diff --git "a/113031/metadata.json" "b/113031/metadata.json" new file mode 100644--- /dev/null +++ "b/113031/metadata.json" @@ -0,0 +1,28092 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "113031", + "quality_score": 0.9067, + "per_segment_quality_scores": [ + { + "start": 39.6, + "end": 40.12, + "probability": 0.6243 + }, + { + "start": 40.28, + "end": 42.94, + "probability": 0.981 + }, + { + "start": 43.66, + "end": 44.36, + "probability": 0.6457 + }, + { + "start": 44.88, + "end": 45.34, + "probability": 0.4753 + }, + { + "start": 45.88, + "end": 48.9, + "probability": 0.9019 + }, + { + "start": 49.56, + "end": 52.76, + "probability": 0.9919 + }, + { + "start": 59.88, + "end": 59.88, + "probability": 0.1171 + }, + { + "start": 59.88, + "end": 59.88, + "probability": 0.2293 + }, + { + "start": 59.88, + "end": 60.02, + "probability": 0.0344 + }, + { + "start": 68.1, + "end": 68.1, + "probability": 0.0094 + }, + { + "start": 68.1, + "end": 68.14, + "probability": 0.1575 + }, + { + "start": 68.14, + "end": 68.2, + "probability": 0.052 + }, + { + "start": 84.36, + "end": 88.37, + "probability": 0.8382 + }, + { + "start": 93.9, + "end": 96.42, + "probability": 0.9697 + }, + { + "start": 96.9, + "end": 99.5, + "probability": 0.9913 + }, + { + "start": 100.54, + "end": 102.3, + "probability": 0.6857 + }, + { + "start": 102.52, + "end": 105.34, + "probability": 0.9774 + }, + { + "start": 108.02, + "end": 108.7, + "probability": 0.4761 + }, + { + "start": 108.78, + "end": 109.06, + "probability": 0.8501 + }, + { + "start": 109.3, + "end": 110.08, + "probability": 0.717 + }, + { + "start": 110.18, + "end": 111.16, + "probability": 0.8706 + }, + { + "start": 111.44, + "end": 112.62, + "probability": 0.715 + }, + { + "start": 113.6, + "end": 115.2, + "probability": 0.5937 + }, + { + "start": 125.36, + "end": 127.1, + "probability": 0.9133 + }, + { + "start": 127.18, + "end": 127.56, + "probability": 0.8439 + }, + { + "start": 127.72, + "end": 129.36, + "probability": 0.9502 + }, + { + "start": 130.84, + "end": 134.2, + "probability": 0.9808 + }, + { + "start": 135.12, + "end": 139.36, + "probability": 0.9978 + }, + { + "start": 139.36, + "end": 143.52, + "probability": 0.9974 + }, + { + "start": 145.36, + "end": 146.38, + "probability": 0.9806 + }, + { + "start": 147.12, + "end": 148.08, + "probability": 0.9175 + }, + { + "start": 148.14, + "end": 149.22, + "probability": 0.9316 + }, + { + "start": 149.38, + "end": 151.2, + "probability": 0.3796 + }, + { + "start": 151.26, + "end": 151.72, + "probability": 0.9025 + }, + { + "start": 152.64, + "end": 154.7, + "probability": 0.7847 + }, + { + "start": 154.8, + "end": 159.42, + "probability": 0.9752 + }, + { + "start": 160.9, + "end": 164.48, + "probability": 0.9626 + }, + { + "start": 164.48, + "end": 167.84, + "probability": 0.9998 + }, + { + "start": 170.3, + "end": 177.12, + "probability": 0.9974 + }, + { + "start": 177.12, + "end": 182.7, + "probability": 0.9923 + }, + { + "start": 182.74, + "end": 183.18, + "probability": 0.7619 + }, + { + "start": 183.28, + "end": 185.98, + "probability": 0.96 + }, + { + "start": 185.98, + "end": 188.66, + "probability": 0.9973 + }, + { + "start": 189.38, + "end": 192.46, + "probability": 0.9978 + }, + { + "start": 193.52, + "end": 197.27, + "probability": 0.5316 + }, + { + "start": 198.5, + "end": 200.92, + "probability": 0.9279 + }, + { + "start": 201.66, + "end": 206.34, + "probability": 0.9904 + }, + { + "start": 207.28, + "end": 208.33, + "probability": 0.9976 + }, + { + "start": 209.12, + "end": 211.0, + "probability": 0.8726 + }, + { + "start": 211.98, + "end": 215.64, + "probability": 0.9735 + }, + { + "start": 215.78, + "end": 217.18, + "probability": 0.8942 + }, + { + "start": 217.18, + "end": 220.06, + "probability": 0.9915 + }, + { + "start": 221.88, + "end": 225.26, + "probability": 0.9928 + }, + { + "start": 225.38, + "end": 227.38, + "probability": 0.7534 + }, + { + "start": 227.52, + "end": 230.88, + "probability": 0.9202 + }, + { + "start": 231.94, + "end": 233.68, + "probability": 0.986 + }, + { + "start": 234.36, + "end": 235.59, + "probability": 0.5437 + }, + { + "start": 236.74, + "end": 239.76, + "probability": 0.8428 + }, + { + "start": 239.84, + "end": 240.77, + "probability": 0.9878 + }, + { + "start": 241.4, + "end": 241.74, + "probability": 0.0969 + }, + { + "start": 241.96, + "end": 242.38, + "probability": 0.7633 + }, + { + "start": 242.48, + "end": 243.24, + "probability": 0.8757 + }, + { + "start": 243.36, + "end": 245.18, + "probability": 0.8809 + }, + { + "start": 246.24, + "end": 248.14, + "probability": 0.8864 + }, + { + "start": 248.3, + "end": 250.8, + "probability": 0.9904 + }, + { + "start": 250.98, + "end": 252.34, + "probability": 0.9469 + }, + { + "start": 253.06, + "end": 255.46, + "probability": 0.9878 + }, + { + "start": 257.33, + "end": 261.94, + "probability": 0.995 + }, + { + "start": 261.94, + "end": 266.5, + "probability": 0.9987 + }, + { + "start": 267.04, + "end": 267.78, + "probability": 0.9448 + }, + { + "start": 267.8, + "end": 269.74, + "probability": 0.9885 + }, + { + "start": 269.88, + "end": 271.08, + "probability": 0.9646 + }, + { + "start": 271.34, + "end": 272.32, + "probability": 0.5104 + }, + { + "start": 272.92, + "end": 275.48, + "probability": 0.9154 + }, + { + "start": 276.12, + "end": 279.0, + "probability": 0.9958 + }, + { + "start": 279.58, + "end": 281.16, + "probability": 0.9944 + }, + { + "start": 281.24, + "end": 283.42, + "probability": 0.9963 + }, + { + "start": 284.32, + "end": 288.48, + "probability": 0.999 + }, + { + "start": 289.24, + "end": 295.0, + "probability": 0.9882 + }, + { + "start": 295.18, + "end": 296.26, + "probability": 0.9961 + }, + { + "start": 297.12, + "end": 297.48, + "probability": 0.885 + }, + { + "start": 297.82, + "end": 299.12, + "probability": 0.8145 + }, + { + "start": 299.26, + "end": 301.84, + "probability": 0.9927 + }, + { + "start": 301.84, + "end": 304.18, + "probability": 0.9984 + }, + { + "start": 304.94, + "end": 307.14, + "probability": 0.9875 + }, + { + "start": 307.16, + "end": 308.94, + "probability": 0.9883 + }, + { + "start": 311.38, + "end": 312.62, + "probability": 0.0925 + }, + { + "start": 312.62, + "end": 313.88, + "probability": 0.752 + }, + { + "start": 314.52, + "end": 316.76, + "probability": 0.9979 + }, + { + "start": 316.84, + "end": 318.26, + "probability": 0.7772 + }, + { + "start": 318.38, + "end": 319.42, + "probability": 0.8946 + }, + { + "start": 319.44, + "end": 319.98, + "probability": 0.568 + }, + { + "start": 320.02, + "end": 321.52, + "probability": 0.9785 + }, + { + "start": 321.6, + "end": 322.64, + "probability": 0.7252 + }, + { + "start": 322.96, + "end": 323.26, + "probability": 0.7136 + }, + { + "start": 323.4, + "end": 324.84, + "probability": 0.9864 + }, + { + "start": 324.96, + "end": 325.9, + "probability": 0.9902 + }, + { + "start": 326.36, + "end": 330.44, + "probability": 0.9575 + }, + { + "start": 332.7, + "end": 336.24, + "probability": 0.692 + }, + { + "start": 336.6, + "end": 336.78, + "probability": 0.749 + }, + { + "start": 337.3, + "end": 337.52, + "probability": 0.3774 + }, + { + "start": 337.64, + "end": 338.04, + "probability": 0.631 + }, + { + "start": 338.28, + "end": 339.88, + "probability": 0.893 + }, + { + "start": 341.12, + "end": 344.34, + "probability": 0.8853 + }, + { + "start": 345.1, + "end": 346.03, + "probability": 0.9781 + }, + { + "start": 347.22, + "end": 348.02, + "probability": 0.897 + }, + { + "start": 349.29, + "end": 351.38, + "probability": 0.7594 + }, + { + "start": 351.52, + "end": 355.4, + "probability": 0.9731 + }, + { + "start": 355.58, + "end": 356.38, + "probability": 0.9507 + }, + { + "start": 357.84, + "end": 358.26, + "probability": 0.3354 + }, + { + "start": 358.26, + "end": 360.3, + "probability": 0.7411 + }, + { + "start": 360.36, + "end": 360.7, + "probability": 0.5983 + }, + { + "start": 360.88, + "end": 362.89, + "probability": 0.6313 + }, + { + "start": 363.64, + "end": 364.1, + "probability": 0.511 + }, + { + "start": 364.12, + "end": 364.4, + "probability": 0.512 + }, + { + "start": 364.62, + "end": 366.17, + "probability": 0.5402 + }, + { + "start": 368.18, + "end": 369.38, + "probability": 0.9043 + }, + { + "start": 369.44, + "end": 371.52, + "probability": 0.8901 + }, + { + "start": 372.16, + "end": 372.74, + "probability": 0.0748 + }, + { + "start": 373.42, + "end": 374.54, + "probability": 0.1313 + }, + { + "start": 374.98, + "end": 375.2, + "probability": 0.7198 + }, + { + "start": 375.46, + "end": 375.88, + "probability": 0.9727 + }, + { + "start": 376.0, + "end": 379.18, + "probability": 0.8372 + }, + { + "start": 379.44, + "end": 379.84, + "probability": 0.4991 + }, + { + "start": 379.94, + "end": 381.7, + "probability": 0.7674 + }, + { + "start": 382.36, + "end": 386.76, + "probability": 0.9911 + }, + { + "start": 387.82, + "end": 388.12, + "probability": 0.5123 + }, + { + "start": 388.14, + "end": 389.84, + "probability": 0.991 + }, + { + "start": 389.92, + "end": 391.02, + "probability": 0.9188 + }, + { + "start": 391.1, + "end": 394.72, + "probability": 0.9668 + }, + { + "start": 395.26, + "end": 397.52, + "probability": 0.8855 + }, + { + "start": 397.68, + "end": 398.89, + "probability": 0.9238 + }, + { + "start": 399.82, + "end": 400.44, + "probability": 0.9864 + }, + { + "start": 400.52, + "end": 401.2, + "probability": 0.86 + }, + { + "start": 401.28, + "end": 401.4, + "probability": 0.2148 + }, + { + "start": 401.46, + "end": 402.76, + "probability": 0.9951 + }, + { + "start": 403.56, + "end": 408.92, + "probability": 0.9814 + }, + { + "start": 408.98, + "end": 410.47, + "probability": 0.9695 + }, + { + "start": 411.9, + "end": 414.52, + "probability": 0.9667 + }, + { + "start": 415.18, + "end": 416.0, + "probability": 0.8727 + }, + { + "start": 417.03, + "end": 418.58, + "probability": 0.9889 + }, + { + "start": 418.63, + "end": 420.26, + "probability": 0.9967 + }, + { + "start": 420.78, + "end": 422.09, + "probability": 0.7196 + }, + { + "start": 422.14, + "end": 422.14, + "probability": 0.679 + }, + { + "start": 422.14, + "end": 423.08, + "probability": 0.6778 + }, + { + "start": 424.38, + "end": 425.62, + "probability": 0.9961 + }, + { + "start": 425.74, + "end": 428.5, + "probability": 0.9973 + }, + { + "start": 428.62, + "end": 432.84, + "probability": 0.998 + }, + { + "start": 433.58, + "end": 434.52, + "probability": 0.9694 + }, + { + "start": 435.36, + "end": 437.5, + "probability": 0.9429 + }, + { + "start": 437.6, + "end": 440.42, + "probability": 0.9451 + }, + { + "start": 440.96, + "end": 445.92, + "probability": 0.9966 + }, + { + "start": 446.68, + "end": 449.52, + "probability": 0.9955 + }, + { + "start": 450.25, + "end": 454.1, + "probability": 0.9914 + }, + { + "start": 454.82, + "end": 458.74, + "probability": 0.9985 + }, + { + "start": 459.2, + "end": 460.1, + "probability": 0.7214 + }, + { + "start": 460.16, + "end": 461.3, + "probability": 0.7828 + }, + { + "start": 462.1, + "end": 464.1, + "probability": 0.7822 + }, + { + "start": 464.76, + "end": 466.28, + "probability": 0.8877 + }, + { + "start": 467.16, + "end": 468.86, + "probability": 0.9165 + }, + { + "start": 469.5, + "end": 471.52, + "probability": 0.9793 + }, + { + "start": 472.14, + "end": 473.1, + "probability": 0.977 + }, + { + "start": 473.9, + "end": 474.44, + "probability": 0.994 + }, + { + "start": 475.14, + "end": 476.02, + "probability": 0.7868 + }, + { + "start": 476.62, + "end": 478.76, + "probability": 0.9995 + }, + { + "start": 479.32, + "end": 482.31, + "probability": 0.8978 + }, + { + "start": 483.04, + "end": 487.16, + "probability": 0.873 + }, + { + "start": 487.16, + "end": 490.36, + "probability": 0.998 + }, + { + "start": 490.54, + "end": 492.36, + "probability": 0.9401 + }, + { + "start": 492.64, + "end": 493.56, + "probability": 0.6981 + }, + { + "start": 494.06, + "end": 494.94, + "probability": 0.9834 + }, + { + "start": 494.98, + "end": 497.44, + "probability": 0.9034 + }, + { + "start": 498.54, + "end": 498.96, + "probability": 0.5038 + }, + { + "start": 498.96, + "end": 499.36, + "probability": 0.6366 + }, + { + "start": 499.52, + "end": 501.3, + "probability": 0.6139 + }, + { + "start": 501.38, + "end": 503.16, + "probability": 0.9909 + }, + { + "start": 503.2, + "end": 503.44, + "probability": 0.7415 + }, + { + "start": 504.4, + "end": 505.28, + "probability": 0.7655 + }, + { + "start": 505.32, + "end": 507.48, + "probability": 0.9947 + }, + { + "start": 507.98, + "end": 510.06, + "probability": 0.6574 + }, + { + "start": 510.22, + "end": 511.12, + "probability": 0.9858 + }, + { + "start": 511.22, + "end": 513.26, + "probability": 0.9336 + }, + { + "start": 513.28, + "end": 515.06, + "probability": 0.9214 + }, + { + "start": 515.7, + "end": 519.3, + "probability": 0.9663 + }, + { + "start": 519.92, + "end": 522.02, + "probability": 0.9817 + }, + { + "start": 522.46, + "end": 522.68, + "probability": 0.763 + }, + { + "start": 523.76, + "end": 526.3, + "probability": 0.8386 + }, + { + "start": 526.38, + "end": 527.0, + "probability": 0.6753 + }, + { + "start": 527.47, + "end": 530.7, + "probability": 0.9871 + }, + { + "start": 530.94, + "end": 533.06, + "probability": 0.8047 + }, + { + "start": 533.52, + "end": 535.46, + "probability": 0.0534 + }, + { + "start": 535.6, + "end": 536.68, + "probability": 0.6561 + }, + { + "start": 536.88, + "end": 538.46, + "probability": 0.9814 + }, + { + "start": 538.58, + "end": 539.49, + "probability": 0.9785 + }, + { + "start": 540.58, + "end": 540.78, + "probability": 0.1359 + }, + { + "start": 541.0, + "end": 542.5, + "probability": 0.328 + }, + { + "start": 542.5, + "end": 543.2, + "probability": 0.4499 + }, + { + "start": 543.74, + "end": 545.24, + "probability": 0.9305 + }, + { + "start": 545.48, + "end": 555.02, + "probability": 0.874 + }, + { + "start": 555.46, + "end": 560.94, + "probability": 0.9937 + }, + { + "start": 562.22, + "end": 565.22, + "probability": 0.9795 + }, + { + "start": 566.4, + "end": 570.54, + "probability": 0.8606 + }, + { + "start": 570.9, + "end": 573.74, + "probability": 0.8398 + }, + { + "start": 574.28, + "end": 576.82, + "probability": 0.9867 + }, + { + "start": 577.44, + "end": 582.19, + "probability": 0.993 + }, + { + "start": 584.46, + "end": 586.28, + "probability": 0.77 + }, + { + "start": 586.9, + "end": 587.62, + "probability": 0.8442 + }, + { + "start": 587.86, + "end": 590.46, + "probability": 0.9556 + }, + { + "start": 590.96, + "end": 594.62, + "probability": 0.7869 + }, + { + "start": 596.2, + "end": 598.32, + "probability": 0.4434 + }, + { + "start": 599.48, + "end": 602.41, + "probability": 0.4808 + }, + { + "start": 603.44, + "end": 604.36, + "probability": 0.8498 + }, + { + "start": 605.3, + "end": 605.72, + "probability": 0.6622 + }, + { + "start": 605.78, + "end": 611.68, + "probability": 0.8212 + }, + { + "start": 611.86, + "end": 613.84, + "probability": 0.8873 + }, + { + "start": 614.48, + "end": 617.16, + "probability": 0.8344 + }, + { + "start": 617.98, + "end": 619.08, + "probability": 0.4253 + }, + { + "start": 620.16, + "end": 621.06, + "probability": 0.7687 + }, + { + "start": 621.26, + "end": 622.46, + "probability": 0.8627 + }, + { + "start": 622.52, + "end": 623.64, + "probability": 0.8789 + }, + { + "start": 623.72, + "end": 625.46, + "probability": 0.8841 + }, + { + "start": 626.24, + "end": 626.44, + "probability": 0.6345 + }, + { + "start": 626.54, + "end": 628.76, + "probability": 0.9408 + }, + { + "start": 628.8, + "end": 629.32, + "probability": 0.3767 + }, + { + "start": 629.34, + "end": 630.22, + "probability": 0.6019 + }, + { + "start": 630.46, + "end": 632.96, + "probability": 0.7814 + }, + { + "start": 633.26, + "end": 639.82, + "probability": 0.9204 + }, + { + "start": 640.12, + "end": 640.48, + "probability": 0.8936 + }, + { + "start": 641.04, + "end": 644.96, + "probability": 0.9987 + }, + { + "start": 644.96, + "end": 647.9, + "probability": 0.9985 + }, + { + "start": 649.14, + "end": 650.46, + "probability": 0.6342 + }, + { + "start": 650.54, + "end": 652.22, + "probability": 0.9146 + }, + { + "start": 652.42, + "end": 653.4, + "probability": 0.8567 + }, + { + "start": 653.52, + "end": 654.22, + "probability": 0.8243 + }, + { + "start": 655.14, + "end": 657.64, + "probability": 0.7991 + }, + { + "start": 658.34, + "end": 662.66, + "probability": 0.9723 + }, + { + "start": 662.72, + "end": 666.34, + "probability": 0.9434 + }, + { + "start": 666.98, + "end": 670.88, + "probability": 0.6285 + }, + { + "start": 670.96, + "end": 671.32, + "probability": 0.9458 + }, + { + "start": 671.42, + "end": 673.1, + "probability": 0.8115 + }, + { + "start": 673.54, + "end": 677.3, + "probability": 0.9949 + }, + { + "start": 677.3, + "end": 681.38, + "probability": 0.9661 + }, + { + "start": 681.4, + "end": 681.82, + "probability": 0.4904 + }, + { + "start": 681.86, + "end": 681.86, + "probability": 0.5212 + }, + { + "start": 681.96, + "end": 682.78, + "probability": 0.7823 + }, + { + "start": 683.42, + "end": 684.02, + "probability": 0.729 + }, + { + "start": 684.14, + "end": 686.82, + "probability": 0.9413 + }, + { + "start": 687.56, + "end": 688.9, + "probability": 0.8529 + }, + { + "start": 689.14, + "end": 689.5, + "probability": 0.8994 + }, + { + "start": 690.51, + "end": 693.84, + "probability": 0.9869 + }, + { + "start": 693.98, + "end": 696.32, + "probability": 0.9617 + }, + { + "start": 696.9, + "end": 700.24, + "probability": 0.991 + }, + { + "start": 701.24, + "end": 703.04, + "probability": 0.7313 + }, + { + "start": 703.1, + "end": 704.28, + "probability": 0.6709 + }, + { + "start": 704.32, + "end": 706.14, + "probability": 0.9367 + }, + { + "start": 706.52, + "end": 706.86, + "probability": 0.7527 + }, + { + "start": 707.6, + "end": 709.0, + "probability": 0.8572 + }, + { + "start": 709.24, + "end": 710.16, + "probability": 0.9921 + }, + { + "start": 710.24, + "end": 712.72, + "probability": 0.9928 + }, + { + "start": 712.72, + "end": 714.96, + "probability": 0.9825 + }, + { + "start": 715.02, + "end": 717.48, + "probability": 0.9485 + }, + { + "start": 718.04, + "end": 719.6, + "probability": 0.9932 + }, + { + "start": 720.2, + "end": 721.06, + "probability": 0.7861 + }, + { + "start": 721.14, + "end": 723.6, + "probability": 0.9886 + }, + { + "start": 724.66, + "end": 726.33, + "probability": 0.948 + }, + { + "start": 727.34, + "end": 730.02, + "probability": 0.9976 + }, + { + "start": 730.08, + "end": 730.46, + "probability": 0.9358 + }, + { + "start": 730.58, + "end": 733.18, + "probability": 0.9351 + }, + { + "start": 733.24, + "end": 738.78, + "probability": 0.9851 + }, + { + "start": 738.78, + "end": 743.96, + "probability": 0.9988 + }, + { + "start": 744.38, + "end": 745.36, + "probability": 0.8086 + }, + { + "start": 745.82, + "end": 748.68, + "probability": 0.9966 + }, + { + "start": 748.72, + "end": 753.76, + "probability": 0.9169 + }, + { + "start": 753.82, + "end": 757.88, + "probability": 0.9982 + }, + { + "start": 758.44, + "end": 761.64, + "probability": 0.7397 + }, + { + "start": 762.16, + "end": 766.32, + "probability": 0.9904 + }, + { + "start": 767.44, + "end": 768.86, + "probability": 0.9764 + }, + { + "start": 769.52, + "end": 770.7, + "probability": 0.4268 + }, + { + "start": 770.78, + "end": 773.06, + "probability": 0.9868 + }, + { + "start": 773.52, + "end": 775.58, + "probability": 0.9597 + }, + { + "start": 775.66, + "end": 776.32, + "probability": 0.8322 + }, + { + "start": 776.88, + "end": 780.42, + "probability": 0.9923 + }, + { + "start": 780.56, + "end": 781.32, + "probability": 0.7229 + }, + { + "start": 781.6, + "end": 784.4, + "probability": 0.9977 + }, + { + "start": 784.74, + "end": 784.94, + "probability": 0.7249 + }, + { + "start": 785.18, + "end": 786.02, + "probability": 0.5373 + }, + { + "start": 786.14, + "end": 788.68, + "probability": 0.9849 + }, + { + "start": 788.8, + "end": 791.5, + "probability": 0.8271 + }, + { + "start": 794.08, + "end": 798.3, + "probability": 0.8191 + }, + { + "start": 800.5, + "end": 800.5, + "probability": 0.0471 + }, + { + "start": 800.5, + "end": 800.52, + "probability": 0.1204 + }, + { + "start": 800.52, + "end": 800.9, + "probability": 0.5781 + }, + { + "start": 801.0, + "end": 802.19, + "probability": 0.9698 + }, + { + "start": 802.32, + "end": 802.48, + "probability": 0.446 + }, + { + "start": 803.02, + "end": 803.84, + "probability": 0.8455 + }, + { + "start": 804.14, + "end": 807.1, + "probability": 0.9014 + }, + { + "start": 808.0, + "end": 809.32, + "probability": 0.8504 + }, + { + "start": 809.9, + "end": 812.84, + "probability": 0.8684 + }, + { + "start": 813.42, + "end": 814.84, + "probability": 0.9792 + }, + { + "start": 814.98, + "end": 818.04, + "probability": 0.5962 + }, + { + "start": 818.22, + "end": 818.22, + "probability": 0.6632 + }, + { + "start": 818.22, + "end": 819.42, + "probability": 0.031 + }, + { + "start": 819.52, + "end": 819.62, + "probability": 0.28 + }, + { + "start": 819.78, + "end": 820.16, + "probability": 0.3828 + }, + { + "start": 820.74, + "end": 821.76, + "probability": 0.4326 + }, + { + "start": 821.84, + "end": 821.84, + "probability": 0.7665 + }, + { + "start": 821.84, + "end": 822.02, + "probability": 0.251 + }, + { + "start": 822.06, + "end": 824.04, + "probability": 0.9785 + }, + { + "start": 824.42, + "end": 825.14, + "probability": 0.6647 + }, + { + "start": 825.22, + "end": 827.06, + "probability": 0.1238 + }, + { + "start": 827.06, + "end": 827.2, + "probability": 0.487 + }, + { + "start": 827.34, + "end": 827.96, + "probability": 0.3101 + }, + { + "start": 828.2, + "end": 829.02, + "probability": 0.5505 + }, + { + "start": 829.58, + "end": 832.96, + "probability": 0.8426 + }, + { + "start": 832.96, + "end": 836.08, + "probability": 0.9954 + }, + { + "start": 836.34, + "end": 837.68, + "probability": 0.4418 + }, + { + "start": 837.93, + "end": 838.02, + "probability": 0.3379 + }, + { + "start": 838.06, + "end": 840.66, + "probability": 0.749 + }, + { + "start": 840.68, + "end": 841.22, + "probability": 0.6232 + }, + { + "start": 841.4, + "end": 841.77, + "probability": 0.0571 + }, + { + "start": 842.42, + "end": 842.5, + "probability": 0.0364 + }, + { + "start": 842.5, + "end": 843.56, + "probability": 0.5331 + }, + { + "start": 843.56, + "end": 843.92, + "probability": 0.4041 + }, + { + "start": 843.92, + "end": 844.02, + "probability": 0.0767 + }, + { + "start": 844.06, + "end": 844.44, + "probability": 0.731 + }, + { + "start": 844.6, + "end": 844.78, + "probability": 0.7394 + }, + { + "start": 845.12, + "end": 846.88, + "probability": 0.8617 + }, + { + "start": 847.0, + "end": 847.46, + "probability": 0.8413 + }, + { + "start": 847.6, + "end": 848.2, + "probability": 0.3787 + }, + { + "start": 849.02, + "end": 851.92, + "probability": 0.8556 + }, + { + "start": 851.92, + "end": 854.98, + "probability": 0.9987 + }, + { + "start": 855.1, + "end": 856.44, + "probability": 0.9852 + }, + { + "start": 856.56, + "end": 857.96, + "probability": 0.9744 + }, + { + "start": 858.32, + "end": 858.74, + "probability": 0.7753 + }, + { + "start": 859.54, + "end": 861.84, + "probability": 0.5288 + }, + { + "start": 861.96, + "end": 862.44, + "probability": 0.8686 + }, + { + "start": 862.54, + "end": 864.92, + "probability": 0.9949 + }, + { + "start": 864.92, + "end": 867.46, + "probability": 0.993 + }, + { + "start": 867.5, + "end": 867.6, + "probability": 0.7312 + }, + { + "start": 867.72, + "end": 868.22, + "probability": 0.6675 + }, + { + "start": 868.88, + "end": 871.28, + "probability": 0.8367 + }, + { + "start": 871.5, + "end": 874.5, + "probability": 0.9531 + }, + { + "start": 874.56, + "end": 877.46, + "probability": 0.9806 + }, + { + "start": 877.58, + "end": 881.24, + "probability": 0.9919 + }, + { + "start": 881.68, + "end": 884.38, + "probability": 0.9958 + }, + { + "start": 885.92, + "end": 890.02, + "probability": 0.879 + }, + { + "start": 891.12, + "end": 892.8, + "probability": 0.8932 + }, + { + "start": 893.4, + "end": 894.66, + "probability": 0.9707 + }, + { + "start": 895.18, + "end": 897.76, + "probability": 0.9583 + }, + { + "start": 897.92, + "end": 899.36, + "probability": 0.9891 + }, + { + "start": 899.94, + "end": 901.05, + "probability": 0.9694 + }, + { + "start": 901.66, + "end": 902.64, + "probability": 0.9817 + }, + { + "start": 902.68, + "end": 904.0, + "probability": 0.9825 + }, + { + "start": 904.7, + "end": 906.44, + "probability": 0.9853 + }, + { + "start": 906.56, + "end": 907.42, + "probability": 0.587 + }, + { + "start": 907.56, + "end": 909.24, + "probability": 0.9944 + }, + { + "start": 910.42, + "end": 911.0, + "probability": 0.8754 + }, + { + "start": 911.68, + "end": 912.86, + "probability": 0.9937 + }, + { + "start": 913.76, + "end": 917.64, + "probability": 0.9983 + }, + { + "start": 917.82, + "end": 918.31, + "probability": 0.7667 + }, + { + "start": 919.12, + "end": 920.24, + "probability": 0.8914 + }, + { + "start": 920.38, + "end": 927.28, + "probability": 0.6117 + }, + { + "start": 928.16, + "end": 930.24, + "probability": 0.9076 + }, + { + "start": 932.14, + "end": 937.26, + "probability": 0.6742 + }, + { + "start": 937.9, + "end": 940.0, + "probability": 0.5408 + }, + { + "start": 940.06, + "end": 940.52, + "probability": 0.7913 + }, + { + "start": 941.97, + "end": 944.58, + "probability": 0.8928 + }, + { + "start": 944.82, + "end": 945.14, + "probability": 0.7833 + }, + { + "start": 945.2, + "end": 946.16, + "probability": 0.9792 + }, + { + "start": 946.62, + "end": 949.72, + "probability": 0.9482 + }, + { + "start": 950.14, + "end": 951.54, + "probability": 0.9233 + }, + { + "start": 951.62, + "end": 952.52, + "probability": 0.9435 + }, + { + "start": 952.66, + "end": 955.28, + "probability": 0.9592 + }, + { + "start": 957.29, + "end": 959.01, + "probability": 0.9502 + }, + { + "start": 959.24, + "end": 960.18, + "probability": 0.7549 + }, + { + "start": 960.26, + "end": 963.13, + "probability": 0.9619 + }, + { + "start": 963.96, + "end": 964.52, + "probability": 0.8022 + }, + { + "start": 965.34, + "end": 968.5, + "probability": 0.9711 + }, + { + "start": 969.72, + "end": 972.8, + "probability": 0.8444 + }, + { + "start": 973.7, + "end": 976.98, + "probability": 0.8579 + }, + { + "start": 977.62, + "end": 977.76, + "probability": 0.8386 + }, + { + "start": 978.48, + "end": 981.88, + "probability": 0.9863 + }, + { + "start": 981.88, + "end": 983.96, + "probability": 0.9961 + }, + { + "start": 984.88, + "end": 986.9, + "probability": 0.9993 + }, + { + "start": 986.9, + "end": 992.32, + "probability": 0.9751 + }, + { + "start": 992.54, + "end": 993.12, + "probability": 0.6008 + }, + { + "start": 993.46, + "end": 993.94, + "probability": 0.6454 + }, + { + "start": 994.5, + "end": 997.46, + "probability": 0.9943 + }, + { + "start": 997.5, + "end": 1001.22, + "probability": 0.9326 + }, + { + "start": 1002.12, + "end": 1004.72, + "probability": 0.9762 + }, + { + "start": 1007.82, + "end": 1012.16, + "probability": 0.9961 + }, + { + "start": 1012.16, + "end": 1016.38, + "probability": 0.9982 + }, + { + "start": 1016.96, + "end": 1017.48, + "probability": 0.5871 + }, + { + "start": 1017.62, + "end": 1018.42, + "probability": 0.9602 + }, + { + "start": 1018.84, + "end": 1020.1, + "probability": 0.9927 + }, + { + "start": 1020.5, + "end": 1024.68, + "probability": 0.9854 + }, + { + "start": 1024.78, + "end": 1026.94, + "probability": 0.9755 + }, + { + "start": 1027.2, + "end": 1029.0, + "probability": 0.861 + }, + { + "start": 1029.64, + "end": 1029.96, + "probability": 0.6561 + }, + { + "start": 1030.74, + "end": 1031.42, + "probability": 0.7442 + }, + { + "start": 1031.5, + "end": 1033.04, + "probability": 0.9645 + }, + { + "start": 1033.3, + "end": 1033.5, + "probability": 0.9137 + }, + { + "start": 1034.18, + "end": 1034.64, + "probability": 0.9678 + }, + { + "start": 1034.7, + "end": 1036.44, + "probability": 0.9937 + }, + { + "start": 1037.04, + "end": 1037.96, + "probability": 0.8295 + }, + { + "start": 1038.44, + "end": 1039.76, + "probability": 0.9584 + }, + { + "start": 1040.96, + "end": 1045.44, + "probability": 0.9695 + }, + { + "start": 1046.46, + "end": 1048.92, + "probability": 0.695 + }, + { + "start": 1049.54, + "end": 1050.42, + "probability": 0.9332 + }, + { + "start": 1050.94, + "end": 1053.0, + "probability": 0.9906 + }, + { + "start": 1053.1, + "end": 1053.46, + "probability": 0.6537 + }, + { + "start": 1053.56, + "end": 1054.98, + "probability": 0.9407 + }, + { + "start": 1055.42, + "end": 1057.44, + "probability": 0.0958 + }, + { + "start": 1057.48, + "end": 1057.6, + "probability": 0.1824 + }, + { + "start": 1057.6, + "end": 1058.1, + "probability": 0.3543 + }, + { + "start": 1058.1, + "end": 1059.84, + "probability": 0.6316 + }, + { + "start": 1059.92, + "end": 1060.76, + "probability": 0.4902 + }, + { + "start": 1060.76, + "end": 1061.24, + "probability": 0.2609 + }, + { + "start": 1061.5, + "end": 1062.74, + "probability": 0.9019 + }, + { + "start": 1063.6, + "end": 1064.68, + "probability": 0.9691 + }, + { + "start": 1064.82, + "end": 1065.59, + "probability": 0.973 + }, + { + "start": 1066.5, + "end": 1067.9, + "probability": 0.92 + }, + { + "start": 1067.94, + "end": 1069.14, + "probability": 0.974 + }, + { + "start": 1069.64, + "end": 1074.26, + "probability": 0.9954 + }, + { + "start": 1074.78, + "end": 1075.48, + "probability": 0.9727 + }, + { + "start": 1075.76, + "end": 1076.88, + "probability": 0.9646 + }, + { + "start": 1077.1, + "end": 1078.16, + "probability": 0.9318 + }, + { + "start": 1078.18, + "end": 1078.54, + "probability": 0.5274 + }, + { + "start": 1078.54, + "end": 1079.66, + "probability": 0.6686 + }, + { + "start": 1079.78, + "end": 1083.6, + "probability": 0.991 + }, + { + "start": 1084.18, + "end": 1086.96, + "probability": 0.9881 + }, + { + "start": 1086.98, + "end": 1087.62, + "probability": 0.9263 + }, + { + "start": 1088.26, + "end": 1090.6, + "probability": 0.9136 + }, + { + "start": 1091.02, + "end": 1092.01, + "probability": 0.8981 + }, + { + "start": 1092.42, + "end": 1094.66, + "probability": 0.1494 + }, + { + "start": 1095.02, + "end": 1097.64, + "probability": 0.7974 + }, + { + "start": 1098.16, + "end": 1102.75, + "probability": 0.9783 + }, + { + "start": 1103.54, + "end": 1105.78, + "probability": 0.9656 + }, + { + "start": 1106.6, + "end": 1107.32, + "probability": 0.0052 + }, + { + "start": 1107.7, + "end": 1107.7, + "probability": 0.039 + }, + { + "start": 1107.7, + "end": 1107.7, + "probability": 0.3513 + }, + { + "start": 1107.7, + "end": 1108.02, + "probability": 0.6313 + }, + { + "start": 1108.58, + "end": 1111.74, + "probability": 0.9862 + }, + { + "start": 1111.74, + "end": 1115.22, + "probability": 0.9951 + }, + { + "start": 1115.4, + "end": 1117.64, + "probability": 0.7502 + }, + { + "start": 1118.0, + "end": 1120.68, + "probability": 0.7817 + }, + { + "start": 1120.68, + "end": 1124.02, + "probability": 0.9891 + }, + { + "start": 1124.1, + "end": 1124.96, + "probability": 0.6973 + }, + { + "start": 1125.0, + "end": 1126.56, + "probability": 0.5565 + }, + { + "start": 1127.44, + "end": 1129.06, + "probability": 0.8624 + }, + { + "start": 1129.24, + "end": 1133.1, + "probability": 0.9722 + }, + { + "start": 1133.94, + "end": 1137.12, + "probability": 0.9065 + }, + { + "start": 1137.12, + "end": 1139.44, + "probability": 0.9888 + }, + { + "start": 1140.02, + "end": 1144.96, + "probability": 0.8218 + }, + { + "start": 1146.44, + "end": 1146.44, + "probability": 0.0567 + }, + { + "start": 1146.44, + "end": 1148.4, + "probability": 0.5793 + }, + { + "start": 1148.4, + "end": 1151.58, + "probability": 0.9969 + }, + { + "start": 1152.32, + "end": 1157.46, + "probability": 0.9907 + }, + { + "start": 1157.46, + "end": 1159.56, + "probability": 0.9849 + }, + { + "start": 1159.7, + "end": 1164.04, + "probability": 0.99 + }, + { + "start": 1164.04, + "end": 1167.32, + "probability": 0.9256 + }, + { + "start": 1167.44, + "end": 1168.72, + "probability": 0.8033 + }, + { + "start": 1169.08, + "end": 1172.54, + "probability": 0.6604 + }, + { + "start": 1173.94, + "end": 1174.4, + "probability": 0.146 + }, + { + "start": 1174.4, + "end": 1179.34, + "probability": 0.6728 + }, + { + "start": 1179.46, + "end": 1180.5, + "probability": 0.4194 + }, + { + "start": 1180.5, + "end": 1180.98, + "probability": 0.3158 + }, + { + "start": 1181.04, + "end": 1181.98, + "probability": 0.3445 + }, + { + "start": 1182.12, + "end": 1183.08, + "probability": 0.9829 + }, + { + "start": 1183.08, + "end": 1184.44, + "probability": 0.8448 + }, + { + "start": 1184.52, + "end": 1185.06, + "probability": 0.2753 + }, + { + "start": 1185.26, + "end": 1186.24, + "probability": 0.9426 + }, + { + "start": 1186.9, + "end": 1187.7, + "probability": 0.9893 + }, + { + "start": 1187.7, + "end": 1189.22, + "probability": 0.7079 + }, + { + "start": 1189.28, + "end": 1189.74, + "probability": 0.9309 + }, + { + "start": 1189.74, + "end": 1190.8, + "probability": 0.731 + }, + { + "start": 1190.88, + "end": 1191.14, + "probability": 0.9521 + }, + { + "start": 1191.56, + "end": 1194.32, + "probability": 0.9857 + }, + { + "start": 1194.54, + "end": 1194.82, + "probability": 0.743 + }, + { + "start": 1194.86, + "end": 1195.2, + "probability": 0.9649 + }, + { + "start": 1195.3, + "end": 1196.12, + "probability": 0.6632 + }, + { + "start": 1196.22, + "end": 1197.48, + "probability": 0.9993 + }, + { + "start": 1197.86, + "end": 1199.9, + "probability": 0.9971 + }, + { + "start": 1200.18, + "end": 1201.46, + "probability": 0.7446 + }, + { + "start": 1202.16, + "end": 1205.46, + "probability": 0.6667 + }, + { + "start": 1205.48, + "end": 1209.18, + "probability": 0.9862 + }, + { + "start": 1209.2, + "end": 1211.2, + "probability": 0.9628 + }, + { + "start": 1211.52, + "end": 1211.94, + "probability": 0.4129 + }, + { + "start": 1211.96, + "end": 1213.49, + "probability": 0.9985 + }, + { + "start": 1214.1, + "end": 1218.0, + "probability": 0.986 + }, + { + "start": 1218.14, + "end": 1219.36, + "probability": 0.289 + }, + { + "start": 1219.36, + "end": 1220.96, + "probability": 0.9151 + }, + { + "start": 1221.26, + "end": 1221.46, + "probability": 0.4769 + }, + { + "start": 1221.52, + "end": 1223.84, + "probability": 0.8199 + }, + { + "start": 1224.48, + "end": 1225.94, + "probability": 0.4933 + }, + { + "start": 1226.52, + "end": 1227.88, + "probability": 0.8441 + }, + { + "start": 1228.46, + "end": 1230.42, + "probability": 0.8999 + }, + { + "start": 1231.7, + "end": 1234.76, + "probability": 0.5071 + }, + { + "start": 1236.58, + "end": 1237.18, + "probability": 0.2503 + }, + { + "start": 1237.26, + "end": 1237.42, + "probability": 0.232 + }, + { + "start": 1237.8, + "end": 1240.46, + "probability": 0.7011 + }, + { + "start": 1241.89, + "end": 1244.98, + "probability": 0.8427 + }, + { + "start": 1244.98, + "end": 1245.22, + "probability": 0.139 + }, + { + "start": 1245.3, + "end": 1245.38, + "probability": 0.079 + }, + { + "start": 1245.38, + "end": 1245.7, + "probability": 0.2101 + }, + { + "start": 1245.7, + "end": 1245.84, + "probability": 0.0221 + }, + { + "start": 1245.84, + "end": 1245.98, + "probability": 0.8113 + }, + { + "start": 1246.06, + "end": 1246.48, + "probability": 0.505 + }, + { + "start": 1246.56, + "end": 1249.12, + "probability": 0.7018 + }, + { + "start": 1249.14, + "end": 1251.38, + "probability": 0.8816 + }, + { + "start": 1251.56, + "end": 1251.84, + "probability": 0.5036 + }, + { + "start": 1252.16, + "end": 1252.84, + "probability": 0.373 + }, + { + "start": 1253.14, + "end": 1256.28, + "probability": 0.9395 + }, + { + "start": 1256.86, + "end": 1257.14, + "probability": 0.6854 + }, + { + "start": 1257.18, + "end": 1260.58, + "probability": 0.9834 + }, + { + "start": 1260.98, + "end": 1264.28, + "probability": 0.998 + }, + { + "start": 1264.46, + "end": 1265.26, + "probability": 0.9841 + }, + { + "start": 1265.3, + "end": 1265.51, + "probability": 0.988 + }, + { + "start": 1265.96, + "end": 1266.8, + "probability": 0.787 + }, + { + "start": 1267.06, + "end": 1267.8, + "probability": 0.7055 + }, + { + "start": 1267.94, + "end": 1267.94, + "probability": 0.238 + }, + { + "start": 1267.98, + "end": 1270.76, + "probability": 0.9965 + }, + { + "start": 1270.86, + "end": 1270.96, + "probability": 0.71 + }, + { + "start": 1271.2, + "end": 1272.26, + "probability": 0.9888 + }, + { + "start": 1273.08, + "end": 1275.17, + "probability": 0.9947 + }, + { + "start": 1275.86, + "end": 1276.88, + "probability": 0.9958 + }, + { + "start": 1276.96, + "end": 1280.98, + "probability": 0.9933 + }, + { + "start": 1280.98, + "end": 1284.84, + "probability": 0.564 + }, + { + "start": 1284.84, + "end": 1287.65, + "probability": 0.7475 + }, + { + "start": 1288.04, + "end": 1292.86, + "probability": 0.9896 + }, + { + "start": 1293.14, + "end": 1294.2, + "probability": 0.798 + }, + { + "start": 1294.28, + "end": 1297.05, + "probability": 0.9503 + }, + { + "start": 1297.26, + "end": 1298.04, + "probability": 0.1597 + }, + { + "start": 1298.32, + "end": 1298.82, + "probability": 0.8193 + }, + { + "start": 1299.16, + "end": 1301.16, + "probability": 0.6763 + }, + { + "start": 1301.44, + "end": 1302.82, + "probability": 0.8002 + }, + { + "start": 1303.22, + "end": 1306.84, + "probability": 0.9905 + }, + { + "start": 1306.84, + "end": 1310.6, + "probability": 0.7706 + }, + { + "start": 1310.64, + "end": 1311.16, + "probability": 0.9187 + }, + { + "start": 1313.04, + "end": 1314.58, + "probability": 0.2029 + }, + { + "start": 1315.34, + "end": 1318.58, + "probability": 0.7142 + }, + { + "start": 1318.68, + "end": 1321.06, + "probability": 0.4933 + }, + { + "start": 1321.16, + "end": 1327.9, + "probability": 0.8873 + }, + { + "start": 1328.46, + "end": 1334.72, + "probability": 0.9048 + }, + { + "start": 1336.68, + "end": 1338.64, + "probability": 0.7616 + }, + { + "start": 1338.7, + "end": 1344.74, + "probability": 0.598 + }, + { + "start": 1344.9, + "end": 1349.42, + "probability": 0.6856 + }, + { + "start": 1349.5, + "end": 1355.28, + "probability": 0.9993 + }, + { + "start": 1355.7, + "end": 1362.14, + "probability": 0.9818 + }, + { + "start": 1362.36, + "end": 1367.68, + "probability": 0.9092 + }, + { + "start": 1367.68, + "end": 1370.16, + "probability": 0.9389 + }, + { + "start": 1370.3, + "end": 1373.16, + "probability": 0.8467 + }, + { + "start": 1375.03, + "end": 1377.72, + "probability": 0.8544 + }, + { + "start": 1377.92, + "end": 1381.84, + "probability": 0.9945 + }, + { + "start": 1382.12, + "end": 1383.6, + "probability": 0.9333 + }, + { + "start": 1383.66, + "end": 1388.5, + "probability": 0.9528 + }, + { + "start": 1390.52, + "end": 1393.2, + "probability": 0.9974 + }, + { + "start": 1393.88, + "end": 1396.18, + "probability": 0.9698 + }, + { + "start": 1397.14, + "end": 1398.7, + "probability": 0.7019 + }, + { + "start": 1398.88, + "end": 1399.36, + "probability": 0.493 + }, + { + "start": 1399.6, + "end": 1402.86, + "probability": 0.989 + }, + { + "start": 1403.2, + "end": 1405.78, + "probability": 0.9831 + }, + { + "start": 1406.42, + "end": 1408.44, + "probability": 0.9766 + }, + { + "start": 1408.6, + "end": 1412.16, + "probability": 0.9937 + }, + { + "start": 1413.34, + "end": 1414.52, + "probability": 0.9231 + }, + { + "start": 1414.94, + "end": 1416.56, + "probability": 0.9972 + }, + { + "start": 1416.66, + "end": 1418.28, + "probability": 0.9138 + }, + { + "start": 1418.86, + "end": 1421.4, + "probability": 0.9899 + }, + { + "start": 1421.56, + "end": 1425.96, + "probability": 0.9779 + }, + { + "start": 1426.54, + "end": 1430.14, + "probability": 0.8261 + }, + { + "start": 1430.8, + "end": 1433.52, + "probability": 0.8892 + }, + { + "start": 1434.1, + "end": 1439.66, + "probability": 0.9968 + }, + { + "start": 1440.24, + "end": 1443.44, + "probability": 0.9125 + }, + { + "start": 1444.46, + "end": 1446.66, + "probability": 0.9927 + }, + { + "start": 1446.66, + "end": 1448.18, + "probability": 0.9534 + }, + { + "start": 1448.58, + "end": 1448.96, + "probability": 0.6647 + }, + { + "start": 1449.46, + "end": 1451.58, + "probability": 0.7226 + }, + { + "start": 1452.48, + "end": 1455.22, + "probability": 0.6161 + }, + { + "start": 1455.51, + "end": 1459.02, + "probability": 0.9515 + }, + { + "start": 1459.08, + "end": 1459.76, + "probability": 0.7761 + }, + { + "start": 1460.42, + "end": 1463.22, + "probability": 0.5506 + }, + { + "start": 1465.31, + "end": 1469.58, + "probability": 0.9899 + }, + { + "start": 1469.58, + "end": 1475.78, + "probability": 0.9975 + }, + { + "start": 1476.22, + "end": 1481.24, + "probability": 0.9971 + }, + { + "start": 1481.86, + "end": 1485.62, + "probability": 0.991 + }, + { + "start": 1485.94, + "end": 1487.1, + "probability": 0.9883 + }, + { + "start": 1487.68, + "end": 1489.84, + "probability": 0.9314 + }, + { + "start": 1490.54, + "end": 1491.62, + "probability": 0.9946 + }, + { + "start": 1491.86, + "end": 1494.72, + "probability": 0.8868 + }, + { + "start": 1494.82, + "end": 1498.18, + "probability": 0.9907 + }, + { + "start": 1498.42, + "end": 1500.08, + "probability": 0.3515 + }, + { + "start": 1501.56, + "end": 1503.8, + "probability": 0.8118 + }, + { + "start": 1504.26, + "end": 1508.0, + "probability": 0.9819 + }, + { + "start": 1508.0, + "end": 1511.48, + "probability": 0.9853 + }, + { + "start": 1511.8, + "end": 1512.82, + "probability": 0.8278 + }, + { + "start": 1513.06, + "end": 1513.52, + "probability": 0.6877 + }, + { + "start": 1513.62, + "end": 1520.04, + "probability": 0.8116 + }, + { + "start": 1520.04, + "end": 1524.6, + "probability": 0.9946 + }, + { + "start": 1524.6, + "end": 1530.68, + "probability": 0.9705 + }, + { + "start": 1530.98, + "end": 1532.96, + "probability": 0.9556 + }, + { + "start": 1533.44, + "end": 1535.84, + "probability": 0.9971 + }, + { + "start": 1536.4, + "end": 1537.76, + "probability": 0.9032 + }, + { + "start": 1537.94, + "end": 1539.08, + "probability": 0.9971 + }, + { + "start": 1539.22, + "end": 1539.4, + "probability": 0.8116 + }, + { + "start": 1540.08, + "end": 1541.5, + "probability": 0.9717 + }, + { + "start": 1542.08, + "end": 1543.4, + "probability": 0.8604 + }, + { + "start": 1543.98, + "end": 1546.6, + "probability": 0.99 + }, + { + "start": 1547.08, + "end": 1550.4, + "probability": 0.9619 + }, + { + "start": 1550.52, + "end": 1551.0, + "probability": 0.8919 + }, + { + "start": 1551.32, + "end": 1551.8, + "probability": 0.8746 + }, + { + "start": 1552.06, + "end": 1552.6, + "probability": 0.8345 + }, + { + "start": 1552.66, + "end": 1556.96, + "probability": 0.8699 + }, + { + "start": 1557.2, + "end": 1560.56, + "probability": 0.998 + }, + { + "start": 1560.68, + "end": 1561.92, + "probability": 0.4983 + }, + { + "start": 1561.96, + "end": 1564.96, + "probability": 0.562 + }, + { + "start": 1565.32, + "end": 1570.58, + "probability": 0.9271 + }, + { + "start": 1570.76, + "end": 1574.82, + "probability": 0.9877 + }, + { + "start": 1575.56, + "end": 1577.02, + "probability": 0.9407 + }, + { + "start": 1577.18, + "end": 1581.22, + "probability": 0.9825 + }, + { + "start": 1590.38, + "end": 1591.48, + "probability": 0.7348 + }, + { + "start": 1592.64, + "end": 1594.85, + "probability": 0.6912 + }, + { + "start": 1597.02, + "end": 1598.12, + "probability": 0.4688 + }, + { + "start": 1598.14, + "end": 1599.52, + "probability": 0.8647 + }, + { + "start": 1599.84, + "end": 1600.82, + "probability": 0.4896 + }, + { + "start": 1601.36, + "end": 1602.94, + "probability": 0.8684 + }, + { + "start": 1603.52, + "end": 1605.48, + "probability": 0.8994 + }, + { + "start": 1606.06, + "end": 1609.86, + "probability": 0.995 + }, + { + "start": 1610.16, + "end": 1612.24, + "probability": 0.9853 + }, + { + "start": 1613.0, + "end": 1618.36, + "probability": 0.9597 + }, + { + "start": 1619.1, + "end": 1622.1, + "probability": 0.9682 + }, + { + "start": 1622.98, + "end": 1623.16, + "probability": 0.7691 + }, + { + "start": 1623.7, + "end": 1624.82, + "probability": 0.7593 + }, + { + "start": 1624.92, + "end": 1627.58, + "probability": 0.7373 + }, + { + "start": 1628.74, + "end": 1629.4, + "probability": 0.9482 + }, + { + "start": 1630.06, + "end": 1636.1, + "probability": 0.9762 + }, + { + "start": 1637.24, + "end": 1638.43, + "probability": 0.7536 + }, + { + "start": 1639.42, + "end": 1640.9, + "probability": 0.9025 + }, + { + "start": 1641.22, + "end": 1643.02, + "probability": 0.7381 + }, + { + "start": 1643.14, + "end": 1643.78, + "probability": 0.4657 + }, + { + "start": 1644.94, + "end": 1646.86, + "probability": 0.9396 + }, + { + "start": 1648.2, + "end": 1658.36, + "probability": 0.9863 + }, + { + "start": 1659.08, + "end": 1661.3, + "probability": 0.9868 + }, + { + "start": 1661.36, + "end": 1667.04, + "probability": 0.936 + }, + { + "start": 1667.26, + "end": 1668.39, + "probability": 0.2466 + }, + { + "start": 1669.3, + "end": 1670.22, + "probability": 0.7198 + }, + { + "start": 1671.36, + "end": 1672.7, + "probability": 0.8164 + }, + { + "start": 1673.64, + "end": 1675.42, + "probability": 0.9262 + }, + { + "start": 1675.62, + "end": 1678.92, + "probability": 0.9854 + }, + { + "start": 1678.96, + "end": 1684.32, + "probability": 0.9258 + }, + { + "start": 1684.38, + "end": 1686.82, + "probability": 0.5344 + }, + { + "start": 1686.98, + "end": 1687.9, + "probability": 0.8014 + }, + { + "start": 1688.88, + "end": 1690.1, + "probability": 0.8913 + }, + { + "start": 1691.18, + "end": 1695.08, + "probability": 0.8951 + }, + { + "start": 1696.5, + "end": 1697.48, + "probability": 0.4118 + }, + { + "start": 1699.4, + "end": 1701.68, + "probability": 0.8723 + }, + { + "start": 1702.26, + "end": 1703.94, + "probability": 0.8034 + }, + { + "start": 1705.14, + "end": 1711.0, + "probability": 0.9946 + }, + { + "start": 1712.48, + "end": 1714.48, + "probability": 0.9673 + }, + { + "start": 1715.68, + "end": 1717.14, + "probability": 0.8835 + }, + { + "start": 1718.06, + "end": 1721.14, + "probability": 0.9902 + }, + { + "start": 1721.88, + "end": 1726.52, + "probability": 0.9937 + }, + { + "start": 1727.16, + "end": 1728.38, + "probability": 0.9456 + }, + { + "start": 1728.98, + "end": 1730.08, + "probability": 0.9962 + }, + { + "start": 1730.28, + "end": 1731.1, + "probability": 0.8485 + }, + { + "start": 1731.52, + "end": 1734.46, + "probability": 0.9941 + }, + { + "start": 1734.56, + "end": 1735.7, + "probability": 0.9985 + }, + { + "start": 1736.22, + "end": 1738.2, + "probability": 0.9148 + }, + { + "start": 1738.72, + "end": 1741.58, + "probability": 0.9629 + }, + { + "start": 1742.4, + "end": 1745.84, + "probability": 0.9931 + }, + { + "start": 1746.38, + "end": 1746.88, + "probability": 0.5004 + }, + { + "start": 1747.72, + "end": 1749.86, + "probability": 0.9561 + }, + { + "start": 1751.08, + "end": 1751.9, + "probability": 0.7854 + }, + { + "start": 1752.7, + "end": 1755.54, + "probability": 0.9845 + }, + { + "start": 1756.16, + "end": 1759.15, + "probability": 0.9417 + }, + { + "start": 1760.14, + "end": 1760.7, + "probability": 0.9952 + }, + { + "start": 1761.24, + "end": 1762.26, + "probability": 0.971 + }, + { + "start": 1762.64, + "end": 1764.38, + "probability": 0.7679 + }, + { + "start": 1765.28, + "end": 1767.76, + "probability": 0.9832 + }, + { + "start": 1769.0, + "end": 1772.28, + "probability": 0.8917 + }, + { + "start": 1773.5, + "end": 1775.36, + "probability": 0.9791 + }, + { + "start": 1775.44, + "end": 1778.72, + "probability": 0.9978 + }, + { + "start": 1778.9, + "end": 1780.98, + "probability": 0.7513 + }, + { + "start": 1782.12, + "end": 1785.7, + "probability": 0.9966 + }, + { + "start": 1786.38, + "end": 1787.88, + "probability": 0.9917 + }, + { + "start": 1788.0, + "end": 1790.3, + "probability": 0.9834 + }, + { + "start": 1790.34, + "end": 1791.8, + "probability": 0.9186 + }, + { + "start": 1792.52, + "end": 1796.52, + "probability": 0.9705 + }, + { + "start": 1797.18, + "end": 1798.26, + "probability": 0.7227 + }, + { + "start": 1798.4, + "end": 1801.7, + "probability": 0.9077 + }, + { + "start": 1801.82, + "end": 1802.48, + "probability": 0.8422 + }, + { + "start": 1802.62, + "end": 1803.46, + "probability": 0.9142 + }, + { + "start": 1803.84, + "end": 1804.12, + "probability": 0.9644 + }, + { + "start": 1805.0, + "end": 1805.68, + "probability": 0.5155 + }, + { + "start": 1805.8, + "end": 1807.54, + "probability": 0.7174 + }, + { + "start": 1807.8, + "end": 1808.24, + "probability": 0.9414 + }, + { + "start": 1808.82, + "end": 1809.54, + "probability": 0.9114 + }, + { + "start": 1809.54, + "end": 1809.98, + "probability": 0.7513 + }, + { + "start": 1810.0, + "end": 1813.5, + "probability": 0.9928 + }, + { + "start": 1814.2, + "end": 1814.92, + "probability": 0.6107 + }, + { + "start": 1815.96, + "end": 1817.48, + "probability": 0.5734 + }, + { + "start": 1818.74, + "end": 1819.86, + "probability": 0.7742 + }, + { + "start": 1819.94, + "end": 1826.78, + "probability": 0.6034 + }, + { + "start": 1826.78, + "end": 1827.68, + "probability": 0.9431 + }, + { + "start": 1828.44, + "end": 1831.48, + "probability": 0.7041 + }, + { + "start": 1832.06, + "end": 1832.06, + "probability": 0.4111 + }, + { + "start": 1832.06, + "end": 1832.06, + "probability": 0.0302 + }, + { + "start": 1832.06, + "end": 1832.58, + "probability": 0.5147 + }, + { + "start": 1832.82, + "end": 1833.58, + "probability": 0.7053 + }, + { + "start": 1833.68, + "end": 1833.84, + "probability": 0.7667 + }, + { + "start": 1833.92, + "end": 1836.02, + "probability": 0.5992 + }, + { + "start": 1836.14, + "end": 1837.78, + "probability": 0.8191 + }, + { + "start": 1837.9, + "end": 1839.06, + "probability": 0.6623 + }, + { + "start": 1839.6, + "end": 1842.2, + "probability": 0.7314 + }, + { + "start": 1842.34, + "end": 1844.62, + "probability": 0.9116 + }, + { + "start": 1845.8, + "end": 1847.19, + "probability": 0.1019 + }, + { + "start": 1847.94, + "end": 1851.2, + "probability": 0.8192 + }, + { + "start": 1851.6, + "end": 1853.2, + "probability": 0.9931 + }, + { + "start": 1853.34, + "end": 1853.86, + "probability": 0.7309 + }, + { + "start": 1854.02, + "end": 1854.9, + "probability": 0.8596 + }, + { + "start": 1855.02, + "end": 1858.0, + "probability": 0.9894 + }, + { + "start": 1858.54, + "end": 1858.7, + "probability": 0.7903 + }, + { + "start": 1859.18, + "end": 1861.74, + "probability": 0.9023 + }, + { + "start": 1861.8, + "end": 1865.98, + "probability": 0.9881 + }, + { + "start": 1866.72, + "end": 1869.28, + "probability": 0.8929 + }, + { + "start": 1869.42, + "end": 1872.62, + "probability": 0.9684 + }, + { + "start": 1872.94, + "end": 1873.78, + "probability": 0.9409 + }, + { + "start": 1874.3, + "end": 1875.66, + "probability": 0.8978 + }, + { + "start": 1875.78, + "end": 1876.54, + "probability": 0.7649 + }, + { + "start": 1876.78, + "end": 1879.94, + "probability": 0.9969 + }, + { + "start": 1879.94, + "end": 1882.66, + "probability": 0.9884 + }, + { + "start": 1883.84, + "end": 1886.48, + "probability": 0.9878 + }, + { + "start": 1886.72, + "end": 1890.68, + "probability": 0.9894 + }, + { + "start": 1891.44, + "end": 1895.92, + "probability": 0.7609 + }, + { + "start": 1896.7, + "end": 1898.7, + "probability": 0.9735 + }, + { + "start": 1899.42, + "end": 1904.5, + "probability": 0.9943 + }, + { + "start": 1905.3, + "end": 1906.12, + "probability": 0.8001 + }, + { + "start": 1906.3, + "end": 1908.98, + "probability": 0.7602 + }, + { + "start": 1909.14, + "end": 1910.26, + "probability": 0.8178 + }, + { + "start": 1910.4, + "end": 1911.12, + "probability": 0.3349 + }, + { + "start": 1911.32, + "end": 1911.76, + "probability": 0.4904 + }, + { + "start": 1911.84, + "end": 1913.14, + "probability": 0.9899 + }, + { + "start": 1913.72, + "end": 1914.4, + "probability": 0.9792 + }, + { + "start": 1914.82, + "end": 1915.16, + "probability": 0.8077 + }, + { + "start": 1915.2, + "end": 1917.64, + "probability": 0.8144 + }, + { + "start": 1918.22, + "end": 1920.0, + "probability": 0.8324 + }, + { + "start": 1920.26, + "end": 1920.5, + "probability": 0.7398 + }, + { + "start": 1920.52, + "end": 1921.0, + "probability": 0.1815 + }, + { + "start": 1922.18, + "end": 1924.61, + "probability": 0.28 + }, + { + "start": 1924.9, + "end": 1925.44, + "probability": 0.0547 + }, + { + "start": 1925.46, + "end": 1926.44, + "probability": 0.314 + }, + { + "start": 1926.52, + "end": 1927.56, + "probability": 0.8887 + }, + { + "start": 1927.6, + "end": 1928.34, + "probability": 0.5483 + }, + { + "start": 1928.4, + "end": 1928.4, + "probability": 0.0681 + }, + { + "start": 1928.4, + "end": 1931.34, + "probability": 0.73 + }, + { + "start": 1932.32, + "end": 1932.38, + "probability": 0.0994 + }, + { + "start": 1932.38, + "end": 1933.12, + "probability": 0.7255 + }, + { + "start": 1933.54, + "end": 1935.76, + "probability": 0.2128 + }, + { + "start": 1936.88, + "end": 1937.32, + "probability": 0.0586 + }, + { + "start": 1937.32, + "end": 1938.72, + "probability": 0.2942 + }, + { + "start": 1939.26, + "end": 1940.58, + "probability": 0.5814 + }, + { + "start": 1941.62, + "end": 1942.88, + "probability": 0.6981 + }, + { + "start": 1943.02, + "end": 1944.56, + "probability": 0.9845 + }, + { + "start": 1945.18, + "end": 1949.92, + "probability": 0.99 + }, + { + "start": 1950.18, + "end": 1952.72, + "probability": 0.9869 + }, + { + "start": 1953.02, + "end": 1953.66, + "probability": 0.8052 + }, + { + "start": 1954.54, + "end": 1959.66, + "probability": 0.9412 + }, + { + "start": 1959.82, + "end": 1960.1, + "probability": 0.9555 + }, + { + "start": 1960.66, + "end": 1963.18, + "probability": 0.8652 + }, + { + "start": 1963.72, + "end": 1964.76, + "probability": 0.7365 + }, + { + "start": 1965.06, + "end": 1966.49, + "probability": 0.928 + }, + { + "start": 1966.64, + "end": 1967.43, + "probability": 0.9775 + }, + { + "start": 1967.98, + "end": 1970.98, + "probability": 0.9512 + }, + { + "start": 1971.5, + "end": 1974.08, + "probability": 0.8276 + }, + { + "start": 1975.0, + "end": 1976.12, + "probability": 0.6691 + }, + { + "start": 1977.62, + "end": 1980.72, + "probability": 0.9438 + }, + { + "start": 1981.56, + "end": 1986.16, + "probability": 0.9879 + }, + { + "start": 1986.68, + "end": 1987.72, + "probability": 0.5159 + }, + { + "start": 1987.84, + "end": 1988.7, + "probability": 0.6888 + }, + { + "start": 1989.38, + "end": 1990.82, + "probability": 0.9927 + }, + { + "start": 1991.56, + "end": 1997.02, + "probability": 0.9689 + }, + { + "start": 1997.06, + "end": 1997.46, + "probability": 0.5569 + }, + { + "start": 1998.4, + "end": 2003.9, + "probability": 0.889 + }, + { + "start": 2004.36, + "end": 2006.78, + "probability": 0.9786 + }, + { + "start": 2007.62, + "end": 2008.94, + "probability": 0.7043 + }, + { + "start": 2009.26, + "end": 2010.58, + "probability": 0.9038 + }, + { + "start": 2011.64, + "end": 2014.32, + "probability": 0.9831 + }, + { + "start": 2015.59, + "end": 2018.76, + "probability": 0.917 + }, + { + "start": 2020.67, + "end": 2025.14, + "probability": 0.9395 + }, + { + "start": 2025.74, + "end": 2028.04, + "probability": 0.9957 + }, + { + "start": 2028.96, + "end": 2029.6, + "probability": 0.8044 + }, + { + "start": 2031.14, + "end": 2032.78, + "probability": 0.7834 + }, + { + "start": 2032.86, + "end": 2033.9, + "probability": 0.6276 + }, + { + "start": 2034.02, + "end": 2034.58, + "probability": 0.9302 + }, + { + "start": 2035.04, + "end": 2037.82, + "probability": 0.9971 + }, + { + "start": 2038.68, + "end": 2039.96, + "probability": 0.9895 + }, + { + "start": 2040.06, + "end": 2040.82, + "probability": 0.8542 + }, + { + "start": 2040.9, + "end": 2041.98, + "probability": 0.9902 + }, + { + "start": 2042.16, + "end": 2042.72, + "probability": 0.7448 + }, + { + "start": 2043.54, + "end": 2044.6, + "probability": 0.9246 + }, + { + "start": 2045.68, + "end": 2046.74, + "probability": 0.7539 + }, + { + "start": 2048.16, + "end": 2050.64, + "probability": 0.9021 + }, + { + "start": 2051.54, + "end": 2052.36, + "probability": 0.843 + }, + { + "start": 2054.15, + "end": 2056.4, + "probability": 0.9453 + }, + { + "start": 2057.36, + "end": 2057.72, + "probability": 0.9556 + }, + { + "start": 2058.9, + "end": 2059.14, + "probability": 0.7328 + }, + { + "start": 2060.1, + "end": 2062.78, + "probability": 0.7688 + }, + { + "start": 2063.72, + "end": 2066.3, + "probability": 0.6331 + }, + { + "start": 2067.04, + "end": 2071.9, + "probability": 0.9989 + }, + { + "start": 2072.44, + "end": 2076.04, + "probability": 0.6666 + }, + { + "start": 2080.21, + "end": 2080.47, + "probability": 0.0667 + }, + { + "start": 2081.38, + "end": 2082.64, + "probability": 0.171 + }, + { + "start": 2082.7, + "end": 2083.14, + "probability": 0.0433 + }, + { + "start": 2083.14, + "end": 2084.06, + "probability": 0.6088 + }, + { + "start": 2084.66, + "end": 2085.98, + "probability": 0.1759 + }, + { + "start": 2086.44, + "end": 2087.86, + "probability": 0.1938 + }, + { + "start": 2088.08, + "end": 2088.99, + "probability": 0.0235 + }, + { + "start": 2089.62, + "end": 2092.84, + "probability": 0.0034 + }, + { + "start": 2093.68, + "end": 2093.92, + "probability": 0.0012 + }, + { + "start": 2093.92, + "end": 2093.92, + "probability": 0.076 + }, + { + "start": 2093.92, + "end": 2093.92, + "probability": 0.0859 + }, + { + "start": 2093.92, + "end": 2093.92, + "probability": 0.0738 + }, + { + "start": 2093.92, + "end": 2097.16, + "probability": 0.7438 + }, + { + "start": 2097.18, + "end": 2100.46, + "probability": 0.0581 + }, + { + "start": 2100.56, + "end": 2100.56, + "probability": 0.1489 + }, + { + "start": 2100.66, + "end": 2101.18, + "probability": 0.1802 + }, + { + "start": 2101.18, + "end": 2101.18, + "probability": 0.0906 + }, + { + "start": 2101.18, + "end": 2101.18, + "probability": 0.0524 + }, + { + "start": 2101.18, + "end": 2102.0, + "probability": 0.3807 + }, + { + "start": 2102.14, + "end": 2102.72, + "probability": 0.5489 + }, + { + "start": 2102.82, + "end": 2104.9, + "probability": 0.8027 + }, + { + "start": 2105.1, + "end": 2105.56, + "probability": 0.5079 + }, + { + "start": 2106.14, + "end": 2108.06, + "probability": 0.6177 + }, + { + "start": 2108.86, + "end": 2110.72, + "probability": 0.6722 + }, + { + "start": 2110.8, + "end": 2111.28, + "probability": 0.866 + }, + { + "start": 2111.36, + "end": 2112.94, + "probability": 0.5631 + }, + { + "start": 2113.48, + "end": 2115.32, + "probability": 0.9689 + }, + { + "start": 2115.52, + "end": 2117.08, + "probability": 0.8398 + }, + { + "start": 2117.44, + "end": 2118.96, + "probability": 0.9582 + }, + { + "start": 2119.5, + "end": 2119.72, + "probability": 0.804 + }, + { + "start": 2119.82, + "end": 2123.48, + "probability": 0.9583 + }, + { + "start": 2123.92, + "end": 2126.3, + "probability": 0.8838 + }, + { + "start": 2126.94, + "end": 2127.54, + "probability": 0.9448 + }, + { + "start": 2128.0, + "end": 2131.6, + "probability": 0.9722 + }, + { + "start": 2132.08, + "end": 2132.92, + "probability": 0.9497 + }, + { + "start": 2133.04, + "end": 2135.99, + "probability": 0.6753 + }, + { + "start": 2137.16, + "end": 2139.32, + "probability": 0.8658 + }, + { + "start": 2139.94, + "end": 2140.48, + "probability": 0.7826 + }, + { + "start": 2140.66, + "end": 2142.94, + "probability": 0.8656 + }, + { + "start": 2143.26, + "end": 2144.94, + "probability": 0.7448 + }, + { + "start": 2145.3, + "end": 2148.3, + "probability": 0.9429 + }, + { + "start": 2148.43, + "end": 2148.5, + "probability": 0.0926 + }, + { + "start": 2149.42, + "end": 2150.42, + "probability": 0.1925 + }, + { + "start": 2150.9, + "end": 2153.43, + "probability": 0.1097 + }, + { + "start": 2154.18, + "end": 2155.44, + "probability": 0.0308 + }, + { + "start": 2155.44, + "end": 2155.44, + "probability": 0.0697 + }, + { + "start": 2155.44, + "end": 2155.44, + "probability": 0.0629 + }, + { + "start": 2155.44, + "end": 2156.76, + "probability": 0.1342 + }, + { + "start": 2159.3, + "end": 2162.39, + "probability": 0.7582 + }, + { + "start": 2163.26, + "end": 2164.66, + "probability": 0.782 + }, + { + "start": 2167.78, + "end": 2168.8, + "probability": 0.5056 + }, + { + "start": 2169.34, + "end": 2169.96, + "probability": 0.7477 + }, + { + "start": 2170.48, + "end": 2174.86, + "probability": 0.8384 + }, + { + "start": 2176.2, + "end": 2179.16, + "probability": 0.9977 + }, + { + "start": 2180.86, + "end": 2182.96, + "probability": 0.8043 + }, + { + "start": 2183.76, + "end": 2186.62, + "probability": 0.7407 + }, + { + "start": 2187.54, + "end": 2188.1, + "probability": 0.7411 + }, + { + "start": 2188.14, + "end": 2189.68, + "probability": 0.9094 + }, + { + "start": 2189.9, + "end": 2196.62, + "probability": 0.7604 + }, + { + "start": 2197.74, + "end": 2198.54, + "probability": 0.742 + }, + { + "start": 2199.26, + "end": 2202.06, + "probability": 0.9548 + }, + { + "start": 2202.58, + "end": 2205.22, + "probability": 0.7821 + }, + { + "start": 2205.54, + "end": 2206.7, + "probability": 0.7659 + }, + { + "start": 2207.64, + "end": 2207.94, + "probability": 0.5532 + }, + { + "start": 2208.74, + "end": 2210.52, + "probability": 0.971 + }, + { + "start": 2211.38, + "end": 2214.74, + "probability": 0.9883 + }, + { + "start": 2214.86, + "end": 2216.78, + "probability": 0.5705 + }, + { + "start": 2217.06, + "end": 2217.16, + "probability": 0.7455 + }, + { + "start": 2218.18, + "end": 2219.2, + "probability": 0.7072 + }, + { + "start": 2220.26, + "end": 2224.18, + "probability": 0.9834 + }, + { + "start": 2224.88, + "end": 2225.54, + "probability": 0.9717 + }, + { + "start": 2226.7, + "end": 2229.7, + "probability": 0.9194 + }, + { + "start": 2230.46, + "end": 2233.44, + "probability": 0.6611 + }, + { + "start": 2234.8, + "end": 2236.18, + "probability": 0.9849 + }, + { + "start": 2237.22, + "end": 2239.44, + "probability": 0.9985 + }, + { + "start": 2240.56, + "end": 2242.98, + "probability": 0.9985 + }, + { + "start": 2243.0, + "end": 2247.08, + "probability": 0.9991 + }, + { + "start": 2247.32, + "end": 2248.2, + "probability": 0.9357 + }, + { + "start": 2248.6, + "end": 2249.85, + "probability": 0.9492 + }, + { + "start": 2250.02, + "end": 2252.46, + "probability": 0.9678 + }, + { + "start": 2252.92, + "end": 2256.32, + "probability": 0.991 + }, + { + "start": 2256.74, + "end": 2258.86, + "probability": 0.7125 + }, + { + "start": 2259.94, + "end": 2262.6, + "probability": 0.8171 + }, + { + "start": 2262.68, + "end": 2266.54, + "probability": 0.9961 + }, + { + "start": 2267.16, + "end": 2268.97, + "probability": 0.9512 + }, + { + "start": 2270.1, + "end": 2272.16, + "probability": 0.9235 + }, + { + "start": 2272.16, + "end": 2274.44, + "probability": 0.9946 + }, + { + "start": 2275.1, + "end": 2275.8, + "probability": 0.501 + }, + { + "start": 2276.46, + "end": 2279.2, + "probability": 0.98 + }, + { + "start": 2280.24, + "end": 2281.52, + "probability": 0.8967 + }, + { + "start": 2281.96, + "end": 2285.8, + "probability": 0.9562 + }, + { + "start": 2286.72, + "end": 2288.2, + "probability": 0.9976 + }, + { + "start": 2288.82, + "end": 2289.88, + "probability": 0.7564 + }, + { + "start": 2290.08, + "end": 2292.5, + "probability": 0.5018 + }, + { + "start": 2293.12, + "end": 2295.04, + "probability": 0.9893 + }, + { + "start": 2296.08, + "end": 2297.76, + "probability": 0.9726 + }, + { + "start": 2297.9, + "end": 2298.88, + "probability": 0.9529 + }, + { + "start": 2298.98, + "end": 2300.1, + "probability": 0.7375 + }, + { + "start": 2300.4, + "end": 2302.18, + "probability": 0.9338 + }, + { + "start": 2303.6, + "end": 2308.79, + "probability": 0.9835 + }, + { + "start": 2310.5, + "end": 2312.24, + "probability": 0.9988 + }, + { + "start": 2313.74, + "end": 2316.96, + "probability": 0.7958 + }, + { + "start": 2317.82, + "end": 2323.04, + "probability": 0.9367 + }, + { + "start": 2324.52, + "end": 2325.72, + "probability": 0.5119 + }, + { + "start": 2326.5, + "end": 2331.56, + "probability": 0.9945 + }, + { + "start": 2331.7, + "end": 2332.38, + "probability": 0.7192 + }, + { + "start": 2332.54, + "end": 2333.42, + "probability": 0.945 + }, + { + "start": 2334.38, + "end": 2338.5, + "probability": 0.9945 + }, + { + "start": 2339.38, + "end": 2340.32, + "probability": 0.9409 + }, + { + "start": 2341.14, + "end": 2342.68, + "probability": 0.9454 + }, + { + "start": 2342.72, + "end": 2347.98, + "probability": 0.7582 + }, + { + "start": 2348.64, + "end": 2349.88, + "probability": 0.9634 + }, + { + "start": 2350.04, + "end": 2351.5, + "probability": 0.9964 + }, + { + "start": 2351.98, + "end": 2353.4, + "probability": 0.7102 + }, + { + "start": 2354.2, + "end": 2357.32, + "probability": 0.9947 + }, + { + "start": 2358.56, + "end": 2363.62, + "probability": 0.6882 + }, + { + "start": 2364.16, + "end": 2364.85, + "probability": 0.6739 + }, + { + "start": 2365.56, + "end": 2368.18, + "probability": 0.8568 + }, + { + "start": 2368.76, + "end": 2369.74, + "probability": 0.8218 + }, + { + "start": 2372.4, + "end": 2377.28, + "probability": 0.9973 + }, + { + "start": 2377.46, + "end": 2380.96, + "probability": 0.9803 + }, + { + "start": 2381.42, + "end": 2385.22, + "probability": 0.9933 + }, + { + "start": 2386.18, + "end": 2387.8, + "probability": 0.9154 + }, + { + "start": 2390.66, + "end": 2390.84, + "probability": 0.0257 + }, + { + "start": 2390.84, + "end": 2394.66, + "probability": 0.8807 + }, + { + "start": 2394.76, + "end": 2395.76, + "probability": 0.5056 + }, + { + "start": 2396.36, + "end": 2397.96, + "probability": 0.6606 + }, + { + "start": 2398.02, + "end": 2401.06, + "probability": 0.9907 + }, + { + "start": 2402.14, + "end": 2405.04, + "probability": 0.9046 + }, + { + "start": 2405.48, + "end": 2406.4, + "probability": 0.8853 + }, + { + "start": 2406.88, + "end": 2409.64, + "probability": 0.9332 + }, + { + "start": 2409.98, + "end": 2411.32, + "probability": 0.6841 + }, + { + "start": 2412.29, + "end": 2415.2, + "probability": 0.8965 + }, + { + "start": 2418.64, + "end": 2419.66, + "probability": 0.6206 + }, + { + "start": 2421.04, + "end": 2423.06, + "probability": 0.5471 + }, + { + "start": 2423.22, + "end": 2423.86, + "probability": 0.222 + }, + { + "start": 2424.86, + "end": 2425.52, + "probability": 0.6626 + }, + { + "start": 2426.14, + "end": 2428.5, + "probability": 0.7886 + }, + { + "start": 2428.5, + "end": 2430.44, + "probability": 0.9949 + }, + { + "start": 2430.88, + "end": 2433.38, + "probability": 0.8973 + }, + { + "start": 2434.2, + "end": 2437.18, + "probability": 0.9675 + }, + { + "start": 2437.24, + "end": 2440.4, + "probability": 0.9939 + }, + { + "start": 2441.1, + "end": 2444.81, + "probability": 0.9988 + }, + { + "start": 2445.1, + "end": 2447.45, + "probability": 0.6066 + }, + { + "start": 2447.99, + "end": 2449.73, + "probability": 0.9958 + }, + { + "start": 2449.81, + "end": 2452.65, + "probability": 0.9963 + }, + { + "start": 2453.03, + "end": 2454.73, + "probability": 0.7722 + }, + { + "start": 2455.49, + "end": 2459.29, + "probability": 0.9801 + }, + { + "start": 2460.01, + "end": 2462.09, + "probability": 0.9936 + }, + { + "start": 2462.99, + "end": 2465.09, + "probability": 0.9966 + }, + { + "start": 2465.75, + "end": 2467.59, + "probability": 0.7458 + }, + { + "start": 2467.73, + "end": 2468.55, + "probability": 0.6838 + }, + { + "start": 2468.97, + "end": 2470.39, + "probability": 0.9053 + }, + { + "start": 2471.27, + "end": 2473.87, + "probability": 0.7696 + }, + { + "start": 2474.47, + "end": 2476.65, + "probability": 0.6796 + }, + { + "start": 2476.65, + "end": 2477.77, + "probability": 0.2902 + }, + { + "start": 2478.19, + "end": 2480.23, + "probability": 0.3234 + }, + { + "start": 2480.23, + "end": 2482.27, + "probability": 0.9961 + }, + { + "start": 2482.41, + "end": 2483.21, + "probability": 0.9377 + }, + { + "start": 2483.29, + "end": 2484.03, + "probability": 0.0634 + }, + { + "start": 2487.01, + "end": 2487.49, + "probability": 0.032 + }, + { + "start": 2487.49, + "end": 2487.49, + "probability": 0.3202 + }, + { + "start": 2487.49, + "end": 2487.49, + "probability": 0.0645 + }, + { + "start": 2487.49, + "end": 2488.53, + "probability": 0.4666 + }, + { + "start": 2490.37, + "end": 2494.05, + "probability": 0.3754 + }, + { + "start": 2494.35, + "end": 2494.35, + "probability": 0.33 + }, + { + "start": 2494.35, + "end": 2496.15, + "probability": 0.5108 + }, + { + "start": 2496.19, + "end": 2496.81, + "probability": 0.5506 + }, + { + "start": 2496.91, + "end": 2497.87, + "probability": 0.1098 + }, + { + "start": 2503.55, + "end": 2504.41, + "probability": 0.034 + }, + { + "start": 2504.41, + "end": 2504.77, + "probability": 0.0927 + }, + { + "start": 2504.77, + "end": 2504.91, + "probability": 0.0924 + }, + { + "start": 2504.91, + "end": 2504.91, + "probability": 0.0342 + }, + { + "start": 2504.97, + "end": 2506.21, + "probability": 0.0883 + }, + { + "start": 2516.21, + "end": 2516.57, + "probability": 0.0177 + }, + { + "start": 2517.77, + "end": 2518.29, + "probability": 0.0463 + }, + { + "start": 2518.29, + "end": 2518.43, + "probability": 0.0198 + }, + { + "start": 2520.34, + "end": 2520.71, + "probability": 0.0291 + }, + { + "start": 2520.71, + "end": 2521.35, + "probability": 0.1263 + }, + { + "start": 2522.79, + "end": 2522.79, + "probability": 0.3111 + }, + { + "start": 2524.05, + "end": 2524.63, + "probability": 0.3942 + }, + { + "start": 2526.35, + "end": 2527.37, + "probability": 0.1347 + }, + { + "start": 2536.69, + "end": 2537.53, + "probability": 0.2367 + }, + { + "start": 2537.53, + "end": 2540.77, + "probability": 0.4138 + }, + { + "start": 2544.25, + "end": 2545.48, + "probability": 0.0649 + }, + { + "start": 2546.9, + "end": 2548.3, + "probability": 0.0364 + }, + { + "start": 2558.65, + "end": 2560.31, + "probability": 0.0937 + }, + { + "start": 2560.73, + "end": 2564.31, + "probability": 0.0527 + }, + { + "start": 2564.31, + "end": 2565.17, + "probability": 0.0234 + }, + { + "start": 2565.17, + "end": 2565.87, + "probability": 0.0176 + }, + { + "start": 2566.47, + "end": 2567.03, + "probability": 0.0249 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.0, + "end": 2595.0, + "probability": 0.0 + }, + { + "start": 2595.3, + "end": 2596.56, + "probability": 0.0655 + }, + { + "start": 2596.56, + "end": 2597.03, + "probability": 0.0702 + }, + { + "start": 2597.96, + "end": 2599.82, + "probability": 0.0757 + }, + { + "start": 2600.78, + "end": 2602.56, + "probability": 0.0737 + }, + { + "start": 2603.22, + "end": 2605.24, + "probability": 0.2163 + }, + { + "start": 2605.98, + "end": 2607.02, + "probability": 0.3424 + }, + { + "start": 2628.94, + "end": 2629.9, + "probability": 0.0274 + }, + { + "start": 2635.26, + "end": 2636.94, + "probability": 0.4165 + }, + { + "start": 2638.19, + "end": 2645.56, + "probability": 0.0289 + }, + { + "start": 2645.98, + "end": 2648.12, + "probability": 0.0908 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2718.0, + "end": 2718.0, + "probability": 0.0 + }, + { + "start": 2724.02, + "end": 2725.48, + "probability": 0.0452 + }, + { + "start": 2725.52, + "end": 2726.88, + "probability": 0.0571 + }, + { + "start": 2728.41, + "end": 2728.98, + "probability": 0.2386 + }, + { + "start": 2739.5, + "end": 2740.9, + "probability": 0.1729 + }, + { + "start": 2740.9, + "end": 2742.94, + "probability": 0.1944 + }, + { + "start": 2742.94, + "end": 2745.16, + "probability": 0.2286 + }, + { + "start": 2747.56, + "end": 2749.34, + "probability": 0.0788 + }, + { + "start": 2749.34, + "end": 2750.72, + "probability": 0.0762 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2843.0, + "end": 2843.0, + "probability": 0.0 + }, + { + "start": 2848.82, + "end": 2850.0, + "probability": 0.8469 + }, + { + "start": 2850.2, + "end": 2851.24, + "probability": 0.5309 + }, + { + "start": 2851.28, + "end": 2852.22, + "probability": 0.8667 + }, + { + "start": 2852.66, + "end": 2853.84, + "probability": 0.9949 + }, + { + "start": 2855.58, + "end": 2856.58, + "probability": 0.9566 + }, + { + "start": 2857.6, + "end": 2857.94, + "probability": 0.9656 + }, + { + "start": 2859.38, + "end": 2860.38, + "probability": 0.9618 + }, + { + "start": 2861.1, + "end": 2866.26, + "probability": 0.9948 + }, + { + "start": 2867.22, + "end": 2867.74, + "probability": 0.7382 + }, + { + "start": 2868.94, + "end": 2872.36, + "probability": 0.7524 + }, + { + "start": 2873.82, + "end": 2875.98, + "probability": 0.8287 + }, + { + "start": 2876.78, + "end": 2879.82, + "probability": 0.9284 + }, + { + "start": 2881.14, + "end": 2883.0, + "probability": 0.9442 + }, + { + "start": 2883.22, + "end": 2883.62, + "probability": 0.5005 + }, + { + "start": 2883.7, + "end": 2884.98, + "probability": 0.9343 + }, + { + "start": 2886.32, + "end": 2887.28, + "probability": 0.9295 + }, + { + "start": 2888.12, + "end": 2891.26, + "probability": 0.9515 + }, + { + "start": 2891.84, + "end": 2894.22, + "probability": 0.9943 + }, + { + "start": 2895.28, + "end": 2899.22, + "probability": 0.9863 + }, + { + "start": 2900.82, + "end": 2901.43, + "probability": 0.9591 + }, + { + "start": 2902.02, + "end": 2903.44, + "probability": 0.4569 + }, + { + "start": 2904.34, + "end": 2909.7, + "probability": 0.9873 + }, + { + "start": 2910.86, + "end": 2912.62, + "probability": 0.9783 + }, + { + "start": 2913.58, + "end": 2914.68, + "probability": 0.6687 + }, + { + "start": 2914.86, + "end": 2916.86, + "probability": 0.9622 + }, + { + "start": 2917.54, + "end": 2918.56, + "probability": 0.7379 + }, + { + "start": 2919.9, + "end": 2920.32, + "probability": 0.8794 + }, + { + "start": 2920.86, + "end": 2922.12, + "probability": 0.7628 + }, + { + "start": 2922.94, + "end": 2927.48, + "probability": 0.993 + }, + { + "start": 2927.48, + "end": 2931.2, + "probability": 0.9948 + }, + { + "start": 2932.48, + "end": 2933.72, + "probability": 0.8605 + }, + { + "start": 2934.88, + "end": 2937.9, + "probability": 0.8094 + }, + { + "start": 2939.56, + "end": 2940.17, + "probability": 0.2269 + }, + { + "start": 2940.52, + "end": 2941.68, + "probability": 0.9594 + }, + { + "start": 2941.88, + "end": 2945.62, + "probability": 0.9946 + }, + { + "start": 2946.6, + "end": 2950.9, + "probability": 0.9595 + }, + { + "start": 2953.04, + "end": 2955.1, + "probability": 0.9425 + }, + { + "start": 2956.02, + "end": 2957.72, + "probability": 0.9752 + }, + { + "start": 2958.86, + "end": 2960.62, + "probability": 0.9518 + }, + { + "start": 2961.16, + "end": 2963.5, + "probability": 0.9972 + }, + { + "start": 2964.88, + "end": 2968.74, + "probability": 0.8757 + }, + { + "start": 2969.96, + "end": 2971.7, + "probability": 0.667 + }, + { + "start": 2972.24, + "end": 2974.34, + "probability": 0.9932 + }, + { + "start": 2974.88, + "end": 2976.4, + "probability": 0.9882 + }, + { + "start": 2978.22, + "end": 2980.8, + "probability": 0.9448 + }, + { + "start": 2981.86, + "end": 2982.88, + "probability": 0.9977 + }, + { + "start": 2984.34, + "end": 2985.48, + "probability": 0.8965 + }, + { + "start": 2986.18, + "end": 2987.36, + "probability": 0.9164 + }, + { + "start": 2988.18, + "end": 2990.84, + "probability": 0.9977 + }, + { + "start": 2992.52, + "end": 2993.24, + "probability": 0.7288 + }, + { + "start": 2994.06, + "end": 2994.42, + "probability": 0.952 + }, + { + "start": 2996.04, + "end": 2999.08, + "probability": 0.8877 + }, + { + "start": 3000.3, + "end": 3003.66, + "probability": 0.9903 + }, + { + "start": 3004.84, + "end": 3005.48, + "probability": 0.6397 + }, + { + "start": 3006.78, + "end": 3008.8, + "probability": 0.9797 + }, + { + "start": 3009.62, + "end": 3010.74, + "probability": 0.4119 + }, + { + "start": 3011.5, + "end": 3013.74, + "probability": 0.729 + }, + { + "start": 3014.56, + "end": 3017.42, + "probability": 0.9873 + }, + { + "start": 3018.74, + "end": 3020.88, + "probability": 0.9673 + }, + { + "start": 3021.58, + "end": 3025.86, + "probability": 0.9403 + }, + { + "start": 3027.3, + "end": 3031.74, + "probability": 0.9754 + }, + { + "start": 3032.68, + "end": 3035.44, + "probability": 0.9862 + }, + { + "start": 3036.86, + "end": 3038.24, + "probability": 0.8103 + }, + { + "start": 3038.76, + "end": 3040.36, + "probability": 0.9019 + }, + { + "start": 3040.92, + "end": 3043.1, + "probability": 0.9842 + }, + { + "start": 3044.14, + "end": 3044.6, + "probability": 0.7027 + }, + { + "start": 3045.4, + "end": 3047.22, + "probability": 0.9894 + }, + { + "start": 3047.74, + "end": 3050.02, + "probability": 0.9515 + }, + { + "start": 3050.98, + "end": 3054.08, + "probability": 0.9954 + }, + { + "start": 3055.44, + "end": 3056.9, + "probability": 0.997 + }, + { + "start": 3057.44, + "end": 3060.25, + "probability": 0.9504 + }, + { + "start": 3061.52, + "end": 3063.28, + "probability": 0.8411 + }, + { + "start": 3064.36, + "end": 3066.74, + "probability": 0.9982 + }, + { + "start": 3067.5, + "end": 3072.92, + "probability": 0.981 + }, + { + "start": 3074.4, + "end": 3075.78, + "probability": 0.8364 + }, + { + "start": 3076.82, + "end": 3077.1, + "probability": 0.9352 + }, + { + "start": 3079.18, + "end": 3080.16, + "probability": 0.7431 + }, + { + "start": 3080.86, + "end": 3082.42, + "probability": 0.8841 + }, + { + "start": 3083.5, + "end": 3088.02, + "probability": 0.9962 + }, + { + "start": 3088.98, + "end": 3093.18, + "probability": 0.9883 + }, + { + "start": 3094.44, + "end": 3096.48, + "probability": 0.9764 + }, + { + "start": 3097.08, + "end": 3097.96, + "probability": 0.8512 + }, + { + "start": 3099.16, + "end": 3101.22, + "probability": 0.9275 + }, + { + "start": 3102.28, + "end": 3105.02, + "probability": 0.8913 + }, + { + "start": 3105.7, + "end": 3107.84, + "probability": 0.9924 + }, + { + "start": 3109.06, + "end": 3112.04, + "probability": 0.9951 + }, + { + "start": 3112.82, + "end": 3116.2, + "probability": 0.9876 + }, + { + "start": 3117.16, + "end": 3121.7, + "probability": 0.9893 + }, + { + "start": 3121.82, + "end": 3124.68, + "probability": 0.9969 + }, + { + "start": 3125.66, + "end": 3127.32, + "probability": 0.8202 + }, + { + "start": 3129.16, + "end": 3131.58, + "probability": 0.9032 + }, + { + "start": 3132.36, + "end": 3135.36, + "probability": 0.9878 + }, + { + "start": 3136.04, + "end": 3138.34, + "probability": 0.9463 + }, + { + "start": 3140.06, + "end": 3143.2, + "probability": 0.9932 + }, + { + "start": 3144.16, + "end": 3145.82, + "probability": 0.8835 + }, + { + "start": 3146.66, + "end": 3149.26, + "probability": 0.9937 + }, + { + "start": 3150.26, + "end": 3152.56, + "probability": 0.9796 + }, + { + "start": 3153.26, + "end": 3156.18, + "probability": 0.9889 + }, + { + "start": 3157.02, + "end": 3157.88, + "probability": 0.7005 + }, + { + "start": 3158.6, + "end": 3160.56, + "probability": 0.9373 + }, + { + "start": 3162.28, + "end": 3164.43, + "probability": 0.9772 + }, + { + "start": 3165.44, + "end": 3168.82, + "probability": 0.9698 + }, + { + "start": 3169.94, + "end": 3170.44, + "probability": 0.7656 + }, + { + "start": 3171.54, + "end": 3172.48, + "probability": 0.7426 + }, + { + "start": 3173.66, + "end": 3178.18, + "probability": 0.8517 + }, + { + "start": 3178.88, + "end": 3180.86, + "probability": 0.9203 + }, + { + "start": 3182.0, + "end": 3183.4, + "probability": 0.9574 + }, + { + "start": 3184.02, + "end": 3186.04, + "probability": 0.9129 + }, + { + "start": 3187.2, + "end": 3189.3, + "probability": 0.8607 + }, + { + "start": 3190.22, + "end": 3192.76, + "probability": 0.9979 + }, + { + "start": 3193.52, + "end": 3195.34, + "probability": 0.528 + }, + { + "start": 3196.22, + "end": 3197.44, + "probability": 0.9084 + }, + { + "start": 3198.66, + "end": 3199.64, + "probability": 0.8417 + }, + { + "start": 3200.26, + "end": 3202.62, + "probability": 0.968 + }, + { + "start": 3203.28, + "end": 3205.12, + "probability": 0.9736 + }, + { + "start": 3205.84, + "end": 3206.92, + "probability": 0.9661 + }, + { + "start": 3207.72, + "end": 3209.72, + "probability": 0.967 + }, + { + "start": 3210.76, + "end": 3212.2, + "probability": 0.8968 + }, + { + "start": 3213.36, + "end": 3215.92, + "probability": 0.9771 + }, + { + "start": 3217.18, + "end": 3220.86, + "probability": 0.9897 + }, + { + "start": 3221.66, + "end": 3222.7, + "probability": 0.939 + }, + { + "start": 3223.6, + "end": 3227.7, + "probability": 0.9774 + }, + { + "start": 3229.02, + "end": 3230.9, + "probability": 0.9983 + }, + { + "start": 3231.62, + "end": 3235.62, + "probability": 0.9513 + }, + { + "start": 3236.66, + "end": 3239.34, + "probability": 0.9844 + }, + { + "start": 3240.14, + "end": 3245.42, + "probability": 0.988 + }, + { + "start": 3246.52, + "end": 3250.28, + "probability": 0.8734 + }, + { + "start": 3251.46, + "end": 3252.38, + "probability": 0.8464 + }, + { + "start": 3252.94, + "end": 3255.2, + "probability": 0.916 + }, + { + "start": 3256.26, + "end": 3258.78, + "probability": 0.9881 + }, + { + "start": 3260.86, + "end": 3262.08, + "probability": 0.9985 + }, + { + "start": 3262.98, + "end": 3266.24, + "probability": 0.9993 + }, + { + "start": 3267.18, + "end": 3270.7, + "probability": 0.9933 + }, + { + "start": 3271.76, + "end": 3274.2, + "probability": 0.9634 + }, + { + "start": 3274.82, + "end": 3277.0, + "probability": 0.9194 + }, + { + "start": 3277.82, + "end": 3279.7, + "probability": 0.9653 + }, + { + "start": 3280.8, + "end": 3282.76, + "probability": 0.9908 + }, + { + "start": 3283.22, + "end": 3288.2, + "probability": 0.9533 + }, + { + "start": 3288.82, + "end": 3290.28, + "probability": 0.9072 + }, + { + "start": 3291.98, + "end": 3296.28, + "probability": 0.9727 + }, + { + "start": 3296.96, + "end": 3299.22, + "probability": 0.9734 + }, + { + "start": 3300.06, + "end": 3305.62, + "probability": 0.9003 + }, + { + "start": 3307.08, + "end": 3309.96, + "probability": 0.9918 + }, + { + "start": 3310.54, + "end": 3313.88, + "probability": 0.9824 + }, + { + "start": 3314.74, + "end": 3315.48, + "probability": 0.7995 + }, + { + "start": 3317.12, + "end": 3320.7, + "probability": 0.9736 + }, + { + "start": 3321.46, + "end": 3323.14, + "probability": 0.8602 + }, + { + "start": 3324.04, + "end": 3325.36, + "probability": 0.9871 + }, + { + "start": 3327.04, + "end": 3328.21, + "probability": 0.3294 + }, + { + "start": 3329.38, + "end": 3332.76, + "probability": 0.9974 + }, + { + "start": 3333.58, + "end": 3333.82, + "probability": 0.9197 + }, + { + "start": 3334.78, + "end": 3337.5, + "probability": 0.9944 + }, + { + "start": 3338.4, + "end": 3342.38, + "probability": 0.9816 + }, + { + "start": 3343.2, + "end": 3346.36, + "probability": 0.9745 + }, + { + "start": 3347.02, + "end": 3349.06, + "probability": 0.9966 + }, + { + "start": 3350.76, + "end": 3351.5, + "probability": 0.6932 + }, + { + "start": 3352.52, + "end": 3356.04, + "probability": 0.9854 + }, + { + "start": 3356.96, + "end": 3358.16, + "probability": 0.9976 + }, + { + "start": 3360.46, + "end": 3362.06, + "probability": 0.944 + }, + { + "start": 3362.6, + "end": 3363.68, + "probability": 0.9649 + }, + { + "start": 3364.66, + "end": 3365.18, + "probability": 0.9757 + }, + { + "start": 3366.16, + "end": 3367.16, + "probability": 0.9611 + }, + { + "start": 3368.46, + "end": 3371.5, + "probability": 0.9939 + }, + { + "start": 3372.0, + "end": 3372.54, + "probability": 0.9858 + }, + { + "start": 3372.76, + "end": 3374.24, + "probability": 0.9507 + }, + { + "start": 3374.88, + "end": 3377.94, + "probability": 0.967 + }, + { + "start": 3378.64, + "end": 3380.44, + "probability": 0.9874 + }, + { + "start": 3382.02, + "end": 3389.8, + "probability": 0.9938 + }, + { + "start": 3390.84, + "end": 3390.98, + "probability": 0.0535 + }, + { + "start": 3390.98, + "end": 3395.39, + "probability": 0.9762 + }, + { + "start": 3397.4, + "end": 3400.68, + "probability": 0.9249 + }, + { + "start": 3401.28, + "end": 3402.9, + "probability": 0.7386 + }, + { + "start": 3404.46, + "end": 3407.6, + "probability": 0.9753 + }, + { + "start": 3408.46, + "end": 3408.56, + "probability": 0.7468 + }, + { + "start": 3409.26, + "end": 3412.28, + "probability": 0.9919 + }, + { + "start": 3413.32, + "end": 3413.7, + "probability": 0.9684 + }, + { + "start": 3414.36, + "end": 3417.24, + "probability": 0.998 + }, + { + "start": 3417.88, + "end": 3419.9, + "probability": 0.9812 + }, + { + "start": 3420.62, + "end": 3421.9, + "probability": 0.9642 + }, + { + "start": 3422.58, + "end": 3423.72, + "probability": 0.9468 + }, + { + "start": 3424.14, + "end": 3427.26, + "probability": 0.9886 + }, + { + "start": 3430.78, + "end": 3433.12, + "probability": 0.9961 + }, + { + "start": 3433.74, + "end": 3434.5, + "probability": 0.9708 + }, + { + "start": 3435.82, + "end": 3438.6, + "probability": 0.9988 + }, + { + "start": 3439.32, + "end": 3441.06, + "probability": 0.9883 + }, + { + "start": 3442.38, + "end": 3446.16, + "probability": 0.9805 + }, + { + "start": 3446.16, + "end": 3449.74, + "probability": 0.9983 + }, + { + "start": 3450.34, + "end": 3453.1, + "probability": 0.9933 + }, + { + "start": 3453.1, + "end": 3455.8, + "probability": 0.9821 + }, + { + "start": 3456.42, + "end": 3457.46, + "probability": 0.8495 + }, + { + "start": 3458.54, + "end": 3460.58, + "probability": 0.9849 + }, + { + "start": 3461.18, + "end": 3462.6, + "probability": 0.9788 + }, + { + "start": 3464.3, + "end": 3467.18, + "probability": 0.9436 + }, + { + "start": 3467.98, + "end": 3472.24, + "probability": 0.9713 + }, + { + "start": 3473.32, + "end": 3473.74, + "probability": 0.7615 + }, + { + "start": 3473.92, + "end": 3478.14, + "probability": 0.9806 + }, + { + "start": 3479.32, + "end": 3483.26, + "probability": 0.9723 + }, + { + "start": 3483.26, + "end": 3486.86, + "probability": 0.998 + }, + { + "start": 3487.2, + "end": 3487.42, + "probability": 0.8994 + }, + { + "start": 3488.76, + "end": 3490.5, + "probability": 0.9636 + }, + { + "start": 3491.22, + "end": 3495.96, + "probability": 0.973 + }, + { + "start": 3497.56, + "end": 3500.5, + "probability": 0.6405 + }, + { + "start": 3501.26, + "end": 3502.16, + "probability": 0.9277 + }, + { + "start": 3503.7, + "end": 3506.62, + "probability": 0.9973 + }, + { + "start": 3506.62, + "end": 3509.3, + "probability": 0.9989 + }, + { + "start": 3510.06, + "end": 3513.2, + "probability": 0.9854 + }, + { + "start": 3513.6, + "end": 3517.42, + "probability": 0.998 + }, + { + "start": 3518.8, + "end": 3520.3, + "probability": 0.9141 + }, + { + "start": 3521.84, + "end": 3522.74, + "probability": 0.9543 + }, + { + "start": 3523.5, + "end": 3527.22, + "probability": 0.9894 + }, + { + "start": 3527.22, + "end": 3532.62, + "probability": 0.9342 + }, + { + "start": 3533.7, + "end": 3534.82, + "probability": 0.7 + }, + { + "start": 3536.06, + "end": 3537.32, + "probability": 0.999 + }, + { + "start": 3538.12, + "end": 3542.34, + "probability": 0.9988 + }, + { + "start": 3543.04, + "end": 3543.84, + "probability": 0.8464 + }, + { + "start": 3544.36, + "end": 3545.66, + "probability": 0.9366 + }, + { + "start": 3546.48, + "end": 3548.2, + "probability": 0.9879 + }, + { + "start": 3549.16, + "end": 3551.18, + "probability": 0.7523 + }, + { + "start": 3551.82, + "end": 3554.24, + "probability": 0.9918 + }, + { + "start": 3554.82, + "end": 3555.64, + "probability": 0.821 + }, + { + "start": 3556.64, + "end": 3559.36, + "probability": 0.9949 + }, + { + "start": 3559.9, + "end": 3563.3, + "probability": 0.9954 + }, + { + "start": 3564.34, + "end": 3566.58, + "probability": 0.9665 + }, + { + "start": 3567.22, + "end": 3568.64, + "probability": 0.9488 + }, + { + "start": 3569.24, + "end": 3572.1, + "probability": 0.9714 + }, + { + "start": 3572.66, + "end": 3574.96, + "probability": 0.9608 + }, + { + "start": 3575.96, + "end": 3579.78, + "probability": 0.989 + }, + { + "start": 3581.02, + "end": 3582.62, + "probability": 0.9842 + }, + { + "start": 3583.14, + "end": 3584.76, + "probability": 0.9946 + }, + { + "start": 3587.1, + "end": 3587.62, + "probability": 0.6879 + }, + { + "start": 3588.6, + "end": 3590.76, + "probability": 0.9978 + }, + { + "start": 3591.9, + "end": 3592.86, + "probability": 0.8591 + }, + { + "start": 3594.82, + "end": 3596.96, + "probability": 0.8947 + }, + { + "start": 3597.62, + "end": 3599.84, + "probability": 0.9442 + }, + { + "start": 3600.4, + "end": 3601.22, + "probability": 0.752 + }, + { + "start": 3602.08, + "end": 3604.16, + "probability": 0.9939 + }, + { + "start": 3604.8, + "end": 3607.18, + "probability": 0.9336 + }, + { + "start": 3608.14, + "end": 3608.94, + "probability": 0.927 + }, + { + "start": 3609.46, + "end": 3614.36, + "probability": 0.9962 + }, + { + "start": 3615.24, + "end": 3618.5, + "probability": 0.9819 + }, + { + "start": 3619.24, + "end": 3622.22, + "probability": 0.9142 + }, + { + "start": 3623.2, + "end": 3625.36, + "probability": 0.7938 + }, + { + "start": 3626.32, + "end": 3628.74, + "probability": 0.8235 + }, + { + "start": 3629.54, + "end": 3632.4, + "probability": 0.9901 + }, + { + "start": 3632.92, + "end": 3633.52, + "probability": 0.918 + }, + { + "start": 3634.62, + "end": 3637.34, + "probability": 0.9857 + }, + { + "start": 3637.58, + "end": 3638.96, + "probability": 0.9523 + }, + { + "start": 3639.62, + "end": 3642.14, + "probability": 0.9657 + }, + { + "start": 3642.7, + "end": 3645.12, + "probability": 0.9991 + }, + { + "start": 3646.44, + "end": 3649.02, + "probability": 0.9688 + }, + { + "start": 3649.8, + "end": 3652.54, + "probability": 0.9274 + }, + { + "start": 3653.18, + "end": 3653.96, + "probability": 0.8666 + }, + { + "start": 3655.02, + "end": 3656.94, + "probability": 0.9481 + }, + { + "start": 3657.98, + "end": 3659.3, + "probability": 0.9795 + }, + { + "start": 3659.84, + "end": 3660.24, + "probability": 0.4926 + }, + { + "start": 3660.38, + "end": 3664.52, + "probability": 0.9632 + }, + { + "start": 3665.26, + "end": 3667.88, + "probability": 0.9835 + }, + { + "start": 3672.94, + "end": 3676.28, + "probability": 0.9964 + }, + { + "start": 3677.66, + "end": 3680.14, + "probability": 0.9039 + }, + { + "start": 3681.16, + "end": 3682.82, + "probability": 0.8162 + }, + { + "start": 3683.86, + "end": 3687.16, + "probability": 0.995 + }, + { + "start": 3688.18, + "end": 3690.52, + "probability": 0.9993 + }, + { + "start": 3691.44, + "end": 3692.52, + "probability": 0.9995 + }, + { + "start": 3693.04, + "end": 3695.86, + "probability": 0.979 + }, + { + "start": 3696.32, + "end": 3698.34, + "probability": 0.9568 + }, + { + "start": 3699.36, + "end": 3702.38, + "probability": 0.9706 + }, + { + "start": 3703.18, + "end": 3704.4, + "probability": 0.9924 + }, + { + "start": 3704.94, + "end": 3706.66, + "probability": 0.9799 + }, + { + "start": 3707.28, + "end": 3711.66, + "probability": 0.9845 + }, + { + "start": 3712.84, + "end": 3713.68, + "probability": 0.4525 + }, + { + "start": 3714.2, + "end": 3718.28, + "probability": 0.9944 + }, + { + "start": 3718.28, + "end": 3723.38, + "probability": 0.998 + }, + { + "start": 3724.4, + "end": 3726.18, + "probability": 0.9982 + }, + { + "start": 3726.18, + "end": 3728.42, + "probability": 0.9954 + }, + { + "start": 3732.24, + "end": 3733.74, + "probability": 0.5641 + }, + { + "start": 3734.92, + "end": 3737.24, + "probability": 0.979 + }, + { + "start": 3737.88, + "end": 3741.32, + "probability": 0.9962 + }, + { + "start": 3742.66, + "end": 3743.74, + "probability": 0.8972 + }, + { + "start": 3744.7, + "end": 3747.48, + "probability": 0.8462 + }, + { + "start": 3747.64, + "end": 3748.5, + "probability": 0.648 + }, + { + "start": 3749.38, + "end": 3752.36, + "probability": 0.8767 + }, + { + "start": 3752.54, + "end": 3753.34, + "probability": 0.9456 + }, + { + "start": 3753.7, + "end": 3755.22, + "probability": 0.9504 + }, + { + "start": 3755.72, + "end": 3758.78, + "probability": 0.9811 + }, + { + "start": 3759.5, + "end": 3761.66, + "probability": 0.9886 + }, + { + "start": 3762.78, + "end": 3764.96, + "probability": 0.7586 + }, + { + "start": 3765.72, + "end": 3768.78, + "probability": 0.9861 + }, + { + "start": 3769.98, + "end": 3773.2, + "probability": 0.9976 + }, + { + "start": 3773.28, + "end": 3776.48, + "probability": 0.9693 + }, + { + "start": 3777.02, + "end": 3780.18, + "probability": 0.9922 + }, + { + "start": 3781.18, + "end": 3784.82, + "probability": 0.7059 + }, + { + "start": 3785.6, + "end": 3788.2, + "probability": 0.9279 + }, + { + "start": 3788.72, + "end": 3790.6, + "probability": 0.9752 + }, + { + "start": 3791.84, + "end": 3792.88, + "probability": 0.9388 + }, + { + "start": 3793.52, + "end": 3795.82, + "probability": 0.9727 + }, + { + "start": 3796.7, + "end": 3801.42, + "probability": 0.9847 + }, + { + "start": 3802.12, + "end": 3804.98, + "probability": 0.9948 + }, + { + "start": 3804.98, + "end": 3807.76, + "probability": 0.9922 + }, + { + "start": 3809.28, + "end": 3812.2, + "probability": 0.988 + }, + { + "start": 3812.23, + "end": 3815.9, + "probability": 0.9978 + }, + { + "start": 3817.3, + "end": 3817.84, + "probability": 0.9745 + }, + { + "start": 3818.6, + "end": 3823.0, + "probability": 0.999 + }, + { + "start": 3824.04, + "end": 3826.86, + "probability": 0.995 + }, + { + "start": 3827.44, + "end": 3830.64, + "probability": 0.9993 + }, + { + "start": 3831.94, + "end": 3835.04, + "probability": 0.9219 + }, + { + "start": 3835.76, + "end": 3836.12, + "probability": 0.7119 + }, + { + "start": 3836.62, + "end": 3838.6, + "probability": 0.9896 + }, + { + "start": 3838.74, + "end": 3840.08, + "probability": 0.7709 + }, + { + "start": 3841.28, + "end": 3842.18, + "probability": 0.7157 + }, + { + "start": 3843.56, + "end": 3846.32, + "probability": 0.984 + }, + { + "start": 3846.9, + "end": 3849.06, + "probability": 0.9923 + }, + { + "start": 3849.06, + "end": 3851.96, + "probability": 0.9706 + }, + { + "start": 3853.26, + "end": 3853.9, + "probability": 0.7053 + }, + { + "start": 3854.5, + "end": 3855.54, + "probability": 0.9311 + }, + { + "start": 3856.32, + "end": 3857.52, + "probability": 0.9353 + }, + { + "start": 3857.88, + "end": 3860.3, + "probability": 0.9868 + }, + { + "start": 3860.94, + "end": 3863.92, + "probability": 0.9672 + }, + { + "start": 3865.44, + "end": 3867.06, + "probability": 0.6132 + }, + { + "start": 3867.64, + "end": 3870.92, + "probability": 0.997 + }, + { + "start": 3871.98, + "end": 3875.7, + "probability": 0.9349 + }, + { + "start": 3876.26, + "end": 3877.28, + "probability": 0.8628 + }, + { + "start": 3877.94, + "end": 3879.98, + "probability": 0.948 + }, + { + "start": 3881.38, + "end": 3884.18, + "probability": 0.9593 + }, + { + "start": 3885.26, + "end": 3887.96, + "probability": 0.9769 + }, + { + "start": 3890.72, + "end": 3892.44, + "probability": 0.7296 + }, + { + "start": 3893.6, + "end": 3895.24, + "probability": 0.9644 + }, + { + "start": 3895.98, + "end": 3897.42, + "probability": 0.8701 + }, + { + "start": 3898.3, + "end": 3898.6, + "probability": 0.712 + }, + { + "start": 3899.44, + "end": 3903.0, + "probability": 0.985 + }, + { + "start": 3903.88, + "end": 3907.82, + "probability": 0.9896 + }, + { + "start": 3908.96, + "end": 3911.42, + "probability": 0.975 + }, + { + "start": 3912.68, + "end": 3914.74, + "probability": 0.9608 + }, + { + "start": 3915.36, + "end": 3916.9, + "probability": 0.9461 + }, + { + "start": 3917.76, + "end": 3919.38, + "probability": 0.9061 + }, + { + "start": 3920.36, + "end": 3921.5, + "probability": 0.9026 + }, + { + "start": 3922.38, + "end": 3925.8, + "probability": 0.9904 + }, + { + "start": 3926.4, + "end": 3928.42, + "probability": 0.9925 + }, + { + "start": 3929.46, + "end": 3932.54, + "probability": 0.9758 + }, + { + "start": 3933.34, + "end": 3935.48, + "probability": 0.9575 + }, + { + "start": 3936.0, + "end": 3937.06, + "probability": 0.5417 + }, + { + "start": 3937.64, + "end": 3937.94, + "probability": 0.8037 + }, + { + "start": 3938.78, + "end": 3940.2, + "probability": 0.8108 + }, + { + "start": 3942.0, + "end": 3942.18, + "probability": 0.5428 + }, + { + "start": 3978.0, + "end": 3984.34, + "probability": 0.9695 + }, + { + "start": 4033.56, + "end": 4035.54, + "probability": 0.683 + }, + { + "start": 4038.16, + "end": 4039.3, + "probability": 0.7848 + }, + { + "start": 4059.18, + "end": 4060.5, + "probability": 0.8982 + }, + { + "start": 4060.94, + "end": 4063.2, + "probability": 0.9844 + }, + { + "start": 4074.4, + "end": 4076.62, + "probability": 0.9409 + }, + { + "start": 4083.64, + "end": 4084.86, + "probability": 0.8409 + }, + { + "start": 4087.26, + "end": 4093.6, + "probability": 0.9658 + }, + { + "start": 4096.19, + "end": 4097.34, + "probability": 0.7671 + }, + { + "start": 4098.32, + "end": 4100.68, + "probability": 0.9476 + }, + { + "start": 4100.76, + "end": 4103.9, + "probability": 0.9924 + }, + { + "start": 4104.9, + "end": 4105.87, + "probability": 0.9182 + }, + { + "start": 4107.22, + "end": 4108.36, + "probability": 0.8045 + }, + { + "start": 4108.4, + "end": 4110.96, + "probability": 0.9675 + }, + { + "start": 4111.3, + "end": 4113.06, + "probability": 0.9586 + }, + { + "start": 4114.28, + "end": 4116.16, + "probability": 0.974 + }, + { + "start": 4116.84, + "end": 4118.28, + "probability": 0.7946 + }, + { + "start": 4118.38, + "end": 4118.76, + "probability": 0.868 + }, + { + "start": 4119.2, + "end": 4120.62, + "probability": 0.9661 + }, + { + "start": 4120.84, + "end": 4121.14, + "probability": 0.9787 + }, + { + "start": 4122.06, + "end": 4122.76, + "probability": 0.4762 + }, + { + "start": 4123.54, + "end": 4125.16, + "probability": 0.696 + }, + { + "start": 4125.34, + "end": 4128.32, + "probability": 0.6311 + }, + { + "start": 4128.52, + "end": 4130.62, + "probability": 0.8832 + }, + { + "start": 4131.24, + "end": 4134.44, + "probability": 0.7978 + }, + { + "start": 4135.12, + "end": 4136.56, + "probability": 0.9517 + }, + { + "start": 4136.78, + "end": 4137.24, + "probability": 0.7432 + }, + { + "start": 4137.72, + "end": 4139.44, + "probability": 0.4551 + }, + { + "start": 4140.76, + "end": 4143.64, + "probability": 0.9646 + }, + { + "start": 4145.58, + "end": 4146.58, + "probability": 0.8484 + }, + { + "start": 4148.82, + "end": 4152.44, + "probability": 0.9924 + }, + { + "start": 4154.61, + "end": 4158.8, + "probability": 0.9955 + }, + { + "start": 4159.52, + "end": 4165.34, + "probability": 0.7982 + }, + { + "start": 4165.58, + "end": 4167.34, + "probability": 0.9249 + }, + { + "start": 4167.5, + "end": 4169.54, + "probability": 0.4868 + }, + { + "start": 4171.1, + "end": 4171.24, + "probability": 0.1166 + }, + { + "start": 4171.24, + "end": 4173.84, + "probability": 0.9758 + }, + { + "start": 4174.46, + "end": 4175.16, + "probability": 0.9247 + }, + { + "start": 4175.82, + "end": 4178.6, + "probability": 0.9967 + }, + { + "start": 4179.3, + "end": 4183.14, + "probability": 0.9875 + }, + { + "start": 4183.26, + "end": 4186.5, + "probability": 0.7447 + }, + { + "start": 4188.44, + "end": 4191.76, + "probability": 0.9655 + }, + { + "start": 4192.54, + "end": 4193.72, + "probability": 0.674 + }, + { + "start": 4194.42, + "end": 4197.32, + "probability": 0.9871 + }, + { + "start": 4197.9, + "end": 4198.82, + "probability": 0.6803 + }, + { + "start": 4199.06, + "end": 4203.1, + "probability": 0.995 + }, + { + "start": 4203.56, + "end": 4205.22, + "probability": 0.9678 + }, + { + "start": 4208.0, + "end": 4210.32, + "probability": 0.9195 + }, + { + "start": 4210.98, + "end": 4213.54, + "probability": 0.96 + }, + { + "start": 4213.68, + "end": 4214.38, + "probability": 0.7689 + }, + { + "start": 4214.54, + "end": 4217.22, + "probability": 0.9429 + }, + { + "start": 4217.94, + "end": 4218.92, + "probability": 0.942 + }, + { + "start": 4219.06, + "end": 4220.16, + "probability": 0.4896 + }, + { + "start": 4220.18, + "end": 4221.02, + "probability": 0.7446 + }, + { + "start": 4221.06, + "end": 4221.62, + "probability": 0.9151 + }, + { + "start": 4222.32, + "end": 4222.94, + "probability": 0.7141 + }, + { + "start": 4223.06, + "end": 4223.96, + "probability": 0.8726 + }, + { + "start": 4224.6, + "end": 4227.9, + "probability": 0.8723 + }, + { + "start": 4228.94, + "end": 4231.6, + "probability": 0.9808 + }, + { + "start": 4232.6, + "end": 4237.32, + "probability": 0.9824 + }, + { + "start": 4238.36, + "end": 4238.76, + "probability": 0.2697 + }, + { + "start": 4238.94, + "end": 4240.6, + "probability": 0.4904 + }, + { + "start": 4242.07, + "end": 4245.3, + "probability": 0.7952 + }, + { + "start": 4246.36, + "end": 4248.38, + "probability": 0.6769 + }, + { + "start": 4248.94, + "end": 4251.46, + "probability": 0.6081 + }, + { + "start": 4252.24, + "end": 4253.78, + "probability": 0.9655 + }, + { + "start": 4253.8, + "end": 4254.9, + "probability": 0.9856 + }, + { + "start": 4254.92, + "end": 4255.75, + "probability": 0.8209 + }, + { + "start": 4256.2, + "end": 4257.59, + "probability": 0.9821 + }, + { + "start": 4258.26, + "end": 4262.08, + "probability": 0.7448 + }, + { + "start": 4263.36, + "end": 4266.74, + "probability": 0.8219 + }, + { + "start": 4267.46, + "end": 4271.68, + "probability": 0.9624 + }, + { + "start": 4272.36, + "end": 4276.26, + "probability": 0.9932 + }, + { + "start": 4277.06, + "end": 4277.86, + "probability": 0.7021 + }, + { + "start": 4277.94, + "end": 4279.3, + "probability": 0.9753 + }, + { + "start": 4279.32, + "end": 4280.6, + "probability": 0.8933 + }, + { + "start": 4281.62, + "end": 4284.42, + "probability": 0.9727 + }, + { + "start": 4284.54, + "end": 4285.06, + "probability": 0.7126 + }, + { + "start": 4285.6, + "end": 4286.48, + "probability": 0.9678 + }, + { + "start": 4286.56, + "end": 4287.52, + "probability": 0.7474 + }, + { + "start": 4287.62, + "end": 4289.1, + "probability": 0.9888 + }, + { + "start": 4289.6, + "end": 4291.14, + "probability": 0.989 + }, + { + "start": 4292.24, + "end": 4294.32, + "probability": 0.9832 + }, + { + "start": 4294.38, + "end": 4295.22, + "probability": 0.9862 + }, + { + "start": 4295.26, + "end": 4296.7, + "probability": 0.9208 + }, + { + "start": 4300.44, + "end": 4305.64, + "probability": 0.862 + }, + { + "start": 4306.5, + "end": 4309.22, + "probability": 0.9919 + }, + { + "start": 4310.42, + "end": 4310.56, + "probability": 0.4474 + }, + { + "start": 4311.28, + "end": 4313.72, + "probability": 0.9889 + }, + { + "start": 4313.92, + "end": 4318.86, + "probability": 0.9523 + }, + { + "start": 4319.74, + "end": 4322.38, + "probability": 0.8112 + }, + { + "start": 4323.1, + "end": 4327.12, + "probability": 0.9593 + }, + { + "start": 4327.12, + "end": 4331.84, + "probability": 0.9985 + }, + { + "start": 4332.0, + "end": 4333.22, + "probability": 0.9634 + }, + { + "start": 4333.96, + "end": 4336.46, + "probability": 0.9928 + }, + { + "start": 4337.31, + "end": 4339.74, + "probability": 0.9662 + }, + { + "start": 4340.48, + "end": 4342.29, + "probability": 0.1759 + }, + { + "start": 4343.48, + "end": 4344.62, + "probability": 0.7892 + }, + { + "start": 4345.26, + "end": 4346.04, + "probability": 0.697 + }, + { + "start": 4346.68, + "end": 4350.36, + "probability": 0.9712 + }, + { + "start": 4351.24, + "end": 4354.44, + "probability": 0.8407 + }, + { + "start": 4355.06, + "end": 4356.56, + "probability": 0.8108 + }, + { + "start": 4356.72, + "end": 4360.5, + "probability": 0.9907 + }, + { + "start": 4360.96, + "end": 4363.88, + "probability": 0.9155 + }, + { + "start": 4364.06, + "end": 4367.2, + "probability": 0.9707 + }, + { + "start": 4367.8, + "end": 4369.4, + "probability": 0.9937 + }, + { + "start": 4370.0, + "end": 4373.72, + "probability": 0.9049 + }, + { + "start": 4374.56, + "end": 4376.4, + "probability": 0.7484 + }, + { + "start": 4377.28, + "end": 4377.9, + "probability": 0.254 + }, + { + "start": 4378.04, + "end": 4378.58, + "probability": 0.6564 + }, + { + "start": 4378.66, + "end": 4378.88, + "probability": 0.8001 + }, + { + "start": 4378.96, + "end": 4381.42, + "probability": 0.9829 + }, + { + "start": 4382.08, + "end": 4384.4, + "probability": 0.9912 + }, + { + "start": 4385.12, + "end": 4387.58, + "probability": 0.9874 + }, + { + "start": 4388.68, + "end": 4392.26, + "probability": 0.9103 + }, + { + "start": 4392.82, + "end": 4394.38, + "probability": 0.9941 + }, + { + "start": 4394.48, + "end": 4395.74, + "probability": 0.9917 + }, + { + "start": 4396.24, + "end": 4396.6, + "probability": 0.7243 + }, + { + "start": 4397.14, + "end": 4398.9, + "probability": 0.9951 + }, + { + "start": 4398.9, + "end": 4399.32, + "probability": 0.4767 + }, + { + "start": 4399.62, + "end": 4400.78, + "probability": 0.7371 + }, + { + "start": 4401.88, + "end": 4404.46, + "probability": 0.9455 + }, + { + "start": 4406.02, + "end": 4407.4, + "probability": 0.9548 + }, + { + "start": 4408.26, + "end": 4409.84, + "probability": 0.9923 + }, + { + "start": 4410.66, + "end": 4412.44, + "probability": 0.9942 + }, + { + "start": 4413.0, + "end": 4413.4, + "probability": 0.7853 + }, + { + "start": 4414.72, + "end": 4415.92, + "probability": 0.86 + }, + { + "start": 4416.7, + "end": 4417.94, + "probability": 0.8188 + }, + { + "start": 4420.32, + "end": 4422.76, + "probability": 0.9657 + }, + { + "start": 4422.84, + "end": 4423.06, + "probability": 0.7656 + }, + { + "start": 4423.14, + "end": 4423.74, + "probability": 0.8427 + }, + { + "start": 4423.84, + "end": 4424.72, + "probability": 0.9532 + }, + { + "start": 4424.78, + "end": 4426.16, + "probability": 0.9576 + }, + { + "start": 4426.26, + "end": 4426.62, + "probability": 0.8892 + }, + { + "start": 4427.42, + "end": 4430.1, + "probability": 0.8956 + }, + { + "start": 4430.2, + "end": 4432.78, + "probability": 0.9554 + }, + { + "start": 4433.72, + "end": 4435.24, + "probability": 0.6419 + }, + { + "start": 4435.98, + "end": 4437.64, + "probability": 0.7119 + }, + { + "start": 4439.2, + "end": 4443.64, + "probability": 0.9454 + }, + { + "start": 4443.72, + "end": 4445.24, + "probability": 0.9144 + }, + { + "start": 4445.8, + "end": 4447.98, + "probability": 0.9841 + }, + { + "start": 4448.04, + "end": 4450.4, + "probability": 0.9247 + }, + { + "start": 4451.06, + "end": 4452.96, + "probability": 0.9983 + }, + { + "start": 4453.62, + "end": 4454.1, + "probability": 0.8023 + }, + { + "start": 4455.16, + "end": 4457.0, + "probability": 0.9889 + }, + { + "start": 4457.92, + "end": 4461.3, + "probability": 0.9444 + }, + { + "start": 4461.42, + "end": 4462.8, + "probability": 0.9878 + }, + { + "start": 4463.78, + "end": 4465.66, + "probability": 0.9377 + }, + { + "start": 4466.12, + "end": 4468.52, + "probability": 0.8945 + }, + { + "start": 4469.08, + "end": 4469.24, + "probability": 0.7933 + }, + { + "start": 4470.64, + "end": 4472.6, + "probability": 0.9331 + }, + { + "start": 4472.88, + "end": 4474.97, + "probability": 0.8771 + }, + { + "start": 4476.5, + "end": 4480.52, + "probability": 0.9513 + }, + { + "start": 4482.56, + "end": 4485.87, + "probability": 0.9927 + }, + { + "start": 4487.56, + "end": 4490.74, + "probability": 0.9697 + }, + { + "start": 4504.6, + "end": 4504.6, + "probability": 0.017 + }, + { + "start": 4504.6, + "end": 4504.82, + "probability": 0.1649 + }, + { + "start": 4504.82, + "end": 4504.82, + "probability": 0.2068 + }, + { + "start": 4504.82, + "end": 4504.82, + "probability": 0.0905 + }, + { + "start": 4504.82, + "end": 4504.82, + "probability": 0.0854 + }, + { + "start": 4504.82, + "end": 4504.88, + "probability": 0.1694 + }, + { + "start": 4504.88, + "end": 4505.02, + "probability": 0.0044 + }, + { + "start": 4527.5, + "end": 4528.96, + "probability": 0.2541 + }, + { + "start": 4530.24, + "end": 4532.3, + "probability": 0.9357 + }, + { + "start": 4534.0, + "end": 4534.38, + "probability": 0.7418 + }, + { + "start": 4538.88, + "end": 4542.32, + "probability": 0.9927 + }, + { + "start": 4543.22, + "end": 4544.76, + "probability": 0.9139 + }, + { + "start": 4545.36, + "end": 4546.78, + "probability": 0.7673 + }, + { + "start": 4547.1, + "end": 4550.24, + "probability": 0.9947 + }, + { + "start": 4551.12, + "end": 4555.2, + "probability": 0.9779 + }, + { + "start": 4556.04, + "end": 4556.96, + "probability": 0.7967 + }, + { + "start": 4557.1, + "end": 4557.6, + "probability": 0.6427 + }, + { + "start": 4557.62, + "end": 4560.68, + "probability": 0.9908 + }, + { + "start": 4562.3, + "end": 4562.94, + "probability": 0.9756 + }, + { + "start": 4564.36, + "end": 4566.64, + "probability": 0.9946 + }, + { + "start": 4567.48, + "end": 4569.42, + "probability": 0.9706 + }, + { + "start": 4570.22, + "end": 4572.9, + "probability": 0.999 + }, + { + "start": 4573.78, + "end": 4574.6, + "probability": 0.958 + }, + { + "start": 4576.7, + "end": 4577.86, + "probability": 0.3127 + }, + { + "start": 4578.75, + "end": 4582.8, + "probability": 0.9724 + }, + { + "start": 4583.78, + "end": 4585.28, + "probability": 0.7424 + }, + { + "start": 4585.8, + "end": 4588.52, + "probability": 0.8367 + }, + { + "start": 4589.74, + "end": 4592.18, + "probability": 0.9818 + }, + { + "start": 4592.84, + "end": 4595.26, + "probability": 0.9834 + }, + { + "start": 4595.42, + "end": 4598.0, + "probability": 0.8986 + }, + { + "start": 4598.54, + "end": 4600.66, + "probability": 0.9812 + }, + { + "start": 4601.8, + "end": 4602.76, + "probability": 0.9381 + }, + { + "start": 4603.44, + "end": 4604.06, + "probability": 0.972 + }, + { + "start": 4604.24, + "end": 4604.94, + "probability": 0.9038 + }, + { + "start": 4605.12, + "end": 4608.44, + "probability": 0.9913 + }, + { + "start": 4609.22, + "end": 4610.78, + "probability": 0.992 + }, + { + "start": 4610.86, + "end": 4613.86, + "probability": 0.8979 + }, + { + "start": 4614.56, + "end": 4616.1, + "probability": 0.9371 + }, + { + "start": 4617.44, + "end": 4617.66, + "probability": 0.4018 + }, + { + "start": 4617.72, + "end": 4619.7, + "probability": 0.9589 + }, + { + "start": 4619.94, + "end": 4622.74, + "probability": 0.9448 + }, + { + "start": 4623.6, + "end": 4627.8, + "probability": 0.9937 + }, + { + "start": 4628.36, + "end": 4631.12, + "probability": 0.9925 + }, + { + "start": 4631.68, + "end": 4632.24, + "probability": 0.6958 + }, + { + "start": 4634.4, + "end": 4636.56, + "probability": 0.987 + }, + { + "start": 4636.76, + "end": 4637.32, + "probability": 0.9817 + }, + { + "start": 4638.24, + "end": 4641.04, + "probability": 0.9969 + }, + { + "start": 4641.2, + "end": 4643.26, + "probability": 0.6693 + }, + { + "start": 4644.38, + "end": 4647.16, + "probability": 0.9197 + }, + { + "start": 4648.28, + "end": 4650.5, + "probability": 0.8022 + }, + { + "start": 4651.28, + "end": 4653.16, + "probability": 0.823 + }, + { + "start": 4654.04, + "end": 4655.02, + "probability": 0.9841 + }, + { + "start": 4655.74, + "end": 4656.52, + "probability": 0.9764 + }, + { + "start": 4657.34, + "end": 4660.42, + "probability": 0.8683 + }, + { + "start": 4661.42, + "end": 4662.22, + "probability": 0.8921 + }, + { + "start": 4662.86, + "end": 4663.64, + "probability": 0.7723 + }, + { + "start": 4664.66, + "end": 4666.24, + "probability": 0.5225 + }, + { + "start": 4667.06, + "end": 4669.08, + "probability": 0.946 + }, + { + "start": 4669.08, + "end": 4671.82, + "probability": 0.9914 + }, + { + "start": 4673.04, + "end": 4674.1, + "probability": 0.964 + }, + { + "start": 4675.26, + "end": 4677.28, + "probability": 0.9753 + }, + { + "start": 4677.92, + "end": 4678.74, + "probability": 0.8852 + }, + { + "start": 4679.98, + "end": 4682.52, + "probability": 0.9945 + }, + { + "start": 4683.36, + "end": 4685.04, + "probability": 0.991 + }, + { + "start": 4685.78, + "end": 4689.4, + "probability": 0.795 + }, + { + "start": 4689.96, + "end": 4693.3, + "probability": 0.9836 + }, + { + "start": 4693.44, + "end": 4694.39, + "probability": 0.9288 + }, + { + "start": 4695.14, + "end": 4697.4, + "probability": 0.9633 + }, + { + "start": 4698.42, + "end": 4701.18, + "probability": 0.9331 + }, + { + "start": 4702.92, + "end": 4703.9, + "probability": 0.839 + }, + { + "start": 4704.44, + "end": 4705.74, + "probability": 0.9958 + }, + { + "start": 4706.38, + "end": 4708.36, + "probability": 0.9475 + }, + { + "start": 4709.22, + "end": 4713.08, + "probability": 0.792 + }, + { + "start": 4713.62, + "end": 4715.74, + "probability": 0.7966 + }, + { + "start": 4716.56, + "end": 4720.1, + "probability": 0.9946 + }, + { + "start": 4720.72, + "end": 4722.44, + "probability": 0.5146 + }, + { + "start": 4723.14, + "end": 4724.58, + "probability": 0.9474 + }, + { + "start": 4724.78, + "end": 4728.02, + "probability": 0.9861 + }, + { + "start": 4729.64, + "end": 4730.06, + "probability": 0.8595 + }, + { + "start": 4730.16, + "end": 4732.98, + "probability": 0.9813 + }, + { + "start": 4733.12, + "end": 4736.26, + "probability": 0.9946 + }, + { + "start": 4737.38, + "end": 4740.94, + "probability": 0.9888 + }, + { + "start": 4741.86, + "end": 4743.6, + "probability": 0.9955 + }, + { + "start": 4744.3, + "end": 4746.8, + "probability": 0.9993 + }, + { + "start": 4747.84, + "end": 4749.86, + "probability": 0.999 + }, + { + "start": 4750.04, + "end": 4750.46, + "probability": 0.7851 + }, + { + "start": 4750.74, + "end": 4751.7, + "probability": 0.937 + }, + { + "start": 4752.3, + "end": 4753.8, + "probability": 0.9312 + }, + { + "start": 4756.7, + "end": 4758.84, + "probability": 0.9855 + }, + { + "start": 4759.14, + "end": 4762.92, + "probability": 0.9857 + }, + { + "start": 4764.44, + "end": 4766.28, + "probability": 0.9425 + }, + { + "start": 4766.44, + "end": 4768.2, + "probability": 0.9521 + }, + { + "start": 4768.74, + "end": 4770.0, + "probability": 0.4785 + }, + { + "start": 4772.02, + "end": 4773.64, + "probability": 0.7029 + }, + { + "start": 4774.4, + "end": 4775.94, + "probability": 0.8271 + }, + { + "start": 4777.28, + "end": 4779.02, + "probability": 0.9482 + }, + { + "start": 4779.12, + "end": 4780.96, + "probability": 0.9381 + }, + { + "start": 4781.76, + "end": 4783.8, + "probability": 0.9803 + }, + { + "start": 4784.08, + "end": 4785.74, + "probability": 0.9623 + }, + { + "start": 4787.04, + "end": 4789.94, + "probability": 0.8282 + }, + { + "start": 4790.04, + "end": 4791.14, + "probability": 0.8909 + }, + { + "start": 4791.82, + "end": 4792.84, + "probability": 0.989 + }, + { + "start": 4793.38, + "end": 4794.04, + "probability": 0.9916 + }, + { + "start": 4794.6, + "end": 4796.56, + "probability": 0.9956 + }, + { + "start": 4797.3, + "end": 4798.88, + "probability": 0.9692 + }, + { + "start": 4799.58, + "end": 4800.48, + "probability": 0.8597 + }, + { + "start": 4801.46, + "end": 4804.36, + "probability": 0.9836 + }, + { + "start": 4805.4, + "end": 4809.68, + "probability": 0.9956 + }, + { + "start": 4809.74, + "end": 4809.94, + "probability": 0.8845 + }, + { + "start": 4811.34, + "end": 4812.3, + "probability": 0.9949 + }, + { + "start": 4812.42, + "end": 4815.5, + "probability": 0.9965 + }, + { + "start": 4816.24, + "end": 4817.18, + "probability": 0.9994 + }, + { + "start": 4817.32, + "end": 4818.78, + "probability": 0.9985 + }, + { + "start": 4818.86, + "end": 4820.56, + "probability": 0.9988 + }, + { + "start": 4822.58, + "end": 4823.38, + "probability": 0.7383 + }, + { + "start": 4824.46, + "end": 4828.84, + "probability": 0.9092 + }, + { + "start": 4829.48, + "end": 4831.2, + "probability": 0.992 + }, + { + "start": 4832.28, + "end": 4832.77, + "probability": 0.9883 + }, + { + "start": 4833.64, + "end": 4834.49, + "probability": 0.9688 + }, + { + "start": 4835.48, + "end": 4838.92, + "probability": 0.7569 + }, + { + "start": 4839.86, + "end": 4841.5, + "probability": 0.9046 + }, + { + "start": 4841.66, + "end": 4842.82, + "probability": 0.8873 + }, + { + "start": 4843.76, + "end": 4843.84, + "probability": 0.1623 + }, + { + "start": 4843.84, + "end": 4845.56, + "probability": 0.865 + }, + { + "start": 4846.76, + "end": 4848.07, + "probability": 0.9976 + }, + { + "start": 4849.76, + "end": 4851.8, + "probability": 0.9208 + }, + { + "start": 4852.32, + "end": 4853.8, + "probability": 0.937 + }, + { + "start": 4854.4, + "end": 4855.62, + "probability": 0.6918 + }, + { + "start": 4856.34, + "end": 4858.24, + "probability": 0.9006 + }, + { + "start": 4859.4, + "end": 4861.04, + "probability": 0.9666 + }, + { + "start": 4861.14, + "end": 4862.64, + "probability": 0.9498 + }, + { + "start": 4863.0, + "end": 4865.7, + "probability": 0.9879 + }, + { + "start": 4866.74, + "end": 4867.86, + "probability": 0.7627 + }, + { + "start": 4867.96, + "end": 4871.14, + "probability": 0.9506 + }, + { + "start": 4873.86, + "end": 4875.92, + "probability": 0.9917 + }, + { + "start": 4876.68, + "end": 4879.22, + "probability": 0.9883 + }, + { + "start": 4880.08, + "end": 4882.7, + "probability": 0.9679 + }, + { + "start": 4883.48, + "end": 4884.38, + "probability": 0.8798 + }, + { + "start": 4884.52, + "end": 4886.38, + "probability": 0.9676 + }, + { + "start": 4887.44, + "end": 4889.18, + "probability": 0.9821 + }, + { + "start": 4889.34, + "end": 4890.66, + "probability": 0.9865 + }, + { + "start": 4891.54, + "end": 4894.34, + "probability": 0.9638 + }, + { + "start": 4894.96, + "end": 4901.2, + "probability": 0.9951 + }, + { + "start": 4902.3, + "end": 4903.6, + "probability": 0.7775 + }, + { + "start": 4904.08, + "end": 4905.34, + "probability": 0.9974 + }, + { + "start": 4905.46, + "end": 4906.2, + "probability": 0.9355 + }, + { + "start": 4906.86, + "end": 4910.4, + "probability": 0.9722 + }, + { + "start": 4911.78, + "end": 4912.92, + "probability": 0.9466 + }, + { + "start": 4913.58, + "end": 4915.62, + "probability": 0.9241 + }, + { + "start": 4916.02, + "end": 4918.18, + "probability": 0.9978 + }, + { + "start": 4919.04, + "end": 4921.8, + "probability": 0.9614 + }, + { + "start": 4922.34, + "end": 4923.54, + "probability": 0.8904 + }, + { + "start": 4924.48, + "end": 4926.82, + "probability": 0.9704 + }, + { + "start": 4926.88, + "end": 4927.96, + "probability": 0.9966 + }, + { + "start": 4929.18, + "end": 4930.36, + "probability": 0.8558 + }, + { + "start": 4930.44, + "end": 4933.8, + "probability": 0.9119 + }, + { + "start": 4933.9, + "end": 4934.24, + "probability": 0.1193 + }, + { + "start": 4934.24, + "end": 4935.4, + "probability": 0.3197 + }, + { + "start": 4935.4, + "end": 4935.96, + "probability": 0.5861 + }, + { + "start": 4936.76, + "end": 4940.66, + "probability": 0.9803 + }, + { + "start": 4941.34, + "end": 4942.2, + "probability": 0.926 + }, + { + "start": 4943.32, + "end": 4945.74, + "probability": 0.7046 + }, + { + "start": 4945.76, + "end": 4949.12, + "probability": 0.9922 + }, + { + "start": 4949.32, + "end": 4953.16, + "probability": 0.8953 + }, + { + "start": 4953.56, + "end": 4956.1, + "probability": 0.9917 + }, + { + "start": 4956.3, + "end": 4956.96, + "probability": 0.7043 + }, + { + "start": 4959.04, + "end": 4961.3, + "probability": 0.923 + }, + { + "start": 4962.68, + "end": 4966.48, + "probability": 0.9473 + }, + { + "start": 4966.8, + "end": 4969.24, + "probability": 0.9627 + }, + { + "start": 4969.96, + "end": 4971.32, + "probability": 0.9722 + }, + { + "start": 4971.5, + "end": 4972.38, + "probability": 0.7214 + }, + { + "start": 4972.42, + "end": 4974.26, + "probability": 0.9986 + }, + { + "start": 4975.52, + "end": 4977.2, + "probability": 0.9946 + }, + { + "start": 4977.88, + "end": 4979.86, + "probability": 0.997 + }, + { + "start": 4980.18, + "end": 4982.36, + "probability": 0.991 + }, + { + "start": 4983.1, + "end": 4987.08, + "probability": 0.9949 + }, + { + "start": 4988.6, + "end": 4989.66, + "probability": 0.929 + }, + { + "start": 4989.68, + "end": 4989.86, + "probability": 0.8516 + }, + { + "start": 4990.0, + "end": 4993.06, + "probability": 0.9924 + }, + { + "start": 4993.72, + "end": 4997.0, + "probability": 0.9369 + }, + { + "start": 4997.9, + "end": 5002.82, + "probability": 0.9949 + }, + { + "start": 5005.46, + "end": 5006.92, + "probability": 0.9992 + }, + { + "start": 5007.94, + "end": 5010.08, + "probability": 0.9967 + }, + { + "start": 5010.5, + "end": 5012.76, + "probability": 0.9977 + }, + { + "start": 5013.88, + "end": 5015.92, + "probability": 0.9946 + }, + { + "start": 5015.92, + "end": 5018.76, + "probability": 0.9929 + }, + { + "start": 5019.6, + "end": 5020.72, + "probability": 0.9767 + }, + { + "start": 5020.8, + "end": 5022.06, + "probability": 0.7718 + }, + { + "start": 5023.38, + "end": 5024.64, + "probability": 0.9819 + }, + { + "start": 5024.78, + "end": 5027.8, + "probability": 0.9958 + }, + { + "start": 5029.58, + "end": 5033.12, + "probability": 0.9267 + }, + { + "start": 5033.22, + "end": 5033.7, + "probability": 0.7501 + }, + { + "start": 5033.96, + "end": 5037.0, + "probability": 0.9943 + }, + { + "start": 5037.42, + "end": 5038.2, + "probability": 0.7517 + }, + { + "start": 5038.64, + "end": 5039.12, + "probability": 0.6241 + }, + { + "start": 5039.24, + "end": 5043.5, + "probability": 0.9972 + }, + { + "start": 5044.08, + "end": 5048.28, + "probability": 0.9977 + }, + { + "start": 5049.24, + "end": 5050.96, + "probability": 0.9941 + }, + { + "start": 5051.16, + "end": 5052.92, + "probability": 0.9226 + }, + { + "start": 5054.16, + "end": 5055.26, + "probability": 0.7568 + }, + { + "start": 5055.36, + "end": 5056.78, + "probability": 0.9771 + }, + { + "start": 5057.86, + "end": 5060.06, + "probability": 0.8712 + }, + { + "start": 5060.1, + "end": 5062.4, + "probability": 0.9823 + }, + { + "start": 5063.02, + "end": 5065.08, + "probability": 0.9949 + }, + { + "start": 5066.24, + "end": 5070.72, + "probability": 0.9971 + }, + { + "start": 5071.16, + "end": 5071.9, + "probability": 0.8258 + }, + { + "start": 5073.18, + "end": 5076.86, + "probability": 0.9425 + }, + { + "start": 5076.98, + "end": 5078.38, + "probability": 0.9785 + }, + { + "start": 5078.56, + "end": 5079.34, + "probability": 0.8111 + }, + { + "start": 5080.02, + "end": 5082.6, + "probability": 0.9958 + }, + { + "start": 5083.7, + "end": 5085.54, + "probability": 0.9653 + }, + { + "start": 5086.92, + "end": 5090.92, + "probability": 0.9732 + }, + { + "start": 5091.06, + "end": 5092.92, + "probability": 0.9734 + }, + { + "start": 5093.7, + "end": 5094.34, + "probability": 0.9507 + }, + { + "start": 5095.39, + "end": 5098.36, + "probability": 0.9973 + }, + { + "start": 5098.62, + "end": 5099.62, + "probability": 0.7653 + }, + { + "start": 5100.18, + "end": 5103.58, + "probability": 0.8028 + }, + { + "start": 5104.44, + "end": 5107.64, + "probability": 0.998 + }, + { + "start": 5109.52, + "end": 5112.28, + "probability": 0.9969 + }, + { + "start": 5112.28, + "end": 5114.74, + "probability": 0.9963 + }, + { + "start": 5115.54, + "end": 5116.21, + "probability": 0.9863 + }, + { + "start": 5117.54, + "end": 5119.64, + "probability": 0.9178 + }, + { + "start": 5119.8, + "end": 5123.08, + "probability": 0.9948 + }, + { + "start": 5123.34, + "end": 5124.6, + "probability": 0.6826 + }, + { + "start": 5125.7, + "end": 5128.5, + "probability": 0.9635 + }, + { + "start": 5128.56, + "end": 5130.47, + "probability": 0.9221 + }, + { + "start": 5130.82, + "end": 5131.86, + "probability": 0.9028 + }, + { + "start": 5133.08, + "end": 5136.4, + "probability": 0.624 + }, + { + "start": 5136.4, + "end": 5137.2, + "probability": 0.8339 + }, + { + "start": 5138.32, + "end": 5139.56, + "probability": 0.9497 + }, + { + "start": 5139.9, + "end": 5140.16, + "probability": 0.845 + }, + { + "start": 5140.28, + "end": 5140.58, + "probability": 0.9031 + }, + { + "start": 5140.88, + "end": 5141.62, + "probability": 0.8137 + }, + { + "start": 5141.7, + "end": 5145.2, + "probability": 0.9939 + }, + { + "start": 5146.14, + "end": 5148.0, + "probability": 0.9945 + }, + { + "start": 5149.06, + "end": 5150.58, + "probability": 0.9849 + }, + { + "start": 5151.52, + "end": 5153.56, + "probability": 0.8495 + }, + { + "start": 5154.84, + "end": 5156.12, + "probability": 0.9958 + }, + { + "start": 5156.24, + "end": 5157.45, + "probability": 0.9937 + }, + { + "start": 5158.32, + "end": 5159.14, + "probability": 0.9853 + }, + { + "start": 5160.52, + "end": 5160.96, + "probability": 0.7751 + }, + { + "start": 5161.08, + "end": 5162.72, + "probability": 0.9856 + }, + { + "start": 5162.98, + "end": 5163.42, + "probability": 0.863 + }, + { + "start": 5163.58, + "end": 5163.92, + "probability": 0.9373 + }, + { + "start": 5164.98, + "end": 5166.14, + "probability": 0.9324 + }, + { + "start": 5168.26, + "end": 5169.38, + "probability": 0.7013 + }, + { + "start": 5170.62, + "end": 5173.52, + "probability": 0.9045 + }, + { + "start": 5173.52, + "end": 5176.66, + "probability": 0.9707 + }, + { + "start": 5177.48, + "end": 5178.56, + "probability": 0.9833 + }, + { + "start": 5178.84, + "end": 5179.28, + "probability": 0.764 + }, + { + "start": 5179.56, + "end": 5180.0, + "probability": 0.9151 + }, + { + "start": 5180.26, + "end": 5180.54, + "probability": 0.9672 + }, + { + "start": 5180.96, + "end": 5181.9, + "probability": 0.692 + }, + { + "start": 5182.74, + "end": 5184.88, + "probability": 0.9826 + }, + { + "start": 5185.46, + "end": 5187.2, + "probability": 0.8273 + }, + { + "start": 5189.36, + "end": 5190.04, + "probability": 0.9266 + }, + { + "start": 5191.4, + "end": 5194.82, + "probability": 0.9775 + }, + { + "start": 5195.42, + "end": 5197.3, + "probability": 0.9103 + }, + { + "start": 5198.48, + "end": 5200.18, + "probability": 0.9971 + }, + { + "start": 5200.96, + "end": 5201.78, + "probability": 0.9521 + }, + { + "start": 5201.98, + "end": 5202.9, + "probability": 0.9574 + }, + { + "start": 5203.16, + "end": 5204.68, + "probability": 0.8455 + }, + { + "start": 5205.32, + "end": 5208.1, + "probability": 0.9862 + }, + { + "start": 5210.1, + "end": 5212.3, + "probability": 0.999 + }, + { + "start": 5212.84, + "end": 5213.7, + "probability": 0.8091 + }, + { + "start": 5214.2, + "end": 5217.96, + "probability": 0.9988 + }, + { + "start": 5219.44, + "end": 5223.72, + "probability": 0.9907 + }, + { + "start": 5224.68, + "end": 5225.99, + "probability": 0.7538 + }, + { + "start": 5226.32, + "end": 5228.02, + "probability": 0.975 + }, + { + "start": 5228.2, + "end": 5229.88, + "probability": 0.8328 + }, + { + "start": 5230.88, + "end": 5233.02, + "probability": 0.9539 + }, + { + "start": 5233.62, + "end": 5234.68, + "probability": 0.8416 + }, + { + "start": 5235.44, + "end": 5237.0, + "probability": 0.9083 + }, + { + "start": 5237.76, + "end": 5239.18, + "probability": 0.8909 + }, + { + "start": 5240.12, + "end": 5241.2, + "probability": 0.8234 + }, + { + "start": 5243.44, + "end": 5243.44, + "probability": 0.0067 + }, + { + "start": 5243.44, + "end": 5244.76, + "probability": 0.9946 + }, + { + "start": 5245.96, + "end": 5249.34, + "probability": 0.9269 + }, + { + "start": 5250.34, + "end": 5252.1, + "probability": 0.9199 + }, + { + "start": 5252.48, + "end": 5254.09, + "probability": 0.8105 + }, + { + "start": 5254.98, + "end": 5257.24, + "probability": 0.7622 + }, + { + "start": 5258.04, + "end": 5258.28, + "probability": 0.8204 + }, + { + "start": 5258.34, + "end": 5259.02, + "probability": 0.7287 + }, + { + "start": 5259.52, + "end": 5260.74, + "probability": 0.9638 + }, + { + "start": 5261.14, + "end": 5262.04, + "probability": 0.9272 + }, + { + "start": 5263.04, + "end": 5264.63, + "probability": 0.9925 + }, + { + "start": 5266.58, + "end": 5266.66, + "probability": 0.6252 + }, + { + "start": 5266.86, + "end": 5267.78, + "probability": 0.8089 + }, + { + "start": 5268.04, + "end": 5270.3, + "probability": 0.9167 + }, + { + "start": 5270.94, + "end": 5272.42, + "probability": 0.9377 + }, + { + "start": 5273.32, + "end": 5276.34, + "probability": 0.9743 + }, + { + "start": 5277.68, + "end": 5280.88, + "probability": 0.994 + }, + { + "start": 5281.4, + "end": 5282.16, + "probability": 0.7887 + }, + { + "start": 5282.96, + "end": 5284.34, + "probability": 0.8953 + }, + { + "start": 5285.52, + "end": 5286.36, + "probability": 0.5391 + }, + { + "start": 5286.48, + "end": 5289.68, + "probability": 0.9866 + }, + { + "start": 5290.42, + "end": 5291.52, + "probability": 0.978 + }, + { + "start": 5292.38, + "end": 5294.0, + "probability": 0.9174 + }, + { + "start": 5294.14, + "end": 5295.76, + "probability": 0.902 + }, + { + "start": 5296.64, + "end": 5298.71, + "probability": 0.9995 + }, + { + "start": 5299.66, + "end": 5302.84, + "probability": 0.9968 + }, + { + "start": 5303.58, + "end": 5306.44, + "probability": 0.9919 + }, + { + "start": 5307.12, + "end": 5309.72, + "probability": 0.9898 + }, + { + "start": 5310.0, + "end": 5312.12, + "probability": 0.9996 + }, + { + "start": 5314.2, + "end": 5317.64, + "probability": 0.8563 + }, + { + "start": 5318.28, + "end": 5319.48, + "probability": 0.9645 + }, + { + "start": 5321.1, + "end": 5323.48, + "probability": 0.9972 + }, + { + "start": 5324.6, + "end": 5325.48, + "probability": 0.7276 + }, + { + "start": 5325.8, + "end": 5328.34, + "probability": 0.987 + }, + { + "start": 5328.68, + "end": 5331.2, + "probability": 0.9954 + }, + { + "start": 5332.0, + "end": 5332.62, + "probability": 0.9435 + }, + { + "start": 5333.92, + "end": 5334.56, + "probability": 0.8691 + }, + { + "start": 5335.16, + "end": 5338.28, + "probability": 0.9609 + }, + { + "start": 5338.86, + "end": 5340.74, + "probability": 0.826 + }, + { + "start": 5341.28, + "end": 5342.12, + "probability": 0.9644 + }, + { + "start": 5342.74, + "end": 5346.3, + "probability": 0.9909 + }, + { + "start": 5347.02, + "end": 5347.92, + "probability": 0.7949 + }, + { + "start": 5348.62, + "end": 5350.18, + "probability": 0.9216 + }, + { + "start": 5350.88, + "end": 5354.26, + "probability": 0.979 + }, + { + "start": 5355.54, + "end": 5359.36, + "probability": 0.987 + }, + { + "start": 5360.1, + "end": 5361.42, + "probability": 0.9121 + }, + { + "start": 5362.16, + "end": 5362.52, + "probability": 0.9562 + }, + { + "start": 5362.6, + "end": 5363.02, + "probability": 0.7689 + }, + { + "start": 5363.06, + "end": 5363.44, + "probability": 0.9583 + }, + { + "start": 5363.6, + "end": 5363.88, + "probability": 0.9349 + }, + { + "start": 5364.12, + "end": 5364.42, + "probability": 0.9226 + }, + { + "start": 5364.48, + "end": 5364.98, + "probability": 0.9393 + }, + { + "start": 5365.32, + "end": 5366.08, + "probability": 0.9701 + }, + { + "start": 5366.12, + "end": 5366.52, + "probability": 0.9479 + }, + { + "start": 5366.62, + "end": 5367.42, + "probability": 0.8877 + }, + { + "start": 5368.18, + "end": 5368.6, + "probability": 0.3416 + }, + { + "start": 5368.66, + "end": 5370.92, + "probability": 0.9497 + }, + { + "start": 5371.88, + "end": 5373.06, + "probability": 0.9287 + }, + { + "start": 5373.22, + "end": 5374.87, + "probability": 0.8496 + }, + { + "start": 5376.48, + "end": 5377.58, + "probability": 0.9227 + }, + { + "start": 5378.34, + "end": 5379.32, + "probability": 0.9971 + }, + { + "start": 5382.98, + "end": 5383.92, + "probability": 0.0022 + }, + { + "start": 5385.96, + "end": 5386.22, + "probability": 0.0947 + }, + { + "start": 5386.22, + "end": 5386.24, + "probability": 0.2062 + }, + { + "start": 5386.24, + "end": 5388.52, + "probability": 0.8418 + }, + { + "start": 5389.6, + "end": 5392.42, + "probability": 0.9835 + }, + { + "start": 5393.36, + "end": 5394.18, + "probability": 0.9132 + }, + { + "start": 5394.4, + "end": 5395.42, + "probability": 0.9078 + }, + { + "start": 5395.54, + "end": 5396.52, + "probability": 0.9163 + }, + { + "start": 5396.68, + "end": 5397.74, + "probability": 0.9751 + }, + { + "start": 5399.64, + "end": 5400.58, + "probability": 0.9927 + }, + { + "start": 5401.0, + "end": 5401.94, + "probability": 0.7886 + }, + { + "start": 5402.12, + "end": 5404.26, + "probability": 0.9952 + }, + { + "start": 5405.12, + "end": 5406.76, + "probability": 0.9991 + }, + { + "start": 5407.38, + "end": 5408.58, + "probability": 0.8792 + }, + { + "start": 5409.36, + "end": 5412.54, + "probability": 0.9982 + }, + { + "start": 5412.76, + "end": 5412.98, + "probability": 0.7702 + }, + { + "start": 5423.68, + "end": 5423.96, + "probability": 0.7165 + }, + { + "start": 5424.84, + "end": 5428.7, + "probability": 0.782 + }, + { + "start": 5445.8, + "end": 5451.18, + "probability": 0.4855 + }, + { + "start": 5460.94, + "end": 5462.6, + "probability": 0.1287 + }, + { + "start": 5463.72, + "end": 5466.1, + "probability": 0.0054 + }, + { + "start": 5531.32, + "end": 5531.4, + "probability": 0.2675 + }, + { + "start": 5531.4, + "end": 5531.4, + "probability": 0.0216 + }, + { + "start": 5531.4, + "end": 5532.24, + "probability": 0.6453 + }, + { + "start": 5533.22, + "end": 5534.2, + "probability": 0.5908 + }, + { + "start": 5542.82, + "end": 5543.46, + "probability": 0.4492 + }, + { + "start": 5543.6, + "end": 5545.76, + "probability": 0.6866 + }, + { + "start": 5547.0, + "end": 5547.94, + "probability": 0.9043 + }, + { + "start": 5548.58, + "end": 5549.3, + "probability": 0.8448 + }, + { + "start": 5550.0, + "end": 5550.41, + "probability": 0.6866 + }, + { + "start": 5554.38, + "end": 5557.84, + "probability": 0.7043 + }, + { + "start": 5558.36, + "end": 5559.28, + "probability": 0.929 + }, + { + "start": 5560.64, + "end": 5565.32, + "probability": 0.8387 + }, + { + "start": 5565.4, + "end": 5567.0, + "probability": 0.7118 + }, + { + "start": 5567.11, + "end": 5568.32, + "probability": 0.9852 + }, + { + "start": 5569.42, + "end": 5571.62, + "probability": 0.9672 + }, + { + "start": 5571.72, + "end": 5572.8, + "probability": 0.7969 + }, + { + "start": 5574.24, + "end": 5576.88, + "probability": 0.9362 + }, + { + "start": 5577.22, + "end": 5578.06, + "probability": 0.206 + }, + { + "start": 5578.62, + "end": 5578.62, + "probability": 0.1397 + }, + { + "start": 5578.62, + "end": 5582.5, + "probability": 0.8671 + }, + { + "start": 5584.04, + "end": 5586.38, + "probability": 0.813 + }, + { + "start": 5587.22, + "end": 5587.42, + "probability": 0.6809 + }, + { + "start": 5589.56, + "end": 5592.52, + "probability": 0.9964 + }, + { + "start": 5594.34, + "end": 5594.98, + "probability": 0.7256 + }, + { + "start": 5595.38, + "end": 5599.36, + "probability": 0.8333 + }, + { + "start": 5600.42, + "end": 5604.88, + "probability": 0.9726 + }, + { + "start": 5605.44, + "end": 5608.3, + "probability": 0.9937 + }, + { + "start": 5609.58, + "end": 5612.96, + "probability": 0.9967 + }, + { + "start": 5613.62, + "end": 5614.08, + "probability": 0.8896 + }, + { + "start": 5615.0, + "end": 5617.84, + "probability": 0.9766 + }, + { + "start": 5617.88, + "end": 5618.6, + "probability": 0.5131 + }, + { + "start": 5620.02, + "end": 5621.0, + "probability": 0.9188 + }, + { + "start": 5621.14, + "end": 5621.38, + "probability": 0.5604 + }, + { + "start": 5621.46, + "end": 5625.82, + "probability": 0.983 + }, + { + "start": 5626.82, + "end": 5634.02, + "probability": 0.9789 + }, + { + "start": 5635.46, + "end": 5636.0, + "probability": 0.9416 + }, + { + "start": 5638.86, + "end": 5641.18, + "probability": 0.7732 + }, + { + "start": 5642.1, + "end": 5645.59, + "probability": 0.9759 + }, + { + "start": 5647.62, + "end": 5648.74, + "probability": 0.8247 + }, + { + "start": 5650.52, + "end": 5651.46, + "probability": 0.8265 + }, + { + "start": 5653.0, + "end": 5659.14, + "probability": 0.9411 + }, + { + "start": 5660.02, + "end": 5663.86, + "probability": 0.9927 + }, + { + "start": 5665.36, + "end": 5669.18, + "probability": 0.9234 + }, + { + "start": 5669.96, + "end": 5671.92, + "probability": 0.9929 + }, + { + "start": 5672.08, + "end": 5674.56, + "probability": 0.9915 + }, + { + "start": 5674.68, + "end": 5676.38, + "probability": 0.9965 + }, + { + "start": 5677.14, + "end": 5677.46, + "probability": 0.4991 + }, + { + "start": 5678.82, + "end": 5682.44, + "probability": 0.9954 + }, + { + "start": 5684.48, + "end": 5687.08, + "probability": 0.9054 + }, + { + "start": 5688.78, + "end": 5690.68, + "probability": 0.9008 + }, + { + "start": 5692.72, + "end": 5696.44, + "probability": 0.9946 + }, + { + "start": 5696.62, + "end": 5698.44, + "probability": 0.9724 + }, + { + "start": 5699.62, + "end": 5701.94, + "probability": 0.6948 + }, + { + "start": 5703.82, + "end": 5705.4, + "probability": 0.9417 + }, + { + "start": 5705.5, + "end": 5705.78, + "probability": 0.9065 + }, + { + "start": 5706.52, + "end": 5708.66, + "probability": 0.836 + }, + { + "start": 5709.56, + "end": 5713.74, + "probability": 0.9656 + }, + { + "start": 5713.8, + "end": 5716.48, + "probability": 0.9839 + }, + { + "start": 5717.62, + "end": 5720.52, + "probability": 0.9778 + }, + { + "start": 5722.66, + "end": 5726.34, + "probability": 0.9987 + }, + { + "start": 5728.28, + "end": 5730.58, + "probability": 0.9958 + }, + { + "start": 5730.76, + "end": 5732.4, + "probability": 0.9563 + }, + { + "start": 5732.62, + "end": 5734.06, + "probability": 0.9646 + }, + { + "start": 5734.68, + "end": 5736.22, + "probability": 0.8421 + }, + { + "start": 5736.58, + "end": 5738.6, + "probability": 0.9949 + }, + { + "start": 5738.82, + "end": 5739.22, + "probability": 0.8255 + }, + { + "start": 5739.34, + "end": 5739.66, + "probability": 0.6285 + }, + { + "start": 5740.54, + "end": 5740.94, + "probability": 0.84 + }, + { + "start": 5742.4, + "end": 5746.8, + "probability": 0.9969 + }, + { + "start": 5746.9, + "end": 5748.46, + "probability": 0.8993 + }, + { + "start": 5749.54, + "end": 5753.66, + "probability": 0.9746 + }, + { + "start": 5753.74, + "end": 5754.72, + "probability": 0.9443 + }, + { + "start": 5755.56, + "end": 5758.76, + "probability": 0.9834 + }, + { + "start": 5759.46, + "end": 5761.0, + "probability": 0.8698 + }, + { + "start": 5762.48, + "end": 5766.0, + "probability": 0.9509 + }, + { + "start": 5767.04, + "end": 5771.28, + "probability": 0.843 + }, + { + "start": 5771.36, + "end": 5774.64, + "probability": 0.9479 + }, + { + "start": 5775.42, + "end": 5776.84, + "probability": 0.9102 + }, + { + "start": 5777.38, + "end": 5780.58, + "probability": 0.9854 + }, + { + "start": 5782.68, + "end": 5784.54, + "probability": 0.6726 + }, + { + "start": 5785.22, + "end": 5787.88, + "probability": 0.9262 + }, + { + "start": 5787.88, + "end": 5791.02, + "probability": 0.8977 + }, + { + "start": 5792.08, + "end": 5794.1, + "probability": 0.8638 + }, + { + "start": 5795.26, + "end": 5796.8, + "probability": 0.9935 + }, + { + "start": 5797.5, + "end": 5798.44, + "probability": 0.7492 + }, + { + "start": 5800.54, + "end": 5801.6, + "probability": 0.7639 + }, + { + "start": 5802.1, + "end": 5806.94, + "probability": 0.8701 + }, + { + "start": 5807.14, + "end": 5810.12, + "probability": 0.8631 + }, + { + "start": 5811.02, + "end": 5813.87, + "probability": 0.9882 + }, + { + "start": 5814.98, + "end": 5817.06, + "probability": 0.7537 + }, + { + "start": 5817.12, + "end": 5820.24, + "probability": 0.9806 + }, + { + "start": 5821.36, + "end": 5822.84, + "probability": 0.4488 + }, + { + "start": 5824.26, + "end": 5826.08, + "probability": 0.9944 + }, + { + "start": 5826.16, + "end": 5828.92, + "probability": 0.9946 + }, + { + "start": 5828.96, + "end": 5832.2, + "probability": 0.9443 + }, + { + "start": 5833.34, + "end": 5836.34, + "probability": 0.8456 + }, + { + "start": 5837.36, + "end": 5842.7, + "probability": 0.9881 + }, + { + "start": 5843.7, + "end": 5844.3, + "probability": 0.9702 + }, + { + "start": 5845.5, + "end": 5850.34, + "probability": 0.991 + }, + { + "start": 5851.02, + "end": 5852.18, + "probability": 0.9567 + }, + { + "start": 5852.76, + "end": 5855.52, + "probability": 0.9966 + }, + { + "start": 5855.68, + "end": 5856.86, + "probability": 0.8882 + }, + { + "start": 5857.38, + "end": 5860.88, + "probability": 0.964 + }, + { + "start": 5861.6, + "end": 5862.64, + "probability": 0.992 + }, + { + "start": 5863.36, + "end": 5866.92, + "probability": 0.9937 + }, + { + "start": 5867.16, + "end": 5867.93, + "probability": 0.7944 + }, + { + "start": 5871.92, + "end": 5873.88, + "probability": 0.998 + }, + { + "start": 5874.9, + "end": 5877.94, + "probability": 0.9679 + }, + { + "start": 5878.12, + "end": 5880.84, + "probability": 0.9741 + }, + { + "start": 5880.94, + "end": 5884.62, + "probability": 0.9935 + }, + { + "start": 5886.08, + "end": 5887.22, + "probability": 0.8882 + }, + { + "start": 5887.26, + "end": 5887.6, + "probability": 0.8033 + }, + { + "start": 5887.62, + "end": 5892.3, + "probability": 0.9917 + }, + { + "start": 5892.84, + "end": 5896.16, + "probability": 0.9974 + }, + { + "start": 5897.04, + "end": 5897.24, + "probability": 0.9747 + }, + { + "start": 5898.92, + "end": 5899.38, + "probability": 0.855 + }, + { + "start": 5901.3, + "end": 5902.48, + "probability": 0.843 + }, + { + "start": 5902.5, + "end": 5905.28, + "probability": 0.9511 + }, + { + "start": 5905.6, + "end": 5907.78, + "probability": 0.9948 + }, + { + "start": 5909.32, + "end": 5910.78, + "probability": 0.938 + }, + { + "start": 5911.68, + "end": 5914.52, + "probability": 0.9971 + }, + { + "start": 5914.72, + "end": 5917.92, + "probability": 0.9111 + }, + { + "start": 5918.74, + "end": 5919.1, + "probability": 0.527 + }, + { + "start": 5919.3, + "end": 5923.2, + "probability": 0.9736 + }, + { + "start": 5924.26, + "end": 5926.58, + "probability": 0.7863 + }, + { + "start": 5927.06, + "end": 5928.81, + "probability": 0.9304 + }, + { + "start": 5930.38, + "end": 5932.74, + "probability": 0.9945 + }, + { + "start": 5933.02, + "end": 5935.46, + "probability": 0.9402 + }, + { + "start": 5936.68, + "end": 5939.26, + "probability": 0.9867 + }, + { + "start": 5939.34, + "end": 5941.22, + "probability": 0.9962 + }, + { + "start": 5943.9, + "end": 5948.76, + "probability": 0.9659 + }, + { + "start": 5949.54, + "end": 5950.04, + "probability": 0.7507 + }, + { + "start": 5951.14, + "end": 5953.38, + "probability": 0.998 + }, + { + "start": 5954.12, + "end": 5954.94, + "probability": 0.9867 + }, + { + "start": 5956.54, + "end": 5958.5, + "probability": 0.6491 + }, + { + "start": 5959.54, + "end": 5962.52, + "probability": 0.9474 + }, + { + "start": 5962.62, + "end": 5963.68, + "probability": 0.7787 + }, + { + "start": 5964.14, + "end": 5964.7, + "probability": 0.8763 + }, + { + "start": 5965.98, + "end": 5967.68, + "probability": 0.991 + }, + { + "start": 5968.66, + "end": 5970.46, + "probability": 0.99 + }, + { + "start": 5971.54, + "end": 5974.64, + "probability": 0.9586 + }, + { + "start": 5976.04, + "end": 5978.24, + "probability": 0.8977 + }, + { + "start": 5979.52, + "end": 5981.22, + "probability": 0.9915 + }, + { + "start": 5981.86, + "end": 5982.74, + "probability": 0.9164 + }, + { + "start": 5984.3, + "end": 5987.52, + "probability": 0.9988 + }, + { + "start": 5988.06, + "end": 5988.54, + "probability": 0.9756 + }, + { + "start": 5990.2, + "end": 5991.52, + "probability": 0.9661 + }, + { + "start": 5992.14, + "end": 5994.24, + "probability": 0.955 + }, + { + "start": 5995.98, + "end": 5999.22, + "probability": 0.9932 + }, + { + "start": 6000.32, + "end": 6002.76, + "probability": 0.9813 + }, + { + "start": 6003.38, + "end": 6006.02, + "probability": 0.9797 + }, + { + "start": 6006.88, + "end": 6008.74, + "probability": 0.9285 + }, + { + "start": 6009.76, + "end": 6011.56, + "probability": 0.9907 + }, + { + "start": 6012.34, + "end": 6015.5, + "probability": 0.7513 + }, + { + "start": 6016.26, + "end": 6019.26, + "probability": 0.9456 + }, + { + "start": 6019.84, + "end": 6020.36, + "probability": 0.9921 + }, + { + "start": 6021.24, + "end": 6022.2, + "probability": 0.9486 + }, + { + "start": 6022.9, + "end": 6023.3, + "probability": 0.9846 + }, + { + "start": 6024.9, + "end": 6026.96, + "probability": 0.9495 + }, + { + "start": 6027.9, + "end": 6031.64, + "probability": 0.9833 + }, + { + "start": 6032.32, + "end": 6033.36, + "probability": 0.9912 + }, + { + "start": 6034.02, + "end": 6034.64, + "probability": 0.9625 + }, + { + "start": 6035.36, + "end": 6035.88, + "probability": 0.9619 + }, + { + "start": 6036.24, + "end": 6040.18, + "probability": 0.9764 + }, + { + "start": 6040.6, + "end": 6041.8, + "probability": 0.7867 + }, + { + "start": 6042.86, + "end": 6044.44, + "probability": 0.8456 + }, + { + "start": 6045.56, + "end": 6046.78, + "probability": 0.8726 + }, + { + "start": 6048.0, + "end": 6048.42, + "probability": 0.7004 + }, + { + "start": 6050.5, + "end": 6052.86, + "probability": 0.9425 + }, + { + "start": 6062.04, + "end": 6063.68, + "probability": 0.6601 + }, + { + "start": 6065.2, + "end": 6067.26, + "probability": 0.7553 + }, + { + "start": 6068.1, + "end": 6072.18, + "probability": 0.9567 + }, + { + "start": 6073.52, + "end": 6075.79, + "probability": 0.876 + }, + { + "start": 6086.3, + "end": 6086.86, + "probability": 0.6956 + }, + { + "start": 6086.98, + "end": 6090.86, + "probability": 0.8002 + }, + { + "start": 6091.4, + "end": 6095.06, + "probability": 0.8915 + }, + { + "start": 6095.6, + "end": 6096.4, + "probability": 0.9285 + }, + { + "start": 6097.18, + "end": 6100.62, + "probability": 0.8516 + }, + { + "start": 6101.36, + "end": 6102.28, + "probability": 0.9091 + }, + { + "start": 6103.62, + "end": 6104.86, + "probability": 0.8795 + }, + { + "start": 6106.14, + "end": 6107.26, + "probability": 0.8931 + }, + { + "start": 6107.56, + "end": 6111.1, + "probability": 0.9026 + }, + { + "start": 6111.5, + "end": 6112.96, + "probability": 0.7201 + }, + { + "start": 6113.62, + "end": 6116.76, + "probability": 0.9825 + }, + { + "start": 6117.24, + "end": 6119.58, + "probability": 0.6825 + }, + { + "start": 6119.74, + "end": 6120.9, + "probability": 0.9474 + }, + { + "start": 6123.04, + "end": 6127.4, + "probability": 0.9976 + }, + { + "start": 6129.26, + "end": 6129.8, + "probability": 0.8811 + }, + { + "start": 6139.48, + "end": 6143.16, + "probability": 0.6388 + }, + { + "start": 6143.82, + "end": 6144.1, + "probability": 0.065 + }, + { + "start": 6144.62, + "end": 6147.08, + "probability": 0.0859 + }, + { + "start": 6147.08, + "end": 6153.48, + "probability": 0.0445 + }, + { + "start": 6154.7, + "end": 6155.3, + "probability": 0.0126 + }, + { + "start": 6195.24, + "end": 6195.44, + "probability": 0.0405 + }, + { + "start": 6195.44, + "end": 6195.44, + "probability": 0.0847 + }, + { + "start": 6195.44, + "end": 6197.64, + "probability": 0.4589 + }, + { + "start": 6198.96, + "end": 6200.78, + "probability": 0.965 + }, + { + "start": 6201.62, + "end": 6202.24, + "probability": 0.5965 + }, + { + "start": 6218.52, + "end": 6220.6, + "probability": 0.9823 + }, + { + "start": 6221.3, + "end": 6224.98, + "probability": 0.9529 + }, + { + "start": 6225.66, + "end": 6226.3, + "probability": 0.6076 + }, + { + "start": 6226.38, + "end": 6228.02, + "probability": 0.853 + }, + { + "start": 6228.08, + "end": 6228.6, + "probability": 0.8863 + }, + { + "start": 6230.1, + "end": 6230.12, + "probability": 0.025 + }, + { + "start": 6234.44, + "end": 6235.9, + "probability": 0.2479 + }, + { + "start": 6235.98, + "end": 6235.98, + "probability": 0.5114 + }, + { + "start": 6236.28, + "end": 6240.34, + "probability": 0.9608 + }, + { + "start": 6241.6, + "end": 6242.56, + "probability": 0.9594 + }, + { + "start": 6243.42, + "end": 6245.72, + "probability": 0.9985 + }, + { + "start": 6246.24, + "end": 6250.0, + "probability": 0.959 + }, + { + "start": 6250.6, + "end": 6252.82, + "probability": 0.8278 + }, + { + "start": 6253.64, + "end": 6257.26, + "probability": 0.6655 + }, + { + "start": 6258.08, + "end": 6260.58, + "probability": 0.9962 + }, + { + "start": 6261.38, + "end": 6263.0, + "probability": 0.9785 + }, + { + "start": 6263.84, + "end": 6267.1, + "probability": 0.951 + }, + { + "start": 6267.96, + "end": 6272.04, + "probability": 0.9449 + }, + { + "start": 6273.14, + "end": 6276.84, + "probability": 0.8957 + }, + { + "start": 6278.58, + "end": 6282.12, + "probability": 0.9971 + }, + { + "start": 6282.15, + "end": 6286.76, + "probability": 0.9771 + }, + { + "start": 6288.0, + "end": 6289.05, + "probability": 0.9956 + }, + { + "start": 6290.52, + "end": 6291.56, + "probability": 0.9448 + }, + { + "start": 6292.1, + "end": 6293.08, + "probability": 0.8887 + }, + { + "start": 6295.96, + "end": 6299.92, + "probability": 0.9116 + }, + { + "start": 6300.58, + "end": 6306.42, + "probability": 0.9709 + }, + { + "start": 6307.02, + "end": 6311.38, + "probability": 0.979 + }, + { + "start": 6311.6, + "end": 6312.28, + "probability": 0.5728 + }, + { + "start": 6313.2, + "end": 6314.2, + "probability": 0.7339 + }, + { + "start": 6315.58, + "end": 6319.1, + "probability": 0.988 + }, + { + "start": 6319.1, + "end": 6323.06, + "probability": 0.956 + }, + { + "start": 6323.8, + "end": 6325.36, + "probability": 0.9664 + }, + { + "start": 6326.02, + "end": 6327.22, + "probability": 0.6753 + }, + { + "start": 6327.86, + "end": 6330.66, + "probability": 0.9695 + }, + { + "start": 6330.66, + "end": 6334.08, + "probability": 0.9941 + }, + { + "start": 6335.02, + "end": 6339.08, + "probability": 0.9932 + }, + { + "start": 6339.08, + "end": 6344.1, + "probability": 0.9844 + }, + { + "start": 6344.22, + "end": 6349.02, + "probability": 0.8415 + }, + { + "start": 6349.78, + "end": 6349.88, + "probability": 0.567 + }, + { + "start": 6350.36, + "end": 6352.14, + "probability": 0.8206 + }, + { + "start": 6352.48, + "end": 6354.6, + "probability": 0.9949 + }, + { + "start": 6355.56, + "end": 6359.6, + "probability": 0.9937 + }, + { + "start": 6360.32, + "end": 6361.64, + "probability": 0.7347 + }, + { + "start": 6362.4, + "end": 6363.78, + "probability": 0.9663 + }, + { + "start": 6365.16, + "end": 6370.28, + "probability": 0.988 + }, + { + "start": 6371.42, + "end": 6371.82, + "probability": 0.4917 + }, + { + "start": 6372.58, + "end": 6375.08, + "probability": 0.997 + }, + { + "start": 6376.18, + "end": 6377.94, + "probability": 0.9856 + }, + { + "start": 6380.52, + "end": 6381.18, + "probability": 0.8805 + }, + { + "start": 6382.04, + "end": 6382.52, + "probability": 0.623 + }, + { + "start": 6384.38, + "end": 6388.12, + "probability": 0.82 + }, + { + "start": 6389.34, + "end": 6392.48, + "probability": 0.9695 + }, + { + "start": 6393.26, + "end": 6396.4, + "probability": 0.9713 + }, + { + "start": 6398.28, + "end": 6399.34, + "probability": 0.9717 + }, + { + "start": 6401.4, + "end": 6402.9, + "probability": 0.8689 + }, + { + "start": 6403.62, + "end": 6404.82, + "probability": 0.923 + }, + { + "start": 6405.6, + "end": 6407.34, + "probability": 0.9939 + }, + { + "start": 6407.38, + "end": 6409.86, + "probability": 0.9946 + }, + { + "start": 6410.74, + "end": 6413.08, + "probability": 0.9866 + }, + { + "start": 6413.9, + "end": 6414.82, + "probability": 0.8551 + }, + { + "start": 6415.74, + "end": 6420.37, + "probability": 0.8851 + }, + { + "start": 6421.4, + "end": 6426.66, + "probability": 0.9062 + }, + { + "start": 6427.26, + "end": 6429.08, + "probability": 0.9805 + }, + { + "start": 6429.92, + "end": 6433.7, + "probability": 0.9941 + }, + { + "start": 6435.2, + "end": 6437.32, + "probability": 0.5363 + }, + { + "start": 6438.18, + "end": 6439.3, + "probability": 0.7973 + }, + { + "start": 6439.94, + "end": 6444.4, + "probability": 0.9917 + }, + { + "start": 6445.0, + "end": 6446.38, + "probability": 0.877 + }, + { + "start": 6446.56, + "end": 6448.22, + "probability": 0.7056 + }, + { + "start": 6448.56, + "end": 6450.48, + "probability": 0.9866 + }, + { + "start": 6451.08, + "end": 6453.3, + "probability": 0.9952 + }, + { + "start": 6453.76, + "end": 6456.06, + "probability": 0.9858 + }, + { + "start": 6456.62, + "end": 6458.74, + "probability": 0.9961 + }, + { + "start": 6459.34, + "end": 6461.74, + "probability": 0.9394 + }, + { + "start": 6462.1, + "end": 6463.7, + "probability": 0.9971 + }, + { + "start": 6464.22, + "end": 6465.64, + "probability": 0.8956 + }, + { + "start": 6466.22, + "end": 6467.08, + "probability": 0.4885 + }, + { + "start": 6467.84, + "end": 6469.4, + "probability": 0.9727 + }, + { + "start": 6469.54, + "end": 6471.97, + "probability": 0.8066 + }, + { + "start": 6472.22, + "end": 6474.62, + "probability": 0.8906 + }, + { + "start": 6475.14, + "end": 6479.34, + "probability": 0.7664 + }, + { + "start": 6479.94, + "end": 6483.34, + "probability": 0.9532 + }, + { + "start": 6484.24, + "end": 6486.88, + "probability": 0.988 + }, + { + "start": 6487.86, + "end": 6488.86, + "probability": 0.9172 + }, + { + "start": 6489.5, + "end": 6489.58, + "probability": 0.4894 + }, + { + "start": 6489.76, + "end": 6490.84, + "probability": 0.9424 + }, + { + "start": 6490.9, + "end": 6491.12, + "probability": 0.7084 + }, + { + "start": 6491.22, + "end": 6493.0, + "probability": 0.974 + }, + { + "start": 6494.22, + "end": 6494.96, + "probability": 0.7598 + }, + { + "start": 6496.12, + "end": 6499.74, + "probability": 0.9967 + }, + { + "start": 6500.7, + "end": 6503.0, + "probability": 0.8283 + }, + { + "start": 6503.66, + "end": 6504.62, + "probability": 0.8026 + }, + { + "start": 6505.36, + "end": 6509.2, + "probability": 0.9819 + }, + { + "start": 6509.32, + "end": 6513.68, + "probability": 0.8768 + }, + { + "start": 6514.34, + "end": 6516.0, + "probability": 0.6675 + }, + { + "start": 6516.56, + "end": 6519.76, + "probability": 0.8862 + }, + { + "start": 6520.2, + "end": 6523.16, + "probability": 0.9513 + }, + { + "start": 6523.84, + "end": 6524.92, + "probability": 0.7905 + }, + { + "start": 6525.54, + "end": 6528.14, + "probability": 0.9311 + }, + { + "start": 6528.78, + "end": 6530.26, + "probability": 0.9618 + }, + { + "start": 6530.82, + "end": 6531.58, + "probability": 0.4016 + }, + { + "start": 6532.52, + "end": 6533.54, + "probability": 0.8776 + }, + { + "start": 6534.62, + "end": 6536.1, + "probability": 0.9326 + }, + { + "start": 6536.18, + "end": 6537.66, + "probability": 0.8586 + }, + { + "start": 6538.06, + "end": 6538.06, + "probability": 0.542 + }, + { + "start": 6538.06, + "end": 6538.62, + "probability": 0.7388 + }, + { + "start": 6538.82, + "end": 6539.14, + "probability": 0.379 + }, + { + "start": 6540.22, + "end": 6542.06, + "probability": 0.9468 + }, + { + "start": 6543.14, + "end": 6544.34, + "probability": 0.9924 + }, + { + "start": 6545.52, + "end": 6546.96, + "probability": 0.8891 + }, + { + "start": 6547.7, + "end": 6551.0, + "probability": 0.9927 + }, + { + "start": 6551.8, + "end": 6552.42, + "probability": 0.9705 + }, + { + "start": 6552.5, + "end": 6552.96, + "probability": 0.8832 + }, + { + "start": 6553.42, + "end": 6554.3, + "probability": 0.7111 + }, + { + "start": 6554.62, + "end": 6556.54, + "probability": 0.9895 + }, + { + "start": 6557.14, + "end": 6559.3, + "probability": 0.8728 + }, + { + "start": 6559.98, + "end": 6560.8, + "probability": 0.1894 + }, + { + "start": 6561.68, + "end": 6561.72, + "probability": 0.0765 + }, + { + "start": 6561.72, + "end": 6563.7, + "probability": 0.91 + }, + { + "start": 6564.32, + "end": 6567.42, + "probability": 0.9105 + }, + { + "start": 6567.44, + "end": 6569.68, + "probability": 0.9945 + }, + { + "start": 6570.26, + "end": 6571.92, + "probability": 0.6836 + }, + { + "start": 6572.36, + "end": 6575.98, + "probability": 0.9536 + }, + { + "start": 6576.04, + "end": 6577.46, + "probability": 0.8365 + }, + { + "start": 6577.66, + "end": 6577.94, + "probability": 0.7693 + }, + { + "start": 6578.14, + "end": 6579.7, + "probability": 0.9504 + }, + { + "start": 6579.82, + "end": 6584.06, + "probability": 0.7455 + }, + { + "start": 6601.36, + "end": 6602.24, + "probability": 0.7799 + }, + { + "start": 6603.5, + "end": 6604.56, + "probability": 0.6878 + }, + { + "start": 6604.64, + "end": 6608.78, + "probability": 0.7372 + }, + { + "start": 6610.06, + "end": 6613.96, + "probability": 0.9804 + }, + { + "start": 6614.68, + "end": 6616.66, + "probability": 0.7948 + }, + { + "start": 6617.66, + "end": 6618.78, + "probability": 0.9084 + }, + { + "start": 6620.42, + "end": 6621.16, + "probability": 0.8669 + }, + { + "start": 6621.2, + "end": 6624.28, + "probability": 0.9958 + }, + { + "start": 6624.78, + "end": 6628.6, + "probability": 0.9905 + }, + { + "start": 6629.12, + "end": 6633.76, + "probability": 0.8729 + }, + { + "start": 6633.76, + "end": 6635.36, + "probability": 0.9554 + }, + { + "start": 6636.06, + "end": 6636.46, + "probability": 0.9672 + }, + { + "start": 6637.34, + "end": 6638.82, + "probability": 0.9893 + }, + { + "start": 6639.62, + "end": 6641.5, + "probability": 0.9457 + }, + { + "start": 6641.5, + "end": 6643.42, + "probability": 0.9991 + }, + { + "start": 6644.3, + "end": 6648.62, + "probability": 0.7784 + }, + { + "start": 6648.7, + "end": 6649.21, + "probability": 0.8458 + }, + { + "start": 6650.08, + "end": 6651.5, + "probability": 0.9906 + }, + { + "start": 6652.66, + "end": 6654.54, + "probability": 0.7959 + }, + { + "start": 6655.22, + "end": 6659.54, + "probability": 0.9824 + }, + { + "start": 6660.42, + "end": 6660.9, + "probability": 0.5777 + }, + { + "start": 6661.66, + "end": 6662.9, + "probability": 0.8114 + }, + { + "start": 6663.38, + "end": 6664.96, + "probability": 0.682 + }, + { + "start": 6665.2, + "end": 6665.82, + "probability": 0.9324 + }, + { + "start": 6665.86, + "end": 6667.88, + "probability": 0.9478 + }, + { + "start": 6668.62, + "end": 6670.2, + "probability": 0.5337 + }, + { + "start": 6670.74, + "end": 6671.46, + "probability": 0.8106 + }, + { + "start": 6672.82, + "end": 6674.6, + "probability": 0.9968 + }, + { + "start": 6675.56, + "end": 6679.18, + "probability": 0.8958 + }, + { + "start": 6679.26, + "end": 6679.36, + "probability": 0.8802 + }, + { + "start": 6679.82, + "end": 6680.6, + "probability": 0.8649 + }, + { + "start": 6680.7, + "end": 6681.8, + "probability": 0.7936 + }, + { + "start": 6682.58, + "end": 6682.92, + "probability": 0.7462 + }, + { + "start": 6683.5, + "end": 6687.34, + "probability": 0.9985 + }, + { + "start": 6688.18, + "end": 6689.12, + "probability": 0.7292 + }, + { + "start": 6689.18, + "end": 6690.66, + "probability": 0.9382 + }, + { + "start": 6691.36, + "end": 6692.4, + "probability": 0.9927 + }, + { + "start": 6693.08, + "end": 6694.42, + "probability": 0.9779 + }, + { + "start": 6695.1, + "end": 6696.92, + "probability": 0.9781 + }, + { + "start": 6697.02, + "end": 6697.94, + "probability": 0.8864 + }, + { + "start": 6698.04, + "end": 6699.23, + "probability": 0.9879 + }, + { + "start": 6700.34, + "end": 6701.46, + "probability": 0.7624 + }, + { + "start": 6702.0, + "end": 6704.52, + "probability": 0.9828 + }, + { + "start": 6705.5, + "end": 6706.36, + "probability": 0.9001 + }, + { + "start": 6707.38, + "end": 6709.38, + "probability": 0.962 + }, + { + "start": 6709.58, + "end": 6711.56, + "probability": 0.9753 + }, + { + "start": 6711.7, + "end": 6712.14, + "probability": 0.9828 + }, + { + "start": 6713.06, + "end": 6714.28, + "probability": 0.9794 + }, + { + "start": 6714.84, + "end": 6717.6, + "probability": 0.9955 + }, + { + "start": 6718.76, + "end": 6720.82, + "probability": 0.91 + }, + { + "start": 6721.62, + "end": 6722.36, + "probability": 0.9765 + }, + { + "start": 6723.46, + "end": 6724.17, + "probability": 0.9832 + }, + { + "start": 6725.38, + "end": 6728.98, + "probability": 0.9745 + }, + { + "start": 6729.1, + "end": 6731.26, + "probability": 0.9467 + }, + { + "start": 6732.26, + "end": 6732.8, + "probability": 0.9135 + }, + { + "start": 6733.72, + "end": 6735.62, + "probability": 0.945 + }, + { + "start": 6736.24, + "end": 6736.74, + "probability": 0.4174 + }, + { + "start": 6737.56, + "end": 6739.02, + "probability": 0.986 + }, + { + "start": 6739.64, + "end": 6740.3, + "probability": 0.9714 + }, + { + "start": 6740.36, + "end": 6742.76, + "probability": 0.98 + }, + { + "start": 6743.48, + "end": 6744.26, + "probability": 0.9779 + }, + { + "start": 6745.44, + "end": 6746.42, + "probability": 0.8226 + }, + { + "start": 6746.56, + "end": 6748.72, + "probability": 0.9254 + }, + { + "start": 6749.18, + "end": 6751.78, + "probability": 0.73 + }, + { + "start": 6752.34, + "end": 6753.32, + "probability": 0.5398 + }, + { + "start": 6754.76, + "end": 6757.26, + "probability": 0.986 + }, + { + "start": 6758.42, + "end": 6761.1, + "probability": 0.9747 + }, + { + "start": 6762.76, + "end": 6764.92, + "probability": 0.9966 + }, + { + "start": 6764.98, + "end": 6766.72, + "probability": 0.9942 + }, + { + "start": 6767.52, + "end": 6770.2, + "probability": 0.955 + }, + { + "start": 6771.48, + "end": 6773.58, + "probability": 0.9205 + }, + { + "start": 6774.3, + "end": 6776.32, + "probability": 0.7946 + }, + { + "start": 6776.36, + "end": 6776.68, + "probability": 0.6998 + }, + { + "start": 6776.78, + "end": 6777.15, + "probability": 0.8866 + }, + { + "start": 6778.04, + "end": 6779.0, + "probability": 0.8912 + }, + { + "start": 6779.62, + "end": 6780.56, + "probability": 0.5097 + }, + { + "start": 6780.86, + "end": 6782.74, + "probability": 0.5973 + }, + { + "start": 6782.78, + "end": 6785.5, + "probability": 0.7293 + }, + { + "start": 6785.66, + "end": 6786.2, + "probability": 0.6438 + }, + { + "start": 6786.92, + "end": 6787.42, + "probability": 0.8181 + }, + { + "start": 6787.94, + "end": 6789.86, + "probability": 0.9749 + }, + { + "start": 6790.6, + "end": 6790.96, + "probability": 0.9893 + }, + { + "start": 6791.9, + "end": 6794.8, + "probability": 0.9794 + }, + { + "start": 6794.8, + "end": 6796.82, + "probability": 0.9966 + }, + { + "start": 6797.74, + "end": 6799.92, + "probability": 0.6503 + }, + { + "start": 6799.96, + "end": 6801.22, + "probability": 0.7848 + }, + { + "start": 6801.86, + "end": 6802.35, + "probability": 0.7145 + }, + { + "start": 6802.56, + "end": 6803.7, + "probability": 0.8375 + }, + { + "start": 6803.82, + "end": 6804.9, + "probability": 0.8777 + }, + { + "start": 6805.64, + "end": 6808.78, + "probability": 0.9402 + }, + { + "start": 6809.44, + "end": 6810.72, + "probability": 0.9552 + }, + { + "start": 6810.96, + "end": 6811.88, + "probability": 0.8866 + }, + { + "start": 6812.2, + "end": 6813.18, + "probability": 0.6262 + }, + { + "start": 6814.08, + "end": 6817.56, + "probability": 0.9776 + }, + { + "start": 6818.24, + "end": 6819.98, + "probability": 0.8062 + }, + { + "start": 6820.06, + "end": 6820.5, + "probability": 0.442 + }, + { + "start": 6820.6, + "end": 6821.02, + "probability": 0.8759 + }, + { + "start": 6821.08, + "end": 6824.2, + "probability": 0.9854 + }, + { + "start": 6824.68, + "end": 6827.18, + "probability": 0.7117 + }, + { + "start": 6827.52, + "end": 6827.76, + "probability": 0.8064 + }, + { + "start": 6828.48, + "end": 6830.5, + "probability": 0.9122 + }, + { + "start": 6831.1, + "end": 6832.94, + "probability": 0.861 + }, + { + "start": 6833.22, + "end": 6834.98, + "probability": 0.8488 + }, + { + "start": 6835.06, + "end": 6835.2, + "probability": 0.8199 + }, + { + "start": 6837.04, + "end": 6838.66, + "probability": 0.014 + }, + { + "start": 6838.96, + "end": 6840.9, + "probability": 0.1349 + }, + { + "start": 6841.92, + "end": 6842.08, + "probability": 0.0198 + }, + { + "start": 6842.08, + "end": 6843.92, + "probability": 0.0259 + }, + { + "start": 6844.02, + "end": 6844.24, + "probability": 0.0645 + }, + { + "start": 6844.28, + "end": 6845.74, + "probability": 0.2091 + }, + { + "start": 6846.5, + "end": 6849.02, + "probability": 0.6229 + }, + { + "start": 6849.46, + "end": 6850.64, + "probability": 0.0916 + }, + { + "start": 6850.64, + "end": 6851.12, + "probability": 0.7036 + }, + { + "start": 6851.3, + "end": 6852.18, + "probability": 0.952 + }, + { + "start": 6852.22, + "end": 6852.66, + "probability": 0.8244 + }, + { + "start": 6852.7, + "end": 6853.6, + "probability": 0.7369 + }, + { + "start": 6853.6, + "end": 6854.15, + "probability": 0.6387 + }, + { + "start": 6854.94, + "end": 6855.46, + "probability": 0.9593 + }, + { + "start": 6855.5, + "end": 6858.08, + "probability": 0.9348 + }, + { + "start": 6858.94, + "end": 6860.4, + "probability": 0.9902 + }, + { + "start": 6860.62, + "end": 6860.96, + "probability": 0.6364 + }, + { + "start": 6860.96, + "end": 6862.14, + "probability": 0.6733 + }, + { + "start": 6862.85, + "end": 6863.77, + "probability": 0.0262 + }, + { + "start": 6863.84, + "end": 6867.54, + "probability": 0.7153 + }, + { + "start": 6868.34, + "end": 6869.02, + "probability": 0.7714 + }, + { + "start": 6869.8, + "end": 6873.28, + "probability": 0.9666 + }, + { + "start": 6873.62, + "end": 6875.76, + "probability": 0.8613 + }, + { + "start": 6876.86, + "end": 6880.96, + "probability": 0.9324 + }, + { + "start": 6881.52, + "end": 6883.72, + "probability": 0.9963 + }, + { + "start": 6884.32, + "end": 6885.0, + "probability": 0.8433 + }, + { + "start": 6885.8, + "end": 6889.4, + "probability": 0.97 + }, + { + "start": 6889.82, + "end": 6893.52, + "probability": 0.956 + }, + { + "start": 6894.32, + "end": 6898.68, + "probability": 0.9865 + }, + { + "start": 6899.06, + "end": 6903.72, + "probability": 0.7505 + }, + { + "start": 6904.2, + "end": 6907.96, + "probability": 0.9126 + }, + { + "start": 6908.16, + "end": 6911.68, + "probability": 0.9729 + }, + { + "start": 6911.98, + "end": 6916.04, + "probability": 0.9628 + }, + { + "start": 6917.42, + "end": 6919.7, + "probability": 0.8232 + }, + { + "start": 6921.06, + "end": 6927.2, + "probability": 0.9888 + }, + { + "start": 6927.2, + "end": 6931.16, + "probability": 0.9546 + }, + { + "start": 6931.8, + "end": 6935.2, + "probability": 0.9653 + }, + { + "start": 6935.98, + "end": 6940.24, + "probability": 0.9473 + }, + { + "start": 6940.34, + "end": 6942.08, + "probability": 0.8525 + }, + { + "start": 6942.88, + "end": 6946.3, + "probability": 0.9348 + }, + { + "start": 6947.11, + "end": 6953.06, + "probability": 0.9427 + }, + { + "start": 6953.9, + "end": 6955.63, + "probability": 0.9343 + }, + { + "start": 6956.94, + "end": 6958.92, + "probability": 0.8892 + }, + { + "start": 6959.68, + "end": 6961.0, + "probability": 0.8859 + }, + { + "start": 6961.34, + "end": 6968.44, + "probability": 0.9953 + }, + { + "start": 6971.54, + "end": 6974.86, + "probability": 0.4935 + }, + { + "start": 6975.32, + "end": 6976.82, + "probability": 0.9803 + }, + { + "start": 6976.92, + "end": 6979.7, + "probability": 0.9805 + }, + { + "start": 6980.14, + "end": 6982.42, + "probability": 0.9938 + }, + { + "start": 6982.7, + "end": 6982.96, + "probability": 0.7272 + }, + { + "start": 6983.54, + "end": 6985.88, + "probability": 0.9851 + }, + { + "start": 6986.74, + "end": 6988.36, + "probability": 0.7542 + }, + { + "start": 6988.46, + "end": 6990.06, + "probability": 0.7155 + }, + { + "start": 6990.08, + "end": 6990.54, + "probability": 0.8711 + }, + { + "start": 7009.44, + "end": 7011.58, + "probability": 0.4816 + }, + { + "start": 7012.66, + "end": 7015.66, + "probability": 0.8086 + }, + { + "start": 7016.52, + "end": 7020.74, + "probability": 0.9937 + }, + { + "start": 7021.04, + "end": 7022.9, + "probability": 0.9537 + }, + { + "start": 7023.5, + "end": 7027.14, + "probability": 0.7741 + }, + { + "start": 7027.44, + "end": 7033.5, + "probability": 0.9969 + }, + { + "start": 7034.18, + "end": 7041.36, + "probability": 0.9865 + }, + { + "start": 7042.32, + "end": 7045.62, + "probability": 0.9692 + }, + { + "start": 7045.66, + "end": 7048.86, + "probability": 0.997 + }, + { + "start": 7049.36, + "end": 7055.64, + "probability": 0.9948 + }, + { + "start": 7055.64, + "end": 7060.16, + "probability": 0.9986 + }, + { + "start": 7060.8, + "end": 7061.73, + "probability": 0.9219 + }, + { + "start": 7062.44, + "end": 7065.74, + "probability": 0.9757 + }, + { + "start": 7065.74, + "end": 7069.52, + "probability": 0.8548 + }, + { + "start": 7069.86, + "end": 7077.44, + "probability": 0.7486 + }, + { + "start": 7077.5, + "end": 7081.12, + "probability": 0.9803 + }, + { + "start": 7081.64, + "end": 7087.7, + "probability": 0.7889 + }, + { + "start": 7087.7, + "end": 7091.32, + "probability": 0.9479 + }, + { + "start": 7091.52, + "end": 7094.18, + "probability": 0.5964 + }, + { + "start": 7094.54, + "end": 7098.3, + "probability": 0.9866 + }, + { + "start": 7098.88, + "end": 7107.84, + "probability": 0.9517 + }, + { + "start": 7108.42, + "end": 7113.42, + "probability": 0.988 + }, + { + "start": 7114.46, + "end": 7122.52, + "probability": 0.9814 + }, + { + "start": 7123.12, + "end": 7129.84, + "probability": 0.9795 + }, + { + "start": 7130.3, + "end": 7136.76, + "probability": 0.986 + }, + { + "start": 7136.76, + "end": 7142.56, + "probability": 0.9752 + }, + { + "start": 7143.12, + "end": 7151.02, + "probability": 0.8956 + }, + { + "start": 7151.12, + "end": 7155.46, + "probability": 0.9052 + }, + { + "start": 7156.02, + "end": 7157.44, + "probability": 0.8163 + }, + { + "start": 7158.52, + "end": 7160.62, + "probability": 0.7291 + }, + { + "start": 7161.18, + "end": 7164.38, + "probability": 0.8809 + }, + { + "start": 7165.12, + "end": 7165.88, + "probability": 0.8375 + }, + { + "start": 7166.34, + "end": 7169.7, + "probability": 0.6891 + }, + { + "start": 7170.16, + "end": 7172.94, + "probability": 0.9304 + }, + { + "start": 7173.2, + "end": 7178.96, + "probability": 0.9829 + }, + { + "start": 7179.8, + "end": 7184.42, + "probability": 0.9964 + }, + { + "start": 7185.04, + "end": 7188.46, + "probability": 0.9816 + }, + { + "start": 7188.5, + "end": 7189.38, + "probability": 0.8731 + }, + { + "start": 7189.8, + "end": 7194.16, + "probability": 0.9779 + }, + { + "start": 7194.18, + "end": 7194.18, + "probability": 0.1687 + }, + { + "start": 7194.18, + "end": 7199.58, + "probability": 0.9898 + }, + { + "start": 7199.78, + "end": 7200.72, + "probability": 0.7553 + }, + { + "start": 7200.9, + "end": 7202.68, + "probability": 0.8498 + }, + { + "start": 7203.32, + "end": 7203.9, + "probability": 0.567 + }, + { + "start": 7204.42, + "end": 7205.6, + "probability": 0.9686 + }, + { + "start": 7206.06, + "end": 7209.96, + "probability": 0.9695 + }, + { + "start": 7210.04, + "end": 7212.76, + "probability": 0.9946 + }, + { + "start": 7213.04, + "end": 7213.08, + "probability": 0.0135 + }, + { + "start": 7214.2, + "end": 7217.86, + "probability": 0.8315 + }, + { + "start": 7218.56, + "end": 7218.68, + "probability": 0.5996 + }, + { + "start": 7218.68, + "end": 7219.42, + "probability": 0.6768 + }, + { + "start": 7219.9, + "end": 7224.06, + "probability": 0.9775 + }, + { + "start": 7224.4, + "end": 7229.02, + "probability": 0.9917 + }, + { + "start": 7229.5, + "end": 7231.7, + "probability": 0.9717 + }, + { + "start": 7232.76, + "end": 7234.48, + "probability": 0.8174 + }, + { + "start": 7234.84, + "end": 7235.3, + "probability": 0.2819 + }, + { + "start": 7235.4, + "end": 7237.3, + "probability": 0.6619 + }, + { + "start": 7237.54, + "end": 7241.96, + "probability": 0.8658 + }, + { + "start": 7242.0, + "end": 7242.52, + "probability": 0.9434 + }, + { + "start": 7246.1, + "end": 7246.24, + "probability": 0.0422 + }, + { + "start": 7246.24, + "end": 7246.24, + "probability": 0.0249 + }, + { + "start": 7246.24, + "end": 7246.48, + "probability": 0.2523 + }, + { + "start": 7246.94, + "end": 7248.5, + "probability": 0.8137 + }, + { + "start": 7248.62, + "end": 7250.42, + "probability": 0.5931 + }, + { + "start": 7251.08, + "end": 7252.68, + "probability": 0.7362 + }, + { + "start": 7253.56, + "end": 7256.4, + "probability": 0.7951 + }, + { + "start": 7256.74, + "end": 7257.1, + "probability": 0.9342 + }, + { + "start": 7258.98, + "end": 7261.1, + "probability": 0.8287 + }, + { + "start": 7261.96, + "end": 7263.48, + "probability": 0.9423 + }, + { + "start": 7263.58, + "end": 7264.36, + "probability": 0.7807 + }, + { + "start": 7264.38, + "end": 7266.6, + "probability": 0.7599 + }, + { + "start": 7267.85, + "end": 7270.44, + "probability": 0.6966 + }, + { + "start": 7270.98, + "end": 7271.58, + "probability": 0.6943 + }, + { + "start": 7273.32, + "end": 7273.66, + "probability": 0.27 + }, + { + "start": 7274.88, + "end": 7279.32, + "probability": 0.8418 + }, + { + "start": 7279.46, + "end": 7279.53, + "probability": 0.0576 + }, + { + "start": 7279.68, + "end": 7280.0, + "probability": 0.8328 + }, + { + "start": 7280.12, + "end": 7281.07, + "probability": 0.9373 + }, + { + "start": 7281.14, + "end": 7281.52, + "probability": 0.5416 + }, + { + "start": 7282.32, + "end": 7283.46, + "probability": 0.6521 + }, + { + "start": 7284.36, + "end": 7285.1, + "probability": 0.7462 + }, + { + "start": 7286.3, + "end": 7286.4, + "probability": 0.1629 + }, + { + "start": 7286.4, + "end": 7286.54, + "probability": 0.8625 + }, + { + "start": 7286.62, + "end": 7288.84, + "probability": 0.9799 + }, + { + "start": 7290.26, + "end": 7291.43, + "probability": 0.8164 + }, + { + "start": 7291.52, + "end": 7291.86, + "probability": 0.3485 + }, + { + "start": 7293.06, + "end": 7296.02, + "probability": 0.777 + }, + { + "start": 7296.2, + "end": 7301.0, + "probability": 0.9926 + }, + { + "start": 7301.04, + "end": 7302.1, + "probability": 0.6136 + }, + { + "start": 7302.46, + "end": 7305.24, + "probability": 0.9872 + }, + { + "start": 7306.36, + "end": 7311.44, + "probability": 0.9773 + }, + { + "start": 7313.34, + "end": 7313.62, + "probability": 0.741 + }, + { + "start": 7313.74, + "end": 7317.9, + "probability": 0.9976 + }, + { + "start": 7318.26, + "end": 7319.18, + "probability": 0.9225 + }, + { + "start": 7319.36, + "end": 7320.16, + "probability": 0.8809 + }, + { + "start": 7322.24, + "end": 7323.98, + "probability": 0.8347 + }, + { + "start": 7324.38, + "end": 7326.56, + "probability": 0.9923 + }, + { + "start": 7327.74, + "end": 7328.04, + "probability": 0.1883 + }, + { + "start": 7328.04, + "end": 7328.32, + "probability": 0.3317 + }, + { + "start": 7328.56, + "end": 7330.06, + "probability": 0.9832 + }, + { + "start": 7330.1, + "end": 7330.84, + "probability": 0.8727 + }, + { + "start": 7331.78, + "end": 7334.98, + "probability": 0.8529 + }, + { + "start": 7335.7, + "end": 7337.1, + "probability": 0.9883 + }, + { + "start": 7338.54, + "end": 7342.22, + "probability": 0.9775 + }, + { + "start": 7342.7, + "end": 7345.06, + "probability": 0.9658 + }, + { + "start": 7345.54, + "end": 7349.85, + "probability": 0.9814 + }, + { + "start": 7350.54, + "end": 7353.3, + "probability": 0.9829 + }, + { + "start": 7353.86, + "end": 7356.72, + "probability": 0.9428 + }, + { + "start": 7357.38, + "end": 7358.5, + "probability": 0.8433 + }, + { + "start": 7358.7, + "end": 7359.8, + "probability": 0.9971 + }, + { + "start": 7360.26, + "end": 7360.96, + "probability": 0.8276 + }, + { + "start": 7360.96, + "end": 7361.34, + "probability": 0.9438 + }, + { + "start": 7361.5, + "end": 7366.54, + "probability": 0.963 + }, + { + "start": 7367.56, + "end": 7370.74, + "probability": 0.9526 + }, + { + "start": 7371.36, + "end": 7372.38, + "probability": 0.5339 + }, + { + "start": 7372.56, + "end": 7377.96, + "probability": 0.9822 + }, + { + "start": 7379.12, + "end": 7380.94, + "probability": 0.8582 + }, + { + "start": 7381.56, + "end": 7383.96, + "probability": 0.9878 + }, + { + "start": 7384.12, + "end": 7386.56, + "probability": 0.9626 + }, + { + "start": 7387.84, + "end": 7389.42, + "probability": 0.9988 + }, + { + "start": 7390.0, + "end": 7390.94, + "probability": 0.8433 + }, + { + "start": 7391.68, + "end": 7392.88, + "probability": 0.5521 + }, + { + "start": 7393.06, + "end": 7396.56, + "probability": 0.9889 + }, + { + "start": 7396.74, + "end": 7398.26, + "probability": 0.9928 + }, + { + "start": 7398.74, + "end": 7400.04, + "probability": 0.9904 + }, + { + "start": 7400.6, + "end": 7401.66, + "probability": 0.6535 + }, + { + "start": 7402.5, + "end": 7406.08, + "probability": 0.9788 + }, + { + "start": 7406.44, + "end": 7410.02, + "probability": 0.9634 + }, + { + "start": 7410.54, + "end": 7414.78, + "probability": 0.9961 + }, + { + "start": 7415.72, + "end": 7417.8, + "probability": 0.9825 + }, + { + "start": 7417.9, + "end": 7419.68, + "probability": 0.8519 + }, + { + "start": 7420.34, + "end": 7421.72, + "probability": 0.8999 + }, + { + "start": 7422.16, + "end": 7425.58, + "probability": 0.9733 + }, + { + "start": 7427.12, + "end": 7431.16, + "probability": 0.9867 + }, + { + "start": 7431.92, + "end": 7434.48, + "probability": 0.9556 + }, + { + "start": 7434.6, + "end": 7435.86, + "probability": 0.7969 + }, + { + "start": 7437.52, + "end": 7438.04, + "probability": 0.6768 + }, + { + "start": 7438.14, + "end": 7439.12, + "probability": 0.8909 + }, + { + "start": 7439.22, + "end": 7440.36, + "probability": 0.7408 + }, + { + "start": 7440.5, + "end": 7444.46, + "probability": 0.9184 + }, + { + "start": 7444.74, + "end": 7445.22, + "probability": 0.3768 + }, + { + "start": 7446.1, + "end": 7447.44, + "probability": 0.9441 + }, + { + "start": 7447.84, + "end": 7449.48, + "probability": 0.9944 + }, + { + "start": 7450.1, + "end": 7452.06, + "probability": 0.9651 + }, + { + "start": 7452.4, + "end": 7454.92, + "probability": 0.9939 + }, + { + "start": 7456.2, + "end": 7457.2, + "probability": 0.7935 + }, + { + "start": 7461.68, + "end": 7462.02, + "probability": 0.0091 + }, + { + "start": 7462.02, + "end": 7462.02, + "probability": 0.0587 + }, + { + "start": 7462.02, + "end": 7462.02, + "probability": 0.1075 + }, + { + "start": 7462.02, + "end": 7462.02, + "probability": 0.0261 + }, + { + "start": 7462.02, + "end": 7462.37, + "probability": 0.3381 + }, + { + "start": 7462.64, + "end": 7463.5, + "probability": 0.2963 + }, + { + "start": 7464.06, + "end": 7466.46, + "probability": 0.7556 + }, + { + "start": 7466.66, + "end": 7467.74, + "probability": 0.7214 + }, + { + "start": 7468.1, + "end": 7470.18, + "probability": 0.9922 + }, + { + "start": 7471.24, + "end": 7473.96, + "probability": 0.9962 + }, + { + "start": 7475.0, + "end": 7476.92, + "probability": 0.6628 + }, + { + "start": 7477.74, + "end": 7481.2, + "probability": 0.8086 + }, + { + "start": 7481.28, + "end": 7481.96, + "probability": 0.9812 + }, + { + "start": 7482.22, + "end": 7482.84, + "probability": 0.5301 + }, + { + "start": 7483.34, + "end": 7485.1, + "probability": 0.9059 + }, + { + "start": 7485.56, + "end": 7486.94, + "probability": 0.7433 + }, + { + "start": 7487.3, + "end": 7488.42, + "probability": 0.9635 + }, + { + "start": 7489.08, + "end": 7492.94, + "probability": 0.9531 + }, + { + "start": 7493.98, + "end": 7498.6, + "probability": 0.99 + }, + { + "start": 7498.88, + "end": 7499.32, + "probability": 0.451 + }, + { + "start": 7499.7, + "end": 7501.42, + "probability": 0.9833 + }, + { + "start": 7501.94, + "end": 7504.36, + "probability": 0.9839 + }, + { + "start": 7505.38, + "end": 7506.78, + "probability": 0.7624 + }, + { + "start": 7506.96, + "end": 7508.28, + "probability": 0.9852 + }, + { + "start": 7508.68, + "end": 7511.22, + "probability": 0.9818 + }, + { + "start": 7511.84, + "end": 7515.52, + "probability": 0.7039 + }, + { + "start": 7515.58, + "end": 7517.16, + "probability": 0.9735 + }, + { + "start": 7517.8, + "end": 7521.18, + "probability": 0.9044 + }, + { + "start": 7521.72, + "end": 7524.46, + "probability": 0.9351 + }, + { + "start": 7524.8, + "end": 7525.38, + "probability": 0.7323 + }, + { + "start": 7525.94, + "end": 7528.28, + "probability": 0.9918 + }, + { + "start": 7528.68, + "end": 7530.15, + "probability": 0.9637 + }, + { + "start": 7532.28, + "end": 7532.64, + "probability": 0.6772 + }, + { + "start": 7532.88, + "end": 7535.72, + "probability": 0.8611 + }, + { + "start": 7536.48, + "end": 7538.36, + "probability": 0.9951 + }, + { + "start": 7538.74, + "end": 7539.76, + "probability": 0.9573 + }, + { + "start": 7540.14, + "end": 7542.48, + "probability": 0.8066 + }, + { + "start": 7542.86, + "end": 7544.2, + "probability": 0.3522 + }, + { + "start": 7544.38, + "end": 7544.74, + "probability": 0.5696 + }, + { + "start": 7545.36, + "end": 7548.28, + "probability": 0.6555 + }, + { + "start": 7548.36, + "end": 7549.3, + "probability": 0.7464 + }, + { + "start": 7549.38, + "end": 7550.9, + "probability": 0.8408 + }, + { + "start": 7551.06, + "end": 7553.46, + "probability": 0.9717 + }, + { + "start": 7553.46, + "end": 7556.96, + "probability": 0.973 + }, + { + "start": 7557.44, + "end": 7558.22, + "probability": 0.6937 + }, + { + "start": 7558.58, + "end": 7559.44, + "probability": 0.9543 + }, + { + "start": 7559.72, + "end": 7560.54, + "probability": 0.7953 + }, + { + "start": 7560.58, + "end": 7562.56, + "probability": 0.9924 + }, + { + "start": 7562.62, + "end": 7563.14, + "probability": 0.8948 + }, + { + "start": 7563.7, + "end": 7566.62, + "probability": 0.792 + }, + { + "start": 7566.84, + "end": 7570.8, + "probability": 0.8131 + }, + { + "start": 7571.0, + "end": 7571.46, + "probability": 0.8297 + }, + { + "start": 7586.02, + "end": 7586.82, + "probability": 0.535 + }, + { + "start": 7599.52, + "end": 7602.2, + "probability": 0.9973 + }, + { + "start": 7603.46, + "end": 7604.06, + "probability": 0.985 + }, + { + "start": 7604.98, + "end": 7606.7, + "probability": 0.9978 + }, + { + "start": 7607.62, + "end": 7610.46, + "probability": 0.9836 + }, + { + "start": 7611.62, + "end": 7614.1, + "probability": 0.9766 + }, + { + "start": 7614.74, + "end": 7616.6, + "probability": 0.9888 + }, + { + "start": 7617.84, + "end": 7618.7, + "probability": 0.2678 + }, + { + "start": 7618.7, + "end": 7622.48, + "probability": 0.8873 + }, + { + "start": 7624.14, + "end": 7625.88, + "probability": 0.9006 + }, + { + "start": 7626.48, + "end": 7633.54, + "probability": 0.8391 + }, + { + "start": 7634.72, + "end": 7635.12, + "probability": 0.6132 + }, + { + "start": 7636.5, + "end": 7640.46, + "probability": 0.6721 + }, + { + "start": 7641.76, + "end": 7646.38, + "probability": 0.9551 + }, + { + "start": 7647.6, + "end": 7650.58, + "probability": 0.9366 + }, + { + "start": 7651.52, + "end": 7653.8, + "probability": 0.8212 + }, + { + "start": 7654.54, + "end": 7656.18, + "probability": 0.7779 + }, + { + "start": 7656.82, + "end": 7658.48, + "probability": 0.7611 + }, + { + "start": 7659.62, + "end": 7665.8, + "probability": 0.8696 + }, + { + "start": 7670.7, + "end": 7671.54, + "probability": 0.7834 + }, + { + "start": 7672.4, + "end": 7676.38, + "probability": 0.9827 + }, + { + "start": 7676.38, + "end": 7679.3, + "probability": 0.9826 + }, + { + "start": 7680.02, + "end": 7682.1, + "probability": 0.8528 + }, + { + "start": 7682.88, + "end": 7684.84, + "probability": 0.7957 + }, + { + "start": 7685.04, + "end": 7687.6, + "probability": 0.974 + }, + { + "start": 7688.82, + "end": 7689.38, + "probability": 0.9301 + }, + { + "start": 7690.42, + "end": 7692.44, + "probability": 0.9323 + }, + { + "start": 7692.56, + "end": 7693.38, + "probability": 0.8232 + }, + { + "start": 7693.82, + "end": 7699.06, + "probability": 0.9981 + }, + { + "start": 7699.56, + "end": 7702.48, + "probability": 0.9835 + }, + { + "start": 7703.4, + "end": 7707.42, + "probability": 0.9967 + }, + { + "start": 7708.28, + "end": 7710.16, + "probability": 0.9431 + }, + { + "start": 7711.04, + "end": 7712.54, + "probability": 0.695 + }, + { + "start": 7713.24, + "end": 7715.2, + "probability": 0.887 + }, + { + "start": 7715.82, + "end": 7720.66, + "probability": 0.9781 + }, + { + "start": 7721.28, + "end": 7722.12, + "probability": 0.8089 + }, + { + "start": 7722.78, + "end": 7725.12, + "probability": 0.981 + }, + { + "start": 7725.26, + "end": 7728.88, + "probability": 0.6773 + }, + { + "start": 7729.88, + "end": 7730.14, + "probability": 0.6042 + }, + { + "start": 7731.28, + "end": 7735.52, + "probability": 0.9928 + }, + { + "start": 7736.24, + "end": 7739.76, + "probability": 0.9023 + }, + { + "start": 7740.86, + "end": 7743.14, + "probability": 0.9976 + }, + { + "start": 7744.0, + "end": 7748.78, + "probability": 0.9722 + }, + { + "start": 7749.82, + "end": 7755.0, + "probability": 0.8589 + }, + { + "start": 7755.76, + "end": 7759.34, + "probability": 0.9987 + }, + { + "start": 7760.16, + "end": 7764.86, + "probability": 0.8751 + }, + { + "start": 7765.7, + "end": 7770.24, + "probability": 0.8797 + }, + { + "start": 7770.35, + "end": 7774.4, + "probability": 0.8909 + }, + { + "start": 7776.1, + "end": 7780.06, + "probability": 0.9576 + }, + { + "start": 7781.12, + "end": 7784.4, + "probability": 0.8323 + }, + { + "start": 7785.48, + "end": 7789.82, + "probability": 0.9924 + }, + { + "start": 7790.8, + "end": 7794.84, + "probability": 0.9585 + }, + { + "start": 7795.42, + "end": 7797.8, + "probability": 0.9749 + }, + { + "start": 7797.98, + "end": 7798.84, + "probability": 0.6806 + }, + { + "start": 7799.06, + "end": 7800.54, + "probability": 0.6684 + }, + { + "start": 7801.1, + "end": 7803.36, + "probability": 0.8844 + }, + { + "start": 7804.0, + "end": 7806.16, + "probability": 0.9777 + }, + { + "start": 7807.84, + "end": 7809.26, + "probability": 0.9973 + }, + { + "start": 7809.86, + "end": 7811.02, + "probability": 0.9216 + }, + { + "start": 7811.84, + "end": 7815.82, + "probability": 0.9987 + }, + { + "start": 7816.56, + "end": 7819.28, + "probability": 0.9559 + }, + { + "start": 7820.68, + "end": 7821.24, + "probability": 0.622 + }, + { + "start": 7821.64, + "end": 7826.06, + "probability": 0.9879 + }, + { + "start": 7827.68, + "end": 7828.34, + "probability": 0.4578 + }, + { + "start": 7828.48, + "end": 7833.12, + "probability": 0.9847 + }, + { + "start": 7833.12, + "end": 7836.6, + "probability": 0.9928 + }, + { + "start": 7838.1, + "end": 7839.78, + "probability": 0.7831 + }, + { + "start": 7840.42, + "end": 7844.92, + "probability": 0.995 + }, + { + "start": 7845.96, + "end": 7849.28, + "probability": 0.742 + }, + { + "start": 7850.42, + "end": 7854.6, + "probability": 0.9891 + }, + { + "start": 7855.36, + "end": 7858.4, + "probability": 0.9894 + }, + { + "start": 7859.28, + "end": 7861.42, + "probability": 0.7313 + }, + { + "start": 7861.72, + "end": 7864.42, + "probability": 0.9318 + }, + { + "start": 7865.2, + "end": 7869.8, + "probability": 0.9409 + }, + { + "start": 7869.8, + "end": 7872.44, + "probability": 0.9963 + }, + { + "start": 7874.2, + "end": 7879.64, + "probability": 0.991 + }, + { + "start": 7883.64, + "end": 7884.68, + "probability": 0.8495 + }, + { + "start": 7885.78, + "end": 7887.88, + "probability": 0.5646 + }, + { + "start": 7889.64, + "end": 7893.36, + "probability": 0.9911 + }, + { + "start": 7894.36, + "end": 7896.79, + "probability": 0.96 + }, + { + "start": 7898.12, + "end": 7900.62, + "probability": 0.998 + }, + { + "start": 7901.48, + "end": 7903.54, + "probability": 0.8682 + }, + { + "start": 7903.72, + "end": 7905.92, + "probability": 0.8105 + }, + { + "start": 7906.04, + "end": 7907.46, + "probability": 0.9745 + }, + { + "start": 7908.18, + "end": 7909.68, + "probability": 0.4177 + }, + { + "start": 7909.94, + "end": 7912.84, + "probability": 0.3668 + }, + { + "start": 7914.72, + "end": 7915.62, + "probability": 0.5998 + }, + { + "start": 7915.66, + "end": 7919.44, + "probability": 0.7892 + }, + { + "start": 7919.64, + "end": 7920.7, + "probability": 0.5854 + }, + { + "start": 7920.9, + "end": 7922.28, + "probability": 0.5499 + }, + { + "start": 7922.44, + "end": 7927.66, + "probability": 0.5068 + }, + { + "start": 7928.54, + "end": 7929.3, + "probability": 0.1356 + }, + { + "start": 7929.3, + "end": 7929.3, + "probability": 0.0977 + }, + { + "start": 7929.3, + "end": 7929.3, + "probability": 0.0212 + }, + { + "start": 7929.3, + "end": 7929.3, + "probability": 0.068 + }, + { + "start": 7929.3, + "end": 7929.3, + "probability": 0.1336 + }, + { + "start": 7929.3, + "end": 7932.72, + "probability": 0.7561 + }, + { + "start": 7934.0, + "end": 7936.12, + "probability": 0.6861 + }, + { + "start": 7936.74, + "end": 7938.4, + "probability": 0.7481 + }, + { + "start": 7939.46, + "end": 7940.96, + "probability": 0.7609 + }, + { + "start": 7941.04, + "end": 7942.28, + "probability": 0.9721 + }, + { + "start": 7942.34, + "end": 7943.3, + "probability": 0.885 + }, + { + "start": 7943.72, + "end": 7944.7, + "probability": 0.9631 + }, + { + "start": 7945.12, + "end": 7947.44, + "probability": 0.9914 + }, + { + "start": 7948.04, + "end": 7949.02, + "probability": 0.9868 + }, + { + "start": 7949.36, + "end": 7951.92, + "probability": 0.9158 + }, + { + "start": 7959.58, + "end": 7961.82, + "probability": 0.9027 + }, + { + "start": 7962.36, + "end": 7963.2, + "probability": 0.6476 + }, + { + "start": 7963.8, + "end": 7965.46, + "probability": 0.9742 + }, + { + "start": 7966.88, + "end": 7969.2, + "probability": 0.9791 + }, + { + "start": 7972.08, + "end": 7974.58, + "probability": 0.8784 + }, + { + "start": 7975.38, + "end": 7978.26, + "probability": 0.9107 + }, + { + "start": 7978.66, + "end": 7979.5, + "probability": 0.8528 + }, + { + "start": 7979.98, + "end": 7983.04, + "probability": 0.9618 + }, + { + "start": 7983.16, + "end": 7984.38, + "probability": 0.9599 + }, + { + "start": 7984.82, + "end": 7986.22, + "probability": 0.9077 + }, + { + "start": 7986.36, + "end": 7993.34, + "probability": 0.9727 + }, + { + "start": 7994.24, + "end": 7995.14, + "probability": 0.871 + }, + { + "start": 7995.96, + "end": 7997.86, + "probability": 0.9449 + }, + { + "start": 7999.46, + "end": 8004.12, + "probability": 0.9847 + }, + { + "start": 8004.26, + "end": 8004.94, + "probability": 0.7556 + }, + { + "start": 8005.06, + "end": 8005.57, + "probability": 0.3694 + }, + { + "start": 8005.74, + "end": 8008.2, + "probability": 0.8148 + }, + { + "start": 8008.26, + "end": 8010.62, + "probability": 0.9113 + }, + { + "start": 8011.22, + "end": 8012.92, + "probability": 0.913 + }, + { + "start": 8014.96, + "end": 8016.62, + "probability": 0.9437 + }, + { + "start": 8019.5, + "end": 8021.08, + "probability": 0.3358 + }, + { + "start": 8021.36, + "end": 8025.28, + "probability": 0.988 + }, + { + "start": 8026.22, + "end": 8027.34, + "probability": 0.9698 + }, + { + "start": 8028.34, + "end": 8031.86, + "probability": 0.6296 + }, + { + "start": 8031.98, + "end": 8034.68, + "probability": 0.9942 + }, + { + "start": 8035.26, + "end": 8036.38, + "probability": 0.7297 + }, + { + "start": 8036.8, + "end": 8038.54, + "probability": 0.9891 + }, + { + "start": 8039.02, + "end": 8040.22, + "probability": 0.804 + }, + { + "start": 8041.44, + "end": 8042.32, + "probability": 0.72 + }, + { + "start": 8043.02, + "end": 8045.76, + "probability": 0.9351 + }, + { + "start": 8046.4, + "end": 8048.98, + "probability": 0.714 + }, + { + "start": 8049.62, + "end": 8052.24, + "probability": 0.8381 + }, + { + "start": 8052.92, + "end": 8052.92, + "probability": 0.0394 + }, + { + "start": 8052.92, + "end": 8053.2, + "probability": 0.2653 + }, + { + "start": 8053.2, + "end": 8054.42, + "probability": 0.0218 + }, + { + "start": 8054.56, + "end": 8055.18, + "probability": 0.499 + }, + { + "start": 8059.54, + "end": 8059.6, + "probability": 0.0289 + }, + { + "start": 8059.6, + "end": 8059.6, + "probability": 0.2461 + }, + { + "start": 8059.6, + "end": 8060.1, + "probability": 0.1036 + }, + { + "start": 8060.14, + "end": 8060.5, + "probability": 0.7437 + }, + { + "start": 8061.4, + "end": 8065.12, + "probability": 0.4986 + }, + { + "start": 8065.92, + "end": 8067.36, + "probability": 0.5311 + }, + { + "start": 8067.64, + "end": 8068.26, + "probability": 0.4089 + }, + { + "start": 8068.44, + "end": 8069.42, + "probability": 0.7506 + }, + { + "start": 8069.78, + "end": 8070.8, + "probability": 0.8133 + }, + { + "start": 8070.98, + "end": 8072.6, + "probability": 0.6362 + }, + { + "start": 8073.24, + "end": 8074.14, + "probability": 0.0442 + }, + { + "start": 8074.24, + "end": 8074.94, + "probability": 0.638 + }, + { + "start": 8075.18, + "end": 8075.68, + "probability": 0.3468 + }, + { + "start": 8075.68, + "end": 8077.08, + "probability": 0.2959 + }, + { + "start": 8077.76, + "end": 8079.37, + "probability": 0.3494 + }, + { + "start": 8081.26, + "end": 8081.68, + "probability": 0.1116 + }, + { + "start": 8081.68, + "end": 8081.68, + "probability": 0.036 + }, + { + "start": 8081.68, + "end": 8083.0, + "probability": 0.564 + }, + { + "start": 8083.98, + "end": 8086.06, + "probability": 0.7905 + }, + { + "start": 8086.16, + "end": 8087.6, + "probability": 0.6623 + }, + { + "start": 8088.42, + "end": 8088.6, + "probability": 0.5584 + }, + { + "start": 8089.76, + "end": 8093.44, + "probability": 0.853 + }, + { + "start": 8094.0, + "end": 8095.06, + "probability": 0.9255 + }, + { + "start": 8095.8, + "end": 8097.98, + "probability": 0.9312 + }, + { + "start": 8102.2, + "end": 8103.9, + "probability": 0.096 + }, + { + "start": 8103.9, + "end": 8107.74, + "probability": 0.9867 + }, + { + "start": 8107.8, + "end": 8109.38, + "probability": 0.4533 + }, + { + "start": 8109.82, + "end": 8110.52, + "probability": 0.7797 + }, + { + "start": 8110.88, + "end": 8111.46, + "probability": 0.7804 + }, + { + "start": 8111.5, + "end": 8116.14, + "probability": 0.9866 + }, + { + "start": 8116.5, + "end": 8117.62, + "probability": 0.9623 + }, + { + "start": 8117.68, + "end": 8119.64, + "probability": 0.7006 + }, + { + "start": 8119.94, + "end": 8121.28, + "probability": 0.5229 + }, + { + "start": 8121.56, + "end": 8123.92, + "probability": 0.9719 + }, + { + "start": 8124.56, + "end": 8129.68, + "probability": 0.9783 + }, + { + "start": 8129.68, + "end": 8134.34, + "probability": 0.9916 + }, + { + "start": 8134.86, + "end": 8136.52, + "probability": 0.5563 + }, + { + "start": 8136.98, + "end": 8139.26, + "probability": 0.8245 + }, + { + "start": 8139.26, + "end": 8140.36, + "probability": 0.1016 + }, + { + "start": 8141.8, + "end": 8142.32, + "probability": 0.2905 + }, + { + "start": 8142.72, + "end": 8143.74, + "probability": 0.2645 + }, + { + "start": 8143.74, + "end": 8145.86, + "probability": 0.0311 + }, + { + "start": 8145.86, + "end": 8146.66, + "probability": 0.6885 + }, + { + "start": 8147.0, + "end": 8148.14, + "probability": 0.5668 + }, + { + "start": 8148.4, + "end": 8149.16, + "probability": 0.3452 + }, + { + "start": 8149.28, + "end": 8151.14, + "probability": 0.6349 + }, + { + "start": 8151.22, + "end": 8156.56, + "probability": 0.5976 + }, + { + "start": 8157.54, + "end": 8159.34, + "probability": 0.661 + }, + { + "start": 8159.86, + "end": 8160.84, + "probability": 0.7551 + }, + { + "start": 8162.14, + "end": 8165.72, + "probability": 0.9898 + }, + { + "start": 8166.02, + "end": 8167.46, + "probability": 0.9979 + }, + { + "start": 8168.04, + "end": 8169.66, + "probability": 0.8068 + }, + { + "start": 8170.36, + "end": 8172.16, + "probability": 0.8111 + }, + { + "start": 8172.16, + "end": 8173.45, + "probability": 0.101 + }, + { + "start": 8174.66, + "end": 8174.66, + "probability": 0.3267 + }, + { + "start": 8174.66, + "end": 8175.95, + "probability": 0.9905 + }, + { + "start": 8176.55, + "end": 8178.74, + "probability": 0.9419 + }, + { + "start": 8178.82, + "end": 8180.18, + "probability": 0.9541 + }, + { + "start": 8181.12, + "end": 8183.14, + "probability": 0.7202 + }, + { + "start": 8183.78, + "end": 8184.92, + "probability": 0.8535 + }, + { + "start": 8185.74, + "end": 8188.44, + "probability": 0.9878 + }, + { + "start": 8189.12, + "end": 8193.14, + "probability": 0.7945 + }, + { + "start": 8193.44, + "end": 8194.44, + "probability": 0.7167 + }, + { + "start": 8195.1, + "end": 8196.79, + "probability": 0.9221 + }, + { + "start": 8198.52, + "end": 8202.72, + "probability": 0.8879 + }, + { + "start": 8202.86, + "end": 8203.36, + "probability": 0.377 + }, + { + "start": 8203.96, + "end": 8204.76, + "probability": 0.8347 + }, + { + "start": 8205.26, + "end": 8208.86, + "probability": 0.992 + }, + { + "start": 8208.92, + "end": 8210.54, + "probability": 0.866 + }, + { + "start": 8210.6, + "end": 8211.0, + "probability": 0.2173 + }, + { + "start": 8211.18, + "end": 8212.81, + "probability": 0.994 + }, + { + "start": 8213.16, + "end": 8214.54, + "probability": 0.8277 + }, + { + "start": 8215.4, + "end": 8220.5, + "probability": 0.9733 + }, + { + "start": 8221.36, + "end": 8225.02, + "probability": 0.9656 + }, + { + "start": 8225.44, + "end": 8227.24, + "probability": 0.9476 + }, + { + "start": 8227.74, + "end": 8228.7, + "probability": 0.6672 + }, + { + "start": 8228.74, + "end": 8229.76, + "probability": 0.5997 + }, + { + "start": 8229.98, + "end": 8229.98, + "probability": 0.3594 + }, + { + "start": 8229.98, + "end": 8231.8, + "probability": 0.439 + }, + { + "start": 8232.32, + "end": 8232.6, + "probability": 0.6243 + }, + { + "start": 8233.6, + "end": 8234.68, + "probability": 0.6492 + }, + { + "start": 8234.84, + "end": 8238.9, + "probability": 0.9818 + }, + { + "start": 8239.32, + "end": 8240.96, + "probability": 0.8116 + }, + { + "start": 8241.4, + "end": 8242.68, + "probability": 0.8532 + }, + { + "start": 8243.32, + "end": 8245.3, + "probability": 0.9961 + }, + { + "start": 8245.76, + "end": 8250.56, + "probability": 0.9885 + }, + { + "start": 8251.1, + "end": 8252.6, + "probability": 0.9044 + }, + { + "start": 8253.74, + "end": 8255.74, + "probability": 0.9222 + }, + { + "start": 8255.82, + "end": 8257.26, + "probability": 0.9219 + }, + { + "start": 8257.38, + "end": 8260.02, + "probability": 0.9928 + }, + { + "start": 8260.08, + "end": 8260.98, + "probability": 0.9868 + }, + { + "start": 8261.46, + "end": 8262.38, + "probability": 0.8228 + }, + { + "start": 8262.92, + "end": 8264.5, + "probability": 0.9551 + }, + { + "start": 8264.62, + "end": 8265.02, + "probability": 0.8232 + }, + { + "start": 8266.04, + "end": 8269.98, + "probability": 0.9561 + }, + { + "start": 8270.44, + "end": 8270.92, + "probability": 0.3624 + }, + { + "start": 8271.2, + "end": 8273.84, + "probability": 0.4093 + }, + { + "start": 8281.04, + "end": 8281.7, + "probability": 0.7953 + }, + { + "start": 8281.88, + "end": 8283.7, + "probability": 0.9762 + }, + { + "start": 8283.8, + "end": 8288.04, + "probability": 0.9712 + }, + { + "start": 8288.06, + "end": 8290.58, + "probability": 0.8871 + }, + { + "start": 8290.8, + "end": 8295.02, + "probability": 0.9925 + }, + { + "start": 8295.04, + "end": 8298.8, + "probability": 0.9569 + }, + { + "start": 8299.2, + "end": 8302.2, + "probability": 0.9961 + }, + { + "start": 8302.66, + "end": 8306.3, + "probability": 0.8843 + }, + { + "start": 8306.4, + "end": 8306.94, + "probability": 0.7382 + }, + { + "start": 8307.02, + "end": 8309.7, + "probability": 0.9902 + }, + { + "start": 8309.78, + "end": 8313.48, + "probability": 0.968 + }, + { + "start": 8314.44, + "end": 8317.62, + "probability": 0.8229 + }, + { + "start": 8318.18, + "end": 8323.34, + "probability": 0.9305 + }, + { + "start": 8323.38, + "end": 8326.88, + "probability": 0.805 + }, + { + "start": 8327.6, + "end": 8333.48, + "probability": 0.9742 + }, + { + "start": 8333.48, + "end": 8337.5, + "probability": 0.9983 + }, + { + "start": 8338.92, + "end": 8339.3, + "probability": 0.7845 + }, + { + "start": 8339.56, + "end": 8340.06, + "probability": 0.7771 + }, + { + "start": 8340.56, + "end": 8342.56, + "probability": 0.9812 + }, + { + "start": 8342.58, + "end": 8345.26, + "probability": 0.9231 + }, + { + "start": 8345.74, + "end": 8345.74, + "probability": 0.5065 + }, + { + "start": 8345.8, + "end": 8346.68, + "probability": 0.8765 + }, + { + "start": 8347.48, + "end": 8347.62, + "probability": 0.3942 + }, + { + "start": 8347.62, + "end": 8347.62, + "probability": 0.2532 + }, + { + "start": 8347.72, + "end": 8348.66, + "probability": 0.5023 + }, + { + "start": 8348.94, + "end": 8350.62, + "probability": 0.9388 + }, + { + "start": 8351.08, + "end": 8351.68, + "probability": 0.5986 + }, + { + "start": 8352.2, + "end": 8353.8, + "probability": 0.8755 + }, + { + "start": 8353.88, + "end": 8355.64, + "probability": 0.6873 + }, + { + "start": 8355.82, + "end": 8356.64, + "probability": 0.5931 + }, + { + "start": 8356.84, + "end": 8358.52, + "probability": 0.2543 + }, + { + "start": 8359.32, + "end": 8360.9, + "probability": 0.0595 + }, + { + "start": 8360.9, + "end": 8362.06, + "probability": 0.4806 + }, + { + "start": 8363.94, + "end": 8366.84, + "probability": 0.0985 + }, + { + "start": 8366.88, + "end": 8367.24, + "probability": 0.4812 + }, + { + "start": 8367.46, + "end": 8368.34, + "probability": 0.8747 + }, + { + "start": 8368.58, + "end": 8370.72, + "probability": 0.8542 + }, + { + "start": 8371.84, + "end": 8373.36, + "probability": 0.3226 + }, + { + "start": 8373.36, + "end": 8373.36, + "probability": 0.3499 + }, + { + "start": 8373.56, + "end": 8377.68, + "probability": 0.6533 + }, + { + "start": 8378.34, + "end": 8382.4, + "probability": 0.4204 + }, + { + "start": 8382.58, + "end": 8384.32, + "probability": 0.6959 + }, + { + "start": 8384.36, + "end": 8384.66, + "probability": 0.7869 + }, + { + "start": 8384.78, + "end": 8385.26, + "probability": 0.4001 + }, + { + "start": 8385.4, + "end": 8388.8, + "probability": 0.8618 + }, + { + "start": 8388.82, + "end": 8389.98, + "probability": 0.5599 + }, + { + "start": 8390.06, + "end": 8392.56, + "probability": 0.8536 + }, + { + "start": 8392.72, + "end": 8394.28, + "probability": 0.8561 + }, + { + "start": 8394.36, + "end": 8395.64, + "probability": 0.6729 + }, + { + "start": 8396.06, + "end": 8399.14, + "probability": 0.8614 + }, + { + "start": 8400.38, + "end": 8401.1, + "probability": 0.2575 + }, + { + "start": 8401.1, + "end": 8401.8, + "probability": 0.2081 + }, + { + "start": 8401.86, + "end": 8406.62, + "probability": 0.6315 + }, + { + "start": 8406.62, + "end": 8407.5, + "probability": 0.5793 + }, + { + "start": 8407.56, + "end": 8408.24, + "probability": 0.4906 + }, + { + "start": 8408.32, + "end": 8409.18, + "probability": 0.5202 + }, + { + "start": 8409.66, + "end": 8409.76, + "probability": 0.4157 + }, + { + "start": 8410.68, + "end": 8412.58, + "probability": 0.988 + }, + { + "start": 8412.6, + "end": 8412.7, + "probability": 0.8669 + }, + { + "start": 8414.32, + "end": 8418.86, + "probability": 0.6091 + }, + { + "start": 8427.48, + "end": 8427.62, + "probability": 0.0576 + }, + { + "start": 8427.62, + "end": 8427.94, + "probability": 0.4383 + }, + { + "start": 8428.02, + "end": 8428.32, + "probability": 0.6166 + }, + { + "start": 8428.88, + "end": 8431.3, + "probability": 0.8761 + }, + { + "start": 8431.96, + "end": 8433.36, + "probability": 0.9683 + }, + { + "start": 8433.62, + "end": 8435.6, + "probability": 0.8521 + }, + { + "start": 8436.54, + "end": 8439.28, + "probability": 0.7842 + }, + { + "start": 8439.34, + "end": 8442.04, + "probability": 0.9583 + }, + { + "start": 8442.04, + "end": 8444.34, + "probability": 0.9612 + }, + { + "start": 8445.04, + "end": 8448.64, + "probability": 0.9525 + }, + { + "start": 8449.48, + "end": 8452.66, + "probability": 0.8494 + }, + { + "start": 8452.72, + "end": 8453.32, + "probability": 0.741 + }, + { + "start": 8453.96, + "end": 8455.68, + "probability": 0.9576 + }, + { + "start": 8456.32, + "end": 8457.66, + "probability": 0.5121 + }, + { + "start": 8457.72, + "end": 8457.96, + "probability": 0.7657 + }, + { + "start": 8464.08, + "end": 8464.4, + "probability": 0.1173 + }, + { + "start": 8464.4, + "end": 8464.4, + "probability": 0.2343 + }, + { + "start": 8464.4, + "end": 8466.78, + "probability": 0.7912 + }, + { + "start": 8466.78, + "end": 8466.78, + "probability": 0.1084 + }, + { + "start": 8466.78, + "end": 8466.78, + "probability": 0.3122 + }, + { + "start": 8481.12, + "end": 8482.18, + "probability": 0.4424 + }, + { + "start": 8482.28, + "end": 8482.28, + "probability": 0.075 + }, + { + "start": 8482.84, + "end": 8485.12, + "probability": 0.4743 + }, + { + "start": 8486.42, + "end": 8488.16, + "probability": 0.7226 + }, + { + "start": 8488.26, + "end": 8489.58, + "probability": 0.6794 + }, + { + "start": 8489.66, + "end": 8491.28, + "probability": 0.9701 + }, + { + "start": 8491.34, + "end": 8492.42, + "probability": 0.9261 + }, + { + "start": 8492.62, + "end": 8495.16, + "probability": 0.8011 + }, + { + "start": 8495.16, + "end": 8497.26, + "probability": 0.8852 + }, + { + "start": 8498.58, + "end": 8507.28, + "probability": 0.9692 + }, + { + "start": 8507.66, + "end": 8509.3, + "probability": 0.6995 + }, + { + "start": 8509.96, + "end": 8510.6, + "probability": 0.8923 + }, + { + "start": 8511.06, + "end": 8511.06, + "probability": 0.0861 + }, + { + "start": 8511.06, + "end": 8511.06, + "probability": 0.0076 + }, + { + "start": 8511.06, + "end": 8512.1, + "probability": 0.5132 + }, + { + "start": 8515.78, + "end": 8518.16, + "probability": 0.7888 + }, + { + "start": 8519.1, + "end": 8520.58, + "probability": 0.675 + }, + { + "start": 8522.14, + "end": 8524.24, + "probability": 0.8579 + }, + { + "start": 8525.0, + "end": 8526.72, + "probability": 0.6559 + }, + { + "start": 8527.48, + "end": 8531.54, + "probability": 0.9886 + }, + { + "start": 8532.32, + "end": 8532.96, + "probability": 0.7103 + }, + { + "start": 8533.96, + "end": 8535.72, + "probability": 0.976 + }, + { + "start": 8535.88, + "end": 8537.44, + "probability": 0.8733 + }, + { + "start": 8539.74, + "end": 8545.38, + "probability": 0.9061 + }, + { + "start": 8546.16, + "end": 8549.2, + "probability": 0.9539 + }, + { + "start": 8549.52, + "end": 8550.7, + "probability": 0.897 + }, + { + "start": 8551.88, + "end": 8552.74, + "probability": 0.857 + }, + { + "start": 8554.78, + "end": 8556.42, + "probability": 0.9209 + }, + { + "start": 8556.98, + "end": 8557.96, + "probability": 0.8394 + }, + { + "start": 8558.52, + "end": 8561.22, + "probability": 0.9561 + }, + { + "start": 8565.62, + "end": 8569.4, + "probability": 0.9974 + }, + { + "start": 8570.42, + "end": 8572.42, + "probability": 0.4979 + }, + { + "start": 8573.22, + "end": 8573.64, + "probability": 0.7209 + }, + { + "start": 8575.54, + "end": 8581.12, + "probability": 0.99 + }, + { + "start": 8581.78, + "end": 8585.44, + "probability": 0.711 + }, + { + "start": 8585.44, + "end": 8588.1, + "probability": 0.7742 + }, + { + "start": 8589.94, + "end": 8593.7, + "probability": 0.846 + }, + { + "start": 8593.8, + "end": 8599.54, + "probability": 0.9792 + }, + { + "start": 8601.48, + "end": 8602.94, + "probability": 0.9917 + }, + { + "start": 8603.0, + "end": 8603.66, + "probability": 0.8695 + }, + { + "start": 8604.06, + "end": 8604.76, + "probability": 0.8472 + }, + { + "start": 8605.8, + "end": 8608.94, + "probability": 0.8457 + }, + { + "start": 8610.8, + "end": 8616.98, + "probability": 0.9332 + }, + { + "start": 8619.3, + "end": 8622.66, + "probability": 0.8536 + }, + { + "start": 8623.56, + "end": 8624.18, + "probability": 0.5567 + }, + { + "start": 8627.22, + "end": 8627.68, + "probability": 0.5649 + }, + { + "start": 8628.8, + "end": 8630.2, + "probability": 0.9983 + }, + { + "start": 8631.28, + "end": 8632.06, + "probability": 0.9993 + }, + { + "start": 8634.1, + "end": 8638.08, + "probability": 0.7459 + }, + { + "start": 8639.36, + "end": 8639.72, + "probability": 0.9211 + }, + { + "start": 8640.46, + "end": 8643.32, + "probability": 0.8004 + }, + { + "start": 8644.7, + "end": 8647.14, + "probability": 0.9915 + }, + { + "start": 8647.14, + "end": 8650.3, + "probability": 0.9976 + }, + { + "start": 8652.74, + "end": 8654.28, + "probability": 0.6934 + }, + { + "start": 8655.18, + "end": 8656.5, + "probability": 0.5801 + }, + { + "start": 8657.44, + "end": 8658.42, + "probability": 0.7772 + }, + { + "start": 8659.12, + "end": 8659.8, + "probability": 0.6128 + }, + { + "start": 8659.9, + "end": 8662.2, + "probability": 0.885 + }, + { + "start": 8663.82, + "end": 8666.22, + "probability": 0.9976 + }, + { + "start": 8666.68, + "end": 8669.36, + "probability": 0.9982 + }, + { + "start": 8670.32, + "end": 8671.16, + "probability": 0.999 + }, + { + "start": 8671.86, + "end": 8672.72, + "probability": 0.9828 + }, + { + "start": 8674.34, + "end": 8677.5, + "probability": 0.9938 + }, + { + "start": 8677.76, + "end": 8679.66, + "probability": 0.9924 + }, + { + "start": 8681.12, + "end": 8685.74, + "probability": 0.9926 + }, + { + "start": 8686.3, + "end": 8691.58, + "probability": 0.935 + }, + { + "start": 8692.18, + "end": 8692.96, + "probability": 0.9785 + }, + { + "start": 8694.0, + "end": 8695.96, + "probability": 0.9594 + }, + { + "start": 8699.38, + "end": 8703.1, + "probability": 0.9934 + }, + { + "start": 8703.72, + "end": 8704.22, + "probability": 0.7378 + }, + { + "start": 8704.76, + "end": 8707.22, + "probability": 0.8903 + }, + { + "start": 8708.3, + "end": 8709.12, + "probability": 0.8306 + }, + { + "start": 8710.04, + "end": 8710.88, + "probability": 0.9124 + }, + { + "start": 8711.2, + "end": 8713.68, + "probability": 0.9968 + }, + { + "start": 8715.04, + "end": 8716.0, + "probability": 0.8264 + }, + { + "start": 8717.02, + "end": 8718.9, + "probability": 0.9548 + }, + { + "start": 8721.46, + "end": 8723.78, + "probability": 0.8806 + }, + { + "start": 8725.16, + "end": 8729.8, + "probability": 0.9867 + }, + { + "start": 8730.68, + "end": 8732.04, + "probability": 0.9912 + }, + { + "start": 8732.64, + "end": 8734.58, + "probability": 0.9198 + }, + { + "start": 8735.62, + "end": 8738.08, + "probability": 0.9747 + }, + { + "start": 8740.18, + "end": 8740.7, + "probability": 0.944 + }, + { + "start": 8742.18, + "end": 8743.42, + "probability": 0.9995 + }, + { + "start": 8744.3, + "end": 8748.2, + "probability": 0.9896 + }, + { + "start": 8749.38, + "end": 8753.28, + "probability": 0.8371 + }, + { + "start": 8753.62, + "end": 8755.22, + "probability": 0.9905 + }, + { + "start": 8755.74, + "end": 8756.58, + "probability": 0.6659 + }, + { + "start": 8756.66, + "end": 8757.3, + "probability": 0.7178 + }, + { + "start": 8757.36, + "end": 8758.74, + "probability": 0.8849 + }, + { + "start": 8759.96, + "end": 8761.5, + "probability": 0.969 + }, + { + "start": 8762.22, + "end": 8764.64, + "probability": 0.8414 + }, + { + "start": 8764.68, + "end": 8765.04, + "probability": 0.8381 + }, + { + "start": 8765.56, + "end": 8767.16, + "probability": 0.9422 + }, + { + "start": 8767.72, + "end": 8768.24, + "probability": 0.7681 + }, + { + "start": 8769.7, + "end": 8772.28, + "probability": 0.7261 + }, + { + "start": 8773.46, + "end": 8774.86, + "probability": 0.8207 + }, + { + "start": 8775.64, + "end": 8778.32, + "probability": 0.9901 + }, + { + "start": 8778.39, + "end": 8782.28, + "probability": 0.9738 + }, + { + "start": 8782.78, + "end": 8786.32, + "probability": 0.9951 + }, + { + "start": 8786.8, + "end": 8789.9, + "probability": 0.9904 + }, + { + "start": 8790.9, + "end": 8794.36, + "probability": 0.9753 + }, + { + "start": 8796.2, + "end": 8796.82, + "probability": 0.998 + }, + { + "start": 8798.0, + "end": 8798.64, + "probability": 0.9857 + }, + { + "start": 8800.12, + "end": 8802.56, + "probability": 0.7265 + }, + { + "start": 8803.84, + "end": 8804.5, + "probability": 0.6895 + }, + { + "start": 8805.24, + "end": 8807.74, + "probability": 0.9152 + }, + { + "start": 8807.78, + "end": 8809.54, + "probability": 0.8521 + }, + { + "start": 8810.24, + "end": 8812.82, + "probability": 0.9632 + }, + { + "start": 8814.62, + "end": 8815.06, + "probability": 0.8126 + }, + { + "start": 8815.14, + "end": 8815.86, + "probability": 0.8304 + }, + { + "start": 8815.96, + "end": 8820.14, + "probability": 0.9067 + }, + { + "start": 8821.48, + "end": 8822.74, + "probability": 0.3657 + }, + { + "start": 8823.6, + "end": 8831.26, + "probability": 0.4947 + }, + { + "start": 8831.68, + "end": 8831.68, + "probability": 0.7911 + }, + { + "start": 8831.68, + "end": 8831.68, + "probability": 0.5459 + }, + { + "start": 8831.68, + "end": 8832.75, + "probability": 0.7152 + }, + { + "start": 8833.62, + "end": 8835.46, + "probability": 0.7033 + }, + { + "start": 8835.68, + "end": 8836.28, + "probability": 0.7466 + }, + { + "start": 8837.88, + "end": 8838.96, + "probability": 0.9565 + }, + { + "start": 8839.54, + "end": 8842.86, + "probability": 0.6395 + }, + { + "start": 8842.86, + "end": 8843.5, + "probability": 0.2618 + }, + { + "start": 8843.5, + "end": 8843.5, + "probability": 0.7529 + }, + { + "start": 8843.5, + "end": 8843.85, + "probability": 0.4959 + }, + { + "start": 8844.36, + "end": 8845.52, + "probability": 0.6738 + }, + { + "start": 8845.52, + "end": 8846.19, + "probability": 0.8525 + }, + { + "start": 8846.5, + "end": 8847.08, + "probability": 0.7286 + }, + { + "start": 8847.1, + "end": 8848.46, + "probability": 0.8097 + }, + { + "start": 8849.24, + "end": 8849.92, + "probability": 0.2627 + }, + { + "start": 8850.04, + "end": 8852.22, + "probability": 0.6837 + }, + { + "start": 8853.54, + "end": 8857.82, + "probability": 0.8431 + }, + { + "start": 8858.46, + "end": 8861.22, + "probability": 0.984 + }, + { + "start": 8862.42, + "end": 8862.58, + "probability": 0.2537 + }, + { + "start": 8862.58, + "end": 8863.22, + "probability": 0.1413 + }, + { + "start": 8863.54, + "end": 8865.22, + "probability": 0.5914 + }, + { + "start": 8865.3, + "end": 8867.48, + "probability": 0.8432 + }, + { + "start": 8868.44, + "end": 8868.66, + "probability": 0.2318 + }, + { + "start": 8895.69, + "end": 8899.76, + "probability": 0.4617 + }, + { + "start": 8900.24, + "end": 8901.36, + "probability": 0.8677 + }, + { + "start": 8901.94, + "end": 8902.58, + "probability": 0.5307 + }, + { + "start": 8902.8, + "end": 8903.43, + "probability": 0.8091 + }, + { + "start": 8910.02, + "end": 8912.44, + "probability": 0.3205 + }, + { + "start": 8914.66, + "end": 8919.48, + "probability": 0.8026 + }, + { + "start": 8920.48, + "end": 8922.0, + "probability": 0.6036 + }, + { + "start": 8922.58, + "end": 8923.12, + "probability": 0.7915 + }, + { + "start": 8923.98, + "end": 8925.07, + "probability": 0.9819 + }, + { + "start": 8925.66, + "end": 8929.88, + "probability": 0.9796 + }, + { + "start": 8930.44, + "end": 8931.96, + "probability": 0.9917 + }, + { + "start": 8932.64, + "end": 8936.12, + "probability": 0.9185 + }, + { + "start": 8939.4, + "end": 8942.6, + "probability": 0.9878 + }, + { + "start": 8943.2, + "end": 8943.64, + "probability": 0.6106 + }, + { + "start": 8945.56, + "end": 8946.14, + "probability": 0.6136 + }, + { + "start": 8946.14, + "end": 8949.45, + "probability": 0.9599 + }, + { + "start": 8953.54, + "end": 8956.22, + "probability": 0.9448 + }, + { + "start": 8956.92, + "end": 8957.78, + "probability": 0.8154 + }, + { + "start": 8958.7, + "end": 8960.16, + "probability": 0.9448 + }, + { + "start": 8964.72, + "end": 8967.94, + "probability": 0.8588 + }, + { + "start": 8970.48, + "end": 8973.66, + "probability": 0.8687 + }, + { + "start": 8974.14, + "end": 8974.58, + "probability": 0.8438 + }, + { + "start": 8974.68, + "end": 8975.2, + "probability": 0.8154 + }, + { + "start": 8975.34, + "end": 8975.7, + "probability": 0.8593 + }, + { + "start": 8975.84, + "end": 8976.34, + "probability": 0.6532 + }, + { + "start": 8977.89, + "end": 8982.9, + "probability": 0.9863 + }, + { + "start": 8984.36, + "end": 8988.96, + "probability": 0.9095 + }, + { + "start": 8990.2, + "end": 8995.16, + "probability": 0.9862 + }, + { + "start": 8996.1, + "end": 8996.65, + "probability": 0.389 + }, + { + "start": 8996.9, + "end": 8997.86, + "probability": 0.651 + }, + { + "start": 8998.2, + "end": 8999.92, + "probability": 0.7442 + }, + { + "start": 9000.64, + "end": 9001.44, + "probability": 0.8699 + }, + { + "start": 9002.63, + "end": 9006.3, + "probability": 0.9761 + }, + { + "start": 9006.72, + "end": 9007.92, + "probability": 0.9591 + }, + { + "start": 9008.8, + "end": 9009.36, + "probability": 0.7783 + }, + { + "start": 9010.66, + "end": 9011.22, + "probability": 0.8616 + }, + { + "start": 9011.38, + "end": 9015.02, + "probability": 0.9793 + }, + { + "start": 9016.66, + "end": 9017.6, + "probability": 0.4225 + }, + { + "start": 9020.54, + "end": 9021.5, + "probability": 0.5625 + }, + { + "start": 9022.5, + "end": 9027.24, + "probability": 0.8818 + }, + { + "start": 9028.68, + "end": 9032.46, + "probability": 0.657 + }, + { + "start": 9033.04, + "end": 9034.84, + "probability": 0.732 + }, + { + "start": 9035.96, + "end": 9039.34, + "probability": 0.8497 + }, + { + "start": 9040.04, + "end": 9042.05, + "probability": 0.7814 + }, + { + "start": 9043.26, + "end": 9047.84, + "probability": 0.5683 + }, + { + "start": 9049.28, + "end": 9055.6, + "probability": 0.8033 + }, + { + "start": 9057.64, + "end": 9058.1, + "probability": 0.9067 + }, + { + "start": 9059.68, + "end": 9060.92, + "probability": 0.9307 + }, + { + "start": 9061.12, + "end": 9062.28, + "probability": 0.8967 + }, + { + "start": 9062.92, + "end": 9064.05, + "probability": 0.995 + }, + { + "start": 9065.36, + "end": 9069.64, + "probability": 0.9688 + }, + { + "start": 9071.8, + "end": 9076.39, + "probability": 0.9915 + }, + { + "start": 9077.02, + "end": 9077.82, + "probability": 0.9938 + }, + { + "start": 9078.76, + "end": 9080.9, + "probability": 0.9045 + }, + { + "start": 9081.6, + "end": 9082.1, + "probability": 0.6429 + }, + { + "start": 9083.32, + "end": 9087.17, + "probability": 0.9268 + }, + { + "start": 9088.98, + "end": 9089.7, + "probability": 0.4045 + }, + { + "start": 9093.02, + "end": 9095.68, + "probability": 0.942 + }, + { + "start": 9096.34, + "end": 9103.7, + "probability": 0.8565 + }, + { + "start": 9104.34, + "end": 9106.6, + "probability": 0.7288 + }, + { + "start": 9109.26, + "end": 9110.58, + "probability": 0.5132 + }, + { + "start": 9111.88, + "end": 9114.52, + "probability": 0.7605 + }, + { + "start": 9117.44, + "end": 9120.08, + "probability": 0.9751 + }, + { + "start": 9120.52, + "end": 9122.76, + "probability": 0.8066 + }, + { + "start": 9122.94, + "end": 9124.46, + "probability": 0.7722 + }, + { + "start": 9125.3, + "end": 9127.26, + "probability": 0.5167 + }, + { + "start": 9127.26, + "end": 9131.46, + "probability": 0.9498 + }, + { + "start": 9135.58, + "end": 9136.48, + "probability": 0.6416 + }, + { + "start": 9137.56, + "end": 9140.36, + "probability": 0.9695 + }, + { + "start": 9140.9, + "end": 9143.54, + "probability": 0.9967 + }, + { + "start": 9144.24, + "end": 9147.4, + "probability": 0.9148 + }, + { + "start": 9148.16, + "end": 9149.16, + "probability": 0.6676 + }, + { + "start": 9150.74, + "end": 9154.8, + "probability": 0.9829 + }, + { + "start": 9155.36, + "end": 9155.82, + "probability": 0.9271 + }, + { + "start": 9156.92, + "end": 9159.04, + "probability": 0.9796 + }, + { + "start": 9159.76, + "end": 9162.2, + "probability": 0.9961 + }, + { + "start": 9163.24, + "end": 9165.06, + "probability": 0.906 + }, + { + "start": 9166.76, + "end": 9169.32, + "probability": 0.9483 + }, + { + "start": 9170.52, + "end": 9171.9, + "probability": 0.8018 + }, + { + "start": 9172.88, + "end": 9173.93, + "probability": 0.894 + }, + { + "start": 9174.3, + "end": 9175.5, + "probability": 0.937 + }, + { + "start": 9176.86, + "end": 9179.58, + "probability": 0.9065 + }, + { + "start": 9180.24, + "end": 9182.54, + "probability": 0.7487 + }, + { + "start": 9183.2, + "end": 9184.5, + "probability": 0.9034 + }, + { + "start": 9185.98, + "end": 9189.24, + "probability": 0.8979 + }, + { + "start": 9189.56, + "end": 9190.3, + "probability": 0.9105 + }, + { + "start": 9190.42, + "end": 9192.28, + "probability": 0.9854 + }, + { + "start": 9193.04, + "end": 9196.66, + "probability": 0.916 + }, + { + "start": 9197.24, + "end": 9197.98, + "probability": 0.9119 + }, + { + "start": 9198.64, + "end": 9203.02, + "probability": 0.7605 + }, + { + "start": 9203.56, + "end": 9204.08, + "probability": 0.8979 + }, + { + "start": 9205.26, + "end": 9206.24, + "probability": 0.9545 + }, + { + "start": 9207.62, + "end": 9209.98, + "probability": 0.8882 + }, + { + "start": 9210.8, + "end": 9214.6, + "probability": 0.9378 + }, + { + "start": 9215.5, + "end": 9216.42, + "probability": 0.929 + }, + { + "start": 9217.28, + "end": 9219.62, + "probability": 0.7456 + }, + { + "start": 9220.66, + "end": 9220.92, + "probability": 0.3792 + }, + { + "start": 9221.1, + "end": 9221.8, + "probability": 0.8124 + }, + { + "start": 9221.92, + "end": 9224.38, + "probability": 0.9697 + }, + { + "start": 9224.6, + "end": 9225.74, + "probability": 0.9037 + }, + { + "start": 9226.62, + "end": 9227.76, + "probability": 0.7984 + }, + { + "start": 9229.22, + "end": 9233.16, + "probability": 0.461 + }, + { + "start": 9233.22, + "end": 9233.22, + "probability": 0.7348 + }, + { + "start": 9233.22, + "end": 9233.22, + "probability": 0.0942 + }, + { + "start": 9233.22, + "end": 9233.82, + "probability": 0.5908 + }, + { + "start": 9234.66, + "end": 9238.98, + "probability": 0.9829 + }, + { + "start": 9239.8, + "end": 9240.5, + "probability": 0.6801 + }, + { + "start": 9240.86, + "end": 9244.26, + "probability": 0.3578 + }, + { + "start": 9244.26, + "end": 9244.4, + "probability": 0.5576 + }, + { + "start": 9245.74, + "end": 9248.44, + "probability": 0.6813 + }, + { + "start": 9250.22, + "end": 9250.34, + "probability": 0.1093 + }, + { + "start": 9251.36, + "end": 9253.6, + "probability": 0.9728 + }, + { + "start": 9254.52, + "end": 9255.38, + "probability": 0.8967 + }, + { + "start": 9256.24, + "end": 9257.42, + "probability": 0.9856 + }, + { + "start": 9258.3, + "end": 9260.48, + "probability": 0.9912 + }, + { + "start": 9261.76, + "end": 9263.54, + "probability": 0.6143 + }, + { + "start": 9264.54, + "end": 9268.36, + "probability": 0.9695 + }, + { + "start": 9269.02, + "end": 9269.76, + "probability": 0.8242 + }, + { + "start": 9270.64, + "end": 9273.5, + "probability": 0.8465 + }, + { + "start": 9274.76, + "end": 9276.78, + "probability": 0.7286 + }, + { + "start": 9277.44, + "end": 9278.88, + "probability": 0.9721 + }, + { + "start": 9281.0, + "end": 9281.82, + "probability": 0.835 + }, + { + "start": 9282.76, + "end": 9284.4, + "probability": 0.9995 + }, + { + "start": 9284.98, + "end": 9287.92, + "probability": 0.9973 + }, + { + "start": 9288.58, + "end": 9294.06, + "probability": 0.8794 + }, + { + "start": 9295.16, + "end": 9301.36, + "probability": 0.9911 + }, + { + "start": 9302.22, + "end": 9305.28, + "probability": 0.9802 + }, + { + "start": 9306.48, + "end": 9309.38, + "probability": 0.9972 + }, + { + "start": 9310.14, + "end": 9313.9, + "probability": 0.9887 + }, + { + "start": 9314.78, + "end": 9318.84, + "probability": 0.99 + }, + { + "start": 9319.04, + "end": 9320.4, + "probability": 0.9017 + }, + { + "start": 9321.58, + "end": 9325.58, + "probability": 0.9602 + }, + { + "start": 9326.8, + "end": 9327.62, + "probability": 0.9206 + }, + { + "start": 9328.3, + "end": 9331.16, + "probability": 0.9989 + }, + { + "start": 9331.7, + "end": 9332.16, + "probability": 0.9805 + }, + { + "start": 9332.82, + "end": 9336.96, + "probability": 0.9746 + }, + { + "start": 9337.66, + "end": 9341.4, + "probability": 0.985 + }, + { + "start": 9342.84, + "end": 9347.3, + "probability": 0.9795 + }, + { + "start": 9347.3, + "end": 9351.76, + "probability": 0.9397 + }, + { + "start": 9353.0, + "end": 9359.14, + "probability": 0.9526 + }, + { + "start": 9359.73, + "end": 9364.44, + "probability": 0.9907 + }, + { + "start": 9364.44, + "end": 9369.88, + "probability": 0.9983 + }, + { + "start": 9370.78, + "end": 9372.76, + "probability": 0.9612 + }, + { + "start": 9373.3, + "end": 9379.46, + "probability": 0.9722 + }, + { + "start": 9380.86, + "end": 9383.29, + "probability": 0.9343 + }, + { + "start": 9385.28, + "end": 9388.8, + "probability": 0.9983 + }, + { + "start": 9389.48, + "end": 9393.1, + "probability": 0.9993 + }, + { + "start": 9393.1, + "end": 9395.52, + "probability": 0.9713 + }, + { + "start": 9396.72, + "end": 9397.24, + "probability": 0.5369 + }, + { + "start": 9397.8, + "end": 9401.4, + "probability": 0.9867 + }, + { + "start": 9402.7, + "end": 9405.51, + "probability": 0.9795 + }, + { + "start": 9405.78, + "end": 9408.84, + "probability": 0.9513 + }, + { + "start": 9409.5, + "end": 9412.92, + "probability": 0.99 + }, + { + "start": 9413.96, + "end": 9414.3, + "probability": 0.5528 + }, + { + "start": 9414.88, + "end": 9418.62, + "probability": 0.9995 + }, + { + "start": 9419.18, + "end": 9421.98, + "probability": 0.999 + }, + { + "start": 9422.48, + "end": 9423.08, + "probability": 0.7228 + }, + { + "start": 9423.88, + "end": 9426.3, + "probability": 0.9984 + }, + { + "start": 9426.8, + "end": 9431.98, + "probability": 0.9976 + }, + { + "start": 9436.2, + "end": 9437.92, + "probability": 0.6747 + }, + { + "start": 9438.82, + "end": 9439.86, + "probability": 0.9941 + }, + { + "start": 9440.82, + "end": 9444.82, + "probability": 0.7925 + }, + { + "start": 9445.34, + "end": 9449.18, + "probability": 0.997 + }, + { + "start": 9449.9, + "end": 9453.86, + "probability": 0.958 + }, + { + "start": 9454.72, + "end": 9456.24, + "probability": 0.704 + }, + { + "start": 9456.5, + "end": 9458.58, + "probability": 0.8833 + }, + { + "start": 9460.7, + "end": 9461.3, + "probability": 0.9021 + }, + { + "start": 9462.1, + "end": 9469.03, + "probability": 0.9929 + }, + { + "start": 9469.86, + "end": 9472.96, + "probability": 0.9937 + }, + { + "start": 9472.97, + "end": 9476.02, + "probability": 0.9915 + }, + { + "start": 9477.16, + "end": 9480.72, + "probability": 0.9949 + }, + { + "start": 9480.72, + "end": 9484.7, + "probability": 0.9979 + }, + { + "start": 9485.64, + "end": 9488.14, + "probability": 0.9674 + }, + { + "start": 9488.92, + "end": 9490.34, + "probability": 0.7113 + }, + { + "start": 9490.94, + "end": 9493.96, + "probability": 0.9837 + }, + { + "start": 9495.06, + "end": 9499.26, + "probability": 0.9868 + }, + { + "start": 9499.96, + "end": 9501.4, + "probability": 0.9355 + }, + { + "start": 9502.34, + "end": 9503.22, + "probability": 0.8541 + }, + { + "start": 9504.46, + "end": 9508.12, + "probability": 0.9886 + }, + { + "start": 9508.88, + "end": 9510.08, + "probability": 0.862 + }, + { + "start": 9510.7, + "end": 9511.84, + "probability": 0.7489 + }, + { + "start": 9511.9, + "end": 9514.64, + "probability": 0.9909 + }, + { + "start": 9515.86, + "end": 9517.2, + "probability": 0.9778 + }, + { + "start": 9519.28, + "end": 9522.38, + "probability": 0.846 + }, + { + "start": 9522.9, + "end": 9524.02, + "probability": 0.889 + }, + { + "start": 9524.82, + "end": 9531.2, + "probability": 0.9941 + }, + { + "start": 9531.96, + "end": 9535.3, + "probability": 0.9959 + }, + { + "start": 9535.3, + "end": 9538.74, + "probability": 0.9977 + }, + { + "start": 9539.26, + "end": 9541.16, + "probability": 0.9976 + }, + { + "start": 9541.38, + "end": 9543.7, + "probability": 0.9341 + }, + { + "start": 9544.24, + "end": 9544.46, + "probability": 0.6091 + }, + { + "start": 9545.06, + "end": 9547.18, + "probability": 0.9973 + }, + { + "start": 9547.78, + "end": 9550.36, + "probability": 0.9964 + }, + { + "start": 9560.26, + "end": 9566.64, + "probability": 0.9848 + }, + { + "start": 9567.3, + "end": 9569.84, + "probability": 0.99 + }, + { + "start": 9570.92, + "end": 9572.06, + "probability": 0.9535 + }, + { + "start": 9572.82, + "end": 9573.96, + "probability": 0.9752 + }, + { + "start": 9575.08, + "end": 9579.66, + "probability": 0.9924 + }, + { + "start": 9580.42, + "end": 9581.62, + "probability": 0.8163 + }, + { + "start": 9582.5, + "end": 9584.82, + "probability": 0.8777 + }, + { + "start": 9585.52, + "end": 9586.14, + "probability": 0.7928 + }, + { + "start": 9587.2, + "end": 9588.8, + "probability": 0.9956 + }, + { + "start": 9589.56, + "end": 9590.24, + "probability": 0.7067 + }, + { + "start": 9591.32, + "end": 9592.38, + "probability": 0.9028 + }, + { + "start": 9593.02, + "end": 9593.92, + "probability": 0.96 + }, + { + "start": 9595.5, + "end": 9595.9, + "probability": 0.6015 + }, + { + "start": 9596.58, + "end": 9596.78, + "probability": 0.9595 + }, + { + "start": 9597.6, + "end": 9600.7, + "probability": 0.8483 + }, + { + "start": 9601.4, + "end": 9602.84, + "probability": 0.8184 + }, + { + "start": 9603.72, + "end": 9604.8, + "probability": 0.5696 + }, + { + "start": 9605.14, + "end": 9608.0, + "probability": 0.8645 + }, + { + "start": 9608.5, + "end": 9609.5, + "probability": 0.748 + }, + { + "start": 9610.58, + "end": 9611.48, + "probability": 0.9666 + }, + { + "start": 9612.22, + "end": 9613.1, + "probability": 0.0 + }, + { + "start": 9614.93, + "end": 9617.08, + "probability": 0.9302 + }, + { + "start": 9618.14, + "end": 9618.62, + "probability": 0.5053 + }, + { + "start": 9619.92, + "end": 9623.18, + "probability": 0.9959 + }, + { + "start": 9624.34, + "end": 9625.6, + "probability": 0.9417 + }, + { + "start": 9626.42, + "end": 9628.12, + "probability": 0.9664 + }, + { + "start": 9629.02, + "end": 9629.6, + "probability": 0.9581 + }, + { + "start": 9630.26, + "end": 9631.64, + "probability": 0.9946 + }, + { + "start": 9632.9, + "end": 9633.44, + "probability": 0.508 + }, + { + "start": 9637.14, + "end": 9638.95, + "probability": 0.7272 + }, + { + "start": 9639.16, + "end": 9639.5, + "probability": 0.5936 + }, + { + "start": 9639.8, + "end": 9643.52, + "probability": 0.9051 + }, + { + "start": 9644.24, + "end": 9644.78, + "probability": 0.5762 + }, + { + "start": 9645.02, + "end": 9649.54, + "probability": 0.9885 + }, + { + "start": 9649.54, + "end": 9654.72, + "probability": 0.5875 + }, + { + "start": 9655.28, + "end": 9655.9, + "probability": 0.4202 + }, + { + "start": 9656.48, + "end": 9657.24, + "probability": 0.6584 + }, + { + "start": 9657.34, + "end": 9661.42, + "probability": 0.9705 + }, + { + "start": 9661.86, + "end": 9668.46, + "probability": 0.9918 + }, + { + "start": 9668.96, + "end": 9670.74, + "probability": 0.626 + }, + { + "start": 9670.82, + "end": 9671.78, + "probability": 0.53 + }, + { + "start": 9672.06, + "end": 9674.34, + "probability": 0.9638 + }, + { + "start": 9674.8, + "end": 9675.16, + "probability": 0.7941 + }, + { + "start": 9675.68, + "end": 9678.92, + "probability": 0.9736 + }, + { + "start": 9679.6, + "end": 9683.88, + "probability": 0.7253 + }, + { + "start": 9685.28, + "end": 9685.3, + "probability": 0.1709 + }, + { + "start": 9685.3, + "end": 9685.3, + "probability": 0.6247 + }, + { + "start": 9685.3, + "end": 9688.6, + "probability": 0.428 + }, + { + "start": 9688.78, + "end": 9693.16, + "probability": 0.8721 + }, + { + "start": 9694.08, + "end": 9698.56, + "probability": 0.9872 + }, + { + "start": 9698.6, + "end": 9702.12, + "probability": 0.9897 + }, + { + "start": 9702.16, + "end": 9704.18, + "probability": 0.8991 + }, + { + "start": 9705.58, + "end": 9705.9, + "probability": 0.5637 + }, + { + "start": 9706.02, + "end": 9710.76, + "probability": 0.9806 + }, + { + "start": 9710.76, + "end": 9715.22, + "probability": 0.9855 + }, + { + "start": 9715.54, + "end": 9719.96, + "probability": 0.89 + }, + { + "start": 9720.08, + "end": 9721.08, + "probability": 0.9746 + }, + { + "start": 9722.18, + "end": 9724.5, + "probability": 0.8538 + }, + { + "start": 9725.08, + "end": 9728.36, + "probability": 0.9362 + }, + { + "start": 9729.24, + "end": 9733.98, + "probability": 0.8591 + }, + { + "start": 9734.3, + "end": 9739.21, + "probability": 0.9749 + }, + { + "start": 9739.38, + "end": 9741.52, + "probability": 0.8056 + }, + { + "start": 9741.6, + "end": 9743.44, + "probability": 0.9427 + }, + { + "start": 9743.64, + "end": 9744.46, + "probability": 0.6673 + }, + { + "start": 9744.46, + "end": 9745.98, + "probability": 0.917 + }, + { + "start": 9746.42, + "end": 9748.7, + "probability": 0.9828 + }, + { + "start": 9749.24, + "end": 9750.54, + "probability": 0.8724 + }, + { + "start": 9750.66, + "end": 9753.56, + "probability": 0.8738 + }, + { + "start": 9753.72, + "end": 9756.34, + "probability": 0.9858 + }, + { + "start": 9756.76, + "end": 9757.8, + "probability": 0.8505 + }, + { + "start": 9758.34, + "end": 9760.82, + "probability": 0.9953 + }, + { + "start": 9761.3, + "end": 9762.72, + "probability": 0.7424 + }, + { + "start": 9762.74, + "end": 9763.44, + "probability": 0.7274 + }, + { + "start": 9763.7, + "end": 9763.72, + "probability": 0.6149 + }, + { + "start": 9763.82, + "end": 9764.26, + "probability": 0.9818 + }, + { + "start": 9764.28, + "end": 9764.28, + "probability": 0.4378 + }, + { + "start": 9764.36, + "end": 9765.34, + "probability": 0.901 + }, + { + "start": 9765.98, + "end": 9767.2, + "probability": 0.9634 + }, + { + "start": 9767.3, + "end": 9768.74, + "probability": 0.9937 + }, + { + "start": 9769.18, + "end": 9771.68, + "probability": 0.9918 + }, + { + "start": 9772.1, + "end": 9773.16, + "probability": 0.2609 + }, + { + "start": 9773.26, + "end": 9775.96, + "probability": 0.7421 + }, + { + "start": 9776.6, + "end": 9780.3, + "probability": 0.988 + }, + { + "start": 9780.42, + "end": 9780.92, + "probability": 0.8528 + }, + { + "start": 9781.4, + "end": 9784.62, + "probability": 0.9447 + }, + { + "start": 9784.9, + "end": 9789.18, + "probability": 0.7011 + }, + { + "start": 9789.44, + "end": 9791.36, + "probability": 0.9939 + }, + { + "start": 9791.92, + "end": 9793.85, + "probability": 0.6127 + }, + { + "start": 9794.08, + "end": 9794.26, + "probability": 0.0295 + }, + { + "start": 9794.26, + "end": 9794.68, + "probability": 0.5596 + }, + { + "start": 9795.08, + "end": 9795.64, + "probability": 0.5045 + }, + { + "start": 9795.82, + "end": 9799.2, + "probability": 0.9715 + }, + { + "start": 9799.78, + "end": 9800.36, + "probability": 0.6006 + }, + { + "start": 9800.36, + "end": 9804.26, + "probability": 0.9834 + }, + { + "start": 9804.28, + "end": 9804.28, + "probability": 0.1453 + }, + { + "start": 9804.28, + "end": 9804.38, + "probability": 0.7678 + }, + { + "start": 9804.56, + "end": 9804.6, + "probability": 0.4298 + }, + { + "start": 9804.6, + "end": 9806.74, + "probability": 0.9905 + }, + { + "start": 9806.86, + "end": 9807.34, + "probability": 0.8065 + }, + { + "start": 9807.44, + "end": 9808.66, + "probability": 0.7184 + }, + { + "start": 9809.22, + "end": 9810.14, + "probability": 0.8563 + }, + { + "start": 9811.3, + "end": 9812.76, + "probability": 0.9375 + }, + { + "start": 9813.6, + "end": 9814.06, + "probability": 0.7814 + }, + { + "start": 9814.54, + "end": 9815.36, + "probability": 0.8924 + }, + { + "start": 9826.2, + "end": 9829.48, + "probability": 0.6136 + }, + { + "start": 9831.22, + "end": 9834.06, + "probability": 0.8158 + }, + { + "start": 9834.2, + "end": 9834.58, + "probability": 0.8379 + }, + { + "start": 9835.14, + "end": 9837.02, + "probability": 0.9762 + }, + { + "start": 9837.88, + "end": 9839.51, + "probability": 0.9872 + }, + { + "start": 9840.18, + "end": 9840.98, + "probability": 0.7769 + }, + { + "start": 9841.88, + "end": 9843.84, + "probability": 0.7247 + }, + { + "start": 9844.04, + "end": 9844.7, + "probability": 0.6182 + }, + { + "start": 9844.94, + "end": 9846.62, + "probability": 0.7826 + }, + { + "start": 9846.68, + "end": 9850.0, + "probability": 0.876 + }, + { + "start": 9851.04, + "end": 9854.04, + "probability": 0.8586 + }, + { + "start": 9854.86, + "end": 9857.66, + "probability": 0.9585 + }, + { + "start": 9858.6, + "end": 9860.54, + "probability": 0.9954 + }, + { + "start": 9861.06, + "end": 9862.19, + "probability": 0.4633 + }, + { + "start": 9863.22, + "end": 9867.06, + "probability": 0.7778 + }, + { + "start": 9867.64, + "end": 9868.86, + "probability": 0.8597 + }, + { + "start": 9869.66, + "end": 9873.2, + "probability": 0.9958 + }, + { + "start": 9873.3, + "end": 9873.56, + "probability": 0.7224 + }, + { + "start": 9873.72, + "end": 9875.44, + "probability": 0.933 + }, + { + "start": 9876.14, + "end": 9879.36, + "probability": 0.9918 + }, + { + "start": 9879.86, + "end": 9882.66, + "probability": 0.8142 + }, + { + "start": 9883.28, + "end": 9883.42, + "probability": 0.6721 + }, + { + "start": 9884.74, + "end": 9885.08, + "probability": 0.8182 + }, + { + "start": 9885.24, + "end": 9887.32, + "probability": 0.9808 + }, + { + "start": 9887.56, + "end": 9890.9, + "probability": 0.9253 + }, + { + "start": 9891.42, + "end": 9894.54, + "probability": 0.8444 + }, + { + "start": 9894.6, + "end": 9894.88, + "probability": 0.785 + }, + { + "start": 9895.06, + "end": 9895.86, + "probability": 0.5065 + }, + { + "start": 9896.78, + "end": 9900.12, + "probability": 0.8418 + }, + { + "start": 9900.8, + "end": 9902.42, + "probability": 0.9448 + }, + { + "start": 9902.6, + "end": 9904.72, + "probability": 0.5008 + }, + { + "start": 9904.98, + "end": 9905.42, + "probability": 0.2867 + }, + { + "start": 9905.46, + "end": 9906.34, + "probability": 0.5041 + }, + { + "start": 9906.54, + "end": 9912.64, + "probability": 0.9551 + }, + { + "start": 9912.92, + "end": 9915.74, + "probability": 0.9926 + }, + { + "start": 9915.84, + "end": 9917.86, + "probability": 0.9959 + }, + { + "start": 9918.64, + "end": 9920.36, + "probability": 0.9971 + }, + { + "start": 9920.6, + "end": 9921.44, + "probability": 0.741 + }, + { + "start": 9922.62, + "end": 9924.02, + "probability": 0.4718 + }, + { + "start": 9924.02, + "end": 9927.14, + "probability": 0.8743 + }, + { + "start": 9927.36, + "end": 9930.68, + "probability": 0.9869 + }, + { + "start": 9931.22, + "end": 9933.88, + "probability": 0.9625 + }, + { + "start": 9934.28, + "end": 9935.18, + "probability": 0.8359 + }, + { + "start": 9936.36, + "end": 9937.74, + "probability": 0.8771 + }, + { + "start": 9938.32, + "end": 9940.14, + "probability": 0.9824 + }, + { + "start": 9940.24, + "end": 9941.6, + "probability": 0.8372 + }, + { + "start": 9941.64, + "end": 9943.8, + "probability": 0.9722 + }, + { + "start": 9944.18, + "end": 9946.19, + "probability": 0.9638 + }, + { + "start": 9946.52, + "end": 9947.06, + "probability": 0.796 + }, + { + "start": 9947.56, + "end": 9949.94, + "probability": 0.9919 + }, + { + "start": 9950.26, + "end": 9950.7, + "probability": 0.7957 + }, + { + "start": 9950.88, + "end": 9952.92, + "probability": 0.6604 + }, + { + "start": 9952.96, + "end": 9955.72, + "probability": 0.9871 + }, + { + "start": 9956.42, + "end": 9957.64, + "probability": 0.8713 + }, + { + "start": 9957.8, + "end": 9961.89, + "probability": 0.5135 + }, + { + "start": 9963.1, + "end": 9966.3, + "probability": 0.9913 + }, + { + "start": 9966.98, + "end": 9968.3, + "probability": 0.1162 + }, + { + "start": 9968.66, + "end": 9969.16, + "probability": 0.0477 + }, + { + "start": 9969.38, + "end": 9969.56, + "probability": 0.0886 + }, + { + "start": 9969.74, + "end": 9971.64, + "probability": 0.1782 + }, + { + "start": 9971.66, + "end": 9972.1, + "probability": 0.7912 + }, + { + "start": 9973.78, + "end": 9975.38, + "probability": 0.9335 + }, + { + "start": 9975.54, + "end": 9978.13, + "probability": 0.7303 + }, + { + "start": 9979.38, + "end": 9981.44, + "probability": 0.7427 + }, + { + "start": 9981.5, + "end": 9983.3, + "probability": 0.7583 + }, + { + "start": 9983.6, + "end": 9985.5, + "probability": 0.9297 + }, + { + "start": 9987.24, + "end": 9987.26, + "probability": 0.0768 + }, + { + "start": 9987.26, + "end": 9991.08, + "probability": 0.4331 + }, + { + "start": 9991.08, + "end": 9992.27, + "probability": 0.4095 + }, + { + "start": 9992.66, + "end": 9993.99, + "probability": 0.3584 + }, + { + "start": 9994.7, + "end": 9996.08, + "probability": 0.7147 + }, + { + "start": 10000.66, + "end": 10002.08, + "probability": 0.2337 + }, + { + "start": 10003.94, + "end": 10005.4, + "probability": 0.1871 + }, + { + "start": 10009.05, + "end": 10009.26, + "probability": 0.2123 + }, + { + "start": 10009.5, + "end": 10012.06, + "probability": 0.6564 + }, + { + "start": 10013.28, + "end": 10013.84, + "probability": 0.687 + }, + { + "start": 10014.4, + "end": 10016.96, + "probability": 0.7412 + }, + { + "start": 10018.06, + "end": 10019.5, + "probability": 0.9204 + }, + { + "start": 10019.56, + "end": 10020.18, + "probability": 0.418 + }, + { + "start": 10021.18, + "end": 10023.78, + "probability": 0.708 + }, + { + "start": 10023.9, + "end": 10025.06, + "probability": 0.4829 + }, + { + "start": 10025.2, + "end": 10026.58, + "probability": 0.2721 + }, + { + "start": 10026.64, + "end": 10029.04, + "probability": 0.8617 + }, + { + "start": 10029.18, + "end": 10031.46, + "probability": 0.8462 + }, + { + "start": 10033.08, + "end": 10034.14, + "probability": 0.9217 + }, + { + "start": 10034.8, + "end": 10036.42, + "probability": 0.6708 + }, + { + "start": 10036.48, + "end": 10037.9, + "probability": 0.9674 + }, + { + "start": 10038.96, + "end": 10039.96, + "probability": 0.4874 + }, + { + "start": 10040.08, + "end": 10040.85, + "probability": 0.8293 + }, + { + "start": 10041.18, + "end": 10041.88, + "probability": 0.8799 + }, + { + "start": 10042.7, + "end": 10043.62, + "probability": 0.406 + }, + { + "start": 10045.0, + "end": 10045.43, + "probability": 0.0421 + }, + { + "start": 10046.22, + "end": 10047.36, + "probability": 0.5828 + }, + { + "start": 10051.82, + "end": 10053.3, + "probability": 0.5558 + }, + { + "start": 10053.56, + "end": 10054.51, + "probability": 0.493 + }, + { + "start": 10057.6, + "end": 10058.0, + "probability": 0.5714 + }, + { + "start": 10058.14, + "end": 10058.42, + "probability": 0.6797 + }, + { + "start": 10058.42, + "end": 10061.8, + "probability": 0.9875 + }, + { + "start": 10062.18, + "end": 10062.56, + "probability": 0.7017 + }, + { + "start": 10062.78, + "end": 10063.92, + "probability": 0.1807 + }, + { + "start": 10064.58, + "end": 10065.92, + "probability": 0.1102 + }, + { + "start": 10066.18, + "end": 10068.04, + "probability": 0.8406 + }, + { + "start": 10068.82, + "end": 10068.92, + "probability": 0.8282 + }, + { + "start": 10071.0, + "end": 10071.38, + "probability": 0.4669 + }, + { + "start": 10072.16, + "end": 10073.26, + "probability": 0.9297 + }, + { + "start": 10073.26, + "end": 10076.6, + "probability": 0.9177 + }, + { + "start": 10077.34, + "end": 10078.04, + "probability": 0.6616 + }, + { + "start": 10079.1, + "end": 10079.4, + "probability": 0.4925 + }, + { + "start": 10080.18, + "end": 10085.77, + "probability": 0.8922 + }, + { + "start": 10085.94, + "end": 10086.44, + "probability": 0.9624 + }, + { + "start": 10088.28, + "end": 10089.26, + "probability": 0.9937 + }, + { + "start": 10089.48, + "end": 10092.74, + "probability": 0.9971 + }, + { + "start": 10093.54, + "end": 10095.46, + "probability": 0.9094 + }, + { + "start": 10096.5, + "end": 10098.46, + "probability": 0.9849 + }, + { + "start": 10099.18, + "end": 10101.92, + "probability": 0.9797 + }, + { + "start": 10102.66, + "end": 10106.12, + "probability": 0.9504 + }, + { + "start": 10106.78, + "end": 10108.72, + "probability": 0.9664 + }, + { + "start": 10109.24, + "end": 10111.22, + "probability": 0.9315 + }, + { + "start": 10112.74, + "end": 10114.02, + "probability": 0.8817 + }, + { + "start": 10115.16, + "end": 10117.8, + "probability": 0.79 + }, + { + "start": 10117.92, + "end": 10118.8, + "probability": 0.8193 + }, + { + "start": 10118.94, + "end": 10121.3, + "probability": 0.9895 + }, + { + "start": 10121.82, + "end": 10123.16, + "probability": 0.9562 + }, + { + "start": 10125.16, + "end": 10125.93, + "probability": 0.973 + }, + { + "start": 10127.18, + "end": 10128.94, + "probability": 0.9948 + }, + { + "start": 10129.1, + "end": 10131.02, + "probability": 0.9569 + }, + { + "start": 10131.96, + "end": 10134.43, + "probability": 0.7734 + }, + { + "start": 10135.3, + "end": 10135.7, + "probability": 0.8459 + }, + { + "start": 10135.94, + "end": 10137.0, + "probability": 0.6985 + }, + { + "start": 10137.4, + "end": 10139.94, + "probability": 0.8953 + }, + { + "start": 10141.16, + "end": 10143.48, + "probability": 0.9111 + }, + { + "start": 10144.3, + "end": 10145.4, + "probability": 0.9476 + }, + { + "start": 10145.82, + "end": 10149.8, + "probability": 0.9985 + }, + { + "start": 10151.64, + "end": 10152.82, + "probability": 0.9318 + }, + { + "start": 10153.94, + "end": 10155.82, + "probability": 0.959 + }, + { + "start": 10156.54, + "end": 10157.48, + "probability": 0.9448 + }, + { + "start": 10158.88, + "end": 10162.28, + "probability": 0.9904 + }, + { + "start": 10163.1, + "end": 10163.98, + "probability": 0.9174 + }, + { + "start": 10164.9, + "end": 10165.48, + "probability": 0.6042 + }, + { + "start": 10165.72, + "end": 10167.52, + "probability": 0.9899 + }, + { + "start": 10167.92, + "end": 10170.71, + "probability": 0.9172 + }, + { + "start": 10170.8, + "end": 10172.44, + "probability": 0.877 + }, + { + "start": 10172.46, + "end": 10173.37, + "probability": 0.9712 + }, + { + "start": 10173.72, + "end": 10174.04, + "probability": 0.8018 + }, + { + "start": 10174.92, + "end": 10175.08, + "probability": 0.812 + }, + { + "start": 10175.14, + "end": 10177.18, + "probability": 0.9279 + }, + { + "start": 10177.3, + "end": 10179.98, + "probability": 0.9841 + }, + { + "start": 10180.98, + "end": 10181.78, + "probability": 0.9755 + }, + { + "start": 10181.98, + "end": 10184.14, + "probability": 0.9816 + }, + { + "start": 10184.8, + "end": 10185.68, + "probability": 0.578 + }, + { + "start": 10186.28, + "end": 10190.12, + "probability": 0.7983 + }, + { + "start": 10190.26, + "end": 10195.56, + "probability": 0.9585 + }, + { + "start": 10196.4, + "end": 10198.64, + "probability": 0.9712 + }, + { + "start": 10200.06, + "end": 10201.22, + "probability": 0.7651 + }, + { + "start": 10203.84, + "end": 10205.34, + "probability": 0.8716 + }, + { + "start": 10205.42, + "end": 10206.1, + "probability": 0.8554 + }, + { + "start": 10206.24, + "end": 10208.04, + "probability": 0.9977 + }, + { + "start": 10209.9, + "end": 10211.72, + "probability": 0.9944 + }, + { + "start": 10212.1, + "end": 10213.48, + "probability": 0.9758 + }, + { + "start": 10215.98, + "end": 10217.84, + "probability": 0.9951 + }, + { + "start": 10217.92, + "end": 10218.46, + "probability": 0.597 + }, + { + "start": 10219.27, + "end": 10220.14, + "probability": 0.7724 + }, + { + "start": 10221.16, + "end": 10222.22, + "probability": 0.947 + }, + { + "start": 10222.98, + "end": 10224.92, + "probability": 0.9674 + }, + { + "start": 10225.64, + "end": 10226.52, + "probability": 0.9401 + }, + { + "start": 10227.42, + "end": 10229.36, + "probability": 0.9899 + }, + { + "start": 10229.58, + "end": 10229.99, + "probability": 0.5391 + }, + { + "start": 10232.18, + "end": 10235.08, + "probability": 0.9788 + }, + { + "start": 10235.26, + "end": 10238.24, + "probability": 0.9288 + }, + { + "start": 10238.76, + "end": 10240.84, + "probability": 0.9824 + }, + { + "start": 10241.38, + "end": 10242.86, + "probability": 0.9961 + }, + { + "start": 10244.44, + "end": 10245.86, + "probability": 0.9902 + }, + { + "start": 10245.98, + "end": 10246.18, + "probability": 0.7805 + }, + { + "start": 10246.2, + "end": 10247.6, + "probability": 0.9892 + }, + { + "start": 10247.68, + "end": 10248.42, + "probability": 0.5571 + }, + { + "start": 10249.08, + "end": 10249.44, + "probability": 0.4725 + }, + { + "start": 10249.6, + "end": 10252.06, + "probability": 0.9717 + }, + { + "start": 10252.06, + "end": 10254.52, + "probability": 0.9949 + }, + { + "start": 10254.62, + "end": 10256.08, + "probability": 0.9655 + }, + { + "start": 10256.62, + "end": 10258.84, + "probability": 0.9664 + }, + { + "start": 10259.0, + "end": 10259.84, + "probability": 0.6097 + }, + { + "start": 10259.9, + "end": 10260.86, + "probability": 0.8671 + }, + { + "start": 10261.66, + "end": 10261.92, + "probability": 0.6962 + }, + { + "start": 10262.02, + "end": 10265.24, + "probability": 0.9757 + }, + { + "start": 10265.46, + "end": 10266.02, + "probability": 0.854 + }, + { + "start": 10266.24, + "end": 10266.58, + "probability": 0.9586 + }, + { + "start": 10267.0, + "end": 10270.02, + "probability": 0.9728 + }, + { + "start": 10270.76, + "end": 10273.54, + "probability": 0.9764 + }, + { + "start": 10274.1, + "end": 10281.18, + "probability": 0.9677 + }, + { + "start": 10281.7, + "end": 10286.84, + "probability": 0.9857 + }, + { + "start": 10286.96, + "end": 10288.66, + "probability": 0.8732 + }, + { + "start": 10289.3, + "end": 10291.24, + "probability": 0.9963 + }, + { + "start": 10291.96, + "end": 10292.36, + "probability": 0.7791 + }, + { + "start": 10292.94, + "end": 10294.26, + "probability": 0.9793 + }, + { + "start": 10294.74, + "end": 10298.64, + "probability": 0.9746 + }, + { + "start": 10298.9, + "end": 10299.96, + "probability": 0.9963 + }, + { + "start": 10300.16, + "end": 10303.3, + "probability": 0.9902 + }, + { + "start": 10303.34, + "end": 10304.32, + "probability": 0.6539 + }, + { + "start": 10304.42, + "end": 10305.86, + "probability": 0.8425 + }, + { + "start": 10306.02, + "end": 10307.56, + "probability": 0.5915 + }, + { + "start": 10308.06, + "end": 10308.24, + "probability": 0.2308 + }, + { + "start": 10308.32, + "end": 10312.4, + "probability": 0.8903 + }, + { + "start": 10312.84, + "end": 10314.26, + "probability": 0.998 + }, + { + "start": 10314.8, + "end": 10315.96, + "probability": 0.8437 + }, + { + "start": 10316.38, + "end": 10317.5, + "probability": 0.907 + }, + { + "start": 10318.04, + "end": 10318.52, + "probability": 0.6369 + }, + { + "start": 10318.58, + "end": 10319.78, + "probability": 0.9907 + }, + { + "start": 10320.12, + "end": 10322.04, + "probability": 0.9957 + }, + { + "start": 10322.6, + "end": 10323.02, + "probability": 0.8163 + }, + { + "start": 10324.06, + "end": 10326.02, + "probability": 0.96 + }, + { + "start": 10326.66, + "end": 10328.74, + "probability": 0.9711 + }, + { + "start": 10329.18, + "end": 10330.12, + "probability": 0.8184 + }, + { + "start": 10330.62, + "end": 10331.6, + "probability": 0.8816 + }, + { + "start": 10332.3, + "end": 10334.76, + "probability": 0.8459 + }, + { + "start": 10335.22, + "end": 10335.66, + "probability": 0.372 + }, + { + "start": 10335.66, + "end": 10338.94, + "probability": 0.9242 + }, + { + "start": 10338.96, + "end": 10340.1, + "probability": 0.8152 + }, + { + "start": 10340.56, + "end": 10341.34, + "probability": 0.8359 + }, + { + "start": 10341.5, + "end": 10343.92, + "probability": 0.9777 + }, + { + "start": 10344.08, + "end": 10344.44, + "probability": 0.3001 + }, + { + "start": 10344.52, + "end": 10345.1, + "probability": 0.7407 + }, + { + "start": 10345.16, + "end": 10348.58, + "probability": 0.8032 + }, + { + "start": 10349.2, + "end": 10354.3, + "probability": 0.9178 + }, + { + "start": 10354.42, + "end": 10357.16, + "probability": 0.9948 + }, + { + "start": 10357.16, + "end": 10359.82, + "probability": 0.9795 + }, + { + "start": 10360.4, + "end": 10363.32, + "probability": 0.733 + }, + { + "start": 10364.04, + "end": 10365.7, + "probability": 0.855 + }, + { + "start": 10366.1, + "end": 10369.86, + "probability": 0.9791 + }, + { + "start": 10369.86, + "end": 10372.36, + "probability": 0.9662 + }, + { + "start": 10373.04, + "end": 10377.06, + "probability": 0.9966 + }, + { + "start": 10377.18, + "end": 10377.54, + "probability": 0.7463 + }, + { + "start": 10378.24, + "end": 10381.2, + "probability": 0.9735 + }, + { + "start": 10382.26, + "end": 10386.58, + "probability": 0.6732 + }, + { + "start": 10386.58, + "end": 10386.7, + "probability": 0.9024 + }, + { + "start": 10400.04, + "end": 10401.06, + "probability": 0.4796 + }, + { + "start": 10401.36, + "end": 10402.86, + "probability": 0.9446 + }, + { + "start": 10402.94, + "end": 10403.8, + "probability": 0.8036 + }, + { + "start": 10404.02, + "end": 10405.36, + "probability": 0.9432 + }, + { + "start": 10406.08, + "end": 10406.36, + "probability": 0.6474 + }, + { + "start": 10406.44, + "end": 10408.72, + "probability": 0.972 + }, + { + "start": 10408.78, + "end": 10410.22, + "probability": 0.9961 + }, + { + "start": 10411.42, + "end": 10414.84, + "probability": 0.9946 + }, + { + "start": 10414.92, + "end": 10416.26, + "probability": 0.9971 + }, + { + "start": 10417.24, + "end": 10419.88, + "probability": 0.9835 + }, + { + "start": 10421.08, + "end": 10422.14, + "probability": 0.8372 + }, + { + "start": 10423.62, + "end": 10424.56, + "probability": 0.7127 + }, + { + "start": 10425.44, + "end": 10427.96, + "probability": 0.8944 + }, + { + "start": 10429.34, + "end": 10435.56, + "probability": 0.9606 + }, + { + "start": 10435.62, + "end": 10436.92, + "probability": 0.9719 + }, + { + "start": 10437.8, + "end": 10439.16, + "probability": 0.7958 + }, + { + "start": 10440.62, + "end": 10441.98, + "probability": 0.3532 + }, + { + "start": 10442.8, + "end": 10443.7, + "probability": 0.8946 + }, + { + "start": 10445.63, + "end": 10448.56, + "probability": 0.8414 + }, + { + "start": 10449.24, + "end": 10450.68, + "probability": 0.8489 + }, + { + "start": 10451.58, + "end": 10453.38, + "probability": 0.9867 + }, + { + "start": 10454.06, + "end": 10455.8, + "probability": 0.9846 + }, + { + "start": 10455.94, + "end": 10457.12, + "probability": 0.9152 + }, + { + "start": 10457.6, + "end": 10459.1, + "probability": 0.6592 + }, + { + "start": 10460.08, + "end": 10460.3, + "probability": 0.7722 + }, + { + "start": 10461.3, + "end": 10461.79, + "probability": 0.861 + }, + { + "start": 10462.66, + "end": 10464.66, + "probability": 0.9929 + }, + { + "start": 10465.38, + "end": 10467.82, + "probability": 0.9742 + }, + { + "start": 10468.38, + "end": 10468.89, + "probability": 0.9985 + }, + { + "start": 10470.14, + "end": 10470.56, + "probability": 0.876 + }, + { + "start": 10471.9, + "end": 10472.66, + "probability": 0.9929 + }, + { + "start": 10473.92, + "end": 10475.64, + "probability": 0.9987 + }, + { + "start": 10475.78, + "end": 10476.48, + "probability": 0.7303 + }, + { + "start": 10476.74, + "end": 10477.48, + "probability": 0.9695 + }, + { + "start": 10477.64, + "end": 10478.14, + "probability": 0.826 + }, + { + "start": 10479.34, + "end": 10480.1, + "probability": 0.9238 + }, + { + "start": 10481.42, + "end": 10486.62, + "probability": 0.967 + }, + { + "start": 10487.36, + "end": 10489.48, + "probability": 0.5119 + }, + { + "start": 10490.9, + "end": 10491.88, + "probability": 0.9702 + }, + { + "start": 10492.02, + "end": 10493.88, + "probability": 0.9849 + }, + { + "start": 10495.06, + "end": 10496.04, + "probability": 0.994 + }, + { + "start": 10496.66, + "end": 10500.59, + "probability": 0.9893 + }, + { + "start": 10502.58, + "end": 10504.04, + "probability": 0.9714 + }, + { + "start": 10504.12, + "end": 10507.64, + "probability": 0.9915 + }, + { + "start": 10508.46, + "end": 10510.46, + "probability": 0.9937 + }, + { + "start": 10510.7, + "end": 10511.34, + "probability": 0.9771 + }, + { + "start": 10511.56, + "end": 10514.3, + "probability": 0.8613 + }, + { + "start": 10515.46, + "end": 10516.48, + "probability": 0.8481 + }, + { + "start": 10517.82, + "end": 10519.94, + "probability": 0.7341 + }, + { + "start": 10520.92, + "end": 10521.78, + "probability": 0.9681 + }, + { + "start": 10522.64, + "end": 10523.02, + "probability": 0.9382 + }, + { + "start": 10524.2, + "end": 10527.48, + "probability": 0.999 + }, + { + "start": 10528.98, + "end": 10531.48, + "probability": 0.9821 + }, + { + "start": 10531.52, + "end": 10532.66, + "probability": 0.9778 + }, + { + "start": 10533.4, + "end": 10534.16, + "probability": 0.83 + }, + { + "start": 10534.22, + "end": 10534.92, + "probability": 0.4887 + }, + { + "start": 10535.02, + "end": 10536.92, + "probability": 0.8961 + }, + { + "start": 10537.12, + "end": 10537.5, + "probability": 0.5603 + }, + { + "start": 10537.7, + "end": 10538.16, + "probability": 0.4034 + }, + { + "start": 10538.16, + "end": 10538.58, + "probability": 0.9745 + }, + { + "start": 10538.68, + "end": 10539.52, + "probability": 0.9966 + }, + { + "start": 10540.68, + "end": 10543.46, + "probability": 0.9702 + }, + { + "start": 10543.7, + "end": 10547.5, + "probability": 0.9959 + }, + { + "start": 10548.18, + "end": 10552.94, + "probability": 0.9854 + }, + { + "start": 10553.92, + "end": 10555.48, + "probability": 0.5502 + }, + { + "start": 10555.7, + "end": 10557.16, + "probability": 0.9265 + }, + { + "start": 10557.28, + "end": 10558.9, + "probability": 0.8956 + }, + { + "start": 10559.58, + "end": 10560.42, + "probability": 0.958 + }, + { + "start": 10561.04, + "end": 10561.88, + "probability": 0.8279 + }, + { + "start": 10562.0, + "end": 10562.48, + "probability": 0.9404 + }, + { + "start": 10562.84, + "end": 10562.98, + "probability": 0.8535 + }, + { + "start": 10563.26, + "end": 10563.88, + "probability": 0.9069 + }, + { + "start": 10563.92, + "end": 10564.48, + "probability": 0.9708 + }, + { + "start": 10565.22, + "end": 10565.88, + "probability": 0.6715 + }, + { + "start": 10566.6, + "end": 10567.46, + "probability": 0.9207 + }, + { + "start": 10568.14, + "end": 10569.85, + "probability": 0.9424 + }, + { + "start": 10570.72, + "end": 10571.28, + "probability": 0.8301 + }, + { + "start": 10572.42, + "end": 10573.82, + "probability": 0.8815 + }, + { + "start": 10574.76, + "end": 10575.6, + "probability": 0.6311 + }, + { + "start": 10577.34, + "end": 10579.28, + "probability": 0.832 + }, + { + "start": 10580.02, + "end": 10584.38, + "probability": 0.8774 + }, + { + "start": 10585.04, + "end": 10588.54, + "probability": 0.9414 + }, + { + "start": 10588.62, + "end": 10589.9, + "probability": 0.8838 + }, + { + "start": 10590.18, + "end": 10590.8, + "probability": 0.8569 + }, + { + "start": 10590.86, + "end": 10591.52, + "probability": 0.7702 + }, + { + "start": 10591.98, + "end": 10594.1, + "probability": 0.9315 + }, + { + "start": 10594.52, + "end": 10595.96, + "probability": 0.9749 + }, + { + "start": 10596.32, + "end": 10596.6, + "probability": 0.899 + }, + { + "start": 10597.66, + "end": 10601.0, + "probability": 0.9878 + }, + { + "start": 10601.76, + "end": 10602.46, + "probability": 0.3334 + }, + { + "start": 10603.0, + "end": 10604.92, + "probability": 0.8052 + }, + { + "start": 10606.1, + "end": 10608.32, + "probability": 0.9818 + }, + { + "start": 10609.18, + "end": 10612.08, + "probability": 0.9985 + }, + { + "start": 10612.72, + "end": 10613.04, + "probability": 0.5699 + }, + { + "start": 10613.06, + "end": 10613.06, + "probability": 0.6041 + }, + { + "start": 10613.2, + "end": 10614.48, + "probability": 0.9151 + }, + { + "start": 10615.14, + "end": 10616.94, + "probability": 0.8254 + }, + { + "start": 10617.08, + "end": 10619.82, + "probability": 0.9888 + }, + { + "start": 10620.46, + "end": 10622.08, + "probability": 0.4954 + }, + { + "start": 10622.3, + "end": 10623.78, + "probability": 0.7549 + }, + { + "start": 10623.88, + "end": 10627.9, + "probability": 0.6699 + }, + { + "start": 10628.64, + "end": 10629.22, + "probability": 0.6838 + }, + { + "start": 10629.62, + "end": 10630.76, + "probability": 0.4216 + }, + { + "start": 10630.76, + "end": 10632.66, + "probability": 0.6997 + }, + { + "start": 10632.88, + "end": 10634.3, + "probability": 0.9878 + }, + { + "start": 10634.66, + "end": 10634.9, + "probability": 0.1692 + }, + { + "start": 10634.9, + "end": 10634.9, + "probability": 0.7996 + }, + { + "start": 10634.9, + "end": 10635.06, + "probability": 0.4915 + }, + { + "start": 10635.4, + "end": 10637.52, + "probability": 0.979 + }, + { + "start": 10638.52, + "end": 10640.14, + "probability": 0.604 + }, + { + "start": 10641.56, + "end": 10643.84, + "probability": 0.9169 + }, + { + "start": 10644.52, + "end": 10647.84, + "probability": 0.7166 + }, + { + "start": 10647.9, + "end": 10649.9, + "probability": 0.9968 + }, + { + "start": 10650.14, + "end": 10651.6, + "probability": 0.978 + }, + { + "start": 10652.16, + "end": 10653.1, + "probability": 0.7586 + }, + { + "start": 10653.58, + "end": 10658.28, + "probability": 0.8335 + }, + { + "start": 10658.8, + "end": 10659.48, + "probability": 0.9474 + }, + { + "start": 10659.66, + "end": 10661.92, + "probability": 0.9671 + }, + { + "start": 10662.48, + "end": 10666.12, + "probability": 0.9437 + }, + { + "start": 10667.14, + "end": 10668.9, + "probability": 0.5142 + }, + { + "start": 10669.22, + "end": 10674.06, + "probability": 0.9863 + }, + { + "start": 10674.06, + "end": 10677.68, + "probability": 0.8572 + }, + { + "start": 10678.06, + "end": 10679.22, + "probability": 0.8915 + }, + { + "start": 10679.6, + "end": 10681.5, + "probability": 0.8413 + }, + { + "start": 10682.02, + "end": 10682.64, + "probability": 0.9019 + }, + { + "start": 10683.6, + "end": 10685.4, + "probability": 0.6814 + }, + { + "start": 10685.64, + "end": 10686.66, + "probability": 0.717 + }, + { + "start": 10686.76, + "end": 10687.4, + "probability": 0.4913 + }, + { + "start": 10687.66, + "end": 10688.94, + "probability": 0.9983 + }, + { + "start": 10689.0, + "end": 10690.04, + "probability": 0.9265 + }, + { + "start": 10691.06, + "end": 10692.02, + "probability": 0.9566 + }, + { + "start": 10693.18, + "end": 10693.58, + "probability": 0.9332 + }, + { + "start": 10694.1, + "end": 10695.34, + "probability": 0.9878 + }, + { + "start": 10695.44, + "end": 10696.42, + "probability": 0.9204 + }, + { + "start": 10697.26, + "end": 10699.72, + "probability": 0.4796 + }, + { + "start": 10700.28, + "end": 10701.38, + "probability": 0.9939 + }, + { + "start": 10701.9, + "end": 10702.83, + "probability": 0.9961 + }, + { + "start": 10702.96, + "end": 10705.3, + "probability": 0.2472 + }, + { + "start": 10705.3, + "end": 10705.58, + "probability": 0.632 + }, + { + "start": 10706.3, + "end": 10707.56, + "probability": 0.9251 + }, + { + "start": 10708.4, + "end": 10709.36, + "probability": 0.8267 + }, + { + "start": 10710.12, + "end": 10712.9, + "probability": 0.9663 + }, + { + "start": 10713.88, + "end": 10719.0, + "probability": 0.9498 + }, + { + "start": 10719.78, + "end": 10723.32, + "probability": 0.9347 + }, + { + "start": 10723.74, + "end": 10726.5, + "probability": 0.7654 + }, + { + "start": 10727.16, + "end": 10733.94, + "probability": 0.9678 + }, + { + "start": 10734.32, + "end": 10737.04, + "probability": 0.9917 + }, + { + "start": 10737.14, + "end": 10737.58, + "probability": 0.6985 + }, + { + "start": 10738.16, + "end": 10739.1, + "probability": 0.9388 + }, + { + "start": 10739.22, + "end": 10739.96, + "probability": 0.7361 + }, + { + "start": 10740.04, + "end": 10742.34, + "probability": 0.9946 + }, + { + "start": 10742.82, + "end": 10743.46, + "probability": 0.6428 + }, + { + "start": 10743.62, + "end": 10744.36, + "probability": 0.945 + }, + { + "start": 10744.72, + "end": 10747.56, + "probability": 0.9851 + }, + { + "start": 10748.88, + "end": 10749.8, + "probability": 0.8337 + }, + { + "start": 10750.06, + "end": 10752.58, + "probability": 0.792 + }, + { + "start": 10752.78, + "end": 10756.28, + "probability": 0.9225 + }, + { + "start": 10756.56, + "end": 10759.28, + "probability": 0.9749 + }, + { + "start": 10759.74, + "end": 10762.82, + "probability": 0.9927 + }, + { + "start": 10763.54, + "end": 10765.0, + "probability": 0.9263 + }, + { + "start": 10765.35, + "end": 10766.74, + "probability": 0.5904 + }, + { + "start": 10766.86, + "end": 10768.86, + "probability": 0.9683 + }, + { + "start": 10770.16, + "end": 10770.16, + "probability": 0.3648 + }, + { + "start": 10770.22, + "end": 10771.34, + "probability": 0.4357 + }, + { + "start": 10771.56, + "end": 10774.94, + "probability": 0.8937 + }, + { + "start": 10775.64, + "end": 10777.46, + "probability": 0.8323 + }, + { + "start": 10777.46, + "end": 10779.46, + "probability": 0.583 + }, + { + "start": 10779.58, + "end": 10779.79, + "probability": 0.0235 + }, + { + "start": 10781.02, + "end": 10783.7, + "probability": 0.4357 + }, + { + "start": 10783.84, + "end": 10784.06, + "probability": 0.438 + }, + { + "start": 10784.12, + "end": 10786.41, + "probability": 0.9927 + }, + { + "start": 10796.0, + "end": 10797.7, + "probability": 0.8277 + }, + { + "start": 10800.89, + "end": 10802.72, + "probability": 0.1979 + }, + { + "start": 10815.24, + "end": 10816.46, + "probability": 0.0807 + }, + { + "start": 10816.46, + "end": 10817.8, + "probability": 0.4305 + }, + { + "start": 10818.52, + "end": 10821.64, + "probability": 0.6713 + }, + { + "start": 10826.88, + "end": 10827.86, + "probability": 0.4994 + }, + { + "start": 10828.34, + "end": 10831.0, + "probability": 0.6433 + }, + { + "start": 10832.18, + "end": 10834.02, + "probability": 0.835 + }, + { + "start": 10834.56, + "end": 10836.06, + "probability": 0.7873 + }, + { + "start": 10836.58, + "end": 10838.3, + "probability": 0.9699 + }, + { + "start": 10838.8, + "end": 10839.22, + "probability": 0.8407 + }, + { + "start": 10841.2, + "end": 10841.58, + "probability": 0.6279 + }, + { + "start": 10841.8, + "end": 10845.7, + "probability": 0.6519 + }, + { + "start": 10845.7, + "end": 10848.34, + "probability": 0.7739 + }, + { + "start": 10850.42, + "end": 10851.0, + "probability": 0.8195 + }, + { + "start": 10852.1, + "end": 10854.62, + "probability": 0.6918 + }, + { + "start": 10854.86, + "end": 10855.54, + "probability": 0.8708 + }, + { + "start": 10864.86, + "end": 10865.74, + "probability": 0.8892 + }, + { + "start": 10865.74, + "end": 10867.14, + "probability": 0.5256 + }, + { + "start": 10869.12, + "end": 10872.42, + "probability": 0.8687 + }, + { + "start": 10880.06, + "end": 10882.6, + "probability": 0.845 + }, + { + "start": 10882.78, + "end": 10883.78, + "probability": 0.7548 + }, + { + "start": 10884.52, + "end": 10885.98, + "probability": 0.4328 + }, + { + "start": 10886.7, + "end": 10887.66, + "probability": 0.4896 + }, + { + "start": 10887.72, + "end": 10888.44, + "probability": 0.7443 + }, + { + "start": 10888.6, + "end": 10889.3, + "probability": 0.8634 + }, + { + "start": 10889.76, + "end": 10890.72, + "probability": 0.6995 + }, + { + "start": 10891.0, + "end": 10892.9, + "probability": 0.6847 + }, + { + "start": 10893.28, + "end": 10895.56, + "probability": 0.9365 + }, + { + "start": 10896.66, + "end": 10898.7, + "probability": 0.9824 + }, + { + "start": 10898.82, + "end": 10900.18, + "probability": 0.9862 + }, + { + "start": 10901.04, + "end": 10901.92, + "probability": 0.8283 + }, + { + "start": 10901.96, + "end": 10903.14, + "probability": 0.9014 + }, + { + "start": 10903.26, + "end": 10904.46, + "probability": 0.9985 + }, + { + "start": 10905.08, + "end": 10907.26, + "probability": 0.9978 + }, + { + "start": 10908.22, + "end": 10909.8, + "probability": 0.883 + }, + { + "start": 10910.62, + "end": 10913.8, + "probability": 0.9312 + }, + { + "start": 10913.9, + "end": 10914.9, + "probability": 0.9031 + }, + { + "start": 10915.04, + "end": 10916.18, + "probability": 0.9626 + }, + { + "start": 10917.08, + "end": 10918.24, + "probability": 0.9602 + }, + { + "start": 10919.1, + "end": 10920.88, + "probability": 0.9975 + }, + { + "start": 10921.12, + "end": 10922.06, + "probability": 0.7522 + }, + { + "start": 10922.32, + "end": 10924.92, + "probability": 0.9052 + }, + { + "start": 10925.76, + "end": 10929.14, + "probability": 0.9745 + }, + { + "start": 10930.16, + "end": 10933.28, + "probability": 0.9761 + }, + { + "start": 10934.58, + "end": 10936.64, + "probability": 0.8709 + }, + { + "start": 10936.82, + "end": 10938.24, + "probability": 0.9929 + }, + { + "start": 10938.36, + "end": 10939.32, + "probability": 0.6515 + }, + { + "start": 10940.22, + "end": 10943.0, + "probability": 0.993 + }, + { + "start": 10943.94, + "end": 10947.0, + "probability": 0.8708 + }, + { + "start": 10947.88, + "end": 10948.99, + "probability": 0.9959 + }, + { + "start": 10950.68, + "end": 10951.22, + "probability": 0.7153 + }, + { + "start": 10952.18, + "end": 10956.49, + "probability": 0.9055 + }, + { + "start": 10957.52, + "end": 10962.0, + "probability": 0.9905 + }, + { + "start": 10962.54, + "end": 10966.38, + "probability": 0.9669 + }, + { + "start": 10967.26, + "end": 10970.7, + "probability": 0.8968 + }, + { + "start": 10972.41, + "end": 10978.92, + "probability": 0.9679 + }, + { + "start": 10979.56, + "end": 10981.72, + "probability": 0.9837 + }, + { + "start": 10982.06, + "end": 10984.84, + "probability": 0.4892 + }, + { + "start": 10985.22, + "end": 10989.04, + "probability": 0.974 + }, + { + "start": 10990.2, + "end": 10993.27, + "probability": 0.9916 + }, + { + "start": 10994.72, + "end": 10997.3, + "probability": 0.9879 + }, + { + "start": 10997.82, + "end": 11000.46, + "probability": 0.9993 + }, + { + "start": 11001.1, + "end": 11002.02, + "probability": 0.8955 + }, + { + "start": 11002.66, + "end": 11004.48, + "probability": 0.8145 + }, + { + "start": 11004.97, + "end": 11007.26, + "probability": 0.787 + }, + { + "start": 11007.8, + "end": 11009.24, + "probability": 0.9448 + }, + { + "start": 11010.08, + "end": 11012.58, + "probability": 0.9764 + }, + { + "start": 11013.44, + "end": 11014.64, + "probability": 0.7087 + }, + { + "start": 11014.82, + "end": 11017.12, + "probability": 0.9917 + }, + { + "start": 11017.18, + "end": 11019.65, + "probability": 0.9574 + }, + { + "start": 11021.2, + "end": 11023.98, + "probability": 0.8389 + }, + { + "start": 11024.56, + "end": 11026.3, + "probability": 0.9822 + }, + { + "start": 11027.0, + "end": 11030.46, + "probability": 0.9607 + }, + { + "start": 11031.24, + "end": 11033.46, + "probability": 0.9536 + }, + { + "start": 11034.28, + "end": 11036.6, + "probability": 0.7267 + }, + { + "start": 11037.3, + "end": 11038.68, + "probability": 0.7487 + }, + { + "start": 11039.7, + "end": 11043.98, + "probability": 0.9485 + }, + { + "start": 11044.1, + "end": 11048.64, + "probability": 0.997 + }, + { + "start": 11048.84, + "end": 11048.84, + "probability": 0.1144 + }, + { + "start": 11048.84, + "end": 11051.86, + "probability": 0.9647 + }, + { + "start": 11052.56, + "end": 11055.92, + "probability": 0.9928 + }, + { + "start": 11056.46, + "end": 11058.02, + "probability": 0.8101 + }, + { + "start": 11058.5, + "end": 11060.96, + "probability": 0.9939 + }, + { + "start": 11061.86, + "end": 11064.1, + "probability": 0.9954 + }, + { + "start": 11064.6, + "end": 11065.74, + "probability": 0.7437 + }, + { + "start": 11065.88, + "end": 11066.18, + "probability": 0.596 + }, + { + "start": 11066.24, + "end": 11066.92, + "probability": 0.7515 + }, + { + "start": 11067.7, + "end": 11069.7, + "probability": 0.9893 + }, + { + "start": 11070.26, + "end": 11072.72, + "probability": 0.8838 + }, + { + "start": 11073.28, + "end": 11076.4, + "probability": 0.9826 + }, + { + "start": 11077.06, + "end": 11077.82, + "probability": 0.797 + }, + { + "start": 11078.2, + "end": 11083.26, + "probability": 0.998 + }, + { + "start": 11083.82, + "end": 11087.1, + "probability": 0.9696 + }, + { + "start": 11087.64, + "end": 11087.96, + "probability": 0.8354 + }, + { + "start": 11088.56, + "end": 11089.08, + "probability": 0.7545 + }, + { + "start": 11089.56, + "end": 11090.54, + "probability": 0.7162 + }, + { + "start": 11091.56, + "end": 11092.58, + "probability": 0.9105 + }, + { + "start": 11093.8, + "end": 11094.15, + "probability": 0.7928 + }, + { + "start": 11095.12, + "end": 11095.42, + "probability": 0.5491 + }, + { + "start": 11095.44, + "end": 11096.54, + "probability": 0.6573 + }, + { + "start": 11096.62, + "end": 11098.36, + "probability": 0.8701 + }, + { + "start": 11098.44, + "end": 11098.84, + "probability": 0.9344 + }, + { + "start": 11112.92, + "end": 11114.46, + "probability": 0.1052 + }, + { + "start": 11128.74, + "end": 11129.6, + "probability": 0.7241 + }, + { + "start": 11130.5, + "end": 11133.08, + "probability": 0.8582 + }, + { + "start": 11134.2, + "end": 11138.58, + "probability": 0.6841 + }, + { + "start": 11139.26, + "end": 11141.82, + "probability": 0.9817 + }, + { + "start": 11142.34, + "end": 11143.98, + "probability": 0.9724 + }, + { + "start": 11145.52, + "end": 11148.18, + "probability": 0.8826 + }, + { + "start": 11148.82, + "end": 11150.93, + "probability": 0.6791 + }, + { + "start": 11151.48, + "end": 11153.1, + "probability": 0.9355 + }, + { + "start": 11153.62, + "end": 11156.34, + "probability": 0.9663 + }, + { + "start": 11157.74, + "end": 11159.42, + "probability": 0.9832 + }, + { + "start": 11159.5, + "end": 11161.48, + "probability": 0.9093 + }, + { + "start": 11162.08, + "end": 11164.4, + "probability": 0.9302 + }, + { + "start": 11165.84, + "end": 11167.2, + "probability": 0.9844 + }, + { + "start": 11168.42, + "end": 11172.8, + "probability": 0.7939 + }, + { + "start": 11173.14, + "end": 11173.7, + "probability": 0.1908 + }, + { + "start": 11174.6, + "end": 11175.06, + "probability": 0.885 + }, + { + "start": 11175.6, + "end": 11177.84, + "probability": 0.9977 + }, + { + "start": 11178.48, + "end": 11182.78, + "probability": 0.9675 + }, + { + "start": 11183.94, + "end": 11187.52, + "probability": 0.9587 + }, + { + "start": 11188.06, + "end": 11188.66, + "probability": 0.9699 + }, + { + "start": 11189.18, + "end": 11190.52, + "probability": 0.7739 + }, + { + "start": 11191.02, + "end": 11192.26, + "probability": 0.841 + }, + { + "start": 11192.62, + "end": 11196.54, + "probability": 0.9882 + }, + { + "start": 11197.6, + "end": 11199.44, + "probability": 0.8951 + }, + { + "start": 11200.28, + "end": 11201.42, + "probability": 0.8547 + }, + { + "start": 11201.84, + "end": 11204.52, + "probability": 0.9119 + }, + { + "start": 11205.17, + "end": 11205.7, + "probability": 0.8853 + }, + { + "start": 11206.66, + "end": 11208.58, + "probability": 0.7413 + }, + { + "start": 11209.42, + "end": 11213.86, + "probability": 0.9175 + }, + { + "start": 11214.48, + "end": 11216.72, + "probability": 0.7817 + }, + { + "start": 11218.32, + "end": 11221.5, + "probability": 0.9634 + }, + { + "start": 11222.02, + "end": 11222.88, + "probability": 0.6551 + }, + { + "start": 11223.4, + "end": 11226.46, + "probability": 0.9788 + }, + { + "start": 11227.26, + "end": 11230.78, + "probability": 0.7401 + }, + { + "start": 11231.36, + "end": 11232.1, + "probability": 0.7774 + }, + { + "start": 11232.28, + "end": 11234.78, + "probability": 0.9658 + }, + { + "start": 11234.82, + "end": 11237.72, + "probability": 0.7739 + }, + { + "start": 11238.2, + "end": 11240.24, + "probability": 0.9282 + }, + { + "start": 11240.24, + "end": 11244.06, + "probability": 0.6626 + }, + { + "start": 11245.04, + "end": 11246.66, + "probability": 0.7804 + }, + { + "start": 11247.58, + "end": 11250.63, + "probability": 0.9031 + }, + { + "start": 11251.9, + "end": 11254.36, + "probability": 0.9841 + }, + { + "start": 11255.1, + "end": 11256.38, + "probability": 0.9957 + }, + { + "start": 11256.94, + "end": 11258.24, + "probability": 0.4582 + }, + { + "start": 11258.98, + "end": 11260.48, + "probability": 0.7483 + }, + { + "start": 11260.56, + "end": 11261.64, + "probability": 0.6202 + }, + { + "start": 11261.64, + "end": 11263.68, + "probability": 0.7002 + }, + { + "start": 11263.76, + "end": 11263.94, + "probability": 0.4918 + }, + { + "start": 11264.96, + "end": 11266.48, + "probability": 0.8569 + }, + { + "start": 11266.68, + "end": 11268.76, + "probability": 0.9085 + }, + { + "start": 11269.32, + "end": 11274.04, + "probability": 0.9883 + }, + { + "start": 11275.04, + "end": 11275.88, + "probability": 0.5979 + }, + { + "start": 11276.06, + "end": 11276.94, + "probability": 0.8914 + }, + { + "start": 11277.16, + "end": 11279.32, + "probability": 0.6963 + }, + { + "start": 11280.0, + "end": 11280.76, + "probability": 0.8535 + }, + { + "start": 11280.96, + "end": 11283.38, + "probability": 0.9925 + }, + { + "start": 11283.38, + "end": 11285.76, + "probability": 0.897 + }, + { + "start": 11286.38, + "end": 11286.82, + "probability": 0.6721 + }, + { + "start": 11287.48, + "end": 11288.26, + "probability": 0.749 + }, + { + "start": 11288.64, + "end": 11290.64, + "probability": 0.9476 + }, + { + "start": 11291.0, + "end": 11294.36, + "probability": 0.7471 + }, + { + "start": 11295.04, + "end": 11295.28, + "probability": 0.7374 + }, + { + "start": 11296.04, + "end": 11297.72, + "probability": 0.7801 + }, + { + "start": 11297.78, + "end": 11302.06, + "probability": 0.903 + }, + { + "start": 11323.32, + "end": 11323.54, + "probability": 0.7438 + }, + { + "start": 11325.74, + "end": 11327.86, + "probability": 0.7753 + }, + { + "start": 11328.48, + "end": 11331.78, + "probability": 0.9398 + }, + { + "start": 11332.4, + "end": 11336.5, + "probability": 0.9775 + }, + { + "start": 11337.08, + "end": 11339.8, + "probability": 0.9703 + }, + { + "start": 11339.86, + "end": 11341.11, + "probability": 0.8568 + }, + { + "start": 11341.68, + "end": 11343.14, + "probability": 0.9178 + }, + { + "start": 11344.0, + "end": 11347.48, + "probability": 0.8967 + }, + { + "start": 11347.54, + "end": 11350.02, + "probability": 0.6318 + }, + { + "start": 11350.88, + "end": 11354.48, + "probability": 0.9042 + }, + { + "start": 11354.56, + "end": 11355.4, + "probability": 0.8736 + }, + { + "start": 11355.94, + "end": 11358.28, + "probability": 0.7536 + }, + { + "start": 11359.12, + "end": 11362.52, + "probability": 0.6275 + }, + { + "start": 11362.52, + "end": 11365.34, + "probability": 0.9884 + }, + { + "start": 11365.74, + "end": 11368.76, + "probability": 0.8122 + }, + { + "start": 11369.38, + "end": 11370.74, + "probability": 0.8662 + }, + { + "start": 11371.4, + "end": 11372.84, + "probability": 0.9578 + }, + { + "start": 11373.46, + "end": 11375.62, + "probability": 0.8486 + }, + { + "start": 11376.16, + "end": 11378.36, + "probability": 0.9231 + }, + { + "start": 11378.68, + "end": 11381.46, + "probability": 0.8599 + }, + { + "start": 11381.58, + "end": 11381.68, + "probability": 0.8826 + }, + { + "start": 11382.76, + "end": 11384.38, + "probability": 0.9111 + }, + { + "start": 11385.16, + "end": 11388.3, + "probability": 0.9253 + }, + { + "start": 11388.46, + "end": 11391.52, + "probability": 0.9791 + }, + { + "start": 11392.18, + "end": 11392.28, + "probability": 0.5804 + }, + { + "start": 11393.04, + "end": 11398.42, + "probability": 0.8996 + }, + { + "start": 11399.1, + "end": 11400.8, + "probability": 0.9099 + }, + { + "start": 11400.86, + "end": 11408.98, + "probability": 0.8969 + }, + { + "start": 11410.08, + "end": 11411.74, + "probability": 0.6222 + }, + { + "start": 11411.84, + "end": 11414.74, + "probability": 0.9971 + }, + { + "start": 11415.9, + "end": 11419.9, + "probability": 0.9938 + }, + { + "start": 11420.68, + "end": 11424.2, + "probability": 0.974 + }, + { + "start": 11424.84, + "end": 11429.68, + "probability": 0.9739 + }, + { + "start": 11430.14, + "end": 11434.64, + "probability": 0.9842 + }, + { + "start": 11434.82, + "end": 11435.97, + "probability": 0.913 + }, + { + "start": 11436.76, + "end": 11441.22, + "probability": 0.9798 + }, + { + "start": 11441.74, + "end": 11442.9, + "probability": 0.9321 + }, + { + "start": 11443.48, + "end": 11444.66, + "probability": 0.9525 + }, + { + "start": 11446.7, + "end": 11449.72, + "probability": 0.8899 + }, + { + "start": 11450.36, + "end": 11453.8, + "probability": 0.9924 + }, + { + "start": 11454.44, + "end": 11456.24, + "probability": 0.936 + }, + { + "start": 11457.02, + "end": 11458.82, + "probability": 0.9653 + }, + { + "start": 11459.04, + "end": 11462.98, + "probability": 0.8324 + }, + { + "start": 11463.22, + "end": 11466.16, + "probability": 0.9937 + }, + { + "start": 11466.64, + "end": 11469.02, + "probability": 0.983 + }, + { + "start": 11469.54, + "end": 11473.8, + "probability": 0.9736 + }, + { + "start": 11473.96, + "end": 11475.8, + "probability": 0.9791 + }, + { + "start": 11476.56, + "end": 11478.76, + "probability": 0.9979 + }, + { + "start": 11479.54, + "end": 11485.06, + "probability": 0.8511 + }, + { + "start": 11485.24, + "end": 11486.94, + "probability": 0.9956 + }, + { + "start": 11487.88, + "end": 11490.16, + "probability": 0.7347 + }, + { + "start": 11491.02, + "end": 11492.36, + "probability": 0.8315 + }, + { + "start": 11492.78, + "end": 11493.7, + "probability": 0.9764 + }, + { + "start": 11493.8, + "end": 11495.82, + "probability": 0.9686 + }, + { + "start": 11496.38, + "end": 11500.42, + "probability": 0.9761 + }, + { + "start": 11501.3, + "end": 11504.48, + "probability": 0.8047 + }, + { + "start": 11505.44, + "end": 11513.0, + "probability": 0.989 + }, + { + "start": 11513.06, + "end": 11514.74, + "probability": 0.9028 + }, + { + "start": 11515.16, + "end": 11515.3, + "probability": 0.3071 + }, + { + "start": 11515.42, + "end": 11516.16, + "probability": 0.9927 + }, + { + "start": 11516.96, + "end": 11520.2, + "probability": 0.9982 + }, + { + "start": 11520.3, + "end": 11524.98, + "probability": 0.983 + }, + { + "start": 11525.98, + "end": 11527.92, + "probability": 0.9275 + }, + { + "start": 11528.74, + "end": 11529.2, + "probability": 0.5716 + }, + { + "start": 11529.8, + "end": 11534.92, + "probability": 0.9349 + }, + { + "start": 11535.5, + "end": 11539.46, + "probability": 0.817 + }, + { + "start": 11539.58, + "end": 11542.15, + "probability": 0.7729 + }, + { + "start": 11542.7, + "end": 11543.38, + "probability": 0.9546 + }, + { + "start": 11545.18, + "end": 11545.46, + "probability": 0.5002 + }, + { + "start": 11545.68, + "end": 11545.94, + "probability": 0.7898 + }, + { + "start": 11546.02, + "end": 11546.43, + "probability": 0.9587 + }, + { + "start": 11547.28, + "end": 11548.94, + "probability": 0.8249 + }, + { + "start": 11549.42, + "end": 11549.76, + "probability": 0.3817 + }, + { + "start": 11549.78, + "end": 11552.14, + "probability": 0.977 + }, + { + "start": 11552.2, + "end": 11552.94, + "probability": 0.8979 + }, + { + "start": 11553.34, + "end": 11556.38, + "probability": 0.8743 + }, + { + "start": 11556.9, + "end": 11558.3, + "probability": 0.3414 + }, + { + "start": 11558.3, + "end": 11562.6, + "probability": 0.9951 + }, + { + "start": 11562.72, + "end": 11563.34, + "probability": 0.6164 + }, + { + "start": 11563.46, + "end": 11563.46, + "probability": 0.4629 + }, + { + "start": 11563.46, + "end": 11566.78, + "probability": 0.7793 + }, + { + "start": 11567.62, + "end": 11568.8, + "probability": 0.9045 + }, + { + "start": 11569.54, + "end": 11572.66, + "probability": 0.8268 + }, + { + "start": 11573.48, + "end": 11574.5, + "probability": 0.6755 + }, + { + "start": 11574.68, + "end": 11576.16, + "probability": 0.7914 + }, + { + "start": 11577.7, + "end": 11578.24, + "probability": 0.0055 + }, + { + "start": 11583.86, + "end": 11584.34, + "probability": 0.1817 + }, + { + "start": 11584.52, + "end": 11586.54, + "probability": 0.7904 + }, + { + "start": 11586.6, + "end": 11587.2, + "probability": 0.2394 + }, + { + "start": 11587.34, + "end": 11587.34, + "probability": 0.5589 + }, + { + "start": 11587.34, + "end": 11587.4, + "probability": 0.3524 + }, + { + "start": 11587.6, + "end": 11588.68, + "probability": 0.6303 + }, + { + "start": 11589.64, + "end": 11591.5, + "probability": 0.7561 + }, + { + "start": 11591.9, + "end": 11597.38, + "probability": 0.0564 + }, + { + "start": 11597.38, + "end": 11597.44, + "probability": 0.0805 + }, + { + "start": 11597.44, + "end": 11597.46, + "probability": 0.2919 + }, + { + "start": 11597.46, + "end": 11597.46, + "probability": 0.1437 + }, + { + "start": 11597.46, + "end": 11597.46, + "probability": 0.4018 + }, + { + "start": 11597.46, + "end": 11599.02, + "probability": 0.1449 + }, + { + "start": 11599.04, + "end": 11599.9, + "probability": 0.5993 + }, + { + "start": 11600.48, + "end": 11602.91, + "probability": 0.7231 + }, + { + "start": 11603.9, + "end": 11607.72, + "probability": 0.5565 + }, + { + "start": 11608.46, + "end": 11610.84, + "probability": 0.7492 + }, + { + "start": 11611.64, + "end": 11613.94, + "probability": 0.949 + }, + { + "start": 11614.92, + "end": 11616.26, + "probability": 0.8589 + }, + { + "start": 11617.16, + "end": 11621.64, + "probability": 0.9272 + }, + { + "start": 11622.48, + "end": 11624.12, + "probability": 0.9774 + }, + { + "start": 11624.86, + "end": 11629.16, + "probability": 0.9921 + }, + { + "start": 11630.16, + "end": 11633.44, + "probability": 0.9968 + }, + { + "start": 11633.44, + "end": 11637.92, + "probability": 0.9855 + }, + { + "start": 11638.88, + "end": 11640.08, + "probability": 0.8723 + }, + { + "start": 11640.92, + "end": 11643.0, + "probability": 0.7637 + }, + { + "start": 11643.62, + "end": 11647.86, + "probability": 0.9883 + }, + { + "start": 11648.5, + "end": 11648.84, + "probability": 0.5053 + }, + { + "start": 11648.9, + "end": 11652.62, + "probability": 0.9861 + }, + { + "start": 11653.34, + "end": 11655.62, + "probability": 0.9885 + }, + { + "start": 11655.68, + "end": 11659.98, + "probability": 0.9952 + }, + { + "start": 11661.34, + "end": 11663.52, + "probability": 0.9478 + }, + { + "start": 11664.18, + "end": 11665.72, + "probability": 0.9852 + }, + { + "start": 11665.82, + "end": 11667.68, + "probability": 0.7381 + }, + { + "start": 11668.44, + "end": 11672.2, + "probability": 0.9924 + }, + { + "start": 11672.86, + "end": 11675.8, + "probability": 0.7911 + }, + { + "start": 11675.82, + "end": 11676.28, + "probability": 0.6813 + }, + { + "start": 11677.1, + "end": 11679.8, + "probability": 0.7584 + }, + { + "start": 11680.38, + "end": 11682.72, + "probability": 0.9739 + }, + { + "start": 11683.46, + "end": 11683.84, + "probability": 0.6509 + }, + { + "start": 11683.92, + "end": 11687.34, + "probability": 0.9224 + }, + { + "start": 11687.74, + "end": 11691.24, + "probability": 0.9682 + }, + { + "start": 11691.46, + "end": 11694.1, + "probability": 0.9912 + }, + { + "start": 11694.64, + "end": 11696.52, + "probability": 0.9698 + }, + { + "start": 11697.5, + "end": 11699.96, + "probability": 0.7543 + }, + { + "start": 11700.12, + "end": 11701.26, + "probability": 0.9978 + }, + { + "start": 11701.82, + "end": 11704.48, + "probability": 0.9867 + }, + { + "start": 11705.06, + "end": 11707.38, + "probability": 0.9441 + }, + { + "start": 11708.06, + "end": 11711.5, + "probability": 0.9886 + }, + { + "start": 11711.5, + "end": 11714.84, + "probability": 0.915 + }, + { + "start": 11714.96, + "end": 11716.22, + "probability": 0.8147 + }, + { + "start": 11716.72, + "end": 11718.24, + "probability": 0.8654 + }, + { + "start": 11718.36, + "end": 11719.7, + "probability": 0.9956 + }, + { + "start": 11720.36, + "end": 11724.84, + "probability": 0.9458 + }, + { + "start": 11725.54, + "end": 11728.36, + "probability": 0.9516 + }, + { + "start": 11728.36, + "end": 11731.2, + "probability": 0.9743 + }, + { + "start": 11731.9, + "end": 11733.4, + "probability": 0.9598 + }, + { + "start": 11733.86, + "end": 11734.62, + "probability": 0.9139 + }, + { + "start": 11735.86, + "end": 11739.2, + "probability": 0.9913 + }, + { + "start": 11739.66, + "end": 11742.4, + "probability": 0.7805 + }, + { + "start": 11743.28, + "end": 11744.9, + "probability": 0.6437 + }, + { + "start": 11745.6, + "end": 11749.12, + "probability": 0.9802 + }, + { + "start": 11749.12, + "end": 11753.2, + "probability": 0.9943 + }, + { + "start": 11753.9, + "end": 11754.42, + "probability": 0.8522 + }, + { + "start": 11755.26, + "end": 11756.62, + "probability": 0.6346 + }, + { + "start": 11756.68, + "end": 11759.82, + "probability": 0.8017 + }, + { + "start": 11759.82, + "end": 11761.92, + "probability": 0.9917 + }, + { + "start": 11762.82, + "end": 11763.62, + "probability": 0.6879 + }, + { + "start": 11763.86, + "end": 11764.66, + "probability": 0.9938 + }, + { + "start": 11765.48, + "end": 11766.36, + "probability": 0.7969 + }, + { + "start": 11767.16, + "end": 11768.66, + "probability": 0.8367 + }, + { + "start": 11769.28, + "end": 11771.26, + "probability": 0.8341 + }, + { + "start": 11772.24, + "end": 11774.45, + "probability": 0.8631 + }, + { + "start": 11775.1, + "end": 11777.18, + "probability": 0.9141 + }, + { + "start": 11777.76, + "end": 11781.48, + "probability": 0.9326 + }, + { + "start": 11781.62, + "end": 11785.58, + "probability": 0.9705 + }, + { + "start": 11785.76, + "end": 11787.1, + "probability": 0.7247 + }, + { + "start": 11787.8, + "end": 11789.96, + "probability": 0.5777 + }, + { + "start": 11790.78, + "end": 11792.5, + "probability": 0.5486 + }, + { + "start": 11794.26, + "end": 11795.32, + "probability": 0.6818 + }, + { + "start": 11795.4, + "end": 11796.84, + "probability": 0.9846 + }, + { + "start": 11797.0, + "end": 11797.54, + "probability": 0.936 + }, + { + "start": 11797.68, + "end": 11798.18, + "probability": 0.9835 + }, + { + "start": 11798.46, + "end": 11802.46, + "probability": 0.9256 + }, + { + "start": 11802.54, + "end": 11802.86, + "probability": 0.9399 + }, + { + "start": 11803.38, + "end": 11803.78, + "probability": 0.6243 + }, + { + "start": 11804.04, + "end": 11805.92, + "probability": 0.4761 + }, + { + "start": 11807.1, + "end": 11808.32, + "probability": 0.6804 + }, + { + "start": 11808.46, + "end": 11810.8, + "probability": 0.9012 + }, + { + "start": 11810.92, + "end": 11812.62, + "probability": 0.8092 + }, + { + "start": 11812.86, + "end": 11813.72, + "probability": 0.9323 + }, + { + "start": 11813.84, + "end": 11816.08, + "probability": 0.874 + }, + { + "start": 11816.52, + "end": 11817.28, + "probability": 0.7535 + }, + { + "start": 11817.32, + "end": 11817.32, + "probability": 0.3371 + }, + { + "start": 11817.32, + "end": 11818.7, + "probability": 0.7818 + }, + { + "start": 11819.4, + "end": 11822.08, + "probability": 0.6599 + }, + { + "start": 11822.24, + "end": 11825.48, + "probability": 0.85 + }, + { + "start": 11826.42, + "end": 11829.06, + "probability": 0.9908 + }, + { + "start": 11829.24, + "end": 11831.3, + "probability": 0.9153 + }, + { + "start": 11831.56, + "end": 11831.98, + "probability": 0.3235 + }, + { + "start": 11832.04, + "end": 11832.68, + "probability": 0.829 + }, + { + "start": 11833.3, + "end": 11836.08, + "probability": 0.955 + }, + { + "start": 11836.7, + "end": 11838.16, + "probability": 0.9515 + }, + { + "start": 11838.22, + "end": 11839.02, + "probability": 0.9053 + }, + { + "start": 11839.64, + "end": 11840.61, + "probability": 0.8119 + }, + { + "start": 11841.52, + "end": 11842.98, + "probability": 0.8995 + }, + { + "start": 11843.86, + "end": 11846.72, + "probability": 0.9987 + }, + { + "start": 11846.9, + "end": 11848.12, + "probability": 0.725 + }, + { + "start": 11848.82, + "end": 11850.1, + "probability": 0.9572 + }, + { + "start": 11850.76, + "end": 11854.14, + "probability": 0.9941 + }, + { + "start": 11854.96, + "end": 11855.98, + "probability": 0.6939 + }, + { + "start": 11856.06, + "end": 11857.26, + "probability": 0.8749 + }, + { + "start": 11857.42, + "end": 11857.78, + "probability": 0.6345 + }, + { + "start": 11858.54, + "end": 11859.52, + "probability": 0.7405 + }, + { + "start": 11860.38, + "end": 11862.64, + "probability": 0.8792 + }, + { + "start": 11863.46, + "end": 11865.92, + "probability": 0.9448 + }, + { + "start": 11866.44, + "end": 11868.17, + "probability": 0.945 + }, + { + "start": 11868.92, + "end": 11870.08, + "probability": 0.9977 + }, + { + "start": 11871.06, + "end": 11871.52, + "probability": 0.831 + }, + { + "start": 11872.1, + "end": 11873.09, + "probability": 0.8038 + }, + { + "start": 11873.96, + "end": 11875.3, + "probability": 0.8861 + }, + { + "start": 11875.42, + "end": 11876.94, + "probability": 0.9949 + }, + { + "start": 11877.42, + "end": 11880.16, + "probability": 0.8875 + }, + { + "start": 11880.58, + "end": 11882.23, + "probability": 0.9594 + }, + { + "start": 11882.56, + "end": 11883.1, + "probability": 0.6568 + }, + { + "start": 11883.12, + "end": 11885.46, + "probability": 0.8631 + }, + { + "start": 11885.82, + "end": 11886.32, + "probability": 0.7468 + }, + { + "start": 11886.42, + "end": 11888.26, + "probability": 0.9197 + }, + { + "start": 11889.52, + "end": 11890.02, + "probability": 0.0088 + }, + { + "start": 11890.14, + "end": 11890.9, + "probability": 0.5999 + }, + { + "start": 11891.12, + "end": 11891.66, + "probability": 0.5822 + }, + { + "start": 11891.7, + "end": 11891.98, + "probability": 0.6645 + }, + { + "start": 11892.08, + "end": 11894.8, + "probability": 0.9424 + }, + { + "start": 11894.92, + "end": 11896.42, + "probability": 0.5682 + }, + { + "start": 11896.6, + "end": 11897.1, + "probability": 0.6992 + }, + { + "start": 11898.1, + "end": 11900.18, + "probability": 0.7489 + }, + { + "start": 11900.82, + "end": 11901.34, + "probability": 0.6073 + }, + { + "start": 11902.0, + "end": 11903.8, + "probability": 0.2411 + }, + { + "start": 11915.28, + "end": 11916.98, + "probability": 0.368 + }, + { + "start": 11916.98, + "end": 11917.68, + "probability": 0.178 + }, + { + "start": 11918.36, + "end": 11920.42, + "probability": 0.7619 + }, + { + "start": 11921.56, + "end": 11923.06, + "probability": 0.6082 + }, + { + "start": 11923.06, + "end": 11924.92, + "probability": 0.7047 + }, + { + "start": 11925.0, + "end": 11925.68, + "probability": 0.8831 + }, + { + "start": 11926.12, + "end": 11927.74, + "probability": 0.9731 + }, + { + "start": 11927.98, + "end": 11931.54, + "probability": 0.607 + }, + { + "start": 11932.91, + "end": 11935.14, + "probability": 0.7111 + }, + { + "start": 11935.66, + "end": 11939.26, + "probability": 0.7288 + }, + { + "start": 11940.34, + "end": 11941.16, + "probability": 0.753 + }, + { + "start": 11941.26, + "end": 11942.68, + "probability": 0.8161 + }, + { + "start": 11942.72, + "end": 11943.16, + "probability": 0.7737 + }, + { + "start": 11944.62, + "end": 11946.56, + "probability": 0.8945 + }, + { + "start": 11947.2, + "end": 11948.28, + "probability": 0.8261 + }, + { + "start": 11950.76, + "end": 11952.15, + "probability": 0.9878 + }, + { + "start": 11953.92, + "end": 11954.64, + "probability": 0.7159 + }, + { + "start": 11956.72, + "end": 11957.98, + "probability": 0.5678 + }, + { + "start": 11958.12, + "end": 11959.18, + "probability": 0.8149 + }, + { + "start": 11959.38, + "end": 11959.64, + "probability": 0.9694 + }, + { + "start": 11959.7, + "end": 11960.28, + "probability": 0.885 + }, + { + "start": 11960.32, + "end": 11961.22, + "probability": 0.8453 + }, + { + "start": 11961.44, + "end": 11961.6, + "probability": 0.9091 + }, + { + "start": 11961.72, + "end": 11969.46, + "probability": 0.8904 + }, + { + "start": 11969.76, + "end": 11970.78, + "probability": 0.7802 + }, + { + "start": 11971.36, + "end": 11975.0, + "probability": 0.9054 + }, + { + "start": 11975.72, + "end": 11978.88, + "probability": 0.9575 + }, + { + "start": 11979.62, + "end": 11980.1, + "probability": 0.9482 + }, + { + "start": 11981.36, + "end": 11984.16, + "probability": 0.88 + }, + { + "start": 11984.22, + "end": 11985.74, + "probability": 0.9844 + }, + { + "start": 11986.26, + "end": 11988.44, + "probability": 0.5017 + }, + { + "start": 11989.8, + "end": 11992.75, + "probability": 0.8888 + }, + { + "start": 11993.76, + "end": 11994.46, + "probability": 0.8024 + }, + { + "start": 11994.58, + "end": 11995.04, + "probability": 0.3531 + }, + { + "start": 11995.06, + "end": 11997.94, + "probability": 0.9929 + }, + { + "start": 11998.18, + "end": 11998.98, + "probability": 0.7815 + }, + { + "start": 11999.44, + "end": 12001.5, + "probability": 0.9525 + }, + { + "start": 12001.84, + "end": 12003.38, + "probability": 0.8231 + }, + { + "start": 12003.7, + "end": 12004.22, + "probability": 0.5824 + }, + { + "start": 12004.38, + "end": 12004.86, + "probability": 0.9098 + }, + { + "start": 12005.1, + "end": 12005.62, + "probability": 0.9569 + }, + { + "start": 12005.68, + "end": 12006.34, + "probability": 0.9292 + }, + { + "start": 12006.52, + "end": 12007.12, + "probability": 0.7507 + }, + { + "start": 12007.72, + "end": 12010.38, + "probability": 0.9326 + }, + { + "start": 12010.62, + "end": 12013.08, + "probability": 0.9917 + }, + { + "start": 12013.14, + "end": 12016.46, + "probability": 0.9705 + }, + { + "start": 12016.68, + "end": 12016.92, + "probability": 0.3833 + }, + { + "start": 12017.46, + "end": 12018.22, + "probability": 0.8481 + }, + { + "start": 12019.08, + "end": 12022.36, + "probability": 0.6732 + }, + { + "start": 12022.64, + "end": 12026.94, + "probability": 0.9856 + }, + { + "start": 12027.12, + "end": 12030.28, + "probability": 0.8533 + }, + { + "start": 12031.06, + "end": 12032.39, + "probability": 0.9836 + }, + { + "start": 12033.12, + "end": 12037.22, + "probability": 0.9906 + }, + { + "start": 12037.46, + "end": 12043.82, + "probability": 0.9884 + }, + { + "start": 12043.96, + "end": 12046.56, + "probability": 0.9966 + }, + { + "start": 12047.0, + "end": 12049.48, + "probability": 0.9976 + }, + { + "start": 12050.68, + "end": 12053.82, + "probability": 0.9449 + }, + { + "start": 12054.42, + "end": 12059.8, + "probability": 0.981 + }, + { + "start": 12060.7, + "end": 12062.15, + "probability": 0.9021 + }, + { + "start": 12063.04, + "end": 12067.44, + "probability": 0.9821 + }, + { + "start": 12068.2, + "end": 12071.46, + "probability": 0.8366 + }, + { + "start": 12071.88, + "end": 12076.42, + "probability": 0.9858 + }, + { + "start": 12076.66, + "end": 12081.92, + "probability": 0.9918 + }, + { + "start": 12082.84, + "end": 12087.2, + "probability": 0.9898 + }, + { + "start": 12088.16, + "end": 12090.19, + "probability": 0.8474 + }, + { + "start": 12091.32, + "end": 12095.6, + "probability": 0.9836 + }, + { + "start": 12096.28, + "end": 12097.77, + "probability": 0.9951 + }, + { + "start": 12098.14, + "end": 12099.58, + "probability": 0.9475 + }, + { + "start": 12099.64, + "end": 12103.62, + "probability": 0.9806 + }, + { + "start": 12104.14, + "end": 12111.97, + "probability": 0.9761 + }, + { + "start": 12112.58, + "end": 12115.36, + "probability": 0.9045 + }, + { + "start": 12115.62, + "end": 12116.78, + "probability": 0.8828 + }, + { + "start": 12116.88, + "end": 12118.46, + "probability": 0.9932 + }, + { + "start": 12118.92, + "end": 12119.65, + "probability": 0.9946 + }, + { + "start": 12120.1, + "end": 12121.42, + "probability": 0.9861 + }, + { + "start": 12121.86, + "end": 12123.45, + "probability": 0.9905 + }, + { + "start": 12123.84, + "end": 12127.24, + "probability": 0.999 + }, + { + "start": 12128.04, + "end": 12129.46, + "probability": 0.742 + }, + { + "start": 12129.54, + "end": 12130.2, + "probability": 0.9427 + }, + { + "start": 12130.28, + "end": 12131.17, + "probability": 0.9634 + }, + { + "start": 12132.06, + "end": 12136.68, + "probability": 0.9455 + }, + { + "start": 12137.22, + "end": 12138.22, + "probability": 0.9749 + }, + { + "start": 12138.68, + "end": 12145.3, + "probability": 0.9756 + }, + { + "start": 12145.58, + "end": 12149.22, + "probability": 0.9973 + }, + { + "start": 12149.76, + "end": 12150.78, + "probability": 0.8679 + }, + { + "start": 12151.62, + "end": 12153.82, + "probability": 0.9085 + }, + { + "start": 12154.18, + "end": 12154.24, + "probability": 0.4293 + }, + { + "start": 12154.54, + "end": 12156.76, + "probability": 0.9956 + }, + { + "start": 12156.76, + "end": 12158.74, + "probability": 0.9946 + }, + { + "start": 12159.56, + "end": 12161.56, + "probability": 0.6711 + }, + { + "start": 12164.16, + "end": 12165.2, + "probability": 0.9526 + }, + { + "start": 12165.52, + "end": 12167.34, + "probability": 0.4724 + }, + { + "start": 12167.46, + "end": 12167.7, + "probability": 0.6233 + }, + { + "start": 12169.33, + "end": 12171.96, + "probability": 0.7511 + }, + { + "start": 12173.16, + "end": 12174.36, + "probability": 0.8334 + }, + { + "start": 12176.27, + "end": 12179.52, + "probability": 0.1984 + }, + { + "start": 12204.04, + "end": 12205.98, + "probability": 0.6661 + }, + { + "start": 12206.48, + "end": 12208.58, + "probability": 0.9057 + }, + { + "start": 12208.72, + "end": 12209.63, + "probability": 0.9751 + }, + { + "start": 12210.3, + "end": 12211.98, + "probability": 0.9596 + }, + { + "start": 12212.14, + "end": 12213.12, + "probability": 0.9291 + }, + { + "start": 12213.3, + "end": 12214.2, + "probability": 0.9034 + }, + { + "start": 12214.36, + "end": 12215.48, + "probability": 0.9247 + }, + { + "start": 12216.2, + "end": 12218.76, + "probability": 0.9948 + }, + { + "start": 12218.9, + "end": 12221.24, + "probability": 0.756 + }, + { + "start": 12221.82, + "end": 12224.9, + "probability": 0.9868 + }, + { + "start": 12225.0, + "end": 12225.84, + "probability": 0.6827 + }, + { + "start": 12225.98, + "end": 12226.46, + "probability": 0.6356 + }, + { + "start": 12226.8, + "end": 12231.28, + "probability": 0.9805 + }, + { + "start": 12232.5, + "end": 12235.34, + "probability": 0.9766 + }, + { + "start": 12235.84, + "end": 12238.96, + "probability": 0.9807 + }, + { + "start": 12238.96, + "end": 12243.46, + "probability": 0.9932 + }, + { + "start": 12243.58, + "end": 12243.98, + "probability": 0.9678 + }, + { + "start": 12244.84, + "end": 12246.88, + "probability": 0.9821 + }, + { + "start": 12246.94, + "end": 12249.32, + "probability": 0.7999 + }, + { + "start": 12249.74, + "end": 12250.8, + "probability": 0.9788 + }, + { + "start": 12250.8, + "end": 12251.0, + "probability": 0.5823 + }, + { + "start": 12251.34, + "end": 12252.78, + "probability": 0.993 + }, + { + "start": 12253.6, + "end": 12255.72, + "probability": 0.9963 + }, + { + "start": 12256.28, + "end": 12259.24, + "probability": 0.9924 + }, + { + "start": 12259.94, + "end": 12260.46, + "probability": 0.922 + }, + { + "start": 12260.66, + "end": 12264.92, + "probability": 0.9531 + }, + { + "start": 12265.94, + "end": 12271.2, + "probability": 0.9456 + }, + { + "start": 12271.26, + "end": 12274.2, + "probability": 0.9976 + }, + { + "start": 12274.72, + "end": 12277.58, + "probability": 0.9966 + }, + { + "start": 12277.58, + "end": 12280.44, + "probability": 0.9977 + }, + { + "start": 12280.74, + "end": 12282.48, + "probability": 0.9069 + }, + { + "start": 12283.06, + "end": 12286.06, + "probability": 0.9877 + }, + { + "start": 12286.22, + "end": 12290.24, + "probability": 0.968 + }, + { + "start": 12290.64, + "end": 12293.34, + "probability": 0.9907 + }, + { + "start": 12294.06, + "end": 12295.78, + "probability": 0.5951 + }, + { + "start": 12296.32, + "end": 12298.24, + "probability": 0.9957 + }, + { + "start": 12298.36, + "end": 12302.98, + "probability": 0.9579 + }, + { + "start": 12303.24, + "end": 12303.48, + "probability": 0.5846 + }, + { + "start": 12303.64, + "end": 12305.04, + "probability": 0.9008 + }, + { + "start": 12305.16, + "end": 12305.8, + "probability": 0.6388 + }, + { + "start": 12305.94, + "end": 12306.84, + "probability": 0.9363 + }, + { + "start": 12307.08, + "end": 12308.62, + "probability": 0.9897 + }, + { + "start": 12308.94, + "end": 12311.62, + "probability": 0.9941 + }, + { + "start": 12311.84, + "end": 12315.5, + "probability": 0.7803 + }, + { + "start": 12315.62, + "end": 12316.08, + "probability": 0.7692 + }, + { + "start": 12316.7, + "end": 12318.3, + "probability": 0.8603 + }, + { + "start": 12318.6, + "end": 12319.54, + "probability": 0.9905 + }, + { + "start": 12319.66, + "end": 12320.98, + "probability": 0.7132 + }, + { + "start": 12321.1, + "end": 12322.66, + "probability": 0.967 + }, + { + "start": 12323.64, + "end": 12325.26, + "probability": 0.979 + }, + { + "start": 12325.5, + "end": 12327.11, + "probability": 0.9597 + }, + { + "start": 12328.47, + "end": 12333.28, + "probability": 0.9548 + }, + { + "start": 12333.4, + "end": 12336.02, + "probability": 0.9771 + }, + { + "start": 12336.5, + "end": 12340.52, + "probability": 0.9978 + }, + { + "start": 12341.36, + "end": 12344.18, + "probability": 0.6662 + }, + { + "start": 12344.4, + "end": 12345.97, + "probability": 0.8225 + }, + { + "start": 12346.7, + "end": 12350.56, + "probability": 0.9236 + }, + { + "start": 12350.88, + "end": 12353.0, + "probability": 0.9584 + }, + { + "start": 12353.9, + "end": 12357.44, + "probability": 0.938 + }, + { + "start": 12358.28, + "end": 12362.38, + "probability": 0.9575 + }, + { + "start": 12362.74, + "end": 12364.76, + "probability": 0.9582 + }, + { + "start": 12364.76, + "end": 12367.55, + "probability": 0.5317 + }, + { + "start": 12368.0, + "end": 12368.34, + "probability": 0.7551 + }, + { + "start": 12369.34, + "end": 12371.07, + "probability": 0.8062 + }, + { + "start": 12371.66, + "end": 12372.58, + "probability": 0.9536 + }, + { + "start": 12372.7, + "end": 12373.84, + "probability": 0.9703 + }, + { + "start": 12374.0, + "end": 12375.44, + "probability": 0.9379 + }, + { + "start": 12375.88, + "end": 12378.74, + "probability": 0.9652 + }, + { + "start": 12378.74, + "end": 12381.94, + "probability": 0.9973 + }, + { + "start": 12381.94, + "end": 12384.98, + "probability": 0.9984 + }, + { + "start": 12385.34, + "end": 12386.18, + "probability": 0.7345 + }, + { + "start": 12386.38, + "end": 12388.4, + "probability": 0.9458 + }, + { + "start": 12388.84, + "end": 12390.7, + "probability": 0.9878 + }, + { + "start": 12391.04, + "end": 12393.28, + "probability": 0.9978 + }, + { + "start": 12393.78, + "end": 12394.0, + "probability": 0.4824 + }, + { + "start": 12394.0, + "end": 12394.58, + "probability": 0.5412 + }, + { + "start": 12394.68, + "end": 12398.28, + "probability": 0.8264 + }, + { + "start": 12398.98, + "end": 12399.84, + "probability": 0.9297 + }, + { + "start": 12414.8, + "end": 12415.26, + "probability": 0.1713 + }, + { + "start": 12415.5, + "end": 12416.0, + "probability": 0.0877 + }, + { + "start": 12416.06, + "end": 12417.29, + "probability": 0.0252 + }, + { + "start": 12417.72, + "end": 12418.7, + "probability": 0.0241 + }, + { + "start": 12440.28, + "end": 12445.2, + "probability": 0.9624 + }, + { + "start": 12445.98, + "end": 12448.54, + "probability": 0.9955 + }, + { + "start": 12448.62, + "end": 12449.64, + "probability": 0.9043 + }, + { + "start": 12450.68, + "end": 12453.58, + "probability": 0.97 + }, + { + "start": 12454.22, + "end": 12456.9, + "probability": 0.944 + }, + { + "start": 12457.86, + "end": 12459.52, + "probability": 0.9467 + }, + { + "start": 12460.3, + "end": 12463.71, + "probability": 0.9379 + }, + { + "start": 12464.92, + "end": 12467.02, + "probability": 0.9455 + }, + { + "start": 12469.04, + "end": 12469.32, + "probability": 0.8227 + }, + { + "start": 12469.38, + "end": 12474.74, + "probability": 0.9902 + }, + { + "start": 12475.48, + "end": 12478.8, + "probability": 0.9985 + }, + { + "start": 12479.58, + "end": 12482.54, + "probability": 0.9863 + }, + { + "start": 12483.3, + "end": 12487.34, + "probability": 0.9972 + }, + { + "start": 12488.46, + "end": 12490.14, + "probability": 0.894 + }, + { + "start": 12490.92, + "end": 12492.44, + "probability": 0.7318 + }, + { + "start": 12493.78, + "end": 12495.74, + "probability": 0.9283 + }, + { + "start": 12496.82, + "end": 12502.82, + "probability": 0.9874 + }, + { + "start": 12504.0, + "end": 12508.44, + "probability": 0.7984 + }, + { + "start": 12509.2, + "end": 12515.26, + "probability": 0.9421 + }, + { + "start": 12515.44, + "end": 12516.1, + "probability": 0.7546 + }, + { + "start": 12517.14, + "end": 12519.5, + "probability": 0.9801 + }, + { + "start": 12520.2, + "end": 12522.52, + "probability": 0.9557 + }, + { + "start": 12523.74, + "end": 12524.16, + "probability": 0.9653 + }, + { + "start": 12525.22, + "end": 12526.18, + "probability": 0.7578 + }, + { + "start": 12527.3, + "end": 12531.5, + "probability": 0.994 + }, + { + "start": 12531.96, + "end": 12534.6, + "probability": 0.993 + }, + { + "start": 12535.44, + "end": 12537.8, + "probability": 0.8818 + }, + { + "start": 12538.8, + "end": 12542.12, + "probability": 0.9959 + }, + { + "start": 12542.66, + "end": 12545.28, + "probability": 0.9928 + }, + { + "start": 12545.28, + "end": 12548.62, + "probability": 0.9448 + }, + { + "start": 12550.04, + "end": 12552.28, + "probability": 0.9295 + }, + { + "start": 12552.7, + "end": 12554.04, + "probability": 0.9633 + }, + { + "start": 12554.92, + "end": 12558.98, + "probability": 0.9677 + }, + { + "start": 12560.26, + "end": 12561.48, + "probability": 0.7729 + }, + { + "start": 12562.28, + "end": 12565.76, + "probability": 0.9905 + }, + { + "start": 12565.88, + "end": 12566.4, + "probability": 0.6106 + }, + { + "start": 12567.32, + "end": 12571.94, + "probability": 0.998 + }, + { + "start": 12573.52, + "end": 12576.7, + "probability": 0.9885 + }, + { + "start": 12577.44, + "end": 12583.0, + "probability": 0.991 + }, + { + "start": 12583.38, + "end": 12583.86, + "probability": 0.7288 + }, + { + "start": 12583.94, + "end": 12584.34, + "probability": 0.7193 + }, + { + "start": 12585.16, + "end": 12587.96, + "probability": 0.9827 + }, + { + "start": 12588.74, + "end": 12591.26, + "probability": 0.7402 + }, + { + "start": 12592.52, + "end": 12593.22, + "probability": 0.6288 + }, + { + "start": 12594.0, + "end": 12596.96, + "probability": 0.9937 + }, + { + "start": 12597.46, + "end": 12601.04, + "probability": 0.9872 + }, + { + "start": 12601.94, + "end": 12607.26, + "probability": 0.9873 + }, + { + "start": 12607.94, + "end": 12611.7, + "probability": 0.9932 + }, + { + "start": 12612.56, + "end": 12617.96, + "probability": 0.9873 + }, + { + "start": 12618.76, + "end": 12622.04, + "probability": 0.9972 + }, + { + "start": 12622.04, + "end": 12625.48, + "probability": 0.8563 + }, + { + "start": 12626.04, + "end": 12627.46, + "probability": 0.8122 + }, + { + "start": 12628.24, + "end": 12629.0, + "probability": 0.9309 + }, + { + "start": 12629.52, + "end": 12629.82, + "probability": 0.3395 + }, + { + "start": 12629.82, + "end": 12631.32, + "probability": 0.6611 + }, + { + "start": 12632.42, + "end": 12633.48, + "probability": 0.6544 + }, + { + "start": 12636.74, + "end": 12641.86, + "probability": 0.64 + }, + { + "start": 12654.9, + "end": 12656.06, + "probability": 0.0714 + }, + { + "start": 12657.02, + "end": 12660.26, + "probability": 0.0458 + }, + { + "start": 12660.86, + "end": 12661.08, + "probability": 0.0205 + }, + { + "start": 12661.16, + "end": 12661.98, + "probability": 0.1934 + }, + { + "start": 12663.0, + "end": 12667.32, + "probability": 0.0938 + }, + { + "start": 12689.1, + "end": 12690.46, + "probability": 0.8813 + }, + { + "start": 12691.52, + "end": 12692.52, + "probability": 0.7157 + }, + { + "start": 12693.34, + "end": 12696.24, + "probability": 0.8423 + }, + { + "start": 12697.12, + "end": 12699.32, + "probability": 0.8579 + }, + { + "start": 12699.94, + "end": 12700.8, + "probability": 0.7524 + }, + { + "start": 12702.34, + "end": 12704.58, + "probability": 0.998 + }, + { + "start": 12705.46, + "end": 12710.0, + "probability": 0.8244 + }, + { + "start": 12710.86, + "end": 12714.66, + "probability": 0.6628 + }, + { + "start": 12715.32, + "end": 12716.84, + "probability": 0.4678 + }, + { + "start": 12717.06, + "end": 12718.0, + "probability": 0.3713 + }, + { + "start": 12719.26, + "end": 12722.08, + "probability": 0.9105 + }, + { + "start": 12723.04, + "end": 12724.92, + "probability": 0.991 + }, + { + "start": 12725.74, + "end": 12726.3, + "probability": 0.7501 + }, + { + "start": 12727.49, + "end": 12730.64, + "probability": 0.96 + }, + { + "start": 12731.4, + "end": 12731.64, + "probability": 0.5502 + }, + { + "start": 12732.82, + "end": 12734.62, + "probability": 0.9852 + }, + { + "start": 12735.1, + "end": 12735.42, + "probability": 0.8993 + }, + { + "start": 12735.74, + "end": 12736.1, + "probability": 0.7393 + }, + { + "start": 12736.58, + "end": 12737.84, + "probability": 0.9024 + }, + { + "start": 12738.76, + "end": 12742.68, + "probability": 0.6911 + }, + { + "start": 12742.96, + "end": 12743.86, + "probability": 0.9059 + }, + { + "start": 12744.5, + "end": 12746.92, + "probability": 0.9374 + }, + { + "start": 12747.76, + "end": 12749.81, + "probability": 0.6154 + }, + { + "start": 12750.8, + "end": 12751.22, + "probability": 0.756 + }, + { + "start": 12751.4, + "end": 12754.72, + "probability": 0.9333 + }, + { + "start": 12755.44, + "end": 12757.94, + "probability": 0.983 + }, + { + "start": 12758.06, + "end": 12759.82, + "probability": 0.9515 + }, + { + "start": 12760.78, + "end": 12764.42, + "probability": 0.9777 + }, + { + "start": 12765.86, + "end": 12767.24, + "probability": 0.5401 + }, + { + "start": 12767.36, + "end": 12771.36, + "probability": 0.9595 + }, + { + "start": 12772.62, + "end": 12774.14, + "probability": 0.9204 + }, + { + "start": 12774.7, + "end": 12775.42, + "probability": 0.7321 + }, + { + "start": 12775.98, + "end": 12776.59, + "probability": 0.1405 + }, + { + "start": 12776.96, + "end": 12778.98, + "probability": 0.626 + }, + { + "start": 12779.52, + "end": 12780.58, + "probability": 0.9747 + }, + { + "start": 12782.36, + "end": 12783.76, + "probability": 0.9394 + }, + { + "start": 12784.86, + "end": 12786.84, + "probability": 0.9798 + }, + { + "start": 12786.84, + "end": 12789.94, + "probability": 0.9683 + }, + { + "start": 12790.86, + "end": 12795.06, + "probability": 0.9977 + }, + { + "start": 12796.0, + "end": 12801.26, + "probability": 0.9913 + }, + { + "start": 12801.8, + "end": 12807.12, + "probability": 0.9765 + }, + { + "start": 12808.14, + "end": 12809.92, + "probability": 0.6507 + }, + { + "start": 12810.36, + "end": 12814.4, + "probability": 0.9525 + }, + { + "start": 12815.2, + "end": 12816.3, + "probability": 0.7808 + }, + { + "start": 12817.0, + "end": 12819.06, + "probability": 0.9913 + }, + { + "start": 12819.76, + "end": 12821.28, + "probability": 0.9056 + }, + { + "start": 12822.0, + "end": 12823.92, + "probability": 0.9749 + }, + { + "start": 12826.14, + "end": 12830.34, + "probability": 0.9672 + }, + { + "start": 12831.16, + "end": 12834.98, + "probability": 0.9581 + }, + { + "start": 12836.34, + "end": 12839.88, + "probability": 0.9934 + }, + { + "start": 12840.68, + "end": 12843.26, + "probability": 0.9764 + }, + { + "start": 12843.9, + "end": 12845.92, + "probability": 0.9823 + }, + { + "start": 12847.22, + "end": 12849.44, + "probability": 0.9927 + }, + { + "start": 12850.22, + "end": 12850.9, + "probability": 0.7527 + }, + { + "start": 12850.94, + "end": 12855.58, + "probability": 0.9794 + }, + { + "start": 12856.2, + "end": 12856.4, + "probability": 0.6461 + }, + { + "start": 12858.0, + "end": 12859.72, + "probability": 0.9671 + }, + { + "start": 12861.1, + "end": 12861.52, + "probability": 0.904 + }, + { + "start": 12862.62, + "end": 12865.72, + "probability": 0.6689 + }, + { + "start": 12866.04, + "end": 12868.26, + "probability": 0.8489 + }, + { + "start": 12868.44, + "end": 12868.86, + "probability": 0.8361 + }, + { + "start": 12871.8, + "end": 12871.8, + "probability": 0.6825 + }, + { + "start": 12883.56, + "end": 12884.52, + "probability": 0.4638 + }, + { + "start": 12886.38, + "end": 12888.52, + "probability": 0.8089 + }, + { + "start": 12889.1, + "end": 12891.28, + "probability": 0.6732 + }, + { + "start": 12891.52, + "end": 12892.22, + "probability": 0.7117 + }, + { + "start": 12892.38, + "end": 12893.9, + "probability": 0.8595 + }, + { + "start": 12895.18, + "end": 12896.08, + "probability": 0.9821 + }, + { + "start": 12897.36, + "end": 12899.18, + "probability": 0.9877 + }, + { + "start": 12899.62, + "end": 12902.42, + "probability": 0.9839 + }, + { + "start": 12903.62, + "end": 12904.94, + "probability": 0.9937 + }, + { + "start": 12905.62, + "end": 12907.95, + "probability": 0.9712 + }, + { + "start": 12908.78, + "end": 12909.94, + "probability": 0.9871 + }, + { + "start": 12910.4, + "end": 12912.5, + "probability": 0.9259 + }, + { + "start": 12913.6, + "end": 12916.98, + "probability": 0.9978 + }, + { + "start": 12916.98, + "end": 12921.86, + "probability": 0.9869 + }, + { + "start": 12922.76, + "end": 12925.72, + "probability": 0.7167 + }, + { + "start": 12926.74, + "end": 12928.92, + "probability": 0.9435 + }, + { + "start": 12929.66, + "end": 12932.48, + "probability": 0.9904 + }, + { + "start": 12933.12, + "end": 12935.2, + "probability": 0.9765 + }, + { + "start": 12936.44, + "end": 12936.8, + "probability": 0.4604 + }, + { + "start": 12936.92, + "end": 12940.88, + "probability": 0.9984 + }, + { + "start": 12940.9, + "end": 12943.22, + "probability": 0.9875 + }, + { + "start": 12943.76, + "end": 12946.4, + "probability": 0.9891 + }, + { + "start": 12947.78, + "end": 12950.52, + "probability": 0.9902 + }, + { + "start": 12951.04, + "end": 12953.96, + "probability": 0.9963 + }, + { + "start": 12954.48, + "end": 12959.32, + "probability": 0.9907 + }, + { + "start": 12960.06, + "end": 12962.62, + "probability": 0.9928 + }, + { + "start": 12963.16, + "end": 12965.08, + "probability": 0.9663 + }, + { + "start": 12966.02, + "end": 12966.34, + "probability": 0.6028 + }, + { + "start": 12966.9, + "end": 12967.48, + "probability": 0.4005 + }, + { + "start": 12968.66, + "end": 12968.82, + "probability": 0.387 + }, + { + "start": 12969.68, + "end": 12971.16, + "probability": 0.9198 + }, + { + "start": 12972.02, + "end": 12972.44, + "probability": 0.9443 + }, + { + "start": 12973.56, + "end": 12975.82, + "probability": 0.9943 + }, + { + "start": 12976.42, + "end": 12981.82, + "probability": 0.9965 + }, + { + "start": 12982.44, + "end": 12984.64, + "probability": 0.7582 + }, + { + "start": 12985.28, + "end": 12987.3, + "probability": 0.9108 + }, + { + "start": 12988.48, + "end": 12990.56, + "probability": 0.9854 + }, + { + "start": 12992.68, + "end": 12993.3, + "probability": 0.8826 + }, + { + "start": 12993.98, + "end": 12995.5, + "probability": 0.8473 + }, + { + "start": 12996.24, + "end": 12997.06, + "probability": 0.8175 + }, + { + "start": 12997.66, + "end": 12999.34, + "probability": 0.9159 + }, + { + "start": 12999.88, + "end": 13007.48, + "probability": 0.9407 + }, + { + "start": 13008.06, + "end": 13009.86, + "probability": 0.7237 + }, + { + "start": 13010.76, + "end": 13012.74, + "probability": 0.9146 + }, + { + "start": 13014.0, + "end": 13015.16, + "probability": 0.386 + }, + { + "start": 13015.74, + "end": 13018.74, + "probability": 0.9314 + }, + { + "start": 13019.38, + "end": 13022.6, + "probability": 0.9913 + }, + { + "start": 13023.14, + "end": 13025.86, + "probability": 0.9935 + }, + { + "start": 13026.82, + "end": 13027.42, + "probability": 0.7907 + }, + { + "start": 13028.34, + "end": 13028.52, + "probability": 0.7557 + }, + { + "start": 13029.04, + "end": 13029.86, + "probability": 0.9487 + }, + { + "start": 13030.46, + "end": 13035.46, + "probability": 0.9368 + }, + { + "start": 13036.0, + "end": 13038.06, + "probability": 0.9976 + }, + { + "start": 13038.68, + "end": 13043.68, + "probability": 0.9934 + }, + { + "start": 13045.12, + "end": 13045.68, + "probability": 0.8078 + }, + { + "start": 13046.56, + "end": 13049.02, + "probability": 0.8163 + }, + { + "start": 13050.04, + "end": 13053.56, + "probability": 0.9185 + }, + { + "start": 13054.72, + "end": 13057.02, + "probability": 0.9891 + }, + { + "start": 13058.04, + "end": 13058.34, + "probability": 0.826 + }, + { + "start": 13059.54, + "end": 13062.6, + "probability": 0.9951 + }, + { + "start": 13063.18, + "end": 13065.32, + "probability": 0.9885 + }, + { + "start": 13066.4, + "end": 13066.96, + "probability": 0.6796 + }, + { + "start": 13068.0, + "end": 13071.9, + "probability": 0.9089 + }, + { + "start": 13073.12, + "end": 13075.22, + "probability": 0.993 + }, + { + "start": 13075.82, + "end": 13078.28, + "probability": 0.9257 + }, + { + "start": 13078.48, + "end": 13079.74, + "probability": 0.924 + }, + { + "start": 13080.12, + "end": 13083.1, + "probability": 0.9121 + }, + { + "start": 13083.1, + "end": 13085.8, + "probability": 0.9984 + }, + { + "start": 13086.46, + "end": 13087.1, + "probability": 0.5358 + }, + { + "start": 13087.76, + "end": 13090.6, + "probability": 0.9768 + }, + { + "start": 13090.72, + "end": 13094.79, + "probability": 0.9982 + }, + { + "start": 13095.46, + "end": 13099.06, + "probability": 0.9679 + }, + { + "start": 13100.4, + "end": 13100.9, + "probability": 0.6474 + }, + { + "start": 13101.68, + "end": 13102.02, + "probability": 0.9047 + }, + { + "start": 13102.7, + "end": 13105.56, + "probability": 0.9952 + }, + { + "start": 13105.66, + "end": 13108.94, + "probability": 0.9773 + }, + { + "start": 13109.8, + "end": 13111.7, + "probability": 0.9639 + }, + { + "start": 13111.7, + "end": 13114.5, + "probability": 0.9962 + }, + { + "start": 13115.3, + "end": 13117.9, + "probability": 0.9915 + }, + { + "start": 13118.54, + "end": 13121.42, + "probability": 0.9963 + }, + { + "start": 13122.08, + "end": 13126.52, + "probability": 0.9924 + }, + { + "start": 13126.52, + "end": 13130.36, + "probability": 0.9969 + }, + { + "start": 13131.82, + "end": 13132.32, + "probability": 0.8666 + }, + { + "start": 13133.32, + "end": 13136.3, + "probability": 0.9917 + }, + { + "start": 13136.94, + "end": 13140.44, + "probability": 0.9949 + }, + { + "start": 13141.18, + "end": 13142.06, + "probability": 0.8805 + }, + { + "start": 13142.58, + "end": 13145.24, + "probability": 0.9932 + }, + { + "start": 13145.84, + "end": 13150.32, + "probability": 0.9982 + }, + { + "start": 13150.8, + "end": 13151.44, + "probability": 0.7877 + }, + { + "start": 13151.88, + "end": 13152.74, + "probability": 0.9707 + }, + { + "start": 13153.2, + "end": 13154.0, + "probability": 0.9571 + }, + { + "start": 13159.04, + "end": 13159.5, + "probability": 0.6736 + }, + { + "start": 13160.76, + "end": 13163.4, + "probability": 0.9753 + }, + { + "start": 13163.4, + "end": 13167.88, + "probability": 0.9976 + }, + { + "start": 13168.8, + "end": 13171.26, + "probability": 0.9662 + }, + { + "start": 13171.68, + "end": 13174.76, + "probability": 0.9829 + }, + { + "start": 13175.66, + "end": 13176.02, + "probability": 0.7884 + }, + { + "start": 13176.64, + "end": 13179.14, + "probability": 0.9763 + }, + { + "start": 13180.04, + "end": 13182.86, + "probability": 0.9534 + }, + { + "start": 13183.34, + "end": 13186.36, + "probability": 0.9451 + }, + { + "start": 13186.92, + "end": 13188.72, + "probability": 0.9782 + }, + { + "start": 13189.14, + "end": 13191.16, + "probability": 0.993 + }, + { + "start": 13191.52, + "end": 13192.02, + "probability": 0.6882 + }, + { + "start": 13192.58, + "end": 13195.64, + "probability": 0.9907 + }, + { + "start": 13196.33, + "end": 13197.89, + "probability": 0.9653 + }, + { + "start": 13198.02, + "end": 13202.86, + "probability": 0.9589 + }, + { + "start": 13205.88, + "end": 13208.8, + "probability": 0.9865 + }, + { + "start": 13209.6, + "end": 13209.84, + "probability": 0.7249 + }, + { + "start": 13211.3, + "end": 13211.8, + "probability": 0.5393 + }, + { + "start": 13211.9, + "end": 13214.84, + "probability": 0.8183 + }, + { + "start": 13219.72, + "end": 13221.12, + "probability": 0.605 + }, + { + "start": 13221.26, + "end": 13226.92, + "probability": 0.9065 + }, + { + "start": 13227.36, + "end": 13231.36, + "probability": 0.6175 + }, + { + "start": 13231.46, + "end": 13232.02, + "probability": 0.8504 + }, + { + "start": 13232.24, + "end": 13232.68, + "probability": 0.9771 + }, + { + "start": 13232.9, + "end": 13233.5, + "probability": 0.8457 + }, + { + "start": 13233.64, + "end": 13233.74, + "probability": 0.5427 + }, + { + "start": 13234.27, + "end": 13238.62, + "probability": 0.9595 + }, + { + "start": 13238.68, + "end": 13239.54, + "probability": 0.677 + }, + { + "start": 13240.24, + "end": 13243.36, + "probability": 0.943 + }, + { + "start": 13243.74, + "end": 13246.04, + "probability": 0.9805 + }, + { + "start": 13246.58, + "end": 13247.94, + "probability": 0.7681 + }, + { + "start": 13248.38, + "end": 13251.65, + "probability": 0.7593 + }, + { + "start": 13251.8, + "end": 13255.12, + "probability": 0.8398 + }, + { + "start": 13255.38, + "end": 13259.7, + "probability": 0.7138 + }, + { + "start": 13259.74, + "end": 13260.59, + "probability": 0.832 + }, + { + "start": 13260.76, + "end": 13261.7, + "probability": 0.975 + }, + { + "start": 13262.12, + "end": 13264.5, + "probability": 0.9905 + }, + { + "start": 13264.96, + "end": 13267.22, + "probability": 0.9609 + }, + { + "start": 13267.36, + "end": 13272.02, + "probability": 0.9927 + }, + { + "start": 13272.08, + "end": 13272.08, + "probability": 0.2047 + }, + { + "start": 13272.2, + "end": 13273.22, + "probability": 0.9774 + }, + { + "start": 13274.12, + "end": 13274.6, + "probability": 0.6402 + }, + { + "start": 13275.6, + "end": 13276.02, + "probability": 0.6044 + }, + { + "start": 13276.72, + "end": 13277.17, + "probability": 0.5202 + }, + { + "start": 13277.6, + "end": 13281.3, + "probability": 0.948 + }, + { + "start": 13281.46, + "end": 13281.8, + "probability": 0.864 + }, + { + "start": 13282.02, + "end": 13283.14, + "probability": 0.9619 + }, + { + "start": 13283.22, + "end": 13284.22, + "probability": 0.9072 + }, + { + "start": 13284.52, + "end": 13285.4, + "probability": 0.9517 + }, + { + "start": 13285.8, + "end": 13289.68, + "probability": 0.356 + }, + { + "start": 13289.68, + "end": 13290.37, + "probability": 0.4236 + }, + { + "start": 13291.1, + "end": 13292.92, + "probability": 0.4815 + }, + { + "start": 13293.08, + "end": 13295.84, + "probability": 0.9822 + }, + { + "start": 13295.94, + "end": 13297.11, + "probability": 0.9304 + }, + { + "start": 13297.44, + "end": 13298.54, + "probability": 0.7135 + }, + { + "start": 13299.04, + "end": 13300.94, + "probability": 0.9785 + }, + { + "start": 13301.0, + "end": 13304.34, + "probability": 0.6709 + }, + { + "start": 13304.48, + "end": 13307.04, + "probability": 0.9778 + }, + { + "start": 13307.08, + "end": 13308.28, + "probability": 0.9479 + }, + { + "start": 13308.7, + "end": 13309.02, + "probability": 0.0003 + }, + { + "start": 13309.02, + "end": 13310.3, + "probability": 0.5871 + }, + { + "start": 13310.86, + "end": 13313.36, + "probability": 0.9634 + }, + { + "start": 13314.33, + "end": 13315.92, + "probability": 0.8541 + }, + { + "start": 13316.68, + "end": 13323.86, + "probability": 0.9795 + }, + { + "start": 13324.22, + "end": 13328.78, + "probability": 0.9834 + }, + { + "start": 13329.1, + "end": 13330.94, + "probability": 0.926 + }, + { + "start": 13331.82, + "end": 13333.7, + "probability": 0.873 + }, + { + "start": 13333.98, + "end": 13334.66, + "probability": 0.9317 + }, + { + "start": 13334.94, + "end": 13336.58, + "probability": 0.9722 + }, + { + "start": 13336.58, + "end": 13341.34, + "probability": 0.6471 + }, + { + "start": 13341.34, + "end": 13342.54, + "probability": 0.3467 + }, + { + "start": 13342.54, + "end": 13343.54, + "probability": 0.8179 + }, + { + "start": 13343.66, + "end": 13345.9, + "probability": 0.8972 + }, + { + "start": 13346.0, + "end": 13348.74, + "probability": 0.3609 + }, + { + "start": 13348.88, + "end": 13348.96, + "probability": 0.4165 + }, + { + "start": 13348.96, + "end": 13349.72, + "probability": 0.3138 + }, + { + "start": 13349.98, + "end": 13352.5, + "probability": 0.9662 + }, + { + "start": 13352.98, + "end": 13354.68, + "probability": 0.9995 + }, + { + "start": 13355.14, + "end": 13355.4, + "probability": 0.111 + }, + { + "start": 13355.48, + "end": 13355.94, + "probability": 0.3072 + }, + { + "start": 13355.96, + "end": 13355.96, + "probability": 0.0569 + }, + { + "start": 13355.96, + "end": 13357.68, + "probability": 0.6146 + }, + { + "start": 13358.06, + "end": 13359.48, + "probability": 0.8027 + }, + { + "start": 13359.56, + "end": 13360.62, + "probability": 0.8328 + }, + { + "start": 13360.82, + "end": 13365.68, + "probability": 0.0537 + }, + { + "start": 13365.68, + "end": 13365.68, + "probability": 0.0667 + }, + { + "start": 13365.68, + "end": 13365.68, + "probability": 0.1454 + }, + { + "start": 13365.68, + "end": 13365.68, + "probability": 0.1262 + }, + { + "start": 13365.68, + "end": 13365.68, + "probability": 0.4578 + }, + { + "start": 13365.68, + "end": 13367.64, + "probability": 0.1878 + }, + { + "start": 13367.92, + "end": 13368.34, + "probability": 0.2999 + }, + { + "start": 13368.84, + "end": 13369.32, + "probability": 0.4223 + }, + { + "start": 13370.14, + "end": 13372.36, + "probability": 0.5858 + }, + { + "start": 13373.34, + "end": 13373.48, + "probability": 0.0668 + }, + { + "start": 13373.48, + "end": 13373.48, + "probability": 0.5713 + }, + { + "start": 13373.48, + "end": 13375.46, + "probability": 0.8889 + }, + { + "start": 13376.18, + "end": 13377.54, + "probability": 0.7046 + }, + { + "start": 13377.64, + "end": 13378.08, + "probability": 0.3065 + }, + { + "start": 13378.32, + "end": 13378.82, + "probability": 0.8967 + }, + { + "start": 13384.88, + "end": 13385.6, + "probability": 0.6568 + }, + { + "start": 13386.58, + "end": 13387.28, + "probability": 0.1929 + }, + { + "start": 13388.44, + "end": 13389.64, + "probability": 0.9732 + }, + { + "start": 13390.16, + "end": 13391.58, + "probability": 0.9067 + }, + { + "start": 13392.12, + "end": 13392.36, + "probability": 0.438 + }, + { + "start": 13392.36, + "end": 13392.74, + "probability": 0.6702 + }, + { + "start": 13393.76, + "end": 13394.49, + "probability": 0.9019 + }, + { + "start": 13395.42, + "end": 13396.14, + "probability": 0.7505 + }, + { + "start": 13396.26, + "end": 13397.21, + "probability": 0.708 + }, + { + "start": 13398.08, + "end": 13400.76, + "probability": 0.6783 + }, + { + "start": 13413.34, + "end": 13413.62, + "probability": 0.2249 + }, + { + "start": 13413.62, + "end": 13417.94, + "probability": 0.7461 + }, + { + "start": 13418.06, + "end": 13418.6, + "probability": 0.7785 + }, + { + "start": 13418.66, + "end": 13419.32, + "probability": 0.739 + }, + { + "start": 13423.86, + "end": 13424.58, + "probability": 0.5686 + }, + { + "start": 13424.72, + "end": 13426.7, + "probability": 0.7389 + }, + { + "start": 13426.7, + "end": 13430.18, + "probability": 0.913 + }, + { + "start": 13431.24, + "end": 13437.02, + "probability": 0.9827 + }, + { + "start": 13437.64, + "end": 13438.56, + "probability": 0.0234 + }, + { + "start": 13439.74, + "end": 13440.44, + "probability": 0.4193 + }, + { + "start": 13441.26, + "end": 13441.5, + "probability": 0.2874 + }, + { + "start": 13442.38, + "end": 13443.24, + "probability": 0.9458 + }, + { + "start": 13444.56, + "end": 13445.48, + "probability": 0.5299 + }, + { + "start": 13446.42, + "end": 13447.52, + "probability": 0.3469 + }, + { + "start": 13447.64, + "end": 13448.72, + "probability": 0.4992 + }, + { + "start": 13448.94, + "end": 13449.57, + "probability": 0.4592 + }, + { + "start": 13455.74, + "end": 13456.02, + "probability": 0.747 + }, + { + "start": 13459.44, + "end": 13460.6, + "probability": 0.6924 + }, + { + "start": 13461.84, + "end": 13463.82, + "probability": 0.7721 + }, + { + "start": 13464.64, + "end": 13469.54, + "probability": 0.9323 + }, + { + "start": 13470.6, + "end": 13472.14, + "probability": 0.9817 + }, + { + "start": 13475.88, + "end": 13479.9, + "probability": 0.7504 + }, + { + "start": 13480.7, + "end": 13482.44, + "probability": 0.9654 + }, + { + "start": 13483.32, + "end": 13484.57, + "probability": 0.4828 + }, + { + "start": 13487.06, + "end": 13488.86, + "probability": 0.6791 + }, + { + "start": 13488.94, + "end": 13490.18, + "probability": 0.97 + }, + { + "start": 13490.72, + "end": 13494.84, + "probability": 0.7565 + }, + { + "start": 13495.42, + "end": 13497.74, + "probability": 0.3652 + }, + { + "start": 13498.87, + "end": 13501.56, + "probability": 0.8964 + }, + { + "start": 13503.3, + "end": 13504.2, + "probability": 0.5457 + }, + { + "start": 13504.72, + "end": 13508.34, + "probability": 0.8988 + }, + { + "start": 13509.3, + "end": 13512.62, + "probability": 0.976 + }, + { + "start": 13512.62, + "end": 13513.66, + "probability": 0.8665 + }, + { + "start": 13513.98, + "end": 13516.76, + "probability": 0.544 + }, + { + "start": 13516.8, + "end": 13516.8, + "probability": 0.0251 + }, + { + "start": 13516.8, + "end": 13516.8, + "probability": 0.2803 + }, + { + "start": 13516.8, + "end": 13517.22, + "probability": 0.4305 + }, + { + "start": 13517.3, + "end": 13518.86, + "probability": 0.884 + }, + { + "start": 13518.9, + "end": 13519.5, + "probability": 0.9839 + }, + { + "start": 13520.3, + "end": 13522.18, + "probability": 0.1882 + }, + { + "start": 13522.64, + "end": 13523.5, + "probability": 0.7133 + }, + { + "start": 13525.3, + "end": 13525.3, + "probability": 0.0757 + }, + { + "start": 13525.3, + "end": 13526.5, + "probability": 0.4019 + }, + { + "start": 13526.68, + "end": 13528.86, + "probability": 0.9381 + }, + { + "start": 13529.02, + "end": 13530.64, + "probability": 0.9569 + }, + { + "start": 13532.02, + "end": 13538.8, + "probability": 0.8857 + }, + { + "start": 13540.46, + "end": 13543.32, + "probability": 0.8964 + }, + { + "start": 13544.74, + "end": 13546.34, + "probability": 0.3999 + }, + { + "start": 13547.14, + "end": 13547.6, + "probability": 0.5147 + }, + { + "start": 13548.4, + "end": 13550.6, + "probability": 0.8857 + }, + { + "start": 13551.34, + "end": 13553.94, + "probability": 0.9421 + }, + { + "start": 13554.62, + "end": 13559.26, + "probability": 0.9889 + }, + { + "start": 13559.78, + "end": 13564.22, + "probability": 0.9966 + }, + { + "start": 13564.68, + "end": 13566.56, + "probability": 0.9961 + }, + { + "start": 13567.76, + "end": 13569.52, + "probability": 0.398 + }, + { + "start": 13570.42, + "end": 13573.76, + "probability": 0.9151 + }, + { + "start": 13574.56, + "end": 13578.94, + "probability": 0.9893 + }, + { + "start": 13580.08, + "end": 13584.86, + "probability": 0.9132 + }, + { + "start": 13586.0, + "end": 13587.99, + "probability": 0.9863 + }, + { + "start": 13589.04, + "end": 13593.56, + "probability": 0.6225 + }, + { + "start": 13594.54, + "end": 13597.86, + "probability": 0.64 + }, + { + "start": 13598.72, + "end": 13600.32, + "probability": 0.8777 + }, + { + "start": 13601.04, + "end": 13603.84, + "probability": 0.7088 + }, + { + "start": 13604.46, + "end": 13607.22, + "probability": 0.962 + }, + { + "start": 13608.4, + "end": 13611.54, + "probability": 0.8966 + }, + { + "start": 13612.26, + "end": 13616.74, + "probability": 0.8035 + }, + { + "start": 13618.02, + "end": 13619.44, + "probability": 0.9587 + }, + { + "start": 13620.2, + "end": 13621.85, + "probability": 0.7646 + }, + { + "start": 13622.74, + "end": 13629.92, + "probability": 0.9718 + }, + { + "start": 13630.36, + "end": 13632.38, + "probability": 0.8114 + }, + { + "start": 13632.46, + "end": 13633.26, + "probability": 0.9731 + }, + { + "start": 13634.42, + "end": 13635.16, + "probability": 0.3022 + }, + { + "start": 13635.44, + "end": 13638.54, + "probability": 0.9897 + }, + { + "start": 13638.64, + "end": 13641.18, + "probability": 0.9961 + }, + { + "start": 13642.22, + "end": 13643.12, + "probability": 0.9802 + }, + { + "start": 13644.36, + "end": 13649.94, + "probability": 0.7964 + }, + { + "start": 13650.9, + "end": 13651.96, + "probability": 0.9678 + }, + { + "start": 13653.02, + "end": 13656.4, + "probability": 0.876 + }, + { + "start": 13657.26, + "end": 13661.46, + "probability": 0.9731 + }, + { + "start": 13661.6, + "end": 13663.4, + "probability": 0.9756 + }, + { + "start": 13664.08, + "end": 13666.32, + "probability": 0.7903 + }, + { + "start": 13667.4, + "end": 13670.01, + "probability": 0.9261 + }, + { + "start": 13672.08, + "end": 13673.34, + "probability": 0.7477 + }, + { + "start": 13673.46, + "end": 13674.26, + "probability": 0.9288 + }, + { + "start": 13675.04, + "end": 13679.32, + "probability": 0.8617 + }, + { + "start": 13680.62, + "end": 13681.04, + "probability": 0.9672 + }, + { + "start": 13683.36, + "end": 13684.98, + "probability": 0.6434 + }, + { + "start": 13685.58, + "end": 13687.84, + "probability": 0.8933 + }, + { + "start": 13688.88, + "end": 13692.74, + "probability": 0.995 + }, + { + "start": 13693.5, + "end": 13695.64, + "probability": 0.9588 + }, + { + "start": 13696.18, + "end": 13697.36, + "probability": 0.792 + }, + { + "start": 13698.14, + "end": 13701.9, + "probability": 0.5633 + }, + { + "start": 13702.42, + "end": 13703.7, + "probability": 0.8657 + }, + { + "start": 13704.42, + "end": 13705.4, + "probability": 0.0145 + }, + { + "start": 13706.38, + "end": 13707.22, + "probability": 0.9274 + }, + { + "start": 13708.3, + "end": 13713.48, + "probability": 0.8101 + }, + { + "start": 13714.46, + "end": 13717.92, + "probability": 0.852 + }, + { + "start": 13718.98, + "end": 13720.86, + "probability": 0.895 + }, + { + "start": 13721.98, + "end": 13723.68, + "probability": 0.9973 + }, + { + "start": 13724.68, + "end": 13730.72, + "probability": 0.9889 + }, + { + "start": 13730.92, + "end": 13732.6, + "probability": 0.7152 + }, + { + "start": 13733.98, + "end": 13739.62, + "probability": 0.9677 + }, + { + "start": 13740.58, + "end": 13741.88, + "probability": 0.254 + }, + { + "start": 13742.08, + "end": 13745.76, + "probability": 0.7039 + }, + { + "start": 13747.54, + "end": 13747.8, + "probability": 0.349 + }, + { + "start": 13747.92, + "end": 13754.16, + "probability": 0.9861 + }, + { + "start": 13754.32, + "end": 13755.68, + "probability": 0.9086 + }, + { + "start": 13756.5, + "end": 13757.48, + "probability": 0.4555 + }, + { + "start": 13758.02, + "end": 13762.64, + "probability": 0.8094 + }, + { + "start": 13763.66, + "end": 13765.7, + "probability": 0.995 + }, + { + "start": 13766.32, + "end": 13770.98, + "probability": 0.9918 + }, + { + "start": 13771.74, + "end": 13773.09, + "probability": 0.5818 + }, + { + "start": 13774.04, + "end": 13780.4, + "probability": 0.9378 + }, + { + "start": 13781.0, + "end": 13783.7, + "probability": 0.6204 + }, + { + "start": 13784.2, + "end": 13786.0, + "probability": 0.9857 + }, + { + "start": 13786.24, + "end": 13786.68, + "probability": 0.3529 + }, + { + "start": 13786.68, + "end": 13788.14, + "probability": 0.6355 + }, + { + "start": 13788.52, + "end": 13789.66, + "probability": 0.9703 + }, + { + "start": 13790.3, + "end": 13790.82, + "probability": 0.8287 + }, + { + "start": 13791.46, + "end": 13794.98, + "probability": 0.9881 + }, + { + "start": 13795.06, + "end": 13796.12, + "probability": 0.9604 + }, + { + "start": 13798.0, + "end": 13798.98, + "probability": 0.5396 + }, + { + "start": 13802.42, + "end": 13804.7, + "probability": 0.7431 + }, + { + "start": 13807.5, + "end": 13808.22, + "probability": 0.8045 + }, + { + "start": 13808.3, + "end": 13809.84, + "probability": 0.1243 + }, + { + "start": 13810.04, + "end": 13810.14, + "probability": 0.581 + }, + { + "start": 13810.14, + "end": 13810.34, + "probability": 0.9387 + }, + { + "start": 13812.9, + "end": 13815.24, + "probability": 0.7684 + }, + { + "start": 13821.16, + "end": 13822.8, + "probability": 0.4254 + }, + { + "start": 13830.06, + "end": 13834.06, + "probability": 0.9565 + }, + { + "start": 13834.76, + "end": 13836.7, + "probability": 0.689 + }, + { + "start": 13837.24, + "end": 13839.94, + "probability": 0.7729 + }, + { + "start": 13840.96, + "end": 13845.82, + "probability": 0.6863 + }, + { + "start": 13847.24, + "end": 13849.86, + "probability": 0.8406 + }, + { + "start": 13850.0, + "end": 13851.0, + "probability": 0.9785 + }, + { + "start": 13852.28, + "end": 13853.18, + "probability": 0.6021 + }, + { + "start": 13853.92, + "end": 13854.14, + "probability": 0.0462 + }, + { + "start": 13854.14, + "end": 13856.82, + "probability": 0.8204 + }, + { + "start": 13858.12, + "end": 13859.86, + "probability": 0.864 + }, + { + "start": 13865.01, + "end": 13865.44, + "probability": 0.3542 + }, + { + "start": 13865.44, + "end": 13865.89, + "probability": 0.4238 + }, + { + "start": 13866.84, + "end": 13868.78, + "probability": 0.8699 + }, + { + "start": 13868.94, + "end": 13872.14, + "probability": 0.9708 + }, + { + "start": 13872.76, + "end": 13873.38, + "probability": 0.8537 + }, + { + "start": 13874.23, + "end": 13876.16, + "probability": 0.5596 + }, + { + "start": 13876.68, + "end": 13877.8, + "probability": 0.8649 + }, + { + "start": 13899.52, + "end": 13902.8, + "probability": 0.1118 + }, + { + "start": 13902.8, + "end": 13903.36, + "probability": 0.0616 + }, + { + "start": 13904.12, + "end": 13905.66, + "probability": 0.1114 + }, + { + "start": 13928.6, + "end": 13931.48, + "probability": 0.3009 + }, + { + "start": 13931.48, + "end": 13936.54, + "probability": 0.1093 + }, + { + "start": 13936.58, + "end": 13937.55, + "probability": 0.104 + }, + { + "start": 13939.22, + "end": 13939.22, + "probability": 0.0047 + }, + { + "start": 13941.6, + "end": 13944.08, + "probability": 0.1981 + }, + { + "start": 13945.46, + "end": 13945.62, + "probability": 0.019 + }, + { + "start": 13946.3, + "end": 13946.78, + "probability": 0.0445 + }, + { + "start": 13946.78, + "end": 13946.88, + "probability": 0.0694 + }, + { + "start": 13946.88, + "end": 13949.68, + "probability": 0.2204 + }, + { + "start": 13949.96, + "end": 13950.44, + "probability": 0.5051 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.0, + "end": 13982.0, + "probability": 0.0 + }, + { + "start": 13982.18, + "end": 13982.44, + "probability": 0.0 + }, + { + "start": 13982.98, + "end": 13983.5, + "probability": 0.1224 + }, + { + "start": 13983.5, + "end": 13984.06, + "probability": 0.2091 + }, + { + "start": 13985.42, + "end": 13986.48, + "probability": 0.523 + }, + { + "start": 13992.24, + "end": 13995.8, + "probability": 0.5757 + }, + { + "start": 13995.8, + "end": 13997.88, + "probability": 0.2762 + }, + { + "start": 14000.24, + "end": 14001.46, + "probability": 0.5155 + }, + { + "start": 14001.72, + "end": 14002.16, + "probability": 0.8411 + }, + { + "start": 14002.32, + "end": 14003.22, + "probability": 0.8165 + }, + { + "start": 14003.38, + "end": 14003.74, + "probability": 0.5766 + }, + { + "start": 14004.36, + "end": 14006.24, + "probability": 0.824 + }, + { + "start": 14006.44, + "end": 14008.04, + "probability": 0.4163 + }, + { + "start": 14009.32, + "end": 14012.82, + "probability": 0.9905 + }, + { + "start": 14012.86, + "end": 14013.34, + "probability": 0.5545 + }, + { + "start": 14014.06, + "end": 14014.62, + "probability": 0.9334 + }, + { + "start": 14015.68, + "end": 14017.2, + "probability": 0.0406 + }, + { + "start": 14027.1, + "end": 14031.94, + "probability": 0.056 + }, + { + "start": 14031.94, + "end": 14035.88, + "probability": 0.2205 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14105.0, + "end": 14105.0, + "probability": 0.0 + }, + { + "start": 14128.92, + "end": 14130.46, + "probability": 0.241 + }, + { + "start": 14144.5, + "end": 14150.18, + "probability": 0.2329 + }, + { + "start": 14150.86, + "end": 14151.16, + "probability": 0.1745 + }, + { + "start": 14167.3, + "end": 14168.1, + "probability": 0.0694 + }, + { + "start": 14169.06, + "end": 14171.52, + "probability": 0.0904 + }, + { + "start": 14171.52, + "end": 14171.8, + "probability": 0.114 + }, + { + "start": 14172.73, + "end": 14174.22, + "probability": 0.0203 + }, + { + "start": 14174.78, + "end": 14176.46, + "probability": 0.2124 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14229.0, + "end": 14229.0, + "probability": 0.0 + }, + { + "start": 14242.34, + "end": 14244.34, + "probability": 0.4963 + }, + { + "start": 14245.06, + "end": 14249.86, + "probability": 0.8114 + }, + { + "start": 14251.32, + "end": 14252.62, + "probability": 0.8396 + }, + { + "start": 14253.0, + "end": 14255.36, + "probability": 0.9826 + }, + { + "start": 14256.38, + "end": 14257.84, + "probability": 0.9967 + }, + { + "start": 14258.74, + "end": 14259.26, + "probability": 0.8212 + }, + { + "start": 14261.12, + "end": 14262.86, + "probability": 0.9213 + }, + { + "start": 14263.46, + "end": 14263.56, + "probability": 0.7421 + }, + { + "start": 14272.1, + "end": 14273.46, + "probability": 0.8062 + }, + { + "start": 14274.5, + "end": 14275.32, + "probability": 0.7711 + }, + { + "start": 14275.46, + "end": 14276.1, + "probability": 0.9536 + }, + { + "start": 14276.32, + "end": 14276.9, + "probability": 0.9394 + }, + { + "start": 14277.1, + "end": 14280.46, + "probability": 0.9932 + }, + { + "start": 14280.46, + "end": 14284.52, + "probability": 0.9951 + }, + { + "start": 14285.32, + "end": 14285.64, + "probability": 0.6253 + }, + { + "start": 14285.8, + "end": 14287.58, + "probability": 0.9895 + }, + { + "start": 14287.58, + "end": 14289.06, + "probability": 0.9525 + }, + { + "start": 14289.74, + "end": 14292.3, + "probability": 0.9882 + }, + { + "start": 14292.42, + "end": 14292.52, + "probability": 0.27 + }, + { + "start": 14292.66, + "end": 14293.59, + "probability": 0.982 + }, + { + "start": 14293.74, + "end": 14296.94, + "probability": 0.9871 + }, + { + "start": 14297.7, + "end": 14301.0, + "probability": 0.9953 + }, + { + "start": 14301.74, + "end": 14304.7, + "probability": 0.8802 + }, + { + "start": 14304.86, + "end": 14307.88, + "probability": 0.8937 + }, + { + "start": 14307.94, + "end": 14312.44, + "probability": 0.8261 + }, + { + "start": 14312.78, + "end": 14315.46, + "probability": 0.8723 + }, + { + "start": 14315.52, + "end": 14318.7, + "probability": 0.9676 + }, + { + "start": 14319.26, + "end": 14320.0, + "probability": 0.6688 + }, + { + "start": 14320.1, + "end": 14323.31, + "probability": 0.979 + }, + { + "start": 14324.42, + "end": 14325.92, + "probability": 0.9674 + }, + { + "start": 14326.5, + "end": 14328.36, + "probability": 0.9609 + }, + { + "start": 14328.5, + "end": 14329.48, + "probability": 0.9924 + }, + { + "start": 14330.18, + "end": 14332.1, + "probability": 0.9943 + }, + { + "start": 14332.66, + "end": 14335.88, + "probability": 0.7915 + }, + { + "start": 14336.34, + "end": 14339.36, + "probability": 0.9385 + }, + { + "start": 14339.36, + "end": 14341.5, + "probability": 0.9941 + }, + { + "start": 14342.3, + "end": 14342.82, + "probability": 0.9443 + }, + { + "start": 14343.34, + "end": 14345.2, + "probability": 0.9236 + }, + { + "start": 14345.96, + "end": 14348.36, + "probability": 0.9518 + }, + { + "start": 14348.36, + "end": 14351.74, + "probability": 0.9962 + }, + { + "start": 14352.22, + "end": 14354.36, + "probability": 0.91 + }, + { + "start": 14354.6, + "end": 14355.08, + "probability": 0.9509 + }, + { + "start": 14355.76, + "end": 14358.84, + "probability": 0.9975 + }, + { + "start": 14358.84, + "end": 14362.32, + "probability": 0.9931 + }, + { + "start": 14362.66, + "end": 14363.38, + "probability": 0.7003 + }, + { + "start": 14363.68, + "end": 14365.0, + "probability": 0.9689 + }, + { + "start": 14365.46, + "end": 14366.26, + "probability": 0.993 + }, + { + "start": 14367.18, + "end": 14368.58, + "probability": 0.9753 + }, + { + "start": 14368.58, + "end": 14369.3, + "probability": 0.5406 + }, + { + "start": 14369.36, + "end": 14371.54, + "probability": 0.9713 + }, + { + "start": 14372.08, + "end": 14373.8, + "probability": 0.9966 + }, + { + "start": 14374.54, + "end": 14376.76, + "probability": 0.996 + }, + { + "start": 14376.82, + "end": 14379.94, + "probability": 0.9482 + }, + { + "start": 14380.68, + "end": 14380.96, + "probability": 0.7076 + }, + { + "start": 14381.78, + "end": 14383.66, + "probability": 0.7954 + }, + { + "start": 14384.06, + "end": 14384.7, + "probability": 0.854 + }, + { + "start": 14387.18, + "end": 14388.04, + "probability": 0.5525 + }, + { + "start": 14388.6, + "end": 14390.16, + "probability": 0.6582 + }, + { + "start": 14392.42, + "end": 14395.96, + "probability": 0.7959 + }, + { + "start": 14401.2, + "end": 14403.52, + "probability": 0.9067 + }, + { + "start": 14414.72, + "end": 14415.38, + "probability": 0.6548 + }, + { + "start": 14415.5, + "end": 14416.36, + "probability": 0.7059 + }, + { + "start": 14416.6, + "end": 14417.82, + "probability": 0.4543 + }, + { + "start": 14417.96, + "end": 14420.26, + "probability": 0.9926 + }, + { + "start": 14420.94, + "end": 14423.62, + "probability": 0.9684 + }, + { + "start": 14423.7, + "end": 14424.94, + "probability": 0.9032 + }, + { + "start": 14425.9, + "end": 14428.44, + "probability": 0.8835 + }, + { + "start": 14428.9, + "end": 14429.24, + "probability": 0.5139 + }, + { + "start": 14429.42, + "end": 14430.7, + "probability": 0.499 + }, + { + "start": 14430.78, + "end": 14431.26, + "probability": 0.8282 + }, + { + "start": 14431.82, + "end": 14433.07, + "probability": 0.9821 + }, + { + "start": 14433.48, + "end": 14436.24, + "probability": 0.9087 + }, + { + "start": 14437.18, + "end": 14438.54, + "probability": 0.8614 + }, + { + "start": 14439.18, + "end": 14444.76, + "probability": 0.9619 + }, + { + "start": 14445.2, + "end": 14448.82, + "probability": 0.9272 + }, + { + "start": 14448.88, + "end": 14449.67, + "probability": 0.7582 + }, + { + "start": 14450.42, + "end": 14453.4, + "probability": 0.9851 + }, + { + "start": 14453.98, + "end": 14456.7, + "probability": 0.8664 + }, + { + "start": 14457.0, + "end": 14461.74, + "probability": 0.9514 + }, + { + "start": 14463.5, + "end": 14464.2, + "probability": 0.6664 + }, + { + "start": 14464.64, + "end": 14465.66, + "probability": 0.9641 + }, + { + "start": 14466.34, + "end": 14469.7, + "probability": 0.8955 + }, + { + "start": 14470.24, + "end": 14472.8, + "probability": 0.8338 + }, + { + "start": 14473.04, + "end": 14473.82, + "probability": 0.9155 + }, + { + "start": 14474.3, + "end": 14474.54, + "probability": 0.8253 + }, + { + "start": 14474.56, + "end": 14481.54, + "probability": 0.8002 + }, + { + "start": 14481.94, + "end": 14482.98, + "probability": 0.8657 + }, + { + "start": 14483.8, + "end": 14486.12, + "probability": 0.6228 + }, + { + "start": 14486.76, + "end": 14490.46, + "probability": 0.8966 + }, + { + "start": 14490.98, + "end": 14491.79, + "probability": 0.9282 + }, + { + "start": 14492.18, + "end": 14492.82, + "probability": 0.7324 + }, + { + "start": 14493.38, + "end": 14495.7, + "probability": 0.9951 + }, + { + "start": 14496.1, + "end": 14497.5, + "probability": 0.9342 + }, + { + "start": 14498.02, + "end": 14500.19, + "probability": 0.9944 + }, + { + "start": 14500.86, + "end": 14502.2, + "probability": 0.9897 + }, + { + "start": 14503.5, + "end": 14504.64, + "probability": 0.621 + }, + { + "start": 14505.3, + "end": 14507.04, + "probability": 0.7763 + }, + { + "start": 14507.18, + "end": 14507.18, + "probability": 0.8189 + }, + { + "start": 14507.18, + "end": 14507.26, + "probability": 0.8311 + }, + { + "start": 14507.26, + "end": 14507.26, + "probability": 0.8316 + }, + { + "start": 14507.26, + "end": 14510.1, + "probability": 0.8518 + }, + { + "start": 14510.24, + "end": 14511.44, + "probability": 0.6399 + }, + { + "start": 14511.78, + "end": 14511.78, + "probability": 0.8157 + }, + { + "start": 14511.8, + "end": 14514.94, + "probability": 0.8367 + }, + { + "start": 14515.1, + "end": 14517.96, + "probability": 0.6845 + }, + { + "start": 14518.76, + "end": 14521.16, + "probability": 0.9902 + }, + { + "start": 14521.32, + "end": 14523.06, + "probability": 0.2405 + }, + { + "start": 14523.38, + "end": 14524.7, + "probability": 0.2361 + }, + { + "start": 14525.18, + "end": 14525.86, + "probability": 0.0397 + }, + { + "start": 14526.32, + "end": 14527.42, + "probability": 0.1127 + }, + { + "start": 14527.48, + "end": 14529.2, + "probability": 0.504 + }, + { + "start": 14529.73, + "end": 14531.28, + "probability": 0.0503 + }, + { + "start": 14531.28, + "end": 14532.02, + "probability": 0.4552 + }, + { + "start": 14532.61, + "end": 14536.06, + "probability": 0.9583 + }, + { + "start": 14536.62, + "end": 14538.07, + "probability": 0.9941 + }, + { + "start": 14539.08, + "end": 14539.72, + "probability": 0.9617 + }, + { + "start": 14540.99, + "end": 14542.9, + "probability": 0.0906 + }, + { + "start": 14542.9, + "end": 14542.92, + "probability": 0.0812 + }, + { + "start": 14542.92, + "end": 14543.42, + "probability": 0.2239 + }, + { + "start": 14543.42, + "end": 14543.78, + "probability": 0.3553 + }, + { + "start": 14544.26, + "end": 14545.58, + "probability": 0.4405 + }, + { + "start": 14546.1, + "end": 14548.88, + "probability": 0.5971 + }, + { + "start": 14549.38, + "end": 14551.6, + "probability": 0.3739 + }, + { + "start": 14552.53, + "end": 14555.8, + "probability": 0.7084 + }, + { + "start": 14556.02, + "end": 14558.54, + "probability": 0.6514 + }, + { + "start": 14559.12, + "end": 14560.02, + "probability": 0.5226 + }, + { + "start": 14560.72, + "end": 14563.24, + "probability": 0.7174 + }, + { + "start": 14564.08, + "end": 14564.68, + "probability": 0.0215 + }, + { + "start": 14566.5, + "end": 14568.18, + "probability": 0.1567 + }, + { + "start": 14568.38, + "end": 14570.3, + "probability": 0.0314 + }, + { + "start": 14578.92, + "end": 14579.36, + "probability": 0.0001 + }, + { + "start": 14593.8, + "end": 14594.38, + "probability": 0.0863 + }, + { + "start": 14594.38, + "end": 14598.14, + "probability": 0.2637 + }, + { + "start": 14599.17, + "end": 14600.12, + "probability": 0.084 + }, + { + "start": 14600.12, + "end": 14600.5, + "probability": 0.0331 + }, + { + "start": 14601.04, + "end": 14602.38, + "probability": 0.0981 + }, + { + "start": 14603.26, + "end": 14605.22, + "probability": 0.4565 + }, + { + "start": 14605.86, + "end": 14607.34, + "probability": 0.1924 + }, + { + "start": 14608.25, + "end": 14612.96, + "probability": 0.0354 + }, + { + "start": 14612.96, + "end": 14613.32, + "probability": 0.1316 + }, + { + "start": 14613.72, + "end": 14614.12, + "probability": 0.039 + }, + { + "start": 14614.12, + "end": 14614.16, + "probability": 0.0468 + }, + { + "start": 14614.16, + "end": 14614.28, + "probability": 0.2149 + }, + { + "start": 14614.34, + "end": 14616.22, + "probability": 0.0404 + }, + { + "start": 14616.22, + "end": 14617.42, + "probability": 0.0847 + }, + { + "start": 14617.42, + "end": 14617.42, + "probability": 0.0066 + }, + { + "start": 14617.42, + "end": 14617.42, + "probability": 0.1432 + }, + { + "start": 14617.42, + "end": 14617.42, + "probability": 0.0584 + }, + { + "start": 14617.42, + "end": 14617.56, + "probability": 0.0394 + }, + { + "start": 14617.56, + "end": 14617.76, + "probability": 0.0214 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14618.0, + "end": 14618.0, + "probability": 0.0 + }, + { + "start": 14620.06, + "end": 14622.58, + "probability": 0.3317 + }, + { + "start": 14622.66, + "end": 14624.24, + "probability": 0.5648 + }, + { + "start": 14624.64, + "end": 14624.76, + "probability": 0.2245 + }, + { + "start": 14624.84, + "end": 14624.88, + "probability": 0.0623 + }, + { + "start": 14624.88, + "end": 14624.88, + "probability": 0.443 + }, + { + "start": 14624.88, + "end": 14625.64, + "probability": 0.4846 + }, + { + "start": 14625.82, + "end": 14627.81, + "probability": 0.8813 + }, + { + "start": 14628.02, + "end": 14633.28, + "probability": 0.7145 + }, + { + "start": 14633.28, + "end": 14634.88, + "probability": 0.0254 + }, + { + "start": 14636.73, + "end": 14640.22, + "probability": 0.0468 + }, + { + "start": 14640.22, + "end": 14640.4, + "probability": 0.0645 + }, + { + "start": 14640.4, + "end": 14641.36, + "probability": 0.1447 + }, + { + "start": 14641.58, + "end": 14643.5, + "probability": 0.4993 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.0, + "end": 14745.0, + "probability": 0.0 + }, + { + "start": 14745.16, + "end": 14746.54, + "probability": 0.3907 + }, + { + "start": 14747.06, + "end": 14747.98, + "probability": 0.6941 + }, + { + "start": 14748.88, + "end": 14748.88, + "probability": 0.0137 + }, + { + "start": 14748.88, + "end": 14757.24, + "probability": 0.9861 + }, + { + "start": 14757.3, + "end": 14757.92, + "probability": 0.249 + }, + { + "start": 14758.32, + "end": 14759.58, + "probability": 0.138 + }, + { + "start": 14761.94, + "end": 14762.48, + "probability": 0.0128 + }, + { + "start": 14762.54, + "end": 14762.56, + "probability": 0.2155 + }, + { + "start": 14762.56, + "end": 14762.56, + "probability": 0.0662 + }, + { + "start": 14762.56, + "end": 14763.02, + "probability": 0.3304 + }, + { + "start": 14763.34, + "end": 14768.1, + "probability": 0.7388 + }, + { + "start": 14768.96, + "end": 14772.18, + "probability": 0.9769 + }, + { + "start": 14772.8, + "end": 14775.46, + "probability": 0.998 + }, + { + "start": 14776.42, + "end": 14782.16, + "probability": 0.9958 + }, + { + "start": 14783.04, + "end": 14786.14, + "probability": 0.9978 + }, + { + "start": 14787.14, + "end": 14793.56, + "probability": 0.9945 + }, + { + "start": 14794.1, + "end": 14798.16, + "probability": 0.9456 + }, + { + "start": 14799.34, + "end": 14802.9, + "probability": 0.9956 + }, + { + "start": 14803.5, + "end": 14808.56, + "probability": 0.9935 + }, + { + "start": 14809.48, + "end": 14815.44, + "probability": 0.9913 + }, + { + "start": 14815.54, + "end": 14816.34, + "probability": 0.8076 + }, + { + "start": 14817.08, + "end": 14820.9, + "probability": 0.9863 + }, + { + "start": 14821.41, + "end": 14821.66, + "probability": 0.031 + }, + { + "start": 14821.82, + "end": 14822.12, + "probability": 0.7078 + }, + { + "start": 14822.32, + "end": 14828.72, + "probability": 0.9976 + }, + { + "start": 14829.42, + "end": 14833.94, + "probability": 0.9868 + }, + { + "start": 14834.68, + "end": 14841.58, + "probability": 0.9797 + }, + { + "start": 14842.28, + "end": 14847.54, + "probability": 0.9954 + }, + { + "start": 14848.44, + "end": 14854.12, + "probability": 0.9754 + }, + { + "start": 14854.68, + "end": 14857.76, + "probability": 0.9535 + }, + { + "start": 14858.3, + "end": 14859.2, + "probability": 0.8058 + }, + { + "start": 14859.76, + "end": 14863.96, + "probability": 0.9938 + }, + { + "start": 14865.0, + "end": 14865.48, + "probability": 0.7597 + }, + { + "start": 14866.62, + "end": 14866.84, + "probability": 0.7554 + }, + { + "start": 14867.34, + "end": 14870.46, + "probability": 0.9922 + }, + { + "start": 14870.48, + "end": 14875.12, + "probability": 0.9695 + }, + { + "start": 14875.8, + "end": 14880.86, + "probability": 0.9754 + }, + { + "start": 14881.54, + "end": 14882.54, + "probability": 0.9324 + }, + { + "start": 14882.96, + "end": 14888.16, + "probability": 0.9927 + }, + { + "start": 14888.76, + "end": 14894.98, + "probability": 0.9962 + }, + { + "start": 14894.98, + "end": 14899.06, + "probability": 0.999 + }, + { + "start": 14899.2, + "end": 14899.56, + "probability": 0.7345 + }, + { + "start": 14899.68, + "end": 14902.88, + "probability": 0.9803 + }, + { + "start": 14903.16, + "end": 14906.9, + "probability": 0.8954 + }, + { + "start": 14907.16, + "end": 14907.68, + "probability": 0.6536 + }, + { + "start": 14907.68, + "end": 14910.74, + "probability": 0.9785 + }, + { + "start": 14911.16, + "end": 14912.72, + "probability": 0.9447 + }, + { + "start": 14912.96, + "end": 14913.16, + "probability": 0.7033 + }, + { + "start": 14913.2, + "end": 14913.88, + "probability": 0.7633 + }, + { + "start": 14914.48, + "end": 14917.3, + "probability": 0.9888 + }, + { + "start": 14918.04, + "end": 14922.12, + "probability": 0.9954 + }, + { + "start": 14923.22, + "end": 14923.6, + "probability": 0.5447 + }, + { + "start": 14924.16, + "end": 14924.74, + "probability": 0.0601 + }, + { + "start": 14924.74, + "end": 14925.64, + "probability": 0.4458 + }, + { + "start": 14925.82, + "end": 14926.62, + "probability": 0.8669 + }, + { + "start": 14927.28, + "end": 14933.4, + "probability": 0.0272 + }, + { + "start": 14934.26, + "end": 14934.72, + "probability": 0.1092 + }, + { + "start": 14934.72, + "end": 14934.72, + "probability": 0.063 + }, + { + "start": 14934.72, + "end": 14934.72, + "probability": 0.005 + }, + { + "start": 14934.72, + "end": 14934.72, + "probability": 0.2726 + }, + { + "start": 14934.72, + "end": 14936.0, + "probability": 0.751 + }, + { + "start": 14936.44, + "end": 14938.52, + "probability": 0.7717 + }, + { + "start": 14939.82, + "end": 14945.0, + "probability": 0.685 + }, + { + "start": 14945.16, + "end": 14947.32, + "probability": 0.6522 + }, + { + "start": 14947.44, + "end": 14947.94, + "probability": 0.4184 + }, + { + "start": 14948.32, + "end": 14949.73, + "probability": 0.7965 + }, + { + "start": 14950.66, + "end": 14951.64, + "probability": 0.8352 + }, + { + "start": 14952.44, + "end": 14953.56, + "probability": 0.9673 + }, + { + "start": 14954.56, + "end": 14955.12, + "probability": 0.9013 + }, + { + "start": 14955.8, + "end": 14956.94, + "probability": 0.9604 + }, + { + "start": 14959.02, + "end": 14961.36, + "probability": 0.6029 + }, + { + "start": 14962.08, + "end": 14965.06, + "probability": 0.9055 + }, + { + "start": 14965.68, + "end": 14966.8, + "probability": 0.9861 + }, + { + "start": 14967.04, + "end": 14968.12, + "probability": 0.9755 + }, + { + "start": 14968.14, + "end": 14969.26, + "probability": 0.7165 + }, + { + "start": 14969.32, + "end": 14969.56, + "probability": 0.8117 + }, + { + "start": 14969.96, + "end": 14971.14, + "probability": 0.9268 + }, + { + "start": 14971.66, + "end": 14972.74, + "probability": 0.5601 + }, + { + "start": 14973.32, + "end": 14975.06, + "probability": 0.7079 + }, + { + "start": 14975.62, + "end": 14975.96, + "probability": 0.75 + }, + { + "start": 14975.98, + "end": 14976.5, + "probability": 0.9001 + }, + { + "start": 14976.64, + "end": 14981.36, + "probability": 0.9144 + }, + { + "start": 14982.8, + "end": 14985.28, + "probability": 0.8703 + }, + { + "start": 14985.5, + "end": 14986.14, + "probability": 0.7498 + }, + { + "start": 14988.38, + "end": 14989.14, + "probability": 0.5586 + }, + { + "start": 14989.58, + "end": 14990.18, + "probability": 0.958 + }, + { + "start": 14992.34, + "end": 14993.04, + "probability": 0.2768 + }, + { + "start": 14998.68, + "end": 14998.68, + "probability": 0.0395 + }, + { + "start": 14998.68, + "end": 14998.68, + "probability": 0.0419 + }, + { + "start": 14998.68, + "end": 14998.68, + "probability": 0.288 + }, + { + "start": 15004.74, + "end": 15005.02, + "probability": 0.0593 + }, + { + "start": 15005.02, + "end": 15009.88, + "probability": 0.9893 + }, + { + "start": 15010.92, + "end": 15018.52, + "probability": 0.7441 + }, + { + "start": 15019.28, + "end": 15021.82, + "probability": 0.6471 + }, + { + "start": 15024.52, + "end": 15029.24, + "probability": 0.6252 + }, + { + "start": 15031.88, + "end": 15033.79, + "probability": 0.8 + }, + { + "start": 15042.02, + "end": 15045.42, + "probability": 0.9502 + }, + { + "start": 15045.77, + "end": 15045.98, + "probability": 0.0108 + }, + { + "start": 15046.4, + "end": 15047.2, + "probability": 0.6061 + }, + { + "start": 15047.2, + "end": 15047.24, + "probability": 0.2921 + }, + { + "start": 15048.06, + "end": 15051.6, + "probability": 0.0214 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18947.0, + "end": 18947.0, + "probability": 0.0 + }, + { + "start": 18948.54, + "end": 18951.24, + "probability": 0.7876 + }, + { + "start": 18951.68, + "end": 18952.76, + "probability": 0.948 + }, + { + "start": 18954.12, + "end": 18955.58, + "probability": 0.8982 + }, + { + "start": 18955.78, + "end": 18956.98, + "probability": 0.9707 + }, + { + "start": 18957.04, + "end": 18958.64, + "probability": 0.9437 + }, + { + "start": 18958.76, + "end": 18960.88, + "probability": 0.988 + }, + { + "start": 18962.38, + "end": 18964.9, + "probability": 0.2539 + }, + { + "start": 18965.84, + "end": 18967.08, + "probability": 0.777 + }, + { + "start": 18967.24, + "end": 18967.48, + "probability": 0.7112 + }, + { + "start": 18968.96, + "end": 18969.6, + "probability": 0.7325 + }, + { + "start": 18969.86, + "end": 18971.68, + "probability": 0.8341 + }, + { + "start": 18972.34, + "end": 18977.34, + "probability": 0.9607 + }, + { + "start": 18991.06, + "end": 18991.06, + "probability": 0.2804 + }, + { + "start": 18991.06, + "end": 18991.48, + "probability": 0.8264 + }, + { + "start": 18995.92, + "end": 18997.22, + "probability": 0.6252 + }, + { + "start": 18997.48, + "end": 18998.48, + "probability": 0.7256 + }, + { + "start": 18999.86, + "end": 19001.82, + "probability": 0.8986 + }, + { + "start": 19001.84, + "end": 19004.62, + "probability": 0.9645 + }, + { + "start": 19005.16, + "end": 19007.66, + "probability": 0.9927 + }, + { + "start": 19007.68, + "end": 19010.26, + "probability": 0.548 + }, + { + "start": 19010.52, + "end": 19014.05, + "probability": 0.8215 + }, + { + "start": 19014.76, + "end": 19017.23, + "probability": 0.8966 + }, + { + "start": 19017.6, + "end": 19021.4, + "probability": 0.8281 + }, + { + "start": 19021.5, + "end": 19023.9, + "probability": 0.5868 + }, + { + "start": 19023.96, + "end": 19024.9, + "probability": 0.645 + }, + { + "start": 19025.56, + "end": 19027.6, + "probability": 0.9598 + }, + { + "start": 19027.6, + "end": 19029.28, + "probability": 0.5524 + }, + { + "start": 19029.56, + "end": 19035.58, + "probability": 0.7027 + }, + { + "start": 19036.39, + "end": 19037.86, + "probability": 0.8491 + }, + { + "start": 19038.18, + "end": 19038.9, + "probability": 0.7869 + }, + { + "start": 19039.4, + "end": 19041.78, + "probability": 0.97 + }, + { + "start": 19041.96, + "end": 19042.84, + "probability": 0.7751 + }, + { + "start": 19042.86, + "end": 19046.0, + "probability": 0.9519 + }, + { + "start": 19046.78, + "end": 19050.18, + "probability": 0.9813 + }, + { + "start": 19050.8, + "end": 19053.48, + "probability": 0.9058 + }, + { + "start": 19053.64, + "end": 19054.56, + "probability": 0.7979 + }, + { + "start": 19055.62, + "end": 19058.22, + "probability": 0.9129 + }, + { + "start": 19058.28, + "end": 19060.24, + "probability": 0.9237 + }, + { + "start": 19060.24, + "end": 19062.3, + "probability": 0.9735 + }, + { + "start": 19062.96, + "end": 19065.06, + "probability": 0.912 + }, + { + "start": 19065.06, + "end": 19067.48, + "probability": 0.8193 + }, + { + "start": 19068.3, + "end": 19070.52, + "probability": 0.9816 + }, + { + "start": 19070.56, + "end": 19072.54, + "probability": 0.9826 + }, + { + "start": 19073.18, + "end": 19075.08, + "probability": 0.8169 + }, + { + "start": 19075.9, + "end": 19077.34, + "probability": 0.8235 + }, + { + "start": 19077.46, + "end": 19080.6, + "probability": 0.9316 + }, + { + "start": 19081.32, + "end": 19082.32, + "probability": 0.8465 + }, + { + "start": 19082.64, + "end": 19085.9, + "probability": 0.9665 + }, + { + "start": 19086.58, + "end": 19087.7, + "probability": 0.7268 + }, + { + "start": 19087.78, + "end": 19088.76, + "probability": 0.9195 + }, + { + "start": 19089.1, + "end": 19092.32, + "probability": 0.9092 + }, + { + "start": 19095.08, + "end": 19098.4, + "probability": 0.9949 + }, + { + "start": 19098.4, + "end": 19101.92, + "probability": 0.9915 + }, + { + "start": 19102.28, + "end": 19104.66, + "probability": 0.942 + }, + { + "start": 19104.66, + "end": 19107.12, + "probability": 0.9902 + }, + { + "start": 19107.24, + "end": 19108.44, + "probability": 0.9721 + }, + { + "start": 19109.4, + "end": 19110.76, + "probability": 0.8928 + }, + { + "start": 19111.42, + "end": 19114.94, + "probability": 0.8013 + }, + { + "start": 19115.02, + "end": 19115.6, + "probability": 0.6986 + }, + { + "start": 19115.66, + "end": 19116.34, + "probability": 0.6897 + }, + { + "start": 19117.26, + "end": 19118.74, + "probability": 0.9642 + }, + { + "start": 19119.0, + "end": 19120.04, + "probability": 0.7048 + }, + { + "start": 19120.08, + "end": 19120.72, + "probability": 0.8986 + }, + { + "start": 19120.8, + "end": 19121.28, + "probability": 0.7288 + }, + { + "start": 19122.12, + "end": 19122.54, + "probability": 0.9422 + }, + { + "start": 19122.9, + "end": 19123.6, + "probability": 0.6906 + }, + { + "start": 19123.78, + "end": 19124.24, + "probability": 0.9008 + }, + { + "start": 19124.32, + "end": 19124.9, + "probability": 0.664 + }, + { + "start": 19125.26, + "end": 19125.7, + "probability": 0.9818 + }, + { + "start": 19125.8, + "end": 19126.34, + "probability": 0.6797 + }, + { + "start": 19126.5, + "end": 19126.94, + "probability": 0.993 + }, + { + "start": 19127.44, + "end": 19127.9, + "probability": 0.6632 + }, + { + "start": 19128.04, + "end": 19128.24, + "probability": 0.9954 + }, + { + "start": 19128.62, + "end": 19129.02, + "probability": 0.8085 + }, + { + "start": 19129.22, + "end": 19129.7, + "probability": 0.5587 + }, + { + "start": 19130.22, + "end": 19133.7, + "probability": 0.9526 + }, + { + "start": 19135.94, + "end": 19139.26, + "probability": 0.9847 + }, + { + "start": 19139.38, + "end": 19141.1, + "probability": 0.8451 + }, + { + "start": 19141.94, + "end": 19142.32, + "probability": 0.9611 + }, + { + "start": 19142.87, + "end": 19145.12, + "probability": 0.9712 + }, + { + "start": 19145.46, + "end": 19147.56, + "probability": 0.9948 + }, + { + "start": 19148.12, + "end": 19150.74, + "probability": 0.9899 + }, + { + "start": 19151.5, + "end": 19154.86, + "probability": 0.893 + }, + { + "start": 19155.08, + "end": 19157.14, + "probability": 0.9722 + }, + { + "start": 19158.0, + "end": 19161.36, + "probability": 0.9448 + }, + { + "start": 19161.46, + "end": 19162.44, + "probability": 0.9876 + }, + { + "start": 19162.98, + "end": 19163.5, + "probability": 0.9568 + }, + { + "start": 19164.16, + "end": 19166.36, + "probability": 0.7209 + }, + { + "start": 19166.56, + "end": 19167.4, + "probability": 0.7489 + }, + { + "start": 19168.13, + "end": 19171.4, + "probability": 0.9633 + }, + { + "start": 19173.86, + "end": 19176.04, + "probability": 0.875 + }, + { + "start": 19176.1, + "end": 19178.5, + "probability": 0.8128 + }, + { + "start": 19178.78, + "end": 19179.48, + "probability": 0.8532 + }, + { + "start": 19179.94, + "end": 19181.3, + "probability": 0.9561 + }, + { + "start": 19181.82, + "end": 19182.64, + "probability": 0.9714 + }, + { + "start": 19183.44, + "end": 19185.48, + "probability": 0.7714 + }, + { + "start": 19186.34, + "end": 19189.8, + "probability": 0.6931 + }, + { + "start": 19190.32, + "end": 19191.54, + "probability": 0.9133 + }, + { + "start": 19191.74, + "end": 19192.28, + "probability": 0.9307 + }, + { + "start": 19192.46, + "end": 19193.82, + "probability": 0.976 + }, + { + "start": 19194.24, + "end": 19195.12, + "probability": 0.9731 + }, + { + "start": 19195.44, + "end": 19196.7, + "probability": 0.5176 + }, + { + "start": 19197.16, + "end": 19197.66, + "probability": 0.7058 + }, + { + "start": 19197.88, + "end": 19198.38, + "probability": 0.8634 + }, + { + "start": 19198.48, + "end": 19199.24, + "probability": 0.9634 + }, + { + "start": 19199.8, + "end": 19200.5, + "probability": 0.9171 + }, + { + "start": 19200.64, + "end": 19201.33, + "probability": 0.9913 + }, + { + "start": 19201.66, + "end": 19202.42, + "probability": 0.9366 + }, + { + "start": 19202.88, + "end": 19203.82, + "probability": 0.9751 + }, + { + "start": 19203.94, + "end": 19204.52, + "probability": 0.9658 + }, + { + "start": 19205.08, + "end": 19207.96, + "probability": 0.9671 + }, + { + "start": 19208.48, + "end": 19211.22, + "probability": 0.965 + }, + { + "start": 19218.92, + "end": 19221.22, + "probability": 0.6753 + }, + { + "start": 19221.64, + "end": 19222.32, + "probability": 0.8199 + }, + { + "start": 19222.4, + "end": 19223.82, + "probability": 0.9276 + }, + { + "start": 19224.06, + "end": 19224.42, + "probability": 0.922 + }, + { + "start": 19224.84, + "end": 19226.08, + "probability": 0.9801 + }, + { + "start": 19226.68, + "end": 19228.07, + "probability": 0.9886 + }, + { + "start": 19228.34, + "end": 19228.94, + "probability": 0.801 + }, + { + "start": 19229.08, + "end": 19229.48, + "probability": 0.526 + }, + { + "start": 19229.68, + "end": 19230.2, + "probability": 0.9229 + }, + { + "start": 19230.72, + "end": 19231.68, + "probability": 0.9736 + }, + { + "start": 19231.98, + "end": 19232.58, + "probability": 0.731 + }, + { + "start": 19232.86, + "end": 19233.36, + "probability": 0.7536 + }, + { + "start": 19233.78, + "end": 19234.22, + "probability": 0.8795 + }, + { + "start": 19234.9, + "end": 19235.74, + "probability": 0.9674 + }, + { + "start": 19235.92, + "end": 19236.96, + "probability": 0.8486 + }, + { + "start": 19237.14, + "end": 19237.7, + "probability": 0.6589 + }, + { + "start": 19238.06, + "end": 19238.82, + "probability": 0.7816 + }, + { + "start": 19239.06, + "end": 19239.9, + "probability": 0.7833 + }, + { + "start": 19240.1, + "end": 19240.7, + "probability": 0.6518 + }, + { + "start": 19241.12, + "end": 19243.82, + "probability": 0.9868 + }, + { + "start": 19245.38, + "end": 19248.38, + "probability": 0.828 + }, + { + "start": 19249.08, + "end": 19249.52, + "probability": 0.479 + }, + { + "start": 19249.68, + "end": 19250.08, + "probability": 0.4967 + }, + { + "start": 19250.14, + "end": 19250.8, + "probability": 0.6879 + }, + { + "start": 19250.88, + "end": 19251.96, + "probability": 0.9622 + }, + { + "start": 19252.44, + "end": 19252.9, + "probability": 0.7082 + }, + { + "start": 19253.24, + "end": 19255.14, + "probability": 0.7364 + }, + { + "start": 19256.26, + "end": 19258.2, + "probability": 0.7925 + }, + { + "start": 19258.3, + "end": 19258.62, + "probability": 0.8773 + }, + { + "start": 19259.1, + "end": 19259.22, + "probability": 0.3831 + }, + { + "start": 19259.46, + "end": 19259.88, + "probability": 0.6741 + }, + { + "start": 19260.02, + "end": 19260.96, + "probability": 0.6575 + }, + { + "start": 19261.0, + "end": 19261.48, + "probability": 0.8765 + }, + { + "start": 19261.86, + "end": 19262.28, + "probability": 0.7216 + }, + { + "start": 19262.48, + "end": 19262.94, + "probability": 0.7061 + }, + { + "start": 19263.56, + "end": 19266.48, + "probability": 0.9741 + }, + { + "start": 19268.14, + "end": 19270.7, + "probability": 0.9781 + }, + { + "start": 19271.26, + "end": 19271.8, + "probability": 0.3943 + }, + { + "start": 19271.8, + "end": 19273.08, + "probability": 0.834 + }, + { + "start": 19274.44, + "end": 19276.14, + "probability": 0.8643 + }, + { + "start": 19276.96, + "end": 19279.78, + "probability": 0.4866 + }, + { + "start": 19281.32, + "end": 19282.96, + "probability": 0.3896 + }, + { + "start": 19286.78, + "end": 19292.74, + "probability": 0.811 + }, + { + "start": 19293.5, + "end": 19295.56, + "probability": 0.6919 + }, + { + "start": 19295.64, + "end": 19296.18, + "probability": 0.8538 + }, + { + "start": 19297.12, + "end": 19298.58, + "probability": 0.9677 + }, + { + "start": 19299.1, + "end": 19301.28, + "probability": 0.908 + }, + { + "start": 19301.56, + "end": 19302.06, + "probability": 0.7419 + }, + { + "start": 19305.24, + "end": 19305.82, + "probability": 0.6181 + }, + { + "start": 19306.34, + "end": 19306.84, + "probability": 0.9431 + }, + { + "start": 19318.5, + "end": 19318.84, + "probability": 0.5844 + }, + { + "start": 19318.84, + "end": 19321.66, + "probability": 0.7856 + }, + { + "start": 19322.12, + "end": 19323.76, + "probability": 0.9835 + }, + { + "start": 19324.44, + "end": 19325.9, + "probability": 0.9722 + }, + { + "start": 19326.44, + "end": 19327.16, + "probability": 0.868 + }, + { + "start": 19327.84, + "end": 19328.62, + "probability": 0.3062 + }, + { + "start": 19328.98, + "end": 19333.52, + "probability": 0.8754 + } + ], + "segments_count": 5615, + "words_count": 28240, + "avg_words_per_segment": 5.0294, + "avg_segment_duration": 1.8668, + "avg_words_per_minute": 87.5967, + "plenum_id": "113031", + "duration": 19343.19, + "title": null, + "plenum_date": "2023-02-01" +} \ No newline at end of file