diff --git "a/63634/metadata.json" "b/63634/metadata.json" new file mode 100644--- /dev/null +++ "b/63634/metadata.json" @@ -0,0 +1,27172 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "63634", + "quality_score": 0.9048, + "per_segment_quality_scores": [ + { + "start": 85.63, + "end": 88.14, + "probability": 0.0204 + }, + { + "start": 88.14, + "end": 89.26, + "probability": 0.0189 + }, + { + "start": 90.16, + "end": 90.38, + "probability": 0.0002 + }, + { + "start": 92.3, + "end": 93.0, + "probability": 0.1763 + }, + { + "start": 93.88, + "end": 100.0, + "probability": 0.0279 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.08, + "end": 127.6, + "probability": 0.6535 + }, + { + "start": 128.08, + "end": 132.34, + "probability": 0.8577 + }, + { + "start": 132.46, + "end": 132.96, + "probability": 0.8897 + }, + { + "start": 133.04, + "end": 137.38, + "probability": 0.8332 + }, + { + "start": 137.44, + "end": 138.92, + "probability": 0.9307 + }, + { + "start": 139.74, + "end": 141.84, + "probability": 0.6262 + }, + { + "start": 145.1, + "end": 146.64, + "probability": 0.9448 + }, + { + "start": 146.76, + "end": 149.26, + "probability": 0.5968 + }, + { + "start": 160.26, + "end": 161.28, + "probability": 0.5502 + }, + { + "start": 161.58, + "end": 163.48, + "probability": 0.6039 + }, + { + "start": 164.16, + "end": 167.2, + "probability": 0.9846 + }, + { + "start": 167.3, + "end": 168.6, + "probability": 0.9752 + }, + { + "start": 168.66, + "end": 169.44, + "probability": 0.8776 + }, + { + "start": 169.54, + "end": 170.38, + "probability": 0.8702 + }, + { + "start": 171.02, + "end": 174.26, + "probability": 0.9482 + }, + { + "start": 174.36, + "end": 178.94, + "probability": 0.9983 + }, + { + "start": 179.56, + "end": 180.9, + "probability": 0.8358 + }, + { + "start": 182.4, + "end": 183.79, + "probability": 0.9189 + }, + { + "start": 184.58, + "end": 189.06, + "probability": 0.9928 + }, + { + "start": 189.12, + "end": 190.3, + "probability": 0.9698 + }, + { + "start": 190.96, + "end": 194.82, + "probability": 0.7392 + }, + { + "start": 195.56, + "end": 197.68, + "probability": 0.8374 + }, + { + "start": 198.28, + "end": 198.9, + "probability": 0.7327 + }, + { + "start": 198.98, + "end": 199.3, + "probability": 0.8391 + }, + { + "start": 199.46, + "end": 201.12, + "probability": 0.9745 + }, + { + "start": 201.18, + "end": 204.54, + "probability": 0.9939 + }, + { + "start": 204.54, + "end": 207.82, + "probability": 0.9963 + }, + { + "start": 208.1, + "end": 209.82, + "probability": 0.999 + }, + { + "start": 209.9, + "end": 211.98, + "probability": 0.5008 + }, + { + "start": 212.08, + "end": 212.5, + "probability": 0.8427 + }, + { + "start": 212.6, + "end": 213.24, + "probability": 0.8928 + }, + { + "start": 213.68, + "end": 218.46, + "probability": 0.9772 + }, + { + "start": 218.84, + "end": 220.14, + "probability": 0.8384 + }, + { + "start": 221.58, + "end": 222.66, + "probability": 0.9985 + }, + { + "start": 222.88, + "end": 225.48, + "probability": 0.9287 + }, + { + "start": 226.98, + "end": 228.18, + "probability": 0.9101 + }, + { + "start": 228.26, + "end": 230.3, + "probability": 0.9395 + }, + { + "start": 230.54, + "end": 230.96, + "probability": 0.6071 + }, + { + "start": 231.02, + "end": 232.08, + "probability": 0.8126 + }, + { + "start": 232.18, + "end": 234.14, + "probability": 0.9607 + }, + { + "start": 234.34, + "end": 234.96, + "probability": 0.8621 + }, + { + "start": 235.06, + "end": 235.4, + "probability": 0.322 + }, + { + "start": 235.62, + "end": 237.86, + "probability": 0.8383 + }, + { + "start": 238.56, + "end": 240.74, + "probability": 0.9384 + }, + { + "start": 241.24, + "end": 246.56, + "probability": 0.9491 + }, + { + "start": 246.98, + "end": 251.0, + "probability": 0.979 + }, + { + "start": 251.54, + "end": 256.24, + "probability": 0.9978 + }, + { + "start": 256.32, + "end": 257.52, + "probability": 0.888 + }, + { + "start": 258.08, + "end": 265.26, + "probability": 0.9791 + }, + { + "start": 265.76, + "end": 267.44, + "probability": 0.5346 + }, + { + "start": 268.08, + "end": 271.24, + "probability": 0.992 + }, + { + "start": 272.04, + "end": 276.08, + "probability": 0.9974 + }, + { + "start": 277.18, + "end": 279.94, + "probability": 0.9787 + }, + { + "start": 280.02, + "end": 282.16, + "probability": 0.7102 + }, + { + "start": 283.22, + "end": 286.1, + "probability": 0.9927 + }, + { + "start": 286.46, + "end": 286.48, + "probability": 0.1912 + }, + { + "start": 287.9, + "end": 292.56, + "probability": 0.9878 + }, + { + "start": 292.64, + "end": 294.74, + "probability": 0.9897 + }, + { + "start": 294.84, + "end": 301.96, + "probability": 0.9543 + }, + { + "start": 302.38, + "end": 304.06, + "probability": 0.9733 + }, + { + "start": 304.36, + "end": 305.78, + "probability": 0.9937 + }, + { + "start": 306.26, + "end": 309.38, + "probability": 0.9966 + }, + { + "start": 309.7, + "end": 313.64, + "probability": 0.9792 + }, + { + "start": 313.72, + "end": 316.6, + "probability": 0.8843 + }, + { + "start": 316.78, + "end": 318.2, + "probability": 0.9751 + }, + { + "start": 318.26, + "end": 319.9, + "probability": 0.9511 + }, + { + "start": 320.4, + "end": 323.04, + "probability": 0.9779 + }, + { + "start": 323.4, + "end": 327.14, + "probability": 0.9736 + }, + { + "start": 327.24, + "end": 330.02, + "probability": 0.9878 + }, + { + "start": 330.58, + "end": 332.48, + "probability": 0.9263 + }, + { + "start": 332.58, + "end": 332.76, + "probability": 0.7578 + }, + { + "start": 332.84, + "end": 335.06, + "probability": 0.9963 + }, + { + "start": 335.7, + "end": 338.2, + "probability": 0.9434 + }, + { + "start": 338.4, + "end": 341.08, + "probability": 0.9015 + }, + { + "start": 341.08, + "end": 341.38, + "probability": 0.6542 + }, + { + "start": 341.96, + "end": 343.36, + "probability": 0.855 + }, + { + "start": 345.06, + "end": 346.6, + "probability": 0.999 + }, + { + "start": 346.72, + "end": 347.96, + "probability": 0.8836 + }, + { + "start": 348.28, + "end": 349.46, + "probability": 0.9297 + }, + { + "start": 349.5, + "end": 355.64, + "probability": 0.9725 + }, + { + "start": 355.98, + "end": 357.58, + "probability": 0.6251 + }, + { + "start": 357.96, + "end": 359.97, + "probability": 0.5817 + }, + { + "start": 360.96, + "end": 364.02, + "probability": 0.9314 + }, + { + "start": 365.8, + "end": 368.86, + "probability": 0.9763 + }, + { + "start": 368.86, + "end": 372.14, + "probability": 0.9358 + }, + { + "start": 372.56, + "end": 374.24, + "probability": 0.95 + }, + { + "start": 374.42, + "end": 380.03, + "probability": 0.9961 + }, + { + "start": 381.28, + "end": 383.88, + "probability": 0.9974 + }, + { + "start": 383.9, + "end": 384.82, + "probability": 0.6887 + }, + { + "start": 384.92, + "end": 385.52, + "probability": 0.5746 + }, + { + "start": 385.6, + "end": 385.74, + "probability": 0.8613 + }, + { + "start": 385.74, + "end": 389.04, + "probability": 0.9678 + }, + { + "start": 390.2, + "end": 395.92, + "probability": 0.9869 + }, + { + "start": 396.56, + "end": 401.22, + "probability": 0.9966 + }, + { + "start": 401.22, + "end": 405.02, + "probability": 0.9961 + }, + { + "start": 405.58, + "end": 409.78, + "probability": 0.9988 + }, + { + "start": 409.78, + "end": 413.36, + "probability": 0.9989 + }, + { + "start": 413.36, + "end": 417.1, + "probability": 0.9998 + }, + { + "start": 419.04, + "end": 420.82, + "probability": 0.7036 + }, + { + "start": 421.12, + "end": 421.76, + "probability": 0.3398 + }, + { + "start": 421.94, + "end": 423.8, + "probability": 0.6081 + }, + { + "start": 424.46, + "end": 427.7, + "probability": 0.8859 + }, + { + "start": 427.78, + "end": 428.82, + "probability": 0.7836 + }, + { + "start": 429.98, + "end": 432.16, + "probability": 0.5835 + }, + { + "start": 432.7, + "end": 432.9, + "probability": 0.7338 + }, + { + "start": 433.56, + "end": 434.64, + "probability": 0.9508 + }, + { + "start": 435.28, + "end": 436.62, + "probability": 0.9716 + }, + { + "start": 436.82, + "end": 437.76, + "probability": 0.7432 + }, + { + "start": 437.92, + "end": 439.6, + "probability": 0.9788 + }, + { + "start": 439.8, + "end": 440.84, + "probability": 0.345 + }, + { + "start": 441.56, + "end": 444.26, + "probability": 0.9023 + }, + { + "start": 445.26, + "end": 448.18, + "probability": 0.6854 + }, + { + "start": 450.1, + "end": 453.3, + "probability": 0.8976 + }, + { + "start": 453.4, + "end": 454.28, + "probability": 0.9277 + }, + { + "start": 454.42, + "end": 458.0, + "probability": 0.6382 + }, + { + "start": 458.62, + "end": 459.98, + "probability": 0.6833 + }, + { + "start": 460.1, + "end": 460.64, + "probability": 0.866 + }, + { + "start": 460.86, + "end": 462.88, + "probability": 0.9874 + }, + { + "start": 463.1, + "end": 465.46, + "probability": 0.7224 + }, + { + "start": 465.86, + "end": 470.84, + "probability": 0.9563 + }, + { + "start": 471.62, + "end": 473.26, + "probability": 0.9424 + }, + { + "start": 474.32, + "end": 479.02, + "probability": 0.991 + }, + { + "start": 479.2, + "end": 482.46, + "probability": 0.9834 + }, + { + "start": 483.02, + "end": 485.2, + "probability": 0.804 + }, + { + "start": 485.98, + "end": 487.73, + "probability": 0.9553 + }, + { + "start": 488.08, + "end": 489.82, + "probability": 0.9415 + }, + { + "start": 491.48, + "end": 495.14, + "probability": 0.9899 + }, + { + "start": 495.14, + "end": 499.14, + "probability": 0.9937 + }, + { + "start": 499.54, + "end": 502.16, + "probability": 0.999 + }, + { + "start": 502.62, + "end": 503.74, + "probability": 0.9752 + }, + { + "start": 503.82, + "end": 504.72, + "probability": 0.9546 + }, + { + "start": 504.82, + "end": 505.66, + "probability": 0.8209 + }, + { + "start": 506.28, + "end": 506.96, + "probability": 0.8437 + }, + { + "start": 507.02, + "end": 507.88, + "probability": 0.2847 + }, + { + "start": 508.62, + "end": 509.16, + "probability": 0.7217 + }, + { + "start": 510.72, + "end": 511.8, + "probability": 0.9672 + }, + { + "start": 511.96, + "end": 512.92, + "probability": 0.8241 + }, + { + "start": 513.28, + "end": 514.68, + "probability": 0.6053 + }, + { + "start": 514.72, + "end": 515.78, + "probability": 0.9227 + }, + { + "start": 515.84, + "end": 516.46, + "probability": 0.9056 + }, + { + "start": 516.54, + "end": 517.46, + "probability": 0.9495 + }, + { + "start": 517.86, + "end": 519.94, + "probability": 0.9963 + }, + { + "start": 520.78, + "end": 523.52, + "probability": 0.9958 + }, + { + "start": 524.0, + "end": 525.18, + "probability": 0.9941 + }, + { + "start": 525.46, + "end": 526.26, + "probability": 0.9889 + }, + { + "start": 526.96, + "end": 531.58, + "probability": 0.9962 + }, + { + "start": 532.12, + "end": 534.1, + "probability": 0.9965 + }, + { + "start": 534.12, + "end": 535.12, + "probability": 0.7595 + }, + { + "start": 535.94, + "end": 537.68, + "probability": 0.9019 + }, + { + "start": 537.74, + "end": 540.52, + "probability": 0.9932 + }, + { + "start": 541.18, + "end": 542.18, + "probability": 0.9462 + }, + { + "start": 542.28, + "end": 543.82, + "probability": 0.9941 + }, + { + "start": 544.2, + "end": 545.76, + "probability": 0.9644 + }, + { + "start": 547.44, + "end": 549.4, + "probability": 0.9961 + }, + { + "start": 549.5, + "end": 550.48, + "probability": 0.6808 + }, + { + "start": 550.6, + "end": 554.16, + "probability": 0.9944 + }, + { + "start": 554.16, + "end": 558.8, + "probability": 0.9816 + }, + { + "start": 559.36, + "end": 561.38, + "probability": 0.9077 + }, + { + "start": 562.04, + "end": 562.44, + "probability": 0.6743 + }, + { + "start": 563.52, + "end": 564.08, + "probability": 0.9544 + }, + { + "start": 564.9, + "end": 566.66, + "probability": 0.9728 + }, + { + "start": 566.96, + "end": 569.12, + "probability": 0.7524 + }, + { + "start": 569.18, + "end": 569.86, + "probability": 0.8231 + }, + { + "start": 570.06, + "end": 571.6, + "probability": 0.8237 + }, + { + "start": 571.74, + "end": 572.72, + "probability": 0.9429 + }, + { + "start": 573.68, + "end": 575.0, + "probability": 0.8719 + }, + { + "start": 575.78, + "end": 577.8, + "probability": 0.9785 + }, + { + "start": 578.12, + "end": 581.1, + "probability": 0.7564 + }, + { + "start": 581.52, + "end": 582.92, + "probability": 0.6552 + }, + { + "start": 583.36, + "end": 585.5, + "probability": 0.9861 + }, + { + "start": 586.1, + "end": 591.28, + "probability": 0.9014 + }, + { + "start": 591.32, + "end": 593.56, + "probability": 0.9989 + }, + { + "start": 594.1, + "end": 594.8, + "probability": 0.2358 + }, + { + "start": 595.14, + "end": 596.76, + "probability": 0.8692 + }, + { + "start": 596.9, + "end": 600.36, + "probability": 0.979 + }, + { + "start": 601.16, + "end": 601.52, + "probability": 0.613 + }, + { + "start": 601.56, + "end": 606.4, + "probability": 0.8872 + }, + { + "start": 606.6, + "end": 610.3, + "probability": 0.9875 + }, + { + "start": 610.64, + "end": 611.76, + "probability": 0.4608 + }, + { + "start": 612.14, + "end": 614.24, + "probability": 0.9252 + }, + { + "start": 614.38, + "end": 618.4, + "probability": 0.92 + }, + { + "start": 618.8, + "end": 619.54, + "probability": 0.5441 + }, + { + "start": 619.7, + "end": 620.08, + "probability": 0.8704 + }, + { + "start": 620.18, + "end": 625.28, + "probability": 0.9966 + }, + { + "start": 625.36, + "end": 626.08, + "probability": 0.4227 + }, + { + "start": 626.1, + "end": 629.8, + "probability": 0.8589 + }, + { + "start": 629.94, + "end": 632.68, + "probability": 0.9246 + }, + { + "start": 632.72, + "end": 635.1, + "probability": 0.984 + }, + { + "start": 636.4, + "end": 637.72, + "probability": 0.9082 + }, + { + "start": 639.52, + "end": 639.64, + "probability": 0.9297 + }, + { + "start": 640.2, + "end": 642.2, + "probability": 0.9053 + }, + { + "start": 643.14, + "end": 646.64, + "probability": 0.9497 + }, + { + "start": 648.22, + "end": 651.52, + "probability": 0.8896 + }, + { + "start": 651.84, + "end": 652.18, + "probability": 0.5282 + }, + { + "start": 652.22, + "end": 653.92, + "probability": 0.9863 + }, + { + "start": 654.02, + "end": 655.84, + "probability": 0.9743 + }, + { + "start": 655.84, + "end": 660.38, + "probability": 0.9852 + }, + { + "start": 660.5, + "end": 663.64, + "probability": 0.9858 + }, + { + "start": 664.7, + "end": 666.32, + "probability": 0.8781 + }, + { + "start": 666.74, + "end": 666.9, + "probability": 0.7365 + }, + { + "start": 667.02, + "end": 668.64, + "probability": 0.9204 + }, + { + "start": 668.8, + "end": 669.88, + "probability": 0.6038 + }, + { + "start": 670.24, + "end": 674.84, + "probability": 0.9886 + }, + { + "start": 675.48, + "end": 679.62, + "probability": 0.9797 + }, + { + "start": 680.6, + "end": 681.82, + "probability": 0.9246 + }, + { + "start": 681.88, + "end": 682.28, + "probability": 0.3721 + }, + { + "start": 682.28, + "end": 684.84, + "probability": 0.9963 + }, + { + "start": 685.08, + "end": 686.0, + "probability": 0.6784 + }, + { + "start": 686.1, + "end": 687.4, + "probability": 0.8269 + }, + { + "start": 687.9, + "end": 690.66, + "probability": 0.9854 + }, + { + "start": 690.66, + "end": 693.72, + "probability": 0.9979 + }, + { + "start": 694.04, + "end": 696.16, + "probability": 0.998 + }, + { + "start": 696.7, + "end": 698.28, + "probability": 0.7904 + }, + { + "start": 698.78, + "end": 701.62, + "probability": 0.9941 + }, + { + "start": 702.1, + "end": 705.08, + "probability": 0.9901 + }, + { + "start": 705.08, + "end": 709.1, + "probability": 0.9989 + }, + { + "start": 709.38, + "end": 712.12, + "probability": 0.9917 + }, + { + "start": 713.68, + "end": 714.42, + "probability": 0.5166 + }, + { + "start": 714.56, + "end": 715.3, + "probability": 0.9714 + }, + { + "start": 715.4, + "end": 716.02, + "probability": 0.7529 + }, + { + "start": 716.08, + "end": 718.9, + "probability": 0.983 + }, + { + "start": 719.7, + "end": 721.46, + "probability": 0.7813 + }, + { + "start": 722.66, + "end": 724.08, + "probability": 0.9309 + }, + { + "start": 724.46, + "end": 726.18, + "probability": 0.9131 + }, + { + "start": 726.22, + "end": 726.58, + "probability": 0.7511 + }, + { + "start": 726.66, + "end": 727.26, + "probability": 0.6729 + }, + { + "start": 727.36, + "end": 727.74, + "probability": 0.421 + }, + { + "start": 727.94, + "end": 728.74, + "probability": 0.9786 + }, + { + "start": 730.12, + "end": 733.74, + "probability": 0.9784 + }, + { + "start": 734.28, + "end": 736.7, + "probability": 0.9943 + }, + { + "start": 737.0, + "end": 740.66, + "probability": 0.98 + }, + { + "start": 741.76, + "end": 743.92, + "probability": 0.9408 + }, + { + "start": 744.88, + "end": 748.0, + "probability": 0.9897 + }, + { + "start": 749.02, + "end": 750.62, + "probability": 0.9797 + }, + { + "start": 750.74, + "end": 751.74, + "probability": 0.9854 + }, + { + "start": 752.04, + "end": 753.62, + "probability": 0.9985 + }, + { + "start": 754.04, + "end": 754.46, + "probability": 0.5484 + }, + { + "start": 754.5, + "end": 755.3, + "probability": 0.8461 + }, + { + "start": 755.58, + "end": 756.26, + "probability": 0.3773 + }, + { + "start": 756.6, + "end": 758.38, + "probability": 0.881 + }, + { + "start": 758.5, + "end": 759.02, + "probability": 0.816 + }, + { + "start": 759.28, + "end": 759.76, + "probability": 0.8792 + }, + { + "start": 760.4, + "end": 763.1, + "probability": 0.7872 + }, + { + "start": 763.54, + "end": 763.96, + "probability": 0.8671 + }, + { + "start": 764.02, + "end": 767.38, + "probability": 0.9131 + }, + { + "start": 767.48, + "end": 772.96, + "probability": 0.9418 + }, + { + "start": 774.14, + "end": 776.84, + "probability": 0.6313 + }, + { + "start": 778.1, + "end": 780.54, + "probability": 0.9829 + }, + { + "start": 780.7, + "end": 781.84, + "probability": 0.7774 + }, + { + "start": 782.18, + "end": 782.6, + "probability": 0.538 + }, + { + "start": 782.66, + "end": 782.94, + "probability": 0.6042 + }, + { + "start": 782.98, + "end": 783.96, + "probability": 0.7448 + }, + { + "start": 784.56, + "end": 786.02, + "probability": 0.9333 + }, + { + "start": 796.7, + "end": 799.42, + "probability": 0.78 + }, + { + "start": 801.38, + "end": 805.62, + "probability": 0.8238 + }, + { + "start": 806.92, + "end": 808.96, + "probability": 0.9812 + }, + { + "start": 809.7, + "end": 811.28, + "probability": 0.9976 + }, + { + "start": 813.16, + "end": 814.0, + "probability": 0.9711 + }, + { + "start": 814.94, + "end": 815.34, + "probability": 0.9848 + }, + { + "start": 816.14, + "end": 818.13, + "probability": 0.96 + }, + { + "start": 821.42, + "end": 826.72, + "probability": 0.9713 + }, + { + "start": 827.52, + "end": 830.46, + "probability": 0.7124 + }, + { + "start": 831.92, + "end": 832.94, + "probability": 0.8293 + }, + { + "start": 834.46, + "end": 835.56, + "probability": 0.9229 + }, + { + "start": 837.56, + "end": 839.22, + "probability": 0.9927 + }, + { + "start": 841.34, + "end": 842.44, + "probability": 0.908 + }, + { + "start": 843.06, + "end": 844.18, + "probability": 0.7817 + }, + { + "start": 846.64, + "end": 849.92, + "probability": 0.9926 + }, + { + "start": 851.2, + "end": 853.24, + "probability": 0.7247 + }, + { + "start": 854.56, + "end": 855.19, + "probability": 0.876 + }, + { + "start": 856.76, + "end": 859.17, + "probability": 0.9736 + }, + { + "start": 862.1, + "end": 864.54, + "probability": 0.7819 + }, + { + "start": 865.38, + "end": 869.22, + "probability": 0.9642 + }, + { + "start": 871.34, + "end": 877.14, + "probability": 0.8976 + }, + { + "start": 877.92, + "end": 878.48, + "probability": 0.8396 + }, + { + "start": 882.0, + "end": 885.1, + "probability": 0.9951 + }, + { + "start": 887.64, + "end": 889.22, + "probability": 0.807 + }, + { + "start": 890.06, + "end": 890.91, + "probability": 0.9733 + }, + { + "start": 892.66, + "end": 894.98, + "probability": 0.9432 + }, + { + "start": 896.36, + "end": 899.08, + "probability": 0.9722 + }, + { + "start": 902.58, + "end": 904.62, + "probability": 0.9799 + }, + { + "start": 906.54, + "end": 912.51, + "probability": 0.7542 + }, + { + "start": 916.76, + "end": 923.92, + "probability": 0.9922 + }, + { + "start": 926.92, + "end": 930.74, + "probability": 0.9567 + }, + { + "start": 931.3, + "end": 932.0, + "probability": 0.9488 + }, + { + "start": 933.7, + "end": 936.26, + "probability": 0.0635 + }, + { + "start": 937.48, + "end": 938.8, + "probability": 0.7877 + }, + { + "start": 939.44, + "end": 942.42, + "probability": 0.9272 + }, + { + "start": 943.14, + "end": 944.12, + "probability": 0.8992 + }, + { + "start": 945.0, + "end": 946.06, + "probability": 0.9119 + }, + { + "start": 946.3, + "end": 947.32, + "probability": 0.9044 + }, + { + "start": 947.4, + "end": 949.08, + "probability": 0.8547 + }, + { + "start": 949.24, + "end": 951.46, + "probability": 0.8862 + }, + { + "start": 952.56, + "end": 953.06, + "probability": 0.9871 + }, + { + "start": 954.22, + "end": 956.46, + "probability": 0.9977 + }, + { + "start": 958.14, + "end": 961.32, + "probability": 0.9951 + }, + { + "start": 961.52, + "end": 962.6, + "probability": 0.7987 + }, + { + "start": 962.88, + "end": 963.8, + "probability": 0.7752 + }, + { + "start": 966.82, + "end": 967.46, + "probability": 0.4974 + }, + { + "start": 968.56, + "end": 969.64, + "probability": 0.9862 + }, + { + "start": 971.74, + "end": 972.68, + "probability": 0.9796 + }, + { + "start": 973.8, + "end": 975.74, + "probability": 0.983 + }, + { + "start": 975.78, + "end": 975.98, + "probability": 0.8196 + }, + { + "start": 977.36, + "end": 978.18, + "probability": 0.9985 + }, + { + "start": 978.82, + "end": 981.36, + "probability": 0.9612 + }, + { + "start": 983.14, + "end": 986.98, + "probability": 0.9802 + }, + { + "start": 990.04, + "end": 992.78, + "probability": 0.8228 + }, + { + "start": 994.22, + "end": 995.22, + "probability": 0.9068 + }, + { + "start": 996.3, + "end": 997.54, + "probability": 0.8288 + }, + { + "start": 998.54, + "end": 1000.16, + "probability": 0.9891 + }, + { + "start": 1002.06, + "end": 1005.52, + "probability": 0.987 + }, + { + "start": 1006.92, + "end": 1010.02, + "probability": 0.9404 + }, + { + "start": 1010.96, + "end": 1013.55, + "probability": 0.8529 + }, + { + "start": 1014.9, + "end": 1019.84, + "probability": 0.9463 + }, + { + "start": 1020.82, + "end": 1022.92, + "probability": 0.9756 + }, + { + "start": 1024.64, + "end": 1026.86, + "probability": 0.9805 + }, + { + "start": 1027.6, + "end": 1030.04, + "probability": 0.9878 + }, + { + "start": 1030.74, + "end": 1031.5, + "probability": 0.9948 + }, + { + "start": 1033.2, + "end": 1034.92, + "probability": 0.9313 + }, + { + "start": 1036.4, + "end": 1037.22, + "probability": 0.5333 + }, + { + "start": 1037.32, + "end": 1038.06, + "probability": 0.941 + }, + { + "start": 1038.36, + "end": 1039.86, + "probability": 0.9439 + }, + { + "start": 1040.06, + "end": 1042.16, + "probability": 0.9885 + }, + { + "start": 1047.24, + "end": 1049.44, + "probability": 0.9579 + }, + { + "start": 1050.14, + "end": 1050.62, + "probability": 0.867 + }, + { + "start": 1051.36, + "end": 1052.24, + "probability": 0.9725 + }, + { + "start": 1056.9, + "end": 1057.92, + "probability": 0.9636 + }, + { + "start": 1061.0, + "end": 1062.58, + "probability": 0.8121 + }, + { + "start": 1063.92, + "end": 1066.54, + "probability": 0.9619 + }, + { + "start": 1069.04, + "end": 1073.04, + "probability": 0.9788 + }, + { + "start": 1075.94, + "end": 1080.14, + "probability": 0.9666 + }, + { + "start": 1085.54, + "end": 1086.98, + "probability": 0.8626 + }, + { + "start": 1088.72, + "end": 1090.22, + "probability": 0.9821 + }, + { + "start": 1092.02, + "end": 1092.76, + "probability": 0.8409 + }, + { + "start": 1093.4, + "end": 1096.76, + "probability": 0.9966 + }, + { + "start": 1099.08, + "end": 1100.72, + "probability": 0.8935 + }, + { + "start": 1102.24, + "end": 1103.1, + "probability": 0.9978 + }, + { + "start": 1108.64, + "end": 1111.76, + "probability": 0.8921 + }, + { + "start": 1112.94, + "end": 1114.78, + "probability": 0.954 + }, + { + "start": 1115.5, + "end": 1116.04, + "probability": 0.8864 + }, + { + "start": 1117.76, + "end": 1121.58, + "probability": 0.9733 + }, + { + "start": 1125.38, + "end": 1127.12, + "probability": 0.8005 + }, + { + "start": 1128.8, + "end": 1129.75, + "probability": 0.9363 + }, + { + "start": 1131.28, + "end": 1132.46, + "probability": 0.9673 + }, + { + "start": 1134.56, + "end": 1136.36, + "probability": 0.984 + }, + { + "start": 1137.26, + "end": 1138.54, + "probability": 0.9685 + }, + { + "start": 1140.54, + "end": 1143.84, + "probability": 0.8697 + }, + { + "start": 1144.88, + "end": 1145.7, + "probability": 0.9487 + }, + { + "start": 1146.86, + "end": 1147.7, + "probability": 0.8518 + }, + { + "start": 1148.78, + "end": 1151.0, + "probability": 0.947 + }, + { + "start": 1152.6, + "end": 1154.82, + "probability": 0.9011 + }, + { + "start": 1155.7, + "end": 1157.28, + "probability": 0.4993 + }, + { + "start": 1157.44, + "end": 1158.8, + "probability": 0.4388 + }, + { + "start": 1159.76, + "end": 1164.7, + "probability": 0.8634 + }, + { + "start": 1164.76, + "end": 1165.54, + "probability": 0.6571 + }, + { + "start": 1168.54, + "end": 1169.4, + "probability": 0.8262 + }, + { + "start": 1170.18, + "end": 1171.3, + "probability": 0.9449 + }, + { + "start": 1173.28, + "end": 1174.56, + "probability": 0.9752 + }, + { + "start": 1175.9, + "end": 1177.02, + "probability": 0.9076 + }, + { + "start": 1178.72, + "end": 1180.24, + "probability": 0.7838 + }, + { + "start": 1181.24, + "end": 1182.1, + "probability": 0.886 + }, + { + "start": 1183.1, + "end": 1185.62, + "probability": 0.9531 + }, + { + "start": 1186.06, + "end": 1186.96, + "probability": 0.813 + }, + { + "start": 1187.88, + "end": 1189.56, + "probability": 0.9762 + }, + { + "start": 1190.9, + "end": 1191.42, + "probability": 0.8042 + }, + { + "start": 1192.54, + "end": 1193.46, + "probability": 0.9526 + }, + { + "start": 1194.02, + "end": 1194.44, + "probability": 0.9521 + }, + { + "start": 1195.3, + "end": 1197.68, + "probability": 0.9932 + }, + { + "start": 1198.38, + "end": 1202.88, + "probability": 0.9878 + }, + { + "start": 1204.3, + "end": 1206.94, + "probability": 0.5477 + }, + { + "start": 1210.64, + "end": 1210.72, + "probability": 0.7471 + }, + { + "start": 1212.46, + "end": 1213.56, + "probability": 0.9165 + }, + { + "start": 1215.06, + "end": 1216.98, + "probability": 0.9833 + }, + { + "start": 1217.06, + "end": 1218.6, + "probability": 0.9727 + }, + { + "start": 1220.3, + "end": 1223.66, + "probability": 0.9676 + }, + { + "start": 1225.46, + "end": 1226.66, + "probability": 0.7538 + }, + { + "start": 1228.4, + "end": 1229.62, + "probability": 0.9373 + }, + { + "start": 1230.58, + "end": 1231.4, + "probability": 0.9354 + }, + { + "start": 1234.08, + "end": 1235.12, + "probability": 0.9797 + }, + { + "start": 1236.4, + "end": 1239.04, + "probability": 0.9987 + }, + { + "start": 1241.46, + "end": 1242.02, + "probability": 0.3868 + }, + { + "start": 1242.28, + "end": 1243.36, + "probability": 0.7093 + }, + { + "start": 1243.5, + "end": 1247.76, + "probability": 0.9855 + }, + { + "start": 1249.2, + "end": 1250.78, + "probability": 0.9961 + }, + { + "start": 1251.72, + "end": 1253.14, + "probability": 0.9752 + }, + { + "start": 1254.6, + "end": 1256.24, + "probability": 0.9661 + }, + { + "start": 1256.88, + "end": 1259.26, + "probability": 0.9795 + }, + { + "start": 1260.84, + "end": 1261.08, + "probability": 0.7433 + }, + { + "start": 1263.02, + "end": 1267.9, + "probability": 0.9391 + }, + { + "start": 1268.78, + "end": 1270.56, + "probability": 0.6152 + }, + { + "start": 1272.78, + "end": 1273.8, + "probability": 0.8696 + }, + { + "start": 1275.2, + "end": 1279.22, + "probability": 0.9915 + }, + { + "start": 1282.2, + "end": 1287.78, + "probability": 0.9951 + }, + { + "start": 1287.94, + "end": 1289.14, + "probability": 0.6572 + }, + { + "start": 1289.96, + "end": 1292.3, + "probability": 0.9977 + }, + { + "start": 1292.82, + "end": 1298.44, + "probability": 0.9909 + }, + { + "start": 1300.8, + "end": 1305.56, + "probability": 0.9656 + }, + { + "start": 1306.7, + "end": 1308.4, + "probability": 0.9641 + }, + { + "start": 1309.12, + "end": 1313.94, + "probability": 0.8745 + }, + { + "start": 1315.2, + "end": 1319.52, + "probability": 0.8954 + }, + { + "start": 1321.08, + "end": 1325.68, + "probability": 0.9919 + }, + { + "start": 1327.26, + "end": 1331.92, + "probability": 0.8063 + }, + { + "start": 1333.12, + "end": 1339.5, + "probability": 0.9909 + }, + { + "start": 1339.82, + "end": 1341.84, + "probability": 0.4794 + }, + { + "start": 1341.98, + "end": 1344.56, + "probability": 0.9302 + }, + { + "start": 1346.16, + "end": 1356.36, + "probability": 0.9778 + }, + { + "start": 1357.16, + "end": 1360.88, + "probability": 0.9606 + }, + { + "start": 1361.4, + "end": 1363.68, + "probability": 0.9909 + }, + { + "start": 1364.02, + "end": 1366.7, + "probability": 0.9876 + }, + { + "start": 1366.94, + "end": 1368.36, + "probability": 0.9854 + }, + { + "start": 1369.4, + "end": 1370.22, + "probability": 0.1563 + }, + { + "start": 1370.98, + "end": 1371.68, + "probability": 0.5112 + }, + { + "start": 1371.88, + "end": 1372.34, + "probability": 0.8728 + }, + { + "start": 1372.48, + "end": 1374.05, + "probability": 0.9893 + }, + { + "start": 1374.18, + "end": 1376.08, + "probability": 0.7528 + }, + { + "start": 1377.02, + "end": 1382.36, + "probability": 0.9515 + }, + { + "start": 1382.56, + "end": 1383.0, + "probability": 0.783 + }, + { + "start": 1383.16, + "end": 1386.6, + "probability": 0.9786 + }, + { + "start": 1388.12, + "end": 1389.96, + "probability": 0.6069 + }, + { + "start": 1391.18, + "end": 1394.16, + "probability": 0.994 + }, + { + "start": 1395.44, + "end": 1396.82, + "probability": 0.7726 + }, + { + "start": 1398.06, + "end": 1402.8, + "probability": 0.9435 + }, + { + "start": 1403.26, + "end": 1406.7, + "probability": 0.6844 + }, + { + "start": 1407.26, + "end": 1407.26, + "probability": 0.1453 + }, + { + "start": 1407.26, + "end": 1409.08, + "probability": 0.3405 + }, + { + "start": 1409.38, + "end": 1410.12, + "probability": 0.4383 + }, + { + "start": 1410.12, + "end": 1410.32, + "probability": 0.2795 + }, + { + "start": 1411.42, + "end": 1416.88, + "probability": 0.8292 + }, + { + "start": 1417.48, + "end": 1420.62, + "probability": 0.882 + }, + { + "start": 1421.44, + "end": 1426.08, + "probability": 0.848 + }, + { + "start": 1426.2, + "end": 1429.46, + "probability": 0.9628 + }, + { + "start": 1429.96, + "end": 1430.14, + "probability": 0.5984 + }, + { + "start": 1430.38, + "end": 1433.12, + "probability": 0.9067 + }, + { + "start": 1433.24, + "end": 1435.66, + "probability": 0.9603 + }, + { + "start": 1436.64, + "end": 1439.6, + "probability": 0.9355 + }, + { + "start": 1439.6, + "end": 1443.74, + "probability": 0.8421 + }, + { + "start": 1443.8, + "end": 1444.28, + "probability": 0.9004 + }, + { + "start": 1444.36, + "end": 1445.2, + "probability": 0.9561 + }, + { + "start": 1445.66, + "end": 1446.62, + "probability": 0.8714 + }, + { + "start": 1455.8, + "end": 1456.68, + "probability": 0.6487 + }, + { + "start": 1458.3, + "end": 1460.4, + "probability": 0.8056 + }, + { + "start": 1464.32, + "end": 1467.84, + "probability": 0.9984 + }, + { + "start": 1468.38, + "end": 1469.96, + "probability": 0.9993 + }, + { + "start": 1470.98, + "end": 1472.74, + "probability": 0.8071 + }, + { + "start": 1476.97, + "end": 1477.27, + "probability": 0.3058 + }, + { + "start": 1478.75, + "end": 1480.17, + "probability": 0.9771 + }, + { + "start": 1481.47, + "end": 1484.23, + "probability": 0.9216 + }, + { + "start": 1484.31, + "end": 1484.79, + "probability": 0.6471 + }, + { + "start": 1485.15, + "end": 1485.79, + "probability": 0.9786 + }, + { + "start": 1485.87, + "end": 1487.04, + "probability": 0.961 + }, + { + "start": 1488.06, + "end": 1488.7, + "probability": 0.815 + }, + { + "start": 1491.1, + "end": 1494.87, + "probability": 0.9365 + }, + { + "start": 1496.67, + "end": 1498.79, + "probability": 0.8786 + }, + { + "start": 1499.91, + "end": 1504.31, + "probability": 0.792 + }, + { + "start": 1504.56, + "end": 1505.73, + "probability": 0.6715 + }, + { + "start": 1506.93, + "end": 1510.11, + "probability": 0.9924 + }, + { + "start": 1512.01, + "end": 1513.53, + "probability": 0.971 + }, + { + "start": 1516.35, + "end": 1519.19, + "probability": 0.9324 + }, + { + "start": 1520.27, + "end": 1521.19, + "probability": 0.9099 + }, + { + "start": 1522.13, + "end": 1525.25, + "probability": 0.9973 + }, + { + "start": 1526.01, + "end": 1527.15, + "probability": 0.9577 + }, + { + "start": 1527.95, + "end": 1528.97, + "probability": 0.9985 + }, + { + "start": 1530.25, + "end": 1534.27, + "probability": 0.9932 + }, + { + "start": 1534.51, + "end": 1535.33, + "probability": 0.9006 + }, + { + "start": 1535.77, + "end": 1538.39, + "probability": 0.9263 + }, + { + "start": 1539.67, + "end": 1540.48, + "probability": 0.9932 + }, + { + "start": 1540.61, + "end": 1541.17, + "probability": 0.9094 + }, + { + "start": 1541.31, + "end": 1543.59, + "probability": 0.984 + }, + { + "start": 1544.87, + "end": 1549.35, + "probability": 0.9886 + }, + { + "start": 1550.77, + "end": 1552.07, + "probability": 0.9589 + }, + { + "start": 1552.13, + "end": 1556.55, + "probability": 0.9943 + }, + { + "start": 1557.63, + "end": 1559.09, + "probability": 0.892 + }, + { + "start": 1559.85, + "end": 1561.79, + "probability": 0.9919 + }, + { + "start": 1562.57, + "end": 1563.67, + "probability": 0.7197 + }, + { + "start": 1564.39, + "end": 1566.13, + "probability": 0.8916 + }, + { + "start": 1566.39, + "end": 1568.65, + "probability": 0.9984 + }, + { + "start": 1568.65, + "end": 1572.23, + "probability": 0.9816 + }, + { + "start": 1572.63, + "end": 1573.97, + "probability": 0.761 + }, + { + "start": 1575.09, + "end": 1575.41, + "probability": 0.575 + }, + { + "start": 1575.49, + "end": 1577.73, + "probability": 0.7463 + }, + { + "start": 1577.73, + "end": 1578.89, + "probability": 0.9619 + }, + { + "start": 1580.05, + "end": 1584.62, + "probability": 0.9935 + }, + { + "start": 1584.85, + "end": 1589.37, + "probability": 0.9287 + }, + { + "start": 1589.75, + "end": 1591.41, + "probability": 0.8711 + }, + { + "start": 1592.19, + "end": 1593.95, + "probability": 0.8822 + }, + { + "start": 1594.53, + "end": 1595.39, + "probability": 0.9908 + }, + { + "start": 1596.23, + "end": 1597.81, + "probability": 0.8843 + }, + { + "start": 1598.73, + "end": 1599.45, + "probability": 0.8188 + }, + { + "start": 1600.61, + "end": 1601.33, + "probability": 0.8264 + }, + { + "start": 1602.41, + "end": 1603.97, + "probability": 0.9891 + }, + { + "start": 1604.03, + "end": 1604.09, + "probability": 0.4396 + }, + { + "start": 1604.23, + "end": 1604.77, + "probability": 0.615 + }, + { + "start": 1604.83, + "end": 1606.79, + "probability": 0.875 + }, + { + "start": 1606.91, + "end": 1607.75, + "probability": 0.5152 + }, + { + "start": 1609.01, + "end": 1611.95, + "probability": 0.7896 + }, + { + "start": 1612.41, + "end": 1613.61, + "probability": 0.9475 + }, + { + "start": 1613.83, + "end": 1614.85, + "probability": 0.991 + }, + { + "start": 1615.63, + "end": 1618.77, + "probability": 0.939 + }, + { + "start": 1619.53, + "end": 1621.49, + "probability": 0.9958 + }, + { + "start": 1622.07, + "end": 1624.65, + "probability": 0.8307 + }, + { + "start": 1625.53, + "end": 1627.87, + "probability": 0.9642 + }, + { + "start": 1629.03, + "end": 1630.27, + "probability": 0.9517 + }, + { + "start": 1631.03, + "end": 1633.13, + "probability": 0.9974 + }, + { + "start": 1633.89, + "end": 1640.72, + "probability": 0.9861 + }, + { + "start": 1641.99, + "end": 1643.09, + "probability": 0.7429 + }, + { + "start": 1643.85, + "end": 1645.67, + "probability": 0.859 + }, + { + "start": 1646.89, + "end": 1647.23, + "probability": 0.8624 + }, + { + "start": 1648.19, + "end": 1648.89, + "probability": 0.7645 + }, + { + "start": 1652.09, + "end": 1654.71, + "probability": 0.9565 + }, + { + "start": 1656.19, + "end": 1658.57, + "probability": 0.8349 + }, + { + "start": 1658.77, + "end": 1662.51, + "probability": 0.9714 + }, + { + "start": 1663.25, + "end": 1663.59, + "probability": 0.6818 + }, + { + "start": 1664.43, + "end": 1665.85, + "probability": 0.6941 + }, + { + "start": 1666.89, + "end": 1671.31, + "probability": 0.7698 + }, + { + "start": 1672.43, + "end": 1673.47, + "probability": 0.9345 + }, + { + "start": 1674.45, + "end": 1677.85, + "probability": 0.8799 + }, + { + "start": 1678.77, + "end": 1681.67, + "probability": 0.9834 + }, + { + "start": 1681.91, + "end": 1682.63, + "probability": 0.8706 + }, + { + "start": 1683.77, + "end": 1684.99, + "probability": 0.856 + }, + { + "start": 1686.21, + "end": 1687.39, + "probability": 0.5057 + }, + { + "start": 1689.13, + "end": 1689.75, + "probability": 0.9305 + }, + { + "start": 1690.37, + "end": 1694.81, + "probability": 0.7968 + }, + { + "start": 1695.55, + "end": 1698.35, + "probability": 0.9604 + }, + { + "start": 1699.21, + "end": 1700.59, + "probability": 0.9919 + }, + { + "start": 1701.43, + "end": 1702.29, + "probability": 0.904 + }, + { + "start": 1703.45, + "end": 1706.37, + "probability": 0.938 + }, + { + "start": 1706.55, + "end": 1707.67, + "probability": 0.9961 + }, + { + "start": 1707.87, + "end": 1709.04, + "probability": 0.9902 + }, + { + "start": 1710.19, + "end": 1711.79, + "probability": 0.988 + }, + { + "start": 1713.43, + "end": 1714.53, + "probability": 0.9028 + }, + { + "start": 1715.53, + "end": 1717.99, + "probability": 0.9705 + }, + { + "start": 1718.15, + "end": 1718.95, + "probability": 0.9839 + }, + { + "start": 1720.61, + "end": 1722.85, + "probability": 0.9971 + }, + { + "start": 1723.15, + "end": 1724.55, + "probability": 0.9546 + }, + { + "start": 1726.57, + "end": 1729.05, + "probability": 0.9973 + }, + { + "start": 1730.07, + "end": 1731.73, + "probability": 0.9834 + }, + { + "start": 1732.59, + "end": 1733.61, + "probability": 0.9919 + }, + { + "start": 1735.13, + "end": 1737.11, + "probability": 0.9814 + }, + { + "start": 1737.41, + "end": 1739.07, + "probability": 0.9986 + }, + { + "start": 1739.49, + "end": 1741.55, + "probability": 0.9026 + }, + { + "start": 1744.41, + "end": 1746.03, + "probability": 0.8852 + }, + { + "start": 1747.97, + "end": 1752.03, + "probability": 0.9964 + }, + { + "start": 1753.09, + "end": 1754.75, + "probability": 0.9482 + }, + { + "start": 1757.15, + "end": 1757.89, + "probability": 0.9634 + }, + { + "start": 1758.77, + "end": 1759.79, + "probability": 0.917 + }, + { + "start": 1760.61, + "end": 1763.19, + "probability": 0.9755 + }, + { + "start": 1763.33, + "end": 1763.79, + "probability": 0.8065 + }, + { + "start": 1763.87, + "end": 1765.29, + "probability": 0.9951 + }, + { + "start": 1766.29, + "end": 1768.55, + "probability": 0.9663 + }, + { + "start": 1769.53, + "end": 1773.29, + "probability": 0.9858 + }, + { + "start": 1773.47, + "end": 1774.91, + "probability": 0.9727 + }, + { + "start": 1776.57, + "end": 1778.59, + "probability": 0.9971 + }, + { + "start": 1780.73, + "end": 1782.65, + "probability": 0.9956 + }, + { + "start": 1784.83, + "end": 1788.49, + "probability": 0.9875 + }, + { + "start": 1789.31, + "end": 1790.31, + "probability": 0.9294 + }, + { + "start": 1790.47, + "end": 1791.95, + "probability": 0.9902 + }, + { + "start": 1792.69, + "end": 1793.95, + "probability": 0.9504 + }, + { + "start": 1794.97, + "end": 1796.74, + "probability": 0.9976 + }, + { + "start": 1798.55, + "end": 1799.89, + "probability": 0.9824 + }, + { + "start": 1801.13, + "end": 1804.21, + "probability": 0.9647 + }, + { + "start": 1804.43, + "end": 1806.25, + "probability": 0.9995 + }, + { + "start": 1806.33, + "end": 1807.81, + "probability": 0.9735 + }, + { + "start": 1808.83, + "end": 1810.25, + "probability": 0.9404 + }, + { + "start": 1811.99, + "end": 1812.73, + "probability": 0.9709 + }, + { + "start": 1812.77, + "end": 1813.55, + "probability": 0.9976 + }, + { + "start": 1814.69, + "end": 1819.93, + "probability": 0.9909 + }, + { + "start": 1821.29, + "end": 1821.92, + "probability": 0.998 + }, + { + "start": 1823.27, + "end": 1825.77, + "probability": 0.9993 + }, + { + "start": 1826.65, + "end": 1830.23, + "probability": 0.8749 + }, + { + "start": 1831.43, + "end": 1833.49, + "probability": 0.9593 + }, + { + "start": 1834.07, + "end": 1834.75, + "probability": 0.8044 + }, + { + "start": 1835.79, + "end": 1838.21, + "probability": 0.998 + }, + { + "start": 1839.01, + "end": 1841.07, + "probability": 0.9169 + }, + { + "start": 1841.85, + "end": 1846.18, + "probability": 0.9982 + }, + { + "start": 1846.87, + "end": 1848.73, + "probability": 0.6276 + }, + { + "start": 1849.29, + "end": 1850.27, + "probability": 0.8939 + }, + { + "start": 1851.53, + "end": 1854.77, + "probability": 0.9912 + }, + { + "start": 1856.87, + "end": 1857.75, + "probability": 0.9121 + }, + { + "start": 1858.29, + "end": 1860.67, + "probability": 0.8245 + }, + { + "start": 1862.47, + "end": 1863.61, + "probability": 0.9471 + }, + { + "start": 1865.27, + "end": 1867.15, + "probability": 0.9253 + }, + { + "start": 1868.27, + "end": 1868.87, + "probability": 0.967 + }, + { + "start": 1869.67, + "end": 1870.73, + "probability": 0.9756 + }, + { + "start": 1871.33, + "end": 1874.97, + "probability": 0.986 + }, + { + "start": 1876.05, + "end": 1877.57, + "probability": 0.9785 + }, + { + "start": 1878.75, + "end": 1879.99, + "probability": 0.501 + }, + { + "start": 1880.53, + "end": 1880.91, + "probability": 0.706 + }, + { + "start": 1880.95, + "end": 1883.51, + "probability": 0.9954 + }, + { + "start": 1883.57, + "end": 1883.99, + "probability": 0.9656 + }, + { + "start": 1886.03, + "end": 1886.67, + "probability": 0.8441 + }, + { + "start": 1889.69, + "end": 1891.29, + "probability": 0.8922 + }, + { + "start": 1892.95, + "end": 1893.85, + "probability": 0.7943 + }, + { + "start": 1894.07, + "end": 1895.13, + "probability": 0.9169 + }, + { + "start": 1895.17, + "end": 1897.65, + "probability": 0.9249 + }, + { + "start": 1897.99, + "end": 1900.93, + "probability": 0.9614 + }, + { + "start": 1902.39, + "end": 1903.03, + "probability": 0.9482 + }, + { + "start": 1904.57, + "end": 1907.57, + "probability": 0.79 + }, + { + "start": 1908.11, + "end": 1908.67, + "probability": 0.6315 + }, + { + "start": 1909.31, + "end": 1911.11, + "probability": 0.5873 + }, + { + "start": 1912.43, + "end": 1914.71, + "probability": 0.8647 + }, + { + "start": 1915.87, + "end": 1916.81, + "probability": 0.9701 + }, + { + "start": 1918.03, + "end": 1918.61, + "probability": 0.9844 + }, + { + "start": 1919.67, + "end": 1922.95, + "probability": 0.9877 + }, + { + "start": 1923.81, + "end": 1924.81, + "probability": 0.6019 + }, + { + "start": 1925.81, + "end": 1927.15, + "probability": 0.9976 + }, + { + "start": 1927.77, + "end": 1928.59, + "probability": 0.9977 + }, + { + "start": 1930.61, + "end": 1933.13, + "probability": 0.9318 + }, + { + "start": 1933.67, + "end": 1934.63, + "probability": 0.8747 + }, + { + "start": 1937.19, + "end": 1939.41, + "probability": 0.5623 + }, + { + "start": 1939.43, + "end": 1942.23, + "probability": 0.9792 + }, + { + "start": 1943.25, + "end": 1945.65, + "probability": 0.9819 + }, + { + "start": 1945.93, + "end": 1946.37, + "probability": 0.4311 + }, + { + "start": 1946.49, + "end": 1948.59, + "probability": 0.6998 + }, + { + "start": 1948.67, + "end": 1950.39, + "probability": 0.9276 + }, + { + "start": 1950.77, + "end": 1951.8, + "probability": 0.9878 + }, + { + "start": 1953.37, + "end": 1954.61, + "probability": 0.4458 + }, + { + "start": 1955.25, + "end": 1956.64, + "probability": 0.9636 + }, + { + "start": 1956.83, + "end": 1957.23, + "probability": 0.8123 + }, + { + "start": 1958.01, + "end": 1958.41, + "probability": 0.9137 + }, + { + "start": 1958.65, + "end": 1958.69, + "probability": 0.1632 + }, + { + "start": 1958.69, + "end": 1958.73, + "probability": 0.4655 + }, + { + "start": 1958.73, + "end": 1959.61, + "probability": 0.7334 + }, + { + "start": 1959.65, + "end": 1959.99, + "probability": 0.5784 + }, + { + "start": 1960.15, + "end": 1960.97, + "probability": 0.8904 + }, + { + "start": 1961.75, + "end": 1962.15, + "probability": 0.8269 + }, + { + "start": 1962.35, + "end": 1964.03, + "probability": 0.9773 + }, + { + "start": 1964.49, + "end": 1965.21, + "probability": 0.7256 + }, + { + "start": 1965.31, + "end": 1965.31, + "probability": 0.1678 + }, + { + "start": 1965.31, + "end": 1969.45, + "probability": 0.2477 + }, + { + "start": 1969.79, + "end": 1975.13, + "probability": 0.7744 + }, + { + "start": 1975.73, + "end": 1979.05, + "probability": 0.9938 + }, + { + "start": 1979.55, + "end": 1981.99, + "probability": 0.9982 + }, + { + "start": 1983.33, + "end": 1987.15, + "probability": 0.984 + }, + { + "start": 1987.99, + "end": 1988.99, + "probability": 0.894 + }, + { + "start": 1989.21, + "end": 1989.97, + "probability": 0.7776 + }, + { + "start": 1990.07, + "end": 1991.53, + "probability": 0.8986 + }, + { + "start": 1991.61, + "end": 1992.26, + "probability": 0.9829 + }, + { + "start": 1993.35, + "end": 1993.55, + "probability": 0.814 + }, + { + "start": 1993.65, + "end": 1994.89, + "probability": 0.9242 + }, + { + "start": 1994.95, + "end": 1995.61, + "probability": 0.9356 + }, + { + "start": 1995.67, + "end": 1996.47, + "probability": 0.8192 + }, + { + "start": 1996.51, + "end": 1996.95, + "probability": 0.821 + }, + { + "start": 1997.21, + "end": 1998.87, + "probability": 0.9038 + }, + { + "start": 1998.99, + "end": 1999.31, + "probability": 0.7386 + }, + { + "start": 1999.41, + "end": 2000.15, + "probability": 0.9715 + }, + { + "start": 2001.11, + "end": 2006.01, + "probability": 0.7493 + }, + { + "start": 2007.09, + "end": 2011.55, + "probability": 0.8002 + }, + { + "start": 2012.27, + "end": 2016.04, + "probability": 0.9786 + }, + { + "start": 2016.93, + "end": 2018.42, + "probability": 0.877 + }, + { + "start": 2018.81, + "end": 2020.83, + "probability": 0.9963 + }, + { + "start": 2021.27, + "end": 2022.47, + "probability": 0.7477 + }, + { + "start": 2023.59, + "end": 2024.93, + "probability": 0.8498 + }, + { + "start": 2026.01, + "end": 2026.65, + "probability": 0.8136 + }, + { + "start": 2026.73, + "end": 2028.69, + "probability": 0.9814 + }, + { + "start": 2028.75, + "end": 2030.81, + "probability": 0.9934 + }, + { + "start": 2032.29, + "end": 2034.79, + "probability": 0.7859 + }, + { + "start": 2035.39, + "end": 2036.89, + "probability": 0.9961 + }, + { + "start": 2038.17, + "end": 2038.73, + "probability": 0.6672 + }, + { + "start": 2039.01, + "end": 2040.59, + "probability": 0.5195 + }, + { + "start": 2041.17, + "end": 2043.51, + "probability": 0.951 + }, + { + "start": 2043.57, + "end": 2047.91, + "probability": 0.9956 + }, + { + "start": 2048.83, + "end": 2050.17, + "probability": 0.9867 + }, + { + "start": 2051.01, + "end": 2053.59, + "probability": 0.9943 + }, + { + "start": 2055.13, + "end": 2057.17, + "probability": 0.8695 + }, + { + "start": 2057.85, + "end": 2061.03, + "probability": 0.7392 + }, + { + "start": 2062.71, + "end": 2063.05, + "probability": 0.8374 + }, + { + "start": 2063.11, + "end": 2067.05, + "probability": 0.9761 + }, + { + "start": 2067.07, + "end": 2072.77, + "probability": 0.9641 + }, + { + "start": 2074.37, + "end": 2075.42, + "probability": 0.9062 + }, + { + "start": 2076.73, + "end": 2077.31, + "probability": 0.4227 + }, + { + "start": 2077.77, + "end": 2081.01, + "probability": 0.9876 + }, + { + "start": 2083.47, + "end": 2084.29, + "probability": 0.8604 + }, + { + "start": 2084.43, + "end": 2085.37, + "probability": 0.7181 + }, + { + "start": 2085.53, + "end": 2086.83, + "probability": 0.5517 + }, + { + "start": 2086.99, + "end": 2087.35, + "probability": 0.7854 + }, + { + "start": 2087.73, + "end": 2090.43, + "probability": 0.9763 + }, + { + "start": 2090.87, + "end": 2091.59, + "probability": 0.9985 + }, + { + "start": 2092.25, + "end": 2093.42, + "probability": 0.9849 + }, + { + "start": 2093.99, + "end": 2094.43, + "probability": 0.9076 + }, + { + "start": 2095.03, + "end": 2101.13, + "probability": 0.9404 + }, + { + "start": 2101.63, + "end": 2107.57, + "probability": 0.983 + }, + { + "start": 2107.99, + "end": 2109.57, + "probability": 0.881 + }, + { + "start": 2110.11, + "end": 2111.65, + "probability": 0.8683 + }, + { + "start": 2111.83, + "end": 2115.91, + "probability": 0.9724 + }, + { + "start": 2116.57, + "end": 2120.07, + "probability": 0.9951 + }, + { + "start": 2120.43, + "end": 2121.17, + "probability": 0.9548 + }, + { + "start": 2121.33, + "end": 2121.89, + "probability": 0.9709 + }, + { + "start": 2122.09, + "end": 2123.13, + "probability": 0.7608 + }, + { + "start": 2124.37, + "end": 2126.31, + "probability": 0.9269 + }, + { + "start": 2127.29, + "end": 2129.43, + "probability": 0.9902 + }, + { + "start": 2130.29, + "end": 2134.31, + "probability": 0.9889 + }, + { + "start": 2134.55, + "end": 2137.65, + "probability": 0.9539 + }, + { + "start": 2138.19, + "end": 2139.23, + "probability": 0.8574 + }, + { + "start": 2139.29, + "end": 2139.63, + "probability": 0.8349 + }, + { + "start": 2139.73, + "end": 2141.81, + "probability": 0.8667 + }, + { + "start": 2142.69, + "end": 2145.53, + "probability": 0.7594 + }, + { + "start": 2146.13, + "end": 2146.81, + "probability": 0.8686 + }, + { + "start": 2147.51, + "end": 2151.49, + "probability": 0.9743 + }, + { + "start": 2151.61, + "end": 2151.89, + "probability": 0.8 + }, + { + "start": 2152.23, + "end": 2154.53, + "probability": 0.9441 + }, + { + "start": 2154.75, + "end": 2157.73, + "probability": 0.9785 + }, + { + "start": 2158.81, + "end": 2162.55, + "probability": 0.8276 + }, + { + "start": 2162.69, + "end": 2163.05, + "probability": 0.618 + }, + { + "start": 2163.19, + "end": 2163.57, + "probability": 0.7617 + }, + { + "start": 2163.65, + "end": 2164.13, + "probability": 0.8268 + }, + { + "start": 2164.19, + "end": 2166.51, + "probability": 0.9952 + }, + { + "start": 2168.79, + "end": 2171.15, + "probability": 0.7723 + }, + { + "start": 2171.27, + "end": 2171.69, + "probability": 0.7778 + }, + { + "start": 2171.73, + "end": 2172.57, + "probability": 0.7034 + }, + { + "start": 2172.77, + "end": 2174.07, + "probability": 0.9201 + }, + { + "start": 2174.29, + "end": 2175.45, + "probability": 0.9354 + }, + { + "start": 2176.03, + "end": 2180.57, + "probability": 0.9654 + }, + { + "start": 2181.11, + "end": 2186.43, + "probability": 0.988 + }, + { + "start": 2187.03, + "end": 2187.99, + "probability": 0.8927 + }, + { + "start": 2188.11, + "end": 2188.73, + "probability": 0.6533 + }, + { + "start": 2188.89, + "end": 2189.99, + "probability": 0.782 + }, + { + "start": 2190.03, + "end": 2190.59, + "probability": 0.7698 + }, + { + "start": 2190.83, + "end": 2192.25, + "probability": 0.9521 + }, + { + "start": 2192.31, + "end": 2193.55, + "probability": 0.9247 + }, + { + "start": 2194.09, + "end": 2194.57, + "probability": 0.3976 + }, + { + "start": 2194.73, + "end": 2198.61, + "probability": 0.7881 + }, + { + "start": 2199.17, + "end": 2202.41, + "probability": 0.8649 + }, + { + "start": 2202.97, + "end": 2206.71, + "probability": 0.9897 + }, + { + "start": 2206.71, + "end": 2209.69, + "probability": 0.866 + }, + { + "start": 2210.51, + "end": 2213.64, + "probability": 0.9386 + }, + { + "start": 2214.51, + "end": 2222.49, + "probability": 0.9979 + }, + { + "start": 2223.45, + "end": 2224.61, + "probability": 0.8008 + }, + { + "start": 2225.55, + "end": 2228.89, + "probability": 0.9837 + }, + { + "start": 2229.51, + "end": 2231.57, + "probability": 0.9208 + }, + { + "start": 2232.65, + "end": 2235.61, + "probability": 0.9861 + }, + { + "start": 2236.05, + "end": 2238.77, + "probability": 0.9404 + }, + { + "start": 2238.87, + "end": 2240.85, + "probability": 0.9887 + }, + { + "start": 2241.73, + "end": 2242.09, + "probability": 0.3715 + }, + { + "start": 2242.15, + "end": 2243.03, + "probability": 0.8085 + }, + { + "start": 2243.15, + "end": 2244.25, + "probability": 0.8669 + }, + { + "start": 2244.33, + "end": 2244.83, + "probability": 0.8614 + }, + { + "start": 2245.81, + "end": 2246.99, + "probability": 0.9722 + }, + { + "start": 2247.61, + "end": 2248.53, + "probability": 0.6942 + }, + { + "start": 2248.61, + "end": 2249.57, + "probability": 0.8701 + }, + { + "start": 2249.89, + "end": 2251.39, + "probability": 0.8497 + }, + { + "start": 2251.77, + "end": 2253.61, + "probability": 0.9141 + }, + { + "start": 2254.31, + "end": 2255.49, + "probability": 0.9872 + }, + { + "start": 2255.57, + "end": 2256.57, + "probability": 0.7322 + }, + { + "start": 2256.67, + "end": 2257.77, + "probability": 0.8583 + }, + { + "start": 2258.15, + "end": 2259.42, + "probability": 0.8425 + }, + { + "start": 2260.57, + "end": 2261.81, + "probability": 0.9121 + }, + { + "start": 2261.87, + "end": 2263.57, + "probability": 0.9402 + }, + { + "start": 2263.87, + "end": 2265.19, + "probability": 0.9697 + }, + { + "start": 2265.83, + "end": 2267.79, + "probability": 0.8965 + }, + { + "start": 2268.31, + "end": 2270.6, + "probability": 0.9934 + }, + { + "start": 2271.05, + "end": 2273.35, + "probability": 0.8427 + }, + { + "start": 2273.67, + "end": 2275.76, + "probability": 0.8875 + }, + { + "start": 2276.47, + "end": 2278.99, + "probability": 0.9508 + }, + { + "start": 2279.45, + "end": 2280.73, + "probability": 0.9508 + }, + { + "start": 2281.31, + "end": 2284.01, + "probability": 0.9961 + }, + { + "start": 2284.51, + "end": 2288.27, + "probability": 0.7994 + }, + { + "start": 2288.93, + "end": 2289.97, + "probability": 0.9739 + }, + { + "start": 2290.11, + "end": 2290.89, + "probability": 0.9581 + }, + { + "start": 2290.97, + "end": 2291.79, + "probability": 0.754 + }, + { + "start": 2291.85, + "end": 2292.99, + "probability": 0.9971 + }, + { + "start": 2293.55, + "end": 2298.45, + "probability": 0.9945 + }, + { + "start": 2298.59, + "end": 2299.33, + "probability": 0.6567 + }, + { + "start": 2299.55, + "end": 2303.93, + "probability": 0.9806 + }, + { + "start": 2304.03, + "end": 2305.01, + "probability": 0.7324 + }, + { + "start": 2306.39, + "end": 2310.49, + "probability": 0.8718 + }, + { + "start": 2310.99, + "end": 2313.09, + "probability": 0.9744 + }, + { + "start": 2313.57, + "end": 2316.51, + "probability": 0.9163 + }, + { + "start": 2317.01, + "end": 2318.09, + "probability": 0.733 + }, + { + "start": 2318.19, + "end": 2319.91, + "probability": 0.885 + }, + { + "start": 2320.27, + "end": 2323.51, + "probability": 0.8774 + }, + { + "start": 2323.51, + "end": 2328.09, + "probability": 0.9473 + }, + { + "start": 2328.21, + "end": 2329.45, + "probability": 0.8005 + }, + { + "start": 2329.79, + "end": 2332.99, + "probability": 0.9485 + }, + { + "start": 2333.49, + "end": 2334.07, + "probability": 0.7708 + }, + { + "start": 2334.55, + "end": 2335.13, + "probability": 0.531 + }, + { + "start": 2335.27, + "end": 2335.67, + "probability": 0.9211 + }, + { + "start": 2335.77, + "end": 2336.81, + "probability": 0.8676 + }, + { + "start": 2337.21, + "end": 2338.49, + "probability": 0.9649 + }, + { + "start": 2338.59, + "end": 2340.15, + "probability": 0.9714 + }, + { + "start": 2340.59, + "end": 2341.03, + "probability": 0.7294 + }, + { + "start": 2341.09, + "end": 2342.05, + "probability": 0.8749 + }, + { + "start": 2342.07, + "end": 2342.99, + "probability": 0.9263 + }, + { + "start": 2343.51, + "end": 2346.25, + "probability": 0.9657 + }, + { + "start": 2346.95, + "end": 2349.5, + "probability": 0.7897 + }, + { + "start": 2350.23, + "end": 2352.01, + "probability": 0.9729 + }, + { + "start": 2352.11, + "end": 2354.41, + "probability": 0.9777 + }, + { + "start": 2355.15, + "end": 2356.25, + "probability": 0.9622 + }, + { + "start": 2356.33, + "end": 2357.93, + "probability": 0.7178 + }, + { + "start": 2359.07, + "end": 2361.81, + "probability": 0.849 + }, + { + "start": 2361.93, + "end": 2365.41, + "probability": 0.8628 + }, + { + "start": 2365.65, + "end": 2367.85, + "probability": 0.9846 + }, + { + "start": 2368.27, + "end": 2369.37, + "probability": 0.679 + }, + { + "start": 2369.45, + "end": 2371.79, + "probability": 0.9177 + }, + { + "start": 2371.89, + "end": 2376.69, + "probability": 0.984 + }, + { + "start": 2376.79, + "end": 2378.57, + "probability": 0.7747 + }, + { + "start": 2378.83, + "end": 2379.11, + "probability": 0.5848 + }, + { + "start": 2379.49, + "end": 2381.55, + "probability": 0.5889 + }, + { + "start": 2382.07, + "end": 2384.77, + "probability": 0.9972 + }, + { + "start": 2384.77, + "end": 2387.63, + "probability": 0.9986 + }, + { + "start": 2388.21, + "end": 2391.87, + "probability": 0.9915 + }, + { + "start": 2391.87, + "end": 2395.39, + "probability": 0.826 + }, + { + "start": 2396.05, + "end": 2397.07, + "probability": 0.6253 + }, + { + "start": 2397.55, + "end": 2402.13, + "probability": 0.9968 + }, + { + "start": 2402.59, + "end": 2403.65, + "probability": 0.9753 + }, + { + "start": 2404.01, + "end": 2404.25, + "probability": 0.4994 + }, + { + "start": 2404.73, + "end": 2404.75, + "probability": 0.443 + }, + { + "start": 2405.03, + "end": 2411.57, + "probability": 0.9943 + }, + { + "start": 2411.57, + "end": 2415.97, + "probability": 0.9971 + }, + { + "start": 2416.43, + "end": 2418.61, + "probability": 0.7961 + }, + { + "start": 2419.13, + "end": 2420.14, + "probability": 0.5533 + }, + { + "start": 2420.95, + "end": 2422.01, + "probability": 0.8033 + }, + { + "start": 2422.21, + "end": 2423.69, + "probability": 0.7064 + }, + { + "start": 2424.17, + "end": 2427.95, + "probability": 0.9961 + }, + { + "start": 2428.33, + "end": 2433.11, + "probability": 0.9961 + }, + { + "start": 2433.57, + "end": 2437.81, + "probability": 0.9794 + }, + { + "start": 2437.81, + "end": 2441.87, + "probability": 0.9937 + }, + { + "start": 2442.23, + "end": 2442.95, + "probability": 0.9453 + }, + { + "start": 2443.45, + "end": 2447.49, + "probability": 0.5362 + }, + { + "start": 2447.93, + "end": 2448.83, + "probability": 0.6822 + }, + { + "start": 2449.79, + "end": 2453.13, + "probability": 0.9337 + }, + { + "start": 2453.53, + "end": 2459.11, + "probability": 0.9907 + }, + { + "start": 2459.53, + "end": 2460.65, + "probability": 0.9447 + }, + { + "start": 2460.97, + "end": 2463.09, + "probability": 0.9952 + }, + { + "start": 2463.09, + "end": 2466.39, + "probability": 0.999 + }, + { + "start": 2466.93, + "end": 2469.95, + "probability": 0.9952 + }, + { + "start": 2470.77, + "end": 2473.03, + "probability": 0.7237 + }, + { + "start": 2473.57, + "end": 2475.55, + "probability": 0.9971 + }, + { + "start": 2475.55, + "end": 2478.27, + "probability": 0.7775 + }, + { + "start": 2478.37, + "end": 2480.95, + "probability": 0.9365 + }, + { + "start": 2481.55, + "end": 2486.61, + "probability": 0.8533 + }, + { + "start": 2487.09, + "end": 2487.83, + "probability": 0.4344 + }, + { + "start": 2488.93, + "end": 2491.01, + "probability": 0.9701 + }, + { + "start": 2491.59, + "end": 2496.45, + "probability": 0.9983 + }, + { + "start": 2496.97, + "end": 2498.37, + "probability": 0.8206 + }, + { + "start": 2498.77, + "end": 2503.62, + "probability": 0.9356 + }, + { + "start": 2503.83, + "end": 2507.05, + "probability": 0.998 + }, + { + "start": 2507.13, + "end": 2512.29, + "probability": 0.9935 + }, + { + "start": 2512.99, + "end": 2514.85, + "probability": 0.946 + }, + { + "start": 2515.55, + "end": 2520.05, + "probability": 0.9753 + }, + { + "start": 2520.05, + "end": 2525.47, + "probability": 0.9436 + }, + { + "start": 2526.01, + "end": 2530.29, + "probability": 0.9526 + }, + { + "start": 2532.49, + "end": 2533.19, + "probability": 0.6671 + }, + { + "start": 2533.19, + "end": 2533.91, + "probability": 0.3228 + }, + { + "start": 2534.11, + "end": 2535.33, + "probability": 0.8508 + }, + { + "start": 2535.49, + "end": 2538.37, + "probability": 0.9927 + }, + { + "start": 2539.09, + "end": 2542.49, + "probability": 0.8969 + }, + { + "start": 2543.37, + "end": 2546.3, + "probability": 0.8965 + }, + { + "start": 2546.55, + "end": 2549.05, + "probability": 0.9746 + }, + { + "start": 2549.23, + "end": 2550.13, + "probability": 0.9143 + }, + { + "start": 2550.71, + "end": 2552.45, + "probability": 0.9259 + }, + { + "start": 2552.83, + "end": 2553.63, + "probability": 0.9293 + }, + { + "start": 2553.85, + "end": 2554.79, + "probability": 0.951 + }, + { + "start": 2554.91, + "end": 2555.73, + "probability": 0.9257 + }, + { + "start": 2555.97, + "end": 2559.31, + "probability": 0.9945 + }, + { + "start": 2559.75, + "end": 2561.43, + "probability": 0.973 + }, + { + "start": 2561.89, + "end": 2567.07, + "probability": 0.9503 + }, + { + "start": 2567.37, + "end": 2568.53, + "probability": 0.9458 + }, + { + "start": 2568.63, + "end": 2570.51, + "probability": 0.9792 + }, + { + "start": 2571.13, + "end": 2574.81, + "probability": 0.9799 + }, + { + "start": 2576.41, + "end": 2577.11, + "probability": 0.8391 + }, + { + "start": 2577.29, + "end": 2578.41, + "probability": 0.677 + }, + { + "start": 2578.97, + "end": 2580.81, + "probability": 0.6899 + }, + { + "start": 2581.63, + "end": 2584.11, + "probability": 0.8774 + }, + { + "start": 2584.75, + "end": 2587.35, + "probability": 0.8695 + }, + { + "start": 2588.13, + "end": 2591.33, + "probability": 0.8844 + }, + { + "start": 2591.39, + "end": 2592.61, + "probability": 0.9635 + }, + { + "start": 2593.57, + "end": 2595.87, + "probability": 0.9862 + }, + { + "start": 2595.95, + "end": 2596.83, + "probability": 0.9445 + }, + { + "start": 2597.35, + "end": 2599.33, + "probability": 0.9411 + }, + { + "start": 2599.39, + "end": 2600.42, + "probability": 0.9775 + }, + { + "start": 2601.13, + "end": 2605.97, + "probability": 0.9741 + }, + { + "start": 2606.09, + "end": 2607.51, + "probability": 0.8475 + }, + { + "start": 2607.99, + "end": 2612.79, + "probability": 0.9795 + }, + { + "start": 2613.27, + "end": 2614.15, + "probability": 0.9188 + }, + { + "start": 2614.25, + "end": 2614.99, + "probability": 0.9533 + }, + { + "start": 2615.09, + "end": 2617.13, + "probability": 0.8633 + }, + { + "start": 2617.85, + "end": 2621.37, + "probability": 0.9814 + }, + { + "start": 2621.97, + "end": 2623.79, + "probability": 0.9706 + }, + { + "start": 2624.57, + "end": 2625.71, + "probability": 0.9109 + }, + { + "start": 2625.85, + "end": 2627.17, + "probability": 0.9349 + }, + { + "start": 2627.65, + "end": 2633.21, + "probability": 0.9663 + }, + { + "start": 2633.81, + "end": 2638.57, + "probability": 0.6409 + }, + { + "start": 2638.97, + "end": 2639.51, + "probability": 0.3428 + }, + { + "start": 2639.55, + "end": 2641.21, + "probability": 0.9513 + }, + { + "start": 2641.63, + "end": 2646.77, + "probability": 0.9718 + }, + { + "start": 2646.89, + "end": 2647.79, + "probability": 0.8514 + }, + { + "start": 2648.07, + "end": 2650.04, + "probability": 0.9529 + }, + { + "start": 2652.43, + "end": 2654.39, + "probability": 0.9766 + }, + { + "start": 2655.19, + "end": 2657.33, + "probability": 0.7836 + }, + { + "start": 2657.33, + "end": 2660.77, + "probability": 0.9814 + }, + { + "start": 2661.47, + "end": 2664.89, + "probability": 0.9341 + }, + { + "start": 2664.99, + "end": 2666.91, + "probability": 0.8817 + }, + { + "start": 2667.35, + "end": 2669.39, + "probability": 0.9166 + }, + { + "start": 2669.91, + "end": 2674.97, + "probability": 0.9805 + }, + { + "start": 2675.05, + "end": 2675.81, + "probability": 0.7986 + }, + { + "start": 2676.37, + "end": 2677.57, + "probability": 0.8853 + }, + { + "start": 2678.03, + "end": 2680.59, + "probability": 0.9907 + }, + { + "start": 2681.63, + "end": 2685.79, + "probability": 0.9959 + }, + { + "start": 2685.79, + "end": 2689.55, + "probability": 0.994 + }, + { + "start": 2689.67, + "end": 2690.47, + "probability": 0.712 + }, + { + "start": 2690.53, + "end": 2693.15, + "probability": 0.976 + }, + { + "start": 2693.67, + "end": 2694.32, + "probability": 0.9761 + }, + { + "start": 2694.63, + "end": 2697.19, + "probability": 0.7517 + }, + { + "start": 2697.31, + "end": 2698.91, + "probability": 0.6741 + }, + { + "start": 2699.53, + "end": 2702.27, + "probability": 0.9486 + }, + { + "start": 2702.31, + "end": 2702.79, + "probability": 0.7869 + }, + { + "start": 2703.13, + "end": 2706.63, + "probability": 0.9306 + }, + { + "start": 2707.07, + "end": 2708.39, + "probability": 0.4958 + }, + { + "start": 2708.75, + "end": 2711.51, + "probability": 0.981 + }, + { + "start": 2711.79, + "end": 2714.87, + "probability": 0.9988 + }, + { + "start": 2715.05, + "end": 2715.95, + "probability": 0.9344 + }, + { + "start": 2716.95, + "end": 2718.15, + "probability": 0.8893 + }, + { + "start": 2718.59, + "end": 2722.71, + "probability": 0.9926 + }, + { + "start": 2723.23, + "end": 2724.89, + "probability": 0.9964 + }, + { + "start": 2725.35, + "end": 2729.55, + "probability": 0.959 + }, + { + "start": 2730.29, + "end": 2732.49, + "probability": 0.9963 + }, + { + "start": 2732.59, + "end": 2733.79, + "probability": 0.9032 + }, + { + "start": 2734.29, + "end": 2735.99, + "probability": 0.9103 + }, + { + "start": 2736.49, + "end": 2739.57, + "probability": 0.6806 + }, + { + "start": 2740.19, + "end": 2742.31, + "probability": 0.8835 + }, + { + "start": 2742.63, + "end": 2743.5, + "probability": 0.98 + }, + { + "start": 2743.89, + "end": 2746.05, + "probability": 0.9089 + }, + { + "start": 2746.17, + "end": 2747.19, + "probability": 0.7421 + }, + { + "start": 2747.75, + "end": 2749.59, + "probability": 0.9949 + }, + { + "start": 2750.09, + "end": 2753.19, + "probability": 0.7047 + }, + { + "start": 2754.65, + "end": 2757.23, + "probability": 0.7611 + }, + { + "start": 2757.87, + "end": 2760.45, + "probability": 0.9676 + }, + { + "start": 2761.17, + "end": 2764.05, + "probability": 0.9922 + }, + { + "start": 2764.13, + "end": 2764.75, + "probability": 0.8789 + }, + { + "start": 2765.15, + "end": 2766.63, + "probability": 0.7604 + }, + { + "start": 2767.07, + "end": 2768.01, + "probability": 0.5251 + }, + { + "start": 2768.03, + "end": 2768.91, + "probability": 0.854 + }, + { + "start": 2768.99, + "end": 2771.31, + "probability": 0.9717 + }, + { + "start": 2772.07, + "end": 2774.77, + "probability": 0.9966 + }, + { + "start": 2775.09, + "end": 2776.91, + "probability": 0.9374 + }, + { + "start": 2776.99, + "end": 2778.29, + "probability": 0.57 + }, + { + "start": 2778.67, + "end": 2780.39, + "probability": 0.8915 + }, + { + "start": 2780.93, + "end": 2782.43, + "probability": 0.9827 + }, + { + "start": 2783.19, + "end": 2788.81, + "probability": 0.9669 + }, + { + "start": 2789.19, + "end": 2789.71, + "probability": 0.7476 + }, + { + "start": 2790.51, + "end": 2792.39, + "probability": 0.5927 + }, + { + "start": 2792.47, + "end": 2793.39, + "probability": 0.6691 + }, + { + "start": 2793.39, + "end": 2795.83, + "probability": 0.9185 + }, + { + "start": 2795.87, + "end": 2797.99, + "probability": 0.509 + }, + { + "start": 2798.13, + "end": 2798.75, + "probability": 0.6451 + }, + { + "start": 2798.77, + "end": 2799.34, + "probability": 0.8926 + }, + { + "start": 2800.18, + "end": 2804.06, + "probability": 0.9898 + }, + { + "start": 2804.6, + "end": 2808.0, + "probability": 0.9277 + }, + { + "start": 2808.0, + "end": 2809.3, + "probability": 0.9478 + }, + { + "start": 2810.54, + "end": 2812.0, + "probability": 0.9889 + }, + { + "start": 2812.96, + "end": 2816.4, + "probability": 0.4307 + }, + { + "start": 2816.8, + "end": 2819.66, + "probability": 0.9326 + }, + { + "start": 2819.96, + "end": 2820.9, + "probability": 0.8884 + }, + { + "start": 2821.42, + "end": 2822.76, + "probability": 0.9858 + }, + { + "start": 2823.46, + "end": 2825.02, + "probability": 0.6842 + }, + { + "start": 2825.44, + "end": 2828.1, + "probability": 0.9951 + }, + { + "start": 2828.1, + "end": 2830.72, + "probability": 0.9899 + }, + { + "start": 2831.22, + "end": 2832.86, + "probability": 0.842 + }, + { + "start": 2833.76, + "end": 2835.68, + "probability": 0.9691 + }, + { + "start": 2835.86, + "end": 2836.33, + "probability": 0.7408 + }, + { + "start": 2837.0, + "end": 2838.38, + "probability": 0.938 + }, + { + "start": 2841.36, + "end": 2841.78, + "probability": 0.1793 + }, + { + "start": 2841.78, + "end": 2842.5, + "probability": 0.2365 + }, + { + "start": 2842.65, + "end": 2846.4, + "probability": 0.8986 + }, + { + "start": 2847.02, + "end": 2847.38, + "probability": 0.3248 + }, + { + "start": 2847.46, + "end": 2850.48, + "probability": 0.9053 + }, + { + "start": 2851.96, + "end": 2854.83, + "probability": 0.9548 + }, + { + "start": 2855.34, + "end": 2857.58, + "probability": 0.9869 + }, + { + "start": 2857.78, + "end": 2858.74, + "probability": 0.5989 + }, + { + "start": 2859.14, + "end": 2859.98, + "probability": 0.7405 + }, + { + "start": 2860.1, + "end": 2862.86, + "probability": 0.9657 + }, + { + "start": 2862.92, + "end": 2864.34, + "probability": 0.9241 + }, + { + "start": 2864.84, + "end": 2866.06, + "probability": 0.8923 + }, + { + "start": 2869.75, + "end": 2870.1, + "probability": 0.1722 + }, + { + "start": 2870.42, + "end": 2872.4, + "probability": 0.1155 + }, + { + "start": 2875.52, + "end": 2877.68, + "probability": 0.4637 + }, + { + "start": 2878.52, + "end": 2880.7, + "probability": 0.4345 + }, + { + "start": 2881.12, + "end": 2883.94, + "probability": 0.6667 + }, + { + "start": 2884.88, + "end": 2886.78, + "probability": 0.0277 + }, + { + "start": 2886.78, + "end": 2887.58, + "probability": 0.0193 + }, + { + "start": 2888.95, + "end": 2892.98, + "probability": 0.056 + }, + { + "start": 2892.98, + "end": 2894.56, + "probability": 0.0539 + }, + { + "start": 2895.18, + "end": 2895.48, + "probability": 0.1034 + }, + { + "start": 2898.02, + "end": 2901.1, + "probability": 0.1065 + }, + { + "start": 2902.1, + "end": 2902.62, + "probability": 0.0405 + }, + { + "start": 2910.98, + "end": 2911.58, + "probability": 0.0377 + }, + { + "start": 2911.72, + "end": 2913.16, + "probability": 0.3555 + }, + { + "start": 2913.54, + "end": 2915.0, + "probability": 0.0269 + }, + { + "start": 2916.27, + "end": 2919.2, + "probability": 0.1503 + }, + { + "start": 2919.76, + "end": 2920.58, + "probability": 0.0234 + }, + { + "start": 2920.58, + "end": 2921.42, + "probability": 0.0435 + }, + { + "start": 2921.42, + "end": 2924.14, + "probability": 0.0163 + }, + { + "start": 2924.14, + "end": 2924.14, + "probability": 0.0692 + }, + { + "start": 2924.58, + "end": 2925.98, + "probability": 0.1485 + }, + { + "start": 2927.96, + "end": 2929.12, + "probability": 0.144 + }, + { + "start": 2929.12, + "end": 2929.4, + "probability": 0.1782 + }, + { + "start": 2929.52, + "end": 2930.2, + "probability": 0.0791 + }, + { + "start": 2930.24, + "end": 2931.14, + "probability": 0.1046 + }, + { + "start": 2931.14, + "end": 2931.96, + "probability": 0.1306 + }, + { + "start": 2932.0, + "end": 2932.0, + "probability": 0.0 + }, + { + "start": 2932.0, + "end": 2932.0, + "probability": 0.0 + }, + { + "start": 2932.0, + "end": 2932.0, + "probability": 0.0 + }, + { + "start": 2932.0, + "end": 2932.0, + "probability": 0.0 + }, + { + "start": 2932.0, + "end": 2932.0, + "probability": 0.0 + }, + { + "start": 2932.0, + "end": 2932.0, + "probability": 0.0 + }, + { + "start": 2932.18, + "end": 2933.04, + "probability": 0.1111 + }, + { + "start": 2933.3, + "end": 2935.04, + "probability": 0.6253 + }, + { + "start": 2935.1, + "end": 2937.86, + "probability": 0.7901 + }, + { + "start": 2938.12, + "end": 2939.4, + "probability": 0.8521 + }, + { + "start": 2939.52, + "end": 2940.46, + "probability": 0.5628 + }, + { + "start": 2940.46, + "end": 2941.39, + "probability": 0.5371 + }, + { + "start": 2942.8, + "end": 2943.48, + "probability": 0.0166 + }, + { + "start": 2943.48, + "end": 2944.22, + "probability": 0.1154 + }, + { + "start": 2944.34, + "end": 2947.6, + "probability": 0.9656 + }, + { + "start": 2947.76, + "end": 2952.1, + "probability": 0.8096 + }, + { + "start": 2952.2, + "end": 2955.1, + "probability": 0.9541 + }, + { + "start": 2955.76, + "end": 2959.86, + "probability": 0.8776 + }, + { + "start": 2959.94, + "end": 2960.02, + "probability": 0.0941 + }, + { + "start": 2960.02, + "end": 2962.6, + "probability": 0.8564 + }, + { + "start": 2962.72, + "end": 2964.32, + "probability": 0.8998 + }, + { + "start": 2964.38, + "end": 2966.16, + "probability": 0.8618 + }, + { + "start": 2966.96, + "end": 2968.4, + "probability": 0.1464 + }, + { + "start": 2968.4, + "end": 2968.4, + "probability": 0.0531 + }, + { + "start": 2968.4, + "end": 2968.4, + "probability": 0.206 + }, + { + "start": 2968.4, + "end": 2968.4, + "probability": 0.0426 + }, + { + "start": 2968.4, + "end": 2972.58, + "probability": 0.8457 + }, + { + "start": 2972.94, + "end": 2973.2, + "probability": 0.233 + }, + { + "start": 2973.94, + "end": 2979.16, + "probability": 0.5483 + }, + { + "start": 2980.9, + "end": 2985.74, + "probability": 0.1794 + }, + { + "start": 2985.94, + "end": 2986.5, + "probability": 0.0486 + }, + { + "start": 2986.62, + "end": 2987.52, + "probability": 0.2092 + }, + { + "start": 2993.4, + "end": 2993.66, + "probability": 0.0797 + }, + { + "start": 2998.38, + "end": 3000.36, + "probability": 0.1065 + }, + { + "start": 3000.36, + "end": 3001.24, + "probability": 0.0259 + }, + { + "start": 3001.24, + "end": 3001.24, + "probability": 0.0493 + }, + { + "start": 3001.24, + "end": 3001.24, + "probability": 0.0646 + }, + { + "start": 3001.24, + "end": 3002.66, + "probability": 0.0873 + }, + { + "start": 3002.92, + "end": 3003.13, + "probability": 0.1588 + }, + { + "start": 3013.48, + "end": 3015.18, + "probability": 0.0475 + }, + { + "start": 3015.34, + "end": 3015.48, + "probability": 0.1123 + }, + { + "start": 3016.6, + "end": 3017.74, + "probability": 0.0346 + }, + { + "start": 3017.74, + "end": 3017.74, + "probability": 0.0398 + }, + { + "start": 3017.74, + "end": 3018.7, + "probability": 0.0511 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3054.0, + "probability": 0.0 + }, + { + "start": 3054.0, + "end": 3056.28, + "probability": 0.5643 + }, + { + "start": 3057.68, + "end": 3061.74, + "probability": 0.9798 + }, + { + "start": 3062.62, + "end": 3066.05, + "probability": 0.9799 + }, + { + "start": 3067.52, + "end": 3068.18, + "probability": 0.481 + }, + { + "start": 3069.1, + "end": 3070.14, + "probability": 0.9551 + }, + { + "start": 3071.28, + "end": 3073.02, + "probability": 0.6361 + }, + { + "start": 3073.94, + "end": 3075.26, + "probability": 0.9983 + }, + { + "start": 3076.46, + "end": 3077.56, + "probability": 0.9976 + }, + { + "start": 3078.44, + "end": 3082.17, + "probability": 0.9963 + }, + { + "start": 3082.96, + "end": 3087.64, + "probability": 0.9973 + }, + { + "start": 3089.0, + "end": 3095.66, + "probability": 0.9585 + }, + { + "start": 3097.04, + "end": 3102.66, + "probability": 0.9922 + }, + { + "start": 3103.84, + "end": 3107.06, + "probability": 0.9693 + }, + { + "start": 3107.14, + "end": 3108.96, + "probability": 0.9125 + }, + { + "start": 3110.78, + "end": 3111.74, + "probability": 0.5173 + }, + { + "start": 3114.74, + "end": 3116.88, + "probability": 0.8622 + }, + { + "start": 3117.94, + "end": 3119.98, + "probability": 0.963 + }, + { + "start": 3120.66, + "end": 3121.3, + "probability": 0.848 + }, + { + "start": 3122.08, + "end": 3122.56, + "probability": 0.9529 + }, + { + "start": 3123.36, + "end": 3124.26, + "probability": 0.9639 + }, + { + "start": 3124.8, + "end": 3125.76, + "probability": 0.7534 + }, + { + "start": 3126.46, + "end": 3127.56, + "probability": 0.9946 + }, + { + "start": 3128.22, + "end": 3129.24, + "probability": 0.9958 + }, + { + "start": 3129.76, + "end": 3130.98, + "probability": 0.941 + }, + { + "start": 3132.06, + "end": 3135.37, + "probability": 0.8881 + }, + { + "start": 3136.38, + "end": 3137.58, + "probability": 0.8587 + }, + { + "start": 3137.74, + "end": 3138.16, + "probability": 0.9846 + }, + { + "start": 3138.76, + "end": 3140.08, + "probability": 0.8731 + }, + { + "start": 3141.36, + "end": 3145.3, + "probability": 0.9474 + }, + { + "start": 3146.18, + "end": 3151.12, + "probability": 0.9898 + }, + { + "start": 3151.98, + "end": 3155.82, + "probability": 0.9766 + }, + { + "start": 3157.04, + "end": 3161.22, + "probability": 0.8661 + }, + { + "start": 3162.34, + "end": 3164.06, + "probability": 0.8202 + }, + { + "start": 3164.8, + "end": 3165.96, + "probability": 0.999 + }, + { + "start": 3167.54, + "end": 3168.82, + "probability": 0.8021 + }, + { + "start": 3169.46, + "end": 3170.58, + "probability": 0.7188 + }, + { + "start": 3171.2, + "end": 3176.48, + "probability": 0.9704 + }, + { + "start": 3177.38, + "end": 3180.68, + "probability": 0.9812 + }, + { + "start": 3181.4, + "end": 3184.92, + "probability": 0.9728 + }, + { + "start": 3186.1, + "end": 3187.48, + "probability": 0.7203 + }, + { + "start": 3188.44, + "end": 3189.8, + "probability": 0.8491 + }, + { + "start": 3191.04, + "end": 3193.08, + "probability": 0.9188 + }, + { + "start": 3193.82, + "end": 3197.3, + "probability": 0.937 + }, + { + "start": 3198.68, + "end": 3200.6, + "probability": 0.9116 + }, + { + "start": 3201.22, + "end": 3203.16, + "probability": 0.8134 + }, + { + "start": 3203.26, + "end": 3204.4, + "probability": 0.8359 + }, + { + "start": 3204.6, + "end": 3205.68, + "probability": 0.6642 + }, + { + "start": 3205.84, + "end": 3208.0, + "probability": 0.5256 + }, + { + "start": 3208.88, + "end": 3210.52, + "probability": 0.9976 + }, + { + "start": 3211.6, + "end": 3214.32, + "probability": 0.9856 + }, + { + "start": 3216.46, + "end": 3228.02, + "probability": 0.9409 + }, + { + "start": 3229.06, + "end": 3231.96, + "probability": 0.9946 + }, + { + "start": 3234.02, + "end": 3245.08, + "probability": 0.9319 + }, + { + "start": 3245.64, + "end": 3246.84, + "probability": 0.8192 + }, + { + "start": 3247.42, + "end": 3251.26, + "probability": 0.9868 + }, + { + "start": 3252.56, + "end": 3253.48, + "probability": 0.6035 + }, + { + "start": 3255.52, + "end": 3259.44, + "probability": 0.7562 + }, + { + "start": 3260.44, + "end": 3264.44, + "probability": 0.9158 + }, + { + "start": 3265.72, + "end": 3267.64, + "probability": 0.018 + }, + { + "start": 3268.44, + "end": 3269.32, + "probability": 0.904 + }, + { + "start": 3270.08, + "end": 3277.3, + "probability": 0.6605 + }, + { + "start": 3277.8, + "end": 3281.38, + "probability": 0.7814 + }, + { + "start": 3283.12, + "end": 3284.44, + "probability": 0.6352 + }, + { + "start": 3285.22, + "end": 3286.04, + "probability": 0.9435 + }, + { + "start": 3286.56, + "end": 3293.32, + "probability": 0.9917 + }, + { + "start": 3294.74, + "end": 3295.74, + "probability": 0.8305 + }, + { + "start": 3296.84, + "end": 3301.0, + "probability": 0.741 + }, + { + "start": 3301.68, + "end": 3302.6, + "probability": 0.851 + }, + { + "start": 3303.5, + "end": 3305.36, + "probability": 0.774 + }, + { + "start": 3306.1, + "end": 3310.26, + "probability": 0.8896 + }, + { + "start": 3310.84, + "end": 3313.42, + "probability": 0.9717 + }, + { + "start": 3314.4, + "end": 3318.22, + "probability": 0.9247 + }, + { + "start": 3318.94, + "end": 3323.18, + "probability": 0.9797 + }, + { + "start": 3324.08, + "end": 3324.66, + "probability": 0.7132 + }, + { + "start": 3325.4, + "end": 3325.98, + "probability": 0.8963 + }, + { + "start": 3326.8, + "end": 3327.4, + "probability": 0.9949 + }, + { + "start": 3328.38, + "end": 3330.48, + "probability": 0.9336 + }, + { + "start": 3331.26, + "end": 3333.06, + "probability": 0.6449 + }, + { + "start": 3333.6, + "end": 3335.38, + "probability": 0.949 + }, + { + "start": 3336.66, + "end": 3337.82, + "probability": 0.5958 + }, + { + "start": 3339.1, + "end": 3341.78, + "probability": 0.8805 + }, + { + "start": 3342.56, + "end": 3344.46, + "probability": 0.9684 + }, + { + "start": 3345.06, + "end": 3356.46, + "probability": 0.9149 + }, + { + "start": 3357.52, + "end": 3360.96, + "probability": 0.7888 + }, + { + "start": 3361.86, + "end": 3365.2, + "probability": 0.9653 + }, + { + "start": 3366.32, + "end": 3367.88, + "probability": 0.6937 + }, + { + "start": 3369.04, + "end": 3371.14, + "probability": 0.9597 + }, + { + "start": 3372.0, + "end": 3372.42, + "probability": 0.996 + }, + { + "start": 3373.3, + "end": 3375.68, + "probability": 0.9426 + }, + { + "start": 3376.4, + "end": 3377.68, + "probability": 0.9549 + }, + { + "start": 3378.2, + "end": 3378.7, + "probability": 0.908 + }, + { + "start": 3381.12, + "end": 3382.26, + "probability": 0.8212 + }, + { + "start": 3383.32, + "end": 3384.57, + "probability": 0.8657 + }, + { + "start": 3385.8, + "end": 3390.06, + "probability": 0.9682 + }, + { + "start": 3391.22, + "end": 3392.86, + "probability": 0.8312 + }, + { + "start": 3393.54, + "end": 3393.92, + "probability": 0.8485 + }, + { + "start": 3394.5, + "end": 3395.82, + "probability": 0.9714 + }, + { + "start": 3397.38, + "end": 3400.7, + "probability": 0.9922 + }, + { + "start": 3401.76, + "end": 3408.3, + "probability": 0.9808 + }, + { + "start": 3409.46, + "end": 3412.3, + "probability": 0.9844 + }, + { + "start": 3413.76, + "end": 3415.88, + "probability": 0.7598 + }, + { + "start": 3416.84, + "end": 3418.44, + "probability": 0.9961 + }, + { + "start": 3419.32, + "end": 3420.0, + "probability": 0.9522 + }, + { + "start": 3420.96, + "end": 3427.42, + "probability": 0.9158 + }, + { + "start": 3428.92, + "end": 3431.26, + "probability": 0.7231 + }, + { + "start": 3432.04, + "end": 3432.94, + "probability": 0.6988 + }, + { + "start": 3433.48, + "end": 3434.0, + "probability": 0.7868 + }, + { + "start": 3435.12, + "end": 3439.5, + "probability": 0.8648 + }, + { + "start": 3441.08, + "end": 3441.76, + "probability": 0.8931 + }, + { + "start": 3442.5, + "end": 3447.34, + "probability": 0.9726 + }, + { + "start": 3447.96, + "end": 3449.88, + "probability": 0.9241 + }, + { + "start": 3451.38, + "end": 3454.9, + "probability": 0.7325 + }, + { + "start": 3456.1, + "end": 3458.72, + "probability": 0.9948 + }, + { + "start": 3459.52, + "end": 3460.2, + "probability": 0.8465 + }, + { + "start": 3461.08, + "end": 3461.72, + "probability": 0.98 + }, + { + "start": 3462.92, + "end": 3464.34, + "probability": 0.9941 + }, + { + "start": 3466.26, + "end": 3466.58, + "probability": 0.6853 + }, + { + "start": 3468.46, + "end": 3469.02, + "probability": 0.6746 + }, + { + "start": 3469.92, + "end": 3470.91, + "probability": 0.8611 + }, + { + "start": 3473.04, + "end": 3478.74, + "probability": 0.7959 + }, + { + "start": 3480.02, + "end": 3481.06, + "probability": 0.6602 + }, + { + "start": 3481.96, + "end": 3487.18, + "probability": 0.9341 + }, + { + "start": 3488.34, + "end": 3488.8, + "probability": 0.7513 + }, + { + "start": 3489.64, + "end": 3493.58, + "probability": 0.9915 + }, + { + "start": 3494.34, + "end": 3495.58, + "probability": 0.8031 + }, + { + "start": 3496.7, + "end": 3499.8, + "probability": 0.9697 + }, + { + "start": 3500.78, + "end": 3501.98, + "probability": 0.8761 + }, + { + "start": 3502.88, + "end": 3507.12, + "probability": 0.9487 + }, + { + "start": 3508.48, + "end": 3510.02, + "probability": 0.9967 + }, + { + "start": 3510.7, + "end": 3512.1, + "probability": 0.9814 + }, + { + "start": 3512.84, + "end": 3515.62, + "probability": 0.6413 + }, + { + "start": 3517.2, + "end": 3518.64, + "probability": 0.5478 + }, + { + "start": 3519.54, + "end": 3520.72, + "probability": 0.7017 + }, + { + "start": 3521.4, + "end": 3527.28, + "probability": 0.8979 + }, + { + "start": 3528.8, + "end": 3529.4, + "probability": 0.8134 + }, + { + "start": 3530.54, + "end": 3535.32, + "probability": 0.9978 + }, + { + "start": 3535.96, + "end": 3536.8, + "probability": 0.7567 + }, + { + "start": 3538.6, + "end": 3540.0, + "probability": 0.9558 + }, + { + "start": 3540.68, + "end": 3541.64, + "probability": 0.9965 + }, + { + "start": 3542.32, + "end": 3545.74, + "probability": 0.9799 + }, + { + "start": 3546.34, + "end": 3546.9, + "probability": 0.9187 + }, + { + "start": 3547.84, + "end": 3549.18, + "probability": 0.9788 + }, + { + "start": 3550.32, + "end": 3552.52, + "probability": 0.9877 + }, + { + "start": 3553.5, + "end": 3554.06, + "probability": 0.5768 + }, + { + "start": 3555.06, + "end": 3560.06, + "probability": 0.9638 + }, + { + "start": 3561.44, + "end": 3562.96, + "probability": 0.7089 + }, + { + "start": 3563.98, + "end": 3567.02, + "probability": 0.7567 + }, + { + "start": 3568.76, + "end": 3571.64, + "probability": 0.9238 + }, + { + "start": 3572.98, + "end": 3575.4, + "probability": 0.2633 + }, + { + "start": 3578.56, + "end": 3579.58, + "probability": 0.6655 + }, + { + "start": 3580.1, + "end": 3581.54, + "probability": 0.7538 + }, + { + "start": 3582.46, + "end": 3588.56, + "probability": 0.9876 + }, + { + "start": 3589.1, + "end": 3591.46, + "probability": 0.6887 + }, + { + "start": 3593.24, + "end": 3596.46, + "probability": 0.8664 + }, + { + "start": 3597.46, + "end": 3603.52, + "probability": 0.9948 + }, + { + "start": 3605.1, + "end": 3606.56, + "probability": 0.8665 + }, + { + "start": 3608.36, + "end": 3616.1, + "probability": 0.9896 + }, + { + "start": 3617.18, + "end": 3621.02, + "probability": 0.9858 + }, + { + "start": 3622.7, + "end": 3625.38, + "probability": 0.9956 + }, + { + "start": 3626.16, + "end": 3631.4, + "probability": 0.7828 + }, + { + "start": 3632.0, + "end": 3635.18, + "probability": 0.6876 + }, + { + "start": 3636.78, + "end": 3639.9, + "probability": 0.9793 + }, + { + "start": 3640.48, + "end": 3641.12, + "probability": 0.7332 + }, + { + "start": 3642.08, + "end": 3643.16, + "probability": 0.7434 + }, + { + "start": 3643.22, + "end": 3646.98, + "probability": 0.8841 + }, + { + "start": 3647.6, + "end": 3648.12, + "probability": 0.8115 + }, + { + "start": 3648.8, + "end": 3649.5, + "probability": 0.9232 + }, + { + "start": 3650.32, + "end": 3652.04, + "probability": 0.9263 + }, + { + "start": 3653.04, + "end": 3653.56, + "probability": 0.7422 + }, + { + "start": 3654.54, + "end": 3656.1, + "probability": 0.9864 + }, + { + "start": 3657.66, + "end": 3660.26, + "probability": 0.8056 + }, + { + "start": 3661.44, + "end": 3664.9, + "probability": 0.999 + }, + { + "start": 3665.54, + "end": 3668.7, + "probability": 0.9975 + }, + { + "start": 3670.08, + "end": 3670.72, + "probability": 0.9508 + }, + { + "start": 3671.64, + "end": 3673.86, + "probability": 0.9808 + }, + { + "start": 3674.66, + "end": 3677.14, + "probability": 0.501 + }, + { + "start": 3678.22, + "end": 3678.64, + "probability": 0.6829 + }, + { + "start": 3679.26, + "end": 3680.52, + "probability": 0.9635 + }, + { + "start": 3681.44, + "end": 3683.24, + "probability": 0.9892 + }, + { + "start": 3684.4, + "end": 3684.9, + "probability": 0.6878 + }, + { + "start": 3685.66, + "end": 3689.68, + "probability": 0.8544 + }, + { + "start": 3691.12, + "end": 3698.82, + "probability": 0.9829 + }, + { + "start": 3700.2, + "end": 3703.72, + "probability": 0.8123 + }, + { + "start": 3704.58, + "end": 3707.74, + "probability": 0.9573 + }, + { + "start": 3708.46, + "end": 3710.14, + "probability": 0.9918 + }, + { + "start": 3712.2, + "end": 3715.76, + "probability": 0.9188 + }, + { + "start": 3716.48, + "end": 3716.55, + "probability": 0.6951 + }, + { + "start": 3719.68, + "end": 3721.72, + "probability": 0.9705 + }, + { + "start": 3722.88, + "end": 3727.1, + "probability": 0.8712 + }, + { + "start": 3728.16, + "end": 3730.32, + "probability": 0.8744 + }, + { + "start": 3731.88, + "end": 3733.68, + "probability": 0.9983 + }, + { + "start": 3734.5, + "end": 3735.2, + "probability": 0.9946 + }, + { + "start": 3735.92, + "end": 3737.28, + "probability": 0.8997 + }, + { + "start": 3738.24, + "end": 3739.86, + "probability": 0.9869 + }, + { + "start": 3740.76, + "end": 3744.64, + "probability": 0.9385 + }, + { + "start": 3745.36, + "end": 3748.54, + "probability": 0.9968 + }, + { + "start": 3749.3, + "end": 3750.5, + "probability": 0.9209 + }, + { + "start": 3751.86, + "end": 3755.34, + "probability": 0.9956 + }, + { + "start": 3755.34, + "end": 3759.88, + "probability": 0.9678 + }, + { + "start": 3760.8, + "end": 3761.68, + "probability": 0.5562 + }, + { + "start": 3762.58, + "end": 3768.68, + "probability": 0.8695 + }, + { + "start": 3770.06, + "end": 3773.8, + "probability": 0.9211 + }, + { + "start": 3775.18, + "end": 3775.6, + "probability": 0.9061 + }, + { + "start": 3776.6, + "end": 3778.56, + "probability": 0.9894 + }, + { + "start": 3779.5, + "end": 3781.78, + "probability": 0.423 + }, + { + "start": 3782.62, + "end": 3783.26, + "probability": 0.4525 + }, + { + "start": 3783.82, + "end": 3785.74, + "probability": 0.7565 + }, + { + "start": 3786.66, + "end": 3787.34, + "probability": 0.5198 + }, + { + "start": 3788.34, + "end": 3789.46, + "probability": 0.3476 + }, + { + "start": 3790.7, + "end": 3792.52, + "probability": 0.7034 + }, + { + "start": 3793.4, + "end": 3796.44, + "probability": 0.4056 + }, + { + "start": 3796.7, + "end": 3801.48, + "probability": 0.9528 + }, + { + "start": 3802.24, + "end": 3805.42, + "probability": 0.8113 + }, + { + "start": 3806.86, + "end": 3809.31, + "probability": 0.9756 + }, + { + "start": 3810.4, + "end": 3816.94, + "probability": 0.7444 + }, + { + "start": 3817.86, + "end": 3822.69, + "probability": 0.8257 + }, + { + "start": 3823.02, + "end": 3824.34, + "probability": 0.9077 + }, + { + "start": 3825.56, + "end": 3825.62, + "probability": 0.1395 + }, + { + "start": 3825.62, + "end": 3832.52, + "probability": 0.9442 + }, + { + "start": 3833.7, + "end": 3839.08, + "probability": 0.9859 + }, + { + "start": 3840.18, + "end": 3846.3, + "probability": 0.0993 + }, + { + "start": 3846.3, + "end": 3846.42, + "probability": 0.1123 + }, + { + "start": 3846.42, + "end": 3848.42, + "probability": 0.6586 + }, + { + "start": 3848.42, + "end": 3854.34, + "probability": 0.9056 + }, + { + "start": 3855.26, + "end": 3858.12, + "probability": 0.5345 + }, + { + "start": 3859.46, + "end": 3860.08, + "probability": 0.8639 + }, + { + "start": 3860.86, + "end": 3864.56, + "probability": 0.9198 + }, + { + "start": 3865.34, + "end": 3868.76, + "probability": 0.8114 + }, + { + "start": 3869.52, + "end": 3870.1, + "probability": 0.7837 + }, + { + "start": 3870.78, + "end": 3877.62, + "probability": 0.9839 + }, + { + "start": 3879.12, + "end": 3880.82, + "probability": 0.8357 + }, + { + "start": 3881.6, + "end": 3883.12, + "probability": 0.929 + }, + { + "start": 3884.28, + "end": 3884.9, + "probability": 0.6974 + }, + { + "start": 3885.82, + "end": 3891.54, + "probability": 0.9873 + }, + { + "start": 3892.14, + "end": 3897.58, + "probability": 0.9238 + }, + { + "start": 3898.68, + "end": 3902.46, + "probability": 0.9657 + }, + { + "start": 3903.36, + "end": 3906.32, + "probability": 0.9531 + }, + { + "start": 3909.86, + "end": 3911.88, + "probability": 0.7728 + }, + { + "start": 3912.82, + "end": 3914.06, + "probability": 0.7374 + }, + { + "start": 3914.88, + "end": 3916.66, + "probability": 0.9845 + }, + { + "start": 3917.68, + "end": 3919.8, + "probability": 0.9602 + }, + { + "start": 3921.38, + "end": 3924.58, + "probability": 0.9323 + }, + { + "start": 3925.8, + "end": 3928.4, + "probability": 0.98 + }, + { + "start": 3929.22, + "end": 3932.2, + "probability": 0.7593 + }, + { + "start": 3932.98, + "end": 3937.38, + "probability": 0.9711 + }, + { + "start": 3937.96, + "end": 3946.98, + "probability": 0.8935 + }, + { + "start": 3947.88, + "end": 3948.78, + "probability": 0.8006 + }, + { + "start": 3949.42, + "end": 3951.82, + "probability": 0.9804 + }, + { + "start": 3952.44, + "end": 3953.46, + "probability": 0.8335 + }, + { + "start": 3954.12, + "end": 3956.28, + "probability": 0.9978 + }, + { + "start": 3958.02, + "end": 3959.24, + "probability": 0.7671 + }, + { + "start": 3960.46, + "end": 3965.32, + "probability": 0.8458 + }, + { + "start": 3965.98, + "end": 3969.14, + "probability": 0.9309 + }, + { + "start": 3970.1, + "end": 3972.7, + "probability": 0.9985 + }, + { + "start": 3973.3, + "end": 3975.06, + "probability": 0.7584 + }, + { + "start": 3975.94, + "end": 3977.46, + "probability": 0.6922 + }, + { + "start": 3978.12, + "end": 3979.3, + "probability": 0.9308 + }, + { + "start": 3980.08, + "end": 3982.18, + "probability": 0.959 + }, + { + "start": 3982.98, + "end": 3990.42, + "probability": 0.9648 + }, + { + "start": 3991.72, + "end": 3993.82, + "probability": 0.8916 + }, + { + "start": 3994.46, + "end": 3996.14, + "probability": 0.9971 + }, + { + "start": 3996.82, + "end": 3999.02, + "probability": 0.8873 + }, + { + "start": 3999.68, + "end": 4003.52, + "probability": 0.9337 + }, + { + "start": 4004.48, + "end": 4008.06, + "probability": 0.6312 + }, + { + "start": 4009.0, + "end": 4010.36, + "probability": 0.6785 + }, + { + "start": 4011.68, + "end": 4017.8, + "probability": 0.7814 + }, + { + "start": 4018.52, + "end": 4021.24, + "probability": 0.6663 + }, + { + "start": 4022.24, + "end": 4024.92, + "probability": 0.9182 + }, + { + "start": 4026.74, + "end": 4027.76, + "probability": 0.66 + }, + { + "start": 4027.92, + "end": 4032.28, + "probability": 0.7172 + }, + { + "start": 4033.7, + "end": 4037.14, + "probability": 0.9858 + }, + { + "start": 4038.04, + "end": 4041.0, + "probability": 0.9908 + }, + { + "start": 4041.7, + "end": 4044.98, + "probability": 0.8588 + }, + { + "start": 4045.62, + "end": 4048.28, + "probability": 0.8648 + }, + { + "start": 4049.52, + "end": 4051.62, + "probability": 0.9958 + }, + { + "start": 4052.24, + "end": 4054.16, + "probability": 0.979 + }, + { + "start": 4056.14, + "end": 4058.92, + "probability": 0.9748 + }, + { + "start": 4059.7, + "end": 4061.44, + "probability": 0.8259 + }, + { + "start": 4062.76, + "end": 4063.54, + "probability": 0.9408 + }, + { + "start": 4064.76, + "end": 4066.0, + "probability": 0.8444 + }, + { + "start": 4067.1, + "end": 4069.66, + "probability": 0.8168 + }, + { + "start": 4071.34, + "end": 4076.68, + "probability": 0.9263 + }, + { + "start": 4077.32, + "end": 4084.16, + "probability": 0.8164 + }, + { + "start": 4093.56, + "end": 4094.08, + "probability": 0.2748 + }, + { + "start": 4097.12, + "end": 4098.22, + "probability": 0.7728 + }, + { + "start": 4098.38, + "end": 4100.14, + "probability": 0.9406 + }, + { + "start": 4100.26, + "end": 4102.08, + "probability": 0.77 + }, + { + "start": 4102.08, + "end": 4102.18, + "probability": 0.4204 + }, + { + "start": 4102.18, + "end": 4103.4, + "probability": 0.5396 + }, + { + "start": 4103.5, + "end": 4104.56, + "probability": 0.9339 + }, + { + "start": 4104.7, + "end": 4105.62, + "probability": 0.2972 + }, + { + "start": 4105.98, + "end": 4108.76, + "probability": 0.3149 + }, + { + "start": 4109.9, + "end": 4110.44, + "probability": 0.4318 + }, + { + "start": 4112.54, + "end": 4114.24, + "probability": 0.9323 + }, + { + "start": 4115.82, + "end": 4120.02, + "probability": 0.8176 + }, + { + "start": 4120.62, + "end": 4121.68, + "probability": 0.8663 + }, + { + "start": 4122.16, + "end": 4127.74, + "probability": 0.6641 + }, + { + "start": 4133.86, + "end": 4133.9, + "probability": 0.2162 + }, + { + "start": 4133.9, + "end": 4137.94, + "probability": 0.6867 + }, + { + "start": 4138.06, + "end": 4139.76, + "probability": 0.6172 + }, + { + "start": 4140.4, + "end": 4142.76, + "probability": 0.8578 + }, + { + "start": 4144.94, + "end": 4145.42, + "probability": 0.0018 + }, + { + "start": 4145.42, + "end": 4149.68, + "probability": 0.9269 + }, + { + "start": 4150.36, + "end": 4154.84, + "probability": 0.9614 + }, + { + "start": 4156.18, + "end": 4158.2, + "probability": 0.6549 + }, + { + "start": 4158.94, + "end": 4159.64, + "probability": 0.5957 + }, + { + "start": 4160.26, + "end": 4162.64, + "probability": 0.8384 + }, + { + "start": 4163.32, + "end": 4166.94, + "probability": 0.9702 + }, + { + "start": 4168.1, + "end": 4169.96, + "probability": 0.7391 + }, + { + "start": 4170.04, + "end": 4170.74, + "probability": 0.8583 + }, + { + "start": 4171.64, + "end": 4172.26, + "probability": 0.1468 + }, + { + "start": 4172.26, + "end": 4172.26, + "probability": 0.2975 + }, + { + "start": 4172.28, + "end": 4172.89, + "probability": 0.564 + }, + { + "start": 4175.1, + "end": 4178.42, + "probability": 0.9937 + }, + { + "start": 4179.82, + "end": 4180.42, + "probability": 0.0044 + }, + { + "start": 4182.58, + "end": 4182.82, + "probability": 0.0054 + }, + { + "start": 4182.82, + "end": 4182.82, + "probability": 0.0049 + }, + { + "start": 4182.82, + "end": 4183.82, + "probability": 0.5245 + }, + { + "start": 4184.08, + "end": 4184.8, + "probability": 0.2147 + }, + { + "start": 4185.18, + "end": 4187.02, + "probability": 0.9912 + }, + { + "start": 4187.2, + "end": 4188.84, + "probability": 0.9518 + }, + { + "start": 4189.56, + "end": 4190.66, + "probability": 0.1436 + }, + { + "start": 4190.92, + "end": 4194.02, + "probability": 0.8973 + }, + { + "start": 4194.54, + "end": 4195.32, + "probability": 0.6509 + }, + { + "start": 4195.7, + "end": 4197.8, + "probability": 0.9746 + }, + { + "start": 4198.3, + "end": 4199.54, + "probability": 0.4964 + }, + { + "start": 4199.98, + "end": 4200.77, + "probability": 0.8106 + }, + { + "start": 4204.96, + "end": 4213.02, + "probability": 0.9918 + }, + { + "start": 4213.52, + "end": 4215.0, + "probability": 0.5761 + }, + { + "start": 4215.88, + "end": 4217.46, + "probability": 0.9678 + }, + { + "start": 4218.2, + "end": 4225.68, + "probability": 0.9311 + }, + { + "start": 4226.3, + "end": 4228.62, + "probability": 0.9766 + }, + { + "start": 4229.42, + "end": 4231.02, + "probability": 0.7778 + }, + { + "start": 4231.9, + "end": 4233.78, + "probability": 0.9076 + }, + { + "start": 4234.52, + "end": 4235.0, + "probability": 0.2932 + }, + { + "start": 4235.54, + "end": 4237.1, + "probability": 0.7962 + }, + { + "start": 4237.66, + "end": 4239.16, + "probability": 0.7875 + }, + { + "start": 4240.18, + "end": 4241.42, + "probability": 0.8984 + }, + { + "start": 4242.06, + "end": 4243.38, + "probability": 0.9946 + }, + { + "start": 4244.22, + "end": 4248.48, + "probability": 0.9625 + }, + { + "start": 4248.48, + "end": 4251.98, + "probability": 0.9504 + }, + { + "start": 4253.18, + "end": 4256.98, + "probability": 0.7544 + }, + { + "start": 4257.76, + "end": 4259.22, + "probability": 0.9935 + }, + { + "start": 4259.96, + "end": 4264.48, + "probability": 0.9959 + }, + { + "start": 4265.22, + "end": 4267.06, + "probability": 0.8925 + }, + { + "start": 4268.28, + "end": 4272.34, + "probability": 0.9247 + }, + { + "start": 4272.86, + "end": 4276.0, + "probability": 0.953 + }, + { + "start": 4277.0, + "end": 4281.28, + "probability": 0.9919 + }, + { + "start": 4281.98, + "end": 4284.64, + "probability": 0.7588 + }, + { + "start": 4285.22, + "end": 4285.78, + "probability": 0.8078 + }, + { + "start": 4287.14, + "end": 4288.04, + "probability": 0.9448 + }, + { + "start": 4288.94, + "end": 4289.98, + "probability": 0.9802 + }, + { + "start": 4290.6, + "end": 4292.0, + "probability": 0.8451 + }, + { + "start": 4292.74, + "end": 4295.44, + "probability": 0.9961 + }, + { + "start": 4296.8, + "end": 4297.72, + "probability": 0.992 + }, + { + "start": 4298.4, + "end": 4303.46, + "probability": 0.9952 + }, + { + "start": 4304.66, + "end": 4306.6, + "probability": 0.6254 + }, + { + "start": 4307.2, + "end": 4311.96, + "probability": 0.937 + }, + { + "start": 4312.74, + "end": 4314.48, + "probability": 0.9347 + }, + { + "start": 4315.22, + "end": 4318.84, + "probability": 0.9766 + }, + { + "start": 4319.6, + "end": 4322.1, + "probability": 0.6077 + }, + { + "start": 4322.9, + "end": 4325.8, + "probability": 0.9974 + }, + { + "start": 4326.4, + "end": 4328.96, + "probability": 0.8055 + }, + { + "start": 4329.48, + "end": 4332.88, + "probability": 0.9987 + }, + { + "start": 4333.46, + "end": 4335.22, + "probability": 0.9985 + }, + { + "start": 4336.24, + "end": 4336.62, + "probability": 0.7308 + }, + { + "start": 4338.0, + "end": 4341.2, + "probability": 0.8621 + }, + { + "start": 4341.52, + "end": 4342.08, + "probability": 0.4113 + }, + { + "start": 4342.2, + "end": 4344.94, + "probability": 0.9491 + }, + { + "start": 4346.32, + "end": 4347.62, + "probability": 0.4784 + }, + { + "start": 4347.62, + "end": 4350.7, + "probability": 0.7995 + }, + { + "start": 4351.36, + "end": 4352.0, + "probability": 0.8947 + }, + { + "start": 4353.16, + "end": 4356.32, + "probability": 0.77 + }, + { + "start": 4357.24, + "end": 4359.38, + "probability": 0.73 + }, + { + "start": 4360.56, + "end": 4361.98, + "probability": 0.9954 + }, + { + "start": 4362.56, + "end": 4364.56, + "probability": 0.9583 + }, + { + "start": 4370.4, + "end": 4370.98, + "probability": 0.6691 + }, + { + "start": 4372.5, + "end": 4372.66, + "probability": 0.0814 + }, + { + "start": 4372.66, + "end": 4372.66, + "probability": 0.0618 + }, + { + "start": 4372.66, + "end": 4372.66, + "probability": 0.3274 + }, + { + "start": 4372.66, + "end": 4372.66, + "probability": 0.3293 + }, + { + "start": 4372.66, + "end": 4379.12, + "probability": 0.6454 + }, + { + "start": 4379.62, + "end": 4381.84, + "probability": 0.7794 + }, + { + "start": 4382.88, + "end": 4384.92, + "probability": 0.9321 + }, + { + "start": 4387.24, + "end": 4387.4, + "probability": 0.2635 + }, + { + "start": 4388.16, + "end": 4391.62, + "probability": 0.4006 + }, + { + "start": 4391.62, + "end": 4391.62, + "probability": 0.7266 + }, + { + "start": 4391.62, + "end": 4391.62, + "probability": 0.5051 + }, + { + "start": 4391.62, + "end": 4391.62, + "probability": 0.0358 + }, + { + "start": 4391.62, + "end": 4392.18, + "probability": 0.0566 + }, + { + "start": 4393.1, + "end": 4393.48, + "probability": 0.1377 + }, + { + "start": 4396.08, + "end": 4400.18, + "probability": 0.4732 + }, + { + "start": 4402.64, + "end": 4403.62, + "probability": 0.5042 + }, + { + "start": 4403.82, + "end": 4404.0, + "probability": 0.0282 + }, + { + "start": 4404.0, + "end": 4404.0, + "probability": 0.3401 + }, + { + "start": 4404.0, + "end": 4406.58, + "probability": 0.337 + }, + { + "start": 4406.58, + "end": 4406.88, + "probability": 0.0652 + }, + { + "start": 4407.18, + "end": 4407.46, + "probability": 0.0184 + }, + { + "start": 4407.46, + "end": 4408.64, + "probability": 0.1621 + }, + { + "start": 4409.64, + "end": 4410.34, + "probability": 0.1221 + }, + { + "start": 4410.54, + "end": 4410.82, + "probability": 0.2295 + }, + { + "start": 4411.2, + "end": 4411.44, + "probability": 0.496 + }, + { + "start": 4411.64, + "end": 4411.7, + "probability": 0.3401 + }, + { + "start": 4411.7, + "end": 4412.62, + "probability": 0.462 + }, + { + "start": 4413.08, + "end": 4414.18, + "probability": 0.6455 + }, + { + "start": 4415.23, + "end": 4418.14, + "probability": 0.291 + }, + { + "start": 4418.2, + "end": 4418.28, + "probability": 0.355 + }, + { + "start": 4419.52, + "end": 4420.78, + "probability": 0.5396 + }, + { + "start": 4421.36, + "end": 4423.68, + "probability": 0.7734 + }, + { + "start": 4423.92, + "end": 4424.38, + "probability": 0.551 + }, + { + "start": 4425.42, + "end": 4426.5, + "probability": 0.7181 + }, + { + "start": 4426.62, + "end": 4427.1, + "probability": 0.2469 + }, + { + "start": 4427.1, + "end": 4429.96, + "probability": 0.4675 + }, + { + "start": 4430.14, + "end": 4430.6, + "probability": 0.0162 + }, + { + "start": 4430.6, + "end": 4432.46, + "probability": 0.8942 + }, + { + "start": 4435.26, + "end": 4437.3, + "probability": 0.1009 + }, + { + "start": 4438.46, + "end": 4438.88, + "probability": 0.4503 + }, + { + "start": 4438.98, + "end": 4441.48, + "probability": 0.8588 + }, + { + "start": 4441.66, + "end": 4442.16, + "probability": 0.8486 + }, + { + "start": 4442.28, + "end": 4443.38, + "probability": 0.8633 + }, + { + "start": 4443.5, + "end": 4445.17, + "probability": 0.6165 + }, + { + "start": 4445.54, + "end": 4446.24, + "probability": 0.0244 + }, + { + "start": 4446.44, + "end": 4447.3, + "probability": 0.0418 + }, + { + "start": 4447.3, + "end": 4448.66, + "probability": 0.8304 + }, + { + "start": 4448.78, + "end": 4451.14, + "probability": 0.5643 + }, + { + "start": 4451.58, + "end": 4455.64, + "probability": 0.6372 + }, + { + "start": 4455.78, + "end": 4456.28, + "probability": 0.5055 + }, + { + "start": 4456.28, + "end": 4459.26, + "probability": 0.9164 + }, + { + "start": 4459.58, + "end": 4460.52, + "probability": 0.7827 + }, + { + "start": 4464.06, + "end": 4467.3, + "probability": 0.5204 + }, + { + "start": 4467.5, + "end": 4467.84, + "probability": 0.4151 + }, + { + "start": 4468.3, + "end": 4469.78, + "probability": 0.8295 + }, + { + "start": 4470.12, + "end": 4470.52, + "probability": 0.423 + }, + { + "start": 4470.58, + "end": 4472.28, + "probability": 0.5657 + }, + { + "start": 4472.96, + "end": 4474.82, + "probability": 0.925 + }, + { + "start": 4475.28, + "end": 4475.28, + "probability": 0.7973 + }, + { + "start": 4475.28, + "end": 4476.22, + "probability": 0.5769 + }, + { + "start": 4476.38, + "end": 4477.4, + "probability": 0.6797 + }, + { + "start": 4477.48, + "end": 4478.74, + "probability": 0.7331 + }, + { + "start": 4484.36, + "end": 4486.12, + "probability": 0.4273 + }, + { + "start": 4487.56, + "end": 4491.56, + "probability": 0.6349 + }, + { + "start": 4492.16, + "end": 4493.1, + "probability": 0.781 + }, + { + "start": 4493.3, + "end": 4494.36, + "probability": 0.6569 + }, + { + "start": 4494.58, + "end": 4495.2, + "probability": 0.7833 + }, + { + "start": 4495.3, + "end": 4497.21, + "probability": 0.9888 + }, + { + "start": 4497.48, + "end": 4497.54, + "probability": 0.6741 + }, + { + "start": 4497.54, + "end": 4498.02, + "probability": 0.6475 + }, + { + "start": 4498.22, + "end": 4499.02, + "probability": 0.9578 + }, + { + "start": 4500.36, + "end": 4505.14, + "probability": 0.9727 + }, + { + "start": 4505.92, + "end": 4510.96, + "probability": 0.9917 + }, + { + "start": 4511.54, + "end": 4512.04, + "probability": 0.9185 + }, + { + "start": 4512.16, + "end": 4512.8, + "probability": 0.8815 + }, + { + "start": 4512.92, + "end": 4513.76, + "probability": 0.735 + }, + { + "start": 4513.88, + "end": 4515.68, + "probability": 0.9718 + }, + { + "start": 4516.22, + "end": 4519.3, + "probability": 0.9525 + }, + { + "start": 4519.64, + "end": 4520.54, + "probability": 0.6911 + }, + { + "start": 4520.66, + "end": 4521.54, + "probability": 0.8384 + }, + { + "start": 4521.86, + "end": 4524.9, + "probability": 0.9967 + }, + { + "start": 4525.52, + "end": 4529.08, + "probability": 0.8745 + }, + { + "start": 4529.84, + "end": 4530.84, + "probability": 0.9622 + }, + { + "start": 4531.38, + "end": 4532.21, + "probability": 0.8428 + }, + { + "start": 4532.66, + "end": 4533.46, + "probability": 0.9039 + }, + { + "start": 4534.3, + "end": 4534.76, + "probability": 0.9029 + }, + { + "start": 4535.0, + "end": 4539.18, + "probability": 0.9873 + }, + { + "start": 4539.56, + "end": 4541.46, + "probability": 0.9973 + }, + { + "start": 4541.58, + "end": 4544.05, + "probability": 0.9385 + }, + { + "start": 4544.6, + "end": 4545.42, + "probability": 0.8364 + }, + { + "start": 4545.76, + "end": 4546.84, + "probability": 0.8953 + }, + { + "start": 4547.1, + "end": 4549.3, + "probability": 0.8595 + }, + { + "start": 4549.56, + "end": 4551.15, + "probability": 0.8933 + }, + { + "start": 4551.68, + "end": 4553.48, + "probability": 0.968 + }, + { + "start": 4553.74, + "end": 4555.23, + "probability": 0.9785 + }, + { + "start": 4556.76, + "end": 4557.98, + "probability": 0.7169 + }, + { + "start": 4558.16, + "end": 4561.74, + "probability": 0.98 + }, + { + "start": 4561.92, + "end": 4562.22, + "probability": 0.6864 + }, + { + "start": 4562.36, + "end": 4563.36, + "probability": 0.5955 + }, + { + "start": 4563.76, + "end": 4565.36, + "probability": 0.8237 + }, + { + "start": 4565.58, + "end": 4568.29, + "probability": 0.9774 + }, + { + "start": 4569.2, + "end": 4573.9, + "probability": 0.798 + }, + { + "start": 4574.22, + "end": 4578.14, + "probability": 0.9965 + }, + { + "start": 4578.4, + "end": 4579.62, + "probability": 0.9553 + }, + { + "start": 4579.68, + "end": 4584.08, + "probability": 0.9624 + }, + { + "start": 4584.86, + "end": 4589.26, + "probability": 0.979 + }, + { + "start": 4589.34, + "end": 4589.66, + "probability": 0.4557 + }, + { + "start": 4589.98, + "end": 4591.26, + "probability": 0.8532 + }, + { + "start": 4592.12, + "end": 4593.32, + "probability": 0.9065 + }, + { + "start": 4593.58, + "end": 4594.63, + "probability": 0.9543 + }, + { + "start": 4595.22, + "end": 4599.9, + "probability": 0.8571 + }, + { + "start": 4600.0, + "end": 4601.8, + "probability": 0.7518 + }, + { + "start": 4602.2, + "end": 4604.62, + "probability": 0.9905 + }, + { + "start": 4605.02, + "end": 4605.84, + "probability": 0.897 + }, + { + "start": 4606.1, + "end": 4607.16, + "probability": 0.9471 + }, + { + "start": 4607.26, + "end": 4612.22, + "probability": 0.9802 + }, + { + "start": 4612.66, + "end": 4613.36, + "probability": 0.3901 + }, + { + "start": 4613.4, + "end": 4615.04, + "probability": 0.7184 + }, + { + "start": 4615.52, + "end": 4617.08, + "probability": 0.9077 + }, + { + "start": 4617.14, + "end": 4617.82, + "probability": 0.9382 + }, + { + "start": 4618.08, + "end": 4619.93, + "probability": 0.9277 + }, + { + "start": 4620.28, + "end": 4620.62, + "probability": 0.5355 + }, + { + "start": 4620.64, + "end": 4621.86, + "probability": 0.9787 + }, + { + "start": 4622.32, + "end": 4624.44, + "probability": 0.8619 + }, + { + "start": 4624.72, + "end": 4625.18, + "probability": 0.8772 + }, + { + "start": 4625.26, + "end": 4626.06, + "probability": 0.9172 + }, + { + "start": 4626.14, + "end": 4626.85, + "probability": 0.8346 + }, + { + "start": 4627.54, + "end": 4632.16, + "probability": 0.9639 + }, + { + "start": 4632.16, + "end": 4637.86, + "probability": 0.9955 + }, + { + "start": 4638.1, + "end": 4639.42, + "probability": 0.8219 + }, + { + "start": 4640.04, + "end": 4641.18, + "probability": 0.9545 + }, + { + "start": 4641.4, + "end": 4643.74, + "probability": 0.9921 + }, + { + "start": 4644.08, + "end": 4645.08, + "probability": 0.7465 + }, + { + "start": 4645.2, + "end": 4645.48, + "probability": 0.3894 + }, + { + "start": 4645.5, + "end": 4646.96, + "probability": 0.8335 + }, + { + "start": 4647.0, + "end": 4647.74, + "probability": 0.8801 + }, + { + "start": 4648.08, + "end": 4651.28, + "probability": 0.9707 + }, + { + "start": 4651.34, + "end": 4651.7, + "probability": 0.752 + }, + { + "start": 4651.74, + "end": 4652.74, + "probability": 0.9518 + }, + { + "start": 4652.9, + "end": 4653.64, + "probability": 0.9559 + }, + { + "start": 4653.78, + "end": 4657.52, + "probability": 0.9302 + }, + { + "start": 4657.72, + "end": 4661.9, + "probability": 0.992 + }, + { + "start": 4662.32, + "end": 4664.48, + "probability": 0.9917 + }, + { + "start": 4664.72, + "end": 4667.68, + "probability": 0.758 + }, + { + "start": 4667.82, + "end": 4668.54, + "probability": 0.8477 + }, + { + "start": 4668.66, + "end": 4669.7, + "probability": 0.9888 + }, + { + "start": 4670.04, + "end": 4671.04, + "probability": 0.6626 + }, + { + "start": 4671.12, + "end": 4673.22, + "probability": 0.8876 + }, + { + "start": 4673.26, + "end": 4675.28, + "probability": 0.7338 + }, + { + "start": 4675.58, + "end": 4679.7, + "probability": 0.9614 + }, + { + "start": 4679.74, + "end": 4682.0, + "probability": 0.9832 + }, + { + "start": 4682.48, + "end": 4684.12, + "probability": 0.9939 + }, + { + "start": 4684.26, + "end": 4685.82, + "probability": 0.9839 + }, + { + "start": 4686.26, + "end": 4689.8, + "probability": 0.9176 + }, + { + "start": 4689.92, + "end": 4690.92, + "probability": 0.9883 + }, + { + "start": 4691.04, + "end": 4692.96, + "probability": 0.6946 + }, + { + "start": 4693.36, + "end": 4695.36, + "probability": 0.6416 + }, + { + "start": 4695.58, + "end": 4697.64, + "probability": 0.5805 + }, + { + "start": 4697.64, + "end": 4698.43, + "probability": 0.4097 + }, + { + "start": 4698.7, + "end": 4702.72, + "probability": 0.9668 + }, + { + "start": 4702.94, + "end": 4705.18, + "probability": 0.9384 + }, + { + "start": 4705.42, + "end": 4706.68, + "probability": 0.935 + }, + { + "start": 4706.76, + "end": 4707.16, + "probability": 0.8188 + }, + { + "start": 4707.6, + "end": 4709.92, + "probability": 0.8278 + }, + { + "start": 4709.94, + "end": 4711.3, + "probability": 0.6541 + }, + { + "start": 4711.84, + "end": 4714.1, + "probability": 0.5979 + }, + { + "start": 4715.9, + "end": 4720.2, + "probability": 0.9614 + }, + { + "start": 4720.8, + "end": 4721.72, + "probability": 0.8614 + }, + { + "start": 4722.22, + "end": 4725.3, + "probability": 0.654 + }, + { + "start": 4725.3, + "end": 4725.4, + "probability": 0.003 + }, + { + "start": 4726.36, + "end": 4726.46, + "probability": 0.0459 + }, + { + "start": 4726.5, + "end": 4730.9, + "probability": 0.8035 + }, + { + "start": 4731.9, + "end": 4735.74, + "probability": 0.9181 + }, + { + "start": 4736.4, + "end": 4740.38, + "probability": 0.8773 + }, + { + "start": 4740.92, + "end": 4742.08, + "probability": 0.6118 + }, + { + "start": 4742.72, + "end": 4744.4, + "probability": 0.2572 + }, + { + "start": 4744.4, + "end": 4745.46, + "probability": 0.968 + }, + { + "start": 4746.24, + "end": 4749.94, + "probability": 0.9927 + }, + { + "start": 4750.06, + "end": 4752.42, + "probability": 0.9844 + }, + { + "start": 4753.12, + "end": 4756.7, + "probability": 0.6747 + }, + { + "start": 4757.22, + "end": 4757.9, + "probability": 0.0843 + }, + { + "start": 4757.9, + "end": 4761.24, + "probability": 0.8028 + }, + { + "start": 4762.76, + "end": 4768.68, + "probability": 0.702 + }, + { + "start": 4769.32, + "end": 4772.2, + "probability": 0.9498 + }, + { + "start": 4772.9, + "end": 4773.6, + "probability": 0.0679 + }, + { + "start": 4773.6, + "end": 4775.94, + "probability": 0.9834 + }, + { + "start": 4776.92, + "end": 4782.1, + "probability": 0.8657 + }, + { + "start": 4782.94, + "end": 4786.56, + "probability": 0.9753 + }, + { + "start": 4787.72, + "end": 4790.36, + "probability": 0.8962 + }, + { + "start": 4793.7, + "end": 4797.16, + "probability": 0.8639 + }, + { + "start": 4798.0, + "end": 4800.42, + "probability": 0.9018 + }, + { + "start": 4800.62, + "end": 4804.7, + "probability": 0.9962 + }, + { + "start": 4804.86, + "end": 4811.28, + "probability": 0.9741 + }, + { + "start": 4812.4, + "end": 4814.92, + "probability": 0.9991 + }, + { + "start": 4815.36, + "end": 4818.08, + "probability": 0.979 + }, + { + "start": 4818.1, + "end": 4821.26, + "probability": 0.9934 + }, + { + "start": 4821.64, + "end": 4824.3, + "probability": 0.5405 + }, + { + "start": 4826.0, + "end": 4831.32, + "probability": 0.9941 + }, + { + "start": 4832.6, + "end": 4839.44, + "probability": 0.9949 + }, + { + "start": 4840.08, + "end": 4842.92, + "probability": 0.8937 + }, + { + "start": 4843.74, + "end": 4848.18, + "probability": 0.9985 + }, + { + "start": 4848.72, + "end": 4852.3, + "probability": 0.9775 + }, + { + "start": 4852.82, + "end": 4855.46, + "probability": 0.9648 + }, + { + "start": 4856.06, + "end": 4859.52, + "probability": 0.9614 + }, + { + "start": 4860.74, + "end": 4864.7, + "probability": 0.9711 + }, + { + "start": 4864.7, + "end": 4869.76, + "probability": 0.9794 + }, + { + "start": 4870.68, + "end": 4871.86, + "probability": 0.5125 + }, + { + "start": 4872.36, + "end": 4873.04, + "probability": 0.519 + }, + { + "start": 4873.06, + "end": 4879.22, + "probability": 0.9836 + }, + { + "start": 4881.12, + "end": 4885.48, + "probability": 0.9301 + }, + { + "start": 4886.38, + "end": 4888.64, + "probability": 0.9615 + }, + { + "start": 4889.74, + "end": 4890.84, + "probability": 0.5055 + }, + { + "start": 4891.36, + "end": 4894.48, + "probability": 0.8209 + }, + { + "start": 4895.2, + "end": 4899.08, + "probability": 0.9749 + }, + { + "start": 4900.44, + "end": 4905.58, + "probability": 0.8929 + }, + { + "start": 4905.9, + "end": 4910.06, + "probability": 0.9874 + }, + { + "start": 4912.32, + "end": 4917.7, + "probability": 0.9919 + }, + { + "start": 4919.38, + "end": 4922.94, + "probability": 0.9491 + }, + { + "start": 4923.62, + "end": 4929.22, + "probability": 0.9941 + }, + { + "start": 4929.96, + "end": 4932.66, + "probability": 0.9993 + }, + { + "start": 4933.4, + "end": 4934.46, + "probability": 0.6486 + }, + { + "start": 4936.56, + "end": 4942.4, + "probability": 0.8967 + }, + { + "start": 4943.32, + "end": 4946.18, + "probability": 0.8865 + }, + { + "start": 4946.84, + "end": 4949.62, + "probability": 0.9888 + }, + { + "start": 4950.24, + "end": 4953.22, + "probability": 0.9946 + }, + { + "start": 4953.74, + "end": 4959.46, + "probability": 0.9427 + }, + { + "start": 4959.98, + "end": 4969.68, + "probability": 0.9622 + }, + { + "start": 4969.98, + "end": 4973.74, + "probability": 0.9264 + }, + { + "start": 4973.88, + "end": 4975.08, + "probability": 0.8179 + }, + { + "start": 4976.64, + "end": 4979.17, + "probability": 0.9368 + }, + { + "start": 4980.0, + "end": 4982.22, + "probability": 0.9661 + }, + { + "start": 4982.3, + "end": 4983.02, + "probability": 0.402 + }, + { + "start": 4983.5, + "end": 4985.36, + "probability": 0.9571 + }, + { + "start": 4995.1, + "end": 4997.26, + "probability": 0.9731 + }, + { + "start": 4998.02, + "end": 4999.02, + "probability": 0.7033 + }, + { + "start": 4999.46, + "end": 5002.08, + "probability": 0.6865 + }, + { + "start": 5003.22, + "end": 5004.74, + "probability": 0.9536 + }, + { + "start": 5005.4, + "end": 5008.5, + "probability": 0.9222 + }, + { + "start": 5009.04, + "end": 5011.18, + "probability": 0.99 + }, + { + "start": 5012.04, + "end": 5014.6, + "probability": 0.7322 + }, + { + "start": 5015.2, + "end": 5016.92, + "probability": 0.9868 + }, + { + "start": 5017.78, + "end": 5019.44, + "probability": 0.955 + }, + { + "start": 5019.92, + "end": 5020.44, + "probability": 0.807 + }, + { + "start": 5020.46, + "end": 5021.1, + "probability": 0.9625 + }, + { + "start": 5021.16, + "end": 5021.68, + "probability": 0.7947 + }, + { + "start": 5021.82, + "end": 5022.4, + "probability": 0.8727 + }, + { + "start": 5022.44, + "end": 5022.78, + "probability": 0.9797 + }, + { + "start": 5023.68, + "end": 5026.42, + "probability": 0.9846 + }, + { + "start": 5027.52, + "end": 5028.54, + "probability": 0.8264 + }, + { + "start": 5029.3, + "end": 5032.0, + "probability": 0.959 + }, + { + "start": 5032.76, + "end": 5033.74, + "probability": 0.732 + }, + { + "start": 5034.36, + "end": 5038.9, + "probability": 0.6255 + }, + { + "start": 5039.64, + "end": 5042.14, + "probability": 0.9831 + }, + { + "start": 5042.78, + "end": 5044.36, + "probability": 0.9934 + }, + { + "start": 5044.98, + "end": 5052.5, + "probability": 0.9871 + }, + { + "start": 5052.78, + "end": 5055.72, + "probability": 0.9895 + }, + { + "start": 5056.18, + "end": 5060.08, + "probability": 0.8497 + }, + { + "start": 5061.46, + "end": 5063.7, + "probability": 0.9805 + }, + { + "start": 5063.8, + "end": 5064.36, + "probability": 0.9026 + }, + { + "start": 5064.46, + "end": 5065.26, + "probability": 0.821 + }, + { + "start": 5065.44, + "end": 5066.26, + "probability": 0.9452 + }, + { + "start": 5066.46, + "end": 5067.4, + "probability": 0.9572 + }, + { + "start": 5067.7, + "end": 5072.22, + "probability": 0.9199 + }, + { + "start": 5072.26, + "end": 5076.1, + "probability": 0.9293 + }, + { + "start": 5076.64, + "end": 5078.95, + "probability": 0.9941 + }, + { + "start": 5079.84, + "end": 5083.04, + "probability": 0.9015 + }, + { + "start": 5084.28, + "end": 5086.88, + "probability": 0.8786 + }, + { + "start": 5087.84, + "end": 5089.0, + "probability": 0.9565 + }, + { + "start": 5089.02, + "end": 5092.14, + "probability": 0.8811 + }, + { + "start": 5093.12, + "end": 5093.96, + "probability": 0.876 + }, + { + "start": 5094.76, + "end": 5098.76, + "probability": 0.8926 + }, + { + "start": 5099.66, + "end": 5100.22, + "probability": 0.7525 + }, + { + "start": 5100.48, + "end": 5101.24, + "probability": 0.9895 + }, + { + "start": 5101.92, + "end": 5107.34, + "probability": 0.9818 + }, + { + "start": 5108.02, + "end": 5110.42, + "probability": 0.9622 + }, + { + "start": 5110.86, + "end": 5114.06, + "probability": 0.9341 + }, + { + "start": 5114.46, + "end": 5115.22, + "probability": 0.8389 + }, + { + "start": 5116.04, + "end": 5117.94, + "probability": 0.9755 + }, + { + "start": 5118.5, + "end": 5119.52, + "probability": 0.9655 + }, + { + "start": 5119.64, + "end": 5120.7, + "probability": 0.8896 + }, + { + "start": 5120.96, + "end": 5123.34, + "probability": 0.9857 + }, + { + "start": 5123.74, + "end": 5127.06, + "probability": 0.9279 + }, + { + "start": 5127.74, + "end": 5132.34, + "probability": 0.9966 + }, + { + "start": 5132.88, + "end": 5134.9, + "probability": 0.9939 + }, + { + "start": 5135.06, + "end": 5137.32, + "probability": 0.6326 + }, + { + "start": 5137.7, + "end": 5139.95, + "probability": 0.7415 + }, + { + "start": 5140.82, + "end": 5142.72, + "probability": 0.9814 + }, + { + "start": 5143.2, + "end": 5145.5, + "probability": 0.9482 + }, + { + "start": 5145.82, + "end": 5148.14, + "probability": 0.875 + }, + { + "start": 5148.52, + "end": 5149.96, + "probability": 0.8479 + }, + { + "start": 5150.06, + "end": 5152.1, + "probability": 0.8313 + }, + { + "start": 5153.08, + "end": 5158.5, + "probability": 0.9226 + }, + { + "start": 5158.7, + "end": 5159.12, + "probability": 0.8595 + }, + { + "start": 5159.22, + "end": 5159.82, + "probability": 0.3569 + }, + { + "start": 5160.32, + "end": 5161.8, + "probability": 0.9888 + }, + { + "start": 5162.24, + "end": 5163.12, + "probability": 0.762 + }, + { + "start": 5163.48, + "end": 5165.86, + "probability": 0.9448 + }, + { + "start": 5166.0, + "end": 5167.42, + "probability": 0.9812 + }, + { + "start": 5167.82, + "end": 5168.62, + "probability": 0.9644 + }, + { + "start": 5168.7, + "end": 5169.2, + "probability": 0.9426 + }, + { + "start": 5169.3, + "end": 5170.02, + "probability": 0.7971 + }, + { + "start": 5170.46, + "end": 5173.56, + "probability": 0.969 + }, + { + "start": 5173.96, + "end": 5176.16, + "probability": 0.9678 + }, + { + "start": 5176.64, + "end": 5177.78, + "probability": 0.8375 + }, + { + "start": 5178.2, + "end": 5181.06, + "probability": 0.9798 + }, + { + "start": 5181.16, + "end": 5182.9, + "probability": 0.9443 + }, + { + "start": 5183.02, + "end": 5183.66, + "probability": 0.8321 + }, + { + "start": 5183.74, + "end": 5184.46, + "probability": 0.7102 + }, + { + "start": 5184.56, + "end": 5185.4, + "probability": 0.97 + }, + { + "start": 5185.62, + "end": 5187.84, + "probability": 0.9526 + }, + { + "start": 5188.22, + "end": 5189.08, + "probability": 0.8094 + }, + { + "start": 5189.64, + "end": 5190.82, + "probability": 0.9707 + }, + { + "start": 5191.26, + "end": 5194.81, + "probability": 0.9746 + }, + { + "start": 5195.52, + "end": 5197.06, + "probability": 0.8123 + }, + { + "start": 5197.2, + "end": 5199.86, + "probability": 0.9088 + }, + { + "start": 5200.34, + "end": 5204.76, + "probability": 0.9846 + }, + { + "start": 5205.44, + "end": 5206.62, + "probability": 0.9952 + }, + { + "start": 5206.98, + "end": 5208.1, + "probability": 0.9946 + }, + { + "start": 5208.52, + "end": 5210.36, + "probability": 0.9926 + }, + { + "start": 5211.12, + "end": 5214.66, + "probability": 0.9978 + }, + { + "start": 5214.96, + "end": 5220.7, + "probability": 0.8053 + }, + { + "start": 5220.86, + "end": 5224.78, + "probability": 0.9907 + }, + { + "start": 5225.1, + "end": 5225.88, + "probability": 0.8618 + }, + { + "start": 5226.02, + "end": 5227.82, + "probability": 0.9978 + }, + { + "start": 5228.22, + "end": 5229.48, + "probability": 0.9617 + }, + { + "start": 5229.92, + "end": 5230.67, + "probability": 0.9011 + }, + { + "start": 5231.04, + "end": 5233.26, + "probability": 0.9547 + }, + { + "start": 5233.62, + "end": 5234.18, + "probability": 0.71 + }, + { + "start": 5234.22, + "end": 5234.98, + "probability": 0.852 + }, + { + "start": 5235.06, + "end": 5237.14, + "probability": 0.9741 + }, + { + "start": 5237.6, + "end": 5241.04, + "probability": 0.9524 + }, + { + "start": 5241.14, + "end": 5243.22, + "probability": 0.889 + }, + { + "start": 5243.42, + "end": 5245.3, + "probability": 0.993 + }, + { + "start": 5245.72, + "end": 5246.3, + "probability": 0.6354 + }, + { + "start": 5247.14, + "end": 5249.64, + "probability": 0.8057 + }, + { + "start": 5250.44, + "end": 5252.26, + "probability": 0.8899 + }, + { + "start": 5253.28, + "end": 5254.05, + "probability": 0.4239 + }, + { + "start": 5262.24, + "end": 5265.28, + "probability": 0.8057 + }, + { + "start": 5265.7, + "end": 5266.59, + "probability": 0.6201 + }, + { + "start": 5267.32, + "end": 5269.22, + "probability": 0.9115 + }, + { + "start": 5270.02, + "end": 5275.0, + "probability": 0.946 + }, + { + "start": 5275.72, + "end": 5277.64, + "probability": 0.7412 + }, + { + "start": 5278.39, + "end": 5279.56, + "probability": 0.9373 + }, + { + "start": 5279.72, + "end": 5281.52, + "probability": 0.9162 + }, + { + "start": 5282.12, + "end": 5283.0, + "probability": 0.8237 + }, + { + "start": 5283.1, + "end": 5287.2, + "probability": 0.9331 + }, + { + "start": 5287.28, + "end": 5287.44, + "probability": 0.4916 + }, + { + "start": 5287.66, + "end": 5288.1, + "probability": 0.8853 + }, + { + "start": 5288.98, + "end": 5289.38, + "probability": 0.9484 + }, + { + "start": 5289.84, + "end": 5292.72, + "probability": 0.9934 + }, + { + "start": 5292.9, + "end": 5294.96, + "probability": 0.9136 + }, + { + "start": 5295.62, + "end": 5297.06, + "probability": 0.998 + }, + { + "start": 5297.14, + "end": 5302.34, + "probability": 0.9714 + }, + { + "start": 5303.98, + "end": 5304.94, + "probability": 0.627 + }, + { + "start": 5306.2, + "end": 5308.22, + "probability": 0.7829 + }, + { + "start": 5309.18, + "end": 5310.62, + "probability": 0.9492 + }, + { + "start": 5310.8, + "end": 5315.8, + "probability": 0.9923 + }, + { + "start": 5315.88, + "end": 5319.42, + "probability": 0.7547 + }, + { + "start": 5319.62, + "end": 5320.36, + "probability": 0.9951 + }, + { + "start": 5320.46, + "end": 5323.48, + "probability": 0.8094 + }, + { + "start": 5323.58, + "end": 5324.58, + "probability": 0.8165 + }, + { + "start": 5324.66, + "end": 5326.79, + "probability": 0.993 + }, + { + "start": 5330.38, + "end": 5331.74, + "probability": 0.9935 + }, + { + "start": 5331.78, + "end": 5334.36, + "probability": 0.994 + }, + { + "start": 5334.48, + "end": 5336.92, + "probability": 0.9552 + }, + { + "start": 5337.06, + "end": 5338.82, + "probability": 0.9961 + }, + { + "start": 5339.26, + "end": 5341.76, + "probability": 0.9484 + }, + { + "start": 5341.9, + "end": 5342.92, + "probability": 0.7833 + }, + { + "start": 5342.98, + "end": 5344.32, + "probability": 0.9241 + }, + { + "start": 5344.46, + "end": 5344.76, + "probability": 0.5711 + }, + { + "start": 5344.88, + "end": 5345.58, + "probability": 0.8123 + }, + { + "start": 5345.68, + "end": 5346.4, + "probability": 0.8855 + }, + { + "start": 5347.22, + "end": 5348.3, + "probability": 0.8887 + }, + { + "start": 5348.96, + "end": 5350.42, + "probability": 0.9961 + }, + { + "start": 5350.62, + "end": 5352.18, + "probability": 0.9835 + }, + { + "start": 5352.48, + "end": 5353.31, + "probability": 0.9504 + }, + { + "start": 5353.96, + "end": 5355.98, + "probability": 0.9899 + }, + { + "start": 5356.78, + "end": 5358.66, + "probability": 0.9695 + }, + { + "start": 5359.24, + "end": 5361.04, + "probability": 0.964 + }, + { + "start": 5361.1, + "end": 5361.62, + "probability": 0.8921 + }, + { + "start": 5361.7, + "end": 5362.48, + "probability": 0.5053 + }, + { + "start": 5362.6, + "end": 5364.14, + "probability": 0.9405 + }, + { + "start": 5364.26, + "end": 5365.4, + "probability": 0.7458 + }, + { + "start": 5365.48, + "end": 5366.94, + "probability": 0.9855 + }, + { + "start": 5367.62, + "end": 5368.02, + "probability": 0.7056 + }, + { + "start": 5368.12, + "end": 5368.6, + "probability": 0.96 + }, + { + "start": 5368.78, + "end": 5369.42, + "probability": 0.9518 + }, + { + "start": 5369.58, + "end": 5372.12, + "probability": 0.9185 + }, + { + "start": 5372.16, + "end": 5374.42, + "probability": 0.9746 + }, + { + "start": 5375.28, + "end": 5376.44, + "probability": 0.9985 + }, + { + "start": 5376.76, + "end": 5377.45, + "probability": 0.8392 + }, + { + "start": 5378.08, + "end": 5381.46, + "probability": 0.9972 + }, + { + "start": 5382.86, + "end": 5386.88, + "probability": 0.9625 + }, + { + "start": 5387.72, + "end": 5389.88, + "probability": 0.995 + }, + { + "start": 5390.18, + "end": 5390.58, + "probability": 0.9797 + }, + { + "start": 5391.56, + "end": 5394.82, + "probability": 0.7108 + }, + { + "start": 5395.44, + "end": 5397.34, + "probability": 0.8129 + }, + { + "start": 5398.2, + "end": 5399.66, + "probability": 0.9941 + }, + { + "start": 5400.48, + "end": 5402.92, + "probability": 0.9844 + }, + { + "start": 5402.92, + "end": 5403.08, + "probability": 0.8998 + }, + { + "start": 5403.88, + "end": 5405.96, + "probability": 0.9935 + }, + { + "start": 5406.34, + "end": 5406.8, + "probability": 0.6382 + }, + { + "start": 5407.04, + "end": 5411.88, + "probability": 0.9527 + }, + { + "start": 5411.92, + "end": 5411.98, + "probability": 0.7182 + }, + { + "start": 5412.08, + "end": 5413.1, + "probability": 0.7947 + }, + { + "start": 5413.22, + "end": 5414.72, + "probability": 0.9669 + }, + { + "start": 5415.36, + "end": 5417.78, + "probability": 0.8905 + }, + { + "start": 5418.54, + "end": 5420.4, + "probability": 0.9432 + }, + { + "start": 5420.7, + "end": 5424.46, + "probability": 0.9962 + }, + { + "start": 5424.64, + "end": 5425.38, + "probability": 0.6425 + }, + { + "start": 5425.88, + "end": 5426.46, + "probability": 0.7269 + }, + { + "start": 5426.56, + "end": 5427.08, + "probability": 0.9105 + }, + { + "start": 5427.14, + "end": 5427.56, + "probability": 0.7966 + }, + { + "start": 5427.66, + "end": 5428.3, + "probability": 0.623 + }, + { + "start": 5429.16, + "end": 5431.68, + "probability": 0.9806 + }, + { + "start": 5432.4, + "end": 5433.0, + "probability": 0.8062 + }, + { + "start": 5433.04, + "end": 5436.2, + "probability": 0.9185 + }, + { + "start": 5436.34, + "end": 5438.34, + "probability": 0.8049 + }, + { + "start": 5438.42, + "end": 5439.74, + "probability": 0.8939 + }, + { + "start": 5440.44, + "end": 5442.82, + "probability": 0.1493 + }, + { + "start": 5445.18, + "end": 5445.58, + "probability": 0.1037 + }, + { + "start": 5445.58, + "end": 5445.58, + "probability": 0.0155 + }, + { + "start": 5445.64, + "end": 5445.76, + "probability": 0.2879 + }, + { + "start": 5445.8, + "end": 5447.79, + "probability": 0.7578 + }, + { + "start": 5448.1, + "end": 5449.52, + "probability": 0.9867 + }, + { + "start": 5450.84, + "end": 5453.03, + "probability": 0.7007 + }, + { + "start": 5453.76, + "end": 5454.58, + "probability": 0.3435 + }, + { + "start": 5454.88, + "end": 5455.02, + "probability": 0.1362 + }, + { + "start": 5455.02, + "end": 5456.82, + "probability": 0.8408 + }, + { + "start": 5456.86, + "end": 5459.68, + "probability": 0.9991 + }, + { + "start": 5460.1, + "end": 5460.84, + "probability": 0.6741 + }, + { + "start": 5461.22, + "end": 5461.7, + "probability": 0.7416 + }, + { + "start": 5462.34, + "end": 5464.26, + "probability": 0.9983 + }, + { + "start": 5465.48, + "end": 5466.96, + "probability": 0.7964 + }, + { + "start": 5467.14, + "end": 5467.68, + "probability": 0.6978 + }, + { + "start": 5468.18, + "end": 5470.3, + "probability": 0.9325 + }, + { + "start": 5471.52, + "end": 5474.58, + "probability": 0.8615 + }, + { + "start": 5474.96, + "end": 5475.52, + "probability": 0.656 + }, + { + "start": 5475.7, + "end": 5476.8, + "probability": 0.6644 + }, + { + "start": 5477.28, + "end": 5478.72, + "probability": 0.9976 + }, + { + "start": 5478.8, + "end": 5480.1, + "probability": 0.9961 + }, + { + "start": 5480.28, + "end": 5480.65, + "probability": 0.8564 + }, + { + "start": 5481.04, + "end": 5482.53, + "probability": 0.9883 + }, + { + "start": 5482.94, + "end": 5486.16, + "probability": 0.998 + }, + { + "start": 5486.26, + "end": 5488.52, + "probability": 0.9966 + }, + { + "start": 5488.58, + "end": 5488.98, + "probability": 0.8479 + }, + { + "start": 5489.14, + "end": 5491.06, + "probability": 0.7133 + }, + { + "start": 5491.14, + "end": 5493.28, + "probability": 0.9038 + }, + { + "start": 5494.99, + "end": 5499.92, + "probability": 0.8517 + }, + { + "start": 5500.36, + "end": 5501.62, + "probability": 0.3362 + }, + { + "start": 5502.68, + "end": 5505.74, + "probability": 0.6953 + }, + { + "start": 5508.88, + "end": 5509.18, + "probability": 0.6683 + }, + { + "start": 5510.38, + "end": 5511.26, + "probability": 0.693 + }, + { + "start": 5512.06, + "end": 5513.06, + "probability": 0.7149 + }, + { + "start": 5513.94, + "end": 5515.32, + "probability": 0.7698 + }, + { + "start": 5515.38, + "end": 5516.36, + "probability": 0.9769 + }, + { + "start": 5516.66, + "end": 5520.42, + "probability": 0.9629 + }, + { + "start": 5525.62, + "end": 5528.95, + "probability": 0.98 + }, + { + "start": 5529.36, + "end": 5529.88, + "probability": 0.8317 + }, + { + "start": 5531.44, + "end": 5531.84, + "probability": 0.6506 + }, + { + "start": 5531.9, + "end": 5533.04, + "probability": 0.876 + }, + { + "start": 5533.22, + "end": 5537.1, + "probability": 0.981 + }, + { + "start": 5537.2, + "end": 5538.54, + "probability": 0.8871 + }, + { + "start": 5538.58, + "end": 5540.4, + "probability": 0.9578 + }, + { + "start": 5541.64, + "end": 5544.92, + "probability": 0.9922 + }, + { + "start": 5546.3, + "end": 5551.38, + "probability": 0.9282 + }, + { + "start": 5551.94, + "end": 5557.66, + "probability": 0.9963 + }, + { + "start": 5558.06, + "end": 5560.76, + "probability": 0.6169 + }, + { + "start": 5561.04, + "end": 5561.98, + "probability": 0.4907 + }, + { + "start": 5562.14, + "end": 5562.14, + "probability": 0.4959 + }, + { + "start": 5562.14, + "end": 5564.94, + "probability": 0.9423 + }, + { + "start": 5565.7, + "end": 5566.68, + "probability": 0.7515 + }, + { + "start": 5566.78, + "end": 5567.92, + "probability": 0.8253 + }, + { + "start": 5567.98, + "end": 5570.68, + "probability": 0.9241 + }, + { + "start": 5571.52, + "end": 5573.96, + "probability": 0.9976 + }, + { + "start": 5575.06, + "end": 5577.72, + "probability": 0.9971 + }, + { + "start": 5577.72, + "end": 5579.96, + "probability": 0.9942 + }, + { + "start": 5580.78, + "end": 5580.78, + "probability": 0.1353 + }, + { + "start": 5580.78, + "end": 5583.24, + "probability": 0.9871 + }, + { + "start": 5583.38, + "end": 5584.94, + "probability": 0.9698 + }, + { + "start": 5584.98, + "end": 5587.4, + "probability": 0.8089 + }, + { + "start": 5588.44, + "end": 5589.8, + "probability": 0.6288 + }, + { + "start": 5591.3, + "end": 5592.38, + "probability": 0.8756 + }, + { + "start": 5592.5, + "end": 5593.06, + "probability": 0.7125 + }, + { + "start": 5593.12, + "end": 5595.46, + "probability": 0.9902 + }, + { + "start": 5595.54, + "end": 5596.0, + "probability": 0.7179 + }, + { + "start": 5597.28, + "end": 5599.44, + "probability": 0.9531 + }, + { + "start": 5600.18, + "end": 5601.18, + "probability": 0.8819 + }, + { + "start": 5601.3, + "end": 5603.78, + "probability": 0.9932 + }, + { + "start": 5603.86, + "end": 5605.1, + "probability": 0.9493 + }, + { + "start": 5605.5, + "end": 5606.2, + "probability": 0.8701 + }, + { + "start": 5606.22, + "end": 5608.28, + "probability": 0.989 + }, + { + "start": 5609.36, + "end": 5611.38, + "probability": 0.9588 + }, + { + "start": 5612.04, + "end": 5615.12, + "probability": 0.9904 + }, + { + "start": 5615.24, + "end": 5618.88, + "probability": 0.9868 + }, + { + "start": 5619.46, + "end": 5622.56, + "probability": 0.9802 + }, + { + "start": 5623.3, + "end": 5627.78, + "probability": 0.9882 + }, + { + "start": 5627.88, + "end": 5628.86, + "probability": 0.8962 + }, + { + "start": 5629.12, + "end": 5629.86, + "probability": 0.0161 + }, + { + "start": 5629.86, + "end": 5632.45, + "probability": 0.6673 + }, + { + "start": 5633.54, + "end": 5635.12, + "probability": 0.8962 + }, + { + "start": 5636.28, + "end": 5637.56, + "probability": 0.9565 + }, + { + "start": 5638.08, + "end": 5641.52, + "probability": 0.8026 + }, + { + "start": 5641.78, + "end": 5642.6, + "probability": 0.8446 + }, + { + "start": 5642.72, + "end": 5643.66, + "probability": 0.99 + }, + { + "start": 5644.7, + "end": 5645.21, + "probability": 0.7083 + }, + { + "start": 5647.18, + "end": 5647.18, + "probability": 0.1184 + }, + { + "start": 5647.18, + "end": 5647.18, + "probability": 0.1855 + }, + { + "start": 5647.18, + "end": 5649.4, + "probability": 0.8431 + }, + { + "start": 5649.76, + "end": 5650.5, + "probability": 0.6588 + }, + { + "start": 5651.6, + "end": 5652.76, + "probability": 0.6756 + }, + { + "start": 5654.88, + "end": 5657.9, + "probability": 0.8982 + }, + { + "start": 5657.9, + "end": 5660.78, + "probability": 0.9982 + }, + { + "start": 5662.3, + "end": 5663.06, + "probability": 0.9329 + }, + { + "start": 5663.5, + "end": 5667.3, + "probability": 0.8191 + }, + { + "start": 5667.3, + "end": 5669.72, + "probability": 0.9988 + }, + { + "start": 5669.86, + "end": 5671.14, + "probability": 0.9346 + }, + { + "start": 5672.3, + "end": 5674.16, + "probability": 0.9902 + }, + { + "start": 5674.6, + "end": 5675.88, + "probability": 0.9607 + }, + { + "start": 5676.28, + "end": 5677.2, + "probability": 0.9849 + }, + { + "start": 5677.28, + "end": 5678.18, + "probability": 0.8049 + }, + { + "start": 5678.24, + "end": 5679.54, + "probability": 0.9758 + }, + { + "start": 5680.08, + "end": 5681.0, + "probability": 0.9385 + }, + { + "start": 5681.58, + "end": 5683.44, + "probability": 0.8252 + }, + { + "start": 5684.54, + "end": 5687.12, + "probability": 0.991 + }, + { + "start": 5687.18, + "end": 5689.86, + "probability": 0.9967 + }, + { + "start": 5690.6, + "end": 5693.34, + "probability": 0.9424 + }, + { + "start": 5694.3, + "end": 5696.64, + "probability": 0.7412 + }, + { + "start": 5697.2, + "end": 5699.18, + "probability": 0.9379 + }, + { + "start": 5699.52, + "end": 5702.24, + "probability": 0.9736 + }, + { + "start": 5703.34, + "end": 5704.06, + "probability": 0.9053 + }, + { + "start": 5704.2, + "end": 5705.03, + "probability": 0.9893 + }, + { + "start": 5705.24, + "end": 5707.46, + "probability": 0.9507 + }, + { + "start": 5708.0, + "end": 5709.38, + "probability": 0.6033 + }, + { + "start": 5710.62, + "end": 5715.0, + "probability": 0.9863 + }, + { + "start": 5715.14, + "end": 5715.96, + "probability": 0.0732 + }, + { + "start": 5716.88, + "end": 5718.82, + "probability": 0.9706 + }, + { + "start": 5718.9, + "end": 5719.94, + "probability": 0.8341 + }, + { + "start": 5720.48, + "end": 5723.06, + "probability": 0.9832 + }, + { + "start": 5723.12, + "end": 5724.32, + "probability": 0.9664 + }, + { + "start": 5725.08, + "end": 5725.56, + "probability": 0.458 + }, + { + "start": 5725.62, + "end": 5727.28, + "probability": 0.6636 + }, + { + "start": 5727.38, + "end": 5728.74, + "probability": 0.8375 + }, + { + "start": 5729.6, + "end": 5733.1, + "probability": 0.9976 + }, + { + "start": 5733.3, + "end": 5733.44, + "probability": 0.434 + }, + { + "start": 5733.54, + "end": 5734.86, + "probability": 0.9854 + }, + { + "start": 5735.0, + "end": 5735.1, + "probability": 0.7876 + }, + { + "start": 5735.14, + "end": 5736.1, + "probability": 0.9363 + }, + { + "start": 5736.72, + "end": 5742.24, + "probability": 0.9751 + }, + { + "start": 5742.3, + "end": 5743.24, + "probability": 0.7473 + }, + { + "start": 5743.7, + "end": 5747.0, + "probability": 0.9969 + }, + { + "start": 5747.06, + "end": 5747.74, + "probability": 0.7421 + }, + { + "start": 5747.82, + "end": 5750.72, + "probability": 0.8859 + }, + { + "start": 5751.3, + "end": 5754.5, + "probability": 0.9673 + }, + { + "start": 5754.56, + "end": 5756.3, + "probability": 0.8069 + }, + { + "start": 5757.24, + "end": 5761.52, + "probability": 0.867 + }, + { + "start": 5762.04, + "end": 5764.56, + "probability": 0.9875 + }, + { + "start": 5764.64, + "end": 5765.64, + "probability": 0.8911 + }, + { + "start": 5766.1, + "end": 5767.6, + "probability": 0.9904 + }, + { + "start": 5767.66, + "end": 5769.06, + "probability": 0.9187 + }, + { + "start": 5769.82, + "end": 5773.46, + "probability": 0.9316 + }, + { + "start": 5774.1, + "end": 5777.3, + "probability": 0.8945 + }, + { + "start": 5777.4, + "end": 5780.19, + "probability": 0.947 + }, + { + "start": 5781.2, + "end": 5783.04, + "probability": 0.2617 + }, + { + "start": 5783.2, + "end": 5785.28, + "probability": 0.6058 + }, + { + "start": 5792.94, + "end": 5798.26, + "probability": 0.34 + }, + { + "start": 5799.36, + "end": 5800.82, + "probability": 0.9343 + }, + { + "start": 5809.74, + "end": 5810.46, + "probability": 0.6105 + }, + { + "start": 5811.4, + "end": 5814.24, + "probability": 0.8219 + }, + { + "start": 5815.0, + "end": 5816.14, + "probability": 0.9953 + }, + { + "start": 5816.9, + "end": 5820.1, + "probability": 0.8779 + }, + { + "start": 5821.22, + "end": 5823.64, + "probability": 0.622 + }, + { + "start": 5826.9, + "end": 5830.4, + "probability": 0.8107 + }, + { + "start": 5832.04, + "end": 5837.42, + "probability": 0.8746 + }, + { + "start": 5840.65, + "end": 5842.16, + "probability": 0.9842 + }, + { + "start": 5843.7, + "end": 5845.36, + "probability": 0.8131 + }, + { + "start": 5846.18, + "end": 5853.32, + "probability": 0.9639 + }, + { + "start": 5853.76, + "end": 5860.96, + "probability": 0.8087 + }, + { + "start": 5861.5, + "end": 5863.44, + "probability": 0.638 + }, + { + "start": 5864.48, + "end": 5868.04, + "probability": 0.673 + }, + { + "start": 5868.62, + "end": 5872.04, + "probability": 0.9453 + }, + { + "start": 5872.48, + "end": 5873.78, + "probability": 0.9781 + }, + { + "start": 5873.84, + "end": 5874.64, + "probability": 0.8524 + }, + { + "start": 5874.66, + "end": 5875.3, + "probability": 0.8849 + }, + { + "start": 5875.76, + "end": 5876.48, + "probability": 0.8344 + }, + { + "start": 5877.08, + "end": 5877.94, + "probability": 0.8083 + }, + { + "start": 5878.98, + "end": 5881.2, + "probability": 0.9941 + }, + { + "start": 5882.26, + "end": 5884.14, + "probability": 0.7428 + }, + { + "start": 5884.26, + "end": 5886.72, + "probability": 0.9131 + }, + { + "start": 5887.46, + "end": 5890.56, + "probability": 0.962 + }, + { + "start": 5891.34, + "end": 5892.26, + "probability": 0.8705 + }, + { + "start": 5892.94, + "end": 5893.71, + "probability": 0.9666 + }, + { + "start": 5894.46, + "end": 5896.0, + "probability": 0.9993 + }, + { + "start": 5896.28, + "end": 5897.94, + "probability": 0.9888 + }, + { + "start": 5898.7, + "end": 5901.22, + "probability": 0.9556 + }, + { + "start": 5903.18, + "end": 5906.55, + "probability": 0.9565 + }, + { + "start": 5907.46, + "end": 5910.72, + "probability": 0.8615 + }, + { + "start": 5911.88, + "end": 5916.8, + "probability": 0.8269 + }, + { + "start": 5917.56, + "end": 5918.74, + "probability": 0.6687 + }, + { + "start": 5918.84, + "end": 5920.04, + "probability": 0.9674 + }, + { + "start": 5920.24, + "end": 5923.2, + "probability": 0.8395 + }, + { + "start": 5923.68, + "end": 5925.36, + "probability": 0.88 + }, + { + "start": 5925.62, + "end": 5927.34, + "probability": 0.9457 + }, + { + "start": 5928.46, + "end": 5929.76, + "probability": 0.8036 + }, + { + "start": 5930.22, + "end": 5931.12, + "probability": 0.774 + }, + { + "start": 5931.14, + "end": 5935.56, + "probability": 0.9374 + }, + { + "start": 5936.26, + "end": 5939.58, + "probability": 0.8186 + }, + { + "start": 5939.74, + "end": 5940.34, + "probability": 0.7444 + }, + { + "start": 5940.47, + "end": 5941.24, + "probability": 0.2474 + }, + { + "start": 5942.38, + "end": 5944.46, + "probability": 0.5978 + }, + { + "start": 5945.5, + "end": 5948.6, + "probability": 0.9761 + }, + { + "start": 5949.52, + "end": 5953.54, + "probability": 0.6453 + }, + { + "start": 5954.74, + "end": 5957.02, + "probability": 0.6967 + }, + { + "start": 5957.7, + "end": 5959.26, + "probability": 0.5708 + }, + { + "start": 5960.48, + "end": 5961.04, + "probability": 0.9734 + }, + { + "start": 5961.5, + "end": 5961.94, + "probability": 0.9521 + }, + { + "start": 5962.74, + "end": 5965.54, + "probability": 0.5255 + }, + { + "start": 5965.62, + "end": 5966.84, + "probability": 0.9456 + }, + { + "start": 5967.08, + "end": 5967.48, + "probability": 0.1997 + }, + { + "start": 5967.64, + "end": 5968.52, + "probability": 0.6205 + }, + { + "start": 5968.98, + "end": 5969.86, + "probability": 0.8984 + }, + { + "start": 5970.96, + "end": 5971.14, + "probability": 0.826 + }, + { + "start": 5971.48, + "end": 5974.44, + "probability": 0.626 + }, + { + "start": 5975.28, + "end": 5976.32, + "probability": 0.9425 + }, + { + "start": 5977.18, + "end": 5978.7, + "probability": 0.8862 + }, + { + "start": 5979.46, + "end": 5980.96, + "probability": 0.9893 + }, + { + "start": 5981.8, + "end": 5985.02, + "probability": 0.915 + }, + { + "start": 5985.84, + "end": 5989.36, + "probability": 0.9109 + }, + { + "start": 5989.96, + "end": 5991.28, + "probability": 0.9641 + }, + { + "start": 5991.76, + "end": 5994.64, + "probability": 0.9459 + }, + { + "start": 5994.8, + "end": 5995.02, + "probability": 0.2031 + }, + { + "start": 5995.5, + "end": 5997.1, + "probability": 0.9941 + }, + { + "start": 5997.14, + "end": 5999.46, + "probability": 0.3469 + }, + { + "start": 5999.52, + "end": 6000.06, + "probability": 0.1767 + }, + { + "start": 6001.1, + "end": 6004.44, + "probability": 0.9788 + }, + { + "start": 6005.62, + "end": 6007.4, + "probability": 0.5652 + }, + { + "start": 6009.38, + "end": 6012.24, + "probability": 0.0072 + }, + { + "start": 6012.94, + "end": 6014.34, + "probability": 0.9929 + }, + { + "start": 6015.4, + "end": 6020.94, + "probability": 0.9501 + }, + { + "start": 6022.18, + "end": 6023.3, + "probability": 0.7036 + }, + { + "start": 6023.68, + "end": 6024.73, + "probability": 0.8455 + }, + { + "start": 6025.14, + "end": 6029.92, + "probability": 0.913 + }, + { + "start": 6030.12, + "end": 6031.24, + "probability": 0.8204 + }, + { + "start": 6031.56, + "end": 6034.04, + "probability": 0.9814 + }, + { + "start": 6034.72, + "end": 6036.48, + "probability": 0.9769 + }, + { + "start": 6037.4, + "end": 6038.92, + "probability": 0.922 + }, + { + "start": 6039.34, + "end": 6041.1, + "probability": 0.6427 + }, + { + "start": 6041.16, + "end": 6042.48, + "probability": 0.7519 + }, + { + "start": 6043.28, + "end": 6046.54, + "probability": 0.8813 + }, + { + "start": 6047.14, + "end": 6048.42, + "probability": 0.3777 + }, + { + "start": 6049.34, + "end": 6051.86, + "probability": 0.9409 + }, + { + "start": 6052.5, + "end": 6055.98, + "probability": 0.9902 + }, + { + "start": 6056.34, + "end": 6056.98, + "probability": 0.7623 + }, + { + "start": 6057.02, + "end": 6058.06, + "probability": 0.6221 + }, + { + "start": 6058.96, + "end": 6061.18, + "probability": 0.7467 + }, + { + "start": 6061.5, + "end": 6063.74, + "probability": 0.8688 + }, + { + "start": 6064.04, + "end": 6064.97, + "probability": 0.6337 + }, + { + "start": 6065.28, + "end": 6066.82, + "probability": 0.7777 + }, + { + "start": 6067.08, + "end": 6069.48, + "probability": 0.7787 + }, + { + "start": 6069.88, + "end": 6072.04, + "probability": 0.9961 + }, + { + "start": 6072.88, + "end": 6075.54, + "probability": 0.9244 + }, + { + "start": 6075.66, + "end": 6075.66, + "probability": 0.2763 + }, + { + "start": 6075.86, + "end": 6076.52, + "probability": 0.6301 + }, + { + "start": 6077.6, + "end": 6080.78, + "probability": 0.8234 + }, + { + "start": 6082.68, + "end": 6086.38, + "probability": 0.7626 + }, + { + "start": 6086.48, + "end": 6087.82, + "probability": 0.9751 + }, + { + "start": 6092.82, + "end": 6094.26, + "probability": 0.8453 + }, + { + "start": 6099.78, + "end": 6100.18, + "probability": 0.4871 + }, + { + "start": 6100.72, + "end": 6102.14, + "probability": 0.629 + }, + { + "start": 6106.08, + "end": 6108.9, + "probability": 0.6778 + }, + { + "start": 6112.0, + "end": 6115.54, + "probability": 0.9316 + }, + { + "start": 6117.38, + "end": 6118.36, + "probability": 0.471 + }, + { + "start": 6118.52, + "end": 6123.44, + "probability": 0.9813 + }, + { + "start": 6124.72, + "end": 6126.1, + "probability": 0.4957 + }, + { + "start": 6127.18, + "end": 6128.62, + "probability": 0.8496 + }, + { + "start": 6130.14, + "end": 6130.96, + "probability": 0.9339 + }, + { + "start": 6133.1, + "end": 6134.98, + "probability": 0.8831 + }, + { + "start": 6136.22, + "end": 6136.52, + "probability": 0.6768 + }, + { + "start": 6138.52, + "end": 6139.12, + "probability": 0.8455 + }, + { + "start": 6140.5, + "end": 6140.96, + "probability": 0.5874 + }, + { + "start": 6141.08, + "end": 6143.67, + "probability": 0.8584 + }, + { + "start": 6144.66, + "end": 6145.66, + "probability": 0.5513 + }, + { + "start": 6146.18, + "end": 6148.12, + "probability": 0.53 + }, + { + "start": 6148.8, + "end": 6151.08, + "probability": 0.6953 + }, + { + "start": 6151.14, + "end": 6151.7, + "probability": 0.6666 + }, + { + "start": 6152.54, + "end": 6153.88, + "probability": 0.9452 + }, + { + "start": 6155.6, + "end": 6156.7, + "probability": 0.9094 + }, + { + "start": 6158.06, + "end": 6158.96, + "probability": 0.9907 + }, + { + "start": 6160.72, + "end": 6162.28, + "probability": 0.9858 + }, + { + "start": 6163.1, + "end": 6167.48, + "probability": 0.9214 + }, + { + "start": 6169.02, + "end": 6173.6, + "probability": 0.8054 + }, + { + "start": 6173.84, + "end": 6176.0, + "probability": 0.9459 + }, + { + "start": 6178.36, + "end": 6178.72, + "probability": 0.2153 + }, + { + "start": 6181.44, + "end": 6182.26, + "probability": 0.6129 + }, + { + "start": 6184.0, + "end": 6184.6, + "probability": 0.8315 + }, + { + "start": 6185.86, + "end": 6189.02, + "probability": 0.9883 + }, + { + "start": 6189.62, + "end": 6190.92, + "probability": 0.9941 + }, + { + "start": 6192.08, + "end": 6193.92, + "probability": 0.8684 + }, + { + "start": 6195.3, + "end": 6195.48, + "probability": 0.4425 + }, + { + "start": 6196.32, + "end": 6196.82, + "probability": 0.6658 + }, + { + "start": 6197.46, + "end": 6201.92, + "probability": 0.7 + }, + { + "start": 6203.38, + "end": 6204.94, + "probability": 0.9214 + }, + { + "start": 6205.68, + "end": 6207.8, + "probability": 0.9897 + }, + { + "start": 6207.96, + "end": 6210.34, + "probability": 0.9583 + }, + { + "start": 6211.18, + "end": 6213.32, + "probability": 0.5899 + }, + { + "start": 6214.24, + "end": 6215.52, + "probability": 0.7041 + }, + { + "start": 6217.14, + "end": 6220.48, + "probability": 0.9634 + }, + { + "start": 6221.28, + "end": 6222.02, + "probability": 0.7793 + }, + { + "start": 6222.2, + "end": 6222.62, + "probability": 0.2952 + }, + { + "start": 6222.66, + "end": 6223.68, + "probability": 0.6854 + }, + { + "start": 6224.18, + "end": 6227.12, + "probability": 0.9829 + }, + { + "start": 6227.58, + "end": 6229.08, + "probability": 0.9183 + }, + { + "start": 6229.54, + "end": 6231.86, + "probability": 0.9932 + }, + { + "start": 6232.86, + "end": 6237.16, + "probability": 0.7621 + }, + { + "start": 6237.64, + "end": 6240.44, + "probability": 0.9751 + }, + { + "start": 6240.5, + "end": 6241.4, + "probability": 0.804 + }, + { + "start": 6242.0, + "end": 6242.76, + "probability": 0.928 + }, + { + "start": 6245.64, + "end": 6249.54, + "probability": 0.9292 + }, + { + "start": 6251.84, + "end": 6254.24, + "probability": 0.9894 + }, + { + "start": 6254.5, + "end": 6256.66, + "probability": 0.7049 + }, + { + "start": 6257.94, + "end": 6262.16, + "probability": 0.9961 + }, + { + "start": 6262.72, + "end": 6263.88, + "probability": 0.8557 + }, + { + "start": 6265.06, + "end": 6265.82, + "probability": 0.9147 + }, + { + "start": 6266.04, + "end": 6266.82, + "probability": 0.8876 + }, + { + "start": 6267.02, + "end": 6267.3, + "probability": 0.7328 + }, + { + "start": 6267.68, + "end": 6267.98, + "probability": 0.5869 + }, + { + "start": 6268.34, + "end": 6270.24, + "probability": 0.9117 + }, + { + "start": 6271.52, + "end": 6274.66, + "probability": 0.9324 + }, + { + "start": 6275.1, + "end": 6275.92, + "probability": 0.9885 + }, + { + "start": 6278.2, + "end": 6281.55, + "probability": 0.988 + }, + { + "start": 6283.0, + "end": 6285.58, + "probability": 0.9744 + }, + { + "start": 6285.74, + "end": 6286.16, + "probability": 0.7604 + }, + { + "start": 6286.24, + "end": 6287.0, + "probability": 0.6654 + }, + { + "start": 6289.66, + "end": 6291.68, + "probability": 0.7251 + }, + { + "start": 6292.34, + "end": 6293.5, + "probability": 0.6366 + }, + { + "start": 6294.04, + "end": 6294.8, + "probability": 0.868 + }, + { + "start": 6297.0, + "end": 6302.02, + "probability": 0.9377 + }, + { + "start": 6302.7, + "end": 6303.92, + "probability": 0.7912 + }, + { + "start": 6304.8, + "end": 6306.6, + "probability": 0.9619 + }, + { + "start": 6306.62, + "end": 6309.2, + "probability": 0.8287 + }, + { + "start": 6311.2, + "end": 6315.52, + "probability": 0.8973 + }, + { + "start": 6316.8, + "end": 6317.96, + "probability": 0.7886 + }, + { + "start": 6318.28, + "end": 6318.66, + "probability": 0.7803 + }, + { + "start": 6320.3, + "end": 6321.4, + "probability": 0.0581 + }, + { + "start": 6321.86, + "end": 6321.98, + "probability": 0.6099 + }, + { + "start": 6322.24, + "end": 6324.4, + "probability": 0.7688 + }, + { + "start": 6324.6, + "end": 6325.06, + "probability": 0.8499 + }, + { + "start": 6327.06, + "end": 6329.36, + "probability": 0.8729 + }, + { + "start": 6330.4, + "end": 6331.1, + "probability": 0.9506 + }, + { + "start": 6333.28, + "end": 6333.84, + "probability": 0.9874 + }, + { + "start": 6334.96, + "end": 6335.46, + "probability": 0.9199 + }, + { + "start": 6335.48, + "end": 6336.12, + "probability": 0.7218 + }, + { + "start": 6336.22, + "end": 6338.34, + "probability": 0.9398 + }, + { + "start": 6338.44, + "end": 6339.4, + "probability": 0.9391 + }, + { + "start": 6341.06, + "end": 6341.58, + "probability": 0.7414 + }, + { + "start": 6341.78, + "end": 6343.18, + "probability": 0.6231 + }, + { + "start": 6344.16, + "end": 6346.66, + "probability": 0.8594 + }, + { + "start": 6347.34, + "end": 6350.16, + "probability": 0.9882 + }, + { + "start": 6350.24, + "end": 6350.52, + "probability": 0.8954 + }, + { + "start": 6351.22, + "end": 6355.0, + "probability": 0.7749 + }, + { + "start": 6355.84, + "end": 6358.2, + "probability": 0.7101 + }, + { + "start": 6359.26, + "end": 6364.52, + "probability": 0.8818 + }, + { + "start": 6364.66, + "end": 6366.84, + "probability": 0.8048 + }, + { + "start": 6386.62, + "end": 6387.44, + "probability": 0.5203 + }, + { + "start": 6389.18, + "end": 6390.1, + "probability": 0.4264 + }, + { + "start": 6391.94, + "end": 6395.44, + "probability": 0.8685 + }, + { + "start": 6396.42, + "end": 6399.28, + "probability": 0.9863 + }, + { + "start": 6403.8, + "end": 6404.4, + "probability": 0.7409 + }, + { + "start": 6404.56, + "end": 6407.08, + "probability": 0.9902 + }, + { + "start": 6408.6, + "end": 6409.38, + "probability": 0.9414 + }, + { + "start": 6409.58, + "end": 6411.32, + "probability": 0.9963 + }, + { + "start": 6411.5, + "end": 6412.52, + "probability": 0.9912 + }, + { + "start": 6413.34, + "end": 6415.32, + "probability": 0.6334 + }, + { + "start": 6415.44, + "end": 6417.44, + "probability": 0.8352 + }, + { + "start": 6417.88, + "end": 6421.44, + "probability": 0.9919 + }, + { + "start": 6421.46, + "end": 6423.56, + "probability": 0.923 + }, + { + "start": 6424.18, + "end": 6425.36, + "probability": 0.8783 + }, + { + "start": 6425.42, + "end": 6426.03, + "probability": 0.8835 + }, + { + "start": 6426.12, + "end": 6426.34, + "probability": 0.5587 + }, + { + "start": 6427.8, + "end": 6432.08, + "probability": 0.9893 + }, + { + "start": 6433.44, + "end": 6434.38, + "probability": 0.974 + }, + { + "start": 6434.48, + "end": 6437.58, + "probability": 0.9904 + }, + { + "start": 6439.7, + "end": 6440.46, + "probability": 0.5473 + }, + { + "start": 6440.98, + "end": 6443.26, + "probability": 0.7358 + }, + { + "start": 6445.3, + "end": 6447.02, + "probability": 0.9863 + }, + { + "start": 6449.04, + "end": 6451.62, + "probability": 0.9181 + }, + { + "start": 6451.66, + "end": 6453.32, + "probability": 0.8785 + }, + { + "start": 6453.52, + "end": 6454.2, + "probability": 0.2943 + }, + { + "start": 6455.94, + "end": 6458.14, + "probability": 0.8836 + }, + { + "start": 6458.28, + "end": 6459.42, + "probability": 0.3344 + }, + { + "start": 6459.54, + "end": 6460.08, + "probability": 0.8464 + }, + { + "start": 6461.16, + "end": 6461.96, + "probability": 0.8224 + }, + { + "start": 6463.96, + "end": 6465.08, + "probability": 0.9834 + }, + { + "start": 6466.48, + "end": 6468.44, + "probability": 0.7937 + }, + { + "start": 6470.06, + "end": 6471.3, + "probability": 0.9993 + }, + { + "start": 6473.48, + "end": 6477.78, + "probability": 0.9988 + }, + { + "start": 6477.78, + "end": 6480.4, + "probability": 0.9783 + }, + { + "start": 6480.5, + "end": 6481.1, + "probability": 0.7176 + }, + { + "start": 6482.52, + "end": 6485.36, + "probability": 0.9944 + }, + { + "start": 6486.18, + "end": 6491.08, + "probability": 0.9932 + }, + { + "start": 6491.42, + "end": 6492.7, + "probability": 0.9754 + }, + { + "start": 6494.08, + "end": 6495.56, + "probability": 0.9706 + }, + { + "start": 6495.6, + "end": 6498.39, + "probability": 0.9172 + }, + { + "start": 6500.34, + "end": 6500.96, + "probability": 0.5042 + }, + { + "start": 6501.02, + "end": 6501.56, + "probability": 0.1488 + }, + { + "start": 6501.56, + "end": 6503.9, + "probability": 0.8519 + }, + { + "start": 6504.36, + "end": 6506.06, + "probability": 0.9518 + }, + { + "start": 6507.42, + "end": 6508.32, + "probability": 0.6473 + }, + { + "start": 6510.02, + "end": 6512.44, + "probability": 0.9971 + }, + { + "start": 6513.6, + "end": 6516.78, + "probability": 0.9016 + }, + { + "start": 6518.0, + "end": 6519.6, + "probability": 0.8951 + }, + { + "start": 6519.68, + "end": 6519.9, + "probability": 0.898 + }, + { + "start": 6520.68, + "end": 6522.76, + "probability": 0.9943 + }, + { + "start": 6523.64, + "end": 6524.76, + "probability": 0.9639 + }, + { + "start": 6524.86, + "end": 6525.1, + "probability": 0.8204 + }, + { + "start": 6525.16, + "end": 6526.2, + "probability": 0.8972 + }, + { + "start": 6526.68, + "end": 6528.34, + "probability": 0.8999 + }, + { + "start": 6528.84, + "end": 6530.02, + "probability": 0.937 + }, + { + "start": 6531.24, + "end": 6534.7, + "probability": 0.8141 + }, + { + "start": 6536.42, + "end": 6540.3, + "probability": 0.9473 + }, + { + "start": 6540.9, + "end": 6543.04, + "probability": 0.7738 + }, + { + "start": 6544.22, + "end": 6544.6, + "probability": 0.7713 + }, + { + "start": 6544.64, + "end": 6545.18, + "probability": 0.7183 + }, + { + "start": 6545.38, + "end": 6546.42, + "probability": 0.7613 + }, + { + "start": 6546.5, + "end": 6547.34, + "probability": 0.8061 + }, + { + "start": 6547.46, + "end": 6549.92, + "probability": 0.7679 + }, + { + "start": 6549.98, + "end": 6551.8, + "probability": 0.9658 + }, + { + "start": 6552.44, + "end": 6553.35, + "probability": 0.8433 + }, + { + "start": 6553.64, + "end": 6556.5, + "probability": 0.8648 + }, + { + "start": 6556.62, + "end": 6558.2, + "probability": 0.9926 + }, + { + "start": 6560.32, + "end": 6561.62, + "probability": 0.6908 + }, + { + "start": 6561.94, + "end": 6562.66, + "probability": 0.6899 + }, + { + "start": 6562.7, + "end": 6562.94, + "probability": 0.8064 + }, + { + "start": 6563.0, + "end": 6567.02, + "probability": 0.9964 + }, + { + "start": 6567.06, + "end": 6568.24, + "probability": 0.9961 + }, + { + "start": 6569.14, + "end": 6570.07, + "probability": 0.8812 + }, + { + "start": 6572.08, + "end": 6573.3, + "probability": 0.9847 + }, + { + "start": 6574.46, + "end": 6579.82, + "probability": 0.8738 + }, + { + "start": 6580.62, + "end": 6583.5, + "probability": 0.9679 + }, + { + "start": 6584.02, + "end": 6586.0, + "probability": 0.9516 + }, + { + "start": 6586.94, + "end": 6588.62, + "probability": 0.6664 + }, + { + "start": 6589.16, + "end": 6589.74, + "probability": 0.7319 + }, + { + "start": 6590.52, + "end": 6591.82, + "probability": 0.621 + }, + { + "start": 6591.84, + "end": 6594.64, + "probability": 0.6975 + }, + { + "start": 6594.74, + "end": 6596.98, + "probability": 0.9878 + }, + { + "start": 6597.76, + "end": 6600.54, + "probability": 0.996 + }, + { + "start": 6601.32, + "end": 6601.96, + "probability": 0.9609 + }, + { + "start": 6602.02, + "end": 6602.2, + "probability": 0.9264 + }, + { + "start": 6602.24, + "end": 6604.36, + "probability": 0.9875 + }, + { + "start": 6605.26, + "end": 6606.68, + "probability": 0.982 + }, + { + "start": 6606.78, + "end": 6608.1, + "probability": 0.6131 + }, + { + "start": 6608.2, + "end": 6610.54, + "probability": 0.8625 + }, + { + "start": 6611.56, + "end": 6613.36, + "probability": 0.8479 + }, + { + "start": 6614.76, + "end": 6617.52, + "probability": 0.9169 + }, + { + "start": 6618.64, + "end": 6621.08, + "probability": 0.8603 + }, + { + "start": 6621.96, + "end": 6624.48, + "probability": 0.9695 + }, + { + "start": 6624.98, + "end": 6625.91, + "probability": 0.5056 + }, + { + "start": 6626.5, + "end": 6631.66, + "probability": 0.9631 + }, + { + "start": 6632.24, + "end": 6633.16, + "probability": 0.7925 + }, + { + "start": 6633.26, + "end": 6636.28, + "probability": 0.9318 + }, + { + "start": 6636.92, + "end": 6637.34, + "probability": 0.2569 + }, + { + "start": 6637.44, + "end": 6639.03, + "probability": 0.7268 + }, + { + "start": 6639.56, + "end": 6643.28, + "probability": 0.913 + }, + { + "start": 6645.54, + "end": 6647.46, + "probability": 0.9785 + }, + { + "start": 6649.54, + "end": 6649.84, + "probability": 0.3671 + }, + { + "start": 6649.84, + "end": 6650.26, + "probability": 0.2463 + }, + { + "start": 6662.3, + "end": 6662.44, + "probability": 0.2232 + }, + { + "start": 6662.44, + "end": 6663.16, + "probability": 0.6561 + }, + { + "start": 6665.26, + "end": 6667.46, + "probability": 0.8989 + }, + { + "start": 6668.62, + "end": 6670.19, + "probability": 0.8048 + }, + { + "start": 6671.4, + "end": 6671.72, + "probability": 0.8477 + }, + { + "start": 6673.9, + "end": 6675.98, + "probability": 0.955 + }, + { + "start": 6677.28, + "end": 6679.3, + "probability": 0.8771 + }, + { + "start": 6679.92, + "end": 6680.5, + "probability": 0.9196 + }, + { + "start": 6683.12, + "end": 6686.56, + "probability": 0.9753 + }, + { + "start": 6687.7, + "end": 6689.46, + "probability": 0.9987 + }, + { + "start": 6690.84, + "end": 6692.64, + "probability": 0.9674 + }, + { + "start": 6692.92, + "end": 6693.74, + "probability": 0.942 + }, + { + "start": 6694.04, + "end": 6696.3, + "probability": 0.9264 + }, + { + "start": 6697.8, + "end": 6699.3, + "probability": 0.9864 + }, + { + "start": 6700.64, + "end": 6701.07, + "probability": 0.3483 + }, + { + "start": 6702.86, + "end": 6706.72, + "probability": 0.9785 + }, + { + "start": 6708.0, + "end": 6708.68, + "probability": 0.7226 + }, + { + "start": 6709.48, + "end": 6713.64, + "probability": 0.9904 + }, + { + "start": 6713.64, + "end": 6717.38, + "probability": 0.989 + }, + { + "start": 6718.66, + "end": 6720.98, + "probability": 0.9844 + }, + { + "start": 6721.58, + "end": 6722.98, + "probability": 0.6572 + }, + { + "start": 6723.42, + "end": 6727.94, + "probability": 0.9878 + }, + { + "start": 6728.68, + "end": 6732.34, + "probability": 0.9902 + }, + { + "start": 6733.12, + "end": 6734.2, + "probability": 0.9972 + }, + { + "start": 6735.02, + "end": 6738.86, + "probability": 0.9824 + }, + { + "start": 6740.72, + "end": 6743.98, + "probability": 0.998 + }, + { + "start": 6743.98, + "end": 6746.74, + "probability": 0.9927 + }, + { + "start": 6747.1, + "end": 6749.5, + "probability": 0.7961 + }, + { + "start": 6749.72, + "end": 6754.02, + "probability": 0.9847 + }, + { + "start": 6754.9, + "end": 6756.74, + "probability": 0.9977 + }, + { + "start": 6757.34, + "end": 6759.82, + "probability": 0.9267 + }, + { + "start": 6759.9, + "end": 6761.49, + "probability": 0.9812 + }, + { + "start": 6762.14, + "end": 6764.14, + "probability": 0.4683 + }, + { + "start": 6764.18, + "end": 6764.42, + "probability": 0.5306 + }, + { + "start": 6764.48, + "end": 6768.04, + "probability": 0.9316 + }, + { + "start": 6768.12, + "end": 6768.95, + "probability": 0.9766 + }, + { + "start": 6770.22, + "end": 6772.34, + "probability": 0.8605 + }, + { + "start": 6772.8, + "end": 6777.84, + "probability": 0.9012 + }, + { + "start": 6778.4, + "end": 6780.92, + "probability": 0.9946 + }, + { + "start": 6781.52, + "end": 6787.3, + "probability": 0.9968 + }, + { + "start": 6787.3, + "end": 6794.42, + "probability": 0.9983 + }, + { + "start": 6795.8, + "end": 6800.38, + "probability": 0.9914 + }, + { + "start": 6801.14, + "end": 6801.84, + "probability": 0.9412 + }, + { + "start": 6801.92, + "end": 6802.38, + "probability": 0.8058 + }, + { + "start": 6802.44, + "end": 6802.64, + "probability": 0.7568 + }, + { + "start": 6802.96, + "end": 6804.14, + "probability": 0.9705 + }, + { + "start": 6804.86, + "end": 6808.78, + "probability": 0.9635 + }, + { + "start": 6809.3, + "end": 6811.48, + "probability": 0.9837 + }, + { + "start": 6811.56, + "end": 6812.94, + "probability": 0.9822 + }, + { + "start": 6812.96, + "end": 6816.62, + "probability": 0.9032 + }, + { + "start": 6816.64, + "end": 6820.12, + "probability": 0.9971 + }, + { + "start": 6820.78, + "end": 6823.92, + "probability": 0.9908 + }, + { + "start": 6824.6, + "end": 6827.28, + "probability": 0.973 + }, + { + "start": 6828.42, + "end": 6833.48, + "probability": 0.9961 + }, + { + "start": 6834.14, + "end": 6836.5, + "probability": 0.9837 + }, + { + "start": 6837.24, + "end": 6841.12, + "probability": 0.9904 + }, + { + "start": 6841.32, + "end": 6843.2, + "probability": 0.9702 + }, + { + "start": 6843.28, + "end": 6843.84, + "probability": 0.8412 + }, + { + "start": 6843.96, + "end": 6846.6, + "probability": 0.8423 + }, + { + "start": 6846.72, + "end": 6847.56, + "probability": 0.8576 + }, + { + "start": 6848.64, + "end": 6852.16, + "probability": 0.9619 + }, + { + "start": 6852.96, + "end": 6854.78, + "probability": 0.7704 + }, + { + "start": 6854.9, + "end": 6856.74, + "probability": 0.9184 + }, + { + "start": 6857.1, + "end": 6858.36, + "probability": 0.9253 + }, + { + "start": 6858.72, + "end": 6860.7, + "probability": 0.9704 + }, + { + "start": 6860.82, + "end": 6861.8, + "probability": 0.7588 + }, + { + "start": 6862.5, + "end": 6865.9, + "probability": 0.9694 + }, + { + "start": 6866.04, + "end": 6868.06, + "probability": 0.9964 + }, + { + "start": 6868.66, + "end": 6868.66, + "probability": 0.3336 + }, + { + "start": 6868.66, + "end": 6869.9, + "probability": 0.9899 + }, + { + "start": 6871.2, + "end": 6876.28, + "probability": 0.7933 + }, + { + "start": 6876.68, + "end": 6880.02, + "probability": 0.9943 + }, + { + "start": 6880.42, + "end": 6886.12, + "probability": 0.9908 + }, + { + "start": 6886.66, + "end": 6888.64, + "probability": 0.891 + }, + { + "start": 6889.98, + "end": 6892.1, + "probability": 0.6233 + }, + { + "start": 6892.3, + "end": 6894.0, + "probability": 0.866 + }, + { + "start": 6894.08, + "end": 6897.58, + "probability": 0.9863 + }, + { + "start": 6897.58, + "end": 6901.44, + "probability": 0.8277 + }, + { + "start": 6901.52, + "end": 6903.88, + "probability": 0.9848 + }, + { + "start": 6904.02, + "end": 6904.5, + "probability": 0.5709 + }, + { + "start": 6904.5, + "end": 6906.84, + "probability": 0.935 + }, + { + "start": 6907.3, + "end": 6908.34, + "probability": 0.9979 + }, + { + "start": 6910.2, + "end": 6911.22, + "probability": 0.6779 + }, + { + "start": 6932.9, + "end": 6933.74, + "probability": 0.7271 + }, + { + "start": 6934.86, + "end": 6935.52, + "probability": 0.7422 + }, + { + "start": 6936.76, + "end": 6940.24, + "probability": 0.8228 + }, + { + "start": 6942.04, + "end": 6946.62, + "probability": 0.7158 + }, + { + "start": 6948.1, + "end": 6948.92, + "probability": 0.8995 + }, + { + "start": 6949.32, + "end": 6952.48, + "probability": 0.8601 + }, + { + "start": 6952.7, + "end": 6952.96, + "probability": 0.8665 + }, + { + "start": 6953.16, + "end": 6953.8, + "probability": 0.4858 + }, + { + "start": 6954.58, + "end": 6957.02, + "probability": 0.9475 + }, + { + "start": 6958.12, + "end": 6959.64, + "probability": 0.9038 + }, + { + "start": 6960.7, + "end": 6962.28, + "probability": 0.8147 + }, + { + "start": 6963.46, + "end": 6966.88, + "probability": 0.9173 + }, + { + "start": 6967.72, + "end": 6969.48, + "probability": 0.9902 + }, + { + "start": 6969.56, + "end": 6973.24, + "probability": 0.6777 + }, + { + "start": 6973.74, + "end": 6977.18, + "probability": 0.9109 + }, + { + "start": 6977.9, + "end": 6984.68, + "probability": 0.9508 + }, + { + "start": 6985.32, + "end": 6986.5, + "probability": 0.9565 + }, + { + "start": 6986.86, + "end": 6989.68, + "probability": 0.9871 + }, + { + "start": 6989.68, + "end": 6993.12, + "probability": 0.9966 + }, + { + "start": 6993.9, + "end": 6997.06, + "probability": 0.9978 + }, + { + "start": 6997.8, + "end": 6998.24, + "probability": 0.6283 + }, + { + "start": 6998.42, + "end": 7003.0, + "probability": 0.8792 + }, + { + "start": 7003.16, + "end": 7003.48, + "probability": 0.9268 + }, + { + "start": 7003.6, + "end": 7004.92, + "probability": 0.9734 + }, + { + "start": 7006.12, + "end": 7007.0, + "probability": 0.8995 + }, + { + "start": 7008.14, + "end": 7012.96, + "probability": 0.9266 + }, + { + "start": 7013.9, + "end": 7015.8, + "probability": 0.856 + }, + { + "start": 7016.86, + "end": 7021.28, + "probability": 0.8731 + }, + { + "start": 7021.52, + "end": 7026.28, + "probability": 0.999 + }, + { + "start": 7026.5, + "end": 7030.32, + "probability": 0.9464 + }, + { + "start": 7030.84, + "end": 7032.1, + "probability": 0.9543 + }, + { + "start": 7032.86, + "end": 7037.86, + "probability": 0.8826 + }, + { + "start": 7038.02, + "end": 7039.7, + "probability": 0.8819 + }, + { + "start": 7040.58, + "end": 7043.58, + "probability": 0.9271 + }, + { + "start": 7044.42, + "end": 7044.82, + "probability": 0.67 + }, + { + "start": 7044.98, + "end": 7045.44, + "probability": 0.6818 + }, + { + "start": 7045.76, + "end": 7047.28, + "probability": 0.8811 + }, + { + "start": 7047.5, + "end": 7048.64, + "probability": 0.7659 + }, + { + "start": 7049.66, + "end": 7052.8, + "probability": 0.6812 + }, + { + "start": 7053.54, + "end": 7054.08, + "probability": 0.6063 + }, + { + "start": 7054.22, + "end": 7059.48, + "probability": 0.7185 + }, + { + "start": 7060.24, + "end": 7062.62, + "probability": 0.9908 + }, + { + "start": 7063.48, + "end": 7064.24, + "probability": 0.5485 + }, + { + "start": 7064.76, + "end": 7067.22, + "probability": 0.8892 + }, + { + "start": 7067.92, + "end": 7069.3, + "probability": 0.742 + }, + { + "start": 7070.24, + "end": 7072.24, + "probability": 0.5771 + }, + { + "start": 7072.99, + "end": 7079.52, + "probability": 0.9858 + }, + { + "start": 7080.04, + "end": 7081.98, + "probability": 0.7783 + }, + { + "start": 7082.78, + "end": 7085.92, + "probability": 0.9983 + }, + { + "start": 7086.46, + "end": 7090.64, + "probability": 0.9941 + }, + { + "start": 7091.38, + "end": 7094.42, + "probability": 0.9297 + }, + { + "start": 7097.0, + "end": 7097.96, + "probability": 0.6891 + }, + { + "start": 7099.02, + "end": 7101.32, + "probability": 0.7819 + }, + { + "start": 7102.34, + "end": 7104.0, + "probability": 0.9664 + }, + { + "start": 7104.78, + "end": 7107.22, + "probability": 0.8497 + }, + { + "start": 7107.96, + "end": 7109.9, + "probability": 0.9897 + }, + { + "start": 7110.74, + "end": 7113.94, + "probability": 0.9952 + }, + { + "start": 7114.42, + "end": 7116.12, + "probability": 0.8912 + }, + { + "start": 7116.6, + "end": 7118.52, + "probability": 0.981 + }, + { + "start": 7119.26, + "end": 7122.54, + "probability": 0.9519 + }, + { + "start": 7123.32, + "end": 7124.56, + "probability": 0.8864 + }, + { + "start": 7125.16, + "end": 7126.32, + "probability": 0.7681 + }, + { + "start": 7126.84, + "end": 7129.28, + "probability": 0.9198 + }, + { + "start": 7130.26, + "end": 7133.28, + "probability": 0.9838 + }, + { + "start": 7133.86, + "end": 7138.22, + "probability": 0.9826 + }, + { + "start": 7139.06, + "end": 7140.06, + "probability": 0.843 + }, + { + "start": 7140.92, + "end": 7143.54, + "probability": 0.9973 + }, + { + "start": 7145.26, + "end": 7145.52, + "probability": 0.8846 + }, + { + "start": 7147.04, + "end": 7149.16, + "probability": 0.8245 + }, + { + "start": 7150.46, + "end": 7151.0, + "probability": 0.5538 + }, + { + "start": 7151.54, + "end": 7154.14, + "probability": 0.5551 + }, + { + "start": 7154.32, + "end": 7154.69, + "probability": 0.7094 + }, + { + "start": 7155.38, + "end": 7157.5, + "probability": 0.9766 + }, + { + "start": 7157.58, + "end": 7158.2, + "probability": 0.7267 + }, + { + "start": 7158.52, + "end": 7160.88, + "probability": 0.3334 + }, + { + "start": 7160.88, + "end": 7161.62, + "probability": 0.5258 + }, + { + "start": 7163.24, + "end": 7165.52, + "probability": 0.8884 + }, + { + "start": 7167.84, + "end": 7168.28, + "probability": 0.0141 + }, + { + "start": 7168.28, + "end": 7169.8, + "probability": 0.21 + }, + { + "start": 7169.8, + "end": 7170.56, + "probability": 0.9253 + }, + { + "start": 7171.0, + "end": 7174.94, + "probability": 0.5762 + }, + { + "start": 7175.34, + "end": 7176.6, + "probability": 0.5508 + }, + { + "start": 7176.7, + "end": 7179.86, + "probability": 0.8501 + }, + { + "start": 7181.02, + "end": 7181.62, + "probability": 0.0278 + }, + { + "start": 7181.88, + "end": 7182.04, + "probability": 0.1072 + }, + { + "start": 7182.04, + "end": 7183.84, + "probability": 0.968 + }, + { + "start": 7183.98, + "end": 7185.2, + "probability": 0.9927 + }, + { + "start": 7187.32, + "end": 7188.98, + "probability": 0.771 + }, + { + "start": 7189.5, + "end": 7190.12, + "probability": 0.162 + }, + { + "start": 7190.98, + "end": 7192.3, + "probability": 0.9806 + }, + { + "start": 7193.04, + "end": 7195.0, + "probability": 0.9873 + }, + { + "start": 7196.2, + "end": 7197.66, + "probability": 0.261 + }, + { + "start": 7198.22, + "end": 7198.22, + "probability": 0.4097 + }, + { + "start": 7198.84, + "end": 7199.5, + "probability": 0.7349 + }, + { + "start": 7199.62, + "end": 7200.4, + "probability": 0.6328 + }, + { + "start": 7200.6, + "end": 7201.58, + "probability": 0.9485 + }, + { + "start": 7201.64, + "end": 7202.58, + "probability": 0.7863 + }, + { + "start": 7203.72, + "end": 7208.56, + "probability": 0.8925 + }, + { + "start": 7208.84, + "end": 7209.62, + "probability": 0.9147 + }, + { + "start": 7210.02, + "end": 7210.12, + "probability": 0.4246 + }, + { + "start": 7211.24, + "end": 7211.42, + "probability": 0.0684 + }, + { + "start": 7211.42, + "end": 7213.22, + "probability": 0.8176 + }, + { + "start": 7213.92, + "end": 7220.08, + "probability": 0.9639 + }, + { + "start": 7221.16, + "end": 7221.94, + "probability": 0.4956 + }, + { + "start": 7222.78, + "end": 7229.46, + "probability": 0.8756 + }, + { + "start": 7230.0, + "end": 7233.42, + "probability": 0.6472 + }, + { + "start": 7234.24, + "end": 7238.28, + "probability": 0.6559 + }, + { + "start": 7239.1, + "end": 7240.04, + "probability": 0.5008 + }, + { + "start": 7240.66, + "end": 7241.26, + "probability": 0.0484 + }, + { + "start": 7241.74, + "end": 7243.46, + "probability": 0.7626 + }, + { + "start": 7243.76, + "end": 7246.55, + "probability": 0.6187 + }, + { + "start": 7248.04, + "end": 7249.68, + "probability": 0.9956 + }, + { + "start": 7249.82, + "end": 7251.22, + "probability": 0.8333 + }, + { + "start": 7251.6, + "end": 7252.62, + "probability": 0.993 + }, + { + "start": 7252.94, + "end": 7255.4, + "probability": 0.855 + }, + { + "start": 7255.5, + "end": 7258.7, + "probability": 0.7697 + }, + { + "start": 7258.86, + "end": 7259.79, + "probability": 0.9619 + }, + { + "start": 7260.5, + "end": 7262.09, + "probability": 0.9917 + }, + { + "start": 7263.14, + "end": 7264.38, + "probability": 0.7931 + }, + { + "start": 7265.0, + "end": 7267.52, + "probability": 0.7199 + }, + { + "start": 7268.08, + "end": 7272.32, + "probability": 0.9812 + }, + { + "start": 7273.36, + "end": 7274.92, + "probability": 0.8668 + }, + { + "start": 7275.76, + "end": 7277.24, + "probability": 0.5666 + }, + { + "start": 7277.68, + "end": 7278.46, + "probability": 0.6864 + }, + { + "start": 7278.86, + "end": 7280.92, + "probability": 0.7656 + }, + { + "start": 7281.6, + "end": 7283.94, + "probability": 0.5422 + }, + { + "start": 7283.96, + "end": 7285.0, + "probability": 0.2949 + }, + { + "start": 7285.08, + "end": 7285.84, + "probability": 0.5224 + }, + { + "start": 7285.84, + "end": 7288.76, + "probability": 0.9656 + }, + { + "start": 7289.02, + "end": 7290.44, + "probability": 0.6161 + }, + { + "start": 7291.6, + "end": 7295.11, + "probability": 0.7559 + }, + { + "start": 7295.86, + "end": 7297.0, + "probability": 0.9743 + }, + { + "start": 7297.06, + "end": 7299.44, + "probability": 0.9302 + }, + { + "start": 7300.04, + "end": 7300.98, + "probability": 0.7546 + }, + { + "start": 7301.08, + "end": 7310.1, + "probability": 0.9351 + }, + { + "start": 7310.36, + "end": 7312.16, + "probability": 0.7981 + }, + { + "start": 7312.88, + "end": 7313.46, + "probability": 0.5003 + }, + { + "start": 7314.16, + "end": 7315.52, + "probability": 0.8713 + }, + { + "start": 7315.86, + "end": 7317.6, + "probability": 0.7587 + }, + { + "start": 7318.04, + "end": 7323.62, + "probability": 0.9651 + }, + { + "start": 7327.8, + "end": 7328.74, + "probability": 0.4972 + }, + { + "start": 7328.74, + "end": 7329.38, + "probability": 0.6235 + }, + { + "start": 7330.08, + "end": 7333.92, + "probability": 0.991 + }, + { + "start": 7334.1, + "end": 7335.14, + "probability": 0.9634 + }, + { + "start": 7335.28, + "end": 7337.32, + "probability": 0.7084 + }, + { + "start": 7337.38, + "end": 7338.66, + "probability": 0.7183 + }, + { + "start": 7339.4, + "end": 7340.08, + "probability": 0.0057 + }, + { + "start": 7340.38, + "end": 7340.82, + "probability": 0.3519 + }, + { + "start": 7340.82, + "end": 7341.46, + "probability": 0.4468 + }, + { + "start": 7341.78, + "end": 7342.48, + "probability": 0.6643 + }, + { + "start": 7342.7, + "end": 7344.26, + "probability": 0.58 + }, + { + "start": 7344.54, + "end": 7345.04, + "probability": 0.0818 + }, + { + "start": 7345.2, + "end": 7345.72, + "probability": 0.4124 + }, + { + "start": 7347.15, + "end": 7349.84, + "probability": 0.9963 + }, + { + "start": 7349.98, + "end": 7351.62, + "probability": 0.9441 + }, + { + "start": 7351.74, + "end": 7352.46, + "probability": 0.7152 + }, + { + "start": 7353.02, + "end": 7354.68, + "probability": 0.9077 + }, + { + "start": 7354.76, + "end": 7359.12, + "probability": 0.8699 + }, + { + "start": 7359.26, + "end": 7362.46, + "probability": 0.666 + }, + { + "start": 7363.38, + "end": 7364.28, + "probability": 0.9771 + }, + { + "start": 7364.82, + "end": 7365.32, + "probability": 0.4859 + }, + { + "start": 7367.22, + "end": 7368.22, + "probability": 0.4973 + }, + { + "start": 7368.26, + "end": 7373.04, + "probability": 0.8247 + }, + { + "start": 7376.74, + "end": 7379.44, + "probability": 0.5839 + }, + { + "start": 7380.88, + "end": 7381.52, + "probability": 0.4422 + }, + { + "start": 7381.62, + "end": 7383.2, + "probability": 0.8517 + }, + { + "start": 7384.22, + "end": 7385.64, + "probability": 0.7936 + }, + { + "start": 7386.7, + "end": 7392.0, + "probability": 0.9885 + }, + { + "start": 7392.68, + "end": 7393.98, + "probability": 0.8512 + }, + { + "start": 7394.52, + "end": 7394.96, + "probability": 0.9565 + }, + { + "start": 7395.88, + "end": 7396.62, + "probability": 0.56 + }, + { + "start": 7397.22, + "end": 7398.78, + "probability": 0.9871 + }, + { + "start": 7399.48, + "end": 7402.24, + "probability": 0.8628 + }, + { + "start": 7402.98, + "end": 7405.36, + "probability": 0.9952 + }, + { + "start": 7406.46, + "end": 7407.1, + "probability": 0.6715 + }, + { + "start": 7407.18, + "end": 7407.56, + "probability": 0.7537 + }, + { + "start": 7408.1, + "end": 7412.82, + "probability": 0.8815 + }, + { + "start": 7412.9, + "end": 7415.34, + "probability": 0.9355 + }, + { + "start": 7416.08, + "end": 7416.08, + "probability": 0.0382 + }, + { + "start": 7416.08, + "end": 7416.5, + "probability": 0.0945 + }, + { + "start": 7417.12, + "end": 7419.32, + "probability": 0.5056 + }, + { + "start": 7419.44, + "end": 7420.24, + "probability": 0.1859 + }, + { + "start": 7420.3, + "end": 7421.76, + "probability": 0.9248 + }, + { + "start": 7422.0, + "end": 7424.1, + "probability": 0.5849 + }, + { + "start": 7429.64, + "end": 7433.6, + "probability": 0.838 + }, + { + "start": 7433.72, + "end": 7435.46, + "probability": 0.5167 + }, + { + "start": 7435.46, + "end": 7437.66, + "probability": 0.304 + }, + { + "start": 7438.08, + "end": 7439.76, + "probability": 0.7007 + }, + { + "start": 7440.64, + "end": 7445.32, + "probability": 0.8376 + }, + { + "start": 7445.9, + "end": 7449.56, + "probability": 0.8682 + }, + { + "start": 7450.08, + "end": 7451.4, + "probability": 0.8381 + }, + { + "start": 7452.0, + "end": 7452.56, + "probability": 0.5853 + }, + { + "start": 7453.64, + "end": 7454.57, + "probability": 0.9565 + }, + { + "start": 7455.3, + "end": 7456.25, + "probability": 0.8938 + }, + { + "start": 7456.74, + "end": 7458.3, + "probability": 0.8126 + }, + { + "start": 7460.58, + "end": 7464.22, + "probability": 0.9788 + }, + { + "start": 7466.26, + "end": 7469.04, + "probability": 0.6035 + }, + { + "start": 7469.72, + "end": 7473.3, + "probability": 0.8765 + }, + { + "start": 7474.04, + "end": 7477.76, + "probability": 0.8878 + }, + { + "start": 7477.76, + "end": 7482.52, + "probability": 0.658 + }, + { + "start": 7482.66, + "end": 7483.1, + "probability": 0.9727 + }, + { + "start": 7483.78, + "end": 7487.58, + "probability": 0.9885 + }, + { + "start": 7488.18, + "end": 7489.62, + "probability": 0.707 + }, + { + "start": 7490.48, + "end": 7491.02, + "probability": 0.507 + }, + { + "start": 7492.04, + "end": 7495.76, + "probability": 0.9517 + }, + { + "start": 7496.38, + "end": 7498.74, + "probability": 0.915 + }, + { + "start": 7499.28, + "end": 7501.12, + "probability": 0.9984 + }, + { + "start": 7501.7, + "end": 7503.3, + "probability": 0.9688 + }, + { + "start": 7504.16, + "end": 7509.88, + "probability": 0.9664 + }, + { + "start": 7509.9, + "end": 7513.52, + "probability": 0.15 + }, + { + "start": 7514.04, + "end": 7519.52, + "probability": 0.9495 + }, + { + "start": 7520.24, + "end": 7521.62, + "probability": 0.9984 + }, + { + "start": 7522.38, + "end": 7523.6, + "probability": 0.5277 + }, + { + "start": 7524.6, + "end": 7529.32, + "probability": 0.6555 + }, + { + "start": 7530.24, + "end": 7537.18, + "probability": 0.981 + }, + { + "start": 7538.06, + "end": 7541.06, + "probability": 0.9644 + }, + { + "start": 7541.8, + "end": 7547.12, + "probability": 0.5651 + }, + { + "start": 7547.66, + "end": 7549.0, + "probability": 0.9661 + }, + { + "start": 7549.88, + "end": 7552.24, + "probability": 0.9862 + }, + { + "start": 7553.28, + "end": 7554.64, + "probability": 0.7843 + }, + { + "start": 7555.28, + "end": 7559.72, + "probability": 0.8848 + }, + { + "start": 7560.48, + "end": 7566.4, + "probability": 0.9697 + }, + { + "start": 7566.4, + "end": 7571.14, + "probability": 0.9953 + }, + { + "start": 7572.22, + "end": 7573.04, + "probability": 0.4306 + }, + { + "start": 7573.68, + "end": 7574.31, + "probability": 0.7869 + }, + { + "start": 7574.56, + "end": 7575.94, + "probability": 0.8997 + }, + { + "start": 7576.8, + "end": 7578.66, + "probability": 0.8516 + }, + { + "start": 7579.18, + "end": 7580.92, + "probability": 0.9575 + }, + { + "start": 7581.5, + "end": 7583.18, + "probability": 0.7092 + }, + { + "start": 7583.82, + "end": 7585.0, + "probability": 0.9375 + }, + { + "start": 7585.48, + "end": 7588.0, + "probability": 0.7297 + }, + { + "start": 7588.84, + "end": 7590.14, + "probability": 0.9648 + }, + { + "start": 7590.9, + "end": 7593.88, + "probability": 0.9123 + }, + { + "start": 7594.04, + "end": 7595.58, + "probability": 0.976 + }, + { + "start": 7596.42, + "end": 7597.0, + "probability": 0.8247 + }, + { + "start": 7597.9, + "end": 7598.9, + "probability": 0.786 + }, + { + "start": 7600.07, + "end": 7602.64, + "probability": 0.463 + }, + { + "start": 7603.9, + "end": 7604.64, + "probability": 0.7629 + }, + { + "start": 7605.62, + "end": 7607.46, + "probability": 0.6836 + }, + { + "start": 7608.2, + "end": 7611.54, + "probability": 0.9551 + }, + { + "start": 7612.34, + "end": 7618.52, + "probability": 0.6966 + }, + { + "start": 7618.52, + "end": 7618.88, + "probability": 0.7194 + }, + { + "start": 7619.48, + "end": 7621.04, + "probability": 0.8969 + }, + { + "start": 7622.14, + "end": 7624.82, + "probability": 0.8165 + }, + { + "start": 7625.42, + "end": 7630.36, + "probability": 0.8376 + }, + { + "start": 7631.26, + "end": 7633.32, + "probability": 0.912 + }, + { + "start": 7634.58, + "end": 7640.12, + "probability": 0.96 + }, + { + "start": 7640.18, + "end": 7644.24, + "probability": 0.9886 + }, + { + "start": 7644.78, + "end": 7646.48, + "probability": 0.8449 + }, + { + "start": 7646.9, + "end": 7647.76, + "probability": 0.8708 + }, + { + "start": 7648.28, + "end": 7653.38, + "probability": 0.9977 + }, + { + "start": 7654.42, + "end": 7661.84, + "probability": 0.9681 + }, + { + "start": 7662.54, + "end": 7664.58, + "probability": 0.9474 + }, + { + "start": 7665.34, + "end": 7666.86, + "probability": 0.8746 + }, + { + "start": 7667.6, + "end": 7668.72, + "probability": 0.6575 + }, + { + "start": 7669.52, + "end": 7672.94, + "probability": 0.9642 + }, + { + "start": 7673.9, + "end": 7676.74, + "probability": 0.907 + }, + { + "start": 7677.32, + "end": 7678.06, + "probability": 0.9885 + }, + { + "start": 7678.6, + "end": 7681.02, + "probability": 0.9913 + }, + { + "start": 7681.64, + "end": 7682.54, + "probability": 0.9105 + }, + { + "start": 7683.22, + "end": 7686.66, + "probability": 0.971 + }, + { + "start": 7687.18, + "end": 7692.56, + "probability": 0.9824 + }, + { + "start": 7693.42, + "end": 7696.38, + "probability": 0.7996 + }, + { + "start": 7696.92, + "end": 7701.18, + "probability": 0.9862 + }, + { + "start": 7702.22, + "end": 7703.5, + "probability": 0.912 + }, + { + "start": 7704.22, + "end": 7706.48, + "probability": 0.498 + }, + { + "start": 7707.32, + "end": 7708.72, + "probability": 0.9243 + }, + { + "start": 7710.29, + "end": 7715.53, + "probability": 0.9568 + }, + { + "start": 7717.56, + "end": 7719.14, + "probability": 0.7061 + }, + { + "start": 7719.78, + "end": 7721.56, + "probability": 0.9648 + }, + { + "start": 7722.36, + "end": 7723.66, + "probability": 0.9658 + }, + { + "start": 7724.4, + "end": 7725.58, + "probability": 0.7012 + }, + { + "start": 7726.4, + "end": 7727.62, + "probability": 0.9131 + }, + { + "start": 7728.48, + "end": 7732.54, + "probability": 0.8888 + }, + { + "start": 7733.12, + "end": 7734.19, + "probability": 0.957 + }, + { + "start": 7734.88, + "end": 7735.92, + "probability": 0.915 + }, + { + "start": 7736.4, + "end": 7737.02, + "probability": 0.9505 + }, + { + "start": 7737.5, + "end": 7738.98, + "probability": 0.5403 + }, + { + "start": 7739.76, + "end": 7744.58, + "probability": 0.9381 + }, + { + "start": 7745.24, + "end": 7749.54, + "probability": 0.922 + }, + { + "start": 7749.73, + "end": 7755.0, + "probability": 0.9543 + }, + { + "start": 7755.6, + "end": 7758.64, + "probability": 0.9403 + }, + { + "start": 7759.6, + "end": 7762.82, + "probability": 0.9917 + }, + { + "start": 7763.48, + "end": 7764.86, + "probability": 0.9477 + }, + { + "start": 7765.64, + "end": 7768.06, + "probability": 0.9105 + }, + { + "start": 7768.5, + "end": 7771.44, + "probability": 0.8615 + }, + { + "start": 7771.52, + "end": 7772.48, + "probability": 0.9769 + }, + { + "start": 7772.58, + "end": 7773.56, + "probability": 0.7057 + }, + { + "start": 7773.94, + "end": 7778.5, + "probability": 0.981 + }, + { + "start": 7778.56, + "end": 7779.84, + "probability": 0.8828 + }, + { + "start": 7780.48, + "end": 7783.18, + "probability": 0.9731 + }, + { + "start": 7784.06, + "end": 7788.58, + "probability": 0.9294 + }, + { + "start": 7788.88, + "end": 7791.66, + "probability": 0.7964 + }, + { + "start": 7792.82, + "end": 7795.36, + "probability": 0.9375 + }, + { + "start": 7795.98, + "end": 7798.04, + "probability": 0.9692 + }, + { + "start": 7798.62, + "end": 7800.68, + "probability": 0.5703 + }, + { + "start": 7801.42, + "end": 7804.74, + "probability": 0.9484 + }, + { + "start": 7805.68, + "end": 7806.4, + "probability": 0.872 + }, + { + "start": 7807.34, + "end": 7810.66, + "probability": 0.8549 + }, + { + "start": 7811.54, + "end": 7815.48, + "probability": 0.9911 + }, + { + "start": 7816.62, + "end": 7821.28, + "probability": 0.9658 + }, + { + "start": 7821.9, + "end": 7823.34, + "probability": 0.5085 + }, + { + "start": 7824.26, + "end": 7827.22, + "probability": 0.8034 + }, + { + "start": 7829.5, + "end": 7831.06, + "probability": 0.9417 + }, + { + "start": 7831.7, + "end": 7837.66, + "probability": 0.9722 + }, + { + "start": 7838.24, + "end": 7840.72, + "probability": 0.5135 + }, + { + "start": 7841.26, + "end": 7844.52, + "probability": 0.9863 + }, + { + "start": 7845.26, + "end": 7845.86, + "probability": 0.606 + }, + { + "start": 7846.38, + "end": 7846.96, + "probability": 0.5171 + }, + { + "start": 7848.08, + "end": 7848.5, + "probability": 0.9561 + }, + { + "start": 7849.32, + "end": 7850.9, + "probability": 0.907 + }, + { + "start": 7851.48, + "end": 7853.64, + "probability": 0.9054 + }, + { + "start": 7854.3, + "end": 7861.5, + "probability": 0.9656 + }, + { + "start": 7862.06, + "end": 7863.0, + "probability": 0.9064 + }, + { + "start": 7864.58, + "end": 7867.02, + "probability": 0.9565 + }, + { + "start": 7867.8, + "end": 7869.28, + "probability": 0.6595 + }, + { + "start": 7870.06, + "end": 7874.22, + "probability": 0.4991 + }, + { + "start": 7875.1, + "end": 7876.4, + "probability": 0.9533 + }, + { + "start": 7877.56, + "end": 7879.88, + "probability": 0.5171 + }, + { + "start": 7880.62, + "end": 7883.18, + "probability": 0.9906 + }, + { + "start": 7884.12, + "end": 7889.96, + "probability": 0.9735 + }, + { + "start": 7890.94, + "end": 7892.66, + "probability": 0.8193 + }, + { + "start": 7893.42, + "end": 7894.08, + "probability": 0.7573 + }, + { + "start": 7894.86, + "end": 7896.14, + "probability": 0.8013 + }, + { + "start": 7896.7, + "end": 7898.1, + "probability": 0.7076 + }, + { + "start": 7898.88, + "end": 7901.26, + "probability": 0.576 + }, + { + "start": 7902.1, + "end": 7905.16, + "probability": 0.9653 + }, + { + "start": 7907.47, + "end": 7909.98, + "probability": 0.6035 + }, + { + "start": 7910.5, + "end": 7911.24, + "probability": 0.837 + }, + { + "start": 7911.56, + "end": 7915.7, + "probability": 0.9007 + }, + { + "start": 7916.46, + "end": 7918.38, + "probability": 0.667 + }, + { + "start": 7918.38, + "end": 7919.2, + "probability": 0.6389 + }, + { + "start": 7919.28, + "end": 7920.0, + "probability": 0.9395 + }, + { + "start": 7920.08, + "end": 7920.88, + "probability": 0.7836 + }, + { + "start": 7921.44, + "end": 7922.76, + "probability": 0.8799 + }, + { + "start": 7923.28, + "end": 7924.5, + "probability": 0.9125 + }, + { + "start": 7928.58, + "end": 7931.48, + "probability": 0.695 + }, + { + "start": 7931.56, + "end": 7933.22, + "probability": 0.9124 + }, + { + "start": 7935.52, + "end": 7938.58, + "probability": 0.9321 + }, + { + "start": 7944.9, + "end": 7947.8, + "probability": 0.8624 + }, + { + "start": 7948.46, + "end": 7949.86, + "probability": 0.6013 + }, + { + "start": 7950.88, + "end": 7957.72, + "probability": 0.0445 + }, + { + "start": 7958.4, + "end": 7959.36, + "probability": 0.0191 + }, + { + "start": 7963.18, + "end": 7965.34, + "probability": 0.1111 + }, + { + "start": 7974.54, + "end": 7976.32, + "probability": 0.1261 + }, + { + "start": 7991.2, + "end": 7991.7, + "probability": 0.0659 + }, + { + "start": 7993.12, + "end": 7994.36, + "probability": 0.0038 + }, + { + "start": 8077.8, + "end": 8082.32, + "probability": 0.032 + }, + { + "start": 8082.56, + "end": 8084.3, + "probability": 0.5088 + }, + { + "start": 8084.94, + "end": 8085.42, + "probability": 0.0377 + }, + { + "start": 8085.42, + "end": 8085.7, + "probability": 0.0557 + }, + { + "start": 8085.7, + "end": 8086.6, + "probability": 0.0388 + }, + { + "start": 8086.6, + "end": 8086.9, + "probability": 0.0262 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.0, + "end": 8164.0, + "probability": 0.0 + }, + { + "start": 8164.82, + "end": 8165.6, + "probability": 0.8119 + }, + { + "start": 8165.66, + "end": 8166.58, + "probability": 0.8712 + }, + { + "start": 8166.8, + "end": 8167.9, + "probability": 0.8063 + }, + { + "start": 8168.08, + "end": 8170.9, + "probability": 0.856 + }, + { + "start": 8171.62, + "end": 8174.4, + "probability": 0.9943 + }, + { + "start": 8175.24, + "end": 8177.46, + "probability": 0.9849 + }, + { + "start": 8178.04, + "end": 8179.54, + "probability": 0.7497 + }, + { + "start": 8179.68, + "end": 8179.98, + "probability": 0.8381 + }, + { + "start": 8180.08, + "end": 8181.1, + "probability": 0.8385 + }, + { + "start": 8181.5, + "end": 8182.44, + "probability": 0.9796 + }, + { + "start": 8183.22, + "end": 8184.2, + "probability": 0.7539 + }, + { + "start": 8184.48, + "end": 8186.44, + "probability": 0.9956 + }, + { + "start": 8186.8, + "end": 8190.2, + "probability": 0.8856 + }, + { + "start": 8190.58, + "end": 8191.3, + "probability": 0.9691 + }, + { + "start": 8193.0, + "end": 8195.4, + "probability": 0.6761 + }, + { + "start": 8195.6, + "end": 8198.6, + "probability": 0.8935 + }, + { + "start": 8199.4, + "end": 8200.58, + "probability": 0.9528 + }, + { + "start": 8203.38, + "end": 8205.82, + "probability": 0.6939 + }, + { + "start": 8206.48, + "end": 8208.22, + "probability": 0.8794 + }, + { + "start": 8208.4, + "end": 8208.74, + "probability": 0.9661 + }, + { + "start": 8208.88, + "end": 8212.22, + "probability": 0.8473 + }, + { + "start": 8213.72, + "end": 8214.82, + "probability": 0.6414 + }, + { + "start": 8214.94, + "end": 8215.48, + "probability": 0.418 + }, + { + "start": 8215.74, + "end": 8217.5, + "probability": 0.5992 + }, + { + "start": 8217.99, + "end": 8221.2, + "probability": 0.0384 + }, + { + "start": 8227.34, + "end": 8227.34, + "probability": 0.0551 + }, + { + "start": 8227.34, + "end": 8227.34, + "probability": 0.0633 + }, + { + "start": 8227.34, + "end": 8227.34, + "probability": 0.0837 + }, + { + "start": 8227.34, + "end": 8227.34, + "probability": 0.0911 + }, + { + "start": 8227.34, + "end": 8227.4, + "probability": 0.038 + }, + { + "start": 8227.4, + "end": 8227.4, + "probability": 0.1882 + }, + { + "start": 8242.98, + "end": 8245.28, + "probability": 0.4044 + }, + { + "start": 8246.4, + "end": 8248.78, + "probability": 0.828 + }, + { + "start": 8252.22, + "end": 8255.74, + "probability": 0.7783 + }, + { + "start": 8256.26, + "end": 8258.36, + "probability": 0.9863 + }, + { + "start": 8258.52, + "end": 8259.72, + "probability": 0.8259 + }, + { + "start": 8260.56, + "end": 8262.4, + "probability": 0.8716 + }, + { + "start": 8262.52, + "end": 8263.44, + "probability": 0.5793 + }, + { + "start": 8263.52, + "end": 8264.04, + "probability": 0.4581 + }, + { + "start": 8264.1, + "end": 8264.7, + "probability": 0.7652 + }, + { + "start": 8264.86, + "end": 8265.98, + "probability": 0.0341 + }, + { + "start": 8270.4, + "end": 8272.6, + "probability": 0.0557 + }, + { + "start": 8288.74, + "end": 8290.86, + "probability": 0.3053 + }, + { + "start": 8291.84, + "end": 8295.04, + "probability": 0.9507 + }, + { + "start": 8295.18, + "end": 8295.58, + "probability": 0.887 + }, + { + "start": 8295.68, + "end": 8296.92, + "probability": 0.8485 + }, + { + "start": 8297.76, + "end": 8298.48, + "probability": 0.6089 + }, + { + "start": 8298.8, + "end": 8299.52, + "probability": 0.7365 + }, + { + "start": 8299.64, + "end": 8300.42, + "probability": 0.7538 + }, + { + "start": 8301.5, + "end": 8302.02, + "probability": 0.0092 + }, + { + "start": 8303.74, + "end": 8304.76, + "probability": 0.0043 + }, + { + "start": 8312.12, + "end": 8313.54, + "probability": 0.1062 + }, + { + "start": 8314.84, + "end": 8315.2, + "probability": 0.2549 + }, + { + "start": 8315.2, + "end": 8316.12, + "probability": 0.5526 + }, + { + "start": 8316.28, + "end": 8317.52, + "probability": 0.4556 + }, + { + "start": 8317.6, + "end": 8318.88, + "probability": 0.9266 + }, + { + "start": 8318.94, + "end": 8320.56, + "probability": 0.8464 + }, + { + "start": 8321.0, + "end": 8321.82, + "probability": 0.7208 + }, + { + "start": 8322.2, + "end": 8324.28, + "probability": 0.876 + }, + { + "start": 8325.74, + "end": 8327.62, + "probability": 0.8892 + }, + { + "start": 8327.78, + "end": 8331.9, + "probability": 0.9881 + }, + { + "start": 8332.02, + "end": 8332.86, + "probability": 0.6411 + }, + { + "start": 8333.7, + "end": 8334.76, + "probability": 0.8796 + }, + { + "start": 8334.76, + "end": 8335.26, + "probability": 0.4306 + }, + { + "start": 8335.26, + "end": 8336.6, + "probability": 0.446 + }, + { + "start": 8337.96, + "end": 8338.06, + "probability": 0.3412 + }, + { + "start": 8350.62, + "end": 8351.48, + "probability": 0.0736 + }, + { + "start": 8351.48, + "end": 8352.22, + "probability": 0.4356 + }, + { + "start": 8352.7, + "end": 8354.02, + "probability": 0.9175 + }, + { + "start": 8354.04, + "end": 8355.62, + "probability": 0.8318 + }, + { + "start": 8356.02, + "end": 8356.84, + "probability": 0.5812 + }, + { + "start": 8357.1, + "end": 8360.62, + "probability": 0.9414 + }, + { + "start": 8361.1, + "end": 8364.44, + "probability": 0.9468 + }, + { + "start": 8365.82, + "end": 8368.42, + "probability": 0.7955 + }, + { + "start": 8368.84, + "end": 8371.7, + "probability": 0.9429 + }, + { + "start": 8373.38, + "end": 8374.9, + "probability": 0.7978 + }, + { + "start": 8392.24, + "end": 8395.46, + "probability": 0.9072 + }, + { + "start": 8395.98, + "end": 8396.86, + "probability": 0.7435 + }, + { + "start": 8402.26, + "end": 8404.54, + "probability": 0.2064 + }, + { + "start": 8405.58, + "end": 8411.47, + "probability": 0.2278 + }, + { + "start": 8426.62, + "end": 8427.76, + "probability": 0.0579 + }, + { + "start": 8464.84, + "end": 8466.72, + "probability": 0.4045 + }, + { + "start": 8467.62, + "end": 8469.8, + "probability": 0.7463 + }, + { + "start": 8469.88, + "end": 8471.88, + "probability": 0.8358 + }, + { + "start": 8472.46, + "end": 8476.02, + "probability": 0.9445 + }, + { + "start": 8476.7, + "end": 8478.96, + "probability": 0.9047 + }, + { + "start": 8479.68, + "end": 8484.0, + "probability": 0.7563 + }, + { + "start": 8484.76, + "end": 8487.24, + "probability": 0.9567 + }, + { + "start": 8487.44, + "end": 8488.7, + "probability": 0.8428 + }, + { + "start": 8488.8, + "end": 8490.46, + "probability": 0.9882 + }, + { + "start": 8491.34, + "end": 8493.22, + "probability": 0.9886 + }, + { + "start": 8493.98, + "end": 8497.02, + "probability": 0.9924 + }, + { + "start": 8497.44, + "end": 8498.2, + "probability": 0.9034 + }, + { + "start": 8498.86, + "end": 8500.46, + "probability": 0.9468 + }, + { + "start": 8501.02, + "end": 8503.68, + "probability": 0.9516 + }, + { + "start": 8505.9, + "end": 8508.76, + "probability": 0.9969 + }, + { + "start": 8508.76, + "end": 8511.38, + "probability": 0.969 + }, + { + "start": 8511.86, + "end": 8512.94, + "probability": 0.9753 + }, + { + "start": 8514.52, + "end": 8517.46, + "probability": 0.9474 + }, + { + "start": 8518.2, + "end": 8520.02, + "probability": 0.9761 + }, + { + "start": 8520.5, + "end": 8524.08, + "probability": 0.9839 + }, + { + "start": 8524.32, + "end": 8525.72, + "probability": 0.9641 + }, + { + "start": 8526.18, + "end": 8528.66, + "probability": 0.9087 + }, + { + "start": 8529.04, + "end": 8529.6, + "probability": 0.364 + }, + { + "start": 8531.34, + "end": 8535.54, + "probability": 0.9915 + }, + { + "start": 8536.36, + "end": 8542.08, + "probability": 0.694 + }, + { + "start": 8542.5, + "end": 8544.26, + "probability": 0.9593 + }, + { + "start": 8545.64, + "end": 8548.32, + "probability": 0.9948 + }, + { + "start": 8548.32, + "end": 8552.12, + "probability": 0.9538 + }, + { + "start": 8554.08, + "end": 8557.84, + "probability": 0.9243 + }, + { + "start": 8559.98, + "end": 8564.68, + "probability": 0.9948 + }, + { + "start": 8565.22, + "end": 8566.86, + "probability": 0.6785 + }, + { + "start": 8567.36, + "end": 8571.04, + "probability": 0.9958 + }, + { + "start": 8571.92, + "end": 8575.96, + "probability": 0.9921 + }, + { + "start": 8577.46, + "end": 8578.22, + "probability": 0.7135 + }, + { + "start": 8578.42, + "end": 8579.32, + "probability": 0.7591 + }, + { + "start": 8579.76, + "end": 8582.8, + "probability": 0.9714 + }, + { + "start": 8583.62, + "end": 8585.42, + "probability": 0.8979 + }, + { + "start": 8586.14, + "end": 8588.86, + "probability": 0.9793 + }, + { + "start": 8589.26, + "end": 8594.0, + "probability": 0.8644 + }, + { + "start": 8594.54, + "end": 8601.88, + "probability": 0.755 + }, + { + "start": 8603.36, + "end": 8604.12, + "probability": 0.9752 + }, + { + "start": 8605.38, + "end": 8610.24, + "probability": 0.9893 + }, + { + "start": 8611.02, + "end": 8612.76, + "probability": 0.7804 + }, + { + "start": 8613.42, + "end": 8619.9, + "probability": 0.9904 + }, + { + "start": 8621.18, + "end": 8622.7, + "probability": 0.8123 + }, + { + "start": 8624.1, + "end": 8625.16, + "probability": 0.9717 + }, + { + "start": 8626.14, + "end": 8626.94, + "probability": 0.58 + }, + { + "start": 8627.48, + "end": 8629.6, + "probability": 0.9285 + }, + { + "start": 8630.96, + "end": 8633.46, + "probability": 0.9762 + }, + { + "start": 8634.22, + "end": 8635.82, + "probability": 0.9695 + }, + { + "start": 8636.32, + "end": 8644.18, + "probability": 0.9888 + }, + { + "start": 8645.62, + "end": 8648.64, + "probability": 0.9884 + }, + { + "start": 8650.08, + "end": 8650.99, + "probability": 0.6613 + }, + { + "start": 8651.7, + "end": 8653.46, + "probability": 0.9935 + }, + { + "start": 8653.84, + "end": 8658.96, + "probability": 0.9521 + }, + { + "start": 8659.44, + "end": 8662.37, + "probability": 0.9754 + }, + { + "start": 8663.92, + "end": 8667.86, + "probability": 0.9701 + }, + { + "start": 8667.86, + "end": 8671.54, + "probability": 0.993 + }, + { + "start": 8672.12, + "end": 8673.56, + "probability": 0.6898 + }, + { + "start": 8674.4, + "end": 8677.9, + "probability": 0.9281 + }, + { + "start": 8678.34, + "end": 8680.48, + "probability": 0.803 + }, + { + "start": 8680.9, + "end": 8685.4, + "probability": 0.9779 + }, + { + "start": 8686.06, + "end": 8687.92, + "probability": 0.9396 + }, + { + "start": 8689.54, + "end": 8692.5, + "probability": 0.7504 + }, + { + "start": 8694.02, + "end": 8696.44, + "probability": 0.7821 + }, + { + "start": 8698.36, + "end": 8701.98, + "probability": 0.7885 + }, + { + "start": 8703.1, + "end": 8703.58, + "probability": 0.8546 + }, + { + "start": 8703.92, + "end": 8710.84, + "probability": 0.7512 + }, + { + "start": 8711.9, + "end": 8712.56, + "probability": 0.8858 + }, + { + "start": 8713.34, + "end": 8716.84, + "probability": 0.9823 + }, + { + "start": 8717.8, + "end": 8719.08, + "probability": 0.8643 + }, + { + "start": 8719.66, + "end": 8722.94, + "probability": 0.9775 + }, + { + "start": 8723.24, + "end": 8725.08, + "probability": 0.97 + }, + { + "start": 8726.88, + "end": 8727.54, + "probability": 0.6892 + }, + { + "start": 8729.06, + "end": 8730.04, + "probability": 0.9082 + }, + { + "start": 8731.48, + "end": 8735.92, + "probability": 0.7778 + }, + { + "start": 8736.66, + "end": 8739.38, + "probability": 0.8454 + }, + { + "start": 8740.0, + "end": 8744.78, + "probability": 0.8191 + }, + { + "start": 8745.64, + "end": 8750.42, + "probability": 0.9941 + }, + { + "start": 8750.8, + "end": 8753.86, + "probability": 0.9738 + }, + { + "start": 8755.48, + "end": 8758.42, + "probability": 0.9802 + }, + { + "start": 8758.7, + "end": 8759.54, + "probability": 0.7108 + }, + { + "start": 8760.18, + "end": 8765.08, + "probability": 0.9213 + }, + { + "start": 8765.7, + "end": 8767.18, + "probability": 0.9536 + }, + { + "start": 8768.6, + "end": 8771.74, + "probability": 0.9781 + }, + { + "start": 8772.64, + "end": 8777.64, + "probability": 0.9924 + }, + { + "start": 8778.26, + "end": 8779.76, + "probability": 0.992 + }, + { + "start": 8779.96, + "end": 8781.16, + "probability": 0.9924 + }, + { + "start": 8781.58, + "end": 8782.72, + "probability": 0.9901 + }, + { + "start": 8783.76, + "end": 8787.02, + "probability": 0.9827 + }, + { + "start": 8787.66, + "end": 8790.28, + "probability": 0.9693 + }, + { + "start": 8790.48, + "end": 8792.18, + "probability": 0.9744 + }, + { + "start": 8792.66, + "end": 8794.3, + "probability": 0.8764 + }, + { + "start": 8795.78, + "end": 8800.42, + "probability": 0.9677 + }, + { + "start": 8801.0, + "end": 8803.1, + "probability": 0.8794 + }, + { + "start": 8803.28, + "end": 8806.18, + "probability": 0.9777 + }, + { + "start": 8807.62, + "end": 8811.3, + "probability": 0.9898 + }, + { + "start": 8812.04, + "end": 8815.6, + "probability": 0.8118 + }, + { + "start": 8820.87, + "end": 8826.48, + "probability": 0.8542 + }, + { + "start": 8827.0, + "end": 8827.64, + "probability": 0.9293 + }, + { + "start": 8828.66, + "end": 8832.36, + "probability": 0.6629 + }, + { + "start": 8833.42, + "end": 8838.82, + "probability": 0.9752 + }, + { + "start": 8839.84, + "end": 8842.38, + "probability": 0.8067 + }, + { + "start": 8843.68, + "end": 8846.08, + "probability": 0.5049 + }, + { + "start": 8846.32, + "end": 8849.82, + "probability": 0.8862 + }, + { + "start": 8850.56, + "end": 8856.24, + "probability": 0.9717 + }, + { + "start": 8857.38, + "end": 8857.9, + "probability": 0.4327 + }, + { + "start": 8858.14, + "end": 8862.56, + "probability": 0.8982 + }, + { + "start": 8863.42, + "end": 8865.04, + "probability": 0.9853 + }, + { + "start": 8865.16, + "end": 8866.74, + "probability": 0.9906 + }, + { + "start": 8866.9, + "end": 8867.6, + "probability": 0.7498 + }, + { + "start": 8868.34, + "end": 8870.84, + "probability": 0.9647 + }, + { + "start": 8884.36, + "end": 8887.26, + "probability": 0.676 + }, + { + "start": 8888.04, + "end": 8890.82, + "probability": 0.7609 + }, + { + "start": 8891.18, + "end": 8895.76, + "probability": 0.7864 + }, + { + "start": 8895.9, + "end": 8897.78, + "probability": 0.9839 + }, + { + "start": 8897.92, + "end": 8898.22, + "probability": 0.4799 + }, + { + "start": 8901.58, + "end": 8905.98, + "probability": 0.3428 + }, + { + "start": 8905.98, + "end": 8907.22, + "probability": 0.2103 + }, + { + "start": 8907.46, + "end": 8907.46, + "probability": 0.0275 + }, + { + "start": 8907.62, + "end": 8911.46, + "probability": 0.7139 + }, + { + "start": 8912.16, + "end": 8912.96, + "probability": 0.8689 + }, + { + "start": 8913.04, + "end": 8915.03, + "probability": 0.9724 + }, + { + "start": 8915.14, + "end": 8916.38, + "probability": 0.5421 + }, + { + "start": 8916.86, + "end": 8917.32, + "probability": 0.1058 + }, + { + "start": 8917.66, + "end": 8919.2, + "probability": 0.5553 + }, + { + "start": 8919.6, + "end": 8921.9, + "probability": 0.8527 + }, + { + "start": 8922.06, + "end": 8925.0, + "probability": 0.9854 + }, + { + "start": 8926.76, + "end": 8927.84, + "probability": 0.2191 + }, + { + "start": 8931.76, + "end": 8932.8, + "probability": 0.3136 + }, + { + "start": 8932.82, + "end": 8934.22, + "probability": 0.8774 + }, + { + "start": 8934.8, + "end": 8935.56, + "probability": 0.5824 + }, + { + "start": 8935.68, + "end": 8936.06, + "probability": 0.5865 + }, + { + "start": 8936.46, + "end": 8937.22, + "probability": 0.7932 + }, + { + "start": 8937.88, + "end": 8938.82, + "probability": 0.8507 + }, + { + "start": 8939.32, + "end": 8943.5, + "probability": 0.9723 + }, + { + "start": 8944.42, + "end": 8946.14, + "probability": 0.9456 + }, + { + "start": 8947.24, + "end": 8948.66, + "probability": 0.9961 + }, + { + "start": 8949.5, + "end": 8950.82, + "probability": 0.9463 + }, + { + "start": 8952.22, + "end": 8952.76, + "probability": 0.9349 + }, + { + "start": 8953.54, + "end": 8955.0, + "probability": 0.8774 + }, + { + "start": 8955.1, + "end": 8957.04, + "probability": 0.9685 + }, + { + "start": 8957.48, + "end": 8961.86, + "probability": 0.9835 + }, + { + "start": 8962.9, + "end": 8966.72, + "probability": 0.9762 + }, + { + "start": 8967.9, + "end": 8970.86, + "probability": 0.9526 + }, + { + "start": 8972.5, + "end": 8973.32, + "probability": 0.9963 + }, + { + "start": 8974.38, + "end": 8976.14, + "probability": 0.8046 + }, + { + "start": 8976.86, + "end": 8977.5, + "probability": 0.9348 + }, + { + "start": 8978.42, + "end": 8979.86, + "probability": 0.9751 + }, + { + "start": 8980.8, + "end": 8982.12, + "probability": 0.9242 + }, + { + "start": 8983.32, + "end": 8985.32, + "probability": 0.866 + }, + { + "start": 8986.18, + "end": 8989.56, + "probability": 0.9957 + }, + { + "start": 8990.22, + "end": 8991.5, + "probability": 0.7616 + }, + { + "start": 8992.34, + "end": 8993.44, + "probability": 0.9801 + }, + { + "start": 8994.74, + "end": 8998.94, + "probability": 0.9954 + }, + { + "start": 8999.7, + "end": 9003.52, + "probability": 0.9792 + }, + { + "start": 9004.1, + "end": 9006.9, + "probability": 0.9814 + }, + { + "start": 9008.52, + "end": 9011.26, + "probability": 0.9941 + }, + { + "start": 9012.08, + "end": 9014.92, + "probability": 0.9699 + }, + { + "start": 9015.74, + "end": 9016.76, + "probability": 0.8964 + }, + { + "start": 9018.08, + "end": 9020.52, + "probability": 0.9959 + }, + { + "start": 9022.28, + "end": 9023.7, + "probability": 0.9996 + }, + { + "start": 9024.22, + "end": 9024.78, + "probability": 0.8189 + }, + { + "start": 9025.82, + "end": 9026.56, + "probability": 0.6433 + }, + { + "start": 9027.08, + "end": 9031.22, + "probability": 0.8625 + }, + { + "start": 9033.3, + "end": 9033.78, + "probability": 0.6099 + }, + { + "start": 9035.24, + "end": 9037.0, + "probability": 0.9476 + }, + { + "start": 9037.12, + "end": 9037.78, + "probability": 0.8483 + }, + { + "start": 9038.32, + "end": 9042.57, + "probability": 0.9974 + }, + { + "start": 9043.7, + "end": 9045.24, + "probability": 0.8301 + }, + { + "start": 9045.38, + "end": 9046.36, + "probability": 0.9333 + }, + { + "start": 9047.16, + "end": 9049.7, + "probability": 0.9644 + }, + { + "start": 9050.56, + "end": 9051.74, + "probability": 0.7455 + }, + { + "start": 9052.94, + "end": 9054.3, + "probability": 0.9233 + }, + { + "start": 9055.52, + "end": 9058.9, + "probability": 0.9866 + }, + { + "start": 9059.88, + "end": 9060.28, + "probability": 0.6661 + }, + { + "start": 9060.94, + "end": 9061.6, + "probability": 0.9227 + }, + { + "start": 9062.64, + "end": 9069.6, + "probability": 0.9819 + }, + { + "start": 9069.6, + "end": 9070.02, + "probability": 0.0467 + }, + { + "start": 9070.08, + "end": 9070.78, + "probability": 0.7838 + }, + { + "start": 9070.96, + "end": 9071.82, + "probability": 0.9393 + }, + { + "start": 9073.66, + "end": 9074.48, + "probability": 0.8303 + }, + { + "start": 9075.92, + "end": 9079.2, + "probability": 0.9587 + }, + { + "start": 9080.56, + "end": 9081.16, + "probability": 0.5022 + }, + { + "start": 9081.84, + "end": 9082.54, + "probability": 0.4997 + }, + { + "start": 9083.38, + "end": 9084.1, + "probability": 0.741 + }, + { + "start": 9085.7, + "end": 9086.58, + "probability": 0.9163 + }, + { + "start": 9088.94, + "end": 9089.72, + "probability": 0.9315 + }, + { + "start": 9091.1, + "end": 9094.6, + "probability": 0.9815 + }, + { + "start": 9095.78, + "end": 9097.32, + "probability": 0.9928 + }, + { + "start": 9098.5, + "end": 9100.28, + "probability": 0.953 + }, + { + "start": 9101.8, + "end": 9105.02, + "probability": 0.8619 + }, + { + "start": 9106.12, + "end": 9108.22, + "probability": 0.9947 + }, + { + "start": 9109.78, + "end": 9111.78, + "probability": 0.8164 + }, + { + "start": 9112.9, + "end": 9114.04, + "probability": 0.9837 + }, + { + "start": 9114.62, + "end": 9117.64, + "probability": 0.9668 + }, + { + "start": 9118.52, + "end": 9121.54, + "probability": 0.966 + }, + { + "start": 9122.16, + "end": 9123.6, + "probability": 0.9945 + }, + { + "start": 9124.62, + "end": 9128.46, + "probability": 0.9932 + }, + { + "start": 9129.32, + "end": 9131.88, + "probability": 0.9648 + }, + { + "start": 9135.42, + "end": 9136.84, + "probability": 0.941 + }, + { + "start": 9138.08, + "end": 9139.98, + "probability": 0.9771 + }, + { + "start": 9141.04, + "end": 9142.14, + "probability": 0.874 + }, + { + "start": 9143.64, + "end": 9147.68, + "probability": 0.9793 + }, + { + "start": 9148.4, + "end": 9151.6, + "probability": 0.99 + }, + { + "start": 9152.12, + "end": 9153.0, + "probability": 0.7911 + }, + { + "start": 9154.42, + "end": 9155.74, + "probability": 0.9728 + }, + { + "start": 9156.96, + "end": 9159.22, + "probability": 0.9924 + }, + { + "start": 9160.06, + "end": 9161.0, + "probability": 0.9923 + }, + { + "start": 9162.42, + "end": 9166.02, + "probability": 0.955 + }, + { + "start": 9167.42, + "end": 9172.48, + "probability": 0.9831 + }, + { + "start": 9172.68, + "end": 9175.04, + "probability": 0.9534 + }, + { + "start": 9177.36, + "end": 9180.52, + "probability": 0.9494 + }, + { + "start": 9181.38, + "end": 9182.97, + "probability": 0.9771 + }, + { + "start": 9184.18, + "end": 9186.74, + "probability": 0.978 + }, + { + "start": 9190.3, + "end": 9195.8, + "probability": 0.9968 + }, + { + "start": 9196.46, + "end": 9197.36, + "probability": 0.9819 + }, + { + "start": 9198.2, + "end": 9203.56, + "probability": 0.9984 + }, + { + "start": 9204.58, + "end": 9207.96, + "probability": 0.9451 + }, + { + "start": 9208.04, + "end": 9210.21, + "probability": 0.9949 + }, + { + "start": 9211.2, + "end": 9213.18, + "probability": 0.9825 + }, + { + "start": 9213.66, + "end": 9216.4, + "probability": 0.9805 + }, + { + "start": 9218.08, + "end": 9220.8, + "probability": 0.9146 + }, + { + "start": 9221.64, + "end": 9226.66, + "probability": 0.9928 + }, + { + "start": 9228.9, + "end": 9231.3, + "probability": 0.9948 + }, + { + "start": 9232.4, + "end": 9234.68, + "probability": 0.9869 + }, + { + "start": 9234.68, + "end": 9237.5, + "probability": 0.9976 + }, + { + "start": 9238.64, + "end": 9241.26, + "probability": 0.9937 + }, + { + "start": 9241.86, + "end": 9244.06, + "probability": 0.989 + }, + { + "start": 9244.92, + "end": 9247.62, + "probability": 0.9681 + }, + { + "start": 9247.62, + "end": 9251.38, + "probability": 0.9848 + }, + { + "start": 9251.76, + "end": 9252.28, + "probability": 0.8813 + }, + { + "start": 9252.6, + "end": 9253.2, + "probability": 0.9633 + }, + { + "start": 9253.66, + "end": 9254.46, + "probability": 0.9963 + }, + { + "start": 9254.5, + "end": 9255.14, + "probability": 0.9573 + }, + { + "start": 9255.54, + "end": 9256.96, + "probability": 0.9736 + }, + { + "start": 9258.36, + "end": 9259.32, + "probability": 0.7746 + }, + { + "start": 9259.34, + "end": 9260.04, + "probability": 0.8079 + }, + { + "start": 9260.12, + "end": 9262.7, + "probability": 0.9346 + }, + { + "start": 9263.48, + "end": 9264.14, + "probability": 0.9915 + }, + { + "start": 9265.22, + "end": 9266.56, + "probability": 0.5423 + }, + { + "start": 9267.54, + "end": 9270.94, + "probability": 0.959 + }, + { + "start": 9271.68, + "end": 9274.52, + "probability": 0.9982 + }, + { + "start": 9275.28, + "end": 9278.08, + "probability": 0.9674 + }, + { + "start": 9279.76, + "end": 9282.06, + "probability": 0.9219 + }, + { + "start": 9283.06, + "end": 9285.22, + "probability": 0.9592 + }, + { + "start": 9285.32, + "end": 9285.76, + "probability": 0.5398 + }, + { + "start": 9286.66, + "end": 9289.3, + "probability": 0.9654 + }, + { + "start": 9289.92, + "end": 9291.52, + "probability": 0.9582 + }, + { + "start": 9292.34, + "end": 9293.3, + "probability": 0.8372 + }, + { + "start": 9295.0, + "end": 9296.66, + "probability": 0.8582 + }, + { + "start": 9297.46, + "end": 9299.42, + "probability": 0.9926 + }, + { + "start": 9300.04, + "end": 9300.58, + "probability": 0.9163 + }, + { + "start": 9301.92, + "end": 9303.46, + "probability": 0.9287 + }, + { + "start": 9304.0, + "end": 9305.54, + "probability": 0.9493 + }, + { + "start": 9307.06, + "end": 9313.04, + "probability": 0.9571 + }, + { + "start": 9313.8, + "end": 9315.68, + "probability": 0.9194 + }, + { + "start": 9316.68, + "end": 9318.92, + "probability": 0.9954 + }, + { + "start": 9320.48, + "end": 9322.48, + "probability": 0.9563 + }, + { + "start": 9323.6, + "end": 9327.58, + "probability": 0.9946 + }, + { + "start": 9328.44, + "end": 9332.06, + "probability": 0.8556 + }, + { + "start": 9333.04, + "end": 9337.3, + "probability": 0.9314 + }, + { + "start": 9338.32, + "end": 9338.84, + "probability": 0.5406 + }, + { + "start": 9339.02, + "end": 9339.7, + "probability": 0.8456 + }, + { + "start": 9339.9, + "end": 9341.82, + "probability": 0.9903 + }, + { + "start": 9342.72, + "end": 9348.36, + "probability": 0.9926 + }, + { + "start": 9348.68, + "end": 9349.28, + "probability": 0.9128 + }, + { + "start": 9349.42, + "end": 9350.04, + "probability": 0.9734 + }, + { + "start": 9350.24, + "end": 9350.34, + "probability": 0.9564 + }, + { + "start": 9350.98, + "end": 9353.66, + "probability": 0.9531 + }, + { + "start": 9355.4, + "end": 9356.94, + "probability": 0.9866 + }, + { + "start": 9357.92, + "end": 9359.24, + "probability": 0.9844 + }, + { + "start": 9360.76, + "end": 9367.12, + "probability": 0.9924 + }, + { + "start": 9368.08, + "end": 9372.86, + "probability": 0.977 + }, + { + "start": 9374.1, + "end": 9374.92, + "probability": 0.9242 + }, + { + "start": 9376.54, + "end": 9376.98, + "probability": 0.902 + }, + { + "start": 9377.7, + "end": 9379.56, + "probability": 0.9858 + }, + { + "start": 9380.54, + "end": 9384.12, + "probability": 0.9833 + }, + { + "start": 9385.16, + "end": 9389.34, + "probability": 0.9973 + }, + { + "start": 9390.74, + "end": 9392.4, + "probability": 0.9527 + }, + { + "start": 9393.08, + "end": 9393.76, + "probability": 0.8814 + }, + { + "start": 9394.54, + "end": 9396.32, + "probability": 0.978 + }, + { + "start": 9396.98, + "end": 9398.18, + "probability": 0.8663 + }, + { + "start": 9399.06, + "end": 9402.74, + "probability": 0.9881 + }, + { + "start": 9403.84, + "end": 9405.18, + "probability": 0.8983 + }, + { + "start": 9405.74, + "end": 9408.32, + "probability": 0.8186 + }, + { + "start": 9408.86, + "end": 9411.56, + "probability": 0.8746 + }, + { + "start": 9412.0, + "end": 9413.14, + "probability": 0.9149 + }, + { + "start": 9413.6, + "end": 9414.72, + "probability": 0.9219 + }, + { + "start": 9415.5, + "end": 9416.37, + "probability": 0.9597 + }, + { + "start": 9417.54, + "end": 9418.26, + "probability": 0.7679 + }, + { + "start": 9418.92, + "end": 9420.46, + "probability": 0.7932 + }, + { + "start": 9421.58, + "end": 9422.64, + "probability": 0.707 + }, + { + "start": 9424.26, + "end": 9425.19, + "probability": 0.9381 + }, + { + "start": 9426.08, + "end": 9427.22, + "probability": 0.9966 + }, + { + "start": 9428.24, + "end": 9429.3, + "probability": 0.8823 + }, + { + "start": 9430.2, + "end": 9431.18, + "probability": 0.8836 + }, + { + "start": 9432.3, + "end": 9435.86, + "probability": 0.999 + }, + { + "start": 9436.42, + "end": 9439.06, + "probability": 0.9303 + }, + { + "start": 9440.44, + "end": 9441.48, + "probability": 0.9521 + }, + { + "start": 9443.08, + "end": 9444.4, + "probability": 0.737 + }, + { + "start": 9445.66, + "end": 9449.02, + "probability": 0.9713 + }, + { + "start": 9450.32, + "end": 9450.74, + "probability": 0.7239 + }, + { + "start": 9451.34, + "end": 9451.84, + "probability": 0.3159 + }, + { + "start": 9452.4, + "end": 9454.08, + "probability": 0.9795 + }, + { + "start": 9454.5, + "end": 9455.37, + "probability": 0.9756 + }, + { + "start": 9456.58, + "end": 9457.62, + "probability": 0.9348 + }, + { + "start": 9458.58, + "end": 9459.26, + "probability": 0.869 + }, + { + "start": 9459.96, + "end": 9460.6, + "probability": 0.7341 + }, + { + "start": 9461.7, + "end": 9463.74, + "probability": 0.7319 + }, + { + "start": 9464.32, + "end": 9465.08, + "probability": 0.9221 + }, + { + "start": 9466.14, + "end": 9466.44, + "probability": 0.937 + }, + { + "start": 9467.24, + "end": 9468.38, + "probability": 0.9821 + }, + { + "start": 9469.54, + "end": 9471.84, + "probability": 0.9738 + }, + { + "start": 9472.46, + "end": 9476.94, + "probability": 0.9907 + }, + { + "start": 9478.98, + "end": 9481.5, + "probability": 0.9716 + }, + { + "start": 9482.4, + "end": 9482.74, + "probability": 0.8335 + }, + { + "start": 9483.56, + "end": 9484.32, + "probability": 0.9536 + }, + { + "start": 9485.82, + "end": 9487.22, + "probability": 0.9639 + }, + { + "start": 9488.68, + "end": 9494.5, + "probability": 0.951 + }, + { + "start": 9495.56, + "end": 9498.58, + "probability": 0.9156 + }, + { + "start": 9499.8, + "end": 9503.8, + "probability": 0.9976 + }, + { + "start": 9503.82, + "end": 9507.36, + "probability": 0.9996 + }, + { + "start": 9508.22, + "end": 9509.7, + "probability": 0.9062 + }, + { + "start": 9510.48, + "end": 9513.32, + "probability": 0.9375 + }, + { + "start": 9513.7, + "end": 9516.74, + "probability": 0.9041 + }, + { + "start": 9517.3, + "end": 9520.62, + "probability": 0.9976 + }, + { + "start": 9521.3, + "end": 9522.62, + "probability": 0.9961 + }, + { + "start": 9523.7, + "end": 9525.72, + "probability": 0.9978 + }, + { + "start": 9526.28, + "end": 9529.98, + "probability": 0.9937 + }, + { + "start": 9531.0, + "end": 9533.08, + "probability": 0.8941 + }, + { + "start": 9533.72, + "end": 9537.12, + "probability": 0.9207 + }, + { + "start": 9537.8, + "end": 9541.96, + "probability": 0.9269 + }, + { + "start": 9543.08, + "end": 9545.62, + "probability": 0.966 + }, + { + "start": 9547.48, + "end": 9550.78, + "probability": 0.9903 + }, + { + "start": 9550.84, + "end": 9554.32, + "probability": 0.9927 + }, + { + "start": 9554.44, + "end": 9554.92, + "probability": 0.7088 + }, + { + "start": 9564.16, + "end": 9566.08, + "probability": 0.5954 + }, + { + "start": 9567.26, + "end": 9569.88, + "probability": 0.9849 + }, + { + "start": 9570.82, + "end": 9573.72, + "probability": 0.9861 + }, + { + "start": 9574.98, + "end": 9577.62, + "probability": 0.9496 + }, + { + "start": 9577.79, + "end": 9578.6, + "probability": 0.8982 + }, + { + "start": 9580.42, + "end": 9583.66, + "probability": 0.9971 + }, + { + "start": 9584.74, + "end": 9585.74, + "probability": 0.9563 + }, + { + "start": 9586.88, + "end": 9588.56, + "probability": 0.9111 + }, + { + "start": 9589.26, + "end": 9590.54, + "probability": 0.5491 + }, + { + "start": 9590.76, + "end": 9592.62, + "probability": 0.9906 + }, + { + "start": 9593.52, + "end": 9595.18, + "probability": 0.9655 + }, + { + "start": 9595.94, + "end": 9597.86, + "probability": 0.924 + }, + { + "start": 9598.7, + "end": 9599.7, + "probability": 0.7218 + }, + { + "start": 9600.58, + "end": 9602.16, + "probability": 0.8263 + }, + { + "start": 9603.44, + "end": 9604.34, + "probability": 0.6837 + }, + { + "start": 9605.1, + "end": 9608.28, + "probability": 0.8699 + }, + { + "start": 9609.14, + "end": 9613.62, + "probability": 0.8364 + }, + { + "start": 9615.3, + "end": 9620.22, + "probability": 0.7333 + }, + { + "start": 9621.0, + "end": 9624.22, + "probability": 0.9091 + }, + { + "start": 9624.44, + "end": 9625.82, + "probability": 0.989 + }, + { + "start": 9626.56, + "end": 9628.76, + "probability": 0.9692 + }, + { + "start": 9629.56, + "end": 9631.94, + "probability": 0.996 + }, + { + "start": 9632.82, + "end": 9633.38, + "probability": 0.8911 + }, + { + "start": 9634.72, + "end": 9640.86, + "probability": 0.9885 + }, + { + "start": 9641.68, + "end": 9646.02, + "probability": 0.9512 + }, + { + "start": 9646.88, + "end": 9650.86, + "probability": 0.9961 + }, + { + "start": 9650.86, + "end": 9655.28, + "probability": 0.9944 + }, + { + "start": 9657.42, + "end": 9661.06, + "probability": 0.9751 + }, + { + "start": 9661.06, + "end": 9665.06, + "probability": 0.9994 + }, + { + "start": 9666.04, + "end": 9669.0, + "probability": 0.947 + }, + { + "start": 9670.04, + "end": 9671.6, + "probability": 0.3239 + }, + { + "start": 9672.38, + "end": 9675.5, + "probability": 0.9897 + }, + { + "start": 9676.32, + "end": 9679.9, + "probability": 0.8755 + }, + { + "start": 9680.02, + "end": 9680.58, + "probability": 0.6069 + }, + { + "start": 9680.66, + "end": 9682.53, + "probability": 0.5133 + }, + { + "start": 9683.44, + "end": 9684.02, + "probability": 0.8763 + }, + { + "start": 9685.22, + "end": 9685.7, + "probability": 0.842 + }, + { + "start": 9687.15, + "end": 9691.56, + "probability": 0.9497 + }, + { + "start": 9692.59, + "end": 9695.78, + "probability": 0.9799 + }, + { + "start": 9696.6, + "end": 9698.32, + "probability": 0.9119 + }, + { + "start": 9698.82, + "end": 9703.44, + "probability": 0.9721 + }, + { + "start": 9704.41, + "end": 9709.22, + "probability": 0.9167 + }, + { + "start": 9710.22, + "end": 9710.76, + "probability": 0.8078 + }, + { + "start": 9711.56, + "end": 9714.0, + "probability": 0.9753 + }, + { + "start": 9715.26, + "end": 9716.58, + "probability": 0.8008 + }, + { + "start": 9717.24, + "end": 9721.98, + "probability": 0.9981 + }, + { + "start": 9722.5, + "end": 9726.96, + "probability": 0.8859 + }, + { + "start": 9727.5, + "end": 9728.94, + "probability": 0.8335 + }, + { + "start": 9729.88, + "end": 9732.56, + "probability": 0.9698 + }, + { + "start": 9732.62, + "end": 9733.26, + "probability": 0.8694 + }, + { + "start": 9733.42, + "end": 9735.46, + "probability": 0.9639 + }, + { + "start": 9737.78, + "end": 9739.52, + "probability": 0.7181 + }, + { + "start": 9740.46, + "end": 9742.56, + "probability": 0.9961 + }, + { + "start": 9743.1, + "end": 9744.02, + "probability": 0.6943 + }, + { + "start": 9744.68, + "end": 9748.76, + "probability": 0.9695 + }, + { + "start": 9750.28, + "end": 9751.5, + "probability": 0.635 + }, + { + "start": 9752.62, + "end": 9756.8, + "probability": 0.9966 + }, + { + "start": 9757.82, + "end": 9762.36, + "probability": 0.9521 + }, + { + "start": 9762.88, + "end": 9764.42, + "probability": 0.9786 + }, + { + "start": 9765.08, + "end": 9765.85, + "probability": 0.9634 + }, + { + "start": 9766.86, + "end": 9767.65, + "probability": 0.9927 + }, + { + "start": 9768.58, + "end": 9773.88, + "probability": 0.9827 + }, + { + "start": 9774.48, + "end": 9779.1, + "probability": 0.9751 + }, + { + "start": 9779.96, + "end": 9784.18, + "probability": 0.9809 + }, + { + "start": 9785.0, + "end": 9788.92, + "probability": 0.9969 + }, + { + "start": 9790.04, + "end": 9794.94, + "probability": 0.9941 + }, + { + "start": 9795.58, + "end": 9798.54, + "probability": 0.8856 + }, + { + "start": 9799.72, + "end": 9803.26, + "probability": 0.8098 + }, + { + "start": 9803.76, + "end": 9804.5, + "probability": 0.7982 + }, + { + "start": 9804.6, + "end": 9805.7, + "probability": 0.7666 + }, + { + "start": 9806.0, + "end": 9806.64, + "probability": 0.9044 + }, + { + "start": 9807.26, + "end": 9810.26, + "probability": 0.9858 + }, + { + "start": 9810.8, + "end": 9813.98, + "probability": 0.9893 + }, + { + "start": 9814.64, + "end": 9817.72, + "probability": 0.8032 + }, + { + "start": 9818.92, + "end": 9820.92, + "probability": 0.6909 + }, + { + "start": 9821.0, + "end": 9822.38, + "probability": 0.9049 + }, + { + "start": 9822.44, + "end": 9823.24, + "probability": 0.6112 + }, + { + "start": 9823.72, + "end": 9825.3, + "probability": 0.9944 + }, + { + "start": 9825.86, + "end": 9827.54, + "probability": 0.8937 + }, + { + "start": 9828.1, + "end": 9832.0, + "probability": 0.9797 + }, + { + "start": 9832.58, + "end": 9833.46, + "probability": 0.2752 + }, + { + "start": 9835.14, + "end": 9835.6, + "probability": 0.8276 + }, + { + "start": 9836.24, + "end": 9837.94, + "probability": 0.8643 + }, + { + "start": 9838.52, + "end": 9842.62, + "probability": 0.9787 + }, + { + "start": 9843.16, + "end": 9848.26, + "probability": 0.9831 + }, + { + "start": 9849.1, + "end": 9851.3, + "probability": 0.9756 + }, + { + "start": 9851.76, + "end": 9853.5, + "probability": 0.9768 + }, + { + "start": 9853.82, + "end": 9855.62, + "probability": 0.9731 + }, + { + "start": 9855.98, + "end": 9858.6, + "probability": 0.9927 + }, + { + "start": 9859.58, + "end": 9863.76, + "probability": 0.9929 + }, + { + "start": 9863.76, + "end": 9868.06, + "probability": 0.9827 + }, + { + "start": 9868.9, + "end": 9873.38, + "probability": 0.9964 + }, + { + "start": 9873.94, + "end": 9878.7, + "probability": 0.9168 + }, + { + "start": 9879.24, + "end": 9883.02, + "probability": 0.9908 + }, + { + "start": 9883.4, + "end": 9886.06, + "probability": 0.9915 + }, + { + "start": 9886.46, + "end": 9887.16, + "probability": 0.3328 + }, + { + "start": 9887.34, + "end": 9888.34, + "probability": 0.8457 + }, + { + "start": 9888.74, + "end": 9890.0, + "probability": 0.7427 + }, + { + "start": 9890.32, + "end": 9894.36, + "probability": 0.973 + }, + { + "start": 9894.54, + "end": 9895.58, + "probability": 0.9242 + }, + { + "start": 9895.86, + "end": 9901.96, + "probability": 0.9827 + }, + { + "start": 9902.2, + "end": 9902.94, + "probability": 0.4117 + }, + { + "start": 9903.88, + "end": 9907.18, + "probability": 0.9813 + }, + { + "start": 9907.88, + "end": 9912.06, + "probability": 0.953 + }, + { + "start": 9913.06, + "end": 9914.06, + "probability": 0.8052 + }, + { + "start": 9914.88, + "end": 9916.46, + "probability": 0.97 + }, + { + "start": 9916.96, + "end": 9920.36, + "probability": 0.9392 + }, + { + "start": 9921.28, + "end": 9923.98, + "probability": 0.8815 + }, + { + "start": 9924.58, + "end": 9928.6, + "probability": 0.9565 + }, + { + "start": 9929.4, + "end": 9932.64, + "probability": 0.9976 + }, + { + "start": 9933.38, + "end": 9935.6, + "probability": 0.9834 + }, + { + "start": 9936.32, + "end": 9939.56, + "probability": 0.9082 + }, + { + "start": 9940.22, + "end": 9945.0, + "probability": 0.9705 + }, + { + "start": 9945.56, + "end": 9946.46, + "probability": 0.9473 + }, + { + "start": 9947.02, + "end": 9948.9, + "probability": 0.6106 + }, + { + "start": 9949.42, + "end": 9950.9, + "probability": 0.9832 + }, + { + "start": 9951.36, + "end": 9952.42, + "probability": 0.9937 + }, + { + "start": 9952.68, + "end": 9953.02, + "probability": 0.941 + }, + { + "start": 9953.22, + "end": 9954.36, + "probability": 0.7443 + }, + { + "start": 9954.84, + "end": 9957.34, + "probability": 0.9863 + }, + { + "start": 9958.22, + "end": 9960.5, + "probability": 0.8699 + }, + { + "start": 9961.22, + "end": 9965.26, + "probability": 0.9977 + }, + { + "start": 9965.26, + "end": 9968.56, + "probability": 0.7446 + }, + { + "start": 9969.28, + "end": 9972.72, + "probability": 0.9017 + }, + { + "start": 9973.46, + "end": 9978.02, + "probability": 0.9977 + }, + { + "start": 9978.02, + "end": 9983.54, + "probability": 0.987 + }, + { + "start": 9984.02, + "end": 9986.54, + "probability": 0.9953 + }, + { + "start": 9987.36, + "end": 9988.92, + "probability": 0.9002 + }, + { + "start": 9989.38, + "end": 9990.64, + "probability": 0.8735 + }, + { + "start": 9990.72, + "end": 9992.04, + "probability": 0.8766 + }, + { + "start": 9992.54, + "end": 9994.56, + "probability": 0.7398 + }, + { + "start": 9994.9, + "end": 9996.36, + "probability": 0.9043 + }, + { + "start": 9996.92, + "end": 10002.02, + "probability": 0.9781 + }, + { + "start": 10002.56, + "end": 10004.0, + "probability": 0.8508 + }, + { + "start": 10004.56, + "end": 10010.02, + "probability": 0.992 + }, + { + "start": 10010.7, + "end": 10017.82, + "probability": 0.9917 + }, + { + "start": 10018.44, + "end": 10023.22, + "probability": 0.9832 + }, + { + "start": 10023.7, + "end": 10028.64, + "probability": 0.9878 + }, + { + "start": 10029.06, + "end": 10030.82, + "probability": 0.918 + }, + { + "start": 10031.32, + "end": 10034.5, + "probability": 0.9912 + }, + { + "start": 10035.24, + "end": 10040.1, + "probability": 0.996 + }, + { + "start": 10040.1, + "end": 10044.14, + "probability": 0.7948 + }, + { + "start": 10044.86, + "end": 10048.26, + "probability": 0.7583 + }, + { + "start": 10048.78, + "end": 10053.12, + "probability": 0.9893 + }, + { + "start": 10053.58, + "end": 10054.66, + "probability": 0.6025 + }, + { + "start": 10055.12, + "end": 10057.42, + "probability": 0.6521 + }, + { + "start": 10057.92, + "end": 10061.72, + "probability": 0.9967 + }, + { + "start": 10062.32, + "end": 10062.94, + "probability": 0.9742 + }, + { + "start": 10063.02, + "end": 10063.84, + "probability": 0.9786 + }, + { + "start": 10064.28, + "end": 10065.54, + "probability": 0.9791 + }, + { + "start": 10065.62, + "end": 10069.5, + "probability": 0.9881 + }, + { + "start": 10070.12, + "end": 10075.06, + "probability": 0.9377 + }, + { + "start": 10075.8, + "end": 10080.52, + "probability": 0.9959 + }, + { + "start": 10081.0, + "end": 10082.52, + "probability": 0.9938 + }, + { + "start": 10082.9, + "end": 10086.4, + "probability": 0.9952 + }, + { + "start": 10086.4, + "end": 10091.76, + "probability": 0.9936 + }, + { + "start": 10092.42, + "end": 10097.46, + "probability": 0.775 + }, + { + "start": 10098.14, + "end": 10103.76, + "probability": 0.9526 + }, + { + "start": 10104.4, + "end": 10108.34, + "probability": 0.9956 + }, + { + "start": 10108.96, + "end": 10112.94, + "probability": 0.9961 + }, + { + "start": 10112.94, + "end": 10117.52, + "probability": 0.9888 + }, + { + "start": 10118.38, + "end": 10123.94, + "probability": 0.9963 + }, + { + "start": 10124.16, + "end": 10125.18, + "probability": 0.9792 + }, + { + "start": 10126.04, + "end": 10130.02, + "probability": 0.9972 + }, + { + "start": 10130.58, + "end": 10136.48, + "probability": 0.9878 + }, + { + "start": 10138.2, + "end": 10139.74, + "probability": 0.8434 + }, + { + "start": 10140.4, + "end": 10145.4, + "probability": 0.9397 + }, + { + "start": 10146.1, + "end": 10148.98, + "probability": 0.9333 + }, + { + "start": 10149.62, + "end": 10150.96, + "probability": 0.951 + }, + { + "start": 10151.12, + "end": 10152.86, + "probability": 0.9883 + }, + { + "start": 10153.34, + "end": 10155.4, + "probability": 0.9893 + }, + { + "start": 10156.06, + "end": 10157.62, + "probability": 0.8688 + }, + { + "start": 10158.32, + "end": 10160.04, + "probability": 0.9299 + }, + { + "start": 10160.5, + "end": 10164.92, + "probability": 0.9938 + }, + { + "start": 10165.6, + "end": 10167.98, + "probability": 0.6787 + }, + { + "start": 10168.6, + "end": 10169.8, + "probability": 0.9611 + }, + { + "start": 10170.44, + "end": 10172.08, + "probability": 0.9704 + }, + { + "start": 10172.9, + "end": 10178.34, + "probability": 0.978 + }, + { + "start": 10178.34, + "end": 10182.74, + "probability": 0.9873 + }, + { + "start": 10183.84, + "end": 10186.92, + "probability": 0.9618 + }, + { + "start": 10187.56, + "end": 10190.22, + "probability": 0.9027 + }, + { + "start": 10190.94, + "end": 10192.14, + "probability": 0.8208 + }, + { + "start": 10192.68, + "end": 10195.3, + "probability": 0.927 + }, + { + "start": 10195.3, + "end": 10199.26, + "probability": 0.9912 + }, + { + "start": 10199.8, + "end": 10203.2, + "probability": 0.9905 + }, + { + "start": 10203.86, + "end": 10208.24, + "probability": 0.9957 + }, + { + "start": 10208.82, + "end": 10214.78, + "probability": 0.9945 + }, + { + "start": 10215.46, + "end": 10216.22, + "probability": 0.9859 + }, + { + "start": 10216.74, + "end": 10219.68, + "probability": 0.993 + }, + { + "start": 10220.46, + "end": 10224.94, + "probability": 0.996 + }, + { + "start": 10224.94, + "end": 10231.78, + "probability": 0.8216 + }, + { + "start": 10232.3, + "end": 10234.22, + "probability": 0.9644 + }, + { + "start": 10234.86, + "end": 10238.42, + "probability": 0.9205 + }, + { + "start": 10239.3, + "end": 10244.98, + "probability": 0.9793 + }, + { + "start": 10246.52, + "end": 10250.12, + "probability": 0.958 + }, + { + "start": 10250.9, + "end": 10252.54, + "probability": 0.9474 + }, + { + "start": 10253.1, + "end": 10258.66, + "probability": 0.9797 + }, + { + "start": 10259.4, + "end": 10262.96, + "probability": 0.9692 + }, + { + "start": 10263.76, + "end": 10265.34, + "probability": 0.9673 + }, + { + "start": 10265.92, + "end": 10267.76, + "probability": 0.8403 + }, + { + "start": 10268.28, + "end": 10270.52, + "probability": 0.6441 + }, + { + "start": 10271.08, + "end": 10273.7, + "probability": 0.988 + }, + { + "start": 10274.34, + "end": 10276.82, + "probability": 0.9917 + }, + { + "start": 10277.3, + "end": 10280.02, + "probability": 0.8432 + }, + { + "start": 10280.8, + "end": 10281.28, + "probability": 0.7455 + }, + { + "start": 10281.72, + "end": 10286.72, + "probability": 0.9679 + }, + { + "start": 10287.26, + "end": 10291.26, + "probability": 0.9011 + }, + { + "start": 10292.46, + "end": 10294.12, + "probability": 0.8987 + }, + { + "start": 10294.8, + "end": 10296.08, + "probability": 0.9516 + }, + { + "start": 10296.7, + "end": 10297.65, + "probability": 0.9252 + }, + { + "start": 10297.9, + "end": 10301.2, + "probability": 0.9631 + }, + { + "start": 10301.34, + "end": 10302.1, + "probability": 0.816 + }, + { + "start": 10302.92, + "end": 10304.76, + "probability": 0.8725 + }, + { + "start": 10305.58, + "end": 10308.64, + "probability": 0.9952 + }, + { + "start": 10308.64, + "end": 10312.78, + "probability": 0.9895 + }, + { + "start": 10313.34, + "end": 10315.3, + "probability": 0.983 + }, + { + "start": 10315.42, + "end": 10316.28, + "probability": 0.8002 + }, + { + "start": 10316.44, + "end": 10318.28, + "probability": 0.9941 + }, + { + "start": 10319.4, + "end": 10320.02, + "probability": 0.4407 + }, + { + "start": 10320.54, + "end": 10323.02, + "probability": 0.864 + }, + { + "start": 10323.54, + "end": 10325.84, + "probability": 0.9842 + }, + { + "start": 10326.46, + "end": 10330.06, + "probability": 0.9006 + }, + { + "start": 10331.46, + "end": 10333.3, + "probability": 0.9591 + }, + { + "start": 10333.92, + "end": 10340.0, + "probability": 0.979 + }, + { + "start": 10340.8, + "end": 10345.3, + "probability": 0.9879 + }, + { + "start": 10346.18, + "end": 10349.9, + "probability": 0.9943 + }, + { + "start": 10350.5, + "end": 10355.66, + "probability": 0.9961 + }, + { + "start": 10355.66, + "end": 10360.24, + "probability": 0.998 + }, + { + "start": 10360.98, + "end": 10362.54, + "probability": 0.9937 + }, + { + "start": 10363.54, + "end": 10366.84, + "probability": 0.9938 + }, + { + "start": 10367.42, + "end": 10369.42, + "probability": 0.9961 + }, + { + "start": 10370.58, + "end": 10371.82, + "probability": 0.98 + }, + { + "start": 10372.66, + "end": 10374.12, + "probability": 0.9941 + }, + { + "start": 10374.84, + "end": 10378.06, + "probability": 0.9753 + }, + { + "start": 10378.5, + "end": 10380.3, + "probability": 0.7769 + }, + { + "start": 10380.86, + "end": 10383.82, + "probability": 0.9907 + }, + { + "start": 10384.54, + "end": 10385.4, + "probability": 0.8296 + }, + { + "start": 10385.98, + "end": 10386.86, + "probability": 0.9513 + }, + { + "start": 10387.6, + "end": 10389.82, + "probability": 0.8723 + }, + { + "start": 10390.64, + "end": 10392.52, + "probability": 0.7392 + }, + { + "start": 10393.18, + "end": 10395.46, + "probability": 0.9081 + }, + { + "start": 10396.04, + "end": 10397.74, + "probability": 0.9978 + }, + { + "start": 10398.28, + "end": 10403.05, + "probability": 0.9365 + }, + { + "start": 10404.28, + "end": 10406.88, + "probability": 0.998 + }, + { + "start": 10407.54, + "end": 10408.66, + "probability": 0.9919 + }, + { + "start": 10409.26, + "end": 10410.96, + "probability": 0.9946 + }, + { + "start": 10411.58, + "end": 10412.82, + "probability": 0.9866 + }, + { + "start": 10413.38, + "end": 10415.22, + "probability": 0.9977 + }, + { + "start": 10415.82, + "end": 10419.0, + "probability": 0.9945 + }, + { + "start": 10419.72, + "end": 10422.1, + "probability": 0.9641 + }, + { + "start": 10422.82, + "end": 10425.16, + "probability": 0.9968 + }, + { + "start": 10426.56, + "end": 10429.92, + "probability": 0.9421 + }, + { + "start": 10430.58, + "end": 10432.24, + "probability": 0.783 + }, + { + "start": 10432.78, + "end": 10437.32, + "probability": 0.957 + }, + { + "start": 10437.32, + "end": 10441.74, + "probability": 0.9905 + }, + { + "start": 10442.24, + "end": 10443.02, + "probability": 0.4729 + }, + { + "start": 10443.86, + "end": 10448.36, + "probability": 0.9981 + }, + { + "start": 10448.42, + "end": 10449.08, + "probability": 0.8499 + }, + { + "start": 10450.28, + "end": 10453.34, + "probability": 0.9933 + }, + { + "start": 10453.34, + "end": 10458.44, + "probability": 0.9576 + }, + { + "start": 10458.96, + "end": 10462.6, + "probability": 0.992 + }, + { + "start": 10463.42, + "end": 10468.24, + "probability": 0.9285 + }, + { + "start": 10468.72, + "end": 10472.8, + "probability": 0.9987 + }, + { + "start": 10473.8, + "end": 10477.1, + "probability": 0.9357 + }, + { + "start": 10477.84, + "end": 10479.5, + "probability": 0.7364 + }, + { + "start": 10481.06, + "end": 10489.08, + "probability": 0.9902 + }, + { + "start": 10489.58, + "end": 10489.84, + "probability": 0.8755 + }, + { + "start": 10490.68, + "end": 10493.28, + "probability": 0.7817 + }, + { + "start": 10493.42, + "end": 10496.57, + "probability": 0.9067 + }, + { + "start": 10497.86, + "end": 10500.06, + "probability": 0.9708 + }, + { + "start": 10500.4, + "end": 10501.9, + "probability": 0.9597 + }, + { + "start": 10502.16, + "end": 10503.42, + "probability": 0.8682 + }, + { + "start": 10503.5, + "end": 10505.28, + "probability": 0.6193 + }, + { + "start": 10505.78, + "end": 10506.82, + "probability": 0.8952 + }, + { + "start": 10509.58, + "end": 10512.34, + "probability": 0.7599 + }, + { + "start": 10512.42, + "end": 10513.88, + "probability": 0.8365 + }, + { + "start": 10514.36, + "end": 10518.1, + "probability": 0.9888 + }, + { + "start": 10518.1, + "end": 10521.86, + "probability": 0.8975 + }, + { + "start": 10522.98, + "end": 10525.18, + "probability": 0.9946 + }, + { + "start": 10525.3, + "end": 10529.88, + "probability": 0.8906 + }, + { + "start": 10529.92, + "end": 10530.22, + "probability": 0.7538 + }, + { + "start": 10532.0, + "end": 10533.3, + "probability": 0.8087 + }, + { + "start": 10533.38, + "end": 10534.18, + "probability": 0.8845 + }, + { + "start": 10534.4, + "end": 10539.72, + "probability": 0.6164 + }, + { + "start": 10540.34, + "end": 10546.4, + "probability": 0.8842 + }, + { + "start": 10546.82, + "end": 10549.66, + "probability": 0.0248 + }, + { + "start": 10549.82, + "end": 10550.72, + "probability": 0.7326 + }, + { + "start": 10551.04, + "end": 10556.38, + "probability": 0.808 + }, + { + "start": 10568.9, + "end": 10569.26, + "probability": 0.3003 + }, + { + "start": 10569.26, + "end": 10570.12, + "probability": 0.571 + }, + { + "start": 10570.88, + "end": 10571.74, + "probability": 0.7579 + }, + { + "start": 10573.38, + "end": 10578.56, + "probability": 0.9967 + }, + { + "start": 10578.56, + "end": 10584.3, + "probability": 0.9791 + }, + { + "start": 10585.06, + "end": 10587.4, + "probability": 0.9883 + }, + { + "start": 10587.94, + "end": 10591.7, + "probability": 0.9868 + }, + { + "start": 10591.7, + "end": 10595.82, + "probability": 0.9948 + }, + { + "start": 10597.16, + "end": 10604.46, + "probability": 0.9651 + }, + { + "start": 10605.26, + "end": 10609.7, + "probability": 0.9975 + }, + { + "start": 10609.7, + "end": 10614.82, + "probability": 0.878 + }, + { + "start": 10615.58, + "end": 10620.42, + "probability": 0.9949 + }, + { + "start": 10620.42, + "end": 10624.2, + "probability": 0.999 + }, + { + "start": 10625.2, + "end": 10630.42, + "probability": 0.9184 + }, + { + "start": 10631.4, + "end": 10632.38, + "probability": 0.7683 + }, + { + "start": 10633.28, + "end": 10634.48, + "probability": 0.8171 + }, + { + "start": 10635.6, + "end": 10637.64, + "probability": 0.9396 + }, + { + "start": 10638.68, + "end": 10645.86, + "probability": 0.9749 + }, + { + "start": 10646.54, + "end": 10653.6, + "probability": 0.966 + }, + { + "start": 10654.16, + "end": 10659.46, + "probability": 0.9341 + }, + { + "start": 10659.46, + "end": 10664.16, + "probability": 0.9873 + }, + { + "start": 10665.04, + "end": 10666.28, + "probability": 0.5233 + }, + { + "start": 10666.86, + "end": 10671.88, + "probability": 0.9413 + }, + { + "start": 10672.4, + "end": 10672.8, + "probability": 0.7689 + }, + { + "start": 10674.74, + "end": 10676.2, + "probability": 0.765 + }, + { + "start": 10678.58, + "end": 10680.3, + "probability": 0.9718 + }, + { + "start": 10680.56, + "end": 10683.98, + "probability": 0.9652 + }, + { + "start": 10684.62, + "end": 10689.76, + "probability": 0.8831 + }, + { + "start": 10691.62, + "end": 10692.76, + "probability": 0.8727 + }, + { + "start": 10693.44, + "end": 10695.2, + "probability": 0.8162 + }, + { + "start": 10696.24, + "end": 10699.9, + "probability": 0.9445 + }, + { + "start": 10700.76, + "end": 10701.7, + "probability": 0.9709 + }, + { + "start": 10702.36, + "end": 10704.72, + "probability": 0.8086 + }, + { + "start": 10705.2, + "end": 10706.78, + "probability": 0.9636 + }, + { + "start": 10707.28, + "end": 10709.02, + "probability": 0.8225 + }, + { + "start": 10709.56, + "end": 10711.08, + "probability": 0.6843 + }, + { + "start": 10711.42, + "end": 10713.14, + "probability": 0.9536 + }, + { + "start": 10713.48, + "end": 10715.16, + "probability": 0.9203 + }, + { + "start": 10715.52, + "end": 10717.08, + "probability": 0.9897 + }, + { + "start": 10717.6, + "end": 10718.64, + "probability": 0.9718 + }, + { + "start": 10719.24, + "end": 10722.4, + "probability": 0.9631 + }, + { + "start": 10723.84, + "end": 10724.86, + "probability": 0.7432 + }, + { + "start": 10725.2, + "end": 10725.28, + "probability": 0.004 + }, + { + "start": 10725.28, + "end": 10727.12, + "probability": 0.9736 + }, + { + "start": 10727.88, + "end": 10728.82, + "probability": 0.6661 + }, + { + "start": 10729.6, + "end": 10731.3, + "probability": 0.8589 + }, + { + "start": 10732.76, + "end": 10733.6, + "probability": 0.8244 + }, + { + "start": 10734.12, + "end": 10735.86, + "probability": 0.9245 + }, + { + "start": 10736.82, + "end": 10740.02, + "probability": 0.9822 + }, + { + "start": 10740.92, + "end": 10744.04, + "probability": 0.9866 + }, + { + "start": 10744.66, + "end": 10745.86, + "probability": 0.9879 + }, + { + "start": 10746.16, + "end": 10747.88, + "probability": 0.9858 + }, + { + "start": 10748.12, + "end": 10749.66, + "probability": 0.6128 + }, + { + "start": 10749.88, + "end": 10752.16, + "probability": 0.7336 + }, + { + "start": 10753.08, + "end": 10756.86, + "probability": 0.9515 + }, + { + "start": 10757.98, + "end": 10758.84, + "probability": 0.9798 + }, + { + "start": 10759.38, + "end": 10762.06, + "probability": 0.9054 + }, + { + "start": 10763.14, + "end": 10764.1, + "probability": 0.4837 + }, + { + "start": 10766.66, + "end": 10768.5, + "probability": 0.946 + }, + { + "start": 10769.68, + "end": 10770.64, + "probability": 0.7693 + }, + { + "start": 10772.1, + "end": 10773.92, + "probability": 0.9546 + }, + { + "start": 10775.84, + "end": 10777.26, + "probability": 0.5896 + }, + { + "start": 10782.34, + "end": 10786.08, + "probability": 0.7454 + }, + { + "start": 10786.72, + "end": 10786.94, + "probability": 0.4846 + }, + { + "start": 10787.06, + "end": 10792.1, + "probability": 0.9717 + }, + { + "start": 10792.14, + "end": 10792.7, + "probability": 0.9383 + }, + { + "start": 10792.74, + "end": 10793.62, + "probability": 0.8857 + }, + { + "start": 10794.02, + "end": 10794.9, + "probability": 0.9372 + }, + { + "start": 10795.02, + "end": 10797.88, + "probability": 0.9519 + }, + { + "start": 10798.9, + "end": 10803.6, + "probability": 0.9905 + }, + { + "start": 10803.6, + "end": 10808.82, + "probability": 0.9806 + }, + { + "start": 10809.62, + "end": 10814.18, + "probability": 0.9609 + }, + { + "start": 10814.58, + "end": 10821.6, + "probability": 0.9888 + }, + { + "start": 10822.32, + "end": 10824.68, + "probability": 0.8791 + }, + { + "start": 10825.38, + "end": 10825.66, + "probability": 0.5304 + }, + { + "start": 10826.18, + "end": 10827.36, + "probability": 0.7837 + }, + { + "start": 10827.8, + "end": 10833.4, + "probability": 0.9843 + }, + { + "start": 10834.02, + "end": 10839.16, + "probability": 0.9663 + }, + { + "start": 10840.22, + "end": 10847.88, + "probability": 0.9993 + }, + { + "start": 10848.34, + "end": 10849.26, + "probability": 0.4482 + }, + { + "start": 10849.82, + "end": 10854.86, + "probability": 0.9754 + }, + { + "start": 10854.86, + "end": 10859.0, + "probability": 0.9888 + }, + { + "start": 10859.42, + "end": 10861.06, + "probability": 0.7002 + }, + { + "start": 10861.28, + "end": 10863.16, + "probability": 0.8646 + }, + { + "start": 10863.44, + "end": 10868.66, + "probability": 0.9615 + }, + { + "start": 10869.26, + "end": 10872.53, + "probability": 0.9871 + }, + { + "start": 10873.36, + "end": 10875.48, + "probability": 0.9053 + }, + { + "start": 10876.46, + "end": 10880.04, + "probability": 0.9932 + }, + { + "start": 10880.04, + "end": 10884.6, + "probability": 0.9883 + }, + { + "start": 10885.88, + "end": 10887.76, + "probability": 0.8345 + }, + { + "start": 10888.52, + "end": 10889.4, + "probability": 0.9966 + }, + { + "start": 10890.02, + "end": 10893.32, + "probability": 0.9969 + }, + { + "start": 10894.44, + "end": 10897.42, + "probability": 0.9732 + }, + { + "start": 10898.0, + "end": 10903.84, + "probability": 0.8853 + }, + { + "start": 10904.76, + "end": 10909.7, + "probability": 0.9905 + }, + { + "start": 10910.04, + "end": 10915.16, + "probability": 0.9785 + }, + { + "start": 10915.5, + "end": 10917.1, + "probability": 0.8846 + }, + { + "start": 10917.88, + "end": 10921.18, + "probability": 0.991 + }, + { + "start": 10921.56, + "end": 10925.08, + "probability": 0.9883 + }, + { + "start": 10925.9, + "end": 10929.04, + "probability": 0.988 + }, + { + "start": 10929.68, + "end": 10933.78, + "probability": 0.9673 + }, + { + "start": 10934.14, + "end": 10935.02, + "probability": 0.9675 + }, + { + "start": 10935.16, + "end": 10938.56, + "probability": 0.9893 + }, + { + "start": 10939.16, + "end": 10943.26, + "probability": 0.9861 + }, + { + "start": 10943.26, + "end": 10947.64, + "probability": 0.9243 + }, + { + "start": 10948.3, + "end": 10949.6, + "probability": 0.8784 + }, + { + "start": 10950.08, + "end": 10953.66, + "probability": 0.8958 + }, + { + "start": 10954.0, + "end": 10955.92, + "probability": 0.9556 + }, + { + "start": 10956.48, + "end": 10964.06, + "probability": 0.9695 + }, + { + "start": 10964.12, + "end": 10965.26, + "probability": 0.7446 + }, + { + "start": 10965.6, + "end": 10967.9, + "probability": 0.8547 + }, + { + "start": 10968.0, + "end": 10968.94, + "probability": 0.6364 + }, + { + "start": 10969.28, + "end": 10969.62, + "probability": 0.5297 + }, + { + "start": 10969.66, + "end": 10970.24, + "probability": 0.7676 + }, + { + "start": 10970.92, + "end": 10972.32, + "probability": 0.7358 + }, + { + "start": 10972.56, + "end": 10973.94, + "probability": 0.7788 + }, + { + "start": 10974.0, + "end": 10975.32, + "probability": 0.5921 + }, + { + "start": 10975.92, + "end": 10976.92, + "probability": 0.748 + }, + { + "start": 10977.64, + "end": 10978.38, + "probability": 0.8811 + }, + { + "start": 10978.5, + "end": 10981.2, + "probability": 0.8568 + }, + { + "start": 10981.48, + "end": 10983.22, + "probability": 0.9083 + }, + { + "start": 10983.44, + "end": 10983.82, + "probability": 0.4307 + }, + { + "start": 10983.82, + "end": 10984.16, + "probability": 0.7819 + }, + { + "start": 10984.72, + "end": 10985.52, + "probability": 0.6854 + }, + { + "start": 10985.64, + "end": 10988.2, + "probability": 0.978 + }, + { + "start": 10988.38, + "end": 10988.96, + "probability": 0.6205 + }, + { + "start": 10989.5, + "end": 10990.22, + "probability": 0.8072 + }, + { + "start": 10990.5, + "end": 10994.32, + "probability": 0.8488 + }, + { + "start": 10994.86, + "end": 10999.0, + "probability": 0.9198 + }, + { + "start": 11012.96, + "end": 11015.6, + "probability": 0.5651 + }, + { + "start": 11016.4, + "end": 11018.38, + "probability": 0.7382 + }, + { + "start": 11019.22, + "end": 11022.25, + "probability": 0.3963 + }, + { + "start": 11022.46, + "end": 11025.0, + "probability": 0.2786 + }, + { + "start": 11025.56, + "end": 11030.44, + "probability": 0.9492 + }, + { + "start": 11030.52, + "end": 11030.94, + "probability": 0.5236 + }, + { + "start": 11031.02, + "end": 11031.42, + "probability": 0.8729 + }, + { + "start": 11031.94, + "end": 11032.84, + "probability": 0.8617 + }, + { + "start": 11034.62, + "end": 11037.26, + "probability": 0.9875 + }, + { + "start": 11038.82, + "end": 11040.42, + "probability": 0.9905 + }, + { + "start": 11041.8, + "end": 11044.44, + "probability": 0.9048 + }, + { + "start": 11045.12, + "end": 11045.56, + "probability": 0.9194 + }, + { + "start": 11047.26, + "end": 11050.37, + "probability": 0.9258 + }, + { + "start": 11052.2, + "end": 11056.42, + "probability": 0.9683 + }, + { + "start": 11057.74, + "end": 11058.82, + "probability": 0.9379 + }, + { + "start": 11059.5, + "end": 11060.62, + "probability": 0.9424 + }, + { + "start": 11061.4, + "end": 11067.02, + "probability": 0.9615 + }, + { + "start": 11068.02, + "end": 11068.84, + "probability": 0.9442 + }, + { + "start": 11068.9, + "end": 11070.31, + "probability": 0.9846 + }, + { + "start": 11070.38, + "end": 11075.32, + "probability": 0.9911 + }, + { + "start": 11076.56, + "end": 11079.58, + "probability": 0.9882 + }, + { + "start": 11080.16, + "end": 11080.78, + "probability": 0.8302 + }, + { + "start": 11080.88, + "end": 11081.46, + "probability": 0.8863 + }, + { + "start": 11081.78, + "end": 11082.98, + "probability": 0.9343 + }, + { + "start": 11083.1, + "end": 11083.88, + "probability": 0.9776 + }, + { + "start": 11084.04, + "end": 11084.38, + "probability": 0.8762 + }, + { + "start": 11085.46, + "end": 11087.6, + "probability": 0.7641 + }, + { + "start": 11088.2, + "end": 11089.35, + "probability": 0.9533 + }, + { + "start": 11090.34, + "end": 11091.5, + "probability": 0.9771 + }, + { + "start": 11092.58, + "end": 11094.08, + "probability": 0.9629 + }, + { + "start": 11094.18, + "end": 11095.93, + "probability": 0.9199 + }, + { + "start": 11096.44, + "end": 11098.24, + "probability": 0.9897 + }, + { + "start": 11098.36, + "end": 11099.16, + "probability": 0.9903 + }, + { + "start": 11099.16, + "end": 11100.14, + "probability": 0.9698 + }, + { + "start": 11100.7, + "end": 11106.88, + "probability": 0.9954 + }, + { + "start": 11109.98, + "end": 11112.98, + "probability": 0.7817 + }, + { + "start": 11113.66, + "end": 11121.24, + "probability": 0.9946 + }, + { + "start": 11121.24, + "end": 11129.08, + "probability": 0.9929 + }, + { + "start": 11129.32, + "end": 11129.9, + "probability": 0.0754 + }, + { + "start": 11130.08, + "end": 11130.22, + "probability": 0.4431 + }, + { + "start": 11130.22, + "end": 11130.3, + "probability": 0.2524 + }, + { + "start": 11130.3, + "end": 11131.1, + "probability": 0.4476 + }, + { + "start": 11131.42, + "end": 11133.02, + "probability": 0.8597 + }, + { + "start": 11133.18, + "end": 11134.82, + "probability": 0.9325 + }, + { + "start": 11135.6, + "end": 11139.58, + "probability": 0.907 + }, + { + "start": 11139.68, + "end": 11140.34, + "probability": 0.0373 + }, + { + "start": 11140.54, + "end": 11142.58, + "probability": 0.6026 + }, + { + "start": 11142.64, + "end": 11144.56, + "probability": 0.4688 + }, + { + "start": 11144.58, + "end": 11145.0, + "probability": 0.153 + }, + { + "start": 11145.64, + "end": 11147.02, + "probability": 0.622 + }, + { + "start": 11147.02, + "end": 11153.2, + "probability": 0.9946 + }, + { + "start": 11153.56, + "end": 11155.78, + "probability": 0.7832 + }, + { + "start": 11156.44, + "end": 11159.09, + "probability": 0.7356 + }, + { + "start": 11159.52, + "end": 11159.52, + "probability": 0.2857 + }, + { + "start": 11159.54, + "end": 11160.8, + "probability": 0.6905 + }, + { + "start": 11160.88, + "end": 11162.46, + "probability": 0.8145 + }, + { + "start": 11162.86, + "end": 11165.72, + "probability": 0.5419 + }, + { + "start": 11165.72, + "end": 11165.72, + "probability": 0.0627 + }, + { + "start": 11165.72, + "end": 11168.54, + "probability": 0.5551 + }, + { + "start": 11169.18, + "end": 11171.12, + "probability": 0.9899 + }, + { + "start": 11171.84, + "end": 11172.7, + "probability": 0.9508 + }, + { + "start": 11173.58, + "end": 11174.67, + "probability": 0.8698 + }, + { + "start": 11175.5, + "end": 11179.04, + "probability": 0.9216 + }, + { + "start": 11179.72, + "end": 11180.4, + "probability": 0.9026 + }, + { + "start": 11180.48, + "end": 11181.18, + "probability": 0.7962 + }, + { + "start": 11181.28, + "end": 11183.28, + "probability": 0.9696 + }, + { + "start": 11183.6, + "end": 11184.28, + "probability": 0.9718 + }, + { + "start": 11184.44, + "end": 11184.78, + "probability": 0.6271 + }, + { + "start": 11184.94, + "end": 11186.12, + "probability": 0.9502 + }, + { + "start": 11186.48, + "end": 11187.19, + "probability": 0.8887 + }, + { + "start": 11187.46, + "end": 11188.32, + "probability": 0.5882 + }, + { + "start": 11188.32, + "end": 11188.4, + "probability": 0.287 + }, + { + "start": 11188.4, + "end": 11188.9, + "probability": 0.4889 + }, + { + "start": 11188.96, + "end": 11189.84, + "probability": 0.9015 + }, + { + "start": 11191.18, + "end": 11192.16, + "probability": 0.9179 + }, + { + "start": 11193.22, + "end": 11194.9, + "probability": 0.8653 + }, + { + "start": 11195.9, + "end": 11199.04, + "probability": 0.8723 + }, + { + "start": 11199.98, + "end": 11201.66, + "probability": 0.8896 + }, + { + "start": 11201.9, + "end": 11202.98, + "probability": 0.8005 + }, + { + "start": 11203.04, + "end": 11204.36, + "probability": 0.9233 + }, + { + "start": 11204.54, + "end": 11206.28, + "probability": 0.9659 + }, + { + "start": 11206.3, + "end": 11209.14, + "probability": 0.9398 + }, + { + "start": 11209.3, + "end": 11210.58, + "probability": 0.7955 + }, + { + "start": 11210.62, + "end": 11211.5, + "probability": 0.6694 + }, + { + "start": 11211.52, + "end": 11211.52, + "probability": 0.3853 + }, + { + "start": 11211.52, + "end": 11212.28, + "probability": 0.7312 + }, + { + "start": 11212.28, + "end": 11214.18, + "probability": 0.8279 + }, + { + "start": 11214.64, + "end": 11215.84, + "probability": 0.8063 + }, + { + "start": 11216.2, + "end": 11218.04, + "probability": 0.8755 + }, + { + "start": 11218.4, + "end": 11221.4, + "probability": 0.9722 + }, + { + "start": 11222.44, + "end": 11222.66, + "probability": 0.7633 + }, + { + "start": 11223.48, + "end": 11224.22, + "probability": 0.6147 + }, + { + "start": 11224.44, + "end": 11225.92, + "probability": 0.9696 + }, + { + "start": 11226.84, + "end": 11229.7, + "probability": 0.7755 + }, + { + "start": 11231.16, + "end": 11234.82, + "probability": 0.9712 + }, + { + "start": 11235.7, + "end": 11238.22, + "probability": 0.9659 + }, + { + "start": 11238.84, + "end": 11240.36, + "probability": 0.9196 + }, + { + "start": 11240.48, + "end": 11241.3, + "probability": 0.9912 + }, + { + "start": 11241.74, + "end": 11243.18, + "probability": 0.8235 + }, + { + "start": 11243.28, + "end": 11244.04, + "probability": 0.7264 + }, + { + "start": 11244.72, + "end": 11246.32, + "probability": 0.9856 + }, + { + "start": 11247.62, + "end": 11248.54, + "probability": 0.9322 + }, + { + "start": 11249.42, + "end": 11251.0, + "probability": 0.9879 + }, + { + "start": 11251.64, + "end": 11252.66, + "probability": 0.5172 + }, + { + "start": 11253.54, + "end": 11253.78, + "probability": 0.4272 + }, + { + "start": 11253.78, + "end": 11257.22, + "probability": 0.8497 + }, + { + "start": 11259.26, + "end": 11260.24, + "probability": 0.3586 + }, + { + "start": 11260.24, + "end": 11260.24, + "probability": 0.7777 + }, + { + "start": 11260.24, + "end": 11262.04, + "probability": 0.5001 + }, + { + "start": 11263.1, + "end": 11264.38, + "probability": 0.4984 + }, + { + "start": 11265.36, + "end": 11266.98, + "probability": 0.8213 + }, + { + "start": 11268.08, + "end": 11270.74, + "probability": 0.7106 + }, + { + "start": 11272.56, + "end": 11274.3, + "probability": 0.7242 + }, + { + "start": 11275.52, + "end": 11277.62, + "probability": 0.8657 + }, + { + "start": 11278.88, + "end": 11281.28, + "probability": 0.7705 + }, + { + "start": 11282.48, + "end": 11283.22, + "probability": 0.7462 + }, + { + "start": 11284.0, + "end": 11285.5, + "probability": 0.4619 + }, + { + "start": 11285.5, + "end": 11285.5, + "probability": 0.4058 + }, + { + "start": 11285.56, + "end": 11286.0, + "probability": 0.808 + }, + { + "start": 11287.74, + "end": 11290.18, + "probability": 0.9717 + }, + { + "start": 11291.62, + "end": 11292.64, + "probability": 0.8336 + }, + { + "start": 11293.5, + "end": 11295.12, + "probability": 0.946 + }, + { + "start": 11296.62, + "end": 11297.58, + "probability": 0.9672 + }, + { + "start": 11298.26, + "end": 11300.08, + "probability": 0.6126 + }, + { + "start": 11301.16, + "end": 11301.98, + "probability": 0.8034 + }, + { + "start": 11303.2, + "end": 11305.02, + "probability": 0.9615 + }, + { + "start": 11307.68, + "end": 11309.92, + "probability": 0.6684 + }, + { + "start": 11310.98, + "end": 11313.68, + "probability": 0.9186 + }, + { + "start": 11315.66, + "end": 11316.48, + "probability": 0.9842 + }, + { + "start": 11317.4, + "end": 11320.92, + "probability": 0.716 + }, + { + "start": 11321.92, + "end": 11323.72, + "probability": 0.8582 + }, + { + "start": 11325.84, + "end": 11328.34, + "probability": 0.6078 + }, + { + "start": 11329.3, + "end": 11330.8, + "probability": 0.9793 + }, + { + "start": 11332.74, + "end": 11333.68, + "probability": 0.9188 + }, + { + "start": 11335.06, + "end": 11339.22, + "probability": 0.9795 + }, + { + "start": 11343.5, + "end": 11344.46, + "probability": 0.4754 + }, + { + "start": 11346.64, + "end": 11348.2, + "probability": 0.8323 + }, + { + "start": 11350.12, + "end": 11352.22, + "probability": 0.9069 + }, + { + "start": 11361.76, + "end": 11367.78, + "probability": 0.9919 + }, + { + "start": 11368.32, + "end": 11369.08, + "probability": 0.3727 + }, + { + "start": 11369.66, + "end": 11373.38, + "probability": 0.992 + }, + { + "start": 11374.24, + "end": 11377.48, + "probability": 0.5294 + }, + { + "start": 11377.6, + "end": 11378.32, + "probability": 0.9587 + }, + { + "start": 11386.12, + "end": 11387.9, + "probability": 0.0233 + }, + { + "start": 11387.9, + "end": 11388.89, + "probability": 0.2413 + }, + { + "start": 11399.4, + "end": 11402.44, + "probability": 0.0588 + }, + { + "start": 11402.68, + "end": 11403.86, + "probability": 0.2826 + }, + { + "start": 11404.58, + "end": 11404.74, + "probability": 0.0199 + }, + { + "start": 11404.92, + "end": 11405.12, + "probability": 0.1566 + }, + { + "start": 11405.3, + "end": 11412.12, + "probability": 0.8704 + }, + { + "start": 11412.34, + "end": 11413.54, + "probability": 0.7138 + }, + { + "start": 11414.34, + "end": 11415.18, + "probability": 0.2135 + }, + { + "start": 11415.18, + "end": 11416.52, + "probability": 0.8459 + }, + { + "start": 11417.88, + "end": 11419.0, + "probability": 0.5591 + }, + { + "start": 11419.04, + "end": 11419.54, + "probability": 0.8258 + }, + { + "start": 11419.7, + "end": 11420.72, + "probability": 0.2227 + }, + { + "start": 11420.72, + "end": 11422.24, + "probability": 0.7607 + }, + { + "start": 11422.8, + "end": 11424.02, + "probability": 0.9514 + }, + { + "start": 11424.84, + "end": 11429.04, + "probability": 0.786 + }, + { + "start": 11429.58, + "end": 11436.02, + "probability": 0.6153 + }, + { + "start": 11439.08, + "end": 11439.64, + "probability": 0.5886 + }, + { + "start": 11446.02, + "end": 11453.94, + "probability": 0.7492 + }, + { + "start": 11454.44, + "end": 11456.06, + "probability": 0.5124 + }, + { + "start": 11456.38, + "end": 11457.34, + "probability": 0.7323 + }, + { + "start": 11458.02, + "end": 11463.36, + "probability": 0.8994 + }, + { + "start": 11463.54, + "end": 11464.04, + "probability": 0.4526 + }, + { + "start": 11470.38, + "end": 11471.8, + "probability": 0.4311 + }, + { + "start": 11477.64, + "end": 11479.84, + "probability": 0.5855 + }, + { + "start": 11481.66, + "end": 11487.38, + "probability": 0.989 + }, + { + "start": 11488.86, + "end": 11491.1, + "probability": 0.8331 + }, + { + "start": 11491.4, + "end": 11496.34, + "probability": 0.8281 + }, + { + "start": 11497.76, + "end": 11501.04, + "probability": 0.6877 + }, + { + "start": 11502.92, + "end": 11508.36, + "probability": 0.9821 + }, + { + "start": 11508.36, + "end": 11514.7, + "probability": 0.9188 + }, + { + "start": 11516.56, + "end": 11519.0, + "probability": 0.9792 + }, + { + "start": 11519.38, + "end": 11524.5, + "probability": 0.9134 + }, + { + "start": 11524.5, + "end": 11528.62, + "probability": 0.9613 + }, + { + "start": 11531.06, + "end": 11533.7, + "probability": 0.9415 + }, + { + "start": 11533.98, + "end": 11534.42, + "probability": 0.4024 + }, + { + "start": 11534.7, + "end": 11535.42, + "probability": 0.8122 + }, + { + "start": 11536.34, + "end": 11538.76, + "probability": 0.9759 + }, + { + "start": 11539.68, + "end": 11540.96, + "probability": 0.7722 + }, + { + "start": 11542.78, + "end": 11544.96, + "probability": 0.6912 + }, + { + "start": 11544.96, + "end": 11547.64, + "probability": 0.9858 + }, + { + "start": 11547.7, + "end": 11552.3, + "probability": 0.8935 + }, + { + "start": 11553.44, + "end": 11558.94, + "probability": 0.7389 + }, + { + "start": 11558.94, + "end": 11561.4, + "probability": 0.7965 + }, + { + "start": 11562.72, + "end": 11564.82, + "probability": 0.8519 + }, + { + "start": 11564.82, + "end": 11570.14, + "probability": 0.9912 + }, + { + "start": 11570.32, + "end": 11571.94, + "probability": 0.5946 + }, + { + "start": 11575.3, + "end": 11579.72, + "probability": 0.937 + }, + { + "start": 11580.42, + "end": 11584.2, + "probability": 0.8459 + }, + { + "start": 11586.44, + "end": 11587.08, + "probability": 0.1353 + }, + { + "start": 11587.14, + "end": 11589.96, + "probability": 0.6191 + }, + { + "start": 11589.98, + "end": 11592.62, + "probability": 0.8051 + }, + { + "start": 11593.24, + "end": 11594.76, + "probability": 0.95 + }, + { + "start": 11594.78, + "end": 11597.62, + "probability": 0.8657 + }, + { + "start": 11598.32, + "end": 11600.88, + "probability": 0.7667 + }, + { + "start": 11600.96, + "end": 11604.38, + "probability": 0.9325 + }, + { + "start": 11604.92, + "end": 11608.76, + "probability": 0.9742 + }, + { + "start": 11609.26, + "end": 11612.34, + "probability": 0.9473 + }, + { + "start": 11614.26, + "end": 11617.44, + "probability": 0.9709 + }, + { + "start": 11618.48, + "end": 11620.78, + "probability": 0.9228 + }, + { + "start": 11621.38, + "end": 11621.78, + "probability": 0.2644 + }, + { + "start": 11621.86, + "end": 11624.5, + "probability": 0.7133 + }, + { + "start": 11624.5, + "end": 11628.98, + "probability": 0.9387 + }, + { + "start": 11629.24, + "end": 11629.9, + "probability": 0.7522 + }, + { + "start": 11630.38, + "end": 11631.54, + "probability": 0.2012 + }, + { + "start": 11631.56, + "end": 11633.18, + "probability": 0.7184 + }, + { + "start": 11634.98, + "end": 11635.2, + "probability": 0.8242 + }, + { + "start": 11636.22, + "end": 11638.96, + "probability": 0.2213 + }, + { + "start": 11639.52, + "end": 11640.58, + "probability": 0.9475 + }, + { + "start": 11640.64, + "end": 11642.95, + "probability": 0.9017 + }, + { + "start": 11643.12, + "end": 11643.56, + "probability": 0.9358 + }, + { + "start": 11643.76, + "end": 11645.1, + "probability": 0.8766 + }, + { + "start": 11645.18, + "end": 11645.98, + "probability": 0.6602 + }, + { + "start": 11646.1, + "end": 11647.45, + "probability": 0.9316 + }, + { + "start": 11647.72, + "end": 11648.46, + "probability": 0.875 + }, + { + "start": 11649.22, + "end": 11649.22, + "probability": 0.2765 + }, + { + "start": 11649.22, + "end": 11650.02, + "probability": 0.6713 + }, + { + "start": 11650.3, + "end": 11651.58, + "probability": 0.4526 + }, + { + "start": 11651.78, + "end": 11652.78, + "probability": 0.5455 + }, + { + "start": 11663.34, + "end": 11666.38, + "probability": 0.8369 + }, + { + "start": 11667.0, + "end": 11668.82, + "probability": 0.9588 + }, + { + "start": 11669.18, + "end": 11669.76, + "probability": 0.8594 + }, + { + "start": 11669.8, + "end": 11670.46, + "probability": 0.6584 + }, + { + "start": 11670.52, + "end": 11672.36, + "probability": 0.9744 + }, + { + "start": 11678.86, + "end": 11678.86, + "probability": 0.1673 + }, + { + "start": 11678.86, + "end": 11678.86, + "probability": 0.1276 + }, + { + "start": 11678.86, + "end": 11678.86, + "probability": 0.0037 + }, + { + "start": 11690.14, + "end": 11690.82, + "probability": 0.1524 + }, + { + "start": 11691.08, + "end": 11693.12, + "probability": 0.5182 + }, + { + "start": 11693.78, + "end": 11694.72, + "probability": 0.5744 + }, + { + "start": 11695.3, + "end": 11697.14, + "probability": 0.707 + }, + { + "start": 11697.68, + "end": 11700.04, + "probability": 0.7922 + }, + { + "start": 11700.76, + "end": 11701.46, + "probability": 0.1744 + }, + { + "start": 11702.1, + "end": 11703.16, + "probability": 0.9651 + }, + { + "start": 11704.4, + "end": 11706.5, + "probability": 0.7794 + }, + { + "start": 11706.5, + "end": 11710.88, + "probability": 0.8781 + }, + { + "start": 11712.48, + "end": 11714.14, + "probability": 0.5748 + }, + { + "start": 11714.2, + "end": 11714.94, + "probability": 0.8104 + }, + { + "start": 11714.96, + "end": 11716.74, + "probability": 0.8179 + }, + { + "start": 11716.84, + "end": 11718.54, + "probability": 0.728 + }, + { + "start": 11718.64, + "end": 11720.6, + "probability": 0.9797 + }, + { + "start": 11721.4, + "end": 11724.2, + "probability": 0.9735 + }, + { + "start": 11724.26, + "end": 11725.04, + "probability": 0.7482 + }, + { + "start": 11725.16, + "end": 11726.48, + "probability": 0.9733 + }, + { + "start": 11727.56, + "end": 11728.38, + "probability": 0.8583 + }, + { + "start": 11728.8, + "end": 11732.9, + "probability": 0.9878 + }, + { + "start": 11733.68, + "end": 11734.88, + "probability": 0.4664 + }, + { + "start": 11735.1, + "end": 11739.02, + "probability": 0.9974 + }, + { + "start": 11739.66, + "end": 11740.3, + "probability": 0.4905 + }, + { + "start": 11743.1, + "end": 11743.76, + "probability": 0.9598 + }, + { + "start": 11744.12, + "end": 11745.7, + "probability": 0.5925 + }, + { + "start": 11746.08, + "end": 11748.04, + "probability": 0.4639 + }, + { + "start": 11748.7, + "end": 11749.56, + "probability": 0.5949 + }, + { + "start": 11751.75, + "end": 11754.88, + "probability": 0.1596 + }, + { + "start": 11756.22, + "end": 11760.34, + "probability": 0.9668 + }, + { + "start": 11761.52, + "end": 11763.4, + "probability": 0.6459 + }, + { + "start": 11764.06, + "end": 11768.12, + "probability": 0.9967 + }, + { + "start": 11768.12, + "end": 11772.56, + "probability": 0.9933 + }, + { + "start": 11773.34, + "end": 11776.84, + "probability": 0.9913 + }, + { + "start": 11776.92, + "end": 11779.2, + "probability": 0.9767 + }, + { + "start": 11779.2, + "end": 11783.26, + "probability": 0.9995 + }, + { + "start": 11783.6, + "end": 11785.86, + "probability": 0.9248 + }, + { + "start": 11786.32, + "end": 11788.64, + "probability": 0.9896 + }, + { + "start": 11789.42, + "end": 11791.88, + "probability": 0.9943 + }, + { + "start": 11792.86, + "end": 11796.18, + "probability": 0.9975 + }, + { + "start": 11796.62, + "end": 11799.02, + "probability": 0.731 + }, + { + "start": 11799.48, + "end": 11800.36, + "probability": 0.8266 + }, + { + "start": 11800.44, + "end": 11802.74, + "probability": 0.9528 + }, + { + "start": 11802.77, + "end": 11805.7, + "probability": 0.9731 + }, + { + "start": 11805.74, + "end": 11805.88, + "probability": 0.6753 + }, + { + "start": 11805.96, + "end": 11807.08, + "probability": 0.9717 + }, + { + "start": 11807.16, + "end": 11808.98, + "probability": 0.9126 + }, + { + "start": 11809.62, + "end": 11813.04, + "probability": 0.9956 + }, + { + "start": 11813.78, + "end": 11814.32, + "probability": 0.6526 + }, + { + "start": 11814.4, + "end": 11815.68, + "probability": 0.969 + }, + { + "start": 11816.12, + "end": 11819.64, + "probability": 0.9935 + }, + { + "start": 11820.58, + "end": 11822.52, + "probability": 0.9638 + }, + { + "start": 11822.6, + "end": 11823.14, + "probability": 0.6634 + }, + { + "start": 11823.26, + "end": 11825.9, + "probability": 0.9891 + }, + { + "start": 11826.92, + "end": 11827.58, + "probability": 0.2841 + }, + { + "start": 11827.58, + "end": 11832.88, + "probability": 0.9948 + }, + { + "start": 11832.88, + "end": 11837.6, + "probability": 0.9771 + }, + { + "start": 11838.38, + "end": 11839.42, + "probability": 0.9591 + }, + { + "start": 11840.22, + "end": 11843.52, + "probability": 0.956 + }, + { + "start": 11843.52, + "end": 11845.48, + "probability": 0.9933 + }, + { + "start": 11845.58, + "end": 11850.28, + "probability": 0.9948 + }, + { + "start": 11850.28, + "end": 11853.48, + "probability": 0.8016 + }, + { + "start": 11853.8, + "end": 11855.3, + "probability": 0.8596 + }, + { + "start": 11856.24, + "end": 11859.62, + "probability": 0.8688 + }, + { + "start": 11860.18, + "end": 11864.84, + "probability": 0.9845 + }, + { + "start": 11865.22, + "end": 11866.36, + "probability": 0.9915 + }, + { + "start": 11867.66, + "end": 11868.72, + "probability": 0.7657 + }, + { + "start": 11868.8, + "end": 11870.04, + "probability": 0.9952 + }, + { + "start": 11870.08, + "end": 11870.74, + "probability": 0.8125 + }, + { + "start": 11871.16, + "end": 11874.68, + "probability": 0.973 + }, + { + "start": 11875.24, + "end": 11877.68, + "probability": 0.9907 + }, + { + "start": 11877.76, + "end": 11880.08, + "probability": 0.8684 + }, + { + "start": 11880.12, + "end": 11884.22, + "probability": 0.8685 + }, + { + "start": 11884.64, + "end": 11885.52, + "probability": 0.6543 + }, + { + "start": 11885.7, + "end": 11886.94, + "probability": 0.9054 + }, + { + "start": 11887.16, + "end": 11888.3, + "probability": 0.7622 + }, + { + "start": 11888.36, + "end": 11892.32, + "probability": 0.9469 + }, + { + "start": 11892.38, + "end": 11894.02, + "probability": 0.6431 + }, + { + "start": 11895.54, + "end": 11895.76, + "probability": 0.2429 + }, + { + "start": 11895.76, + "end": 11897.82, + "probability": 0.7085 + }, + { + "start": 11898.34, + "end": 11902.2, + "probability": 0.9937 + }, + { + "start": 11902.2, + "end": 11904.54, + "probability": 0.9971 + }, + { + "start": 11904.66, + "end": 11905.12, + "probability": 0.7701 + }, + { + "start": 11905.34, + "end": 11906.26, + "probability": 0.7014 + }, + { + "start": 11906.62, + "end": 11908.9, + "probability": 0.9813 + }, + { + "start": 11909.08, + "end": 11910.34, + "probability": 0.7507 + }, + { + "start": 11910.52, + "end": 11911.62, + "probability": 0.5207 + }, + { + "start": 11911.8, + "end": 11913.4, + "probability": 0.8312 + }, + { + "start": 11916.8, + "end": 11919.92, + "probability": 0.119 + }, + { + "start": 11921.18, + "end": 11922.62, + "probability": 0.9541 + }, + { + "start": 11936.7, + "end": 11937.98, + "probability": 0.4943 + }, + { + "start": 11939.84, + "end": 11941.22, + "probability": 0.764 + }, + { + "start": 11941.62, + "end": 11941.84, + "probability": 0.7095 + }, + { + "start": 11941.96, + "end": 11942.62, + "probability": 0.7118 + }, + { + "start": 11942.72, + "end": 11943.6, + "probability": 0.8594 + }, + { + "start": 11945.18, + "end": 11947.32, + "probability": 0.8968 + }, + { + "start": 11947.66, + "end": 11948.52, + "probability": 0.979 + }, + { + "start": 11949.68, + "end": 11950.2, + "probability": 0.082 + }, + { + "start": 11950.2, + "end": 11951.14, + "probability": 0.6903 + }, + { + "start": 11953.4, + "end": 11954.08, + "probability": 0.5338 + }, + { + "start": 11954.96, + "end": 11955.88, + "probability": 0.7262 + }, + { + "start": 11956.0, + "end": 11957.34, + "probability": 0.8071 + }, + { + "start": 11957.36, + "end": 11960.2, + "probability": 0.8711 + }, + { + "start": 11960.24, + "end": 11961.56, + "probability": 0.5444 + }, + { + "start": 11962.22, + "end": 11963.46, + "probability": 0.4978 + }, + { + "start": 11963.68, + "end": 11967.44, + "probability": 0.8116 + }, + { + "start": 11968.96, + "end": 11971.92, + "probability": 0.9907 + }, + { + "start": 11974.42, + "end": 11978.3, + "probability": 0.7702 + }, + { + "start": 11978.94, + "end": 11979.78, + "probability": 0.9597 + }, + { + "start": 11981.2, + "end": 11983.62, + "probability": 0.9398 + }, + { + "start": 11984.14, + "end": 11985.72, + "probability": 0.9272 + }, + { + "start": 11987.06, + "end": 11991.56, + "probability": 0.9678 + }, + { + "start": 11991.82, + "end": 11994.54, + "probability": 0.9995 + }, + { + "start": 11995.68, + "end": 11997.94, + "probability": 0.9808 + }, + { + "start": 11999.38, + "end": 11999.68, + "probability": 0.5639 + }, + { + "start": 11999.74, + "end": 12002.42, + "probability": 0.9817 + }, + { + "start": 12002.56, + "end": 12004.14, + "probability": 0.4755 + }, + { + "start": 12004.76, + "end": 12007.02, + "probability": 0.9956 + }, + { + "start": 12008.44, + "end": 12008.74, + "probability": 0.8137 + }, + { + "start": 12008.84, + "end": 12009.74, + "probability": 0.9313 + }, + { + "start": 12009.8, + "end": 12011.84, + "probability": 0.9176 + }, + { + "start": 12011.92, + "end": 12013.5, + "probability": 0.901 + }, + { + "start": 12013.56, + "end": 12013.94, + "probability": 0.9472 + }, + { + "start": 12014.06, + "end": 12015.56, + "probability": 0.9653 + }, + { + "start": 12017.1, + "end": 12019.86, + "probability": 0.8988 + }, + { + "start": 12019.98, + "end": 12022.69, + "probability": 0.9937 + }, + { + "start": 12023.72, + "end": 12026.68, + "probability": 0.9608 + }, + { + "start": 12027.68, + "end": 12030.3, + "probability": 0.9281 + }, + { + "start": 12031.22, + "end": 12034.7, + "probability": 0.9525 + }, + { + "start": 12035.62, + "end": 12036.68, + "probability": 0.8558 + }, + { + "start": 12036.82, + "end": 12037.92, + "probability": 0.7347 + }, + { + "start": 12037.98, + "end": 12039.74, + "probability": 0.7534 + }, + { + "start": 12041.78, + "end": 12043.58, + "probability": 0.9811 + }, + { + "start": 12044.38, + "end": 12047.04, + "probability": 0.993 + }, + { + "start": 12047.74, + "end": 12052.3, + "probability": 0.953 + }, + { + "start": 12052.76, + "end": 12054.7, + "probability": 0.9533 + }, + { + "start": 12055.44, + "end": 12056.74, + "probability": 0.9312 + }, + { + "start": 12057.28, + "end": 12059.93, + "probability": 0.9376 + }, + { + "start": 12060.84, + "end": 12061.96, + "probability": 0.7064 + }, + { + "start": 12062.1, + "end": 12062.6, + "probability": 0.794 + }, + { + "start": 12063.02, + "end": 12063.22, + "probability": 0.8761 + }, + { + "start": 12063.28, + "end": 12064.14, + "probability": 0.9395 + }, + { + "start": 12064.32, + "end": 12064.78, + "probability": 0.8555 + }, + { + "start": 12064.9, + "end": 12065.64, + "probability": 0.6598 + }, + { + "start": 12066.28, + "end": 12067.78, + "probability": 0.7844 + }, + { + "start": 12068.38, + "end": 12070.9, + "probability": 0.9006 + }, + { + "start": 12071.06, + "end": 12072.28, + "probability": 0.958 + }, + { + "start": 12072.8, + "end": 12073.5, + "probability": 0.7469 + }, + { + "start": 12073.92, + "end": 12076.36, + "probability": 0.8502 + }, + { + "start": 12076.36, + "end": 12076.46, + "probability": 0.8679 + }, + { + "start": 12077.52, + "end": 12079.64, + "probability": 0.8114 + }, + { + "start": 12080.24, + "end": 12082.18, + "probability": 0.86 + }, + { + "start": 12083.08, + "end": 12085.8, + "probability": 0.9082 + }, + { + "start": 12087.16, + "end": 12087.74, + "probability": 0.8379 + }, + { + "start": 12087.86, + "end": 12089.44, + "probability": 0.5093 + }, + { + "start": 12089.62, + "end": 12090.52, + "probability": 0.5901 + }, + { + "start": 12091.04, + "end": 12092.32, + "probability": 0.9736 + }, + { + "start": 12092.38, + "end": 12093.58, + "probability": 0.7208 + }, + { + "start": 12094.74, + "end": 12096.72, + "probability": 0.9863 + }, + { + "start": 12097.44, + "end": 12098.34, + "probability": 0.7903 + }, + { + "start": 12099.36, + "end": 12104.42, + "probability": 0.9128 + }, + { + "start": 12104.48, + "end": 12105.39, + "probability": 0.8987 + }, + { + "start": 12106.14, + "end": 12107.66, + "probability": 0.9159 + }, + { + "start": 12107.74, + "end": 12108.94, + "probability": 0.5918 + }, + { + "start": 12112.22, + "end": 12112.56, + "probability": 0.0243 + }, + { + "start": 12112.56, + "end": 12116.58, + "probability": 0.9766 + }, + { + "start": 12117.42, + "end": 12118.22, + "probability": 0.9631 + }, + { + "start": 12120.96, + "end": 12123.82, + "probability": 0.831 + }, + { + "start": 12124.6, + "end": 12126.64, + "probability": 0.9934 + }, + { + "start": 12127.46, + "end": 12129.46, + "probability": 0.999 + }, + { + "start": 12129.56, + "end": 12131.1, + "probability": 0.6764 + }, + { + "start": 12132.02, + "end": 12134.14, + "probability": 0.999 + }, + { + "start": 12134.66, + "end": 12137.5, + "probability": 0.9531 + }, + { + "start": 12138.62, + "end": 12141.64, + "probability": 0.8018 + }, + { + "start": 12142.5, + "end": 12144.72, + "probability": 0.9844 + }, + { + "start": 12145.38, + "end": 12146.02, + "probability": 0.8335 + }, + { + "start": 12146.34, + "end": 12150.68, + "probability": 0.9951 + }, + { + "start": 12151.02, + "end": 12151.58, + "probability": 0.6031 + }, + { + "start": 12151.64, + "end": 12152.44, + "probability": 0.7614 + }, + { + "start": 12153.0, + "end": 12154.02, + "probability": 0.9801 + }, + { + "start": 12154.62, + "end": 12158.0, + "probability": 0.5815 + }, + { + "start": 12159.22, + "end": 12159.98, + "probability": 0.4197 + }, + { + "start": 12166.52, + "end": 12167.86, + "probability": 0.8372 + }, + { + "start": 12173.79, + "end": 12177.02, + "probability": 0.6211 + }, + { + "start": 12178.36, + "end": 12179.5, + "probability": 0.9657 + }, + { + "start": 12179.68, + "end": 12180.2, + "probability": 0.9482 + }, + { + "start": 12180.28, + "end": 12181.66, + "probability": 0.9027 + }, + { + "start": 12182.42, + "end": 12184.62, + "probability": 0.9746 + }, + { + "start": 12185.02, + "end": 12187.22, + "probability": 0.131 + }, + { + "start": 12187.22, + "end": 12189.14, + "probability": 0.7379 + }, + { + "start": 12189.56, + "end": 12192.94, + "probability": 0.9612 + }, + { + "start": 12193.54, + "end": 12199.5, + "probability": 0.9701 + }, + { + "start": 12200.0, + "end": 12200.52, + "probability": 0.8594 + }, + { + "start": 12201.0, + "end": 12202.0, + "probability": 0.7203 + }, + { + "start": 12202.42, + "end": 12204.68, + "probability": 0.9944 + }, + { + "start": 12205.08, + "end": 12211.92, + "probability": 0.996 + }, + { + "start": 12212.18, + "end": 12214.12, + "probability": 0.9965 + }, + { + "start": 12215.25, + "end": 12215.7, + "probability": 0.9208 + }, + { + "start": 12216.06, + "end": 12217.96, + "probability": 0.5556 + }, + { + "start": 12218.16, + "end": 12219.61, + "probability": 0.9088 + }, + { + "start": 12220.24, + "end": 12225.02, + "probability": 0.9639 + }, + { + "start": 12225.02, + "end": 12228.76, + "probability": 0.9954 + }, + { + "start": 12229.24, + "end": 12230.78, + "probability": 0.6523 + }, + { + "start": 12231.6, + "end": 12233.06, + "probability": 0.9365 + }, + { + "start": 12233.5, + "end": 12236.28, + "probability": 0.9767 + }, + { + "start": 12236.86, + "end": 12237.72, + "probability": 0.9843 + }, + { + "start": 12237.9, + "end": 12239.48, + "probability": 0.9842 + }, + { + "start": 12240.1, + "end": 12241.74, + "probability": 0.9943 + }, + { + "start": 12242.12, + "end": 12245.06, + "probability": 0.793 + }, + { + "start": 12245.6, + "end": 12248.04, + "probability": 0.9865 + }, + { + "start": 12248.52, + "end": 12249.82, + "probability": 0.6765 + }, + { + "start": 12250.7, + "end": 12252.72, + "probability": 0.996 + }, + { + "start": 12253.24, + "end": 12253.82, + "probability": 0.8521 + }, + { + "start": 12253.9, + "end": 12256.1, + "probability": 0.9786 + }, + { + "start": 12256.2, + "end": 12257.12, + "probability": 0.947 + }, + { + "start": 12257.26, + "end": 12258.3, + "probability": 0.6166 + }, + { + "start": 12258.9, + "end": 12260.88, + "probability": 0.8535 + }, + { + "start": 12261.06, + "end": 12263.08, + "probability": 0.9328 + }, + { + "start": 12263.36, + "end": 12264.34, + "probability": 0.741 + }, + { + "start": 12264.56, + "end": 12264.98, + "probability": 0.7783 + }, + { + "start": 12266.1, + "end": 12267.02, + "probability": 0.7924 + }, + { + "start": 12267.46, + "end": 12270.0, + "probability": 0.7995 + }, + { + "start": 12270.94, + "end": 12273.22, + "probability": 0.6565 + }, + { + "start": 12274.28, + "end": 12277.28, + "probability": 0.9129 + }, + { + "start": 12278.15, + "end": 12279.37, + "probability": 0.8179 + }, + { + "start": 12281.2, + "end": 12281.62, + "probability": 0.9084 + }, + { + "start": 12287.02, + "end": 12289.16, + "probability": 0.9468 + }, + { + "start": 12292.58, + "end": 12294.22, + "probability": 0.2798 + }, + { + "start": 12294.56, + "end": 12296.38, + "probability": 0.6682 + }, + { + "start": 12298.18, + "end": 12299.58, + "probability": 0.7421 + }, + { + "start": 12300.42, + "end": 12302.04, + "probability": 0.9418 + }, + { + "start": 12303.16, + "end": 12304.76, + "probability": 0.9939 + }, + { + "start": 12305.36, + "end": 12308.08, + "probability": 0.8063 + }, + { + "start": 12309.06, + "end": 12312.98, + "probability": 0.9956 + }, + { + "start": 12312.98, + "end": 12318.38, + "probability": 0.9942 + }, + { + "start": 12319.16, + "end": 12320.76, + "probability": 0.9176 + }, + { + "start": 12321.02, + "end": 12322.74, + "probability": 0.7511 + }, + { + "start": 12323.2, + "end": 12325.44, + "probability": 0.897 + }, + { + "start": 12325.58, + "end": 12329.5, + "probability": 0.9812 + }, + { + "start": 12330.6, + "end": 12330.82, + "probability": 0.9392 + }, + { + "start": 12331.54, + "end": 12335.06, + "probability": 0.912 + }, + { + "start": 12335.88, + "end": 12337.1, + "probability": 0.562 + }, + { + "start": 12337.4, + "end": 12338.76, + "probability": 0.8267 + }, + { + "start": 12339.08, + "end": 12340.41, + "probability": 0.99 + }, + { + "start": 12341.02, + "end": 12347.04, + "probability": 0.978 + }, + { + "start": 12347.54, + "end": 12353.12, + "probability": 0.9235 + }, + { + "start": 12353.46, + "end": 12355.6, + "probability": 0.911 + }, + { + "start": 12356.24, + "end": 12359.22, + "probability": 0.6422 + }, + { + "start": 12359.88, + "end": 12362.4, + "probability": 0.9238 + }, + { + "start": 12362.92, + "end": 12363.55, + "probability": 0.9502 + }, + { + "start": 12363.68, + "end": 12367.66, + "probability": 0.9653 + }, + { + "start": 12368.26, + "end": 12369.26, + "probability": 0.5364 + }, + { + "start": 12369.32, + "end": 12370.8, + "probability": 0.8609 + }, + { + "start": 12370.98, + "end": 12374.68, + "probability": 0.9718 + }, + { + "start": 12375.22, + "end": 12380.48, + "probability": 0.9442 + }, + { + "start": 12380.6, + "end": 12385.92, + "probability": 0.9394 + }, + { + "start": 12386.16, + "end": 12393.68, + "probability": 0.9562 + }, + { + "start": 12393.74, + "end": 12394.92, + "probability": 0.8612 + }, + { + "start": 12395.4, + "end": 12398.2, + "probability": 0.9116 + }, + { + "start": 12399.82, + "end": 12402.14, + "probability": 0.8601 + }, + { + "start": 12403.78, + "end": 12406.46, + "probability": 0.9441 + }, + { + "start": 12406.58, + "end": 12414.6, + "probability": 0.9941 + }, + { + "start": 12414.66, + "end": 12418.62, + "probability": 0.6458 + }, + { + "start": 12418.96, + "end": 12422.28, + "probability": 0.9854 + }, + { + "start": 12422.28, + "end": 12426.6, + "probability": 0.9871 + }, + { + "start": 12427.16, + "end": 12431.36, + "probability": 0.6717 + }, + { + "start": 12432.04, + "end": 12432.24, + "probability": 0.303 + }, + { + "start": 12432.28, + "end": 12435.24, + "probability": 0.9653 + }, + { + "start": 12435.36, + "end": 12436.48, + "probability": 0.8654 + }, + { + "start": 12437.26, + "end": 12438.46, + "probability": 0.9838 + }, + { + "start": 12439.1, + "end": 12440.34, + "probability": 0.615 + }, + { + "start": 12440.4, + "end": 12441.0, + "probability": 0.7286 + }, + { + "start": 12441.1, + "end": 12442.62, + "probability": 0.9863 + }, + { + "start": 12442.86, + "end": 12446.64, + "probability": 0.9963 + }, + { + "start": 12446.64, + "end": 12453.0, + "probability": 0.7123 + }, + { + "start": 12453.24, + "end": 12456.8, + "probability": 0.75 + }, + { + "start": 12457.76, + "end": 12462.12, + "probability": 0.6845 + }, + { + "start": 12462.2, + "end": 12463.31, + "probability": 0.6697 + }, + { + "start": 12463.96, + "end": 12464.92, + "probability": 0.7392 + }, + { + "start": 12465.22, + "end": 12469.7, + "probability": 0.8546 + }, + { + "start": 12470.58, + "end": 12471.46, + "probability": 0.584 + }, + { + "start": 12471.62, + "end": 12474.66, + "probability": 0.4597 + }, + { + "start": 12475.12, + "end": 12476.54, + "probability": 0.9869 + }, + { + "start": 12477.42, + "end": 12478.54, + "probability": 0.6504 + }, + { + "start": 12479.08, + "end": 12484.68, + "probability": 0.9273 + }, + { + "start": 12484.68, + "end": 12490.3, + "probability": 0.8831 + }, + { + "start": 12491.0, + "end": 12494.94, + "probability": 0.9377 + }, + { + "start": 12495.9, + "end": 12497.98, + "probability": 0.4778 + }, + { + "start": 12497.98, + "end": 12499.44, + "probability": 0.6517 + }, + { + "start": 12499.58, + "end": 12501.6, + "probability": 0.7746 + }, + { + "start": 12505.34, + "end": 12505.96, + "probability": 0.6838 + }, + { + "start": 12511.62, + "end": 12512.36, + "probability": 0.8135 + }, + { + "start": 12518.28, + "end": 12518.76, + "probability": 0.3733 + }, + { + "start": 12519.38, + "end": 12521.16, + "probability": 0.8045 + }, + { + "start": 12521.84, + "end": 12522.02, + "probability": 0.6159 + }, + { + "start": 12522.14, + "end": 12523.35, + "probability": 0.9707 + }, + { + "start": 12523.66, + "end": 12526.7, + "probability": 0.9601 + }, + { + "start": 12526.7, + "end": 12528.76, + "probability": 0.9828 + }, + { + "start": 12529.32, + "end": 12530.08, + "probability": 0.8564 + }, + { + "start": 12530.66, + "end": 12533.3, + "probability": 0.9722 + }, + { + "start": 12533.66, + "end": 12535.46, + "probability": 0.935 + }, + { + "start": 12536.18, + "end": 12537.62, + "probability": 0.7051 + }, + { + "start": 12538.4, + "end": 12541.72, + "probability": 0.9954 + }, + { + "start": 12542.48, + "end": 12543.9, + "probability": 0.9925 + }, + { + "start": 12544.0, + "end": 12545.04, + "probability": 0.9177 + }, + { + "start": 12545.56, + "end": 12547.38, + "probability": 0.9467 + }, + { + "start": 12548.08, + "end": 12550.3, + "probability": 0.9715 + }, + { + "start": 12551.5, + "end": 12554.92, + "probability": 0.9571 + }, + { + "start": 12555.66, + "end": 12561.04, + "probability": 0.978 + }, + { + "start": 12561.1, + "end": 12561.58, + "probability": 0.6716 + }, + { + "start": 12561.7, + "end": 12562.32, + "probability": 0.5665 + }, + { + "start": 12563.24, + "end": 12566.3, + "probability": 0.9118 + }, + { + "start": 12566.74, + "end": 12567.72, + "probability": 0.9912 + }, + { + "start": 12568.1, + "end": 12568.92, + "probability": 0.75 + }, + { + "start": 12568.98, + "end": 12569.26, + "probability": 0.7909 + }, + { + "start": 12569.54, + "end": 12570.46, + "probability": 0.999 + }, + { + "start": 12571.08, + "end": 12573.0, + "probability": 0.9939 + }, + { + "start": 12573.86, + "end": 12577.17, + "probability": 0.991 + }, + { + "start": 12577.6, + "end": 12578.96, + "probability": 0.8552 + }, + { + "start": 12580.18, + "end": 12582.32, + "probability": 0.9966 + }, + { + "start": 12582.32, + "end": 12587.02, + "probability": 0.9967 + }, + { + "start": 12587.5, + "end": 12589.48, + "probability": 0.8176 + }, + { + "start": 12590.26, + "end": 12592.94, + "probability": 0.9053 + }, + { + "start": 12593.08, + "end": 12593.68, + "probability": 0.7548 + }, + { + "start": 12593.76, + "end": 12594.38, + "probability": 0.6736 + }, + { + "start": 12594.48, + "end": 12594.62, + "probability": 0.6992 + }, + { + "start": 12595.1, + "end": 12598.02, + "probability": 0.9922 + }, + { + "start": 12598.5, + "end": 12599.38, + "probability": 0.9959 + }, + { + "start": 12599.9, + "end": 12603.3, + "probability": 0.9861 + }, + { + "start": 12603.74, + "end": 12607.08, + "probability": 0.9754 + }, + { + "start": 12607.26, + "end": 12608.34, + "probability": 0.9561 + }, + { + "start": 12608.56, + "end": 12610.14, + "probability": 0.9757 + }, + { + "start": 12610.24, + "end": 12611.0, + "probability": 0.6958 + }, + { + "start": 12611.5, + "end": 12612.39, + "probability": 0.9323 + }, + { + "start": 12612.44, + "end": 12616.24, + "probability": 0.9678 + }, + { + "start": 12616.68, + "end": 12617.4, + "probability": 0.8155 + }, + { + "start": 12617.94, + "end": 12619.52, + "probability": 0.6589 + }, + { + "start": 12619.64, + "end": 12620.78, + "probability": 0.9824 + }, + { + "start": 12620.98, + "end": 12622.06, + "probability": 0.969 + }, + { + "start": 12622.38, + "end": 12623.58, + "probability": 0.964 + }, + { + "start": 12624.18, + "end": 12625.24, + "probability": 0.9827 + }, + { + "start": 12625.78, + "end": 12626.16, + "probability": 0.8469 + }, + { + "start": 12626.46, + "end": 12627.84, + "probability": 0.9759 + }, + { + "start": 12628.32, + "end": 12631.32, + "probability": 0.5885 + }, + { + "start": 12632.1, + "end": 12633.18, + "probability": 0.833 + }, + { + "start": 12633.36, + "end": 12634.38, + "probability": 0.97 + }, + { + "start": 12634.6, + "end": 12637.64, + "probability": 0.9959 + }, + { + "start": 12638.7, + "end": 12642.16, + "probability": 0.9888 + }, + { + "start": 12642.86, + "end": 12643.72, + "probability": 0.5518 + }, + { + "start": 12644.34, + "end": 12647.28, + "probability": 0.963 + }, + { + "start": 12647.9, + "end": 12650.66, + "probability": 0.974 + }, + { + "start": 12651.2, + "end": 12653.98, + "probability": 0.9182 + }, + { + "start": 12654.58, + "end": 12656.58, + "probability": 0.9569 + }, + { + "start": 12657.12, + "end": 12658.52, + "probability": 0.9498 + }, + { + "start": 12658.62, + "end": 12659.98, + "probability": 0.8855 + }, + { + "start": 12661.0, + "end": 12663.92, + "probability": 0.984 + }, + { + "start": 12664.56, + "end": 12666.02, + "probability": 0.8812 + }, + { + "start": 12666.9, + "end": 12668.9, + "probability": 0.6449 + }, + { + "start": 12668.98, + "end": 12669.86, + "probability": 0.8922 + }, + { + "start": 12670.28, + "end": 12670.76, + "probability": 0.3713 + }, + { + "start": 12670.9, + "end": 12671.72, + "probability": 0.8511 + }, + { + "start": 12672.14, + "end": 12675.34, + "probability": 0.979 + }, + { + "start": 12675.46, + "end": 12678.3, + "probability": 0.9982 + }, + { + "start": 12678.58, + "end": 12680.03, + "probability": 0.9956 + }, + { + "start": 12682.88, + "end": 12686.27, + "probability": 0.9906 + }, + { + "start": 12686.38, + "end": 12686.58, + "probability": 0.08 + }, + { + "start": 12686.62, + "end": 12687.94, + "probability": 0.9475 + }, + { + "start": 12688.52, + "end": 12689.92, + "probability": 0.9556 + }, + { + "start": 12689.96, + "end": 12691.32, + "probability": 0.9989 + }, + { + "start": 12692.04, + "end": 12692.16, + "probability": 0.3784 + }, + { + "start": 12692.32, + "end": 12694.5, + "probability": 0.8944 + }, + { + "start": 12695.04, + "end": 12698.02, + "probability": 0.9878 + }, + { + "start": 12698.8, + "end": 12702.62, + "probability": 0.9927 + }, + { + "start": 12702.8, + "end": 12704.14, + "probability": 0.8388 + }, + { + "start": 12704.18, + "end": 12706.46, + "probability": 0.9873 + }, + { + "start": 12706.8, + "end": 12708.28, + "probability": 0.9969 + }, + { + "start": 12708.84, + "end": 12710.88, + "probability": 0.9667 + }, + { + "start": 12711.36, + "end": 12711.84, + "probability": 0.9709 + }, + { + "start": 12711.98, + "end": 12712.48, + "probability": 0.7729 + }, + { + "start": 12712.98, + "end": 12716.2, + "probability": 0.8884 + }, + { + "start": 12716.54, + "end": 12717.26, + "probability": 0.835 + }, + { + "start": 12717.64, + "end": 12718.34, + "probability": 0.8459 + }, + { + "start": 12718.64, + "end": 12719.56, + "probability": 0.8751 + }, + { + "start": 12719.66, + "end": 12721.04, + "probability": 0.9548 + }, + { + "start": 12721.44, + "end": 12723.98, + "probability": 0.6642 + }, + { + "start": 12724.0, + "end": 12726.96, + "probability": 0.9579 + }, + { + "start": 12727.8, + "end": 12728.4, + "probability": 0.2324 + }, + { + "start": 12728.4, + "end": 12728.4, + "probability": 0.6051 + }, + { + "start": 12728.4, + "end": 12728.4, + "probability": 0.0969 + }, + { + "start": 12728.4, + "end": 12728.76, + "probability": 0.1944 + }, + { + "start": 12729.0, + "end": 12729.8, + "probability": 0.1095 + }, + { + "start": 12730.24, + "end": 12732.0, + "probability": 0.1124 + }, + { + "start": 12732.1, + "end": 12734.78, + "probability": 0.191 + }, + { + "start": 12734.78, + "end": 12735.82, + "probability": 0.1675 + }, + { + "start": 12736.28, + "end": 12738.68, + "probability": 0.8735 + }, + { + "start": 12739.01, + "end": 12741.72, + "probability": 0.6848 + }, + { + "start": 12742.46, + "end": 12743.3, + "probability": 0.8627 + }, + { + "start": 12744.48, + "end": 12744.62, + "probability": 0.9866 + }, + { + "start": 12745.18, + "end": 12749.08, + "probability": 0.8965 + }, + { + "start": 12749.7, + "end": 12752.02, + "probability": 0.8622 + }, + { + "start": 12753.7, + "end": 12754.96, + "probability": 0.6714 + }, + { + "start": 12755.22, + "end": 12756.14, + "probability": 0.7137 + }, + { + "start": 12759.28, + "end": 12762.84, + "probability": 0.7331 + }, + { + "start": 12763.92, + "end": 12764.96, + "probability": 0.9091 + }, + { + "start": 12765.5, + "end": 12766.08, + "probability": 0.1714 + }, + { + "start": 12767.72, + "end": 12768.64, + "probability": 0.8969 + }, + { + "start": 12769.24, + "end": 12770.76, + "probability": 0.9704 + }, + { + "start": 12770.88, + "end": 12771.38, + "probability": 0.7079 + }, + { + "start": 12772.66, + "end": 12773.46, + "probability": 0.5416 + }, + { + "start": 12774.38, + "end": 12776.38, + "probability": 0.0693 + }, + { + "start": 12776.76, + "end": 12782.08, + "probability": 0.0429 + }, + { + "start": 12782.82, + "end": 12782.82, + "probability": 0.165 + }, + { + "start": 12782.82, + "end": 12782.82, + "probability": 0.1068 + }, + { + "start": 12782.82, + "end": 12786.3, + "probability": 0.9312 + }, + { + "start": 12786.88, + "end": 12788.98, + "probability": 0.9769 + }, + { + "start": 12789.96, + "end": 12792.68, + "probability": 0.8918 + }, + { + "start": 12793.4, + "end": 12797.18, + "probability": 0.9935 + }, + { + "start": 12797.64, + "end": 12802.12, + "probability": 0.9824 + }, + { + "start": 12802.18, + "end": 12804.22, + "probability": 0.9963 + }, + { + "start": 12805.04, + "end": 12807.42, + "probability": 0.9266 + }, + { + "start": 12808.4, + "end": 12809.84, + "probability": 0.9723 + }, + { + "start": 12809.94, + "end": 12812.82, + "probability": 0.9956 + }, + { + "start": 12813.16, + "end": 12818.52, + "probability": 0.9985 + }, + { + "start": 12818.92, + "end": 12820.68, + "probability": 0.9942 + }, + { + "start": 12820.92, + "end": 12822.44, + "probability": 0.99 + }, + { + "start": 12822.72, + "end": 12826.6, + "probability": 0.996 + }, + { + "start": 12826.6, + "end": 12830.84, + "probability": 0.9978 + }, + { + "start": 12831.24, + "end": 12835.08, + "probability": 0.9952 + }, + { + "start": 12835.44, + "end": 12837.72, + "probability": 0.7225 + }, + { + "start": 12838.08, + "end": 12841.16, + "probability": 0.9121 + }, + { + "start": 12841.54, + "end": 12841.56, + "probability": 0.0503 + }, + { + "start": 12841.56, + "end": 12841.56, + "probability": 0.0476 + }, + { + "start": 12841.56, + "end": 12842.72, + "probability": 0.887 + }, + { + "start": 12842.94, + "end": 12846.32, + "probability": 0.9048 + }, + { + "start": 12846.88, + "end": 12849.06, + "probability": 0.9294 + }, + { + "start": 12849.86, + "end": 12851.24, + "probability": 0.939 + }, + { + "start": 12851.34, + "end": 12852.32, + "probability": 0.9486 + }, + { + "start": 12852.68, + "end": 12853.78, + "probability": 0.8492 + }, + { + "start": 12854.06, + "end": 12855.66, + "probability": 0.9238 + }, + { + "start": 12856.26, + "end": 12857.58, + "probability": 0.7961 + }, + { + "start": 12858.08, + "end": 12859.92, + "probability": 0.9751 + }, + { + "start": 12860.46, + "end": 12861.54, + "probability": 0.9391 + }, + { + "start": 12861.76, + "end": 12862.86, + "probability": 0.9767 + }, + { + "start": 12863.02, + "end": 12864.3, + "probability": 0.9658 + }, + { + "start": 12864.34, + "end": 12866.86, + "probability": 0.8308 + }, + { + "start": 12866.96, + "end": 12867.78, + "probability": 0.9417 + }, + { + "start": 12867.92, + "end": 12868.72, + "probability": 0.9634 + }, + { + "start": 12869.06, + "end": 12872.34, + "probability": 0.9753 + }, + { + "start": 12873.26, + "end": 12878.48, + "probability": 0.972 + }, + { + "start": 12879.5, + "end": 12881.42, + "probability": 0.9925 + }, + { + "start": 12881.88, + "end": 12883.9, + "probability": 0.7561 + }, + { + "start": 12884.2, + "end": 12885.42, + "probability": 0.6786 + }, + { + "start": 12885.92, + "end": 12888.9, + "probability": 0.9888 + }, + { + "start": 12889.44, + "end": 12892.5, + "probability": 0.9762 + }, + { + "start": 12893.06, + "end": 12898.72, + "probability": 0.9242 + }, + { + "start": 12899.78, + "end": 12900.82, + "probability": 0.9448 + }, + { + "start": 12901.46, + "end": 12905.42, + "probability": 0.9976 + }, + { + "start": 12905.88, + "end": 12907.66, + "probability": 0.9685 + }, + { + "start": 12908.5, + "end": 12912.24, + "probability": 0.9541 + }, + { + "start": 12913.48, + "end": 12913.64, + "probability": 0.5472 + }, + { + "start": 12913.66, + "end": 12914.56, + "probability": 0.833 + }, + { + "start": 12915.06, + "end": 12916.6, + "probability": 0.7655 + }, + { + "start": 12916.66, + "end": 12919.36, + "probability": 0.8789 + }, + { + "start": 12919.9, + "end": 12921.06, + "probability": 0.958 + }, + { + "start": 12921.78, + "end": 12924.66, + "probability": 0.9766 + }, + { + "start": 12925.38, + "end": 12927.94, + "probability": 0.9585 + }, + { + "start": 12930.06, + "end": 12933.18, + "probability": 0.9678 + }, + { + "start": 12934.6, + "end": 12937.76, + "probability": 0.8926 + }, + { + "start": 12938.48, + "end": 12943.12, + "probability": 0.8904 + }, + { + "start": 12944.14, + "end": 12944.86, + "probability": 0.8755 + }, + { + "start": 12945.22, + "end": 12949.0, + "probability": 0.998 + }, + { + "start": 12949.0, + "end": 12952.48, + "probability": 0.9926 + }, + { + "start": 12952.7, + "end": 12953.52, + "probability": 0.9407 + }, + { + "start": 12954.28, + "end": 12959.66, + "probability": 0.9971 + }, + { + "start": 12959.78, + "end": 12960.44, + "probability": 0.942 + }, + { + "start": 12960.5, + "end": 12961.61, + "probability": 0.9539 + }, + { + "start": 12962.34, + "end": 12965.9, + "probability": 0.9814 + }, + { + "start": 12965.9, + "end": 12970.72, + "probability": 0.9965 + }, + { + "start": 12971.18, + "end": 12972.34, + "probability": 0.9956 + }, + { + "start": 12972.42, + "end": 12973.54, + "probability": 0.5273 + }, + { + "start": 12973.92, + "end": 12974.34, + "probability": 0.9178 + }, + { + "start": 12974.38, + "end": 12975.28, + "probability": 0.9319 + }, + { + "start": 12975.66, + "end": 12982.18, + "probability": 0.9228 + }, + { + "start": 12982.5, + "end": 12984.66, + "probability": 0.9485 + }, + { + "start": 12984.96, + "end": 12985.82, + "probability": 0.9781 + }, + { + "start": 12986.08, + "end": 12987.02, + "probability": 0.9084 + }, + { + "start": 12987.24, + "end": 12990.82, + "probability": 0.9906 + }, + { + "start": 12991.24, + "end": 12991.74, + "probability": 0.7531 + }, + { + "start": 12992.0, + "end": 12992.28, + "probability": 0.7925 + }, + { + "start": 12992.32, + "end": 12992.4, + "probability": 0.045 + }, + { + "start": 12992.4, + "end": 12992.6, + "probability": 0.6705 + }, + { + "start": 12992.78, + "end": 12994.44, + "probability": 0.9746 + }, + { + "start": 13003.92, + "end": 13004.78, + "probability": 0.5941 + }, + { + "start": 13005.66, + "end": 13007.64, + "probability": 0.7559 + }, + { + "start": 13008.12, + "end": 13008.68, + "probability": 0.7771 + }, + { + "start": 13010.44, + "end": 13011.04, + "probability": 0.5435 + }, + { + "start": 13011.04, + "end": 13011.68, + "probability": 0.8673 + }, + { + "start": 13015.91, + "end": 13018.6, + "probability": 0.977 + }, + { + "start": 13020.38, + "end": 13025.16, + "probability": 0.9941 + }, + { + "start": 13026.98, + "end": 13027.32, + "probability": 0.9251 + }, + { + "start": 13028.68, + "end": 13029.93, + "probability": 0.9873 + }, + { + "start": 13031.84, + "end": 13034.64, + "probability": 0.9622 + }, + { + "start": 13035.82, + "end": 13037.8, + "probability": 0.9896 + }, + { + "start": 13038.54, + "end": 13038.58, + "probability": 0.3636 + }, + { + "start": 13038.58, + "end": 13039.76, + "probability": 0.8021 + }, + { + "start": 13039.98, + "end": 13041.52, + "probability": 0.9561 + }, + { + "start": 13042.54, + "end": 13042.6, + "probability": 0.0493 + }, + { + "start": 13042.6, + "end": 13043.9, + "probability": 0.6757 + }, + { + "start": 13044.54, + "end": 13047.16, + "probability": 0.8802 + }, + { + "start": 13048.08, + "end": 13049.56, + "probability": 0.8013 + }, + { + "start": 13050.12, + "end": 13051.26, + "probability": 0.7847 + }, + { + "start": 13051.94, + "end": 13054.24, + "probability": 0.9961 + }, + { + "start": 13054.3, + "end": 13054.4, + "probability": 0.7099 + }, + { + "start": 13054.58, + "end": 13055.22, + "probability": 0.6987 + }, + { + "start": 13055.68, + "end": 13056.52, + "probability": 0.9577 + }, + { + "start": 13057.42, + "end": 13060.02, + "probability": 0.9645 + }, + { + "start": 13060.86, + "end": 13062.5, + "probability": 0.9387 + }, + { + "start": 13063.16, + "end": 13067.06, + "probability": 0.9146 + }, + { + "start": 13067.76, + "end": 13069.48, + "probability": 0.9487 + }, + { + "start": 13070.7, + "end": 13071.72, + "probability": 0.8499 + }, + { + "start": 13071.86, + "end": 13075.18, + "probability": 0.9618 + }, + { + "start": 13075.28, + "end": 13075.78, + "probability": 0.7739 + }, + { + "start": 13076.4, + "end": 13077.0, + "probability": 0.8335 + }, + { + "start": 13077.54, + "end": 13078.84, + "probability": 0.8575 + }, + { + "start": 13078.92, + "end": 13080.64, + "probability": 0.9165 + }, + { + "start": 13080.68, + "end": 13084.12, + "probability": 0.8928 + }, + { + "start": 13084.22, + "end": 13089.84, + "probability": 0.9023 + }, + { + "start": 13089.94, + "end": 13095.26, + "probability": 0.9749 + }, + { + "start": 13095.56, + "end": 13100.88, + "probability": 0.9924 + }, + { + "start": 13101.02, + "end": 13102.86, + "probability": 0.5844 + }, + { + "start": 13103.54, + "end": 13105.98, + "probability": 0.9382 + }, + { + "start": 13106.32, + "end": 13109.14, + "probability": 0.6673 + }, + { + "start": 13109.26, + "end": 13109.8, + "probability": 0.797 + }, + { + "start": 13109.88, + "end": 13110.9, + "probability": 0.9127 + }, + { + "start": 13111.0, + "end": 13111.48, + "probability": 0.7929 + }, + { + "start": 13111.98, + "end": 13112.86, + "probability": 0.7446 + }, + { + "start": 13112.9, + "end": 13115.6, + "probability": 0.8098 + }, + { + "start": 13116.14, + "end": 13119.26, + "probability": 0.5907 + }, + { + "start": 13119.96, + "end": 13121.82, + "probability": 0.7488 + }, + { + "start": 13122.5, + "end": 13123.46, + "probability": 0.6133 + }, + { + "start": 13125.16, + "end": 13126.06, + "probability": 0.2358 + }, + { + "start": 13126.06, + "end": 13126.86, + "probability": 0.7639 + }, + { + "start": 13126.92, + "end": 13127.9, + "probability": 0.7513 + }, + { + "start": 13128.0, + "end": 13133.18, + "probability": 0.6849 + }, + { + "start": 13134.16, + "end": 13136.82, + "probability": 0.6889 + }, + { + "start": 13137.42, + "end": 13139.22, + "probability": 0.7595 + }, + { + "start": 13139.26, + "end": 13141.18, + "probability": 0.9644 + }, + { + "start": 13141.2, + "end": 13141.94, + "probability": 0.855 + }, + { + "start": 13142.62, + "end": 13143.76, + "probability": 0.9395 + }, + { + "start": 13145.04, + "end": 13146.38, + "probability": 0.9899 + }, + { + "start": 13146.92, + "end": 13147.64, + "probability": 0.567 + }, + { + "start": 13148.18, + "end": 13150.52, + "probability": 0.9644 + }, + { + "start": 13150.84, + "end": 13153.02, + "probability": 0.6872 + }, + { + "start": 13153.48, + "end": 13153.8, + "probability": 0.6829 + }, + { + "start": 13153.86, + "end": 13156.2, + "probability": 0.9446 + }, + { + "start": 13156.76, + "end": 13158.94, + "probability": 0.9351 + }, + { + "start": 13159.0, + "end": 13159.42, + "probability": 0.7821 + }, + { + "start": 13160.1, + "end": 13160.48, + "probability": 0.9047 + }, + { + "start": 13161.72, + "end": 13162.48, + "probability": 0.7362 + }, + { + "start": 13162.48, + "end": 13164.18, + "probability": 0.8734 + }, + { + "start": 13172.16, + "end": 13172.16, + "probability": 0.4124 + }, + { + "start": 13172.16, + "end": 13172.94, + "probability": 0.0465 + }, + { + "start": 13178.66, + "end": 13178.86, + "probability": 0.15 + }, + { + "start": 13178.86, + "end": 13180.16, + "probability": 0.073 + }, + { + "start": 13180.16, + "end": 13180.16, + "probability": 0.0617 + }, + { + "start": 13180.16, + "end": 13180.16, + "probability": 0.0036 + }, + { + "start": 13199.9, + "end": 13200.68, + "probability": 0.376 + }, + { + "start": 13201.98, + "end": 13205.44, + "probability": 0.9805 + }, + { + "start": 13205.74, + "end": 13208.14, + "probability": 0.8866 + }, + { + "start": 13208.32, + "end": 13210.16, + "probability": 0.9958 + }, + { + "start": 13210.74, + "end": 13213.88, + "probability": 0.9974 + }, + { + "start": 13215.02, + "end": 13217.16, + "probability": 0.9883 + }, + { + "start": 13218.68, + "end": 13219.0, + "probability": 0.4929 + }, + { + "start": 13219.04, + "end": 13224.0, + "probability": 0.91 + }, + { + "start": 13224.1, + "end": 13228.78, + "probability": 0.9955 + }, + { + "start": 13228.78, + "end": 13232.45, + "probability": 0.9985 + }, + { + "start": 13233.78, + "end": 13234.06, + "probability": 0.2263 + }, + { + "start": 13234.06, + "end": 13236.08, + "probability": 0.9263 + }, + { + "start": 13236.18, + "end": 13238.5, + "probability": 0.9068 + }, + { + "start": 13239.74, + "end": 13242.56, + "probability": 0.8722 + }, + { + "start": 13242.94, + "end": 13245.56, + "probability": 0.9932 + }, + { + "start": 13245.56, + "end": 13249.08, + "probability": 0.9621 + }, + { + "start": 13250.22, + "end": 13251.52, + "probability": 0.9276 + }, + { + "start": 13252.68, + "end": 13257.82, + "probability": 0.9889 + }, + { + "start": 13258.58, + "end": 13259.8, + "probability": 0.9961 + }, + { + "start": 13260.3, + "end": 13261.88, + "probability": 0.9986 + }, + { + "start": 13261.98, + "end": 13262.9, + "probability": 0.7776 + }, + { + "start": 13263.84, + "end": 13267.0, + "probability": 0.8014 + }, + { + "start": 13267.16, + "end": 13270.1, + "probability": 0.8994 + }, + { + "start": 13270.36, + "end": 13272.22, + "probability": 0.9553 + }, + { + "start": 13272.8, + "end": 13276.0, + "probability": 0.9922 + }, + { + "start": 13276.0, + "end": 13279.48, + "probability": 0.98 + }, + { + "start": 13280.4, + "end": 13280.4, + "probability": 0.1209 + }, + { + "start": 13280.4, + "end": 13282.22, + "probability": 0.8442 + }, + { + "start": 13282.26, + "end": 13284.48, + "probability": 0.7255 + }, + { + "start": 13285.72, + "end": 13288.66, + "probability": 0.998 + }, + { + "start": 13289.16, + "end": 13293.32, + "probability": 0.998 + }, + { + "start": 13293.66, + "end": 13295.76, + "probability": 0.8335 + }, + { + "start": 13296.94, + "end": 13300.54, + "probability": 0.998 + }, + { + "start": 13300.54, + "end": 13304.28, + "probability": 0.9978 + }, + { + "start": 13305.82, + "end": 13309.86, + "probability": 0.9536 + }, + { + "start": 13309.98, + "end": 13311.18, + "probability": 0.916 + }, + { + "start": 13311.28, + "end": 13312.16, + "probability": 0.4448 + }, + { + "start": 13313.08, + "end": 13316.38, + "probability": 0.996 + }, + { + "start": 13316.82, + "end": 13319.26, + "probability": 0.9745 + }, + { + "start": 13319.66, + "end": 13321.26, + "probability": 0.9802 + }, + { + "start": 13321.7, + "end": 13325.72, + "probability": 0.9833 + }, + { + "start": 13325.84, + "end": 13326.8, + "probability": 0.9249 + }, + { + "start": 13327.46, + "end": 13329.96, + "probability": 0.8142 + }, + { + "start": 13330.66, + "end": 13334.76, + "probability": 0.9681 + }, + { + "start": 13335.38, + "end": 13338.9, + "probability": 0.9807 + }, + { + "start": 13339.66, + "end": 13342.54, + "probability": 0.9963 + }, + { + "start": 13343.68, + "end": 13346.44, + "probability": 0.6417 + }, + { + "start": 13347.36, + "end": 13351.38, + "probability": 0.9463 + }, + { + "start": 13351.5, + "end": 13354.68, + "probability": 0.9189 + }, + { + "start": 13355.24, + "end": 13358.28, + "probability": 0.9585 + }, + { + "start": 13359.28, + "end": 13362.2, + "probability": 0.8894 + }, + { + "start": 13362.94, + "end": 13368.08, + "probability": 0.9976 + }, + { + "start": 13368.08, + "end": 13373.26, + "probability": 0.9987 + }, + { + "start": 13374.08, + "end": 13377.76, + "probability": 0.9968 + }, + { + "start": 13378.28, + "end": 13382.7, + "probability": 0.8397 + }, + { + "start": 13383.24, + "end": 13384.58, + "probability": 0.3385 + }, + { + "start": 13384.9, + "end": 13385.5, + "probability": 0.6654 + }, + { + "start": 13385.82, + "end": 13386.12, + "probability": 0.7034 + }, + { + "start": 13387.14, + "end": 13388.56, + "probability": 0.8693 + }, + { + "start": 13389.98, + "end": 13390.68, + "probability": 0.535 + }, + { + "start": 13391.46, + "end": 13391.88, + "probability": 0.0928 + }, + { + "start": 13391.88, + "end": 13392.3, + "probability": 0.2358 + }, + { + "start": 13392.42, + "end": 13394.74, + "probability": 0.833 + }, + { + "start": 13399.18, + "end": 13402.62, + "probability": 0.0272 + }, + { + "start": 13403.46, + "end": 13403.62, + "probability": 0.0455 + }, + { + "start": 13404.69, + "end": 13405.8, + "probability": 0.0664 + }, + { + "start": 13405.8, + "end": 13405.9, + "probability": 0.1134 + }, + { + "start": 13405.9, + "end": 13406.6, + "probability": 0.1677 + }, + { + "start": 13407.08, + "end": 13408.26, + "probability": 0.7527 + }, + { + "start": 13408.64, + "end": 13411.72, + "probability": 0.9088 + }, + { + "start": 13414.16, + "end": 13415.24, + "probability": 0.9449 + }, + { + "start": 13418.02, + "end": 13420.46, + "probability": 0.721 + }, + { + "start": 13420.68, + "end": 13421.86, + "probability": 0.5877 + }, + { + "start": 13422.5, + "end": 13425.52, + "probability": 0.992 + }, + { + "start": 13426.12, + "end": 13434.36, + "probability": 0.9849 + }, + { + "start": 13435.66, + "end": 13439.14, + "probability": 0.9651 + }, + { + "start": 13439.3, + "end": 13442.66, + "probability": 0.8249 + }, + { + "start": 13443.92, + "end": 13446.26, + "probability": 0.8752 + }, + { + "start": 13447.22, + "end": 13452.62, + "probability": 0.8482 + }, + { + "start": 13453.2, + "end": 13454.32, + "probability": 0.815 + }, + { + "start": 13455.1, + "end": 13456.68, + "probability": 0.9407 + }, + { + "start": 13457.0, + "end": 13460.62, + "probability": 0.8981 + }, + { + "start": 13461.14, + "end": 13463.72, + "probability": 0.9983 + }, + { + "start": 13464.0, + "end": 13465.92, + "probability": 0.9149 + }, + { + "start": 13466.36, + "end": 13468.74, + "probability": 0.998 + }, + { + "start": 13468.82, + "end": 13471.8, + "probability": 0.979 + }, + { + "start": 13472.84, + "end": 13477.1, + "probability": 0.9781 + }, + { + "start": 13477.52, + "end": 13481.26, + "probability": 0.697 + }, + { + "start": 13482.28, + "end": 13484.54, + "probability": 0.8762 + }, + { + "start": 13485.36, + "end": 13487.36, + "probability": 0.991 + }, + { + "start": 13488.08, + "end": 13493.74, + "probability": 0.9612 + }, + { + "start": 13494.44, + "end": 13497.08, + "probability": 0.9798 + }, + { + "start": 13498.66, + "end": 13504.08, + "probability": 0.9941 + }, + { + "start": 13504.58, + "end": 13506.26, + "probability": 0.8433 + }, + { + "start": 13506.34, + "end": 13507.52, + "probability": 0.8188 + }, + { + "start": 13508.98, + "end": 13511.93, + "probability": 0.9321 + }, + { + "start": 13512.66, + "end": 13513.47, + "probability": 0.8755 + }, + { + "start": 13514.52, + "end": 13515.04, + "probability": 0.6595 + }, + { + "start": 13515.14, + "end": 13516.64, + "probability": 0.9819 + }, + { + "start": 13516.92, + "end": 13524.06, + "probability": 0.9552 + }, + { + "start": 13525.38, + "end": 13528.96, + "probability": 0.7685 + }, + { + "start": 13530.28, + "end": 13534.68, + "probability": 0.875 + }, + { + "start": 13535.8, + "end": 13537.7, + "probability": 0.767 + }, + { + "start": 13538.34, + "end": 13543.78, + "probability": 0.9811 + }, + { + "start": 13544.0, + "end": 13548.3, + "probability": 0.9967 + }, + { + "start": 13548.92, + "end": 13551.7, + "probability": 0.8452 + }, + { + "start": 13552.28, + "end": 13554.49, + "probability": 0.9722 + }, + { + "start": 13555.94, + "end": 13558.82, + "probability": 0.9792 + }, + { + "start": 13559.74, + "end": 13562.56, + "probability": 0.9347 + }, + { + "start": 13563.56, + "end": 13563.58, + "probability": 0.0312 + }, + { + "start": 13563.58, + "end": 13564.84, + "probability": 0.5 + }, + { + "start": 13565.38, + "end": 13569.64, + "probability": 0.9438 + }, + { + "start": 13570.44, + "end": 13576.83, + "probability": 0.8298 + }, + { + "start": 13577.4, + "end": 13580.44, + "probability": 0.7991 + }, + { + "start": 13581.32, + "end": 13582.3, + "probability": 0.8912 + }, + { + "start": 13582.92, + "end": 13584.72, + "probability": 0.9883 + }, + { + "start": 13585.2, + "end": 13589.6, + "probability": 0.9834 + }, + { + "start": 13590.36, + "end": 13593.96, + "probability": 0.9756 + }, + { + "start": 13594.02, + "end": 13594.62, + "probability": 0.853 + }, + { + "start": 13595.46, + "end": 13596.4, + "probability": 0.5589 + }, + { + "start": 13597.16, + "end": 13598.9, + "probability": 0.6763 + }, + { + "start": 13599.1, + "end": 13599.6, + "probability": 0.9269 + }, + { + "start": 13614.96, + "end": 13615.06, + "probability": 0.2026 + }, + { + "start": 13622.36, + "end": 13624.06, + "probability": 0.3304 + }, + { + "start": 13624.16, + "end": 13625.96, + "probability": 0.8875 + }, + { + "start": 13626.02, + "end": 13626.6, + "probability": 0.5351 + }, + { + "start": 13626.72, + "end": 13627.54, + "probability": 0.6915 + }, + { + "start": 13628.66, + "end": 13633.1, + "probability": 0.9967 + }, + { + "start": 13633.74, + "end": 13637.98, + "probability": 0.9747 + }, + { + "start": 13638.64, + "end": 13642.82, + "probability": 0.9836 + }, + { + "start": 13644.16, + "end": 13646.26, + "probability": 0.6953 + }, + { + "start": 13647.02, + "end": 13650.12, + "probability": 0.7563 + }, + { + "start": 13650.58, + "end": 13654.26, + "probability": 0.9338 + }, + { + "start": 13655.18, + "end": 13656.62, + "probability": 0.9535 + }, + { + "start": 13657.0, + "end": 13657.42, + "probability": 0.7063 + }, + { + "start": 13657.46, + "end": 13660.34, + "probability": 0.8389 + }, + { + "start": 13660.84, + "end": 13662.56, + "probability": 0.8669 + }, + { + "start": 13662.9, + "end": 13666.28, + "probability": 0.9919 + }, + { + "start": 13666.64, + "end": 13668.86, + "probability": 0.9513 + }, + { + "start": 13669.1, + "end": 13670.76, + "probability": 0.9919 + }, + { + "start": 13671.98, + "end": 13675.66, + "probability": 0.9463 + }, + { + "start": 13676.82, + "end": 13679.5, + "probability": 0.9725 + }, + { + "start": 13680.26, + "end": 13684.88, + "probability": 0.9876 + }, + { + "start": 13685.34, + "end": 13686.32, + "probability": 0.7095 + }, + { + "start": 13686.42, + "end": 13689.16, + "probability": 0.9882 + }, + { + "start": 13689.58, + "end": 13693.24, + "probability": 0.9631 + }, + { + "start": 13693.4, + "end": 13696.26, + "probability": 0.9912 + }, + { + "start": 13696.7, + "end": 13698.32, + "probability": 0.6751 + }, + { + "start": 13698.42, + "end": 13700.58, + "probability": 0.8668 + }, + { + "start": 13700.62, + "end": 13703.78, + "probability": 0.8065 + }, + { + "start": 13705.48, + "end": 13706.76, + "probability": 0.9854 + }, + { + "start": 13707.8, + "end": 13712.88, + "probability": 0.9644 + }, + { + "start": 13713.24, + "end": 13714.02, + "probability": 0.8633 + }, + { + "start": 13714.52, + "end": 13715.28, + "probability": 0.5181 + }, + { + "start": 13715.5, + "end": 13716.56, + "probability": 0.8917 + }, + { + "start": 13716.72, + "end": 13717.58, + "probability": 0.8149 + }, + { + "start": 13717.64, + "end": 13719.58, + "probability": 0.7322 + }, + { + "start": 13719.58, + "end": 13720.08, + "probability": 0.3426 + }, + { + "start": 13720.26, + "end": 13723.64, + "probability": 0.9971 + }, + { + "start": 13723.92, + "end": 13724.94, + "probability": 0.857 + }, + { + "start": 13725.88, + "end": 13728.62, + "probability": 0.9955 + }, + { + "start": 13729.24, + "end": 13731.34, + "probability": 0.9797 + }, + { + "start": 13731.62, + "end": 13733.27, + "probability": 0.9987 + }, + { + "start": 13733.9, + "end": 13736.98, + "probability": 0.8145 + }, + { + "start": 13737.4, + "end": 13743.28, + "probability": 0.9893 + }, + { + "start": 13744.22, + "end": 13746.16, + "probability": 0.9569 + }, + { + "start": 13747.16, + "end": 13747.82, + "probability": 0.9951 + }, + { + "start": 13749.13, + "end": 13751.38, + "probability": 0.9932 + }, + { + "start": 13752.62, + "end": 13756.28, + "probability": 0.983 + }, + { + "start": 13757.0, + "end": 13762.32, + "probability": 0.9973 + }, + { + "start": 13762.7, + "end": 13764.1, + "probability": 0.0142 + }, + { + "start": 13765.08, + "end": 13768.82, + "probability": 0.1435 + }, + { + "start": 13768.82, + "end": 13768.88, + "probability": 0.252 + }, + { + "start": 13768.88, + "end": 13768.88, + "probability": 0.2876 + }, + { + "start": 13768.88, + "end": 13770.48, + "probability": 0.5188 + }, + { + "start": 13770.48, + "end": 13772.3, + "probability": 0.681 + }, + { + "start": 13772.74, + "end": 13774.67, + "probability": 0.6866 + }, + { + "start": 13775.12, + "end": 13779.54, + "probability": 0.9695 + }, + { + "start": 13779.98, + "end": 13781.8, + "probability": 0.9902 + }, + { + "start": 13781.98, + "end": 13783.18, + "probability": 0.8507 + }, + { + "start": 13783.72, + "end": 13786.56, + "probability": 0.9601 + }, + { + "start": 13786.6, + "end": 13788.86, + "probability": 0.9165 + }, + { + "start": 13789.42, + "end": 13790.8, + "probability": 0.9644 + }, + { + "start": 13792.7, + "end": 13795.92, + "probability": 0.0178 + }, + { + "start": 13795.92, + "end": 13795.92, + "probability": 0.1696 + }, + { + "start": 13795.92, + "end": 13795.92, + "probability": 0.3592 + }, + { + "start": 13795.92, + "end": 13795.92, + "probability": 0.3899 + }, + { + "start": 13795.92, + "end": 13795.92, + "probability": 0.146 + }, + { + "start": 13795.92, + "end": 13796.56, + "probability": 0.0695 + }, + { + "start": 13796.68, + "end": 13799.3, + "probability": 0.6382 + }, + { + "start": 13799.3, + "end": 13804.92, + "probability": 0.9829 + }, + { + "start": 13805.26, + "end": 13807.62, + "probability": 0.8102 + }, + { + "start": 13808.12, + "end": 13808.12, + "probability": 0.3598 + }, + { + "start": 13808.24, + "end": 13808.26, + "probability": 0.0086 + }, + { + "start": 13808.26, + "end": 13809.44, + "probability": 0.6692 + }, + { + "start": 13809.46, + "end": 13810.62, + "probability": 0.9442 + }, + { + "start": 13810.68, + "end": 13813.88, + "probability": 0.9916 + }, + { + "start": 13814.26, + "end": 13816.08, + "probability": 0.9234 + }, + { + "start": 13816.52, + "end": 13819.56, + "probability": 0.9983 + }, + { + "start": 13819.56, + "end": 13823.2, + "probability": 0.9972 + }, + { + "start": 13823.7, + "end": 13824.54, + "probability": 0.9235 + }, + { + "start": 13825.34, + "end": 13828.58, + "probability": 0.9814 + }, + { + "start": 13829.0, + "end": 13834.16, + "probability": 0.9694 + }, + { + "start": 13834.2, + "end": 13834.68, + "probability": 0.715 + }, + { + "start": 13834.88, + "end": 13835.76, + "probability": 0.6474 + }, + { + "start": 13836.4, + "end": 13840.37, + "probability": 0.8683 + }, + { + "start": 13853.86, + "end": 13855.0, + "probability": 0.3509 + }, + { + "start": 13855.04, + "end": 13857.76, + "probability": 0.9723 + }, + { + "start": 13858.34, + "end": 13859.84, + "probability": 0.8956 + }, + { + "start": 13860.96, + "end": 13862.32, + "probability": 0.9951 + }, + { + "start": 13862.34, + "end": 13863.7, + "probability": 0.9797 + }, + { + "start": 13863.92, + "end": 13868.88, + "probability": 0.9898 + }, + { + "start": 13868.94, + "end": 13871.92, + "probability": 0.9316 + }, + { + "start": 13872.4, + "end": 13875.46, + "probability": 0.9854 + }, + { + "start": 13876.28, + "end": 13879.34, + "probability": 0.9639 + }, + { + "start": 13880.46, + "end": 13883.26, + "probability": 0.9907 + }, + { + "start": 13883.56, + "end": 13884.96, + "probability": 0.9705 + }, + { + "start": 13885.58, + "end": 13886.64, + "probability": 0.675 + }, + { + "start": 13886.7, + "end": 13890.38, + "probability": 0.8893 + }, + { + "start": 13890.84, + "end": 13891.7, + "probability": 0.9019 + }, + { + "start": 13892.02, + "end": 13892.78, + "probability": 0.9015 + }, + { + "start": 13893.2, + "end": 13894.7, + "probability": 0.9166 + }, + { + "start": 13895.82, + "end": 13899.94, + "probability": 0.9979 + }, + { + "start": 13900.74, + "end": 13901.46, + "probability": 0.6524 + }, + { + "start": 13902.93, + "end": 13906.34, + "probability": 0.9882 + }, + { + "start": 13906.44, + "end": 13907.2, + "probability": 0.7125 + }, + { + "start": 13907.78, + "end": 13909.94, + "probability": 0.9862 + }, + { + "start": 13910.08, + "end": 13912.88, + "probability": 0.9925 + }, + { + "start": 13913.44, + "end": 13915.72, + "probability": 0.8696 + }, + { + "start": 13916.1, + "end": 13917.86, + "probability": 0.9984 + }, + { + "start": 13918.18, + "end": 13919.68, + "probability": 0.9702 + }, + { + "start": 13920.42, + "end": 13923.04, + "probability": 0.9811 + }, + { + "start": 13923.42, + "end": 13925.64, + "probability": 0.9339 + }, + { + "start": 13926.18, + "end": 13928.0, + "probability": 0.9137 + }, + { + "start": 13928.06, + "end": 13930.14, + "probability": 0.9961 + }, + { + "start": 13930.34, + "end": 13932.64, + "probability": 0.9867 + }, + { + "start": 13932.86, + "end": 13936.0, + "probability": 0.9329 + }, + { + "start": 13936.06, + "end": 13938.9, + "probability": 0.7231 + }, + { + "start": 13938.96, + "end": 13939.5, + "probability": 0.6526 + }, + { + "start": 13939.6, + "end": 13941.74, + "probability": 0.9137 + }, + { + "start": 13941.74, + "end": 13944.12, + "probability": 0.9744 + }, + { + "start": 13944.42, + "end": 13946.44, + "probability": 0.9961 + }, + { + "start": 13947.34, + "end": 13949.04, + "probability": 0.8874 + }, + { + "start": 13949.2, + "end": 13950.78, + "probability": 0.9976 + }, + { + "start": 13951.0, + "end": 13952.18, + "probability": 0.9886 + }, + { + "start": 13952.72, + "end": 13956.06, + "probability": 0.9649 + }, + { + "start": 13956.06, + "end": 13957.38, + "probability": 0.758 + }, + { + "start": 13957.46, + "end": 13958.56, + "probability": 0.9844 + }, + { + "start": 13958.92, + "end": 13959.98, + "probability": 0.8276 + }, + { + "start": 13960.1, + "end": 13961.02, + "probability": 0.9963 + }, + { + "start": 13961.12, + "end": 13961.74, + "probability": 0.8513 + }, + { + "start": 13962.3, + "end": 13965.46, + "probability": 0.9454 + }, + { + "start": 13965.52, + "end": 13967.04, + "probability": 0.9768 + }, + { + "start": 13967.34, + "end": 13968.34, + "probability": 0.9946 + }, + { + "start": 13969.12, + "end": 13971.02, + "probability": 0.983 + }, + { + "start": 13971.8, + "end": 13972.8, + "probability": 0.9083 + }, + { + "start": 13973.78, + "end": 13974.6, + "probability": 0.7825 + }, + { + "start": 13974.7, + "end": 13975.92, + "probability": 0.7881 + }, + { + "start": 13975.98, + "end": 13978.94, + "probability": 0.9771 + }, + { + "start": 13980.1, + "end": 13981.36, + "probability": 0.9883 + }, + { + "start": 13981.46, + "end": 13983.26, + "probability": 0.9398 + }, + { + "start": 13983.34, + "end": 13984.67, + "probability": 0.7833 + }, + { + "start": 13985.26, + "end": 13988.02, + "probability": 0.9944 + }, + { + "start": 13988.02, + "end": 13990.52, + "probability": 0.9965 + }, + { + "start": 13990.92, + "end": 13992.06, + "probability": 0.9384 + }, + { + "start": 13992.22, + "end": 13994.08, + "probability": 0.7158 + }, + { + "start": 13994.28, + "end": 13997.36, + "probability": 0.9572 + }, + { + "start": 13997.72, + "end": 13998.9, + "probability": 0.6339 + }, + { + "start": 13998.98, + "end": 14000.06, + "probability": 0.9658 + }, + { + "start": 14000.44, + "end": 14002.74, + "probability": 0.8652 + }, + { + "start": 14003.68, + "end": 14006.08, + "probability": 0.9794 + }, + { + "start": 14006.34, + "end": 14007.28, + "probability": 0.701 + }, + { + "start": 14008.28, + "end": 14010.8, + "probability": 0.9822 + }, + { + "start": 14010.8, + "end": 14011.52, + "probability": 0.9243 + }, + { + "start": 14011.82, + "end": 14013.58, + "probability": 0.9724 + }, + { + "start": 14013.64, + "end": 14014.36, + "probability": 0.8873 + }, + { + "start": 14014.46, + "end": 14015.3, + "probability": 0.9327 + }, + { + "start": 14017.4, + "end": 14017.86, + "probability": 0.7987 + }, + { + "start": 14017.96, + "end": 14018.58, + "probability": 0.8661 + }, + { + "start": 14018.7, + "end": 14019.22, + "probability": 0.4729 + }, + { + "start": 14019.36, + "end": 14019.86, + "probability": 0.7705 + }, + { + "start": 14019.98, + "end": 14021.05, + "probability": 0.8016 + }, + { + "start": 14021.52, + "end": 14024.42, + "probability": 0.9954 + }, + { + "start": 14024.44, + "end": 14027.34, + "probability": 0.2498 + }, + { + "start": 14027.34, + "end": 14028.02, + "probability": 0.8959 + }, + { + "start": 14028.12, + "end": 14029.3, + "probability": 0.3448 + }, + { + "start": 14029.44, + "end": 14030.18, + "probability": 0.8167 + }, + { + "start": 14030.18, + "end": 14030.58, + "probability": 0.7437 + }, + { + "start": 14030.6, + "end": 14031.2, + "probability": 0.5272 + }, + { + "start": 14031.26, + "end": 14031.79, + "probability": 0.8459 + }, + { + "start": 14032.6, + "end": 14034.2, + "probability": 0.9448 + }, + { + "start": 14034.28, + "end": 14035.32, + "probability": 0.9707 + }, + { + "start": 14035.4, + "end": 14035.86, + "probability": 0.8701 + }, + { + "start": 14036.48, + "end": 14036.84, + "probability": 0.8351 + }, + { + "start": 14037.3, + "end": 14038.78, + "probability": 0.9579 + }, + { + "start": 14042.0, + "end": 14042.4, + "probability": 0.0453 + }, + { + "start": 14042.4, + "end": 14045.12, + "probability": 0.6467 + }, + { + "start": 14045.44, + "end": 14050.64, + "probability": 0.0326 + }, + { + "start": 14051.36, + "end": 14052.8, + "probability": 0.0243 + }, + { + "start": 14054.2, + "end": 14056.92, + "probability": 0.6535 + }, + { + "start": 14059.02, + "end": 14062.38, + "probability": 0.901 + }, + { + "start": 14063.24, + "end": 14065.34, + "probability": 0.9854 + }, + { + "start": 14066.1, + "end": 14067.05, + "probability": 0.8558 + }, + { + "start": 14067.52, + "end": 14071.62, + "probability": 0.9725 + }, + { + "start": 14071.72, + "end": 14072.28, + "probability": 0.7837 + }, + { + "start": 14072.7, + "end": 14073.96, + "probability": 0.9172 + }, + { + "start": 14074.74, + "end": 14075.88, + "probability": 0.6247 + }, + { + "start": 14077.08, + "end": 14081.68, + "probability": 0.9817 + }, + { + "start": 14082.8, + "end": 14084.2, + "probability": 0.9971 + }, + { + "start": 14085.66, + "end": 14087.32, + "probability": 0.9885 + }, + { + "start": 14088.12, + "end": 14090.62, + "probability": 0.8684 + }, + { + "start": 14091.66, + "end": 14091.82, + "probability": 0.3764 + }, + { + "start": 14092.6, + "end": 14093.32, + "probability": 0.7675 + }, + { + "start": 14094.08, + "end": 14095.36, + "probability": 0.9611 + }, + { + "start": 14095.56, + "end": 14096.98, + "probability": 0.9944 + }, + { + "start": 14096.98, + "end": 14098.99, + "probability": 0.9873 + }, + { + "start": 14099.78, + "end": 14101.14, + "probability": 0.9619 + }, + { + "start": 14101.94, + "end": 14104.04, + "probability": 0.993 + }, + { + "start": 14104.06, + "end": 14105.42, + "probability": 0.8735 + }, + { + "start": 14105.52, + "end": 14107.03, + "probability": 0.6962 + }, + { + "start": 14108.12, + "end": 14109.12, + "probability": 0.8805 + }, + { + "start": 14110.48, + "end": 14111.18, + "probability": 0.765 + }, + { + "start": 14111.44, + "end": 14119.12, + "probability": 0.8302 + }, + { + "start": 14120.08, + "end": 14122.78, + "probability": 0.9717 + }, + { + "start": 14123.64, + "end": 14124.86, + "probability": 0.9902 + }, + { + "start": 14125.24, + "end": 14127.9, + "probability": 0.9952 + }, + { + "start": 14128.28, + "end": 14129.66, + "probability": 0.9465 + }, + { + "start": 14130.4, + "end": 14134.98, + "probability": 0.9744 + }, + { + "start": 14135.58, + "end": 14140.56, + "probability": 0.9726 + }, + { + "start": 14141.26, + "end": 14142.24, + "probability": 0.9427 + }, + { + "start": 14142.62, + "end": 14144.7, + "probability": 0.4436 + }, + { + "start": 14145.12, + "end": 14146.48, + "probability": 0.9315 + }, + { + "start": 14146.52, + "end": 14149.38, + "probability": 0.9756 + }, + { + "start": 14149.98, + "end": 14150.76, + "probability": 0.6345 + }, + { + "start": 14150.88, + "end": 14153.44, + "probability": 0.9651 + }, + { + "start": 14154.36, + "end": 14160.84, + "probability": 0.9854 + }, + { + "start": 14161.9, + "end": 14163.16, + "probability": 0.8912 + }, + { + "start": 14163.34, + "end": 14165.22, + "probability": 0.8774 + }, + { + "start": 14165.26, + "end": 14166.66, + "probability": 0.8922 + }, + { + "start": 14167.06, + "end": 14169.0, + "probability": 0.9909 + }, + { + "start": 14169.32, + "end": 14170.82, + "probability": 0.9304 + }, + { + "start": 14170.96, + "end": 14173.72, + "probability": 0.9275 + }, + { + "start": 14173.82, + "end": 14174.8, + "probability": 0.7762 + }, + { + "start": 14174.9, + "end": 14175.78, + "probability": 0.9521 + }, + { + "start": 14176.14, + "end": 14177.8, + "probability": 0.8738 + }, + { + "start": 14178.1, + "end": 14178.98, + "probability": 0.9583 + }, + { + "start": 14179.04, + "end": 14181.12, + "probability": 0.9868 + }, + { + "start": 14181.66, + "end": 14183.72, + "probability": 0.9798 + }, + { + "start": 14184.6, + "end": 14187.5, + "probability": 0.9751 + }, + { + "start": 14187.8, + "end": 14188.85, + "probability": 0.9785 + }, + { + "start": 14188.92, + "end": 14189.94, + "probability": 0.957 + }, + { + "start": 14189.98, + "end": 14191.9, + "probability": 0.9434 + }, + { + "start": 14192.18, + "end": 14193.68, + "probability": 0.6184 + }, + { + "start": 14194.36, + "end": 14194.48, + "probability": 0.2529 + }, + { + "start": 14194.48, + "end": 14200.16, + "probability": 0.9099 + }, + { + "start": 14200.6, + "end": 14201.78, + "probability": 0.7748 + }, + { + "start": 14202.82, + "end": 14205.28, + "probability": 0.9841 + }, + { + "start": 14205.66, + "end": 14206.31, + "probability": 0.7256 + }, + { + "start": 14206.4, + "end": 14206.96, + "probability": 0.6911 + }, + { + "start": 14207.72, + "end": 14209.9, + "probability": 0.8771 + }, + { + "start": 14209.96, + "end": 14213.26, + "probability": 0.9486 + }, + { + "start": 14214.14, + "end": 14218.16, + "probability": 0.9895 + }, + { + "start": 14218.7, + "end": 14222.08, + "probability": 0.964 + }, + { + "start": 14222.8, + "end": 14223.66, + "probability": 0.6419 + }, + { + "start": 14224.14, + "end": 14228.04, + "probability": 0.8156 + }, + { + "start": 14244.78, + "end": 14246.48, + "probability": 0.7727 + }, + { + "start": 14247.26, + "end": 14248.9, + "probability": 0.663 + }, + { + "start": 14249.84, + "end": 14250.08, + "probability": 0.7437 + }, + { + "start": 14251.8, + "end": 14258.46, + "probability": 0.964 + }, + { + "start": 14258.6, + "end": 14261.42, + "probability": 0.998 + }, + { + "start": 14262.38, + "end": 14266.04, + "probability": 0.8292 + }, + { + "start": 14266.22, + "end": 14266.98, + "probability": 0.387 + }, + { + "start": 14267.0, + "end": 14269.68, + "probability": 0.9326 + }, + { + "start": 14270.34, + "end": 14276.14, + "probability": 0.9917 + }, + { + "start": 14276.66, + "end": 14277.8, + "probability": 0.9368 + }, + { + "start": 14278.42, + "end": 14282.0, + "probability": 0.9828 + }, + { + "start": 14282.88, + "end": 14283.46, + "probability": 0.5158 + }, + { + "start": 14283.52, + "end": 14286.74, + "probability": 0.9858 + }, + { + "start": 14286.8, + "end": 14291.32, + "probability": 0.974 + }, + { + "start": 14291.86, + "end": 14291.92, + "probability": 0.3485 + }, + { + "start": 14292.08, + "end": 14293.06, + "probability": 0.9702 + }, + { + "start": 14293.34, + "end": 14294.96, + "probability": 0.8909 + }, + { + "start": 14295.0, + "end": 14298.48, + "probability": 0.8947 + }, + { + "start": 14298.9, + "end": 14300.32, + "probability": 0.9335 + }, + { + "start": 14300.52, + "end": 14303.06, + "probability": 0.687 + }, + { + "start": 14303.18, + "end": 14304.9, + "probability": 0.7827 + }, + { + "start": 14305.46, + "end": 14308.56, + "probability": 0.9574 + }, + { + "start": 14308.7, + "end": 14309.3, + "probability": 0.8749 + }, + { + "start": 14310.14, + "end": 14311.86, + "probability": 0.9277 + }, + { + "start": 14312.14, + "end": 14312.4, + "probability": 0.723 + }, + { + "start": 14312.6, + "end": 14315.44, + "probability": 0.7778 + }, + { + "start": 14315.86, + "end": 14318.18, + "probability": 0.9661 + }, + { + "start": 14318.68, + "end": 14321.3, + "probability": 0.9244 + }, + { + "start": 14322.32, + "end": 14323.58, + "probability": 0.8963 + }, + { + "start": 14323.82, + "end": 14325.74, + "probability": 0.9899 + }, + { + "start": 14326.56, + "end": 14329.32, + "probability": 0.9972 + }, + { + "start": 14330.76, + "end": 14335.98, + "probability": 0.9966 + }, + { + "start": 14336.14, + "end": 14336.96, + "probability": 0.7946 + }, + { + "start": 14337.04, + "end": 14339.98, + "probability": 0.9967 + }, + { + "start": 14340.92, + "end": 14343.18, + "probability": 0.2955 + }, + { + "start": 14344.28, + "end": 14346.82, + "probability": 0.8546 + }, + { + "start": 14346.9, + "end": 14348.6, + "probability": 0.9138 + }, + { + "start": 14348.72, + "end": 14350.64, + "probability": 0.9715 + }, + { + "start": 14351.24, + "end": 14351.94, + "probability": 0.8198 + }, + { + "start": 14352.0, + "end": 14353.02, + "probability": 0.9834 + }, + { + "start": 14353.16, + "end": 14356.94, + "probability": 0.9823 + }, + { + "start": 14357.48, + "end": 14360.3, + "probability": 0.9525 + }, + { + "start": 14360.34, + "end": 14364.76, + "probability": 0.9891 + }, + { + "start": 14364.8, + "end": 14365.44, + "probability": 0.9858 + }, + { + "start": 14366.14, + "end": 14369.56, + "probability": 0.9189 + }, + { + "start": 14370.32, + "end": 14373.46, + "probability": 0.9332 + }, + { + "start": 14374.12, + "end": 14375.76, + "probability": 0.9717 + }, + { + "start": 14375.82, + "end": 14378.46, + "probability": 0.9419 + }, + { + "start": 14379.34, + "end": 14382.38, + "probability": 0.8536 + }, + { + "start": 14383.3, + "end": 14385.23, + "probability": 0.9181 + }, + { + "start": 14385.84, + "end": 14386.94, + "probability": 0.9915 + }, + { + "start": 14387.04, + "end": 14388.24, + "probability": 0.8917 + }, + { + "start": 14388.9, + "end": 14389.82, + "probability": 0.9983 + }, + { + "start": 14390.56, + "end": 14391.16, + "probability": 0.9441 + }, + { + "start": 14391.9, + "end": 14394.6, + "probability": 0.967 + }, + { + "start": 14394.7, + "end": 14395.75, + "probability": 0.9941 + }, + { + "start": 14396.6, + "end": 14397.62, + "probability": 0.9972 + }, + { + "start": 14399.34, + "end": 14401.08, + "probability": 0.9713 + }, + { + "start": 14401.22, + "end": 14404.04, + "probability": 0.832 + }, + { + "start": 14404.16, + "end": 14407.8, + "probability": 0.8637 + }, + { + "start": 14408.52, + "end": 14411.54, + "probability": 0.8599 + }, + { + "start": 14412.28, + "end": 14412.7, + "probability": 0.8896 + }, + { + "start": 14412.9, + "end": 14413.7, + "probability": 0.9494 + }, + { + "start": 14413.74, + "end": 14416.07, + "probability": 0.9977 + }, + { + "start": 14417.2, + "end": 14419.9, + "probability": 0.998 + }, + { + "start": 14420.72, + "end": 14423.32, + "probability": 0.9805 + }, + { + "start": 14423.6, + "end": 14427.68, + "probability": 0.9178 + }, + { + "start": 14428.54, + "end": 14431.9, + "probability": 0.9509 + }, + { + "start": 14431.9, + "end": 14433.92, + "probability": 0.9983 + }, + { + "start": 14434.06, + "end": 14434.68, + "probability": 0.7483 + }, + { + "start": 14434.78, + "end": 14435.1, + "probability": 0.5847 + }, + { + "start": 14435.48, + "end": 14436.5, + "probability": 0.1972 + }, + { + "start": 14436.5, + "end": 14437.76, + "probability": 0.7204 + }, + { + "start": 14437.8, + "end": 14438.08, + "probability": 0.6255 + }, + { + "start": 14438.2, + "end": 14440.7, + "probability": 0.9542 + }, + { + "start": 14440.78, + "end": 14441.84, + "probability": 0.8893 + }, + { + "start": 14441.88, + "end": 14443.35, + "probability": 0.9785 + }, + { + "start": 14444.44, + "end": 14444.56, + "probability": 0.8062 + }, + { + "start": 14445.08, + "end": 14447.0, + "probability": 0.9656 + }, + { + "start": 14447.2, + "end": 14449.96, + "probability": 0.8211 + }, + { + "start": 14450.42, + "end": 14452.55, + "probability": 0.836 + }, + { + "start": 14453.08, + "end": 14456.2, + "probability": 0.9908 + }, + { + "start": 14456.2, + "end": 14458.46, + "probability": 0.9912 + }, + { + "start": 14459.16, + "end": 14459.16, + "probability": 0.0683 + }, + { + "start": 14459.16, + "end": 14459.94, + "probability": 0.7254 + }, + { + "start": 14460.46, + "end": 14461.5, + "probability": 0.9296 + }, + { + "start": 14462.42, + "end": 14462.96, + "probability": 0.6682 + }, + { + "start": 14463.22, + "end": 14465.74, + "probability": 0.9292 + }, + { + "start": 14466.34, + "end": 14466.76, + "probability": 0.6833 + }, + { + "start": 14466.76, + "end": 14468.4, + "probability": 0.9592 + }, + { + "start": 14468.68, + "end": 14471.4, + "probability": 0.7354 + }, + { + "start": 14471.48, + "end": 14471.72, + "probability": 0.753 + }, + { + "start": 14472.76, + "end": 14473.1, + "probability": 0.3635 + }, + { + "start": 14473.14, + "end": 14478.98, + "probability": 0.9631 + }, + { + "start": 14480.12, + "end": 14484.22, + "probability": 0.6802 + }, + { + "start": 14484.74, + "end": 14488.8, + "probability": 0.6508 + }, + { + "start": 14490.7, + "end": 14491.48, + "probability": 0.7977 + }, + { + "start": 14491.6, + "end": 14492.42, + "probability": 0.9877 + }, + { + "start": 14492.88, + "end": 14495.14, + "probability": 0.1613 + }, + { + "start": 14505.33, + "end": 14505.45, + "probability": 0.0002 + }, + { + "start": 14506.63, + "end": 14509.31, + "probability": 0.0238 + }, + { + "start": 14509.91, + "end": 14509.91, + "probability": 0.0627 + }, + { + "start": 14509.91, + "end": 14509.91, + "probability": 0.0353 + }, + { + "start": 14509.91, + "end": 14509.91, + "probability": 0.2117 + }, + { + "start": 14509.91, + "end": 14514.17, + "probability": 0.6164 + }, + { + "start": 14516.05, + "end": 14517.19, + "probability": 0.5283 + }, + { + "start": 14517.43, + "end": 14518.39, + "probability": 0.2258 + }, + { + "start": 14520.03, + "end": 14520.05, + "probability": 0.2683 + }, + { + "start": 14520.07, + "end": 14524.27, + "probability": 0.9873 + }, + { + "start": 14524.39, + "end": 14525.35, + "probability": 0.7426 + }, + { + "start": 14529.88, + "end": 14533.39, + "probability": 0.8927 + }, + { + "start": 14533.85, + "end": 14534.83, + "probability": 0.2929 + }, + { + "start": 14535.33, + "end": 14535.91, + "probability": 0.823 + }, + { + "start": 14536.81, + "end": 14540.11, + "probability": 0.9873 + }, + { + "start": 14543.19, + "end": 14547.11, + "probability": 0.919 + }, + { + "start": 14547.55, + "end": 14549.11, + "probability": 0.9008 + }, + { + "start": 14549.57, + "end": 14551.33, + "probability": 0.9426 + }, + { + "start": 14552.43, + "end": 14553.59, + "probability": 0.673 + }, + { + "start": 14553.83, + "end": 14554.65, + "probability": 0.7199 + }, + { + "start": 14554.71, + "end": 14555.67, + "probability": 0.9158 + }, + { + "start": 14555.81, + "end": 14558.85, + "probability": 0.8893 + }, + { + "start": 14564.87, + "end": 14567.69, + "probability": 0.6059 + }, + { + "start": 14568.15, + "end": 14572.65, + "probability": 0.6939 + }, + { + "start": 14573.17, + "end": 14578.15, + "probability": 0.6175 + }, + { + "start": 14579.61, + "end": 14581.17, + "probability": 0.6724 + }, + { + "start": 14582.47, + "end": 14582.89, + "probability": 0.0229 + }, + { + "start": 14583.57, + "end": 14586.29, + "probability": 0.183 + }, + { + "start": 14586.35, + "end": 14588.37, + "probability": 0.1396 + }, + { + "start": 14588.89, + "end": 14592.05, + "probability": 0.7986 + }, + { + "start": 14592.53, + "end": 14596.09, + "probability": 0.8696 + }, + { + "start": 14596.61, + "end": 14598.33, + "probability": 0.6562 + }, + { + "start": 14605.43, + "end": 14605.75, + "probability": 0.7341 + }, + { + "start": 14605.79, + "end": 14607.75, + "probability": 0.8691 + }, + { + "start": 14608.01, + "end": 14608.67, + "probability": 0.9391 + }, + { + "start": 14609.07, + "end": 14610.13, + "probability": 0.5846 + }, + { + "start": 14612.05, + "end": 14617.03, + "probability": 0.5781 + }, + { + "start": 14618.87, + "end": 14621.03, + "probability": 0.7899 + }, + { + "start": 14623.33, + "end": 14627.91, + "probability": 0.6342 + }, + { + "start": 14628.03, + "end": 14629.65, + "probability": 0.6859 + }, + { + "start": 14629.71, + "end": 14634.31, + "probability": 0.987 + }, + { + "start": 14634.63, + "end": 14637.29, + "probability": 0.6679 + }, + { + "start": 14637.37, + "end": 14637.87, + "probability": 0.8165 + }, + { + "start": 14639.23, + "end": 14639.27, + "probability": 0.0023 + } + ], + "segments_count": 5431, + "words_count": 25704, + "avg_words_per_segment": 4.7328, + "avg_segment_duration": 1.9256, + "avg_words_per_minute": 103.7919, + "plenum_id": "63634", + "duration": 14858.96, + "title": null, + "plenum_date": "2017-05-08" +} \ No newline at end of file