + "end": 1948.02, + "probability": 0.8585 + }, + { + "start": 1948.02, + "end": 1955.58, + "probability": 0.7168 + }, + { + "start": 1956.04, + "end": 1957.0, + "probability": 0.5392 + }, + { + "start": 1957.44, + "end": 1959.18, + "probability": 0.8555 + }, + { + "start": 1959.52, + "end": 1965.56, + "probability": 0.9524 + }, + { + "start": 1966.1, + "end": 1969.0, + "probability": 0.6541 + }, + { + "start": 1969.42, + "end": 1972.18, + "probability": 0.9518 + }, + { + "start": 1972.52, + "end": 1975.9, + "probability": 0.9786 + }, + { + "start": 1976.48, + "end": 1982.68, + "probability": 0.9858 + }, + { + "start": 1982.82, + "end": 1983.94, + "probability": 0.918 + }, + { + "start": 1984.68, + "end": 1985.88, + "probability": 0.6662 + }, + { + "start": 1985.96, + "end": 1988.46, + "probability": 0.7632 + }, + { + "start": 1989.08, + "end": 1990.3, + "probability": 0.5091 + }, + { + "start": 1992.94, + "end": 2001.26, + "probability": 0.9927 + }, + { + "start": 2001.44, + "end": 2004.94, + "probability": 0.9842 + }, + { + "start": 2005.06, + "end": 2008.14, + "probability": 0.9724 + }, + { + "start": 2008.42, + "end": 2009.14, + "probability": 0.7235 + }, + { + "start": 2009.28, + "end": 2009.76, + "probability": 0.367 + }, + { + "start": 2009.94, + "end": 2011.3, + "probability": 0.8505 + }, + { + "start": 2011.44, + "end": 2011.92, + "probability": 0.5166 + }, + { + "start": 2012.1, + "end": 2016.47, + "probability": 0.9448 + }, + { + "start": 2017.24, + "end": 2018.58, + "probability": 0.7096 + }, + { + "start": 2019.54, + "end": 2021.46, + "probability": 0.6963 + }, + { + "start": 2021.52, + "end": 2029.74, + "probability": 0.8463 + }, + { + "start": 2031.17, + "end": 2033.98, + "probability": 0.9877 + }, + { + "start": 2034.16, + "end": 2036.95, + "probability": 0.8473 + }, + { + "start": 2039.12, + "end": 2039.74, + "probability": 0.198 + }, + { + "start": 2039.96, + "end": 2040.56, + "probability": 0.2856 + }, + { + "start": 2040.56, + "end": 2042.06, + "probability": 0.8864 + }, + { + "start": 2042.2, + "end": 2043.78, + "probability": 0.5662 + }, + { + "start": 2044.04, + "end": 2044.5, + "probability": 0.0817 + }, + { + "start": 2044.54, + "end": 2045.44, + "probability": 0.293 + }, + { + "start": 2045.76, + "end": 2046.28, + "probability": 0.1422 + }, + { + "start": 2046.28, + "end": 2047.34, + "probability": 0.3427 + }, + { + "start": 2047.8, + "end": 2048.88, + "probability": 0.7604 + }, + { + "start": 2048.94, + "end": 2050.04, + "probability": 0.2315 + }, + { + "start": 2050.2, + "end": 2051.72, + "probability": 0.8043 + }, + { + "start": 2051.74, + "end": 2056.94, + "probability": 0.8975 + }, + { + "start": 2057.46, + "end": 2062.62, + "probability": 0.881 + }, + { + "start": 2062.9, + "end": 2063.4, + "probability": 0.779 + }, + { + "start": 2065.0, + "end": 2065.54, + "probability": 0.929 + }, + { + "start": 2065.62, + "end": 2066.74, + "probability": 0.7177 + }, + { + "start": 2066.82, + "end": 2067.16, + "probability": 0.7723 + }, + { + "start": 2067.24, + "end": 2068.6, + "probability": 0.8586 + }, + { + "start": 2068.64, + "end": 2070.02, + "probability": 0.9878 + }, + { + "start": 2071.06, + "end": 2076.94, + "probability": 0.5614 + }, + { + "start": 2077.36, + "end": 2081.08, + "probability": 0.9872 + }, + { + "start": 2081.4, + "end": 2085.86, + "probability": 0.962 + }, + { + "start": 2085.86, + "end": 2090.48, + "probability": 0.9938 + }, + { + "start": 2090.68, + "end": 2092.3, + "probability": 0.7642 + }, + { + "start": 2092.4, + "end": 2097.32, + "probability": 0.9928 + }, + { + "start": 2097.64, + "end": 2102.1, + "probability": 0.9956 + }, + { + "start": 2102.64, + "end": 2104.5, + "probability": 0.0963 + }, + { + "start": 2107.2, + "end": 2107.78, + "probability": 0.0243 + }, + { + "start": 2107.78, + "end": 2108.62, + "probability": 0.0166 + }, + { + "start": 2108.74, + "end": 2111.08, + "probability": 0.3637 + }, + { + "start": 2111.72, + "end": 2112.3, + "probability": 0.4362 + }, + { + "start": 2112.3, + "end": 2114.32, + "probability": 0.8807 + }, + { + "start": 2114.58, + "end": 2116.64, + "probability": 0.9829 + }, + { + "start": 2116.96, + "end": 2118.48, + "probability": 0.6321 + }, + { + "start": 2118.52, + "end": 2121.16, + "probability": 0.8308 + }, + { + "start": 2121.84, + "end": 2123.54, + "probability": 0.5882 + }, + { + "start": 2123.72, + "end": 2130.6, + "probability": 0.9222 + }, + { + "start": 2131.08, + "end": 2131.34, + "probability": 0.5429 + }, + { + "start": 2131.52, + "end": 2133.02, + "probability": 0.6242 + }, + { + "start": 2133.1, + "end": 2133.82, + "probability": 0.8884 + }, + { + "start": 2133.94, + "end": 2135.3, + "probability": 0.7959 + }, + { + "start": 2135.64, + "end": 2136.26, + "probability": 0.9585 + }, + { + "start": 2136.56, + "end": 2136.7, + "probability": 0.4755 + }, + { + "start": 2136.72, + "end": 2138.48, + "probability": 0.7388 + }, + { + "start": 2138.62, + "end": 2143.66, + "probability": 0.8971 + }, + { + "start": 2143.66, + "end": 2147.98, + "probability": 0.9899 + }, + { + "start": 2148.1, + "end": 2153.06, + "probability": 0.9076 + }, + { + "start": 2153.6, + "end": 2156.6, + "probability": 0.6542 + }, + { + "start": 2161.34, + "end": 2162.92, + "probability": 0.3263 + }, + { + "start": 2162.92, + "end": 2163.88, + "probability": 0.0605 + }, + { + "start": 2163.92, + "end": 2168.12, + "probability": 0.5603 + }, + { + "start": 2168.18, + "end": 2171.54, + "probability": 0.9073 + }, + { + "start": 2171.74, + "end": 2172.08, + "probability": 0.8107 + }, + { + "start": 2172.48, + "end": 2174.76, + "probability": 0.8629 + }, + { + "start": 2174.86, + "end": 2179.84, + "probability": 0.9937 + }, + { + "start": 2180.48, + "end": 2184.0, + "probability": 0.9983 + }, + { + "start": 2184.16, + "end": 2188.88, + "probability": 0.9558 + }, + { + "start": 2188.9, + "end": 2191.9, + "probability": 0.9974 + }, + { + "start": 2191.9, + "end": 2193.78, + "probability": 0.9819 + }, + { + "start": 2193.98, + "end": 2200.08, + "probability": 0.8866 + }, + { + "start": 2200.24, + "end": 2200.94, + "probability": 0.1255 + }, + { + "start": 2201.04, + "end": 2202.88, + "probability": 0.482 + }, + { + "start": 2203.06, + "end": 2203.54, + "probability": 0.2738 + }, + { + "start": 2203.7, + "end": 2207.9, + "probability": 0.7739 + }, + { + "start": 2208.06, + "end": 2210.46, + "probability": 0.3453 + }, + { + "start": 2210.68, + "end": 2211.8, + "probability": 0.1366 + }, + { + "start": 2212.48, + "end": 2215.62, + "probability": 0.6907 + }, + { + "start": 2215.62, + "end": 2219.98, + "probability": 0.8531 + }, + { + "start": 2219.98, + "end": 2223.14, + "probability": 0.9926 + }, + { + "start": 2224.12, + "end": 2224.64, + "probability": 0.326 + }, + { + "start": 2224.68, + "end": 2225.94, + "probability": 0.5851 + }, + { + "start": 2226.4, + "end": 2229.78, + "probability": 0.251 + }, + { + "start": 2230.34, + "end": 2232.4, + "probability": 0.3999 + }, + { + "start": 2232.56, + "end": 2234.62, + "probability": 0.6194 + }, + { + "start": 2235.74, + "end": 2237.6, + "probability": 0.3404 + }, + { + "start": 2237.76, + "end": 2238.92, + "probability": 0.278 + }, + { + "start": 2239.08, + "end": 2241.55, + "probability": 0.9478 + }, + { + "start": 2241.78, + "end": 2243.1, + "probability": 0.9941 + }, + { + "start": 2243.6, + "end": 2246.8, + "probability": 0.8124 + }, + { + "start": 2246.8, + "end": 2250.08, + "probability": 0.9531 + }, + { + "start": 2250.1, + "end": 2254.0, + "probability": 0.8701 + }, + { + "start": 2254.1, + "end": 2256.12, + "probability": 0.7505 + }, + { + "start": 2256.34, + "end": 2257.36, + "probability": 0.5004 + }, + { + "start": 2257.62, + "end": 2258.02, + "probability": 0.515 + }, + { + "start": 2258.06, + "end": 2258.52, + "probability": 0.2414 + }, + { + "start": 2258.6, + "end": 2260.12, + "probability": 0.6252 + }, + { + "start": 2260.12, + "end": 2260.44, + "probability": 0.0889 + }, + { + "start": 2260.44, + "end": 2262.64, + "probability": 0.0336 + }, + { + "start": 2262.84, + "end": 2266.48, + "probability": 0.5995 + }, + { + "start": 2266.5, + "end": 2270.62, + "probability": 0.998 + }, + { + "start": 2271.5, + "end": 2273.18, + "probability": 0.8265 + }, + { + "start": 2273.24, + "end": 2274.3, + "probability": 0.8646 + }, + { + "start": 2274.54, + "end": 2278.62, + "probability": 0.5298 + }, + { + "start": 2278.9, + "end": 2282.24, + "probability": 0.9794 + }, + { + "start": 2282.88, + "end": 2285.8, + "probability": 0.9317 + }, + { + "start": 2285.82, + "end": 2288.3, + "probability": 0.9967 + }, + { + "start": 2288.3, + "end": 2292.06, + "probability": 0.9944 + }, + { + "start": 2292.58, + "end": 2294.6, + "probability": 0.6235 + }, + { + "start": 2294.7, + "end": 2296.27, + "probability": 0.9764 + }, + { + "start": 2296.44, + "end": 2297.38, + "probability": 0.6776 + }, + { + "start": 2297.52, + "end": 2299.76, + "probability": 0.7776 + }, + { + "start": 2299.82, + "end": 2302.2, + "probability": 0.8422 + }, + { + "start": 2303.06, + "end": 2305.96, + "probability": 0.9982 + }, + { + "start": 2305.96, + "end": 2308.56, + "probability": 0.9467 + }, + { + "start": 2309.18, + "end": 2310.66, + "probability": 0.6751 + }, + { + "start": 2311.0, + "end": 2313.34, + "probability": 0.9862 + }, + { + "start": 2313.4, + "end": 2315.7, + "probability": 0.8591 + }, + { + "start": 2315.82, + "end": 2319.62, + "probability": 0.8299 + }, + { + "start": 2320.18, + "end": 2323.06, + "probability": 0.9966 + }, + { + "start": 2323.24, + "end": 2328.11, + "probability": 0.9749 + }, + { + "start": 2329.2, + "end": 2329.76, + "probability": 0.619 + }, + { + "start": 2330.0, + "end": 2332.86, + "probability": 0.9983 + }, + { + "start": 2333.24, + "end": 2336.86, + "probability": 0.9924 + }, + { + "start": 2337.32, + "end": 2338.29, + "probability": 0.9873 + }, + { + "start": 2338.82, + "end": 2340.14, + "probability": 0.8782 + }, + { + "start": 2340.16, + "end": 2340.6, + "probability": 0.6205 + }, + { + "start": 2340.72, + "end": 2348.58, + "probability": 0.9479 + }, + { + "start": 2348.88, + "end": 2356.5, + "probability": 0.8784 + }, + { + "start": 2356.66, + "end": 2359.7, + "probability": 0.9428 + }, + { + "start": 2359.88, + "end": 2362.82, + "probability": 0.9506 + }, + { + "start": 2362.9, + "end": 2364.16, + "probability": 0.9252 + }, + { + "start": 2364.26, + "end": 2367.08, + "probability": 0.848 + }, + { + "start": 2367.08, + "end": 2370.24, + "probability": 0.9807 + }, + { + "start": 2370.42, + "end": 2375.3, + "probability": 0.979 + }, + { + "start": 2375.3, + "end": 2380.58, + "probability": 0.9997 + }, + { + "start": 2381.0, + "end": 2384.34, + "probability": 0.9756 + }, + { + "start": 2384.44, + "end": 2387.01, + "probability": 0.995 + }, + { + "start": 2387.42, + "end": 2389.84, + "probability": 0.9946 + }, + { + "start": 2389.84, + "end": 2394.66, + "probability": 0.9939 + }, + { + "start": 2395.0, + "end": 2396.42, + "probability": 0.9426 + }, + { + "start": 2396.58, + "end": 2401.14, + "probability": 0.671 + }, + { + "start": 2401.72, + "end": 2405.54, + "probability": 0.8284 + }, + { + "start": 2406.12, + "end": 2409.0, + "probability": 0.9419 + }, + { + "start": 2409.06, + "end": 2411.54, + "probability": 0.8888 + }, + { + "start": 2413.02, + "end": 2416.56, + "probability": 0.7588 + }, + { + "start": 2416.74, + "end": 2417.0, + "probability": 0.7354 + }, + { + "start": 2417.68, + "end": 2419.88, + "probability": 0.6481 + }, + { + "start": 2420.2, + "end": 2421.66, + "probability": 0.8842 + }, + { + "start": 2421.8, + "end": 2425.24, + "probability": 0.7217 + }, + { + "start": 2425.6, + "end": 2428.0, + "probability": 0.8923 + }, + { + "start": 2429.1, + "end": 2431.98, + "probability": 0.7457 + }, + { + "start": 2432.5, + "end": 2433.44, + "probability": 0.87 + }, + { + "start": 2433.56, + "end": 2437.54, + "probability": 0.9741 + }, + { + "start": 2437.6, + "end": 2440.4, + "probability": 0.616 + }, + { + "start": 2441.28, + "end": 2446.6, + "probability": 0.9846 + }, + { + "start": 2446.72, + "end": 2448.64, + "probability": 0.9712 + }, + { + "start": 2449.22, + "end": 2451.64, + "probability": 0.9917 + }, + { + "start": 2452.04, + "end": 2455.4, + "probability": 0.9893 + }, + { + "start": 2455.54, + "end": 2458.4, + "probability": 0.9604 + }, + { + "start": 2458.4, + "end": 2461.72, + "probability": 0.9937 + }, + { + "start": 2461.8, + "end": 2463.6, + "probability": 0.9902 + }, + { + "start": 2464.28, + "end": 2467.06, + "probability": 0.933 + }, + { + "start": 2467.24, + "end": 2467.78, + "probability": 0.3461 + }, + { + "start": 2468.28, + "end": 2470.6, + "probability": 0.9878 + }, + { + "start": 2470.82, + "end": 2474.04, + "probability": 0.9823 + }, + { + "start": 2474.14, + "end": 2476.9, + "probability": 0.5903 + }, + { + "start": 2487.7, + "end": 2489.94, + "probability": 0.5784 + }, + { + "start": 2490.46, + "end": 2492.96, + "probability": 0.6085 + }, + { + "start": 2493.82, + "end": 2498.28, + "probability": 0.9166 + }, + { + "start": 2498.84, + "end": 2499.7, + "probability": 0.6571 + }, + { + "start": 2499.76, + "end": 2500.7, + "probability": 0.9717 + }, + { + "start": 2500.84, + "end": 2501.98, + "probability": 0.5352 + }, + { + "start": 2502.26, + "end": 2507.64, + "probability": 0.9822 + }, + { + "start": 2508.14, + "end": 2511.0, + "probability": 0.931 + }, + { + "start": 2511.84, + "end": 2516.76, + "probability": 0.9712 + }, + { + "start": 2517.54, + "end": 2517.54, + "probability": 0.4471 + }, + { + "start": 2518.02, + "end": 2518.38, + "probability": 0.7349 + }, + { + "start": 2518.84, + "end": 2522.18, + "probability": 0.9906 + }, + { + "start": 2522.18, + "end": 2528.76, + "probability": 0.7908 + }, + { + "start": 2529.2, + "end": 2530.84, + "probability": 0.7912 + }, + { + "start": 2531.74, + "end": 2537.48, + "probability": 0.9444 + }, + { + "start": 2538.26, + "end": 2544.14, + "probability": 0.8398 + }, + { + "start": 2544.76, + "end": 2548.64, + "probability": 0.887 + }, + { + "start": 2549.66, + "end": 2552.54, + "probability": 0.744 + }, + { + "start": 2553.61, + "end": 2556.9, + "probability": 0.9834 + }, + { + "start": 2557.56, + "end": 2559.8, + "probability": 0.7506 + }, + { + "start": 2560.92, + "end": 2561.48, + "probability": 0.2925 + }, + { + "start": 2561.96, + "end": 2565.34, + "probability": 0.9388 + }, + { + "start": 2565.76, + "end": 2565.82, + "probability": 0.0268 + }, + { + "start": 2565.82, + "end": 2567.62, + "probability": 0.5483 + }, + { + "start": 2572.96, + "end": 2578.28, + "probability": 0.5547 + }, + { + "start": 2579.3, + "end": 2580.04, + "probability": 0.5744 + }, + { + "start": 2580.04, + "end": 2580.72, + "probability": 0.6884 + }, + { + "start": 2582.22, + "end": 2584.24, + "probability": 0.9519 + }, + { + "start": 2587.34, + "end": 2590.5, + "probability": 0.7934 + }, + { + "start": 2590.62, + "end": 2592.24, + "probability": 0.8708 + }, + { + "start": 2592.52, + "end": 2593.64, + "probability": 0.7848 + }, + { + "start": 2594.16, + "end": 2596.48, + "probability": 0.6395 + }, + { + "start": 2596.72, + "end": 2602.62, + "probability": 0.9492 + }, + { + "start": 2603.1, + "end": 2604.99, + "probability": 0.9893 + }, + { + "start": 2605.62, + "end": 2606.78, + "probability": 0.6671 + }, + { + "start": 2607.02, + "end": 2610.96, + "probability": 0.7392 + }, + { + "start": 2611.64, + "end": 2617.48, + "probability": 0.8949 + }, + { + "start": 2618.26, + "end": 2618.84, + "probability": 0.608 + }, + { + "start": 2618.96, + "end": 2619.8, + "probability": 0.8105 + }, + { + "start": 2619.92, + "end": 2623.84, + "probability": 0.8845 + }, + { + "start": 2624.52, + "end": 2628.3, + "probability": 0.8806 + }, + { + "start": 2628.94, + "end": 2630.52, + "probability": 0.7109 + }, + { + "start": 2630.66, + "end": 2632.0, + "probability": 0.9447 + }, + { + "start": 2632.14, + "end": 2632.94, + "probability": 0.8465 + }, + { + "start": 2633.02, + "end": 2635.18, + "probability": 0.7426 + }, + { + "start": 2635.78, + "end": 2637.94, + "probability": 0.9473 + }, + { + "start": 2638.36, + "end": 2640.26, + "probability": 0.696 + }, + { + "start": 2641.06, + "end": 2645.62, + "probability": 0.9701 + }, + { + "start": 2645.88, + "end": 2653.3, + "probability": 0.8781 + }, + { + "start": 2654.42, + "end": 2656.94, + "probability": 0.996 + }, + { + "start": 2657.04, + "end": 2658.34, + "probability": 0.7381 + }, + { + "start": 2658.9, + "end": 2661.8, + "probability": 0.9961 + }, + { + "start": 2661.8, + "end": 2664.72, + "probability": 0.9971 + }, + { + "start": 2665.3, + "end": 2667.36, + "probability": 0.9411 + }, + { + "start": 2667.52, + "end": 2668.76, + "probability": 0.8796 + }, + { + "start": 2668.8, + "end": 2669.06, + "probability": 0.2671 + }, + { + "start": 2669.26, + "end": 2673.4, + "probability": 0.9979 + }, + { + "start": 2673.4, + "end": 2677.16, + "probability": 0.9315 + }, + { + "start": 2677.74, + "end": 2680.8, + "probability": 0.9413 + }, + { + "start": 2681.14, + "end": 2685.54, + "probability": 0.9162 + }, + { + "start": 2685.64, + "end": 2690.88, + "probability": 0.9205 + }, + { + "start": 2691.22, + "end": 2692.88, + "probability": 0.7452 + }, + { + "start": 2693.4, + "end": 2694.14, + "probability": 0.8631 + }, + { + "start": 2694.62, + "end": 2698.44, + "probability": 0.9683 + }, + { + "start": 2699.0, + "end": 2703.46, + "probability": 0.9692 + }, + { + "start": 2703.76, + "end": 2704.8, + "probability": 0.6368 + }, + { + "start": 2704.98, + "end": 2705.26, + "probability": 0.2974 + }, + { + "start": 2705.26, + "end": 2705.7, + "probability": 0.5581 + }, + { + "start": 2705.74, + "end": 2707.18, + "probability": 0.7058 + }, + { + "start": 2708.48, + "end": 2708.91, + "probability": 0.9905 + }, + { + "start": 2709.42, + "end": 2711.15, + "probability": 0.9233 + }, + { + "start": 2712.24, + "end": 2713.96, + "probability": 0.9728 + }, + { + "start": 2721.84, + "end": 2722.22, + "probability": 0.525 + }, + { + "start": 2725.58, + "end": 2727.92, + "probability": 0.7063 + }, + { + "start": 2730.48, + "end": 2732.42, + "probability": 0.8088 + }, + { + "start": 2733.62, + "end": 2737.52, + "probability": 0.8315 + }, + { + "start": 2738.86, + "end": 2741.04, + "probability": 0.9731 + }, + { + "start": 2742.18, + "end": 2744.4, + "probability": 0.9912 + }, + { + "start": 2745.24, + "end": 2747.04, + "probability": 0.919 + }, + { + "start": 2748.96, + "end": 2750.76, + "probability": 0.5885 + }, + { + "start": 2751.32, + "end": 2754.84, + "probability": 0.7974 + }, + { + "start": 2755.52, + "end": 2759.64, + "probability": 0.8504 + }, + { + "start": 2760.22, + "end": 2761.3, + "probability": 0.9932 + }, + { + "start": 2762.06, + "end": 2770.88, + "probability": 0.8989 + }, + { + "start": 2771.92, + "end": 2776.6, + "probability": 0.8197 + }, + { + "start": 2777.28, + "end": 2779.74, + "probability": 0.5226 + }, + { + "start": 2779.92, + "end": 2782.24, + "probability": 0.7798 + }, + { + "start": 2783.34, + "end": 2790.14, + "probability": 0.7652 + }, + { + "start": 2790.79, + "end": 2793.02, + "probability": 0.9935 + }, + { + "start": 2793.78, + "end": 2795.7, + "probability": 0.999 + }, + { + "start": 2795.84, + "end": 2796.58, + "probability": 0.9379 + }, + { + "start": 2797.12, + "end": 2799.06, + "probability": 0.8136 + }, + { + "start": 2799.14, + "end": 2806.12, + "probability": 0.8639 + }, + { + "start": 2806.32, + "end": 2810.02, + "probability": 0.7847 + }, + { + "start": 2811.24, + "end": 2812.92, + "probability": 0.9535 + }, + { + "start": 2813.58, + "end": 2814.1, + "probability": 0.6476 + }, + { + "start": 2815.06, + "end": 2816.4, + "probability": 0.5198 + }, + { + "start": 2816.52, + "end": 2817.16, + "probability": 0.5772 + }, + { + "start": 2817.5, + "end": 2823.34, + "probability": 0.9044 + }, + { + "start": 2824.02, + "end": 2826.99, + "probability": 0.9783 + }, + { + "start": 2828.22, + "end": 2829.58, + "probability": 0.9895 + }, + { + "start": 2830.5, + "end": 2833.94, + "probability": 0.8346 + }, + { + "start": 2834.59, + "end": 2836.86, + "probability": 0.7507 + }, + { + "start": 2837.72, + "end": 2838.14, + "probability": 0.0844 + }, + { + "start": 2839.44, + "end": 2844.38, + "probability": 0.0173 + }, + { + "start": 2844.72, + "end": 2845.04, + "probability": 0.1324 + }, + { + "start": 2845.95, + "end": 2847.48, + "probability": 0.3685 + }, + { + "start": 2847.52, + "end": 2853.46, + "probability": 0.9158 + }, + { + "start": 2853.58, + "end": 2854.08, + "probability": 0.6969 + }, + { + "start": 2854.08, + "end": 2860.24, + "probability": 0.9495 + }, + { + "start": 2860.62, + "end": 2862.16, + "probability": 0.9472 + }, + { + "start": 2862.42, + "end": 2863.66, + "probability": 0.0554 + }, + { + "start": 2864.6, + "end": 2868.38, + "probability": 0.1677 + }, + { + "start": 2868.5, + "end": 2869.74, + "probability": 0.1391 + }, + { + "start": 2869.8, + "end": 2873.3, + "probability": 0.1816 + }, + { + "start": 2873.48, + "end": 2873.72, + "probability": 0.2657 + }, + { + "start": 2874.1, + "end": 2876.34, + "probability": 0.6331 + }, + { + "start": 2876.48, + "end": 2877.04, + "probability": 0.4863 + }, + { + "start": 2878.32, + "end": 2879.22, + "probability": 0.5457 + }, + { + "start": 2879.48, + "end": 2880.92, + "probability": 0.9157 + }, + { + "start": 2883.64, + "end": 2884.22, + "probability": 0.6002 + }, + { + "start": 2885.18, + "end": 2889.84, + "probability": 0.9681 + }, + { + "start": 2889.86, + "end": 2891.46, + "probability": 0.9915 + }, + { + "start": 2892.16, + "end": 2893.88, + "probability": 0.3889 + }, + { + "start": 2893.92, + "end": 2896.32, + "probability": 0.07 + }, + { + "start": 2896.96, + "end": 2897.34, + "probability": 0.4113 + }, + { + "start": 2897.98, + "end": 2898.48, + "probability": 0.3551 + }, + { + "start": 2898.52, + "end": 2901.14, + "probability": 0.8555 + }, + { + "start": 2901.46, + "end": 2905.24, + "probability": 0.8838 + }, + { + "start": 2905.66, + "end": 2908.98, + "probability": 0.9042 + }, + { + "start": 2909.54, + "end": 2913.04, + "probability": 0.5886 + }, + { + "start": 2913.7, + "end": 2922.0, + "probability": 0.9441 + }, + { + "start": 2922.0, + "end": 2931.26, + "probability": 0.9871 + }, + { + "start": 2931.4, + "end": 2932.64, + "probability": 0.6411 + }, + { + "start": 2933.46, + "end": 2936.3, + "probability": 0.5256 + }, + { + "start": 2938.99, + "end": 2946.32, + "probability": 0.9792 + }, + { + "start": 2947.06, + "end": 2951.22, + "probability": 0.9076 + }, + { + "start": 2951.52, + "end": 2953.8, + "probability": 0.7181 + }, + { + "start": 2954.22, + "end": 2957.2, + "probability": 0.8592 + }, + { + "start": 2957.74, + "end": 2958.44, + "probability": 0.3751 + }, + { + "start": 2958.44, + "end": 2959.7, + "probability": 0.6359 + }, + { + "start": 2960.26, + "end": 2960.7, + "probability": 0.6836 + }, + { + "start": 2960.78, + "end": 2964.52, + "probability": 0.9937 + }, + { + "start": 2965.85, + "end": 2969.64, + "probability": 0.9956 + }, + { + "start": 2969.64, + "end": 2973.5, + "probability": 0.6031 + }, + { + "start": 2973.74, + "end": 2976.68, + "probability": 0.9505 + }, + { + "start": 2977.26, + "end": 2980.18, + "probability": 0.6558 + }, + { + "start": 2980.74, + "end": 2983.54, + "probability": 0.6025 + }, + { + "start": 2983.86, + "end": 2984.52, + "probability": 0.4401 + }, + { + "start": 2984.54, + "end": 2985.06, + "probability": 0.3367 + }, + { + "start": 2985.12, + "end": 2986.58, + "probability": 0.4605 + }, + { + "start": 2987.02, + "end": 2987.5, + "probability": 0.3524 + }, + { + "start": 3003.98, + "end": 3004.84, + "probability": 0.1602 + }, + { + "start": 3008.86, + "end": 3014.0, + "probability": 0.7115 + }, + { + "start": 3014.68, + "end": 3015.66, + "probability": 0.0098 + }, + { + "start": 3015.7, + "end": 3021.12, + "probability": 0.0151 + }, + { + "start": 3024.04, + "end": 3025.84, + "probability": 0.0219 + }, + { + "start": 3025.84, + "end": 3026.36, + "probability": 0.1 + }, + { + "start": 3026.62, + "end": 3028.42, + "probability": 0.0488 + }, + { + "start": 3028.66, + "end": 3031.36, + "probability": 0.0544 + }, + { + "start": 3031.54, + "end": 3033.1, + "probability": 0.1103 + }, + { + "start": 3036.76, + "end": 3037.86, + "probability": 0.0145 + }, + { + "start": 3038.68, + "end": 3044.17, + "probability": 0.057 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.0, + "end": 3073.0, + "probability": 0.0 + }, + { + "start": 3073.28, + "end": 3073.62, + "probability": 0.1277 + }, + { + "start": 3073.62, + "end": 3074.34, + "probability": 0.5952 + }, + { + "start": 3074.34, + "end": 3077.96, + "probability": 0.991 + }, + { + "start": 3079.67, + "end": 3084.5, + "probability": 0.9944 + }, + { + "start": 3084.6, + "end": 3090.6, + "probability": 0.9709 + }, + { + "start": 3091.02, + "end": 3093.86, + "probability": 0.9807 + }, + { + "start": 3094.18, + "end": 3095.74, + "probability": 0.9982 + }, + { + "start": 3096.44, + "end": 3099.62, + "probability": 0.9663 + }, + { + "start": 3100.18, + "end": 3103.86, + "probability": 0.9865 + }, + { + "start": 3104.4, + "end": 3109.54, + "probability": 0.9963 + }, + { + "start": 3109.54, + "end": 3115.18, + "probability": 0.9918 + }, + { + "start": 3115.78, + "end": 3119.48, + "probability": 0.9967 + }, + { + "start": 3119.7, + "end": 3123.24, + "probability": 0.9805 + }, + { + "start": 3123.8, + "end": 3126.02, + "probability": 0.6982 + }, + { + "start": 3126.22, + "end": 3133.04, + "probability": 0.8088 + }, + { + "start": 3133.14, + "end": 3135.4, + "probability": 0.961 + }, + { + "start": 3135.68, + "end": 3140.36, + "probability": 0.6669 + }, + { + "start": 3140.58, + "end": 3144.76, + "probability": 0.8267 + }, + { + "start": 3145.22, + "end": 3146.06, + "probability": 0.7053 + }, + { + "start": 3146.7, + "end": 3148.8, + "probability": 0.9492 + }, + { + "start": 3149.84, + "end": 3151.86, + "probability": 0.9534 + }, + { + "start": 3152.2, + "end": 3154.22, + "probability": 0.7773 + }, + { + "start": 3155.22, + "end": 3157.32, + "probability": 0.1505 + }, + { + "start": 3178.26, + "end": 3182.08, + "probability": 0.9395 + }, + { + "start": 3182.12, + "end": 3185.66, + "probability": 0.8581 + }, + { + "start": 3186.52, + "end": 3187.02, + "probability": 0.8219 + }, + { + "start": 3188.72, + "end": 3192.04, + "probability": 0.7917 + }, + { + "start": 3193.04, + "end": 3194.76, + "probability": 0.6807 + }, + { + "start": 3195.0, + "end": 3196.42, + "probability": 0.8376 + }, + { + "start": 3197.08, + "end": 3198.7, + "probability": 0.7735 + }, + { + "start": 3199.46, + "end": 3203.44, + "probability": 0.9767 + }, + { + "start": 3203.48, + "end": 3207.4, + "probability": 0.9404 + }, + { + "start": 3207.72, + "end": 3211.82, + "probability": 0.9714 + }, + { + "start": 3212.36, + "end": 3213.74, + "probability": 0.9493 + }, + { + "start": 3215.04, + "end": 3217.8, + "probability": 0.9658 + }, + { + "start": 3217.8, + "end": 3220.9, + "probability": 0.9711 + }, + { + "start": 3221.44, + "end": 3223.78, + "probability": 0.9619 + }, + { + "start": 3224.58, + "end": 3227.64, + "probability": 0.8282 + }, + { + "start": 3228.28, + "end": 3232.86, + "probability": 0.8996 + }, + { + "start": 3233.46, + "end": 3235.3, + "probability": 0.8804 + }, + { + "start": 3236.24, + "end": 3238.9, + "probability": 0.9962 + }, + { + "start": 3238.9, + "end": 3241.7, + "probability": 0.9987 + }, + { + "start": 3242.36, + "end": 3243.56, + "probability": 0.5802 + }, + { + "start": 3243.64, + "end": 3246.06, + "probability": 0.9165 + }, + { + "start": 3247.0, + "end": 3249.58, + "probability": 0.9971 + }, + { + "start": 3250.22, + "end": 3250.64, + "probability": 0.9526 + }, + { + "start": 3251.58, + "end": 3252.84, + "probability": 0.9905 + }, + { + "start": 3253.7, + "end": 3257.8, + "probability": 0.7963 + }, + { + "start": 3258.42, + "end": 3261.46, + "probability": 0.8488 + }, + { + "start": 3262.34, + "end": 3265.82, + "probability": 0.9906 + }, + { + "start": 3266.04, + "end": 3268.02, + "probability": 0.6794 + }, + { + "start": 3270.68, + "end": 3275.08, + "probability": 0.1638 + }, + { + "start": 3275.34, + "end": 3275.34, + "probability": 0.1336 + }, + { + "start": 3275.34, + "end": 3279.12, + "probability": 0.4849 + }, + { + "start": 3279.42, + "end": 3281.66, + "probability": 0.9302 + }, + { + "start": 3281.7, + "end": 3283.74, + "probability": 0.5647 + }, + { + "start": 3286.34, + "end": 3286.34, + "probability": 0.2701 + }, + { + "start": 3286.34, + "end": 3286.5, + "probability": 0.203 + }, + { + "start": 3288.74, + "end": 3290.0, + "probability": 0.7338 + }, + { + "start": 3290.14, + "end": 3292.02, + "probability": 0.929 + }, + { + "start": 3292.2, + "end": 3296.24, + "probability": 0.9563 + }, + { + "start": 3297.28, + "end": 3299.44, + "probability": 0.9399 + }, + { + "start": 3299.56, + "end": 3300.71, + "probability": 0.9766 + }, + { + "start": 3301.78, + "end": 3303.52, + "probability": 0.7005 + }, + { + "start": 3306.7, + "end": 3308.74, + "probability": 0.5981 + }, + { + "start": 3309.56, + "end": 3310.14, + "probability": 0.6442 + }, + { + "start": 3312.02, + "end": 3314.54, + "probability": 0.9081 + }, + { + "start": 3318.96, + "end": 3320.78, + "probability": 0.8083 + }, + { + "start": 3320.92, + "end": 3322.35, + "probability": 0.8995 + }, + { + "start": 3322.58, + "end": 3323.16, + "probability": 0.7493 + }, + { + "start": 3323.64, + "end": 3326.7, + "probability": 0.975 + }, + { + "start": 3326.92, + "end": 3330.04, + "probability": 0.982 + }, + { + "start": 3330.16, + "end": 3331.34, + "probability": 0.9561 + }, + { + "start": 3332.4, + "end": 3339.54, + "probability": 0.974 + }, + { + "start": 3340.4, + "end": 3344.47, + "probability": 0.9468 + }, + { + "start": 3345.12, + "end": 3346.26, + "probability": 0.7257 + }, + { + "start": 3346.82, + "end": 3348.04, + "probability": 0.9342 + }, + { + "start": 3348.1, + "end": 3348.42, + "probability": 0.5167 + }, + { + "start": 3348.44, + "end": 3348.78, + "probability": 0.4841 + }, + { + "start": 3348.8, + "end": 3349.8, + "probability": 0.868 + }, + { + "start": 3350.12, + "end": 3351.22, + "probability": 0.8918 + }, + { + "start": 3351.86, + "end": 3354.36, + "probability": 0.2004 + }, + { + "start": 3354.88, + "end": 3360.28, + "probability": 0.8496 + }, + { + "start": 3361.6, + "end": 3365.54, + "probability": 0.9671 + }, + { + "start": 3365.78, + "end": 3367.3, + "probability": 0.9512 + }, + { + "start": 3367.66, + "end": 3371.24, + "probability": 0.9651 + }, + { + "start": 3372.22, + "end": 3375.62, + "probability": 0.8762 + }, + { + "start": 3376.24, + "end": 3379.48, + "probability": 0.9676 + }, + { + "start": 3379.62, + "end": 3381.48, + "probability": 0.9419 + }, + { + "start": 3382.88, + "end": 3383.3, + "probability": 0.842 + }, + { + "start": 3383.96, + "end": 3385.64, + "probability": 0.9591 + }, + { + "start": 3385.72, + "end": 3388.52, + "probability": 0.9636 + }, + { + "start": 3389.86, + "end": 3390.12, + "probability": 0.7572 + }, + { + "start": 3391.2, + "end": 3394.2, + "probability": 0.9804 + }, + { + "start": 3397.36, + "end": 3398.54, + "probability": 0.6636 + }, + { + "start": 3398.8, + "end": 3403.26, + "probability": 0.993 + }, + { + "start": 3404.46, + "end": 3405.32, + "probability": 0.9937 + }, + { + "start": 3407.02, + "end": 3407.12, + "probability": 0.1632 + }, + { + "start": 3407.22, + "end": 3407.84, + "probability": 0.1787 + }, + { + "start": 3408.04, + "end": 3409.03, + "probability": 0.7961 + }, + { + "start": 3409.22, + "end": 3412.32, + "probability": 0.9562 + }, + { + "start": 3412.62, + "end": 3412.76, + "probability": 0.3524 + }, + { + "start": 3412.96, + "end": 3413.3, + "probability": 0.87 + }, + { + "start": 3413.7, + "end": 3415.52, + "probability": 0.6361 + }, + { + "start": 3415.56, + "end": 3416.56, + "probability": 0.9406 + }, + { + "start": 3417.1, + "end": 3419.62, + "probability": 0.8525 + }, + { + "start": 3419.74, + "end": 3424.12, + "probability": 0.9925 + }, + { + "start": 3424.12, + "end": 3428.46, + "probability": 0.9967 + }, + { + "start": 3428.88, + "end": 3430.34, + "probability": 0.9961 + }, + { + "start": 3430.5, + "end": 3434.86, + "probability": 0.9939 + }, + { + "start": 3435.04, + "end": 3438.48, + "probability": 0.997 + }, + { + "start": 3438.58, + "end": 3442.68, + "probability": 0.8813 + }, + { + "start": 3442.82, + "end": 3444.12, + "probability": 0.968 + }, + { + "start": 3444.58, + "end": 3447.58, + "probability": 0.9967 + }, + { + "start": 3448.12, + "end": 3452.58, + "probability": 0.9828 + }, + { + "start": 3452.92, + "end": 3454.48, + "probability": 0.9289 + }, + { + "start": 3454.92, + "end": 3457.0, + "probability": 0.9673 + }, + { + "start": 3457.98, + "end": 3460.34, + "probability": 0.998 + }, + { + "start": 3461.14, + "end": 3461.72, + "probability": 0.8675 + }, + { + "start": 3462.58, + "end": 3463.14, + "probability": 0.6457 + }, + { + "start": 3464.0, + "end": 3466.76, + "probability": 0.9979 + }, + { + "start": 3467.06, + "end": 3468.3, + "probability": 0.9447 + }, + { + "start": 3469.04, + "end": 3472.0, + "probability": 0.9966 + }, + { + "start": 3472.12, + "end": 3475.64, + "probability": 0.9952 + }, + { + "start": 3475.78, + "end": 3478.1, + "probability": 0.9635 + }, + { + "start": 3478.46, + "end": 3480.66, + "probability": 0.7907 + }, + { + "start": 3480.76, + "end": 3482.47, + "probability": 0.9004 + }, + { + "start": 3484.38, + "end": 3487.06, + "probability": 0.5811 + }, + { + "start": 3487.06, + "end": 3489.84, + "probability": 0.8888 + }, + { + "start": 3490.02, + "end": 3491.0, + "probability": 0.3333 + }, + { + "start": 3491.2, + "end": 3494.3, + "probability": 0.8091 + }, + { + "start": 3494.34, + "end": 3494.88, + "probability": 0.57 + }, + { + "start": 3494.88, + "end": 3495.5, + "probability": 0.4746 + }, + { + "start": 3517.94, + "end": 3523.76, + "probability": 0.0285 + }, + { + "start": 3523.76, + "end": 3524.8, + "probability": 0.0123 + }, + { + "start": 3536.36, + "end": 3537.42, + "probability": 0.0375 + }, + { + "start": 3538.72, + "end": 3541.86, + "probability": 0.287 + }, + { + "start": 3542.93, + "end": 3544.42, + "probability": 0.1118 + }, + { + "start": 3545.42, + "end": 3546.98, + "probability": 0.0067 + }, + { + "start": 3559.86, + "end": 3563.14, + "probability": 0.111 + }, + { + "start": 3563.28, + "end": 3563.68, + "probability": 0.0863 + }, + { + "start": 3563.68, + "end": 3564.02, + "probability": 0.1286 + }, + { + "start": 3564.02, + "end": 3567.28, + "probability": 0.0435 + }, + { + "start": 3568.6, + "end": 3569.38, + "probability": 0.1915 + }, + { + "start": 3569.38, + "end": 3569.38, + "probability": 0.1096 + }, + { + "start": 3571.9, + "end": 3577.98, + "probability": 0.0597 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3578.0, + "end": 3578.0, + "probability": 0.0 + }, + { + "start": 3589.06, + "end": 3591.82, + "probability": 0.0773 + }, + { + "start": 3591.82, + "end": 3594.62, + "probability": 0.0416 + }, + { + "start": 3594.62, + "end": 3596.78, + "probability": 0.0917 + }, + { + "start": 3597.62, + "end": 3597.62, + "probability": 0.0141 + }, + { + "start": 3597.62, + "end": 3597.62, + "probability": 0.0102 + }, + { + "start": 3597.62, + "end": 3597.82, + "probability": 0.104 + }, + { + "start": 3597.9, + "end": 3599.82, + "probability": 0.3551 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.0, + "end": 3698.0, + "probability": 0.0 + }, + { + "start": 3698.54, + "end": 3698.54, + "probability": 0.2022 + }, + { + "start": 3698.54, + "end": 3698.54, + "probability": 0.0276 + }, + { + "start": 3698.54, + "end": 3698.54, + "probability": 0.1718 + }, + { + "start": 3698.54, + "end": 3703.44, + "probability": 0.7 + }, + { + "start": 3703.54, + "end": 3705.7, + "probability": 0.7861 + }, + { + "start": 3706.24, + "end": 3708.24, + "probability": 0.9915 + }, + { + "start": 3708.6, + "end": 3711.72, + "probability": 0.9541 + }, + { + "start": 3712.38, + "end": 3714.64, + "probability": 0.826 + }, + { + "start": 3715.42, + "end": 3717.68, + "probability": 0.9907 + }, + { + "start": 3718.34, + "end": 3719.98, + "probability": 0.8737 + }, + { + "start": 3720.58, + "end": 3722.7, + "probability": 0.7169 + }, + { + "start": 3723.58, + "end": 3729.3, + "probability": 0.8012 + }, + { + "start": 3729.76, + "end": 3731.5, + "probability": 0.9731 + }, + { + "start": 3731.84, + "end": 3732.1, + "probability": 0.7058 + }, + { + "start": 3732.46, + "end": 3733.46, + "probability": 0.9862 + }, + { + "start": 3735.94, + "end": 3738.1, + "probability": 0.7616 + }, + { + "start": 3738.22, + "end": 3739.78, + "probability": 0.979 + }, + { + "start": 3740.96, + "end": 3741.68, + "probability": 0.2625 + }, + { + "start": 3742.4, + "end": 3744.82, + "probability": 0.8815 + }, + { + "start": 3745.56, + "end": 3747.62, + "probability": 0.9706 + }, + { + "start": 3760.06, + "end": 3760.06, + "probability": 0.1778 + }, + { + "start": 3760.06, + "end": 3760.06, + "probability": 0.0279 + }, + { + "start": 3760.06, + "end": 3760.06, + "probability": 0.0323 + }, + { + "start": 3760.06, + "end": 3760.08, + "probability": 0.0621 + }, + { + "start": 3778.02, + "end": 3781.38, + "probability": 0.6741 + }, + { + "start": 3782.16, + "end": 3782.74, + "probability": 0.7652 + }, + { + "start": 3784.52, + "end": 3787.1, + "probability": 0.9155 + }, + { + "start": 3787.1, + "end": 3789.38, + "probability": 0.8904 + }, + { + "start": 3789.88, + "end": 3791.53, + "probability": 0.7062 + }, + { + "start": 3798.46, + "end": 3804.7, + "probability": 0.9866 + }, + { + "start": 3805.22, + "end": 3805.74, + "probability": 0.834 + }, + { + "start": 3806.0, + "end": 3806.42, + "probability": 0.8022 + }, + { + "start": 3807.32, + "end": 3808.56, + "probability": 0.9622 + }, + { + "start": 3810.0, + "end": 3810.36, + "probability": 0.8052 + }, + { + "start": 3810.52, + "end": 3810.56, + "probability": 0.0581 + }, + { + "start": 3810.66, + "end": 3811.3, + "probability": 0.8345 + }, + { + "start": 3811.74, + "end": 3812.28, + "probability": 0.3995 + }, + { + "start": 3813.7, + "end": 3815.06, + "probability": 0.7075 + }, + { + "start": 3818.14, + "end": 3820.48, + "probability": 0.648 + }, + { + "start": 3820.5, + "end": 3820.78, + "probability": 0.7576 + }, + { + "start": 3821.56, + "end": 3823.38, + "probability": 0.4837 + }, + { + "start": 3823.86, + "end": 3825.26, + "probability": 0.9215 + }, + { + "start": 3825.48, + "end": 3826.3, + "probability": 0.9297 + }, + { + "start": 3827.24, + "end": 3830.16, + "probability": 0.8528 + }, + { + "start": 3831.2, + "end": 3832.24, + "probability": 0.2697 + }, + { + "start": 3832.28, + "end": 3832.48, + "probability": 0.7329 + }, + { + "start": 3832.54, + "end": 3833.76, + "probability": 0.9417 + }, + { + "start": 3833.82, + "end": 3835.62, + "probability": 0.915 + }, + { + "start": 3835.86, + "end": 3837.38, + "probability": 0.9849 + }, + { + "start": 3837.52, + "end": 3841.04, + "probability": 0.9803 + }, + { + "start": 3841.62, + "end": 3841.94, + "probability": 0.6945 + }, + { + "start": 3842.16, + "end": 3845.52, + "probability": 0.9958 + }, + { + "start": 3845.82, + "end": 3849.54, + "probability": 0.9757 + }, + { + "start": 3849.78, + "end": 3853.98, + "probability": 0.9819 + }, + { + "start": 3854.64, + "end": 3856.14, + "probability": 0.9668 + }, + { + "start": 3856.14, + "end": 3859.96, + "probability": 0.9861 + }, + { + "start": 3860.08, + "end": 3862.18, + "probability": 0.6169 + }, + { + "start": 3862.84, + "end": 3863.52, + "probability": 0.6993 + }, + { + "start": 3863.94, + "end": 3864.84, + "probability": 0.68 + }, + { + "start": 3865.94, + "end": 3870.24, + "probability": 0.157 + }, + { + "start": 3888.28, + "end": 3894.26, + "probability": 0.048 + }, + { + "start": 3894.26, + "end": 3894.74, + "probability": 0.2018 + }, + { + "start": 3894.9, + "end": 3895.34, + "probability": 0.0201 + }, + { + "start": 3895.34, + "end": 3895.54, + "probability": 0.083 + }, + { + "start": 3898.6, + "end": 3899.76, + "probability": 0.5964 + }, + { + "start": 3900.82, + "end": 3903.3, + "probability": 0.0206 + }, + { + "start": 3904.88, + "end": 3905.62, + "probability": 0.0792 + }, + { + "start": 3913.0, + "end": 3915.2, + "probability": 0.1745 + }, + { + "start": 3916.52, + "end": 3917.82, + "probability": 0.0963 + }, + { + "start": 3917.9, + "end": 3918.28, + "probability": 0.5427 + }, + { + "start": 3918.64, + "end": 3919.36, + "probability": 0.3461 + }, + { + "start": 3919.36, + "end": 3919.36, + "probability": 0.1727 + }, + { + "start": 3919.36, + "end": 3920.0, + "probability": 0.197 + }, + { + "start": 3920.0, + "end": 3920.0, + "probability": 0.0185 + }, + { + "start": 3920.0, + "end": 3920.46, + "probability": 0.6062 + }, + { + "start": 3920.84, + "end": 3921.7, + "probability": 0.0699 + }, + { + "start": 3921.8, + "end": 3922.7, + "probability": 0.0121 + }, + { + "start": 3923.58, + "end": 3926.3, + "probability": 0.1692 + }, + { + "start": 3926.3, + "end": 3928.68, + "probability": 0.3258 + }, + { + "start": 3929.38, + "end": 3931.16, + "probability": 0.0499 + }, + { + "start": 3933.6, + "end": 3935.68, + "probability": 0.0197 + }, + { + "start": 3936.55, + "end": 3937.56, + "probability": 0.094 + }, + { + "start": 3937.56, + "end": 3938.22, + "probability": 0.1721 + }, + { + "start": 3939.24, + "end": 3944.08, + "probability": 0.1181 + }, + { + "start": 3944.64, + "end": 3945.36, + "probability": 0.1397 + }, + { + "start": 3947.0, + "end": 3947.0, + "probability": 0.0 + }, + { + "start": 3947.0, + "end": 3947.0, + "probability": 0.0 + }, + { + "start": 3947.0, + "end": 3947.0, + "probability": 0.0 + }, + { + "start": 3947.0, + "end": 3947.0, + "probability": 0.0 + }, + { + "start": 3947.0, + "end": 3947.0, + "probability": 0.0 + }, + { + "start": 3947.0, + "end": 3947.0, + "probability": 0.0 + }, + { + "start": 3947.0, + "end": 3947.0, + "probability": 0.0 + }, + { + "start": 3947.12, + "end": 3947.34, + "probability": 0.0155 + }, + { + "start": 3947.34, + "end": 3947.34, + "probability": 0.0658 + }, + { + "start": 3947.34, + "end": 3952.2, + "probability": 0.9526 + }, + { + "start": 3952.42, + "end": 3952.9, + "probability": 0.0295 + }, + { + "start": 3957.02, + "end": 3959.24, + "probability": 0.4721 + }, + { + "start": 3959.26, + "end": 3961.18, + "probability": 0.766 + }, + { + "start": 3962.62, + "end": 3968.02, + "probability": 0.9991 + }, + { + "start": 3968.44, + "end": 3970.8, + "probability": 0.9741 + }, + { + "start": 3970.8, + "end": 3972.64, + "probability": 0.9866 + }, + { + "start": 3972.94, + "end": 3979.16, + "probability": 0.9841 + }, + { + "start": 3980.18, + "end": 3983.86, + "probability": 0.9956 + }, + { + "start": 3984.96, + "end": 3987.12, + "probability": 0.9904 + }, + { + "start": 3987.92, + "end": 3990.94, + "probability": 0.9465 + }, + { + "start": 3991.36, + "end": 3993.06, + "probability": 0.9985 + }, + { + "start": 3993.16, + "end": 3998.54, + "probability": 0.9976 + }, + { + "start": 3999.18, + "end": 4002.96, + "probability": 0.7721 + }, + { + "start": 4004.3, + "end": 4005.48, + "probability": 0.808 + }, + { + "start": 4005.64, + "end": 4010.44, + "probability": 0.9818 + }, + { + "start": 4010.84, + "end": 4014.76, + "probability": 0.9904 + }, + { + "start": 4015.24, + "end": 4016.66, + "probability": 0.9379 + }, + { + "start": 4016.76, + "end": 4018.32, + "probability": 0.9261 + }, + { + "start": 4018.98, + "end": 4021.02, + "probability": 0.7949 + }, + { + "start": 4021.52, + "end": 4022.92, + "probability": 0.9849 + }, + { + "start": 4023.26, + "end": 4024.63, + "probability": 0.9948 + }, + { + "start": 4025.44, + "end": 4030.22, + "probability": 0.987 + }, + { + "start": 4030.66, + "end": 4033.48, + "probability": 0.9701 + }, + { + "start": 4034.26, + "end": 4037.72, + "probability": 0.5938 + }, + { + "start": 4038.44, + "end": 4040.0, + "probability": 0.9284 + }, + { + "start": 4040.7, + "end": 4041.28, + "probability": 0.896 + }, + { + "start": 4041.48, + "end": 4042.16, + "probability": 0.7216 + }, + { + "start": 4042.64, + "end": 4045.56, + "probability": 0.6371 + }, + { + "start": 4046.38, + "end": 4052.12, + "probability": 0.9703 + }, + { + "start": 4052.14, + "end": 4054.52, + "probability": 0.9225 + }, + { + "start": 4055.18, + "end": 4056.1, + "probability": 0.7395 + }, + { + "start": 4056.22, + "end": 4057.36, + "probability": 0.9599 + }, + { + "start": 4057.8, + "end": 4061.16, + "probability": 0.9461 + }, + { + "start": 4062.02, + "end": 4064.38, + "probability": 0.9668 + }, + { + "start": 4065.18, + "end": 4066.1, + "probability": 0.0625 + }, + { + "start": 4067.3, + "end": 4068.26, + "probability": 0.9866 + }, + { + "start": 4069.3, + "end": 4071.12, + "probability": 0.9974 + }, + { + "start": 4071.38, + "end": 4075.74, + "probability": 0.9539 + }, + { + "start": 4076.42, + "end": 4078.24, + "probability": 0.9958 + }, + { + "start": 4078.88, + "end": 4080.8, + "probability": 0.885 + }, + { + "start": 4081.58, + "end": 4083.2, + "probability": 0.8982 + }, + { + "start": 4083.32, + "end": 4086.7, + "probability": 0.9961 + }, + { + "start": 4086.84, + "end": 4089.26, + "probability": 0.9181 + }, + { + "start": 4089.92, + "end": 4091.92, + "probability": 0.9594 + }, + { + "start": 4092.86, + "end": 4094.52, + "probability": 0.5638 + }, + { + "start": 4095.2, + "end": 4097.22, + "probability": 0.9957 + }, + { + "start": 4098.02, + "end": 4099.74, + "probability": 0.9948 + }, + { + "start": 4100.3, + "end": 4100.38, + "probability": 0.0896 + }, + { + "start": 4100.38, + "end": 4100.38, + "probability": 0.1991 + }, + { + "start": 4100.38, + "end": 4104.16, + "probability": 0.9749 + }, + { + "start": 4104.68, + "end": 4106.46, + "probability": 0.9118 + }, + { + "start": 4106.8, + "end": 4107.92, + "probability": 0.9906 + }, + { + "start": 4108.46, + "end": 4109.11, + "probability": 0.5029 + }, + { + "start": 4109.76, + "end": 4114.18, + "probability": 0.9838 + }, + { + "start": 4114.78, + "end": 4117.38, + "probability": 0.9326 + }, + { + "start": 4118.62, + "end": 4121.96, + "probability": 0.9882 + }, + { + "start": 4121.96, + "end": 4125.12, + "probability": 0.9559 + }, + { + "start": 4125.8, + "end": 4126.98, + "probability": 0.6518 + }, + { + "start": 4127.52, + "end": 4131.34, + "probability": 0.8858 + }, + { + "start": 4133.28, + "end": 4133.44, + "probability": 0.4097 + }, + { + "start": 4134.48, + "end": 4135.68, + "probability": 0.8679 + }, + { + "start": 4139.36, + "end": 4143.86, + "probability": 0.0765 + }, + { + "start": 4144.36, + "end": 4147.5, + "probability": 0.0312 + }, + { + "start": 4147.5, + "end": 4147.5, + "probability": 0.0986 + }, + { + "start": 4147.5, + "end": 4148.06, + "probability": 0.2875 + }, + { + "start": 4149.12, + "end": 4152.48, + "probability": 0.9888 + }, + { + "start": 4152.68, + "end": 4153.54, + "probability": 0.4651 + }, + { + "start": 4153.8, + "end": 4154.5, + "probability": 0.2217 + }, + { + "start": 4155.38, + "end": 4158.04, + "probability": 0.0797 + }, + { + "start": 4159.14, + "end": 4162.66, + "probability": 0.5609 + }, + { + "start": 4163.76, + "end": 4164.1, + "probability": 0.128 + }, + { + "start": 4164.1, + "end": 4164.1, + "probability": 0.42 + }, + { + "start": 4164.1, + "end": 4164.1, + "probability": 0.2677 + }, + { + "start": 4164.1, + "end": 4164.1, + "probability": 0.0206 + }, + { + "start": 4164.1, + "end": 4166.14, + "probability": 0.6784 + }, + { + "start": 4167.3, + "end": 4170.38, + "probability": 0.98 + }, + { + "start": 4170.5, + "end": 4173.02, + "probability": 0.9475 + }, + { + "start": 4173.16, + "end": 4173.84, + "probability": 0.684 + }, + { + "start": 4174.52, + "end": 4176.8, + "probability": 0.7295 + }, + { + "start": 4176.8, + "end": 4180.12, + "probability": 0.9966 + }, + { + "start": 4180.62, + "end": 4182.86, + "probability": 0.9789 + }, + { + "start": 4183.28, + "end": 4186.88, + "probability": 0.9829 + }, + { + "start": 4187.24, + "end": 4188.8, + "probability": 0.9765 + }, + { + "start": 4189.16, + "end": 4190.44, + "probability": 0.7709 + }, + { + "start": 4190.52, + "end": 4191.14, + "probability": 0.6742 + }, + { + "start": 4191.62, + "end": 4195.76, + "probability": 0.9915 + }, + { + "start": 4196.48, + "end": 4197.3, + "probability": 0.6075 + }, + { + "start": 4198.02, + "end": 4204.16, + "probability": 0.9849 + }, + { + "start": 4204.52, + "end": 4204.88, + "probability": 0.7909 + }, + { + "start": 4205.34, + "end": 4207.6, + "probability": 0.8552 + }, + { + "start": 4208.5, + "end": 4214.04, + "probability": 0.8172 + }, + { + "start": 4215.06, + "end": 4216.02, + "probability": 0.1545 + }, + { + "start": 4218.3, + "end": 4222.1, + "probability": 0.6607 + }, + { + "start": 4222.14, + "end": 4223.46, + "probability": 0.2914 + }, + { + "start": 4223.64, + "end": 4224.0, + "probability": 0.2791 + }, + { + "start": 4224.02, + "end": 4229.6, + "probability": 0.7861 + }, + { + "start": 4230.68, + "end": 4232.02, + "probability": 0.9522 + }, + { + "start": 4240.86, + "end": 4242.06, + "probability": 0.6976 + }, + { + "start": 4242.2, + "end": 4243.74, + "probability": 0.9593 + }, + { + "start": 4244.18, + "end": 4249.68, + "probability": 0.8085 + }, + { + "start": 4250.34, + "end": 4252.46, + "probability": 0.7703 + }, + { + "start": 4253.88, + "end": 4257.06, + "probability": 0.9201 + }, + { + "start": 4257.98, + "end": 4260.7, + "probability": 0.9956 + }, + { + "start": 4261.3, + "end": 4262.02, + "probability": 0.8749 + }, + { + "start": 4263.4, + "end": 4269.86, + "probability": 0.8613 + }, + { + "start": 4270.86, + "end": 4273.32, + "probability": 0.7979 + }, + { + "start": 4274.96, + "end": 4274.96, + "probability": 0.0009 + }, + { + "start": 4276.28, + "end": 4279.46, + "probability": 0.4313 + }, + { + "start": 4279.82, + "end": 4279.82, + "probability": 0.0258 + }, + { + "start": 4280.48, + "end": 4283.33, + "probability": 0.2038 + }, + { + "start": 4283.98, + "end": 4286.7, + "probability": 0.9358 + }, + { + "start": 4287.72, + "end": 4288.98, + "probability": 0.9062 + }, + { + "start": 4289.32, + "end": 4292.96, + "probability": 0.8466 + }, + { + "start": 4292.96, + "end": 4293.98, + "probability": 0.857 + }, + { + "start": 4294.38, + "end": 4294.48, + "probability": 0.309 + }, + { + "start": 4295.48, + "end": 4295.64, + "probability": 0.043 + }, + { + "start": 4296.72, + "end": 4300.94, + "probability": 0.6036 + }, + { + "start": 4301.58, + "end": 4302.42, + "probability": 0.81 + }, + { + "start": 4302.54, + "end": 4303.58, + "probability": 0.8527 + }, + { + "start": 4303.72, + "end": 4306.0, + "probability": 0.9059 + }, + { + "start": 4306.12, + "end": 4307.36, + "probability": 0.6971 + }, + { + "start": 4309.53, + "end": 4312.65, + "probability": 0.5853 + }, + { + "start": 4315.74, + "end": 4319.58, + "probability": 0.915 + }, + { + "start": 4319.64, + "end": 4320.32, + "probability": 0.9422 + }, + { + "start": 4321.02, + "end": 4323.68, + "probability": 0.805 + }, + { + "start": 4324.44, + "end": 4325.2, + "probability": 0.8564 + }, + { + "start": 4325.36, + "end": 4327.4, + "probability": 0.5551 + }, + { + "start": 4329.04, + "end": 4336.14, + "probability": 0.9156 + }, + { + "start": 4336.26, + "end": 4337.14, + "probability": 0.9279 + }, + { + "start": 4337.34, + "end": 4342.41, + "probability": 0.6915 + }, + { + "start": 4343.14, + "end": 4346.14, + "probability": 0.7248 + }, + { + "start": 4346.3, + "end": 4348.9, + "probability": 0.9368 + }, + { + "start": 4350.34, + "end": 4354.14, + "probability": 0.8946 + }, + { + "start": 4354.76, + "end": 4358.46, + "probability": 0.8814 + }, + { + "start": 4359.06, + "end": 4361.44, + "probability": 0.8323 + }, + { + "start": 4362.3, + "end": 4363.62, + "probability": 0.9121 + }, + { + "start": 4363.76, + "end": 4364.48, + "probability": 0.9541 + }, + { + "start": 4364.6, + "end": 4365.8, + "probability": 0.9097 + }, + { + "start": 4366.08, + "end": 4371.5, + "probability": 0.9796 + }, + { + "start": 4371.64, + "end": 4373.07, + "probability": 0.9873 + }, + { + "start": 4374.08, + "end": 4379.9, + "probability": 0.9326 + }, + { + "start": 4380.46, + "end": 4381.2, + "probability": 0.7266 + }, + { + "start": 4385.03, + "end": 4391.34, + "probability": 0.9841 + }, + { + "start": 4392.86, + "end": 4398.04, + "probability": 0.9966 + }, + { + "start": 4398.4, + "end": 4402.34, + "probability": 0.8925 + }, + { + "start": 4402.5, + "end": 4405.38, + "probability": 0.981 + }, + { + "start": 4405.56, + "end": 4407.64, + "probability": 0.967 + }, + { + "start": 4407.72, + "end": 4411.04, + "probability": 0.97 + }, + { + "start": 4411.12, + "end": 4412.08, + "probability": 0.6976 + }, + { + "start": 4412.54, + "end": 4415.18, + "probability": 0.9445 + }, + { + "start": 4415.26, + "end": 4415.64, + "probability": 0.7005 + }, + { + "start": 4415.76, + "end": 4417.74, + "probability": 0.9456 + }, + { + "start": 4417.74, + "end": 4418.46, + "probability": 0.2068 + }, + { + "start": 4419.32, + "end": 4420.75, + "probability": 0.9272 + }, + { + "start": 4421.72, + "end": 4422.56, + "probability": 0.7591 + }, + { + "start": 4423.98, + "end": 4425.1, + "probability": 0.8223 + }, + { + "start": 4426.44, + "end": 4427.0, + "probability": 0.1411 + }, + { + "start": 4432.08, + "end": 4435.54, + "probability": 0.0361 + }, + { + "start": 4444.72, + "end": 4445.58, + "probability": 0.0115 + }, + { + "start": 4445.58, + "end": 4445.58, + "probability": 0.0413 + }, + { + "start": 4445.58, + "end": 4445.58, + "probability": 0.1034 + }, + { + "start": 4445.58, + "end": 4445.58, + "probability": 0.0187 + }, + { + "start": 4445.58, + "end": 4446.2, + "probability": 0.2525 + }, + { + "start": 4447.12, + "end": 4449.76, + "probability": 0.735 + }, + { + "start": 4449.96, + "end": 4451.9, + "probability": 0.9014 + }, + { + "start": 4452.19, + "end": 4455.36, + "probability": 0.8262 + }, + { + "start": 4455.42, + "end": 4456.52, + "probability": 0.2232 + }, + { + "start": 4456.56, + "end": 4458.0, + "probability": 0.6006 + }, + { + "start": 4458.14, + "end": 4460.04, + "probability": 0.9951 + }, + { + "start": 4461.7, + "end": 4462.26, + "probability": 0.4686 + }, + { + "start": 4462.54, + "end": 4464.54, + "probability": 0.5029 + }, + { + "start": 4464.58, + "end": 4465.06, + "probability": 0.7579 + }, + { + "start": 4465.14, + "end": 4470.08, + "probability": 0.9215 + }, + { + "start": 4470.92, + "end": 4471.3, + "probability": 0.1282 + }, + { + "start": 4471.32, + "end": 4472.64, + "probability": 0.7716 + }, + { + "start": 4472.72, + "end": 4480.32, + "probability": 0.6044 + }, + { + "start": 4480.44, + "end": 4482.18, + "probability": 0.6175 + }, + { + "start": 4482.28, + "end": 4484.94, + "probability": 0.7809 + }, + { + "start": 4485.52, + "end": 4488.04, + "probability": 0.7597 + }, + { + "start": 4488.2, + "end": 4489.56, + "probability": 0.806 + }, + { + "start": 4489.64, + "end": 4490.92, + "probability": 0.4223 + }, + { + "start": 4491.22, + "end": 4493.08, + "probability": 0.8268 + }, + { + "start": 4493.74, + "end": 4495.24, + "probability": 0.6362 + }, + { + "start": 4501.8, + "end": 4503.92, + "probability": 0.6207 + }, + { + "start": 4513.82, + "end": 4517.54, + "probability": 0.0983 + }, + { + "start": 4519.42, + "end": 4521.72, + "probability": 0.0654 + }, + { + "start": 4521.78, + "end": 4522.52, + "probability": 0.1871 + }, + { + "start": 4522.52, + "end": 4524.86, + "probability": 0.0462 + }, + { + "start": 4527.34, + "end": 4528.26, + "probability": 0.0974 + }, + { + "start": 4529.94, + "end": 4534.22, + "probability": 0.0525 + }, + { + "start": 4536.08, + "end": 4538.24, + "probability": 0.0268 + }, + { + "start": 4538.3, + "end": 4539.48, + "probability": 0.2287 + }, + { + "start": 4540.92, + "end": 4541.02, + "probability": 0.0028 + }, + { + "start": 4588.34, + "end": 4591.46, + "probability": 0.7051 + }, + { + "start": 4595.37, + "end": 4599.12, + "probability": 0.8936 + }, + { + "start": 4599.34, + "end": 4600.08, + "probability": 0.8735 + }, + { + "start": 4600.16, + "end": 4600.74, + "probability": 0.3865 + }, + { + "start": 4601.06, + "end": 4601.78, + "probability": 0.2281 + }, + { + "start": 4601.78, + "end": 4602.24, + "probability": 0.7313 + }, + { + "start": 4602.3, + "end": 4603.28, + "probability": 0.9252 + }, + { + "start": 4603.36, + "end": 4604.25, + "probability": 0.9778 + }, + { + "start": 4604.64, + "end": 4607.02, + "probability": 0.816 + }, + { + "start": 4607.38, + "end": 4612.42, + "probability": 0.8145 + }, + { + "start": 4616.63, + "end": 4621.76, + "probability": 0.5488 + }, + { + "start": 4621.76, + "end": 4623.9, + "probability": 0.5791 + }, + { + "start": 4623.96, + "end": 4624.96, + "probability": 0.794 + }, + { + "start": 4625.5, + "end": 4626.66, + "probability": 0.6699 + }, + { + "start": 4627.26, + "end": 4628.72, + "probability": 0.8897 + }, + { + "start": 4628.86, + "end": 4631.29, + "probability": 0.8677 + }, + { + "start": 4631.56, + "end": 4634.78, + "probability": 0.8446 + }, + { + "start": 4634.86, + "end": 4636.24, + "probability": 0.8285 + }, + { + "start": 4636.4, + "end": 4638.42, + "probability": 0.6589 + }, + { + "start": 4638.9, + "end": 4645.16, + "probability": 0.9641 + }, + { + "start": 4645.8, + "end": 4650.38, + "probability": 0.9944 + }, + { + "start": 4650.68, + "end": 4651.2, + "probability": 0.9412 + }, + { + "start": 4652.14, + "end": 4654.44, + "probability": 0.897 + }, + { + "start": 4655.06, + "end": 4657.46, + "probability": 0.9982 + }, + { + "start": 4658.02, + "end": 4663.64, + "probability": 0.9856 + }, + { + "start": 4663.76, + "end": 4665.14, + "probability": 0.983 + }, + { + "start": 4666.48, + "end": 4667.94, + "probability": 0.9973 + }, + { + "start": 4668.62, + "end": 4670.9, + "probability": 0.9961 + }, + { + "start": 4671.9, + "end": 4672.52, + "probability": 0.6271 + }, + { + "start": 4673.24, + "end": 4674.94, + "probability": 0.7759 + }, + { + "start": 4675.86, + "end": 4679.6, + "probability": 0.7263 + }, + { + "start": 4681.08, + "end": 4686.2, + "probability": 0.9945 + }, + { + "start": 4686.2, + "end": 4690.72, + "probability": 0.984 + }, + { + "start": 4692.16, + "end": 4694.88, + "probability": 0.761 + }, + { + "start": 4695.56, + "end": 4697.14, + "probability": 0.9702 + }, + { + "start": 4698.74, + "end": 4700.44, + "probability": 0.9767 + }, + { + "start": 4701.28, + "end": 4702.88, + "probability": 0.9292 + }, + { + "start": 4704.1, + "end": 4706.16, + "probability": 0.9915 + }, + { + "start": 4707.06, + "end": 4709.6, + "probability": 0.6746 + }, + { + "start": 4709.76, + "end": 4712.94, + "probability": 0.8099 + }, + { + "start": 4713.6, + "end": 4716.06, + "probability": 0.8949 + }, + { + "start": 4721.06, + "end": 4721.46, + "probability": 0.5643 + }, + { + "start": 4728.54, + "end": 4730.2, + "probability": 0.7457 + }, + { + "start": 4731.44, + "end": 4733.08, + "probability": 0.9954 + }, + { + "start": 4733.34, + "end": 4735.5, + "probability": 0.9973 + }, + { + "start": 4735.54, + "end": 4737.34, + "probability": 0.8187 + }, + { + "start": 4737.46, + "end": 4738.72, + "probability": 0.9797 + }, + { + "start": 4739.48, + "end": 4741.36, + "probability": 0.9722 + }, + { + "start": 4741.52, + "end": 4743.96, + "probability": 0.9773 + }, + { + "start": 4744.36, + "end": 4744.52, + "probability": 0.6676 + }, + { + "start": 4744.58, + "end": 4745.49, + "probability": 0.9507 + }, + { + "start": 4746.24, + "end": 4746.66, + "probability": 0.9736 + }, + { + "start": 4747.0, + "end": 4747.82, + "probability": 0.9893 + }, + { + "start": 4747.94, + "end": 4748.74, + "probability": 0.9342 + }, + { + "start": 4749.06, + "end": 4751.5, + "probability": 0.9525 + }, + { + "start": 4751.56, + "end": 4753.04, + "probability": 0.9198 + }, + { + "start": 4753.1, + "end": 4755.58, + "probability": 0.9868 + }, + { + "start": 4756.34, + "end": 4758.32, + "probability": 0.9407 + }, + { + "start": 4759.2, + "end": 4761.04, + "probability": 0.9766 + }, + { + "start": 4762.08, + "end": 4762.88, + "probability": 0.8785 + }, + { + "start": 4763.0, + "end": 4766.12, + "probability": 0.9365 + }, + { + "start": 4766.76, + "end": 4769.5, + "probability": 0.9833 + }, + { + "start": 4769.88, + "end": 4772.78, + "probability": 0.9662 + }, + { + "start": 4773.93, + "end": 4776.86, + "probability": 0.8429 + }, + { + "start": 4778.62, + "end": 4779.67, + "probability": 0.8719 + }, + { + "start": 4780.36, + "end": 4781.56, + "probability": 0.9382 + }, + { + "start": 4781.64, + "end": 4783.5, + "probability": 0.8333 + }, + { + "start": 4784.28, + "end": 4786.9, + "probability": 0.8045 + }, + { + "start": 4786.9, + "end": 4787.64, + "probability": 0.6078 + }, + { + "start": 4787.96, + "end": 4788.94, + "probability": 0.8389 + }, + { + "start": 4789.02, + "end": 4791.5, + "probability": 0.9028 + }, + { + "start": 4792.14, + "end": 4793.74, + "probability": 0.8709 + }, + { + "start": 4794.26, + "end": 4795.78, + "probability": 0.7801 + }, + { + "start": 4795.86, + "end": 4798.92, + "probability": 0.8243 + }, + { + "start": 4799.44, + "end": 4803.42, + "probability": 0.9857 + }, + { + "start": 4804.44, + "end": 4807.02, + "probability": 0.9828 + }, + { + "start": 4808.06, + "end": 4812.1, + "probability": 0.769 + }, + { + "start": 4812.26, + "end": 4813.7, + "probability": 0.9718 + }, + { + "start": 4814.7, + "end": 4815.78, + "probability": 0.9414 + }, + { + "start": 4816.56, + "end": 4822.0, + "probability": 0.8344 + }, + { + "start": 4822.66, + "end": 4826.34, + "probability": 0.9774 + }, + { + "start": 4827.12, + "end": 4828.42, + "probability": 0.9594 + }, + { + "start": 4828.5, + "end": 4831.34, + "probability": 0.9706 + }, + { + "start": 4831.84, + "end": 4833.26, + "probability": 0.9619 + }, + { + "start": 4834.02, + "end": 4836.8, + "probability": 0.9891 + }, + { + "start": 4837.24, + "end": 4840.58, + "probability": 0.9936 + }, + { + "start": 4840.58, + "end": 4845.24, + "probability": 0.9989 + }, + { + "start": 4845.3, + "end": 4846.08, + "probability": 0.2158 + }, + { + "start": 4846.54, + "end": 4849.2, + "probability": 0.9531 + }, + { + "start": 4849.82, + "end": 4852.82, + "probability": 0.9951 + }, + { + "start": 4852.82, + "end": 4856.14, + "probability": 0.9698 + }, + { + "start": 4856.2, + "end": 4859.66, + "probability": 0.9858 + }, + { + "start": 4859.8, + "end": 4860.84, + "probability": 0.7889 + }, + { + "start": 4861.16, + "end": 4862.84, + "probability": 0.9941 + }, + { + "start": 4863.58, + "end": 4864.94, + "probability": 0.7277 + }, + { + "start": 4865.5, + "end": 4865.52, + "probability": 0.182 + }, + { + "start": 4865.52, + "end": 4867.86, + "probability": 0.8242 + }, + { + "start": 4868.46, + "end": 4873.2, + "probability": 0.9914 + }, + { + "start": 4873.2, + "end": 4875.7, + "probability": 0.8166 + }, + { + "start": 4875.78, + "end": 4876.26, + "probability": 0.8121 + }, + { + "start": 4876.64, + "end": 4880.06, + "probability": 0.64 + }, + { + "start": 4880.1, + "end": 4881.94, + "probability": 0.6275 + }, + { + "start": 4882.2, + "end": 4883.36, + "probability": 0.916 + }, + { + "start": 4883.94, + "end": 4886.66, + "probability": 0.895 + }, + { + "start": 4886.7, + "end": 4888.8, + "probability": 0.7463 + }, + { + "start": 4889.08, + "end": 4890.1, + "probability": 0.4142 + }, + { + "start": 4890.68, + "end": 4892.34, + "probability": 0.8779 + }, + { + "start": 4892.68, + "end": 4894.0, + "probability": 0.5049 + }, + { + "start": 4895.76, + "end": 4897.72, + "probability": 0.0895 + }, + { + "start": 4898.66, + "end": 4902.52, + "probability": 0.0468 + }, + { + "start": 4902.52, + "end": 4902.91, + "probability": 0.0441 + }, + { + "start": 4910.14, + "end": 4910.58, + "probability": 0.0415 + }, + { + "start": 4911.26, + "end": 4911.88, + "probability": 0.0458 + }, + { + "start": 4911.88, + "end": 4911.88, + "probability": 0.0589 + }, + { + "start": 4911.88, + "end": 4911.88, + "probability": 0.1635 + }, + { + "start": 4911.88, + "end": 4912.0, + "probability": 0.0473 + }, + { + "start": 4912.0, + "end": 4912.48, + "probability": 0.1319 + }, + { + "start": 4913.38, + "end": 4915.0, + "probability": 0.2623 + }, + { + "start": 4915.56, + "end": 4917.2, + "probability": 0.5723 + }, + { + "start": 4917.92, + "end": 4919.88, + "probability": 0.8582 + }, + { + "start": 4919.96, + "end": 4920.72, + "probability": 0.6803 + }, + { + "start": 4920.9, + "end": 4924.86, + "probability": 0.7737 + }, + { + "start": 4925.22, + "end": 4928.72, + "probability": 0.6901 + }, + { + "start": 4930.8, + "end": 4931.3, + "probability": 0.1182 + }, + { + "start": 4931.3, + "end": 4934.2, + "probability": 0.848 + }, + { + "start": 4934.82, + "end": 4940.06, + "probability": 0.9109 + }, + { + "start": 4940.18, + "end": 4941.46, + "probability": 0.5274 + }, + { + "start": 4941.9, + "end": 4942.18, + "probability": 0.6856 + }, + { + "start": 4942.24, + "end": 4942.68, + "probability": 0.5278 + }, + { + "start": 4942.86, + "end": 4946.04, + "probability": 0.9053 + }, + { + "start": 4946.04, + "end": 4950.0, + "probability": 0.8924 + }, + { + "start": 4950.76, + "end": 4953.04, + "probability": 0.9237 + }, + { + "start": 4953.04, + "end": 4956.54, + "probability": 0.6241 + }, + { + "start": 4956.72, + "end": 4962.44, + "probability": 0.9693 + }, + { + "start": 4963.08, + "end": 4967.38, + "probability": 0.5076 + }, + { + "start": 4968.04, + "end": 4970.34, + "probability": 0.7073 + }, + { + "start": 4971.52, + "end": 4972.84, + "probability": 0.0141 + }, + { + "start": 4973.1, + "end": 4974.48, + "probability": 0.9519 + }, + { + "start": 4974.48, + "end": 4977.76, + "probability": 0.7276 + }, + { + "start": 4977.84, + "end": 4979.14, + "probability": 0.7821 + }, + { + "start": 4979.37, + "end": 4983.18, + "probability": 0.7752 + }, + { + "start": 4983.18, + "end": 4983.74, + "probability": 0.5315 + }, + { + "start": 4984.06, + "end": 4985.36, + "probability": 0.8712 + }, + { + "start": 4985.46, + "end": 4987.18, + "probability": 0.8542 + }, + { + "start": 4987.38, + "end": 4988.64, + "probability": 0.4764 + }, + { + "start": 4989.34, + "end": 4989.82, + "probability": 0.8713 + }, + { + "start": 4989.9, + "end": 4990.98, + "probability": 0.8716 + }, + { + "start": 4991.36, + "end": 4992.65, + "probability": 0.9312 + }, + { + "start": 4992.94, + "end": 4996.58, + "probability": 0.6432 + }, + { + "start": 4997.54, + "end": 5004.62, + "probability": 0.9839 + }, + { + "start": 5005.42, + "end": 5009.8, + "probability": 0.9921 + }, + { + "start": 5010.28, + "end": 5014.7, + "probability": 0.9883 + }, + { + "start": 5015.44, + "end": 5017.66, + "probability": 0.9039 + }, + { + "start": 5018.86, + "end": 5021.92, + "probability": 0.9451 + }, + { + "start": 5022.56, + "end": 5023.24, + "probability": 0.8547 + }, + { + "start": 5023.8, + "end": 5026.42, + "probability": 0.9854 + }, + { + "start": 5026.52, + "end": 5030.12, + "probability": 0.9792 + }, + { + "start": 5030.32, + "end": 5030.91, + "probability": 0.9498 + }, + { + "start": 5031.4, + "end": 5034.48, + "probability": 0.9688 + }, + { + "start": 5034.78, + "end": 5037.88, + "probability": 0.9881 + }, + { + "start": 5037.88, + "end": 5041.04, + "probability": 0.9707 + }, + { + "start": 5041.48, + "end": 5046.1, + "probability": 0.9975 + }, + { + "start": 5047.04, + "end": 5051.7, + "probability": 0.8101 + }, + { + "start": 5052.52, + "end": 5053.99, + "probability": 0.9736 + }, + { + "start": 5054.46, + "end": 5057.3, + "probability": 0.9677 + }, + { + "start": 5057.72, + "end": 5059.56, + "probability": 0.9235 + }, + { + "start": 5059.74, + "end": 5062.04, + "probability": 0.88 + }, + { + "start": 5062.36, + "end": 5064.64, + "probability": 0.9707 + }, + { + "start": 5064.98, + "end": 5066.32, + "probability": 0.8994 + }, + { + "start": 5066.78, + "end": 5069.78, + "probability": 0.8864 + }, + { + "start": 5069.82, + "end": 5071.38, + "probability": 0.7471 + }, + { + "start": 5071.56, + "end": 5073.1, + "probability": 0.621 + }, + { + "start": 5073.56, + "end": 5076.08, + "probability": 0.8579 + }, + { + "start": 5080.62, + "end": 5081.52, + "probability": 0.5989 + }, + { + "start": 5081.54, + "end": 5082.54, + "probability": 0.8246 + }, + { + "start": 5082.72, + "end": 5090.18, + "probability": 0.9808 + }, + { + "start": 5091.4, + "end": 5092.76, + "probability": 0.9849 + }, + { + "start": 5093.68, + "end": 5096.74, + "probability": 0.9619 + }, + { + "start": 5097.4, + "end": 5100.62, + "probability": 0.9983 + }, + { + "start": 5101.36, + "end": 5103.12, + "probability": 0.4411 + }, + { + "start": 5104.12, + "end": 5106.76, + "probability": 0.9333 + }, + { + "start": 5107.38, + "end": 5109.04, + "probability": 0.8518 + }, + { + "start": 5110.16, + "end": 5117.08, + "probability": 0.9314 + }, + { + "start": 5117.08, + "end": 5123.22, + "probability": 0.989 + }, + { + "start": 5123.46, + "end": 5125.68, + "probability": 0.5771 + }, + { + "start": 5126.52, + "end": 5128.1, + "probability": 0.7398 + }, + { + "start": 5129.04, + "end": 5132.46, + "probability": 0.9841 + }, + { + "start": 5132.62, + "end": 5133.57, + "probability": 0.8807 + }, + { + "start": 5134.2, + "end": 5135.78, + "probability": 0.9937 + }, + { + "start": 5136.3, + "end": 5138.84, + "probability": 0.9927 + }, + { + "start": 5139.92, + "end": 5141.54, + "probability": 0.9935 + }, + { + "start": 5142.44, + "end": 5144.5, + "probability": 0.7813 + }, + { + "start": 5144.98, + "end": 5147.06, + "probability": 0.8127 + }, + { + "start": 5147.76, + "end": 5149.82, + "probability": 0.6671 + }, + { + "start": 5150.74, + "end": 5150.94, + "probability": 0.4963 + }, + { + "start": 5155.42, + "end": 5161.78, + "probability": 0.9963 + }, + { + "start": 5161.86, + "end": 5164.72, + "probability": 0.9954 + }, + { + "start": 5166.42, + "end": 5167.1, + "probability": 0.4964 + }, + { + "start": 5167.2, + "end": 5169.5, + "probability": 0.9933 + }, + { + "start": 5169.62, + "end": 5169.86, + "probability": 0.9048 + }, + { + "start": 5169.98, + "end": 5173.76, + "probability": 0.9644 + }, + { + "start": 5174.32, + "end": 5178.24, + "probability": 0.9964 + }, + { + "start": 5179.15, + "end": 5182.24, + "probability": 0.97 + }, + { + "start": 5182.78, + "end": 5185.44, + "probability": 0.9896 + }, + { + "start": 5186.28, + "end": 5192.06, + "probability": 0.9255 + }, + { + "start": 5193.14, + "end": 5193.98, + "probability": 0.8697 + }, + { + "start": 5194.16, + "end": 5200.38, + "probability": 0.9852 + }, + { + "start": 5200.38, + "end": 5203.3, + "probability": 0.7836 + }, + { + "start": 5204.6, + "end": 5204.84, + "probability": 0.1251 + }, + { + "start": 5204.92, + "end": 5206.84, + "probability": 0.9879 + }, + { + "start": 5207.96, + "end": 5210.82, + "probability": 0.9334 + }, + { + "start": 5210.82, + "end": 5213.28, + "probability": 0.9976 + }, + { + "start": 5213.88, + "end": 5218.36, + "probability": 0.9963 + }, + { + "start": 5219.26, + "end": 5221.16, + "probability": 0.8774 + }, + { + "start": 5221.36, + "end": 5225.92, + "probability": 0.9651 + }, + { + "start": 5225.96, + "end": 5228.3, + "probability": 0.9081 + }, + { + "start": 5228.98, + "end": 5233.22, + "probability": 0.9905 + }, + { + "start": 5233.22, + "end": 5236.86, + "probability": 0.9682 + }, + { + "start": 5237.96, + "end": 5239.6, + "probability": 0.6999 + }, + { + "start": 5240.26, + "end": 5241.88, + "probability": 0.9018 + }, + { + "start": 5241.98, + "end": 5247.46, + "probability": 0.9969 + }, + { + "start": 5248.48, + "end": 5251.64, + "probability": 0.9956 + }, + { + "start": 5251.64, + "end": 5254.66, + "probability": 0.9819 + }, + { + "start": 5255.08, + "end": 5256.6, + "probability": 0.9893 + }, + { + "start": 5257.12, + "end": 5257.6, + "probability": 0.5987 + }, + { + "start": 5257.72, + "end": 5263.06, + "probability": 0.9876 + }, + { + "start": 5263.06, + "end": 5267.5, + "probability": 0.9985 + }, + { + "start": 5268.32, + "end": 5269.88, + "probability": 0.9707 + }, + { + "start": 5272.58, + "end": 5276.58, + "probability": 0.9728 + }, + { + "start": 5277.36, + "end": 5278.64, + "probability": 0.9509 + }, + { + "start": 5279.54, + "end": 5280.62, + "probability": 0.9729 + }, + { + "start": 5282.12, + "end": 5286.72, + "probability": 0.9646 + }, + { + "start": 5288.23, + "end": 5292.98, + "probability": 0.8491 + }, + { + "start": 5293.08, + "end": 5296.28, + "probability": 0.9719 + }, + { + "start": 5296.28, + "end": 5296.62, + "probability": 0.3306 + }, + { + "start": 5296.66, + "end": 5299.42, + "probability": 0.9952 + }, + { + "start": 5299.9, + "end": 5303.76, + "probability": 0.9976 + }, + { + "start": 5303.76, + "end": 5307.12, + "probability": 0.9946 + }, + { + "start": 5307.66, + "end": 5309.98, + "probability": 0.9722 + }, + { + "start": 5310.06, + "end": 5313.7, + "probability": 0.9966 + }, + { + "start": 5314.44, + "end": 5318.55, + "probability": 0.9844 + }, + { + "start": 5318.66, + "end": 5322.32, + "probability": 0.6644 + }, + { + "start": 5322.46, + "end": 5322.46, + "probability": 0.0298 + }, + { + "start": 5322.46, + "end": 5322.52, + "probability": 0.0996 + }, + { + "start": 5322.52, + "end": 5323.06, + "probability": 0.734 + }, + { + "start": 5325.84, + "end": 5330.26, + "probability": 0.9855 + }, + { + "start": 5330.26, + "end": 5334.12, + "probability": 0.9929 + }, + { + "start": 5334.76, + "end": 5337.86, + "probability": 0.9271 + }, + { + "start": 5338.54, + "end": 5340.46, + "probability": 0.9702 + }, + { + "start": 5340.88, + "end": 5346.08, + "probability": 0.9741 + }, + { + "start": 5346.16, + "end": 5347.11, + "probability": 0.9966 + }, + { + "start": 5347.32, + "end": 5350.26, + "probability": 0.9645 + }, + { + "start": 5350.94, + "end": 5354.26, + "probability": 0.8718 + }, + { + "start": 5354.32, + "end": 5358.36, + "probability": 0.9797 + }, + { + "start": 5358.96, + "end": 5364.48, + "probability": 0.9747 + }, + { + "start": 5365.24, + "end": 5365.92, + "probability": 0.8938 + }, + { + "start": 5366.58, + "end": 5368.96, + "probability": 0.9091 + }, + { + "start": 5369.1, + "end": 5372.32, + "probability": 0.8473 + }, + { + "start": 5372.46, + "end": 5373.92, + "probability": 0.6897 + }, + { + "start": 5374.5, + "end": 5376.9, + "probability": 0.6642 + }, + { + "start": 5377.48, + "end": 5381.68, + "probability": 0.1188 + }, + { + "start": 5396.66, + "end": 5401.06, + "probability": 0.7469 + }, + { + "start": 5401.14, + "end": 5405.8, + "probability": 0.6969 + }, + { + "start": 5405.84, + "end": 5406.88, + "probability": 0.2865 + }, + { + "start": 5407.12, + "end": 5411.88, + "probability": 0.1444 + }, + { + "start": 5412.62, + "end": 5413.96, + "probability": 0.758 + }, + { + "start": 5415.14, + "end": 5416.06, + "probability": 0.0121 + }, + { + "start": 5425.98, + "end": 5426.08, + "probability": 0.1262 + }, + { + "start": 5426.08, + "end": 5426.08, + "probability": 0.0698 + }, + { + "start": 5426.08, + "end": 5426.52, + "probability": 0.0893 + }, + { + "start": 5426.78, + "end": 5432.14, + "probability": 0.0982 + }, + { + "start": 5434.58, + "end": 5434.68, + "probability": 0.0065 + }, + { + "start": 5435.16, + "end": 5444.3, + "probability": 0.0267 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.0, + "end": 5467.0, + "probability": 0.0 + }, + { + "start": 5467.48, + "end": 5471.6, + "probability": 0.6436 + }, + { + "start": 5471.84, + "end": 5475.36, + "probability": 0.8307 + }, + { + "start": 5486.66, + "end": 5487.98, + "probability": 0.5137 + }, + { + "start": 5487.98, + "end": 5490.18, + "probability": 0.9568 + }, + { + "start": 5491.26, + "end": 5492.81, + "probability": 0.5468 + }, + { + "start": 5492.96, + "end": 5497.38, + "probability": 0.9545 + }, + { + "start": 5498.24, + "end": 5502.82, + "probability": 0.8954 + }, + { + "start": 5502.84, + "end": 5504.22, + "probability": 0.4853 + }, + { + "start": 5505.16, + "end": 5505.16, + "probability": 0.1269 + }, + { + "start": 5505.16, + "end": 5508.42, + "probability": 0.7385 + }, + { + "start": 5509.34, + "end": 5512.06, + "probability": 0.8505 + }, + { + "start": 5512.08, + "end": 5512.34, + "probability": 0.1516 + }, + { + "start": 5512.36, + "end": 5512.56, + "probability": 0.5979 + }, + { + "start": 5512.66, + "end": 5516.38, + "probability": 0.9114 + }, + { + "start": 5516.54, + "end": 5517.5, + "probability": 0.3731 + }, + { + "start": 5517.68, + "end": 5519.7, + "probability": 0.8057 + }, + { + "start": 5519.98, + "end": 5520.62, + "probability": 0.4591 + }, + { + "start": 5520.84, + "end": 5521.5, + "probability": 0.752 + }, + { + "start": 5521.52, + "end": 5522.12, + "probability": 0.7699 + }, + { + "start": 5529.92, + "end": 5529.92, + "probability": 0.021 + }, + { + "start": 5529.92, + "end": 5529.94, + "probability": 0.0828 + }, + { + "start": 5529.94, + "end": 5529.94, + "probability": 0.1196 + }, + { + "start": 5529.94, + "end": 5529.94, + "probability": 0.061 + }, + { + "start": 5529.94, + "end": 5529.96, + "probability": 0.0 + }, + { + "start": 5540.4, + "end": 5543.18, + "probability": 0.6075 + }, + { + "start": 5543.22, + "end": 5544.74, + "probability": 0.7378 + }, + { + "start": 5545.36, + "end": 5549.48, + "probability": 0.8795 + }, + { + "start": 5549.58, + "end": 5550.66, + "probability": 0.8847 + }, + { + "start": 5551.84, + "end": 5556.84, + "probability": 0.7073 + }, + { + "start": 5557.08, + "end": 5558.84, + "probability": 0.786 + }, + { + "start": 5558.92, + "end": 5559.94, + "probability": 0.4279 + }, + { + "start": 5560.84, + "end": 5563.42, + "probability": 0.8421 + }, + { + "start": 5564.9, + "end": 5567.8, + "probability": 0.9371 + }, + { + "start": 5568.56, + "end": 5570.88, + "probability": 0.7087 + }, + { + "start": 5571.68, + "end": 5573.84, + "probability": 0.9443 + }, + { + "start": 5574.0, + "end": 5576.12, + "probability": 0.984 + }, + { + "start": 5577.94, + "end": 5579.35, + "probability": 0.7165 + }, + { + "start": 5580.48, + "end": 5582.3, + "probability": 0.226 + }, + { + "start": 5583.0, + "end": 5584.97, + "probability": 0.875 + }, + { + "start": 5585.74, + "end": 5587.34, + "probability": 0.9285 + }, + { + "start": 5592.58, + "end": 5596.34, + "probability": 0.928 + }, + { + "start": 5597.7, + "end": 5600.8, + "probability": 0.8693 + }, + { + "start": 5600.84, + "end": 5601.42, + "probability": 0.62 + }, + { + "start": 5602.76, + "end": 5607.88, + "probability": 0.733 + }, + { + "start": 5608.6, + "end": 5611.54, + "probability": 0.996 + }, + { + "start": 5612.12, + "end": 5614.06, + "probability": 0.8058 + }, + { + "start": 5614.56, + "end": 5617.26, + "probability": 0.9832 + }, + { + "start": 5617.82, + "end": 5619.18, + "probability": 0.9921 + }, + { + "start": 5619.82, + "end": 5621.2, + "probability": 0.7644 + }, + { + "start": 5621.32, + "end": 5623.82, + "probability": 0.9429 + }, + { + "start": 5624.42, + "end": 5626.44, + "probability": 0.9568 + }, + { + "start": 5626.44, + "end": 5629.78, + "probability": 0.9023 + }, + { + "start": 5630.9, + "end": 5634.84, + "probability": 0.8274 + }, + { + "start": 5634.84, + "end": 5639.02, + "probability": 0.983 + }, + { + "start": 5639.68, + "end": 5643.06, + "probability": 0.9623 + }, + { + "start": 5643.06, + "end": 5645.66, + "probability": 0.9835 + }, + { + "start": 5646.2, + "end": 5648.48, + "probability": 0.8382 + }, + { + "start": 5649.28, + "end": 5651.74, + "probability": 0.9778 + }, + { + "start": 5652.0, + "end": 5652.98, + "probability": 0.6444 + }, + { + "start": 5653.92, + "end": 5658.38, + "probability": 0.8445 + }, + { + "start": 5658.68, + "end": 5659.22, + "probability": 0.6952 + }, + { + "start": 5659.48, + "end": 5661.4, + "probability": 0.728 + }, + { + "start": 5662.34, + "end": 5667.24, + "probability": 0.9757 + }, + { + "start": 5668.4, + "end": 5671.6, + "probability": 0.8422 + }, + { + "start": 5673.36, + "end": 5677.12, + "probability": 0.0683 + }, + { + "start": 5677.58, + "end": 5678.32, + "probability": 0.158 + }, + { + "start": 5679.34, + "end": 5681.62, + "probability": 0.6744 + }, + { + "start": 5683.12, + "end": 5685.56, + "probability": 0.6341 + }, + { + "start": 5685.64, + "end": 5687.14, + "probability": 0.748 + }, + { + "start": 5687.2, + "end": 5687.86, + "probability": 0.8911 + }, + { + "start": 5690.14, + "end": 5693.7, + "probability": 0.8877 + }, + { + "start": 5694.2, + "end": 5701.44, + "probability": 0.8905 + }, + { + "start": 5701.44, + "end": 5705.77, + "probability": 0.978 + }, + { + "start": 5706.38, + "end": 5707.86, + "probability": 0.9626 + }, + { + "start": 5708.62, + "end": 5713.12, + "probability": 0.9967 + }, + { + "start": 5713.12, + "end": 5716.92, + "probability": 0.9453 + }, + { + "start": 5716.98, + "end": 5718.06, + "probability": 0.5083 + }, + { + "start": 5718.16, + "end": 5719.22, + "probability": 0.9311 + }, + { + "start": 5719.94, + "end": 5720.64, + "probability": 0.4883 + }, + { + "start": 5720.82, + "end": 5722.7, + "probability": 0.6952 + }, + { + "start": 5722.76, + "end": 5724.76, + "probability": 0.6461 + }, + { + "start": 5725.32, + "end": 5729.36, + "probability": 0.9864 + }, + { + "start": 5729.84, + "end": 5732.02, + "probability": 0.9937 + }, + { + "start": 5732.56, + "end": 5735.1, + "probability": 0.97 + }, + { + "start": 5735.92, + "end": 5738.98, + "probability": 0.8088 + }, + { + "start": 5739.64, + "end": 5743.9, + "probability": 0.9622 + }, + { + "start": 5745.64, + "end": 5746.7, + "probability": 0.7397 + }, + { + "start": 5746.74, + "end": 5747.8, + "probability": 0.7231 + }, + { + "start": 5748.38, + "end": 5750.88, + "probability": 0.7126 + }, + { + "start": 5751.04, + "end": 5751.52, + "probability": 0.7863 + }, + { + "start": 5751.92, + "end": 5753.34, + "probability": 0.948 + }, + { + "start": 5753.78, + "end": 5755.72, + "probability": 0.8708 + }, + { + "start": 5756.32, + "end": 5756.86, + "probability": 0.8313 + }, + { + "start": 5757.18, + "end": 5760.06, + "probability": 0.9878 + }, + { + "start": 5760.54, + "end": 5762.5, + "probability": 0.9528 + }, + { + "start": 5763.02, + "end": 5763.84, + "probability": 0.8169 + }, + { + "start": 5763.92, + "end": 5768.68, + "probability": 0.7921 + }, + { + "start": 5769.14, + "end": 5771.72, + "probability": 0.8875 + }, + { + "start": 5772.38, + "end": 5774.7, + "probability": 0.8642 + }, + { + "start": 5775.1, + "end": 5777.68, + "probability": 0.8752 + }, + { + "start": 5778.22, + "end": 5779.34, + "probability": 0.6804 + }, + { + "start": 5779.84, + "end": 5784.1, + "probability": 0.8775 + }, + { + "start": 5784.18, + "end": 5784.66, + "probability": 0.7518 + }, + { + "start": 5784.68, + "end": 5785.92, + "probability": 0.8826 + }, + { + "start": 5786.56, + "end": 5787.78, + "probability": 0.8255 + }, + { + "start": 5788.32, + "end": 5788.94, + "probability": 0.4456 + }, + { + "start": 5789.08, + "end": 5790.38, + "probability": 0.6576 + }, + { + "start": 5790.88, + "end": 5791.22, + "probability": 0.5119 + }, + { + "start": 5791.32, + "end": 5792.42, + "probability": 0.9753 + }, + { + "start": 5793.3, + "end": 5795.74, + "probability": 0.8396 + }, + { + "start": 5796.66, + "end": 5798.76, + "probability": 0.9527 + }, + { + "start": 5799.04, + "end": 5801.94, + "probability": 0.7694 + }, + { + "start": 5801.94, + "end": 5804.88, + "probability": 0.9792 + }, + { + "start": 5804.94, + "end": 5805.18, + "probability": 0.6625 + }, + { + "start": 5805.98, + "end": 5806.48, + "probability": 0.6934 + }, + { + "start": 5806.92, + "end": 5807.32, + "probability": 0.8275 + }, + { + "start": 5807.4, + "end": 5809.26, + "probability": 0.9032 + }, + { + "start": 5809.8, + "end": 5812.82, + "probability": 0.7103 + }, + { + "start": 5813.48, + "end": 5816.96, + "probability": 0.9072 + }, + { + "start": 5816.96, + "end": 5821.56, + "probability": 0.9161 + }, + { + "start": 5822.36, + "end": 5825.04, + "probability": 0.873 + }, + { + "start": 5825.62, + "end": 5826.78, + "probability": 0.8394 + }, + { + "start": 5826.84, + "end": 5830.56, + "probability": 0.9775 + }, + { + "start": 5831.08, + "end": 5832.06, + "probability": 0.9369 + }, + { + "start": 5832.16, + "end": 5832.78, + "probability": 0.5689 + }, + { + "start": 5832.92, + "end": 5837.8, + "probability": 0.976 + }, + { + "start": 5838.88, + "end": 5839.52, + "probability": 0.5422 + }, + { + "start": 5839.64, + "end": 5840.14, + "probability": 0.9205 + }, + { + "start": 5840.22, + "end": 5842.06, + "probability": 0.8378 + }, + { + "start": 5842.66, + "end": 5847.82, + "probability": 0.9655 + }, + { + "start": 5848.42, + "end": 5852.68, + "probability": 0.9866 + }, + { + "start": 5853.38, + "end": 5853.9, + "probability": 0.6433 + }, + { + "start": 5854.3, + "end": 5855.88, + "probability": 0.9861 + }, + { + "start": 5856.32, + "end": 5859.6, + "probability": 0.996 + }, + { + "start": 5860.38, + "end": 5863.28, + "probability": 0.9388 + }, + { + "start": 5863.82, + "end": 5866.12, + "probability": 0.9941 + }, + { + "start": 5866.7, + "end": 5873.46, + "probability": 0.7357 + }, + { + "start": 5873.52, + "end": 5878.96, + "probability": 0.707 + }, + { + "start": 5879.5, + "end": 5882.1, + "probability": 0.9034 + }, + { + "start": 5882.76, + "end": 5887.0, + "probability": 0.9692 + }, + { + "start": 5887.88, + "end": 5890.96, + "probability": 0.8978 + }, + { + "start": 5891.46, + "end": 5892.97, + "probability": 0.8923 + }, + { + "start": 5893.36, + "end": 5897.36, + "probability": 0.9331 + }, + { + "start": 5897.36, + "end": 5903.0, + "probability": 0.9041 + }, + { + "start": 5904.26, + "end": 5908.3, + "probability": 0.7283 + }, + { + "start": 5908.5, + "end": 5909.16, + "probability": 0.4143 + }, + { + "start": 5909.76, + "end": 5911.68, + "probability": 0.8699 + }, + { + "start": 5912.36, + "end": 5913.82, + "probability": 0.8384 + }, + { + "start": 5914.7, + "end": 5918.42, + "probability": 0.9771 + }, + { + "start": 5918.84, + "end": 5921.88, + "probability": 0.6578 + }, + { + "start": 5921.98, + "end": 5923.84, + "probability": 0.7568 + }, + { + "start": 5924.46, + "end": 5927.18, + "probability": 0.9643 + }, + { + "start": 5928.08, + "end": 5928.7, + "probability": 0.7561 + }, + { + "start": 5928.8, + "end": 5929.68, + "probability": 0.6391 + }, + { + "start": 5929.94, + "end": 5932.12, + "probability": 0.6287 + }, + { + "start": 5932.16, + "end": 5933.18, + "probability": 0.6719 + }, + { + "start": 5933.18, + "end": 5933.8, + "probability": 0.9037 + }, + { + "start": 5934.28, + "end": 5935.12, + "probability": 0.9937 + }, + { + "start": 5935.18, + "end": 5935.94, + "probability": 0.7059 + }, + { + "start": 5936.1, + "end": 5937.58, + "probability": 0.8905 + }, + { + "start": 5937.86, + "end": 5939.6, + "probability": 0.9279 + }, + { + "start": 5940.0, + "end": 5941.76, + "probability": 0.507 + }, + { + "start": 5942.04, + "end": 5942.54, + "probability": 0.1198 + }, + { + "start": 5942.6, + "end": 5944.7, + "probability": 0.8588 + }, + { + "start": 5945.3, + "end": 5947.3, + "probability": 0.7348 + }, + { + "start": 5948.14, + "end": 5949.17, + "probability": 0.6584 + }, + { + "start": 5950.1, + "end": 5952.36, + "probability": 0.3047 + }, + { + "start": 5952.36, + "end": 5955.82, + "probability": 0.9056 + }, + { + "start": 5956.5, + "end": 5957.84, + "probability": 0.9928 + }, + { + "start": 5958.5, + "end": 5959.1, + "probability": 0.8765 + }, + { + "start": 5959.58, + "end": 5962.82, + "probability": 0.9761 + }, + { + "start": 5963.32, + "end": 5966.88, + "probability": 0.8409 + }, + { + "start": 5967.04, + "end": 5967.76, + "probability": 0.8927 + }, + { + "start": 5967.86, + "end": 5968.46, + "probability": 0.9157 + }, + { + "start": 5968.64, + "end": 5972.76, + "probability": 0.9911 + }, + { + "start": 5972.76, + "end": 5976.66, + "probability": 0.8983 + }, + { + "start": 5978.0, + "end": 5978.8, + "probability": 0.7385 + }, + { + "start": 5979.26, + "end": 5979.32, + "probability": 0.1656 + }, + { + "start": 5979.32, + "end": 5979.7, + "probability": 0.6035 + }, + { + "start": 5979.78, + "end": 5981.32, + "probability": 0.7404 + }, + { + "start": 5981.82, + "end": 5982.68, + "probability": 0.7425 + }, + { + "start": 5982.84, + "end": 5983.28, + "probability": 0.8252 + }, + { + "start": 5983.3, + "end": 5983.82, + "probability": 0.6167 + }, + { + "start": 5983.86, + "end": 5984.12, + "probability": 0.4405 + }, + { + "start": 5984.18, + "end": 5986.48, + "probability": 0.8962 + }, + { + "start": 5986.82, + "end": 5991.8, + "probability": 0.7715 + }, + { + "start": 6003.64, + "end": 6003.84, + "probability": 0.4687 + }, + { + "start": 6003.98, + "end": 6008.34, + "probability": 0.896 + }, + { + "start": 6010.5, + "end": 6014.88, + "probability": 0.8947 + }, + { + "start": 6015.78, + "end": 6021.12, + "probability": 0.9984 + }, + { + "start": 6021.12, + "end": 6026.64, + "probability": 0.9839 + }, + { + "start": 6028.04, + "end": 6029.02, + "probability": 0.8942 + }, + { + "start": 6029.66, + "end": 6035.52, + "probability": 0.8361 + }, + { + "start": 6036.9, + "end": 6043.02, + "probability": 0.9956 + }, + { + "start": 6043.54, + "end": 6046.58, + "probability": 0.9811 + }, + { + "start": 6047.74, + "end": 6050.76, + "probability": 0.9976 + }, + { + "start": 6051.28, + "end": 6056.22, + "probability": 0.9983 + }, + { + "start": 6057.56, + "end": 6061.86, + "probability": 0.9961 + }, + { + "start": 6061.94, + "end": 6063.82, + "probability": 0.8887 + }, + { + "start": 6064.82, + "end": 6066.5, + "probability": 0.8787 + }, + { + "start": 6067.14, + "end": 6069.18, + "probability": 0.9979 + }, + { + "start": 6070.18, + "end": 6073.88, + "probability": 0.9922 + }, + { + "start": 6073.91, + "end": 6077.12, + "probability": 0.9976 + }, + { + "start": 6079.04, + "end": 6081.12, + "probability": 0.9725 + }, + { + "start": 6081.2, + "end": 6081.46, + "probability": 0.4008 + }, + { + "start": 6081.48, + "end": 6081.8, + "probability": 0.878 + }, + { + "start": 6081.88, + "end": 6085.46, + "probability": 0.9797 + }, + { + "start": 6086.78, + "end": 6092.58, + "probability": 0.9814 + }, + { + "start": 6092.94, + "end": 6093.16, + "probability": 0.8162 + }, + { + "start": 6093.28, + "end": 6098.74, + "probability": 0.7197 + }, + { + "start": 6098.86, + "end": 6098.98, + "probability": 0.7154 + }, + { + "start": 6099.06, + "end": 6100.24, + "probability": 0.812 + }, + { + "start": 6100.64, + "end": 6105.37, + "probability": 0.9881 + }, + { + "start": 6105.94, + "end": 6107.24, + "probability": 0.7869 + }, + { + "start": 6107.34, + "end": 6113.12, + "probability": 0.9853 + }, + { + "start": 6113.28, + "end": 6114.79, + "probability": 0.4224 + }, + { + "start": 6115.32, + "end": 6116.04, + "probability": 0.712 + }, + { + "start": 6116.16, + "end": 6117.0, + "probability": 0.1668 + }, + { + "start": 6117.42, + "end": 6119.8, + "probability": 0.8953 + }, + { + "start": 6120.0, + "end": 6120.52, + "probability": 0.6113 + }, + { + "start": 6121.04, + "end": 6121.96, + "probability": 0.7265 + }, + { + "start": 6128.06, + "end": 6128.76, + "probability": 0.0391 + }, + { + "start": 6128.76, + "end": 6128.82, + "probability": 0.0771 + }, + { + "start": 6128.82, + "end": 6129.06, + "probability": 0.08 + }, + { + "start": 6129.36, + "end": 6129.46, + "probability": 0.0036 + }, + { + "start": 6144.94, + "end": 6147.18, + "probability": 0.4699 + }, + { + "start": 6147.6, + "end": 6152.08, + "probability": 0.8023 + }, + { + "start": 6152.36, + "end": 6152.58, + "probability": 0.0078 + }, + { + "start": 6154.72, + "end": 6155.44, + "probability": 0.1068 + }, + { + "start": 6156.12, + "end": 6157.1, + "probability": 0.3973 + }, + { + "start": 6157.6, + "end": 6157.9, + "probability": 0.7497 + }, + { + "start": 6160.02, + "end": 6162.06, + "probability": 0.611 + }, + { + "start": 6162.62, + "end": 6163.86, + "probability": 0.8942 + }, + { + "start": 6163.9, + "end": 6164.66, + "probability": 0.8422 + }, + { + "start": 6164.66, + "end": 6169.12, + "probability": 0.9378 + }, + { + "start": 6169.12, + "end": 6172.82, + "probability": 0.9189 + }, + { + "start": 6173.68, + "end": 6175.16, + "probability": 0.9894 + }, + { + "start": 6179.46, + "end": 6180.48, + "probability": 0.4311 + }, + { + "start": 6180.62, + "end": 6181.22, + "probability": 0.7515 + }, + { + "start": 6181.58, + "end": 6182.1, + "probability": 0.4455 + }, + { + "start": 6182.46, + "end": 6187.14, + "probability": 0.8068 + }, + { + "start": 6187.24, + "end": 6190.28, + "probability": 0.7051 + }, + { + "start": 6190.4, + "end": 6191.76, + "probability": 0.6085 + }, + { + "start": 6191.96, + "end": 6192.84, + "probability": 0.1509 + }, + { + "start": 6193.48, + "end": 6196.06, + "probability": 0.7948 + }, + { + "start": 6196.68, + "end": 6199.98, + "probability": 0.8833 + }, + { + "start": 6206.7, + "end": 6207.68, + "probability": 0.6936 + }, + { + "start": 6208.08, + "end": 6209.06, + "probability": 0.5182 + }, + { + "start": 6209.14, + "end": 6209.92, + "probability": 0.7096 + }, + { + "start": 6210.04, + "end": 6210.3, + "probability": 0.815 + }, + { + "start": 6210.34, + "end": 6210.72, + "probability": 0.8344 + }, + { + "start": 6210.8, + "end": 6212.2, + "probability": 0.8201 + }, + { + "start": 6213.42, + "end": 6215.0, + "probability": 0.9846 + }, + { + "start": 6215.04, + "end": 6217.48, + "probability": 0.7564 + }, + { + "start": 6217.66, + "end": 6218.5, + "probability": 0.917 + }, + { + "start": 6220.0, + "end": 6222.62, + "probability": 0.6566 + }, + { + "start": 6223.48, + "end": 6226.22, + "probability": 0.7688 + }, + { + "start": 6226.22, + "end": 6229.52, + "probability": 0.6341 + }, + { + "start": 6230.56, + "end": 6238.88, + "probability": 0.916 + }, + { + "start": 6239.74, + "end": 6243.37, + "probability": 0.9025 + }, + { + "start": 6244.16, + "end": 6245.84, + "probability": 0.4941 + }, + { + "start": 6246.56, + "end": 6247.14, + "probability": 0.5897 + }, + { + "start": 6247.44, + "end": 6253.06, + "probability": 0.8911 + }, + { + "start": 6253.06, + "end": 6257.2, + "probability": 0.9915 + }, + { + "start": 6258.76, + "end": 6262.62, + "probability": 0.9637 + }, + { + "start": 6262.76, + "end": 6263.74, + "probability": 0.5856 + }, + { + "start": 6264.68, + "end": 6267.14, + "probability": 0.873 + }, + { + "start": 6267.88, + "end": 6270.26, + "probability": 0.9961 + }, + { + "start": 6270.34, + "end": 6271.96, + "probability": 0.998 + }, + { + "start": 6273.02, + "end": 6275.98, + "probability": 0.9954 + }, + { + "start": 6276.64, + "end": 6278.6, + "probability": 0.9859 + }, + { + "start": 6279.42, + "end": 6282.73, + "probability": 0.8511 + }, + { + "start": 6283.22, + "end": 6286.16, + "probability": 0.831 + }, + { + "start": 6286.76, + "end": 6294.24, + "probability": 0.9899 + }, + { + "start": 6294.52, + "end": 6295.22, + "probability": 0.0758 + }, + { + "start": 6295.98, + "end": 6297.12, + "probability": 0.7935 + }, + { + "start": 6297.72, + "end": 6302.86, + "probability": 0.9188 + }, + { + "start": 6303.8, + "end": 6305.66, + "probability": 0.3702 + }, + { + "start": 6305.8, + "end": 6306.84, + "probability": 0.9858 + }, + { + "start": 6306.88, + "end": 6311.3, + "probability": 0.9868 + }, + { + "start": 6312.02, + "end": 6315.32, + "probability": 0.6332 + }, + { + "start": 6315.94, + "end": 6317.6, + "probability": 0.9849 + }, + { + "start": 6317.72, + "end": 6320.82, + "probability": 0.9685 + }, + { + "start": 6321.3, + "end": 6325.46, + "probability": 0.9951 + }, + { + "start": 6325.76, + "end": 6327.92, + "probability": 0.9492 + }, + { + "start": 6328.54, + "end": 6332.32, + "probability": 0.8719 + }, + { + "start": 6333.02, + "end": 6336.3, + "probability": 0.9798 + }, + { + "start": 6336.32, + "end": 6336.9, + "probability": 0.9214 + }, + { + "start": 6337.3, + "end": 6339.56, + "probability": 0.7549 + }, + { + "start": 6340.24, + "end": 6345.58, + "probability": 0.9434 + }, + { + "start": 6345.58, + "end": 6349.22, + "probability": 0.987 + }, + { + "start": 6350.42, + "end": 6356.14, + "probability": 0.9749 + }, + { + "start": 6357.34, + "end": 6360.22, + "probability": 0.9906 + }, + { + "start": 6360.32, + "end": 6362.86, + "probability": 0.8111 + }, + { + "start": 6362.92, + "end": 6363.7, + "probability": 0.8353 + }, + { + "start": 6364.14, + "end": 6364.64, + "probability": 0.8331 + }, + { + "start": 6364.74, + "end": 6367.94, + "probability": 0.9557 + }, + { + "start": 6368.5, + "end": 6372.92, + "probability": 0.9607 + }, + { + "start": 6372.92, + "end": 6377.18, + "probability": 0.9963 + }, + { + "start": 6377.34, + "end": 6379.66, + "probability": 0.8076 + }, + { + "start": 6380.14, + "end": 6384.68, + "probability": 0.9826 + }, + { + "start": 6385.2, + "end": 6389.2, + "probability": 0.9727 + }, + { + "start": 6390.0, + "end": 6390.44, + "probability": 0.9889 + }, + { + "start": 6391.7, + "end": 6392.88, + "probability": 0.5582 + }, + { + "start": 6393.36, + "end": 6395.72, + "probability": 0.9586 + }, + { + "start": 6395.98, + "end": 6396.76, + "probability": 0.9304 + }, + { + "start": 6397.36, + "end": 6398.34, + "probability": 0.7234 + }, + { + "start": 6398.72, + "end": 6400.02, + "probability": 0.9653 + }, + { + "start": 6400.42, + "end": 6402.84, + "probability": 0.9724 + }, + { + "start": 6403.18, + "end": 6408.1, + "probability": 0.9959 + }, + { + "start": 6408.24, + "end": 6408.6, + "probability": 0.793 + }, + { + "start": 6409.48, + "end": 6413.36, + "probability": 0.9713 + }, + { + "start": 6413.46, + "end": 6413.96, + "probability": 0.9425 + }, + { + "start": 6414.06, + "end": 6414.62, + "probability": 0.69 + }, + { + "start": 6415.0, + "end": 6419.46, + "probability": 0.9269 + }, + { + "start": 6419.58, + "end": 6421.1, + "probability": 0.936 + }, + { + "start": 6421.16, + "end": 6421.78, + "probability": 0.9146 + }, + { + "start": 6421.82, + "end": 6423.18, + "probability": 0.7971 + }, + { + "start": 6424.6, + "end": 6427.4, + "probability": 0.6453 + }, + { + "start": 6428.1, + "end": 6430.26, + "probability": 0.7484 + }, + { + "start": 6430.8, + "end": 6431.92, + "probability": 0.996 + }, + { + "start": 6432.34, + "end": 6437.68, + "probability": 0.9035 + }, + { + "start": 6437.8, + "end": 6438.44, + "probability": 0.7109 + }, + { + "start": 6439.4, + "end": 6444.85, + "probability": 0.9766 + }, + { + "start": 6445.46, + "end": 6450.74, + "probability": 0.9665 + }, + { + "start": 6450.86, + "end": 6452.12, + "probability": 0.6666 + }, + { + "start": 6452.72, + "end": 6453.5, + "probability": 0.9773 + }, + { + "start": 6454.28, + "end": 6457.24, + "probability": 0.9848 + }, + { + "start": 6457.24, + "end": 6462.08, + "probability": 0.9326 + }, + { + "start": 6462.24, + "end": 6464.86, + "probability": 0.4265 + }, + { + "start": 6465.0, + "end": 6465.88, + "probability": 0.7102 + }, + { + "start": 6465.88, + "end": 6466.8, + "probability": 0.4954 + }, + { + "start": 6467.18, + "end": 6468.32, + "probability": 0.9457 + }, + { + "start": 6468.78, + "end": 6473.44, + "probability": 0.6043 + }, + { + "start": 6474.08, + "end": 6476.32, + "probability": 0.9799 + }, + { + "start": 6477.32, + "end": 6479.58, + "probability": 0.9846 + }, + { + "start": 6480.36, + "end": 6481.54, + "probability": 0.9901 + }, + { + "start": 6481.64, + "end": 6482.75, + "probability": 0.999 + }, + { + "start": 6483.52, + "end": 6486.84, + "probability": 0.9691 + }, + { + "start": 6486.88, + "end": 6489.7, + "probability": 0.5967 + }, + { + "start": 6490.6, + "end": 6494.52, + "probability": 0.653 + }, + { + "start": 6495.18, + "end": 6500.88, + "probability": 0.8896 + }, + { + "start": 6501.8, + "end": 6502.78, + "probability": 0.8455 + }, + { + "start": 6503.48, + "end": 6509.92, + "probability": 0.9964 + }, + { + "start": 6510.88, + "end": 6512.22, + "probability": 0.8543 + }, + { + "start": 6513.2, + "end": 6517.54, + "probability": 0.998 + }, + { + "start": 6518.44, + "end": 6522.5, + "probability": 0.9988 + }, + { + "start": 6523.54, + "end": 6526.16, + "probability": 0.9138 + }, + { + "start": 6528.58, + "end": 6534.72, + "probability": 0.9199 + }, + { + "start": 6535.26, + "end": 6536.56, + "probability": 0.9014 + }, + { + "start": 6536.96, + "end": 6538.38, + "probability": 0.9632 + }, + { + "start": 6538.68, + "end": 6541.26, + "probability": 0.9465 + }, + { + "start": 6542.28, + "end": 6545.48, + "probability": 0.971 + }, + { + "start": 6546.26, + "end": 6547.7, + "probability": 0.7538 + }, + { + "start": 6548.2, + "end": 6549.16, + "probability": 0.7022 + }, + { + "start": 6549.24, + "end": 6552.84, + "probability": 0.993 + }, + { + "start": 6552.84, + "end": 6556.6, + "probability": 0.994 + }, + { + "start": 6557.2, + "end": 6558.76, + "probability": 0.8919 + }, + { + "start": 6561.47, + "end": 6565.83, + "probability": 0.6927 + }, + { + "start": 6566.82, + "end": 6570.64, + "probability": 0.111 + }, + { + "start": 6571.44, + "end": 6574.1, + "probability": 0.3117 + }, + { + "start": 6574.3, + "end": 6576.12, + "probability": 0.5076 + }, + { + "start": 6576.26, + "end": 6578.13, + "probability": 0.717 + }, + { + "start": 6579.28, + "end": 6581.74, + "probability": 0.9766 + }, + { + "start": 6582.2, + "end": 6584.02, + "probability": 0.8187 + }, + { + "start": 6584.68, + "end": 6589.26, + "probability": 0.9601 + }, + { + "start": 6589.92, + "end": 6593.24, + "probability": 0.9982 + }, + { + "start": 6593.24, + "end": 6596.7, + "probability": 0.9944 + }, + { + "start": 6597.02, + "end": 6599.02, + "probability": 0.9813 + }, + { + "start": 6599.24, + "end": 6602.22, + "probability": 0.6554 + }, + { + "start": 6602.86, + "end": 6604.76, + "probability": 0.6809 + }, + { + "start": 6605.06, + "end": 6605.76, + "probability": 0.7794 + }, + { + "start": 6605.94, + "end": 6609.18, + "probability": 0.8764 + }, + { + "start": 6609.48, + "end": 6609.48, + "probability": 0.1132 + }, + { + "start": 6609.48, + "end": 6610.08, + "probability": 0.094 + }, + { + "start": 6610.08, + "end": 6613.74, + "probability": 0.7677 + }, + { + "start": 6626.2, + "end": 6627.68, + "probability": 0.6733 + }, + { + "start": 6628.58, + "end": 6630.86, + "probability": 0.8323 + }, + { + "start": 6632.08, + "end": 6633.3, + "probability": 0.7985 + }, + { + "start": 6633.42, + "end": 6637.26, + "probability": 0.8965 + }, + { + "start": 6637.98, + "end": 6639.7, + "probability": 0.7111 + }, + { + "start": 6639.72, + "end": 6641.68, + "probability": 0.9583 + }, + { + "start": 6642.1, + "end": 6644.48, + "probability": 0.9758 + }, + { + "start": 6644.58, + "end": 6645.04, + "probability": 0.6353 + }, + { + "start": 6645.12, + "end": 6645.92, + "probability": 0.6926 + }, + { + "start": 6646.4, + "end": 6654.4, + "probability": 0.9604 + }, + { + "start": 6654.96, + "end": 6657.18, + "probability": 0.736 + }, + { + "start": 6657.64, + "end": 6662.68, + "probability": 0.9802 + }, + { + "start": 6663.12, + "end": 6670.7, + "probability": 0.9951 + }, + { + "start": 6671.94, + "end": 6677.58, + "probability": 0.9443 + }, + { + "start": 6678.16, + "end": 6684.02, + "probability": 0.8988 + }, + { + "start": 6684.68, + "end": 6686.92, + "probability": 0.9855 + }, + { + "start": 6686.98, + "end": 6687.62, + "probability": 0.8127 + }, + { + "start": 6687.78, + "end": 6688.98, + "probability": 0.8468 + }, + { + "start": 6689.54, + "end": 6691.32, + "probability": 0.8569 + }, + { + "start": 6691.9, + "end": 6693.91, + "probability": 0.8304 + }, + { + "start": 6694.12, + "end": 6704.5, + "probability": 0.6294 + }, + { + "start": 6705.08, + "end": 6705.64, + "probability": 0.5994 + }, + { + "start": 6705.74, + "end": 6707.68, + "probability": 0.967 + }, + { + "start": 6707.86, + "end": 6709.58, + "probability": 0.8089 + }, + { + "start": 6710.18, + "end": 6716.24, + "probability": 0.9226 + }, + { + "start": 6716.42, + "end": 6718.2, + "probability": 0.7951 + }, + { + "start": 6718.66, + "end": 6723.42, + "probability": 0.9883 + }, + { + "start": 6725.08, + "end": 6726.52, + "probability": 0.9779 + }, + { + "start": 6726.94, + "end": 6729.78, + "probability": 0.5061 + }, + { + "start": 6729.78, + "end": 6731.31, + "probability": 0.7339 + }, + { + "start": 6731.44, + "end": 6734.3, + "probability": 0.6579 + }, + { + "start": 6734.4, + "end": 6736.66, + "probability": 0.7536 + }, + { + "start": 6736.84, + "end": 6737.52, + "probability": 0.0447 + }, + { + "start": 6737.84, + "end": 6740.42, + "probability": 0.8084 + }, + { + "start": 6740.54, + "end": 6741.06, + "probability": 0.6018 + }, + { + "start": 6741.12, + "end": 6741.78, + "probability": 0.8424 + }, + { + "start": 6742.12, + "end": 6746.18, + "probability": 0.126 + }, + { + "start": 6749.36, + "end": 6752.76, + "probability": 0.0582 + }, + { + "start": 6752.76, + "end": 6756.42, + "probability": 0.0532 + }, + { + "start": 6758.29, + "end": 6758.64, + "probability": 0.0435 + }, + { + "start": 6759.62, + "end": 6762.08, + "probability": 0.8967 + }, + { + "start": 6762.62, + "end": 6763.58, + "probability": 0.748 + }, + { + "start": 6763.8, + "end": 6764.1, + "probability": 0.4742 + }, + { + "start": 6764.16, + "end": 6764.5, + "probability": 0.3882 + }, + { + "start": 6764.64, + "end": 6768.06, + "probability": 0.7384 + }, + { + "start": 6768.06, + "end": 6772.04, + "probability": 0.9549 + }, + { + "start": 6772.04, + "end": 6772.46, + "probability": 0.3075 + }, + { + "start": 6772.6, + "end": 6775.8, + "probability": 0.8184 + }, + { + "start": 6775.86, + "end": 6778.96, + "probability": 0.9373 + }, + { + "start": 6778.96, + "end": 6781.2, + "probability": 0.9932 + }, + { + "start": 6781.4, + "end": 6782.78, + "probability": 0.2999 + }, + { + "start": 6782.96, + "end": 6785.1, + "probability": 0.7783 + }, + { + "start": 6785.58, + "end": 6788.26, + "probability": 0.7976 + }, + { + "start": 6789.48, + "end": 6791.0, + "probability": 0.5775 + }, + { + "start": 6793.68, + "end": 6793.68, + "probability": 0.0065 + }, + { + "start": 6796.58, + "end": 6801.16, + "probability": 0.8553 + }, + { + "start": 6802.52, + "end": 6803.88, + "probability": 0.7467 + }, + { + "start": 6804.38, + "end": 6806.4, + "probability": 0.8346 + }, + { + "start": 6807.36, + "end": 6810.52, + "probability": 0.9903 + }, + { + "start": 6810.52, + "end": 6814.24, + "probability": 0.9636 + }, + { + "start": 6814.76, + "end": 6815.14, + "probability": 0.6983 + }, + { + "start": 6815.5, + "end": 6817.39, + "probability": 0.824 + }, + { + "start": 6817.78, + "end": 6819.52, + "probability": 0.6707 + }, + { + "start": 6819.74, + "end": 6824.06, + "probability": 0.6176 + }, + { + "start": 6826.32, + "end": 6828.38, + "probability": 0.5459 + }, + { + "start": 6828.5, + "end": 6829.28, + "probability": 0.943 + }, + { + "start": 6830.1, + "end": 6833.58, + "probability": 0.8993 + }, + { + "start": 6834.16, + "end": 6839.14, + "probability": 0.9273 + }, + { + "start": 6839.66, + "end": 6840.22, + "probability": 0.5854 + }, + { + "start": 6840.3, + "end": 6845.2, + "probability": 0.956 + }, + { + "start": 6845.9, + "end": 6848.78, + "probability": 0.9481 + }, + { + "start": 6848.78, + "end": 6852.2, + "probability": 0.9932 + }, + { + "start": 6852.84, + "end": 6858.4, + "probability": 0.8875 + }, + { + "start": 6858.96, + "end": 6863.16, + "probability": 0.9988 + }, + { + "start": 6863.32, + "end": 6867.62, + "probability": 0.6955 + }, + { + "start": 6867.72, + "end": 6868.44, + "probability": 0.8634 + }, + { + "start": 6868.56, + "end": 6869.38, + "probability": 0.8153 + }, + { + "start": 6869.82, + "end": 6872.7, + "probability": 0.9806 + }, + { + "start": 6873.32, + "end": 6875.56, + "probability": 0.9616 + }, + { + "start": 6875.68, + "end": 6876.66, + "probability": 0.8726 + }, + { + "start": 6877.38, + "end": 6881.32, + "probability": 0.9577 + }, + { + "start": 6881.32, + "end": 6884.66, + "probability": 0.9653 + }, + { + "start": 6885.24, + "end": 6886.7, + "probability": 0.7318 + }, + { + "start": 6886.76, + "end": 6888.28, + "probability": 0.8536 + }, + { + "start": 6888.7, + "end": 6890.44, + "probability": 0.7825 + }, + { + "start": 6890.86, + "end": 6893.12, + "probability": 0.9956 + }, + { + "start": 6893.6, + "end": 6896.44, + "probability": 0.877 + }, + { + "start": 6896.48, + "end": 6898.26, + "probability": 0.9946 + }, + { + "start": 6898.96, + "end": 6902.66, + "probability": 0.9546 + }, + { + "start": 6902.66, + "end": 6907.38, + "probability": 0.8378 + }, + { + "start": 6907.44, + "end": 6908.1, + "probability": 0.7917 + }, + { + "start": 6908.52, + "end": 6912.38, + "probability": 0.9937 + }, + { + "start": 6912.9, + "end": 6916.64, + "probability": 0.9935 + }, + { + "start": 6916.64, + "end": 6920.36, + "probability": 0.9863 + }, + { + "start": 6920.54, + "end": 6923.28, + "probability": 0.9847 + }, + { + "start": 6924.04, + "end": 6928.3, + "probability": 0.498 + }, + { + "start": 6928.88, + "end": 6932.62, + "probability": 0.9643 + }, + { + "start": 6933.1, + "end": 6936.68, + "probability": 0.9322 + }, + { + "start": 6937.14, + "end": 6937.3, + "probability": 0.8242 + }, + { + "start": 6937.42, + "end": 6939.66, + "probability": 0.9188 + }, + { + "start": 6939.72, + "end": 6941.52, + "probability": 0.9445 + }, + { + "start": 6941.88, + "end": 6945.24, + "probability": 0.9662 + }, + { + "start": 6945.7, + "end": 6949.81, + "probability": 0.964 + }, + { + "start": 6950.1, + "end": 6951.02, + "probability": 0.8261 + }, + { + "start": 6951.4, + "end": 6952.78, + "probability": 0.7852 + }, + { + "start": 6952.82, + "end": 6955.58, + "probability": 0.9913 + }, + { + "start": 6955.74, + "end": 6959.36, + "probability": 0.9512 + }, + { + "start": 6959.94, + "end": 6965.96, + "probability": 0.8674 + }, + { + "start": 6966.78, + "end": 6975.92, + "probability": 0.5265 + }, + { + "start": 6975.92, + "end": 6977.62, + "probability": 0.9033 + }, + { + "start": 6978.09, + "end": 6978.72, + "probability": 0.723 + }, + { + "start": 6979.72, + "end": 6980.74, + "probability": 0.2221 + }, + { + "start": 6984.76, + "end": 6985.82, + "probability": 0.2044 + }, + { + "start": 6986.0, + "end": 6987.96, + "probability": 0.3546 + }, + { + "start": 6987.96, + "end": 6988.17, + "probability": 0.0075 + }, + { + "start": 6991.12, + "end": 6993.34, + "probability": 0.0509 + }, + { + "start": 6993.82, + "end": 6995.4, + "probability": 0.7811 + }, + { + "start": 6996.78, + "end": 6997.82, + "probability": 0.6229 + }, + { + "start": 6998.9, + "end": 6999.5, + "probability": 0.4997 + }, + { + "start": 6999.84, + "end": 7005.18, + "probability": 0.9915 + }, + { + "start": 7009.6, + "end": 7012.92, + "probability": 0.8808 + }, + { + "start": 7015.84, + "end": 7017.78, + "probability": 0.9648 + }, + { + "start": 7019.34, + "end": 7020.46, + "probability": 0.8538 + }, + { + "start": 7020.66, + "end": 7020.7, + "probability": 0.0839 + }, + { + "start": 7020.84, + "end": 7021.54, + "probability": 0.6927 + }, + { + "start": 7021.72, + "end": 7026.18, + "probability": 0.9968 + }, + { + "start": 7027.6, + "end": 7033.54, + "probability": 0.9826 + }, + { + "start": 7035.34, + "end": 7036.56, + "probability": 0.6338 + }, + { + "start": 7037.3, + "end": 7039.88, + "probability": 0.2633 + }, + { + "start": 7040.04, + "end": 7043.22, + "probability": 0.924 + }, + { + "start": 7044.38, + "end": 7045.88, + "probability": 0.8929 + }, + { + "start": 7046.38, + "end": 7047.54, + "probability": 0.91 + }, + { + "start": 7047.54, + "end": 7048.62, + "probability": 0.5789 + }, + { + "start": 7048.72, + "end": 7049.48, + "probability": 0.6904 + }, + { + "start": 7049.52, + "end": 7050.32, + "probability": 0.9791 + }, + { + "start": 7051.26, + "end": 7055.8, + "probability": 0.9858 + }, + { + "start": 7056.08, + "end": 7057.58, + "probability": 0.8802 + }, + { + "start": 7058.82, + "end": 7061.1, + "probability": 0.9748 + }, + { + "start": 7061.54, + "end": 7064.6, + "probability": 0.9613 + }, + { + "start": 7065.76, + "end": 7066.82, + "probability": 0.1661 + }, + { + "start": 7067.02, + "end": 7068.42, + "probability": 0.2289 + }, + { + "start": 7068.94, + "end": 7070.94, + "probability": 0.0162 + }, + { + "start": 7071.54, + "end": 7073.06, + "probability": 0.7765 + }, + { + "start": 7074.26, + "end": 7076.8, + "probability": 0.9755 + }, + { + "start": 7078.28, + "end": 7079.94, + "probability": 0.8959 + }, + { + "start": 7080.04, + "end": 7080.86, + "probability": 0.7964 + }, + { + "start": 7081.1, + "end": 7081.36, + "probability": 0.3828 + }, + { + "start": 7082.76, + "end": 7085.52, + "probability": 0.8518 + }, + { + "start": 7085.64, + "end": 7085.82, + "probability": 0.8766 + }, + { + "start": 7085.88, + "end": 7086.56, + "probability": 0.9385 + }, + { + "start": 7086.66, + "end": 7088.18, + "probability": 0.9623 + }, + { + "start": 7089.6, + "end": 7091.06, + "probability": 0.1144 + }, + { + "start": 7091.16, + "end": 7093.18, + "probability": 0.6429 + }, + { + "start": 7093.34, + "end": 7094.84, + "probability": 0.9493 + }, + { + "start": 7094.9, + "end": 7101.04, + "probability": 0.9476 + }, + { + "start": 7101.42, + "end": 7105.1, + "probability": 0.825 + }, + { + "start": 7105.2, + "end": 7105.76, + "probability": 0.5453 + }, + { + "start": 7105.92, + "end": 7106.26, + "probability": 0.4247 + }, + { + "start": 7107.4, + "end": 7108.26, + "probability": 0.4549 + }, + { + "start": 7108.46, + "end": 7109.36, + "probability": 0.811 + }, + { + "start": 7109.46, + "end": 7111.8, + "probability": 0.8295 + }, + { + "start": 7112.32, + "end": 7113.9, + "probability": 0.9731 + }, + { + "start": 7114.84, + "end": 7116.3, + "probability": 0.8608 + }, + { + "start": 7116.4, + "end": 7116.92, + "probability": 0.9728 + }, + { + "start": 7118.62, + "end": 7120.64, + "probability": 0.933 + }, + { + "start": 7121.4, + "end": 7126.64, + "probability": 0.9308 + }, + { + "start": 7127.36, + "end": 7128.5, + "probability": 0.7573 + }, + { + "start": 7128.66, + "end": 7129.14, + "probability": 0.9482 + }, + { + "start": 7129.26, + "end": 7131.11, + "probability": 0.9819 + }, + { + "start": 7132.8, + "end": 7135.02, + "probability": 0.9796 + }, + { + "start": 7135.26, + "end": 7137.24, + "probability": 0.6174 + }, + { + "start": 7138.6, + "end": 7140.5, + "probability": 0.9413 + }, + { + "start": 7141.66, + "end": 7146.06, + "probability": 0.9114 + }, + { + "start": 7146.98, + "end": 7149.76, + "probability": 0.9244 + }, + { + "start": 7149.9, + "end": 7151.48, + "probability": 0.9984 + }, + { + "start": 7151.72, + "end": 7154.05, + "probability": 0.9948 + }, + { + "start": 7155.62, + "end": 7158.96, + "probability": 0.7966 + }, + { + "start": 7160.66, + "end": 7163.58, + "probability": 0.9286 + }, + { + "start": 7164.74, + "end": 7168.04, + "probability": 0.9771 + }, + { + "start": 7168.48, + "end": 7169.84, + "probability": 0.8507 + }, + { + "start": 7170.2, + "end": 7171.46, + "probability": 0.9578 + }, + { + "start": 7171.62, + "end": 7172.42, + "probability": 0.9966 + }, + { + "start": 7172.56, + "end": 7173.9, + "probability": 0.5759 + }, + { + "start": 7174.06, + "end": 7175.4, + "probability": 0.8937 + }, + { + "start": 7175.46, + "end": 7176.16, + "probability": 0.0628 + }, + { + "start": 7180.14, + "end": 7185.42, + "probability": 0.6845 + }, + { + "start": 7185.68, + "end": 7186.0, + "probability": 0.7 + }, + { + "start": 7186.04, + "end": 7187.42, + "probability": 0.978 + }, + { + "start": 7187.62, + "end": 7189.62, + "probability": 0.7114 + }, + { + "start": 7189.9, + "end": 7191.86, + "probability": 0.7662 + }, + { + "start": 7192.36, + "end": 7193.12, + "probability": 0.6654 + }, + { + "start": 7193.6, + "end": 7194.68, + "probability": 0.8357 + }, + { + "start": 7196.24, + "end": 7197.86, + "probability": 0.7727 + }, + { + "start": 7199.88, + "end": 7201.98, + "probability": 0.8749 + }, + { + "start": 7215.58, + "end": 7216.02, + "probability": 0.337 + }, + { + "start": 7216.02, + "end": 7216.02, + "probability": 0.7389 + }, + { + "start": 7216.02, + "end": 7219.36, + "probability": 0.6096 + }, + { + "start": 7219.38, + "end": 7219.66, + "probability": 0.2237 + }, + { + "start": 7219.66, + "end": 7220.34, + "probability": 0.7201 + }, + { + "start": 7220.76, + "end": 7224.14, + "probability": 0.5413 + }, + { + "start": 7224.36, + "end": 7225.86, + "probability": 0.6673 + }, + { + "start": 7226.64, + "end": 7231.99, + "probability": 0.9961 + }, + { + "start": 7232.9, + "end": 7233.28, + "probability": 0.4571 + }, + { + "start": 7233.58, + "end": 7238.7, + "probability": 0.9702 + }, + { + "start": 7238.88, + "end": 7241.08, + "probability": 0.9702 + }, + { + "start": 7241.32, + "end": 7242.95, + "probability": 0.9707 + }, + { + "start": 7245.04, + "end": 7246.09, + "probability": 0.4308 + }, + { + "start": 7246.68, + "end": 7249.66, + "probability": 0.915 + }, + { + "start": 7266.2, + "end": 7266.58, + "probability": 0.4538 + }, + { + "start": 7266.74, + "end": 7272.04, + "probability": 0.929 + }, + { + "start": 7272.04, + "end": 7277.4, + "probability": 0.8719 + }, + { + "start": 7278.2, + "end": 7285.38, + "probability": 0.98 + }, + { + "start": 7285.56, + "end": 7287.49, + "probability": 0.9597 + }, + { + "start": 7287.9, + "end": 7290.86, + "probability": 0.8754 + }, + { + "start": 7307.52, + "end": 7307.94, + "probability": 0.5895 + }, + { + "start": 7308.52, + "end": 7310.06, + "probability": 0.5692 + }, + { + "start": 7310.14, + "end": 7315.44, + "probability": 0.8219 + }, + { + "start": 7315.78, + "end": 7318.32, + "probability": 0.9563 + }, + { + "start": 7318.56, + "end": 7318.7, + "probability": 0.2956 + }, + { + "start": 7318.78, + "end": 7323.34, + "probability": 0.7763 + }, + { + "start": 7323.4, + "end": 7325.0, + "probability": 0.6916 + }, + { + "start": 7325.12, + "end": 7328.56, + "probability": 0.7956 + }, + { + "start": 7329.28, + "end": 7334.62, + "probability": 0.8818 + }, + { + "start": 7335.08, + "end": 7340.56, + "probability": 0.6864 + }, + { + "start": 7345.28, + "end": 7346.88, + "probability": 0.5207 + }, + { + "start": 7347.94, + "end": 7351.32, + "probability": 0.9711 + }, + { + "start": 7358.32, + "end": 7359.14, + "probability": 0.4943 + }, + { + "start": 7360.34, + "end": 7363.14, + "probability": 0.9912 + }, + { + "start": 7363.16, + "end": 7366.06, + "probability": 0.775 + }, + { + "start": 7366.68, + "end": 7375.3, + "probability": 0.9946 + }, + { + "start": 7376.48, + "end": 7378.76, + "probability": 0.8936 + }, + { + "start": 7379.98, + "end": 7380.28, + "probability": 0.9475 + }, + { + "start": 7380.92, + "end": 7384.06, + "probability": 0.9338 + }, + { + "start": 7384.9, + "end": 7388.06, + "probability": 0.9907 + }, + { + "start": 7389.08, + "end": 7391.34, + "probability": 0.9857 + }, + { + "start": 7392.24, + "end": 7393.96, + "probability": 0.8587 + }, + { + "start": 7394.88, + "end": 7395.96, + "probability": 0.9622 + }, + { + "start": 7396.88, + "end": 7400.74, + "probability": 0.9404 + }, + { + "start": 7401.84, + "end": 7403.42, + "probability": 0.8667 + }, + { + "start": 7405.14, + "end": 7405.92, + "probability": 0.6826 + }, + { + "start": 7410.52, + "end": 7411.66, + "probability": 0.512 + }, + { + "start": 7411.78, + "end": 7416.96, + "probability": 0.9835 + }, + { + "start": 7416.96, + "end": 7418.9, + "probability": 0.8636 + }, + { + "start": 7419.2, + "end": 7420.9, + "probability": 0.9253 + }, + { + "start": 7421.54, + "end": 7422.7, + "probability": 0.7853 + }, + { + "start": 7423.82, + "end": 7426.62, + "probability": 0.8552 + }, + { + "start": 7427.16, + "end": 7427.92, + "probability": 0.5435 + }, + { + "start": 7429.18, + "end": 7430.1, + "probability": 0.9686 + }, + { + "start": 7431.08, + "end": 7438.42, + "probability": 0.6559 + }, + { + "start": 7439.18, + "end": 7440.4, + "probability": 0.9878 + }, + { + "start": 7441.97, + "end": 7445.22, + "probability": 0.9283 + }, + { + "start": 7445.76, + "end": 7446.88, + "probability": 0.8368 + }, + { + "start": 7447.06, + "end": 7450.18, + "probability": 0.8354 + }, + { + "start": 7450.88, + "end": 7451.78, + "probability": 0.5971 + }, + { + "start": 7452.72, + "end": 7457.28, + "probability": 0.9441 + }, + { + "start": 7457.78, + "end": 7462.28, + "probability": 0.9529 + }, + { + "start": 7462.84, + "end": 7467.38, + "probability": 0.9454 + }, + { + "start": 7468.02, + "end": 7469.0, + "probability": 0.3733 + }, + { + "start": 7469.72, + "end": 7479.8, + "probability": 0.8914 + }, + { + "start": 7480.78, + "end": 7484.56, + "probability": 0.6716 + }, + { + "start": 7484.56, + "end": 7487.12, + "probability": 0.7851 + }, + { + "start": 7487.44, + "end": 7489.53, + "probability": 0.9819 + }, + { + "start": 7490.66, + "end": 7494.12, + "probability": 0.9721 + }, + { + "start": 7495.08, + "end": 7499.48, + "probability": 0.6211 + }, + { + "start": 7500.34, + "end": 7502.5, + "probability": 0.9199 + }, + { + "start": 7503.55, + "end": 7507.28, + "probability": 0.8281 + }, + { + "start": 7508.0, + "end": 7511.74, + "probability": 0.5618 + }, + { + "start": 7512.3, + "end": 7514.86, + "probability": 0.8677 + }, + { + "start": 7515.72, + "end": 7516.74, + "probability": 0.1559 + }, + { + "start": 7517.35, + "end": 7520.86, + "probability": 0.8149 + }, + { + "start": 7528.8, + "end": 7529.5, + "probability": 0.4362 + }, + { + "start": 7529.6, + "end": 7530.52, + "probability": 0.7167 + }, + { + "start": 7530.8, + "end": 7535.46, + "probability": 0.9383 + }, + { + "start": 7535.72, + "end": 7537.24, + "probability": 0.2796 + }, + { + "start": 7537.52, + "end": 7539.68, + "probability": 0.9944 + }, + { + "start": 7540.3, + "end": 7542.98, + "probability": 0.9228 + }, + { + "start": 7542.98, + "end": 7546.46, + "probability": 0.8448 + }, + { + "start": 7547.16, + "end": 7548.18, + "probability": 0.7452 + }, + { + "start": 7549.24, + "end": 7555.84, + "probability": 0.9803 + }, + { + "start": 7555.86, + "end": 7558.34, + "probability": 0.9766 + }, + { + "start": 7559.14, + "end": 7561.04, + "probability": 0.9098 + }, + { + "start": 7562.46, + "end": 7567.64, + "probability": 0.9086 + }, + { + "start": 7567.64, + "end": 7570.48, + "probability": 0.845 + }, + { + "start": 7571.98, + "end": 7572.3, + "probability": 0.6893 + }, + { + "start": 7572.58, + "end": 7574.01, + "probability": 0.9308 + }, + { + "start": 7574.65, + "end": 7576.41, + "probability": 0.7881 + }, + { + "start": 7576.57, + "end": 7580.99, + "probability": 0.8616 + }, + { + "start": 7581.39, + "end": 7581.45, + "probability": 0.2752 + }, + { + "start": 7581.55, + "end": 7581.89, + "probability": 0.6551 + }, + { + "start": 7582.01, + "end": 7583.77, + "probability": 0.9757 + }, + { + "start": 7584.31, + "end": 7586.67, + "probability": 0.5182 + }, + { + "start": 7587.25, + "end": 7588.02, + "probability": 0.6216 + }, + { + "start": 7588.13, + "end": 7591.59, + "probability": 0.8565 + }, + { + "start": 7591.61, + "end": 7592.11, + "probability": 0.6834 + }, + { + "start": 7592.17, + "end": 7592.79, + "probability": 0.6993 + }, + { + "start": 7593.29, + "end": 7594.53, + "probability": 0.7054 + }, + { + "start": 7594.65, + "end": 7595.47, + "probability": 0.5648 + }, + { + "start": 7595.49, + "end": 7596.13, + "probability": 0.5875 + }, + { + "start": 7596.17, + "end": 7597.01, + "probability": 0.5048 + }, + { + "start": 7599.81, + "end": 7601.99, + "probability": 0.2429 + }, + { + "start": 7603.01, + "end": 7603.59, + "probability": 0.028 + }, + { + "start": 7614.59, + "end": 7615.23, + "probability": 0.6025 + }, + { + "start": 7615.23, + "end": 7616.85, + "probability": 0.3635 + }, + { + "start": 7616.85, + "end": 7619.82, + "probability": 0.487 + }, + { + "start": 7624.19, + "end": 7625.71, + "probability": 0.6146 + }, + { + "start": 7625.81, + "end": 7629.61, + "probability": 0.0191 + }, + { + "start": 7629.81, + "end": 7630.46, + "probability": 0.2427 + }, + { + "start": 7630.53, + "end": 7630.55, + "probability": 0.3055 + }, + { + "start": 7631.15, + "end": 7631.15, + "probability": 0.5177 + }, + { + "start": 7645.75, + "end": 7648.45, + "probability": 0.2111 + }, + { + "start": 7649.17, + "end": 7649.73, + "probability": 0.2455 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7738.0, + "end": 7738.0, + "probability": 0.0 + }, + { + "start": 7740.54, + "end": 7741.74, + "probability": 0.1144 + }, + { + "start": 7742.06, + "end": 7744.12, + "probability": 0.2928 + }, + { + "start": 7744.32, + "end": 7747.64, + "probability": 0.6865 + }, + { + "start": 7748.2, + "end": 7749.9, + "probability": 0.7461 + }, + { + "start": 7749.9, + "end": 7751.94, + "probability": 0.917 + }, + { + "start": 7759.82, + "end": 7766.22, + "probability": 0.8342 + }, + { + "start": 7767.46, + "end": 7770.06, + "probability": 0.8107 + }, + { + "start": 7770.98, + "end": 7771.62, + "probability": 0.6073 + }, + { + "start": 7772.04, + "end": 7773.48, + "probability": 0.976 + }, + { + "start": 7773.84, + "end": 7774.83, + "probability": 0.9266 + }, + { + "start": 7775.5, + "end": 7777.16, + "probability": 0.9707 + }, + { + "start": 7777.56, + "end": 7778.73, + "probability": 0.9742 + }, + { + "start": 7779.72, + "end": 7782.74, + "probability": 0.9233 + }, + { + "start": 7783.38, + "end": 7787.92, + "probability": 0.9054 + }, + { + "start": 7788.52, + "end": 7793.14, + "probability": 0.9897 + }, + { + "start": 7793.76, + "end": 7796.52, + "probability": 0.9884 + }, + { + "start": 7797.16, + "end": 7800.16, + "probability": 0.9382 + }, + { + "start": 7801.08, + "end": 7804.4, + "probability": 0.6575 + }, + { + "start": 7805.62, + "end": 7814.22, + "probability": 0.9735 + }, + { + "start": 7815.02, + "end": 7815.64, + "probability": 0.8557 + }, + { + "start": 7815.72, + "end": 7816.04, + "probability": 0.7615 + }, + { + "start": 7816.12, + "end": 7818.64, + "probability": 0.6713 + }, + { + "start": 7818.68, + "end": 7819.92, + "probability": 0.7908 + }, + { + "start": 7820.0, + "end": 7822.72, + "probability": 0.9428 + }, + { + "start": 7823.74, + "end": 7824.32, + "probability": 0.8152 + }, + { + "start": 7825.24, + "end": 7825.7, + "probability": 0.9958 + }, + { + "start": 7826.7, + "end": 7833.5, + "probability": 0.9412 + }, + { + "start": 7834.74, + "end": 7838.76, + "probability": 0.948 + }, + { + "start": 7839.6, + "end": 7845.22, + "probability": 0.9879 + }, + { + "start": 7845.22, + "end": 7850.22, + "probability": 0.9915 + }, + { + "start": 7850.58, + "end": 7852.16, + "probability": 0.5001 + }, + { + "start": 7852.8, + "end": 7860.12, + "probability": 0.9746 + }, + { + "start": 7861.12, + "end": 7865.16, + "probability": 0.9821 + }, + { + "start": 7865.82, + "end": 7870.44, + "probability": 0.9804 + }, + { + "start": 7871.5, + "end": 7872.44, + "probability": 0.8595 + }, + { + "start": 7872.88, + "end": 7875.1, + "probability": 0.9086 + }, + { + "start": 7875.54, + "end": 7879.38, + "probability": 0.9766 + }, + { + "start": 7879.38, + "end": 7884.14, + "probability": 0.8974 + }, + { + "start": 7885.16, + "end": 7886.16, + "probability": 0.786 + }, + { + "start": 7886.84, + "end": 7888.7, + "probability": 0.965 + }, + { + "start": 7889.4, + "end": 7895.5, + "probability": 0.8812 + }, + { + "start": 7896.9, + "end": 7899.8, + "probability": 0.8963 + }, + { + "start": 7900.6, + "end": 7906.9, + "probability": 0.9822 + }, + { + "start": 7907.82, + "end": 7909.14, + "probability": 0.9709 + }, + { + "start": 7909.32, + "end": 7911.32, + "probability": 0.9904 + }, + { + "start": 7911.82, + "end": 7919.1, + "probability": 0.9782 + }, + { + "start": 7920.16, + "end": 7926.96, + "probability": 0.9871 + }, + { + "start": 7927.56, + "end": 7932.08, + "probability": 0.9966 + }, + { + "start": 7933.02, + "end": 7934.09, + "probability": 0.7707 + }, + { + "start": 7934.8, + "end": 7936.24, + "probability": 0.6509 + }, + { + "start": 7937.38, + "end": 7940.2, + "probability": 0.7334 + }, + { + "start": 7941.04, + "end": 7944.94, + "probability": 0.9969 + }, + { + "start": 7944.94, + "end": 7947.82, + "probability": 0.9988 + }, + { + "start": 7949.1, + "end": 7953.58, + "probability": 0.8909 + }, + { + "start": 7953.58, + "end": 7956.94, + "probability": 0.9943 + }, + { + "start": 7958.08, + "end": 7959.58, + "probability": 0.9655 + }, + { + "start": 7960.72, + "end": 7961.1, + "probability": 0.8507 + }, + { + "start": 7962.38, + "end": 7964.96, + "probability": 0.9897 + }, + { + "start": 7965.26, + "end": 7968.24, + "probability": 0.9503 + }, + { + "start": 7968.6, + "end": 7969.62, + "probability": 0.6668 + }, + { + "start": 7970.08, + "end": 7975.36, + "probability": 0.8886 + }, + { + "start": 7975.36, + "end": 7978.62, + "probability": 0.957 + }, + { + "start": 7979.56, + "end": 7981.06, + "probability": 0.9844 + }, + { + "start": 7981.62, + "end": 7983.02, + "probability": 0.7402 + }, + { + "start": 7983.54, + "end": 7985.94, + "probability": 0.9783 + }, + { + "start": 7987.44, + "end": 7992.22, + "probability": 0.853 + }, + { + "start": 7992.86, + "end": 7994.34, + "probability": 0.791 + }, + { + "start": 7994.74, + "end": 7998.3, + "probability": 0.9941 + }, + { + "start": 7998.3, + "end": 8002.56, + "probability": 0.9936 + }, + { + "start": 8003.62, + "end": 8004.42, + "probability": 0.4655 + }, + { + "start": 8004.54, + "end": 8009.46, + "probability": 0.9398 + }, + { + "start": 8010.48, + "end": 8010.9, + "probability": 0.82 + }, + { + "start": 8011.72, + "end": 8016.96, + "probability": 0.9954 + }, + { + "start": 8016.96, + "end": 8023.2, + "probability": 0.9512 + }, + { + "start": 8024.58, + "end": 8026.58, + "probability": 0.9194 + }, + { + "start": 8027.34, + "end": 8029.3, + "probability": 0.8188 + }, + { + "start": 8029.94, + "end": 8032.04, + "probability": 0.9175 + }, + { + "start": 8032.82, + "end": 8036.54, + "probability": 0.9787 + }, + { + "start": 8037.58, + "end": 8043.38, + "probability": 0.9087 + }, + { + "start": 8044.44, + "end": 8047.02, + "probability": 0.8283 + }, + { + "start": 8047.72, + "end": 8049.68, + "probability": 0.6144 + }, + { + "start": 8050.36, + "end": 8055.52, + "probability": 0.9481 + }, + { + "start": 8056.46, + "end": 8057.92, + "probability": 0.5363 + }, + { + "start": 8058.84, + "end": 8062.96, + "probability": 0.9814 + }, + { + "start": 8063.0, + "end": 8064.44, + "probability": 0.7129 + }, + { + "start": 8065.56, + "end": 8069.72, + "probability": 0.983 + }, + { + "start": 8069.72, + "end": 8073.14, + "probability": 0.9881 + }, + { + "start": 8073.84, + "end": 8079.38, + "probability": 0.9429 + }, + { + "start": 8080.94, + "end": 8081.42, + "probability": 0.7125 + }, + { + "start": 8082.36, + "end": 8083.62, + "probability": 0.8641 + }, + { + "start": 8083.7, + "end": 8087.14, + "probability": 0.7939 + }, + { + "start": 8087.14, + "end": 8092.02, + "probability": 0.9859 + }, + { + "start": 8093.16, + "end": 8098.22, + "probability": 0.9956 + }, + { + "start": 8099.4, + "end": 8105.14, + "probability": 0.9966 + }, + { + "start": 8106.06, + "end": 8109.76, + "probability": 0.9939 + }, + { + "start": 8110.44, + "end": 8112.94, + "probability": 0.9649 + }, + { + "start": 8113.9, + "end": 8115.38, + "probability": 0.9703 + }, + { + "start": 8115.94, + "end": 8117.34, + "probability": 0.9769 + }, + { + "start": 8118.46, + "end": 8119.34, + "probability": 0.969 + }, + { + "start": 8119.98, + "end": 8121.74, + "probability": 0.8059 + }, + { + "start": 8122.56, + "end": 8127.42, + "probability": 0.9747 + }, + { + "start": 8128.18, + "end": 8133.64, + "probability": 0.9932 + }, + { + "start": 8135.32, + "end": 8139.13, + "probability": 0.9897 + }, + { + "start": 8139.8, + "end": 8140.86, + "probability": 0.7191 + }, + { + "start": 8141.78, + "end": 8144.8, + "probability": 0.9959 + }, + { + "start": 8145.48, + "end": 8148.06, + "probability": 0.9956 + }, + { + "start": 8148.06, + "end": 8152.14, + "probability": 0.5944 + }, + { + "start": 8152.48, + "end": 8159.44, + "probability": 0.937 + }, + { + "start": 8160.56, + "end": 8164.48, + "probability": 0.7217 + }, + { + "start": 8165.0, + "end": 8166.4, + "probability": 0.9294 + }, + { + "start": 8166.8, + "end": 8169.14, + "probability": 0.7118 + }, + { + "start": 8169.54, + "end": 8173.54, + "probability": 0.9928 + }, + { + "start": 8174.54, + "end": 8179.82, + "probability": 0.984 + }, + { + "start": 8181.0, + "end": 8181.38, + "probability": 0.8511 + }, + { + "start": 8182.18, + "end": 8186.48, + "probability": 0.991 + }, + { + "start": 8187.16, + "end": 8190.24, + "probability": 0.9902 + }, + { + "start": 8191.28, + "end": 8195.84, + "probability": 0.9027 + }, + { + "start": 8196.78, + "end": 8203.16, + "probability": 0.9873 + }, + { + "start": 8204.08, + "end": 8206.6, + "probability": 0.9541 + }, + { + "start": 8207.2, + "end": 8210.42, + "probability": 0.9349 + }, + { + "start": 8210.88, + "end": 8215.18, + "probability": 0.9949 + }, + { + "start": 8215.72, + "end": 8219.5, + "probability": 0.9903 + }, + { + "start": 8220.44, + "end": 8224.78, + "probability": 0.9976 + }, + { + "start": 8224.78, + "end": 8229.06, + "probability": 0.996 + }, + { + "start": 8230.02, + "end": 8232.68, + "probability": 0.9637 + }, + { + "start": 8233.3, + "end": 8237.14, + "probability": 0.9868 + }, + { + "start": 8237.14, + "end": 8241.62, + "probability": 0.9925 + }, + { + "start": 8242.86, + "end": 8243.4, + "probability": 0.8597 + }, + { + "start": 8244.24, + "end": 8247.5, + "probability": 0.9725 + }, + { + "start": 8248.3, + "end": 8253.46, + "probability": 0.9977 + }, + { + "start": 8255.12, + "end": 8261.94, + "probability": 0.9689 + }, + { + "start": 8262.86, + "end": 8269.0, + "probability": 0.9883 + }, + { + "start": 8269.0, + "end": 8274.64, + "probability": 0.9965 + }, + { + "start": 8275.72, + "end": 8280.0, + "probability": 0.9582 + }, + { + "start": 8280.8, + "end": 8283.58, + "probability": 0.8413 + }, + { + "start": 8284.26, + "end": 8285.46, + "probability": 0.1433 + }, + { + "start": 8286.08, + "end": 8289.4, + "probability": 0.9797 + }, + { + "start": 8292.84, + "end": 8296.36, + "probability": 0.9686 + }, + { + "start": 8296.36, + "end": 8300.94, + "probability": 0.9653 + }, + { + "start": 8301.48, + "end": 8305.44, + "probability": 0.9987 + }, + { + "start": 8306.66, + "end": 8311.68, + "probability": 0.957 + }, + { + "start": 8311.68, + "end": 8316.72, + "probability": 0.9979 + }, + { + "start": 8317.28, + "end": 8323.34, + "probability": 0.959 + }, + { + "start": 8323.34, + "end": 8330.18, + "probability": 0.8976 + }, + { + "start": 8331.24, + "end": 8337.76, + "probability": 0.9901 + }, + { + "start": 8337.76, + "end": 8345.12, + "probability": 0.9993 + }, + { + "start": 8346.14, + "end": 8347.56, + "probability": 0.888 + }, + { + "start": 8348.68, + "end": 8349.7, + "probability": 0.9646 + }, + { + "start": 8350.16, + "end": 8350.6, + "probability": 0.5449 + }, + { + "start": 8350.62, + "end": 8352.3, + "probability": 0.9927 + }, + { + "start": 8352.74, + "end": 8356.48, + "probability": 0.9757 + }, + { + "start": 8357.06, + "end": 8358.7, + "probability": 0.8918 + }, + { + "start": 8360.2, + "end": 8360.2, + "probability": 0.1272 + }, + { + "start": 8366.16, + "end": 8368.08, + "probability": 0.0625 + }, + { + "start": 8380.08, + "end": 8381.52, + "probability": 0.0018 + }, + { + "start": 8382.14, + "end": 8383.44, + "probability": 0.613 + }, + { + "start": 8385.71, + "end": 8389.04, + "probability": 0.9366 + }, + { + "start": 8389.18, + "end": 8390.45, + "probability": 0.8354 + }, + { + "start": 8392.0, + "end": 8392.68, + "probability": 0.9739 + }, + { + "start": 8392.8, + "end": 8393.32, + "probability": 0.9198 + }, + { + "start": 8393.44, + "end": 8394.92, + "probability": 0.9451 + }, + { + "start": 8395.3, + "end": 8396.22, + "probability": 0.8135 + }, + { + "start": 8400.8, + "end": 8405.84, + "probability": 0.9623 + }, + { + "start": 8405.94, + "end": 8407.04, + "probability": 0.8595 + }, + { + "start": 8407.2, + "end": 8410.6, + "probability": 0.9761 + }, + { + "start": 8412.17, + "end": 8415.08, + "probability": 0.9712 + }, + { + "start": 8415.1, + "end": 8427.5, + "probability": 0.8654 + }, + { + "start": 8427.8, + "end": 8429.78, + "probability": 0.9227 + }, + { + "start": 8430.6, + "end": 8437.32, + "probability": 0.9819 + }, + { + "start": 8437.38, + "end": 8441.66, + "probability": 0.435 + }, + { + "start": 8443.06, + "end": 8446.16, + "probability": 0.9692 + }, + { + "start": 8446.84, + "end": 8448.1, + "probability": 0.7699 + }, + { + "start": 8449.68, + "end": 8451.52, + "probability": 0.9664 + }, + { + "start": 8452.3, + "end": 8454.22, + "probability": 0.8706 + }, + { + "start": 8455.06, + "end": 8458.48, + "probability": 0.9741 + }, + { + "start": 8459.38, + "end": 8461.26, + "probability": 0.8559 + }, + { + "start": 8462.24, + "end": 8464.26, + "probability": 0.9159 + }, + { + "start": 8468.04, + "end": 8472.9, + "probability": 0.8713 + }, + { + "start": 8472.9, + "end": 8474.52, + "probability": 0.7242 + }, + { + "start": 8476.18, + "end": 8477.14, + "probability": 0.506 + }, + { + "start": 8478.96, + "end": 8484.98, + "probability": 0.9907 + }, + { + "start": 8487.6, + "end": 8491.08, + "probability": 0.5579 + }, + { + "start": 8491.98, + "end": 8495.66, + "probability": 0.9937 + }, + { + "start": 8495.74, + "end": 8496.34, + "probability": 0.1548 + }, + { + "start": 8496.34, + "end": 8498.02, + "probability": 0.7726 + }, + { + "start": 8498.5, + "end": 8505.9, + "probability": 0.9718 + }, + { + "start": 8507.12, + "end": 8510.52, + "probability": 0.9974 + }, + { + "start": 8510.66, + "end": 8513.7, + "probability": 0.9989 + }, + { + "start": 8514.44, + "end": 8517.44, + "probability": 0.9937 + }, + { + "start": 8518.14, + "end": 8527.1, + "probability": 0.9894 + }, + { + "start": 8527.22, + "end": 8531.02, + "probability": 0.6081 + }, + { + "start": 8531.16, + "end": 8535.34, + "probability": 0.9696 + }, + { + "start": 8536.34, + "end": 8541.74, + "probability": 0.9682 + }, + { + "start": 8542.02, + "end": 8545.06, + "probability": 0.9637 + }, + { + "start": 8545.84, + "end": 8550.0, + "probability": 0.1991 + }, + { + "start": 8550.86, + "end": 8556.48, + "probability": 0.8726 + }, + { + "start": 8556.48, + "end": 8560.26, + "probability": 0.7767 + }, + { + "start": 8560.48, + "end": 8563.64, + "probability": 0.9453 + }, + { + "start": 8563.64, + "end": 8566.34, + "probability": 0.9844 + }, + { + "start": 8566.9, + "end": 8569.56, + "probability": 0.7955 + }, + { + "start": 8570.66, + "end": 8572.8, + "probability": 0.2114 + }, + { + "start": 8579.24, + "end": 8580.7, + "probability": 0.9898 + }, + { + "start": 8581.38, + "end": 8583.46, + "probability": 0.9912 + }, + { + "start": 8587.62, + "end": 8598.14, + "probability": 0.9163 + }, + { + "start": 8598.72, + "end": 8601.52, + "probability": 0.7017 + }, + { + "start": 8602.98, + "end": 8603.66, + "probability": 0.8737 + }, + { + "start": 8603.98, + "end": 8606.04, + "probability": 0.873 + }, + { + "start": 8606.14, + "end": 8609.54, + "probability": 0.6375 + }, + { + "start": 8610.04, + "end": 8614.2, + "probability": 0.7572 + }, + { + "start": 8614.32, + "end": 8618.06, + "probability": 0.5094 + }, + { + "start": 8618.06, + "end": 8622.7, + "probability": 0.874 + }, + { + "start": 8628.83, + "end": 8634.54, + "probability": 0.519 + }, + { + "start": 8634.84, + "end": 8635.72, + "probability": 0.863 + }, + { + "start": 8636.96, + "end": 8642.98, + "probability": 0.9109 + }, + { + "start": 8644.14, + "end": 8648.66, + "probability": 0.8178 + }, + { + "start": 8649.48, + "end": 8653.52, + "probability": 0.7492 + }, + { + "start": 8653.52, + "end": 8659.44, + "probability": 0.9653 + }, + { + "start": 8662.62, + "end": 8665.44, + "probability": 0.9932 + }, + { + "start": 8667.58, + "end": 8671.64, + "probability": 0.9438 + }, + { + "start": 8673.56, + "end": 8678.76, + "probability": 0.9037 + }, + { + "start": 8679.94, + "end": 8680.6, + "probability": 0.8909 + }, + { + "start": 8681.86, + "end": 8685.98, + "probability": 0.9692 + }, + { + "start": 8687.1, + "end": 8690.54, + "probability": 0.9962 + }, + { + "start": 8690.66, + "end": 8692.1, + "probability": 0.7983 + }, + { + "start": 8693.05, + "end": 8702.24, + "probability": 0.9863 + }, + { + "start": 8703.4, + "end": 8708.98, + "probability": 0.9648 + }, + { + "start": 8708.98, + "end": 8713.42, + "probability": 0.9476 + }, + { + "start": 8713.8, + "end": 8716.92, + "probability": 0.9666 + }, + { + "start": 8718.27, + "end": 8725.46, + "probability": 0.6657 + }, + { + "start": 8726.28, + "end": 8731.72, + "probability": 0.7932 + }, + { + "start": 8732.18, + "end": 8734.83, + "probability": 0.6593 + }, + { + "start": 8735.1, + "end": 8736.06, + "probability": 0.7958 + }, + { + "start": 8736.3, + "end": 8738.34, + "probability": 0.6403 + }, + { + "start": 8739.08, + "end": 8740.56, + "probability": 0.8729 + }, + { + "start": 8740.62, + "end": 8744.08, + "probability": 0.9514 + }, + { + "start": 8744.32, + "end": 8748.44, + "probability": 0.8152 + }, + { + "start": 8749.04, + "end": 8749.78, + "probability": 0.6563 + }, + { + "start": 8749.92, + "end": 8753.58, + "probability": 0.5697 + }, + { + "start": 8754.08, + "end": 8758.34, + "probability": 0.9185 + }, + { + "start": 8759.0, + "end": 8759.64, + "probability": 0.4451 + }, + { + "start": 8759.9, + "end": 8761.66, + "probability": 0.921 + }, + { + "start": 8761.9, + "end": 8765.54, + "probability": 0.9882 + }, + { + "start": 8766.24, + "end": 8775.66, + "probability": 0.9897 + }, + { + "start": 8775.66, + "end": 8782.68, + "probability": 0.9793 + }, + { + "start": 8783.1, + "end": 8786.29, + "probability": 0.9902 + }, + { + "start": 8786.94, + "end": 8790.36, + "probability": 0.9042 + }, + { + "start": 8790.7, + "end": 8797.3, + "probability": 0.8004 + }, + { + "start": 8797.36, + "end": 8797.8, + "probability": 0.9316 + }, + { + "start": 8799.3, + "end": 8805.02, + "probability": 0.973 + }, + { + "start": 8806.0, + "end": 8814.44, + "probability": 0.9852 + }, + { + "start": 8815.36, + "end": 8817.04, + "probability": 0.6162 + }, + { + "start": 8818.06, + "end": 8825.28, + "probability": 0.9829 + }, + { + "start": 8826.58, + "end": 8830.86, + "probability": 0.9993 + }, + { + "start": 8831.02, + "end": 8833.32, + "probability": 0.6136 + }, + { + "start": 8833.32, + "end": 8835.18, + "probability": 0.7848 + }, + { + "start": 8835.52, + "end": 8836.28, + "probability": 0.5305 + }, + { + "start": 8836.58, + "end": 8837.2, + "probability": 0.0442 + }, + { + "start": 8837.2, + "end": 8838.38, + "probability": 0.1355 + }, + { + "start": 8838.62, + "end": 8842.48, + "probability": 0.5411 + }, + { + "start": 8843.44, + "end": 8844.72, + "probability": 0.5951 + }, + { + "start": 8846.44, + "end": 8855.3, + "probability": 0.9854 + }, + { + "start": 8855.3, + "end": 8857.66, + "probability": 0.0936 + }, + { + "start": 8857.78, + "end": 8862.5, + "probability": 0.9841 + }, + { + "start": 8862.6, + "end": 8864.04, + "probability": 0.8325 + }, + { + "start": 8866.6, + "end": 8869.96, + "probability": 0.9056 + }, + { + "start": 8873.56, + "end": 8878.66, + "probability": 0.2906 + }, + { + "start": 8878.92, + "end": 8879.8, + "probability": 0.3488 + }, + { + "start": 8880.18, + "end": 8883.66, + "probability": 0.9545 + }, + { + "start": 8883.98, + "end": 8891.7, + "probability": 0.1109 + }, + { + "start": 8891.7, + "end": 8891.91, + "probability": 0.2426 + }, + { + "start": 8893.28, + "end": 8896.84, + "probability": 0.8946 + }, + { + "start": 8897.42, + "end": 8901.3, + "probability": 0.9918 + }, + { + "start": 8901.3, + "end": 8907.96, + "probability": 0.8031 + }, + { + "start": 8910.38, + "end": 8916.02, + "probability": 0.9894 + }, + { + "start": 8916.14, + "end": 8918.64, + "probability": 0.8627 + }, + { + "start": 8919.86, + "end": 8920.82, + "probability": 0.6886 + }, + { + "start": 8920.98, + "end": 8922.14, + "probability": 0.9718 + }, + { + "start": 8922.42, + "end": 8925.18, + "probability": 0.9958 + }, + { + "start": 8925.76, + "end": 8929.82, + "probability": 0.9238 + }, + { + "start": 8930.2, + "end": 8934.42, + "probability": 0.9814 + }, + { + "start": 8935.0, + "end": 8936.6, + "probability": 0.9193 + }, + { + "start": 8938.42, + "end": 8940.08, + "probability": 0.9821 + }, + { + "start": 8941.06, + "end": 8945.64, + "probability": 0.7741 + }, + { + "start": 8946.28, + "end": 8947.56, + "probability": 0.9813 + }, + { + "start": 8947.68, + "end": 8949.44, + "probability": 0.8669 + }, + { + "start": 8949.5, + "end": 8954.2, + "probability": 0.9982 + }, + { + "start": 8954.2, + "end": 8959.6, + "probability": 0.9248 + }, + { + "start": 8959.66, + "end": 8960.6, + "probability": 0.812 + }, + { + "start": 8960.8, + "end": 8963.48, + "probability": 0.955 + }, + { + "start": 8964.24, + "end": 8967.12, + "probability": 0.9857 + }, + { + "start": 8967.52, + "end": 8974.28, + "probability": 0.9647 + }, + { + "start": 8974.66, + "end": 8976.88, + "probability": 0.994 + }, + { + "start": 8976.88, + "end": 8981.86, + "probability": 0.9878 + }, + { + "start": 8982.78, + "end": 8984.14, + "probability": 0.9261 + }, + { + "start": 8984.5, + "end": 8989.38, + "probability": 0.9953 + }, + { + "start": 8989.98, + "end": 8993.8, + "probability": 0.9741 + }, + { + "start": 8995.24, + "end": 9000.64, + "probability": 0.9941 + }, + { + "start": 9000.94, + "end": 9004.65, + "probability": 0.9966 + }, + { + "start": 9005.3, + "end": 9008.06, + "probability": 0.932 + }, + { + "start": 9009.28, + "end": 9013.7, + "probability": 0.9445 + }, + { + "start": 9014.36, + "end": 9019.2, + "probability": 0.9974 + }, + { + "start": 9019.48, + "end": 9021.42, + "probability": 0.9744 + }, + { + "start": 9021.6, + "end": 9027.22, + "probability": 0.9981 + }, + { + "start": 9028.36, + "end": 9032.9, + "probability": 0.9922 + }, + { + "start": 9033.04, + "end": 9034.44, + "probability": 0.8742 + }, + { + "start": 9034.62, + "end": 9038.88, + "probability": 0.9747 + }, + { + "start": 9039.22, + "end": 9044.7, + "probability": 0.988 + }, + { + "start": 9044.7, + "end": 9049.08, + "probability": 0.9898 + }, + { + "start": 9049.66, + "end": 9050.1, + "probability": 0.5022 + }, + { + "start": 9052.4, + "end": 9054.74, + "probability": 0.6871 + }, + { + "start": 9055.38, + "end": 9064.12, + "probability": 0.9448 + }, + { + "start": 9064.14, + "end": 9065.0, + "probability": 0.6485 + }, + { + "start": 9065.06, + "end": 9065.38, + "probability": 0.6719 + }, + { + "start": 9067.52, + "end": 9073.24, + "probability": 0.9846 + }, + { + "start": 9073.42, + "end": 9076.44, + "probability": 0.9471 + }, + { + "start": 9076.7, + "end": 9078.86, + "probability": 0.0423 + }, + { + "start": 9078.88, + "end": 9083.68, + "probability": 0.9887 + }, + { + "start": 9084.56, + "end": 9086.24, + "probability": 0.7816 + }, + { + "start": 9087.22, + "end": 9090.82, + "probability": 0.9897 + }, + { + "start": 9091.76, + "end": 9094.1, + "probability": 0.9764 + }, + { + "start": 9094.9, + "end": 9098.22, + "probability": 0.9914 + }, + { + "start": 9101.48, + "end": 9105.5, + "probability": 0.9672 + }, + { + "start": 9105.6, + "end": 9106.76, + "probability": 0.7811 + }, + { + "start": 9107.4, + "end": 9109.28, + "probability": 0.774 + }, + { + "start": 9110.38, + "end": 9116.24, + "probability": 0.0439 + }, + { + "start": 9116.58, + "end": 9123.12, + "probability": 0.9933 + }, + { + "start": 9123.12, + "end": 9126.94, + "probability": 0.8582 + }, + { + "start": 9127.84, + "end": 9131.38, + "probability": 0.9281 + }, + { + "start": 9132.74, + "end": 9134.52, + "probability": 0.7624 + }, + { + "start": 9136.18, + "end": 9139.9, + "probability": 0.8552 + }, + { + "start": 9140.16, + "end": 9141.44, + "probability": 0.8484 + }, + { + "start": 9141.88, + "end": 9145.8, + "probability": 0.7676 + }, + { + "start": 9146.34, + "end": 9151.04, + "probability": 0.3894 + }, + { + "start": 9152.16, + "end": 9157.52, + "probability": 0.9482 + }, + { + "start": 9160.28, + "end": 9165.7, + "probability": 0.9598 + }, + { + "start": 9166.06, + "end": 9170.04, + "probability": 0.7315 + }, + { + "start": 9171.46, + "end": 9175.66, + "probability": 0.95 + }, + { + "start": 9176.5, + "end": 9183.68, + "probability": 0.9905 + }, + { + "start": 9183.68, + "end": 9189.6, + "probability": 0.8934 + }, + { + "start": 9190.54, + "end": 9191.88, + "probability": 0.9966 + }, + { + "start": 9192.96, + "end": 9198.9, + "probability": 0.9556 + }, + { + "start": 9198.9, + "end": 9203.26, + "probability": 0.9883 + }, + { + "start": 9203.26, + "end": 9208.6, + "probability": 0.9883 + }, + { + "start": 9208.94, + "end": 9211.52, + "probability": 0.9597 + }, + { + "start": 9211.76, + "end": 9216.14, + "probability": 0.9883 + }, + { + "start": 9216.14, + "end": 9222.78, + "probability": 0.9995 + }, + { + "start": 9225.18, + "end": 9227.76, + "probability": 0.9311 + }, + { + "start": 9228.72, + "end": 9229.88, + "probability": 0.9894 + }, + { + "start": 9230.52, + "end": 9232.98, + "probability": 0.9386 + }, + { + "start": 9233.98, + "end": 9238.58, + "probability": 0.1547 + }, + { + "start": 9239.94, + "end": 9239.94, + "probability": 0.0298 + }, + { + "start": 9239.94, + "end": 9244.84, + "probability": 0.9463 + }, + { + "start": 9245.12, + "end": 9248.46, + "probability": 0.9842 + }, + { + "start": 9248.6, + "end": 9249.84, + "probability": 0.6734 + }, + { + "start": 9250.06, + "end": 9251.16, + "probability": 0.6782 + }, + { + "start": 9254.52, + "end": 9255.84, + "probability": 0.6994 + }, + { + "start": 9258.72, + "end": 9263.02, + "probability": 0.9389 + }, + { + "start": 9263.02, + "end": 9267.7, + "probability": 0.9979 + }, + { + "start": 9268.3, + "end": 9272.38, + "probability": 0.2789 + }, + { + "start": 9272.48, + "end": 9273.02, + "probability": 0.6869 + }, + { + "start": 9273.72, + "end": 9280.64, + "probability": 0.9749 + }, + { + "start": 9281.26, + "end": 9283.86, + "probability": 0.9976 + }, + { + "start": 9284.12, + "end": 9290.52, + "probability": 0.9665 + }, + { + "start": 9291.14, + "end": 9294.56, + "probability": 0.9484 + }, + { + "start": 9297.32, + "end": 9299.06, + "probability": 0.507 + }, + { + "start": 9299.62, + "end": 9303.02, + "probability": 0.999 + }, + { + "start": 9304.18, + "end": 9311.16, + "probability": 0.9969 + }, + { + "start": 9311.98, + "end": 9313.84, + "probability": 0.7781 + }, + { + "start": 9314.2, + "end": 9320.34, + "probability": 0.9494 + }, + { + "start": 9320.56, + "end": 9321.92, + "probability": 0.9638 + }, + { + "start": 9322.12, + "end": 9325.06, + "probability": 0.9897 + }, + { + "start": 9326.32, + "end": 9328.96, + "probability": 0.9916 + }, + { + "start": 9330.06, + "end": 9336.92, + "probability": 0.834 + }, + { + "start": 9338.88, + "end": 9342.62, + "probability": 0.9868 + }, + { + "start": 9342.7, + "end": 9344.34, + "probability": 0.7712 + }, + { + "start": 9345.28, + "end": 9356.22, + "probability": 0.9837 + }, + { + "start": 9356.64, + "end": 9361.14, + "probability": 0.9157 + }, + { + "start": 9362.38, + "end": 9367.48, + "probability": 0.9653 + }, + { + "start": 9368.59, + "end": 9374.72, + "probability": 0.9943 + }, + { + "start": 9375.2, + "end": 9383.02, + "probability": 0.9598 + }, + { + "start": 9384.52, + "end": 9388.1, + "probability": 0.9973 + }, + { + "start": 9389.4, + "end": 9394.62, + "probability": 0.9761 + }, + { + "start": 9395.84, + "end": 9402.28, + "probability": 0.9972 + }, + { + "start": 9402.78, + "end": 9404.22, + "probability": 0.6731 + }, + { + "start": 9404.3, + "end": 9404.96, + "probability": 0.9231 + }, + { + "start": 9406.7, + "end": 9416.82, + "probability": 0.4694 + }, + { + "start": 9417.12, + "end": 9418.24, + "probability": 0.9652 + }, + { + "start": 9418.98, + "end": 9422.08, + "probability": 0.9917 + }, + { + "start": 9422.08, + "end": 9426.48, + "probability": 0.9983 + }, + { + "start": 9426.56, + "end": 9427.58, + "probability": 0.9962 + }, + { + "start": 9427.88, + "end": 9428.96, + "probability": 0.9932 + }, + { + "start": 9429.28, + "end": 9431.28, + "probability": 0.892 + }, + { + "start": 9431.76, + "end": 9439.64, + "probability": 0.9417 + }, + { + "start": 9443.8, + "end": 9446.76, + "probability": 0.7778 + }, + { + "start": 9447.6, + "end": 9448.6, + "probability": 0.7852 + }, + { + "start": 9452.32, + "end": 9455.22, + "probability": 0.99 + }, + { + "start": 9455.74, + "end": 9456.84, + "probability": 0.6703 + }, + { + "start": 9458.04, + "end": 9460.62, + "probability": 0.8788 + }, + { + "start": 9461.2, + "end": 9462.46, + "probability": 0.6684 + }, + { + "start": 9465.06, + "end": 9466.72, + "probability": 0.95 + }, + { + "start": 9470.94, + "end": 9471.96, + "probability": 0.2373 + }, + { + "start": 9472.58, + "end": 9473.54, + "probability": 0.3887 + }, + { + "start": 9478.04, + "end": 9478.04, + "probability": 0.0033 + }, + { + "start": 9479.78, + "end": 9482.0, + "probability": 0.8765 + }, + { + "start": 9482.54, + "end": 9487.56, + "probability": 0.9966 + }, + { + "start": 9488.72, + "end": 9489.84, + "probability": 0.5332 + }, + { + "start": 9490.52, + "end": 9491.2, + "probability": 0.8451 + }, + { + "start": 9492.0, + "end": 9495.4, + "probability": 0.6581 + }, + { + "start": 9495.58, + "end": 9497.8, + "probability": 0.9489 + }, + { + "start": 9498.76, + "end": 9505.26, + "probability": 0.9823 + }, + { + "start": 9506.48, + "end": 9509.72, + "probability": 0.5259 + }, + { + "start": 9511.1, + "end": 9513.6, + "probability": 0.9957 + }, + { + "start": 9514.48, + "end": 9521.32, + "probability": 0.8408 + }, + { + "start": 9521.96, + "end": 9524.26, + "probability": 0.9831 + }, + { + "start": 9525.26, + "end": 9531.42, + "probability": 0.6326 + }, + { + "start": 9531.78, + "end": 9534.86, + "probability": 0.611 + }, + { + "start": 9535.58, + "end": 9542.02, + "probability": 0.9734 + }, + { + "start": 9543.38, + "end": 9548.12, + "probability": 0.9941 + }, + { + "start": 9548.98, + "end": 9554.46, + "probability": 0.904 + }, + { + "start": 9554.98, + "end": 9558.16, + "probability": 0.96 + }, + { + "start": 9559.22, + "end": 9564.0, + "probability": 0.9918 + }, + { + "start": 9564.0, + "end": 9570.24, + "probability": 0.9507 + }, + { + "start": 9570.4, + "end": 9573.86, + "probability": 0.9957 + }, + { + "start": 9574.9, + "end": 9581.8, + "probability": 0.9772 + }, + { + "start": 9582.7, + "end": 9585.66, + "probability": 0.9763 + }, + { + "start": 9586.46, + "end": 9593.64, + "probability": 0.894 + }, + { + "start": 9594.48, + "end": 9600.4, + "probability": 0.9678 + }, + { + "start": 9601.2, + "end": 9604.4, + "probability": 0.9701 + }, + { + "start": 9605.2, + "end": 9607.36, + "probability": 0.8232 + }, + { + "start": 9607.48, + "end": 9609.36, + "probability": 0.8914 + }, + { + "start": 9609.38, + "end": 9612.92, + "probability": 0.8398 + }, + { + "start": 9613.3, + "end": 9614.82, + "probability": 0.9655 + }, + { + "start": 9615.98, + "end": 9620.8, + "probability": 0.9735 + }, + { + "start": 9621.34, + "end": 9622.6, + "probability": 0.918 + }, + { + "start": 9622.7, + "end": 9623.5, + "probability": 0.9683 + }, + { + "start": 9623.5, + "end": 9624.38, + "probability": 0.9876 + }, + { + "start": 9624.54, + "end": 9625.56, + "probability": 0.9146 + }, + { + "start": 9625.72, + "end": 9628.64, + "probability": 0.9879 + }, + { + "start": 9628.9, + "end": 9629.5, + "probability": 0.9152 + }, + { + "start": 9629.66, + "end": 9630.44, + "probability": 0.8438 + }, + { + "start": 9631.4, + "end": 9632.8, + "probability": 0.878 + }, + { + "start": 9633.6, + "end": 9639.3, + "probability": 0.9536 + }, + { + "start": 9639.3, + "end": 9645.88, + "probability": 0.8744 + }, + { + "start": 9647.3, + "end": 9652.0, + "probability": 0.85 + }, + { + "start": 9652.78, + "end": 9655.0, + "probability": 0.4078 + }, + { + "start": 9656.02, + "end": 9660.4, + "probability": 0.9118 + }, + { + "start": 9660.68, + "end": 9663.9, + "probability": 0.9712 + }, + { + "start": 9664.4, + "end": 9665.62, + "probability": 0.9446 + }, + { + "start": 9666.18, + "end": 9668.96, + "probability": 0.9893 + }, + { + "start": 9671.3, + "end": 9672.6, + "probability": 0.5396 + }, + { + "start": 9673.88, + "end": 9680.12, + "probability": 0.9813 + }, + { + "start": 9682.2, + "end": 9686.1, + "probability": 0.8459 + }, + { + "start": 9686.22, + "end": 9686.32, + "probability": 0.1311 + }, + { + "start": 9687.24, + "end": 9692.52, + "probability": 0.8203 + }, + { + "start": 9693.12, + "end": 9699.74, + "probability": 0.998 + }, + { + "start": 9700.44, + "end": 9704.84, + "probability": 0.8218 + }, + { + "start": 9706.02, + "end": 9710.34, + "probability": 0.9822 + }, + { + "start": 9710.34, + "end": 9713.44, + "probability": 0.9977 + }, + { + "start": 9713.44, + "end": 9718.52, + "probability": 0.9778 + }, + { + "start": 9719.92, + "end": 9723.96, + "probability": 0.9966 + }, + { + "start": 9723.96, + "end": 9727.98, + "probability": 0.6447 + }, + { + "start": 9727.98, + "end": 9733.18, + "probability": 0.9569 + }, + { + "start": 9733.84, + "end": 9736.32, + "probability": 0.8328 + }, + { + "start": 9738.06, + "end": 9740.36, + "probability": 0.9963 + }, + { + "start": 9740.5, + "end": 9742.3, + "probability": 0.4417 + }, + { + "start": 9742.56, + "end": 9744.08, + "probability": 0.9135 + }, + { + "start": 9744.5, + "end": 9746.33, + "probability": 0.9095 + }, + { + "start": 9747.92, + "end": 9750.7, + "probability": 0.9056 + }, + { + "start": 9750.76, + "end": 9756.56, + "probability": 0.9434 + }, + { + "start": 9757.16, + "end": 9760.16, + "probability": 0.7607 + }, + { + "start": 9760.62, + "end": 9769.02, + "probability": 0.9819 + }, + { + "start": 9769.86, + "end": 9774.46, + "probability": 0.991 + }, + { + "start": 9778.08, + "end": 9780.5, + "probability": 0.8689 + }, + { + "start": 9781.16, + "end": 9782.12, + "probability": 0.8546 + }, + { + "start": 9782.12, + "end": 9785.6, + "probability": 0.8765 + }, + { + "start": 9785.62, + "end": 9786.88, + "probability": 0.3799 + }, + { + "start": 9787.14, + "end": 9788.58, + "probability": 0.9857 + }, + { + "start": 9788.92, + "end": 9794.64, + "probability": 0.9698 + }, + { + "start": 9795.58, + "end": 9796.4, + "probability": 0.6682 + }, + { + "start": 9796.66, + "end": 9797.42, + "probability": 0.7278 + }, + { + "start": 9797.5, + "end": 9801.48, + "probability": 0.9634 + }, + { + "start": 9801.96, + "end": 9805.34, + "probability": 0.1316 + }, + { + "start": 9805.34, + "end": 9805.55, + "probability": 0.1303 + }, + { + "start": 9808.7, + "end": 9816.88, + "probability": 0.9619 + }, + { + "start": 9818.46, + "end": 9819.52, + "probability": 0.9004 + }, + { + "start": 9820.04, + "end": 9826.64, + "probability": 0.8907 + }, + { + "start": 9826.64, + "end": 9834.42, + "probability": 0.8063 + }, + { + "start": 9835.04, + "end": 9840.58, + "probability": 0.9331 + }, + { + "start": 9841.94, + "end": 9849.8, + "probability": 0.9807 + }, + { + "start": 9850.16, + "end": 9851.7, + "probability": 0.7681 + }, + { + "start": 9852.02, + "end": 9854.22, + "probability": 0.9783 + }, + { + "start": 9856.78, + "end": 9858.5, + "probability": 0.6817 + }, + { + "start": 9860.08, + "end": 9865.66, + "probability": 0.3837 + }, + { + "start": 9865.82, + "end": 9869.3, + "probability": 0.5858 + }, + { + "start": 9869.92, + "end": 9874.62, + "probability": 0.8933 + }, + { + "start": 9879.32, + "end": 9881.72, + "probability": 0.6871 + }, + { + "start": 9883.1, + "end": 9885.09, + "probability": 0.9526 + }, + { + "start": 9885.41, + "end": 9886.67, + "probability": 0.9574 + }, + { + "start": 9887.03, + "end": 9889.23, + "probability": 0.7162 + }, + { + "start": 9890.95, + "end": 9896.21, + "probability": 0.8828 + }, + { + "start": 9896.75, + "end": 9898.43, + "probability": 0.9924 + }, + { + "start": 9899.43, + "end": 9899.75, + "probability": 0.5363 + }, + { + "start": 9900.31, + "end": 9900.81, + "probability": 0.8931 + }, + { + "start": 9929.05, + "end": 9931.03, + "probability": 0.0663 + }, + { + "start": 9931.61, + "end": 9933.65, + "probability": 0.7092 + }, + { + "start": 9933.69, + "end": 9936.95, + "probability": 0.8633 + }, + { + "start": 9937.87, + "end": 9937.93, + "probability": 0.0063 + }, + { + "start": 10022.2, + "end": 10024.72, + "probability": 0.5005 + }, + { + "start": 10035.08, + "end": 10038.5, + "probability": 0.1484 + }, + { + "start": 10039.05, + "end": 10040.16, + "probability": 0.0865 + }, + { + "start": 10157.0, + "end": 10157.0, + "probability": 0.0 + }, + { + "start": 10157.16, + "end": 10157.24, + "probability": 0.1782 + }, + { + "start": 10157.24, + "end": 10160.42, + "probability": 0.9117 + }, + { + "start": 10161.14, + "end": 10165.1, + "probability": 0.9941 + }, + { + "start": 10165.1, + "end": 10168.44, + "probability": 0.8367 + }, + { + "start": 10168.54, + "end": 10170.7, + "probability": 0.2936 + }, + { + "start": 10170.9, + "end": 10174.08, + "probability": 0.9553 + }, + { + "start": 10174.8, + "end": 10178.02, + "probability": 0.9482 + }, + { + "start": 10178.56, + "end": 10179.06, + "probability": 0.6135 + }, + { + "start": 10191.98, + "end": 10194.72, + "probability": 0.5304 + }, + { + "start": 10195.6, + "end": 10200.1, + "probability": 0.8337 + }, + { + "start": 10201.14, + "end": 10203.42, + "probability": 0.868 + }, + { + "start": 10204.04, + "end": 10205.48, + "probability": 0.9122 + }, + { + "start": 10207.12, + "end": 10208.58, + "probability": 0.9097 + }, + { + "start": 10209.54, + "end": 10215.54, + "probability": 0.9133 + }, + { + "start": 10216.24, + "end": 10221.16, + "probability": 0.881 + }, + { + "start": 10222.22, + "end": 10224.24, + "probability": 0.8178 + }, + { + "start": 10224.94, + "end": 10228.76, + "probability": 0.4793 + }, + { + "start": 10229.92, + "end": 10232.18, + "probability": 0.9175 + }, + { + "start": 10234.02, + "end": 10234.7, + "probability": 0.5457 + }, + { + "start": 10235.72, + "end": 10238.3, + "probability": 0.581 + }, + { + "start": 10238.88, + "end": 10241.14, + "probability": 0.6271 + }, + { + "start": 10241.9, + "end": 10250.06, + "probability": 0.9379 + }, + { + "start": 10252.0, + "end": 10259.6, + "probability": 0.8368 + }, + { + "start": 10259.7, + "end": 10261.12, + "probability": 0.6074 + }, + { + "start": 10262.58, + "end": 10267.44, + "probability": 0.7504 + }, + { + "start": 10268.08, + "end": 10273.06, + "probability": 0.6506 + }, + { + "start": 10274.0, + "end": 10275.46, + "probability": 0.7747 + }, + { + "start": 10276.6, + "end": 10278.64, + "probability": 0.7569 + }, + { + "start": 10279.72, + "end": 10283.6, + "probability": 0.679 + }, + { + "start": 10283.64, + "end": 10284.56, + "probability": 0.8028 + }, + { + "start": 10285.36, + "end": 10287.62, + "probability": 0.5806 + }, + { + "start": 10287.94, + "end": 10291.96, + "probability": 0.6864 + }, + { + "start": 10294.02, + "end": 10294.65, + "probability": 0.3162 + }, + { + "start": 10298.04, + "end": 10299.6, + "probability": 0.8029 + }, + { + "start": 10300.78, + "end": 10301.4, + "probability": 0.9055 + }, + { + "start": 10302.2, + "end": 10309.18, + "probability": 0.7614 + }, + { + "start": 10309.98, + "end": 10313.46, + "probability": 0.9114 + }, + { + "start": 10314.18, + "end": 10318.96, + "probability": 0.731 + }, + { + "start": 10319.66, + "end": 10321.02, + "probability": 0.2991 + }, + { + "start": 10321.98, + "end": 10326.32, + "probability": 0.5787 + }, + { + "start": 10327.06, + "end": 10331.26, + "probability": 0.7919 + }, + { + "start": 10332.14, + "end": 10333.56, + "probability": 0.9717 + }, + { + "start": 10334.54, + "end": 10342.48, + "probability": 0.4888 + }, + { + "start": 10345.17, + "end": 10349.94, + "probability": 0.8865 + }, + { + "start": 10350.02, + "end": 10355.02, + "probability": 0.7514 + }, + { + "start": 10355.58, + "end": 10357.92, + "probability": 0.7072 + }, + { + "start": 10358.46, + "end": 10359.24, + "probability": 0.7219 + }, + { + "start": 10360.82, + "end": 10362.3, + "probability": 0.927 + }, + { + "start": 10362.62, + "end": 10366.88, + "probability": 0.6937 + }, + { + "start": 10368.67, + "end": 10371.3, + "probability": 0.6298 + }, + { + "start": 10372.92, + "end": 10375.22, + "probability": 0.3709 + }, + { + "start": 10375.86, + "end": 10380.9, + "probability": 0.8521 + }, + { + "start": 10381.44, + "end": 10382.06, + "probability": 0.2653 + }, + { + "start": 10382.48, + "end": 10388.72, + "probability": 0.9462 + }, + { + "start": 10389.24, + "end": 10390.8, + "probability": 0.6525 + }, + { + "start": 10392.16, + "end": 10395.02, + "probability": 0.6799 + }, + { + "start": 10396.3, + "end": 10400.56, + "probability": 0.9617 + }, + { + "start": 10401.32, + "end": 10404.7, + "probability": 0.1917 + }, + { + "start": 10405.16, + "end": 10407.42, + "probability": 0.7405 + }, + { + "start": 10408.02, + "end": 10408.68, + "probability": 0.9945 + }, + { + "start": 10409.28, + "end": 10412.56, + "probability": 0.6795 + }, + { + "start": 10412.78, + "end": 10416.86, + "probability": 0.8379 + }, + { + "start": 10417.54, + "end": 10419.6, + "probability": 0.8475 + }, + { + "start": 10420.36, + "end": 10424.76, + "probability": 0.943 + }, + { + "start": 10424.76, + "end": 10429.62, + "probability": 0.8734 + }, + { + "start": 10430.34, + "end": 10432.2, + "probability": 0.8779 + }, + { + "start": 10432.58, + "end": 10434.22, + "probability": 0.9594 + }, + { + "start": 10434.96, + "end": 10438.66, + "probability": 0.8315 + }, + { + "start": 10439.24, + "end": 10440.92, + "probability": 0.9575 + }, + { + "start": 10441.22, + "end": 10445.68, + "probability": 0.9172 + }, + { + "start": 10445.84, + "end": 10445.9, + "probability": 0.4809 + }, + { + "start": 10445.9, + "end": 10456.08, + "probability": 0.7719 + }, + { + "start": 10457.15, + "end": 10461.3, + "probability": 0.9888 + }, + { + "start": 10461.8, + "end": 10462.56, + "probability": 0.7284 + }, + { + "start": 10463.24, + "end": 10465.06, + "probability": 0.727 + }, + { + "start": 10465.56, + "end": 10468.68, + "probability": 0.9728 + }, + { + "start": 10470.24, + "end": 10477.82, + "probability": 0.9857 + }, + { + "start": 10478.72, + "end": 10487.36, + "probability": 0.9766 + }, + { + "start": 10488.28, + "end": 10489.8, + "probability": 0.9964 + }, + { + "start": 10491.72, + "end": 10494.5, + "probability": 0.9559 + }, + { + "start": 10495.0, + "end": 10498.28, + "probability": 0.9521 + }, + { + "start": 10499.28, + "end": 10502.14, + "probability": 0.7547 + }, + { + "start": 10502.96, + "end": 10503.84, + "probability": 0.9565 + }, + { + "start": 10505.34, + "end": 10507.92, + "probability": 0.9293 + }, + { + "start": 10507.92, + "end": 10512.95, + "probability": 0.9343 + }, + { + "start": 10514.78, + "end": 10517.35, + "probability": 0.9951 + }, + { + "start": 10518.04, + "end": 10519.42, + "probability": 0.6788 + }, + { + "start": 10519.96, + "end": 10521.08, + "probability": 0.98 + }, + { + "start": 10521.64, + "end": 10522.32, + "probability": 0.5338 + }, + { + "start": 10523.32, + "end": 10525.56, + "probability": 0.9889 + }, + { + "start": 10527.36, + "end": 10529.62, + "probability": 0.7184 + }, + { + "start": 10530.48, + "end": 10531.32, + "probability": 0.1395 + }, + { + "start": 10531.66, + "end": 10532.5, + "probability": 0.6998 + }, + { + "start": 10533.28, + "end": 10535.34, + "probability": 0.7446 + }, + { + "start": 10537.4, + "end": 10539.32, + "probability": 0.919 + }, + { + "start": 10539.7, + "end": 10542.6, + "probability": 0.9624 + }, + { + "start": 10542.92, + "end": 10543.52, + "probability": 0.8796 + }, + { + "start": 10544.44, + "end": 10544.66, + "probability": 0.3663 + }, + { + "start": 10544.7, + "end": 10546.06, + "probability": 0.8177 + }, + { + "start": 10546.22, + "end": 10549.06, + "probability": 0.8608 + }, + { + "start": 10549.14, + "end": 10549.64, + "probability": 0.4274 + }, + { + "start": 10550.92, + "end": 10552.78, + "probability": 0.3399 + }, + { + "start": 10553.96, + "end": 10555.34, + "probability": 0.9297 + }, + { + "start": 10566.94, + "end": 10569.24, + "probability": 0.6324 + }, + { + "start": 10570.34, + "end": 10572.3, + "probability": 0.9277 + }, + { + "start": 10572.82, + "end": 10573.42, + "probability": 0.6646 + }, + { + "start": 10574.6, + "end": 10577.62, + "probability": 0.921 + }, + { + "start": 10578.4, + "end": 10582.38, + "probability": 0.927 + }, + { + "start": 10583.26, + "end": 10585.0, + "probability": 0.9185 + }, + { + "start": 10586.44, + "end": 10589.72, + "probability": 0.7474 + }, + { + "start": 10590.5, + "end": 10593.5, + "probability": 0.9671 + }, + { + "start": 10593.5, + "end": 10596.4, + "probability": 0.818 + }, + { + "start": 10597.2, + "end": 10597.2, + "probability": 0.012 + }, + { + "start": 10597.2, + "end": 10597.68, + "probability": 0.4184 + }, + { + "start": 10597.8, + "end": 10600.44, + "probability": 0.9869 + }, + { + "start": 10601.36, + "end": 10604.44, + "probability": 0.9806 + }, + { + "start": 10605.1, + "end": 10607.3, + "probability": 0.9096 + }, + { + "start": 10608.06, + "end": 10612.06, + "probability": 0.9302 + }, + { + "start": 10612.06, + "end": 10617.98, + "probability": 0.9257 + }, + { + "start": 10619.22, + "end": 10622.4, + "probability": 0.9592 + }, + { + "start": 10622.98, + "end": 10623.9, + "probability": 0.7479 + }, + { + "start": 10624.5, + "end": 10626.94, + "probability": 0.9814 + }, + { + "start": 10628.14, + "end": 10629.26, + "probability": 0.5138 + }, + { + "start": 10629.26, + "end": 10632.94, + "probability": 0.9968 + }, + { + "start": 10633.6, + "end": 10634.82, + "probability": 0.8918 + }, + { + "start": 10636.06, + "end": 10638.98, + "probability": 0.9274 + }, + { + "start": 10639.4, + "end": 10642.13, + "probability": 0.9619 + }, + { + "start": 10642.6, + "end": 10646.36, + "probability": 0.8291 + }, + { + "start": 10646.64, + "end": 10647.18, + "probability": 0.6645 + }, + { + "start": 10647.76, + "end": 10649.84, + "probability": 0.9773 + }, + { + "start": 10650.52, + "end": 10653.2, + "probability": 0.9248 + }, + { + "start": 10653.36, + "end": 10657.42, + "probability": 0.927 + }, + { + "start": 10658.24, + "end": 10665.84, + "probability": 0.9961 + }, + { + "start": 10666.6, + "end": 10669.42, + "probability": 0.9935 + }, + { + "start": 10670.0, + "end": 10670.48, + "probability": 0.437 + }, + { + "start": 10670.5, + "end": 10673.08, + "probability": 0.9797 + }, + { + "start": 10673.16, + "end": 10674.03, + "probability": 0.923 + }, + { + "start": 10675.06, + "end": 10678.32, + "probability": 0.9136 + }, + { + "start": 10679.5, + "end": 10680.68, + "probability": 0.9263 + }, + { + "start": 10680.96, + "end": 10681.7, + "probability": 0.8999 + }, + { + "start": 10682.82, + "end": 10684.38, + "probability": 0.838 + }, + { + "start": 10685.16, + "end": 10688.98, + "probability": 0.8341 + }, + { + "start": 10689.98, + "end": 10695.46, + "probability": 0.9486 + }, + { + "start": 10695.66, + "end": 10695.76, + "probability": 0.0284 + }, + { + "start": 10696.8, + "end": 10697.66, + "probability": 0.6322 + }, + { + "start": 10697.84, + "end": 10702.28, + "probability": 0.4939 + }, + { + "start": 10702.28, + "end": 10707.6, + "probability": 0.759 + }, + { + "start": 10708.14, + "end": 10710.72, + "probability": 0.9858 + }, + { + "start": 10710.72, + "end": 10711.28, + "probability": 0.7052 + }, + { + "start": 10712.24, + "end": 10716.94, + "probability": 0.7554 + }, + { + "start": 10718.0, + "end": 10721.22, + "probability": 0.746 + }, + { + "start": 10721.72, + "end": 10724.6, + "probability": 0.7397 + }, + { + "start": 10725.6, + "end": 10728.36, + "probability": 0.9717 + }, + { + "start": 10728.46, + "end": 10731.72, + "probability": 0.981 + }, + { + "start": 10732.38, + "end": 10735.28, + "probability": 0.5928 + }, + { + "start": 10736.2, + "end": 10739.28, + "probability": 0.9461 + }, + { + "start": 10740.16, + "end": 10742.57, + "probability": 0.9698 + }, + { + "start": 10743.76, + "end": 10746.54, + "probability": 0.9683 + }, + { + "start": 10746.68, + "end": 10747.34, + "probability": 0.7643 + }, + { + "start": 10748.38, + "end": 10753.3, + "probability": 0.988 + }, + { + "start": 10754.64, + "end": 10758.58, + "probability": 0.9386 + }, + { + "start": 10758.58, + "end": 10763.54, + "probability": 0.9951 + }, + { + "start": 10763.68, + "end": 10765.36, + "probability": 0.8759 + }, + { + "start": 10766.3, + "end": 10767.86, + "probability": 0.969 + }, + { + "start": 10768.52, + "end": 10773.46, + "probability": 0.8776 + }, + { + "start": 10774.14, + "end": 10775.42, + "probability": 0.9426 + }, + { + "start": 10776.08, + "end": 10778.98, + "probability": 0.9459 + }, + { + "start": 10779.66, + "end": 10781.4, + "probability": 0.9749 + }, + { + "start": 10781.56, + "end": 10782.76, + "probability": 0.4664 + }, + { + "start": 10783.42, + "end": 10784.99, + "probability": 0.9469 + }, + { + "start": 10785.76, + "end": 10787.24, + "probability": 0.9343 + }, + { + "start": 10787.74, + "end": 10791.96, + "probability": 0.9741 + }, + { + "start": 10792.06, + "end": 10793.94, + "probability": 0.9601 + }, + { + "start": 10795.12, + "end": 10797.18, + "probability": 0.9664 + }, + { + "start": 10797.98, + "end": 10798.36, + "probability": 0.5204 + }, + { + "start": 10798.44, + "end": 10802.72, + "probability": 0.9719 + }, + { + "start": 10803.48, + "end": 10804.28, + "probability": 0.8088 + }, + { + "start": 10804.66, + "end": 10806.46, + "probability": 0.8216 + }, + { + "start": 10811.52, + "end": 10812.82, + "probability": 0.1221 + }, + { + "start": 10815.38, + "end": 10816.98, + "probability": 0.7957 + }, + { + "start": 10817.0, + "end": 10819.38, + "probability": 0.9722 + }, + { + "start": 10819.78, + "end": 10823.6, + "probability": 0.9468 + }, + { + "start": 10823.84, + "end": 10826.7, + "probability": 0.5587 + }, + { + "start": 10826.84, + "end": 10829.28, + "probability": 0.6409 + }, + { + "start": 10829.84, + "end": 10832.12, + "probability": 0.9485 + }, + { + "start": 10832.72, + "end": 10836.3, + "probability": 0.9265 + }, + { + "start": 10836.58, + "end": 10837.12, + "probability": 0.9241 + }, + { + "start": 10837.26, + "end": 10839.08, + "probability": 0.9927 + }, + { + "start": 10839.36, + "end": 10840.16, + "probability": 0.8517 + }, + { + "start": 10840.84, + "end": 10841.9, + "probability": 0.9653 + }, + { + "start": 10842.2, + "end": 10848.48, + "probability": 0.695 + }, + { + "start": 10848.7, + "end": 10850.58, + "probability": 0.8742 + }, + { + "start": 10851.42, + "end": 10856.34, + "probability": 0.8528 + }, + { + "start": 10856.34, + "end": 10859.32, + "probability": 0.7928 + }, + { + "start": 10859.8, + "end": 10861.48, + "probability": 0.981 + }, + { + "start": 10861.52, + "end": 10863.8, + "probability": 0.9745 + }, + { + "start": 10864.18, + "end": 10864.72, + "probability": 0.6597 + }, + { + "start": 10864.84, + "end": 10865.82, + "probability": 0.8682 + }, + { + "start": 10866.04, + "end": 10867.54, + "probability": 0.6829 + }, + { + "start": 10867.84, + "end": 10871.08, + "probability": 0.4444 + }, + { + "start": 10871.2, + "end": 10872.38, + "probability": 0.7096 + }, + { + "start": 10872.68, + "end": 10873.7, + "probability": 0.8953 + }, + { + "start": 10873.94, + "end": 10875.02, + "probability": 0.8899 + }, + { + "start": 10875.4, + "end": 10876.54, + "probability": 0.9224 + }, + { + "start": 10876.76, + "end": 10877.94, + "probability": 0.9813 + }, + { + "start": 10878.2, + "end": 10881.07, + "probability": 0.8242 + }, + { + "start": 10881.4, + "end": 10885.06, + "probability": 0.9983 + }, + { + "start": 10885.26, + "end": 10887.7, + "probability": 0.8435 + }, + { + "start": 10887.9, + "end": 10889.12, + "probability": 0.8935 + }, + { + "start": 10889.22, + "end": 10891.7, + "probability": 0.8877 + }, + { + "start": 10892.04, + "end": 10892.64, + "probability": 0.978 + }, + { + "start": 10893.22, + "end": 10894.26, + "probability": 0.164 + }, + { + "start": 10894.34, + "end": 10894.9, + "probability": 0.7376 + }, + { + "start": 10895.4, + "end": 10895.5, + "probability": 0.3979 + }, + { + "start": 10896.18, + "end": 10896.58, + "probability": 0.5038 + }, + { + "start": 10896.8, + "end": 10898.08, + "probability": 0.6346 + }, + { + "start": 10898.16, + "end": 10899.32, + "probability": 0.6641 + }, + { + "start": 10899.58, + "end": 10899.94, + "probability": 0.8857 + }, + { + "start": 10900.3, + "end": 10902.0, + "probability": 0.9646 + }, + { + "start": 10902.14, + "end": 10902.14, + "probability": 0.0066 + }, + { + "start": 10903.84, + "end": 10905.16, + "probability": 0.4435 + }, + { + "start": 10905.94, + "end": 10908.42, + "probability": 0.6718 + }, + { + "start": 10909.06, + "end": 10910.86, + "probability": 0.3143 + }, + { + "start": 10910.86, + "end": 10912.4, + "probability": 0.9246 + }, + { + "start": 10912.48, + "end": 10914.64, + "probability": 0.9839 + }, + { + "start": 10914.72, + "end": 10916.64, + "probability": 0.8964 + }, + { + "start": 10916.66, + "end": 10917.64, + "probability": 0.9703 + }, + { + "start": 10917.74, + "end": 10921.14, + "probability": 0.7452 + }, + { + "start": 10921.42, + "end": 10928.76, + "probability": 0.9961 + }, + { + "start": 10929.06, + "end": 10929.18, + "probability": 0.4126 + }, + { + "start": 10929.28, + "end": 10930.32, + "probability": 0.8652 + }, + { + "start": 10930.4, + "end": 10930.4, + "probability": 0.1572 + }, + { + "start": 10930.4, + "end": 10936.8, + "probability": 0.8108 + }, + { + "start": 10936.84, + "end": 10938.59, + "probability": 0.7082 + }, + { + "start": 10939.58, + "end": 10941.74, + "probability": 0.6781 + }, + { + "start": 10941.92, + "end": 10949.7, + "probability": 0.8359 + }, + { + "start": 10949.98, + "end": 10951.96, + "probability": 0.9359 + }, + { + "start": 10952.06, + "end": 10953.22, + "probability": 0.9538 + }, + { + "start": 10953.58, + "end": 10955.86, + "probability": 0.9731 + }, + { + "start": 10956.26, + "end": 10960.38, + "probability": 0.8496 + }, + { + "start": 10960.52, + "end": 10961.84, + "probability": 0.6484 + }, + { + "start": 10962.54, + "end": 10966.24, + "probability": 0.7517 + }, + { + "start": 10967.06, + "end": 10968.46, + "probability": 0.991 + }, + { + "start": 10968.66, + "end": 10970.47, + "probability": 0.8928 + }, + { + "start": 10971.22, + "end": 10974.02, + "probability": 0.9688 + }, + { + "start": 10974.3, + "end": 10976.02, + "probability": 0.9977 + }, + { + "start": 10976.5, + "end": 10977.46, + "probability": 0.7028 + }, + { + "start": 10977.62, + "end": 10978.46, + "probability": 0.7284 + }, + { + "start": 10978.96, + "end": 10980.37, + "probability": 0.9456 + }, + { + "start": 10980.58, + "end": 10982.16, + "probability": 0.842 + }, + { + "start": 10982.52, + "end": 10984.32, + "probability": 0.7381 + }, + { + "start": 10985.77, + "end": 10992.66, + "probability": 0.8179 + }, + { + "start": 10993.04, + "end": 10994.14, + "probability": 0.6302 + }, + { + "start": 10994.68, + "end": 10995.34, + "probability": 0.6362 + }, + { + "start": 10995.46, + "end": 10996.34, + "probability": 0.8688 + }, + { + "start": 10996.66, + "end": 10998.2, + "probability": 0.9925 + }, + { + "start": 10998.52, + "end": 11001.8, + "probability": 0.97 + }, + { + "start": 11001.8, + "end": 11002.42, + "probability": 0.7003 + }, + { + "start": 11003.46, + "end": 11003.48, + "probability": 0.1808 + }, + { + "start": 11003.48, + "end": 11004.1, + "probability": 0.3777 + }, + { + "start": 11004.28, + "end": 11005.88, + "probability": 0.342 + }, + { + "start": 11005.88, + "end": 11008.36, + "probability": 0.4172 + }, + { + "start": 11008.66, + "end": 11010.3, + "probability": 0.3527 + }, + { + "start": 11010.3, + "end": 11011.52, + "probability": 0.8078 + }, + { + "start": 11011.52, + "end": 11016.96, + "probability": 0.8262 + }, + { + "start": 11017.16, + "end": 11018.3, + "probability": 0.8131 + }, + { + "start": 11018.36, + "end": 11018.54, + "probability": 0.8834 + }, + { + "start": 11018.64, + "end": 11019.95, + "probability": 0.5738 + }, + { + "start": 11020.18, + "end": 11021.28, + "probability": 0.3352 + }, + { + "start": 11023.08, + "end": 11024.7, + "probability": 0.752 + }, + { + "start": 11027.32, + "end": 11028.58, + "probability": 0.4132 + }, + { + "start": 11028.76, + "end": 11030.72, + "probability": 0.7661 + }, + { + "start": 11031.4, + "end": 11034.43, + "probability": 0.9351 + }, + { + "start": 11034.74, + "end": 11036.0, + "probability": 0.5218 + }, + { + "start": 11036.12, + "end": 11037.88, + "probability": 0.8135 + }, + { + "start": 11038.4, + "end": 11043.0, + "probability": 0.7346 + }, + { + "start": 11043.0, + "end": 11043.44, + "probability": 0.6123 + }, + { + "start": 11043.84, + "end": 11045.56, + "probability": 0.8579 + }, + { + "start": 11046.14, + "end": 11047.78, + "probability": 0.8767 + }, + { + "start": 11047.88, + "end": 11048.37, + "probability": 0.6061 + }, + { + "start": 11049.02, + "end": 11049.54, + "probability": 0.6543 + }, + { + "start": 11049.64, + "end": 11051.28, + "probability": 0.8866 + }, + { + "start": 11051.62, + "end": 11052.96, + "probability": 0.9071 + }, + { + "start": 11053.06, + "end": 11054.28, + "probability": 0.861 + }, + { + "start": 11054.64, + "end": 11056.02, + "probability": 0.9449 + }, + { + "start": 11056.3, + "end": 11057.36, + "probability": 0.5278 + }, + { + "start": 11057.42, + "end": 11057.77, + "probability": 0.621 + }, + { + "start": 11058.08, + "end": 11062.38, + "probability": 0.1089 + }, + { + "start": 11062.38, + "end": 11063.26, + "probability": 0.7574 + }, + { + "start": 11063.32, + "end": 11063.96, + "probability": 0.6299 + }, + { + "start": 11063.96, + "end": 11065.22, + "probability": 0.8149 + }, + { + "start": 11065.34, + "end": 11066.0, + "probability": 0.5033 + }, + { + "start": 11066.18, + "end": 11067.46, + "probability": 0.9573 + }, + { + "start": 11067.54, + "end": 11068.45, + "probability": 0.8384 + }, + { + "start": 11069.0, + "end": 11072.78, + "probability": 0.8285 + }, + { + "start": 11074.78, + "end": 11077.7, + "probability": 0.6864 + }, + { + "start": 11079.52, + "end": 11080.84, + "probability": 0.5321 + }, + { + "start": 11082.72, + "end": 11084.84, + "probability": 0.758 + }, + { + "start": 11085.16, + "end": 11086.52, + "probability": 0.4513 + }, + { + "start": 11087.02, + "end": 11088.4, + "probability": 0.3042 + }, + { + "start": 11088.54, + "end": 11089.62, + "probability": 0.6439 + }, + { + "start": 11090.58, + "end": 11094.2, + "probability": 0.7149 + }, + { + "start": 11094.3, + "end": 11095.94, + "probability": 0.6118 + }, + { + "start": 11096.0, + "end": 11098.75, + "probability": 0.8912 + }, + { + "start": 11099.06, + "end": 11100.32, + "probability": 0.8445 + }, + { + "start": 11100.96, + "end": 11102.17, + "probability": 0.9615 + }, + { + "start": 11102.39, + "end": 11108.07, + "probability": 0.9694 + }, + { + "start": 11108.25, + "end": 11110.23, + "probability": 0.7929 + }, + { + "start": 11110.33, + "end": 11114.55, + "probability": 0.581 + }, + { + "start": 11114.89, + "end": 11116.13, + "probability": 0.3342 + }, + { + "start": 11116.51, + "end": 11120.49, + "probability": 0.9941 + }, + { + "start": 11121.05, + "end": 11122.51, + "probability": 0.8313 + }, + { + "start": 11123.09, + "end": 11123.53, + "probability": 0.1625 + }, + { + "start": 11123.53, + "end": 11124.17, + "probability": 0.2631 + }, + { + "start": 11124.91, + "end": 11125.91, + "probability": 0.7413 + }, + { + "start": 11125.97, + "end": 11127.45, + "probability": 0.7403 + }, + { + "start": 11127.45, + "end": 11129.21, + "probability": 0.9468 + }, + { + "start": 11129.21, + "end": 11131.51, + "probability": 0.0342 + }, + { + "start": 11131.51, + "end": 11132.77, + "probability": 0.8473 + }, + { + "start": 11132.95, + "end": 11135.45, + "probability": 0.9214 + }, + { + "start": 11135.63, + "end": 11136.33, + "probability": 0.7296 + }, + { + "start": 11136.43, + "end": 11138.38, + "probability": 0.9878 + }, + { + "start": 11138.89, + "end": 11139.13, + "probability": 0.5129 + }, + { + "start": 11139.37, + "end": 11143.31, + "probability": 0.0844 + }, + { + "start": 11143.31, + "end": 11144.79, + "probability": 0.7886 + }, + { + "start": 11145.19, + "end": 11147.43, + "probability": 0.3158 + }, + { + "start": 11147.97, + "end": 11148.61, + "probability": 0.6626 + }, + { + "start": 11148.87, + "end": 11149.78, + "probability": 0.7289 + }, + { + "start": 11150.13, + "end": 11151.29, + "probability": 0.6658 + }, + { + "start": 11151.33, + "end": 11151.85, + "probability": 0.8688 + }, + { + "start": 11151.87, + "end": 11152.53, + "probability": 0.9444 + }, + { + "start": 11153.07, + "end": 11153.41, + "probability": 0.4951 + }, + { + "start": 11153.73, + "end": 11154.91, + "probability": 0.6927 + }, + { + "start": 11159.67, + "end": 11160.84, + "probability": 0.0233 + }, + { + "start": 11165.61, + "end": 11165.75, + "probability": 0.003 + }, + { + "start": 11175.65, + "end": 11178.71, + "probability": 0.8926 + }, + { + "start": 11178.71, + "end": 11181.42, + "probability": 0.7083 + }, + { + "start": 11181.75, + "end": 11183.89, + "probability": 0.0592 + }, + { + "start": 11183.89, + "end": 11184.37, + "probability": 0.2341 + }, + { + "start": 11184.67, + "end": 11187.15, + "probability": 0.8306 + }, + { + "start": 11187.63, + "end": 11189.35, + "probability": 0.7727 + }, + { + "start": 11190.33, + "end": 11191.35, + "probability": 0.0152 + }, + { + "start": 11191.35, + "end": 11192.15, + "probability": 0.0296 + }, + { + "start": 11196.37, + "end": 11198.31, + "probability": 0.0187 + }, + { + "start": 11201.89, + "end": 11202.87, + "probability": 0.027 + }, + { + "start": 11202.87, + "end": 11202.97, + "probability": 0.0399 + }, + { + "start": 11209.49, + "end": 11211.69, + "probability": 0.051 + }, + { + "start": 11215.63, + "end": 11216.89, + "probability": 0.031 + }, + { + "start": 11217.87, + "end": 11218.81, + "probability": 0.211 + }, + { + "start": 11224.99, + "end": 11225.51, + "probability": 0.018 + }, + { + "start": 11225.51, + "end": 11226.83, + "probability": 0.0319 + }, + { + "start": 11228.31, + "end": 11231.03, + "probability": 0.0335 + }, + { + "start": 11231.03, + "end": 11232.47, + "probability": 0.0262 + }, + { + "start": 11232.47, + "end": 11233.07, + "probability": 0.2351 + }, + { + "start": 11238.63, + "end": 11241.99, + "probability": 0.185 + }, + { + "start": 11245.79, + "end": 11245.83, + "probability": 0.101 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.0, + "end": 11397.0, + "probability": 0.0 + }, + { + "start": 11397.48, + "end": 11397.66, + "probability": 0.0397 + }, + { + "start": 11397.66, + "end": 11397.66, + "probability": 0.0686 + }, + { + "start": 11397.66, + "end": 11399.04, + "probability": 0.6696 + }, + { + "start": 11399.62, + "end": 11400.2, + "probability": 0.3908 + }, + { + "start": 11400.88, + "end": 11403.12, + "probability": 0.3143 + }, + { + "start": 11403.32, + "end": 11404.08, + "probability": 0.5217 + }, + { + "start": 11404.64, + "end": 11412.66, + "probability": 0.9288 + }, + { + "start": 11413.5, + "end": 11417.38, + "probability": 0.8132 + }, + { + "start": 11417.9, + "end": 11420.38, + "probability": 0.7666 + }, + { + "start": 11421.0, + "end": 11423.88, + "probability": 0.9722 + }, + { + "start": 11424.44, + "end": 11427.96, + "probability": 0.6498 + }, + { + "start": 11428.82, + "end": 11436.0, + "probability": 0.9972 + }, + { + "start": 11436.0, + "end": 11442.74, + "probability": 0.7185 + }, + { + "start": 11442.74, + "end": 11449.72, + "probability": 0.9982 + }, + { + "start": 11450.46, + "end": 11457.6, + "probability": 0.9152 + }, + { + "start": 11458.26, + "end": 11462.4, + "probability": 0.993 + }, + { + "start": 11462.84, + "end": 11467.06, + "probability": 0.9502 + }, + { + "start": 11467.14, + "end": 11474.66, + "probability": 0.9156 + }, + { + "start": 11475.5, + "end": 11481.28, + "probability": 0.8953 + }, + { + "start": 11482.44, + "end": 11486.18, + "probability": 0.9183 + }, + { + "start": 11486.82, + "end": 11491.2, + "probability": 0.5637 + }, + { + "start": 11491.84, + "end": 11494.18, + "probability": 0.556 + }, + { + "start": 11494.9, + "end": 11496.76, + "probability": 0.4749 + }, + { + "start": 11497.28, + "end": 11499.84, + "probability": 0.7621 + }, + { + "start": 11500.66, + "end": 11501.29, + "probability": 0.6175 + }, + { + "start": 11502.06, + "end": 11505.94, + "probability": 0.7011 + }, + { + "start": 11506.62, + "end": 11507.98, + "probability": 0.6158 + }, + { + "start": 11508.56, + "end": 11509.52, + "probability": 0.4298 + }, + { + "start": 11513.24, + "end": 11516.14, + "probability": 0.9935 + }, + { + "start": 11516.66, + "end": 11520.34, + "probability": 0.9961 + }, + { + "start": 11521.1, + "end": 11521.32, + "probability": 0.2691 + }, + { + "start": 11521.4, + "end": 11526.82, + "probability": 0.7895 + }, + { + "start": 11527.16, + "end": 11535.42, + "probability": 0.8986 + }, + { + "start": 11536.5, + "end": 11538.58, + "probability": 0.7441 + }, + { + "start": 11540.3, + "end": 11546.16, + "probability": 0.8865 + }, + { + "start": 11547.54, + "end": 11554.94, + "probability": 0.906 + }, + { + "start": 11555.62, + "end": 11559.96, + "probability": 0.821 + }, + { + "start": 11560.68, + "end": 11563.92, + "probability": 0.9744 + }, + { + "start": 11563.92, + "end": 11568.88, + "probability": 0.8877 + }, + { + "start": 11569.4, + "end": 11574.26, + "probability": 0.9955 + }, + { + "start": 11574.98, + "end": 11578.08, + "probability": 0.7677 + }, + { + "start": 11578.76, + "end": 11580.78, + "probability": 0.9972 + }, + { + "start": 11581.24, + "end": 11584.56, + "probability": 0.837 + }, + { + "start": 11585.24, + "end": 11587.38, + "probability": 0.4714 + }, + { + "start": 11588.34, + "end": 11591.42, + "probability": 0.7759 + }, + { + "start": 11591.76, + "end": 11594.66, + "probability": 0.9608 + }, + { + "start": 11595.26, + "end": 11597.3, + "probability": 0.7815 + }, + { + "start": 11597.84, + "end": 11601.86, + "probability": 0.5543 + }, + { + "start": 11602.44, + "end": 11603.58, + "probability": 0.8999 + }, + { + "start": 11603.68, + "end": 11606.88, + "probability": 0.8309 + }, + { + "start": 11607.38, + "end": 11615.5, + "probability": 0.8897 + }, + { + "start": 11616.02, + "end": 11618.4, + "probability": 0.9849 + }, + { + "start": 11618.94, + "end": 11622.44, + "probability": 0.9494 + }, + { + "start": 11623.04, + "end": 11623.76, + "probability": 0.7312 + }, + { + "start": 11624.42, + "end": 11628.16, + "probability": 0.6716 + }, + { + "start": 11628.74, + "end": 11632.14, + "probability": 0.8167 + }, + { + "start": 11632.14, + "end": 11636.96, + "probability": 0.9907 + }, + { + "start": 11637.52, + "end": 11642.0, + "probability": 0.8254 + }, + { + "start": 11642.68, + "end": 11646.66, + "probability": 0.834 + }, + { + "start": 11647.4, + "end": 11648.6, + "probability": 0.4171 + }, + { + "start": 11649.18, + "end": 11657.4, + "probability": 0.8642 + }, + { + "start": 11657.86, + "end": 11658.84, + "probability": 0.7861 + }, + { + "start": 11659.44, + "end": 11663.3, + "probability": 0.8873 + }, + { + "start": 11663.84, + "end": 11666.6, + "probability": 0.6754 + }, + { + "start": 11666.72, + "end": 11669.02, + "probability": 0.7539 + }, + { + "start": 11669.7, + "end": 11671.8, + "probability": 0.8103 + }, + { + "start": 11672.38, + "end": 11673.92, + "probability": 0.6807 + }, + { + "start": 11674.12, + "end": 11679.82, + "probability": 0.88 + }, + { + "start": 11679.82, + "end": 11686.58, + "probability": 0.8834 + }, + { + "start": 11687.04, + "end": 11689.84, + "probability": 0.9105 + }, + { + "start": 11690.74, + "end": 11697.24, + "probability": 0.8276 + }, + { + "start": 11697.24, + "end": 11705.4, + "probability": 0.6757 + }, + { + "start": 11705.92, + "end": 11708.0, + "probability": 0.7515 + }, + { + "start": 11708.02, + "end": 11715.66, + "probability": 0.7083 + }, + { + "start": 11716.0, + "end": 11721.14, + "probability": 0.972 + }, + { + "start": 11721.88, + "end": 11726.64, + "probability": 0.9611 + }, + { + "start": 11728.18, + "end": 11735.96, + "probability": 0.9165 + }, + { + "start": 11736.74, + "end": 11741.6, + "probability": 0.9961 + }, + { + "start": 11741.98, + "end": 11749.22, + "probability": 0.7249 + }, + { + "start": 11749.86, + "end": 11757.82, + "probability": 0.9604 + }, + { + "start": 11759.48, + "end": 11764.36, + "probability": 0.8124 + }, + { + "start": 11765.48, + "end": 11767.98, + "probability": 0.5141 + }, + { + "start": 11768.62, + "end": 11775.42, + "probability": 0.9312 + }, + { + "start": 11776.82, + "end": 11778.84, + "probability": 0.895 + }, + { + "start": 11779.7, + "end": 11789.22, + "probability": 0.8434 + }, + { + "start": 11789.63, + "end": 11798.26, + "probability": 0.9458 + }, + { + "start": 11798.66, + "end": 11800.5, + "probability": 0.0111 + }, + { + "start": 11800.7, + "end": 11801.42, + "probability": 0.6462 + }, + { + "start": 11802.22, + "end": 11804.0, + "probability": 0.8702 + }, + { + "start": 11804.78, + "end": 11808.68, + "probability": 0.7364 + }, + { + "start": 11808.76, + "end": 11813.66, + "probability": 0.9549 + }, + { + "start": 11814.34, + "end": 11819.92, + "probability": 0.7635 + }, + { + "start": 11820.32, + "end": 11825.96, + "probability": 0.9977 + }, + { + "start": 11826.5, + "end": 11826.62, + "probability": 0.1176 + }, + { + "start": 11826.68, + "end": 11826.84, + "probability": 0.505 + }, + { + "start": 11826.84, + "end": 11827.21, + "probability": 0.2655 + }, + { + "start": 11827.86, + "end": 11828.5, + "probability": 0.8455 + }, + { + "start": 11829.04, + "end": 11829.84, + "probability": 0.8887 + }, + { + "start": 11830.0, + "end": 11837.42, + "probability": 0.8904 + }, + { + "start": 11837.42, + "end": 11843.32, + "probability": 0.8474 + }, + { + "start": 11843.36, + "end": 11844.32, + "probability": 0.5305 + }, + { + "start": 11844.4, + "end": 11845.42, + "probability": 0.6384 + }, + { + "start": 11845.99, + "end": 11850.8, + "probability": 0.8743 + }, + { + "start": 11851.2, + "end": 11851.48, + "probability": 0.5395 + }, + { + "start": 11855.86, + "end": 11856.0, + "probability": 0.2459 + }, + { + "start": 11856.0, + "end": 11857.54, + "probability": 0.7269 + }, + { + "start": 11858.0, + "end": 11860.32, + "probability": 0.935 + }, + { + "start": 11860.48, + "end": 11861.5, + "probability": 0.4808 + }, + { + "start": 11862.08, + "end": 11863.5, + "probability": 0.9785 + }, + { + "start": 11864.34, + "end": 11866.34, + "probability": 0.8575 + }, + { + "start": 11871.72, + "end": 11873.08, + "probability": 0.6831 + }, + { + "start": 11875.02, + "end": 11878.98, + "probability": 0.7987 + }, + { + "start": 11879.74, + "end": 11883.36, + "probability": 0.9854 + }, + { + "start": 11884.02, + "end": 11884.84, + "probability": 0.7371 + }, + { + "start": 11886.0, + "end": 11888.04, + "probability": 0.7171 + }, + { + "start": 11888.62, + "end": 11894.42, + "probability": 0.9728 + }, + { + "start": 11894.42, + "end": 11898.98, + "probability": 0.9904 + }, + { + "start": 11899.78, + "end": 11903.44, + "probability": 0.8569 + }, + { + "start": 11903.62, + "end": 11905.8, + "probability": 0.915 + }, + { + "start": 11906.2, + "end": 11912.24, + "probability": 0.9954 + }, + { + "start": 11912.24, + "end": 11918.02, + "probability": 0.9814 + }, + { + "start": 11918.1, + "end": 11918.1, + "probability": 0.4074 + }, + { + "start": 11918.12, + "end": 11918.89, + "probability": 0.2486 + }, + { + "start": 11919.34, + "end": 11919.8, + "probability": 0.2518 + }, + { + "start": 11919.94, + "end": 11920.42, + "probability": 0.5038 + }, + { + "start": 11920.52, + "end": 11924.5, + "probability": 0.9678 + }, + { + "start": 11926.16, + "end": 11928.74, + "probability": 0.6694 + }, + { + "start": 11928.9, + "end": 11932.1, + "probability": 0.9412 + }, + { + "start": 11932.34, + "end": 11934.9, + "probability": 0.874 + }, + { + "start": 11934.92, + "end": 11935.16, + "probability": 0.8627 + }, + { + "start": 11935.16, + "end": 11937.66, + "probability": 0.4949 + }, + { + "start": 11939.0, + "end": 11939.0, + "probability": 0.1421 + }, + { + "start": 11939.0, + "end": 11939.82, + "probability": 0.9857 + }, + { + "start": 11941.92, + "end": 11948.14, + "probability": 0.9475 + }, + { + "start": 11949.22, + "end": 11953.5, + "probability": 0.9967 + }, + { + "start": 11954.16, + "end": 11955.46, + "probability": 0.804 + }, + { + "start": 11957.17, + "end": 11966.53, + "probability": 0.7427 + }, + { + "start": 11967.08, + "end": 11969.38, + "probability": 0.979 + }, + { + "start": 11969.98, + "end": 11977.56, + "probability": 0.8841 + }, + { + "start": 11978.1, + "end": 11978.24, + "probability": 0.0013 + }, + { + "start": 11978.24, + "end": 11981.2, + "probability": 0.9395 + }, + { + "start": 11981.72, + "end": 11982.98, + "probability": 0.849 + }, + { + "start": 11983.5, + "end": 11989.04, + "probability": 0.9033 + }, + { + "start": 11989.66, + "end": 11992.28, + "probability": 0.9192 + }, + { + "start": 11993.64, + "end": 11996.22, + "probability": 0.9702 + }, + { + "start": 11998.3, + "end": 12002.92, + "probability": 0.3415 + }, + { + "start": 12003.39, + "end": 12006.2, + "probability": 0.1107 + }, + { + "start": 12006.2, + "end": 12009.48, + "probability": 0.4999 + }, + { + "start": 12009.48, + "end": 12015.66, + "probability": 0.8352 + }, + { + "start": 12016.18, + "end": 12021.04, + "probability": 0.7906 + }, + { + "start": 12021.6, + "end": 12025.72, + "probability": 0.7982 + }, + { + "start": 12027.0, + "end": 12030.62, + "probability": 0.9868 + }, + { + "start": 12030.64, + "end": 12036.16, + "probability": 0.7663 + }, + { + "start": 12036.78, + "end": 12039.28, + "probability": 0.865 + }, + { + "start": 12039.82, + "end": 12040.56, + "probability": 0.8626 + }, + { + "start": 12041.44, + "end": 12043.68, + "probability": 0.3071 + }, + { + "start": 12044.46, + "end": 12045.24, + "probability": 0.7168 + }, + { + "start": 12046.12, + "end": 12046.98, + "probability": 0.1017 + }, + { + "start": 12047.84, + "end": 12052.4, + "probability": 0.9821 + }, + { + "start": 12052.68, + "end": 12054.62, + "probability": 0.909 + }, + { + "start": 12055.08, + "end": 12055.62, + "probability": 0.6226 + }, + { + "start": 12055.74, + "end": 12056.34, + "probability": 0.8228 + }, + { + "start": 12057.0, + "end": 12061.96, + "probability": 0.9869 + }, + { + "start": 12062.34, + "end": 12067.86, + "probability": 0.938 + }, + { + "start": 12068.5, + "end": 12073.68, + "probability": 0.9921 + }, + { + "start": 12074.5, + "end": 12076.48, + "probability": 0.9881 + }, + { + "start": 12077.06, + "end": 12081.0, + "probability": 0.6715 + }, + { + "start": 12081.58, + "end": 12084.0, + "probability": 0.8927 + }, + { + "start": 12084.5, + "end": 12086.88, + "probability": 0.9308 + }, + { + "start": 12087.44, + "end": 12089.77, + "probability": 0.9987 + }, + { + "start": 12090.84, + "end": 12093.9, + "probability": 0.989 + }, + { + "start": 12095.4, + "end": 12096.08, + "probability": 0.8391 + }, + { + "start": 12096.8, + "end": 12099.42, + "probability": 0.7346 + }, + { + "start": 12099.56, + "end": 12104.46, + "probability": 0.9786 + }, + { + "start": 12104.54, + "end": 12108.92, + "probability": 0.9585 + }, + { + "start": 12109.78, + "end": 12112.72, + "probability": 0.9065 + }, + { + "start": 12113.44, + "end": 12114.76, + "probability": 0.9812 + }, + { + "start": 12115.4, + "end": 12120.56, + "probability": 0.9371 + }, + { + "start": 12121.34, + "end": 12124.23, + "probability": 0.9892 + }, + { + "start": 12124.58, + "end": 12126.68, + "probability": 0.9074 + }, + { + "start": 12127.3, + "end": 12128.4, + "probability": 0.8143 + }, + { + "start": 12129.18, + "end": 12131.32, + "probability": 0.7192 + }, + { + "start": 12131.94, + "end": 12132.96, + "probability": 0.8091 + }, + { + "start": 12134.12, + "end": 12142.44, + "probability": 0.9829 + }, + { + "start": 12143.06, + "end": 12146.42, + "probability": 0.7917 + }, + { + "start": 12147.1, + "end": 12148.66, + "probability": 0.9081 + }, + { + "start": 12149.88, + "end": 12157.08, + "probability": 0.9403 + }, + { + "start": 12157.08, + "end": 12168.2, + "probability": 0.9749 + }, + { + "start": 12168.2, + "end": 12173.02, + "probability": 0.9268 + }, + { + "start": 12174.5, + "end": 12177.44, + "probability": 0.9873 + }, + { + "start": 12177.76, + "end": 12183.06, + "probability": 0.9834 + }, + { + "start": 12183.4, + "end": 12185.08, + "probability": 0.9917 + }, + { + "start": 12185.18, + "end": 12187.12, + "probability": 0.8692 + }, + { + "start": 12187.84, + "end": 12191.86, + "probability": 0.8631 + }, + { + "start": 12193.54, + "end": 12194.46, + "probability": 0.7334 + }, + { + "start": 12194.94, + "end": 12195.62, + "probability": 0.7521 + }, + { + "start": 12195.8, + "end": 12197.96, + "probability": 0.7349 + }, + { + "start": 12198.14, + "end": 12200.46, + "probability": 0.9972 + }, + { + "start": 12200.86, + "end": 12203.16, + "probability": 0.9683 + }, + { + "start": 12203.76, + "end": 12208.3, + "probability": 0.9278 + }, + { + "start": 12208.3, + "end": 12214.24, + "probability": 0.7422 + }, + { + "start": 12215.08, + "end": 12218.34, + "probability": 0.9878 + }, + { + "start": 12218.78, + "end": 12219.54, + "probability": 0.8561 + }, + { + "start": 12219.64, + "end": 12220.92, + "probability": 0.8844 + }, + { + "start": 12221.48, + "end": 12224.2, + "probability": 0.9281 + }, + { + "start": 12224.24, + "end": 12224.88, + "probability": 0.5688 + }, + { + "start": 12225.5, + "end": 12230.0, + "probability": 0.933 + }, + { + "start": 12230.28, + "end": 12231.38, + "probability": 0.706 + }, + { + "start": 12231.62, + "end": 12231.72, + "probability": 0.6426 + }, + { + "start": 12231.78, + "end": 12234.47, + "probability": 0.8946 + }, + { + "start": 12234.96, + "end": 12236.12, + "probability": 0.582 + }, + { + "start": 12236.14, + "end": 12236.68, + "probability": 0.3531 + }, + { + "start": 12236.98, + "end": 12241.88, + "probability": 0.9946 + }, + { + "start": 12242.2, + "end": 12243.32, + "probability": 0.5675 + }, + { + "start": 12243.86, + "end": 12244.52, + "probability": 0.8833 + }, + { + "start": 12245.5, + "end": 12246.6, + "probability": 0.7584 + }, + { + "start": 12247.26, + "end": 12248.08, + "probability": 0.7451 + }, + { + "start": 12252.0, + "end": 12252.84, + "probability": 0.255 + }, + { + "start": 12252.92, + "end": 12252.96, + "probability": 0.097 + }, + { + "start": 12252.96, + "end": 12257.58, + "probability": 0.8401 + }, + { + "start": 12260.5, + "end": 12263.64, + "probability": 0.5037 + }, + { + "start": 12263.68, + "end": 12264.88, + "probability": 0.8589 + }, + { + "start": 12265.14, + "end": 12267.36, + "probability": 0.8623 + }, + { + "start": 12268.26, + "end": 12272.72, + "probability": 0.7243 + }, + { + "start": 12273.34, + "end": 12273.66, + "probability": 0.3067 + }, + { + "start": 12273.92, + "end": 12275.59, + "probability": 0.6571 + }, + { + "start": 12277.78, + "end": 12278.68, + "probability": 0.7635 + }, + { + "start": 12278.78, + "end": 12281.96, + "probability": 0.9736 + }, + { + "start": 12282.2, + "end": 12284.64, + "probability": 0.9639 + }, + { + "start": 12284.88, + "end": 12288.4, + "probability": 0.6987 + }, + { + "start": 12288.56, + "end": 12290.32, + "probability": 0.785 + }, + { + "start": 12293.18, + "end": 12295.38, + "probability": 0.4284 + }, + { + "start": 12295.46, + "end": 12296.32, + "probability": 0.7603 + }, + { + "start": 12297.78, + "end": 12298.4, + "probability": 0.5975 + }, + { + "start": 12298.7, + "end": 12300.6, + "probability": 0.8508 + }, + { + "start": 12303.44, + "end": 12306.44, + "probability": 0.9613 + }, + { + "start": 12311.14, + "end": 12311.28, + "probability": 0.5505 + }, + { + "start": 12312.14, + "end": 12318.04, + "probability": 0.821 + }, + { + "start": 12318.42, + "end": 12321.32, + "probability": 0.5014 + }, + { + "start": 12325.12, + "end": 12325.98, + "probability": 0.6004 + }, + { + "start": 12328.48, + "end": 12333.34, + "probability": 0.7492 + }, + { + "start": 12340.04, + "end": 12344.52, + "probability": 0.667 + }, + { + "start": 12344.54, + "end": 12348.36, + "probability": 0.9749 + }, + { + "start": 12349.0, + "end": 12351.2, + "probability": 0.6141 + }, + { + "start": 12351.84, + "end": 12353.2, + "probability": 0.7525 + }, + { + "start": 12354.52, + "end": 12359.34, + "probability": 0.8133 + }, + { + "start": 12360.92, + "end": 12361.78, + "probability": 0.8948 + }, + { + "start": 12363.68, + "end": 12367.32, + "probability": 0.6865 + }, + { + "start": 12368.5, + "end": 12369.9, + "probability": 0.9188 + }, + { + "start": 12370.78, + "end": 12372.14, + "probability": 0.8452 + }, + { + "start": 12372.7, + "end": 12373.68, + "probability": 0.7982 + }, + { + "start": 12374.22, + "end": 12377.12, + "probability": 0.9116 + }, + { + "start": 12378.0, + "end": 12380.98, + "probability": 0.7675 + }, + { + "start": 12381.04, + "end": 12383.44, + "probability": 0.9983 + }, + { + "start": 12383.52, + "end": 12383.94, + "probability": 0.7065 + }, + { + "start": 12385.04, + "end": 12388.06, + "probability": 0.6747 + }, + { + "start": 12391.9, + "end": 12395.94, + "probability": 0.9551 + }, + { + "start": 12397.1, + "end": 12398.24, + "probability": 0.8719 + }, + { + "start": 12401.54, + "end": 12403.36, + "probability": 0.8448 + }, + { + "start": 12403.64, + "end": 12406.92, + "probability": 0.6076 + }, + { + "start": 12407.0, + "end": 12409.46, + "probability": 0.5516 + }, + { + "start": 12409.52, + "end": 12412.76, + "probability": 0.5114 + }, + { + "start": 12412.8, + "end": 12414.1, + "probability": 0.9433 + }, + { + "start": 12414.26, + "end": 12415.02, + "probability": 0.8797 + }, + { + "start": 12415.14, + "end": 12416.92, + "probability": 0.6113 + }, + { + "start": 12417.12, + "end": 12417.94, + "probability": 0.4276 + }, + { + "start": 12418.4, + "end": 12419.5, + "probability": 0.6614 + }, + { + "start": 12419.68, + "end": 12423.86, + "probability": 0.963 + }, + { + "start": 12425.22, + "end": 12431.02, + "probability": 0.5386 + }, + { + "start": 12431.14, + "end": 12433.64, + "probability": 0.9795 + }, + { + "start": 12433.96, + "end": 12434.88, + "probability": 0.7091 + }, + { + "start": 12435.56, + "end": 12437.54, + "probability": 0.9985 + }, + { + "start": 12438.4, + "end": 12442.16, + "probability": 0.943 + }, + { + "start": 12448.85, + "end": 12452.36, + "probability": 0.9775 + }, + { + "start": 12452.36, + "end": 12452.36, + "probability": 0.0586 + }, + { + "start": 12452.36, + "end": 12457.16, + "probability": 0.8672 + }, + { + "start": 12457.18, + "end": 12458.3, + "probability": 0.0259 + }, + { + "start": 12458.78, + "end": 12460.1, + "probability": 0.7468 + }, + { + "start": 12460.3, + "end": 12463.0, + "probability": 0.9739 + }, + { + "start": 12464.08, + "end": 12467.66, + "probability": 0.5562 + }, + { + "start": 12469.08, + "end": 12470.62, + "probability": 0.845 + }, + { + "start": 12470.78, + "end": 12472.73, + "probability": 0.4837 + }, + { + "start": 12473.72, + "end": 12475.36, + "probability": 0.5509 + }, + { + "start": 12476.1, + "end": 12476.52, + "probability": 0.7762 + }, + { + "start": 12476.9, + "end": 12481.4, + "probability": 0.9791 + }, + { + "start": 12481.48, + "end": 12481.68, + "probability": 0.287 + }, + { + "start": 12481.74, + "end": 12482.72, + "probability": 0.7744 + }, + { + "start": 12482.74, + "end": 12484.58, + "probability": 0.8011 + }, + { + "start": 12485.24, + "end": 12486.78, + "probability": 0.916 + }, + { + "start": 12487.16, + "end": 12488.95, + "probability": 0.9125 + }, + { + "start": 12489.44, + "end": 12490.38, + "probability": 0.7585 + }, + { + "start": 12490.44, + "end": 12490.98, + "probability": 0.5096 + }, + { + "start": 12491.32, + "end": 12491.82, + "probability": 0.8793 + }, + { + "start": 12492.16, + "end": 12492.64, + "probability": 0.8573 + }, + { + "start": 12495.84, + "end": 12498.41, + "probability": 0.6506 + }, + { + "start": 12499.66, + "end": 12507.2, + "probability": 0.9611 + }, + { + "start": 12507.86, + "end": 12509.16, + "probability": 0.6896 + }, + { + "start": 12510.66, + "end": 12513.78, + "probability": 0.9631 + }, + { + "start": 12514.3, + "end": 12519.48, + "probability": 0.9834 + }, + { + "start": 12520.72, + "end": 12527.86, + "probability": 0.7696 + }, + { + "start": 12529.52, + "end": 12533.84, + "probability": 0.8151 + }, + { + "start": 12534.7, + "end": 12539.22, + "probability": 0.8119 + }, + { + "start": 12539.58, + "end": 12544.32, + "probability": 0.8691 + }, + { + "start": 12544.84, + "end": 12548.36, + "probability": 0.7973 + }, + { + "start": 12549.06, + "end": 12554.72, + "probability": 0.9615 + }, + { + "start": 12555.18, + "end": 12561.08, + "probability": 0.9266 + }, + { + "start": 12561.08, + "end": 12572.7, + "probability": 0.9778 + }, + { + "start": 12572.96, + "end": 12578.06, + "probability": 0.9952 + }, + { + "start": 12578.54, + "end": 12583.22, + "probability": 0.9819 + }, + { + "start": 12583.64, + "end": 12585.48, + "probability": 0.2271 + }, + { + "start": 12586.12, + "end": 12589.78, + "probability": 0.9675 + }, + { + "start": 12590.44, + "end": 12595.6, + "probability": 0.874 + }, + { + "start": 12596.36, + "end": 12602.22, + "probability": 0.7804 + }, + { + "start": 12602.94, + "end": 12607.48, + "probability": 0.9334 + }, + { + "start": 12607.66, + "end": 12612.96, + "probability": 0.7826 + }, + { + "start": 12614.38, + "end": 12615.56, + "probability": 0.5065 + }, + { + "start": 12615.66, + "end": 12617.26, + "probability": 0.8915 + }, + { + "start": 12617.3, + "end": 12620.1, + "probability": 0.5115 + }, + { + "start": 12623.4, + "end": 12625.18, + "probability": 0.526 + }, + { + "start": 12625.2, + "end": 12625.2, + "probability": 0.5366 + }, + { + "start": 12625.3, + "end": 12626.96, + "probability": 0.956 + }, + { + "start": 12627.08, + "end": 12627.18, + "probability": 0.4321 + }, + { + "start": 12627.48, + "end": 12627.84, + "probability": 0.5341 + }, + { + "start": 12627.84, + "end": 12628.28, + "probability": 0.6179 + }, + { + "start": 12628.32, + "end": 12628.88, + "probability": 0.9348 + }, + { + "start": 12628.98, + "end": 12630.29, + "probability": 0.9756 + }, + { + "start": 12631.0, + "end": 12631.26, + "probability": 0.2854 + }, + { + "start": 12644.1, + "end": 12644.26, + "probability": 0.422 + }, + { + "start": 12645.2, + "end": 12646.0, + "probability": 0.0162 + }, + { + "start": 12650.44, + "end": 12653.88, + "probability": 0.9916 + }, + { + "start": 12654.24, + "end": 12656.42, + "probability": 0.9514 + }, + { + "start": 12656.62, + "end": 12657.42, + "probability": 0.0478 + }, + { + "start": 12659.98, + "end": 12660.82, + "probability": 0.0307 + }, + { + "start": 12661.1, + "end": 12661.52, + "probability": 0.219 + }, + { + "start": 12661.54, + "end": 12663.18, + "probability": 0.0728 + }, + { + "start": 12663.82, + "end": 12665.7, + "probability": 0.0848 + }, + { + "start": 12681.24, + "end": 12681.54, + "probability": 0.0032 + }, + { + "start": 12686.58, + "end": 12688.78, + "probability": 0.0506 + }, + { + "start": 12690.72, + "end": 12692.38, + "probability": 0.0709 + }, + { + "start": 12692.38, + "end": 12692.68, + "probability": 0.0631 + }, + { + "start": 12692.96, + "end": 12692.96, + "probability": 0.0382 + }, + { + "start": 12693.24, + "end": 12696.34, + "probability": 0.0588 + }, + { + "start": 12696.64, + "end": 12699.6, + "probability": 0.2743 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.0, + "probability": 0.0 + }, + { + "start": 12738.0, + "end": 12738.02, + "probability": 0.1379 + }, + { + "start": 12738.02, + "end": 12738.1, + "probability": 0.1434 + }, + { + "start": 12738.1, + "end": 12738.1, + "probability": 0.0676 + }, + { + "start": 12738.1, + "end": 12738.1, + "probability": 0.0357 + }, + { + "start": 12738.1, + "end": 12738.46, + "probability": 0.308 + }, + { + "start": 12739.24, + "end": 12741.5, + "probability": 0.4694 + }, + { + "start": 12742.44, + "end": 12744.9, + "probability": 0.7312 + }, + { + "start": 12746.1, + "end": 12747.04, + "probability": 0.6013 + }, + { + "start": 12748.38, + "end": 12751.34, + "probability": 0.743 + }, + { + "start": 12751.92, + "end": 12755.5, + "probability": 0.567 + }, + { + "start": 12755.98, + "end": 12756.18, + "probability": 0.6895 + }, + { + "start": 12756.26, + "end": 12759.6, + "probability": 0.8091 + }, + { + "start": 12764.96, + "end": 12765.46, + "probability": 0.6172 + }, + { + "start": 12766.0, + "end": 12767.44, + "probability": 0.6035 + }, + { + "start": 12767.52, + "end": 12770.66, + "probability": 0.6854 + }, + { + "start": 12770.66, + "end": 12770.82, + "probability": 0.447 + }, + { + "start": 12770.82, + "end": 12771.44, + "probability": 0.2949 + }, + { + "start": 12771.96, + "end": 12772.4, + "probability": 0.6597 + }, + { + "start": 12772.52, + "end": 12773.8, + "probability": 0.4569 + }, + { + "start": 12773.96, + "end": 12774.99, + "probability": 0.9297 + }, + { + "start": 12775.68, + "end": 12778.98, + "probability": 0.9144 + }, + { + "start": 12779.04, + "end": 12779.66, + "probability": 0.5833 + }, + { + "start": 12779.66, + "end": 12782.3, + "probability": 0.7899 + }, + { + "start": 12782.56, + "end": 12785.34, + "probability": 0.8104 + }, + { + "start": 12785.97, + "end": 12787.04, + "probability": 0.9902 + }, + { + "start": 12788.84, + "end": 12790.92, + "probability": 0.989 + }, + { + "start": 12791.62, + "end": 12793.26, + "probability": 0.7761 + }, + { + "start": 12793.26, + "end": 12794.67, + "probability": 0.955 + }, + { + "start": 12796.28, + "end": 12796.66, + "probability": 0.508 + }, + { + "start": 12796.76, + "end": 12797.22, + "probability": 0.5616 + }, + { + "start": 12797.24, + "end": 12799.62, + "probability": 0.9407 + }, + { + "start": 12799.7, + "end": 12800.8, + "probability": 0.7307 + }, + { + "start": 12801.72, + "end": 12803.72, + "probability": 0.9422 + }, + { + "start": 12804.76, + "end": 12808.98, + "probability": 0.9046 + }, + { + "start": 12809.12, + "end": 12811.34, + "probability": 0.7397 + }, + { + "start": 12812.0, + "end": 12815.88, + "probability": 0.9878 + }, + { + "start": 12815.88, + "end": 12821.44, + "probability": 0.9974 + }, + { + "start": 12822.22, + "end": 12824.16, + "probability": 0.9692 + }, + { + "start": 12824.28, + "end": 12826.64, + "probability": 0.8665 + }, + { + "start": 12826.78, + "end": 12829.74, + "probability": 0.9727 + }, + { + "start": 12830.12, + "end": 12830.46, + "probability": 0.8344 + }, + { + "start": 12830.46, + "end": 12831.76, + "probability": 0.8859 + }, + { + "start": 12832.26, + "end": 12833.76, + "probability": 0.9781 + }, + { + "start": 12833.9, + "end": 12835.32, + "probability": 0.8074 + }, + { + "start": 12835.78, + "end": 12837.34, + "probability": 0.9544 + }, + { + "start": 12837.9, + "end": 12840.04, + "probability": 0.4068 + }, + { + "start": 12840.16, + "end": 12840.92, + "probability": 0.5647 + }, + { + "start": 12842.04, + "end": 12844.92, + "probability": 0.9896 + }, + { + "start": 12845.72, + "end": 12847.06, + "probability": 0.9866 + }, + { + "start": 12848.26, + "end": 12853.52, + "probability": 0.9825 + }, + { + "start": 12854.38, + "end": 12856.14, + "probability": 0.9929 + }, + { + "start": 12856.28, + "end": 12857.01, + "probability": 0.7831 + }, + { + "start": 12857.76, + "end": 12859.18, + "probability": 0.7366 + }, + { + "start": 12859.7, + "end": 12860.8, + "probability": 0.8325 + }, + { + "start": 12860.86, + "end": 12864.38, + "probability": 0.9219 + }, + { + "start": 12865.4, + "end": 12867.1, + "probability": 0.7596 + }, + { + "start": 12867.38, + "end": 12869.96, + "probability": 0.9985 + }, + { + "start": 12870.2, + "end": 12871.2, + "probability": 0.4549 + }, + { + "start": 12872.12, + "end": 12873.54, + "probability": 0.9821 + }, + { + "start": 12874.28, + "end": 12876.59, + "probability": 0.9834 + }, + { + "start": 12876.62, + "end": 12878.32, + "probability": 0.9875 + }, + { + "start": 12878.58, + "end": 12879.12, + "probability": 0.6596 + }, + { + "start": 12879.18, + "end": 12879.48, + "probability": 0.9263 + }, + { + "start": 12879.54, + "end": 12880.82, + "probability": 0.9937 + }, + { + "start": 12881.68, + "end": 12883.3, + "probability": 0.5024 + }, + { + "start": 12883.42, + "end": 12884.38, + "probability": 0.7274 + }, + { + "start": 12884.7, + "end": 12885.92, + "probability": 0.9406 + }, + { + "start": 12887.76, + "end": 12891.3, + "probability": 0.9244 + }, + { + "start": 12891.3, + "end": 12893.72, + "probability": 0.9976 + }, + { + "start": 12895.52, + "end": 12895.8, + "probability": 0.6613 + }, + { + "start": 12896.62, + "end": 12900.48, + "probability": 0.4302 + }, + { + "start": 12901.26, + "end": 12902.7, + "probability": 0.6545 + }, + { + "start": 12908.48, + "end": 12915.26, + "probability": 0.7852 + }, + { + "start": 12915.38, + "end": 12916.18, + "probability": 0.9177 + }, + { + "start": 12916.72, + "end": 12919.66, + "probability": 0.998 + }, + { + "start": 12920.24, + "end": 12921.56, + "probability": 0.9148 + }, + { + "start": 12922.46, + "end": 12925.85, + "probability": 0.6998 + }, + { + "start": 12927.38, + "end": 12931.76, + "probability": 0.4617 + }, + { + "start": 12933.22, + "end": 12933.36, + "probability": 0.0373 + }, + { + "start": 12933.36, + "end": 12934.1, + "probability": 0.7809 + }, + { + "start": 12934.26, + "end": 12938.07, + "probability": 0.9445 + }, + { + "start": 12938.4, + "end": 12939.74, + "probability": 0.7168 + }, + { + "start": 12940.0, + "end": 12940.86, + "probability": 0.9463 + }, + { + "start": 12940.94, + "end": 12943.74, + "probability": 0.9064 + }, + { + "start": 12944.34, + "end": 12946.03, + "probability": 0.6964 + }, + { + "start": 12947.06, + "end": 12950.42, + "probability": 0.7225 + }, + { + "start": 12951.0, + "end": 12953.3, + "probability": 0.8076 + }, + { + "start": 12953.44, + "end": 12957.63, + "probability": 0.4319 + }, + { + "start": 12958.22, + "end": 12958.72, + "probability": 0.6291 + }, + { + "start": 12959.08, + "end": 12959.68, + "probability": 0.5139 + }, + { + "start": 12959.74, + "end": 12961.5, + "probability": 0.9341 + }, + { + "start": 12961.64, + "end": 12962.02, + "probability": 0.6627 + }, + { + "start": 12962.3, + "end": 12963.84, + "probability": 0.9631 + }, + { + "start": 12963.92, + "end": 12964.76, + "probability": 0.9748 + }, + { + "start": 12964.82, + "end": 12965.44, + "probability": 0.7977 + }, + { + "start": 12965.88, + "end": 12969.6, + "probability": 0.9644 + }, + { + "start": 12969.72, + "end": 12972.52, + "probability": 0.7704 + }, + { + "start": 12972.56, + "end": 12974.88, + "probability": 0.9956 + }, + { + "start": 12975.18, + "end": 12978.92, + "probability": 0.9498 + }, + { + "start": 12979.22, + "end": 12980.84, + "probability": 0.9722 + }, + { + "start": 12981.44, + "end": 12984.42, + "probability": 0.732 + }, + { + "start": 12984.82, + "end": 12986.66, + "probability": 0.8094 + }, + { + "start": 12987.26, + "end": 12989.8, + "probability": 0.9968 + }, + { + "start": 12989.8, + "end": 12993.4, + "probability": 0.606 + }, + { + "start": 12993.74, + "end": 12995.44, + "probability": 0.6503 + }, + { + "start": 12995.54, + "end": 12997.28, + "probability": 0.8359 + }, + { + "start": 12997.86, + "end": 13001.26, + "probability": 0.9379 + }, + { + "start": 13001.82, + "end": 13003.26, + "probability": 0.8237 + }, + { + "start": 13003.36, + "end": 13004.5, + "probability": 0.6175 + }, + { + "start": 13004.54, + "end": 13006.7, + "probability": 0.9941 + }, + { + "start": 13007.14, + "end": 13009.22, + "probability": 0.9956 + }, + { + "start": 13009.66, + "end": 13012.52, + "probability": 0.9745 + }, + { + "start": 13012.84, + "end": 13014.3, + "probability": 0.9685 + }, + { + "start": 13014.46, + "end": 13016.12, + "probability": 0.9308 + }, + { + "start": 13016.58, + "end": 13017.04, + "probability": 0.6984 + }, + { + "start": 13017.46, + "end": 13020.12, + "probability": 0.9595 + }, + { + "start": 13020.2, + "end": 13021.32, + "probability": 0.7101 + }, + { + "start": 13021.8, + "end": 13023.04, + "probability": 0.7158 + }, + { + "start": 13023.2, + "end": 13024.72, + "probability": 0.9038 + }, + { + "start": 13025.14, + "end": 13027.94, + "probability": 0.8692 + }, + { + "start": 13028.68, + "end": 13033.5, + "probability": 0.8862 + }, + { + "start": 13033.78, + "end": 13035.28, + "probability": 0.8409 + }, + { + "start": 13036.04, + "end": 13036.14, + "probability": 0.7109 + }, + { + "start": 13036.22, + "end": 13036.73, + "probability": 0.9617 + }, + { + "start": 13037.36, + "end": 13038.5, + "probability": 0.7332 + }, + { + "start": 13038.66, + "end": 13039.6, + "probability": 0.9612 + }, + { + "start": 13040.0, + "end": 13040.58, + "probability": 0.4107 + }, + { + "start": 13040.6, + "end": 13043.86, + "probability": 0.9024 + }, + { + "start": 13044.4, + "end": 13045.68, + "probability": 0.9194 + }, + { + "start": 13046.68, + "end": 13049.1, + "probability": 0.9833 + }, + { + "start": 13050.02, + "end": 13052.68, + "probability": 0.8694 + }, + { + "start": 13053.38, + "end": 13056.19, + "probability": 0.9004 + }, + { + "start": 13057.56, + "end": 13058.14, + "probability": 0.7641 + }, + { + "start": 13058.22, + "end": 13059.68, + "probability": 0.8772 + }, + { + "start": 13060.62, + "end": 13063.26, + "probability": 0.9918 + }, + { + "start": 13063.4, + "end": 13063.76, + "probability": 0.8399 + }, + { + "start": 13064.18, + "end": 13064.64, + "probability": 0.443 + }, + { + "start": 13065.2, + "end": 13065.94, + "probability": 0.8068 + }, + { + "start": 13066.52, + "end": 13071.04, + "probability": 0.9407 + }, + { + "start": 13071.9, + "end": 13072.96, + "probability": 0.8854 + }, + { + "start": 13073.12, + "end": 13076.0, + "probability": 0.9685 + }, + { + "start": 13076.08, + "end": 13080.36, + "probability": 0.8902 + }, + { + "start": 13080.36, + "end": 13085.54, + "probability": 0.855 + }, + { + "start": 13085.9, + "end": 13088.14, + "probability": 0.9976 + }, + { + "start": 13089.16, + "end": 13090.44, + "probability": 0.9543 + }, + { + "start": 13090.58, + "end": 13092.36, + "probability": 0.5004 + }, + { + "start": 13092.52, + "end": 13094.16, + "probability": 0.9966 + }, + { + "start": 13094.66, + "end": 13095.32, + "probability": 0.8062 + }, + { + "start": 13095.36, + "end": 13095.94, + "probability": 0.7891 + }, + { + "start": 13096.02, + "end": 13096.84, + "probability": 0.8702 + }, + { + "start": 13097.12, + "end": 13097.68, + "probability": 0.9456 + }, + { + "start": 13097.82, + "end": 13098.48, + "probability": 0.5612 + }, + { + "start": 13098.7, + "end": 13099.72, + "probability": 0.9519 + }, + { + "start": 13099.8, + "end": 13100.02, + "probability": 0.8365 + }, + { + "start": 13100.06, + "end": 13101.63, + "probability": 0.8718 + }, + { + "start": 13102.18, + "end": 13103.22, + "probability": 0.9788 + }, + { + "start": 13103.26, + "end": 13103.68, + "probability": 0.8572 + }, + { + "start": 13103.8, + "end": 13104.5, + "probability": 0.5318 + }, + { + "start": 13105.89, + "end": 13108.28, + "probability": 0.9756 + }, + { + "start": 13108.86, + "end": 13109.36, + "probability": 0.8745 + }, + { + "start": 13110.28, + "end": 13113.72, + "probability": 0.9819 + }, + { + "start": 13113.72, + "end": 13117.46, + "probability": 0.9945 + }, + { + "start": 13117.94, + "end": 13118.56, + "probability": 0.8596 + }, + { + "start": 13119.24, + "end": 13120.91, + "probability": 0.9963 + }, + { + "start": 13121.94, + "end": 13123.22, + "probability": 0.9891 + }, + { + "start": 13124.18, + "end": 13124.5, + "probability": 0.6078 + }, + { + "start": 13124.64, + "end": 13126.66, + "probability": 0.9371 + }, + { + "start": 13127.08, + "end": 13130.16, + "probability": 0.9946 + }, + { + "start": 13130.62, + "end": 13132.0, + "probability": 0.6575 + }, + { + "start": 13132.18, + "end": 13134.3, + "probability": 0.4104 + }, + { + "start": 13134.3, + "end": 13140.82, + "probability": 0.9169 + }, + { + "start": 13142.08, + "end": 13144.46, + "probability": 0.9896 + }, + { + "start": 13145.0, + "end": 13146.75, + "probability": 0.8749 + }, + { + "start": 13147.06, + "end": 13148.54, + "probability": 0.5982 + }, + { + "start": 13149.14, + "end": 13149.86, + "probability": 0.7476 + }, + { + "start": 13149.88, + "end": 13150.48, + "probability": 0.8716 + }, + { + "start": 13151.06, + "end": 13153.32, + "probability": 0.8578 + }, + { + "start": 13154.0, + "end": 13155.08, + "probability": 0.7173 + }, + { + "start": 13155.22, + "end": 13156.22, + "probability": 0.8427 + }, + { + "start": 13156.32, + "end": 13158.06, + "probability": 0.9725 + }, + { + "start": 13158.16, + "end": 13160.18, + "probability": 0.9759 + }, + { + "start": 13160.68, + "end": 13161.76, + "probability": 0.967 + }, + { + "start": 13161.94, + "end": 13162.52, + "probability": 0.98 + }, + { + "start": 13162.58, + "end": 13163.56, + "probability": 0.8591 + }, + { + "start": 13163.62, + "end": 13165.38, + "probability": 0.9893 + }, + { + "start": 13165.84, + "end": 13166.4, + "probability": 0.4848 + }, + { + "start": 13166.46, + "end": 13167.62, + "probability": 0.7907 + }, + { + "start": 13167.7, + "end": 13168.94, + "probability": 0.873 + }, + { + "start": 13169.64, + "end": 13173.42, + "probability": 0.9834 + }, + { + "start": 13174.0, + "end": 13175.46, + "probability": 0.8743 + }, + { + "start": 13175.58, + "end": 13176.44, + "probability": 0.9202 + }, + { + "start": 13176.78, + "end": 13178.26, + "probability": 0.9517 + }, + { + "start": 13178.36, + "end": 13182.72, + "probability": 0.8087 + }, + { + "start": 13182.78, + "end": 13183.86, + "probability": 0.877 + }, + { + "start": 13184.26, + "end": 13188.66, + "probability": 0.9971 + }, + { + "start": 13189.24, + "end": 13191.28, + "probability": 0.9694 + }, + { + "start": 13192.04, + "end": 13193.2, + "probability": 0.5633 + }, + { + "start": 13193.98, + "end": 13196.48, + "probability": 0.9281 + }, + { + "start": 13196.92, + "end": 13202.8, + "probability": 0.9829 + }, + { + "start": 13203.32, + "end": 13206.82, + "probability": 0.9899 + }, + { + "start": 13207.1, + "end": 13209.44, + "probability": 0.9959 + }, + { + "start": 13209.52, + "end": 13211.16, + "probability": 0.9125 + }, + { + "start": 13211.96, + "end": 13212.98, + "probability": 0.5921 + }, + { + "start": 13213.74, + "end": 13214.12, + "probability": 0.8115 + }, + { + "start": 13214.22, + "end": 13216.16, + "probability": 0.8791 + }, + { + "start": 13216.68, + "end": 13218.76, + "probability": 0.9114 + }, + { + "start": 13218.82, + "end": 13221.94, + "probability": 0.9602 + }, + { + "start": 13221.98, + "end": 13222.76, + "probability": 0.9761 + }, + { + "start": 13223.18, + "end": 13224.42, + "probability": 0.9937 + }, + { + "start": 13224.72, + "end": 13225.24, + "probability": 0.6819 + }, + { + "start": 13225.9, + "end": 13229.7, + "probability": 0.8622 + }, + { + "start": 13232.4, + "end": 13235.38, + "probability": 0.7187 + }, + { + "start": 13236.04, + "end": 13239.4, + "probability": 0.9339 + }, + { + "start": 13239.54, + "end": 13240.14, + "probability": 0.3114 + }, + { + "start": 13240.44, + "end": 13241.14, + "probability": 0.7696 + }, + { + "start": 13241.38, + "end": 13243.86, + "probability": 0.6465 + }, + { + "start": 13244.66, + "end": 13245.66, + "probability": 0.9751 + }, + { + "start": 13245.74, + "end": 13247.24, + "probability": 0.9777 + }, + { + "start": 13247.5, + "end": 13249.66, + "probability": 0.7612 + }, + { + "start": 13251.98, + "end": 13254.4, + "probability": 0.9931 + }, + { + "start": 13254.98, + "end": 13256.46, + "probability": 0.9235 + }, + { + "start": 13256.96, + "end": 13258.37, + "probability": 0.7214 + }, + { + "start": 13258.58, + "end": 13262.94, + "probability": 0.8745 + }, + { + "start": 13263.0, + "end": 13263.34, + "probability": 0.8965 + }, + { + "start": 13263.44, + "end": 13265.66, + "probability": 0.8546 + }, + { + "start": 13266.02, + "end": 13266.94, + "probability": 0.8474 + }, + { + "start": 13267.28, + "end": 13268.48, + "probability": 0.9562 + }, + { + "start": 13268.84, + "end": 13273.66, + "probability": 0.9714 + }, + { + "start": 13273.84, + "end": 13277.86, + "probability": 0.9204 + }, + { + "start": 13278.1, + "end": 13279.96, + "probability": 0.9541 + }, + { + "start": 13280.32, + "end": 13283.42, + "probability": 0.9896 + }, + { + "start": 13284.08, + "end": 13286.06, + "probability": 0.8875 + }, + { + "start": 13286.86, + "end": 13290.52, + "probability": 0.9893 + }, + { + "start": 13290.7, + "end": 13291.06, + "probability": 0.5734 + }, + { + "start": 13291.6, + "end": 13294.72, + "probability": 0.9834 + }, + { + "start": 13295.38, + "end": 13297.44, + "probability": 0.7413 + }, + { + "start": 13297.96, + "end": 13301.56, + "probability": 0.9533 + }, + { + "start": 13302.12, + "end": 13304.76, + "probability": 0.9613 + }, + { + "start": 13305.28, + "end": 13306.12, + "probability": 0.818 + }, + { + "start": 13306.82, + "end": 13308.12, + "probability": 0.9978 + }, + { + "start": 13308.38, + "end": 13309.36, + "probability": 0.7811 + }, + { + "start": 13309.36, + "end": 13309.88, + "probability": 0.7175 + }, + { + "start": 13310.64, + "end": 13314.15, + "probability": 0.9938 + }, + { + "start": 13314.48, + "end": 13315.24, + "probability": 0.7086 + }, + { + "start": 13315.9, + "end": 13318.1, + "probability": 0.9667 + }, + { + "start": 13318.56, + "end": 13320.52, + "probability": 0.8027 + }, + { + "start": 13320.72, + "end": 13321.34, + "probability": 0.7224 + }, + { + "start": 13321.58, + "end": 13322.03, + "probability": 0.8294 + }, + { + "start": 13322.38, + "end": 13324.86, + "probability": 0.9601 + }, + { + "start": 13325.08, + "end": 13325.7, + "probability": 0.5098 + }, + { + "start": 13326.42, + "end": 13328.42, + "probability": 0.6835 + }, + { + "start": 13328.48, + "end": 13330.21, + "probability": 0.9567 + }, + { + "start": 13331.86, + "end": 13333.87, + "probability": 0.9343 + }, + { + "start": 13334.56, + "end": 13336.99, + "probability": 0.9133 + }, + { + "start": 13337.56, + "end": 13340.76, + "probability": 0.5084 + }, + { + "start": 13342.36, + "end": 13342.98, + "probability": 0.8013 + }, + { + "start": 13362.14, + "end": 13365.8, + "probability": 0.7147 + }, + { + "start": 13368.0, + "end": 13374.76, + "probability": 0.9904 + }, + { + "start": 13375.04, + "end": 13376.54, + "probability": 0.8326 + }, + { + "start": 13377.28, + "end": 13382.14, + "probability": 0.9731 + }, + { + "start": 13383.0, + "end": 13385.42, + "probability": 0.8057 + }, + { + "start": 13385.56, + "end": 13388.62, + "probability": 0.9786 + }, + { + "start": 13389.5, + "end": 13392.68, + "probability": 0.9521 + }, + { + "start": 13393.2, + "end": 13395.28, + "probability": 0.9981 + }, + { + "start": 13396.0, + "end": 13401.72, + "probability": 0.9855 + }, + { + "start": 13402.74, + "end": 13407.52, + "probability": 0.9873 + }, + { + "start": 13407.98, + "end": 13411.34, + "probability": 0.8748 + }, + { + "start": 13412.16, + "end": 13414.92, + "probability": 0.9717 + }, + { + "start": 13415.86, + "end": 13417.94, + "probability": 0.8096 + }, + { + "start": 13419.38, + "end": 13422.86, + "probability": 0.9836 + }, + { + "start": 13423.46, + "end": 13427.08, + "probability": 0.9965 + }, + { + "start": 13428.68, + "end": 13432.02, + "probability": 0.9227 + }, + { + "start": 13432.4, + "end": 13433.88, + "probability": 0.889 + }, + { + "start": 13434.34, + "end": 13435.42, + "probability": 0.8644 + }, + { + "start": 13436.52, + "end": 13439.52, + "probability": 0.862 + }, + { + "start": 13440.8, + "end": 13442.68, + "probability": 0.7419 + }, + { + "start": 13443.7, + "end": 13447.83, + "probability": 0.9849 + }, + { + "start": 13448.58, + "end": 13449.98, + "probability": 0.9829 + }, + { + "start": 13450.64, + "end": 13453.7, + "probability": 0.9536 + }, + { + "start": 13454.9, + "end": 13456.32, + "probability": 0.8108 + }, + { + "start": 13457.46, + "end": 13461.82, + "probability": 0.9795 + }, + { + "start": 13461.92, + "end": 13463.8, + "probability": 0.6897 + }, + { + "start": 13463.92, + "end": 13465.46, + "probability": 0.9554 + }, + { + "start": 13465.6, + "end": 13467.0, + "probability": 0.8841 + }, + { + "start": 13467.28, + "end": 13468.85, + "probability": 0.4855 + }, + { + "start": 13468.94, + "end": 13470.08, + "probability": 0.6385 + }, + { + "start": 13470.88, + "end": 13477.44, + "probability": 0.9202 + }, + { + "start": 13477.82, + "end": 13479.58, + "probability": 0.9732 + }, + { + "start": 13480.12, + "end": 13482.46, + "probability": 0.9811 + }, + { + "start": 13483.5, + "end": 13488.63, + "probability": 0.978 + }, + { + "start": 13488.82, + "end": 13493.38, + "probability": 0.9971 + }, + { + "start": 13494.1, + "end": 13500.46, + "probability": 0.983 + }, + { + "start": 13500.46, + "end": 13508.06, + "probability": 0.987 + }, + { + "start": 13508.96, + "end": 13513.98, + "probability": 0.9992 + }, + { + "start": 13514.18, + "end": 13515.84, + "probability": 0.995 + }, + { + "start": 13517.52, + "end": 13521.98, + "probability": 0.984 + }, + { + "start": 13522.6, + "end": 13525.28, + "probability": 0.901 + }, + { + "start": 13525.86, + "end": 13528.36, + "probability": 0.8385 + }, + { + "start": 13528.53, + "end": 13531.6, + "probability": 0.9746 + }, + { + "start": 13531.98, + "end": 13532.04, + "probability": 0.4744 + }, + { + "start": 13532.22, + "end": 13533.22, + "probability": 0.9528 + }, + { + "start": 13533.26, + "end": 13538.1, + "probability": 0.9856 + }, + { + "start": 13538.68, + "end": 13546.6, + "probability": 0.9956 + }, + { + "start": 13546.6, + "end": 13554.56, + "probability": 0.9989 + }, + { + "start": 13555.48, + "end": 13558.18, + "probability": 0.8877 + }, + { + "start": 13558.36, + "end": 13564.84, + "probability": 0.9939 + }, + { + "start": 13565.3, + "end": 13567.84, + "probability": 0.3486 + }, + { + "start": 13568.3, + "end": 13569.2, + "probability": 0.6863 + }, + { + "start": 13570.34, + "end": 13578.0, + "probability": 0.9818 + }, + { + "start": 13579.14, + "end": 13581.78, + "probability": 0.9687 + }, + { + "start": 13582.3, + "end": 13587.2, + "probability": 0.953 + }, + { + "start": 13587.56, + "end": 13592.18, + "probability": 0.9967 + }, + { + "start": 13592.84, + "end": 13595.32, + "probability": 0.7809 + }, + { + "start": 13595.54, + "end": 13596.42, + "probability": 0.7022 + }, + { + "start": 13596.56, + "end": 13597.88, + "probability": 0.6219 + }, + { + "start": 13598.0, + "end": 13603.94, + "probability": 0.9747 + }, + { + "start": 13604.2, + "end": 13604.64, + "probability": 0.8 + }, + { + "start": 13605.26, + "end": 13606.82, + "probability": 0.5658 + }, + { + "start": 13606.86, + "end": 13611.17, + "probability": 0.542 + }, + { + "start": 13617.68, + "end": 13620.86, + "probability": 0.7397 + }, + { + "start": 13625.44, + "end": 13628.04, + "probability": 0.6762 + }, + { + "start": 13629.12, + "end": 13629.64, + "probability": 0.8025 + }, + { + "start": 13630.66, + "end": 13632.1, + "probability": 0.7179 + }, + { + "start": 13632.34, + "end": 13634.01, + "probability": 0.9548 + }, + { + "start": 13634.16, + "end": 13638.5, + "probability": 0.5655 + }, + { + "start": 13639.24, + "end": 13640.0, + "probability": 0.8354 + }, + { + "start": 13640.22, + "end": 13644.58, + "probability": 0.6553 + }, + { + "start": 13645.66, + "end": 13647.22, + "probability": 0.9199 + }, + { + "start": 13648.0, + "end": 13650.82, + "probability": 0.8323 + }, + { + "start": 13650.96, + "end": 13656.06, + "probability": 0.9922 + }, + { + "start": 13656.4, + "end": 13657.68, + "probability": 0.9591 + }, + { + "start": 13659.66, + "end": 13665.9, + "probability": 0.9813 + }, + { + "start": 13669.44, + "end": 13677.06, + "probability": 0.9655 + }, + { + "start": 13678.06, + "end": 13678.2, + "probability": 0.665 + }, + { + "start": 13678.72, + "end": 13679.28, + "probability": 0.9171 + }, + { + "start": 13680.18, + "end": 13683.54, + "probability": 0.947 + }, + { + "start": 13684.94, + "end": 13686.52, + "probability": 0.9929 + }, + { + "start": 13687.06, + "end": 13690.24, + "probability": 0.9971 + }, + { + "start": 13691.32, + "end": 13693.48, + "probability": 0.9893 + }, + { + "start": 13694.68, + "end": 13697.06, + "probability": 0.5326 + }, + { + "start": 13697.14, + "end": 13698.0, + "probability": 0.8597 + }, + { + "start": 13698.12, + "end": 13702.46, + "probability": 0.9427 + }, + { + "start": 13703.48, + "end": 13704.82, + "probability": 0.8609 + }, + { + "start": 13705.98, + "end": 13712.94, + "probability": 0.9554 + }, + { + "start": 13712.94, + "end": 13716.18, + "probability": 0.8423 + }, + { + "start": 13717.14, + "end": 13720.18, + "probability": 0.707 + }, + { + "start": 13721.18, + "end": 13723.2, + "probability": 0.9685 + }, + { + "start": 13723.26, + "end": 13727.48, + "probability": 0.9844 + }, + { + "start": 13728.0, + "end": 13729.26, + "probability": 0.9828 + }, + { + "start": 13729.64, + "end": 13730.12, + "probability": 0.7975 + }, + { + "start": 13730.5, + "end": 13731.72, + "probability": 0.8493 + }, + { + "start": 13734.84, + "end": 13736.94, + "probability": 0.8793 + }, + { + "start": 13737.5, + "end": 13738.7, + "probability": 0.7202 + }, + { + "start": 13738.9, + "end": 13741.06, + "probability": 0.7929 + }, + { + "start": 13741.16, + "end": 13744.58, + "probability": 0.8695 + }, + { + "start": 13744.96, + "end": 13746.18, + "probability": 0.9497 + }, + { + "start": 13746.82, + "end": 13751.34, + "probability": 0.98 + }, + { + "start": 13751.92, + "end": 13752.54, + "probability": 0.609 + }, + { + "start": 13752.66, + "end": 13753.4, + "probability": 0.493 + }, + { + "start": 13753.46, + "end": 13754.76, + "probability": 0.9116 + }, + { + "start": 13755.2, + "end": 13756.56, + "probability": 0.9325 + }, + { + "start": 13758.46, + "end": 13760.38, + "probability": 0.0443 + }, + { + "start": 13760.86, + "end": 13762.06, + "probability": 0.7206 + }, + { + "start": 13762.26, + "end": 13764.12, + "probability": 0.7438 + }, + { + "start": 13764.18, + "end": 13764.68, + "probability": 0.3996 + }, + { + "start": 13764.74, + "end": 13766.52, + "probability": 0.8271 + }, + { + "start": 13767.0, + "end": 13767.34, + "probability": 0.8727 + }, + { + "start": 13767.5, + "end": 13769.66, + "probability": 0.9464 + }, + { + "start": 13769.72, + "end": 13770.96, + "probability": 0.8659 + }, + { + "start": 13770.98, + "end": 13771.82, + "probability": 0.8262 + }, + { + "start": 13772.18, + "end": 13776.26, + "probability": 0.9605 + }, + { + "start": 13776.92, + "end": 13779.42, + "probability": 0.9966 + }, + { + "start": 13780.28, + "end": 13780.86, + "probability": 0.0868 + }, + { + "start": 13782.54, + "end": 13785.52, + "probability": 0.4017 + }, + { + "start": 13785.52, + "end": 13786.38, + "probability": 0.2031 + }, + { + "start": 13786.4, + "end": 13787.24, + "probability": 0.1889 + }, + { + "start": 13787.28, + "end": 13787.76, + "probability": 0.3169 + }, + { + "start": 13788.78, + "end": 13791.58, + "probability": 0.0157 + }, + { + "start": 13794.1, + "end": 13794.18, + "probability": 0.019 + }, + { + "start": 13811.92, + "end": 13816.04, + "probability": 0.939 + }, + { + "start": 13816.08, + "end": 13820.78, + "probability": 0.9794 + }, + { + "start": 13820.88, + "end": 13822.02, + "probability": 0.5022 + }, + { + "start": 13822.08, + "end": 13824.5, + "probability": 0.5478 + }, + { + "start": 13824.8, + "end": 13826.08, + "probability": 0.3436 + }, + { + "start": 13826.1, + "end": 13826.62, + "probability": 0.0783 + }, + { + "start": 13826.62, + "end": 13832.3, + "probability": 0.7919 + }, + { + "start": 13832.56, + "end": 13832.88, + "probability": 0.6589 + }, + { + "start": 13832.94, + "end": 13833.36, + "probability": 0.9688 + }, + { + "start": 13834.16, + "end": 13837.2, + "probability": 0.9889 + }, + { + "start": 13837.94, + "end": 13839.42, + "probability": 0.9956 + }, + { + "start": 13839.56, + "end": 13840.22, + "probability": 0.9749 + }, + { + "start": 13840.36, + "end": 13842.6, + "probability": 0.9818 + }, + { + "start": 13843.84, + "end": 13846.74, + "probability": 0.9673 + }, + { + "start": 13847.34, + "end": 13850.24, + "probability": 0.9885 + }, + { + "start": 13850.36, + "end": 13850.54, + "probability": 0.5972 + }, + { + "start": 13850.66, + "end": 13851.58, + "probability": 0.7406 + }, + { + "start": 13853.02, + "end": 13857.79, + "probability": 0.979 + }, + { + "start": 13858.84, + "end": 13861.48, + "probability": 0.6761 + }, + { + "start": 13861.56, + "end": 13862.42, + "probability": 0.9338 + }, + { + "start": 13863.1, + "end": 13865.48, + "probability": 0.9859 + }, + { + "start": 13865.6, + "end": 13869.88, + "probability": 0.942 + }, + { + "start": 13870.42, + "end": 13874.24, + "probability": 0.9932 + }, + { + "start": 13874.78, + "end": 13876.68, + "probability": 0.7124 + }, + { + "start": 13877.22, + "end": 13879.94, + "probability": 0.5805 + }, + { + "start": 13880.92, + "end": 13884.5, + "probability": 0.7547 + }, + { + "start": 13884.58, + "end": 13885.52, + "probability": 0.9773 + }, + { + "start": 13885.6, + "end": 13886.08, + "probability": 0.8229 + }, + { + "start": 13886.2, + "end": 13891.22, + "probability": 0.9702 + }, + { + "start": 13892.12, + "end": 13894.66, + "probability": 0.625 + }, + { + "start": 13894.98, + "end": 13896.16, + "probability": 0.7988 + }, + { + "start": 13896.4, + "end": 13901.74, + "probability": 0.991 + }, + { + "start": 13903.04, + "end": 13906.6, + "probability": 0.9797 + }, + { + "start": 13906.92, + "end": 13908.7, + "probability": 0.9883 + }, + { + "start": 13908.78, + "end": 13909.74, + "probability": 0.9429 + }, + { + "start": 13910.92, + "end": 13913.16, + "probability": 0.7942 + }, + { + "start": 13913.74, + "end": 13916.92, + "probability": 0.6847 + }, + { + "start": 13917.0, + "end": 13919.82, + "probability": 0.9662 + }, + { + "start": 13920.46, + "end": 13922.84, + "probability": 0.5009 + }, + { + "start": 13922.94, + "end": 13924.26, + "probability": 0.7927 + }, + { + "start": 13924.62, + "end": 13925.36, + "probability": 0.835 + }, + { + "start": 13925.42, + "end": 13926.76, + "probability": 0.9927 + }, + { + "start": 13927.36, + "end": 13930.0, + "probability": 0.9912 + }, + { + "start": 13931.06, + "end": 13932.68, + "probability": 0.7736 + }, + { + "start": 13932.7, + "end": 13933.5, + "probability": 0.8263 + }, + { + "start": 13933.98, + "end": 13936.7, + "probability": 0.8293 + }, + { + "start": 13936.8, + "end": 13938.56, + "probability": 0.9507 + }, + { + "start": 13938.76, + "end": 13940.96, + "probability": 0.8102 + }, + { + "start": 13941.12, + "end": 13941.87, + "probability": 0.698 + }, + { + "start": 13942.42, + "end": 13943.92, + "probability": 0.9753 + }, + { + "start": 13944.56, + "end": 13947.2, + "probability": 0.6636 + }, + { + "start": 13948.24, + "end": 13949.56, + "probability": 0.9847 + }, + { + "start": 13949.56, + "end": 13950.84, + "probability": 0.6312 + }, + { + "start": 13951.42, + "end": 13952.56, + "probability": 0.9553 + }, + { + "start": 13952.74, + "end": 13954.02, + "probability": 0.782 + }, + { + "start": 13954.06, + "end": 13954.74, + "probability": 0.6919 + }, + { + "start": 13955.3, + "end": 13956.54, + "probability": 0.9551 + }, + { + "start": 13956.6, + "end": 13958.38, + "probability": 0.7018 + }, + { + "start": 13958.76, + "end": 13960.3, + "probability": 0.9578 + }, + { + "start": 13960.3, + "end": 13961.54, + "probability": 0.8765 + }, + { + "start": 13962.14, + "end": 13967.74, + "probability": 0.7615 + }, + { + "start": 13968.54, + "end": 13970.84, + "probability": 0.9027 + }, + { + "start": 13970.94, + "end": 13972.23, + "probability": 0.9196 + }, + { + "start": 13973.38, + "end": 13976.46, + "probability": 0.8781 + }, + { + "start": 13977.22, + "end": 13980.64, + "probability": 0.9765 + }, + { + "start": 13980.78, + "end": 13982.01, + "probability": 0.9883 + }, + { + "start": 13982.64, + "end": 13985.72, + "probability": 0.6976 + }, + { + "start": 13985.92, + "end": 13987.96, + "probability": 0.7671 + }, + { + "start": 13988.66, + "end": 13989.02, + "probability": 0.7391 + }, + { + "start": 13989.08, + "end": 13989.5, + "probability": 0.912 + }, + { + "start": 13989.54, + "end": 13990.34, + "probability": 0.8819 + }, + { + "start": 13990.42, + "end": 13991.24, + "probability": 0.9819 + }, + { + "start": 13991.38, + "end": 13992.4, + "probability": 0.9548 + }, + { + "start": 13992.86, + "end": 13995.42, + "probability": 0.978 + }, + { + "start": 13995.46, + "end": 13997.02, + "probability": 0.5809 + }, + { + "start": 13997.8, + "end": 13999.42, + "probability": 0.9788 + }, + { + "start": 13999.46, + "end": 14003.32, + "probability": 0.9889 + }, + { + "start": 14003.6, + "end": 14006.58, + "probability": 0.151 + }, + { + "start": 14006.84, + "end": 14011.22, + "probability": 0.701 + }, + { + "start": 14011.36, + "end": 14015.32, + "probability": 0.7729 + }, + { + "start": 14015.48, + "end": 14016.74, + "probability": 0.5865 + }, + { + "start": 14017.42, + "end": 14018.52, + "probability": 0.8965 + }, + { + "start": 14019.1, + "end": 14021.24, + "probability": 0.9046 + }, + { + "start": 14021.32, + "end": 14024.38, + "probability": 0.9373 + }, + { + "start": 14024.84, + "end": 14025.66, + "probability": 0.7354 + }, + { + "start": 14025.74, + "end": 14029.58, + "probability": 0.9666 + }, + { + "start": 14029.92, + "end": 14030.64, + "probability": 0.3968 + }, + { + "start": 14030.72, + "end": 14033.94, + "probability": 0.6109 + }, + { + "start": 14034.1, + "end": 14036.38, + "probability": 0.5069 + }, + { + "start": 14036.52, + "end": 14037.9, + "probability": 0.7615 + }, + { + "start": 14038.02, + "end": 14038.36, + "probability": 0.7534 + }, + { + "start": 14038.38, + "end": 14039.46, + "probability": 0.9609 + }, + { + "start": 14039.7, + "end": 14040.34, + "probability": 0.6021 + }, + { + "start": 14040.34, + "end": 14042.83, + "probability": 0.9709 + }, + { + "start": 14042.98, + "end": 14043.36, + "probability": 0.5457 + }, + { + "start": 14043.54, + "end": 14044.72, + "probability": 0.5412 + }, + { + "start": 14044.74, + "end": 14044.94, + "probability": 0.8373 + }, + { + "start": 14045.04, + "end": 14047.02, + "probability": 0.7964 + }, + { + "start": 14047.4, + "end": 14047.98, + "probability": 0.9007 + }, + { + "start": 14048.12, + "end": 14051.76, + "probability": 0.9954 + }, + { + "start": 14051.76, + "end": 14055.16, + "probability": 0.9978 + }, + { + "start": 14055.6, + "end": 14058.16, + "probability": 0.8284 + }, + { + "start": 14058.36, + "end": 14059.98, + "probability": 0.851 + }, + { + "start": 14060.02, + "end": 14060.18, + "probability": 0.3653 + }, + { + "start": 14060.28, + "end": 14061.02, + "probability": 0.5201 + }, + { + "start": 14061.1, + "end": 14063.68, + "probability": 0.9954 + }, + { + "start": 14063.88, + "end": 14066.22, + "probability": 0.5782 + }, + { + "start": 14066.48, + "end": 14066.5, + "probability": 0.0005 + }, + { + "start": 14068.74, + "end": 14068.94, + "probability": 0.286 + }, + { + "start": 14068.94, + "end": 14069.3, + "probability": 0.2828 + }, + { + "start": 14069.3, + "end": 14069.79, + "probability": 0.4228 + }, + { + "start": 14069.98, + "end": 14070.46, + "probability": 0.7797 + }, + { + "start": 14070.54, + "end": 14071.02, + "probability": 0.7353 + }, + { + "start": 14071.14, + "end": 14073.72, + "probability": 0.8843 + }, + { + "start": 14073.78, + "end": 14076.74, + "probability": 0.8914 + }, + { + "start": 14076.78, + "end": 14079.46, + "probability": 0.5397 + }, + { + "start": 14079.6, + "end": 14083.63, + "probability": 0.9514 + }, + { + "start": 14084.22, + "end": 14084.6, + "probability": 0.7822 + }, + { + "start": 14089.46, + "end": 14092.66, + "probability": 0.2151 + }, + { + "start": 14099.96, + "end": 14100.12, + "probability": 0.37 + }, + { + "start": 14100.12, + "end": 14103.04, + "probability": 0.71 + }, + { + "start": 14103.22, + "end": 14105.38, + "probability": 0.7149 + }, + { + "start": 14105.44, + "end": 14107.3, + "probability": 0.8316 + }, + { + "start": 14107.68, + "end": 14108.68, + "probability": 0.8266 + }, + { + "start": 14108.76, + "end": 14110.16, + "probability": 0.8844 + }, + { + "start": 14110.24, + "end": 14111.04, + "probability": 0.8539 + }, + { + "start": 14111.54, + "end": 14113.1, + "probability": 0.3649 + }, + { + "start": 14115.48, + "end": 14116.76, + "probability": 0.0919 + }, + { + "start": 14119.82, + "end": 14119.82, + "probability": 0.0181 + }, + { + "start": 14122.76, + "end": 14125.42, + "probability": 0.926 + }, + { + "start": 14125.5, + "end": 14127.82, + "probability": 0.9858 + }, + { + "start": 14127.92, + "end": 14129.86, + "probability": 0.9385 + }, + { + "start": 14134.26, + "end": 14136.36, + "probability": 0.6944 + }, + { + "start": 14136.52, + "end": 14137.5, + "probability": 0.829 + }, + { + "start": 14137.84, + "end": 14140.08, + "probability": 0.913 + }, + { + "start": 14140.72, + "end": 14145.76, + "probability": 0.2913 + }, + { + "start": 14146.42, + "end": 14146.92, + "probability": 0.2234 + }, + { + "start": 14146.92, + "end": 14148.58, + "probability": 0.3784 + }, + { + "start": 14149.24, + "end": 14149.28, + "probability": 0.0209 + }, + { + "start": 14149.28, + "end": 14151.83, + "probability": 0.632 + }, + { + "start": 14152.4, + "end": 14154.58, + "probability": 0.8672 + }, + { + "start": 14154.58, + "end": 14155.16, + "probability": 0.6323 + }, + { + "start": 14155.18, + "end": 14155.62, + "probability": 0.6147 + }, + { + "start": 14156.76, + "end": 14158.42, + "probability": 0.9365 + }, + { + "start": 14161.2, + "end": 14164.2, + "probability": 0.6438 + }, + { + "start": 14165.22, + "end": 14167.72, + "probability": 0.8654 + }, + { + "start": 14169.78, + "end": 14171.12, + "probability": 0.847 + }, + { + "start": 14171.48, + "end": 14173.76, + "probability": 0.9962 + }, + { + "start": 14174.1, + "end": 14174.28, + "probability": 0.5895 + }, + { + "start": 14175.68, + "end": 14176.56, + "probability": 0.8394 + }, + { + "start": 14177.02, + "end": 14177.88, + "probability": 0.9427 + }, + { + "start": 14180.75, + "end": 14188.82, + "probability": 0.9955 + }, + { + "start": 14189.84, + "end": 14197.62, + "probability": 0.9958 + }, + { + "start": 14197.62, + "end": 14204.8, + "probability": 0.9835 + }, + { + "start": 14205.4, + "end": 14209.34, + "probability": 0.8545 + }, + { + "start": 14209.96, + "end": 14214.42, + "probability": 0.9839 + }, + { + "start": 14214.42, + "end": 14219.34, + "probability": 0.9846 + }, + { + "start": 14220.7, + "end": 14225.86, + "probability": 0.9554 + }, + { + "start": 14226.48, + "end": 14227.96, + "probability": 0.9678 + }, + { + "start": 14228.48, + "end": 14233.82, + "probability": 0.9951 + }, + { + "start": 14234.56, + "end": 14239.14, + "probability": 0.9453 + }, + { + "start": 14239.5, + "end": 14245.58, + "probability": 0.9911 + }, + { + "start": 14246.24, + "end": 14246.94, + "probability": 0.8775 + }, + { + "start": 14248.62, + "end": 14257.16, + "probability": 0.9849 + }, + { + "start": 14257.48, + "end": 14262.8, + "probability": 0.6343 + }, + { + "start": 14262.86, + "end": 14266.06, + "probability": 0.8165 + }, + { + "start": 14266.3, + "end": 14268.48, + "probability": 0.9363 + }, + { + "start": 14268.98, + "end": 14273.42, + "probability": 0.9182 + }, + { + "start": 14273.88, + "end": 14276.84, + "probability": 0.7754 + }, + { + "start": 14277.02, + "end": 14279.72, + "probability": 0.8663 + }, + { + "start": 14279.86, + "end": 14281.76, + "probability": 0.5727 + }, + { + "start": 14282.38, + "end": 14286.28, + "probability": 0.9785 + }, + { + "start": 14286.84, + "end": 14288.37, + "probability": 0.9526 + }, + { + "start": 14288.64, + "end": 14292.67, + "probability": 0.9442 + }, + { + "start": 14293.18, + "end": 14294.62, + "probability": 0.9785 + }, + { + "start": 14294.88, + "end": 14296.03, + "probability": 0.7291 + }, + { + "start": 14296.66, + "end": 14300.71, + "probability": 0.9056 + }, + { + "start": 14300.9, + "end": 14305.14, + "probability": 0.9971 + }, + { + "start": 14305.82, + "end": 14311.42, + "probability": 0.755 + }, + { + "start": 14311.74, + "end": 14315.68, + "probability": 0.9083 + }, + { + "start": 14320.78, + "end": 14325.86, + "probability": 0.9648 + }, + { + "start": 14326.16, + "end": 14330.08, + "probability": 0.866 + }, + { + "start": 14330.08, + "end": 14335.06, + "probability": 0.954 + }, + { + "start": 14335.62, + "end": 14340.48, + "probability": 0.9946 + }, + { + "start": 14341.12, + "end": 14344.02, + "probability": 0.6388 + }, + { + "start": 14344.1, + "end": 14349.68, + "probability": 0.9315 + }, + { + "start": 14349.84, + "end": 14352.32, + "probability": 0.9611 + }, + { + "start": 14352.46, + "end": 14359.0, + "probability": 0.9894 + }, + { + "start": 14359.06, + "end": 14360.96, + "probability": 0.9987 + }, + { + "start": 14361.16, + "end": 14366.88, + "probability": 0.9758 + }, + { + "start": 14367.0, + "end": 14367.44, + "probability": 0.8843 + }, + { + "start": 14367.6, + "end": 14368.36, + "probability": 0.8571 + }, + { + "start": 14368.68, + "end": 14373.9, + "probability": 0.9652 + }, + { + "start": 14374.14, + "end": 14375.64, + "probability": 0.8954 + }, + { + "start": 14375.68, + "end": 14378.34, + "probability": 0.9915 + }, + { + "start": 14378.92, + "end": 14382.5, + "probability": 0.9674 + }, + { + "start": 14382.82, + "end": 14383.64, + "probability": 0.8421 + }, + { + "start": 14383.78, + "end": 14384.62, + "probability": 0.9616 + }, + { + "start": 14384.7, + "end": 14386.22, + "probability": 0.8204 + }, + { + "start": 14386.82, + "end": 14394.44, + "probability": 0.9668 + }, + { + "start": 14394.94, + "end": 14396.0, + "probability": 0.9185 + }, + { + "start": 14396.08, + "end": 14405.22, + "probability": 0.9739 + }, + { + "start": 14405.66, + "end": 14406.68, + "probability": 0.575 + }, + { + "start": 14406.74, + "end": 14408.3, + "probability": 0.9071 + }, + { + "start": 14408.44, + "end": 14412.76, + "probability": 0.9697 + }, + { + "start": 14412.96, + "end": 14414.5, + "probability": 0.8701 + }, + { + "start": 14415.06, + "end": 14418.32, + "probability": 0.8717 + }, + { + "start": 14418.7, + "end": 14422.94, + "probability": 0.9915 + }, + { + "start": 14423.5, + "end": 14426.64, + "probability": 0.9678 + }, + { + "start": 14427.46, + "end": 14429.04, + "probability": 0.9474 + }, + { + "start": 14429.22, + "end": 14430.24, + "probability": 0.974 + }, + { + "start": 14430.6, + "end": 14437.8, + "probability": 0.8674 + }, + { + "start": 14438.1, + "end": 14441.68, + "probability": 0.9852 + }, + { + "start": 14441.68, + "end": 14444.56, + "probability": 0.6694 + }, + { + "start": 14445.5, + "end": 14447.6, + "probability": 0.9175 + }, + { + "start": 14447.74, + "end": 14448.23, + "probability": 0.8525 + }, + { + "start": 14448.96, + "end": 14452.56, + "probability": 0.9818 + }, + { + "start": 14453.62, + "end": 14455.5, + "probability": 0.5684 + }, + { + "start": 14455.84, + "end": 14457.06, + "probability": 0.9862 + }, + { + "start": 14457.22, + "end": 14462.92, + "probability": 0.9902 + }, + { + "start": 14463.02, + "end": 14465.42, + "probability": 0.9166 + }, + { + "start": 14465.72, + "end": 14468.62, + "probability": 0.7583 + }, + { + "start": 14468.94, + "end": 14469.74, + "probability": 0.8588 + }, + { + "start": 14469.88, + "end": 14472.0, + "probability": 0.9878 + }, + { + "start": 14472.12, + "end": 14478.74, + "probability": 0.9637 + }, + { + "start": 14479.0, + "end": 14482.52, + "probability": 0.9888 + }, + { + "start": 14482.8, + "end": 14483.8, + "probability": 0.8527 + }, + { + "start": 14484.5, + "end": 14487.04, + "probability": 0.9603 + }, + { + "start": 14487.2, + "end": 14497.12, + "probability": 0.9763 + }, + { + "start": 14498.22, + "end": 14500.14, + "probability": 0.9475 + }, + { + "start": 14500.34, + "end": 14505.62, + "probability": 0.9822 + }, + { + "start": 14505.96, + "end": 14508.24, + "probability": 0.9878 + }, + { + "start": 14508.6, + "end": 14510.4, + "probability": 0.9868 + }, + { + "start": 14511.32, + "end": 14515.8, + "probability": 0.7827 + }, + { + "start": 14515.96, + "end": 14517.06, + "probability": 0.9083 + }, + { + "start": 14517.32, + "end": 14517.92, + "probability": 0.7418 + }, + { + "start": 14518.42, + "end": 14519.78, + "probability": 0.9927 + }, + { + "start": 14520.08, + "end": 14521.42, + "probability": 0.7561 + }, + { + "start": 14521.58, + "end": 14525.42, + "probability": 0.8579 + }, + { + "start": 14525.56, + "end": 14526.62, + "probability": 0.5451 + }, + { + "start": 14526.76, + "end": 14531.66, + "probability": 0.99 + }, + { + "start": 14532.36, + "end": 14532.62, + "probability": 0.429 + }, + { + "start": 14532.68, + "end": 14534.82, + "probability": 0.8743 + }, + { + "start": 14534.98, + "end": 14535.66, + "probability": 0.3812 + }, + { + "start": 14536.06, + "end": 14538.86, + "probability": 0.9478 + }, + { + "start": 14538.88, + "end": 14542.17, + "probability": 0.8536 + }, + { + "start": 14542.58, + "end": 14543.64, + "probability": 0.9018 + }, + { + "start": 14543.78, + "end": 14546.26, + "probability": 0.9149 + }, + { + "start": 14546.56, + "end": 14548.4, + "probability": 0.933 + }, + { + "start": 14548.62, + "end": 14549.26, + "probability": 0.6448 + }, + { + "start": 14552.4, + "end": 14557.1, + "probability": 0.1508 + }, + { + "start": 14557.7, + "end": 14562.36, + "probability": 0.3223 + }, + { + "start": 14563.46, + "end": 14564.32, + "probability": 0.2168 + }, + { + "start": 14565.53, + "end": 14567.04, + "probability": 0.2947 + }, + { + "start": 14567.3, + "end": 14567.74, + "probability": 0.0932 + }, + { + "start": 14567.74, + "end": 14570.16, + "probability": 0.919 + }, + { + "start": 14570.16, + "end": 14570.92, + "probability": 0.6746 + }, + { + "start": 14570.98, + "end": 14571.66, + "probability": 0.7043 + }, + { + "start": 14571.74, + "end": 14574.98, + "probability": 0.9814 + }, + { + "start": 14575.58, + "end": 14577.16, + "probability": 0.7827 + }, + { + "start": 14577.22, + "end": 14577.62, + "probability": 0.7893 + }, + { + "start": 14577.84, + "end": 14583.32, + "probability": 0.9707 + }, + { + "start": 14583.5, + "end": 14587.28, + "probability": 0.9157 + }, + { + "start": 14587.4, + "end": 14590.06, + "probability": 0.9941 + }, + { + "start": 14590.34, + "end": 14595.06, + "probability": 0.9523 + }, + { + "start": 14595.36, + "end": 14598.16, + "probability": 0.9036 + }, + { + "start": 14598.36, + "end": 14599.21, + "probability": 0.9888 + }, + { + "start": 14600.02, + "end": 14601.46, + "probability": 0.9675 + }, + { + "start": 14602.0, + "end": 14606.28, + "probability": 0.9926 + }, + { + "start": 14606.32, + "end": 14607.2, + "probability": 0.8707 + }, + { + "start": 14607.36, + "end": 14610.12, + "probability": 0.937 + }, + { + "start": 14610.58, + "end": 14615.42, + "probability": 0.8445 + }, + { + "start": 14615.58, + "end": 14616.3, + "probability": 0.3794 + }, + { + "start": 14616.5, + "end": 14618.18, + "probability": 0.9839 + }, + { + "start": 14618.6, + "end": 14620.64, + "probability": 0.8414 + }, + { + "start": 14621.0, + "end": 14621.56, + "probability": 0.9406 + }, + { + "start": 14621.6, + "end": 14621.98, + "probability": 0.8771 + }, + { + "start": 14622.22, + "end": 14625.94, + "probability": 0.9962 + }, + { + "start": 14625.94, + "end": 14630.54, + "probability": 0.9388 + }, + { + "start": 14631.06, + "end": 14636.64, + "probability": 0.9907 + }, + { + "start": 14636.72, + "end": 14638.34, + "probability": 0.6957 + }, + { + "start": 14638.74, + "end": 14641.2, + "probability": 0.9875 + }, + { + "start": 14641.26, + "end": 14644.08, + "probability": 0.8387 + }, + { + "start": 14644.18, + "end": 14645.1, + "probability": 0.2777 + }, + { + "start": 14645.6, + "end": 14646.3, + "probability": 0.7289 + }, + { + "start": 14646.4, + "end": 14647.8, + "probability": 0.9556 + }, + { + "start": 14647.92, + "end": 14650.84, + "probability": 0.8082 + }, + { + "start": 14651.07, + "end": 14652.8, + "probability": 0.9987 + }, + { + "start": 14652.96, + "end": 14653.24, + "probability": 0.406 + }, + { + "start": 14653.36, + "end": 14655.3, + "probability": 0.3428 + }, + { + "start": 14655.58, + "end": 14659.42, + "probability": 0.9906 + }, + { + "start": 14660.16, + "end": 14665.76, + "probability": 0.9941 + }, + { + "start": 14666.58, + "end": 14668.74, + "probability": 0.7488 + }, + { + "start": 14668.92, + "end": 14674.14, + "probability": 0.9893 + }, + { + "start": 14674.48, + "end": 14676.3, + "probability": 0.8973 + }, + { + "start": 14676.64, + "end": 14679.62, + "probability": 0.9901 + }, + { + "start": 14679.78, + "end": 14681.14, + "probability": 0.8155 + }, + { + "start": 14681.44, + "end": 14686.06, + "probability": 0.8342 + }, + { + "start": 14686.08, + "end": 14686.56, + "probability": 0.687 + }, + { + "start": 14687.7, + "end": 14689.86, + "probability": 0.9863 + }, + { + "start": 14690.02, + "end": 14691.8, + "probability": 0.9878 + }, + { + "start": 14692.04, + "end": 14696.2, + "probability": 0.8484 + }, + { + "start": 14697.46, + "end": 14706.6, + "probability": 0.9835 + }, + { + "start": 14707.14, + "end": 14709.42, + "probability": 0.9476 + }, + { + "start": 14710.02, + "end": 14715.36, + "probability": 0.9275 + }, + { + "start": 14716.3, + "end": 14719.86, + "probability": 0.9993 + }, + { + "start": 14720.04, + "end": 14726.0, + "probability": 0.9712 + }, + { + "start": 14726.92, + "end": 14731.34, + "probability": 0.9878 + }, + { + "start": 14731.58, + "end": 14732.24, + "probability": 0.8108 + }, + { + "start": 14732.76, + "end": 14735.74, + "probability": 0.9777 + }, + { + "start": 14736.54, + "end": 14738.64, + "probability": 0.9721 + }, + { + "start": 14738.96, + "end": 14742.16, + "probability": 0.7407 + }, + { + "start": 14742.16, + "end": 14742.56, + "probability": 0.4262 + }, + { + "start": 14742.74, + "end": 14744.04, + "probability": 0.7141 + }, + { + "start": 14744.46, + "end": 14747.44, + "probability": 0.4779 + }, + { + "start": 14747.64, + "end": 14747.92, + "probability": 0.6565 + }, + { + "start": 14749.04, + "end": 14749.84, + "probability": 0.8376 + }, + { + "start": 14750.1, + "end": 14750.2, + "probability": 0.703 + }, + { + "start": 14750.48, + "end": 14752.66, + "probability": 0.9025 + }, + { + "start": 14753.26, + "end": 14755.36, + "probability": 0.8524 + }, + { + "start": 14755.38, + "end": 14755.66, + "probability": 0.4276 + }, + { + "start": 14756.26, + "end": 14757.42, + "probability": 0.4124 + }, + { + "start": 14757.74, + "end": 14759.8, + "probability": 0.323 + }, + { + "start": 14760.12, + "end": 14765.34, + "probability": 0.9338 + }, + { + "start": 14765.38, + "end": 14768.56, + "probability": 0.9609 + }, + { + "start": 14768.96, + "end": 14770.56, + "probability": 0.6583 + }, + { + "start": 14771.36, + "end": 14776.22, + "probability": 0.991 + }, + { + "start": 14776.22, + "end": 14781.52, + "probability": 0.9657 + }, + { + "start": 14782.0, + "end": 14785.31, + "probability": 0.9963 + }, + { + "start": 14786.72, + "end": 14789.18, + "probability": 0.4011 + }, + { + "start": 14789.64, + "end": 14792.82, + "probability": 0.96 + }, + { + "start": 14793.28, + "end": 14795.02, + "probability": 0.9275 + }, + { + "start": 14795.1, + "end": 14797.84, + "probability": 0.8359 + }, + { + "start": 14798.16, + "end": 14798.98, + "probability": 0.4034 + }, + { + "start": 14798.98, + "end": 14798.98, + "probability": 0.2644 + }, + { + "start": 14798.98, + "end": 14798.98, + "probability": 0.0269 + }, + { + "start": 14798.98, + "end": 14800.1, + "probability": 0.4544 + }, + { + "start": 14800.1, + "end": 14800.3, + "probability": 0.3704 + }, + { + "start": 14800.36, + "end": 14801.06, + "probability": 0.78 + }, + { + "start": 14801.12, + "end": 14802.24, + "probability": 0.9561 + }, + { + "start": 14802.44, + "end": 14808.26, + "probability": 0.9669 + }, + { + "start": 14808.38, + "end": 14809.34, + "probability": 0.9475 + }, + { + "start": 14809.36, + "end": 14812.34, + "probability": 0.9771 + }, + { + "start": 14812.42, + "end": 14814.28, + "probability": 0.8471 + }, + { + "start": 14814.28, + "end": 14819.04, + "probability": 0.9019 + }, + { + "start": 14819.4, + "end": 14819.58, + "probability": 0.4108 + }, + { + "start": 14819.74, + "end": 14819.96, + "probability": 0.2892 + }, + { + "start": 14819.98, + "end": 14820.54, + "probability": 0.6599 + }, + { + "start": 14820.66, + "end": 14821.9, + "probability": 0.7671 + }, + { + "start": 14824.52, + "end": 14827.6, + "probability": 0.9614 + }, + { + "start": 14827.6, + "end": 14830.5, + "probability": 0.9628 + }, + { + "start": 14830.62, + "end": 14833.5, + "probability": 0.9922 + }, + { + "start": 14833.9, + "end": 14834.6, + "probability": 0.8384 + }, + { + "start": 14834.8, + "end": 14836.52, + "probability": 0.7462 + }, + { + "start": 14836.8, + "end": 14837.98, + "probability": 0.8924 + }, + { + "start": 14838.02, + "end": 14839.73, + "probability": 0.995 + }, + { + "start": 14840.14, + "end": 14841.32, + "probability": 0.5966 + }, + { + "start": 14841.38, + "end": 14841.82, + "probability": 0.751 + }, + { + "start": 14843.0, + "end": 14845.26, + "probability": 0.4896 + }, + { + "start": 14845.68, + "end": 14848.48, + "probability": 0.9576 + }, + { + "start": 14849.18, + "end": 14849.78, + "probability": 0.7036 + }, + { + "start": 14858.16, + "end": 14861.38, + "probability": 0.7076 + }, + { + "start": 14863.44, + "end": 14864.9, + "probability": 0.804 + }, + { + "start": 14867.14, + "end": 14870.48, + "probability": 0.6035 + }, + { + "start": 14871.46, + "end": 14874.46, + "probability": 0.6757 + }, + { + "start": 14876.26, + "end": 14877.18, + "probability": 0.5708 + }, + { + "start": 14877.22, + "end": 14878.14, + "probability": 0.8011 + }, + { + "start": 14878.24, + "end": 14881.72, + "probability": 0.9445 + }, + { + "start": 14881.72, + "end": 14884.88, + "probability": 0.9674 + }, + { + "start": 14886.58, + "end": 14890.38, + "probability": 0.8655 + }, + { + "start": 14890.38, + "end": 14896.74, + "probability": 0.9897 + }, + { + "start": 14898.34, + "end": 14900.94, + "probability": 0.9495 + }, + { + "start": 14900.94, + "end": 14904.68, + "probability": 0.9427 + }, + { + "start": 14906.14, + "end": 14909.66, + "probability": 0.9868 + }, + { + "start": 14909.66, + "end": 14913.94, + "probability": 0.9827 + }, + { + "start": 14913.94, + "end": 14917.76, + "probability": 0.8713 + }, + { + "start": 14917.84, + "end": 14921.16, + "probability": 0.9509 + }, + { + "start": 14922.7, + "end": 14923.7, + "probability": 0.7686 + }, + { + "start": 14923.86, + "end": 14925.88, + "probability": 0.9701 + }, + { + "start": 14925.88, + "end": 14928.08, + "probability": 0.9136 + }, + { + "start": 14929.12, + "end": 14932.92, + "probability": 0.986 + }, + { + "start": 14933.22, + "end": 14934.02, + "probability": 0.0336 + }, + { + "start": 14934.1, + "end": 14934.74, + "probability": 0.6783 + }, + { + "start": 14935.7, + "end": 14938.44, + "probability": 0.9928 + }, + { + "start": 14938.44, + "end": 14943.16, + "probability": 0.936 + }, + { + "start": 14943.16, + "end": 14946.18, + "probability": 0.6991 + }, + { + "start": 14948.1, + "end": 14949.42, + "probability": 0.9954 + }, + { + "start": 14950.58, + "end": 14951.38, + "probability": 0.4817 + }, + { + "start": 14952.78, + "end": 14955.8, + "probability": 0.8514 + }, + { + "start": 14955.94, + "end": 14957.02, + "probability": 0.7457 + }, + { + "start": 14957.12, + "end": 14959.74, + "probability": 0.7462 + }, + { + "start": 14960.3, + "end": 14961.95, + "probability": 0.4352 + }, + { + "start": 14962.08, + "end": 14963.98, + "probability": 0.5091 + }, + { + "start": 14964.1, + "end": 14966.43, + "probability": 0.3625 + }, + { + "start": 14967.24, + "end": 14969.28, + "probability": 0.2615 + }, + { + "start": 14969.38, + "end": 14971.14, + "probability": 0.8202 + }, + { + "start": 14971.32, + "end": 14974.19, + "probability": 0.8401 + }, + { + "start": 14976.06, + "end": 14979.02, + "probability": 0.1954 + }, + { + "start": 14979.16, + "end": 14981.05, + "probability": 0.9281 + }, + { + "start": 14982.07, + "end": 14985.54, + "probability": 0.9229 + }, + { + "start": 14990.92, + "end": 14992.22, + "probability": 0.7256 + }, + { + "start": 14993.06, + "end": 14997.46, + "probability": 0.9379 + }, + { + "start": 14998.42, + "end": 15001.44, + "probability": 0.9684 + }, + { + "start": 15002.04, + "end": 15002.04, + "probability": 0.0308 + }, + { + "start": 15002.04, + "end": 15002.04, + "probability": 0.1149 + }, + { + "start": 15002.04, + "end": 15004.46, + "probability": 0.6482 + }, + { + "start": 15004.46, + "end": 15006.8, + "probability": 0.9759 + }, + { + "start": 15007.9, + "end": 15008.96, + "probability": 0.4474 + }, + { + "start": 15009.02, + "end": 15011.74, + "probability": 0.7077 + }, + { + "start": 15012.68, + "end": 15014.42, + "probability": 0.7314 + }, + { + "start": 15014.42, + "end": 15016.94, + "probability": 0.984 + }, + { + "start": 15017.94, + "end": 15021.8, + "probability": 0.9225 + }, + { + "start": 15022.42, + "end": 15025.4, + "probability": 0.9611 + }, + { + "start": 15025.4, + "end": 15029.32, + "probability": 0.9901 + }, + { + "start": 15030.44, + "end": 15033.34, + "probability": 0.6469 + }, + { + "start": 15034.64, + "end": 15035.04, + "probability": 0.372 + }, + { + "start": 15035.16, + "end": 15038.9, + "probability": 0.5999 + }, + { + "start": 15038.9, + "end": 15042.22, + "probability": 0.9605 + }, + { + "start": 15042.82, + "end": 15048.12, + "probability": 0.9684 + }, + { + "start": 15048.78, + "end": 15049.14, + "probability": 0.458 + }, + { + "start": 15049.18, + "end": 15049.76, + "probability": 0.6458 + }, + { + "start": 15049.84, + "end": 15053.22, + "probability": 0.994 + }, + { + "start": 15053.22, + "end": 15055.4, + "probability": 0.8889 + }, + { + "start": 15056.68, + "end": 15059.94, + "probability": 0.981 + }, + { + "start": 15059.94, + "end": 15062.16, + "probability": 0.8995 + }, + { + "start": 15063.44, + "end": 15065.58, + "probability": 0.8667 + }, + { + "start": 15068.3, + "end": 15069.16, + "probability": 0.7422 + }, + { + "start": 15070.82, + "end": 15076.84, + "probability": 0.7038 + }, + { + "start": 15077.5, + "end": 15080.32, + "probability": 0.7415 + }, + { + "start": 15080.32, + "end": 15083.1, + "probability": 0.8076 + }, + { + "start": 15083.32, + "end": 15086.82, + "probability": 0.9122 + }, + { + "start": 15087.6, + "end": 15088.98, + "probability": 0.9356 + }, + { + "start": 15090.42, + "end": 15094.26, + "probability": 0.9217 + }, + { + "start": 15094.26, + "end": 15099.14, + "probability": 0.9904 + }, + { + "start": 15099.86, + "end": 15101.57, + "probability": 0.6331 + }, + { + "start": 15102.46, + "end": 15104.38, + "probability": 0.9544 + }, + { + "start": 15105.38, + "end": 15107.56, + "probability": 0.5789 + }, + { + "start": 15107.78, + "end": 15113.76, + "probability": 0.8584 + }, + { + "start": 15115.06, + "end": 15115.36, + "probability": 0.6001 + }, + { + "start": 15115.4, + "end": 15118.02, + "probability": 0.6329 + }, + { + "start": 15118.12, + "end": 15120.42, + "probability": 0.8747 + }, + { + "start": 15121.96, + "end": 15126.18, + "probability": 0.934 + }, + { + "start": 15128.08, + "end": 15131.54, + "probability": 0.6702 + }, + { + "start": 15131.7, + "end": 15132.34, + "probability": 0.4165 + }, + { + "start": 15133.02, + "end": 15134.36, + "probability": 0.7764 + }, + { + "start": 15134.42, + "end": 15136.38, + "probability": 0.8829 + }, + { + "start": 15136.38, + "end": 15139.76, + "probability": 0.9722 + }, + { + "start": 15139.84, + "end": 15141.96, + "probability": 0.863 + }, + { + "start": 15142.58, + "end": 15143.9, + "probability": 0.9441 + }, + { + "start": 15144.36, + "end": 15145.38, + "probability": 0.5079 + }, + { + "start": 15145.92, + "end": 15147.34, + "probability": 0.854 + }, + { + "start": 15148.0, + "end": 15151.12, + "probability": 0.8759 + }, + { + "start": 15153.04, + "end": 15154.62, + "probability": 0.7208 + }, + { + "start": 15154.66, + "end": 15155.8, + "probability": 0.8879 + }, + { + "start": 15155.8, + "end": 15157.43, + "probability": 0.7141 + }, + { + "start": 15158.78, + "end": 15161.82, + "probability": 0.6512 + }, + { + "start": 15162.01, + "end": 15165.86, + "probability": 0.8745 + }, + { + "start": 15166.23, + "end": 15168.11, + "probability": 0.3747 + }, + { + "start": 15169.91, + "end": 15172.24, + "probability": 0.5103 + }, + { + "start": 15172.42, + "end": 15172.6, + "probability": 0.4292 + }, + { + "start": 15173.14, + "end": 15175.66, + "probability": 0.6607 + }, + { + "start": 15175.84, + "end": 15176.76, + "probability": 0.8375 + }, + { + "start": 15177.02, + "end": 15177.24, + "probability": 0.3815 + }, + { + "start": 15178.31, + "end": 15182.62, + "probability": 0.9558 + }, + { + "start": 15183.42, + "end": 15187.32, + "probability": 0.8712 + }, + { + "start": 15189.1, + "end": 15191.06, + "probability": 0.5483 + }, + { + "start": 15191.28, + "end": 15192.22, + "probability": 0.7579 + }, + { + "start": 15192.42, + "end": 15194.68, + "probability": 0.7314 + }, + { + "start": 15195.5, + "end": 15199.26, + "probability": 0.7634 + }, + { + "start": 15199.38, + "end": 15200.26, + "probability": 0.1648 + }, + { + "start": 15200.4, + "end": 15201.52, + "probability": 0.2795 + }, + { + "start": 15201.52, + "end": 15205.66, + "probability": 0.2368 + }, + { + "start": 15214.21, + "end": 15215.26, + "probability": 0.1044 + }, + { + "start": 15215.26, + "end": 15215.52, + "probability": 0.1884 + }, + { + "start": 15216.06, + "end": 15219.68, + "probability": 0.2175 + }, + { + "start": 15220.64, + "end": 15223.98, + "probability": 0.5408 + }, + { + "start": 15227.24, + "end": 15229.04, + "probability": 0.4999 + }, + { + "start": 15229.2, + "end": 15230.78, + "probability": 0.5756 + }, + { + "start": 15231.54, + "end": 15232.88, + "probability": 0.8959 + }, + { + "start": 15233.34, + "end": 15235.42, + "probability": 0.9692 + }, + { + "start": 15235.68, + "end": 15238.42, + "probability": 0.9474 + }, + { + "start": 15239.06, + "end": 15242.94, + "probability": 0.8744 + }, + { + "start": 15243.6, + "end": 15245.38, + "probability": 0.7199 + }, + { + "start": 15245.48, + "end": 15246.84, + "probability": 0.8198 + }, + { + "start": 15247.16, + "end": 15252.14, + "probability": 0.9009 + }, + { + "start": 15252.8, + "end": 15253.71, + "probability": 0.8057 + }, + { + "start": 15254.66, + "end": 15255.96, + "probability": 0.8414 + }, + { + "start": 15256.08, + "end": 15258.76, + "probability": 0.9425 + }, + { + "start": 15258.76, + "end": 15260.42, + "probability": 0.577 + }, + { + "start": 15260.52, + "end": 15261.58, + "probability": 0.8382 + }, + { + "start": 15261.66, + "end": 15265.52, + "probability": 0.697 + }, + { + "start": 15266.62, + "end": 15268.48, + "probability": 0.932 + }, + { + "start": 15268.58, + "end": 15271.12, + "probability": 0.9946 + }, + { + "start": 15271.32, + "end": 15272.94, + "probability": 0.9939 + }, + { + "start": 15273.26, + "end": 15274.86, + "probability": 0.723 + }, + { + "start": 15274.88, + "end": 15276.46, + "probability": 0.9583 + }, + { + "start": 15276.54, + "end": 15278.9, + "probability": 0.5178 + }, + { + "start": 15279.94, + "end": 15279.94, + "probability": 0.39 + }, + { + "start": 15279.94, + "end": 15281.14, + "probability": 0.1713 + }, + { + "start": 15281.66, + "end": 15282.14, + "probability": 0.7231 + }, + { + "start": 15282.32, + "end": 15284.04, + "probability": 0.5396 + }, + { + "start": 15284.82, + "end": 15289.42, + "probability": 0.8658 + }, + { + "start": 15289.68, + "end": 15292.04, + "probability": 0.971 + }, + { + "start": 15292.1, + "end": 15293.7, + "probability": 0.9706 + }, + { + "start": 15293.78, + "end": 15294.32, + "probability": 0.7434 + }, + { + "start": 15294.56, + "end": 15296.24, + "probability": 0.6774 + }, + { + "start": 15296.64, + "end": 15298.21, + "probability": 0.8184 + }, + { + "start": 15298.58, + "end": 15300.58, + "probability": 0.884 + }, + { + "start": 15300.76, + "end": 15301.04, + "probability": 0.6111 + }, + { + "start": 15301.62, + "end": 15304.82, + "probability": 0.5928 + }, + { + "start": 15305.54, + "end": 15309.04, + "probability": 0.7734 + }, + { + "start": 15309.66, + "end": 15312.66, + "probability": 0.7817 + }, + { + "start": 15314.22, + "end": 15316.5, + "probability": 0.9899 + }, + { + "start": 15316.82, + "end": 15318.12, + "probability": 0.9529 + }, + { + "start": 15318.32, + "end": 15319.56, + "probability": 0.9343 + }, + { + "start": 15319.74, + "end": 15320.74, + "probability": 0.929 + }, + { + "start": 15320.82, + "end": 15321.68, + "probability": 0.4718 + }, + { + "start": 15321.76, + "end": 15322.72, + "probability": 0.3223 + }, + { + "start": 15324.96, + "end": 15325.18, + "probability": 0.034 + }, + { + "start": 15325.18, + "end": 15326.42, + "probability": 0.1632 + }, + { + "start": 15326.76, + "end": 15328.32, + "probability": 0.8193 + }, + { + "start": 15328.44, + "end": 15331.0, + "probability": 0.7317 + }, + { + "start": 15331.0, + "end": 15335.08, + "probability": 0.5829 + }, + { + "start": 15336.02, + "end": 15341.84, + "probability": 0.6779 + }, + { + "start": 15342.14, + "end": 15343.96, + "probability": 0.0546 + }, + { + "start": 15345.26, + "end": 15346.14, + "probability": 0.2314 + }, + { + "start": 15347.42, + "end": 15352.8, + "probability": 0.7165 + }, + { + "start": 15352.98, + "end": 15353.88, + "probability": 0.744 + }, + { + "start": 15354.14, + "end": 15355.44, + "probability": 0.4684 + }, + { + "start": 15355.68, + "end": 15355.76, + "probability": 0.7568 + }, + { + "start": 15356.0, + "end": 15356.32, + "probability": 0.3649 + }, + { + "start": 15356.36, + "end": 15357.33, + "probability": 0.96 + }, + { + "start": 15358.02, + "end": 15360.06, + "probability": 0.9849 + }, + { + "start": 15360.5, + "end": 15362.96, + "probability": 0.8032 + }, + { + "start": 15363.78, + "end": 15365.06, + "probability": 0.9707 + }, + { + "start": 15365.88, + "end": 15367.84, + "probability": 0.2989 + }, + { + "start": 15368.08, + "end": 15374.36, + "probability": 0.7277 + }, + { + "start": 15374.52, + "end": 15375.58, + "probability": 0.4378 + }, + { + "start": 15375.58, + "end": 15378.58, + "probability": 0.7664 + }, + { + "start": 15379.72, + "end": 15380.6, + "probability": 0.5898 + }, + { + "start": 15380.68, + "end": 15382.56, + "probability": 0.4665 + }, + { + "start": 15382.76, + "end": 15385.64, + "probability": 0.2957 + }, + { + "start": 15385.82, + "end": 15387.0, + "probability": 0.4703 + }, + { + "start": 15387.26, + "end": 15388.72, + "probability": 0.4335 + }, + { + "start": 15389.3, + "end": 15389.8, + "probability": 0.1425 + }, + { + "start": 15390.9, + "end": 15395.3, + "probability": 0.4799 + }, + { + "start": 15396.24, + "end": 15399.58, + "probability": 0.3801 + }, + { + "start": 15400.2, + "end": 15403.28, + "probability": 0.6736 + }, + { + "start": 15403.4, + "end": 15404.12, + "probability": 0.3728 + }, + { + "start": 15404.12, + "end": 15407.9, + "probability": 0.5061 + }, + { + "start": 15408.68, + "end": 15410.34, + "probability": 0.9012 + }, + { + "start": 15410.96, + "end": 15411.5, + "probability": 0.4027 + }, + { + "start": 15411.52, + "end": 15413.36, + "probability": 0.4938 + }, + { + "start": 15414.44, + "end": 15415.97, + "probability": 0.5125 + }, + { + "start": 15416.69, + "end": 15423.12, + "probability": 0.7394 + }, + { + "start": 15427.0, + "end": 15428.96, + "probability": 0.6814 + }, + { + "start": 15429.3, + "end": 15430.02, + "probability": 0.8767 + }, + { + "start": 15432.76, + "end": 15437.8, + "probability": 0.2498 + }, + { + "start": 15440.06, + "end": 15441.4, + "probability": 0.0968 + }, + { + "start": 15449.8, + "end": 15454.18, + "probability": 0.9351 + }, + { + "start": 15454.72, + "end": 15459.9, + "probability": 0.9496 + }, + { + "start": 15461.66, + "end": 15462.58, + "probability": 0.7911 + }, + { + "start": 15464.5, + "end": 15465.86, + "probability": 0.6274 + }, + { + "start": 15467.58, + "end": 15468.08, + "probability": 0.6603 + }, + { + "start": 15473.36, + "end": 15475.64, + "probability": 0.608 + }, + { + "start": 15475.64, + "end": 15478.34, + "probability": 0.6317 + }, + { + "start": 15478.76, + "end": 15483.0, + "probability": 0.8968 + }, + { + "start": 15483.34, + "end": 15483.48, + "probability": 0.5788 + }, + { + "start": 15488.42, + "end": 15488.96, + "probability": 0.1166 + }, + { + "start": 15490.32, + "end": 15490.42, + "probability": 0.0465 + }, + { + "start": 15491.94, + "end": 15495.72, + "probability": 0.2811 + }, + { + "start": 15497.26, + "end": 15498.2, + "probability": 0.6456 + }, + { + "start": 15499.48, + "end": 15500.26, + "probability": 0.5493 + }, + { + "start": 15500.32, + "end": 15501.38, + "probability": 0.8906 + }, + { + "start": 15501.56, + "end": 15502.83, + "probability": 0.6989 + }, + { + "start": 15503.42, + "end": 15505.7, + "probability": 0.6595 + }, + { + "start": 15506.44, + "end": 15508.34, + "probability": 0.0703 + }, + { + "start": 15508.62, + "end": 15509.68, + "probability": 0.2073 + }, + { + "start": 15509.78, + "end": 15511.32, + "probability": 0.2817 + }, + { + "start": 15511.48, + "end": 15512.56, + "probability": 0.1183 + }, + { + "start": 15512.72, + "end": 15513.92, + "probability": 0.5268 + }, + { + "start": 15514.14, + "end": 15515.6, + "probability": 0.6667 + }, + { + "start": 15515.8, + "end": 15519.5, + "probability": 0.2524 + }, + { + "start": 15519.5, + "end": 15523.86, + "probability": 0.218 + }, + { + "start": 15526.54, + "end": 15527.06, + "probability": 0.3165 + }, + { + "start": 15527.2, + "end": 15529.72, + "probability": 0.4959 + }, + { + "start": 15529.92, + "end": 15530.98, + "probability": 0.4482 + }, + { + "start": 15532.48, + "end": 15535.48, + "probability": 0.6767 + }, + { + "start": 15536.26, + "end": 15537.06, + "probability": 0.4964 + }, + { + "start": 15537.68, + "end": 15540.9, + "probability": 0.7516 + }, + { + "start": 15541.48, + "end": 15545.54, + "probability": 0.9922 + }, + { + "start": 15546.18, + "end": 15548.87, + "probability": 0.9462 + }, + { + "start": 15549.5, + "end": 15553.0, + "probability": 0.8981 + }, + { + "start": 15553.14, + "end": 15557.58, + "probability": 0.9158 + }, + { + "start": 15557.64, + "end": 15561.7, + "probability": 0.9855 + }, + { + "start": 15561.82, + "end": 15562.7, + "probability": 0.4419 + }, + { + "start": 15563.18, + "end": 15568.24, + "probability": 0.9716 + }, + { + "start": 15570.39, + "end": 15574.44, + "probability": 0.8735 + }, + { + "start": 15574.96, + "end": 15575.98, + "probability": 0.8691 + }, + { + "start": 15576.28, + "end": 15579.82, + "probability": 0.9618 + }, + { + "start": 15579.9, + "end": 15580.68, + "probability": 0.9261 + }, + { + "start": 15581.12, + "end": 15582.26, + "probability": 0.8173 + }, + { + "start": 15583.02, + "end": 15586.36, + "probability": 0.936 + }, + { + "start": 15586.94, + "end": 15589.14, + "probability": 0.9286 + }, + { + "start": 15589.76, + "end": 15591.56, + "probability": 0.6245 + }, + { + "start": 15592.78, + "end": 15594.16, + "probability": 0.4751 + }, + { + "start": 15594.42, + "end": 15595.04, + "probability": 0.4989 + }, + { + "start": 15595.06, + "end": 15597.84, + "probability": 0.957 + }, + { + "start": 15598.3, + "end": 15602.42, + "probability": 0.9467 + }, + { + "start": 15605.0, + "end": 15607.78, + "probability": 0.9757 + }, + { + "start": 15607.78, + "end": 15610.92, + "probability": 0.9568 + }, + { + "start": 15611.0, + "end": 15612.4, + "probability": 0.7402 + }, + { + "start": 15613.16, + "end": 15615.18, + "probability": 0.9572 + }, + { + "start": 15615.76, + "end": 15618.38, + "probability": 0.9027 + }, + { + "start": 15618.58, + "end": 15623.0, + "probability": 0.9688 + }, + { + "start": 15623.52, + "end": 15628.52, + "probability": 0.7933 + }, + { + "start": 15629.34, + "end": 15633.58, + "probability": 0.9543 + }, + { + "start": 15633.58, + "end": 15636.74, + "probability": 0.8622 + }, + { + "start": 15637.08, + "end": 15643.84, + "probability": 0.9419 + }, + { + "start": 15644.34, + "end": 15646.68, + "probability": 0.8151 + }, + { + "start": 15647.0, + "end": 15647.28, + "probability": 0.3576 + }, + { + "start": 15647.84, + "end": 15651.28, + "probability": 0.9966 + }, + { + "start": 15651.9, + "end": 15655.06, + "probability": 0.9672 + }, + { + "start": 15655.46, + "end": 15656.64, + "probability": 0.7657 + }, + { + "start": 15657.08, + "end": 15659.62, + "probability": 0.9647 + }, + { + "start": 15660.52, + "end": 15660.86, + "probability": 0.3726 + }, + { + "start": 15661.0, + "end": 15665.62, + "probability": 0.9905 + }, + { + "start": 15665.76, + "end": 15666.08, + "probability": 0.6805 + }, + { + "start": 15666.16, + "end": 15668.54, + "probability": 0.7338 + }, + { + "start": 15669.2, + "end": 15674.54, + "probability": 0.924 + }, + { + "start": 15674.54, + "end": 15678.48, + "probability": 0.9891 + }, + { + "start": 15679.46, + "end": 15684.18, + "probability": 0.8854 + }, + { + "start": 15684.32, + "end": 15685.7, + "probability": 0.8711 + }, + { + "start": 15686.12, + "end": 15688.88, + "probability": 0.9523 + }, + { + "start": 15689.76, + "end": 15693.58, + "probability": 0.9745 + }, + { + "start": 15694.14, + "end": 15694.34, + "probability": 0.3988 + }, + { + "start": 15694.38, + "end": 15694.84, + "probability": 0.9007 + }, + { + "start": 15694.9, + "end": 15701.26, + "probability": 0.9457 + }, + { + "start": 15701.5, + "end": 15707.2, + "probability": 0.9821 + }, + { + "start": 15708.56, + "end": 15714.08, + "probability": 0.9957 + }, + { + "start": 15714.08, + "end": 15718.48, + "probability": 0.9976 + }, + { + "start": 15718.82, + "end": 15720.26, + "probability": 0.851 + }, + { + "start": 15720.82, + "end": 15726.96, + "probability": 0.9808 + }, + { + "start": 15727.58, + "end": 15731.28, + "probability": 0.9956 + }, + { + "start": 15731.28, + "end": 15736.1, + "probability": 0.9163 + }, + { + "start": 15736.38, + "end": 15739.86, + "probability": 0.9694 + }, + { + "start": 15741.26, + "end": 15745.16, + "probability": 0.998 + }, + { + "start": 15745.16, + "end": 15748.9, + "probability": 0.9399 + }, + { + "start": 15749.6, + "end": 15753.12, + "probability": 0.9956 + }, + { + "start": 15754.06, + "end": 15757.58, + "probability": 0.9513 + }, + { + "start": 15757.58, + "end": 15761.08, + "probability": 0.995 + }, + { + "start": 15761.72, + "end": 15765.44, + "probability": 0.8218 + }, + { + "start": 15765.96, + "end": 15768.74, + "probability": 0.9802 + }, + { + "start": 15769.26, + "end": 15770.18, + "probability": 0.6217 + }, + { + "start": 15770.3, + "end": 15776.22, + "probability": 0.9919 + }, + { + "start": 15776.64, + "end": 15778.7, + "probability": 0.6863 + }, + { + "start": 15778.94, + "end": 15779.84, + "probability": 0.8903 + }, + { + "start": 15780.0, + "end": 15783.28, + "probability": 0.7082 + }, + { + "start": 15783.4, + "end": 15784.06, + "probability": 0.7543 + }, + { + "start": 15784.5, + "end": 15785.1, + "probability": 0.1596 + }, + { + "start": 15785.28, + "end": 15785.82, + "probability": 0.7299 + }, + { + "start": 15786.64, + "end": 15787.78, + "probability": 0.8018 + }, + { + "start": 15787.84, + "end": 15789.88, + "probability": 0.9741 + }, + { + "start": 15790.38, + "end": 15791.5, + "probability": 0.859 + }, + { + "start": 15792.14, + "end": 15793.86, + "probability": 0.9008 + }, + { + "start": 15794.16, + "end": 15795.58, + "probability": 0.9645 + }, + { + "start": 15795.68, + "end": 15801.64, + "probability": 0.8903 + }, + { + "start": 15802.08, + "end": 15803.0, + "probability": 0.8688 + }, + { + "start": 15803.7, + "end": 15809.65, + "probability": 0.9655 + }, + { + "start": 15810.36, + "end": 15815.2, + "probability": 0.9756 + }, + { + "start": 15815.2, + "end": 15819.1, + "probability": 0.9161 + }, + { + "start": 15819.1, + "end": 15826.4, + "probability": 0.8793 + }, + { + "start": 15827.5, + "end": 15830.38, + "probability": 0.6746 + }, + { + "start": 15830.58, + "end": 15834.5, + "probability": 0.9561 + }, + { + "start": 15834.9, + "end": 15837.24, + "probability": 0.5291 + }, + { + "start": 15838.66, + "end": 15839.22, + "probability": 0.0497 + }, + { + "start": 15839.22, + "end": 15841.06, + "probability": 0.6954 + }, + { + "start": 15842.5, + "end": 15845.76, + "probability": 0.8001 + }, + { + "start": 15866.66, + "end": 15867.3, + "probability": 0.5469 + }, + { + "start": 15867.58, + "end": 15868.26, + "probability": 0.6043 + }, + { + "start": 15868.46, + "end": 15873.8, + "probability": 0.9808 + }, + { + "start": 15875.1, + "end": 15878.08, + "probability": 0.9811 + }, + { + "start": 15878.2, + "end": 15879.14, + "probability": 0.7973 + }, + { + "start": 15880.1, + "end": 15881.42, + "probability": 0.7256 + }, + { + "start": 15881.5, + "end": 15884.8, + "probability": 0.8773 + }, + { + "start": 15884.92, + "end": 15887.06, + "probability": 0.9601 + }, + { + "start": 15887.7, + "end": 15891.62, + "probability": 0.9951 + }, + { + "start": 15891.88, + "end": 15893.86, + "probability": 0.9771 + }, + { + "start": 15896.58, + "end": 15896.58, + "probability": 0.0675 + }, + { + "start": 15896.58, + "end": 15899.48, + "probability": 0.6541 + }, + { + "start": 15899.78, + "end": 15900.24, + "probability": 0.7145 + }, + { + "start": 15901.06, + "end": 15902.9, + "probability": 0.9192 + }, + { + "start": 15902.9, + "end": 15905.32, + "probability": 0.9799 + }, + { + "start": 15905.42, + "end": 15908.12, + "probability": 0.9868 + }, + { + "start": 15908.84, + "end": 15913.62, + "probability": 0.9873 + }, + { + "start": 15914.18, + "end": 15917.86, + "probability": 0.9643 + }, + { + "start": 15918.68, + "end": 15921.34, + "probability": 0.9138 + }, + { + "start": 15922.24, + "end": 15925.12, + "probability": 0.9622 + }, + { + "start": 15925.16, + "end": 15925.86, + "probability": 0.5563 + }, + { + "start": 15925.92, + "end": 15926.7, + "probability": 0.7995 + }, + { + "start": 15926.72, + "end": 15928.82, + "probability": 0.9954 + }, + { + "start": 15929.24, + "end": 15932.04, + "probability": 0.951 + }, + { + "start": 15932.04, + "end": 15934.98, + "probability": 0.9914 + }, + { + "start": 15935.6, + "end": 15935.88, + "probability": 0.245 + }, + { + "start": 15936.0, + "end": 15938.58, + "probability": 0.8804 + }, + { + "start": 15938.74, + "end": 15942.22, + "probability": 0.9911 + }, + { + "start": 15943.04, + "end": 15943.86, + "probability": 0.9803 + }, + { + "start": 15945.26, + "end": 15947.36, + "probability": 0.6412 + }, + { + "start": 15947.38, + "end": 15950.28, + "probability": 0.247 + }, + { + "start": 15951.1, + "end": 15956.68, + "probability": 0.9851 + }, + { + "start": 15957.1, + "end": 15958.78, + "probability": 0.7365 + }, + { + "start": 15959.4, + "end": 15960.02, + "probability": 0.7525 + }, + { + "start": 15960.32, + "end": 15962.9, + "probability": 0.9744 + }, + { + "start": 15962.98, + "end": 15964.64, + "probability": 0.9393 + }, + { + "start": 15965.18, + "end": 15967.94, + "probability": 0.974 + }, + { + "start": 15968.56, + "end": 15970.62, + "probability": 0.9496 + }, + { + "start": 15971.1, + "end": 15973.26, + "probability": 0.8541 + }, + { + "start": 15973.82, + "end": 15977.86, + "probability": 0.998 + }, + { + "start": 15978.3, + "end": 15982.42, + "probability": 0.9983 + }, + { + "start": 15982.5, + "end": 15984.12, + "probability": 0.992 + }, + { + "start": 15984.6, + "end": 15985.1, + "probability": 0.7133 + }, + { + "start": 15985.76, + "end": 15987.62, + "probability": 0.9474 + }, + { + "start": 15988.54, + "end": 15991.96, + "probability": 0.9885 + }, + { + "start": 15991.96, + "end": 15996.24, + "probability": 0.9915 + }, + { + "start": 15996.88, + "end": 16000.96, + "probability": 0.8908 + }, + { + "start": 16000.96, + "end": 16004.1, + "probability": 0.9475 + }, + { + "start": 16004.62, + "end": 16010.16, + "probability": 0.8577 + }, + { + "start": 16011.1, + "end": 16013.1, + "probability": 0.9731 + }, + { + "start": 16013.26, + "end": 16016.14, + "probability": 0.993 + }, + { + "start": 16016.14, + "end": 16019.56, + "probability": 0.994 + }, + { + "start": 16020.12, + "end": 16024.36, + "probability": 0.9938 + }, + { + "start": 16025.04, + "end": 16028.54, + "probability": 0.9871 + }, + { + "start": 16029.5, + "end": 16032.6, + "probability": 0.9351 + }, + { + "start": 16033.36, + "end": 16034.9, + "probability": 0.7782 + }, + { + "start": 16044.48, + "end": 16046.98, + "probability": 0.7061 + }, + { + "start": 16047.76, + "end": 16048.92, + "probability": 0.8123 + }, + { + "start": 16053.56, + "end": 16054.1, + "probability": 0.4039 + }, + { + "start": 16057.03, + "end": 16059.3, + "probability": 0.82 + }, + { + "start": 16059.3, + "end": 16061.66, + "probability": 0.9969 + }, + { + "start": 16062.3, + "end": 16064.7, + "probability": 0.9362 + }, + { + "start": 16065.32, + "end": 16066.52, + "probability": 0.8381 + }, + { + "start": 16066.56, + "end": 16068.32, + "probability": 0.9336 + }, + { + "start": 16068.42, + "end": 16070.06, + "probability": 0.7469 + }, + { + "start": 16070.7, + "end": 16075.1, + "probability": 0.995 + }, + { + "start": 16075.56, + "end": 16080.52, + "probability": 0.9834 + }, + { + "start": 16081.14, + "end": 16084.16, + "probability": 0.9984 + }, + { + "start": 16084.16, + "end": 16087.2, + "probability": 0.9965 + }, + { + "start": 16087.64, + "end": 16090.56, + "probability": 0.9261 + }, + { + "start": 16091.34, + "end": 16092.08, + "probability": 0.9692 + }, + { + "start": 16092.46, + "end": 16094.94, + "probability": 0.9878 + }, + { + "start": 16095.08, + "end": 16100.1, + "probability": 0.9139 + }, + { + "start": 16100.72, + "end": 16103.72, + "probability": 0.9077 + }, + { + "start": 16104.24, + "end": 16108.04, + "probability": 0.9972 + }, + { + "start": 16108.04, + "end": 16112.08, + "probability": 0.9978 + }, + { + "start": 16114.22, + "end": 16116.46, + "probability": 0.9962 + }, + { + "start": 16116.46, + "end": 16118.46, + "probability": 0.9903 + }, + { + "start": 16118.7, + "end": 16120.22, + "probability": 0.9801 + }, + { + "start": 16120.42, + "end": 16122.78, + "probability": 0.9918 + }, + { + "start": 16122.78, + "end": 16126.74, + "probability": 0.9978 + }, + { + "start": 16128.12, + "end": 16128.58, + "probability": 0.8169 + }, + { + "start": 16129.0, + "end": 16134.54, + "probability": 0.9932 + }, + { + "start": 16136.38, + "end": 16142.9, + "probability": 0.9924 + }, + { + "start": 16143.42, + "end": 16145.68, + "probability": 0.9973 + }, + { + "start": 16146.76, + "end": 16147.22, + "probability": 0.5088 + }, + { + "start": 16147.34, + "end": 16152.18, + "probability": 0.9521 + }, + { + "start": 16152.32, + "end": 16154.16, + "probability": 0.8416 + }, + { + "start": 16156.32, + "end": 16160.9, + "probability": 0.9671 + }, + { + "start": 16161.06, + "end": 16165.66, + "probability": 0.9705 + }, + { + "start": 16167.32, + "end": 16169.22, + "probability": 0.4962 + }, + { + "start": 16169.5, + "end": 16171.36, + "probability": 0.7249 + }, + { + "start": 16172.46, + "end": 16177.36, + "probability": 0.9742 + }, + { + "start": 16177.86, + "end": 16179.22, + "probability": 0.486 + }, + { + "start": 16180.18, + "end": 16181.88, + "probability": 0.7299 + }, + { + "start": 16190.56, + "end": 16190.56, + "probability": 0.1282 + }, + { + "start": 16190.56, + "end": 16190.6, + "probability": 0.0717 + }, + { + "start": 16190.6, + "end": 16190.86, + "probability": 0.0777 + }, + { + "start": 16199.8, + "end": 16204.06, + "probability": 0.6126 + }, + { + "start": 16204.9, + "end": 16207.68, + "probability": 0.9789 + }, + { + "start": 16209.2, + "end": 16210.64, + "probability": 0.8521 + }, + { + "start": 16215.14, + "end": 16216.3, + "probability": 0.7738 + }, + { + "start": 16216.42, + "end": 16217.76, + "probability": 0.6867 + }, + { + "start": 16217.86, + "end": 16220.54, + "probability": 0.8256 + }, + { + "start": 16220.72, + "end": 16222.42, + "probability": 0.9717 + }, + { + "start": 16223.12, + "end": 16226.54, + "probability": 0.952 + }, + { + "start": 16227.16, + "end": 16234.22, + "probability": 0.4862 + }, + { + "start": 16234.66, + "end": 16235.32, + "probability": 0.7354 + }, + { + "start": 16238.2, + "end": 16243.32, + "probability": 0.693 + }, + { + "start": 16243.84, + "end": 16246.68, + "probability": 0.9598 + }, + { + "start": 16247.32, + "end": 16248.84, + "probability": 0.8492 + }, + { + "start": 16249.3, + "end": 16251.02, + "probability": 0.8989 + }, + { + "start": 16251.18, + "end": 16253.64, + "probability": 0.8834 + }, + { + "start": 16254.2, + "end": 16256.96, + "probability": 0.9631 + }, + { + "start": 16258.24, + "end": 16262.58, + "probability": 0.9756 + }, + { + "start": 16264.54, + "end": 16266.76, + "probability": 0.1837 + }, + { + "start": 16267.66, + "end": 16269.18, + "probability": 0.9376 + }, + { + "start": 16269.36, + "end": 16273.36, + "probability": 0.6714 + }, + { + "start": 16273.82, + "end": 16274.76, + "probability": 0.9646 + }, + { + "start": 16274.88, + "end": 16275.12, + "probability": 0.7177 + }, + { + "start": 16295.7, + "end": 16295.78, + "probability": 0.2835 + }, + { + "start": 16295.78, + "end": 16298.42, + "probability": 0.0187 + }, + { + "start": 16299.2, + "end": 16303.14, + "probability": 0.9791 + }, + { + "start": 16303.26, + "end": 16304.12, + "probability": 0.8743 + }, + { + "start": 16305.66, + "end": 16308.2, + "probability": 0.8344 + }, + { + "start": 16309.66, + "end": 16313.1, + "probability": 0.9864 + }, + { + "start": 16314.2, + "end": 16314.88, + "probability": 0.8211 + }, + { + "start": 16316.8, + "end": 16317.84, + "probability": 0.3601 + }, + { + "start": 16317.84, + "end": 16325.48, + "probability": 0.9335 + }, + { + "start": 16326.66, + "end": 16331.48, + "probability": 0.8697 + }, + { + "start": 16331.74, + "end": 16334.96, + "probability": 0.9124 + }, + { + "start": 16336.32, + "end": 16342.34, + "probability": 0.995 + }, + { + "start": 16342.42, + "end": 16343.52, + "probability": 0.7641 + }, + { + "start": 16344.38, + "end": 16346.76, + "probability": 0.9512 + }, + { + "start": 16347.04, + "end": 16351.32, + "probability": 0.8476 + }, + { + "start": 16352.42, + "end": 16357.77, + "probability": 0.9484 + }, + { + "start": 16358.42, + "end": 16363.74, + "probability": 0.9403 + }, + { + "start": 16364.78, + "end": 16368.2, + "probability": 0.7953 + }, + { + "start": 16369.12, + "end": 16372.51, + "probability": 0.9866 + }, + { + "start": 16373.26, + "end": 16375.02, + "probability": 0.895 + }, + { + "start": 16375.82, + "end": 16379.76, + "probability": 0.9993 + }, + { + "start": 16380.1, + "end": 16382.08, + "probability": 0.96 + }, + { + "start": 16382.64, + "end": 16387.94, + "probability": 0.9967 + }, + { + "start": 16388.1, + "end": 16389.38, + "probability": 0.445 + }, + { + "start": 16389.52, + "end": 16392.76, + "probability": 0.9883 + }, + { + "start": 16394.76, + "end": 16395.18, + "probability": 0.9803 + }, + { + "start": 16395.9, + "end": 16400.26, + "probability": 0.9509 + }, + { + "start": 16400.46, + "end": 16406.46, + "probability": 0.9185 + }, + { + "start": 16406.46, + "end": 16411.76, + "probability": 0.9721 + }, + { + "start": 16412.28, + "end": 16412.7, + "probability": 0.625 + }, + { + "start": 16413.98, + "end": 16418.44, + "probability": 0.8914 + }, + { + "start": 16418.54, + "end": 16419.16, + "probability": 0.8999 + }, + { + "start": 16419.26, + "end": 16419.96, + "probability": 0.9428 + }, + { + "start": 16420.08, + "end": 16422.22, + "probability": 0.8845 + }, + { + "start": 16423.22, + "end": 16423.72, + "probability": 0.5917 + }, + { + "start": 16423.86, + "end": 16429.24, + "probability": 0.9119 + }, + { + "start": 16429.92, + "end": 16431.68, + "probability": 0.8858 + }, + { + "start": 16432.46, + "end": 16434.92, + "probability": 0.8557 + }, + { + "start": 16435.6, + "end": 16441.3, + "probability": 0.9634 + }, + { + "start": 16441.74, + "end": 16444.5, + "probability": 0.9775 + }, + { + "start": 16446.64, + "end": 16449.76, + "probability": 0.7183 + }, + { + "start": 16449.84, + "end": 16451.76, + "probability": 0.9318 + }, + { + "start": 16452.2, + "end": 16454.97, + "probability": 0.7843 + }, + { + "start": 16455.74, + "end": 16458.4, + "probability": 0.9356 + }, + { + "start": 16459.0, + "end": 16462.56, + "probability": 0.9876 + }, + { + "start": 16463.18, + "end": 16469.68, + "probability": 0.5926 + }, + { + "start": 16470.26, + "end": 16477.26, + "probability": 0.9831 + }, + { + "start": 16477.74, + "end": 16478.8, + "probability": 0.8436 + }, + { + "start": 16479.02, + "end": 16480.22, + "probability": 0.9597 + }, + { + "start": 16480.32, + "end": 16481.24, + "probability": 0.9495 + }, + { + "start": 16481.62, + "end": 16482.84, + "probability": 0.9772 + }, + { + "start": 16482.94, + "end": 16488.1, + "probability": 0.9971 + }, + { + "start": 16490.0, + "end": 16492.34, + "probability": 0.7875 + }, + { + "start": 16492.7, + "end": 16497.98, + "probability": 0.9539 + }, + { + "start": 16497.98, + "end": 16501.34, + "probability": 0.9837 + }, + { + "start": 16502.06, + "end": 16504.78, + "probability": 0.9106 + }, + { + "start": 16505.76, + "end": 16509.34, + "probability": 0.933 + }, + { + "start": 16509.82, + "end": 16510.7, + "probability": 0.9369 + }, + { + "start": 16510.94, + "end": 16513.36, + "probability": 0.9961 + }, + { + "start": 16513.5, + "end": 16515.96, + "probability": 0.6629 + }, + { + "start": 16516.14, + "end": 16516.8, + "probability": 0.7014 + }, + { + "start": 16517.36, + "end": 16520.12, + "probability": 0.9272 + }, + { + "start": 16520.76, + "end": 16522.86, + "probability": 0.7184 + }, + { + "start": 16523.0, + "end": 16523.48, + "probability": 0.8698 + }, + { + "start": 16523.54, + "end": 16525.98, + "probability": 0.941 + }, + { + "start": 16526.1, + "end": 16527.14, + "probability": 0.8267 + }, + { + "start": 16527.9, + "end": 16534.58, + "probability": 0.9755 + }, + { + "start": 16534.58, + "end": 16543.0, + "probability": 0.981 + }, + { + "start": 16543.44, + "end": 16544.82, + "probability": 0.7078 + }, + { + "start": 16544.98, + "end": 16549.24, + "probability": 0.9379 + }, + { + "start": 16551.46, + "end": 16558.2, + "probability": 0.9175 + }, + { + "start": 16559.12, + "end": 16561.86, + "probability": 0.9883 + }, + { + "start": 16562.74, + "end": 16563.44, + "probability": 0.8051 + }, + { + "start": 16563.74, + "end": 16565.44, + "probability": 0.9205 + }, + { + "start": 16566.2, + "end": 16569.02, + "probability": 0.9859 + }, + { + "start": 16569.64, + "end": 16571.3, + "probability": 0.986 + }, + { + "start": 16571.48, + "end": 16575.64, + "probability": 0.8975 + }, + { + "start": 16576.68, + "end": 16580.84, + "probability": 0.9248 + }, + { + "start": 16580.84, + "end": 16584.36, + "probability": 0.9991 + }, + { + "start": 16585.4, + "end": 16588.94, + "probability": 0.8868 + }, + { + "start": 16589.16, + "end": 16595.86, + "probability": 0.9902 + }, + { + "start": 16596.12, + "end": 16598.18, + "probability": 0.9551 + }, + { + "start": 16598.4, + "end": 16602.2, + "probability": 0.871 + }, + { + "start": 16602.38, + "end": 16607.58, + "probability": 0.989 + }, + { + "start": 16608.48, + "end": 16608.64, + "probability": 0.7209 + }, + { + "start": 16608.7, + "end": 16610.56, + "probability": 0.7759 + }, + { + "start": 16610.74, + "end": 16612.1, + "probability": 0.6315 + }, + { + "start": 16612.5, + "end": 16617.8, + "probability": 0.9402 + }, + { + "start": 16619.3, + "end": 16625.8, + "probability": 0.8624 + }, + { + "start": 16625.8, + "end": 16630.3, + "probability": 0.9991 + }, + { + "start": 16631.0, + "end": 16637.64, + "probability": 0.9159 + }, + { + "start": 16637.8, + "end": 16639.24, + "probability": 0.8746 + }, + { + "start": 16639.76, + "end": 16643.14, + "probability": 0.9758 + }, + { + "start": 16643.14, + "end": 16647.68, + "probability": 0.4555 + }, + { + "start": 16647.84, + "end": 16648.4, + "probability": 0.9644 + }, + { + "start": 16651.07, + "end": 16653.08, + "probability": 0.7367 + }, + { + "start": 16653.16, + "end": 16654.28, + "probability": 0.7576 + }, + { + "start": 16654.42, + "end": 16654.94, + "probability": 0.9391 + }, + { + "start": 16654.98, + "end": 16656.6, + "probability": 0.937 + }, + { + "start": 16657.32, + "end": 16664.88, + "probability": 0.9385 + }, + { + "start": 16665.6, + "end": 16666.52, + "probability": 0.6027 + }, + { + "start": 16667.08, + "end": 16667.86, + "probability": 0.9297 + }, + { + "start": 16668.38, + "end": 16671.82, + "probability": 0.9605 + }, + { + "start": 16671.92, + "end": 16678.6, + "probability": 0.8926 + }, + { + "start": 16679.04, + "end": 16684.1, + "probability": 0.9769 + }, + { + "start": 16685.08, + "end": 16686.16, + "probability": 0.893 + }, + { + "start": 16687.72, + "end": 16691.38, + "probability": 0.8102 + }, + { + "start": 16692.82, + "end": 16695.36, + "probability": 0.9907 + }, + { + "start": 16695.36, + "end": 16699.28, + "probability": 0.9921 + }, + { + "start": 16700.64, + "end": 16702.64, + "probability": 0.9869 + }, + { + "start": 16703.36, + "end": 16706.9, + "probability": 0.9775 + }, + { + "start": 16707.0, + "end": 16709.82, + "probability": 0.9919 + }, + { + "start": 16710.36, + "end": 16715.8, + "probability": 0.8081 + }, + { + "start": 16715.94, + "end": 16720.02, + "probability": 0.9938 + }, + { + "start": 16721.2, + "end": 16727.08, + "probability": 0.9962 + }, + { + "start": 16727.2, + "end": 16734.74, + "probability": 0.9873 + }, + { + "start": 16735.0, + "end": 16738.94, + "probability": 0.9225 + }, + { + "start": 16739.04, + "end": 16740.9, + "probability": 0.9448 + }, + { + "start": 16741.96, + "end": 16745.54, + "probability": 0.9896 + }, + { + "start": 16746.32, + "end": 16750.62, + "probability": 0.9692 + }, + { + "start": 16751.32, + "end": 16751.52, + "probability": 0.4187 + }, + { + "start": 16751.58, + "end": 16753.12, + "probability": 0.9111 + }, + { + "start": 16753.54, + "end": 16758.14, + "probability": 0.993 + }, + { + "start": 16758.74, + "end": 16762.0, + "probability": 0.979 + }, + { + "start": 16762.0, + "end": 16766.34, + "probability": 0.9763 + }, + { + "start": 16766.4, + "end": 16772.3, + "probability": 0.9761 + }, + { + "start": 16772.8, + "end": 16773.9, + "probability": 0.8136 + }, + { + "start": 16774.38, + "end": 16779.6, + "probability": 0.9644 + }, + { + "start": 16779.6, + "end": 16786.0, + "probability": 0.9912 + }, + { + "start": 16786.94, + "end": 16787.94, + "probability": 0.8588 + }, + { + "start": 16788.02, + "end": 16789.56, + "probability": 0.79 + }, + { + "start": 16790.0, + "end": 16795.04, + "probability": 0.9943 + }, + { + "start": 16795.82, + "end": 16802.5, + "probability": 0.9676 + }, + { + "start": 16803.38, + "end": 16807.98, + "probability": 0.9964 + }, + { + "start": 16808.6, + "end": 16810.94, + "probability": 0.7323 + }, + { + "start": 16811.7, + "end": 16815.92, + "probability": 0.8728 + }, + { + "start": 16817.98, + "end": 16821.48, + "probability": 0.9531 + }, + { + "start": 16822.26, + "end": 16825.74, + "probability": 0.9881 + }, + { + "start": 16825.8, + "end": 16829.98, + "probability": 0.9427 + }, + { + "start": 16830.58, + "end": 16834.22, + "probability": 0.9858 + }, + { + "start": 16834.86, + "end": 16837.4, + "probability": 0.9727 + }, + { + "start": 16841.12, + "end": 16846.06, + "probability": 0.9819 + }, + { + "start": 16846.3, + "end": 16851.5, + "probability": 0.8418 + }, + { + "start": 16851.94, + "end": 16855.58, + "probability": 0.9409 + }, + { + "start": 16856.36, + "end": 16863.06, + "probability": 0.8525 + }, + { + "start": 16863.12, + "end": 16864.07, + "probability": 0.9639 + }, + { + "start": 16864.54, + "end": 16867.46, + "probability": 0.938 + }, + { + "start": 16869.42, + "end": 16872.78, + "probability": 0.9372 + }, + { + "start": 16873.24, + "end": 16876.14, + "probability": 0.7919 + }, + { + "start": 16876.84, + "end": 16880.84, + "probability": 0.7266 + }, + { + "start": 16880.86, + "end": 16882.22, + "probability": 0.7339 + }, + { + "start": 16882.34, + "end": 16886.98, + "probability": 0.9107 + }, + { + "start": 16887.38, + "end": 16889.92, + "probability": 0.99 + }, + { + "start": 16890.74, + "end": 16896.88, + "probability": 0.9865 + }, + { + "start": 16897.02, + "end": 16898.42, + "probability": 0.2647 + }, + { + "start": 16898.62, + "end": 16901.32, + "probability": 0.8735 + }, + { + "start": 16901.62, + "end": 16905.26, + "probability": 0.9933 + }, + { + "start": 16906.32, + "end": 16908.56, + "probability": 0.6803 + }, + { + "start": 16908.76, + "end": 16909.18, + "probability": 0.5519 + }, + { + "start": 16909.24, + "end": 16912.22, + "probability": 0.8712 + }, + { + "start": 16912.26, + "end": 16914.7, + "probability": 0.9795 + }, + { + "start": 16915.28, + "end": 16919.14, + "probability": 0.9062 + }, + { + "start": 16919.32, + "end": 16922.9, + "probability": 0.982 + }, + { + "start": 16924.06, + "end": 16924.54, + "probability": 0.832 + }, + { + "start": 16925.08, + "end": 16929.42, + "probability": 0.9961 + }, + { + "start": 16929.94, + "end": 16933.9, + "probability": 0.9915 + }, + { + "start": 16934.56, + "end": 16937.2, + "probability": 0.8873 + }, + { + "start": 16937.72, + "end": 16937.72, + "probability": 0.3097 + }, + { + "start": 16937.72, + "end": 16941.56, + "probability": 0.9565 + }, + { + "start": 16942.14, + "end": 16943.48, + "probability": 0.9641 + }, + { + "start": 16943.66, + "end": 16947.18, + "probability": 0.873 + }, + { + "start": 16947.56, + "end": 16955.8, + "probability": 0.9776 + }, + { + "start": 16956.34, + "end": 16956.76, + "probability": 0.4339 + }, + { + "start": 16957.64, + "end": 16958.5, + "probability": 0.9871 + }, + { + "start": 16959.18, + "end": 16963.98, + "probability": 0.8222 + }, + { + "start": 16964.36, + "end": 16967.64, + "probability": 0.9926 + }, + { + "start": 16967.64, + "end": 16971.86, + "probability": 0.9954 + }, + { + "start": 16972.22, + "end": 16973.48, + "probability": 0.8999 + }, + { + "start": 16973.52, + "end": 16975.3, + "probability": 0.8306 + }, + { + "start": 16975.6, + "end": 16976.18, + "probability": 0.8579 + }, + { + "start": 16976.76, + "end": 16977.42, + "probability": 0.8632 + }, + { + "start": 16977.46, + "end": 16978.42, + "probability": 0.9762 + }, + { + "start": 16978.82, + "end": 16980.22, + "probability": 0.7542 + }, + { + "start": 16980.64, + "end": 16983.94, + "probability": 0.8569 + }, + { + "start": 16984.1, + "end": 16989.24, + "probability": 0.9949 + }, + { + "start": 16990.02, + "end": 16992.42, + "probability": 0.8749 + }, + { + "start": 16992.48, + "end": 16993.45, + "probability": 0.9872 + }, + { + "start": 16993.64, + "end": 16997.62, + "probability": 0.8615 + }, + { + "start": 16997.92, + "end": 16999.24, + "probability": 0.9224 + }, + { + "start": 16999.7, + "end": 17003.82, + "probability": 0.9871 + }, + { + "start": 17004.44, + "end": 17007.96, + "probability": 0.9723 + }, + { + "start": 17008.26, + "end": 17010.14, + "probability": 0.8185 + }, + { + "start": 17010.28, + "end": 17013.44, + "probability": 0.7952 + }, + { + "start": 17017.3, + "end": 17018.2, + "probability": 0.7685 + }, + { + "start": 17029.16, + "end": 17031.7, + "probability": 0.6665 + }, + { + "start": 17032.26, + "end": 17034.62, + "probability": 0.7043 + }, + { + "start": 17035.48, + "end": 17037.9, + "probability": 0.9319 + }, + { + "start": 17039.64, + "end": 17043.44, + "probability": 0.9857 + }, + { + "start": 17044.9, + "end": 17046.08, + "probability": 0.9922 + }, + { + "start": 17047.52, + "end": 17050.4, + "probability": 0.9964 + }, + { + "start": 17051.28, + "end": 17053.4, + "probability": 0.7625 + }, + { + "start": 17055.28, + "end": 17057.24, + "probability": 0.9948 + }, + { + "start": 17057.58, + "end": 17058.36, + "probability": 0.7429 + }, + { + "start": 17058.62, + "end": 17059.63, + "probability": 0.8441 + }, + { + "start": 17060.08, + "end": 17060.26, + "probability": 0.8492 + }, + { + "start": 17062.74, + "end": 17063.72, + "probability": 0.9098 + }, + { + "start": 17064.14, + "end": 17066.28, + "probability": 0.9779 + }, + { + "start": 17067.14, + "end": 17067.74, + "probability": 0.7159 + }, + { + "start": 17070.96, + "end": 17072.74, + "probability": 0.9806 + }, + { + "start": 17073.36, + "end": 17074.92, + "probability": 0.9546 + }, + { + "start": 17075.5, + "end": 17077.06, + "probability": 0.8654 + }, + { + "start": 17078.84, + "end": 17085.1, + "probability": 0.9728 + }, + { + "start": 17086.82, + "end": 17088.02, + "probability": 0.6051 + }, + { + "start": 17088.14, + "end": 17092.18, + "probability": 0.9539 + }, + { + "start": 17092.28, + "end": 17093.06, + "probability": 0.6594 + }, + { + "start": 17093.08, + "end": 17093.74, + "probability": 0.6578 + }, + { + "start": 17094.24, + "end": 17095.9, + "probability": 0.9751 + }, + { + "start": 17096.96, + "end": 17100.66, + "probability": 0.9829 + }, + { + "start": 17102.26, + "end": 17103.06, + "probability": 0.8548 + }, + { + "start": 17104.24, + "end": 17106.36, + "probability": 0.9032 + }, + { + "start": 17107.52, + "end": 17112.76, + "probability": 0.9032 + }, + { + "start": 17114.28, + "end": 17116.48, + "probability": 0.998 + }, + { + "start": 17118.12, + "end": 17122.82, + "probability": 0.9579 + }, + { + "start": 17124.4, + "end": 17126.18, + "probability": 0.9172 + }, + { + "start": 17127.24, + "end": 17135.62, + "probability": 0.985 + }, + { + "start": 17136.28, + "end": 17138.92, + "probability": 0.8936 + }, + { + "start": 17139.6, + "end": 17142.94, + "probability": 0.9687 + }, + { + "start": 17144.44, + "end": 17147.46, + "probability": 0.8913 + }, + { + "start": 17147.8, + "end": 17150.14, + "probability": 0.9639 + }, + { + "start": 17150.24, + "end": 17151.58, + "probability": 0.9831 + }, + { + "start": 17151.82, + "end": 17152.63, + "probability": 0.9819 + }, + { + "start": 17154.68, + "end": 17158.34, + "probability": 0.91 + }, + { + "start": 17159.08, + "end": 17163.08, + "probability": 0.9937 + }, + { + "start": 17163.24, + "end": 17164.02, + "probability": 0.9102 + }, + { + "start": 17164.08, + "end": 17164.62, + "probability": 0.8406 + }, + { + "start": 17164.8, + "end": 17165.4, + "probability": 0.9268 + }, + { + "start": 17165.48, + "end": 17166.16, + "probability": 0.7296 + }, + { + "start": 17167.06, + "end": 17168.52, + "probability": 0.7446 + }, + { + "start": 17169.48, + "end": 17170.24, + "probability": 0.9385 + }, + { + "start": 17170.34, + "end": 17171.2, + "probability": 0.9204 + }, + { + "start": 17171.72, + "end": 17173.78, + "probability": 0.9792 + }, + { + "start": 17175.32, + "end": 17178.1, + "probability": 0.7157 + }, + { + "start": 17179.62, + "end": 17182.76, + "probability": 0.6926 + }, + { + "start": 17183.42, + "end": 17187.18, + "probability": 0.9851 + }, + { + "start": 17187.8, + "end": 17190.76, + "probability": 0.9775 + }, + { + "start": 17191.22, + "end": 17193.84, + "probability": 0.9896 + }, + { + "start": 17193.9, + "end": 17196.32, + "probability": 0.8746 + }, + { + "start": 17196.38, + "end": 17199.04, + "probability": 0.994 + }, + { + "start": 17199.68, + "end": 17200.94, + "probability": 0.7617 + }, + { + "start": 17201.26, + "end": 17202.12, + "probability": 0.3212 + }, + { + "start": 17202.72, + "end": 17203.32, + "probability": 0.9244 + }, + { + "start": 17203.74, + "end": 17204.84, + "probability": 0.9421 + }, + { + "start": 17205.62, + "end": 17207.4, + "probability": 0.9946 + }, + { + "start": 17208.28, + "end": 17210.0, + "probability": 0.8984 + }, + { + "start": 17210.74, + "end": 17212.18, + "probability": 0.9135 + }, + { + "start": 17212.26, + "end": 17213.03, + "probability": 0.9401 + }, + { + "start": 17213.14, + "end": 17213.73, + "probability": 0.8784 + }, + { + "start": 17215.5, + "end": 17217.7, + "probability": 0.9666 + }, + { + "start": 17218.7, + "end": 17221.24, + "probability": 0.9187 + }, + { + "start": 17222.3, + "end": 17222.78, + "probability": 0.5426 + }, + { + "start": 17222.8, + "end": 17223.04, + "probability": 0.9131 + }, + { + "start": 17223.34, + "end": 17225.3, + "probability": 0.9941 + }, + { + "start": 17225.48, + "end": 17226.42, + "probability": 0.7818 + }, + { + "start": 17226.68, + "end": 17227.44, + "probability": 0.7284 + }, + { + "start": 17229.26, + "end": 17230.46, + "probability": 0.6182 + }, + { + "start": 17230.84, + "end": 17231.32, + "probability": 0.5958 + }, + { + "start": 17231.4, + "end": 17231.86, + "probability": 0.8581 + }, + { + "start": 17231.92, + "end": 17232.5, + "probability": 0.5943 + }, + { + "start": 17232.6, + "end": 17233.44, + "probability": 0.8449 + }, + { + "start": 17233.92, + "end": 17236.2, + "probability": 0.9877 + }, + { + "start": 17236.5, + "end": 17237.04, + "probability": 0.8882 + }, + { + "start": 17237.2, + "end": 17238.12, + "probability": 0.9088 + }, + { + "start": 17238.28, + "end": 17239.66, + "probability": 0.9709 + }, + { + "start": 17240.98, + "end": 17241.16, + "probability": 0.035 + }, + { + "start": 17241.16, + "end": 17247.6, + "probability": 0.923 + }, + { + "start": 17248.8, + "end": 17248.96, + "probability": 0.1054 + }, + { + "start": 17248.96, + "end": 17251.32, + "probability": 0.8348 + }, + { + "start": 17251.7, + "end": 17255.48, + "probability": 0.975 + }, + { + "start": 17256.42, + "end": 17257.02, + "probability": 0.0602 + }, + { + "start": 17257.02, + "end": 17257.02, + "probability": 0.043 + }, + { + "start": 17257.02, + "end": 17259.8, + "probability": 0.8601 + }, + { + "start": 17262.14, + "end": 17263.66, + "probability": 0.9928 + }, + { + "start": 17264.92, + "end": 17265.12, + "probability": 0.5638 + }, + { + "start": 17265.7, + "end": 17266.86, + "probability": 0.9425 + }, + { + "start": 17266.9, + "end": 17267.56, + "probability": 0.9558 + }, + { + "start": 17268.86, + "end": 17270.98, + "probability": 0.9891 + }, + { + "start": 17271.84, + "end": 17273.27, + "probability": 0.8754 + }, + { + "start": 17273.92, + "end": 17275.56, + "probability": 0.9093 + }, + { + "start": 17275.68, + "end": 17277.38, + "probability": 0.8918 + }, + { + "start": 17278.76, + "end": 17280.94, + "probability": 0.8655 + }, + { + "start": 17281.74, + "end": 17282.35, + "probability": 0.9842 + }, + { + "start": 17282.96, + "end": 17290.1, + "probability": 0.9147 + }, + { + "start": 17290.48, + "end": 17295.06, + "probability": 0.9636 + }, + { + "start": 17295.52, + "end": 17296.9, + "probability": 0.9602 + }, + { + "start": 17298.22, + "end": 17299.56, + "probability": 0.9152 + }, + { + "start": 17299.98, + "end": 17303.36, + "probability": 0.9812 + }, + { + "start": 17303.98, + "end": 17307.24, + "probability": 0.9423 + }, + { + "start": 17307.66, + "end": 17309.52, + "probability": 0.9788 + }, + { + "start": 17310.02, + "end": 17311.42, + "probability": 0.8867 + }, + { + "start": 17312.34, + "end": 17315.7, + "probability": 0.9579 + }, + { + "start": 17316.28, + "end": 17317.38, + "probability": 0.9205 + }, + { + "start": 17318.18, + "end": 17320.38, + "probability": 0.8728 + }, + { + "start": 17320.46, + "end": 17321.76, + "probability": 0.9941 + }, + { + "start": 17321.88, + "end": 17323.46, + "probability": 0.8828 + }, + { + "start": 17324.9, + "end": 17327.34, + "probability": 0.9836 + }, + { + "start": 17327.48, + "end": 17328.02, + "probability": 0.6346 + }, + { + "start": 17328.18, + "end": 17328.86, + "probability": 0.8735 + }, + { + "start": 17328.92, + "end": 17330.12, + "probability": 0.9742 + }, + { + "start": 17331.3, + "end": 17333.0, + "probability": 0.9871 + }, + { + "start": 17333.1, + "end": 17334.88, + "probability": 0.8234 + }, + { + "start": 17334.88, + "end": 17336.48, + "probability": 0.9976 + }, + { + "start": 17337.84, + "end": 17338.32, + "probability": 0.3218 + }, + { + "start": 17338.6, + "end": 17338.82, + "probability": 0.7287 + }, + { + "start": 17339.26, + "end": 17340.64, + "probability": 0.9147 + }, + { + "start": 17342.06, + "end": 17345.46, + "probability": 0.9032 + }, + { + "start": 17346.24, + "end": 17351.68, + "probability": 0.9851 + }, + { + "start": 17352.84, + "end": 17354.78, + "probability": 0.8053 + }, + { + "start": 17355.02, + "end": 17355.9, + "probability": 0.8321 + }, + { + "start": 17356.82, + "end": 17357.04, + "probability": 0.8227 + }, + { + "start": 17357.06, + "end": 17357.94, + "probability": 0.9484 + }, + { + "start": 17358.02, + "end": 17360.68, + "probability": 0.98 + }, + { + "start": 17361.44, + "end": 17364.66, + "probability": 0.9891 + }, + { + "start": 17365.6, + "end": 17370.84, + "probability": 0.9834 + }, + { + "start": 17372.24, + "end": 17373.48, + "probability": 0.9976 + }, + { + "start": 17373.68, + "end": 17375.4, + "probability": 0.9677 + }, + { + "start": 17376.64, + "end": 17378.11, + "probability": 0.9973 + }, + { + "start": 17380.42, + "end": 17382.04, + "probability": 0.518 + }, + { + "start": 17382.94, + "end": 17385.2, + "probability": 0.8174 + }, + { + "start": 17386.5, + "end": 17388.84, + "probability": 0.93 + }, + { + "start": 17389.74, + "end": 17390.64, + "probability": 0.933 + }, + { + "start": 17390.78, + "end": 17391.64, + "probability": 0.9001 + }, + { + "start": 17391.74, + "end": 17397.3, + "probability": 0.889 + }, + { + "start": 17397.88, + "end": 17399.28, + "probability": 0.4738 + }, + { + "start": 17401.74, + "end": 17403.58, + "probability": 0.9648 + }, + { + "start": 17403.88, + "end": 17406.28, + "probability": 0.8454 + }, + { + "start": 17406.4, + "end": 17407.12, + "probability": 0.9183 + }, + { + "start": 17407.26, + "end": 17407.96, + "probability": 0.6061 + }, + { + "start": 17408.4, + "end": 17411.14, + "probability": 0.8789 + }, + { + "start": 17411.18, + "end": 17412.16, + "probability": 0.922 + }, + { + "start": 17412.2, + "end": 17413.66, + "probability": 0.9307 + }, + { + "start": 17413.66, + "end": 17413.94, + "probability": 0.1879 + }, + { + "start": 17416.48, + "end": 17420.84, + "probability": 0.9719 + }, + { + "start": 17420.94, + "end": 17424.04, + "probability": 0.8711 + }, + { + "start": 17425.58, + "end": 17429.32, + "probability": 0.9977 + }, + { + "start": 17430.0, + "end": 17430.38, + "probability": 0.7852 + }, + { + "start": 17430.64, + "end": 17432.8, + "probability": 0.7958 + }, + { + "start": 17433.0, + "end": 17433.9, + "probability": 0.9481 + }, + { + "start": 17433.92, + "end": 17434.82, + "probability": 0.7564 + }, + { + "start": 17434.88, + "end": 17435.68, + "probability": 0.8266 + }, + { + "start": 17435.74, + "end": 17436.54, + "probability": 0.8921 + }, + { + "start": 17436.76, + "end": 17438.74, + "probability": 0.9766 + }, + { + "start": 17439.06, + "end": 17440.54, + "probability": 0.8503 + }, + { + "start": 17441.08, + "end": 17441.26, + "probability": 0.4255 + }, + { + "start": 17441.34, + "end": 17443.7, + "probability": 0.8043 + }, + { + "start": 17444.22, + "end": 17445.06, + "probability": 0.8259 + }, + { + "start": 17445.12, + "end": 17446.56, + "probability": 0.7594 + }, + { + "start": 17446.86, + "end": 17449.22, + "probability": 0.9523 + }, + { + "start": 17450.58, + "end": 17451.92, + "probability": 0.9478 + }, + { + "start": 17452.14, + "end": 17453.78, + "probability": 0.9171 + }, + { + "start": 17454.16, + "end": 17455.08, + "probability": 0.7598 + }, + { + "start": 17455.78, + "end": 17459.78, + "probability": 0.9907 + }, + { + "start": 17460.46, + "end": 17464.28, + "probability": 0.905 + }, + { + "start": 17464.36, + "end": 17465.68, + "probability": 0.681 + }, + { + "start": 17467.88, + "end": 17467.92, + "probability": 0.1647 + }, + { + "start": 17467.94, + "end": 17470.72, + "probability": 0.8766 + }, + { + "start": 17471.08, + "end": 17472.54, + "probability": 0.7843 + }, + { + "start": 17472.68, + "end": 17474.27, + "probability": 0.9982 + }, + { + "start": 17475.84, + "end": 17479.12, + "probability": 0.978 + }, + { + "start": 17480.04, + "end": 17480.16, + "probability": 0.4733 + }, + { + "start": 17480.18, + "end": 17485.18, + "probability": 0.9927 + }, + { + "start": 17485.36, + "end": 17485.52, + "probability": 0.7119 + }, + { + "start": 17485.74, + "end": 17488.22, + "probability": 0.9116 + }, + { + "start": 17488.48, + "end": 17491.08, + "probability": 0.637 + }, + { + "start": 17491.64, + "end": 17494.84, + "probability": 0.9807 + }, + { + "start": 17495.3, + "end": 17496.42, + "probability": 0.9121 + }, + { + "start": 17499.6, + "end": 17500.36, + "probability": 0.854 + }, + { + "start": 17501.18, + "end": 17502.62, + "probability": 0.764 + }, + { + "start": 17502.78, + "end": 17503.86, + "probability": 0.9176 + }, + { + "start": 17504.04, + "end": 17506.02, + "probability": 0.7217 + }, + { + "start": 17506.94, + "end": 17507.7, + "probability": 0.939 + }, + { + "start": 17508.72, + "end": 17512.12, + "probability": 0.9735 + }, + { + "start": 17512.54, + "end": 17514.22, + "probability": 0.9878 + }, + { + "start": 17514.3, + "end": 17516.14, + "probability": 0.5739 + }, + { + "start": 17516.4, + "end": 17516.58, + "probability": 0.1246 + }, + { + "start": 17516.58, + "end": 17517.5, + "probability": 0.6784 + }, + { + "start": 17519.18, + "end": 17522.1, + "probability": 0.998 + }, + { + "start": 17523.69, + "end": 17525.48, + "probability": 0.8746 + }, + { + "start": 17525.48, + "end": 17527.42, + "probability": 0.9863 + }, + { + "start": 17527.8, + "end": 17528.72, + "probability": 0.9744 + }, + { + "start": 17529.32, + "end": 17532.42, + "probability": 0.6783 + }, + { + "start": 17533.56, + "end": 17535.77, + "probability": 0.9883 + }, + { + "start": 17537.08, + "end": 17541.04, + "probability": 0.8817 + }, + { + "start": 17541.96, + "end": 17544.1, + "probability": 0.6914 + }, + { + "start": 17545.16, + "end": 17545.38, + "probability": 0.8113 + }, + { + "start": 17545.54, + "end": 17548.98, + "probability": 0.8613 + }, + { + "start": 17549.48, + "end": 17550.38, + "probability": 0.5858 + }, + { + "start": 17550.46, + "end": 17552.98, + "probability": 0.995 + }, + { + "start": 17553.04, + "end": 17556.02, + "probability": 0.99 + }, + { + "start": 17556.6, + "end": 17556.84, + "probability": 0.2712 + }, + { + "start": 17556.88, + "end": 17557.74, + "probability": 0.6026 + }, + { + "start": 17558.0, + "end": 17559.78, + "probability": 0.4838 + }, + { + "start": 17561.74, + "end": 17562.58, + "probability": 0.0824 + }, + { + "start": 17562.58, + "end": 17564.46, + "probability": 0.8101 + }, + { + "start": 17564.56, + "end": 17566.2, + "probability": 0.9961 + }, + { + "start": 17566.86, + "end": 17566.86, + "probability": 0.0566 + }, + { + "start": 17566.86, + "end": 17566.86, + "probability": 0.2656 + }, + { + "start": 17567.06, + "end": 17569.1, + "probability": 0.9891 + }, + { + "start": 17569.18, + "end": 17569.82, + "probability": 0.8542 + }, + { + "start": 17570.6, + "end": 17572.14, + "probability": 0.9644 + }, + { + "start": 17572.72, + "end": 17573.66, + "probability": 0.4919 + }, + { + "start": 17574.1, + "end": 17575.98, + "probability": 0.715 + }, + { + "start": 17576.04, + "end": 17578.36, + "probability": 0.6917 + }, + { + "start": 17578.56, + "end": 17579.0, + "probability": 0.8217 + }, + { + "start": 17579.0, + "end": 17579.34, + "probability": 0.4267 + }, + { + "start": 17579.52, + "end": 17579.94, + "probability": 0.9429 + }, + { + "start": 17579.96, + "end": 17580.3, + "probability": 0.9503 + }, + { + "start": 17580.62, + "end": 17582.5, + "probability": 0.9017 + }, + { + "start": 17582.54, + "end": 17582.92, + "probability": 0.5205 + }, + { + "start": 17583.0, + "end": 17583.42, + "probability": 0.5673 + }, + { + "start": 17583.86, + "end": 17583.94, + "probability": 0.5967 + }, + { + "start": 17583.94, + "end": 17584.04, + "probability": 0.794 + }, + { + "start": 17584.76, + "end": 17586.6, + "probability": 0.9214 + }, + { + "start": 17587.16, + "end": 17590.62, + "probability": 0.9744 + }, + { + "start": 17590.66, + "end": 17591.76, + "probability": 0.9709 + }, + { + "start": 17592.48, + "end": 17594.8, + "probability": 0.978 + }, + { + "start": 17594.8, + "end": 17599.3, + "probability": 0.9755 + }, + { + "start": 17599.68, + "end": 17601.14, + "probability": 0.6361 + }, + { + "start": 17601.24, + "end": 17602.12, + "probability": 0.9092 + }, + { + "start": 17603.26, + "end": 17606.74, + "probability": 0.2651 + }, + { + "start": 17607.48, + "end": 17611.0, + "probability": 0.7766 + }, + { + "start": 17611.0, + "end": 17611.46, + "probability": 0.0771 + }, + { + "start": 17611.46, + "end": 17611.94, + "probability": 0.2872 + }, + { + "start": 17612.28, + "end": 17614.06, + "probability": 0.7794 + }, + { + "start": 17614.1, + "end": 17614.35, + "probability": 0.829 + }, + { + "start": 17615.1, + "end": 17616.18, + "probability": 0.1823 + }, + { + "start": 17616.18, + "end": 17619.74, + "probability": 0.4884 + }, + { + "start": 17620.66, + "end": 17622.22, + "probability": 0.4736 + }, + { + "start": 17622.94, + "end": 17624.54, + "probability": 0.0701 + }, + { + "start": 17624.58, + "end": 17624.7, + "probability": 0.0624 + }, + { + "start": 17624.84, + "end": 17625.86, + "probability": 0.2766 + }, + { + "start": 17625.9, + "end": 17627.92, + "probability": 0.2907 + }, + { + "start": 17628.1, + "end": 17629.12, + "probability": 0.6212 + }, + { + "start": 17629.72, + "end": 17631.54, + "probability": 0.0793 + }, + { + "start": 17632.92, + "end": 17634.12, + "probability": 0.0135 + }, + { + "start": 17634.12, + "end": 17634.12, + "probability": 0.0196 + }, + { + "start": 17634.12, + "end": 17635.58, + "probability": 0.7302 + }, + { + "start": 17644.44, + "end": 17645.02, + "probability": 0.1441 + }, + { + "start": 17645.02, + "end": 17647.72, + "probability": 0.9394 + }, + { + "start": 17647.86, + "end": 17648.38, + "probability": 0.0044 + }, + { + "start": 17649.18, + "end": 17649.18, + "probability": 0.1727 + }, + { + "start": 17649.18, + "end": 17649.18, + "probability": 0.0017 + }, + { + "start": 17649.18, + "end": 17653.12, + "probability": 0.0729 + }, + { + "start": 17654.12, + "end": 17655.64, + "probability": 0.1182 + }, + { + "start": 17664.42, + "end": 17667.6, + "probability": 0.0835 + }, + { + "start": 17668.4, + "end": 17668.81, + "probability": 0.0408 + }, + { + "start": 17670.0, + "end": 17670.3, + "probability": 0.0153 + }, + { + "start": 17670.3, + "end": 17671.32, + "probability": 0.9013 + }, + { + "start": 17671.42, + "end": 17672.16, + "probability": 0.0146 + }, + { + "start": 17672.16, + "end": 17672.97, + "probability": 0.0457 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.0, + "end": 17673.0, + "probability": 0.0 + }, + { + "start": 17673.44, + "end": 17673.52, + "probability": 0.0194 + }, + { + "start": 17674.26, + "end": 17674.7, + "probability": 0.2081 + }, + { + "start": 17674.7, + "end": 17674.7, + "probability": 0.0224 + }, + { + "start": 17674.7, + "end": 17674.7, + "probability": 0.036 + }, + { + "start": 17674.7, + "end": 17674.7, + "probability": 0.0731 + }, + { + "start": 17674.7, + "end": 17675.58, + "probability": 0.1877 + }, + { + "start": 17676.2, + "end": 17678.48, + "probability": 0.5839 + }, + { + "start": 17680.24, + "end": 17680.24, + "probability": 0.0415 + }, + { + "start": 17680.98, + "end": 17683.68, + "probability": 0.6701 + }, + { + "start": 17684.06, + "end": 17685.13, + "probability": 0.4953 + }, + { + "start": 17685.58, + "end": 17686.04, + "probability": 0.5263 + }, + { + "start": 17686.04, + "end": 17687.28, + "probability": 0.2865 + }, + { + "start": 17687.5, + "end": 17690.66, + "probability": 0.9135 + }, + { + "start": 17691.64, + "end": 17695.1, + "probability": 0.9208 + }, + { + "start": 17695.68, + "end": 17698.16, + "probability": 0.2618 + }, + { + "start": 17699.18, + "end": 17701.32, + "probability": 0.5487 + }, + { + "start": 17701.62, + "end": 17702.82, + "probability": 0.8813 + }, + { + "start": 17702.84, + "end": 17703.8, + "probability": 0.9634 + }, + { + "start": 17703.8, + "end": 17704.58, + "probability": 0.7465 + }, + { + "start": 17704.64, + "end": 17709.96, + "probability": 0.2956 + }, + { + "start": 17710.04, + "end": 17710.9, + "probability": 0.6783 + }, + { + "start": 17711.1, + "end": 17712.74, + "probability": 0.1233 + }, + { + "start": 17713.08, + "end": 17713.86, + "probability": 0.1599 + }, + { + "start": 17714.02, + "end": 17716.48, + "probability": 0.4842 + }, + { + "start": 17716.82, + "end": 17716.98, + "probability": 0.4802 + }, + { + "start": 17717.76, + "end": 17719.64, + "probability": 0.6713 + }, + { + "start": 17719.66, + "end": 17722.7, + "probability": 0.7186 + }, + { + "start": 17723.1, + "end": 17724.06, + "probability": 0.0131 + }, + { + "start": 17724.18, + "end": 17724.76, + "probability": 0.5887 + }, + { + "start": 17725.12, + "end": 17725.74, + "probability": 0.8591 + }, + { + "start": 17725.76, + "end": 17727.54, + "probability": 0.6282 + }, + { + "start": 17728.08, + "end": 17729.3, + "probability": 0.8428 + }, + { + "start": 17730.13, + "end": 17731.8, + "probability": 0.6721 + }, + { + "start": 17732.88, + "end": 17733.26, + "probability": 0.0887 + }, + { + "start": 17735.12, + "end": 17735.24, + "probability": 0.0103 + }, + { + "start": 17735.24, + "end": 17735.24, + "probability": 0.2745 + }, + { + "start": 17735.24, + "end": 17735.24, + "probability": 0.3124 + }, + { + "start": 17735.24, + "end": 17738.16, + "probability": 0.2493 + }, + { + "start": 17740.24, + "end": 17742.3, + "probability": 0.1214 + }, + { + "start": 17742.46, + "end": 17743.1, + "probability": 0.0367 + }, + { + "start": 17743.46, + "end": 17743.48, + "probability": 0.2112 + }, + { + "start": 17743.48, + "end": 17745.1, + "probability": 0.4686 + }, + { + "start": 17745.26, + "end": 17750.4, + "probability": 0.6624 + }, + { + "start": 17750.54, + "end": 17751.88, + "probability": 0.3617 + }, + { + "start": 17751.88, + "end": 17752.74, + "probability": 0.9023 + }, + { + "start": 17753.06, + "end": 17754.28, + "probability": 0.7081 + }, + { + "start": 17754.46, + "end": 17755.88, + "probability": 0.5559 + }, + { + "start": 17756.6, + "end": 17757.58, + "probability": 0.7517 + }, + { + "start": 17758.66, + "end": 17759.51, + "probability": 0.2594 + }, + { + "start": 17760.66, + "end": 17763.24, + "probability": 0.885 + }, + { + "start": 17764.6, + "end": 17767.34, + "probability": 0.922 + }, + { + "start": 17768.34, + "end": 17768.6, + "probability": 0.0112 + }, + { + "start": 17768.6, + "end": 17772.9, + "probability": 0.5745 + }, + { + "start": 17772.9, + "end": 17773.28, + "probability": 0.3559 + }, + { + "start": 17773.28, + "end": 17773.84, + "probability": 0.1982 + }, + { + "start": 17774.48, + "end": 17779.12, + "probability": 0.6704 + }, + { + "start": 17779.38, + "end": 17780.42, + "probability": 0.4802 + }, + { + "start": 17780.56, + "end": 17781.66, + "probability": 0.4319 + }, + { + "start": 17781.86, + "end": 17782.92, + "probability": 0.7094 + }, + { + "start": 17783.62, + "end": 17784.7, + "probability": 0.5806 + }, + { + "start": 17785.0, + "end": 17785.64, + "probability": 0.3526 + }, + { + "start": 17785.64, + "end": 17785.64, + "probability": 0.0509 + }, + { + "start": 17785.64, + "end": 17787.08, + "probability": 0.5873 + }, + { + "start": 17787.56, + "end": 17788.5, + "probability": 0.3745 + }, + { + "start": 17789.38, + "end": 17792.34, + "probability": 0.9851 + }, + { + "start": 17793.64, + "end": 17795.88, + "probability": 0.3192 + }, + { + "start": 17797.2, + "end": 17798.58, + "probability": 0.4892 + }, + { + "start": 17799.56, + "end": 17800.74, + "probability": 0.8664 + }, + { + "start": 17801.92, + "end": 17804.5, + "probability": 0.6904 + }, + { + "start": 17804.72, + "end": 17807.08, + "probability": 0.843 + }, + { + "start": 17807.08, + "end": 17807.26, + "probability": 0.4533 + }, + { + "start": 17807.26, + "end": 17807.72, + "probability": 0.1852 + }, + { + "start": 17807.94, + "end": 17809.06, + "probability": 0.6406 + }, + { + "start": 17809.12, + "end": 17809.46, + "probability": 0.2425 + }, + { + "start": 17810.2, + "end": 17812.54, + "probability": 0.9479 + }, + { + "start": 17813.26, + "end": 17815.4, + "probability": 0.9946 + }, + { + "start": 17815.72, + "end": 17819.04, + "probability": 0.801 + }, + { + "start": 17819.28, + "end": 17819.46, + "probability": 0.1101 + }, + { + "start": 17819.46, + "end": 17821.12, + "probability": 0.6972 + }, + { + "start": 17821.3, + "end": 17823.96, + "probability": 0.8799 + }, + { + "start": 17824.62, + "end": 17826.56, + "probability": 0.897 + }, + { + "start": 17826.68, + "end": 17832.72, + "probability": 0.9497 + }, + { + "start": 17832.96, + "end": 17834.84, + "probability": 0.549 + }, + { + "start": 17834.98, + "end": 17836.3, + "probability": 0.642 + }, + { + "start": 17836.52, + "end": 17836.52, + "probability": 0.0196 + }, + { + "start": 17836.52, + "end": 17840.34, + "probability": 0.9404 + }, + { + "start": 17840.34, + "end": 17840.96, + "probability": 0.6849 + }, + { + "start": 17842.14, + "end": 17842.88, + "probability": 0.0 + }, + { + "start": 17845.42, + "end": 17846.24, + "probability": 0.0255 + }, + { + "start": 17846.24, + "end": 17846.52, + "probability": 0.0578 + }, + { + "start": 17846.8, + "end": 17849.12, + "probability": 0.0406 + }, + { + "start": 17849.96, + "end": 17852.2, + "probability": 0.1131 + }, + { + "start": 17852.6, + "end": 17854.36, + "probability": 0.5909 + }, + { + "start": 17854.46, + "end": 17856.42, + "probability": 0.2425 + }, + { + "start": 17856.42, + "end": 17856.94, + "probability": 0.4004 + }, + { + "start": 17858.5, + "end": 17859.48, + "probability": 0.0139 + }, + { + "start": 17861.26, + "end": 17861.9, + "probability": 0.5365 + }, + { + "start": 17865.46, + "end": 17866.88, + "probability": 0.0299 + }, + { + "start": 17866.88, + "end": 17867.37, + "probability": 0.0823 + }, + { + "start": 17867.62, + "end": 17867.62, + "probability": 0.0065 + }, + { + "start": 17867.62, + "end": 17867.62, + "probability": 0.1209 + }, + { + "start": 17867.66, + "end": 17867.88, + "probability": 0.105 + }, + { + "start": 17868.78, + "end": 17870.22, + "probability": 0.0456 + }, + { + "start": 17870.54, + "end": 17870.54, + "probability": 0.3999 + }, + { + "start": 17870.54, + "end": 17871.04, + "probability": 0.056 + }, + { + "start": 17871.04, + "end": 17871.44, + "probability": 0.1156 + }, + { + "start": 17872.3, + "end": 17872.38, + "probability": 0.3155 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.0, + "end": 17936.0, + "probability": 0.0 + }, + { + "start": 17936.14, + "end": 17941.14, + "probability": 0.0704 + }, + { + "start": 17942.18, + "end": 17943.88, + "probability": 0.9844 + }, + { + "start": 17945.06, + "end": 17946.46, + "probability": 0.955 + }, + { + "start": 17946.5, + "end": 17946.92, + "probability": 0.297 + }, + { + "start": 17946.92, + "end": 17947.08, + "probability": 0.6778 + }, + { + "start": 17947.16, + "end": 17948.08, + "probability": 0.9752 + }, + { + "start": 17948.14, + "end": 17948.86, + "probability": 0.0446 + }, + { + "start": 17949.04, + "end": 17950.6, + "probability": 0.9702 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.0, + "probability": 0.0 + }, + { + "start": 18061.0, + "end": 18061.04, + "probability": 0.0781 + }, + { + "start": 18061.04, + "end": 18061.04, + "probability": 0.1743 + }, + { + "start": 18061.04, + "end": 18061.6, + "probability": 0.4481 + }, + { + "start": 18062.68, + "end": 18063.54, + "probability": 0.6512 + }, + { + "start": 18065.22, + "end": 18067.08, + "probability": 0.6163 + }, + { + "start": 18068.12, + "end": 18070.52, + "probability": 0.749 + }, + { + "start": 18071.2, + "end": 18075.0, + "probability": 0.9587 + }, + { + "start": 18077.21, + "end": 18079.68, + "probability": 0.3933 + }, + { + "start": 18079.86, + "end": 18081.48, + "probability": 0.5238 + }, + { + "start": 18081.76, + "end": 18082.93, + "probability": 0.8081 + }, + { + "start": 18083.3, + "end": 18086.36, + "probability": 0.7742 + }, + { + "start": 18086.6, + "end": 18087.36, + "probability": 0.8121 + }, + { + "start": 18088.0, + "end": 18089.66, + "probability": 0.9485 + }, + { + "start": 18089.72, + "end": 18093.95, + "probability": 0.9074 + }, + { + "start": 18096.08, + "end": 18098.82, + "probability": 0.2016 + }, + { + "start": 18100.24, + "end": 18100.32, + "probability": 0.2002 + }, + { + "start": 18100.32, + "end": 18100.32, + "probability": 0.0578 + }, + { + "start": 18100.32, + "end": 18100.32, + "probability": 0.0501 + }, + { + "start": 18100.32, + "end": 18100.32, + "probability": 0.5507 + }, + { + "start": 18100.32, + "end": 18102.48, + "probability": 0.823 + }, + { + "start": 18103.22, + "end": 18106.76, + "probability": 0.9165 + }, + { + "start": 18109.44, + "end": 18111.38, + "probability": 0.4419 + }, + { + "start": 18111.46, + "end": 18113.42, + "probability": 0.9098 + }, + { + "start": 18113.58, + "end": 18115.48, + "probability": 0.1738 + }, + { + "start": 18115.6, + "end": 18117.32, + "probability": 0.6113 + }, + { + "start": 18117.56, + "end": 18118.32, + "probability": 0.2461 + }, + { + "start": 18119.76, + "end": 18121.36, + "probability": 0.3502 + }, + { + "start": 18121.42, + "end": 18123.98, + "probability": 0.7607 + }, + { + "start": 18124.68, + "end": 18126.5, + "probability": 0.968 + }, + { + "start": 18126.52, + "end": 18127.34, + "probability": 0.775 + }, + { + "start": 18127.36, + "end": 18127.82, + "probability": 0.734 + }, + { + "start": 18127.92, + "end": 18128.56, + "probability": 0.4859 + }, + { + "start": 18128.6, + "end": 18129.64, + "probability": 0.9531 + }, + { + "start": 18129.68, + "end": 18130.36, + "probability": 0.7402 + }, + { + "start": 18130.7, + "end": 18131.82, + "probability": 0.9629 + }, + { + "start": 18132.14, + "end": 18136.08, + "probability": 0.9529 + }, + { + "start": 18136.26, + "end": 18137.92, + "probability": 0.9788 + }, + { + "start": 18138.68, + "end": 18139.36, + "probability": 0.812 + }, + { + "start": 18139.86, + "end": 18141.24, + "probability": 0.7835 + }, + { + "start": 18141.4, + "end": 18142.94, + "probability": 0.8881 + }, + { + "start": 18143.46, + "end": 18146.1, + "probability": 0.6796 + }, + { + "start": 18146.88, + "end": 18148.74, + "probability": 0.5814 + }, + { + "start": 18148.74, + "end": 18151.66, + "probability": 0.4522 + }, + { + "start": 18152.1, + "end": 18153.1, + "probability": 0.1406 + }, + { + "start": 18153.1, + "end": 18153.88, + "probability": 0.1555 + }, + { + "start": 18155.8, + "end": 18156.68, + "probability": 0.2347 + }, + { + "start": 18156.68, + "end": 18156.9, + "probability": 0.4013 + }, + { + "start": 18157.42, + "end": 18158.8, + "probability": 0.2729 + }, + { + "start": 18158.8, + "end": 18164.16, + "probability": 0.7098 + }, + { + "start": 18164.68, + "end": 18167.43, + "probability": 0.7625 + }, + { + "start": 18168.56, + "end": 18171.38, + "probability": 0.5045 + }, + { + "start": 18172.26, + "end": 18174.3, + "probability": 0.9135 + }, + { + "start": 18174.44, + "end": 18175.08, + "probability": 0.7495 + }, + { + "start": 18175.16, + "end": 18175.98, + "probability": 0.8816 + }, + { + "start": 18176.22, + "end": 18181.74, + "probability": 0.9801 + }, + { + "start": 18182.24, + "end": 18184.68, + "probability": 0.8854 + }, + { + "start": 18184.82, + "end": 18185.75, + "probability": 0.6915 + }, + { + "start": 18185.88, + "end": 18190.08, + "probability": 0.9578 + }, + { + "start": 18190.18, + "end": 18192.16, + "probability": 0.2271 + }, + { + "start": 18192.16, + "end": 18192.28, + "probability": 0.4924 + }, + { + "start": 18192.34, + "end": 18194.36, + "probability": 0.9775 + }, + { + "start": 18194.36, + "end": 18196.56, + "probability": 0.9946 + }, + { + "start": 18196.9, + "end": 18198.08, + "probability": 0.8768 + }, + { + "start": 18198.32, + "end": 18199.48, + "probability": 0.9567 + }, + { + "start": 18199.52, + "end": 18200.54, + "probability": 0.9782 + }, + { + "start": 18200.78, + "end": 18203.0, + "probability": 0.9784 + }, + { + "start": 18203.18, + "end": 18204.34, + "probability": 0.4578 + }, + { + "start": 18205.48, + "end": 18205.48, + "probability": 0.3042 + }, + { + "start": 18205.48, + "end": 18205.72, + "probability": 0.6622 + }, + { + "start": 18205.74, + "end": 18208.62, + "probability": 0.9805 + }, + { + "start": 18208.84, + "end": 18210.84, + "probability": 0.4978 + }, + { + "start": 18211.1, + "end": 18212.36, + "probability": 0.7459 + }, + { + "start": 18212.52, + "end": 18215.4, + "probability": 0.9824 + }, + { + "start": 18215.4, + "end": 18217.12, + "probability": 0.8317 + }, + { + "start": 18217.28, + "end": 18218.14, + "probability": 0.9398 + }, + { + "start": 18218.18, + "end": 18219.14, + "probability": 0.991 + }, + { + "start": 18219.16, + "end": 18219.86, + "probability": 0.7567 + }, + { + "start": 18220.28, + "end": 18226.04, + "probability": 0.9905 + }, + { + "start": 18226.72, + "end": 18231.58, + "probability": 0.7541 + }, + { + "start": 18236.54, + "end": 18238.46, + "probability": 0.7866 + }, + { + "start": 18238.72, + "end": 18240.32, + "probability": 0.772 + }, + { + "start": 18240.34, + "end": 18244.56, + "probability": 0.9242 + }, + { + "start": 18244.84, + "end": 18245.42, + "probability": 0.9593 + }, + { + "start": 18245.62, + "end": 18246.1, + "probability": 0.9401 + }, + { + "start": 18246.18, + "end": 18247.16, + "probability": 0.8446 + }, + { + "start": 18248.16, + "end": 18248.48, + "probability": 0.8823 + }, + { + "start": 18249.78, + "end": 18250.66, + "probability": 0.6773 + }, + { + "start": 18251.04, + "end": 18253.28, + "probability": 0.6328 + }, + { + "start": 18253.36, + "end": 18254.44, + "probability": 0.8375 + }, + { + "start": 18254.52, + "end": 18255.6, + "probability": 0.8335 + }, + { + "start": 18255.68, + "end": 18256.24, + "probability": 0.6896 + }, + { + "start": 18256.38, + "end": 18260.68, + "probability": 0.9666 + }, + { + "start": 18260.98, + "end": 18261.79, + "probability": 0.8425 + }, + { + "start": 18261.9, + "end": 18262.39, + "probability": 0.7859 + }, + { + "start": 18262.9, + "end": 18264.4, + "probability": 0.5405 + }, + { + "start": 18265.6, + "end": 18268.18, + "probability": 0.798 + }, + { + "start": 18270.85, + "end": 18274.16, + "probability": 0.9946 + }, + { + "start": 18274.28, + "end": 18274.28, + "probability": 0.1509 + }, + { + "start": 18274.28, + "end": 18278.38, + "probability": 0.9491 + }, + { + "start": 18280.03, + "end": 18282.92, + "probability": 0.9441 + }, + { + "start": 18283.5, + "end": 18286.4, + "probability": 0.1964 + }, + { + "start": 18286.54, + "end": 18288.18, + "probability": 0.1632 + }, + { + "start": 18288.7, + "end": 18289.76, + "probability": 0.6084 + }, + { + "start": 18289.76, + "end": 18292.28, + "probability": 0.2586 + }, + { + "start": 18292.54, + "end": 18297.56, + "probability": 0.8255 + }, + { + "start": 18297.6, + "end": 18298.88, + "probability": 0.7819 + }, + { + "start": 18299.4, + "end": 18300.63, + "probability": 0.963 + }, + { + "start": 18301.02, + "end": 18306.12, + "probability": 0.654 + }, + { + "start": 18306.18, + "end": 18306.7, + "probability": 0.5833 + }, + { + "start": 18306.72, + "end": 18310.76, + "probability": 0.7346 + }, + { + "start": 18312.54, + "end": 18313.86, + "probability": 0.1432 + }, + { + "start": 18313.94, + "end": 18315.51, + "probability": 0.6398 + }, + { + "start": 18315.68, + "end": 18318.76, + "probability": 0.8744 + }, + { + "start": 18318.94, + "end": 18320.88, + "probability": 0.8584 + }, + { + "start": 18322.9, + "end": 18326.2, + "probability": 0.0266 + }, + { + "start": 18327.46, + "end": 18328.76, + "probability": 0.8621 + }, + { + "start": 18328.92, + "end": 18329.81, + "probability": 0.6761 + }, + { + "start": 18330.04, + "end": 18332.3, + "probability": 0.3373 + }, + { + "start": 18332.94, + "end": 18337.18, + "probability": 0.6563 + }, + { + "start": 18337.9, + "end": 18339.66, + "probability": 0.6559 + }, + { + "start": 18340.52, + "end": 18341.32, + "probability": 0.47 + }, + { + "start": 18341.46, + "end": 18343.26, + "probability": 0.9983 + }, + { + "start": 18343.42, + "end": 18344.98, + "probability": 0.8158 + }, + { + "start": 18345.0, + "end": 18345.96, + "probability": 0.8898 + }, + { + "start": 18346.3, + "end": 18346.86, + "probability": 0.0012 + }, + { + "start": 18347.62, + "end": 18348.46, + "probability": 0.049 + }, + { + "start": 18348.46, + "end": 18350.42, + "probability": 0.5443 + }, + { + "start": 18350.42, + "end": 18352.26, + "probability": 0.8552 + }, + { + "start": 18352.4, + "end": 18353.22, + "probability": 0.9205 + }, + { + "start": 18361.72, + "end": 18364.14, + "probability": 0.5071 + }, + { + "start": 18364.84, + "end": 18368.14, + "probability": 0.9977 + }, + { + "start": 18368.7, + "end": 18371.06, + "probability": 0.9617 + }, + { + "start": 18373.46, + "end": 18375.66, + "probability": 0.7502 + }, + { + "start": 18376.68, + "end": 18377.88, + "probability": 0.8171 + }, + { + "start": 18379.14, + "end": 18381.89, + "probability": 0.9897 + }, + { + "start": 18384.67, + "end": 18385.02, + "probability": 0.4195 + }, + { + "start": 18385.02, + "end": 18386.0, + "probability": 0.5899 + }, + { + "start": 18386.78, + "end": 18389.02, + "probability": 0.9091 + }, + { + "start": 18389.6, + "end": 18393.5, + "probability": 0.8225 + }, + { + "start": 18394.66, + "end": 18397.0, + "probability": 0.9311 + }, + { + "start": 18398.1, + "end": 18403.54, + "probability": 0.9855 + }, + { + "start": 18403.7, + "end": 18405.9, + "probability": 0.7583 + }, + { + "start": 18406.16, + "end": 18406.54, + "probability": 0.8167 + }, + { + "start": 18407.2, + "end": 18409.76, + "probability": 0.9379 + }, + { + "start": 18410.72, + "end": 18416.14, + "probability": 0.9443 + }, + { + "start": 18417.18, + "end": 18419.28, + "probability": 0.9956 + }, + { + "start": 18421.08, + "end": 18424.94, + "probability": 0.5289 + }, + { + "start": 18425.52, + "end": 18427.04, + "probability": 0.6988 + }, + { + "start": 18428.28, + "end": 18434.26, + "probability": 0.9817 + }, + { + "start": 18435.1, + "end": 18436.14, + "probability": 0.787 + }, + { + "start": 18436.2, + "end": 18436.62, + "probability": 0.7493 + }, + { + "start": 18436.8, + "end": 18440.86, + "probability": 0.9961 + }, + { + "start": 18441.98, + "end": 18444.2, + "probability": 0.9862 + }, + { + "start": 18445.16, + "end": 18445.94, + "probability": 0.6799 + }, + { + "start": 18446.74, + "end": 18452.84, + "probability": 0.9873 + }, + { + "start": 18454.36, + "end": 18456.94, + "probability": 0.8808 + }, + { + "start": 18458.32, + "end": 18460.84, + "probability": 0.6049 + }, + { + "start": 18460.9, + "end": 18462.34, + "probability": 0.8167 + }, + { + "start": 18463.16, + "end": 18467.56, + "probability": 0.8698 + }, + { + "start": 18468.46, + "end": 18470.38, + "probability": 0.8363 + }, + { + "start": 18471.36, + "end": 18472.8, + "probability": 0.8575 + }, + { + "start": 18474.0, + "end": 18477.26, + "probability": 0.9545 + }, + { + "start": 18477.98, + "end": 18479.24, + "probability": 0.9984 + }, + { + "start": 18479.86, + "end": 18481.64, + "probability": 0.9417 + }, + { + "start": 18482.38, + "end": 18483.7, + "probability": 0.9585 + }, + { + "start": 18483.74, + "end": 18485.78, + "probability": 0.9971 + }, + { + "start": 18486.8, + "end": 18488.56, + "probability": 0.9927 + }, + { + "start": 18488.66, + "end": 18489.72, + "probability": 0.6419 + }, + { + "start": 18489.82, + "end": 18492.18, + "probability": 0.9968 + }, + { + "start": 18492.6, + "end": 18493.56, + "probability": 0.9554 + }, + { + "start": 18493.8, + "end": 18497.2, + "probability": 0.9885 + }, + { + "start": 18497.8, + "end": 18500.18, + "probability": 0.8795 + }, + { + "start": 18500.88, + "end": 18503.72, + "probability": 0.9891 + }, + { + "start": 18508.34, + "end": 18509.16, + "probability": 0.1341 + }, + { + "start": 18509.16, + "end": 18511.72, + "probability": 0.9718 + }, + { + "start": 18512.54, + "end": 18515.62, + "probability": 0.9857 + }, + { + "start": 18515.62, + "end": 18517.76, + "probability": 0.963 + }, + { + "start": 18519.32, + "end": 18520.64, + "probability": 0.7593 + }, + { + "start": 18521.64, + "end": 18524.72, + "probability": 0.9354 + }, + { + "start": 18524.72, + "end": 18527.8, + "probability": 0.9976 + }, + { + "start": 18527.88, + "end": 18530.46, + "probability": 0.8729 + }, + { + "start": 18531.48, + "end": 18532.34, + "probability": 0.5996 + }, + { + "start": 18532.52, + "end": 18536.32, + "probability": 0.9763 + }, + { + "start": 18536.96, + "end": 18540.92, + "probability": 0.9987 + }, + { + "start": 18542.5, + "end": 18547.32, + "probability": 0.978 + }, + { + "start": 18547.32, + "end": 18553.4, + "probability": 0.9991 + }, + { + "start": 18554.2, + "end": 18555.06, + "probability": 0.6878 + }, + { + "start": 18555.1, + "end": 18558.64, + "probability": 0.9959 + }, + { + "start": 18558.64, + "end": 18561.5, + "probability": 0.9977 + }, + { + "start": 18562.6, + "end": 18566.16, + "probability": 0.9897 + }, + { + "start": 18566.16, + "end": 18569.3, + "probability": 0.9982 + }, + { + "start": 18570.1, + "end": 18572.78, + "probability": 0.9504 + }, + { + "start": 18573.76, + "end": 18575.5, + "probability": 0.9857 + }, + { + "start": 18576.4, + "end": 18578.88, + "probability": 0.9593 + }, + { + "start": 18579.7, + "end": 18584.24, + "probability": 0.8311 + }, + { + "start": 18585.18, + "end": 18588.56, + "probability": 0.9843 + }, + { + "start": 18588.56, + "end": 18590.06, + "probability": 0.3994 + }, + { + "start": 18590.14, + "end": 18591.2, + "probability": 0.675 + }, + { + "start": 18592.41, + "end": 18596.68, + "probability": 0.9971 + }, + { + "start": 18597.58, + "end": 18601.24, + "probability": 0.9972 + }, + { + "start": 18601.84, + "end": 18603.74, + "probability": 0.9979 + }, + { + "start": 18604.54, + "end": 18605.16, + "probability": 0.7353 + }, + { + "start": 18605.62, + "end": 18610.44, + "probability": 0.9922 + }, + { + "start": 18611.08, + "end": 18612.8, + "probability": 0.8337 + }, + { + "start": 18613.36, + "end": 18615.5, + "probability": 0.9863 + }, + { + "start": 18615.68, + "end": 18618.44, + "probability": 0.854 + }, + { + "start": 18619.02, + "end": 18619.88, + "probability": 0.8269 + }, + { + "start": 18620.36, + "end": 18620.38, + "probability": 0.445 + }, + { + "start": 18620.38, + "end": 18621.8, + "probability": 0.6896 + }, + { + "start": 18622.38, + "end": 18627.74, + "probability": 0.9879 + }, + { + "start": 18628.36, + "end": 18631.7, + "probability": 0.9925 + }, + { + "start": 18631.7, + "end": 18635.16, + "probability": 0.9705 + }, + { + "start": 18635.6, + "end": 18640.64, + "probability": 0.8732 + }, + { + "start": 18640.84, + "end": 18641.14, + "probability": 0.8287 + }, + { + "start": 18641.66, + "end": 18642.36, + "probability": 0.7371 + }, + { + "start": 18642.42, + "end": 18645.56, + "probability": 0.6338 + }, + { + "start": 18652.1, + "end": 18654.48, + "probability": 0.4043 + }, + { + "start": 18657.2, + "end": 18658.96, + "probability": 0.8952 + }, + { + "start": 18661.41, + "end": 18664.74, + "probability": 0.9714 + }, + { + "start": 18665.96, + "end": 18666.94, + "probability": 0.0449 + }, + { + "start": 18668.3, + "end": 18669.48, + "probability": 0.675 + }, + { + "start": 18671.58, + "end": 18672.62, + "probability": 0.9598 + }, + { + "start": 18673.68, + "end": 18677.08, + "probability": 0.7787 + }, + { + "start": 18677.82, + "end": 18681.44, + "probability": 0.9771 + }, + { + "start": 18681.44, + "end": 18686.24, + "probability": 0.9718 + }, + { + "start": 18687.32, + "end": 18688.46, + "probability": 0.6549 + }, + { + "start": 18689.16, + "end": 18689.16, + "probability": 0.3105 + }, + { + "start": 18689.16, + "end": 18693.38, + "probability": 0.6429 + }, + { + "start": 18694.04, + "end": 18698.84, + "probability": 0.7205 + }, + { + "start": 18699.2, + "end": 18701.3, + "probability": 0.937 + }, + { + "start": 18702.0, + "end": 18706.54, + "probability": 0.8248 + }, + { + "start": 18707.24, + "end": 18707.64, + "probability": 0.1646 + }, + { + "start": 18707.64, + "end": 18709.36, + "probability": 0.8795 + }, + { + "start": 18709.9, + "end": 18713.58, + "probability": 0.9439 + }, + { + "start": 18714.16, + "end": 18715.62, + "probability": 0.7739 + }, + { + "start": 18716.66, + "end": 18716.66, + "probability": 0.045 + }, + { + "start": 18716.68, + "end": 18716.68, + "probability": 0.0175 + }, + { + "start": 18716.9, + "end": 18717.76, + "probability": 0.2064 + }, + { + "start": 18717.78, + "end": 18719.58, + "probability": 0.7446 + }, + { + "start": 18719.62, + "end": 18720.86, + "probability": 0.7884 + }, + { + "start": 18721.0, + "end": 18721.36, + "probability": 0.1047 + }, + { + "start": 18721.62, + "end": 18723.32, + "probability": 0.9559 + }, + { + "start": 18723.46, + "end": 18727.04, + "probability": 0.9121 + }, + { + "start": 18727.52, + "end": 18728.36, + "probability": 0.7325 + }, + { + "start": 18728.66, + "end": 18732.2, + "probability": 0.5981 + }, + { + "start": 18732.86, + "end": 18733.48, + "probability": 0.8755 + }, + { + "start": 18733.56, + "end": 18734.12, + "probability": 0.607 + }, + { + "start": 18734.14, + "end": 18735.38, + "probability": 0.6828 + }, + { + "start": 18735.54, + "end": 18736.7, + "probability": 0.9104 + }, + { + "start": 18736.92, + "end": 18740.12, + "probability": 0.96 + }, + { + "start": 18740.24, + "end": 18741.34, + "probability": 0.6816 + }, + { + "start": 18741.78, + "end": 18743.26, + "probability": 0.4813 + }, + { + "start": 18743.34, + "end": 18744.56, + "probability": 0.8696 + }, + { + "start": 18744.64, + "end": 18746.5, + "probability": 0.8887 + }, + { + "start": 18747.38, + "end": 18747.48, + "probability": 0.8997 + }, + { + "start": 18747.58, + "end": 18748.4, + "probability": 0.9785 + }, + { + "start": 18748.52, + "end": 18749.18, + "probability": 0.7936 + }, + { + "start": 18749.3, + "end": 18749.94, + "probability": 0.7871 + }, + { + "start": 18750.04, + "end": 18751.48, + "probability": 0.064 + }, + { + "start": 18755.0, + "end": 18755.1, + "probability": 0.0156 + }, + { + "start": 18755.76, + "end": 18756.18, + "probability": 0.0655 + }, + { + "start": 18756.18, + "end": 18756.18, + "probability": 0.1368 + }, + { + "start": 18756.18, + "end": 18757.61, + "probability": 0.1296 + }, + { + "start": 18757.9, + "end": 18758.32, + "probability": 0.8945 + }, + { + "start": 18760.98, + "end": 18762.06, + "probability": 0.8086 + }, + { + "start": 18763.3, + "end": 18764.58, + "probability": 0.8832 + }, + { + "start": 18767.32, + "end": 18769.72, + "probability": 0.8497 + }, + { + "start": 18770.5, + "end": 18771.46, + "probability": 0.8162 + }, + { + "start": 18772.46, + "end": 18777.0, + "probability": 0.6929 + }, + { + "start": 18778.76, + "end": 18778.76, + "probability": 0.1204 + }, + { + "start": 18778.76, + "end": 18779.64, + "probability": 0.4791 + }, + { + "start": 18780.28, + "end": 18781.46, + "probability": 0.747 + }, + { + "start": 18781.58, + "end": 18782.36, + "probability": 0.7257 + }, + { + "start": 18783.38, + "end": 18784.8, + "probability": 0.1736 + }, + { + "start": 18785.56, + "end": 18786.5, + "probability": 0.3349 + }, + { + "start": 18787.5, + "end": 18788.9, + "probability": 0.0641 + }, + { + "start": 18789.64, + "end": 18790.98, + "probability": 0.7376 + }, + { + "start": 18792.34, + "end": 18794.48, + "probability": 0.9468 + }, + { + "start": 18795.7, + "end": 18797.82, + "probability": 0.8838 + }, + { + "start": 18798.22, + "end": 18800.32, + "probability": 0.9406 + }, + { + "start": 18801.24, + "end": 18801.44, + "probability": 0.0619 + }, + { + "start": 18801.44, + "end": 18803.0, + "probability": 0.8376 + }, + { + "start": 18803.32, + "end": 18804.14, + "probability": 0.7807 + }, + { + "start": 18804.54, + "end": 18805.57, + "probability": 0.9766 + }, + { + "start": 18806.22, + "end": 18808.08, + "probability": 0.567 + }, + { + "start": 18810.08, + "end": 18810.66, + "probability": 0.8054 + }, + { + "start": 18810.74, + "end": 18812.56, + "probability": 0.7344 + }, + { + "start": 18812.64, + "end": 18814.3, + "probability": 0.7333 + }, + { + "start": 18814.44, + "end": 18815.6, + "probability": 0.1842 + }, + { + "start": 18815.6, + "end": 18816.2, + "probability": 0.1378 + }, + { + "start": 18816.34, + "end": 18817.2, + "probability": 0.4803 + }, + { + "start": 18817.4, + "end": 18818.44, + "probability": 0.7894 + }, + { + "start": 18819.0, + "end": 18819.96, + "probability": 0.8126 + }, + { + "start": 18820.08, + "end": 18820.26, + "probability": 0.0056 + }, + { + "start": 18821.42, + "end": 18821.84, + "probability": 0.1236 + }, + { + "start": 18822.48, + "end": 18824.13, + "probability": 0.9592 + }, + { + "start": 18825.19, + "end": 18826.19, + "probability": 0.6927 + }, + { + "start": 18828.05, + "end": 18831.41, + "probability": 0.9766 + }, + { + "start": 18832.17, + "end": 18833.95, + "probability": 0.998 + }, + { + "start": 18834.93, + "end": 18836.83, + "probability": 0.909 + }, + { + "start": 18837.15, + "end": 18838.25, + "probability": 0.5001 + }, + { + "start": 18839.33, + "end": 18839.33, + "probability": 0.3374 + }, + { + "start": 18839.33, + "end": 18840.73, + "probability": 0.5957 + }, + { + "start": 18840.93, + "end": 18843.95, + "probability": 0.771 + }, + { + "start": 18843.95, + "end": 18844.33, + "probability": 0.116 + }, + { + "start": 18844.45, + "end": 18848.65, + "probability": 0.7508 + }, + { + "start": 18848.83, + "end": 18850.67, + "probability": 0.8685 + }, + { + "start": 18851.05, + "end": 18854.77, + "probability": 0.6098 + }, + { + "start": 18854.77, + "end": 18855.77, + "probability": 0.0522 + }, + { + "start": 18855.77, + "end": 18855.77, + "probability": 0.1636 + }, + { + "start": 18855.77, + "end": 18855.77, + "probability": 0.1007 + }, + { + "start": 18855.77, + "end": 18856.23, + "probability": 0.4218 + }, + { + "start": 18856.45, + "end": 18857.83, + "probability": 0.7401 + }, + { + "start": 18859.09, + "end": 18863.03, + "probability": 0.9413 + }, + { + "start": 18863.71, + "end": 18865.83, + "probability": 0.7039 + }, + { + "start": 18866.01, + "end": 18871.07, + "probability": 0.9448 + }, + { + "start": 18871.37, + "end": 18871.45, + "probability": 0.1392 + }, + { + "start": 18871.45, + "end": 18872.39, + "probability": 0.0903 + }, + { + "start": 18872.55, + "end": 18876.31, + "probability": 0.5362 + }, + { + "start": 18876.53, + "end": 18877.65, + "probability": 0.7638 + }, + { + "start": 18878.31, + "end": 18879.14, + "probability": 0.8267 + }, + { + "start": 18879.95, + "end": 18881.66, + "probability": 0.0308 + }, + { + "start": 18881.73, + "end": 18884.91, + "probability": 0.5663 + }, + { + "start": 18885.07, + "end": 18886.34, + "probability": 0.5339 + }, + { + "start": 18886.53, + "end": 18887.63, + "probability": 0.8488 + }, + { + "start": 18887.81, + "end": 18888.69, + "probability": 0.5273 + }, + { + "start": 18888.81, + "end": 18893.25, + "probability": 0.3268 + }, + { + "start": 18894.07, + "end": 18899.37, + "probability": 0.1499 + }, + { + "start": 18905.11, + "end": 18906.39, + "probability": 0.0121 + }, + { + "start": 18906.87, + "end": 18908.2, + "probability": 0.0116 + }, + { + "start": 18909.45, + "end": 18910.94, + "probability": 0.0256 + }, + { + "start": 18913.89, + "end": 18914.81, + "probability": 0.142 + }, + { + "start": 18914.89, + "end": 18917.05, + "probability": 0.0298 + }, + { + "start": 18917.37, + "end": 18917.6, + "probability": 0.0701 + }, + { + "start": 18918.67, + "end": 18919.35, + "probability": 0.242 + }, + { + "start": 18922.07, + "end": 18922.55, + "probability": 0.0301 + }, + { + "start": 18922.55, + "end": 18926.23, + "probability": 0.085 + }, + { + "start": 18926.29, + "end": 18926.89, + "probability": 0.0497 + }, + { + "start": 18926.95, + "end": 18926.95, + "probability": 0.3576 + }, + { + "start": 18926.95, + "end": 18927.63, + "probability": 0.1208 + }, + { + "start": 18927.67, + "end": 18929.95, + "probability": 0.0078 + }, + { + "start": 18932.43, + "end": 18933.63, + "probability": 0.0427 + }, + { + "start": 18934.09, + "end": 18934.37, + "probability": 0.0133 + }, + { + "start": 18934.37, + "end": 18936.67, + "probability": 0.1215 + }, + { + "start": 18938.79, + "end": 18939.57, + "probability": 0.0642 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.0, + "end": 18951.0, + "probability": 0.0 + }, + { + "start": 18951.22, + "end": 18952.42, + "probability": 0.0811 + }, + { + "start": 18952.42, + "end": 18952.42, + "probability": 0.0416 + }, + { + "start": 18952.42, + "end": 18953.58, + "probability": 0.0633 + }, + { + "start": 18954.58, + "end": 18956.6, + "probability": 0.4997 + }, + { + "start": 18957.18, + "end": 18959.84, + "probability": 0.7982 + }, + { + "start": 18960.38, + "end": 18962.22, + "probability": 0.8 + }, + { + "start": 18962.44, + "end": 18963.86, + "probability": 0.8184 + }, + { + "start": 18964.22, + "end": 18965.72, + "probability": 0.8953 + }, + { + "start": 18966.28, + "end": 18968.72, + "probability": 0.7153 + }, + { + "start": 18968.98, + "end": 18970.38, + "probability": 0.981 + }, + { + "start": 18970.74, + "end": 18972.12, + "probability": 0.9907 + }, + { + "start": 18972.26, + "end": 18973.18, + "probability": 0.8531 + }, + { + "start": 18975.66, + "end": 18977.4, + "probability": 0.7203 + }, + { + "start": 18978.44, + "end": 18980.06, + "probability": 0.9939 + }, + { + "start": 18981.08, + "end": 18983.54, + "probability": 0.9541 + }, + { + "start": 18984.72, + "end": 18988.36, + "probability": 0.9868 + }, + { + "start": 18989.44, + "end": 18993.2, + "probability": 0.9823 + }, + { + "start": 18994.56, + "end": 18996.58, + "probability": 0.9951 + }, + { + "start": 18997.64, + "end": 18999.24, + "probability": 0.9983 + }, + { + "start": 19000.8, + "end": 19003.86, + "probability": 0.7891 + }, + { + "start": 19005.44, + "end": 19007.86, + "probability": 0.6835 + }, + { + "start": 19008.7, + "end": 19014.86, + "probability": 0.9592 + }, + { + "start": 19015.44, + "end": 19019.84, + "probability": 0.9907 + }, + { + "start": 19020.14, + "end": 19021.0, + "probability": 0.6627 + }, + { + "start": 19021.46, + "end": 19021.74, + "probability": 0.3248 + }, + { + "start": 19021.86, + "end": 19022.5, + "probability": 0.6133 + }, + { + "start": 19022.86, + "end": 19023.42, + "probability": 0.7959 + }, + { + "start": 19026.47, + "end": 19029.44, + "probability": 0.6242 + }, + { + "start": 19029.84, + "end": 19030.38, + "probability": 0.2042 + }, + { + "start": 19030.38, + "end": 19031.78, + "probability": 0.3847 + }, + { + "start": 19032.08, + "end": 19036.6, + "probability": 0.8134 + }, + { + "start": 19036.98, + "end": 19038.9, + "probability": 0.5042 + }, + { + "start": 19038.9, + "end": 19040.2, + "probability": 0.6026 + }, + { + "start": 19040.2, + "end": 19040.2, + "probability": 0.5028 + }, + { + "start": 19040.2, + "end": 19040.2, + "probability": 0.5105 + }, + { + "start": 19040.2, + "end": 19040.2, + "probability": 0.7498 + }, + { + "start": 19040.38, + "end": 19041.29, + "probability": 0.8683 + }, + { + "start": 19042.0, + "end": 19046.8, + "probability": 0.9739 + }, + { + "start": 19046.8, + "end": 19051.02, + "probability": 0.8484 + }, + { + "start": 19051.02, + "end": 19051.56, + "probability": 0.2755 + }, + { + "start": 19051.74, + "end": 19054.82, + "probability": 0.8371 + }, + { + "start": 19055.16, + "end": 19059.0, + "probability": 0.9771 + }, + { + "start": 19059.4, + "end": 19060.32, + "probability": 0.7979 + }, + { + "start": 19060.42, + "end": 19061.84, + "probability": 0.4344 + }, + { + "start": 19061.86, + "end": 19064.96, + "probability": 0.8774 + }, + { + "start": 19065.14, + "end": 19066.14, + "probability": 0.937 + }, + { + "start": 19066.22, + "end": 19066.54, + "probability": 0.4995 + }, + { + "start": 19067.08, + "end": 19068.86, + "probability": 0.9874 + }, + { + "start": 19069.02, + "end": 19071.26, + "probability": 0.8778 + }, + { + "start": 19071.37, + "end": 19072.2, + "probability": 0.7107 + }, + { + "start": 19072.2, + "end": 19073.88, + "probability": 0.5332 + }, + { + "start": 19074.28, + "end": 19075.44, + "probability": 0.7162 + }, + { + "start": 19075.46, + "end": 19076.5, + "probability": 0.7561 + }, + { + "start": 19077.12, + "end": 19077.7, + "probability": 0.6657 + }, + { + "start": 19078.04, + "end": 19078.38, + "probability": 0.8018 + }, + { + "start": 19078.44, + "end": 19080.52, + "probability": 0.7987 + }, + { + "start": 19081.56, + "end": 19084.76, + "probability": 0.8089 + }, + { + "start": 19085.3, + "end": 19086.52, + "probability": 0.9618 + }, + { + "start": 19087.28, + "end": 19090.68, + "probability": 0.9746 + }, + { + "start": 19091.72, + "end": 19095.54, + "probability": 0.9865 + }, + { + "start": 19096.22, + "end": 19096.98, + "probability": 0.7982 + }, + { + "start": 19097.92, + "end": 19099.02, + "probability": 0.8164 + }, + { + "start": 19099.2, + "end": 19100.02, + "probability": 0.9422 + }, + { + "start": 19100.1, + "end": 19102.4, + "probability": 0.9067 + }, + { + "start": 19102.86, + "end": 19104.98, + "probability": 0.7548 + }, + { + "start": 19105.94, + "end": 19108.98, + "probability": 0.8938 + }, + { + "start": 19109.2, + "end": 19109.86, + "probability": 0.9564 + }, + { + "start": 19110.08, + "end": 19113.34, + "probability": 0.9503 + }, + { + "start": 19113.4, + "end": 19114.7, + "probability": 0.8932 + }, + { + "start": 19114.98, + "end": 19116.12, + "probability": 0.8198 + }, + { + "start": 19116.48, + "end": 19117.06, + "probability": 0.9393 + }, + { + "start": 19117.56, + "end": 19120.06, + "probability": 0.9476 + }, + { + "start": 19120.54, + "end": 19123.39, + "probability": 0.8982 + }, + { + "start": 19123.74, + "end": 19127.64, + "probability": 0.8913 + }, + { + "start": 19127.78, + "end": 19128.34, + "probability": 0.5785 + }, + { + "start": 19128.52, + "end": 19133.0, + "probability": 0.7397 + }, + { + "start": 19135.77, + "end": 19137.72, + "probability": 0.6179 + }, + { + "start": 19138.56, + "end": 19138.82, + "probability": 0.7305 + }, + { + "start": 19139.22, + "end": 19140.4, + "probability": 0.6575 + }, + { + "start": 19140.44, + "end": 19142.22, + "probability": 0.1554 + }, + { + "start": 19147.54, + "end": 19151.96, + "probability": 0.8225 + }, + { + "start": 19152.1, + "end": 19153.08, + "probability": 0.5903 + }, + { + "start": 19153.5, + "end": 19154.22, + "probability": 0.6318 + }, + { + "start": 19154.48, + "end": 19156.61, + "probability": 0.9232 + }, + { + "start": 19157.74, + "end": 19161.42, + "probability": 0.8799 + }, + { + "start": 19161.62, + "end": 19163.68, + "probability": 0.9714 + }, + { + "start": 19163.76, + "end": 19164.4, + "probability": 0.7883 + }, + { + "start": 19164.76, + "end": 19166.68, + "probability": 0.9978 + }, + { + "start": 19166.84, + "end": 19167.84, + "probability": 0.8438 + }, + { + "start": 19168.32, + "end": 19168.62, + "probability": 0.1666 + }, + { + "start": 19168.62, + "end": 19170.49, + "probability": 0.9521 + }, + { + "start": 19170.98, + "end": 19173.44, + "probability": 0.9764 + }, + { + "start": 19173.88, + "end": 19177.64, + "probability": 0.6774 + }, + { + "start": 19177.76, + "end": 19178.66, + "probability": 0.1951 + }, + { + "start": 19178.98, + "end": 19179.88, + "probability": 0.6905 + }, + { + "start": 19180.0, + "end": 19180.58, + "probability": 0.6928 + }, + { + "start": 19180.66, + "end": 19182.7, + "probability": 0.9385 + }, + { + "start": 19183.32, + "end": 19183.54, + "probability": 0.7527 + }, + { + "start": 19183.64, + "end": 19187.76, + "probability": 0.8544 + }, + { + "start": 19188.0, + "end": 19190.04, + "probability": 0.9841 + }, + { + "start": 19190.12, + "end": 19190.88, + "probability": 0.6675 + }, + { + "start": 19191.14, + "end": 19193.0, + "probability": 0.994 + }, + { + "start": 19193.4, + "end": 19195.7, + "probability": 0.9951 + }, + { + "start": 19196.0, + "end": 19198.34, + "probability": 0.9793 + }, + { + "start": 19198.34, + "end": 19202.14, + "probability": 0.9463 + }, + { + "start": 19202.66, + "end": 19204.3, + "probability": 0.9988 + }, + { + "start": 19204.54, + "end": 19205.88, + "probability": 0.117 + }, + { + "start": 19206.1, + "end": 19206.78, + "probability": 0.2561 + }, + { + "start": 19206.9, + "end": 19208.94, + "probability": 0.9202 + }, + { + "start": 19209.08, + "end": 19210.82, + "probability": 0.8191 + }, + { + "start": 19210.94, + "end": 19211.62, + "probability": 0.8983 + }, + { + "start": 19213.46, + "end": 19214.05, + "probability": 0.3271 + }, + { + "start": 19214.52, + "end": 19216.74, + "probability": 0.6132 + }, + { + "start": 19217.34, + "end": 19217.48, + "probability": 0.0543 + }, + { + "start": 19217.48, + "end": 19217.52, + "probability": 0.1761 + }, + { + "start": 19217.52, + "end": 19220.3, + "probability": 0.7414 + }, + { + "start": 19221.44, + "end": 19222.57, + "probability": 0.8979 + }, + { + "start": 19222.74, + "end": 19228.84, + "probability": 0.9854 + }, + { + "start": 19229.7, + "end": 19234.54, + "probability": 0.8209 + }, + { + "start": 19235.24, + "end": 19239.08, + "probability": 0.9976 + }, + { + "start": 19239.64, + "end": 19241.62, + "probability": 0.7442 + }, + { + "start": 19242.12, + "end": 19244.8, + "probability": 0.9085 + }, + { + "start": 19244.9, + "end": 19245.88, + "probability": 0.7063 + }, + { + "start": 19246.0, + "end": 19246.66, + "probability": 0.1612 + }, + { + "start": 19246.7, + "end": 19249.36, + "probability": 0.4951 + }, + { + "start": 19249.46, + "end": 19250.97, + "probability": 0.9888 + }, + { + "start": 19251.7, + "end": 19252.0, + "probability": 0.0157 + }, + { + "start": 19252.0, + "end": 19252.08, + "probability": 0.6482 + }, + { + "start": 19252.08, + "end": 19253.44, + "probability": 0.7194 + }, + { + "start": 19255.62, + "end": 19262.5, + "probability": 0.9576 + }, + { + "start": 19263.94, + "end": 19265.24, + "probability": 0.7852 + }, + { + "start": 19265.42, + "end": 19267.6, + "probability": 0.705 + }, + { + "start": 19267.74, + "end": 19269.36, + "probability": 0.9023 + }, + { + "start": 19269.8, + "end": 19270.52, + "probability": 0.9058 + }, + { + "start": 19270.62, + "end": 19272.34, + "probability": 0.9796 + }, + { + "start": 19272.64, + "end": 19274.58, + "probability": 0.8898 + }, + { + "start": 19275.2, + "end": 19276.8, + "probability": 0.7096 + }, + { + "start": 19277.72, + "end": 19277.79, + "probability": 0.2992 + }, + { + "start": 19277.84, + "end": 19281.78, + "probability": 0.5895 + }, + { + "start": 19281.88, + "end": 19286.5, + "probability": 0.2336 + }, + { + "start": 19286.5, + "end": 19288.54, + "probability": 0.9268 + }, + { + "start": 19289.16, + "end": 19289.16, + "probability": 0.0355 + }, + { + "start": 19289.16, + "end": 19289.16, + "probability": 0.0255 + }, + { + "start": 19289.16, + "end": 19290.58, + "probability": 0.3762 + }, + { + "start": 19290.58, + "end": 19292.62, + "probability": 0.595 + }, + { + "start": 19292.88, + "end": 19293.76, + "probability": 0.0669 + }, + { + "start": 19294.46, + "end": 19294.46, + "probability": 0.0079 + }, + { + "start": 19294.46, + "end": 19295.93, + "probability": 0.6972 + }, + { + "start": 19296.06, + "end": 19303.52, + "probability": 0.7673 + }, + { + "start": 19303.72, + "end": 19305.42, + "probability": 0.6817 + }, + { + "start": 19306.52, + "end": 19310.76, + "probability": 0.9952 + }, + { + "start": 19310.84, + "end": 19312.02, + "probability": 0.8902 + }, + { + "start": 19312.2, + "end": 19316.82, + "probability": 0.9426 + }, + { + "start": 19317.2, + "end": 19319.94, + "probability": 0.8173 + }, + { + "start": 19320.46, + "end": 19321.76, + "probability": 0.8347 + }, + { + "start": 19322.14, + "end": 19324.32, + "probability": 0.9454 + }, + { + "start": 19324.78, + "end": 19328.18, + "probability": 0.849 + }, + { + "start": 19328.28, + "end": 19330.4, + "probability": 0.9351 + }, + { + "start": 19330.84, + "end": 19333.22, + "probability": 0.9808 + }, + { + "start": 19333.84, + "end": 19336.36, + "probability": 0.8671 + }, + { + "start": 19336.94, + "end": 19338.86, + "probability": 0.9762 + }, + { + "start": 19338.94, + "end": 19343.62, + "probability": 0.9899 + }, + { + "start": 19343.86, + "end": 19346.44, + "probability": 0.8305 + }, + { + "start": 19347.1, + "end": 19351.72, + "probability": 0.9944 + }, + { + "start": 19351.72, + "end": 19356.12, + "probability": 0.9783 + }, + { + "start": 19356.62, + "end": 19358.08, + "probability": 0.9569 + }, + { + "start": 19358.32, + "end": 19362.58, + "probability": 0.9926 + }, + { + "start": 19363.06, + "end": 19365.58, + "probability": 0.9885 + }, + { + "start": 19365.7, + "end": 19369.44, + "probability": 0.996 + }, + { + "start": 19369.44, + "end": 19370.84, + "probability": 0.8329 + }, + { + "start": 19370.9, + "end": 19372.6, + "probability": 0.9622 + }, + { + "start": 19372.92, + "end": 19373.92, + "probability": 0.7977 + }, + { + "start": 19374.04, + "end": 19376.66, + "probability": 0.9382 + }, + { + "start": 19376.9, + "end": 19379.24, + "probability": 0.8728 + }, + { + "start": 19379.8, + "end": 19380.82, + "probability": 0.0027 + }, + { + "start": 19382.46, + "end": 19382.76, + "probability": 0.0004 + }, + { + "start": 19382.76, + "end": 19382.76, + "probability": 0.0029 + }, + { + "start": 19382.76, + "end": 19389.08, + "probability": 0.8781 + }, + { + "start": 19389.92, + "end": 19390.62, + "probability": 0.9167 + }, + { + "start": 19390.72, + "end": 19391.58, + "probability": 0.8649 + }, + { + "start": 19392.36, + "end": 19397.62, + "probability": 0.9814 + }, + { + "start": 19398.12, + "end": 19399.28, + "probability": 0.7193 + }, + { + "start": 19399.72, + "end": 19402.38, + "probability": 0.9779 + }, + { + "start": 19402.6, + "end": 19405.24, + "probability": 0.9983 + }, + { + "start": 19405.34, + "end": 19407.55, + "probability": 0.9866 + }, + { + "start": 19408.12, + "end": 19409.54, + "probability": 0.7514 + }, + { + "start": 19410.1, + "end": 19413.5, + "probability": 0.9705 + }, + { + "start": 19413.52, + "end": 19413.66, + "probability": 0.0276 + }, + { + "start": 19413.66, + "end": 19414.53, + "probability": 0.918 + }, + { + "start": 19414.7, + "end": 19414.96, + "probability": 0.777 + }, + { + "start": 19415.08, + "end": 19417.14, + "probability": 0.958 + }, + { + "start": 19417.4, + "end": 19418.88, + "probability": 0.9951 + }, + { + "start": 19421.32, + "end": 19422.32, + "probability": 0.8775 + }, + { + "start": 19422.4, + "end": 19422.62, + "probability": 0.0808 + }, + { + "start": 19422.62, + "end": 19423.7, + "probability": 0.5742 + }, + { + "start": 19424.48, + "end": 19426.8, + "probability": 0.4992 + }, + { + "start": 19426.98, + "end": 19428.46, + "probability": 0.9771 + }, + { + "start": 19430.0, + "end": 19431.63, + "probability": 0.9508 + }, + { + "start": 19432.86, + "end": 19436.28, + "probability": 0.9955 + }, + { + "start": 19436.76, + "end": 19438.78, + "probability": 0.9809 + }, + { + "start": 19438.9, + "end": 19441.91, + "probability": 0.9385 + }, + { + "start": 19442.88, + "end": 19448.1, + "probability": 0.9985 + }, + { + "start": 19448.64, + "end": 19453.18, + "probability": 0.9979 + }, + { + "start": 19453.56, + "end": 19456.68, + "probability": 0.9884 + }, + { + "start": 19457.16, + "end": 19457.82, + "probability": 0.7208 + }, + { + "start": 19458.02, + "end": 19458.98, + "probability": 0.944 + }, + { + "start": 19460.08, + "end": 19462.56, + "probability": 0.7652 + }, + { + "start": 19463.58, + "end": 19464.98, + "probability": 0.8041 + }, + { + "start": 19482.36, + "end": 19487.62, + "probability": 0.8078 + }, + { + "start": 19488.4, + "end": 19488.64, + "probability": 0.5456 + }, + { + "start": 19488.94, + "end": 19489.74, + "probability": 0.9761 + }, + { + "start": 19490.5, + "end": 19492.07, + "probability": 0.9665 + }, + { + "start": 19492.78, + "end": 19494.02, + "probability": 0.9691 + }, + { + "start": 19495.0, + "end": 19497.62, + "probability": 0.9014 + }, + { + "start": 19497.66, + "end": 19499.02, + "probability": 0.7231 + }, + { + "start": 19500.54, + "end": 19501.82, + "probability": 0.9784 + }, + { + "start": 19505.5, + "end": 19505.84, + "probability": 0.663 + }, + { + "start": 19506.86, + "end": 19507.48, + "probability": 0.8401 + }, + { + "start": 19509.2, + "end": 19512.92, + "probability": 0.6841 + }, + { + "start": 19514.7, + "end": 19519.8, + "probability": 0.6006 + }, + { + "start": 19522.1, + "end": 19523.58, + "probability": 0.4994 + }, + { + "start": 19524.62, + "end": 19532.7, + "probability": 0.9047 + }, + { + "start": 19534.1, + "end": 19534.82, + "probability": 0.502 + }, + { + "start": 19535.7, + "end": 19539.98, + "probability": 0.8818 + }, + { + "start": 19541.26, + "end": 19543.1, + "probability": 0.9951 + }, + { + "start": 19544.22, + "end": 19549.72, + "probability": 0.8977 + }, + { + "start": 19550.52, + "end": 19552.86, + "probability": 0.9988 + }, + { + "start": 19552.86, + "end": 19553.9, + "probability": 0.9288 + }, + { + "start": 19555.06, + "end": 19558.18, + "probability": 0.9822 + }, + { + "start": 19559.25, + "end": 19562.64, + "probability": 0.9901 + }, + { + "start": 19562.74, + "end": 19563.94, + "probability": 0.9556 + }, + { + "start": 19565.96, + "end": 19570.1, + "probability": 0.7501 + }, + { + "start": 19570.18, + "end": 19571.34, + "probability": 0.5849 + }, + { + "start": 19572.3, + "end": 19575.48, + "probability": 0.9921 + }, + { + "start": 19576.16, + "end": 19581.44, + "probability": 0.8954 + }, + { + "start": 19582.04, + "end": 19585.38, + "probability": 0.9845 + }, + { + "start": 19585.96, + "end": 19589.44, + "probability": 0.8659 + }, + { + "start": 19590.86, + "end": 19592.2, + "probability": 0.5745 + }, + { + "start": 19593.56, + "end": 19596.9, + "probability": 0.7399 + }, + { + "start": 19598.02, + "end": 19601.84, + "probability": 0.9629 + }, + { + "start": 19603.7, + "end": 19606.66, + "probability": 0.8606 + }, + { + "start": 19607.0, + "end": 19608.96, + "probability": 0.8962 + }, + { + "start": 19609.58, + "end": 19612.44, + "probability": 0.9839 + }, + { + "start": 19613.48, + "end": 19615.94, + "probability": 0.9438 + }, + { + "start": 19617.54, + "end": 19618.47, + "probability": 0.8575 + }, + { + "start": 19618.7, + "end": 19623.16, + "probability": 0.9596 + }, + { + "start": 19623.66, + "end": 19625.14, + "probability": 0.6777 + }, + { + "start": 19625.94, + "end": 19626.6, + "probability": 0.469 + }, + { + "start": 19626.72, + "end": 19630.5, + "probability": 0.9675 + }, + { + "start": 19631.58, + "end": 19634.52, + "probability": 0.8988 + }, + { + "start": 19635.24, + "end": 19636.28, + "probability": 0.2585 + }, + { + "start": 19636.52, + "end": 19639.78, + "probability": 0.924 + }, + { + "start": 19640.34, + "end": 19641.88, + "probability": 0.9927 + }, + { + "start": 19643.32, + "end": 19647.44, + "probability": 0.9375 + }, + { + "start": 19648.84, + "end": 19649.06, + "probability": 0.4553 + }, + { + "start": 19649.2, + "end": 19653.84, + "probability": 0.993 + }, + { + "start": 19655.2, + "end": 19656.17, + "probability": 0.8481 + }, + { + "start": 19656.44, + "end": 19657.56, + "probability": 0.6665 + }, + { + "start": 19657.64, + "end": 19658.18, + "probability": 0.8631 + }, + { + "start": 19658.28, + "end": 19658.98, + "probability": 0.6782 + }, + { + "start": 19659.44, + "end": 19663.88, + "probability": 0.7352 + }, + { + "start": 19665.04, + "end": 19667.98, + "probability": 0.9833 + }, + { + "start": 19668.04, + "end": 19670.56, + "probability": 0.9728 + }, + { + "start": 19670.66, + "end": 19671.2, + "probability": 0.9249 + }, + { + "start": 19671.38, + "end": 19672.02, + "probability": 0.5867 + }, + { + "start": 19672.48, + "end": 19673.79, + "probability": 0.704 + }, + { + "start": 19676.25, + "end": 19678.45, + "probability": 0.3626 + }, + { + "start": 19679.0, + "end": 19682.74, + "probability": 0.9228 + }, + { + "start": 19683.9, + "end": 19684.86, + "probability": 0.8288 + }, + { + "start": 19685.72, + "end": 19689.02, + "probability": 0.5321 + }, + { + "start": 19689.5, + "end": 19690.5, + "probability": 0.8047 + }, + { + "start": 19690.88, + "end": 19691.9, + "probability": 0.7272 + }, + { + "start": 19691.9, + "end": 19695.66, + "probability": 0.6856 + }, + { + "start": 19695.76, + "end": 19698.76, + "probability": 0.9209 + }, + { + "start": 19698.96, + "end": 19700.26, + "probability": 0.977 + }, + { + "start": 19701.0, + "end": 19702.65, + "probability": 0.9907 + }, + { + "start": 19703.12, + "end": 19707.34, + "probability": 0.9289 + }, + { + "start": 19707.54, + "end": 19708.14, + "probability": 0.6165 + }, + { + "start": 19708.36, + "end": 19710.66, + "probability": 0.9863 + }, + { + "start": 19711.32, + "end": 19714.32, + "probability": 0.9113 + }, + { + "start": 19714.4, + "end": 19714.88, + "probability": 0.6156 + }, + { + "start": 19715.08, + "end": 19715.76, + "probability": 0.7523 + }, + { + "start": 19715.82, + "end": 19716.88, + "probability": 0.7367 + }, + { + "start": 19717.3, + "end": 19723.82, + "probability": 0.872 + }, + { + "start": 19724.36, + "end": 19726.18, + "probability": 0.9115 + }, + { + "start": 19726.58, + "end": 19726.68, + "probability": 0.2749 + }, + { + "start": 19726.88, + "end": 19727.08, + "probability": 0.6088 + }, + { + "start": 19728.34, + "end": 19729.8, + "probability": 0.915 + }, + { + "start": 19730.48, + "end": 19731.28, + "probability": 0.8857 + }, + { + "start": 19733.94, + "end": 19734.86, + "probability": 0.242 + }, + { + "start": 19735.26, + "end": 19739.74, + "probability": 0.2355 + }, + { + "start": 19740.52, + "end": 19743.3, + "probability": 0.9283 + }, + { + "start": 19745.5, + "end": 19747.24, + "probability": 0.4157 + }, + { + "start": 19747.76, + "end": 19749.73, + "probability": 0.644 + }, + { + "start": 19752.96, + "end": 19757.28, + "probability": 0.9896 + }, + { + "start": 19758.4, + "end": 19763.8, + "probability": 0.9784 + }, + { + "start": 19764.56, + "end": 19767.48, + "probability": 0.7256 + }, + { + "start": 19768.7, + "end": 19773.76, + "probability": 0.9951 + }, + { + "start": 19773.86, + "end": 19778.72, + "probability": 0.9745 + }, + { + "start": 19779.66, + "end": 19781.08, + "probability": 0.998 + }, + { + "start": 19781.92, + "end": 19782.34, + "probability": 0.2694 + }, + { + "start": 19783.36, + "end": 19784.28, + "probability": 0.8605 + }, + { + "start": 19785.22, + "end": 19787.18, + "probability": 0.6889 + }, + { + "start": 19787.78, + "end": 19792.44, + "probability": 0.9684 + }, + { + "start": 19793.1, + "end": 19793.98, + "probability": 0.9498 + }, + { + "start": 19795.34, + "end": 19796.44, + "probability": 0.7277 + }, + { + "start": 19797.06, + "end": 19797.98, + "probability": 0.9491 + }, + { + "start": 19798.8, + "end": 19806.48, + "probability": 0.9883 + }, + { + "start": 19807.66, + "end": 19809.54, + "probability": 0.9153 + }, + { + "start": 19810.64, + "end": 19812.32, + "probability": 0.9976 + }, + { + "start": 19812.58, + "end": 19815.44, + "probability": 0.9861 + }, + { + "start": 19815.92, + "end": 19817.32, + "probability": 0.8998 + }, + { + "start": 19817.82, + "end": 19820.28, + "probability": 0.9958 + }, + { + "start": 19821.26, + "end": 19824.36, + "probability": 0.9297 + }, + { + "start": 19825.04, + "end": 19828.48, + "probability": 0.949 + }, + { + "start": 19829.56, + "end": 19831.66, + "probability": 0.9713 + }, + { + "start": 19832.82, + "end": 19834.76, + "probability": 0.9888 + }, + { + "start": 19836.02, + "end": 19840.66, + "probability": 0.9931 + }, + { + "start": 19843.22, + "end": 19846.56, + "probability": 0.9909 + }, + { + "start": 19846.78, + "end": 19850.04, + "probability": 0.7124 + }, + { + "start": 19850.3, + "end": 19853.96, + "probability": 0.9728 + }, + { + "start": 19855.36, + "end": 19859.26, + "probability": 0.9967 + }, + { + "start": 19860.2, + "end": 19862.74, + "probability": 0.6758 + }, + { + "start": 19863.48, + "end": 19866.52, + "probability": 0.9723 + }, + { + "start": 19867.46, + "end": 19869.76, + "probability": 0.9103 + }, + { + "start": 19870.38, + "end": 19871.9, + "probability": 0.9928 + }, + { + "start": 19872.46, + "end": 19875.76, + "probability": 0.9949 + }, + { + "start": 19877.22, + "end": 19877.44, + "probability": 0.3392 + }, + { + "start": 19877.58, + "end": 19879.86, + "probability": 0.937 + }, + { + "start": 19880.28, + "end": 19880.74, + "probability": 0.7927 + }, + { + "start": 19882.06, + "end": 19882.26, + "probability": 0.4655 + }, + { + "start": 19882.26, + "end": 19882.4, + "probability": 0.8911 + }, + { + "start": 19882.62, + "end": 19885.56, + "probability": 0.9692 + }, + { + "start": 19885.7, + "end": 19888.52, + "probability": 0.9457 + }, + { + "start": 19889.08, + "end": 19892.8, + "probability": 0.9997 + }, + { + "start": 19893.76, + "end": 19897.72, + "probability": 0.9896 + }, + { + "start": 19898.34, + "end": 19898.88, + "probability": 0.8914 + }, + { + "start": 19899.7, + "end": 19902.3, + "probability": 0.9979 + }, + { + "start": 19903.2, + "end": 19905.22, + "probability": 0.9976 + }, + { + "start": 19905.38, + "end": 19906.3, + "probability": 0.8182 + }, + { + "start": 19907.98, + "end": 19909.94, + "probability": 0.9956 + }, + { + "start": 19911.62, + "end": 19915.92, + "probability": 0.9971 + }, + { + "start": 19916.26, + "end": 19919.84, + "probability": 0.9676 + }, + { + "start": 19920.98, + "end": 19925.1, + "probability": 0.9894 + }, + { + "start": 19925.86, + "end": 19927.26, + "probability": 0.8966 + }, + { + "start": 19928.14, + "end": 19929.82, + "probability": 0.8247 + }, + { + "start": 19930.78, + "end": 19931.9, + "probability": 0.8025 + }, + { + "start": 19931.94, + "end": 19934.46, + "probability": 0.9922 + }, + { + "start": 19935.5, + "end": 19936.76, + "probability": 0.9586 + }, + { + "start": 19937.5, + "end": 19939.78, + "probability": 0.9728 + }, + { + "start": 19940.28, + "end": 19942.06, + "probability": 0.9657 + }, + { + "start": 19942.16, + "end": 19943.46, + "probability": 0.6778 + }, + { + "start": 19943.76, + "end": 19945.14, + "probability": 0.5007 + }, + { + "start": 19945.62, + "end": 19950.72, + "probability": 0.979 + }, + { + "start": 19951.58, + "end": 19953.98, + "probability": 0.9954 + }, + { + "start": 19953.98, + "end": 19956.68, + "probability": 0.9988 + }, + { + "start": 19957.26, + "end": 19959.12, + "probability": 0.993 + }, + { + "start": 19959.56, + "end": 19962.7, + "probability": 0.9561 + }, + { + "start": 19962.72, + "end": 19964.72, + "probability": 0.9758 + }, + { + "start": 19964.86, + "end": 19965.14, + "probability": 0.6537 + }, + { + "start": 19965.18, + "end": 19965.88, + "probability": 0.5215 + }, + { + "start": 19966.08, + "end": 19968.94, + "probability": 0.8434 + }, + { + "start": 19990.34, + "end": 19991.16, + "probability": 0.8159 + }, + { + "start": 19991.72, + "end": 19993.52, + "probability": 0.9399 + }, + { + "start": 19994.8, + "end": 19996.82, + "probability": 0.655 + }, + { + "start": 19997.36, + "end": 19998.56, + "probability": 0.7493 + }, + { + "start": 19998.66, + "end": 20001.56, + "probability": 0.9723 + }, + { + "start": 20002.12, + "end": 20002.66, + "probability": 0.9101 + }, + { + "start": 20003.4, + "end": 20006.52, + "probability": 0.9982 + }, + { + "start": 20007.02, + "end": 20008.56, + "probability": 0.7016 + }, + { + "start": 20009.0, + "end": 20010.67, + "probability": 0.7556 + }, + { + "start": 20010.8, + "end": 20012.0, + "probability": 0.5801 + }, + { + "start": 20012.88, + "end": 20015.26, + "probability": 0.9957 + }, + { + "start": 20015.76, + "end": 20019.68, + "probability": 0.9852 + }, + { + "start": 20019.84, + "end": 20020.86, + "probability": 0.8386 + }, + { + "start": 20020.92, + "end": 20022.22, + "probability": 0.8425 + }, + { + "start": 20022.64, + "end": 20025.28, + "probability": 0.983 + }, + { + "start": 20025.72, + "end": 20026.87, + "probability": 0.9661 + }, + { + "start": 20028.48, + "end": 20028.52, + "probability": 0.2075 + }, + { + "start": 20028.52, + "end": 20029.14, + "probability": 0.3684 + }, + { + "start": 20029.3, + "end": 20030.0, + "probability": 0.6538 + }, + { + "start": 20030.48, + "end": 20035.02, + "probability": 0.863 + }, + { + "start": 20035.5, + "end": 20036.64, + "probability": 0.9318 + }, + { + "start": 20036.74, + "end": 20037.62, + "probability": 0.2948 + }, + { + "start": 20037.9, + "end": 20039.1, + "probability": 0.6841 + }, + { + "start": 20039.1, + "end": 20039.8, + "probability": 0.781 + }, + { + "start": 20039.82, + "end": 20040.22, + "probability": 0.9057 + }, + { + "start": 20040.28, + "end": 20040.58, + "probability": 0.6797 + }, + { + "start": 20040.76, + "end": 20042.04, + "probability": 0.5934 + }, + { + "start": 20042.24, + "end": 20044.54, + "probability": 0.0302 + }, + { + "start": 20044.62, + "end": 20045.14, + "probability": 0.1525 + }, + { + "start": 20047.55, + "end": 20049.76, + "probability": 0.6892 + }, + { + "start": 20051.32, + "end": 20054.18, + "probability": 0.8098 + }, + { + "start": 20054.22, + "end": 20055.32, + "probability": 0.6381 + }, + { + "start": 20055.82, + "end": 20056.4, + "probability": 0.7373 + }, + { + "start": 20056.78, + "end": 20057.21, + "probability": 0.8975 + }, + { + "start": 20059.34, + "end": 20063.96, + "probability": 0.7756 + }, + { + "start": 20063.96, + "end": 20064.24, + "probability": 0.4507 + }, + { + "start": 20064.4, + "end": 20065.42, + "probability": 0.9226 + }, + { + "start": 20065.54, + "end": 20066.5, + "probability": 0.9374 + }, + { + "start": 20067.04, + "end": 20070.44, + "probability": 0.8963 + }, + { + "start": 20070.52, + "end": 20074.78, + "probability": 0.9427 + }, + { + "start": 20075.06, + "end": 20078.0, + "probability": 0.9878 + }, + { + "start": 20078.06, + "end": 20079.61, + "probability": 0.7027 + }, + { + "start": 20080.16, + "end": 20081.82, + "probability": 0.9755 + }, + { + "start": 20081.9, + "end": 20083.06, + "probability": 0.8898 + }, + { + "start": 20083.48, + "end": 20084.88, + "probability": 0.5757 + }, + { + "start": 20085.06, + "end": 20087.98, + "probability": 0.8008 + }, + { + "start": 20088.32, + "end": 20090.04, + "probability": 0.8954 + }, + { + "start": 20090.14, + "end": 20091.22, + "probability": 0.9972 + }, + { + "start": 20091.86, + "end": 20092.52, + "probability": 0.823 + }, + { + "start": 20092.62, + "end": 20096.2, + "probability": 0.8859 + }, + { + "start": 20096.4, + "end": 20098.76, + "probability": 0.7959 + }, + { + "start": 20099.12, + "end": 20100.38, + "probability": 0.9332 + }, + { + "start": 20100.88, + "end": 20104.52, + "probability": 0.9465 + }, + { + "start": 20105.06, + "end": 20109.22, + "probability": 0.7575 + }, + { + "start": 20109.74, + "end": 20112.94, + "probability": 0.9914 + }, + { + "start": 20113.02, + "end": 20114.4, + "probability": 0.946 + }, + { + "start": 20114.82, + "end": 20115.6, + "probability": 0.6781 + }, + { + "start": 20116.02, + "end": 20117.22, + "probability": 0.6282 + }, + { + "start": 20117.28, + "end": 20118.12, + "probability": 0.835 + }, + { + "start": 20118.34, + "end": 20119.0, + "probability": 0.8365 + }, + { + "start": 20119.46, + "end": 20121.3, + "probability": 0.9851 + }, + { + "start": 20121.38, + "end": 20122.82, + "probability": 0.9567 + }, + { + "start": 20123.12, + "end": 20124.02, + "probability": 0.9683 + }, + { + "start": 20124.08, + "end": 20125.42, + "probability": 0.9636 + }, + { + "start": 20125.5, + "end": 20126.25, + "probability": 0.7578 + }, + { + "start": 20126.92, + "end": 20127.68, + "probability": 0.5326 + }, + { + "start": 20128.44, + "end": 20131.02, + "probability": 0.9961 + }, + { + "start": 20131.44, + "end": 20132.52, + "probability": 0.8167 + }, + { + "start": 20132.7, + "end": 20134.44, + "probability": 0.9817 + }, + { + "start": 20134.86, + "end": 20136.66, + "probability": 0.8463 + }, + { + "start": 20136.76, + "end": 20138.12, + "probability": 0.6984 + }, + { + "start": 20138.28, + "end": 20138.68, + "probability": 0.4848 + }, + { + "start": 20139.08, + "end": 20140.74, + "probability": 0.9926 + }, + { + "start": 20141.2, + "end": 20141.66, + "probability": 0.8394 + }, + { + "start": 20141.78, + "end": 20144.32, + "probability": 0.7595 + }, + { + "start": 20144.36, + "end": 20144.76, + "probability": 0.4934 + }, + { + "start": 20144.88, + "end": 20145.96, + "probability": 0.7414 + }, + { + "start": 20146.48, + "end": 20148.4, + "probability": 0.9576 + }, + { + "start": 20148.8, + "end": 20150.03, + "probability": 0.9869 + }, + { + "start": 20150.16, + "end": 20151.26, + "probability": 0.9865 + }, + { + "start": 20151.36, + "end": 20153.3, + "probability": 0.8931 + }, + { + "start": 20153.6, + "end": 20154.8, + "probability": 0.8557 + }, + { + "start": 20156.78, + "end": 20157.32, + "probability": 0.0274 + }, + { + "start": 20157.32, + "end": 20159.2, + "probability": 0.8767 + }, + { + "start": 20159.34, + "end": 20159.83, + "probability": 0.6572 + }, + { + "start": 20160.58, + "end": 20161.56, + "probability": 0.823 + }, + { + "start": 20161.7, + "end": 20163.38, + "probability": 0.878 + }, + { + "start": 20163.58, + "end": 20164.68, + "probability": 0.9837 + }, + { + "start": 20164.88, + "end": 20165.58, + "probability": 0.9463 + }, + { + "start": 20165.78, + "end": 20169.2, + "probability": 0.8655 + }, + { + "start": 20169.76, + "end": 20172.4, + "probability": 0.9678 + }, + { + "start": 20172.58, + "end": 20177.68, + "probability": 0.8172 + }, + { + "start": 20177.72, + "end": 20178.16, + "probability": 0.8588 + }, + { + "start": 20178.22, + "end": 20179.16, + "probability": 0.7905 + }, + { + "start": 20179.62, + "end": 20181.32, + "probability": 0.9094 + }, + { + "start": 20181.9, + "end": 20183.06, + "probability": 0.5323 + }, + { + "start": 20186.14, + "end": 20189.26, + "probability": 0.5692 + }, + { + "start": 20192.42, + "end": 20193.22, + "probability": 0.8962 + }, + { + "start": 20195.2, + "end": 20198.36, + "probability": 0.6394 + }, + { + "start": 20198.62, + "end": 20199.59, + "probability": 0.9565 + }, + { + "start": 20199.76, + "end": 20204.9, + "probability": 0.8884 + }, + { + "start": 20205.96, + "end": 20210.14, + "probability": 0.993 + }, + { + "start": 20210.3, + "end": 20213.88, + "probability": 0.8653 + }, + { + "start": 20214.56, + "end": 20216.52, + "probability": 0.5794 + }, + { + "start": 20216.66, + "end": 20218.72, + "probability": 0.9894 + }, + { + "start": 20218.72, + "end": 20219.52, + "probability": 0.8033 + }, + { + "start": 20220.08, + "end": 20223.58, + "probability": 0.9588 + }, + { + "start": 20224.7, + "end": 20227.7, + "probability": 0.9726 + }, + { + "start": 20228.34, + "end": 20230.34, + "probability": 0.8468 + }, + { + "start": 20231.78, + "end": 20233.7, + "probability": 0.9934 + }, + { + "start": 20233.7, + "end": 20237.26, + "probability": 0.8908 + }, + { + "start": 20238.36, + "end": 20244.18, + "probability": 0.9858 + }, + { + "start": 20244.94, + "end": 20246.8, + "probability": 0.8247 + }, + { + "start": 20247.5, + "end": 20248.0, + "probability": 0.64 + }, + { + "start": 20249.18, + "end": 20251.64, + "probability": 0.9912 + }, + { + "start": 20252.28, + "end": 20254.36, + "probability": 0.9544 + }, + { + "start": 20255.24, + "end": 20259.16, + "probability": 0.7925 + }, + { + "start": 20260.44, + "end": 20262.84, + "probability": 0.9238 + }, + { + "start": 20263.7, + "end": 20265.98, + "probability": 0.7186 + }, + { + "start": 20267.3, + "end": 20268.22, + "probability": 0.6817 + }, + { + "start": 20269.42, + "end": 20273.22, + "probability": 0.9824 + }, + { + "start": 20274.62, + "end": 20278.84, + "probability": 0.9927 + }, + { + "start": 20280.64, + "end": 20283.88, + "probability": 0.9937 + }, + { + "start": 20283.88, + "end": 20286.96, + "probability": 0.9909 + }, + { + "start": 20287.8, + "end": 20291.46, + "probability": 0.9896 + }, + { + "start": 20293.83, + "end": 20294.86, + "probability": 0.49 + }, + { + "start": 20294.86, + "end": 20295.7, + "probability": 0.7301 + }, + { + "start": 20296.06, + "end": 20297.05, + "probability": 0.9678 + }, + { + "start": 20297.5, + "end": 20299.14, + "probability": 0.9883 + }, + { + "start": 20299.28, + "end": 20302.96, + "probability": 0.859 + }, + { + "start": 20303.76, + "end": 20305.82, + "probability": 0.9904 + }, + { + "start": 20306.22, + "end": 20307.5, + "probability": 0.9995 + }, + { + "start": 20308.5, + "end": 20310.86, + "probability": 0.9019 + }, + { + "start": 20311.7, + "end": 20311.78, + "probability": 0.7365 + }, + { + "start": 20311.78, + "end": 20312.76, + "probability": 0.885 + }, + { + "start": 20312.84, + "end": 20314.2, + "probability": 0.9529 + }, + { + "start": 20314.32, + "end": 20317.04, + "probability": 0.9677 + }, + { + "start": 20318.12, + "end": 20318.48, + "probability": 0.7353 + }, + { + "start": 20318.6, + "end": 20319.3, + "probability": 0.7504 + }, + { + "start": 20319.44, + "end": 20321.88, + "probability": 0.9225 + }, + { + "start": 20322.0, + "end": 20325.18, + "probability": 0.9404 + }, + { + "start": 20325.9, + "end": 20330.16, + "probability": 0.9873 + }, + { + "start": 20330.44, + "end": 20334.14, + "probability": 0.935 + }, + { + "start": 20334.66, + "end": 20338.84, + "probability": 0.76 + }, + { + "start": 20339.74, + "end": 20341.2, + "probability": 0.7911 + }, + { + "start": 20341.36, + "end": 20342.42, + "probability": 0.7503 + }, + { + "start": 20342.44, + "end": 20343.1, + "probability": 0.9682 + }, + { + "start": 20344.62, + "end": 20348.04, + "probability": 0.9931 + }, + { + "start": 20348.3, + "end": 20351.22, + "probability": 0.9384 + }, + { + "start": 20351.64, + "end": 20351.98, + "probability": 0.7008 + }, + { + "start": 20352.18, + "end": 20353.44, + "probability": 0.8701 + }, + { + "start": 20353.52, + "end": 20356.1, + "probability": 0.8468 + }, + { + "start": 20356.24, + "end": 20356.98, + "probability": 0.9112 + }, + { + "start": 20358.1, + "end": 20361.38, + "probability": 0.8604 + }, + { + "start": 20361.96, + "end": 20362.64, + "probability": 0.6285 + }, + { + "start": 20362.98, + "end": 20365.22, + "probability": 0.9858 + }, + { + "start": 20365.72, + "end": 20367.1, + "probability": 0.0666 + }, + { + "start": 20367.66, + "end": 20370.23, + "probability": 0.9933 + }, + { + "start": 20371.42, + "end": 20372.08, + "probability": 0.9766 + }, + { + "start": 20372.14, + "end": 20373.12, + "probability": 0.9349 + }, + { + "start": 20373.28, + "end": 20373.92, + "probability": 0.341 + }, + { + "start": 20374.26, + "end": 20375.78, + "probability": 0.7072 + }, + { + "start": 20375.84, + "end": 20377.18, + "probability": 0.1593 + }, + { + "start": 20380.34, + "end": 20380.5, + "probability": 0.0954 + }, + { + "start": 20381.02, + "end": 20385.52, + "probability": 0.1352 + }, + { + "start": 20385.52, + "end": 20388.48, + "probability": 0.4118 + }, + { + "start": 20389.1, + "end": 20390.04, + "probability": 0.5488 + }, + { + "start": 20390.72, + "end": 20394.42, + "probability": 0.609 + }, + { + "start": 20394.6, + "end": 20395.64, + "probability": 0.1906 + }, + { + "start": 20396.32, + "end": 20396.74, + "probability": 0.7399 + }, + { + "start": 20396.98, + "end": 20397.74, + "probability": 0.6604 + }, + { + "start": 20397.8, + "end": 20400.34, + "probability": 0.8309 + }, + { + "start": 20400.77, + "end": 20404.4, + "probability": 0.8685 + }, + { + "start": 20404.54, + "end": 20407.94, + "probability": 0.9766 + }, + { + "start": 20408.32, + "end": 20409.36, + "probability": 0.7885 + }, + { + "start": 20409.4, + "end": 20412.16, + "probability": 0.8614 + }, + { + "start": 20412.7, + "end": 20413.6, + "probability": 0.8025 + }, + { + "start": 20414.24, + "end": 20416.46, + "probability": 0.9125 + }, + { + "start": 20416.6, + "end": 20424.38, + "probability": 0.9149 + }, + { + "start": 20424.82, + "end": 20427.26, + "probability": 0.942 + }, + { + "start": 20427.32, + "end": 20429.0, + "probability": 0.7803 + }, + { + "start": 20429.04, + "end": 20430.16, + "probability": 0.7613 + }, + { + "start": 20430.58, + "end": 20433.08, + "probability": 0.8331 + }, + { + "start": 20433.56, + "end": 20434.26, + "probability": 0.908 + }, + { + "start": 20434.46, + "end": 20436.32, + "probability": 0.8741 + }, + { + "start": 20436.54, + "end": 20439.1, + "probability": 0.2692 + }, + { + "start": 20439.94, + "end": 20439.94, + "probability": 0.1393 + }, + { + "start": 20439.94, + "end": 20440.51, + "probability": 0.6045 + }, + { + "start": 20441.22, + "end": 20441.84, + "probability": 0.4159 + }, + { + "start": 20442.83, + "end": 20447.18, + "probability": 0.7014 + }, + { + "start": 20447.24, + "end": 20447.44, + "probability": 0.8072 + }, + { + "start": 20447.54, + "end": 20447.88, + "probability": 0.4167 + }, + { + "start": 20447.96, + "end": 20448.4, + "probability": 0.7952 + }, + { + "start": 20450.0, + "end": 20451.6, + "probability": 0.7807 + }, + { + "start": 20451.92, + "end": 20452.98, + "probability": 0.4536 + }, + { + "start": 20453.12, + "end": 20456.1, + "probability": 0.7229 + }, + { + "start": 20456.88, + "end": 20457.48, + "probability": 0.7019 + }, + { + "start": 20463.42, + "end": 20464.34, + "probability": 0.0613 + }, + { + "start": 20464.34, + "end": 20464.34, + "probability": 0.0851 + }, + { + "start": 20464.64, + "end": 20464.68, + "probability": 0.0151 + }, + { + "start": 20464.68, + "end": 20465.77, + "probability": 0.896 + }, + { + "start": 20471.58, + "end": 20474.1, + "probability": 0.2391 + }, + { + "start": 20474.62, + "end": 20476.22, + "probability": 0.5767 + }, + { + "start": 20476.22, + "end": 20477.12, + "probability": 0.3222 + }, + { + "start": 20480.88, + "end": 20484.08, + "probability": 0.5348 + }, + { + "start": 20485.37, + "end": 20488.48, + "probability": 0.9321 + }, + { + "start": 20491.16, + "end": 20493.88, + "probability": 0.5296 + }, + { + "start": 20497.08, + "end": 20497.64, + "probability": 0.0391 + }, + { + "start": 20499.34, + "end": 20501.06, + "probability": 0.049 + }, + { + "start": 20501.66, + "end": 20503.68, + "probability": 0.3686 + }, + { + "start": 20506.18, + "end": 20507.18, + "probability": 0.1812 + }, + { + "start": 20507.18, + "end": 20508.74, + "probability": 0.117 + }, + { + "start": 20509.2, + "end": 20510.92, + "probability": 0.0938 + }, + { + "start": 20512.7, + "end": 20513.46, + "probability": 0.0359 + }, + { + "start": 20513.62, + "end": 20514.18, + "probability": 0.0522 + }, + { + "start": 20515.3, + "end": 20515.44, + "probability": 0.2138 + }, + { + "start": 20515.44, + "end": 20515.44, + "probability": 0.3345 + }, + { + "start": 20515.44, + "end": 20516.5, + "probability": 0.2162 + }, + { + "start": 20519.79, + "end": 20522.26, + "probability": 0.0296 + }, + { + "start": 20523.22, + "end": 20525.88, + "probability": 0.0162 + }, + { + "start": 20528.14, + "end": 20529.4, + "probability": 0.0268 + }, + { + "start": 20531.22, + "end": 20531.9, + "probability": 0.046 + }, + { + "start": 20532.34, + "end": 20532.34, + "probability": 0.0765 + }, + { + "start": 20532.34, + "end": 20533.3, + "probability": 0.0358 + }, + { + "start": 20533.94, + "end": 20534.84, + "probability": 0.0173 + }, + { + "start": 20535.0, + "end": 20535.0, + "probability": 0.0 + }, + { + "start": 20535.0, + "end": 20535.0, + "probability": 0.0 + }, + { + "start": 20535.0, + "end": 20535.0, + "probability": 0.0 + }, + { + "start": 20535.0, + "end": 20535.0, + "probability": 0.0 + }, + { + "start": 20535.0, + "end": 20535.0, + "probability": 0.0 + }, + { + "start": 20535.0, + "end": 20535.0, + "probability": 0.0 + }, + { + "start": 20535.0, + "end": 20535.0, + "probability": 0.0 + }, + { + "start": 20535.0, + "end": 20535.0, + "probability": 0.0 + }, + { + "start": 20535.0, + "end": 20535.0, + "probability": 0.0 + }, + { + "start": 20535.4, + "end": 20536.28, + "probability": 0.3691 + }, + { + "start": 20536.38, + "end": 20539.34, + "probability": 0.6878 + }, + { + "start": 20546.74, + "end": 20549.12, + "probability": 0.654 + }, + { + "start": 20554.68, + "end": 20555.3, + "probability": 0.5234 + }, + { + "start": 20555.98, + "end": 20557.0, + "probability": 0.8083 + }, + { + "start": 20558.04, + "end": 20561.9, + "probability": 0.796 + }, + { + "start": 20563.52, + "end": 20566.58, + "probability": 0.6705 + }, + { + "start": 20568.32, + "end": 20569.34, + "probability": 0.8968 + }, + { + "start": 20569.48, + "end": 20572.58, + "probability": 0.9977 + }, + { + "start": 20572.62, + "end": 20575.52, + "probability": 0.9982 + }, + { + "start": 20576.48, + "end": 20578.12, + "probability": 0.9289 + }, + { + "start": 20579.44, + "end": 20582.6, + "probability": 0.9928 + }, + { + "start": 20584.84, + "end": 20587.86, + "probability": 0.9874 + }, + { + "start": 20588.9, + "end": 20590.62, + "probability": 0.9886 + }, + { + "start": 20590.66, + "end": 20591.5, + "probability": 0.9252 + }, + { + "start": 20591.56, + "end": 20592.68, + "probability": 0.9055 + }, + { + "start": 20593.98, + "end": 20596.3, + "probability": 0.9475 + }, + { + "start": 20598.66, + "end": 20600.6, + "probability": 0.9208 + }, + { + "start": 20601.44, + "end": 20602.4, + "probability": 0.9387 + }, + { + "start": 20603.84, + "end": 20609.12, + "probability": 0.9922 + }, + { + "start": 20610.5, + "end": 20613.46, + "probability": 0.9724 + }, + { + "start": 20615.46, + "end": 20616.44, + "probability": 0.9915 + }, + { + "start": 20617.88, + "end": 20619.42, + "probability": 0.9854 + }, + { + "start": 20620.26, + "end": 20622.1, + "probability": 0.9768 + }, + { + "start": 20622.98, + "end": 20624.86, + "probability": 0.9621 + }, + { + "start": 20625.78, + "end": 20628.7, + "probability": 0.9954 + }, + { + "start": 20630.04, + "end": 20630.58, + "probability": 0.6656 + }, + { + "start": 20631.62, + "end": 20633.5, + "probability": 0.9808 + }, + { + "start": 20635.14, + "end": 20635.76, + "probability": 0.714 + }, + { + "start": 20636.94, + "end": 20638.12, + "probability": 0.9771 + }, + { + "start": 20638.16, + "end": 20639.06, + "probability": 0.8986 + }, + { + "start": 20639.14, + "end": 20640.56, + "probability": 0.9373 + }, + { + "start": 20641.56, + "end": 20644.72, + "probability": 0.9977 + }, + { + "start": 20646.46, + "end": 20648.38, + "probability": 0.8398 + }, + { + "start": 20649.12, + "end": 20649.64, + "probability": 0.9662 + }, + { + "start": 20650.26, + "end": 20652.9, + "probability": 0.9915 + }, + { + "start": 20654.86, + "end": 20657.21, + "probability": 0.8936 + }, + { + "start": 20659.5, + "end": 20662.28, + "probability": 0.958 + }, + { + "start": 20663.02, + "end": 20664.96, + "probability": 0.7444 + }, + { + "start": 20666.4, + "end": 20667.58, + "probability": 0.9859 + }, + { + "start": 20667.66, + "end": 20668.41, + "probability": 0.6531 + }, + { + "start": 20668.54, + "end": 20673.08, + "probability": 0.9476 + }, + { + "start": 20673.14, + "end": 20673.77, + "probability": 0.8005 + }, + { + "start": 20675.26, + "end": 20678.78, + "probability": 0.9321 + }, + { + "start": 20680.08, + "end": 20683.46, + "probability": 0.921 + }, + { + "start": 20684.16, + "end": 20686.46, + "probability": 0.9764 + }, + { + "start": 20687.98, + "end": 20689.32, + "probability": 0.9102 + }, + { + "start": 20690.72, + "end": 20692.9, + "probability": 0.9268 + }, + { + "start": 20694.44, + "end": 20695.22, + "probability": 0.8953 + }, + { + "start": 20696.84, + "end": 20698.86, + "probability": 0.9917 + }, + { + "start": 20699.8, + "end": 20700.15, + "probability": 0.0718 + }, + { + "start": 20700.98, + "end": 20701.4, + "probability": 0.8194 + }, + { + "start": 20701.46, + "end": 20702.9, + "probability": 0.951 + }, + { + "start": 20703.3, + "end": 20705.6, + "probability": 0.9772 + }, + { + "start": 20706.66, + "end": 20708.92, + "probability": 0.7756 + }, + { + "start": 20709.58, + "end": 20713.88, + "probability": 0.9787 + }, + { + "start": 20713.88, + "end": 20717.5, + "probability": 0.9702 + }, + { + "start": 20719.62, + "end": 20721.18, + "probability": 0.7367 + }, + { + "start": 20721.3, + "end": 20722.2, + "probability": 0.9627 + }, + { + "start": 20722.26, + "end": 20723.84, + "probability": 0.9939 + }, + { + "start": 20724.84, + "end": 20729.9, + "probability": 0.992 + }, + { + "start": 20731.54, + "end": 20732.82, + "probability": 0.8878 + }, + { + "start": 20734.68, + "end": 20735.58, + "probability": 0.799 + }, + { + "start": 20736.42, + "end": 20739.6, + "probability": 0.9961 + }, + { + "start": 20740.7, + "end": 20742.8, + "probability": 0.9799 + }, + { + "start": 20743.54, + "end": 20746.18, + "probability": 0.8919 + }, + { + "start": 20747.18, + "end": 20751.14, + "probability": 0.9888 + }, + { + "start": 20751.3, + "end": 20754.28, + "probability": 0.9941 + }, + { + "start": 20755.38, + "end": 20757.34, + "probability": 0.9883 + }, + { + "start": 20758.08, + "end": 20760.4, + "probability": 0.9991 + }, + { + "start": 20761.26, + "end": 20762.98, + "probability": 0.9053 + }, + { + "start": 20763.88, + "end": 20767.4, + "probability": 0.0332 + }, + { + "start": 20767.8, + "end": 20767.8, + "probability": 0.1417 + }, + { + "start": 20767.8, + "end": 20769.4, + "probability": 0.8058 + }, + { + "start": 20770.22, + "end": 20770.96, + "probability": 0.3434 + }, + { + "start": 20772.46, + "end": 20773.24, + "probability": 0.4202 + }, + { + "start": 20773.36, + "end": 20776.32, + "probability": 0.2362 + }, + { + "start": 20778.56, + "end": 20782.14, + "probability": 0.7174 + }, + { + "start": 20782.76, + "end": 20784.54, + "probability": 0.9785 + }, + { + "start": 20784.94, + "end": 20788.84, + "probability": 0.9219 + }, + { + "start": 20789.34, + "end": 20792.0, + "probability": 0.988 + }, + { + "start": 20793.66, + "end": 20795.34, + "probability": 0.9873 + }, + { + "start": 20795.96, + "end": 20797.76, + "probability": 0.3175 + }, + { + "start": 20797.78, + "end": 20798.79, + "probability": 0.7778 + }, + { + "start": 20799.72, + "end": 20804.24, + "probability": 0.8022 + }, + { + "start": 20805.22, + "end": 20805.52, + "probability": 0.6249 + }, + { + "start": 20805.56, + "end": 20806.78, + "probability": 0.901 + }, + { + "start": 20806.98, + "end": 20808.52, + "probability": 0.5558 + }, + { + "start": 20808.76, + "end": 20809.84, + "probability": 0.5238 + }, + { + "start": 20810.68, + "end": 20812.52, + "probability": 0.858 + }, + { + "start": 20813.84, + "end": 20814.48, + "probability": 0.932 + }, + { + "start": 20815.6, + "end": 20817.28, + "probability": 0.7866 + }, + { + "start": 20818.6, + "end": 20822.24, + "probability": 0.8599 + }, + { + "start": 20822.96, + "end": 20823.66, + "probability": 0.9207 + }, + { + "start": 20824.14, + "end": 20827.32, + "probability": 0.9539 + }, + { + "start": 20827.56, + "end": 20828.08, + "probability": 0.9871 + }, + { + "start": 20828.22, + "end": 20828.82, + "probability": 0.9839 + }, + { + "start": 20829.06, + "end": 20829.8, + "probability": 0.8275 + }, + { + "start": 20831.92, + "end": 20833.0, + "probability": 0.8719 + }, + { + "start": 20833.88, + "end": 20835.54, + "probability": 0.8808 + }, + { + "start": 20837.5, + "end": 20839.68, + "probability": 0.6482 + }, + { + "start": 20839.96, + "end": 20844.1, + "probability": 0.9847 + }, + { + "start": 20844.18, + "end": 20845.18, + "probability": 0.8413 + }, + { + "start": 20845.7, + "end": 20847.06, + "probability": 0.992 + }, + { + "start": 20847.52, + "end": 20850.14, + "probability": 0.9299 + }, + { + "start": 20850.78, + "end": 20852.18, + "probability": 0.8353 + }, + { + "start": 20852.22, + "end": 20852.99, + "probability": 0.8566 + }, + { + "start": 20853.32, + "end": 20854.96, + "probability": 0.9805 + }, + { + "start": 20856.98, + "end": 20858.88, + "probability": 0.0922 + }, + { + "start": 20858.88, + "end": 20859.69, + "probability": 0.6936 + }, + { + "start": 20860.04, + "end": 20860.9, + "probability": 0.8097 + }, + { + "start": 20861.3, + "end": 20861.46, + "probability": 0.2269 + }, + { + "start": 20863.1, + "end": 20866.64, + "probability": 0.3414 + }, + { + "start": 20866.72, + "end": 20868.35, + "probability": 0.4826 + }, + { + "start": 20868.58, + "end": 20870.48, + "probability": 0.8229 + }, + { + "start": 20870.58, + "end": 20870.96, + "probability": 0.5386 + }, + { + "start": 20870.96, + "end": 20872.64, + "probability": 0.5766 + }, + { + "start": 20872.74, + "end": 20874.3, + "probability": 0.6846 + }, + { + "start": 20874.32, + "end": 20875.74, + "probability": 0.0564 + }, + { + "start": 20875.74, + "end": 20876.9, + "probability": 0.3748 + }, + { + "start": 20877.16, + "end": 20879.8, + "probability": 0.6608 + }, + { + "start": 20880.04, + "end": 20884.2, + "probability": 0.7895 + }, + { + "start": 20884.2, + "end": 20887.02, + "probability": 0.7104 + }, + { + "start": 20887.02, + "end": 20887.65, + "probability": 0.5022 + }, + { + "start": 20887.82, + "end": 20889.44, + "probability": 0.3963 + }, + { + "start": 20889.48, + "end": 20890.4, + "probability": 0.5226 + }, + { + "start": 20890.54, + "end": 20893.34, + "probability": 0.9804 + }, + { + "start": 20893.88, + "end": 20899.08, + "probability": 0.7993 + }, + { + "start": 20899.32, + "end": 20899.96, + "probability": 0.8041 + }, + { + "start": 20900.28, + "end": 20900.64, + "probability": 0.007 + }, + { + "start": 20902.12, + "end": 20904.02, + "probability": 0.6367 + }, + { + "start": 20904.12, + "end": 20907.56, + "probability": 0.8463 + }, + { + "start": 20907.88, + "end": 20909.78, + "probability": 0.8969 + }, + { + "start": 20910.26, + "end": 20911.52, + "probability": 0.9646 + }, + { + "start": 20911.6, + "end": 20915.64, + "probability": 0.9619 + }, + { + "start": 20915.86, + "end": 20918.86, + "probability": 0.9993 + }, + { + "start": 20919.52, + "end": 20921.0, + "probability": 0.9675 + }, + { + "start": 20921.28, + "end": 20922.94, + "probability": 0.6447 + }, + { + "start": 20923.0, + "end": 20925.2, + "probability": 0.7374 + }, + { + "start": 20925.34, + "end": 20926.12, + "probability": 0.7532 + }, + { + "start": 20927.32, + "end": 20930.24, + "probability": 0.8331 + }, + { + "start": 20930.72, + "end": 20932.4, + "probability": 0.6958 + }, + { + "start": 20932.56, + "end": 20935.04, + "probability": 0.7493 + }, + { + "start": 20935.5, + "end": 20939.66, + "probability": 0.6064 + }, + { + "start": 20940.44, + "end": 20943.24, + "probability": 0.7875 + }, + { + "start": 20943.24, + "end": 20944.7, + "probability": 0.9508 + }, + { + "start": 20944.7, + "end": 20946.89, + "probability": 0.9536 + }, + { + "start": 20947.3, + "end": 20948.94, + "probability": 0.8932 + }, + { + "start": 20949.0, + "end": 20952.98, + "probability": 0.8006 + }, + { + "start": 20952.98, + "end": 20955.7, + "probability": 0.8088 + }, + { + "start": 20955.94, + "end": 20957.52, + "probability": 0.9954 + }, + { + "start": 20958.47, + "end": 20963.02, + "probability": 0.8993 + }, + { + "start": 20963.22, + "end": 20965.44, + "probability": 0.9507 + }, + { + "start": 20965.62, + "end": 20968.22, + "probability": 0.8009 + }, + { + "start": 20968.26, + "end": 20969.32, + "probability": 0.8655 + }, + { + "start": 20969.78, + "end": 20971.06, + "probability": 0.685 + }, + { + "start": 20971.5, + "end": 20972.52, + "probability": 0.9336 + }, + { + "start": 20972.98, + "end": 20974.62, + "probability": 0.8651 + }, + { + "start": 20975.4, + "end": 20976.36, + "probability": 0.7456 + }, + { + "start": 20977.48, + "end": 20981.58, + "probability": 0.9905 + }, + { + "start": 20982.1, + "end": 20982.82, + "probability": 0.7601 + }, + { + "start": 20983.02, + "end": 20985.16, + "probability": 0.7755 + }, + { + "start": 20985.72, + "end": 20987.3, + "probability": 0.9226 + }, + { + "start": 20987.38, + "end": 20987.82, + "probability": 0.9497 + }, + { + "start": 20987.86, + "end": 20989.52, + "probability": 0.6308 + }, + { + "start": 20989.8, + "end": 20991.36, + "probability": 0.69 + }, + { + "start": 20992.66, + "end": 20993.85, + "probability": 0.8786 + }, + { + "start": 20994.56, + "end": 20995.56, + "probability": 0.4946 + }, + { + "start": 20997.24, + "end": 20998.36, + "probability": 0.8732 + }, + { + "start": 21000.48, + "end": 21003.8, + "probability": 0.9733 + }, + { + "start": 21004.48, + "end": 21004.94, + "probability": 0.8158 + }, + { + "start": 21005.4, + "end": 21007.92, + "probability": 0.9757 + }, + { + "start": 21008.36, + "end": 21009.56, + "probability": 0.9782 + }, + { + "start": 21010.0, + "end": 21011.34, + "probability": 0.9646 + }, + { + "start": 21011.46, + "end": 21015.56, + "probability": 0.9822 + }, + { + "start": 21016.14, + "end": 21018.84, + "probability": 0.7697 + }, + { + "start": 21019.56, + "end": 21020.15, + "probability": 0.855 + }, + { + "start": 21020.5, + "end": 21025.28, + "probability": 0.9844 + }, + { + "start": 21025.66, + "end": 21027.04, + "probability": 0.9356 + }, + { + "start": 21027.9, + "end": 21032.24, + "probability": 0.9921 + }, + { + "start": 21033.08, + "end": 21033.68, + "probability": 0.5877 + }, + { + "start": 21033.96, + "end": 21037.8, + "probability": 0.4459 + }, + { + "start": 21037.94, + "end": 21040.74, + "probability": 0.8628 + }, + { + "start": 21040.8, + "end": 21044.04, + "probability": 0.9567 + }, + { + "start": 21044.24, + "end": 21046.78, + "probability": 0.7489 + }, + { + "start": 21046.78, + "end": 21049.0, + "probability": 0.979 + }, + { + "start": 21051.32, + "end": 21054.06, + "probability": 0.9336 + }, + { + "start": 21054.2, + "end": 21055.88, + "probability": 0.9878 + }, + { + "start": 21055.92, + "end": 21057.42, + "probability": 0.2168 + }, + { + "start": 21057.74, + "end": 21058.92, + "probability": 0.5942 + }, + { + "start": 21059.62, + "end": 21059.75, + "probability": 0.1016 + }, + { + "start": 21061.48, + "end": 21063.78, + "probability": 0.9976 + }, + { + "start": 21063.9, + "end": 21065.06, + "probability": 0.6923 + }, + { + "start": 21065.72, + "end": 21068.42, + "probability": 0.734 + }, + { + "start": 21071.6, + "end": 21073.76, + "probability": 0.5315 + }, + { + "start": 21076.34, + "end": 21081.18, + "probability": 0.735 + }, + { + "start": 21081.82, + "end": 21083.64, + "probability": 0.3197 + }, + { + "start": 21085.6, + "end": 21086.56, + "probability": 0.5235 + }, + { + "start": 21086.66, + "end": 21090.48, + "probability": 0.7303 + }, + { + "start": 21090.54, + "end": 21091.92, + "probability": 0.9764 + }, + { + "start": 21092.22, + "end": 21095.98, + "probability": 0.9753 + }, + { + "start": 21096.04, + "end": 21097.26, + "probability": 0.9727 + }, + { + "start": 21098.99, + "end": 21101.06, + "probability": 0.6187 + }, + { + "start": 21101.06, + "end": 21101.64, + "probability": 0.0334 + }, + { + "start": 21102.36, + "end": 21102.64, + "probability": 0.7175 + }, + { + "start": 21102.76, + "end": 21106.48, + "probability": 0.8328 + }, + { + "start": 21106.5, + "end": 21108.7, + "probability": 0.9222 + }, + { + "start": 21110.11, + "end": 21111.66, + "probability": 0.6804 + }, + { + "start": 21111.8, + "end": 21114.52, + "probability": 0.7927 + }, + { + "start": 21114.88, + "end": 21116.6, + "probability": 0.8115 + }, + { + "start": 21116.64, + "end": 21117.14, + "probability": 0.8004 + }, + { + "start": 21117.78, + "end": 21119.2, + "probability": 0.9495 + }, + { + "start": 21119.36, + "end": 21122.0, + "probability": 0.9614 + }, + { + "start": 21122.3, + "end": 21124.19, + "probability": 0.332 + }, + { + "start": 21125.72, + "end": 21126.37, + "probability": 0.103 + }, + { + "start": 21127.06, + "end": 21128.2, + "probability": 0.8989 + }, + { + "start": 21128.22, + "end": 21129.3, + "probability": 0.9092 + }, + { + "start": 21129.38, + "end": 21132.32, + "probability": 0.9888 + }, + { + "start": 21132.58, + "end": 21134.88, + "probability": 0.9946 + }, + { + "start": 21134.92, + "end": 21137.34, + "probability": 0.9954 + }, + { + "start": 21138.58, + "end": 21143.66, + "probability": 0.7416 + }, + { + "start": 21144.2, + "end": 21147.48, + "probability": 0.9909 + }, + { + "start": 21149.22, + "end": 21153.98, + "probability": 0.9604 + }, + { + "start": 21154.14, + "end": 21155.78, + "probability": 0.8219 + }, + { + "start": 21155.92, + "end": 21158.16, + "probability": 0.9353 + }, + { + "start": 21158.36, + "end": 21159.51, + "probability": 0.981 + }, + { + "start": 21161.26, + "end": 21163.52, + "probability": 0.8531 + }, + { + "start": 21163.66, + "end": 21166.5, + "probability": 0.9216 + }, + { + "start": 21166.92, + "end": 21169.64, + "probability": 0.8695 + }, + { + "start": 21169.94, + "end": 21172.9, + "probability": 0.915 + }, + { + "start": 21172.98, + "end": 21174.8, + "probability": 0.936 + }, + { + "start": 21175.54, + "end": 21179.66, + "probability": 0.8919 + }, + { + "start": 21180.28, + "end": 21181.76, + "probability": 0.9377 + }, + { + "start": 21181.84, + "end": 21183.56, + "probability": 0.936 + }, + { + "start": 21184.44, + "end": 21189.06, + "probability": 0.9492 + }, + { + "start": 21191.32, + "end": 21193.02, + "probability": 0.7573 + }, + { + "start": 21193.56, + "end": 21196.5, + "probability": 0.9722 + }, + { + "start": 21196.62, + "end": 21199.28, + "probability": 0.1802 + }, + { + "start": 21200.87, + "end": 21205.16, + "probability": 0.9917 + }, + { + "start": 21205.16, + "end": 21207.52, + "probability": 0.9503 + }, + { + "start": 21207.56, + "end": 21210.1, + "probability": 0.9671 + }, + { + "start": 21211.14, + "end": 21213.64, + "probability": 0.8049 + }, + { + "start": 21213.82, + "end": 21219.22, + "probability": 0.9629 + }, + { + "start": 21219.3, + "end": 21220.42, + "probability": 0.9529 + }, + { + "start": 21220.42, + "end": 21221.86, + "probability": 0.4709 + }, + { + "start": 21221.96, + "end": 21223.22, + "probability": 0.1215 + }, + { + "start": 21223.8, + "end": 21224.64, + "probability": 0.1169 + }, + { + "start": 21224.64, + "end": 21225.2, + "probability": 0.0521 + }, + { + "start": 21225.2, + "end": 21226.72, + "probability": 0.7861 + }, + { + "start": 21226.84, + "end": 21228.54, + "probability": 0.8833 + }, + { + "start": 21228.56, + "end": 21229.52, + "probability": 0.6675 + }, + { + "start": 21230.02, + "end": 21233.4, + "probability": 0.9942 + }, + { + "start": 21233.4, + "end": 21236.42, + "probability": 0.9169 + }, + { + "start": 21236.42, + "end": 21239.36, + "probability": 0.7778 + }, + { + "start": 21240.72, + "end": 21242.74, + "probability": 0.2231 + }, + { + "start": 21242.8, + "end": 21242.82, + "probability": 0.2401 + }, + { + "start": 21242.84, + "end": 21243.84, + "probability": 0.0865 + }, + { + "start": 21243.98, + "end": 21244.18, + "probability": 0.0926 + }, + { + "start": 21244.18, + "end": 21246.48, + "probability": 0.2647 + }, + { + "start": 21247.79, + "end": 21251.02, + "probability": 0.8283 + }, + { + "start": 21251.22, + "end": 21251.64, + "probability": 0.6131 + }, + { + "start": 21252.04, + "end": 21253.24, + "probability": 0.5863 + }, + { + "start": 21253.26, + "end": 21255.1, + "probability": 0.6226 + }, + { + "start": 21255.63, + "end": 21260.9, + "probability": 0.9914 + }, + { + "start": 21261.58, + "end": 21264.6, + "probability": 0.9342 + }, + { + "start": 21264.64, + "end": 21265.66, + "probability": 0.7109 + }, + { + "start": 21266.66, + "end": 21268.6, + "probability": 0.2173 + }, + { + "start": 21269.38, + "end": 21269.48, + "probability": 0.9918 + }, + { + "start": 21272.12, + "end": 21273.98, + "probability": 0.9955 + }, + { + "start": 21274.36, + "end": 21274.92, + "probability": 0.708 + }, + { + "start": 21274.92, + "end": 21277.42, + "probability": 0.8099 + }, + { + "start": 21277.54, + "end": 21279.18, + "probability": 0.3318 + }, + { + "start": 21279.36, + "end": 21279.9, + "probability": 0.7525 + }, + { + "start": 21280.02, + "end": 21281.56, + "probability": 0.8842 + }, + { + "start": 21281.68, + "end": 21285.38, + "probability": 0.9002 + }, + { + "start": 21285.74, + "end": 21289.4, + "probability": 0.8024 + }, + { + "start": 21289.54, + "end": 21289.86, + "probability": 0.7907 + }, + { + "start": 21289.92, + "end": 21290.32, + "probability": 0.7988 + }, + { + "start": 21290.32, + "end": 21291.64, + "probability": 0.8599 + }, + { + "start": 21291.76, + "end": 21291.94, + "probability": 0.8135 + }, + { + "start": 21291.94, + "end": 21291.94, + "probability": 0.6228 + }, + { + "start": 21292.06, + "end": 21292.16, + "probability": 0.4432 + }, + { + "start": 21292.16, + "end": 21293.2, + "probability": 0.7087 + }, + { + "start": 21293.3, + "end": 21294.16, + "probability": 0.6776 + }, + { + "start": 21294.62, + "end": 21297.14, + "probability": 0.967 + }, + { + "start": 21297.66, + "end": 21298.68, + "probability": 0.7378 + }, + { + "start": 21298.94, + "end": 21301.52, + "probability": 0.9607 + }, + { + "start": 21301.9, + "end": 21303.24, + "probability": 0.4858 + }, + { + "start": 21303.26, + "end": 21303.96, + "probability": 0.8975 + }, + { + "start": 21304.12, + "end": 21304.14, + "probability": 0.6042 + }, + { + "start": 21304.24, + "end": 21305.44, + "probability": 0.9475 + }, + { + "start": 21305.49, + "end": 21308.4, + "probability": 0.9364 + }, + { + "start": 21308.71, + "end": 21315.98, + "probability": 0.9902 + }, + { + "start": 21316.1, + "end": 21318.02, + "probability": 0.9921 + }, + { + "start": 21318.12, + "end": 21318.61, + "probability": 0.8115 + }, + { + "start": 21319.22, + "end": 21321.76, + "probability": 0.994 + }, + { + "start": 21322.0, + "end": 21323.42, + "probability": 0.9298 + }, + { + "start": 21323.88, + "end": 21325.26, + "probability": 0.7064 + }, + { + "start": 21325.36, + "end": 21326.6, + "probability": 0.8535 + }, + { + "start": 21326.84, + "end": 21327.46, + "probability": 0.7362 + }, + { + "start": 21327.54, + "end": 21328.24, + "probability": 0.9798 + }, + { + "start": 21328.66, + "end": 21332.86, + "probability": 0.9924 + }, + { + "start": 21333.48, + "end": 21334.18, + "probability": 0.5992 + }, + { + "start": 21334.34, + "end": 21334.96, + "probability": 0.7978 + }, + { + "start": 21335.16, + "end": 21338.56, + "probability": 0.9403 + }, + { + "start": 21338.7, + "end": 21339.9, + "probability": 0.6677 + }, + { + "start": 21340.5, + "end": 21342.74, + "probability": 0.9951 + }, + { + "start": 21343.38, + "end": 21347.76, + "probability": 0.9267 + }, + { + "start": 21348.54, + "end": 21348.78, + "probability": 0.2305 + }, + { + "start": 21349.98, + "end": 21351.44, + "probability": 0.8836 + }, + { + "start": 21352.62, + "end": 21355.16, + "probability": 0.3141 + }, + { + "start": 21356.1, + "end": 21356.1, + "probability": 0.0223 + }, + { + "start": 21356.1, + "end": 21357.08, + "probability": 0.2521 + }, + { + "start": 21357.12, + "end": 21359.2, + "probability": 0.8338 + }, + { + "start": 21359.24, + "end": 21360.3, + "probability": 0.3267 + }, + { + "start": 21361.38, + "end": 21364.44, + "probability": 0.5644 + }, + { + "start": 21365.29, + "end": 21367.54, + "probability": 0.6515 + }, + { + "start": 21367.66, + "end": 21368.56, + "probability": 0.9648 + }, + { + "start": 21369.56, + "end": 21370.58, + "probability": 0.8069 + }, + { + "start": 21370.8, + "end": 21371.52, + "probability": 0.5966 + }, + { + "start": 21371.64, + "end": 21372.3, + "probability": 0.705 + }, + { + "start": 21372.44, + "end": 21373.62, + "probability": 0.8286 + }, + { + "start": 21373.68, + "end": 21373.88, + "probability": 0.5094 + }, + { + "start": 21373.96, + "end": 21375.94, + "probability": 0.9727 + }, + { + "start": 21377.26, + "end": 21379.26, + "probability": 0.7635 + }, + { + "start": 21379.3, + "end": 21381.86, + "probability": 0.8817 + }, + { + "start": 21382.8, + "end": 21384.8, + "probability": 0.9579 + }, + { + "start": 21384.86, + "end": 21388.62, + "probability": 0.9688 + }, + { + "start": 21389.62, + "end": 21390.06, + "probability": 0.9528 + }, + { + "start": 21390.18, + "end": 21391.48, + "probability": 0.8889 + }, + { + "start": 21391.76, + "end": 21392.32, + "probability": 0.269 + }, + { + "start": 21392.42, + "end": 21393.32, + "probability": 0.954 + }, + { + "start": 21393.44, + "end": 21395.72, + "probability": 0.7124 + }, + { + "start": 21396.3, + "end": 21397.44, + "probability": 0.7711 + }, + { + "start": 21398.38, + "end": 21399.46, + "probability": 0.898 + }, + { + "start": 21400.42, + "end": 21401.54, + "probability": 0.9794 + }, + { + "start": 21403.08, + "end": 21404.52, + "probability": 0.7059 + }, + { + "start": 21404.95, + "end": 21407.72, + "probability": 0.7765 + }, + { + "start": 21407.94, + "end": 21409.74, + "probability": 0.7511 + }, + { + "start": 21409.82, + "end": 21411.04, + "probability": 0.8429 + }, + { + "start": 21413.0, + "end": 21416.52, + "probability": 0.9712 + }, + { + "start": 21416.72, + "end": 21418.88, + "probability": 0.6806 + }, + { + "start": 21419.12, + "end": 21419.8, + "probability": 0.7559 + }, + { + "start": 21420.44, + "end": 21422.16, + "probability": 0.9604 + }, + { + "start": 21423.0, + "end": 21425.02, + "probability": 0.9762 + }, + { + "start": 21425.02, + "end": 21428.3, + "probability": 0.9943 + }, + { + "start": 21428.84, + "end": 21430.52, + "probability": 0.978 + }, + { + "start": 21430.54, + "end": 21431.92, + "probability": 0.5998 + }, + { + "start": 21432.38, + "end": 21434.66, + "probability": 0.9384 + }, + { + "start": 21435.16, + "end": 21437.58, + "probability": 0.9618 + }, + { + "start": 21438.64, + "end": 21440.78, + "probability": 0.9892 + }, + { + "start": 21440.78, + "end": 21442.74, + "probability": 0.9948 + }, + { + "start": 21443.22, + "end": 21443.38, + "probability": 0.4427 + }, + { + "start": 21443.62, + "end": 21449.18, + "probability": 0.9708 + }, + { + "start": 21449.28, + "end": 21450.28, + "probability": 0.6243 + }, + { + "start": 21450.74, + "end": 21451.36, + "probability": 0.7475 + }, + { + "start": 21451.8, + "end": 21452.6, + "probability": 0.7224 + }, + { + "start": 21452.66, + "end": 21454.16, + "probability": 0.9944 + }, + { + "start": 21454.48, + "end": 21456.62, + "probability": 0.8735 + }, + { + "start": 21456.76, + "end": 21457.34, + "probability": 0.8706 + }, + { + "start": 21457.78, + "end": 21459.64, + "probability": 0.9043 + }, + { + "start": 21460.24, + "end": 21462.96, + "probability": 0.9348 + }, + { + "start": 21462.96, + "end": 21466.98, + "probability": 0.8848 + }, + { + "start": 21467.34, + "end": 21468.82, + "probability": 0.9198 + }, + { + "start": 21468.9, + "end": 21470.44, + "probability": 0.9764 + }, + { + "start": 21471.72, + "end": 21473.82, + "probability": 0.9266 + }, + { + "start": 21475.54, + "end": 21477.32, + "probability": 0.9654 + }, + { + "start": 21479.36, + "end": 21481.28, + "probability": 0.5479 + }, + { + "start": 21481.4, + "end": 21482.18, + "probability": 0.9135 + }, + { + "start": 21482.34, + "end": 21483.22, + "probability": 0.9219 + }, + { + "start": 21484.24, + "end": 21487.08, + "probability": 0.8054 + }, + { + "start": 21487.7, + "end": 21490.26, + "probability": 0.859 + }, + { + "start": 21490.96, + "end": 21491.76, + "probability": 0.82 + }, + { + "start": 21491.82, + "end": 21494.72, + "probability": 0.8752 + }, + { + "start": 21494.72, + "end": 21495.62, + "probability": 0.8276 + }, + { + "start": 21496.5, + "end": 21499.48, + "probability": 0.8925 + }, + { + "start": 21500.08, + "end": 21500.56, + "probability": 0.6108 + }, + { + "start": 21500.6, + "end": 21501.24, + "probability": 0.9275 + }, + { + "start": 21501.5, + "end": 21505.84, + "probability": 0.9757 + }, + { + "start": 21505.94, + "end": 21507.56, + "probability": 0.4897 + }, + { + "start": 21507.76, + "end": 21509.76, + "probability": 0.6267 + }, + { + "start": 21510.1, + "end": 21511.52, + "probability": 0.9808 + }, + { + "start": 21511.76, + "end": 21515.24, + "probability": 0.9789 + }, + { + "start": 21515.5, + "end": 21517.6, + "probability": 0.9369 + }, + { + "start": 21517.7, + "end": 21518.84, + "probability": 0.8849 + }, + { + "start": 21519.42, + "end": 21524.28, + "probability": 0.9072 + }, + { + "start": 21524.34, + "end": 21525.2, + "probability": 0.3637 + }, + { + "start": 21525.72, + "end": 21527.46, + "probability": 0.8804 + }, + { + "start": 21527.62, + "end": 21529.46, + "probability": 0.9622 + }, + { + "start": 21529.88, + "end": 21530.36, + "probability": 0.7367 + }, + { + "start": 21530.54, + "end": 21534.24, + "probability": 0.9781 + }, + { + "start": 21534.76, + "end": 21537.62, + "probability": 0.9732 + }, + { + "start": 21538.36, + "end": 21539.34, + "probability": 0.8403 + }, + { + "start": 21539.74, + "end": 21540.66, + "probability": 0.9543 + }, + { + "start": 21540.96, + "end": 21543.5, + "probability": 0.8487 + }, + { + "start": 21544.32, + "end": 21544.52, + "probability": 0.8872 + }, + { + "start": 21544.58, + "end": 21545.16, + "probability": 0.9339 + }, + { + "start": 21545.22, + "end": 21546.29, + "probability": 0.9741 + }, + { + "start": 21546.92, + "end": 21547.88, + "probability": 0.962 + }, + { + "start": 21549.58, + "end": 21550.68, + "probability": 0.6875 + }, + { + "start": 21550.78, + "end": 21551.38, + "probability": 0.8708 + }, + { + "start": 21551.46, + "end": 21553.16, + "probability": 0.9836 + }, + { + "start": 21553.22, + "end": 21554.34, + "probability": 0.9826 + }, + { + "start": 21554.44, + "end": 21555.4, + "probability": 0.7375 + }, + { + "start": 21555.66, + "end": 21556.82, + "probability": 0.7788 + }, + { + "start": 21557.08, + "end": 21559.4, + "probability": 0.853 + }, + { + "start": 21559.56, + "end": 21560.52, + "probability": 0.9669 + }, + { + "start": 21561.28, + "end": 21563.44, + "probability": 0.5849 + }, + { + "start": 21563.56, + "end": 21567.32, + "probability": 0.9843 + }, + { + "start": 21570.17, + "end": 21571.74, + "probability": 0.7634 + }, + { + "start": 21571.82, + "end": 21572.14, + "probability": 0.8701 + }, + { + "start": 21572.28, + "end": 21574.44, + "probability": 0.9927 + }, + { + "start": 21575.02, + "end": 21575.78, + "probability": 0.7035 + }, + { + "start": 21575.96, + "end": 21576.56, + "probability": 0.5963 + }, + { + "start": 21577.18, + "end": 21580.72, + "probability": 0.8021 + }, + { + "start": 21581.52, + "end": 21582.72, + "probability": 0.6499 + }, + { + "start": 21582.86, + "end": 21583.58, + "probability": 0.8691 + }, + { + "start": 21583.6, + "end": 21584.56, + "probability": 0.7485 + }, + { + "start": 21584.82, + "end": 21587.46, + "probability": 0.8991 + }, + { + "start": 21588.4, + "end": 21591.6, + "probability": 0.898 + }, + { + "start": 21591.86, + "end": 21592.74, + "probability": 0.8717 + }, + { + "start": 21592.82, + "end": 21593.58, + "probability": 0.8061 + }, + { + "start": 21593.64, + "end": 21599.56, + "probability": 0.6613 + }, + { + "start": 21599.64, + "end": 21601.02, + "probability": 0.9324 + }, + { + "start": 21603.03, + "end": 21605.86, + "probability": 0.6292 + }, + { + "start": 21606.86, + "end": 21609.06, + "probability": 0.6934 + }, + { + "start": 21609.26, + "end": 21613.8, + "probability": 0.9858 + }, + { + "start": 21613.84, + "end": 21616.29, + "probability": 0.8304 + }, + { + "start": 21617.84, + "end": 21618.74, + "probability": 0.8146 + }, + { + "start": 21618.8, + "end": 21620.0, + "probability": 0.4998 + }, + { + "start": 21620.14, + "end": 21624.6, + "probability": 0.9822 + }, + { + "start": 21624.7, + "end": 21625.73, + "probability": 0.7509 + }, + { + "start": 21627.6, + "end": 21629.42, + "probability": 0.2831 + }, + { + "start": 21631.2, + "end": 21633.2, + "probability": 0.8531 + }, + { + "start": 21633.34, + "end": 21634.5, + "probability": 0.9079 + }, + { + "start": 21634.54, + "end": 21635.1, + "probability": 0.9248 + }, + { + "start": 21637.26, + "end": 21638.75, + "probability": 0.9702 + }, + { + "start": 21639.4, + "end": 21644.52, + "probability": 0.8948 + }, + { + "start": 21644.6, + "end": 21645.78, + "probability": 0.7186 + }, + { + "start": 21646.46, + "end": 21647.96, + "probability": 0.8649 + }, + { + "start": 21648.0, + "end": 21649.92, + "probability": 0.9847 + }, + { + "start": 21650.0, + "end": 21650.76, + "probability": 0.5587 + }, + { + "start": 21651.94, + "end": 21655.2, + "probability": 0.99 + }, + { + "start": 21655.3, + "end": 21658.18, + "probability": 0.9861 + }, + { + "start": 21658.34, + "end": 21660.74, + "probability": 0.9281 + }, + { + "start": 21660.76, + "end": 21660.76, + "probability": 0.2569 + }, + { + "start": 21660.84, + "end": 21662.36, + "probability": 0.8063 + }, + { + "start": 21662.36, + "end": 21664.56, + "probability": 0.7558 + }, + { + "start": 21665.08, + "end": 21670.42, + "probability": 0.9611 + }, + { + "start": 21670.86, + "end": 21672.38, + "probability": 0.9869 + }, + { + "start": 21672.52, + "end": 21672.62, + "probability": 0.8175 + }, + { + "start": 21672.86, + "end": 21673.38, + "probability": 0.8069 + }, + { + "start": 21673.5, + "end": 21673.94, + "probability": 0.2302 + }, + { + "start": 21673.98, + "end": 21675.3, + "probability": 0.8879 + }, + { + "start": 21675.66, + "end": 21679.76, + "probability": 0.9195 + }, + { + "start": 21688.42, + "end": 21689.94, + "probability": 0.1648 + }, + { + "start": 21689.94, + "end": 21691.1, + "probability": 0.6332 + }, + { + "start": 21693.82, + "end": 21694.88, + "probability": 0.909 + }, + { + "start": 21704.14, + "end": 21704.62, + "probability": 0.6001 + }, + { + "start": 21706.32, + "end": 21711.96, + "probability": 0.791 + }, + { + "start": 21712.48, + "end": 21715.46, + "probability": 0.6796 + }, + { + "start": 21715.86, + "end": 21716.36, + "probability": 0.9308 + }, + { + "start": 21716.42, + "end": 21717.26, + "probability": 0.8888 + }, + { + "start": 21717.6, + "end": 21720.48, + "probability": 0.9864 + }, + { + "start": 21720.82, + "end": 21721.36, + "probability": 0.8078 + }, + { + "start": 21723.52, + "end": 21725.18, + "probability": 0.8417 + }, + { + "start": 21725.5, + "end": 21728.48, + "probability": 0.9342 + }, + { + "start": 21729.5, + "end": 21731.5, + "probability": 0.811 + }, + { + "start": 21732.96, + "end": 21735.64, + "probability": 0.4733 + }, + { + "start": 21737.76, + "end": 21738.74, + "probability": 0.9941 + }, + { + "start": 21739.72, + "end": 21741.54, + "probability": 0.718 + }, + { + "start": 21741.58, + "end": 21748.82, + "probability": 0.9417 + }, + { + "start": 21748.92, + "end": 21752.26, + "probability": 0.9783 + }, + { + "start": 21752.58, + "end": 21753.33, + "probability": 0.7263 + }, + { + "start": 21755.6, + "end": 21758.22, + "probability": 0.9722 + }, + { + "start": 21758.44, + "end": 21763.44, + "probability": 0.8549 + }, + { + "start": 21764.14, + "end": 21766.48, + "probability": 0.9967 + }, + { + "start": 21766.68, + "end": 21768.4, + "probability": 0.6389 + }, + { + "start": 21769.86, + "end": 21772.68, + "probability": 0.9866 + }, + { + "start": 21778.64, + "end": 21784.56, + "probability": 0.9463 + }, + { + "start": 21784.82, + "end": 21788.68, + "probability": 0.9987 + }, + { + "start": 21790.26, + "end": 21791.64, + "probability": 0.8034 + }, + { + "start": 21791.74, + "end": 21796.54, + "probability": 0.9907 + }, + { + "start": 21796.64, + "end": 21798.0, + "probability": 0.6543 + }, + { + "start": 21799.2, + "end": 21802.3, + "probability": 0.7017 + }, + { + "start": 21803.04, + "end": 21804.78, + "probability": 0.9982 + }, + { + "start": 21805.62, + "end": 21811.42, + "probability": 0.9526 + }, + { + "start": 21811.42, + "end": 21811.56, + "probability": 0.6893 + }, + { + "start": 21811.66, + "end": 21815.58, + "probability": 0.9411 + }, + { + "start": 21816.18, + "end": 21818.28, + "probability": 0.8539 + }, + { + "start": 21820.8, + "end": 21821.0, + "probability": 0.5301 + }, + { + "start": 21821.18, + "end": 21822.16, + "probability": 0.6937 + }, + { + "start": 21822.4, + "end": 21824.29, + "probability": 0.947 + }, + { + "start": 21825.08, + "end": 21828.52, + "probability": 0.9398 + }, + { + "start": 21828.56, + "end": 21829.38, + "probability": 0.9393 + }, + { + "start": 21830.78, + "end": 21833.16, + "probability": 0.98 + }, + { + "start": 21833.22, + "end": 21836.54, + "probability": 0.7759 + }, + { + "start": 21837.58, + "end": 21842.39, + "probability": 0.8169 + }, + { + "start": 21842.56, + "end": 21843.1, + "probability": 0.7469 + }, + { + "start": 21843.34, + "end": 21845.0, + "probability": 0.7383 + }, + { + "start": 21845.1, + "end": 21846.58, + "probability": 0.9624 + }, + { + "start": 21848.48, + "end": 21848.64, + "probability": 0.4745 + }, + { + "start": 21848.66, + "end": 21850.68, + "probability": 0.8942 + }, + { + "start": 21851.14, + "end": 21852.58, + "probability": 0.9072 + }, + { + "start": 21853.04, + "end": 21853.92, + "probability": 0.9983 + }, + { + "start": 21854.02, + "end": 21856.44, + "probability": 0.9905 + }, + { + "start": 21857.22, + "end": 21859.54, + "probability": 0.9532 + }, + { + "start": 21860.06, + "end": 21865.16, + "probability": 0.9909 + }, + { + "start": 21865.86, + "end": 21867.72, + "probability": 0.7535 + }, + { + "start": 21869.62, + "end": 21873.76, + "probability": 0.9935 + }, + { + "start": 21874.2, + "end": 21874.82, + "probability": 0.7277 + }, + { + "start": 21875.12, + "end": 21877.82, + "probability": 0.962 + }, + { + "start": 21877.88, + "end": 21878.66, + "probability": 0.9786 + }, + { + "start": 21878.7, + "end": 21879.3, + "probability": 0.8017 + }, + { + "start": 21880.04, + "end": 21882.24, + "probability": 0.9968 + }, + { + "start": 21882.34, + "end": 21884.82, + "probability": 0.9829 + }, + { + "start": 21885.06, + "end": 21886.98, + "probability": 0.9872 + }, + { + "start": 21887.42, + "end": 21888.64, + "probability": 0.9427 + }, + { + "start": 21889.48, + "end": 21893.3, + "probability": 0.5666 + }, + { + "start": 21893.92, + "end": 21896.52, + "probability": 0.9072 + }, + { + "start": 21896.56, + "end": 21900.1, + "probability": 0.9816 + }, + { + "start": 21900.98, + "end": 21905.76, + "probability": 0.9932 + }, + { + "start": 21907.26, + "end": 21914.94, + "probability": 0.995 + }, + { + "start": 21916.08, + "end": 21920.52, + "probability": 0.9829 + }, + { + "start": 21921.24, + "end": 21922.4, + "probability": 0.9267 + }, + { + "start": 21923.06, + "end": 21926.12, + "probability": 0.8185 + }, + { + "start": 21927.5, + "end": 21930.92, + "probability": 0.99 + }, + { + "start": 21931.02, + "end": 21933.48, + "probability": 0.9895 + }, + { + "start": 21934.16, + "end": 21935.54, + "probability": 0.9367 + }, + { + "start": 21935.6, + "end": 21938.34, + "probability": 0.9408 + }, + { + "start": 21938.54, + "end": 21940.89, + "probability": 0.9072 + }, + { + "start": 21942.02, + "end": 21942.24, + "probability": 0.8357 + }, + { + "start": 21942.28, + "end": 21947.72, + "probability": 0.8499 + }, + { + "start": 21948.2, + "end": 21950.04, + "probability": 0.9932 + }, + { + "start": 21951.16, + "end": 21953.04, + "probability": 0.7674 + }, + { + "start": 21953.08, + "end": 21954.94, + "probability": 0.7896 + }, + { + "start": 21956.08, + "end": 21961.52, + "probability": 0.9656 + }, + { + "start": 21962.28, + "end": 21965.06, + "probability": 0.9946 + }, + { + "start": 21965.16, + "end": 21967.24, + "probability": 0.985 + }, + { + "start": 21968.2, + "end": 21970.0, + "probability": 0.9587 + }, + { + "start": 21970.22, + "end": 21974.0, + "probability": 0.9098 + }, + { + "start": 21975.04, + "end": 21975.26, + "probability": 0.4236 + }, + { + "start": 21975.38, + "end": 21976.62, + "probability": 0.9768 + }, + { + "start": 21976.7, + "end": 21979.98, + "probability": 0.9529 + }, + { + "start": 21980.08, + "end": 21981.32, + "probability": 0.8776 + }, + { + "start": 21982.06, + "end": 21983.76, + "probability": 0.5385 + }, + { + "start": 21984.56, + "end": 21986.94, + "probability": 0.9937 + }, + { + "start": 21987.06, + "end": 21989.7, + "probability": 0.9473 + }, + { + "start": 21990.1, + "end": 21994.12, + "probability": 0.9951 + }, + { + "start": 21994.6, + "end": 21997.72, + "probability": 0.998 + }, + { + "start": 21998.86, + "end": 22004.1, + "probability": 0.7939 + }, + { + "start": 22004.2, + "end": 22009.18, + "probability": 0.9962 + }, + { + "start": 22009.74, + "end": 22011.02, + "probability": 0.9649 + }, + { + "start": 22011.76, + "end": 22016.3, + "probability": 0.9924 + }, + { + "start": 22016.32, + "end": 22016.94, + "probability": 0.6876 + }, + { + "start": 22017.0, + "end": 22018.3, + "probability": 0.949 + }, + { + "start": 22018.96, + "end": 22020.56, + "probability": 0.7872 + }, + { + "start": 22021.86, + "end": 22025.22, + "probability": 0.8196 + }, + { + "start": 22025.22, + "end": 22029.4, + "probability": 0.9747 + }, + { + "start": 22029.56, + "end": 22030.92, + "probability": 0.8552 + }, + { + "start": 22031.46, + "end": 22033.86, + "probability": 0.9868 + }, + { + "start": 22034.02, + "end": 22035.2, + "probability": 0.943 + }, + { + "start": 22035.28, + "end": 22035.88, + "probability": 0.936 + }, + { + "start": 22036.18, + "end": 22037.52, + "probability": 0.5119 + }, + { + "start": 22038.12, + "end": 22043.68, + "probability": 0.9009 + }, + { + "start": 22043.96, + "end": 22044.56, + "probability": 0.7201 + }, + { + "start": 22044.88, + "end": 22046.2, + "probability": 0.7526 + }, + { + "start": 22046.56, + "end": 22052.16, + "probability": 0.7175 + }, + { + "start": 22052.28, + "end": 22053.59, + "probability": 0.8732 + }, + { + "start": 22054.12, + "end": 22055.1, + "probability": 0.9802 + }, + { + "start": 22055.5, + "end": 22057.15, + "probability": 0.6742 + }, + { + "start": 22057.6, + "end": 22059.95, + "probability": 0.7485 + }, + { + "start": 22060.98, + "end": 22061.7, + "probability": 0.8422 + }, + { + "start": 22062.02, + "end": 22062.54, + "probability": 0.8817 + }, + { + "start": 22063.12, + "end": 22063.92, + "probability": 0.6588 + }, + { + "start": 22064.32, + "end": 22066.1, + "probability": 0.962 + }, + { + "start": 22066.9, + "end": 22067.16, + "probability": 0.396 + }, + { + "start": 22067.22, + "end": 22068.42, + "probability": 0.8831 + }, + { + "start": 22071.88, + "end": 22074.44, + "probability": 0.9436 + }, + { + "start": 22077.7, + "end": 22082.7, + "probability": 0.9536 + }, + { + "start": 22082.78, + "end": 22083.2, + "probability": 0.3633 + }, + { + "start": 22083.24, + "end": 22084.72, + "probability": 0.8451 + }, + { + "start": 22085.8, + "end": 22089.5, + "probability": 0.3107 + }, + { + "start": 22089.88, + "end": 22093.58, + "probability": 0.939 + }, + { + "start": 22093.78, + "end": 22094.26, + "probability": 0.3353 + }, + { + "start": 22094.98, + "end": 22095.12, + "probability": 0.2894 + }, + { + "start": 22095.12, + "end": 22096.2, + "probability": 0.7094 + }, + { + "start": 22096.38, + "end": 22097.0, + "probability": 0.8154 + }, + { + "start": 22097.04, + "end": 22101.28, + "probability": 0.9578 + }, + { + "start": 22101.38, + "end": 22104.8, + "probability": 0.991 + }, + { + "start": 22105.3, + "end": 22108.86, + "probability": 0.82 + }, + { + "start": 22109.66, + "end": 22111.07, + "probability": 0.5276 + }, + { + "start": 22112.33, + "end": 22116.16, + "probability": 0.9806 + }, + { + "start": 22116.36, + "end": 22117.46, + "probability": 0.9442 + }, + { + "start": 22117.78, + "end": 22121.05, + "probability": 0.9656 + }, + { + "start": 22121.28, + "end": 22123.46, + "probability": 0.9076 + }, + { + "start": 22123.66, + "end": 22124.56, + "probability": 0.729 + }, + { + "start": 22124.74, + "end": 22126.02, + "probability": 0.7758 + }, + { + "start": 22126.54, + "end": 22128.56, + "probability": 0.9906 + }, + { + "start": 22128.68, + "end": 22131.46, + "probability": 0.9961 + }, + { + "start": 22131.58, + "end": 22135.64, + "probability": 0.8337 + }, + { + "start": 22135.92, + "end": 22136.96, + "probability": 0.7695 + }, + { + "start": 22137.02, + "end": 22138.24, + "probability": 0.72 + }, + { + "start": 22138.54, + "end": 22139.06, + "probability": 0.5715 + }, + { + "start": 22139.26, + "end": 22142.44, + "probability": 0.9339 + }, + { + "start": 22142.56, + "end": 22143.54, + "probability": 0.9673 + }, + { + "start": 22143.96, + "end": 22145.32, + "probability": 0.7685 + }, + { + "start": 22145.4, + "end": 22148.6, + "probability": 0.1728 + }, + { + "start": 22149.82, + "end": 22150.63, + "probability": 0.9761 + }, + { + "start": 22151.32, + "end": 22152.08, + "probability": 0.8404 + }, + { + "start": 22152.64, + "end": 22153.58, + "probability": 0.7274 + }, + { + "start": 22153.72, + "end": 22154.8, + "probability": 0.8724 + }, + { + "start": 22154.88, + "end": 22156.06, + "probability": 0.7677 + }, + { + "start": 22156.98, + "end": 22161.52, + "probability": 0.9307 + }, + { + "start": 22162.6, + "end": 22165.62, + "probability": 0.998 + }, + { + "start": 22166.2, + "end": 22166.88, + "probability": 0.9614 + }, + { + "start": 22167.78, + "end": 22171.1, + "probability": 0.7505 + }, + { + "start": 22171.58, + "end": 22172.38, + "probability": 0.9866 + }, + { + "start": 22173.5, + "end": 22175.18, + "probability": 0.7789 + }, + { + "start": 22175.38, + "end": 22176.14, + "probability": 0.7829 + }, + { + "start": 22176.62, + "end": 22178.1, + "probability": 0.7091 + }, + { + "start": 22178.2, + "end": 22179.08, + "probability": 0.7334 + }, + { + "start": 22179.16, + "end": 22179.88, + "probability": 0.0285 + }, + { + "start": 22180.44, + "end": 22182.56, + "probability": 0.0016 + }, + { + "start": 22183.34, + "end": 22185.68, + "probability": 0.5592 + }, + { + "start": 22190.96, + "end": 22192.0, + "probability": 0.1335 + }, + { + "start": 22192.06, + "end": 22192.66, + "probability": 0.5429 + }, + { + "start": 22192.74, + "end": 22193.93, + "probability": 0.9783 + }, + { + "start": 22194.14, + "end": 22194.36, + "probability": 0.147 + }, + { + "start": 22194.36, + "end": 22196.24, + "probability": 0.758 + }, + { + "start": 22197.83, + "end": 22199.92, + "probability": 0.98 + }, + { + "start": 22200.0, + "end": 22200.98, + "probability": 0.9796 + }, + { + "start": 22201.04, + "end": 22201.7, + "probability": 0.9068 + }, + { + "start": 22202.14, + "end": 22202.88, + "probability": 0.7161 + }, + { + "start": 22203.1, + "end": 22204.68, + "probability": 0.5809 + }, + { + "start": 22205.67, + "end": 22209.0, + "probability": 0.922 + }, + { + "start": 22209.4, + "end": 22211.5, + "probability": 0.9514 + }, + { + "start": 22211.58, + "end": 22212.82, + "probability": 0.6588 + }, + { + "start": 22212.88, + "end": 22213.32, + "probability": 0.8445 + }, + { + "start": 22213.48, + "end": 22213.58, + "probability": 0.5048 + }, + { + "start": 22213.58, + "end": 22216.04, + "probability": 0.9856 + }, + { + "start": 22216.86, + "end": 22219.44, + "probability": 0.9214 + }, + { + "start": 22220.62, + "end": 22223.76, + "probability": 0.9554 + }, + { + "start": 22225.1, + "end": 22229.9, + "probability": 0.9506 + }, + { + "start": 22231.76, + "end": 22232.4, + "probability": 0.4304 + }, + { + "start": 22232.5, + "end": 22233.3, + "probability": 0.4616 + }, + { + "start": 22233.32, + "end": 22234.81, + "probability": 0.7579 + }, + { + "start": 22236.6, + "end": 22237.64, + "probability": 0.7391 + }, + { + "start": 22237.8, + "end": 22238.86, + "probability": 0.9146 + }, + { + "start": 22239.16, + "end": 22242.34, + "probability": 0.6466 + }, + { + "start": 22242.6, + "end": 22246.7, + "probability": 0.8236 + }, + { + "start": 22247.38, + "end": 22248.24, + "probability": 0.9261 + }, + { + "start": 22249.3, + "end": 22250.44, + "probability": 0.9956 + }, + { + "start": 22250.52, + "end": 22251.64, + "probability": 0.9872 + }, + { + "start": 22251.78, + "end": 22253.56, + "probability": 0.7031 + }, + { + "start": 22253.7, + "end": 22255.14, + "probability": 0.2072 + }, + { + "start": 22255.56, + "end": 22258.22, + "probability": 0.9956 + }, + { + "start": 22258.22, + "end": 22262.22, + "probability": 0.9665 + }, + { + "start": 22263.02, + "end": 22263.8, + "probability": 0.5828 + }, + { + "start": 22264.7, + "end": 22269.44, + "probability": 0.9957 + }, + { + "start": 22270.42, + "end": 22272.82, + "probability": 0.9572 + }, + { + "start": 22276.4, + "end": 22277.4, + "probability": 0.8276 + }, + { + "start": 22278.98, + "end": 22280.52, + "probability": 0.5526 + }, + { + "start": 22281.5, + "end": 22285.0, + "probability": 0.7565 + }, + { + "start": 22285.5, + "end": 22286.2, + "probability": 0.6943 + }, + { + "start": 22286.34, + "end": 22290.74, + "probability": 0.876 + }, + { + "start": 22290.84, + "end": 22292.06, + "probability": 0.9697 + }, + { + "start": 22292.26, + "end": 22295.46, + "probability": 0.9508 + }, + { + "start": 22295.5, + "end": 22296.03, + "probability": 0.9385 + }, + { + "start": 22296.94, + "end": 22297.62, + "probability": 0.6616 + }, + { + "start": 22298.52, + "end": 22301.5, + "probability": 0.8765 + }, + { + "start": 22307.48, + "end": 22314.08, + "probability": 0.9627 + }, + { + "start": 22316.04, + "end": 22320.78, + "probability": 0.8477 + }, + { + "start": 22320.92, + "end": 22321.73, + "probability": 0.908 + }, + { + "start": 22322.3, + "end": 22323.2, + "probability": 0.8123 + }, + { + "start": 22323.26, + "end": 22330.7, + "probability": 0.5907 + }, + { + "start": 22330.7, + "end": 22332.3, + "probability": 0.6771 + }, + { + "start": 22332.84, + "end": 22335.28, + "probability": 0.7427 + }, + { + "start": 22335.5, + "end": 22338.92, + "probability": 0.8266 + }, + { + "start": 22340.0, + "end": 22340.82, + "probability": 0.5438 + }, + { + "start": 22340.9, + "end": 22343.3, + "probability": 0.6729 + }, + { + "start": 22343.58, + "end": 22344.92, + "probability": 0.9664 + }, + { + "start": 22346.22, + "end": 22347.94, + "probability": 0.9783 + }, + { + "start": 22348.32, + "end": 22350.4, + "probability": 0.9745 + }, + { + "start": 22351.06, + "end": 22357.0, + "probability": 0.7851 + }, + { + "start": 22359.5, + "end": 22362.96, + "probability": 0.5893 + }, + { + "start": 22363.34, + "end": 22363.72, + "probability": 0.6709 + }, + { + "start": 22363.82, + "end": 22364.76, + "probability": 0.5558 + }, + { + "start": 22364.8, + "end": 22365.51, + "probability": 0.6487 + }, + { + "start": 22365.6, + "end": 22366.98, + "probability": 0.7826 + }, + { + "start": 22367.04, + "end": 22368.13, + "probability": 0.8105 + }, + { + "start": 22368.48, + "end": 22369.44, + "probability": 0.9867 + }, + { + "start": 22369.54, + "end": 22370.28, + "probability": 0.0265 + }, + { + "start": 22372.02, + "end": 22372.6, + "probability": 0.0165 + }, + { + "start": 22372.6, + "end": 22372.6, + "probability": 0.1292 + }, + { + "start": 22372.6, + "end": 22374.1, + "probability": 0.9189 + }, + { + "start": 22375.18, + "end": 22375.74, + "probability": 0.8403 + }, + { + "start": 22375.88, + "end": 22379.88, + "probability": 0.9496 + }, + { + "start": 22380.44, + "end": 22384.54, + "probability": 0.939 + }, + { + "start": 22385.14, + "end": 22388.82, + "probability": 0.9914 + }, + { + "start": 22390.34, + "end": 22391.2, + "probability": 0.7334 + }, + { + "start": 22391.3, + "end": 22394.54, + "probability": 0.6342 + }, + { + "start": 22395.04, + "end": 22396.54, + "probability": 0.9766 + }, + { + "start": 22396.7, + "end": 22397.4, + "probability": 0.939 + }, + { + "start": 22397.5, + "end": 22398.8, + "probability": 0.9249 + }, + { + "start": 22399.46, + "end": 22402.02, + "probability": 0.9418 + }, + { + "start": 22402.92, + "end": 22407.44, + "probability": 0.9685 + }, + { + "start": 22407.62, + "end": 22411.66, + "probability": 0.9802 + }, + { + "start": 22412.21, + "end": 22414.81, + "probability": 0.9004 + }, + { + "start": 22415.56, + "end": 22416.34, + "probability": 0.9741 + }, + { + "start": 22416.6, + "end": 22421.38, + "probability": 0.9588 + }, + { + "start": 22422.3, + "end": 22423.72, + "probability": 0.6104 + }, + { + "start": 22423.76, + "end": 22426.42, + "probability": 0.866 + }, + { + "start": 22426.66, + "end": 22427.8, + "probability": 0.7844 + }, + { + "start": 22428.26, + "end": 22432.1, + "probability": 0.7813 + }, + { + "start": 22432.24, + "end": 22432.65, + "probability": 0.9666 + }, + { + "start": 22433.0, + "end": 22436.22, + "probability": 0.9338 + }, + { + "start": 22436.32, + "end": 22438.98, + "probability": 0.9958 + }, + { + "start": 22439.2, + "end": 22441.08, + "probability": 0.9972 + }, + { + "start": 22441.52, + "end": 22442.74, + "probability": 0.8506 + }, + { + "start": 22443.48, + "end": 22446.68, + "probability": 0.728 + }, + { + "start": 22448.36, + "end": 22449.02, + "probability": 0.8961 + }, + { + "start": 22449.08, + "end": 22449.72, + "probability": 0.9677 + }, + { + "start": 22449.8, + "end": 22450.52, + "probability": 0.9628 + }, + { + "start": 22450.64, + "end": 22451.26, + "probability": 0.4987 + }, + { + "start": 22451.38, + "end": 22452.3, + "probability": 0.6391 + }, + { + "start": 22452.48, + "end": 22452.9, + "probability": 0.4729 + }, + { + "start": 22453.42, + "end": 22454.24, + "probability": 0.6884 + }, + { + "start": 22455.2, + "end": 22456.94, + "probability": 0.8076 + }, + { + "start": 22457.02, + "end": 22457.02, + "probability": 0.0357 + }, + { + "start": 22457.02, + "end": 22457.58, + "probability": 0.6493 + }, + { + "start": 22457.66, + "end": 22458.5, + "probability": 0.9216 + }, + { + "start": 22459.18, + "end": 22459.84, + "probability": 0.8181 + }, + { + "start": 22460.28, + "end": 22460.74, + "probability": 0.8593 + }, + { + "start": 22460.76, + "end": 22461.22, + "probability": 0.8589 + }, + { + "start": 22461.42, + "end": 22462.22, + "probability": 0.1954 + }, + { + "start": 22462.94, + "end": 22463.56, + "probability": 0.1774 + }, + { + "start": 22463.76, + "end": 22464.22, + "probability": 0.7249 + }, + { + "start": 22464.66, + "end": 22467.28, + "probability": 0.9754 + }, + { + "start": 22467.28, + "end": 22469.78, + "probability": 0.9283 + }, + { + "start": 22470.04, + "end": 22471.18, + "probability": 0.5362 + }, + { + "start": 22471.28, + "end": 22472.05, + "probability": 0.9385 + }, + { + "start": 22472.24, + "end": 22472.82, + "probability": 0.9345 + }, + { + "start": 22472.94, + "end": 22476.98, + "probability": 0.95 + }, + { + "start": 22477.04, + "end": 22478.1, + "probability": 0.5036 + }, + { + "start": 22478.48, + "end": 22480.5, + "probability": 0.9911 + }, + { + "start": 22480.64, + "end": 22481.68, + "probability": 0.9727 + }, + { + "start": 22481.82, + "end": 22483.78, + "probability": 0.7373 + }, + { + "start": 22483.86, + "end": 22484.32, + "probability": 0.9548 + }, + { + "start": 22484.54, + "end": 22488.72, + "probability": 0.9734 + }, + { + "start": 22491.42, + "end": 22492.96, + "probability": 0.9546 + }, + { + "start": 22493.16, + "end": 22499.12, + "probability": 0.879 + }, + { + "start": 22499.22, + "end": 22499.22, + "probability": 0.5355 + }, + { + "start": 22499.22, + "end": 22500.3, + "probability": 0.886 + }, + { + "start": 22500.46, + "end": 22504.42, + "probability": 0.8415 + }, + { + "start": 22504.48, + "end": 22505.56, + "probability": 0.8693 + }, + { + "start": 22505.87, + "end": 22506.27, + "probability": 0.4755 + }, + { + "start": 22506.96, + "end": 22510.24, + "probability": 0.7993 + }, + { + "start": 22510.46, + "end": 22512.64, + "probability": 0.4682 + }, + { + "start": 22512.76, + "end": 22513.78, + "probability": 0.6124 + }, + { + "start": 22514.02, + "end": 22515.48, + "probability": 0.5517 + }, + { + "start": 22515.48, + "end": 22516.69, + "probability": 0.303 + }, + { + "start": 22517.22, + "end": 22517.84, + "probability": 0.6964 + }, + { + "start": 22518.1, + "end": 22520.6, + "probability": 0.1635 + }, + { + "start": 22520.6, + "end": 22520.72, + "probability": 0.0422 + }, + { + "start": 22520.72, + "end": 22522.26, + "probability": 0.8992 + }, + { + "start": 22522.38, + "end": 22523.1, + "probability": 0.6274 + }, + { + "start": 22523.1, + "end": 22524.01, + "probability": 0.5368 + }, + { + "start": 22524.5, + "end": 22527.12, + "probability": 0.8997 + }, + { + "start": 22527.5, + "end": 22529.06, + "probability": 0.9159 + }, + { + "start": 22529.12, + "end": 22530.9, + "probability": 0.7503 + }, + { + "start": 22531.48, + "end": 22534.0, + "probability": 0.9571 + }, + { + "start": 22534.32, + "end": 22536.36, + "probability": 0.9731 + }, + { + "start": 22537.34, + "end": 22539.76, + "probability": 0.4001 + }, + { + "start": 22539.78, + "end": 22541.93, + "probability": 0.9846 + }, + { + "start": 22542.92, + "end": 22546.14, + "probability": 0.3089 + }, + { + "start": 22547.95, + "end": 22551.5, + "probability": 0.7953 + }, + { + "start": 22551.7, + "end": 22553.06, + "probability": 0.7185 + }, + { + "start": 22553.44, + "end": 22557.6, + "probability": 0.7876 + }, + { + "start": 22557.6, + "end": 22559.74, + "probability": 0.9907 + }, + { + "start": 22559.9, + "end": 22563.36, + "probability": 0.6624 + }, + { + "start": 22566.32, + "end": 22569.54, + "probability": 0.7842 + }, + { + "start": 22570.8, + "end": 22572.4, + "probability": 0.9672 + }, + { + "start": 22574.78, + "end": 22579.18, + "probability": 0.9871 + }, + { + "start": 22579.38, + "end": 22580.82, + "probability": 0.5884 + }, + { + "start": 22582.32, + "end": 22584.38, + "probability": 0.9908 + }, + { + "start": 22586.18, + "end": 22587.86, + "probability": 0.7216 + }, + { + "start": 22588.94, + "end": 22591.38, + "probability": 0.8373 + }, + { + "start": 22592.24, + "end": 22594.58, + "probability": 0.9504 + }, + { + "start": 22596.48, + "end": 22597.72, + "probability": 0.9547 + }, + { + "start": 22597.84, + "end": 22598.67, + "probability": 0.8719 + }, + { + "start": 22598.84, + "end": 22602.14, + "probability": 0.9872 + }, + { + "start": 22603.54, + "end": 22606.2, + "probability": 0.7711 + }, + { + "start": 22606.2, + "end": 22607.78, + "probability": 0.5209 + }, + { + "start": 22608.88, + "end": 22609.64, + "probability": 0.565 + }, + { + "start": 22610.34, + "end": 22611.32, + "probability": 0.4996 + }, + { + "start": 22611.5, + "end": 22612.92, + "probability": 0.4601 + }, + { + "start": 22613.4, + "end": 22617.02, + "probability": 0.9589 + }, + { + "start": 22617.82, + "end": 22619.26, + "probability": 0.5335 + }, + { + "start": 22620.1, + "end": 22624.76, + "probability": 0.9169 + }, + { + "start": 22625.1, + "end": 22625.48, + "probability": 0.4516 + }, + { + "start": 22626.2, + "end": 22629.08, + "probability": 0.9227 + }, + { + "start": 22630.02, + "end": 22632.9, + "probability": 0.9274 + }, + { + "start": 22634.22, + "end": 22638.38, + "probability": 0.9552 + }, + { + "start": 22639.8, + "end": 22641.94, + "probability": 0.9897 + }, + { + "start": 22643.18, + "end": 22645.22, + "probability": 0.9645 + }, + { + "start": 22646.24, + "end": 22648.04, + "probability": 0.9954 + }, + { + "start": 22648.76, + "end": 22649.88, + "probability": 0.9404 + }, + { + "start": 22651.14, + "end": 22651.98, + "probability": 0.9946 + }, + { + "start": 22652.56, + "end": 22655.16, + "probability": 0.9618 + }, + { + "start": 22656.54, + "end": 22658.6, + "probability": 0.8279 + }, + { + "start": 22660.48, + "end": 22662.76, + "probability": 0.655 + }, + { + "start": 22663.82, + "end": 22668.18, + "probability": 0.9724 + }, + { + "start": 22668.96, + "end": 22671.2, + "probability": 0.9805 + }, + { + "start": 22671.2, + "end": 22675.04, + "probability": 0.9585 + }, + { + "start": 22675.92, + "end": 22680.08, + "probability": 0.9793 + }, + { + "start": 22680.58, + "end": 22684.24, + "probability": 0.9006 + }, + { + "start": 22685.28, + "end": 22687.85, + "probability": 0.9984 + }, + { + "start": 22688.76, + "end": 22690.94, + "probability": 0.9976 + }, + { + "start": 22691.36, + "end": 22693.44, + "probability": 0.9966 + }, + { + "start": 22694.62, + "end": 22698.0, + "probability": 0.832 + }, + { + "start": 22698.18, + "end": 22700.1, + "probability": 0.9514 + }, + { + "start": 22700.96, + "end": 22702.28, + "probability": 0.8761 + }, + { + "start": 22703.52, + "end": 22705.18, + "probability": 0.9969 + }, + { + "start": 22706.48, + "end": 22707.64, + "probability": 0.9854 + }, + { + "start": 22708.64, + "end": 22712.82, + "probability": 0.9753 + }, + { + "start": 22712.92, + "end": 22714.74, + "probability": 0.7586 + }, + { + "start": 22715.52, + "end": 22719.16, + "probability": 0.9751 + }, + { + "start": 22721.12, + "end": 22722.42, + "probability": 0.9564 + }, + { + "start": 22722.46, + "end": 22725.16, + "probability": 0.9618 + }, + { + "start": 22726.4, + "end": 22728.76, + "probability": 0.9936 + }, + { + "start": 22729.72, + "end": 22734.24, + "probability": 0.75 + }, + { + "start": 22734.24, + "end": 22738.76, + "probability": 0.9839 + }, + { + "start": 22740.34, + "end": 22741.94, + "probability": 0.9774 + }, + { + "start": 22742.78, + "end": 22746.2, + "probability": 0.699 + }, + { + "start": 22746.34, + "end": 22748.18, + "probability": 0.7546 + }, + { + "start": 22749.6, + "end": 22750.74, + "probability": 0.7505 + }, + { + "start": 22752.34, + "end": 22754.18, + "probability": 0.9441 + }, + { + "start": 22754.26, + "end": 22755.74, + "probability": 0.8801 + }, + { + "start": 22756.1, + "end": 22757.74, + "probability": 0.8036 + }, + { + "start": 22758.38, + "end": 22760.26, + "probability": 0.9678 + }, + { + "start": 22762.28, + "end": 22767.06, + "probability": 0.9939 + }, + { + "start": 22767.6, + "end": 22769.89, + "probability": 0.9585 + }, + { + "start": 22771.62, + "end": 22772.7, + "probability": 0.9912 + }, + { + "start": 22773.72, + "end": 22776.23, + "probability": 0.9981 + }, + { + "start": 22778.06, + "end": 22779.72, + "probability": 0.9023 + }, + { + "start": 22780.98, + "end": 22785.88, + "probability": 0.9966 + }, + { + "start": 22787.02, + "end": 22789.32, + "probability": 0.9741 + }, + { + "start": 22789.38, + "end": 22790.13, + "probability": 0.9907 + }, + { + "start": 22790.22, + "end": 22791.24, + "probability": 0.7712 + }, + { + "start": 22791.44, + "end": 22792.32, + "probability": 0.8683 + }, + { + "start": 22792.92, + "end": 22797.18, + "probability": 0.9814 + }, + { + "start": 22798.92, + "end": 22803.94, + "probability": 0.9617 + }, + { + "start": 22805.54, + "end": 22806.22, + "probability": 0.813 + }, + { + "start": 22806.54, + "end": 22807.69, + "probability": 0.7109 + }, + { + "start": 22808.68, + "end": 22810.56, + "probability": 0.9683 + }, + { + "start": 22811.84, + "end": 22813.48, + "probability": 0.9927 + }, + { + "start": 22813.62, + "end": 22815.46, + "probability": 0.9939 + }, + { + "start": 22815.72, + "end": 22817.44, + "probability": 0.8246 + }, + { + "start": 22818.28, + "end": 22819.3, + "probability": 0.9378 + }, + { + "start": 22819.62, + "end": 22821.28, + "probability": 0.8459 + }, + { + "start": 22822.9, + "end": 22825.04, + "probability": 0.8315 + }, + { + "start": 22825.14, + "end": 22828.34, + "probability": 0.9873 + }, + { + "start": 22828.92, + "end": 22830.54, + "probability": 0.989 + }, + { + "start": 22833.04, + "end": 22834.02, + "probability": 0.5296 + }, + { + "start": 22835.48, + "end": 22838.12, + "probability": 0.999 + }, + { + "start": 22839.68, + "end": 22842.23, + "probability": 0.9196 + }, + { + "start": 22843.18, + "end": 22845.6, + "probability": 0.95 + }, + { + "start": 22846.58, + "end": 22849.15, + "probability": 0.9276 + }, + { + "start": 22850.08, + "end": 22851.84, + "probability": 0.9561 + }, + { + "start": 22851.84, + "end": 22853.3, + "probability": 0.8673 + }, + { + "start": 22853.34, + "end": 22854.96, + "probability": 0.9468 + }, + { + "start": 22855.1, + "end": 22857.28, + "probability": 0.8545 + }, + { + "start": 22857.5, + "end": 22859.26, + "probability": 0.9707 + }, + { + "start": 22860.32, + "end": 22861.56, + "probability": 0.9163 + }, + { + "start": 22862.22, + "end": 22868.34, + "probability": 0.9956 + }, + { + "start": 22868.6, + "end": 22871.15, + "probability": 0.6606 + }, + { + "start": 22872.76, + "end": 22874.06, + "probability": 0.9951 + }, + { + "start": 22875.36, + "end": 22878.28, + "probability": 0.9902 + }, + { + "start": 22879.0, + "end": 22880.92, + "probability": 0.1808 + }, + { + "start": 22881.2, + "end": 22882.76, + "probability": 0.5014 + }, + { + "start": 22885.04, + "end": 22888.08, + "probability": 0.6589 + }, + { + "start": 22888.44, + "end": 22889.52, + "probability": 0.8507 + }, + { + "start": 22890.42, + "end": 22892.2, + "probability": 0.444 + }, + { + "start": 22892.2, + "end": 22895.48, + "probability": 0.9442 + }, + { + "start": 22895.48, + "end": 22898.72, + "probability": 0.9788 + }, + { + "start": 22903.56, + "end": 22903.58, + "probability": 0.063 + }, + { + "start": 22903.58, + "end": 22903.58, + "probability": 0.0469 + }, + { + "start": 22903.58, + "end": 22904.8, + "probability": 0.8798 + }, + { + "start": 22906.52, + "end": 22908.48, + "probability": 0.8591 + }, + { + "start": 22908.5, + "end": 22912.24, + "probability": 0.5337 + }, + { + "start": 22913.32, + "end": 22917.38, + "probability": 0.8115 + }, + { + "start": 22918.48, + "end": 22920.69, + "probability": 0.8086 + }, + { + "start": 22920.96, + "end": 22923.26, + "probability": 0.9727 + }, + { + "start": 22924.38, + "end": 22927.9, + "probability": 0.9983 + }, + { + "start": 22928.86, + "end": 22929.7, + "probability": 0.9233 + }, + { + "start": 22930.5, + "end": 22931.48, + "probability": 0.6409 + }, + { + "start": 22932.32, + "end": 22933.43, + "probability": 0.7346 + }, + { + "start": 22933.64, + "end": 22934.68, + "probability": 0.6992 + }, + { + "start": 22935.48, + "end": 22938.14, + "probability": 0.7489 + }, + { + "start": 22939.06, + "end": 22940.42, + "probability": 0.7832 + }, + { + "start": 22940.48, + "end": 22943.95, + "probability": 0.8999 + }, + { + "start": 22945.06, + "end": 22948.42, + "probability": 0.6644 + }, + { + "start": 22948.58, + "end": 22950.42, + "probability": 0.8085 + }, + { + "start": 22951.72, + "end": 22953.74, + "probability": 0.7391 + }, + { + "start": 22956.8, + "end": 22958.18, + "probability": 0.744 + }, + { + "start": 22959.1, + "end": 22962.17, + "probability": 0.6675 + }, + { + "start": 22962.8, + "end": 22965.28, + "probability": 0.9978 + }, + { + "start": 22966.12, + "end": 22966.7, + "probability": 0.6941 + }, + { + "start": 22966.84, + "end": 22968.17, + "probability": 0.939 + }, + { + "start": 22968.76, + "end": 22970.07, + "probability": 0.9951 + }, + { + "start": 22970.16, + "end": 22972.56, + "probability": 0.7783 + }, + { + "start": 22972.8, + "end": 22974.06, + "probability": 0.9855 + }, + { + "start": 22975.02, + "end": 22977.1, + "probability": 0.9545 + }, + { + "start": 22978.04, + "end": 22985.2, + "probability": 0.9577 + }, + { + "start": 22985.32, + "end": 22986.24, + "probability": 0.7442 + }, + { + "start": 22986.46, + "end": 22987.76, + "probability": 0.9492 + }, + { + "start": 22987.98, + "end": 22988.82, + "probability": 0.5384 + }, + { + "start": 22988.96, + "end": 22990.24, + "probability": 0.7419 + }, + { + "start": 22991.16, + "end": 22994.84, + "probability": 0.7032 + }, + { + "start": 22995.76, + "end": 22997.74, + "probability": 0.9847 + }, + { + "start": 22999.0, + "end": 22999.86, + "probability": 0.9474 + }, + { + "start": 23000.26, + "end": 23001.78, + "probability": 0.7704 + }, + { + "start": 23001.82, + "end": 23003.62, + "probability": 0.9738 + }, + { + "start": 23004.28, + "end": 23008.2, + "probability": 0.8368 + }, + { + "start": 23008.96, + "end": 23010.74, + "probability": 0.9418 + }, + { + "start": 23011.32, + "end": 23014.76, + "probability": 0.9738 + }, + { + "start": 23016.66, + "end": 23017.08, + "probability": 0.5115 + }, + { + "start": 23017.2, + "end": 23018.55, + "probability": 0.8274 + }, + { + "start": 23019.3, + "end": 23020.06, + "probability": 0.5509 + }, + { + "start": 23020.32, + "end": 23022.52, + "probability": 0.9548 + }, + { + "start": 23023.36, + "end": 23024.44, + "probability": 0.6356 + }, + { + "start": 23024.74, + "end": 23029.68, + "probability": 0.9971 + }, + { + "start": 23032.52, + "end": 23033.26, + "probability": 0.357 + }, + { + "start": 23034.0, + "end": 23035.24, + "probability": 0.5678 + }, + { + "start": 23036.46, + "end": 23037.62, + "probability": 0.9893 + }, + { + "start": 23037.76, + "end": 23041.04, + "probability": 0.9589 + }, + { + "start": 23041.12, + "end": 23042.34, + "probability": 0.9758 + }, + { + "start": 23042.36, + "end": 23043.82, + "probability": 0.9421 + }, + { + "start": 23043.94, + "end": 23044.82, + "probability": 0.7301 + }, + { + "start": 23045.08, + "end": 23046.54, + "probability": 0.9525 + }, + { + "start": 23047.26, + "end": 23048.38, + "probability": 0.871 + }, + { + "start": 23049.88, + "end": 23054.42, + "probability": 0.9719 + }, + { + "start": 23055.24, + "end": 23056.14, + "probability": 0.9732 + }, + { + "start": 23057.32, + "end": 23059.1, + "probability": 0.972 + }, + { + "start": 23060.94, + "end": 23064.2, + "probability": 0.6898 + }, + { + "start": 23064.98, + "end": 23066.02, + "probability": 0.9718 + }, + { + "start": 23066.78, + "end": 23070.66, + "probability": 0.7482 + }, + { + "start": 23071.44, + "end": 23072.67, + "probability": 0.8887 + }, + { + "start": 23074.12, + "end": 23075.44, + "probability": 0.9297 + }, + { + "start": 23076.36, + "end": 23077.52, + "probability": 0.9579 + }, + { + "start": 23078.5, + "end": 23079.98, + "probability": 0.6867 + }, + { + "start": 23080.14, + "end": 23082.52, + "probability": 0.497 + }, + { + "start": 23082.8, + "end": 23084.2, + "probability": 0.6283 + }, + { + "start": 23085.06, + "end": 23088.34, + "probability": 0.9354 + }, + { + "start": 23088.68, + "end": 23089.0, + "probability": 0.1681 + }, + { + "start": 23089.16, + "end": 23089.48, + "probability": 0.4047 + }, + { + "start": 23089.64, + "end": 23092.4, + "probability": 0.8263 + }, + { + "start": 23093.08, + "end": 23095.8, + "probability": 0.7305 + }, + { + "start": 23096.24, + "end": 23099.12, + "probability": 0.7606 + }, + { + "start": 23099.18, + "end": 23100.56, + "probability": 0.8217 + }, + { + "start": 23100.9, + "end": 23101.16, + "probability": 0.398 + }, + { + "start": 23101.26, + "end": 23104.34, + "probability": 0.9323 + }, + { + "start": 23104.6, + "end": 23107.24, + "probability": 0.9321 + }, + { + "start": 23107.26, + "end": 23107.92, + "probability": 0.3648 + }, + { + "start": 23108.18, + "end": 23113.34, + "probability": 0.9683 + }, + { + "start": 23114.02, + "end": 23117.56, + "probability": 0.9897 + }, + { + "start": 23118.52, + "end": 23121.46, + "probability": 0.9204 + }, + { + "start": 23121.62, + "end": 23123.0, + "probability": 0.9569 + }, + { + "start": 23123.76, + "end": 23126.8, + "probability": 0.0403 + }, + { + "start": 23126.8, + "end": 23129.22, + "probability": 0.8923 + }, + { + "start": 23130.52, + "end": 23136.72, + "probability": 0.9913 + }, + { + "start": 23138.18, + "end": 23139.94, + "probability": 0.9891 + }, + { + "start": 23140.38, + "end": 23142.34, + "probability": 0.8877 + }, + { + "start": 23143.6, + "end": 23146.42, + "probability": 0.9686 + }, + { + "start": 23147.0, + "end": 23148.31, + "probability": 0.9596 + }, + { + "start": 23148.34, + "end": 23150.78, + "probability": 0.8765 + }, + { + "start": 23151.02, + "end": 23153.6, + "probability": 0.8847 + }, + { + "start": 23154.28, + "end": 23159.39, + "probability": 0.86 + }, + { + "start": 23160.48, + "end": 23164.34, + "probability": 0.7383 + }, + { + "start": 23164.8, + "end": 23167.56, + "probability": 0.8684 + }, + { + "start": 23167.94, + "end": 23170.88, + "probability": 0.7855 + }, + { + "start": 23171.02, + "end": 23172.86, + "probability": 0.2324 + }, + { + "start": 23173.24, + "end": 23174.76, + "probability": 0.1853 + }, + { + "start": 23174.86, + "end": 23175.88, + "probability": 0.4774 + }, + { + "start": 23176.3, + "end": 23178.48, + "probability": 0.1004 + }, + { + "start": 23178.48, + "end": 23178.48, + "probability": 0.3724 + }, + { + "start": 23178.48, + "end": 23178.48, + "probability": 0.6322 + }, + { + "start": 23178.48, + "end": 23180.78, + "probability": 0.7787 + }, + { + "start": 23181.42, + "end": 23182.38, + "probability": 0.8643 + }, + { + "start": 23182.4, + "end": 23183.4, + "probability": 0.759 + }, + { + "start": 23183.64, + "end": 23188.18, + "probability": 0.9653 + }, + { + "start": 23188.46, + "end": 23190.2, + "probability": 0.7592 + }, + { + "start": 23190.9, + "end": 23194.12, + "probability": 0.9188 + }, + { + "start": 23194.18, + "end": 23195.88, + "probability": 0.5963 + }, + { + "start": 23196.08, + "end": 23197.9, + "probability": 0.4499 + }, + { + "start": 23198.46, + "end": 23198.76, + "probability": 0.3382 + }, + { + "start": 23198.76, + "end": 23199.74, + "probability": 0.738 + }, + { + "start": 23200.04, + "end": 23201.48, + "probability": 0.113 + }, + { + "start": 23201.7, + "end": 23203.48, + "probability": 0.4966 + }, + { + "start": 23203.5, + "end": 23206.0, + "probability": 0.9253 + }, + { + "start": 23206.12, + "end": 23209.5, + "probability": 0.1235 + }, + { + "start": 23209.7, + "end": 23215.42, + "probability": 0.7645 + }, + { + "start": 23215.9, + "end": 23216.3, + "probability": 0.8279 + }, + { + "start": 23217.12, + "end": 23219.48, + "probability": 0.8022 + }, + { + "start": 23219.52, + "end": 23221.44, + "probability": 0.8565 + }, + { + "start": 23221.84, + "end": 23221.98, + "probability": 0.4164 + }, + { + "start": 23222.02, + "end": 23223.6, + "probability": 0.9946 + }, + { + "start": 23224.16, + "end": 23226.24, + "probability": 0.9473 + }, + { + "start": 23227.2, + "end": 23229.42, + "probability": 0.8001 + }, + { + "start": 23230.3, + "end": 23231.64, + "probability": 0.8853 + }, + { + "start": 23231.82, + "end": 23233.19, + "probability": 0.8608 + }, + { + "start": 23233.6, + "end": 23234.5, + "probability": 0.9229 + }, + { + "start": 23234.72, + "end": 23235.66, + "probability": 0.9738 + }, + { + "start": 23235.74, + "end": 23236.02, + "probability": 0.3578 + }, + { + "start": 23236.08, + "end": 23239.84, + "probability": 0.8212 + }, + { + "start": 23240.54, + "end": 23242.68, + "probability": 0.7052 + }, + { + "start": 23243.46, + "end": 23247.42, + "probability": 0.9077 + }, + { + "start": 23247.62, + "end": 23249.64, + "probability": 0.9954 + }, + { + "start": 23249.82, + "end": 23250.94, + "probability": 0.7693 + }, + { + "start": 23251.26, + "end": 23252.3, + "probability": 0.9282 + }, + { + "start": 23252.38, + "end": 23253.14, + "probability": 0.9318 + }, + { + "start": 23253.58, + "end": 23255.3, + "probability": 0.625 + }, + { + "start": 23255.56, + "end": 23256.76, + "probability": 0.769 + }, + { + "start": 23257.28, + "end": 23258.32, + "probability": 0.6681 + }, + { + "start": 23258.42, + "end": 23261.19, + "probability": 0.1277 + }, + { + "start": 23262.42, + "end": 23267.24, + "probability": 0.6917 + }, + { + "start": 23267.46, + "end": 23269.14, + "probability": 0.744 + }, + { + "start": 23269.22, + "end": 23270.08, + "probability": 0.6461 + }, + { + "start": 23270.2, + "end": 23274.34, + "probability": 0.8078 + }, + { + "start": 23274.86, + "end": 23278.84, + "probability": 0.9195 + }, + { + "start": 23279.06, + "end": 23283.0, + "probability": 0.9829 + }, + { + "start": 23283.22, + "end": 23285.48, + "probability": 0.8808 + }, + { + "start": 23285.72, + "end": 23286.7, + "probability": 0.8793 + }, + { + "start": 23286.96, + "end": 23290.54, + "probability": 0.7663 + }, + { + "start": 23290.88, + "end": 23291.48, + "probability": 0.7376 + }, + { + "start": 23291.48, + "end": 23291.48, + "probability": 0.1229 + }, + { + "start": 23291.48, + "end": 23292.2, + "probability": 0.5392 + }, + { + "start": 23292.4, + "end": 23294.18, + "probability": 0.8819 + }, + { + "start": 23294.22, + "end": 23294.8, + "probability": 0.8137 + }, + { + "start": 23294.9, + "end": 23296.34, + "probability": 0.9915 + }, + { + "start": 23296.4, + "end": 23298.34, + "probability": 0.8466 + }, + { + "start": 23298.46, + "end": 23299.52, + "probability": 0.8645 + }, + { + "start": 23299.66, + "end": 23303.3, + "probability": 0.9476 + }, + { + "start": 23304.42, + "end": 23312.18, + "probability": 0.8514 + }, + { + "start": 23312.76, + "end": 23315.8, + "probability": 0.8808 + }, + { + "start": 23315.86, + "end": 23317.64, + "probability": 0.9866 + }, + { + "start": 23318.06, + "end": 23318.06, + "probability": 0.8418 + }, + { + "start": 23318.64, + "end": 23321.38, + "probability": 0.9978 + }, + { + "start": 23321.46, + "end": 23322.27, + "probability": 0.8226 + }, + { + "start": 23322.88, + "end": 23323.66, + "probability": 0.3289 + }, + { + "start": 23324.04, + "end": 23326.66, + "probability": 0.9732 + }, + { + "start": 23326.72, + "end": 23328.2, + "probability": 0.8455 + }, + { + "start": 23329.24, + "end": 23331.3, + "probability": 0.9941 + }, + { + "start": 23331.36, + "end": 23334.21, + "probability": 0.9814 + }, + { + "start": 23334.44, + "end": 23334.94, + "probability": 0.7167 + }, + { + "start": 23335.9, + "end": 23335.94, + "probability": 0.3313 + }, + { + "start": 23336.12, + "end": 23336.3, + "probability": 0.8701 + }, + { + "start": 23336.38, + "end": 23337.04, + "probability": 0.9218 + }, + { + "start": 23337.18, + "end": 23338.68, + "probability": 0.9282 + }, + { + "start": 23339.2, + "end": 23340.46, + "probability": 0.9331 + }, + { + "start": 23341.38, + "end": 23343.24, + "probability": 0.9286 + }, + { + "start": 23343.38, + "end": 23345.74, + "probability": 0.9933 + }, + { + "start": 23345.84, + "end": 23349.9, + "probability": 0.9897 + }, + { + "start": 23350.44, + "end": 23353.56, + "probability": 0.9827 + }, + { + "start": 23353.56, + "end": 23357.14, + "probability": 0.9764 + }, + { + "start": 23357.68, + "end": 23359.32, + "probability": 0.5278 + }, + { + "start": 23360.28, + "end": 23360.58, + "probability": 0.0018 + }, + { + "start": 23361.64, + "end": 23362.18, + "probability": 0.028 + }, + { + "start": 23362.18, + "end": 23365.88, + "probability": 0.6822 + }, + { + "start": 23366.74, + "end": 23367.02, + "probability": 0.4953 + }, + { + "start": 23367.22, + "end": 23368.82, + "probability": 0.4077 + }, + { + "start": 23368.88, + "end": 23369.62, + "probability": 0.9474 + }, + { + "start": 23371.1, + "end": 23374.36, + "probability": 0.6973 + }, + { + "start": 23374.48, + "end": 23375.26, + "probability": 0.9355 + }, + { + "start": 23375.4, + "end": 23376.3, + "probability": 0.8342 + }, + { + "start": 23376.4, + "end": 23377.26, + "probability": 0.8228 + }, + { + "start": 23377.76, + "end": 23378.18, + "probability": 0.3472 + }, + { + "start": 23378.38, + "end": 23378.82, + "probability": 0.9194 + }, + { + "start": 23378.88, + "end": 23381.26, + "probability": 0.6833 + }, + { + "start": 23381.78, + "end": 23382.27, + "probability": 0.6891 + }, + { + "start": 23382.68, + "end": 23382.94, + "probability": 0.4804 + }, + { + "start": 23382.98, + "end": 23383.12, + "probability": 0.7618 + }, + { + "start": 23383.24, + "end": 23384.44, + "probability": 0.8538 + }, + { + "start": 23384.48, + "end": 23387.68, + "probability": 0.9341 + }, + { + "start": 23387.78, + "end": 23388.77, + "probability": 0.9854 + }, + { + "start": 23389.56, + "end": 23389.86, + "probability": 0.0048 + }, + { + "start": 23389.92, + "end": 23392.44, + "probability": 0.9703 + }, + { + "start": 23392.91, + "end": 23396.22, + "probability": 0.9893 + }, + { + "start": 23396.34, + "end": 23397.9, + "probability": 0.8846 + }, + { + "start": 23398.18, + "end": 23400.46, + "probability": 0.8818 + }, + { + "start": 23400.78, + "end": 23401.22, + "probability": 0.4815 + }, + { + "start": 23401.4, + "end": 23402.44, + "probability": 0.6922 + }, + { + "start": 23402.86, + "end": 23404.16, + "probability": 0.7729 + }, + { + "start": 23404.3, + "end": 23406.48, + "probability": 0.9326 + }, + { + "start": 23406.5, + "end": 23409.48, + "probability": 0.9915 + }, + { + "start": 23409.58, + "end": 23410.12, + "probability": 0.0445 + }, + { + "start": 23410.12, + "end": 23410.46, + "probability": 0.3425 + }, + { + "start": 23410.46, + "end": 23410.46, + "probability": 0.3081 + }, + { + "start": 23410.5, + "end": 23415.08, + "probability": 0.5435 + }, + { + "start": 23415.46, + "end": 23416.26, + "probability": 0.431 + }, + { + "start": 23416.32, + "end": 23417.09, + "probability": 0.8231 + }, + { + "start": 23417.14, + "end": 23418.4, + "probability": 0.8149 + }, + { + "start": 23418.8, + "end": 23421.06, + "probability": 0.9444 + }, + { + "start": 23421.36, + "end": 23421.92, + "probability": 0.6895 + }, + { + "start": 23422.58, + "end": 23425.62, + "probability": 0.9641 + }, + { + "start": 23426.32, + "end": 23427.18, + "probability": 0.7063 + }, + { + "start": 23427.44, + "end": 23429.68, + "probability": 0.918 + }, + { + "start": 23429.74, + "end": 23432.72, + "probability": 0.7258 + }, + { + "start": 23433.18, + "end": 23434.16, + "probability": 0.9414 + }, + { + "start": 23434.28, + "end": 23436.02, + "probability": 0.9933 + }, + { + "start": 23436.02, + "end": 23436.9, + "probability": 0.7066 + }, + { + "start": 23437.14, + "end": 23440.44, + "probability": 0.9915 + }, + { + "start": 23440.58, + "end": 23442.84, + "probability": 0.8006 + }, + { + "start": 23442.98, + "end": 23443.46, + "probability": 0.5744 + }, + { + "start": 23443.78, + "end": 23448.06, + "probability": 0.9551 + }, + { + "start": 23448.06, + "end": 23451.1, + "probability": 0.6716 + }, + { + "start": 23451.42, + "end": 23453.6, + "probability": 0.1348 + }, + { + "start": 23454.08, + "end": 23454.42, + "probability": 0.0706 + }, + { + "start": 23454.42, + "end": 23454.42, + "probability": 0.1588 + }, + { + "start": 23454.42, + "end": 23455.32, + "probability": 0.1509 + }, + { + "start": 23455.32, + "end": 23457.22, + "probability": 0.5038 + }, + { + "start": 23457.62, + "end": 23458.2, + "probability": 0.9117 + }, + { + "start": 23458.42, + "end": 23461.14, + "probability": 0.7772 + }, + { + "start": 23461.28, + "end": 23463.26, + "probability": 0.8289 + }, + { + "start": 23463.54, + "end": 23463.88, + "probability": 0.9111 + }, + { + "start": 23463.98, + "end": 23468.64, + "probability": 0.5789 + }, + { + "start": 23469.32, + "end": 23474.34, + "probability": 0.9747 + }, + { + "start": 23474.46, + "end": 23476.3, + "probability": 0.684 + }, + { + "start": 23476.4, + "end": 23478.58, + "probability": 0.5791 + }, + { + "start": 23478.66, + "end": 23478.66, + "probability": 0.2176 + }, + { + "start": 23478.66, + "end": 23479.8, + "probability": 0.8661 + }, + { + "start": 23480.22, + "end": 23480.8, + "probability": 0.4935 + }, + { + "start": 23480.92, + "end": 23485.08, + "probability": 0.9405 + }, + { + "start": 23485.22, + "end": 23487.34, + "probability": 0.7898 + }, + { + "start": 23489.07, + "end": 23491.82, + "probability": 0.0347 + }, + { + "start": 23491.82, + "end": 23497.06, + "probability": 0.8569 + }, + { + "start": 23497.64, + "end": 23498.76, + "probability": 0.0525 + }, + { + "start": 23498.76, + "end": 23499.61, + "probability": 0.2216 + }, + { + "start": 23500.12, + "end": 23500.12, + "probability": 0.0107 + }, + { + "start": 23500.72, + "end": 23502.54, + "probability": 0.0676 + }, + { + "start": 23503.74, + "end": 23504.82, + "probability": 0.3557 + }, + { + "start": 23505.1, + "end": 23505.1, + "probability": 0.0054 + }, + { + "start": 23505.1, + "end": 23505.1, + "probability": 0.05 + }, + { + "start": 23505.1, + "end": 23505.1, + "probability": 0.0303 + }, + { + "start": 23505.1, + "end": 23506.28, + "probability": 0.5451 + }, + { + "start": 23506.44, + "end": 23506.76, + "probability": 0.3898 + }, + { + "start": 23506.76, + "end": 23508.2, + "probability": 0.5801 + }, + { + "start": 23508.62, + "end": 23509.72, + "probability": 0.8384 + }, + { + "start": 23509.84, + "end": 23514.28, + "probability": 0.7495 + }, + { + "start": 23514.36, + "end": 23514.6, + "probability": 0.0077 + }, + { + "start": 23514.6, + "end": 23514.6, + "probability": 0.0005 + }, + { + "start": 23514.6, + "end": 23514.6, + "probability": 0.0622 + }, + { + "start": 23514.6, + "end": 23516.78, + "probability": 0.7717 + }, + { + "start": 23517.08, + "end": 23518.88, + "probability": 0.8703 + }, + { + "start": 23519.32, + "end": 23520.06, + "probability": 0.5846 + }, + { + "start": 23520.44, + "end": 23520.82, + "probability": 0.3547 + }, + { + "start": 23520.96, + "end": 23524.84, + "probability": 0.9568 + }, + { + "start": 23525.02, + "end": 23526.58, + "probability": 0.647 + }, + { + "start": 23526.74, + "end": 23527.94, + "probability": 0.7742 + }, + { + "start": 23528.84, + "end": 23530.92, + "probability": 0.0059 + }, + { + "start": 23530.94, + "end": 23534.52, + "probability": 0.816 + }, + { + "start": 23534.86, + "end": 23535.9, + "probability": 0.9485 + }, + { + "start": 23536.4, + "end": 23536.54, + "probability": 0.541 + }, + { + "start": 23536.6, + "end": 23537.08, + "probability": 0.9111 + }, + { + "start": 23537.18, + "end": 23537.56, + "probability": 0.481 + }, + { + "start": 23537.72, + "end": 23542.08, + "probability": 0.9871 + }, + { + "start": 23542.66, + "end": 23542.86, + "probability": 0.4312 + }, + { + "start": 23543.0, + "end": 23543.7, + "probability": 0.5518 + }, + { + "start": 23543.74, + "end": 23549.68, + "probability": 0.96 + }, + { + "start": 23549.68, + "end": 23553.06, + "probability": 0.9941 + }, + { + "start": 23553.26, + "end": 23556.68, + "probability": 0.9407 + }, + { + "start": 23557.02, + "end": 23557.62, + "probability": 0.2512 + }, + { + "start": 23557.62, + "end": 23558.72, + "probability": 0.994 + }, + { + "start": 23558.96, + "end": 23560.36, + "probability": 0.9634 + }, + { + "start": 23560.56, + "end": 23561.8, + "probability": 0.9521 + }, + { + "start": 23561.92, + "end": 23565.26, + "probability": 0.9468 + }, + { + "start": 23565.38, + "end": 23570.02, + "probability": 0.9833 + }, + { + "start": 23570.56, + "end": 23574.73, + "probability": 0.8755 + }, + { + "start": 23575.08, + "end": 23575.94, + "probability": 0.6179 + }, + { + "start": 23576.0, + "end": 23578.2, + "probability": 0.9871 + }, + { + "start": 23578.26, + "end": 23579.96, + "probability": 0.9976 + }, + { + "start": 23580.42, + "end": 23582.6, + "probability": 0.9914 + }, + { + "start": 23582.9, + "end": 23583.8, + "probability": 0.6624 + }, + { + "start": 23583.96, + "end": 23584.96, + "probability": 0.9279 + }, + { + "start": 23584.98, + "end": 23585.18, + "probability": 0.8062 + }, + { + "start": 23585.28, + "end": 23586.06, + "probability": 0.6967 + }, + { + "start": 23586.12, + "end": 23587.64, + "probability": 0.95 + }, + { + "start": 23587.72, + "end": 23589.02, + "probability": 0.9576 + }, + { + "start": 23589.38, + "end": 23590.98, + "probability": 0.8259 + }, + { + "start": 23591.52, + "end": 23591.66, + "probability": 0.0764 + }, + { + "start": 23591.68, + "end": 23592.25, + "probability": 0.8424 + }, + { + "start": 23592.54, + "end": 23593.44, + "probability": 0.6241 + }, + { + "start": 23593.58, + "end": 23599.24, + "probability": 0.8771 + }, + { + "start": 23599.48, + "end": 23602.14, + "probability": 0.9722 + }, + { + "start": 23602.62, + "end": 23605.36, + "probability": 0.9772 + }, + { + "start": 23605.48, + "end": 23605.64, + "probability": 0.083 + }, + { + "start": 23605.64, + "end": 23605.82, + "probability": 0.0884 + }, + { + "start": 23606.04, + "end": 23606.04, + "probability": 0.5361 + }, + { + "start": 23606.08, + "end": 23608.02, + "probability": 0.9875 + }, + { + "start": 23608.5, + "end": 23610.88, + "probability": 0.7106 + }, + { + "start": 23611.12, + "end": 23612.66, + "probability": 0.9434 + }, + { + "start": 23612.78, + "end": 23614.4, + "probability": 0.8993 + }, + { + "start": 23614.71, + "end": 23616.28, + "probability": 0.5677 + }, + { + "start": 23616.28, + "end": 23618.4, + "probability": 0.9657 + }, + { + "start": 23618.46, + "end": 23618.72, + "probability": 0.7672 + }, + { + "start": 23618.78, + "end": 23623.7, + "probability": 0.978 + }, + { + "start": 23623.84, + "end": 23625.86, + "probability": 0.8559 + }, + { + "start": 23625.94, + "end": 23630.66, + "probability": 0.9616 + }, + { + "start": 23630.78, + "end": 23632.02, + "probability": 0.8183 + }, + { + "start": 23632.54, + "end": 23636.34, + "probability": 0.9937 + }, + { + "start": 23636.52, + "end": 23638.58, + "probability": 0.782 + }, + { + "start": 23638.64, + "end": 23641.8, + "probability": 0.9971 + }, + { + "start": 23642.1, + "end": 23642.87, + "probability": 0.9679 + }, + { + "start": 23643.16, + "end": 23644.32, + "probability": 0.8329 + }, + { + "start": 23646.12, + "end": 23647.32, + "probability": 0.8789 + }, + { + "start": 23647.7, + "end": 23650.0, + "probability": 0.9524 + }, + { + "start": 23650.04, + "end": 23651.64, + "probability": 0.6288 + }, + { + "start": 23651.7, + "end": 23651.86, + "probability": 0.1072 + }, + { + "start": 23651.88, + "end": 23652.62, + "probability": 0.3618 + }, + { + "start": 23653.46, + "end": 23655.24, + "probability": 0.937 + }, + { + "start": 23655.24, + "end": 23656.68, + "probability": 0.9008 + }, + { + "start": 23656.76, + "end": 23657.08, + "probability": 0.4274 + }, + { + "start": 23657.12, + "end": 23658.86, + "probability": 0.9951 + }, + { + "start": 23659.46, + "end": 23663.3, + "probability": 0.9028 + }, + { + "start": 23663.7, + "end": 23666.88, + "probability": 0.9864 + }, + { + "start": 23667.34, + "end": 23669.7, + "probability": 0.9273 + }, + { + "start": 23670.02, + "end": 23671.52, + "probability": 0.7946 + }, + { + "start": 23672.1, + "end": 23674.68, + "probability": 0.926 + }, + { + "start": 23675.2, + "end": 23679.2, + "probability": 0.8989 + }, + { + "start": 23679.26, + "end": 23680.74, + "probability": 0.9985 + }, + { + "start": 23680.86, + "end": 23683.94, + "probability": 0.9754 + }, + { + "start": 23683.98, + "end": 23684.72, + "probability": 0.8975 + }, + { + "start": 23685.04, + "end": 23686.0, + "probability": 0.835 + }, + { + "start": 23686.02, + "end": 23688.92, + "probability": 0.833 + }, + { + "start": 23689.32, + "end": 23692.34, + "probability": 0.9718 + }, + { + "start": 23693.0, + "end": 23695.82, + "probability": 0.6461 + }, + { + "start": 23696.04, + "end": 23698.44, + "probability": 0.8657 + }, + { + "start": 23698.44, + "end": 23700.84, + "probability": 0.7733 + }, + { + "start": 23700.96, + "end": 23703.06, + "probability": 0.7166 + }, + { + "start": 23703.24, + "end": 23704.2, + "probability": 0.8162 + }, + { + "start": 23704.48, + "end": 23706.98, + "probability": 0.808 + }, + { + "start": 23707.24, + "end": 23707.84, + "probability": 0.9238 + }, + { + "start": 23707.98, + "end": 23708.65, + "probability": 0.9767 + }, + { + "start": 23709.2, + "end": 23714.24, + "probability": 0.9785 + }, + { + "start": 23714.72, + "end": 23717.58, + "probability": 0.892 + }, + { + "start": 23717.84, + "end": 23722.06, + "probability": 0.9208 + }, + { + "start": 23722.36, + "end": 23728.06, + "probability": 0.9675 + }, + { + "start": 23728.2, + "end": 23729.36, + "probability": 0.8073 + }, + { + "start": 23729.5, + "end": 23730.88, + "probability": 0.77 + }, + { + "start": 23731.32, + "end": 23735.18, + "probability": 0.9842 + }, + { + "start": 23735.42, + "end": 23735.58, + "probability": 0.0467 + }, + { + "start": 23735.58, + "end": 23735.58, + "probability": 0.0152 + }, + { + "start": 23735.58, + "end": 23736.92, + "probability": 0.7928 + }, + { + "start": 23737.28, + "end": 23739.92, + "probability": 0.9126 + }, + { + "start": 23740.68, + "end": 23743.56, + "probability": 0.1489 + }, + { + "start": 23744.54, + "end": 23746.0, + "probability": 0.3113 + }, + { + "start": 23746.0, + "end": 23746.38, + "probability": 0.2452 + }, + { + "start": 23746.4, + "end": 23746.76, + "probability": 0.0398 + }, + { + "start": 23746.76, + "end": 23748.08, + "probability": 0.0028 + }, + { + "start": 23748.18, + "end": 23749.45, + "probability": 0.4779 + }, + { + "start": 23750.38, + "end": 23754.5, + "probability": 0.0609 + }, + { + "start": 23754.62, + "end": 23755.04, + "probability": 0.2167 + }, + { + "start": 23755.52, + "end": 23756.4, + "probability": 0.2225 + }, + { + "start": 23757.04, + "end": 23757.08, + "probability": 0.1495 + }, + { + "start": 23757.08, + "end": 23757.08, + "probability": 0.117 + }, + { + "start": 23757.08, + "end": 23757.08, + "probability": 0.0119 + }, + { + "start": 23757.08, + "end": 23757.08, + "probability": 0.3056 + }, + { + "start": 23757.08, + "end": 23762.11, + "probability": 0.8295 + }, + { + "start": 23762.52, + "end": 23765.23, + "probability": 0.7979 + }, + { + "start": 23765.8, + "end": 23770.16, + "probability": 0.9316 + }, + { + "start": 23770.98, + "end": 23771.08, + "probability": 0.0696 + }, + { + "start": 23771.92, + "end": 23776.2, + "probability": 0.8792 + }, + { + "start": 23776.2, + "end": 23779.82, + "probability": 0.8428 + }, + { + "start": 23779.92, + "end": 23781.04, + "probability": 0.7583 + }, + { + "start": 23781.4, + "end": 23787.02, + "probability": 0.8732 + }, + { + "start": 23787.44, + "end": 23790.14, + "probability": 0.8425 + }, + { + "start": 23790.8, + "end": 23792.24, + "probability": 0.9197 + }, + { + "start": 23792.4, + "end": 23794.66, + "probability": 0.9912 + }, + { + "start": 23794.94, + "end": 23797.14, + "probability": 0.9878 + }, + { + "start": 23797.7, + "end": 23799.52, + "probability": 0.7829 + }, + { + "start": 23799.86, + "end": 23800.48, + "probability": 0.6385 + }, + { + "start": 23800.58, + "end": 23806.4, + "probability": 0.9053 + }, + { + "start": 23806.9, + "end": 23807.16, + "probability": 0.1499 + }, + { + "start": 23807.36, + "end": 23807.52, + "probability": 0.1926 + }, + { + "start": 23808.26, + "end": 23809.18, + "probability": 0.6572 + }, + { + "start": 23809.36, + "end": 23809.44, + "probability": 0.0163 + }, + { + "start": 23809.44, + "end": 23810.66, + "probability": 0.9509 + }, + { + "start": 23810.86, + "end": 23811.18, + "probability": 0.7624 + }, + { + "start": 23811.8, + "end": 23812.12, + "probability": 0.4592 + }, + { + "start": 23812.48, + "end": 23815.18, + "probability": 0.9749 + }, + { + "start": 23816.26, + "end": 23817.78, + "probability": 0.4157 + }, + { + "start": 23817.78, + "end": 23818.22, + "probability": 0.4254 + }, + { + "start": 23818.7, + "end": 23819.86, + "probability": 0.7975 + }, + { + "start": 23820.04, + "end": 23820.68, + "probability": 0.8983 + }, + { + "start": 23820.86, + "end": 23823.74, + "probability": 0.7486 + }, + { + "start": 23824.04, + "end": 23825.06, + "probability": 0.8895 + }, + { + "start": 23825.12, + "end": 23833.3, + "probability": 0.995 + }, + { + "start": 23833.32, + "end": 23837.06, + "probability": 0.8472 + }, + { + "start": 23837.92, + "end": 23838.0, + "probability": 0.1561 + }, + { + "start": 23838.0, + "end": 23838.0, + "probability": 0.4116 + }, + { + "start": 23838.0, + "end": 23846.26, + "probability": 0.9965 + }, + { + "start": 23846.28, + "end": 23846.4, + "probability": 0.0144 + }, + { + "start": 23846.4, + "end": 23848.28, + "probability": 0.7597 + }, + { + "start": 23848.58, + "end": 23851.9, + "probability": 0.612 + }, + { + "start": 23852.04, + "end": 23853.11, + "probability": 0.9849 + }, + { + "start": 23853.64, + "end": 23854.56, + "probability": 0.7486 + }, + { + "start": 23855.56, + "end": 23860.06, + "probability": 0.9831 + }, + { + "start": 23860.2, + "end": 23861.56, + "probability": 0.753 + }, + { + "start": 23861.62, + "end": 23863.08, + "probability": 0.8965 + }, + { + "start": 23863.61, + "end": 23864.66, + "probability": 0.0099 + }, + { + "start": 23864.84, + "end": 23864.84, + "probability": 0.2559 + }, + { + "start": 23864.84, + "end": 23868.28, + "probability": 0.6915 + }, + { + "start": 23869.02, + "end": 23871.24, + "probability": 0.8694 + }, + { + "start": 23872.24, + "end": 23875.41, + "probability": 0.9741 + }, + { + "start": 23876.14, + "end": 23877.69, + "probability": 0.9951 + }, + { + "start": 23880.66, + "end": 23882.04, + "probability": 0.846 + }, + { + "start": 23882.16, + "end": 23883.02, + "probability": 0.7556 + }, + { + "start": 23883.82, + "end": 23890.3, + "probability": 0.9899 + }, + { + "start": 23890.44, + "end": 23891.48, + "probability": 0.8604 + }, + { + "start": 23891.7, + "end": 23894.38, + "probability": 0.8873 + }, + { + "start": 23895.26, + "end": 23898.36, + "probability": 0.6683 + }, + { + "start": 23898.48, + "end": 23899.52, + "probability": 0.9016 + }, + { + "start": 23899.8, + "end": 23902.56, + "probability": 0.8078 + }, + { + "start": 23903.54, + "end": 23904.66, + "probability": 0.7418 + }, + { + "start": 23905.02, + "end": 23905.58, + "probability": 0.7816 + }, + { + "start": 23906.12, + "end": 23909.8, + "probability": 0.9632 + }, + { + "start": 23910.48, + "end": 23911.4, + "probability": 0.9412 + }, + { + "start": 23911.92, + "end": 23914.92, + "probability": 0.9658 + }, + { + "start": 23915.56, + "end": 23921.3, + "probability": 0.9961 + }, + { + "start": 23922.56, + "end": 23922.7, + "probability": 0.2414 + }, + { + "start": 23922.7, + "end": 23922.7, + "probability": 0.3215 + }, + { + "start": 23922.7, + "end": 23925.5, + "probability": 0.7527 + }, + { + "start": 23926.38, + "end": 23928.32, + "probability": 0.8536 + }, + { + "start": 23928.32, + "end": 23930.06, + "probability": 0.8563 + }, + { + "start": 23930.22, + "end": 23934.38, + "probability": 0.9834 + }, + { + "start": 23934.9, + "end": 23936.22, + "probability": 0.6792 + }, + { + "start": 23937.22, + "end": 23941.42, + "probability": 0.9927 + }, + { + "start": 23942.44, + "end": 23943.66, + "probability": 0.8951 + }, + { + "start": 23944.28, + "end": 23947.72, + "probability": 0.9458 + }, + { + "start": 23947.78, + "end": 23949.12, + "probability": 0.6331 + }, + { + "start": 23949.74, + "end": 23950.82, + "probability": 0.9905 + }, + { + "start": 23951.44, + "end": 23951.64, + "probability": 0.8044 + }, + { + "start": 23951.76, + "end": 23958.52, + "probability": 0.9 + }, + { + "start": 23958.66, + "end": 23962.16, + "probability": 0.9838 + }, + { + "start": 23962.42, + "end": 23963.98, + "probability": 0.9186 + }, + { + "start": 23964.16, + "end": 23966.26, + "probability": 0.7379 + }, + { + "start": 23966.32, + "end": 23967.42, + "probability": 0.8512 + }, + { + "start": 23967.92, + "end": 23969.2, + "probability": 0.9561 + }, + { + "start": 23969.28, + "end": 23971.46, + "probability": 0.9064 + }, + { + "start": 23972.22, + "end": 23973.54, + "probability": 0.9602 + }, + { + "start": 23974.28, + "end": 23977.1, + "probability": 0.8745 + }, + { + "start": 23978.14, + "end": 23979.88, + "probability": 0.9112 + }, + { + "start": 23980.12, + "end": 23980.74, + "probability": 0.2771 + }, + { + "start": 23980.88, + "end": 23981.4, + "probability": 0.9517 + }, + { + "start": 23981.5, + "end": 23982.5, + "probability": 0.4318 + }, + { + "start": 23982.56, + "end": 23983.86, + "probability": 0.9742 + }, + { + "start": 23985.4, + "end": 23985.88, + "probability": 0.7946 + }, + { + "start": 23986.68, + "end": 23987.34, + "probability": 0.9065 + }, + { + "start": 23990.82, + "end": 23992.46, + "probability": 0.7004 + }, + { + "start": 23993.12, + "end": 23994.38, + "probability": 0.9954 + }, + { + "start": 23994.52, + "end": 23995.16, + "probability": 0.6514 + }, + { + "start": 23995.22, + "end": 23995.52, + "probability": 0.5337 + }, + { + "start": 23995.56, + "end": 23997.0, + "probability": 0.9769 + }, + { + "start": 23997.14, + "end": 23997.66, + "probability": 0.887 + }, + { + "start": 23998.02, + "end": 23998.94, + "probability": 0.9631 + }, + { + "start": 23999.02, + "end": 23999.12, + "probability": 0.439 + }, + { + "start": 24000.24, + "end": 24004.84, + "probability": 0.9908 + }, + { + "start": 24004.84, + "end": 24006.6, + "probability": 0.9473 + }, + { + "start": 24007.08, + "end": 24008.28, + "probability": 0.9822 + }, + { + "start": 24008.88, + "end": 24012.22, + "probability": 0.9697 + }, + { + "start": 24012.26, + "end": 24016.22, + "probability": 0.9915 + }, + { + "start": 24016.32, + "end": 24018.14, + "probability": 0.9888 + }, + { + "start": 24018.34, + "end": 24018.41, + "probability": 0.692 + }, + { + "start": 24018.64, + "end": 24019.66, + "probability": 0.9339 + }, + { + "start": 24020.44, + "end": 24026.46, + "probability": 0.9961 + }, + { + "start": 24027.3, + "end": 24030.48, + "probability": 0.9639 + }, + { + "start": 24031.08, + "end": 24032.72, + "probability": 0.9783 + }, + { + "start": 24032.86, + "end": 24037.84, + "probability": 0.7704 + }, + { + "start": 24037.88, + "end": 24042.32, + "probability": 0.7048 + }, + { + "start": 24043.7, + "end": 24048.72, + "probability": 0.9989 + }, + { + "start": 24049.91, + "end": 24050.41, + "probability": 0.0494 + }, + { + "start": 24051.12, + "end": 24052.12, + "probability": 0.8289 + }, + { + "start": 24052.84, + "end": 24056.4, + "probability": 0.9371 + }, + { + "start": 24057.44, + "end": 24060.88, + "probability": 0.9952 + }, + { + "start": 24061.84, + "end": 24064.34, + "probability": 0.9927 + }, + { + "start": 24065.66, + "end": 24069.36, + "probability": 0.7822 + }, + { + "start": 24069.56, + "end": 24070.24, + "probability": 0.9236 + }, + { + "start": 24070.8, + "end": 24071.26, + "probability": 0.7267 + }, + { + "start": 24072.16, + "end": 24073.44, + "probability": 0.7925 + }, + { + "start": 24074.3, + "end": 24077.68, + "probability": 0.9313 + }, + { + "start": 24078.58, + "end": 24081.3, + "probability": 0.9665 + }, + { + "start": 24082.22, + "end": 24082.6, + "probability": 0.1362 + }, + { + "start": 24082.6, + "end": 24083.77, + "probability": 0.9775 + }, + { + "start": 24085.02, + "end": 24089.34, + "probability": 0.96 + }, + { + "start": 24091.06, + "end": 24093.12, + "probability": 0.9757 + }, + { + "start": 24093.92, + "end": 24095.02, + "probability": 0.5201 + }, + { + "start": 24096.98, + "end": 24098.1, + "probability": 0.8625 + }, + { + "start": 24098.22, + "end": 24100.99, + "probability": 0.9318 + }, + { + "start": 24101.38, + "end": 24102.16, + "probability": 0.8129 + }, + { + "start": 24103.2, + "end": 24106.44, + "probability": 0.9922 + }, + { + "start": 24107.42, + "end": 24109.42, + "probability": 0.9761 + }, + { + "start": 24110.8, + "end": 24114.36, + "probability": 0.9741 + }, + { + "start": 24114.6, + "end": 24119.18, + "probability": 0.9556 + }, + { + "start": 24120.24, + "end": 24122.94, + "probability": 0.8535 + }, + { + "start": 24124.22, + "end": 24127.04, + "probability": 0.7968 + }, + { + "start": 24128.24, + "end": 24131.26, + "probability": 0.9944 + }, + { + "start": 24132.24, + "end": 24139.52, + "probability": 0.9933 + }, + { + "start": 24140.68, + "end": 24143.02, + "probability": 0.1643 + }, + { + "start": 24143.22, + "end": 24143.88, + "probability": 0.1449 + }, + { + "start": 24145.22, + "end": 24145.58, + "probability": 0.4184 + }, + { + "start": 24149.32, + "end": 24151.0, + "probability": 0.8833 + }, + { + "start": 24151.94, + "end": 24154.52, + "probability": 0.8702 + }, + { + "start": 24155.68, + "end": 24158.3, + "probability": 0.9416 + }, + { + "start": 24159.46, + "end": 24167.56, + "probability": 0.984 + }, + { + "start": 24168.2, + "end": 24170.44, + "probability": 0.9916 + }, + { + "start": 24170.76, + "end": 24171.7, + "probability": 0.5488 + }, + { + "start": 24172.52, + "end": 24175.2, + "probability": 0.516 + }, + { + "start": 24175.26, + "end": 24177.46, + "probability": 0.8315 + }, + { + "start": 24178.84, + "end": 24182.94, + "probability": 0.9763 + }, + { + "start": 24184.04, + "end": 24187.84, + "probability": 0.9915 + }, + { + "start": 24188.6, + "end": 24191.34, + "probability": 0.9 + }, + { + "start": 24192.86, + "end": 24194.86, + "probability": 0.8703 + }, + { + "start": 24195.1, + "end": 24196.64, + "probability": 0.7043 + }, + { + "start": 24196.84, + "end": 24198.26, + "probability": 0.549 + }, + { + "start": 24198.56, + "end": 24199.94, + "probability": 0.9181 + }, + { + "start": 24200.06, + "end": 24200.68, + "probability": 0.9894 + }, + { + "start": 24202.14, + "end": 24204.44, + "probability": 0.9084 + }, + { + "start": 24204.86, + "end": 24208.75, + "probability": 0.9932 + }, + { + "start": 24208.94, + "end": 24210.12, + "probability": 0.7573 + }, + { + "start": 24210.22, + "end": 24212.11, + "probability": 0.7987 + }, + { + "start": 24214.82, + "end": 24217.34, + "probability": 0.9869 + }, + { + "start": 24218.72, + "end": 24221.7, + "probability": 0.9849 + }, + { + "start": 24223.86, + "end": 24225.48, + "probability": 0.5707 + }, + { + "start": 24226.28, + "end": 24229.42, + "probability": 0.9692 + }, + { + "start": 24231.08, + "end": 24233.5, + "probability": 0.9667 + }, + { + "start": 24233.62, + "end": 24235.66, + "probability": 0.8614 + }, + { + "start": 24235.84, + "end": 24236.72, + "probability": 0.8743 + }, + { + "start": 24237.44, + "end": 24238.14, + "probability": 0.5906 + }, + { + "start": 24238.76, + "end": 24239.5, + "probability": 0.696 + }, + { + "start": 24239.62, + "end": 24244.16, + "probability": 0.9104 + }, + { + "start": 24245.18, + "end": 24248.22, + "probability": 0.9705 + }, + { + "start": 24249.12, + "end": 24250.74, + "probability": 0.9985 + }, + { + "start": 24250.82, + "end": 24254.56, + "probability": 0.9883 + }, + { + "start": 24254.96, + "end": 24257.32, + "probability": 0.9753 + }, + { + "start": 24257.7, + "end": 24259.34, + "probability": 0.8308 + }, + { + "start": 24259.48, + "end": 24264.62, + "probability": 0.998 + }, + { + "start": 24265.72, + "end": 24266.44, + "probability": 0.9457 + }, + { + "start": 24266.48, + "end": 24268.04, + "probability": 0.9504 + }, + { + "start": 24268.24, + "end": 24272.54, + "probability": 0.988 + }, + { + "start": 24272.64, + "end": 24273.46, + "probability": 0.7183 + }, + { + "start": 24274.36, + "end": 24277.02, + "probability": 0.8929 + }, + { + "start": 24278.76, + "end": 24281.38, + "probability": 0.9858 + }, + { + "start": 24281.38, + "end": 24286.08, + "probability": 0.9237 + }, + { + "start": 24286.2, + "end": 24286.54, + "probability": 0.8236 + }, + { + "start": 24286.6, + "end": 24288.14, + "probability": 0.9819 + }, + { + "start": 24289.06, + "end": 24291.38, + "probability": 0.9967 + }, + { + "start": 24292.74, + "end": 24296.8, + "probability": 0.9712 + }, + { + "start": 24299.04, + "end": 24304.1, + "probability": 0.9783 + }, + { + "start": 24304.72, + "end": 24307.98, + "probability": 0.9971 + }, + { + "start": 24307.98, + "end": 24309.94, + "probability": 0.8217 + }, + { + "start": 24310.98, + "end": 24312.32, + "probability": 0.6552 + }, + { + "start": 24313.6, + "end": 24314.46, + "probability": 0.7782 + }, + { + "start": 24315.08, + "end": 24315.94, + "probability": 0.9912 + }, + { + "start": 24316.66, + "end": 24319.38, + "probability": 0.9109 + }, + { + "start": 24320.24, + "end": 24322.9, + "probability": 0.8911 + }, + { + "start": 24324.88, + "end": 24328.52, + "probability": 0.9895 + }, + { + "start": 24329.08, + "end": 24331.72, + "probability": 0.9936 + }, + { + "start": 24332.76, + "end": 24334.04, + "probability": 0.9341 + }, + { + "start": 24334.32, + "end": 24337.94, + "probability": 0.9901 + }, + { + "start": 24338.48, + "end": 24340.94, + "probability": 0.9949 + }, + { + "start": 24341.64, + "end": 24342.82, + "probability": 0.7585 + }, + { + "start": 24343.7, + "end": 24346.54, + "probability": 0.8368 + }, + { + "start": 24347.3, + "end": 24348.46, + "probability": 0.9734 + }, + { + "start": 24348.62, + "end": 24348.98, + "probability": 0.8076 + }, + { + "start": 24349.12, + "end": 24349.72, + "probability": 0.7093 + }, + { + "start": 24349.86, + "end": 24351.78, + "probability": 0.9526 + }, + { + "start": 24351.84, + "end": 24353.52, + "probability": 0.7409 + }, + { + "start": 24354.24, + "end": 24356.03, + "probability": 0.6677 + }, + { + "start": 24356.76, + "end": 24358.0, + "probability": 0.948 + }, + { + "start": 24358.96, + "end": 24359.3, + "probability": 0.5404 + }, + { + "start": 24359.38, + "end": 24363.58, + "probability": 0.9354 + }, + { + "start": 24363.58, + "end": 24367.96, + "probability": 0.9771 + }, + { + "start": 24368.04, + "end": 24369.52, + "probability": 0.9261 + }, + { + "start": 24370.34, + "end": 24374.96, + "probability": 0.939 + }, + { + "start": 24375.1, + "end": 24379.62, + "probability": 0.9857 + }, + { + "start": 24380.36, + "end": 24381.08, + "probability": 0.8479 + }, + { + "start": 24381.38, + "end": 24383.2, + "probability": 0.9377 + }, + { + "start": 24383.4, + "end": 24384.1, + "probability": 0.9655 + }, + { + "start": 24384.18, + "end": 24385.14, + "probability": 0.955 + }, + { + "start": 24385.32, + "end": 24385.86, + "probability": 0.6178 + }, + { + "start": 24386.7, + "end": 24392.28, + "probability": 0.9988 + }, + { + "start": 24392.81, + "end": 24399.14, + "probability": 0.9998 + }, + { + "start": 24400.6, + "end": 24404.28, + "probability": 0.9939 + }, + { + "start": 24405.52, + "end": 24409.54, + "probability": 0.9743 + }, + { + "start": 24410.56, + "end": 24414.86, + "probability": 0.8462 + }, + { + "start": 24414.96, + "end": 24415.76, + "probability": 0.8215 + }, + { + "start": 24416.96, + "end": 24418.94, + "probability": 0.9918 + }, + { + "start": 24419.9, + "end": 24423.38, + "probability": 0.9626 + }, + { + "start": 24425.2, + "end": 24426.92, + "probability": 0.9656 + }, + { + "start": 24427.12, + "end": 24428.4, + "probability": 0.8474 + }, + { + "start": 24428.5, + "end": 24430.54, + "probability": 0.9685 + }, + { + "start": 24432.06, + "end": 24434.68, + "probability": 0.9977 + }, + { + "start": 24435.68, + "end": 24436.58, + "probability": 0.7812 + }, + { + "start": 24436.74, + "end": 24437.78, + "probability": 0.9713 + }, + { + "start": 24438.08, + "end": 24438.66, + "probability": 0.5121 + }, + { + "start": 24439.8, + "end": 24441.42, + "probability": 0.766 + }, + { + "start": 24442.28, + "end": 24443.5, + "probability": 0.8701 + }, + { + "start": 24444.46, + "end": 24447.48, + "probability": 0.9918 + }, + { + "start": 24448.62, + "end": 24449.5, + "probability": 0.9066 + }, + { + "start": 24450.72, + "end": 24456.2, + "probability": 0.9801 + }, + { + "start": 24456.8, + "end": 24459.36, + "probability": 0.9709 + }, + { + "start": 24461.24, + "end": 24465.52, + "probability": 0.8271 + }, + { + "start": 24466.34, + "end": 24468.9, + "probability": 0.893 + }, + { + "start": 24469.64, + "end": 24470.5, + "probability": 0.887 + }, + { + "start": 24470.56, + "end": 24472.52, + "probability": 0.9639 + }, + { + "start": 24473.4, + "end": 24474.04, + "probability": 0.981 + }, + { + "start": 24474.18, + "end": 24475.22, + "probability": 0.9165 + }, + { + "start": 24475.38, + "end": 24480.06, + "probability": 0.9878 + }, + { + "start": 24480.16, + "end": 24487.1, + "probability": 0.9497 + }, + { + "start": 24487.16, + "end": 24487.64, + "probability": 0.5104 + }, + { + "start": 24487.7, + "end": 24488.33, + "probability": 0.8041 + }, + { + "start": 24489.3, + "end": 24491.2, + "probability": 0.9954 + }, + { + "start": 24491.24, + "end": 24493.68, + "probability": 0.9929 + }, + { + "start": 24496.12, + "end": 24498.5, + "probability": 0.8246 + }, + { + "start": 24499.22, + "end": 24499.56, + "probability": 0.4584 + }, + { + "start": 24499.6, + "end": 24502.96, + "probability": 0.9207 + }, + { + "start": 24503.04, + "end": 24504.42, + "probability": 0.7539 + }, + { + "start": 24505.06, + "end": 24508.84, + "probability": 0.9912 + }, + { + "start": 24509.56, + "end": 24514.5, + "probability": 0.987 + }, + { + "start": 24515.64, + "end": 24517.92, + "probability": 0.9954 + }, + { + "start": 24518.4, + "end": 24519.96, + "probability": 0.9987 + }, + { + "start": 24520.1, + "end": 24521.22, + "probability": 0.034 + }, + { + "start": 24522.56, + "end": 24525.26, + "probability": 0.255 + }, + { + "start": 24525.54, + "end": 24526.46, + "probability": 0.3658 + }, + { + "start": 24527.04, + "end": 24529.58, + "probability": 0.1171 + }, + { + "start": 24529.62, + "end": 24530.6, + "probability": 0.5688 + }, + { + "start": 24530.7, + "end": 24535.48, + "probability": 0.8732 + }, + { + "start": 24536.12, + "end": 24536.82, + "probability": 0.9374 + }, + { + "start": 24538.62, + "end": 24542.48, + "probability": 0.979 + }, + { + "start": 24542.6, + "end": 24543.46, + "probability": 0.957 + }, + { + "start": 24544.28, + "end": 24544.76, + "probability": 0.6526 + }, + { + "start": 24544.9, + "end": 24546.18, + "probability": 0.9042 + }, + { + "start": 24546.84, + "end": 24549.0, + "probability": 0.9329 + }, + { + "start": 24549.1, + "end": 24549.8, + "probability": 0.8213 + }, + { + "start": 24550.18, + "end": 24552.76, + "probability": 0.9016 + }, + { + "start": 24552.94, + "end": 24554.12, + "probability": 0.409 + }, + { + "start": 24554.56, + "end": 24555.38, + "probability": 0.1609 + }, + { + "start": 24558.76, + "end": 24559.2, + "probability": 0.0277 + }, + { + "start": 24559.2, + "end": 24560.5, + "probability": 0.0254 + }, + { + "start": 24560.5, + "end": 24561.34, + "probability": 0.0343 + }, + { + "start": 24563.68, + "end": 24568.22, + "probability": 0.5749 + }, + { + "start": 24570.16, + "end": 24576.68, + "probability": 0.9509 + }, + { + "start": 24578.06, + "end": 24582.47, + "probability": 0.994 + }, + { + "start": 24582.8, + "end": 24589.84, + "probability": 0.9904 + }, + { + "start": 24592.08, + "end": 24594.56, + "probability": 0.9279 + }, + { + "start": 24596.68, + "end": 24600.28, + "probability": 0.9954 + }, + { + "start": 24603.4, + "end": 24605.12, + "probability": 0.9995 + }, + { + "start": 24607.88, + "end": 24608.9, + "probability": 0.8991 + }, + { + "start": 24610.92, + "end": 24612.88, + "probability": 0.9987 + }, + { + "start": 24614.98, + "end": 24615.86, + "probability": 0.9955 + }, + { + "start": 24617.7, + "end": 24618.76, + "probability": 0.9205 + }, + { + "start": 24618.98, + "end": 24619.76, + "probability": 0.7234 + }, + { + "start": 24620.38, + "end": 24623.44, + "probability": 0.522 + }, + { + "start": 24623.44, + "end": 24626.24, + "probability": 0.2748 + }, + { + "start": 24627.64, + "end": 24627.8, + "probability": 0.197 + }, + { + "start": 24627.8, + "end": 24627.8, + "probability": 0.451 + }, + { + "start": 24627.8, + "end": 24628.82, + "probability": 0.2927 + }, + { + "start": 24628.82, + "end": 24630.2, + "probability": 0.871 + }, + { + "start": 24632.22, + "end": 24634.36, + "probability": 0.7043 + }, + { + "start": 24634.92, + "end": 24635.98, + "probability": 0.12 + }, + { + "start": 24636.1, + "end": 24636.92, + "probability": 0.7687 + }, + { + "start": 24638.38, + "end": 24639.65, + "probability": 0.8019 + }, + { + "start": 24641.6, + "end": 24643.04, + "probability": 0.9414 + }, + { + "start": 24643.3, + "end": 24644.74, + "probability": 0.9105 + }, + { + "start": 24644.78, + "end": 24645.58, + "probability": 0.7299 + }, + { + "start": 24645.8, + "end": 24646.08, + "probability": 0.0532 + }, + { + "start": 24647.24, + "end": 24650.66, + "probability": 0.6782 + }, + { + "start": 24651.6, + "end": 24653.02, + "probability": 0.9945 + }, + { + "start": 24653.64, + "end": 24655.81, + "probability": 0.8357 + }, + { + "start": 24657.66, + "end": 24659.56, + "probability": 0.7586 + }, + { + "start": 24660.36, + "end": 24661.88, + "probability": 0.6537 + }, + { + "start": 24662.04, + "end": 24668.28, + "probability": 0.9104 + }, + { + "start": 24668.28, + "end": 24669.72, + "probability": 0.5851 + }, + { + "start": 24669.8, + "end": 24673.6, + "probability": 0.9929 + }, + { + "start": 24675.08, + "end": 24676.54, + "probability": 0.493 + }, + { + "start": 24676.6, + "end": 24681.86, + "probability": 0.993 + }, + { + "start": 24683.24, + "end": 24691.54, + "probability": 0.9698 + }, + { + "start": 24693.22, + "end": 24698.06, + "probability": 0.9612 + }, + { + "start": 24699.4, + "end": 24700.63, + "probability": 0.8701 + }, + { + "start": 24700.86, + "end": 24702.46, + "probability": 0.9243 + }, + { + "start": 24702.52, + "end": 24706.14, + "probability": 0.953 + }, + { + "start": 24707.24, + "end": 24707.84, + "probability": 0.7356 + }, + { + "start": 24708.58, + "end": 24708.82, + "probability": 0.9648 + }, + { + "start": 24708.9, + "end": 24713.32, + "probability": 0.9946 + }, + { + "start": 24714.22, + "end": 24715.44, + "probability": 0.501 + }, + { + "start": 24716.62, + "end": 24720.78, + "probability": 0.9954 + }, + { + "start": 24721.44, + "end": 24722.46, + "probability": 0.0191 + }, + { + "start": 24723.26, + "end": 24724.68, + "probability": 0.4281 + }, + { + "start": 24724.72, + "end": 24725.6, + "probability": 0.4222 + }, + { + "start": 24725.76, + "end": 24726.42, + "probability": 0.6835 + }, + { + "start": 24726.54, + "end": 24727.7, + "probability": 0.5062 + }, + { + "start": 24727.82, + "end": 24728.98, + "probability": 0.757 + }, + { + "start": 24729.24, + "end": 24733.41, + "probability": 0.9587 + }, + { + "start": 24733.64, + "end": 24735.48, + "probability": 0.8263 + }, + { + "start": 24735.68, + "end": 24737.36, + "probability": 0.7934 + }, + { + "start": 24738.8, + "end": 24741.12, + "probability": 0.9986 + }, + { + "start": 24742.64, + "end": 24744.04, + "probability": 0.8809 + }, + { + "start": 24744.46, + "end": 24746.16, + "probability": 0.9671 + }, + { + "start": 24750.6, + "end": 24752.24, + "probability": 0.7627 + }, + { + "start": 24753.26, + "end": 24759.6, + "probability": 0.9885 + }, + { + "start": 24760.42, + "end": 24761.52, + "probability": 0.2481 + }, + { + "start": 24761.7, + "end": 24763.3, + "probability": 0.1488 + }, + { + "start": 24763.48, + "end": 24765.66, + "probability": 0.8139 + }, + { + "start": 24765.98, + "end": 24766.7, + "probability": 0.2184 + }, + { + "start": 24768.84, + "end": 24772.04, + "probability": 0.3956 + }, + { + "start": 24774.06, + "end": 24776.78, + "probability": 0.9678 + }, + { + "start": 24777.56, + "end": 24783.5, + "probability": 0.9571 + }, + { + "start": 24785.54, + "end": 24789.78, + "probability": 0.6322 + }, + { + "start": 24791.24, + "end": 24792.49, + "probability": 0.9914 + }, + { + "start": 24792.58, + "end": 24794.78, + "probability": 0.9949 + }, + { + "start": 24795.16, + "end": 24795.81, + "probability": 0.4795 + }, + { + "start": 24796.6, + "end": 24797.89, + "probability": 0.9238 + }, + { + "start": 24799.3, + "end": 24800.54, + "probability": 0.9924 + }, + { + "start": 24801.02, + "end": 24803.68, + "probability": 0.9162 + }, + { + "start": 24804.1, + "end": 24804.1, + "probability": 0.1776 + }, + { + "start": 24804.1, + "end": 24806.3, + "probability": 0.9861 + }, + { + "start": 24806.52, + "end": 24808.48, + "probability": 0.9686 + }, + { + "start": 24809.8, + "end": 24811.88, + "probability": 0.8591 + }, + { + "start": 24813.12, + "end": 24814.48, + "probability": 0.9644 + }, + { + "start": 24814.6, + "end": 24817.96, + "probability": 0.9286 + }, + { + "start": 24819.76, + "end": 24821.5, + "probability": 0.9954 + }, + { + "start": 24821.62, + "end": 24823.18, + "probability": 0.7487 + }, + { + "start": 24823.28, + "end": 24824.16, + "probability": 0.7198 + }, + { + "start": 24824.58, + "end": 24828.4, + "probability": 0.9959 + }, + { + "start": 24829.1, + "end": 24831.18, + "probability": 0.9687 + }, + { + "start": 24831.18, + "end": 24833.16, + "probability": 0.9146 + }, + { + "start": 24833.34, + "end": 24833.68, + "probability": 0.7017 + }, + { + "start": 24835.2, + "end": 24838.64, + "probability": 0.563 + }, + { + "start": 24839.34, + "end": 24841.3, + "probability": 0.8599 + }, + { + "start": 24841.36, + "end": 24843.02, + "probability": 0.9775 + }, + { + "start": 24844.06, + "end": 24845.98, + "probability": 0.9809 + }, + { + "start": 24846.8, + "end": 24847.73, + "probability": 0.8527 + }, + { + "start": 24850.88, + "end": 24852.94, + "probability": 0.5298 + }, + { + "start": 24853.06, + "end": 24853.32, + "probability": 0.068 + }, + { + "start": 24853.32, + "end": 24853.98, + "probability": 0.097 + }, + { + "start": 24854.12, + "end": 24857.82, + "probability": 0.8883 + }, + { + "start": 24858.06, + "end": 24862.04, + "probability": 0.77 + }, + { + "start": 24864.4, + "end": 24870.3, + "probability": 0.9845 + }, + { + "start": 24871.52, + "end": 24872.06, + "probability": 0.6311 + }, + { + "start": 24872.3, + "end": 24872.4, + "probability": 0.255 + }, + { + "start": 24872.4, + "end": 24872.5, + "probability": 0.1594 + }, + { + "start": 24872.76, + "end": 24873.9, + "probability": 0.9448 + }, + { + "start": 24873.92, + "end": 24875.84, + "probability": 0.8493 + }, + { + "start": 24877.25, + "end": 24881.78, + "probability": 0.9866 + }, + { + "start": 24883.2, + "end": 24885.82, + "probability": 0.9085 + }, + { + "start": 24886.38, + "end": 24887.38, + "probability": 0.7097 + }, + { + "start": 24888.42, + "end": 24893.74, + "probability": 0.988 + }, + { + "start": 24893.9, + "end": 24894.66, + "probability": 0.2678 + }, + { + "start": 24894.68, + "end": 24895.9, + "probability": 0.9741 + }, + { + "start": 24896.16, + "end": 24898.6, + "probability": 0.64 + }, + { + "start": 24898.78, + "end": 24902.16, + "probability": 0.4019 + }, + { + "start": 24902.3, + "end": 24904.12, + "probability": 0.7911 + }, + { + "start": 24904.86, + "end": 24906.98, + "probability": 0.2479 + }, + { + "start": 24906.98, + "end": 24907.54, + "probability": 0.6331 + }, + { + "start": 24908.44, + "end": 24913.4, + "probability": 0.7753 + }, + { + "start": 24914.84, + "end": 24915.24, + "probability": 0.7075 + }, + { + "start": 24915.4, + "end": 24918.66, + "probability": 0.9694 + }, + { + "start": 24918.74, + "end": 24919.18, + "probability": 0.9668 + }, + { + "start": 24919.24, + "end": 24919.74, + "probability": 0.7191 + }, + { + "start": 24920.1, + "end": 24921.36, + "probability": 0.9784 + }, + { + "start": 24922.78, + "end": 24924.2, + "probability": 0.4962 + }, + { + "start": 24924.4, + "end": 24927.44, + "probability": 0.9823 + }, + { + "start": 24927.62, + "end": 24928.26, + "probability": 0.2967 + }, + { + "start": 24928.76, + "end": 24931.66, + "probability": 0.6809 + }, + { + "start": 24931.88, + "end": 24933.4, + "probability": 0.9731 + }, + { + "start": 24934.1, + "end": 24934.94, + "probability": 0.946 + }, + { + "start": 24935.22, + "end": 24935.56, + "probability": 0.666 + }, + { + "start": 24935.64, + "end": 24936.28, + "probability": 0.7979 + }, + { + "start": 24936.42, + "end": 24940.34, + "probability": 0.8152 + }, + { + "start": 24940.44, + "end": 24941.6, + "probability": 0.9178 + }, + { + "start": 24941.66, + "end": 24943.58, + "probability": 0.7285 + }, + { + "start": 24944.1, + "end": 24944.1, + "probability": 0.0447 + }, + { + "start": 24944.1, + "end": 24945.35, + "probability": 0.6946 + }, + { + "start": 24945.64, + "end": 24947.2, + "probability": 0.8798 + }, + { + "start": 24947.6, + "end": 24949.66, + "probability": 0.9836 + }, + { + "start": 24949.78, + "end": 24952.88, + "probability": 0.9741 + }, + { + "start": 24953.76, + "end": 24955.1, + "probability": 0.9973 + }, + { + "start": 24955.8, + "end": 24957.32, + "probability": 0.998 + }, + { + "start": 24957.46, + "end": 24961.28, + "probability": 0.8418 + }, + { + "start": 24961.88, + "end": 24961.94, + "probability": 0.0797 + }, + { + "start": 24961.94, + "end": 24963.58, + "probability": 0.8632 + }, + { + "start": 24963.68, + "end": 24964.44, + "probability": 0.9317 + }, + { + "start": 24964.54, + "end": 24969.28, + "probability": 0.9965 + }, + { + "start": 24969.56, + "end": 24972.64, + "probability": 0.9217 + }, + { + "start": 24972.72, + "end": 24973.44, + "probability": 0.9358 + }, + { + "start": 24974.12, + "end": 24976.48, + "probability": 0.895 + }, + { + "start": 24976.82, + "end": 24980.0, + "probability": 0.9144 + }, + { + "start": 24980.2, + "end": 24981.78, + "probability": 0.9556 + }, + { + "start": 24982.82, + "end": 24984.56, + "probability": 0.6647 + }, + { + "start": 24985.38, + "end": 24989.78, + "probability": 0.9936 + }, + { + "start": 24989.9, + "end": 24991.46, + "probability": 0.938 + }, + { + "start": 24992.1, + "end": 24992.9, + "probability": 0.6899 + }, + { + "start": 24993.72, + "end": 24994.72, + "probability": 0.4394 + }, + { + "start": 24996.04, + "end": 24999.38, + "probability": 0.6542 + }, + { + "start": 24999.38, + "end": 25002.7, + "probability": 0.7434 + }, + { + "start": 25003.12, + "end": 25004.94, + "probability": 0.1524 + }, + { + "start": 25004.94, + "end": 25006.52, + "probability": 0.4333 + }, + { + "start": 25007.0, + "end": 25007.72, + "probability": 0.7796 + }, + { + "start": 25007.82, + "end": 25009.1, + "probability": 0.9142 + }, + { + "start": 25009.58, + "end": 25013.42, + "probability": 0.9659 + }, + { + "start": 25013.72, + "end": 25014.34, + "probability": 0.2959 + }, + { + "start": 25015.95, + "end": 25018.8, + "probability": 0.5134 + }, + { + "start": 25018.8, + "end": 25019.37, + "probability": 0.1396 + }, + { + "start": 25019.88, + "end": 25022.04, + "probability": 0.4375 + }, + { + "start": 25022.2, + "end": 25025.16, + "probability": 0.6611 + }, + { + "start": 25026.12, + "end": 25026.7, + "probability": 0.1418 + }, + { + "start": 25026.7, + "end": 25030.3, + "probability": 0.0496 + }, + { + "start": 25030.92, + "end": 25033.88, + "probability": 0.4793 + }, + { + "start": 25034.12, + "end": 25036.92, + "probability": 0.5999 + }, + { + "start": 25037.04, + "end": 25037.4, + "probability": 0.7182 + }, + { + "start": 25038.18, + "end": 25043.12, + "probability": 0.8164 + }, + { + "start": 25043.88, + "end": 25044.54, + "probability": 0.6664 + }, + { + "start": 25045.0, + "end": 25046.3, + "probability": 0.9006 + }, + { + "start": 25046.64, + "end": 25048.94, + "probability": 0.932 + }, + { + "start": 25049.12, + "end": 25051.96, + "probability": 0.7746 + }, + { + "start": 25052.32, + "end": 25053.8, + "probability": 0.2066 + }, + { + "start": 25053.8, + "end": 25055.27, + "probability": 0.9357 + }, + { + "start": 25055.54, + "end": 25057.12, + "probability": 0.8991 + }, + { + "start": 25057.4, + "end": 25059.2, + "probability": 0.5918 + }, + { + "start": 25059.82, + "end": 25061.97, + "probability": 0.8135 + }, + { + "start": 25062.56, + "end": 25065.7, + "probability": 0.8718 + }, + { + "start": 25066.04, + "end": 25067.4, + "probability": 0.7673 + }, + { + "start": 25067.98, + "end": 25069.56, + "probability": 0.8891 + }, + { + "start": 25069.62, + "end": 25072.39, + "probability": 0.8473 + }, + { + "start": 25073.22, + "end": 25074.2, + "probability": 0.781 + }, + { + "start": 25074.32, + "end": 25075.52, + "probability": 0.9521 + }, + { + "start": 25075.64, + "end": 25077.85, + "probability": 0.9941 + }, + { + "start": 25078.18, + "end": 25078.6, + "probability": 0.7285 + }, + { + "start": 25079.0, + "end": 25080.1, + "probability": 0.7268 + }, + { + "start": 25081.14, + "end": 25082.1, + "probability": 0.042 + }, + { + "start": 25082.1, + "end": 25085.04, + "probability": 0.5473 + }, + { + "start": 25086.22, + "end": 25087.36, + "probability": 0.8008 + }, + { + "start": 25087.6, + "end": 25088.72, + "probability": 0.384 + }, + { + "start": 25088.86, + "end": 25089.84, + "probability": 0.576 + }, + { + "start": 25090.24, + "end": 25090.6, + "probability": 0.5427 + }, + { + "start": 25090.64, + "end": 25090.88, + "probability": 0.8719 + }, + { + "start": 25090.98, + "end": 25092.8, + "probability": 0.8982 + }, + { + "start": 25092.98, + "end": 25097.26, + "probability": 0.9842 + }, + { + "start": 25097.36, + "end": 25098.0, + "probability": 0.8372 + }, + { + "start": 25098.46, + "end": 25101.27, + "probability": 0.9473 + }, + { + "start": 25101.62, + "end": 25103.48, + "probability": 0.8306 + }, + { + "start": 25103.68, + "end": 25105.58, + "probability": 0.9702 + }, + { + "start": 25106.02, + "end": 25108.24, + "probability": 0.4908 + }, + { + "start": 25108.9, + "end": 25110.94, + "probability": 0.9987 + }, + { + "start": 25111.66, + "end": 25112.86, + "probability": 0.8122 + }, + { + "start": 25112.94, + "end": 25114.04, + "probability": 0.6464 + }, + { + "start": 25114.38, + "end": 25115.26, + "probability": 0.3472 + }, + { + "start": 25115.32, + "end": 25119.08, + "probability": 0.6479 + }, + { + "start": 25119.26, + "end": 25120.16, + "probability": 0.1948 + }, + { + "start": 25120.22, + "end": 25120.6, + "probability": 0.5705 + }, + { + "start": 25121.36, + "end": 25122.48, + "probability": 0.677 + }, + { + "start": 25123.68, + "end": 25124.8, + "probability": 0.9254 + }, + { + "start": 25125.36, + "end": 25127.8, + "probability": 0.6826 + }, + { + "start": 25128.3, + "end": 25132.66, + "probability": 0.9857 + }, + { + "start": 25133.24, + "end": 25134.78, + "probability": 0.8972 + }, + { + "start": 25135.58, + "end": 25137.14, + "probability": 0.9248 + }, + { + "start": 25138.32, + "end": 25138.92, + "probability": 0.7065 + }, + { + "start": 25139.52, + "end": 25145.0, + "probability": 0.9962 + }, + { + "start": 25145.52, + "end": 25147.18, + "probability": 0.9358 + }, + { + "start": 25147.92, + "end": 25148.74, + "probability": 0.0146 + }, + { + "start": 25148.74, + "end": 25148.88, + "probability": 0.1554 + }, + { + "start": 25149.48, + "end": 25151.28, + "probability": 0.9888 + }, + { + "start": 25153.9, + "end": 25154.66, + "probability": 0.1393 + }, + { + "start": 25154.66, + "end": 25154.74, + "probability": 0.0717 + }, + { + "start": 25154.92, + "end": 25159.71, + "probability": 0.5259 + }, + { + "start": 25160.8, + "end": 25164.24, + "probability": 0.7007 + }, + { + "start": 25164.6, + "end": 25165.76, + "probability": 0.1957 + }, + { + "start": 25165.76, + "end": 25168.4, + "probability": 0.9402 + }, + { + "start": 25168.48, + "end": 25168.9, + "probability": 0.2122 + }, + { + "start": 25169.0, + "end": 25169.54, + "probability": 0.7875 + }, + { + "start": 25169.6, + "end": 25173.4, + "probability": 0.9789 + }, + { + "start": 25173.52, + "end": 25175.94, + "probability": 0.848 + }, + { + "start": 25176.12, + "end": 25179.1, + "probability": 0.9469 + }, + { + "start": 25179.25, + "end": 25182.44, + "probability": 0.5228 + }, + { + "start": 25183.54, + "end": 25183.88, + "probability": 0.0185 + }, + { + "start": 25184.4, + "end": 25185.42, + "probability": 0.5044 + }, + { + "start": 25186.24, + "end": 25187.87, + "probability": 0.4197 + }, + { + "start": 25188.28, + "end": 25189.86, + "probability": 0.8859 + }, + { + "start": 25190.36, + "end": 25190.9, + "probability": 0.7784 + }, + { + "start": 25191.5, + "end": 25193.26, + "probability": 0.7871 + }, + { + "start": 25193.88, + "end": 25194.02, + "probability": 0.0923 + }, + { + "start": 25194.02, + "end": 25195.28, + "probability": 0.6685 + }, + { + "start": 25195.5, + "end": 25198.16, + "probability": 0.6917 + }, + { + "start": 25198.4, + "end": 25200.28, + "probability": 0.9891 + }, + { + "start": 25201.42, + "end": 25206.14, + "probability": 0.5804 + }, + { + "start": 25207.16, + "end": 25209.86, + "probability": 0.1374 + }, + { + "start": 25210.18, + "end": 25211.74, + "probability": 0.6315 + }, + { + "start": 25211.82, + "end": 25212.88, + "probability": 0.9021 + }, + { + "start": 25213.08, + "end": 25213.38, + "probability": 0.1669 + }, + { + "start": 25213.6, + "end": 25214.04, + "probability": 0.8903 + }, + { + "start": 25214.12, + "end": 25214.7, + "probability": 0.8403 + }, + { + "start": 25215.12, + "end": 25217.22, + "probability": 0.9436 + }, + { + "start": 25217.64, + "end": 25218.52, + "probability": 0.9224 + }, + { + "start": 25219.1, + "end": 25222.66, + "probability": 0.9342 + }, + { + "start": 25222.66, + "end": 25224.68, + "probability": 0.1182 + }, + { + "start": 25225.2, + "end": 25226.42, + "probability": 0.0112 + }, + { + "start": 25227.62, + "end": 25228.16, + "probability": 0.271 + }, + { + "start": 25228.16, + "end": 25228.24, + "probability": 0.5903 + }, + { + "start": 25228.24, + "end": 25228.24, + "probability": 0.5536 + }, + { + "start": 25228.24, + "end": 25229.34, + "probability": 0.9658 + }, + { + "start": 25230.3, + "end": 25233.1, + "probability": 0.4315 + }, + { + "start": 25233.42, + "end": 25234.38, + "probability": 0.502 + }, + { + "start": 25234.38, + "end": 25236.06, + "probability": 0.6493 + }, + { + "start": 25236.06, + "end": 25236.64, + "probability": 0.0486 + }, + { + "start": 25236.66, + "end": 25238.16, + "probability": 0.8879 + }, + { + "start": 25238.42, + "end": 25241.08, + "probability": 0.8506 + }, + { + "start": 25241.6, + "end": 25246.24, + "probability": 0.9847 + }, + { + "start": 25247.56, + "end": 25249.6, + "probability": 0.9857 + }, + { + "start": 25251.34, + "end": 25257.2, + "probability": 0.5071 + }, + { + "start": 25257.6, + "end": 25258.3, + "probability": 0.2281 + }, + { + "start": 25258.3, + "end": 25258.3, + "probability": 0.1348 + }, + { + "start": 25258.3, + "end": 25260.88, + "probability": 0.9805 + }, + { + "start": 25260.88, + "end": 25265.1, + "probability": 0.9847 + }, + { + "start": 25265.36, + "end": 25268.84, + "probability": 0.9562 + }, + { + "start": 25269.22, + "end": 25273.98, + "probability": 0.8243 + }, + { + "start": 25274.16, + "end": 25275.98, + "probability": 0.896 + }, + { + "start": 25276.06, + "end": 25277.62, + "probability": 0.15 + }, + { + "start": 25277.62, + "end": 25278.66, + "probability": 0.5257 + }, + { + "start": 25278.76, + "end": 25280.22, + "probability": 0.7368 + }, + { + "start": 25280.22, + "end": 25281.34, + "probability": 0.1117 + }, + { + "start": 25281.34, + "end": 25282.54, + "probability": 0.2822 + }, + { + "start": 25282.72, + "end": 25287.4, + "probability": 0.6453 + }, + { + "start": 25287.4, + "end": 25289.74, + "probability": 0.3413 + }, + { + "start": 25289.8, + "end": 25291.07, + "probability": 0.1877 + }, + { + "start": 25291.94, + "end": 25297.76, + "probability": 0.8901 + }, + { + "start": 25297.82, + "end": 25298.76, + "probability": 0.5605 + }, + { + "start": 25300.33, + "end": 25302.36, + "probability": 0.3069 + }, + { + "start": 25302.48, + "end": 25302.48, + "probability": 0.0452 + }, + { + "start": 25302.5, + "end": 25304.42, + "probability": 0.8498 + }, + { + "start": 25304.82, + "end": 25312.76, + "probability": 0.9022 + }, + { + "start": 25313.62, + "end": 25315.08, + "probability": 0.9109 + }, + { + "start": 25315.52, + "end": 25317.08, + "probability": 0.8656 + }, + { + "start": 25317.92, + "end": 25320.56, + "probability": 0.4452 + }, + { + "start": 25320.64, + "end": 25322.26, + "probability": 0.5959 + }, + { + "start": 25322.32, + "end": 25325.92, + "probability": 0.9976 + }, + { + "start": 25326.8, + "end": 25327.22, + "probability": 0.0957 + }, + { + "start": 25327.58, + "end": 25332.76, + "probability": 0.9896 + }, + { + "start": 25334.06, + "end": 25334.84, + "probability": 0.9872 + }, + { + "start": 25335.4, + "end": 25336.38, + "probability": 0.8026 + }, + { + "start": 25337.2, + "end": 25339.56, + "probability": 0.9037 + }, + { + "start": 25339.74, + "end": 25339.88, + "probability": 0.0108 + }, + { + "start": 25339.88, + "end": 25341.44, + "probability": 0.3323 + }, + { + "start": 25342.1, + "end": 25349.22, + "probability": 0.974 + }, + { + "start": 25350.42, + "end": 25354.68, + "probability": 0.9799 + }, + { + "start": 25355.68, + "end": 25356.92, + "probability": 0.9727 + }, + { + "start": 25358.72, + "end": 25360.19, + "probability": 0.8009 + }, + { + "start": 25361.54, + "end": 25364.02, + "probability": 0.9004 + }, + { + "start": 25365.2, + "end": 25369.34, + "probability": 0.9518 + }, + { + "start": 25370.46, + "end": 25372.0, + "probability": 0.9934 + }, + { + "start": 25372.9, + "end": 25373.82, + "probability": 0.9618 + }, + { + "start": 25375.4, + "end": 25377.82, + "probability": 0.8329 + }, + { + "start": 25378.52, + "end": 25378.76, + "probability": 0.0181 + }, + { + "start": 25378.76, + "end": 25378.76, + "probability": 0.1938 + }, + { + "start": 25378.76, + "end": 25380.36, + "probability": 0.7464 + }, + { + "start": 25381.22, + "end": 25388.2, + "probability": 0.9885 + }, + { + "start": 25388.82, + "end": 25394.16, + "probability": 0.9983 + }, + { + "start": 25394.16, + "end": 25400.68, + "probability": 0.9956 + }, + { + "start": 25401.12, + "end": 25404.76, + "probability": 0.9956 + }, + { + "start": 25405.9, + "end": 25406.8, + "probability": 0.6101 + }, + { + "start": 25407.1, + "end": 25408.26, + "probability": 0.512 + }, + { + "start": 25408.84, + "end": 25410.12, + "probability": 0.7152 + }, + { + "start": 25410.32, + "end": 25415.48, + "probability": 0.2694 + }, + { + "start": 25415.48, + "end": 25418.88, + "probability": 0.5038 + }, + { + "start": 25419.46, + "end": 25423.3, + "probability": 0.5782 + }, + { + "start": 25424.96, + "end": 25427.58, + "probability": 0.8409 + }, + { + "start": 25428.18, + "end": 25430.78, + "probability": 0.8977 + }, + { + "start": 25431.28, + "end": 25434.48, + "probability": 0.9762 + }, + { + "start": 25435.22, + "end": 25438.02, + "probability": 0.9123 + }, + { + "start": 25438.38, + "end": 25439.02, + "probability": 0.7445 + }, + { + "start": 25440.78, + "end": 25441.56, + "probability": 0.8268 + }, + { + "start": 25441.78, + "end": 25445.02, + "probability": 0.9982 + }, + { + "start": 25445.02, + "end": 25446.0, + "probability": 0.8605 + }, + { + "start": 25446.88, + "end": 25448.32, + "probability": 0.3864 + }, + { + "start": 25449.28, + "end": 25451.72, + "probability": 0.9369 + }, + { + "start": 25452.74, + "end": 25456.96, + "probability": 0.8564 + }, + { + "start": 25457.34, + "end": 25458.54, + "probability": 0.0835 + }, + { + "start": 25467.46, + "end": 25470.51, + "probability": 0.4726 + }, + { + "start": 25472.04, + "end": 25472.38, + "probability": 0.0089 + }, + { + "start": 25474.77, + "end": 25474.99, + "probability": 0.0117 + }, + { + "start": 25475.1, + "end": 25478.6, + "probability": 0.0372 + }, + { + "start": 25478.68, + "end": 25478.68, + "probability": 0.0328 + }, + { + "start": 25478.68, + "end": 25478.68, + "probability": 0.1836 + }, + { + "start": 25478.68, + "end": 25478.68, + "probability": 0.2525 + }, + { + "start": 25478.68, + "end": 25479.84, + "probability": 0.1806 + }, + { + "start": 25479.9, + "end": 25482.02, + "probability": 0.8513 + }, + { + "start": 25482.4, + "end": 25482.58, + "probability": 0.7827 + }, + { + "start": 25482.8, + "end": 25485.36, + "probability": 0.8454 + }, + { + "start": 25486.04, + "end": 25487.42, + "probability": 0.7756 + }, + { + "start": 25488.32, + "end": 25491.06, + "probability": 0.9915 + }, + { + "start": 25491.9, + "end": 25494.39, + "probability": 0.9673 + }, + { + "start": 25495.56, + "end": 25498.8, + "probability": 0.9972 + }, + { + "start": 25498.8, + "end": 25501.36, + "probability": 0.9985 + }, + { + "start": 25501.96, + "end": 25502.7, + "probability": 0.0131 + }, + { + "start": 25502.74, + "end": 25504.54, + "probability": 0.4301 + }, + { + "start": 25504.72, + "end": 25506.34, + "probability": 0.9171 + }, + { + "start": 25506.86, + "end": 25511.06, + "probability": 0.988 + }, + { + "start": 25511.13, + "end": 25515.4, + "probability": 0.9983 + }, + { + "start": 25516.2, + "end": 25520.16, + "probability": 0.9829 + }, + { + "start": 25520.92, + "end": 25520.92, + "probability": 0.5462 + }, + { + "start": 25520.92, + "end": 25521.96, + "probability": 0.4841 + }, + { + "start": 25522.2, + "end": 25523.04, + "probability": 0.8643 + }, + { + "start": 25523.1, + "end": 25523.5, + "probability": 0.6779 + }, + { + "start": 25523.58, + "end": 25525.62, + "probability": 0.8906 + }, + { + "start": 25525.78, + "end": 25526.85, + "probability": 0.9686 + }, + { + "start": 25527.52, + "end": 25530.68, + "probability": 0.9812 + }, + { + "start": 25531.16, + "end": 25536.42, + "probability": 0.9911 + }, + { + "start": 25536.9, + "end": 25540.04, + "probability": 0.9932 + }, + { + "start": 25541.64, + "end": 25544.46, + "probability": 0.9904 + }, + { + "start": 25545.38, + "end": 25546.1, + "probability": 0.9982 + }, + { + "start": 25546.78, + "end": 25551.46, + "probability": 0.915 + }, + { + "start": 25552.32, + "end": 25553.76, + "probability": 0.6339 + }, + { + "start": 25554.98, + "end": 25560.14, + "probability": 0.9858 + }, + { + "start": 25561.2, + "end": 25562.28, + "probability": 0.9961 + }, + { + "start": 25564.36, + "end": 25566.4, + "probability": 0.9699 + }, + { + "start": 25567.08, + "end": 25567.92, + "probability": 0.9172 + }, + { + "start": 25569.24, + "end": 25572.88, + "probability": 0.9988 + }, + { + "start": 25574.1, + "end": 25578.12, + "probability": 0.998 + }, + { + "start": 25578.12, + "end": 25581.8, + "probability": 0.9905 + }, + { + "start": 25582.22, + "end": 25584.18, + "probability": 0.9932 + }, + { + "start": 25584.38, + "end": 25585.44, + "probability": 0.9565 + }, + { + "start": 25585.6, + "end": 25586.46, + "probability": 0.8217 + }, + { + "start": 25586.9, + "end": 25590.62, + "probability": 0.9005 + }, + { + "start": 25591.18, + "end": 25591.52, + "probability": 0.0044 + }, + { + "start": 25591.98, + "end": 25594.34, + "probability": 0.6939 + }, + { + "start": 25594.36, + "end": 25595.56, + "probability": 0.5321 + }, + { + "start": 25596.1, + "end": 25598.28, + "probability": 0.9591 + }, + { + "start": 25598.58, + "end": 25598.76, + "probability": 0.0791 + }, + { + "start": 25600.58, + "end": 25605.82, + "probability": 0.9932 + }, + { + "start": 25606.1, + "end": 25611.02, + "probability": 0.8733 + }, + { + "start": 25611.6, + "end": 25614.28, + "probability": 0.9692 + }, + { + "start": 25615.5, + "end": 25616.28, + "probability": 0.5999 + }, + { + "start": 25616.92, + "end": 25618.3, + "probability": 0.9172 + }, + { + "start": 25619.24, + "end": 25621.04, + "probability": 0.6861 + }, + { + "start": 25621.88, + "end": 25622.72, + "probability": 0.8975 + }, + { + "start": 25623.62, + "end": 25627.42, + "probability": 0.9983 + }, + { + "start": 25628.6, + "end": 25631.48, + "probability": 0.9918 + }, + { + "start": 25631.8, + "end": 25633.46, + "probability": 0.7447 + }, + { + "start": 25633.5, + "end": 25635.2, + "probability": 0.9865 + }, + { + "start": 25635.24, + "end": 25637.48, + "probability": 0.9945 + }, + { + "start": 25638.72, + "end": 25638.88, + "probability": 0.0 + }, + { + "start": 25641.4, + "end": 25641.84, + "probability": 0.0954 + }, + { + "start": 25641.84, + "end": 25642.4, + "probability": 0.4903 + }, + { + "start": 25643.24, + "end": 25646.06, + "probability": 0.7482 + }, + { + "start": 25647.24, + "end": 25650.02, + "probability": 0.9542 + }, + { + "start": 25650.76, + "end": 25655.22, + "probability": 0.9479 + }, + { + "start": 25656.08, + "end": 25658.68, + "probability": 0.9951 + }, + { + "start": 25659.2, + "end": 25660.74, + "probability": 0.8935 + }, + { + "start": 25661.62, + "end": 25665.5, + "probability": 0.9936 + }, + { + "start": 25665.52, + "end": 25669.16, + "probability": 0.9967 + }, + { + "start": 25669.8, + "end": 25669.94, + "probability": 0.2398 + }, + { + "start": 25669.94, + "end": 25670.78, + "probability": 0.5846 + }, + { + "start": 25671.0, + "end": 25672.54, + "probability": 0.9205 + }, + { + "start": 25672.7, + "end": 25676.94, + "probability": 0.9509 + }, + { + "start": 25677.04, + "end": 25678.04, + "probability": 0.7044 + }, + { + "start": 25678.3, + "end": 25679.38, + "probability": 0.863 + }, + { + "start": 25679.38, + "end": 25679.38, + "probability": 0.0016 + }, + { + "start": 25681.2, + "end": 25681.44, + "probability": 0.0199 + }, + { + "start": 25681.44, + "end": 25681.44, + "probability": 0.0332 + }, + { + "start": 25681.44, + "end": 25681.82, + "probability": 0.2701 + }, + { + "start": 25681.86, + "end": 25683.14, + "probability": 0.9322 + }, + { + "start": 25683.32, + "end": 25687.47, + "probability": 0.9884 + }, + { + "start": 25687.88, + "end": 25690.04, + "probability": 0.7334 + }, + { + "start": 25690.64, + "end": 25690.68, + "probability": 0.4416 + }, + { + "start": 25690.8, + "end": 25691.2, + "probability": 0.9686 + }, + { + "start": 25691.62, + "end": 25693.78, + "probability": 0.937 + }, + { + "start": 25693.9, + "end": 25695.68, + "probability": 0.9934 + }, + { + "start": 25696.52, + "end": 25698.82, + "probability": 0.9966 + }, + { + "start": 25698.82, + "end": 25702.22, + "probability": 0.9979 + }, + { + "start": 25702.56, + "end": 25707.22, + "probability": 0.9497 + }, + { + "start": 25707.56, + "end": 25710.24, + "probability": 0.998 + }, + { + "start": 25711.84, + "end": 25712.58, + "probability": 0.7126 + }, + { + "start": 25712.74, + "end": 25713.6, + "probability": 0.7275 + }, + { + "start": 25713.68, + "end": 25714.92, + "probability": 0.8261 + }, + { + "start": 25715.42, + "end": 25717.6, + "probability": 0.9709 + }, + { + "start": 25717.66, + "end": 25719.85, + "probability": 0.9844 + }, + { + "start": 25720.0, + "end": 25721.3, + "probability": 0.9463 + }, + { + "start": 25721.4, + "end": 25722.54, + "probability": 0.6911 + }, + { + "start": 25722.64, + "end": 25723.16, + "probability": 0.8691 + }, + { + "start": 25723.22, + "end": 25724.12, + "probability": 0.8023 + }, + { + "start": 25724.74, + "end": 25726.7, + "probability": 0.9437 + }, + { + "start": 25727.5, + "end": 25732.34, + "probability": 0.9893 + }, + { + "start": 25732.86, + "end": 25734.26, + "probability": 0.6555 + }, + { + "start": 25734.52, + "end": 25735.32, + "probability": 0.8974 + }, + { + "start": 25735.46, + "end": 25736.32, + "probability": 0.9469 + }, + { + "start": 25736.5, + "end": 25737.54, + "probability": 0.9072 + }, + { + "start": 25737.6, + "end": 25738.54, + "probability": 0.9224 + }, + { + "start": 25738.58, + "end": 25739.94, + "probability": 0.9775 + }, + { + "start": 25740.08, + "end": 25743.08, + "probability": 0.9741 + }, + { + "start": 25743.8, + "end": 25746.38, + "probability": 0.8542 + }, + { + "start": 25746.92, + "end": 25749.18, + "probability": 0.9807 + }, + { + "start": 25749.98, + "end": 25751.12, + "probability": 0.9982 + }, + { + "start": 25752.48, + "end": 25754.74, + "probability": 0.9357 + }, + { + "start": 25756.28, + "end": 25762.8, + "probability": 0.9979 + }, + { + "start": 25763.46, + "end": 25764.8, + "probability": 0.872 + }, + { + "start": 25765.86, + "end": 25766.26, + "probability": 0.3829 + }, + { + "start": 25767.64, + "end": 25768.78, + "probability": 0.8618 + }, + { + "start": 25770.16, + "end": 25773.98, + "probability": 0.9166 + }, + { + "start": 25774.04, + "end": 25779.82, + "probability": 0.6519 + }, + { + "start": 25780.46, + "end": 25783.13, + "probability": 0.8192 + }, + { + "start": 25783.96, + "end": 25786.05, + "probability": 0.3148 + }, + { + "start": 25788.38, + "end": 25789.35, + "probability": 0.9263 + }, + { + "start": 25790.18, + "end": 25797.92, + "probability": 0.9702 + }, + { + "start": 25797.92, + "end": 25803.34, + "probability": 0.9905 + }, + { + "start": 25804.5, + "end": 25811.24, + "probability": 0.2557 + }, + { + "start": 25812.54, + "end": 25812.54, + "probability": 0.2059 + }, + { + "start": 25812.54, + "end": 25812.54, + "probability": 0.2279 + }, + { + "start": 25812.54, + "end": 25812.54, + "probability": 0.0479 + }, + { + "start": 25812.54, + "end": 25815.24, + "probability": 0.3648 + }, + { + "start": 25815.24, + "end": 25816.06, + "probability": 0.3846 + }, + { + "start": 25816.16, + "end": 25816.94, + "probability": 0.1522 + }, + { + "start": 25816.94, + "end": 25818.36, + "probability": 0.6066 + }, + { + "start": 25818.5, + "end": 25819.96, + "probability": 0.6952 + }, + { + "start": 25819.96, + "end": 25821.48, + "probability": 0.029 + }, + { + "start": 25821.68, + "end": 25821.9, + "probability": 0.6926 + }, + { + "start": 25822.0, + "end": 25823.37, + "probability": 0.9053 + }, + { + "start": 25823.5, + "end": 25824.72, + "probability": 0.6227 + }, + { + "start": 25824.84, + "end": 25827.66, + "probability": 0.7705 + }, + { + "start": 25827.94, + "end": 25829.26, + "probability": 0.9081 + }, + { + "start": 25829.62, + "end": 25830.54, + "probability": 0.8298 + }, + { + "start": 25832.0, + "end": 25836.96, + "probability": 0.9833 + }, + { + "start": 25837.7, + "end": 25839.72, + "probability": 0.8604 + }, + { + "start": 25840.44, + "end": 25840.44, + "probability": 0.3049 + }, + { + "start": 25840.44, + "end": 25840.44, + "probability": 0.4254 + }, + { + "start": 25840.44, + "end": 25845.54, + "probability": 0.6086 + }, + { + "start": 25848.22, + "end": 25849.44, + "probability": 0.8563 + }, + { + "start": 25849.58, + "end": 25850.4, + "probability": 0.9042 + }, + { + "start": 25850.54, + "end": 25852.78, + "probability": 0.9147 + }, + { + "start": 25852.86, + "end": 25854.12, + "probability": 0.9492 + }, + { + "start": 25854.7, + "end": 25858.44, + "probability": 0.9673 + }, + { + "start": 25859.42, + "end": 25863.86, + "probability": 0.9844 + }, + { + "start": 25864.32, + "end": 25868.1, + "probability": 0.9917 + }, + { + "start": 25868.84, + "end": 25871.74, + "probability": 0.9941 + }, + { + "start": 25871.96, + "end": 25874.56, + "probability": 0.9983 + }, + { + "start": 25874.88, + "end": 25876.86, + "probability": 0.9922 + }, + { + "start": 25877.7, + "end": 25879.72, + "probability": 0.8621 + }, + { + "start": 25880.21, + "end": 25881.96, + "probability": 0.8491 + }, + { + "start": 25882.02, + "end": 25882.88, + "probability": 0.71 + }, + { + "start": 25882.98, + "end": 25883.8, + "probability": 0.7874 + }, + { + "start": 25888.06, + "end": 25890.9, + "probability": 0.0771 + }, + { + "start": 25890.92, + "end": 25893.16, + "probability": 0.9659 + }, + { + "start": 25893.2, + "end": 25894.26, + "probability": 0.8526 + }, + { + "start": 25894.7, + "end": 25897.78, + "probability": 0.9718 + }, + { + "start": 25897.9, + "end": 25898.64, + "probability": 0.8389 + }, + { + "start": 25898.98, + "end": 25900.38, + "probability": 0.0605 + }, + { + "start": 25900.82, + "end": 25905.54, + "probability": 0.7371 + }, + { + "start": 25906.9, + "end": 25908.49, + "probability": 0.011 + }, + { + "start": 25909.3, + "end": 25910.3, + "probability": 0.7514 + }, + { + "start": 25910.58, + "end": 25911.44, + "probability": 0.3604 + }, + { + "start": 25911.68, + "end": 25914.16, + "probability": 0.9443 + }, + { + "start": 25914.44, + "end": 25915.18, + "probability": 0.8479 + }, + { + "start": 25915.3, + "end": 25915.92, + "probability": 0.58 + }, + { + "start": 25917.0, + "end": 25919.38, + "probability": 0.7712 + }, + { + "start": 25920.02, + "end": 25921.49, + "probability": 0.9231 + }, + { + "start": 25922.0, + "end": 25922.96, + "probability": 0.9081 + }, + { + "start": 25923.04, + "end": 25926.58, + "probability": 0.8826 + }, + { + "start": 25927.14, + "end": 25934.94, + "probability": 0.1109 + }, + { + "start": 25934.94, + "end": 25936.02, + "probability": 0.6839 + }, + { + "start": 25936.02, + "end": 25937.85, + "probability": 0.821 + }, + { + "start": 25944.5, + "end": 25947.26, + "probability": 0.6081 + }, + { + "start": 25947.34, + "end": 25949.4, + "probability": 0.8127 + }, + { + "start": 25949.74, + "end": 25954.6, + "probability": 0.2417 + }, + { + "start": 25954.7, + "end": 25957.88, + "probability": 0.1265 + }, + { + "start": 25957.9, + "end": 25958.14, + "probability": 0.4774 + }, + { + "start": 25958.14, + "end": 25958.84, + "probability": 0.6565 + }, + { + "start": 25959.0, + "end": 25959.84, + "probability": 0.8307 + }, + { + "start": 25960.0, + "end": 25963.14, + "probability": 0.7081 + }, + { + "start": 25963.38, + "end": 25966.44, + "probability": 0.7641 + }, + { + "start": 25967.04, + "end": 25967.64, + "probability": 0.0137 + }, + { + "start": 25967.64, + "end": 25972.3, + "probability": 0.6563 + }, + { + "start": 25972.62, + "end": 25974.1, + "probability": 0.5822 + }, + { + "start": 25974.3, + "end": 25975.0, + "probability": 0.2165 + }, + { + "start": 25975.02, + "end": 25976.24, + "probability": 0.5225 + }, + { + "start": 25976.24, + "end": 25979.78, + "probability": 0.6648 + }, + { + "start": 25979.88, + "end": 25979.95, + "probability": 0.3286 + }, + { + "start": 25980.02, + "end": 25980.02, + "probability": 0.16 + }, + { + "start": 25980.02, + "end": 25980.02, + "probability": 0.5286 + }, + { + "start": 25980.02, + "end": 25984.98, + "probability": 0.9582 + }, + { + "start": 25985.04, + "end": 25985.66, + "probability": 0.5038 + }, + { + "start": 25985.66, + "end": 25989.18, + "probability": 0.213 + }, + { + "start": 25989.34, + "end": 25990.86, + "probability": 0.865 + }, + { + "start": 25991.2, + "end": 25992.4, + "probability": 0.8697 + }, + { + "start": 25997.62, + "end": 25999.88, + "probability": 0.6244 + }, + { + "start": 26000.02, + "end": 26003.54, + "probability": 0.4332 + }, + { + "start": 26003.54, + "end": 26004.08, + "probability": 0.1004 + }, + { + "start": 26004.24, + "end": 26005.32, + "probability": 0.6316 + }, + { + "start": 26006.18, + "end": 26007.26, + "probability": 0.8167 + }, + { + "start": 26007.72, + "end": 26007.94, + "probability": 0.2269 + }, + { + "start": 26011.68, + "end": 26017.6, + "probability": 0.0275 + }, + { + "start": 26017.6, + "end": 26018.24, + "probability": 0.3462 + }, + { + "start": 26018.66, + "end": 26021.12, + "probability": 0.4089 + }, + { + "start": 26021.26, + "end": 26022.32, + "probability": 0.38 + }, + { + "start": 26022.7, + "end": 26024.62, + "probability": 0.3987 + }, + { + "start": 26024.84, + "end": 26026.34, + "probability": 0.7062 + }, + { + "start": 26026.96, + "end": 26028.67, + "probability": 0.8021 + }, + { + "start": 26029.02, + "end": 26030.64, + "probability": 0.7897 + }, + { + "start": 26030.82, + "end": 26032.0, + "probability": 0.6353 + }, + { + "start": 26032.38, + "end": 26034.26, + "probability": 0.7262 + }, + { + "start": 26034.36, + "end": 26034.88, + "probability": 0.4523 + }, + { + "start": 26035.22, + "end": 26035.36, + "probability": 0.3141 + }, + { + "start": 26035.44, + "end": 26035.78, + "probability": 0.9099 + }, + { + "start": 26036.38, + "end": 26039.08, + "probability": 0.2559 + }, + { + "start": 26044.82, + "end": 26045.12, + "probability": 0.4062 + }, + { + "start": 26045.12, + "end": 26045.54, + "probability": 0.3379 + }, + { + "start": 26045.54, + "end": 26048.74, + "probability": 0.3407 + }, + { + "start": 26048.78, + "end": 26049.18, + "probability": 0.3084 + }, + { + "start": 26049.28, + "end": 26051.7, + "probability": 0.6082 + }, + { + "start": 26051.72, + "end": 26052.66, + "probability": 0.5086 + }, + { + "start": 26052.78, + "end": 26052.78, + "probability": 0.1916 + }, + { + "start": 26052.78, + "end": 26053.13, + "probability": 0.4586 + }, + { + "start": 26053.38, + "end": 26055.22, + "probability": 0.8495 + }, + { + "start": 26055.48, + "end": 26056.52, + "probability": 0.5809 + }, + { + "start": 26056.52, + "end": 26057.2, + "probability": 0.0449 + }, + { + "start": 26057.2, + "end": 26057.2, + "probability": 0.0508 + }, + { + "start": 26057.2, + "end": 26061.6, + "probability": 0.6077 + }, + { + "start": 26061.6, + "end": 26063.0, + "probability": 0.9316 + }, + { + "start": 26064.0, + "end": 26065.2, + "probability": 0.671 + }, + { + "start": 26066.34, + "end": 26068.16, + "probability": 0.709 + }, + { + "start": 26068.32, + "end": 26069.62, + "probability": 0.8678 + }, + { + "start": 26069.74, + "end": 26071.72, + "probability": 0.9116 + }, + { + "start": 26072.6, + "end": 26075.78, + "probability": 0.9209 + }, + { + "start": 26077.1, + "end": 26082.32, + "probability": 0.9865 + }, + { + "start": 26082.32, + "end": 26086.52, + "probability": 0.994 + }, + { + "start": 26087.54, + "end": 26089.14, + "probability": 0.9994 + }, + { + "start": 26089.16, + "end": 26089.92, + "probability": 0.1152 + }, + { + "start": 26090.02, + "end": 26091.04, + "probability": 0.7124 + }, + { + "start": 26091.2, + "end": 26092.82, + "probability": 0.7251 + }, + { + "start": 26093.51, + "end": 26100.4, + "probability": 0.9959 + }, + { + "start": 26100.92, + "end": 26104.66, + "probability": 0.995 + }, + { + "start": 26104.76, + "end": 26105.6, + "probability": 0.7489 + }, + { + "start": 26106.02, + "end": 26107.82, + "probability": 0.6458 + }, + { + "start": 26107.88, + "end": 26108.08, + "probability": 0.4668 + }, + { + "start": 26108.24, + "end": 26109.3, + "probability": 0.7834 + }, + { + "start": 26109.68, + "end": 26113.18, + "probability": 0.9443 + }, + { + "start": 26113.9, + "end": 26117.78, + "probability": 0.8872 + }, + { + "start": 26118.4, + "end": 26119.72, + "probability": 0.9241 + }, + { + "start": 26120.66, + "end": 26123.3, + "probability": 0.9937 + }, + { + "start": 26123.3, + "end": 26125.9, + "probability": 0.9775 + }, + { + "start": 26126.72, + "end": 26126.82, + "probability": 0.7422 + }, + { + "start": 26126.88, + "end": 26127.83, + "probability": 0.9824 + }, + { + "start": 26127.96, + "end": 26130.8, + "probability": 0.9786 + }, + { + "start": 26130.98, + "end": 26133.22, + "probability": 0.7755 + }, + { + "start": 26133.86, + "end": 26136.22, + "probability": 0.9106 + }, + { + "start": 26136.66, + "end": 26139.84, + "probability": 0.9058 + }, + { + "start": 26140.44, + "end": 26143.1, + "probability": 0.9878 + }, + { + "start": 26143.78, + "end": 26145.04, + "probability": 0.9293 + }, + { + "start": 26145.06, + "end": 26146.5, + "probability": 0.5339 + }, + { + "start": 26147.3, + "end": 26148.1, + "probability": 0.6273 + }, + { + "start": 26148.46, + "end": 26149.68, + "probability": 0.4651 + }, + { + "start": 26149.68, + "end": 26150.44, + "probability": 0.4283 + }, + { + "start": 26150.44, + "end": 26152.8, + "probability": 0.7767 + }, + { + "start": 26152.86, + "end": 26156.36, + "probability": 0.9658 + }, + { + "start": 26157.96, + "end": 26159.0, + "probability": 0.3149 + }, + { + "start": 26159.16, + "end": 26161.44, + "probability": 0.719 + }, + { + "start": 26161.86, + "end": 26163.96, + "probability": 0.9099 + }, + { + "start": 26165.06, + "end": 26168.36, + "probability": 0.9731 + }, + { + "start": 26168.44, + "end": 26169.62, + "probability": 0.9422 + }, + { + "start": 26169.8, + "end": 26174.34, + "probability": 0.9165 + }, + { + "start": 26175.18, + "end": 26177.12, + "probability": 0.829 + }, + { + "start": 26177.28, + "end": 26178.24, + "probability": 0.6882 + }, + { + "start": 26178.34, + "end": 26182.7, + "probability": 0.9139 + }, + { + "start": 26182.8, + "end": 26185.42, + "probability": 0.9868 + }, + { + "start": 26186.4, + "end": 26190.2, + "probability": 0.9769 + }, + { + "start": 26190.2, + "end": 26195.26, + "probability": 0.9872 + }, + { + "start": 26197.24, + "end": 26197.42, + "probability": 0.0805 + }, + { + "start": 26197.5, + "end": 26197.6, + "probability": 0.0236 + }, + { + "start": 26197.6, + "end": 26199.82, + "probability": 0.996 + }, + { + "start": 26199.92, + "end": 26201.05, + "probability": 0.7794 + }, + { + "start": 26203.19, + "end": 26205.84, + "probability": 0.9986 + }, + { + "start": 26206.0, + "end": 26206.96, + "probability": 0.6721 + }, + { + "start": 26206.98, + "end": 26207.68, + "probability": 0.4784 + }, + { + "start": 26207.84, + "end": 26208.6, + "probability": 0.837 + }, + { + "start": 26208.74, + "end": 26211.96, + "probability": 0.9895 + }, + { + "start": 26212.26, + "end": 26214.76, + "probability": 0.97 + }, + { + "start": 26214.86, + "end": 26217.32, + "probability": 0.9888 + }, + { + "start": 26217.84, + "end": 26220.5, + "probability": 0.986 + }, + { + "start": 26220.5, + "end": 26224.0, + "probability": 0.9924 + }, + { + "start": 26224.26, + "end": 26226.34, + "probability": 0.4047 + }, + { + "start": 26226.74, + "end": 26230.1, + "probability": 0.4133 + }, + { + "start": 26230.42, + "end": 26233.52, + "probability": 0.911 + }, + { + "start": 26234.02, + "end": 26235.78, + "probability": 0.9146 + }, + { + "start": 26235.88, + "end": 26237.42, + "probability": 0.9609 + }, + { + "start": 26237.8, + "end": 26239.94, + "probability": 0.9913 + }, + { + "start": 26240.22, + "end": 26243.96, + "probability": 0.9727 + }, + { + "start": 26244.5, + "end": 26249.04, + "probability": 0.9137 + }, + { + "start": 26249.34, + "end": 26250.04, + "probability": 0.8506 + }, + { + "start": 26250.04, + "end": 26250.12, + "probability": 0.1021 + }, + { + "start": 26250.12, + "end": 26251.6, + "probability": 0.2372 + }, + { + "start": 26252.6, + "end": 26253.98, + "probability": 0.1351 + }, + { + "start": 26254.86, + "end": 26256.32, + "probability": 0.9826 + }, + { + "start": 26256.76, + "end": 26258.86, + "probability": 0.7128 + }, + { + "start": 26260.96, + "end": 26266.36, + "probability": 0.9917 + }, + { + "start": 26266.86, + "end": 26270.04, + "probability": 0.9948 + }, + { + "start": 26270.18, + "end": 26273.72, + "probability": 0.9971 + }, + { + "start": 26274.14, + "end": 26277.1, + "probability": 0.8767 + }, + { + "start": 26277.4, + "end": 26279.58, + "probability": 0.9938 + }, + { + "start": 26279.7, + "end": 26283.1, + "probability": 0.9662 + }, + { + "start": 26283.74, + "end": 26286.44, + "probability": 0.6829 + }, + { + "start": 26287.74, + "end": 26287.74, + "probability": 0.1499 + }, + { + "start": 26291.41, + "end": 26295.86, + "probability": 0.2553 + }, + { + "start": 26298.06, + "end": 26299.26, + "probability": 0.4706 + }, + { + "start": 26300.66, + "end": 26300.8, + "probability": 0.0242 + }, + { + "start": 26300.8, + "end": 26301.48, + "probability": 0.0911 + }, + { + "start": 26301.48, + "end": 26302.36, + "probability": 0.866 + }, + { + "start": 26303.82, + "end": 26306.74, + "probability": 0.7877 + }, + { + "start": 26306.96, + "end": 26306.96, + "probability": 0.0045 + }, + { + "start": 26309.29, + "end": 26312.78, + "probability": 0.7067 + }, + { + "start": 26312.96, + "end": 26314.02, + "probability": 0.5203 + }, + { + "start": 26314.06, + "end": 26320.06, + "probability": 0.9597 + }, + { + "start": 26320.54, + "end": 26320.86, + "probability": 0.0042 + }, + { + "start": 26320.88, + "end": 26324.02, + "probability": 0.1685 + }, + { + "start": 26324.2, + "end": 26324.76, + "probability": 0.1578 + }, + { + "start": 26324.82, + "end": 26326.88, + "probability": 0.8362 + }, + { + "start": 26327.42, + "end": 26330.14, + "probability": 0.9844 + }, + { + "start": 26330.22, + "end": 26330.56, + "probability": 0.5105 + }, + { + "start": 26330.62, + "end": 26332.72, + "probability": 0.9891 + }, + { + "start": 26333.16, + "end": 26334.1, + "probability": 0.7943 + }, + { + "start": 26334.64, + "end": 26338.14, + "probability": 0.9902 + }, + { + "start": 26338.5, + "end": 26341.82, + "probability": 0.9444 + }, + { + "start": 26341.9, + "end": 26342.42, + "probability": 0.7718 + }, + { + "start": 26342.46, + "end": 26343.62, + "probability": 0.7634 + }, + { + "start": 26343.92, + "end": 26344.66, + "probability": 0.9392 + }, + { + "start": 26345.54, + "end": 26348.76, + "probability": 0.9846 + }, + { + "start": 26348.9, + "end": 26350.36, + "probability": 0.7167 + }, + { + "start": 26350.88, + "end": 26355.2, + "probability": 0.992 + }, + { + "start": 26355.54, + "end": 26356.0, + "probability": 0.7876 + }, + { + "start": 26356.22, + "end": 26358.72, + "probability": 0.9868 + }, + { + "start": 26359.38, + "end": 26359.88, + "probability": 0.9268 + }, + { + "start": 26360.26, + "end": 26360.26, + "probability": 0.4982 + }, + { + "start": 26360.26, + "end": 26360.84, + "probability": 0.3799 + }, + { + "start": 26361.32, + "end": 26363.22, + "probability": 0.9398 + }, + { + "start": 26365.26, + "end": 26367.5, + "probability": 0.9768 + }, + { + "start": 26369.3, + "end": 26372.7, + "probability": 0.9917 + }, + { + "start": 26372.7, + "end": 26375.78, + "probability": 0.9701 + }, + { + "start": 26378.12, + "end": 26379.84, + "probability": 0.9917 + }, + { + "start": 26380.6, + "end": 26384.16, + "probability": 0.5504 + }, + { + "start": 26384.96, + "end": 26387.24, + "probability": 0.9939 + }, + { + "start": 26388.24, + "end": 26392.34, + "probability": 0.9835 + }, + { + "start": 26392.4, + "end": 26395.8, + "probability": 0.8247 + }, + { + "start": 26395.8, + "end": 26398.08, + "probability": 0.892 + }, + { + "start": 26398.72, + "end": 26401.9, + "probability": 0.9937 + }, + { + "start": 26401.9, + "end": 26406.26, + "probability": 0.9718 + }, + { + "start": 26406.44, + "end": 26409.16, + "probability": 0.959 + }, + { + "start": 26410.22, + "end": 26414.86, + "probability": 0.9534 + }, + { + "start": 26415.52, + "end": 26416.5, + "probability": 0.6463 + }, + { + "start": 26416.6, + "end": 26419.1, + "probability": 0.9686 + }, + { + "start": 26419.44, + "end": 26420.34, + "probability": 0.5148 + }, + { + "start": 26420.64, + "end": 26425.1, + "probability": 0.9766 + }, + { + "start": 26425.54, + "end": 26427.26, + "probability": 0.8542 + }, + { + "start": 26427.68, + "end": 26431.64, + "probability": 0.99 + }, + { + "start": 26432.16, + "end": 26436.94, + "probability": 0.9414 + }, + { + "start": 26437.92, + "end": 26439.36, + "probability": 0.958 + }, + { + "start": 26439.62, + "end": 26444.66, + "probability": 0.9815 + }, + { + "start": 26444.98, + "end": 26446.0, + "probability": 0.9279 + }, + { + "start": 26446.06, + "end": 26449.42, + "probability": 0.9403 + }, + { + "start": 26449.7, + "end": 26451.42, + "probability": 0.9567 + }, + { + "start": 26451.72, + "end": 26452.54, + "probability": 0.6451 + }, + { + "start": 26452.64, + "end": 26455.0, + "probability": 0.6744 + }, + { + "start": 26455.06, + "end": 26456.84, + "probability": 0.6859 + }, + { + "start": 26457.24, + "end": 26458.08, + "probability": 0.4399 + }, + { + "start": 26458.12, + "end": 26460.54, + "probability": 0.8922 + }, + { + "start": 26460.96, + "end": 26462.04, + "probability": 0.8054 + }, + { + "start": 26462.1, + "end": 26464.16, + "probability": 0.9929 + }, + { + "start": 26464.92, + "end": 26468.46, + "probability": 0.9076 + }, + { + "start": 26469.32, + "end": 26473.42, + "probability": 0.9966 + }, + { + "start": 26473.68, + "end": 26477.56, + "probability": 0.9915 + }, + { + "start": 26478.22, + "end": 26480.66, + "probability": 0.6979 + }, + { + "start": 26480.84, + "end": 26481.08, + "probability": 0.0528 + }, + { + "start": 26481.62, + "end": 26485.5, + "probability": 0.1838 + }, + { + "start": 26486.06, + "end": 26486.82, + "probability": 0.5892 + }, + { + "start": 26486.82, + "end": 26487.34, + "probability": 0.6809 + }, + { + "start": 26487.54, + "end": 26489.34, + "probability": 0.79 + }, + { + "start": 26489.8, + "end": 26490.95, + "probability": 0.5833 + }, + { + "start": 26492.26, + "end": 26494.74, + "probability": 0.9288 + }, + { + "start": 26495.38, + "end": 26500.52, + "probability": 0.9972 + }, + { + "start": 26500.9, + "end": 26504.18, + "probability": 0.9961 + }, + { + "start": 26504.42, + "end": 26505.32, + "probability": 0.8564 + }, + { + "start": 26505.48, + "end": 26508.36, + "probability": 0.9705 + }, + { + "start": 26508.62, + "end": 26510.87, + "probability": 0.9785 + }, + { + "start": 26510.96, + "end": 26511.84, + "probability": 0.9725 + }, + { + "start": 26511.92, + "end": 26513.14, + "probability": 0.8962 + }, + { + "start": 26513.58, + "end": 26514.1, + "probability": 0.3639 + }, + { + "start": 26517.5, + "end": 26519.4, + "probability": 0.6973 + }, + { + "start": 26519.54, + "end": 26521.44, + "probability": 0.9375 + }, + { + "start": 26521.6, + "end": 26523.32, + "probability": 0.9995 + }, + { + "start": 26523.44, + "end": 26524.76, + "probability": 0.776 + }, + { + "start": 26525.18, + "end": 26526.47, + "probability": 0.9693 + }, + { + "start": 26526.98, + "end": 26528.12, + "probability": 0.9412 + }, + { + "start": 26528.66, + "end": 26530.16, + "probability": 0.99 + }, + { + "start": 26530.3, + "end": 26531.98, + "probability": 0.936 + }, + { + "start": 26532.96, + "end": 26534.78, + "probability": 0.963 + }, + { + "start": 26535.04, + "end": 26536.56, + "probability": 0.418 + }, + { + "start": 26536.64, + "end": 26538.94, + "probability": 0.8631 + }, + { + "start": 26539.44, + "end": 26540.34, + "probability": 0.8194 + }, + { + "start": 26540.84, + "end": 26545.06, + "probability": 0.9971 + }, + { + "start": 26545.3, + "end": 26546.86, + "probability": 0.9197 + }, + { + "start": 26548.52, + "end": 26550.22, + "probability": 0.998 + }, + { + "start": 26550.28, + "end": 26553.16, + "probability": 0.9369 + }, + { + "start": 26553.6, + "end": 26554.78, + "probability": 0.7444 + }, + { + "start": 26554.98, + "end": 26555.76, + "probability": 0.7548 + }, + { + "start": 26556.18, + "end": 26559.56, + "probability": 0.915 + }, + { + "start": 26560.12, + "end": 26561.27, + "probability": 0.6392 + }, + { + "start": 26562.94, + "end": 26568.3, + "probability": 0.9814 + }, + { + "start": 26569.2, + "end": 26572.22, + "probability": 0.9824 + }, + { + "start": 26572.32, + "end": 26574.19, + "probability": 0.6506 + }, + { + "start": 26574.94, + "end": 26577.74, + "probability": 0.8145 + }, + { + "start": 26578.36, + "end": 26581.48, + "probability": 0.3138 + }, + { + "start": 26585.44, + "end": 26585.98, + "probability": 0.0042 + }, + { + "start": 26585.98, + "end": 26586.24, + "probability": 0.2071 + }, + { + "start": 26586.28, + "end": 26586.28, + "probability": 0.0143 + }, + { + "start": 26586.28, + "end": 26588.86, + "probability": 0.9255 + }, + { + "start": 26588.94, + "end": 26589.68, + "probability": 0.6883 + }, + { + "start": 26589.8, + "end": 26591.96, + "probability": 0.994 + }, + { + "start": 26592.04, + "end": 26594.96, + "probability": 0.5668 + }, + { + "start": 26595.28, + "end": 26599.98, + "probability": 0.9906 + }, + { + "start": 26600.46, + "end": 26603.0, + "probability": 0.958 + }, + { + "start": 26603.06, + "end": 26605.02, + "probability": 0.6471 + }, + { + "start": 26605.38, + "end": 26606.96, + "probability": 0.8664 + }, + { + "start": 26607.24, + "end": 26609.76, + "probability": 0.9886 + }, + { + "start": 26610.08, + "end": 26612.48, + "probability": 0.987 + }, + { + "start": 26613.86, + "end": 26615.38, + "probability": 0.9234 + }, + { + "start": 26615.46, + "end": 26616.06, + "probability": 0.7861 + }, + { + "start": 26616.72, + "end": 26617.32, + "probability": 0.5985 + }, + { + "start": 26618.6, + "end": 26619.38, + "probability": 0.8675 + }, + { + "start": 26619.48, + "end": 26620.12, + "probability": 0.9421 + }, + { + "start": 26620.2, + "end": 26621.48, + "probability": 0.7707 + }, + { + "start": 26621.54, + "end": 26622.82, + "probability": 0.8148 + }, + { + "start": 26622.92, + "end": 26623.68, + "probability": 0.7108 + }, + { + "start": 26624.5, + "end": 26626.48, + "probability": 0.972 + }, + { + "start": 26626.52, + "end": 26628.48, + "probability": 0.9819 + }, + { + "start": 26628.74, + "end": 26630.52, + "probability": 0.9816 + }, + { + "start": 26631.38, + "end": 26634.24, + "probability": 0.9854 + }, + { + "start": 26634.68, + "end": 26636.4, + "probability": 0.9979 + }, + { + "start": 26636.72, + "end": 26637.96, + "probability": 0.8666 + }, + { + "start": 26639.0, + "end": 26642.34, + "probability": 0.9836 + }, + { + "start": 26642.74, + "end": 26643.16, + "probability": 0.9276 + }, + { + "start": 26643.24, + "end": 26644.15, + "probability": 0.9312 + }, + { + "start": 26644.32, + "end": 26645.16, + "probability": 0.8034 + }, + { + "start": 26645.28, + "end": 26646.36, + "probability": 0.7498 + }, + { + "start": 26646.94, + "end": 26649.86, + "probability": 0.9841 + }, + { + "start": 26650.64, + "end": 26655.72, + "probability": 0.9983 + }, + { + "start": 26656.32, + "end": 26657.06, + "probability": 0.9771 + }, + { + "start": 26657.98, + "end": 26659.6, + "probability": 0.9955 + }, + { + "start": 26659.68, + "end": 26662.07, + "probability": 0.9944 + }, + { + "start": 26662.3, + "end": 26663.5, + "probability": 0.7913 + }, + { + "start": 26663.68, + "end": 26665.76, + "probability": 0.9961 + }, + { + "start": 26666.44, + "end": 26668.46, + "probability": 0.8742 + }, + { + "start": 26669.08, + "end": 26670.35, + "probability": 0.8164 + }, + { + "start": 26670.98, + "end": 26671.12, + "probability": 0.0429 + }, + { + "start": 26671.12, + "end": 26672.08, + "probability": 0.7033 + }, + { + "start": 26672.26, + "end": 26673.24, + "probability": 0.7175 + }, + { + "start": 26673.4, + "end": 26674.56, + "probability": 0.7705 + }, + { + "start": 26675.02, + "end": 26676.16, + "probability": 0.7996 + }, + { + "start": 26676.28, + "end": 26677.86, + "probability": 0.9882 + }, + { + "start": 26678.04, + "end": 26679.0, + "probability": 0.968 + }, + { + "start": 26679.24, + "end": 26684.38, + "probability": 0.9326 + }, + { + "start": 26684.84, + "end": 26686.06, + "probability": 0.8311 + }, + { + "start": 26686.18, + "end": 26689.44, + "probability": 0.7769 + }, + { + "start": 26690.08, + "end": 26690.68, + "probability": 0.1156 + }, + { + "start": 26690.68, + "end": 26690.82, + "probability": 0.2648 + }, + { + "start": 26690.82, + "end": 26690.82, + "probability": 0.5368 + }, + { + "start": 26690.82, + "end": 26698.0, + "probability": 0.8745 + }, + { + "start": 26698.06, + "end": 26698.9, + "probability": 0.865 + }, + { + "start": 26699.18, + "end": 26700.3, + "probability": 0.9912 + }, + { + "start": 26700.7, + "end": 26701.08, + "probability": 0.1936 + }, + { + "start": 26701.78, + "end": 26702.38, + "probability": 0.5241 + }, + { + "start": 26702.98, + "end": 26711.66, + "probability": 0.9927 + }, + { + "start": 26712.2, + "end": 26717.46, + "probability": 0.7463 + }, + { + "start": 26717.66, + "end": 26720.26, + "probability": 0.6939 + }, + { + "start": 26720.54, + "end": 26721.38, + "probability": 0.3529 + }, + { + "start": 26721.54, + "end": 26722.64, + "probability": 0.6522 + }, + { + "start": 26722.8, + "end": 26730.1, + "probability": 0.8963 + }, + { + "start": 26730.8, + "end": 26735.72, + "probability": 0.5135 + }, + { + "start": 26735.74, + "end": 26737.48, + "probability": 0.3855 + }, + { + "start": 26741.5, + "end": 26742.16, + "probability": 0.1054 + }, + { + "start": 26742.16, + "end": 26744.96, + "probability": 0.7981 + }, + { + "start": 26745.08, + "end": 26749.0, + "probability": 0.8091 + }, + { + "start": 26749.22, + "end": 26751.2, + "probability": 0.6348 + }, + { + "start": 26751.32, + "end": 26754.2, + "probability": 0.6911 + }, + { + "start": 26754.76, + "end": 26755.22, + "probability": 0.7272 + }, + { + "start": 26755.38, + "end": 26760.12, + "probability": 0.6416 + }, + { + "start": 26760.22, + "end": 26760.9, + "probability": 0.9689 + }, + { + "start": 26761.54, + "end": 26762.14, + "probability": 0.729 + }, + { + "start": 26762.14, + "end": 26767.02, + "probability": 0.9958 + }, + { + "start": 26767.1, + "end": 26769.88, + "probability": 0.9402 + }, + { + "start": 26770.32, + "end": 26771.18, + "probability": 0.8533 + }, + { + "start": 26771.5, + "end": 26775.66, + "probability": 0.7391 + }, + { + "start": 26776.08, + "end": 26778.48, + "probability": 0.9935 + }, + { + "start": 26778.88, + "end": 26783.94, + "probability": 0.8264 + }, + { + "start": 26784.06, + "end": 26785.68, + "probability": 0.9927 + }, + { + "start": 26786.12, + "end": 26790.02, + "probability": 0.9148 + }, + { + "start": 26790.16, + "end": 26792.36, + "probability": 0.9844 + }, + { + "start": 26792.96, + "end": 26793.91, + "probability": 0.7912 + }, + { + "start": 26794.4, + "end": 26795.7, + "probability": 0.7753 + }, + { + "start": 26795.9, + "end": 26798.7, + "probability": 0.9935 + }, + { + "start": 26799.02, + "end": 26799.6, + "probability": 0.9145 + }, + { + "start": 26800.84, + "end": 26802.26, + "probability": 0.9934 + }, + { + "start": 26802.26, + "end": 26802.94, + "probability": 0.2527 + }, + { + "start": 26803.6, + "end": 26805.89, + "probability": 0.7731 + }, + { + "start": 26805.9, + "end": 26809.52, + "probability": 0.9565 + }, + { + "start": 26812.6, + "end": 26812.84, + "probability": 0.1095 + }, + { + "start": 26812.84, + "end": 26813.7, + "probability": 0.394 + }, + { + "start": 26813.94, + "end": 26813.94, + "probability": 0.1155 + }, + { + "start": 26814.29, + "end": 26816.36, + "probability": 0.1959 + }, + { + "start": 26816.54, + "end": 26816.54, + "probability": 0.1396 + }, + { + "start": 26816.54, + "end": 26816.54, + "probability": 0.0072 + }, + { + "start": 26817.46, + "end": 26818.36, + "probability": 0.0481 + }, + { + "start": 26820.15, + "end": 26827.16, + "probability": 0.4186 + }, + { + "start": 26827.16, + "end": 26832.42, + "probability": 0.9692 + }, + { + "start": 26832.44, + "end": 26833.19, + "probability": 0.753 + }, + { + "start": 26833.52, + "end": 26838.06, + "probability": 0.9703 + }, + { + "start": 26838.34, + "end": 26841.86, + "probability": 0.1056 + }, + { + "start": 26842.04, + "end": 26842.82, + "probability": 0.1599 + }, + { + "start": 26844.52, + "end": 26847.08, + "probability": 0.5519 + }, + { + "start": 26847.4, + "end": 26851.66, + "probability": 0.1216 + }, + { + "start": 26851.66, + "end": 26853.17, + "probability": 0.4719 + }, + { + "start": 26854.0, + "end": 26857.12, + "probability": 0.9164 + }, + { + "start": 26857.26, + "end": 26858.06, + "probability": 0.2281 + }, + { + "start": 26858.16, + "end": 26858.92, + "probability": 0.5908 + }, + { + "start": 26858.92, + "end": 26859.16, + "probability": 0.0837 + }, + { + "start": 26859.28, + "end": 26864.8, + "probability": 0.821 + }, + { + "start": 26864.8, + "end": 26869.26, + "probability": 0.7907 + }, + { + "start": 26871.88, + "end": 26877.72, + "probability": 0.9934 + }, + { + "start": 26877.94, + "end": 26880.66, + "probability": 0.9668 + }, + { + "start": 26881.06, + "end": 26883.94, + "probability": 0.9778 + }, + { + "start": 26884.72, + "end": 26885.7, + "probability": 0.908 + }, + { + "start": 26885.88, + "end": 26886.72, + "probability": 0.7867 + }, + { + "start": 26886.78, + "end": 26887.96, + "probability": 0.7964 + }, + { + "start": 26888.52, + "end": 26891.54, + "probability": 0.9393 + }, + { + "start": 26892.1, + "end": 26896.22, + "probability": 0.9871 + }, + { + "start": 26898.58, + "end": 26902.54, + "probability": 0.9841 + }, + { + "start": 26902.54, + "end": 26905.48, + "probability": 0.9887 + }, + { + "start": 26906.1, + "end": 26907.6, + "probability": 0.9723 + }, + { + "start": 26908.16, + "end": 26913.8, + "probability": 0.9009 + }, + { + "start": 26914.72, + "end": 26919.02, + "probability": 0.9981 + }, + { + "start": 26919.02, + "end": 26923.28, + "probability": 0.9843 + }, + { + "start": 26923.5, + "end": 26924.92, + "probability": 0.7978 + }, + { + "start": 26925.28, + "end": 26926.86, + "probability": 0.9822 + }, + { + "start": 26927.52, + "end": 26929.22, + "probability": 0.8364 + }, + { + "start": 26929.58, + "end": 26932.9, + "probability": 0.9917 + }, + { + "start": 26933.08, + "end": 26933.86, + "probability": 0.5861 + }, + { + "start": 26934.04, + "end": 26934.74, + "probability": 0.7121 + }, + { + "start": 26934.96, + "end": 26935.4, + "probability": 0.3186 + }, + { + "start": 26935.68, + "end": 26936.42, + "probability": 0.5612 + }, + { + "start": 26936.62, + "end": 26944.2, + "probability": 0.1987 + }, + { + "start": 26951.98, + "end": 26953.46, + "probability": 0.0222 + }, + { + "start": 26955.2, + "end": 26959.36, + "probability": 0.9269 + }, + { + "start": 26959.96, + "end": 26963.08, + "probability": 0.6318 + }, + { + "start": 26963.5, + "end": 26968.7, + "probability": 0.9825 + }, + { + "start": 26969.2, + "end": 26973.32, + "probability": 0.5762 + }, + { + "start": 26973.42, + "end": 26977.1, + "probability": 0.9863 + }, + { + "start": 26977.5, + "end": 26981.28, + "probability": 0.9994 + }, + { + "start": 26982.08, + "end": 26983.36, + "probability": 0.9771 + }, + { + "start": 26983.66, + "end": 26985.64, + "probability": 0.1547 + }, + { + "start": 26989.86, + "end": 26994.92, + "probability": 0.2394 + }, + { + "start": 26995.58, + "end": 26995.94, + "probability": 0.0023 + }, + { + "start": 27010.66, + "end": 27012.18, + "probability": 0.3139 + }, + { + "start": 27014.98, + "end": 27016.0, + "probability": 0.3649 + }, + { + "start": 27017.04, + "end": 27021.96, + "probability": 0.0645 + }, + { + "start": 27022.34, + "end": 27024.82, + "probability": 0.6639 + }, + { + "start": 27025.18, + "end": 27026.32, + "probability": 0.8074 + }, + { + "start": 27026.98, + "end": 27027.94, + "probability": 0.7403 + }, + { + "start": 27027.98, + "end": 27029.6, + "probability": 0.9422 + }, + { + "start": 27029.72, + "end": 27030.88, + "probability": 0.6791 + }, + { + "start": 27031.36, + "end": 27031.88, + "probability": 0.6391 + }, + { + "start": 27055.32, + "end": 27055.32, + "probability": 0.5499 + }, + { + "start": 27055.32, + "end": 27058.62, + "probability": 0.726 + }, + { + "start": 27059.34, + "end": 27062.58, + "probability": 0.8962 + }, + { + "start": 27064.24, + "end": 27067.18, + "probability": 0.6773 + }, + { + "start": 27068.36, + "end": 27069.5, + "probability": 0.9137 + }, + { + "start": 27070.26, + "end": 27071.71, + "probability": 0.9871 + }, + { + "start": 27071.78, + "end": 27072.8, + "probability": 0.6104 + }, + { + "start": 27072.82, + "end": 27078.2, + "probability": 0.9935 + }, + { + "start": 27079.98, + "end": 27085.34, + "probability": 0.9245 + }, + { + "start": 27087.18, + "end": 27088.36, + "probability": 0.9565 + }, + { + "start": 27089.8, + "end": 27091.84, + "probability": 0.9189 + }, + { + "start": 27093.74, + "end": 27096.9, + "probability": 0.6484 + }, + { + "start": 27100.94, + "end": 27103.68, + "probability": 0.8786 + }, + { + "start": 27104.88, + "end": 27106.36, + "probability": 0.7511 + }, + { + "start": 27107.7, + "end": 27109.12, + "probability": 0.7719 + }, + { + "start": 27109.96, + "end": 27111.02, + "probability": 0.7776 + }, + { + "start": 27119.24, + "end": 27120.56, + "probability": 0.8698 + }, + { + "start": 27122.82, + "end": 27124.98, + "probability": 0.8907 + }, + { + "start": 27125.98, + "end": 27127.22, + "probability": 0.942 + }, + { + "start": 27128.46, + "end": 27135.96, + "probability": 0.9811 + }, + { + "start": 27137.42, + "end": 27138.42, + "probability": 0.8731 + }, + { + "start": 27138.58, + "end": 27140.76, + "probability": 0.8976 + }, + { + "start": 27141.02, + "end": 27142.05, + "probability": 0.2124 + }, + { + "start": 27143.06, + "end": 27146.52, + "probability": 0.9407 + }, + { + "start": 27146.62, + "end": 27147.42, + "probability": 0.9454 + }, + { + "start": 27149.56, + "end": 27157.54, + "probability": 0.9304 + }, + { + "start": 27158.42, + "end": 27160.4, + "probability": 0.7785 + }, + { + "start": 27161.54, + "end": 27167.24, + "probability": 0.8561 + }, + { + "start": 27167.52, + "end": 27169.62, + "probability": 0.9167 + }, + { + "start": 27170.56, + "end": 27173.16, + "probability": 0.954 + }, + { + "start": 27174.08, + "end": 27174.2, + "probability": 0.02 + }, + { + "start": 27174.2, + "end": 27178.48, + "probability": 0.7781 + }, + { + "start": 27179.52, + "end": 27185.86, + "probability": 0.9281 + }, + { + "start": 27186.4, + "end": 27187.64, + "probability": 0.9844 + }, + { + "start": 27189.0, + "end": 27194.18, + "probability": 0.9304 + }, + { + "start": 27196.1, + "end": 27198.0, + "probability": 0.8885 + }, + { + "start": 27198.06, + "end": 27199.68, + "probability": 0.9661 + }, + { + "start": 27200.1, + "end": 27201.54, + "probability": 0.9115 + }, + { + "start": 27203.96, + "end": 27204.92, + "probability": 0.5786 + }, + { + "start": 27206.06, + "end": 27206.76, + "probability": 0.7792 + }, + { + "start": 27206.82, + "end": 27211.71, + "probability": 0.9868 + }, + { + "start": 27212.04, + "end": 27212.76, + "probability": 0.8567 + }, + { + "start": 27212.96, + "end": 27213.46, + "probability": 0.7879 + }, + { + "start": 27213.54, + "end": 27214.72, + "probability": 0.8387 + }, + { + "start": 27216.1, + "end": 27216.28, + "probability": 0.8272 + }, + { + "start": 27216.42, + "end": 27217.06, + "probability": 0.2937 + }, + { + "start": 27217.16, + "end": 27219.4, + "probability": 0.7969 + }, + { + "start": 27220.22, + "end": 27224.7, + "probability": 0.9893 + }, + { + "start": 27224.7, + "end": 27228.88, + "probability": 0.947 + }, + { + "start": 27230.12, + "end": 27233.42, + "probability": 0.6997 + }, + { + "start": 27234.74, + "end": 27240.32, + "probability": 0.946 + }, + { + "start": 27240.5, + "end": 27241.13, + "probability": 0.5169 + }, + { + "start": 27242.24, + "end": 27244.7, + "probability": 0.7148 + }, + { + "start": 27245.06, + "end": 27248.96, + "probability": 0.9103 + }, + { + "start": 27249.62, + "end": 27252.76, + "probability": 0.9974 + }, + { + "start": 27254.12, + "end": 27257.54, + "probability": 0.9937 + }, + { + "start": 27258.22, + "end": 27258.64, + "probability": 0.5493 + }, + { + "start": 27258.66, + "end": 27259.76, + "probability": 0.2123 + }, + { + "start": 27260.04, + "end": 27266.1, + "probability": 0.8809 + }, + { + "start": 27267.22, + "end": 27271.64, + "probability": 0.79 + }, + { + "start": 27272.74, + "end": 27276.06, + "probability": 0.9414 + }, + { + "start": 27276.88, + "end": 27278.42, + "probability": 0.2451 + }, + { + "start": 27278.56, + "end": 27278.56, + "probability": 0.3385 + }, + { + "start": 27278.56, + "end": 27282.42, + "probability": 0.7303 + }, + { + "start": 27282.8, + "end": 27287.2, + "probability": 0.9922 + }, + { + "start": 27287.34, + "end": 27289.64, + "probability": 0.9006 + }, + { + "start": 27290.76, + "end": 27292.76, + "probability": 0.9945 + }, + { + "start": 27292.9, + "end": 27294.32, + "probability": 0.6578 + }, + { + "start": 27294.36, + "end": 27297.8, + "probability": 0.2576 + }, + { + "start": 27298.34, + "end": 27299.44, + "probability": 0.2095 + }, + { + "start": 27299.44, + "end": 27301.14, + "probability": 0.431 + }, + { + "start": 27302.06, + "end": 27304.72, + "probability": 0.9958 + }, + { + "start": 27305.52, + "end": 27306.48, + "probability": 0.9668 + }, + { + "start": 27306.62, + "end": 27308.24, + "probability": 0.9946 + }, + { + "start": 27308.86, + "end": 27309.94, + "probability": 0.1581 + }, + { + "start": 27310.0, + "end": 27311.76, + "probability": 0.3965 + }, + { + "start": 27312.32, + "end": 27314.04, + "probability": 0.532 + }, + { + "start": 27314.04, + "end": 27318.07, + "probability": 0.3031 + }, + { + "start": 27318.42, + "end": 27324.2, + "probability": 0.876 + }, + { + "start": 27324.26, + "end": 27327.72, + "probability": 0.8344 + }, + { + "start": 27328.18, + "end": 27330.6, + "probability": 0.6567 + }, + { + "start": 27332.0, + "end": 27333.16, + "probability": 0.7858 + }, + { + "start": 27334.12, + "end": 27334.72, + "probability": 0.6477 + }, + { + "start": 27334.78, + "end": 27338.36, + "probability": 0.9815 + }, + { + "start": 27339.04, + "end": 27340.58, + "probability": 0.8236 + }, + { + "start": 27341.26, + "end": 27342.54, + "probability": 0.4931 + }, + { + "start": 27343.0, + "end": 27344.36, + "probability": 0.7685 + }, + { + "start": 27345.04, + "end": 27346.18, + "probability": 0.9631 + }, + { + "start": 27347.38, + "end": 27348.52, + "probability": 0.9641 + }, + { + "start": 27348.76, + "end": 27349.34, + "probability": 0.5537 + }, + { + "start": 27349.42, + "end": 27354.94, + "probability": 0.939 + }, + { + "start": 27355.94, + "end": 27356.62, + "probability": 0.828 + }, + { + "start": 27357.54, + "end": 27358.96, + "probability": 0.8748 + }, + { + "start": 27359.72, + "end": 27361.26, + "probability": 0.9658 + }, + { + "start": 27362.14, + "end": 27363.32, + "probability": 0.7933 + }, + { + "start": 27363.88, + "end": 27365.38, + "probability": 0.9678 + }, + { + "start": 27365.54, + "end": 27366.52, + "probability": 0.6453 + }, + { + "start": 27366.58, + "end": 27367.62, + "probability": 0.7352 + }, + { + "start": 27369.18, + "end": 27370.17, + "probability": 0.9458 + }, + { + "start": 27371.56, + "end": 27372.64, + "probability": 0.9167 + }, + { + "start": 27373.58, + "end": 27374.82, + "probability": 0.8775 + }, + { + "start": 27375.62, + "end": 27380.28, + "probability": 0.9171 + }, + { + "start": 27381.32, + "end": 27382.66, + "probability": 0.7483 + }, + { + "start": 27384.08, + "end": 27388.6, + "probability": 0.9644 + }, + { + "start": 27390.0, + "end": 27391.18, + "probability": 0.6251 + }, + { + "start": 27392.6, + "end": 27395.04, + "probability": 0.9058 + }, + { + "start": 27395.52, + "end": 27395.88, + "probability": 0.6799 + }, + { + "start": 27396.72, + "end": 27398.58, + "probability": 0.9083 + }, + { + "start": 27398.76, + "end": 27399.76, + "probability": 0.354 + }, + { + "start": 27399.94, + "end": 27400.16, + "probability": 0.4996 + }, + { + "start": 27401.66, + "end": 27402.36, + "probability": 0.324 + }, + { + "start": 27403.4, + "end": 27404.14, + "probability": 0.6325 + }, + { + "start": 27404.14, + "end": 27406.18, + "probability": 0.8501 + }, + { + "start": 27406.19, + "end": 27410.1, + "probability": 0.8926 + }, + { + "start": 27410.5, + "end": 27415.96, + "probability": 0.7017 + }, + { + "start": 27417.86, + "end": 27419.12, + "probability": 0.4787 + }, + { + "start": 27419.9, + "end": 27421.66, + "probability": 0.6733 + }, + { + "start": 27421.82, + "end": 27423.88, + "probability": 0.8686 + }, + { + "start": 27423.96, + "end": 27425.6, + "probability": 0.6213 + }, + { + "start": 27425.78, + "end": 27426.08, + "probability": 0.0601 + }, + { + "start": 27426.08, + "end": 27428.02, + "probability": 0.5909 + }, + { + "start": 27428.96, + "end": 27429.92, + "probability": 0.8502 + }, + { + "start": 27430.6, + "end": 27432.12, + "probability": 0.918 + }, + { + "start": 27433.04, + "end": 27433.34, + "probability": 0.7351 + }, + { + "start": 27434.36, + "end": 27435.68, + "probability": 0.5814 + }, + { + "start": 27435.84, + "end": 27436.62, + "probability": 0.6808 + }, + { + "start": 27436.74, + "end": 27437.62, + "probability": 0.7507 + }, + { + "start": 27437.68, + "end": 27444.26, + "probability": 0.9932 + }, + { + "start": 27445.24, + "end": 27447.5, + "probability": 0.9384 + }, + { + "start": 27448.14, + "end": 27449.2, + "probability": 0.7734 + }, + { + "start": 27449.42, + "end": 27450.04, + "probability": 0.544 + }, + { + "start": 27450.06, + "end": 27456.02, + "probability": 0.976 + }, + { + "start": 27456.62, + "end": 27459.48, + "probability": 0.7271 + }, + { + "start": 27460.12, + "end": 27460.9, + "probability": 0.496 + }, + { + "start": 27460.96, + "end": 27463.66, + "probability": 0.9253 + }, + { + "start": 27465.0, + "end": 27466.14, + "probability": 0.949 + }, + { + "start": 27467.34, + "end": 27470.84, + "probability": 0.9866 + }, + { + "start": 27470.98, + "end": 27471.76, + "probability": 0.5815 + }, + { + "start": 27471.76, + "end": 27473.5, + "probability": 0.384 + }, + { + "start": 27473.66, + "end": 27475.0, + "probability": 0.3352 + }, + { + "start": 27475.06, + "end": 27477.76, + "probability": 0.4224 + }, + { + "start": 27478.62, + "end": 27478.84, + "probability": 0.0559 + }, + { + "start": 27478.84, + "end": 27479.1, + "probability": 0.7687 + }, + { + "start": 27479.32, + "end": 27480.86, + "probability": 0.6713 + }, + { + "start": 27481.8, + "end": 27482.16, + "probability": 0.7184 + }, + { + "start": 27483.04, + "end": 27485.5, + "probability": 0.787 + }, + { + "start": 27485.84, + "end": 27490.8, + "probability": 0.6657 + }, + { + "start": 27492.68, + "end": 27493.59, + "probability": 0.4735 + }, + { + "start": 27494.32, + "end": 27496.48, + "probability": 0.759 + }, + { + "start": 27497.96, + "end": 27503.86, + "probability": 0.8921 + }, + { + "start": 27503.86, + "end": 27509.06, + "probability": 0.988 + }, + { + "start": 27509.64, + "end": 27511.34, + "probability": 0.9935 + }, + { + "start": 27512.2, + "end": 27514.18, + "probability": 0.9746 + }, + { + "start": 27515.18, + "end": 27518.42, + "probability": 0.7852 + }, + { + "start": 27519.12, + "end": 27522.3, + "probability": 0.9541 + }, + { + "start": 27522.36, + "end": 27522.6, + "probability": 0.6327 + }, + { + "start": 27522.88, + "end": 27524.85, + "probability": 0.9907 + }, + { + "start": 27525.78, + "end": 27529.48, + "probability": 0.5907 + }, + { + "start": 27529.9, + "end": 27534.46, + "probability": 0.9954 + }, + { + "start": 27535.48, + "end": 27537.0, + "probability": 0.8169 + }, + { + "start": 27537.06, + "end": 27541.18, + "probability": 0.8662 + }, + { + "start": 27541.36, + "end": 27546.12, + "probability": 0.9672 + }, + { + "start": 27546.12, + "end": 27550.12, + "probability": 0.9896 + }, + { + "start": 27551.04, + "end": 27553.96, + "probability": 0.9126 + }, + { + "start": 27554.58, + "end": 27556.26, + "probability": 0.8634 + }, + { + "start": 27556.84, + "end": 27557.66, + "probability": 0.7051 + }, + { + "start": 27557.8, + "end": 27558.72, + "probability": 0.921 + }, + { + "start": 27558.82, + "end": 27559.9, + "probability": 0.7468 + }, + { + "start": 27560.08, + "end": 27561.76, + "probability": 0.7659 + }, + { + "start": 27562.12, + "end": 27564.2, + "probability": 0.3799 + }, + { + "start": 27564.82, + "end": 27566.82, + "probability": 0.7533 + }, + { + "start": 27567.4, + "end": 27567.4, + "probability": 0.0449 + }, + { + "start": 27567.4, + "end": 27567.4, + "probability": 0.0535 + }, + { + "start": 27567.4, + "end": 27569.1, + "probability": 0.3918 + }, + { + "start": 27570.26, + "end": 27572.16, + "probability": 0.9626 + }, + { + "start": 27573.48, + "end": 27574.66, + "probability": 0.9222 + }, + { + "start": 27575.74, + "end": 27579.7, + "probability": 0.9454 + }, + { + "start": 27580.14, + "end": 27582.8, + "probability": 0.9678 + }, + { + "start": 27583.8, + "end": 27585.12, + "probability": 0.7674 + }, + { + "start": 27585.9, + "end": 27588.34, + "probability": 0.5973 + }, + { + "start": 27588.4, + "end": 27589.08, + "probability": 0.6971 + }, + { + "start": 27589.66, + "end": 27590.94, + "probability": 0.5794 + }, + { + "start": 27591.7, + "end": 27597.68, + "probability": 0.7817 + }, + { + "start": 27598.62, + "end": 27605.2, + "probability": 0.8459 + }, + { + "start": 27605.24, + "end": 27606.26, + "probability": 0.8641 + }, + { + "start": 27606.74, + "end": 27608.92, + "probability": 0.6582 + }, + { + "start": 27609.42, + "end": 27612.33, + "probability": 0.979 + }, + { + "start": 27612.64, + "end": 27616.16, + "probability": 0.9378 + }, + { + "start": 27617.02, + "end": 27620.08, + "probability": 0.9208 + }, + { + "start": 27621.0, + "end": 27623.64, + "probability": 0.9792 + }, + { + "start": 27624.78, + "end": 27626.62, + "probability": 0.7161 + }, + { + "start": 27627.0, + "end": 27628.18, + "probability": 0.8619 + }, + { + "start": 27628.32, + "end": 27630.82, + "probability": 0.93 + }, + { + "start": 27630.92, + "end": 27631.88, + "probability": 0.7622 + }, + { + "start": 27632.06, + "end": 27633.28, + "probability": 0.9918 + }, + { + "start": 27644.56, + "end": 27645.12, + "probability": 0.7155 + }, + { + "start": 27645.82, + "end": 27648.26, + "probability": 0.349 + }, + { + "start": 27649.5, + "end": 27652.62, + "probability": 0.6788 + }, + { + "start": 27653.48, + "end": 27654.94, + "probability": 0.4774 + }, + { + "start": 27654.94, + "end": 27659.4, + "probability": 0.9308 + }, + { + "start": 27661.3, + "end": 27662.38, + "probability": 0.1509 + }, + { + "start": 27662.38, + "end": 27664.5, + "probability": 0.4969 + }, + { + "start": 27665.66, + "end": 27667.88, + "probability": 0.9412 + }, + { + "start": 27667.9, + "end": 27668.34, + "probability": 0.0031 + }, + { + "start": 27668.7, + "end": 27668.86, + "probability": 0.168 + }, + { + "start": 27668.98, + "end": 27671.51, + "probability": 0.4118 + }, + { + "start": 27671.86, + "end": 27674.84, + "probability": 0.4901 + }, + { + "start": 27674.84, + "end": 27677.52, + "probability": 0.4718 + }, + { + "start": 27677.72, + "end": 27679.06, + "probability": 0.9854 + }, + { + "start": 27680.14, + "end": 27685.02, + "probability": 0.5797 + }, + { + "start": 27686.2, + "end": 27687.7, + "probability": 0.8133 + }, + { + "start": 27688.26, + "end": 27689.54, + "probability": 0.374 + }, + { + "start": 27690.62, + "end": 27693.74, + "probability": 0.9766 + }, + { + "start": 27694.96, + "end": 27698.04, + "probability": 0.8479 + }, + { + "start": 27698.16, + "end": 27700.14, + "probability": 0.6736 + }, + { + "start": 27700.82, + "end": 27702.86, + "probability": 0.947 + }, + { + "start": 27704.44, + "end": 27705.16, + "probability": 0.8205 + }, + { + "start": 27705.68, + "end": 27709.8, + "probability": 0.8214 + }, + { + "start": 27710.64, + "end": 27711.94, + "probability": 0.8262 + }, + { + "start": 27713.12, + "end": 27713.84, + "probability": 0.8433 + }, + { + "start": 27714.38, + "end": 27714.94, + "probability": 0.9195 + }, + { + "start": 27715.08, + "end": 27715.92, + "probability": 0.7629 + }, + { + "start": 27716.1, + "end": 27718.2, + "probability": 0.9819 + }, + { + "start": 27718.76, + "end": 27721.24, + "probability": 0.8975 + }, + { + "start": 27721.64, + "end": 27724.26, + "probability": 0.8643 + }, + { + "start": 27724.38, + "end": 27727.82, + "probability": 0.4578 + }, + { + "start": 27728.42, + "end": 27730.54, + "probability": 0.6882 + }, + { + "start": 27733.08, + "end": 27735.84, + "probability": 0.8214 + }, + { + "start": 27736.32, + "end": 27738.38, + "probability": 0.9783 + }, + { + "start": 27738.5, + "end": 27739.48, + "probability": 0.7608 + }, + { + "start": 27741.8, + "end": 27744.22, + "probability": 0.7732 + }, + { + "start": 27746.92, + "end": 27747.65, + "probability": 0.9866 + }, + { + "start": 27748.44, + "end": 27749.74, + "probability": 0.8571 + }, + { + "start": 27749.92, + "end": 27751.38, + "probability": 0.9377 + }, + { + "start": 27752.18, + "end": 27754.62, + "probability": 0.9934 + }, + { + "start": 27755.22, + "end": 27757.57, + "probability": 0.4073 + }, + { + "start": 27760.32, + "end": 27762.38, + "probability": 0.9783 + }, + { + "start": 27763.84, + "end": 27764.94, + "probability": 0.8444 + }, + { + "start": 27765.7, + "end": 27768.04, + "probability": 0.8754 + }, + { + "start": 27769.2, + "end": 27771.34, + "probability": 0.8412 + }, + { + "start": 27771.92, + "end": 27772.76, + "probability": 0.7063 + }, + { + "start": 27773.04, + "end": 27775.74, + "probability": 0.9198 + }, + { + "start": 27776.44, + "end": 27779.92, + "probability": 0.8939 + }, + { + "start": 27780.68, + "end": 27782.66, + "probability": 0.6594 + }, + { + "start": 27783.26, + "end": 27784.24, + "probability": 0.8579 + }, + { + "start": 27784.36, + "end": 27785.86, + "probability": 0.7942 + }, + { + "start": 27785.88, + "end": 27786.3, + "probability": 0.9546 + }, + { + "start": 27786.82, + "end": 27792.18, + "probability": 0.8616 + }, + { + "start": 27795.52, + "end": 27795.54, + "probability": 0.4731 + }, + { + "start": 27795.54, + "end": 27797.3, + "probability": 0.6063 + }, + { + "start": 27798.62, + "end": 27799.72, + "probability": 0.6329 + }, + { + "start": 27800.58, + "end": 27801.12, + "probability": 0.9501 + }, + { + "start": 27804.62, + "end": 27805.6, + "probability": 0.8216 + }, + { + "start": 27807.18, + "end": 27810.22, + "probability": 0.9574 + }, + { + "start": 27810.48, + "end": 27813.92, + "probability": 0.975 + }, + { + "start": 27815.38, + "end": 27816.12, + "probability": 0.8231 + }, + { + "start": 27816.52, + "end": 27819.36, + "probability": 0.991 + }, + { + "start": 27819.36, + "end": 27824.0, + "probability": 0.977 + }, + { + "start": 27824.08, + "end": 27827.44, + "probability": 0.75 + }, + { + "start": 27828.04, + "end": 27828.74, + "probability": 0.7345 + }, + { + "start": 27829.02, + "end": 27829.66, + "probability": 0.9292 + }, + { + "start": 27830.14, + "end": 27830.94, + "probability": 0.9808 + }, + { + "start": 27831.14, + "end": 27832.1, + "probability": 0.967 + }, + { + "start": 27832.16, + "end": 27833.32, + "probability": 0.971 + }, + { + "start": 27833.46, + "end": 27835.52, + "probability": 0.9655 + }, + { + "start": 27837.48, + "end": 27840.59, + "probability": 0.7179 + }, + { + "start": 27841.44, + "end": 27843.46, + "probability": 0.7498 + }, + { + "start": 27844.06, + "end": 27852.8, + "probability": 0.9853 + }, + { + "start": 27852.9, + "end": 27854.04, + "probability": 0.7885 + }, + { + "start": 27854.78, + "end": 27861.3, + "probability": 0.8279 + }, + { + "start": 27861.3, + "end": 27861.34, + "probability": 0.2929 + }, + { + "start": 27861.34, + "end": 27861.71, + "probability": 0.4239 + }, + { + "start": 27862.68, + "end": 27865.59, + "probability": 0.0778 + }, + { + "start": 27865.88, + "end": 27867.36, + "probability": 0.4437 + }, + { + "start": 27868.18, + "end": 27868.88, + "probability": 0.7927 + }, + { + "start": 27869.32, + "end": 27869.86, + "probability": 0.1602 + }, + { + "start": 27870.6, + "end": 27870.74, + "probability": 0.0022 + }, + { + "start": 27872.48, + "end": 27873.02, + "probability": 0.048 + }, + { + "start": 27873.02, + "end": 27873.36, + "probability": 0.0332 + }, + { + "start": 27873.58, + "end": 27876.38, + "probability": 0.2516 + }, + { + "start": 27876.98, + "end": 27877.12, + "probability": 0.304 + }, + { + "start": 27878.08, + "end": 27883.66, + "probability": 0.1446 + }, + { + "start": 27887.3, + "end": 27887.4, + "probability": 0.0172 + }, + { + "start": 27887.4, + "end": 27887.4, + "probability": 0.0768 + }, + { + "start": 27887.4, + "end": 27888.19, + "probability": 0.5384 + }, + { + "start": 27890.06, + "end": 27890.76, + "probability": 0.7452 + }, + { + "start": 27894.28, + "end": 27896.76, + "probability": 0.9913 + }, + { + "start": 27897.16, + "end": 27899.21, + "probability": 0.9826 + }, + { + "start": 27902.9, + "end": 27906.1, + "probability": 0.8181 + }, + { + "start": 27908.0, + "end": 27911.88, + "probability": 0.8985 + }, + { + "start": 27913.2, + "end": 27914.64, + "probability": 0.877 + }, + { + "start": 27916.64, + "end": 27919.74, + "probability": 0.7817 + }, + { + "start": 27920.54, + "end": 27923.06, + "probability": 0.0936 + }, + { + "start": 27924.1, + "end": 27926.42, + "probability": 0.8372 + }, + { + "start": 27926.54, + "end": 27927.54, + "probability": 0.6476 + }, + { + "start": 27927.6, + "end": 27931.06, + "probability": 0.9766 + }, + { + "start": 27933.32, + "end": 27935.32, + "probability": 0.9647 + }, + { + "start": 27937.24, + "end": 27937.96, + "probability": 0.9608 + }, + { + "start": 27938.52, + "end": 27941.28, + "probability": 0.735 + }, + { + "start": 27943.76, + "end": 27947.91, + "probability": 0.8891 + }, + { + "start": 27950.66, + "end": 27956.06, + "probability": 0.8019 + }, + { + "start": 27956.76, + "end": 27957.6, + "probability": 0.8357 + }, + { + "start": 27960.86, + "end": 27964.62, + "probability": 0.6774 + }, + { + "start": 27966.06, + "end": 27967.1, + "probability": 0.9094 + }, + { + "start": 27967.82, + "end": 27969.14, + "probability": 0.8395 + }, + { + "start": 27969.52, + "end": 27970.57, + "probability": 0.9646 + }, + { + "start": 27971.34, + "end": 27972.46, + "probability": 0.2987 + }, + { + "start": 27975.26, + "end": 27978.5, + "probability": 0.9407 + }, + { + "start": 27981.76, + "end": 27982.32, + "probability": 0.3751 + }, + { + "start": 27982.42, + "end": 27984.12, + "probability": 0.9535 + }, + { + "start": 27984.22, + "end": 27985.94, + "probability": 0.8115 + }, + { + "start": 27987.38, + "end": 27988.03, + "probability": 0.9823 + }, + { + "start": 27989.8, + "end": 27990.38, + "probability": 0.9513 + }, + { + "start": 27991.24, + "end": 27993.7, + "probability": 0.7651 + }, + { + "start": 27994.38, + "end": 27995.86, + "probability": 0.8364 + }, + { + "start": 27998.5, + "end": 28001.58, + "probability": 0.9041 + }, + { + "start": 28007.58, + "end": 28008.64, + "probability": 0.9833 + }, + { + "start": 28011.08, + "end": 28014.64, + "probability": 0.9893 + }, + { + "start": 28014.94, + "end": 28016.02, + "probability": 0.5316 + }, + { + "start": 28018.26, + "end": 28020.64, + "probability": 0.8331 + }, + { + "start": 28021.44, + "end": 28022.52, + "probability": 0.851 + }, + { + "start": 28023.72, + "end": 28026.98, + "probability": 0.6482 + }, + { + "start": 28027.94, + "end": 28029.04, + "probability": 0.8743 + }, + { + "start": 28030.78, + "end": 28032.58, + "probability": 0.7373 + }, + { + "start": 28033.76, + "end": 28037.08, + "probability": 0.8964 + }, + { + "start": 28038.74, + "end": 28041.04, + "probability": 0.7512 + }, + { + "start": 28041.56, + "end": 28041.92, + "probability": 0.1989 + }, + { + "start": 28043.06, + "end": 28043.58, + "probability": 0.7715 + }, + { + "start": 28043.98, + "end": 28044.96, + "probability": 0.6944 + }, + { + "start": 28045.0, + "end": 28047.48, + "probability": 0.9087 + }, + { + "start": 28047.58, + "end": 28049.44, + "probability": 0.6947 + }, + { + "start": 28050.22, + "end": 28050.52, + "probability": 0.0188 + }, + { + "start": 28050.82, + "end": 28050.92, + "probability": 0.469 + }, + { + "start": 28052.16, + "end": 28053.94, + "probability": 0.7065 + }, + { + "start": 28056.14, + "end": 28057.68, + "probability": 0.6786 + }, + { + "start": 28059.16, + "end": 28059.84, + "probability": 0.3563 + }, + { + "start": 28060.0, + "end": 28060.54, + "probability": 0.9961 + }, + { + "start": 28063.18, + "end": 28066.6, + "probability": 0.9904 + }, + { + "start": 28067.88, + "end": 28070.12, + "probability": 0.6931 + }, + { + "start": 28074.26, + "end": 28076.84, + "probability": 0.9238 + }, + { + "start": 28078.5, + "end": 28080.28, + "probability": 0.5258 + }, + { + "start": 28080.72, + "end": 28082.94, + "probability": 0.5922 + }, + { + "start": 28084.84, + "end": 28086.6, + "probability": 0.8982 + }, + { + "start": 28086.7, + "end": 28087.44, + "probability": 0.9307 + }, + { + "start": 28087.52, + "end": 28088.39, + "probability": 0.8453 + }, + { + "start": 28088.9, + "end": 28090.5, + "probability": 0.8234 + }, + { + "start": 28092.7, + "end": 28094.22, + "probability": 0.9387 + }, + { + "start": 28095.82, + "end": 28096.92, + "probability": 0.8118 + }, + { + "start": 28097.28, + "end": 28098.08, + "probability": 0.6262 + }, + { + "start": 28098.56, + "end": 28100.35, + "probability": 0.9849 + }, + { + "start": 28101.98, + "end": 28102.46, + "probability": 0.5187 + }, + { + "start": 28103.24, + "end": 28104.36, + "probability": 0.8384 + }, + { + "start": 28107.96, + "end": 28109.04, + "probability": 0.4894 + }, + { + "start": 28109.76, + "end": 28110.92, + "probability": 0.8848 + }, + { + "start": 28111.86, + "end": 28114.48, + "probability": 0.6191 + }, + { + "start": 28116.74, + "end": 28118.46, + "probability": 0.7908 + }, + { + "start": 28119.0, + "end": 28119.64, + "probability": 0.5435 + }, + { + "start": 28121.68, + "end": 28123.58, + "probability": 0.8271 + }, + { + "start": 28124.64, + "end": 28127.38, + "probability": 0.7693 + }, + { + "start": 28129.36, + "end": 28131.34, + "probability": 0.9601 + }, + { + "start": 28133.32, + "end": 28133.64, + "probability": 0.7208 + }, + { + "start": 28133.72, + "end": 28134.62, + "probability": 0.6218 + }, + { + "start": 28134.86, + "end": 28136.11, + "probability": 0.897 + }, + { + "start": 28137.16, + "end": 28138.84, + "probability": 0.87 + }, + { + "start": 28139.36, + "end": 28141.26, + "probability": 0.9648 + }, + { + "start": 28141.48, + "end": 28144.32, + "probability": 0.655 + }, + { + "start": 28144.56, + "end": 28146.08, + "probability": 0.9432 + }, + { + "start": 28147.14, + "end": 28148.64, + "probability": 0.9114 + }, + { + "start": 28148.76, + "end": 28151.2, + "probability": 0.9255 + }, + { + "start": 28153.16, + "end": 28154.32, + "probability": 0.8089 + }, + { + "start": 28155.44, + "end": 28156.34, + "probability": 0.8938 + }, + { + "start": 28156.86, + "end": 28161.28, + "probability": 0.7341 + }, + { + "start": 28162.3, + "end": 28162.3, + "probability": 0.0013 + }, + { + "start": 28165.42, + "end": 28166.62, + "probability": 0.874 + }, + { + "start": 28167.86, + "end": 28168.68, + "probability": 0.4368 + }, + { + "start": 28170.92, + "end": 28172.96, + "probability": 0.9604 + }, + { + "start": 28173.68, + "end": 28176.82, + "probability": 0.8298 + }, + { + "start": 28179.32, + "end": 28181.38, + "probability": 0.7372 + }, + { + "start": 28181.42, + "end": 28182.08, + "probability": 0.828 + }, + { + "start": 28183.54, + "end": 28184.9, + "probability": 0.3462 + }, + { + "start": 28187.14, + "end": 28192.28, + "probability": 0.9634 + }, + { + "start": 28194.42, + "end": 28196.74, + "probability": 0.49 + }, + { + "start": 28197.74, + "end": 28203.2, + "probability": 0.9714 + }, + { + "start": 28204.22, + "end": 28204.9, + "probability": 0.0131 + }, + { + "start": 28205.68, + "end": 28206.88, + "probability": 0.8704 + }, + { + "start": 28208.2, + "end": 28209.38, + "probability": 0.7074 + }, + { + "start": 28210.24, + "end": 28211.7, + "probability": 0.5622 + }, + { + "start": 28212.3, + "end": 28214.06, + "probability": 0.9556 + }, + { + "start": 28215.46, + "end": 28217.76, + "probability": 0.9587 + }, + { + "start": 28219.26, + "end": 28221.9, + "probability": 0.6875 + }, + { + "start": 28222.42, + "end": 28223.16, + "probability": 0.662 + }, + { + "start": 28227.08, + "end": 28229.44, + "probability": 0.4602 + }, + { + "start": 28230.54, + "end": 28235.2, + "probability": 0.9644 + }, + { + "start": 28236.74, + "end": 28238.28, + "probability": 0.8393 + }, + { + "start": 28239.9, + "end": 28241.06, + "probability": 0.9875 + }, + { + "start": 28242.46, + "end": 28246.22, + "probability": 0.8353 + }, + { + "start": 28247.4, + "end": 28249.58, + "probability": 0.9375 + }, + { + "start": 28249.98, + "end": 28250.92, + "probability": 0.3013 + }, + { + "start": 28251.5, + "end": 28252.6, + "probability": 0.7461 + }, + { + "start": 28253.36, + "end": 28255.26, + "probability": 0.7768 + }, + { + "start": 28257.38, + "end": 28258.9, + "probability": 0.9458 + }, + { + "start": 28260.94, + "end": 28263.68, + "probability": 0.794 + }, + { + "start": 28263.78, + "end": 28264.42, + "probability": 0.8366 + }, + { + "start": 28264.48, + "end": 28264.64, + "probability": 0.3406 + }, + { + "start": 28264.8, + "end": 28265.38, + "probability": 0.5098 + }, + { + "start": 28265.38, + "end": 28266.54, + "probability": 0.6932 + }, + { + "start": 28267.43, + "end": 28272.14, + "probability": 0.7641 + }, + { + "start": 28273.32, + "end": 28274.68, + "probability": 0.9595 + }, + { + "start": 28275.42, + "end": 28276.08, + "probability": 0.8651 + }, + { + "start": 28276.42, + "end": 28277.28, + "probability": 0.7455 + }, + { + "start": 28278.14, + "end": 28278.56, + "probability": 0.9224 + }, + { + "start": 28278.84, + "end": 28279.29, + "probability": 0.9346 + }, + { + "start": 28279.42, + "end": 28279.84, + "probability": 0.5054 + }, + { + "start": 28279.98, + "end": 28280.22, + "probability": 0.6796 + }, + { + "start": 28282.8, + "end": 28285.64, + "probability": 0.712 + }, + { + "start": 28286.68, + "end": 28287.34, + "probability": 0.6741 + }, + { + "start": 28289.34, + "end": 28290.7, + "probability": 0.611 + }, + { + "start": 28291.73, + "end": 28294.78, + "probability": 0.7169 + }, + { + "start": 28294.84, + "end": 28295.69, + "probability": 0.552 + }, + { + "start": 28296.22, + "end": 28296.84, + "probability": 0.736 + }, + { + "start": 28297.4, + "end": 28298.3, + "probability": 0.6189 + }, + { + "start": 28300.84, + "end": 28305.6, + "probability": 0.7922 + }, + { + "start": 28306.24, + "end": 28308.4, + "probability": 0.8685 + }, + { + "start": 28310.0, + "end": 28310.82, + "probability": 0.9849 + }, + { + "start": 28311.52, + "end": 28311.84, + "probability": 0.7957 + }, + { + "start": 28318.92, + "end": 28321.88, + "probability": 0.6273 + }, + { + "start": 28322.64, + "end": 28324.4, + "probability": 0.6132 + }, + { + "start": 28324.42, + "end": 28327.42, + "probability": 0.768 + }, + { + "start": 28327.46, + "end": 28328.5, + "probability": 0.5548 + }, + { + "start": 28328.62, + "end": 28329.5, + "probability": 0.5562 + }, + { + "start": 28329.64, + "end": 28330.82, + "probability": 0.9067 + }, + { + "start": 28330.82, + "end": 28332.08, + "probability": 0.034 + }, + { + "start": 28332.24, + "end": 28334.16, + "probability": 0.7084 + }, + { + "start": 28334.22, + "end": 28334.84, + "probability": 0.7509 + }, + { + "start": 28335.86, + "end": 28336.6, + "probability": 0.8039 + }, + { + "start": 28336.84, + "end": 28339.32, + "probability": 0.9678 + }, + { + "start": 28339.42, + "end": 28341.34, + "probability": 0.9867 + }, + { + "start": 28342.72, + "end": 28345.46, + "probability": 0.9773 + }, + { + "start": 28346.28, + "end": 28348.42, + "probability": 0.9045 + }, + { + "start": 28348.46, + "end": 28349.54, + "probability": 0.8257 + }, + { + "start": 28350.1, + "end": 28351.48, + "probability": 0.8275 + }, + { + "start": 28351.96, + "end": 28352.92, + "probability": 0.698 + }, + { + "start": 28353.96, + "end": 28360.78, + "probability": 0.6828 + }, + { + "start": 28361.8, + "end": 28365.46, + "probability": 0.9832 + }, + { + "start": 28366.22, + "end": 28367.42, + "probability": 0.4018 + }, + { + "start": 28368.5, + "end": 28369.56, + "probability": 0.6787 + }, + { + "start": 28370.86, + "end": 28373.04, + "probability": 0.8848 + }, + { + "start": 28373.26, + "end": 28374.78, + "probability": 0.8934 + }, + { + "start": 28376.36, + "end": 28376.74, + "probability": 0.8136 + }, + { + "start": 28377.26, + "end": 28378.8, + "probability": 0.9946 + }, + { + "start": 28379.42, + "end": 28381.48, + "probability": 0.9976 + }, + { + "start": 28382.1, + "end": 28385.86, + "probability": 0.9592 + }, + { + "start": 28386.06, + "end": 28386.78, + "probability": 0.9089 + }, + { + "start": 28387.04, + "end": 28388.22, + "probability": 0.9144 + }, + { + "start": 28389.36, + "end": 28395.82, + "probability": 0.7068 + }, + { + "start": 28396.66, + "end": 28399.12, + "probability": 0.8071 + }, + { + "start": 28399.54, + "end": 28403.68, + "probability": 0.9932 + }, + { + "start": 28403.98, + "end": 28405.0, + "probability": 0.9263 + }, + { + "start": 28405.64, + "end": 28406.76, + "probability": 0.924 + }, + { + "start": 28407.38, + "end": 28409.02, + "probability": 0.9964 + }, + { + "start": 28409.44, + "end": 28410.61, + "probability": 0.7845 + }, + { + "start": 28410.96, + "end": 28412.16, + "probability": 0.887 + }, + { + "start": 28412.74, + "end": 28413.92, + "probability": 0.9717 + }, + { + "start": 28413.98, + "end": 28414.82, + "probability": 0.9905 + }, + { + "start": 28414.86, + "end": 28416.18, + "probability": 0.9879 + }, + { + "start": 28416.82, + "end": 28417.76, + "probability": 0.8726 + }, + { + "start": 28418.2, + "end": 28418.78, + "probability": 0.8861 + }, + { + "start": 28418.94, + "end": 28420.46, + "probability": 0.9941 + }, + { + "start": 28420.8, + "end": 28422.56, + "probability": 0.9639 + }, + { + "start": 28422.78, + "end": 28426.34, + "probability": 0.9978 + }, + { + "start": 28426.34, + "end": 28429.68, + "probability": 0.9193 + }, + { + "start": 28430.02, + "end": 28431.4, + "probability": 0.6281 + }, + { + "start": 28431.94, + "end": 28433.4, + "probability": 0.9224 + }, + { + "start": 28433.48, + "end": 28435.98, + "probability": 0.9692 + }, + { + "start": 28436.74, + "end": 28438.94, + "probability": 0.9937 + }, + { + "start": 28439.36, + "end": 28442.5, + "probability": 0.8029 + }, + { + "start": 28442.5, + "end": 28442.72, + "probability": 0.4337 + }, + { + "start": 28442.94, + "end": 28448.58, + "probability": 0.9753 + }, + { + "start": 28448.64, + "end": 28448.88, + "probability": 0.5226 + }, + { + "start": 28449.08, + "end": 28449.57, + "probability": 0.7652 + }, + { + "start": 28449.98, + "end": 28451.83, + "probability": 0.7277 + }, + { + "start": 28452.78, + "end": 28454.13, + "probability": 0.8336 + }, + { + "start": 28454.56, + "end": 28456.34, + "probability": 0.8696 + }, + { + "start": 28456.68, + "end": 28458.84, + "probability": 0.9663 + }, + { + "start": 28459.36, + "end": 28462.0, + "probability": 0.8334 + }, + { + "start": 28462.2, + "end": 28463.78, + "probability": 0.8303 + }, + { + "start": 28463.78, + "end": 28464.3, + "probability": 0.5484 + }, + { + "start": 28464.72, + "end": 28466.81, + "probability": 0.9289 + }, + { + "start": 28467.0, + "end": 28468.35, + "probability": 0.8958 + }, + { + "start": 28469.32, + "end": 28470.98, + "probability": 0.7131 + }, + { + "start": 28471.04, + "end": 28474.66, + "probability": 0.864 + }, + { + "start": 28474.66, + "end": 28476.82, + "probability": 0.9066 + }, + { + "start": 28476.82, + "end": 28477.04, + "probability": 0.6373 + }, + { + "start": 28478.3, + "end": 28480.06, + "probability": 0.7586 + }, + { + "start": 28480.16, + "end": 28482.06, + "probability": 0.8922 + }, + { + "start": 28483.68, + "end": 28484.6, + "probability": 0.4362 + }, + { + "start": 28484.62, + "end": 28485.44, + "probability": 0.8179 + }, + { + "start": 28485.54, + "end": 28485.8, + "probability": 0.2933 + }, + { + "start": 28486.32, + "end": 28487.5, + "probability": 0.9103 + }, + { + "start": 28488.02, + "end": 28490.36, + "probability": 0.6953 + }, + { + "start": 28490.56, + "end": 28490.92, + "probability": 0.0921 + }, + { + "start": 28491.34, + "end": 28491.72, + "probability": 0.5047 + }, + { + "start": 28491.84, + "end": 28494.78, + "probability": 0.9462 + }, + { + "start": 28494.88, + "end": 28495.22, + "probability": 0.6803 + }, + { + "start": 28496.24, + "end": 28499.22, + "probability": 0.9284 + }, + { + "start": 28499.48, + "end": 28504.92, + "probability": 0.9837 + }, + { + "start": 28505.02, + "end": 28505.38, + "probability": 0.7867 + }, + { + "start": 28505.46, + "end": 28506.53, + "probability": 0.9961 + }, + { + "start": 28506.92, + "end": 28513.08, + "probability": 0.9934 + }, + { + "start": 28513.42, + "end": 28513.74, + "probability": 0.6382 + }, + { + "start": 28513.84, + "end": 28518.74, + "probability": 0.8709 + }, + { + "start": 28519.52, + "end": 28519.84, + "probability": 0.9028 + }, + { + "start": 28521.02, + "end": 28522.3, + "probability": 0.5355 + }, + { + "start": 28522.44, + "end": 28523.34, + "probability": 0.7064 + }, + { + "start": 28523.62, + "end": 28526.14, + "probability": 0.9971 + }, + { + "start": 28526.5, + "end": 28530.6, + "probability": 0.838 + }, + { + "start": 28531.04, + "end": 28531.56, + "probability": 0.6978 + }, + { + "start": 28531.6, + "end": 28532.58, + "probability": 0.875 + }, + { + "start": 28532.8, + "end": 28533.66, + "probability": 0.816 + }, + { + "start": 28533.7, + "end": 28536.96, + "probability": 0.9875 + }, + { + "start": 28537.34, + "end": 28539.18, + "probability": 0.6261 + }, + { + "start": 28539.38, + "end": 28543.18, + "probability": 0.6949 + }, + { + "start": 28543.36, + "end": 28544.86, + "probability": 0.9241 + }, + { + "start": 28545.06, + "end": 28546.66, + "probability": 0.9301 + }, + { + "start": 28546.81, + "end": 28548.3, + "probability": 0.9431 + }, + { + "start": 28548.4, + "end": 28548.97, + "probability": 0.8744 + }, + { + "start": 28549.56, + "end": 28551.8, + "probability": 0.2695 + }, + { + "start": 28552.44, + "end": 28557.6, + "probability": 0.9957 + }, + { + "start": 28557.74, + "end": 28561.56, + "probability": 0.9897 + }, + { + "start": 28561.56, + "end": 28564.82, + "probability": 0.9054 + }, + { + "start": 28565.12, + "end": 28568.44, + "probability": 0.9796 + }, + { + "start": 28568.46, + "end": 28568.94, + "probability": 0.3646 + }, + { + "start": 28569.38, + "end": 28571.82, + "probability": 0.7816 + }, + { + "start": 28571.82, + "end": 28572.02, + "probability": 0.8899 + }, + { + "start": 28572.02, + "end": 28573.0, + "probability": 0.1908 + }, + { + "start": 28573.14, + "end": 28574.43, + "probability": 0.6104 + }, + { + "start": 28575.08, + "end": 28575.22, + "probability": 0.4495 + }, + { + "start": 28575.34, + "end": 28576.64, + "probability": 0.7354 + }, + { + "start": 28577.67, + "end": 28581.74, + "probability": 0.532 + }, + { + "start": 28581.94, + "end": 28584.22, + "probability": 0.9792 + }, + { + "start": 28584.26, + "end": 28585.36, + "probability": 0.9076 + }, + { + "start": 28585.48, + "end": 28587.8, + "probability": 0.8975 + }, + { + "start": 28588.0, + "end": 28590.6, + "probability": 0.98 + }, + { + "start": 28590.7, + "end": 28591.98, + "probability": 0.8149 + }, + { + "start": 28592.0, + "end": 28594.28, + "probability": 0.9851 + }, + { + "start": 28594.58, + "end": 28596.69, + "probability": 0.7733 + }, + { + "start": 28597.42, + "end": 28601.14, + "probability": 0.5208 + }, + { + "start": 28601.4, + "end": 28602.68, + "probability": 0.1703 + }, + { + "start": 28606.48, + "end": 28608.83, + "probability": 0.5142 + }, + { + "start": 28612.42, + "end": 28612.42, + "probability": 0.2265 + }, + { + "start": 28612.42, + "end": 28613.14, + "probability": 0.0741 + }, + { + "start": 28613.14, + "end": 28613.14, + "probability": 0.1441 + }, + { + "start": 28613.14, + "end": 28613.18, + "probability": 0.3488 + }, + { + "start": 28613.62, + "end": 28614.74, + "probability": 0.6824 + }, + { + "start": 28615.96, + "end": 28617.46, + "probability": 0.7807 + }, + { + "start": 28618.92, + "end": 28620.96, + "probability": 0.7572 + }, + { + "start": 28621.92, + "end": 28622.98, + "probability": 0.9991 + }, + { + "start": 28624.14, + "end": 28624.86, + "probability": 0.7413 + }, + { + "start": 28625.24, + "end": 28625.58, + "probability": 0.668 + }, + { + "start": 28625.64, + "end": 28630.06, + "probability": 0.9605 + }, + { + "start": 28630.74, + "end": 28632.9, + "probability": 0.9645 + }, + { + "start": 28635.38, + "end": 28637.54, + "probability": 0.9097 + }, + { + "start": 28638.2, + "end": 28639.86, + "probability": 0.9642 + }, + { + "start": 28640.94, + "end": 28642.12, + "probability": 0.9932 + }, + { + "start": 28642.34, + "end": 28643.48, + "probability": 0.9529 + }, + { + "start": 28643.54, + "end": 28646.0, + "probability": 0.9894 + }, + { + "start": 28646.74, + "end": 28649.16, + "probability": 0.9926 + }, + { + "start": 28649.2, + "end": 28651.24, + "probability": 0.9682 + }, + { + "start": 28651.48, + "end": 28653.72, + "probability": 0.8323 + }, + { + "start": 28654.12, + "end": 28654.75, + "probability": 0.791 + }, + { + "start": 28655.46, + "end": 28658.04, + "probability": 0.5439 + }, + { + "start": 28658.2, + "end": 28659.11, + "probability": 0.5322 + }, + { + "start": 28659.7, + "end": 28664.76, + "probability": 0.8061 + }, + { + "start": 28665.81, + "end": 28666.1, + "probability": 0.3359 + }, + { + "start": 28666.1, + "end": 28667.38, + "probability": 0.6907 + }, + { + "start": 28667.38, + "end": 28668.71, + "probability": 0.7147 + }, + { + "start": 28669.52, + "end": 28669.72, + "probability": 0.306 + }, + { + "start": 28669.72, + "end": 28669.74, + "probability": 0.191 + }, + { + "start": 28669.74, + "end": 28669.74, + "probability": 0.0593 + }, + { + "start": 28669.74, + "end": 28670.18, + "probability": 0.3 + }, + { + "start": 28670.44, + "end": 28672.12, + "probability": 0.6727 + }, + { + "start": 28672.3, + "end": 28672.94, + "probability": 0.0828 + }, + { + "start": 28673.02, + "end": 28674.52, + "probability": 0.4016 + }, + { + "start": 28674.62, + "end": 28675.67, + "probability": 0.4785 + }, + { + "start": 28676.1, + "end": 28677.0, + "probability": 0.5384 + }, + { + "start": 28677.1, + "end": 28680.58, + "probability": 0.9148 + }, + { + "start": 28680.64, + "end": 28680.92, + "probability": 0.4957 + }, + { + "start": 28680.92, + "end": 28683.96, + "probability": 0.9923 + }, + { + "start": 28683.96, + "end": 28686.58, + "probability": 0.9991 + }, + { + "start": 28687.1, + "end": 28690.14, + "probability": 0.9803 + }, + { + "start": 28690.14, + "end": 28694.78, + "probability": 0.9184 + }, + { + "start": 28695.02, + "end": 28696.3, + "probability": 0.8036 + }, + { + "start": 28696.36, + "end": 28699.88, + "probability": 0.979 + }, + { + "start": 28699.98, + "end": 28700.86, + "probability": 0.5614 + }, + { + "start": 28701.28, + "end": 28705.89, + "probability": 0.3969 + }, + { + "start": 28706.16, + "end": 28706.52, + "probability": 0.4567 + }, + { + "start": 28706.74, + "end": 28708.2, + "probability": 0.5446 + }, + { + "start": 28710.74, + "end": 28711.8, + "probability": 0.4942 + }, + { + "start": 28712.0, + "end": 28712.66, + "probability": 0.5967 + }, + { + "start": 28714.34, + "end": 28718.3, + "probability": 0.8693 + }, + { + "start": 28718.58, + "end": 28719.4, + "probability": 0.2035 + }, + { + "start": 28720.08, + "end": 28722.0, + "probability": 0.3534 + }, + { + "start": 28722.26, + "end": 28726.48, + "probability": 0.5459 + }, + { + "start": 28729.8, + "end": 28735.12, + "probability": 0.5667 + }, + { + "start": 28735.54, + "end": 28736.13, + "probability": 0.4087 + }, + { + "start": 28736.98, + "end": 28737.98, + "probability": 0.2752 + }, + { + "start": 28738.06, + "end": 28742.12, + "probability": 0.6409 + }, + { + "start": 28742.5, + "end": 28745.54, + "probability": 0.9934 + }, + { + "start": 28745.8, + "end": 28747.32, + "probability": 0.8472 + }, + { + "start": 28749.08, + "end": 28752.08, + "probability": 0.5502 + }, + { + "start": 28753.02, + "end": 28753.68, + "probability": 0.2803 + }, + { + "start": 28753.78, + "end": 28755.89, + "probability": 0.0828 + }, + { + "start": 28756.32, + "end": 28757.62, + "probability": 0.3078 + }, + { + "start": 28760.42, + "end": 28763.02, + "probability": 0.437 + }, + { + "start": 28764.86, + "end": 28767.0, + "probability": 0.4296 + }, + { + "start": 28767.38, + "end": 28769.64, + "probability": 0.5957 + }, + { + "start": 28769.7, + "end": 28771.0, + "probability": 0.6175 + }, + { + "start": 28772.16, + "end": 28773.62, + "probability": 0.1249 + }, + { + "start": 28774.9, + "end": 28775.14, + "probability": 0.1741 + }, + { + "start": 28775.14, + "end": 28775.18, + "probability": 0.1757 + }, + { + "start": 28778.78, + "end": 28779.08, + "probability": 0.1171 + }, + { + "start": 28780.25, + "end": 28782.8, + "probability": 0.0944 + }, + { + "start": 28796.04, + "end": 28797.0, + "probability": 0.0313 + }, + { + "start": 28797.0, + "end": 28801.92, + "probability": 0.868 + }, + { + "start": 28802.38, + "end": 28802.5, + "probability": 0.1763 + }, + { + "start": 28803.16, + "end": 28803.74, + "probability": 0.0668 + }, + { + "start": 28803.86, + "end": 28805.36, + "probability": 0.2649 + }, + { + "start": 28805.54, + "end": 28805.54, + "probability": 0.2948 + }, + { + "start": 28805.54, + "end": 28805.9, + "probability": 0.3399 + }, + { + "start": 28805.98, + "end": 28811.16, + "probability": 0.7629 + }, + { + "start": 28811.4, + "end": 28816.66, + "probability": 0.9666 + }, + { + "start": 28817.78, + "end": 28818.86, + "probability": 0.6972 + }, + { + "start": 28819.06, + "end": 28821.4, + "probability": 0.5337 + }, + { + "start": 28822.58, + "end": 28823.4, + "probability": 0.0008 + }, + { + "start": 28824.0, + "end": 28826.12, + "probability": 0.1639 + }, + { + "start": 28827.06, + "end": 28829.78, + "probability": 0.0394 + }, + { + "start": 28831.36, + "end": 28831.62, + "probability": 0.0457 + }, + { + "start": 28831.62, + "end": 28831.62, + "probability": 0.0775 + }, + { + "start": 28831.62, + "end": 28832.0, + "probability": 0.0467 + }, + { + "start": 28832.72, + "end": 28834.74, + "probability": 0.3153 + }, + { + "start": 28834.9, + "end": 28835.82, + "probability": 0.7993 + }, + { + "start": 28836.28, + "end": 28837.58, + "probability": 0.4259 + }, + { + "start": 28837.66, + "end": 28838.62, + "probability": 0.9469 + }, + { + "start": 28838.72, + "end": 28840.12, + "probability": 0.9342 + }, + { + "start": 28841.2, + "end": 28841.84, + "probability": 0.7097 + }, + { + "start": 28841.84, + "end": 28843.18, + "probability": 0.9219 + }, + { + "start": 28843.7, + "end": 28845.58, + "probability": 0.8799 + }, + { + "start": 28845.64, + "end": 28846.06, + "probability": 0.8651 + }, + { + "start": 28846.82, + "end": 28849.32, + "probability": 0.5375 + }, + { + "start": 28850.76, + "end": 28852.28, + "probability": 0.4779 + }, + { + "start": 28862.6, + "end": 28865.94, + "probability": 0.7278 + }, + { + "start": 28867.14, + "end": 28867.64, + "probability": 0.5781 + }, + { + "start": 28867.8, + "end": 28870.26, + "probability": 0.8331 + }, + { + "start": 28870.9, + "end": 28871.82, + "probability": 0.8264 + }, + { + "start": 28874.06, + "end": 28875.2, + "probability": 0.338 + }, + { + "start": 28876.28, + "end": 28882.02, + "probability": 0.8167 + }, + { + "start": 28882.52, + "end": 28883.04, + "probability": 0.3892 + }, + { + "start": 28884.18, + "end": 28886.96, + "probability": 0.9428 + }, + { + "start": 28887.52, + "end": 28890.22, + "probability": 0.9663 + }, + { + "start": 28891.2, + "end": 28892.02, + "probability": 0.9005 + }, + { + "start": 28893.32, + "end": 28899.34, + "probability": 0.8532 + }, + { + "start": 28899.5, + "end": 28904.97, + "probability": 0.9915 + }, + { + "start": 28905.56, + "end": 28910.24, + "probability": 0.9976 + }, + { + "start": 28911.04, + "end": 28911.72, + "probability": 0.8021 + }, + { + "start": 28912.38, + "end": 28915.16, + "probability": 0.9941 + }, + { + "start": 28915.52, + "end": 28916.12, + "probability": 0.937 + }, + { + "start": 28916.32, + "end": 28920.76, + "probability": 0.9468 + }, + { + "start": 28920.96, + "end": 28922.16, + "probability": 0.7642 + }, + { + "start": 28922.34, + "end": 28922.92, + "probability": 0.8246 + }, + { + "start": 28923.12, + "end": 28926.8, + "probability": 0.7989 + }, + { + "start": 28927.44, + "end": 28928.74, + "probability": 0.9668 + }, + { + "start": 28929.42, + "end": 28930.22, + "probability": 0.987 + }, + { + "start": 28931.2, + "end": 28931.91, + "probability": 0.9572 + }, + { + "start": 28932.36, + "end": 28936.24, + "probability": 0.872 + }, + { + "start": 28936.62, + "end": 28937.32, + "probability": 0.7896 + }, + { + "start": 28937.84, + "end": 28939.34, + "probability": 0.9963 + }, + { + "start": 28940.02, + "end": 28942.69, + "probability": 0.9917 + }, + { + "start": 28943.72, + "end": 28944.52, + "probability": 0.6838 + }, + { + "start": 28947.04, + "end": 28947.66, + "probability": 0.8027 + }, + { + "start": 28948.16, + "end": 28952.98, + "probability": 0.9941 + }, + { + "start": 28953.3, + "end": 28953.72, + "probability": 0.9624 + }, + { + "start": 28953.9, + "end": 28955.68, + "probability": 0.9842 + }, + { + "start": 28955.76, + "end": 28960.2, + "probability": 0.879 + }, + { + "start": 28961.22, + "end": 28962.46, + "probability": 0.9719 + }, + { + "start": 28962.68, + "end": 28964.76, + "probability": 0.6848 + }, + { + "start": 28965.72, + "end": 28967.78, + "probability": 0.8931 + }, + { + "start": 28968.58, + "end": 28969.16, + "probability": 0.7205 + }, + { + "start": 28969.76, + "end": 28970.78, + "probability": 0.9369 + }, + { + "start": 28971.78, + "end": 28972.68, + "probability": 0.9018 + }, + { + "start": 28973.34, + "end": 28975.48, + "probability": 0.7566 + }, + { + "start": 28977.88, + "end": 28986.58, + "probability": 0.9832 + }, + { + "start": 28987.86, + "end": 28992.0, + "probability": 0.7719 + }, + { + "start": 28994.16, + "end": 28996.18, + "probability": 0.9625 + }, + { + "start": 28997.12, + "end": 29000.84, + "probability": 0.8791 + }, + { + "start": 29001.74, + "end": 29005.82, + "probability": 0.9441 + }, + { + "start": 29006.72, + "end": 29007.92, + "probability": 0.9684 + }, + { + "start": 29009.02, + "end": 29013.72, + "probability": 0.6061 + }, + { + "start": 29015.42, + "end": 29017.66, + "probability": 0.6666 + }, + { + "start": 29018.84, + "end": 29019.14, + "probability": 0.5208 + }, + { + "start": 29019.16, + "end": 29020.22, + "probability": 0.3092 + }, + { + "start": 29022.08, + "end": 29023.04, + "probability": 0.9272 + }, + { + "start": 29023.14, + "end": 29025.48, + "probability": 0.8872 + }, + { + "start": 29025.86, + "end": 29028.98, + "probability": 0.8743 + }, + { + "start": 29030.24, + "end": 29032.16, + "probability": 0.9205 + }, + { + "start": 29032.38, + "end": 29036.14, + "probability": 0.8152 + }, + { + "start": 29036.62, + "end": 29039.06, + "probability": 0.5643 + }, + { + "start": 29039.2, + "end": 29042.28, + "probability": 0.9822 + }, + { + "start": 29042.96, + "end": 29045.1, + "probability": 0.8312 + }, + { + "start": 29046.18, + "end": 29046.86, + "probability": 0.7848 + }, + { + "start": 29047.23, + "end": 29050.44, + "probability": 0.6956 + }, + { + "start": 29051.04, + "end": 29052.88, + "probability": 0.6122 + }, + { + "start": 29053.2, + "end": 29053.74, + "probability": 0.3916 + }, + { + "start": 29055.16, + "end": 29057.6, + "probability": 0.8571 + }, + { + "start": 29059.02, + "end": 29061.6, + "probability": 0.8298 + }, + { + "start": 29062.52, + "end": 29063.66, + "probability": 0.7517 + }, + { + "start": 29063.76, + "end": 29066.1, + "probability": 0.9606 + }, + { + "start": 29066.12, + "end": 29066.54, + "probability": 0.695 + }, + { + "start": 29067.26, + "end": 29069.14, + "probability": 0.8594 + }, + { + "start": 29069.2, + "end": 29069.98, + "probability": 0.8474 + }, + { + "start": 29070.12, + "end": 29072.42, + "probability": 0.3407 + }, + { + "start": 29072.42, + "end": 29072.42, + "probability": 0.026 + }, + { + "start": 29072.42, + "end": 29073.32, + "probability": 0.1227 + }, + { + "start": 29073.54, + "end": 29074.5, + "probability": 0.3825 + }, + { + "start": 29075.08, + "end": 29076.39, + "probability": 0.7103 + }, + { + "start": 29077.1, + "end": 29078.36, + "probability": 0.618 + }, + { + "start": 29079.0, + "end": 29082.96, + "probability": 0.754 + }, + { + "start": 29084.76, + "end": 29087.18, + "probability": 0.4832 + }, + { + "start": 29087.64, + "end": 29088.72, + "probability": 0.9639 + }, + { + "start": 29088.78, + "end": 29090.02, + "probability": 0.783 + }, + { + "start": 29091.1, + "end": 29093.42, + "probability": 0.7957 + }, + { + "start": 29094.28, + "end": 29097.52, + "probability": 0.8554 + }, + { + "start": 29098.54, + "end": 29101.1, + "probability": 0.5857 + }, + { + "start": 29101.44, + "end": 29103.4, + "probability": 0.3357 + }, + { + "start": 29103.48, + "end": 29104.06, + "probability": 0.9292 + }, + { + "start": 29104.74, + "end": 29105.97, + "probability": 0.9829 + }, + { + "start": 29106.92, + "end": 29109.02, + "probability": 0.9609 + }, + { + "start": 29109.62, + "end": 29111.54, + "probability": 0.9908 + }, + { + "start": 29111.72, + "end": 29112.44, + "probability": 0.8579 + }, + { + "start": 29112.46, + "end": 29113.86, + "probability": 0.6844 + }, + { + "start": 29115.12, + "end": 29117.2, + "probability": 0.9333 + }, + { + "start": 29117.26, + "end": 29118.18, + "probability": 0.9669 + }, + { + "start": 29118.26, + "end": 29119.22, + "probability": 0.9767 + }, + { + "start": 29119.28, + "end": 29119.68, + "probability": 0.8727 + }, + { + "start": 29120.1, + "end": 29121.64, + "probability": 0.8286 + }, + { + "start": 29121.94, + "end": 29123.18, + "probability": 0.9091 + }, + { + "start": 29123.88, + "end": 29125.8, + "probability": 0.9762 + }, + { + "start": 29125.92, + "end": 29128.04, + "probability": 0.9926 + }, + { + "start": 29128.66, + "end": 29129.73, + "probability": 0.8468 + }, + { + "start": 29129.92, + "end": 29131.74, + "probability": 0.8024 + }, + { + "start": 29132.26, + "end": 29133.9, + "probability": 0.9145 + }, + { + "start": 29133.98, + "end": 29135.08, + "probability": 0.9946 + }, + { + "start": 29135.88, + "end": 29138.5, + "probability": 0.9482 + }, + { + "start": 29138.64, + "end": 29139.9, + "probability": 0.6768 + }, + { + "start": 29140.36, + "end": 29141.34, + "probability": 0.4993 + }, + { + "start": 29141.5, + "end": 29146.32, + "probability": 0.8823 + }, + { + "start": 29147.82, + "end": 29151.32, + "probability": 0.777 + }, + { + "start": 29151.32, + "end": 29153.44, + "probability": 0.9539 + }, + { + "start": 29153.52, + "end": 29155.3, + "probability": 0.8916 + }, + { + "start": 29156.48, + "end": 29160.88, + "probability": 0.8655 + }, + { + "start": 29161.74, + "end": 29165.78, + "probability": 0.9731 + }, + { + "start": 29165.98, + "end": 29169.2, + "probability": 0.7766 + }, + { + "start": 29169.6, + "end": 29170.08, + "probability": 0.418 + }, + { + "start": 29170.12, + "end": 29170.86, + "probability": 0.9465 + }, + { + "start": 29170.94, + "end": 29174.3, + "probability": 0.8512 + }, + { + "start": 29174.88, + "end": 29176.9, + "probability": 0.9019 + }, + { + "start": 29176.94, + "end": 29177.12, + "probability": 0.7108 + }, + { + "start": 29178.1, + "end": 29179.9, + "probability": 0.6549 + }, + { + "start": 29179.96, + "end": 29181.26, + "probability": 0.9332 + }, + { + "start": 29181.82, + "end": 29182.38, + "probability": 0.8328 + }, + { + "start": 29183.62, + "end": 29184.62, + "probability": 0.7751 + }, + { + "start": 29185.3, + "end": 29185.52, + "probability": 0.7808 + }, + { + "start": 29187.2, + "end": 29188.4, + "probability": 0.9873 + }, + { + "start": 29190.18, + "end": 29192.14, + "probability": 0.7083 + }, + { + "start": 29192.14, + "end": 29193.78, + "probability": 0.7896 + }, + { + "start": 29194.22, + "end": 29196.74, + "probability": 0.9218 + }, + { + "start": 29196.88, + "end": 29198.24, + "probability": 0.7664 + }, + { + "start": 29199.98, + "end": 29208.2, + "probability": 0.9329 + }, + { + "start": 29209.6, + "end": 29211.78, + "probability": 0.9857 + }, + { + "start": 29213.0, + "end": 29216.14, + "probability": 0.7981 + }, + { + "start": 29216.68, + "end": 29222.76, + "probability": 0.8788 + }, + { + "start": 29223.28, + "end": 29228.83, + "probability": 0.9736 + }, + { + "start": 29231.18, + "end": 29232.14, + "probability": 0.9659 + }, + { + "start": 29232.74, + "end": 29235.66, + "probability": 0.8787 + }, + { + "start": 29236.64, + "end": 29237.4, + "probability": 0.9011 + }, + { + "start": 29238.94, + "end": 29243.12, + "probability": 0.9508 + }, + { + "start": 29244.02, + "end": 29245.7, + "probability": 0.6052 + }, + { + "start": 29247.56, + "end": 29248.44, + "probability": 0.8513 + }, + { + "start": 29249.3, + "end": 29250.7, + "probability": 0.9784 + }, + { + "start": 29252.8, + "end": 29258.0, + "probability": 0.8808 + }, + { + "start": 29258.82, + "end": 29260.47, + "probability": 0.868 + }, + { + "start": 29262.1, + "end": 29267.52, + "probability": 0.992 + }, + { + "start": 29267.52, + "end": 29274.06, + "probability": 0.7762 + }, + { + "start": 29274.94, + "end": 29275.8, + "probability": 0.9195 + }, + { + "start": 29277.68, + "end": 29280.02, + "probability": 0.9978 + }, + { + "start": 29280.66, + "end": 29283.4, + "probability": 0.9805 + }, + { + "start": 29284.18, + "end": 29284.8, + "probability": 0.5413 + }, + { + "start": 29285.0, + "end": 29285.72, + "probability": 0.7581 + }, + { + "start": 29285.88, + "end": 29291.58, + "probability": 0.9212 + }, + { + "start": 29293.02, + "end": 29296.6, + "probability": 0.9868 + }, + { + "start": 29296.9, + "end": 29298.5, + "probability": 0.9756 + }, + { + "start": 29298.94, + "end": 29301.68, + "probability": 0.9645 + }, + { + "start": 29302.1, + "end": 29306.6, + "probability": 0.994 + }, + { + "start": 29306.6, + "end": 29310.72, + "probability": 0.8384 + }, + { + "start": 29311.66, + "end": 29315.32, + "probability": 0.993 + }, + { + "start": 29316.51, + "end": 29319.08, + "probability": 0.8056 + }, + { + "start": 29319.96, + "end": 29323.82, + "probability": 0.8447 + }, + { + "start": 29324.5, + "end": 29327.84, + "probability": 0.9521 + }, + { + "start": 29327.9, + "end": 29329.7, + "probability": 0.9862 + }, + { + "start": 29332.45, + "end": 29335.08, + "probability": 0.4844 + }, + { + "start": 29335.9, + "end": 29337.0, + "probability": 0.7181 + }, + { + "start": 29337.16, + "end": 29342.64, + "probability": 0.9553 + }, + { + "start": 29343.26, + "end": 29344.4, + "probability": 0.9956 + }, + { + "start": 29345.22, + "end": 29346.92, + "probability": 0.7038 + }, + { + "start": 29347.56, + "end": 29349.0, + "probability": 0.803 + }, + { + "start": 29349.18, + "end": 29351.32, + "probability": 0.8892 + }, + { + "start": 29352.0, + "end": 29354.12, + "probability": 0.7963 + }, + { + "start": 29355.0, + "end": 29358.42, + "probability": 0.8887 + }, + { + "start": 29358.92, + "end": 29359.77, + "probability": 0.9374 + }, + { + "start": 29360.46, + "end": 29364.52, + "probability": 0.8291 + }, + { + "start": 29365.06, + "end": 29366.5, + "probability": 0.856 + }, + { + "start": 29366.66, + "end": 29367.48, + "probability": 0.7413 + }, + { + "start": 29367.48, + "end": 29370.04, + "probability": 0.9878 + }, + { + "start": 29370.76, + "end": 29374.32, + "probability": 0.9346 + }, + { + "start": 29374.86, + "end": 29376.62, + "probability": 0.6574 + }, + { + "start": 29377.46, + "end": 29379.12, + "probability": 0.7268 + }, + { + "start": 29379.78, + "end": 29381.08, + "probability": 0.0214 + }, + { + "start": 29381.08, + "end": 29384.38, + "probability": 0.7944 + }, + { + "start": 29384.8, + "end": 29388.04, + "probability": 0.9424 + }, + { + "start": 29388.66, + "end": 29390.04, + "probability": 0.7254 + }, + { + "start": 29390.22, + "end": 29392.82, + "probability": 0.8479 + }, + { + "start": 29393.32, + "end": 29394.8, + "probability": 0.9786 + }, + { + "start": 29394.94, + "end": 29397.92, + "probability": 0.8022 + }, + { + "start": 29398.66, + "end": 29399.24, + "probability": 0.7625 + }, + { + "start": 29400.44, + "end": 29401.5, + "probability": 0.9372 + }, + { + "start": 29401.72, + "end": 29402.34, + "probability": 0.9578 + }, + { + "start": 29402.78, + "end": 29406.64, + "probability": 0.8979 + }, + { + "start": 29407.76, + "end": 29411.46, + "probability": 0.8025 + }, + { + "start": 29412.32, + "end": 29413.94, + "probability": 0.6837 + }, + { + "start": 29414.08, + "end": 29414.64, + "probability": 0.8169 + }, + { + "start": 29414.74, + "end": 29416.26, + "probability": 0.614 + }, + { + "start": 29416.36, + "end": 29419.66, + "probability": 0.8025 + }, + { + "start": 29420.22, + "end": 29422.12, + "probability": 0.993 + }, + { + "start": 29422.76, + "end": 29426.3, + "probability": 0.8273 + }, + { + "start": 29426.92, + "end": 29430.26, + "probability": 0.9914 + }, + { + "start": 29430.74, + "end": 29434.48, + "probability": 0.9907 + }, + { + "start": 29435.34, + "end": 29439.44, + "probability": 0.8975 + }, + { + "start": 29440.12, + "end": 29443.88, + "probability": 0.9627 + }, + { + "start": 29444.02, + "end": 29444.5, + "probability": 0.8227 + }, + { + "start": 29444.64, + "end": 29445.84, + "probability": 0.6913 + }, + { + "start": 29446.2, + "end": 29446.82, + "probability": 0.9558 + }, + { + "start": 29446.96, + "end": 29447.52, + "probability": 0.7012 + }, + { + "start": 29447.92, + "end": 29450.6, + "probability": 0.9781 + }, + { + "start": 29450.96, + "end": 29451.58, + "probability": 0.6895 + }, + { + "start": 29452.2, + "end": 29454.08, + "probability": 0.6267 + }, + { + "start": 29454.36, + "end": 29455.76, + "probability": 0.7081 + }, + { + "start": 29456.3, + "end": 29457.52, + "probability": 0.5342 + }, + { + "start": 29474.5, + "end": 29476.42, + "probability": 0.7042 + }, + { + "start": 29478.2, + "end": 29483.71, + "probability": 0.7396 + }, + { + "start": 29484.08, + "end": 29487.4, + "probability": 0.9829 + }, + { + "start": 29489.88, + "end": 29490.74, + "probability": 0.9869 + }, + { + "start": 29492.6, + "end": 29494.36, + "probability": 0.8804 + }, + { + "start": 29496.28, + "end": 29498.44, + "probability": 0.9654 + }, + { + "start": 29499.26, + "end": 29500.38, + "probability": 0.8323 + }, + { + "start": 29501.7, + "end": 29506.36, + "probability": 0.9958 + }, + { + "start": 29507.06, + "end": 29508.92, + "probability": 0.9647 + }, + { + "start": 29510.04, + "end": 29511.22, + "probability": 0.6967 + }, + { + "start": 29512.22, + "end": 29513.04, + "probability": 0.6742 + }, + { + "start": 29513.8, + "end": 29514.94, + "probability": 0.7947 + }, + { + "start": 29515.5, + "end": 29516.14, + "probability": 0.4575 + }, + { + "start": 29517.82, + "end": 29523.86, + "probability": 0.9508 + }, + { + "start": 29524.56, + "end": 29525.68, + "probability": 0.9772 + }, + { + "start": 29526.88, + "end": 29531.23, + "probability": 0.9924 + }, + { + "start": 29531.68, + "end": 29535.02, + "probability": 0.9885 + }, + { + "start": 29537.64, + "end": 29540.2, + "probability": 0.7521 + }, + { + "start": 29540.34, + "end": 29541.88, + "probability": 0.9509 + }, + { + "start": 29542.48, + "end": 29545.76, + "probability": 0.9561 + }, + { + "start": 29546.98, + "end": 29549.64, + "probability": 0.9315 + }, + { + "start": 29550.6, + "end": 29556.46, + "probability": 0.9985 + }, + { + "start": 29557.36, + "end": 29558.76, + "probability": 0.6643 + }, + { + "start": 29559.86, + "end": 29566.06, + "probability": 0.9776 + }, + { + "start": 29566.56, + "end": 29567.78, + "probability": 0.9245 + }, + { + "start": 29568.66, + "end": 29570.8, + "probability": 0.9686 + }, + { + "start": 29571.9, + "end": 29576.46, + "probability": 0.6621 + }, + { + "start": 29576.46, + "end": 29582.1, + "probability": 0.9938 + }, + { + "start": 29582.94, + "end": 29584.31, + "probability": 0.5617 + }, + { + "start": 29586.46, + "end": 29587.06, + "probability": 0.5795 + }, + { + "start": 29588.85, + "end": 29591.46, + "probability": 0.9027 + }, + { + "start": 29592.12, + "end": 29593.12, + "probability": 0.8391 + }, + { + "start": 29594.44, + "end": 29596.78, + "probability": 0.9936 + }, + { + "start": 29597.9, + "end": 29599.1, + "probability": 0.6229 + }, + { + "start": 29599.96, + "end": 29601.7, + "probability": 0.5917 + }, + { + "start": 29602.28, + "end": 29604.54, + "probability": 0.9976 + }, + { + "start": 29605.64, + "end": 29607.9, + "probability": 0.9428 + }, + { + "start": 29608.08, + "end": 29609.87, + "probability": 0.9756 + }, + { + "start": 29610.9, + "end": 29611.78, + "probability": 0.8322 + }, + { + "start": 29613.02, + "end": 29618.08, + "probability": 0.8026 + }, + { + "start": 29618.26, + "end": 29619.42, + "probability": 0.8938 + }, + { + "start": 29620.1, + "end": 29622.06, + "probability": 0.9939 + }, + { + "start": 29622.78, + "end": 29623.84, + "probability": 0.8715 + }, + { + "start": 29624.82, + "end": 29625.5, + "probability": 0.9371 + }, + { + "start": 29625.58, + "end": 29630.52, + "probability": 0.9874 + }, + { + "start": 29631.92, + "end": 29637.14, + "probability": 0.9397 + }, + { + "start": 29637.88, + "end": 29638.26, + "probability": 0.3193 + }, + { + "start": 29639.48, + "end": 29640.74, + "probability": 0.509 + }, + { + "start": 29641.9, + "end": 29642.82, + "probability": 0.623 + }, + { + "start": 29644.0, + "end": 29646.28, + "probability": 0.9966 + }, + { + "start": 29647.06, + "end": 29649.58, + "probability": 0.4831 + }, + { + "start": 29650.44, + "end": 29651.62, + "probability": 0.7928 + }, + { + "start": 29652.38, + "end": 29653.08, + "probability": 0.7228 + }, + { + "start": 29653.34, + "end": 29654.64, + "probability": 0.8657 + }, + { + "start": 29654.76, + "end": 29655.22, + "probability": 0.9124 + }, + { + "start": 29655.3, + "end": 29655.7, + "probability": 0.8973 + }, + { + "start": 29656.0, + "end": 29657.38, + "probability": 0.9096 + }, + { + "start": 29658.32, + "end": 29661.44, + "probability": 0.9417 + }, + { + "start": 29662.02, + "end": 29663.66, + "probability": 0.9674 + }, + { + "start": 29664.34, + "end": 29666.06, + "probability": 0.9868 + }, + { + "start": 29667.14, + "end": 29667.38, + "probability": 0.5941 + }, + { + "start": 29667.72, + "end": 29668.24, + "probability": 0.6226 + }, + { + "start": 29669.97, + "end": 29672.84, + "probability": 0.899 + }, + { + "start": 29673.14, + "end": 29675.29, + "probability": 0.9772 + }, + { + "start": 29675.84, + "end": 29677.84, + "probability": 0.926 + }, + { + "start": 29678.52, + "end": 29680.94, + "probability": 0.9674 + }, + { + "start": 29681.74, + "end": 29682.42, + "probability": 0.7968 + }, + { + "start": 29683.42, + "end": 29686.8, + "probability": 0.9415 + }, + { + "start": 29686.98, + "end": 29691.32, + "probability": 0.9671 + }, + { + "start": 29691.68, + "end": 29692.36, + "probability": 0.8626 + }, + { + "start": 29692.44, + "end": 29695.96, + "probability": 0.8261 + }, + { + "start": 29696.68, + "end": 29699.08, + "probability": 0.8793 + }, + { + "start": 29699.76, + "end": 29703.5, + "probability": 0.8282 + }, + { + "start": 29704.06, + "end": 29706.72, + "probability": 0.9629 + }, + { + "start": 29707.7, + "end": 29709.22, + "probability": 0.9087 + }, + { + "start": 29709.34, + "end": 29709.76, + "probability": 0.3855 + }, + { + "start": 29709.76, + "end": 29713.4, + "probability": 0.6081 + }, + { + "start": 29713.58, + "end": 29714.56, + "probability": 0.8254 + }, + { + "start": 29715.4, + "end": 29716.2, + "probability": 0.9904 + }, + { + "start": 29717.46, + "end": 29717.9, + "probability": 0.5276 + }, + { + "start": 29718.0, + "end": 29720.6, + "probability": 0.9666 + }, + { + "start": 29721.26, + "end": 29722.22, + "probability": 0.8438 + }, + { + "start": 29723.2, + "end": 29726.08, + "probability": 0.968 + }, + { + "start": 29726.94, + "end": 29729.92, + "probability": 0.9729 + }, + { + "start": 29730.48, + "end": 29732.38, + "probability": 0.9224 + }, + { + "start": 29733.1, + "end": 29734.42, + "probability": 0.9042 + }, + { + "start": 29734.56, + "end": 29736.8, + "probability": 0.9946 + }, + { + "start": 29737.4, + "end": 29740.46, + "probability": 0.9372 + }, + { + "start": 29741.14, + "end": 29744.78, + "probability": 0.9847 + }, + { + "start": 29745.3, + "end": 29747.74, + "probability": 0.9115 + }, + { + "start": 29748.56, + "end": 29750.68, + "probability": 0.9598 + }, + { + "start": 29750.74, + "end": 29751.76, + "probability": 0.9854 + }, + { + "start": 29752.46, + "end": 29752.72, + "probability": 0.7016 + }, + { + "start": 29753.8, + "end": 29754.94, + "probability": 0.947 + }, + { + "start": 29758.14, + "end": 29761.22, + "probability": 0.8262 + }, + { + "start": 29762.58, + "end": 29762.68, + "probability": 0.2003 + }, + { + "start": 29762.96, + "end": 29763.44, + "probability": 0.8231 + }, + { + "start": 29763.58, + "end": 29768.02, + "probability": 0.9724 + }, + { + "start": 29768.54, + "end": 29772.3, + "probability": 0.8992 + }, + { + "start": 29773.08, + "end": 29774.38, + "probability": 0.7565 + }, + { + "start": 29779.86, + "end": 29781.76, + "probability": 0.7188 + }, + { + "start": 29782.9, + "end": 29788.78, + "probability": 0.9697 + }, + { + "start": 29789.78, + "end": 29796.6, + "probability": 0.9711 + }, + { + "start": 29797.36, + "end": 29801.1, + "probability": 0.9925 + }, + { + "start": 29802.18, + "end": 29807.04, + "probability": 0.8073 + }, + { + "start": 29807.84, + "end": 29808.94, + "probability": 0.8745 + }, + { + "start": 29809.74, + "end": 29811.32, + "probability": 0.9794 + }, + { + "start": 29811.72, + "end": 29813.06, + "probability": 0.8665 + }, + { + "start": 29813.14, + "end": 29814.41, + "probability": 0.9744 + }, + { + "start": 29815.02, + "end": 29816.26, + "probability": 0.981 + }, + { + "start": 29817.18, + "end": 29818.88, + "probability": 0.9871 + }, + { + "start": 29818.96, + "end": 29822.54, + "probability": 0.8795 + }, + { + "start": 29823.06, + "end": 29824.94, + "probability": 0.9885 + }, + { + "start": 29826.88, + "end": 29827.92, + "probability": 0.8086 + }, + { + "start": 29828.26, + "end": 29829.64, + "probability": 0.9941 + }, + { + "start": 29830.56, + "end": 29835.36, + "probability": 0.9848 + }, + { + "start": 29835.36, + "end": 29838.59, + "probability": 0.7625 + }, + { + "start": 29839.42, + "end": 29841.28, + "probability": 0.9061 + }, + { + "start": 29841.48, + "end": 29843.2, + "probability": 0.8354 + }, + { + "start": 29843.68, + "end": 29845.18, + "probability": 0.7798 + }, + { + "start": 29845.88, + "end": 29848.3, + "probability": 0.9902 + }, + { + "start": 29848.46, + "end": 29848.74, + "probability": 0.8369 + }, + { + "start": 29849.56, + "end": 29852.6, + "probability": 0.7798 + }, + { + "start": 29853.0, + "end": 29856.15, + "probability": 0.5656 + }, + { + "start": 29856.8, + "end": 29859.33, + "probability": 0.9222 + }, + { + "start": 29859.92, + "end": 29864.06, + "probability": 0.8639 + }, + { + "start": 29864.1, + "end": 29865.76, + "probability": 0.7533 + }, + { + "start": 29890.96, + "end": 29896.1, + "probability": 0.459 + }, + { + "start": 29896.16, + "end": 29897.42, + "probability": 0.0176 + }, + { + "start": 29897.98, + "end": 29898.0, + "probability": 0.1348 + }, + { + "start": 29900.45, + "end": 29900.66, + "probability": 0.1334 + }, + { + "start": 29901.42, + "end": 29901.82, + "probability": 0.0314 + }, + { + "start": 29901.82, + "end": 29904.68, + "probability": 0.0362 + }, + { + "start": 29904.68, + "end": 29907.16, + "probability": 0.0169 + }, + { + "start": 29907.9, + "end": 29908.6, + "probability": 0.1168 + }, + { + "start": 29908.6, + "end": 29908.78, + "probability": 0.0294 + }, + { + "start": 29908.78, + "end": 29911.04, + "probability": 0.9968 + }, + { + "start": 29911.16, + "end": 29913.31, + "probability": 0.7309 + }, + { + "start": 29914.18, + "end": 29914.18, + "probability": 0.0432 + }, + { + "start": 29914.18, + "end": 29914.18, + "probability": 0.1123 + }, + { + "start": 29914.18, + "end": 29915.48, + "probability": 0.5383 + }, + { + "start": 29932.04, + "end": 29933.18, + "probability": 0.2543 + }, + { + "start": 29935.32, + "end": 29936.18, + "probability": 0.1284 + }, + { + "start": 29938.4, + "end": 29940.8, + "probability": 0.2527 + }, + { + "start": 29941.32, + "end": 29941.32, + "probability": 0.0865 + }, + { + "start": 29951.46, + "end": 29953.44, + "probability": 0.9839 + }, + { + "start": 29954.54, + "end": 29955.24, + "probability": 0.8679 + }, + { + "start": 29956.46, + "end": 29957.12, + "probability": 0.9299 + }, + { + "start": 29958.12, + "end": 29958.71, + "probability": 0.7122 + }, + { + "start": 29960.4, + "end": 29962.54, + "probability": 0.9367 + }, + { + "start": 29963.84, + "end": 29965.68, + "probability": 0.983 + }, + { + "start": 29967.24, + "end": 29971.2, + "probability": 0.9729 + }, + { + "start": 29971.74, + "end": 29972.4, + "probability": 0.5449 + }, + { + "start": 29972.92, + "end": 29973.92, + "probability": 0.8165 + }, + { + "start": 29975.12, + "end": 29979.96, + "probability": 0.8817 + }, + { + "start": 29980.04, + "end": 29982.68, + "probability": 0.8113 + }, + { + "start": 29983.24, + "end": 29986.51, + "probability": 0.9888 + }, + { + "start": 29987.08, + "end": 29990.48, + "probability": 0.8413 + }, + { + "start": 29991.34, + "end": 29993.16, + "probability": 0.9945 + }, + { + "start": 29994.22, + "end": 29996.02, + "probability": 0.7196 + }, + { + "start": 29997.04, + "end": 30000.16, + "probability": 0.9925 + }, + { + "start": 30001.38, + "end": 30005.86, + "probability": 0.9395 + }, + { + "start": 30006.7, + "end": 30008.1, + "probability": 0.9922 + }, + { + "start": 30008.76, + "end": 30010.86, + "probability": 0.9866 + }, + { + "start": 30011.38, + "end": 30014.26, + "probability": 0.9594 + }, + { + "start": 30015.28, + "end": 30017.03, + "probability": 0.8761 + }, + { + "start": 30019.02, + "end": 30025.22, + "probability": 0.9636 + }, + { + "start": 30026.38, + "end": 30029.38, + "probability": 0.9943 + }, + { + "start": 30031.32, + "end": 30035.42, + "probability": 0.5276 + }, + { + "start": 30036.26, + "end": 30037.34, + "probability": 0.7672 + }, + { + "start": 30039.08, + "end": 30044.2, + "probability": 0.6796 + }, + { + "start": 30044.88, + "end": 30045.66, + "probability": 0.7457 + }, + { + "start": 30047.14, + "end": 30048.04, + "probability": 0.6276 + }, + { + "start": 30049.4, + "end": 30050.36, + "probability": 0.9729 + }, + { + "start": 30050.94, + "end": 30054.98, + "probability": 0.9706 + }, + { + "start": 30055.08, + "end": 30058.54, + "probability": 0.7151 + }, + { + "start": 30059.56, + "end": 30060.52, + "probability": 0.977 + }, + { + "start": 30061.2, + "end": 30065.12, + "probability": 0.974 + }, + { + "start": 30065.34, + "end": 30067.04, + "probability": 0.9857 + }, + { + "start": 30067.9, + "end": 30073.1, + "probability": 0.9891 + }, + { + "start": 30074.04, + "end": 30075.06, + "probability": 0.3627 + }, + { + "start": 30076.02, + "end": 30078.46, + "probability": 0.9104 + }, + { + "start": 30079.4, + "end": 30080.96, + "probability": 0.9265 + }, + { + "start": 30082.72, + "end": 30085.92, + "probability": 0.68 + }, + { + "start": 30087.74, + "end": 30091.6, + "probability": 0.993 + }, + { + "start": 30092.12, + "end": 30098.54, + "probability": 0.9858 + }, + { + "start": 30099.24, + "end": 30100.46, + "probability": 0.998 + }, + { + "start": 30101.58, + "end": 30104.76, + "probability": 0.9958 + }, + { + "start": 30105.72, + "end": 30110.12, + "probability": 0.8234 + }, + { + "start": 30110.12, + "end": 30115.42, + "probability": 0.991 + }, + { + "start": 30115.86, + "end": 30117.08, + "probability": 0.9102 + }, + { + "start": 30117.6, + "end": 30119.58, + "probability": 0.6669 + }, + { + "start": 30121.36, + "end": 30124.68, + "probability": 0.5966 + }, + { + "start": 30125.46, + "end": 30126.78, + "probability": 0.8968 + }, + { + "start": 30127.0, + "end": 30127.74, + "probability": 0.5693 + }, + { + "start": 30127.8, + "end": 30128.98, + "probability": 0.5998 + }, + { + "start": 30129.48, + "end": 30130.94, + "probability": 0.7495 + }, + { + "start": 30131.08, + "end": 30133.12, + "probability": 0.6779 + }, + { + "start": 30133.82, + "end": 30137.18, + "probability": 0.9882 + }, + { + "start": 30137.26, + "end": 30139.64, + "probability": 0.9185 + }, + { + "start": 30141.64, + "end": 30143.44, + "probability": 0.5729 + }, + { + "start": 30143.66, + "end": 30148.18, + "probability": 0.7128 + }, + { + "start": 30148.9, + "end": 30149.94, + "probability": 0.6278 + }, + { + "start": 30150.48, + "end": 30151.76, + "probability": 0.9531 + }, + { + "start": 30152.3, + "end": 30153.24, + "probability": 0.7555 + }, + { + "start": 30154.1, + "end": 30154.26, + "probability": 0.592 + }, + { + "start": 30154.26, + "end": 30159.26, + "probability": 0.928 + }, + { + "start": 30160.12, + "end": 30161.28, + "probability": 0.8479 + }, + { + "start": 30161.72, + "end": 30161.82, + "probability": 0.7676 + }, + { + "start": 30164.52, + "end": 30168.08, + "probability": 0.993 + }, + { + "start": 30168.18, + "end": 30170.16, + "probability": 0.8762 + }, + { + "start": 30170.82, + "end": 30172.34, + "probability": 0.9902 + }, + { + "start": 30172.82, + "end": 30175.25, + "probability": 0.9766 + }, + { + "start": 30175.82, + "end": 30177.51, + "probability": 0.9451 + }, + { + "start": 30177.9, + "end": 30183.7, + "probability": 0.9878 + }, + { + "start": 30184.4, + "end": 30186.1, + "probability": 0.933 + }, + { + "start": 30186.88, + "end": 30191.08, + "probability": 0.9954 + }, + { + "start": 30191.82, + "end": 30192.86, + "probability": 0.998 + }, + { + "start": 30193.16, + "end": 30199.44, + "probability": 0.9619 + }, + { + "start": 30199.44, + "end": 30203.68, + "probability": 0.9491 + }, + { + "start": 30204.42, + "end": 30208.26, + "probability": 0.9029 + }, + { + "start": 30208.36, + "end": 30212.62, + "probability": 0.9828 + }, + { + "start": 30213.46, + "end": 30219.58, + "probability": 0.9517 + }, + { + "start": 30220.3, + "end": 30223.18, + "probability": 0.923 + }, + { + "start": 30223.3, + "end": 30224.16, + "probability": 0.7885 + }, + { + "start": 30224.18, + "end": 30224.52, + "probability": 0.6426 + }, + { + "start": 30224.64, + "end": 30225.08, + "probability": 0.7369 + }, + { + "start": 30225.66, + "end": 30234.6, + "probability": 0.9577 + }, + { + "start": 30235.44, + "end": 30240.1, + "probability": 0.9585 + }, + { + "start": 30240.22, + "end": 30242.16, + "probability": 0.7749 + }, + { + "start": 30243.18, + "end": 30246.98, + "probability": 0.8196 + }, + { + "start": 30247.76, + "end": 30248.28, + "probability": 0.8012 + }, + { + "start": 30266.9, + "end": 30267.62, + "probability": 0.5477 + }, + { + "start": 30267.72, + "end": 30268.84, + "probability": 0.8034 + }, + { + "start": 30268.96, + "end": 30270.2, + "probability": 0.4745 + }, + { + "start": 30274.66, + "end": 30275.8, + "probability": 0.6694 + }, + { + "start": 30277.2, + "end": 30278.87, + "probability": 0.8232 + }, + { + "start": 30280.1, + "end": 30281.0, + "probability": 0.7455 + }, + { + "start": 30282.9, + "end": 30283.94, + "probability": 0.9893 + }, + { + "start": 30286.38, + "end": 30287.74, + "probability": 0.7135 + }, + { + "start": 30288.78, + "end": 30290.56, + "probability": 0.8521 + }, + { + "start": 30291.46, + "end": 30293.25, + "probability": 0.7773 + }, + { + "start": 30294.92, + "end": 30298.0, + "probability": 0.8511 + }, + { + "start": 30300.18, + "end": 30302.9, + "probability": 0.8673 + }, + { + "start": 30303.02, + "end": 30303.44, + "probability": 0.6708 + }, + { + "start": 30303.6, + "end": 30305.86, + "probability": 0.8986 + }, + { + "start": 30306.06, + "end": 30306.72, + "probability": 0.974 + }, + { + "start": 30307.34, + "end": 30308.92, + "probability": 0.8872 + }, + { + "start": 30309.48, + "end": 30310.76, + "probability": 0.9783 + }, + { + "start": 30311.8, + "end": 30314.28, + "probability": 0.9847 + }, + { + "start": 30314.94, + "end": 30317.58, + "probability": 0.9639 + }, + { + "start": 30319.02, + "end": 30320.7, + "probability": 0.8292 + }, + { + "start": 30321.8, + "end": 30323.97, + "probability": 0.9985 + }, + { + "start": 30324.7, + "end": 30326.25, + "probability": 0.999 + }, + { + "start": 30327.72, + "end": 30329.44, + "probability": 0.9983 + }, + { + "start": 30330.44, + "end": 30331.64, + "probability": 0.78 + }, + { + "start": 30332.34, + "end": 30334.34, + "probability": 0.7255 + }, + { + "start": 30334.52, + "end": 30335.64, + "probability": 0.6759 + }, + { + "start": 30336.54, + "end": 30338.92, + "probability": 0.9941 + }, + { + "start": 30339.78, + "end": 30341.24, + "probability": 0.9944 + }, + { + "start": 30342.76, + "end": 30344.46, + "probability": 0.8628 + }, + { + "start": 30345.28, + "end": 30348.24, + "probability": 0.965 + }, + { + "start": 30349.18, + "end": 30351.98, + "probability": 0.9697 + }, + { + "start": 30352.48, + "end": 30354.86, + "probability": 0.663 + }, + { + "start": 30354.98, + "end": 30358.86, + "probability": 0.8846 + }, + { + "start": 30359.44, + "end": 30363.96, + "probability": 0.9189 + }, + { + "start": 30364.38, + "end": 30365.3, + "probability": 0.9427 + }, + { + "start": 30365.88, + "end": 30370.12, + "probability": 0.9805 + }, + { + "start": 30370.86, + "end": 30374.42, + "probability": 0.9041 + }, + { + "start": 30375.4, + "end": 30379.53, + "probability": 0.9696 + }, + { + "start": 30380.76, + "end": 30381.67, + "probability": 0.9873 + }, + { + "start": 30382.66, + "end": 30382.84, + "probability": 0.2256 + }, + { + "start": 30383.0, + "end": 30386.04, + "probability": 0.973 + }, + { + "start": 30386.7, + "end": 30389.74, + "probability": 0.9817 + }, + { + "start": 30390.08, + "end": 30391.46, + "probability": 0.966 + }, + { + "start": 30392.2, + "end": 30393.24, + "probability": 0.8792 + }, + { + "start": 30394.28, + "end": 30395.26, + "probability": 0.9138 + }, + { + "start": 30396.34, + "end": 30398.7, + "probability": 0.7349 + }, + { + "start": 30399.78, + "end": 30404.8, + "probability": 0.9931 + }, + { + "start": 30405.7, + "end": 30406.73, + "probability": 0.9692 + }, + { + "start": 30407.26, + "end": 30410.36, + "probability": 0.9941 + }, + { + "start": 30411.48, + "end": 30414.84, + "probability": 0.7847 + }, + { + "start": 30416.28, + "end": 30419.96, + "probability": 0.9957 + }, + { + "start": 30421.04, + "end": 30426.94, + "probability": 0.9799 + }, + { + "start": 30427.44, + "end": 30433.76, + "probability": 0.949 + }, + { + "start": 30433.88, + "end": 30435.05, + "probability": 0.9277 + }, + { + "start": 30435.52, + "end": 30435.92, + "probability": 0.255 + }, + { + "start": 30436.5, + "end": 30438.18, + "probability": 0.9932 + }, + { + "start": 30439.88, + "end": 30442.59, + "probability": 0.9288 + }, + { + "start": 30444.84, + "end": 30445.02, + "probability": 0.0571 + }, + { + "start": 30445.02, + "end": 30448.62, + "probability": 0.9573 + }, + { + "start": 30448.62, + "end": 30456.4, + "probability": 0.9767 + }, + { + "start": 30457.52, + "end": 30458.7, + "probability": 0.7887 + }, + { + "start": 30459.3, + "end": 30460.22, + "probability": 0.4568 + }, + { + "start": 30460.62, + "end": 30463.58, + "probability": 0.9803 + }, + { + "start": 30464.32, + "end": 30468.04, + "probability": 0.9816 + }, + { + "start": 30468.28, + "end": 30473.54, + "probability": 0.8005 + }, + { + "start": 30474.24, + "end": 30480.74, + "probability": 0.9697 + }, + { + "start": 30482.38, + "end": 30485.48, + "probability": 0.9959 + }, + { + "start": 30485.9, + "end": 30489.16, + "probability": 0.8965 + }, + { + "start": 30490.22, + "end": 30495.2, + "probability": 0.9668 + }, + { + "start": 30495.6, + "end": 30496.52, + "probability": 0.4894 + }, + { + "start": 30496.56, + "end": 30497.2, + "probability": 0.4189 + }, + { + "start": 30497.3, + "end": 30498.44, + "probability": 0.8861 + }, + { + "start": 30499.26, + "end": 30503.36, + "probability": 0.8656 + }, + { + "start": 30504.82, + "end": 30507.08, + "probability": 0.8619 + }, + { + "start": 30507.64, + "end": 30510.78, + "probability": 0.8945 + }, + { + "start": 30511.86, + "end": 30514.54, + "probability": 0.9868 + }, + { + "start": 30515.84, + "end": 30516.82, + "probability": 0.7504 + }, + { + "start": 30517.88, + "end": 30518.64, + "probability": 0.6072 + }, + { + "start": 30518.7, + "end": 30519.34, + "probability": 0.6626 + }, + { + "start": 30519.34, + "end": 30520.02, + "probability": 0.7623 + }, + { + "start": 30520.2, + "end": 30524.72, + "probability": 0.762 + }, + { + "start": 30524.82, + "end": 30528.78, + "probability": 0.9946 + }, + { + "start": 30529.08, + "end": 30532.9, + "probability": 0.8918 + }, + { + "start": 30533.28, + "end": 30533.56, + "probability": 0.8671 + }, + { + "start": 30534.42, + "end": 30534.94, + "probability": 0.2948 + }, + { + "start": 30535.6, + "end": 30540.3, + "probability": 0.7276 + }, + { + "start": 30541.02, + "end": 30543.84, + "probability": 0.9964 + }, + { + "start": 30543.94, + "end": 30545.14, + "probability": 0.9922 + }, + { + "start": 30552.9, + "end": 30553.32, + "probability": 0.2467 + }, + { + "start": 30553.32, + "end": 30553.94, + "probability": 0.4423 + }, + { + "start": 30554.76, + "end": 30556.26, + "probability": 0.9176 + }, + { + "start": 30557.2, + "end": 30560.82, + "probability": 0.9128 + }, + { + "start": 30561.14, + "end": 30563.12, + "probability": 0.9795 + }, + { + "start": 30563.78, + "end": 30565.82, + "probability": 0.9492 + }, + { + "start": 30566.62, + "end": 30567.58, + "probability": 0.7149 + }, + { + "start": 30568.3, + "end": 30575.22, + "probability": 0.9971 + }, + { + "start": 30576.3, + "end": 30578.84, + "probability": 0.9966 + }, + { + "start": 30579.06, + "end": 30580.82, + "probability": 0.849 + }, + { + "start": 30581.48, + "end": 30585.12, + "probability": 0.728 + }, + { + "start": 30585.2, + "end": 30586.12, + "probability": 0.851 + }, + { + "start": 30586.6, + "end": 30591.82, + "probability": 0.9963 + }, + { + "start": 30592.38, + "end": 30594.82, + "probability": 0.97 + }, + { + "start": 30595.16, + "end": 30600.0, + "probability": 0.8911 + }, + { + "start": 30600.96, + "end": 30603.88, + "probability": 0.7965 + }, + { + "start": 30604.68, + "end": 30608.06, + "probability": 0.9961 + }, + { + "start": 30608.62, + "end": 30609.58, + "probability": 0.8993 + }, + { + "start": 30609.66, + "end": 30610.82, + "probability": 0.3774 + }, + { + "start": 30611.44, + "end": 30617.6, + "probability": 0.9861 + }, + { + "start": 30617.6, + "end": 30622.08, + "probability": 0.9985 + }, + { + "start": 30622.2, + "end": 30623.38, + "probability": 0.8982 + }, + { + "start": 30623.5, + "end": 30623.74, + "probability": 0.6538 + }, + { + "start": 30624.86, + "end": 30627.04, + "probability": 0.9285 + }, + { + "start": 30627.78, + "end": 30630.0, + "probability": 0.6792 + }, + { + "start": 30631.26, + "end": 30631.88, + "probability": 0.6901 + }, + { + "start": 30632.04, + "end": 30635.2, + "probability": 0.8891 + }, + { + "start": 30636.0, + "end": 30636.9, + "probability": 0.8957 + }, + { + "start": 30637.5, + "end": 30639.22, + "probability": 0.8285 + }, + { + "start": 30639.92, + "end": 30642.6, + "probability": 0.9766 + }, + { + "start": 30643.38, + "end": 30645.16, + "probability": 0.9684 + }, + { + "start": 30646.34, + "end": 30646.8, + "probability": 0.7151 + }, + { + "start": 30650.86, + "end": 30651.36, + "probability": 0.1405 + }, + { + "start": 30668.6, + "end": 30668.78, + "probability": 0.4753 + }, + { + "start": 30668.78, + "end": 30670.88, + "probability": 0.5367 + }, + { + "start": 30671.0, + "end": 30671.12, + "probability": 0.19 + }, + { + "start": 30671.22, + "end": 30675.58, + "probability": 0.8428 + }, + { + "start": 30678.26, + "end": 30681.36, + "probability": 0.6193 + }, + { + "start": 30681.96, + "end": 30683.16, + "probability": 0.7613 + }, + { + "start": 30683.24, + "end": 30685.85, + "probability": 0.735 + }, + { + "start": 30686.24, + "end": 30687.46, + "probability": 0.9642 + }, + { + "start": 30688.24, + "end": 30692.66, + "probability": 0.7816 + }, + { + "start": 30693.2, + "end": 30696.7, + "probability": 0.826 + }, + { + "start": 30697.6, + "end": 30700.36, + "probability": 0.5632 + }, + { + "start": 30700.88, + "end": 30703.72, + "probability": 0.9167 + }, + { + "start": 30704.46, + "end": 30704.74, + "probability": 0.4113 + }, + { + "start": 30705.82, + "end": 30708.32, + "probability": 0.264 + }, + { + "start": 30708.36, + "end": 30711.08, + "probability": 0.6793 + }, + { + "start": 30711.58, + "end": 30713.3, + "probability": 0.2515 + }, + { + "start": 30714.68, + "end": 30719.0, + "probability": 0.7017 + }, + { + "start": 30719.34, + "end": 30723.56, + "probability": 0.0405 + }, + { + "start": 30723.56, + "end": 30723.56, + "probability": 0.3378 + }, + { + "start": 30723.56, + "end": 30723.56, + "probability": 0.2149 + }, + { + "start": 30723.56, + "end": 30727.62, + "probability": 0.8601 + }, + { + "start": 30728.21, + "end": 30729.88, + "probability": 0.5336 + }, + { + "start": 30730.56, + "end": 30735.76, + "probability": 0.8174 + }, + { + "start": 30736.04, + "end": 30737.12, + "probability": 0.6211 + }, + { + "start": 30737.6, + "end": 30740.82, + "probability": 0.6898 + }, + { + "start": 30743.3, + "end": 30744.76, + "probability": 0.661 + }, + { + "start": 30745.28, + "end": 30745.98, + "probability": 0.6673 + }, + { + "start": 30746.52, + "end": 30748.14, + "probability": 0.8929 + }, + { + "start": 30748.92, + "end": 30751.88, + "probability": 0.8845 + }, + { + "start": 30752.93, + "end": 30755.64, + "probability": 0.9888 + }, + { + "start": 30755.94, + "end": 30757.14, + "probability": 0.8864 + }, + { + "start": 30757.74, + "end": 30762.2, + "probability": 0.6327 + }, + { + "start": 30762.86, + "end": 30764.52, + "probability": 0.7381 + }, + { + "start": 30764.96, + "end": 30767.18, + "probability": 0.4344 + }, + { + "start": 30767.28, + "end": 30768.36, + "probability": 0.7203 + }, + { + "start": 30768.64, + "end": 30769.44, + "probability": 0.9092 + }, + { + "start": 30769.66, + "end": 30770.88, + "probability": 0.9453 + }, + { + "start": 30771.12, + "end": 30772.12, + "probability": 0.776 + }, + { + "start": 30774.92, + "end": 30783.9, + "probability": 0.9635 + }, + { + "start": 30783.9, + "end": 30787.96, + "probability": 0.9902 + }, + { + "start": 30789.04, + "end": 30793.04, + "probability": 0.9844 + }, + { + "start": 30793.16, + "end": 30793.34, + "probability": 0.6208 + }, + { + "start": 30793.6, + "end": 30799.64, + "probability": 0.9834 + }, + { + "start": 30802.28, + "end": 30805.52, + "probability": 0.8596 + }, + { + "start": 30806.74, + "end": 30807.06, + "probability": 0.3316 + }, + { + "start": 30807.24, + "end": 30810.21, + "probability": 0.7739 + }, + { + "start": 30811.74, + "end": 30819.12, + "probability": 0.91 + }, + { + "start": 30820.3, + "end": 30827.23, + "probability": 0.9954 + }, + { + "start": 30828.62, + "end": 30833.32, + "probability": 0.9979 + }, + { + "start": 30833.72, + "end": 30834.22, + "probability": 0.8937 + }, + { + "start": 30835.66, + "end": 30841.48, + "probability": 0.9792 + }, + { + "start": 30842.64, + "end": 30843.14, + "probability": 0.8979 + }, + { + "start": 30843.18, + "end": 30844.52, + "probability": 0.9893 + }, + { + "start": 30844.92, + "end": 30845.73, + "probability": 0.9552 + }, + { + "start": 30845.96, + "end": 30846.76, + "probability": 0.5881 + }, + { + "start": 30847.38, + "end": 30847.66, + "probability": 0.8272 + }, + { + "start": 30847.74, + "end": 30853.78, + "probability": 0.9583 + }, + { + "start": 30854.28, + "end": 30854.36, + "probability": 0.6143 + }, + { + "start": 30855.36, + "end": 30860.82, + "probability": 0.9261 + }, + { + "start": 30861.34, + "end": 30863.2, + "probability": 0.9824 + }, + { + "start": 30864.34, + "end": 30869.2, + "probability": 0.9946 + }, + { + "start": 30870.0, + "end": 30871.06, + "probability": 0.5757 + }, + { + "start": 30871.1, + "end": 30871.46, + "probability": 0.6246 + }, + { + "start": 30871.52, + "end": 30875.38, + "probability": 0.9963 + }, + { + "start": 30878.4, + "end": 30879.36, + "probability": 0.5501 + }, + { + "start": 30879.5, + "end": 30881.06, + "probability": 0.9888 + }, + { + "start": 30881.38, + "end": 30887.36, + "probability": 0.9748 + }, + { + "start": 30888.44, + "end": 30890.6, + "probability": 0.4675 + }, + { + "start": 30891.12, + "end": 30895.72, + "probability": 0.8455 + }, + { + "start": 30897.36, + "end": 30899.76, + "probability": 0.8337 + }, + { + "start": 30899.86, + "end": 30901.34, + "probability": 0.8624 + }, + { + "start": 30901.46, + "end": 30902.64, + "probability": 0.975 + }, + { + "start": 30902.72, + "end": 30903.16, + "probability": 0.8627 + }, + { + "start": 30904.02, + "end": 30912.08, + "probability": 0.9925 + }, + { + "start": 30913.1, + "end": 30913.74, + "probability": 0.8558 + }, + { + "start": 30913.9, + "end": 30914.8, + "probability": 0.7019 + }, + { + "start": 30914.92, + "end": 30920.98, + "probability": 0.9883 + }, + { + "start": 30921.92, + "end": 30926.16, + "probability": 0.9945 + }, + { + "start": 30926.2, + "end": 30928.27, + "probability": 0.9708 + }, + { + "start": 30928.42, + "end": 30934.48, + "probability": 0.9863 + }, + { + "start": 30936.22, + "end": 30939.96, + "probability": 0.9311 + }, + { + "start": 30940.78, + "end": 30942.74, + "probability": 0.6341 + }, + { + "start": 30942.82, + "end": 30944.34, + "probability": 0.9612 + }, + { + "start": 30944.42, + "end": 30946.04, + "probability": 0.9901 + }, + { + "start": 30946.52, + "end": 30949.02, + "probability": 0.9958 + }, + { + "start": 30950.26, + "end": 30951.64, + "probability": 0.6986 + }, + { + "start": 30952.5, + "end": 30957.26, + "probability": 0.9639 + }, + { + "start": 30957.92, + "end": 30959.04, + "probability": 0.9774 + }, + { + "start": 30959.64, + "end": 30963.74, + "probability": 0.9917 + }, + { + "start": 30964.26, + "end": 30965.1, + "probability": 0.8323 + }, + { + "start": 30966.16, + "end": 30970.62, + "probability": 0.9929 + }, + { + "start": 30971.36, + "end": 30975.0, + "probability": 0.9812 + }, + { + "start": 30975.14, + "end": 30976.26, + "probability": 0.7352 + }, + { + "start": 30976.5, + "end": 30979.53, + "probability": 0.7295 + }, + { + "start": 30981.32, + "end": 30983.91, + "probability": 0.981 + }, + { + "start": 30985.06, + "end": 30986.56, + "probability": 0.9612 + }, + { + "start": 30987.46, + "end": 30987.98, + "probability": 0.5711 + }, + { + "start": 30988.32, + "end": 30989.18, + "probability": 0.5845 + }, + { + "start": 30989.26, + "end": 30990.8, + "probability": 0.9363 + }, + { + "start": 30990.98, + "end": 30991.74, + "probability": 0.5457 + }, + { + "start": 30991.84, + "end": 30993.54, + "probability": 0.9261 + }, + { + "start": 30993.66, + "end": 30994.98, + "probability": 0.9779 + }, + { + "start": 30995.78, + "end": 30999.16, + "probability": 0.9797 + }, + { + "start": 30999.74, + "end": 31000.37, + "probability": 0.7159 + }, + { + "start": 31000.72, + "end": 31004.33, + "probability": 0.7164 + }, + { + "start": 31004.62, + "end": 31007.88, + "probability": 0.9894 + }, + { + "start": 31008.18, + "end": 31009.58, + "probability": 0.9989 + }, + { + "start": 31010.34, + "end": 31014.44, + "probability": 0.9608 + }, + { + "start": 31014.56, + "end": 31015.92, + "probability": 0.6968 + }, + { + "start": 31016.58, + "end": 31017.68, + "probability": 0.9727 + }, + { + "start": 31018.02, + "end": 31018.66, + "probability": 0.5299 + }, + { + "start": 31018.8, + "end": 31020.46, + "probability": 0.8573 + }, + { + "start": 31020.8, + "end": 31022.28, + "probability": 0.9501 + }, + { + "start": 31023.3, + "end": 31027.0, + "probability": 0.9061 + }, + { + "start": 31027.42, + "end": 31030.22, + "probability": 0.968 + }, + { + "start": 31056.96, + "end": 31057.44, + "probability": 0.4045 + }, + { + "start": 31057.46, + "end": 31058.36, + "probability": 0.7054 + }, + { + "start": 31058.56, + "end": 31059.2, + "probability": 0.9049 + }, + { + "start": 31059.22, + "end": 31060.52, + "probability": 0.775 + }, + { + "start": 31060.66, + "end": 31066.68, + "probability": 0.9883 + }, + { + "start": 31068.62, + "end": 31072.66, + "probability": 0.9956 + }, + { + "start": 31073.34, + "end": 31079.94, + "probability": 0.9783 + }, + { + "start": 31080.7, + "end": 31083.4, + "probability": 0.9937 + }, + { + "start": 31083.4, + "end": 31086.28, + "probability": 0.9982 + }, + { + "start": 31087.52, + "end": 31087.94, + "probability": 0.7654 + }, + { + "start": 31088.06, + "end": 31090.18, + "probability": 0.9743 + }, + { + "start": 31090.36, + "end": 31091.78, + "probability": 0.9098 + }, + { + "start": 31092.84, + "end": 31096.48, + "probability": 0.98 + }, + { + "start": 31097.18, + "end": 31101.28, + "probability": 0.8979 + }, + { + "start": 31101.9, + "end": 31104.4, + "probability": 0.9922 + }, + { + "start": 31104.7, + "end": 31109.26, + "probability": 0.9563 + }, + { + "start": 31110.28, + "end": 31115.14, + "probability": 0.9974 + }, + { + "start": 31115.14, + "end": 31120.72, + "probability": 0.983 + }, + { + "start": 31121.42, + "end": 31122.64, + "probability": 0.7939 + }, + { + "start": 31122.78, + "end": 31126.46, + "probability": 0.9971 + }, + { + "start": 31126.82, + "end": 31132.74, + "probability": 0.9851 + }, + { + "start": 31133.24, + "end": 31136.82, + "probability": 0.9959 + }, + { + "start": 31136.9, + "end": 31141.16, + "probability": 0.9648 + }, + { + "start": 31141.26, + "end": 31141.68, + "probability": 0.8703 + }, + { + "start": 31141.8, + "end": 31147.22, + "probability": 0.8681 + }, + { + "start": 31147.34, + "end": 31150.84, + "probability": 0.99 + }, + { + "start": 31151.42, + "end": 31156.22, + "probability": 0.9783 + }, + { + "start": 31156.98, + "end": 31158.52, + "probability": 0.7419 + }, + { + "start": 31158.6, + "end": 31159.57, + "probability": 0.4547 + }, + { + "start": 31159.88, + "end": 31160.88, + "probability": 0.5688 + }, + { + "start": 31161.02, + "end": 31161.52, + "probability": 0.7546 + }, + { + "start": 31161.94, + "end": 31162.78, + "probability": 0.9253 + }, + { + "start": 31163.42, + "end": 31166.6, + "probability": 0.647 + }, + { + "start": 31167.12, + "end": 31167.98, + "probability": 0.9781 + }, + { + "start": 31168.16, + "end": 31169.06, + "probability": 0.5542 + }, + { + "start": 31169.62, + "end": 31171.75, + "probability": 0.8296 + }, + { + "start": 31173.18, + "end": 31173.74, + "probability": 0.6489 + }, + { + "start": 31173.8, + "end": 31176.56, + "probability": 0.9951 + }, + { + "start": 31176.56, + "end": 31180.3, + "probability": 0.7046 + }, + { + "start": 31181.22, + "end": 31183.48, + "probability": 0.9825 + }, + { + "start": 31183.64, + "end": 31186.08, + "probability": 0.9106 + }, + { + "start": 31187.42, + "end": 31191.94, + "probability": 0.8913 + }, + { + "start": 31191.94, + "end": 31195.38, + "probability": 0.9601 + }, + { + "start": 31195.62, + "end": 31200.34, + "probability": 0.9884 + }, + { + "start": 31200.34, + "end": 31205.64, + "probability": 0.9707 + }, + { + "start": 31206.4, + "end": 31208.56, + "probability": 0.986 + }, + { + "start": 31209.36, + "end": 31211.1, + "probability": 0.9671 + }, + { + "start": 31211.64, + "end": 31213.42, + "probability": 0.9525 + }, + { + "start": 31214.68, + "end": 31217.24, + "probability": 0.8057 + }, + { + "start": 31217.28, + "end": 31219.34, + "probability": 0.9972 + }, + { + "start": 31220.52, + "end": 31227.88, + "probability": 0.9907 + }, + { + "start": 31228.64, + "end": 31230.2, + "probability": 0.801 + }, + { + "start": 31230.56, + "end": 31233.82, + "probability": 0.9937 + }, + { + "start": 31234.1, + "end": 31237.15, + "probability": 0.9805 + }, + { + "start": 31237.68, + "end": 31241.52, + "probability": 0.9847 + }, + { + "start": 31242.24, + "end": 31243.94, + "probability": 0.9281 + }, + { + "start": 31244.92, + "end": 31251.36, + "probability": 0.9979 + }, + { + "start": 31251.44, + "end": 31252.74, + "probability": 0.8394 + }, + { + "start": 31253.36, + "end": 31257.12, + "probability": 0.994 + }, + { + "start": 31257.98, + "end": 31260.56, + "probability": 0.9778 + }, + { + "start": 31260.82, + "end": 31262.44, + "probability": 0.9736 + }, + { + "start": 31263.06, + "end": 31268.58, + "probability": 0.9548 + }, + { + "start": 31269.16, + "end": 31270.92, + "probability": 0.8434 + }, + { + "start": 31271.4, + "end": 31275.88, + "probability": 0.9934 + }, + { + "start": 31276.0, + "end": 31277.1, + "probability": 0.7403 + }, + { + "start": 31277.6, + "end": 31278.56, + "probability": 0.8622 + }, + { + "start": 31278.92, + "end": 31282.16, + "probability": 0.9698 + }, + { + "start": 31282.28, + "end": 31283.08, + "probability": 0.7351 + }, + { + "start": 31283.66, + "end": 31285.75, + "probability": 0.9834 + }, + { + "start": 31286.12, + "end": 31287.72, + "probability": 0.9034 + }, + { + "start": 31287.74, + "end": 31292.22, + "probability": 0.9666 + }, + { + "start": 31292.88, + "end": 31295.4, + "probability": 0.0135 + }, + { + "start": 31296.18, + "end": 31297.92, + "probability": 0.6523 + }, + { + "start": 31298.08, + "end": 31299.32, + "probability": 0.8634 + }, + { + "start": 31299.42, + "end": 31299.44, + "probability": 0.5522 + }, + { + "start": 31299.44, + "end": 31302.4, + "probability": 0.8856 + }, + { + "start": 31302.4, + "end": 31306.92, + "probability": 0.9919 + }, + { + "start": 31307.06, + "end": 31309.1, + "probability": 0.864 + }, + { + "start": 31309.48, + "end": 31309.8, + "probability": 0.6759 + }, + { + "start": 31309.84, + "end": 31310.86, + "probability": 0.8873 + }, + { + "start": 31310.92, + "end": 31315.0, + "probability": 0.9858 + }, + { + "start": 31315.66, + "end": 31317.02, + "probability": 0.9352 + }, + { + "start": 31317.22, + "end": 31317.9, + "probability": 0.6929 + }, + { + "start": 31318.34, + "end": 31319.78, + "probability": 0.8527 + }, + { + "start": 31320.56, + "end": 31321.96, + "probability": 0.9878 + }, + { + "start": 31322.14, + "end": 31325.06, + "probability": 0.9634 + }, + { + "start": 31325.82, + "end": 31330.24, + "probability": 0.9291 + }, + { + "start": 31330.24, + "end": 31334.6, + "probability": 0.9502 + }, + { + "start": 31335.36, + "end": 31337.1, + "probability": 0.8775 + }, + { + "start": 31337.18, + "end": 31337.7, + "probability": 0.5554 + }, + { + "start": 31337.78, + "end": 31338.32, + "probability": 0.5361 + }, + { + "start": 31338.34, + "end": 31340.4, + "probability": 0.9122 + }, + { + "start": 31340.46, + "end": 31343.73, + "probability": 0.9821 + }, + { + "start": 31344.62, + "end": 31345.98, + "probability": 0.939 + }, + { + "start": 31347.17, + "end": 31351.18, + "probability": 0.9977 + }, + { + "start": 31351.28, + "end": 31352.96, + "probability": 0.7487 + }, + { + "start": 31353.78, + "end": 31355.84, + "probability": 0.9619 + }, + { + "start": 31356.12, + "end": 31356.91, + "probability": 0.7764 + }, + { + "start": 31357.58, + "end": 31360.74, + "probability": 0.972 + }, + { + "start": 31361.66, + "end": 31364.38, + "probability": 0.9568 + }, + { + "start": 31364.48, + "end": 31366.86, + "probability": 0.7463 + }, + { + "start": 31367.34, + "end": 31368.6, + "probability": 0.6717 + }, + { + "start": 31369.28, + "end": 31370.94, + "probability": 0.8867 + }, + { + "start": 31371.24, + "end": 31376.52, + "probability": 0.9538 + }, + { + "start": 31376.94, + "end": 31381.68, + "probability": 0.9707 + }, + { + "start": 31382.58, + "end": 31385.78, + "probability": 0.9936 + }, + { + "start": 31386.44, + "end": 31388.62, + "probability": 0.918 + }, + { + "start": 31389.2, + "end": 31389.68, + "probability": 0.754 + }, + { + "start": 31389.74, + "end": 31390.4, + "probability": 0.8264 + }, + { + "start": 31390.56, + "end": 31391.3, + "probability": 0.9325 + }, + { + "start": 31391.48, + "end": 31395.54, + "probability": 0.9706 + }, + { + "start": 31395.54, + "end": 31398.6, + "probability": 0.9689 + }, + { + "start": 31398.72, + "end": 31402.9, + "probability": 0.9996 + }, + { + "start": 31403.54, + "end": 31405.5, + "probability": 0.8416 + }, + { + "start": 31405.86, + "end": 31406.52, + "probability": 0.8566 + }, + { + "start": 31407.02, + "end": 31407.98, + "probability": 0.9894 + }, + { + "start": 31408.12, + "end": 31411.64, + "probability": 0.9822 + }, + { + "start": 31411.66, + "end": 31413.7, + "probability": 0.9735 + }, + { + "start": 31415.14, + "end": 31416.74, + "probability": 0.6756 + }, + { + "start": 31417.88, + "end": 31421.56, + "probability": 0.9734 + }, + { + "start": 31422.46, + "end": 31426.4, + "probability": 0.9941 + }, + { + "start": 31443.0, + "end": 31443.06, + "probability": 0.3699 + }, + { + "start": 31443.06, + "end": 31444.54, + "probability": 0.7403 + }, + { + "start": 31445.94, + "end": 31448.88, + "probability": 0.8378 + }, + { + "start": 31449.94, + "end": 31450.64, + "probability": 0.7519 + }, + { + "start": 31452.0, + "end": 31454.34, + "probability": 0.3711 + }, + { + "start": 31456.16, + "end": 31457.86, + "probability": 0.8792 + }, + { + "start": 31458.56, + "end": 31463.4, + "probability": 0.9683 + }, + { + "start": 31464.2, + "end": 31467.54, + "probability": 0.9932 + }, + { + "start": 31469.44, + "end": 31471.74, + "probability": 0.9775 + }, + { + "start": 31472.58, + "end": 31477.08, + "probability": 0.9275 + }, + { + "start": 31478.16, + "end": 31483.0, + "probability": 0.9372 + }, + { + "start": 31483.06, + "end": 31484.58, + "probability": 0.6637 + }, + { + "start": 31485.42, + "end": 31488.12, + "probability": 0.9644 + }, + { + "start": 31489.44, + "end": 31493.86, + "probability": 0.9921 + }, + { + "start": 31494.6, + "end": 31499.46, + "probability": 0.9957 + }, + { + "start": 31499.56, + "end": 31504.78, + "probability": 0.9017 + }, + { + "start": 31505.9, + "end": 31507.96, + "probability": 0.8046 + }, + { + "start": 31508.22, + "end": 31510.66, + "probability": 0.9807 + }, + { + "start": 31511.8, + "end": 31515.84, + "probability": 0.9612 + }, + { + "start": 31516.64, + "end": 31517.24, + "probability": 0.7103 + }, + { + "start": 31517.62, + "end": 31521.06, + "probability": 0.9883 + }, + { + "start": 31521.88, + "end": 31524.98, + "probability": 0.9728 + }, + { + "start": 31526.12, + "end": 31530.18, + "probability": 0.9952 + }, + { + "start": 31530.92, + "end": 31535.42, + "probability": 0.9965 + }, + { + "start": 31536.52, + "end": 31539.6, + "probability": 0.9866 + }, + { + "start": 31541.3, + "end": 31545.6, + "probability": 0.9947 + }, + { + "start": 31545.72, + "end": 31549.18, + "probability": 0.9817 + }, + { + "start": 31550.86, + "end": 31554.2, + "probability": 0.9973 + }, + { + "start": 31554.28, + "end": 31555.86, + "probability": 0.8694 + }, + { + "start": 31556.5, + "end": 31559.26, + "probability": 0.9731 + }, + { + "start": 31560.22, + "end": 31562.76, + "probability": 0.9812 + }, + { + "start": 31562.76, + "end": 31567.56, + "probability": 0.8887 + }, + { + "start": 31567.6, + "end": 31569.86, + "probability": 0.8769 + }, + { + "start": 31569.86, + "end": 31572.14, + "probability": 0.9982 + }, + { + "start": 31573.9, + "end": 31574.78, + "probability": 0.7356 + }, + { + "start": 31574.8, + "end": 31578.05, + "probability": 0.8507 + }, + { + "start": 31578.66, + "end": 31579.22, + "probability": 0.7077 + }, + { + "start": 31580.04, + "end": 31582.02, + "probability": 0.6735 + }, + { + "start": 31582.68, + "end": 31585.92, + "probability": 0.9904 + }, + { + "start": 31586.82, + "end": 31590.62, + "probability": 0.9828 + }, + { + "start": 31591.32, + "end": 31595.64, + "probability": 0.9468 + }, + { + "start": 31595.64, + "end": 31600.08, + "probability": 0.8728 + }, + { + "start": 31601.26, + "end": 31603.52, + "probability": 0.9943 + }, + { + "start": 31603.52, + "end": 31606.54, + "probability": 0.9913 + }, + { + "start": 31607.2, + "end": 31609.52, + "probability": 0.981 + }, + { + "start": 31610.14, + "end": 31611.42, + "probability": 0.574 + }, + { + "start": 31611.46, + "end": 31613.76, + "probability": 0.688 + }, + { + "start": 31614.5, + "end": 31615.8, + "probability": 0.8234 + }, + { + "start": 31615.88, + "end": 31617.18, + "probability": 0.8403 + }, + { + "start": 31617.4, + "end": 31618.24, + "probability": 0.8257 + }, + { + "start": 31619.48, + "end": 31619.8, + "probability": 0.6192 + }, + { + "start": 31622.32, + "end": 31624.1, + "probability": 0.8401 + }, + { + "start": 31624.18, + "end": 31631.06, + "probability": 0.3938 + }, + { + "start": 31631.78, + "end": 31633.08, + "probability": 0.6451 + }, + { + "start": 31633.14, + "end": 31635.3, + "probability": 0.8787 + }, + { + "start": 31636.34, + "end": 31638.14, + "probability": 0.9292 + }, + { + "start": 31638.94, + "end": 31639.06, + "probability": 0.227 + }, + { + "start": 31639.06, + "end": 31641.69, + "probability": 0.7272 + }, + { + "start": 31642.54, + "end": 31643.04, + "probability": 0.4226 + }, + { + "start": 31643.06, + "end": 31643.28, + "probability": 0.6176 + }, + { + "start": 31643.36, + "end": 31644.7, + "probability": 0.8813 + }, + { + "start": 31644.92, + "end": 31645.64, + "probability": 0.8131 + }, + { + "start": 31645.72, + "end": 31651.92, + "probability": 0.5987 + }, + { + "start": 31651.92, + "end": 31654.08, + "probability": 0.6441 + }, + { + "start": 31654.76, + "end": 31655.04, + "probability": 0.791 + }, + { + "start": 31679.88, + "end": 31679.88, + "probability": 0.3302 + }, + { + "start": 31679.88, + "end": 31680.7, + "probability": 0.1119 + }, + { + "start": 31681.22, + "end": 31682.48, + "probability": 0.7537 + }, + { + "start": 31682.66, + "end": 31682.76, + "probability": 0.1936 + }, + { + "start": 31682.92, + "end": 31686.44, + "probability": 0.9372 + }, + { + "start": 31687.16, + "end": 31688.4, + "probability": 0.6616 + }, + { + "start": 31688.44, + "end": 31689.92, + "probability": 0.9625 + }, + { + "start": 31690.66, + "end": 31695.8, + "probability": 0.953 + }, + { + "start": 31696.56, + "end": 31699.2, + "probability": 0.0414 + }, + { + "start": 31699.8, + "end": 31702.72, + "probability": 0.1091 + }, + { + "start": 31702.72, + "end": 31703.88, + "probability": 0.1273 + }, + { + "start": 31703.88, + "end": 31703.88, + "probability": 0.004 + }, + { + "start": 31703.88, + "end": 31703.88, + "probability": 0.2849 + }, + { + "start": 31704.48, + "end": 31708.12, + "probability": 0.7224 + }, + { + "start": 31708.94, + "end": 31709.78, + "probability": 0.9251 + }, + { + "start": 31710.24, + "end": 31711.76, + "probability": 0.9871 + }, + { + "start": 31712.88, + "end": 31714.9, + "probability": 0.9899 + }, + { + "start": 31715.64, + "end": 31718.2, + "probability": 0.9847 + }, + { + "start": 31718.28, + "end": 31720.06, + "probability": 0.9696 + }, + { + "start": 31720.46, + "end": 31721.96, + "probability": 0.9961 + }, + { + "start": 31722.6, + "end": 31724.32, + "probability": 0.9888 + }, + { + "start": 31724.76, + "end": 31727.34, + "probability": 0.8089 + }, + { + "start": 31727.84, + "end": 31729.66, + "probability": 0.9985 + }, + { + "start": 31730.42, + "end": 31732.38, + "probability": 0.8206 + }, + { + "start": 31732.48, + "end": 31733.98, + "probability": 0.9863 + }, + { + "start": 31735.06, + "end": 31735.48, + "probability": 0.707 + }, + { + "start": 31736.08, + "end": 31737.54, + "probability": 0.5731 + }, + { + "start": 31738.38, + "end": 31739.88, + "probability": 0.9855 + }, + { + "start": 31740.4, + "end": 31741.82, + "probability": 0.6871 + }, + { + "start": 31741.9, + "end": 31742.38, + "probability": 0.7704 + }, + { + "start": 31752.08, + "end": 31754.0, + "probability": 0.7505 + }, + { + "start": 31754.66, + "end": 31755.28, + "probability": 0.692 + }, + { + "start": 31755.58, + "end": 31757.02, + "probability": 0.9509 + }, + { + "start": 31757.42, + "end": 31758.0, + "probability": 0.8869 + }, + { + "start": 31768.06, + "end": 31769.2, + "probability": 0.6729 + }, + { + "start": 31769.72, + "end": 31771.8, + "probability": 0.7618 + }, + { + "start": 31773.06, + "end": 31776.66, + "probability": 0.9951 + }, + { + "start": 31776.78, + "end": 31778.7, + "probability": 0.9927 + }, + { + "start": 31779.84, + "end": 31785.64, + "probability": 0.8548 + }, + { + "start": 31786.28, + "end": 31791.12, + "probability": 0.9915 + }, + { + "start": 31792.72, + "end": 31795.1, + "probability": 0.6813 + }, + { + "start": 31795.64, + "end": 31800.2, + "probability": 0.9947 + }, + { + "start": 31801.18, + "end": 31802.52, + "probability": 0.9972 + }, + { + "start": 31803.68, + "end": 31807.5, + "probability": 0.9577 + }, + { + "start": 31808.14, + "end": 31809.27, + "probability": 0.8052 + }, + { + "start": 31810.26, + "end": 31813.22, + "probability": 0.9174 + }, + { + "start": 31813.34, + "end": 31817.68, + "probability": 0.9406 + }, + { + "start": 31818.32, + "end": 31821.76, + "probability": 0.867 + }, + { + "start": 31821.88, + "end": 31822.64, + "probability": 0.7661 + }, + { + "start": 31822.74, + "end": 31823.9, + "probability": 0.8291 + }, + { + "start": 31825.2, + "end": 31828.48, + "probability": 0.9775 + }, + { + "start": 31828.48, + "end": 31832.75, + "probability": 0.9822 + }, + { + "start": 31833.14, + "end": 31833.7, + "probability": 0.9027 + }, + { + "start": 31833.9, + "end": 31834.72, + "probability": 0.6315 + }, + { + "start": 31834.78, + "end": 31835.25, + "probability": 0.7083 + }, + { + "start": 31835.68, + "end": 31836.58, + "probability": 0.7999 + }, + { + "start": 31836.68, + "end": 31838.16, + "probability": 0.8313 + }, + { + "start": 31839.24, + "end": 31839.94, + "probability": 0.9683 + }, + { + "start": 31839.98, + "end": 31847.66, + "probability": 0.9746 + }, + { + "start": 31850.24, + "end": 31851.1, + "probability": 0.7171 + }, + { + "start": 31852.3, + "end": 31853.58, + "probability": 0.478 + }, + { + "start": 31853.68, + "end": 31854.12, + "probability": 0.0201 + }, + { + "start": 31854.12, + "end": 31855.58, + "probability": 0.6522 + }, + { + "start": 31855.7, + "end": 31857.02, + "probability": 0.7208 + }, + { + "start": 31857.02, + "end": 31862.56, + "probability": 0.8544 + }, + { + "start": 31862.58, + "end": 31863.36, + "probability": 0.7516 + }, + { + "start": 31863.42, + "end": 31864.68, + "probability": 0.9077 + }, + { + "start": 31865.86, + "end": 31870.86, + "probability": 0.7949 + }, + { + "start": 31870.86, + "end": 31873.88, + "probability": 0.9215 + }, + { + "start": 31875.6, + "end": 31877.12, + "probability": 0.4879 + }, + { + "start": 31878.18, + "end": 31883.88, + "probability": 0.9773 + }, + { + "start": 31886.39, + "end": 31890.71, + "probability": 0.978 + }, + { + "start": 31891.4, + "end": 31892.36, + "probability": 0.9414 + }, + { + "start": 31893.3, + "end": 31897.56, + "probability": 0.7456 + }, + { + "start": 31898.26, + "end": 31901.06, + "probability": 0.9717 + }, + { + "start": 31901.46, + "end": 31907.14, + "probability": 0.9692 + }, + { + "start": 31908.62, + "end": 31910.74, + "probability": 0.9797 + }, + { + "start": 31910.74, + "end": 31913.0, + "probability": 0.9985 + }, + { + "start": 31913.42, + "end": 31914.7, + "probability": 0.8475 + }, + { + "start": 31915.42, + "end": 31917.46, + "probability": 0.9275 + }, + { + "start": 31917.5, + "end": 31919.78, + "probability": 0.9044 + }, + { + "start": 31920.16, + "end": 31920.94, + "probability": 0.8291 + }, + { + "start": 31921.66, + "end": 31925.54, + "probability": 0.7233 + }, + { + "start": 31926.02, + "end": 31928.88, + "probability": 0.8809 + }, + { + "start": 31929.32, + "end": 31931.42, + "probability": 0.998 + }, + { + "start": 31931.42, + "end": 31934.3, + "probability": 0.9909 + }, + { + "start": 31935.38, + "end": 31937.58, + "probability": 0.9973 + }, + { + "start": 31937.58, + "end": 31940.38, + "probability": 0.9852 + }, + { + "start": 31941.3, + "end": 31946.94, + "probability": 0.9421 + }, + { + "start": 31947.06, + "end": 31950.16, + "probability": 0.6589 + }, + { + "start": 31950.9, + "end": 31956.88, + "probability": 0.9894 + }, + { + "start": 31957.14, + "end": 31960.22, + "probability": 0.9938 + }, + { + "start": 31960.64, + "end": 31963.44, + "probability": 0.9897 + }, + { + "start": 31963.86, + "end": 31965.64, + "probability": 0.936 + }, + { + "start": 31967.64, + "end": 31968.81, + "probability": 0.9072 + }, + { + "start": 31970.4, + "end": 31973.7, + "probability": 0.9 + }, + { + "start": 31973.76, + "end": 31977.56, + "probability": 0.9883 + }, + { + "start": 31977.56, + "end": 31980.6, + "probability": 0.9912 + }, + { + "start": 31981.3, + "end": 31984.1, + "probability": 0.9868 + }, + { + "start": 31984.12, + "end": 31984.98, + "probability": 0.6508 + }, + { + "start": 31985.12, + "end": 31985.52, + "probability": 0.594 + }, + { + "start": 31985.68, + "end": 31987.12, + "probability": 0.7903 + }, + { + "start": 31987.4, + "end": 31990.16, + "probability": 0.9901 + }, + { + "start": 31991.1, + "end": 31993.11, + "probability": 0.5741 + }, + { + "start": 31993.88, + "end": 31996.54, + "probability": 0.979 + }, + { + "start": 31996.66, + "end": 31998.66, + "probability": 0.9285 + }, + { + "start": 31998.96, + "end": 32002.94, + "probability": 0.7933 + }, + { + "start": 32003.0, + "end": 32006.22, + "probability": 0.8349 + }, + { + "start": 32006.72, + "end": 32007.52, + "probability": 0.6207 + }, + { + "start": 32007.62, + "end": 32010.56, + "probability": 0.9845 + }, + { + "start": 32010.68, + "end": 32012.41, + "probability": 0.9876 + }, + { + "start": 32013.0, + "end": 32014.36, + "probability": 0.8622 + }, + { + "start": 32014.6, + "end": 32020.82, + "probability": 0.9931 + }, + { + "start": 32021.0, + "end": 32021.88, + "probability": 0.7744 + }, + { + "start": 32021.98, + "end": 32022.36, + "probability": 0.806 + }, + { + "start": 32022.66, + "end": 32024.06, + "probability": 0.7276 + }, + { + "start": 32024.16, + "end": 32026.18, + "probability": 0.9971 + }, + { + "start": 32027.18, + "end": 32031.5, + "probability": 0.8201 + }, + { + "start": 32032.88, + "end": 32036.32, + "probability": 0.7795 + }, + { + "start": 32041.84, + "end": 32042.48, + "probability": 0.5992 + }, + { + "start": 32044.32, + "end": 32044.62, + "probability": 0.392 + }, + { + "start": 32044.7, + "end": 32046.9, + "probability": 0.7293 + }, + { + "start": 32047.78, + "end": 32049.18, + "probability": 0.6159 + }, + { + "start": 32049.78, + "end": 32050.92, + "probability": 0.9984 + }, + { + "start": 32052.3, + "end": 32057.36, + "probability": 0.9626 + }, + { + "start": 32057.38, + "end": 32059.14, + "probability": 0.6278 + }, + { + "start": 32059.66, + "end": 32063.71, + "probability": 0.9951 + }, + { + "start": 32064.72, + "end": 32069.3, + "probability": 0.9939 + }, + { + "start": 32069.34, + "end": 32076.24, + "probability": 0.984 + }, + { + "start": 32076.7, + "end": 32081.14, + "probability": 0.9098 + }, + { + "start": 32083.36, + "end": 32086.64, + "probability": 0.9973 + }, + { + "start": 32086.64, + "end": 32090.94, + "probability": 0.9697 + }, + { + "start": 32092.12, + "end": 32098.88, + "probability": 0.9922 + }, + { + "start": 32099.8, + "end": 32103.22, + "probability": 0.9845 + }, + { + "start": 32103.22, + "end": 32107.14, + "probability": 0.9984 + }, + { + "start": 32107.42, + "end": 32111.72, + "probability": 0.9831 + }, + { + "start": 32112.5, + "end": 32116.32, + "probability": 0.9557 + }, + { + "start": 32116.32, + "end": 32120.64, + "probability": 0.9907 + }, + { + "start": 32121.52, + "end": 32125.26, + "probability": 0.9621 + }, + { + "start": 32125.64, + "end": 32127.74, + "probability": 0.7256 + }, + { + "start": 32128.14, + "end": 32133.56, + "probability": 0.9799 + }, + { + "start": 32136.3, + "end": 32138.4, + "probability": 0.7076 + }, + { + "start": 32139.08, + "end": 32142.1, + "probability": 0.8535 + }, + { + "start": 32142.96, + "end": 32146.9, + "probability": 0.9883 + }, + { + "start": 32146.9, + "end": 32152.18, + "probability": 0.9935 + }, + { + "start": 32153.68, + "end": 32157.1, + "probability": 0.8895 + }, + { + "start": 32159.88, + "end": 32162.44, + "probability": 0.7872 + }, + { + "start": 32163.56, + "end": 32165.74, + "probability": 0.9375 + }, + { + "start": 32166.8, + "end": 32171.62, + "probability": 0.9827 + }, + { + "start": 32172.58, + "end": 32175.2, + "probability": 0.9341 + }, + { + "start": 32176.38, + "end": 32177.3, + "probability": 0.804 + }, + { + "start": 32177.72, + "end": 32178.5, + "probability": 0.7355 + }, + { + "start": 32178.68, + "end": 32179.28, + "probability": 0.8553 + }, + { + "start": 32179.62, + "end": 32180.88, + "probability": 0.9846 + }, + { + "start": 32181.68, + "end": 32183.44, + "probability": 0.8646 + }, + { + "start": 32184.02, + "end": 32185.84, + "probability": 0.9843 + }, + { + "start": 32186.34, + "end": 32187.2, + "probability": 0.7407 + }, + { + "start": 32187.66, + "end": 32188.52, + "probability": 0.4325 + }, + { + "start": 32188.74, + "end": 32189.6, + "probability": 0.7673 + }, + { + "start": 32190.24, + "end": 32191.9, + "probability": 0.7239 + }, + { + "start": 32192.5, + "end": 32193.88, + "probability": 0.9741 + }, + { + "start": 32194.26, + "end": 32196.7, + "probability": 0.8251 + }, + { + "start": 32197.06, + "end": 32197.4, + "probability": 0.6298 + }, + { + "start": 32197.52, + "end": 32198.06, + "probability": 0.9019 + }, + { + "start": 32199.12, + "end": 32202.2, + "probability": 0.9517 + }, + { + "start": 32203.44, + "end": 32205.45, + "probability": 0.9761 + }, + { + "start": 32206.22, + "end": 32206.74, + "probability": 0.8382 + }, + { + "start": 32207.02, + "end": 32208.96, + "probability": 0.8159 + }, + { + "start": 32210.22, + "end": 32211.06, + "probability": 0.8739 + }, + { + "start": 32211.16, + "end": 32211.48, + "probability": 0.8542 + }, + { + "start": 32211.6, + "end": 32217.14, + "probability": 0.9421 + }, + { + "start": 32217.58, + "end": 32220.8, + "probability": 0.7758 + }, + { + "start": 32221.98, + "end": 32223.66, + "probability": 0.5573 + }, + { + "start": 32223.66, + "end": 32224.28, + "probability": 0.5018 + }, + { + "start": 32224.28, + "end": 32225.86, + "probability": 0.9883 + }, + { + "start": 32226.52, + "end": 32229.28, + "probability": 0.8038 + }, + { + "start": 32230.04, + "end": 32234.98, + "probability": 0.9679 + }, + { + "start": 32235.1, + "end": 32238.39, + "probability": 0.8514 + }, + { + "start": 32239.18, + "end": 32240.84, + "probability": 0.5075 + }, + { + "start": 32240.9, + "end": 32241.96, + "probability": 0.8242 + }, + { + "start": 32242.6, + "end": 32243.82, + "probability": 0.8999 + }, + { + "start": 32243.92, + "end": 32245.08, + "probability": 0.9463 + }, + { + "start": 32245.5, + "end": 32247.3, + "probability": 0.9517 + }, + { + "start": 32247.5, + "end": 32253.96, + "probability": 0.9897 + }, + { + "start": 32253.96, + "end": 32258.44, + "probability": 0.997 + }, + { + "start": 32258.52, + "end": 32259.82, + "probability": 0.9873 + }, + { + "start": 32259.9, + "end": 32262.62, + "probability": 0.8733 + }, + { + "start": 32262.72, + "end": 32263.88, + "probability": 0.9707 + }, + { + "start": 32264.82, + "end": 32264.92, + "probability": 0.9097 + }, + { + "start": 32267.26, + "end": 32270.44, + "probability": 0.811 + }, + { + "start": 32270.5, + "end": 32272.2, + "probability": 0.9202 + }, + { + "start": 32272.2, + "end": 32274.24, + "probability": 0.9067 + }, + { + "start": 32275.08, + "end": 32278.2, + "probability": 0.5526 + }, + { + "start": 32278.94, + "end": 32280.06, + "probability": 0.9858 + }, + { + "start": 32281.04, + "end": 32285.32, + "probability": 0.9208 + }, + { + "start": 32286.5, + "end": 32288.08, + "probability": 0.9798 + }, + { + "start": 32288.94, + "end": 32289.68, + "probability": 0.8171 + }, + { + "start": 32290.34, + "end": 32293.82, + "probability": 0.9968 + }, + { + "start": 32294.16, + "end": 32296.22, + "probability": 0.9526 + }, + { + "start": 32296.66, + "end": 32302.4, + "probability": 0.9718 + }, + { + "start": 32303.72, + "end": 32304.52, + "probability": 0.688 + }, + { + "start": 32305.1, + "end": 32306.14, + "probability": 0.6538 + }, + { + "start": 32306.24, + "end": 32311.32, + "probability": 0.9953 + }, + { + "start": 32312.52, + "end": 32315.24, + "probability": 0.9832 + }, + { + "start": 32315.34, + "end": 32320.26, + "probability": 0.998 + }, + { + "start": 32320.72, + "end": 32323.16, + "probability": 0.9937 + }, + { + "start": 32323.9, + "end": 32326.72, + "probability": 0.9492 + }, + { + "start": 32328.9, + "end": 32330.16, + "probability": 0.6828 + }, + { + "start": 32330.68, + "end": 32331.36, + "probability": 0.9002 + }, + { + "start": 32331.44, + "end": 32334.16, + "probability": 0.9985 + }, + { + "start": 32334.28, + "end": 32336.34, + "probability": 0.9207 + }, + { + "start": 32338.16, + "end": 32341.6, + "probability": 0.9503 + }, + { + "start": 32342.2, + "end": 32347.64, + "probability": 0.9085 + }, + { + "start": 32348.84, + "end": 32353.24, + "probability": 0.8128 + }, + { + "start": 32353.7, + "end": 32354.94, + "probability": 0.9792 + }, + { + "start": 32357.18, + "end": 32359.54, + "probability": 0.9786 + }, + { + "start": 32359.58, + "end": 32360.7, + "probability": 0.8295 + }, + { + "start": 32360.88, + "end": 32361.92, + "probability": 0.9232 + }, + { + "start": 32362.06, + "end": 32362.34, + "probability": 0.729 + }, + { + "start": 32363.52, + "end": 32369.24, + "probability": 0.9824 + }, + { + "start": 32371.64, + "end": 32372.36, + "probability": 0.7761 + }, + { + "start": 32372.44, + "end": 32375.64, + "probability": 0.9796 + }, + { + "start": 32376.04, + "end": 32376.88, + "probability": 0.808 + }, + { + "start": 32377.04, + "end": 32378.27, + "probability": 0.7842 + }, + { + "start": 32378.34, + "end": 32383.52, + "probability": 0.9747 + }, + { + "start": 32384.34, + "end": 32390.18, + "probability": 0.9844 + }, + { + "start": 32390.72, + "end": 32392.86, + "probability": 0.823 + }, + { + "start": 32393.0, + "end": 32397.26, + "probability": 0.8509 + }, + { + "start": 32397.76, + "end": 32401.42, + "probability": 0.9882 + }, + { + "start": 32401.62, + "end": 32404.32, + "probability": 0.9884 + }, + { + "start": 32404.66, + "end": 32409.95, + "probability": 0.8447 + }, + { + "start": 32410.56, + "end": 32411.26, + "probability": 0.9788 + }, + { + "start": 32411.86, + "end": 32412.52, + "probability": 0.5967 + }, + { + "start": 32413.64, + "end": 32416.34, + "probability": 0.9067 + }, + { + "start": 32416.78, + "end": 32419.36, + "probability": 0.8794 + }, + { + "start": 32419.94, + "end": 32421.82, + "probability": 0.9888 + }, + { + "start": 32421.9, + "end": 32422.34, + "probability": 0.4919 + }, + { + "start": 32422.44, + "end": 32422.9, + "probability": 0.951 + }, + { + "start": 32423.28, + "end": 32424.24, + "probability": 0.7924 + }, + { + "start": 32424.5, + "end": 32432.92, + "probability": 0.9069 + }, + { + "start": 32432.92, + "end": 32439.02, + "probability": 0.9955 + }, + { + "start": 32439.72, + "end": 32439.98, + "probability": 0.5827 + }, + { + "start": 32440.48, + "end": 32443.84, + "probability": 0.9508 + }, + { + "start": 32444.94, + "end": 32446.58, + "probability": 0.8665 + }, + { + "start": 32446.68, + "end": 32448.94, + "probability": 0.9137 + }, + { + "start": 32449.74, + "end": 32452.96, + "probability": 0.9456 + }, + { + "start": 32453.62, + "end": 32454.6, + "probability": 0.7859 + }, + { + "start": 32455.0, + "end": 32458.12, + "probability": 0.9935 + }, + { + "start": 32458.12, + "end": 32462.44, + "probability": 0.953 + }, + { + "start": 32462.52, + "end": 32464.52, + "probability": 0.9912 + }, + { + "start": 32464.84, + "end": 32465.94, + "probability": 0.8718 + }, + { + "start": 32466.06, + "end": 32467.38, + "probability": 0.9962 + }, + { + "start": 32468.9, + "end": 32475.08, + "probability": 0.9886 + }, + { + "start": 32475.5, + "end": 32480.68, + "probability": 0.998 + }, + { + "start": 32480.68, + "end": 32485.38, + "probability": 0.9959 + }, + { + "start": 32485.9, + "end": 32490.54, + "probability": 0.9952 + }, + { + "start": 32490.96, + "end": 32492.5, + "probability": 0.8904 + }, + { + "start": 32493.54, + "end": 32496.68, + "probability": 0.9949 + }, + { + "start": 32497.02, + "end": 32497.5, + "probability": 0.416 + }, + { + "start": 32497.62, + "end": 32501.88, + "probability": 0.9777 + }, + { + "start": 32502.06, + "end": 32504.72, + "probability": 0.9734 + }, + { + "start": 32505.78, + "end": 32508.74, + "probability": 0.8139 + }, + { + "start": 32511.98, + "end": 32514.8, + "probability": 0.9249 + }, + { + "start": 32515.14, + "end": 32519.56, + "probability": 0.8173 + }, + { + "start": 32519.72, + "end": 32520.07, + "probability": 0.3643 + }, + { + "start": 32520.3, + "end": 32521.24, + "probability": 0.8652 + }, + { + "start": 32521.3, + "end": 32522.86, + "probability": 0.5448 + }, + { + "start": 32522.98, + "end": 32525.44, + "probability": 0.8809 + }, + { + "start": 32526.12, + "end": 32526.38, + "probability": 0.5444 + }, + { + "start": 32527.18, + "end": 32531.04, + "probability": 0.9938 + }, + { + "start": 32531.66, + "end": 32535.2, + "probability": 0.794 + }, + { + "start": 32536.06, + "end": 32541.26, + "probability": 0.9461 + }, + { + "start": 32541.52, + "end": 32542.68, + "probability": 0.8154 + }, + { + "start": 32542.74, + "end": 32546.02, + "probability": 0.9974 + }, + { + "start": 32547.04, + "end": 32547.32, + "probability": 0.5037 + }, + { + "start": 32547.76, + "end": 32551.8, + "probability": 0.9946 + }, + { + "start": 32552.1, + "end": 32553.7, + "probability": 0.8591 + }, + { + "start": 32553.78, + "end": 32558.82, + "probability": 0.9159 + }, + { + "start": 32559.46, + "end": 32561.28, + "probability": 0.9954 + }, + { + "start": 32562.08, + "end": 32563.08, + "probability": 0.788 + }, + { + "start": 32563.74, + "end": 32564.78, + "probability": 0.9638 + }, + { + "start": 32564.86, + "end": 32568.54, + "probability": 0.7783 + }, + { + "start": 32568.6, + "end": 32569.6, + "probability": 0.7458 + }, + { + "start": 32570.16, + "end": 32571.86, + "probability": 0.9564 + }, + { + "start": 32572.62, + "end": 32574.14, + "probability": 0.9047 + }, + { + "start": 32574.66, + "end": 32578.96, + "probability": 0.995 + }, + { + "start": 32579.9, + "end": 32580.28, + "probability": 0.7366 + }, + { + "start": 32580.9, + "end": 32581.56, + "probability": 0.797 + }, + { + "start": 32581.72, + "end": 32582.34, + "probability": 0.6961 + }, + { + "start": 32582.64, + "end": 32584.38, + "probability": 0.9308 + }, + { + "start": 32585.14, + "end": 32585.74, + "probability": 0.5223 + }, + { + "start": 32586.98, + "end": 32590.5, + "probability": 0.93 + }, + { + "start": 32591.14, + "end": 32592.54, + "probability": 0.9811 + }, + { + "start": 32593.28, + "end": 32593.84, + "probability": 0.9368 + }, + { + "start": 32593.88, + "end": 32595.52, + "probability": 0.9695 + }, + { + "start": 32595.58, + "end": 32596.72, + "probability": 0.8353 + }, + { + "start": 32596.82, + "end": 32598.76, + "probability": 0.9661 + }, + { + "start": 32599.86, + "end": 32605.1, + "probability": 0.9829 + }, + { + "start": 32605.1, + "end": 32609.56, + "probability": 0.8671 + }, + { + "start": 32609.96, + "end": 32611.11, + "probability": 0.9517 + }, + { + "start": 32611.94, + "end": 32612.98, + "probability": 0.9607 + }, + { + "start": 32613.68, + "end": 32617.1, + "probability": 0.9964 + }, + { + "start": 32618.08, + "end": 32619.48, + "probability": 0.9949 + }, + { + "start": 32620.02, + "end": 32623.6, + "probability": 0.9758 + }, + { + "start": 32623.96, + "end": 32628.74, + "probability": 0.9956 + }, + { + "start": 32628.96, + "end": 32633.9, + "probability": 0.9946 + }, + { + "start": 32634.28, + "end": 32639.8, + "probability": 0.9697 + }, + { + "start": 32639.98, + "end": 32642.42, + "probability": 0.8716 + }, + { + "start": 32642.44, + "end": 32643.0, + "probability": 0.6343 + }, + { + "start": 32643.1, + "end": 32644.04, + "probability": 0.6582 + }, + { + "start": 32644.16, + "end": 32646.38, + "probability": 0.968 + }, + { + "start": 32646.44, + "end": 32648.36, + "probability": 0.848 + }, + { + "start": 32649.72, + "end": 32650.5, + "probability": 0.7298 + }, + { + "start": 32651.24, + "end": 32655.52, + "probability": 0.9883 + }, + { + "start": 32655.52, + "end": 32659.56, + "probability": 0.9942 + }, + { + "start": 32660.22, + "end": 32663.84, + "probability": 0.9971 + }, + { + "start": 32664.24, + "end": 32667.32, + "probability": 0.9964 + }, + { + "start": 32667.32, + "end": 32671.72, + "probability": 0.9966 + }, + { + "start": 32672.2, + "end": 32672.62, + "probability": 0.8505 + }, + { + "start": 32673.42, + "end": 32675.68, + "probability": 0.8235 + }, + { + "start": 32676.72, + "end": 32681.11, + "probability": 0.6712 + }, + { + "start": 32685.32, + "end": 32685.72, + "probability": 0.651 + }, + { + "start": 32698.42, + "end": 32698.64, + "probability": 0.3767 + }, + { + "start": 32698.76, + "end": 32699.8, + "probability": 0.5617 + }, + { + "start": 32701.4, + "end": 32704.84, + "probability": 0.9971 + }, + { + "start": 32704.88, + "end": 32706.32, + "probability": 0.9324 + }, + { + "start": 32708.1, + "end": 32710.14, + "probability": 0.9106 + }, + { + "start": 32712.96, + "end": 32716.88, + "probability": 0.9509 + }, + { + "start": 32720.0, + "end": 32721.76, + "probability": 0.7303 + }, + { + "start": 32722.94, + "end": 32726.28, + "probability": 0.9038 + }, + { + "start": 32726.38, + "end": 32729.04, + "probability": 0.5628 + }, + { + "start": 32730.12, + "end": 32730.64, + "probability": 0.6446 + }, + { + "start": 32730.8, + "end": 32732.14, + "probability": 0.9871 + }, + { + "start": 32732.26, + "end": 32733.18, + "probability": 0.9141 + }, + { + "start": 32733.5, + "end": 32736.76, + "probability": 0.9955 + }, + { + "start": 32737.28, + "end": 32741.8, + "probability": 0.9893 + }, + { + "start": 32744.1, + "end": 32744.74, + "probability": 0.6013 + }, + { + "start": 32744.96, + "end": 32748.38, + "probability": 0.978 + }, + { + "start": 32748.38, + "end": 32750.98, + "probability": 0.9937 + }, + { + "start": 32751.7, + "end": 32753.82, + "probability": 0.9766 + }, + { + "start": 32754.08, + "end": 32758.14, + "probability": 0.9983 + }, + { + "start": 32759.5, + "end": 32762.9, + "probability": 0.9366 + }, + { + "start": 32763.3, + "end": 32766.32, + "probability": 0.9988 + }, + { + "start": 32766.88, + "end": 32769.74, + "probability": 0.9681 + }, + { + "start": 32770.52, + "end": 32773.72, + "probability": 0.9708 + }, + { + "start": 32774.52, + "end": 32776.4, + "probability": 0.8445 + }, + { + "start": 32777.06, + "end": 32779.5, + "probability": 0.8636 + }, + { + "start": 32779.82, + "end": 32783.84, + "probability": 0.955 + }, + { + "start": 32785.16, + "end": 32789.94, + "probability": 0.9949 + }, + { + "start": 32790.88, + "end": 32793.62, + "probability": 0.8832 + }, + { + "start": 32794.5, + "end": 32796.9, + "probability": 0.9636 + }, + { + "start": 32797.02, + "end": 32797.86, + "probability": 0.6775 + }, + { + "start": 32798.02, + "end": 32798.72, + "probability": 0.9061 + }, + { + "start": 32800.22, + "end": 32801.96, + "probability": 0.9883 + }, + { + "start": 32802.62, + "end": 32804.0, + "probability": 0.868 + }, + { + "start": 32805.42, + "end": 32809.46, + "probability": 0.9949 + }, + { + "start": 32813.74, + "end": 32815.74, + "probability": 0.9631 + }, + { + "start": 32816.62, + "end": 32818.5, + "probability": 0.7258 + }, + { + "start": 32818.66, + "end": 32824.66, + "probability": 0.9654 + }, + { + "start": 32824.82, + "end": 32828.22, + "probability": 0.9411 + }, + { + "start": 32829.44, + "end": 32830.22, + "probability": 0.9023 + }, + { + "start": 32831.26, + "end": 32835.54, + "probability": 0.9688 + }, + { + "start": 32835.68, + "end": 32836.6, + "probability": 0.9867 + }, + { + "start": 32837.44, + "end": 32839.54, + "probability": 0.9668 + }, + { + "start": 32839.74, + "end": 32842.02, + "probability": 0.8526 + }, + { + "start": 32842.96, + "end": 32844.26, + "probability": 0.6943 + }, + { + "start": 32846.3, + "end": 32847.04, + "probability": 0.0131 + }, + { + "start": 32848.0, + "end": 32849.14, + "probability": 0.2087 + }, + { + "start": 32849.14, + "end": 32850.42, + "probability": 0.5389 + }, + { + "start": 32850.98, + "end": 32852.9, + "probability": 0.6556 + }, + { + "start": 32852.98, + "end": 32853.26, + "probability": 0.3373 + }, + { + "start": 32853.34, + "end": 32853.95, + "probability": 0.8864 + }, + { + "start": 32854.2, + "end": 32854.56, + "probability": 0.3642 + }, + { + "start": 32854.56, + "end": 32855.12, + "probability": 0.8174 + }, + { + "start": 32856.0, + "end": 32859.46, + "probability": 0.3113 + }, + { + "start": 32859.46, + "end": 32861.0, + "probability": 0.4876 + }, + { + "start": 32862.02, + "end": 32864.6, + "probability": 0.6986 + }, + { + "start": 32864.66, + "end": 32865.42, + "probability": 0.5412 + }, + { + "start": 32865.94, + "end": 32870.28, + "probability": 0.8058 + }, + { + "start": 32871.16, + "end": 32874.1, + "probability": 0.9099 + }, + { + "start": 32874.24, + "end": 32875.12, + "probability": 0.3193 + }, + { + "start": 32875.14, + "end": 32877.94, + "probability": 0.7108 + }, + { + "start": 32877.98, + "end": 32880.46, + "probability": 0.8148 + }, + { + "start": 32885.34, + "end": 32885.34, + "probability": 0.4259 + }, + { + "start": 32885.34, + "end": 32888.62, + "probability": 0.4845 + }, + { + "start": 32889.04, + "end": 32889.56, + "probability": 0.003 + }, + { + "start": 32891.76, + "end": 32894.04, + "probability": 0.6606 + }, + { + "start": 32894.76, + "end": 32900.02, + "probability": 0.8711 + }, + { + "start": 32900.02, + "end": 32901.84, + "probability": 0.7746 + }, + { + "start": 32904.18, + "end": 32905.12, + "probability": 0.642 + }, + { + "start": 32905.2, + "end": 32909.72, + "probability": 0.983 + }, + { + "start": 32909.9, + "end": 32910.62, + "probability": 0.7512 + }, + { + "start": 32910.94, + "end": 32914.54, + "probability": 0.7309 + }, + { + "start": 32915.1, + "end": 32917.4, + "probability": 0.7968 + }, + { + "start": 32919.08, + "end": 32920.98, + "probability": 0.1221 + }, + { + "start": 32933.44, + "end": 32935.08, + "probability": 0.3769 + }, + { + "start": 32938.0, + "end": 32941.48, + "probability": 0.4254 + }, + { + "start": 32942.18, + "end": 32945.6, + "probability": 0.6813 + }, + { + "start": 32946.6, + "end": 32948.36, + "probability": 0.9836 + }, + { + "start": 32948.54, + "end": 32949.04, + "probability": 0.7844 + }, + { + "start": 32949.06, + "end": 32950.81, + "probability": 0.9761 + }, + { + "start": 32951.42, + "end": 32953.46, + "probability": 0.6883 + }, + { + "start": 32953.86, + "end": 32954.62, + "probability": 0.7863 + }, + { + "start": 32954.7, + "end": 32956.82, + "probability": 0.8548 + }, + { + "start": 32957.32, + "end": 32962.82, + "probability": 0.9839 + }, + { + "start": 32963.04, + "end": 32963.74, + "probability": 0.8501 + }, + { + "start": 32964.18, + "end": 32968.94, + "probability": 0.9496 + }, + { + "start": 32969.66, + "end": 32973.38, + "probability": 0.4866 + }, + { + "start": 32974.26, + "end": 32975.16, + "probability": 0.0999 + }, + { + "start": 32976.51, + "end": 32979.83, + "probability": 0.8479 + }, + { + "start": 32981.34, + "end": 32982.46, + "probability": 0.1082 + }, + { + "start": 32982.46, + "end": 32984.76, + "probability": 0.7376 + }, + { + "start": 32985.4, + "end": 32987.4, + "probability": 0.9411 + }, + { + "start": 32987.48, + "end": 32988.8, + "probability": 0.9193 + }, + { + "start": 32988.96, + "end": 32989.98, + "probability": 0.551 + }, + { + "start": 32990.02, + "end": 32990.64, + "probability": 0.9629 + }, + { + "start": 32991.02, + "end": 32999.5, + "probability": 0.4994 + }, + { + "start": 33000.06, + "end": 33001.74, + "probability": 0.9813 + }, + { + "start": 33002.4, + "end": 33004.84, + "probability": 0.9065 + }, + { + "start": 33007.5, + "end": 33009.0, + "probability": 0.9021 + }, + { + "start": 33027.98, + "end": 33028.34, + "probability": 0.3437 + }, + { + "start": 33028.34, + "end": 33029.92, + "probability": 0.5819 + }, + { + "start": 33030.8, + "end": 33033.1, + "probability": 0.8087 + }, + { + "start": 33033.44, + "end": 33034.66, + "probability": 0.814 + }, + { + "start": 33034.76, + "end": 33036.0, + "probability": 0.9081 + }, + { + "start": 33036.62, + "end": 33037.75, + "probability": 0.8058 + }, + { + "start": 33038.02, + "end": 33039.14, + "probability": 0.9951 + }, + { + "start": 33039.86, + "end": 33043.94, + "probability": 0.9673 + }, + { + "start": 33044.02, + "end": 33044.34, + "probability": 0.6605 + }, + { + "start": 33044.52, + "end": 33049.34, + "probability": 0.9482 + }, + { + "start": 33049.42, + "end": 33050.49, + "probability": 0.7402 + }, + { + "start": 33052.52, + "end": 33060.36, + "probability": 0.6821 + }, + { + "start": 33061.0, + "end": 33063.82, + "probability": 0.993 + }, + { + "start": 33065.0, + "end": 33068.91, + "probability": 0.9948 + }, + { + "start": 33070.84, + "end": 33074.32, + "probability": 0.9834 + }, + { + "start": 33074.32, + "end": 33077.48, + "probability": 0.9889 + }, + { + "start": 33078.38, + "end": 33083.68, + "probability": 0.9733 + }, + { + "start": 33084.16, + "end": 33085.8, + "probability": 0.7495 + }, + { + "start": 33086.7, + "end": 33088.58, + "probability": 0.9002 + }, + { + "start": 33089.38, + "end": 33090.84, + "probability": 0.7979 + }, + { + "start": 33090.92, + "end": 33095.6, + "probability": 0.7785 + }, + { + "start": 33095.76, + "end": 33097.28, + "probability": 0.8582 + }, + { + "start": 33097.84, + "end": 33099.48, + "probability": 0.9201 + }, + { + "start": 33100.2, + "end": 33102.42, + "probability": 0.7561 + }, + { + "start": 33102.68, + "end": 33104.2, + "probability": 0.7933 + }, + { + "start": 33104.93, + "end": 33106.92, + "probability": 0.7215 + }, + { + "start": 33107.3, + "end": 33108.16, + "probability": 0.7621 + }, + { + "start": 33108.72, + "end": 33109.56, + "probability": 0.8217 + }, + { + "start": 33109.92, + "end": 33110.7, + "probability": 0.7075 + }, + { + "start": 33110.86, + "end": 33114.52, + "probability": 0.9144 + }, + { + "start": 33114.52, + "end": 33121.04, + "probability": 0.8031 + }, + { + "start": 33121.82, + "end": 33123.4, + "probability": 0.753 + }, + { + "start": 33123.48, + "end": 33129.54, + "probability": 0.9866 + }, + { + "start": 33129.9, + "end": 33137.2, + "probability": 0.9341 + }, + { + "start": 33138.46, + "end": 33142.72, + "probability": 0.9936 + }, + { + "start": 33142.72, + "end": 33145.78, + "probability": 0.9996 + }, + { + "start": 33145.86, + "end": 33146.92, + "probability": 0.6716 + }, + { + "start": 33146.98, + "end": 33148.8, + "probability": 0.8893 + }, + { + "start": 33149.18, + "end": 33149.8, + "probability": 0.8505 + }, + { + "start": 33149.84, + "end": 33153.53, + "probability": 0.9749 + }, + { + "start": 33155.26, + "end": 33157.72, + "probability": 0.931 + }, + { + "start": 33157.82, + "end": 33158.94, + "probability": 0.7292 + }, + { + "start": 33159.02, + "end": 33160.2, + "probability": 0.8621 + }, + { + "start": 33160.72, + "end": 33163.44, + "probability": 0.9098 + }, + { + "start": 33163.86, + "end": 33165.84, + "probability": 0.9956 + }, + { + "start": 33166.1, + "end": 33167.04, + "probability": 0.9856 + }, + { + "start": 33167.08, + "end": 33167.96, + "probability": 0.9443 + }, + { + "start": 33168.3, + "end": 33172.76, + "probability": 0.9404 + }, + { + "start": 33173.02, + "end": 33177.08, + "probability": 0.8858 + }, + { + "start": 33177.12, + "end": 33179.76, + "probability": 0.9176 + }, + { + "start": 33180.2, + "end": 33183.94, + "probability": 0.9507 + }, + { + "start": 33184.38, + "end": 33184.7, + "probability": 0.5291 + }, + { + "start": 33184.74, + "end": 33185.06, + "probability": 0.6308 + }, + { + "start": 33185.2, + "end": 33185.82, + "probability": 0.6869 + }, + { + "start": 33186.08, + "end": 33190.18, + "probability": 0.8541 + }, + { + "start": 33190.64, + "end": 33194.66, + "probability": 0.8257 + }, + { + "start": 33194.74, + "end": 33195.76, + "probability": 0.6275 + }, + { + "start": 33195.86, + "end": 33200.46, + "probability": 0.6559 + }, + { + "start": 33200.88, + "end": 33202.66, + "probability": 0.6882 + }, + { + "start": 33202.74, + "end": 33205.4, + "probability": 0.8999 + }, + { + "start": 33205.5, + "end": 33207.46, + "probability": 0.9784 + }, + { + "start": 33208.66, + "end": 33213.88, + "probability": 0.6874 + }, + { + "start": 33213.88, + "end": 33217.14, + "probability": 0.8839 + }, + { + "start": 33217.76, + "end": 33218.08, + "probability": 0.2624 + }, + { + "start": 33218.1, + "end": 33220.58, + "probability": 0.9841 + }, + { + "start": 33220.96, + "end": 33221.44, + "probability": 0.8938 + }, + { + "start": 33221.98, + "end": 33222.8, + "probability": 0.7826 + }, + { + "start": 33223.39, + "end": 33226.49, + "probability": 0.8906 + }, + { + "start": 33227.56, + "end": 33228.94, + "probability": 0.9156 + }, + { + "start": 33229.06, + "end": 33231.64, + "probability": 0.9417 + }, + { + "start": 33231.68, + "end": 33232.42, + "probability": 0.6963 + }, + { + "start": 33232.96, + "end": 33233.96, + "probability": 0.929 + }, + { + "start": 33234.2, + "end": 33238.47, + "probability": 0.589 + }, + { + "start": 33239.12, + "end": 33240.36, + "probability": 0.883 + }, + { + "start": 33240.9, + "end": 33244.86, + "probability": 0.9922 + }, + { + "start": 33244.86, + "end": 33247.72, + "probability": 0.8458 + }, + { + "start": 33247.84, + "end": 33250.74, + "probability": 0.9939 + }, + { + "start": 33251.04, + "end": 33253.26, + "probability": 0.8119 + }, + { + "start": 33253.4, + "end": 33253.9, + "probability": 0.4964 + }, + { + "start": 33254.08, + "end": 33255.22, + "probability": 0.7698 + }, + { + "start": 33256.0, + "end": 33258.62, + "probability": 0.879 + }, + { + "start": 33259.46, + "end": 33261.38, + "probability": 0.9883 + }, + { + "start": 33261.56, + "end": 33264.18, + "probability": 0.967 + }, + { + "start": 33264.92, + "end": 33269.32, + "probability": 0.9536 + }, + { + "start": 33270.98, + "end": 33272.76, + "probability": 0.7904 + }, + { + "start": 33272.8, + "end": 33275.7, + "probability": 0.9889 + }, + { + "start": 33276.14, + "end": 33277.93, + "probability": 0.8696 + }, + { + "start": 33278.2, + "end": 33279.66, + "probability": 0.864 + }, + { + "start": 33280.14, + "end": 33280.64, + "probability": 0.7141 + }, + { + "start": 33280.7, + "end": 33282.58, + "probability": 0.9532 + }, + { + "start": 33282.72, + "end": 33283.54, + "probability": 0.6972 + }, + { + "start": 33283.86, + "end": 33284.98, + "probability": 0.8544 + }, + { + "start": 33285.18, + "end": 33288.83, + "probability": 0.9905 + }, + { + "start": 33289.98, + "end": 33293.74, + "probability": 0.9574 + }, + { + "start": 33293.92, + "end": 33294.94, + "probability": 0.8663 + }, + { + "start": 33295.0, + "end": 33296.86, + "probability": 0.7169 + }, + { + "start": 33296.94, + "end": 33298.7, + "probability": 0.5645 + }, + { + "start": 33298.84, + "end": 33301.3, + "probability": 0.8887 + }, + { + "start": 33302.18, + "end": 33302.74, + "probability": 0.349 + }, + { + "start": 33302.82, + "end": 33305.56, + "probability": 0.8813 + }, + { + "start": 33305.56, + "end": 33310.78, + "probability": 0.9368 + }, + { + "start": 33311.24, + "end": 33313.08, + "probability": 0.9763 + }, + { + "start": 33313.14, + "end": 33315.0, + "probability": 0.9105 + }, + { + "start": 33315.12, + "end": 33318.12, + "probability": 0.9896 + }, + { + "start": 33318.46, + "end": 33320.34, + "probability": 0.8916 + }, + { + "start": 33320.4, + "end": 33323.52, + "probability": 0.5712 + }, + { + "start": 33323.58, + "end": 33324.6, + "probability": 0.9138 + }, + { + "start": 33325.06, + "end": 33325.88, + "probability": 0.7812 + }, + { + "start": 33325.94, + "end": 33326.6, + "probability": 0.9647 + }, + { + "start": 33326.76, + "end": 33327.19, + "probability": 0.8026 + }, + { + "start": 33327.42, + "end": 33328.16, + "probability": 0.4316 + }, + { + "start": 33328.74, + "end": 33330.46, + "probability": 0.8113 + }, + { + "start": 33330.54, + "end": 33331.88, + "probability": 0.9679 + }, + { + "start": 33331.96, + "end": 33334.14, + "probability": 0.9313 + }, + { + "start": 33334.28, + "end": 33335.82, + "probability": 0.9297 + }, + { + "start": 33336.04, + "end": 33337.41, + "probability": 0.9656 + }, + { + "start": 33338.02, + "end": 33339.72, + "probability": 0.8302 + }, + { + "start": 33341.08, + "end": 33343.4, + "probability": 0.8027 + }, + { + "start": 33343.74, + "end": 33347.02, + "probability": 0.9655 + }, + { + "start": 33347.56, + "end": 33350.14, + "probability": 0.9453 + }, + { + "start": 33350.66, + "end": 33351.16, + "probability": 0.5421 + }, + { + "start": 33351.26, + "end": 33354.44, + "probability": 0.9343 + }, + { + "start": 33354.44, + "end": 33356.64, + "probability": 0.9618 + }, + { + "start": 33357.06, + "end": 33358.48, + "probability": 0.967 + }, + { + "start": 33358.62, + "end": 33359.98, + "probability": 0.8038 + }, + { + "start": 33360.04, + "end": 33361.89, + "probability": 0.9838 + }, + { + "start": 33362.38, + "end": 33363.58, + "probability": 0.9726 + }, + { + "start": 33364.68, + "end": 33366.96, + "probability": 0.9222 + }, + { + "start": 33367.72, + "end": 33371.48, + "probability": 0.9688 + }, + { + "start": 33371.58, + "end": 33372.72, + "probability": 0.8862 + }, + { + "start": 33373.54, + "end": 33375.01, + "probability": 0.5466 + }, + { + "start": 33375.42, + "end": 33378.72, + "probability": 0.9743 + }, + { + "start": 33379.14, + "end": 33383.42, + "probability": 0.7499 + }, + { + "start": 33383.88, + "end": 33384.76, + "probability": 0.8529 + }, + { + "start": 33385.36, + "end": 33387.42, + "probability": 0.9541 + }, + { + "start": 33387.6, + "end": 33394.38, + "probability": 0.9834 + }, + { + "start": 33394.86, + "end": 33397.68, + "probability": 0.8627 + }, + { + "start": 33397.76, + "end": 33400.69, + "probability": 0.9958 + }, + { + "start": 33400.88, + "end": 33403.26, + "probability": 0.8734 + }, + { + "start": 33403.42, + "end": 33404.28, + "probability": 0.8257 + }, + { + "start": 33404.54, + "end": 33405.6, + "probability": 0.9814 + }, + { + "start": 33405.78, + "end": 33406.4, + "probability": 0.852 + }, + { + "start": 33407.18, + "end": 33408.15, + "probability": 0.5247 + }, + { + "start": 33408.32, + "end": 33410.62, + "probability": 0.8829 + }, + { + "start": 33411.7, + "end": 33415.12, + "probability": 0.7964 + }, + { + "start": 33415.76, + "end": 33419.04, + "probability": 0.7609 + }, + { + "start": 33419.32, + "end": 33422.92, + "probability": 0.9903 + }, + { + "start": 33423.08, + "end": 33423.64, + "probability": 0.7885 + }, + { + "start": 33423.88, + "end": 33424.68, + "probability": 0.8735 + }, + { + "start": 33424.74, + "end": 33425.5, + "probability": 0.9444 + }, + { + "start": 33425.7, + "end": 33426.52, + "probability": 0.9559 + }, + { + "start": 33426.98, + "end": 33427.86, + "probability": 0.8855 + }, + { + "start": 33427.94, + "end": 33428.78, + "probability": 0.829 + }, + { + "start": 33430.06, + "end": 33431.8, + "probability": 0.9574 + }, + { + "start": 33431.86, + "end": 33436.22, + "probability": 0.9571 + }, + { + "start": 33436.8, + "end": 33437.96, + "probability": 0.7013 + }, + { + "start": 33438.04, + "end": 33441.56, + "probability": 0.9771 + }, + { + "start": 33441.98, + "end": 33444.62, + "probability": 0.9078 + }, + { + "start": 33445.06, + "end": 33448.36, + "probability": 0.9077 + }, + { + "start": 33448.72, + "end": 33451.14, + "probability": 0.9595 + }, + { + "start": 33451.42, + "end": 33452.27, + "probability": 0.926 + }, + { + "start": 33453.22, + "end": 33455.8, + "probability": 0.712 + }, + { + "start": 33456.12, + "end": 33459.33, + "probability": 0.7681 + }, + { + "start": 33459.54, + "end": 33462.3, + "probability": 0.9926 + }, + { + "start": 33462.78, + "end": 33464.11, + "probability": 0.9966 + }, + { + "start": 33465.34, + "end": 33467.42, + "probability": 0.7639 + }, + { + "start": 33467.52, + "end": 33469.98, + "probability": 0.9934 + }, + { + "start": 33469.98, + "end": 33473.44, + "probability": 0.9958 + }, + { + "start": 33474.52, + "end": 33476.94, + "probability": 0.7871 + }, + { + "start": 33477.0, + "end": 33478.4, + "probability": 0.6949 + }, + { + "start": 33478.6, + "end": 33479.75, + "probability": 0.9293 + }, + { + "start": 33481.4, + "end": 33482.62, + "probability": 0.938 + }, + { + "start": 33483.52, + "end": 33484.35, + "probability": 0.7366 + }, + { + "start": 33485.1, + "end": 33486.77, + "probability": 0.7366 + }, + { + "start": 33487.26, + "end": 33489.48, + "probability": 0.8109 + }, + { + "start": 33490.02, + "end": 33492.16, + "probability": 0.9377 + }, + { + "start": 33492.16, + "end": 33494.2, + "probability": 0.8755 + }, + { + "start": 33495.38, + "end": 33498.16, + "probability": 0.9023 + }, + { + "start": 33499.36, + "end": 33500.14, + "probability": 0.7223 + }, + { + "start": 33500.26, + "end": 33502.82, + "probability": 0.8333 + }, + { + "start": 33503.44, + "end": 33504.64, + "probability": 0.9813 + }, + { + "start": 33505.74, + "end": 33507.86, + "probability": 0.9888 + }, + { + "start": 33507.98, + "end": 33511.16, + "probability": 0.9928 + }, + { + "start": 33511.16, + "end": 33514.6, + "probability": 0.9814 + }, + { + "start": 33514.62, + "end": 33515.8, + "probability": 0.8081 + }, + { + "start": 33516.32, + "end": 33518.62, + "probability": 0.8639 + }, + { + "start": 33518.88, + "end": 33521.08, + "probability": 0.9078 + }, + { + "start": 33521.16, + "end": 33523.72, + "probability": 0.9546 + }, + { + "start": 33524.14, + "end": 33525.92, + "probability": 0.9989 + }, + { + "start": 33525.98, + "end": 33529.84, + "probability": 0.9701 + }, + { + "start": 33530.8, + "end": 33532.12, + "probability": 0.9084 + }, + { + "start": 33532.2, + "end": 33534.72, + "probability": 0.9434 + }, + { + "start": 33534.82, + "end": 33536.76, + "probability": 0.9259 + }, + { + "start": 33537.94, + "end": 33545.08, + "probability": 0.9924 + }, + { + "start": 33546.0, + "end": 33550.44, + "probability": 0.6814 + }, + { + "start": 33551.06, + "end": 33551.42, + "probability": 0.5567 + }, + { + "start": 33551.48, + "end": 33553.48, + "probability": 0.6897 + }, + { + "start": 33553.5, + "end": 33554.6, + "probability": 0.8528 + }, + { + "start": 33555.58, + "end": 33556.08, + "probability": 0.2925 + }, + { + "start": 33556.32, + "end": 33558.22, + "probability": 0.8356 + }, + { + "start": 33558.3, + "end": 33558.89, + "probability": 0.7308 + }, + { + "start": 33559.2, + "end": 33563.13, + "probability": 0.519 + }, + { + "start": 33563.52, + "end": 33566.17, + "probability": 0.8252 + }, + { + "start": 33566.92, + "end": 33575.06, + "probability": 0.8639 + }, + { + "start": 33575.82, + "end": 33576.9, + "probability": 0.3218 + }, + { + "start": 33577.54, + "end": 33579.04, + "probability": 0.502 + }, + { + "start": 33579.04, + "end": 33581.18, + "probability": 0.8846 + }, + { + "start": 33581.3, + "end": 33582.82, + "probability": 0.9962 + }, + { + "start": 33582.84, + "end": 33587.56, + "probability": 0.9515 + }, + { + "start": 33587.88, + "end": 33588.49, + "probability": 0.8418 + }, + { + "start": 33589.02, + "end": 33591.37, + "probability": 0.9954 + }, + { + "start": 33592.28, + "end": 33595.02, + "probability": 0.9798 + }, + { + "start": 33595.54, + "end": 33597.49, + "probability": 0.9932 + }, + { + "start": 33598.14, + "end": 33598.68, + "probability": 0.7512 + }, + { + "start": 33598.86, + "end": 33602.38, + "probability": 0.8109 + }, + { + "start": 33602.96, + "end": 33605.24, + "probability": 0.9171 + }, + { + "start": 33605.52, + "end": 33605.92, + "probability": 0.5812 + }, + { + "start": 33606.16, + "end": 33607.27, + "probability": 0.9303 + }, + { + "start": 33607.74, + "end": 33608.1, + "probability": 0.8857 + }, + { + "start": 33608.14, + "end": 33609.4, + "probability": 0.7858 + }, + { + "start": 33609.5, + "end": 33610.48, + "probability": 0.6821 + }, + { + "start": 33610.56, + "end": 33611.48, + "probability": 0.9546 + }, + { + "start": 33611.52, + "end": 33611.8, + "probability": 0.856 + }, + { + "start": 33612.04, + "end": 33612.92, + "probability": 0.0513 + }, + { + "start": 33613.48, + "end": 33619.7, + "probability": 0.8442 + }, + { + "start": 33620.16, + "end": 33621.9, + "probability": 0.3451 + }, + { + "start": 33622.08, + "end": 33622.9, + "probability": 0.4932 + }, + { + "start": 33623.06, + "end": 33626.64, + "probability": 0.798 + }, + { + "start": 33626.76, + "end": 33627.52, + "probability": 0.8394 + }, + { + "start": 33627.6, + "end": 33628.52, + "probability": 0.5256 + }, + { + "start": 33628.74, + "end": 33629.69, + "probability": 0.7912 + }, + { + "start": 33630.16, + "end": 33632.74, + "probability": 0.9718 + }, + { + "start": 33632.74, + "end": 33633.82, + "probability": 0.9561 + }, + { + "start": 33634.26, + "end": 33635.94, + "probability": 0.3254 + }, + { + "start": 33637.78, + "end": 33638.96, + "probability": 0.215 + }, + { + "start": 33639.02, + "end": 33639.92, + "probability": 0.6763 + }, + { + "start": 33639.92, + "end": 33645.42, + "probability": 0.6989 + }, + { + "start": 33645.54, + "end": 33647.44, + "probability": 0.8046 + }, + { + "start": 33647.68, + "end": 33652.06, + "probability": 0.9065 + }, + { + "start": 33652.06, + "end": 33652.12, + "probability": 0.0398 + }, + { + "start": 33652.24, + "end": 33654.36, + "probability": 0.8655 + }, + { + "start": 33656.02, + "end": 33657.74, + "probability": 0.3532 + }, + { + "start": 33657.88, + "end": 33661.12, + "probability": 0.7218 + }, + { + "start": 33661.34, + "end": 33662.62, + "probability": 0.6651 + }, + { + "start": 33663.7, + "end": 33665.52, + "probability": 0.3933 + }, + { + "start": 33665.52, + "end": 33666.98, + "probability": 0.8246 + }, + { + "start": 33667.3, + "end": 33668.9, + "probability": 0.8668 + }, + { + "start": 33669.1, + "end": 33671.4, + "probability": 0.6106 + }, + { + "start": 33671.4, + "end": 33672.34, + "probability": 0.4571 + }, + { + "start": 33672.68, + "end": 33673.78, + "probability": 0.674 + }, + { + "start": 33673.92, + "end": 33675.04, + "probability": 0.8475 + }, + { + "start": 33675.2, + "end": 33677.62, + "probability": 0.9548 + }, + { + "start": 33678.62, + "end": 33679.22, + "probability": 0.37 + }, + { + "start": 33679.36, + "end": 33682.54, + "probability": 0.9058 + }, + { + "start": 33683.4, + "end": 33684.0, + "probability": 0.412 + }, + { + "start": 33684.86, + "end": 33685.8, + "probability": 0.672 + }, + { + "start": 33686.04, + "end": 33686.74, + "probability": 0.9626 + }, + { + "start": 33687.0, + "end": 33687.66, + "probability": 0.8903 + }, + { + "start": 33687.84, + "end": 33689.49, + "probability": 0.9927 + }, + { + "start": 33690.1, + "end": 33694.64, + "probability": 0.6975 + }, + { + "start": 33696.32, + "end": 33697.02, + "probability": 0.9209 + }, + { + "start": 33702.74, + "end": 33703.86, + "probability": 0.8563 + }, + { + "start": 33705.86, + "end": 33712.7, + "probability": 0.9364 + }, + { + "start": 33713.26, + "end": 33714.8, + "probability": 0.3706 + }, + { + "start": 33715.26, + "end": 33718.46, + "probability": 0.8478 + }, + { + "start": 33718.72, + "end": 33721.24, + "probability": 0.8207 + }, + { + "start": 33723.12, + "end": 33726.3, + "probability": 0.9448 + }, + { + "start": 33727.08, + "end": 33728.52, + "probability": 0.3354 + }, + { + "start": 33728.82, + "end": 33729.52, + "probability": 0.6258 + }, + { + "start": 33730.9, + "end": 33733.12, + "probability": 0.0431 + }, + { + "start": 33733.3, + "end": 33733.37, + "probability": 0.3336 + }, + { + "start": 33734.6, + "end": 33736.32, + "probability": 0.7539 + }, + { + "start": 33736.92, + "end": 33740.22, + "probability": 0.7166 + }, + { + "start": 33741.4, + "end": 33742.14, + "probability": 0.6815 + }, + { + "start": 33742.24, + "end": 33742.84, + "probability": 0.8823 + }, + { + "start": 33742.94, + "end": 33745.52, + "probability": 0.9845 + }, + { + "start": 33746.28, + "end": 33749.44, + "probability": 0.9182 + }, + { + "start": 33750.12, + "end": 33752.62, + "probability": 0.9811 + }, + { + "start": 33754.32, + "end": 33757.02, + "probability": 0.9447 + }, + { + "start": 33757.42, + "end": 33760.4, + "probability": 0.9827 + }, + { + "start": 33761.68, + "end": 33765.58, + "probability": 0.9891 + }, + { + "start": 33765.76, + "end": 33770.7, + "probability": 0.7963 + }, + { + "start": 33770.7, + "end": 33773.54, + "probability": 0.9369 + }, + { + "start": 33775.28, + "end": 33778.88, + "probability": 0.9289 + }, + { + "start": 33778.94, + "end": 33782.16, + "probability": 0.9727 + }, + { + "start": 33783.2, + "end": 33783.46, + "probability": 0.4764 + }, + { + "start": 33783.6, + "end": 33788.42, + "probability": 0.8799 + }, + { + "start": 33788.84, + "end": 33790.08, + "probability": 0.0617 + }, + { + "start": 33792.44, + "end": 33795.32, + "probability": 0.3145 + }, + { + "start": 33795.96, + "end": 33799.42, + "probability": 0.9868 + }, + { + "start": 33800.18, + "end": 33803.7, + "probability": 0.9961 + }, + { + "start": 33804.32, + "end": 33808.52, + "probability": 0.9945 + }, + { + "start": 33809.96, + "end": 33813.08, + "probability": 0.7825 + }, + { + "start": 33814.35, + "end": 33818.4, + "probability": 0.6306 + }, + { + "start": 33818.64, + "end": 33822.68, + "probability": 0.4893 + }, + { + "start": 33823.4, + "end": 33824.5, + "probability": 0.0838 + }, + { + "start": 33825.9, + "end": 33829.3, + "probability": 0.7429 + }, + { + "start": 33829.3, + "end": 33834.28, + "probability": 0.9695 + }, + { + "start": 33834.28, + "end": 33838.08, + "probability": 0.9782 + }, + { + "start": 33839.04, + "end": 33839.6, + "probability": 0.1181 + }, + { + "start": 33839.78, + "end": 33843.22, + "probability": 0.9437 + }, + { + "start": 33844.46, + "end": 33847.4, + "probability": 0.9964 + }, + { + "start": 33847.58, + "end": 33849.48, + "probability": 0.8364 + }, + { + "start": 33850.0, + "end": 33852.58, + "probability": 0.837 + }, + { + "start": 33853.44, + "end": 33856.68, + "probability": 0.9569 + }, + { + "start": 33857.7, + "end": 33860.68, + "probability": 0.9916 + }, + { + "start": 33860.76, + "end": 33862.4, + "probability": 0.9615 + }, + { + "start": 33863.58, + "end": 33863.78, + "probability": 0.6737 + }, + { + "start": 33863.84, + "end": 33865.0, + "probability": 0.8129 + }, + { + "start": 33865.1, + "end": 33868.0, + "probability": 0.9545 + }, + { + "start": 33868.0, + "end": 33871.94, + "probability": 0.9733 + }, + { + "start": 33873.06, + "end": 33873.38, + "probability": 0.3933 + }, + { + "start": 33873.52, + "end": 33877.0, + "probability": 0.9711 + }, + { + "start": 33877.66, + "end": 33881.14, + "probability": 0.9908 + }, + { + "start": 33881.14, + "end": 33885.06, + "probability": 0.9943 + }, + { + "start": 33885.2, + "end": 33886.52, + "probability": 0.9713 + }, + { + "start": 33887.68, + "end": 33890.98, + "probability": 0.7914 + }, + { + "start": 33890.98, + "end": 33893.7, + "probability": 0.9515 + }, + { + "start": 33894.4, + "end": 33899.9, + "probability": 0.9914 + }, + { + "start": 33899.9, + "end": 33903.46, + "probability": 0.9939 + }, + { + "start": 33905.04, + "end": 33905.22, + "probability": 0.0294 + }, + { + "start": 33906.92, + "end": 33909.6, + "probability": 0.9562 + }, + { + "start": 33911.14, + "end": 33914.36, + "probability": 0.9814 + }, + { + "start": 33914.36, + "end": 33917.96, + "probability": 0.9991 + }, + { + "start": 33919.14, + "end": 33920.5, + "probability": 0.7026 + }, + { + "start": 33920.9, + "end": 33924.1, + "probability": 0.9218 + }, + { + "start": 33925.18, + "end": 33930.84, + "probability": 0.9125 + }, + { + "start": 33930.84, + "end": 33935.88, + "probability": 0.9944 + }, + { + "start": 33936.5, + "end": 33942.0, + "probability": 0.9821 + }, + { + "start": 33942.0, + "end": 33946.62, + "probability": 0.9659 + }, + { + "start": 33947.42, + "end": 33950.48, + "probability": 0.994 + }, + { + "start": 33951.7, + "end": 33954.4, + "probability": 0.9932 + }, + { + "start": 33954.54, + "end": 33958.68, + "probability": 0.9572 + }, + { + "start": 33958.68, + "end": 33965.38, + "probability": 0.7979 + }, + { + "start": 33965.66, + "end": 33967.9, + "probability": 0.7566 + }, + { + "start": 33968.16, + "end": 33973.22, + "probability": 0.9446 + }, + { + "start": 33974.12, + "end": 33977.62, + "probability": 0.9486 + }, + { + "start": 33978.78, + "end": 33982.4, + "probability": 0.9949 + }, + { + "start": 33985.1, + "end": 33987.52, + "probability": 0.9293 + }, + { + "start": 33988.32, + "end": 33989.06, + "probability": 0.4036 + }, + { + "start": 33989.32, + "end": 33991.98, + "probability": 0.9904 + }, + { + "start": 33991.98, + "end": 33996.08, + "probability": 0.693 + }, + { + "start": 33996.96, + "end": 34001.06, + "probability": 0.9629 + }, + { + "start": 34001.98, + "end": 34004.02, + "probability": 0.7734 + }, + { + "start": 34004.1, + "end": 34005.84, + "probability": 0.9977 + }, + { + "start": 34006.58, + "end": 34009.52, + "probability": 0.9937 + }, + { + "start": 34009.56, + "end": 34012.74, + "probability": 0.9717 + }, + { + "start": 34013.78, + "end": 34014.18, + "probability": 0.6583 + }, + { + "start": 34014.3, + "end": 34017.14, + "probability": 0.9908 + }, + { + "start": 34017.14, + "end": 34021.42, + "probability": 0.9766 + }, + { + "start": 34022.26, + "end": 34026.14, + "probability": 0.9977 + }, + { + "start": 34026.9, + "end": 34027.65, + "probability": 0.8731 + }, + { + "start": 34028.36, + "end": 34030.62, + "probability": 0.9944 + }, + { + "start": 34031.74, + "end": 34032.34, + "probability": 0.8141 + }, + { + "start": 34032.86, + "end": 34033.96, + "probability": 0.6715 + }, + { + "start": 34034.3, + "end": 34035.58, + "probability": 0.5228 + }, + { + "start": 34036.44, + "end": 34038.68, + "probability": 0.5626 + }, + { + "start": 34040.31, + "end": 34044.26, + "probability": 0.7207 + }, + { + "start": 34044.98, + "end": 34049.16, + "probability": 0.7682 + }, + { + "start": 34054.9, + "end": 34056.68, + "probability": 0.6796 + }, + { + "start": 34057.36, + "end": 34060.4, + "probability": 0.9355 + }, + { + "start": 34061.56, + "end": 34064.0, + "probability": 0.7682 + }, + { + "start": 34064.12, + "end": 34065.44, + "probability": 0.9634 + }, + { + "start": 34066.1, + "end": 34068.96, + "probability": 0.7341 + }, + { + "start": 34070.1, + "end": 34071.06, + "probability": 0.7952 + }, + { + "start": 34072.5, + "end": 34077.58, + "probability": 0.1645 + }, + { + "start": 34093.88, + "end": 34094.14, + "probability": 0.3676 + }, + { + "start": 34094.14, + "end": 34094.34, + "probability": 0.1499 + }, + { + "start": 34094.88, + "end": 34096.92, + "probability": 0.5283 + }, + { + "start": 34096.98, + "end": 34101.08, + "probability": 0.8295 + }, + { + "start": 34101.82, + "end": 34104.71, + "probability": 0.9127 + }, + { + "start": 34106.16, + "end": 34106.66, + "probability": 0.4756 + }, + { + "start": 34106.72, + "end": 34107.0, + "probability": 0.7592 + }, + { + "start": 34107.88, + "end": 34108.02, + "probability": 0.0012 + } + ], + "segments_count": 11364, + "words_count": 56767, + "avg_words_per_segment": 4.9953, + "avg_segment_duration": 2.2336, + "avg_words_per_minute": 99.721, + "plenum_id": "13983", + "duration": 34155.5, + "title": null, + "plenum_date": "2011-06-15" +} \ No newline at end of file