diff --git "a/100591/metadata.json" "b/100591/metadata.json" new file mode 100644--- /dev/null +++ "b/100591/metadata.json" @@ -0,0 +1,60342 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "100591", + "quality_score": 0.8633, + "per_segment_quality_scores": [ + { + "start": 74.08, + "end": 77.54, + "probability": 0.5276 + }, + { + "start": 78.24, + "end": 81.02, + "probability": 0.7148 + }, + { + "start": 82.24, + "end": 86.44, + "probability": 0.9841 + }, + { + "start": 87.78, + "end": 88.74, + "probability": 0.9389 + }, + { + "start": 89.32, + "end": 90.88, + "probability": 0.7167 + }, + { + "start": 95.04, + "end": 95.24, + "probability": 0.5049 + }, + { + "start": 95.64, + "end": 96.44, + "probability": 0.7956 + }, + { + "start": 97.26, + "end": 97.46, + "probability": 0.806 + }, + { + "start": 99.66, + "end": 101.3, + "probability": 0.9671 + }, + { + "start": 108.24, + "end": 109.56, + "probability": 0.7244 + }, + { + "start": 118.14, + "end": 121.72, + "probability": 0.1133 + }, + { + "start": 121.92, + "end": 121.96, + "probability": 0.1743 + }, + { + "start": 121.96, + "end": 121.98, + "probability": 0.1028 + }, + { + "start": 125.76, + "end": 127.44, + "probability": 0.6245 + }, + { + "start": 127.64, + "end": 128.14, + "probability": 0.834 + }, + { + "start": 128.24, + "end": 129.86, + "probability": 0.8311 + }, + { + "start": 131.06, + "end": 133.42, + "probability": 0.6557 + }, + { + "start": 134.96, + "end": 135.84, + "probability": 0.6636 + }, + { + "start": 136.44, + "end": 140.06, + "probability": 0.8855 + }, + { + "start": 140.74, + "end": 146.08, + "probability": 0.9866 + }, + { + "start": 146.74, + "end": 151.2, + "probability": 0.9909 + }, + { + "start": 152.12, + "end": 153.9, + "probability": 0.9535 + }, + { + "start": 154.76, + "end": 156.23, + "probability": 0.952 + }, + { + "start": 156.7, + "end": 158.68, + "probability": 0.7075 + }, + { + "start": 159.3, + "end": 160.44, + "probability": 0.9885 + }, + { + "start": 160.92, + "end": 161.3, + "probability": 0.4494 + }, + { + "start": 161.38, + "end": 163.05, + "probability": 0.9829 + }, + { + "start": 163.8, + "end": 165.34, + "probability": 0.9795 + }, + { + "start": 166.32, + "end": 167.08, + "probability": 0.7211 + }, + { + "start": 168.54, + "end": 171.48, + "probability": 0.9828 + }, + { + "start": 171.74, + "end": 172.52, + "probability": 0.9136 + }, + { + "start": 173.48, + "end": 174.68, + "probability": 0.864 + }, + { + "start": 175.1, + "end": 175.74, + "probability": 0.6702 + }, + { + "start": 176.18, + "end": 177.76, + "probability": 0.7449 + }, + { + "start": 177.9, + "end": 181.0, + "probability": 0.9106 + }, + { + "start": 181.18, + "end": 183.0, + "probability": 0.9703 + }, + { + "start": 183.72, + "end": 186.78, + "probability": 0.7182 + }, + { + "start": 187.66, + "end": 191.7, + "probability": 0.9513 + }, + { + "start": 191.82, + "end": 193.97, + "probability": 0.8614 + }, + { + "start": 195.04, + "end": 199.52, + "probability": 0.5897 + }, + { + "start": 200.58, + "end": 202.82, + "probability": 0.9302 + }, + { + "start": 203.04, + "end": 208.2, + "probability": 0.9024 + }, + { + "start": 208.4, + "end": 211.32, + "probability": 0.935 + }, + { + "start": 211.76, + "end": 215.66, + "probability": 0.9705 + }, + { + "start": 215.74, + "end": 217.28, + "probability": 0.8933 + }, + { + "start": 217.84, + "end": 220.11, + "probability": 0.8551 + }, + { + "start": 221.22, + "end": 226.82, + "probability": 0.9858 + }, + { + "start": 226.92, + "end": 227.6, + "probability": 0.9185 + }, + { + "start": 228.32, + "end": 229.76, + "probability": 0.9665 + }, + { + "start": 230.84, + "end": 234.5, + "probability": 0.9941 + }, + { + "start": 234.5, + "end": 239.02, + "probability": 0.9958 + }, + { + "start": 239.54, + "end": 242.1, + "probability": 0.9995 + }, + { + "start": 242.16, + "end": 248.22, + "probability": 0.9913 + }, + { + "start": 248.34, + "end": 249.62, + "probability": 0.7696 + }, + { + "start": 250.7, + "end": 253.32, + "probability": 0.6935 + }, + { + "start": 254.74, + "end": 257.56, + "probability": 0.9968 + }, + { + "start": 257.56, + "end": 260.78, + "probability": 0.9919 + }, + { + "start": 260.92, + "end": 264.64, + "probability": 0.994 + }, + { + "start": 265.84, + "end": 268.88, + "probability": 0.9987 + }, + { + "start": 269.1, + "end": 272.66, + "probability": 0.9922 + }, + { + "start": 273.12, + "end": 276.08, + "probability": 0.989 + }, + { + "start": 276.92, + "end": 281.36, + "probability": 0.9967 + }, + { + "start": 282.3, + "end": 284.28, + "probability": 0.9965 + }, + { + "start": 284.88, + "end": 287.84, + "probability": 0.9974 + }, + { + "start": 288.0, + "end": 291.62, + "probability": 0.992 + }, + { + "start": 292.42, + "end": 294.62, + "probability": 0.9959 + }, + { + "start": 294.66, + "end": 297.04, + "probability": 0.9987 + }, + { + "start": 297.12, + "end": 299.05, + "probability": 0.9878 + }, + { + "start": 299.66, + "end": 301.58, + "probability": 0.9963 + }, + { + "start": 301.94, + "end": 305.46, + "probability": 0.953 + }, + { + "start": 305.7, + "end": 306.9, + "probability": 0.9984 + }, + { + "start": 307.86, + "end": 312.74, + "probability": 0.9957 + }, + { + "start": 313.1, + "end": 315.18, + "probability": 0.993 + }, + { + "start": 315.92, + "end": 317.14, + "probability": 0.9907 + }, + { + "start": 317.74, + "end": 320.82, + "probability": 0.9977 + }, + { + "start": 320.96, + "end": 323.58, + "probability": 0.7039 + }, + { + "start": 323.7, + "end": 324.92, + "probability": 0.5355 + }, + { + "start": 326.02, + "end": 329.44, + "probability": 0.9956 + }, + { + "start": 329.44, + "end": 333.54, + "probability": 0.9907 + }, + { + "start": 334.4, + "end": 334.72, + "probability": 0.0218 + }, + { + "start": 334.72, + "end": 336.06, + "probability": 0.7529 + }, + { + "start": 336.06, + "end": 337.96, + "probability": 0.8857 + }, + { + "start": 338.06, + "end": 338.28, + "probability": 0.6364 + }, + { + "start": 338.36, + "end": 342.24, + "probability": 0.9507 + }, + { + "start": 342.48, + "end": 343.72, + "probability": 0.9948 + }, + { + "start": 345.08, + "end": 346.58, + "probability": 0.8918 + }, + { + "start": 347.12, + "end": 347.56, + "probability": 0.4082 + }, + { + "start": 347.56, + "end": 347.98, + "probability": 0.9816 + }, + { + "start": 349.08, + "end": 349.44, + "probability": 0.8093 + }, + { + "start": 350.34, + "end": 350.92, + "probability": 0.8925 + }, + { + "start": 351.16, + "end": 351.5, + "probability": 0.9739 + }, + { + "start": 352.92, + "end": 356.36, + "probability": 0.8548 + }, + { + "start": 356.66, + "end": 360.78, + "probability": 0.7007 + }, + { + "start": 360.98, + "end": 361.16, + "probability": 0.8309 + }, + { + "start": 380.44, + "end": 382.06, + "probability": 0.6119 + }, + { + "start": 383.8, + "end": 384.92, + "probability": 0.7515 + }, + { + "start": 386.12, + "end": 388.22, + "probability": 0.9576 + }, + { + "start": 389.38, + "end": 392.2, + "probability": 0.827 + }, + { + "start": 393.16, + "end": 398.5, + "probability": 0.9785 + }, + { + "start": 399.24, + "end": 401.18, + "probability": 0.7937 + }, + { + "start": 402.82, + "end": 403.62, + "probability": 0.9972 + }, + { + "start": 405.12, + "end": 408.28, + "probability": 0.9554 + }, + { + "start": 409.04, + "end": 411.46, + "probability": 0.9841 + }, + { + "start": 412.34, + "end": 412.98, + "probability": 0.7993 + }, + { + "start": 413.84, + "end": 421.44, + "probability": 0.9897 + }, + { + "start": 424.56, + "end": 424.82, + "probability": 0.521 + }, + { + "start": 424.94, + "end": 425.3, + "probability": 0.8926 + }, + { + "start": 426.04, + "end": 426.96, + "probability": 0.7729 + }, + { + "start": 427.12, + "end": 428.14, + "probability": 0.9798 + }, + { + "start": 428.74, + "end": 431.18, + "probability": 0.9911 + }, + { + "start": 431.26, + "end": 431.78, + "probability": 0.9854 + }, + { + "start": 431.88, + "end": 433.2, + "probability": 0.9916 + }, + { + "start": 437.94, + "end": 440.61, + "probability": 0.9893 + }, + { + "start": 441.56, + "end": 445.18, + "probability": 0.736 + }, + { + "start": 445.36, + "end": 446.64, + "probability": 0.38 + }, + { + "start": 446.66, + "end": 448.6, + "probability": 0.9914 + }, + { + "start": 449.54, + "end": 450.9, + "probability": 0.9625 + }, + { + "start": 451.86, + "end": 455.07, + "probability": 0.9939 + }, + { + "start": 455.56, + "end": 456.57, + "probability": 0.9623 + }, + { + "start": 457.58, + "end": 458.98, + "probability": 0.9873 + }, + { + "start": 460.08, + "end": 463.46, + "probability": 0.7969 + }, + { + "start": 463.56, + "end": 464.6, + "probability": 0.9688 + }, + { + "start": 464.64, + "end": 467.08, + "probability": 0.9185 + }, + { + "start": 467.28, + "end": 468.32, + "probability": 0.9915 + }, + { + "start": 469.14, + "end": 469.92, + "probability": 0.9214 + }, + { + "start": 470.9, + "end": 472.05, + "probability": 0.5046 + }, + { + "start": 473.38, + "end": 476.24, + "probability": 0.8756 + }, + { + "start": 477.72, + "end": 479.5, + "probability": 0.8647 + }, + { + "start": 479.56, + "end": 480.3, + "probability": 0.9329 + }, + { + "start": 480.36, + "end": 482.74, + "probability": 0.9724 + }, + { + "start": 484.18, + "end": 484.84, + "probability": 0.562 + }, + { + "start": 484.92, + "end": 485.54, + "probability": 0.6164 + }, + { + "start": 485.8, + "end": 492.56, + "probability": 0.9783 + }, + { + "start": 494.44, + "end": 499.48, + "probability": 0.8745 + }, + { + "start": 500.98, + "end": 507.32, + "probability": 0.9947 + }, + { + "start": 507.98, + "end": 508.53, + "probability": 0.8583 + }, + { + "start": 508.92, + "end": 509.6, + "probability": 0.7307 + }, + { + "start": 511.0, + "end": 511.73, + "probability": 0.8799 + }, + { + "start": 512.7, + "end": 515.34, + "probability": 0.7378 + }, + { + "start": 516.1, + "end": 516.58, + "probability": 0.8363 + }, + { + "start": 517.3, + "end": 518.16, + "probability": 0.8 + }, + { + "start": 519.54, + "end": 525.94, + "probability": 0.985 + }, + { + "start": 526.76, + "end": 531.84, + "probability": 0.9752 + }, + { + "start": 532.82, + "end": 539.02, + "probability": 0.9333 + }, + { + "start": 539.38, + "end": 541.24, + "probability": 0.998 + }, + { + "start": 543.1, + "end": 547.28, + "probability": 0.485 + }, + { + "start": 548.28, + "end": 549.42, + "probability": 0.8773 + }, + { + "start": 550.54, + "end": 552.23, + "probability": 0.9482 + }, + { + "start": 553.52, + "end": 555.44, + "probability": 0.8943 + }, + { + "start": 557.44, + "end": 558.48, + "probability": 0.5347 + }, + { + "start": 561.74, + "end": 565.0, + "probability": 0.4998 + }, + { + "start": 565.16, + "end": 565.3, + "probability": 0.1382 + }, + { + "start": 566.06, + "end": 571.22, + "probability": 0.981 + }, + { + "start": 572.92, + "end": 573.8, + "probability": 0.7019 + }, + { + "start": 574.74, + "end": 576.78, + "probability": 0.9373 + }, + { + "start": 577.46, + "end": 578.18, + "probability": 0.6841 + }, + { + "start": 579.18, + "end": 580.96, + "probability": 0.9743 + }, + { + "start": 582.2, + "end": 582.8, + "probability": 0.8625 + }, + { + "start": 584.68, + "end": 588.0, + "probability": 0.7782 + }, + { + "start": 588.18, + "end": 589.0, + "probability": 0.9966 + }, + { + "start": 589.96, + "end": 593.26, + "probability": 0.758 + }, + { + "start": 593.48, + "end": 593.92, + "probability": 0.9199 + }, + { + "start": 594.68, + "end": 596.02, + "probability": 0.9618 + }, + { + "start": 596.74, + "end": 597.86, + "probability": 0.9985 + }, + { + "start": 598.88, + "end": 601.08, + "probability": 0.9827 + }, + { + "start": 601.18, + "end": 602.46, + "probability": 0.787 + }, + { + "start": 603.64, + "end": 606.28, + "probability": 0.8331 + }, + { + "start": 608.04, + "end": 609.36, + "probability": 0.9884 + }, + { + "start": 609.54, + "end": 609.92, + "probability": 0.8967 + }, + { + "start": 609.98, + "end": 610.46, + "probability": 0.8223 + }, + { + "start": 610.64, + "end": 613.26, + "probability": 0.846 + }, + { + "start": 613.54, + "end": 616.68, + "probability": 0.224 + }, + { + "start": 616.68, + "end": 616.98, + "probability": 0.0856 + }, + { + "start": 618.16, + "end": 622.16, + "probability": 0.5547 + }, + { + "start": 622.3, + "end": 626.12, + "probability": 0.9868 + }, + { + "start": 626.58, + "end": 627.26, + "probability": 0.8272 + }, + { + "start": 629.76, + "end": 630.12, + "probability": 0.4329 + }, + { + "start": 631.62, + "end": 632.54, + "probability": 0.856 + }, + { + "start": 632.58, + "end": 633.9, + "probability": 0.9799 + }, + { + "start": 634.06, + "end": 635.4, + "probability": 0.9885 + }, + { + "start": 636.38, + "end": 641.72, + "probability": 0.9316 + }, + { + "start": 642.76, + "end": 645.98, + "probability": 0.9589 + }, + { + "start": 647.24, + "end": 650.58, + "probability": 0.9966 + }, + { + "start": 650.66, + "end": 651.44, + "probability": 0.8003 + }, + { + "start": 651.5, + "end": 654.18, + "probability": 0.9209 + }, + { + "start": 654.26, + "end": 660.44, + "probability": 0.9878 + }, + { + "start": 662.89, + "end": 664.82, + "probability": 0.9761 + }, + { + "start": 665.12, + "end": 667.4, + "probability": 0.7098 + }, + { + "start": 667.9, + "end": 670.02, + "probability": 0.9678 + }, + { + "start": 671.1, + "end": 673.98, + "probability": 0.9844 + }, + { + "start": 674.16, + "end": 680.38, + "probability": 0.9736 + }, + { + "start": 681.06, + "end": 682.24, + "probability": 0.9593 + }, + { + "start": 682.26, + "end": 683.58, + "probability": 0.7847 + }, + { + "start": 683.72, + "end": 685.95, + "probability": 0.532 + }, + { + "start": 687.08, + "end": 688.02, + "probability": 0.6025 + }, + { + "start": 688.1, + "end": 692.06, + "probability": 0.9448 + }, + { + "start": 692.2, + "end": 694.14, + "probability": 0.9973 + }, + { + "start": 696.6, + "end": 696.74, + "probability": 0.4729 + }, + { + "start": 698.42, + "end": 698.66, + "probability": 0.3674 + }, + { + "start": 698.72, + "end": 699.44, + "probability": 0.7471 + }, + { + "start": 700.16, + "end": 703.62, + "probability": 0.927 + }, + { + "start": 704.32, + "end": 707.4, + "probability": 0.9812 + }, + { + "start": 708.04, + "end": 709.34, + "probability": 0.9705 + }, + { + "start": 709.42, + "end": 711.32, + "probability": 0.9961 + }, + { + "start": 711.84, + "end": 714.3, + "probability": 0.9591 + }, + { + "start": 715.14, + "end": 717.46, + "probability": 0.9798 + }, + { + "start": 717.84, + "end": 718.25, + "probability": 0.9861 + }, + { + "start": 719.08, + "end": 719.92, + "probability": 0.7566 + }, + { + "start": 720.44, + "end": 721.24, + "probability": 0.967 + }, + { + "start": 721.44, + "end": 724.9, + "probability": 0.9548 + }, + { + "start": 725.4, + "end": 728.48, + "probability": 0.9888 + }, + { + "start": 728.56, + "end": 729.54, + "probability": 0.8337 + }, + { + "start": 730.7, + "end": 731.64, + "probability": 0.8612 + }, + { + "start": 732.52, + "end": 733.7, + "probability": 0.8847 + }, + { + "start": 734.78, + "end": 736.16, + "probability": 0.9649 + }, + { + "start": 737.72, + "end": 738.24, + "probability": 0.7424 + }, + { + "start": 739.2, + "end": 739.68, + "probability": 0.896 + }, + { + "start": 740.1, + "end": 741.92, + "probability": 0.919 + }, + { + "start": 742.1, + "end": 743.26, + "probability": 0.8372 + }, + { + "start": 744.8, + "end": 747.36, + "probability": 0.965 + }, + { + "start": 748.46, + "end": 752.4, + "probability": 0.9922 + }, + { + "start": 753.0, + "end": 753.8, + "probability": 0.7327 + }, + { + "start": 754.22, + "end": 757.78, + "probability": 0.9978 + }, + { + "start": 758.2, + "end": 759.06, + "probability": 0.8634 + }, + { + "start": 759.12, + "end": 759.85, + "probability": 0.9582 + }, + { + "start": 760.78, + "end": 761.42, + "probability": 0.9101 + }, + { + "start": 762.14, + "end": 766.02, + "probability": 0.9933 + }, + { + "start": 766.44, + "end": 768.44, + "probability": 0.9949 + }, + { + "start": 768.94, + "end": 771.59, + "probability": 0.2115 + }, + { + "start": 772.6, + "end": 774.12, + "probability": 0.9219 + }, + { + "start": 774.82, + "end": 774.92, + "probability": 0.4632 + }, + { + "start": 775.0, + "end": 775.06, + "probability": 0.4353 + }, + { + "start": 775.16, + "end": 775.53, + "probability": 0.9392 + }, + { + "start": 775.98, + "end": 777.3, + "probability": 0.9547 + }, + { + "start": 777.44, + "end": 779.9, + "probability": 0.4922 + }, + { + "start": 780.02, + "end": 781.32, + "probability": 0.7966 + }, + { + "start": 782.44, + "end": 783.62, + "probability": 0.9374 + }, + { + "start": 783.76, + "end": 784.06, + "probability": 0.2216 + }, + { + "start": 784.76, + "end": 786.34, + "probability": 0.9189 + }, + { + "start": 787.82, + "end": 789.94, + "probability": 0.8921 + }, + { + "start": 790.0, + "end": 791.4, + "probability": 0.8597 + }, + { + "start": 791.66, + "end": 792.09, + "probability": 0.6592 + }, + { + "start": 792.26, + "end": 794.02, + "probability": 0.9365 + }, + { + "start": 794.32, + "end": 796.06, + "probability": 0.8402 + }, + { + "start": 798.23, + "end": 799.52, + "probability": 0.5677 + }, + { + "start": 799.62, + "end": 799.94, + "probability": 0.8272 + }, + { + "start": 799.94, + "end": 799.96, + "probability": 0.3671 + }, + { + "start": 800.04, + "end": 804.7, + "probability": 0.9443 + }, + { + "start": 805.26, + "end": 809.22, + "probability": 0.9716 + }, + { + "start": 809.22, + "end": 813.3, + "probability": 0.988 + }, + { + "start": 814.04, + "end": 817.8, + "probability": 0.8772 + }, + { + "start": 817.88, + "end": 820.08, + "probability": 0.5336 + }, + { + "start": 820.1, + "end": 824.52, + "probability": 0.9315 + }, + { + "start": 824.82, + "end": 826.06, + "probability": 0.768 + }, + { + "start": 827.2, + "end": 828.98, + "probability": 0.9922 + }, + { + "start": 829.62, + "end": 830.68, + "probability": 0.8518 + }, + { + "start": 830.88, + "end": 831.7, + "probability": 0.9946 + }, + { + "start": 832.38, + "end": 833.12, + "probability": 0.8851 + }, + { + "start": 833.28, + "end": 834.98, + "probability": 0.9956 + }, + { + "start": 835.42, + "end": 838.91, + "probability": 0.9996 + }, + { + "start": 839.5, + "end": 841.82, + "probability": 0.9391 + }, + { + "start": 842.48, + "end": 846.86, + "probability": 0.9913 + }, + { + "start": 847.26, + "end": 850.26, + "probability": 0.9838 + }, + { + "start": 850.6, + "end": 852.44, + "probability": 0.9722 + }, + { + "start": 853.04, + "end": 857.24, + "probability": 0.9951 + }, + { + "start": 857.24, + "end": 861.52, + "probability": 0.9839 + }, + { + "start": 862.06, + "end": 863.58, + "probability": 0.9563 + }, + { + "start": 864.04, + "end": 865.92, + "probability": 0.9722 + }, + { + "start": 866.2, + "end": 866.54, + "probability": 0.6913 + }, + { + "start": 867.56, + "end": 871.68, + "probability": 0.9829 + }, + { + "start": 873.3, + "end": 875.76, + "probability": 0.9962 + }, + { + "start": 875.92, + "end": 876.51, + "probability": 0.9186 + }, + { + "start": 876.7, + "end": 878.26, + "probability": 0.9712 + }, + { + "start": 878.74, + "end": 881.26, + "probability": 0.9971 + }, + { + "start": 881.74, + "end": 882.46, + "probability": 0.6268 + }, + { + "start": 883.38, + "end": 886.4, + "probability": 0.9926 + }, + { + "start": 886.58, + "end": 888.56, + "probability": 0.9961 + }, + { + "start": 889.08, + "end": 890.34, + "probability": 0.9902 + }, + { + "start": 891.18, + "end": 892.46, + "probability": 0.9946 + }, + { + "start": 893.64, + "end": 898.18, + "probability": 0.9734 + }, + { + "start": 898.26, + "end": 899.96, + "probability": 0.7914 + }, + { + "start": 900.38, + "end": 901.78, + "probability": 0.9845 + }, + { + "start": 904.06, + "end": 905.34, + "probability": 0.9971 + }, + { + "start": 905.54, + "end": 908.22, + "probability": 0.9486 + }, + { + "start": 910.0, + "end": 912.56, + "probability": 0.9872 + }, + { + "start": 912.74, + "end": 913.4, + "probability": 0.8513 + }, + { + "start": 913.78, + "end": 914.88, + "probability": 0.8992 + }, + { + "start": 914.98, + "end": 916.4, + "probability": 0.8346 + }, + { + "start": 916.78, + "end": 917.7, + "probability": 0.8215 + }, + { + "start": 917.88, + "end": 920.22, + "probability": 0.9416 + }, + { + "start": 920.54, + "end": 920.64, + "probability": 0.8303 + }, + { + "start": 920.7, + "end": 920.96, + "probability": 0.9631 + }, + { + "start": 921.04, + "end": 921.82, + "probability": 0.9307 + }, + { + "start": 921.9, + "end": 924.72, + "probability": 0.9785 + }, + { + "start": 924.96, + "end": 925.76, + "probability": 0.8778 + }, + { + "start": 925.86, + "end": 926.76, + "probability": 0.9534 + }, + { + "start": 927.22, + "end": 929.58, + "probability": 0.9746 + }, + { + "start": 930.06, + "end": 931.56, + "probability": 0.9726 + }, + { + "start": 931.6, + "end": 933.38, + "probability": 0.8986 + }, + { + "start": 934.0, + "end": 934.22, + "probability": 0.3505 + }, + { + "start": 934.94, + "end": 934.94, + "probability": 0.0476 + }, + { + "start": 934.94, + "end": 935.86, + "probability": 0.7625 + }, + { + "start": 935.94, + "end": 936.88, + "probability": 0.7841 + }, + { + "start": 937.18, + "end": 938.12, + "probability": 0.8227 + }, + { + "start": 938.42, + "end": 941.52, + "probability": 0.9343 + }, + { + "start": 941.92, + "end": 942.48, + "probability": 0.6612 + }, + { + "start": 942.62, + "end": 945.3, + "probability": 0.8626 + }, + { + "start": 945.36, + "end": 946.48, + "probability": 0.9753 + }, + { + "start": 946.56, + "end": 948.32, + "probability": 0.9614 + }, + { + "start": 948.9, + "end": 951.4, + "probability": 0.9532 + }, + { + "start": 951.9, + "end": 953.64, + "probability": 0.9702 + }, + { + "start": 954.04, + "end": 954.93, + "probability": 0.923 + }, + { + "start": 955.36, + "end": 955.36, + "probability": 0.6253 + }, + { + "start": 955.42, + "end": 957.9, + "probability": 0.9653 + }, + { + "start": 958.4, + "end": 960.54, + "probability": 0.9421 + }, + { + "start": 960.54, + "end": 964.06, + "probability": 0.8621 + }, + { + "start": 964.6, + "end": 967.18, + "probability": 0.9526 + }, + { + "start": 968.0, + "end": 968.76, + "probability": 0.9789 + }, + { + "start": 969.16, + "end": 969.26, + "probability": 0.7761 + }, + { + "start": 970.92, + "end": 970.98, + "probability": 0.0392 + }, + { + "start": 971.08, + "end": 973.2, + "probability": 0.9865 + }, + { + "start": 973.28, + "end": 974.24, + "probability": 0.8272 + }, + { + "start": 975.44, + "end": 977.66, + "probability": 0.9658 + }, + { + "start": 977.82, + "end": 978.41, + "probability": 0.8583 + }, + { + "start": 978.68, + "end": 981.46, + "probability": 0.9941 + }, + { + "start": 982.44, + "end": 983.12, + "probability": 0.7529 + }, + { + "start": 983.48, + "end": 986.42, + "probability": 0.7683 + }, + { + "start": 986.7, + "end": 987.9, + "probability": 0.9506 + }, + { + "start": 989.32, + "end": 990.84, + "probability": 0.9935 + }, + { + "start": 990.92, + "end": 991.69, + "probability": 0.9893 + }, + { + "start": 993.5, + "end": 994.76, + "probability": 0.908 + }, + { + "start": 995.36, + "end": 996.48, + "probability": 0.944 + }, + { + "start": 997.5, + "end": 998.74, + "probability": 0.8138 + }, + { + "start": 999.24, + "end": 999.68, + "probability": 0.569 + }, + { + "start": 999.7, + "end": 1000.44, + "probability": 0.8857 + }, + { + "start": 1000.56, + "end": 1003.06, + "probability": 0.9656 + }, + { + "start": 1004.22, + "end": 1005.18, + "probability": 0.9482 + }, + { + "start": 1006.0, + "end": 1006.86, + "probability": 0.892 + }, + { + "start": 1006.98, + "end": 1008.68, + "probability": 0.8051 + }, + { + "start": 1010.26, + "end": 1011.2, + "probability": 0.9776 + }, + { + "start": 1011.74, + "end": 1013.1, + "probability": 0.9579 + }, + { + "start": 1013.88, + "end": 1016.12, + "probability": 0.9247 + }, + { + "start": 1016.14, + "end": 1016.42, + "probability": 0.7115 + }, + { + "start": 1016.42, + "end": 1017.62, + "probability": 0.9943 + }, + { + "start": 1017.74, + "end": 1018.12, + "probability": 0.0491 + }, + { + "start": 1018.54, + "end": 1021.52, + "probability": 0.7445 + }, + { + "start": 1021.78, + "end": 1022.5, + "probability": 0.9667 + }, + { + "start": 1022.82, + "end": 1023.2, + "probability": 0.847 + }, + { + "start": 1024.28, + "end": 1025.63, + "probability": 0.9829 + }, + { + "start": 1026.66, + "end": 1026.74, + "probability": 0.0779 + }, + { + "start": 1026.74, + "end": 1027.18, + "probability": 0.0215 + }, + { + "start": 1027.3, + "end": 1027.86, + "probability": 0.5076 + }, + { + "start": 1028.08, + "end": 1028.9, + "probability": 0.6586 + }, + { + "start": 1029.16, + "end": 1030.78, + "probability": 0.6381 + }, + { + "start": 1031.22, + "end": 1032.04, + "probability": 0.2145 + }, + { + "start": 1033.12, + "end": 1033.38, + "probability": 0.549 + }, + { + "start": 1033.7, + "end": 1033.7, + "probability": 0.4506 + }, + { + "start": 1033.7, + "end": 1035.12, + "probability": 0.6712 + }, + { + "start": 1035.14, + "end": 1036.3, + "probability": 0.8604 + }, + { + "start": 1036.64, + "end": 1036.72, + "probability": 0.0698 + }, + { + "start": 1036.98, + "end": 1036.98, + "probability": 0.0735 + }, + { + "start": 1038.51, + "end": 1042.18, + "probability": 0.4086 + }, + { + "start": 1042.26, + "end": 1044.88, + "probability": 0.3793 + }, + { + "start": 1045.24, + "end": 1047.24, + "probability": 0.9883 + }, + { + "start": 1047.9, + "end": 1048.54, + "probability": 0.821 + }, + { + "start": 1048.56, + "end": 1049.02, + "probability": 0.8877 + }, + { + "start": 1049.48, + "end": 1050.34, + "probability": 0.9222 + }, + { + "start": 1050.46, + "end": 1053.38, + "probability": 0.8625 + }, + { + "start": 1054.38, + "end": 1054.64, + "probability": 0.5532 + }, + { + "start": 1054.68, + "end": 1055.66, + "probability": 0.5688 + }, + { + "start": 1055.9, + "end": 1057.1, + "probability": 0.984 + }, + { + "start": 1057.16, + "end": 1058.72, + "probability": 0.9839 + }, + { + "start": 1059.9, + "end": 1062.14, + "probability": 0.9768 + }, + { + "start": 1063.14, + "end": 1065.5, + "probability": 0.9951 + }, + { + "start": 1066.64, + "end": 1067.54, + "probability": 0.8132 + }, + { + "start": 1068.08, + "end": 1071.74, + "probability": 0.9969 + }, + { + "start": 1071.84, + "end": 1072.34, + "probability": 0.8364 + }, + { + "start": 1073.02, + "end": 1076.4, + "probability": 0.8374 + }, + { + "start": 1077.66, + "end": 1079.52, + "probability": 0.9762 + }, + { + "start": 1080.68, + "end": 1081.36, + "probability": 0.9728 + }, + { + "start": 1081.4, + "end": 1082.48, + "probability": 0.5389 + }, + { + "start": 1082.56, + "end": 1083.34, + "probability": 0.8883 + }, + { + "start": 1083.7, + "end": 1085.72, + "probability": 0.9854 + }, + { + "start": 1086.06, + "end": 1086.4, + "probability": 0.8022 + }, + { + "start": 1087.62, + "end": 1089.28, + "probability": 0.9945 + }, + { + "start": 1089.38, + "end": 1092.04, + "probability": 0.9893 + }, + { + "start": 1092.36, + "end": 1094.36, + "probability": 0.8632 + }, + { + "start": 1094.48, + "end": 1095.34, + "probability": 0.5919 + }, + { + "start": 1095.38, + "end": 1095.88, + "probability": 0.6084 + }, + { + "start": 1096.56, + "end": 1098.54, + "probability": 0.9502 + }, + { + "start": 1099.28, + "end": 1099.94, + "probability": 0.9432 + }, + { + "start": 1100.46, + "end": 1101.02, + "probability": 0.7569 + }, + { + "start": 1101.1, + "end": 1101.62, + "probability": 0.8664 + }, + { + "start": 1102.36, + "end": 1107.08, + "probability": 0.9925 + }, + { + "start": 1107.16, + "end": 1107.79, + "probability": 0.6709 + }, + { + "start": 1108.44, + "end": 1109.46, + "probability": 0.9934 + }, + { + "start": 1109.5, + "end": 1110.54, + "probability": 0.8995 + }, + { + "start": 1110.84, + "end": 1111.7, + "probability": 0.9514 + }, + { + "start": 1111.78, + "end": 1114.54, + "probability": 0.9219 + }, + { + "start": 1114.98, + "end": 1116.2, + "probability": 0.838 + }, + { + "start": 1116.28, + "end": 1117.63, + "probability": 0.937 + }, + { + "start": 1118.04, + "end": 1120.88, + "probability": 0.9413 + }, + { + "start": 1121.0, + "end": 1121.84, + "probability": 0.8945 + }, + { + "start": 1122.3, + "end": 1124.36, + "probability": 0.9186 + }, + { + "start": 1125.12, + "end": 1126.74, + "probability": 0.8782 + }, + { + "start": 1127.28, + "end": 1129.82, + "probability": 0.9119 + }, + { + "start": 1130.18, + "end": 1131.04, + "probability": 0.8716 + }, + { + "start": 1131.44, + "end": 1132.74, + "probability": 0.7752 + }, + { + "start": 1133.14, + "end": 1136.26, + "probability": 0.7061 + }, + { + "start": 1137.12, + "end": 1138.48, + "probability": 0.7355 + }, + { + "start": 1139.06, + "end": 1141.62, + "probability": 0.9706 + }, + { + "start": 1141.78, + "end": 1141.94, + "probability": 0.5706 + }, + { + "start": 1142.36, + "end": 1142.76, + "probability": 0.5721 + }, + { + "start": 1143.16, + "end": 1144.96, + "probability": 0.6935 + }, + { + "start": 1145.64, + "end": 1147.22, + "probability": 0.7922 + }, + { + "start": 1147.34, + "end": 1150.34, + "probability": 0.9659 + }, + { + "start": 1153.0, + "end": 1155.26, + "probability": 0.7603 + }, + { + "start": 1156.0, + "end": 1161.26, + "probability": 0.9975 + }, + { + "start": 1161.26, + "end": 1166.14, + "probability": 0.9971 + }, + { + "start": 1166.38, + "end": 1167.4, + "probability": 0.9819 + }, + { + "start": 1167.94, + "end": 1173.42, + "probability": 0.9858 + }, + { + "start": 1174.36, + "end": 1174.76, + "probability": 0.6193 + }, + { + "start": 1174.88, + "end": 1176.82, + "probability": 0.9932 + }, + { + "start": 1176.82, + "end": 1179.84, + "probability": 0.9786 + }, + { + "start": 1179.86, + "end": 1180.84, + "probability": 0.8633 + }, + { + "start": 1181.48, + "end": 1186.22, + "probability": 0.9844 + }, + { + "start": 1186.74, + "end": 1190.62, + "probability": 0.9961 + }, + { + "start": 1191.04, + "end": 1192.5, + "probability": 0.923 + }, + { + "start": 1192.62, + "end": 1193.06, + "probability": 0.5894 + }, + { + "start": 1193.36, + "end": 1194.24, + "probability": 0.5089 + }, + { + "start": 1194.6, + "end": 1196.06, + "probability": 0.9199 + }, + { + "start": 1196.62, + "end": 1198.28, + "probability": 0.838 + }, + { + "start": 1199.56, + "end": 1200.3, + "probability": 0.7072 + }, + { + "start": 1200.98, + "end": 1201.14, + "probability": 0.4365 + }, + { + "start": 1201.64, + "end": 1203.06, + "probability": 0.4635 + }, + { + "start": 1204.98, + "end": 1210.28, + "probability": 0.8512 + }, + { + "start": 1210.34, + "end": 1211.42, + "probability": 0.7898 + }, + { + "start": 1211.6, + "end": 1212.76, + "probability": 0.9417 + }, + { + "start": 1213.88, + "end": 1216.7, + "probability": 0.9944 + }, + { + "start": 1216.7, + "end": 1220.16, + "probability": 0.948 + }, + { + "start": 1221.1, + "end": 1223.12, + "probability": 0.7978 + }, + { + "start": 1224.84, + "end": 1228.64, + "probability": 0.9957 + }, + { + "start": 1228.64, + "end": 1233.72, + "probability": 0.9382 + }, + { + "start": 1235.22, + "end": 1236.75, + "probability": 0.9951 + }, + { + "start": 1239.12, + "end": 1240.06, + "probability": 0.8412 + }, + { + "start": 1240.26, + "end": 1244.25, + "probability": 0.9949 + }, + { + "start": 1246.68, + "end": 1249.22, + "probability": 0.8072 + }, + { + "start": 1254.78, + "end": 1255.5, + "probability": 0.0855 + }, + { + "start": 1255.5, + "end": 1256.02, + "probability": 0.1664 + }, + { + "start": 1256.6, + "end": 1262.04, + "probability": 0.2664 + }, + { + "start": 1262.1, + "end": 1263.74, + "probability": 0.3587 + }, + { + "start": 1263.86, + "end": 1266.4, + "probability": 0.7933 + }, + { + "start": 1266.4, + "end": 1268.54, + "probability": 0.7952 + }, + { + "start": 1268.66, + "end": 1270.24, + "probability": 0.9264 + }, + { + "start": 1271.1, + "end": 1271.7, + "probability": 0.3171 + }, + { + "start": 1271.76, + "end": 1274.92, + "probability": 0.9232 + }, + { + "start": 1275.52, + "end": 1276.76, + "probability": 0.9658 + }, + { + "start": 1276.9, + "end": 1279.04, + "probability": 0.8049 + }, + { + "start": 1279.2, + "end": 1279.64, + "probability": 0.7318 + }, + { + "start": 1279.7, + "end": 1281.4, + "probability": 0.8716 + }, + { + "start": 1281.7, + "end": 1282.58, + "probability": 0.6784 + }, + { + "start": 1282.7, + "end": 1283.44, + "probability": 0.9053 + }, + { + "start": 1283.54, + "end": 1288.24, + "probability": 0.7097 + }, + { + "start": 1288.3, + "end": 1291.1, + "probability": 0.9612 + }, + { + "start": 1291.18, + "end": 1293.76, + "probability": 0.9865 + }, + { + "start": 1294.64, + "end": 1296.1, + "probability": 0.8245 + }, + { + "start": 1296.44, + "end": 1297.1, + "probability": 0.4079 + }, + { + "start": 1302.38, + "end": 1304.22, + "probability": 0.8021 + }, + { + "start": 1305.0, + "end": 1305.66, + "probability": 0.7649 + }, + { + "start": 1306.84, + "end": 1310.29, + "probability": 0.9898 + }, + { + "start": 1310.74, + "end": 1313.66, + "probability": 0.8319 + }, + { + "start": 1314.62, + "end": 1318.06, + "probability": 0.7535 + }, + { + "start": 1318.3, + "end": 1320.62, + "probability": 0.344 + }, + { + "start": 1321.78, + "end": 1324.26, + "probability": 0.875 + }, + { + "start": 1325.1, + "end": 1327.8, + "probability": 0.8456 + }, + { + "start": 1337.0, + "end": 1338.12, + "probability": 0.6828 + }, + { + "start": 1338.8, + "end": 1340.12, + "probability": 0.7321 + }, + { + "start": 1341.36, + "end": 1342.16, + "probability": 0.822 + }, + { + "start": 1344.96, + "end": 1345.68, + "probability": 0.8014 + }, + { + "start": 1346.72, + "end": 1350.88, + "probability": 0.998 + }, + { + "start": 1353.18, + "end": 1356.16, + "probability": 0.9956 + }, + { + "start": 1356.46, + "end": 1358.54, + "probability": 0.7036 + }, + { + "start": 1358.88, + "end": 1359.96, + "probability": 0.724 + }, + { + "start": 1360.94, + "end": 1363.0, + "probability": 0.7339 + }, + { + "start": 1363.76, + "end": 1364.06, + "probability": 0.7562 + }, + { + "start": 1364.58, + "end": 1366.8, + "probability": 0.8848 + }, + { + "start": 1367.62, + "end": 1368.72, + "probability": 0.8647 + }, + { + "start": 1368.84, + "end": 1372.24, + "probability": 0.7952 + }, + { + "start": 1372.6, + "end": 1372.9, + "probability": 0.4831 + }, + { + "start": 1372.94, + "end": 1373.42, + "probability": 0.8618 + }, + { + "start": 1373.52, + "end": 1374.54, + "probability": 0.9141 + }, + { + "start": 1374.7, + "end": 1376.28, + "probability": 0.9933 + }, + { + "start": 1377.74, + "end": 1383.4, + "probability": 0.9806 + }, + { + "start": 1384.74, + "end": 1386.14, + "probability": 0.683 + }, + { + "start": 1386.28, + "end": 1388.34, + "probability": 0.8147 + }, + { + "start": 1388.38, + "end": 1388.6, + "probability": 0.4933 + }, + { + "start": 1388.94, + "end": 1390.58, + "probability": 0.9952 + }, + { + "start": 1391.24, + "end": 1393.31, + "probability": 0.9478 + }, + { + "start": 1397.62, + "end": 1399.26, + "probability": 0.5855 + }, + { + "start": 1399.32, + "end": 1401.88, + "probability": 0.9939 + }, + { + "start": 1402.72, + "end": 1405.07, + "probability": 0.9976 + }, + { + "start": 1405.32, + "end": 1409.06, + "probability": 0.9211 + }, + { + "start": 1409.32, + "end": 1410.44, + "probability": 0.9664 + }, + { + "start": 1411.1, + "end": 1412.82, + "probability": 0.9966 + }, + { + "start": 1413.28, + "end": 1415.68, + "probability": 0.7655 + }, + { + "start": 1415.82, + "end": 1416.98, + "probability": 0.9077 + }, + { + "start": 1417.8, + "end": 1419.96, + "probability": 0.9556 + }, + { + "start": 1420.12, + "end": 1423.72, + "probability": 0.9729 + }, + { + "start": 1424.24, + "end": 1426.58, + "probability": 0.9843 + }, + { + "start": 1427.12, + "end": 1428.26, + "probability": 0.8051 + }, + { + "start": 1428.9, + "end": 1429.64, + "probability": 0.8618 + }, + { + "start": 1429.84, + "end": 1430.68, + "probability": 0.9884 + }, + { + "start": 1430.82, + "end": 1434.8, + "probability": 0.987 + }, + { + "start": 1435.58, + "end": 1438.22, + "probability": 0.976 + }, + { + "start": 1438.24, + "end": 1440.4, + "probability": 0.9806 + }, + { + "start": 1441.34, + "end": 1442.76, + "probability": 0.6112 + }, + { + "start": 1442.9, + "end": 1444.32, + "probability": 0.9729 + }, + { + "start": 1445.02, + "end": 1448.48, + "probability": 0.644 + }, + { + "start": 1448.82, + "end": 1453.82, + "probability": 0.9818 + }, + { + "start": 1454.04, + "end": 1457.38, + "probability": 0.9518 + }, + { + "start": 1457.38, + "end": 1459.62, + "probability": 0.9456 + }, + { + "start": 1460.74, + "end": 1463.28, + "probability": 0.8366 + }, + { + "start": 1463.7, + "end": 1465.9, + "probability": 0.9048 + }, + { + "start": 1466.7, + "end": 1466.8, + "probability": 0.9988 + }, + { + "start": 1467.36, + "end": 1469.5, + "probability": 0.664 + }, + { + "start": 1470.56, + "end": 1472.1, + "probability": 0.9963 + }, + { + "start": 1472.44, + "end": 1475.44, + "probability": 0.9891 + }, + { + "start": 1476.04, + "end": 1480.19, + "probability": 0.0512 + }, + { + "start": 1480.66, + "end": 1486.2, + "probability": 0.91 + }, + { + "start": 1486.9, + "end": 1488.4, + "probability": 0.8947 + }, + { + "start": 1489.12, + "end": 1489.14, + "probability": 0.2447 + }, + { + "start": 1489.14, + "end": 1493.54, + "probability": 0.9775 + }, + { + "start": 1493.6, + "end": 1495.82, + "probability": 0.7006 + }, + { + "start": 1496.46, + "end": 1497.86, + "probability": 0.877 + }, + { + "start": 1497.96, + "end": 1501.94, + "probability": 0.9419 + }, + { + "start": 1502.14, + "end": 1503.12, + "probability": 0.7657 + }, + { + "start": 1503.6, + "end": 1509.58, + "probability": 0.9723 + }, + { + "start": 1509.68, + "end": 1510.12, + "probability": 0.9447 + }, + { + "start": 1510.72, + "end": 1512.88, + "probability": 0.9971 + }, + { + "start": 1513.04, + "end": 1514.98, + "probability": 0.9974 + }, + { + "start": 1516.18, + "end": 1520.24, + "probability": 0.9392 + }, + { + "start": 1520.8, + "end": 1522.34, + "probability": 0.7925 + }, + { + "start": 1522.62, + "end": 1524.14, + "probability": 0.9268 + }, + { + "start": 1524.32, + "end": 1526.62, + "probability": 0.9683 + }, + { + "start": 1527.06, + "end": 1529.12, + "probability": 0.9495 + }, + { + "start": 1529.98, + "end": 1531.8, + "probability": 0.9613 + }, + { + "start": 1531.92, + "end": 1533.51, + "probability": 0.9495 + }, + { + "start": 1534.26, + "end": 1536.98, + "probability": 0.9781 + }, + { + "start": 1537.54, + "end": 1543.42, + "probability": 0.7251 + }, + { + "start": 1543.44, + "end": 1546.86, + "probability": 0.8421 + }, + { + "start": 1547.2, + "end": 1547.56, + "probability": 0.8757 + }, + { + "start": 1547.56, + "end": 1547.8, + "probability": 0.5519 + }, + { + "start": 1548.36, + "end": 1551.4, + "probability": 0.9254 + }, + { + "start": 1553.13, + "end": 1554.76, + "probability": 0.9951 + }, + { + "start": 1555.22, + "end": 1558.1, + "probability": 0.9495 + }, + { + "start": 1558.72, + "end": 1561.9, + "probability": 0.9927 + }, + { + "start": 1561.9, + "end": 1567.7, + "probability": 0.9944 + }, + { + "start": 1568.24, + "end": 1570.72, + "probability": 0.9702 + }, + { + "start": 1571.12, + "end": 1572.76, + "probability": 0.9224 + }, + { + "start": 1573.06, + "end": 1575.24, + "probability": 0.9965 + }, + { + "start": 1575.62, + "end": 1577.43, + "probability": 0.7944 + }, + { + "start": 1577.98, + "end": 1579.74, + "probability": 0.9831 + }, + { + "start": 1579.88, + "end": 1584.88, + "probability": 0.9918 + }, + { + "start": 1584.94, + "end": 1589.64, + "probability": 0.9976 + }, + { + "start": 1589.68, + "end": 1590.98, + "probability": 0.833 + }, + { + "start": 1591.14, + "end": 1591.84, + "probability": 0.9569 + }, + { + "start": 1592.92, + "end": 1596.96, + "probability": 0.9823 + }, + { + "start": 1597.48, + "end": 1598.24, + "probability": 0.9669 + }, + { + "start": 1598.74, + "end": 1601.0, + "probability": 0.9936 + }, + { + "start": 1601.04, + "end": 1602.16, + "probability": 0.9936 + }, + { + "start": 1602.36, + "end": 1605.68, + "probability": 0.9806 + }, + { + "start": 1606.04, + "end": 1606.5, + "probability": 0.4253 + }, + { + "start": 1606.6, + "end": 1607.86, + "probability": 0.8635 + }, + { + "start": 1608.48, + "end": 1609.8, + "probability": 0.995 + }, + { + "start": 1610.5, + "end": 1612.14, + "probability": 0.9963 + }, + { + "start": 1612.62, + "end": 1613.78, + "probability": 0.67 + }, + { + "start": 1617.4, + "end": 1618.12, + "probability": 0.6017 + }, + { + "start": 1618.96, + "end": 1620.48, + "probability": 0.7786 + }, + { + "start": 1642.14, + "end": 1642.96, + "probability": 0.79 + }, + { + "start": 1644.38, + "end": 1645.74, + "probability": 0.8868 + }, + { + "start": 1647.22, + "end": 1651.09, + "probability": 0.9922 + }, + { + "start": 1651.66, + "end": 1654.82, + "probability": 0.7 + }, + { + "start": 1657.42, + "end": 1659.5, + "probability": 0.9644 + }, + { + "start": 1660.86, + "end": 1662.58, + "probability": 0.8679 + }, + { + "start": 1663.52, + "end": 1664.04, + "probability": 0.9821 + }, + { + "start": 1664.38, + "end": 1667.38, + "probability": 0.9457 + }, + { + "start": 1667.9, + "end": 1670.48, + "probability": 0.8044 + }, + { + "start": 1671.06, + "end": 1675.74, + "probability": 0.9658 + }, + { + "start": 1676.36, + "end": 1680.24, + "probability": 0.9822 + }, + { + "start": 1680.24, + "end": 1683.24, + "probability": 0.999 + }, + { + "start": 1685.06, + "end": 1690.2, + "probability": 0.9517 + }, + { + "start": 1690.74, + "end": 1692.62, + "probability": 0.8019 + }, + { + "start": 1693.16, + "end": 1696.59, + "probability": 0.822 + }, + { + "start": 1697.54, + "end": 1699.42, + "probability": 0.8246 + }, + { + "start": 1699.88, + "end": 1702.2, + "probability": 0.9608 + }, + { + "start": 1702.34, + "end": 1704.62, + "probability": 0.9964 + }, + { + "start": 1705.3, + "end": 1705.9, + "probability": 0.834 + }, + { + "start": 1706.16, + "end": 1711.3, + "probability": 0.9855 + }, + { + "start": 1711.76, + "end": 1714.86, + "probability": 0.884 + }, + { + "start": 1714.98, + "end": 1716.88, + "probability": 0.9909 + }, + { + "start": 1717.32, + "end": 1718.02, + "probability": 0.4609 + }, + { + "start": 1718.7, + "end": 1721.32, + "probability": 0.9208 + }, + { + "start": 1721.5, + "end": 1722.34, + "probability": 0.7783 + }, + { + "start": 1722.94, + "end": 1724.0, + "probability": 0.5557 + }, + { + "start": 1724.12, + "end": 1727.7, + "probability": 0.8924 + }, + { + "start": 1727.9, + "end": 1729.84, + "probability": 0.9044 + }, + { + "start": 1746.14, + "end": 1748.44, + "probability": 0.577 + }, + { + "start": 1749.34, + "end": 1750.12, + "probability": 0.7293 + }, + { + "start": 1750.98, + "end": 1755.65, + "probability": 0.9962 + }, + { + "start": 1757.28, + "end": 1761.28, + "probability": 0.7873 + }, + { + "start": 1761.84, + "end": 1762.52, + "probability": 0.8388 + }, + { + "start": 1763.4, + "end": 1765.28, + "probability": 0.6639 + }, + { + "start": 1765.4, + "end": 1769.42, + "probability": 0.8535 + }, + { + "start": 1769.48, + "end": 1769.6, + "probability": 0.7201 + }, + { + "start": 1769.68, + "end": 1772.46, + "probability": 0.9814 + }, + { + "start": 1773.0, + "end": 1773.86, + "probability": 0.8916 + }, + { + "start": 1773.96, + "end": 1775.36, + "probability": 0.8719 + }, + { + "start": 1776.38, + "end": 1778.66, + "probability": 0.5256 + }, + { + "start": 1778.7, + "end": 1782.74, + "probability": 0.985 + }, + { + "start": 1782.8, + "end": 1783.24, + "probability": 0.9089 + }, + { + "start": 1783.5, + "end": 1784.35, + "probability": 0.9569 + }, + { + "start": 1785.04, + "end": 1788.3, + "probability": 0.748 + }, + { + "start": 1788.48, + "end": 1792.68, + "probability": 0.9969 + }, + { + "start": 1792.76, + "end": 1793.04, + "probability": 0.4914 + }, + { + "start": 1793.14, + "end": 1795.08, + "probability": 0.9949 + }, + { + "start": 1795.46, + "end": 1796.3, + "probability": 0.3448 + }, + { + "start": 1796.5, + "end": 1798.66, + "probability": 0.9751 + }, + { + "start": 1799.18, + "end": 1802.34, + "probability": 0.9133 + }, + { + "start": 1802.98, + "end": 1804.78, + "probability": 0.9775 + }, + { + "start": 1805.12, + "end": 1806.96, + "probability": 0.8775 + }, + { + "start": 1807.3, + "end": 1810.02, + "probability": 0.9836 + }, + { + "start": 1810.34, + "end": 1813.86, + "probability": 0.9611 + }, + { + "start": 1814.12, + "end": 1818.34, + "probability": 0.9987 + }, + { + "start": 1818.84, + "end": 1819.5, + "probability": 0.6504 + }, + { + "start": 1819.82, + "end": 1820.48, + "probability": 0.9373 + }, + { + "start": 1820.84, + "end": 1824.24, + "probability": 0.989 + }, + { + "start": 1824.56, + "end": 1828.1, + "probability": 0.9702 + }, + { + "start": 1828.62, + "end": 1832.38, + "probability": 0.9922 + }, + { + "start": 1832.78, + "end": 1838.26, + "probability": 0.9979 + }, + { + "start": 1838.64, + "end": 1842.78, + "probability": 0.9142 + }, + { + "start": 1842.96, + "end": 1846.1, + "probability": 0.9952 + }, + { + "start": 1846.1, + "end": 1849.88, + "probability": 0.7173 + }, + { + "start": 1850.46, + "end": 1853.68, + "probability": 0.9668 + }, + { + "start": 1854.08, + "end": 1854.48, + "probability": 0.5268 + }, + { + "start": 1854.62, + "end": 1855.1, + "probability": 0.6613 + }, + { + "start": 1855.5, + "end": 1855.74, + "probability": 0.8455 + }, + { + "start": 1855.82, + "end": 1857.8, + "probability": 0.9482 + }, + { + "start": 1858.16, + "end": 1858.58, + "probability": 0.9521 + }, + { + "start": 1859.04, + "end": 1859.38, + "probability": 0.9463 + }, + { + "start": 1859.94, + "end": 1863.81, + "probability": 0.9767 + }, + { + "start": 1864.08, + "end": 1865.8, + "probability": 0.7821 + }, + { + "start": 1866.06, + "end": 1866.72, + "probability": 0.7166 + }, + { + "start": 1867.02, + "end": 1872.22, + "probability": 0.9736 + }, + { + "start": 1872.52, + "end": 1872.68, + "probability": 0.7189 + }, + { + "start": 1887.96, + "end": 1888.48, + "probability": 0.6304 + }, + { + "start": 1890.56, + "end": 1891.74, + "probability": 0.4038 + }, + { + "start": 1893.92, + "end": 1895.4, + "probability": 0.8442 + }, + { + "start": 1895.92, + "end": 1898.62, + "probability": 0.9376 + }, + { + "start": 1917.3, + "end": 1918.84, + "probability": 0.223 + }, + { + "start": 1922.7, + "end": 1930.82, + "probability": 0.0336 + }, + { + "start": 1931.76, + "end": 1932.26, + "probability": 0.0105 + }, + { + "start": 1932.26, + "end": 1933.18, + "probability": 0.0171 + }, + { + "start": 1933.28, + "end": 1933.28, + "probability": 0.0275 + }, + { + "start": 1934.31, + "end": 1935.78, + "probability": 0.1177 + }, + { + "start": 1936.14, + "end": 1937.42, + "probability": 0.0594 + }, + { + "start": 1938.64, + "end": 1939.4, + "probability": 0.016 + }, + { + "start": 1939.96, + "end": 1940.4, + "probability": 0.0292 + }, + { + "start": 1940.4, + "end": 1940.4, + "probability": 0.3305 + }, + { + "start": 1940.4, + "end": 1940.4, + "probability": 0.1108 + }, + { + "start": 1940.4, + "end": 1940.48, + "probability": 0.1796 + }, + { + "start": 1940.48, + "end": 1940.98, + "probability": 0.3222 + }, + { + "start": 1941.0, + "end": 1941.0, + "probability": 0.0 + }, + { + "start": 1941.0, + "end": 1941.0, + "probability": 0.0 + }, + { + "start": 1941.26, + "end": 1943.82, + "probability": 0.5418 + }, + { + "start": 1945.02, + "end": 1946.18, + "probability": 0.0165 + }, + { + "start": 1948.36, + "end": 1949.26, + "probability": 0.7847 + }, + { + "start": 1949.7, + "end": 1952.1, + "probability": 0.9579 + }, + { + "start": 1953.58, + "end": 1954.06, + "probability": 0.7619 + }, + { + "start": 1955.12, + "end": 1960.42, + "probability": 0.9166 + }, + { + "start": 1977.26, + "end": 1977.34, + "probability": 0.1589 + }, + { + "start": 1977.4, + "end": 1981.1, + "probability": 0.8419 + }, + { + "start": 1983.08, + "end": 1985.72, + "probability": 0.8428 + }, + { + "start": 1985.92, + "end": 1987.24, + "probability": 0.7792 + }, + { + "start": 1988.2, + "end": 1996.8, + "probability": 0.97 + }, + { + "start": 1998.66, + "end": 1999.88, + "probability": 0.7527 + }, + { + "start": 2002.9, + "end": 2004.89, + "probability": 0.2243 + }, + { + "start": 2025.48, + "end": 2027.82, + "probability": 0.718 + }, + { + "start": 2029.06, + "end": 2029.76, + "probability": 0.173 + }, + { + "start": 2029.92, + "end": 2030.48, + "probability": 0.0661 + }, + { + "start": 2030.6, + "end": 2033.52, + "probability": 0.0573 + }, + { + "start": 2033.52, + "end": 2033.52, + "probability": 0.0671 + }, + { + "start": 2058.36, + "end": 2063.54, + "probability": 0.6904 + }, + { + "start": 2066.42, + "end": 2067.4, + "probability": 0.3664 + }, + { + "start": 2068.4, + "end": 2073.06, + "probability": 0.9812 + }, + { + "start": 2076.52, + "end": 2079.52, + "probability": 0.9287 + }, + { + "start": 2080.8, + "end": 2090.88, + "probability": 0.9946 + }, + { + "start": 2093.36, + "end": 2094.02, + "probability": 0.0398 + }, + { + "start": 2096.76, + "end": 2100.16, + "probability": 0.8077 + }, + { + "start": 2101.28, + "end": 2103.62, + "probability": 0.8763 + }, + { + "start": 2105.82, + "end": 2109.1, + "probability": 0.9934 + }, + { + "start": 2110.66, + "end": 2112.12, + "probability": 0.9653 + }, + { + "start": 2112.7, + "end": 2113.78, + "probability": 0.6706 + }, + { + "start": 2115.7, + "end": 2118.92, + "probability": 0.8975 + }, + { + "start": 2120.54, + "end": 2124.08, + "probability": 0.9986 + }, + { + "start": 2125.76, + "end": 2128.16, + "probability": 0.957 + }, + { + "start": 2129.06, + "end": 2130.2, + "probability": 0.9058 + }, + { + "start": 2131.36, + "end": 2132.46, + "probability": 0.8738 + }, + { + "start": 2133.74, + "end": 2137.6, + "probability": 0.9893 + }, + { + "start": 2140.26, + "end": 2140.96, + "probability": 0.9911 + }, + { + "start": 2141.78, + "end": 2143.58, + "probability": 0.9985 + }, + { + "start": 2144.44, + "end": 2147.12, + "probability": 0.9961 + }, + { + "start": 2148.82, + "end": 2151.38, + "probability": 0.9832 + }, + { + "start": 2153.54, + "end": 2156.2, + "probability": 0.9962 + }, + { + "start": 2157.5, + "end": 2158.82, + "probability": 0.9206 + }, + { + "start": 2160.3, + "end": 2164.16, + "probability": 0.9966 + }, + { + "start": 2164.98, + "end": 2166.56, + "probability": 0.8192 + }, + { + "start": 2167.32, + "end": 2172.24, + "probability": 0.9883 + }, + { + "start": 2174.56, + "end": 2176.6, + "probability": 0.8822 + }, + { + "start": 2178.24, + "end": 2180.96, + "probability": 0.9259 + }, + { + "start": 2182.26, + "end": 2183.5, + "probability": 0.8477 + }, + { + "start": 2184.6, + "end": 2187.1, + "probability": 0.9937 + }, + { + "start": 2188.3, + "end": 2194.76, + "probability": 0.9929 + }, + { + "start": 2196.4, + "end": 2202.56, + "probability": 0.9912 + }, + { + "start": 2203.66, + "end": 2204.64, + "probability": 0.7037 + }, + { + "start": 2206.58, + "end": 2207.92, + "probability": 0.4662 + }, + { + "start": 2208.6, + "end": 2211.14, + "probability": 0.765 + }, + { + "start": 2212.62, + "end": 2213.64, + "probability": 0.9702 + }, + { + "start": 2214.7, + "end": 2216.6, + "probability": 0.9886 + }, + { + "start": 2217.36, + "end": 2218.86, + "probability": 0.9341 + }, + { + "start": 2220.14, + "end": 2222.84, + "probability": 0.9922 + }, + { + "start": 2224.2, + "end": 2225.16, + "probability": 0.6962 + }, + { + "start": 2226.44, + "end": 2228.56, + "probability": 0.9886 + }, + { + "start": 2229.14, + "end": 2231.54, + "probability": 0.9866 + }, + { + "start": 2232.62, + "end": 2237.04, + "probability": 0.9465 + }, + { + "start": 2237.62, + "end": 2243.6, + "probability": 0.9976 + }, + { + "start": 2245.52, + "end": 2247.68, + "probability": 0.8475 + }, + { + "start": 2249.0, + "end": 2250.96, + "probability": 0.6141 + }, + { + "start": 2252.04, + "end": 2255.16, + "probability": 0.9541 + }, + { + "start": 2255.84, + "end": 2257.02, + "probability": 0.9012 + }, + { + "start": 2258.2, + "end": 2261.52, + "probability": 0.951 + }, + { + "start": 2263.34, + "end": 2267.18, + "probability": 0.9959 + }, + { + "start": 2268.64, + "end": 2270.4, + "probability": 0.9969 + }, + { + "start": 2272.14, + "end": 2275.8, + "probability": 0.9863 + }, + { + "start": 2275.92, + "end": 2279.94, + "probability": 0.9006 + }, + { + "start": 2280.56, + "end": 2282.94, + "probability": 0.9736 + }, + { + "start": 2284.88, + "end": 2289.5, + "probability": 0.8525 + }, + { + "start": 2289.82, + "end": 2291.66, + "probability": 0.0397 + }, + { + "start": 2292.36, + "end": 2293.02, + "probability": 0.4779 + }, + { + "start": 2293.7, + "end": 2300.68, + "probability": 0.9893 + }, + { + "start": 2301.6, + "end": 2304.1, + "probability": 0.772 + }, + { + "start": 2304.62, + "end": 2309.96, + "probability": 0.8135 + }, + { + "start": 2310.84, + "end": 2318.42, + "probability": 0.9656 + }, + { + "start": 2318.9, + "end": 2321.7, + "probability": 0.9991 + }, + { + "start": 2322.24, + "end": 2327.12, + "probability": 0.8108 + }, + { + "start": 2327.12, + "end": 2332.86, + "probability": 0.9004 + }, + { + "start": 2333.66, + "end": 2336.36, + "probability": 0.9903 + }, + { + "start": 2337.08, + "end": 2337.86, + "probability": 0.8846 + }, + { + "start": 2339.52, + "end": 2339.82, + "probability": 0.4935 + }, + { + "start": 2340.56, + "end": 2341.66, + "probability": 0.4663 + }, + { + "start": 2342.52, + "end": 2347.24, + "probability": 0.9973 + }, + { + "start": 2348.58, + "end": 2351.7, + "probability": 0.8695 + }, + { + "start": 2352.64, + "end": 2354.32, + "probability": 0.8902 + }, + { + "start": 2356.52, + "end": 2357.42, + "probability": 0.9683 + }, + { + "start": 2359.48, + "end": 2364.62, + "probability": 0.997 + }, + { + "start": 2365.6, + "end": 2369.2, + "probability": 0.9124 + }, + { + "start": 2370.66, + "end": 2371.58, + "probability": 0.8547 + }, + { + "start": 2373.82, + "end": 2375.66, + "probability": 0.9299 + }, + { + "start": 2377.14, + "end": 2380.36, + "probability": 0.9797 + }, + { + "start": 2382.06, + "end": 2388.8, + "probability": 0.861 + }, + { + "start": 2389.88, + "end": 2391.8, + "probability": 0.9565 + }, + { + "start": 2393.34, + "end": 2394.3, + "probability": 0.7432 + }, + { + "start": 2394.52, + "end": 2397.54, + "probability": 0.9639 + }, + { + "start": 2397.7, + "end": 2398.22, + "probability": 0.5464 + }, + { + "start": 2399.14, + "end": 2399.96, + "probability": 0.9941 + }, + { + "start": 2400.86, + "end": 2406.64, + "probability": 0.9594 + }, + { + "start": 2407.78, + "end": 2409.04, + "probability": 0.8976 + }, + { + "start": 2410.54, + "end": 2412.6, + "probability": 0.975 + }, + { + "start": 2413.82, + "end": 2415.4, + "probability": 0.9759 + }, + { + "start": 2416.24, + "end": 2417.74, + "probability": 0.944 + }, + { + "start": 2418.42, + "end": 2420.6, + "probability": 0.9907 + }, + { + "start": 2421.42, + "end": 2425.16, + "probability": 0.9751 + }, + { + "start": 2426.26, + "end": 2430.5, + "probability": 0.7355 + }, + { + "start": 2431.12, + "end": 2432.09, + "probability": 0.8743 + }, + { + "start": 2432.88, + "end": 2434.84, + "probability": 0.9932 + }, + { + "start": 2435.8, + "end": 2437.5, + "probability": 0.9831 + }, + { + "start": 2438.44, + "end": 2446.78, + "probability": 0.9607 + }, + { + "start": 2446.9, + "end": 2447.86, + "probability": 0.4811 + }, + { + "start": 2448.84, + "end": 2454.38, + "probability": 0.9978 + }, + { + "start": 2455.78, + "end": 2459.86, + "probability": 0.9916 + }, + { + "start": 2459.86, + "end": 2464.06, + "probability": 0.9595 + }, + { + "start": 2464.82, + "end": 2466.62, + "probability": 0.9993 + }, + { + "start": 2467.58, + "end": 2468.62, + "probability": 0.9627 + }, + { + "start": 2471.34, + "end": 2478.58, + "probability": 0.8765 + }, + { + "start": 2479.26, + "end": 2480.12, + "probability": 0.9983 + }, + { + "start": 2481.02, + "end": 2483.86, + "probability": 0.7282 + }, + { + "start": 2484.74, + "end": 2487.96, + "probability": 0.999 + }, + { + "start": 2488.68, + "end": 2492.72, + "probability": 0.9849 + }, + { + "start": 2493.92, + "end": 2495.48, + "probability": 0.4477 + }, + { + "start": 2498.0, + "end": 2500.3, + "probability": 0.9969 + }, + { + "start": 2501.1, + "end": 2503.92, + "probability": 0.9991 + }, + { + "start": 2504.74, + "end": 2505.86, + "probability": 0.7439 + }, + { + "start": 2507.86, + "end": 2508.3, + "probability": 0.9672 + }, + { + "start": 2509.46, + "end": 2512.64, + "probability": 0.8958 + }, + { + "start": 2514.22, + "end": 2516.24, + "probability": 0.8265 + }, + { + "start": 2516.86, + "end": 2518.6, + "probability": 0.858 + }, + { + "start": 2519.3, + "end": 2525.5, + "probability": 0.8794 + }, + { + "start": 2525.5, + "end": 2530.14, + "probability": 0.9963 + }, + { + "start": 2531.06, + "end": 2533.02, + "probability": 0.7679 + }, + { + "start": 2533.82, + "end": 2535.7, + "probability": 0.9596 + }, + { + "start": 2536.28, + "end": 2540.72, + "probability": 0.9751 + }, + { + "start": 2542.12, + "end": 2546.6, + "probability": 0.9952 + }, + { + "start": 2547.54, + "end": 2548.86, + "probability": 0.9719 + }, + { + "start": 2550.68, + "end": 2554.6, + "probability": 0.9902 + }, + { + "start": 2555.16, + "end": 2558.44, + "probability": 0.988 + }, + { + "start": 2559.16, + "end": 2560.62, + "probability": 0.998 + }, + { + "start": 2561.26, + "end": 2564.54, + "probability": 0.9891 + }, + { + "start": 2565.48, + "end": 2571.54, + "probability": 0.9971 + }, + { + "start": 2572.36, + "end": 2575.02, + "probability": 0.7331 + }, + { + "start": 2575.8, + "end": 2576.9, + "probability": 0.9481 + }, + { + "start": 2577.68, + "end": 2584.14, + "probability": 0.9725 + }, + { + "start": 2585.66, + "end": 2588.6, + "probability": 0.7185 + }, + { + "start": 2589.5, + "end": 2593.66, + "probability": 0.9749 + }, + { + "start": 2595.52, + "end": 2600.72, + "probability": 0.9727 + }, + { + "start": 2601.7, + "end": 2607.88, + "probability": 0.989 + }, + { + "start": 2608.06, + "end": 2613.8, + "probability": 0.9897 + }, + { + "start": 2614.6, + "end": 2615.32, + "probability": 0.5991 + }, + { + "start": 2617.08, + "end": 2618.78, + "probability": 0.996 + }, + { + "start": 2619.62, + "end": 2622.1, + "probability": 0.6675 + }, + { + "start": 2622.66, + "end": 2623.94, + "probability": 0.7327 + }, + { + "start": 2625.34, + "end": 2629.18, + "probability": 0.9923 + }, + { + "start": 2629.78, + "end": 2637.66, + "probability": 0.9961 + }, + { + "start": 2638.34, + "end": 2642.9, + "probability": 0.9705 + }, + { + "start": 2642.9, + "end": 2646.16, + "probability": 0.8243 + }, + { + "start": 2646.8, + "end": 2647.95, + "probability": 0.923 + }, + { + "start": 2649.56, + "end": 2651.4, + "probability": 0.9866 + }, + { + "start": 2652.28, + "end": 2652.82, + "probability": 0.7816 + }, + { + "start": 2653.46, + "end": 2654.68, + "probability": 0.6026 + }, + { + "start": 2656.06, + "end": 2659.3, + "probability": 0.9866 + }, + { + "start": 2659.94, + "end": 2661.92, + "probability": 0.922 + }, + { + "start": 2663.52, + "end": 2664.82, + "probability": 0.9921 + }, + { + "start": 2665.44, + "end": 2666.98, + "probability": 0.617 + }, + { + "start": 2667.98, + "end": 2673.44, + "probability": 0.9487 + }, + { + "start": 2675.26, + "end": 2679.24, + "probability": 0.7196 + }, + { + "start": 2680.04, + "end": 2682.24, + "probability": 0.9949 + }, + { + "start": 2683.72, + "end": 2683.72, + "probability": 0.0268 + }, + { + "start": 2683.72, + "end": 2683.76, + "probability": 0.0381 + }, + { + "start": 2683.76, + "end": 2686.02, + "probability": 0.0135 + }, + { + "start": 2686.74, + "end": 2688.1, + "probability": 0.1745 + }, + { + "start": 2690.14, + "end": 2694.18, + "probability": 0.0228 + }, + { + "start": 2695.59, + "end": 2699.84, + "probability": 0.123 + }, + { + "start": 2700.6, + "end": 2704.56, + "probability": 0.112 + }, + { + "start": 2705.54, + "end": 2709.42, + "probability": 0.1289 + }, + { + "start": 2710.02, + "end": 2716.84, + "probability": 0.3015 + }, + { + "start": 2717.3, + "end": 2718.6, + "probability": 0.1934 + }, + { + "start": 2719.68, + "end": 2721.08, + "probability": 0.216 + }, + { + "start": 2722.04, + "end": 2723.54, + "probability": 0.6794 + }, + { + "start": 2724.34, + "end": 2725.36, + "probability": 0.2875 + }, + { + "start": 2726.02, + "end": 2730.74, + "probability": 0.0693 + }, + { + "start": 2730.74, + "end": 2735.34, + "probability": 0.1564 + }, + { + "start": 2735.96, + "end": 2737.98, + "probability": 0.4049 + }, + { + "start": 2738.76, + "end": 2742.74, + "probability": 0.0681 + }, + { + "start": 2744.16, + "end": 2744.46, + "probability": 0.1536 + }, + { + "start": 2745.26, + "end": 2747.1, + "probability": 0.2544 + }, + { + "start": 2748.02, + "end": 2749.28, + "probability": 0.1459 + }, + { + "start": 2758.0, + "end": 2758.0, + "probability": 0.0 + }, + { + "start": 2758.38, + "end": 2769.28, + "probability": 0.078 + }, + { + "start": 2770.12, + "end": 2771.6, + "probability": 0.356 + }, + { + "start": 2772.54, + "end": 2773.93, + "probability": 0.0342 + }, + { + "start": 2776.08, + "end": 2779.22, + "probability": 0.0921 + }, + { + "start": 2780.34, + "end": 2780.94, + "probability": 0.1458 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.0, + "end": 2881.0, + "probability": 0.0 + }, + { + "start": 2881.26, + "end": 2882.04, + "probability": 0.139 + }, + { + "start": 2883.64, + "end": 2886.68, + "probability": 0.0058 + }, + { + "start": 2887.16, + "end": 2889.8, + "probability": 0.4094 + }, + { + "start": 2889.8, + "end": 2891.3, + "probability": 0.2646 + }, + { + "start": 2891.78, + "end": 2893.6, + "probability": 0.7148 + }, + { + "start": 2893.68, + "end": 2894.4, + "probability": 0.8283 + }, + { + "start": 2894.82, + "end": 2895.34, + "probability": 0.2882 + }, + { + "start": 2895.42, + "end": 2895.76, + "probability": 0.0713 + }, + { + "start": 2895.76, + "end": 2895.76, + "probability": 0.0713 + }, + { + "start": 2895.76, + "end": 2895.76, + "probability": 0.1095 + }, + { + "start": 2895.76, + "end": 2897.6, + "probability": 0.9598 + }, + { + "start": 2897.9, + "end": 2898.78, + "probability": 0.9633 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.0, + "end": 3004.0, + "probability": 0.0 + }, + { + "start": 3004.54, + "end": 3004.58, + "probability": 0.0234 + }, + { + "start": 3004.58, + "end": 3007.32, + "probability": 0.9089 + }, + { + "start": 3008.3, + "end": 3011.94, + "probability": 0.916 + }, + { + "start": 3012.86, + "end": 3013.46, + "probability": 0.955 + }, + { + "start": 3014.0, + "end": 3016.8, + "probability": 0.9022 + }, + { + "start": 3017.32, + "end": 3019.24, + "probability": 0.9764 + }, + { + "start": 3021.8, + "end": 3024.94, + "probability": 0.9995 + }, + { + "start": 3026.18, + "end": 3030.6, + "probability": 0.9034 + }, + { + "start": 3030.7, + "end": 3033.58, + "probability": 0.8589 + }, + { + "start": 3034.26, + "end": 3036.3, + "probability": 0.9232 + }, + { + "start": 3036.76, + "end": 3038.3, + "probability": 0.6886 + }, + { + "start": 3038.86, + "end": 3042.3, + "probability": 0.9859 + }, + { + "start": 3043.24, + "end": 3045.4, + "probability": 0.8258 + }, + { + "start": 3054.74, + "end": 3058.22, + "probability": 0.4546 + }, + { + "start": 3058.58, + "end": 3059.43, + "probability": 0.9594 + }, + { + "start": 3059.9, + "end": 3060.44, + "probability": 0.5944 + }, + { + "start": 3061.42, + "end": 3061.54, + "probability": 0.1113 + }, + { + "start": 3061.54, + "end": 3065.52, + "probability": 0.9062 + }, + { + "start": 3065.66, + "end": 3067.26, + "probability": 0.7553 + }, + { + "start": 3067.3, + "end": 3068.24, + "probability": 0.7944 + }, + { + "start": 3069.01, + "end": 3071.82, + "probability": 0.3113 + }, + { + "start": 3072.02, + "end": 3074.26, + "probability": 0.7651 + }, + { + "start": 3076.19, + "end": 3079.6, + "probability": 0.8799 + }, + { + "start": 3079.74, + "end": 3083.76, + "probability": 0.7311 + }, + { + "start": 3087.28, + "end": 3087.3, + "probability": 0.0578 + }, + { + "start": 3087.3, + "end": 3090.88, + "probability": 0.2853 + }, + { + "start": 3091.76, + "end": 3093.68, + "probability": 0.9907 + }, + { + "start": 3094.52, + "end": 3098.1, + "probability": 0.9044 + }, + { + "start": 3098.1, + "end": 3101.84, + "probability": 0.9489 + }, + { + "start": 3102.32, + "end": 3104.18, + "probability": 0.1643 + }, + { + "start": 3105.64, + "end": 3106.08, + "probability": 0.082 + }, + { + "start": 3106.94, + "end": 3109.36, + "probability": 0.2534 + }, + { + "start": 3110.48, + "end": 3111.82, + "probability": 0.7256 + }, + { + "start": 3113.4, + "end": 3113.72, + "probability": 0.0205 + }, + { + "start": 3113.72, + "end": 3113.72, + "probability": 0.1159 + }, + { + "start": 3113.72, + "end": 3113.72, + "probability": 0.0627 + }, + { + "start": 3113.72, + "end": 3113.72, + "probability": 0.0185 + }, + { + "start": 3113.72, + "end": 3113.72, + "probability": 0.5824 + }, + { + "start": 3113.72, + "end": 3114.78, + "probability": 0.5021 + }, + { + "start": 3114.94, + "end": 3115.54, + "probability": 0.463 + }, + { + "start": 3115.54, + "end": 3116.68, + "probability": 0.174 + }, + { + "start": 3118.94, + "end": 3121.42, + "probability": 0.7893 + }, + { + "start": 3122.76, + "end": 3122.82, + "probability": 0.1208 + }, + { + "start": 3122.82, + "end": 3123.92, + "probability": 0.7326 + }, + { + "start": 3126.24, + "end": 3126.84, + "probability": 0.7667 + }, + { + "start": 3127.74, + "end": 3128.52, + "probability": 0.397 + }, + { + "start": 3129.76, + "end": 3130.88, + "probability": 0.857 + }, + { + "start": 3132.92, + "end": 3137.62, + "probability": 0.9659 + }, + { + "start": 3138.96, + "end": 3140.26, + "probability": 0.8948 + }, + { + "start": 3141.86, + "end": 3147.06, + "probability": 0.9972 + }, + { + "start": 3148.36, + "end": 3149.26, + "probability": 0.7269 + }, + { + "start": 3150.48, + "end": 3155.8, + "probability": 0.9657 + }, + { + "start": 3156.44, + "end": 3157.62, + "probability": 0.9787 + }, + { + "start": 3158.72, + "end": 3162.18, + "probability": 0.9835 + }, + { + "start": 3163.02, + "end": 3164.4, + "probability": 0.7369 + }, + { + "start": 3166.54, + "end": 3169.64, + "probability": 0.9451 + }, + { + "start": 3170.58, + "end": 3173.94, + "probability": 0.991 + }, + { + "start": 3173.94, + "end": 3177.9, + "probability": 0.9912 + }, + { + "start": 3178.48, + "end": 3180.02, + "probability": 0.9556 + }, + { + "start": 3180.66, + "end": 3183.1, + "probability": 0.999 + }, + { + "start": 3184.18, + "end": 3187.24, + "probability": 0.7477 + }, + { + "start": 3188.82, + "end": 3191.46, + "probability": 0.7241 + }, + { + "start": 3192.6, + "end": 3193.78, + "probability": 0.7446 + }, + { + "start": 3194.32, + "end": 3196.86, + "probability": 0.9453 + }, + { + "start": 3197.04, + "end": 3200.22, + "probability": 0.922 + }, + { + "start": 3200.28, + "end": 3201.16, + "probability": 0.8647 + }, + { + "start": 3201.98, + "end": 3203.72, + "probability": 0.8752 + }, + { + "start": 3205.22, + "end": 3210.0, + "probability": 0.9711 + }, + { + "start": 3210.6, + "end": 3211.4, + "probability": 0.6826 + }, + { + "start": 3212.34, + "end": 3215.54, + "probability": 0.9352 + }, + { + "start": 3216.92, + "end": 3218.76, + "probability": 0.9663 + }, + { + "start": 3219.8, + "end": 3222.36, + "probability": 0.7124 + }, + { + "start": 3223.06, + "end": 3224.32, + "probability": 0.9692 + }, + { + "start": 3225.86, + "end": 3228.48, + "probability": 0.9093 + }, + { + "start": 3231.26, + "end": 3233.9, + "probability": 0.9888 + }, + { + "start": 3234.84, + "end": 3240.68, + "probability": 0.9917 + }, + { + "start": 3241.9, + "end": 3242.44, + "probability": 0.5038 + }, + { + "start": 3243.94, + "end": 3250.2, + "probability": 0.9807 + }, + { + "start": 3251.98, + "end": 3255.0, + "probability": 0.9878 + }, + { + "start": 3255.64, + "end": 3258.66, + "probability": 0.9589 + }, + { + "start": 3259.34, + "end": 3260.16, + "probability": 0.9762 + }, + { + "start": 3260.88, + "end": 3261.34, + "probability": 0.8733 + }, + { + "start": 3262.34, + "end": 3263.38, + "probability": 0.8156 + }, + { + "start": 3263.96, + "end": 3267.66, + "probability": 0.9766 + }, + { + "start": 3267.84, + "end": 3269.1, + "probability": 0.7031 + }, + { + "start": 3270.08, + "end": 3273.34, + "probability": 0.9083 + }, + { + "start": 3274.02, + "end": 3274.9, + "probability": 0.7149 + }, + { + "start": 3275.82, + "end": 3276.58, + "probability": 0.7838 + }, + { + "start": 3277.5, + "end": 3277.98, + "probability": 0.9751 + }, + { + "start": 3278.12, + "end": 3281.4, + "probability": 0.5902 + }, + { + "start": 3281.4, + "end": 3286.34, + "probability": 0.6118 + }, + { + "start": 3287.1, + "end": 3288.34, + "probability": 0.9476 + }, + { + "start": 3289.16, + "end": 3293.54, + "probability": 0.9795 + }, + { + "start": 3294.42, + "end": 3295.85, + "probability": 0.4936 + }, + { + "start": 3295.94, + "end": 3297.96, + "probability": 0.9302 + }, + { + "start": 3298.82, + "end": 3301.12, + "probability": 0.8809 + }, + { + "start": 3301.6, + "end": 3302.08, + "probability": 0.96 + }, + { + "start": 3302.34, + "end": 3304.66, + "probability": 0.98 + }, + { + "start": 3306.1, + "end": 3307.74, + "probability": 0.8359 + }, + { + "start": 3308.88, + "end": 3311.16, + "probability": 0.9932 + }, + { + "start": 3312.06, + "end": 3313.3, + "probability": 0.8518 + }, + { + "start": 3314.3, + "end": 3315.34, + "probability": 0.9178 + }, + { + "start": 3315.68, + "end": 3316.88, + "probability": 0.8411 + }, + { + "start": 3317.24, + "end": 3319.06, + "probability": 0.7438 + }, + { + "start": 3319.6, + "end": 3322.64, + "probability": 0.9236 + }, + { + "start": 3323.2, + "end": 3324.4, + "probability": 0.6997 + }, + { + "start": 3325.0, + "end": 3325.7, + "probability": 0.7949 + }, + { + "start": 3326.5, + "end": 3327.74, + "probability": 0.7231 + }, + { + "start": 3328.58, + "end": 3330.06, + "probability": 0.9369 + }, + { + "start": 3330.66, + "end": 3333.04, + "probability": 0.9808 + }, + { + "start": 3333.88, + "end": 3337.2, + "probability": 0.9765 + }, + { + "start": 3337.32, + "end": 3338.44, + "probability": 0.9355 + }, + { + "start": 3339.24, + "end": 3340.88, + "probability": 0.9988 + }, + { + "start": 3341.68, + "end": 3342.98, + "probability": 0.9319 + }, + { + "start": 3344.68, + "end": 3345.66, + "probability": 0.8433 + }, + { + "start": 3346.48, + "end": 3348.36, + "probability": 0.8293 + }, + { + "start": 3348.9, + "end": 3350.82, + "probability": 0.9837 + }, + { + "start": 3351.4, + "end": 3355.78, + "probability": 0.9868 + }, + { + "start": 3356.46, + "end": 3362.88, + "probability": 0.9844 + }, + { + "start": 3363.24, + "end": 3366.36, + "probability": 0.9902 + }, + { + "start": 3366.72, + "end": 3369.9, + "probability": 0.9866 + }, + { + "start": 3370.68, + "end": 3371.22, + "probability": 0.835 + }, + { + "start": 3371.96, + "end": 3376.72, + "probability": 0.7798 + }, + { + "start": 3377.5, + "end": 3383.36, + "probability": 0.9858 + }, + { + "start": 3384.24, + "end": 3388.28, + "probability": 0.9585 + }, + { + "start": 3390.1, + "end": 3391.48, + "probability": 0.8874 + }, + { + "start": 3392.44, + "end": 3396.2, + "probability": 0.995 + }, + { + "start": 3396.98, + "end": 3399.54, + "probability": 0.9756 + }, + { + "start": 3400.5, + "end": 3402.06, + "probability": 0.9254 + }, + { + "start": 3403.04, + "end": 3405.56, + "probability": 0.892 + }, + { + "start": 3406.5, + "end": 3407.06, + "probability": 0.9061 + }, + { + "start": 3407.7, + "end": 3413.44, + "probability": 0.9908 + }, + { + "start": 3414.26, + "end": 3415.58, + "probability": 0.8977 + }, + { + "start": 3416.46, + "end": 3417.38, + "probability": 0.8696 + }, + { + "start": 3418.14, + "end": 3419.31, + "probability": 0.8317 + }, + { + "start": 3420.26, + "end": 3421.72, + "probability": 0.8146 + }, + { + "start": 3422.46, + "end": 3424.67, + "probability": 0.7346 + }, + { + "start": 3426.46, + "end": 3427.22, + "probability": 0.5744 + }, + { + "start": 3427.8, + "end": 3428.8, + "probability": 0.9521 + }, + { + "start": 3430.46, + "end": 3432.84, + "probability": 0.9563 + }, + { + "start": 3433.76, + "end": 3435.22, + "probability": 0.8703 + }, + { + "start": 3436.66, + "end": 3438.68, + "probability": 0.9978 + }, + { + "start": 3439.04, + "end": 3442.3, + "probability": 0.8542 + }, + { + "start": 3445.26, + "end": 3446.68, + "probability": 0.9946 + }, + { + "start": 3447.9, + "end": 3450.38, + "probability": 0.73 + }, + { + "start": 3450.98, + "end": 3453.6, + "probability": 0.9907 + }, + { + "start": 3454.38, + "end": 3455.64, + "probability": 0.9741 + }, + { + "start": 3456.84, + "end": 3458.86, + "probability": 0.9946 + }, + { + "start": 3459.36, + "end": 3460.8, + "probability": 0.9846 + }, + { + "start": 3460.9, + "end": 3461.78, + "probability": 0.8531 + }, + { + "start": 3462.28, + "end": 3467.88, + "probability": 0.9861 + }, + { + "start": 3468.52, + "end": 3470.62, + "probability": 0.9535 + }, + { + "start": 3471.56, + "end": 3473.04, + "probability": 0.9904 + }, + { + "start": 3473.46, + "end": 3475.42, + "probability": 0.9825 + }, + { + "start": 3475.46, + "end": 3477.0, + "probability": 0.9932 + }, + { + "start": 3477.72, + "end": 3480.56, + "probability": 0.9832 + }, + { + "start": 3481.58, + "end": 3485.42, + "probability": 0.6857 + }, + { + "start": 3485.58, + "end": 3486.56, + "probability": 0.4862 + }, + { + "start": 3488.8, + "end": 3491.54, + "probability": 0.8841 + }, + { + "start": 3492.36, + "end": 3494.42, + "probability": 0.9873 + }, + { + "start": 3495.0, + "end": 3497.38, + "probability": 0.7599 + }, + { + "start": 3498.46, + "end": 3500.74, + "probability": 0.9473 + }, + { + "start": 3501.36, + "end": 3503.36, + "probability": 0.6216 + }, + { + "start": 3504.0, + "end": 3505.4, + "probability": 0.6676 + }, + { + "start": 3506.64, + "end": 3510.86, + "probability": 0.9245 + }, + { + "start": 3511.88, + "end": 3513.06, + "probability": 0.6804 + }, + { + "start": 3514.26, + "end": 3514.32, + "probability": 0.4403 + }, + { + "start": 3514.32, + "end": 3518.3, + "probability": 0.8249 + }, + { + "start": 3520.9, + "end": 3524.34, + "probability": 0.9353 + }, + { + "start": 3525.6, + "end": 3529.84, + "probability": 0.9819 + }, + { + "start": 3530.32, + "end": 3533.16, + "probability": 0.6082 + }, + { + "start": 3533.36, + "end": 3533.72, + "probability": 0.1475 + }, + { + "start": 3533.72, + "end": 3534.64, + "probability": 0.7618 + }, + { + "start": 3535.62, + "end": 3536.28, + "probability": 0.9121 + }, + { + "start": 3536.72, + "end": 3537.96, + "probability": 0.8503 + }, + { + "start": 3538.3, + "end": 3539.56, + "probability": 0.1396 + }, + { + "start": 3539.7, + "end": 3539.78, + "probability": 0.0012 + }, + { + "start": 3542.72, + "end": 3543.36, + "probability": 0.9562 + }, + { + "start": 3543.48, + "end": 3546.49, + "probability": 0.8846 + }, + { + "start": 3547.14, + "end": 3549.3, + "probability": 0.6666 + }, + { + "start": 3550.14, + "end": 3551.58, + "probability": 0.8518 + }, + { + "start": 3552.44, + "end": 3553.5, + "probability": 0.9458 + }, + { + "start": 3554.5, + "end": 3556.62, + "probability": 0.934 + }, + { + "start": 3557.34, + "end": 3558.7, + "probability": 0.9611 + }, + { + "start": 3559.18, + "end": 3562.97, + "probability": 0.8241 + }, + { + "start": 3564.44, + "end": 3564.94, + "probability": 0.8024 + }, + { + "start": 3566.18, + "end": 3567.68, + "probability": 0.7654 + }, + { + "start": 3567.78, + "end": 3569.28, + "probability": 0.9249 + }, + { + "start": 3570.22, + "end": 3572.8, + "probability": 0.8368 + }, + { + "start": 3573.52, + "end": 3575.1, + "probability": 0.9757 + }, + { + "start": 3575.26, + "end": 3577.84, + "probability": 0.7517 + }, + { + "start": 3578.42, + "end": 3579.74, + "probability": 0.9745 + }, + { + "start": 3582.92, + "end": 3584.88, + "probability": 0.9868 + }, + { + "start": 3585.5, + "end": 3586.6, + "probability": 0.5716 + }, + { + "start": 3588.0, + "end": 3588.76, + "probability": 0.8405 + }, + { + "start": 3588.82, + "end": 3590.0, + "probability": 0.887 + }, + { + "start": 3590.16, + "end": 3590.88, + "probability": 0.8902 + }, + { + "start": 3591.0, + "end": 3593.54, + "probability": 0.9304 + }, + { + "start": 3593.58, + "end": 3593.84, + "probability": 0.0058 + }, + { + "start": 3594.62, + "end": 3594.86, + "probability": 0.0699 + }, + { + "start": 3595.4, + "end": 3595.58, + "probability": 0.426 + }, + { + "start": 3595.94, + "end": 3600.03, + "probability": 0.8716 + }, + { + "start": 3600.78, + "end": 3607.16, + "probability": 0.982 + }, + { + "start": 3607.26, + "end": 3608.74, + "probability": 0.9834 + }, + { + "start": 3609.92, + "end": 3612.18, + "probability": 0.8226 + }, + { + "start": 3614.34, + "end": 3615.6, + "probability": 0.7123 + }, + { + "start": 3615.7, + "end": 3618.22, + "probability": 0.1578 + }, + { + "start": 3619.66, + "end": 3620.14, + "probability": 0.178 + }, + { + "start": 3622.5, + "end": 3622.84, + "probability": 0.0284 + }, + { + "start": 3622.84, + "end": 3622.84, + "probability": 0.0382 + }, + { + "start": 3622.84, + "end": 3622.84, + "probability": 0.3032 + }, + { + "start": 3622.84, + "end": 3622.84, + "probability": 0.4885 + }, + { + "start": 3623.44, + "end": 3625.6, + "probability": 0.5676 + }, + { + "start": 3627.32, + "end": 3628.2, + "probability": 0.7575 + }, + { + "start": 3628.26, + "end": 3630.22, + "probability": 0.014 + }, + { + "start": 3630.4, + "end": 3630.4, + "probability": 0.7815 + }, + { + "start": 3630.56, + "end": 3632.4, + "probability": 0.0711 + }, + { + "start": 3632.4, + "end": 3633.44, + "probability": 0.0667 + }, + { + "start": 3634.02, + "end": 3635.16, + "probability": 0.0861 + }, + { + "start": 3639.5, + "end": 3639.86, + "probability": 0.2416 + }, + { + "start": 3641.06, + "end": 3641.62, + "probability": 0.3106 + }, + { + "start": 3641.62, + "end": 3641.62, + "probability": 0.166 + }, + { + "start": 3641.62, + "end": 3641.62, + "probability": 0.0213 + }, + { + "start": 3641.62, + "end": 3643.78, + "probability": 0.7287 + }, + { + "start": 3644.22, + "end": 3645.22, + "probability": 0.7177 + }, + { + "start": 3647.56, + "end": 3647.76, + "probability": 0.0956 + }, + { + "start": 3647.76, + "end": 3647.76, + "probability": 0.7002 + }, + { + "start": 3647.76, + "end": 3647.76, + "probability": 0.1306 + }, + { + "start": 3647.76, + "end": 3648.14, + "probability": 0.3079 + }, + { + "start": 3649.1, + "end": 3650.66, + "probability": 0.4481 + }, + { + "start": 3650.72, + "end": 3652.4, + "probability": 0.8975 + }, + { + "start": 3654.3, + "end": 3654.64, + "probability": 0.1501 + }, + { + "start": 3654.64, + "end": 3655.8, + "probability": 0.9165 + }, + { + "start": 3656.0, + "end": 3656.62, + "probability": 0.0208 + }, + { + "start": 3657.12, + "end": 3657.52, + "probability": 0.0934 + }, + { + "start": 3657.52, + "end": 3657.82, + "probability": 0.5219 + }, + { + "start": 3657.82, + "end": 3657.82, + "probability": 0.0598 + }, + { + "start": 3658.24, + "end": 3659.5, + "probability": 0.9835 + }, + { + "start": 3660.2, + "end": 3663.22, + "probability": 0.8357 + }, + { + "start": 3663.34, + "end": 3665.24, + "probability": 0.6678 + }, + { + "start": 3666.38, + "end": 3668.22, + "probability": 0.1889 + }, + { + "start": 3668.22, + "end": 3668.3, + "probability": 0.115 + }, + { + "start": 3668.3, + "end": 3668.3, + "probability": 0.098 + }, + { + "start": 3668.3, + "end": 3669.66, + "probability": 0.3516 + }, + { + "start": 3671.54, + "end": 3671.64, + "probability": 0.3434 + }, + { + "start": 3672.5, + "end": 3672.62, + "probability": 0.4105 + }, + { + "start": 3672.62, + "end": 3675.2, + "probability": 0.9492 + }, + { + "start": 3675.38, + "end": 3676.7, + "probability": 0.5914 + }, + { + "start": 3676.72, + "end": 3677.8, + "probability": 0.6881 + }, + { + "start": 3677.84, + "end": 3681.06, + "probability": 0.6523 + }, + { + "start": 3681.52, + "end": 3683.58, + "probability": 0.895 + }, + { + "start": 3683.62, + "end": 3684.24, + "probability": 0.7714 + }, + { + "start": 3685.0, + "end": 3687.89, + "probability": 0.0537 + }, + { + "start": 3689.64, + "end": 3689.68, + "probability": 0.0178 + }, + { + "start": 3689.68, + "end": 3689.68, + "probability": 0.0073 + }, + { + "start": 3689.68, + "end": 3690.46, + "probability": 0.1434 + }, + { + "start": 3690.86, + "end": 3692.12, + "probability": 0.8561 + }, + { + "start": 3692.28, + "end": 3694.18, + "probability": 0.3359 + }, + { + "start": 3694.18, + "end": 3694.5, + "probability": 0.3869 + }, + { + "start": 3694.62, + "end": 3696.92, + "probability": 0.6916 + }, + { + "start": 3697.78, + "end": 3699.92, + "probability": 0.6877 + }, + { + "start": 3700.84, + "end": 3702.8, + "probability": 0.7597 + }, + { + "start": 3703.42, + "end": 3705.2, + "probability": 0.5914 + }, + { + "start": 3705.82, + "end": 3709.2, + "probability": 0.9709 + }, + { + "start": 3710.32, + "end": 3711.68, + "probability": 0.9729 + }, + { + "start": 3712.92, + "end": 3714.28, + "probability": 0.6733 + }, + { + "start": 3715.0, + "end": 3717.14, + "probability": 0.9648 + }, + { + "start": 3718.08, + "end": 3719.14, + "probability": 0.9211 + }, + { + "start": 3719.82, + "end": 3723.94, + "probability": 0.9766 + }, + { + "start": 3724.06, + "end": 3724.86, + "probability": 0.7799 + }, + { + "start": 3725.6, + "end": 3729.22, + "probability": 0.9307 + }, + { + "start": 3731.2, + "end": 3734.08, + "probability": 0.6799 + }, + { + "start": 3735.18, + "end": 3736.04, + "probability": 0.7385 + }, + { + "start": 3737.54, + "end": 3738.54, + "probability": 0.9131 + }, + { + "start": 3739.34, + "end": 3741.06, + "probability": 0.9963 + }, + { + "start": 3741.1, + "end": 3742.48, + "probability": 0.9109 + }, + { + "start": 3742.58, + "end": 3743.38, + "probability": 0.9727 + }, + { + "start": 3745.56, + "end": 3746.2, + "probability": 0.0749 + }, + { + "start": 3746.2, + "end": 3746.9, + "probability": 0.2594 + }, + { + "start": 3747.08, + "end": 3749.4, + "probability": 0.1555 + }, + { + "start": 3750.1, + "end": 3750.96, + "probability": 0.8581 + }, + { + "start": 3751.6, + "end": 3752.96, + "probability": 0.979 + }, + { + "start": 3754.02, + "end": 3757.98, + "probability": 0.9739 + }, + { + "start": 3759.48, + "end": 3761.16, + "probability": 0.9915 + }, + { + "start": 3761.7, + "end": 3763.28, + "probability": 0.9993 + }, + { + "start": 3764.08, + "end": 3768.84, + "probability": 0.9912 + }, + { + "start": 3769.48, + "end": 3773.78, + "probability": 0.9963 + }, + { + "start": 3775.24, + "end": 3778.5, + "probability": 0.996 + }, + { + "start": 3778.66, + "end": 3780.08, + "probability": 0.7833 + }, + { + "start": 3782.38, + "end": 3783.94, + "probability": 0.9385 + }, + { + "start": 3784.96, + "end": 3789.08, + "probability": 0.9595 + }, + { + "start": 3789.92, + "end": 3791.16, + "probability": 0.9875 + }, + { + "start": 3791.62, + "end": 3792.72, + "probability": 0.9813 + }, + { + "start": 3793.2, + "end": 3794.86, + "probability": 0.9293 + }, + { + "start": 3796.24, + "end": 3801.18, + "probability": 0.5906 + }, + { + "start": 3801.9, + "end": 3805.26, + "probability": 0.9987 + }, + { + "start": 3805.7, + "end": 3807.54, + "probability": 0.7411 + }, + { + "start": 3808.72, + "end": 3810.02, + "probability": 0.8064 + }, + { + "start": 3810.04, + "end": 3813.12, + "probability": 0.9968 + }, + { + "start": 3813.12, + "end": 3816.34, + "probability": 0.8214 + }, + { + "start": 3816.42, + "end": 3818.59, + "probability": 0.9975 + }, + { + "start": 3820.68, + "end": 3821.64, + "probability": 0.9339 + }, + { + "start": 3821.7, + "end": 3826.88, + "probability": 0.9824 + }, + { + "start": 3828.08, + "end": 3834.08, + "probability": 0.9916 + }, + { + "start": 3834.26, + "end": 3835.9, + "probability": 0.7979 + }, + { + "start": 3836.24, + "end": 3836.86, + "probability": 0.4889 + }, + { + "start": 3836.88, + "end": 3837.86, + "probability": 0.9617 + }, + { + "start": 3839.86, + "end": 3842.08, + "probability": 0.9973 + }, + { + "start": 3843.5, + "end": 3845.82, + "probability": 0.9973 + }, + { + "start": 3845.82, + "end": 3848.36, + "probability": 0.9998 + }, + { + "start": 3848.48, + "end": 3850.66, + "probability": 0.9653 + }, + { + "start": 3851.52, + "end": 3853.64, + "probability": 0.9852 + }, + { + "start": 3853.64, + "end": 3856.46, + "probability": 0.9917 + }, + { + "start": 3856.98, + "end": 3859.52, + "probability": 0.9502 + }, + { + "start": 3859.62, + "end": 3862.12, + "probability": 0.8776 + }, + { + "start": 3862.18, + "end": 3862.64, + "probability": 0.7586 + }, + { + "start": 3862.7, + "end": 3863.92, + "probability": 0.609 + }, + { + "start": 3864.38, + "end": 3866.42, + "probability": 0.8897 + }, + { + "start": 3866.54, + "end": 3866.98, + "probability": 0.7443 + }, + { + "start": 3869.26, + "end": 3871.44, + "probability": 0.9971 + }, + { + "start": 3871.44, + "end": 3873.72, + "probability": 0.991 + }, + { + "start": 3873.84, + "end": 3876.86, + "probability": 0.9844 + }, + { + "start": 3876.92, + "end": 3878.44, + "probability": 0.9122 + }, + { + "start": 3878.44, + "end": 3878.72, + "probability": 0.27 + }, + { + "start": 3878.76, + "end": 3881.78, + "probability": 0.613 + }, + { + "start": 3882.44, + "end": 3883.26, + "probability": 0.059 + }, + { + "start": 3883.48, + "end": 3883.7, + "probability": 0.1368 + }, + { + "start": 3883.7, + "end": 3886.18, + "probability": 0.8993 + }, + { + "start": 3886.5, + "end": 3887.96, + "probability": 0.9739 + }, + { + "start": 3888.14, + "end": 3890.36, + "probability": 0.4133 + }, + { + "start": 3890.36, + "end": 3892.06, + "probability": 0.6131 + }, + { + "start": 3892.22, + "end": 3892.38, + "probability": 0.1949 + }, + { + "start": 3892.38, + "end": 3892.38, + "probability": 0.6005 + }, + { + "start": 3892.38, + "end": 3893.62, + "probability": 0.9534 + }, + { + "start": 3893.8, + "end": 3894.74, + "probability": 0.7424 + }, + { + "start": 3894.76, + "end": 3895.04, + "probability": 0.5274 + }, + { + "start": 3895.14, + "end": 3896.4, + "probability": 0.7387 + }, + { + "start": 3901.98, + "end": 3904.12, + "probability": 0.8914 + }, + { + "start": 3904.54, + "end": 3905.81, + "probability": 0.999 + }, + { + "start": 3906.56, + "end": 3916.04, + "probability": 0.7259 + }, + { + "start": 3916.66, + "end": 3919.0, + "probability": 0.6593 + }, + { + "start": 3919.64, + "end": 3922.98, + "probability": 0.6802 + }, + { + "start": 3923.86, + "end": 3925.06, + "probability": 0.6736 + }, + { + "start": 3950.43, + "end": 3952.58, + "probability": 0.1631 + }, + { + "start": 3953.6, + "end": 3955.26, + "probability": 0.5152 + }, + { + "start": 3956.42, + "end": 3959.38, + "probability": 0.0201 + }, + { + "start": 3960.18, + "end": 3963.39, + "probability": 0.9935 + }, + { + "start": 3963.96, + "end": 3964.88, + "probability": 0.0842 + }, + { + "start": 3966.96, + "end": 3967.68, + "probability": 0.0429 + }, + { + "start": 3968.3, + "end": 3968.92, + "probability": 0.1076 + }, + { + "start": 3975.79, + "end": 3977.46, + "probability": 0.0395 + }, + { + "start": 3977.46, + "end": 3977.46, + "probability": 0.1032 + }, + { + "start": 3977.46, + "end": 3977.7, + "probability": 0.0453 + }, + { + "start": 3977.7, + "end": 3977.7, + "probability": 0.3759 + }, + { + "start": 3982.06, + "end": 3982.06, + "probability": 0.0005 + }, + { + "start": 3984.32, + "end": 3985.92, + "probability": 0.0294 + }, + { + "start": 3985.92, + "end": 3985.92, + "probability": 0.0282 + }, + { + "start": 3990.6, + "end": 3992.48, + "probability": 0.1737 + }, + { + "start": 3992.48, + "end": 3996.34, + "probability": 0.0302 + }, + { + "start": 3996.9, + "end": 3998.92, + "probability": 0.026 + }, + { + "start": 3999.98, + "end": 3999.98, + "probability": 0.0949 + }, + { + "start": 4000.24, + "end": 4000.73, + "probability": 0.0417 + }, + { + "start": 4000.74, + "end": 4000.74, + "probability": 0.0114 + }, + { + "start": 4000.8, + "end": 4000.8, + "probability": 0.0974 + }, + { + "start": 4000.94, + "end": 4002.34, + "probability": 0.0146 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.0, + "end": 4029.0, + "probability": 0.0 + }, + { + "start": 4029.48, + "end": 4029.76, + "probability": 0.0446 + }, + { + "start": 4029.76, + "end": 4029.76, + "probability": 0.0808 + }, + { + "start": 4029.76, + "end": 4029.76, + "probability": 0.1592 + }, + { + "start": 4029.76, + "end": 4032.24, + "probability": 0.3951 + }, + { + "start": 4032.64, + "end": 4034.46, + "probability": 0.5042 + }, + { + "start": 4035.02, + "end": 4038.74, + "probability": 0.9784 + }, + { + "start": 4039.84, + "end": 4042.7, + "probability": 0.9613 + }, + { + "start": 4043.06, + "end": 4043.98, + "probability": 0.9016 + }, + { + "start": 4044.28, + "end": 4045.68, + "probability": 0.9656 + }, + { + "start": 4046.22, + "end": 4048.52, + "probability": 0.9943 + }, + { + "start": 4052.22, + "end": 4055.54, + "probability": 0.9793 + }, + { + "start": 4057.34, + "end": 4061.92, + "probability": 0.947 + }, + { + "start": 4063.44, + "end": 4064.88, + "probability": 0.9988 + }, + { + "start": 4066.0, + "end": 4066.66, + "probability": 0.8188 + }, + { + "start": 4069.22, + "end": 4071.28, + "probability": 0.9688 + }, + { + "start": 4072.24, + "end": 4076.2, + "probability": 0.8219 + }, + { + "start": 4076.88, + "end": 4077.7, + "probability": 0.7177 + }, + { + "start": 4078.54, + "end": 4080.84, + "probability": 0.7318 + }, + { + "start": 4081.56, + "end": 4084.7, + "probability": 0.9976 + }, + { + "start": 4085.24, + "end": 4088.0, + "probability": 0.9836 + }, + { + "start": 4088.58, + "end": 4089.92, + "probability": 0.8767 + }, + { + "start": 4090.5, + "end": 4091.06, + "probability": 0.5052 + }, + { + "start": 4091.58, + "end": 4097.08, + "probability": 0.9672 + }, + { + "start": 4097.58, + "end": 4102.1, + "probability": 0.9908 + }, + { + "start": 4102.74, + "end": 4104.98, + "probability": 0.998 + }, + { + "start": 4105.12, + "end": 4106.0, + "probability": 0.5315 + }, + { + "start": 4106.92, + "end": 4110.08, + "probability": 0.7012 + }, + { + "start": 4111.22, + "end": 4116.16, + "probability": 0.9971 + }, + { + "start": 4117.0, + "end": 4122.04, + "probability": 0.957 + }, + { + "start": 4124.98, + "end": 4126.3, + "probability": 0.6947 + }, + { + "start": 4126.94, + "end": 4128.58, + "probability": 0.564 + }, + { + "start": 4128.72, + "end": 4128.98, + "probability": 0.4614 + }, + { + "start": 4129.06, + "end": 4129.38, + "probability": 0.5515 + }, + { + "start": 4129.44, + "end": 4131.08, + "probability": 0.9602 + }, + { + "start": 4131.74, + "end": 4132.32, + "probability": 0.9258 + }, + { + "start": 4132.88, + "end": 4134.22, + "probability": 0.9924 + }, + { + "start": 4134.3, + "end": 4137.1, + "probability": 0.9893 + }, + { + "start": 4137.46, + "end": 4139.0, + "probability": 0.9907 + }, + { + "start": 4139.54, + "end": 4145.72, + "probability": 0.8561 + }, + { + "start": 4146.26, + "end": 4148.56, + "probability": 0.9791 + }, + { + "start": 4149.42, + "end": 4151.59, + "probability": 0.8742 + }, + { + "start": 4152.14, + "end": 4153.7, + "probability": 0.9868 + }, + { + "start": 4154.04, + "end": 4155.28, + "probability": 0.5269 + }, + { + "start": 4156.46, + "end": 4157.26, + "probability": 0.5467 + }, + { + "start": 4157.78, + "end": 4158.5, + "probability": 0.9895 + }, + { + "start": 4158.6, + "end": 4162.62, + "probability": 0.7979 + }, + { + "start": 4163.06, + "end": 4166.26, + "probability": 0.9912 + }, + { + "start": 4166.48, + "end": 4167.16, + "probability": 0.7733 + }, + { + "start": 4168.44, + "end": 4169.22, + "probability": 0.0 + }, + { + "start": 4170.72, + "end": 4171.14, + "probability": 0.1334 + }, + { + "start": 4171.14, + "end": 4171.52, + "probability": 0.1677 + }, + { + "start": 4171.74, + "end": 4174.5, + "probability": 0.8115 + }, + { + "start": 4175.02, + "end": 4179.8, + "probability": 0.9881 + }, + { + "start": 4180.18, + "end": 4185.94, + "probability": 0.9164 + }, + { + "start": 4186.9, + "end": 4190.12, + "probability": 0.8779 + }, + { + "start": 4190.3, + "end": 4191.32, + "probability": 0.9169 + }, + { + "start": 4191.34, + "end": 4192.6, + "probability": 0.775 + }, + { + "start": 4193.3, + "end": 4193.88, + "probability": 0.0557 + }, + { + "start": 4193.88, + "end": 4193.88, + "probability": 0.1153 + }, + { + "start": 4193.88, + "end": 4193.88, + "probability": 0.7211 + }, + { + "start": 4193.88, + "end": 4195.21, + "probability": 0.9855 + }, + { + "start": 4195.64, + "end": 4197.13, + "probability": 0.7466 + }, + { + "start": 4198.7, + "end": 4201.78, + "probability": 0.8265 + }, + { + "start": 4202.36, + "end": 4204.8, + "probability": 0.9438 + }, + { + "start": 4204.94, + "end": 4207.2, + "probability": 0.9977 + }, + { + "start": 4207.26, + "end": 4208.66, + "probability": 0.8789 + }, + { + "start": 4209.06, + "end": 4209.76, + "probability": 0.6929 + }, + { + "start": 4211.44, + "end": 4214.48, + "probability": 0.7182 + }, + { + "start": 4214.58, + "end": 4215.56, + "probability": 0.5856 + }, + { + "start": 4216.28, + "end": 4217.76, + "probability": 0.3715 + }, + { + "start": 4219.32, + "end": 4220.36, + "probability": 0.6601 + }, + { + "start": 4220.48, + "end": 4220.86, + "probability": 0.7277 + }, + { + "start": 4220.88, + "end": 4222.62, + "probability": 0.9907 + }, + { + "start": 4223.24, + "end": 4224.12, + "probability": 0.8747 + }, + { + "start": 4224.7, + "end": 4228.64, + "probability": 0.9849 + }, + { + "start": 4229.38, + "end": 4230.6, + "probability": 0.9565 + }, + { + "start": 4230.82, + "end": 4233.34, + "probability": 0.8361 + }, + { + "start": 4233.94, + "end": 4235.88, + "probability": 0.9214 + }, + { + "start": 4235.96, + "end": 4237.3, + "probability": 0.9928 + }, + { + "start": 4237.74, + "end": 4239.84, + "probability": 0.8044 + }, + { + "start": 4239.98, + "end": 4240.99, + "probability": 0.6401 + }, + { + "start": 4241.56, + "end": 4242.38, + "probability": 0.9445 + }, + { + "start": 4242.38, + "end": 4244.06, + "probability": 0.813 + }, + { + "start": 4244.14, + "end": 4245.5, + "probability": 0.6172 + }, + { + "start": 4245.66, + "end": 4246.64, + "probability": 0.7779 + }, + { + "start": 4247.22, + "end": 4249.5, + "probability": 0.9614 + }, + { + "start": 4250.32, + "end": 4250.92, + "probability": 0.7375 + }, + { + "start": 4251.54, + "end": 4253.7, + "probability": 0.9748 + }, + { + "start": 4254.14, + "end": 4256.04, + "probability": 0.9316 + }, + { + "start": 4256.14, + "end": 4257.5, + "probability": 0.9961 + }, + { + "start": 4257.6, + "end": 4258.62, + "probability": 0.7365 + }, + { + "start": 4258.62, + "end": 4260.42, + "probability": 0.4168 + }, + { + "start": 4261.1, + "end": 4262.12, + "probability": 0.6599 + }, + { + "start": 4262.24, + "end": 4263.67, + "probability": 0.9362 + }, + { + "start": 4263.78, + "end": 4264.7, + "probability": 0.7563 + }, + { + "start": 4264.84, + "end": 4266.58, + "probability": 0.9849 + }, + { + "start": 4266.66, + "end": 4268.1, + "probability": 0.9391 + }, + { + "start": 4268.44, + "end": 4269.46, + "probability": 0.826 + }, + { + "start": 4270.06, + "end": 4274.34, + "probability": 0.993 + }, + { + "start": 4274.44, + "end": 4274.52, + "probability": 0.5262 + }, + { + "start": 4274.56, + "end": 4274.56, + "probability": 0.4678 + }, + { + "start": 4274.6, + "end": 4275.1, + "probability": 0.6206 + }, + { + "start": 4275.14, + "end": 4275.8, + "probability": 0.6033 + }, + { + "start": 4275.8, + "end": 4276.73, + "probability": 0.8038 + }, + { + "start": 4276.86, + "end": 4277.58, + "probability": 0.8057 + }, + { + "start": 4277.62, + "end": 4277.62, + "probability": 0.2996 + }, + { + "start": 4277.82, + "end": 4283.34, + "probability": 0.8401 + }, + { + "start": 4283.44, + "end": 4285.0, + "probability": 0.8856 + }, + { + "start": 4285.22, + "end": 4286.68, + "probability": 0.7291 + }, + { + "start": 4287.06, + "end": 4287.46, + "probability": 0.7021 + }, + { + "start": 4287.74, + "end": 4288.76, + "probability": 0.8126 + }, + { + "start": 4288.82, + "end": 4289.86, + "probability": 0.6968 + }, + { + "start": 4289.88, + "end": 4290.46, + "probability": 0.6397 + }, + { + "start": 4290.48, + "end": 4292.36, + "probability": 0.9748 + }, + { + "start": 4292.38, + "end": 4292.66, + "probability": 0.4966 + }, + { + "start": 4292.82, + "end": 4293.46, + "probability": 0.8955 + }, + { + "start": 4293.54, + "end": 4294.18, + "probability": 0.293 + }, + { + "start": 4294.18, + "end": 4294.18, + "probability": 0.6862 + }, + { + "start": 4294.28, + "end": 4298.34, + "probability": 0.9641 + }, + { + "start": 4299.0, + "end": 4299.76, + "probability": 0.9041 + }, + { + "start": 4300.08, + "end": 4301.92, + "probability": 0.9897 + }, + { + "start": 4301.98, + "end": 4302.14, + "probability": 0.2567 + }, + { + "start": 4302.24, + "end": 4304.38, + "probability": 0.7554 + }, + { + "start": 4305.36, + "end": 4309.74, + "probability": 0.9669 + }, + { + "start": 4309.88, + "end": 4311.2, + "probability": 0.8013 + }, + { + "start": 4311.6, + "end": 4312.76, + "probability": 0.9046 + }, + { + "start": 4313.1, + "end": 4314.34, + "probability": 0.9709 + }, + { + "start": 4315.22, + "end": 4317.84, + "probability": 0.8214 + }, + { + "start": 4318.06, + "end": 4321.7, + "probability": 0.9276 + }, + { + "start": 4321.82, + "end": 4323.04, + "probability": 0.9537 + }, + { + "start": 4323.14, + "end": 4323.78, + "probability": 0.6766 + }, + { + "start": 4324.16, + "end": 4328.4, + "probability": 0.9855 + }, + { + "start": 4328.72, + "end": 4329.14, + "probability": 0.843 + }, + { + "start": 4329.16, + "end": 4329.66, + "probability": 0.5613 + }, + { + "start": 4329.76, + "end": 4330.56, + "probability": 0.8236 + }, + { + "start": 4330.76, + "end": 4331.06, + "probability": 0.6076 + }, + { + "start": 4331.06, + "end": 4331.84, + "probability": 0.9531 + }, + { + "start": 4332.28, + "end": 4333.7, + "probability": 0.9917 + }, + { + "start": 4333.82, + "end": 4337.65, + "probability": 0.9946 + }, + { + "start": 4338.72, + "end": 4339.96, + "probability": 0.4848 + }, + { + "start": 4340.54, + "end": 4341.54, + "probability": 0.9961 + }, + { + "start": 4341.98, + "end": 4343.96, + "probability": 0.7928 + }, + { + "start": 4344.66, + "end": 4346.84, + "probability": 0.7891 + }, + { + "start": 4346.94, + "end": 4347.68, + "probability": 0.9897 + }, + { + "start": 4348.24, + "end": 4348.44, + "probability": 0.1713 + }, + { + "start": 4348.44, + "end": 4348.44, + "probability": 0.0442 + }, + { + "start": 4348.44, + "end": 4348.44, + "probability": 0.0938 + }, + { + "start": 4348.44, + "end": 4348.88, + "probability": 0.5526 + }, + { + "start": 4349.3, + "end": 4355.2, + "probability": 0.8893 + }, + { + "start": 4355.7, + "end": 4356.24, + "probability": 0.8283 + }, + { + "start": 4356.28, + "end": 4356.96, + "probability": 0.9766 + }, + { + "start": 4357.24, + "end": 4357.94, + "probability": 0.9606 + }, + { + "start": 4357.98, + "end": 4358.52, + "probability": 0.9941 + }, + { + "start": 4358.8, + "end": 4359.4, + "probability": 0.5867 + }, + { + "start": 4359.86, + "end": 4361.28, + "probability": 0.9113 + }, + { + "start": 4361.38, + "end": 4363.16, + "probability": 0.649 + }, + { + "start": 4363.16, + "end": 4363.48, + "probability": 0.6704 + }, + { + "start": 4363.48, + "end": 4364.18, + "probability": 0.762 + }, + { + "start": 4364.58, + "end": 4365.44, + "probability": 0.7538 + }, + { + "start": 4365.86, + "end": 4369.18, + "probability": 0.9877 + }, + { + "start": 4369.38, + "end": 4371.28, + "probability": 0.7541 + }, + { + "start": 4371.28, + "end": 4372.14, + "probability": 0.7224 + }, + { + "start": 4372.2, + "end": 4373.1, + "probability": 0.8638 + }, + { + "start": 4373.26, + "end": 4374.46, + "probability": 0.9937 + }, + { + "start": 4374.48, + "end": 4376.66, + "probability": 0.9712 + }, + { + "start": 4376.66, + "end": 4379.58, + "probability": 0.8716 + }, + { + "start": 4379.92, + "end": 4381.04, + "probability": 0.7611 + }, + { + "start": 4381.14, + "end": 4382.82, + "probability": 0.9661 + }, + { + "start": 4382.84, + "end": 4383.2, + "probability": 0.6979 + }, + { + "start": 4383.4, + "end": 4387.38, + "probability": 0.9961 + }, + { + "start": 4387.52, + "end": 4388.68, + "probability": 0.9861 + }, + { + "start": 4389.0, + "end": 4390.26, + "probability": 0.9368 + }, + { + "start": 4390.26, + "end": 4390.26, + "probability": 0.654 + }, + { + "start": 4390.26, + "end": 4394.1, + "probability": 0.9713 + }, + { + "start": 4394.66, + "end": 4395.88, + "probability": 0.5847 + }, + { + "start": 4396.32, + "end": 4399.8, + "probability": 0.9307 + }, + { + "start": 4399.88, + "end": 4400.42, + "probability": 0.2848 + }, + { + "start": 4400.42, + "end": 4402.12, + "probability": 0.7535 + }, + { + "start": 4402.16, + "end": 4405.32, + "probability": 0.9346 + }, + { + "start": 4405.36, + "end": 4406.86, + "probability": 0.3737 + }, + { + "start": 4407.0, + "end": 4407.46, + "probability": 0.6315 + }, + { + "start": 4407.62, + "end": 4408.42, + "probability": 0.936 + }, + { + "start": 4408.48, + "end": 4409.9, + "probability": 0.7809 + }, + { + "start": 4410.68, + "end": 4411.26, + "probability": 0.9832 + }, + { + "start": 4411.3, + "end": 4412.12, + "probability": 0.8634 + }, + { + "start": 4412.24, + "end": 4414.98, + "probability": 0.6484 + }, + { + "start": 4415.44, + "end": 4417.28, + "probability": 0.7332 + }, + { + "start": 4417.36, + "end": 4417.96, + "probability": 0.7079 + }, + { + "start": 4418.3, + "end": 4421.38, + "probability": 0.9755 + }, + { + "start": 4421.5, + "end": 4422.59, + "probability": 0.9819 + }, + { + "start": 4422.96, + "end": 4423.88, + "probability": 0.9164 + }, + { + "start": 4424.0, + "end": 4428.82, + "probability": 0.9932 + }, + { + "start": 4428.84, + "end": 4429.88, + "probability": 0.9893 + }, + { + "start": 4430.64, + "end": 4433.24, + "probability": 0.822 + }, + { + "start": 4433.34, + "end": 4433.84, + "probability": 0.7202 + }, + { + "start": 4434.62, + "end": 4435.8, + "probability": 0.9838 + }, + { + "start": 4436.88, + "end": 4441.72, + "probability": 0.9966 + }, + { + "start": 4448.34, + "end": 4453.06, + "probability": 0.7566 + }, + { + "start": 4453.62, + "end": 4457.36, + "probability": 0.792 + }, + { + "start": 4459.04, + "end": 4462.62, + "probability": 0.8677 + }, + { + "start": 4462.94, + "end": 4464.18, + "probability": 0.4217 + }, + { + "start": 4464.64, + "end": 4467.64, + "probability": 0.7827 + }, + { + "start": 4467.76, + "end": 4468.94, + "probability": 0.7633 + }, + { + "start": 4469.0, + "end": 4469.48, + "probability": 0.5132 + }, + { + "start": 4470.02, + "end": 4470.88, + "probability": 0.8916 + }, + { + "start": 4471.68, + "end": 4473.67, + "probability": 0.282 + }, + { + "start": 4476.16, + "end": 4478.54, + "probability": 0.1932 + }, + { + "start": 4478.54, + "end": 4480.01, + "probability": 0.2342 + }, + { + "start": 4480.04, + "end": 4481.91, + "probability": 0.4108 + }, + { + "start": 4482.1, + "end": 4483.08, + "probability": 0.5575 + }, + { + "start": 4483.48, + "end": 4484.32, + "probability": 0.4592 + }, + { + "start": 4484.32, + "end": 4484.62, + "probability": 0.1133 + }, + { + "start": 4484.62, + "end": 4487.7, + "probability": 0.4182 + }, + { + "start": 4488.24, + "end": 4488.82, + "probability": 0.6371 + }, + { + "start": 4489.58, + "end": 4489.6, + "probability": 0.0129 + }, + { + "start": 4490.86, + "end": 4491.56, + "probability": 0.0122 + }, + { + "start": 4491.56, + "end": 4492.17, + "probability": 0.1781 + }, + { + "start": 4494.26, + "end": 4494.86, + "probability": 0.3956 + }, + { + "start": 4494.86, + "end": 4497.96, + "probability": 0.3932 + }, + { + "start": 4497.96, + "end": 4499.94, + "probability": 0.3466 + }, + { + "start": 4499.94, + "end": 4501.86, + "probability": 0.1045 + }, + { + "start": 4503.04, + "end": 4503.9, + "probability": 0.2786 + }, + { + "start": 4504.46, + "end": 4505.18, + "probability": 0.0857 + }, + { + "start": 4505.4, + "end": 4505.58, + "probability": 0.2376 + }, + { + "start": 4505.58, + "end": 4505.58, + "probability": 0.4901 + }, + { + "start": 4505.58, + "end": 4508.26, + "probability": 0.8415 + }, + { + "start": 4508.34, + "end": 4509.16, + "probability": 0.5293 + }, + { + "start": 4509.36, + "end": 4511.26, + "probability": 0.8223 + }, + { + "start": 4512.08, + "end": 4513.78, + "probability": 0.9741 + }, + { + "start": 4514.46, + "end": 4514.8, + "probability": 0.1739 + }, + { + "start": 4514.96, + "end": 4516.32, + "probability": 0.2153 + }, + { + "start": 4517.06, + "end": 4521.16, + "probability": 0.8877 + }, + { + "start": 4521.86, + "end": 4523.72, + "probability": 0.9246 + }, + { + "start": 4524.24, + "end": 4527.78, + "probability": 0.9681 + }, + { + "start": 4527.94, + "end": 4530.84, + "probability": 0.9806 + }, + { + "start": 4531.0, + "end": 4531.88, + "probability": 0.9375 + }, + { + "start": 4532.14, + "end": 4533.06, + "probability": 0.9606 + }, + { + "start": 4533.16, + "end": 4533.7, + "probability": 0.4568 + }, + { + "start": 4533.78, + "end": 4535.81, + "probability": 0.3243 + }, + { + "start": 4536.16, + "end": 4537.8, + "probability": 0.5587 + }, + { + "start": 4538.02, + "end": 4543.04, + "probability": 0.5048 + }, + { + "start": 4543.28, + "end": 4544.52, + "probability": 0.1434 + }, + { + "start": 4544.52, + "end": 4545.68, + "probability": 0.4976 + }, + { + "start": 4546.0, + "end": 4548.14, + "probability": 0.6388 + }, + { + "start": 4548.62, + "end": 4552.74, + "probability": 0.0641 + }, + { + "start": 4552.74, + "end": 4553.18, + "probability": 0.0254 + }, + { + "start": 4553.2, + "end": 4554.66, + "probability": 0.5617 + }, + { + "start": 4555.02, + "end": 4555.94, + "probability": 0.7013 + }, + { + "start": 4555.94, + "end": 4560.38, + "probability": 0.6725 + }, + { + "start": 4560.46, + "end": 4560.56, + "probability": 0.1278 + }, + { + "start": 4560.56, + "end": 4562.14, + "probability": 0.8791 + }, + { + "start": 4562.18, + "end": 4563.32, + "probability": 0.7667 + }, + { + "start": 4564.54, + "end": 4564.74, + "probability": 0.0496 + }, + { + "start": 4564.74, + "end": 4564.74, + "probability": 0.0287 + }, + { + "start": 4564.74, + "end": 4565.02, + "probability": 0.1055 + }, + { + "start": 4565.85, + "end": 4570.06, + "probability": 0.8326 + }, + { + "start": 4570.12, + "end": 4571.93, + "probability": 0.1089 + }, + { + "start": 4572.64, + "end": 4573.38, + "probability": 0.1283 + }, + { + "start": 4574.64, + "end": 4576.25, + "probability": 0.1348 + }, + { + "start": 4578.04, + "end": 4581.14, + "probability": 0.0324 + }, + { + "start": 4581.68, + "end": 4584.88, + "probability": 0.1398 + }, + { + "start": 4584.88, + "end": 4585.38, + "probability": 0.4641 + }, + { + "start": 4585.44, + "end": 4586.87, + "probability": 0.5996 + }, + { + "start": 4587.32, + "end": 4590.32, + "probability": 0.8165 + }, + { + "start": 4591.06, + "end": 4592.06, + "probability": 0.4168 + }, + { + "start": 4592.08, + "end": 4596.38, + "probability": 0.2993 + }, + { + "start": 4596.76, + "end": 4598.14, + "probability": 0.5371 + }, + { + "start": 4598.28, + "end": 4598.74, + "probability": 0.0523 + }, + { + "start": 4598.74, + "end": 4599.65, + "probability": 0.3148 + }, + { + "start": 4599.68, + "end": 4600.38, + "probability": 0.1556 + }, + { + "start": 4600.62, + "end": 4600.84, + "probability": 0.1406 + }, + { + "start": 4602.04, + "end": 4604.36, + "probability": 0.0674 + }, + { + "start": 4605.24, + "end": 4607.9, + "probability": 0.2394 + }, + { + "start": 4619.38, + "end": 4620.99, + "probability": 0.4813 + }, + { + "start": 4621.26, + "end": 4621.72, + "probability": 0.1253 + }, + { + "start": 4622.32, + "end": 4623.94, + "probability": 0.3218 + }, + { + "start": 4624.01, + "end": 4624.64, + "probability": 0.1075 + }, + { + "start": 4624.64, + "end": 4627.11, + "probability": 0.1967 + }, + { + "start": 4627.34, + "end": 4627.9, + "probability": 0.1954 + }, + { + "start": 4628.0, + "end": 4630.58, + "probability": 0.5529 + }, + { + "start": 4632.14, + "end": 4633.0, + "probability": 0.2625 + }, + { + "start": 4633.0, + "end": 4633.7, + "probability": 0.4661 + }, + { + "start": 4633.96, + "end": 4634.46, + "probability": 0.0915 + }, + { + "start": 4634.52, + "end": 4634.96, + "probability": 0.1495 + }, + { + "start": 4634.96, + "end": 4637.22, + "probability": 0.0279 + }, + { + "start": 4637.36, + "end": 4638.16, + "probability": 0.121 + }, + { + "start": 4638.16, + "end": 4640.36, + "probability": 0.0199 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.0, + "end": 4641.0, + "probability": 0.0 + }, + { + "start": 4641.18, + "end": 4641.24, + "probability": 0.3126 + }, + { + "start": 4641.24, + "end": 4641.24, + "probability": 0.0271 + }, + { + "start": 4641.24, + "end": 4643.46, + "probability": 0.3717 + }, + { + "start": 4643.8, + "end": 4645.5, + "probability": 0.7204 + }, + { + "start": 4645.64, + "end": 4646.52, + "probability": 0.6877 + }, + { + "start": 4646.72, + "end": 4649.08, + "probability": 0.9154 + }, + { + "start": 4651.02, + "end": 4652.72, + "probability": 0.5358 + }, + { + "start": 4653.54, + "end": 4654.4, + "probability": 0.8213 + }, + { + "start": 4654.54, + "end": 4655.58, + "probability": 0.2383 + }, + { + "start": 4656.18, + "end": 4658.38, + "probability": 0.4147 + }, + { + "start": 4658.68, + "end": 4658.9, + "probability": 0.9568 + }, + { + "start": 4659.42, + "end": 4661.3, + "probability": 0.2123 + }, + { + "start": 4661.82, + "end": 4662.94, + "probability": 0.7016 + }, + { + "start": 4665.54, + "end": 4667.68, + "probability": 0.3026 + }, + { + "start": 4668.6, + "end": 4670.64, + "probability": 0.8599 + }, + { + "start": 4670.72, + "end": 4672.96, + "probability": 0.9906 + }, + { + "start": 4673.1, + "end": 4673.88, + "probability": 0.8923 + }, + { + "start": 4674.5, + "end": 4676.96, + "probability": 0.9486 + }, + { + "start": 4679.4, + "end": 4682.28, + "probability": 0.995 + }, + { + "start": 4683.14, + "end": 4686.94, + "probability": 0.956 + }, + { + "start": 4689.2, + "end": 4691.62, + "probability": 0.9629 + }, + { + "start": 4692.2, + "end": 4693.1, + "probability": 0.9625 + }, + { + "start": 4693.82, + "end": 4694.44, + "probability": 0.9749 + }, + { + "start": 4694.98, + "end": 4702.02, + "probability": 0.9186 + }, + { + "start": 4702.56, + "end": 4704.22, + "probability": 0.959 + }, + { + "start": 4705.12, + "end": 4707.74, + "probability": 0.9053 + }, + { + "start": 4708.88, + "end": 4711.64, + "probability": 0.9894 + }, + { + "start": 4712.02, + "end": 4713.18, + "probability": 0.6289 + }, + { + "start": 4714.12, + "end": 4718.22, + "probability": 0.9382 + }, + { + "start": 4719.34, + "end": 4720.4, + "probability": 0.8153 + }, + { + "start": 4721.18, + "end": 4722.5, + "probability": 0.8309 + }, + { + "start": 4723.34, + "end": 4727.22, + "probability": 0.9723 + }, + { + "start": 4728.38, + "end": 4730.36, + "probability": 0.9691 + }, + { + "start": 4731.1, + "end": 4732.17, + "probability": 0.9773 + }, + { + "start": 4733.16, + "end": 4734.8, + "probability": 0.9858 + }, + { + "start": 4735.68, + "end": 4738.9, + "probability": 0.9719 + }, + { + "start": 4739.2, + "end": 4741.5, + "probability": 0.952 + }, + { + "start": 4742.26, + "end": 4744.21, + "probability": 0.9801 + }, + { + "start": 4745.04, + "end": 4746.9, + "probability": 0.6617 + }, + { + "start": 4747.64, + "end": 4751.4, + "probability": 0.4567 + }, + { + "start": 4752.5, + "end": 4753.3, + "probability": 0.4366 + }, + { + "start": 4753.84, + "end": 4755.16, + "probability": 0.9648 + }, + { + "start": 4756.38, + "end": 4758.24, + "probability": 0.9878 + }, + { + "start": 4758.82, + "end": 4762.88, + "probability": 0.9764 + }, + { + "start": 4764.24, + "end": 4767.06, + "probability": 0.9815 + }, + { + "start": 4767.58, + "end": 4769.22, + "probability": 0.8715 + }, + { + "start": 4770.04, + "end": 4770.68, + "probability": 0.5728 + }, + { + "start": 4771.46, + "end": 4775.58, + "probability": 0.9537 + }, + { + "start": 4775.9, + "end": 4776.74, + "probability": 0.8541 + }, + { + "start": 4777.34, + "end": 4781.78, + "probability": 0.9881 + }, + { + "start": 4782.4, + "end": 4786.94, + "probability": 0.9955 + }, + { + "start": 4787.9, + "end": 4788.32, + "probability": 0.7223 + }, + { + "start": 4789.12, + "end": 4791.58, + "probability": 0.991 + }, + { + "start": 4791.58, + "end": 4795.54, + "probability": 0.7609 + }, + { + "start": 4796.82, + "end": 4800.46, + "probability": 0.776 + }, + { + "start": 4801.1, + "end": 4801.62, + "probability": 0.7722 + }, + { + "start": 4802.88, + "end": 4804.94, + "probability": 0.9963 + }, + { + "start": 4805.7, + "end": 4808.03, + "probability": 0.8064 + }, + { + "start": 4808.54, + "end": 4812.68, + "probability": 0.9984 + }, + { + "start": 4813.64, + "end": 4814.58, + "probability": 0.6705 + }, + { + "start": 4815.12, + "end": 4817.08, + "probability": 0.9181 + }, + { + "start": 4817.62, + "end": 4823.96, + "probability": 0.981 + }, + { + "start": 4825.02, + "end": 4826.34, + "probability": 0.8611 + }, + { + "start": 4827.58, + "end": 4829.3, + "probability": 0.9088 + }, + { + "start": 4829.88, + "end": 4832.48, + "probability": 0.9286 + }, + { + "start": 4833.7, + "end": 4837.46, + "probability": 0.9834 + }, + { + "start": 4837.46, + "end": 4840.92, + "probability": 0.943 + }, + { + "start": 4842.14, + "end": 4847.22, + "probability": 0.9854 + }, + { + "start": 4847.82, + "end": 4849.18, + "probability": 0.7596 + }, + { + "start": 4849.9, + "end": 4851.28, + "probability": 0.8606 + }, + { + "start": 4851.88, + "end": 4857.8, + "probability": 0.9706 + }, + { + "start": 4857.98, + "end": 4864.48, + "probability": 0.9976 + }, + { + "start": 4865.6, + "end": 4869.99, + "probability": 0.979 + }, + { + "start": 4870.12, + "end": 4873.66, + "probability": 0.986 + }, + { + "start": 4874.74, + "end": 4881.72, + "probability": 0.9886 + }, + { + "start": 4881.82, + "end": 4882.42, + "probability": 0.8735 + }, + { + "start": 4882.48, + "end": 4884.32, + "probability": 0.8496 + }, + { + "start": 4885.0, + "end": 4889.64, + "probability": 0.9864 + }, + { + "start": 4890.88, + "end": 4892.9, + "probability": 0.9316 + }, + { + "start": 4893.74, + "end": 4896.62, + "probability": 0.9672 + }, + { + "start": 4897.02, + "end": 4897.96, + "probability": 0.9381 + }, + { + "start": 4898.04, + "end": 4899.16, + "probability": 0.7744 + }, + { + "start": 4899.72, + "end": 4901.52, + "probability": 0.8113 + }, + { + "start": 4902.6, + "end": 4905.5, + "probability": 0.9888 + }, + { + "start": 4906.94, + "end": 4909.56, + "probability": 0.9561 + }, + { + "start": 4912.38, + "end": 4917.24, + "probability": 0.7646 + }, + { + "start": 4917.26, + "end": 4918.18, + "probability": 0.605 + }, + { + "start": 4918.22, + "end": 4919.34, + "probability": 0.711 + }, + { + "start": 4919.42, + "end": 4920.48, + "probability": 0.6501 + }, + { + "start": 4921.06, + "end": 4924.34, + "probability": 0.9211 + }, + { + "start": 4925.28, + "end": 4928.18, + "probability": 0.987 + }, + { + "start": 4928.78, + "end": 4931.52, + "probability": 0.9482 + }, + { + "start": 4932.44, + "end": 4933.68, + "probability": 0.6395 + }, + { + "start": 4933.78, + "end": 4938.94, + "probability": 0.9467 + }, + { + "start": 4938.94, + "end": 4943.78, + "probability": 0.9551 + }, + { + "start": 4943.78, + "end": 4947.98, + "probability": 0.9835 + }, + { + "start": 4948.78, + "end": 4953.1, + "probability": 0.9938 + }, + { + "start": 4953.1, + "end": 4958.32, + "probability": 0.9541 + }, + { + "start": 4959.08, + "end": 4961.94, + "probability": 0.9914 + }, + { + "start": 4961.94, + "end": 4965.14, + "probability": 0.9932 + }, + { + "start": 4966.0, + "end": 4971.98, + "probability": 0.993 + }, + { + "start": 4972.82, + "end": 4974.24, + "probability": 0.9121 + }, + { + "start": 4975.06, + "end": 4979.06, + "probability": 0.9403 + }, + { + "start": 4979.56, + "end": 4981.07, + "probability": 0.6709 + }, + { + "start": 4981.54, + "end": 4988.08, + "probability": 0.9588 + }, + { + "start": 4988.86, + "end": 4994.58, + "probability": 0.9967 + }, + { + "start": 4994.58, + "end": 5002.04, + "probability": 0.9496 + }, + { + "start": 5003.22, + "end": 5005.68, + "probability": 0.7854 + }, + { + "start": 5006.24, + "end": 5008.84, + "probability": 0.96 + }, + { + "start": 5009.36, + "end": 5011.82, + "probability": 0.6749 + }, + { + "start": 5012.14, + "end": 5013.34, + "probability": 0.972 + }, + { + "start": 5013.78, + "end": 5017.46, + "probability": 0.9778 + }, + { + "start": 5018.62, + "end": 5022.48, + "probability": 0.9893 + }, + { + "start": 5023.3, + "end": 5027.02, + "probability": 0.9936 + }, + { + "start": 5027.02, + "end": 5030.38, + "probability": 0.9977 + }, + { + "start": 5031.28, + "end": 5033.7, + "probability": 0.6924 + }, + { + "start": 5034.26, + "end": 5038.0, + "probability": 0.9742 + }, + { + "start": 5038.36, + "end": 5040.64, + "probability": 0.9513 + }, + { + "start": 5040.98, + "end": 5041.82, + "probability": 0.7231 + }, + { + "start": 5042.5, + "end": 5045.88, + "probability": 0.7267 + }, + { + "start": 5046.48, + "end": 5048.13, + "probability": 0.991 + }, + { + "start": 5049.36, + "end": 5050.78, + "probability": 0.7714 + }, + { + "start": 5051.38, + "end": 5055.24, + "probability": 0.995 + }, + { + "start": 5055.72, + "end": 5059.28, + "probability": 0.9956 + }, + { + "start": 5059.28, + "end": 5063.26, + "probability": 0.9897 + }, + { + "start": 5063.66, + "end": 5067.56, + "probability": 0.9974 + }, + { + "start": 5069.1, + "end": 5070.98, + "probability": 0.9194 + }, + { + "start": 5072.08, + "end": 5075.82, + "probability": 0.9432 + }, + { + "start": 5076.62, + "end": 5079.42, + "probability": 0.9985 + }, + { + "start": 5079.78, + "end": 5082.36, + "probability": 0.7997 + }, + { + "start": 5083.64, + "end": 5086.04, + "probability": 0.8005 + }, + { + "start": 5086.58, + "end": 5088.16, + "probability": 0.9455 + }, + { + "start": 5088.84, + "end": 5089.56, + "probability": 0.7774 + }, + { + "start": 5090.06, + "end": 5091.66, + "probability": 0.8475 + }, + { + "start": 5092.38, + "end": 5095.48, + "probability": 0.979 + }, + { + "start": 5096.22, + "end": 5099.37, + "probability": 0.9526 + }, + { + "start": 5100.46, + "end": 5103.48, + "probability": 0.9784 + }, + { + "start": 5103.48, + "end": 5107.2, + "probability": 0.9978 + }, + { + "start": 5107.8, + "end": 5112.12, + "probability": 0.9979 + }, + { + "start": 5112.48, + "end": 5113.38, + "probability": 0.7886 + }, + { + "start": 5113.98, + "end": 5114.78, + "probability": 0.638 + }, + { + "start": 5115.3, + "end": 5117.7, + "probability": 0.994 + }, + { + "start": 5118.32, + "end": 5126.09, + "probability": 0.8682 + }, + { + "start": 5126.52, + "end": 5131.42, + "probability": 0.9917 + }, + { + "start": 5132.48, + "end": 5135.04, + "probability": 0.9893 + }, + { + "start": 5136.26, + "end": 5139.42, + "probability": 0.9927 + }, + { + "start": 5139.42, + "end": 5143.66, + "probability": 0.999 + }, + { + "start": 5143.76, + "end": 5144.14, + "probability": 0.7011 + }, + { + "start": 5145.02, + "end": 5150.6, + "probability": 0.9948 + }, + { + "start": 5151.2, + "end": 5155.1, + "probability": 0.9647 + }, + { + "start": 5155.44, + "end": 5156.46, + "probability": 0.5583 + }, + { + "start": 5156.58, + "end": 5158.38, + "probability": 0.9541 + }, + { + "start": 5158.94, + "end": 5161.28, + "probability": 0.961 + }, + { + "start": 5162.0, + "end": 5164.16, + "probability": 0.8321 + }, + { + "start": 5164.42, + "end": 5167.74, + "probability": 0.9688 + }, + { + "start": 5168.64, + "end": 5169.96, + "probability": 0.9968 + }, + { + "start": 5170.8, + "end": 5173.06, + "probability": 0.9842 + }, + { + "start": 5173.64, + "end": 5176.26, + "probability": 0.9972 + }, + { + "start": 5176.9, + "end": 5180.52, + "probability": 0.8949 + }, + { + "start": 5181.06, + "end": 5183.16, + "probability": 0.9958 + }, + { + "start": 5183.82, + "end": 5186.52, + "probability": 0.9526 + }, + { + "start": 5186.86, + "end": 5189.74, + "probability": 0.9801 + }, + { + "start": 5190.34, + "end": 5192.74, + "probability": 0.7036 + }, + { + "start": 5193.22, + "end": 5196.36, + "probability": 0.8754 + }, + { + "start": 5196.92, + "end": 5200.28, + "probability": 0.6136 + }, + { + "start": 5201.06, + "end": 5205.66, + "probability": 0.9859 + }, + { + "start": 5205.94, + "end": 5206.32, + "probability": 0.7325 + }, + { + "start": 5207.66, + "end": 5209.38, + "probability": 0.5576 + }, + { + "start": 5209.48, + "end": 5215.1, + "probability": 0.8704 + }, + { + "start": 5215.26, + "end": 5215.54, + "probability": 0.6525 + }, + { + "start": 5220.04, + "end": 5220.16, + "probability": 0.0825 + }, + { + "start": 5237.22, + "end": 5237.26, + "probability": 0.1959 + }, + { + "start": 5237.46, + "end": 5238.08, + "probability": 0.5647 + }, + { + "start": 5239.1, + "end": 5239.9, + "probability": 0.2192 + }, + { + "start": 5241.56, + "end": 5244.75, + "probability": 0.0158 + }, + { + "start": 5244.98, + "end": 5245.58, + "probability": 0.0225 + }, + { + "start": 5248.38, + "end": 5249.06, + "probability": 0.0711 + }, + { + "start": 5249.08, + "end": 5250.74, + "probability": 0.3812 + }, + { + "start": 5275.68, + "end": 5280.18, + "probability": 0.8337 + }, + { + "start": 5281.4, + "end": 5284.78, + "probability": 0.9968 + }, + { + "start": 5285.9, + "end": 5290.28, + "probability": 0.9883 + }, + { + "start": 5292.14, + "end": 5295.58, + "probability": 0.9738 + }, + { + "start": 5296.52, + "end": 5298.3, + "probability": 0.9992 + }, + { + "start": 5300.02, + "end": 5302.8, + "probability": 0.9902 + }, + { + "start": 5303.8, + "end": 5307.38, + "probability": 0.9693 + }, + { + "start": 5309.34, + "end": 5316.02, + "probability": 0.9948 + }, + { + "start": 5318.34, + "end": 5319.2, + "probability": 0.9806 + }, + { + "start": 5320.32, + "end": 5322.04, + "probability": 0.8012 + }, + { + "start": 5323.12, + "end": 5328.02, + "probability": 0.6019 + }, + { + "start": 5328.02, + "end": 5328.02, + "probability": 0.0355 + }, + { + "start": 5328.02, + "end": 5328.74, + "probability": 0.3332 + }, + { + "start": 5329.58, + "end": 5334.04, + "probability": 0.9852 + }, + { + "start": 5335.62, + "end": 5342.44, + "probability": 0.9873 + }, + { + "start": 5342.58, + "end": 5344.58, + "probability": 0.9988 + }, + { + "start": 5345.14, + "end": 5347.04, + "probability": 0.8978 + }, + { + "start": 5348.44, + "end": 5349.94, + "probability": 0.9861 + }, + { + "start": 5352.16, + "end": 5353.44, + "probability": 0.6814 + }, + { + "start": 5356.2, + "end": 5358.3, + "probability": 0.941 + }, + { + "start": 5360.32, + "end": 5363.28, + "probability": 0.9865 + }, + { + "start": 5363.82, + "end": 5365.18, + "probability": 0.8174 + }, + { + "start": 5366.26, + "end": 5369.64, + "probability": 0.9937 + }, + { + "start": 5371.1, + "end": 5372.92, + "probability": 0.8348 + }, + { + "start": 5373.72, + "end": 5378.02, + "probability": 0.9883 + }, + { + "start": 5379.4, + "end": 5380.47, + "probability": 0.9563 + }, + { + "start": 5382.02, + "end": 5383.54, + "probability": 0.9928 + }, + { + "start": 5384.1, + "end": 5385.4, + "probability": 0.9682 + }, + { + "start": 5386.44, + "end": 5390.5, + "probability": 0.9897 + }, + { + "start": 5391.5, + "end": 5393.84, + "probability": 0.9992 + }, + { + "start": 5395.0, + "end": 5397.1, + "probability": 0.5005 + }, + { + "start": 5398.74, + "end": 5400.36, + "probability": 0.8929 + }, + { + "start": 5401.44, + "end": 5403.16, + "probability": 0.9265 + }, + { + "start": 5404.0, + "end": 5408.9, + "probability": 0.9978 + }, + { + "start": 5410.74, + "end": 5414.9, + "probability": 0.9946 + }, + { + "start": 5415.16, + "end": 5416.32, + "probability": 0.4615 + }, + { + "start": 5416.9, + "end": 5421.2, + "probability": 0.8647 + }, + { + "start": 5422.1, + "end": 5422.98, + "probability": 0.9646 + }, + { + "start": 5423.06, + "end": 5424.12, + "probability": 0.8058 + }, + { + "start": 5424.44, + "end": 5428.02, + "probability": 0.9974 + }, + { + "start": 5428.54, + "end": 5429.58, + "probability": 0.4194 + }, + { + "start": 5430.28, + "end": 5434.08, + "probability": 0.9186 + }, + { + "start": 5434.98, + "end": 5439.64, + "probability": 0.9677 + }, + { + "start": 5439.8, + "end": 5440.02, + "probability": 0.741 + }, + { + "start": 5440.92, + "end": 5445.48, + "probability": 0.6889 + }, + { + "start": 5445.62, + "end": 5447.68, + "probability": 0.9972 + }, + { + "start": 5448.32, + "end": 5454.22, + "probability": 0.9598 + }, + { + "start": 5455.58, + "end": 5457.56, + "probability": 0.9636 + }, + { + "start": 5473.98, + "end": 5475.02, + "probability": 0.6905 + }, + { + "start": 5484.5, + "end": 5485.98, + "probability": 0.6832 + }, + { + "start": 5486.04, + "end": 5487.66, + "probability": 0.8203 + }, + { + "start": 5488.34, + "end": 5489.06, + "probability": 0.7588 + }, + { + "start": 5498.74, + "end": 5499.7, + "probability": 0.9978 + }, + { + "start": 5501.06, + "end": 5504.14, + "probability": 0.9937 + }, + { + "start": 5504.94, + "end": 5505.58, + "probability": 0.9534 + }, + { + "start": 5506.46, + "end": 5507.58, + "probability": 0.5817 + }, + { + "start": 5508.16, + "end": 5510.44, + "probability": 0.9576 + }, + { + "start": 5512.0, + "end": 5514.56, + "probability": 0.9356 + }, + { + "start": 5514.72, + "end": 5516.65, + "probability": 0.9194 + }, + { + "start": 5517.06, + "end": 5518.14, + "probability": 0.7739 + }, + { + "start": 5518.14, + "end": 5519.38, + "probability": 0.9806 + }, + { + "start": 5520.46, + "end": 5523.3, + "probability": 0.7231 + }, + { + "start": 5524.48, + "end": 5525.2, + "probability": 0.9566 + }, + { + "start": 5527.52, + "end": 5528.14, + "probability": 0.9623 + }, + { + "start": 5528.22, + "end": 5528.82, + "probability": 0.9031 + }, + { + "start": 5528.86, + "end": 5529.56, + "probability": 0.9441 + }, + { + "start": 5529.66, + "end": 5530.44, + "probability": 0.741 + }, + { + "start": 5531.92, + "end": 5538.32, + "probability": 0.9796 + }, + { + "start": 5538.42, + "end": 5539.32, + "probability": 0.9912 + }, + { + "start": 5540.06, + "end": 5543.24, + "probability": 0.9924 + }, + { + "start": 5544.22, + "end": 5547.4, + "probability": 0.9374 + }, + { + "start": 5548.42, + "end": 5551.48, + "probability": 0.8931 + }, + { + "start": 5552.54, + "end": 5553.08, + "probability": 0.3171 + }, + { + "start": 5553.92, + "end": 5557.26, + "probability": 0.9678 + }, + { + "start": 5557.96, + "end": 5562.64, + "probability": 0.9312 + }, + { + "start": 5563.42, + "end": 5568.02, + "probability": 0.972 + }, + { + "start": 5568.5, + "end": 5571.3, + "probability": 0.5583 + }, + { + "start": 5571.3, + "end": 5571.88, + "probability": 0.197 + }, + { + "start": 5572.66, + "end": 5575.68, + "probability": 0.9893 + }, + { + "start": 5576.18, + "end": 5577.9, + "probability": 0.7961 + }, + { + "start": 5578.36, + "end": 5582.4, + "probability": 0.9176 + }, + { + "start": 5582.96, + "end": 5586.2, + "probability": 0.9546 + }, + { + "start": 5587.04, + "end": 5588.58, + "probability": 0.9865 + }, + { + "start": 5589.6, + "end": 5591.62, + "probability": 0.6917 + }, + { + "start": 5592.34, + "end": 5594.32, + "probability": 0.878 + }, + { + "start": 5594.8, + "end": 5595.98, + "probability": 0.705 + }, + { + "start": 5596.92, + "end": 5599.42, + "probability": 0.9858 + }, + { + "start": 5601.3, + "end": 5606.02, + "probability": 0.7886 + }, + { + "start": 5607.4, + "end": 5610.82, + "probability": 0.9604 + }, + { + "start": 5611.34, + "end": 5612.4, + "probability": 0.7108 + }, + { + "start": 5613.06, + "end": 5614.1, + "probability": 0.7388 + }, + { + "start": 5614.98, + "end": 5616.24, + "probability": 0.9619 + }, + { + "start": 5616.38, + "end": 5619.18, + "probability": 0.9974 + }, + { + "start": 5620.3, + "end": 5622.57, + "probability": 0.9974 + }, + { + "start": 5623.1, + "end": 5624.74, + "probability": 0.5248 + }, + { + "start": 5625.5, + "end": 5626.5, + "probability": 0.888 + }, + { + "start": 5627.9, + "end": 5632.78, + "probability": 0.9893 + }, + { + "start": 5633.3, + "end": 5638.14, + "probability": 0.9832 + }, + { + "start": 5638.14, + "end": 5642.64, + "probability": 0.991 + }, + { + "start": 5643.36, + "end": 5650.12, + "probability": 0.91 + }, + { + "start": 5650.12, + "end": 5655.1, + "probability": 0.9897 + }, + { + "start": 5655.82, + "end": 5658.02, + "probability": 0.8422 + }, + { + "start": 5658.54, + "end": 5660.06, + "probability": 0.909 + }, + { + "start": 5660.54, + "end": 5661.46, + "probability": 0.9738 + }, + { + "start": 5661.72, + "end": 5664.96, + "probability": 0.794 + }, + { + "start": 5665.84, + "end": 5669.2, + "probability": 0.7864 + }, + { + "start": 5669.44, + "end": 5670.22, + "probability": 0.7223 + }, + { + "start": 5670.86, + "end": 5671.7, + "probability": 0.7464 + }, + { + "start": 5671.88, + "end": 5674.62, + "probability": 0.6666 + }, + { + "start": 5675.18, + "end": 5676.55, + "probability": 0.7965 + }, + { + "start": 5678.14, + "end": 5680.58, + "probability": 0.3809 + }, + { + "start": 5680.58, + "end": 5682.8, + "probability": 0.1418 + }, + { + "start": 5684.46, + "end": 5686.1, + "probability": 0.5786 + }, + { + "start": 5704.86, + "end": 5706.36, + "probability": 0.6343 + }, + { + "start": 5718.5, + "end": 5720.86, + "probability": 0.6043 + }, + { + "start": 5728.26, + "end": 5729.28, + "probability": 0.7426 + }, + { + "start": 5729.46, + "end": 5730.82, + "probability": 0.9619 + }, + { + "start": 5731.0, + "end": 5732.22, + "probability": 0.9463 + }, + { + "start": 5733.44, + "end": 5735.94, + "probability": 0.7677 + }, + { + "start": 5736.92, + "end": 5738.48, + "probability": 0.9468 + }, + { + "start": 5741.44, + "end": 5743.58, + "probability": 0.96 + }, + { + "start": 5743.96, + "end": 5745.32, + "probability": 0.926 + }, + { + "start": 5746.68, + "end": 5748.58, + "probability": 0.985 + }, + { + "start": 5750.08, + "end": 5753.28, + "probability": 0.9237 + }, + { + "start": 5754.74, + "end": 5755.27, + "probability": 0.3328 + }, + { + "start": 5755.56, + "end": 5758.44, + "probability": 0.9467 + }, + { + "start": 5759.6, + "end": 5763.04, + "probability": 0.9883 + }, + { + "start": 5763.76, + "end": 5765.12, + "probability": 0.7734 + }, + { + "start": 5766.28, + "end": 5768.44, + "probability": 0.8931 + }, + { + "start": 5768.86, + "end": 5772.82, + "probability": 0.9719 + }, + { + "start": 5773.98, + "end": 5776.02, + "probability": 0.8295 + }, + { + "start": 5776.66, + "end": 5779.46, + "probability": 0.9587 + }, + { + "start": 5780.0, + "end": 5781.62, + "probability": 0.9961 + }, + { + "start": 5783.2, + "end": 5787.82, + "probability": 0.9717 + }, + { + "start": 5788.8, + "end": 5790.86, + "probability": 0.9502 + }, + { + "start": 5793.7, + "end": 5795.9, + "probability": 0.9987 + }, + { + "start": 5797.62, + "end": 5798.96, + "probability": 0.9849 + }, + { + "start": 5801.71, + "end": 5804.48, + "probability": 0.8252 + }, + { + "start": 5813.86, + "end": 5815.8, + "probability": 0.7062 + }, + { + "start": 5817.2, + "end": 5817.3, + "probability": 0.0163 + }, + { + "start": 5818.44, + "end": 5819.54, + "probability": 0.9963 + }, + { + "start": 5820.96, + "end": 5824.5, + "probability": 0.755 + }, + { + "start": 5825.3, + "end": 5828.94, + "probability": 0.9945 + }, + { + "start": 5829.78, + "end": 5831.0, + "probability": 0.6893 + }, + { + "start": 5832.08, + "end": 5832.94, + "probability": 0.8833 + }, + { + "start": 5834.3, + "end": 5836.5, + "probability": 0.9976 + }, + { + "start": 5837.58, + "end": 5838.54, + "probability": 0.9969 + }, + { + "start": 5839.86, + "end": 5843.64, + "probability": 0.9967 + }, + { + "start": 5844.1, + "end": 5848.26, + "probability": 0.9976 + }, + { + "start": 5848.76, + "end": 5849.44, + "probability": 0.765 + }, + { + "start": 5850.24, + "end": 5851.28, + "probability": 0.7938 + }, + { + "start": 5851.94, + "end": 5852.54, + "probability": 0.8731 + }, + { + "start": 5853.08, + "end": 5855.04, + "probability": 0.789 + }, + { + "start": 5855.56, + "end": 5857.78, + "probability": 0.8031 + }, + { + "start": 5858.1, + "end": 5861.56, + "probability": 0.9946 + }, + { + "start": 5863.04, + "end": 5866.92, + "probability": 0.9913 + }, + { + "start": 5867.64, + "end": 5868.46, + "probability": 0.7116 + }, + { + "start": 5868.58, + "end": 5870.02, + "probability": 0.8143 + }, + { + "start": 5870.84, + "end": 5872.7, + "probability": 0.985 + }, + { + "start": 5873.5, + "end": 5877.58, + "probability": 0.9788 + }, + { + "start": 5878.08, + "end": 5882.42, + "probability": 0.9814 + }, + { + "start": 5883.18, + "end": 5885.7, + "probability": 0.9458 + }, + { + "start": 5886.9, + "end": 5891.0, + "probability": 0.9663 + }, + { + "start": 5891.68, + "end": 5894.46, + "probability": 0.6871 + }, + { + "start": 5896.0, + "end": 5899.06, + "probability": 0.9868 + }, + { + "start": 5900.24, + "end": 5902.54, + "probability": 0.9834 + }, + { + "start": 5903.28, + "end": 5905.16, + "probability": 0.9417 + }, + { + "start": 5905.88, + "end": 5907.54, + "probability": 0.9744 + }, + { + "start": 5908.4, + "end": 5910.24, + "probability": 0.8939 + }, + { + "start": 5910.38, + "end": 5911.48, + "probability": 0.7001 + }, + { + "start": 5911.48, + "end": 5913.68, + "probability": 0.669 + }, + { + "start": 5914.4, + "end": 5916.06, + "probability": 0.9878 + }, + { + "start": 5916.26, + "end": 5917.52, + "probability": 0.8503 + }, + { + "start": 5917.84, + "end": 5922.92, + "probability": 0.9917 + }, + { + "start": 5923.36, + "end": 5925.88, + "probability": 0.9863 + }, + { + "start": 5926.06, + "end": 5929.88, + "probability": 0.9807 + }, + { + "start": 5930.16, + "end": 5930.46, + "probability": 0.8568 + }, + { + "start": 5931.66, + "end": 5933.54, + "probability": 0.8311 + }, + { + "start": 5933.78, + "end": 5935.7, + "probability": 0.6547 + }, + { + "start": 5940.62, + "end": 5944.9, + "probability": 0.8003 + }, + { + "start": 5945.54, + "end": 5948.96, + "probability": 0.777 + }, + { + "start": 5950.4, + "end": 5953.76, + "probability": 0.0183 + }, + { + "start": 5954.66, + "end": 5955.86, + "probability": 0.5886 + }, + { + "start": 5957.88, + "end": 5958.66, + "probability": 0.9703 + }, + { + "start": 5959.36, + "end": 5960.5, + "probability": 0.8838 + }, + { + "start": 5961.98, + "end": 5964.3, + "probability": 0.9628 + }, + { + "start": 5965.94, + "end": 5966.64, + "probability": 0.8036 + }, + { + "start": 5967.24, + "end": 5968.04, + "probability": 0.5897 + }, + { + "start": 5969.56, + "end": 5970.34, + "probability": 0.9916 + }, + { + "start": 5970.98, + "end": 5971.9, + "probability": 0.9222 + }, + { + "start": 5973.8, + "end": 5974.6, + "probability": 0.9952 + }, + { + "start": 5975.3, + "end": 5976.2, + "probability": 0.4497 + }, + { + "start": 5984.06, + "end": 5984.72, + "probability": 0.4172 + }, + { + "start": 5987.92, + "end": 5991.23, + "probability": 0.2436 + }, + { + "start": 5993.7, + "end": 5994.42, + "probability": 0.7337 + }, + { + "start": 5995.02, + "end": 5996.1, + "probability": 0.691 + }, + { + "start": 5997.76, + "end": 5998.16, + "probability": 0.7008 + }, + { + "start": 5999.4, + "end": 6000.42, + "probability": 0.9127 + }, + { + "start": 6003.44, + "end": 6005.88, + "probability": 0.9777 + }, + { + "start": 6007.32, + "end": 6008.88, + "probability": 0.5387 + }, + { + "start": 6009.98, + "end": 6010.58, + "probability": 0.8215 + }, + { + "start": 6012.12, + "end": 6013.9, + "probability": 0.8082 + }, + { + "start": 6014.74, + "end": 6016.0, + "probability": 0.9175 + }, + { + "start": 6016.7, + "end": 6017.0, + "probability": 0.6138 + }, + { + "start": 6018.32, + "end": 6019.28, + "probability": 0.7908 + }, + { + "start": 6022.42, + "end": 6023.24, + "probability": 0.7391 + }, + { + "start": 6023.94, + "end": 6024.76, + "probability": 0.9284 + }, + { + "start": 6025.64, + "end": 6026.1, + "probability": 0.8359 + }, + { + "start": 6026.98, + "end": 6027.82, + "probability": 0.8299 + }, + { + "start": 6034.24, + "end": 6035.86, + "probability": 0.4408 + }, + { + "start": 6036.8, + "end": 6038.94, + "probability": 0.2996 + }, + { + "start": 6043.86, + "end": 6044.78, + "probability": 0.8214 + }, + { + "start": 6048.9, + "end": 6049.82, + "probability": 0.5186 + }, + { + "start": 6051.36, + "end": 6051.94, + "probability": 0.5922 + }, + { + "start": 6053.9, + "end": 6054.88, + "probability": 0.8394 + }, + { + "start": 6055.71, + "end": 6057.82, + "probability": 0.9667 + }, + { + "start": 6059.72, + "end": 6060.12, + "probability": 0.9858 + }, + { + "start": 6061.16, + "end": 6061.96, + "probability": 0.988 + }, + { + "start": 6062.9, + "end": 6065.4, + "probability": 0.9858 + }, + { + "start": 6066.86, + "end": 6069.5, + "probability": 0.9856 + }, + { + "start": 6070.82, + "end": 6071.66, + "probability": 0.4932 + }, + { + "start": 6073.04, + "end": 6074.68, + "probability": 0.7839 + }, + { + "start": 6076.3, + "end": 6077.08, + "probability": 0.8107 + }, + { + "start": 6078.0, + "end": 6079.28, + "probability": 0.5004 + }, + { + "start": 6080.3, + "end": 6080.58, + "probability": 0.6373 + }, + { + "start": 6081.5, + "end": 6082.26, + "probability": 0.9688 + }, + { + "start": 6083.1, + "end": 6085.1, + "probability": 0.9653 + }, + { + "start": 6086.84, + "end": 6087.68, + "probability": 0.9622 + }, + { + "start": 6088.38, + "end": 6089.16, + "probability": 0.9739 + }, + { + "start": 6090.24, + "end": 6092.18, + "probability": 0.9314 + }, + { + "start": 6093.96, + "end": 6098.28, + "probability": 0.9426 + }, + { + "start": 6099.1, + "end": 6099.74, + "probability": 0.9539 + }, + { + "start": 6100.84, + "end": 6101.58, + "probability": 0.979 + }, + { + "start": 6102.82, + "end": 6102.98, + "probability": 0.064 + }, + { + "start": 6105.12, + "end": 6105.62, + "probability": 0.993 + }, + { + "start": 6106.48, + "end": 6110.24, + "probability": 0.7597 + }, + { + "start": 6110.86, + "end": 6113.34, + "probability": 0.9639 + }, + { + "start": 6115.1, + "end": 6115.88, + "probability": 0.9643 + }, + { + "start": 6116.5, + "end": 6117.5, + "probability": 0.9644 + }, + { + "start": 6120.34, + "end": 6121.16, + "probability": 0.8364 + }, + { + "start": 6121.68, + "end": 6122.66, + "probability": 0.8937 + }, + { + "start": 6123.28, + "end": 6123.72, + "probability": 0.9712 + }, + { + "start": 6124.4, + "end": 6125.3, + "probability": 0.9926 + }, + { + "start": 6125.9, + "end": 6128.82, + "probability": 0.9568 + }, + { + "start": 6130.02, + "end": 6130.84, + "probability": 0.9057 + }, + { + "start": 6131.44, + "end": 6132.22, + "probability": 0.7466 + }, + { + "start": 6134.18, + "end": 6134.94, + "probability": 0.4273 + }, + { + "start": 6135.84, + "end": 6136.64, + "probability": 0.6596 + }, + { + "start": 6137.84, + "end": 6138.62, + "probability": 0.79 + }, + { + "start": 6139.92, + "end": 6140.74, + "probability": 0.7661 + }, + { + "start": 6143.44, + "end": 6144.12, + "probability": 0.9032 + }, + { + "start": 6145.38, + "end": 6146.28, + "probability": 0.4512 + }, + { + "start": 6147.64, + "end": 6148.66, + "probability": 0.9753 + }, + { + "start": 6151.42, + "end": 6152.46, + "probability": 0.642 + }, + { + "start": 6154.08, + "end": 6156.1, + "probability": 0.8398 + }, + { + "start": 6157.02, + "end": 6158.28, + "probability": 0.8497 + }, + { + "start": 6159.3, + "end": 6159.62, + "probability": 0.9644 + }, + { + "start": 6160.66, + "end": 6162.02, + "probability": 0.8713 + }, + { + "start": 6163.56, + "end": 6164.24, + "probability": 0.9251 + }, + { + "start": 6165.6, + "end": 6167.06, + "probability": 0.7666 + }, + { + "start": 6167.9, + "end": 6168.36, + "probability": 0.9856 + }, + { + "start": 6169.22, + "end": 6170.16, + "probability": 0.658 + }, + { + "start": 6170.98, + "end": 6171.5, + "probability": 0.9902 + }, + { + "start": 6172.2, + "end": 6173.42, + "probability": 0.8851 + }, + { + "start": 6176.42, + "end": 6177.72, + "probability": 0.9382 + }, + { + "start": 6179.04, + "end": 6180.4, + "probability": 0.8513 + }, + { + "start": 6181.06, + "end": 6182.76, + "probability": 0.5283 + }, + { + "start": 6183.84, + "end": 6184.78, + "probability": 0.8177 + }, + { + "start": 6187.42, + "end": 6189.42, + "probability": 0.4971 + }, + { + "start": 6190.18, + "end": 6191.6, + "probability": 0.6667 + }, + { + "start": 6192.46, + "end": 6198.32, + "probability": 0.704 + }, + { + "start": 6199.16, + "end": 6201.36, + "probability": 0.9641 + }, + { + "start": 6205.8, + "end": 6206.9, + "probability": 0.4293 + }, + { + "start": 6208.24, + "end": 6208.54, + "probability": 0.7346 + }, + { + "start": 6210.1, + "end": 6210.5, + "probability": 0.6951 + }, + { + "start": 6212.74, + "end": 6213.5, + "probability": 0.8689 + }, + { + "start": 6214.36, + "end": 6215.82, + "probability": 0.9493 + }, + { + "start": 6216.66, + "end": 6217.1, + "probability": 0.8857 + }, + { + "start": 6218.26, + "end": 6219.18, + "probability": 0.8466 + }, + { + "start": 6224.06, + "end": 6224.3, + "probability": 0.5038 + }, + { + "start": 6225.42, + "end": 6226.26, + "probability": 0.7421 + }, + { + "start": 6227.9, + "end": 6228.68, + "probability": 0.7816 + }, + { + "start": 6229.4, + "end": 6230.16, + "probability": 0.925 + }, + { + "start": 6235.34, + "end": 6236.44, + "probability": 0.198 + }, + { + "start": 6237.72, + "end": 6238.74, + "probability": 0.7638 + }, + { + "start": 6242.0, + "end": 6244.06, + "probability": 0.8203 + }, + { + "start": 6245.18, + "end": 6245.56, + "probability": 0.8271 + }, + { + "start": 6247.62, + "end": 6249.6, + "probability": 0.7891 + }, + { + "start": 6250.8, + "end": 6252.24, + "probability": 0.6788 + }, + { + "start": 6253.88, + "end": 6254.94, + "probability": 0.6238 + }, + { + "start": 6256.36, + "end": 6257.72, + "probability": 0.7958 + }, + { + "start": 6262.78, + "end": 6264.92, + "probability": 0.8303 + }, + { + "start": 6266.4, + "end": 6267.14, + "probability": 0.8581 + }, + { + "start": 6267.72, + "end": 6268.88, + "probability": 0.7931 + }, + { + "start": 6273.26, + "end": 6273.52, + "probability": 0.56 + }, + { + "start": 6274.14, + "end": 6275.26, + "probability": 0.6919 + }, + { + "start": 6277.38, + "end": 6278.12, + "probability": 0.829 + }, + { + "start": 6278.9, + "end": 6279.8, + "probability": 0.9298 + }, + { + "start": 6280.9, + "end": 6282.96, + "probability": 0.9692 + }, + { + "start": 6286.57, + "end": 6289.14, + "probability": 0.9588 + }, + { + "start": 6290.04, + "end": 6290.32, + "probability": 0.9551 + }, + { + "start": 6290.94, + "end": 6292.24, + "probability": 0.9369 + }, + { + "start": 6293.04, + "end": 6295.06, + "probability": 0.8531 + }, + { + "start": 6296.2, + "end": 6296.76, + "probability": 0.1593 + }, + { + "start": 6297.98, + "end": 6298.88, + "probability": 0.8366 + }, + { + "start": 6313.02, + "end": 6314.64, + "probability": 0.5626 + }, + { + "start": 6315.52, + "end": 6316.58, + "probability": 0.463 + }, + { + "start": 6318.6, + "end": 6319.48, + "probability": 0.8812 + }, + { + "start": 6320.58, + "end": 6321.7, + "probability": 0.8064 + }, + { + "start": 6322.5, + "end": 6324.92, + "probability": 0.8726 + }, + { + "start": 6326.46, + "end": 6327.5, + "probability": 0.4728 + }, + { + "start": 6327.5, + "end": 6327.62, + "probability": 0.2004 + }, + { + "start": 6327.62, + "end": 6328.68, + "probability": 0.1965 + }, + { + "start": 6337.46, + "end": 6338.96, + "probability": 0.1314 + }, + { + "start": 6340.02, + "end": 6342.84, + "probability": 0.5224 + }, + { + "start": 6343.84, + "end": 6344.92, + "probability": 0.837 + }, + { + "start": 6347.5, + "end": 6350.22, + "probability": 0.8237 + }, + { + "start": 6351.68, + "end": 6354.1, + "probability": 0.9479 + }, + { + "start": 6355.64, + "end": 6356.4, + "probability": 0.8867 + }, + { + "start": 6357.48, + "end": 6357.84, + "probability": 0.6861 + }, + { + "start": 6359.22, + "end": 6360.02, + "probability": 0.546 + }, + { + "start": 6360.98, + "end": 6364.92, + "probability": 0.7711 + }, + { + "start": 6366.7, + "end": 6368.72, + "probability": 0.8244 + }, + { + "start": 6369.64, + "end": 6370.42, + "probability": 0.5719 + }, + { + "start": 6371.7, + "end": 6372.62, + "probability": 0.9569 + }, + { + "start": 6373.24, + "end": 6374.48, + "probability": 0.8284 + }, + { + "start": 6376.94, + "end": 6380.66, + "probability": 0.5146 + }, + { + "start": 6383.76, + "end": 6384.56, + "probability": 0.9692 + }, + { + "start": 6385.58, + "end": 6386.96, + "probability": 0.9311 + }, + { + "start": 6388.26, + "end": 6389.04, + "probability": 0.8132 + }, + { + "start": 6389.86, + "end": 6390.92, + "probability": 0.5201 + }, + { + "start": 6392.72, + "end": 6393.46, + "probability": 0.8572 + }, + { + "start": 6395.66, + "end": 6396.52, + "probability": 0.921 + }, + { + "start": 6397.12, + "end": 6400.12, + "probability": 0.8377 + }, + { + "start": 6402.2, + "end": 6403.4, + "probability": 0.99 + }, + { + "start": 6404.5, + "end": 6405.12, + "probability": 0.5065 + }, + { + "start": 6406.48, + "end": 6407.4, + "probability": 0.9888 + }, + { + "start": 6408.7, + "end": 6409.7, + "probability": 0.9777 + }, + { + "start": 6411.22, + "end": 6412.0, + "probability": 0.904 + }, + { + "start": 6412.72, + "end": 6414.24, + "probability": 0.9718 + }, + { + "start": 6414.98, + "end": 6415.38, + "probability": 0.98 + }, + { + "start": 6416.44, + "end": 6416.62, + "probability": 0.2593 + }, + { + "start": 6417.3, + "end": 6418.22, + "probability": 0.4154 + }, + { + "start": 6419.94, + "end": 6422.1, + "probability": 0.7323 + }, + { + "start": 6423.28, + "end": 6424.32, + "probability": 0.8491 + }, + { + "start": 6425.28, + "end": 6425.8, + "probability": 0.6605 + }, + { + "start": 6426.66, + "end": 6427.56, + "probability": 0.7862 + }, + { + "start": 6430.5, + "end": 6431.3, + "probability": 0.8906 + }, + { + "start": 6432.28, + "end": 6433.36, + "probability": 0.7886 + }, + { + "start": 6435.34, + "end": 6435.82, + "probability": 0.949 + }, + { + "start": 6436.96, + "end": 6437.38, + "probability": 0.9178 + }, + { + "start": 6440.6, + "end": 6444.86, + "probability": 0.4347 + }, + { + "start": 6445.66, + "end": 6446.66, + "probability": 0.172 + }, + { + "start": 6447.98, + "end": 6448.9, + "probability": 0.782 + }, + { + "start": 6450.0, + "end": 6451.3, + "probability": 0.5847 + }, + { + "start": 6452.5, + "end": 6453.56, + "probability": 0.6928 + }, + { + "start": 6455.08, + "end": 6457.6, + "probability": 0.0909 + }, + { + "start": 6458.52, + "end": 6459.08, + "probability": 0.9785 + }, + { + "start": 6463.19, + "end": 6464.5, + "probability": 0.3651 + }, + { + "start": 6465.92, + "end": 6466.8, + "probability": 0.7986 + }, + { + "start": 6467.36, + "end": 6468.28, + "probability": 0.8281 + }, + { + "start": 6469.8, + "end": 6470.2, + "probability": 0.6898 + }, + { + "start": 6471.6, + "end": 6472.64, + "probability": 0.9428 + }, + { + "start": 6473.78, + "end": 6474.52, + "probability": 0.8279 + }, + { + "start": 6475.4, + "end": 6476.72, + "probability": 0.9537 + }, + { + "start": 6477.34, + "end": 6477.78, + "probability": 0.9075 + }, + { + "start": 6479.58, + "end": 6482.18, + "probability": 0.9531 + }, + { + "start": 6483.02, + "end": 6483.88, + "probability": 0.9026 + }, + { + "start": 6484.74, + "end": 6485.02, + "probability": 0.8325 + }, + { + "start": 6485.68, + "end": 6486.98, + "probability": 0.9277 + }, + { + "start": 6488.96, + "end": 6489.48, + "probability": 0.7506 + }, + { + "start": 6490.1, + "end": 6490.92, + "probability": 0.4673 + }, + { + "start": 6494.6, + "end": 6496.98, + "probability": 0.7133 + }, + { + "start": 6498.26, + "end": 6499.46, + "probability": 0.6564 + }, + { + "start": 6500.46, + "end": 6500.86, + "probability": 0.6432 + }, + { + "start": 6502.28, + "end": 6503.18, + "probability": 0.8248 + }, + { + "start": 6504.14, + "end": 6506.3, + "probability": 0.9016 + }, + { + "start": 6509.04, + "end": 6509.76, + "probability": 0.9207 + }, + { + "start": 6513.26, + "end": 6514.12, + "probability": 0.251 + }, + { + "start": 6515.88, + "end": 6518.62, + "probability": 0.7549 + }, + { + "start": 6521.36, + "end": 6522.4, + "probability": 0.7304 + }, + { + "start": 6523.42, + "end": 6523.84, + "probability": 0.6106 + }, + { + "start": 6525.58, + "end": 6526.36, + "probability": 0.4913 + }, + { + "start": 6527.12, + "end": 6529.7, + "probability": 0.9661 + }, + { + "start": 6530.72, + "end": 6531.44, + "probability": 0.8054 + }, + { + "start": 6532.0, + "end": 6533.3, + "probability": 0.8002 + }, + { + "start": 6538.12, + "end": 6538.52, + "probability": 0.6708 + }, + { + "start": 6540.02, + "end": 6540.72, + "probability": 0.6787 + }, + { + "start": 6541.74, + "end": 6542.2, + "probability": 0.9146 + }, + { + "start": 6543.0, + "end": 6543.66, + "probability": 0.7124 + }, + { + "start": 6544.84, + "end": 6547.1, + "probability": 0.7943 + }, + { + "start": 6548.22, + "end": 6549.42, + "probability": 0.9866 + }, + { + "start": 6555.36, + "end": 6558.44, + "probability": 0.6349 + }, + { + "start": 6558.48, + "end": 6558.7, + "probability": 0.6338 + }, + { + "start": 6559.64, + "end": 6561.98, + "probability": 0.2605 + }, + { + "start": 6563.12, + "end": 6566.91, + "probability": 0.9421 + }, + { + "start": 6568.58, + "end": 6571.94, + "probability": 0.7238 + }, + { + "start": 6572.64, + "end": 6573.38, + "probability": 0.8167 + }, + { + "start": 6574.82, + "end": 6575.66, + "probability": 0.8201 + }, + { + "start": 6578.46, + "end": 6579.56, + "probability": 0.5573 + }, + { + "start": 6581.42, + "end": 6582.52, + "probability": 0.7851 + }, + { + "start": 6583.44, + "end": 6585.48, + "probability": 0.8063 + }, + { + "start": 6587.12, + "end": 6590.1, + "probability": 0.7415 + }, + { + "start": 6598.02, + "end": 6598.92, + "probability": 0.3335 + }, + { + "start": 6600.68, + "end": 6601.2, + "probability": 0.6927 + }, + { + "start": 6602.26, + "end": 6603.22, + "probability": 0.7478 + }, + { + "start": 6607.78, + "end": 6608.52, + "probability": 0.9679 + }, + { + "start": 6612.5, + "end": 6613.68, + "probability": 0.3961 + }, + { + "start": 6618.32, + "end": 6619.04, + "probability": 0.8081 + }, + { + "start": 6620.12, + "end": 6621.06, + "probability": 0.988 + }, + { + "start": 6622.54, + "end": 6623.3, + "probability": 0.922 + }, + { + "start": 6624.1, + "end": 6625.02, + "probability": 0.9666 + }, + { + "start": 6626.1, + "end": 6626.86, + "probability": 0.8406 + }, + { + "start": 6627.56, + "end": 6628.44, + "probability": 0.9091 + }, + { + "start": 6630.76, + "end": 6631.2, + "probability": 0.5496 + }, + { + "start": 6632.58, + "end": 6633.42, + "probability": 0.7697 + }, + { + "start": 6635.02, + "end": 6636.02, + "probability": 0.9595 + }, + { + "start": 6638.04, + "end": 6638.96, + "probability": 0.6543 + }, + { + "start": 6640.66, + "end": 6641.5, + "probability": 0.8028 + }, + { + "start": 6642.5, + "end": 6645.9, + "probability": 0.9587 + }, + { + "start": 6647.28, + "end": 6648.04, + "probability": 0.9837 + }, + { + "start": 6649.54, + "end": 6650.72, + "probability": 0.9556 + }, + { + "start": 6651.82, + "end": 6652.56, + "probability": 0.9454 + }, + { + "start": 6653.3, + "end": 6657.08, + "probability": 0.9609 + }, + { + "start": 6658.14, + "end": 6659.06, + "probability": 0.9237 + }, + { + "start": 6659.9, + "end": 6660.64, + "probability": 0.9916 + }, + { + "start": 6661.5, + "end": 6663.0, + "probability": 0.7666 + }, + { + "start": 6664.14, + "end": 6666.72, + "probability": 0.6629 + }, + { + "start": 6667.66, + "end": 6668.4, + "probability": 0.9727 + }, + { + "start": 6669.16, + "end": 6670.36, + "probability": 0.9065 + }, + { + "start": 6671.24, + "end": 6673.6, + "probability": 0.9347 + }, + { + "start": 6674.9, + "end": 6675.66, + "probability": 0.9888 + }, + { + "start": 6676.22, + "end": 6677.38, + "probability": 0.9636 + }, + { + "start": 6678.72, + "end": 6679.5, + "probability": 0.9957 + }, + { + "start": 6682.32, + "end": 6683.82, + "probability": 0.6735 + }, + { + "start": 6685.04, + "end": 6687.1, + "probability": 0.8736 + }, + { + "start": 6687.96, + "end": 6689.94, + "probability": 0.9764 + }, + { + "start": 6691.4, + "end": 6692.2, + "probability": 0.9909 + }, + { + "start": 6694.48, + "end": 6695.68, + "probability": 0.7845 + }, + { + "start": 6697.2, + "end": 6698.14, + "probability": 0.9841 + }, + { + "start": 6699.18, + "end": 6700.66, + "probability": 0.9389 + }, + { + "start": 6701.64, + "end": 6703.42, + "probability": 0.9846 + }, + { + "start": 6704.18, + "end": 6705.96, + "probability": 0.9926 + }, + { + "start": 6706.84, + "end": 6708.76, + "probability": 0.7759 + }, + { + "start": 6709.86, + "end": 6712.56, + "probability": 0.8958 + }, + { + "start": 6713.62, + "end": 6714.46, + "probability": 0.9864 + }, + { + "start": 6715.46, + "end": 6716.5, + "probability": 0.8802 + }, + { + "start": 6717.62, + "end": 6719.28, + "probability": 0.8589 + }, + { + "start": 6720.6, + "end": 6722.62, + "probability": 0.8444 + }, + { + "start": 6723.28, + "end": 6725.96, + "probability": 0.8065 + }, + { + "start": 6737.06, + "end": 6738.1, + "probability": 0.23 + }, + { + "start": 6738.8, + "end": 6739.5, + "probability": 0.3986 + }, + { + "start": 6741.02, + "end": 6741.94, + "probability": 0.5246 + }, + { + "start": 6743.84, + "end": 6744.66, + "probability": 0.3463 + }, + { + "start": 6746.26, + "end": 6747.14, + "probability": 0.8917 + }, + { + "start": 6749.5, + "end": 6750.4, + "probability": 0.7915 + }, + { + "start": 6754.6, + "end": 6755.48, + "probability": 0.5171 + }, + { + "start": 6756.5, + "end": 6757.4, + "probability": 0.4443 + }, + { + "start": 6758.58, + "end": 6760.64, + "probability": 0.7518 + }, + { + "start": 6761.94, + "end": 6762.7, + "probability": 0.9639 + }, + { + "start": 6763.9, + "end": 6764.94, + "probability": 0.917 + }, + { + "start": 6766.1, + "end": 6770.62, + "probability": 0.953 + }, + { + "start": 6771.66, + "end": 6775.5, + "probability": 0.9509 + }, + { + "start": 6776.14, + "end": 6777.64, + "probability": 0.5887 + }, + { + "start": 6778.84, + "end": 6780.32, + "probability": 0.7831 + }, + { + "start": 6781.06, + "end": 6781.94, + "probability": 0.8114 + }, + { + "start": 6783.16, + "end": 6785.34, + "probability": 0.8263 + }, + { + "start": 6786.06, + "end": 6788.86, + "probability": 0.949 + }, + { + "start": 6789.5, + "end": 6796.28, + "probability": 0.9482 + }, + { + "start": 6797.72, + "end": 6799.62, + "probability": 0.6413 + }, + { + "start": 6809.48, + "end": 6812.48, + "probability": 0.7075 + }, + { + "start": 6813.7, + "end": 6817.14, + "probability": 0.0162 + }, + { + "start": 6820.34, + "end": 6821.02, + "probability": 0.0301 + }, + { + "start": 6831.3, + "end": 6833.72, + "probability": 0.082 + }, + { + "start": 6834.78, + "end": 6835.94, + "probability": 0.2145 + }, + { + "start": 6877.34, + "end": 6880.52, + "probability": 0.9895 + }, + { + "start": 6886.16, + "end": 6887.8, + "probability": 0.822 + }, + { + "start": 6887.86, + "end": 6891.52, + "probability": 0.9911 + }, + { + "start": 6891.66, + "end": 6894.8, + "probability": 0.9359 + }, + { + "start": 6897.62, + "end": 6900.34, + "probability": 0.6835 + }, + { + "start": 6900.52, + "end": 6902.02, + "probability": 0.9935 + }, + { + "start": 6903.44, + "end": 6906.02, + "probability": 0.7401 + }, + { + "start": 6906.48, + "end": 6906.48, + "probability": 0.5365 + }, + { + "start": 6906.7, + "end": 6908.0, + "probability": 0.7623 + }, + { + "start": 6908.1, + "end": 6909.34, + "probability": 0.8393 + }, + { + "start": 6909.42, + "end": 6910.94, + "probability": 0.9816 + }, + { + "start": 6911.46, + "end": 6912.44, + "probability": 0.9897 + }, + { + "start": 6912.88, + "end": 6915.72, + "probability": 0.7862 + }, + { + "start": 6920.5, + "end": 6922.5, + "probability": 0.5959 + }, + { + "start": 6922.64, + "end": 6923.24, + "probability": 0.3427 + }, + { + "start": 6923.4, + "end": 6925.32, + "probability": 0.7899 + }, + { + "start": 6925.32, + "end": 6925.32, + "probability": 0.0458 + }, + { + "start": 6925.32, + "end": 6925.42, + "probability": 0.3997 + }, + { + "start": 6926.08, + "end": 6927.84, + "probability": 0.8998 + }, + { + "start": 6928.1, + "end": 6931.96, + "probability": 0.859 + }, + { + "start": 6933.0, + "end": 6936.28, + "probability": 0.9732 + }, + { + "start": 6937.78, + "end": 6941.72, + "probability": 0.9847 + }, + { + "start": 6942.62, + "end": 6946.96, + "probability": 0.8289 + }, + { + "start": 6947.76, + "end": 6950.26, + "probability": 0.9603 + }, + { + "start": 6954.4, + "end": 6957.52, + "probability": 0.7429 + }, + { + "start": 6961.46, + "end": 6961.86, + "probability": 0.7395 + }, + { + "start": 6962.9, + "end": 6963.82, + "probability": 0.759 + }, + { + "start": 6965.12, + "end": 6967.28, + "probability": 0.7247 + }, + { + "start": 6967.84, + "end": 6971.14, + "probability": 0.7764 + }, + { + "start": 6971.74, + "end": 6973.48, + "probability": 0.999 + }, + { + "start": 6974.24, + "end": 6976.04, + "probability": 0.9836 + }, + { + "start": 6976.64, + "end": 6978.3, + "probability": 0.9007 + }, + { + "start": 6978.9, + "end": 6980.14, + "probability": 0.7358 + }, + { + "start": 6981.22, + "end": 6982.62, + "probability": 0.9386 + }, + { + "start": 6983.04, + "end": 6987.4, + "probability": 0.9746 + }, + { + "start": 6987.88, + "end": 6988.52, + "probability": 0.8964 + }, + { + "start": 6988.6, + "end": 6989.0, + "probability": 0.6226 + }, + { + "start": 6989.1, + "end": 6991.5, + "probability": 0.991 + }, + { + "start": 6992.3, + "end": 6999.06, + "probability": 0.9379 + }, + { + "start": 6999.66, + "end": 7003.76, + "probability": 0.9951 + }, + { + "start": 7004.3, + "end": 7008.1, + "probability": 0.9843 + }, + { + "start": 7008.78, + "end": 7011.22, + "probability": 0.9637 + }, + { + "start": 7011.96, + "end": 7014.4, + "probability": 0.9958 + }, + { + "start": 7014.86, + "end": 7016.38, + "probability": 0.9762 + }, + { + "start": 7016.86, + "end": 7019.42, + "probability": 0.978 + }, + { + "start": 7020.32, + "end": 7021.46, + "probability": 0.9491 + }, + { + "start": 7021.74, + "end": 7027.56, + "probability": 0.9936 + }, + { + "start": 7028.28, + "end": 7030.8, + "probability": 0.9982 + }, + { + "start": 7030.8, + "end": 7034.84, + "probability": 0.9956 + }, + { + "start": 7035.68, + "end": 7038.36, + "probability": 0.854 + }, + { + "start": 7039.58, + "end": 7046.52, + "probability": 0.9971 + }, + { + "start": 7047.4, + "end": 7049.84, + "probability": 0.9985 + }, + { + "start": 7050.26, + "end": 7053.88, + "probability": 0.9287 + }, + { + "start": 7054.44, + "end": 7056.78, + "probability": 0.9512 + }, + { + "start": 7058.0, + "end": 7060.16, + "probability": 0.9892 + }, + { + "start": 7060.52, + "end": 7064.62, + "probability": 0.9862 + }, + { + "start": 7065.44, + "end": 7067.6, + "probability": 0.9876 + }, + { + "start": 7068.44, + "end": 7069.4, + "probability": 0.8772 + }, + { + "start": 7069.5, + "end": 7070.48, + "probability": 0.9445 + }, + { + "start": 7070.76, + "end": 7074.76, + "probability": 0.998 + }, + { + "start": 7075.38, + "end": 7077.02, + "probability": 0.9799 + }, + { + "start": 7078.16, + "end": 7081.06, + "probability": 0.9978 + }, + { + "start": 7081.6, + "end": 7083.08, + "probability": 0.8813 + }, + { + "start": 7083.44, + "end": 7086.72, + "probability": 0.9824 + }, + { + "start": 7086.72, + "end": 7089.8, + "probability": 0.9887 + }, + { + "start": 7090.74, + "end": 7094.9, + "probability": 0.9455 + }, + { + "start": 7095.48, + "end": 7097.8, + "probability": 0.6663 + }, + { + "start": 7098.5, + "end": 7101.9, + "probability": 0.985 + }, + { + "start": 7103.1, + "end": 7107.38, + "probability": 0.8878 + }, + { + "start": 7108.04, + "end": 7109.5, + "probability": 0.8771 + }, + { + "start": 7110.18, + "end": 7116.8, + "probability": 0.9976 + }, + { + "start": 7117.2, + "end": 7119.74, + "probability": 0.7621 + }, + { + "start": 7120.5, + "end": 7124.92, + "probability": 0.9957 + }, + { + "start": 7125.46, + "end": 7130.2, + "probability": 0.993 + }, + { + "start": 7131.18, + "end": 7132.86, + "probability": 0.5898 + }, + { + "start": 7133.94, + "end": 7136.7, + "probability": 0.9816 + }, + { + "start": 7137.4, + "end": 7144.82, + "probability": 0.994 + }, + { + "start": 7145.62, + "end": 7152.04, + "probability": 0.9885 + }, + { + "start": 7152.56, + "end": 7157.63, + "probability": 0.9985 + }, + { + "start": 7157.8, + "end": 7164.56, + "probability": 0.9966 + }, + { + "start": 7165.32, + "end": 7170.94, + "probability": 0.9916 + }, + { + "start": 7171.5, + "end": 7175.12, + "probability": 0.9856 + }, + { + "start": 7175.12, + "end": 7179.62, + "probability": 0.996 + }, + { + "start": 7181.04, + "end": 7185.32, + "probability": 0.9982 + }, + { + "start": 7185.48, + "end": 7190.04, + "probability": 0.9948 + }, + { + "start": 7190.82, + "end": 7191.3, + "probability": 0.753 + }, + { + "start": 7191.96, + "end": 7195.16, + "probability": 0.9427 + }, + { + "start": 7195.16, + "end": 7198.68, + "probability": 0.9737 + }, + { + "start": 7199.14, + "end": 7200.4, + "probability": 0.6668 + }, + { + "start": 7201.1, + "end": 7203.52, + "probability": 0.9717 + }, + { + "start": 7204.0, + "end": 7210.46, + "probability": 0.9928 + }, + { + "start": 7211.12, + "end": 7213.52, + "probability": 0.6847 + }, + { + "start": 7214.18, + "end": 7214.74, + "probability": 0.8146 + }, + { + "start": 7215.14, + "end": 7216.92, + "probability": 0.9796 + }, + { + "start": 7217.34, + "end": 7219.14, + "probability": 0.9574 + }, + { + "start": 7219.54, + "end": 7221.24, + "probability": 0.9557 + }, + { + "start": 7221.6, + "end": 7222.22, + "probability": 0.8317 + }, + { + "start": 7222.6, + "end": 7225.84, + "probability": 0.9958 + }, + { + "start": 7227.32, + "end": 7228.98, + "probability": 0.7113 + }, + { + "start": 7229.26, + "end": 7230.32, + "probability": 0.9977 + }, + { + "start": 7230.46, + "end": 7232.04, + "probability": 0.9724 + }, + { + "start": 7232.86, + "end": 7234.48, + "probability": 0.9801 + }, + { + "start": 7235.48, + "end": 7240.88, + "probability": 0.9889 + }, + { + "start": 7242.04, + "end": 7247.62, + "probability": 0.9945 + }, + { + "start": 7248.1, + "end": 7248.94, + "probability": 0.8013 + }, + { + "start": 7248.98, + "end": 7252.9, + "probability": 0.9865 + }, + { + "start": 7254.64, + "end": 7254.76, + "probability": 0.3671 + }, + { + "start": 7254.76, + "end": 7254.76, + "probability": 0.0916 + }, + { + "start": 7254.76, + "end": 7254.78, + "probability": 0.0977 + }, + { + "start": 7254.78, + "end": 7258.32, + "probability": 0.8283 + }, + { + "start": 7258.32, + "end": 7264.58, + "probability": 0.9788 + }, + { + "start": 7265.16, + "end": 7265.8, + "probability": 0.7846 + }, + { + "start": 7266.46, + "end": 7270.32, + "probability": 0.9932 + }, + { + "start": 7270.88, + "end": 7273.86, + "probability": 0.9936 + }, + { + "start": 7275.26, + "end": 7277.58, + "probability": 0.8212 + }, + { + "start": 7278.2, + "end": 7281.68, + "probability": 0.9748 + }, + { + "start": 7281.68, + "end": 7285.12, + "probability": 0.9978 + }, + { + "start": 7285.78, + "end": 7288.64, + "probability": 0.9253 + }, + { + "start": 7289.26, + "end": 7290.48, + "probability": 0.8705 + }, + { + "start": 7291.0, + "end": 7295.2, + "probability": 0.9907 + }, + { + "start": 7295.2, + "end": 7301.32, + "probability": 0.9966 + }, + { + "start": 7302.08, + "end": 7302.84, + "probability": 0.6021 + }, + { + "start": 7303.42, + "end": 7307.8, + "probability": 0.9945 + }, + { + "start": 7308.22, + "end": 7312.48, + "probability": 0.9759 + }, + { + "start": 7313.68, + "end": 7314.0, + "probability": 0.8076 + }, + { + "start": 7314.66, + "end": 7317.8, + "probability": 0.9873 + }, + { + "start": 7318.44, + "end": 7319.48, + "probability": 0.9528 + }, + { + "start": 7320.3, + "end": 7327.1, + "probability": 0.9648 + }, + { + "start": 7327.88, + "end": 7332.46, + "probability": 0.9821 + }, + { + "start": 7332.86, + "end": 7336.26, + "probability": 0.9951 + }, + { + "start": 7336.8, + "end": 7340.72, + "probability": 0.8929 + }, + { + "start": 7341.3, + "end": 7346.92, + "probability": 0.9883 + }, + { + "start": 7347.44, + "end": 7350.18, + "probability": 0.9774 + }, + { + "start": 7350.9, + "end": 7352.78, + "probability": 0.6404 + }, + { + "start": 7353.7, + "end": 7361.58, + "probability": 0.9839 + }, + { + "start": 7362.16, + "end": 7364.88, + "probability": 0.9968 + }, + { + "start": 7366.86, + "end": 7372.12, + "probability": 0.9974 + }, + { + "start": 7372.92, + "end": 7374.9, + "probability": 0.6848 + }, + { + "start": 7375.34, + "end": 7379.54, + "probability": 0.9763 + }, + { + "start": 7380.3, + "end": 7382.66, + "probability": 0.8831 + }, + { + "start": 7382.76, + "end": 7385.24, + "probability": 0.9448 + }, + { + "start": 7385.3, + "end": 7386.54, + "probability": 0.8443 + }, + { + "start": 7386.74, + "end": 7388.82, + "probability": 0.495 + }, + { + "start": 7389.18, + "end": 7390.16, + "probability": 0.7667 + }, + { + "start": 7391.21, + "end": 7396.7, + "probability": 0.998 + }, + { + "start": 7396.92, + "end": 7398.72, + "probability": 0.964 + }, + { + "start": 7398.8, + "end": 7401.18, + "probability": 0.9924 + }, + { + "start": 7401.78, + "end": 7404.48, + "probability": 0.9539 + }, + { + "start": 7405.12, + "end": 7407.58, + "probability": 0.9775 + }, + { + "start": 7408.4, + "end": 7409.64, + "probability": 0.8044 + }, + { + "start": 7410.62, + "end": 7411.24, + "probability": 0.7641 + }, + { + "start": 7411.42, + "end": 7415.26, + "probability": 0.7855 + }, + { + "start": 7415.58, + "end": 7417.06, + "probability": 0.8687 + }, + { + "start": 7417.12, + "end": 7419.16, + "probability": 0.9871 + }, + { + "start": 7419.42, + "end": 7419.8, + "probability": 0.7456 + }, + { + "start": 7420.42, + "end": 7420.84, + "probability": 0.4297 + }, + { + "start": 7422.78, + "end": 7424.26, + "probability": 0.7644 + }, + { + "start": 7425.12, + "end": 7427.32, + "probability": 0.9377 + }, + { + "start": 7428.34, + "end": 7428.44, + "probability": 0.5677 + }, + { + "start": 7429.1, + "end": 7431.92, + "probability": 0.7509 + }, + { + "start": 7431.92, + "end": 7436.76, + "probability": 0.8752 + }, + { + "start": 7436.96, + "end": 7439.02, + "probability": 0.8435 + }, + { + "start": 7439.72, + "end": 7442.46, + "probability": 0.853 + }, + { + "start": 7443.18, + "end": 7447.32, + "probability": 0.978 + }, + { + "start": 7448.16, + "end": 7451.68, + "probability": 0.9947 + }, + { + "start": 7452.36, + "end": 7457.0, + "probability": 0.9788 + }, + { + "start": 7458.72, + "end": 7460.9, + "probability": 0.9258 + }, + { + "start": 7461.26, + "end": 7463.64, + "probability": 0.6281 + }, + { + "start": 7464.12, + "end": 7465.92, + "probability": 0.9928 + }, + { + "start": 7467.6, + "end": 7470.1, + "probability": 0.8903 + }, + { + "start": 7470.36, + "end": 7472.7, + "probability": 0.7082 + }, + { + "start": 7473.78, + "end": 7477.42, + "probability": 0.7411 + }, + { + "start": 7479.1, + "end": 7479.48, + "probability": 0.3777 + }, + { + "start": 7479.48, + "end": 7482.3, + "probability": 0.7541 + }, + { + "start": 7482.98, + "end": 7485.26, + "probability": 0.8027 + }, + { + "start": 7485.76, + "end": 7487.04, + "probability": 0.9922 + }, + { + "start": 7487.66, + "end": 7488.52, + "probability": 0.5001 + }, + { + "start": 7489.04, + "end": 7490.24, + "probability": 0.9755 + }, + { + "start": 7492.34, + "end": 7493.74, + "probability": 0.4832 + }, + { + "start": 7493.74, + "end": 7494.22, + "probability": 0.1329 + }, + { + "start": 7494.22, + "end": 7495.66, + "probability": 0.7334 + }, + { + "start": 7496.06, + "end": 7496.48, + "probability": 0.0171 + }, + { + "start": 7496.48, + "end": 7497.04, + "probability": 0.8969 + }, + { + "start": 7498.26, + "end": 7500.14, + "probability": 0.6659 + }, + { + "start": 7500.14, + "end": 7500.74, + "probability": 0.9473 + }, + { + "start": 7501.44, + "end": 7503.92, + "probability": 0.9007 + }, + { + "start": 7504.3, + "end": 7505.28, + "probability": 0.7618 + }, + { + "start": 7505.3, + "end": 7509.18, + "probability": 0.9837 + }, + { + "start": 7509.34, + "end": 7511.5, + "probability": 0.675 + }, + { + "start": 7511.7, + "end": 7516.92, + "probability": 0.7041 + }, + { + "start": 7517.08, + "end": 7517.63, + "probability": 0.9194 + }, + { + "start": 7518.44, + "end": 7519.52, + "probability": 0.9272 + }, + { + "start": 7519.84, + "end": 7521.64, + "probability": 0.7778 + }, + { + "start": 7523.15, + "end": 7525.24, + "probability": 0.0516 + }, + { + "start": 7525.24, + "end": 7526.84, + "probability": 0.388 + }, + { + "start": 7528.24, + "end": 7529.68, + "probability": 0.9528 + }, + { + "start": 7530.92, + "end": 7531.3, + "probability": 0.5081 + }, + { + "start": 7532.08, + "end": 7532.08, + "probability": 0.0017 + }, + { + "start": 7532.08, + "end": 7533.04, + "probability": 0.7046 + }, + { + "start": 7536.22, + "end": 7537.24, + "probability": 0.025 + }, + { + "start": 7538.16, + "end": 7538.16, + "probability": 0.2239 + }, + { + "start": 7538.24, + "end": 7539.08, + "probability": 0.2405 + }, + { + "start": 7539.46, + "end": 7541.4, + "probability": 0.5742 + }, + { + "start": 7542.3, + "end": 7543.04, + "probability": 0.9425 + }, + { + "start": 7543.22, + "end": 7548.42, + "probability": 0.5218 + }, + { + "start": 7548.74, + "end": 7551.04, + "probability": 0.996 + }, + { + "start": 7552.06, + "end": 7555.34, + "probability": 0.9966 + }, + { + "start": 7555.48, + "end": 7556.92, + "probability": 0.95 + }, + { + "start": 7556.98, + "end": 7561.04, + "probability": 0.918 + }, + { + "start": 7561.14, + "end": 7563.52, + "probability": 0.9844 + }, + { + "start": 7563.68, + "end": 7565.08, + "probability": 0.6892 + }, + { + "start": 7565.6, + "end": 7568.04, + "probability": 0.9883 + }, + { + "start": 7568.42, + "end": 7569.7, + "probability": 0.9254 + }, + { + "start": 7570.24, + "end": 7571.6, + "probability": 0.8802 + }, + { + "start": 7573.06, + "end": 7576.5, + "probability": 0.9597 + }, + { + "start": 7576.98, + "end": 7580.29, + "probability": 0.9863 + }, + { + "start": 7581.3, + "end": 7583.18, + "probability": 0.9216 + }, + { + "start": 7583.96, + "end": 7585.06, + "probability": 0.988 + }, + { + "start": 7585.22, + "end": 7586.06, + "probability": 0.9951 + }, + { + "start": 7586.12, + "end": 7587.04, + "probability": 0.9966 + }, + { + "start": 7587.18, + "end": 7588.94, + "probability": 0.0163 + }, + { + "start": 7588.94, + "end": 7590.06, + "probability": 0.6554 + }, + { + "start": 7590.86, + "end": 7597.08, + "probability": 0.9623 + }, + { + "start": 7598.12, + "end": 7600.76, + "probability": 0.9771 + }, + { + "start": 7601.52, + "end": 7604.86, + "probability": 0.9646 + }, + { + "start": 7605.34, + "end": 7607.56, + "probability": 0.9676 + }, + { + "start": 7608.02, + "end": 7609.16, + "probability": 0.834 + }, + { + "start": 7609.98, + "end": 7613.14, + "probability": 0.9233 + }, + { + "start": 7613.68, + "end": 7614.04, + "probability": 0.8737 + }, + { + "start": 7614.68, + "end": 7617.58, + "probability": 0.9901 + }, + { + "start": 7617.76, + "end": 7619.88, + "probability": 0.9301 + }, + { + "start": 7619.98, + "end": 7620.7, + "probability": 0.8927 + }, + { + "start": 7620.86, + "end": 7622.4, + "probability": 0.9857 + }, + { + "start": 7622.74, + "end": 7624.68, + "probability": 0.9417 + }, + { + "start": 7624.82, + "end": 7625.72, + "probability": 0.5707 + }, + { + "start": 7626.84, + "end": 7628.3, + "probability": 0.8538 + }, + { + "start": 7628.52, + "end": 7630.72, + "probability": 0.9919 + }, + { + "start": 7631.86, + "end": 7634.02, + "probability": 0.7448 + }, + { + "start": 7634.12, + "end": 7637.76, + "probability": 0.9421 + }, + { + "start": 7638.04, + "end": 7638.2, + "probability": 0.5792 + }, + { + "start": 7638.2, + "end": 7639.76, + "probability": 0.659 + }, + { + "start": 7639.9, + "end": 7641.2, + "probability": 0.7576 + }, + { + "start": 7641.24, + "end": 7642.36, + "probability": 0.831 + }, + { + "start": 7643.14, + "end": 7645.36, + "probability": 0.7095 + }, + { + "start": 7645.98, + "end": 7647.86, + "probability": 0.9606 + }, + { + "start": 7648.72, + "end": 7654.38, + "probability": 0.5773 + }, + { + "start": 7654.84, + "end": 7655.78, + "probability": 0.7578 + }, + { + "start": 7656.18, + "end": 7658.16, + "probability": 0.6113 + }, + { + "start": 7658.5, + "end": 7659.54, + "probability": 0.8634 + }, + { + "start": 7659.64, + "end": 7663.22, + "probability": 0.9614 + }, + { + "start": 7663.22, + "end": 7668.02, + "probability": 0.9932 + }, + { + "start": 7668.04, + "end": 7673.98, + "probability": 0.8459 + }, + { + "start": 7674.54, + "end": 7676.9, + "probability": 0.8673 + }, + { + "start": 7676.98, + "end": 7678.32, + "probability": 0.9904 + }, + { + "start": 7678.4, + "end": 7679.1, + "probability": 0.9257 + }, + { + "start": 7679.4, + "end": 7680.54, + "probability": 0.8753 + }, + { + "start": 7681.12, + "end": 7683.7, + "probability": 0.6192 + }, + { + "start": 7684.28, + "end": 7686.26, + "probability": 0.8807 + }, + { + "start": 7687.0, + "end": 7688.38, + "probability": 0.9035 + }, + { + "start": 7689.06, + "end": 7692.76, + "probability": 0.9611 + }, + { + "start": 7692.82, + "end": 7694.52, + "probability": 0.6039 + }, + { + "start": 7694.6, + "end": 7695.34, + "probability": 0.696 + }, + { + "start": 7695.48, + "end": 7696.34, + "probability": 0.9307 + }, + { + "start": 7696.6, + "end": 7698.54, + "probability": 0.9408 + }, + { + "start": 7698.76, + "end": 7699.62, + "probability": 0.7321 + }, + { + "start": 7699.8, + "end": 7701.52, + "probability": 0.882 + }, + { + "start": 7702.1, + "end": 7703.06, + "probability": 0.9321 + }, + { + "start": 7703.22, + "end": 7706.54, + "probability": 0.9811 + }, + { + "start": 7707.08, + "end": 7709.92, + "probability": 0.9683 + }, + { + "start": 7711.54, + "end": 7712.42, + "probability": 0.8901 + }, + { + "start": 7712.72, + "end": 7714.06, + "probability": 0.9774 + }, + { + "start": 7714.48, + "end": 7716.28, + "probability": 0.9956 + }, + { + "start": 7716.86, + "end": 7721.7, + "probability": 0.9867 + }, + { + "start": 7722.18, + "end": 7723.96, + "probability": 0.9395 + }, + { + "start": 7724.4, + "end": 7725.06, + "probability": 0.4402 + }, + { + "start": 7725.24, + "end": 7726.54, + "probability": 0.9692 + }, + { + "start": 7726.62, + "end": 7728.74, + "probability": 0.981 + }, + { + "start": 7729.12, + "end": 7730.26, + "probability": 0.9319 + }, + { + "start": 7730.34, + "end": 7732.46, + "probability": 0.9923 + }, + { + "start": 7733.52, + "end": 7735.8, + "probability": 0.6269 + }, + { + "start": 7736.72, + "end": 7737.68, + "probability": 0.5698 + }, + { + "start": 7737.76, + "end": 7740.7, + "probability": 0.8943 + }, + { + "start": 7740.7, + "end": 7743.28, + "probability": 0.949 + }, + { + "start": 7743.48, + "end": 7744.28, + "probability": 0.9868 + }, + { + "start": 7744.46, + "end": 7745.0, + "probability": 0.7239 + }, + { + "start": 7747.56, + "end": 7750.3, + "probability": 0.7044 + }, + { + "start": 7751.4, + "end": 7755.22, + "probability": 0.9576 + }, + { + "start": 7755.64, + "end": 7757.3, + "probability": 0.9717 + }, + { + "start": 7757.4, + "end": 7760.22, + "probability": 0.9878 + }, + { + "start": 7760.76, + "end": 7764.56, + "probability": 0.9958 + }, + { + "start": 7764.88, + "end": 7766.14, + "probability": 0.7623 + }, + { + "start": 7767.02, + "end": 7767.78, + "probability": 0.4806 + }, + { + "start": 7767.78, + "end": 7768.96, + "probability": 0.7383 + }, + { + "start": 7769.62, + "end": 7770.32, + "probability": 0.7135 + }, + { + "start": 7770.8, + "end": 7774.76, + "probability": 0.9888 + }, + { + "start": 7774.76, + "end": 7778.72, + "probability": 0.9938 + }, + { + "start": 7779.04, + "end": 7781.48, + "probability": 0.9756 + }, + { + "start": 7781.72, + "end": 7782.54, + "probability": 0.6638 + }, + { + "start": 7782.54, + "end": 7784.12, + "probability": 0.6938 + }, + { + "start": 7784.14, + "end": 7784.62, + "probability": 0.7975 + }, + { + "start": 7784.62, + "end": 7786.52, + "probability": 0.6604 + }, + { + "start": 7786.72, + "end": 7786.98, + "probability": 0.803 + }, + { + "start": 7787.62, + "end": 7789.6, + "probability": 0.8989 + }, + { + "start": 7790.86, + "end": 7792.64, + "probability": 0.9736 + }, + { + "start": 7796.52, + "end": 7797.78, + "probability": 0.8638 + }, + { + "start": 7797.88, + "end": 7802.1, + "probability": 0.99 + }, + { + "start": 7802.92, + "end": 7805.24, + "probability": 0.8729 + }, + { + "start": 7811.76, + "end": 7812.22, + "probability": 0.0846 + }, + { + "start": 7812.62, + "end": 7814.6, + "probability": 0.6924 + }, + { + "start": 7815.42, + "end": 7818.22, + "probability": 0.9747 + }, + { + "start": 7819.18, + "end": 7821.06, + "probability": 0.9112 + }, + { + "start": 7821.28, + "end": 7823.26, + "probability": 0.984 + }, + { + "start": 7824.1, + "end": 7827.12, + "probability": 0.9822 + }, + { + "start": 7827.12, + "end": 7832.16, + "probability": 0.996 + }, + { + "start": 7832.76, + "end": 7835.88, + "probability": 0.9958 + }, + { + "start": 7837.4, + "end": 7838.08, + "probability": 0.8338 + }, + { + "start": 7838.94, + "end": 7841.78, + "probability": 0.9966 + }, + { + "start": 7841.84, + "end": 7845.12, + "probability": 0.9812 + }, + { + "start": 7845.68, + "end": 7848.24, + "probability": 0.9961 + }, + { + "start": 7848.84, + "end": 7850.78, + "probability": 0.9601 + }, + { + "start": 7851.78, + "end": 7856.86, + "probability": 0.9469 + }, + { + "start": 7857.54, + "end": 7860.24, + "probability": 0.9925 + }, + { + "start": 7860.24, + "end": 7864.32, + "probability": 0.9083 + }, + { + "start": 7864.44, + "end": 7865.0, + "probability": 0.5738 + }, + { + "start": 7865.94, + "end": 7867.38, + "probability": 0.9748 + }, + { + "start": 7868.18, + "end": 7871.14, + "probability": 0.9866 + }, + { + "start": 7871.14, + "end": 7875.14, + "probability": 0.9929 + }, + { + "start": 7875.14, + "end": 7879.34, + "probability": 0.9742 + }, + { + "start": 7879.92, + "end": 7883.32, + "probability": 0.9651 + }, + { + "start": 7884.0, + "end": 7887.7, + "probability": 0.9737 + }, + { + "start": 7887.7, + "end": 7891.96, + "probability": 0.9757 + }, + { + "start": 7893.28, + "end": 7894.22, + "probability": 0.8295 + }, + { + "start": 7894.28, + "end": 7895.16, + "probability": 0.7114 + }, + { + "start": 7895.36, + "end": 7896.8, + "probability": 0.9937 + }, + { + "start": 7896.96, + "end": 7897.58, + "probability": 0.979 + }, + { + "start": 7898.24, + "end": 7900.88, + "probability": 0.9936 + }, + { + "start": 7901.36, + "end": 7904.38, + "probability": 0.9986 + }, + { + "start": 7906.48, + "end": 7908.7, + "probability": 0.9943 + }, + { + "start": 7909.26, + "end": 7911.64, + "probability": 0.9785 + }, + { + "start": 7912.18, + "end": 7914.92, + "probability": 0.993 + }, + { + "start": 7915.92, + "end": 7920.26, + "probability": 0.9877 + }, + { + "start": 7920.58, + "end": 7922.08, + "probability": 0.959 + }, + { + "start": 7922.74, + "end": 7926.72, + "probability": 0.9935 + }, + { + "start": 7927.64, + "end": 7928.92, + "probability": 0.9927 + }, + { + "start": 7928.98, + "end": 7931.08, + "probability": 0.7796 + }, + { + "start": 7932.12, + "end": 7938.12, + "probability": 0.9759 + }, + { + "start": 7938.78, + "end": 7945.68, + "probability": 0.9894 + }, + { + "start": 7946.32, + "end": 7951.98, + "probability": 0.9956 + }, + { + "start": 7952.86, + "end": 7954.7, + "probability": 0.746 + }, + { + "start": 7954.78, + "end": 7956.12, + "probability": 0.9291 + }, + { + "start": 7956.22, + "end": 7957.9, + "probability": 0.9678 + }, + { + "start": 7958.52, + "end": 7960.58, + "probability": 0.9502 + }, + { + "start": 7961.2, + "end": 7965.3, + "probability": 0.9876 + }, + { + "start": 7965.3, + "end": 7969.72, + "probability": 0.9885 + }, + { + "start": 7970.2, + "end": 7972.74, + "probability": 0.9912 + }, + { + "start": 7974.78, + "end": 7977.38, + "probability": 0.8374 + }, + { + "start": 7977.4, + "end": 7980.4, + "probability": 0.8966 + }, + { + "start": 7981.68, + "end": 7989.12, + "probability": 0.9487 + }, + { + "start": 7990.08, + "end": 7993.66, + "probability": 0.9915 + }, + { + "start": 7993.66, + "end": 7996.4, + "probability": 0.9862 + }, + { + "start": 7996.4, + "end": 7999.98, + "probability": 0.9983 + }, + { + "start": 8000.46, + "end": 8004.14, + "probability": 0.985 + }, + { + "start": 8005.04, + "end": 8006.76, + "probability": 0.9959 + }, + { + "start": 8007.42, + "end": 8011.12, + "probability": 0.9972 + }, + { + "start": 8011.12, + "end": 8015.78, + "probability": 0.9995 + }, + { + "start": 8016.46, + "end": 8020.43, + "probability": 0.9924 + }, + { + "start": 8021.28, + "end": 8024.02, + "probability": 0.8038 + }, + { + "start": 8024.8, + "end": 8026.26, + "probability": 0.9478 + }, + { + "start": 8028.27, + "end": 8031.52, + "probability": 0.8618 + }, + { + "start": 8032.08, + "end": 8034.5, + "probability": 0.9757 + }, + { + "start": 8034.96, + "end": 8039.98, + "probability": 0.9217 + }, + { + "start": 8041.04, + "end": 8042.6, + "probability": 0.9698 + }, + { + "start": 8042.72, + "end": 8043.28, + "probability": 0.7439 + }, + { + "start": 8057.76, + "end": 8058.6, + "probability": 0.4905 + }, + { + "start": 8058.6, + "end": 8059.18, + "probability": 0.806 + }, + { + "start": 8059.4, + "end": 8061.52, + "probability": 0.775 + }, + { + "start": 8061.6, + "end": 8062.0, + "probability": 0.2366 + }, + { + "start": 8062.66, + "end": 8065.76, + "probability": 0.9214 + }, + { + "start": 8066.82, + "end": 8069.98, + "probability": 0.9143 + }, + { + "start": 8070.56, + "end": 8071.48, + "probability": 0.7745 + }, + { + "start": 8071.48, + "end": 8072.08, + "probability": 0.7836 + }, + { + "start": 8072.18, + "end": 8073.5, + "probability": 0.7119 + }, + { + "start": 8074.24, + "end": 8075.28, + "probability": 0.9493 + }, + { + "start": 8076.4, + "end": 8077.94, + "probability": 0.7205 + }, + { + "start": 8078.02, + "end": 8078.16, + "probability": 0.3553 + }, + { + "start": 8078.18, + "end": 8079.14, + "probability": 0.8826 + }, + { + "start": 8079.72, + "end": 8081.74, + "probability": 0.8253 + }, + { + "start": 8082.16, + "end": 8085.66, + "probability": 0.776 + }, + { + "start": 8086.28, + "end": 8087.62, + "probability": 0.9227 + }, + { + "start": 8087.7, + "end": 8089.02, + "probability": 0.9639 + }, + { + "start": 8089.32, + "end": 8095.88, + "probability": 0.9194 + }, + { + "start": 8098.53, + "end": 8100.42, + "probability": 0.7174 + }, + { + "start": 8100.96, + "end": 8104.9, + "probability": 0.931 + }, + { + "start": 8105.44, + "end": 8107.85, + "probability": 0.9561 + }, + { + "start": 8108.3, + "end": 8109.28, + "probability": 0.8682 + }, + { + "start": 8109.32, + "end": 8110.6, + "probability": 0.9865 + }, + { + "start": 8110.78, + "end": 8112.34, + "probability": 0.9836 + }, + { + "start": 8112.58, + "end": 8113.54, + "probability": 0.9824 + }, + { + "start": 8114.18, + "end": 8114.88, + "probability": 0.7675 + }, + { + "start": 8115.76, + "end": 8118.82, + "probability": 0.9759 + }, + { + "start": 8119.7, + "end": 8120.7, + "probability": 0.9781 + }, + { + "start": 8123.58, + "end": 8124.42, + "probability": 0.7689 + }, + { + "start": 8125.46, + "end": 8126.33, + "probability": 0.9961 + }, + { + "start": 8127.1, + "end": 8129.94, + "probability": 0.9973 + }, + { + "start": 8130.2, + "end": 8133.14, + "probability": 0.978 + }, + { + "start": 8133.16, + "end": 8133.6, + "probability": 0.8897 + }, + { + "start": 8134.08, + "end": 8136.02, + "probability": 0.9937 + }, + { + "start": 8136.1, + "end": 8137.13, + "probability": 0.9944 + }, + { + "start": 8137.24, + "end": 8137.59, + "probability": 0.4149 + }, + { + "start": 8139.06, + "end": 8142.64, + "probability": 0.8016 + }, + { + "start": 8142.82, + "end": 8143.26, + "probability": 0.7935 + }, + { + "start": 8144.18, + "end": 8145.58, + "probability": 0.8022 + }, + { + "start": 8146.52, + "end": 8151.52, + "probability": 0.8206 + }, + { + "start": 8151.94, + "end": 8152.92, + "probability": 0.8959 + }, + { + "start": 8153.25, + "end": 8154.88, + "probability": 0.9387 + }, + { + "start": 8156.82, + "end": 8159.18, + "probability": 0.974 + }, + { + "start": 8159.18, + "end": 8161.32, + "probability": 0.7801 + }, + { + "start": 8161.74, + "end": 8164.26, + "probability": 0.992 + }, + { + "start": 8164.8, + "end": 8165.56, + "probability": 0.9018 + }, + { + "start": 8166.0, + "end": 8172.16, + "probability": 0.9899 + }, + { + "start": 8172.34, + "end": 8172.76, + "probability": 0.4717 + }, + { + "start": 8172.96, + "end": 8173.16, + "probability": 0.667 + }, + { + "start": 8173.16, + "end": 8173.46, + "probability": 0.0978 + }, + { + "start": 8173.46, + "end": 8173.82, + "probability": 0.4049 + }, + { + "start": 8174.18, + "end": 8175.12, + "probability": 0.7881 + }, + { + "start": 8175.28, + "end": 8176.57, + "probability": 0.9874 + }, + { + "start": 8177.22, + "end": 8178.1, + "probability": 0.9372 + }, + { + "start": 8179.02, + "end": 8181.12, + "probability": 0.9934 + }, + { + "start": 8181.12, + "end": 8183.84, + "probability": 0.7585 + }, + { + "start": 8184.34, + "end": 8186.58, + "probability": 0.8455 + }, + { + "start": 8186.96, + "end": 8187.24, + "probability": 0.4706 + }, + { + "start": 8187.84, + "end": 8188.94, + "probability": 0.3431 + }, + { + "start": 8188.94, + "end": 8190.79, + "probability": 0.7399 + }, + { + "start": 8191.6, + "end": 8197.88, + "probability": 0.9862 + }, + { + "start": 8197.96, + "end": 8198.9, + "probability": 0.8993 + }, + { + "start": 8199.02, + "end": 8202.6, + "probability": 0.8674 + }, + { + "start": 8202.78, + "end": 8206.58, + "probability": 0.983 + }, + { + "start": 8206.74, + "end": 8207.58, + "probability": 0.8996 + }, + { + "start": 8208.0, + "end": 8210.88, + "probability": 0.9917 + }, + { + "start": 8211.72, + "end": 8214.02, + "probability": 0.9971 + }, + { + "start": 8214.52, + "end": 8216.8, + "probability": 0.8971 + }, + { + "start": 8217.62, + "end": 8219.58, + "probability": 0.8535 + }, + { + "start": 8220.04, + "end": 8223.38, + "probability": 0.8538 + }, + { + "start": 8223.42, + "end": 8224.06, + "probability": 0.8831 + }, + { + "start": 8224.08, + "end": 8226.56, + "probability": 0.5624 + }, + { + "start": 8227.42, + "end": 8229.06, + "probability": 0.8853 + }, + { + "start": 8229.12, + "end": 8229.63, + "probability": 0.9099 + }, + { + "start": 8230.0, + "end": 8230.62, + "probability": 0.5583 + }, + { + "start": 8231.24, + "end": 8232.66, + "probability": 0.8885 + }, + { + "start": 8232.94, + "end": 8233.96, + "probability": 0.8752 + }, + { + "start": 8234.62, + "end": 8235.24, + "probability": 0.9084 + }, + { + "start": 8235.46, + "end": 8236.5, + "probability": 0.8968 + }, + { + "start": 8236.66, + "end": 8237.74, + "probability": 0.7777 + }, + { + "start": 8238.06, + "end": 8239.26, + "probability": 0.9502 + }, + { + "start": 8239.8, + "end": 8241.98, + "probability": 0.7493 + }, + { + "start": 8242.36, + "end": 8244.1, + "probability": 0.5372 + }, + { + "start": 8244.74, + "end": 8245.84, + "probability": 0.4593 + }, + { + "start": 8247.18, + "end": 8248.86, + "probability": 0.6525 + }, + { + "start": 8249.42, + "end": 8250.38, + "probability": 0.9582 + }, + { + "start": 8250.56, + "end": 8253.84, + "probability": 0.7647 + }, + { + "start": 8255.0, + "end": 8256.9, + "probability": 0.6689 + }, + { + "start": 8258.16, + "end": 8259.74, + "probability": 0.9609 + }, + { + "start": 8261.48, + "end": 8262.6, + "probability": 0.7384 + }, + { + "start": 8262.74, + "end": 8263.56, + "probability": 0.9099 + }, + { + "start": 8264.5, + "end": 8268.56, + "probability": 0.9423 + }, + { + "start": 8268.56, + "end": 8276.3, + "probability": 0.924 + }, + { + "start": 8276.38, + "end": 8276.9, + "probability": 0.3389 + }, + { + "start": 8277.64, + "end": 8279.26, + "probability": 0.9169 + }, + { + "start": 8279.68, + "end": 8280.58, + "probability": 0.544 + }, + { + "start": 8280.58, + "end": 8282.04, + "probability": 0.7482 + }, + { + "start": 8282.08, + "end": 8285.48, + "probability": 0.9738 + }, + { + "start": 8286.02, + "end": 8287.72, + "probability": 0.9764 + }, + { + "start": 8288.4, + "end": 8292.56, + "probability": 0.9831 + }, + { + "start": 8292.68, + "end": 8293.58, + "probability": 0.8564 + }, + { + "start": 8294.74, + "end": 8297.24, + "probability": 0.9956 + }, + { + "start": 8297.68, + "end": 8298.38, + "probability": 0.536 + }, + { + "start": 8298.44, + "end": 8299.26, + "probability": 0.832 + }, + { + "start": 8300.36, + "end": 8303.38, + "probability": 0.96 + }, + { + "start": 8304.28, + "end": 8307.68, + "probability": 0.943 + }, + { + "start": 8308.48, + "end": 8311.44, + "probability": 0.9718 + }, + { + "start": 8312.34, + "end": 8312.46, + "probability": 0.2379 + }, + { + "start": 8328.98, + "end": 8330.12, + "probability": 0.7514 + }, + { + "start": 8330.74, + "end": 8331.94, + "probability": 0.6515 + }, + { + "start": 8333.04, + "end": 8335.68, + "probability": 0.8943 + }, + { + "start": 8336.32, + "end": 8341.62, + "probability": 0.9625 + }, + { + "start": 8342.24, + "end": 8344.16, + "probability": 0.8278 + }, + { + "start": 8345.18, + "end": 8347.16, + "probability": 0.9889 + }, + { + "start": 8347.7, + "end": 8351.88, + "probability": 0.9919 + }, + { + "start": 8352.26, + "end": 8358.62, + "probability": 0.999 + }, + { + "start": 8359.53, + "end": 8362.1, + "probability": 0.7821 + }, + { + "start": 8363.18, + "end": 8366.32, + "probability": 0.7606 + }, + { + "start": 8367.16, + "end": 8368.88, + "probability": 0.6136 + }, + { + "start": 8370.28, + "end": 8371.44, + "probability": 0.6926 + }, + { + "start": 8371.52, + "end": 8373.62, + "probability": 0.7161 + }, + { + "start": 8374.0, + "end": 8376.92, + "probability": 0.9575 + }, + { + "start": 8377.48, + "end": 8379.62, + "probability": 0.9114 + }, + { + "start": 8379.7, + "end": 8383.78, + "probability": 0.8627 + }, + { + "start": 8384.3, + "end": 8385.28, + "probability": 0.6581 + }, + { + "start": 8386.8, + "end": 8389.28, + "probability": 0.9535 + }, + { + "start": 8390.16, + "end": 8395.26, + "probability": 0.9744 + }, + { + "start": 8395.76, + "end": 8397.9, + "probability": 0.8731 + }, + { + "start": 8398.18, + "end": 8400.04, + "probability": 0.899 + }, + { + "start": 8400.32, + "end": 8404.36, + "probability": 0.9444 + }, + { + "start": 8405.08, + "end": 8409.22, + "probability": 0.9556 + }, + { + "start": 8409.28, + "end": 8410.32, + "probability": 0.7378 + }, + { + "start": 8410.48, + "end": 8412.3, + "probability": 0.9897 + }, + { + "start": 8412.76, + "end": 8417.42, + "probability": 0.9666 + }, + { + "start": 8417.54, + "end": 8420.58, + "probability": 0.9816 + }, + { + "start": 8421.52, + "end": 8424.06, + "probability": 0.9873 + }, + { + "start": 8425.0, + "end": 8429.78, + "probability": 0.5879 + }, + { + "start": 8429.78, + "end": 8433.72, + "probability": 0.9883 + }, + { + "start": 8434.96, + "end": 8435.94, + "probability": 0.7542 + }, + { + "start": 8436.18, + "end": 8436.74, + "probability": 0.5966 + }, + { + "start": 8436.86, + "end": 8440.8, + "probability": 0.9818 + }, + { + "start": 8441.58, + "end": 8445.6, + "probability": 0.8536 + }, + { + "start": 8446.52, + "end": 8451.48, + "probability": 0.9927 + }, + { + "start": 8451.88, + "end": 8452.82, + "probability": 0.9064 + }, + { + "start": 8453.9, + "end": 8457.08, + "probability": 0.8931 + }, + { + "start": 8457.96, + "end": 8462.24, + "probability": 0.9106 + }, + { + "start": 8462.42, + "end": 8464.16, + "probability": 0.8861 + }, + { + "start": 8464.54, + "end": 8470.06, + "probability": 0.9361 + }, + { + "start": 8470.38, + "end": 8472.14, + "probability": 0.9915 + }, + { + "start": 8473.3, + "end": 8476.88, + "probability": 0.9492 + }, + { + "start": 8477.4, + "end": 8481.08, + "probability": 0.7068 + }, + { + "start": 8481.44, + "end": 8483.46, + "probability": 0.9479 + }, + { + "start": 8483.56, + "end": 8484.26, + "probability": 0.8465 + }, + { + "start": 8484.82, + "end": 8487.58, + "probability": 0.7855 + }, + { + "start": 8488.14, + "end": 8490.58, + "probability": 0.682 + }, + { + "start": 8490.78, + "end": 8492.8, + "probability": 0.9865 + }, + { + "start": 8493.32, + "end": 8494.56, + "probability": 0.9272 + }, + { + "start": 8495.3, + "end": 8496.88, + "probability": 0.8431 + }, + { + "start": 8496.92, + "end": 8499.82, + "probability": 0.9958 + }, + { + "start": 8502.9, + "end": 8503.27, + "probability": 0.0763 + }, + { + "start": 8505.18, + "end": 8505.69, + "probability": 0.4387 + }, + { + "start": 8508.54, + "end": 8510.72, + "probability": 0.2467 + }, + { + "start": 8518.5, + "end": 8519.08, + "probability": 0.4101 + }, + { + "start": 8519.38, + "end": 8520.1, + "probability": 0.8233 + }, + { + "start": 8521.12, + "end": 8521.52, + "probability": 0.737 + }, + { + "start": 8521.66, + "end": 8522.64, + "probability": 0.8847 + }, + { + "start": 8522.74, + "end": 8526.34, + "probability": 0.9185 + }, + { + "start": 8527.1, + "end": 8527.4, + "probability": 0.0335 + }, + { + "start": 8527.4, + "end": 8528.78, + "probability": 0.6367 + }, + { + "start": 8529.72, + "end": 8531.68, + "probability": 0.0008 + }, + { + "start": 8532.84, + "end": 8533.88, + "probability": 0.1508 + }, + { + "start": 8537.38, + "end": 8538.56, + "probability": 0.9144 + }, + { + "start": 8539.16, + "end": 8539.92, + "probability": 0.2122 + }, + { + "start": 8540.28, + "end": 8542.16, + "probability": 0.4214 + }, + { + "start": 8542.2, + "end": 8543.76, + "probability": 0.4358 + }, + { + "start": 8543.76, + "end": 8544.4, + "probability": 0.4276 + }, + { + "start": 8544.98, + "end": 8546.84, + "probability": 0.369 + }, + { + "start": 8546.9, + "end": 8547.3, + "probability": 0.4624 + }, + { + "start": 8547.42, + "end": 8548.02, + "probability": 0.1653 + }, + { + "start": 8550.58, + "end": 8552.3, + "probability": 0.0072 + }, + { + "start": 8555.22, + "end": 8558.82, + "probability": 0.7658 + }, + { + "start": 8563.36, + "end": 8565.18, + "probability": 0.3509 + }, + { + "start": 8565.18, + "end": 8567.58, + "probability": 0.661 + }, + { + "start": 8568.6, + "end": 8571.04, + "probability": 0.7745 + }, + { + "start": 8571.24, + "end": 8573.43, + "probability": 0.8961 + }, + { + "start": 8574.4, + "end": 8576.18, + "probability": 0.4777 + }, + { + "start": 8576.94, + "end": 8581.23, + "probability": 0.5018 + }, + { + "start": 8581.7, + "end": 8582.24, + "probability": 0.7267 + }, + { + "start": 8582.58, + "end": 8583.16, + "probability": 0.9009 + }, + { + "start": 8583.58, + "end": 8583.9, + "probability": 0.7283 + }, + { + "start": 8597.78, + "end": 8600.32, + "probability": 0.0817 + }, + { + "start": 8601.74, + "end": 8602.94, + "probability": 0.0126 + }, + { + "start": 8604.61, + "end": 8606.22, + "probability": 0.0823 + }, + { + "start": 8606.22, + "end": 8606.5, + "probability": 0.0477 + }, + { + "start": 8606.5, + "end": 8610.88, + "probability": 0.076 + }, + { + "start": 8612.46, + "end": 8612.8, + "probability": 0.0633 + }, + { + "start": 8613.38, + "end": 8615.28, + "probability": 0.2376 + }, + { + "start": 8615.96, + "end": 8618.32, + "probability": 0.0751 + }, + { + "start": 8618.78, + "end": 8620.06, + "probability": 0.029 + }, + { + "start": 8620.06, + "end": 8620.28, + "probability": 0.2271 + }, + { + "start": 8620.4, + "end": 8620.46, + "probability": 0.3752 + }, + { + "start": 8620.46, + "end": 8621.92, + "probability": 0.2131 + }, + { + "start": 8622.24, + "end": 8622.54, + "probability": 0.1268 + }, + { + "start": 8623.12, + "end": 8623.12, + "probability": 0.1073 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8654.0, + "end": 8654.0, + "probability": 0.0 + }, + { + "start": 8658.16, + "end": 8658.92, + "probability": 0.1032 + }, + { + "start": 8659.46, + "end": 8661.6, + "probability": 0.4707 + }, + { + "start": 8661.72, + "end": 8663.58, + "probability": 0.9918 + }, + { + "start": 8664.26, + "end": 8669.68, + "probability": 0.912 + }, + { + "start": 8669.98, + "end": 8671.9, + "probability": 0.8117 + }, + { + "start": 8672.82, + "end": 8674.62, + "probability": 0.959 + }, + { + "start": 8678.6, + "end": 8680.14, + "probability": 0.6085 + }, + { + "start": 8680.24, + "end": 8680.28, + "probability": 0.5652 + }, + { + "start": 8680.5, + "end": 8682.26, + "probability": 0.7449 + }, + { + "start": 8683.0, + "end": 8686.54, + "probability": 0.8402 + }, + { + "start": 8686.6, + "end": 8690.3, + "probability": 0.5998 + }, + { + "start": 8690.34, + "end": 8692.06, + "probability": 0.9871 + }, + { + "start": 8692.62, + "end": 8694.28, + "probability": 0.6877 + }, + { + "start": 8694.68, + "end": 8695.4, + "probability": 0.6519 + }, + { + "start": 8695.54, + "end": 8696.32, + "probability": 0.6321 + }, + { + "start": 8696.82, + "end": 8697.38, + "probability": 0.7498 + }, + { + "start": 8698.06, + "end": 8698.76, + "probability": 0.2224 + }, + { + "start": 8700.24, + "end": 8702.26, + "probability": 0.009 + }, + { + "start": 8703.04, + "end": 8706.46, + "probability": 0.0694 + }, + { + "start": 8709.18, + "end": 8714.04, + "probability": 0.0228 + }, + { + "start": 8714.58, + "end": 8718.92, + "probability": 0.5409 + }, + { + "start": 8723.5, + "end": 8724.42, + "probability": 0.6138 + }, + { + "start": 8725.16, + "end": 8725.44, + "probability": 0.5247 + }, + { + "start": 8725.48, + "end": 8732.48, + "probability": 0.8901 + }, + { + "start": 8733.0, + "end": 8734.33, + "probability": 0.5254 + }, + { + "start": 8735.68, + "end": 8738.1, + "probability": 0.7135 + }, + { + "start": 8739.06, + "end": 8741.3, + "probability": 0.8383 + }, + { + "start": 8741.86, + "end": 8744.38, + "probability": 0.9945 + }, + { + "start": 8745.76, + "end": 8748.4, + "probability": 0.9457 + }, + { + "start": 8749.0, + "end": 8749.28, + "probability": 0.9597 + }, + { + "start": 8749.96, + "end": 8752.8, + "probability": 0.9749 + }, + { + "start": 8753.5, + "end": 8755.5, + "probability": 0.8046 + }, + { + "start": 8756.08, + "end": 8757.92, + "probability": 0.5406 + }, + { + "start": 8758.52, + "end": 8762.72, + "probability": 0.9951 + }, + { + "start": 8762.8, + "end": 8763.34, + "probability": 0.5368 + }, + { + "start": 8783.98, + "end": 8785.38, + "probability": 0.6644 + }, + { + "start": 8785.92, + "end": 8786.02, + "probability": 0.3782 + }, + { + "start": 8786.68, + "end": 8789.14, + "probability": 0.9081 + }, + { + "start": 8790.5, + "end": 8791.1, + "probability": 0.8844 + }, + { + "start": 8791.28, + "end": 8792.12, + "probability": 0.6761 + }, + { + "start": 8792.36, + "end": 8793.52, + "probability": 0.8585 + }, + { + "start": 8794.98, + "end": 8798.3, + "probability": 0.7672 + }, + { + "start": 8801.14, + "end": 8803.93, + "probability": 0.0427 + }, + { + "start": 8805.26, + "end": 8808.4, + "probability": 0.0501 + }, + { + "start": 8809.28, + "end": 8814.28, + "probability": 0.064 + }, + { + "start": 8815.07, + "end": 8817.14, + "probability": 0.0633 + }, + { + "start": 8817.14, + "end": 8819.6, + "probability": 0.0918 + }, + { + "start": 8821.16, + "end": 8825.38, + "probability": 0.2453 + }, + { + "start": 8827.16, + "end": 8831.18, + "probability": 0.2769 + }, + { + "start": 8831.92, + "end": 8839.2, + "probability": 0.1383 + }, + { + "start": 8840.28, + "end": 8841.96, + "probability": 0.0138 + }, + { + "start": 8843.2, + "end": 8845.3, + "probability": 0.2447 + }, + { + "start": 8846.7, + "end": 8851.8, + "probability": 0.0863 + }, + { + "start": 8853.28, + "end": 8858.64, + "probability": 0.0705 + }, + { + "start": 8859.24, + "end": 8862.02, + "probability": 0.1986 + }, + { + "start": 8863.04, + "end": 8864.34, + "probability": 0.3393 + }, + { + "start": 8872.0, + "end": 8872.0, + "probability": 0.0 + }, + { + "start": 8873.29, + "end": 8873.85, + "probability": 0.0132 + }, + { + "start": 8875.38, + "end": 8876.78, + "probability": 0.1496 + }, + { + "start": 8877.4, + "end": 8879.8, + "probability": 0.4792 + }, + { + "start": 8880.72, + "end": 8883.04, + "probability": 0.394 + }, + { + "start": 8883.88, + "end": 8890.44, + "probability": 0.5288 + }, + { + "start": 8891.54, + "end": 8897.32, + "probability": 0.0831 + }, + { + "start": 8897.9, + "end": 8899.68, + "probability": 0.0861 + }, + { + "start": 8900.66, + "end": 8902.34, + "probability": 0.3554 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.0, + "probability": 0.0 + }, + { + "start": 9018.0, + "end": 9018.64, + "probability": 0.1885 + }, + { + "start": 9018.74, + "end": 9019.34, + "probability": 0.0827 + }, + { + "start": 9019.46, + "end": 9020.34, + "probability": 0.3511 + }, + { + "start": 9021.72, + "end": 9023.24, + "probability": 0.4855 + }, + { + "start": 9023.3, + "end": 9025.16, + "probability": 0.8939 + }, + { + "start": 9025.52, + "end": 9026.5, + "probability": 0.5287 + }, + { + "start": 9026.88, + "end": 9031.02, + "probability": 0.9722 + }, + { + "start": 9031.42, + "end": 9033.26, + "probability": 0.9963 + }, + { + "start": 9034.2, + "end": 9034.66, + "probability": 0.0121 + }, + { + "start": 9035.28, + "end": 9035.28, + "probability": 0.0002 + }, + { + "start": 9035.58, + "end": 9035.76, + "probability": 0.1061 + }, + { + "start": 9035.76, + "end": 9037.34, + "probability": 0.2489 + }, + { + "start": 9038.22, + "end": 9039.88, + "probability": 0.3166 + }, + { + "start": 9039.88, + "end": 9042.1, + "probability": 0.4187 + }, + { + "start": 9042.38, + "end": 9042.92, + "probability": 0.3129 + }, + { + "start": 9043.16, + "end": 9043.22, + "probability": 0.0404 + }, + { + "start": 9043.22, + "end": 9046.94, + "probability": 0.5731 + }, + { + "start": 9049.86, + "end": 9053.66, + "probability": 0.3884 + }, + { + "start": 9054.66, + "end": 9055.92, + "probability": 0.2726 + }, + { + "start": 9055.98, + "end": 9056.44, + "probability": 0.1376 + }, + { + "start": 9056.5, + "end": 9057.3, + "probability": 0.1934 + }, + { + "start": 9057.56, + "end": 9059.42, + "probability": 0.2657 + }, + { + "start": 9059.44, + "end": 9059.5, + "probability": 0.0301 + }, + { + "start": 9059.5, + "end": 9059.5, + "probability": 0.0049 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.0, + "end": 9152.0, + "probability": 0.0 + }, + { + "start": 9152.24, + "end": 9158.3, + "probability": 0.7695 + }, + { + "start": 9158.56, + "end": 9158.56, + "probability": 0.1105 + }, + { + "start": 9158.56, + "end": 9158.66, + "probability": 0.6618 + }, + { + "start": 9158.98, + "end": 9159.32, + "probability": 0.1593 + }, + { + "start": 9159.76, + "end": 9161.1, + "probability": 0.0377 + }, + { + "start": 9161.1, + "end": 9164.1, + "probability": 0.4565 + }, + { + "start": 9164.28, + "end": 9164.86, + "probability": 0.3725 + }, + { + "start": 9166.18, + "end": 9167.35, + "probability": 0.0611 + }, + { + "start": 9167.68, + "end": 9168.96, + "probability": 0.1689 + }, + { + "start": 9169.16, + "end": 9171.28, + "probability": 0.2532 + }, + { + "start": 9171.98, + "end": 9173.62, + "probability": 0.9806 + }, + { + "start": 9174.28, + "end": 9177.32, + "probability": 0.9742 + }, + { + "start": 9178.16, + "end": 9179.42, + "probability": 0.9742 + }, + { + "start": 9179.5, + "end": 9180.58, + "probability": 0.7045 + }, + { + "start": 9180.64, + "end": 9183.24, + "probability": 0.8843 + }, + { + "start": 9184.84, + "end": 9188.58, + "probability": 0.9742 + }, + { + "start": 9189.06, + "end": 9192.18, + "probability": 0.9692 + }, + { + "start": 9192.9, + "end": 9196.14, + "probability": 0.9875 + }, + { + "start": 9197.24, + "end": 9202.82, + "probability": 0.9915 + }, + { + "start": 9203.28, + "end": 9204.76, + "probability": 0.9289 + }, + { + "start": 9205.1, + "end": 9209.8, + "probability": 0.9355 + }, + { + "start": 9210.76, + "end": 9214.4, + "probability": 0.9792 + }, + { + "start": 9214.82, + "end": 9220.08, + "probability": 0.8263 + }, + { + "start": 9220.08, + "end": 9224.4, + "probability": 0.3391 + }, + { + "start": 9224.54, + "end": 9230.16, + "probability": 0.039 + }, + { + "start": 9230.16, + "end": 9230.68, + "probability": 0.4508 + }, + { + "start": 9231.28, + "end": 9231.54, + "probability": 0.013 + }, + { + "start": 9231.54, + "end": 9231.54, + "probability": 0.0336 + }, + { + "start": 9231.54, + "end": 9231.54, + "probability": 0.4707 + }, + { + "start": 9231.54, + "end": 9231.72, + "probability": 0.1813 + }, + { + "start": 9231.91, + "end": 9232.86, + "probability": 0.1338 + }, + { + "start": 9233.02, + "end": 9235.44, + "probability": 0.7596 + }, + { + "start": 9235.46, + "end": 9237.28, + "probability": 0.4311 + }, + { + "start": 9237.28, + "end": 9240.4, + "probability": 0.5497 + }, + { + "start": 9240.64, + "end": 9240.76, + "probability": 0.2168 + }, + { + "start": 9240.76, + "end": 9241.62, + "probability": 0.269 + }, + { + "start": 9242.0, + "end": 9242.56, + "probability": 0.5626 + }, + { + "start": 9242.56, + "end": 9245.1, + "probability": 0.6426 + }, + { + "start": 9245.22, + "end": 9251.12, + "probability": 0.9604 + }, + { + "start": 9251.66, + "end": 9261.66, + "probability": 0.9419 + }, + { + "start": 9262.46, + "end": 9264.72, + "probability": 0.998 + }, + { + "start": 9265.4, + "end": 9266.16, + "probability": 0.7487 + }, + { + "start": 9266.9, + "end": 9271.82, + "probability": 0.9876 + }, + { + "start": 9272.78, + "end": 9273.78, + "probability": 0.6322 + }, + { + "start": 9273.88, + "end": 9275.52, + "probability": 0.5888 + }, + { + "start": 9278.93, + "end": 9280.72, + "probability": 0.6205 + }, + { + "start": 9281.1, + "end": 9282.83, + "probability": 0.8088 + }, + { + "start": 9283.22, + "end": 9283.86, + "probability": 0.6847 + }, + { + "start": 9284.36, + "end": 9285.28, + "probability": 0.8599 + }, + { + "start": 9285.66, + "end": 9286.02, + "probability": 0.9145 + }, + { + "start": 9286.76, + "end": 9287.96, + "probability": 0.7334 + }, + { + "start": 9288.98, + "end": 9290.58, + "probability": 0.9971 + }, + { + "start": 9291.26, + "end": 9291.74, + "probability": 0.9932 + }, + { + "start": 9293.34, + "end": 9296.82, + "probability": 0.9902 + }, + { + "start": 9297.64, + "end": 9299.86, + "probability": 0.9788 + }, + { + "start": 9300.5, + "end": 9306.18, + "probability": 0.9976 + }, + { + "start": 9307.84, + "end": 9313.74, + "probability": 0.9878 + }, + { + "start": 9314.22, + "end": 9317.7, + "probability": 0.9897 + }, + { + "start": 9318.18, + "end": 9321.62, + "probability": 0.9635 + }, + { + "start": 9323.18, + "end": 9324.44, + "probability": 0.8196 + }, + { + "start": 9324.7, + "end": 9326.04, + "probability": 0.5586 + }, + { + "start": 9326.04, + "end": 9328.64, + "probability": 0.8665 + }, + { + "start": 9329.8, + "end": 9332.54, + "probability": 0.9922 + }, + { + "start": 9333.48, + "end": 9334.28, + "probability": 0.9643 + }, + { + "start": 9334.94, + "end": 9338.54, + "probability": 0.985 + }, + { + "start": 9339.96, + "end": 9343.86, + "probability": 0.9858 + }, + { + "start": 9344.9, + "end": 9348.34, + "probability": 0.9819 + }, + { + "start": 9349.66, + "end": 9351.0, + "probability": 0.7154 + }, + { + "start": 9352.0, + "end": 9353.32, + "probability": 0.9849 + }, + { + "start": 9354.96, + "end": 9360.22, + "probability": 0.9403 + }, + { + "start": 9360.74, + "end": 9362.5, + "probability": 0.9219 + }, + { + "start": 9362.96, + "end": 9364.34, + "probability": 0.7418 + }, + { + "start": 9364.52, + "end": 9368.32, + "probability": 0.9874 + }, + { + "start": 9368.96, + "end": 9374.0, + "probability": 0.9933 + }, + { + "start": 9375.08, + "end": 9376.36, + "probability": 0.5916 + }, + { + "start": 9377.26, + "end": 9379.73, + "probability": 0.9922 + }, + { + "start": 9380.26, + "end": 9384.74, + "probability": 0.987 + }, + { + "start": 9385.38, + "end": 9388.1, + "probability": 0.9752 + }, + { + "start": 9389.16, + "end": 9392.34, + "probability": 0.9584 + }, + { + "start": 9393.12, + "end": 9397.4, + "probability": 0.9595 + }, + { + "start": 9397.9, + "end": 9400.9, + "probability": 0.9965 + }, + { + "start": 9401.56, + "end": 9403.78, + "probability": 0.5662 + }, + { + "start": 9404.46, + "end": 9407.74, + "probability": 0.9992 + }, + { + "start": 9408.52, + "end": 9413.06, + "probability": 0.9919 + }, + { + "start": 9413.64, + "end": 9419.2, + "probability": 0.985 + }, + { + "start": 9419.68, + "end": 9425.46, + "probability": 0.9783 + }, + { + "start": 9426.34, + "end": 9428.98, + "probability": 0.9746 + }, + { + "start": 9429.78, + "end": 9430.6, + "probability": 0.9961 + }, + { + "start": 9431.2, + "end": 9432.7, + "probability": 0.9951 + }, + { + "start": 9432.94, + "end": 9437.42, + "probability": 0.9935 + }, + { + "start": 9440.52, + "end": 9444.2, + "probability": 0.6295 + }, + { + "start": 9444.64, + "end": 9447.3, + "probability": 0.0231 + }, + { + "start": 9448.36, + "end": 9449.12, + "probability": 0.3042 + }, + { + "start": 9450.45, + "end": 9451.9, + "probability": 0.0395 + }, + { + "start": 9451.98, + "end": 9452.74, + "probability": 0.1316 + }, + { + "start": 9454.22, + "end": 9455.42, + "probability": 0.0286 + }, + { + "start": 9456.14, + "end": 9459.82, + "probability": 0.0303 + }, + { + "start": 9460.28, + "end": 9461.24, + "probability": 0.2645 + }, + { + "start": 9462.56, + "end": 9463.88, + "probability": 0.0626 + }, + { + "start": 9464.16, + "end": 9464.42, + "probability": 0.1683 + }, + { + "start": 9466.89, + "end": 9469.22, + "probability": 0.0302 + }, + { + "start": 9470.58, + "end": 9470.72, + "probability": 0.1136 + }, + { + "start": 9470.72, + "end": 9471.9, + "probability": 0.055 + }, + { + "start": 9472.68, + "end": 9474.32, + "probability": 0.123 + }, + { + "start": 9475.08, + "end": 9475.32, + "probability": 0.0153 + }, + { + "start": 9475.42, + "end": 9475.42, + "probability": 0.1684 + }, + { + "start": 9475.42, + "end": 9475.8, + "probability": 0.1562 + }, + { + "start": 9477.16, + "end": 9478.04, + "probability": 0.4783 + }, + { + "start": 9479.46, + "end": 9480.86, + "probability": 0.2794 + }, + { + "start": 9481.74, + "end": 9484.22, + "probability": 0.5948 + }, + { + "start": 9486.62, + "end": 9489.22, + "probability": 0.1995 + }, + { + "start": 9496.44, + "end": 9498.14, + "probability": 0.6161 + }, + { + "start": 9498.14, + "end": 9498.16, + "probability": 0.4013 + }, + { + "start": 9498.16, + "end": 9500.54, + "probability": 0.4914 + }, + { + "start": 9502.12, + "end": 9502.76, + "probability": 0.1069 + }, + { + "start": 9505.34, + "end": 9507.06, + "probability": 0.1851 + }, + { + "start": 9508.84, + "end": 9513.06, + "probability": 0.052 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9526.0, + "end": 9526.0, + "probability": 0.0 + }, + { + "start": 9528.28, + "end": 9529.48, + "probability": 0.0573 + }, + { + "start": 9529.52, + "end": 9529.52, + "probability": 0.4159 + }, + { + "start": 9529.64, + "end": 9532.9, + "probability": 0.5955 + }, + { + "start": 9533.02, + "end": 9533.36, + "probability": 0.191 + }, + { + "start": 9533.6, + "end": 9535.24, + "probability": 0.4586 + }, + { + "start": 9535.24, + "end": 9536.04, + "probability": 0.0891 + }, + { + "start": 9536.04, + "end": 9537.22, + "probability": 0.1678 + }, + { + "start": 9537.42, + "end": 9539.38, + "probability": 0.0392 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.0, + "end": 9652.0, + "probability": 0.0 + }, + { + "start": 9652.12, + "end": 9652.52, + "probability": 0.041 + }, + { + "start": 9652.52, + "end": 9652.52, + "probability": 0.1704 + }, + { + "start": 9652.52, + "end": 9652.52, + "probability": 0.0887 + }, + { + "start": 9652.52, + "end": 9652.52, + "probability": 0.0893 + }, + { + "start": 9652.52, + "end": 9652.52, + "probability": 0.0369 + }, + { + "start": 9652.52, + "end": 9653.7, + "probability": 0.3728 + }, + { + "start": 9653.96, + "end": 9654.22, + "probability": 0.0935 + }, + { + "start": 9654.6, + "end": 9654.7, + "probability": 0.0427 + }, + { + "start": 9654.72, + "end": 9655.21, + "probability": 0.4933 + }, + { + "start": 9656.54, + "end": 9656.88, + "probability": 0.289 + }, + { + "start": 9657.8, + "end": 9662.56, + "probability": 0.9874 + }, + { + "start": 9663.06, + "end": 9666.78, + "probability": 0.9858 + }, + { + "start": 9667.5, + "end": 9671.06, + "probability": 0.9869 + }, + { + "start": 9671.98, + "end": 9672.22, + "probability": 0.6805 + }, + { + "start": 9672.68, + "end": 9675.32, + "probability": 0.9693 + }, + { + "start": 9675.32, + "end": 9678.0, + "probability": 0.9902 + }, + { + "start": 9679.14, + "end": 9681.6, + "probability": 0.4861 + }, + { + "start": 9682.02, + "end": 9685.32, + "probability": 0.9904 + }, + { + "start": 9685.4, + "end": 9686.38, + "probability": 0.8777 + }, + { + "start": 9686.86, + "end": 9687.22, + "probability": 0.373 + }, + { + "start": 9687.36, + "end": 9693.08, + "probability": 0.9799 + }, + { + "start": 9694.5, + "end": 9697.84, + "probability": 0.8638 + }, + { + "start": 9698.14, + "end": 9698.24, + "probability": 0.1358 + }, + { + "start": 9698.3, + "end": 9699.12, + "probability": 0.439 + }, + { + "start": 9699.14, + "end": 9700.04, + "probability": 0.8056 + }, + { + "start": 9700.14, + "end": 9701.34, + "probability": 0.5608 + }, + { + "start": 9701.48, + "end": 9705.46, + "probability": 0.9819 + }, + { + "start": 9706.0, + "end": 9709.36, + "probability": 0.6111 + }, + { + "start": 9709.36, + "end": 9709.46, + "probability": 0.4089 + }, + { + "start": 9710.18, + "end": 9710.24, + "probability": 0.6346 + }, + { + "start": 9710.54, + "end": 9711.4, + "probability": 0.9297 + }, + { + "start": 9712.1, + "end": 9713.2, + "probability": 0.532 + }, + { + "start": 9714.7, + "end": 9716.08, + "probability": 0.7459 + }, + { + "start": 9717.76, + "end": 9719.02, + "probability": 0.3051 + }, + { + "start": 9719.58, + "end": 9720.54, + "probability": 0.8797 + }, + { + "start": 9721.34, + "end": 9723.23, + "probability": 0.7359 + }, + { + "start": 9723.86, + "end": 9724.68, + "probability": 0.5397 + }, + { + "start": 9724.96, + "end": 9726.02, + "probability": 0.4655 + }, + { + "start": 9727.4, + "end": 9727.82, + "probability": 0.9608 + }, + { + "start": 9728.28, + "end": 9731.34, + "probability": 0.7501 + }, + { + "start": 9731.4, + "end": 9734.2, + "probability": 0.9421 + }, + { + "start": 9735.36, + "end": 9737.82, + "probability": 0.995 + }, + { + "start": 9737.82, + "end": 9739.9, + "probability": 0.9972 + }, + { + "start": 9740.08, + "end": 9743.16, + "probability": 0.978 + }, + { + "start": 9743.76, + "end": 9746.16, + "probability": 0.8571 + }, + { + "start": 9746.16, + "end": 9749.44, + "probability": 0.988 + }, + { + "start": 9749.54, + "end": 9751.44, + "probability": 0.9966 + }, + { + "start": 9752.06, + "end": 9754.68, + "probability": 0.9813 + }, + { + "start": 9754.86, + "end": 9758.18, + "probability": 0.9954 + }, + { + "start": 9758.18, + "end": 9761.14, + "probability": 0.9875 + }, + { + "start": 9762.26, + "end": 9766.58, + "probability": 0.9934 + }, + { + "start": 9766.58, + "end": 9770.4, + "probability": 0.9962 + }, + { + "start": 9770.54, + "end": 9771.1, + "probability": 0.7607 + }, + { + "start": 9771.56, + "end": 9772.32, + "probability": 0.4881 + }, + { + "start": 9772.46, + "end": 9775.22, + "probability": 0.9307 + }, + { + "start": 9777.02, + "end": 9779.0, + "probability": 0.7788 + }, + { + "start": 9782.44, + "end": 9783.02, + "probability": 0.5745 + }, + { + "start": 9784.54, + "end": 9785.12, + "probability": 0.3327 + }, + { + "start": 9785.65, + "end": 9786.56, + "probability": 0.0249 + }, + { + "start": 9789.34, + "end": 9789.5, + "probability": 0.0586 + }, + { + "start": 9790.02, + "end": 9790.7, + "probability": 0.0053 + }, + { + "start": 9790.92, + "end": 9792.88, + "probability": 0.0337 + }, + { + "start": 9794.0, + "end": 9795.08, + "probability": 0.7807 + }, + { + "start": 9796.15, + "end": 9797.8, + "probability": 0.8838 + }, + { + "start": 9798.08, + "end": 9798.74, + "probability": 0.3916 + }, + { + "start": 9798.74, + "end": 9799.08, + "probability": 0.4837 + }, + { + "start": 9799.12, + "end": 9799.78, + "probability": 0.5214 + }, + { + "start": 9801.08, + "end": 9804.58, + "probability": 0.7791 + }, + { + "start": 9804.78, + "end": 9806.12, + "probability": 0.7813 + }, + { + "start": 9806.22, + "end": 9808.07, + "probability": 0.7789 + }, + { + "start": 9811.0, + "end": 9812.26, + "probability": 0.8605 + }, + { + "start": 9812.6, + "end": 9815.02, + "probability": 0.9922 + }, + { + "start": 9815.78, + "end": 9817.06, + "probability": 0.4725 + }, + { + "start": 9817.4, + "end": 9817.5, + "probability": 0.2368 + }, + { + "start": 9819.94, + "end": 9823.4, + "probability": 0.8875 + }, + { + "start": 9823.54, + "end": 9828.78, + "probability": 0.9973 + }, + { + "start": 9830.98, + "end": 9831.46, + "probability": 0.8497 + }, + { + "start": 9833.06, + "end": 9834.86, + "probability": 0.7075 + }, + { + "start": 9835.3, + "end": 9837.84, + "probability": 0.9277 + }, + { + "start": 9838.96, + "end": 9841.9, + "probability": 0.7198 + }, + { + "start": 9842.68, + "end": 9845.16, + "probability": 0.9717 + }, + { + "start": 9846.47, + "end": 9849.48, + "probability": 0.5077 + }, + { + "start": 9849.48, + "end": 9851.92, + "probability": 0.4859 + }, + { + "start": 9852.06, + "end": 9852.55, + "probability": 0.0888 + }, + { + "start": 9854.54, + "end": 9860.34, + "probability": 0.9913 + }, + { + "start": 9862.34, + "end": 9864.2, + "probability": 0.4053 + }, + { + "start": 9864.28, + "end": 9869.72, + "probability": 0.9686 + }, + { + "start": 9870.6, + "end": 9874.5, + "probability": 0.9953 + }, + { + "start": 9875.82, + "end": 9877.3, + "probability": 0.598 + }, + { + "start": 9878.53, + "end": 9879.28, + "probability": 0.0411 + }, + { + "start": 9879.58, + "end": 9882.86, + "probability": 0.774 + }, + { + "start": 9884.9, + "end": 9886.6, + "probability": 0.3373 + }, + { + "start": 9887.88, + "end": 9890.86, + "probability": 0.7354 + }, + { + "start": 9890.98, + "end": 9894.54, + "probability": 0.8062 + }, + { + "start": 9895.2, + "end": 9895.5, + "probability": 0.2073 + }, + { + "start": 9895.5, + "end": 9896.06, + "probability": 0.6589 + }, + { + "start": 9896.92, + "end": 9899.24, + "probability": 0.8153 + }, + { + "start": 9899.24, + "end": 9899.9, + "probability": 0.8072 + }, + { + "start": 9900.02, + "end": 9900.5, + "probability": 0.684 + }, + { + "start": 9900.56, + "end": 9902.34, + "probability": 0.4923 + }, + { + "start": 9903.1, + "end": 9905.99, + "probability": 0.6143 + }, + { + "start": 9906.2, + "end": 9908.88, + "probability": 0.4161 + }, + { + "start": 9910.0, + "end": 9911.38, + "probability": 0.549 + }, + { + "start": 9911.58, + "end": 9913.68, + "probability": 0.9086 + }, + { + "start": 9915.04, + "end": 9917.19, + "probability": 0.7636 + }, + { + "start": 9917.7, + "end": 9920.04, + "probability": 0.5663 + }, + { + "start": 9920.34, + "end": 9922.62, + "probability": 0.941 + }, + { + "start": 9923.22, + "end": 9924.57, + "probability": 0.7698 + }, + { + "start": 9925.08, + "end": 9926.12, + "probability": 0.8043 + }, + { + "start": 9926.74, + "end": 9927.9, + "probability": 0.8605 + }, + { + "start": 9928.36, + "end": 9929.38, + "probability": 0.8344 + }, + { + "start": 9930.68, + "end": 9931.26, + "probability": 0.5667 + }, + { + "start": 9933.58, + "end": 9934.98, + "probability": 0.6668 + }, + { + "start": 9935.02, + "end": 9937.06, + "probability": 0.7856 + }, + { + "start": 9937.06, + "end": 9939.38, + "probability": 0.7417 + }, + { + "start": 9940.5, + "end": 9941.34, + "probability": 0.3578 + }, + { + "start": 9941.36, + "end": 9942.44, + "probability": 0.6516 + }, + { + "start": 9943.28, + "end": 9944.36, + "probability": 0.6009 + }, + { + "start": 9944.9, + "end": 9945.72, + "probability": 0.572 + }, + { + "start": 9946.32, + "end": 9949.18, + "probability": 0.6941 + }, + { + "start": 9949.78, + "end": 9950.92, + "probability": 0.4751 + }, + { + "start": 9951.88, + "end": 9952.66, + "probability": 0.1747 + }, + { + "start": 9952.66, + "end": 9952.66, + "probability": 0.2644 + }, + { + "start": 9952.66, + "end": 9953.16, + "probability": 0.0295 + }, + { + "start": 9953.78, + "end": 9954.66, + "probability": 0.2611 + }, + { + "start": 9955.28, + "end": 9959.24, + "probability": 0.84 + }, + { + "start": 9959.24, + "end": 9960.38, + "probability": 0.0926 + }, + { + "start": 9960.44, + "end": 9961.6, + "probability": 0.482 + }, + { + "start": 9962.58, + "end": 9964.35, + "probability": 0.3585 + }, + { + "start": 9964.68, + "end": 9965.08, + "probability": 0.0555 + }, + { + "start": 9965.24, + "end": 9967.09, + "probability": 0.7762 + }, + { + "start": 9968.76, + "end": 9971.3, + "probability": 0.9856 + }, + { + "start": 9972.16, + "end": 9973.7, + "probability": 0.9536 + }, + { + "start": 9974.4, + "end": 9977.34, + "probability": 0.9989 + }, + { + "start": 9977.94, + "end": 9978.98, + "probability": 0.7782 + }, + { + "start": 9979.8, + "end": 9982.1, + "probability": 0.8369 + }, + { + "start": 9982.55, + "end": 9987.3, + "probability": 0.2289 + }, + { + "start": 9987.3, + "end": 9992.56, + "probability": 0.5585 + }, + { + "start": 9993.08, + "end": 9994.52, + "probability": 0.3298 + }, + { + "start": 9994.56, + "end": 9994.98, + "probability": 0.5682 + }, + { + "start": 9995.0, + "end": 9995.78, + "probability": 0.5604 + }, + { + "start": 9996.36, + "end": 9999.36, + "probability": 0.5181 + }, + { + "start": 9999.44, + "end": 10000.1, + "probability": 0.4844 + }, + { + "start": 10000.1, + "end": 10001.1, + "probability": 0.5111 + }, + { + "start": 10001.22, + "end": 10002.48, + "probability": 0.7294 + }, + { + "start": 10002.94, + "end": 10003.48, + "probability": 0.0323 + }, + { + "start": 10004.02, + "end": 10009.36, + "probability": 0.2466 + }, + { + "start": 10009.5, + "end": 10011.75, + "probability": 0.4282 + }, + { + "start": 10011.98, + "end": 10017.18, + "probability": 0.6626 + }, + { + "start": 10017.44, + "end": 10018.62, + "probability": 0.924 + }, + { + "start": 10020.4, + "end": 10021.8, + "probability": 0.2782 + }, + { + "start": 10022.58, + "end": 10025.18, + "probability": 0.3925 + }, + { + "start": 10025.36, + "end": 10025.96, + "probability": 0.6895 + }, + { + "start": 10026.04, + "end": 10029.5, + "probability": 0.4497 + }, + { + "start": 10029.66, + "end": 10030.54, + "probability": 0.4576 + }, + { + "start": 10031.04, + "end": 10032.34, + "probability": 0.3013 + }, + { + "start": 10032.8, + "end": 10034.84, + "probability": 0.4665 + }, + { + "start": 10034.84, + "end": 10036.46, + "probability": 0.7993 + }, + { + "start": 10036.76, + "end": 10039.1, + "probability": 0.7369 + }, + { + "start": 10039.32, + "end": 10040.26, + "probability": 0.6848 + }, + { + "start": 10040.5, + "end": 10041.2, + "probability": 0.8088 + }, + { + "start": 10041.82, + "end": 10045.14, + "probability": 0.839 + }, + { + "start": 10045.68, + "end": 10049.74, + "probability": 0.9966 + }, + { + "start": 10050.82, + "end": 10054.12, + "probability": 0.9937 + }, + { + "start": 10054.54, + "end": 10058.12, + "probability": 0.9705 + }, + { + "start": 10059.24, + "end": 10060.66, + "probability": 0.97 + }, + { + "start": 10061.38, + "end": 10067.78, + "probability": 0.5429 + }, + { + "start": 10068.78, + "end": 10071.62, + "probability": 0.4789 + }, + { + "start": 10072.14, + "end": 10074.8, + "probability": 0.9949 + }, + { + "start": 10075.42, + "end": 10080.62, + "probability": 0.98 + }, + { + "start": 10081.78, + "end": 10087.06, + "probability": 0.8858 + }, + { + "start": 10087.8, + "end": 10089.84, + "probability": 0.9973 + }, + { + "start": 10090.68, + "end": 10090.72, + "probability": 0.7195 + }, + { + "start": 10090.88, + "end": 10092.16, + "probability": 0.7993 + }, + { + "start": 10092.66, + "end": 10094.16, + "probability": 0.8523 + }, + { + "start": 10094.62, + "end": 10098.0, + "probability": 0.9615 + }, + { + "start": 10098.6, + "end": 10100.76, + "probability": 0.9721 + }, + { + "start": 10101.14, + "end": 10103.34, + "probability": 0.7369 + }, + { + "start": 10104.2, + "end": 10105.84, + "probability": 0.8989 + }, + { + "start": 10106.58, + "end": 10109.14, + "probability": 0.4637 + }, + { + "start": 10109.28, + "end": 10112.58, + "probability": 0.9809 + }, + { + "start": 10113.42, + "end": 10114.64, + "probability": 0.5369 + }, + { + "start": 10115.14, + "end": 10116.18, + "probability": 0.2367 + }, + { + "start": 10116.56, + "end": 10116.82, + "probability": 0.5469 + }, + { + "start": 10116.82, + "end": 10117.16, + "probability": 0.3799 + }, + { + "start": 10117.16, + "end": 10117.5, + "probability": 0.5176 + }, + { + "start": 10118.16, + "end": 10122.82, + "probability": 0.8723 + }, + { + "start": 10123.18, + "end": 10123.34, + "probability": 0.3241 + }, + { + "start": 10124.04, + "end": 10125.9, + "probability": 0.1941 + }, + { + "start": 10126.48, + "end": 10128.36, + "probability": 0.4329 + }, + { + "start": 10128.36, + "end": 10129.16, + "probability": 0.4765 + }, + { + "start": 10129.78, + "end": 10133.57, + "probability": 0.1344 + }, + { + "start": 10134.66, + "end": 10135.32, + "probability": 0.091 + }, + { + "start": 10135.32, + "end": 10135.32, + "probability": 0.1323 + }, + { + "start": 10135.32, + "end": 10135.46, + "probability": 0.0325 + }, + { + "start": 10135.94, + "end": 10136.98, + "probability": 0.1121 + }, + { + "start": 10137.18, + "end": 10139.88, + "probability": 0.1716 + }, + { + "start": 10139.98, + "end": 10140.36, + "probability": 0.5034 + }, + { + "start": 10140.76, + "end": 10145.62, + "probability": 0.7279 + }, + { + "start": 10146.16, + "end": 10147.24, + "probability": 0.5377 + }, + { + "start": 10147.72, + "end": 10149.72, + "probability": 0.7331 + }, + { + "start": 10150.2, + "end": 10151.48, + "probability": 0.8209 + }, + { + "start": 10152.04, + "end": 10153.16, + "probability": 0.9595 + }, + { + "start": 10153.84, + "end": 10157.54, + "probability": 0.667 + }, + { + "start": 10157.74, + "end": 10158.94, + "probability": 0.7097 + }, + { + "start": 10159.42, + "end": 10160.4, + "probability": 0.9307 + }, + { + "start": 10160.56, + "end": 10162.24, + "probability": 0.968 + }, + { + "start": 10162.5, + "end": 10163.46, + "probability": 0.7768 + }, + { + "start": 10163.92, + "end": 10170.32, + "probability": 0.8301 + }, + { + "start": 10170.92, + "end": 10170.92, + "probability": 0.0748 + }, + { + "start": 10170.92, + "end": 10173.18, + "probability": 0.9635 + }, + { + "start": 10173.78, + "end": 10179.92, + "probability": 0.4714 + }, + { + "start": 10180.36, + "end": 10181.87, + "probability": 0.8958 + }, + { + "start": 10183.9, + "end": 10185.85, + "probability": 0.6676 + }, + { + "start": 10186.2, + "end": 10187.11, + "probability": 0.8794 + }, + { + "start": 10188.68, + "end": 10190.64, + "probability": 0.2225 + }, + { + "start": 10192.0, + "end": 10197.18, + "probability": 0.4872 + }, + { + "start": 10197.18, + "end": 10198.02, + "probability": 0.7695 + }, + { + "start": 10198.58, + "end": 10199.37, + "probability": 0.8805 + }, + { + "start": 10199.96, + "end": 10200.4, + "probability": 0.3093 + }, + { + "start": 10200.4, + "end": 10201.32, + "probability": 0.4684 + }, + { + "start": 10201.98, + "end": 10203.66, + "probability": 0.6966 + }, + { + "start": 10204.28, + "end": 10204.32, + "probability": 0.4848 + }, + { + "start": 10204.32, + "end": 10204.69, + "probability": 0.4539 + }, + { + "start": 10205.34, + "end": 10206.86, + "probability": 0.9388 + }, + { + "start": 10207.18, + "end": 10207.18, + "probability": 0.0088 + }, + { + "start": 10212.74, + "end": 10214.64, + "probability": 0.0209 + }, + { + "start": 10218.66, + "end": 10221.24, + "probability": 0.2579 + }, + { + "start": 10221.52, + "end": 10222.32, + "probability": 0.3717 + }, + { + "start": 10222.32, + "end": 10223.24, + "probability": 0.3708 + }, + { + "start": 10224.28, + "end": 10225.06, + "probability": 0.1003 + }, + { + "start": 10225.32, + "end": 10227.62, + "probability": 0.3221 + }, + { + "start": 10227.62, + "end": 10227.62, + "probability": 0.1471 + }, + { + "start": 10228.32, + "end": 10229.2, + "probability": 0.459 + }, + { + "start": 10230.46, + "end": 10231.0, + "probability": 0.2599 + }, + { + "start": 10231.0, + "end": 10233.62, + "probability": 0.5678 + }, + { + "start": 10246.0, + "end": 10247.98, + "probability": 0.3685 + }, + { + "start": 10251.2, + "end": 10253.48, + "probability": 0.2899 + }, + { + "start": 10253.58, + "end": 10254.04, + "probability": 0.0359 + }, + { + "start": 10256.62, + "end": 10257.66, + "probability": 0.0351 + }, + { + "start": 10260.08, + "end": 10261.63, + "probability": 0.6248 + }, + { + "start": 10262.48, + "end": 10265.92, + "probability": 0.679 + }, + { + "start": 10266.36, + "end": 10268.46, + "probability": 0.6061 + }, + { + "start": 10268.62, + "end": 10270.3, + "probability": 0.8453 + }, + { + "start": 10272.02, + "end": 10275.72, + "probability": 0.3041 + }, + { + "start": 10275.72, + "end": 10275.72, + "probability": 0.0979 + }, + { + "start": 10275.72, + "end": 10276.06, + "probability": 0.2305 + }, + { + "start": 10276.74, + "end": 10278.56, + "probability": 0.6 + }, + { + "start": 10279.86, + "end": 10280.12, + "probability": 0.5797 + }, + { + "start": 10280.26, + "end": 10280.74, + "probability": 0.5729 + }, + { + "start": 10280.74, + "end": 10281.06, + "probability": 0.8406 + }, + { + "start": 10282.58, + "end": 10284.86, + "probability": 0.6363 + }, + { + "start": 10285.64, + "end": 10289.34, + "probability": 0.9959 + }, + { + "start": 10290.24, + "end": 10291.88, + "probability": 0.871 + }, + { + "start": 10292.4, + "end": 10295.54, + "probability": 0.9567 + }, + { + "start": 10295.9, + "end": 10298.3, + "probability": 0.9766 + }, + { + "start": 10299.16, + "end": 10300.86, + "probability": 0.5535 + }, + { + "start": 10300.92, + "end": 10304.46, + "probability": 0.9956 + }, + { + "start": 10304.5, + "end": 10305.64, + "probability": 0.8439 + }, + { + "start": 10306.12, + "end": 10307.9, + "probability": 0.9477 + }, + { + "start": 10308.02, + "end": 10308.52, + "probability": 0.641 + }, + { + "start": 10309.02, + "end": 10312.08, + "probability": 0.9858 + }, + { + "start": 10312.44, + "end": 10312.94, + "probability": 0.4484 + }, + { + "start": 10313.08, + "end": 10317.46, + "probability": 0.9932 + }, + { + "start": 10318.88, + "end": 10320.05, + "probability": 0.4721 + }, + { + "start": 10320.2, + "end": 10320.5, + "probability": 0.2439 + }, + { + "start": 10324.86, + "end": 10325.8, + "probability": 0.5232 + }, + { + "start": 10325.88, + "end": 10326.38, + "probability": 0.3546 + }, + { + "start": 10326.38, + "end": 10329.74, + "probability": 0.7974 + }, + { + "start": 10330.74, + "end": 10331.86, + "probability": 0.3323 + }, + { + "start": 10332.48, + "end": 10334.22, + "probability": 0.5296 + }, + { + "start": 10334.32, + "end": 10335.7, + "probability": 0.8606 + }, + { + "start": 10335.86, + "end": 10338.68, + "probability": 0.8279 + }, + { + "start": 10339.38, + "end": 10340.62, + "probability": 0.7095 + }, + { + "start": 10340.64, + "end": 10341.06, + "probability": 0.3617 + }, + { + "start": 10341.08, + "end": 10343.06, + "probability": 0.8951 + }, + { + "start": 10343.16, + "end": 10343.52, + "probability": 0.2824 + }, + { + "start": 10345.6, + "end": 10349.6, + "probability": 0.9772 + }, + { + "start": 10350.35, + "end": 10350.86, + "probability": 0.259 + }, + { + "start": 10350.94, + "end": 10351.85, + "probability": 0.7369 + }, + { + "start": 10352.1, + "end": 10354.74, + "probability": 0.9896 + }, + { + "start": 10354.8, + "end": 10354.96, + "probability": 0.91 + }, + { + "start": 10354.98, + "end": 10355.14, + "probability": 0.1858 + }, + { + "start": 10355.52, + "end": 10355.78, + "probability": 0.7095 + }, + { + "start": 10355.78, + "end": 10359.08, + "probability": 0.6041 + }, + { + "start": 10359.44, + "end": 10362.09, + "probability": 0.8869 + }, + { + "start": 10362.36, + "end": 10363.32, + "probability": 0.9137 + }, + { + "start": 10363.44, + "end": 10364.32, + "probability": 0.9469 + }, + { + "start": 10364.38, + "end": 10365.48, + "probability": 0.6861 + }, + { + "start": 10365.5, + "end": 10365.58, + "probability": 0.2842 + }, + { + "start": 10365.58, + "end": 10366.66, + "probability": 0.6933 + }, + { + "start": 10366.78, + "end": 10367.99, + "probability": 0.2886 + }, + { + "start": 10368.64, + "end": 10370.1, + "probability": 0.9753 + }, + { + "start": 10371.02, + "end": 10371.52, + "probability": 0.8837 + }, + { + "start": 10372.88, + "end": 10376.02, + "probability": 0.8523 + }, + { + "start": 10380.94, + "end": 10381.04, + "probability": 0.0128 + }, + { + "start": 10418.06, + "end": 10420.18, + "probability": 0.124 + }, + { + "start": 10420.52, + "end": 10421.36, + "probability": 0.3902 + }, + { + "start": 10421.54, + "end": 10422.53, + "probability": 0.5196 + }, + { + "start": 10430.7, + "end": 10433.28, + "probability": 0.7069 + }, + { + "start": 10434.42, + "end": 10436.16, + "probability": 0.6675 + }, + { + "start": 10437.56, + "end": 10438.88, + "probability": 0.7867 + }, + { + "start": 10440.26, + "end": 10444.04, + "probability": 0.9903 + }, + { + "start": 10444.66, + "end": 10448.72, + "probability": 0.9442 + }, + { + "start": 10448.86, + "end": 10456.08, + "probability": 0.9006 + }, + { + "start": 10457.06, + "end": 10459.16, + "probability": 0.9902 + }, + { + "start": 10459.82, + "end": 10464.68, + "probability": 0.9993 + }, + { + "start": 10465.78, + "end": 10469.62, + "probability": 0.8673 + }, + { + "start": 10470.38, + "end": 10476.12, + "probability": 0.9817 + }, + { + "start": 10476.96, + "end": 10480.7, + "probability": 0.9959 + }, + { + "start": 10481.04, + "end": 10483.3, + "probability": 0.9489 + }, + { + "start": 10484.24, + "end": 10485.04, + "probability": 0.9416 + }, + { + "start": 10485.12, + "end": 10488.52, + "probability": 0.9758 + }, + { + "start": 10489.1, + "end": 10489.68, + "probability": 0.9753 + }, + { + "start": 10490.16, + "end": 10492.38, + "probability": 0.9872 + }, + { + "start": 10492.96, + "end": 10495.92, + "probability": 0.9928 + }, + { + "start": 10496.62, + "end": 10505.28, + "probability": 0.989 + }, + { + "start": 10506.38, + "end": 10509.5, + "probability": 0.979 + }, + { + "start": 10510.34, + "end": 10513.3, + "probability": 0.8163 + }, + { + "start": 10513.76, + "end": 10515.22, + "probability": 0.9674 + }, + { + "start": 10515.68, + "end": 10517.18, + "probability": 0.8567 + }, + { + "start": 10517.54, + "end": 10518.84, + "probability": 0.9774 + }, + { + "start": 10519.64, + "end": 10520.7, + "probability": 0.6391 + }, + { + "start": 10521.58, + "end": 10523.12, + "probability": 0.8216 + }, + { + "start": 10523.64, + "end": 10525.28, + "probability": 0.7747 + }, + { + "start": 10526.2, + "end": 10526.98, + "probability": 0.8481 + }, + { + "start": 10528.32, + "end": 10529.14, + "probability": 0.9172 + }, + { + "start": 10529.72, + "end": 10533.06, + "probability": 0.9258 + }, + { + "start": 10533.88, + "end": 10539.34, + "probability": 0.8425 + }, + { + "start": 10539.76, + "end": 10541.52, + "probability": 0.9869 + }, + { + "start": 10542.06, + "end": 10543.18, + "probability": 0.8162 + }, + { + "start": 10543.54, + "end": 10545.65, + "probability": 0.846 + }, + { + "start": 10546.36, + "end": 10547.52, + "probability": 0.8262 + }, + { + "start": 10548.66, + "end": 10551.66, + "probability": 0.9741 + }, + { + "start": 10551.86, + "end": 10552.48, + "probability": 0.756 + }, + { + "start": 10552.54, + "end": 10553.67, + "probability": 0.9463 + }, + { + "start": 10554.06, + "end": 10561.54, + "probability": 0.9612 + }, + { + "start": 10561.94, + "end": 10563.18, + "probability": 0.8987 + }, + { + "start": 10563.8, + "end": 10565.44, + "probability": 0.8983 + }, + { + "start": 10566.24, + "end": 10572.2, + "probability": 0.972 + }, + { + "start": 10572.88, + "end": 10574.06, + "probability": 0.9829 + }, + { + "start": 10574.82, + "end": 10576.76, + "probability": 0.974 + }, + { + "start": 10577.22, + "end": 10578.32, + "probability": 0.5012 + }, + { + "start": 10578.5, + "end": 10578.58, + "probability": 0.2713 + }, + { + "start": 10578.88, + "end": 10584.04, + "probability": 0.923 + }, + { + "start": 10584.42, + "end": 10585.82, + "probability": 0.436 + }, + { + "start": 10586.04, + "end": 10586.84, + "probability": 0.8543 + }, + { + "start": 10586.92, + "end": 10588.4, + "probability": 0.9488 + }, + { + "start": 10588.6, + "end": 10589.9, + "probability": 0.3655 + }, + { + "start": 10590.6, + "end": 10592.64, + "probability": 0.8257 + }, + { + "start": 10593.18, + "end": 10594.37, + "probability": 0.9419 + }, + { + "start": 10594.58, + "end": 10597.16, + "probability": 0.9942 + }, + { + "start": 10597.42, + "end": 10600.7, + "probability": 0.9949 + }, + { + "start": 10601.2, + "end": 10603.08, + "probability": 0.9549 + }, + { + "start": 10604.06, + "end": 10605.74, + "probability": 0.779 + }, + { + "start": 10606.98, + "end": 10607.92, + "probability": 0.4332 + }, + { + "start": 10608.68, + "end": 10611.14, + "probability": 0.6821 + }, + { + "start": 10611.56, + "end": 10612.64, + "probability": 0.9337 + }, + { + "start": 10613.0, + "end": 10614.18, + "probability": 0.9536 + }, + { + "start": 10614.28, + "end": 10615.48, + "probability": 0.8835 + }, + { + "start": 10615.92, + "end": 10620.86, + "probability": 0.9802 + }, + { + "start": 10620.88, + "end": 10624.72, + "probability": 0.9484 + }, + { + "start": 10626.04, + "end": 10627.5, + "probability": 0.9727 + }, + { + "start": 10628.24, + "end": 10633.12, + "probability": 0.9935 + }, + { + "start": 10633.78, + "end": 10635.29, + "probability": 0.9883 + }, + { + "start": 10635.44, + "end": 10635.66, + "probability": 0.5756 + }, + { + "start": 10635.66, + "end": 10637.18, + "probability": 0.958 + }, + { + "start": 10637.48, + "end": 10639.14, + "probability": 0.9434 + }, + { + "start": 10639.26, + "end": 10644.18, + "probability": 0.5436 + }, + { + "start": 10644.64, + "end": 10645.94, + "probability": 0.8555 + }, + { + "start": 10646.44, + "end": 10649.0, + "probability": 0.0093 + }, + { + "start": 10649.0, + "end": 10653.74, + "probability": 0.7919 + }, + { + "start": 10654.12, + "end": 10656.0, + "probability": 0.7889 + }, + { + "start": 10656.0, + "end": 10659.52, + "probability": 0.9456 + }, + { + "start": 10660.64, + "end": 10661.98, + "probability": 0.4802 + }, + { + "start": 10662.06, + "end": 10663.39, + "probability": 0.3624 + }, + { + "start": 10663.9, + "end": 10665.98, + "probability": 0.7475 + }, + { + "start": 10666.2, + "end": 10667.62, + "probability": 0.5024 + }, + { + "start": 10667.74, + "end": 10669.92, + "probability": 0.5736 + }, + { + "start": 10669.98, + "end": 10670.32, + "probability": 0.7724 + }, + { + "start": 10670.98, + "end": 10671.6, + "probability": 0.193 + }, + { + "start": 10672.04, + "end": 10672.04, + "probability": 0.5213 + }, + { + "start": 10672.04, + "end": 10672.98, + "probability": 0.1243 + }, + { + "start": 10673.56, + "end": 10675.38, + "probability": 0.3964 + }, + { + "start": 10676.91, + "end": 10680.86, + "probability": 0.7574 + }, + { + "start": 10681.0, + "end": 10682.74, + "probability": 0.0215 + }, + { + "start": 10683.14, + "end": 10683.56, + "probability": 0.2277 + }, + { + "start": 10683.8, + "end": 10686.12, + "probability": 0.6076 + }, + { + "start": 10686.2, + "end": 10688.71, + "probability": 0.4453 + }, + { + "start": 10690.09, + "end": 10694.9, + "probability": 0.9909 + }, + { + "start": 10696.43, + "end": 10699.04, + "probability": 0.8181 + }, + { + "start": 10699.24, + "end": 10704.72, + "probability": 0.7679 + }, + { + "start": 10705.42, + "end": 10705.92, + "probability": 0.8551 + }, + { + "start": 10707.36, + "end": 10710.42, + "probability": 0.9966 + }, + { + "start": 10711.42, + "end": 10713.24, + "probability": 0.5792 + }, + { + "start": 10713.66, + "end": 10717.16, + "probability": 0.6236 + }, + { + "start": 10717.76, + "end": 10722.48, + "probability": 0.9697 + }, + { + "start": 10722.48, + "end": 10724.42, + "probability": 0.7253 + }, + { + "start": 10724.58, + "end": 10727.04, + "probability": 0.8274 + }, + { + "start": 10727.08, + "end": 10729.41, + "probability": 0.6847 + }, + { + "start": 10730.2, + "end": 10731.82, + "probability": 0.7502 + }, + { + "start": 10731.94, + "end": 10735.0, + "probability": 0.7552 + }, + { + "start": 10735.12, + "end": 10735.48, + "probability": 0.142 + }, + { + "start": 10735.48, + "end": 10736.46, + "probability": 0.5124 + }, + { + "start": 10736.7, + "end": 10738.38, + "probability": 0.7936 + }, + { + "start": 10738.56, + "end": 10740.08, + "probability": 0.8706 + }, + { + "start": 10740.22, + "end": 10743.16, + "probability": 0.6182 + }, + { + "start": 10749.92, + "end": 10751.02, + "probability": 0.0141 + }, + { + "start": 10753.22, + "end": 10754.68, + "probability": 0.6346 + }, + { + "start": 10758.36, + "end": 10759.14, + "probability": 0.8206 + }, + { + "start": 10760.3, + "end": 10760.92, + "probability": 0.7137 + }, + { + "start": 10762.44, + "end": 10762.9, + "probability": 0.2862 + }, + { + "start": 10763.66, + "end": 10764.82, + "probability": 0.7886 + }, + { + "start": 10765.92, + "end": 10766.52, + "probability": 0.9619 + }, + { + "start": 10767.4, + "end": 10768.56, + "probability": 0.9272 + }, + { + "start": 10769.44, + "end": 10772.6, + "probability": 0.9402 + }, + { + "start": 10773.36, + "end": 10775.38, + "probability": 0.8418 + }, + { + "start": 10776.7, + "end": 10779.3, + "probability": 0.9812 + }, + { + "start": 10781.0, + "end": 10784.52, + "probability": 0.8898 + }, + { + "start": 10784.52, + "end": 10787.9, + "probability": 0.7582 + }, + { + "start": 10787.9, + "end": 10790.8, + "probability": 0.935 + }, + { + "start": 10791.92, + "end": 10794.32, + "probability": 0.9734 + }, + { + "start": 10796.96, + "end": 10801.24, + "probability": 0.7927 + }, + { + "start": 10802.2, + "end": 10804.6, + "probability": 0.911 + }, + { + "start": 10805.42, + "end": 10807.42, + "probability": 0.9679 + }, + { + "start": 10808.38, + "end": 10810.4, + "probability": 0.991 + }, + { + "start": 10811.36, + "end": 10811.7, + "probability": 0.9972 + }, + { + "start": 10812.64, + "end": 10813.6, + "probability": 0.3011 + }, + { + "start": 10814.18, + "end": 10816.22, + "probability": 0.9629 + }, + { + "start": 10817.28, + "end": 10817.9, + "probability": 0.9948 + }, + { + "start": 10818.54, + "end": 10819.8, + "probability": 0.8165 + }, + { + "start": 10820.86, + "end": 10821.34, + "probability": 0.9919 + }, + { + "start": 10822.0, + "end": 10822.9, + "probability": 0.9675 + }, + { + "start": 10824.4, + "end": 10824.84, + "probability": 0.995 + }, + { + "start": 10825.56, + "end": 10826.44, + "probability": 0.8176 + }, + { + "start": 10827.26, + "end": 10829.34, + "probability": 0.9909 + }, + { + "start": 10830.74, + "end": 10833.14, + "probability": 0.971 + }, + { + "start": 10833.66, + "end": 10834.42, + "probability": 0.9935 + }, + { + "start": 10835.14, + "end": 10836.08, + "probability": 0.778 + }, + { + "start": 10837.24, + "end": 10840.82, + "probability": 0.538 + }, + { + "start": 10842.2, + "end": 10843.08, + "probability": 0.8502 + }, + { + "start": 10844.14, + "end": 10845.92, + "probability": 0.939 + }, + { + "start": 10848.42, + "end": 10849.4, + "probability": 0.9307 + }, + { + "start": 10852.5, + "end": 10858.2, + "probability": 0.9126 + }, + { + "start": 10859.0, + "end": 10860.9, + "probability": 0.901 + }, + { + "start": 10864.84, + "end": 10865.26, + "probability": 0.9771 + }, + { + "start": 10866.1, + "end": 10866.84, + "probability": 0.6368 + }, + { + "start": 10867.68, + "end": 10869.52, + "probability": 0.7343 + }, + { + "start": 10870.24, + "end": 10870.66, + "probability": 0.8088 + }, + { + "start": 10871.32, + "end": 10872.24, + "probability": 0.8974 + }, + { + "start": 10873.68, + "end": 10874.4, + "probability": 0.9621 + }, + { + "start": 10874.94, + "end": 10875.5, + "probability": 0.8476 + }, + { + "start": 10876.82, + "end": 10877.32, + "probability": 0.9937 + }, + { + "start": 10878.12, + "end": 10879.14, + "probability": 0.9263 + }, + { + "start": 10880.22, + "end": 10880.72, + "probability": 0.9972 + }, + { + "start": 10881.28, + "end": 10882.14, + "probability": 0.9862 + }, + { + "start": 10882.86, + "end": 10883.38, + "probability": 0.9902 + }, + { + "start": 10884.06, + "end": 10885.52, + "probability": 0.8328 + }, + { + "start": 10886.5, + "end": 10888.68, + "probability": 0.8594 + }, + { + "start": 10889.78, + "end": 10890.14, + "probability": 0.782 + }, + { + "start": 10891.96, + "end": 10892.94, + "probability": 0.8229 + }, + { + "start": 10894.0, + "end": 10896.06, + "probability": 0.8912 + }, + { + "start": 10897.45, + "end": 10899.26, + "probability": 0.7625 + }, + { + "start": 10900.28, + "end": 10902.68, + "probability": 0.9814 + }, + { + "start": 10903.74, + "end": 10906.42, + "probability": 0.9485 + }, + { + "start": 10907.92, + "end": 10910.62, + "probability": 0.9822 + }, + { + "start": 10911.44, + "end": 10911.9, + "probability": 0.9977 + }, + { + "start": 10912.72, + "end": 10913.94, + "probability": 0.6362 + }, + { + "start": 10915.0, + "end": 10915.26, + "probability": 0.5174 + }, + { + "start": 10916.14, + "end": 10917.08, + "probability": 0.6427 + }, + { + "start": 10917.86, + "end": 10918.32, + "probability": 0.9685 + }, + { + "start": 10919.08, + "end": 10920.18, + "probability": 0.7557 + }, + { + "start": 10921.26, + "end": 10921.7, + "probability": 0.9788 + }, + { + "start": 10922.58, + "end": 10923.5, + "probability": 0.7306 + }, + { + "start": 10924.24, + "end": 10926.18, + "probability": 0.9901 + }, + { + "start": 10927.36, + "end": 10927.76, + "probability": 0.9199 + }, + { + "start": 10928.52, + "end": 10929.32, + "probability": 0.9771 + }, + { + "start": 10930.34, + "end": 10930.76, + "probability": 0.9785 + }, + { + "start": 10931.7, + "end": 10932.43, + "probability": 0.7642 + }, + { + "start": 10933.28, + "end": 10934.26, + "probability": 0.9701 + }, + { + "start": 10935.02, + "end": 10936.18, + "probability": 0.9322 + }, + { + "start": 10936.85, + "end": 10938.34, + "probability": 0.9829 + }, + { + "start": 10940.0, + "end": 10942.04, + "probability": 0.7113 + }, + { + "start": 10942.88, + "end": 10943.7, + "probability": 0.7249 + }, + { + "start": 10945.04, + "end": 10945.82, + "probability": 0.7712 + }, + { + "start": 10946.68, + "end": 10948.06, + "probability": 0.8593 + }, + { + "start": 10949.02, + "end": 10949.98, + "probability": 0.9805 + }, + { + "start": 10950.66, + "end": 10951.52, + "probability": 0.8961 + }, + { + "start": 10953.38, + "end": 10957.3, + "probability": 0.1312 + }, + { + "start": 10957.84, + "end": 10958.48, + "probability": 0.0559 + }, + { + "start": 10959.64, + "end": 10960.4, + "probability": 0.0279 + }, + { + "start": 10960.8, + "end": 10966.5, + "probability": 0.3877 + }, + { + "start": 10966.7, + "end": 10969.3, + "probability": 0.7097 + }, + { + "start": 10972.01, + "end": 10972.13, + "probability": 0.0188 + }, + { + "start": 10973.36, + "end": 10977.98, + "probability": 0.5179 + }, + { + "start": 10978.59, + "end": 10979.81, + "probability": 0.1605 + }, + { + "start": 10984.68, + "end": 10985.52, + "probability": 0.3428 + }, + { + "start": 10986.06, + "end": 10986.68, + "probability": 0.9014 + }, + { + "start": 10987.8, + "end": 10988.92, + "probability": 0.7896 + }, + { + "start": 10990.12, + "end": 10990.68, + "probability": 0.9738 + }, + { + "start": 10991.46, + "end": 10992.26, + "probability": 0.9327 + }, + { + "start": 10993.24, + "end": 10993.72, + "probability": 0.9932 + }, + { + "start": 10994.34, + "end": 10995.2, + "probability": 0.9004 + }, + { + "start": 10996.24, + "end": 10996.68, + "probability": 0.9836 + }, + { + "start": 10997.24, + "end": 10998.26, + "probability": 0.9821 + }, + { + "start": 10999.14, + "end": 10999.56, + "probability": 0.9718 + }, + { + "start": 11000.42, + "end": 11001.32, + "probability": 0.951 + }, + { + "start": 11002.8, + "end": 11006.14, + "probability": 0.7636 + }, + { + "start": 11007.1, + "end": 11007.38, + "probability": 0.709 + }, + { + "start": 11008.64, + "end": 11009.82, + "probability": 0.942 + }, + { + "start": 11010.82, + "end": 11011.16, + "probability": 0.9559 + }, + { + "start": 11011.74, + "end": 11013.0, + "probability": 0.9321 + }, + { + "start": 11013.72, + "end": 11015.72, + "probability": 0.7544 + }, + { + "start": 11016.6, + "end": 11019.12, + "probability": 0.9146 + }, + { + "start": 11022.6, + "end": 11027.24, + "probability": 0.8107 + }, + { + "start": 11030.42, + "end": 11031.24, + "probability": 0.9116 + }, + { + "start": 11031.8, + "end": 11032.96, + "probability": 0.871 + }, + { + "start": 11034.68, + "end": 11035.72, + "probability": 0.6173 + }, + { + "start": 11036.7, + "end": 11037.02, + "probability": 0.9883 + }, + { + "start": 11037.7, + "end": 11038.44, + "probability": 0.8351 + }, + { + "start": 11039.42, + "end": 11039.84, + "probability": 0.9948 + }, + { + "start": 11040.54, + "end": 11041.34, + "probability": 0.8021 + }, + { + "start": 11043.32, + "end": 11047.08, + "probability": 0.7753 + }, + { + "start": 11048.96, + "end": 11049.82, + "probability": 0.964 + }, + { + "start": 11050.36, + "end": 11050.98, + "probability": 0.9714 + }, + { + "start": 11052.56, + "end": 11053.02, + "probability": 0.998 + }, + { + "start": 11054.24, + "end": 11054.74, + "probability": 0.9353 + }, + { + "start": 11056.88, + "end": 11057.28, + "probability": 0.9945 + }, + { + "start": 11059.18, + "end": 11060.46, + "probability": 0.9572 + }, + { + "start": 11061.8, + "end": 11065.52, + "probability": 0.6307 + }, + { + "start": 11066.54, + "end": 11066.86, + "probability": 0.7799 + }, + { + "start": 11067.58, + "end": 11068.88, + "probability": 0.5362 + }, + { + "start": 11070.04, + "end": 11070.48, + "probability": 0.9714 + }, + { + "start": 11071.36, + "end": 11071.5, + "probability": 0.9461 + }, + { + "start": 11073.7, + "end": 11074.98, + "probability": 0.2873 + }, + { + "start": 11077.24, + "end": 11077.9, + "probability": 0.8093 + }, + { + "start": 11079.65, + "end": 11080.84, + "probability": 0.6856 + }, + { + "start": 11081.86, + "end": 11083.94, + "probability": 0.9032 + }, + { + "start": 11085.18, + "end": 11085.62, + "probability": 0.8085 + }, + { + "start": 11086.26, + "end": 11087.34, + "probability": 0.3502 + }, + { + "start": 11090.56, + "end": 11093.44, + "probability": 0.931 + }, + { + "start": 11094.28, + "end": 11094.74, + "probability": 0.9886 + }, + { + "start": 11095.56, + "end": 11098.18, + "probability": 0.5867 + }, + { + "start": 11099.1, + "end": 11100.12, + "probability": 0.9633 + }, + { + "start": 11101.2, + "end": 11101.52, + "probability": 0.9561 + }, + { + "start": 11102.46, + "end": 11103.28, + "probability": 0.7897 + }, + { + "start": 11104.22, + "end": 11104.9, + "probability": 0.7241 + }, + { + "start": 11105.9, + "end": 11106.86, + "probability": 0.4949 + }, + { + "start": 11107.82, + "end": 11110.86, + "probability": 0.9681 + }, + { + "start": 11112.26, + "end": 11114.46, + "probability": 0.9576 + }, + { + "start": 11115.9, + "end": 11116.42, + "probability": 0.9811 + }, + { + "start": 11117.76, + "end": 11118.68, + "probability": 0.8782 + }, + { + "start": 11120.16, + "end": 11120.62, + "probability": 0.9956 + }, + { + "start": 11121.52, + "end": 11122.62, + "probability": 0.963 + }, + { + "start": 11123.86, + "end": 11124.38, + "probability": 0.9912 + }, + { + "start": 11125.2, + "end": 11126.14, + "probability": 0.9073 + }, + { + "start": 11129.34, + "end": 11130.14, + "probability": 0.9356 + }, + { + "start": 11133.62, + "end": 11134.84, + "probability": 0.7256 + }, + { + "start": 11135.36, + "end": 11136.08, + "probability": 0.828 + }, + { + "start": 11136.76, + "end": 11137.62, + "probability": 0.7469 + }, + { + "start": 11142.4, + "end": 11142.86, + "probability": 0.7198 + }, + { + "start": 11145.14, + "end": 11146.04, + "probability": 0.8496 + }, + { + "start": 11147.94, + "end": 11148.4, + "probability": 0.9741 + }, + { + "start": 11149.32, + "end": 11150.22, + "probability": 0.8388 + }, + { + "start": 11151.22, + "end": 11151.7, + "probability": 0.9803 + }, + { + "start": 11152.3, + "end": 11153.06, + "probability": 0.8719 + }, + { + "start": 11154.16, + "end": 11154.62, + "probability": 0.985 + }, + { + "start": 11155.36, + "end": 11156.4, + "probability": 0.9263 + }, + { + "start": 11160.02, + "end": 11160.9, + "probability": 0.9416 + }, + { + "start": 11162.08, + "end": 11163.0, + "probability": 0.6122 + }, + { + "start": 11165.71, + "end": 11168.88, + "probability": 0.9028 + }, + { + "start": 11169.52, + "end": 11169.88, + "probability": 0.9626 + }, + { + "start": 11171.17, + "end": 11173.3, + "probability": 0.9603 + }, + { + "start": 11174.28, + "end": 11174.74, + "probability": 0.9886 + }, + { + "start": 11175.46, + "end": 11176.18, + "probability": 0.9657 + }, + { + "start": 11178.9, + "end": 11179.64, + "probability": 0.9855 + }, + { + "start": 11180.96, + "end": 11182.04, + "probability": 0.9358 + }, + { + "start": 11183.66, + "end": 11184.64, + "probability": 0.9933 + }, + { + "start": 11185.7, + "end": 11187.08, + "probability": 0.7905 + }, + { + "start": 11188.02, + "end": 11191.2, + "probability": 0.6279 + }, + { + "start": 11191.94, + "end": 11192.36, + "probability": 0.7192 + }, + { + "start": 11192.9, + "end": 11194.24, + "probability": 0.7408 + }, + { + "start": 11195.1, + "end": 11197.28, + "probability": 0.9392 + }, + { + "start": 11198.58, + "end": 11199.08, + "probability": 0.9842 + }, + { + "start": 11200.88, + "end": 11205.38, + "probability": 0.738 + }, + { + "start": 11206.99, + "end": 11209.48, + "probability": 0.9677 + }, + { + "start": 11210.42, + "end": 11212.58, + "probability": 0.932 + }, + { + "start": 11214.48, + "end": 11217.36, + "probability": 0.9537 + }, + { + "start": 11221.32, + "end": 11223.16, + "probability": 0.6805 + }, + { + "start": 11223.88, + "end": 11225.12, + "probability": 0.6364 + }, + { + "start": 11226.12, + "end": 11226.42, + "probability": 0.706 + }, + { + "start": 11227.08, + "end": 11228.02, + "probability": 0.8691 + }, + { + "start": 11228.92, + "end": 11231.1, + "probability": 0.9108 + }, + { + "start": 11231.9, + "end": 11234.28, + "probability": 0.7758 + }, + { + "start": 11235.18, + "end": 11237.6, + "probability": 0.3913 + }, + { + "start": 11238.76, + "end": 11240.2, + "probability": 0.58 + }, + { + "start": 11242.5, + "end": 11242.78, + "probability": 0.2495 + }, + { + "start": 11243.04, + "end": 11244.16, + "probability": 0.0096 + }, + { + "start": 11245.1, + "end": 11246.24, + "probability": 0.6175 + }, + { + "start": 11247.46, + "end": 11248.56, + "probability": 0.5731 + }, + { + "start": 11250.56, + "end": 11252.2, + "probability": 0.8562 + }, + { + "start": 11254.16, + "end": 11254.58, + "probability": 0.9518 + }, + { + "start": 11255.5, + "end": 11257.6, + "probability": 0.9167 + }, + { + "start": 11258.14, + "end": 11259.04, + "probability": 0.9069 + }, + { + "start": 11260.04, + "end": 11260.82, + "probability": 0.9787 + }, + { + "start": 11262.68, + "end": 11263.6, + "probability": 0.7613 + }, + { + "start": 11264.16, + "end": 11265.82, + "probability": 0.6544 + }, + { + "start": 11266.76, + "end": 11267.54, + "probability": 0.9389 + }, + { + "start": 11268.76, + "end": 11269.6, + "probability": 0.7431 + }, + { + "start": 11270.32, + "end": 11271.06, + "probability": 0.9364 + }, + { + "start": 11272.76, + "end": 11273.62, + "probability": 0.9224 + }, + { + "start": 11275.74, + "end": 11276.18, + "probability": 0.9932 + }, + { + "start": 11281.0, + "end": 11281.84, + "probability": 0.5953 + }, + { + "start": 11282.98, + "end": 11285.3, + "probability": 0.7322 + }, + { + "start": 11287.2, + "end": 11289.2, + "probability": 0.788 + }, + { + "start": 11290.18, + "end": 11290.96, + "probability": 0.7154 + }, + { + "start": 11292.94, + "end": 11295.12, + "probability": 0.6213 + }, + { + "start": 11295.88, + "end": 11297.98, + "probability": 0.8689 + }, + { + "start": 11298.82, + "end": 11299.8, + "probability": 0.991 + }, + { + "start": 11301.18, + "end": 11302.14, + "probability": 0.9678 + }, + { + "start": 11305.24, + "end": 11306.52, + "probability": 0.9842 + }, + { + "start": 11307.87, + "end": 11309.86, + "probability": 0.8204 + }, + { + "start": 11310.98, + "end": 11311.96, + "probability": 0.763 + }, + { + "start": 11313.96, + "end": 11315.52, + "probability": 0.9363 + }, + { + "start": 11316.08, + "end": 11316.74, + "probability": 0.7722 + }, + { + "start": 11317.9, + "end": 11319.66, + "probability": 0.9008 + }, + { + "start": 11320.96, + "end": 11322.72, + "probability": 0.6266 + }, + { + "start": 11323.76, + "end": 11324.46, + "probability": 0.9918 + }, + { + "start": 11325.12, + "end": 11326.12, + "probability": 0.7571 + }, + { + "start": 11327.02, + "end": 11327.88, + "probability": 0.977 + }, + { + "start": 11328.8, + "end": 11329.72, + "probability": 0.6659 + }, + { + "start": 11331.64, + "end": 11332.12, + "probability": 0.9199 + }, + { + "start": 11333.36, + "end": 11334.4, + "probability": 0.8672 + }, + { + "start": 11336.34, + "end": 11340.62, + "probability": 0.9219 + }, + { + "start": 11341.24, + "end": 11342.04, + "probability": 0.4655 + }, + { + "start": 11345.1, + "end": 11345.44, + "probability": 0.6215 + }, + { + "start": 11346.72, + "end": 11347.3, + "probability": 0.5761 + }, + { + "start": 11348.92, + "end": 11351.6, + "probability": 0.6698 + }, + { + "start": 11352.06, + "end": 11352.84, + "probability": 0.3452 + }, + { + "start": 11353.16, + "end": 11354.22, + "probability": 0.9369 + }, + { + "start": 11354.88, + "end": 11354.96, + "probability": 0.9734 + }, + { + "start": 11362.32, + "end": 11363.4, + "probability": 0.4534 + }, + { + "start": 11364.68, + "end": 11365.4, + "probability": 0.744 + }, + { + "start": 11365.66, + "end": 11368.5, + "probability": 0.3567 + }, + { + "start": 11368.58, + "end": 11369.38, + "probability": 0.3328 + }, + { + "start": 11369.72, + "end": 11369.96, + "probability": 0.0937 + }, + { + "start": 11378.88, + "end": 11380.76, + "probability": 0.0606 + }, + { + "start": 11381.82, + "end": 11381.84, + "probability": 0.0572 + }, + { + "start": 11384.32, + "end": 11384.42, + "probability": 0.0742 + }, + { + "start": 11385.28, + "end": 11385.28, + "probability": 0.1471 + }, + { + "start": 11388.04, + "end": 11388.04, + "probability": 0.3111 + }, + { + "start": 11399.8, + "end": 11400.48, + "probability": 0.0436 + }, + { + "start": 11457.06, + "end": 11457.2, + "probability": 0.0601 + }, + { + "start": 11457.24, + "end": 11457.56, + "probability": 0.0086 + }, + { + "start": 11459.48, + "end": 11459.82, + "probability": 0.0219 + }, + { + "start": 11459.88, + "end": 11459.88, + "probability": 0.0521 + }, + { + "start": 11459.88, + "end": 11461.6, + "probability": 0.652 + }, + { + "start": 11463.98, + "end": 11465.44, + "probability": 0.5301 + }, + { + "start": 11466.06, + "end": 11466.44, + "probability": 0.4957 + }, + { + "start": 11484.53, + "end": 11485.2, + "probability": 0.525 + }, + { + "start": 11488.76, + "end": 11488.86, + "probability": 0.2888 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.0, + "end": 11590.0, + "probability": 0.0 + }, + { + "start": 11590.36, + "end": 11590.84, + "probability": 0.0285 + }, + { + "start": 11591.8, + "end": 11591.8, + "probability": 0.0642 + }, + { + "start": 11591.8, + "end": 11597.06, + "probability": 0.4678 + }, + { + "start": 11599.74, + "end": 11600.04, + "probability": 0.0201 + }, + { + "start": 11600.04, + "end": 11600.04, + "probability": 0.3172 + }, + { + "start": 11600.04, + "end": 11601.14, + "probability": 0.1492 + }, + { + "start": 11601.84, + "end": 11604.3, + "probability": 0.9509 + }, + { + "start": 11604.48, + "end": 11606.96, + "probability": 0.5806 + }, + { + "start": 11607.08, + "end": 11607.8, + "probability": 0.5703 + }, + { + "start": 11608.86, + "end": 11611.78, + "probability": 0.7902 + }, + { + "start": 11612.48, + "end": 11614.16, + "probability": 0.9207 + }, + { + "start": 11614.84, + "end": 11618.76, + "probability": 0.9924 + }, + { + "start": 11619.38, + "end": 11621.74, + "probability": 0.9331 + }, + { + "start": 11622.26, + "end": 11624.26, + "probability": 0.8963 + }, + { + "start": 11624.86, + "end": 11626.24, + "probability": 0.8857 + }, + { + "start": 11627.14, + "end": 11629.04, + "probability": 0.5097 + }, + { + "start": 11629.9, + "end": 11631.08, + "probability": 0.5586 + }, + { + "start": 11631.9, + "end": 11633.36, + "probability": 0.9625 + }, + { + "start": 11633.86, + "end": 11641.58, + "probability": 0.8465 + }, + { + "start": 11642.24, + "end": 11644.6, + "probability": 0.9872 + }, + { + "start": 11645.34, + "end": 11654.0, + "probability": 0.9788 + }, + { + "start": 11654.8, + "end": 11656.16, + "probability": 0.6903 + }, + { + "start": 11656.78, + "end": 11658.14, + "probability": 0.5735 + }, + { + "start": 11658.92, + "end": 11659.06, + "probability": 0.5099 + }, + { + "start": 11659.7, + "end": 11660.5, + "probability": 0.8071 + }, + { + "start": 11661.58, + "end": 11663.21, + "probability": 0.6873 + }, + { + "start": 11664.06, + "end": 11664.8, + "probability": 0.5218 + }, + { + "start": 11665.56, + "end": 11668.06, + "probability": 0.9845 + }, + { + "start": 11668.58, + "end": 11675.22, + "probability": 0.9708 + }, + { + "start": 11675.28, + "end": 11675.98, + "probability": 0.9521 + }, + { + "start": 11676.08, + "end": 11676.82, + "probability": 0.7155 + }, + { + "start": 11677.3, + "end": 11678.3, + "probability": 0.7132 + }, + { + "start": 11678.74, + "end": 11684.7, + "probability": 0.8176 + }, + { + "start": 11685.22, + "end": 11687.24, + "probability": 0.9357 + }, + { + "start": 11687.82, + "end": 11692.72, + "probability": 0.9558 + }, + { + "start": 11693.24, + "end": 11696.84, + "probability": 0.9884 + }, + { + "start": 11697.42, + "end": 11698.9, + "probability": 0.2331 + }, + { + "start": 11699.4, + "end": 11702.74, + "probability": 0.9909 + }, + { + "start": 11703.52, + "end": 11704.36, + "probability": 0.661 + }, + { + "start": 11705.36, + "end": 11710.26, + "probability": 0.8991 + }, + { + "start": 11710.4, + "end": 11711.92, + "probability": 0.7091 + }, + { + "start": 11712.12, + "end": 11715.96, + "probability": 0.7693 + }, + { + "start": 11716.82, + "end": 11718.71, + "probability": 0.9978 + }, + { + "start": 11719.26, + "end": 11720.3, + "probability": 0.7063 + }, + { + "start": 11720.88, + "end": 11723.9, + "probability": 0.8167 + }, + { + "start": 11724.5, + "end": 11726.02, + "probability": 0.9375 + }, + { + "start": 11726.46, + "end": 11728.16, + "probability": 0.8708 + }, + { + "start": 11728.44, + "end": 11729.26, + "probability": 0.9818 + }, + { + "start": 11729.36, + "end": 11729.98, + "probability": 0.9334 + }, + { + "start": 11729.98, + "end": 11730.72, + "probability": 0.8416 + }, + { + "start": 11730.76, + "end": 11731.74, + "probability": 0.6279 + }, + { + "start": 11732.48, + "end": 11734.28, + "probability": 0.9082 + }, + { + "start": 11734.96, + "end": 11735.44, + "probability": 0.7642 + }, + { + "start": 11736.42, + "end": 11737.94, + "probability": 0.9676 + }, + { + "start": 11738.78, + "end": 11739.41, + "probability": 0.9905 + }, + { + "start": 11739.96, + "end": 11741.16, + "probability": 0.7599 + }, + { + "start": 11742.02, + "end": 11743.16, + "probability": 0.9922 + }, + { + "start": 11743.88, + "end": 11746.66, + "probability": 0.9578 + }, + { + "start": 11747.72, + "end": 11749.34, + "probability": 0.5071 + }, + { + "start": 11749.38, + "end": 11750.2, + "probability": 0.7649 + }, + { + "start": 11750.48, + "end": 11752.9, + "probability": 0.9541 + }, + { + "start": 11753.6, + "end": 11755.44, + "probability": 0.9958 + }, + { + "start": 11755.86, + "end": 11757.12, + "probability": 0.9033 + }, + { + "start": 11757.46, + "end": 11759.54, + "probability": 0.814 + }, + { + "start": 11760.26, + "end": 11760.76, + "probability": 0.8914 + }, + { + "start": 11763.12, + "end": 11764.66, + "probability": 0.583 + }, + { + "start": 11764.78, + "end": 11766.16, + "probability": 0.9052 + }, + { + "start": 11767.22, + "end": 11768.58, + "probability": 0.7918 + }, + { + "start": 11769.32, + "end": 11771.18, + "probability": 0.9827 + }, + { + "start": 11771.84, + "end": 11775.02, + "probability": 0.9761 + }, + { + "start": 11775.56, + "end": 11777.52, + "probability": 0.3418 + }, + { + "start": 11777.54, + "end": 11777.54, + "probability": 0.0868 + }, + { + "start": 11777.58, + "end": 11783.86, + "probability": 0.9069 + }, + { + "start": 11784.08, + "end": 11787.8, + "probability": 0.8586 + }, + { + "start": 11787.82, + "end": 11788.22, + "probability": 0.1727 + }, + { + "start": 11788.46, + "end": 11791.68, + "probability": 0.1632 + }, + { + "start": 11792.18, + "end": 11793.72, + "probability": 0.4519 + }, + { + "start": 11794.28, + "end": 11798.92, + "probability": 0.635 + }, + { + "start": 11799.18, + "end": 11802.26, + "probability": 0.1508 + }, + { + "start": 11803.4, + "end": 11803.62, + "probability": 0.398 + }, + { + "start": 11804.4, + "end": 11804.7, + "probability": 0.0179 + }, + { + "start": 11806.34, + "end": 11808.42, + "probability": 0.8927 + }, + { + "start": 11808.62, + "end": 11810.75, + "probability": 0.8607 + }, + { + "start": 11811.16, + "end": 11813.73, + "probability": 0.5505 + }, + { + "start": 11814.08, + "end": 11818.24, + "probability": 0.9121 + }, + { + "start": 11819.24, + "end": 11823.94, + "probability": 0.0282 + }, + { + "start": 11824.12, + "end": 11825.2, + "probability": 0.168 + }, + { + "start": 11825.2, + "end": 11825.42, + "probability": 0.2842 + }, + { + "start": 11825.42, + "end": 11826.66, + "probability": 0.2097 + }, + { + "start": 11826.9, + "end": 11828.02, + "probability": 0.5698 + }, + { + "start": 11828.06, + "end": 11828.5, + "probability": 0.3324 + }, + { + "start": 11828.76, + "end": 11834.72, + "probability": 0.2715 + }, + { + "start": 11835.06, + "end": 11837.94, + "probability": 0.8746 + }, + { + "start": 11838.02, + "end": 11840.44, + "probability": 0.3848 + }, + { + "start": 11841.2, + "end": 11842.08, + "probability": 0.6804 + }, + { + "start": 11842.12, + "end": 11843.04, + "probability": 0.4481 + }, + { + "start": 11843.04, + "end": 11844.06, + "probability": 0.0916 + }, + { + "start": 11844.06, + "end": 11849.2, + "probability": 0.9587 + }, + { + "start": 11849.58, + "end": 11850.38, + "probability": 0.6039 + }, + { + "start": 11850.76, + "end": 11851.14, + "probability": 0.7908 + }, + { + "start": 11852.48, + "end": 11853.66, + "probability": 0.8221 + }, + { + "start": 11853.9, + "end": 11858.16, + "probability": 0.986 + }, + { + "start": 11858.16, + "end": 11860.54, + "probability": 0.9988 + }, + { + "start": 11861.4, + "end": 11863.64, + "probability": 0.9814 + }, + { + "start": 11864.32, + "end": 11865.14, + "probability": 0.9639 + }, + { + "start": 11866.42, + "end": 11868.04, + "probability": 0.7289 + }, + { + "start": 11869.4, + "end": 11871.86, + "probability": 0.6886 + }, + { + "start": 11872.04, + "end": 11876.3, + "probability": 0.8449 + }, + { + "start": 11876.3, + "end": 11879.78, + "probability": 0.9396 + }, + { + "start": 11879.96, + "end": 11883.1, + "probability": 0.872 + }, + { + "start": 11884.2, + "end": 11885.64, + "probability": 0.9839 + }, + { + "start": 11886.67, + "end": 11891.2, + "probability": 0.9756 + }, + { + "start": 11891.2, + "end": 11895.64, + "probability": 0.996 + }, + { + "start": 11895.92, + "end": 11898.8, + "probability": 0.998 + }, + { + "start": 11899.74, + "end": 11904.14, + "probability": 0.9964 + }, + { + "start": 11904.84, + "end": 11905.88, + "probability": 0.9998 + }, + { + "start": 11906.7, + "end": 11912.34, + "probability": 0.9986 + }, + { + "start": 11913.28, + "end": 11913.74, + "probability": 0.1006 + }, + { + "start": 11914.3, + "end": 11915.24, + "probability": 0.7632 + }, + { + "start": 11915.34, + "end": 11916.79, + "probability": 0.1206 + }, + { + "start": 11917.4, + "end": 11917.92, + "probability": 0.4461 + }, + { + "start": 11917.98, + "end": 11919.21, + "probability": 0.3434 + }, + { + "start": 11919.64, + "end": 11922.9, + "probability": 0.744 + }, + { + "start": 11922.9, + "end": 11925.24, + "probability": 0.8506 + }, + { + "start": 11926.6, + "end": 11928.68, + "probability": 0.7971 + }, + { + "start": 11929.24, + "end": 11930.82, + "probability": 0.8886 + }, + { + "start": 11942.04, + "end": 11943.18, + "probability": 0.832 + }, + { + "start": 11957.58, + "end": 11958.64, + "probability": 0.6187 + }, + { + "start": 11961.42, + "end": 11962.3, + "probability": 0.8035 + }, + { + "start": 11963.06, + "end": 11965.24, + "probability": 0.6804 + }, + { + "start": 11965.46, + "end": 11968.4, + "probability": 0.9639 + }, + { + "start": 11968.56, + "end": 11971.16, + "probability": 0.9958 + }, + { + "start": 11974.69, + "end": 11976.16, + "probability": 0.7576 + }, + { + "start": 11976.24, + "end": 11976.87, + "probability": 0.8758 + }, + { + "start": 11977.26, + "end": 11979.22, + "probability": 0.2099 + }, + { + "start": 11981.64, + "end": 11983.68, + "probability": 0.6995 + }, + { + "start": 11985.74, + "end": 11989.24, + "probability": 0.9958 + }, + { + "start": 11989.66, + "end": 11990.4, + "probability": 0.42 + }, + { + "start": 11991.54, + "end": 11993.6, + "probability": 0.9105 + }, + { + "start": 11994.6, + "end": 11997.28, + "probability": 0.959 + }, + { + "start": 11997.38, + "end": 11997.66, + "probability": 0.9814 + }, + { + "start": 11998.24, + "end": 12000.26, + "probability": 0.9968 + }, + { + "start": 12001.48, + "end": 12003.42, + "probability": 0.9895 + }, + { + "start": 12005.02, + "end": 12005.3, + "probability": 0.4082 + }, + { + "start": 12007.1, + "end": 12009.94, + "probability": 0.8885 + }, + { + "start": 12010.76, + "end": 12015.58, + "probability": 0.9889 + }, + { + "start": 12016.9, + "end": 12017.86, + "probability": 0.9852 + }, + { + "start": 12019.14, + "end": 12021.14, + "probability": 0.8219 + }, + { + "start": 12022.96, + "end": 12025.06, + "probability": 0.9349 + }, + { + "start": 12025.94, + "end": 12028.52, + "probability": 0.9954 + }, + { + "start": 12029.22, + "end": 12031.28, + "probability": 0.9994 + }, + { + "start": 12031.92, + "end": 12033.94, + "probability": 0.9751 + }, + { + "start": 12033.96, + "end": 12034.18, + "probability": 0.4568 + }, + { + "start": 12034.2, + "end": 12036.62, + "probability": 0.7996 + }, + { + "start": 12036.84, + "end": 12037.78, + "probability": 0.8587 + }, + { + "start": 12037.88, + "end": 12038.66, + "probability": 0.9709 + }, + { + "start": 12038.74, + "end": 12039.36, + "probability": 0.7871 + }, + { + "start": 12040.5, + "end": 12044.14, + "probability": 0.9817 + }, + { + "start": 12045.06, + "end": 12050.36, + "probability": 0.9902 + }, + { + "start": 12051.86, + "end": 12052.38, + "probability": 0.3602 + }, + { + "start": 12053.18, + "end": 12055.4, + "probability": 0.9784 + }, + { + "start": 12056.34, + "end": 12057.44, + "probability": 0.9099 + }, + { + "start": 12058.5, + "end": 12060.44, + "probability": 0.9434 + }, + { + "start": 12060.9, + "end": 12062.3, + "probability": 0.9834 + }, + { + "start": 12063.44, + "end": 12064.16, + "probability": 0.9819 + }, + { + "start": 12064.9, + "end": 12065.96, + "probability": 0.9785 + }, + { + "start": 12066.32, + "end": 12066.88, + "probability": 0.8199 + }, + { + "start": 12067.36, + "end": 12068.36, + "probability": 0.9458 + }, + { + "start": 12068.46, + "end": 12069.5, + "probability": 0.7664 + }, + { + "start": 12069.52, + "end": 12070.04, + "probability": 0.8517 + }, + { + "start": 12070.44, + "end": 12071.22, + "probability": 0.6707 + }, + { + "start": 12071.9, + "end": 12072.82, + "probability": 0.9854 + }, + { + "start": 12073.62, + "end": 12075.12, + "probability": 0.9375 + }, + { + "start": 12075.68, + "end": 12077.62, + "probability": 0.9635 + }, + { + "start": 12078.56, + "end": 12079.6, + "probability": 0.8994 + }, + { + "start": 12080.44, + "end": 12084.98, + "probability": 0.829 + }, + { + "start": 12085.54, + "end": 12087.82, + "probability": 0.984 + }, + { + "start": 12088.88, + "end": 12089.88, + "probability": 0.6973 + }, + { + "start": 12090.68, + "end": 12093.12, + "probability": 0.8848 + }, + { + "start": 12093.9, + "end": 12096.5, + "probability": 0.9778 + }, + { + "start": 12097.4, + "end": 12100.08, + "probability": 0.992 + }, + { + "start": 12100.56, + "end": 12101.08, + "probability": 0.8317 + }, + { + "start": 12101.16, + "end": 12101.52, + "probability": 0.6616 + }, + { + "start": 12102.86, + "end": 12103.4, + "probability": 0.6104 + }, + { + "start": 12103.62, + "end": 12107.66, + "probability": 0.9968 + }, + { + "start": 12108.6, + "end": 12110.82, + "probability": 0.8812 + }, + { + "start": 12111.8, + "end": 12116.76, + "probability": 0.8066 + }, + { + "start": 12117.44, + "end": 12120.14, + "probability": 0.9941 + }, + { + "start": 12121.54, + "end": 12125.22, + "probability": 0.9672 + }, + { + "start": 12125.76, + "end": 12128.7, + "probability": 0.9847 + }, + { + "start": 12129.88, + "end": 12130.34, + "probability": 0.6834 + }, + { + "start": 12130.46, + "end": 12131.08, + "probability": 0.8754 + }, + { + "start": 12131.14, + "end": 12135.14, + "probability": 0.9916 + }, + { + "start": 12136.48, + "end": 12138.32, + "probability": 0.9474 + }, + { + "start": 12139.28, + "end": 12141.62, + "probability": 0.9268 + }, + { + "start": 12146.26, + "end": 12147.8, + "probability": 0.9965 + }, + { + "start": 12149.64, + "end": 12150.66, + "probability": 0.9269 + }, + { + "start": 12151.73, + "end": 12154.0, + "probability": 0.778 + }, + { + "start": 12159.92, + "end": 12161.05, + "probability": 0.8268 + }, + { + "start": 12161.56, + "end": 12163.1, + "probability": 0.9469 + }, + { + "start": 12163.98, + "end": 12165.62, + "probability": 0.9222 + }, + { + "start": 12166.76, + "end": 12168.28, + "probability": 0.82 + }, + { + "start": 12170.18, + "end": 12171.96, + "probability": 0.9979 + }, + { + "start": 12173.44, + "end": 12174.44, + "probability": 0.9764 + }, + { + "start": 12174.6, + "end": 12175.74, + "probability": 0.9982 + }, + { + "start": 12175.8, + "end": 12177.82, + "probability": 0.9882 + }, + { + "start": 12178.82, + "end": 12181.58, + "probability": 0.9316 + }, + { + "start": 12181.58, + "end": 12184.28, + "probability": 0.9819 + }, + { + "start": 12184.94, + "end": 12185.6, + "probability": 0.5271 + }, + { + "start": 12185.98, + "end": 12190.4, + "probability": 0.8275 + }, + { + "start": 12190.4, + "end": 12190.82, + "probability": 0.3998 + }, + { + "start": 12191.06, + "end": 12192.57, + "probability": 0.9844 + }, + { + "start": 12192.96, + "end": 12195.26, + "probability": 0.8435 + }, + { + "start": 12196.86, + "end": 12198.06, + "probability": 0.8542 + }, + { + "start": 12199.06, + "end": 12202.2, + "probability": 0.9934 + }, + { + "start": 12203.7, + "end": 12204.61, + "probability": 0.9213 + }, + { + "start": 12205.7, + "end": 12211.62, + "probability": 0.9929 + }, + { + "start": 12211.62, + "end": 12215.04, + "probability": 0.9985 + }, + { + "start": 12215.86, + "end": 12218.36, + "probability": 0.998 + }, + { + "start": 12220.68, + "end": 12222.04, + "probability": 0.7234 + }, + { + "start": 12222.3, + "end": 12222.46, + "probability": 0.6226 + }, + { + "start": 12223.84, + "end": 12224.66, + "probability": 0.53 + }, + { + "start": 12224.74, + "end": 12227.76, + "probability": 0.9977 + }, + { + "start": 12227.76, + "end": 12231.72, + "probability": 0.9912 + }, + { + "start": 12232.62, + "end": 12234.16, + "probability": 0.7653 + }, + { + "start": 12236.0, + "end": 12240.78, + "probability": 0.9801 + }, + { + "start": 12241.56, + "end": 12242.46, + "probability": 0.6409 + }, + { + "start": 12244.2, + "end": 12244.62, + "probability": 0.7421 + }, + { + "start": 12245.22, + "end": 12248.3, + "probability": 0.9938 + }, + { + "start": 12252.66, + "end": 12257.26, + "probability": 0.9912 + }, + { + "start": 12257.9, + "end": 12261.01, + "probability": 0.9451 + }, + { + "start": 12261.06, + "end": 12263.94, + "probability": 0.9971 + }, + { + "start": 12266.92, + "end": 12267.8, + "probability": 0.4997 + }, + { + "start": 12268.12, + "end": 12270.0, + "probability": 0.9976 + }, + { + "start": 12270.3, + "end": 12270.96, + "probability": 0.7017 + }, + { + "start": 12271.02, + "end": 12271.42, + "probability": 0.7977 + }, + { + "start": 12271.52, + "end": 12273.38, + "probability": 0.8357 + }, + { + "start": 12275.42, + "end": 12277.88, + "probability": 0.9138 + }, + { + "start": 12278.14, + "end": 12280.24, + "probability": 0.9722 + }, + { + "start": 12281.38, + "end": 12283.86, + "probability": 0.9837 + }, + { + "start": 12284.76, + "end": 12289.18, + "probability": 0.744 + }, + { + "start": 12289.3, + "end": 12290.4, + "probability": 0.8674 + }, + { + "start": 12291.46, + "end": 12292.26, + "probability": 0.8494 + }, + { + "start": 12293.32, + "end": 12294.07, + "probability": 0.9951 + }, + { + "start": 12294.56, + "end": 12296.14, + "probability": 0.9724 + }, + { + "start": 12297.62, + "end": 12300.5, + "probability": 0.8782 + }, + { + "start": 12301.64, + "end": 12302.3, + "probability": 0.6612 + }, + { + "start": 12306.12, + "end": 12310.78, + "probability": 0.8525 + }, + { + "start": 12311.62, + "end": 12313.68, + "probability": 0.9913 + }, + { + "start": 12316.46, + "end": 12319.04, + "probability": 0.9984 + }, + { + "start": 12319.18, + "end": 12319.54, + "probability": 0.7209 + }, + { + "start": 12320.62, + "end": 12322.5, + "probability": 0.9552 + }, + { + "start": 12322.92, + "end": 12325.08, + "probability": 0.9746 + }, + { + "start": 12331.04, + "end": 12332.3, + "probability": 0.9921 + }, + { + "start": 12333.08, + "end": 12336.06, + "probability": 0.9591 + }, + { + "start": 12336.94, + "end": 12340.2, + "probability": 0.9619 + }, + { + "start": 12341.06, + "end": 12343.2, + "probability": 0.8416 + }, + { + "start": 12344.67, + "end": 12349.22, + "probability": 0.9027 + }, + { + "start": 12350.14, + "end": 12351.88, + "probability": 0.8988 + }, + { + "start": 12354.48, + "end": 12356.86, + "probability": 0.998 + }, + { + "start": 12357.4, + "end": 12359.7, + "probability": 0.9964 + }, + { + "start": 12361.14, + "end": 12363.08, + "probability": 0.9977 + }, + { + "start": 12364.28, + "end": 12366.68, + "probability": 0.9989 + }, + { + "start": 12370.26, + "end": 12370.72, + "probability": 0.6362 + }, + { + "start": 12370.78, + "end": 12373.44, + "probability": 0.9977 + }, + { + "start": 12373.44, + "end": 12376.5, + "probability": 0.978 + }, + { + "start": 12376.96, + "end": 12379.99, + "probability": 0.9883 + }, + { + "start": 12381.54, + "end": 12383.48, + "probability": 0.9584 + }, + { + "start": 12384.94, + "end": 12385.36, + "probability": 0.6885 + }, + { + "start": 12385.88, + "end": 12386.72, + "probability": 0.9888 + }, + { + "start": 12387.76, + "end": 12391.16, + "probability": 0.9388 + }, + { + "start": 12391.98, + "end": 12395.66, + "probability": 0.9896 + }, + { + "start": 12395.66, + "end": 12399.5, + "probability": 0.9954 + }, + { + "start": 12401.22, + "end": 12403.64, + "probability": 0.9417 + }, + { + "start": 12403.94, + "end": 12405.6, + "probability": 0.9937 + }, + { + "start": 12406.56, + "end": 12406.88, + "probability": 0.8419 + }, + { + "start": 12409.12, + "end": 12411.72, + "probability": 0.7699 + }, + { + "start": 12413.06, + "end": 12417.56, + "probability": 0.714 + }, + { + "start": 12443.88, + "end": 12444.24, + "probability": 0.5388 + }, + { + "start": 12445.42, + "end": 12446.04, + "probability": 0.4268 + }, + { + "start": 12447.22, + "end": 12447.72, + "probability": 0.8347 + }, + { + "start": 12448.32, + "end": 12451.6, + "probability": 0.9344 + }, + { + "start": 12452.86, + "end": 12458.7, + "probability": 0.9764 + }, + { + "start": 12458.7, + "end": 12462.98, + "probability": 0.9902 + }, + { + "start": 12464.0, + "end": 12467.08, + "probability": 0.8206 + }, + { + "start": 12467.9, + "end": 12469.86, + "probability": 0.895 + }, + { + "start": 12470.9, + "end": 12474.46, + "probability": 0.9531 + }, + { + "start": 12474.7, + "end": 12476.36, + "probability": 0.9941 + }, + { + "start": 12477.38, + "end": 12478.76, + "probability": 0.9827 + }, + { + "start": 12479.22, + "end": 12481.24, + "probability": 0.8485 + }, + { + "start": 12481.62, + "end": 12484.64, + "probability": 0.7403 + }, + { + "start": 12484.96, + "end": 12485.48, + "probability": 0.4763 + }, + { + "start": 12485.5, + "end": 12486.92, + "probability": 0.9434 + }, + { + "start": 12487.58, + "end": 12488.22, + "probability": 0.9274 + }, + { + "start": 12488.5, + "end": 12489.96, + "probability": 0.9587 + }, + { + "start": 12490.42, + "end": 12494.14, + "probability": 0.9945 + }, + { + "start": 12495.34, + "end": 12499.0, + "probability": 0.9938 + }, + { + "start": 12499.2, + "end": 12503.1, + "probability": 0.9523 + }, + { + "start": 12503.56, + "end": 12505.46, + "probability": 0.8716 + }, + { + "start": 12505.92, + "end": 12507.38, + "probability": 0.7353 + }, + { + "start": 12507.82, + "end": 12510.78, + "probability": 0.952 + }, + { + "start": 12510.8, + "end": 12514.44, + "probability": 0.9804 + }, + { + "start": 12514.92, + "end": 12515.32, + "probability": 0.9361 + }, + { + "start": 12515.94, + "end": 12521.28, + "probability": 0.9963 + }, + { + "start": 12521.84, + "end": 12524.72, + "probability": 0.9668 + }, + { + "start": 12524.92, + "end": 12529.84, + "probability": 0.8784 + }, + { + "start": 12531.56, + "end": 12535.12, + "probability": 0.9321 + }, + { + "start": 12536.16, + "end": 12540.1, + "probability": 0.9331 + }, + { + "start": 12540.68, + "end": 12543.52, + "probability": 0.9976 + }, + { + "start": 12544.22, + "end": 12545.72, + "probability": 0.7095 + }, + { + "start": 12546.34, + "end": 12546.9, + "probability": 0.738 + }, + { + "start": 12547.3, + "end": 12554.18, + "probability": 0.9796 + }, + { + "start": 12554.98, + "end": 12557.74, + "probability": 0.7108 + }, + { + "start": 12559.64, + "end": 12563.12, + "probability": 0.5342 + }, + { + "start": 12563.82, + "end": 12563.92, + "probability": 0.8801 + }, + { + "start": 12564.68, + "end": 12566.74, + "probability": 0.8905 + }, + { + "start": 12567.28, + "end": 12572.9, + "probability": 0.9114 + }, + { + "start": 12573.36, + "end": 12577.6, + "probability": 0.9659 + }, + { + "start": 12578.04, + "end": 12580.14, + "probability": 0.5458 + }, + { + "start": 12580.58, + "end": 12583.82, + "probability": 0.9927 + }, + { + "start": 12584.38, + "end": 12586.64, + "probability": 0.8994 + }, + { + "start": 12587.7, + "end": 12589.9, + "probability": 0.9636 + }, + { + "start": 12589.9, + "end": 12593.06, + "probability": 0.9849 + }, + { + "start": 12593.44, + "end": 12594.56, + "probability": 0.8692 + }, + { + "start": 12595.28, + "end": 12599.36, + "probability": 0.9929 + }, + { + "start": 12599.36, + "end": 12603.92, + "probability": 0.9971 + }, + { + "start": 12605.72, + "end": 12608.38, + "probability": 0.925 + }, + { + "start": 12609.14, + "end": 12611.9, + "probability": 0.9728 + }, + { + "start": 12612.44, + "end": 12615.1, + "probability": 0.9158 + }, + { + "start": 12615.84, + "end": 12616.2, + "probability": 0.8352 + }, + { + "start": 12616.28, + "end": 12616.64, + "probability": 0.8153 + }, + { + "start": 12616.92, + "end": 12617.5, + "probability": 0.9705 + }, + { + "start": 12617.64, + "end": 12620.7, + "probability": 0.9889 + }, + { + "start": 12621.2, + "end": 12624.56, + "probability": 0.8658 + }, + { + "start": 12624.64, + "end": 12625.18, + "probability": 0.8637 + }, + { + "start": 12625.76, + "end": 12628.44, + "probability": 0.9956 + }, + { + "start": 12628.44, + "end": 12632.34, + "probability": 0.9932 + }, + { + "start": 12632.34, + "end": 12637.68, + "probability": 0.9784 + }, + { + "start": 12638.52, + "end": 12643.72, + "probability": 0.8436 + }, + { + "start": 12643.72, + "end": 12644.84, + "probability": 0.5219 + }, + { + "start": 12645.2, + "end": 12648.42, + "probability": 0.777 + }, + { + "start": 12648.74, + "end": 12651.43, + "probability": 0.9402 + }, + { + "start": 12651.76, + "end": 12654.92, + "probability": 0.9877 + }, + { + "start": 12656.34, + "end": 12656.76, + "probability": 0.6959 + }, + { + "start": 12657.78, + "end": 12660.84, + "probability": 0.9973 + }, + { + "start": 12660.84, + "end": 12663.76, + "probability": 0.9969 + }, + { + "start": 12663.88, + "end": 12665.78, + "probability": 0.9366 + }, + { + "start": 12666.3, + "end": 12667.14, + "probability": 0.9656 + }, + { + "start": 12667.3, + "end": 12667.92, + "probability": 0.7602 + }, + { + "start": 12667.98, + "end": 12670.4, + "probability": 0.9731 + }, + { + "start": 12670.44, + "end": 12675.06, + "probability": 0.9948 + }, + { + "start": 12675.8, + "end": 12680.8, + "probability": 0.8942 + }, + { + "start": 12681.84, + "end": 12682.96, + "probability": 0.8784 + }, + { + "start": 12683.52, + "end": 12684.26, + "probability": 0.7752 + }, + { + "start": 12684.56, + "end": 12687.58, + "probability": 0.9929 + }, + { + "start": 12687.78, + "end": 12688.8, + "probability": 0.938 + }, + { + "start": 12689.4, + "end": 12690.1, + "probability": 0.7845 + }, + { + "start": 12691.32, + "end": 12692.5, + "probability": 0.7258 + }, + { + "start": 12692.74, + "end": 12694.78, + "probability": 0.8971 + }, + { + "start": 12694.98, + "end": 12696.56, + "probability": 0.8675 + }, + { + "start": 12696.7, + "end": 12696.7, + "probability": 0.1441 + }, + { + "start": 12696.7, + "end": 12698.86, + "probability": 0.9235 + }, + { + "start": 12699.24, + "end": 12699.56, + "probability": 0.6739 + }, + { + "start": 12700.48, + "end": 12702.26, + "probability": 0.7328 + }, + { + "start": 12704.1, + "end": 12709.04, + "probability": 0.1572 + }, + { + "start": 12709.04, + "end": 12710.94, + "probability": 0.357 + }, + { + "start": 12711.26, + "end": 12713.46, + "probability": 0.2095 + }, + { + "start": 12713.46, + "end": 12716.3, + "probability": 0.3973 + }, + { + "start": 12716.76, + "end": 12718.16, + "probability": 0.0137 + }, + { + "start": 12718.16, + "end": 12718.16, + "probability": 0.2377 + }, + { + "start": 12718.16, + "end": 12719.48, + "probability": 0.6085 + }, + { + "start": 12719.92, + "end": 12724.02, + "probability": 0.9844 + }, + { + "start": 12724.32, + "end": 12725.04, + "probability": 0.9238 + }, + { + "start": 12725.1, + "end": 12725.8, + "probability": 0.9094 + }, + { + "start": 12726.18, + "end": 12729.62, + "probability": 0.9915 + }, + { + "start": 12729.96, + "end": 12733.82, + "probability": 0.9387 + }, + { + "start": 12733.98, + "end": 12737.79, + "probability": 0.9971 + }, + { + "start": 12738.24, + "end": 12738.7, + "probability": 0.9205 + }, + { + "start": 12738.82, + "end": 12739.34, + "probability": 0.8824 + }, + { + "start": 12739.44, + "end": 12743.66, + "probability": 0.9885 + }, + { + "start": 12744.74, + "end": 12745.7, + "probability": 0.3909 + }, + { + "start": 12746.02, + "end": 12748.4, + "probability": 0.7841 + }, + { + "start": 12748.46, + "end": 12751.62, + "probability": 0.9128 + }, + { + "start": 12752.28, + "end": 12754.6, + "probability": 0.9448 + }, + { + "start": 12755.28, + "end": 12758.02, + "probability": 0.9924 + }, + { + "start": 12758.18, + "end": 12760.42, + "probability": 0.873 + }, + { + "start": 12761.02, + "end": 12761.84, + "probability": 0.6486 + }, + { + "start": 12762.2, + "end": 12768.78, + "probability": 0.993 + }, + { + "start": 12769.32, + "end": 12772.7, + "probability": 0.9773 + }, + { + "start": 12772.82, + "end": 12773.16, + "probability": 0.7371 + }, + { + "start": 12774.86, + "end": 12775.08, + "probability": 0.4485 + }, + { + "start": 12775.14, + "end": 12778.52, + "probability": 0.4174 + }, + { + "start": 12782.24, + "end": 12782.36, + "probability": 0.4462 + }, + { + "start": 12796.1, + "end": 12798.88, + "probability": 0.9844 + }, + { + "start": 12800.2, + "end": 12801.32, + "probability": 0.8778 + }, + { + "start": 12801.94, + "end": 12803.6, + "probability": 0.9805 + }, + { + "start": 12804.34, + "end": 12805.4, + "probability": 0.7682 + }, + { + "start": 12808.02, + "end": 12809.38, + "probability": 0.9379 + }, + { + "start": 12809.48, + "end": 12809.94, + "probability": 0.8031 + }, + { + "start": 12809.98, + "end": 12810.1, + "probability": 0.5628 + }, + { + "start": 12810.52, + "end": 12811.61, + "probability": 0.9879 + }, + { + "start": 12812.54, + "end": 12815.46, + "probability": 0.9939 + }, + { + "start": 12816.2, + "end": 12819.04, + "probability": 0.957 + }, + { + "start": 12820.34, + "end": 12822.14, + "probability": 0.6259 + }, + { + "start": 12823.42, + "end": 12824.44, + "probability": 0.7824 + }, + { + "start": 12826.4, + "end": 12829.84, + "probability": 0.9888 + }, + { + "start": 12833.06, + "end": 12834.88, + "probability": 0.5437 + }, + { + "start": 12835.36, + "end": 12840.18, + "probability": 0.9485 + }, + { + "start": 12840.36, + "end": 12841.58, + "probability": 0.976 + }, + { + "start": 12842.86, + "end": 12843.04, + "probability": 0.8296 + }, + { + "start": 12843.18, + "end": 12845.64, + "probability": 0.9863 + }, + { + "start": 12845.86, + "end": 12848.58, + "probability": 0.993 + }, + { + "start": 12848.74, + "end": 12851.06, + "probability": 0.9972 + }, + { + "start": 12851.56, + "end": 12852.45, + "probability": 0.771 + }, + { + "start": 12852.74, + "end": 12853.18, + "probability": 0.5564 + }, + { + "start": 12854.78, + "end": 12858.3, + "probability": 0.9411 + }, + { + "start": 12859.12, + "end": 12861.76, + "probability": 0.9937 + }, + { + "start": 12863.18, + "end": 12864.5, + "probability": 0.501 + }, + { + "start": 12864.54, + "end": 12866.16, + "probability": 0.8308 + }, + { + "start": 12866.3, + "end": 12867.3, + "probability": 0.9347 + }, + { + "start": 12867.38, + "end": 12868.08, + "probability": 0.7917 + }, + { + "start": 12868.62, + "end": 12869.7, + "probability": 0.6529 + }, + { + "start": 12870.38, + "end": 12874.18, + "probability": 0.9779 + }, + { + "start": 12874.94, + "end": 12878.2, + "probability": 0.9171 + }, + { + "start": 12879.06, + "end": 12882.32, + "probability": 0.979 + }, + { + "start": 12886.9, + "end": 12888.42, + "probability": 0.998 + }, + { + "start": 12888.64, + "end": 12889.84, + "probability": 0.998 + }, + { + "start": 12890.64, + "end": 12892.54, + "probability": 0.966 + }, + { + "start": 12893.12, + "end": 12894.6, + "probability": 0.67 + }, + { + "start": 12896.26, + "end": 12897.6, + "probability": 0.9752 + }, + { + "start": 12899.24, + "end": 12899.92, + "probability": 0.8886 + }, + { + "start": 12900.58, + "end": 12901.69, + "probability": 0.9556 + }, + { + "start": 12902.36, + "end": 12905.3, + "probability": 0.9417 + }, + { + "start": 12905.98, + "end": 12909.9, + "probability": 0.9967 + }, + { + "start": 12911.22, + "end": 12912.68, + "probability": 0.96 + }, + { + "start": 12913.04, + "end": 12916.22, + "probability": 0.9517 + }, + { + "start": 12916.28, + "end": 12917.16, + "probability": 0.7284 + }, + { + "start": 12917.74, + "end": 12918.44, + "probability": 0.8433 + }, + { + "start": 12920.43, + "end": 12924.56, + "probability": 0.9201 + }, + { + "start": 12925.56, + "end": 12927.3, + "probability": 0.9961 + }, + { + "start": 12927.82, + "end": 12928.22, + "probability": 0.509 + }, + { + "start": 12928.82, + "end": 12929.26, + "probability": 0.8085 + }, + { + "start": 12930.16, + "end": 12930.9, + "probability": 0.8123 + }, + { + "start": 12931.72, + "end": 12933.2, + "probability": 0.9446 + }, + { + "start": 12934.06, + "end": 12935.28, + "probability": 0.9694 + }, + { + "start": 12937.18, + "end": 12940.3, + "probability": 0.9535 + }, + { + "start": 12940.78, + "end": 12940.98, + "probability": 0.885 + }, + { + "start": 12941.5, + "end": 12942.24, + "probability": 0.8187 + }, + { + "start": 12942.46, + "end": 12943.58, + "probability": 0.8879 + }, + { + "start": 12943.86, + "end": 12945.18, + "probability": 0.9646 + }, + { + "start": 12945.24, + "end": 12946.14, + "probability": 0.8789 + }, + { + "start": 12946.2, + "end": 12949.64, + "probability": 0.998 + }, + { + "start": 12950.32, + "end": 12952.58, + "probability": 0.979 + }, + { + "start": 12953.94, + "end": 12956.26, + "probability": 0.9976 + }, + { + "start": 12957.16, + "end": 12958.98, + "probability": 0.9594 + }, + { + "start": 12961.46, + "end": 12962.26, + "probability": 0.9187 + }, + { + "start": 12963.28, + "end": 12963.74, + "probability": 0.5544 + }, + { + "start": 12964.84, + "end": 12965.64, + "probability": 0.7575 + }, + { + "start": 12967.28, + "end": 12967.66, + "probability": 0.8938 + }, + { + "start": 12970.12, + "end": 12971.5, + "probability": 0.9963 + }, + { + "start": 12972.24, + "end": 12973.58, + "probability": 0.8721 + }, + { + "start": 12973.7, + "end": 12974.02, + "probability": 0.66 + }, + { + "start": 12974.1, + "end": 12974.32, + "probability": 0.9309 + }, + { + "start": 12975.4, + "end": 12976.72, + "probability": 0.998 + }, + { + "start": 12978.64, + "end": 12980.32, + "probability": 0.9718 + }, + { + "start": 12982.02, + "end": 12983.04, + "probability": 0.8243 + }, + { + "start": 12983.7, + "end": 12985.14, + "probability": 0.9808 + }, + { + "start": 12986.46, + "end": 12988.08, + "probability": 0.9515 + }, + { + "start": 12992.84, + "end": 12994.88, + "probability": 0.9661 + }, + { + "start": 12995.08, + "end": 12995.26, + "probability": 0.7126 + }, + { + "start": 12996.9, + "end": 12999.16, + "probability": 0.9486 + }, + { + "start": 12999.22, + "end": 13000.54, + "probability": 0.8831 + }, + { + "start": 13001.46, + "end": 13003.63, + "probability": 0.534 + }, + { + "start": 13005.48, + "end": 13006.38, + "probability": 0.9323 + }, + { + "start": 13007.1, + "end": 13008.78, + "probability": 0.7388 + }, + { + "start": 13008.78, + "end": 13009.3, + "probability": 0.6886 + }, + { + "start": 13009.38, + "end": 13013.54, + "probability": 0.9604 + }, + { + "start": 13014.7, + "end": 13017.1, + "probability": 0.9646 + }, + { + "start": 13017.94, + "end": 13020.2, + "probability": 0.9797 + }, + { + "start": 13020.9, + "end": 13024.76, + "probability": 0.9521 + }, + { + "start": 13025.86, + "end": 13026.54, + "probability": 0.0374 + }, + { + "start": 13026.54, + "end": 13027.38, + "probability": 0.5504 + }, + { + "start": 13028.4, + "end": 13030.64, + "probability": 0.8405 + }, + { + "start": 13031.18, + "end": 13033.29, + "probability": 0.4562 + }, + { + "start": 13033.46, + "end": 13034.54, + "probability": 0.7814 + }, + { + "start": 13042.76, + "end": 13043.94, + "probability": 0.9943 + }, + { + "start": 13044.3, + "end": 13045.46, + "probability": 0.536 + }, + { + "start": 13046.1, + "end": 13046.4, + "probability": 0.8596 + }, + { + "start": 13047.38, + "end": 13049.92, + "probability": 0.8819 + }, + { + "start": 13050.76, + "end": 13051.92, + "probability": 0.7379 + }, + { + "start": 13052.45, + "end": 13053.28, + "probability": 0.5045 + }, + { + "start": 13053.52, + "end": 13058.08, + "probability": 0.8368 + }, + { + "start": 13059.0, + "end": 13060.26, + "probability": 0.8837 + }, + { + "start": 13060.48, + "end": 13061.14, + "probability": 0.9335 + }, + { + "start": 13061.36, + "end": 13063.04, + "probability": 0.9876 + }, + { + "start": 13063.56, + "end": 13064.78, + "probability": 0.9521 + }, + { + "start": 13065.7, + "end": 13066.14, + "probability": 0.7352 + }, + { + "start": 13066.22, + "end": 13069.54, + "probability": 0.9861 + }, + { + "start": 13070.26, + "end": 13071.7, + "probability": 0.7256 + }, + { + "start": 13072.5, + "end": 13075.38, + "probability": 0.9968 + }, + { + "start": 13076.16, + "end": 13081.06, + "probability": 0.9869 + }, + { + "start": 13081.14, + "end": 13084.22, + "probability": 0.9973 + }, + { + "start": 13084.36, + "end": 13085.02, + "probability": 0.8435 + }, + { + "start": 13086.0, + "end": 13086.36, + "probability": 0.7523 + }, + { + "start": 13087.1, + "end": 13088.04, + "probability": 0.6085 + }, + { + "start": 13088.6, + "end": 13093.68, + "probability": 0.9938 + }, + { + "start": 13094.3, + "end": 13098.16, + "probability": 0.9951 + }, + { + "start": 13098.24, + "end": 13102.14, + "probability": 0.9873 + }, + { + "start": 13102.74, + "end": 13104.22, + "probability": 0.8997 + }, + { + "start": 13105.22, + "end": 13105.96, + "probability": 0.9845 + }, + { + "start": 13106.58, + "end": 13107.2, + "probability": 0.6199 + }, + { + "start": 13107.92, + "end": 13109.12, + "probability": 0.978 + }, + { + "start": 13109.18, + "end": 13114.88, + "probability": 0.9521 + }, + { + "start": 13116.04, + "end": 13116.62, + "probability": 0.6428 + }, + { + "start": 13117.4, + "end": 13118.06, + "probability": 0.8742 + }, + { + "start": 13118.62, + "end": 13121.7, + "probability": 0.9485 + }, + { + "start": 13122.6, + "end": 13123.02, + "probability": 0.8729 + }, + { + "start": 13123.84, + "end": 13124.64, + "probability": 0.9335 + }, + { + "start": 13125.9, + "end": 13127.74, + "probability": 0.8704 + }, + { + "start": 13128.42, + "end": 13130.62, + "probability": 0.962 + }, + { + "start": 13131.56, + "end": 13134.46, + "probability": 0.8395 + }, + { + "start": 13135.34, + "end": 13140.38, + "probability": 0.7791 + }, + { + "start": 13141.2, + "end": 13142.74, + "probability": 0.9527 + }, + { + "start": 13143.32, + "end": 13144.42, + "probability": 0.8674 + }, + { + "start": 13144.58, + "end": 13148.2, + "probability": 0.5977 + }, + { + "start": 13148.78, + "end": 13151.7, + "probability": 0.8093 + }, + { + "start": 13152.22, + "end": 13153.95, + "probability": 0.6066 + }, + { + "start": 13154.46, + "end": 13156.12, + "probability": 0.9805 + }, + { + "start": 13156.66, + "end": 13163.04, + "probability": 0.9277 + }, + { + "start": 13163.14, + "end": 13164.52, + "probability": 0.9771 + }, + { + "start": 13165.04, + "end": 13166.12, + "probability": 0.6033 + }, + { + "start": 13166.66, + "end": 13168.85, + "probability": 0.939 + }, + { + "start": 13169.38, + "end": 13171.52, + "probability": 0.9526 + }, + { + "start": 13172.32, + "end": 13172.69, + "probability": 0.9326 + }, + { + "start": 13174.04, + "end": 13175.6, + "probability": 0.9494 + }, + { + "start": 13176.12, + "end": 13179.84, + "probability": 0.6863 + }, + { + "start": 13179.96, + "end": 13180.5, + "probability": 0.874 + }, + { + "start": 13180.88, + "end": 13181.94, + "probability": 0.8822 + }, + { + "start": 13182.2, + "end": 13184.04, + "probability": 0.7723 + }, + { + "start": 13184.5, + "end": 13185.5, + "probability": 0.8853 + }, + { + "start": 13186.04, + "end": 13187.88, + "probability": 0.7555 + }, + { + "start": 13187.88, + "end": 13189.42, + "probability": 0.8522 + }, + { + "start": 13189.74, + "end": 13190.35, + "probability": 0.6207 + }, + { + "start": 13191.08, + "end": 13192.82, + "probability": 0.9646 + }, + { + "start": 13193.32, + "end": 13194.18, + "probability": 0.8765 + }, + { + "start": 13194.38, + "end": 13195.34, + "probability": 0.8594 + }, + { + "start": 13195.76, + "end": 13198.54, + "probability": 0.6118 + }, + { + "start": 13199.56, + "end": 13201.48, + "probability": 0.9041 + }, + { + "start": 13201.58, + "end": 13204.58, + "probability": 0.991 + }, + { + "start": 13205.68, + "end": 13207.12, + "probability": 0.8358 + }, + { + "start": 13207.66, + "end": 13207.98, + "probability": 0.9526 + }, + { + "start": 13208.56, + "end": 13210.5, + "probability": 0.9126 + }, + { + "start": 13211.2, + "end": 13213.82, + "probability": 0.9508 + }, + { + "start": 13214.96, + "end": 13216.12, + "probability": 0.9579 + }, + { + "start": 13216.2, + "end": 13219.26, + "probability": 0.6902 + }, + { + "start": 13220.06, + "end": 13224.14, + "probability": 0.955 + }, + { + "start": 13224.66, + "end": 13225.5, + "probability": 0.9436 + }, + { + "start": 13225.88, + "end": 13226.66, + "probability": 0.9346 + }, + { + "start": 13227.08, + "end": 13229.34, + "probability": 0.9038 + }, + { + "start": 13229.94, + "end": 13231.38, + "probability": 0.9842 + }, + { + "start": 13231.72, + "end": 13233.2, + "probability": 0.9961 + }, + { + "start": 13233.48, + "end": 13235.16, + "probability": 0.9631 + }, + { + "start": 13235.2, + "end": 13235.76, + "probability": 0.7551 + }, + { + "start": 13236.54, + "end": 13236.98, + "probability": 0.7972 + }, + { + "start": 13237.12, + "end": 13241.34, + "probability": 0.9712 + }, + { + "start": 13241.34, + "end": 13246.82, + "probability": 0.9855 + }, + { + "start": 13247.42, + "end": 13251.56, + "probability": 0.974 + }, + { + "start": 13251.68, + "end": 13252.2, + "probability": 0.5111 + }, + { + "start": 13252.82, + "end": 13255.06, + "probability": 0.6384 + }, + { + "start": 13255.38, + "end": 13256.72, + "probability": 0.9155 + }, + { + "start": 13256.94, + "end": 13257.98, + "probability": 0.9927 + }, + { + "start": 13258.58, + "end": 13262.68, + "probability": 0.8276 + }, + { + "start": 13263.42, + "end": 13266.14, + "probability": 0.9412 + }, + { + "start": 13266.9, + "end": 13268.62, + "probability": 0.7181 + }, + { + "start": 13268.72, + "end": 13269.46, + "probability": 0.934 + }, + { + "start": 13270.34, + "end": 13270.8, + "probability": 0.7148 + }, + { + "start": 13270.96, + "end": 13271.6, + "probability": 0.9631 + }, + { + "start": 13272.02, + "end": 13272.76, + "probability": 0.811 + }, + { + "start": 13273.52, + "end": 13275.74, + "probability": 0.9549 + }, + { + "start": 13275.82, + "end": 13276.78, + "probability": 0.9847 + }, + { + "start": 13277.92, + "end": 13281.7, + "probability": 0.6839 + }, + { + "start": 13282.24, + "end": 13283.96, + "probability": 0.9312 + }, + { + "start": 13284.02, + "end": 13284.78, + "probability": 0.9346 + }, + { + "start": 13285.18, + "end": 13287.66, + "probability": 0.9885 + }, + { + "start": 13287.98, + "end": 13289.36, + "probability": 0.983 + }, + { + "start": 13289.68, + "end": 13294.02, + "probability": 0.898 + }, + { + "start": 13294.42, + "end": 13295.12, + "probability": 0.5225 + }, + { + "start": 13295.84, + "end": 13300.96, + "probability": 0.856 + }, + { + "start": 13301.58, + "end": 13302.9, + "probability": 0.9276 + }, + { + "start": 13303.06, + "end": 13304.76, + "probability": 0.8649 + }, + { + "start": 13305.2, + "end": 13307.26, + "probability": 0.9788 + }, + { + "start": 13308.0, + "end": 13309.54, + "probability": 0.6572 + }, + { + "start": 13312.6, + "end": 13312.6, + "probability": 0.2373 + }, + { + "start": 13312.6, + "end": 13313.08, + "probability": 0.0734 + }, + { + "start": 13313.08, + "end": 13313.59, + "probability": 0.3249 + }, + { + "start": 13314.62, + "end": 13318.92, + "probability": 0.8408 + }, + { + "start": 13319.02, + "end": 13322.44, + "probability": 0.9353 + }, + { + "start": 13323.0, + "end": 13323.34, + "probability": 0.6477 + }, + { + "start": 13323.96, + "end": 13324.06, + "probability": 0.073 + }, + { + "start": 13324.06, + "end": 13325.71, + "probability": 0.9889 + }, + { + "start": 13326.06, + "end": 13326.92, + "probability": 0.7043 + }, + { + "start": 13327.26, + "end": 13327.92, + "probability": 0.7017 + }, + { + "start": 13328.4, + "end": 13329.18, + "probability": 0.6713 + }, + { + "start": 13329.34, + "end": 13330.26, + "probability": 0.5994 + }, + { + "start": 13330.42, + "end": 13330.8, + "probability": 0.4314 + }, + { + "start": 13330.9, + "end": 13331.46, + "probability": 0.6395 + }, + { + "start": 13331.56, + "end": 13332.64, + "probability": 0.6362 + }, + { + "start": 13332.86, + "end": 13333.64, + "probability": 0.8747 + }, + { + "start": 13334.08, + "end": 13335.44, + "probability": 0.9974 + }, + { + "start": 13335.64, + "end": 13337.46, + "probability": 0.7674 + }, + { + "start": 13337.76, + "end": 13338.38, + "probability": 0.7727 + }, + { + "start": 13338.76, + "end": 13339.74, + "probability": 0.9836 + }, + { + "start": 13340.22, + "end": 13341.04, + "probability": 0.8654 + }, + { + "start": 13341.16, + "end": 13342.48, + "probability": 0.7659 + }, + { + "start": 13342.66, + "end": 13343.18, + "probability": 0.9802 + }, + { + "start": 13343.28, + "end": 13344.46, + "probability": 0.9897 + }, + { + "start": 13345.34, + "end": 13346.3, + "probability": 0.957 + }, + { + "start": 13347.2, + "end": 13348.72, + "probability": 0.885 + }, + { + "start": 13349.16, + "end": 13349.58, + "probability": 0.4037 + }, + { + "start": 13349.82, + "end": 13351.58, + "probability": 0.5593 + }, + { + "start": 13351.98, + "end": 13354.38, + "probability": 0.9915 + }, + { + "start": 13354.78, + "end": 13357.32, + "probability": 0.9531 + }, + { + "start": 13357.4, + "end": 13358.82, + "probability": 0.9873 + }, + { + "start": 13359.46, + "end": 13362.48, + "probability": 0.9951 + }, + { + "start": 13363.08, + "end": 13367.34, + "probability": 0.9961 + }, + { + "start": 13367.82, + "end": 13372.26, + "probability": 0.9626 + }, + { + "start": 13372.94, + "end": 13373.14, + "probability": 0.548 + }, + { + "start": 13373.26, + "end": 13373.8, + "probability": 0.9779 + }, + { + "start": 13373.94, + "end": 13374.52, + "probability": 0.9569 + }, + { + "start": 13375.0, + "end": 13378.44, + "probability": 0.9949 + }, + { + "start": 13379.38, + "end": 13381.18, + "probability": 0.6174 + }, + { + "start": 13381.82, + "end": 13385.74, + "probability": 0.9858 + }, + { + "start": 13386.48, + "end": 13387.42, + "probability": 0.9141 + }, + { + "start": 13388.2, + "end": 13391.92, + "probability": 0.8327 + }, + { + "start": 13392.78, + "end": 13395.08, + "probability": 0.8854 + }, + { + "start": 13395.36, + "end": 13396.36, + "probability": 0.7667 + }, + { + "start": 13397.32, + "end": 13398.44, + "probability": 0.927 + }, + { + "start": 13398.7, + "end": 13400.18, + "probability": 0.9135 + }, + { + "start": 13401.14, + "end": 13404.08, + "probability": 0.67 + }, + { + "start": 13404.08, + "end": 13405.06, + "probability": 0.6497 + }, + { + "start": 13405.22, + "end": 13405.96, + "probability": 0.643 + }, + { + "start": 13406.44, + "end": 13407.3, + "probability": 0.8923 + }, + { + "start": 13407.32, + "end": 13407.98, + "probability": 0.9066 + }, + { + "start": 13408.38, + "end": 13410.26, + "probability": 0.9146 + }, + { + "start": 13411.36, + "end": 13412.76, + "probability": 0.7359 + }, + { + "start": 13412.86, + "end": 13413.06, + "probability": 0.4624 + }, + { + "start": 13414.17, + "end": 13416.28, + "probability": 0.9093 + }, + { + "start": 13416.84, + "end": 13418.88, + "probability": 0.9501 + }, + { + "start": 13419.46, + "end": 13419.78, + "probability": 0.7337 + }, + { + "start": 13419.84, + "end": 13424.38, + "probability": 0.8458 + }, + { + "start": 13424.8, + "end": 13429.24, + "probability": 0.9136 + }, + { + "start": 13429.7, + "end": 13430.24, + "probability": 0.6182 + }, + { + "start": 13430.76, + "end": 13433.72, + "probability": 0.874 + }, + { + "start": 13434.76, + "end": 13435.54, + "probability": 0.8394 + }, + { + "start": 13435.78, + "end": 13435.78, + "probability": 0.5103 + }, + { + "start": 13436.06, + "end": 13436.06, + "probability": 0.6609 + }, + { + "start": 13436.1, + "end": 13437.9, + "probability": 0.9694 + }, + { + "start": 13438.26, + "end": 13440.62, + "probability": 0.9962 + }, + { + "start": 13441.0, + "end": 13441.9, + "probability": 0.9596 + }, + { + "start": 13442.0, + "end": 13443.54, + "probability": 0.8573 + }, + { + "start": 13443.96, + "end": 13446.54, + "probability": 0.9681 + }, + { + "start": 13447.14, + "end": 13450.56, + "probability": 0.9934 + }, + { + "start": 13451.06, + "end": 13452.18, + "probability": 0.8486 + }, + { + "start": 13452.32, + "end": 13453.46, + "probability": 0.6145 + }, + { + "start": 13453.6, + "end": 13454.0, + "probability": 0.4955 + }, + { + "start": 13454.06, + "end": 13454.58, + "probability": 0.9229 + }, + { + "start": 13455.04, + "end": 13458.82, + "probability": 0.967 + }, + { + "start": 13459.34, + "end": 13459.82, + "probability": 0.7485 + }, + { + "start": 13460.02, + "end": 13460.58, + "probability": 0.8489 + }, + { + "start": 13460.64, + "end": 13462.5, + "probability": 0.807 + }, + { + "start": 13462.52, + "end": 13463.16, + "probability": 0.4435 + }, + { + "start": 13463.24, + "end": 13463.74, + "probability": 0.6182 + }, + { + "start": 13463.98, + "end": 13464.38, + "probability": 0.5866 + }, + { + "start": 13464.38, + "end": 13466.86, + "probability": 0.5865 + }, + { + "start": 13467.2, + "end": 13472.22, + "probability": 0.9835 + }, + { + "start": 13472.66, + "end": 13474.98, + "probability": 0.9813 + }, + { + "start": 13475.46, + "end": 13476.82, + "probability": 0.8503 + }, + { + "start": 13477.58, + "end": 13478.84, + "probability": 0.9971 + }, + { + "start": 13479.32, + "end": 13481.23, + "probability": 0.9437 + }, + { + "start": 13482.78, + "end": 13484.42, + "probability": 0.3678 + }, + { + "start": 13484.8, + "end": 13486.34, + "probability": 0.8475 + }, + { + "start": 13486.72, + "end": 13487.28, + "probability": 0.2615 + }, + { + "start": 13487.98, + "end": 13489.32, + "probability": 0.53 + }, + { + "start": 13489.46, + "end": 13489.68, + "probability": 0.5215 + }, + { + "start": 13490.08, + "end": 13491.14, + "probability": 0.9805 + }, + { + "start": 13491.18, + "end": 13492.76, + "probability": 0.551 + }, + { + "start": 13493.05, + "end": 13495.08, + "probability": 0.8929 + }, + { + "start": 13495.62, + "end": 13496.02, + "probability": 0.8405 + }, + { + "start": 13496.08, + "end": 13497.44, + "probability": 0.9922 + }, + { + "start": 13497.54, + "end": 13498.46, + "probability": 0.8828 + }, + { + "start": 13498.5, + "end": 13499.14, + "probability": 0.8024 + }, + { + "start": 13499.86, + "end": 13502.14, + "probability": 0.9351 + }, + { + "start": 13502.8, + "end": 13505.44, + "probability": 0.9708 + }, + { + "start": 13505.96, + "end": 13509.24, + "probability": 0.8105 + }, + { + "start": 13509.76, + "end": 13513.0, + "probability": 0.9805 + }, + { + "start": 13513.24, + "end": 13516.86, + "probability": 0.8503 + }, + { + "start": 13516.92, + "end": 13517.34, + "probability": 0.8662 + }, + { + "start": 13517.74, + "end": 13517.94, + "probability": 0.6061 + }, + { + "start": 13517.96, + "end": 13519.92, + "probability": 0.8934 + }, + { + "start": 13520.42, + "end": 13521.14, + "probability": 0.8157 + }, + { + "start": 13521.28, + "end": 13523.94, + "probability": 0.9875 + }, + { + "start": 13524.36, + "end": 13526.86, + "probability": 0.0279 + }, + { + "start": 13526.86, + "end": 13527.64, + "probability": 0.6211 + }, + { + "start": 13527.74, + "end": 13528.2, + "probability": 0.8658 + }, + { + "start": 13528.66, + "end": 13530.54, + "probability": 0.9954 + }, + { + "start": 13531.08, + "end": 13533.6, + "probability": 0.9977 + }, + { + "start": 13534.44, + "end": 13539.74, + "probability": 0.9508 + }, + { + "start": 13540.1, + "end": 13541.8, + "probability": 0.9883 + }, + { + "start": 13542.3, + "end": 13543.86, + "probability": 0.9521 + }, + { + "start": 13544.6, + "end": 13546.48, + "probability": 0.9105 + }, + { + "start": 13546.76, + "end": 13549.72, + "probability": 0.9948 + }, + { + "start": 13550.24, + "end": 13553.44, + "probability": 0.9529 + }, + { + "start": 13554.4, + "end": 13555.22, + "probability": 0.9104 + }, + { + "start": 13555.88, + "end": 13558.48, + "probability": 0.9915 + }, + { + "start": 13558.92, + "end": 13559.88, + "probability": 0.8528 + }, + { + "start": 13559.98, + "end": 13561.28, + "probability": 0.5926 + }, + { + "start": 13561.5, + "end": 13562.78, + "probability": 0.8392 + }, + { + "start": 13563.38, + "end": 13564.92, + "probability": 0.9443 + }, + { + "start": 13565.42, + "end": 13566.8, + "probability": 0.9917 + }, + { + "start": 13567.28, + "end": 13569.56, + "probability": 0.9174 + }, + { + "start": 13570.68, + "end": 13571.28, + "probability": 0.4083 + }, + { + "start": 13572.28, + "end": 13574.68, + "probability": 0.431 + }, + { + "start": 13574.7, + "end": 13575.44, + "probability": 0.4151 + }, + { + "start": 13575.88, + "end": 13577.32, + "probability": 0.9131 + }, + { + "start": 13577.86, + "end": 13579.38, + "probability": 0.9946 + }, + { + "start": 13580.24, + "end": 13584.58, + "probability": 0.9208 + }, + { + "start": 13585.08, + "end": 13585.78, + "probability": 0.5721 + }, + { + "start": 13586.26, + "end": 13587.28, + "probability": 0.9092 + }, + { + "start": 13587.44, + "end": 13588.5, + "probability": 0.8561 + }, + { + "start": 13588.9, + "end": 13589.48, + "probability": 0.9426 + }, + { + "start": 13589.54, + "end": 13590.88, + "probability": 0.9904 + }, + { + "start": 13591.42, + "end": 13593.52, + "probability": 0.9081 + }, + { + "start": 13593.88, + "end": 13594.47, + "probability": 0.9468 + }, + { + "start": 13594.86, + "end": 13598.48, + "probability": 0.9366 + }, + { + "start": 13599.02, + "end": 13600.08, + "probability": 0.8145 + }, + { + "start": 13600.62, + "end": 13602.56, + "probability": 0.9383 + }, + { + "start": 13602.66, + "end": 13603.54, + "probability": 0.7526 + }, + { + "start": 13604.06, + "end": 13608.22, + "probability": 0.8432 + }, + { + "start": 13608.62, + "end": 13609.94, + "probability": 0.9598 + }, + { + "start": 13610.28, + "end": 13612.56, + "probability": 0.999 + }, + { + "start": 13612.92, + "end": 13616.58, + "probability": 0.7597 + }, + { + "start": 13617.12, + "end": 13618.0, + "probability": 0.6275 + }, + { + "start": 13618.54, + "end": 13620.02, + "probability": 0.953 + }, + { + "start": 13620.86, + "end": 13621.42, + "probability": 0.1618 + }, + { + "start": 13621.48, + "end": 13622.32, + "probability": 0.8845 + }, + { + "start": 13622.46, + "end": 13623.42, + "probability": 0.9505 + }, + { + "start": 13623.48, + "end": 13624.4, + "probability": 0.7021 + }, + { + "start": 13624.44, + "end": 13625.62, + "probability": 0.9729 + }, + { + "start": 13626.0, + "end": 13628.68, + "probability": 0.6447 + }, + { + "start": 13628.74, + "end": 13629.48, + "probability": 0.606 + }, + { + "start": 13630.02, + "end": 13630.82, + "probability": 0.9067 + }, + { + "start": 13631.42, + "end": 13634.48, + "probability": 0.8286 + }, + { + "start": 13634.56, + "end": 13636.58, + "probability": 0.9322 + }, + { + "start": 13637.2, + "end": 13638.12, + "probability": 0.6631 + }, + { + "start": 13638.68, + "end": 13639.7, + "probability": 0.9536 + }, + { + "start": 13639.84, + "end": 13641.0, + "probability": 0.5239 + }, + { + "start": 13641.54, + "end": 13642.64, + "probability": 0.878 + }, + { + "start": 13642.9, + "end": 13644.42, + "probability": 0.9874 + }, + { + "start": 13644.98, + "end": 13645.6, + "probability": 0.0412 + }, + { + "start": 13645.6, + "end": 13650.34, + "probability": 0.7811 + }, + { + "start": 13650.8, + "end": 13651.72, + "probability": 0.9543 + }, + { + "start": 13651.84, + "end": 13652.5, + "probability": 0.4499 + }, + { + "start": 13654.06, + "end": 13654.36, + "probability": 0.2307 + }, + { + "start": 13654.36, + "end": 13655.9, + "probability": 0.9423 + }, + { + "start": 13656.62, + "end": 13657.6, + "probability": 0.8335 + }, + { + "start": 13657.76, + "end": 13658.46, + "probability": 0.4399 + }, + { + "start": 13658.54, + "end": 13660.86, + "probability": 0.9556 + }, + { + "start": 13661.42, + "end": 13663.02, + "probability": 0.8291 + }, + { + "start": 13663.22, + "end": 13664.34, + "probability": 0.9896 + }, + { + "start": 13664.64, + "end": 13666.24, + "probability": 0.9671 + }, + { + "start": 13666.24, + "end": 13668.22, + "probability": 0.8562 + }, + { + "start": 13668.32, + "end": 13668.82, + "probability": 0.3392 + }, + { + "start": 13669.1, + "end": 13671.66, + "probability": 0.8476 + }, + { + "start": 13672.28, + "end": 13673.24, + "probability": 0.7811 + }, + { + "start": 13673.52, + "end": 13675.12, + "probability": 0.9759 + }, + { + "start": 13675.48, + "end": 13679.06, + "probability": 0.9918 + }, + { + "start": 13679.32, + "end": 13682.46, + "probability": 0.7114 + }, + { + "start": 13682.54, + "end": 13682.98, + "probability": 0.8453 + }, + { + "start": 13683.28, + "end": 13684.38, + "probability": 0.3367 + }, + { + "start": 13684.88, + "end": 13687.78, + "probability": 0.827 + }, + { + "start": 13688.08, + "end": 13688.6, + "probability": 0.5794 + }, + { + "start": 13688.68, + "end": 13689.58, + "probability": 0.9636 + }, + { + "start": 13689.78, + "end": 13691.98, + "probability": 0.5911 + }, + { + "start": 13692.44, + "end": 13693.32, + "probability": 0.8398 + }, + { + "start": 13693.6, + "end": 13695.6, + "probability": 0.1355 + }, + { + "start": 13696.0, + "end": 13696.26, + "probability": 0.3791 + }, + { + "start": 13712.88, + "end": 13713.08, + "probability": 0.3455 + }, + { + "start": 13715.78, + "end": 13717.1, + "probability": 0.5876 + }, + { + "start": 13717.1, + "end": 13717.82, + "probability": 0.7679 + }, + { + "start": 13718.28, + "end": 13719.7, + "probability": 0.8378 + }, + { + "start": 13720.2, + "end": 13722.1, + "probability": 0.6843 + }, + { + "start": 13722.28, + "end": 13723.72, + "probability": 0.9663 + }, + { + "start": 13724.72, + "end": 13726.58, + "probability": 0.8578 + }, + { + "start": 13727.44, + "end": 13727.9, + "probability": 0.8203 + }, + { + "start": 13728.04, + "end": 13729.14, + "probability": 0.9052 + }, + { + "start": 13729.28, + "end": 13730.24, + "probability": 0.9196 + }, + { + "start": 13730.42, + "end": 13732.88, + "probability": 0.9412 + }, + { + "start": 13733.0, + "end": 13736.82, + "probability": 0.9695 + }, + { + "start": 13738.78, + "end": 13741.14, + "probability": 0.8481 + }, + { + "start": 13741.14, + "end": 13743.24, + "probability": 0.9277 + }, + { + "start": 13743.94, + "end": 13745.12, + "probability": 0.3516 + }, + { + "start": 13745.64, + "end": 13747.44, + "probability": 0.9906 + }, + { + "start": 13748.22, + "end": 13750.28, + "probability": 0.9825 + }, + { + "start": 13750.88, + "end": 13752.88, + "probability": 0.9635 + }, + { + "start": 13753.5, + "end": 13757.64, + "probability": 0.9768 + }, + { + "start": 13758.18, + "end": 13759.92, + "probability": 0.5555 + }, + { + "start": 13760.74, + "end": 13763.44, + "probability": 0.9922 + }, + { + "start": 13763.8, + "end": 13767.22, + "probability": 0.9975 + }, + { + "start": 13767.8, + "end": 13770.32, + "probability": 0.9948 + }, + { + "start": 13770.44, + "end": 13775.08, + "probability": 0.9978 + }, + { + "start": 13775.96, + "end": 13777.98, + "probability": 0.9762 + }, + { + "start": 13778.08, + "end": 13782.98, + "probability": 0.9814 + }, + { + "start": 13782.98, + "end": 13787.02, + "probability": 0.9721 + }, + { + "start": 13787.64, + "end": 13792.34, + "probability": 0.999 + }, + { + "start": 13793.02, + "end": 13798.78, + "probability": 0.9839 + }, + { + "start": 13798.94, + "end": 13800.36, + "probability": 0.885 + }, + { + "start": 13800.82, + "end": 13802.46, + "probability": 0.9623 + }, + { + "start": 13802.52, + "end": 13803.61, + "probability": 0.6491 + }, + { + "start": 13804.52, + "end": 13805.58, + "probability": 0.9489 + }, + { + "start": 13806.02, + "end": 13807.36, + "probability": 0.2667 + }, + { + "start": 13807.78, + "end": 13809.9, + "probability": 0.9219 + }, + { + "start": 13810.04, + "end": 13813.03, + "probability": 0.9733 + }, + { + "start": 13813.72, + "end": 13818.66, + "probability": 0.9942 + }, + { + "start": 13819.32, + "end": 13819.6, + "probability": 0.8234 + }, + { + "start": 13820.38, + "end": 13824.58, + "probability": 0.9932 + }, + { + "start": 13825.06, + "end": 13827.74, + "probability": 0.7391 + }, + { + "start": 13828.38, + "end": 13830.82, + "probability": 0.9915 + }, + { + "start": 13831.38, + "end": 13833.58, + "probability": 0.9483 + }, + { + "start": 13834.7, + "end": 13835.1, + "probability": 0.733 + }, + { + "start": 13835.72, + "end": 13840.9, + "probability": 0.9955 + }, + { + "start": 13840.9, + "end": 13845.08, + "probability": 0.9997 + }, + { + "start": 13845.08, + "end": 13850.82, + "probability": 0.9991 + }, + { + "start": 13852.52, + "end": 13855.46, + "probability": 0.9931 + }, + { + "start": 13855.46, + "end": 13857.88, + "probability": 0.9933 + }, + { + "start": 13858.46, + "end": 13861.28, + "probability": 0.9945 + }, + { + "start": 13861.52, + "end": 13867.1, + "probability": 0.9956 + }, + { + "start": 13867.44, + "end": 13870.4, + "probability": 0.9775 + }, + { + "start": 13871.46, + "end": 13871.84, + "probability": 0.6929 + }, + { + "start": 13871.96, + "end": 13872.08, + "probability": 0.4521 + }, + { + "start": 13872.08, + "end": 13875.48, + "probability": 0.8676 + }, + { + "start": 13876.0, + "end": 13880.54, + "probability": 0.8794 + }, + { + "start": 13881.3, + "end": 13884.08, + "probability": 0.943 + }, + { + "start": 13884.16, + "end": 13887.98, + "probability": 0.9808 + }, + { + "start": 13888.1, + "end": 13890.56, + "probability": 0.9537 + }, + { + "start": 13891.14, + "end": 13895.0, + "probability": 0.9896 + }, + { + "start": 13895.82, + "end": 13901.74, + "probability": 0.9963 + }, + { + "start": 13903.94, + "end": 13904.46, + "probability": 0.7383 + }, + { + "start": 13904.8, + "end": 13909.9, + "probability": 0.9858 + }, + { + "start": 13910.58, + "end": 13912.16, + "probability": 0.9636 + }, + { + "start": 13912.68, + "end": 13915.92, + "probability": 0.9609 + }, + { + "start": 13916.3, + "end": 13919.08, + "probability": 0.9969 + }, + { + "start": 13919.64, + "end": 13921.3, + "probability": 0.96 + }, + { + "start": 13921.83, + "end": 13924.22, + "probability": 0.9966 + }, + { + "start": 13925.42, + "end": 13929.34, + "probability": 0.9863 + }, + { + "start": 13929.94, + "end": 13933.02, + "probability": 0.9941 + }, + { + "start": 13933.46, + "end": 13938.16, + "probability": 0.988 + }, + { + "start": 13938.16, + "end": 13941.66, + "probability": 0.9919 + }, + { + "start": 13942.54, + "end": 13947.82, + "probability": 0.9859 + }, + { + "start": 13947.96, + "end": 13950.56, + "probability": 0.9849 + }, + { + "start": 13950.96, + "end": 13953.84, + "probability": 0.9941 + }, + { + "start": 13953.84, + "end": 13958.02, + "probability": 0.9952 + }, + { + "start": 13958.88, + "end": 13963.02, + "probability": 0.9665 + }, + { + "start": 13963.02, + "end": 13967.12, + "probability": 0.9993 + }, + { + "start": 13967.6, + "end": 13973.18, + "probability": 0.9208 + }, + { + "start": 13973.7, + "end": 13976.64, + "probability": 0.9983 + }, + { + "start": 13977.36, + "end": 13978.62, + "probability": 0.9218 + }, + { + "start": 13978.92, + "end": 13980.42, + "probability": 0.998 + }, + { + "start": 13980.6, + "end": 13982.14, + "probability": 0.9985 + }, + { + "start": 13982.9, + "end": 13983.62, + "probability": 0.8751 + }, + { + "start": 13987.64, + "end": 13987.82, + "probability": 0.7829 + }, + { + "start": 13987.82, + "end": 13987.82, + "probability": 0.012 + }, + { + "start": 13987.82, + "end": 13987.82, + "probability": 0.0843 + }, + { + "start": 13987.82, + "end": 13988.95, + "probability": 0.0429 + }, + { + "start": 13990.12, + "end": 13996.46, + "probability": 0.8831 + }, + { + "start": 13996.8, + "end": 13999.32, + "probability": 0.9788 + }, + { + "start": 13999.78, + "end": 14001.65, + "probability": 0.9143 + }, + { + "start": 14002.06, + "end": 14006.06, + "probability": 0.8773 + }, + { + "start": 14006.12, + "end": 14011.64, + "probability": 0.9763 + }, + { + "start": 14013.6, + "end": 14014.18, + "probability": 0.7808 + }, + { + "start": 14015.6, + "end": 14017.72, + "probability": 0.5432 + }, + { + "start": 14017.92, + "end": 14021.86, + "probability": 0.741 + }, + { + "start": 14023.78, + "end": 14024.82, + "probability": 0.7135 + }, + { + "start": 14037.32, + "end": 14039.44, + "probability": 0.7924 + }, + { + "start": 14040.72, + "end": 14041.68, + "probability": 0.7428 + }, + { + "start": 14046.1, + "end": 14047.66, + "probability": 0.7225 + }, + { + "start": 14048.54, + "end": 14048.9, + "probability": 0.9154 + }, + { + "start": 14056.36, + "end": 14056.92, + "probability": 0.6284 + }, + { + "start": 14058.88, + "end": 14062.3, + "probability": 0.9429 + }, + { + "start": 14064.68, + "end": 14066.1, + "probability": 0.9271 + }, + { + "start": 14066.26, + "end": 14066.98, + "probability": 0.8695 + }, + { + "start": 14067.06, + "end": 14067.48, + "probability": 0.5313 + }, + { + "start": 14067.9, + "end": 14070.02, + "probability": 0.263 + }, + { + "start": 14070.16, + "end": 14070.6, + "probability": 0.991 + }, + { + "start": 14071.16, + "end": 14073.98, + "probability": 0.9265 + }, + { + "start": 14074.98, + "end": 14077.68, + "probability": 0.8473 + }, + { + "start": 14077.78, + "end": 14078.22, + "probability": 0.8209 + }, + { + "start": 14078.3, + "end": 14079.3, + "probability": 0.9548 + }, + { + "start": 14080.0, + "end": 14080.78, + "probability": 0.9578 + }, + { + "start": 14080.88, + "end": 14083.12, + "probability": 0.9734 + }, + { + "start": 14083.82, + "end": 14084.36, + "probability": 0.8206 + }, + { + "start": 14085.58, + "end": 14087.66, + "probability": 0.7911 + }, + { + "start": 14088.68, + "end": 14089.52, + "probability": 0.7527 + }, + { + "start": 14090.06, + "end": 14092.5, + "probability": 0.9935 + }, + { + "start": 14094.68, + "end": 14095.4, + "probability": 0.8312 + }, + { + "start": 14095.56, + "end": 14095.68, + "probability": 0.595 + }, + { + "start": 14096.99, + "end": 14102.08, + "probability": 0.9805 + }, + { + "start": 14102.08, + "end": 14104.28, + "probability": 0.998 + }, + { + "start": 14105.84, + "end": 14107.46, + "probability": 0.7878 + }, + { + "start": 14108.12, + "end": 14110.2, + "probability": 0.8579 + }, + { + "start": 14111.24, + "end": 14113.88, + "probability": 0.9987 + }, + { + "start": 14114.82, + "end": 14115.74, + "probability": 0.9424 + }, + { + "start": 14118.48, + "end": 14120.26, + "probability": 0.7168 + }, + { + "start": 14120.84, + "end": 14123.08, + "probability": 0.9021 + }, + { + "start": 14124.32, + "end": 14126.63, + "probability": 0.9233 + }, + { + "start": 14129.58, + "end": 14130.18, + "probability": 0.8799 + }, + { + "start": 14130.88, + "end": 14133.48, + "probability": 0.9122 + }, + { + "start": 14133.56, + "end": 14134.28, + "probability": 0.5717 + }, + { + "start": 14134.32, + "end": 14135.18, + "probability": 0.9639 + }, + { + "start": 14136.38, + "end": 14139.04, + "probability": 0.8257 + }, + { + "start": 14141.22, + "end": 14142.22, + "probability": 0.9333 + }, + { + "start": 14142.74, + "end": 14145.1, + "probability": 0.896 + }, + { + "start": 14146.64, + "end": 14149.18, + "probability": 0.9255 + }, + { + "start": 14149.9, + "end": 14156.28, + "probability": 0.9792 + }, + { + "start": 14156.8, + "end": 14157.98, + "probability": 0.9703 + }, + { + "start": 14159.68, + "end": 14160.32, + "probability": 0.9346 + }, + { + "start": 14161.06, + "end": 14165.76, + "probability": 0.9678 + }, + { + "start": 14166.62, + "end": 14168.6, + "probability": 0.9843 + }, + { + "start": 14170.02, + "end": 14172.9, + "probability": 0.9786 + }, + { + "start": 14173.42, + "end": 14176.72, + "probability": 0.6967 + }, + { + "start": 14177.04, + "end": 14179.8, + "probability": 0.9269 + }, + { + "start": 14180.14, + "end": 14182.26, + "probability": 0.9836 + }, + { + "start": 14182.46, + "end": 14183.04, + "probability": 0.4805 + }, + { + "start": 14184.3, + "end": 14186.54, + "probability": 0.905 + }, + { + "start": 14187.02, + "end": 14188.66, + "probability": 0.5311 + }, + { + "start": 14189.72, + "end": 14193.8, + "probability": 0.6337 + }, + { + "start": 14194.04, + "end": 14195.68, + "probability": 0.8921 + }, + { + "start": 14196.08, + "end": 14197.2, + "probability": 0.9016 + }, + { + "start": 14199.07, + "end": 14200.92, + "probability": 0.9839 + }, + { + "start": 14202.98, + "end": 14207.3, + "probability": 0.9698 + }, + { + "start": 14207.62, + "end": 14209.1, + "probability": 0.6024 + }, + { + "start": 14209.22, + "end": 14210.36, + "probability": 0.8403 + }, + { + "start": 14210.76, + "end": 14211.62, + "probability": 0.8593 + }, + { + "start": 14212.7, + "end": 14215.9, + "probability": 0.993 + }, + { + "start": 14216.4, + "end": 14216.88, + "probability": 0.6638 + }, + { + "start": 14218.38, + "end": 14219.56, + "probability": 0.1047 + }, + { + "start": 14220.79, + "end": 14221.38, + "probability": 0.016 + }, + { + "start": 14221.38, + "end": 14221.38, + "probability": 0.0122 + }, + { + "start": 14221.38, + "end": 14221.92, + "probability": 0.4261 + }, + { + "start": 14221.98, + "end": 14222.76, + "probability": 0.6409 + }, + { + "start": 14222.76, + "end": 14223.5, + "probability": 0.6838 + }, + { + "start": 14224.16, + "end": 14224.76, + "probability": 0.8068 + }, + { + "start": 14227.26, + "end": 14234.36, + "probability": 0.8751 + }, + { + "start": 14237.92, + "end": 14237.92, + "probability": 0.0069 + }, + { + "start": 14237.92, + "end": 14239.97, + "probability": 0.8975 + }, + { + "start": 14241.2, + "end": 14243.46, + "probability": 0.982 + }, + { + "start": 14244.94, + "end": 14247.11, + "probability": 0.9099 + }, + { + "start": 14248.04, + "end": 14249.77, + "probability": 0.7772 + }, + { + "start": 14250.82, + "end": 14255.18, + "probability": 0.9912 + }, + { + "start": 14255.92, + "end": 14257.44, + "probability": 0.82 + }, + { + "start": 14257.88, + "end": 14259.42, + "probability": 0.9757 + }, + { + "start": 14259.58, + "end": 14264.38, + "probability": 0.9824 + }, + { + "start": 14265.8, + "end": 14269.96, + "probability": 0.8873 + }, + { + "start": 14271.06, + "end": 14272.32, + "probability": 0.7177 + }, + { + "start": 14273.12, + "end": 14274.12, + "probability": 0.9304 + }, + { + "start": 14275.42, + "end": 14276.1, + "probability": 0.7118 + }, + { + "start": 14276.36, + "end": 14276.92, + "probability": 0.8303 + }, + { + "start": 14277.58, + "end": 14279.05, + "probability": 0.9288 + }, + { + "start": 14279.66, + "end": 14280.86, + "probability": 0.9272 + }, + { + "start": 14281.06, + "end": 14281.96, + "probability": 0.9552 + }, + { + "start": 14282.28, + "end": 14283.08, + "probability": 0.9794 + }, + { + "start": 14283.98, + "end": 14285.31, + "probability": 0.4659 + }, + { + "start": 14286.28, + "end": 14286.92, + "probability": 0.6789 + }, + { + "start": 14287.3, + "end": 14288.86, + "probability": 0.8296 + }, + { + "start": 14292.2, + "end": 14294.22, + "probability": 0.9577 + }, + { + "start": 14294.84, + "end": 14296.42, + "probability": 0.9773 + }, + { + "start": 14296.84, + "end": 14300.48, + "probability": 0.9922 + }, + { + "start": 14300.48, + "end": 14304.3, + "probability": 0.9922 + }, + { + "start": 14304.56, + "end": 14309.88, + "probability": 0.9531 + }, + { + "start": 14310.24, + "end": 14311.17, + "probability": 0.8033 + }, + { + "start": 14311.64, + "end": 14312.78, + "probability": 0.917 + }, + { + "start": 14313.38, + "end": 14314.4, + "probability": 0.9637 + }, + { + "start": 14314.94, + "end": 14316.94, + "probability": 0.9832 + }, + { + "start": 14317.26, + "end": 14321.58, + "probability": 0.958 + }, + { + "start": 14321.66, + "end": 14321.92, + "probability": 0.7379 + }, + { + "start": 14322.66, + "end": 14323.94, + "probability": 0.8603 + }, + { + "start": 14324.58, + "end": 14324.88, + "probability": 0.9032 + }, + { + "start": 14325.78, + "end": 14330.48, + "probability": 0.6179 + }, + { + "start": 14331.14, + "end": 14332.44, + "probability": 0.6929 + }, + { + "start": 14333.02, + "end": 14335.64, + "probability": 0.8422 + }, + { + "start": 14337.22, + "end": 14340.32, + "probability": 0.3345 + }, + { + "start": 14340.84, + "end": 14340.84, + "probability": 0.2197 + }, + { + "start": 14341.72, + "end": 14342.64, + "probability": 0.5976 + }, + { + "start": 14343.94, + "end": 14344.32, + "probability": 0.5791 + }, + { + "start": 14345.3, + "end": 14346.0, + "probability": 0.4811 + }, + { + "start": 14346.96, + "end": 14347.18, + "probability": 0.9766 + }, + { + "start": 14348.1, + "end": 14348.96, + "probability": 0.8412 + }, + { + "start": 14349.62, + "end": 14349.86, + "probability": 0.9624 + }, + { + "start": 14350.74, + "end": 14351.38, + "probability": 0.8997 + }, + { + "start": 14354.24, + "end": 14354.6, + "probability": 0.6917 + }, + { + "start": 14356.02, + "end": 14357.02, + "probability": 0.5959 + }, + { + "start": 14357.96, + "end": 14360.42, + "probability": 0.5692 + }, + { + "start": 14361.2, + "end": 14363.12, + "probability": 0.7613 + }, + { + "start": 14363.86, + "end": 14364.2, + "probability": 0.5843 + }, + { + "start": 14365.1, + "end": 14365.9, + "probability": 0.9298 + }, + { + "start": 14368.1, + "end": 14369.1, + "probability": 0.9619 + }, + { + "start": 14369.66, + "end": 14370.48, + "probability": 0.8442 + }, + { + "start": 14371.5, + "end": 14373.78, + "probability": 0.9778 + }, + { + "start": 14374.68, + "end": 14376.94, + "probability": 0.9758 + }, + { + "start": 14378.14, + "end": 14378.54, + "probability": 0.9935 + }, + { + "start": 14379.34, + "end": 14380.18, + "probability": 0.967 + }, + { + "start": 14380.7, + "end": 14382.54, + "probability": 0.9895 + }, + { + "start": 14385.48, + "end": 14388.56, + "probability": 0.5027 + }, + { + "start": 14389.88, + "end": 14390.28, + "probability": 0.5621 + }, + { + "start": 14390.9, + "end": 14391.62, + "probability": 0.6677 + }, + { + "start": 14392.2, + "end": 14392.52, + "probability": 0.9198 + }, + { + "start": 14393.28, + "end": 14394.1, + "probability": 0.7578 + }, + { + "start": 14394.86, + "end": 14395.28, + "probability": 0.9526 + }, + { + "start": 14396.74, + "end": 14397.7, + "probability": 0.8692 + }, + { + "start": 14399.0, + "end": 14401.02, + "probability": 0.976 + }, + { + "start": 14402.4, + "end": 14402.88, + "probability": 0.9899 + }, + { + "start": 14403.68, + "end": 14404.36, + "probability": 0.9905 + }, + { + "start": 14404.94, + "end": 14405.36, + "probability": 0.9927 + }, + { + "start": 14406.0, + "end": 14406.96, + "probability": 0.9914 + }, + { + "start": 14409.78, + "end": 14415.0, + "probability": 0.8633 + }, + { + "start": 14415.76, + "end": 14416.58, + "probability": 0.7152 + }, + { + "start": 14417.78, + "end": 14418.9, + "probability": 0.5054 + }, + { + "start": 14419.58, + "end": 14419.94, + "probability": 0.9469 + }, + { + "start": 14421.52, + "end": 14422.2, + "probability": 0.8133 + }, + { + "start": 14425.34, + "end": 14427.9, + "probability": 0.8376 + }, + { + "start": 14428.58, + "end": 14430.54, + "probability": 0.9777 + }, + { + "start": 14432.72, + "end": 14434.84, + "probability": 0.9046 + }, + { + "start": 14435.46, + "end": 14436.6, + "probability": 0.9868 + }, + { + "start": 14437.64, + "end": 14438.4, + "probability": 0.9428 + }, + { + "start": 14439.1, + "end": 14439.44, + "probability": 0.9565 + }, + { + "start": 14440.04, + "end": 14440.74, + "probability": 0.9431 + }, + { + "start": 14442.04, + "end": 14442.38, + "probability": 0.9836 + }, + { + "start": 14443.14, + "end": 14444.02, + "probability": 0.788 + }, + { + "start": 14445.1, + "end": 14446.0, + "probability": 0.8041 + }, + { + "start": 14446.68, + "end": 14447.5, + "probability": 0.7704 + }, + { + "start": 14448.16, + "end": 14448.54, + "probability": 0.9338 + }, + { + "start": 14450.02, + "end": 14450.84, + "probability": 0.9859 + }, + { + "start": 14451.52, + "end": 14452.26, + "probability": 0.8535 + }, + { + "start": 14453.04, + "end": 14453.82, + "probability": 0.9316 + }, + { + "start": 14455.02, + "end": 14455.48, + "probability": 0.9543 + }, + { + "start": 14456.58, + "end": 14457.48, + "probability": 0.88 + }, + { + "start": 14458.22, + "end": 14458.64, + "probability": 0.9842 + }, + { + "start": 14459.5, + "end": 14460.34, + "probability": 0.9659 + }, + { + "start": 14462.24, + "end": 14463.1, + "probability": 0.9595 + }, + { + "start": 14464.24, + "end": 14465.56, + "probability": 0.7764 + }, + { + "start": 14467.6, + "end": 14468.44, + "probability": 0.9898 + }, + { + "start": 14469.22, + "end": 14470.24, + "probability": 0.8123 + }, + { + "start": 14470.94, + "end": 14471.3, + "probability": 0.5714 + }, + { + "start": 14473.0, + "end": 14473.8, + "probability": 0.815 + }, + { + "start": 14474.48, + "end": 14474.92, + "probability": 0.874 + }, + { + "start": 14475.76, + "end": 14476.6, + "probability": 0.7897 + }, + { + "start": 14478.48, + "end": 14481.27, + "probability": 0.8003 + }, + { + "start": 14483.4, + "end": 14483.78, + "probability": 0.9245 + }, + { + "start": 14485.6, + "end": 14486.56, + "probability": 0.8989 + }, + { + "start": 14487.56, + "end": 14487.92, + "probability": 0.9487 + }, + { + "start": 14489.06, + "end": 14490.08, + "probability": 0.9054 + }, + { + "start": 14491.26, + "end": 14491.64, + "probability": 0.9858 + }, + { + "start": 14493.2, + "end": 14494.28, + "probability": 0.9958 + }, + { + "start": 14495.22, + "end": 14497.54, + "probability": 0.682 + }, + { + "start": 14498.64, + "end": 14498.9, + "probability": 0.7434 + }, + { + "start": 14500.16, + "end": 14500.94, + "probability": 0.1473 + }, + { + "start": 14503.24, + "end": 14504.1, + "probability": 0.8835 + }, + { + "start": 14505.76, + "end": 14506.68, + "probability": 0.7353 + }, + { + "start": 14508.06, + "end": 14508.42, + "probability": 0.9821 + }, + { + "start": 14510.22, + "end": 14510.98, + "probability": 0.759 + }, + { + "start": 14512.26, + "end": 14512.6, + "probability": 0.9938 + }, + { + "start": 14513.64, + "end": 14514.4, + "probability": 0.9814 + }, + { + "start": 14515.56, + "end": 14515.98, + "probability": 0.8438 + }, + { + "start": 14517.04, + "end": 14517.76, + "probability": 0.8711 + }, + { + "start": 14518.8, + "end": 14519.32, + "probability": 0.967 + }, + { + "start": 14520.5, + "end": 14524.4, + "probability": 0.8233 + }, + { + "start": 14525.36, + "end": 14525.78, + "probability": 0.9854 + }, + { + "start": 14526.68, + "end": 14527.0, + "probability": 0.5991 + }, + { + "start": 14528.62, + "end": 14529.14, + "probability": 0.5329 + }, + { + "start": 14529.98, + "end": 14530.8, + "probability": 0.7352 + }, + { + "start": 14532.34, + "end": 14535.0, + "probability": 0.9286 + }, + { + "start": 14535.74, + "end": 14536.16, + "probability": 0.9801 + }, + { + "start": 14536.88, + "end": 14537.56, + "probability": 0.8627 + }, + { + "start": 14539.8, + "end": 14540.7, + "probability": 0.9845 + }, + { + "start": 14541.22, + "end": 14541.82, + "probability": 0.9194 + }, + { + "start": 14543.88, + "end": 14544.74, + "probability": 0.9043 + }, + { + "start": 14545.72, + "end": 14546.32, + "probability": 0.9818 + }, + { + "start": 14548.56, + "end": 14549.36, + "probability": 0.983 + }, + { + "start": 14550.18, + "end": 14551.06, + "probability": 0.9568 + }, + { + "start": 14552.7, + "end": 14553.14, + "probability": 0.9829 + }, + { + "start": 14554.32, + "end": 14554.84, + "probability": 0.963 + }, + { + "start": 14555.52, + "end": 14555.82, + "probability": 0.985 + }, + { + "start": 14557.16, + "end": 14558.36, + "probability": 0.8098 + }, + { + "start": 14560.44, + "end": 14560.82, + "probability": 0.7485 + }, + { + "start": 14562.02, + "end": 14562.82, + "probability": 0.8105 + }, + { + "start": 14563.8, + "end": 14566.34, + "probability": 0.9618 + }, + { + "start": 14568.24, + "end": 14570.16, + "probability": 0.8742 + }, + { + "start": 14578.92, + "end": 14579.26, + "probability": 0.6427 + }, + { + "start": 14581.3, + "end": 14582.16, + "probability": 0.567 + }, + { + "start": 14583.28, + "end": 14583.64, + "probability": 0.9098 + }, + { + "start": 14584.76, + "end": 14585.68, + "probability": 0.9527 + }, + { + "start": 14586.5, + "end": 14586.8, + "probability": 0.9617 + }, + { + "start": 14587.86, + "end": 14588.76, + "probability": 0.9745 + }, + { + "start": 14589.58, + "end": 14591.74, + "probability": 0.9457 + }, + { + "start": 14593.48, + "end": 14595.9, + "probability": 0.9053 + }, + { + "start": 14596.68, + "end": 14597.2, + "probability": 0.759 + }, + { + "start": 14598.44, + "end": 14599.6, + "probability": 0.8804 + }, + { + "start": 14601.78, + "end": 14602.22, + "probability": 0.9948 + }, + { + "start": 14603.28, + "end": 14604.1, + "probability": 0.7918 + }, + { + "start": 14604.98, + "end": 14605.22, + "probability": 0.9951 + }, + { + "start": 14606.42, + "end": 14607.36, + "probability": 0.7684 + }, + { + "start": 14608.2, + "end": 14610.54, + "probability": 0.6976 + }, + { + "start": 14611.74, + "end": 14612.68, + "probability": 0.4616 + }, + { + "start": 14614.76, + "end": 14615.68, + "probability": 0.8687 + }, + { + "start": 14616.52, + "end": 14617.62, + "probability": 0.7739 + }, + { + "start": 14619.38, + "end": 14619.68, + "probability": 0.9967 + }, + { + "start": 14621.4, + "end": 14622.5, + "probability": 0.8849 + }, + { + "start": 14623.18, + "end": 14623.56, + "probability": 0.9343 + }, + { + "start": 14624.14, + "end": 14624.88, + "probability": 0.8468 + }, + { + "start": 14625.72, + "end": 14627.66, + "probability": 0.9388 + }, + { + "start": 14629.44, + "end": 14629.84, + "probability": 0.9919 + }, + { + "start": 14630.76, + "end": 14631.68, + "probability": 0.4434 + }, + { + "start": 14632.36, + "end": 14632.78, + "probability": 0.9854 + }, + { + "start": 14633.9, + "end": 14634.78, + "probability": 0.9592 + }, + { + "start": 14635.5, + "end": 14635.74, + "probability": 0.9961 + }, + { + "start": 14637.3, + "end": 14638.16, + "probability": 0.6915 + }, + { + "start": 14639.48, + "end": 14639.88, + "probability": 0.7436 + }, + { + "start": 14641.42, + "end": 14642.48, + "probability": 0.8087 + }, + { + "start": 14644.84, + "end": 14646.6, + "probability": 0.927 + }, + { + "start": 14647.6, + "end": 14648.46, + "probability": 0.6419 + }, + { + "start": 14650.28, + "end": 14651.84, + "probability": 0.9235 + }, + { + "start": 14652.36, + "end": 14652.82, + "probability": 0.9891 + }, + { + "start": 14654.0, + "end": 14654.82, + "probability": 0.8442 + }, + { + "start": 14657.86, + "end": 14660.82, + "probability": 0.9104 + }, + { + "start": 14662.0, + "end": 14662.42, + "probability": 0.9766 + }, + { + "start": 14663.16, + "end": 14663.94, + "probability": 0.8132 + }, + { + "start": 14670.36, + "end": 14673.36, + "probability": 0.4956 + }, + { + "start": 14678.92, + "end": 14680.24, + "probability": 0.1558 + }, + { + "start": 14682.72, + "end": 14686.4, + "probability": 0.6216 + }, + { + "start": 14688.0, + "end": 14688.42, + "probability": 0.5933 + }, + { + "start": 14689.56, + "end": 14690.5, + "probability": 0.5568 + }, + { + "start": 14692.14, + "end": 14694.14, + "probability": 0.6722 + }, + { + "start": 14696.76, + "end": 14697.54, + "probability": 0.6512 + }, + { + "start": 14698.22, + "end": 14698.98, + "probability": 0.7586 + }, + { + "start": 14702.4, + "end": 14702.82, + "probability": 0.9819 + }, + { + "start": 14703.68, + "end": 14704.31, + "probability": 0.4266 + }, + { + "start": 14705.32, + "end": 14705.54, + "probability": 0.5564 + }, + { + "start": 14707.02, + "end": 14707.74, + "probability": 0.7179 + }, + { + "start": 14710.62, + "end": 14713.42, + "probability": 0.843 + }, + { + "start": 14715.0, + "end": 14715.44, + "probability": 0.9829 + }, + { + "start": 14716.88, + "end": 14717.7, + "probability": 0.8688 + }, + { + "start": 14718.58, + "end": 14718.94, + "probability": 0.9558 + }, + { + "start": 14719.68, + "end": 14720.62, + "probability": 0.9731 + }, + { + "start": 14721.54, + "end": 14722.1, + "probability": 0.9897 + }, + { + "start": 14723.1, + "end": 14723.86, + "probability": 0.8805 + }, + { + "start": 14726.62, + "end": 14727.02, + "probability": 0.9956 + }, + { + "start": 14727.96, + "end": 14729.62, + "probability": 0.7966 + }, + { + "start": 14731.8, + "end": 14733.8, + "probability": 0.9255 + }, + { + "start": 14734.6, + "end": 14734.94, + "probability": 0.5563 + }, + { + "start": 14735.88, + "end": 14736.58, + "probability": 0.5669 + }, + { + "start": 14737.58, + "end": 14737.9, + "probability": 0.9263 + }, + { + "start": 14739.08, + "end": 14739.78, + "probability": 0.7251 + }, + { + "start": 14741.66, + "end": 14744.0, + "probability": 0.501 + }, + { + "start": 14745.26, + "end": 14746.02, + "probability": 0.8085 + }, + { + "start": 14748.04, + "end": 14750.22, + "probability": 0.814 + }, + { + "start": 14751.46, + "end": 14751.9, + "probability": 0.9938 + }, + { + "start": 14753.46, + "end": 14754.34, + "probability": 0.9323 + }, + { + "start": 14755.78, + "end": 14758.86, + "probability": 0.9242 + }, + { + "start": 14760.02, + "end": 14761.16, + "probability": 0.9707 + }, + { + "start": 14762.06, + "end": 14762.44, + "probability": 0.9937 + }, + { + "start": 14763.46, + "end": 14764.38, + "probability": 0.5822 + }, + { + "start": 14765.06, + "end": 14765.54, + "probability": 0.7407 + }, + { + "start": 14766.36, + "end": 14770.24, + "probability": 0.8482 + }, + { + "start": 14770.86, + "end": 14773.38, + "probability": 0.8345 + }, + { + "start": 14774.1, + "end": 14774.6, + "probability": 0.9855 + }, + { + "start": 14775.16, + "end": 14776.0, + "probability": 0.8898 + }, + { + "start": 14779.64, + "end": 14780.04, + "probability": 0.9194 + }, + { + "start": 14780.84, + "end": 14781.62, + "probability": 0.8789 + }, + { + "start": 14783.7, + "end": 14784.44, + "probability": 0.9341 + }, + { + "start": 14785.52, + "end": 14786.28, + "probability": 0.7154 + }, + { + "start": 14787.36, + "end": 14788.86, + "probability": 0.9675 + }, + { + "start": 14789.86, + "end": 14790.18, + "probability": 0.7128 + }, + { + "start": 14791.86, + "end": 14792.66, + "probability": 0.559 + }, + { + "start": 14793.64, + "end": 14795.76, + "probability": 0.8948 + }, + { + "start": 14796.66, + "end": 14799.34, + "probability": 0.7942 + }, + { + "start": 14804.96, + "end": 14805.4, + "probability": 0.7667 + }, + { + "start": 14807.0, + "end": 14807.8, + "probability": 0.8604 + }, + { + "start": 14808.56, + "end": 14810.22, + "probability": 0.9039 + }, + { + "start": 14810.78, + "end": 14812.86, + "probability": 0.8198 + }, + { + "start": 14814.12, + "end": 14814.48, + "probability": 0.8801 + }, + { + "start": 14818.16, + "end": 14820.08, + "probability": 0.6924 + }, + { + "start": 14821.26, + "end": 14822.22, + "probability": 0.4653 + }, + { + "start": 14823.22, + "end": 14828.53, + "probability": 0.8328 + }, + { + "start": 14831.22, + "end": 14834.44, + "probability": 0.6032 + }, + { + "start": 14835.22, + "end": 14838.06, + "probability": 0.7837 + }, + { + "start": 14838.96, + "end": 14839.32, + "probability": 0.9137 + }, + { + "start": 14843.16, + "end": 14843.96, + "probability": 0.6136 + }, + { + "start": 14845.34, + "end": 14848.04, + "probability": 0.8239 + }, + { + "start": 14848.64, + "end": 14849.62, + "probability": 0.9046 + }, + { + "start": 14850.62, + "end": 14851.02, + "probability": 0.9099 + }, + { + "start": 14852.7, + "end": 14853.9, + "probability": 0.8818 + }, + { + "start": 14854.52, + "end": 14855.9, + "probability": 0.9668 + }, + { + "start": 14856.94, + "end": 14857.84, + "probability": 0.9678 + }, + { + "start": 14858.86, + "end": 14859.2, + "probability": 0.9678 + }, + { + "start": 14861.56, + "end": 14862.36, + "probability": 0.4358 + }, + { + "start": 14864.02, + "end": 14864.48, + "probability": 0.9886 + }, + { + "start": 14867.34, + "end": 14868.22, + "probability": 0.5194 + }, + { + "start": 14869.38, + "end": 14870.1, + "probability": 0.9242 + }, + { + "start": 14870.92, + "end": 14871.58, + "probability": 0.637 + }, + { + "start": 14873.08, + "end": 14880.54, + "probability": 0.9364 + }, + { + "start": 14882.52, + "end": 14883.69, + "probability": 0.7856 + }, + { + "start": 14884.58, + "end": 14886.32, + "probability": 0.7054 + }, + { + "start": 14889.7, + "end": 14893.16, + "probability": 0.6228 + }, + { + "start": 14894.56, + "end": 14896.78, + "probability": 0.7177 + }, + { + "start": 14898.44, + "end": 14905.1, + "probability": 0.7073 + }, + { + "start": 14907.44, + "end": 14908.32, + "probability": 0.7954 + }, + { + "start": 14912.68, + "end": 14912.9, + "probability": 0.6696 + }, + { + "start": 14914.12, + "end": 14916.92, + "probability": 0.6399 + }, + { + "start": 14918.06, + "end": 14921.54, + "probability": 0.8657 + }, + { + "start": 14922.88, + "end": 14925.16, + "probability": 0.9731 + }, + { + "start": 14927.68, + "end": 14929.82, + "probability": 0.9695 + }, + { + "start": 14930.42, + "end": 14932.72, + "probability": 0.8752 + }, + { + "start": 14933.16, + "end": 14934.7, + "probability": 0.9427 + }, + { + "start": 14935.54, + "end": 14936.2, + "probability": 0.9753 + }, + { + "start": 14940.68, + "end": 14942.18, + "probability": 0.7018 + }, + { + "start": 14943.45, + "end": 14946.88, + "probability": 0.4309 + }, + { + "start": 14949.6, + "end": 14950.86, + "probability": 0.0907 + }, + { + "start": 14953.2, + "end": 14956.46, + "probability": 0.0901 + }, + { + "start": 14960.14, + "end": 14960.8, + "probability": 0.1011 + }, + { + "start": 14962.16, + "end": 14962.5, + "probability": 0.1419 + }, + { + "start": 14963.12, + "end": 14965.48, + "probability": 0.0117 + }, + { + "start": 15000.09, + "end": 15003.79, + "probability": 0.0292 + }, + { + "start": 15005.47, + "end": 15005.69, + "probability": 0.0446 + }, + { + "start": 15006.63, + "end": 15008.23, + "probability": 0.0583 + }, + { + "start": 15100.08, + "end": 15100.18, + "probability": 0.0281 + }, + { + "start": 15100.18, + "end": 15102.15, + "probability": 0.5147 + }, + { + "start": 15102.5, + "end": 15103.76, + "probability": 0.6764 + }, + { + "start": 15106.02, + "end": 15107.06, + "probability": 0.8108 + }, + { + "start": 15107.66, + "end": 15108.36, + "probability": 0.6885 + }, + { + "start": 15109.46, + "end": 15110.76, + "probability": 0.6919 + }, + { + "start": 15119.58, + "end": 15122.96, + "probability": 0.7491 + }, + { + "start": 15124.42, + "end": 15128.0, + "probability": 0.9917 + }, + { + "start": 15129.5, + "end": 15130.72, + "probability": 0.7555 + }, + { + "start": 15131.46, + "end": 15135.0, + "probability": 0.9729 + }, + { + "start": 15136.06, + "end": 15137.4, + "probability": 0.9551 + }, + { + "start": 15138.7, + "end": 15146.34, + "probability": 0.7664 + }, + { + "start": 15147.02, + "end": 15147.82, + "probability": 0.8807 + }, + { + "start": 15148.76, + "end": 15152.66, + "probability": 0.9954 + }, + { + "start": 15154.0, + "end": 15157.32, + "probability": 0.9795 + }, + { + "start": 15157.84, + "end": 15160.44, + "probability": 0.851 + }, + { + "start": 15161.1, + "end": 15161.76, + "probability": 0.5668 + }, + { + "start": 15162.34, + "end": 15162.86, + "probability": 0.6653 + }, + { + "start": 15163.88, + "end": 15166.42, + "probability": 0.8867 + }, + { + "start": 15166.56, + "end": 15167.44, + "probability": 0.5885 + }, + { + "start": 15167.5, + "end": 15168.22, + "probability": 0.905 + }, + { + "start": 15168.56, + "end": 15171.62, + "probability": 0.9614 + }, + { + "start": 15172.2, + "end": 15176.2, + "probability": 0.967 + }, + { + "start": 15177.52, + "end": 15186.46, + "probability": 0.9282 + }, + { + "start": 15187.48, + "end": 15190.44, + "probability": 0.9946 + }, + { + "start": 15191.26, + "end": 15193.09, + "probability": 0.9922 + }, + { + "start": 15194.42, + "end": 15197.94, + "probability": 0.9706 + }, + { + "start": 15199.96, + "end": 15205.28, + "probability": 0.7457 + }, + { + "start": 15206.1, + "end": 15209.24, + "probability": 0.9169 + }, + { + "start": 15209.78, + "end": 15212.62, + "probability": 0.9812 + }, + { + "start": 15213.18, + "end": 15214.72, + "probability": 0.999 + }, + { + "start": 15215.48, + "end": 15217.54, + "probability": 0.739 + }, + { + "start": 15217.98, + "end": 15220.12, + "probability": 0.9371 + }, + { + "start": 15220.54, + "end": 15224.82, + "probability": 0.998 + }, + { + "start": 15225.7, + "end": 15226.36, + "probability": 0.9773 + }, + { + "start": 15227.1, + "end": 15230.38, + "probability": 0.8301 + }, + { + "start": 15231.92, + "end": 15232.78, + "probability": 0.9184 + }, + { + "start": 15233.64, + "end": 15235.34, + "probability": 0.8132 + }, + { + "start": 15236.24, + "end": 15239.22, + "probability": 0.9973 + }, + { + "start": 15239.78, + "end": 15242.5, + "probability": 0.8707 + }, + { + "start": 15243.02, + "end": 15245.6, + "probability": 0.9927 + }, + { + "start": 15246.2, + "end": 15250.24, + "probability": 0.7449 + }, + { + "start": 15250.42, + "end": 15251.58, + "probability": 0.9144 + }, + { + "start": 15252.06, + "end": 15256.98, + "probability": 0.9757 + }, + { + "start": 15257.4, + "end": 15258.76, + "probability": 0.8408 + }, + { + "start": 15259.48, + "end": 15261.8, + "probability": 0.8948 + }, + { + "start": 15262.48, + "end": 15265.0, + "probability": 0.9576 + }, + { + "start": 15265.54, + "end": 15268.64, + "probability": 0.9431 + }, + { + "start": 15268.88, + "end": 15269.4, + "probability": 0.9301 + }, + { + "start": 15269.5, + "end": 15273.26, + "probability": 0.984 + }, + { + "start": 15273.34, + "end": 15273.7, + "probability": 0.7205 + }, + { + "start": 15274.24, + "end": 15274.52, + "probability": 0.517 + }, + { + "start": 15274.7, + "end": 15275.64, + "probability": 0.8222 + }, + { + "start": 15276.12, + "end": 15276.84, + "probability": 0.8775 + }, + { + "start": 15276.92, + "end": 15277.3, + "probability": 0.8339 + }, + { + "start": 15277.32, + "end": 15278.24, + "probability": 0.8503 + }, + { + "start": 15279.18, + "end": 15284.02, + "probability": 0.9825 + }, + { + "start": 15286.12, + "end": 15286.58, + "probability": 0.6884 + }, + { + "start": 15288.56, + "end": 15289.2, + "probability": 0.8488 + }, + { + "start": 15290.76, + "end": 15291.06, + "probability": 0.884 + }, + { + "start": 15292.36, + "end": 15296.9, + "probability": 0.9814 + }, + { + "start": 15297.74, + "end": 15299.64, + "probability": 0.8358 + }, + { + "start": 15300.34, + "end": 15302.14, + "probability": 0.972 + }, + { + "start": 15302.94, + "end": 15305.24, + "probability": 0.7961 + }, + { + "start": 15305.88, + "end": 15307.36, + "probability": 0.5825 + }, + { + "start": 15308.36, + "end": 15309.84, + "probability": 0.6731 + }, + { + "start": 15310.4, + "end": 15311.18, + "probability": 0.7569 + }, + { + "start": 15312.44, + "end": 15317.1, + "probability": 0.9521 + }, + { + "start": 15317.82, + "end": 15321.7, + "probability": 0.8996 + }, + { + "start": 15322.09, + "end": 15325.7, + "probability": 0.9664 + }, + { + "start": 15326.5, + "end": 15326.92, + "probability": 0.918 + }, + { + "start": 15327.34, + "end": 15327.76, + "probability": 0.8888 + }, + { + "start": 15327.98, + "end": 15329.54, + "probability": 0.9179 + }, + { + "start": 15330.14, + "end": 15332.34, + "probability": 0.8695 + }, + { + "start": 15332.56, + "end": 15335.96, + "probability": 0.7896 + }, + { + "start": 15336.42, + "end": 15339.84, + "probability": 0.931 + }, + { + "start": 15341.38, + "end": 15342.0, + "probability": 0.9055 + }, + { + "start": 15342.94, + "end": 15345.64, + "probability": 0.9328 + }, + { + "start": 15346.46, + "end": 15348.84, + "probability": 0.8106 + }, + { + "start": 15349.48, + "end": 15352.18, + "probability": 0.9256 + }, + { + "start": 15353.5, + "end": 15357.3, + "probability": 0.9367 + }, + { + "start": 15357.8, + "end": 15358.82, + "probability": 0.9914 + }, + { + "start": 15359.46, + "end": 15360.6, + "probability": 0.9849 + }, + { + "start": 15361.42, + "end": 15363.2, + "probability": 0.8486 + }, + { + "start": 15363.52, + "end": 15367.72, + "probability": 0.9751 + }, + { + "start": 15368.42, + "end": 15369.36, + "probability": 0.9882 + }, + { + "start": 15369.44, + "end": 15370.28, + "probability": 0.9778 + }, + { + "start": 15370.34, + "end": 15370.8, + "probability": 0.9878 + }, + { + "start": 15371.04, + "end": 15372.14, + "probability": 0.9849 + }, + { + "start": 15373.82, + "end": 15373.82, + "probability": 0.9731 + }, + { + "start": 15375.94, + "end": 15376.34, + "probability": 0.8703 + }, + { + "start": 15376.98, + "end": 15377.7, + "probability": 0.8114 + }, + { + "start": 15378.48, + "end": 15379.04, + "probability": 0.6604 + }, + { + "start": 15379.86, + "end": 15381.78, + "probability": 0.9167 + }, + { + "start": 15382.66, + "end": 15389.34, + "probability": 0.9966 + }, + { + "start": 15389.54, + "end": 15392.42, + "probability": 0.9821 + }, + { + "start": 15392.56, + "end": 15394.74, + "probability": 0.9571 + }, + { + "start": 15395.9, + "end": 15399.46, + "probability": 0.995 + }, + { + "start": 15400.46, + "end": 15402.92, + "probability": 0.9935 + }, + { + "start": 15403.6, + "end": 15407.54, + "probability": 0.9617 + }, + { + "start": 15408.1, + "end": 15408.44, + "probability": 0.8229 + }, + { + "start": 15409.42, + "end": 15409.92, + "probability": 0.9321 + }, + { + "start": 15410.86, + "end": 15412.56, + "probability": 0.9274 + }, + { + "start": 15413.22, + "end": 15416.02, + "probability": 0.9924 + }, + { + "start": 15417.04, + "end": 15420.0, + "probability": 0.9993 + }, + { + "start": 15420.82, + "end": 15421.52, + "probability": 0.8875 + }, + { + "start": 15422.3, + "end": 15424.84, + "probability": 0.9982 + }, + { + "start": 15425.38, + "end": 15427.76, + "probability": 0.989 + }, + { + "start": 15429.02, + "end": 15431.1, + "probability": 0.9118 + }, + { + "start": 15431.72, + "end": 15433.28, + "probability": 0.9707 + }, + { + "start": 15433.44, + "end": 15437.02, + "probability": 0.9707 + }, + { + "start": 15437.94, + "end": 15439.68, + "probability": 0.9134 + }, + { + "start": 15440.34, + "end": 15446.86, + "probability": 0.9669 + }, + { + "start": 15446.92, + "end": 15448.94, + "probability": 0.8245 + }, + { + "start": 15449.66, + "end": 15450.54, + "probability": 0.9922 + }, + { + "start": 15451.14, + "end": 15455.14, + "probability": 0.9963 + }, + { + "start": 15455.24, + "end": 15456.12, + "probability": 0.9902 + }, + { + "start": 15456.18, + "end": 15456.64, + "probability": 0.8626 + }, + { + "start": 15457.3, + "end": 15459.26, + "probability": 0.9948 + }, + { + "start": 15460.6, + "end": 15461.7, + "probability": 0.946 + }, + { + "start": 15462.72, + "end": 15463.16, + "probability": 0.9902 + }, + { + "start": 15463.94, + "end": 15464.68, + "probability": 0.7623 + }, + { + "start": 15465.48, + "end": 15467.9, + "probability": 0.9614 + }, + { + "start": 15469.18, + "end": 15469.88, + "probability": 0.6586 + }, + { + "start": 15471.3, + "end": 15473.74, + "probability": 0.8511 + }, + { + "start": 15474.86, + "end": 15476.56, + "probability": 0.8258 + }, + { + "start": 15477.4, + "end": 15477.92, + "probability": 0.9468 + }, + { + "start": 15479.5, + "end": 15480.06, + "probability": 0.735 + }, + { + "start": 15480.6, + "end": 15481.96, + "probability": 0.9955 + }, + { + "start": 15482.56, + "end": 15485.78, + "probability": 0.9918 + }, + { + "start": 15487.1, + "end": 15488.9, + "probability": 0.9712 + }, + { + "start": 15490.3, + "end": 15491.7, + "probability": 0.9905 + }, + { + "start": 15492.66, + "end": 15495.48, + "probability": 0.9791 + }, + { + "start": 15496.24, + "end": 15496.94, + "probability": 0.8051 + }, + { + "start": 15497.94, + "end": 15500.16, + "probability": 0.997 + }, + { + "start": 15501.06, + "end": 15501.94, + "probability": 0.9904 + }, + { + "start": 15502.68, + "end": 15503.59, + "probability": 0.9953 + }, + { + "start": 15503.82, + "end": 15506.82, + "probability": 0.8719 + }, + { + "start": 15507.18, + "end": 15509.5, + "probability": 0.9946 + }, + { + "start": 15509.96, + "end": 15513.44, + "probability": 0.9928 + }, + { + "start": 15514.58, + "end": 15519.1, + "probability": 0.912 + }, + { + "start": 15520.18, + "end": 15521.86, + "probability": 0.9905 + }, + { + "start": 15522.58, + "end": 15523.6, + "probability": 0.9537 + }, + { + "start": 15526.04, + "end": 15526.94, + "probability": 0.9908 + }, + { + "start": 15528.62, + "end": 15529.66, + "probability": 0.8861 + }, + { + "start": 15530.7, + "end": 15532.96, + "probability": 0.6489 + }, + { + "start": 15533.48, + "end": 15534.34, + "probability": 0.8113 + }, + { + "start": 15535.2, + "end": 15536.18, + "probability": 0.9982 + }, + { + "start": 15537.6, + "end": 15541.1, + "probability": 0.9922 + }, + { + "start": 15541.82, + "end": 15544.88, + "probability": 0.9961 + }, + { + "start": 15545.46, + "end": 15546.58, + "probability": 0.971 + }, + { + "start": 15547.4, + "end": 15549.96, + "probability": 0.9986 + }, + { + "start": 15550.6, + "end": 15551.78, + "probability": 0.9971 + }, + { + "start": 15552.64, + "end": 15556.08, + "probability": 0.9977 + }, + { + "start": 15557.04, + "end": 15558.08, + "probability": 0.8876 + }, + { + "start": 15558.68, + "end": 15562.22, + "probability": 0.9766 + }, + { + "start": 15563.18, + "end": 15564.0, + "probability": 0.9857 + }, + { + "start": 15564.78, + "end": 15566.88, + "probability": 0.9626 + }, + { + "start": 15567.62, + "end": 15568.92, + "probability": 0.7076 + }, + { + "start": 15569.58, + "end": 15570.18, + "probability": 0.8983 + }, + { + "start": 15570.84, + "end": 15571.28, + "probability": 0.9748 + }, + { + "start": 15572.32, + "end": 15573.08, + "probability": 0.7782 + }, + { + "start": 15574.78, + "end": 15579.0, + "probability": 0.8831 + }, + { + "start": 15579.9, + "end": 15580.94, + "probability": 0.9858 + }, + { + "start": 15581.12, + "end": 15583.26, + "probability": 0.9934 + }, + { + "start": 15583.34, + "end": 15584.54, + "probability": 0.9975 + }, + { + "start": 15585.2, + "end": 15586.62, + "probability": 0.5825 + }, + { + "start": 15587.64, + "end": 15591.5, + "probability": 0.9989 + }, + { + "start": 15592.06, + "end": 15593.96, + "probability": 0.9988 + }, + { + "start": 15594.52, + "end": 15596.52, + "probability": 0.9737 + }, + { + "start": 15596.96, + "end": 15600.98, + "probability": 0.9907 + }, + { + "start": 15601.74, + "end": 15603.32, + "probability": 0.9539 + }, + { + "start": 15603.94, + "end": 15604.9, + "probability": 0.9624 + }, + { + "start": 15605.42, + "end": 15607.18, + "probability": 0.9816 + }, + { + "start": 15610.45, + "end": 15611.42, + "probability": 0.417 + }, + { + "start": 15611.42, + "end": 15612.86, + "probability": 0.4543 + }, + { + "start": 15613.02, + "end": 15615.96, + "probability": 0.9882 + }, + { + "start": 15616.3, + "end": 15616.82, + "probability": 0.7984 + }, + { + "start": 15617.22, + "end": 15617.6, + "probability": 0.8488 + }, + { + "start": 15617.7, + "end": 15618.0, + "probability": 0.5698 + }, + { + "start": 15618.1, + "end": 15619.06, + "probability": 0.7269 + }, + { + "start": 15620.3, + "end": 15620.75, + "probability": 0.9883 + }, + { + "start": 15621.5, + "end": 15624.23, + "probability": 0.8474 + }, + { + "start": 15625.04, + "end": 15628.92, + "probability": 0.9292 + }, + { + "start": 15629.54, + "end": 15631.63, + "probability": 0.9822 + }, + { + "start": 15632.12, + "end": 15633.48, + "probability": 0.9973 + }, + { + "start": 15635.16, + "end": 15637.56, + "probability": 0.9993 + }, + { + "start": 15638.02, + "end": 15641.96, + "probability": 0.9873 + }, + { + "start": 15642.58, + "end": 15645.46, + "probability": 0.9958 + }, + { + "start": 15647.08, + "end": 15651.16, + "probability": 0.957 + }, + { + "start": 15651.88, + "end": 15654.9, + "probability": 0.9604 + }, + { + "start": 15655.22, + "end": 15656.8, + "probability": 0.9914 + }, + { + "start": 15657.1, + "end": 15658.84, + "probability": 0.9846 + }, + { + "start": 15659.12, + "end": 15661.28, + "probability": 0.9713 + }, + { + "start": 15661.44, + "end": 15662.14, + "probability": 0.7797 + }, + { + "start": 15663.0, + "end": 15664.1, + "probability": 0.9339 + }, + { + "start": 15664.86, + "end": 15665.62, + "probability": 0.9947 + }, + { + "start": 15666.72, + "end": 15668.0, + "probability": 0.827 + }, + { + "start": 15669.62, + "end": 15675.9, + "probability": 0.8096 + }, + { + "start": 15676.86, + "end": 15680.21, + "probability": 0.8477 + }, + { + "start": 15681.84, + "end": 15684.62, + "probability": 0.9691 + }, + { + "start": 15685.26, + "end": 15685.54, + "probability": 0.8299 + }, + { + "start": 15686.78, + "end": 15687.58, + "probability": 0.5902 + }, + { + "start": 15688.14, + "end": 15689.74, + "probability": 0.7436 + }, + { + "start": 15690.5, + "end": 15692.11, + "probability": 0.9567 + }, + { + "start": 15692.6, + "end": 15695.96, + "probability": 0.6559 + }, + { + "start": 15697.08, + "end": 15697.08, + "probability": 0.2222 + }, + { + "start": 15697.08, + "end": 15697.08, + "probability": 0.3359 + }, + { + "start": 15697.08, + "end": 15698.29, + "probability": 0.5829 + }, + { + "start": 15700.52, + "end": 15702.78, + "probability": 0.0369 + }, + { + "start": 15703.86, + "end": 15704.52, + "probability": 0.2253 + }, + { + "start": 15708.26, + "end": 15708.72, + "probability": 0.0055 + }, + { + "start": 15716.42, + "end": 15716.42, + "probability": 0.0444 + }, + { + "start": 15716.42, + "end": 15716.42, + "probability": 0.0391 + }, + { + "start": 15716.42, + "end": 15716.42, + "probability": 0.1062 + }, + { + "start": 15716.42, + "end": 15716.42, + "probability": 0.0883 + }, + { + "start": 15716.42, + "end": 15716.42, + "probability": 0.0377 + }, + { + "start": 15716.42, + "end": 15716.46, + "probability": 0.1235 + }, + { + "start": 15716.46, + "end": 15716.48, + "probability": 0.4076 + }, + { + "start": 15716.48, + "end": 15716.48, + "probability": 0.116 + }, + { + "start": 15716.48, + "end": 15716.6, + "probability": 0.0319 + }, + { + "start": 15738.58, + "end": 15740.34, + "probability": 0.2277 + }, + { + "start": 15740.66, + "end": 15741.94, + "probability": 0.6274 + }, + { + "start": 15742.34, + "end": 15745.04, + "probability": 0.1839 + }, + { + "start": 15745.7, + "end": 15746.54, + "probability": 0.3748 + }, + { + "start": 15746.64, + "end": 15751.24, + "probability": 0.7937 + }, + { + "start": 15752.24, + "end": 15752.46, + "probability": 0.0311 + }, + { + "start": 15755.2, + "end": 15756.72, + "probability": 0.3145 + }, + { + "start": 15756.82, + "end": 15759.2, + "probability": 0.7275 + }, + { + "start": 15760.04, + "end": 15762.48, + "probability": 0.9825 + }, + { + "start": 15763.0, + "end": 15763.5, + "probability": 0.6707 + }, + { + "start": 15764.12, + "end": 15767.48, + "probability": 0.9949 + }, + { + "start": 15768.38, + "end": 15770.3, + "probability": 0.9268 + }, + { + "start": 15771.1, + "end": 15771.48, + "probability": 0.6537 + }, + { + "start": 15771.96, + "end": 15774.74, + "probability": 0.9857 + }, + { + "start": 15774.9, + "end": 15776.34, + "probability": 0.9954 + }, + { + "start": 15777.24, + "end": 15780.52, + "probability": 0.982 + }, + { + "start": 15780.68, + "end": 15781.46, + "probability": 0.9533 + }, + { + "start": 15782.06, + "end": 15782.62, + "probability": 0.887 + }, + { + "start": 15783.92, + "end": 15784.34, + "probability": 0.7284 + }, + { + "start": 15784.56, + "end": 15785.5, + "probability": 0.7894 + }, + { + "start": 15785.58, + "end": 15789.16, + "probability": 0.9279 + }, + { + "start": 15789.44, + "end": 15797.68, + "probability": 0.936 + }, + { + "start": 15800.72, + "end": 15801.22, + "probability": 0.1699 + }, + { + "start": 15801.32, + "end": 15802.16, + "probability": 0.2302 + }, + { + "start": 15802.16, + "end": 15802.97, + "probability": 0.68 + }, + { + "start": 15804.1, + "end": 15807.18, + "probability": 0.9495 + }, + { + "start": 15814.16, + "end": 15816.4, + "probability": 0.8955 + }, + { + "start": 15816.5, + "end": 15820.8, + "probability": 0.9209 + }, + { + "start": 15821.62, + "end": 15824.34, + "probability": 0.994 + }, + { + "start": 15824.76, + "end": 15829.3, + "probability": 0.9978 + }, + { + "start": 15829.4, + "end": 15829.96, + "probability": 0.9193 + }, + { + "start": 15831.58, + "end": 15833.74, + "probability": 0.7944 + }, + { + "start": 15834.72, + "end": 15835.4, + "probability": 0.9448 + }, + { + "start": 15836.64, + "end": 15840.62, + "probability": 0.8545 + }, + { + "start": 15841.22, + "end": 15843.5, + "probability": 0.8592 + }, + { + "start": 15844.02, + "end": 15844.8, + "probability": 0.7014 + }, + { + "start": 15845.38, + "end": 15846.18, + "probability": 0.3601 + }, + { + "start": 15846.84, + "end": 15847.54, + "probability": 0.2326 + }, + { + "start": 15848.78, + "end": 15849.16, + "probability": 0.7388 + }, + { + "start": 15850.48, + "end": 15851.44, + "probability": 0.7016 + }, + { + "start": 15852.36, + "end": 15852.76, + "probability": 0.9435 + }, + { + "start": 15853.82, + "end": 15854.52, + "probability": 0.5067 + }, + { + "start": 15856.14, + "end": 15858.38, + "probability": 0.7988 + }, + { + "start": 15859.9, + "end": 15860.56, + "probability": 0.9751 + }, + { + "start": 15861.52, + "end": 15862.16, + "probability": 0.8622 + }, + { + "start": 15863.98, + "end": 15864.68, + "probability": 0.9896 + }, + { + "start": 15865.24, + "end": 15866.18, + "probability": 0.6871 + }, + { + "start": 15866.72, + "end": 15867.4, + "probability": 0.9931 + }, + { + "start": 15868.38, + "end": 15870.56, + "probability": 0.8692 + }, + { + "start": 15872.1, + "end": 15872.44, + "probability": 0.946 + }, + { + "start": 15874.22, + "end": 15874.96, + "probability": 0.9147 + }, + { + "start": 15876.52, + "end": 15877.24, + "probability": 0.8952 + }, + { + "start": 15877.92, + "end": 15878.64, + "probability": 0.5111 + }, + { + "start": 15880.5, + "end": 15881.92, + "probability": 0.8668 + }, + { + "start": 15882.74, + "end": 15883.0, + "probability": 0.8591 + }, + { + "start": 15884.24, + "end": 15885.3, + "probability": 0.9268 + }, + { + "start": 15886.04, + "end": 15886.36, + "probability": 0.91 + }, + { + "start": 15887.38, + "end": 15888.28, + "probability": 0.92 + }, + { + "start": 15889.46, + "end": 15891.48, + "probability": 0.9733 + }, + { + "start": 15893.22, + "end": 15894.88, + "probability": 0.8617 + }, + { + "start": 15898.72, + "end": 15901.16, + "probability": 0.6298 + }, + { + "start": 15903.68, + "end": 15906.98, + "probability": 0.8974 + }, + { + "start": 15908.94, + "end": 15911.4, + "probability": 0.6909 + }, + { + "start": 15914.94, + "end": 15915.32, + "probability": 0.8796 + }, + { + "start": 15916.68, + "end": 15917.5, + "probability": 0.9183 + }, + { + "start": 15918.78, + "end": 15919.56, + "probability": 0.5716 + }, + { + "start": 15921.3, + "end": 15921.76, + "probability": 0.0683 + }, + { + "start": 15922.82, + "end": 15923.43, + "probability": 0.2442 + }, + { + "start": 15932.1, + "end": 15934.42, + "probability": 0.5713 + }, + { + "start": 15935.42, + "end": 15937.46, + "probability": 0.8419 + }, + { + "start": 15938.26, + "end": 15939.04, + "probability": 0.5021 + }, + { + "start": 15941.14, + "end": 15942.34, + "probability": 0.497 + }, + { + "start": 15945.46, + "end": 15948.2, + "probability": 0.9372 + }, + { + "start": 15949.61, + "end": 15951.72, + "probability": 0.936 + }, + { + "start": 15952.34, + "end": 15954.62, + "probability": 0.9204 + }, + { + "start": 15957.16, + "end": 15958.96, + "probability": 0.6623 + }, + { + "start": 15960.58, + "end": 15961.62, + "probability": 0.892 + }, + { + "start": 15963.02, + "end": 15963.84, + "probability": 0.788 + }, + { + "start": 15964.58, + "end": 15964.98, + "probability": 0.9054 + }, + { + "start": 15966.4, + "end": 15967.12, + "probability": 0.8999 + }, + { + "start": 15968.3, + "end": 15968.7, + "probability": 0.9619 + }, + { + "start": 15971.7, + "end": 15972.38, + "probability": 0.614 + }, + { + "start": 15972.94, + "end": 15974.2, + "probability": 0.8578 + }, + { + "start": 15976.02, + "end": 15976.88, + "probability": 0.6449 + }, + { + "start": 15977.62, + "end": 15978.28, + "probability": 0.8453 + }, + { + "start": 15979.26, + "end": 15982.04, + "probability": 0.9532 + }, + { + "start": 15983.68, + "end": 15989.14, + "probability": 0.9432 + }, + { + "start": 15989.72, + "end": 15993.02, + "probability": 0.7413 + }, + { + "start": 15993.92, + "end": 15996.6, + "probability": 0.6819 + }, + { + "start": 15997.84, + "end": 16000.06, + "probability": 0.8806 + }, + { + "start": 16000.72, + "end": 16001.24, + "probability": 0.9505 + }, + { + "start": 16001.96, + "end": 16002.82, + "probability": 0.8948 + }, + { + "start": 16005.34, + "end": 16007.2, + "probability": 0.7868 + }, + { + "start": 16008.44, + "end": 16008.96, + "probability": 0.9718 + }, + { + "start": 16010.2, + "end": 16012.38, + "probability": 0.9866 + }, + { + "start": 16013.24, + "end": 16014.38, + "probability": 0.7262 + }, + { + "start": 16015.4, + "end": 16015.76, + "probability": 0.9818 + }, + { + "start": 16016.74, + "end": 16018.7, + "probability": 0.6818 + }, + { + "start": 16019.74, + "end": 16020.88, + "probability": 0.5877 + }, + { + "start": 16022.94, + "end": 16026.2, + "probability": 0.4233 + }, + { + "start": 16027.12, + "end": 16027.54, + "probability": 0.9733 + }, + { + "start": 16028.84, + "end": 16029.92, + "probability": 0.8436 + }, + { + "start": 16031.24, + "end": 16031.6, + "probability": 0.9909 + }, + { + "start": 16032.38, + "end": 16033.38, + "probability": 0.7218 + }, + { + "start": 16034.05, + "end": 16035.68, + "probability": 0.9854 + }, + { + "start": 16037.78, + "end": 16038.28, + "probability": 0.9963 + }, + { + "start": 16038.84, + "end": 16039.58, + "probability": 0.9129 + }, + { + "start": 16040.32, + "end": 16044.77, + "probability": 0.8936 + }, + { + "start": 16046.4, + "end": 16048.22, + "probability": 0.5 + }, + { + "start": 16048.94, + "end": 16049.3, + "probability": 0.7051 + }, + { + "start": 16050.2, + "end": 16051.02, + "probability": 0.7176 + }, + { + "start": 16051.66, + "end": 16052.32, + "probability": 0.7969 + }, + { + "start": 16053.86, + "end": 16054.62, + "probability": 0.8015 + }, + { + "start": 16055.54, + "end": 16058.58, + "probability": 0.91 + }, + { + "start": 16059.6, + "end": 16061.86, + "probability": 0.9488 + }, + { + "start": 16063.58, + "end": 16066.44, + "probability": 0.9565 + }, + { + "start": 16068.02, + "end": 16068.84, + "probability": 0.961 + }, + { + "start": 16070.32, + "end": 16072.5, + "probability": 0.9614 + }, + { + "start": 16074.18, + "end": 16074.88, + "probability": 0.9744 + }, + { + "start": 16077.0, + "end": 16077.64, + "probability": 0.1775 + }, + { + "start": 16078.56, + "end": 16078.96, + "probability": 0.7882 + }, + { + "start": 16081.3, + "end": 16085.62, + "probability": 0.6887 + }, + { + "start": 16087.14, + "end": 16089.76, + "probability": 0.9661 + }, + { + "start": 16090.78, + "end": 16096.48, + "probability": 0.9381 + }, + { + "start": 16098.6, + "end": 16099.6, + "probability": 0.8834 + }, + { + "start": 16100.94, + "end": 16101.9, + "probability": 0.9836 + }, + { + "start": 16102.72, + "end": 16105.82, + "probability": 0.1966 + }, + { + "start": 16106.6, + "end": 16108.56, + "probability": 0.7342 + }, + { + "start": 16110.28, + "end": 16112.74, + "probability": 0.9478 + }, + { + "start": 16113.38, + "end": 16113.82, + "probability": 0.9883 + }, + { + "start": 16114.78, + "end": 16115.86, + "probability": 0.9115 + }, + { + "start": 16116.72, + "end": 16118.88, + "probability": 0.8474 + }, + { + "start": 16120.68, + "end": 16123.78, + "probability": 0.9187 + }, + { + "start": 16126.16, + "end": 16128.36, + "probability": 0.9492 + }, + { + "start": 16129.12, + "end": 16131.26, + "probability": 0.7053 + }, + { + "start": 16131.88, + "end": 16134.86, + "probability": 0.7543 + }, + { + "start": 16135.64, + "end": 16141.64, + "probability": 0.8766 + }, + { + "start": 16142.26, + "end": 16144.58, + "probability": 0.7217 + }, + { + "start": 16145.84, + "end": 16146.52, + "probability": 0.9917 + }, + { + "start": 16147.9, + "end": 16148.82, + "probability": 0.9672 + }, + { + "start": 16150.06, + "end": 16152.7, + "probability": 0.8755 + }, + { + "start": 16153.76, + "end": 16154.2, + "probability": 0.9517 + }, + { + "start": 16155.82, + "end": 16157.0, + "probability": 0.9866 + }, + { + "start": 16158.52, + "end": 16161.52, + "probability": 0.6648 + }, + { + "start": 16163.36, + "end": 16166.8, + "probability": 0.8306 + }, + { + "start": 16173.08, + "end": 16173.46, + "probability": 0.8149 + }, + { + "start": 16174.4, + "end": 16175.44, + "probability": 0.533 + }, + { + "start": 16177.82, + "end": 16180.94, + "probability": 0.7162 + }, + { + "start": 16181.98, + "end": 16183.92, + "probability": 0.9592 + }, + { + "start": 16184.96, + "end": 16185.4, + "probability": 0.9421 + }, + { + "start": 16186.56, + "end": 16187.72, + "probability": 0.523 + }, + { + "start": 16189.38, + "end": 16192.62, + "probability": 0.6019 + }, + { + "start": 16193.46, + "end": 16193.78, + "probability": 0.9258 + }, + { + "start": 16196.46, + "end": 16197.36, + "probability": 0.4407 + }, + { + "start": 16199.88, + "end": 16202.44, + "probability": 0.8239 + }, + { + "start": 16204.24, + "end": 16206.56, + "probability": 0.9243 + }, + { + "start": 16207.42, + "end": 16210.42, + "probability": 0.485 + }, + { + "start": 16212.72, + "end": 16213.6, + "probability": 0.5801 + }, + { + "start": 16215.16, + "end": 16218.86, + "probability": 0.9728 + }, + { + "start": 16220.26, + "end": 16222.56, + "probability": 0.949 + }, + { + "start": 16223.42, + "end": 16223.58, + "probability": 0.2256 + }, + { + "start": 16224.3, + "end": 16226.72, + "probability": 0.5105 + }, + { + "start": 16227.48, + "end": 16230.46, + "probability": 0.8146 + }, + { + "start": 16231.5, + "end": 16235.24, + "probability": 0.8927 + }, + { + "start": 16237.3, + "end": 16237.74, + "probability": 0.9946 + }, + { + "start": 16238.88, + "end": 16239.84, + "probability": 0.8891 + }, + { + "start": 16241.36, + "end": 16243.86, + "probability": 0.9378 + }, + { + "start": 16244.72, + "end": 16245.06, + "probability": 0.7664 + }, + { + "start": 16246.34, + "end": 16247.16, + "probability": 0.848 + }, + { + "start": 16248.42, + "end": 16248.78, + "probability": 0.9839 + }, + { + "start": 16250.36, + "end": 16251.12, + "probability": 0.8602 + }, + { + "start": 16251.8, + "end": 16252.42, + "probability": 0.9817 + }, + { + "start": 16253.26, + "end": 16254.08, + "probability": 0.3876 + }, + { + "start": 16254.6, + "end": 16257.16, + "probability": 0.6416 + }, + { + "start": 16258.98, + "end": 16261.36, + "probability": 0.9243 + }, + { + "start": 16262.44, + "end": 16265.64, + "probability": 0.8853 + }, + { + "start": 16266.32, + "end": 16267.42, + "probability": 0.9875 + }, + { + "start": 16268.26, + "end": 16268.64, + "probability": 0.9819 + }, + { + "start": 16269.58, + "end": 16270.4, + "probability": 0.9406 + }, + { + "start": 16271.19, + "end": 16273.38, + "probability": 0.742 + }, + { + "start": 16273.56, + "end": 16275.88, + "probability": 0.7583 + }, + { + "start": 16276.8, + "end": 16277.3, + "probability": 0.7229 + }, + { + "start": 16278.74, + "end": 16282.64, + "probability": 0.9001 + }, + { + "start": 16283.24, + "end": 16285.98, + "probability": 0.9058 + }, + { + "start": 16288.03, + "end": 16291.5, + "probability": 0.6844 + }, + { + "start": 16292.84, + "end": 16297.58, + "probability": 0.8713 + }, + { + "start": 16298.16, + "end": 16300.48, + "probability": 0.6087 + }, + { + "start": 16302.24, + "end": 16302.82, + "probability": 0.5025 + }, + { + "start": 16313.7, + "end": 16317.2, + "probability": 0.6211 + }, + { + "start": 16318.24, + "end": 16318.62, + "probability": 0.7091 + }, + { + "start": 16319.5, + "end": 16320.32, + "probability": 0.7423 + }, + { + "start": 16321.65, + "end": 16323.88, + "probability": 0.7976 + }, + { + "start": 16326.3, + "end": 16328.98, + "probability": 0.7602 + }, + { + "start": 16330.36, + "end": 16332.27, + "probability": 0.0511 + }, + { + "start": 16334.61, + "end": 16335.72, + "probability": 0.1602 + }, + { + "start": 16337.84, + "end": 16338.92, + "probability": 0.3058 + }, + { + "start": 16339.7, + "end": 16340.12, + "probability": 0.7666 + }, + { + "start": 16342.76, + "end": 16343.7, + "probability": 0.7833 + }, + { + "start": 16344.62, + "end": 16346.16, + "probability": 0.9805 + }, + { + "start": 16347.08, + "end": 16347.96, + "probability": 0.837 + }, + { + "start": 16349.28, + "end": 16349.72, + "probability": 0.9644 + }, + { + "start": 16352.22, + "end": 16353.2, + "probability": 0.7178 + }, + { + "start": 16353.96, + "end": 16356.02, + "probability": 0.7311 + }, + { + "start": 16356.14, + "end": 16358.38, + "probability": 0.9414 + }, + { + "start": 16358.78, + "end": 16359.62, + "probability": 0.5115 + }, + { + "start": 16362.02, + "end": 16364.55, + "probability": 0.9143 + }, + { + "start": 16366.12, + "end": 16366.98, + "probability": 0.8523 + }, + { + "start": 16367.74, + "end": 16368.26, + "probability": 0.959 + }, + { + "start": 16370.0, + "end": 16370.86, + "probability": 0.9264 + }, + { + "start": 16373.12, + "end": 16376.22, + "probability": 0.9778 + }, + { + "start": 16376.8, + "end": 16377.24, + "probability": 0.9857 + }, + { + "start": 16379.5, + "end": 16381.42, + "probability": 0.9883 + }, + { + "start": 16383.04, + "end": 16383.78, + "probability": 0.8321 + }, + { + "start": 16384.68, + "end": 16386.26, + "probability": 0.1282 + }, + { + "start": 16388.34, + "end": 16391.86, + "probability": 0.3307 + }, + { + "start": 16392.6, + "end": 16392.88, + "probability": 0.8931 + }, + { + "start": 16394.68, + "end": 16398.02, + "probability": 0.9059 + }, + { + "start": 16398.98, + "end": 16399.38, + "probability": 0.8887 + }, + { + "start": 16401.66, + "end": 16402.38, + "probability": 0.9357 + }, + { + "start": 16404.1, + "end": 16404.98, + "probability": 0.9774 + }, + { + "start": 16406.38, + "end": 16409.56, + "probability": 0.8295 + }, + { + "start": 16411.24, + "end": 16412.38, + "probability": 0.7877 + }, + { + "start": 16414.6, + "end": 16415.62, + "probability": 0.4962 + }, + { + "start": 16418.0, + "end": 16420.38, + "probability": 0.2713 + }, + { + "start": 16421.8, + "end": 16423.04, + "probability": 0.7708 + }, + { + "start": 16424.64, + "end": 16427.86, + "probability": 0.8145 + }, + { + "start": 16428.7, + "end": 16429.4, + "probability": 0.8668 + }, + { + "start": 16430.98, + "end": 16431.76, + "probability": 0.9215 + }, + { + "start": 16432.3, + "end": 16436.16, + "probability": 0.8599 + }, + { + "start": 16436.76, + "end": 16439.02, + "probability": 0.9668 + }, + { + "start": 16439.88, + "end": 16440.7, + "probability": 0.9584 + }, + { + "start": 16441.82, + "end": 16444.4, + "probability": 0.877 + }, + { + "start": 16445.56, + "end": 16445.7, + "probability": 0.4379 + }, + { + "start": 16450.18, + "end": 16450.96, + "probability": 0.569 + }, + { + "start": 16451.98, + "end": 16454.18, + "probability": 0.6477 + }, + { + "start": 16455.62, + "end": 16456.06, + "probability": 0.7386 + }, + { + "start": 16459.16, + "end": 16460.1, + "probability": 0.6802 + }, + { + "start": 16460.76, + "end": 16461.24, + "probability": 0.9087 + }, + { + "start": 16463.2, + "end": 16464.1, + "probability": 0.6768 + }, + { + "start": 16464.98, + "end": 16465.84, + "probability": 0.7506 + }, + { + "start": 16466.4, + "end": 16467.34, + "probability": 0.945 + }, + { + "start": 16468.26, + "end": 16469.9, + "probability": 0.9644 + }, + { + "start": 16471.06, + "end": 16472.08, + "probability": 0.9045 + }, + { + "start": 16474.5, + "end": 16475.32, + "probability": 0.9775 + }, + { + "start": 16476.84, + "end": 16477.9, + "probability": 0.5967 + }, + { + "start": 16478.78, + "end": 16479.32, + "probability": 0.9943 + }, + { + "start": 16481.04, + "end": 16482.1, + "probability": 0.7755 + }, + { + "start": 16483.82, + "end": 16485.64, + "probability": 0.8959 + }, + { + "start": 16486.94, + "end": 16490.42, + "probability": 0.6627 + }, + { + "start": 16491.42, + "end": 16493.64, + "probability": 0.9182 + }, + { + "start": 16495.18, + "end": 16495.78, + "probability": 0.9611 + }, + { + "start": 16498.92, + "end": 16499.6, + "probability": 0.4948 + }, + { + "start": 16501.96, + "end": 16502.54, + "probability": 0.8013 + }, + { + "start": 16505.0, + "end": 16505.86, + "probability": 0.7752 + }, + { + "start": 16506.9, + "end": 16507.56, + "probability": 0.9148 + }, + { + "start": 16508.44, + "end": 16510.08, + "probability": 0.8803 + }, + { + "start": 16510.62, + "end": 16513.98, + "probability": 0.954 + }, + { + "start": 16516.12, + "end": 16516.98, + "probability": 0.9865 + }, + { + "start": 16518.9, + "end": 16520.64, + "probability": 0.9849 + }, + { + "start": 16522.78, + "end": 16524.17, + "probability": 0.6735 + }, + { + "start": 16525.14, + "end": 16526.06, + "probability": 0.4805 + }, + { + "start": 16527.3, + "end": 16529.12, + "probability": 0.0358 + }, + { + "start": 16529.86, + "end": 16530.88, + "probability": 0.8191 + }, + { + "start": 16532.7, + "end": 16533.2, + "probability": 0.5704 + }, + { + "start": 16534.74, + "end": 16536.1, + "probability": 0.5216 + }, + { + "start": 16538.05, + "end": 16540.84, + "probability": 0.7092 + }, + { + "start": 16552.82, + "end": 16556.4, + "probability": 0.0595 + }, + { + "start": 16556.92, + "end": 16557.58, + "probability": 0.0241 + }, + { + "start": 16558.44, + "end": 16559.6, + "probability": 0.1165 + }, + { + "start": 16560.68, + "end": 16563.72, + "probability": 0.0134 + }, + { + "start": 16564.32, + "end": 16566.1, + "probability": 0.0761 + }, + { + "start": 16567.3, + "end": 16569.92, + "probability": 0.0271 + }, + { + "start": 16655.12, + "end": 16655.38, + "probability": 0.0916 + }, + { + "start": 16655.38, + "end": 16655.38, + "probability": 0.133 + }, + { + "start": 16655.38, + "end": 16655.38, + "probability": 0.0598 + }, + { + "start": 16655.38, + "end": 16656.44, + "probability": 0.3932 + }, + { + "start": 16686.06, + "end": 16686.6, + "probability": 0.598 + }, + { + "start": 16686.6, + "end": 16686.98, + "probability": 0.1876 + }, + { + "start": 16686.98, + "end": 16687.06, + "probability": 0.1867 + }, + { + "start": 16687.06, + "end": 16687.28, + "probability": 0.0359 + }, + { + "start": 16687.28, + "end": 16687.85, + "probability": 0.1678 + }, + { + "start": 16691.48, + "end": 16691.88, + "probability": 0.1384 + }, + { + "start": 16782.0, + "end": 16782.0, + "probability": 0.0 + }, + { + "start": 16782.0, + "end": 16782.0, + "probability": 0.0 + }, + { + "start": 16782.0, + "end": 16782.0, + "probability": 0.0 + }, + { + "start": 16782.0, + "end": 16782.0, + "probability": 0.0 + }, + { + "start": 16782.0, + "end": 16782.0, + "probability": 0.0 + }, + { + "start": 16782.0, + "end": 16782.0, + "probability": 0.0 + }, + { + "start": 16782.0, + "end": 16782.0, + "probability": 0.0 + }, + { + "start": 16782.0, + "end": 16782.0, + "probability": 0.0 + }, + { + "start": 16782.0, + "end": 16782.0, + "probability": 0.0 + }, + { + "start": 16782.82, + "end": 16785.4, + "probability": 0.0299 + }, + { + "start": 16785.4, + "end": 16788.06, + "probability": 0.0173 + }, + { + "start": 16796.78, + "end": 16797.38, + "probability": 0.1738 + }, + { + "start": 16799.7, + "end": 16803.0, + "probability": 0.0545 + }, + { + "start": 16803.64, + "end": 16807.44, + "probability": 0.0228 + }, + { + "start": 16807.75, + "end": 16809.16, + "probability": 0.0663 + }, + { + "start": 16812.06, + "end": 16813.54, + "probability": 0.0134 + }, + { + "start": 16813.62, + "end": 16817.2, + "probability": 0.0292 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16908.0, + "end": 16908.0, + "probability": 0.0 + }, + { + "start": 16916.24, + "end": 16917.24, + "probability": 0.0258 + }, + { + "start": 16918.81, + "end": 16920.9, + "probability": 0.0687 + }, + { + "start": 16926.66, + "end": 16927.54, + "probability": 0.0241 + }, + { + "start": 16937.96, + "end": 16941.94, + "probability": 0.0153 + }, + { + "start": 16941.94, + "end": 16942.12, + "probability": 0.1031 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.0, + "end": 17030.0, + "probability": 0.0 + }, + { + "start": 17030.12, + "end": 17031.48, + "probability": 0.669 + }, + { + "start": 17031.48, + "end": 17034.64, + "probability": 0.9897 + }, + { + "start": 17035.24, + "end": 17037.62, + "probability": 0.657 + }, + { + "start": 17038.3, + "end": 17040.92, + "probability": 0.9864 + }, + { + "start": 17040.92, + "end": 17045.02, + "probability": 0.9601 + }, + { + "start": 17045.08, + "end": 17046.88, + "probability": 0.7541 + }, + { + "start": 17046.94, + "end": 17049.1, + "probability": 0.9943 + }, + { + "start": 17050.38, + "end": 17050.84, + "probability": 0.8999 + }, + { + "start": 17053.06, + "end": 17054.58, + "probability": 0.9146 + }, + { + "start": 17054.76, + "end": 17056.58, + "probability": 0.8425 + }, + { + "start": 17056.6, + "end": 17060.16, + "probability": 0.9941 + }, + { + "start": 17061.34, + "end": 17063.88, + "probability": 0.9416 + }, + { + "start": 17064.04, + "end": 17067.68, + "probability": 0.9979 + }, + { + "start": 17068.32, + "end": 17069.24, + "probability": 0.7865 + }, + { + "start": 17069.44, + "end": 17070.8, + "probability": 0.999 + }, + { + "start": 17070.94, + "end": 17071.62, + "probability": 0.7037 + }, + { + "start": 17071.96, + "end": 17072.28, + "probability": 0.9677 + }, + { + "start": 17073.14, + "end": 17073.44, + "probability": 0.9756 + }, + { + "start": 17075.64, + "end": 17077.02, + "probability": 0.6864 + }, + { + "start": 17077.82, + "end": 17079.14, + "probability": 0.8265 + }, + { + "start": 17079.84, + "end": 17085.76, + "probability": 0.9707 + }, + { + "start": 17087.34, + "end": 17089.62, + "probability": 0.9008 + }, + { + "start": 17089.82, + "end": 17092.66, + "probability": 0.8479 + }, + { + "start": 17093.2, + "end": 17095.12, + "probability": 0.9268 + }, + { + "start": 17095.54, + "end": 17096.78, + "probability": 0.7889 + }, + { + "start": 17097.4, + "end": 17098.04, + "probability": 0.7775 + }, + { + "start": 17098.8, + "end": 17101.34, + "probability": 0.964 + }, + { + "start": 17101.96, + "end": 17105.7, + "probability": 0.9856 + }, + { + "start": 17106.04, + "end": 17107.35, + "probability": 0.8804 + }, + { + "start": 17108.88, + "end": 17113.04, + "probability": 0.9712 + }, + { + "start": 17113.64, + "end": 17115.1, + "probability": 0.9299 + }, + { + "start": 17115.66, + "end": 17117.8, + "probability": 0.7402 + }, + { + "start": 17118.86, + "end": 17123.26, + "probability": 0.8214 + }, + { + "start": 17124.54, + "end": 17127.31, + "probability": 0.894 + }, + { + "start": 17128.56, + "end": 17130.16, + "probability": 0.632 + }, + { + "start": 17131.94, + "end": 17134.46, + "probability": 0.8761 + }, + { + "start": 17134.46, + "end": 17134.74, + "probability": 0.4559 + }, + { + "start": 17136.1, + "end": 17136.42, + "probability": 0.3515 + }, + { + "start": 17136.9, + "end": 17138.01, + "probability": 0.9027 + }, + { + "start": 17139.44, + "end": 17140.54, + "probability": 0.953 + }, + { + "start": 17141.68, + "end": 17143.56, + "probability": 0.5184 + }, + { + "start": 17144.24, + "end": 17144.66, + "probability": 0.8102 + }, + { + "start": 17157.29, + "end": 17158.86, + "probability": 0.9114 + }, + { + "start": 17159.5, + "end": 17162.08, + "probability": 0.9816 + }, + { + "start": 17162.18, + "end": 17164.62, + "probability": 0.9863 + }, + { + "start": 17166.46, + "end": 17171.52, + "probability": 0.4183 + }, + { + "start": 17171.58, + "end": 17172.02, + "probability": 0.4281 + }, + { + "start": 17172.98, + "end": 17175.44, + "probability": 0.8311 + }, + { + "start": 17177.52, + "end": 17179.46, + "probability": 0.6911 + }, + { + "start": 17180.32, + "end": 17181.62, + "probability": 0.9575 + }, + { + "start": 17182.1, + "end": 17184.1, + "probability": 0.9943 + }, + { + "start": 17184.26, + "end": 17186.44, + "probability": 0.9899 + }, + { + "start": 17186.44, + "end": 17189.5, + "probability": 0.9965 + }, + { + "start": 17191.5, + "end": 17194.46, + "probability": 0.9305 + }, + { + "start": 17195.72, + "end": 17200.62, + "probability": 0.9844 + }, + { + "start": 17200.62, + "end": 17206.76, + "probability": 0.9964 + }, + { + "start": 17208.02, + "end": 17211.94, + "probability": 0.9956 + }, + { + "start": 17213.1, + "end": 17217.58, + "probability": 0.9219 + }, + { + "start": 17218.38, + "end": 17221.56, + "probability": 0.9385 + }, + { + "start": 17222.2, + "end": 17223.9, + "probability": 0.9672 + }, + { + "start": 17224.28, + "end": 17226.82, + "probability": 0.9967 + }, + { + "start": 17227.1, + "end": 17228.26, + "probability": 0.9521 + }, + { + "start": 17229.7, + "end": 17233.62, + "probability": 0.9936 + }, + { + "start": 17233.66, + "end": 17235.52, + "probability": 0.9819 + }, + { + "start": 17235.52, + "end": 17238.0, + "probability": 0.998 + }, + { + "start": 17238.7, + "end": 17239.8, + "probability": 0.8767 + }, + { + "start": 17240.02, + "end": 17243.38, + "probability": 0.9727 + }, + { + "start": 17243.66, + "end": 17247.94, + "probability": 0.9873 + }, + { + "start": 17248.3, + "end": 17248.5, + "probability": 0.7071 + }, + { + "start": 17249.38, + "end": 17250.53, + "probability": 0.3023 + }, + { + "start": 17250.88, + "end": 17250.98, + "probability": 0.8396 + }, + { + "start": 17250.98, + "end": 17253.02, + "probability": 0.5721 + }, + { + "start": 17253.52, + "end": 17256.32, + "probability": 0.8543 + }, + { + "start": 17257.46, + "end": 17258.48, + "probability": 0.7864 + }, + { + "start": 17258.84, + "end": 17259.92, + "probability": 0.6204 + }, + { + "start": 17259.96, + "end": 17261.0, + "probability": 0.7063 + }, + { + "start": 17261.06, + "end": 17264.12, + "probability": 0.7682 + }, + { + "start": 17264.12, + "end": 17265.58, + "probability": 0.9237 + }, + { + "start": 17265.78, + "end": 17267.06, + "probability": 0.1581 + }, + { + "start": 17268.08, + "end": 17268.48, + "probability": 0.3113 + }, + { + "start": 17269.14, + "end": 17269.9, + "probability": 0.8534 + }, + { + "start": 17269.92, + "end": 17270.5, + "probability": 0.1077 + }, + { + "start": 17271.08, + "end": 17271.12, + "probability": 0.1243 + }, + { + "start": 17271.12, + "end": 17272.35, + "probability": 0.79 + }, + { + "start": 17272.44, + "end": 17273.26, + "probability": 0.815 + }, + { + "start": 17274.36, + "end": 17274.86, + "probability": 0.4317 + }, + { + "start": 17275.04, + "end": 17275.88, + "probability": 0.5972 + }, + { + "start": 17276.3, + "end": 17276.3, + "probability": 0.4511 + }, + { + "start": 17276.62, + "end": 17277.38, + "probability": 0.7697 + }, + { + "start": 17277.66, + "end": 17278.48, + "probability": 0.995 + }, + { + "start": 17278.56, + "end": 17278.64, + "probability": 0.4593 + }, + { + "start": 17278.76, + "end": 17279.22, + "probability": 0.6993 + }, + { + "start": 17282.3, + "end": 17284.02, + "probability": 0.9374 + }, + { + "start": 17284.4, + "end": 17284.93, + "probability": 0.4773 + }, + { + "start": 17286.12, + "end": 17286.84, + "probability": 0.4103 + }, + { + "start": 17287.04, + "end": 17289.4, + "probability": 0.3631 + }, + { + "start": 17289.4, + "end": 17290.1, + "probability": 0.432 + }, + { + "start": 17290.32, + "end": 17292.02, + "probability": 0.8151 + }, + { + "start": 17292.38, + "end": 17293.68, + "probability": 0.9531 + }, + { + "start": 17293.72, + "end": 17294.38, + "probability": 0.7782 + }, + { + "start": 17295.72, + "end": 17296.74, + "probability": 0.8119 + }, + { + "start": 17297.98, + "end": 17300.06, + "probability": 0.5437 + }, + { + "start": 17300.66, + "end": 17302.06, + "probability": 0.5096 + }, + { + "start": 17302.12, + "end": 17302.8, + "probability": 0.5807 + }, + { + "start": 17302.82, + "end": 17303.52, + "probability": 0.5165 + }, + { + "start": 17304.18, + "end": 17305.68, + "probability": 0.7802 + }, + { + "start": 17311.7, + "end": 17315.84, + "probability": 0.0837 + }, + { + "start": 17315.84, + "end": 17319.14, + "probability": 0.1388 + }, + { + "start": 17324.32, + "end": 17325.76, + "probability": 0.0694 + }, + { + "start": 17325.76, + "end": 17327.9, + "probability": 0.53 + }, + { + "start": 17328.32, + "end": 17329.6, + "probability": 0.8634 + }, + { + "start": 17330.43, + "end": 17334.38, + "probability": 0.755 + }, + { + "start": 17335.62, + "end": 17337.16, + "probability": 0.9393 + }, + { + "start": 17337.62, + "end": 17338.25, + "probability": 0.8499 + }, + { + "start": 17339.44, + "end": 17342.43, + "probability": 0.3169 + }, + { + "start": 17343.34, + "end": 17345.68, + "probability": 0.7189 + }, + { + "start": 17345.94, + "end": 17348.26, + "probability": 0.7913 + }, + { + "start": 17349.1, + "end": 17352.04, + "probability": 0.982 + }, + { + "start": 17352.44, + "end": 17356.22, + "probability": 0.2415 + }, + { + "start": 17356.5, + "end": 17357.47, + "probability": 0.077 + }, + { + "start": 17362.54, + "end": 17365.4, + "probability": 0.8506 + }, + { + "start": 17369.62, + "end": 17374.14, + "probability": 0.7999 + }, + { + "start": 17375.1, + "end": 17379.3, + "probability": 0.7408 + }, + { + "start": 17380.12, + "end": 17381.5, + "probability": 0.9648 + }, + { + "start": 17381.94, + "end": 17383.24, + "probability": 0.9443 + }, + { + "start": 17384.48, + "end": 17387.54, + "probability": 0.8959 + }, + { + "start": 17387.84, + "end": 17390.58, + "probability": 0.9863 + }, + { + "start": 17391.34, + "end": 17394.58, + "probability": 0.894 + }, + { + "start": 17394.58, + "end": 17397.12, + "probability": 0.7692 + }, + { + "start": 17397.6, + "end": 17401.26, + "probability": 0.7229 + }, + { + "start": 17401.62, + "end": 17402.02, + "probability": 0.4915 + }, + { + "start": 17404.96, + "end": 17408.22, + "probability": 0.8354 + }, + { + "start": 17408.34, + "end": 17410.96, + "probability": 0.9047 + }, + { + "start": 17410.96, + "end": 17414.06, + "probability": 0.957 + }, + { + "start": 17414.64, + "end": 17418.56, + "probability": 0.8114 + }, + { + "start": 17420.06, + "end": 17421.76, + "probability": 0.6867 + }, + { + "start": 17422.8, + "end": 17427.21, + "probability": 0.9713 + }, + { + "start": 17427.5, + "end": 17429.94, + "probability": 0.6599 + }, + { + "start": 17430.48, + "end": 17431.76, + "probability": 0.9795 + }, + { + "start": 17432.16, + "end": 17433.36, + "probability": 0.8708 + }, + { + "start": 17437.02, + "end": 17437.4, + "probability": 0.0075 + }, + { + "start": 17438.02, + "end": 17438.4, + "probability": 0.6292 + }, + { + "start": 17438.4, + "end": 17438.4, + "probability": 0.1305 + }, + { + "start": 17463.16, + "end": 17464.7, + "probability": 0.0998 + }, + { + "start": 17465.28, + "end": 17465.5, + "probability": 0.6606 + }, + { + "start": 17466.42, + "end": 17468.36, + "probability": 0.7396 + }, + { + "start": 17469.4, + "end": 17474.0, + "probability": 0.9797 + }, + { + "start": 17474.58, + "end": 17480.28, + "probability": 0.9968 + }, + { + "start": 17480.28, + "end": 17485.66, + "probability": 0.9974 + }, + { + "start": 17486.88, + "end": 17490.4, + "probability": 0.9964 + }, + { + "start": 17490.94, + "end": 17493.32, + "probability": 0.9554 + }, + { + "start": 17494.38, + "end": 17498.83, + "probability": 0.9881 + }, + { + "start": 17499.22, + "end": 17502.66, + "probability": 0.9991 + }, + { + "start": 17503.48, + "end": 17504.36, + "probability": 0.8292 + }, + { + "start": 17505.06, + "end": 17506.86, + "probability": 0.6691 + }, + { + "start": 17507.54, + "end": 17509.54, + "probability": 0.8513 + }, + { + "start": 17510.24, + "end": 17510.66, + "probability": 0.8677 + }, + { + "start": 17511.24, + "end": 17512.4, + "probability": 0.7232 + }, + { + "start": 17513.04, + "end": 17519.1, + "probability": 0.9769 + }, + { + "start": 17519.96, + "end": 17520.58, + "probability": 0.836 + }, + { + "start": 17521.12, + "end": 17524.64, + "probability": 0.931 + }, + { + "start": 17525.16, + "end": 17529.76, + "probability": 0.9975 + }, + { + "start": 17530.72, + "end": 17533.12, + "probability": 0.9187 + }, + { + "start": 17533.92, + "end": 17537.7, + "probability": 0.9945 + }, + { + "start": 17538.32, + "end": 17538.92, + "probability": 0.5806 + }, + { + "start": 17540.28, + "end": 17544.28, + "probability": 0.9653 + }, + { + "start": 17544.84, + "end": 17547.58, + "probability": 0.9928 + }, + { + "start": 17548.88, + "end": 17550.64, + "probability": 0.5168 + }, + { + "start": 17551.32, + "end": 17552.24, + "probability": 0.9685 + }, + { + "start": 17552.9, + "end": 17554.34, + "probability": 0.9061 + }, + { + "start": 17555.04, + "end": 17558.54, + "probability": 0.9885 + }, + { + "start": 17559.22, + "end": 17559.44, + "probability": 0.7427 + }, + { + "start": 17559.6, + "end": 17562.84, + "probability": 0.9556 + }, + { + "start": 17563.32, + "end": 17565.54, + "probability": 0.994 + }, + { + "start": 17566.06, + "end": 17567.16, + "probability": 0.9883 + }, + { + "start": 17568.1, + "end": 17571.94, + "probability": 0.98 + }, + { + "start": 17571.94, + "end": 17576.28, + "probability": 0.6839 + }, + { + "start": 17576.88, + "end": 17577.02, + "probability": 0.5581 + }, + { + "start": 17577.02, + "end": 17578.88, + "probability": 0.9938 + }, + { + "start": 17579.36, + "end": 17584.8, + "probability": 0.9648 + }, + { + "start": 17585.28, + "end": 17587.08, + "probability": 0.811 + }, + { + "start": 17587.88, + "end": 17589.04, + "probability": 0.8707 + }, + { + "start": 17590.84, + "end": 17593.22, + "probability": 0.9916 + }, + { + "start": 17593.88, + "end": 17595.92, + "probability": 0.9753 + }, + { + "start": 17597.36, + "end": 17598.02, + "probability": 0.8677 + }, + { + "start": 17598.58, + "end": 17599.48, + "probability": 0.9874 + }, + { + "start": 17600.38, + "end": 17602.2, + "probability": 0.9928 + }, + { + "start": 17602.86, + "end": 17603.84, + "probability": 0.938 + }, + { + "start": 17604.46, + "end": 17608.64, + "probability": 0.999 + }, + { + "start": 17609.24, + "end": 17611.3, + "probability": 0.9562 + }, + { + "start": 17611.88, + "end": 17616.42, + "probability": 0.9868 + }, + { + "start": 17617.96, + "end": 17621.64, + "probability": 0.9791 + }, + { + "start": 17622.26, + "end": 17622.76, + "probability": 0.9862 + }, + { + "start": 17623.7, + "end": 17627.04, + "probability": 0.9697 + }, + { + "start": 17627.46, + "end": 17629.0, + "probability": 0.9624 + }, + { + "start": 17630.22, + "end": 17631.36, + "probability": 0.6947 + }, + { + "start": 17632.16, + "end": 17638.66, + "probability": 0.9449 + }, + { + "start": 17639.56, + "end": 17641.0, + "probability": 0.9242 + }, + { + "start": 17642.12, + "end": 17643.6, + "probability": 0.8916 + }, + { + "start": 17644.26, + "end": 17645.56, + "probability": 0.8623 + }, + { + "start": 17646.14, + "end": 17648.9, + "probability": 0.9847 + }, + { + "start": 17649.6, + "end": 17652.42, + "probability": 0.6077 + }, + { + "start": 17654.35, + "end": 17656.78, + "probability": 0.8525 + }, + { + "start": 17657.3, + "end": 17657.56, + "probability": 0.7758 + }, + { + "start": 17657.7, + "end": 17657.92, + "probability": 0.9251 + }, + { + "start": 17657.98, + "end": 17660.34, + "probability": 0.9683 + }, + { + "start": 17660.5, + "end": 17663.44, + "probability": 0.9958 + }, + { + "start": 17664.0, + "end": 17665.24, + "probability": 0.9883 + }, + { + "start": 17665.76, + "end": 17668.1, + "probability": 0.6276 + }, + { + "start": 17668.84, + "end": 17669.28, + "probability": 0.4515 + }, + { + "start": 17669.3, + "end": 17672.89, + "probability": 0.9683 + }, + { + "start": 17673.62, + "end": 17675.72, + "probability": 0.9824 + }, + { + "start": 17676.56, + "end": 17680.9, + "probability": 0.9771 + }, + { + "start": 17681.86, + "end": 17685.76, + "probability": 0.9525 + }, + { + "start": 17686.64, + "end": 17688.72, + "probability": 0.9075 + }, + { + "start": 17689.5, + "end": 17690.9, + "probability": 0.9085 + }, + { + "start": 17691.66, + "end": 17693.72, + "probability": 0.9501 + }, + { + "start": 17694.3, + "end": 17696.58, + "probability": 0.8168 + }, + { + "start": 17698.5, + "end": 17698.76, + "probability": 0.9712 + }, + { + "start": 17699.3, + "end": 17701.28, + "probability": 0.9704 + }, + { + "start": 17702.1, + "end": 17703.56, + "probability": 0.8682 + }, + { + "start": 17705.18, + "end": 17707.64, + "probability": 0.6983 + }, + { + "start": 17708.92, + "end": 17711.28, + "probability": 0.8045 + }, + { + "start": 17711.74, + "end": 17712.72, + "probability": 0.843 + }, + { + "start": 17712.74, + "end": 17715.18, + "probability": 0.9408 + }, + { + "start": 17716.1, + "end": 17716.2, + "probability": 0.0501 + }, + { + "start": 17717.7, + "end": 17717.88, + "probability": 0.0196 + }, + { + "start": 17717.88, + "end": 17719.0, + "probability": 0.381 + }, + { + "start": 17719.42, + "end": 17720.5, + "probability": 0.9636 + }, + { + "start": 17720.74, + "end": 17725.08, + "probability": 0.9744 + }, + { + "start": 17725.22, + "end": 17725.71, + "probability": 0.9712 + }, + { + "start": 17726.64, + "end": 17730.86, + "probability": 0.9889 + }, + { + "start": 17731.38, + "end": 17732.88, + "probability": 0.9702 + }, + { + "start": 17733.0, + "end": 17733.88, + "probability": 0.805 + }, + { + "start": 17734.64, + "end": 17735.82, + "probability": 0.9102 + }, + { + "start": 17736.56, + "end": 17738.94, + "probability": 0.7441 + }, + { + "start": 17739.42, + "end": 17741.54, + "probability": 0.9598 + }, + { + "start": 17742.1, + "end": 17746.76, + "probability": 0.9957 + }, + { + "start": 17747.34, + "end": 17750.16, + "probability": 0.9983 + }, + { + "start": 17750.86, + "end": 17752.84, + "probability": 0.9867 + }, + { + "start": 17753.4, + "end": 17756.24, + "probability": 0.9883 + }, + { + "start": 17756.96, + "end": 17758.36, + "probability": 0.8489 + }, + { + "start": 17759.06, + "end": 17761.6, + "probability": 0.9672 + }, + { + "start": 17762.48, + "end": 17763.22, + "probability": 0.9144 + }, + { + "start": 17764.0, + "end": 17764.72, + "probability": 0.9633 + }, + { + "start": 17765.34, + "end": 17766.46, + "probability": 0.9749 + }, + { + "start": 17767.08, + "end": 17768.84, + "probability": 0.9387 + }, + { + "start": 17769.42, + "end": 17772.16, + "probability": 0.9844 + }, + { + "start": 17772.16, + "end": 17774.74, + "probability": 0.9463 + }, + { + "start": 17775.46, + "end": 17779.0, + "probability": 0.9757 + }, + { + "start": 17779.78, + "end": 17783.2, + "probability": 0.9806 + }, + { + "start": 17783.58, + "end": 17784.16, + "probability": 0.9882 + }, + { + "start": 17784.86, + "end": 17786.55, + "probability": 0.9069 + }, + { + "start": 17787.22, + "end": 17787.96, + "probability": 0.5215 + }, + { + "start": 17788.56, + "end": 17789.42, + "probability": 0.4949 + }, + { + "start": 17790.04, + "end": 17792.28, + "probability": 0.5658 + }, + { + "start": 17793.04, + "end": 17795.62, + "probability": 0.9876 + }, + { + "start": 17796.1, + "end": 17798.71, + "probability": 0.9268 + }, + { + "start": 17799.38, + "end": 17800.9, + "probability": 0.9241 + }, + { + "start": 17801.46, + "end": 17803.16, + "probability": 0.9744 + }, + { + "start": 17803.66, + "end": 17804.74, + "probability": 0.9844 + }, + { + "start": 17805.3, + "end": 17809.63, + "probability": 0.9901 + }, + { + "start": 17810.52, + "end": 17811.12, + "probability": 0.6277 + }, + { + "start": 17811.26, + "end": 17811.4, + "probability": 0.8079 + }, + { + "start": 17811.48, + "end": 17815.13, + "probability": 0.9628 + }, + { + "start": 17815.92, + "end": 17816.3, + "probability": 0.3685 + }, + { + "start": 17816.4, + "end": 17817.9, + "probability": 0.8322 + }, + { + "start": 17818.52, + "end": 17820.64, + "probability": 0.7548 + }, + { + "start": 17820.9, + "end": 17822.34, + "probability": 0.9719 + }, + { + "start": 17822.92, + "end": 17824.86, + "probability": 0.9626 + }, + { + "start": 17825.26, + "end": 17830.12, + "probability": 0.9925 + }, + { + "start": 17830.38, + "end": 17831.06, + "probability": 0.9168 + }, + { + "start": 17831.62, + "end": 17833.24, + "probability": 0.8178 + }, + { + "start": 17833.6, + "end": 17834.72, + "probability": 0.886 + }, + { + "start": 17835.6, + "end": 17835.96, + "probability": 0.8533 + }, + { + "start": 17836.56, + "end": 17837.52, + "probability": 0.9176 + }, + { + "start": 17837.6, + "end": 17838.72, + "probability": 0.8035 + }, + { + "start": 17839.06, + "end": 17839.56, + "probability": 0.9697 + }, + { + "start": 17839.92, + "end": 17840.78, + "probability": 0.1726 + }, + { + "start": 17841.3, + "end": 17842.26, + "probability": 0.458 + }, + { + "start": 17842.28, + "end": 17842.68, + "probability": 0.9172 + }, + { + "start": 17844.12, + "end": 17846.42, + "probability": 0.981 + }, + { + "start": 17846.58, + "end": 17847.18, + "probability": 0.8509 + }, + { + "start": 17847.32, + "end": 17854.82, + "probability": 0.9714 + }, + { + "start": 17855.38, + "end": 17856.08, + "probability": 0.6147 + }, + { + "start": 17857.8, + "end": 17859.0, + "probability": 0.6698 + }, + { + "start": 17859.56, + "end": 17860.8, + "probability": 0.6087 + }, + { + "start": 17861.06, + "end": 17862.54, + "probability": 0.9897 + }, + { + "start": 17863.14, + "end": 17863.64, + "probability": 0.5447 + }, + { + "start": 17864.32, + "end": 17865.58, + "probability": 0.9465 + }, + { + "start": 17866.74, + "end": 17867.06, + "probability": 0.4316 + }, + { + "start": 17867.2, + "end": 17867.68, + "probability": 0.1861 + }, + { + "start": 17867.8, + "end": 17867.8, + "probability": 0.1805 + }, + { + "start": 17867.84, + "end": 17867.84, + "probability": 0.0553 + }, + { + "start": 17867.84, + "end": 17868.9, + "probability": 0.3642 + }, + { + "start": 17869.2, + "end": 17870.99, + "probability": 0.8622 + }, + { + "start": 17871.54, + "end": 17875.78, + "probability": 0.9562 + }, + { + "start": 17875.86, + "end": 17877.98, + "probability": 0.6296 + }, + { + "start": 17878.28, + "end": 17879.32, + "probability": 0.7461 + }, + { + "start": 17879.56, + "end": 17883.74, + "probability": 0.9724 + }, + { + "start": 17884.6, + "end": 17891.54, + "probability": 0.9679 + }, + { + "start": 17892.64, + "end": 17899.23, + "probability": 0.6553 + }, + { + "start": 17900.68, + "end": 17902.38, + "probability": 0.991 + }, + { + "start": 17903.4, + "end": 17906.36, + "probability": 0.7524 + }, + { + "start": 17907.04, + "end": 17908.44, + "probability": 0.8706 + }, + { + "start": 17909.08, + "end": 17912.74, + "probability": 0.8667 + }, + { + "start": 17913.5, + "end": 17915.24, + "probability": 0.857 + }, + { + "start": 17915.32, + "end": 17915.74, + "probability": 0.3893 + }, + { + "start": 17916.32, + "end": 17918.24, + "probability": 0.9609 + }, + { + "start": 17919.16, + "end": 17921.34, + "probability": 0.9327 + }, + { + "start": 17922.04, + "end": 17922.8, + "probability": 0.5593 + }, + { + "start": 17923.64, + "end": 17926.04, + "probability": 0.9449 + }, + { + "start": 17926.52, + "end": 17927.44, + "probability": 0.8139 + }, + { + "start": 17927.9, + "end": 17931.03, + "probability": 0.7281 + }, + { + "start": 17931.54, + "end": 17931.9, + "probability": 0.6281 + }, + { + "start": 17934.04, + "end": 17935.72, + "probability": 0.0357 + }, + { + "start": 17935.96, + "end": 17937.04, + "probability": 0.7154 + }, + { + "start": 17937.4, + "end": 17938.18, + "probability": 0.0149 + }, + { + "start": 17938.48, + "end": 17940.58, + "probability": 0.9662 + }, + { + "start": 17941.4, + "end": 17943.98, + "probability": 0.9927 + }, + { + "start": 17944.5, + "end": 17947.02, + "probability": 0.9127 + }, + { + "start": 17947.46, + "end": 17948.0, + "probability": 0.8477 + }, + { + "start": 17948.68, + "end": 17951.86, + "probability": 0.8377 + }, + { + "start": 17952.58, + "end": 17954.46, + "probability": 0.9653 + }, + { + "start": 17955.38, + "end": 17956.94, + "probability": 0.9863 + }, + { + "start": 17957.64, + "end": 17962.6, + "probability": 0.9958 + }, + { + "start": 17963.02, + "end": 17965.5, + "probability": 0.675 + }, + { + "start": 17965.76, + "end": 17966.04, + "probability": 0.781 + }, + { + "start": 17966.72, + "end": 17966.88, + "probability": 0.6562 + }, + { + "start": 17966.94, + "end": 17967.62, + "probability": 0.6615 + }, + { + "start": 17967.7, + "end": 17969.48, + "probability": 0.9324 + }, + { + "start": 17970.1, + "end": 17971.84, + "probability": 0.7521 + }, + { + "start": 17972.6, + "end": 17975.42, + "probability": 0.9631 + }, + { + "start": 17975.96, + "end": 17977.38, + "probability": 0.9966 + }, + { + "start": 17977.92, + "end": 17979.08, + "probability": 0.8032 + }, + { + "start": 17979.58, + "end": 17981.54, + "probability": 0.9933 + }, + { + "start": 17982.02, + "end": 17984.3, + "probability": 0.9877 + }, + { + "start": 17984.82, + "end": 17985.98, + "probability": 0.9937 + }, + { + "start": 17986.32, + "end": 17988.06, + "probability": 0.9731 + }, + { + "start": 17988.1, + "end": 17988.95, + "probability": 0.96 + }, + { + "start": 17989.0, + "end": 17989.74, + "probability": 0.3794 + }, + { + "start": 17990.18, + "end": 17991.37, + "probability": 0.8421 + }, + { + "start": 17991.94, + "end": 17992.8, + "probability": 0.7381 + }, + { + "start": 17993.64, + "end": 17994.1, + "probability": 0.6235 + }, + { + "start": 17994.76, + "end": 17995.52, + "probability": 0.9409 + }, + { + "start": 17996.52, + "end": 17998.26, + "probability": 0.9695 + }, + { + "start": 17998.6, + "end": 18000.34, + "probability": 0.9746 + }, + { + "start": 18000.78, + "end": 18003.06, + "probability": 0.9921 + }, + { + "start": 18003.66, + "end": 18005.58, + "probability": 0.9817 + }, + { + "start": 18006.12, + "end": 18008.74, + "probability": 0.9651 + }, + { + "start": 18009.28, + "end": 18016.14, + "probability": 0.9979 + }, + { + "start": 18016.84, + "end": 18017.84, + "probability": 0.96 + }, + { + "start": 18018.62, + "end": 18020.12, + "probability": 0.8679 + }, + { + "start": 18020.64, + "end": 18021.46, + "probability": 0.9588 + }, + { + "start": 18022.24, + "end": 18023.1, + "probability": 0.8166 + }, + { + "start": 18023.64, + "end": 18026.8, + "probability": 0.9761 + }, + { + "start": 18027.38, + "end": 18029.86, + "probability": 0.802 + }, + { + "start": 18030.34, + "end": 18031.02, + "probability": 0.9482 + }, + { + "start": 18031.72, + "end": 18033.93, + "probability": 0.7143 + }, + { + "start": 18034.82, + "end": 18038.78, + "probability": 0.9886 + }, + { + "start": 18039.32, + "end": 18042.74, + "probability": 0.6768 + }, + { + "start": 18043.18, + "end": 18046.84, + "probability": 0.9373 + }, + { + "start": 18047.26, + "end": 18048.0, + "probability": 0.5131 + }, + { + "start": 18048.72, + "end": 18051.96, + "probability": 0.8817 + }, + { + "start": 18052.46, + "end": 18053.96, + "probability": 0.8862 + }, + { + "start": 18054.5, + "end": 18056.52, + "probability": 0.9932 + }, + { + "start": 18057.04, + "end": 18058.02, + "probability": 0.9173 + }, + { + "start": 18058.62, + "end": 18061.92, + "probability": 0.9867 + }, + { + "start": 18062.56, + "end": 18063.4, + "probability": 0.0053 + }, + { + "start": 18063.46, + "end": 18064.42, + "probability": 0.9973 + }, + { + "start": 18065.12, + "end": 18068.58, + "probability": 0.9427 + }, + { + "start": 18069.1, + "end": 18071.76, + "probability": 0.9323 + }, + { + "start": 18072.46, + "end": 18075.1, + "probability": 0.9471 + }, + { + "start": 18075.22, + "end": 18077.74, + "probability": 0.987 + }, + { + "start": 18078.28, + "end": 18080.34, + "probability": 0.524 + }, + { + "start": 18080.42, + "end": 18080.58, + "probability": 0.5049 + }, + { + "start": 18080.58, + "end": 18082.4, + "probability": 0.987 + }, + { + "start": 18082.88, + "end": 18084.94, + "probability": 0.9565 + }, + { + "start": 18085.28, + "end": 18085.72, + "probability": 0.7445 + }, + { + "start": 18085.8, + "end": 18086.08, + "probability": 0.4427 + }, + { + "start": 18086.14, + "end": 18090.48, + "probability": 0.9648 + }, + { + "start": 18090.54, + "end": 18090.8, + "probability": 0.8476 + }, + { + "start": 18110.15, + "end": 18112.92, + "probability": 0.8784 + }, + { + "start": 18113.4, + "end": 18113.9, + "probability": 0.4813 + }, + { + "start": 18115.3, + "end": 18115.84, + "probability": 0.6329 + }, + { + "start": 18117.86, + "end": 18118.82, + "probability": 0.88 + }, + { + "start": 18118.84, + "end": 18120.5, + "probability": 0.9826 + }, + { + "start": 18120.74, + "end": 18121.72, + "probability": 0.9953 + }, + { + "start": 18121.92, + "end": 18122.18, + "probability": 0.4814 + }, + { + "start": 18122.38, + "end": 18123.52, + "probability": 0.9888 + }, + { + "start": 18123.68, + "end": 18124.92, + "probability": 0.7761 + }, + { + "start": 18125.24, + "end": 18126.58, + "probability": 0.8421 + }, + { + "start": 18127.18, + "end": 18128.12, + "probability": 0.9858 + }, + { + "start": 18128.24, + "end": 18129.28, + "probability": 0.9893 + }, + { + "start": 18130.02, + "end": 18130.94, + "probability": 0.7912 + }, + { + "start": 18131.04, + "end": 18131.98, + "probability": 0.8637 + }, + { + "start": 18132.42, + "end": 18137.66, + "probability": 0.9948 + }, + { + "start": 18137.76, + "end": 18140.08, + "probability": 0.8464 + }, + { + "start": 18140.58, + "end": 18143.94, + "probability": 0.9956 + }, + { + "start": 18144.38, + "end": 18147.66, + "probability": 0.9421 + }, + { + "start": 18148.62, + "end": 18151.86, + "probability": 0.0974 + }, + { + "start": 18152.3, + "end": 18152.5, + "probability": 0.001 + }, + { + "start": 18153.14, + "end": 18153.38, + "probability": 0.1097 + }, + { + "start": 18153.38, + "end": 18153.38, + "probability": 0.0577 + }, + { + "start": 18153.38, + "end": 18153.38, + "probability": 0.1051 + }, + { + "start": 18153.38, + "end": 18155.78, + "probability": 0.6332 + }, + { + "start": 18155.78, + "end": 18159.12, + "probability": 0.9611 + }, + { + "start": 18159.78, + "end": 18161.18, + "probability": 0.9819 + }, + { + "start": 18162.76, + "end": 18164.66, + "probability": 0.8054 + }, + { + "start": 18165.24, + "end": 18168.56, + "probability": 0.9791 + }, + { + "start": 18169.34, + "end": 18173.1, + "probability": 0.9954 + }, + { + "start": 18174.04, + "end": 18178.14, + "probability": 0.9948 + }, + { + "start": 18178.62, + "end": 18181.26, + "probability": 0.9679 + }, + { + "start": 18182.44, + "end": 18186.52, + "probability": 0.9726 + }, + { + "start": 18189.5, + "end": 18192.14, + "probability": 0.9469 + }, + { + "start": 18192.82, + "end": 18193.36, + "probability": 0.5176 + }, + { + "start": 18193.56, + "end": 18195.16, + "probability": 0.9792 + }, + { + "start": 18195.24, + "end": 18196.64, + "probability": 0.9661 + }, + { + "start": 18197.28, + "end": 18200.38, + "probability": 0.9463 + }, + { + "start": 18201.04, + "end": 18203.78, + "probability": 0.8814 + }, + { + "start": 18204.58, + "end": 18206.14, + "probability": 0.9299 + }, + { + "start": 18206.3, + "end": 18207.29, + "probability": 0.8726 + }, + { + "start": 18208.34, + "end": 18210.84, + "probability": 0.9675 + }, + { + "start": 18210.92, + "end": 18213.64, + "probability": 0.9469 + }, + { + "start": 18214.22, + "end": 18215.16, + "probability": 0.8429 + }, + { + "start": 18215.96, + "end": 18216.4, + "probability": 0.3871 + }, + { + "start": 18216.47, + "end": 18218.92, + "probability": 0.8547 + }, + { + "start": 18219.02, + "end": 18220.34, + "probability": 0.9588 + }, + { + "start": 18221.14, + "end": 18222.77, + "probability": 0.8145 + }, + { + "start": 18223.82, + "end": 18225.04, + "probability": 0.9166 + }, + { + "start": 18225.36, + "end": 18226.34, + "probability": 0.7739 + }, + { + "start": 18226.36, + "end": 18228.16, + "probability": 0.9937 + }, + { + "start": 18228.62, + "end": 18230.98, + "probability": 0.9663 + }, + { + "start": 18231.64, + "end": 18234.76, + "probability": 0.9913 + }, + { + "start": 18235.68, + "end": 18237.58, + "probability": 0.944 + }, + { + "start": 18238.12, + "end": 18238.82, + "probability": 0.5933 + }, + { + "start": 18238.88, + "end": 18242.52, + "probability": 0.9506 + }, + { + "start": 18243.0, + "end": 18247.9, + "probability": 0.9819 + }, + { + "start": 18248.44, + "end": 18250.9, + "probability": 0.9784 + }, + { + "start": 18251.38, + "end": 18253.7, + "probability": 0.7535 + }, + { + "start": 18253.8, + "end": 18254.68, + "probability": 0.9612 + }, + { + "start": 18255.52, + "end": 18256.32, + "probability": 0.9122 + }, + { + "start": 18257.16, + "end": 18258.9, + "probability": 0.8561 + }, + { + "start": 18259.48, + "end": 18262.34, + "probability": 0.9768 + }, + { + "start": 18262.5, + "end": 18263.68, + "probability": 0.7469 + }, + { + "start": 18264.16, + "end": 18268.22, + "probability": 0.9406 + }, + { + "start": 18269.46, + "end": 18271.64, + "probability": 0.9362 + }, + { + "start": 18272.14, + "end": 18277.48, + "probability": 0.9931 + }, + { + "start": 18277.48, + "end": 18281.38, + "probability": 0.9968 + }, + { + "start": 18283.0, + "end": 18287.8, + "probability": 0.9958 + }, + { + "start": 18289.08, + "end": 18292.82, + "probability": 0.9865 + }, + { + "start": 18292.82, + "end": 18295.64, + "probability": 0.9993 + }, + { + "start": 18296.46, + "end": 18301.6, + "probability": 0.9991 + }, + { + "start": 18302.64, + "end": 18306.06, + "probability": 0.998 + }, + { + "start": 18306.6, + "end": 18309.34, + "probability": 0.984 + }, + { + "start": 18309.78, + "end": 18310.46, + "probability": 0.5202 + }, + { + "start": 18310.8, + "end": 18313.32, + "probability": 0.9397 + }, + { + "start": 18313.94, + "end": 18317.6, + "probability": 0.9868 + }, + { + "start": 18318.24, + "end": 18320.46, + "probability": 0.7844 + }, + { + "start": 18320.7, + "end": 18322.8, + "probability": 0.9765 + }, + { + "start": 18323.2, + "end": 18327.66, + "probability": 0.9776 + }, + { + "start": 18327.8, + "end": 18328.8, + "probability": 0.9946 + }, + { + "start": 18329.0, + "end": 18330.24, + "probability": 0.78 + }, + { + "start": 18330.78, + "end": 18331.4, + "probability": 0.666 + }, + { + "start": 18331.98, + "end": 18337.86, + "probability": 0.8333 + }, + { + "start": 18338.56, + "end": 18339.54, + "probability": 0.9607 + }, + { + "start": 18351.1, + "end": 18351.74, + "probability": 0.5002 + }, + { + "start": 18351.74, + "end": 18353.29, + "probability": 0.7489 + }, + { + "start": 18358.68, + "end": 18359.58, + "probability": 0.4317 + }, + { + "start": 18360.0, + "end": 18360.76, + "probability": 0.9376 + }, + { + "start": 18361.96, + "end": 18362.9, + "probability": 0.7831 + }, + { + "start": 18364.44, + "end": 18368.54, + "probability": 0.9884 + }, + { + "start": 18369.92, + "end": 18372.82, + "probability": 0.7645 + }, + { + "start": 18373.5, + "end": 18377.54, + "probability": 0.9869 + }, + { + "start": 18377.54, + "end": 18380.98, + "probability": 0.9753 + }, + { + "start": 18381.68, + "end": 18385.62, + "probability": 0.9954 + }, + { + "start": 18387.06, + "end": 18388.54, + "probability": 0.9425 + }, + { + "start": 18388.62, + "end": 18391.96, + "probability": 0.9902 + }, + { + "start": 18392.84, + "end": 18393.78, + "probability": 0.937 + }, + { + "start": 18394.4, + "end": 18398.2, + "probability": 0.9927 + }, + { + "start": 18398.2, + "end": 18402.26, + "probability": 0.9989 + }, + { + "start": 18403.9, + "end": 18406.54, + "probability": 0.962 + }, + { + "start": 18406.76, + "end": 18408.62, + "probability": 0.8173 + }, + { + "start": 18408.72, + "end": 18411.94, + "probability": 0.9045 + }, + { + "start": 18411.94, + "end": 18415.46, + "probability": 0.9813 + }, + { + "start": 18416.86, + "end": 18422.38, + "probability": 0.9959 + }, + { + "start": 18422.72, + "end": 18425.18, + "probability": 0.989 + }, + { + "start": 18425.76, + "end": 18428.82, + "probability": 0.9976 + }, + { + "start": 18430.2, + "end": 18430.56, + "probability": 0.5806 + }, + { + "start": 18430.88, + "end": 18431.34, + "probability": 0.6427 + }, + { + "start": 18431.34, + "end": 18432.36, + "probability": 0.8356 + }, + { + "start": 18432.82, + "end": 18433.86, + "probability": 0.9827 + }, + { + "start": 18434.74, + "end": 18436.2, + "probability": 0.9897 + }, + { + "start": 18437.08, + "end": 18440.26, + "probability": 0.9923 + }, + { + "start": 18440.96, + "end": 18444.86, + "probability": 0.9985 + }, + { + "start": 18445.64, + "end": 18449.58, + "probability": 0.9875 + }, + { + "start": 18449.58, + "end": 18453.8, + "probability": 0.9829 + }, + { + "start": 18454.42, + "end": 18458.94, + "probability": 0.9893 + }, + { + "start": 18459.44, + "end": 18463.0, + "probability": 0.9934 + }, + { + "start": 18463.98, + "end": 18467.4, + "probability": 0.9758 + }, + { + "start": 18468.58, + "end": 18473.88, + "probability": 0.9939 + }, + { + "start": 18475.06, + "end": 18475.4, + "probability": 0.3827 + }, + { + "start": 18475.54, + "end": 18476.12, + "probability": 0.8272 + }, + { + "start": 18476.18, + "end": 18478.52, + "probability": 0.6591 + }, + { + "start": 18479.68, + "end": 18481.18, + "probability": 0.7618 + }, + { + "start": 18481.32, + "end": 18481.32, + "probability": 0.5947 + }, + { + "start": 18481.32, + "end": 18481.8, + "probability": 0.8153 + }, + { + "start": 18481.86, + "end": 18481.86, + "probability": 0.2234 + }, + { + "start": 18481.9, + "end": 18486.5, + "probability": 0.9959 + }, + { + "start": 18486.5, + "end": 18490.02, + "probability": 0.9748 + }, + { + "start": 18490.14, + "end": 18491.44, + "probability": 0.973 + }, + { + "start": 18492.72, + "end": 18497.42, + "probability": 0.9536 + }, + { + "start": 18498.16, + "end": 18500.16, + "probability": 0.9738 + }, + { + "start": 18500.78, + "end": 18503.08, + "probability": 0.9726 + }, + { + "start": 18504.54, + "end": 18510.92, + "probability": 0.9854 + }, + { + "start": 18510.96, + "end": 18513.7, + "probability": 0.996 + }, + { + "start": 18513.7, + "end": 18517.24, + "probability": 0.9995 + }, + { + "start": 18518.5, + "end": 18522.36, + "probability": 0.9982 + }, + { + "start": 18523.26, + "end": 18524.58, + "probability": 0.8496 + }, + { + "start": 18525.14, + "end": 18526.7, + "probability": 0.9912 + }, + { + "start": 18526.76, + "end": 18530.6, + "probability": 0.9922 + }, + { + "start": 18531.68, + "end": 18534.92, + "probability": 0.9965 + }, + { + "start": 18536.9, + "end": 18537.94, + "probability": 0.9003 + }, + { + "start": 18538.02, + "end": 18539.2, + "probability": 0.9759 + }, + { + "start": 18539.26, + "end": 18541.32, + "probability": 0.9758 + }, + { + "start": 18542.44, + "end": 18545.12, + "probability": 0.9973 + }, + { + "start": 18545.26, + "end": 18546.84, + "probability": 0.998 + }, + { + "start": 18546.96, + "end": 18548.94, + "probability": 0.9523 + }, + { + "start": 18549.1, + "end": 18550.64, + "probability": 0.7912 + }, + { + "start": 18551.48, + "end": 18554.4, + "probability": 0.9976 + }, + { + "start": 18554.74, + "end": 18557.86, + "probability": 0.9315 + }, + { + "start": 18558.42, + "end": 18560.04, + "probability": 0.9923 + }, + { + "start": 18560.24, + "end": 18563.98, + "probability": 0.9955 + }, + { + "start": 18565.06, + "end": 18569.38, + "probability": 0.9888 + }, + { + "start": 18569.52, + "end": 18570.12, + "probability": 0.9601 + }, + { + "start": 18570.28, + "end": 18570.96, + "probability": 0.7332 + }, + { + "start": 18571.5, + "end": 18576.36, + "probability": 0.9861 + }, + { + "start": 18576.9, + "end": 18580.06, + "probability": 0.9701 + }, + { + "start": 18581.16, + "end": 18584.46, + "probability": 0.9901 + }, + { + "start": 18585.04, + "end": 18587.1, + "probability": 0.9978 + }, + { + "start": 18587.1, + "end": 18591.12, + "probability": 0.9949 + }, + { + "start": 18591.9, + "end": 18595.5, + "probability": 0.9053 + }, + { + "start": 18596.48, + "end": 18603.16, + "probability": 0.9823 + }, + { + "start": 18603.36, + "end": 18605.86, + "probability": 0.631 + }, + { + "start": 18606.56, + "end": 18612.92, + "probability": 0.9855 + }, + { + "start": 18613.52, + "end": 18614.74, + "probability": 0.9935 + }, + { + "start": 18615.22, + "end": 18615.72, + "probability": 0.9887 + }, + { + "start": 18616.1, + "end": 18616.96, + "probability": 0.992 + }, + { + "start": 18616.98, + "end": 18620.62, + "probability": 0.9845 + }, + { + "start": 18621.48, + "end": 18622.96, + "probability": 0.9918 + }, + { + "start": 18623.48, + "end": 18626.04, + "probability": 0.8896 + }, + { + "start": 18627.84, + "end": 18629.54, + "probability": 0.9771 + }, + { + "start": 18630.56, + "end": 18635.62, + "probability": 0.9927 + }, + { + "start": 18635.62, + "end": 18639.06, + "probability": 0.9979 + }, + { + "start": 18639.22, + "end": 18639.72, + "probability": 0.891 + }, + { + "start": 18640.58, + "end": 18643.54, + "probability": 0.6531 + }, + { + "start": 18643.98, + "end": 18646.8, + "probability": 0.7319 + }, + { + "start": 18658.8, + "end": 18660.3, + "probability": 0.827 + }, + { + "start": 18661.56, + "end": 18662.24, + "probability": 0.9003 + }, + { + "start": 18662.98, + "end": 18663.96, + "probability": 0.9878 + }, + { + "start": 18664.7, + "end": 18665.96, + "probability": 0.9839 + }, + { + "start": 18666.72, + "end": 18668.1, + "probability": 0.7824 + }, + { + "start": 18669.52, + "end": 18671.36, + "probability": 0.9571 + }, + { + "start": 18672.1, + "end": 18673.62, + "probability": 0.9781 + }, + { + "start": 18674.34, + "end": 18676.44, + "probability": 0.4878 + }, + { + "start": 18677.38, + "end": 18678.67, + "probability": 0.699 + }, + { + "start": 18679.4, + "end": 18680.52, + "probability": 0.8235 + }, + { + "start": 18681.04, + "end": 18682.54, + "probability": 0.9956 + }, + { + "start": 18682.6, + "end": 18682.74, + "probability": 0.8722 + }, + { + "start": 18682.76, + "end": 18683.25, + "probability": 0.8005 + }, + { + "start": 18683.98, + "end": 18685.22, + "probability": 0.7472 + }, + { + "start": 18686.5, + "end": 18692.22, + "probability": 0.9238 + }, + { + "start": 18692.76, + "end": 18693.68, + "probability": 0.9417 + }, + { + "start": 18694.6, + "end": 18696.04, + "probability": 0.7203 + }, + { + "start": 18696.1, + "end": 18701.56, + "probability": 0.9039 + }, + { + "start": 18702.44, + "end": 18703.18, + "probability": 0.7397 + }, + { + "start": 18703.7, + "end": 18704.7, + "probability": 0.8954 + }, + { + "start": 18705.18, + "end": 18712.36, + "probability": 0.9574 + }, + { + "start": 18712.78, + "end": 18716.6, + "probability": 0.9509 + }, + { + "start": 18717.04, + "end": 18718.38, + "probability": 0.7336 + }, + { + "start": 18719.02, + "end": 18723.54, + "probability": 0.7318 + }, + { + "start": 18723.54, + "end": 18728.64, + "probability": 0.9667 + }, + { + "start": 18728.96, + "end": 18729.62, + "probability": 0.0528 + }, + { + "start": 18729.7, + "end": 18730.97, + "probability": 0.479 + }, + { + "start": 18731.16, + "end": 18732.52, + "probability": 0.9194 + }, + { + "start": 18732.74, + "end": 18739.42, + "probability": 0.8192 + }, + { + "start": 18739.66, + "end": 18741.18, + "probability": 0.5294 + }, + { + "start": 18741.56, + "end": 18742.4, + "probability": 0.6434 + }, + { + "start": 18742.58, + "end": 18744.16, + "probability": 0.5408 + }, + { + "start": 18744.34, + "end": 18745.96, + "probability": 0.4707 + }, + { + "start": 18746.66, + "end": 18749.14, + "probability": 0.1348 + }, + { + "start": 18749.16, + "end": 18750.26, + "probability": 0.1503 + }, + { + "start": 18751.12, + "end": 18751.54, + "probability": 0.3706 + }, + { + "start": 18751.54, + "end": 18751.92, + "probability": 0.3949 + }, + { + "start": 18752.14, + "end": 18753.4, + "probability": 0.9883 + }, + { + "start": 18753.72, + "end": 18755.55, + "probability": 0.954 + }, + { + "start": 18756.0, + "end": 18757.12, + "probability": 0.0294 + }, + { + "start": 18757.12, + "end": 18757.49, + "probability": 0.3781 + }, + { + "start": 18760.04, + "end": 18760.78, + "probability": 0.0624 + }, + { + "start": 18761.2, + "end": 18761.72, + "probability": 0.0129 + }, + { + "start": 18763.1, + "end": 18766.98, + "probability": 0.0479 + }, + { + "start": 18767.46, + "end": 18771.4, + "probability": 0.3388 + }, + { + "start": 18771.4, + "end": 18771.4, + "probability": 0.2152 + }, + { + "start": 18771.4, + "end": 18771.81, + "probability": 0.5534 + }, + { + "start": 18772.06, + "end": 18772.32, + "probability": 0.6286 + }, + { + "start": 18773.14, + "end": 18775.54, + "probability": 0.0642 + }, + { + "start": 18775.82, + "end": 18780.04, + "probability": 0.1912 + }, + { + "start": 18781.16, + "end": 18783.0, + "probability": 0.1025 + }, + { + "start": 18784.3, + "end": 18784.58, + "probability": 0.014 + }, + { + "start": 18786.83, + "end": 18787.35, + "probability": 0.2542 + }, + { + "start": 18787.92, + "end": 18788.2, + "probability": 0.2284 + }, + { + "start": 18788.84, + "end": 18789.28, + "probability": 0.0445 + }, + { + "start": 18793.78, + "end": 18795.6, + "probability": 0.5106 + }, + { + "start": 18797.36, + "end": 18797.48, + "probability": 0.0673 + }, + { + "start": 18799.34, + "end": 18805.26, + "probability": 0.0292 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.0, + "end": 18825.0, + "probability": 0.0 + }, + { + "start": 18825.1, + "end": 18828.4, + "probability": 0.8378 + }, + { + "start": 18829.08, + "end": 18831.32, + "probability": 0.9967 + }, + { + "start": 18831.8, + "end": 18832.7, + "probability": 0.8167 + }, + { + "start": 18833.12, + "end": 18833.8, + "probability": 0.7903 + }, + { + "start": 18834.36, + "end": 18835.84, + "probability": 0.9677 + }, + { + "start": 18835.9, + "end": 18836.7, + "probability": 0.6696 + }, + { + "start": 18836.76, + "end": 18838.2, + "probability": 0.951 + }, + { + "start": 18838.64, + "end": 18839.34, + "probability": 0.9782 + }, + { + "start": 18839.92, + "end": 18840.62, + "probability": 0.0074 + }, + { + "start": 18841.18, + "end": 18841.96, + "probability": 0.7366 + }, + { + "start": 18842.3, + "end": 18843.22, + "probability": 0.8741 + }, + { + "start": 18843.3, + "end": 18844.16, + "probability": 0.8867 + }, + { + "start": 18844.8, + "end": 18846.76, + "probability": 0.8729 + }, + { + "start": 18847.26, + "end": 18851.46, + "probability": 0.7422 + }, + { + "start": 18851.74, + "end": 18852.94, + "probability": 0.7836 + }, + { + "start": 18853.04, + "end": 18853.94, + "probability": 0.7157 + }, + { + "start": 18854.92, + "end": 18856.92, + "probability": 0.816 + }, + { + "start": 18857.78, + "end": 18858.52, + "probability": 0.0546 + }, + { + "start": 18858.62, + "end": 18862.46, + "probability": 0.2555 + }, + { + "start": 18862.68, + "end": 18862.68, + "probability": 0.4802 + }, + { + "start": 18862.68, + "end": 18863.22, + "probability": 0.242 + }, + { + "start": 18863.32, + "end": 18865.7, + "probability": 0.8866 + }, + { + "start": 18865.76, + "end": 18867.04, + "probability": 0.7339 + }, + { + "start": 18867.6, + "end": 18867.96, + "probability": 0.6509 + }, + { + "start": 18867.96, + "end": 18868.3, + "probability": 0.3203 + }, + { + "start": 18868.3, + "end": 18870.84, + "probability": 0.7295 + }, + { + "start": 18870.86, + "end": 18872.82, + "probability": 0.724 + }, + { + "start": 18873.08, + "end": 18876.42, + "probability": 0.7749 + }, + { + "start": 18876.52, + "end": 18877.46, + "probability": 0.6352 + }, + { + "start": 18877.46, + "end": 18877.72, + "probability": 0.5921 + }, + { + "start": 18878.06, + "end": 18878.56, + "probability": 0.8592 + }, + { + "start": 18879.96, + "end": 18881.72, + "probability": 0.8005 + }, + { + "start": 18883.12, + "end": 18883.94, + "probability": 0.3189 + }, + { + "start": 18884.06, + "end": 18885.42, + "probability": 0.1529 + }, + { + "start": 18885.84, + "end": 18887.1, + "probability": 0.0903 + }, + { + "start": 18887.3, + "end": 18889.36, + "probability": 0.4285 + }, + { + "start": 18889.98, + "end": 18893.14, + "probability": 0.5426 + }, + { + "start": 18899.5, + "end": 18900.38, + "probability": 0.4701 + }, + { + "start": 18900.38, + "end": 18902.16, + "probability": 0.7589 + }, + { + "start": 18902.68, + "end": 18905.18, + "probability": 0.9619 + }, + { + "start": 18905.72, + "end": 18907.4, + "probability": 0.9564 + }, + { + "start": 18907.82, + "end": 18909.68, + "probability": 0.9505 + }, + { + "start": 18910.24, + "end": 18912.14, + "probability": 0.9557 + }, + { + "start": 18912.78, + "end": 18914.54, + "probability": 0.7757 + }, + { + "start": 18915.4, + "end": 18919.6, + "probability": 0.9165 + }, + { + "start": 18920.46, + "end": 18921.9, + "probability": 0.9966 + }, + { + "start": 18922.72, + "end": 18924.92, + "probability": 0.9749 + }, + { + "start": 18925.74, + "end": 18928.7, + "probability": 0.9869 + }, + { + "start": 18929.44, + "end": 18932.36, + "probability": 0.9149 + }, + { + "start": 18932.96, + "end": 18935.48, + "probability": 0.6619 + }, + { + "start": 18936.02, + "end": 18937.26, + "probability": 0.7457 + }, + { + "start": 18937.82, + "end": 18939.7, + "probability": 0.6096 + }, + { + "start": 18939.84, + "end": 18941.56, + "probability": 0.8535 + }, + { + "start": 18941.74, + "end": 18942.98, + "probability": 0.8406 + }, + { + "start": 18943.08, + "end": 18946.4, + "probability": 0.9759 + }, + { + "start": 18947.32, + "end": 18947.32, + "probability": 0.001 + }, + { + "start": 18948.16, + "end": 18948.38, + "probability": 0.0243 + }, + { + "start": 18948.38, + "end": 18948.38, + "probability": 0.0366 + }, + { + "start": 18948.38, + "end": 18948.38, + "probability": 0.0504 + }, + { + "start": 18948.38, + "end": 18948.38, + "probability": 0.0093 + }, + { + "start": 18948.38, + "end": 18949.08, + "probability": 0.2469 + }, + { + "start": 18949.58, + "end": 18951.96, + "probability": 0.7061 + }, + { + "start": 18952.58, + "end": 18953.3, + "probability": 0.8315 + }, + { + "start": 18954.02, + "end": 18956.56, + "probability": 0.9694 + }, + { + "start": 18957.82, + "end": 18960.84, + "probability": 0.9885 + }, + { + "start": 18961.58, + "end": 18964.08, + "probability": 0.8529 + }, + { + "start": 18964.32, + "end": 18965.28, + "probability": 0.6997 + }, + { + "start": 18965.88, + "end": 18968.58, + "probability": 0.8817 + }, + { + "start": 18969.3, + "end": 18971.94, + "probability": 0.9958 + }, + { + "start": 18973.18, + "end": 18975.52, + "probability": 0.7679 + }, + { + "start": 18976.26, + "end": 18977.44, + "probability": 0.7326 + }, + { + "start": 18978.82, + "end": 18984.96, + "probability": 0.9974 + }, + { + "start": 18985.58, + "end": 18987.02, + "probability": 0.9373 + }, + { + "start": 18987.38, + "end": 18989.64, + "probability": 0.999 + }, + { + "start": 18990.64, + "end": 18993.22, + "probability": 0.9497 + }, + { + "start": 18993.68, + "end": 18994.74, + "probability": 0.9484 + }, + { + "start": 18995.14, + "end": 18997.32, + "probability": 0.9931 + }, + { + "start": 18998.08, + "end": 18999.16, + "probability": 0.8211 + }, + { + "start": 18999.6, + "end": 19000.78, + "probability": 0.8008 + }, + { + "start": 19001.06, + "end": 19001.8, + "probability": 0.6842 + }, + { + "start": 19002.76, + "end": 19003.76, + "probability": 0.9396 + }, + { + "start": 19004.32, + "end": 19006.52, + "probability": 0.9976 + }, + { + "start": 19007.16, + "end": 19008.04, + "probability": 0.8232 + }, + { + "start": 19008.28, + "end": 19009.08, + "probability": 0.7381 + }, + { + "start": 19012.36, + "end": 19013.12, + "probability": 0.619 + }, + { + "start": 19013.52, + "end": 19020.46, + "probability": 0.8074 + }, + { + "start": 19020.62, + "end": 19023.02, + "probability": 0.0454 + }, + { + "start": 19023.22, + "end": 19024.28, + "probability": 0.4726 + }, + { + "start": 19024.58, + "end": 19025.82, + "probability": 0.75 + }, + { + "start": 19025.9, + "end": 19028.66, + "probability": 0.9702 + }, + { + "start": 19030.52, + "end": 19032.96, + "probability": 0.3932 + }, + { + "start": 19032.96, + "end": 19034.78, + "probability": 0.9442 + }, + { + "start": 19034.92, + "end": 19035.18, + "probability": 0.4423 + }, + { + "start": 19035.42, + "end": 19036.1, + "probability": 0.4055 + }, + { + "start": 19036.16, + "end": 19039.2, + "probability": 0.3855 + }, + { + "start": 19039.4, + "end": 19039.94, + "probability": 0.654 + }, + { + "start": 19039.98, + "end": 19044.58, + "probability": 0.9937 + }, + { + "start": 19044.67, + "end": 19048.26, + "probability": 0.9951 + }, + { + "start": 19048.76, + "end": 19050.4, + "probability": 0.8377 + }, + { + "start": 19052.02, + "end": 19057.0, + "probability": 0.7707 + }, + { + "start": 19057.8, + "end": 19059.72, + "probability": 0.8856 + }, + { + "start": 19060.1, + "end": 19061.94, + "probability": 0.821 + }, + { + "start": 19062.4, + "end": 19063.06, + "probability": 0.8556 + }, + { + "start": 19063.06, + "end": 19064.12, + "probability": 0.8955 + }, + { + "start": 19064.52, + "end": 19066.74, + "probability": 0.988 + }, + { + "start": 19067.16, + "end": 19070.36, + "probability": 0.8695 + }, + { + "start": 19070.36, + "end": 19073.76, + "probability": 0.9852 + }, + { + "start": 19077.46, + "end": 19078.8, + "probability": 0.5486 + }, + { + "start": 19079.16, + "end": 19081.42, + "probability": 0.3157 + }, + { + "start": 19081.64, + "end": 19081.88, + "probability": 0.206 + }, + { + "start": 19081.88, + "end": 19083.72, + "probability": 0.4002 + }, + { + "start": 19084.08, + "end": 19085.08, + "probability": 0.2845 + }, + { + "start": 19085.42, + "end": 19086.36, + "probability": 0.5056 + }, + { + "start": 19086.48, + "end": 19087.6, + "probability": 0.5339 + }, + { + "start": 19087.62, + "end": 19092.26, + "probability": 0.9967 + }, + { + "start": 19092.4, + "end": 19092.84, + "probability": 0.259 + }, + { + "start": 19092.86, + "end": 19094.08, + "probability": 0.7952 + }, + { + "start": 19094.12, + "end": 19097.06, + "probability": 0.9287 + }, + { + "start": 19097.2, + "end": 19098.34, + "probability": 0.9126 + }, + { + "start": 19098.48, + "end": 19099.3, + "probability": 0.8784 + }, + { + "start": 19100.82, + "end": 19101.42, + "probability": 0.8901 + }, + { + "start": 19102.54, + "end": 19104.03, + "probability": 0.9468 + }, + { + "start": 19104.46, + "end": 19105.64, + "probability": 0.7446 + }, + { + "start": 19106.34, + "end": 19108.04, + "probability": 0.9087 + }, + { + "start": 19108.36, + "end": 19109.64, + "probability": 0.7578 + }, + { + "start": 19110.16, + "end": 19111.92, + "probability": 0.9674 + }, + { + "start": 19111.98, + "end": 19112.58, + "probability": 0.4733 + }, + { + "start": 19113.82, + "end": 19116.5, + "probability": 0.5067 + }, + { + "start": 19117.28, + "end": 19118.32, + "probability": 0.8558 + }, + { + "start": 19119.44, + "end": 19119.98, + "probability": 0.957 + }, + { + "start": 19120.58, + "end": 19121.82, + "probability": 0.6892 + }, + { + "start": 19122.84, + "end": 19126.64, + "probability": 0.9832 + }, + { + "start": 19127.5, + "end": 19127.78, + "probability": 0.5627 + }, + { + "start": 19128.54, + "end": 19129.2, + "probability": 0.5476 + }, + { + "start": 19130.34, + "end": 19130.68, + "probability": 0.9261 + }, + { + "start": 19131.46, + "end": 19132.3, + "probability": 0.5583 + }, + { + "start": 19134.06, + "end": 19136.54, + "probability": 0.767 + }, + { + "start": 19137.4, + "end": 19138.4, + "probability": 0.8141 + }, + { + "start": 19139.54, + "end": 19140.32, + "probability": 0.8453 + }, + { + "start": 19140.86, + "end": 19141.84, + "probability": 0.8635 + }, + { + "start": 19142.72, + "end": 19143.14, + "probability": 0.9924 + }, + { + "start": 19144.0, + "end": 19144.74, + "probability": 0.9658 + }, + { + "start": 19145.64, + "end": 19146.02, + "probability": 0.9875 + }, + { + "start": 19146.74, + "end": 19147.54, + "probability": 0.9318 + }, + { + "start": 19148.66, + "end": 19149.12, + "probability": 0.9846 + }, + { + "start": 19149.7, + "end": 19150.64, + "probability": 0.9444 + }, + { + "start": 19152.64, + "end": 19156.18, + "probability": 0.9771 + }, + { + "start": 19157.54, + "end": 19158.26, + "probability": 0.6122 + }, + { + "start": 19158.92, + "end": 19160.56, + "probability": 0.6465 + }, + { + "start": 19161.06, + "end": 19162.22, + "probability": 0.4758 + }, + { + "start": 19163.06, + "end": 19163.38, + "probability": 0.967 + }, + { + "start": 19165.12, + "end": 19166.3, + "probability": 0.8507 + }, + { + "start": 19167.04, + "end": 19167.44, + "probability": 0.9692 + }, + { + "start": 19168.68, + "end": 19169.64, + "probability": 0.9519 + }, + { + "start": 19170.5, + "end": 19170.98, + "probability": 0.9728 + }, + { + "start": 19172.2, + "end": 19173.88, + "probability": 0.928 + }, + { + "start": 19178.1, + "end": 19179.0, + "probability": 0.8955 + }, + { + "start": 19180.62, + "end": 19181.6, + "probability": 0.535 + }, + { + "start": 19182.38, + "end": 19182.74, + "probability": 0.7571 + }, + { + "start": 19183.48, + "end": 19184.46, + "probability": 0.7608 + }, + { + "start": 19185.16, + "end": 19185.68, + "probability": 0.8069 + }, + { + "start": 19186.62, + "end": 19187.64, + "probability": 0.8775 + }, + { + "start": 19188.56, + "end": 19189.1, + "probability": 0.9798 + }, + { + "start": 19189.84, + "end": 19190.6, + "probability": 0.9373 + }, + { + "start": 19192.64, + "end": 19195.24, + "probability": 0.8739 + }, + { + "start": 19196.52, + "end": 19197.76, + "probability": 0.9781 + }, + { + "start": 19198.36, + "end": 19198.8, + "probability": 0.9749 + }, + { + "start": 19199.64, + "end": 19200.54, + "probability": 0.9939 + }, + { + "start": 19201.72, + "end": 19202.16, + "probability": 0.9392 + }, + { + "start": 19204.24, + "end": 19205.06, + "probability": 0.9932 + }, + { + "start": 19206.12, + "end": 19206.56, + "probability": 0.9692 + }, + { + "start": 19207.32, + "end": 19208.18, + "probability": 0.8152 + }, + { + "start": 19208.78, + "end": 19210.0, + "probability": 0.1771 + }, + { + "start": 19211.0, + "end": 19212.28, + "probability": 0.5434 + }, + { + "start": 19213.38, + "end": 19213.92, + "probability": 0.9735 + }, + { + "start": 19214.68, + "end": 19216.78, + "probability": 0.6197 + }, + { + "start": 19218.82, + "end": 19220.82, + "probability": 0.5187 + }, + { + "start": 19222.22, + "end": 19222.94, + "probability": 0.9016 + }, + { + "start": 19223.64, + "end": 19226.24, + "probability": 0.8875 + }, + { + "start": 19227.66, + "end": 19228.14, + "probability": 0.9621 + }, + { + "start": 19228.94, + "end": 19229.66, + "probability": 0.82 + }, + { + "start": 19230.74, + "end": 19232.6, + "probability": 0.9492 + }, + { + "start": 19233.26, + "end": 19234.32, + "probability": 0.8774 + }, + { + "start": 19235.36, + "end": 19235.82, + "probability": 0.9901 + }, + { + "start": 19236.96, + "end": 19237.72, + "probability": 0.8687 + }, + { + "start": 19238.68, + "end": 19238.94, + "probability": 0.9492 + }, + { + "start": 19240.2, + "end": 19243.34, + "probability": 0.6892 + }, + { + "start": 19244.28, + "end": 19244.76, + "probability": 0.9352 + }, + { + "start": 19246.2, + "end": 19246.94, + "probability": 0.9591 + }, + { + "start": 19248.16, + "end": 19248.9, + "probability": 0.9633 + }, + { + "start": 19249.56, + "end": 19250.46, + "probability": 0.971 + }, + { + "start": 19251.44, + "end": 19252.04, + "probability": 0.9653 + }, + { + "start": 19253.08, + "end": 19254.16, + "probability": 0.9403 + }, + { + "start": 19255.02, + "end": 19255.54, + "probability": 0.972 + }, + { + "start": 19256.34, + "end": 19257.14, + "probability": 0.9871 + }, + { + "start": 19257.88, + "end": 19258.34, + "probability": 0.9849 + }, + { + "start": 19259.16, + "end": 19260.26, + "probability": 0.7617 + }, + { + "start": 19261.24, + "end": 19261.7, + "probability": 0.5923 + }, + { + "start": 19262.48, + "end": 19263.24, + "probability": 0.715 + }, + { + "start": 19270.6, + "end": 19272.06, + "probability": 0.7769 + }, + { + "start": 19273.38, + "end": 19274.06, + "probability": 0.5382 + }, + { + "start": 19282.48, + "end": 19283.0, + "probability": 0.6966 + }, + { + "start": 19286.08, + "end": 19286.98, + "probability": 0.4889 + }, + { + "start": 19287.92, + "end": 19290.48, + "probability": 0.4478 + }, + { + "start": 19292.98, + "end": 19295.22, + "probability": 0.8672 + }, + { + "start": 19297.04, + "end": 19297.46, + "probability": 0.9734 + }, + { + "start": 19298.64, + "end": 19299.86, + "probability": 0.9315 + }, + { + "start": 19300.98, + "end": 19301.54, + "probability": 0.9925 + }, + { + "start": 19302.42, + "end": 19303.6, + "probability": 0.9909 + }, + { + "start": 19304.38, + "end": 19307.0, + "probability": 0.7624 + }, + { + "start": 19308.6, + "end": 19309.34, + "probability": 0.0242 + }, + { + "start": 19310.86, + "end": 19312.94, + "probability": 0.3436 + }, + { + "start": 19324.88, + "end": 19326.06, + "probability": 0.2778 + }, + { + "start": 19326.92, + "end": 19327.22, + "probability": 0.7701 + }, + { + "start": 19327.86, + "end": 19329.26, + "probability": 0.6607 + }, + { + "start": 19330.62, + "end": 19331.0, + "probability": 0.9482 + }, + { + "start": 19331.9, + "end": 19332.8, + "probability": 0.911 + }, + { + "start": 19333.78, + "end": 19334.18, + "probability": 0.9118 + }, + { + "start": 19334.94, + "end": 19335.7, + "probability": 0.9179 + }, + { + "start": 19337.32, + "end": 19339.76, + "probability": 0.482 + }, + { + "start": 19341.14, + "end": 19341.58, + "probability": 0.4401 + }, + { + "start": 19342.46, + "end": 19343.82, + "probability": 0.6191 + }, + { + "start": 19345.72, + "end": 19346.22, + "probability": 0.7429 + }, + { + "start": 19347.64, + "end": 19348.06, + "probability": 0.7448 + }, + { + "start": 19349.48, + "end": 19349.86, + "probability": 0.7957 + }, + { + "start": 19350.42, + "end": 19351.14, + "probability": 0.8769 + }, + { + "start": 19352.52, + "end": 19355.02, + "probability": 0.9522 + }, + { + "start": 19360.82, + "end": 19361.38, + "probability": 0.8825 + }, + { + "start": 19363.24, + "end": 19364.08, + "probability": 0.875 + }, + { + "start": 19365.58, + "end": 19366.14, + "probability": 0.9658 + }, + { + "start": 19366.7, + "end": 19367.46, + "probability": 0.9553 + }, + { + "start": 19368.44, + "end": 19368.9, + "probability": 0.9507 + }, + { + "start": 19369.7, + "end": 19371.6, + "probability": 0.9941 + }, + { + "start": 19374.02, + "end": 19374.86, + "probability": 0.7014 + }, + { + "start": 19385.08, + "end": 19386.92, + "probability": 0.5204 + }, + { + "start": 19387.94, + "end": 19388.6, + "probability": 0.5624 + }, + { + "start": 19391.52, + "end": 19392.2, + "probability": 0.7011 + }, + { + "start": 19394.6, + "end": 19395.7, + "probability": 0.6045 + }, + { + "start": 19396.78, + "end": 19397.1, + "probability": 0.9137 + }, + { + "start": 19398.04, + "end": 19398.82, + "probability": 0.8059 + }, + { + "start": 19401.66, + "end": 19402.12, + "probability": 0.8649 + }, + { + "start": 19403.04, + "end": 19404.19, + "probability": 0.9285 + }, + { + "start": 19406.04, + "end": 19407.2, + "probability": 0.958 + }, + { + "start": 19407.84, + "end": 19408.62, + "probability": 0.9572 + }, + { + "start": 19409.72, + "end": 19410.12, + "probability": 0.9822 + }, + { + "start": 19411.06, + "end": 19411.62, + "probability": 0.3025 + }, + { + "start": 19413.3, + "end": 19413.8, + "probability": 0.7739 + }, + { + "start": 19414.32, + "end": 19415.36, + "probability": 0.8707 + }, + { + "start": 19416.22, + "end": 19416.64, + "probability": 0.4424 + }, + { + "start": 19417.82, + "end": 19418.72, + "probability": 0.9187 + }, + { + "start": 19420.16, + "end": 19420.78, + "probability": 0.993 + }, + { + "start": 19422.14, + "end": 19422.98, + "probability": 0.9801 + }, + { + "start": 19425.4, + "end": 19428.26, + "probability": 0.9851 + }, + { + "start": 19429.1, + "end": 19429.6, + "probability": 0.9816 + }, + { + "start": 19430.42, + "end": 19431.74, + "probability": 0.9188 + }, + { + "start": 19433.1, + "end": 19433.6, + "probability": 0.9927 + }, + { + "start": 19434.68, + "end": 19435.56, + "probability": 0.8277 + }, + { + "start": 19436.58, + "end": 19437.06, + "probability": 0.9814 + }, + { + "start": 19437.8, + "end": 19439.06, + "probability": 0.9284 + }, + { + "start": 19440.0, + "end": 19440.32, + "probability": 0.7197 + }, + { + "start": 19441.24, + "end": 19442.26, + "probability": 0.3513 + }, + { + "start": 19443.92, + "end": 19446.36, + "probability": 0.8707 + }, + { + "start": 19446.88, + "end": 19448.14, + "probability": 0.8151 + }, + { + "start": 19448.82, + "end": 19449.18, + "probability": 0.8867 + }, + { + "start": 19450.86, + "end": 19452.22, + "probability": 0.8633 + }, + { + "start": 19455.8, + "end": 19456.22, + "probability": 0.4468 + }, + { + "start": 19457.78, + "end": 19458.46, + "probability": 0.9594 + }, + { + "start": 19459.92, + "end": 19461.88, + "probability": 0.9847 + }, + { + "start": 19463.56, + "end": 19465.68, + "probability": 0.821 + }, + { + "start": 19467.82, + "end": 19469.06, + "probability": 0.423 + }, + { + "start": 19474.42, + "end": 19474.86, + "probability": 0.6254 + }, + { + "start": 19476.76, + "end": 19477.78, + "probability": 0.6264 + }, + { + "start": 19478.72, + "end": 19479.08, + "probability": 0.8978 + }, + { + "start": 19480.62, + "end": 19481.84, + "probability": 0.8781 + }, + { + "start": 19486.52, + "end": 19487.82, + "probability": 0.8063 + }, + { + "start": 19488.4, + "end": 19489.44, + "probability": 0.7458 + }, + { + "start": 19491.5, + "end": 19492.02, + "probability": 0.9315 + }, + { + "start": 19493.54, + "end": 19494.56, + "probability": 0.7384 + }, + { + "start": 19495.58, + "end": 19495.92, + "probability": 0.9596 + }, + { + "start": 19496.46, + "end": 19497.46, + "probability": 0.9327 + }, + { + "start": 19498.64, + "end": 19499.04, + "probability": 0.925 + }, + { + "start": 19500.0, + "end": 19500.74, + "probability": 0.8209 + }, + { + "start": 19502.06, + "end": 19502.46, + "probability": 0.9812 + }, + { + "start": 19504.3, + "end": 19505.26, + "probability": 0.7843 + }, + { + "start": 19507.12, + "end": 19510.38, + "probability": 0.527 + }, + { + "start": 19515.2, + "end": 19516.66, + "probability": 0.5023 + }, + { + "start": 19517.82, + "end": 19518.2, + "probability": 0.4294 + }, + { + "start": 19519.04, + "end": 19519.84, + "probability": 0.4822 + }, + { + "start": 19521.52, + "end": 19521.88, + "probability": 0.7917 + }, + { + "start": 19522.82, + "end": 19523.68, + "probability": 0.813 + }, + { + "start": 19524.6, + "end": 19525.6, + "probability": 0.95 + }, + { + "start": 19526.28, + "end": 19527.16, + "probability": 0.7531 + }, + { + "start": 19530.74, + "end": 19533.28, + "probability": 0.5773 + }, + { + "start": 19536.04, + "end": 19536.48, + "probability": 0.9841 + }, + { + "start": 19538.78, + "end": 19539.88, + "probability": 0.8845 + }, + { + "start": 19542.58, + "end": 19544.9, + "probability": 0.8825 + }, + { + "start": 19545.78, + "end": 19546.28, + "probability": 0.9089 + }, + { + "start": 19548.1, + "end": 19548.98, + "probability": 0.8151 + }, + { + "start": 19549.92, + "end": 19550.32, + "probability": 0.8809 + }, + { + "start": 19551.2, + "end": 19552.14, + "probability": 0.9567 + }, + { + "start": 19553.2, + "end": 19555.26, + "probability": 0.9484 + }, + { + "start": 19558.34, + "end": 19558.94, + "probability": 0.9904 + }, + { + "start": 19559.86, + "end": 19560.84, + "probability": 0.9189 + }, + { + "start": 19564.48, + "end": 19565.22, + "probability": 0.7845 + }, + { + "start": 19565.86, + "end": 19566.64, + "probability": 0.8205 + }, + { + "start": 19567.86, + "end": 19568.28, + "probability": 0.7825 + }, + { + "start": 19569.84, + "end": 19570.62, + "probability": 0.8997 + }, + { + "start": 19573.7, + "end": 19574.5, + "probability": 0.7482 + }, + { + "start": 19575.38, + "end": 19576.42, + "probability": 0.955 + }, + { + "start": 19577.36, + "end": 19577.8, + "probability": 0.9888 + }, + { + "start": 19578.58, + "end": 19579.34, + "probability": 0.9329 + }, + { + "start": 19581.14, + "end": 19581.56, + "probability": 0.9937 + }, + { + "start": 19582.26, + "end": 19583.16, + "probability": 0.9568 + }, + { + "start": 19584.94, + "end": 19585.4, + "probability": 0.9909 + }, + { + "start": 19586.44, + "end": 19587.46, + "probability": 0.982 + }, + { + "start": 19589.16, + "end": 19590.0, + "probability": 0.9935 + }, + { + "start": 19590.54, + "end": 19591.98, + "probability": 0.6103 + }, + { + "start": 19593.26, + "end": 19593.64, + "probability": 0.7681 + }, + { + "start": 19595.48, + "end": 19596.7, + "probability": 0.9772 + }, + { + "start": 19598.04, + "end": 19599.78, + "probability": 0.9917 + }, + { + "start": 19600.7, + "end": 19602.84, + "probability": 0.967 + }, + { + "start": 19603.98, + "end": 19606.6, + "probability": 0.969 + }, + { + "start": 19607.54, + "end": 19608.08, + "probability": 0.9883 + }, + { + "start": 19609.64, + "end": 19610.86, + "probability": 0.866 + }, + { + "start": 19612.6, + "end": 19617.44, + "probability": 0.973 + }, + { + "start": 19618.52, + "end": 19618.98, + "probability": 0.9922 + }, + { + "start": 19620.3, + "end": 19621.18, + "probability": 0.7737 + }, + { + "start": 19623.42, + "end": 19623.84, + "probability": 0.5994 + }, + { + "start": 19624.72, + "end": 19625.56, + "probability": 0.6178 + }, + { + "start": 19626.86, + "end": 19629.02, + "probability": 0.9384 + }, + { + "start": 19630.68, + "end": 19631.12, + "probability": 0.9836 + }, + { + "start": 19633.24, + "end": 19633.96, + "probability": 0.7065 + }, + { + "start": 19636.02, + "end": 19636.64, + "probability": 0.9917 + }, + { + "start": 19637.4, + "end": 19638.56, + "probability": 0.9296 + }, + { + "start": 19639.92, + "end": 19640.7, + "probability": 0.9341 + }, + { + "start": 19641.36, + "end": 19642.82, + "probability": 0.9429 + }, + { + "start": 19643.86, + "end": 19644.32, + "probability": 0.8032 + }, + { + "start": 19645.12, + "end": 19646.0, + "probability": 0.9079 + }, + { + "start": 19647.36, + "end": 19647.86, + "probability": 0.9906 + }, + { + "start": 19648.92, + "end": 19649.44, + "probability": 0.441 + }, + { + "start": 19658.44, + "end": 19658.88, + "probability": 0.5029 + }, + { + "start": 19660.76, + "end": 19661.84, + "probability": 0.5068 + }, + { + "start": 19663.7, + "end": 19664.08, + "probability": 0.9357 + }, + { + "start": 19668.4, + "end": 19672.02, + "probability": 0.8562 + }, + { + "start": 19672.82, + "end": 19673.64, + "probability": 0.4104 + }, + { + "start": 19675.08, + "end": 19675.74, + "probability": 0.9725 + }, + { + "start": 19676.28, + "end": 19677.26, + "probability": 0.7108 + }, + { + "start": 19678.1, + "end": 19678.8, + "probability": 0.9757 + }, + { + "start": 19679.48, + "end": 19681.3, + "probability": 0.9403 + }, + { + "start": 19682.46, + "end": 19685.94, + "probability": 0.91 + }, + { + "start": 19686.92, + "end": 19687.74, + "probability": 0.8947 + }, + { + "start": 19689.3, + "end": 19690.1, + "probability": 0.9836 + }, + { + "start": 19691.64, + "end": 19692.48, + "probability": 0.6988 + }, + { + "start": 19693.38, + "end": 19695.92, + "probability": 0.9223 + }, + { + "start": 19698.28, + "end": 19699.12, + "probability": 0.9724 + }, + { + "start": 19700.9, + "end": 19702.06, + "probability": 0.7285 + }, + { + "start": 19703.32, + "end": 19704.32, + "probability": 0.9883 + }, + { + "start": 19705.88, + "end": 19707.1, + "probability": 0.9582 + }, + { + "start": 19725.4, + "end": 19728.96, + "probability": 0.4816 + }, + { + "start": 19730.62, + "end": 19731.3, + "probability": 0.8042 + }, + { + "start": 19733.34, + "end": 19733.8, + "probability": 0.7881 + }, + { + "start": 19735.84, + "end": 19737.94, + "probability": 0.9174 + }, + { + "start": 19739.36, + "end": 19740.06, + "probability": 0.9358 + }, + { + "start": 19740.66, + "end": 19741.06, + "probability": 0.9134 + }, + { + "start": 19743.26, + "end": 19744.0, + "probability": 0.9901 + }, + { + "start": 19746.38, + "end": 19747.48, + "probability": 0.8924 + }, + { + "start": 19748.72, + "end": 19749.44, + "probability": 0.9629 + }, + { + "start": 19750.0, + "end": 19751.08, + "probability": 0.8795 + }, + { + "start": 19752.42, + "end": 19754.38, + "probability": 0.6219 + }, + { + "start": 19755.44, + "end": 19759.54, + "probability": 0.7218 + }, + { + "start": 19761.04, + "end": 19761.76, + "probability": 0.8789 + }, + { + "start": 19762.4, + "end": 19765.16, + "probability": 0.3286 + }, + { + "start": 19794.92, + "end": 19800.78, + "probability": 0.6531 + }, + { + "start": 19802.52, + "end": 19806.78, + "probability": 0.9257 + }, + { + "start": 19809.44, + "end": 19813.56, + "probability": 0.9905 + }, + { + "start": 19814.3, + "end": 19815.07, + "probability": 0.606 + }, + { + "start": 19815.4, + "end": 19816.48, + "probability": 0.7634 + }, + { + "start": 19816.56, + "end": 19817.18, + "probability": 0.7368 + }, + { + "start": 19817.32, + "end": 19817.97, + "probability": 0.6542 + }, + { + "start": 19819.34, + "end": 19822.56, + "probability": 0.9991 + }, + { + "start": 19825.16, + "end": 19828.44, + "probability": 0.9945 + }, + { + "start": 19829.22, + "end": 19833.68, + "probability": 0.7508 + }, + { + "start": 19835.6, + "end": 19838.16, + "probability": 0.0213 + }, + { + "start": 19838.72, + "end": 19839.74, + "probability": 0.11 + }, + { + "start": 19841.0, + "end": 19842.06, + "probability": 0.1951 + }, + { + "start": 19842.3, + "end": 19842.42, + "probability": 0.2516 + }, + { + "start": 19842.52, + "end": 19846.16, + "probability": 0.078 + }, + { + "start": 19847.1, + "end": 19847.58, + "probability": 0.1171 + }, + { + "start": 19847.58, + "end": 19847.58, + "probability": 0.2227 + }, + { + "start": 19847.58, + "end": 19847.58, + "probability": 0.229 + }, + { + "start": 19847.58, + "end": 19847.94, + "probability": 0.0879 + }, + { + "start": 19847.94, + "end": 19847.94, + "probability": 0.1141 + }, + { + "start": 19847.94, + "end": 19850.53, + "probability": 0.1048 + }, + { + "start": 19850.78, + "end": 19853.44, + "probability": 0.2869 + }, + { + "start": 19853.66, + "end": 19859.38, + "probability": 0.2466 + }, + { + "start": 19864.14, + "end": 19866.3, + "probability": 0.1394 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.0, + "end": 19882.0, + "probability": 0.0 + }, + { + "start": 19882.36, + "end": 19886.09, + "probability": 0.4973 + }, + { + "start": 19886.34, + "end": 19887.96, + "probability": 0.9138 + }, + { + "start": 19888.3, + "end": 19895.82, + "probability": 0.9541 + }, + { + "start": 19896.06, + "end": 19898.08, + "probability": 0.9835 + }, + { + "start": 19898.36, + "end": 19899.16, + "probability": 0.7487 + }, + { + "start": 19900.91, + "end": 19901.42, + "probability": 0.1012 + }, + { + "start": 19901.42, + "end": 19901.42, + "probability": 0.5016 + }, + { + "start": 19901.42, + "end": 19901.42, + "probability": 0.0635 + }, + { + "start": 19901.42, + "end": 19903.1, + "probability": 0.1048 + }, + { + "start": 19903.4, + "end": 19904.28, + "probability": 0.6162 + }, + { + "start": 19904.8, + "end": 19906.62, + "probability": 0.9854 + }, + { + "start": 19907.6, + "end": 19908.9, + "probability": 0.573 + }, + { + "start": 19909.42, + "end": 19911.34, + "probability": 0.9338 + }, + { + "start": 19911.38, + "end": 19913.12, + "probability": 0.2002 + }, + { + "start": 19914.57, + "end": 19915.92, + "probability": 0.0411 + }, + { + "start": 19915.92, + "end": 19915.92, + "probability": 0.441 + }, + { + "start": 19915.92, + "end": 19915.92, + "probability": 0.2372 + }, + { + "start": 19915.92, + "end": 19915.92, + "probability": 0.0157 + }, + { + "start": 19915.92, + "end": 19916.34, + "probability": 0.5703 + }, + { + "start": 19916.96, + "end": 19919.42, + "probability": 0.5326 + }, + { + "start": 19919.6, + "end": 19919.7, + "probability": 0.3825 + }, + { + "start": 19920.32, + "end": 19920.98, + "probability": 0.1358 + }, + { + "start": 19920.98, + "end": 19921.96, + "probability": 0.79 + }, + { + "start": 19922.04, + "end": 19922.28, + "probability": 0.3848 + }, + { + "start": 19922.8, + "end": 19924.36, + "probability": 0.9684 + }, + { + "start": 19924.72, + "end": 19926.4, + "probability": 0.6094 + }, + { + "start": 19926.48, + "end": 19928.48, + "probability": 0.7109 + }, + { + "start": 19929.22, + "end": 19930.28, + "probability": 0.8506 + }, + { + "start": 19931.62, + "end": 19934.76, + "probability": 0.8022 + }, + { + "start": 19937.22, + "end": 19942.84, + "probability": 0.0288 + }, + { + "start": 19943.04, + "end": 19944.04, + "probability": 0.5029 + }, + { + "start": 19944.56, + "end": 19944.82, + "probability": 0.0452 + }, + { + "start": 19946.84, + "end": 19947.42, + "probability": 0.0767 + }, + { + "start": 19947.48, + "end": 19947.48, + "probability": 0.0177 + }, + { + "start": 19948.62, + "end": 19952.04, + "probability": 0.0491 + }, + { + "start": 19957.76, + "end": 19959.4, + "probability": 0.3411 + }, + { + "start": 19959.62, + "end": 19960.88, + "probability": 0.776 + }, + { + "start": 19961.36, + "end": 19966.92, + "probability": 0.95 + }, + { + "start": 19967.14, + "end": 19968.82, + "probability": 0.3708 + }, + { + "start": 19968.96, + "end": 19970.42, + "probability": 0.8401 + }, + { + "start": 19970.76, + "end": 19972.7, + "probability": 0.8882 + }, + { + "start": 19973.34, + "end": 19974.92, + "probability": 0.7497 + }, + { + "start": 19975.66, + "end": 19979.84, + "probability": 0.624 + }, + { + "start": 19980.22, + "end": 19983.24, + "probability": 0.9369 + }, + { + "start": 19983.86, + "end": 19987.0, + "probability": 0.9268 + }, + { + "start": 19987.36, + "end": 19994.04, + "probability": 0.9872 + }, + { + "start": 19994.16, + "end": 19995.18, + "probability": 0.9883 + }, + { + "start": 19995.48, + "end": 19997.36, + "probability": 0.2747 + }, + { + "start": 19997.5, + "end": 19997.82, + "probability": 0.3106 + }, + { + "start": 19997.82, + "end": 19997.94, + "probability": 0.3739 + }, + { + "start": 19997.98, + "end": 19998.9, + "probability": 0.2314 + }, + { + "start": 19999.64, + "end": 20003.4, + "probability": 0.8387 + }, + { + "start": 20003.6, + "end": 20008.56, + "probability": 0.8162 + }, + { + "start": 20009.12, + "end": 20011.0, + "probability": 0.5299 + }, + { + "start": 20011.64, + "end": 20013.04, + "probability": 0.8095 + }, + { + "start": 20013.34, + "end": 20014.92, + "probability": 0.5762 + }, + { + "start": 20016.15, + "end": 20022.64, + "probability": 0.7993 + }, + { + "start": 20022.78, + "end": 20024.46, + "probability": 0.2989 + }, + { + "start": 20024.58, + "end": 20025.04, + "probability": 0.6595 + }, + { + "start": 20025.58, + "end": 20027.4, + "probability": 0.9595 + }, + { + "start": 20027.74, + "end": 20030.22, + "probability": 0.9545 + }, + { + "start": 20030.8, + "end": 20038.88, + "probability": 0.6398 + }, + { + "start": 20040.06, + "end": 20042.2, + "probability": 0.9718 + }, + { + "start": 20042.72, + "end": 20045.32, + "probability": 0.9613 + }, + { + "start": 20045.76, + "end": 20047.76, + "probability": 0.9005 + }, + { + "start": 20050.22, + "end": 20052.6, + "probability": 0.6205 + }, + { + "start": 20059.54, + "end": 20060.58, + "probability": 0.2239 + }, + { + "start": 20060.78, + "end": 20062.62, + "probability": 0.6529 + }, + { + "start": 20064.26, + "end": 20067.72, + "probability": 0.7174 + }, + { + "start": 20068.7, + "end": 20069.06, + "probability": 0.8291 + }, + { + "start": 20074.78, + "end": 20075.82, + "probability": 0.1706 + }, + { + "start": 20075.82, + "end": 20081.6, + "probability": 0.3509 + }, + { + "start": 20081.6, + "end": 20086.66, + "probability": 0.5745 + }, + { + "start": 20087.42, + "end": 20089.58, + "probability": 0.9118 + }, + { + "start": 20090.22, + "end": 20091.2, + "probability": 0.6935 + }, + { + "start": 20091.86, + "end": 20093.2, + "probability": 0.9362 + }, + { + "start": 20105.54, + "end": 20108.96, + "probability": 0.9937 + }, + { + "start": 20109.56, + "end": 20111.85, + "probability": 0.9978 + }, + { + "start": 20116.98, + "end": 20118.52, + "probability": 0.777 + }, + { + "start": 20118.84, + "end": 20119.78, + "probability": 0.7454 + }, + { + "start": 20120.5, + "end": 20122.76, + "probability": 0.8344 + }, + { + "start": 20127.81, + "end": 20130.4, + "probability": 0.8113 + }, + { + "start": 20130.52, + "end": 20130.6, + "probability": 0.0972 + }, + { + "start": 20130.66, + "end": 20131.14, + "probability": 0.7831 + }, + { + "start": 20131.28, + "end": 20133.02, + "probability": 0.9801 + }, + { + "start": 20133.24, + "end": 20133.44, + "probability": 0.0799 + }, + { + "start": 20133.94, + "end": 20137.3, + "probability": 0.1518 + }, + { + "start": 20137.6, + "end": 20137.76, + "probability": 0.5103 + }, + { + "start": 20137.76, + "end": 20137.76, + "probability": 0.0364 + }, + { + "start": 20137.76, + "end": 20138.38, + "probability": 0.419 + }, + { + "start": 20138.58, + "end": 20139.72, + "probability": 0.5482 + }, + { + "start": 20146.38, + "end": 20149.54, + "probability": 0.3851 + }, + { + "start": 20151.2, + "end": 20152.84, + "probability": 0.1665 + }, + { + "start": 20153.42, + "end": 20156.74, + "probability": 0.7237 + }, + { + "start": 20157.96, + "end": 20161.34, + "probability": 0.9177 + }, + { + "start": 20161.68, + "end": 20166.54, + "probability": 0.9297 + }, + { + "start": 20169.16, + "end": 20171.28, + "probability": 0.3713 + }, + { + "start": 20175.2, + "end": 20176.36, + "probability": 0.0328 + }, + { + "start": 20176.36, + "end": 20178.08, + "probability": 0.6007 + }, + { + "start": 20178.4, + "end": 20180.46, + "probability": 0.5432 + }, + { + "start": 20181.06, + "end": 20183.3, + "probability": 0.9156 + }, + { + "start": 20183.58, + "end": 20188.78, + "probability": 0.9021 + }, + { + "start": 20188.9, + "end": 20192.34, + "probability": 0.894 + }, + { + "start": 20193.0, + "end": 20195.96, + "probability": 0.8005 + }, + { + "start": 20199.44, + "end": 20202.8, + "probability": 0.8657 + }, + { + "start": 20203.38, + "end": 20206.11, + "probability": 0.8979 + }, + { + "start": 20208.04, + "end": 20210.76, + "probability": 0.9409 + }, + { + "start": 20216.42, + "end": 20216.42, + "probability": 0.4903 + }, + { + "start": 20216.7, + "end": 20217.74, + "probability": 0.4772 + }, + { + "start": 20217.86, + "end": 20220.14, + "probability": 0.8602 + }, + { + "start": 20220.4, + "end": 20222.16, + "probability": 0.9226 + }, + { + "start": 20222.74, + "end": 20224.28, + "probability": 0.9291 + }, + { + "start": 20224.92, + "end": 20226.52, + "probability": 0.9564 + }, + { + "start": 20227.36, + "end": 20229.34, + "probability": 0.8975 + }, + { + "start": 20229.38, + "end": 20230.84, + "probability": 0.9937 + }, + { + "start": 20231.24, + "end": 20232.74, + "probability": 0.8726 + }, + { + "start": 20232.74, + "end": 20233.74, + "probability": 0.9654 + }, + { + "start": 20234.12, + "end": 20234.5, + "probability": 0.3163 + }, + { + "start": 20235.9, + "end": 20236.86, + "probability": 0.1771 + }, + { + "start": 20239.04, + "end": 20244.4, + "probability": 0.0191 + }, + { + "start": 20245.44, + "end": 20249.12, + "probability": 0.1221 + }, + { + "start": 20250.24, + "end": 20251.78, + "probability": 0.0818 + }, + { + "start": 20251.78, + "end": 20251.8, + "probability": 0.0405 + }, + { + "start": 20251.8, + "end": 20251.8, + "probability": 0.038 + }, + { + "start": 20251.8, + "end": 20252.2, + "probability": 0.2766 + }, + { + "start": 20252.92, + "end": 20257.94, + "probability": 0.1763 + }, + { + "start": 20288.98, + "end": 20292.34, + "probability": 0.5125 + }, + { + "start": 20292.62, + "end": 20294.1, + "probability": 0.7558 + }, + { + "start": 20294.16, + "end": 20295.42, + "probability": 0.648 + }, + { + "start": 20295.62, + "end": 20297.2, + "probability": 0.5221 + }, + { + "start": 20297.2, + "end": 20300.04, + "probability": 0.9925 + }, + { + "start": 20300.72, + "end": 20305.72, + "probability": 0.0997 + }, + { + "start": 20306.24, + "end": 20306.94, + "probability": 0.3633 + }, + { + "start": 20306.94, + "end": 20307.74, + "probability": 0.5047 + }, + { + "start": 20307.74, + "end": 20310.52, + "probability": 0.8715 + }, + { + "start": 20310.54, + "end": 20311.66, + "probability": 0.587 + }, + { + "start": 20311.74, + "end": 20314.98, + "probability": 0.1487 + }, + { + "start": 20315.12, + "end": 20316.74, + "probability": 0.5517 + }, + { + "start": 20321.28, + "end": 20324.02, + "probability": 0.6896 + }, + { + "start": 20324.04, + "end": 20325.12, + "probability": 0.4513 + }, + { + "start": 20325.66, + "end": 20326.2, + "probability": 0.552 + }, + { + "start": 20326.34, + "end": 20327.58, + "probability": 0.7457 + }, + { + "start": 20327.58, + "end": 20328.02, + "probability": 0.5778 + }, + { + "start": 20328.1, + "end": 20328.46, + "probability": 0.1622 + }, + { + "start": 20328.78, + "end": 20329.74, + "probability": 0.65 + }, + { + "start": 20330.8, + "end": 20331.88, + "probability": 0.9852 + }, + { + "start": 20332.0, + "end": 20333.7, + "probability": 0.668 + }, + { + "start": 20334.04, + "end": 20335.36, + "probability": 0.4706 + }, + { + "start": 20335.36, + "end": 20337.1, + "probability": 0.7186 + }, + { + "start": 20337.81, + "end": 20341.6, + "probability": 0.6416 + }, + { + "start": 20341.86, + "end": 20344.72, + "probability": 0.8702 + }, + { + "start": 20345.04, + "end": 20346.8, + "probability": 0.0357 + }, + { + "start": 20347.62, + "end": 20350.44, + "probability": 0.1193 + }, + { + "start": 20351.34, + "end": 20352.52, + "probability": 0.2325 + }, + { + "start": 20353.7, + "end": 20358.54, + "probability": 0.0867 + }, + { + "start": 20359.08, + "end": 20361.08, + "probability": 0.2468 + }, + { + "start": 20361.08, + "end": 20362.18, + "probability": 0.8903 + }, + { + "start": 20362.78, + "end": 20363.52, + "probability": 0.8199 + }, + { + "start": 20363.52, + "end": 20363.94, + "probability": 0.3457 + }, + { + "start": 20365.02, + "end": 20367.52, + "probability": 0.8818 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.0, + "end": 20469.0, + "probability": 0.0 + }, + { + "start": 20469.2, + "end": 20471.23, + "probability": 0.6177 + }, + { + "start": 20471.82, + "end": 20474.08, + "probability": 0.8478 + }, + { + "start": 20474.1, + "end": 20475.92, + "probability": 0.7587 + }, + { + "start": 20476.32, + "end": 20477.04, + "probability": 0.6654 + }, + { + "start": 20477.08, + "end": 20480.14, + "probability": 0.9681 + }, + { + "start": 20480.54, + "end": 20482.7, + "probability": 0.994 + }, + { + "start": 20483.14, + "end": 20486.84, + "probability": 0.9893 + }, + { + "start": 20487.28, + "end": 20488.76, + "probability": 0.8094 + }, + { + "start": 20489.08, + "end": 20491.08, + "probability": 0.5308 + }, + { + "start": 20491.5, + "end": 20494.02, + "probability": 0.7472 + }, + { + "start": 20494.08, + "end": 20495.22, + "probability": 0.8862 + }, + { + "start": 20495.54, + "end": 20499.92, + "probability": 0.9768 + }, + { + "start": 20500.34, + "end": 20503.32, + "probability": 0.9824 + }, + { + "start": 20503.6, + "end": 20505.44, + "probability": 0.999 + }, + { + "start": 20506.02, + "end": 20507.16, + "probability": 0.697 + }, + { + "start": 20507.34, + "end": 20509.82, + "probability": 0.937 + }, + { + "start": 20510.64, + "end": 20511.98, + "probability": 0.991 + }, + { + "start": 20512.82, + "end": 20515.38, + "probability": 0.7309 + }, + { + "start": 20515.5, + "end": 20517.7, + "probability": 0.9118 + }, + { + "start": 20517.94, + "end": 20517.96, + "probability": 0.7184 + }, + { + "start": 20518.04, + "end": 20520.14, + "probability": 0.9941 + }, + { + "start": 20520.3, + "end": 20520.74, + "probability": 0.8818 + }, + { + "start": 20521.24, + "end": 20522.52, + "probability": 0.8406 + }, + { + "start": 20522.54, + "end": 20524.56, + "probability": 0.8823 + }, + { + "start": 20524.56, + "end": 20525.8, + "probability": 0.8629 + }, + { + "start": 20526.74, + "end": 20530.48, + "probability": 0.5321 + }, + { + "start": 20530.48, + "end": 20531.54, + "probability": 0.6576 + }, + { + "start": 20532.2, + "end": 20533.36, + "probability": 0.9471 + }, + { + "start": 20534.0, + "end": 20535.62, + "probability": 0.8623 + }, + { + "start": 20536.24, + "end": 20536.78, + "probability": 0.9267 + }, + { + "start": 20537.56, + "end": 20538.0, + "probability": 0.912 + }, + { + "start": 20538.9, + "end": 20540.18, + "probability": 0.976 + }, + { + "start": 20540.64, + "end": 20541.76, + "probability": 0.9746 + }, + { + "start": 20542.26, + "end": 20542.9, + "probability": 0.5278 + }, + { + "start": 20543.3, + "end": 20545.0, + "probability": 0.8726 + }, + { + "start": 20545.42, + "end": 20549.04, + "probability": 0.9103 + }, + { + "start": 20549.1, + "end": 20550.76, + "probability": 0.998 + }, + { + "start": 20551.5, + "end": 20555.58, + "probability": 0.9967 + }, + { + "start": 20556.2, + "end": 20558.76, + "probability": 0.9562 + }, + { + "start": 20559.26, + "end": 20561.16, + "probability": 0.9919 + }, + { + "start": 20561.22, + "end": 20563.4, + "probability": 0.948 + }, + { + "start": 20563.92, + "end": 20566.28, + "probability": 0.9801 + }, + { + "start": 20566.88, + "end": 20571.5, + "probability": 0.996 + }, + { + "start": 20572.0, + "end": 20574.43, + "probability": 0.9976 + }, + { + "start": 20575.16, + "end": 20577.92, + "probability": 0.9805 + }, + { + "start": 20578.08, + "end": 20581.1, + "probability": 0.7893 + }, + { + "start": 20581.44, + "end": 20582.8, + "probability": 0.9513 + }, + { + "start": 20582.9, + "end": 20585.07, + "probability": 0.9951 + }, + { + "start": 20585.34, + "end": 20586.3, + "probability": 0.9663 + }, + { + "start": 20587.22, + "end": 20592.76, + "probability": 0.8039 + }, + { + "start": 20593.24, + "end": 20593.24, + "probability": 0.0262 + }, + { + "start": 20593.24, + "end": 20593.72, + "probability": 0.258 + }, + { + "start": 20594.24, + "end": 20598.22, + "probability": 0.8256 + }, + { + "start": 20598.9, + "end": 20602.56, + "probability": 0.9365 + }, + { + "start": 20603.22, + "end": 20606.7, + "probability": 0.9264 + }, + { + "start": 20606.84, + "end": 20608.29, + "probability": 0.498 + }, + { + "start": 20609.04, + "end": 20611.86, + "probability": 0.95 + }, + { + "start": 20613.1, + "end": 20616.91, + "probability": 0.9758 + }, + { + "start": 20617.5, + "end": 20619.48, + "probability": 0.9829 + }, + { + "start": 20619.6, + "end": 20620.86, + "probability": 0.8792 + }, + { + "start": 20621.22, + "end": 20623.24, + "probability": 0.9617 + }, + { + "start": 20623.28, + "end": 20626.94, + "probability": 0.8717 + }, + { + "start": 20627.4, + "end": 20628.7, + "probability": 0.9539 + }, + { + "start": 20629.14, + "end": 20630.26, + "probability": 0.6204 + }, + { + "start": 20630.26, + "end": 20632.14, + "probability": 0.8691 + }, + { + "start": 20632.42, + "end": 20633.34, + "probability": 0.603 + }, + { + "start": 20633.6, + "end": 20635.86, + "probability": 0.8854 + }, + { + "start": 20635.94, + "end": 20639.02, + "probability": 0.7545 + }, + { + "start": 20639.64, + "end": 20641.7, + "probability": 0.6864 + }, + { + "start": 20641.7, + "end": 20645.34, + "probability": 0.9808 + }, + { + "start": 20645.86, + "end": 20648.9, + "probability": 0.9768 + }, + { + "start": 20649.06, + "end": 20650.26, + "probability": 0.6705 + }, + { + "start": 20650.78, + "end": 20652.26, + "probability": 0.7157 + }, + { + "start": 20652.32, + "end": 20652.62, + "probability": 0.8628 + }, + { + "start": 20652.72, + "end": 20653.89, + "probability": 0.6647 + }, + { + "start": 20655.43, + "end": 20659.74, + "probability": 0.8245 + }, + { + "start": 20659.78, + "end": 20662.08, + "probability": 0.9629 + }, + { + "start": 20662.8, + "end": 20662.82, + "probability": 0.1642 + }, + { + "start": 20662.94, + "end": 20663.24, + "probability": 0.8189 + }, + { + "start": 20663.3, + "end": 20665.38, + "probability": 0.8358 + }, + { + "start": 20666.02, + "end": 20666.16, + "probability": 0.4653 + }, + { + "start": 20666.16, + "end": 20667.99, + "probability": 0.3902 + }, + { + "start": 20668.1, + "end": 20671.46, + "probability": 0.8789 + }, + { + "start": 20671.84, + "end": 20676.7, + "probability": 0.9635 + }, + { + "start": 20676.7, + "end": 20677.48, + "probability": 0.6955 + }, + { + "start": 20677.92, + "end": 20679.64, + "probability": 0.9272 + }, + { + "start": 20679.78, + "end": 20682.2, + "probability": 0.8717 + }, + { + "start": 20682.28, + "end": 20685.3, + "probability": 0.2046 + }, + { + "start": 20685.76, + "end": 20686.94, + "probability": 0.0345 + }, + { + "start": 20687.54, + "end": 20692.84, + "probability": 0.9014 + }, + { + "start": 20694.25, + "end": 20697.48, + "probability": 0.8568 + }, + { + "start": 20697.58, + "end": 20698.88, + "probability": 0.506 + }, + { + "start": 20699.08, + "end": 20699.5, + "probability": 0.9229 + }, + { + "start": 20699.96, + "end": 20700.24, + "probability": 0.068 + }, + { + "start": 20700.24, + "end": 20700.24, + "probability": 0.3565 + }, + { + "start": 20700.24, + "end": 20702.26, + "probability": 0.6497 + }, + { + "start": 20703.62, + "end": 20705.14, + "probability": 0.6895 + }, + { + "start": 20706.06, + "end": 20706.72, + "probability": 0.5616 + }, + { + "start": 20707.86, + "end": 20709.36, + "probability": 0.929 + }, + { + "start": 20709.36, + "end": 20710.15, + "probability": 0.161 + }, + { + "start": 20710.94, + "end": 20711.84, + "probability": 0.3101 + }, + { + "start": 20712.54, + "end": 20712.84, + "probability": 0.009 + }, + { + "start": 20712.88, + "end": 20713.88, + "probability": 0.3039 + }, + { + "start": 20714.0, + "end": 20714.98, + "probability": 0.6461 + }, + { + "start": 20715.16, + "end": 20716.28, + "probability": 0.3088 + }, + { + "start": 20716.42, + "end": 20717.4, + "probability": 0.3836 + }, + { + "start": 20717.54, + "end": 20719.74, + "probability": 0.5511 + }, + { + "start": 20719.8, + "end": 20720.74, + "probability": 0.6158 + }, + { + "start": 20720.96, + "end": 20723.58, + "probability": 0.1256 + }, + { + "start": 20723.58, + "end": 20724.14, + "probability": 0.5051 + }, + { + "start": 20724.14, + "end": 20727.95, + "probability": 0.0308 + }, + { + "start": 20728.32, + "end": 20731.4, + "probability": 0.2485 + }, + { + "start": 20731.96, + "end": 20731.96, + "probability": 0.7271 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.0, + "end": 20829.0, + "probability": 0.0 + }, + { + "start": 20829.72, + "end": 20834.78, + "probability": 0.4979 + }, + { + "start": 20835.08, + "end": 20836.0, + "probability": 0.6537 + }, + { + "start": 20836.0, + "end": 20836.1, + "probability": 0.0545 + }, + { + "start": 20836.14, + "end": 20836.26, + "probability": 0.2193 + }, + { + "start": 20839.26, + "end": 20840.06, + "probability": 0.2585 + }, + { + "start": 20840.06, + "end": 20841.52, + "probability": 0.479 + }, + { + "start": 20841.66, + "end": 20844.68, + "probability": 0.7811 + }, + { + "start": 20844.68, + "end": 20846.48, + "probability": 0.6281 + }, + { + "start": 20851.79, + "end": 20855.02, + "probability": 0.6498 + }, + { + "start": 20856.66, + "end": 20858.12, + "probability": 0.4569 + }, + { + "start": 20858.3, + "end": 20859.16, + "probability": 0.4148 + }, + { + "start": 20859.64, + "end": 20861.38, + "probability": 0.8621 + }, + { + "start": 20861.8, + "end": 20862.98, + "probability": 0.8389 + }, + { + "start": 20866.62, + "end": 20867.3, + "probability": 0.3554 + }, + { + "start": 20867.98, + "end": 20870.74, + "probability": 0.0361 + }, + { + "start": 20870.86, + "end": 20871.6, + "probability": 0.0185 + }, + { + "start": 20887.04, + "end": 20890.0, + "probability": 0.2182 + }, + { + "start": 20890.66, + "end": 20890.94, + "probability": 0.04 + }, + { + "start": 20891.14, + "end": 20892.13, + "probability": 0.2745 + }, + { + "start": 20913.24, + "end": 20915.98, + "probability": 0.6542 + }, + { + "start": 20918.42, + "end": 20921.52, + "probability": 0.8993 + }, + { + "start": 20922.1, + "end": 20924.24, + "probability": 0.4643 + }, + { + "start": 20926.52, + "end": 20928.21, + "probability": 0.6584 + }, + { + "start": 20932.28, + "end": 20933.26, + "probability": 0.6951 + }, + { + "start": 20933.4, + "end": 20933.98, + "probability": 0.5631 + }, + { + "start": 20934.12, + "end": 20936.98, + "probability": 0.9779 + }, + { + "start": 20937.2, + "end": 20939.26, + "probability": 0.9471 + }, + { + "start": 20939.98, + "end": 20943.44, + "probability": 0.9949 + }, + { + "start": 20945.06, + "end": 20947.96, + "probability": 0.723 + }, + { + "start": 20948.22, + "end": 20949.42, + "probability": 0.9808 + }, + { + "start": 20950.08, + "end": 20953.56, + "probability": 0.6069 + }, + { + "start": 20953.7, + "end": 20954.46, + "probability": 0.8568 + }, + { + "start": 20954.54, + "end": 20956.04, + "probability": 0.9548 + }, + { + "start": 20956.04, + "end": 20957.18, + "probability": 0.3019 + }, + { + "start": 20957.2, + "end": 20957.76, + "probability": 0.6605 + }, + { + "start": 20958.02, + "end": 20959.7, + "probability": 0.9727 + }, + { + "start": 20959.9, + "end": 20960.28, + "probability": 0.3646 + }, + { + "start": 20960.28, + "end": 20962.68, + "probability": 0.7664 + }, + { + "start": 20962.74, + "end": 20964.5, + "probability": 0.7056 + }, + { + "start": 20965.5, + "end": 20966.16, + "probability": 0.8073 + }, + { + "start": 20967.48, + "end": 20970.38, + "probability": 0.6087 + }, + { + "start": 20970.52, + "end": 20972.39, + "probability": 0.5682 + }, + { + "start": 20972.6, + "end": 20972.8, + "probability": 0.4688 + }, + { + "start": 20972.8, + "end": 20973.43, + "probability": 0.6417 + }, + { + "start": 20974.28, + "end": 20977.2, + "probability": 0.8711 + }, + { + "start": 20977.68, + "end": 20979.11, + "probability": 0.5312 + }, + { + "start": 20980.44, + "end": 20981.38, + "probability": 0.7268 + }, + { + "start": 20981.42, + "end": 20982.1, + "probability": 0.4814 + }, + { + "start": 20982.22, + "end": 20983.34, + "probability": 0.7042 + }, + { + "start": 20983.66, + "end": 20985.16, + "probability": 0.6501 + }, + { + "start": 20985.6, + "end": 20987.26, + "probability": 0.9888 + }, + { + "start": 20987.26, + "end": 20990.36, + "probability": 0.4715 + }, + { + "start": 20990.92, + "end": 20994.32, + "probability": 0.9753 + }, + { + "start": 20994.92, + "end": 20998.16, + "probability": 0.6348 + }, + { + "start": 20998.36, + "end": 20998.4, + "probability": 0.0087 + }, + { + "start": 20998.4, + "end": 21002.22, + "probability": 0.916 + }, + { + "start": 21002.24, + "end": 21006.08, + "probability": 0.9985 + }, + { + "start": 21006.74, + "end": 21011.02, + "probability": 0.9973 + }, + { + "start": 21011.56, + "end": 21013.64, + "probability": 0.2838 + }, + { + "start": 21013.84, + "end": 21016.68, + "probability": 0.9922 + }, + { + "start": 21016.84, + "end": 21017.52, + "probability": 0.6652 + }, + { + "start": 21017.88, + "end": 21021.08, + "probability": 0.9188 + }, + { + "start": 21021.86, + "end": 21022.26, + "probability": 0.7259 + }, + { + "start": 21022.32, + "end": 21023.0, + "probability": 0.7894 + }, + { + "start": 21023.18, + "end": 21023.82, + "probability": 0.4859 + }, + { + "start": 21023.92, + "end": 21026.79, + "probability": 0.783 + }, + { + "start": 21027.0, + "end": 21027.02, + "probability": 0.5185 + }, + { + "start": 21027.38, + "end": 21030.28, + "probability": 0.9196 + }, + { + "start": 21030.54, + "end": 21032.38, + "probability": 0.9705 + }, + { + "start": 21032.58, + "end": 21033.66, + "probability": 0.8965 + }, + { + "start": 21033.74, + "end": 21036.6, + "probability": 0.9838 + }, + { + "start": 21036.74, + "end": 21038.0, + "probability": 0.9885 + }, + { + "start": 21038.44, + "end": 21039.57, + "probability": 0.1144 + }, + { + "start": 21040.88, + "end": 21042.74, + "probability": 0.8665 + }, + { + "start": 21043.36, + "end": 21045.8, + "probability": 0.9959 + }, + { + "start": 21045.94, + "end": 21047.7, + "probability": 0.9968 + }, + { + "start": 21048.22, + "end": 21050.02, + "probability": 0.8284 + }, + { + "start": 21052.4, + "end": 21053.32, + "probability": 0.5762 + }, + { + "start": 21054.07, + "end": 21055.94, + "probability": 0.6819 + }, + { + "start": 21056.16, + "end": 21057.52, + "probability": 0.9797 + }, + { + "start": 21057.96, + "end": 21058.92, + "probability": 0.9885 + }, + { + "start": 21059.86, + "end": 21061.9, + "probability": 0.9645 + }, + { + "start": 21066.22, + "end": 21069.5, + "probability": 0.9473 + }, + { + "start": 21069.7, + "end": 21072.48, + "probability": 0.9415 + }, + { + "start": 21073.76, + "end": 21075.88, + "probability": 0.4226 + }, + { + "start": 21076.84, + "end": 21079.46, + "probability": 0.9746 + }, + { + "start": 21081.1, + "end": 21085.24, + "probability": 0.9976 + }, + { + "start": 21085.86, + "end": 21090.7, + "probability": 0.9502 + }, + { + "start": 21090.7, + "end": 21094.66, + "probability": 0.981 + }, + { + "start": 21095.18, + "end": 21099.08, + "probability": 0.4581 + }, + { + "start": 21100.18, + "end": 21103.48, + "probability": 0.8664 + }, + { + "start": 21103.54, + "end": 21105.44, + "probability": 0.8469 + }, + { + "start": 21107.32, + "end": 21108.66, + "probability": 0.9788 + }, + { + "start": 21110.1, + "end": 21114.26, + "probability": 0.0798 + }, + { + "start": 21117.22, + "end": 21119.34, + "probability": 0.5056 + }, + { + "start": 21119.48, + "end": 21121.58, + "probability": 0.9355 + }, + { + "start": 21122.52, + "end": 21129.22, + "probability": 0.9875 + }, + { + "start": 21129.22, + "end": 21129.78, + "probability": 0.4688 + }, + { + "start": 21136.88, + "end": 21139.16, + "probability": 0.8453 + }, + { + "start": 21139.68, + "end": 21141.84, + "probability": 0.9224 + }, + { + "start": 21151.98, + "end": 21153.48, + "probability": 0.7113 + }, + { + "start": 21159.16, + "end": 21160.86, + "probability": 0.7675 + }, + { + "start": 21160.96, + "end": 21164.99, + "probability": 0.9246 + }, + { + "start": 21166.72, + "end": 21168.52, + "probability": 0.9741 + }, + { + "start": 21168.6, + "end": 21169.16, + "probability": 0.9093 + }, + { + "start": 21169.34, + "end": 21171.42, + "probability": 0.9824 + }, + { + "start": 21171.46, + "end": 21172.94, + "probability": 0.9968 + }, + { + "start": 21174.42, + "end": 21175.9, + "probability": 0.9137 + }, + { + "start": 21175.96, + "end": 21177.04, + "probability": 0.7531 + }, + { + "start": 21177.22, + "end": 21179.14, + "probability": 0.9958 + }, + { + "start": 21179.82, + "end": 21180.52, + "probability": 0.8695 + }, + { + "start": 21183.82, + "end": 21185.02, + "probability": 0.9577 + }, + { + "start": 21185.08, + "end": 21186.56, + "probability": 0.9987 + }, + { + "start": 21186.7, + "end": 21186.84, + "probability": 0.3709 + }, + { + "start": 21186.98, + "end": 21187.16, + "probability": 0.8168 + }, + { + "start": 21188.5, + "end": 21188.5, + "probability": 0.0459 + }, + { + "start": 21188.5, + "end": 21190.58, + "probability": 0.8828 + }, + { + "start": 21193.26, + "end": 21198.12, + "probability": 0.0404 + }, + { + "start": 21198.12, + "end": 21199.34, + "probability": 0.2999 + }, + { + "start": 21223.56, + "end": 21224.84, + "probability": 0.1885 + }, + { + "start": 21224.96, + "end": 21225.64, + "probability": 0.6505 + }, + { + "start": 21225.74, + "end": 21226.5, + "probability": 0.7586 + }, + { + "start": 21226.72, + "end": 21232.48, + "probability": 0.9861 + }, + { + "start": 21232.64, + "end": 21237.62, + "probability": 0.9834 + }, + { + "start": 21238.22, + "end": 21240.2, + "probability": 0.8938 + }, + { + "start": 21240.36, + "end": 21244.46, + "probability": 0.9873 + }, + { + "start": 21245.02, + "end": 21251.62, + "probability": 0.896 + }, + { + "start": 21251.82, + "end": 21252.76, + "probability": 0.7754 + }, + { + "start": 21253.24, + "end": 21254.23, + "probability": 0.9486 + }, + { + "start": 21254.54, + "end": 21256.08, + "probability": 0.545 + }, + { + "start": 21256.14, + "end": 21257.3, + "probability": 0.6786 + }, + { + "start": 21258.08, + "end": 21259.72, + "probability": 0.9976 + }, + { + "start": 21261.32, + "end": 21263.94, + "probability": 0.9846 + }, + { + "start": 21264.66, + "end": 21267.3, + "probability": 0.8499 + }, + { + "start": 21268.24, + "end": 21269.84, + "probability": 0.9979 + }, + { + "start": 21271.24, + "end": 21271.74, + "probability": 0.8007 + }, + { + "start": 21272.38, + "end": 21277.24, + "probability": 0.6122 + }, + { + "start": 21277.48, + "end": 21278.49, + "probability": 0.6987 + }, + { + "start": 21280.44, + "end": 21281.42, + "probability": 0.9052 + }, + { + "start": 21281.64, + "end": 21286.52, + "probability": 0.8703 + }, + { + "start": 21286.76, + "end": 21287.62, + "probability": 0.8713 + }, + { + "start": 21288.22, + "end": 21290.53, + "probability": 0.7744 + }, + { + "start": 21291.3, + "end": 21295.22, + "probability": 0.6369 + }, + { + "start": 21295.56, + "end": 21299.08, + "probability": 0.9507 + }, + { + "start": 21299.5, + "end": 21301.54, + "probability": 0.9819 + }, + { + "start": 21301.64, + "end": 21303.28, + "probability": 0.9887 + }, + { + "start": 21303.94, + "end": 21305.84, + "probability": 0.9841 + }, + { + "start": 21306.72, + "end": 21307.68, + "probability": 0.6665 + }, + { + "start": 21309.52, + "end": 21310.84, + "probability": 0.5859 + }, + { + "start": 21310.94, + "end": 21313.26, + "probability": 0.7076 + }, + { + "start": 21313.38, + "end": 21315.22, + "probability": 0.7744 + }, + { + "start": 21315.34, + "end": 21317.34, + "probability": 0.8057 + }, + { + "start": 21318.46, + "end": 21322.74, + "probability": 0.7063 + }, + { + "start": 21323.48, + "end": 21324.72, + "probability": 0.568 + }, + { + "start": 21325.8, + "end": 21327.22, + "probability": 0.9499 + }, + { + "start": 21328.28, + "end": 21329.2, + "probability": 0.8628 + }, + { + "start": 21330.12, + "end": 21331.0, + "probability": 0.806 + }, + { + "start": 21332.86, + "end": 21335.2, + "probability": 0.5658 + }, + { + "start": 21335.42, + "end": 21335.98, + "probability": 0.7104 + }, + { + "start": 21336.4, + "end": 21338.18, + "probability": 0.947 + }, + { + "start": 21338.22, + "end": 21338.78, + "probability": 0.8315 + }, + { + "start": 21339.31, + "end": 21345.38, + "probability": 0.6856 + }, + { + "start": 21345.48, + "end": 21346.06, + "probability": 0.5115 + }, + { + "start": 21346.24, + "end": 21346.94, + "probability": 0.5063 + }, + { + "start": 21347.18, + "end": 21348.8, + "probability": 0.9146 + }, + { + "start": 21349.92, + "end": 21353.23, + "probability": 0.9567 + }, + { + "start": 21353.94, + "end": 21357.08, + "probability": 0.9763 + }, + { + "start": 21358.44, + "end": 21360.64, + "probability": 0.9869 + }, + { + "start": 21361.36, + "end": 21365.44, + "probability": 0.9976 + }, + { + "start": 21365.44, + "end": 21368.64, + "probability": 0.9938 + }, + { + "start": 21370.18, + "end": 21371.68, + "probability": 0.9116 + }, + { + "start": 21372.08, + "end": 21373.3, + "probability": 0.5957 + }, + { + "start": 21375.33, + "end": 21379.34, + "probability": 0.9892 + }, + { + "start": 21379.4, + "end": 21380.77, + "probability": 0.9943 + }, + { + "start": 21380.98, + "end": 21381.78, + "probability": 0.9666 + }, + { + "start": 21382.44, + "end": 21383.22, + "probability": 0.8925 + }, + { + "start": 21384.32, + "end": 21386.26, + "probability": 0.7886 + }, + { + "start": 21388.86, + "end": 21391.88, + "probability": 0.8142 + }, + { + "start": 21393.3, + "end": 21395.4, + "probability": 0.9263 + }, + { + "start": 21396.14, + "end": 21398.92, + "probability": 0.8096 + }, + { + "start": 21400.46, + "end": 21405.94, + "probability": 0.7079 + }, + { + "start": 21406.54, + "end": 21408.8, + "probability": 0.9194 + }, + { + "start": 21408.8, + "end": 21411.9, + "probability": 0.8667 + }, + { + "start": 21411.94, + "end": 21412.92, + "probability": 0.5059 + }, + { + "start": 21413.62, + "end": 21414.37, + "probability": 0.9771 + }, + { + "start": 21414.7, + "end": 21417.78, + "probability": 0.9926 + }, + { + "start": 21417.82, + "end": 21418.82, + "probability": 0.7559 + }, + { + "start": 21419.4, + "end": 21420.4, + "probability": 0.7338 + }, + { + "start": 21421.38, + "end": 21423.7, + "probability": 0.829 + }, + { + "start": 21423.88, + "end": 21426.9, + "probability": 0.7602 + }, + { + "start": 21427.38, + "end": 21428.98, + "probability": 0.9471 + }, + { + "start": 21429.78, + "end": 21431.2, + "probability": 0.9319 + }, + { + "start": 21431.74, + "end": 21433.22, + "probability": 0.5004 + }, + { + "start": 21433.54, + "end": 21435.8, + "probability": 0.8359 + }, + { + "start": 21436.4, + "end": 21438.2, + "probability": 0.5615 + }, + { + "start": 21438.9, + "end": 21441.36, + "probability": 0.9312 + }, + { + "start": 21441.78, + "end": 21447.24, + "probability": 0.6658 + }, + { + "start": 21447.68, + "end": 21448.84, + "probability": 0.9531 + }, + { + "start": 21449.0, + "end": 21450.96, + "probability": 0.9888 + }, + { + "start": 21451.42, + "end": 21454.02, + "probability": 0.9895 + }, + { + "start": 21455.2, + "end": 21458.34, + "probability": 0.825 + }, + { + "start": 21459.12, + "end": 21460.24, + "probability": 0.8267 + }, + { + "start": 21462.38, + "end": 21467.34, + "probability": 0.9381 + }, + { + "start": 21467.46, + "end": 21471.0, + "probability": 0.948 + }, + { + "start": 21471.0, + "end": 21476.58, + "probability": 0.999 + }, + { + "start": 21477.64, + "end": 21479.34, + "probability": 0.5024 + }, + { + "start": 21479.52, + "end": 21482.15, + "probability": 0.9282 + }, + { + "start": 21482.72, + "end": 21483.56, + "probability": 0.8405 + }, + { + "start": 21484.31, + "end": 21489.2, + "probability": 0.5615 + }, + { + "start": 21490.18, + "end": 21490.84, + "probability": 0.7459 + }, + { + "start": 21491.68, + "end": 21497.16, + "probability": 0.9576 + }, + { + "start": 21497.84, + "end": 21501.1, + "probability": 0.999 + }, + { + "start": 21501.1, + "end": 21505.16, + "probability": 0.9988 + }, + { + "start": 21505.84, + "end": 21507.48, + "probability": 0.8379 + }, + { + "start": 21507.74, + "end": 21508.98, + "probability": 0.9995 + }, + { + "start": 21509.72, + "end": 21511.38, + "probability": 0.8882 + }, + { + "start": 21511.46, + "end": 21514.9, + "probability": 0.9471 + }, + { + "start": 21515.0, + "end": 21516.64, + "probability": 0.8919 + }, + { + "start": 21517.62, + "end": 21521.3, + "probability": 0.9607 + }, + { + "start": 21521.44, + "end": 21528.32, + "probability": 0.9497 + }, + { + "start": 21529.08, + "end": 21532.54, + "probability": 0.9922 + }, + { + "start": 21533.02, + "end": 21533.44, + "probability": 0.6432 + }, + { + "start": 21533.52, + "end": 21534.68, + "probability": 0.5165 + }, + { + "start": 21535.16, + "end": 21535.62, + "probability": 0.6024 + }, + { + "start": 21536.3, + "end": 21538.42, + "probability": 0.6812 + }, + { + "start": 21539.0, + "end": 21540.68, + "probability": 0.4719 + }, + { + "start": 21540.76, + "end": 21541.77, + "probability": 0.996 + }, + { + "start": 21542.22, + "end": 21542.82, + "probability": 0.9795 + }, + { + "start": 21542.92, + "end": 21543.36, + "probability": 0.665 + }, + { + "start": 21543.44, + "end": 21543.74, + "probability": 0.9216 + }, + { + "start": 21544.0, + "end": 21544.58, + "probability": 0.8765 + }, + { + "start": 21544.98, + "end": 21545.6, + "probability": 0.8525 + }, + { + "start": 21545.66, + "end": 21546.28, + "probability": 0.9925 + }, + { + "start": 21546.34, + "end": 21547.04, + "probability": 0.8873 + }, + { + "start": 21547.6, + "end": 21549.15, + "probability": 0.8203 + }, + { + "start": 21551.0, + "end": 21552.06, + "probability": 0.9893 + }, + { + "start": 21552.18, + "end": 21552.82, + "probability": 0.43 + }, + { + "start": 21552.82, + "end": 21559.24, + "probability": 0.9255 + }, + { + "start": 21559.84, + "end": 21560.59, + "probability": 0.9585 + }, + { + "start": 21560.88, + "end": 21562.72, + "probability": 0.9207 + }, + { + "start": 21562.86, + "end": 21563.28, + "probability": 0.8166 + }, + { + "start": 21563.94, + "end": 21566.36, + "probability": 0.991 + }, + { + "start": 21566.5, + "end": 21567.38, + "probability": 0.7012 + }, + { + "start": 21568.86, + "end": 21570.64, + "probability": 0.7501 + }, + { + "start": 21571.2, + "end": 21574.4, + "probability": 0.5258 + }, + { + "start": 21575.12, + "end": 21577.42, + "probability": 0.9479 + }, + { + "start": 21577.54, + "end": 21579.3, + "probability": 0.6812 + }, + { + "start": 21580.24, + "end": 21581.78, + "probability": 0.8622 + }, + { + "start": 21581.8, + "end": 21583.76, + "probability": 0.8083 + }, + { + "start": 21584.06, + "end": 21584.36, + "probability": 0.3836 + }, + { + "start": 21585.12, + "end": 21588.64, + "probability": 0.8013 + }, + { + "start": 21588.68, + "end": 21590.76, + "probability": 0.9078 + }, + { + "start": 21590.86, + "end": 21590.86, + "probability": 0.3401 + }, + { + "start": 21591.02, + "end": 21593.9, + "probability": 0.9501 + }, + { + "start": 21594.52, + "end": 21594.76, + "probability": 0.4584 + }, + { + "start": 21594.76, + "end": 21595.88, + "probability": 0.7375 + }, + { + "start": 21596.24, + "end": 21597.46, + "probability": 0.219 + }, + { + "start": 21597.54, + "end": 21598.04, + "probability": 0.503 + }, + { + "start": 21598.12, + "end": 21598.72, + "probability": 0.9029 + }, + { + "start": 21598.82, + "end": 21599.72, + "probability": 0.2832 + }, + { + "start": 21600.02, + "end": 21600.7, + "probability": 0.7493 + }, + { + "start": 21600.74, + "end": 21601.84, + "probability": 0.8249 + }, + { + "start": 21602.52, + "end": 21603.36, + "probability": 0.7425 + }, + { + "start": 21604.12, + "end": 21604.52, + "probability": 0.4592 + }, + { + "start": 21604.6, + "end": 21604.96, + "probability": 0.4536 + }, + { + "start": 21605.98, + "end": 21607.6, + "probability": 0.8951 + }, + { + "start": 21608.61, + "end": 21610.34, + "probability": 0.9204 + }, + { + "start": 21610.44, + "end": 21611.56, + "probability": 0.9692 + }, + { + "start": 21611.62, + "end": 21612.88, + "probability": 0.7248 + }, + { + "start": 21612.88, + "end": 21615.34, + "probability": 0.5045 + }, + { + "start": 21616.0, + "end": 21619.22, + "probability": 0.8626 + }, + { + "start": 21619.78, + "end": 21622.06, + "probability": 0.4977 + }, + { + "start": 21622.22, + "end": 21624.08, + "probability": 0.8792 + }, + { + "start": 21624.66, + "end": 21625.58, + "probability": 0.7869 + }, + { + "start": 21625.58, + "end": 21626.6, + "probability": 0.8948 + }, + { + "start": 21626.8, + "end": 21630.95, + "probability": 0.7455 + }, + { + "start": 21631.56, + "end": 21637.22, + "probability": 0.8743 + }, + { + "start": 21638.36, + "end": 21640.28, + "probability": 0.4007 + }, + { + "start": 21641.52, + "end": 21642.28, + "probability": 0.5416 + }, + { + "start": 21642.64, + "end": 21643.58, + "probability": 0.6542 + }, + { + "start": 21643.68, + "end": 21646.1, + "probability": 0.9583 + }, + { + "start": 21646.84, + "end": 21650.56, + "probability": 0.8818 + }, + { + "start": 21650.6, + "end": 21652.18, + "probability": 0.8913 + }, + { + "start": 21652.26, + "end": 21653.22, + "probability": 0.5428 + }, + { + "start": 21653.76, + "end": 21654.12, + "probability": 0.365 + }, + { + "start": 21654.82, + "end": 21657.66, + "probability": 0.9347 + }, + { + "start": 21658.73, + "end": 21661.82, + "probability": 0.7262 + }, + { + "start": 21662.96, + "end": 21666.03, + "probability": 0.6641 + }, + { + "start": 21666.66, + "end": 21668.28, + "probability": 0.8269 + }, + { + "start": 21668.52, + "end": 21669.74, + "probability": 0.9395 + }, + { + "start": 21670.02, + "end": 21671.46, + "probability": 0.8981 + }, + { + "start": 21672.52, + "end": 21674.52, + "probability": 0.9411 + }, + { + "start": 21674.64, + "end": 21675.16, + "probability": 0.8427 + }, + { + "start": 21675.48, + "end": 21678.78, + "probability": 0.7585 + }, + { + "start": 21678.9, + "end": 21680.17, + "probability": 0.8442 + }, + { + "start": 21680.7, + "end": 21684.42, + "probability": 0.9073 + }, + { + "start": 21685.48, + "end": 21687.2, + "probability": 0.7032 + }, + { + "start": 21688.02, + "end": 21690.96, + "probability": 0.9466 + }, + { + "start": 21690.96, + "end": 21694.38, + "probability": 0.9944 + }, + { + "start": 21694.74, + "end": 21696.6, + "probability": 0.6377 + }, + { + "start": 21697.2, + "end": 21698.2, + "probability": 0.4238 + }, + { + "start": 21698.24, + "end": 21698.54, + "probability": 0.6105 + }, + { + "start": 21698.86, + "end": 21701.74, + "probability": 0.9509 + }, + { + "start": 21701.74, + "end": 21704.96, + "probability": 0.9635 + }, + { + "start": 21705.88, + "end": 21708.74, + "probability": 0.8883 + }, + { + "start": 21710.66, + "end": 21711.52, + "probability": 0.7658 + }, + { + "start": 21712.16, + "end": 21712.86, + "probability": 0.7396 + }, + { + "start": 21712.94, + "end": 21717.98, + "probability": 0.929 + }, + { + "start": 21719.06, + "end": 21721.76, + "probability": 0.8759 + }, + { + "start": 21722.1, + "end": 21722.82, + "probability": 0.849 + }, + { + "start": 21723.14, + "end": 21725.8, + "probability": 0.9796 + }, + { + "start": 21725.96, + "end": 21726.86, + "probability": 0.6841 + }, + { + "start": 21728.42, + "end": 21731.04, + "probability": 0.8267 + }, + { + "start": 21731.04, + "end": 21731.72, + "probability": 0.8293 + }, + { + "start": 21731.78, + "end": 21732.6, + "probability": 0.9575 + }, + { + "start": 21733.02, + "end": 21735.44, + "probability": 0.9831 + }, + { + "start": 21735.5, + "end": 21737.64, + "probability": 0.9665 + }, + { + "start": 21739.14, + "end": 21739.96, + "probability": 0.6406 + }, + { + "start": 21741.58, + "end": 21742.58, + "probability": 0.9263 + }, + { + "start": 21743.62, + "end": 21746.86, + "probability": 0.9844 + }, + { + "start": 21747.78, + "end": 21749.91, + "probability": 0.9604 + }, + { + "start": 21750.6, + "end": 21751.98, + "probability": 0.9866 + }, + { + "start": 21751.98, + "end": 21752.95, + "probability": 0.9767 + }, + { + "start": 21753.3, + "end": 21754.32, + "probability": 0.6631 + }, + { + "start": 21754.72, + "end": 21759.16, + "probability": 0.8552 + }, + { + "start": 21760.1, + "end": 21764.04, + "probability": 0.957 + }, + { + "start": 21764.04, + "end": 21767.24, + "probability": 0.5394 + }, + { + "start": 21767.24, + "end": 21769.06, + "probability": 0.9443 + }, + { + "start": 21769.1, + "end": 21769.7, + "probability": 0.4903 + }, + { + "start": 21769.84, + "end": 21770.56, + "probability": 0.7933 + }, + { + "start": 21770.66, + "end": 21771.39, + "probability": 0.9299 + }, + { + "start": 21772.2, + "end": 21773.7, + "probability": 0.4837 + }, + { + "start": 21774.06, + "end": 21777.36, + "probability": 0.9932 + }, + { + "start": 21778.16, + "end": 21779.06, + "probability": 0.9565 + }, + { + "start": 21779.72, + "end": 21780.94, + "probability": 0.97 + }, + { + "start": 21781.74, + "end": 21782.54, + "probability": 0.6724 + }, + { + "start": 21783.44, + "end": 21784.16, + "probability": 0.9773 + }, + { + "start": 21784.48, + "end": 21786.65, + "probability": 0.9273 + }, + { + "start": 21786.84, + "end": 21787.82, + "probability": 0.9046 + }, + { + "start": 21788.0, + "end": 21788.84, + "probability": 0.7603 + }, + { + "start": 21789.32, + "end": 21790.56, + "probability": 0.7962 + }, + { + "start": 21790.68, + "end": 21791.22, + "probability": 0.815 + }, + { + "start": 21791.64, + "end": 21793.72, + "probability": 0.6043 + }, + { + "start": 21794.7, + "end": 21796.34, + "probability": 0.9189 + }, + { + "start": 21796.72, + "end": 21798.64, + "probability": 0.9774 + }, + { + "start": 21799.18, + "end": 21800.26, + "probability": 0.9488 + }, + { + "start": 21800.32, + "end": 21800.86, + "probability": 0.7048 + }, + { + "start": 21800.94, + "end": 21803.52, + "probability": 0.9288 + }, + { + "start": 21804.28, + "end": 21806.22, + "probability": 0.7576 + }, + { + "start": 21806.86, + "end": 21807.58, + "probability": 0.7046 + }, + { + "start": 21807.82, + "end": 21809.86, + "probability": 0.5947 + }, + { + "start": 21810.36, + "end": 21810.75, + "probability": 0.2864 + }, + { + "start": 21812.66, + "end": 21814.85, + "probability": 0.8115 + }, + { + "start": 21814.96, + "end": 21817.34, + "probability": 0.758 + }, + { + "start": 21818.14, + "end": 21820.2, + "probability": 0.7761 + }, + { + "start": 21820.5, + "end": 21823.28, + "probability": 0.9558 + }, + { + "start": 21823.46, + "end": 21824.48, + "probability": 0.3691 + }, + { + "start": 21824.9, + "end": 21828.22, + "probability": 0.6138 + }, + { + "start": 21828.74, + "end": 21830.38, + "probability": 0.8875 + }, + { + "start": 21830.82, + "end": 21832.34, + "probability": 0.9485 + }, + { + "start": 21832.44, + "end": 21832.66, + "probability": 0.8936 + }, + { + "start": 21833.12, + "end": 21836.26, + "probability": 0.9697 + }, + { + "start": 21836.82, + "end": 21840.98, + "probability": 0.7654 + }, + { + "start": 21842.16, + "end": 21844.74, + "probability": 0.6172 + }, + { + "start": 21844.74, + "end": 21847.06, + "probability": 0.8515 + }, + { + "start": 21847.72, + "end": 21850.96, + "probability": 0.971 + }, + { + "start": 21851.06, + "end": 21852.3, + "probability": 0.8944 + }, + { + "start": 21852.64, + "end": 21852.76, + "probability": 0.0516 + }, + { + "start": 21880.78, + "end": 21880.78, + "probability": 0.0403 + }, + { + "start": 21880.78, + "end": 21881.24, + "probability": 0.2931 + }, + { + "start": 21881.32, + "end": 21881.64, + "probability": 0.2397 + }, + { + "start": 21881.64, + "end": 21882.52, + "probability": 0.5915 + }, + { + "start": 21883.0, + "end": 21883.78, + "probability": 0.678 + }, + { + "start": 21885.04, + "end": 21885.96, + "probability": 0.719 + }, + { + "start": 21887.52, + "end": 21889.56, + "probability": 0.9912 + }, + { + "start": 21889.92, + "end": 21890.46, + "probability": 0.7682 + }, + { + "start": 21894.16, + "end": 21894.82, + "probability": 0.6364 + }, + { + "start": 21894.88, + "end": 21895.88, + "probability": 0.6753 + }, + { + "start": 21896.2, + "end": 21897.08, + "probability": 0.7823 + }, + { + "start": 21898.32, + "end": 21899.28, + "probability": 0.9197 + }, + { + "start": 21902.16, + "end": 21903.14, + "probability": 0.9194 + }, + { + "start": 21904.66, + "end": 21906.9, + "probability": 0.9482 + }, + { + "start": 21907.86, + "end": 21909.28, + "probability": 0.6828 + }, + { + "start": 21909.38, + "end": 21911.08, + "probability": 0.7623 + }, + { + "start": 21911.18, + "end": 21911.48, + "probability": 0.2398 + }, + { + "start": 21911.56, + "end": 21912.18, + "probability": 0.6375 + }, + { + "start": 21912.78, + "end": 21914.24, + "probability": 0.9297 + }, + { + "start": 21914.36, + "end": 21915.52, + "probability": 0.9072 + }, + { + "start": 21916.74, + "end": 21917.22, + "probability": 0.3499 + }, + { + "start": 21918.24, + "end": 21921.48, + "probability": 0.859 + }, + { + "start": 21922.23, + "end": 21926.54, + "probability": 0.9581 + }, + { + "start": 21927.7, + "end": 21931.12, + "probability": 0.9896 + }, + { + "start": 21932.38, + "end": 21939.84, + "probability": 0.9705 + }, + { + "start": 21944.14, + "end": 21944.64, + "probability": 0.698 + }, + { + "start": 21945.76, + "end": 21946.3, + "probability": 0.3567 + }, + { + "start": 21946.5, + "end": 21949.54, + "probability": 0.8015 + }, + { + "start": 21950.12, + "end": 21951.32, + "probability": 0.9019 + }, + { + "start": 21951.36, + "end": 21951.6, + "probability": 0.8746 + }, + { + "start": 21951.68, + "end": 21953.68, + "probability": 0.9472 + }, + { + "start": 21954.18, + "end": 21955.02, + "probability": 0.8786 + }, + { + "start": 21955.2, + "end": 21957.62, + "probability": 0.9919 + }, + { + "start": 21958.68, + "end": 21959.96, + "probability": 0.8339 + }, + { + "start": 21961.12, + "end": 21962.68, + "probability": 0.9486 + }, + { + "start": 21964.16, + "end": 21965.0, + "probability": 0.6296 + }, + { + "start": 21965.58, + "end": 21966.1, + "probability": 0.7431 + }, + { + "start": 21966.72, + "end": 21967.58, + "probability": 0.9559 + }, + { + "start": 21968.14, + "end": 21969.16, + "probability": 0.91 + }, + { + "start": 21970.16, + "end": 21971.3, + "probability": 0.9946 + }, + { + "start": 21973.55, + "end": 21976.42, + "probability": 0.9328 + }, + { + "start": 21977.28, + "end": 21978.32, + "probability": 0.229 + }, + { + "start": 21979.4, + "end": 21979.86, + "probability": 0.8214 + }, + { + "start": 21981.84, + "end": 21981.86, + "probability": 0.5314 + }, + { + "start": 21981.86, + "end": 21982.26, + "probability": 0.9247 + }, + { + "start": 21982.64, + "end": 21982.86, + "probability": 0.7393 + }, + { + "start": 21984.84, + "end": 21985.78, + "probability": 0.9022 + }, + { + "start": 21988.8, + "end": 21991.14, + "probability": 0.994 + }, + { + "start": 21991.78, + "end": 21996.06, + "probability": 0.8252 + }, + { + "start": 21996.62, + "end": 21999.5, + "probability": 0.9962 + }, + { + "start": 21999.96, + "end": 22001.78, + "probability": 0.8768 + }, + { + "start": 22003.2, + "end": 22006.0, + "probability": 0.993 + }, + { + "start": 22006.78, + "end": 22007.52, + "probability": 0.7449 + }, + { + "start": 22008.32, + "end": 22011.68, + "probability": 0.9619 + }, + { + "start": 22012.78, + "end": 22013.1, + "probability": 0.4911 + }, + { + "start": 22013.22, + "end": 22015.4, + "probability": 0.9285 + }, + { + "start": 22015.4, + "end": 22017.92, + "probability": 0.9738 + }, + { + "start": 22018.8, + "end": 22021.94, + "probability": 0.8965 + }, + { + "start": 22022.48, + "end": 22024.6, + "probability": 0.96 + }, + { + "start": 22025.18, + "end": 22026.18, + "probability": 0.8924 + }, + { + "start": 22027.06, + "end": 22027.24, + "probability": 0.4863 + }, + { + "start": 22027.5, + "end": 22032.02, + "probability": 0.9441 + }, + { + "start": 22032.08, + "end": 22034.62, + "probability": 0.1449 + }, + { + "start": 22035.22, + "end": 22036.24, + "probability": 0.9669 + }, + { + "start": 22037.28, + "end": 22039.24, + "probability": 0.717 + }, + { + "start": 22040.46, + "end": 22041.16, + "probability": 0.6038 + }, + { + "start": 22041.68, + "end": 22044.2, + "probability": 0.9852 + }, + { + "start": 22045.28, + "end": 22050.04, + "probability": 0.9857 + }, + { + "start": 22051.0, + "end": 22054.22, + "probability": 0.9758 + }, + { + "start": 22055.12, + "end": 22059.8, + "probability": 0.9688 + }, + { + "start": 22060.94, + "end": 22062.66, + "probability": 0.9954 + }, + { + "start": 22063.0, + "end": 22065.7, + "probability": 0.7651 + }, + { + "start": 22067.0, + "end": 22073.68, + "probability": 0.9932 + }, + { + "start": 22074.98, + "end": 22078.74, + "probability": 0.9742 + }, + { + "start": 22080.06, + "end": 22080.36, + "probability": 0.8174 + }, + { + "start": 22081.32, + "end": 22086.04, + "probability": 0.9773 + }, + { + "start": 22086.04, + "end": 22091.16, + "probability": 0.9987 + }, + { + "start": 22092.4, + "end": 22098.12, + "probability": 0.9972 + }, + { + "start": 22098.12, + "end": 22100.72, + "probability": 0.978 + }, + { + "start": 22110.88, + "end": 22111.12, + "probability": 0.1783 + }, + { + "start": 22113.32, + "end": 22116.36, + "probability": 0.5257 + }, + { + "start": 22116.54, + "end": 22117.48, + "probability": 0.4641 + }, + { + "start": 22117.68, + "end": 22120.21, + "probability": 0.6259 + }, + { + "start": 22120.78, + "end": 22125.18, + "probability": 0.9926 + }, + { + "start": 22126.28, + "end": 22128.64, + "probability": 0.9585 + }, + { + "start": 22129.24, + "end": 22130.02, + "probability": 0.7493 + }, + { + "start": 22130.12, + "end": 22134.06, + "probability": 0.9968 + }, + { + "start": 22134.06, + "end": 22138.66, + "probability": 0.9964 + }, + { + "start": 22138.66, + "end": 22142.76, + "probability": 0.9968 + }, + { + "start": 22143.76, + "end": 22147.28, + "probability": 0.9688 + }, + { + "start": 22147.84, + "end": 22151.62, + "probability": 0.9884 + }, + { + "start": 22152.76, + "end": 22154.02, + "probability": 0.9504 + }, + { + "start": 22154.44, + "end": 22157.44, + "probability": 0.9942 + }, + { + "start": 22158.72, + "end": 22163.44, + "probability": 0.9896 + }, + { + "start": 22163.44, + "end": 22167.94, + "probability": 0.9993 + }, + { + "start": 22168.78, + "end": 22169.74, + "probability": 0.5201 + }, + { + "start": 22170.9, + "end": 22176.78, + "probability": 0.9876 + }, + { + "start": 22176.78, + "end": 22184.12, + "probability": 0.9976 + }, + { + "start": 22184.34, + "end": 22185.06, + "probability": 0.6216 + }, + { + "start": 22185.78, + "end": 22190.7, + "probability": 0.8767 + }, + { + "start": 22191.2, + "end": 22192.26, + "probability": 0.6038 + }, + { + "start": 22192.84, + "end": 22194.92, + "probability": 0.9854 + }, + { + "start": 22195.48, + "end": 22196.28, + "probability": 0.5242 + }, + { + "start": 22196.38, + "end": 22201.42, + "probability": 0.9596 + }, + { + "start": 22205.06, + "end": 22207.64, + "probability": 0.7278 + }, + { + "start": 22208.44, + "end": 22212.52, + "probability": 0.9846 + }, + { + "start": 22212.6, + "end": 22214.42, + "probability": 0.9878 + }, + { + "start": 22215.3, + "end": 22219.38, + "probability": 0.9813 + }, + { + "start": 22219.38, + "end": 22223.28, + "probability": 0.9987 + }, + { + "start": 22223.84, + "end": 22227.56, + "probability": 0.9108 + }, + { + "start": 22229.38, + "end": 22231.48, + "probability": 0.9027 + }, + { + "start": 22232.7, + "end": 22236.85, + "probability": 0.958 + }, + { + "start": 22237.06, + "end": 22240.6, + "probability": 0.9867 + }, + { + "start": 22241.06, + "end": 22243.06, + "probability": 0.9969 + }, + { + "start": 22244.08, + "end": 22244.58, + "probability": 0.9032 + }, + { + "start": 22245.8, + "end": 22247.12, + "probability": 0.9402 + }, + { + "start": 22247.36, + "end": 22247.72, + "probability": 0.6896 + }, + { + "start": 22247.78, + "end": 22250.94, + "probability": 0.9948 + }, + { + "start": 22251.74, + "end": 22252.62, + "probability": 0.9375 + }, + { + "start": 22253.54, + "end": 22255.4, + "probability": 0.9083 + }, + { + "start": 22256.34, + "end": 22259.32, + "probability": 0.9938 + }, + { + "start": 22260.3, + "end": 22262.36, + "probability": 0.9746 + }, + { + "start": 22263.28, + "end": 22264.96, + "probability": 0.8099 + }, + { + "start": 22265.38, + "end": 22268.71, + "probability": 0.9766 + }, + { + "start": 22269.7, + "end": 22277.48, + "probability": 0.694 + }, + { + "start": 22278.38, + "end": 22279.22, + "probability": 0.7299 + }, + { + "start": 22280.18, + "end": 22281.26, + "probability": 0.9673 + }, + { + "start": 22284.36, + "end": 22287.7, + "probability": 0.9861 + }, + { + "start": 22289.3, + "end": 22292.5, + "probability": 0.995 + }, + { + "start": 22292.8, + "end": 22296.7, + "probability": 0.9047 + }, + { + "start": 22297.56, + "end": 22299.34, + "probability": 0.8262 + }, + { + "start": 22299.48, + "end": 22300.52, + "probability": 0.9257 + }, + { + "start": 22301.14, + "end": 22303.3, + "probability": 0.6561 + }, + { + "start": 22304.02, + "end": 22305.42, + "probability": 0.318 + }, + { + "start": 22305.62, + "end": 22306.48, + "probability": 0.4176 + }, + { + "start": 22307.06, + "end": 22308.98, + "probability": 0.8184 + }, + { + "start": 22309.74, + "end": 22310.54, + "probability": 0.4801 + }, + { + "start": 22311.08, + "end": 22311.82, + "probability": 0.9951 + }, + { + "start": 22312.74, + "end": 22315.14, + "probability": 0.9712 + }, + { + "start": 22315.26, + "end": 22316.66, + "probability": 0.7352 + }, + { + "start": 22317.38, + "end": 22318.36, + "probability": 0.821 + }, + { + "start": 22318.48, + "end": 22321.92, + "probability": 0.9271 + }, + { + "start": 22321.98, + "end": 22322.74, + "probability": 0.9697 + }, + { + "start": 22322.74, + "end": 22324.1, + "probability": 0.9183 + }, + { + "start": 22324.68, + "end": 22326.3, + "probability": 0.9933 + }, + { + "start": 22327.84, + "end": 22328.44, + "probability": 0.7081 + }, + { + "start": 22328.94, + "end": 22331.8, + "probability": 0.9513 + }, + { + "start": 22332.4, + "end": 22334.24, + "probability": 0.8713 + }, + { + "start": 22334.94, + "end": 22338.16, + "probability": 0.9779 + }, + { + "start": 22338.6, + "end": 22340.52, + "probability": 0.9172 + }, + { + "start": 22341.74, + "end": 22343.78, + "probability": 0.8841 + }, + { + "start": 22344.8, + "end": 22346.58, + "probability": 0.7168 + }, + { + "start": 22346.7, + "end": 22349.02, + "probability": 0.9338 + }, + { + "start": 22349.46, + "end": 22350.34, + "probability": 0.8704 + }, + { + "start": 22350.36, + "end": 22350.9, + "probability": 0.7404 + }, + { + "start": 22352.08, + "end": 22353.0, + "probability": 0.7391 + }, + { + "start": 22353.26, + "end": 22354.5, + "probability": 0.5646 + }, + { + "start": 22354.88, + "end": 22356.04, + "probability": 0.88 + }, + { + "start": 22357.46, + "end": 22359.06, + "probability": 0.6284 + }, + { + "start": 22359.74, + "end": 22361.08, + "probability": 0.8721 + }, + { + "start": 22361.84, + "end": 22364.8, + "probability": 0.9631 + }, + { + "start": 22365.46, + "end": 22367.68, + "probability": 0.9912 + }, + { + "start": 22368.64, + "end": 22370.58, + "probability": 0.979 + }, + { + "start": 22371.48, + "end": 22377.24, + "probability": 0.9865 + }, + { + "start": 22378.12, + "end": 22379.86, + "probability": 0.9197 + }, + { + "start": 22380.32, + "end": 22383.32, + "probability": 0.9839 + }, + { + "start": 22384.4, + "end": 22385.17, + "probability": 0.9915 + }, + { + "start": 22385.78, + "end": 22387.16, + "probability": 0.5245 + }, + { + "start": 22387.5, + "end": 22389.44, + "probability": 0.9946 + }, + { + "start": 22390.18, + "end": 22392.48, + "probability": 0.9994 + }, + { + "start": 22393.14, + "end": 22397.18, + "probability": 0.8191 + }, + { + "start": 22398.16, + "end": 22400.16, + "probability": 0.999 + }, + { + "start": 22400.84, + "end": 22404.22, + "probability": 0.9646 + }, + { + "start": 22404.64, + "end": 22408.1, + "probability": 0.9882 + }, + { + "start": 22408.66, + "end": 22411.04, + "probability": 0.6357 + }, + { + "start": 22411.96, + "end": 22413.16, + "probability": 0.7113 + }, + { + "start": 22413.28, + "end": 22413.68, + "probability": 0.9359 + }, + { + "start": 22413.74, + "end": 22414.38, + "probability": 0.9383 + }, + { + "start": 22414.56, + "end": 22415.72, + "probability": 0.1183 + }, + { + "start": 22415.72, + "end": 22416.98, + "probability": 0.8984 + }, + { + "start": 22417.02, + "end": 22417.3, + "probability": 0.8724 + }, + { + "start": 22417.94, + "end": 22419.3, + "probability": 0.877 + }, + { + "start": 22419.84, + "end": 22422.72, + "probability": 0.9207 + }, + { + "start": 22423.62, + "end": 22426.34, + "probability": 0.9418 + }, + { + "start": 22427.08, + "end": 22429.58, + "probability": 0.704 + }, + { + "start": 22430.8, + "end": 22431.98, + "probability": 0.9426 + }, + { + "start": 22432.06, + "end": 22434.58, + "probability": 0.5651 + }, + { + "start": 22435.14, + "end": 22436.38, + "probability": 0.9205 + }, + { + "start": 22436.64, + "end": 22438.12, + "probability": 0.9635 + }, + { + "start": 22438.9, + "end": 22439.42, + "probability": 0.723 + }, + { + "start": 22441.15, + "end": 22444.94, + "probability": 0.0315 + }, + { + "start": 22445.38, + "end": 22446.3, + "probability": 0.4737 + }, + { + "start": 22447.48, + "end": 22447.6, + "probability": 0.045 + }, + { + "start": 22448.62, + "end": 22450.1, + "probability": 0.7854 + }, + { + "start": 22450.52, + "end": 22451.14, + "probability": 0.6201 + }, + { + "start": 22451.86, + "end": 22453.8, + "probability": 0.2431 + }, + { + "start": 22453.98, + "end": 22455.08, + "probability": 0.6108 + }, + { + "start": 22455.16, + "end": 22455.58, + "probability": 0.4398 + }, + { + "start": 22455.8, + "end": 22457.54, + "probability": 0.9102 + }, + { + "start": 22457.58, + "end": 22458.3, + "probability": 0.6156 + }, + { + "start": 22458.78, + "end": 22461.14, + "probability": 0.6045 + }, + { + "start": 22461.74, + "end": 22463.22, + "probability": 0.937 + }, + { + "start": 22463.3, + "end": 22463.7, + "probability": 0.2243 + }, + { + "start": 22464.08, + "end": 22465.76, + "probability": 0.9637 + }, + { + "start": 22465.78, + "end": 22466.2, + "probability": 0.8452 + }, + { + "start": 22466.28, + "end": 22466.76, + "probability": 0.5711 + }, + { + "start": 22466.84, + "end": 22467.3, + "probability": 0.7308 + }, + { + "start": 22467.58, + "end": 22468.24, + "probability": 0.9489 + }, + { + "start": 22468.32, + "end": 22469.04, + "probability": 0.9 + }, + { + "start": 22469.1, + "end": 22469.86, + "probability": 0.9465 + }, + { + "start": 22470.42, + "end": 22471.76, + "probability": 0.7821 + }, + { + "start": 22471.76, + "end": 22472.96, + "probability": 0.9642 + }, + { + "start": 22472.96, + "end": 22474.38, + "probability": 0.7256 + }, + { + "start": 22474.42, + "end": 22476.3, + "probability": 0.8425 + }, + { + "start": 22477.02, + "end": 22477.02, + "probability": 0.0004 + }, + { + "start": 22478.58, + "end": 22480.86, + "probability": 0.6901 + }, + { + "start": 22481.46, + "end": 22483.21, + "probability": 0.9019 + }, + { + "start": 22483.44, + "end": 22485.18, + "probability": 0.9501 + }, + { + "start": 22485.52, + "end": 22487.38, + "probability": 0.7419 + }, + { + "start": 22487.84, + "end": 22489.06, + "probability": 0.9123 + }, + { + "start": 22489.24, + "end": 22489.48, + "probability": 0.7314 + }, + { + "start": 22489.74, + "end": 22490.26, + "probability": 0.5586 + }, + { + "start": 22490.52, + "end": 22492.56, + "probability": 0.7891 + }, + { + "start": 22493.36, + "end": 22494.08, + "probability": 0.9686 + }, + { + "start": 22495.44, + "end": 22501.26, + "probability": 0.9041 + }, + { + "start": 22501.82, + "end": 22504.06, + "probability": 0.905 + }, + { + "start": 22504.86, + "end": 22506.48, + "probability": 0.7304 + }, + { + "start": 22507.14, + "end": 22509.14, + "probability": 0.9182 + }, + { + "start": 22510.2, + "end": 22511.12, + "probability": 0.6808 + }, + { + "start": 22511.14, + "end": 22512.89, + "probability": 0.494 + }, + { + "start": 22513.02, + "end": 22513.8, + "probability": 0.7451 + }, + { + "start": 22513.86, + "end": 22515.2, + "probability": 0.9736 + }, + { + "start": 22515.86, + "end": 22518.26, + "probability": 0.9849 + }, + { + "start": 22518.96, + "end": 22522.24, + "probability": 0.9181 + }, + { + "start": 22522.78, + "end": 22527.0, + "probability": 0.8677 + }, + { + "start": 22527.34, + "end": 22531.74, + "probability": 0.9741 + }, + { + "start": 22532.32, + "end": 22534.54, + "probability": 0.981 + }, + { + "start": 22535.02, + "end": 22535.56, + "probability": 0.9387 + }, + { + "start": 22535.96, + "end": 22536.82, + "probability": 0.9883 + }, + { + "start": 22536.84, + "end": 22537.58, + "probability": 0.8636 + }, + { + "start": 22537.82, + "end": 22542.38, + "probability": 0.9934 + }, + { + "start": 22542.46, + "end": 22543.76, + "probability": 0.9956 + }, + { + "start": 22543.98, + "end": 22544.38, + "probability": 0.7031 + }, + { + "start": 22544.44, + "end": 22545.92, + "probability": 0.958 + }, + { + "start": 22546.4, + "end": 22548.54, + "probability": 0.9773 + }, + { + "start": 22549.4, + "end": 22550.56, + "probability": 0.8276 + }, + { + "start": 22550.84, + "end": 22551.44, + "probability": 0.7128 + }, + { + "start": 22551.64, + "end": 22553.16, + "probability": 0.4626 + }, + { + "start": 22553.26, + "end": 22554.34, + "probability": 0.2508 + }, + { + "start": 22554.38, + "end": 22555.44, + "probability": 0.5019 + }, + { + "start": 22555.56, + "end": 22559.04, + "probability": 0.7062 + }, + { + "start": 22559.14, + "end": 22559.48, + "probability": 0.6153 + }, + { + "start": 22560.34, + "end": 22563.44, + "probability": 0.901 + }, + { + "start": 22564.06, + "end": 22568.08, + "probability": 0.7488 + }, + { + "start": 22568.94, + "end": 22571.96, + "probability": 0.68 + }, + { + "start": 22572.24, + "end": 22575.18, + "probability": 0.8135 + }, + { + "start": 22576.36, + "end": 22578.0, + "probability": 0.5704 + }, + { + "start": 22578.56, + "end": 22579.64, + "probability": 0.4789 + }, + { + "start": 22579.9, + "end": 22581.7, + "probability": 0.6678 + }, + { + "start": 22581.78, + "end": 22582.3, + "probability": 0.2377 + }, + { + "start": 22582.36, + "end": 22582.76, + "probability": 0.6042 + }, + { + "start": 22582.76, + "end": 22585.74, + "probability": 0.8782 + }, + { + "start": 22585.84, + "end": 22585.88, + "probability": 0.444 + }, + { + "start": 22585.88, + "end": 22587.55, + "probability": 0.7044 + }, + { + "start": 22588.84, + "end": 22589.65, + "probability": 0.7768 + }, + { + "start": 22589.8, + "end": 22591.98, + "probability": 0.9579 + }, + { + "start": 22592.98, + "end": 22593.24, + "probability": 0.8065 + }, + { + "start": 22593.24, + "end": 22595.16, + "probability": 0.9847 + }, + { + "start": 22595.24, + "end": 22599.2, + "probability": 0.971 + }, + { + "start": 22599.26, + "end": 22599.76, + "probability": 0.8181 + }, + { + "start": 22600.36, + "end": 22601.66, + "probability": 0.7149 + }, + { + "start": 22602.1, + "end": 22603.26, + "probability": 0.9521 + }, + { + "start": 22603.78, + "end": 22604.84, + "probability": 0.7131 + }, + { + "start": 22605.16, + "end": 22607.8, + "probability": 0.8355 + }, + { + "start": 22607.86, + "end": 22610.2, + "probability": 0.9368 + }, + { + "start": 22611.14, + "end": 22613.88, + "probability": 0.6985 + }, + { + "start": 22618.36, + "end": 22620.12, + "probability": 0.3342 + }, + { + "start": 22624.94, + "end": 22625.76, + "probability": 0.2925 + }, + { + "start": 22626.0, + "end": 22626.42, + "probability": 0.98 + }, + { + "start": 22627.2, + "end": 22629.96, + "probability": 0.8818 + }, + { + "start": 22631.04, + "end": 22632.14, + "probability": 0.5006 + }, + { + "start": 22634.32, + "end": 22636.28, + "probability": 0.98 + }, + { + "start": 22637.3, + "end": 22641.3, + "probability": 0.9911 + }, + { + "start": 22641.82, + "end": 22643.4, + "probability": 0.9868 + }, + { + "start": 22644.36, + "end": 22645.82, + "probability": 0.9995 + }, + { + "start": 22646.38, + "end": 22647.64, + "probability": 0.8928 + }, + { + "start": 22648.4, + "end": 22649.42, + "probability": 0.9643 + }, + { + "start": 22650.12, + "end": 22654.52, + "probability": 0.9852 + }, + { + "start": 22654.84, + "end": 22656.22, + "probability": 0.9596 + }, + { + "start": 22657.06, + "end": 22658.36, + "probability": 0.9043 + }, + { + "start": 22659.06, + "end": 22659.94, + "probability": 0.9683 + }, + { + "start": 22661.44, + "end": 22662.62, + "probability": 0.8667 + }, + { + "start": 22663.42, + "end": 22665.8, + "probability": 0.9503 + }, + { + "start": 22666.46, + "end": 22668.72, + "probability": 0.9045 + }, + { + "start": 22669.74, + "end": 22675.3, + "probability": 0.9866 + }, + { + "start": 22676.42, + "end": 22678.72, + "probability": 0.9551 + }, + { + "start": 22679.52, + "end": 22683.04, + "probability": 0.9972 + }, + { + "start": 22683.7, + "end": 22686.76, + "probability": 0.9368 + }, + { + "start": 22687.48, + "end": 22691.2, + "probability": 0.9962 + }, + { + "start": 22692.22, + "end": 22692.74, + "probability": 0.7081 + }, + { + "start": 22692.84, + "end": 22693.24, + "probability": 0.9139 + }, + { + "start": 22693.32, + "end": 22696.24, + "probability": 0.9976 + }, + { + "start": 22697.16, + "end": 22698.14, + "probability": 0.7469 + }, + { + "start": 22699.12, + "end": 22703.5, + "probability": 0.9838 + }, + { + "start": 22703.98, + "end": 22704.8, + "probability": 0.7038 + }, + { + "start": 22705.02, + "end": 22708.66, + "probability": 0.8682 + }, + { + "start": 22709.06, + "end": 22714.32, + "probability": 0.9912 + }, + { + "start": 22716.22, + "end": 22719.9, + "probability": 0.838 + }, + { + "start": 22720.48, + "end": 22722.28, + "probability": 0.9747 + }, + { + "start": 22722.94, + "end": 22726.73, + "probability": 0.9929 + }, + { + "start": 22727.4, + "end": 22730.34, + "probability": 0.9984 + }, + { + "start": 22730.98, + "end": 22735.62, + "probability": 0.973 + }, + { + "start": 22736.3, + "end": 22741.68, + "probability": 0.8098 + }, + { + "start": 22742.82, + "end": 22744.18, + "probability": 0.9496 + }, + { + "start": 22745.4, + "end": 22747.82, + "probability": 0.9959 + }, + { + "start": 22748.44, + "end": 22749.42, + "probability": 0.9833 + }, + { + "start": 22750.18, + "end": 22751.68, + "probability": 0.9883 + }, + { + "start": 22752.02, + "end": 22752.62, + "probability": 0.7887 + }, + { + "start": 22752.72, + "end": 22753.28, + "probability": 0.3992 + }, + { + "start": 22753.56, + "end": 22754.18, + "probability": 0.8521 + }, + { + "start": 22754.9, + "end": 22758.24, + "probability": 0.8497 + }, + { + "start": 22759.1, + "end": 22763.04, + "probability": 0.9921 + }, + { + "start": 22763.14, + "end": 22764.18, + "probability": 0.9662 + }, + { + "start": 22764.78, + "end": 22767.68, + "probability": 0.9868 + }, + { + "start": 22769.6, + "end": 22770.64, + "probability": 0.8911 + }, + { + "start": 22770.72, + "end": 22771.6, + "probability": 0.9052 + }, + { + "start": 22771.68, + "end": 22772.0, + "probability": 0.4074 + }, + { + "start": 22772.3, + "end": 22774.0, + "probability": 0.6776 + }, + { + "start": 22774.14, + "end": 22775.24, + "probability": 0.2983 + }, + { + "start": 22775.24, + "end": 22776.28, + "probability": 0.9568 + }, + { + "start": 22776.52, + "end": 22777.44, + "probability": 0.9062 + }, + { + "start": 22777.5, + "end": 22777.64, + "probability": 0.0697 + }, + { + "start": 22777.64, + "end": 22777.96, + "probability": 0.3027 + }, + { + "start": 22779.96, + "end": 22781.0, + "probability": 0.9026 + }, + { + "start": 22781.24, + "end": 22782.46, + "probability": 0.8763 + }, + { + "start": 22783.52, + "end": 22784.0, + "probability": 0.9613 + }, + { + "start": 22786.44, + "end": 22789.06, + "probability": 0.6377 + }, + { + "start": 22789.92, + "end": 22793.94, + "probability": 0.9434 + }, + { + "start": 22795.44, + "end": 22796.12, + "probability": 0.3652 + }, + { + "start": 22796.28, + "end": 22797.4, + "probability": 0.9166 + }, + { + "start": 22797.52, + "end": 22799.18, + "probability": 0.9893 + }, + { + "start": 22799.34, + "end": 22800.96, + "probability": 0.9363 + }, + { + "start": 22800.96, + "end": 22802.12, + "probability": 0.9857 + }, + { + "start": 22803.34, + "end": 22804.66, + "probability": 0.9765 + }, + { + "start": 22805.16, + "end": 22806.4, + "probability": 0.9941 + }, + { + "start": 22806.52, + "end": 22807.84, + "probability": 0.9909 + }, + { + "start": 22807.88, + "end": 22810.62, + "probability": 0.9967 + }, + { + "start": 22813.5, + "end": 22818.78, + "probability": 0.9707 + }, + { + "start": 22819.34, + "end": 22820.3, + "probability": 0.7332 + }, + { + "start": 22820.48, + "end": 22820.74, + "probability": 0.8426 + }, + { + "start": 22820.92, + "end": 22825.26, + "probability": 0.9722 + }, + { + "start": 22826.38, + "end": 22829.52, + "probability": 0.8518 + }, + { + "start": 22830.24, + "end": 22833.68, + "probability": 0.9857 + }, + { + "start": 22834.3, + "end": 22837.36, + "probability": 0.9941 + }, + { + "start": 22837.36, + "end": 22841.8, + "probability": 0.9646 + }, + { + "start": 22842.38, + "end": 22845.38, + "probability": 0.9965 + }, + { + "start": 22845.96, + "end": 22847.46, + "probability": 0.817 + }, + { + "start": 22847.98, + "end": 22849.38, + "probability": 0.9821 + }, + { + "start": 22849.58, + "end": 22853.04, + "probability": 0.972 + }, + { + "start": 22853.52, + "end": 22855.4, + "probability": 0.7952 + }, + { + "start": 22855.82, + "end": 22856.72, + "probability": 0.953 + }, + { + "start": 22856.9, + "end": 22861.14, + "probability": 0.9802 + }, + { + "start": 22861.62, + "end": 22862.74, + "probability": 0.8101 + }, + { + "start": 22863.46, + "end": 22866.2, + "probability": 0.9933 + }, + { + "start": 22866.2, + "end": 22868.76, + "probability": 0.9954 + }, + { + "start": 22869.26, + "end": 22870.02, + "probability": 0.6088 + }, + { + "start": 22870.24, + "end": 22870.7, + "probability": 0.4948 + }, + { + "start": 22870.8, + "end": 22875.38, + "probability": 0.996 + }, + { + "start": 22875.78, + "end": 22876.6, + "probability": 0.8442 + }, + { + "start": 22877.32, + "end": 22878.68, + "probability": 0.9736 + }, + { + "start": 22879.98, + "end": 22883.86, + "probability": 0.9956 + }, + { + "start": 22884.04, + "end": 22884.94, + "probability": 0.7381 + }, + { + "start": 22885.44, + "end": 22888.66, + "probability": 0.994 + }, + { + "start": 22889.06, + "end": 22889.9, + "probability": 0.965 + }, + { + "start": 22890.34, + "end": 22891.52, + "probability": 0.8024 + }, + { + "start": 22891.96, + "end": 22895.1, + "probability": 0.9792 + }, + { + "start": 22895.14, + "end": 22895.24, + "probability": 0.5114 + }, + { + "start": 22895.62, + "end": 22896.96, + "probability": 0.9523 + }, + { + "start": 22897.44, + "end": 22900.1, + "probability": 0.9848 + }, + { + "start": 22900.74, + "end": 22903.92, + "probability": 0.9938 + }, + { + "start": 22904.08, + "end": 22904.68, + "probability": 0.2875 + }, + { + "start": 22904.8, + "end": 22906.3, + "probability": 0.4836 + }, + { + "start": 22907.02, + "end": 22910.64, + "probability": 0.6021 + }, + { + "start": 22911.26, + "end": 22912.66, + "probability": 0.88 + }, + { + "start": 22912.78, + "end": 22913.64, + "probability": 0.6916 + }, + { + "start": 22913.86, + "end": 22915.32, + "probability": 0.9869 + }, + { + "start": 22915.86, + "end": 22918.24, + "probability": 0.8962 + }, + { + "start": 22918.86, + "end": 22921.0, + "probability": 0.9995 + }, + { + "start": 22921.74, + "end": 22922.5, + "probability": 0.9863 + }, + { + "start": 22922.96, + "end": 22923.72, + "probability": 0.9069 + }, + { + "start": 22924.16, + "end": 22928.44, + "probability": 0.9873 + }, + { + "start": 22928.72, + "end": 22928.98, + "probability": 0.7274 + }, + { + "start": 22929.06, + "end": 22931.78, + "probability": 0.9969 + }, + { + "start": 22932.36, + "end": 22934.6, + "probability": 0.9651 + }, + { + "start": 22935.66, + "end": 22935.74, + "probability": 0.0044 + }, + { + "start": 22935.74, + "end": 22937.16, + "probability": 0.8692 + }, + { + "start": 22937.62, + "end": 22938.7, + "probability": 0.1778 + }, + { + "start": 22939.19, + "end": 22939.72, + "probability": 0.6082 + }, + { + "start": 22939.72, + "end": 22943.06, + "probability": 0.9771 + }, + { + "start": 22943.26, + "end": 22944.14, + "probability": 0.969 + }, + { + "start": 22944.24, + "end": 22947.16, + "probability": 0.0204 + }, + { + "start": 22947.16, + "end": 22947.74, + "probability": 0.5068 + }, + { + "start": 22948.74, + "end": 22951.56, + "probability": 0.8122 + }, + { + "start": 22951.64, + "end": 22955.36, + "probability": 0.9435 + }, + { + "start": 22956.32, + "end": 22959.22, + "probability": 0.9712 + }, + { + "start": 22959.86, + "end": 22961.5, + "probability": 0.9531 + }, + { + "start": 22961.94, + "end": 22964.72, + "probability": 0.9773 + }, + { + "start": 22965.14, + "end": 22966.06, + "probability": 0.3785 + }, + { + "start": 22966.34, + "end": 22967.32, + "probability": 0.7971 + }, + { + "start": 22967.32, + "end": 22969.98, + "probability": 0.8701 + }, + { + "start": 22970.06, + "end": 22970.91, + "probability": 0.8608 + }, + { + "start": 22971.0, + "end": 22971.2, + "probability": 0.2493 + }, + { + "start": 22971.2, + "end": 22974.54, + "probability": 0.9547 + }, + { + "start": 22975.0, + "end": 22977.46, + "probability": 0.9969 + }, + { + "start": 22977.72, + "end": 22977.72, + "probability": 0.6288 + }, + { + "start": 22977.8, + "end": 22979.92, + "probability": 0.634 + }, + { + "start": 22980.0, + "end": 22980.32, + "probability": 0.6208 + }, + { + "start": 22981.12, + "end": 22983.22, + "probability": 0.8627 + }, + { + "start": 22983.66, + "end": 22985.32, + "probability": 0.6499 + }, + { + "start": 22985.96, + "end": 22990.62, + "probability": 0.9797 + }, + { + "start": 22991.28, + "end": 22993.22, + "probability": 0.9036 + }, + { + "start": 22994.58, + "end": 22997.02, + "probability": 0.9648 + }, + { + "start": 22997.8, + "end": 22998.0, + "probability": 0.106 + }, + { + "start": 23022.02, + "end": 23022.02, + "probability": 0.0059 + }, + { + "start": 23022.02, + "end": 23022.38, + "probability": 0.2557 + }, + { + "start": 23022.38, + "end": 23024.58, + "probability": 0.8203 + }, + { + "start": 23025.32, + "end": 23026.88, + "probability": 0.789 + }, + { + "start": 23027.44, + "end": 23028.76, + "probability": 0.7725 + }, + { + "start": 23031.52, + "end": 23032.24, + "probability": 0.8242 + }, + { + "start": 23032.54, + "end": 23036.76, + "probability": 0.9543 + }, + { + "start": 23037.32, + "end": 23041.34, + "probability": 0.9961 + }, + { + "start": 23041.7, + "end": 23042.74, + "probability": 0.762 + }, + { + "start": 23043.0, + "end": 23044.06, + "probability": 0.9913 + }, + { + "start": 23044.12, + "end": 23046.18, + "probability": 0.9254 + }, + { + "start": 23047.08, + "end": 23049.14, + "probability": 0.9829 + }, + { + "start": 23049.26, + "end": 23051.34, + "probability": 0.9088 + }, + { + "start": 23051.76, + "end": 23052.92, + "probability": 0.9966 + }, + { + "start": 23054.22, + "end": 23055.84, + "probability": 0.9761 + }, + { + "start": 23056.36, + "end": 23058.08, + "probability": 0.9783 + }, + { + "start": 23058.28, + "end": 23059.14, + "probability": 0.9966 + }, + { + "start": 23059.68, + "end": 23061.44, + "probability": 0.5133 + }, + { + "start": 23061.48, + "end": 23064.38, + "probability": 0.9473 + }, + { + "start": 23065.16, + "end": 23068.34, + "probability": 0.9964 + }, + { + "start": 23069.0, + "end": 23071.8, + "probability": 0.9739 + }, + { + "start": 23072.86, + "end": 23077.8, + "probability": 0.9945 + }, + { + "start": 23078.5, + "end": 23080.04, + "probability": 0.9299 + }, + { + "start": 23080.62, + "end": 23084.24, + "probability": 0.9957 + }, + { + "start": 23084.74, + "end": 23086.44, + "probability": 0.8725 + }, + { + "start": 23087.22, + "end": 23088.4, + "probability": 0.945 + }, + { + "start": 23088.94, + "end": 23090.78, + "probability": 0.9049 + }, + { + "start": 23091.22, + "end": 23092.32, + "probability": 0.4992 + }, + { + "start": 23092.36, + "end": 23094.56, + "probability": 0.8197 + }, + { + "start": 23095.36, + "end": 23097.1, + "probability": 0.9891 + }, + { + "start": 23097.96, + "end": 23100.03, + "probability": 0.9971 + }, + { + "start": 23101.12, + "end": 23102.88, + "probability": 0.9803 + }, + { + "start": 23102.98, + "end": 23104.76, + "probability": 0.9703 + }, + { + "start": 23105.36, + "end": 23106.34, + "probability": 0.8547 + }, + { + "start": 23106.42, + "end": 23107.86, + "probability": 0.9889 + }, + { + "start": 23108.22, + "end": 23108.9, + "probability": 0.7954 + }, + { + "start": 23109.56, + "end": 23112.84, + "probability": 0.9868 + }, + { + "start": 23113.4, + "end": 23114.36, + "probability": 0.9588 + }, + { + "start": 23115.1, + "end": 23116.74, + "probability": 0.9946 + }, + { + "start": 23117.62, + "end": 23118.74, + "probability": 0.6648 + }, + { + "start": 23118.94, + "end": 23122.44, + "probability": 0.9987 + }, + { + "start": 23123.28, + "end": 23128.98, + "probability": 0.998 + }, + { + "start": 23129.2, + "end": 23130.17, + "probability": 0.9966 + }, + { + "start": 23131.32, + "end": 23132.72, + "probability": 0.9917 + }, + { + "start": 23133.28, + "end": 23135.65, + "probability": 0.7296 + }, + { + "start": 23136.62, + "end": 23137.49, + "probability": 0.9403 + }, + { + "start": 23138.66, + "end": 23139.0, + "probability": 0.9348 + }, + { + "start": 23139.08, + "end": 23142.74, + "probability": 0.9932 + }, + { + "start": 23143.06, + "end": 23145.36, + "probability": 0.9863 + }, + { + "start": 23146.26, + "end": 23147.52, + "probability": 0.9248 + }, + { + "start": 23148.72, + "end": 23150.72, + "probability": 0.858 + }, + { + "start": 23151.44, + "end": 23158.06, + "probability": 0.9927 + }, + { + "start": 23158.82, + "end": 23162.9, + "probability": 0.9528 + }, + { + "start": 23163.68, + "end": 23166.24, + "probability": 0.8652 + }, + { + "start": 23166.76, + "end": 23169.46, + "probability": 0.914 + }, + { + "start": 23170.04, + "end": 23171.52, + "probability": 0.537 + }, + { + "start": 23172.16, + "end": 23172.93, + "probability": 0.4943 + }, + { + "start": 23173.7, + "end": 23174.7, + "probability": 0.9049 + }, + { + "start": 23175.16, + "end": 23175.78, + "probability": 0.9409 + }, + { + "start": 23175.9, + "end": 23180.68, + "probability": 0.9284 + }, + { + "start": 23180.98, + "end": 23186.36, + "probability": 0.9939 + }, + { + "start": 23186.74, + "end": 23189.48, + "probability": 0.9912 + }, + { + "start": 23190.06, + "end": 23191.12, + "probability": 0.5688 + }, + { + "start": 23191.7, + "end": 23192.28, + "probability": 0.9832 + }, + { + "start": 23193.74, + "end": 23194.88, + "probability": 0.9992 + }, + { + "start": 23195.58, + "end": 23201.36, + "probability": 0.9768 + }, + { + "start": 23201.88, + "end": 23204.16, + "probability": 0.9857 + }, + { + "start": 23204.72, + "end": 23207.52, + "probability": 0.9632 + }, + { + "start": 23208.42, + "end": 23211.42, + "probability": 0.997 + }, + { + "start": 23211.42, + "end": 23215.4, + "probability": 0.9994 + }, + { + "start": 23215.76, + "end": 23218.98, + "probability": 0.9861 + }, + { + "start": 23219.38, + "end": 23222.2, + "probability": 0.9985 + }, + { + "start": 23222.36, + "end": 23223.3, + "probability": 0.99 + }, + { + "start": 23223.72, + "end": 23224.62, + "probability": 0.993 + }, + { + "start": 23225.0, + "end": 23227.0, + "probability": 0.9986 + }, + { + "start": 23227.52, + "end": 23229.08, + "probability": 0.998 + }, + { + "start": 23230.08, + "end": 23231.2, + "probability": 0.9277 + }, + { + "start": 23231.68, + "end": 23231.96, + "probability": 0.9546 + }, + { + "start": 23232.17, + "end": 23236.9, + "probability": 0.9722 + }, + { + "start": 23237.4, + "end": 23240.32, + "probability": 0.9937 + }, + { + "start": 23240.72, + "end": 23243.92, + "probability": 0.9464 + }, + { + "start": 23244.52, + "end": 23245.41, + "probability": 0.9434 + }, + { + "start": 23246.62, + "end": 23251.32, + "probability": 0.9934 + }, + { + "start": 23251.46, + "end": 23252.72, + "probability": 0.7275 + }, + { + "start": 23253.06, + "end": 23256.04, + "probability": 0.8137 + }, + { + "start": 23256.46, + "end": 23257.11, + "probability": 0.875 + }, + { + "start": 23257.34, + "end": 23258.12, + "probability": 0.8687 + }, + { + "start": 23258.24, + "end": 23261.0, + "probability": 0.9029 + }, + { + "start": 23261.52, + "end": 23264.18, + "probability": 0.9847 + }, + { + "start": 23264.68, + "end": 23265.5, + "probability": 0.9285 + }, + { + "start": 23265.98, + "end": 23269.74, + "probability": 0.9918 + }, + { + "start": 23270.3, + "end": 23274.58, + "probability": 0.993 + }, + { + "start": 23275.14, + "end": 23276.88, + "probability": 0.6661 + }, + { + "start": 23277.34, + "end": 23281.3, + "probability": 0.9962 + }, + { + "start": 23281.62, + "end": 23283.4, + "probability": 0.4925 + }, + { + "start": 23283.48, + "end": 23284.76, + "probability": 0.9869 + }, + { + "start": 23285.26, + "end": 23287.24, + "probability": 0.9489 + }, + { + "start": 23288.04, + "end": 23291.18, + "probability": 0.9922 + }, + { + "start": 23291.68, + "end": 23294.46, + "probability": 0.7965 + }, + { + "start": 23294.72, + "end": 23296.02, + "probability": 0.939 + }, + { + "start": 23296.5, + "end": 23298.15, + "probability": 0.7375 + }, + { + "start": 23299.14, + "end": 23299.66, + "probability": 0.7979 + }, + { + "start": 23299.84, + "end": 23301.26, + "probability": 0.7665 + }, + { + "start": 23301.76, + "end": 23304.31, + "probability": 0.9482 + }, + { + "start": 23304.74, + "end": 23306.54, + "probability": 0.9917 + }, + { + "start": 23307.22, + "end": 23307.32, + "probability": 0.1972 + }, + { + "start": 23307.4, + "end": 23308.22, + "probability": 0.9108 + }, + { + "start": 23308.28, + "end": 23311.56, + "probability": 0.9885 + }, + { + "start": 23311.72, + "end": 23315.84, + "probability": 0.9813 + }, + { + "start": 23316.26, + "end": 23318.16, + "probability": 0.9435 + }, + { + "start": 23318.78, + "end": 23323.04, + "probability": 0.9961 + }, + { + "start": 23324.1, + "end": 23326.92, + "probability": 0.9851 + }, + { + "start": 23327.02, + "end": 23331.68, + "probability": 0.9951 + }, + { + "start": 23332.2, + "end": 23333.51, + "probability": 0.9746 + }, + { + "start": 23334.6, + "end": 23337.34, + "probability": 0.9766 + }, + { + "start": 23337.7, + "end": 23339.18, + "probability": 0.7848 + }, + { + "start": 23339.28, + "end": 23344.1, + "probability": 0.9885 + }, + { + "start": 23344.68, + "end": 23345.12, + "probability": 0.8547 + }, + { + "start": 23345.58, + "end": 23348.74, + "probability": 0.9971 + }, + { + "start": 23348.74, + "end": 23352.7, + "probability": 0.8607 + }, + { + "start": 23353.12, + "end": 23354.56, + "probability": 0.8989 + }, + { + "start": 23354.9, + "end": 23356.38, + "probability": 0.9932 + }, + { + "start": 23357.62, + "end": 23360.66, + "probability": 0.9933 + }, + { + "start": 23360.66, + "end": 23364.12, + "probability": 0.9874 + }, + { + "start": 23364.24, + "end": 23365.64, + "probability": 0.905 + }, + { + "start": 23366.44, + "end": 23367.58, + "probability": 0.2395 + }, + { + "start": 23367.74, + "end": 23370.94, + "probability": 0.9175 + }, + { + "start": 23372.76, + "end": 23378.42, + "probability": 0.9338 + }, + { + "start": 23378.9, + "end": 23380.64, + "probability": 0.9863 + }, + { + "start": 23381.48, + "end": 23383.9, + "probability": 0.9759 + }, + { + "start": 23384.44, + "end": 23385.76, + "probability": 0.721 + }, + { + "start": 23386.78, + "end": 23391.76, + "probability": 0.9325 + }, + { + "start": 23391.86, + "end": 23393.98, + "probability": 0.8488 + }, + { + "start": 23394.52, + "end": 23397.42, + "probability": 0.6248 + }, + { + "start": 23397.94, + "end": 23401.32, + "probability": 0.9785 + }, + { + "start": 23401.46, + "end": 23403.09, + "probability": 0.8493 + }, + { + "start": 23403.92, + "end": 23407.18, + "probability": 0.9749 + }, + { + "start": 23407.18, + "end": 23410.32, + "probability": 0.9626 + }, + { + "start": 23410.6, + "end": 23411.36, + "probability": 0.5918 + }, + { + "start": 23413.06, + "end": 23416.15, + "probability": 0.7299 + }, + { + "start": 23417.6, + "end": 23420.94, + "probability": 0.8555 + }, + { + "start": 23421.3, + "end": 23423.08, + "probability": 0.8344 + }, + { + "start": 23423.7, + "end": 23423.86, + "probability": 0.3348 + }, + { + "start": 23424.0, + "end": 23428.56, + "probability": 0.8372 + }, + { + "start": 23429.04, + "end": 23431.36, + "probability": 0.8118 + }, + { + "start": 23431.96, + "end": 23435.56, + "probability": 0.742 + }, + { + "start": 23435.6, + "end": 23437.14, + "probability": 0.5458 + }, + { + "start": 23437.18, + "end": 23438.14, + "probability": 0.8237 + }, + { + "start": 23438.86, + "end": 23444.6, + "probability": 0.661 + }, + { + "start": 23444.6, + "end": 23448.6, + "probability": 0.9883 + }, + { + "start": 23452.24, + "end": 23455.49, + "probability": 0.9792 + }, + { + "start": 23456.6, + "end": 23464.16, + "probability": 0.9938 + }, + { + "start": 23464.66, + "end": 23467.26, + "probability": 0.9736 + }, + { + "start": 23467.9, + "end": 23471.54, + "probability": 0.9926 + }, + { + "start": 23472.42, + "end": 23473.44, + "probability": 0.4962 + }, + { + "start": 23473.62, + "end": 23476.74, + "probability": 0.9705 + }, + { + "start": 23477.42, + "end": 23477.84, + "probability": 0.8478 + }, + { + "start": 23477.9, + "end": 23478.88, + "probability": 0.9321 + }, + { + "start": 23479.56, + "end": 23480.3, + "probability": 0.8528 + }, + { + "start": 23480.86, + "end": 23483.02, + "probability": 0.8505 + }, + { + "start": 23484.28, + "end": 23485.94, + "probability": 0.3465 + }, + { + "start": 23486.42, + "end": 23487.18, + "probability": 0.215 + }, + { + "start": 23488.64, + "end": 23489.72, + "probability": 0.0629 + }, + { + "start": 23489.72, + "end": 23489.72, + "probability": 0.1247 + }, + { + "start": 23489.72, + "end": 23489.72, + "probability": 0.0382 + }, + { + "start": 23489.72, + "end": 23492.3, + "probability": 0.8826 + }, + { + "start": 23492.88, + "end": 23493.24, + "probability": 0.3464 + }, + { + "start": 23493.7, + "end": 23494.24, + "probability": 0.6408 + }, + { + "start": 23494.38, + "end": 23496.14, + "probability": 0.9968 + }, + { + "start": 23496.58, + "end": 23497.68, + "probability": 0.8393 + }, + { + "start": 23497.98, + "end": 23499.58, + "probability": 0.8589 + }, + { + "start": 23499.7, + "end": 23503.04, + "probability": 0.9177 + }, + { + "start": 23503.48, + "end": 23504.0, + "probability": 0.9011 + }, + { + "start": 23504.36, + "end": 23505.64, + "probability": 0.9966 + }, + { + "start": 23506.12, + "end": 23506.56, + "probability": 0.7998 + }, + { + "start": 23506.62, + "end": 23510.0, + "probability": 0.9661 + }, + { + "start": 23511.34, + "end": 23514.7, + "probability": 0.9987 + }, + { + "start": 23515.1, + "end": 23517.84, + "probability": 0.9985 + }, + { + "start": 23517.92, + "end": 23520.8, + "probability": 0.901 + }, + { + "start": 23521.08, + "end": 23522.64, + "probability": 0.9805 + }, + { + "start": 23522.96, + "end": 23524.78, + "probability": 0.9897 + }, + { + "start": 23525.34, + "end": 23530.32, + "probability": 0.9891 + }, + { + "start": 23530.74, + "end": 23532.0, + "probability": 0.7382 + }, + { + "start": 23532.48, + "end": 23536.74, + "probability": 0.9979 + }, + { + "start": 23536.74, + "end": 23539.86, + "probability": 0.9935 + }, + { + "start": 23540.18, + "end": 23542.26, + "probability": 0.9979 + }, + { + "start": 23542.52, + "end": 23544.02, + "probability": 0.9966 + }, + { + "start": 23544.74, + "end": 23547.22, + "probability": 0.28 + }, + { + "start": 23547.6, + "end": 23550.96, + "probability": 0.7282 + }, + { + "start": 23551.06, + "end": 23553.66, + "probability": 0.5594 + }, + { + "start": 23553.86, + "end": 23555.46, + "probability": 0.9824 + }, + { + "start": 23555.76, + "end": 23558.25, + "probability": 0.2798 + }, + { + "start": 23570.46, + "end": 23570.7, + "probability": 0.015 + }, + { + "start": 23572.2, + "end": 23572.92, + "probability": 0.0041 + }, + { + "start": 23572.92, + "end": 23573.44, + "probability": 0.1055 + }, + { + "start": 23573.44, + "end": 23574.38, + "probability": 0.0606 + }, + { + "start": 23574.46, + "end": 23576.1, + "probability": 0.0824 + }, + { + "start": 23576.76, + "end": 23576.76, + "probability": 0.0294 + }, + { + "start": 23576.76, + "end": 23576.76, + "probability": 0.0814 + }, + { + "start": 23576.76, + "end": 23576.76, + "probability": 0.1473 + }, + { + "start": 23576.76, + "end": 23576.76, + "probability": 0.132 + }, + { + "start": 23576.76, + "end": 23576.76, + "probability": 0.0278 + }, + { + "start": 23576.76, + "end": 23576.76, + "probability": 0.0928 + }, + { + "start": 23576.76, + "end": 23577.02, + "probability": 0.2272 + }, + { + "start": 23577.02, + "end": 23578.4, + "probability": 0.6635 + }, + { + "start": 23578.8, + "end": 23580.08, + "probability": 0.7767 + }, + { + "start": 23581.5, + "end": 23584.66, + "probability": 0.9805 + }, + { + "start": 23585.24, + "end": 23585.64, + "probability": 0.958 + }, + { + "start": 23585.68, + "end": 23586.18, + "probability": 0.7283 + }, + { + "start": 23586.36, + "end": 23587.08, + "probability": 0.8218 + }, + { + "start": 23587.32, + "end": 23588.7, + "probability": 0.9963 + }, + { + "start": 23589.22, + "end": 23591.54, + "probability": 0.9972 + }, + { + "start": 23592.44, + "end": 23595.32, + "probability": 0.9908 + }, + { + "start": 23595.8, + "end": 23598.36, + "probability": 0.9928 + }, + { + "start": 23598.48, + "end": 23599.18, + "probability": 0.9188 + }, + { + "start": 23599.88, + "end": 23602.76, + "probability": 0.9458 + }, + { + "start": 23603.28, + "end": 23604.47, + "probability": 0.984 + }, + { + "start": 23604.66, + "end": 23607.78, + "probability": 0.9094 + }, + { + "start": 23607.8, + "end": 23608.86, + "probability": 0.8645 + }, + { + "start": 23608.94, + "end": 23609.66, + "probability": 0.8489 + }, + { + "start": 23609.7, + "end": 23611.26, + "probability": 0.941 + }, + { + "start": 23611.6, + "end": 23612.88, + "probability": 0.9276 + }, + { + "start": 23613.18, + "end": 23615.74, + "probability": 0.9869 + }, + { + "start": 23616.02, + "end": 23616.56, + "probability": 0.6354 + }, + { + "start": 23616.92, + "end": 23618.42, + "probability": 0.6276 + }, + { + "start": 23618.54, + "end": 23618.74, + "probability": 0.6956 + }, + { + "start": 23618.86, + "end": 23620.92, + "probability": 0.9313 + }, + { + "start": 23621.3, + "end": 23621.8, + "probability": 0.8709 + }, + { + "start": 23621.94, + "end": 23622.5, + "probability": 0.9097 + }, + { + "start": 23622.6, + "end": 23625.82, + "probability": 0.9933 + }, + { + "start": 23626.16, + "end": 23626.58, + "probability": 0.9443 + }, + { + "start": 23627.46, + "end": 23629.56, + "probability": 0.9641 + }, + { + "start": 23629.62, + "end": 23631.36, + "probability": 0.9797 + }, + { + "start": 23632.38, + "end": 23634.24, + "probability": 0.8092 + }, + { + "start": 23634.38, + "end": 23634.98, + "probability": 0.8094 + }, + { + "start": 23635.54, + "end": 23636.04, + "probability": 0.5992 + }, + { + "start": 23636.14, + "end": 23638.4, + "probability": 0.9272 + }, + { + "start": 23639.0, + "end": 23640.62, + "probability": 0.9883 + }, + { + "start": 23642.1, + "end": 23642.62, + "probability": 0.9319 + }, + { + "start": 23643.32, + "end": 23648.5, + "probability": 0.6829 + }, + { + "start": 23648.76, + "end": 23651.84, + "probability": 0.8861 + }, + { + "start": 23653.48, + "end": 23658.16, + "probability": 0.981 + }, + { + "start": 23659.0, + "end": 23661.34, + "probability": 0.7173 + }, + { + "start": 23673.24, + "end": 23678.26, + "probability": 0.7238 + }, + { + "start": 23679.68, + "end": 23680.92, + "probability": 0.8278 + }, + { + "start": 23681.1, + "end": 23683.32, + "probability": 0.7133 + }, + { + "start": 23684.88, + "end": 23685.1, + "probability": 0.3229 + }, + { + "start": 23685.12, + "end": 23687.72, + "probability": 0.7363 + }, + { + "start": 23688.0, + "end": 23688.06, + "probability": 0.3996 + }, + { + "start": 23688.06, + "end": 23688.2, + "probability": 0.1029 + }, + { + "start": 23689.02, + "end": 23690.56, + "probability": 0.4786 + }, + { + "start": 23691.44, + "end": 23693.76, + "probability": 0.7169 + }, + { + "start": 23694.88, + "end": 23695.54, + "probability": 0.7585 + }, + { + "start": 23698.88, + "end": 23699.5, + "probability": 0.8005 + }, + { + "start": 23699.9, + "end": 23702.1, + "probability": 0.7223 + }, + { + "start": 23703.32, + "end": 23707.02, + "probability": 0.9792 + }, + { + "start": 23707.66, + "end": 23711.1, + "probability": 0.9943 + }, + { + "start": 23712.06, + "end": 23715.54, + "probability": 0.9873 + }, + { + "start": 23716.78, + "end": 23717.92, + "probability": 0.8366 + }, + { + "start": 23718.58, + "end": 23720.04, + "probability": 0.9957 + }, + { + "start": 23721.2, + "end": 23722.12, + "probability": 0.9324 + }, + { + "start": 23722.92, + "end": 23724.84, + "probability": 0.9492 + }, + { + "start": 23725.96, + "end": 23730.08, + "probability": 0.9966 + }, + { + "start": 23730.68, + "end": 23731.74, + "probability": 0.8466 + }, + { + "start": 23732.92, + "end": 23737.08, + "probability": 0.9807 + }, + { + "start": 23738.18, + "end": 23740.12, + "probability": 0.9862 + }, + { + "start": 23740.86, + "end": 23744.88, + "probability": 0.9959 + }, + { + "start": 23746.02, + "end": 23748.74, + "probability": 0.9979 + }, + { + "start": 23749.5, + "end": 23752.9, + "probability": 0.9841 + }, + { + "start": 23753.82, + "end": 23756.64, + "probability": 0.984 + }, + { + "start": 23757.94, + "end": 23760.06, + "probability": 0.9922 + }, + { + "start": 23761.2, + "end": 23763.8, + "probability": 0.9622 + }, + { + "start": 23763.8, + "end": 23767.06, + "probability": 0.9937 + }, + { + "start": 23767.48, + "end": 23770.48, + "probability": 0.5694 + }, + { + "start": 23771.02, + "end": 23772.1, + "probability": 0.9474 + }, + { + "start": 23773.54, + "end": 23776.96, + "probability": 0.9681 + }, + { + "start": 23777.8, + "end": 23780.54, + "probability": 0.9854 + }, + { + "start": 23780.54, + "end": 23783.06, + "probability": 0.9858 + }, + { + "start": 23783.88, + "end": 23785.0, + "probability": 0.5831 + }, + { + "start": 23786.52, + "end": 23791.42, + "probability": 0.8859 + }, + { + "start": 23792.2, + "end": 23793.38, + "probability": 0.9713 + }, + { + "start": 23793.54, + "end": 23798.16, + "probability": 0.9812 + }, + { + "start": 23798.18, + "end": 23802.68, + "probability": 0.9817 + }, + { + "start": 23803.94, + "end": 23805.4, + "probability": 0.8094 + }, + { + "start": 23805.96, + "end": 23806.96, + "probability": 0.6744 + }, + { + "start": 23807.06, + "end": 23808.64, + "probability": 0.8625 + }, + { + "start": 23808.98, + "end": 23810.92, + "probability": 0.8506 + }, + { + "start": 23811.94, + "end": 23812.36, + "probability": 0.3179 + }, + { + "start": 23813.08, + "end": 23815.38, + "probability": 0.866 + }, + { + "start": 23815.5, + "end": 23817.58, + "probability": 0.9453 + }, + { + "start": 23819.1, + "end": 23820.9, + "probability": 0.9907 + }, + { + "start": 23820.9, + "end": 23823.46, + "probability": 0.6447 + }, + { + "start": 23824.3, + "end": 23826.34, + "probability": 0.6157 + }, + { + "start": 23827.02, + "end": 23831.44, + "probability": 0.9551 + }, + { + "start": 23832.78, + "end": 23836.38, + "probability": 0.977 + }, + { + "start": 23836.38, + "end": 23838.7, + "probability": 0.9966 + }, + { + "start": 23839.24, + "end": 23841.2, + "probability": 0.9983 + }, + { + "start": 23843.18, + "end": 23846.84, + "probability": 0.9795 + }, + { + "start": 23847.84, + "end": 23849.5, + "probability": 0.9935 + }, + { + "start": 23850.22, + "end": 23853.52, + "probability": 0.7896 + }, + { + "start": 23854.48, + "end": 23858.06, + "probability": 0.9924 + }, + { + "start": 23858.58, + "end": 23860.7, + "probability": 0.9837 + }, + { + "start": 23860.8, + "end": 23862.74, + "probability": 0.9707 + }, + { + "start": 23863.54, + "end": 23864.64, + "probability": 0.9886 + }, + { + "start": 23866.18, + "end": 23869.02, + "probability": 0.9937 + }, + { + "start": 23870.16, + "end": 23872.5, + "probability": 0.9829 + }, + { + "start": 23873.25, + "end": 23874.16, + "probability": 0.6001 + }, + { + "start": 23875.36, + "end": 23877.4, + "probability": 0.8781 + }, + { + "start": 23878.12, + "end": 23881.68, + "probability": 0.9344 + }, + { + "start": 23881.68, + "end": 23884.64, + "probability": 0.7084 + }, + { + "start": 23885.96, + "end": 23887.58, + "probability": 0.992 + }, + { + "start": 23888.42, + "end": 23890.18, + "probability": 0.9685 + }, + { + "start": 23890.86, + "end": 23892.72, + "probability": 0.7612 + }, + { + "start": 23893.28, + "end": 23896.42, + "probability": 0.9469 + }, + { + "start": 23897.04, + "end": 23898.62, + "probability": 0.9917 + }, + { + "start": 23898.7, + "end": 23899.86, + "probability": 0.7564 + }, + { + "start": 23900.56, + "end": 23902.84, + "probability": 0.9636 + }, + { + "start": 23904.16, + "end": 23907.62, + "probability": 0.9818 + }, + { + "start": 23907.74, + "end": 23911.6, + "probability": 0.9438 + }, + { + "start": 23912.2, + "end": 23914.24, + "probability": 0.929 + }, + { + "start": 23915.28, + "end": 23918.12, + "probability": 0.9612 + }, + { + "start": 23918.64, + "end": 23922.76, + "probability": 0.5387 + }, + { + "start": 23924.02, + "end": 23927.76, + "probability": 0.7743 + }, + { + "start": 23928.32, + "end": 23930.2, + "probability": 0.9717 + }, + { + "start": 23930.2, + "end": 23933.54, + "probability": 0.7946 + }, + { + "start": 23934.18, + "end": 23935.46, + "probability": 0.5359 + }, + { + "start": 23935.48, + "end": 23936.14, + "probability": 0.6381 + }, + { + "start": 23936.32, + "end": 23937.68, + "probability": 0.7774 + }, + { + "start": 23938.6, + "end": 23940.2, + "probability": 0.9642 + }, + { + "start": 23940.28, + "end": 23943.8, + "probability": 0.7885 + }, + { + "start": 23943.96, + "end": 23945.74, + "probability": 0.4919 + }, + { + "start": 23946.88, + "end": 23948.02, + "probability": 0.873 + }, + { + "start": 23948.92, + "end": 23951.46, + "probability": 0.5849 + }, + { + "start": 23951.6, + "end": 23952.18, + "probability": 0.3773 + }, + { + "start": 23952.72, + "end": 23955.12, + "probability": 0.9941 + }, + { + "start": 23955.24, + "end": 23956.18, + "probability": 0.9554 + }, + { + "start": 23957.24, + "end": 23958.76, + "probability": 0.9125 + }, + { + "start": 23958.9, + "end": 23960.06, + "probability": 0.9327 + }, + { + "start": 23960.12, + "end": 23961.54, + "probability": 0.9492 + }, + { + "start": 23962.5, + "end": 23965.5, + "probability": 0.9913 + }, + { + "start": 23966.82, + "end": 23972.5, + "probability": 0.9609 + }, + { + "start": 23972.78, + "end": 23973.3, + "probability": 0.5085 + }, + { + "start": 23973.5, + "end": 23975.9, + "probability": 0.8432 + }, + { + "start": 23975.9, + "end": 23978.88, + "probability": 0.9573 + }, + { + "start": 23979.78, + "end": 23982.26, + "probability": 0.9333 + }, + { + "start": 23982.26, + "end": 23985.8, + "probability": 0.9587 + }, + { + "start": 23986.52, + "end": 23988.72, + "probability": 0.9896 + }, + { + "start": 23988.72, + "end": 23991.42, + "probability": 0.876 + }, + { + "start": 23991.44, + "end": 23993.24, + "probability": 0.5937 + }, + { + "start": 23993.44, + "end": 23994.38, + "probability": 0.6048 + }, + { + "start": 23995.12, + "end": 23995.9, + "probability": 0.8194 + }, + { + "start": 23995.98, + "end": 23997.28, + "probability": 0.7084 + }, + { + "start": 23997.32, + "end": 24000.06, + "probability": 0.8303 + }, + { + "start": 24000.14, + "end": 24004.14, + "probability": 0.9612 + }, + { + "start": 24005.14, + "end": 24009.0, + "probability": 0.7932 + }, + { + "start": 24010.12, + "end": 24012.0, + "probability": 0.7551 + }, + { + "start": 24012.04, + "end": 24013.86, + "probability": 0.2527 + }, + { + "start": 24014.7, + "end": 24017.28, + "probability": 0.9028 + }, + { + "start": 24017.48, + "end": 24017.76, + "probability": 0.1711 + }, + { + "start": 24018.46, + "end": 24020.58, + "probability": 0.1989 + }, + { + "start": 24020.62, + "end": 24023.28, + "probability": 0.892 + }, + { + "start": 24024.54, + "end": 24028.3, + "probability": 0.9784 + }, + { + "start": 24028.94, + "end": 24031.24, + "probability": 0.9561 + }, + { + "start": 24031.76, + "end": 24034.87, + "probability": 0.9209 + }, + { + "start": 24035.0, + "end": 24039.86, + "probability": 0.9631 + }, + { + "start": 24040.02, + "end": 24040.58, + "probability": 0.9392 + }, + { + "start": 24040.66, + "end": 24043.5, + "probability": 0.9062 + }, + { + "start": 24044.62, + "end": 24046.78, + "probability": 0.5123 + }, + { + "start": 24047.56, + "end": 24049.38, + "probability": 0.934 + }, + { + "start": 24049.52, + "end": 24051.96, + "probability": 0.9346 + }, + { + "start": 24052.06, + "end": 24053.24, + "probability": 0.6 + }, + { + "start": 24054.14, + "end": 24055.54, + "probability": 0.6864 + }, + { + "start": 24055.7, + "end": 24058.06, + "probability": 0.7219 + }, + { + "start": 24058.2, + "end": 24058.58, + "probability": 0.7886 + }, + { + "start": 24060.6, + "end": 24061.5, + "probability": 0.8335 + }, + { + "start": 24061.5, + "end": 24062.02, + "probability": 0.5896 + }, + { + "start": 24062.16, + "end": 24063.24, + "probability": 0.2614 + }, + { + "start": 24063.4, + "end": 24064.46, + "probability": 0.9205 + }, + { + "start": 24065.42, + "end": 24069.56, + "probability": 0.9713 + }, + { + "start": 24070.46, + "end": 24076.0, + "probability": 0.8324 + }, + { + "start": 24076.1, + "end": 24077.8, + "probability": 0.9865 + }, + { + "start": 24079.14, + "end": 24081.88, + "probability": 0.9836 + }, + { + "start": 24081.96, + "end": 24084.67, + "probability": 0.9883 + }, + { + "start": 24084.9, + "end": 24088.66, + "probability": 0.9827 + }, + { + "start": 24089.52, + "end": 24090.38, + "probability": 0.7336 + }, + { + "start": 24091.12, + "end": 24094.22, + "probability": 0.9248 + }, + { + "start": 24094.3, + "end": 24099.8, + "probability": 0.9106 + }, + { + "start": 24100.52, + "end": 24101.74, + "probability": 0.8307 + }, + { + "start": 24101.88, + "end": 24103.22, + "probability": 0.4108 + }, + { + "start": 24103.5, + "end": 24104.32, + "probability": 0.9674 + }, + { + "start": 24105.42, + "end": 24107.14, + "probability": 0.7765 + }, + { + "start": 24107.28, + "end": 24108.87, + "probability": 0.6712 + }, + { + "start": 24109.68, + "end": 24111.14, + "probability": 0.6022 + }, + { + "start": 24111.22, + "end": 24114.22, + "probability": 0.9548 + }, + { + "start": 24114.22, + "end": 24116.84, + "probability": 0.8405 + }, + { + "start": 24117.56, + "end": 24120.34, + "probability": 0.9723 + }, + { + "start": 24120.34, + "end": 24123.04, + "probability": 0.9284 + }, + { + "start": 24123.7, + "end": 24126.92, + "probability": 0.8723 + }, + { + "start": 24127.56, + "end": 24131.38, + "probability": 0.7199 + }, + { + "start": 24131.98, + "end": 24133.26, + "probability": 0.6043 + }, + { + "start": 24134.0, + "end": 24135.48, + "probability": 0.9498 + }, + { + "start": 24135.66, + "end": 24136.4, + "probability": 0.8958 + }, + { + "start": 24137.26, + "end": 24138.52, + "probability": 0.7968 + }, + { + "start": 24138.66, + "end": 24140.54, + "probability": 0.9914 + }, + { + "start": 24140.54, + "end": 24142.5, + "probability": 0.8927 + }, + { + "start": 24143.32, + "end": 24146.68, + "probability": 0.9696 + }, + { + "start": 24148.1, + "end": 24150.0, + "probability": 0.9857 + }, + { + "start": 24150.0, + "end": 24152.42, + "probability": 0.8056 + }, + { + "start": 24154.06, + "end": 24158.9, + "probability": 0.862 + }, + { + "start": 24158.9, + "end": 24161.86, + "probability": 0.9884 + }, + { + "start": 24161.86, + "end": 24167.0, + "probability": 0.4832 + }, + { + "start": 24167.0, + "end": 24170.48, + "probability": 0.9206 + }, + { + "start": 24170.6, + "end": 24170.9, + "probability": 0.7066 + }, + { + "start": 24172.02, + "end": 24174.32, + "probability": 0.9866 + }, + { + "start": 24175.12, + "end": 24176.0, + "probability": 0.9609 + }, + { + "start": 24176.18, + "end": 24178.36, + "probability": 0.7634 + }, + { + "start": 24179.26, + "end": 24180.0, + "probability": 0.8933 + }, + { + "start": 24180.08, + "end": 24180.72, + "probability": 0.6727 + }, + { + "start": 24180.78, + "end": 24182.06, + "probability": 0.7713 + }, + { + "start": 24183.04, + "end": 24187.76, + "probability": 0.9258 + }, + { + "start": 24188.52, + "end": 24190.33, + "probability": 0.7601 + }, + { + "start": 24192.96, + "end": 24193.52, + "probability": 0.5008 + }, + { + "start": 24193.92, + "end": 24196.18, + "probability": 0.4 + }, + { + "start": 24196.44, + "end": 24203.06, + "probability": 0.7259 + }, + { + "start": 24203.86, + "end": 24206.88, + "probability": 0.9081 + }, + { + "start": 24207.78, + "end": 24211.08, + "probability": 0.8078 + }, + { + "start": 24211.08, + "end": 24214.06, + "probability": 0.9553 + }, + { + "start": 24215.02, + "end": 24218.82, + "probability": 0.868 + }, + { + "start": 24218.82, + "end": 24220.96, + "probability": 0.8483 + }, + { + "start": 24221.9, + "end": 24224.0, + "probability": 0.9768 + }, + { + "start": 24224.0, + "end": 24227.92, + "probability": 0.7031 + }, + { + "start": 24228.34, + "end": 24228.34, + "probability": 0.6702 + }, + { + "start": 24228.34, + "end": 24230.0, + "probability": 0.9348 + }, + { + "start": 24230.6, + "end": 24231.66, + "probability": 0.9194 + }, + { + "start": 24232.16, + "end": 24233.58, + "probability": 0.7742 + }, + { + "start": 24234.46, + "end": 24235.14, + "probability": 0.8408 + }, + { + "start": 24235.24, + "end": 24236.74, + "probability": 0.9529 + }, + { + "start": 24236.82, + "end": 24237.5, + "probability": 0.7725 + }, + { + "start": 24238.12, + "end": 24239.04, + "probability": 0.8734 + }, + { + "start": 24239.7, + "end": 24242.06, + "probability": 0.5297 + }, + { + "start": 24242.76, + "end": 24244.44, + "probability": 0.7227 + }, + { + "start": 24244.5, + "end": 24248.1, + "probability": 0.9785 + }, + { + "start": 24249.06, + "end": 24251.2, + "probability": 0.9628 + }, + { + "start": 24251.32, + "end": 24256.88, + "probability": 0.9873 + }, + { + "start": 24257.02, + "end": 24258.86, + "probability": 0.7977 + }, + { + "start": 24259.42, + "end": 24261.24, + "probability": 0.9233 + }, + { + "start": 24261.42, + "end": 24261.98, + "probability": 0.6883 + }, + { + "start": 24262.94, + "end": 24266.68, + "probability": 0.8515 + }, + { + "start": 24267.56, + "end": 24270.16, + "probability": 0.9016 + }, + { + "start": 24270.72, + "end": 24272.68, + "probability": 0.907 + }, + { + "start": 24273.22, + "end": 24275.54, + "probability": 0.8154 + }, + { + "start": 24275.6, + "end": 24279.28, + "probability": 0.832 + }, + { + "start": 24280.4, + "end": 24284.1, + "probability": 0.9476 + }, + { + "start": 24285.0, + "end": 24286.88, + "probability": 0.8408 + }, + { + "start": 24287.04, + "end": 24288.18, + "probability": 0.7866 + }, + { + "start": 24289.32, + "end": 24290.36, + "probability": 0.9894 + }, + { + "start": 24292.78, + "end": 24296.4, + "probability": 0.9869 + }, + { + "start": 24297.24, + "end": 24299.44, + "probability": 0.9543 + }, + { + "start": 24300.24, + "end": 24300.88, + "probability": 0.9334 + }, + { + "start": 24300.98, + "end": 24302.88, + "probability": 0.9711 + }, + { + "start": 24303.12, + "end": 24305.42, + "probability": 0.9139 + }, + { + "start": 24305.64, + "end": 24306.14, + "probability": 0.7823 + }, + { + "start": 24306.26, + "end": 24306.66, + "probability": 0.8085 + }, + { + "start": 24306.84, + "end": 24307.82, + "probability": 0.647 + }, + { + "start": 24307.94, + "end": 24308.5, + "probability": 0.8501 + }, + { + "start": 24308.62, + "end": 24312.46, + "probability": 0.9387 + }, + { + "start": 24312.46, + "end": 24315.9, + "probability": 0.9936 + }, + { + "start": 24316.76, + "end": 24318.08, + "probability": 0.8067 + }, + { + "start": 24318.6, + "end": 24321.46, + "probability": 0.9344 + }, + { + "start": 24322.16, + "end": 24324.64, + "probability": 0.953 + }, + { + "start": 24324.86, + "end": 24329.86, + "probability": 0.9612 + }, + { + "start": 24331.04, + "end": 24333.28, + "probability": 0.716 + }, + { + "start": 24333.8, + "end": 24335.0, + "probability": 0.876 + }, + { + "start": 24336.44, + "end": 24337.54, + "probability": 0.7224 + }, + { + "start": 24338.18, + "end": 24339.08, + "probability": 0.8442 + }, + { + "start": 24340.7, + "end": 24341.3, + "probability": 0.3477 + }, + { + "start": 24341.82, + "end": 24344.22, + "probability": 0.7742 + }, + { + "start": 24356.22, + "end": 24358.24, + "probability": 0.6139 + }, + { + "start": 24359.12, + "end": 24362.0, + "probability": 0.766 + }, + { + "start": 24363.44, + "end": 24371.9, + "probability": 0.9937 + }, + { + "start": 24373.02, + "end": 24373.82, + "probability": 0.8384 + }, + { + "start": 24375.56, + "end": 24376.05, + "probability": 0.6085 + }, + { + "start": 24376.74, + "end": 24378.42, + "probability": 0.7798 + }, + { + "start": 24378.62, + "end": 24383.84, + "probability": 0.6871 + }, + { + "start": 24383.84, + "end": 24386.98, + "probability": 0.9848 + }, + { + "start": 24386.98, + "end": 24392.64, + "probability": 0.9333 + }, + { + "start": 24395.14, + "end": 24396.7, + "probability": 0.8564 + }, + { + "start": 24397.7, + "end": 24399.08, + "probability": 0.7609 + }, + { + "start": 24399.34, + "end": 24399.94, + "probability": 0.8306 + }, + { + "start": 24400.14, + "end": 24402.36, + "probability": 0.9054 + }, + { + "start": 24403.0, + "end": 24408.58, + "probability": 0.7801 + }, + { + "start": 24409.72, + "end": 24414.04, + "probability": 0.8905 + }, + { + "start": 24414.22, + "end": 24417.12, + "probability": 0.9875 + }, + { + "start": 24417.58, + "end": 24421.44, + "probability": 0.86 + }, + { + "start": 24421.58, + "end": 24425.68, + "probability": 0.6948 + }, + { + "start": 24425.94, + "end": 24428.26, + "probability": 0.9486 + }, + { + "start": 24428.46, + "end": 24430.62, + "probability": 0.8177 + }, + { + "start": 24430.78, + "end": 24432.32, + "probability": 0.9271 + }, + { + "start": 24433.4, + "end": 24436.58, + "probability": 0.9923 + }, + { + "start": 24436.58, + "end": 24439.66, + "probability": 0.9731 + }, + { + "start": 24439.82, + "end": 24443.52, + "probability": 0.7734 + }, + { + "start": 24444.2, + "end": 24445.92, + "probability": 0.603 + }, + { + "start": 24446.58, + "end": 24449.7, + "probability": 0.9921 + }, + { + "start": 24449.7, + "end": 24452.16, + "probability": 0.9927 + }, + { + "start": 24452.22, + "end": 24453.74, + "probability": 0.9653 + }, + { + "start": 24457.44, + "end": 24457.76, + "probability": 0.011 + }, + { + "start": 24457.76, + "end": 24460.48, + "probability": 0.1473 + }, + { + "start": 24460.76, + "end": 24463.26, + "probability": 0.9865 + }, + { + "start": 24463.36, + "end": 24463.58, + "probability": 0.4573 + }, + { + "start": 24463.64, + "end": 24466.14, + "probability": 0.9409 + }, + { + "start": 24466.22, + "end": 24467.81, + "probability": 0.5929 + }, + { + "start": 24467.94, + "end": 24469.68, + "probability": 0.8272 + }, + { + "start": 24470.86, + "end": 24471.84, + "probability": 0.0638 + }, + { + "start": 24472.76, + "end": 24475.2, + "probability": 0.2427 + }, + { + "start": 24475.42, + "end": 24479.08, + "probability": 0.221 + }, + { + "start": 24479.16, + "end": 24479.86, + "probability": 0.5539 + }, + { + "start": 24480.28, + "end": 24483.14, + "probability": 0.6545 + }, + { + "start": 24483.22, + "end": 24483.82, + "probability": 0.3405 + }, + { + "start": 24483.82, + "end": 24486.58, + "probability": 0.6261 + }, + { + "start": 24486.6, + "end": 24488.94, + "probability": 0.9379 + }, + { + "start": 24488.98, + "end": 24490.52, + "probability": 0.9876 + }, + { + "start": 24491.14, + "end": 24493.62, + "probability": 0.3019 + }, + { + "start": 24493.88, + "end": 24493.88, + "probability": 0.0269 + }, + { + "start": 24493.88, + "end": 24493.88, + "probability": 0.3031 + }, + { + "start": 24493.88, + "end": 24495.36, + "probability": 0.0835 + }, + { + "start": 24495.48, + "end": 24496.52, + "probability": 0.5296 + }, + { + "start": 24496.56, + "end": 24500.46, + "probability": 0.954 + }, + { + "start": 24500.6, + "end": 24501.74, + "probability": 0.5265 + }, + { + "start": 24501.88, + "end": 24502.96, + "probability": 0.345 + }, + { + "start": 24502.96, + "end": 24502.96, + "probability": 0.0508 + }, + { + "start": 24502.96, + "end": 24507.79, + "probability": 0.7588 + }, + { + "start": 24509.26, + "end": 24512.56, + "probability": 0.6396 + }, + { + "start": 24513.96, + "end": 24519.82, + "probability": 0.9844 + }, + { + "start": 24520.54, + "end": 24523.12, + "probability": 0.636 + }, + { + "start": 24523.2, + "end": 24524.88, + "probability": 0.7772 + }, + { + "start": 24524.94, + "end": 24524.96, + "probability": 0.1428 + }, + { + "start": 24524.96, + "end": 24525.72, + "probability": 0.4836 + }, + { + "start": 24525.76, + "end": 24529.96, + "probability": 0.9537 + }, + { + "start": 24530.38, + "end": 24533.4, + "probability": 0.9771 + }, + { + "start": 24533.46, + "end": 24535.56, + "probability": 0.7118 + }, + { + "start": 24535.66, + "end": 24536.04, + "probability": 0.9681 + }, + { + "start": 24536.18, + "end": 24536.85, + "probability": 0.9151 + }, + { + "start": 24537.58, + "end": 24544.34, + "probability": 0.9645 + }, + { + "start": 24544.48, + "end": 24549.44, + "probability": 0.9956 + }, + { + "start": 24549.48, + "end": 24553.0, + "probability": 0.9635 + }, + { + "start": 24555.0, + "end": 24558.0, + "probability": 0.9946 + }, + { + "start": 24559.48, + "end": 24563.56, + "probability": 0.749 + }, + { + "start": 24564.12, + "end": 24568.2, + "probability": 0.9863 + }, + { + "start": 24568.24, + "end": 24569.94, + "probability": 0.8939 + }, + { + "start": 24570.16, + "end": 24572.0, + "probability": 0.9588 + }, + { + "start": 24572.34, + "end": 24576.12, + "probability": 0.9956 + }, + { + "start": 24576.16, + "end": 24580.3, + "probability": 0.9946 + }, + { + "start": 24580.76, + "end": 24582.57, + "probability": 0.8239 + }, + { + "start": 24583.08, + "end": 24585.02, + "probability": 0.9525 + }, + { + "start": 24585.32, + "end": 24586.12, + "probability": 0.959 + }, + { + "start": 24586.32, + "end": 24589.68, + "probability": 0.978 + }, + { + "start": 24589.68, + "end": 24594.9, + "probability": 0.9876 + }, + { + "start": 24595.58, + "end": 24596.1, + "probability": 0.6955 + }, + { + "start": 24596.8, + "end": 24599.44, + "probability": 0.9964 + }, + { + "start": 24599.44, + "end": 24601.7, + "probability": 0.9878 + }, + { + "start": 24602.28, + "end": 24605.26, + "probability": 0.962 + }, + { + "start": 24605.34, + "end": 24607.32, + "probability": 0.9342 + }, + { + "start": 24608.96, + "end": 24611.68, + "probability": 0.9903 + }, + { + "start": 24611.76, + "end": 24612.7, + "probability": 0.6908 + }, + { + "start": 24614.04, + "end": 24617.02, + "probability": 0.9867 + }, + { + "start": 24618.0, + "end": 24620.28, + "probability": 0.708 + }, + { + "start": 24621.02, + "end": 24621.46, + "probability": 0.2662 + }, + { + "start": 24622.02, + "end": 24623.78, + "probability": 0.7459 + }, + { + "start": 24624.2, + "end": 24624.64, + "probability": 0.7373 + }, + { + "start": 24624.7, + "end": 24626.78, + "probability": 0.9381 + }, + { + "start": 24627.42, + "end": 24631.94, + "probability": 0.9749 + }, + { + "start": 24633.04, + "end": 24635.12, + "probability": 0.4548 + }, + { + "start": 24637.52, + "end": 24640.22, + "probability": 0.7227 + }, + { + "start": 24640.42, + "end": 24642.89, + "probability": 0.9946 + }, + { + "start": 24643.76, + "end": 24649.36, + "probability": 0.8438 + }, + { + "start": 24649.36, + "end": 24653.1, + "probability": 0.9229 + }, + { + "start": 24654.97, + "end": 24657.48, + "probability": 0.1749 + }, + { + "start": 24657.48, + "end": 24658.1, + "probability": 0.5178 + }, + { + "start": 24658.1, + "end": 24661.5, + "probability": 0.8163 + }, + { + "start": 24661.56, + "end": 24662.62, + "probability": 0.7557 + }, + { + "start": 24662.72, + "end": 24664.6, + "probability": 0.6879 + }, + { + "start": 24664.98, + "end": 24667.1, + "probability": 0.3681 + }, + { + "start": 24667.4, + "end": 24669.16, + "probability": 0.9493 + }, + { + "start": 24669.34, + "end": 24672.21, + "probability": 0.5859 + }, + { + "start": 24672.44, + "end": 24675.38, + "probability": 0.7065 + }, + { + "start": 24675.5, + "end": 24676.5, + "probability": 0.9404 + }, + { + "start": 24676.68, + "end": 24678.82, + "probability": 0.9943 + }, + { + "start": 24678.96, + "end": 24679.14, + "probability": 0.8173 + }, + { + "start": 24679.26, + "end": 24679.78, + "probability": 0.9496 + }, + { + "start": 24680.4, + "end": 24682.92, + "probability": 0.9595 + }, + { + "start": 24683.02, + "end": 24684.1, + "probability": 0.9579 + }, + { + "start": 24684.46, + "end": 24684.9, + "probability": 0.8426 + }, + { + "start": 24685.0, + "end": 24687.02, + "probability": 0.7468 + }, + { + "start": 24687.08, + "end": 24688.02, + "probability": 0.8979 + }, + { + "start": 24688.28, + "end": 24689.58, + "probability": 0.756 + }, + { + "start": 24689.88, + "end": 24693.94, + "probability": 0.7427 + }, + { + "start": 24694.52, + "end": 24696.88, + "probability": 0.9965 + }, + { + "start": 24697.22, + "end": 24701.88, + "probability": 0.945 + }, + { + "start": 24702.0, + "end": 24705.0, + "probability": 0.9985 + }, + { + "start": 24705.28, + "end": 24709.5, + "probability": 0.9967 + }, + { + "start": 24709.6, + "end": 24711.76, + "probability": 0.678 + }, + { + "start": 24712.08, + "end": 24715.1, + "probability": 0.982 + }, + { + "start": 24715.46, + "end": 24720.64, + "probability": 0.9833 + }, + { + "start": 24721.0, + "end": 24722.86, + "probability": 0.7865 + }, + { + "start": 24722.9, + "end": 24723.56, + "probability": 0.7312 + }, + { + "start": 24724.02, + "end": 24724.72, + "probability": 0.4013 + }, + { + "start": 24724.96, + "end": 24729.0, + "probability": 0.793 + }, + { + "start": 24729.54, + "end": 24730.04, + "probability": 0.809 + }, + { + "start": 24730.28, + "end": 24730.28, + "probability": 0.4857 + }, + { + "start": 24730.28, + "end": 24731.46, + "probability": 0.7556 + }, + { + "start": 24731.5, + "end": 24732.94, + "probability": 0.8613 + }, + { + "start": 24733.38, + "end": 24736.04, + "probability": 0.9304 + }, + { + "start": 24736.24, + "end": 24737.72, + "probability": 0.657 + }, + { + "start": 24737.74, + "end": 24739.24, + "probability": 0.6631 + }, + { + "start": 24740.14, + "end": 24742.78, + "probability": 0.5454 + }, + { + "start": 24742.78, + "end": 24743.44, + "probability": 0.5273 + }, + { + "start": 24743.5, + "end": 24747.22, + "probability": 0.8796 + }, + { + "start": 24747.46, + "end": 24748.38, + "probability": 0.0924 + }, + { + "start": 24748.82, + "end": 24751.58, + "probability": 0.7453 + }, + { + "start": 24751.98, + "end": 24753.88, + "probability": 0.6651 + }, + { + "start": 24754.2, + "end": 24755.06, + "probability": 0.8464 + }, + { + "start": 24755.14, + "end": 24758.42, + "probability": 0.959 + }, + { + "start": 24758.6, + "end": 24758.94, + "probability": 0.655 + }, + { + "start": 24759.1, + "end": 24760.24, + "probability": 0.4576 + }, + { + "start": 24760.34, + "end": 24764.2, + "probability": 0.2559 + }, + { + "start": 24764.88, + "end": 24767.96, + "probability": 0.8343 + }, + { + "start": 24768.82, + "end": 24773.3, + "probability": 0.9607 + }, + { + "start": 24773.86, + "end": 24775.7, + "probability": 0.9617 + }, + { + "start": 24778.64, + "end": 24779.17, + "probability": 0.4859 + }, + { + "start": 24780.8, + "end": 24780.94, + "probability": 0.0211 + }, + { + "start": 24794.52, + "end": 24796.06, + "probability": 0.2184 + }, + { + "start": 24797.04, + "end": 24797.86, + "probability": 0.5613 + }, + { + "start": 24798.52, + "end": 24799.6, + "probability": 0.5497 + }, + { + "start": 24801.02, + "end": 24807.02, + "probability": 0.8222 + }, + { + "start": 24808.86, + "end": 24809.72, + "probability": 0.1301 + }, + { + "start": 24814.02, + "end": 24816.76, + "probability": 0.0872 + }, + { + "start": 24817.52, + "end": 24819.92, + "probability": 0.8007 + }, + { + "start": 24820.66, + "end": 24822.86, + "probability": 0.6027 + }, + { + "start": 24824.32, + "end": 24826.74, + "probability": 0.918 + }, + { + "start": 24827.9, + "end": 24829.06, + "probability": 0.8931 + }, + { + "start": 24832.06, + "end": 24833.64, + "probability": 0.5509 + }, + { + "start": 24837.62, + "end": 24838.5, + "probability": 0.8896 + }, + { + "start": 24839.42, + "end": 24840.62, + "probability": 0.5761 + }, + { + "start": 24842.88, + "end": 24848.7, + "probability": 0.6291 + }, + { + "start": 24849.52, + "end": 24850.46, + "probability": 0.9524 + }, + { + "start": 24851.2, + "end": 24852.7, + "probability": 0.9187 + }, + { + "start": 24853.92, + "end": 24858.08, + "probability": 0.9879 + }, + { + "start": 24860.1, + "end": 24861.18, + "probability": 0.9928 + }, + { + "start": 24861.76, + "end": 24862.84, + "probability": 0.9744 + }, + { + "start": 24865.38, + "end": 24874.46, + "probability": 0.5345 + }, + { + "start": 24875.0, + "end": 24875.64, + "probability": 0.4735 + }, + { + "start": 24876.78, + "end": 24880.66, + "probability": 0.2174 + }, + { + "start": 24880.94, + "end": 24881.6, + "probability": 0.709 + }, + { + "start": 24881.7, + "end": 24882.31, + "probability": 0.6666 + }, + { + "start": 24882.66, + "end": 24884.74, + "probability": 0.7422 + }, + { + "start": 24885.18, + "end": 24885.96, + "probability": 0.5004 + }, + { + "start": 24886.76, + "end": 24888.14, + "probability": 0.4006 + }, + { + "start": 24888.7, + "end": 24889.74, + "probability": 0.5141 + }, + { + "start": 24889.74, + "end": 24890.18, + "probability": 0.4868 + }, + { + "start": 24890.56, + "end": 24892.8, + "probability": 0.6425 + }, + { + "start": 24892.98, + "end": 24893.75, + "probability": 0.4031 + }, + { + "start": 24894.38, + "end": 24896.74, + "probability": 0.7008 + }, + { + "start": 24896.76, + "end": 24897.74, + "probability": 0.617 + }, + { + "start": 24898.92, + "end": 24899.04, + "probability": 0.7685 + }, + { + "start": 24899.24, + "end": 24904.24, + "probability": 0.0444 + }, + { + "start": 24904.24, + "end": 24904.59, + "probability": 0.1003 + }, + { + "start": 24905.62, + "end": 24909.1, + "probability": 0.8564 + }, + { + "start": 24909.24, + "end": 24911.72, + "probability": 0.9525 + }, + { + "start": 24911.86, + "end": 24912.92, + "probability": 0.9707 + }, + { + "start": 24915.44, + "end": 24916.58, + "probability": 0.8197 + }, + { + "start": 24917.68, + "end": 24920.42, + "probability": 0.9398 + }, + { + "start": 24922.2, + "end": 24925.74, + "probability": 0.8751 + }, + { + "start": 24927.38, + "end": 24930.4, + "probability": 0.7477 + }, + { + "start": 24931.44, + "end": 24931.88, + "probability": 0.9622 + }, + { + "start": 24932.9, + "end": 24934.0, + "probability": 0.6922 + }, + { + "start": 24935.0, + "end": 24937.68, + "probability": 0.8841 + }, + { + "start": 24938.26, + "end": 24942.08, + "probability": 0.9189 + }, + { + "start": 24942.96, + "end": 24944.74, + "probability": 0.9866 + }, + { + "start": 24946.12, + "end": 24946.86, + "probability": 0.9722 + }, + { + "start": 24947.52, + "end": 24949.16, + "probability": 0.7676 + }, + { + "start": 24949.88, + "end": 24952.58, + "probability": 0.9641 + }, + { + "start": 24953.96, + "end": 24957.26, + "probability": 0.9901 + }, + { + "start": 24957.42, + "end": 24960.84, + "probability": 0.7 + }, + { + "start": 24961.18, + "end": 24964.38, + "probability": 0.3655 + }, + { + "start": 24965.54, + "end": 24970.42, + "probability": 0.9616 + }, + { + "start": 24971.3, + "end": 24971.82, + "probability": 0.6719 + }, + { + "start": 24972.58, + "end": 24973.98, + "probability": 0.7035 + }, + { + "start": 24975.28, + "end": 24975.8, + "probability": 0.881 + }, + { + "start": 24976.88, + "end": 24978.24, + "probability": 0.9803 + }, + { + "start": 24979.18, + "end": 24982.58, + "probability": 0.7575 + }, + { + "start": 24985.02, + "end": 24987.66, + "probability": 0.0658 + }, + { + "start": 25004.14, + "end": 25005.02, + "probability": 0.6658 + }, + { + "start": 25011.92, + "end": 25014.34, + "probability": 0.4127 + }, + { + "start": 25015.52, + "end": 25017.9, + "probability": 0.6762 + }, + { + "start": 25019.8, + "end": 25020.88, + "probability": 0.9798 + }, + { + "start": 25021.56, + "end": 25022.48, + "probability": 0.9488 + }, + { + "start": 25023.76, + "end": 25026.58, + "probability": 0.5595 + }, + { + "start": 25027.42, + "end": 25027.96, + "probability": 0.9821 + }, + { + "start": 25033.36, + "end": 25035.02, + "probability": 0.4762 + }, + { + "start": 25035.86, + "end": 25038.72, + "probability": 0.8634 + }, + { + "start": 25039.52, + "end": 25040.48, + "probability": 0.9686 + }, + { + "start": 25041.4, + "end": 25042.38, + "probability": 0.8867 + }, + { + "start": 25043.26, + "end": 25045.56, + "probability": 0.968 + }, + { + "start": 25046.64, + "end": 25049.54, + "probability": 0.9601 + }, + { + "start": 25050.94, + "end": 25055.58, + "probability": 0.9432 + }, + { + "start": 25057.08, + "end": 25059.18, + "probability": 0.255 + }, + { + "start": 25059.7, + "end": 25061.2, + "probability": 0.2627 + }, + { + "start": 25062.14, + "end": 25062.4, + "probability": 0.1574 + }, + { + "start": 25065.44, + "end": 25067.64, + "probability": 0.4269 + }, + { + "start": 25070.03, + "end": 25071.34, + "probability": 0.8213 + }, + { + "start": 25074.24, + "end": 25075.02, + "probability": 0.7332 + }, + { + "start": 25076.26, + "end": 25080.86, + "probability": 0.6736 + }, + { + "start": 25084.82, + "end": 25087.96, + "probability": 0.802 + }, + { + "start": 25091.34, + "end": 25097.54, + "probability": 0.6041 + }, + { + "start": 25098.58, + "end": 25100.5, + "probability": 0.8994 + }, + { + "start": 25103.38, + "end": 25109.0, + "probability": 0.6358 + }, + { + "start": 25110.28, + "end": 25113.2, + "probability": 0.9518 + }, + { + "start": 25113.98, + "end": 25114.44, + "probability": 0.9242 + }, + { + "start": 25115.3, + "end": 25116.12, + "probability": 0.9092 + }, + { + "start": 25118.57, + "end": 25122.84, + "probability": 0.6811 + }, + { + "start": 25124.1, + "end": 25126.46, + "probability": 0.9018 + }, + { + "start": 25128.82, + "end": 25130.82, + "probability": 0.7827 + }, + { + "start": 25131.66, + "end": 25134.3, + "probability": 0.8386 + }, + { + "start": 25135.56, + "end": 25138.76, + "probability": 0.5548 + }, + { + "start": 25140.3, + "end": 25143.98, + "probability": 0.949 + }, + { + "start": 25148.08, + "end": 25152.98, + "probability": 0.8384 + }, + { + "start": 25153.84, + "end": 25156.74, + "probability": 0.9487 + }, + { + "start": 25157.71, + "end": 25160.08, + "probability": 0.9734 + }, + { + "start": 25161.08, + "end": 25163.86, + "probability": 0.6743 + }, + { + "start": 25164.84, + "end": 25168.22, + "probability": 0.9821 + }, + { + "start": 25169.3, + "end": 25171.86, + "probability": 0.4125 + }, + { + "start": 25173.34, + "end": 25176.24, + "probability": 0.9225 + }, + { + "start": 25176.48, + "end": 25182.68, + "probability": 0.7343 + }, + { + "start": 25185.94, + "end": 25191.14, + "probability": 0.6891 + }, + { + "start": 25194.12, + "end": 25195.56, + "probability": 0.3383 + }, + { + "start": 25206.74, + "end": 25207.94, + "probability": 0.1786 + }, + { + "start": 25208.82, + "end": 25210.36, + "probability": 0.4695 + }, + { + "start": 25212.16, + "end": 25213.16, + "probability": 0.781 + }, + { + "start": 25214.14, + "end": 25217.52, + "probability": 0.5982 + }, + { + "start": 25217.62, + "end": 25220.94, + "probability": 0.0578 + }, + { + "start": 25220.94, + "end": 25222.78, + "probability": 0.1584 + }, + { + "start": 25222.78, + "end": 25226.54, + "probability": 0.2487 + }, + { + "start": 25226.78, + "end": 25227.8, + "probability": 0.0073 + }, + { + "start": 25229.12, + "end": 25231.12, + "probability": 0.1319 + }, + { + "start": 25231.82, + "end": 25233.5, + "probability": 0.161 + }, + { + "start": 25235.62, + "end": 25239.46, + "probability": 0.1744 + }, + { + "start": 25242.6, + "end": 25244.1, + "probability": 0.192 + }, + { + "start": 25246.08, + "end": 25247.74, + "probability": 0.1436 + }, + { + "start": 25250.22, + "end": 25251.94, + "probability": 0.3662 + }, + { + "start": 25257.8, + "end": 25262.24, + "probability": 0.137 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25487.0, + "end": 25487.0, + "probability": 0.0 + }, + { + "start": 25488.65, + "end": 25488.81, + "probability": 0.0148 + }, + { + "start": 25489.78, + "end": 25490.9, + "probability": 0.4671 + }, + { + "start": 25491.78, + "end": 25494.18, + "probability": 0.7572 + }, + { + "start": 25495.76, + "end": 25498.44, + "probability": 0.6794 + }, + { + "start": 25499.64, + "end": 25500.32, + "probability": 0.9638 + }, + { + "start": 25502.92, + "end": 25503.3, + "probability": 0.7878 + }, + { + "start": 25505.7, + "end": 25506.36, + "probability": 0.9221 + }, + { + "start": 25507.06, + "end": 25509.76, + "probability": 0.7618 + }, + { + "start": 25510.52, + "end": 25511.22, + "probability": 0.9555 + }, + { + "start": 25511.78, + "end": 25512.62, + "probability": 0.9258 + }, + { + "start": 25514.26, + "end": 25515.08, + "probability": 0.9835 + }, + { + "start": 25516.32, + "end": 25517.42, + "probability": 0.5364 + }, + { + "start": 25518.86, + "end": 25519.74, + "probability": 0.9898 + }, + { + "start": 25520.74, + "end": 25524.34, + "probability": 0.9551 + }, + { + "start": 25525.46, + "end": 25528.74, + "probability": 0.9165 + }, + { + "start": 25531.12, + "end": 25532.24, + "probability": 0.8599 + }, + { + "start": 25534.14, + "end": 25534.9, + "probability": 0.6316 + }, + { + "start": 25536.12, + "end": 25540.48, + "probability": 0.5399 + }, + { + "start": 25543.26, + "end": 25546.04, + "probability": 0.8642 + }, + { + "start": 25548.36, + "end": 25549.9, + "probability": 0.6668 + }, + { + "start": 25553.26, + "end": 25554.04, + "probability": 0.5456 + }, + { + "start": 25555.14, + "end": 25557.7, + "probability": 0.8302 + }, + { + "start": 25559.82, + "end": 25560.56, + "probability": 0.6788 + }, + { + "start": 25564.88, + "end": 25568.34, + "probability": 0.7613 + }, + { + "start": 25569.48, + "end": 25570.18, + "probability": 0.9742 + }, + { + "start": 25571.14, + "end": 25572.26, + "probability": 0.8401 + }, + { + "start": 25573.08, + "end": 25574.02, + "probability": 0.9111 + }, + { + "start": 25574.76, + "end": 25575.84, + "probability": 0.7601 + }, + { + "start": 25577.86, + "end": 25578.78, + "probability": 0.9915 + }, + { + "start": 25579.54, + "end": 25580.48, + "probability": 0.8235 + }, + { + "start": 25581.6, + "end": 25582.5, + "probability": 0.9825 + }, + { + "start": 25583.78, + "end": 25584.88, + "probability": 0.939 + }, + { + "start": 25585.62, + "end": 25588.66, + "probability": 0.9597 + }, + { + "start": 25589.62, + "end": 25590.5, + "probability": 0.9473 + }, + { + "start": 25591.18, + "end": 25592.5, + "probability": 0.5776 + }, + { + "start": 25593.64, + "end": 25597.16, + "probability": 0.8394 + }, + { + "start": 25598.16, + "end": 25598.44, + "probability": 0.4858 + }, + { + "start": 25598.78, + "end": 25600.06, + "probability": 0.3831 + }, + { + "start": 25600.34, + "end": 25601.36, + "probability": 0.7791 + }, + { + "start": 25677.22, + "end": 25677.48, + "probability": 0.4677 + }, + { + "start": 25677.58, + "end": 25679.4, + "probability": 0.5157 + }, + { + "start": 25679.42, + "end": 25680.42, + "probability": 0.4651 + }, + { + "start": 25680.92, + "end": 25681.22, + "probability": 0.8933 + }, + { + "start": 25681.22, + "end": 25682.22, + "probability": 0.97 + }, + { + "start": 25682.3, + "end": 25682.92, + "probability": 0.7725 + }, + { + "start": 25683.28, + "end": 25686.6, + "probability": 0.7142 + }, + { + "start": 25686.6, + "end": 25688.96, + "probability": 0.8702 + }, + { + "start": 25688.96, + "end": 25690.64, + "probability": 0.0982 + }, + { + "start": 25690.64, + "end": 25691.24, + "probability": 0.4827 + }, + { + "start": 25692.04, + "end": 25694.68, + "probability": 0.6008 + }, + { + "start": 25695.12, + "end": 25697.88, + "probability": 0.8605 + }, + { + "start": 25697.88, + "end": 25700.58, + "probability": 0.9904 + }, + { + "start": 25700.86, + "end": 25701.32, + "probability": 0.6326 + }, + { + "start": 25701.9, + "end": 25702.9, + "probability": 0.2315 + }, + { + "start": 25703.94, + "end": 25707.28, + "probability": 0.8546 + }, + { + "start": 25707.28, + "end": 25708.0, + "probability": 0.7947 + }, + { + "start": 25722.08, + "end": 25722.82, + "probability": 0.401 + }, + { + "start": 25725.8, + "end": 25726.2, + "probability": 0.0262 + }, + { + "start": 25728.44, + "end": 25729.34, + "probability": 0.0332 + }, + { + "start": 25750.67, + "end": 25753.72, + "probability": 0.7488 + }, + { + "start": 25754.38, + "end": 25757.12, + "probability": 0.7161 + }, + { + "start": 25758.0, + "end": 25759.7, + "probability": 0.9917 + }, + { + "start": 25760.26, + "end": 25763.96, + "probability": 0.9378 + }, + { + "start": 25764.5, + "end": 25771.04, + "probability": 0.9929 + }, + { + "start": 25771.04, + "end": 25775.82, + "probability": 0.9965 + }, + { + "start": 25776.86, + "end": 25780.22, + "probability": 0.9922 + }, + { + "start": 25781.7, + "end": 25784.58, + "probability": 0.87 + }, + { + "start": 25785.46, + "end": 25787.38, + "probability": 0.8374 + }, + { + "start": 25789.54, + "end": 25791.46, + "probability": 0.75 + }, + { + "start": 25792.02, + "end": 25792.6, + "probability": 0.375 + }, + { + "start": 25792.72, + "end": 25793.2, + "probability": 0.6957 + }, + { + "start": 25793.28, + "end": 25794.3, + "probability": 0.9717 + }, + { + "start": 25794.34, + "end": 25796.22, + "probability": 0.8547 + }, + { + "start": 25796.38, + "end": 25796.96, + "probability": 0.5739 + }, + { + "start": 25797.12, + "end": 25799.68, + "probability": 0.4842 + }, + { + "start": 25800.28, + "end": 25801.76, + "probability": 0.9546 + }, + { + "start": 25802.68, + "end": 25803.66, + "probability": 0.4964 + }, + { + "start": 25804.28, + "end": 25806.04, + "probability": 0.9257 + }, + { + "start": 25806.74, + "end": 25808.0, + "probability": 0.7127 + }, + { + "start": 25808.56, + "end": 25809.64, + "probability": 0.4868 + }, + { + "start": 25809.96, + "end": 25811.5, + "probability": 0.3952 + }, + { + "start": 25811.56, + "end": 25812.04, + "probability": 0.7331 + }, + { + "start": 25812.62, + "end": 25814.36, + "probability": 0.1851 + }, + { + "start": 25814.36, + "end": 25814.36, + "probability": 0.2633 + }, + { + "start": 25814.36, + "end": 25814.36, + "probability": 0.2465 + }, + { + "start": 25814.36, + "end": 25816.36, + "probability": 0.5052 + }, + { + "start": 25816.5, + "end": 25817.1, + "probability": 0.6372 + }, + { + "start": 25817.5, + "end": 25819.42, + "probability": 0.2486 + }, + { + "start": 25819.92, + "end": 25824.34, + "probability": 0.0687 + }, + { + "start": 25825.15, + "end": 25825.7, + "probability": 0.1892 + }, + { + "start": 25825.7, + "end": 25825.7, + "probability": 0.5037 + }, + { + "start": 25825.7, + "end": 25825.7, + "probability": 0.6933 + }, + { + "start": 25825.7, + "end": 25827.9, + "probability": 0.8023 + }, + { + "start": 25828.12, + "end": 25829.14, + "probability": 0.7887 + }, + { + "start": 25829.14, + "end": 25830.18, + "probability": 0.9224 + }, + { + "start": 25830.5, + "end": 25831.26, + "probability": 0.907 + }, + { + "start": 25832.6, + "end": 25834.36, + "probability": 0.4159 + }, + { + "start": 25835.1, + "end": 25837.08, + "probability": 0.8539 + }, + { + "start": 25837.72, + "end": 25841.9, + "probability": 0.9793 + }, + { + "start": 25842.58, + "end": 25844.28, + "probability": 0.9949 + }, + { + "start": 25845.4, + "end": 25847.76, + "probability": 0.8367 + }, + { + "start": 25848.66, + "end": 25853.48, + "probability": 0.9456 + }, + { + "start": 25853.68, + "end": 25856.15, + "probability": 0.797 + }, + { + "start": 25856.9, + "end": 25858.22, + "probability": 0.6891 + }, + { + "start": 25858.4, + "end": 25858.78, + "probability": 0.8868 + }, + { + "start": 25858.84, + "end": 25859.44, + "probability": 0.9595 + }, + { + "start": 25859.74, + "end": 25860.3, + "probability": 0.9531 + }, + { + "start": 25861.3, + "end": 25863.38, + "probability": 0.8169 + }, + { + "start": 25863.48, + "end": 25863.96, + "probability": 0.9697 + }, + { + "start": 25864.38, + "end": 25864.92, + "probability": 0.9261 + }, + { + "start": 25864.98, + "end": 25866.2, + "probability": 0.9594 + }, + { + "start": 25866.36, + "end": 25866.82, + "probability": 0.3261 + }, + { + "start": 25868.12, + "end": 25869.36, + "probability": 0.9002 + }, + { + "start": 25870.2, + "end": 25874.52, + "probability": 0.9676 + }, + { + "start": 25875.42, + "end": 25876.56, + "probability": 0.8296 + }, + { + "start": 25877.42, + "end": 25882.66, + "probability": 0.9621 + }, + { + "start": 25883.56, + "end": 25887.06, + "probability": 0.9634 + }, + { + "start": 25887.56, + "end": 25889.66, + "probability": 0.9777 + }, + { + "start": 25890.48, + "end": 25892.6, + "probability": 0.9665 + }, + { + "start": 25892.74, + "end": 25894.72, + "probability": 0.9966 + }, + { + "start": 25894.82, + "end": 25896.64, + "probability": 0.9361 + }, + { + "start": 25897.62, + "end": 25898.2, + "probability": 0.3059 + }, + { + "start": 25899.32, + "end": 25900.02, + "probability": 0.252 + }, + { + "start": 25900.02, + "end": 25901.32, + "probability": 0.4801 + }, + { + "start": 25902.32, + "end": 25904.42, + "probability": 0.9932 + }, + { + "start": 25905.18, + "end": 25907.62, + "probability": 0.9684 + }, + { + "start": 25908.26, + "end": 25911.12, + "probability": 0.9611 + }, + { + "start": 25911.66, + "end": 25913.66, + "probability": 0.9913 + }, + { + "start": 25914.9, + "end": 25915.6, + "probability": 0.6065 + }, + { + "start": 25915.82, + "end": 25918.51, + "probability": 0.9814 + }, + { + "start": 25919.76, + "end": 25920.7, + "probability": 0.9328 + }, + { + "start": 25921.54, + "end": 25923.8, + "probability": 0.9958 + }, + { + "start": 25924.22, + "end": 25926.46, + "probability": 0.9971 + }, + { + "start": 25927.1, + "end": 25927.8, + "probability": 0.5163 + }, + { + "start": 25928.8, + "end": 25929.42, + "probability": 0.8944 + }, + { + "start": 25930.28, + "end": 25931.92, + "probability": 0.9822 + }, + { + "start": 25932.16, + "end": 25932.2, + "probability": 0.1154 + }, + { + "start": 25932.44, + "end": 25933.46, + "probability": 0.9375 + }, + { + "start": 25933.66, + "end": 25934.67, + "probability": 0.712 + }, + { + "start": 25935.36, + "end": 25936.14, + "probability": 0.7608 + }, + { + "start": 25937.66, + "end": 25938.52, + "probability": 0.6523 + }, + { + "start": 25939.92, + "end": 25940.4, + "probability": 0.8572 + }, + { + "start": 25941.42, + "end": 25942.9, + "probability": 0.8276 + }, + { + "start": 25943.04, + "end": 25943.5, + "probability": 0.14 + }, + { + "start": 25943.5, + "end": 25945.06, + "probability": 0.158 + }, + { + "start": 25945.88, + "end": 25946.8, + "probability": 0.284 + }, + { + "start": 25948.03, + "end": 25948.38, + "probability": 0.0881 + }, + { + "start": 25948.72, + "end": 25951.42, + "probability": 0.6884 + }, + { + "start": 25952.22, + "end": 25954.06, + "probability": 0.5665 + }, + { + "start": 25954.62, + "end": 25957.58, + "probability": 0.1039 + }, + { + "start": 25958.36, + "end": 25959.72, + "probability": 0.4653 + }, + { + "start": 25960.12, + "end": 25963.32, + "probability": 0.2768 + }, + { + "start": 25964.14, + "end": 25964.14, + "probability": 0.0019 + }, + { + "start": 25967.54, + "end": 25969.96, + "probability": 0.4905 + }, + { + "start": 25970.68, + "end": 25973.88, + "probability": 0.4414 + }, + { + "start": 25973.98, + "end": 25974.94, + "probability": 0.4478 + }, + { + "start": 25974.94, + "end": 25975.36, + "probability": 0.6388 + }, + { + "start": 25975.36, + "end": 25977.92, + "probability": 0.3749 + }, + { + "start": 25978.36, + "end": 25979.74, + "probability": 0.957 + }, + { + "start": 25980.2, + "end": 25982.14, + "probability": 0.9736 + }, + { + "start": 25982.62, + "end": 25983.02, + "probability": 0.9263 + }, + { + "start": 25983.6, + "end": 25986.54, + "probability": 0.854 + }, + { + "start": 25987.08, + "end": 25988.15, + "probability": 0.9717 + }, + { + "start": 25989.18, + "end": 25990.98, + "probability": 0.9919 + }, + { + "start": 25991.64, + "end": 25993.44, + "probability": 0.9913 + }, + { + "start": 25994.34, + "end": 26000.68, + "probability": 0.9639 + }, + { + "start": 26001.66, + "end": 26002.22, + "probability": 0.5676 + }, + { + "start": 26002.8, + "end": 26003.56, + "probability": 0.9059 + }, + { + "start": 26004.1, + "end": 26005.26, + "probability": 0.566 + }, + { + "start": 26006.26, + "end": 26008.78, + "probability": 0.9858 + }, + { + "start": 26009.52, + "end": 26012.0, + "probability": 0.9988 + }, + { + "start": 26012.94, + "end": 26013.5, + "probability": 0.497 + }, + { + "start": 26014.2, + "end": 26015.76, + "probability": 0.9512 + }, + { + "start": 26016.4, + "end": 26017.72, + "probability": 0.7845 + }, + { + "start": 26018.5, + "end": 26019.36, + "probability": 0.2148 + }, + { + "start": 26020.22, + "end": 26020.92, + "probability": 0.734 + }, + { + "start": 26021.72, + "end": 26022.28, + "probability": 0.8041 + }, + { + "start": 26022.94, + "end": 26024.64, + "probability": 0.9607 + }, + { + "start": 26025.46, + "end": 26026.62, + "probability": 0.495 + }, + { + "start": 26027.56, + "end": 26032.6, + "probability": 0.9849 + }, + { + "start": 26033.18, + "end": 26034.58, + "probability": 0.9131 + }, + { + "start": 26035.74, + "end": 26040.38, + "probability": 0.9968 + }, + { + "start": 26041.2, + "end": 26042.44, + "probability": 0.8858 + }, + { + "start": 26042.6, + "end": 26045.72, + "probability": 0.9081 + }, + { + "start": 26046.82, + "end": 26047.52, + "probability": 0.814 + }, + { + "start": 26048.56, + "end": 26049.5, + "probability": 0.2669 + }, + { + "start": 26050.18, + "end": 26051.16, + "probability": 0.9143 + }, + { + "start": 26051.98, + "end": 26055.72, + "probability": 0.9396 + }, + { + "start": 26057.28, + "end": 26059.96, + "probability": 0.8069 + }, + { + "start": 26060.48, + "end": 26063.3, + "probability": 0.9104 + }, + { + "start": 26065.38, + "end": 26069.0, + "probability": 0.8227 + }, + { + "start": 26070.0, + "end": 26071.44, + "probability": 0.9749 + }, + { + "start": 26072.36, + "end": 26075.9, + "probability": 0.962 + }, + { + "start": 26075.9, + "end": 26079.78, + "probability": 0.7887 + }, + { + "start": 26080.82, + "end": 26085.76, + "probability": 0.998 + }, + { + "start": 26086.62, + "end": 26089.64, + "probability": 0.9442 + }, + { + "start": 26090.36, + "end": 26091.36, + "probability": 0.6551 + }, + { + "start": 26092.22, + "end": 26093.22, + "probability": 0.9859 + }, + { + "start": 26093.44, + "end": 26094.2, + "probability": 0.9062 + }, + { + "start": 26094.28, + "end": 26095.54, + "probability": 0.9863 + }, + { + "start": 26098.28, + "end": 26102.14, + "probability": 0.9685 + }, + { + "start": 26102.22, + "end": 26104.18, + "probability": 0.2697 + }, + { + "start": 26104.24, + "end": 26105.02, + "probability": 0.8519 + }, + { + "start": 26105.78, + "end": 26106.84, + "probability": 0.7793 + }, + { + "start": 26107.24, + "end": 26107.66, + "probability": 0.0176 + }, + { + "start": 26108.58, + "end": 26109.15, + "probability": 0.5607 + }, + { + "start": 26109.86, + "end": 26113.38, + "probability": 0.5616 + }, + { + "start": 26113.84, + "end": 26115.6, + "probability": 0.9233 + }, + { + "start": 26116.66, + "end": 26119.06, + "probability": 0.9985 + }, + { + "start": 26119.86, + "end": 26122.38, + "probability": 0.5723 + }, + { + "start": 26123.0, + "end": 26124.86, + "probability": 0.9714 + }, + { + "start": 26124.94, + "end": 26125.31, + "probability": 0.9355 + }, + { + "start": 26127.34, + "end": 26128.92, + "probability": 0.9866 + }, + { + "start": 26129.02, + "end": 26130.84, + "probability": 0.8832 + }, + { + "start": 26131.46, + "end": 26135.34, + "probability": 0.7926 + }, + { + "start": 26135.7, + "end": 26137.86, + "probability": 0.801 + }, + { + "start": 26138.26, + "end": 26139.04, + "probability": 0.973 + }, + { + "start": 26139.98, + "end": 26140.58, + "probability": 0.9933 + }, + { + "start": 26141.32, + "end": 26142.68, + "probability": 0.9065 + }, + { + "start": 26142.74, + "end": 26144.82, + "probability": 0.8012 + }, + { + "start": 26145.48, + "end": 26146.9, + "probability": 0.8502 + }, + { + "start": 26159.42, + "end": 26160.84, + "probability": 0.7909 + }, + { + "start": 26161.64, + "end": 26162.34, + "probability": 0.1098 + }, + { + "start": 26162.34, + "end": 26162.34, + "probability": 0.0129 + }, + { + "start": 26162.34, + "end": 26162.34, + "probability": 0.22 + }, + { + "start": 26162.34, + "end": 26162.34, + "probability": 0.0342 + }, + { + "start": 26162.34, + "end": 26162.34, + "probability": 0.2817 + }, + { + "start": 26162.34, + "end": 26163.96, + "probability": 0.3369 + }, + { + "start": 26164.14, + "end": 26165.68, + "probability": 0.8365 + }, + { + "start": 26166.0, + "end": 26166.86, + "probability": 0.915 + }, + { + "start": 26166.94, + "end": 26167.89, + "probability": 0.6163 + }, + { + "start": 26169.45, + "end": 26171.5, + "probability": 0.9956 + }, + { + "start": 26172.14, + "end": 26174.06, + "probability": 0.5557 + }, + { + "start": 26174.74, + "end": 26176.46, + "probability": 0.991 + }, + { + "start": 26176.9, + "end": 26181.08, + "probability": 0.9433 + }, + { + "start": 26181.58, + "end": 26181.92, + "probability": 0.8205 + }, + { + "start": 26182.56, + "end": 26183.12, + "probability": 0.9375 + }, + { + "start": 26184.44, + "end": 26188.92, + "probability": 0.9199 + }, + { + "start": 26190.04, + "end": 26190.78, + "probability": 0.2132 + }, + { + "start": 26191.88, + "end": 26192.86, + "probability": 0.6016 + }, + { + "start": 26194.04, + "end": 26197.3, + "probability": 0.9497 + }, + { + "start": 26198.02, + "end": 26200.18, + "probability": 0.9931 + }, + { + "start": 26200.86, + "end": 26203.18, + "probability": 0.9287 + }, + { + "start": 26204.44, + "end": 26207.75, + "probability": 0.8596 + }, + { + "start": 26208.18, + "end": 26209.28, + "probability": 0.3273 + }, + { + "start": 26209.82, + "end": 26212.74, + "probability": 0.8319 + }, + { + "start": 26213.52, + "end": 26216.76, + "probability": 0.9541 + }, + { + "start": 26217.18, + "end": 26220.1, + "probability": 0.9647 + }, + { + "start": 26220.54, + "end": 26222.62, + "probability": 0.9516 + }, + { + "start": 26222.82, + "end": 26225.76, + "probability": 0.7485 + }, + { + "start": 26226.14, + "end": 26227.56, + "probability": 0.6075 + }, + { + "start": 26228.1, + "end": 26229.64, + "probability": 0.6933 + }, + { + "start": 26229.74, + "end": 26231.3, + "probability": 0.9717 + }, + { + "start": 26232.78, + "end": 26236.36, + "probability": 0.9932 + }, + { + "start": 26237.1, + "end": 26239.88, + "probability": 0.6865 + }, + { + "start": 26240.82, + "end": 26243.96, + "probability": 0.8872 + }, + { + "start": 26244.54, + "end": 26245.44, + "probability": 0.9141 + }, + { + "start": 26246.08, + "end": 26252.0, + "probability": 0.9118 + }, + { + "start": 26252.6, + "end": 26253.92, + "probability": 0.9204 + }, + { + "start": 26254.5, + "end": 26256.0, + "probability": 0.9696 + }, + { + "start": 26256.5, + "end": 26258.64, + "probability": 0.7522 + }, + { + "start": 26258.66, + "end": 26259.46, + "probability": 0.7001 + }, + { + "start": 26259.58, + "end": 26262.96, + "probability": 0.8875 + }, + { + "start": 26263.0, + "end": 26263.9, + "probability": 0.6372 + }, + { + "start": 26264.72, + "end": 26267.78, + "probability": 0.9507 + }, + { + "start": 26268.18, + "end": 26271.06, + "probability": 0.6037 + }, + { + "start": 26271.64, + "end": 26272.74, + "probability": 0.952 + }, + { + "start": 26272.86, + "end": 26274.55, + "probability": 0.8442 + }, + { + "start": 26274.72, + "end": 26275.72, + "probability": 0.6973 + }, + { + "start": 26275.72, + "end": 26276.44, + "probability": 0.4707 + }, + { + "start": 26277.82, + "end": 26280.98, + "probability": 0.949 + }, + { + "start": 26281.64, + "end": 26282.6, + "probability": 0.5498 + }, + { + "start": 26283.14, + "end": 26283.72, + "probability": 0.8442 + }, + { + "start": 26283.82, + "end": 26284.66, + "probability": 0.9514 + }, + { + "start": 26285.32, + "end": 26285.58, + "probability": 0.7205 + }, + { + "start": 26286.04, + "end": 26287.46, + "probability": 0.1831 + }, + { + "start": 26288.5, + "end": 26291.68, + "probability": 0.1348 + }, + { + "start": 26291.96, + "end": 26292.42, + "probability": 0.1131 + }, + { + "start": 26292.42, + "end": 26292.5, + "probability": 0.2204 + }, + { + "start": 26292.5, + "end": 26293.22, + "probability": 0.1656 + }, + { + "start": 26293.62, + "end": 26294.2, + "probability": 0.3788 + }, + { + "start": 26294.66, + "end": 26295.56, + "probability": 0.0835 + }, + { + "start": 26295.88, + "end": 26296.96, + "probability": 0.2962 + }, + { + "start": 26297.64, + "end": 26303.54, + "probability": 0.0106 + }, + { + "start": 26303.54, + "end": 26303.66, + "probability": 0.1773 + }, + { + "start": 26303.74, + "end": 26303.74, + "probability": 0.4594 + }, + { + "start": 26303.74, + "end": 26304.86, + "probability": 0.2208 + }, + { + "start": 26305.12, + "end": 26307.48, + "probability": 0.3554 + }, + { + "start": 26308.04, + "end": 26309.66, + "probability": 0.4791 + }, + { + "start": 26309.9, + "end": 26310.26, + "probability": 0.2299 + }, + { + "start": 26311.04, + "end": 26315.37, + "probability": 0.577 + }, + { + "start": 26315.62, + "end": 26316.23, + "probability": 0.324 + }, + { + "start": 26316.86, + "end": 26318.34, + "probability": 0.571 + }, + { + "start": 26318.44, + "end": 26318.83, + "probability": 0.7393 + }, + { + "start": 26318.94, + "end": 26319.31, + "probability": 0.8855 + }, + { + "start": 26320.18, + "end": 26321.44, + "probability": 0.7838 + }, + { + "start": 26321.44, + "end": 26322.49, + "probability": 0.0163 + }, + { + "start": 26324.81, + "end": 26326.92, + "probability": 0.4509 + }, + { + "start": 26330.1, + "end": 26332.18, + "probability": 0.7479 + }, + { + "start": 26332.28, + "end": 26333.48, + "probability": 0.9438 + }, + { + "start": 26334.62, + "end": 26336.3, + "probability": 0.1376 + }, + { + "start": 26336.44, + "end": 26343.08, + "probability": 0.751 + }, + { + "start": 26344.42, + "end": 26344.81, + "probability": 0.5859 + }, + { + "start": 26347.25, + "end": 26348.02, + "probability": 0.4201 + }, + { + "start": 26348.02, + "end": 26348.02, + "probability": 0.2299 + }, + { + "start": 26348.02, + "end": 26348.83, + "probability": 0.6763 + }, + { + "start": 26350.54, + "end": 26353.66, + "probability": 0.7024 + }, + { + "start": 26355.52, + "end": 26357.18, + "probability": 0.9768 + }, + { + "start": 26358.12, + "end": 26359.78, + "probability": 0.915 + }, + { + "start": 26360.22, + "end": 26362.9, + "probability": 0.6028 + }, + { + "start": 26364.18, + "end": 26365.78, + "probability": 0.7261 + }, + { + "start": 26366.74, + "end": 26371.64, + "probability": 0.8171 + }, + { + "start": 26372.9, + "end": 26378.88, + "probability": 0.9971 + }, + { + "start": 26378.92, + "end": 26379.99, + "probability": 0.7758 + }, + { + "start": 26380.7, + "end": 26381.9, + "probability": 0.5693 + }, + { + "start": 26382.42, + "end": 26383.32, + "probability": 0.7412 + }, + { + "start": 26383.38, + "end": 26384.88, + "probability": 0.9662 + }, + { + "start": 26385.3, + "end": 26385.62, + "probability": 0.841 + }, + { + "start": 26385.66, + "end": 26386.82, + "probability": 0.8263 + }, + { + "start": 26386.84, + "end": 26388.1, + "probability": 0.9599 + }, + { + "start": 26389.68, + "end": 26390.64, + "probability": 0.8572 + }, + { + "start": 26392.08, + "end": 26393.92, + "probability": 0.988 + }, + { + "start": 26394.44, + "end": 26396.32, + "probability": 0.9883 + }, + { + "start": 26396.74, + "end": 26397.48, + "probability": 0.3898 + }, + { + "start": 26398.1, + "end": 26400.62, + "probability": 0.8537 + }, + { + "start": 26401.16, + "end": 26404.3, + "probability": 0.7455 + }, + { + "start": 26404.9, + "end": 26408.2, + "probability": 0.929 + }, + { + "start": 26408.46, + "end": 26408.72, + "probability": 0.7517 + }, + { + "start": 26409.18, + "end": 26410.3, + "probability": 0.9219 + }, + { + "start": 26410.64, + "end": 26412.14, + "probability": 0.6382 + }, + { + "start": 26412.34, + "end": 26417.08, + "probability": 0.929 + }, + { + "start": 26418.46, + "end": 26418.9, + "probability": 0.8467 + }, + { + "start": 26419.64, + "end": 26421.5, + "probability": 0.9578 + }, + { + "start": 26422.02, + "end": 26423.26, + "probability": 0.9722 + }, + { + "start": 26423.36, + "end": 26427.38, + "probability": 0.9897 + }, + { + "start": 26429.46, + "end": 26430.78, + "probability": 0.4302 + }, + { + "start": 26431.28, + "end": 26432.14, + "probability": 0.4945 + }, + { + "start": 26432.88, + "end": 26433.54, + "probability": 0.9248 + }, + { + "start": 26434.26, + "end": 26439.2, + "probability": 0.989 + }, + { + "start": 26439.6, + "end": 26441.78, + "probability": 0.9448 + }, + { + "start": 26442.36, + "end": 26443.62, + "probability": 0.9883 + }, + { + "start": 26443.96, + "end": 26445.8, + "probability": 0.986 + }, + { + "start": 26445.96, + "end": 26450.68, + "probability": 0.9791 + }, + { + "start": 26451.28, + "end": 26454.16, + "probability": 0.9847 + }, + { + "start": 26454.8, + "end": 26455.94, + "probability": 0.9554 + }, + { + "start": 26456.22, + "end": 26458.74, + "probability": 0.9967 + }, + { + "start": 26459.12, + "end": 26460.96, + "probability": 0.9879 + }, + { + "start": 26461.4, + "end": 26462.64, + "probability": 0.956 + }, + { + "start": 26463.1, + "end": 26467.3, + "probability": 0.998 + }, + { + "start": 26467.88, + "end": 26471.08, + "probability": 0.9948 + }, + { + "start": 26471.96, + "end": 26474.26, + "probability": 0.9688 + }, + { + "start": 26474.56, + "end": 26476.38, + "probability": 0.9985 + }, + { + "start": 26476.78, + "end": 26480.24, + "probability": 0.9692 + }, + { + "start": 26480.3, + "end": 26481.52, + "probability": 0.8534 + }, + { + "start": 26482.1, + "end": 26486.32, + "probability": 0.9662 + }, + { + "start": 26486.38, + "end": 26487.5, + "probability": 0.9116 + }, + { + "start": 26488.3, + "end": 26490.38, + "probability": 0.9178 + }, + { + "start": 26491.32, + "end": 26491.56, + "probability": 0.5763 + }, + { + "start": 26491.56, + "end": 26496.12, + "probability": 0.9976 + }, + { + "start": 26496.6, + "end": 26498.21, + "probability": 0.9951 + }, + { + "start": 26498.58, + "end": 26499.14, + "probability": 0.9864 + }, + { + "start": 26499.64, + "end": 26500.3, + "probability": 0.9957 + }, + { + "start": 26500.44, + "end": 26500.9, + "probability": 0.909 + }, + { + "start": 26500.96, + "end": 26502.04, + "probability": 0.9955 + }, + { + "start": 26502.42, + "end": 26503.82, + "probability": 0.2017 + }, + { + "start": 26503.88, + "end": 26504.4, + "probability": 0.866 + }, + { + "start": 26505.28, + "end": 26507.86, + "probability": 0.6498 + }, + { + "start": 26507.94, + "end": 26509.44, + "probability": 0.8255 + }, + { + "start": 26509.48, + "end": 26511.6, + "probability": 0.9907 + }, + { + "start": 26512.68, + "end": 26513.38, + "probability": 0.4732 + }, + { + "start": 26513.58, + "end": 26514.87, + "probability": 0.8936 + }, + { + "start": 26515.14, + "end": 26517.36, + "probability": 0.5466 + }, + { + "start": 26517.36, + "end": 26520.98, + "probability": 0.9907 + }, + { + "start": 26521.64, + "end": 26524.58, + "probability": 0.2084 + }, + { + "start": 26525.16, + "end": 26525.54, + "probability": 0.6528 + }, + { + "start": 26526.26, + "end": 26527.54, + "probability": 0.9349 + }, + { + "start": 26528.18, + "end": 26531.2, + "probability": 0.9278 + }, + { + "start": 26532.14, + "end": 26534.64, + "probability": 0.7543 + }, + { + "start": 26534.74, + "end": 26535.68, + "probability": 0.7098 + }, + { + "start": 26535.74, + "end": 26536.88, + "probability": 0.7793 + }, + { + "start": 26537.22, + "end": 26540.1, + "probability": 0.6887 + }, + { + "start": 26540.1, + "end": 26541.28, + "probability": 0.7245 + }, + { + "start": 26541.3, + "end": 26544.78, + "probability": 0.9915 + }, + { + "start": 26545.22, + "end": 26548.6, + "probability": 0.9971 + }, + { + "start": 26548.68, + "end": 26549.64, + "probability": 0.8524 + }, + { + "start": 26549.74, + "end": 26552.04, + "probability": 0.9235 + }, + { + "start": 26552.24, + "end": 26552.98, + "probability": 0.93 + }, + { + "start": 26553.02, + "end": 26554.66, + "probability": 0.9878 + }, + { + "start": 26554.96, + "end": 26555.24, + "probability": 0.7693 + }, + { + "start": 26556.88, + "end": 26558.74, + "probability": 0.7346 + }, + { + "start": 26559.24, + "end": 26559.9, + "probability": 0.2296 + }, + { + "start": 26560.26, + "end": 26562.58, + "probability": 0.5316 + }, + { + "start": 26564.24, + "end": 26564.26, + "probability": 0.0663 + }, + { + "start": 26564.26, + "end": 26565.98, + "probability": 0.6956 + }, + { + "start": 26566.08, + "end": 26568.34, + "probability": 0.7801 + }, + { + "start": 26568.9, + "end": 26572.34, + "probability": 0.6695 + }, + { + "start": 26573.04, + "end": 26575.12, + "probability": 0.8569 + }, + { + "start": 26575.72, + "end": 26577.24, + "probability": 0.7338 + }, + { + "start": 26578.16, + "end": 26578.58, + "probability": 0.0475 + }, + { + "start": 26578.74, + "end": 26580.06, + "probability": 0.8376 + }, + { + "start": 26580.06, + "end": 26580.06, + "probability": 0.2587 + }, + { + "start": 26580.06, + "end": 26580.74, + "probability": 0.506 + }, + { + "start": 26580.92, + "end": 26581.5, + "probability": 0.6308 + }, + { + "start": 26582.1, + "end": 26583.92, + "probability": 0.9033 + }, + { + "start": 26599.92, + "end": 26600.78, + "probability": 0.71 + }, + { + "start": 26601.3, + "end": 26602.52, + "probability": 0.5062 + }, + { + "start": 26603.72, + "end": 26604.92, + "probability": 0.9183 + }, + { + "start": 26605.5, + "end": 26607.9, + "probability": 0.9219 + }, + { + "start": 26608.6, + "end": 26611.1, + "probability": 0.9959 + }, + { + "start": 26612.12, + "end": 26614.28, + "probability": 0.7747 + }, + { + "start": 26615.12, + "end": 26618.1, + "probability": 0.9971 + }, + { + "start": 26618.22, + "end": 26619.82, + "probability": 0.9904 + }, + { + "start": 26620.56, + "end": 26621.08, + "probability": 0.1504 + }, + { + "start": 26621.18, + "end": 26621.9, + "probability": 0.5905 + }, + { + "start": 26622.1, + "end": 26623.22, + "probability": 0.8914 + }, + { + "start": 26623.72, + "end": 26624.58, + "probability": 0.9254 + }, + { + "start": 26625.48, + "end": 26629.76, + "probability": 0.8652 + }, + { + "start": 26629.8, + "end": 26631.46, + "probability": 0.8433 + }, + { + "start": 26631.6, + "end": 26634.52, + "probability": 0.5815 + }, + { + "start": 26634.52, + "end": 26637.88, + "probability": 0.9897 + }, + { + "start": 26638.62, + "end": 26639.56, + "probability": 0.7764 + }, + { + "start": 26640.0, + "end": 26642.34, + "probability": 0.9661 + }, + { + "start": 26642.44, + "end": 26647.78, + "probability": 0.9961 + }, + { + "start": 26648.14, + "end": 26648.62, + "probability": 0.6146 + }, + { + "start": 26648.86, + "end": 26653.46, + "probability": 0.9889 + }, + { + "start": 26653.58, + "end": 26653.94, + "probability": 0.8909 + }, + { + "start": 26654.0, + "end": 26654.16, + "probability": 0.6904 + }, + { + "start": 26655.22, + "end": 26656.28, + "probability": 0.6375 + }, + { + "start": 26674.88, + "end": 26675.06, + "probability": 0.1533 + }, + { + "start": 26675.06, + "end": 26676.54, + "probability": 0.6017 + }, + { + "start": 26677.1, + "end": 26678.54, + "probability": 0.6324 + }, + { + "start": 26679.22, + "end": 26684.93, + "probability": 0.9818 + }, + { + "start": 26685.8, + "end": 26687.78, + "probability": 0.9775 + }, + { + "start": 26688.02, + "end": 26688.56, + "probability": 0.9634 + }, + { + "start": 26688.78, + "end": 26689.02, + "probability": 0.5803 + }, + { + "start": 26689.42, + "end": 26692.1, + "probability": 0.6904 + }, + { + "start": 26692.84, + "end": 26696.8, + "probability": 0.9954 + }, + { + "start": 26696.8, + "end": 26699.84, + "probability": 0.9989 + }, + { + "start": 26699.92, + "end": 26701.41, + "probability": 0.9961 + }, + { + "start": 26703.44, + "end": 26708.7, + "probability": 0.9912 + }, + { + "start": 26709.08, + "end": 26710.33, + "probability": 0.999 + }, + { + "start": 26710.78, + "end": 26712.88, + "probability": 0.9918 + }, + { + "start": 26713.7, + "end": 26717.28, + "probability": 0.8654 + }, + { + "start": 26717.28, + "end": 26720.36, + "probability": 0.8252 + }, + { + "start": 26721.02, + "end": 26723.18, + "probability": 0.9604 + }, + { + "start": 26724.08, + "end": 26727.88, + "probability": 0.9985 + }, + { + "start": 26727.88, + "end": 26732.04, + "probability": 0.9993 + }, + { + "start": 26732.5, + "end": 26735.54, + "probability": 0.999 + }, + { + "start": 26736.2, + "end": 26738.94, + "probability": 0.9922 + }, + { + "start": 26739.56, + "end": 26745.04, + "probability": 0.9917 + }, + { + "start": 26745.56, + "end": 26749.72, + "probability": 0.9478 + }, + { + "start": 26750.44, + "end": 26753.82, + "probability": 0.8547 + }, + { + "start": 26754.66, + "end": 26757.52, + "probability": 0.9949 + }, + { + "start": 26757.94, + "end": 26759.76, + "probability": 0.9989 + }, + { + "start": 26759.92, + "end": 26761.48, + "probability": 0.9923 + }, + { + "start": 26761.68, + "end": 26764.18, + "probability": 0.9942 + }, + { + "start": 26764.64, + "end": 26765.94, + "probability": 0.7521 + }, + { + "start": 26766.04, + "end": 26770.38, + "probability": 0.9904 + }, + { + "start": 26771.46, + "end": 26774.4, + "probability": 0.996 + }, + { + "start": 26774.4, + "end": 26779.16, + "probability": 0.986 + }, + { + "start": 26779.36, + "end": 26780.04, + "probability": 0.8792 + }, + { + "start": 26780.1, + "end": 26781.68, + "probability": 0.9718 + }, + { + "start": 26781.78, + "end": 26782.62, + "probability": 0.7659 + }, + { + "start": 26783.44, + "end": 26785.12, + "probability": 0.9878 + }, + { + "start": 26785.84, + "end": 26788.76, + "probability": 0.9738 + }, + { + "start": 26789.28, + "end": 26791.46, + "probability": 0.9398 + }, + { + "start": 26791.56, + "end": 26797.28, + "probability": 0.9965 + }, + { + "start": 26797.66, + "end": 26801.58, + "probability": 0.6549 + }, + { + "start": 26802.18, + "end": 26805.96, + "probability": 0.9914 + }, + { + "start": 26806.5, + "end": 26809.96, + "probability": 0.9763 + }, + { + "start": 26810.26, + "end": 26813.22, + "probability": 0.9609 + }, + { + "start": 26813.72, + "end": 26819.69, + "probability": 0.994 + }, + { + "start": 26820.32, + "end": 26821.54, + "probability": 0.9834 + }, + { + "start": 26822.16, + "end": 26827.24, + "probability": 0.9887 + }, + { + "start": 26828.02, + "end": 26828.66, + "probability": 0.6442 + }, + { + "start": 26829.6, + "end": 26830.4, + "probability": 0.7036 + }, + { + "start": 26830.94, + "end": 26832.68, + "probability": 0.42 + }, + { + "start": 26832.84, + "end": 26838.52, + "probability": 0.9838 + }, + { + "start": 26839.4, + "end": 26842.07, + "probability": 0.5769 + }, + { + "start": 26843.32, + "end": 26844.6, + "probability": 0.8864 + }, + { + "start": 26844.82, + "end": 26848.58, + "probability": 0.9735 + }, + { + "start": 26848.72, + "end": 26850.68, + "probability": 0.9436 + }, + { + "start": 26851.12, + "end": 26852.98, + "probability": 0.9849 + }, + { + "start": 26854.18, + "end": 26857.67, + "probability": 0.9956 + }, + { + "start": 26858.58, + "end": 26859.48, + "probability": 0.9637 + }, + { + "start": 26859.56, + "end": 26862.5, + "probability": 0.9829 + }, + { + "start": 26862.94, + "end": 26869.06, + "probability": 0.9695 + }, + { + "start": 26869.94, + "end": 26871.52, + "probability": 0.9262 + }, + { + "start": 26871.78, + "end": 26874.44, + "probability": 0.7465 + }, + { + "start": 26874.68, + "end": 26875.98, + "probability": 0.9424 + }, + { + "start": 26876.08, + "end": 26877.1, + "probability": 0.9907 + }, + { + "start": 26877.46, + "end": 26879.36, + "probability": 0.9925 + }, + { + "start": 26879.98, + "end": 26882.08, + "probability": 0.5639 + }, + { + "start": 26882.32, + "end": 26883.88, + "probability": 0.805 + }, + { + "start": 26884.91, + "end": 26887.3, + "probability": 0.8672 + }, + { + "start": 26887.36, + "end": 26888.36, + "probability": 0.8335 + }, + { + "start": 26889.36, + "end": 26890.2, + "probability": 0.9753 + }, + { + "start": 26890.32, + "end": 26891.88, + "probability": 0.9806 + }, + { + "start": 26892.3, + "end": 26894.24, + "probability": 0.9231 + }, + { + "start": 26894.96, + "end": 26896.4, + "probability": 0.9862 + }, + { + "start": 26897.1, + "end": 26898.86, + "probability": 0.9877 + }, + { + "start": 26899.0, + "end": 26901.74, + "probability": 0.7406 + }, + { + "start": 26901.82, + "end": 26903.26, + "probability": 0.7453 + }, + { + "start": 26903.38, + "end": 26906.88, + "probability": 0.9944 + }, + { + "start": 26907.16, + "end": 26909.26, + "probability": 0.978 + }, + { + "start": 26909.64, + "end": 26911.79, + "probability": 0.8662 + }, + { + "start": 26913.14, + "end": 26913.74, + "probability": 0.7977 + }, + { + "start": 26914.46, + "end": 26914.92, + "probability": 0.7867 + }, + { + "start": 26915.89, + "end": 26917.74, + "probability": 0.7973 + }, + { + "start": 26917.8, + "end": 26918.9, + "probability": 0.6238 + }, + { + "start": 26919.0, + "end": 26921.06, + "probability": 0.5389 + }, + { + "start": 26922.3, + "end": 26922.74, + "probability": 0.5732 + }, + { + "start": 26923.02, + "end": 26923.44, + "probability": 0.7155 + }, + { + "start": 26924.3, + "end": 26924.34, + "probability": 0.1098 + }, + { + "start": 26924.34, + "end": 26925.62, + "probability": 0.785 + }, + { + "start": 26926.8, + "end": 26929.72, + "probability": 0.6156 + }, + { + "start": 26948.2, + "end": 26948.2, + "probability": 0.3074 + }, + { + "start": 26948.2, + "end": 26948.2, + "probability": 0.0865 + }, + { + "start": 26948.2, + "end": 26949.02, + "probability": 0.3184 + }, + { + "start": 26949.56, + "end": 26950.4, + "probability": 0.5689 + }, + { + "start": 26951.24, + "end": 26953.12, + "probability": 0.738 + }, + { + "start": 26971.08, + "end": 26975.68, + "probability": 0.6262 + }, + { + "start": 26976.48, + "end": 26978.42, + "probability": 0.3629 + }, + { + "start": 26978.42, + "end": 26981.08, + "probability": 0.7718 + }, + { + "start": 26997.7, + "end": 26997.7, + "probability": 0.144 + }, + { + "start": 26997.7, + "end": 26997.7, + "probability": 0.3629 + }, + { + "start": 26997.7, + "end": 26997.7, + "probability": 0.0269 + }, + { + "start": 26997.7, + "end": 26997.7, + "probability": 0.0759 + }, + { + "start": 26997.7, + "end": 26997.7, + "probability": 0.0309 + }, + { + "start": 26997.7, + "end": 26997.72, + "probability": 0.0326 + }, + { + "start": 27018.24, + "end": 27020.22, + "probability": 0.4618 + }, + { + "start": 27021.32, + "end": 27023.38, + "probability": 0.9888 + }, + { + "start": 27024.16, + "end": 27024.54, + "probability": 0.5319 + }, + { + "start": 27026.64, + "end": 27026.88, + "probability": 0.0995 + }, + { + "start": 27026.88, + "end": 27026.98, + "probability": 0.1825 + }, + { + "start": 27027.72, + "end": 27030.5, + "probability": 0.876 + }, + { + "start": 27032.86, + "end": 27035.08, + "probability": 0.8665 + }, + { + "start": 27035.08, + "end": 27039.02, + "probability": 0.9873 + }, + { + "start": 27039.08, + "end": 27040.0, + "probability": 0.8894 + }, + { + "start": 27041.12, + "end": 27044.46, + "probability": 0.9785 + }, + { + "start": 27044.46, + "end": 27046.4, + "probability": 0.8836 + }, + { + "start": 27047.72, + "end": 27050.2, + "probability": 0.9886 + }, + { + "start": 27050.2, + "end": 27053.56, + "probability": 0.9882 + }, + { + "start": 27053.7, + "end": 27058.48, + "probability": 0.8898 + }, + { + "start": 27059.94, + "end": 27062.42, + "probability": 0.9242 + }, + { + "start": 27063.22, + "end": 27070.5, + "probability": 0.731 + }, + { + "start": 27070.6, + "end": 27071.66, + "probability": 0.9381 + }, + { + "start": 27071.9, + "end": 27072.06, + "probability": 0.2815 + }, + { + "start": 27073.12, + "end": 27076.98, + "probability": 0.9502 + }, + { + "start": 27078.32, + "end": 27082.58, + "probability": 0.7613 + }, + { + "start": 27082.6, + "end": 27087.12, + "probability": 0.9909 + }, + { + "start": 27087.22, + "end": 27089.42, + "probability": 0.6611 + }, + { + "start": 27090.28, + "end": 27093.0, + "probability": 0.7983 + }, + { + "start": 27093.1, + "end": 27093.68, + "probability": 0.7491 + }, + { + "start": 27094.22, + "end": 27094.9, + "probability": 0.7699 + }, + { + "start": 27095.7, + "end": 27099.22, + "probability": 0.8332 + }, + { + "start": 27099.32, + "end": 27100.18, + "probability": 0.9462 + }, + { + "start": 27101.46, + "end": 27101.96, + "probability": 0.9128 + }, + { + "start": 27102.08, + "end": 27105.76, + "probability": 0.9943 + }, + { + "start": 27105.88, + "end": 27107.66, + "probability": 0.9917 + }, + { + "start": 27108.56, + "end": 27111.34, + "probability": 0.9186 + }, + { + "start": 27111.42, + "end": 27114.36, + "probability": 0.9604 + }, + { + "start": 27115.74, + "end": 27119.36, + "probability": 0.9905 + }, + { + "start": 27119.92, + "end": 27122.7, + "probability": 0.9807 + }, + { + "start": 27123.76, + "end": 27124.4, + "probability": 0.8201 + }, + { + "start": 27124.52, + "end": 27125.52, + "probability": 0.9805 + }, + { + "start": 27125.66, + "end": 27126.89, + "probability": 0.8827 + }, + { + "start": 27127.64, + "end": 27127.94, + "probability": 0.4151 + }, + { + "start": 27128.0, + "end": 27129.6, + "probability": 0.8337 + }, + { + "start": 27129.66, + "end": 27132.34, + "probability": 0.998 + }, + { + "start": 27132.98, + "end": 27136.0, + "probability": 0.8929 + }, + { + "start": 27136.74, + "end": 27137.12, + "probability": 0.6782 + }, + { + "start": 27137.2, + "end": 27137.72, + "probability": 0.9188 + }, + { + "start": 27138.22, + "end": 27141.62, + "probability": 0.9883 + }, + { + "start": 27142.1, + "end": 27142.88, + "probability": 0.7389 + }, + { + "start": 27143.34, + "end": 27146.42, + "probability": 0.88 + }, + { + "start": 27147.04, + "end": 27148.44, + "probability": 0.4989 + }, + { + "start": 27149.02, + "end": 27150.18, + "probability": 0.8067 + }, + { + "start": 27150.28, + "end": 27151.34, + "probability": 0.9008 + }, + { + "start": 27151.44, + "end": 27152.64, + "probability": 0.7864 + }, + { + "start": 27153.06, + "end": 27154.44, + "probability": 0.9774 + }, + { + "start": 27155.06, + "end": 27157.94, + "probability": 0.9976 + }, + { + "start": 27158.4, + "end": 27162.02, + "probability": 0.8132 + }, + { + "start": 27162.78, + "end": 27166.54, + "probability": 0.9888 + }, + { + "start": 27167.04, + "end": 27167.86, + "probability": 0.9825 + }, + { + "start": 27168.68, + "end": 27169.38, + "probability": 0.7007 + }, + { + "start": 27169.44, + "end": 27172.34, + "probability": 0.9905 + }, + { + "start": 27172.46, + "end": 27175.72, + "probability": 0.9963 + }, + { + "start": 27175.94, + "end": 27177.18, + "probability": 0.7098 + }, + { + "start": 27177.52, + "end": 27181.94, + "probability": 0.9631 + }, + { + "start": 27181.94, + "end": 27186.96, + "probability": 0.9954 + }, + { + "start": 27187.34, + "end": 27188.4, + "probability": 0.8113 + }, + { + "start": 27189.0, + "end": 27192.96, + "probability": 0.9487 + }, + { + "start": 27193.06, + "end": 27197.2, + "probability": 0.8659 + }, + { + "start": 27197.2, + "end": 27202.54, + "probability": 0.9969 + }, + { + "start": 27202.7, + "end": 27203.1, + "probability": 0.1534 + }, + { + "start": 27203.12, + "end": 27203.54, + "probability": 0.4859 + }, + { + "start": 27203.96, + "end": 27204.77, + "probability": 0.6301 + }, + { + "start": 27205.38, + "end": 27208.68, + "probability": 0.8459 + }, + { + "start": 27209.28, + "end": 27209.48, + "probability": 0.0127 + }, + { + "start": 27209.52, + "end": 27212.28, + "probability": 0.9734 + }, + { + "start": 27212.54, + "end": 27215.84, + "probability": 0.4128 + }, + { + "start": 27216.14, + "end": 27216.9, + "probability": 0.7015 + }, + { + "start": 27217.6, + "end": 27219.5, + "probability": 0.7983 + }, + { + "start": 27220.08, + "end": 27220.64, + "probability": 0.2534 + }, + { + "start": 27220.9, + "end": 27226.52, + "probability": 0.7904 + }, + { + "start": 27227.6, + "end": 27229.1, + "probability": 0.2958 + }, + { + "start": 27230.0, + "end": 27230.16, + "probability": 0.0098 + }, + { + "start": 27230.16, + "end": 27231.76, + "probability": 0.5982 + }, + { + "start": 27232.22, + "end": 27236.26, + "probability": 0.9076 + }, + { + "start": 27237.98, + "end": 27238.86, + "probability": 0.7886 + }, + { + "start": 27239.06, + "end": 27240.22, + "probability": 0.894 + }, + { + "start": 27240.6, + "end": 27244.58, + "probability": 0.9974 + }, + { + "start": 27245.04, + "end": 27247.38, + "probability": 0.9773 + }, + { + "start": 27247.82, + "end": 27248.72, + "probability": 0.7681 + }, + { + "start": 27248.86, + "end": 27250.98, + "probability": 0.98 + }, + { + "start": 27251.5, + "end": 27253.74, + "probability": 0.8347 + }, + { + "start": 27253.82, + "end": 27255.1, + "probability": 0.6602 + }, + { + "start": 27255.5, + "end": 27257.18, + "probability": 0.7706 + }, + { + "start": 27257.32, + "end": 27258.2, + "probability": 0.9542 + }, + { + "start": 27258.54, + "end": 27259.72, + "probability": 0.7902 + }, + { + "start": 27259.86, + "end": 27261.42, + "probability": 0.9544 + }, + { + "start": 27261.5, + "end": 27261.76, + "probability": 0.7662 + }, + { + "start": 27263.3, + "end": 27263.82, + "probability": 0.8251 + }, + { + "start": 27264.08, + "end": 27265.3, + "probability": 0.5457 + }, + { + "start": 27267.22, + "end": 27267.48, + "probability": 0.4516 + }, + { + "start": 27268.84, + "end": 27271.54, + "probability": 0.5615 + }, + { + "start": 27295.62, + "end": 27296.34, + "probability": 0.6215 + }, + { + "start": 27296.38, + "end": 27297.42, + "probability": 0.8984 + }, + { + "start": 27297.54, + "end": 27300.14, + "probability": 0.9539 + }, + { + "start": 27302.04, + "end": 27303.26, + "probability": 0.9053 + }, + { + "start": 27303.44, + "end": 27306.86, + "probability": 0.9928 + }, + { + "start": 27307.02, + "end": 27309.46, + "probability": 0.9972 + }, + { + "start": 27309.46, + "end": 27313.14, + "probability": 0.9905 + }, + { + "start": 27313.88, + "end": 27315.8, + "probability": 0.9587 + }, + { + "start": 27316.12, + "end": 27318.4, + "probability": 0.9897 + }, + { + "start": 27319.18, + "end": 27319.9, + "probability": 0.7477 + }, + { + "start": 27320.26, + "end": 27324.98, + "probability": 0.9968 + }, + { + "start": 27325.74, + "end": 27328.1, + "probability": 0.9935 + }, + { + "start": 27328.1, + "end": 27330.46, + "probability": 0.9803 + }, + { + "start": 27330.88, + "end": 27333.14, + "probability": 0.9912 + }, + { + "start": 27333.14, + "end": 27335.78, + "probability": 0.9992 + }, + { + "start": 27336.54, + "end": 27337.78, + "probability": 0.7093 + }, + { + "start": 27337.94, + "end": 27339.94, + "probability": 0.9873 + }, + { + "start": 27339.98, + "end": 27342.12, + "probability": 0.9752 + }, + { + "start": 27343.36, + "end": 27346.28, + "probability": 0.9871 + }, + { + "start": 27346.4, + "end": 27349.14, + "probability": 0.8363 + }, + { + "start": 27349.18, + "end": 27350.32, + "probability": 0.9941 + }, + { + "start": 27350.52, + "end": 27352.6, + "probability": 0.7963 + }, + { + "start": 27355.0, + "end": 27356.68, + "probability": 0.2139 + }, + { + "start": 27356.68, + "end": 27359.1, + "probability": 0.9631 + }, + { + "start": 27359.66, + "end": 27362.34, + "probability": 0.9878 + }, + { + "start": 27362.52, + "end": 27365.52, + "probability": 0.9348 + }, + { + "start": 27366.88, + "end": 27367.74, + "probability": 0.7629 + }, + { + "start": 27368.8, + "end": 27372.28, + "probability": 0.9644 + }, + { + "start": 27372.74, + "end": 27375.1, + "probability": 0.9731 + }, + { + "start": 27375.1, + "end": 27377.24, + "probability": 0.6899 + }, + { + "start": 27377.72, + "end": 27378.42, + "probability": 0.9878 + }, + { + "start": 27378.66, + "end": 27379.04, + "probability": 0.6628 + }, + { + "start": 27380.32, + "end": 27382.34, + "probability": 0.9121 + }, + { + "start": 27382.68, + "end": 27384.22, + "probability": 0.9971 + }, + { + "start": 27384.22, + "end": 27388.06, + "probability": 0.9746 + }, + { + "start": 27388.84, + "end": 27389.94, + "probability": 0.9566 + }, + { + "start": 27390.08, + "end": 27393.16, + "probability": 0.9974 + }, + { + "start": 27393.16, + "end": 27397.84, + "probability": 0.9914 + }, + { + "start": 27398.76, + "end": 27400.96, + "probability": 0.983 + }, + { + "start": 27400.96, + "end": 27403.2, + "probability": 0.9778 + }, + { + "start": 27403.26, + "end": 27405.58, + "probability": 0.9693 + }, + { + "start": 27406.28, + "end": 27409.84, + "probability": 0.9897 + }, + { + "start": 27409.84, + "end": 27413.22, + "probability": 0.9774 + }, + { + "start": 27413.22, + "end": 27417.08, + "probability": 0.9943 + }, + { + "start": 27417.78, + "end": 27417.9, + "probability": 0.6245 + }, + { + "start": 27418.88, + "end": 27419.7, + "probability": 0.5312 + }, + { + "start": 27419.94, + "end": 27422.18, + "probability": 0.7001 + }, + { + "start": 27431.86, + "end": 27432.2, + "probability": 0.028 + }, + { + "start": 27433.38, + "end": 27436.34, + "probability": 0.408 + }, + { + "start": 27442.84, + "end": 27446.14, + "probability": 0.984 + }, + { + "start": 27446.14, + "end": 27451.1, + "probability": 0.9907 + }, + { + "start": 27451.72, + "end": 27452.58, + "probability": 0.8258 + }, + { + "start": 27452.74, + "end": 27456.0, + "probability": 0.9974 + }, + { + "start": 27456.88, + "end": 27458.74, + "probability": 0.6862 + }, + { + "start": 27458.92, + "end": 27463.54, + "probability": 0.9471 + }, + { + "start": 27463.98, + "end": 27467.18, + "probability": 0.8524 + }, + { + "start": 27467.7, + "end": 27470.76, + "probability": 0.9546 + }, + { + "start": 27471.24, + "end": 27472.03, + "probability": 0.8413 + }, + { + "start": 27472.32, + "end": 27478.08, + "probability": 0.8829 + }, + { + "start": 27478.72, + "end": 27480.96, + "probability": 0.9647 + }, + { + "start": 27481.12, + "end": 27484.66, + "probability": 0.9126 + }, + { + "start": 27484.84, + "end": 27486.8, + "probability": 0.9242 + }, + { + "start": 27487.34, + "end": 27489.18, + "probability": 0.5022 + }, + { + "start": 27489.3, + "end": 27489.86, + "probability": 0.7747 + }, + { + "start": 27490.36, + "end": 27490.84, + "probability": 0.8594 + }, + { + "start": 27492.88, + "end": 27494.42, + "probability": 0.9539 + }, + { + "start": 27494.48, + "end": 27495.94, + "probability": 0.6768 + }, + { + "start": 27496.68, + "end": 27497.12, + "probability": 0.6383 + }, + { + "start": 27497.18, + "end": 27497.54, + "probability": 0.8918 + }, + { + "start": 27497.66, + "end": 27499.0, + "probability": 0.8957 + }, + { + "start": 27499.92, + "end": 27500.98, + "probability": 0.7934 + }, + { + "start": 27502.06, + "end": 27503.4, + "probability": 0.9138 + }, + { + "start": 27504.08, + "end": 27505.08, + "probability": 0.9384 + }, + { + "start": 27509.48, + "end": 27510.2, + "probability": 0.5143 + }, + { + "start": 27510.48, + "end": 27512.14, + "probability": 0.7436 + }, + { + "start": 27512.58, + "end": 27513.16, + "probability": 0.982 + }, + { + "start": 27514.06, + "end": 27514.4, + "probability": 0.3949 + }, + { + "start": 27514.72, + "end": 27516.18, + "probability": 0.2312 + }, + { + "start": 27522.3, + "end": 27522.46, + "probability": 0.4314 + }, + { + "start": 27522.46, + "end": 27524.36, + "probability": 0.6549 + }, + { + "start": 27525.26, + "end": 27525.92, + "probability": 0.5935 + }, + { + "start": 27526.77, + "end": 27529.32, + "probability": 0.6289 + }, + { + "start": 27529.66, + "end": 27530.02, + "probability": 0.7904 + }, + { + "start": 27547.12, + "end": 27550.0, + "probability": 0.6424 + }, + { + "start": 27550.34, + "end": 27554.36, + "probability": 0.8442 + }, + { + "start": 27554.44, + "end": 27554.52, + "probability": 0.0276 + }, + { + "start": 27554.52, + "end": 27554.52, + "probability": 0.032 + }, + { + "start": 27554.56, + "end": 27558.36, + "probability": 0.7822 + }, + { + "start": 27559.34, + "end": 27560.56, + "probability": 0.0305 + }, + { + "start": 27561.3, + "end": 27562.58, + "probability": 0.1174 + }, + { + "start": 27563.46, + "end": 27563.78, + "probability": 0.3876 + }, + { + "start": 27563.92, + "end": 27564.86, + "probability": 0.6528 + }, + { + "start": 27564.86, + "end": 27565.76, + "probability": 0.2261 + }, + { + "start": 27566.12, + "end": 27569.98, + "probability": 0.8668 + }, + { + "start": 27570.06, + "end": 27578.32, + "probability": 0.2578 + }, + { + "start": 27578.32, + "end": 27579.84, + "probability": 0.1705 + }, + { + "start": 27580.28, + "end": 27580.28, + "probability": 0.1142 + }, + { + "start": 27580.28, + "end": 27580.74, + "probability": 0.7006 + }, + { + "start": 27581.28, + "end": 27581.64, + "probability": 0.6504 + }, + { + "start": 27582.22, + "end": 27582.66, + "probability": 0.9235 + }, + { + "start": 27583.88, + "end": 27587.24, + "probability": 0.7339 + }, + { + "start": 27587.7, + "end": 27588.9, + "probability": 0.9661 + }, + { + "start": 27589.42, + "end": 27590.18, + "probability": 0.8514 + }, + { + "start": 27590.24, + "end": 27593.1, + "probability": 0.9825 + }, + { + "start": 27594.08, + "end": 27596.76, + "probability": 0.9951 + }, + { + "start": 27597.34, + "end": 27601.22, + "probability": 0.9923 + }, + { + "start": 27602.42, + "end": 27603.86, + "probability": 0.9979 + }, + { + "start": 27604.7, + "end": 27609.2, + "probability": 0.7146 + }, + { + "start": 27609.52, + "end": 27612.88, + "probability": 0.9994 + }, + { + "start": 27613.3, + "end": 27617.36, + "probability": 0.9847 + }, + { + "start": 27617.68, + "end": 27618.26, + "probability": 0.7456 + }, + { + "start": 27619.04, + "end": 27625.68, + "probability": 0.9771 + }, + { + "start": 27626.26, + "end": 27631.06, + "probability": 0.9933 + }, + { + "start": 27632.04, + "end": 27633.12, + "probability": 0.9231 + }, + { + "start": 27633.82, + "end": 27635.14, + "probability": 0.7412 + }, + { + "start": 27635.34, + "end": 27637.3, + "probability": 0.9067 + }, + { + "start": 27637.62, + "end": 27641.68, + "probability": 0.5857 + }, + { + "start": 27641.92, + "end": 27643.12, + "probability": 0.801 + }, + { + "start": 27643.98, + "end": 27646.39, + "probability": 0.9601 + }, + { + "start": 27646.94, + "end": 27647.64, + "probability": 0.6208 + }, + { + "start": 27647.84, + "end": 27649.38, + "probability": 0.9481 + }, + { + "start": 27650.0, + "end": 27654.16, + "probability": 0.9819 + }, + { + "start": 27654.8, + "end": 27658.84, + "probability": 0.9138 + }, + { + "start": 27659.36, + "end": 27661.7, + "probability": 0.974 + }, + { + "start": 27662.5, + "end": 27665.58, + "probability": 0.9846 + }, + { + "start": 27666.1, + "end": 27669.72, + "probability": 0.9519 + }, + { + "start": 27670.36, + "end": 27672.6, + "probability": 0.8631 + }, + { + "start": 27673.34, + "end": 27675.9, + "probability": 0.9816 + }, + { + "start": 27675.9, + "end": 27679.1, + "probability": 0.9919 + }, + { + "start": 27679.58, + "end": 27685.08, + "probability": 0.9914 + }, + { + "start": 27686.52, + "end": 27686.92, + "probability": 0.3903 + }, + { + "start": 27687.78, + "end": 27689.24, + "probability": 0.9434 + }, + { + "start": 27690.98, + "end": 27696.8, + "probability": 0.8847 + }, + { + "start": 27697.36, + "end": 27701.44, + "probability": 0.9268 + }, + { + "start": 27702.48, + "end": 27703.79, + "probability": 0.7196 + }, + { + "start": 27704.24, + "end": 27708.38, + "probability": 0.9573 + }, + { + "start": 27708.52, + "end": 27708.98, + "probability": 0.6693 + }, + { + "start": 27709.48, + "end": 27709.76, + "probability": 0.646 + }, + { + "start": 27710.12, + "end": 27710.76, + "probability": 0.5519 + }, + { + "start": 27711.2, + "end": 27712.18, + "probability": 0.999 + }, + { + "start": 27712.68, + "end": 27715.04, + "probability": 0.9106 + }, + { + "start": 27715.88, + "end": 27722.2, + "probability": 0.9491 + }, + { + "start": 27722.2, + "end": 27728.4, + "probability": 0.9948 + }, + { + "start": 27729.34, + "end": 27730.48, + "probability": 0.9249 + }, + { + "start": 27731.04, + "end": 27733.22, + "probability": 0.6982 + }, + { + "start": 27733.76, + "end": 27735.02, + "probability": 0.9587 + }, + { + "start": 27736.54, + "end": 27736.96, + "probability": 0.5367 + }, + { + "start": 27737.59, + "end": 27738.58, + "probability": 0.5088 + }, + { + "start": 27739.9, + "end": 27741.36, + "probability": 0.7427 + }, + { + "start": 27741.56, + "end": 27742.96, + "probability": 0.8439 + }, + { + "start": 27743.26, + "end": 27744.52, + "probability": 0.9457 + }, + { + "start": 27744.6, + "end": 27745.52, + "probability": 0.7219 + }, + { + "start": 27745.66, + "end": 27746.02, + "probability": 0.7523 + }, + { + "start": 27746.44, + "end": 27747.14, + "probability": 0.8189 + }, + { + "start": 27747.24, + "end": 27747.92, + "probability": 0.6527 + }, + { + "start": 27748.32, + "end": 27749.26, + "probability": 0.8481 + }, + { + "start": 27749.44, + "end": 27751.14, + "probability": 0.9709 + }, + { + "start": 27751.7, + "end": 27755.98, + "probability": 0.9922 + }, + { + "start": 27756.2, + "end": 27760.54, + "probability": 0.9982 + }, + { + "start": 27761.44, + "end": 27764.62, + "probability": 0.9907 + }, + { + "start": 27764.62, + "end": 27768.66, + "probability": 0.9976 + }, + { + "start": 27769.38, + "end": 27770.4, + "probability": 0.8195 + }, + { + "start": 27770.82, + "end": 27771.64, + "probability": 0.8588 + }, + { + "start": 27772.06, + "end": 27773.6, + "probability": 0.7084 + }, + { + "start": 27773.66, + "end": 27777.48, + "probability": 0.9717 + }, + { + "start": 27778.14, + "end": 27778.78, + "probability": 0.6093 + }, + { + "start": 27778.82, + "end": 27782.34, + "probability": 0.9978 + }, + { + "start": 27783.08, + "end": 27787.88, + "probability": 0.9771 + }, + { + "start": 27788.6, + "end": 27789.32, + "probability": 0.9762 + }, + { + "start": 27789.92, + "end": 27794.64, + "probability": 0.9919 + }, + { + "start": 27795.46, + "end": 27798.54, + "probability": 0.9961 + }, + { + "start": 27799.68, + "end": 27799.94, + "probability": 0.507 + }, + { + "start": 27800.22, + "end": 27801.08, + "probability": 0.8926 + }, + { + "start": 27801.16, + "end": 27805.96, + "probability": 0.9921 + }, + { + "start": 27806.54, + "end": 27810.0, + "probability": 0.9338 + }, + { + "start": 27810.2, + "end": 27813.08, + "probability": 0.9044 + }, + { + "start": 27813.56, + "end": 27815.34, + "probability": 0.9105 + }, + { + "start": 27815.44, + "end": 27816.94, + "probability": 0.9498 + }, + { + "start": 27817.58, + "end": 27820.66, + "probability": 0.997 + }, + { + "start": 27820.66, + "end": 27824.5, + "probability": 0.9996 + }, + { + "start": 27825.26, + "end": 27825.82, + "probability": 0.8031 + }, + { + "start": 27825.94, + "end": 27828.37, + "probability": 0.9988 + }, + { + "start": 27828.48, + "end": 27833.28, + "probability": 0.9975 + }, + { + "start": 27833.42, + "end": 27836.84, + "probability": 0.993 + }, + { + "start": 27837.62, + "end": 27840.66, + "probability": 0.9956 + }, + { + "start": 27840.66, + "end": 27843.8, + "probability": 0.8899 + }, + { + "start": 27844.08, + "end": 27846.68, + "probability": 0.9821 + }, + { + "start": 27847.72, + "end": 27848.0, + "probability": 0.3381 + }, + { + "start": 27848.4, + "end": 27848.92, + "probability": 0.9485 + }, + { + "start": 27849.02, + "end": 27849.58, + "probability": 0.7378 + }, + { + "start": 27849.58, + "end": 27852.2, + "probability": 0.3359 + }, + { + "start": 27852.36, + "end": 27853.9, + "probability": 0.0651 + }, + { + "start": 27854.04, + "end": 27854.38, + "probability": 0.0834 + }, + { + "start": 27854.52, + "end": 27857.22, + "probability": 0.9766 + }, + { + "start": 27857.36, + "end": 27862.36, + "probability": 0.9985 + }, + { + "start": 27862.42, + "end": 27865.46, + "probability": 0.9868 + }, + { + "start": 27865.94, + "end": 27867.8, + "probability": 0.7746 + }, + { + "start": 27867.98, + "end": 27868.57, + "probability": 0.6221 + }, + { + "start": 27868.9, + "end": 27869.56, + "probability": 0.25 + }, + { + "start": 27870.1, + "end": 27870.9, + "probability": 0.503 + }, + { + "start": 27871.04, + "end": 27872.46, + "probability": 0.9019 + }, + { + "start": 27872.54, + "end": 27875.02, + "probability": 0.2564 + }, + { + "start": 27876.62, + "end": 27876.62, + "probability": 0.0023 + }, + { + "start": 27876.62, + "end": 27876.62, + "probability": 0.2435 + }, + { + "start": 27876.62, + "end": 27876.62, + "probability": 0.069 + }, + { + "start": 27876.62, + "end": 27878.72, + "probability": 0.7788 + }, + { + "start": 27878.86, + "end": 27882.52, + "probability": 0.9521 + }, + { + "start": 27884.7, + "end": 27884.7, + "probability": 0.1332 + }, + { + "start": 27884.7, + "end": 27884.7, + "probability": 0.0589 + }, + { + "start": 27884.7, + "end": 27885.18, + "probability": 0.6851 + }, + { + "start": 27885.26, + "end": 27886.1, + "probability": 0.9891 + }, + { + "start": 27886.18, + "end": 27888.96, + "probability": 0.9418 + }, + { + "start": 27889.5, + "end": 27891.74, + "probability": 0.752 + }, + { + "start": 27891.74, + "end": 27892.92, + "probability": 0.6709 + }, + { + "start": 27893.04, + "end": 27894.36, + "probability": 0.8138 + }, + { + "start": 27894.9, + "end": 27895.22, + "probability": 0.0027 + }, + { + "start": 27895.22, + "end": 27895.22, + "probability": 0.0665 + }, + { + "start": 27895.22, + "end": 27897.46, + "probability": 0.9744 + }, + { + "start": 27897.98, + "end": 27899.96, + "probability": 0.9939 + }, + { + "start": 27900.0, + "end": 27901.06, + "probability": 0.9559 + }, + { + "start": 27901.1, + "end": 27903.1, + "probability": 0.9958 + }, + { + "start": 27903.44, + "end": 27905.4, + "probability": 0.9392 + }, + { + "start": 27905.42, + "end": 27906.04, + "probability": 0.6478 + }, + { + "start": 27906.28, + "end": 27906.44, + "probability": 0.5461 + }, + { + "start": 27906.88, + "end": 27908.94, + "probability": 0.8889 + }, + { + "start": 27908.98, + "end": 27912.27, + "probability": 0.9944 + }, + { + "start": 27913.82, + "end": 27915.02, + "probability": 0.8547 + }, + { + "start": 27915.74, + "end": 27916.52, + "probability": 0.6523 + }, + { + "start": 27918.02, + "end": 27918.6, + "probability": 0.3412 + }, + { + "start": 27919.1, + "end": 27919.16, + "probability": 0.4189 + }, + { + "start": 27919.42, + "end": 27920.4, + "probability": 0.8213 + }, + { + "start": 27922.38, + "end": 27922.38, + "probability": 0.4915 + }, + { + "start": 27922.38, + "end": 27924.14, + "probability": 0.4563 + }, + { + "start": 27936.58, + "end": 27939.04, + "probability": 0.6641 + }, + { + "start": 27940.0, + "end": 27943.14, + "probability": 0.9758 + }, + { + "start": 27943.32, + "end": 27945.22, + "probability": 0.8267 + }, + { + "start": 27945.38, + "end": 27946.36, + "probability": 0.8487 + }, + { + "start": 27947.12, + "end": 27952.58, + "probability": 0.9871 + }, + { + "start": 27952.92, + "end": 27956.02, + "probability": 0.9424 + }, + { + "start": 27956.74, + "end": 27958.4, + "probability": 0.8437 + }, + { + "start": 27958.54, + "end": 27961.66, + "probability": 0.9854 + }, + { + "start": 27962.72, + "end": 27962.98, + "probability": 0.5792 + }, + { + "start": 27963.26, + "end": 27965.02, + "probability": 0.9971 + }, + { + "start": 27965.26, + "end": 27966.44, + "probability": 0.9351 + }, + { + "start": 27969.32, + "end": 27971.26, + "probability": 0.4093 + }, + { + "start": 27971.9, + "end": 27975.04, + "probability": 0.7835 + }, + { + "start": 27975.4, + "end": 27979.14, + "probability": 0.9473 + }, + { + "start": 27979.76, + "end": 27980.54, + "probability": 0.8003 + }, + { + "start": 27980.76, + "end": 27983.76, + "probability": 0.8701 + }, + { + "start": 27984.38, + "end": 27985.82, + "probability": 0.7133 + }, + { + "start": 27986.46, + "end": 27988.88, + "probability": 0.6727 + }, + { + "start": 27989.86, + "end": 27993.72, + "probability": 0.969 + }, + { + "start": 27993.94, + "end": 27995.84, + "probability": 0.9968 + }, + { + "start": 27996.46, + "end": 27998.48, + "probability": 0.9951 + }, + { + "start": 27998.62, + "end": 27999.7, + "probability": 0.4747 + }, + { + "start": 28000.14, + "end": 28001.88, + "probability": 0.9425 + }, + { + "start": 28001.94, + "end": 28003.66, + "probability": 0.8626 + }, + { + "start": 28004.32, + "end": 28005.78, + "probability": 0.9845 + }, + { + "start": 28005.9, + "end": 28008.08, + "probability": 0.9744 + }, + { + "start": 28008.66, + "end": 28010.24, + "probability": 0.9939 + }, + { + "start": 28010.34, + "end": 28013.14, + "probability": 0.994 + }, + { + "start": 28013.78, + "end": 28016.84, + "probability": 0.9712 + }, + { + "start": 28018.1, + "end": 28018.64, + "probability": 0.8771 + }, + { + "start": 28019.12, + "end": 28019.68, + "probability": 0.7532 + }, + { + "start": 28019.98, + "end": 28020.74, + "probability": 0.5095 + }, + { + "start": 28020.96, + "end": 28026.74, + "probability": 0.7996 + }, + { + "start": 28027.02, + "end": 28031.04, + "probability": 0.9947 + }, + { + "start": 28031.32, + "end": 28031.9, + "probability": 0.277 + }, + { + "start": 28032.04, + "end": 28033.04, + "probability": 0.7976 + }, + { + "start": 28033.24, + "end": 28035.52, + "probability": 0.8984 + }, + { + "start": 28036.28, + "end": 28037.82, + "probability": 0.9968 + }, + { + "start": 28038.08, + "end": 28040.58, + "probability": 0.9972 + }, + { + "start": 28041.06, + "end": 28042.36, + "probability": 0.9312 + }, + { + "start": 28042.42, + "end": 28043.03, + "probability": 0.9836 + }, + { + "start": 28043.78, + "end": 28046.0, + "probability": 0.833 + }, + { + "start": 28046.04, + "end": 28047.48, + "probability": 0.9586 + }, + { + "start": 28047.66, + "end": 28049.72, + "probability": 0.8007 + }, + { + "start": 28050.1, + "end": 28051.44, + "probability": 0.9519 + }, + { + "start": 28051.56, + "end": 28058.28, + "probability": 0.924 + }, + { + "start": 28058.84, + "end": 28059.38, + "probability": 0.2157 + }, + { + "start": 28059.58, + "end": 28060.58, + "probability": 0.8584 + }, + { + "start": 28060.92, + "end": 28062.84, + "probability": 0.9507 + }, + { + "start": 28063.66, + "end": 28064.12, + "probability": 0.898 + }, + { + "start": 28065.72, + "end": 28071.24, + "probability": 0.9959 + }, + { + "start": 28071.54, + "end": 28071.61, + "probability": 0.0572 + }, + { + "start": 28072.04, + "end": 28072.94, + "probability": 0.956 + }, + { + "start": 28073.02, + "end": 28073.78, + "probability": 0.8511 + }, + { + "start": 28073.88, + "end": 28074.68, + "probability": 0.9255 + }, + { + "start": 28075.8, + "end": 28076.6, + "probability": 0.9367 + }, + { + "start": 28076.94, + "end": 28077.74, + "probability": 0.9713 + }, + { + "start": 28077.82, + "end": 28079.3, + "probability": 0.9783 + }, + { + "start": 28079.34, + "end": 28080.78, + "probability": 0.4643 + }, + { + "start": 28081.58, + "end": 28083.18, + "probability": 0.978 + }, + { + "start": 28083.58, + "end": 28085.26, + "probability": 0.9878 + }, + { + "start": 28085.38, + "end": 28087.88, + "probability": 0.798 + }, + { + "start": 28087.94, + "end": 28093.6, + "probability": 0.9808 + }, + { + "start": 28093.82, + "end": 28094.83, + "probability": 0.7599 + }, + { + "start": 28094.9, + "end": 28099.8, + "probability": 0.8377 + }, + { + "start": 28099.96, + "end": 28101.05, + "probability": 0.9557 + }, + { + "start": 28102.64, + "end": 28107.62, + "probability": 0.9933 + }, + { + "start": 28108.12, + "end": 28108.56, + "probability": 0.4973 + }, + { + "start": 28108.86, + "end": 28110.04, + "probability": 0.8711 + }, + { + "start": 28110.14, + "end": 28111.08, + "probability": 0.7206 + }, + { + "start": 28111.7, + "end": 28112.88, + "probability": 0.9127 + }, + { + "start": 28113.02, + "end": 28116.68, + "probability": 0.9794 + }, + { + "start": 28117.58, + "end": 28122.62, + "probability": 0.9293 + }, + { + "start": 28123.3, + "end": 28125.26, + "probability": 0.8975 + }, + { + "start": 28125.44, + "end": 28127.5, + "probability": 0.7833 + }, + { + "start": 28127.58, + "end": 28131.2, + "probability": 0.8793 + }, + { + "start": 28131.72, + "end": 28133.88, + "probability": 0.9958 + }, + { + "start": 28134.18, + "end": 28138.48, + "probability": 0.9938 + }, + { + "start": 28138.54, + "end": 28141.52, + "probability": 0.9962 + }, + { + "start": 28142.12, + "end": 28145.14, + "probability": 0.8092 + }, + { + "start": 28145.24, + "end": 28147.08, + "probability": 0.8529 + }, + { + "start": 28147.24, + "end": 28147.68, + "probability": 0.8228 + }, + { + "start": 28148.76, + "end": 28149.0, + "probability": 0.4536 + }, + { + "start": 28149.74, + "end": 28152.14, + "probability": 0.6669 + }, + { + "start": 28154.46, + "end": 28154.56, + "probability": 0.2554 + }, + { + "start": 28155.18, + "end": 28156.18, + "probability": 0.1533 + }, + { + "start": 28172.62, + "end": 28174.24, + "probability": 0.7137 + }, + { + "start": 28182.32, + "end": 28186.3, + "probability": 0.7421 + }, + { + "start": 28187.28, + "end": 28187.94, + "probability": 0.7193 + }, + { + "start": 28191.22, + "end": 28193.9, + "probability": 0.7968 + }, + { + "start": 28194.36, + "end": 28196.34, + "probability": 0.9873 + }, + { + "start": 28196.68, + "end": 28197.72, + "probability": 0.7408 + }, + { + "start": 28198.52, + "end": 28202.58, + "probability": 0.981 + }, + { + "start": 28202.58, + "end": 28205.94, + "probability": 0.9989 + }, + { + "start": 28207.42, + "end": 28213.76, + "probability": 0.998 + }, + { + "start": 28215.26, + "end": 28217.1, + "probability": 0.9462 + }, + { + "start": 28217.94, + "end": 28223.72, + "probability": 0.9896 + }, + { + "start": 28224.96, + "end": 28225.74, + "probability": 0.6814 + }, + { + "start": 28226.58, + "end": 28227.34, + "probability": 0.8847 + }, + { + "start": 28230.02, + "end": 28233.94, + "probability": 0.9089 + }, + { + "start": 28235.12, + "end": 28240.08, + "probability": 0.9712 + }, + { + "start": 28240.62, + "end": 28242.02, + "probability": 0.998 + }, + { + "start": 28243.14, + "end": 28243.7, + "probability": 0.6652 + }, + { + "start": 28244.4, + "end": 28247.3, + "probability": 0.967 + }, + { + "start": 28249.54, + "end": 28249.88, + "probability": 0.6471 + }, + { + "start": 28251.18, + "end": 28252.62, + "probability": 0.8674 + }, + { + "start": 28253.2, + "end": 28253.82, + "probability": 0.4674 + }, + { + "start": 28253.92, + "end": 28254.41, + "probability": 0.4791 + }, + { + "start": 28255.12, + "end": 28257.06, + "probability": 0.5186 + }, + { + "start": 28257.86, + "end": 28258.44, + "probability": 0.43 + }, + { + "start": 28259.32, + "end": 28259.32, + "probability": 0.8053 + }, + { + "start": 28260.88, + "end": 28263.14, + "probability": 0.9908 + }, + { + "start": 28263.4, + "end": 28267.02, + "probability": 0.9434 + }, + { + "start": 28267.6, + "end": 28270.02, + "probability": 0.9847 + }, + { + "start": 28270.66, + "end": 28272.32, + "probability": 0.6761 + }, + { + "start": 28272.52, + "end": 28275.82, + "probability": 0.9262 + }, + { + "start": 28276.48, + "end": 28277.15, + "probability": 0.8658 + }, + { + "start": 28278.3, + "end": 28282.6, + "probability": 0.9784 + }, + { + "start": 28283.48, + "end": 28288.4, + "probability": 0.9355 + }, + { + "start": 28289.34, + "end": 28292.38, + "probability": 0.9969 + }, + { + "start": 28293.0, + "end": 28295.7, + "probability": 0.9958 + }, + { + "start": 28296.56, + "end": 28300.14, + "probability": 0.8082 + }, + { + "start": 28301.82, + "end": 28308.12, + "probability": 0.9807 + }, + { + "start": 28309.02, + "end": 28315.56, + "probability": 0.9966 + }, + { + "start": 28316.24, + "end": 28319.74, + "probability": 0.9969 + }, + { + "start": 28322.06, + "end": 28324.12, + "probability": 0.9297 + }, + { + "start": 28325.38, + "end": 28327.48, + "probability": 0.9706 + }, + { + "start": 28328.2, + "end": 28332.17, + "probability": 0.9669 + }, + { + "start": 28332.34, + "end": 28336.64, + "probability": 0.992 + }, + { + "start": 28337.28, + "end": 28338.2, + "probability": 0.6324 + }, + { + "start": 28339.18, + "end": 28339.96, + "probability": 0.9502 + }, + { + "start": 28340.82, + "end": 28344.6, + "probability": 0.9725 + }, + { + "start": 28345.42, + "end": 28350.7, + "probability": 0.9292 + }, + { + "start": 28352.3, + "end": 28352.72, + "probability": 0.0133 + }, + { + "start": 28353.92, + "end": 28357.72, + "probability": 0.8833 + }, + { + "start": 28358.28, + "end": 28362.76, + "probability": 0.9907 + }, + { + "start": 28362.76, + "end": 28366.94, + "probability": 0.9956 + }, + { + "start": 28368.24, + "end": 28371.98, + "probability": 0.7768 + }, + { + "start": 28373.02, + "end": 28375.16, + "probability": 0.9766 + }, + { + "start": 28376.72, + "end": 28377.16, + "probability": 0.7247 + }, + { + "start": 28377.8, + "end": 28378.14, + "probability": 0.963 + }, + { + "start": 28379.26, + "end": 28379.54, + "probability": 0.7693 + }, + { + "start": 28380.06, + "end": 28387.64, + "probability": 0.9361 + }, + { + "start": 28387.78, + "end": 28388.32, + "probability": 0.3618 + }, + { + "start": 28388.36, + "end": 28389.3, + "probability": 0.8809 + }, + { + "start": 28389.4, + "end": 28391.56, + "probability": 0.9552 + }, + { + "start": 28392.26, + "end": 28398.72, + "probability": 0.9854 + }, + { + "start": 28398.96, + "end": 28399.3, + "probability": 0.8535 + }, + { + "start": 28400.34, + "end": 28400.76, + "probability": 0.8204 + }, + { + "start": 28401.83, + "end": 28406.32, + "probability": 0.7861 + }, + { + "start": 28408.14, + "end": 28409.33, + "probability": 0.3798 + }, + { + "start": 28409.68, + "end": 28410.62, + "probability": 0.1337 + }, + { + "start": 28410.62, + "end": 28410.72, + "probability": 0.4595 + }, + { + "start": 28413.37, + "end": 28415.48, + "probability": 0.79 + }, + { + "start": 28429.36, + "end": 28430.14, + "probability": 0.6821 + }, + { + "start": 28431.6, + "end": 28432.8, + "probability": 0.8602 + }, + { + "start": 28435.58, + "end": 28438.42, + "probability": 0.7144 + }, + { + "start": 28439.42, + "end": 28445.3, + "probability": 0.9901 + }, + { + "start": 28446.04, + "end": 28446.98, + "probability": 0.9573 + }, + { + "start": 28447.92, + "end": 28455.62, + "probability": 0.9467 + }, + { + "start": 28455.62, + "end": 28455.72, + "probability": 0.5383 + }, + { + "start": 28455.72, + "end": 28456.82, + "probability": 0.6402 + }, + { + "start": 28456.9, + "end": 28457.77, + "probability": 0.8486 + }, + { + "start": 28458.62, + "end": 28460.2, + "probability": 0.9639 + }, + { + "start": 28462.82, + "end": 28465.54, + "probability": 0.5287 + }, + { + "start": 28466.08, + "end": 28467.68, + "probability": 0.7917 + }, + { + "start": 28468.9, + "end": 28470.12, + "probability": 0.9143 + }, + { + "start": 28470.92, + "end": 28471.76, + "probability": 0.5639 + }, + { + "start": 28471.84, + "end": 28474.58, + "probability": 0.9922 + }, + { + "start": 28475.42, + "end": 28476.2, + "probability": 0.7407 + }, + { + "start": 28476.98, + "end": 28479.32, + "probability": 0.7539 + }, + { + "start": 28480.36, + "end": 28485.2, + "probability": 0.9878 + }, + { + "start": 28486.04, + "end": 28487.24, + "probability": 0.9951 + }, + { + "start": 28487.58, + "end": 28490.5, + "probability": 0.9825 + }, + { + "start": 28491.06, + "end": 28493.06, + "probability": 0.9817 + }, + { + "start": 28493.16, + "end": 28493.62, + "probability": 0.5033 + }, + { + "start": 28494.18, + "end": 28494.58, + "probability": 0.9468 + }, + { + "start": 28495.22, + "end": 28498.46, + "probability": 0.9945 + }, + { + "start": 28499.14, + "end": 28502.14, + "probability": 0.9837 + }, + { + "start": 28503.06, + "end": 28506.36, + "probability": 0.937 + }, + { + "start": 28509.94, + "end": 28511.8, + "probability": 0.9985 + }, + { + "start": 28512.58, + "end": 28514.5, + "probability": 0.6366 + }, + { + "start": 28514.5, + "end": 28516.66, + "probability": 0.1411 + }, + { + "start": 28523.98, + "end": 28528.94, + "probability": 0.6148 + }, + { + "start": 28533.72, + "end": 28539.4, + "probability": 0.826 + }, + { + "start": 28540.08, + "end": 28543.33, + "probability": 0.9475 + }, + { + "start": 28544.44, + "end": 28548.26, + "probability": 0.8768 + }, + { + "start": 28548.98, + "end": 28553.56, + "probability": 0.7141 + }, + { + "start": 28553.56, + "end": 28556.12, + "probability": 0.9717 + }, + { + "start": 28556.56, + "end": 28556.84, + "probability": 0.1886 + }, + { + "start": 28556.84, + "end": 28556.84, + "probability": 0.1361 + }, + { + "start": 28556.84, + "end": 28557.16, + "probability": 0.4445 + }, + { + "start": 28558.38, + "end": 28561.54, + "probability": 0.9554 + }, + { + "start": 28562.5, + "end": 28564.04, + "probability": 0.5551 + }, + { + "start": 28564.14, + "end": 28566.58, + "probability": 0.8912 + }, + { + "start": 28566.98, + "end": 28567.88, + "probability": 0.832 + }, + { + "start": 28567.9, + "end": 28568.68, + "probability": 0.8958 + }, + { + "start": 28569.66, + "end": 28572.0, + "probability": 0.5031 + }, + { + "start": 28572.66, + "end": 28574.12, + "probability": 0.958 + }, + { + "start": 28574.2, + "end": 28575.72, + "probability": 0.6254 + }, + { + "start": 28575.88, + "end": 28576.48, + "probability": 0.6715 + }, + { + "start": 28576.68, + "end": 28577.62, + "probability": 0.9181 + }, + { + "start": 28578.0, + "end": 28582.34, + "probability": 0.7423 + }, + { + "start": 28582.72, + "end": 28583.42, + "probability": 0.6558 + }, + { + "start": 28583.94, + "end": 28584.44, + "probability": 0.9786 + }, + { + "start": 28585.22, + "end": 28585.64, + "probability": 0.167 + }, + { + "start": 28586.52, + "end": 28589.6, + "probability": 0.8388 + }, + { + "start": 28590.26, + "end": 28592.0, + "probability": 0.9293 + }, + { + "start": 28593.18, + "end": 28594.56, + "probability": 0.9937 + }, + { + "start": 28594.72, + "end": 28596.32, + "probability": 0.6894 + }, + { + "start": 28597.04, + "end": 28599.76, + "probability": 0.8359 + }, + { + "start": 28600.2, + "end": 28600.96, + "probability": 0.9139 + }, + { + "start": 28601.24, + "end": 28601.88, + "probability": 0.9783 + }, + { + "start": 28601.94, + "end": 28602.66, + "probability": 0.9232 + }, + { + "start": 28603.4, + "end": 28606.86, + "probability": 0.9654 + }, + { + "start": 28606.86, + "end": 28608.74, + "probability": 0.3766 + }, + { + "start": 28609.26, + "end": 28611.76, + "probability": 0.959 + }, + { + "start": 28611.88, + "end": 28612.58, + "probability": 0.6566 + }, + { + "start": 28613.0, + "end": 28613.52, + "probability": 0.7131 + }, + { + "start": 28613.58, + "end": 28615.02, + "probability": 0.9932 + }, + { + "start": 28615.5, + "end": 28617.5, + "probability": 0.8116 + }, + { + "start": 28617.66, + "end": 28618.09, + "probability": 0.5253 + }, + { + "start": 28618.32, + "end": 28618.98, + "probability": 0.5439 + }, + { + "start": 28619.5, + "end": 28622.78, + "probability": 0.5476 + }, + { + "start": 28633.52, + "end": 28634.98, + "probability": 0.3603 + }, + { + "start": 28635.92, + "end": 28637.38, + "probability": 0.0309 + }, + { + "start": 28639.62, + "end": 28639.76, + "probability": 0.0411 + }, + { + "start": 28639.76, + "end": 28639.76, + "probability": 0.0477 + }, + { + "start": 28639.76, + "end": 28639.76, + "probability": 0.0382 + }, + { + "start": 28639.76, + "end": 28643.0, + "probability": 0.1408 + }, + { + "start": 28645.24, + "end": 28645.76, + "probability": 0.102 + }, + { + "start": 28645.76, + "end": 28645.76, + "probability": 0.1139 + }, + { + "start": 28645.76, + "end": 28645.76, + "probability": 0.3201 + }, + { + "start": 28645.76, + "end": 28648.35, + "probability": 0.7754 + }, + { + "start": 28649.86, + "end": 28654.16, + "probability": 0.9515 + }, + { + "start": 28655.34, + "end": 28659.7, + "probability": 0.8246 + }, + { + "start": 28661.24, + "end": 28664.5, + "probability": 0.958 + }, + { + "start": 28665.2, + "end": 28666.26, + "probability": 0.6483 + }, + { + "start": 28667.5, + "end": 28668.84, + "probability": 0.4252 + }, + { + "start": 28668.98, + "end": 28670.54, + "probability": 0.8911 + }, + { + "start": 28670.72, + "end": 28672.36, + "probability": 0.8187 + }, + { + "start": 28673.02, + "end": 28674.76, + "probability": 0.9662 + }, + { + "start": 28675.54, + "end": 28678.06, + "probability": 0.7778 + }, + { + "start": 28678.66, + "end": 28681.75, + "probability": 0.9653 + }, + { + "start": 28682.44, + "end": 28683.52, + "probability": 0.9839 + }, + { + "start": 28684.04, + "end": 28685.59, + "probability": 0.9785 + }, + { + "start": 28685.8, + "end": 28686.6, + "probability": 0.9756 + }, + { + "start": 28686.66, + "end": 28687.1, + "probability": 0.9387 + }, + { + "start": 28688.26, + "end": 28691.06, + "probability": 0.8905 + }, + { + "start": 28691.48, + "end": 28692.6, + "probability": 0.6093 + }, + { + "start": 28693.14, + "end": 28694.5, + "probability": 0.8459 + }, + { + "start": 28694.52, + "end": 28697.02, + "probability": 0.0927 + }, + { + "start": 28698.08, + "end": 28699.9, + "probability": 0.592 + }, + { + "start": 28700.48, + "end": 28703.66, + "probability": 0.072 + }, + { + "start": 28704.3, + "end": 28705.38, + "probability": 0.0755 + }, + { + "start": 28708.98, + "end": 28713.58, + "probability": 0.0142 + }, + { + "start": 28715.46, + "end": 28718.7, + "probability": 0.1279 + }, + { + "start": 28719.12, + "end": 28719.22, + "probability": 0.0246 + }, + { + "start": 28719.22, + "end": 28719.98, + "probability": 0.0505 + }, + { + "start": 28720.08, + "end": 28720.29, + "probability": 0.3885 + }, + { + "start": 28721.88, + "end": 28723.06, + "probability": 0.715 + }, + { + "start": 28723.54, + "end": 28724.94, + "probability": 0.8999 + }, + { + "start": 28725.0, + "end": 28725.76, + "probability": 0.9854 + }, + { + "start": 28726.76, + "end": 28728.16, + "probability": 0.5093 + }, + { + "start": 28728.2, + "end": 28728.98, + "probability": 0.386 + }, + { + "start": 28729.24, + "end": 28732.1, + "probability": 0.7887 + }, + { + "start": 28735.96, + "end": 28739.24, + "probability": 0.7151 + }, + { + "start": 28740.42, + "end": 28743.6, + "probability": 0.9918 + }, + { + "start": 28744.64, + "end": 28748.02, + "probability": 0.9646 + }, + { + "start": 28748.14, + "end": 28750.08, + "probability": 0.998 + }, + { + "start": 28750.08, + "end": 28753.2, + "probability": 0.9916 + }, + { + "start": 28753.72, + "end": 28754.98, + "probability": 0.9985 + }, + { + "start": 28755.68, + "end": 28758.26, + "probability": 0.9965 + }, + { + "start": 28758.62, + "end": 28760.92, + "probability": 0.9514 + }, + { + "start": 28761.52, + "end": 28764.58, + "probability": 0.9644 + }, + { + "start": 28765.04, + "end": 28765.9, + "probability": 0.9673 + }, + { + "start": 28766.16, + "end": 28767.0, + "probability": 0.9425 + }, + { + "start": 28767.56, + "end": 28770.44, + "probability": 0.9873 + }, + { + "start": 28770.8, + "end": 28774.66, + "probability": 0.9922 + }, + { + "start": 28774.94, + "end": 28778.84, + "probability": 0.9819 + }, + { + "start": 28779.84, + "end": 28781.8, + "probability": 0.9986 + }, + { + "start": 28782.44, + "end": 28783.78, + "probability": 0.9619 + }, + { + "start": 28783.98, + "end": 28787.16, + "probability": 0.8982 + }, + { + "start": 28787.72, + "end": 28791.84, + "probability": 0.9984 + }, + { + "start": 28792.46, + "end": 28796.04, + "probability": 0.8174 + }, + { + "start": 28796.66, + "end": 28800.5, + "probability": 0.9867 + }, + { + "start": 28801.0, + "end": 28805.76, + "probability": 0.9523 + }, + { + "start": 28805.92, + "end": 28807.0, + "probability": 0.9462 + }, + { + "start": 28807.1, + "end": 28808.14, + "probability": 0.9854 + }, + { + "start": 28808.24, + "end": 28809.2, + "probability": 0.5379 + }, + { + "start": 28809.5, + "end": 28810.77, + "probability": 0.9385 + }, + { + "start": 28810.86, + "end": 28811.88, + "probability": 0.9951 + }, + { + "start": 28811.98, + "end": 28812.74, + "probability": 0.9747 + }, + { + "start": 28813.4, + "end": 28816.02, + "probability": 0.9041 + }, + { + "start": 28816.46, + "end": 28818.52, + "probability": 0.939 + }, + { + "start": 28818.6, + "end": 28820.16, + "probability": 0.9849 + }, + { + "start": 28820.24, + "end": 28821.58, + "probability": 0.7575 + }, + { + "start": 28822.0, + "end": 28822.61, + "probability": 0.8383 + }, + { + "start": 28823.08, + "end": 28824.92, + "probability": 0.8774 + }, + { + "start": 28825.2, + "end": 28828.04, + "probability": 0.9867 + }, + { + "start": 28828.3, + "end": 28830.86, + "probability": 0.9916 + }, + { + "start": 28831.24, + "end": 28832.84, + "probability": 0.964 + }, + { + "start": 28832.9, + "end": 28833.29, + "probability": 0.9776 + }, + { + "start": 28833.6, + "end": 28833.95, + "probability": 0.8204 + }, + { + "start": 28834.72, + "end": 28836.9, + "probability": 0.8918 + }, + { + "start": 28837.06, + "end": 28838.66, + "probability": 0.4956 + }, + { + "start": 28838.9, + "end": 28840.08, + "probability": 0.7435 + }, + { + "start": 28840.74, + "end": 28843.78, + "probability": 0.9103 + }, + { + "start": 28844.38, + "end": 28846.44, + "probability": 0.9576 + }, + { + "start": 28846.56, + "end": 28847.06, + "probability": 0.6845 + }, + { + "start": 28847.66, + "end": 28848.06, + "probability": 0.6954 + }, + { + "start": 28848.06, + "end": 28850.04, + "probability": 0.5767 + }, + { + "start": 28851.14, + "end": 28854.4, + "probability": 0.8556 + }, + { + "start": 28854.52, + "end": 28854.8, + "probability": 0.8933 + }, + { + "start": 28855.44, + "end": 28857.88, + "probability": 0.4958 + }, + { + "start": 28859.4, + "end": 28861.98, + "probability": 0.8936 + }, + { + "start": 28862.4, + "end": 28862.42, + "probability": 0.0149 + }, + { + "start": 28864.02, + "end": 28864.12, + "probability": 0.0609 + }, + { + "start": 28864.28, + "end": 28864.3, + "probability": 0.0064 + }, + { + "start": 28864.3, + "end": 28865.36, + "probability": 0.0968 + }, + { + "start": 28865.36, + "end": 28867.04, + "probability": 0.5625 + }, + { + "start": 28867.72, + "end": 28870.54, + "probability": 0.0821 + }, + { + "start": 28870.84, + "end": 28870.84, + "probability": 0.1678 + }, + { + "start": 28870.84, + "end": 28871.34, + "probability": 0.1289 + }, + { + "start": 28871.56, + "end": 28873.54, + "probability": 0.1261 + }, + { + "start": 28873.72, + "end": 28874.7, + "probability": 0.2483 + }, + { + "start": 28874.7, + "end": 28875.08, + "probability": 0.7234 + }, + { + "start": 28875.32, + "end": 28876.02, + "probability": 0.7933 + }, + { + "start": 28876.08, + "end": 28877.22, + "probability": 0.9689 + }, + { + "start": 28877.42, + "end": 28879.04, + "probability": 0.6169 + }, + { + "start": 28879.72, + "end": 28880.38, + "probability": 0.8451 + }, + { + "start": 28880.98, + "end": 28881.68, + "probability": 0.7226 + }, + { + "start": 28882.0, + "end": 28883.46, + "probability": 0.2188 + }, + { + "start": 28885.4, + "end": 28885.88, + "probability": 0.3025 + }, + { + "start": 28885.88, + "end": 28887.02, + "probability": 0.5783 + }, + { + "start": 28897.54, + "end": 28898.14, + "probability": 0.2539 + }, + { + "start": 28904.5, + "end": 28906.0, + "probability": 0.7985 + }, + { + "start": 28906.94, + "end": 28908.26, + "probability": 0.3623 + }, + { + "start": 28908.4, + "end": 28911.66, + "probability": 0.9384 + }, + { + "start": 28912.44, + "end": 28915.14, + "probability": 0.6987 + }, + { + "start": 28915.16, + "end": 28915.46, + "probability": 0.9089 + }, + { + "start": 28916.68, + "end": 28917.6, + "probability": 0.8381 + }, + { + "start": 28923.48, + "end": 28924.04, + "probability": 0.712 + }, + { + "start": 28925.16, + "end": 28926.04, + "probability": 0.5803 + }, + { + "start": 28930.1, + "end": 28930.8, + "probability": 0.5915 + }, + { + "start": 28930.88, + "end": 28931.86, + "probability": 0.7172 + }, + { + "start": 28931.9, + "end": 28933.74, + "probability": 0.9954 + }, + { + "start": 28934.26, + "end": 28935.96, + "probability": 0.9959 + }, + { + "start": 28936.48, + "end": 28940.66, + "probability": 0.9918 + }, + { + "start": 28940.98, + "end": 28942.1, + "probability": 0.4126 + }, + { + "start": 28942.1, + "end": 28942.2, + "probability": 0.8428 + }, + { + "start": 28943.86, + "end": 28950.54, + "probability": 0.847 + }, + { + "start": 28951.6, + "end": 28956.08, + "probability": 0.8104 + }, + { + "start": 28956.37, + "end": 28957.79, + "probability": 0.9812 + }, + { + "start": 28958.3, + "end": 28958.3, + "probability": 0.0004 + }, + { + "start": 28960.63, + "end": 28961.98, + "probability": 0.4415 + }, + { + "start": 28962.12, + "end": 28962.22, + "probability": 0.2713 + }, + { + "start": 28962.58, + "end": 28963.62, + "probability": 0.945 + }, + { + "start": 28964.72, + "end": 28966.58, + "probability": 0.4948 + }, + { + "start": 28966.9, + "end": 28967.06, + "probability": 0.1728 + }, + { + "start": 28967.16, + "end": 28967.62, + "probability": 0.1845 + }, + { + "start": 28968.06, + "end": 28969.94, + "probability": 0.7575 + }, + { + "start": 28970.08, + "end": 28970.72, + "probability": 0.1506 + }, + { + "start": 28971.98, + "end": 28974.68, + "probability": 0.3982 + }, + { + "start": 28975.96, + "end": 28978.14, + "probability": 0.8056 + }, + { + "start": 28978.8, + "end": 28978.86, + "probability": 0.0902 + }, + { + "start": 28978.94, + "end": 28980.58, + "probability": 0.7961 + }, + { + "start": 28982.77, + "end": 28985.88, + "probability": 0.0051 + }, + { + "start": 28992.1, + "end": 28992.1, + "probability": 0.0797 + }, + { + "start": 28992.34, + "end": 28993.28, + "probability": 0.5284 + }, + { + "start": 28994.2, + "end": 28996.22, + "probability": 0.8763 + }, + { + "start": 28996.74, + "end": 28996.94, + "probability": 0.3374 + }, + { + "start": 28997.4, + "end": 28997.56, + "probability": 0.5086 + }, + { + "start": 28997.68, + "end": 28998.88, + "probability": 0.9528 + }, + { + "start": 28999.52, + "end": 29000.82, + "probability": 0.936 + }, + { + "start": 29001.58, + "end": 29003.1, + "probability": 0.9993 + }, + { + "start": 29003.32, + "end": 29003.96, + "probability": 0.9469 + }, + { + "start": 29005.18, + "end": 29008.44, + "probability": 0.2138 + }, + { + "start": 29008.88, + "end": 29008.88, + "probability": 0.0179 + }, + { + "start": 29008.88, + "end": 29008.88, + "probability": 0.175 + }, + { + "start": 29008.88, + "end": 29008.88, + "probability": 0.0574 + }, + { + "start": 29008.88, + "end": 29009.52, + "probability": 0.3332 + }, + { + "start": 29010.78, + "end": 29011.87, + "probability": 0.1354 + }, + { + "start": 29013.2, + "end": 29013.2, + "probability": 0.389 + }, + { + "start": 29013.28, + "end": 29014.76, + "probability": 0.4767 + }, + { + "start": 29015.94, + "end": 29017.26, + "probability": 0.6627 + }, + { + "start": 29017.34, + "end": 29018.4, + "probability": 0.8658 + }, + { + "start": 29018.68, + "end": 29019.44, + "probability": 0.9506 + }, + { + "start": 29019.56, + "end": 29020.62, + "probability": 0.6991 + }, + { + "start": 29021.44, + "end": 29023.53, + "probability": 0.8265 + }, + { + "start": 29024.52, + "end": 29026.16, + "probability": 0.9897 + }, + { + "start": 29026.94, + "end": 29030.52, + "probability": 0.9733 + }, + { + "start": 29031.86, + "end": 29034.92, + "probability": 0.61 + }, + { + "start": 29036.24, + "end": 29037.08, + "probability": 0.9055 + }, + { + "start": 29037.14, + "end": 29037.74, + "probability": 0.5568 + }, + { + "start": 29037.82, + "end": 29038.98, + "probability": 0.9937 + }, + { + "start": 29039.44, + "end": 29041.38, + "probability": 0.8913 + }, + { + "start": 29042.22, + "end": 29046.34, + "probability": 0.9325 + }, + { + "start": 29046.88, + "end": 29049.36, + "probability": 0.7735 + }, + { + "start": 29050.12, + "end": 29051.22, + "probability": 0.7416 + }, + { + "start": 29051.54, + "end": 29053.96, + "probability": 0.9713 + }, + { + "start": 29055.16, + "end": 29057.72, + "probability": 0.8636 + }, + { + "start": 29058.22, + "end": 29062.34, + "probability": 0.8052 + }, + { + "start": 29062.34, + "end": 29064.96, + "probability": 0.9653 + }, + { + "start": 29065.06, + "end": 29066.42, + "probability": 0.6992 + }, + { + "start": 29067.22, + "end": 29069.22, + "probability": 0.9992 + }, + { + "start": 29069.24, + "end": 29070.46, + "probability": 0.9983 + }, + { + "start": 29071.26, + "end": 29073.46, + "probability": 0.9958 + }, + { + "start": 29074.0, + "end": 29076.72, + "probability": 0.5187 + }, + { + "start": 29078.18, + "end": 29079.56, + "probability": 0.8102 + }, + { + "start": 29081.14, + "end": 29085.16, + "probability": 0.8904 + }, + { + "start": 29085.78, + "end": 29086.9, + "probability": 0.5112 + }, + { + "start": 29089.16, + "end": 29089.66, + "probability": 0.8369 + }, + { + "start": 29089.68, + "end": 29089.92, + "probability": 0.5728 + }, + { + "start": 29089.94, + "end": 29090.34, + "probability": 0.8167 + }, + { + "start": 29090.48, + "end": 29094.68, + "probability": 0.9666 + }, + { + "start": 29095.48, + "end": 29098.26, + "probability": 0.8788 + }, + { + "start": 29098.8, + "end": 29099.8, + "probability": 0.9745 + }, + { + "start": 29100.84, + "end": 29105.5, + "probability": 0.9785 + }, + { + "start": 29105.7, + "end": 29110.18, + "probability": 0.9976 + }, + { + "start": 29110.62, + "end": 29111.62, + "probability": 0.7331 + }, + { + "start": 29112.2, + "end": 29113.76, + "probability": 0.9992 + }, + { + "start": 29114.56, + "end": 29114.56, + "probability": 0.2845 + }, + { + "start": 29114.56, + "end": 29115.56, + "probability": 0.1571 + }, + { + "start": 29115.88, + "end": 29117.4, + "probability": 0.9692 + }, + { + "start": 29118.0, + "end": 29123.32, + "probability": 0.9955 + }, + { + "start": 29123.32, + "end": 29124.94, + "probability": 0.8032 + }, + { + "start": 29125.08, + "end": 29127.22, + "probability": 0.5782 + }, + { + "start": 29127.62, + "end": 29128.02, + "probability": 0.5781 + }, + { + "start": 29128.82, + "end": 29129.72, + "probability": 0.8079 + }, + { + "start": 29129.76, + "end": 29130.92, + "probability": 0.9431 + }, + { + "start": 29131.04, + "end": 29134.44, + "probability": 0.8493 + }, + { + "start": 29135.5, + "end": 29136.38, + "probability": 0.9858 + }, + { + "start": 29137.14, + "end": 29137.36, + "probability": 0.2804 + }, + { + "start": 29137.44, + "end": 29139.16, + "probability": 0.9963 + }, + { + "start": 29139.84, + "end": 29141.36, + "probability": 0.9954 + }, + { + "start": 29141.86, + "end": 29147.4, + "probability": 0.8221 + }, + { + "start": 29147.74, + "end": 29149.32, + "probability": 0.8657 + }, + { + "start": 29150.4, + "end": 29152.52, + "probability": 0.811 + }, + { + "start": 29152.94, + "end": 29155.1, + "probability": 0.9975 + }, + { + "start": 29157.1, + "end": 29158.88, + "probability": 0.9961 + }, + { + "start": 29159.24, + "end": 29165.08, + "probability": 0.9077 + }, + { + "start": 29165.74, + "end": 29166.9, + "probability": 0.9398 + }, + { + "start": 29167.48, + "end": 29169.14, + "probability": 0.639 + }, + { + "start": 29170.04, + "end": 29172.62, + "probability": 0.4741 + }, + { + "start": 29172.62, + "end": 29175.52, + "probability": 0.3562 + }, + { + "start": 29176.1, + "end": 29176.1, + "probability": 0.0576 + }, + { + "start": 29176.1, + "end": 29176.1, + "probability": 0.0681 + }, + { + "start": 29176.1, + "end": 29178.06, + "probability": 0.8652 + }, + { + "start": 29178.76, + "end": 29179.92, + "probability": 0.5112 + }, + { + "start": 29180.46, + "end": 29181.38, + "probability": 0.3052 + }, + { + "start": 29181.74, + "end": 29187.06, + "probability": 0.8829 + }, + { + "start": 29188.04, + "end": 29189.38, + "probability": 0.9819 + }, + { + "start": 29189.84, + "end": 29193.8, + "probability": 0.9945 + }, + { + "start": 29194.84, + "end": 29196.2, + "probability": 0.9532 + }, + { + "start": 29197.08, + "end": 29198.38, + "probability": 0.795 + }, + { + "start": 29199.86, + "end": 29202.14, + "probability": 0.981 + }, + { + "start": 29202.74, + "end": 29205.18, + "probability": 0.8794 + }, + { + "start": 29205.26, + "end": 29207.18, + "probability": 0.9878 + }, + { + "start": 29207.62, + "end": 29210.0, + "probability": 0.9263 + }, + { + "start": 29211.04, + "end": 29214.06, + "probability": 0.3521 + }, + { + "start": 29214.22, + "end": 29215.12, + "probability": 0.4686 + }, + { + "start": 29216.2, + "end": 29218.26, + "probability": 0.8217 + }, + { + "start": 29218.88, + "end": 29223.88, + "probability": 0.6039 + }, + { + "start": 29224.84, + "end": 29226.68, + "probability": 0.8616 + }, + { + "start": 29227.58, + "end": 29232.52, + "probability": 0.6342 + }, + { + "start": 29233.68, + "end": 29233.9, + "probability": 0.0146 + }, + { + "start": 29233.9, + "end": 29233.9, + "probability": 0.0705 + }, + { + "start": 29233.9, + "end": 29239.38, + "probability": 0.9796 + }, + { + "start": 29239.86, + "end": 29242.34, + "probability": 0.7941 + }, + { + "start": 29242.42, + "end": 29248.9, + "probability": 0.9442 + }, + { + "start": 29249.34, + "end": 29250.84, + "probability": 0.9614 + }, + { + "start": 29251.56, + "end": 29256.02, + "probability": 0.9876 + }, + { + "start": 29256.88, + "end": 29258.6, + "probability": 0.9402 + }, + { + "start": 29259.02, + "end": 29261.64, + "probability": 0.7558 + }, + { + "start": 29262.04, + "end": 29266.46, + "probability": 0.9573 + }, + { + "start": 29266.96, + "end": 29268.37, + "probability": 0.9888 + }, + { + "start": 29268.96, + "end": 29269.88, + "probability": 0.9561 + }, + { + "start": 29270.22, + "end": 29270.98, + "probability": 0.9513 + }, + { + "start": 29271.18, + "end": 29273.04, + "probability": 0.9563 + }, + { + "start": 29273.58, + "end": 29278.06, + "probability": 0.9544 + }, + { + "start": 29278.6, + "end": 29279.38, + "probability": 0.9528 + }, + { + "start": 29280.12, + "end": 29281.16, + "probability": 0.3181 + }, + { + "start": 29282.2, + "end": 29284.46, + "probability": 0.8131 + }, + { + "start": 29284.58, + "end": 29286.2, + "probability": 0.9541 + }, + { + "start": 29287.26, + "end": 29287.7, + "probability": 0.9558 + }, + { + "start": 29289.96, + "end": 29290.0, + "probability": 0.2589 + }, + { + "start": 29290.02, + "end": 29290.46, + "probability": 0.6812 + }, + { + "start": 29291.26, + "end": 29291.96, + "probability": 0.8271 + }, + { + "start": 29292.1, + "end": 29293.28, + "probability": 0.9956 + }, + { + "start": 29293.36, + "end": 29293.92, + "probability": 0.9082 + }, + { + "start": 29294.44, + "end": 29295.16, + "probability": 0.4929 + }, + { + "start": 29295.24, + "end": 29296.91, + "probability": 0.9575 + }, + { + "start": 29297.26, + "end": 29298.32, + "probability": 0.1987 + }, + { + "start": 29298.76, + "end": 29302.34, + "probability": 0.9742 + }, + { + "start": 29306.22, + "end": 29308.34, + "probability": 0.6323 + }, + { + "start": 29308.48, + "end": 29311.36, + "probability": 0.9929 + }, + { + "start": 29311.46, + "end": 29312.46, + "probability": 0.1422 + }, + { + "start": 29312.6, + "end": 29316.58, + "probability": 0.9879 + }, + { + "start": 29317.32, + "end": 29320.9, + "probability": 0.7179 + }, + { + "start": 29321.7, + "end": 29323.88, + "probability": 0.655 + }, + { + "start": 29323.96, + "end": 29325.72, + "probability": 0.4511 + }, + { + "start": 29325.82, + "end": 29327.44, + "probability": 0.9176 + }, + { + "start": 29327.84, + "end": 29329.38, + "probability": 0.9268 + }, + { + "start": 29329.96, + "end": 29334.24, + "probability": 0.9878 + }, + { + "start": 29334.76, + "end": 29336.94, + "probability": 0.9888 + }, + { + "start": 29337.42, + "end": 29338.12, + "probability": 0.9788 + }, + { + "start": 29338.68, + "end": 29339.56, + "probability": 0.9883 + }, + { + "start": 29340.42, + "end": 29341.21, + "probability": 0.7246 + }, + { + "start": 29341.9, + "end": 29344.5, + "probability": 0.508 + }, + { + "start": 29344.88, + "end": 29345.24, + "probability": 0.8665 + }, + { + "start": 29345.78, + "end": 29348.06, + "probability": 0.9895 + }, + { + "start": 29348.1, + "end": 29351.14, + "probability": 0.9927 + }, + { + "start": 29351.64, + "end": 29353.24, + "probability": 0.9807 + }, + { + "start": 29353.36, + "end": 29355.94, + "probability": 0.8989 + }, + { + "start": 29355.98, + "end": 29357.22, + "probability": 0.989 + }, + { + "start": 29357.42, + "end": 29362.24, + "probability": 0.9741 + }, + { + "start": 29362.24, + "end": 29364.9, + "probability": 0.9912 + }, + { + "start": 29365.22, + "end": 29366.32, + "probability": 0.846 + }, + { + "start": 29366.5, + "end": 29367.26, + "probability": 0.7137 + }, + { + "start": 29368.22, + "end": 29370.14, + "probability": 0.9392 + }, + { + "start": 29386.76, + "end": 29390.9, + "probability": 0.8049 + }, + { + "start": 29392.89, + "end": 29395.34, + "probability": 0.9517 + }, + { + "start": 29396.02, + "end": 29397.96, + "probability": 0.9938 + }, + { + "start": 29398.86, + "end": 29400.56, + "probability": 0.9094 + }, + { + "start": 29400.64, + "end": 29403.42, + "probability": 0.9805 + }, + { + "start": 29403.48, + "end": 29404.16, + "probability": 0.8369 + }, + { + "start": 29404.22, + "end": 29405.64, + "probability": 0.8911 + }, + { + "start": 29407.96, + "end": 29418.34, + "probability": 0.9735 + }, + { + "start": 29419.58, + "end": 29421.1, + "probability": 0.9146 + }, + { + "start": 29422.2, + "end": 29422.78, + "probability": 0.4988 + }, + { + "start": 29424.36, + "end": 29425.7, + "probability": 0.8918 + }, + { + "start": 29426.1, + "end": 29426.1, + "probability": 0.1596 + }, + { + "start": 29426.1, + "end": 29427.07, + "probability": 0.2945 + }, + { + "start": 29427.4, + "end": 29427.81, + "probability": 0.8674 + }, + { + "start": 29428.1, + "end": 29428.85, + "probability": 0.915 + }, + { + "start": 29430.08, + "end": 29432.5, + "probability": 0.9965 + }, + { + "start": 29433.32, + "end": 29440.36, + "probability": 0.9976 + }, + { + "start": 29441.6, + "end": 29443.56, + "probability": 0.8818 + }, + { + "start": 29444.5, + "end": 29445.76, + "probability": 0.9928 + }, + { + "start": 29446.56, + "end": 29446.84, + "probability": 0.8987 + }, + { + "start": 29447.54, + "end": 29449.32, + "probability": 0.9702 + }, + { + "start": 29449.86, + "end": 29450.48, + "probability": 0.3339 + }, + { + "start": 29451.14, + "end": 29452.68, + "probability": 0.9299 + }, + { + "start": 29452.78, + "end": 29453.28, + "probability": 0.9464 + }, + { + "start": 29453.42, + "end": 29453.96, + "probability": 0.7651 + }, + { + "start": 29454.04, + "end": 29454.82, + "probability": 0.8824 + }, + { + "start": 29454.86, + "end": 29455.4, + "probability": 0.9175 + }, + { + "start": 29455.68, + "end": 29456.03, + "probability": 0.7117 + }, + { + "start": 29457.26, + "end": 29459.4, + "probability": 0.9984 + }, + { + "start": 29460.3, + "end": 29461.46, + "probability": 0.9861 + }, + { + "start": 29462.46, + "end": 29462.56, + "probability": 0.6301 + }, + { + "start": 29462.72, + "end": 29463.44, + "probability": 0.8416 + }, + { + "start": 29463.48, + "end": 29463.72, + "probability": 0.7848 + }, + { + "start": 29463.84, + "end": 29466.48, + "probability": 0.9867 + }, + { + "start": 29467.66, + "end": 29469.1, + "probability": 0.833 + }, + { + "start": 29469.36, + "end": 29469.9, + "probability": 0.7918 + }, + { + "start": 29469.98, + "end": 29471.78, + "probability": 0.7381 + }, + { + "start": 29472.72, + "end": 29474.44, + "probability": 0.7655 + }, + { + "start": 29475.06, + "end": 29477.92, + "probability": 0.9143 + }, + { + "start": 29478.66, + "end": 29479.24, + "probability": 0.9618 + }, + { + "start": 29479.88, + "end": 29480.46, + "probability": 0.264 + }, + { + "start": 29480.82, + "end": 29485.42, + "probability": 0.9502 + }, + { + "start": 29486.22, + "end": 29489.22, + "probability": 0.9934 + }, + { + "start": 29489.36, + "end": 29489.68, + "probability": 0.7272 + }, + { + "start": 29489.86, + "end": 29490.98, + "probability": 0.9139 + }, + { + "start": 29491.06, + "end": 29491.74, + "probability": 0.959 + }, + { + "start": 29492.06, + "end": 29495.34, + "probability": 0.9692 + }, + { + "start": 29495.9, + "end": 29497.12, + "probability": 0.7311 + }, + { + "start": 29498.66, + "end": 29501.66, + "probability": 0.6042 + }, + { + "start": 29501.74, + "end": 29503.92, + "probability": 0.606 + }, + { + "start": 29504.68, + "end": 29506.08, + "probability": 0.9709 + }, + { + "start": 29506.24, + "end": 29509.18, + "probability": 0.9592 + }, + { + "start": 29509.54, + "end": 29509.64, + "probability": 0.972 + }, + { + "start": 29510.28, + "end": 29510.74, + "probability": 0.3466 + }, + { + "start": 29510.74, + "end": 29511.23, + "probability": 0.628 + }, + { + "start": 29512.72, + "end": 29515.28, + "probability": 0.7495 + }, + { + "start": 29515.7, + "end": 29516.4, + "probability": 0.937 + }, + { + "start": 29516.56, + "end": 29517.7, + "probability": 0.9538 + }, + { + "start": 29518.06, + "end": 29521.22, + "probability": 0.9823 + }, + { + "start": 29522.14, + "end": 29523.34, + "probability": 0.7221 + }, + { + "start": 29524.4, + "end": 29524.8, + "probability": 0.5035 + }, + { + "start": 29524.86, + "end": 29525.96, + "probability": 0.9639 + }, + { + "start": 29526.08, + "end": 29527.06, + "probability": 0.719 + }, + { + "start": 29527.24, + "end": 29527.76, + "probability": 0.8766 + }, + { + "start": 29528.08, + "end": 29528.92, + "probability": 0.7558 + }, + { + "start": 29529.96, + "end": 29531.96, + "probability": 0.9259 + }, + { + "start": 29533.48, + "end": 29536.36, + "probability": 0.9878 + }, + { + "start": 29537.26, + "end": 29537.68, + "probability": 0.9201 + }, + { + "start": 29537.78, + "end": 29544.18, + "probability": 0.9837 + }, + { + "start": 29544.32, + "end": 29545.36, + "probability": 0.5832 + }, + { + "start": 29545.52, + "end": 29548.62, + "probability": 0.9817 + }, + { + "start": 29549.18, + "end": 29550.34, + "probability": 0.9072 + }, + { + "start": 29551.26, + "end": 29552.04, + "probability": 0.0894 + }, + { + "start": 29553.32, + "end": 29554.88, + "probability": 0.6626 + }, + { + "start": 29555.24, + "end": 29556.13, + "probability": 0.1062 + }, + { + "start": 29558.11, + "end": 29558.86, + "probability": 0.0036 + }, + { + "start": 29559.56, + "end": 29560.4, + "probability": 0.2177 + }, + { + "start": 29560.88, + "end": 29560.88, + "probability": 0.0103 + }, + { + "start": 29560.88, + "end": 29563.92, + "probability": 0.8615 + }, + { + "start": 29564.32, + "end": 29566.04, + "probability": 0.9332 + }, + { + "start": 29566.2, + "end": 29568.62, + "probability": 0.2711 + }, + { + "start": 29568.74, + "end": 29570.54, + "probability": 0.3713 + }, + { + "start": 29570.96, + "end": 29571.06, + "probability": 0.0179 + }, + { + "start": 29571.06, + "end": 29573.3, + "probability": 0.5936 + }, + { + "start": 29573.38, + "end": 29574.98, + "probability": 0.894 + }, + { + "start": 29575.82, + "end": 29577.76, + "probability": 0.8609 + }, + { + "start": 29577.76, + "end": 29580.54, + "probability": 0.609 + }, + { + "start": 29581.38, + "end": 29584.5, + "probability": 0.5946 + }, + { + "start": 29584.54, + "end": 29587.57, + "probability": 0.8201 + }, + { + "start": 29588.02, + "end": 29588.58, + "probability": 0.7087 + }, + { + "start": 29588.58, + "end": 29588.98, + "probability": 0.7689 + }, + { + "start": 29589.08, + "end": 29589.7, + "probability": 0.8065 + }, + { + "start": 29589.7, + "end": 29591.17, + "probability": 0.9302 + }, + { + "start": 29591.58, + "end": 29592.62, + "probability": 0.9014 + }, + { + "start": 29593.24, + "end": 29596.96, + "probability": 0.4511 + }, + { + "start": 29597.48, + "end": 29597.48, + "probability": 0.7202 + }, + { + "start": 29597.48, + "end": 29597.48, + "probability": 0.1982 + }, + { + "start": 29597.48, + "end": 29597.58, + "probability": 0.3752 + }, + { + "start": 29597.72, + "end": 29598.76, + "probability": 0.6573 + }, + { + "start": 29598.92, + "end": 29600.12, + "probability": 0.9819 + }, + { + "start": 29600.28, + "end": 29601.13, + "probability": 0.978 + }, + { + "start": 29601.82, + "end": 29605.02, + "probability": 0.9612 + }, + { + "start": 29605.4, + "end": 29606.88, + "probability": 0.588 + }, + { + "start": 29607.36, + "end": 29611.2, + "probability": 0.7247 + }, + { + "start": 29611.48, + "end": 29612.14, + "probability": 0.7493 + }, + { + "start": 29612.46, + "end": 29614.14, + "probability": 0.9037 + }, + { + "start": 29615.14, + "end": 29616.36, + "probability": 0.94 + }, + { + "start": 29617.26, + "end": 29621.18, + "probability": 0.9106 + }, + { + "start": 29621.34, + "end": 29622.92, + "probability": 0.989 + }, + { + "start": 29623.6, + "end": 29627.6, + "probability": 0.6592 + }, + { + "start": 29627.74, + "end": 29628.94, + "probability": 0.8605 + }, + { + "start": 29629.46, + "end": 29630.86, + "probability": 0.7698 + }, + { + "start": 29631.4, + "end": 29632.2, + "probability": 0.7952 + }, + { + "start": 29632.28, + "end": 29633.82, + "probability": 0.8426 + }, + { + "start": 29634.24, + "end": 29635.94, + "probability": 0.7916 + }, + { + "start": 29636.34, + "end": 29637.0, + "probability": 0.8269 + }, + { + "start": 29637.66, + "end": 29638.5, + "probability": 0.8301 + }, + { + "start": 29639.02, + "end": 29641.06, + "probability": 0.986 + }, + { + "start": 29641.46, + "end": 29646.04, + "probability": 0.9943 + }, + { + "start": 29646.4, + "end": 29648.62, + "probability": 0.9972 + }, + { + "start": 29649.42, + "end": 29653.06, + "probability": 0.9933 + }, + { + "start": 29653.44, + "end": 29653.7, + "probability": 0.8077 + }, + { + "start": 29654.2, + "end": 29655.34, + "probability": 0.6904 + }, + { + "start": 29655.94, + "end": 29658.22, + "probability": 0.7391 + }, + { + "start": 29676.5, + "end": 29677.34, + "probability": 0.7137 + }, + { + "start": 29678.36, + "end": 29680.5, + "probability": 0.7009 + }, + { + "start": 29682.56, + "end": 29687.72, + "probability": 0.7843 + }, + { + "start": 29689.2, + "end": 29690.94, + "probability": 0.7162 + }, + { + "start": 29692.62, + "end": 29696.1, + "probability": 0.8873 + }, + { + "start": 29696.62, + "end": 29696.8, + "probability": 0.5471 + }, + { + "start": 29700.02, + "end": 29700.54, + "probability": 0.5702 + }, + { + "start": 29701.62, + "end": 29703.96, + "probability": 0.9958 + }, + { + "start": 29703.96, + "end": 29703.96, + "probability": 0.0123 + }, + { + "start": 29703.96, + "end": 29704.06, + "probability": 0.8789 + }, + { + "start": 29704.38, + "end": 29706.38, + "probability": 0.9889 + }, + { + "start": 29707.22, + "end": 29708.16, + "probability": 0.9149 + }, + { + "start": 29708.24, + "end": 29710.56, + "probability": 0.8553 + }, + { + "start": 29711.86, + "end": 29714.5, + "probability": 0.9978 + }, + { + "start": 29715.44, + "end": 29719.5, + "probability": 0.9904 + }, + { + "start": 29720.12, + "end": 29722.0, + "probability": 0.7904 + }, + { + "start": 29722.76, + "end": 29723.1, + "probability": 0.5798 + }, + { + "start": 29723.74, + "end": 29724.96, + "probability": 0.9264 + }, + { + "start": 29725.6, + "end": 29726.36, + "probability": 0.8198 + }, + { + "start": 29726.88, + "end": 29727.68, + "probability": 0.8985 + }, + { + "start": 29728.12, + "end": 29733.34, + "probability": 0.915 + }, + { + "start": 29733.88, + "end": 29734.24, + "probability": 0.9818 + }, + { + "start": 29734.84, + "end": 29735.06, + "probability": 0.7402 + }, + { + "start": 29737.24, + "end": 29737.38, + "probability": 0.3892 + }, + { + "start": 29738.6, + "end": 29739.88, + "probability": 0.9932 + }, + { + "start": 29740.36, + "end": 29740.92, + "probability": 0.7939 + }, + { + "start": 29741.22, + "end": 29744.08, + "probability": 0.952 + }, + { + "start": 29745.52, + "end": 29747.38, + "probability": 0.3939 + }, + { + "start": 29748.16, + "end": 29749.04, + "probability": 0.7369 + }, + { + "start": 29750.32, + "end": 29751.52, + "probability": 0.9712 + }, + { + "start": 29751.84, + "end": 29752.52, + "probability": 0.8763 + }, + { + "start": 29753.2, + "end": 29753.96, + "probability": 0.9988 + }, + { + "start": 29755.24, + "end": 29757.66, + "probability": 0.8804 + }, + { + "start": 29758.38, + "end": 29759.01, + "probability": 0.8613 + }, + { + "start": 29760.52, + "end": 29761.84, + "probability": 0.8406 + }, + { + "start": 29762.76, + "end": 29765.46, + "probability": 0.8716 + }, + { + "start": 29767.34, + "end": 29769.32, + "probability": 0.9893 + }, + { + "start": 29769.62, + "end": 29771.02, + "probability": 0.8769 + }, + { + "start": 29772.04, + "end": 29774.84, + "probability": 0.802 + }, + { + "start": 29775.66, + "end": 29781.56, + "probability": 0.9799 + }, + { + "start": 29783.06, + "end": 29785.86, + "probability": 0.6711 + }, + { + "start": 29786.0, + "end": 29787.14, + "probability": 0.48 + }, + { + "start": 29787.38, + "end": 29791.14, + "probability": 0.9964 + }, + { + "start": 29791.82, + "end": 29794.42, + "probability": 0.9634 + }, + { + "start": 29795.14, + "end": 29798.18, + "probability": 0.9867 + }, + { + "start": 29798.84, + "end": 29802.4, + "probability": 0.906 + }, + { + "start": 29802.84, + "end": 29803.58, + "probability": 0.6106 + }, + { + "start": 29804.0, + "end": 29805.06, + "probability": 0.9636 + }, + { + "start": 29805.16, + "end": 29805.76, + "probability": 0.6086 + }, + { + "start": 29805.82, + "end": 29806.68, + "probability": 0.9652 + }, + { + "start": 29808.62, + "end": 29813.84, + "probability": 0.908 + }, + { + "start": 29813.92, + "end": 29814.14, + "probability": 0.2613 + }, + { + "start": 29814.2, + "end": 29814.94, + "probability": 0.7996 + }, + { + "start": 29815.06, + "end": 29817.1, + "probability": 0.9651 + }, + { + "start": 29818.7, + "end": 29819.32, + "probability": 0.9257 + }, + { + "start": 29819.44, + "end": 29819.96, + "probability": 0.8812 + }, + { + "start": 29820.14, + "end": 29820.48, + "probability": 0.2538 + }, + { + "start": 29820.56, + "end": 29821.68, + "probability": 0.6742 + }, + { + "start": 29822.22, + "end": 29823.44, + "probability": 0.9778 + }, + { + "start": 29823.54, + "end": 29824.52, + "probability": 0.9299 + }, + { + "start": 29825.74, + "end": 29827.14, + "probability": 0.9619 + }, + { + "start": 29827.36, + "end": 29827.82, + "probability": 0.6454 + }, + { + "start": 29828.38, + "end": 29831.74, + "probability": 0.9625 + }, + { + "start": 29832.44, + "end": 29835.9, + "probability": 0.9636 + }, + { + "start": 29836.46, + "end": 29836.74, + "probability": 0.7209 + }, + { + "start": 29836.84, + "end": 29838.46, + "probability": 0.6921 + }, + { + "start": 29838.72, + "end": 29840.57, + "probability": 0.8305 + }, + { + "start": 29842.58, + "end": 29843.58, + "probability": 0.9971 + }, + { + "start": 29843.66, + "end": 29844.08, + "probability": 0.8472 + }, + { + "start": 29845.06, + "end": 29846.04, + "probability": 0.3183 + }, + { + "start": 29846.22, + "end": 29847.64, + "probability": 0.6602 + }, + { + "start": 29847.64, + "end": 29848.08, + "probability": 0.5149 + }, + { + "start": 29848.46, + "end": 29849.88, + "probability": 0.3799 + }, + { + "start": 29850.46, + "end": 29851.84, + "probability": 0.5355 + }, + { + "start": 29852.72, + "end": 29853.1, + "probability": 0.0057 + }, + { + "start": 29853.94, + "end": 29854.54, + "probability": 0.0677 + }, + { + "start": 29855.28, + "end": 29855.54, + "probability": 0.0291 + }, + { + "start": 29855.92, + "end": 29856.42, + "probability": 0.1831 + }, + { + "start": 29857.85, + "end": 29860.24, + "probability": 0.5861 + }, + { + "start": 29860.52, + "end": 29861.73, + "probability": 0.8275 + }, + { + "start": 29863.46, + "end": 29863.46, + "probability": 0.0096 + }, + { + "start": 29864.32, + "end": 29864.78, + "probability": 0.3903 + }, + { + "start": 29865.36, + "end": 29866.02, + "probability": 0.3922 + }, + { + "start": 29868.84, + "end": 29869.14, + "probability": 0.3254 + }, + { + "start": 29869.22, + "end": 29869.8, + "probability": 0.7723 + }, + { + "start": 29871.08, + "end": 29874.26, + "probability": 0.7671 + }, + { + "start": 29874.8, + "end": 29875.9, + "probability": 0.9197 + }, + { + "start": 29876.06, + "end": 29876.36, + "probability": 0.7909 + }, + { + "start": 29876.74, + "end": 29878.62, + "probability": 0.7628 + }, + { + "start": 29879.52, + "end": 29881.2, + "probability": 0.901 + }, + { + "start": 29881.64, + "end": 29884.12, + "probability": 0.9754 + }, + { + "start": 29885.3, + "end": 29888.06, + "probability": 0.9506 + }, + { + "start": 29892.44, + "end": 29894.0, + "probability": 0.8992 + }, + { + "start": 29895.98, + "end": 29897.76, + "probability": 0.9824 + }, + { + "start": 29898.22, + "end": 29899.3, + "probability": 0.8348 + }, + { + "start": 29900.2, + "end": 29902.23, + "probability": 0.8436 + }, + { + "start": 29902.86, + "end": 29907.98, + "probability": 0.8376 + }, + { + "start": 29908.5, + "end": 29909.62, + "probability": 0.9669 + }, + { + "start": 29909.68, + "end": 29910.21, + "probability": 0.9679 + }, + { + "start": 29911.0, + "end": 29913.16, + "probability": 0.8081 + }, + { + "start": 29914.54, + "end": 29915.92, + "probability": 0.8988 + }, + { + "start": 29916.92, + "end": 29917.74, + "probability": 0.9707 + }, + { + "start": 29918.1, + "end": 29918.64, + "probability": 0.6991 + }, + { + "start": 29918.72, + "end": 29918.86, + "probability": 0.6385 + }, + { + "start": 29918.88, + "end": 29919.66, + "probability": 0.5168 + }, + { + "start": 29920.18, + "end": 29920.76, + "probability": 0.8542 + }, + { + "start": 29921.1, + "end": 29923.74, + "probability": 0.9707 + }, + { + "start": 29925.0, + "end": 29925.64, + "probability": 0.8722 + }, + { + "start": 29926.86, + "end": 29927.9, + "probability": 0.7653 + }, + { + "start": 29928.84, + "end": 29929.8, + "probability": 0.7459 + }, + { + "start": 29931.08, + "end": 29931.48, + "probability": 0.6781 + }, + { + "start": 29931.56, + "end": 29933.18, + "probability": 0.9596 + }, + { + "start": 29933.68, + "end": 29934.98, + "probability": 0.959 + }, + { + "start": 29935.82, + "end": 29939.12, + "probability": 0.9202 + }, + { + "start": 29939.7, + "end": 29941.3, + "probability": 0.8004 + }, + { + "start": 29941.78, + "end": 29942.86, + "probability": 0.9224 + }, + { + "start": 29943.8, + "end": 29944.98, + "probability": 0.991 + }, + { + "start": 29947.4, + "end": 29952.12, + "probability": 0.9663 + }, + { + "start": 29952.66, + "end": 29953.58, + "probability": 0.7161 + }, + { + "start": 29954.72, + "end": 29955.38, + "probability": 0.1627 + }, + { + "start": 29955.94, + "end": 29956.78, + "probability": 0.7227 + }, + { + "start": 29957.62, + "end": 29958.22, + "probability": 0.7866 + }, + { + "start": 29959.82, + "end": 29961.02, + "probability": 0.6044 + }, + { + "start": 29961.66, + "end": 29963.88, + "probability": 0.3728 + }, + { + "start": 29964.9, + "end": 29965.48, + "probability": 0.366 + }, + { + "start": 29966.02, + "end": 29966.78, + "probability": 0.7174 + }, + { + "start": 29967.6, + "end": 29970.8, + "probability": 0.8117 + }, + { + "start": 29971.32, + "end": 29972.84, + "probability": 0.5637 + }, + { + "start": 29973.54, + "end": 29974.64, + "probability": 0.5174 + }, + { + "start": 29975.2, + "end": 29976.22, + "probability": 0.9184 + }, + { + "start": 29976.82, + "end": 29977.48, + "probability": 0.6968 + }, + { + "start": 29978.22, + "end": 29978.8, + "probability": 0.3449 + }, + { + "start": 29979.22, + "end": 29980.22, + "probability": 0.47 + }, + { + "start": 29980.22, + "end": 29980.6, + "probability": 0.8804 + }, + { + "start": 29981.06, + "end": 29983.24, + "probability": 0.7082 + }, + { + "start": 29984.04, + "end": 29987.72, + "probability": 0.9331 + }, + { + "start": 29988.42, + "end": 29989.28, + "probability": 0.4995 + }, + { + "start": 29990.2, + "end": 29992.26, + "probability": 0.5463 + }, + { + "start": 29992.86, + "end": 29995.56, + "probability": 0.957 + }, + { + "start": 29996.38, + "end": 29997.3, + "probability": 0.95 + }, + { + "start": 29997.36, + "end": 29997.89, + "probability": 0.8372 + }, + { + "start": 29998.76, + "end": 29999.33, + "probability": 0.9279 + }, + { + "start": 30000.06, + "end": 30001.86, + "probability": 0.9968 + }, + { + "start": 30002.46, + "end": 30005.36, + "probability": 0.4991 + }, + { + "start": 30005.63, + "end": 30008.26, + "probability": 0.7078 + }, + { + "start": 30008.87, + "end": 30010.02, + "probability": 0.6227 + }, + { + "start": 30010.16, + "end": 30011.56, + "probability": 0.7217 + }, + { + "start": 30013.16, + "end": 30015.9, + "probability": 0.5915 + }, + { + "start": 30016.32, + "end": 30018.32, + "probability": 0.9806 + }, + { + "start": 30018.9, + "end": 30021.06, + "probability": 0.5833 + }, + { + "start": 30021.32, + "end": 30025.42, + "probability": 0.984 + }, + { + "start": 30025.9, + "end": 30026.16, + "probability": 0.4486 + }, + { + "start": 30026.18, + "end": 30026.9, + "probability": 0.6676 + }, + { + "start": 30027.44, + "end": 30033.6, + "probability": 0.9658 + }, + { + "start": 30034.42, + "end": 30038.1, + "probability": 0.658 + }, + { + "start": 30038.96, + "end": 30040.54, + "probability": 0.8695 + }, + { + "start": 30041.53, + "end": 30044.14, + "probability": 0.6858 + }, + { + "start": 30044.24, + "end": 30046.26, + "probability": 0.8952 + }, + { + "start": 30046.7, + "end": 30047.7, + "probability": 0.6964 + }, + { + "start": 30048.42, + "end": 30050.18, + "probability": 0.9498 + }, + { + "start": 30050.76, + "end": 30053.46, + "probability": 0.9767 + }, + { + "start": 30054.96, + "end": 30055.48, + "probability": 0.6419 + }, + { + "start": 30056.28, + "end": 30058.5, + "probability": 0.9914 + }, + { + "start": 30059.62, + "end": 30062.88, + "probability": 0.9349 + }, + { + "start": 30062.92, + "end": 30064.14, + "probability": 0.8419 + }, + { + "start": 30064.24, + "end": 30067.98, + "probability": 0.5268 + }, + { + "start": 30067.98, + "end": 30069.28, + "probability": 0.6233 + }, + { + "start": 30069.74, + "end": 30071.58, + "probability": 0.7651 + }, + { + "start": 30071.88, + "end": 30072.57, + "probability": 0.6598 + }, + { + "start": 30073.1, + "end": 30078.07, + "probability": 0.8509 + }, + { + "start": 30078.32, + "end": 30079.12, + "probability": 0.8369 + }, + { + "start": 30079.3, + "end": 30083.12, + "probability": 0.8947 + }, + { + "start": 30083.46, + "end": 30084.54, + "probability": 0.7111 + }, + { + "start": 30084.92, + "end": 30086.56, + "probability": 0.7365 + }, + { + "start": 30086.6, + "end": 30088.08, + "probability": 0.9954 + }, + { + "start": 30088.42, + "end": 30090.7, + "probability": 0.6454 + }, + { + "start": 30091.26, + "end": 30092.78, + "probability": 0.7622 + }, + { + "start": 30093.98, + "end": 30094.56, + "probability": 0.7734 + }, + { + "start": 30095.16, + "end": 30098.64, + "probability": 0.9888 + }, + { + "start": 30098.84, + "end": 30100.84, + "probability": 0.953 + }, + { + "start": 30101.5, + "end": 30103.04, + "probability": 0.9371 + }, + { + "start": 30103.14, + "end": 30104.4, + "probability": 0.9967 + }, + { + "start": 30104.52, + "end": 30105.48, + "probability": 0.9952 + }, + { + "start": 30106.32, + "end": 30108.36, + "probability": 0.9217 + }, + { + "start": 30108.92, + "end": 30111.7, + "probability": 0.7499 + }, + { + "start": 30111.9, + "end": 30116.12, + "probability": 0.9878 + }, + { + "start": 30118.36, + "end": 30121.5, + "probability": 0.9705 + }, + { + "start": 30121.67, + "end": 30122.68, + "probability": 0.7695 + }, + { + "start": 30123.02, + "end": 30125.64, + "probability": 0.5192 + }, + { + "start": 30125.92, + "end": 30127.82, + "probability": 0.7368 + }, + { + "start": 30128.44, + "end": 30129.62, + "probability": 0.8595 + }, + { + "start": 30130.28, + "end": 30132.56, + "probability": 0.7817 + }, + { + "start": 30132.7, + "end": 30132.78, + "probability": 0.01 + }, + { + "start": 30133.4, + "end": 30135.48, + "probability": 0.6674 + }, + { + "start": 30136.16, + "end": 30137.3, + "probability": 0.7991 + }, + { + "start": 30137.92, + "end": 30138.8, + "probability": 0.5681 + }, + { + "start": 30139.2, + "end": 30141.48, + "probability": 0.9256 + }, + { + "start": 30141.66, + "end": 30142.3, + "probability": 0.8114 + }, + { + "start": 30142.74, + "end": 30143.94, + "probability": 0.9792 + }, + { + "start": 30144.08, + "end": 30144.95, + "probability": 0.7329 + }, + { + "start": 30145.8, + "end": 30147.26, + "probability": 0.9086 + }, + { + "start": 30147.64, + "end": 30148.2, + "probability": 0.8136 + }, + { + "start": 30148.26, + "end": 30151.82, + "probability": 0.9944 + }, + { + "start": 30151.98, + "end": 30153.0, + "probability": 0.9602 + }, + { + "start": 30153.82, + "end": 30157.2, + "probability": 0.9607 + }, + { + "start": 30157.62, + "end": 30160.42, + "probability": 0.814 + }, + { + "start": 30161.26, + "end": 30161.76, + "probability": 0.9524 + }, + { + "start": 30162.36, + "end": 30166.8, + "probability": 0.7987 + }, + { + "start": 30167.5, + "end": 30168.66, + "probability": 0.9237 + }, + { + "start": 30169.2, + "end": 30169.93, + "probability": 0.9836 + }, + { + "start": 30170.68, + "end": 30172.72, + "probability": 0.8459 + }, + { + "start": 30173.12, + "end": 30175.52, + "probability": 0.4239 + }, + { + "start": 30175.96, + "end": 30176.72, + "probability": 0.7499 + }, + { + "start": 30176.9, + "end": 30178.4, + "probability": 0.9104 + }, + { + "start": 30178.6, + "end": 30179.44, + "probability": 0.6966 + }, + { + "start": 30179.82, + "end": 30180.86, + "probability": 0.9373 + }, + { + "start": 30181.02, + "end": 30182.32, + "probability": 0.9526 + }, + { + "start": 30183.0, + "end": 30184.42, + "probability": 0.5735 + }, + { + "start": 30185.0, + "end": 30186.86, + "probability": 0.9404 + }, + { + "start": 30187.36, + "end": 30190.4, + "probability": 0.8875 + }, + { + "start": 30190.68, + "end": 30194.28, + "probability": 0.8934 + }, + { + "start": 30194.72, + "end": 30196.58, + "probability": 0.8806 + }, + { + "start": 30197.12, + "end": 30199.58, + "probability": 0.341 + }, + { + "start": 30199.66, + "end": 30200.76, + "probability": 0.93 + }, + { + "start": 30200.84, + "end": 30206.42, + "probability": 0.9395 + }, + { + "start": 30206.64, + "end": 30211.26, + "probability": 0.7038 + }, + { + "start": 30211.52, + "end": 30213.82, + "probability": 0.3929 + }, + { + "start": 30214.3, + "end": 30216.18, + "probability": 0.4005 + }, + { + "start": 30216.26, + "end": 30216.94, + "probability": 0.3067 + }, + { + "start": 30216.96, + "end": 30217.3, + "probability": 0.8334 + }, + { + "start": 30217.3, + "end": 30221.84, + "probability": 0.6324 + }, + { + "start": 30221.84, + "end": 30222.66, + "probability": 0.7176 + }, + { + "start": 30222.86, + "end": 30225.98, + "probability": 0.6065 + }, + { + "start": 30226.42, + "end": 30228.2, + "probability": 0.7497 + }, + { + "start": 30228.54, + "end": 30228.84, + "probability": 0.2896 + }, + { + "start": 30228.98, + "end": 30229.52, + "probability": 0.804 + }, + { + "start": 30230.02, + "end": 30230.9, + "probability": 0.8821 + }, + { + "start": 30231.5, + "end": 30233.02, + "probability": 0.2171 + }, + { + "start": 30233.44, + "end": 30234.94, + "probability": 0.2993 + }, + { + "start": 30235.02, + "end": 30236.76, + "probability": 0.6513 + }, + { + "start": 30237.56, + "end": 30239.24, + "probability": 0.9834 + }, + { + "start": 30240.48, + "end": 30240.76, + "probability": 0.7523 + }, + { + "start": 30241.22, + "end": 30243.34, + "probability": 0.7087 + }, + { + "start": 30252.66, + "end": 30254.28, + "probability": 0.1227 + }, + { + "start": 30268.64, + "end": 30269.22, + "probability": 0.0833 + }, + { + "start": 30271.03, + "end": 30275.22, + "probability": 0.8865 + }, + { + "start": 30275.4, + "end": 30275.6, + "probability": 0.5872 + }, + { + "start": 30275.7, + "end": 30277.9, + "probability": 0.9917 + }, + { + "start": 30277.9, + "end": 30280.67, + "probability": 0.9981 + }, + { + "start": 30282.4, + "end": 30284.12, + "probability": 0.9405 + }, + { + "start": 30286.4, + "end": 30288.44, + "probability": 0.9744 + }, + { + "start": 30288.76, + "end": 30294.04, + "probability": 0.5746 + }, + { + "start": 30295.0, + "end": 30295.96, + "probability": 0.9682 + }, + { + "start": 30296.64, + "end": 30296.74, + "probability": 0.3146 + }, + { + "start": 30298.14, + "end": 30301.58, + "probability": 0.891 + }, + { + "start": 30303.54, + "end": 30304.44, + "probability": 0.9384 + }, + { + "start": 30304.72, + "end": 30306.38, + "probability": 0.8156 + }, + { + "start": 30306.56, + "end": 30308.68, + "probability": 0.9971 + }, + { + "start": 30310.08, + "end": 30311.66, + "probability": 0.9139 + }, + { + "start": 30314.22, + "end": 30316.04, + "probability": 0.9858 + }, + { + "start": 30318.28, + "end": 30319.52, + "probability": 0.004 + }, + { + "start": 30319.52, + "end": 30320.04, + "probability": 0.2932 + }, + { + "start": 30320.14, + "end": 30320.59, + "probability": 0.5541 + }, + { + "start": 30320.86, + "end": 30321.17, + "probability": 0.6528 + }, + { + "start": 30321.62, + "end": 30322.84, + "probability": 0.4595 + }, + { + "start": 30324.2, + "end": 30324.2, + "probability": 0.0534 + }, + { + "start": 30324.2, + "end": 30324.82, + "probability": 0.5556 + }, + { + "start": 30325.54, + "end": 30328.32, + "probability": 0.9763 + }, + { + "start": 30330.96, + "end": 30332.54, + "probability": 0.9575 + }, + { + "start": 30333.82, + "end": 30334.7, + "probability": 0.9988 + }, + { + "start": 30336.14, + "end": 30336.98, + "probability": 0.4195 + }, + { + "start": 30338.38, + "end": 30338.76, + "probability": 0.6393 + }, + { + "start": 30340.46, + "end": 30343.86, + "probability": 0.8482 + }, + { + "start": 30345.16, + "end": 30347.5, + "probability": 0.9123 + }, + { + "start": 30349.12, + "end": 30350.26, + "probability": 0.9026 + }, + { + "start": 30352.12, + "end": 30354.62, + "probability": 0.7973 + }, + { + "start": 30355.54, + "end": 30356.8, + "probability": 0.5217 + }, + { + "start": 30359.58, + "end": 30361.7, + "probability": 0.9789 + }, + { + "start": 30361.7, + "end": 30363.84, + "probability": 0.9982 + }, + { + "start": 30365.1, + "end": 30366.64, + "probability": 0.7066 + }, + { + "start": 30366.68, + "end": 30367.84, + "probability": 0.9392 + }, + { + "start": 30368.78, + "end": 30372.18, + "probability": 0.6179 + }, + { + "start": 30373.2, + "end": 30374.12, + "probability": 0.7471 + }, + { + "start": 30374.94, + "end": 30377.58, + "probability": 0.977 + }, + { + "start": 30378.2, + "end": 30379.58, + "probability": 0.5918 + }, + { + "start": 30379.74, + "end": 30383.84, + "probability": 0.9812 + }, + { + "start": 30383.84, + "end": 30385.63, + "probability": 0.6494 + }, + { + "start": 30386.76, + "end": 30389.3, + "probability": 0.66 + }, + { + "start": 30389.32, + "end": 30391.64, + "probability": 0.6605 + }, + { + "start": 30392.52, + "end": 30394.22, + "probability": 0.7161 + }, + { + "start": 30394.24, + "end": 30395.0, + "probability": 0.1323 + }, + { + "start": 30397.1, + "end": 30400.9, + "probability": 0.8324 + }, + { + "start": 30400.92, + "end": 30403.58, + "probability": 0.0618 + }, + { + "start": 30403.98, + "end": 30405.54, + "probability": 0.4705 + }, + { + "start": 30405.72, + "end": 30406.7, + "probability": 0.7851 + }, + { + "start": 30406.74, + "end": 30407.06, + "probability": 0.2114 + }, + { + "start": 30407.46, + "end": 30410.14, + "probability": 0.4308 + }, + { + "start": 30410.24, + "end": 30410.78, + "probability": 0.654 + }, + { + "start": 30411.08, + "end": 30411.52, + "probability": 0.2283 + }, + { + "start": 30411.66, + "end": 30412.52, + "probability": 0.748 + }, + { + "start": 30412.52, + "end": 30414.36, + "probability": 0.62 + }, + { + "start": 30414.42, + "end": 30416.9, + "probability": 0.9688 + }, + { + "start": 30417.86, + "end": 30418.66, + "probability": 0.9368 + }, + { + "start": 30418.74, + "end": 30420.14, + "probability": 0.8983 + }, + { + "start": 30420.4, + "end": 30421.18, + "probability": 0.8062 + }, + { + "start": 30421.58, + "end": 30422.38, + "probability": 0.9077 + }, + { + "start": 30423.92, + "end": 30425.26, + "probability": 0.3287 + }, + { + "start": 30425.98, + "end": 30427.3, + "probability": 0.593 + }, + { + "start": 30427.9, + "end": 30428.3, + "probability": 0.5749 + }, + { + "start": 30428.4, + "end": 30429.74, + "probability": 0.7612 + }, + { + "start": 30433.0, + "end": 30435.64, + "probability": 0.8121 + }, + { + "start": 30436.32, + "end": 30437.66, + "probability": 0.7081 + }, + { + "start": 30438.84, + "end": 30440.16, + "probability": 0.9273 + }, + { + "start": 30440.82, + "end": 30443.63, + "probability": 0.9088 + }, + { + "start": 30444.38, + "end": 30445.0, + "probability": 0.4855 + }, + { + "start": 30447.2, + "end": 30450.18, + "probability": 0.9822 + }, + { + "start": 30450.18, + "end": 30454.58, + "probability": 0.997 + }, + { + "start": 30455.28, + "end": 30455.8, + "probability": 0.7731 + }, + { + "start": 30456.7, + "end": 30456.82, + "probability": 0.4374 + }, + { + "start": 30458.12, + "end": 30461.26, + "probability": 0.9978 + }, + { + "start": 30461.96, + "end": 30462.78, + "probability": 0.8438 + }, + { + "start": 30463.64, + "end": 30466.22, + "probability": 0.9338 + }, + { + "start": 30466.36, + "end": 30468.98, + "probability": 0.9378 + }, + { + "start": 30469.56, + "end": 30470.24, + "probability": 0.6594 + }, + { + "start": 30471.3, + "end": 30473.34, + "probability": 0.6829 + }, + { + "start": 30474.76, + "end": 30476.2, + "probability": 0.9781 + }, + { + "start": 30476.7, + "end": 30478.34, + "probability": 0.9073 + }, + { + "start": 30479.48, + "end": 30481.6, + "probability": 0.9766 + }, + { + "start": 30481.6, + "end": 30482.34, + "probability": 0.8772 + }, + { + "start": 30482.54, + "end": 30483.34, + "probability": 0.3874 + }, + { + "start": 30483.84, + "end": 30484.5, + "probability": 0.1352 + }, + { + "start": 30484.5, + "end": 30485.44, + "probability": 0.5767 + }, + { + "start": 30485.54, + "end": 30486.72, + "probability": 0.8812 + }, + { + "start": 30486.8, + "end": 30487.23, + "probability": 0.9179 + }, + { + "start": 30488.32, + "end": 30490.21, + "probability": 0.7485 + }, + { + "start": 30491.36, + "end": 30492.54, + "probability": 0.9832 + }, + { + "start": 30493.44, + "end": 30493.92, + "probability": 0.221 + }, + { + "start": 30494.08, + "end": 30495.76, + "probability": 0.1832 + }, + { + "start": 30496.08, + "end": 30498.36, + "probability": 0.2092 + }, + { + "start": 30502.98, + "end": 30508.18, + "probability": 0.9454 + }, + { + "start": 30509.5, + "end": 30510.96, + "probability": 0.7783 + }, + { + "start": 30511.04, + "end": 30511.66, + "probability": 0.874 + }, + { + "start": 30511.9, + "end": 30512.66, + "probability": 0.7014 + }, + { + "start": 30513.9, + "end": 30515.82, + "probability": 0.8184 + }, + { + "start": 30516.1, + "end": 30517.3, + "probability": 0.6419 + }, + { + "start": 30517.5, + "end": 30518.04, + "probability": 0.8945 + }, + { + "start": 30518.84, + "end": 30520.94, + "probability": 0.9774 + }, + { + "start": 30521.78, + "end": 30523.26, + "probability": 0.9861 + }, + { + "start": 30524.12, + "end": 30527.7, + "probability": 0.9966 + }, + { + "start": 30528.12, + "end": 30528.9, + "probability": 0.7156 + }, + { + "start": 30529.02, + "end": 30531.74, + "probability": 0.9639 + }, + { + "start": 30533.14, + "end": 30534.39, + "probability": 0.947 + }, + { + "start": 30535.26, + "end": 30536.88, + "probability": 0.9796 + }, + { + "start": 30538.16, + "end": 30538.92, + "probability": 0.1216 + }, + { + "start": 30539.08, + "end": 30539.92, + "probability": 0.6119 + }, + { + "start": 30540.14, + "end": 30541.32, + "probability": 0.9009 + }, + { + "start": 30541.56, + "end": 30543.24, + "probability": 0.6039 + }, + { + "start": 30543.66, + "end": 30545.1, + "probability": 0.5069 + }, + { + "start": 30545.14, + "end": 30546.34, + "probability": 0.741 + }, + { + "start": 30546.34, + "end": 30546.54, + "probability": 0.8049 + }, + { + "start": 30546.9, + "end": 30547.04, + "probability": 0.127 + }, + { + "start": 30547.2, + "end": 30547.32, + "probability": 0.179 + }, + { + "start": 30547.32, + "end": 30548.08, + "probability": 0.4199 + }, + { + "start": 30548.42, + "end": 30552.15, + "probability": 0.097 + }, + { + "start": 30553.72, + "end": 30554.08, + "probability": 0.0142 + }, + { + "start": 30554.08, + "end": 30555.08, + "probability": 0.0144 + }, + { + "start": 30555.6, + "end": 30556.1, + "probability": 0.1756 + }, + { + "start": 30556.2, + "end": 30557.3, + "probability": 0.0011 + }, + { + "start": 30557.3, + "end": 30557.82, + "probability": 0.3742 + }, + { + "start": 30559.34, + "end": 30559.96, + "probability": 0.8087 + }, + { + "start": 30560.0, + "end": 30560.44, + "probability": 0.9232 + }, + { + "start": 30560.56, + "end": 30561.98, + "probability": 0.981 + }, + { + "start": 30561.98, + "end": 30563.1, + "probability": 0.9761 + }, + { + "start": 30563.5, + "end": 30564.42, + "probability": 0.0666 + }, + { + "start": 30565.74, + "end": 30568.28, + "probability": 0.9598 + }, + { + "start": 30568.32, + "end": 30568.88, + "probability": 0.8866 + }, + { + "start": 30568.92, + "end": 30569.35, + "probability": 0.9189 + }, + { + "start": 30570.38, + "end": 30570.87, + "probability": 0.9224 + }, + { + "start": 30572.1, + "end": 30572.94, + "probability": 0.2712 + }, + { + "start": 30573.62, + "end": 30575.46, + "probability": 0.854 + }, + { + "start": 30575.56, + "end": 30575.76, + "probability": 0.9204 + }, + { + "start": 30575.8, + "end": 30576.26, + "probability": 0.7017 + }, + { + "start": 30578.14, + "end": 30578.9, + "probability": 0.6369 + }, + { + "start": 30580.06, + "end": 30583.12, + "probability": 0.7661 + }, + { + "start": 30583.98, + "end": 30587.12, + "probability": 0.8167 + }, + { + "start": 30588.54, + "end": 30589.8, + "probability": 0.9763 + }, + { + "start": 30591.08, + "end": 30593.92, + "probability": 0.982 + }, + { + "start": 30594.52, + "end": 30597.83, + "probability": 0.8819 + }, + { + "start": 30598.46, + "end": 30599.38, + "probability": 0.8028 + }, + { + "start": 30599.48, + "end": 30601.0, + "probability": 0.958 + }, + { + "start": 30601.08, + "end": 30601.5, + "probability": 0.9358 + }, + { + "start": 30601.84, + "end": 30602.5, + "probability": 0.986 + }, + { + "start": 30602.58, + "end": 30603.14, + "probability": 0.9811 + }, + { + "start": 30603.2, + "end": 30603.78, + "probability": 0.8973 + }, + { + "start": 30604.12, + "end": 30605.26, + "probability": 0.9863 + }, + { + "start": 30605.95, + "end": 30606.18, + "probability": 0.1274 + }, + { + "start": 30606.38, + "end": 30609.75, + "probability": 0.5795 + }, + { + "start": 30610.0, + "end": 30614.44, + "probability": 0.4827 + }, + { + "start": 30614.48, + "end": 30616.68, + "probability": 0.689 + }, + { + "start": 30620.58, + "end": 30622.34, + "probability": 0.5619 + }, + { + "start": 30622.55, + "end": 30624.48, + "probability": 0.8788 + }, + { + "start": 30625.16, + "end": 30627.06, + "probability": 0.0184 + }, + { + "start": 30627.64, + "end": 30627.64, + "probability": 0.0344 + }, + { + "start": 30627.64, + "end": 30627.64, + "probability": 0.0713 + }, + { + "start": 30627.64, + "end": 30629.3, + "probability": 0.5916 + }, + { + "start": 30629.48, + "end": 30629.48, + "probability": 0.1425 + }, + { + "start": 30629.5, + "end": 30629.64, + "probability": 0.2055 + }, + { + "start": 30629.8, + "end": 30629.82, + "probability": 0.4036 + }, + { + "start": 30629.82, + "end": 30629.84, + "probability": 0.4792 + }, + { + "start": 30629.84, + "end": 30630.97, + "probability": 0.8822 + }, + { + "start": 30631.46, + "end": 30633.62, + "probability": 0.6202 + }, + { + "start": 30633.62, + "end": 30634.76, + "probability": 0.3494 + }, + { + "start": 30634.78, + "end": 30635.46, + "probability": 0.4218 + }, + { + "start": 30635.72, + "end": 30638.3, + "probability": 0.9935 + }, + { + "start": 30639.14, + "end": 30641.26, + "probability": 0.9258 + }, + { + "start": 30641.68, + "end": 30643.52, + "probability": 0.8854 + }, + { + "start": 30644.08, + "end": 30644.8, + "probability": 0.7026 + }, + { + "start": 30646.44, + "end": 30647.14, + "probability": 0.0105 + }, + { + "start": 30647.52, + "end": 30647.8, + "probability": 0.0566 + }, + { + "start": 30648.12, + "end": 30649.22, + "probability": 0.3077 + }, + { + "start": 30649.22, + "end": 30649.94, + "probability": 0.6931 + }, + { + "start": 30649.94, + "end": 30651.07, + "probability": 0.6357 + }, + { + "start": 30651.64, + "end": 30655.6, + "probability": 0.0914 + }, + { + "start": 30655.64, + "end": 30658.37, + "probability": 0.7048 + }, + { + "start": 30658.88, + "end": 30659.32, + "probability": 0.6694 + }, + { + "start": 30659.34, + "end": 30659.62, + "probability": 0.6086 + }, + { + "start": 30659.96, + "end": 30660.48, + "probability": 0.1067 + }, + { + "start": 30661.14, + "end": 30661.74, + "probability": 0.6408 + }, + { + "start": 30661.8, + "end": 30662.18, + "probability": 0.4902 + }, + { + "start": 30662.18, + "end": 30662.18, + "probability": 0.2969 + }, + { + "start": 30662.18, + "end": 30664.2, + "probability": 0.8077 + }, + { + "start": 30664.28, + "end": 30664.83, + "probability": 0.6367 + }, + { + "start": 30665.82, + "end": 30666.3, + "probability": 0.0061 + }, + { + "start": 30666.86, + "end": 30669.89, + "probability": 0.6174 + }, + { + "start": 30670.78, + "end": 30671.6, + "probability": 0.2729 + }, + { + "start": 30672.44, + "end": 30676.6, + "probability": 0.9367 + }, + { + "start": 30677.4, + "end": 30678.44, + "probability": 0.998 + }, + { + "start": 30679.6, + "end": 30682.18, + "probability": 0.9844 + }, + { + "start": 30683.62, + "end": 30684.32, + "probability": 0.871 + }, + { + "start": 30685.2, + "end": 30685.54, + "probability": 0.6664 + }, + { + "start": 30685.88, + "end": 30686.98, + "probability": 0.925 + }, + { + "start": 30687.64, + "end": 30690.53, + "probability": 0.7973 + }, + { + "start": 30691.22, + "end": 30691.7, + "probability": 0.6431 + }, + { + "start": 30692.78, + "end": 30695.0, + "probability": 0.8648 + }, + { + "start": 30696.56, + "end": 30698.62, + "probability": 0.9475 + }, + { + "start": 30700.26, + "end": 30702.56, + "probability": 0.6566 + }, + { + "start": 30704.0, + "end": 30705.3, + "probability": 0.8538 + }, + { + "start": 30706.58, + "end": 30708.68, + "probability": 0.9734 + }, + { + "start": 30708.98, + "end": 30710.98, + "probability": 0.8986 + }, + { + "start": 30711.32, + "end": 30713.66, + "probability": 0.9085 + }, + { + "start": 30714.08, + "end": 30714.62, + "probability": 0.7525 + }, + { + "start": 30714.68, + "end": 30717.94, + "probability": 0.8533 + }, + { + "start": 30717.96, + "end": 30718.62, + "probability": 0.6391 + }, + { + "start": 30718.7, + "end": 30719.64, + "probability": 0.6313 + }, + { + "start": 30719.68, + "end": 30720.34, + "probability": 0.7998 + }, + { + "start": 30721.38, + "end": 30723.14, + "probability": 0.9326 + }, + { + "start": 30724.14, + "end": 30724.94, + "probability": 0.8929 + }, + { + "start": 30727.14, + "end": 30727.98, + "probability": 0.9706 + }, + { + "start": 30728.52, + "end": 30729.06, + "probability": 0.8706 + }, + { + "start": 30731.62, + "end": 30732.78, + "probability": 0.9956 + }, + { + "start": 30735.02, + "end": 30737.97, + "probability": 0.96 + }, + { + "start": 30740.08, + "end": 30740.08, + "probability": 0.601 + }, + { + "start": 30740.08, + "end": 30740.78, + "probability": 0.9966 + }, + { + "start": 30742.24, + "end": 30744.04, + "probability": 0.9203 + }, + { + "start": 30744.1, + "end": 30745.3, + "probability": 0.8329 + }, + { + "start": 30745.7, + "end": 30748.28, + "probability": 0.1989 + }, + { + "start": 30748.36, + "end": 30749.22, + "probability": 0.9272 + }, + { + "start": 30749.34, + "end": 30749.91, + "probability": 0.7773 + }, + { + "start": 30750.76, + "end": 30752.26, + "probability": 0.897 + }, + { + "start": 30752.42, + "end": 30753.74, + "probability": 0.7917 + }, + { + "start": 30755.48, + "end": 30756.12, + "probability": 0.7171 + }, + { + "start": 30756.72, + "end": 30760.36, + "probability": 0.9887 + }, + { + "start": 30760.38, + "end": 30760.72, + "probability": 0.9182 + }, + { + "start": 30762.14, + "end": 30764.4, + "probability": 0.0275 + }, + { + "start": 30765.76, + "end": 30767.5, + "probability": 0.3379 + }, + { + "start": 30767.52, + "end": 30768.48, + "probability": 0.9386 + }, + { + "start": 30768.5, + "end": 30770.56, + "probability": 0.7788 + }, + { + "start": 30771.12, + "end": 30774.59, + "probability": 0.834 + }, + { + "start": 30774.76, + "end": 30775.2, + "probability": 0.2136 + }, + { + "start": 30778.12, + "end": 30779.26, + "probability": 0.188 + }, + { + "start": 30779.8, + "end": 30780.32, + "probability": 0.7476 + }, + { + "start": 30782.46, + "end": 30784.86, + "probability": 0.6308 + }, + { + "start": 30785.62, + "end": 30785.84, + "probability": 0.7921 + }, + { + "start": 30787.2, + "end": 30787.72, + "probability": 0.6137 + }, + { + "start": 30788.2, + "end": 30790.38, + "probability": 0.7515 + }, + { + "start": 30790.46, + "end": 30793.76, + "probability": 0.9714 + }, + { + "start": 30793.76, + "end": 30793.76, + "probability": 0.0738 + }, + { + "start": 30793.76, + "end": 30795.22, + "probability": 0.3857 + }, + { + "start": 30796.24, + "end": 30798.5, + "probability": 0.9082 + }, + { + "start": 30799.22, + "end": 30800.48, + "probability": 0.9487 + }, + { + "start": 30801.06, + "end": 30801.98, + "probability": 0.9055 + }, + { + "start": 30802.6, + "end": 30803.1, + "probability": 0.928 + }, + { + "start": 30803.98, + "end": 30804.44, + "probability": 0.9944 + }, + { + "start": 30804.96, + "end": 30806.12, + "probability": 0.991 + }, + { + "start": 30807.4, + "end": 30808.0, + "probability": 0.8363 + }, + { + "start": 30810.14, + "end": 30813.74, + "probability": 0.9021 + }, + { + "start": 30816.82, + "end": 30817.69, + "probability": 0.9137 + }, + { + "start": 30818.18, + "end": 30822.7, + "probability": 0.825 + }, + { + "start": 30823.84, + "end": 30825.18, + "probability": 0.9944 + }, + { + "start": 30825.92, + "end": 30827.96, + "probability": 0.98 + }, + { + "start": 30828.68, + "end": 30829.46, + "probability": 0.4639 + }, + { + "start": 30829.6, + "end": 30833.3, + "probability": 0.6875 + }, + { + "start": 30833.32, + "end": 30834.64, + "probability": 0.952 + }, + { + "start": 30836.08, + "end": 30836.26, + "probability": 0.6797 + }, + { + "start": 30839.04, + "end": 30839.68, + "probability": 0.5108 + }, + { + "start": 30841.46, + "end": 30842.3, + "probability": 0.9865 + }, + { + "start": 30843.02, + "end": 30845.72, + "probability": 0.8771 + }, + { + "start": 30846.92, + "end": 30847.52, + "probability": 0.6545 + }, + { + "start": 30848.9, + "end": 30849.5, + "probability": 0.9165 + }, + { + "start": 30850.78, + "end": 30853.74, + "probability": 0.9574 + }, + { + "start": 30853.8, + "end": 30854.62, + "probability": 0.9644 + }, + { + "start": 30855.24, + "end": 30856.22, + "probability": 0.7812 + }, + { + "start": 30856.71, + "end": 30858.3, + "probability": 0.1597 + }, + { + "start": 30858.64, + "end": 30859.16, + "probability": 0.5207 + }, + { + "start": 30859.38, + "end": 30862.68, + "probability": 0.8837 + }, + { + "start": 30862.72, + "end": 30865.64, + "probability": 0.9739 + }, + { + "start": 30866.44, + "end": 30869.66, + "probability": 0.9983 + }, + { + "start": 30869.94, + "end": 30870.06, + "probability": 0.2333 + }, + { + "start": 30870.22, + "end": 30871.58, + "probability": 0.0702 + }, + { + "start": 30871.74, + "end": 30872.58, + "probability": 0.0879 + }, + { + "start": 30872.58, + "end": 30873.4, + "probability": 0.1533 + }, + { + "start": 30873.72, + "end": 30874.66, + "probability": 0.027 + }, + { + "start": 30874.88, + "end": 30876.34, + "probability": 0.6138 + }, + { + "start": 30876.64, + "end": 30880.98, + "probability": 0.7771 + }, + { + "start": 30881.52, + "end": 30884.4, + "probability": 0.7214 + }, + { + "start": 30884.62, + "end": 30885.1, + "probability": 0.7455 + }, + { + "start": 30885.44, + "end": 30886.02, + "probability": 0.9497 + }, + { + "start": 30886.44, + "end": 30888.81, + "probability": 0.7274 + }, + { + "start": 30889.16, + "end": 30889.62, + "probability": 0.9366 + }, + { + "start": 30889.66, + "end": 30890.42, + "probability": 0.7975 + }, + { + "start": 30890.44, + "end": 30892.7, + "probability": 0.968 + }, + { + "start": 30893.08, + "end": 30894.08, + "probability": 0.8491 + }, + { + "start": 30894.18, + "end": 30896.06, + "probability": 0.8445 + }, + { + "start": 30896.56, + "end": 30898.56, + "probability": 0.8784 + }, + { + "start": 30898.72, + "end": 30901.3, + "probability": 0.3039 + }, + { + "start": 30902.92, + "end": 30904.86, + "probability": 0.6144 + }, + { + "start": 30905.3, + "end": 30906.34, + "probability": 0.9032 + }, + { + "start": 30907.38, + "end": 30909.17, + "probability": 0.7627 + }, + { + "start": 30909.82, + "end": 30910.76, + "probability": 0.9022 + }, + { + "start": 30912.12, + "end": 30915.1, + "probability": 0.999 + }, + { + "start": 30915.78, + "end": 30918.04, + "probability": 0.4779 + }, + { + "start": 30918.64, + "end": 30920.27, + "probability": 0.9891 + }, + { + "start": 30921.5, + "end": 30922.4, + "probability": 0.8963 + }, + { + "start": 30923.94, + "end": 30924.3, + "probability": 0.9112 + }, + { + "start": 30924.34, + "end": 30926.8, + "probability": 0.9538 + }, + { + "start": 30927.25, + "end": 30929.48, + "probability": 0.156 + }, + { + "start": 30933.82, + "end": 30934.56, + "probability": 0.4724 + }, + { + "start": 30934.56, + "end": 30934.74, + "probability": 0.1544 + }, + { + "start": 30934.74, + "end": 30934.74, + "probability": 0.3262 + }, + { + "start": 30934.74, + "end": 30934.74, + "probability": 0.4019 + }, + { + "start": 30934.74, + "end": 30934.74, + "probability": 0.3443 + }, + { + "start": 30934.74, + "end": 30934.74, + "probability": 0.3374 + }, + { + "start": 30934.74, + "end": 30934.74, + "probability": 0.2489 + }, + { + "start": 30934.74, + "end": 30935.56, + "probability": 0.618 + }, + { + "start": 30936.12, + "end": 30937.2, + "probability": 0.1262 + }, + { + "start": 30937.44, + "end": 30940.8, + "probability": 0.4906 + }, + { + "start": 30940.8, + "end": 30943.82, + "probability": 0.0747 + }, + { + "start": 30943.92, + "end": 30948.06, + "probability": 0.2952 + }, + { + "start": 30948.64, + "end": 30949.76, + "probability": 0.0061 + }, + { + "start": 30949.86, + "end": 30950.48, + "probability": 0.7113 + }, + { + "start": 30950.64, + "end": 30952.61, + "probability": 0.3057 + }, + { + "start": 30953.34, + "end": 30955.7, + "probability": 0.3551 + }, + { + "start": 30955.7, + "end": 30956.92, + "probability": 0.1447 + }, + { + "start": 30960.38, + "end": 30962.3, + "probability": 0.3902 + }, + { + "start": 30964.77, + "end": 30969.02, + "probability": 0.9956 + }, + { + "start": 30970.7, + "end": 30974.44, + "probability": 0.9862 + }, + { + "start": 30976.2, + "end": 30978.98, + "probability": 0.9854 + }, + { + "start": 30979.9, + "end": 30982.42, + "probability": 0.9951 + }, + { + "start": 30983.88, + "end": 30985.0, + "probability": 0.9854 + }, + { + "start": 30986.66, + "end": 30987.64, + "probability": 0.9674 + }, + { + "start": 30987.76, + "end": 30988.2, + "probability": 0.7793 + }, + { + "start": 30988.24, + "end": 30990.22, + "probability": 0.9016 + }, + { + "start": 30990.3, + "end": 30990.72, + "probability": 0.8292 + }, + { + "start": 30990.8, + "end": 30992.88, + "probability": 0.8567 + }, + { + "start": 30992.88, + "end": 30995.74, + "probability": 0.9786 + }, + { + "start": 30995.82, + "end": 30996.74, + "probability": 0.9932 + }, + { + "start": 30997.38, + "end": 30997.78, + "probability": 0.6681 + }, + { + "start": 30998.34, + "end": 30999.48, + "probability": 0.9906 + }, + { + "start": 31000.04, + "end": 31002.84, + "probability": 0.9121 + }, + { + "start": 31007.12, + "end": 31009.32, + "probability": 0.163 + }, + { + "start": 31009.78, + "end": 31010.52, + "probability": 0.7624 + }, + { + "start": 31012.52, + "end": 31012.92, + "probability": 0.4899 + }, + { + "start": 31013.5, + "end": 31016.34, + "probability": 0.8066 + }, + { + "start": 31017.54, + "end": 31022.14, + "probability": 0.8779 + }, + { + "start": 31022.2, + "end": 31022.92, + "probability": 0.4436 + }, + { + "start": 31023.04, + "end": 31028.14, + "probability": 0.9338 + }, + { + "start": 31028.28, + "end": 31028.64, + "probability": 0.1044 + }, + { + "start": 31029.06, + "end": 31032.12, + "probability": 0.6238 + }, + { + "start": 31032.46, + "end": 31033.68, + "probability": 0.0513 + }, + { + "start": 31033.74, + "end": 31035.5, + "probability": 0.4038 + }, + { + "start": 31035.58, + "end": 31035.6, + "probability": 0.4248 + }, + { + "start": 31035.6, + "end": 31036.02, + "probability": 0.3243 + }, + { + "start": 31036.77, + "end": 31037.9, + "probability": 0.7592 + }, + { + "start": 31041.24, + "end": 31042.76, + "probability": 0.9659 + }, + { + "start": 31043.24, + "end": 31045.76, + "probability": 0.9468 + }, + { + "start": 31047.36, + "end": 31049.4, + "probability": 0.9901 + }, + { + "start": 31050.24, + "end": 31050.74, + "probability": 0.3428 + }, + { + "start": 31051.9, + "end": 31052.48, + "probability": 0.4091 + }, + { + "start": 31054.66, + "end": 31055.74, + "probability": 0.7151 + }, + { + "start": 31059.76, + "end": 31061.24, + "probability": 0.8904 + }, + { + "start": 31061.94, + "end": 31064.09, + "probability": 0.7361 + }, + { + "start": 31064.12, + "end": 31064.58, + "probability": 0.6568 + }, + { + "start": 31064.84, + "end": 31066.64, + "probability": 0.9927 + }, + { + "start": 31066.94, + "end": 31067.94, + "probability": 0.3225 + }, + { + "start": 31068.72, + "end": 31068.74, + "probability": 0.1735 + }, + { + "start": 31068.74, + "end": 31069.86, + "probability": 0.9093 + }, + { + "start": 31070.36, + "end": 31071.36, + "probability": 0.9388 + }, + { + "start": 31071.68, + "end": 31073.26, + "probability": 0.8524 + }, + { + "start": 31073.4, + "end": 31073.46, + "probability": 0.1137 + }, + { + "start": 31074.12, + "end": 31074.38, + "probability": 0.3608 + }, + { + "start": 31074.38, + "end": 31077.42, + "probability": 0.6093 + }, + { + "start": 31077.6, + "end": 31079.08, + "probability": 0.9321 + }, + { + "start": 31079.1, + "end": 31079.44, + "probability": 0.6744 + }, + { + "start": 31079.44, + "end": 31081.14, + "probability": 0.7668 + }, + { + "start": 31081.24, + "end": 31082.09, + "probability": 0.6807 + }, + { + "start": 31082.54, + "end": 31083.06, + "probability": 0.7623 + }, + { + "start": 31083.28, + "end": 31083.72, + "probability": 0.7095 + }, + { + "start": 31083.92, + "end": 31084.66, + "probability": 0.9285 + }, + { + "start": 31084.9, + "end": 31086.91, + "probability": 0.0199 + }, + { + "start": 31088.34, + "end": 31089.53, + "probability": 0.0101 + }, + { + "start": 31094.3, + "end": 31094.92, + "probability": 0.0286 + }, + { + "start": 31103.14, + "end": 31103.68, + "probability": 0.0011 + }, + { + "start": 31103.68, + "end": 31107.72, + "probability": 0.0155 + }, + { + "start": 31108.52, + "end": 31109.22, + "probability": 0.1345 + }, + { + "start": 31109.22, + "end": 31109.54, + "probability": 0.2549 + }, + { + "start": 31109.6, + "end": 31109.64, + "probability": 0.0275 + }, + { + "start": 31109.64, + "end": 31110.08, + "probability": 0.0149 + }, + { + "start": 31110.08, + "end": 31110.36, + "probability": 0.0802 + }, + { + "start": 31111.92, + "end": 31114.4, + "probability": 0.1144 + }, + { + "start": 31116.54, + "end": 31117.56, + "probability": 0.2815 + }, + { + "start": 31118.04, + "end": 31118.94, + "probability": 0.0095 + }, + { + "start": 31118.96, + "end": 31118.96, + "probability": 0.0216 + }, + { + "start": 31120.13, + "end": 31120.68, + "probability": 0.0419 + }, + { + "start": 31124.6, + "end": 31126.16, + "probability": 0.098 + }, + { + "start": 31126.76, + "end": 31130.56, + "probability": 0.3185 + }, + { + "start": 31135.9, + "end": 31138.04, + "probability": 0.0145 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.0, + "end": 31169.0, + "probability": 0.0 + }, + { + "start": 31169.52, + "end": 31172.5, + "probability": 0.0717 + }, + { + "start": 31172.56, + "end": 31173.52, + "probability": 0.1086 + }, + { + "start": 31173.52, + "end": 31175.66, + "probability": 0.074 + }, + { + "start": 31175.66, + "end": 31179.83, + "probability": 0.0845 + }, + { + "start": 31181.04, + "end": 31181.38, + "probability": 0.0744 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.0, + "end": 31294.0, + "probability": 0.0 + }, + { + "start": 31294.49, + "end": 31295.34, + "probability": 0.0198 + }, + { + "start": 31295.4, + "end": 31296.1, + "probability": 0.0453 + }, + { + "start": 31296.1, + "end": 31296.2, + "probability": 0.1977 + }, + { + "start": 31297.08, + "end": 31298.66, + "probability": 0.1051 + }, + { + "start": 31299.18, + "end": 31300.74, + "probability": 0.1394 + }, + { + "start": 31301.37, + "end": 31308.31, + "probability": 0.0673 + }, + { + "start": 31310.84, + "end": 31314.1, + "probability": 0.0247 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.0, + "end": 31420.0, + "probability": 0.0 + }, + { + "start": 31420.22, + "end": 31421.22, + "probability": 0.5487 + }, + { + "start": 31421.22, + "end": 31422.16, + "probability": 0.2959 + }, + { + "start": 31422.16, + "end": 31423.58, + "probability": 0.636 + }, + { + "start": 31423.62, + "end": 31425.58, + "probability": 0.7774 + }, + { + "start": 31425.7, + "end": 31427.92, + "probability": 0.4385 + }, + { + "start": 31427.96, + "end": 31428.52, + "probability": 0.8213 + }, + { + "start": 31429.6, + "end": 31430.24, + "probability": 0.8315 + }, + { + "start": 31430.54, + "end": 31432.02, + "probability": 0.9153 + }, + { + "start": 31432.94, + "end": 31433.8, + "probability": 0.5051 + }, + { + "start": 31433.98, + "end": 31434.58, + "probability": 0.9264 + }, + { + "start": 31434.6, + "end": 31435.1, + "probability": 0.7271 + }, + { + "start": 31435.54, + "end": 31438.16, + "probability": 0.9738 + }, + { + "start": 31438.74, + "end": 31439.54, + "probability": 0.8066 + }, + { + "start": 31440.88, + "end": 31442.26, + "probability": 0.853 + }, + { + "start": 31442.34, + "end": 31442.6, + "probability": 0.0043 + }, + { + "start": 31442.6, + "end": 31446.1, + "probability": 0.7693 + }, + { + "start": 31446.48, + "end": 31447.58, + "probability": 0.7631 + }, + { + "start": 31447.8, + "end": 31449.97, + "probability": 0.9717 + }, + { + "start": 31450.14, + "end": 31450.4, + "probability": 0.9211 + }, + { + "start": 31450.54, + "end": 31450.64, + "probability": 0.953 + }, + { + "start": 31450.76, + "end": 31450.98, + "probability": 0.2527 + }, + { + "start": 31451.04, + "end": 31451.14, + "probability": 0.8043 + }, + { + "start": 31451.9, + "end": 31453.04, + "probability": 0.4612 + }, + { + "start": 31453.88, + "end": 31453.98, + "probability": 0.2127 + }, + { + "start": 31453.98, + "end": 31454.82, + "probability": 0.8452 + }, + { + "start": 31454.9, + "end": 31455.1, + "probability": 0.7121 + }, + { + "start": 31455.1, + "end": 31455.32, + "probability": 0.8252 + }, + { + "start": 31455.8, + "end": 31456.92, + "probability": 0.9434 + }, + { + "start": 31456.92, + "end": 31459.09, + "probability": 0.9193 + }, + { + "start": 31459.92, + "end": 31464.68, + "probability": 0.9291 + }, + { + "start": 31465.0, + "end": 31466.17, + "probability": 0.2881 + }, + { + "start": 31467.0, + "end": 31468.3, + "probability": 0.8919 + }, + { + "start": 31468.36, + "end": 31468.6, + "probability": 0.5011 + }, + { + "start": 31469.16, + "end": 31469.6, + "probability": 0.7095 + }, + { + "start": 31470.12, + "end": 31470.95, + "probability": 0.499 + }, + { + "start": 31473.34, + "end": 31474.06, + "probability": 0.9561 + }, + { + "start": 31474.08, + "end": 31474.8, + "probability": 0.6567 + }, + { + "start": 31474.86, + "end": 31475.36, + "probability": 0.7383 + }, + { + "start": 31476.23, + "end": 31479.68, + "probability": 0.4291 + }, + { + "start": 31479.8, + "end": 31479.9, + "probability": 0.2173 + }, + { + "start": 31479.9, + "end": 31480.44, + "probability": 0.8792 + }, + { + "start": 31480.76, + "end": 31481.52, + "probability": 0.7934 + }, + { + "start": 31481.68, + "end": 31482.8, + "probability": 0.1737 + }, + { + "start": 31482.86, + "end": 31484.5, + "probability": 0.1129 + }, + { + "start": 31484.5, + "end": 31484.68, + "probability": 0.2457 + }, + { + "start": 31484.72, + "end": 31484.72, + "probability": 0.6269 + }, + { + "start": 31484.72, + "end": 31485.82, + "probability": 0.8781 + }, + { + "start": 31485.96, + "end": 31486.38, + "probability": 0.4286 + }, + { + "start": 31486.44, + "end": 31486.54, + "probability": 0.9001 + }, + { + "start": 31486.62, + "end": 31487.76, + "probability": 0.9305 + }, + { + "start": 31487.76, + "end": 31487.86, + "probability": 0.8306 + }, + { + "start": 31488.2, + "end": 31488.76, + "probability": 0.7166 + }, + { + "start": 31489.18, + "end": 31489.38, + "probability": 0.9509 + }, + { + "start": 31489.68, + "end": 31491.3, + "probability": 0.4046 + }, + { + "start": 31491.34, + "end": 31492.2, + "probability": 0.9243 + }, + { + "start": 31492.72, + "end": 31493.34, + "probability": 0.1169 + }, + { + "start": 31493.44, + "end": 31495.44, + "probability": 0.897 + }, + { + "start": 31495.52, + "end": 31496.24, + "probability": 0.6476 + }, + { + "start": 31496.32, + "end": 31496.96, + "probability": 0.7417 + }, + { + "start": 31497.0, + "end": 31497.62, + "probability": 0.8366 + }, + { + "start": 31497.8, + "end": 31499.38, + "probability": 0.9336 + }, + { + "start": 31499.66, + "end": 31500.56, + "probability": 0.5691 + }, + { + "start": 31500.82, + "end": 31502.62, + "probability": 0.8143 + }, + { + "start": 31503.61, + "end": 31504.68, + "probability": 0.2254 + }, + { + "start": 31506.66, + "end": 31507.56, + "probability": 0.4025 + }, + { + "start": 31507.74, + "end": 31508.08, + "probability": 0.3912 + }, + { + "start": 31508.08, + "end": 31510.36, + "probability": 0.804 + }, + { + "start": 31510.4, + "end": 31511.8, + "probability": 0.8101 + }, + { + "start": 31513.28, + "end": 31516.2, + "probability": 0.48 + }, + { + "start": 31516.24, + "end": 31516.24, + "probability": 0.0166 + }, + { + "start": 31516.28, + "end": 31516.28, + "probability": 0.061 + }, + { + "start": 31516.28, + "end": 31516.28, + "probability": 0.0565 + }, + { + "start": 31516.28, + "end": 31517.26, + "probability": 0.151 + }, + { + "start": 31517.42, + "end": 31518.22, + "probability": 0.0162 + }, + { + "start": 31518.22, + "end": 31518.56, + "probability": 0.1803 + }, + { + "start": 31518.58, + "end": 31518.86, + "probability": 0.4597 + }, + { + "start": 31519.52, + "end": 31520.4, + "probability": 0.2997 + }, + { + "start": 31520.44, + "end": 31521.26, + "probability": 0.6988 + }, + { + "start": 31521.32, + "end": 31521.76, + "probability": 0.347 + }, + { + "start": 31521.76, + "end": 31523.04, + "probability": 0.7546 + }, + { + "start": 31523.3, + "end": 31525.26, + "probability": 0.0379 + }, + { + "start": 31525.26, + "end": 31525.26, + "probability": 0.313 + }, + { + "start": 31525.26, + "end": 31526.02, + "probability": 0.1507 + }, + { + "start": 31526.74, + "end": 31528.35, + "probability": 0.1567 + }, + { + "start": 31529.52, + "end": 31530.5, + "probability": 0.4593 + }, + { + "start": 31530.84, + "end": 31532.52, + "probability": 0.0251 + }, + { + "start": 31532.6, + "end": 31534.25, + "probability": 0.7009 + }, + { + "start": 31534.6, + "end": 31536.24, + "probability": 0.1845 + }, + { + "start": 31536.96, + "end": 31537.78, + "probability": 0.0098 + }, + { + "start": 31537.78, + "end": 31538.64, + "probability": 0.029 + }, + { + "start": 31538.68, + "end": 31540.6, + "probability": 0.1477 + }, + { + "start": 31541.24, + "end": 31541.98, + "probability": 0.1049 + }, + { + "start": 31542.38, + "end": 31542.6, + "probability": 0.3105 + }, + { + "start": 31542.6, + "end": 31543.6, + "probability": 0.53 + }, + { + "start": 31543.62, + "end": 31544.28, + "probability": 0.6315 + }, + { + "start": 31544.36, + "end": 31546.24, + "probability": 0.9331 + }, + { + "start": 31546.3, + "end": 31546.72, + "probability": 0.0322 + }, + { + "start": 31547.26, + "end": 31547.48, + "probability": 0.0169 + }, + { + "start": 31547.48, + "end": 31548.32, + "probability": 0.1875 + }, + { + "start": 31548.4, + "end": 31551.28, + "probability": 0.1137 + }, + { + "start": 31551.84, + "end": 31552.58, + "probability": 0.4003 + }, + { + "start": 31552.58, + "end": 31553.38, + "probability": 0.5657 + }, + { + "start": 31568.85, + "end": 31570.36, + "probability": 0.0254 + }, + { + "start": 31570.38, + "end": 31571.1, + "probability": 0.0139 + }, + { + "start": 31571.7, + "end": 31572.39, + "probability": 0.1164 + }, + { + "start": 31573.6, + "end": 31577.44, + "probability": 0.0232 + }, + { + "start": 31577.7, + "end": 31577.96, + "probability": 0.056 + }, + { + "start": 31577.96, + "end": 31578.26, + "probability": 0.0142 + }, + { + "start": 31578.5, + "end": 31578.5, + "probability": 0.022 + }, + { + "start": 31578.5, + "end": 31583.14, + "probability": 0.2405 + }, + { + "start": 31583.5, + "end": 31585.54, + "probability": 0.3375 + }, + { + "start": 31586.34, + "end": 31586.92, + "probability": 0.417 + }, + { + "start": 31594.94, + "end": 31595.92, + "probability": 0.0463 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31596.0, + "end": 31596.0, + "probability": 0.0 + }, + { + "start": 31600.42, + "end": 31601.58, + "probability": 0.7447 + }, + { + "start": 31605.78, + "end": 31608.3, + "probability": 0.9983 + }, + { + "start": 31609.72, + "end": 31610.42, + "probability": 0.41 + }, + { + "start": 31610.84, + "end": 31612.44, + "probability": 0.9592 + }, + { + "start": 31613.54, + "end": 31616.44, + "probability": 0.984 + }, + { + "start": 31616.76, + "end": 31617.8, + "probability": 0.8398 + }, + { + "start": 31618.68, + "end": 31621.36, + "probability": 0.9834 + }, + { + "start": 31622.24, + "end": 31624.36, + "probability": 0.9989 + }, + { + "start": 31625.08, + "end": 31629.14, + "probability": 0.9875 + }, + { + "start": 31629.52, + "end": 31629.66, + "probability": 0.6001 + }, + { + "start": 31630.5, + "end": 31632.68, + "probability": 0.8485 + }, + { + "start": 31633.98, + "end": 31634.92, + "probability": 0.9577 + }, + { + "start": 31634.96, + "end": 31635.98, + "probability": 0.9175 + }, + { + "start": 31636.2, + "end": 31637.67, + "probability": 0.9614 + }, + { + "start": 31639.48, + "end": 31640.98, + "probability": 0.7397 + }, + { + "start": 31641.06, + "end": 31644.93, + "probability": 0.8181 + }, + { + "start": 31645.28, + "end": 31647.1, + "probability": 0.937 + }, + { + "start": 31647.8, + "end": 31650.88, + "probability": 0.936 + }, + { + "start": 31651.0, + "end": 31654.12, + "probability": 0.9526 + }, + { + "start": 31654.5, + "end": 31654.9, + "probability": 0.8221 + }, + { + "start": 31655.02, + "end": 31658.14, + "probability": 0.8887 + }, + { + "start": 31658.26, + "end": 31659.64, + "probability": 0.9453 + }, + { + "start": 31660.3, + "end": 31662.08, + "probability": 0.9034 + }, + { + "start": 31662.6, + "end": 31664.34, + "probability": 0.9383 + }, + { + "start": 31665.1, + "end": 31669.52, + "probability": 0.9764 + }, + { + "start": 31671.16, + "end": 31674.08, + "probability": 0.9605 + }, + { + "start": 31674.7, + "end": 31679.98, + "probability": 0.9966 + }, + { + "start": 31680.36, + "end": 31681.66, + "probability": 0.6464 + }, + { + "start": 31681.72, + "end": 31684.94, + "probability": 0.9956 + }, + { + "start": 31685.46, + "end": 31687.2, + "probability": 0.7494 + }, + { + "start": 31687.74, + "end": 31691.0, + "probability": 0.9124 + }, + { + "start": 31691.08, + "end": 31691.32, + "probability": 0.3472 + }, + { + "start": 31692.52, + "end": 31692.66, + "probability": 0.287 + }, + { + "start": 31692.7, + "end": 31693.12, + "probability": 0.3844 + }, + { + "start": 31697.26, + "end": 31700.02, + "probability": 0.8017 + }, + { + "start": 31701.18, + "end": 31701.72, + "probability": 0.9435 + }, + { + "start": 31702.74, + "end": 31703.94, + "probability": 0.9932 + }, + { + "start": 31704.04, + "end": 31705.55, + "probability": 0.9946 + }, + { + "start": 31706.12, + "end": 31709.96, + "probability": 0.7321 + }, + { + "start": 31710.02, + "end": 31710.56, + "probability": 0.9596 + }, + { + "start": 31710.76, + "end": 31711.08, + "probability": 0.7254 + }, + { + "start": 31711.42, + "end": 31712.9, + "probability": 0.7633 + }, + { + "start": 31713.02, + "end": 31714.08, + "probability": 0.8792 + }, + { + "start": 31714.9, + "end": 31716.24, + "probability": 0.8063 + }, + { + "start": 31716.56, + "end": 31718.17, + "probability": 0.9674 + }, + { + "start": 31719.05, + "end": 31720.4, + "probability": 0.9341 + }, + { + "start": 31720.46, + "end": 31721.68, + "probability": 0.9959 + }, + { + "start": 31722.4, + "end": 31725.44, + "probability": 0.8597 + }, + { + "start": 31726.08, + "end": 31727.14, + "probability": 0.3883 + }, + { + "start": 31727.2, + "end": 31728.48, + "probability": 0.9169 + }, + { + "start": 31728.54, + "end": 31728.72, + "probability": 0.7238 + }, + { + "start": 31728.98, + "end": 31731.4, + "probability": 0.9137 + }, + { + "start": 31731.48, + "end": 31732.66, + "probability": 0.683 + }, + { + "start": 31733.22, + "end": 31734.4, + "probability": 0.8593 + }, + { + "start": 31734.46, + "end": 31735.71, + "probability": 0.9927 + }, + { + "start": 31736.26, + "end": 31737.5, + "probability": 0.7697 + }, + { + "start": 31737.64, + "end": 31740.36, + "probability": 0.8462 + }, + { + "start": 31740.42, + "end": 31743.02, + "probability": 0.6021 + }, + { + "start": 31743.2, + "end": 31743.8, + "probability": 0.599 + }, + { + "start": 31743.96, + "end": 31746.73, + "probability": 0.9802 + }, + { + "start": 31748.7, + "end": 31748.7, + "probability": 0.0555 + }, + { + "start": 31748.7, + "end": 31749.06, + "probability": 0.276 + }, + { + "start": 31749.54, + "end": 31750.9, + "probability": 0.9488 + }, + { + "start": 31751.32, + "end": 31751.36, + "probability": 0.1839 + }, + { + "start": 31751.52, + "end": 31752.66, + "probability": 0.9517 + }, + { + "start": 31752.94, + "end": 31758.48, + "probability": 0.9853 + }, + { + "start": 31758.58, + "end": 31759.34, + "probability": 0.6606 + }, + { + "start": 31759.42, + "end": 31760.15, + "probability": 0.5736 + }, + { + "start": 31760.34, + "end": 31762.66, + "probability": 0.9441 + }, + { + "start": 31762.72, + "end": 31764.46, + "probability": 0.7251 + }, + { + "start": 31765.02, + "end": 31767.1, + "probability": 0.9907 + }, + { + "start": 31767.16, + "end": 31767.52, + "probability": 0.8229 + }, + { + "start": 31767.92, + "end": 31768.48, + "probability": 0.8155 + }, + { + "start": 31768.96, + "end": 31770.9, + "probability": 0.7858 + }, + { + "start": 31771.1, + "end": 31773.3, + "probability": 0.8328 + }, + { + "start": 31773.62, + "end": 31774.68, + "probability": 0.0679 + }, + { + "start": 31774.76, + "end": 31775.7, + "probability": 0.6031 + }, + { + "start": 31775.7, + "end": 31778.5, + "probability": 0.9694 + }, + { + "start": 31778.92, + "end": 31780.42, + "probability": 0.9301 + }, + { + "start": 31780.58, + "end": 31781.3, + "probability": 0.8012 + }, + { + "start": 31781.72, + "end": 31783.18, + "probability": 0.722 + }, + { + "start": 31783.18, + "end": 31783.66, + "probability": 0.5578 + }, + { + "start": 31784.39, + "end": 31784.46, + "probability": 0.1647 + }, + { + "start": 31784.46, + "end": 31785.48, + "probability": 0.75 + }, + { + "start": 31786.46, + "end": 31788.16, + "probability": 0.9978 + }, + { + "start": 31789.34, + "end": 31789.76, + "probability": 0.7568 + }, + { + "start": 31790.96, + "end": 31792.94, + "probability": 0.7928 + }, + { + "start": 31793.58, + "end": 31794.47, + "probability": 0.9785 + }, + { + "start": 31794.72, + "end": 31796.58, + "probability": 0.8387 + }, + { + "start": 31797.24, + "end": 31800.46, + "probability": 0.9937 + }, + { + "start": 31801.14, + "end": 31801.51, + "probability": 0.7925 + }, + { + "start": 31802.2, + "end": 31803.9, + "probability": 0.9487 + }, + { + "start": 31804.5, + "end": 31806.68, + "probability": 0.8439 + }, + { + "start": 31807.04, + "end": 31808.6, + "probability": 0.9557 + }, + { + "start": 31809.02, + "end": 31809.88, + "probability": 0.8208 + }, + { + "start": 31809.96, + "end": 31811.18, + "probability": 0.941 + }, + { + "start": 31811.22, + "end": 31811.48, + "probability": 0.2681 + }, + { + "start": 31812.16, + "end": 31812.9, + "probability": 0.0658 + }, + { + "start": 31812.9, + "end": 31813.3, + "probability": 0.0952 + }, + { + "start": 31813.3, + "end": 31813.46, + "probability": 0.6689 + }, + { + "start": 31813.56, + "end": 31813.86, + "probability": 0.5381 + }, + { + "start": 31813.88, + "end": 31813.98, + "probability": 0.4398 + }, + { + "start": 31814.06, + "end": 31815.28, + "probability": 0.8247 + }, + { + "start": 31815.32, + "end": 31816.93, + "probability": 0.9944 + }, + { + "start": 31817.66, + "end": 31818.14, + "probability": 0.9526 + }, + { + "start": 31820.36, + "end": 31822.42, + "probability": 0.8611 + }, + { + "start": 31823.04, + "end": 31825.34, + "probability": 0.8586 + }, + { + "start": 31825.72, + "end": 31826.66, + "probability": 0.6209 + }, + { + "start": 31829.18, + "end": 31831.6, + "probability": 0.9427 + }, + { + "start": 31831.82, + "end": 31835.66, + "probability": 0.6543 + }, + { + "start": 31836.74, + "end": 31839.12, + "probability": 0.9027 + }, + { + "start": 31840.54, + "end": 31842.76, + "probability": 0.9695 + }, + { + "start": 31844.18, + "end": 31845.84, + "probability": 0.8251 + }, + { + "start": 31846.46, + "end": 31849.32, + "probability": 0.6445 + }, + { + "start": 31849.32, + "end": 31850.1, + "probability": 0.6252 + }, + { + "start": 31850.94, + "end": 31851.56, + "probability": 0.9941 + }, + { + "start": 31852.1, + "end": 31853.04, + "probability": 0.9819 + }, + { + "start": 31853.3, + "end": 31853.72, + "probability": 0.5913 + }, + { + "start": 31853.8, + "end": 31854.16, + "probability": 0.7272 + }, + { + "start": 31854.32, + "end": 31856.06, + "probability": 0.8579 + }, + { + "start": 31856.52, + "end": 31857.0, + "probability": 0.9604 + }, + { + "start": 31857.2, + "end": 31857.5, + "probability": 0.6946 + }, + { + "start": 31857.68, + "end": 31858.32, + "probability": 0.9316 + }, + { + "start": 31858.44, + "end": 31858.8, + "probability": 0.6478 + }, + { + "start": 31860.04, + "end": 31861.22, + "probability": 0.9929 + }, + { + "start": 31862.42, + "end": 31864.56, + "probability": 0.6193 + }, + { + "start": 31864.76, + "end": 31866.52, + "probability": 0.9137 + }, + { + "start": 31867.26, + "end": 31869.42, + "probability": 0.9624 + }, + { + "start": 31869.58, + "end": 31870.1, + "probability": 0.6199 + }, + { + "start": 31870.92, + "end": 31873.36, + "probability": 0.9886 + }, + { + "start": 31874.54, + "end": 31876.22, + "probability": 0.9559 + }, + { + "start": 31877.04, + "end": 31878.0, + "probability": 0.9661 + }, + { + "start": 31878.64, + "end": 31879.82, + "probability": 0.9404 + }, + { + "start": 31881.36, + "end": 31883.42, + "probability": 0.992 + }, + { + "start": 31883.74, + "end": 31883.92, + "probability": 0.001 + }, + { + "start": 31885.22, + "end": 31885.22, + "probability": 0.0008 + }, + { + "start": 31885.22, + "end": 31885.22, + "probability": 0.0334 + }, + { + "start": 31885.22, + "end": 31885.82, + "probability": 0.3719 + }, + { + "start": 31885.82, + "end": 31886.72, + "probability": 0.5065 + }, + { + "start": 31886.72, + "end": 31887.92, + "probability": 0.7484 + }, + { + "start": 31889.38, + "end": 31891.31, + "probability": 0.9657 + }, + { + "start": 31891.5, + "end": 31892.86, + "probability": 0.9189 + }, + { + "start": 31893.74, + "end": 31896.12, + "probability": 0.9997 + }, + { + "start": 31896.48, + "end": 31897.27, + "probability": 0.8741 + }, + { + "start": 31898.5, + "end": 31899.82, + "probability": 0.9234 + }, + { + "start": 31900.54, + "end": 31902.26, + "probability": 0.8264 + }, + { + "start": 31902.32, + "end": 31902.74, + "probability": 0.8437 + }, + { + "start": 31903.04, + "end": 31905.04, + "probability": 0.9978 + }, + { + "start": 31905.09, + "end": 31907.16, + "probability": 0.6021 + }, + { + "start": 31920.23, + "end": 31923.1, + "probability": 0.401 + }, + { + "start": 31924.15, + "end": 31924.38, + "probability": 0.0305 + }, + { + "start": 31924.38, + "end": 31926.04, + "probability": 0.0869 + }, + { + "start": 31927.12, + "end": 31928.5, + "probability": 0.0505 + }, + { + "start": 31929.16, + "end": 31929.62, + "probability": 0.089 + }, + { + "start": 31929.64, + "end": 31930.78, + "probability": 0.2321 + }, + { + "start": 31930.78, + "end": 31932.26, + "probability": 0.0391 + }, + { + "start": 31932.42, + "end": 31935.98, + "probability": 0.0775 + }, + { + "start": 31936.62, + "end": 31937.73, + "probability": 0.6395 + }, + { + "start": 31938.62, + "end": 31940.58, + "probability": 0.0345 + }, + { + "start": 31943.32, + "end": 31943.54, + "probability": 0.0346 + }, + { + "start": 31945.19, + "end": 31947.03, + "probability": 0.1744 + }, + { + "start": 31950.88, + "end": 31953.02, + "probability": 0.0814 + }, + { + "start": 31953.29, + "end": 31954.04, + "probability": 0.1125 + }, + { + "start": 31954.04, + "end": 31954.26, + "probability": 0.1216 + }, + { + "start": 31954.26, + "end": 31954.94, + "probability": 0.4734 + }, + { + "start": 31956.58, + "end": 31957.94, + "probability": 0.0249 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.0, + "end": 32005.0, + "probability": 0.0 + }, + { + "start": 32005.36, + "end": 32005.9, + "probability": 0.344 + }, + { + "start": 32005.92, + "end": 32010.04, + "probability": 0.4292 + }, + { + "start": 32010.16, + "end": 32010.78, + "probability": 0.6826 + }, + { + "start": 32011.02, + "end": 32013.28, + "probability": 0.186 + }, + { + "start": 32014.84, + "end": 32015.84, + "probability": 0.3949 + }, + { + "start": 32015.94, + "end": 32018.1, + "probability": 0.9841 + }, + { + "start": 32018.1, + "end": 32018.88, + "probability": 0.1452 + }, + { + "start": 32019.08, + "end": 32020.04, + "probability": 0.7089 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.0, + "end": 32139.0, + "probability": 0.0 + }, + { + "start": 32139.9, + "end": 32144.66, + "probability": 0.1874 + }, + { + "start": 32144.66, + "end": 32144.66, + "probability": 0.0363 + }, + { + "start": 32144.66, + "end": 32146.32, + "probability": 0.0212 + }, + { + "start": 32147.52, + "end": 32150.5, + "probability": 0.0752 + }, + { + "start": 32152.56, + "end": 32153.82, + "probability": 0.1726 + }, + { + "start": 32154.16, + "end": 32154.48, + "probability": 0.1022 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.0, + "end": 32259.0, + "probability": 0.0 + }, + { + "start": 32259.14, + "end": 32259.3, + "probability": 0.0705 + }, + { + "start": 32259.3, + "end": 32260.08, + "probability": 0.0633 + }, + { + "start": 32260.24, + "end": 32261.46, + "probability": 0.4053 + }, + { + "start": 32261.46, + "end": 32266.76, + "probability": 0.7234 + }, + { + "start": 32267.18, + "end": 32268.58, + "probability": 0.9532 + }, + { + "start": 32268.82, + "end": 32270.08, + "probability": 0.9282 + }, + { + "start": 32270.68, + "end": 32270.92, + "probability": 0.6963 + }, + { + "start": 32271.04, + "end": 32271.22, + "probability": 0.2816 + }, + { + "start": 32271.32, + "end": 32273.55, + "probability": 0.7054 + }, + { + "start": 32274.34, + "end": 32275.71, + "probability": 0.2483 + }, + { + "start": 32277.94, + "end": 32279.32, + "probability": 0.8312 + }, + { + "start": 32279.46, + "end": 32282.66, + "probability": 0.4629 + }, + { + "start": 32283.36, + "end": 32284.88, + "probability": 0.3077 + }, + { + "start": 32284.98, + "end": 32287.04, + "probability": 0.6331 + }, + { + "start": 32292.16, + "end": 32296.72, + "probability": 0.9859 + }, + { + "start": 32297.08, + "end": 32299.26, + "probability": 0.7424 + }, + { + "start": 32300.2, + "end": 32303.12, + "probability": 0.8447 + }, + { + "start": 32303.12, + "end": 32303.82, + "probability": 0.7531 + }, + { + "start": 32303.86, + "end": 32304.78, + "probability": 0.8135 + }, + { + "start": 32305.06, + "end": 32306.38, + "probability": 0.7495 + }, + { + "start": 32308.46, + "end": 32312.32, + "probability": 0.6554 + }, + { + "start": 32314.88, + "end": 32315.48, + "probability": 0.5437 + }, + { + "start": 32315.68, + "end": 32319.02, + "probability": 0.5018 + }, + { + "start": 32319.02, + "end": 32321.74, + "probability": 0.849 + }, + { + "start": 32323.12, + "end": 32323.24, + "probability": 0.0003 + }, + { + "start": 32326.42, + "end": 32326.56, + "probability": 0.0631 + }, + { + "start": 32326.56, + "end": 32327.46, + "probability": 0.0537 + }, + { + "start": 32327.56, + "end": 32333.48, + "probability": 0.5648 + }, + { + "start": 32334.36, + "end": 32336.72, + "probability": 0.74 + }, + { + "start": 32337.64, + "end": 32339.94, + "probability": 0.7566 + }, + { + "start": 32349.36, + "end": 32350.58, + "probability": 0.7597 + }, + { + "start": 32351.26, + "end": 32354.72, + "probability": 0.9469 + }, + { + "start": 32355.6, + "end": 32357.24, + "probability": 0.5485 + }, + { + "start": 32358.54, + "end": 32359.58, + "probability": 0.9761 + }, + { + "start": 32360.92, + "end": 32362.37, + "probability": 0.9829 + }, + { + "start": 32362.72, + "end": 32364.86, + "probability": 0.9907 + }, + { + "start": 32365.0, + "end": 32366.0, + "probability": 0.9041 + }, + { + "start": 32366.62, + "end": 32367.69, + "probability": 0.4188 + }, + { + "start": 32367.74, + "end": 32367.86, + "probability": 0.5631 + }, + { + "start": 32367.96, + "end": 32370.1, + "probability": 0.4531 + }, + { + "start": 32371.1, + "end": 32374.8, + "probability": 0.238 + }, + { + "start": 32374.92, + "end": 32376.18, + "probability": 0.2904 + }, + { + "start": 32378.48, + "end": 32382.88, + "probability": 0.4016 + }, + { + "start": 32383.94, + "end": 32383.94, + "probability": 0.0004 + }, + { + "start": 32385.1, + "end": 32385.42, + "probability": 0.1828 + }, + { + "start": 32385.42, + "end": 32385.84, + "probability": 0.3522 + }, + { + "start": 32386.46, + "end": 32387.88, + "probability": 0.5363 + }, + { + "start": 32387.94, + "end": 32389.7, + "probability": 0.281 + }, + { + "start": 32390.6, + "end": 32391.42, + "probability": 0.8761 + }, + { + "start": 32394.08, + "end": 32394.58, + "probability": 0.6738 + }, + { + "start": 32395.08, + "end": 32397.06, + "probability": 0.8395 + }, + { + "start": 32397.2, + "end": 32398.94, + "probability": 0.7865 + }, + { + "start": 32399.06, + "end": 32400.88, + "probability": 0.874 + }, + { + "start": 32401.16, + "end": 32401.28, + "probability": 0.2824 + }, + { + "start": 32402.08, + "end": 32406.24, + "probability": 0.9822 + }, + { + "start": 32406.74, + "end": 32407.48, + "probability": 0.9004 + }, + { + "start": 32407.98, + "end": 32409.72, + "probability": 0.7454 + }, + { + "start": 32410.34, + "end": 32411.76, + "probability": 0.837 + }, + { + "start": 32411.88, + "end": 32413.08, + "probability": 0.5421 + }, + { + "start": 32415.64, + "end": 32417.64, + "probability": 0.511 + }, + { + "start": 32418.96, + "end": 32420.72, + "probability": 0.7585 + }, + { + "start": 32420.8, + "end": 32421.24, + "probability": 0.6478 + }, + { + "start": 32421.56, + "end": 32423.88, + "probability": 0.6029 + }, + { + "start": 32423.98, + "end": 32427.24, + "probability": 0.9708 + }, + { + "start": 32427.62, + "end": 32430.54, + "probability": 0.9988 + }, + { + "start": 32430.74, + "end": 32433.24, + "probability": 0.9463 + }, + { + "start": 32433.24, + "end": 32437.02, + "probability": 0.9958 + }, + { + "start": 32438.68, + "end": 32442.34, + "probability": 0.9917 + }, + { + "start": 32443.2, + "end": 32446.08, + "probability": 0.9799 + }, + { + "start": 32446.7, + "end": 32449.42, + "probability": 0.9766 + }, + { + "start": 32450.86, + "end": 32454.58, + "probability": 0.9099 + }, + { + "start": 32454.9, + "end": 32458.26, + "probability": 0.9958 + }, + { + "start": 32458.84, + "end": 32462.76, + "probability": 0.9926 + }, + { + "start": 32462.94, + "end": 32465.58, + "probability": 0.9031 + }, + { + "start": 32467.72, + "end": 32470.08, + "probability": 0.9364 + }, + { + "start": 32470.64, + "end": 32472.04, + "probability": 0.8107 + }, + { + "start": 32472.16, + "end": 32474.44, + "probability": 0.991 + }, + { + "start": 32475.46, + "end": 32477.56, + "probability": 0.9902 + }, + { + "start": 32478.72, + "end": 32482.04, + "probability": 0.9683 + }, + { + "start": 32483.72, + "end": 32487.06, + "probability": 0.9588 + }, + { + "start": 32489.14, + "end": 32494.76, + "probability": 0.9928 + }, + { + "start": 32495.78, + "end": 32497.12, + "probability": 0.7769 + }, + { + "start": 32497.28, + "end": 32498.55, + "probability": 0.2564 + }, + { + "start": 32500.42, + "end": 32502.46, + "probability": 0.6659 + }, + { + "start": 32506.28, + "end": 32506.62, + "probability": 0.508 + }, + { + "start": 32507.68, + "end": 32512.18, + "probability": 0.993 + }, + { + "start": 32513.22, + "end": 32515.88, + "probability": 0.9642 + }, + { + "start": 32517.0, + "end": 32520.52, + "probability": 0.9313 + }, + { + "start": 32521.1, + "end": 32521.78, + "probability": 0.8643 + }, + { + "start": 32521.84, + "end": 32524.1, + "probability": 0.9485 + }, + { + "start": 32524.5, + "end": 32529.82, + "probability": 0.7518 + }, + { + "start": 32530.68, + "end": 32533.02, + "probability": 0.6621 + }, + { + "start": 32533.74, + "end": 32534.76, + "probability": 0.9272 + }, + { + "start": 32535.48, + "end": 32536.84, + "probability": 0.8846 + }, + { + "start": 32537.5, + "end": 32541.68, + "probability": 0.655 + }, + { + "start": 32544.02, + "end": 32544.54, + "probability": 0.658 + }, + { + "start": 32545.56, + "end": 32548.68, + "probability": 0.7156 + }, + { + "start": 32549.24, + "end": 32553.28, + "probability": 0.9582 + }, + { + "start": 32554.03, + "end": 32556.74, + "probability": 0.8349 + }, + { + "start": 32558.02, + "end": 32559.5, + "probability": 0.8187 + }, + { + "start": 32560.12, + "end": 32561.56, + "probability": 0.8595 + }, + { + "start": 32562.46, + "end": 32564.28, + "probability": 0.9956 + }, + { + "start": 32564.62, + "end": 32566.6, + "probability": 0.9951 + }, + { + "start": 32567.16, + "end": 32571.78, + "probability": 0.9422 + }, + { + "start": 32572.4, + "end": 32575.12, + "probability": 0.0986 + }, + { + "start": 32576.76, + "end": 32578.56, + "probability": 0.4849 + }, + { + "start": 32578.56, + "end": 32579.57, + "probability": 0.6348 + }, + { + "start": 32580.04, + "end": 32583.8, + "probability": 0.906 + }, + { + "start": 32584.22, + "end": 32585.52, + "probability": 0.7804 + }, + { + "start": 32588.02, + "end": 32589.5, + "probability": 0.9198 + }, + { + "start": 32590.26, + "end": 32593.5, + "probability": 0.5515 + }, + { + "start": 32595.22, + "end": 32597.68, + "probability": 0.999 + }, + { + "start": 32598.16, + "end": 32598.92, + "probability": 0.8721 + }, + { + "start": 32599.82, + "end": 32601.56, + "probability": 0.8914 + }, + { + "start": 32602.36, + "end": 32603.28, + "probability": 0.8489 + }, + { + "start": 32604.3, + "end": 32605.68, + "probability": 0.9858 + }, + { + "start": 32606.26, + "end": 32608.14, + "probability": 0.9852 + }, + { + "start": 32608.58, + "end": 32612.32, + "probability": 0.647 + }, + { + "start": 32614.6, + "end": 32618.08, + "probability": 0.9365 + }, + { + "start": 32618.46, + "end": 32619.42, + "probability": 0.9218 + }, + { + "start": 32620.58, + "end": 32623.28, + "probability": 0.9896 + }, + { + "start": 32624.04, + "end": 32628.5, + "probability": 0.9886 + }, + { + "start": 32629.48, + "end": 32630.12, + "probability": 0.6556 + }, + { + "start": 32630.78, + "end": 32632.8, + "probability": 0.9885 + }, + { + "start": 32634.94, + "end": 32637.52, + "probability": 0.95 + }, + { + "start": 32638.28, + "end": 32641.28, + "probability": 0.9682 + }, + { + "start": 32641.48, + "end": 32643.16, + "probability": 0.9665 + }, + { + "start": 32643.54, + "end": 32644.66, + "probability": 0.8766 + }, + { + "start": 32645.52, + "end": 32647.22, + "probability": 0.968 + }, + { + "start": 32648.84, + "end": 32650.4, + "probability": 0.9949 + }, + { + "start": 32651.04, + "end": 32654.04, + "probability": 0.9934 + }, + { + "start": 32654.18, + "end": 32654.52, + "probability": 0.9181 + }, + { + "start": 32655.54, + "end": 32656.06, + "probability": 0.9565 + }, + { + "start": 32656.38, + "end": 32656.94, + "probability": 0.6523 + }, + { + "start": 32657.02, + "end": 32659.46, + "probability": 0.9987 + }, + { + "start": 32659.46, + "end": 32662.76, + "probability": 0.9971 + }, + { + "start": 32663.32, + "end": 32663.62, + "probability": 0.7569 + }, + { + "start": 32665.74, + "end": 32666.36, + "probability": 0.6483 + }, + { + "start": 32666.4, + "end": 32668.42, + "probability": 0.9563 + }, + { + "start": 32685.82, + "end": 32686.88, + "probability": 0.6283 + }, + { + "start": 32688.58, + "end": 32689.66, + "probability": 0.8741 + }, + { + "start": 32690.56, + "end": 32691.42, + "probability": 0.8036 + }, + { + "start": 32692.28, + "end": 32693.18, + "probability": 0.7572 + }, + { + "start": 32693.44, + "end": 32697.44, + "probability": 0.9777 + }, + { + "start": 32698.44, + "end": 32700.46, + "probability": 0.9762 + }, + { + "start": 32700.54, + "end": 32702.86, + "probability": 0.9973 + }, + { + "start": 32704.0, + "end": 32710.12, + "probability": 0.9977 + }, + { + "start": 32711.28, + "end": 32712.18, + "probability": 0.619 + }, + { + "start": 32713.98, + "end": 32719.02, + "probability": 0.9892 + }, + { + "start": 32720.04, + "end": 32722.48, + "probability": 0.999 + }, + { + "start": 32722.48, + "end": 32725.7, + "probability": 0.9934 + }, + { + "start": 32727.66, + "end": 32730.06, + "probability": 0.9951 + }, + { + "start": 32731.26, + "end": 32733.98, + "probability": 0.9916 + }, + { + "start": 32733.98, + "end": 32736.36, + "probability": 0.9932 + }, + { + "start": 32737.56, + "end": 32741.26, + "probability": 0.9944 + }, + { + "start": 32742.2, + "end": 32745.56, + "probability": 0.9863 + }, + { + "start": 32746.58, + "end": 32748.58, + "probability": 0.7905 + }, + { + "start": 32748.64, + "end": 32751.58, + "probability": 0.9742 + }, + { + "start": 32752.34, + "end": 32754.32, + "probability": 0.9516 + }, + { + "start": 32754.84, + "end": 32756.42, + "probability": 0.9397 + }, + { + "start": 32756.44, + "end": 32759.44, + "probability": 0.9908 + }, + { + "start": 32760.42, + "end": 32765.32, + "probability": 0.982 + }, + { + "start": 32765.94, + "end": 32769.58, + "probability": 0.9776 + }, + { + "start": 32770.18, + "end": 32772.78, + "probability": 0.9969 + }, + { + "start": 32775.56, + "end": 32777.65, + "probability": 0.7776 + }, + { + "start": 32779.04, + "end": 32779.72, + "probability": 0.9547 + }, + { + "start": 32781.5, + "end": 32782.7, + "probability": 0.9375 + }, + { + "start": 32783.6, + "end": 32787.5, + "probability": 0.993 + }, + { + "start": 32788.5, + "end": 32792.22, + "probability": 0.9964 + }, + { + "start": 32793.4, + "end": 32794.36, + "probability": 0.9125 + }, + { + "start": 32794.4, + "end": 32796.94, + "probability": 0.9764 + }, + { + "start": 32796.94, + "end": 32799.44, + "probability": 0.9958 + }, + { + "start": 32802.38, + "end": 32805.3, + "probability": 0.9873 + }, + { + "start": 32806.22, + "end": 32809.28, + "probability": 0.995 + }, + { + "start": 32809.28, + "end": 32812.4, + "probability": 0.9986 + }, + { + "start": 32813.42, + "end": 32816.3, + "probability": 0.6428 + }, + { + "start": 32816.36, + "end": 32819.22, + "probability": 0.9676 + }, + { + "start": 32819.94, + "end": 32826.34, + "probability": 0.8927 + }, + { + "start": 32827.02, + "end": 32830.06, + "probability": 0.9731 + }, + { + "start": 32831.54, + "end": 32836.6, + "probability": 0.9968 + }, + { + "start": 32837.32, + "end": 32839.32, + "probability": 0.857 + }, + { + "start": 32839.38, + "end": 32847.08, + "probability": 0.9584 + }, + { + "start": 32847.68, + "end": 32851.08, + "probability": 0.9896 + }, + { + "start": 32851.68, + "end": 32854.94, + "probability": 0.9947 + }, + { + "start": 32855.12, + "end": 32856.24, + "probability": 0.6818 + }, + { + "start": 32856.86, + "end": 32860.56, + "probability": 0.9741 + }, + { + "start": 32860.74, + "end": 32861.06, + "probability": 0.8121 + }, + { + "start": 32863.92, + "end": 32864.5, + "probability": 0.5607 + }, + { + "start": 32864.96, + "end": 32868.14, + "probability": 0.843 + }, + { + "start": 32887.4, + "end": 32888.42, + "probability": 0.6217 + }, + { + "start": 32888.88, + "end": 32891.72, + "probability": 0.9745 + }, + { + "start": 32893.55, + "end": 32898.36, + "probability": 0.6885 + }, + { + "start": 32898.88, + "end": 32899.88, + "probability": 0.8485 + }, + { + "start": 32901.8, + "end": 32911.78, + "probability": 0.7326 + }, + { + "start": 32913.84, + "end": 32914.82, + "probability": 0.6923 + }, + { + "start": 32917.02, + "end": 32920.92, + "probability": 0.7927 + }, + { + "start": 32921.82, + "end": 32923.32, + "probability": 0.6938 + }, + { + "start": 32924.96, + "end": 32929.42, + "probability": 0.9852 + }, + { + "start": 32930.02, + "end": 32931.01, + "probability": 0.7063 + }, + { + "start": 32933.04, + "end": 32936.66, + "probability": 0.9764 + }, + { + "start": 32937.92, + "end": 32945.24, + "probability": 0.9368 + }, + { + "start": 32945.86, + "end": 32948.3, + "probability": 0.9127 + }, + { + "start": 32949.34, + "end": 32952.9, + "probability": 0.6698 + }, + { + "start": 32953.52, + "end": 32955.0, + "probability": 0.6954 + }, + { + "start": 32955.72, + "end": 32957.0, + "probability": 0.7738 + }, + { + "start": 32957.78, + "end": 32958.16, + "probability": 0.5043 + }, + { + "start": 32958.18, + "end": 32958.34, + "probability": 0.7355 + }, + { + "start": 32958.46, + "end": 32962.2, + "probability": 0.9722 + }, + { + "start": 32962.2, + "end": 32962.8, + "probability": 0.6562 + }, + { + "start": 32963.5, + "end": 32968.04, + "probability": 0.8685 + }, + { + "start": 32968.4, + "end": 32971.24, + "probability": 0.9369 + }, + { + "start": 32971.32, + "end": 32972.06, + "probability": 0.9062 + }, + { + "start": 32972.16, + "end": 32972.68, + "probability": 0.8301 + }, + { + "start": 32973.58, + "end": 32978.0, + "probability": 0.9882 + }, + { + "start": 32979.06, + "end": 32980.02, + "probability": 0.8961 + }, + { + "start": 32981.28, + "end": 32982.52, + "probability": 0.9396 + }, + { + "start": 32984.06, + "end": 32985.92, + "probability": 0.9846 + }, + { + "start": 32986.76, + "end": 32991.36, + "probability": 0.9972 + }, + { + "start": 32994.22, + "end": 32995.44, + "probability": 0.6076 + }, + { + "start": 32996.5, + "end": 33003.16, + "probability": 0.9674 + }, + { + "start": 33003.16, + "end": 33008.54, + "probability": 0.9966 + }, + { + "start": 33009.1, + "end": 33015.18, + "probability": 0.9909 + }, + { + "start": 33015.18, + "end": 33021.0, + "probability": 0.9941 + }, + { + "start": 33021.46, + "end": 33022.18, + "probability": 0.8009 + }, + { + "start": 33022.76, + "end": 33023.46, + "probability": 0.0854 + }, + { + "start": 33024.5, + "end": 33025.34, + "probability": 0.0016 + }, + { + "start": 33026.06, + "end": 33026.24, + "probability": 0.4497 + }, + { + "start": 33026.24, + "end": 33028.84, + "probability": 0.5888 + }, + { + "start": 33028.84, + "end": 33030.08, + "probability": 0.9702 + }, + { + "start": 33030.18, + "end": 33030.85, + "probability": 0.8003 + }, + { + "start": 33031.52, + "end": 33036.3, + "probability": 0.9307 + }, + { + "start": 33037.2, + "end": 33045.2, + "probability": 0.8522 + }, + { + "start": 33045.48, + "end": 33050.0, + "probability": 0.7557 + }, + { + "start": 33050.24, + "end": 33055.66, + "probability": 0.9844 + }, + { + "start": 33055.66, + "end": 33057.78, + "probability": 0.9036 + }, + { + "start": 33057.88, + "end": 33058.32, + "probability": 0.887 + }, + { + "start": 33058.92, + "end": 33064.32, + "probability": 0.9762 + }, + { + "start": 33065.78, + "end": 33066.22, + "probability": 0.8861 + }, + { + "start": 33066.32, + "end": 33072.12, + "probability": 0.9255 + }, + { + "start": 33072.44, + "end": 33076.3, + "probability": 0.9466 + }, + { + "start": 33076.62, + "end": 33082.04, + "probability": 0.9618 + }, + { + "start": 33082.12, + "end": 33082.4, + "probability": 0.6607 + }, + { + "start": 33082.84, + "end": 33083.46, + "probability": 0.8276 + }, + { + "start": 33084.06, + "end": 33086.48, + "probability": 0.8227 + }, + { + "start": 33088.42, + "end": 33091.6, + "probability": 0.7097 + }, + { + "start": 33092.68, + "end": 33094.43, + "probability": 0.9886 + }, + { + "start": 33095.0, + "end": 33096.86, + "probability": 0.9795 + }, + { + "start": 33096.94, + "end": 33097.4, + "probability": 0.8701 + }, + { + "start": 33097.46, + "end": 33100.3, + "probability": 0.9561 + }, + { + "start": 33101.8, + "end": 33105.66, + "probability": 0.9909 + }, + { + "start": 33106.12, + "end": 33108.72, + "probability": 0.9969 + }, + { + "start": 33108.96, + "end": 33112.94, + "probability": 0.9855 + }, + { + "start": 33114.66, + "end": 33117.94, + "probability": 0.9916 + }, + { + "start": 33117.94, + "end": 33121.68, + "probability": 0.9968 + }, + { + "start": 33122.88, + "end": 33127.5, + "probability": 0.9783 + }, + { + "start": 33127.5, + "end": 33133.64, + "probability": 0.9785 + }, + { + "start": 33133.74, + "end": 33134.58, + "probability": 0.9978 + }, + { + "start": 33135.24, + "end": 33138.7, + "probability": 0.7026 + }, + { + "start": 33139.62, + "end": 33142.06, + "probability": 0.9551 + }, + { + "start": 33142.44, + "end": 33149.92, + "probability": 0.6414 + }, + { + "start": 33150.54, + "end": 33150.72, + "probability": 0.5166 + }, + { + "start": 33150.72, + "end": 33152.65, + "probability": 0.9194 + }, + { + "start": 33154.24, + "end": 33155.66, + "probability": 0.6434 + }, + { + "start": 33155.84, + "end": 33156.6, + "probability": 0.0971 + }, + { + "start": 33156.6, + "end": 33157.14, + "probability": 0.6639 + }, + { + "start": 33157.52, + "end": 33158.34, + "probability": 0.8237 + }, + { + "start": 33159.0, + "end": 33163.0, + "probability": 0.9859 + }, + { + "start": 33163.0, + "end": 33168.06, + "probability": 0.9735 + }, + { + "start": 33169.44, + "end": 33172.9, + "probability": 0.9144 + }, + { + "start": 33173.8, + "end": 33179.96, + "probability": 0.9937 + }, + { + "start": 33180.22, + "end": 33182.76, + "probability": 0.9966 + }, + { + "start": 33184.0, + "end": 33185.56, + "probability": 0.8356 + }, + { + "start": 33187.83, + "end": 33192.24, + "probability": 0.8224 + }, + { + "start": 33192.46, + "end": 33193.1, + "probability": 0.6512 + }, + { + "start": 33193.86, + "end": 33196.32, + "probability": 0.8486 + }, + { + "start": 33196.32, + "end": 33201.54, + "probability": 0.753 + }, + { + "start": 33203.1, + "end": 33210.44, + "probability": 0.9888 + }, + { + "start": 33210.44, + "end": 33214.22, + "probability": 0.9966 + }, + { + "start": 33214.92, + "end": 33215.46, + "probability": 0.7451 + }, + { + "start": 33215.64, + "end": 33220.48, + "probability": 0.984 + }, + { + "start": 33221.62, + "end": 33225.26, + "probability": 0.9405 + }, + { + "start": 33225.76, + "end": 33226.02, + "probability": 0.7184 + }, + { + "start": 33226.4, + "end": 33228.2, + "probability": 0.9367 + }, + { + "start": 33228.68, + "end": 33232.0, + "probability": 0.8593 + }, + { + "start": 33233.14, + "end": 33234.28, + "probability": 0.9397 + }, + { + "start": 33234.44, + "end": 33235.24, + "probability": 0.542 + }, + { + "start": 33235.48, + "end": 33236.04, + "probability": 0.6295 + }, + { + "start": 33236.12, + "end": 33237.5, + "probability": 0.8934 + }, + { + "start": 33238.08, + "end": 33239.54, + "probability": 0.9138 + }, + { + "start": 33241.94, + "end": 33243.02, + "probability": 0.5112 + }, + { + "start": 33243.98, + "end": 33244.78, + "probability": 0.6323 + }, + { + "start": 33244.82, + "end": 33246.94, + "probability": 0.9594 + }, + { + "start": 33247.02, + "end": 33248.24, + "probability": 0.9504 + }, + { + "start": 33248.52, + "end": 33249.36, + "probability": 0.9131 + }, + { + "start": 33251.52, + "end": 33255.12, + "probability": 0.9761 + }, + { + "start": 33255.64, + "end": 33259.0, + "probability": 0.3535 + }, + { + "start": 33259.9, + "end": 33260.14, + "probability": 0.0428 + }, + { + "start": 33260.8, + "end": 33265.04, + "probability": 0.4189 + }, + { + "start": 33265.22, + "end": 33266.0, + "probability": 0.7467 + }, + { + "start": 33266.28, + "end": 33266.84, + "probability": 0.5463 + }, + { + "start": 33267.68, + "end": 33272.7, + "probability": 0.7286 + }, + { + "start": 33273.38, + "end": 33274.52, + "probability": 0.1565 + }, + { + "start": 33275.76, + "end": 33275.76, + "probability": 0.1056 + }, + { + "start": 33275.76, + "end": 33279.8, + "probability": 0.5157 + }, + { + "start": 33280.1, + "end": 33282.1, + "probability": 0.2672 + }, + { + "start": 33282.32, + "end": 33284.46, + "probability": 0.702 + }, + { + "start": 33284.52, + "end": 33289.12, + "probability": 0.9785 + }, + { + "start": 33289.56, + "end": 33291.49, + "probability": 0.9906 + }, + { + "start": 33291.86, + "end": 33293.5, + "probability": 0.9961 + }, + { + "start": 33293.88, + "end": 33298.96, + "probability": 0.9026 + }, + { + "start": 33298.96, + "end": 33302.4, + "probability": 0.9924 + }, + { + "start": 33302.62, + "end": 33303.24, + "probability": 0.7072 + }, + { + "start": 33303.68, + "end": 33307.46, + "probability": 0.986 + }, + { + "start": 33309.66, + "end": 33310.01, + "probability": 0.1908 + }, + { + "start": 33310.62, + "end": 33311.78, + "probability": 0.8197 + }, + { + "start": 33312.48, + "end": 33317.14, + "probability": 0.8721 + }, + { + "start": 33317.86, + "end": 33318.1, + "probability": 0.7414 + }, + { + "start": 33318.16, + "end": 33318.66, + "probability": 0.7882 + }, + { + "start": 33318.7, + "end": 33321.6, + "probability": 0.9969 + }, + { + "start": 33321.98, + "end": 33323.42, + "probability": 0.935 + }, + { + "start": 33323.78, + "end": 33325.26, + "probability": 0.9774 + }, + { + "start": 33325.94, + "end": 33328.98, + "probability": 0.9956 + }, + { + "start": 33328.98, + "end": 33333.36, + "probability": 0.9437 + }, + { + "start": 33333.38, + "end": 33337.24, + "probability": 0.992 + }, + { + "start": 33338.1, + "end": 33338.44, + "probability": 0.4552 + }, + { + "start": 33339.38, + "end": 33342.88, + "probability": 0.9958 + }, + { + "start": 33342.88, + "end": 33346.2, + "probability": 0.9913 + }, + { + "start": 33346.74, + "end": 33351.16, + "probability": 0.9984 + }, + { + "start": 33351.3, + "end": 33352.26, + "probability": 0.846 + }, + { + "start": 33352.88, + "end": 33356.32, + "probability": 0.8984 + }, + { + "start": 33356.86, + "end": 33358.88, + "probability": 0.9255 + }, + { + "start": 33359.36, + "end": 33359.58, + "probability": 0.5876 + }, + { + "start": 33359.66, + "end": 33361.16, + "probability": 0.9058 + }, + { + "start": 33361.54, + "end": 33363.26, + "probability": 0.8541 + }, + { + "start": 33363.98, + "end": 33364.52, + "probability": 0.6289 + }, + { + "start": 33364.7, + "end": 33367.68, + "probability": 0.9816 + }, + { + "start": 33368.68, + "end": 33369.74, + "probability": 0.743 + }, + { + "start": 33370.32, + "end": 33373.8, + "probability": 0.985 + }, + { + "start": 33373.8, + "end": 33378.96, + "probability": 0.9978 + }, + { + "start": 33379.78, + "end": 33380.3, + "probability": 0.5789 + }, + { + "start": 33380.72, + "end": 33386.86, + "probability": 0.9932 + }, + { + "start": 33386.86, + "end": 33392.92, + "probability": 0.9952 + }, + { + "start": 33393.74, + "end": 33398.4, + "probability": 0.9946 + }, + { + "start": 33398.46, + "end": 33403.21, + "probability": 0.9975 + }, + { + "start": 33404.04, + "end": 33408.4, + "probability": 0.9937 + }, + { + "start": 33409.24, + "end": 33414.82, + "probability": 0.9924 + }, + { + "start": 33415.34, + "end": 33420.3, + "probability": 0.981 + }, + { + "start": 33421.9, + "end": 33426.1, + "probability": 0.9924 + }, + { + "start": 33426.1, + "end": 33430.92, + "probability": 0.9951 + }, + { + "start": 33431.44, + "end": 33435.28, + "probability": 0.8658 + }, + { + "start": 33435.36, + "end": 33435.76, + "probability": 0.8423 + }, + { + "start": 33436.3, + "end": 33438.94, + "probability": 0.9243 + }, + { + "start": 33439.56, + "end": 33441.28, + "probability": 0.434 + }, + { + "start": 33444.18, + "end": 33445.27, + "probability": 0.0046 + }, + { + "start": 33446.68, + "end": 33447.16, + "probability": 0.3827 + }, + { + "start": 33447.16, + "end": 33447.74, + "probability": 0.0318 + }, + { + "start": 33448.2, + "end": 33448.52, + "probability": 0.0204 + }, + { + "start": 33448.52, + "end": 33448.52, + "probability": 0.0455 + }, + { + "start": 33448.52, + "end": 33448.52, + "probability": 0.2505 + }, + { + "start": 33448.54, + "end": 33453.12, + "probability": 0.6263 + }, + { + "start": 33454.0, + "end": 33459.1, + "probability": 0.9907 + }, + { + "start": 33459.18, + "end": 33460.48, + "probability": 0.8314 + }, + { + "start": 33461.12, + "end": 33464.12, + "probability": 0.9985 + }, + { + "start": 33465.0, + "end": 33466.62, + "probability": 0.2889 + }, + { + "start": 33466.62, + "end": 33466.62, + "probability": 0.1601 + }, + { + "start": 33466.62, + "end": 33467.32, + "probability": 0.6133 + }, + { + "start": 33468.08, + "end": 33470.0, + "probability": 0.7484 + }, + { + "start": 33470.86, + "end": 33472.12, + "probability": 0.7781 + }, + { + "start": 33472.26, + "end": 33473.98, + "probability": 0.8621 + }, + { + "start": 33474.46, + "end": 33476.84, + "probability": 0.4696 + }, + { + "start": 33477.06, + "end": 33477.92, + "probability": 0.1034 + }, + { + "start": 33478.04, + "end": 33480.36, + "probability": 0.0304 + }, + { + "start": 33480.5, + "end": 33480.73, + "probability": 0.4737 + }, + { + "start": 33481.46, + "end": 33482.7, + "probability": 0.8348 + }, + { + "start": 33483.22, + "end": 33485.32, + "probability": 0.3669 + }, + { + "start": 33485.48, + "end": 33489.22, + "probability": 0.819 + }, + { + "start": 33489.48, + "end": 33494.58, + "probability": 0.717 + }, + { + "start": 33494.66, + "end": 33498.31, + "probability": 0.9519 + }, + { + "start": 33498.38, + "end": 33501.78, + "probability": 0.9242 + }, + { + "start": 33501.88, + "end": 33502.34, + "probability": 0.7363 + }, + { + "start": 33502.48, + "end": 33504.04, + "probability": 0.8937 + }, + { + "start": 33504.3, + "end": 33504.6, + "probability": 0.9565 + }, + { + "start": 33504.72, + "end": 33505.8, + "probability": 0.9414 + }, + { + "start": 33505.88, + "end": 33506.72, + "probability": 0.9347 + }, + { + "start": 33507.16, + "end": 33507.96, + "probability": 0.9475 + }, + { + "start": 33508.2, + "end": 33508.32, + "probability": 0.4301 + }, + { + "start": 33508.32, + "end": 33511.54, + "probability": 0.9016 + }, + { + "start": 33511.6, + "end": 33512.08, + "probability": 0.2326 + }, + { + "start": 33512.76, + "end": 33514.58, + "probability": 0.8091 + }, + { + "start": 33514.9, + "end": 33517.29, + "probability": 0.981 + }, + { + "start": 33533.12, + "end": 33533.38, + "probability": 0.2555 + }, + { + "start": 33533.38, + "end": 33533.76, + "probability": 0.5654 + }, + { + "start": 33536.64, + "end": 33541.5, + "probability": 0.7847 + }, + { + "start": 33541.88, + "end": 33542.6, + "probability": 0.8929 + }, + { + "start": 33552.84, + "end": 33554.08, + "probability": 0.0878 + }, + { + "start": 33561.78, + "end": 33562.5, + "probability": 0.1557 + }, + { + "start": 33562.68, + "end": 33565.46, + "probability": 0.8406 + }, + { + "start": 33565.56, + "end": 33566.46, + "probability": 0.3374 + }, + { + "start": 33566.68, + "end": 33569.5, + "probability": 0.7904 + }, + { + "start": 33570.58, + "end": 33574.36, + "probability": 0.7893 + }, + { + "start": 33575.1, + "end": 33577.78, + "probability": 0.7994 + }, + { + "start": 33580.34, + "end": 33583.78, + "probability": 0.8581 + }, + { + "start": 33584.1, + "end": 33585.5, + "probability": 0.9438 + }, + { + "start": 33585.5, + "end": 33589.39, + "probability": 0.9692 + }, + { + "start": 33589.44, + "end": 33591.34, + "probability": 0.6305 + }, + { + "start": 33593.14, + "end": 33594.76, + "probability": 0.4142 + }, + { + "start": 33594.9, + "end": 33595.62, + "probability": 0.075 + }, + { + "start": 33596.84, + "end": 33596.98, + "probability": 0.2138 + }, + { + "start": 33596.98, + "end": 33597.44, + "probability": 0.3862 + }, + { + "start": 33597.56, + "end": 33597.9, + "probability": 0.8034 + }, + { + "start": 33598.05, + "end": 33600.46, + "probability": 0.916 + }, + { + "start": 33603.02, + "end": 33607.6, + "probability": 0.738 + }, + { + "start": 33608.72, + "end": 33609.58, + "probability": 0.8537 + }, + { + "start": 33609.84, + "end": 33613.06, + "probability": 0.6431 + }, + { + "start": 33614.56, + "end": 33615.58, + "probability": 0.2619 + }, + { + "start": 33616.2, + "end": 33618.06, + "probability": 0.5625 + }, + { + "start": 33618.06, + "end": 33620.56, + "probability": 0.7442 + }, + { + "start": 33620.6, + "end": 33622.8, + "probability": 0.8315 + }, + { + "start": 33622.96, + "end": 33624.94, + "probability": 0.7968 + }, + { + "start": 33625.08, + "end": 33625.4, + "probability": 0.6878 + }, + { + "start": 33625.6, + "end": 33628.02, + "probability": 0.9355 + }, + { + "start": 33628.12, + "end": 33630.22, + "probability": 0.9953 + }, + { + "start": 33630.68, + "end": 33635.38, + "probability": 0.8483 + }, + { + "start": 33636.32, + "end": 33637.92, + "probability": 0.6472 + }, + { + "start": 33638.08, + "end": 33643.04, + "probability": 0.7067 + }, + { + "start": 33643.04, + "end": 33643.76, + "probability": 0.3774 + }, + { + "start": 33644.65, + "end": 33649.6, + "probability": 0.8971 + }, + { + "start": 33650.32, + "end": 33652.78, + "probability": 0.9142 + }, + { + "start": 33652.88, + "end": 33656.26, + "probability": 0.9808 + }, + { + "start": 33656.88, + "end": 33660.04, + "probability": 0.7217 + }, + { + "start": 33660.08, + "end": 33661.51, + "probability": 0.5841 + }, + { + "start": 33661.66, + "end": 33662.78, + "probability": 0.861 + }, + { + "start": 33662.84, + "end": 33665.04, + "probability": 0.8996 + }, + { + "start": 33665.56, + "end": 33666.92, + "probability": 0.8827 + }, + { + "start": 33666.96, + "end": 33667.7, + "probability": 0.6624 + }, + { + "start": 33668.6, + "end": 33671.48, + "probability": 0.9778 + }, + { + "start": 33671.52, + "end": 33672.97, + "probability": 0.9663 + }, + { + "start": 33673.16, + "end": 33674.44, + "probability": 0.9825 + }, + { + "start": 33674.5, + "end": 33675.42, + "probability": 0.8649 + }, + { + "start": 33675.98, + "end": 33677.52, + "probability": 0.969 + }, + { + "start": 33677.52, + "end": 33680.82, + "probability": 0.8971 + }, + { + "start": 33682.34, + "end": 33683.18, + "probability": 0.8733 + }, + { + "start": 33684.54, + "end": 33686.46, + "probability": 0.7211 + }, + { + "start": 33687.44, + "end": 33689.5, + "probability": 0.9966 + }, + { + "start": 33690.76, + "end": 33695.44, + "probability": 0.9331 + }, + { + "start": 33695.64, + "end": 33698.34, + "probability": 0.9548 + }, + { + "start": 33698.36, + "end": 33701.1, + "probability": 0.9473 + }, + { + "start": 33702.7, + "end": 33703.94, + "probability": 0.7787 + }, + { + "start": 33705.14, + "end": 33706.1, + "probability": 0.6679 + }, + { + "start": 33706.16, + "end": 33708.7, + "probability": 0.8644 + }, + { + "start": 33709.62, + "end": 33710.28, + "probability": 0.2952 + }, + { + "start": 33711.28, + "end": 33714.46, + "probability": 0.928 + }, + { + "start": 33714.6, + "end": 33714.88, + "probability": 0.6295 + }, + { + "start": 33714.98, + "end": 33715.8, + "probability": 0.9368 + }, + { + "start": 33716.16, + "end": 33717.1, + "probability": 0.838 + }, + { + "start": 33717.2, + "end": 33718.5, + "probability": 0.993 + }, + { + "start": 33719.32, + "end": 33721.42, + "probability": 0.9775 + }, + { + "start": 33722.36, + "end": 33723.06, + "probability": 0.5847 + }, + { + "start": 33723.06, + "end": 33724.96, + "probability": 0.736 + }, + { + "start": 33725.08, + "end": 33727.32, + "probability": 0.9922 + }, + { + "start": 33728.82, + "end": 33730.26, + "probability": 0.9939 + }, + { + "start": 33730.72, + "end": 33731.88, + "probability": 0.731 + }, + { + "start": 33732.46, + "end": 33735.98, + "probability": 0.8755 + }, + { + "start": 33736.46, + "end": 33739.2, + "probability": 0.9892 + }, + { + "start": 33739.32, + "end": 33740.44, + "probability": 0.6911 + }, + { + "start": 33740.84, + "end": 33741.66, + "probability": 0.7531 + }, + { + "start": 33741.98, + "end": 33743.54, + "probability": 0.9722 + }, + { + "start": 33744.44, + "end": 33748.1, + "probability": 0.7639 + }, + { + "start": 33748.42, + "end": 33751.64, + "probability": 0.9522 + }, + { + "start": 33751.72, + "end": 33752.78, + "probability": 0.9742 + }, + { + "start": 33754.28, + "end": 33754.3, + "probability": 0.1309 + }, + { + "start": 33755.96, + "end": 33756.76, + "probability": 0.2498 + }, + { + "start": 33757.48, + "end": 33759.08, + "probability": 0.1197 + }, + { + "start": 33759.2, + "end": 33760.42, + "probability": 0.5973 + }, + { + "start": 33760.84, + "end": 33761.34, + "probability": 0.3914 + }, + { + "start": 33761.34, + "end": 33761.68, + "probability": 0.0584 + }, + { + "start": 33761.74, + "end": 33761.74, + "probability": 0.2803 + }, + { + "start": 33761.74, + "end": 33763.26, + "probability": 0.7668 + }, + { + "start": 33763.28, + "end": 33764.08, + "probability": 0.9123 + }, + { + "start": 33764.4, + "end": 33765.4, + "probability": 0.9036 + }, + { + "start": 33766.96, + "end": 33767.54, + "probability": 0.1791 + }, + { + "start": 33767.92, + "end": 33769.02, + "probability": 0.9139 + }, + { + "start": 33769.36, + "end": 33774.02, + "probability": 0.9729 + }, + { + "start": 33774.02, + "end": 33777.02, + "probability": 0.7613 + }, + { + "start": 33777.1, + "end": 33778.14, + "probability": 0.9204 + }, + { + "start": 33778.52, + "end": 33779.3, + "probability": 0.9287 + }, + { + "start": 33779.98, + "end": 33781.46, + "probability": 0.7423 + }, + { + "start": 33781.7, + "end": 33783.36, + "probability": 0.9766 + }, + { + "start": 33783.44, + "end": 33784.26, + "probability": 0.7649 + }, + { + "start": 33784.98, + "end": 33785.92, + "probability": 0.7 + }, + { + "start": 33785.96, + "end": 33789.64, + "probability": 0.708 + }, + { + "start": 33790.24, + "end": 33791.08, + "probability": 0.522 + }, + { + "start": 33791.64, + "end": 33791.86, + "probability": 0.4976 + }, + { + "start": 33792.68, + "end": 33795.52, + "probability": 0.8231 + }, + { + "start": 33795.52, + "end": 33799.82, + "probability": 0.9672 + }, + { + "start": 33800.06, + "end": 33803.36, + "probability": 0.8728 + }, + { + "start": 33804.02, + "end": 33804.28, + "probability": 0.6829 + }, + { + "start": 33811.52, + "end": 33812.18, + "probability": 0.6901 + }, + { + "start": 33823.82, + "end": 33825.56, + "probability": 0.9533 + }, + { + "start": 33827.84, + "end": 33829.44, + "probability": 0.7518 + }, + { + "start": 33830.02, + "end": 33831.9, + "probability": 0.7082 + }, + { + "start": 33831.92, + "end": 33833.05, + "probability": 0.7149 + }, + { + "start": 33839.38, + "end": 33841.54, + "probability": 0.5093 + }, + { + "start": 33842.6, + "end": 33843.1, + "probability": 0.8961 + }, + { + "start": 33844.82, + "end": 33845.94, + "probability": 0.744 + }, + { + "start": 33846.08, + "end": 33846.38, + "probability": 0.7048 + }, + { + "start": 33846.86, + "end": 33847.84, + "probability": 0.8976 + }, + { + "start": 33850.34, + "end": 33852.52, + "probability": 0.6873 + }, + { + "start": 33858.12, + "end": 33860.05, + "probability": 0.3178 + }, + { + "start": 33865.1, + "end": 33865.56, + "probability": 0.0901 + }, + { + "start": 33865.56, + "end": 33866.16, + "probability": 0.1462 + }, + { + "start": 33866.16, + "end": 33868.12, + "probability": 0.5764 + }, + { + "start": 33869.84, + "end": 33873.04, + "probability": 0.6796 + }, + { + "start": 33874.78, + "end": 33877.2, + "probability": 0.2945 + }, + { + "start": 33877.44, + "end": 33880.02, + "probability": 0.9688 + }, + { + "start": 33887.66, + "end": 33891.5, + "probability": 0.7415 + }, + { + "start": 33892.14, + "end": 33894.1, + "probability": 0.7028 + }, + { + "start": 33895.44, + "end": 33900.48, + "probability": 0.8056 + }, + { + "start": 33901.32, + "end": 33905.5, + "probability": 0.9297 + }, + { + "start": 33907.89, + "end": 33908.84, + "probability": 0.2559 + }, + { + "start": 33908.84, + "end": 33911.68, + "probability": 0.9928 + }, + { + "start": 33912.36, + "end": 33916.08, + "probability": 0.8761 + }, + { + "start": 33916.24, + "end": 33920.72, + "probability": 0.9885 + }, + { + "start": 33921.4, + "end": 33924.18, + "probability": 0.5566 + }, + { + "start": 33925.3, + "end": 33925.74, + "probability": 0.3445 + }, + { + "start": 33925.8, + "end": 33926.26, + "probability": 0.7878 + }, + { + "start": 33929.72, + "end": 33931.14, + "probability": 0.3112 + }, + { + "start": 33931.66, + "end": 33934.42, + "probability": 0.9035 + }, + { + "start": 33935.24, + "end": 33936.06, + "probability": 0.8637 + }, + { + "start": 33936.1, + "end": 33942.94, + "probability": 0.5859 + }, + { + "start": 33944.16, + "end": 33945.46, + "probability": 0.9675 + }, + { + "start": 33945.56, + "end": 33948.9, + "probability": 0.9949 + }, + { + "start": 33949.94, + "end": 33952.0, + "probability": 0.3833 + }, + { + "start": 33952.08, + "end": 33955.14, + "probability": 0.9893 + }, + { + "start": 33955.64, + "end": 33956.3, + "probability": 0.4897 + }, + { + "start": 33956.52, + "end": 33957.35, + "probability": 0.7092 + }, + { + "start": 33957.48, + "end": 33960.32, + "probability": 0.9478 + }, + { + "start": 33960.66, + "end": 33961.6, + "probability": 0.8408 + }, + { + "start": 33961.7, + "end": 33964.82, + "probability": 0.9656 + }, + { + "start": 33968.19, + "end": 33972.06, + "probability": 0.661 + }, + { + "start": 33972.22, + "end": 33973.7, + "probability": 0.7447 + }, + { + "start": 33974.24, + "end": 33974.34, + "probability": 0.5011 + }, + { + "start": 33974.5, + "end": 33977.24, + "probability": 0.9987 + }, + { + "start": 33978.02, + "end": 33979.22, + "probability": 0.8771 + }, + { + "start": 33983.28, + "end": 33985.02, + "probability": 0.9579 + }, + { + "start": 33985.5, + "end": 33988.34, + "probability": 0.8942 + }, + { + "start": 33988.42, + "end": 33990.8, + "probability": 0.7333 + }, + { + "start": 33990.96, + "end": 33991.84, + "probability": 0.8859 + }, + { + "start": 33995.26, + "end": 33996.02, + "probability": 0.8033 + }, + { + "start": 33996.46, + "end": 33997.12, + "probability": 0.7517 + }, + { + "start": 33998.5, + "end": 34000.44, + "probability": 0.776 + }, + { + "start": 34002.42, + "end": 34005.06, + "probability": 0.34 + }, + { + "start": 34006.08, + "end": 34007.36, + "probability": 0.9455 + }, + { + "start": 34008.04, + "end": 34008.68, + "probability": 0.7465 + }, + { + "start": 34008.76, + "end": 34010.22, + "probability": 0.351 + }, + { + "start": 34011.47, + "end": 34014.42, + "probability": 0.7907 + }, + { + "start": 34015.28, + "end": 34015.44, + "probability": 0.608 + }, + { + "start": 34016.12, + "end": 34019.7, + "probability": 0.9783 + }, + { + "start": 34020.3, + "end": 34024.56, + "probability": 0.9672 + }, + { + "start": 34025.24, + "end": 34026.39, + "probability": 0.9932 + }, + { + "start": 34027.64, + "end": 34032.2, + "probability": 0.8931 + }, + { + "start": 34032.78, + "end": 34036.44, + "probability": 0.8401 + }, + { + "start": 34037.14, + "end": 34038.57, + "probability": 0.9546 + }, + { + "start": 34039.36, + "end": 34042.95, + "probability": 0.6401 + }, + { + "start": 34044.12, + "end": 34045.48, + "probability": 0.5413 + }, + { + "start": 34046.5, + "end": 34050.8, + "probability": 0.9147 + }, + { + "start": 34051.54, + "end": 34054.58, + "probability": 0.9905 + }, + { + "start": 34054.72, + "end": 34056.32, + "probability": 0.7449 + }, + { + "start": 34056.92, + "end": 34060.36, + "probability": 0.5954 + }, + { + "start": 34061.02, + "end": 34061.44, + "probability": 0.456 + }, + { + "start": 34065.2, + "end": 34065.82, + "probability": 0.7034 + }, + { + "start": 34066.32, + "end": 34070.66, + "probability": 0.9897 + }, + { + "start": 34070.82, + "end": 34072.8, + "probability": 0.8291 + }, + { + "start": 34073.66, + "end": 34076.18, + "probability": 0.9834 + }, + { + "start": 34076.74, + "end": 34078.82, + "probability": 0.595 + }, + { + "start": 34078.9, + "end": 34080.98, + "probability": 0.6118 + }, + { + "start": 34081.04, + "end": 34082.39, + "probability": 0.9381 + }, + { + "start": 34082.74, + "end": 34086.54, + "probability": 0.8767 + }, + { + "start": 34087.7, + "end": 34089.26, + "probability": 0.8762 + }, + { + "start": 34089.88, + "end": 34090.0, + "probability": 0.0916 + } + ], + "segments_count": 12065, + "words_count": 54909, + "avg_words_per_segment": 4.5511, + "avg_segment_duration": 1.7953, + "avg_words_per_minute": 96.0771, + "plenum_id": "100591", + "duration": 34290.59, + "title": null, + "plenum_date": "2021-10-27" +} \ No newline at end of file